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Abstract. This lecture presents a summary of theoretically-derived relations between the
radio surface brightness Σ and the diameter D of supernova remnants (SNRs): such relations
are commonly known as Σ−D relations. We argue that discrepancies between theoretically-
derived relations and valid empirical relations derived, may be at least partially explained
by taking into account thermal emission at radio frequencies from two particular types of
SNRs.

1. INTRODUCTION

The relation between the surface brightness Σ and the diameter D of supernova
remnants (SNRs) – the so-called Σ−D relation – provides a convenient way to inves-
tigate the radio brightness evolution of SNRs. The Σ − D relation relation was first
presented and described by Shklovsky (1960ab) in the course of a theoretical analysis
of synchrotron radiation from an expanding spherical nebula (that is, a theoretical
construct to describe an SNR). Lequeux (1962) generalized the Σ−D relation to the
shell case to include the well-known shell-type SNR Cas A, and derived a relation
which gave a better approximation to empirical relations than the relation derived
by Shklovsky (1960ab). As inspired by the work of van der Laan (1962), Poveda
and Woltjer (1968) described a modification to the original derivation presented by
Shklovsky (1960ab), namely the magnetic field of the SNR was assumed to remain
constant as the SNR expands. The Σ − D relation derived by Poveda and Woltjer
(1968) in this manner closely matched an empirical Σ − D relation presented in the
same paper. In addition, Kesteven (1968) derived the relation for a shell-type SNR
assuming that the thickness of the shell of the SNR remains constant as the SNR ex-
pands. Despite the work of Poveda and Woltjer (1968) and Kesteven (1968), however,
significant inconsistencies between empirical and theoretical Σ−D relations remained.
More recently, Duric and Seaquist (1986) derived a Σ−D relation based on a theoret-
ical interpretation that paralleled the work of Shklovsky (1960ab): specifically, Duric
and Seaquist (1986) adopted both the version of Fermi’s accelerating mechanism pre-
sented by Bell (1978ab) and the magnetic field model described by Gull (1973) and
Fedorenko (1983). The most recent radio observations of SNRs indicate that the sur-
face brightnesses of these sources decrease less rapidly than predicted by theory (e.g.
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Case and Bhattacharya, 1998; Urošević, 2002; 2003). Shklovsky (1960b) described
how the Σ−D relation could be used to determine the distances to radio SNRs based
on their surface brightnesses, assuming that this quantity is not distance-dependent.
Therefore, the primary application of the Σ−D relation is to provide an independent
method to estimate the distances to radio SNRs.

Complementary radio observations of SNRs made during the development of the-
oretical Σ − D relations have confirmed the existence of these relations in the form
predicted by Shklovsky (1960ab). The first empirical Σ − D relation was derived
by Poveda and Woltjer (1968): shortly afterward, Milne (1970) derived an empiri-
cal Σ − D relation and calculated distances to all 97 of the radio SNRs then known
to exist in our galaxy. Many observational studies of the Σ − D relation were con-
ducted to determine precisely the distances to a specific set of calibrator sources and
therefore improve the usefulness of the relation itself (Ilovaisky, 1972; Sakhibov and
Smirnov, 1982; Huang and Thaddeus, 1985). Critical analyses of this relation have
been conducted since the discoveries by Green (1984). Uncertainties in the distances
to certain calibrators are the main weaknesses of the relations derived in this manner:
in other words, there are not enough SNRs with precisely calculated distances for the
derivation of a proper Σ−D relation (Green, 1984). It has also been shown that the
derivation of the Σ−D relation is meaningful only for shell-type SNRs (Allakhverdiyev
et al., 1983; 1986).

From the first studies of this relation, significant differences between theoretical
and empirical results were established, with Green (1991) showing that the calibrators
are too scattered on the Σ − D diagram to derive a valid relation. However, Case
and Bhattacharya (1998) derived an empirical Σ − D relation – obtaining a much
flatter slope than those seen in earlier works – and determined distances for all known
shell-type Galactic SNRs. We believe that the discrepancies between theoretical and
empirical Σ−D relations may be at least partially explained by considering thermal
bremsstrahlung emission from SNRs at radio frequencies. Here, we present an updated
derivation of the Σ − D relation which takes into account this thermal emission at
radio frequencies, and we show that the inclusion of this emission helps decrease the
discrepancy between theoretical and empirical Σ − D relations.

