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Notes to the Reader

The central part of the book is Chapter II, and this may be read directly after
1.3, referring back to other parts of Chapter I when necessary. Much of the
material in Chapters V and VI can be read after Chapter II, and most of Chapter
VII can be read after Chapter 1V. Any exceptions to these rules are usually
indicated by a reference to the relevant chapter and section.

All theorems, propositions, and lemmas are numbered in a single series; thus
‘Theorem IV.3.5" refers to item 5 of Section 3 of Chapter IV. Cross-references
within a single chapter omit the roman numeral. The end of a proof is indicated
thus: 1

The Bibliography includes, besides the works referred to in the text, a few
papers of general interest on universal algebra, but it is not intended to be ex-
haustive in any direction. Practically all the items listed have appeared since
1900, and this fact is utilized by referring to an item by the author’s name and
the last two digits of the year of publication, with primes to distinguish papers
published in the same year.
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Preface to the Revised Edition

The present book was conceived as an introduction for the user of universal
algebra, rather than a handbook for the specialist, but when the first edition
appeared in 1965, there were practically no other books entirely devoted to the
subject, whether introductory or specialized. Today the specialist in the field is
well provided for, but there is still a demand for an introduction to the subject
to suit the user, and this seemed to justify a reissue of the book.

Naturally some changes have had to be made; in particular, I have corrected
all errors that have been brought to my notice. Besides errors, some obscurities
in the text have been removed and the references brought up to date. I should
like to express my thanks to a number of correspondents for their help, in
particular C. G. d’Ambly, W. Felscher, P. Goral¢ik, P. J. Higgins, H.-J.
Hoehnke, I. R. Isbell, A. H. Kruse, E. J. Peake, D. Suter, J. 5. Wilson. But I owe
a special debt to G. M. Bergman, who has provided me with extensive comments,
particularly on Chapter VII and the supplementary chapters. I have also con-
sulted reviews of the first edition, as well as the Italian and Russian translations.

In addition there are four new chapters. Chapter VIII deals with category
theory, in so far as it affects our subject. The construction of monads (triples)
is described, with free algebras as an illustration, and Lawvere's definition of
algebraic theories is outlined. Chapter IX presents the various notions of
algebraic closure developed in model theory, particularly the existential closure
and A. Robinson’s infinite forcing, and its applications in algebra. Chapter X
contains a number of isolated remarks related to the main text, and the final

Xi



xii Preface to the Revised Edition

chapter is an article on algebraic language theory which appeared in 1975 in the
Bulletin of the London Mathematical Society; | am grateful to the Society for
permission to include it here. Although not directly concerned with our topic, it
describes the links with automata theory, itself of considerable relevance in uni-
versal algebra.

Several friends have read the new chapters and have provided helpful com-
ments; in addition to G. M. Bergman they are W. A. Hodges and M. Y. Prest,
and I should like to thank them here. I am also grateful to the publisher, D.
Reidel and Co., for accepting the book in their Mathematical Series, and to
their staff, for their efficiency in seeing it through the press.

Bedford College, London P. M. Coun
December, 1980



Preface

Universal algebra is the study of features common to familiar algebraic systems
such as groups, rings, lattices, etc. Such a study places the algebraic notions in
their proper setting; it often reveals connexions between seemingly different
concepts and helps to systematize one’s thoughts. The actual ideas involved are
quite simple and follow as natural generalizations from a few special instances.
However, one must bear in mind that this approach does not usually solve the
whole problem for us, but only tidies up a mass of rather trivial detail, allowing
us to concentrate our powers on the hard core of the problem.

The object of this book is to provide a simple account of the basic results of
universal algebra. The book is not intended to be exhaustive, or even to achieve
maximum generality in places where this would have meant a loss of clarity.
Enough background has been included to make the text suitable for beginning
graduate students who have some knowledge of groups and rings, and, in the case
of Chapter V, of the basic notions of topology. Only the final section of the book
(VIL.7) requires a somewhat greater acquaintance with representation theory.

The discussion centres on the notion of an algebraic structure, defined
roughly as a set with a number of finitary operations. The fact that the opera-
tions are finitary may be regarded as characteristic of algebza, and its conse-
quences are traced out in Chapter I1. Those consequences, even more basic, that
are independent of finitarity are treated separately in Chapter 1. This chapter
also provides the necessary background in set theory, as seen through the eyes of
an algebraist.

xiii



xiv Preface

One of the main tools for the study of general algebras is the notion of a free
algebra. 1t is of particular importance for classes like groups and rings which are
defined entirely by laws—i.e., varieties of algebras—and this has perhaps tended
to obscure the fact that free algebras exist in many classes of algebras which are
not varieties. To emphasize the distinction, free algebras are developed as far
as possible without reference to varieties in Chapter I11, while properties peculiar
to varieties are treated separately in Chapter 1V.

These two chapters present the only contact the book makes with homological
algebra, and a word should perhaps be said about the connexion. The central
part of homological algebra is the theory of abelian categories; this is highly
developed, but is too restrictive for our purpose and does not concern us here.
The general theory of categories, though at an earlier stage of development, has
by now enough tools at its disposal to yield the main theorems on the existence
of free algebras, but in an account devoted exclusively to algebra these results
are much more easily proved directly; in particular the hypotheses under which
the theorems are obtained here are usually easier to verify (in the case of alge-
bras) than the corresponding hypotheses found in general category theory. For
this reason we have borrowed little beyond the bare definitions of category and
functor. These of course are indispensable in any satisfactory account of free
algebras, and they allow us to state our results concisely without taking us too
far from our central topic.

The notion of an algebraic structure as formulated in Chapter I1 is too nar-
row even in many algebraic contexts and has to be replaced by that of a relational
structure, i.e., a set with a number of finitary relations defined on it. Besides
algebraic structures themselves, this also includes structures with operations
that are many-valued or not everywhere defined. In recent years, relational
structures satisfying a given system of axioms, or models, have been the subject
of intensive study and many results of remarkable power and beauty have been
obtained. With the apparatus of universal algebra all set up, this seemed an
excellent opportunity for giving at least a brief introduction to the subject, and
this forms the content of Chapters V-VIL.

The final chapter on applications is not in any way intended to be systema-
tic; the aim was to include results which could be established by using the earlier
chapters and which in turn illuminate the general theory, and which, moreover,
are either important in another context (such as the development of the natural
numbers in VII.1 or the representation theory of Lie and Jordan algebras in
VIL.5-7). or interesting in their own right (e.g., Malcev's embedding theorem
for semigroups, VIL.3).

Although the beginnings of our subject can be found in the last century (A. N.



Preface XV

Whitehead’s treatise with the same title appeared in 1898), universal algebra as
understood today only goes back to the 1930’s, when it emerged as a natural
development of the abstract approach to algebra initiated by Emmy Noether.
As with other fields, there is now a large and still growing annual output of
papers on universal algebra, but a curiously large portion of the subject is still
only passed on by oral tradition. The author was fortunate to make acquaintance
with this tradition in a series of most lucid and stimulating lectures by Professor
Philip Hall in Cambridge 19471951, which have exercised a much greater in-
fluence on this book than the occasional reference may suggest. In other re-
ferences an easily accessible work has often been cited in preference to the
original source, and no attempt has been made to include remarks of an histori-
cal character; although such an attempt would certainly have been well worth
while, it would have delayed publication unduly. For the same reason the biblio-
graphy contains, apart from papers bearing directly on the text, only a selection
of writings on universal algebra. This was all the more feasible since a very full
bibliography is available in Mathematical Reviews,; besides, a comprehensive
bibliography on universal algebra is available in G. Gritzer [79].

The book is based on a course of lectures which 1 gave at Yale University
in 1961-1962. I am grateful to the audience there for having been such good
listeners, and to the many friends who have performed the same office since
then. In particular, D. E. Cohen and P. J. Higgins read parts of the manuscript
and made many useful suggestions; J. L. MacDonald helped with the proof-
reading; A. J. Bowtell and F. E. J. Linton checked through the whole text and
brought a number of inaccuracies to my attention. To all of them I should like
to express my warmest thanks. I am also grateful to Messrs. Harper and Row
for their willingness to carry out my wishes and to their editor, Mr. John Cron-
quist, for his help in preparing the manuscript for the press.

Queen Mary College, London P. M. CoHN
January, 1965



Chapter |

Sets and Mappings

1. THE AXIOMS OF SET THEORY

The typical feature of a mathematical theory is that it deals with
collections or sets of objects, where certain relations exist between the
objects of these sets, or between different sets, while the nature of the
objects is entirely immaterial. A simplification can be achieved by con-
sidering only objects which are themselves sets. At first sight this appears
to lead to a vicious circle, but the difficulty may be resolved by beginning
with the empty set. On the other hand it is necessary to restrict the sets
which may appear as members of other sets, if one wants to avoid the
contradictions arising from the consideration of ‘the set of all those sets
which are not members of themselves’ (Russell’s paradox). One therefore
introduces a different term, such as ‘class’, for general collections of
objects, and distinguishes those classes which are themselves members of
other classes by calling them sets. Without entering fully into the question
of axiomatics here (for which the reader may be referred to more detailed
accounts such as Bourbaki [54], Gédel [40], Kelley [55], and Wang &
McNaughton [53]), we shall give a list of axioms, which in the main
express the conditions under which a class is to be regarded as a set.

Formally speaking, set theory consists of objects called classes, between
which a binary relation can hold:

(1 AeB.
1



2 Sets and Mappings [Chap. ]

We express (1) by saying “4 is a member (or element) of B, or ‘A belongs
to B, and we define a set to be a class which is a member of some class.
Thus A is a set if and only if it stands in the relation (1) to some class B.
To express the negation of (1) we write ‘4 ¢B". We denote classes by
capital letters, except that classes which occur as members of other classes
in a given context will often be denoted by lower-case letters.

Two objects are usually said to be equal if they have the same attributes,
i.e. if the same statements are true of both. In set theory it is more con-
venient to frame the definition of equality more narrowly and add an
axiom which in effect limits the statements one can make in the theory.

Definition
Two classes 4 and B are said to be equal, A = B, if they have the same
members. The negation of the statement ‘4 = B’ is written ‘4 # B’

To obtain the usual interpretation of ‘=", we now add the following
axiom:

A.l. If A = Band P(X) is any sentence about classes,' then P(A) holds if
and only if P(B) holds.

For example, if A = B, then 4 eC if and only if BeC. The axiom A.l
may be taken as limiting the kind of statement we are willing to discuss.
Thus e.g., from the above definition of equality, the class of featherless
bipeds is equal to the class of men (Russell), but any speculation whether
a featherless biped is more likely to develop plimage than a man is outside
the realm of set theory, which by axiom A.1 does not allow us to discrimi-
nate between the two descriptions.

In order to have a theory which conforms to our intuitive notions we
require, for every meaningful statement in the theory which contains a
variable X, a class whose members are precisely the sets X for which the
statement holds; that is,

A.2. If P(X)is any sentence about classes® then there is a class whose
members are precisely the sets X for which P(X) holds.

The class defined in A.2 is denoted by {X|P(X)}, so that for any set A,
Ae{X|P(X)} if and only if P(4) holds.

1 To make the meaning quite precise one has to specify what sentences are allowed. In
fact P(X) may be any sentence involving set variables, class variables, the logical signs, and
quantifiers acting on the set variables (c¢f. Chapter V).

2 See previous footnote.
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We note that the axiom A.2 may be made more explicit by replacing it by
a small number of specific instances of the form A.2, from which the
general form may be deduced (cf. Godel [40]). The class {X|P(X)} will
not in general be a set. When it is a set, the sentence P(X) is said to be
collectivising in X. Thus e.g., if 4 is a given set, the sentence ‘X e 4’ is
collectivising in X, since the class of all X such that X e A is just the set 4
itself. On the other hand, ‘X ¢ X” cannot be collectivising, if Russell’s
paradox, mentioned earlier, is to be avoided. In the presence of A.2,
the class A of all sets X such that X ¢ X is well-defined, and the argument
leading to Russell’s paradox merely shows that there are classes which
are not sets.”

By means of A.2 we can define the familiar operations on sets, although
we cannot at this stage assert that the resulting classes are sets, but have to
postulate special axioms to this effect.

The empty class is defined by the equation

0={X|X=#X}
The total class* is defined as
R (O !

If A and B are any classes, the singleton consisting of A4, and the pair
consisting of 4 and B, are defined as

{d} ={X| X = 4}, {A,B} ={X|X =A or X = B},

when these are sets, and are not defined otherwise. Later we shall see that
they are defined whenever 4 and B are sets.
If A is any class, then the union of A is defined as

U4 ={X|[Xe Yaud YeA, for some Y}
and the intersection of A is given by
NA ={X|Xe Yforall Ysuch that ¥ e A4}.

If A and B are sets, then the ordered pair or couple consisting of A
and B (in that order) is

(4,B) = {{4}, {4,B}}.
31t is possible to develop set theory without using classes if one restricts attention to pro-
perties which are collectivising (cf. Bourbaki [54]).
4 This is sometimes called the wuniversal class, but we shall not use this name, to avoid
confusion with universal sets, which will be defined later (1.1; cf. also VI.2).
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When C = {4,B}, we shall instead of ‘UC’, ‘NC” write ‘4 u B, ‘A n B’
respectively; the set A4 is said to be disjoint from B in case A n B = 0.

Given classes 4 and B, the class A is said to be a subclass of B, in
symbols: 4 < B, if

X e B for all X such that X € 4.

A subclass which is also a set is called a subset. If A = Band A # B, A is
said to be a proper subclass and we write ‘4 = B’. We also write ‘B 2 4’
or ‘B = A’ in place of ‘4 < B’ or ‘A = B’, respectively; further, the nega-
tion of any of these relations is indicated by the same symbol with a line
drawn through it.

If A, B are any classes, then the class

A\B={X|XeAand X ¢ B}

is called the complement of B in A.
If A is any class, then

BA) ={X|X c A}

is called the Boolean of A (after George Boole, 1815-1864; see also V.2).
If 4 and B are classes, then

AxB={Z|Z=(X,Y)where Xe 4 and Ye B}

is called the Cartesian product of A and B.

A function from A to B is a subclass F of 4 x B such that for each
X e A there exists just one Ye B for which (X,Y)eF. The class 4 is called
the domain of F and the class of values of F,

{Y| YeBand (X,Y)eF for some XeA}

is called the range of F. A somewhat different notation is often used when
it is intended to focus attention on the range. If A is a class and [ any
set, then the values of a function from / to A are called a Sfamily® of
elements of A, indexed or coordinated by I. If x; is the element of A
corresponding to i €/, then the family is denoted by (x;);.; and x; is called
its i-coordinate, i the index, and I the index set. Every set can be indexed,
e.g. by itself; this means that we describe the set A by a function from 4 to
itself, say by the identity function, in which every element of 4 corresponds
to itself: A = (a),.,. Thusin dealing with a set there is no loss of generality
in taking it to be indexed.

5 In using this definition the reader should bear in mind that a function is often identified
with its range in practice.



[1.1] The Axioms of Set Theory 5

We now come to the main group of axioms. They state essentially that
the empty class is a set and that all reasonable constructions, applied to
sets, again yield sets.

A.3. 0is a set.

A.4. Any subclass of a set is a set.

A.5. If A, B are sets, then so is {4,B)}.

A.6. If A is a set, then so is the Boolean #(A).

A.7. If A is a set, then so is its union U A4.

A.8. If Fis a function whose domain is a set, then its range is a set.

We note some immediate consequences of these axioms.

(i) If 4, B are sets, then so is the couple (4,B), and if (4',8’) is another
couple of sets, then (4,B) = (4",B) if and only if A = 4" and B = B".

For {A,B} and {A4] = {A.,A} are sets by A.5, hence so is (4,B) =
{{A4}, {A.B}}, and given (A4,B) we can reconstruct (and distinguish) 4 and
B by examining first the members of (A4,B) and then their members.

(ii) If P(X) is any sentence about classes® and A is a set, then {X| Xe A
and P(X)} is a subclass of 4, and hence, by A4, a subset. This is often
written {Xe 4| P(X)}. In particular, the complement of any class in a set
A is a subset of A.

(iii) If 4, B are sets, then so is their Cartesian product 4 x B. For if
XeAdand YeBthen {X),{X,Y]} =4 U B; hence {X},{X,Y}e%(4 U B),
and so (X,Y)e#%(A u B). Therefore

Ax B={ZeBHA v B)|Z=(X,Y)for some XeA and YeB)},

which shows 4 x B to be a set.

(iv) Any function whose domain is a set is itself a set. For let F be a
function whose domain is a set 4, say. By A.8, its range is a set B, and
since F = A x B, it follows from (iii) and A.4 that Fis a set.

If /is aset and A4 is a class, then any function from 7 to 4 is a set, so
we may form the class whose members are all the functions from I to A.
This class is denoted by A" and is called a Cartesian power. Since each
function from 7 to A is a subset of I x A, i.e. an element of Z(I x A), it
follows that A" = #(I x A). In particular, if both I and A are sets, then
sois A"

(v) If A # 0, then NA is aset. ForifaeA, then NA is a subclass of a.

5 Cf. footnote 1, page 2.
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The axioms given so far allow us to construct arbitrarily large finite
sets,” but no infinite sets, whose existence has to be postulated separately.
This is usually done by means of an axiom of infinity, asserting the existence
of an infinite set (once this notion has been defined). We shall adopt an
alternative axiom, which asserts the existence of universal sets, now to be
defined (cf. Sonner [62], Gabriel [62]). This will turn out to be con-
siderably stronger than the axiom of infinity; it will also eliminate the
“need, in most problems, to consider classes which are not sets.

Definition
A set U is said to be universal, or a universe, if it satisfies the following
conditions:

(i) If Xe U, then X = U.
(ii) If Xe U, then #(X)eU.
(iii) If X,YeU, then {X,Y}eU.
(iv) If F = (F)ier, where F;e U and /e U, then UFeU.

We now add as axiom of infinity:

A.9. Every set is a member of some universe.

This axiom in effect does away with the need for considering classes.
E.g., instead of the class of all sets we may consider the class of all sets in
a given universe U, and this is again a set. In the sequel we shall therefore
reserve the term ‘class’ to refer to a set which is not necessarily a member
of the universe under consideration.

To illustrate A.9, we shall define the natural numbers and show that
they form a set. Let U be a universe such that 0 e U; for the moment we
shall call a subset ¥ of U numeral, if 0 V and if X v {X}eV whenever
X e V. For example, U itself is a numeral set: if X € U, then {X1eU,
hence {X,{X}} € U, and indexing the set {X,{X}}, weseethat X U {X} e U.
Let N be the intersection of all numeral subsets of U; then N itself is
again numeral. Writing *x” for “x u {x}, we have the following properties
for N:

N.l. 0 e N.
N.2. If xe N, then x" e N.
N.3. Any subset of N satisfying N.1-2 coincides with N.

7 Of course, the existence of finite sets may be deduced from experience; it is only for the
infinite sets that any axioms are required at all.
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Here N.3 follows from the fact that N is the intersection of all subsets
of U satisfying N.I and N.2. Of course N.3 is just the principle of in-
duction. The natural numbers are now defined as the elements of N, the
first few being

0=0, 1={0}, 2=1{0,1}, 3={0,1,2},-.

By a positive integer we mean a natural number # 0. A class is said
to be finite if it can be indexed by a natural number; otherwise it is infinite.
With this definition we can show that the set of natural numbers is infinite.
First we note the following properties:

(a) f ne N, then n'¢ 0. Forn =n v {n} #0, while 0 =0,

(b) If mmneN and men, then m =n. This clearly holds if n =0,
because then m ¢ n for all m e N. Now let M be the set of all n € N such
that m = n for all me N satisfying men. If ne M and men’, then
either m = n or m € n, whence m < n in eithér case, and n c n’, som < n'.
Thus if n e M, then n’ e M: and since M also contains 0, it must coincide
with N.

(c) If m" =n',then m = n. Forif mu {m) =n u {n},thenmen u {n};
hence either m € n, whence m < n by (b), or m = n.

By applying (c) with m and n interchanged we obtain

(d) If m" =n’, then m = n.

We note that (a) and (d), together with N.I1-3, constitute the usual
Peano axioms for the natural numbers (see Chapter VII). Hence-
forth we also write ‘n + 17 instead of ‘n”, and we shall assume that the
elementary properties of natural numbers are known. We confine ourselves
to proving

Theorem 1.1
The set N of natural numbers is infinite.

To prove this theorem we must show that if » is any natural number,
there exists no function from » to N with N as range. This certainly holds
for n =0, because any function with domain 0 =0 must have empty
range, whereas N # 0. Now let M be the set of numbers » such that no
function from # to N with range N exists; then M satisfies N.1 by what
has been shown. Let n e M and assume that n" ¢ M ; this means that there
is a function f from »’ to N with range N. Since every element # 0 of N
has the form x’, and since x* determines x uniquely, by (d), we may for
any y € N such that y # 0 denote the unique element x of N satisfying
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x’ =y by » — 1. Moreover, denote by if the unique element j such that
(i,j) €f. With these notations we may define a function g from »n to N
by the rule
kg - kf ifkfcnf —
kf'—1 otherwise

Since 0 < nf, this defines indeed a function from # to N its range is easily
seen to be N, which contradicts the hypothesis that n € M. Therefore if
neM, then n' e M, i.e. M satisfies N.2 as well as N.1, and by N.3,
M=N. |

In the construction which led to N, U was any universe containing 0;
now any nonempty universe must contain 0, by definition, and so we have

Corollary 1.2

Any non-empty universe is infinite. 1

Now A.9 ensures that there are universes with infinite sets as members.
In the sequel when we operate in some universe it is always this kind we
have in mind.

There are certain set constructions which, although they may not lead
to contradictions, do give rise to some pathological situations which have
no counterpart in the intuitive interpretation. E.g. we cannot on the basis
of the above axioms decide whether a set can be a member of itself:
X € X, and thus we cannot tell in general whether the sets X and {X} are
equal or not. Since a situation where X € X never arises in practice, it is
best to exclude it explicitly. This is done by the axiom of foundation:

A.10. Every nonempty class A has an element X which is disjoint from 4.

With the help of this axiom one sees easily that X ¢ X for all sets X.
More generally, there are no infinite descending chains Xo,X,, X5, of
sets (not necessarily distinct) such that
(2 X,s1€X, (neN).

For if we had a family of sets satisfying (2), then the class whose members
are Xo,X,, - would contradict A.10.

Sometimes the following extension of the notation introduced is useful.
Let 7 be a class of sets, indexed in some way, say & = (A4,;);.;. Then in
place of ‘U, ‘N2’ we shall also write ‘U4, ‘NNA;. In particular, if
o is finite, say o = {A,,-+, 4,}, then we write

Uw =UA4, =4, vy 4,
N =NA, =A, n-n A,
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Further, we define the Carresian product of the family of sets (4,),.; as
[14: = {x e (Ua)" | x = (x))se1, where x; € 4, for all i e I}.

This definition is not, in the case of two factors, the same as that given
earlier for a Cartesian product of two factors, but the difference is of no
consequence for us: we are free to interpret Cartesian products in either
way, when there are two (or any finite number of) factors (cf. Exercise 2).

Clearly, []4; is again a set, but even when each 4, is nonempty there is
in general nothing to show that the product is nonempty. This will,
however, follow from the axiom of choice, introduced below in 1.4,

Unlike the union and intersection, where the indexing of . was used
only for convenience, the product depends essentially on the indexing
as well as on the class of coordinates, since e.g., the product is affected if a
coordinate appears more than once. To take an extreme case, if 4; = 4
for all i I, then UA, = N4, = 4, whereas []4, = 4".

When [ is finite, I = n + 1 say, we write again

[14:i =4 x A, x - x A4,

EXERCISES

1. Show that the total class T is not a set.

2. Define n-tuples (xy,:--, x,) either as families indexed by {1,-:-,n} or by
generalizing the definition of couples; and for each definition, show that
for any sets xy,--, X, ¥y Vp(Xyyon X,) = (1,00, p,) if and only if x, =y,
(i=1,--,n).

3. Show that n ¢ n, for any natural number . without using A.10.

4. How many distinct ways are there of indexing a set of n elements (i) by
itself, (ii) by another set, of m elements?
2. CORRESPONDENCES

Let 4 and B be sets; then a correspondence from A to B is a subset of the
Cartesian product 4 x B. Thus a correspondence is a set of pairs (x,),
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where x € A, y € B. We shall usually denote correspondences by Greek
capitals. If @ is a correspondence from A4 to B and 4" = 4, we define

A'® = {ye B|(x,y) e® for some x € 4'}.

In case B= A, ® is called a correspondence in 4. Every set has the
correspondence
Ay ={(x,x)| x e A},

which is called the diagonal in A.

To describe the different types of correspondence we introduce two
operations, inversion and composition. Every correspondence ® has the
inverse

o7 = {(x,)) | (»,x) € ®}.
Clearly, if ® = 4 x B, then ®™' = B x A. A correspondence ® in A is
said to be symmetric if @' =®, antisymmetric if ® n®"' = A,, and
reflexive if ® = A .
For any correspondences ® and ¥ we define a composition
®o¥ = {(x,)](x,2) e® and (z,y) € ¥ for some z}.
This is indeed a set, forif ® = A x Band¥ = C x D, then® ¥ = 4 x D;

in particular we note that ® =¥ =0 unless B n C # 0.
The following laws are easily verified:

(1) DPo(Ve0)=(P=Y¥)~0,
(2) (DoY) =W o™,
(3) (@) ' =0.

They are valid for any correspondences ®,%,0. Further, if ® is a
correspondence from A to B, then

) PoAy=A0,°0=0.

With the help of these operations we can define several important
types of correspondence which will frequently occur in the sequel.
A correspondence @ in A is said to be rransitive, if

D@ =,

A transitive reflexive correspondence ® in A is called a preordering of A.
Clearly @' is then also a preordering of A4; it is said to be opposite to @,
An antisymmetric preordering of A4 is also called an ordering of A, or
sometimes a partial ordering, to distinguish it from a rotal ordering, which
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is required to satisfy in addition ® u®~' = 4%. By an ordered set we
shall understand a set together with an ordering defined on it.

If @ is any correspondence from A to B, then ® = ®~ ! is a correspondence
in 4 and ® ' =® a correspondence in B. If we have

(5) Ded DA, and
(6) Do c Ay,

then @ is a function from A to B, as defined in I.1. The following result is
easily proved:

Proposition 2.1
If fand g are functions, then so is f=g. |}

Note that /= g may well be the empty set, namely if the range of f is
disjoint from the domain of g. For functions we often write ‘fg’ instead
of f°g’, and for a given x in the domain of f, we denote the unique
element y such that (x.y) € / by xf.

A correspondence ® from A to B is said to be a bijection, or one-one
correspondence, if ® is a function from A to B and ®~! is a function
from B to A. Two sets are said to be equipotent if there is a bijection
between them. The fact that 4 and B are equipotent is sometimes expressed
by writing ‘4 « B’

By an n-ary relation or n-place relation (where n is a positive integer)
we mean a set A4 together with a subset ® of A"; we frequently refer to ®
as a relation in 4. Thus, for example, a binary relation (n = 2) is merely
a correspondence in a specified set, while a unary relation (n =1) is a
subset of a specified set.

