EKSTREMNI PROBLEMI BRAUNOVOG KRETANJA I DRUGIH SLUČAJNIH PROCESA
dc.contributor.advisor | Mladenović, Pavle | |
dc.contributor.author | Jovalekić, Milica | |
dc.date.accessioned | 2022-02-11T16:38:05Z | |
dc.date.available | 2022-02-11T16:38:05Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/123456789/5323 | |
dc.description.abstract | Let M be a maximum and let N be a minimum of the non-negative martingale X1, X2, . . . , Xn. It is well known, that if X1 = 1, then γ(‖M ‖1) ≤ E (Xn log Xn) and γ(‖N ‖1) ≤ E (Xn log Xn) , where γ(x) = x − 1 − log x, for all x > 0. In this thesis, we prove the analogue of this result in the case when 1 < p < ∞, by proving that δp (‖M ‖p p ) ≤ ‖Xn‖p and δp (‖N ‖p p ) ≤ ‖Xn‖p, where δp(x) = ( 1 − 1 p ) x 1 p + 1 p x 1 p −1, for all x > 0. We also obtain a probabilistic proof of the fact min ρ∈D(Qn) ∫ Qn dx1 . . . dxn ρ (x1, . . . , xn)p−1 ∏n j=1 xαj +1 j = n∏ j=1 ( p p − αj − 1 )p , where p > 1, αj < p − 1 for j = 1, . . . , n and D (Qn) is family of all densities on the n-dimensional unit cube Qn = (0, 1)n in Rn. This provides the proof of the multidimensional weighted Hardy inequality. Namely, if f : Rn + → (0, ∞) is a measurable function, p > 1 and αj < p − 1 for j = 1, . . . , n, then ∫ Rn + n∏ j=1 xαj j Hnf (x)p dx ≤ n∏ j=1 ( p p − αj − 1 )p ∫ Rn + n∏ j=1 xαj j f (x)p dx, where Hnf (x) = 1 x1 . . . xn ∫ x1 0 · · · ∫ xn 0 f (t) dt, is a multidimensional Hardy operator, x = (x1, . . . , xn) ∈ Rn +, t = (t1, . . . , tn) and dt = dt1 . . . dtn. Let B(t) be a standard planar Brownian motion and r(θ) be the length of the projection of B[0, 1] on the line generated by the unit vector eθ = (cos θ, sin θ), where 0 ≤ θ ≤ π. We nd the common distribution function F of the random variables r(θ). Namely, we prove that F(x) = 8 ∞∑ n=1 ( 1 x2 + 1 (2n − 1)2π2 ) exp ( − (2n − 1)2π2 2x2 ) , for every x > 0. As immediate consequence, lower bound for the expected diameter of the set B[0, 1], better than known, is obtained. Namely, it is known that Ed ≥ 1.601, where d is the diameter of the set B[0, 1]. In this thesis we show Ed ≥ 1.856. | en_US |
dc.description.provenance | Submitted by Slavisha Milisavljevic (slavisha) on 2022-02-11T16:38:05Z No. of bitstreams: 1 MilicaJovalekicDisertacija.pdf: 1796952 bytes, checksum: 4c8f22380b755554833cd088fecd3311 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-02-11T16:38:05Z (GMT). No. of bitstreams: 1 MilicaJovalekicDisertacija.pdf: 1796952 bytes, checksum: 4c8f22380b755554833cd088fecd3311 (MD5) Previous issue date: 2022 | en |
dc.language.iso | sr | en_US |
dc.publisher | Beograd | en_US |
dc.title | EKSTREMNI PROBLEMI BRAUNOVOG KRETANJA I DRUGIH SLUČAJNIH PROCESA | en_US |
mf.author.birth-date | 1990-02-21 | |
mf.author.birth-place | Beograd | en_US |
mf.author.birth-country | Srbija | en_US |
mf.author.residence-state | Srbija | en_US |
mf.author.citizenship | Srpsko | en_US |
mf.author.nationality | Srpkinja | en_US |
mf.subject.area | Mathematics | en_US |
mf.subject.keywords | Stochastic Processes, Martingales, Doob inequalities, Multidimensional Hardy inequality, Brownian motion | en_US |
mf.subject.subarea | Probability and statistics | en_US |
mf.contributor.committee | Jocković, Jelena | |
mf.contributor.committee | Glavaš, Lenka | |
mf.contributor.committee | Koledin, Tamara | |
mf.university.faculty | Mathematical faculty | en_US |
mf.document.references | 56 | en_US |
mf.document.pages | 69 | en_US |
mf.document.location | Beograd | en_US |
mf.document.genealogy-project | No | en_US |
mf.university | Belgrade University | en_US |
Dateien zu dieser Ressource
Dateien | Größe | Format | Anzeige |
---|---|---|---|
MilicaJovalekicDisertacija.pdf | 1.796Mb | Öffnen |