2. THE THEORETICAL Σ − D RELATION – A BRIEF REVIEW

2.1. BASIC THEORY (SHKLOVSKY 1960a)

We briefly present the original theory behind the Σ − D relation as proposed by
Shklovsky (1960a). The vast majority of radio emission detected from Galactic and
extragalactic sources is synchrotron radiation produced by relativistic electrons gy-
rating in magnetic fields. We consider an ensemble of relativistic electrons with an
energy distribution in the form of a power law,

n(E) = KE−γ , (1)

where n(E) is the volume density of the relativistic electrons with energies between E
and E + ∆E, K is the coefficient of proportionality and γ is the synchrotron spectral
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index. The synchrotron emission power (emissivity) εν of this ensemble from a unit
volume at a given frequency ν may be expressed as

εν ∝ KH1+αν−α, (2)

where spectral index α = (γ − 1)/2. The definition of the spectral index is through
Sν ∝ ν−α, where Sν is the flux density. The synchrotron surface brightness Σν for
an ensemble of relativistic electrons and positrons may be expressed as

Σν =
Sν

Ω
=

ενV

D2π2
∝ DKH1+αν−α, (3)

where Ω is the solid angle, D is the diameter of the spherical volume V of the ensemble
with a constant volume emissivity εν and ν is the frequency.

Assuming a constant value for γ, after short derivation (Shklovsky, 1960a), we
obtain

K = K0

(D0

D

)γ−1(D0

D

)3

. (4)

Here, K represents the time-evolved value of K0 as the SNR expands. A major
assumption in the derivation presented by Shklovsky (1960a) was that as the spherical
nebula (here, an SNR) expands, the structure of the magnetic field is approximately
conserved. Therefore, the magnetic field flux must remain constant and H will have
the following dependence on radius D:

H = H0

(D0

D

)2

. (5)

Combining the relations given above, we may express the dependence of surface bright-
ness Σν on radius D as

Σν ∝ D−4α−4. (6)

Alternatively, we can express Σν as a function of D as

Σν = AD−β , (7)

where A is a constant and β = 4α + 4. Shklovsky (1960a) used Cas A to test this
theory on the relationship between Σν and D and predicted a 2% relative annual
decrease in the observed flux density from this source. Radio observations from that
era of Cas A indicated a somewhat lower rate of 1.5% per year. We note that even
from the outset of research on the Σ − D relation for Galactic SNRs, discrepancies
between observation and theory were evident. Assuming an average spectral index of
α = 0.5 for radio SNRs (Clark and Caswell, 1976), the relation derived by Shklovsky
(1960a) predicts a rather steep slope dependence for Σν , namely

Σν ∝ D−6. (8)
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2.2. THE LEQUEUX (1962) MODIFICATION

Lequeux (1962) presented another derivation of the Σ−D relation where the origi-
nal relation derived by Shklovsky (1960a) was broadened to include shell-type SNRs.
If we once again assume H ∝ D−2 and a mean spectral index α= 0.5 for shell-type
SNRs, we obtain

Σν ∝ D−5.8. (9)

The slope predicted by this relation is slightly shallower than the slope predicted
by the relation presented by Shklovsky (1960a). When this model is applied to Cas
A, an annual relative decrease of 1.7% in flux density is predicted, a value which is
approximately 10% lower than the value predicted by Shklovsky (1960a). While this
lower value is closer to the value measured by observations, it is still higher than those
obtained from empirical relations.

If we assume a shell thickness ηD (where η is a constant such that 0 < η < 1), we
again obtain Eq. (3). We conclude that the result from Shklovsky (1960a) can be
generalized directly for shell-type SNRs if we assume that the shell thickness remains
a constant fraction of the radius of the SNR as the SNR expands.

