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Abstract. Our paper is devoted to the solution of Hilbert's sixth problem, attempting to 
treat the problem of axiomatization of physics, as well as the foundation of physics as a 
formal mathematical theory. Within the framework of formal Set Theory, we have built a 
universe of topological spaces. On such grounds, a formal Space Theory is formulated. A 
definition of motion within a universe of topological spaces is introduced postulating that 
gravitational and other field effects could be predicted from it, and our final goal has been 
to found physics on new grounds.  

1. INTRODUCTION 

At the international congress of mathematicians held in Paris, 1900, David Hibert 
formulated his 23 open problems, as a challenge to and programme for mathema-
ticians in the 20th century. His sixth problem was concerned with the axiomatiza-
tion of physics or the foundation of physics as a formal mathematical theory. 

Hilbert's requirement for the formalization of physics is quite natural as, at the 
time, formalization of many mathematical theories started and continued through-
out the 20th century1.

While today mathematics is represented by many formal theories which are 
based on the formal Set Theory, physics has always been based on different 

                                                          
1 First of all, Hilbert founded geometry as a formal theory (Hilbert, 1930); furthermore, the 
appearance of logical paradoxes such as Russell's (Russell, 1906), and language paradoxes, 
such as Richard's (Richard, 1907), motivated mathematicians to formulate Set Theory in 
an axiomatic way and to define its language. In other words, Set Theory was founded as a 
formal mathematical theory (Zermelo, 1908; Jech, 1978). In such a way, Cantor's "naive" 
set theory had to be abandoned (Cantor, 1895). 
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grounds, thus failing to transform itself into a formal theory. Instead of the formal-
ization process in physics, especially in the 20th century, we have a process of its 
geometrization. 

The manner in which space was treated in physics led to its geometrization 
rather than its formalization. On the other hand, it is well known that topological 
spaces had not been defined until 1915. Riemman proposed his first topological 
ideas in Inaugural Lectures in the first half of the 19th century. Seventy years had 
to pass in order to arrive at a utilizable and viable definition of topological spaces. 
For the present state of topology, the major contributions have been made by Fre-
chet, Hausdorff and Kuratowski. In 1906, Maurice Frechet introduced the notion 
of metric space by unifying the work on function spaces as proposed by Cantor, 
Volterra, Arzela, Hadamard, Ascoli, and others. A metric space is now considered 
a special case of general topological space. In 1914, Felix Hausdorff coined the 
term "topological space" providing the definition for what is now called the Haus-
dorff space (Hausdorff, 1914). In its current usage, a topological space is a slight 
generalization of Hausdorff spaces, given in 1922 by Kazimierz Kuratowski. Re-
calling these facts, it seems obvious that at the time when Albert Einstein was 
formulating his Special theory of relativity (1905) and afterwards the General the-
ory of relativity (1915), it was not possible to work with topological spaces, sim-
ply because there was no precise definition of topology on sets (Einstein, 1905, 
1952, 1916 and 1955). Einstein could only be familiar with the basic ideas of 
topological spaces, but without a precise definition it was impossible to go be-
yond. The manner in which physicists treated space was mainly based on geomet-
rical spaces, i.e., sets on which geometrical objects, points, straight lines, and 
planes were defined, and on which a Euclidian or non-Euclidian geometry is real-
ized, depending on the choice of the postulate of parallelism. 

J. A. Wheeler, the founder of geometrodynamics (Misner and Wheeler, 1957, 
Wheeler, 1957; 1961), at a congress of philosophers in 1960, went one step further 
from geometrization and posed the following question (Grunbum, 1973): "Is

space-time only an arena within which field and particles move about as a "physi-

cal" and "foreign" entities or is the four dimensional continuum all there is. Is 

curved empty geometry a kind of building magic material out of which everything 

in physical world is made (1) slow curvature is one region of space a gravitational 

field (2) a rippled geometry with a different type of curvature somewhere else de-

scribes an electromagnetic field (3) knotted-up region of high curvature describes 

a charge and mass-energy that move like particles. Are field and particles foreign 