EXERCISES

1. If A, Bare sets, show that there is a bijection between the set of all couples
(x, ¥)(x € A, y € B) and the set of functions f from 2 to 4 U B such that Of e 4,
1feB.

2. Give a proof of Proposition 2.1, using (5) and (6).
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3. Show that a finite set is not equipotent to a proper subset of itself. (Hint:
If fis a bijection of S with a proper subset 7 of Sand a €S, a ¢ T, show that
the elements a, af, aff.--- are all distinct, and use Theorem 1.1.)

4. Show that any class equipotent to a set is itself a set.

5. If X is a member of a universe U and Y is a set equipotent to X, does it
follow that Y e U?

3. MAPPINGS AND QUOTIENT SETS

Definition

A mapping is a triple (4,B,[) consisting of a set 4, a second set B, and a
function f from A to B. The set 4 is called the source and B the target of
the mapping.

The mapping (4,B,f) is more usually denoted by f: 4 — B, or sometimes
AL B. The latter notation is used especially in diagrams, to illustrate the
composition of mappings. Unlike functions, which can always be com-
posed, two mappings f:4 =B and g:C — D are composable only if
B = C, and the composite is then defined as fg: 4 — D.

Given mappings f:4 —» B, g:B—C, and h:4 —»C, if the equation
fg = hholds, this may be expressed by saying that the diagram of mappings

!

A———B

G

is commutative. More generally, by a commutative diagram one under-
stands a network of arrows between sets, representing mappings, such
that any two paths (going along the arrows) from one set to another
define the same mapping between these sets. In practice most diagrams
are made up of triangles as above, or squares,

where commutativity means that // = gk.
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Given a mapping />4 — B, then for each x € A, the unique element xf
of B is called the image of x under f. The set Af of all images of elements
of A is also called the image of A; it is just the range of f, regarded as a
function. If Af = B, i.e. f ' = f = Ay, [ is said to be surjective, or onto B,
or a surjection. If f= f~' = A,, fis said to be injective, or one-one, or an
injection. A mapping which is both surjective and injective is said to be
bijective; this is merely a bijection between two given sets, as defined in 1.2.
We note that a correspondence @ from A to B defines a bijection between A4
and B if and only if

Dod'=A, D lod=A,
A bijection of a set 4 with itself is also called a permutation of A4.

The following are important examples of mappings which will occur
frequently in the sequel.

(i) In any set A the diagonal defines a mapping A,:4 — A, which is
called the identity mapping and is denoted by 1 or 1.

(ii) If A is any set and B is a set containing A as subset, then the diagonal
on A defines a mapping A,:A4 — B, which is called the inclusion mapping
from 4 to B.

(iii) Given a Cartesian product P = [[A4,, then for any fixed element
i e I, the function which assigns to each x € P its i-coordinate defines a
mapping ¢;: P — A,, called the projection of P on the factor 4,.

(iv) Given a mapping f:4 — B and a subset A" of A, denote by i the
inclusion mapping A" — A; then the mapping if:A" — B is called the
restriction of fto A', and is denoted by /| A”. Similarly, if B’ is a subset of
B and Af < B, then f may be cut down to a mapping [':4 — B’ by re-
stricting the target. We shall not use any special notation for this mapping.

(v) Given two mappings f:4 — B and f': 4" — B, where A’ is a subset
of 4, if f"=f|A’, then [ is said to be an extension of f’. Thus e.g. if
[:4 — Bis any mapping and A" < A, then fis an extension of /| A", but of
course, in general, f'is not determined uniquely by /| 4"

(vi) Given a set 4 and a natural number n, any mapping «: 4" — 4 is
called an n-ary operation on A. For n = 0, we have a noughtary operation,
essentially an element of A, while for n = 1 we just have the mappings of
A into itself. Using the natural bijection between A" x 4 and A"*" given
by

{(X] i ‘,Xn)-}') bk (XI ! T sxns.'l"')
we see that an n-ary operation may be considered as a special case of an
(7 + 1)-ary relation. The mappings from A" to A for arbitrary finite n are
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sometimes called finitary operations, to distinguish them from infinitary
operations, i.e. mappings A’ — A, where / is infinite.

Let « be an n-ary operation in 4 and B a subset of 4. Then B" is also a
subset of A", and so a defines a mapping of B" into 4, namely the restriction
of o« to B". If the image of B" under this mapping is contained in B, we say
that B is closed with respect to « or that B admits the operation o. The
restriction can then be cut down to a mapping of B” into B, i.e. an n-ary
operation on B. This operation will be denoted by «|B and called the
restriction of o to B.

(vii) Let f:] - A be a mapping and write ‘a;’ instead of “if* (iel).
Then (a,);.; is just a family of elements of A, as defined previously. This
point of view of regarding a mapping is adopted when we want to stress
the image set.

(viii) If A4 is a given set, then any subset B of 4 determines a mapping
yg:A — 2 defined by

[0 ifx¢B,

8=\l ifxeB.
1 is the characteristic function of the subset B. As is easily verified, the
mapping

By
from #(A) to 2" is a bijection.
(ix) Given any mapping f: 4 — B, we define a mapping

S*:8(B) —» #(A)

by the rule
Yf*={xed|xfeY} for any Y € #(B).

The set Yf* is said to be obtained by pulling Y back along f, and b T

also referred to as the pullback mapping.

An equivalence on a set A is a correspondence @ in A4 which is reflexive,
symmetric, and transitive. Thus we have

(a) @24,
(b) @' =@,
(c) - =D
We shall denote equivalences by lower-case German letters. If q is an
equivalence on A, then for each xe A we define a subset x" of A, the
q-class of x, by®
x"={yed|(xy)eq}.

& This is not to be confused with the notation for Cartesian powers.
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Instead of ‘(x,») € q", we shall often write ‘x = y (mod q)’. From the
properties of q it follows easily that x e x, and in fact x =y (mod q) if
and only if x" = v%. In particular, the g-classes form a partition of A, i.e.
a decomposition of A into pairwise disjoint nonempty sets, the classes of
the partition. The g-classes themselves are members of the Boolean
#B(A); the subset of #(A4) consisting of all g-classes will be denoted by A/q
and called the quotient set of A by q. If with each x € 4 we associate x9,
we obtain a mapping from A4 to A/q, called the natural mapping or identifi-
cation associated with q and denoted by nat q. Clearly this mapping is
surjective, by definition.

We can now state the basic decomposition theorem for mappings:

Theorem 3.1
Let f:A — B be any mapping and put q = f= f~'. Then q is an equivalence
on A, Af is a subset of B, and there is a decomposition of f,

(1) f=d"n

where & = nat q:A — A/q is a surjection, f':Alq — Af is a bijection, and
p:Af = B, the inclusion mapping, is an injection.

The situation may be illustrated by the commutative diagram

Ale———4f

Proof:
By definition, = f~' = A,; further,
(Fof Wyt = e =l
and since /"' o f = Ay, we have
Fef o fb@fedgef ™ =fuf s

this shows q = /= f ! to be an equivalence on 4. Clearly Afis a subset of
B, and from the definition of g, (x,y) € q holds if and only if (x,z) e f
and (y,z) e f for some z € B, i.e. if and only if xf = yf; and so the mapping

f':Alq - Af defined by x"=xf is a bijection. Now (1) follows by
taking & to be nat q and  to be the inclusion Af - B. |}
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The equivalence q =f=f " is called the kernel of f and is denoted by
ker f.

Corollary 3.2
Let A =UA, be a partition of A; then there Is just one equivalence
which gives rise to this partition.

To see this we define a mapping f:4 — I by assigning to each x e A
the unique index i€/ such that x € A, The equivalence classes of the
kernel of f are just the subsets A, and clearly ker fis the only such equiva-
lence. |

As a further application of Theorem 3.1 we have the factor theorem:

Theorem 3.3
Given a mapping f: A — B and an equivalence q on A, if q < ker f, then
there exists a unique mapping f : Ala — B such that the diagram

natq

A—————d/q

is commutative.

This means that f = (natq)f. where natq is the natural mapping
A — Alq. The conclusion of the theorem may be expressed by saying that
f can be factored (uniquely) by nat q. The theorem is sometimes briefly
(though incorrectly) expressed by saying that any mapping may be factored
by an equivalence which is contained in its kernel.

To prove the theorem, we note that if a mapping [ to satisfy the con-
ditions exists, then for every x € 4 we must have

2) (xNf = xf.

Thus there can be at most one mapping f; on the other hand, putting
t = ker f, we have q =1 by hypothesis, hence x" =" implies x' =y,
i.e. x¥ =y implies x/ = yf. Therefore xf depends only on x® and not on
x itself. But this means that [ as defired by (2) is single-valued, and so is
the required mapping. |}

The quotient sets of a given set A are to some extent dual to the subsets
of A, but this duality is not complete. Thus, whereas the relation: B is a
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subset of A is transitive, the relation: B is a quotient set of A is not. In
fact the set #(A) of subsets of A4 is an ordered set with respect to the
relation <. If 2(A4) denotes the set of quotients of A, then 2(A4) may be
ordered by putting X > ¥, where X, Y € 2(A), whenever the kernel of the
natural mapping 4 — X is contained in the kernel of the natural mapping
A— Y. Applying the factor theorem (with A/q = X, B = V), we see that
in this case there is a surjection X — ¥ which has some claim to be called
‘natural’. In this way a substitute for the missing transitivity is obtained.
To express this formally, it is simpler to consider instead of 2(A4) the set
%(A) of all equivalences on 4. By Corollary 3.2, there is a bijection
between ¥(A4) and 2(A4); and clearly the ordering > just defined on 2(4)
corresponds under this bijection to the ordering by inclusion of 4(A4). We
now have

Theorem 3.4

Let q,x be equivalences on the set A such that q = v. Then there is a
unique mapping 0: A/q— A|/x such that (nat q) 0 = nat v. If ker 0 is denoted
by t/a, then t/q is an equivalence on Alq and 0 induces a bijection

0":(A/q)/(x/q) = A[x,
such that the diagram

nat q nat (r/q)
A » Al (A[a)/(x/a)
nat ¢ 3 I8
A"

is commutative.

To obtain 0 we apply Theorem 3.3, with B = A/r, f=natr; since
nat q and nat r are surjective, it follows that 0 is surjective, and if we now
use the decomposition theorem 3.1, we obtain the remaining assertion. l

EXERCISES

1. If ®,(ie ) and ¥ are any correspondences, show that
(Uaoyow=U@,-w),
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but in general,
Nd) =¥ # N@,=¥).
2. If qi e I) is any family of equivalences on A, then [ q; is again an equiva-
lence on A.

3. If p, is the number of equivalences on a set of n elements, obtain the fol-
lowing recursion formula for p,:

Prer = Z(’:)Pf (Po=1),
n n!
where () = Prove also the formula
i il (n—1i)!
Z% = expl(exp x) — 1].

4. Show that every injective mapping from a finite set to itself is surjective.
(Use Exercise 2.3).

5. In Theorem 3.1, if /= ¢, fip, is a second decomposition, where & is
surjective, f bijective, and y, injective, show that there exist bijections «, i such
that &, = ex, u, = fpt, and /' = of | .

6. If @ is a preordering on 4 and q = ® »n @', verify that q is an equivalence
on A and show that 4/q may be ordered in a natural way in terms of the given
preordering on A.

7. Letd= A x Bandwrite ' = BO ™' B = AD,a, =@ D' by, =D ' = P,

a,=a,,°a;, b,=b, ;°b, and a=Uaq, b=Ub,
Show that a, b are equivalences on 4’, B' respectively, and that @ induces a
bijection A’fa — B’/b in a natural way. (This may be regarded as the analogue
of Theorem 3.1 for correspondences and is proved in the same way.)

8. Given any sets A4, X, Y, show that a mapping f: X — ¥ induces a mapping
[ AY — A* and a mapping f : X* — Y*. Express the projection operators of a
direct power A¥ as f°, for suitable /.

9. Given [ A — B, define f.: #(A) — #(B) by the rule

Xa={/lxe X}

and /* as in example (ix) of mappings (the pullback mapping). Under what
conditions is f*f, = I, or f, f* =17
4. ORDERED SETS

Let A be an ordered set, i.e. a set with an ordering defined on it. We
now adopt the usual notation * < for the ordering, so that the axioms read:



[1.4] Ordered Sets 19

O.1. If x<yand y <z, then x < z.
0.2. x<x.
0.3. If x <yand y <x, then x = y.

As usual, we write ‘x <)’ to mean ‘x <y and y ¢ x'; we also write
x =" instead of ‘y < x’, and ‘x > »" instead of ‘y < x’. The ordering is
total if, in addition, any two elements are comparable, i.c.

04. x<yory<xforall x,yeA.

At the other extreme, an abstract set may be regarded as a totally
unordered set, in which x <y holds only when x = y; thus no two dis-
tinct elements are comparable.

If Bis a subset of A, then the ordering of A4, restricted to B, is an ordering
of B. In this sense any subset of an ordered set is understood as an
ordered set. If the ordering so defined in B is total, B is said to be a chain
in A.

Let B be any subset of an ordered (or, more generally, preordered) set A.
An element a € A with the property

xX<a forall xe B

is called an upper bound for Bin A. When such elements exist, we say that
B is bounded above in A. The lower bounds of B are defined similarly.
An ordered set in which every finite subset has an upper bound is said to
be directed (upwards). By induction on the number of elements it is enough
to require that any pair of elements in the set have an upper bound. A set
directed downwards is defined similarly; when nothing to the contrary is
said, ‘directed’ will always mean ‘directed upwards’.

If the ordered set A itself has an upper bound a, then a is clearly the only
upper bound; it is called the greatest element of A. If a e A is such that
none of the upper bounds in A4 of the singleton {a} exceed a, then a is
said to be maximal in A. Thus a is maximal in 4 whenever

a4 xforall xe A.

Of course A may have more than one maximal element, or none at all.
If it has a greatest element, then this is also the unique maximal element.
The converse is not true in general, but it does hold in a chain, or more
generally in a directed set: a maximal element in a directed set is also the
greatest element. The minimal elements of A and the Jeast element of A4
are defined correspondingly. If a subset B has a least upper bound, this is
called the supremum of B and is written ‘sup B’. Similarly the greatest
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lower bound, when it exists, is called the infimum of B and is written
‘inf B’. All these definitions still apply when the set 4 is only preordered.
We can now state our final axiom:

A.11 (Zorn’s lemma)
A nonempty ordered set in which every chain has an upper bound, has
a maximal element.

Instead of A.11 one frequently postulates the

Axiom of choice
Given any set A4, there is a function ffrom #(A4) to A such that whenever
B < A, B # 0, then Bf e B.

Usually, A.11 is proved by means of the axiom of choice (cf. e.g.
Halmos [61] or Kelley [55]); but since the axiom of choice can in turn be
derived from A.11 (cf. 1.5), it is immaterial whether A.11 or the axiom of
choice is assumed.

An ordered set A is said to satisfy the minimum condition if every
nonempty subset has a minimal element. If this condition is satisfied
and, moreover, the number of minimal elements of any subset is finite, 4
is said to be partly well-ordered; and if every nonempty subset has a
unique minimal element, A is said to be well-ordered. 1t is easily seen that a
partly well-ordered set is well-ordered if and only if it is totally ordered.
For sets with minimum condition we have the

Generalized principle of induction ( Noetherian induction)

Let A be an ordered set with minimum condition and B a subset of A which
contains any element a € A whenever it contains all the elements x e A
such that x <a. Then B = A.

For, the complement of B in A has no minimal element, and so must be
empty. [

The special case of this principle when A is well-ordered is known as the
principle of transfinite induction. This is itself a generalization of the
principle of induction for natural numbers (cf. I.1). Thus the natural
numbers N form a set which is well-ordered with respect to the relation
. In L.5 we shall see that every set can be well-ordered.

Corresponding to the above principle of proof by induction there is a
principle of definition by induction which also applies to arbitrary ordered
sets with minimum condition (cf. Kuro§ [63], or, in the case of the natural
numbers, also VII.1 below).
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An ordered set in which any pair of elements a, b has a supremum
av b (read: a cup b) and an infimum a A b (read: a cap b) is called a lattice.
By induction it follows that in a lattice every nonempty finite subset has a
supremum and an infimum; if this is true of every subset, the lattice is said
to be complete. In particular, a complete lattice L always has a greatest
element (= inf @ = sup L) and a least element (=sup 0 = inf L).

Clearly, every lattice is directed; further, every totally ordered set is a
lattice (though not necessarily complete). On the other hand, a finite
lattice is always complete. An example of a complete lattice is #(A),
where A is any set. More generally, let 4 be an ordered set; a subset X of
A is said to be a left segment of A if for any x € X, p < x implies y € X.
Similarly, if y € X whenever y > x for some x € X, then X is called a right
segment of A. The set #(A) of all left segments of A, ordered by inclusion,
is a complete lattice, as is easily verified. We note that any abstract set 4
may be regarded as a totally unordered set; in this sense &(A) reduces to
#(A). The following criterion is useful in verifying that a given ordered
set is a complete lattice.

Proposition 4.1
If A is an ordered set such that every subset has an infimum, then A is a
complete lattice.

For, given X € A, let Y be the set of all upper bounds of X in 4 and
set y = inf Y. Then any element of X is a lower bound of Y, hence x <y
for every x € X; if also x < z for every x € X, then z € Y, and hence y < z.
Therefore y = sup X. In particular, 4 has a least element, obtained as
inf A, while the greatest element is inf 0. H§

Some care must be exercised in applying this propositien, for if e.g. 4
is a subset of a complete lattice L, and every subset of 4 has an infimum
in A, then A is again a complete lattice, but the supremum of a subset of A
will in general be different according to whether it is taken in 4 or in L;
more precisely, for X = 4 we have

sup, X <supy X,
and equality need not hold.
By a sublattice of a lattice L we understand a subset 4 of L which
contains with any pair a, b of elements of 4 also avb and aab. Thus a
sublattice contains with any finite (nonempty) subset X also its supremum

and infimum, taken in L. In a complete lattice a sublattice is required to
contain the supremum and infimum of any of its subsets.
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Let 4 and B be any ordered sets. A mapping f:4 — B is said to be an
order-homomorphism if

x < yimplies xf < yf  forall x,y e A.

Iff:A4 — Bis an order-homomorphism and its inverse f ~ ' is also a mapping
and moreover an order-homomorphism (from B to A), then fis called an
order-isomorphism between 4 and B, and we say that A is order-isomorphic
to B. It is easily seen that if 4 is directed or totally ordered, then so is its
image under an order-homomorphism. However, if fis an order-homo-
morphism between lattices, it need not preserve the supremum or infimum,
i.e., it is not true in general that

(xvnf=xfvy, (xay)f=xfayf forallxyeA.

When this condition is satisfied, f is called a lattice-homomorphism.
Correspondingly. a lattice-isomorphism is a bijection fsuch that both fand
f~' are lattice-homomorphisms. Every order-isomorphism between
lattices is in fact a lattice-isomorphism, even though the corresponding
statement for homomorphisms is not true.

To compare ordered sets we shall make use of the following property of
complete lattices, which can actually be used to characterize them (cf.
Davis [55], Tarski [55]).

Proposition 4.2
Any order-homomorphism of a complete lattice into itself has a fixed
point.

Proof:

Let L be the lattice, f:L —L the order-homomorphism, and put
I={xeL|x<xf},a=supl Foranyxel x<xfand x < a; therefore
xf < af, whence x < af for all x el. Thus af is an upper bound for I;
by definition of a, this means that

(M a <df,

from which it follows that ael. By (1), af < af?, i.e. af e I. Therefore
af < a and together with (1) this shows that af =a. |}

Theorem 4.3
Let A and B be ordered sets such that A is order-isomorphic to a left
segment of B and B is order-isomorphic to a right segment of A. Then there
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exists a bijection [+ A — B which respects the ordering in the following weak
sense:

(2) x <y implies x{* 2 yf for all x,y e A.

Proof:

Let g: 4 — By and /i: B — A, be the given order-isomorphisms of 4 with
a left segment B, of B and of B with a right segment 4, of 4. For any
subset X of A, denote by X' its complement in 4, and likewise for subsets
of B. Clearly the complement of a left (right) segment is a right (left)
segment, and in fact, X = X’ (for X € #(A)) is an order-reversing mapping
of the set of left segments of A onto the set of right segments of 4. We
define a mapping 0 of &(A) into itself by the rule

X0 = ((Xg)'h)'.

Since g, 1 preserve the ordering, while taking complements reverses it,
0 is order-preserving, i.e. an order-homomorphism, and since #(4) is
complete, 0 has a fixed point (by Proposition 4.2), i.e. there exists a left
segment A, of A such that ((4,9)h) = A,. Thus, if B, = A,g, then
Bih = A]. Now define /:4 — B by the rule

S~ |xg if xe A,,
X5= {A’h" if xeA;.

Since both g and / are injective, so is f, and moreover, if x <y, then
xf# yf. So to verify (2) we need only show that x < y implies x/ % yf.
If this is false, then for some x,y € 4 we have

3) x<y and xf > yf.

If yed,, then xe A, and xf = xg < yg = yf. which contradicts (3).
If x € A}, then y € A| and x = xfh > yfh = y, which again contradicts (3).
The only remaining possibility is that x € 4, and v € A4} ; this means that
xfe B, and yfe B;; but Bj is a right segment of B, hence by (3) xf€ Bj,
which again is a contradiction. So (3) cannot hold. JJ

If we apply this theorem to totally unordered (i.e. abstract) sets, we
obtain

Corollary 4.4 (Schrider-Bernstein theorem)
If A and B are any sets and g: A — B, h:B — A are any injections, then
there is a bijection between A and B. |}
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For totally ordered sets (2) implies that fis an order-isomorphism, and
we obtain in this case

Corollary 4.5

Let A, B be ordered sets such that A is order-isomorphic to a left segment
of B and B is order-isomorphic to a right segment of A. If at least one of A, B
is totally ordered, then A is order-isomorphic to B.

For by symmetry we may take B to be totally ordered; applying the
theorem, we obtain a bijection satisfying (2), i.e. an order-homomorphism.
Since in fact A is also totally ordered (being isomorphic to a segment of
B), the bijection is actually an order-isomorphism. |

Corollary 4.5 does not remain true for arbitrary ordered sets, as may be
shown by examples (cf. Exercise 7).

With every element @ of an ordered set 4 we can associate the left
segment S, = {x € 4| x < a}, and it is not hard to verify that the mapping
a — S, is an order-homomorphism of A into &(A4). Since the mapping is
clearly injective, this shows that A is always order-isomorphic to a subset
of &(A). The following result, due to Dilworth and Gleason [62], shows
that 4 can never be order-isomorphic to %(A4).

Theorem 4.6
Let A be an ordered set and f: A, — ¥(A) an order-homomorphism from a
subset Ay of A to ¥(A). Then [ is not surjective.

For, assume that f'is surjective; put B = {x € 4y|x ¢ xf}, and let B be
the left segment generated by B, i.e. the set of all y € 4 such that y < x for
some x € B. By hypothesis, B=bf for some be A,. If b¢ B, then be B B,
by the definition of B, which is a contradiction. Hence b € B, i.e. b < x for
some x € B, and so B = bf = xf. But we have xe B < B< xf, and this
means, by the definition of B, that x ¢ B, which is again a contradiction. |

The proof generalizes the well-known Cantor diagonal argument which
is used to show that A is not equipotent to #(A4). In order to obtain this
result, we regard A as a totally unordered set; then any mapping from A
(or any subset of A4) to &(A) will be an order-homomorphism and we
obtain

Corollary 4.7
If A is any set, there exists no bijection from A to #(A). |}

For ordered sets in general we obtain
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Corollary 4.8
If A is any ordered set, then A is not order-isomorphic to &(A). W

For certain types of ordered sets a graphical representation is useful,
which will now be explained. By a graph one understands a figure con-
sisting of points, the vertices of the graph, together with a number of edges
joining certain pairs of vertices. We shall only be concerned with oriented
graphs, in which each edge has a given orientation, corresponding to an
ordering of the end-points of the edge, and which may be represented by
an arrow drawn along the edge. Thus the commutative diagrams of
mappings in 1.3 are examples of oriented graphs. If I' is any oriented
graph, the set ¥(I') of its vertices may be preordered by writing, for any
abe VI, ‘a < b if and only if we can pass from a to b by going along
edges of the graph (taking the orientation into account). Conversely, to
represent a given preordered set A, we represent its elements by vertices,
with an edge from a to b whenever a < b. The resulting oriented graph is
denoted by I'(4) and is called the graph of A. Of course for many ordered
sets this is not very useful for purposes of illustration (e.g. the set of all
functions from N to itself, ordered by inclusion), and most actual diagrams
will refer to finite graphs, where for clarity only those edges are drawn
which connect elements a, b such that b covers a, i.e. b is a minimal element
such that b > a.

A graph is said to be connected if any two vertices a, b can be connected,
i.e., there exists a finite sequence of vertices a, = a, a,,"--, @, = b such
that a,_, and a; are joined by an edge (disregarding orientation). In
general, the graph of an ordered set need not be connected; for example, a
totally unordered set has a ‘totally disconnected’ graph, in which no two
distinct vertices are connected. Inany graph I, the relation: a is connected
fo b is obviously an equivalence on ¥(I'); its equivalence classes are called
the connected components of the graph I'.

The following reduction theorem (Newman [42]) will be useful later on (in
[11.9) when considering the normal form of elementsina given presentation.

Theorem 4.9 (Diamond lemma)
Let A be a preordered set and assume that
(i) for each a € A there exists a positive integer k = k(a) such that
every descending chain through a,
= a’o 2 gl ; T

where a;_y # a; has at most k terms, and
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' (ii) if a covers b, and b,, then the set {b,,b,} is bounded below in A.
Then there is a bijection between the connected components of the graph
of A and the minimal elements of A:

era[ (I‘EI}

If A, is the set of vertices of T, then a; € A, and a is in fact the least element
Of A i

Proof:

Let I'; (i € I) be the connected components of the graph of 4 and 4; the
corresponding subsets of 4. From (i) it follows in the first place that A is
actually ordered (not merely preordered) and that each A4; contains a
minimal element; further, every minimal element of 4, is clearly minimal
in A. If we can show that 4, contains only one minimal element, then,
since by (i) every element is = a minimal element, it follows that the unique
minimal element of A4; must also be the least element of A4,.

Let a, b then be minimal elements of 4, By definition of A,, there
exists a sequence a, = a.a,,--,a, = b such that for each 7 = 1,---,n either
a;<a;,_, or a; za;-y. If a#b, then by omitting repetitions we may
assume that a; # a;-,; and inserting extra terms if necessary, we may
assume (by (i)) that one of a;, a,_, covers the other. Now for any x € A4,
denote by A(x) the maximum length of any descending chain through x;
this length is finite by (i), and clearly if x < y, then A(x) < A(y). We now
use double induction, (a) on max /(a;) and (b) on the number of a, for
which this maximum is attained. If max h(a,) =0, then all the a; are
minimal and therefore all are equal, whence @ = b. Now let max A(a;) > 0
and suppose that the maximum is attained for /i =/ Then a; covers
a;-, and a;,,; hence by (ii), there exists ¢ € A such that ¢ < a;_,, ¢ < a;4,,
and using ¢ in place of a; together with insertions as before, we obtain a
sequence (a;) from a to b, possibly longer than the last, but in which either
max A(a;) has a smaller value than max /h(a;), or the two maxima are the
same but are attained by fewer elements a; than elements a;. This con-
tradicts the induction hypothesis, and so a = b.