2.3. THE POVEDA AND WOLTJER (1968) MODIFICATION

Poveda and Woltjer (1968) presented another derivation of the Σ − D relation
where the magnetic field H was assumed to be constant as the SNR expands, with
the particular value of H depending on the amount of compression of the interstellar
magnetic field by the SNR shock van der Laan (1962). If a constant H is included in
the derivation presented by Shklovsky (1960a), a Σ −D relation with a considerably
flatter slope is derived as Eq. (3) becomes

Σν ∝ D−2α−2. (10)

If we again assume a value of 0.5 for α, we obtain the following expression for Σν :

Σν ∝ D−3. (11)

This theoretical relation was in good agreement with an empirical relation (β ≈ 8/3 ≈

2.67) derived by Poveda and Woltjer (1968) in the same paper.

2.4. THE KESTEVEN (1968) MODIFICATION

Kesteven (1968) derived another theoretical Σ−D relation where the shell thickness
was assumed to remain constant as the SNR expands. This assumption produces a
new dependence of H on D, namely

H = H0
D0

D
. (12)

Adopting this dependence of the magnetic field and repeating the derivation presented
by Shklovsky (1960a), the expression for Σν in Eq. (3) may be written as
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Σν ∝ D−3α−3. (13)

Once again assuming that α = 0.5, we may express Σν as

Σν ∝ D−4.5. (14)

This theoretical Σ − D relation was in good agreement with empirically-determined
relations of the early 1970s, such as those found by Milne (1970) (β = 4.5) and
Ilovaisky and Lequeux (1972) (β = 4).

2.5. THE DURIC AND SEAQUIST (1986) MODIFICATION

Finally, we examine the derivation of a theoretical Σ − D relation presented by
Duric and Seaquist (1986), who considered shell SNRs in the adiabatic expansion
phase. By incorporating the Sedov (1959) blast wave solution for SNR expansion, the
generation and evolution of a magnetic field as described by Gull (1973) and lastly the
acceleration of relativistic electrons by shocks as formulated by Bell (1978ab), Duric
and Seaquist (1986) derived a model for the evolution with time of radio emission
from an SNR.

Following Gull (1973), we assume that the ambient magnetic field H is amplified
in the convection zone: it is the convection zone which provides the environment in
which relativistic electrons can radiate efficiently. As the convection zone expands
with the SNR, the dependence of H on D may be expressed as

H(D) = H0

( D

D0

)−δ

, (15)

where 1.5 ≤ δ ≤ 2 (Gull, 1973; Fedorenko, 1983).
Bell (1978b) gives an analytic expression for the synchrotron emissivity arising from

such a distribution in a shocked gas. In terms of H and the velocity v (here, equivalent
to the expansion velocity), we may express the emissivity ε at a given frequency ν as

ε(H, v) = g(α)%0H
1+αv4α

(

1 +
(7 × 109

v

)2)α

ν−α, (16)

where %0 is the ambient density, v ∝ t−3/5 (Sedov, 1959), and

g(α) = 0.217× 10−37α
( α

0.75

)

(1.435)−α. (17)

As in Sect. (2.1), using Sedov (1959) adiabatic solution D ∝ t2/5, we obtain

Σ(D) ∝ D−(6α+δα+δ−1)
(

1 +
(3.06× 1018ρ0

x5E0

)

D3
)α

, (18)

where x = 2.3 and ν = 1 GHz. The previous equation can be simplified for D � 1 pc
and D � 1 pc, which represent two limits of interest to the present work. Applying
these limits we finally obtain:
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D � 1pc → Σ(D) ∝ D−(δ+δα+3α−1), (19)

D � 1pc → Σ(D) ∝ D−(δ+δα+6α−1). (20)

We can use this Σ − D relation to help determine values for the coefficient A and
the exponent β (see Eq. 7). We set δ = 2, consistent with turbulent magnetic field
amplification (Gull, 1973; Fedorenko, 1983) and adiabatic expansion of the convection
zone: once more we adopt a value of 0.5 for α. Using these values, we obtain a Σ−D
relation of the following form:

