ZAJEDNIČKI SPEKTRALNI RADIJUS ŠUR - ADAMAROVOG PROIZVODA SKUPA MATRICA I ŠUR - ADAMAROVI MNOŽIOCI SA PRIMENAMA NA DERIVACIONE NORMA NEJEDNAKOSTI ZA OPERATORE

eLibrary

 
 

ZAJEDNIČKI SPEKTRALNI RADIJUS ŠUR - ADAMAROVOG PROIZVODA SKUPA MATRICA I ŠUR - ADAMAROVI MNOŽIOCI SA PRIMENAMA NA DERIVACIONE NORMA NEJEDNAKOSTI ZA OPERATORE

Show simple item record

dc.contributor.advisor Jocić, Danko
dc.contributor.author Bogdanović, Katarina
dc.date.accessioned 2025-12-04T16:13:10Z
dc.date.available 2025-12-04T16:13:10Z
dc.date.issued 2025
dc.identifier.uri http://hdl.handle.net/123456789/5780
dc.description.abstract In the rst and the second chapter of dissertation we prove some new inequalities for the spectral radius, essential spectral radius, oper- ator norm, measure of non-compactness and numerical radius of Hadamard (Schur) weighted geometric means of positive kernel operators on Banach function and sequence spaces. The list of extensions and re nings of known inequalities has been expanded. Some new inequalities and equalities for the generalized and the joint spectral radius and their essential versions of Hadamard (Schur) geometric means of bounded sets of positive kernel op- erators on Banach function spaces have been proved. There are additional results in case of non-negative matrices that de ne operators on Banach sequence spaces. In the third part we present some inequalities for opera- tor monotone functions and (co)hyponormal operators and give relations of Schur multipliers to derivation like inequalities for operators. In particular, let Ψ, Φ be s.n. functions, p ⩾ 2 and φ be an operator monotone function on [0, ∞) such that φ(0) = 0. If A, B, X ∈ B(H) and A and B are strictly ac- cretive such that AX−XB ∈ CΨ(H), then also AXφ(B)−φ(A)XB ∈ CΨ(H) and ||AXφ(B) − φ(A)XB||Ψ ⩽ r φ A+A∗ 2 − A+A∗ 2 φ′ A+A∗ 2 A+A∗ 2 −1 A(AX − XB)B B+B∗ 2 −1 r φ B+B∗ 2 − B+B∗ 2 φ′ B+B∗ 2 Ψ . under any of the following conditions: (a) Both A and B are normal, (b) A is cohyponormal, B is hyponormal and at least one of them is normal, and Ψ := Φ(p)∗ , (c) A is cohyponormal, B is hyponormal and ||.||Ψ is the trace norm ||.||1. Alternative inequalities for ||.||Ψ(p) norms are also obtained. en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2025-12-04T16:13:10Z No. of bitstreams: 1 Katarina_Bogdanovic_disertacija.pdf: 1621453 bytes, checksum: 937342a798df87f26771f07074a32f25 (MD5) en
dc.description.provenance Made available in DSpace on 2025-12-04T16:13:10Z (GMT). No. of bitstreams: 1 Katarina_Bogdanovic_disertacija.pdf: 1621453 bytes, checksum: 937342a798df87f26771f07074a32f25 (MD5) Previous issue date: 2025 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title ZAJEDNIČKI SPEKTRALNI RADIJUS ŠUR - ADAMAROVOG PROIZVODA SKUPA MATRICA I ŠUR - ADAMAROVI MNOŽIOCI SA PRIMENAMA NA DERIVACIONE NORMA NEJEDNAKOSTI ZA OPERATORE en_US
mf.author.birth-date 1977
mf.author.birth-place Beograd en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srpkinja en_US
mf.subject.area Mathematics en_US
mf.subject.keywords operator monotone functions, hyponormal operators, compact operators, Schur-Hadamard weighted geometric mean ,kernel operators , joint spectral radius en_US
mf.subject.subarea operator theory en_US
mf.contributor.committee Peperko, Aljoša
mf.contributor.committee Wirth, Fabian
mf.contributor.committee Drnovščak, Roman
mf.contributor.committee Đorđević, Dragan
mf.contributor.committee Milošević, Stefan
mf.university.faculty Mathematical Faculty en_US
mf.document.references 46 en_US
mf.document.pages 77 en_US
mf.document.location Beograd en_US
mf.document.genealogy-project No en_US
mf.university Belgrade University en_US

Files in this item

Files Size Format View
Katarina_Bogdanovic_disertacija.pdf 1.621Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record