We remark that condition (i) is considerably stronger than the minimum
condition for 4. Actually the result still holds when (i) is replaced by the
minimum condition (cf. Newman [42]), but the above version is adequate
for our purpose.
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EXERCISES

1. Show that any intersection of orderings on a set is an ordering.

2. (Hausdorfl.) Show that the following assumption is equivalent to Zorn’s
lemma: Every ordered set contains a maximal chain (i.e. every ordered set A
contains a chain which is maximal in the set of all chains of A4, ordered by
. inclusion).

3. If a directed set has a maximal element, this is its greatest element. Deduce
that a lattice has at most one maximal element and at most one minimal element.

4, Give an example of an order-homomorphism between lattices which is not
a lattice-homomorphism.

5. Show that an ordered set is partly well-ordered if and only if it has no
infinite descending chains and no infinite totally unordered subsets (cf. 111.2).

6. Let A be an ordered set in which any chain has at most m elements and any
subset of pairwise incomparable elements has at most n elements. Show that A
has at most mn elements.

7. Let A be the set of couples (m,n) of natural numbers such that m <n,
ordered by the rule: (m,n) < (m',n") if and only if m < m" and n = n"; and let B
be the complement of {(0,0)} in A. Verify that A is order-isomorphic to a left
segment of B and B is order-isomorphic to a right segment of 4, but that A4 is not
order-isomorphic to B.

8. If L is any complete lattice and f an order-homomorphism of L into itself,
show that the fixed points of f form again a complete lattice with respect to the
ordering induced by L. (Hint: Let F be the set of fixed points; if X' = F, show
that sup 7 is an infimum of X in F, where

I={yveL|y<yf,and y < x for all xe X},
and use Proposition 4.1.) Is this lattice necessarily a sublattice of L?

9. For any ordered set A, verify that the set %(A) of left segments of A,
ordered by inclusion, is a complete lattice.

10. Let A be an ordered set and for each a € A write
S,={xeAd|x<al.

Show that a— S, defines a monomorphism A — %(A) which preserves the
ordering.. Deduce that any ordered set can be embedded in a complete lattice
in such a way as to preserve any suprema or infima which exist in A.
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11. Show that the preordering defined on the set of vertices of a graph I is
an ordering if and only if T contains no closed paths with more than one vertex.

5. CARDINALS AND ORDINALS

In this section we briefly review the facts which we need about cardinals
and ordinals, referring the reader to Hausdorff [14], Kelley [55], or
Sierpiniski [58] for further details. Unless otherwise stated, all sets are
taken to lie in a fixed but arbitrary universe U.

With every ordered set A is associated an object called its order type and
denoted by o(A) such that

o(A) = o(B) if and only if 4 is order-isomorphic to B.

In detail this means that we partition the class of all ordered sets (in the
universe U) into classes of pairwise order-isomorphic ones, and with each
class associate a member of the given universe U.’

Two cases are of particular importance:

(i) A is an abstract set, regarded as totally unordered. In this case
we write ‘| 4| instead of ‘0(A4)’ and call it the power or the cardinal
number of A.

(i) A is a well-ordered set. Then o(A) is called the ordinal number
of 4.

Generally, by a cardinal number, or an ordinal number, one understands
the order type of a totally unordered set, or of a well-ordered set, re-
spectively. We now define a relation among order types by putting

o(A) < o(B) if and only if A is order-isomorphic to a left segment of B.

It is easily verified that this relation is a preordering (on the class of order
types occurring in U). In general, it is not an ordering, as may be shown
by using the sets in Exercise 4.7. We do however obtain an ordering, in
fact a total ordering, if we limit ourselves to cardinals, or to ordinals. To
begin with we note '

Lemma 5.1
If A is an ordered set with minimum condition and [:A — A an injective
order-homomorphism, then xf < x for all x € A.

9 The class itself will in general not be a member of U and so cannot be used.
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For if there exists x € 4 such that xf < x, let @ € 4 be a minimal element
with this property. Since af <a, we have af* < af, which shows that af
also has the property; but af < a, which contradicts the definition of a.  |j

In the case where A is well-ordered, the conclusion of the lemma states
that xf'> x for all x € A.

Theorem 5.2
If o and B are two cardinal numbers, or two ordinal numbers, such that

o< fandf <o, thena = f.

For cardinals, this follows from Corollary 4.4, 1f «, f# are ordinals, say
ox = o0(A), f = o(B), then A4 is order-isomorphic to a left segment of B and
B is order-isomorphic to a left segment of 4. Combining these mappings,
we obtain an order-isomorphism f: 4 — A, of A with a left segment of
itself, and the conclusion will follow if we show that 4, = 4. Suppose that
Ay # A and let ae A, a¢ A, then af < a, because af = a would imply
that a € A, (since af € A,). But this contradicts Lemma 5.1; hence 4, = 4,
and it follows that B is order-isomorphic to 4, whence f =a. |

We now show that the ordering of ordinal-numbers is total.

Theorem 5.3
The ordinal numbers are totally ordered with respect to the relation <.

Proof:

Let A and B be well-ordered sets; to prove the theorem we need only
show that one of A4, B is order-isomorphic to a left segment of the other.
Let R be the set of all functions defining an order-isomorphism between a
left segment of 4 and a left segment of B. Then R is ordered by inclusion,
and since any union of left segments of A is again a left segment of 4,
and likewise for B, it follows that any chain in R has an upper bound (in
fact the union of the chain will again belong to R). By Zorn’s lemma, R has
a maximal element £, which is a function defining an order-isomorphism
between a left segment 4, of 4 and a left segment B, of B. Of course it
is not excluded at this stage that 4, = B, =/ =0. If both 4, # A and
B, # B, let a be the least element of 4 which is not in 4, and b be the least
element of B not in By ; then we could replace /by /' u {(a,b)} and so obtain
a proper extension of f, contradicting the maximality. Hence either
Ay = A or B, = B(or both) and accordingly o(4) < o(B) or o(B) < o(A). l

To prove the corresponding property for cardinal numbers, we need



30 Sets and Mappings [Chap. 1]

Theorem 5.4
Every set can be well-ordered.

Proof:

Let A be any set and W the collection of all well-ordered subsets of 4;
thus each element of W is a subset X of 4 together with an ordering of
X which makes X into a well-ordered set. For X, Ye Wweput X<V
if X is a subset of ¥ and the inclusion mapping X — Y is an order-
isomorphism of X with a left segment of Y. This means in particular that if
X < Y, then the ordering on X is that induced by the ordering on Y. Itis
easily verified that the relation < so defined is an ordering of W. Now if
(C));., is any chain in W, then the set D = U C; has an ordering which is
uniquely determined by the fact that it induces the ordering given on
each C,. Moreover, it is a well-ordering, for if X = D, X #0, let x € X.
Then x € C; for some i € I, hence X n C; # 0. Let a be the least element
of X n C; (in the ordering of C)); then a is also the least element of
X n C, in the ordering of D and hence it is the least element of X in
D, because every element y € X such that y <a must lie in C;. Thus
De W and is an upper bound for the chain (C;). By Zorn’s lemma
there exists a maximal element B in W. If B# A, let ce A, ¢ ¢ B, and
consider the set B¥ = B u {c} with the ordering which extends the ordering
on B and is such that x < ¢ for all x e B. With this ordering B* becomes a
well-ordered set such that B < B*, which contradicts the maximality of B.
Hence B = A, i.e., A can be well-ordered. |J

Corollary 5.5
The cardinal numbers are totally ordered with respect to the relation <.

For if 4 and B are any sets, then by Theorem 5.4 they can be well-
ordered, and applying Theorem 5.3 we find that o(A4) < o(B) or o(B) < o(4);
accordingly we have [4] < |B|or |B| <4]. |

From Theorem 5.3 and Corollary 5.5 it is not hard to deduce that the
ordinal numbers (and likewise the cardinal numbers) are well-ordered
with respect to <. This observation leads to the following alternative
definition of ordinals. We recall that ordinal numbers were defined as
order types of well-ordered sets. A more explicit way of defining them
would be to take a certain well-ordered set for each type and regard this as
representing a class of order-isomorphic sets. This is essentially how the
natural numbers were defined in 1.1 and the same method may be used here.
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Thus one obtains all the different isomorphism types of well-ordered sets
by starting with 0, adjoining one element at a time, and taking unions of
ascending chains. In particular, the finite ordinal numbers are just the
natural numbers, and the first infinite ordinal number is the set

{051521"'}

which is usually denoted by w. We shall not enter into the details of this
construction (cf. e.g. Kelley [55]) but merely note that if « is any given
ordinal number, then the ordinal numbers less than « correspond by
definition to the proper left segments of a well-ordered set of type «, and
they are themselves well-ordered of type . With each ordinal number
we can associate a cardinal number ||, namely the cardinal number of a
well-ordered set of type «. Often one identifies this cardinal number with
the least ordinal number to which it belongs; however, the cardinal
number of N is usually denoted by N (read: aleph-zero). A set of cardinal
N, is also said to be countable. The existence of uncountable sets follows
from

Theorem 5.6
For any ordered set A, o(A) # o($(A)). Moreover, if A is well-ordered,
then
o(A) < o(F(A)),
and if A is totally unordered, then
|4] < |#(A4)].

Proof:

The first part follows from Theorem 4.6, and in view of Corollaries 4.7
and 4.8 we need only show that o(A4) < o(¥(4)) and |A4| < |#(A)| to
complete the proof. Thus we have to define an order-isomorphism
f:A4 = S,, where S, is a left segment of #(A4). It is easily verified that for
well-ordered A4, the mapping f given by af = {x € A|x <a} is such an
order-isomorphism. If A is totally unordered, we put af = {a} and remark
that this defines an injection of A into #(A), and hence an order-
isomorphism of A with a left segment of #’(4), where #'(4) is the set
of all nonempty subsets of A. Thus o(4) < o(#'(4)), and therefore
| < |2'(4) <|24). 1

Corollary 5.7
Among the ordinal numbers of a given universe (and likewise among the

cardinal numbers) there is no greatest one. |§
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Another way of expressing this corollary would be to say that the class
of all ordinal numbers (or the class of all cardinal numbers) is not a
member of the given universe.

If A and B are any two sets of cardinals « and f respectively, then
|4 x B| depends only on « and f# and not on A4, B themselves, as is easily
seen. We write |4 x B| =aff and call «ff the product of « and f. In a
similar way the swm o + ff may be defined as |4 u B|, where 4, B are dis-
joint sets of cardinals «, f§ respectively. From the properties of unions and
Cartesian products it follows easily that the commutative and associative
laws hold for both sum and product. On the basis of these definitions it is
possible to develop cardinal arithmetic (cf. e.g. Sierpinski [58]); we shall
not do so, but merely note the equations

a+f=ap=mx@p. (af+0)

valid for any two cardinal numbers of which at least one is infinite (cf.
Exercises 7 and 8). For the present we shall prove the second equation in
the special case when o = Ny and f is infinite.

Proposition 5.8

For every infinite cardinal number o,
(D Nox = 2.
Proof:

In the case where o« = N, (1) states that N x N is equipotent with N;
this follows e.g. by enumerating the pairs (m1,n) according the value of
m + n and pairs with the same value for m + n according to m. Secondly,
if o is of the form Ny, then by what has been proved,

No = No(WRoy) = N:ZJY =No? =4,

which proves (1) for this case. Now we complete the proof by showing
that every infinite cardinal number is of the form Nyy. This amounts to
showing that every infinite set A is equipotent to a product N x C, where
C is a suitably chosen set. Let 4 be an infinite set; then by Theorem 5.4,
A can be well-ordered. In well-ordered form A consists of a totally ordered
(in fact well-ordered) set of countable sequences, followed by a finite
(possibly empty) sequence. Since A is infinite, at least one infinite sequence
occurs, and we may rearrange A by taking the finite set from the end and
putting it in front of the first sequence. The set A now consists entirely of
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countable sequences, i.e. well-ordered sets isomorphic to N; if they are
indexed by a set C, it follows that A is equipotent with N x C. |}

We conclude this section with a remark on Zorn's lemma which
will be needed later. The hypothesis of Zorn’s lemma considers an
ordered set A in which each chain has an upper bound. This is true in
particular if each chain in 4 has a supremum in A. It is possible to express
this condition in a weaker form, as well as a stronger form.

Proposition 5.9
Let A be an ordered set; then the following three conditions on A are
equivalent:

(i) Every nonempty directed subset of A has a supremum.
(ii) Every nonempty chain of A has a supremum.
(iii) Every nonempty well-ordered chain of A has a supremum.

In (iii) the chain is understood to be well-ordered in the ordering induced
by A. We remark that (iii) is used only to facilitate the proof of the
equivalence of (i) and (ii) and will not be used again.

Proof:

Any well-ordered chain is a chain and any chain is directed, hence
(i) = (ii) = (iii); to complete the proof we show that (iii) = (i). Thus when
(iii) holds and we have a directed subset D # 0 of A4, we have to show that
sup D exists. The idea of the proof is to try and reach sup D by means of
well-ordered chains in D. For this purpose one has to enlarge D; we state
this step separately as a

Lemma. Let A be an ordered set satisfving cendition (iii) of Proposition
5.9. Further, let D be a nonempty directed set in A; then there is a directed
set E in A with the properties:

(a) E= D.

(b) Any upper bound of D is an upper bound of E.

(¢) Every well-ordered chain in E has a supremum which again belongs
to E.

To prove the lemma, consider the set of directed subsets £ of 4 which
satisfy (a) and (b). There are such subsets, e.g. D itself. If we have any
chain of directed subsets satisfying (a) and (b), their union clearly is again
of this form; hence, by Zorn’s lemma, there is a maximal directed subset
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E in A which satisfies (a) and (b). We assert that E also satisfies (c); if
not, let 2 be the least ordinal number such that a well-ordered chain in E of
length A does not have a supremum belonging to E. Let E’ be the set of
all elements of the form sup(a,), where (a,), - ; is any well-ordered chain
of length 4 in E. Then E’ is a directed subset of A satisfying (a) and (b).

To establish this fact, take any a, b e E’, say a = sup(a,), b = sup(b,)
(a,, b, € E); we define a family (c,), - ; inductively such that

(2) ¢, <e, (1 <p), a, <c, b, <c,, c,eE(n <)

For ¢, take any clement of E such that a, < ¢,, by < ¢,. If a satisfies
0 <« < iand ¢, is defined for u <« 50 as to satisfy (2), then by hypothesis
¢, = sup(c,) € E, and since E is directed, there exists ¢, € E such that

a,

L <e

ar

b, <c,, e <c,.

This means that (2) holds for g =«. By transfinite induction we get a
well-ordered chain (¢,), ., satisfying (2) for every u < i. If ¢ =sup(c,),
then ce E' and ¢ = a,, ¢ = b, for all p <A, hence ¢ = a, ¢ = b, which
proves that £” is directed. Now any a € E can be written as sup(a,) with
a, = a for all p < 4; hence

(3) EcFE,

Further, since every element of £’ is a supremum of a family of elements
in E, every upper bound of E is an upper bound of £’, and so by (b),
every upper bound of D is an upper bound of E’. Thus E’ satisfies (a) and
(b); by maximality we conclude that E* = E. This means that every well-
ordered chain of length Z has a supremum in E, which is a contradiction.
Therefore E must satisfy (c) also and the lemma is established.

If U, V are well-ordered chains, write U < V'if U is a left segment of V,
By Zorn’s lemma there exists a maximal well-ordered chain (a;) in E;
putting @ = sup(q;), we have a € E. We assert that sup D = a; this will
complete the proof. In the first place, we note that @ is maximal in E, for
if it were not, then we could extend the well-ordered chain (a;), con-
tradicting its maximality. Since E is directed, a is actually the greatest
element of E. Thus a is an upper bound for E, and hence for D (because
D < E). If b is any upper bound for D, then by construction, b is an
upper bound for E too, and so b > a. Therefore a is the least upper
bound for D,i.e.supD = a. §
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EXERCISES

1. Show that two finite, totally ordered sets are order-isomorphic if and only
if they have the same cardinal number.

2. Show that a totally ordered set is finite if and only if both the given ordering
and its opposite are well-orderings.

3. Let Q be the set of all ordinal numbers in a given universe, with the total
ordering defined as in the text. Show that for any « € €, precisely one of the
following is true: (i) o = 0, (ii) the set of ordinals ff such that # < o has a maximal
element (this element is called the immediate predecessor of «), (iii) 0 # a =
sup {3e Q|8 < a} (in this case « is called a limir ordinal).

4. If A and B are two disjoint ordered sets, define their ordered sum 4 + B as
the set A U B, ordered so that x < y holds for every couple (x,)) in A4 x B, for
no couple in B x A, and for couples in A? (or in B?) if and only if x < y in 4%
(or in B?). Now, for any order types «, f define o + f as the order type of
A+ B, where A, B are any disjoint ordered sets of types o, f# respectively.
Verify that  + f depends only on o, 8 and not on A, B, and that in the case of
cardinal numbers it reduces to the definition given in the text. Do the com-
mutative and associative laws hold for this operation?

5. Show that every ordinal number can be uniquely expressed in the form
1 4 n, where 2 is a limit ordinal (Exercise 3) or 0, and # is a natural number.

6. If A, B are any ordered sets, define their lexicographic product as 4 x B,
ordered by the rule: (a,b) < (a',0') if and only if « <@’ or a=a" and b < b".
If A, B are well-ordered, show that their lexicographic product is again well-
ordered. For any order types «, § define #ff as the order type of the lexicographic
product of ordered sets 4 and B, of types o and f§ respectively. Verify that «f8
depends only on o, f and not on A, B, and that it reduces to the definition given
in the text for cardinal numbers. Do the commutative and associative laws hold
for this operation?

7. Show that addition of cardinal numbers, and multiplication of cardinal
numbers, both satisfy the commutative and associative laws. Show also that if
a<a, f<f, then a +pf <o’ + f and aff <o'f"

8. Show that if @, § are cardinal numbers of which at least one-is infinite,
then o+ f# = max(z,f). Assuming the equation y* =y for infinite cardinal
numbers (cf. V1.6), show that further if &, § # 0, then a8 = max(a, §).

9. A set A is said to be densely ordered if it is totally ordered and for any
a,b € A such that a < b, there exists ¢ € 4 such that @ < ¢ < b. Show that there
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are precisely four types of countable densely ordered sets. (Hint: Show that
any countable densely ordered set is order-isomorphic to a closed, open, or
half-open interval of rational numbers.)

10. Prove Theorem 5.3 without using Zorn’s lemma. (Hint: Use transfinite
induction.)

6. CATEGORIES AND FUNCTORS

In algebra as well as topology we often have to consider sets with a
certain structure, together with mappings between the sets which preserve
the structure. There are a number of basic notions common to all these
situations, and it is convenient to define these in a more general setting.

A category # is a class of #-objects, together with a class of #'-
morphisms, which are related in the following way:

C.1. With each couple of objects a, b there is associated a set Hom(a, b)
of A -morphisms, such that each % -morphism belongs to Hom (a, b)
Jor just one couple of objects a, b.

C.2. Ifa e Hom(a,b) and f € Hom(b,c), there is aunique element of Hom(a,c)
called the composition or product of « and f and denoted by «f.

C.3. Given o€ Hom(a,b), f € Hom(b,c), y € Hom(c,d), so that («f)y and
o(fy) are defined, then

(N (@B)y = a(By).

C.4. To each A -object a there corresponds a A -morphism €, € Hom(a,a)
called the identity morphism such that for any « e Hom(b,a) and
B € Hom(a,c), i

(2 ae, =,  &f =P

The classes of all #-objects and 2#-morphisms are also denoted by
Ob # and Hom .# respectively. Instead of ‘« € Hom(a,h)’ we also write
‘a:a — b and say ‘¢ goes from a to b’; further, we shall use commutative
diagrams to illustrate the composition of morphisms in the same way as
for mappings between sets. In this connexion we note that for any -
morphisms «:a — b and f:¢ —d, the product «f is defined if and only if
b=ec

It is easily verified that the identity morphism &,:a@ —a is uniquely
determined by the properties (2). Thus the mapping

a-— e,
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establishes a bijection between Ob #" and the class of identity morphisms,

so that .# is completely determined by its morphisms. It is not difficult to

express the definition of a category entirely in terms of morphisms (cf.

Exercise 1); we shall not adopt this point of view, but we note the possi-

bility of doing so, as it may be used to shorten some of the definitions.
The category 2 is said to have a zero, if

C.5. There is a A -object 0, called a zero object, such that for any a € Ob i,
the sets Hom(a,0) and Hom(0,a) each consist of a single element.

In a category with zero, let us denote the unique morphism in Hom(0,a)
by w,,, that of Hom(a,0) by w,. and generally define the zero morphism
from a to b by the equation

(3) Wap = WaplWop;

then for any morphisms «:¢ — a, fi:b—d, we have nw,g = .o, Wefi = oy,
and hence

(4) 0Wap = Weps ('Jubﬁ = Wy4.

While a category may have more than one zero object, the zero mor-
phisms w,, are uniquely determined by (4), for if w},:a — b is another zero
morphism, defined in terms of another zero object 0, then by (4),
Wep = wcaw;:h e w.:r‘ *

Examples of Categories

(i) All nonempty sets in a given universe and all mappings between them
form a category, denoted by St¥.

(ii) All sets in a given universe, and all mappings between them,
including, for each set B, the mapping 0 — B defined by the empty func-
tion 0. This is a category denoted by St.

(iii) The category of all groups and homomorphisms.

(iv) The category of all topological spaces and continuous mappings.

(v) The category of all ordered sets and all order-homomorphisms.

(vi) The category of all lattices and all lattice-homomorphisms.

An isomorphism between categories 4 and 4 is a bijection a >’
between Hom # and Hom ' such that of is defined if and only if «'f’
is defined, and then

©) (@p) =o'p".

It follows from this that identity morphisms correspond, and hence the
A -objects correspond to #’-objects. More precisely, if @ € Ob ', then
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g, is an identity morphism, for by (2) and (5), &2 = ¢,, hence &2 = &, so
that if &,;:u —v, then v = «, and if 5, is the identity morphism of u, let
A€ Hom # be such that 2’ = y,; then &,4 = 4, hence

Ha = EMy = &,

Writing « = @', we obtain a bijection @ — a’ between Ob # and Ob #"* such
that «:@a - b if and only if o": @’ — b,

An anti-isomorphism from 2 to & is a bijection between Hom # and
Hom #":a — o’ such that «f is defined if and only if '’ is defined and

(6) (ap) = o

Again this establishes a bijection between Ob .#" and Ob ', say a — a’,
but this is such that w:a — b if and only if «: 6" —» a’.

With every category # we associate a category ¥ °, the opposite of
o, whose morphisms are the #-morphisms, but with multiplication

asf = fa,

whenever the right-hand side is defined. It follows that % is anti-
isomorphic with .#". More generally, a category ¢ is anti-isomorphic with
A if and only if it is isomorphic with %",

The notion of isomorphism between categories is a special case of the
notion of functor. By a funcror from a category # to a category % one
understands a couple of mappings, from Ob .# to Ob % and Hom
to Hom #, both denoted by the same letter, F say, for simplicity, such
that:

(i) (8)F = &4
(i) If «ff is defined in ¢, then (xF)(fF) is defined in & and

(«p)F = (F)(BF).

More precisely, a functor as just defined is said to be covariant; by a
contravariant functor from 4 to & one understands a covariant functor
from 4 to #°, or equivalently, from 4" to #.

A subcategory & of A consists of a subclass of Ob % and a subclass of
Hom ., denoted by Ob %" and Hom . respectively, such that

(i) If a € Ob &, then &, e Hom %,
(ii) If «,f e Hom # and «f is defined in ¢, then of € Hom 2.
(iii) If x e Hom % and «:a — b, then a,b € Ob Z.
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If a,b € Ob .#, then one often writes ‘Hom(a,b)” in place of ‘Hom .(a,b)
n Hom %’°. The subcategory % of # is said to be full if Homy(a,b) =
Hom,(a,b), for any abe Ob #. Thus a full subcategory of # is
completely determined once the class of its objects is given; for
example, abelian groups and homomorphisms form a full subcategory
of the category of groups and homomorphisms. Lattices and lattice-
homomorphisms form a subcategory of the category of ordered sets and
order-homomorphisms. which however is not full, as we saw in 1.4

Let o be any category; then a . -morphism «:a — b is said to be
invertible or an equivalence, if there is a #-morphism f:h — a such that
off = g, fx = &,. Such a morphism /i, when it exists, is uniquely determined
by «, as is easily seen. It is denoted by «~" and called the inverse of «. Two
A -objects @ and b are said to be equivalent: a ~ b, if there exists an equiva-
lence x:a — b. Thus e.g., any two zero objects of a category with zero are
equivalent.

Given two categories #” and ., let F, G be two functors from . to 2,
Then a natural transformation of functors :F — G is a function which
associates with each a € Ob " an #-morphism t(a):aF —aG such that
for any «:a — b, the following diagram commutes:

aF—"%  pr
r{a)l If(m
aG——————bG

If t(a) is an Z-equivalence for each @ € Ob %", then = is called a natural
equivalence. In particular, when % = # and F is the identity functor, a
natural transformation is a #-morphism t(a) for which the above diagram
commutes. This is the case which occurs most frequently in the sequel.
As a simple illustration, the usual construction of the field of fractions of
an integral domain is a functor from the category of integral domains
and monomorphisms to the category of fields and homomorphisms, and
it may be verified that the embedding of an integral domain in its field of
fractions is a natural transformation. This no longer holds if we take as
our categories the integral domains and all homomorphisms, and fields
and their homomorphisms, respectively; to obtain a functor one then has
to extend the latter category to the category of all fields and places (cf.
Lang [58]).
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EXERCISES

1. Show that for any category #°, Hom " satisfies the following conditions:
(i) For certain couples ,8 € Hom ", an element «ff € Hom 2" is defined.
(i) If aff and By are defined, then (xf)y and «(By) are defined and are
equal. Moreover, f3y is defined whenever («f)y is defined for some «

or f(yd) is defined for some 8.

(iii) Every element of Hom " has a left unit and a right unit. (An element
¢ e Hom . is called a left (right) unit Tor « if ea(ae) is defined and
&=, ye=7, whenever the left-hand side is defined.)
Conversely, show that any class satisfying these conditions forms the class
of morphisms of some category.

2. Let &, be the category of all sets and mappings in a given universe U.
Show that the subcategories of &, with functors as morphisms form a category.

3. A category is said to be self-dual if it is isomorphic to its opposite. Show
that the category of all sets and correspondences between them (in a given
universe) is self-dual.