entities immersed in geometry or they are nothing but geometry". In 1972, at a 
conference on gravitation in quantization at the University of  Boston, Wheeler 
found pure geometrization of physical phenomena insufficient and introduced the 
concept of pre-geometry. According to this concept, space-time is generated from 
a certain physical entity, from a space which carries geometry or space-generating 
geometry (Grunbum, 1973). In such a reformulated vision of physics, the notion of 
motion also had to undergo a proper "metamorphosis". Even though this was rec-
ognized as a problem, Wheeler failed to provide any solution.
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A complete reduction of physics to space geometry or deduction of physics 
from space geometry could be one way of formalizing physics, due to the fact that 
geometry has the status of a formal mathematical theory. As a result, Hilbert's 
sixth problem would be resolved. Unfortunately, rather than deducing physics 
from space geometry, as the proper geometrization should do, a mere transcription 
was done of one part of the language of physics into geometrical language. 
Wheeler's concept of pre-geometry and the idea that geometry should be somehow 
generated highlighted the problem of the structure of carrying space and time, i.e., 
the structure that the determination of motion depends on. Finally, the condition 

for axiomatization of physics should be determination of the structure of space 

and time, and, accordingly, a proper foundation of physics should be done on 

these re-established grounds.  

2. FOUNDATION OF SPACE THEORY

Every formal mathematical theory has four segments. The first and most important 
one is the language of formal theory. Starting from the language, we formulate a 
system of axioms. The axioms of a theory are assumptions about the existence of 
some objects in the theory or assumptions about the basic relations of the objects 
in the theory. The fundamental notions of a theory are always specified by a sys-
tem of axioms. The third aspect of formal theories is some kind of the logic of the 
theory. These are mostly rules of derivation. In addition, we can speak about the 
fourth segment concerned with objects to which a theory is related.  

Physics as a formal theory can be built up in two ways. It can be formulated as 
an independent formal theory, with a language, logic, system of axioms and ob-
jects which together should generate the whole "world" of physics. The second 
possibility is to found physics within the framework of an existing formal theory. 
In that case, the language of physics should be an extension of the language of this 
existing formal theory, the notions of physics should be derived from the notions 
of the existing theory, and the existence of objects to which physics is related 
should be derived from the existence of the objects in the starting theory.                                      

In this paper, we choose the second route. We attempt to show that it is possi-

ble to build a formal Space Theory within the framework of ZFC Set Theory.2

Then we bring forth the arguments supporting the foundation of physics within our 

Space Theory.2

But first, there are several questions that we need to clarify: 

I. What we assume by the foundation of physics?

When we use the expression 'the foundation of physics', we mainly focus on 
the mathematization of the notion of motion and a consistent inclusion of such a 
notion into mathematics. We define motion for every topological space in a given 

                                                          
2 Zermelo Fraenkel Set Theory with axiom of choice (Jech, 1978).                                                                
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universe of topological spaces, with the underlying idea that so defined motion can 
help us predict gravitational and effects of the other fields.   

II. For every topological space, there is inherent motion.

In general, a given set can be a space in many ways. Namely, every topology 
defined on a given set determines one space on a given set or makes a space out of 
that set. Hence, with the rising of topology, we are forced to abandon the idea 
about one possible space. In mathematics, when the notion of space is used, it 
generally refers to a topological space. Topological spaces are significant gener-
alizations of geometrical spaces. Many important concepts on the nature of a 
unique underlying space, summarized in Adolf Grunbaum's Philosophical Prob-

lems of Space and Time (Grunbum, 1973)3, become problematic as every assump-
tion about the properties that such a space should fulfill a priori immediately leads 
to the limitations of the physical theory which we want to formulate.4 In order to 
arrive at notions of physics in their full generality, one should start with space hav-
ing the lowest number of a priori properties. These should be the main arguments 
for the idea that physics might be based on general topological spaces. 

III. Is there a need for Space Theory.

If we want to build up physics on topological spaces, we are faced with another 
problem. Topology as a mathematical discipline is not built up as a formal theory.  

