DIFUZNO - TALASNA JEDNAČINA RAZLOMLJENOG REDA SA KONCENTRISANIM KAPACITETOM I NJENA APROKSIMACIJA METODOM KONAČNIH RAZLIKA

eBiblioteka

 
 

DIFUZNO - TALASNA JEDNAČINA RAZLOMLJENOG REDA SA KONCENTRISANIM KAPACITETOM I NJENA APROKSIMACIJA METODOM KONAČNIH RAZLIKA

Show full item record

Title: DIFUZNO - TALASNA JEDNAČINA RAZLOMLJENOG REDA SA KONCENTRISANIM KAPACITETOM I NJENA APROKSIMACIJA METODOM KONAČNIH RAZLIKA
Author: Delić, Aleksandra
Abstract: The time fractional di usion-wave equation can be obtained from the classical diffusion or wave equation by replacing the rst or second order time derivative, respectively, by a fractional derivative of order 0 < 2. In particular, depending on the value of the parameter , we distinguish subdi usion (0 < < 1), normal di usion ( = 1), superdi usion (1 < < 2) and ballistic motion ( = 2). Fractional derivatives are non-local operators, which makes it di cult to construct e cient numerical method. The subject of this dissertation is the time fractional di usion-wave equation with coe cient which contains a singular distribution, primarily Dirac distribution, and its approximation by nite di erences. Initial-boundary value problems of this type are usually called interface problems. Solutions of such problems have discontinuities or non-smoothness across the interface, i.e. on support of Dirac distribution, making it di cult to establish convergence of the nite di erence schemes using the classical Taylor's expansion. The existence of generalized solutions of this initial-boundary value problem has been proved. Some nite di erence schemes approximating the problem are proposed and their stability and estimates for the rate of convergence compatible with the smoothness of the solution are obtained. The theoretical results are con rmed by numerical examples.
URI: http://hdl.handle.net/123456789/4337
Date: 2016

Files in this item

Files Size Format View
ADelicDisertacija.pdf 1.356Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record