D � 1pc → Σ1GHz ∝ D−3.5, (21)

D � 1pc → Σ1GHz ∝ D−5. (22)

From Eqs. (19) and (20) we conclude that the exponent β depends only on α and
δ. Using α = 0.5 and 1.5 ≤ δ ≤ 2 we obtain 2.75 ≤ β ≤ 3.5. For large diameter SNRs
(D � 1 pc), the Σ − D relation may be expressed as

Σ1GHz ∝ D−(2.75≤β≤3.5). (23)

Updated empirical Σ − D relations (Urošević, 2002; 2003) indicate shallower slopes
(β ≈ 2) than the slope predicted by this relation.

3. POSSIBLE THERMAL EMISSION FROM SNRS

We present here two models which describe thermal bremsstrahlung emission from
SNRs at radio frequencies. The efficiency of the radio emission through the thermal
bremsstrahlung process increases as the density increases. There are two basic criteria
for the production of a significant amount of radio emission through the thermal
bremsstrahlung process from an evolved SNR in the adiabatic phase of evolution: the
SNR must be evolving in a dense environment and its temperature must be low (but
always greater than the recombination temperature).

3.1. THERMAL RADIATION FROM AN EVOLVED SNR IN THE ADIABATIC PHASE

We first consider an evolved SNR with a diameter D=200 pc, a surface brightness
of Σ = 10−22 W m−2 Hz−1 sr−1 at 1 GHz and a synchrotron shell with a thickness of
10 pc, representing 5% of the SNR diameter. Our adopted values for these properties
correspond to those measured or indicated by observations of several evolved Galactic
SNRs, such as the four radio loops observed by Spoelstra (1972), the source OA 184,
as observed by Routledge et al. (1986) and SNR HB9 (observed by Leahy et al., 1998).
For the evolved SNR considered here, the assumed surface brightness corresponds to
an emissivity ε1GHz = 1.1 × 10−38 ergs cm−3 sec−1 Hz−1 while the total luminosity
emitted from the entire volume of the shell at 1 GHz is L1GHz = 3.8×1023 ergs sec−1

Hz−1. By integrating over the radio domain from 107 to 1011 Hz and assuming a
spectral index α = 0.5, we calculate a luminosity of L=7.5×1033 ergs sec−1.
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Figure 1: The ratios between the thermal and non-thermal (synchrotron) emissivities
at 1 GHz as a function of frequency in the radio domain for the case of a warm ISM.
The ratios are plotted for constant gas densities of n = 0.1, 1 and10 cm−3.

We now estimate the amount of thermal bremsstrahlung radiation from the evolved
SNR. For a density of n ≈ 1 cm−3 and a temperature T ≈ 104 K, thermal bremsstrah-
lung provides 10% of the energy (ε1GHz ≈ 10−39 ergs cm−3 sec−1 Hz−1) at 1 GHz
produced by the synchrotron mechanism at that frequency. We argue that thermal
bremsstrahlung emission should represent a significant portion of the total radiation
produced by SNRs. To illustrate this point, in Fig. 1 we have plotted the ratios
of the thermal bremsstrahlung emissivity εtherm to the synchrotron emissivity εsynch

(that is, the ratio of thermal to nonthermal emission) for the evolved SNR described
here as a function of temperature at a frequency of 1 GHz for a range of values
of gas density (0.1, 1.0 and 10 cm−3). Notice that this ratio slowly decreases with
increasing temperature for each value of the gas density. The thermal bremsstrahlung
luminosity of the evolved SNR at 1 GHz is L1GHz = 3.4×1022 ergs sec−1 Hz−1. Note
that throughout the entire radio domain, the shell of the evolved SNR is optically
thin: if we assume a gas density of n ∼ 1 cm−3 and a temperature of T ∼ 104 K
and a spectral index α = 0.5 and integrate over the entire radio domain (from 107

to 1011Hz), we calculate a luminosity of L = 2.4 × 1033 ergs sec−1. The ratio of
the thermal bremsstrahlung luminosity to the synchrotron luminosity of an evolved
SNR expanding into a warm and dense interstellar medium is approximately one-
third: clearly, thermal emission at radio frequencies from such sources should not be
neglected.
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3.2. THERMAL RADIATION FROM A RELATIVELY YOUNG SNR IN THE ADIABATIC