It is well known that the axioms of Set Theory define the notion of set, one 
which all other terms of standard mathematics could be derived from or reduced 
to. Within Set Theory, the world of sets and set constructions has been built. The 
world of spaces and space constructions should be made within Space Theory. 
Objects to which Space Theory should refer must be topological spaces, i.e. sets 
with a defined topological structure. Space Theory should be one generalization of 
Set Theory, in the sense that topological spaces with a discrete topological struc-
ture could be considered sets.5 Therefore, the formal theory of discrete topological 

spaces should be the theory of sets. This means that, in a discrete case, the lan-
guage of Space Theory should be reduced to the language of Set Theory; in addi-
tion, some axioms of Space Theory should be reduced to the axioms of Set The-
                                                          
3  In one part of the book the author presents various conceptions of the nature of space 
and time, such as those proposed by Newton, Reimann Poincare, Eddington, Bridgman, 
Russell and Whitehead. It should be noted that all these scientists speak about one possible 
space and one possible time. Their conceptions are criticized in the second part of the 
book.  
4 That one should start from a space in building physics is very well in accordance with our 
intuition. It is hard to imagine physics without some underlying notion of space. 
5 A topological space X with a discrete topology can be identified with a set X. The clo-
sure of any subset A of a discrete topological space X is just A, so being in the closure can 
be reduced to membership relation. These simple facts are sufficient to show that a topolo-
gist sees sets as discrete topological spaces.  
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ory. The idea of building a Space Theory is a fundamental one, as it implies inter-

polating the notion of space in the fundamentals of mathematics, so that the notion 

of set should be derived from the notion of space. In that way, we would be able to 

see sets as discrete topological spaces. 

Construction class spaces, in paper Topologies on Classes ( iri  and Mija-
jlovi , 1990), present a redefinition of the topological structure of sets, and allows 
one to define a topological structure of every element in a universe V of all sets.6

In that way, the universe of sets becomes the universe of topological spaces, which 
we will denote as V . The world of sets and set constructions thus becomes the 
world of spaces and space constructions. 

The language of Set Theory, which describes sets, is now related to topological 
spaces, and the axioms of ZFC Set Theory, which state the existence of sets, now 
claim the existence of topological spaces. In other words, the ZFC Set Theory be-
comes the elementary Space Theory.7 Predicates   and  = together with the sym-
bols of logic, are sufficient to describe the behavior of sets and set constructions. 
As far as topological spaces and space constructions are concerned, it is natural to 
supplement the language of Set Theory with new predicates and axioms, in order 
to improve the notion of space and to obtain a richer world of spaces and space 
constructions. We therefore introduce predicates  and =  and are now able to 

define the language of Space Theory. 
For every element Vx , we can define its closure by using construction class 

spaces ( iri  and Mijajlovi , 1990). We denote it as x  which is a set or a space of 
all elements of the universe of topological spaces which are near a space x. For 
spaces Vyx, we define: 

                                                          
6 All sets in universe of all sets we can arrange in the cumulative hierarchy of sets. By 
transfinite induction, we define: 

=0V

,= < VV  if  is a limit ordinal. 

),(=1 VPV  if  is not limit ordinal. 

A set V  have the following property (by induction): 

 (a) Each V  is transitive. 

 (b) If ,<  then .VV

 (c) .V

The axiom of regularity implies that every set in some V ,  means that .= VV Ord
7 Fundamental relations between sets become relations between topological spaces. For 
example, elements of topological spaces are topological spaces as well, and elements of 
sets are sets, which, in general, is not the case in topology. 
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.= . yxyx def

Closure membership thus defines topological membership relation  which is 

reduced to the standard membership relation between sets in the case of discrete 
topologies on all sets of a universe of sets. 

Topological membership relation is defined via membership relation .

Since membership relation  connects sets, the above definition has a sense only 
if the class x   is a set, for every set Vx . This can be easily verified.  The rela-
tion  now connects topological spaces in the corresponding universe V  of to-

pological spaces.8

In this way, we have a situation analogous to that in Set Theory, where the do-
main of membership relations is a universe V  of all sets, so the domain of re-

lations is the universe of topological spaces V .