4. (a) In the category of sets and mappings, show that a mapping « is injective
if and only if it has a right inverse (i.e., if «:a — b, there exists fi: b — a such that
af = e,) and is surjective if and only if it has a left inverse (i.e. there exists
y:b— a such that yu = &,). f

(b) For any mapping « show that the following are equivalent: (i) & is in-
vertible, (ii)  has a unique right inverse, (iii)  has a unique left inverse, (iv)
has a right inverse and a left inverse.

5. In the semigroup S, of mappings from an infinite set P to itself, show that
(a) If a mapping has more than one right inverse, it has infinitely many,
(b) There exists a mapping with exactly two left inverses.

Deduce that S,, qua category, is not self-dual. Is S, self-dual when P is finite?

6. Let 4 be any category. A S -morphism g is said to be right regular if
ap = fp implies that « = f. If p:b —a is a right regular 2#"-morphism, then b
is called a subobject of a with the 2 "-morphism p. Show that the subobjects of @
are preordered by the rule: ¢ < b if vie—a and u:b—+a are the given right
regular morphisms and v = «u for some z. Show also that c<b and b<¢
hold if and only if b ~ ¢. Define quotient objects of a by duality, in terms of
left regular morphisms, and prove corresponding statements for them.

7. Let 2 be any category and for a,b € Ob X, write ‘a < b’ if and only if
Hom(a,b) # 0. Show that the relation so defined is a preordering on Ob X"
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Algebraic Structures

An algebraic structure on a set 4 is essentially a collection of finitary
operations on A; the set 4 with this structure is also called an algebra.
Most of the notions introduced for sets, such as subset, mapping, equiva-
lence, have analogues for algebras, namely subalgebra, homomorphism,
congruence. The mapping theorems of 1.3 then correspond to the iso-
morphism theorems, which are probably best known in the case of groups.
The analogy is less complete for the Jordan-Hélder and Krull-Schmidt
theorems, which are therefore first considered in their abstract setting in
lattice theory, and then for algebras.

In addition the set of subalgebras of a given algebra plays an important
role, and to a lesser extent the set of all congruences; they form complete
lattices with certain characteristic properties on which the applicability
of Zorn's lemma depends. We begin therefore by studying these properties
in the abstract.

1. CLOSURE SYSTEMS

Let A4 be any set and #(A) its Boolean, i.e. the set of all its subsets. We
wish to consider certain subsets of #(A), or as we shall say, systems of
subsets of 4. A system % of subsets of A is said to be a closure system if €
is closed under intersections, i.e.

for any subsystem 2 < %, we have N2 e %.

41



42 Algebraic Structures [Chap. 1]

In particular, taking 2 =0, we see that A always belongs to €. Since a
closure system admits arbitrary intersections, it follows by Proposition
1.4.1 that it is a complete lattice (with respect to the ordering by inclusion).
However, it need not be a sublattice of #(A), since the cup operation in
is in general different from that of #(A) (cf. the examples below).

The most important examples of closure systems are the following:

(i) In a group G, the system of all subgroups of G is a closure system.
This case will be generalized later.

(ii) Let X be a topological space and 7 the system of closed subsets.
Then 7 is a closure system which has the further property:

(N Forany A,Be 7, AuBed.

Thus 7 is a sublattice of Z(X), though not in general complete. Any
closure system satisfying (1) is said to be topological. If we are given a
topological closure system Z on a set X which in addition includes 0,
then we can define a topology on X by declaring the members of 7 to be
the closed sets. Of course the resulting topology will not in general be
separated.

A second notion which we require (and which will turn out to be
equivalent to that of a closure system) is that of a closure operator on a
set. A closure operator or join operator on a set A is a mapping J of #(A)
into itself with the properties:

J.1. If X c Y, then J(X) = J(Y),

J.2. X cJ(X),

J.3. JI(X) =J(X),

for all X, Y € #(A). For every closure system % we can define a closure
operator J by the equation

) JX)=N{Ye<€|Y=2X)
This operator satisfies J.1-2 by definition. Further, we have
(3) J(X)= Xif and only if X € %,

because % is a closure system; since J(X) € %, this proves J.3.
Conversely, given a closure operator J (satisfving J.1-3), we put

@ € ={X<A|JX)=X)}.

If (X )., is any family in % and N X, = X, then X < X; hence by J.1,
J(X) /(X)) = X, forall i, and so

XX) e NX; = X.
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Together with J.2 this shows that J(X) = X, i.e. Xe%. Thus we have
obtained a closure system ¢ from J, and incidentally we have done so
without using J.3. We now use J.3 to show that the correspondence
% — J is bijective.

First, let ¢ be any closure system, J the operator defined by (2), and ¢’
the closure system defined in terms of J by (4). Then ¢’ = % by (3). Next
take a closure operator J, and let € be the closure system defined in terms
of J by (4) and J' the operator defined by (2) in terms of ¢. By what has
just been shown, € is then also defined by J’, hence

(5) J(X) = X if and only if J/(X) = X.

By 1.3, JU(X) = J(X); hence (5) gives J'J(X) = J(X). But X = J(X), and
applying J' we obtain J'(X) = J'J(X) = J(X). This shows that J'(X) = J(X),
and the reverse inclusion follows by symmetry. Thus we have proved

Theorem 1.1
Every closure system % on a set A defines a closure operator J on A by the
rule

JX)=N{Ye¥¢|Y 2 X).
Conversely, every closure operator J on A defines a closure system by
C={XcAd|JX) =X},

and the correspondence € «J between closure systems and closure operators
thus defined is bijective. ]

We note that closure systems and operators may be defined on any
complete lattice L and the relations between them expressed in Theorem
1.1 still subsist; in fact Theorem 1.1 is just the special case L = Z(A).

The members of % are called the @-sets or closed sets of A, and J(X) is
called the closure of X in A (it is indeed closed, by J.3). As we have noted,
% is a complete lattice with respect to <. Explicitly, given any family
(Xierin €, the set N X, is the greatest closed set contained in all the Xis
and N{Ye%| Y 2 X, forall i e I} is the least closed set containing all the
X -
We now give a third example of closure systems, which will be of im-
portance in what follows.

Let 4 and B be any sets and ® a correspondence from A4 to B, i.e. a
subset of 4 x B. For any subset X of 4 we define a subset X* of B by
the equation

X*={yeB|(x,p) e® for all xe X},
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and similarly, for any subset Y of B, we define a subset Y* of 4 by
Y¥*={xeAd|(x,y)edforall ye Y}.

Thus we have the mappings

(6) X - X*, Y- Y*

of #(A), #(B) into each other, with the properties

IfX,cX, then X¥ 2 X§,

0 YY) then Y¥ 2 Y,
(8) X = X*%, Y ¥,

Conditions (7) and (8) follow immediately from the definitions; if (7)
is applied to (8), we get X* 2 X*** while (8) applied to X* gives the
reverse inequality. Thus any mappings (6) which satisfy (7) and (8) also
satisfy (9).

A pair of mappings (6) between #(A4) and #(B), or more generally,
between any ordered sets, is called a Galois connexion if it satisfies (7),
(8) (and hence (9)). Most Galois connexions encountered in practice arise
from a correspondence between sets in the way described above (cf. also
the study by Ore [44]).

Examples of Galois Connexions

(i) Let Fbe a (commutative) field and G the group of all automorphisms
of F. Then the pairs (x, &) € F x G such that x* = x form a correspondence
which establishes a Galois connexion between certain subfields of F and
certain subgroups of G. If G is not the group of all automorphisms of F,
but merely a finite group of automorphisms of F, and E is the subfield of
F of elements left fixed by G, then the correspondence is between all sub-
groups of G and all fields between Fand E. (This is the subject of Galois
theory from which Galois connexions take their name.)

(ii) Let A4 be a simple (finite-dimensional linear associative) algebra and
consider the correspondence of A with itself defined by the relation xy = yx.
This establishes a Galois connexion of the set of subalgebras of A with
itself (cf. Artin, Nesbitt, & Thrall [44]).

(iii) Let R be a commutative ring with a unit element, and define a
correspondence in R by the rule x # y. This establishes in particular a
Galois connexion between the prime ideals of R and certain multiplica-
tively closed subsets of R (cf. Zariski & Samuel [58]).
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To establish the link with closure systems we observe that in any Galois
connexion the mapping X — X*# is a closure operator in 4 and Y — Y*#
is a closure operator in B (by (7)(9)). Moreover, the mappings (6) give a
bijection between these two closure systems.

A closure operator J on a set 4 is said to be algebraic, if for any
X=AandaeA,

if @ e J(X), then a e J(X) for some finite subset X, of X.

Now a closure system is said to be algebraic whenever the corresponding
closure operator is algebraic. In order to have a more direct description
of algebraic closure systems we need another definition: A nonempty
system % of subsets of A4 is called inductive if every chain in € has a supre-
mum in ¥. By Proposition 1.5.9 (applied to %) we can replace here the
word ‘chain’ by ‘directed set’. Now we have the following characteriza-
tion of algebraic closure systems, due to Schmidt [52]:

Theorem 1.2
A closure system is algebraic if and only if it is inductive.

Proof:

Let @ be an algebraic closure system on a set A4, 5" a chain in %, and
K = sup ¢ in #(A4). We shall show that K € ¥, then sup K in ¢ exists
and equals K. To show that K € % we need only show that J(K,) € K for
each finite subset K, of K. Let K; = {xy, ..., x,}: then each x, belongs to
some term of ¢, and because ¢ is a chain, we can find L € # to contain
them all. Then K; € L = Kand Le @, hence J(K;) € J(L) = L € K,
ie. J(K;) € K, as we wished to show. Conversely, let % be an inductive
closure system on A and J the corresponding closure operator. We have
to show, forany X < A4,

J(X) = sup{J(X)) | X; € X, X/ finite}, taken in ©.

Fix X € Aand put 4" = {J(X,) | X; € X, X, finite}. Given Y, Z c A4,
we have J(Y) |J J(Z) € J(Y |J Z) and if Y, Z are finite subsets of X,
then so is ¥ |J Z. Hence " is directed and so has a supremum K in
%. Now J(Xy) = J(X) for all X, hence K = J(X), but X < K, so J(X) =
K, and hence K = J(X) as asserted. |}



46 Algebraic Structures [Chap. I

Corollary 1.3
If € is an algebraic closure system on A, and X" is a directed subsystem
of 6, thensup ¥ €%. |}

We note that Zorn’s lemma implies that every nonempty inductive
system of subsets of a set 4 contains a maximal subset. This leads to the
following corollary of Theorem 1.2 which includes most of the important
applications of Zorn’s lemma to algebra.

Theorem 1.4

Let € be an algebraic closure system in A and let Ao, Ay, B be subsets of A
such that Be € and B n A, = A,. Then € contains an element C which is
maximal in € with respect to the properties C 2 B, C n A, = Aq.

To prove this assertion we take €’ to be the system of all sets X e ¢
such that X 2 B and X n 4, = A,, and show that ¢’ has a maximal
element. In the first place €’ # 0, because B e ’. Now let (X,) be any
chain in ¢’ and put X =sup X;. Then X e%, because ¢ is inductive.
Further, X = Band X n A, = A,; therefore X € ¢’. Thus ¢ is inductive,
and by Zorn’s lemma, ¢’ has a maximal element. |

EXERCISES

1. Let X — H(X) be any mapping of #(A) into itself. Show that J(X) = H(X)
U X defines a closure operator if and only if X < J(Y) implies J(X) < J(Y).

2. Let J, be any mapping of #(A) into itself which satisfies J.1, and define
Jy(X) = Jy(X) U X. Verify that J, satisfies J.1 and J.2; if ¢ is the closure system
associated with J,, describe the closure operator J associated with €.

3. Show that the collection of all algebraic closure systems on a given set A
is a closure system on #(A). Is this closure system ever algebraic?

4. Let € be an algebraic closure system on A. Then every nonempty sub-
system of € has a maximal element if and only if each X € € is the closure of a
finite subset.

5. (G. Higman.) Let [ be the set of all closure systems on A and define an
operation € — €* on I by the equation

Jel X) = UJ(X)) | X, € X, X, finite}.
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Show that this defines a closure operator on I' and that * is in fact the least
algebraic closure system containing €.

6. (P. J. Higgins.) Show that an inductive system % of subsets of A4 which
includes all finite subsets must coincide with #(A4). (Hint: For any X = A
construct a maximal subset Y of X such that ¥ u A, e & for all finite sets A,
and show that ¥ = X.) Hence deduce Theorem 1.2 without using Proposition
[.5.9. (Hint: If ¢ is inductive, show that the system of all X = A4 such that
Jo(X) =Je(X) [in the notation of Exercise 5] is inductive and includes all
finite subsets.)

7. In any Galois connexion X — X*, ¥ — Y* establish the identities
Ux)* =N xx,
(N x#*y* = Uxpys
for an arbitrary family of subsets (X,);.;.

' 8. Show that the relation x < y in an ordered set A establishes a Galois
connexion between the left segments and the right segments of A4, and that the
mapping x — {x}** of 4 into %(A4) provides an embedding of 4 in a complete
lattice (note that when A is taken to be the set of rational numbers, this is the
construction of real numbers by Dedekind cuts).

9. A system % of subsets of A is said to be of finite character (of character n)
if there is a system % of finite subsets (subsets with at most n elements) of A4
such that for each X = A4, whether or not X € % is uniquely determined by its
intersections F ] X, for all Fe #. Show that a closure system is algebraic if
and only if it is of finite character.

Give an example of a system of finite character which is not of character n,
for any n.

10. Show that the set of all preorderings on a set A is an algebraic closure
system on A2, Is the same true for the set of all orderings?

2. Q-ALGEBRAS

As already indicated, an algebra is to be thought of as a set with certain
operations defined on it. If we wish to compare different algebras we first
have to establish a correspondence between their operations. The most
convenient way of doing this is to index the operations in each algebra
by a given indexing set, which is kept constant in any problem under
discussion. This has the further advantage that no notational complica-
tions arise when the correspondence between the operations of the two
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algebras is many-many, as it may well be. The only restriction imposed is
that n-ary operations correspond to n-ary operations. Thus we have

Definition (1)

An operator domain is a set Q with a mapping a: Q — N; the elements of
Q are called operators, and if w e Q, then a(w) is called the arity of w.
If a(w) = n we also say that w is n-ary, and we write

Qn) = {w e Q|a(w) = n}.

Definition (2)
Let A be a set and Q an operator domain; then an Q-algebra structure
on A is a family of mappings

Q(n) - A" (neN).

Thus with each @ € Q(n) an n-ary operation on A is associated. The set
A with this structure is also called an Q-algebra and is sometimes written
Ag to emphasize its dependence on Q.

The underlying set A is also called the carrier of Ag.

Given an Q-algebra 4 and @ e Q(n), then @ applied to an n-tuple
(a,,---, a,) from A4 gives an element of 4 which we write as a,a,---a,w.

In the case n = 0 this merely states that w is an element of 4; thus a
0-ary operator picks out a certain distinguished element in the algebra.
For this reason a 0-ary operator is sometimes called a constant operator.
For instance, in defining groups we may use a 0-ary operator whose value
is the unit element (see below). This operator may be denoted by 1, so
that we are justified in denoting the unit element in all groups by the same
symbol.

We now consider Q-algebras for a fixed domain Q and introduce some
standard notions.

Given Q-algebras A, and By, we say that B is a subalgebra of A if
the carrier of B is a subset of the carrier of 4; and if w € Q defines opera-
tions w4,w, in A and B respectively, then B admits w, and

wy|B=wy for each w € Q.

Thus any subset of the carrier of 4 which admits each w € Q can be
defined in just one way as an Q-subalgebra of 4. The set of all subalgebras
of A is denoted by #,(A4). This set always contains A4, whereas 0 is a
member if and only if Q has no constant operators. A subalgebra of A
is said to be proper if it is distinct from A itself.
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Given Q-algebras 4 and B, a mapping /4 — B, and w € Q(n), we say
that [ is compatible with w, if for all a,,---, a, € A,

(M (@ f)(a,f)o = (a,a,0)f.

If /'is compatible with each w e Q, then f'is said to be a homomorphism or
homomorphic mapping from A to B. A homomorphism f: 4 — B with an
inverse f ~': B — A which is also a homomorphism is called an isomorphism
between 4 and B. If there is an isomorphism from 4 to B we say that 4
and B are isomorphic and write A = B. Other special cases of homomor-
phisms are named as follows: an injective homomorphism is called a
monomorphism; a surjective homomorphism is called an epimorphism; a
homomorphism in which source and target are the same algebra is called
an endomorphism; and an endomorphism which is also an isomorphism
is called an automorphism. Given Q-algebras A and B, if there is a mono-
morphism from A4 to B, we say that 4 can be embedded or is embeddable in
B; if there is an epimorphism from A to B, then B is said to be a homo-
morphic image of A.

With any family (A4,);., of Q-algebras a direct product is associated,
which is defined as follows. Let P be the Cartesian product of the 4,
regarded as sets, with projections ¢;: P -+ A,. Then any element ae P is
completely determined by its components a¢;, and any choice of elements
a(4) € A, defines a unique element a of P by a¢, = a() (. € A). Therefore
if a,,---, a, € P and o € Q(n), we can define a,---a,» by the equation

(2) (a,-a,w)e; = (a,&;)-(a,e;)o.

In this way an Q-algebra structure is defined on P, and it is clear from
the form of equation (2) that the projections are homomorphisms. The
algebra so defined is called the direct product of the A, and is denoted by
114, We remark that the algebras A; need not be distinct. For example,
if A, =A for all 2 e A, we obtain the direct power of A, whose carrier is
A" and which is itself denoted by A*. If the elements of A" are regarded
as functions from A to A, then the operations in A" are carried out com-
ponentwise; for example, if there is an addition defined in A4, then in 4*
we have

(f+9)(D) =/() +9(2)  (LeA).

On a given set 4 one can in general define different Q-algebra structures,
leading to Q-algebras which may or may not be isomorphic, but if 4 has
only one element, there is only one way of defining an Q-algebra structure,
because for any integer »n, there is only one mapping from 4" to 4. An
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Q-algebra with only one element is called frivial; from what has been said
it follows that all trivial Q-algebras are isomorphic.

Let U be any nonempty universe; then the Q-algebras with carrier in U,
together with all homomorphisms between them, form a category, which
we shall denote by (Q),, or simply by (Q), since U will usually be fixed
throughout the discussion. Here it is understood that two Q-algebras
are equal if and only if they have the same carrier and the identity mapping
is an isomorphism between them; from this definition it follows that on a
given set there will in general be more than one Q-algebra structure, so
that () is not a subcategory of St, the category of all sets and mappings
(in U).

We conclude this section with some examples of algebraic structures.

(i) Groupoids. A groupoid is a set with a single binary operation. Here
Q consists of a single element u of arity two. A groupoid A satisfying the
associative law:

(3) Xyuzp = xXyzup for all x,y,z€ A,

is called a semigroup. Semigroups and their homomorphisms form a full
subcategory of the category of groupoids. By a neutral element in a group-
oid one understands an element e such that

4) xep=exp=x  forall xeA,

It is easily verified that a groupoid can have at most one neutral element.
(ii) Groupoids with 1. A groupoid with 1 is a set A with two operations,
one binary g, and one O-ary 1, such that

(5) Rlip=lxi=x for all x e A.

While the difference between a ‘groupoid with neutral element’ and a
‘groupoid with 17 is only a formal one, there is a real difference when we
come to consider subgroupoids and homomorphisms. For if A4 is a group-
oid with a neutral element e, then a subgroupoid of 4 need not contain e
and a homomorphism between such groupoids need not map the neutral
element of one to that of the other. But if we regard A as ‘groupoid with
1°, with e as the value of the constant operator 1, then only subgroupoids
containing e and only homomorphisms preserving the neutral elements
can be admitted. In particular, groupoids with | and their homomor-
phisms form a subcategory of the category of all groupoids (and homo-
morphisms), which however is not full.
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(iii) Groups. A group is a nonempty semigroup in which the equations
axp = b, yau = b have solutions x, y for any choice of a and b. As is
well known, these equations then have uniquely determined solutions
(cf. e.g. Kuros [63], ch. 2). An alternative definition, in terms of a binary
operator j, a unary operator 0, and a 0-ary operator 1, is as follows: A
group is a (u, 0, 1)-algebra satisfying (3) and (5) above and in addition

(6) xx0u = xO0xp =1,

for all x € A. The proof of the equivalence of these definitions is again
well known and may be left to the reader (cf. Kuro$ [63], ch. 2). Of
course it is more customary to write ‘xy’ for ‘xyu’ and ‘x~'* for ‘x6’
and to call 1 the unit element; in particular examples we shall use this
notation also, so that (3), (5). and (6) may be rewritten as

(39 (xp)z = x(y2),
(59 x1=lx=x
(6" %2 V=% =1,

Note that whereas (3) is unambiguous as it stands, in (3) we had to put
parentheses to distinguish the two sides, and this would still have been
necessary if we had denoted the operation by some symbol, such as a dot,
placed berween the elements on which it operates. In I11.2 it will be proved
more generally that parentheses are unnecessary when all operators are
written on the right of the arguments (or on the left). The category of all
groups and homomorphisms will be denoted by Gp.

Frequently one uses the additive notation for groups, which consists
in writing ‘x + )" for ‘xyp’, *—x for ‘x@’, and ‘0’ for ‘I’. The laws (3),
(5), (6) then read:

(37 x+Y+z=x+(Q+2),
(5" x+0=0+x=x,
(6") X+ (=x)=(—x)+x=0.

The additive notation is used especially, but not exclusively, for abelian
groups, i.e., groups satisfying the commutative law:

(7) xX+y=y+x

(iv) Groups with operators. Let G be a group with a set Q of unary
operators such that

(8) (xp)o = (xw)(yw) (x,yeG, we Q).
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Then G is called a group with operators. More generally, a group with
multiple operators (Higgins [56]) is a group with a set of operators @ not
necessarily unary, such that

- lw=1 (we Q).

Thus any Q-algebra which is also a group, with 1 as Q-subalgebra, may be
regarded as a group with multiple operators. It turns out that many of the
general structure theorems for groups go over to groups with multiple
operators with little change (cf. Higgins [56]).

(v) Quasigroups. A quasigroup is a groupoid in which the equations
xa = b, ay = b each have a unique solution, for every couple of elements
a,b. A quasigroup with neutral element is called a loop.

(vi) Rings. A ring is an abelian group (written additively) which is also
a semigroup relative to a binary operator, called multiplication and usually
denoted by juxtaposition, where these operators are related by the distri-
butive laws:

x(y + 2) = xpy + xz,
(x +y)z=xz+ yz.

If, further, there is a 0-ary operator 1 which acts as neutral element with
respect to multiplication, 1x = x1 = x, we speak of a ring with unit ele-
ment 1. If Rg denotes the category of rings and their homomorphisms,
and Rg* denotes the category of rings with 1 and their homomorphisms,
then Rg* is a subcategory of Rg which is not full: an Rg-morphism
between Rg*-objects R and S'is an Rg*-morphism if and only if it maps the
1 of R to the 1 of S.

(vii) Modules over rings. A module over a ring R, or R-module, is an
abelian group M with a unary operator w, for each a< R, such that the
operation defined by w, is an endomorphism of M and

©) Wap = W0y, Wuip =0, +®, (a,beR).

Note that different operators may define the same operation. In case R
is a ring with 1, one usually requires the module to be unital; this means
that the endomorphism , defined by 1 is the identity on M. If instead
of the first equation (9) we have w,, =w,w,, we speak of a left R-module.
Examples of an R-module and a left R-module are obtained by taking M
to be the additive group of R with right or left multiplication, respectively:

PaiX =+ Xa, Agix —ax.

When R is a ring with I, the resulting modules are unital.
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Sometimes one defines a module over a group G, or G-module, as a set
P with a unary operator w, for each x € G such that

Wy = W0, o =1 (x,y € G).

(viii) Linear algebras. Let K be a commutative ring with I, then a
K-linear algebra A is a unital K-module which is also a ring, such that

(ab)a = (ax)b = a(bx) (ahe A, xeK).

If A4 also has a neutral element, denoted by e, say, then the mapping
a — eu (x € K) is a homomorphism K — A which determines the K-module
structure of 4 completely.

(ix) Sets. A set may be regarded as a 0-algebra. In this sense every-
thing that is said about Q-algebras applies in the special case of sets.

(x) The natural numbers. Let Q consist of a 0-ary operator denoted by 0
and a unary operator denoted by . The natural numbers form a special
case of such an algebra (cf. 1.1 and VIL1).

(xi) Lattices. A lattice may be regarded as an algebra with two binary
operators (cf. 11.4), but a complete lattice is not an algebra as defined
here, since it involves infinitary operations in general.

(xii) Ordered sets. An ordered set is not an algebra as it stands: it is
defined by a relation (x < y) rather than by operations. But we can, at
the risk of some artificiality, describe an ordered set by operations. E.g.,
for each couple (a,b) such that @ < b we may introduce a unary operator
i = Ma,b) defined by

[b if 5% =gy
xld = g
x otherwise.

We note that here the operators (and not merely the operations defined
by them) depend on the carrier. A more natural way of taking account of
relations in an algebra will be described in Chapter V.

(xiii) Fields. A field is not an algebra, since the operations usually
employed are not everywhere defined: x™' is defined only for x # 0. We
can overcome this difficulty by setting

x L 1fxs0,
0 Hx=0,
and so make formally an algebra out of our field, but this definition has
other disadvantages, e.g., the equation x-x0 = 1 holds only when x # 0,
whereas x-x~' = 1 holds whenever both sides are defined. We shall see
later, in Chapter 1V, that there is no way of defining fields as algebras

x0 =
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satisfying certain laws, analogous to the definition of groups and rings
given above.

If Q is an operator domain, the structure obtained by associating with
every w € (n) a mapping from a subset of 4" into A4 is called a partial
Q-algebra. As in the case of fields, a partial algebra may always be re-
garded as an algebra by taking a fixed element ¢ € 4, and for any a e 4"
such that e is undefined, putting aw = ¢. In this way, any partial alge-
bra with nonempty carrier can be regarded as an algebra in the sense
defined here.

(xiv) Extensions. Let C be a fixed Q-algebra; then an Q-algebra over C
is an Q-algebra 4 with a homomorphism

AC— A,

If 4 is injective, C may be identified with a subalgebra of A4, and A is then
called an extension of C; this is often written 4/C. Equivalently, an
Q-algebra over C may be defined as an algebra with operators Q and a
constant operator y(a) for each a e C, such that

wWa)-a)o =yaa,0) (o€ Qn)).

(xv) Projective planes. A projective plane is a set whose elements are of
two kinds (‘lines” and ‘points’) with a binary operation (subject to certain
rules; cf. e.g. M. Hall [59]) which is defined only on pairs of like elements,
with a value unlike the arguments; thus the product of two (distinct)
points is a line, the product of two (distinct) lines is a point, and other
products are not defined. This is again a partial algebra.

(xvi) Topoiogical spaces. A topological space may be defined as a set
with certain infinitary operations: for each subset 4 and each point x
of A4, the closure of 4, we introduce an operator t(A4,x) which associates
x with 4. Thus a topological space fails to be an algebra because 1(A,x)
is infinitary whenever A is infinite. In fact, this definition allows us to
regard a topological space as an algebra whenever the system of all closed
subsets is an algebraic closure system. This is a special case of Theorem
5.2 below.

