ANALIZA PROMENLJIVOSTI AKTIVNIH GALAKTIČKIH JEZGARA KOMBINOVANOM PRIMENOM SAMOORGANIZUJUĆIH MAPA I NEURONSKIH PROCESA

eLibrary

 
 

ANALIZA PROMENLJIVOSTI AKTIVNIH GALAKTIČKIH JEZGARA KOMBINOVANOM PRIMENOM SAMOORGANIZUJUĆIH MAPA I NEURONSKIH PROCESA

Show simple item record

dc.contributor.advisor Kovačević, Anđelka
dc.contributor.author Čvorović - Hajdinjak, Iva
dc.date.accessioned 2025-07-17T11:05:16Z
dc.date.available 2025-07-17T11:05:16Z
dc.date.issued 2025-06
dc.identifier.uri http://hdl.handle.net/123456789/5766
dc.description.abstract This doctoral dissertation addresses the development and application of advanced methods for analyzing the temporal variability of active galactic nuclei (AGN) through the modeling of their optical light curves. The research integrates unsupervised and generative learning techniques, by combining Self- Organizing Maps (SOM) for data preprocessing and Conditional Neural Processes (CNP) for light curve prediction. For the first time in the study of AGN light curves, clustering via SOM has been implemented for preprocessing, alongside the application of CNP for modeling variability. This innovative approach facilitates a more effective modeling of light curves characterized by uneven sampling and missing observations. The QNPy software package was developed and optimized for large-scale parallel processing of extensive time series data. The proposed methodology was validated using light curves from the All-Sky Automated Survey for SuperNovae (ASAS-SN) and the SWIFT/BAT mission, covering a broad range of time scales and variability. The analysis prove that clustering light curves with SOM enhances the performance of neural process, particularly for objects exhibiting simpler variability patterns. The effects of SOM hyperparameters on clustering and prediction performance were carefully examined. The models were validated using loss function and mean squared error evaluations on real data. The proposed methodology shows strong potential for scalable processing of the large time-series data, anticipated in upcoming projects such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time, enabling automated classification, anomaly detection, and the extraction of scientifically significant objects from catalogs containing hundreds of millions of sources. en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2025-07-17T11:05:16Z No. of bitstreams: 1 doktorska_disertacija_iva_cvorovic_hajdinjak.pdf: 7248259 bytes, checksum: a55c85cfe25834e8656b21d3169a4595 (MD5) en
dc.description.provenance Made available in DSpace on 2025-07-17T11:05:16Z (GMT). No. of bitstreams: 1 doktorska_disertacija_iva_cvorovic_hajdinjak.pdf: 7248259 bytes, checksum: a55c85cfe25834e8656b21d3169a4595 (MD5) Previous issue date: 2025-06 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title ANALIZA PROMENLJIVOSTI AKTIVNIH GALAKTIČKIH JEZGARA KOMBINOVANOM PRIMENOM SAMOORGANIZUJUĆIH MAPA I NEURONSKIH PROCESA en_US
mf.author.birth-date 1983-11-01
mf.author.birth-place Beograd en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srpkinja en_US
mf.subject.area Astronomy and astrophysics en_US
mf.subject.keywords Active Galactic Nulei, light curves, Neural processes, Self- Organizing Map en_US
mf.subject.subarea Active Galactic Nulei en_US
mf.contributor.committee Ilić, Dragana
mf.contributor.committee Popović, Luka
mf.contributor.committee Onić, Dušan
mf.contributor.committee Nikolić, Mladen
mf.contributor.committee Ćiprijanović, Aleksandra
mf.university.faculty Mathematical Faculty en_US
mf.document.pages 168 en_US
mf.document.location Beograd en_US
mf.document.genealogy-project No en_US
mf.university Belgrade University en_US

Files in this item

Files Size Format View
doktorska_disertacija_iva_cvorovic_hajdinjak.pdf 7.248Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record