Now that we have defined topological membership relation  and the un-

iverse of topological spaces V , we are able to precisely formulate the idea about 

topological equality. For two topological spaces x and y which are the elements of 
a universe of topological spaces V , x and y are said to be -equal if the follow-

ing is fulfilled:  
zyzxVz ,

which can be rewriten as:  
.= yx

The definition of topological equality is analogous to the definition of set equality. 
One should note that in Set Theory two sets are by definition equal if all their col-
lectivizing properties are equivalent, where a collectivizing property is one that 
collects elements into a set. Here we can continue and say that two topological 
spaces are -equal if all their collectivizing topological properties are equivalent.9

It is well known that, due to Russell's paradox, we have the axiomatic foundation 
of Set Theory. If we want to build a formal Space Theory, then the language of 

                                                          
8Here we define the relation  with the help of . A similar situation is found in set the-

ory, where the relation = can be defined with the help of membership relation: 

).)((== . zyzxzyx def

9We should note that the concept of -equality is not a natural one in topology. Namely, 
the basic idea is that - equality connects sets, especially those with a topological struc-
ture. Accordingly, such a relation cannot connect elements of a given topological space 
because the elements of topological spaces are usually sets, not topological spaces. Never-
theless, if we consider subsets of a given topological space as topological spaces with in-
duced topologies, their - equality could be defined only if we have set topology 

on )(XP , which, generally, is not the case. 
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our theory must contain the relation  as a non-logical predicate and the formula 

][x : xx  as one of the formulas of our theory. One question arises imme-

diately: does the formula present a collectivizing or non-collectivizing property? 
If we want to show that some property, expressed in terms of Space Theory is a 
collectivizing one, it is sufficient to show that such a topological property gathers 
elements into a set. For example, if we prove that property ][x : xx  does not 

collect elements into a set, then it does not collect elements into a topological 
space, either, and is, therfore, a non-collectivizing property. 

The following statement holds: Formula xx  is not a collectivizing one, 

therefore it does not collect topological spaces x  into a topological space.10

The question of whether there are non-collectivizing properties expressed by 
topological membership relation is of the great importance. Taking into account 
that there are such properties, it is possible that some classes, specified by those 
properties, are spaces, so there is a possibility to have some axioms of Space 
Theory which are not amongst the axioms of Set Theory. Also, as the existence of 
some topological spaces depends on the choice of a starting universe of topologi-
cal spaces, we can infer that  Space Theory has enough arguments to be founded 

and developed as an independent theory. 

Here we will present one way of how a formal Space Theory can be founded.11

 The language of Space Theory L  can be defined as the language of ZFC Set 

Theory supplemented with predicates  and =  and with yx  and yx =  as 

atomic formulas. 

                                                          
10 Proof. Let ),,(V  is topological class space, and V  corresponding universe of topo-

logical spaces. We denote with X  class of all topological spaces x  with following prop-

erty )(x : xx . Let's prove that X  is not a set and therefore it is neither topological 

space. Let's assume that it is a set. In that case, X  is also a set, so relations: XX  or 

XX  has sense and one of them holds certainly. 

If XX  holds, than set X  will have property of all elements of set X , so it 

will be XX , that means XX , while XX = , it will be XX , and that is in 

contradiction with assumption that XXX , or XX .

If XX  holds, than XX , or XXX = , and also XX  which is 

impossible to holds for sets. So in both cases contradiction is proved, which means that 
assumption that X  is topological space, and therefore and set is wrong. 

11Practically, a formal theory of topological spaces. 
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Of special interest for investigations in Space Theory are the formulas which 
can be obtained by translating the axioms of Set Theory into the formulas of Space 
Theory, that is  into  and = into = . It may be that one of the formulas can be 

taken as an axiom of formal Space Theory, as all the formulas can be reduced to 
the axioms of Set Theory, provided all topologies on the universe of topological 
spaces are discrete. One of such formulas is a topological variant of the axiom of 
extensionality, which we will refer to as topological axiom of extensionality:

,=))()()(( yxyzxzzyx

which is equivalent to: 

,}{=}{)=)()(( yxyxyx

The topological axiom of extensionality is also a formula of the language of 
Set Theory, which can hold or not for a given universe of topological spaces. In 
formulating Space Theory we can choose those universes in which the formula 
holds. If in a given universe of topological spaces the formula does not hold, we 
can take it as an axiom of Space Theory, on condition that the universe of topolog-
ical spaces be reduced to those topological spaces where this formula holds, only 
if such a reduction is not a contradictory one.12