PHASE

We now consider relatively young SNRs in the adiabatic phase of evolution and
estimate the amount of thermal bremsstrahlung emission expected from these sources
at radio frequencies. Observations have already detected thermal bremsstrahlung
absorption or emission at radio wavelengths from four relatively young SNRs: γ Cygni
(Zhang et al., 1997), the Cygnus Loop (Leahy and Roger, 1998), HB21 (Zhang et al.,
2002) and 3C 391 (Brogan et al., 2002). The typical diameters of these SNRs are 20
pc, the mean thicknesses of their synchrotron shells are 1 pc (that is, about 5% of the
SNR diameter) and their average surface brightnesses at 1 GHz are ∼ 10−20 W m−2

Hz−1 sr−1. If we consider a young SNR with these typical values for its diameter,
synchrotron shell thickness and surface brightness at 1 GHz, respectively, we calculate
a synchrotron emissivity of ε1GHz = 1.1 × 10−35 ergs cm−3 sec−1 Hz−1 . As in the
case of the evolved SNR, we consider thermal bremsstrahlung emission from the young
SNR in the adiabatic phase. For a density n ≈ 1 cm−3 and temperature T ≈ 106 K
(the electron temperature of a young SNR behind the shock wave) the emissivity of
the thermal bremsstrahlung at 1 GHz is (ε1GHz ≈ 10−40 ergs cm−3 sec−1 Hz−1).
Therefore, we can neglect the thermal bremsstrahlung emissivity when compared to
the synchrotron emissivity in the case of a young SNR expanding into an ambient
medium with a density n ≈ 1 cm−3. However, if the young SNR evolves within a
dense molecular cloud with a density n ≈ 300 cm−3 (again assuming T ≈ 106K), the
synchrotron emissivity and the thermal bremsstrahlung emissivity are approximately
the same (ε1GHz ≈ 10−35 ergs cm−3 sec−1 Hz−1). Therefore, a young SNR in the
adiabatic phase of evolution which is expanding within a very dense medium will
produce a significant amount of thermal bremsstrahlung radiation. At 1 GHz, the
young SNR is optically thin for n ∼ 1000 cm−3 and T ∼ 106 K and radio emission
may be detected from the entire shell of the source. Significant amounts of radio and
X-ray emission will not be detected from the interior of the SNR compared to the
amounts of radio and X-ray emission from the relatively dense and luminous shell.
Note that this medium (with n ≈ 100 − 1000 cm−3 and T ≈ 106 K) is unstable, and
this instability leads to a very rapid evolution by the SNR into the adiabatic phase.
Furthermore, a young SNR located in a dense molecular cloud will evolve through
the adiabatic phase more rapidly than an SNR expanding into a low density medium.
The young SNR will also cool rapidly because the shock wave will quickly decelerate
via its interaction with the very dense molecular environment. It is possible that we
will detect a significant amount of thermal emission in the radio domain only in the
case of young SNRs in the adiabatic stage of evolution which are located in regions
of high ambient density, such as molecular clouds.

4. THERMAL RADIO EMISSION FROM SNRS AND A

MODIFIED THEORETICAL Σ − D RELATION

It is clear from the different derivations presented in Sect. 2 that values for the
exponent β as determined by empirical Σ−D relations are significantly less than values
expected by theory. We argue that perhaps the empirical – theoretical inconsistency
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can be at least partially explained by the omission of thermal radio emission from
SNRs in derivations of theoretical Σ−D relations. As noted before, Shklovsky (1960a)
derived the Σ − D relation (Eq. 7) directly from synchrotron radiation theory: in
that derivation, the thermal emission at radio frequencies was neglected even though
it probably does influence the Σ − D relation and in this Section we will show how
thermal radio emission could influence this relation. If we again derive the Σ − D
relation, this time taking into account thermal radiation from the ionized gas cloud
(that is, bremsstrahlung from free electrons moving through the fields established
by positively charged ions) and associate it with relations previously derived for the
synchrotron mechanism, we may obtain a Σ−D relation with a significantly reduced
value for β. Discussions on the effects of thermal radio emission on the Σ−D relation
have already been presented by Urošević et al. (2003ab).