These examples of algebras and nonalgebras serve to illustrate the de-
finition and the limitations imposed by it. Thus we have limited ourselves
to single-valued relations which are everywhere defined, i.e. to operations;
as we shall see in Chapters V and VI, relations require an essentially
different treatment. The limitation to finitary operations is necessary if we
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want the subalgebras to form an algebraic closure system (cf. I1.5), and
in fact, the study of infinitary operations has received little attention until
recently (cf. Stominski [59]). Finally, it may be noticed that with few
exceptions the operators occurring in the examples are at most binary.
This is no accident, for in a certain sense all finitary operators may be
built up from binary ones (I11.7). However, there may be no particularly
natural way of doing this in any given instance, and besides, the gain in
simplicity would not be very great. We shall therefore allow n-ary opera-
tors, for arbitrary finite n.

EXERCISES

1. Show that a category is a partial semigroup.

2. Verify that the permutations of a set P form a group>(P), the symmetric
group on P, and that a G-module structure on P is completely specified by a
homomorphism G — 2(P).

3. Let P be a G-module, where G is a group, and for any p € P define the
stabilizer of p as G, ={xe G|px =p}. Show that the stabilizer of any pe P
is a subgroup of G. What are the stabilizers of the elements of G when G is
regarded as a G-module by right multiplication?

4. Define an S-module, where S is a semigroup with 1, and show that S
itself may be regarded as an S-module by right multiplication. Show that the
endomorphisms of S, qua S-module, are just the left multiplications 4,: x — ax.
(Hint: An endomorphism of S qua S-module is a mapping 0: S — § such that
(ab)0 = (ab)b for alla,b e S.)

5. Show that any group is the automorphism group of some algebraic
structure. (Hint: Use Exercise 4; cf. also Birkhoff [35].)

6. Show that an algebra with a finite carrier having n elements has at most n!
automorphisms and at most 7" endomorphisms.

7. For any group G define a left G-module as a set P with operators w,
satisfying w,, = w,®,, @, = 1. Show that every left G-module may be regarded
as a G-module.

8. (G. Birkhoff.) Show that the set %(A) of all equivalences on a set 4 is a
complete lattice with respect to the ordering by inclusion. If 4 is finite show
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that the group of automorphisms of %(A) is isomorphic to the symmetric group
on A. (Hint: Note that the singular equivalences, i.e., those whose classes are a
l-element set and its complement, are permuted among themselves by any
automorphism of ¥(4), and show that every equivalence on 4 can be expressed
in terms of singular ones.)

9. The centre of a ring R is defined as
Z(R)={ae R|ax=xa forall xe R}.

Show that the centre of a K-linear algebra A is a subalgebra of 4. Moreover, if
A has a unit element e, then the mapping o — ex is a homomorphism of K into
Z(A); and conversely, given a ring R, any homomorphism K — Z(R) defines a
K-linear algebra structure on R.

10. If (4,) is any family of Q-algebras, show that the Q-algebra structure on
the direct product [[A; is uniquely determined by requiring the projections to
be homomorphisms.

11. Let 4 be a groupoid whose operation is written xv, and possibly with
other operations. Then A is said to be the inner direct product of B and C if
B and C are subalgebras of 4 such that the mapping (b,c) = be is an isomor-
phism between B x C and 4. Write down explicit conditions for 4 to be the
inner direct product of B and C. (Cf. Jénsson & Tarski [47].)

12. Let @ and b be two lines in the plane, 4; and B, (i = 1,2,3) any triples of
points on a and b, respectively, and C; the intersection of the cross-joins A;B,
and A, B; (for any permutation ijk of 123). By Pappus’s theorem the points C;
are col.l.inear, in a line ¢ say; the configuration consisting of the nine points A,
B;, C; and the nine lines a,b,e and cross-joins A;B,, A,B; is called a Pappus
configuration. Show that if P and Q are any two distinct points of a Pappus
configuration, then there is exactly one point R of the configuration (distinct
from P and Q) such that either (i) POR is a line of the configuration or (ii) PRS
is not a line of the configuration for any point S # (.

Let I be the set consisting of the nine points of a Pappus configuration and a
tenth point £, and for any P,Q € I define

P if0=2EFE,

s it P =
P-0= E if P=0Q,
R otherwise,

where R is the point determined above. Show thal the algebraic structure so
defined on I is a commutative loop which is not a group. Show also that the
subloop generated by any two elements is a group.
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3. THE ISOMORPHISM THEOREMS

There is another way of defining homomorphisms which is useful in
some applications. We recall that a mapping from A to B is defined by a
function from A4 to B, i.e. a certain type of subset of 4 x B. Now we can
say that a homomorphism />4 — B is a mapping whose function is also a
subalgebra of A4 x B. For, to say that fadmits w € Q(n) means that given
(a,b)ef. i=1, -, n wehave

(a,-a,m, by--bw)ef,
which states that

(ﬂ-] ”.anm]‘fz hi ---bnm = (al_f.}"'{anf]w'

But this is just the compatibility condition for @. In order to use the new
definition we need a lemma.

Lemma 3.1

Let A, B, C be Q-algebras, A" a subalgebra of A, and ©, ¥ subalgebras of
A x B and B % C, respectively. Then A'®, @', and ® =V again admit Q
(i.e. they are subalgebras of B, B x A, and A x C, respectively).

To prove the first assertion, let b, € A'® (i = 1,---,n): then there exists
a; € A’ such that (a,b) e® (i = 1,---,n), and since 4" and ® both admit
Q, we have for any @ € Q(n)

a,-—-aweAd and (a,--a,w b -bw)ed,

whence b, ---b,w € A'®. The remaining assertions are proved similarly. [
This lemma has the following consequences:

Proposition 3.2
The product of homomorphisms is again a homomorphism, and similarly for
isomorphisms, endomorphisms or automorphisms. |

Proposition 3.3
The image of a homomorphism is a subalgebra of the target. |

Definition

An equivalence on an Q-algebra 4 which is at the same time a sub-
algebra of A2 is called a congruence on A. The set of all congruences on A
is denoted by #(A4).

With this definition we have
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Proposition 3.4
The kernel of a homomorphism is a congruence.

For the kernel of fis /= f~'. This is a subalgebra by Lemma 3.1 and
an equivalence by Theorem 1.3.1, hence it is a congruence. [j

We note briefly the interpretation of congruences in the special case of
groups. Let G be a group with unit element ¢, and q a congruence on G
in the sense defined above. Then N = ¢ is a normal subgroup of G and
the g-classes are the cosets of N in G. In fact " = Na, for any a € G, so
that q is completely determined by N. Now if /'is a homomorphism of G
(into some group) then the kernel of /, in the sense of group theory, is a
normal subgroup of G, namely the class containing e of the congruence
fef~'. This justifies calling this class (and not /= /') the kernel of fin
this case.

Rings may be regarded as a special case of groups; the O-class of a
congruence on a ring R is a subgroup a of the additive group of R such that

(n Xaea forallxe Rand aea
and
(2) axea for all xe R and a € a.

An additive subgroup a satisfying (1) and (2) is called an ideal of R. If
only (1) holds (or only (2)) we obtain a left (or right) ideal of R. This
arises as the O-class of a congruence on R, regarded as a left (right) R-
module.

To every normal subgroup N of a group G there corresponds a homo-
morphism with N as kernel; we need only take the natural homomorphism
onto the factor group G/N. In the same way we can, for every Q-algebra
A and every congruence q on A4, define a quotient algebra A/q and a natural
homomorphism 4 — 4/q with kernel q. This is the content of

Theorem 3.5

Let A be an Q-algebra and q a congruence on A. Then there exists a unique
Q-algebra structure on the quotient set Afq such that the natural mapping
A — Alq is a homomorphism.

We denote the resulting algebra again by 4/q and call it the quotient
algebra of A by q, with the natural homomorphism A — A/q. A quotient
of a subalgebra of A4 is also called a factor of A:
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Proof:

Let § = nat q be the natural mapping 4 — A4/q. This induces for each
n =1, 2--- a mapping 0,: A* - (A/q)" in an obvious fashion, and to
prove the theorem we have only to show that for w € Q(n), there is just
one way of completing &

(A/a)" Alq

to a commutative diagram. If there is a mapping @:(A4/q)" — A/q to do
this, it must satisfy
3 al-ad = (a;--a,w)",
and this equation evidently defines @ uniquely provided we can show that
the right-hand side is independent of the choice of @, in its q-class. Thus
let (a,,a) € q; then since q is a subalgebra,

(a,--a,mw, a\,-a,w) € q,
ie.

(a,-a,0)" = (@) -a,w)"
as asserted. ||

As an example, we note that every Q-algebra A has the congruences A

and A%, In the first case, we get an isomorphism:

AJA = A,

while A4/4? is the trivial algebra. Any congruence on A other than A2
is said to be proper, and a congruence different from A is called nontrivial.

Let q be a congruence on an algebra 4. If S is a subset of 4 which
meets each g-class in at most one element, i.e.

(4) qn S?= A,

then we say that q separates S; if S meets each g-class in exactly one
element, i.e., (4) and the union of all g-classes meeting S is A:

(5) SV=4,

then we say that S'is a transversal for A/q in A,

We can now state the celebrated three isomorphism theorems. These
theorems, first stated explicitly by E. Noether (cf. v.d. Waerden [37]), are
derived from Theorems 1.3.1, 1.3.3, and 1.3.4 on sets and mappings, and
apply under very general conditions to sets with a structure and mappings
between the sets preserving the structure. Thus the natural place of these
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theorems is in category theory where they figure as axioms (cf. the axioms
for abelian categories, MacLane [63]). We shall not pursue this more
general line, but restrict ourselves to algebraic structures. Here it is
possible to say slightly more than in the general case; for we have the
following obvious lemma, which has no analogue for more general
structures such as topological groups (cf. Bourbaki [51]):

Lemma 3.6
A bijective homomorphism is necessarily an isomorphism.

Proof:

Let /:4 — B be a bijective homomorphism; then f~': B— 4 is also a
mapping, and by Lemma 3.1 it is again a homomorphism, hence f is an
isomorphism. i

Theorem 3.7 (first isomorphism theorem)
Let f:A — B be any homomorphism of Q-algebras with kernel . Then

there is a decomposition
f=¢"n
where ¢ = nat q is the natural homomorphism A — Alq, p is the inclusion
mapping Af — B, and
[ Ala—Af

is an isomorphism.

This follows easily from Theorem 1.3.1, we need only check that the
mapping f* there defined is a homomorphism, and then apply Lemma

36. 1

The following corollary, derived from the factor theorem (Theorem
1.3.3) is often useful.

Corollary 3.8
Let f+ A — B be any homomorphism of Q-algebras and g a congruence on A

which is contained in the kernel of f. Then there is a unique homomorphism
f: Alq = B such that the diagram

is commutative.
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This is an immediate consequence of Theorem 1.3.3. |

From Theorem 3.5 we see that every Q-algebra A4 has itself and the
trivial algebra as homomorphic images. If it has no others and is non-
trivial it is said to be simple. By Theorem 3.7 an Q-algebra A is simple
if and only if it has precisely two congruences, namely 4% and A,

Theorem 3.9 (second isomorphism theorem)
Let A be an Q-algebra, A, a subalgebra of A and o a congruence on A,

Then AY is a subalgebra of A, q, = q n A3 isa congruence on A,, and
(6) Ayfa, = A/q.

Proof:

Let @ = nat q be the natural mapping and 0, = 0|4, its restriction to A,.
Then @, is a homomorphism of 4, into 4/q, the image A,0, is the set of
g-classes meeting 4, (i.e.. 4}/q), and the kernel is q n A7 = q,. Hence
by Theorem 3.7 we obtain (6), and the rest is clear by direct verification.  Jj

The special case q, = A, is worth stating separately:

Corollary 3.10

If A is an Q-algebra, A, a subalgebra, and q a congruence separating Ay,

then the inclusion mappingA, — A induces an isomorphism
A= Alle. }

Theorem 3.9 states in effect that any subalgebra of a quotient algebra
of A4 is isomorphic to a factor of 4. Of course the converse is not true, as
the existence of nonabelian simple groups shows.

By translating Theorem 1.3.4 we obtain

Theorem 3.11 (third isomorphism theorem)

Let A be an Q-algebra, and q, v any congruences on A such that q < r,
Then there is a unigue homomorphism 0: Afq — A[x such that (nat q)f = natr.
If ker 0 = v/q, then t/q is a congruence on Alq and 0 induces an isomorphism

0":(A/a)/(x/q) = A[x,
such that 6 = (nat t/q)0". |}
Keeping q fixed and varying r, we obtain
Corollary 3.12

Let A be an Q-algebra and q a congruence on A. If we interpret nat q
as a mapping A* — (A/a)?, the pullback along nat q induces a mapping

(7 T —1/q
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which establishes a bijection between the set of congruences on A which
contain q and the set of congruences on Alq, and moreover,

Afe= (4/9)/x/a). 1§

The remark following Corollary 3.8 may now be restated as

Corollary 3.13
Let A be any Q-algebra and q any congruence on A; then q is a maximal
proper congruence if and only if Afq is simple. [ |

In many problems the algebras given by the data are only determined
up to isomorphism and the answer is only required up to isomorphism.
In these circumstances the following result is often useful.

Proposition 3.14

Let A be an Q-algebra and B a subalgebra of A. If B' is an Q-algebra
isomorphic to B, then there exists an Q-algebra A" isomorphic to A, with B'
as subalgebra. More precisely, if 0:B" — B is an isomorphism, then there
exists an Q-algebra A’ containing B' as subalgebra and an isomorphism
f: A" — A such that 8|B" = 0.

Proof:

We may assume that 4 n B’ = 0, replacing A4 by an isomorphic copy
of itself, if necessary (e.g. A x {u}, for a suitable choice of the element u,
is disjoint from B’ and isomorphic to A4). We now define A" = B" u (4\B)
and extend 0 to a mapping 0: A" — A by defining it as the identity on 4\B.
Now there is a unique algebra structure on A" for which 0 is an isomor-
phism, and it is easily seen that with this definition B’ is a subalgebra of

4.1

EXERCISES

1. State and prove analogues of the isomorphism theorems for the category
of Q-algebras and all correspondences admitting £ (a correspondence from A
to B is said to admit Q if it is a subalgebra of 4 x B). (Cf. Exercise 1.3.7).

2. State and prove analogues of the isomorphism theorems for the category of
topological spaces and continuous mappings.
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3. Give a description of congruences on a group with multiple operators,

4. Give a description of congruences on a semigroup.

5. If G is any group and P is a G-module, show that the relation on P defined
by

p ~ ¢ if and only if p = gx for some xe G

is an equivalence on P and that the equivalence class containing p is the set
pG = {px e P|xeG}. (This set is called the orbit of p under the action of G.)

6. If G is a group and H is a subgroup, then G may be regarded as a (left)
H-module under left multiplication by H. Denoting this module by ,G, show
that the set of orbits of 4G is a G-module under right multiplication by G.
If this G-module is denoted by G/H, show that G/H consists of a single orbit,
and that every orbit of a G-module is isomorphic to a module of the form

G/H, for some subgroup H of G. More precisely, show that the orbit of p is
isomorphic to G/G,, where G, is the stabilizer of p; deduce the relation

[pGl-|G,| = |G|
7. Classify all congruences on N (cf. Ex. VIL 1.1, p. 251 and X. 3, p. 339f.)

4. LATTICES

In the study of general algebras one often éncounters lattices, and it
may be worthwhile to establish their properties here for later reference,
particularly as lattices may themselves be regarded as an algebraic struc-
ture. In 1.4 a lattice was defined as an ordered set in which any pair of
elements has a supremum and an infimum. Since the sup and inf are
uniquely determined, they are in effect two binary operators, and the
lattice may be defined in terms of them as an algebra:

Proposition 4.1

Let L be any lattice; then for all a,b,c € L,
(1) avbve)=(avb)ve, an(bnac)=(anb)rc (associative law),
(2) avb=bva, anb=bna (commutative law),
(3) anlavbh) =a, avianb) =a (absorptive law).

Conversely, if L is an algebra with two binary operators v and A, satisfying
(1)=(3), then an ordering may be defined on L by the rule
(4) a<bifandonlyifavb=b,

and relative to this ordering L is a lattice such that sup(a,b) = a v b, inf(a,b)
=anb.
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Proof:

By the definition of @ v b as supremum we see that the unique supremum
of @ and b can be written either as @ v b or as b va, and sup(a,b,c) can be
written as a@ v (b ve) or (avb)vc; a similar remark applies to a ab, and
this shows that (1) and (2) hold. Further, (3) holds because a < a v b.

Now let L be an algebra with two operators v, A satisfying (1)-(3).
Then

(5) avb=>hbifand only if anb =a.

For if avbh =b, then a =an(avb) =anb by (3), and the converse
follows by symmetry. If we define a relation < by (4), then this must be
an ordering: given a < b, b < ¢, we have avb = b, bvc = c, and hence
by(1),ave=av(bve)=(avb)ve=bve=c/ie.as<ec. Next we have
a A (ava) =aby (3); therefore,ava =avian(ava)) =a, and so a < a.
Thirdly, if a < b, b <a, then b =avb =bva =aby (2), and this shows
< to be an ordering. By the definition of @ v b and (2), a v b is an upper
bound for {a,b}; if ¢ is also an upper bound for {a,b}, then a < ¢, b<e,
whencec =ave=bve,andso e =av(bve) = (avb)ve;thisstates that
avb<ec, ie. avbisthe least upper bound of @ and b. Since the definition
of < is symmetrical in v and A, by (5), it also follows that inf(a,b)
=anb. |}

By this result lattices may be regarded as algebraic structures, and the
definitions of sublattice and lattice-homomorphism in 1.4 are seen to be
special cases of the general definitions in 11.3.

The symmetry referred to in the proof of Proposition 4.1 is based on the
observation that the axioms for a lattice are permuted among themselves
if v and A are interchanged as well as < and >. Therefore, when these
changes are made in a theorem, we obtain again a theorem, called the
dual of the first. This principle, which almost halves the work of proving
theorems in lattice theory, is called the principle of duality, familiar from
projective geometry (which is essentially about the lattice of subspaces of
a vector space). It does not quite cut the work by half because for some
propositions it may not yield anything new (namely those that are self-
dual).

In any lattice L, let a,b € L be given such that a < b; the subset

[ab] ={xe L|a <x<b}

is called the interval defined by @ and b. Such an interval need not be a
chain, but it is always a sublattice of L, with greatest element b and least
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element a. With any interval / = [a,b] we associate two ways of mapping
L into I, the projection operators A and p, defined by

lix = (xab)va, pix —=(xva)ab.

It is easily verified that the assertions (i)x € [, (ii) xA = x, and (iii) xp = x
are all equivalent; therefore,

Ap=A =1  pi=p?=op.
Moreover, since x A b < xp and a < xp, it follows that x1 < xp, i.e.
(6) (xab)va<(xva)nb forall x e L.

If equality holds in (6) for all x € L, then the interval 7 is said to be
modular. Of particular importance are the lattices in which all intervals
are modular; they are the modular lattices or Dedekind lattices (Dedekind
[00]). Thus L is modular if and only if

(7 (cva) nb < (e ab)va for all a,b,c € L such that a < b.
In view of (6) this is equivalent to the condition
(8) (cva)ab =(cab)vafor all a,b,c € L such that a <b.

Condition (8) is sometimes called the modular law; strictly speaking, it
is not a law in the usual sense (cf. IV.1 below), but it is equivalent to a law
(cf. Exercise 1).

Probably the most important example of a modular lattice is the set
of normal subgroups of a group. The set .#°(G) of all normal subgroups
of a group G is ordered by inclusion and is easily seen to be a lattice,
with AnB=A4n B:

AvB=AB={abeG|ae A, be B},
To say that A7(G) is modular is to assert that
(9 CAnBe(Cn B)A whenever 4 < B.

To verify that this holds, let b e CA n B, say b = ca(c € C, a € A); then
since a™' € A < B, it follows that ¢ = ba™' € B, and so ¢ € C n B, whence
be(C n B)A. This still holds for groups with (unary) operators; in
particular, the lattice of all submodules of an R-module (where R is any
ring) is modular.
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We next derive a criterion for a given lattice to be modular. First some
general definitions: In any lattice L with least element O and greatest
element 1, two elements x and y are said to be complementary, whenever

xAy=0, xvy=1

An element complementary to x is also called a complement of x in L.
Two elements which have a common complement x in L are said to be
x-related. or simply related, in L. This relation is symmetric, but in general
it is neither transitiveé nor even reflexive.

Proposition 4.2
A lattice L is modular if and only if, for each interval I of L, any two
elements of I which are comparable and are related in I are equal.

Proof:
As we have seen, L is nonmodular precisely if the inequality

(10) (eab)va<(cva)nab

is strict for at least one triple a,b,c such that @ < 5. When a = b, the two
sides of (10) are equal by the absorptive law, so we may assume that a < b.
Suppose first that strict inequality holds in (10): put
a, =(cabyva, b, =(cva)ab;thena <a, <b, <b;
hence cab, <(cab)va=a,, cva, 2(cva)ab =
b, ;thereforecab, = cnaa, =a,,cva, =cvbh, =b,
say, and so a,, b, are comparable and are related in
[a,,b,], although not equal. Conversely, if @', b" are
distinct elements which are comparable and related
in [a,b], say a’ac=b'Arc=a, a've=bve=5b,
and a<a'<b’ <b, then (cab)va =a <b =
(cva')ab'; therefore L is not modular. [
The property stated in this proposition involves
C ay only five elements, namely, the end-points of the
Figure 1 interval, the given element, and its two comple-
ments. By considering the sublattice formed from

these elements, we obtain

Corollary 4.3
A lattice is modular if and only if it does not contain a sublattice isomorphic

to the five-element lattice of Fig. 2. [}
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A second important class of lattices is formed by the
distributive lattices. A lattice L is said to be distributive,
if it satisfies the laws

(1)  (avbyac=(anc)v(bnac) for all a,b,c, e L
(12) (anbyve=(avc)a(bve) for all a,b,c € L.

Actually it is enough to assume that one of (11), (12)
holds; this implies that the other one holds too, by the
next proposition, which also shows that every distrib-

utive lattice is modular.
Figure 2

Proposition 4.4
In any lattice L, the following three conditions are equivalent: (i) condition
(11), (ii) condition (12), and

(iii) (evayab<(cab)va for all a,b,c € L.

In particular, every distributive lattice satisfies (iii) and is therefore modular.
Proof:

If (i) holds, then

(evayab=(cabyv(anb) <(cab)va.
Conversely, assume that (iii) holds; then
(avb)ac<(bnac)va;

applying A ¢ to both sides, we obtain
(13) (avbyanc<[(bac)valac<s(anc)vibac).

Since avb =(anc)v(bac) and ¢ =(anc)v(bac), we have (avb)ac
> (a ac) v (b Ac), which together with (13) establishes (i). Thus (i) <= (iii),
and by duality, (ii) <> (iii); it follows that (i), (ii), and (iii) are equivalent.
Moreover, any lattice satisfying (iii) also satisfies (7), and so is modular. |}

There is a criterion analogous to Proposition 4.2 for a lattice to be
distributive.

Proposition 4.5
A lattice L is distributive if and only if for each interval I of L, any two
elements of I which are related in I are equal.
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u
Figure 3

Proof:
Let L be distributive and assume that a,b are
c-related in [u,v]. Then

a=an(bve)=(anb)vu=anb;

hence a < b, and since L is modular (Proposition
4.4), it follows that @ = b by Proposition 4.2.

Conversely, assume that L satisfies the given
conditions; then L is modular, by Proposition 4.2.
Take any three elements c¢,,c,,¢c5 € L; write @, =
cyACy, by =cyve,, and define a,,a;,b,,b; by
permuting 1,2,3 cyclically. Since a; < b;, we have
by the modular law

(civa) aby=(c;ab) va; =d; say;

we also put u =a, va,va, and v = b, Ab, Ab;. Then, since ¢; Ab, < by
and ¢; < b,, we have (using the modular law twice)

Therefore,

(ex Aby) v(e2 Aby) = [ey v(ez Ab2)] A

= [(c2 vier) Aby] Aby
= b3 -I"\bz n"\bl
=1

dyvd, =(c,ab) va,v(c, aby)va,

=vva,va, =".

Permuting 1, 2, and 3 cyclically, we find that

(14)
and by duality,

(15)

dl de :dz Vds =d3\a'di =1,

dl f\dz =d2 -I"\da :dai\dl = U.

This shows that d; and d; are related in [u0] for i,j = 1,2,3, i # j, and
hence, d, =d, =d;. By (14) and (15), u =d, = v, and so

eyva, Zu=vzc,Ab,.

Writing this out we find that

ey v(ca Ae;) 2 Aley ves).

Since the ¢; are arbitrary elements of L, this proves distributivity, by

Proposition 4.4.
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Again the condition of this proposition may be expressed in terms of a
certain five-element lattice, and we have

Corollary 4.6

A lattice is distributive if and only if it is modular
and does not contain a sublattice isomorphic to the five-
element lattice of Fig. 4. |}

Let L be a modular lattice and a,b any two elements
in L; then there is an isomorphism between the inter-
vals I = [a ab,a] and J = [b,a v b], as lattices, which
may be established as follows. Given x € I, we have
xvbeld, and since aanb < x <a, it follows that
(xvb)aa=xv(bra)=x. Dually, if yeJ, then
yaael and (y Aa) vb =y. Thus the mappings Figure 4

(16) x-xvh (xel), y-ynaa (yel)

are inverse to each other. Since each is order-preserving, they establish

a lattice-isomorphism between [ and J. Any two intervals related in this

way are said to be in perspective, under the perspectivity (16). More gene-

rally, two intervals I and J are said to be

avb projective if there is a chain of perspectivities

7 from [ to J, ie. a chain Iy =1, I, I, =J

of intervals such that 7;,_, and I; are perspec-

tive. E.g. if @ and b are any related elements

in a modular lattice with 0 and 1, then the
intervals [0,a] and [0,b] are projective.

Since any two intervals in perspective are
isomorphic, it follows that any two projective
intervals are isomorphic. These facts may be

anb regarded as an analogue of the second iso-
Figure 5 morphism theorem, and as in group theory,
they may be used to establish a refinement
theorem for chains. Two chains in a lattice L,

(17) e=ao'“‘<‘al“{-"'éam=ay
(18) e=b; €hy€ v Shi=n

between the same elements e and a are said to be isomorphic, if m = n and
there is a permutation n of 1,---,n such that the interval [q,-,,a] is
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isomorphic to [b;,-,b:.]. Any chain obtained from (17) by inserting
further terms is called a refinement of (17). We can now state

Theorem 4.7 (refinement theorem for chains)

Any two chains between the same two points in a modular lattice have
isomorphic refinements.

More generally, the result holds in any lattice for two chains all of whose
intervals are modular.

Proof:
For any i =1,---,m, j=1,---, n we write

a;=(a;nb)vb;_,, by =(bjra)va;,

and define ay;, by, likewise, where a;, b; are the terms of the chains (17)
and (18) respectively. Then

a_yranby=(ai-yvb,_)ab;ra;
and
ai-ijV(aif\bj) = [(ai—lAbj)Vbj-I] V(ai"'\bj)

=(a;nb) vb;_,=ay.