                                                          
12 There are examples of non-discrete universes of topological spaces in which the topo-
logical axiom of extensionality holds. Let  be a non-limit ordinal and set  

1VVX , which means that it contains elements at one level. Let us assume that 

we have some non-discreet topological structure on  X . Since 1VVX  holds, we 

have =)(XPX , where )(XP  is a partitive set of the set .X  The relation 

yx =  is a relation of equivalence on P(X), which we can denote as . Let us take any 

1T  topology on the factor set )/(XP  and the weakest topology on )(XP , where the 

natural projection from )(XP  to )/(XP  is continuous. We will have a topology on 

)(XP , so that for every two subsets A  and B  in the space B , the following implication 

holds: 

BA =  (in a space X ) )(=)( BA  (in the space ))(XP .

We will denote topological space X  as X  and )(XP  with 1X  because 

X   is bounded to the ordinal . Continuing the same procedure for )(XP  as for X ,

we will come to 2X , etc., if it is now  first limit ordinal greater than , we will put 

XX = , for . Definitely, let us put XX = , where ORD , we will 

get topological class space ),,(X  where  and  are classes of all open and closed 

sets in corresponding topological spaces X , for ORD . The topological class space 

),,(X  generate a universe of topological spaces V  in which topological axiom of 

extensionality holds. 
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For spaces Vba,  the transcription of the axiom of pairing is a statement 

that property bxaxx ==:)(  is collectivizing, in that it gathers elements 

into a set and, therefore, into a topological space. Obviously,  is a collectivizing 
property for every universe of topological spaces. It can be proved from the 
axioms of Set Theory. Similarly, topological formulation of the axioms of separa-
tion, union, partitive sets and substitution would be valid in any universe of topo-
logical spaces. That is not the case with the axioms of infinity and regularity. For 
example, transcription of the axiom of regularity, which here can be referred to as 
the topological axiom of regularity, can be formulated as: 

 Every nonempty space has a -minimal element.

]=)([ xSSxSS

Holding of the topological axiom of regularity implies holding of the axiom of 
regularity, so, instead of the axiom of regularity, we can take the topological 
axiom of regularity as an axiom of Set Theory. The universe of topological spaces 
can be chosen where the topological axiom of regularity holds or, as in Set 
Theory, the universe of topological spaces can be reduced to those spaces for 
which the topological axiom of regularity holds, if this reduction of the universe is 
not contradictory. 

Definitely, as there are many set theories, there can be various space theories. 
While postulating and investigating these theories, one should come to a universe 
of topological spaces and a system of axioms which are the most viable for spaces 
and space constructions. Moreover, we should arrive at a Space Theory within 
which we will be able to build a world of spaces and space constructions in an op-
timal way. All this is beyond of scope of this paper. 

 The intention here was to accentuate a route which could lead to an accepta-

ble Space Theory and, therefore, to a framework for an intuitive foundation of 

physics.

3.  MOTION OF TOPOLOGICAL SPACES

Our notion of space, time and motion is based on our understanding of reality. De-
termination of these notions was and will be one of the greatest challenges in phi-
losophy and fundamental sciences. The process of mathematization of categorial 
notions, which lasted for the whole 20th century, opens new possibilities to ma-
thematics and, at the same time, forms mathematics as a kind of universal science 
which can be a powerful tool in understanding reality.13

                                                          
13 The great German philosopher Gottfried Wilhelm Leibniz, unambiguously demanded 
the foundation of a universal science and called for the formulation of a proper language. 
He proposed a project for its foundation and specified possible relations with mathematics. 
The realm of Aristotle's scholastic logic was found insufficient by Leibniz, and as an an-
swer he proposed a new logic aiming to create a new method in epistemology. His efforts 
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While one of the categorial notions, namely, space, is mathematized through 
topology, the matematization of the notion of time or motion has not been done. 
The notions of motion and time lay far away from mathematics. Mathematical 
spaces are motionless, and motion is not their inherent property.14

Here, we will propose one possible mathematization of the notion of motion, 
one possible definition of motion of topological spaces. 

