GEODEZIJSKE LINIJE I HIPERPOVRŠI BLIZU KELEROVE MNOGOSTRUKOSTI S3 X S3

eBibliothek Repositorium

 
 

GEODEZIJSKE LINIJE I HIPERPOVRŠI BLIZU KELEROVE MNOGOSTRUKOSTI S3 X S3

Zur Kurzanzeige

dc.contributor.advisor Đorić, Mirjana
dc.contributor.author Đorić, Miloš
dc.date.accessioned 2022-02-14T13:36:06Z
dc.date.available 2022-02-14T13:36:06Z
dc.date.issued 2022
dc.identifier.uri http://hdl.handle.net/123456789/5324
dc.description.abstract In this dissertation, the classification of some important classes od hypersurfaces M of the nearly Kähler S3 × S3 is considered, along with the parametrisation of the geodesic lines of this manifold. This manifold is one of only four examples of homogeneous, 6-dimensional, nearly Kähler manifolds. In addition to the almost complex structure J, this manifold is en- dowed with an almost product structure P , which anticommutes with J. Owing to these facts, there are two families of interesting tangent vector fields on S3 × S3, called P−singular vector fields, having similar properties as A−singular vector fields on complex quadrics Q, which are already known. The notion of P−principal and P−isotropic tangent vector fields of S3 × S3 is defined, along with their basic properties. In the case of P−principal normal vector field ξ of the hypersurface M , the partial classification is given, while the immersion of the hypersurfaces M with P−isotropic normal vector field ξ is stated explicitly. en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2022-02-14T13:36:06Z No. of bitstreams: 1 MilosDjoricDoktorat.pdf: 800889 bytes, checksum: 6fc60c8acc14e34e7b9e0dcaf20213fe (MD5) en
dc.description.provenance Made available in DSpace on 2022-02-14T13:36:06Z (GMT). No. of bitstreams: 1 MilosDjoricDoktorat.pdf: 800889 bytes, checksum: 6fc60c8acc14e34e7b9e0dcaf20213fe (MD5) Previous issue date: 2022 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title GEODEZIJSKE LINIJE I HIPERPOVRŠI BLIZU KELEROVE MNOGOSTRUKOSTI S3 X S3 en_US
mf.author.birth-date 1988-02-06
mf.author.birth-place Beograd en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srbin en_US
mf.subject.area Mathematics en_US
mf.subject.keywords Nearly Kähler manifolds, almost product structure, Hopf hypersurfaces, P−principal vector field, P−isotropic vector field en_US
mf.subject.subarea Differential geometry en_US
mf.contributor.committee Antić, Miroslava
mf.contributor.committee Rakić, Zoran
mf.contributor.committee Vukmirović, Srđan
mf.contributor.committee Nešović, Emilija
mf.university.faculty Mathematical faculty en_US
mf.document.references 61 en_US
mf.document.pages 92 en_US
mf.document.location Beograd en_US
mf.document.genealogy-project No en_US
mf.university Belgrade University en_US

Dateien zu dieser Ressource

Dateien Größe Format Anzeige
MilosDjoricDoktorat.pdf 800.8Kb PDF Öffnen

Das Dokument erscheint in:

Zur Kurzanzeige