Browsing Mathematics by Author "Baralić, Đorđe"
Now showing items 11 of 1

Baralić, Đorđe (Beograd , 2013)[more][less]
Abstract: The main objects studied in this doctoral thesis are quasitoric manifolds and spaces arising as the images of polyhedral product functors. Quasitoric manifolds are particularly interesting as topological generalization of nonsingular toric varieties. They are a research topic of many mathematical disciplines including toric geometry, symplectic geometry, toric topology, algebraic geometry, algebraic topology, theory of convex polytopes, and topological combinatorics. These objects have already found numerous applications in mathematics and sciences and they continue to be intensively studied. In this thesis we put some emphasis on combinatorial methods, focusing on the interaction of the geometry of toric actions and combinatorics of simple polytopes. This connection of geometry and combinatorics is based on the fundamental observation that convex polytopes naturally arise as orbit spaces of toric actions on quasitoric manifolds. Our main original contributions in this thesis are related to classical topological questions about degrees of maps between manifolds as well as their embeddings and immersions into Euclidean spaces. We follow the general scheme characteristic for Algebraic Topology where a topological problem is reduced, often by nontrivial reductions, to a question of arithmetical, algebraic, or combinatorial nature. We believe that the novel applications of this scheme developed in the thesis, especially the new techniques and calculations, have a potential to be applied on other problems about quasitoric manifods. Here is a summary of the content of the thesis. For the reader’s convenience and for completeness, in the first three chapters we give an elementary exposition of the basic theory of simplicial complexes, convex polytopes, toric varieties and quasitoric manifolds. The emphasis is on the fundamental constructions and central results, however the combinatorial approach, utilized in the thesis, allows us present the theory in a direct and concrete way, with a minimum of topological prerequisites. The mapping degrees of maps between quasitoric manifolds are studied in Chapter 4 with a particular emphasis on quasitoric 4manifolds. Utilizing the technique pioneered by Haibao Duan and Shicheng Wang, which is based on the intersection form and the cohomology ring calculations, we demonstrate that a complete information about mapping degrees can be obtained in many concrete situations. The theorems and the corresponding criteria for the existence of mapping degrees are formulated in the language of elementary number theory. It is amusing that the question whether a number appears as a mapping degree between concrete 4manifolds is directly linked with classical results from number theory such as whether a number can be expressed as a sum of two or three squares, etc. This approach allows us to analyze many concrete 4manifolds, including CP2, CP2♯CP2, S2×S2, etc. In Chapter 5 we calculate the StiefelWhitney classes of some concrete quasitoric manifolds and their duals. This information is used to determine cohomological obstructions to embeddings and immersions of these manifolds in Euclidean spaces. As an initial observation we showed that the calculations are highly dependent on the action of torus. Indeed, there are examples of quasitoric manifolds over the same polytope which exhibit a very different behavior and different complexity of the associated characteristic classes. Focusing on the quasitoric manifolds over the ndimensional cube, we are able to produce quasitoric manifolds which are very complex in the sense that they almost attain the theoretical minimum dimension for their embedding or (totally skew) immersion in Euclidean spaces. The thesis ends with an appendix with an outline of the theory of group actions and equivariant topology. URI: http://hdl.handle.net/123456789/4232 Files in this item: 1
phdDjordjeBaralic.pdf ( 8.102Mb )
Now showing items 11 of 1