Hence the interval [(a,-, vb,—,) Aa;nbja;Ab;] is in perspective with
[@i-1pay], and by symmetry also with [b;_,;,b;]. Thus [b;_;5b;] is
isomorphic to [a;_,a;] for i = 1,---;m and j = 1,---,n. Now the chains

€=dy <Ay € Sy S S Sy SA3 S S Ay =4,
e=by <b, < <by<bp< - <by<b3< - <h,,=a

refine (17) and (18) respectively, and they are isomorphic, by what has been
shown. |§

For any lattice L we define the length of L as the supremum of the
number of nontrivial intervals (i.e. intervals with distinct end-points) in
any chain. In particular, a lattice is of finite length when there is a finite
bound on the lengths of its chains; such a lattice necessarily has a greatest
and least element. From Theorem 4.7 we now obtain the following
analogue of the Jordan-Hélder theorem for groups:

Corollary 4.8

In a modular lattice of finite length, any chain can be refined to a maximal
chain and any two maximal chains between two given end-points have the same
length.

For when a maximal chain is refined, its length remains unchanged, and
isomorphic maximal chains clearly have the same length. |
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If L is a modular lattice of finite length, any sublattice of L is again of
finite length; in particular, for each a € L, the length of [0,a] is denoted
by /(a) and is also called the length of a. Thus the length of L itself is /1),
and clearly for any ae L,

l(a) < K1),
with equality if and only if @ =1. Moreover, for any a,b € L, we obtain
by comparing the lengths of the isomorphic intervals [a@ A b,a] and [b,a v b],

(19) a) + I(b) = Kanb) + lavb).

An interval is said to be prime if it is nontrivial and contains no elements
apart from its end-points. Clearly any two prime intervals are isomorphic;
therefore, to assert that two maximal chains between the same end-points
(in a modular lattice) are isomorphic is merely to say that they have the
same length. This fact makes Corollary 4.8 appear very much weaker
than the Jordan-Hdélder theorem for groups. The corollary could in fact
be strengthened by using the fact (established in the course of proving
Theorem 4.7) that corresponding intervals are projective and not merely
isomorphic. However, it is not worth doing this because even then we
should not be able to obtain the Jordan-Hélder theorem for groups as a
special case, for this theorem is concerned with chains of subgroups
each normal in its successor, but not necessarily in the whole group; so
we may not be dealing with a modular lattice. For instance, the lattice
of all subgroups of a finite p-group need not be modular, although every
subgroup occurs in some chain of subgroups each normal in its successor
(cf. Suzuki [56]).

In contrast with the Jordan-Hdolder theorem, which concerns maximal
chains, the Krull-Schmidt theorem, which concerns maximal direct
decompositions, can be stated entirely within the lattice of normal sub-
groups of the whole group, and it is therefore easier to give a purely
lattice-theoretical formulation of the Krull-Schmidt theorem than of the
Jordan-Haolder theorem (although the latter is easier to prove). We shall
therefore formulate it as a lattice result and give the application to general
algebras later (11.6).

Let L be a modular lattice with least element 0. Then the finite subset
{ay, a, ..., a,} of L is said to be independent if a; # 0 (i = 1, ..., n) and

(20) a;n(@ v - va,_ Vag, v va,) =0 (i =1,-,n).
When an element a is represented as the join of an independent set,

a=a v va, (ay,---,a, independent),
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a is called the direct join of the elements a,,---,a,, and we write
a=a; x - xd,

E.g., if L, is a lattice with least element 0; and greatest element I,
(i = 1,2), then in the direct product of L, and L, we have

(11,15) = (1,,02) % (0y,15).
More generally, in any lattice L with 0 and 1, any pair of complementary
elements a and b define a representation of 1 as a direct join:
1 = %ibs
Of course this does not mean that L is necessarily a direct product (cf.
e.g. Fig. 4).
We note that for a set {a,,---.a,} to be independent, it is sufficient that
{2]) (al e vai—l)"\ai =0 (532,“‘,.’?).

This may be proved by induction on # (in any modular lattice). We
shall not give a separate proof of this result (the reader may easily supply
one), because we need the result only for modular lattices of finite length;
in this case it is an immediate consequence of

Proposition 4.9
In a modular lattice of finite length, any subset {a,,---,a,} satisfies the
inequalily
(22) la, v - va,) < )Y lay),
with equality holding if and only if the a@’'s are independent.
Proof:

For n = 1 the assertion is vacuous; we therefore use induction on .
Thus let n > 1; then, by (19)

(23) Kayv --va,) +l(ay v - va,_) aa,) =la, v - va,.,) + Kay,).

Observing that /((a; v --- va,_;) ra,) 20 and applying the induction
hypothesis on the right, we see that (22) holds in any case. If we have
equality in (22). it follows in particular that X(a, v ---va,_,)ra,) =0,
whence

(24) (ay v va, ) rna,=0;
by the symmetry of the hypothesis in a,,---,a,, (20) holds; therefore the
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a’s are independent. Conversely, when the a&’s are independent, then
a,--.a,_, are independent; therefore

Kay v va, ) =la) + - + la,-,),

by the induction hypothesis; we also have (24), and inserting this into (23)
we see that equality holds in (22). |}

One often wants to use the observation that if @ occurs as a factor in a
direct decomposition of b, then any element of the interval [a,h] can be
written as a direct join with @ as factor. We state this as

Lemma 4.10
In a modular lattice with 0 and 1, if

| =axd and a < b,
then b =a x (b na').

For an(baa’y=ana =0, and since a <bh, we have av(baa’)
=bnalava)=b. |}

An element a is said to be indecomposable if a £ 0 and it admits no
direct decompositiona = b x cinwhich b # aand ¢ # a. If ais written
as a direct join of indecomposable elements, we speak of a complete
decomposition for a.

Theorem 4.11 ( Krull-Schmidt theorem for lattices)
In a modular lattice L of finite length, if

(25) l =a, x - xa,
and
(26) l=b6, x ++xb,

are two complete decompositions of 1, then each a; is related 1o some b;.

Proof:

Write @} =a, x - x a;_, x a;; x --- x a,, and define b; similarly in
terms of by,---,b,. We shall prove that each g, is a/-related to some b;,
using induction on the length of L. To begin with we note that for any
element ce L,

27 c < V((evd)na).

For if we write ¢; = ¢ va; for brevity, then ¢; = a] = a, for i # k, hence
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V(f'i"\ﬂr) =(c,aq) v(canay) v - vie,Aa,)
- =¢, A[a, v(ca nay) v - vi(e, Aa,)]
=c, Ay Alay va, vies aay) v - vi(c, Aa,)]

which proves (27).

We now distinguish two cases.
(i) a, vb; <1 for some j.

Write ¢; = (a, vb)) Ab;, ¢ = ¢, v - ve,; then since ¢; < b, the ¢; are
again independent; therefore,
(28) &= 8 % K Cy
If we had ¢; = b; for all j, then @, vb; = b; for all j, and hence a, v b;
> b, vb; = 1, against our assumption; thus, ¢; <b, for some j, and it
follows that /(¢) <I(1), so the induction hypothesis may be used for
[0,c]. Now by (27), ¢ = a,: hence (Lemma 4.10),
(29) ¢ =a, x(cnaay).

If we decompose each ¢; in (28) so as to obtain a complete decomposition
of ¢, and compare this with (29), we see that the indecomposable factor
a, is (c aa})-related to an indecomposable factor of some ¢; in (28): say
for j = 1 we have ¢, = d % ¢, where d is indecomposable, and also
(30) c=d x(e ndy)

Now
dvay =dv(cnra)) va,
=a, v(cana)) vay
=y
Since @, and d are related, they are of the same length, and since d v a)
=a, va; =1, it follows by (19) that d Aa} = a, @} = 0; thus
(31 | =d % a;.

Now d < ¢, < by, hence b, =d x (b, ra;) (by Lemma 4.10), and since
b, is indecomposable, it follows that b, = d; thus a, is a-related to b,.
We remark that since b, =d = ¢, = (a, vb)) ab,, we also have
(32) a, vb, =1.

(ii) @, vb; =1 for all j.
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If b, va, <1 for all j, then by applying (i) with the «'s and b’s inter-
changed, we see that each b; is related to some a;.. Thus we may in (26)
replace b, by a,., then b, by a,. and so on until we reach j such that /' = 1,
Such j must occur, for if not, then after exhausting the #’s we should have
a complete decomposition of 1 into some of the a’s, with a, not occurring,
which would contradict (25). Butwhen j* = 1, we have by (32) b; va; =1,
which contradicts our assumption. Hence we must have b; va) =1 for
some j, say for j = 1. Using this and the fact that @, va; = 1 we obtain,
by (19),

I(by) + Kay) = K1) + b, na))
= Na,) + la}) + (b, ra}),
ie.
(33) I(by) — Ka,) = Kb, na}) = 0.

But by assumption we also have a, vb} = 1; hence, interchanging the
roles of @, and b, we obtain

(34) lay) — (b)) = Na, nb}) = 0.

A comparison of (33) and (34) shows that /(g,) = I(b,), and inserting this
into (33), we find that /(b, Aa}) = 0; hence, b, nay =0,andso 1 = b, x a,
ie. a, is aj-related to b,. |

If in this theorem we take the decomposition (25) and replace a, by
some b; related to it, say by b,, and then replace a, by some b; (by another
application of the theorem), then this b; is clearly different from b,, and by
renumbering, may be taken as b,. By induction we obtain the decomposi-
tion

1 =by xby x -+ xb_, xa; x - xa,

for i = 1,2,---,m. Taking i = m we see in particular that » > m, and by
symmetry, m = n. Thus we have

Corollary 4.12

Given two complete decompositions (25) and (26) of 1 in a modular lattice of
finite length, we have m = n and for some permutation = of 1,---,n, the interval
[0,a/] is projective with [0,b,,]. |}

In a distributive lattice, related elements are equal, and so we get
Corollary 4.13

In a distributive lattice of finite length, the factors in a complete decomposi-
tion of 1 are unique except for their order. |}
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In some contexts one is interested in decompositions of the form
(35) l=a, v Vay,

where the a@’s are not necessarily independent, but instead, each a; is
join-irreducible, i.e., a; cannot be written as the join of two elements both
different from a,. It is natural to limit oneself to irredundant decomposi-
tions, i.e. decompositions (35) in which no a; can be omitted. Such a de-
composition does not determine each @, so precisely as a direct decomposi-
tion would, so we cannot expect as strong a uniqueness assertion as in the
Krull-Schmidt theorem; however, we have again the exchange property
expressed in

Theorem 4.14 (Kuros-Ore Theorem)
In a modular lattice L, let

(36) L=pv--vp,
and
(37) l =g, v vy,

be two representations of 1 as an irredundant join of join-irreducible elements.
Then r = s and the p; may be exchanged against the q;, i.e., after suitable
renumbering of the ¢’s we have

(38) l=qv-vgVvpuvevp, (=10,

1 Proof:
Let py = p, v =+ v p,; then, by the irredun-
dancy, py <1 and pjvp, =1. Write a; =
¢+ pyvg; then 1=za;=py; hence p, =
py Aa; = py apy. Now p, is join-irreducible
in [py Api,p1), hence 1 is join-irreducible in
1 [pi,1], and since a, v ---va, =1, we have
a; = 1 for some j, say j = 1. But this means
that
PIA P l =g, vpaVv - Vp.
Figure 6 This representation is again irredundant, for
g, cannot be omitted, and if some p; could
be omitted, then by exchanging ¢, against a p; in (36) we should get a
shorter representation of 1 in terms of p’s alone. Therefore when we repeat
the process, exchanging p; against some ¢;, we must have j # 1, and by
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renumbering the ¢’s we may take j = 2. Continuing in this way we obtain
(38); for i = r, this shows that r = s, and so by symmetry we conclude
that r =s. |}

This theorem is perhaps more familiar in the dual form. in which it was
first established for ideals in Noetherian rings, by E. Noether [21] (unique-
ness of primary decomposition). In the abstract form it is due to Kuros
[35] and Ore [36]. In the latter paper Ore also establishes the lattice form
of the Krull-Schmidt theorem. There is a large literature on both these
theorems (cf. e.g. Birkhoff [48]).

For distributive lattices we have again the strong uniqueness:

Proposition 4.15
In a distributive lattice, any irredundant representation of 1 as a join of
join-irreducible elements

L=p v vp,
is unique, except for the order of the terms.
Proof:

Assume that 1 =g, v vg, is a second such decomposition; then
pr<1l=gq,v--vg, hence

Pr =DM rlgyv-vg,)
=(piAq) V(PLAg) Ve V(P AG).

Since p, is join-irreducible, p; = p, A g; for some j, i.e.
P <4q;-

By the same argument, ¢; < p; for some i, thus p; < p;, which is possible
only if i = 1. Hence p, = ¢;, and now the result follows by induction. 3}

EXERCISES
1. Show that a lattice L is modular if and only if, for all a,b,c€ L,
(ca(avh)vb=(cvb)r(avb).

2. Show that a lattice L is distributive if and only if, foralla,bee L,anb < ¢
anda<bvcimplya<e.
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3. Show that the lattice of subgroups of the direct product of two cyclic
groups of order two (the four-group) is modular but not distributive.

4. Show that the subgroup lattice of the alternating group on four symbols is
not modular.

5. An element @ in a lattice L with least element 0 is said to be an atom if
[0, a] is a prime interval. If L is a modular lattice in which 1 is the direct join of
two atoms, a and b say, show that L is the direct product of [0, a] and [0,b] if
and only if L is distributive.

6. Let L be a modular lattice with least element 0. Given any three elements
€1,¢2,¢3 € L such that ¢; Ac, =0 and ¢; A(e; v e;) # 0, show that (e, ve)ae,
# 0. (This is known as the exchange property; cf. VIL.2.)

7. A lattice is said to be complemented if it has a 0 and 1 and every element has
a complement. Show that a modular lattice of finite length is complemented if
and only if 1 is the join of atoms. [In the lattice of all submodules of a unital
module, these two conditions are equivalent without assuming finite length
(cf. e.g. Cartan & Eilenberg [56], ch. I), but in general neither implies the other
(see the next exercise and Exercise V.2.5).]

8. The positive integers form a lattice with respect to the ordering by divisi-
bility, with least element 1. If a greatest element U is adjoined, defined as the
supremum of all the elements in the lattice, show that U can be written as
(infinite) join of atoms, but that the resulting lattice is not complemented.

9. A commutative integral domain is called a Bezout ring, if the principal
ideals form a sublattice of the lattice of all ideals. Show that in a Bezout ring
the lattice of principal ideals is distributive. (Hint: Observe that the lattice is
modular and apply Proposition 4.5. It is shown in Zariski & Samuel [58] ch. V
that the distributivity of the lattice of ideals in a ring is equivalent to the Chinese
remainder theorem.)

10. Let L be the set of principal ideals in a commutative integral domain,
ordered by inclusion. If @,b € L have an infimum, show that they have a supre-
mum, but that the converse need not hold. (The ordering here is opposite to
that in Exercise 8 Hint: Consider the ring of polynomials in x with integer
coefficients and even coefficient of x.) If every pair of elements has a supremum,
show that L is a lattice.

11. Show that in any lattice L, the sublattice generated by two chains with
modular intervals is distributive.

12. Give a direct proof of Corollary 4.13 (without using Theorem 4.11).
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13. Show that a modular lattice L is distributive if and only if, for any a,
by, bsel,a N by =an by = ¢ say, impliesa A (b Vv by) = c.

14. Define the centralizer of an equivalence q on a set S as
Z,={te%(S)|roq=q°1x}
Show that Z is a sublattice of €(S).

15. Let L be a modular lattice with 0 and 1. Givena < x < b, if x' is a com-
plement of x in L, show that (x"va) A b is a complement of x in [a,b].

16. Show that a modular lattice has finite length if and only if it satisfies
the maximum and the minimum condition.

17. Show that a distributive lattice of finite length is finite. (Remark that any
atom a has as a complement any maximal element b 3 a. Now apply Proposi-
tion 4.5 and use induction on n.)

5. THE LATTICE OF SUBALGEBRAS

We now take a fixed Q-algebra A and consider the set #q(A) of all its
subalgebras. First we notice that #(A) is a closure system on 4, and hence
a complete lattice. For if (4,),., is a family of subalgebras of A4, then for
each w € Q, each A, admits w, and so the same holds for N 4,. We denote
the corresponding closure operator by Jg; thus Jo(X) is the intersection of
all subalgebras containing X. The following proposition gives an explicit
construction of Jy(X), sometimes also denoted by {X>.

Proposition 5.1
Let A be any Q-algebra and X a subset of A. Define a subset X, of A by
induction on k:

Xo=X,
X4 = {xeAd|xeX,or x = aw for some ae X} and w € Q(n)}:

then @
U X, = Jo(X).
k=0

Proof:

If we put U =UX,, then by definition of X,, we have X, < Ju(X),
and if X, =Jo(X), then X,., =Jo(X); by induction it follows that
X, =Jq(X) for all k, and so U = J4(X). On the other hand, U is a sub-
algebra of 4, for if ae U", say a = (a,,--,a,) where a;€ X,, then if
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k = max{k,, -,k,}, it follows that a € X}, whence aw € X,., = U. This
shows that U is a subalgebra; since it contains X, it must contain Jo(X'),
and this shows that U =Jgu(X). |}

We call Jo(X) the join of X, or the subalgebra generated by X, and X'is a
generating set of Jo(X). In particular, a generating set of 4 is a subset X of
A such that Jo(X) =A. If 4 has a finite generating set, we say that A4 is
finitely generated. Every Q-algebra has a least subalgebra, namely Jo(9),
the subalgebra generated by the empty set. This is called the minimal
subalgebra; clearly it is empty if and only if Q has no constant operators.'

From Proposition 5.1 we can infer that /g, is algebraic. For if a e Jo(X),
then a € X, for some k. Take the least k for which there is an element a
in X, which does not belong to J,(X ') for any finite subset X' of X; then
k > 0, and such an element cannot belong to X,_,. Hence by the definition
of X,, there exists w € Q, and if a(w) = n, there are b,,---,b, € X;_, such
that a = b, ---b,w. By definition of k we have b; e Jo(Y,;) where Y, is a
finite subset of X. Hence a e Jo(Y), where ¥ = U Y, is again finite. This
contradicts the definition of @, and we conclude that every element of
Jo(X) belongs to Jo( X ') for some finite subset X' of X, i.e. Jg is algebraic.

The converse also holds:

If € is any algebraic closure system on a set A, then for a suitable S there
is an Q-algebra structure on A such that Bo(A) = 6.

To prove this, let J be the closure operator for ¥. Given any elements
a,,-a, € Aand bel({a, .a,}), we take a symbol

(D) o = w(d,-,a,b) e Q
and define an n-ary operation on 4 by the rule

b ifx;=a(i=1,-n)orifn=0,

Xy X, = .
oo x, otherwise.

This defines an Q-algebra structure on A, where for each integer n, the
operators in Q(n) are given by (1). Thus there are possibly infinitely many
operators, but each of them is finitary. Let Jg, be the closure operator
corresponding to the system #(A) of subalgebras; we assert that J = J,.
Let X = A and suppose first that X is finite. Then J(X) =J4(X) by the
definition of Q. Now let X be an arbitrary subset of 4; then since both J

1 This shows that a trivial subalgebra need not be minimal; nor is the minimal subalgebra
generally trivial.
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and J, are algebraic (the first by hypothesis and the second by what has
been shown above), we have

J(X) = UJ(X") = UJg(X") = Jo(X),

where X’ runs over the finite subsets of X. This proves the following
result, due to P. Hall (unpublished) and J. Schmidt [52]:

Theorem 5.2

The system Bo(A) of subalgebras of an Q-algebra A is an algebraic closure
system. Conversely, given an algebraic closure system € on a set A, then for
a suitable operator domain Q, an Q-algebra structure may be defined on A
such that Bo(A) =%. |}

Of course there are many ways of choosing the Q-algebra structure in
Theorem 5.2 to produce the given closure system. In particular, the
choice of the operator domain can often be made in a more economical
fashion than was done above.

Theorem 5.2 combined with Theorem 1.4 gives the following important
consequence of Zorn’s lemma (Neumann [37']).

Theorem 5.3
Let A be an Q-algebra, B a subalgebra and S a subset of A. Then there
exists a maximal subalgebra C of A such that C=2 Band C n§ =B n §.

This is merely a translation of Theorem 1.4, bearing in mind that
Bo(A) is an algebraic closure system. |

If we try to apply Theorem 5.3 with S = 0, we reach the obvious con-
clusion that A itself satisfies the conditions; clearly 4 is the (unique)
greatest element of #4(A4), and we do not need Theorem 5.3 to deduce
this. On the other hand, the set of all proper subalgebras of 4, i.e. all
subalgebras distinct from A itself, need not have a greatest element, nor
even a maximal element (cf. Exercise 3). However, there is a special case
in which the existence of maximal proper subalgebras may be asserted
(cf. Neumann [37']).

Theorem 5.4 2
Let A be a finitely generated Q-algebra and B a proper subalgebra of A;
then there exists a maximal proper subalgebra which contains B.

Proof:
By hypothesis A4 has a finite generating set, {x,,---,x,} say. Let & be
the set of all proper subalgebras of 4 which contain B. Then % is not
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empty, since B e &, and to prove the result we need only show that &
is inductive. Let % be a chain in ¢ and put C = U%; if C = A, then for
each i =1,---,r, x; € C, and hence x; e C, for some C;e%. Since ¥ is a
chain, there is some suffix j such that C; = C;, and hence x; e C;, for
i =1,--,r;since x,,---,x, generate A, it follows that C; = 4, which contra-
dicts the fact that C, is proper. Thus, C must be proper, and it contains
B, so C e . This shows & to be inductive, and by Zorn’s lemma it has
a maximal element. [

A finitely generated algebra always has a minimal generating set: given
any finite generating set X of 4, we need only take a minimal set among
the generating sets Y of 4 such that ¥ = X, and this is always possible.
By contrast, if 4 cannot be finitely generated it need not have a minimal
generating set (the additive group of rational numbers is a case in point);
however, when it does have such a set, its cardinal is completely determined
by the algebra:

Proposition 5.5

Let A be an Q-algebra and X a minimal generating set of A. If X is infinite,
of cardinal o, then any generating set of A has cardinal at least «. In particular,
A cannot be finitely generated and any two minimal generating sets of A have
the same cardinal.

Proof:
Let Y be any generating set of 4 and write | ¥| = . Every y € Y belongs
to A =Jg(X), and hence there is a finite subset X, of X" such that

@ ¥ €Jo(X,).
We assert that
3) x=Ux,

For clearly, U X, = X, and by (2), (UX,) 2<(Y) =A4;thus U X,isa
subset of X which also generates A4, and so (3) follows by the minimality
of X. Now if ¥ were finite, (3) expresses X as a union of a finite number
of finite sets, which contradicts the fact that X is infinite. Hence Y is infinite,
and from (3) we find that

O(=|X]-€_Z|X,.|-<-.Roﬁ=ﬁ-

This shows that Y has cardinal at least «. If Y is also minimal, then by
interchanging the roles of X and Y we see that f <o, and hencea = 8. ||
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For finitely generated algebras the result no longer holds; for example,
the cyclic group of order six has a single generator a, say, and a minimal
generating set consisting of two elements, namely {a*,a*}. Nevertheless
there is an analogue in certain cases, namely, for free generating sets of
certain free algebras (I11.5).

In conclusion we prove a lattice property which shows the rather special
role played by unary (and 0-ary) operators. We recall that Z4(A), like
any closure system, is a complete lattice, but of course it need not be a
sublattice of #(A4). To say that Bq(A) is a sublattice of #(A4) would mean
that for any B, C € Zy(A), we have

B CeBgA), Bu CedBg(A).

The first of these conditions always holds, but not the second; for example
the union of two subgroups is not generally a subgroup. In fact the second
condition just expresses that #4(A) is a topological closure system. This
condition may also beexpressed in terms of the operator domain, as follows.

Theorem 5.6
Let € be an algebraic closure system on a set A; then the following three
conditions on € are equivalent :
(1) € is a sublattice of B(A).
(ii) % is a topological closure system.
(iii) There is an operator domain Q whose operators have arity at most
one (i.e. they are all unary or 0-ary) with an Q-algebra structure on
A such that B4(A4) = €.

Proof:

The equivalence of (i) and (ii) follows from the definitions. Now assume
that (iii) holds and let B,C € #4(A); then any O-ary operator gives an
element of B n C, while a unary operator, applied to b e B, gives an
element of B, and applied to ¢ € C, gives an element of C. Thus Bu C
admits Q, i.e. Bu Ce @g(A).

Conversely, if € is a topological closure system and J is the correspond-
ing closure operator, we take for each a € J(0) a O-ary operator 4 = A(a)
and put

A=a.
Next, let @ € A; then for each b € J({a}) we take a unary operator u = yu(a,b)
and put
b fx=a,

XU = ;
H=\x otherwise.
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Let Q be the set of all 4, . We complete the proof by showing that
B o(A) = €, or, what amounts to the same thing, that

4 Jo(X) = J(X)

for all subsets X of 4. If X is empty or consists of a single element, (4)
follows by the definition of Q. Now J and Jq are both topological, the
first by hypothesis and the second by the first part of the proof; hence (4)
holds for all finite subsets of A, by induction. Finally, J and J, are both
algebraic, and therefore (4) holds generally. [j

Some care is needed in applying this theorem. Thus if A is an Q-algebra
for which #(A) is topological, it does not follow that Q has only opera-
tors of arity at most one; e.g. it might have a binary operator which on 4
happens to be independent of the second argument. Nor does it mean
that #4(A4) is definable in terms of the O-ary and unary operators of Q
alone; it may happen that a new operator domain (consisting of O-ary
and unary operators only) will have to be constructed (cf. Exercise 4).

The following generalization of Theorem 5.6 is proved in the same way
and will be used later. If Q* is an operator domain containing Q, then we
say that an Q-algebra structure A is enlarged to an Q*-algebra structure,
if an Q%*-algebra structure is defined on A4 such that the action of any
w € Q is the same as in A4.

Theorem 5.7

Let A be an Q-algebra and suppose that an Q*-algebra structure on A is
given which enlarges the Q-algebra structure on A, where Q* 2 Q. Then
BolA) < Bo(A),and further, # o.(A)is a sublattice of Bo(A) provided that
Q can be enlarged to a domain Q' by the adjunction of 0-ary and unary opera-
tors only and an Q'-algebra structure can be defined on A enlarging the
Q-algebra structure, such that

BolA) = Ba(A),
and for each w € Q(n), p € Q'\Q there exist w, € Q(n) and py, ..., p,€
Q'\Q such that wp = py ++* paw:-

The proof is as for Theorem 5.6; on the other hand we obtain that
theorem as a special case, by replacing Q* by Q and Q by 0. JJ

EXERCISES

1 .If tA— B, g:4A— B are homomorphisms of Q-algebras, then the set
Ag={xe A|xf= xg} is a subalgebra of 4.
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2. Let A be an Q-algebra: an element a € A4 is said to be a nongenerator of A,
if for any subset X of A4, Jo(X u {a}) = A implies that Jo(X) = 4. Show that
the set of all nongenerators of A is a subalgebra of A (called the Frattini sub-
algebra) which admits all automorphisms of A. Show also that the Frattini
subalgebra is the intersection of all maximal proper subalgebras of 4 (if no
maximal proper subalgebras of A exist, this intersection is equal to 4, as the
intersection of the empty family of subalgebras).

