ŠESTI MOMENT DIRIHLEOVIH L-FUNKCIJA NAD RACIONALNIM FUNKCIJSKIM POLJIMA

eLibrary

 
 

ŠESTI MOMENT DIRIHLEOVIH L-FUNKCIJA NAD RACIONALNIM FUNKCIJSKIM POLJIMA

Show simple item record

dc.contributor.advisor Đanković, Goran
dc.contributor.author Đokić, Dragan
dc.date.accessioned 2023-01-19T13:46:30Z
dc.date.available 2023-01-19T13:46:30Z
dc.date.issued 2022-11
dc.identifier.uri http://hdl.handle.net/123456789/5531
dc.description.abstract The distribution of primes is determined by the distribution of zeros of Riemann zeta function, and indirectly by the distribution of magnitude of this function on the critical line <s = 1 2 . Similarly, in order to consider the distribution of primes in arithmetic progressions, Dirichlet introduced L-functions as a generalization of Riemann zeta function. Generalized Riemann hypothesis, the most important open problem in mathematics, predicts that all nontrivial zeros of Dirichlet L-function are located on the critical line. Therefore, one of the main goals in Analytic Number Theory is to consider the moments of Dirichlet L-functions (according to a certain well defined family). The relation with the characteristic polynomials of random unitary matrices is one of the fundamental tools for heuristic understanding of L-functions and derivation hypotheses about asymptotic formulae for their moments. Asymptotics for even moments 1 T Z T 0 ζ 1 2 + it 2k dt, as T → ∞, is still an open question (except for k = 1, 2), and it is related to the Lindelöf Hypothesis. In this dissertation we consider the sixth moment of Dirichlet L-functions over rational function fields Fq(x), where Fq is a finite field. We will present the asymptotic formula for the sixth moment with the triple average X Q monic deg Q=d X χ (mod Q) χ odd primitive 2π Z log q 0 L 1 2 + it, χ 6 dt 2π log q as d → ∞. All additional averaging is currently necessary to obtain the asymptotics. The summation over Dirichlet characters and their moduli is motivated by Bombieri-Vinogradov Theorem. Our result is a function field analogue of the paper [25] for the corresponding family and averaging over field Q. Also, our main term confirms the existing Random matrix theory predictions. en_US
dc.description.provenance Submitted by Slavisha Milisavljevic (slavisha) on 2023-01-19T13:46:30Z No. of bitstreams: 1 dragan_djokic_teza.pdf: 867802 bytes, checksum: 2a78c6d32a061cc325bd2bbdf0f95bbc (MD5) en
dc.description.provenance Made available in DSpace on 2023-01-19T13:46:30Z (GMT). No. of bitstreams: 1 dragan_djokic_teza.pdf: 867802 bytes, checksum: 2a78c6d32a061cc325bd2bbdf0f95bbc (MD5) Previous issue date: 2022-11 en
dc.language.iso sr en_US
dc.publisher Beograd en_US
dc.title ŠESTI MOMENT DIRIHLEOVIH L-FUNKCIJA NAD RACIONALNIM FUNKCIJSKIM POLJIMA en_US
mf.author.birth-date 1992-02-24
mf.author.birth-place Leskovac en_US
mf.author.birth-country Srbija en_US
mf.author.residence-state Srbija en_US
mf.author.citizenship Srpsko en_US
mf.author.nationality Srbin en_US
mf.subject.area Mathematics en_US
mf.subject.keywords Dirichlet L-functions, moments of L-functions, rational function iii fields, Random matrix theory, Hayes L-functions en_US
mf.subject.subarea Analytic number theory en_US
mf.contributor.committee Lipkovski, Aleksandar
mf.contributor.committee Radovanović, Marko
mf.contributor.committee Stankov, Dragan
mf.contributor.committee Stojadinović, Tanja
mf.university.faculty Mathematical Faculty en_US
mf.document.references 84 en_US
mf.document.pages 113 en_US
mf.document.location Belgrade en_US
mf.document.genealogy-project No en_US
mf.university Belgrade en_US

Files in this item

Files Size Format View
dragan_djokic_teza.pdf 867.8Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record