1. Motion of a given topological space should be derived from that space. 

In Set Theory we have a hierarchy of notions. All mathematical terms, at least 
in the so called standard mathematics, are derivable from the notion of set. The 
question of derivatation thus arises naturally, especially when we speak about the 
notion of motion. Is it possible for motion to be derived from the notion of space 
or can time be derived from the notion of space.15 It was possible to pose such a 
question long before topology. Nevertheless, the possibilities of various spaces on 
a certain set, which topology opens, could now lead naturally to the plurality of 
times and motions. Furthermore, every space could generate its own time, its own 
motion and, in the final instance, its own physics. 

2. Motion of a given topological space should be a new topological space. 

In considering motion, we believe that there exists an underlying space which 
generates motion. We also refer to the self-evolution of motion, in some way a 
continuous transformation of space in itself by order in time, and we point to an 
entity which can be built up from space itself.16 We see motion as a space proper-

                                                                                                                               
place him amongst the founders of mathematical and symbolic logic. The basic idea was to 
improve Aristotle's logic with the help of mathematics, and in a such a way to create an 
independent scientific discipline which would be a kind of universal mathematics or uni-
versal science. One of the favorite ideas of Leibniz was to create an alphabet of reasoning, 
which could serve as a deduction pattern for new ideas from the already existing ones, by 
applying proper deduction rules. For such a project, it was necessary to build a universal 
language, which would make communication among people much easier and, more impor-
tantly, it would make reasoning much simpler (Mijajlovi , 1996).  
14In classical physics we observe motion of objects or systems, and it is a consequence of a 
force exerted upon a system or an object. Motion is described in geometrical spaces as a 
continuous change in position. In quantum mechanics, we speak about the evolution of a 
system, where every possible state of a system is represented as a vector in the Hilbert's 
space and their superposition, and any change in the system is described via a physically 
relevant operator. 
15We could say time as well, because if space generates time, it should generate many local 
times.  
16 It may sound strange that complete material for building up the motion of topological 
space can be found in a given space. We have such examples, when we define a certain 
topology on a given set, then complete material for building a space on a given set can be 
found in the set itself, because by choosing a certain collection of subsets of a given set, 
we define a space on the set. By starting with a set we end up with a space. 
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ty, derivable from the structure of space itself; we see it as existing and we derive 
its existence from the existence of space. In the world of Space Theory, there is 
nothing more than space.17 If motion of a given topological space can be seen as a 
generalization of the model of space-time continuum, than we have even more 
reason to assume that motion of a given topological space is a new topological 
space. We consider topological spaces from a given universe of spaces, so the re-
quirement that motion should be from the same universe is quite natural.18

3. What is a natural relation between space and its motion 

Let X  be a topological space which underlies motion. Motion of a topological 
space X , noted as )(XK , should be, according to the previous section, a new 
topological space. We bring forth the arguments that starting from the local ho-
meomorphism XXKp )(:  it should be possible to derive some properties of 

motion )(XK  which are in agreement with our intuitive understanding of motion. 

Indeed, it can be assumed that every point Xx  has a path )(XKPx . The 

elements of a path will be referred to as positions. In its motion, a point should 
pass "through" all its own positions, so it is natural to assume that a point and its 

positions have homeomorphous neighborhoods, so that xPxp )(1  holds. 

Concerning the fact that we define motion in a certain universe of topological 
spaces and the topological axiom of extensionality holds within the framework of 
Space Theory, then points which are not topologically different should have the 
same paths, so the following should hold:  

.== yx PPyx

The idea that the path of a point can be one-dimensional, as far as topological 
spaces are concerned, should be abandoned and allow for paths of points to be 
multidimensional in the general case. Namely, in topological spaces we work with 
different dimensional functions which match each other only for some classes of 
topological spaces (Alexandrov and Pasinkoff, 1973). 
It can be stated that there exists an "elementary part" of space or, so to say, a quan-
tum of space Xxk )(  which is moving all the time together with the point 