3. Show that the additive group of rational numbers has no maximal proper
subgroups. Show also that it has no minimal generating set, but that it does have
a minimal generating set, qua ring.

4. Let G be a group with more than one element and let @ be the binary opera-
tor defined on G by the rule
Jm‘)‘l if one of @, b is a power of the other,
abw = i
[1 otherwise.
Taking Q = {w}, verify that the lattice of subalgebras of G, regarded as Q-
algebra, is topological, although © has no unary or 0-ary operators at all.

5. Let % be an algebraic closure system on a set 4. Show that:

(a) % can be regarded as the lattice of all subalgebras with respect to an
Q-algebra structure on A, where € consists of unary operators only,
if and only if % is topological and 0 € €;

(b) % can be regarded as the lattice of all subalgebras with respect to an
Q-algebra structure on A, where Q consists of 0-ary operators only,
if and only if % consists of all subsets of A containing a given fixed
subset A, of A.

6. Show that in the lattice #o(A) of subalgebras of an Q-algebra A, every
interval whose end-points do not coincide contains a prime interval. (Hint:
Use the fact that Z(A) is a complete lattice.)

7. Let A be an Q-algebra and B a subalgebra of 4 ; then B is finitely generated
if and only if B is not of the form sup(B;), where (B,), . is a directed family of
subalgebras # B of A.

8. (Birkhoff & Frink.) Let L be a complete lattice; an element a € L is said
to be inaccessible if it is not of the form sup(a;), where (a;); . » is a directed family
in L of elements < a. Show that a complete lattice L is isomorphic to the
lattice Zy(A) of all subalgebras of an Q-algebra A (for some Q) if and only if
every element of L is expressible as a supremum of inaccessible elements and,
further, L is meet-continuous, i.c., for any a € L and any directed family (5;);- 4

i
N e (iev.v\ h“) - A\e’n @nby).
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(Hint: Take A4 to be the set of inaccessible elements of L and define the closure
of X = A as the least left segment of L which contains the sublattice generated
by X.)

9. Show that an algebra 4 which is generated by 0 has no proper sub-
algebras.

10. If A is any finitely generated algebra, show that any generating set of 4
contains a finite subset which generates A.

11. If X is any set, define a set Q of finitary operators on X2 such that the
()-subalgebras are precisely the preorderings of X. (Cf. Exercise 1.10).

6. THE LATTICE OF CONGRUENCES

Let 4 be an Q-algebra; together with the set ¥4(A4) of all congruences
we shall consider the set ¢(A) of equivalences on 4 (qua set). We remark
that in the special case Q = 0 we have €o(A4) = %(A), so that any result
about %, also applies to %. In general we have the inclusions

(1) Go(A) < 6(A) < B(AY).

It is easily seen (and will also follow from Theorem 6.2) that %(A) is
always a complete lattice. In particular, ¥(A) is also a complete lattice,
and our object is to obtain the relations between the lattices in (1). We
shall find that although %(A4) is not necessarily a sublattice of #(A4?),
“o(A) is always a sublattice of €(A).

By definition, a congruence is an equivalence which admits the operators
o (we Q). Now each n-ary operator w defines an #-ary operation on A4:

(2) (X1y723Xn) = X X000

By giving fixed values in 4 to some of the arguments, we obtain r-ary
operations for » < n; in particular, if we fix all the x; except one, we
obtain for any n — 1 elements @,,---.a,_, € A and any i = 1,---,n, a unary
operation

(3) X Ay @ XAy .

We shall say that the operation (3) is an elementary translation derived
from (2) by specialization in A. Generally, a mapping 0: 4 — A is said to
be a translation if 0 =1 or if 0 can be expressed as a product of a finite
number of elementary translations. As a special case of translations we
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have the operations on A defined by unary operators; but we note that
whereas a subalgebra of A4 admits all the unary operators, it will not in
general admit all translations; for instance, in a group G the only sub-
group admitting all translations is G itself. For congruences the situation
is rather different:

Proposition 6.1

An equivalence q on an Q-algebra A is a congruence if and only if it admits
all translations; more precisely, a congruence admits all translations, while
any equivalence admitting all elementary translations is a congruence.

Proof:

If q is a congruence, then for any w e Q(n) and any a,,-+.a,,b € A, if
a; = b (mod q), then

a,-a,m = a,-a;_bag,,-a,0 (mod q);
hence q admits all elementary translations and hence, by an easy induction,
q admits all translations. Conversely, assume that q admits all elementary
translations and let a,, a;€ A and a; = a} (ntod q) (i = 1,---,n); then we
have (mod q),
a,a,m = ad\d;-a,m
= qyasdy -ad,m

= a\a;--a,m.

Thus q admits w, and since this holds for every w e Q(n), (n =0,1,---), q
is in fact a congruence. [Jj

To show that the congruences on A form a complete lattice, we shall
prove the stronger assertion that €,(A4) is an algebraic closure system on A%,
This is most easily done by describing an operator domain I' and a I'-
algebra structure on A* such that 2(A4?) = %qo(4). To be specific I' is
to consist of the following operators, acting on A? in the manner stated:

(i) For each a € A4, there is a O-ary operator 4 = A(a) such that

A = (a,a).
(ii) There is one unary operator u, such that
(v, = (y,x).
(iii) There is one binary operator v, such that

(x,1) ity =2z,
(x,) otherwise.

(e )z =
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(iv) For each we Q(n + 1), where n=0,1,---, each n-tuple (@, ,a,)
from A, and each integer i = 1,2,---,n + 1, there is a unary operator
p = p(w,a,,---,a,f) such that

(xp = (a,-a;_yxa;--a,0,a,--a;_ ya;a,w).

All these operators are finitary, and it is clear from the definition of an
equivalence that an equivalence on A is just a subset of 4% admitting all
A’s, u, and v, while a congruence is a subset of A* admitting all \’s, g, v
and all p’s. Thus we have established

?

Theorem 6.2
The set %4(A) of congruences on A is an algebraic closure system. |

It follows that €y(4) is a complete lattice.

Corollary 6.3
The set €(A) of equivalences on a set A is an algebraic closure system. [}

If we apply Theorem 5.3 we obtain

Corollary 6.4

Let A be an Q-algebra, ® a correspondence in A and q a congruence on A.
Then there exists a maximal congruence § in A subject to the conditions
§2qin®=qnd. |

This corollary is chiefly used in the case where q is the diagonal on 4
and @ consists of a couple of distinct elements of A. Then it states that for
any two distinct elements a and b of A there is a maximal congruence
separating a and b.

The congruences of 4 were obtained in the proof of Theorem 6.2 as
equivalences admitting all the unary operators p. By Theorem 5.7 we
therefore find

Corollary 6.5
The lattice of congruences €o(A) of an Q-algebra A is a sublattice of
€(A), the lattice of equivalences on A. [}

This means that if q and r are two congruences on A4, then in order to
obtain the least congruence containing both q and r, we need only form
q vrin %(A); in other words, the least equivalence containing ¢ and r is
already a congruence. We shall denote this equivalence by q vr and also
refer to it as the equivalence generated by q and r. This is in accordance
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with the general terminology, regarding qvr as the least subalgebra of
A?, qua T-algebra, containing q and r.

In order to study the lattice operations in %q(A4) more closely, we may,
by Corollary 6.5, limit ourselves to the case Q =0; so, let 4 be any set.
The lattice operations in %(4) may then be described as follows: qar
= q n 1, because #(A) admits intersections; in order to obtain qvr, we
define s, = A4, and for k = 0, put 5,4, = s, °r° q; then

1)) sscs, € Us=qvr

It is easily verified that s =U s, is an equivalence containing q and r, and
in fact is the least such equivalence, from which (4) follows. The most
important special case is that where the chain s, breaks off after one term:

Proposition 6.6
Let A be any set and q,x € €(A). Then q ° x is an equivalence if and only if
q and r commute, and in that case

GgVI=¢qg°r.

Proof:
Clearly, qvr=2gq°r=2qur for any equivalences q and r, so if q° ¢
is an equivalence, it coincides with q v r, and moreover,

qor:(qu r)_l =I_10q_] =Troq.

Conversely, if q° r =r = q, then

(@29t =xteq!

hence q ° v is symmetric. It is clearly reflexive and

=req=gq°r,

qcruq';f:qnqorcrzqor,

which shows q ¢ r to be also transitive, and therefore an equivalence. [}

Corollary 6.7
Let A be an Q-algebra and q,x any congruences on A; then q - ¢ is a con-
gruence if and only if q and r commute, and in that case,

gvr=qer. [

If the set A has at least three elements, %(A4) is not a sublattice of #(A4?),
and we can even find a pair of noncommuting equivalences. However,
when we are dealing with an Q-algebra structure on A, the lattice %q(A)
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will in general be smaller than %(A4), and if Q is sufficiently complex it may
happen that all congruences on 4 commute. A sufficient condition for
this to be so is given by

Proposition 6.8
Let A be an Q-algebra; then the congruences on A commute, provided that
for every pair a,b € A there is a translation of A which interchanges a and b.

Proof:
Let 4 be an Q-algebra satisfying the condition stated, and let q,r € @o(A4).
If (a,b) € q ° 1, this means that for some c € 4,

a=c(mod q) and ¢ = b(mod 1).

By hypothesis, there is a translation 7 of 4 interchanging @ and b, and since
q and r admit ¢ (by Proposition 6.1), we have

b = ¢* (mod q) and ¢" = a(mod r);

hence (b,a) € q° 1, i.e., (a,b) e r° q. This shows that qer =t~ q, and by
symmetry, q°r 2r° q,whenceqer=recq. [

From this proposition it follows immediately that all congruences on a
group commute, for if a, b are any elements of a group G, then t:x = ax™'h
is a translation which interchanges @ and b. This shows more generally
that congruences on any group with multiple operators commute.

In Chapter 111, we shall meet other conditions for the congruences on
an Q-algebra to commute. The importance of such conditions is not only
practical, in facilitating .the calculation of equivalence-joins (by Proposi-
tion 6.6), but also theoretical, in establishing the modularity of €g(A4):

Proposition 6.9
If all congruences on an Q-algebra A commute, then the lattice €o(A) of
congruences on A is modular.

The proof is as in the special case of groups: Given p,q,r € ¥5(A), where
q = r, we have to show that

(peq)nrs(pnr)eqg.
Let (a,b)e(p°q) nr, say @ = c(mod p) and ¢ = b(mod q); then

a = b(mod r)
and b = ¢(mod 1),

because q < r; therefore @ = ¢(mod p n 1), and so (a,b) e (p N 1) = q. B
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Using the commutativity of congruences, we are able to make the fol-
lowing deductions from the isomorphism theorems, constituting in effect
a translation of the Jordan-Holder and Schreier theorems to general
algebras. We begin by proving an extension of the second isomorphism
theorem.

Theorem 6.10 ( Zassenhaus lemma)

Let A be an Q-algebra, B and C subalgebras of A, and q and x congruences
on B and C respectively. Assume that all congruences on B n C commute;
then qereqe®y((B N C)), reqereby((B N C)), and the identity
mapping on A induces an isomorphism

(BnC)'laexreq=(BnC)ftoqeor.
Proof:
Put D=BnC,q=qnC*x=trnB*thengoreq=qer'cq,and
qoroququruq:qor'oq'or’nq:an’uq;
hence g°r°q is transitive; clearly, it is also reflexive and symmetric, and

admits Q; thus it is a congruence on D% Similarly, x°q°x is a congruence
on Dr, and g’ “ v’ is a congruence on D. Now

(a°rcq)nD?*=q'°1’; B

hence by the second isomorphism
theorem (Theorem 3.9),

quq orpeq qu‘ o’
By symmetry we also have qorsq &
Difreqexr = D/g’ o t,

and the result follows. |

The factor D%/qere°q is often
called the projection of C/t into Blq. q v
Then Theorem 6.10 just states that Figure 7
under the given hypothesis, if B and
C are any two factors of A, then the projection of B into C is isomorphic
to the projection of C into B.

Let A be an Q-algebra with a subalgebra E; then by a normal chain
from E to A is meant a finite chain of subalgebras of A:

(5) E=Asc A <A, =4,
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together with a congruence q; on 4, (i = 1) such that 4,_, is precisely a
q-class. Since A;_, is a subalgebra, this means that the quotient A4,/q;
has a trivial subalgebra, namely A7‘,. Qua set we have 4;_, = A", = E",
so that (5) may also be written

E=Ev"cE“c..cE'c A.

If in (5) each interval [4;_,,4,] is replaced by a normal chain from 4,_,
to A, such that the new subalgebras inserted, as well as the classes of
congruences inserted, are unions of q,-classes, we again obtain a normal
chain from E to A, which is called a refinement of (5). Any such refine-
ment may be obtained by taking a normal chain in each 4,/q; and applying
the pullback along nat q,.

A second normal chain
(6) E=B,cB =8B, =4

with congruences r; is said to be isomorphic to (5), if m = n and there is a
permutation = of 1,2,---,n such that

Ayfa; = B[t

Using these definitions we can establish the Schreier refinement theorem
for Q-algebras with commuting congruences:

Theorem 6.11 (Schreier refinement theorem)

Let A be an Q-algebra with a subalgebra E, such that on any subalgebra
of A all congruences commute. Then any two normal chains from E to A
have isomorphic refinements.

Proof:
Let the chains be given by (5) and (6), with congruences q, and ¢
respectively, and put
Fij=(Air‘Bj}n'm:'fj"' Tis (i=1,---;m,
Gji=(A; n B)[t;= q;° 13 J=1,n)
then by the Zassenhaus lemma,
@) Fi; =G
If we put D=A;n B, ¥ =r; n A}, q' = q; n B}, then since E < 4,
for i =1,---,m, we have
Eﬂ."l’;“'(‘li e Eq'Or'-ﬂf sy E"'l‘lf
=Bj:,
= (A‘ = Bj,l)m.
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Thus F,--, F,, form the factors of a normal chain in 4,/q;; therefore (5)
can be refined to a normal chain with factors F\,,Fi, - FipFars s Frune
By symmetry (6) can be refined to a normal chain with factors G;;, and by
(7) these refinements are isomorphic. [

A factor is said to be trivial if it consists of the trivial algebra. Clearly,
if we have two isomorphic chains and omit the trivial factors from both,
we again obtain two normal chains, isomorphic to each other but without
repetitions. A normal chain without repetitions which has no proper
refinements (i.e. no refinements without repetitions) is called a composition
series. Thus a normal chain is a composition series if and only if all its
factors are simple algebras.

Corollary 6.12 ( Jordan-Holder theorem)
If A and E are as in Theorem 6.11, then any two composition series from E
to A are isomorphic. |

Corollary 6.13

If A and E are as in Theorem 6.11 and if there exists a composition series
Jrom Eto A, then any normal chain from E to A can be refined to a composition
series. |}

An important special case is obtained by taking E to be a trivial sub-
algebra of 4. In particular, this can always be done for groups; moreover,
since congruences on groups commute, we obtain as a special case of
Theorem 6.11 and its corollaries the usual Schreier theorem and Jordan-
Hdlder theorem for groups. As a second special case, let 4 be an Q-
algebra, with a normal chain (5). If q; = qf n A7, where o is a congruence
on A, then (5) is said to be an invariant chain. It is easily seen that the
refinements obtained in the proof of Theorem 6.11 will be invariant
chains, provided we start with invariant chains. We thus obtain the
refinement theorem for invariant chains, whose statement is left to the
reader. An invariant chain without proper refinements or repetitions is
called a chief series. We then have a corollary, analogous to Corollaries
6.12 and 6.13:

Corollary 6.14

If A is an Q-algebra with commuting congruences, and E a subalgebra of A,
then any two chief series from E to A are isomorphic; and when chief series
exist, then any invariant chain from E to A may be refined to a chief series. |}
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The Jordan-Holder theorem for general algebras has been proved under
a number of different conditions; for an algebra with maximum and
minimum condition for subalgebras, the following condition has been
shown to be necessary and sufficient for the conclusion of Corollary 6.12
to hold (Goldie [52]): Given two congruences q and r occurring in different
composition series, let B,C be the subalgebras on which q and r are
defined and write D=BnC, ¢ =qn D* t' =t n D?; then

BV w W

We turn now to the Krull-Schmidt theorem; to apply the lattice version
proved in 114, we consider representations of a given algebra A as a finite
direct product:

(8) A Ay %% A,
If &;: A = A; denotes the projection onto the factor 4, then, clearly,
(i) for any x,y € 4, if xe; = yg; (i = 1,---,n), then x = y,
(ii) given any family (a;), a;€ A; (i = 1,---,n), there exists an x e 4
such that xe; = a; (note that x is unique, by (i)).

Conversely, given a finite family of algebras and epimorphisms ¢;: 4 — A4,
satisfying (i) and (ii), we can conclude that (8) holds. In fact, if 0: 4 — I14,
is the mapping defined by

x0 = (xg;),
then 0 is a homomorphism because each ¢; is a homomorphism, and 6
is injective by (i) and surjective by (ii); hence it is an isomorphism. The
conditions (i) and (ii) may also be expressed in terms of the kernels of the
g; as follows:

Theorem 6.15
If an Q-algebra A is written as a finite direct product

(8) Az A x % A,

with projections e;: A — Ay, and if q; = ker ¢, then the q; satisfy
® q N Ng, = A,

(10) (qu N Nai)eq =4 (i=2,--n).

Conversely, any family of congruences (q,) satisfying (9) and (10) gives
rise to a direct product representation (8), where A; = A|q;. Moreover, the
q; commute in pairs.
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Proof:

Given (8), let &'”: 4 = A, x --- x A, be the projection; then it is easily
seen that ker &'’ =q, n - m q. In particular, since ker & = A, we
have (9). Further, for any elements a, € A; there exists x € A such that
xe" Y =(a,,,a,_,), xe, = a, Since a; was arbitrary in A,, this means
that given any y,z € 4, there exists x € 4 such that

x=ymod g, N Nogu_q),
x =z (mod q,).

Thus
(]I) ("1'1 £ 4 0 QM—I)GQn = A2
By symmetry we have
(12) (Na)eoa =4,
j#i

and a fortiori (10) holds. Further, by (12),
‘?f"qJ':Az:qJ-“Ch (i #J),
so that all the q’s commute.
Conversely, let q,,-++,q, satisfying (9) and (10) be given, write 4; = A/q,,

and put ¢; = nat q;. By (9). if x¢, = ye, for i = 1,---,n, then x = y. Now
let a; € A; be given. By (10), if

(13) xWP¢, =a,(j=1,i) for some x' € 4,
then there exists x“** € 4 such that
X =g, forj=1,,i+1.

Now (13) holds for i/ = 1, and hence by induction, for all i < . In partic-
ular, for i = n we obtain (ii), and the conclusion follows. [ |

We note that (9) and (10) state just that qy,--,q, is an independent set
in the lattice #4(A4), regarding 4? as least and A as greatest element. In
other words, they are the conditions for A to be the direct join of qy,--,q,
in the dual of €,(A).

We also recall that %,(A4) is modular whenever all congruences on A
commute (Proposition 6.9). Let 4 be an algebra for which this is the case
and assume further that the lattice ¥4(A) is of finite length. Then the Krull-
Schmidt theorem for lattices shows that in any two complete decomposi-
tions,

G N - NQp=1 N nNr,=A,
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m =n and each q; is related to some r;. This means that there exists
q' € ¥a(A) such that

N =1nq =4, q;°q’=tj°q’=Az.
(In fact, " may be taken as M g, from the proof of Theorem 4.11).
Putting A; = A/q;, B; = Ax;, :lf(= Alq’, we thus have
(14) AzA; xA"=B; x A';
this establishes

Theorem 6.16 (exchange theorem for divect decompositions)
Let A be an Q-algebra in which all congruences commute and whose lattice
of congruences is of finite length. Then for any two direct decompositions

A=A x-xA, =B - xB,

of A into indecomposable factors, m =n and each A; can be exchanged
against some B;. |}

Usually one wants to be able to assert that the
A; and B; which are related as in (14) are actually
isomorphic, as Q-algebras. This is not true in
general (cf. Exercise 10), but the next theorem gives
a simple condition for this to be the case. Let q,r,q’
be congruences on A such that

qeq'=req' =A% gqnqg =rnq =A.

These equations state that each gq'-class is a
common transversal for 4/q and Afx. If A/q" has
a trivial subalgebra, then the corresponding q'-class
is itself a subalgebra which must then be isomorphic to both 4/q and A/x.
Thus we obtain

Figure 8

Theorem 6.17 (Krull-Schmidt theorem for algebras)
Let A be an Q-algebra in which all congruences commute, which has a chief
series and a trivial subalgebra. Then in any two complete decompositions
A=A xxA, =B x-x B,
m = n, and for suitable numbering of the B’s, A; = B,.
This follows from the remarks preceding the statement of the theorem,

if we observe that any homomorphic image of 4 again has a trivial sub-
algebra. |J
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We have seen that congruences on any group commute; therefore the
result may be applied to any group with a chief series, or, more generally,
to any group with (unary or multiple) operators which has a chief series.
In fact the result can be slightly strengthened in this case. We recall that
the centre of a group G is defined as the set

Z={xeG|xy=yx forallyeG].

Two subgroups H, K of G are said to be centrally isomorphic if there is an
isomorphism o: H — K such that x™'-xx € Z for all x e H. Then we have

Corollary 6.18
If G is any group with a chief series and

G=G;xxG,=H % xH,

are any two complete decompositions, then m = n, and for a suitable numbering
of the H's, G, is centrally isomorphic to H, In particular, if G has trivial
centre, then the factors G, are uniquely determined.

For by Theorem 6.16 we have G = G} x K = H, x K say, where direct
factors of G have been identified with subgroups of G. Any element
x € G has the form

X=Xz =32,

where x, € Gy, y, € H,, and 2,2’ € K. Now x7'y, =zz'"! =t say, and K

commutes elementwise with G, and with H,; therefore, ¢ commutes
elementwise with G, and H,; on the other hand, y, commutes with K and
x, commutes with K, and so ¢ also commutes with K, whence t commutes
with every element of G, i.e. teZ. |]

Many similar results, imposing different conditions, have been obtained.
E.g. for modules over a ring a version of the Krull-Schmidt theorem which
does not explicitly assume the existence of a chief series has been given by
Jacobson ([56] ch. III); however, some finiteness condition has to be
imposed, as examples show (Jénsson [57]). An analogous result for group-
oids with neutral element, relative to representations as inner direct
product, has been obtained by Jonsson & Tarski [47].

EXERCISES

1. If any two congruences on an Q-algebra 4 commute, then the same is
true of any quotient of 4. (Hint: Use Corollary 3.12.)
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2. By an ordered semigroup is meant a semigroup S which is also an ordered
set, such that a; < b; (i = 1,2) implies a,a, < b;b,. An element e of S is said to
be idempotent if ¢* = e.

(a) Let S be an ordered semigroup with least element 1 which is also the unit
element. Show that any element @ such that a® < a is an idempotent. If @
and b are idempotents, then ab is an idempotent, provided that ba < ab.

(b) If S'is as in (a) and has an order-preserving antiautomorphism ’ of period
two, i.e. a mapping of S into itself, @ — &', such that (i) a < b= a’ < b, (ii)
a" = a, (iii) (ab)’ = b'a’, show that for any idempotents @ and b fixed by ’, ab
is an idempotent if and only if ba = ab. Deduce Proposition 6.6.

3. If A is an Q-algebra and S any subset of A, write @ ~ b (mod S)ifa = b or
a,b € S7, where 7 is some translation of 4. Further, write a ~ b(mod S) if there
is a finite sequence x, = a,x;,---,x, = b such that x;,_, ~ x,(mod S). Show that
the relation ‘a = b’ is a congruence on A, and that it is the least congruence
which has a class containing S.

4. Let A and S be as in Exercise 3, and define
q={(x,))eA*|x*e S« )'e S for each translation t}.
Show that q is the greatest congruence on A4 such that S is a union of g-classes.

5. (Malcev.) Let 4 and § be as in Exercise 3; show that S is the class of a
unique congruence on A if and only if for all x,y € 4,

xXeS<=)'eS for all translations ©
holds precisely when x = y (cf. definition Exercise 3).

6. (Malcev.) A translation on an Q-algebra A is said to be invertible if it has
an inverse which is also a translation. Show that the invertible translations
form a group I' on A, and if T acts transitively on A4 (i.e., if A as I'-module
consists of a single orbit), then all congruences on 4 commute. (Hint: If 7, is
an invertible translation mapping a to b, verify that the mapping x — xa,
where xo = at,,1;,', is a translation.)

7. Let q be a congruence on a lattice L. If a = b (mod q), show that anb
=avb(mod q).

8. (Funayama & Nakayama.) Show that the lattice of congruences on any
lattice is distributive. (Hint: Use Exercise 7 to verify thata = b (mod q n (rvs))
implies a = b (mod(g N ) v (q N s)).

9. A congruence q on an Q-algebra A is said to be fine, if any transversal of
Alq generates A. If X is a minimal generating set of 4 and q is a fine congruence
on A, show that q separates X.
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10. (Jénsson.) If Q consists of a single unary operator, construct two non-
isomorphic Q-algebras A, B, with two elements each, such that 4 x B =B x B.
(Hint: Take the operation to be a permutation of the carrier in each case.)

7. LOCAL AND RESIDUAL PROPERTIES

In the last section we obtained a description of a finite direct product,
in terms of the kernels of the projections onto the factors. For products
with an arbitrary number of factors the description takes on a more
complicated form. Let us therefore consider an Q-algebra 4 with a family
of epimorphisms
(1) g0 A=A, (AeA)
satisfying only the first of the conditions in IL.6:

(i) for any x,y € 4, if x¢; = ye, for all 4 € A, then x = y.

The same argument then shows that 4 is isomorphic to a subalgebra
of T1A4,; identifying A with this subalgebra of I14,, we see that the natural
projection &,, restricted to A, is still surjective. This suggests the following

Definition

If (4);.4 is any family of Q-algebras, then a subalgebra A of the
direct product TTA; which is such that ;| A is surjective (for each 1€ A)
is said to be a subdirect product of the family (4,);. 4.

Subdirect products usually arise in the following way:

Proposition 7.1

Let A be an Q-algebra and (a;),.» a family of congruences on A. Put
q=Naq,and A, = Alq;; then A[q is isomorphic to a subdirect product of the
Jamily (A;).

Proof:
Consider the mapping 0: 4 — 114, defined by
(2) (ab)e; = a"* (ae A, LeA).

