GREBNEROVE BAZE ZA KONAČNO GENERISANE IDEALE NAD NEKIM KLASAMA NENETERINIH PRSTENA

eBibliothek Repositorium

 
 

GREBNEROVE BAZE ZA KONAČNO GENERISANE IDEALE NAD NEKIM KLASAMA NENETERINIH PRSTENA

Zur Langanzeige

Titel: GREBNEROVE BAZE ZA KONAČNO GENERISANE IDEALE NAD NEKIM KLASAMA NENETERINIH PRSTENA
Autor: Roslavcev, Maja
Zusammenfassung: n this thesis we deal with the existence of Gröbner bases for finitely generated ide- als in rings of polynomials over some classes of rings which are not Noetherian. The theory of Gröbner bases is highly developed when we observe the ring of polynomials over a field or over a Noetherian ring. The case when the base ring is non-Noetherian is less examined. In that sense, the rings which will be of interest here are valuation rings of Krull dimension zero, valuation domains of Krull dimension one, also the generalization of the last: Prüfer domains of Krull dimension one. Von Neumann regular commutative rings and (p − 1)-nil-clean commutative rings will also be a matter of discussion. The conclusions of the thesis can be applied to Bezout and Boolean rings, as these form the subclasses of Prüfer and von Neumann regular rings, respectively. The thesis is mostly focused on rings of polynomials with one indeterminate.
URI: http://hdl.handle.net/123456789/5245
Datum: 2021

Dateien zu dieser Ressource

Dateien Größe Format Anzeige
MRoslavcev_TEZA.pdf 3.044Mb PDF Öffnen

Die folgenden Lizenzbestimmungen sind mit dieser Ressource verbunden:

Das Dokument erscheint in:

Zur Langanzeige