Xxkx )( . For every element xPy  there exist neighborhoods of points x

                                                          
17A similar situation applies to sets too, namely, in the world of set theory there is nothing 
more than sets themselves, and the existence quantor can refer only to sets. In the language 
of Space Theory, as in set theory, the existence quantor can refer only to spaces. Therefore, 
anything that is to be built something in Space Theory, e.g. motion, should presumably 
have the structure of a topological space. 
18In a forthcoming paper, we have constructed the motion )(XK  of every space X  from 

a given universe of space V , so that VXK )( . In that way, we prove that motion can 

be derived from every topological space in a given universe. 
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and y , respectively yU  and yV , so that yyy UVVp :|  is homeomorphism. 

We can define:
).(=)( yUxk

x
Py

All points which are topologically equal to Xx  should be in the subspace 
)(xk . A quantum, in which the point Xx  is given in general, is not uniquely 

determined. 

4. Motion of a given topological space should be topological invariant. 

Topologically speaking, we do not make a difference between two homeo-
morphous topological spaces. So, it is natural for homeomorphous topological 
spaces to have isomorphic motion. Namely, if X  and Y  are given topological 
spaces, )(XK  and )(YK  are their motions and XXKpX )(:  and 

YYKpY )(:  are corresponding local homeomorphisms, then for every ho-

meomorphism YXf :  there exists )()(: YKXKf  such that  

.= fppf YX

5. What is local time. 

Local time is the order according to which a point "takes up" its positions on its 
own path. If we know the order which governs change in the position of a point, 
we can say that we know its movement.  Starting from time as a parameter, as is 

usually done in physics, and proceding to the order of positions on the path of a 

given point presents a natural generalization of, let us say, Euclidian notion of 

time, as far as topological spaces are concerned. 

Euclidian notion of time or time as a parameter is a special case of the above 
formulated concept of time. Indeed, let us assume that we have a straight line as a 
linearly ordered set via some order relation. If this order is complete, e.g., every 
bounded set has supremum and infinum, and if there is a countable subset of that 
straight line which is dense with respect to the order, then we say that this straight 
line is a real  line, that it can be parameterized, and that its points can be consi-
dered as real numbers19.

Local time should be in agreement with the topological relation of equality. Pre-
cisely, if Xx  and xP  is the path of a point x , local time is any quasi order on 

the set xP , denoted as   if the following holds: 

((x  y) (x =  x’, y =  y’))   (x’  y’) 

                                                          
19That can be inferred from the ordering characteristic of real numbers, given through Can-
tor's theorems and the theorem about completion, (Jech, 1978), and Dedekind's geometri-
cal definition of real numbers (Dedekind, 1932). 
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6. Topology induced with )(XK  on xP   for every Xx  is discrete. 

This is quite a natural condition, since a point Xx  should continuously take  
up positions while it moves with respect to the topology of space )(XK .

Summarizing the conditions from 1-6, we arrive at the definition of motion in a 

given universe of topological spaces. 

Finally, we are able to specify how physics can be founded as a formal theory. 
We start from the formal ZFC Set Theory, which is the basis for all mathematical 
theories. On a universe V  of all sets, we choose a structure class space ),,(V

and, in such a way, we come to a universe V  of topological spaces ( iri  and 

Mijajlovi , 1990). On the universe V , we introduce the relations  and =  and 

we define the language of Space Theory. According to the requirements of special 

physical theory which we want to build, we have at our disposal in the language of 
Space Theory not only the axioms of ZFC system but also the possibility of for-
mulating new axioms, such that some of the axioms of Set Theory can be replaced 
with new axioms. In such a way we obtain a formal Space Theory. For every topo-
logical space VX  we define its motion, or topological space VXK )( , local 

homeomorphism XXKpX )(: , and local time on the path of every point in 
accordance with 1.-6. 

We believe that construction of different motions of topological spaces in a 

given universe of spaces and their further investigation will contribute to the 

foundation of physics as a formal theory. Nevertheless, investigations of various 

space theories with the goal of finding a Space Theory and a universe of spaces 

which will generate motion and physical effects are no doubt the most important 

steps in the foundation of physics as a formal theory. 
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