The addition of the bremsstrahlung and synchrotron emissivities (that is, εν,therm. ∝

Rθ1 and εν,synch. ∝ R−θ2 , where θ1 and θ2 are constants which represent the thermal
and synchrotron components of the exponent θ in the Σ − D relation, respectively)
is complicated because the term θ = θ1 − θ2 cannot be calculated analytically. If
the total emissivity εν is defined to be the sum of the synchrotron emissivity and
the thermal bremsstrahlung emissivity (that is, εν = εν,synch. + εν,therm.) and if we
consider only large radii of the expanding SNR, the total emissivity as determined
only by analytic methods is dominated by one of the two emissivities rather than a
combination of the two emissivities and the Σ − D relations derived in this manner
all differ very significantly from the empirical relations. Because an analytic solution
does not exist, we use here an approximate method – the convolution method – to
combine the two emissivities from the different emission mechanisms. In this Section,
the combined emissivity that we derive through the convolution method will yield a
new Σ − D relation where the slope will be reduced and more closely approximate
the empirical relations.

4.1. THE Σ−D RELATION FOR THERMAL RADIATION FROM AN IONIZED GAS CLOUD:

THE CASE OF CONSTANT TEMPERATURE

For the derivation of the Σ−D relation based on thermal emission from an ionized
gas cloud, we will apply an algorithm applied by Shklovsky (1960a) for the deriva-
tion of the relation for synchrotron emission from SNRs. Based on the theory of
the bremsstrahlung radiation applied to an ionized gas cloud, we adopt a volume
emissivity of the following form (Rohlfs and Wilson, 1996):

εν =
4

3

Z2e6

c3

NiNe

m2

( 2m

πkT

)
1

2

ln
p2

p1
, (24)

where T is thermodynamic temperature of the medium and Ni and Ne are the volume
concentrations of the ions and electrons, respectively. The mass and charge of the
electron are denoted as m and e, respectively, while Z represents the atomic number.
The collision parameter p represents the shortest distance between an ion and an
electron in the course of the electron’s accelerated motion in the ion field. The interval
(p1, p2) spans all of the permitted values for the collision parameter: in this case, the
upper limit for p2 corresponds to the average distance between the ions (in other
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words, the Debye length) while limiting values for the parameter p1 require quantum
mechanical considerations, which are traditionally collected in the Gaunt factor. Eq.
(24) is derived for interactions with large values of the collision parameter: therefore,
considering the typical energy levels, interactions among the particles are weak. For
this reason, bremsstrahlung theory has been developed for straight-line motion of
the electron in the ion field where the parameter p represents the shortest distance
between interacting particles. The Σ−D relation derived under these circumstances
is applicable for diffuse media where the particles are far away from each other and
the energy change of the accelerated particles is small.

We assume that the temperature and density of the particles does not change with
changing distance from the center of the object. This is consistent with the model
for the hot interstellar medium (HIM) described by McKee and Ostriker (1977) and
therefore the collision parameter is independent of the radius. From Eqs. (3) and
(24), we obtain

εν = const and Σν ∝ D. (25)

From inspection of this relation, we notice that as the size of the SNR increases,
its surface brightness also increases: this result is consistent with our expectations
for an optically thin medium. Urošević et al. (2003a) showed that the medium is
transparent for the specific frequency used for the construction of the Σ−D relation
(that is, 1 GHz).

