KOMBINATORNE HOPFOVE ALGEBRE

eLibrary

 
 

KOMBINATORNE HOPFOVE ALGEBRE

Show full item record

Title: KOMBINATORNE HOPFOVE ALGEBRE
Author: Stojadinović, Tanja
Abstract: Multiplication and comultiplication, which de ne the structure of a Hopf algebra, can naturally be introduced over many classes of combinatorial objects. Among such Hopf algebras are well-known examples of Hopf algebras of posets, permutations, trees, graphs. Many classical combinatorial invariants, such as M obius function of poset, the chromatic polynomial of graphs, the generalized Dehn-Sommerville relations and other, are derived from the corresponding Hopf algebra. Theory of combinatorial Hopf algebras is developed by Aguiar, Bergerone and Sottille in the paper from 2003. The terminal objects in the category of combinatorial Hopf algebras are algebras of quasisymmetric and symmetric functions. These functions appear as generating functions in combinatorics. The subject of study in this thesis is the combinatorial Hopf algebra of hypergraphs and its subalgebras of building sets and clutters. These algebras appear in di erent combinatorial problems, such as colorings of hypergraphs, partitions of simplicial complexes and combinatorics of simple polytopes. The structural connections among these algebras and among their odd subalgebras are derived. By applying the character theory, a method for obtaining interesting numerical identities is presented. The generalized Dehn-Sommerville relations for ag f-vectors of eulerian posets are proven by Bayer and Billera. These relations are de ned in an arbitrary combinatorial Hopf algebra and they determine its odd subalgebra. In this thesis, the generalized Dehn-Sommerville relations for the combinatorial Hopf algebra of hypergraphs are solved. By analogy with Rota's Hopf algebra of posets, the eulerian subalgebra of the Hopf algebra of hypergraphs is de ned. The combinatorial characterization of eulerian hypergraphs, which depends on the nerve of the underlying clutter, is obtained. In this way we obtain a class of solutions of the generalized Dehn-Sommerviller relations for hypergraphs. These results are applied on the Hopf algebra of simplicial complexes.
URI: http://hdl.handle.net/123456789/4306
Date: 2013

Files in this item

Files Size Format View
phdTanjaStojadinovic.pdf 13.95Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record