4.2. THE Σ − D RELATION FOR SYNCHROTRON RADIATION AND THERMAL

BREMSSTRAHLUNG RADIATION FROM AN IONIZED GAS CLOUD:

THE CASE OF CONSTANT TEMPERATURE

The final result of the theory given by Shklovsky (1960a) is εν ∝ D−7. The
relation presented by Shklovsky (1960a) is scaled by the maximum value εmax of the
emissivity of SNRs at the outset of their evolution: we can therefore express the
normalized emissivity εnorm as

εnorm =
ζ1

εmax
D−7, (26)

where ζ1 is a constant which contains the portion of the synchrotron emissivity which
does not depend on D. The maximum value of the emissivity εmax corresponds to
the minimum radius of the SNR (Dmin), while the minimum value of the emissivity
corresponds to the maximum radius of the SNR (Dmax) which in turn corresponds to
an SNR at the end of its evolution (that is, the dissipation phase). If the emissivity
from Eq. (25) is convoluted with emissivity from Eq. (26), we obtain the following
integral expression for ε as a function of time:

ε(t) =
ζ1

εmax

Dmax
∫

Dmin

ζ2

(t − D)7
dD. (27)
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Here, ζ2 is another constant which contains the portion of the thermal bremsstrahlung
emissivity which does not depend on D. For a qualitative analysis, this integral may
be approximated as

ε(t) ≈
ζ3

εmax

∞
∫

0

1

(t − D)7
dD. (28)

Here ζ3 is the product of the constants ζ1 and ζ2 and the integral is evaluated over the
range of D=0 through D = +∞ to describe the expansion of the SNR from very small
values (nearly zero) at the beginning of the explosion to very large values (limiting
case is ∞) at the end of its lifetime. This integral has the following solution:

ε(t) ∝

∞
∫

0

1

(t − D)7
dD ∝ t−6. (29)

Combining this equation and Eq. (3) gives:

Σν ∝ D−5, (30)

Therefore, the introduction of the thermal component to the relation derived by
Shklovsky (1960a) leads to a form of the Σ − D relation with a significantly flatter
slope.

The theoretical interpretation presented by Duric and Seaquist (1986) yields a
relation for evolved SNRs in the following form: Σ ∝ D−3.5 (εν ∝ D−4.5). If we
assume a synchrotron shell model for the SNR that is consistent with the model of
McKee and Ostriker (1977) (that is, for an SNR with low density interior), the thermal
flux from the low density interior can be neglected in comparison with the flux from
the denser cool X-ray gas (that is, the warm medium with T ∼ 104 K, n ∼ 1 cm−3

located in the inner rim of shell) because the particle concentration is greater in the
shell, resulting in greater efficiency in thermal radiation from the shell (Eq. 24). The
convolution integral in this case is:

ε(t) ∝

∞
∫

0

1

(t − D)4.5
dD ∝ t−3.5. (31)

Similar to the previous convolution example, this equation becomes:

Σν ∝ D−2.5. (32)

This relation has a value for β which is closest to the Galactic empirical Σ−D relation
obtained by Case and Bhattacharya (1998) (β = 2.4), once again assuming an average
value of 0.5 for the spectral index α.
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4.3. THE Σ−D RELATION FOR THERMAL BREMSSTRAHLUNG RADIATION FROM AN

IONIZED GAS CLOUD: THE CASE OF VARIABLE TEMPERATURE

Since the SNR is assumed to be in the adiabatic phase (i .e., the SNR is cooling
adiabatically as it expands), we start with the adiabatic equation, expressed as

TV γ−1 = const. (33)

In the case of a spherical cloud and assuming γ = 5
3 (i .e., assuming that the gas in

the SNR interior behaves like an ideal gas), we obtain the following dependence of
temperature with respect to cloud radius:

T ∝ D−2. (34)

Assuming a constant density insures that the collision parameter is independent of
the radius of the cloud (once again see Eq. 24). Substituting Eq. (34) into Eq. (24),
we may therefore express the emissivity as

εν ∝ D. (35)

According to the Eq. (3), we then have:

Σν ∝ D2. (36)

Since it is well-known that SNRs also possess relativistic electrons which emit syn-
chrotron radiation, we may consider these relativistic particles to derive another con-
straint on the dependence of emissivity on radius. If the total energy of a particle is
much greater than its rest mass, the rest mass may therefore be ignored when con-
sidering the particle’s total energy. Similar to the case of an ideal gas, if we neglect
relativistic corrections for temperatures T ≤ 106K (Rybicki and Lightman, 1979) and
set γ = 4

3 , we derive the following expression for emissivity with respect to cloud
radius:

εν ∝ D0.5. (37)

Therefore, following the model presented by McKee and Ostriker (1977), these
relations yield a Σ−D relation for thermal emission from SNRs of the following form:

Σν ∝ D1.5≤−β≤2.0. (38)

4.4. THE Σ − D RELATION FOR SYNCHROTRON RADIATION AND THERMAL

BREMSSTRAHLUNG RADIATION FROM AN IONIZED GAS CLOUD:

THE CASE OF VARIABLE TEMPERATURE

In this Sect. we derive a Σ − D relation based on the combination of synchrotron
radiation and thermal bremsstrahlung radiation from an ionized gas cloud (that is, a
theoretical construct for an SNR) in the case where the temperature varies throughout
the cloud.
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The theoretical model described by Duric and Seaquist (1986) yields a Σ − D
relation in the following form: Σ ∝ D−3.5 (for evolved SNRs) and Σ ∝ D−5 (ε ∝ D−6,
for young SNRs). As in the case considered in Sect. 4.2, if we assume a shell model
for the SNR we can expect thermal flux from the shell. In this case, flux from the
low density interior may be neglected because the particle concentration is higher in
the shell, resulting in a greater efficiency of thermal radiation from the ionized gas
cloud. Relativistic particles in the shell (and probably in the X-ray emitting region)
will contribute, thereby introducing the thermal component to the total emissivity
as is shown in Eq. (37). The convolution integrals (in the cases of both evolved and
young SNRs) are

Evolved SNRs → ε(t) ∝

∞
∫

0

D0.5

(t − D)4.5
dD ∝ t−3 (39)

Young SNRs → ε(t) ∝

∞
∫

0

D0.5

(t − D)6
dD ∝ t−4.5 (40)

Similar to the previous convolution, we obtain

Evolved SNRs → Σν ∝ D−2 (41)

Young SNRs → Σν ∝ D−3.5 (42)

If we once again assume an average spectral index for SNRs of α = 0.5, the first
relation has a value for β which is closest to the latest “shallower master” empirical
Σ − D relations (Urošević, 2002; 2003). However, the second relation yields a value
for β which is closer to that derived for the very rich young radio SNR population
found in M82 (Huang et al., 1994), that is β = 3.4 (Urošević et al., 2004; Arbutina
et al., 2004).

The surface brightness relation given in Eq. (41) for evolved SNRs decreases with an
inverse square-law dependence as the radius of the SNR increases, giving a solution for
the simple spherical expansion of the SNR as the luminosity remains constant. This
effect – the independence of luminosity with respect to SNR diameter – has already
been noted and described by Stanković et al. (2003) and Arbutina et al. (2004). The
relation Σν ∝ Sν/θ2 (where θ is the angular diameter), when combined with D ∝ θd
(where d is distance to the remnant) and Lν ∝ Sνd2 (where Lν is the radio luminosity
of the remnant per unit frequency interval), yields the following relation:

Σν ∝ LνD−2. (43)

In the case where luminosity is independent of radius, this relation simplifies to the
relation given in Eq. (37).

125



D. UROŠEVIĆ

5. SUMMARY

(i) We have presented a brief review of theoretical Σ − D relations previously
published in the literature: this review helps to emphasize the inconsistencies between
theoretical and empirical relations.

(ii) We have considered the thermal emission from SNRs at radio frequencies and
included this emission in a model of the total radio emission from an SNR. We also
developed two models describing young and evolved SNRs in the adiabatic phase of
evolution, both of which emit significant amounts of thermal bremsstrahlung emission
at radio frequencies.

(iii) By modifying the theory presented in Sect. (2) through the introduction of
the thermal bremsstrahlung mechanism to describe SNR evolution in the adiabatic
phase, we have derived Σ−D relations which are in closer agreement to the empirical
results than previous theoretical models.
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