By definition,  is a homomorphism, and its kernel is q; therefore, dividing
by q, we obtain a monomorphism A/q — I14;. Thus 4/q may.be embedded
in TIA,, and now (2) shows that 0¢; is an epimorphism. [

Corollary 7.2
If A is any Q-algebra with a family of congruences (9:)2cn Such that
N q, =A, then A is isomorphic to a subdirect product of the Alq,.
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This is merely the case q = A and follows if we recall that A/A ~ 4. |}

A family (q;);.4 of congruences on A such that Ngq, = A (i.e., Ngq,
separates A) is called a separating family of congruences., The corollary
may then be taken as asserting that 4 can be expressed as a subdirect
product of the A4, whenever there is a separating family of congruences
(a4)1e4 With quotients 4,. Let 4 be an Q-algebra with a separating family
of congruences (q;);. such that q; = A for all A € A; then A is said to be
subdirectly reducible; otherwise, A is called subdirectly irreducible. Equiva-
lently, A is subdirectly irreducible if and only if in every subdirect product
representation (2) of A, at least one of the f¢; is an isomorphism.

From this definition we obtain a useful representation theorem, due
to Birkhoff [44].

Theorem 7.3
Every Q-algebra A is a subdirect product of subdirectly irreducible
Q-algebras, which are homomorphic images of A.

Proof:

Let q be any congruence on A; we shall say that q is meer-irreducible
if there exists no family of congruences (r;);., such that r, > q for all
e A and N, = q. By Corollary 3.12 we see that q is meet-irreducible if
and only if A/q is subdirectly irreducible. Now let (q;),., be the family of
all meet-irreducible congruences on A; if we can show that,

3) n q, = A4,

the theorem will follow because, by Corollary 7.2, 4 is then a subdirect
product of the subdirectly irreducible algebras 4/q;,. To establish (3),
let x,ye 4, x+#y and let q, be a maximal congruence on 4 such that
(x,») ¢ qo (which exists by Corollary 6.4). Then any congruence which
properly contains q, also contains (x,y), and hence the intersection of all
congruences which properly contain q, also contains (x,y). But (x,y) ¢ qq,
and this shows that q, is meet-irreducible; since x,y was any pair of distinct
elements of 4, it follows that (3) holds. |

The somewhat imperfect duality which was already observed in set
theory (in 1.3) and which clearly extends (in an even less perfect form) to
general algebras, suggests that we consider the following counterpart of a
separating family of congruences. Let 4 be any Q-algebra; then, by a
local system of subalgebras of 4, one understands a system & of nonempty
subalgebras of 4 which is directed by inclusion and is such that U & = 4.
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Trivial examples of local systems are (i) the system of all nonempty
subalgebras of A4 and (ii) the system consisting of A alone (provided
A #0). An important example of a local system is the system of all
finitely generated subalgebras of 4. As is easily seen, any local system in
A which admits subalgebras (i.e. which contains, with any algebra, all its
subalgebras) necessarily includes all finitely generated subalgebras of A.

We turn now to consider properties of Q-algebras, sueh as being finite
or being contained in a given algebra as subalgebra. We shall only be
concerned with abstract properties, i.e. properties P such that if 4 has P,
then every algebra isomorphic to 4 also has P. Thus, being finite is an
abstract property, but being a subalgebra of a given algebra C, say, is
not. If P is any property of algebras, then the algebra A is said to be
locally P, if there is a local system of subalgebras of A4, all having P. If
every algebra which is locally P actually has P itself, P is said to be a local
property of algebras. Thus, for example, the property of being abelian is a
local property of groups; on the other hand, being finite is not a local
property: the multiplicative group of all complex roots of unity is locally
finite, but not finite.

Similarly we define the Q-algebra A to be residually P if there is a separa-
ting family (q;);.4 of congruences on A such that each quotient 4/q, has .
By Corollary 7.2, A is residually P if and only if it can be expressed as a
subdirect product of Q-algebras having P. Now the property P is said to
be a residual property if any Q-algebra which is residually P actually has P
itself. E.g., for groups, the property of being abelian is residual, for if G
is residually abelian, it is a subdirect product of abelian groups, and hence
is itself abelian, but being finite is not a residual property. We conclude
this section with a result which establishes a connexion between residual
and local properties.

Proposition 7.4
Any residual property of Q-algebras which is preserved under homomorphic

images is local.

Proof:

Let P be a property satisfying the hypothesis of the proposition and let
A be an Q-algebra with a local system (4,);ca of subalgebras having P.
For convenience we take the index set A to be preordered by the rule

i<p ifandonlyif 4, = 4,.
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Then it is clear that A is directed. Now form the direct product D =T14,
with the projections &,: D — A, and consider the subset

B = {x e D|there exists 1, = Ay(x) such that x¢; = x¢;, for 1 > 1,}.

Thus B is the subset of elements of D whose coordinates are ultimately
constant. The constant value of xe; will be denoted by xe. We assert
that B is a subalgebra of D and is in fact a subdirect product of the 4,.
For if we Q(n), x,, ,x, € B, suppose that x;e; = x;e for A > 4;; then
since A is directed, there exists A, € A such that i, = 4, for i = 1,---,n;
hence x;e; = x;& for A = 1, and so

(o x,w)ey = (¥ 8) - (Xe)@ = (x18)-(X,8)0;
this is constant for 1> Ay, and so equals (xy, ... x,w)e, by definition of ¢.
Given any 42 e A and any a € A4,, we have ae A, for all u = A, hence the
element x of D defined by
a 1Tl 8

XE, = . . :
# |arbitrary in A,  otherwise,

belongs to B and is such that xe = a; this shows ¢, | B to be an epimor-
phism, and so B is a subdirect product of the 4,.

For any x € B, xt € A; thus ¢ is a mapping from B to 4, and the above
argument shows ¢ to be a homomorphism. Moreover, it is surjective,
since every ae A is contained in A4, for some i€ A, and hence for all
p = A Thus A is a homomorphic image of a subdirect product of the A4;,
and therefore has P. |}

EXERCISES

1. For any hereditary property P, show that being locally P is a local pro-
perty and being residually P is a residual property.

2. An abelian group is said to be torsion-free if there is no element of finite
order, apart from the neutral element. Show that the property of being a torsion-
free abelian group is both local and residual but is not preserved by homomor-
phic images.

3. A group G is said to be a p-group (where p is a prime) if the order of each
element of G is a power of p. Show that being a p-group is a local property which
is inherited by subgroups but which is not residual. (Hint: Every torsion-free
abelian group is residually a p-group.)
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4. A group G is said to be ordered if its carrier can be ordered in such a way
that a < b, a’ < b’ implies aa’ < bb’. If G is an abstract group whose carrier
can be ordered in such a way that G becomes a totally ordered group, we say
that G can be totally ordered. Show that the property of groups: ‘G can be
totally ordered’ is residual but is not preserved under homomorphic images.
(Hint: The direct product of any family of totally ordered groups can be ordered
by taking some well-ordering of the index set and then ordering the product
lexicographically. Secondly, any free abelian group can be totally ordered, but
not all its homomorphic images can be so ordered.)

5. (Dieudonné, Lorenzen.) Define the canonical ordering on the direct
product of ordered groups I1G, by the rule: (x;) < (y,) if and only if x; < y;
for all A € A. Show that an abelian ordered group G (written additively) is a
subdirect product of totally ordered groups (with the canonical ordering) if
and only if, for any x € G and any positive integer n, nx = 0 implies x = 0.

6. Let R be a commutative ring with 1. If R has no nilptent elements # 0
(i.e. if x» = 0 implies x = 0), show that R is subdirectly irreducible only if
R is an integral domain. Deduce that every ring without nilpotent elements
0 can be expressed as a subdirect product of integral domains.

7. A subdirect product 4 of a family (4,);., of algebras is said to be ir-
redundant, if the natural projection onto a proper factor I14, (z€ A’, where
A’ = A) restricted to A, is not injective. If e;: A — A, are the restrictions of the
natural projections, show that the product is irredundant if and only if for
each Ae A, ker ¢; 2 [ ker ¢,

wEa

8. Show that any subdirect product of a finite number of factors can also be
expressed as an irredundant subdirect product of some of these factors. Further,
show that an irredundant subdirect product of a finite number of simple rings is
necessarily their direct product.

9. Show that every distributive lattice with more than two elements is sub-
directly reducible. (Hint: For any a € L, consider the left and right segments
generated by (a,a) in L2, and show that the congruences generated by these
segments intersect in the diagonal of L.)

For any set A4, verify that the Boolean #(A) is a distributive lattice, and more-
over, #(A4) =24, where 2 ={0,1} is regarded as a lattice with the ordering
0 < 1. Conversely, show that every distributive lattice L can be embedded in a
lattice of the form #(A), for some set 4, which may be taken to be finite if L
is finite.

10. Show that the property of a group being simple is a local property.
(Hint: G is simple if and only if, for any x,y € G, y # |, there is a product of
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conjugates of y and y~' which equals x.) Using the fact that the alternating
group of degree greater than four is simple, show that the group of all even
permutations with a finite carrier on a countably infinite set is simple.

11. Show that being residually finite is a residual property of groups which is
not local. (Use Exercises 1 and 10.)

12. Show that being a free abelian group is not a local property.

8. THE LATTICE OF CATEGORIES OF Q-ALGEBRAS

We have seen that for a given operator domain Q, all the Q-algebras
with all Q-homomorphisms between them form a category, denoted by
(). In all that follows, the universe U will be arbitrary but fixed, so that
we shall not refer to it explicitly, but in talking about Q-algebras it will be
understood that only algebras whose carrier belongs to U are considered.

A subcategory # of (Q) is said to be trivial if it contains no algebra with
more than one element; otherwise, it is nontrivial. 1f 2 contains, with any
algebra A, all algebras isomorphic to 4, and with any two isomorphic
algebras A, A’, it contains all the isomorphisms from 4 to A’, then 4" is
said to be abstract. The category . is said to be regular if every X'-
homomorphism can be written in the form eu, where ¢ is a #"-epimorphism
and p a # -monomorphism. Clearly, an abstract category % is regular if
and only if for every #'-homomorphism «: 4 — B; the image Ax is a
o -algebra, the inclusion i: Az — B is a #-homomorphism, and « can be
factored as a = uyi, where #,: 4 — Ax is a A -epimorphism.

If & is any set of Q-algebras, we may form a category from &, e.g. by
taking the full subcategory of (Q) with & as class of objects; this will in
general be neither abstract nor regular. However, we remark that if
is a subcategory of (Q), there is a uniquely determined least abstract sub-
category of () containing % ; we need only adjoin all isomorphic copies
of # -algebras and all possible isomorphisms. Given a set & of Q-algebras,
it is always possible to construct a regular category with & as object class,
e.g. by allowing only isomorphisms as maps, but one often wishes to
embed a given subcategory of (Q) in a regular subcategory. To do this
we remark that a set & of Q-algebras together with certain monomor-
phisms and epimorphisms between them generates a regular subcategory
of (Q) if and only if, for every monomorphism y and epimorphism & such
that pe is defined, there exist a monomorphism g, and an epimorphism &,
in the set such that pe = & p,.
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Proposition 8.1
The class of abstract subcategories of (Q) forms a complete lattice, and so
does the class of abstract regular subcategories of (Q).

Proof:

If (o ,);c5 1s any family of abstract subcategories of (Q), denote by
X = N, the category whose object class is 1 Ob #; and whose class
of morphisms is MHom #,. It is easily verified that this is again an
abstract subcategory of (Q), hence the abstract subcategories form a
complete lattice by Proposition 1.4.1. Now assume that in addition each
o, is regular, and let «: A — B be a % ;-homomorphism, for each 1 € A.
Then Ax is a " ;-algebra, the inclusion i: Ax - B a % ;-homomorphism,
and o = ayi, where o5: 4 - Ax is a I ;-epimorphism, for each 1€ A;
hence, i and «, are #-homomorphisms. |}

We shall denote by I'(Q) the lattice of all abstract regular subcategories
of (Q) and define certain closure operators on I'(Q), in the sense of I1.1; this
is possible because we are dealing with a complete lattice. Such closure
operators (systematically introduced for classes of groups by P. Hall)
will be denoted by small capitals; if A is a closure operator, we shall say
that the category # is A-closed if A2#" = 4. The most important examples
of closure operators on I'(Q2) are the following:

(i) Subalgebras. For any # e I'(Q), denote by s the regular category
generated by all subalgebras of #-algebras and all restrictions of #'-
homomorphisms cut down to subalgebras of ¥ -algebras. It is easily
verified that s is a closure operator. If " is s-closed, we also say: %~
admits subalgebras, or: 2" is hereditary.

(ii) Quotients. Given % e['(Q), we denote by Q%" the regular cate-
gory generated by all homomorphic images of . -algebras, together with
all homomorphisms induced by #-homomorphisms. The fact that Q is
a closure operator follows from Corollary 3.12. A q-closed category is
said to admit homomorphic images.

(iii) Direct products. Given %€ I'(Q), we denote by py" the regular
category generated by all direct products P = I14; of families of % -
algebras, together with the projections ¢;: P — A4; and the homomor-
phisms between products induced by % -homomorphisms between the
factors. A p-closed category is said to admit direct products. Again it is
clear that p is a closure operator, if we bear in mind that the indexing set
used is a member of the universe U.

(iv) Local systems. Given # e I'(Q), we denote by L% the abstract
category generated by Q-algebras A4 which are locally 2 -algebras, i.e.
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which have a local system (A4;);., of . -algebras, with the inclusion
mappings i, : A; = A and the homomorphisms induced by #"-homo-
morphisms between the algebras of appropriate local systems. When
LA = A, A is called local (L is not in general a closure operator, cf.
Kruse [67]).

(v) Residual systems. Let A4 e ['(Q) and denote by R.# the regular cate-
gory of all Q-algebras A which are residually # -algebras; this means that
there is a separating family (q;) of congruences such that 4/q; is a #"-algebra.
Further, nat q; is an R#-homomorphism and a homomorphism «: B — A
is an R -homomorphism provided that z(nat q;) is a #-homomorphism
for all 2 e A. An r-closed category is said to be residual. R is again a
closure operator, and moreover, every residual category admits direct
products; more generally, for any category 4", P" is a subcategory of R4,

If A and B are closure operators on I'(Q), we write A < B to indicate that
A is a subcategory of B, for every # € I'(Q). Further, we define the
operator AB by the equation

(AB) A" = A(BH).

In general AB need not be a closure operator, but it is not hard to see
that there always exists a least closure operator containing A and B, which
we denote by A vB. This follows because the collection of closure systems
(corresponding to the closure operators) itself forms a complete lattice.
It may also be directly verified as in the remarks preceding Proposition
6.6; as in that proposition, we can then deduce that AB is a closure
operator provided that AB > BA. In fact the set of all operators (i.e.
unary operations) on I'(Q) which satisfy J.1-2 of II.1 forms an ordered
semigroup with 1 as least element, and a closure operator is just an element
of this semigroup which is idempotent (cf. Exercise 6.2).

There is one relation between the operators defined above which is of
importance in what follows.

Proposition 8.2

The operator U = SP is a closure operator and
(€)) P <R < SP.
Proof:

By the above remarks it is enough to verify that
(2) PS < SP

in order to show that sp is a closure operator. Let A € ps#";then A = T14,,
say, where 4, is a subalgebra of a . -algebra B;, say. Now I14; may be
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embedded in I1B;, hence A is isomorphic to a subalgebra of IB,, i.e.
A espx; similarly, it follows that every Ps-homomorphism is an
spo¥’-homomorphism, which proves (2). Now an Q-algebra is residually
o if and only if it is a subdirect product of X -algebras. In particular,
every direct product of ¢ -algebras is residually ", whence P <R, and a
subdirect product is clearly a subalgebra of a direct product, thus R < U,
which establishes (1). |

EXERCISES

1. Show that p#" and R.#" always contain trivial algebras, and if § has an
Q-algebra structure (i.e. if Q(0) = 0), then L2 always contains () as an algebra.

2. Show that sQ < @s, but that equality does not necessarily hold. (Use
Corollary 3.12 to establish the inequality, and verify that it is strict for the
category of groups and homomorphisms.)

3. Show that in general sp 3 Pps.
4. Show that QL € LQ.
5. Show that SR = RS = U.

6. Interpret Proposition 7.4 in the terminology of this section.
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Free Algebras

Many important classes of algebras, among them groups, rings, and
lattices, consist of all the homomorphic images of certain ‘free’ algebras
in the class, which are essentially determined by the cardinal of a free
generating set. These are the varieties of algebras, which form the subject
of Chapter 1V, but free algebras are also of importance in more general
situations, and we therefore devote a chapter to the study of properties of
free algebras which are independent of the notion of a variety. A free
algebra is itself a special case of the notion of a universal functor in
category theory, and so we shall first describe universal functors in general
categories (cf. Samuel [48], MacLane [63]).

1. UNIVERSAL FUNCTORS

Let # be a category and Fany functor from # to St. Thus F associates
with each aeOb # a set F(a) and with each .#-morphism «:a = b a
mapping F(x): F(a) - F(b). Given & e F(a), we shall write x instead of
EF(a); then the fact that F is a functor is expressed by the equations

(Ea)p = E(xf), Ce,=&  (£eF(a), o,f e Homx'),

whenever both sides are defined.
108
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If there exist a s -object  and an element p of F(u) with the property
that to each ¢ e F(a) there corresponds precisely one ¢’ € Hom(u,a) such
that

¢ =p&
then u is said to be a wniversal A -object, with universal morphism p, for
the functor F. Thus the class U F(a) is generated by p, under right multi-
plication by # -morphisms; this is often referred to as the wuniversal
property of the pair (u,p). Of course a universal object need not exist, but
when it does exist, it is essentially unique:

Proposition 1.1

Let F be a functor from a category A to St and suppose that (ui,p1) and
(u,,p,) are both universal for this functor. Then w and u, are equivalent,
and in fact there exists a unique equivalence 0:uy — u, such that p,0 = p,.

Proof:
By the universal property of u,, there exists a unique morphism 0:u, — u,
such that

(0] P10 = pa,

and by the universal property of u,, there exists a morphism ¢ :u; — u,
such that p,¢ = p,. Hence p,0¢ = p, = p,¢,,; by uniqueness we find that

0p = &,,

0 = &,,.

This shows 0 to be a #-equivalence. Since it is the only morphism
satisfying (1), a fortiori it is the only equivalence. [J

If # and % are any categories we shall say that % is represented in
o if there is a covariant functor F from ° x # to St. Thus to any pair
Ae0b Z, acOb 4, there corresponds a set F(A,a) and the correspondence
(A,a) = F(A,a) is contravariant in 4 and covariant in a. Given any mor-
phisms ¢: B — 4 and «:a —» hin ¥ and & respectively, there is a mapping
F(¢,0): F(A,a) = F(B,b). We denote the effect of this mapping on
& e F(A,a) by ¢&a. Then the functorial character of F is expressed by the
equations

and similarly,

() = (&), 48 = & (¢, € Hom 2),
E(af) = (Ca)f, Ee, = ¢ (2, € Hom #),

which hold whenever both sides are defined.
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In most applications the objects of .# and # will be sets with a certain
structure, and F(A4,a) consists of certain mappings from A4 to a (qua sets).
For this reason we generally refer to the elements of F(A4,a) as the admis-
sible morphisms of the representation. Instead of the single universal
A -object we now have one universal # -object for each #-object, which
will soon be shown to be a functor from % to #". For example, if Lisa
subcategory of ", % is represented in " and each #-object is its own
universal object for this representation. A less trivial example is the case
where # is a subcategory of #; more generally we shall say that »# is
subordinate to &, in symbols # < %, if there is a functor : from % to &
such that for any # -morphisms «,a':a = b (a,b e Ob '), a1 = 't implies
a=a’'l. The #-object a¢ corresponding to @ will be called the &-carrier of
a and the morphism a1 the #-morphism defined by «. In particular, if
A and & consist of sets with some structure and mappings preserving
that structure, then # < % if the Z-objects have less structure than the
A -objects and the functor 1 has the effect of ignoring or ‘forgetting’ the
A -structure, i.e. is a forgetful functor, in MacLane’s terminology. A
typical example is the functor from groups to sets, which assigns to each
group its carrier and regards a homomorphism as a mapping between the
carriers. This shows the category Gp of groups and homomorphisms to
be subordinate to the category St of sets and mappings; of course it is
not a subcategory because distinct grcups may have the same carrier.

When # < % and 1 is the corresponding functor, we can always
represent % in A by putting F(4,a) = Hom (A,a1), F(¢,x) :& = p&(a).
We remark that in all cases of interest to us the subordinate categories
are obtained by a forgetful functor. Thus e.g., the category Gp is subor-
dinate to St; the corresponding representation is obtained by associating
with each set X and each group G, all the mappings from X to the carrier
of G. As we shall see later, there is a universal object for X, namely the
free group on X. To take another example, the category of ordered sets
and order-homomorphisms is subordinate to St, and this gives rise to a
representation of sets in ordered sets, but there is no universal object in
general. Hereafter we shall usually omit explicit mention of the functor 1;
this is consistent with our practice of not using a special symbol for the
carrier of an algebra or distinguishing between a homomorphism and
the corresponding mapping of the underlying carriers.

We return now to the general case of categories #" and ., where & is
represented in 7, and suppose that for each #-object A4 there is a universal
A -object U(A) with morphism p(A):4 — U(4) having the universal

1Such a functor .2 is said to be JSaithful.
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property. Then the couple (U(A), p(4)), which by Proposition 1.1 is
determined up to J-equivalence by the representation, is called the
universal functor for the given representation. This name is justified by

Theorem 1.2

Let # and & be given categories with a representation of & in X~ for
which a universal functor U exists. Then U is indeed a functor from & to A
and is determined up to A -equivalence, and the associated mapping p
is a natural transformation from I to U.

Proof:

Leto:A — Bbe an .#-morphism; by composition we obtain a morphism
ap:A — U(B), and hence a unique # -morphism U(x): U(A) — U(B) such
that the diagram

- 4

A B
U(A)—_, U(B)

commutes. This shows p to be natural. If §:B — C is another #-mor-
phism, we have the commutative diagram

e, S

>C
v —22 vy

By definition of U(«f), we have afip = pU(xf), as well as afip = pU(x)U(B);
hence from the uniqueness we conclude that

Uaf) = Ux) U(B).
Further, if e,: 4 — A4 is the identity morphism, then
eqp =p = pU(ey),

whence Ule,) = &y4y. This shows U to be a functor, and the uniqueness
follows from Proposition 1.1. |}

If o is subordinate to %, we also have a representation of J# in 2,
but this trivially has a universal functor, namely

Ne:@—at;
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going over to opposite categories, we have a representation of £° in
A °, which may or may not possess a universal functor. Generally, if %
is represented in %, then #° is represented in 2, and if the universal
functor for this representation exists, we obtain a covariant functor from
£° to A°, or equivalently, a covariant functor from £ to #. This
functor is called the couniversal functor for the representation of 4" in #.
Clearly it is again determined up to # -equivalence.

An important example for the representation of categories is the follow-
ing. Let # be any category and A a preordered set. Then a A-system in
A is a family (a;,2,,) of A -objects a; indexed by A, together with -
morphisms «,,:a; —»a, for all iue A such that 1 <u, subject to the
conditions

2) iy =1, 0,0, = o, Whenever 2 < pu < v.

We denote by # () the category whose objects are A-systems in ¢, for
arbitrary preordered sets A, and whose morphisms are defined thus:
Given Z()-objects (a;,%;,,)zuen aNd (beBe)enems an F (A )-morphism
between these objects is defined by an order-homomorphism 4 — A’ from
A to M together with a family of #-morphisms

¢:a;, = b,
such that
a1u¢n = ¢'l.ﬂl’p’ (inu € A)‘

If the number | is regarded as an ordered set consisting of a single element,
then the l-systems in % and their & (2)-morphisms form a full sub-
category of () which is isomorphic to . We shall therefore take X
to be embedded in #(#") by means of this isomorphism, so that hence-
forth & may be regarded as a subcategory of (). This gives rise to a
representation of #(X') in &, and we may enquire whether there exists a
universal functor or a couniversal functor for this representation. In
answering this question, it is advantageous to consider not the whole of
Z(A') but a subcategory (containing ¢, of course) which is obtained by
limiting the class of preordered sets in some way. E.g. we may admit only
totally ordered sets, or only totally unordered sets, or directed sets. We
give a few examples which will be used later.

(i) The universal functor for F(X'), using totally unordered sets. In the
case of totally unordered sets, there are no morphisms to make up an
F(A)-object, and (2) is vacuous. By definition, the universal functor
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associates with every family (a;);. 1 of 4 -objects a 2 -object p = |_|a,1,
which is unique up to # -equivalence, and a family of #"-morphisms,

3) pa; = p,

such that for every family of #-morphisms ¢,:a, = b (b e Ob ) there
exists a unique #-morphism ¢:p — b such that ¢, = p;¢. The #-object
@, is called the free composition of the family (a,), with the canonical
morphisms (3). Such a free composition exists in particular for the category
St; it associates with any family of sets (4;) a set P = [_|A,1, which is the
union of pairwise disjoint sets A such that 4} is equipotent with 4,. In this
case, | | 4, is also called the disjoint sum of the A;. In II1.6 we shall show
that the free composition exists in (Q), and we shall consider other
categories of Q-algebras with this property.

(ii) The couniversal functor for F(.X°), using totally unordered sets. This
functor associates with every family (a;);., of J-objects a 2 -object
¢ =[a;, unique up to #-equivalence, and a family of #-morphisms

(4) giC—a,

such that for every family of morphisms ¢,:5 —a, (b € Ob ), there is a
unique 2 -morphism ¢:b — ¢ such that ¢, = ¢a,. The A -object ]_|i:1,1 is
called the direct composition of the family (a;), with the canonical morphisms
(4). E.g., in the case of St the direct composition is just the Cartesian
product; for (Q) it is the direct product, and we shall see in I11.6 that the
direct composition also exists in certain subcategories of (), even when
these categories do not admit direct products.

(iii) The universal functor for F(X'), using directed sets. With each
A-system (a;,2;,) in o the universal functor associates a % -object d and
a family p,:a; — d satisfying

aiypp =P, (’1 "‘<'- #)!

and such that, for every family of morphisms ¢,:a, — b satisfying «;,¢, =
¢,, there exists a morphism ¢:d — b such that ¢, = p,¢. The object d is
called the direct limit of the given system and is written

d= ]:“_n (a;, aﬁ,u)'

A A-system in ", where A is directed, is also called a directed system.
(iv) The couniversal functor for F(X'), using sets directed downwards.
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This functor associates with each A-system (a,,x;,) a A -object ¢ and a
family ¢,:c — a, satisfying

u’lﬁ).,u = o-,rl (’1 é ,“)9

and such that, for every family ¢,:b —a; satisfying ¢,x;, = ¢,, there
exists a morphism ¢ :b — ¢ such that ¢; = ¢o,. The object ¢ is called the
inverse limit of the system given and is written
¢ = lim(a;,x;,).
i
It is not hard to prove that direct and inverse limits exist for the category
(Q); more precisely, direct limits exist in any local category of Q-algebras
admitting homomorphic images, and inverse limits exist in any hereditary
residual category of Q-algebras. We shall prove only the first of these
statements, as this is all we require.

Proposition 1.3
Any local category of Q-algebras admitting homomorphic images admits
direct limits.

The proof is similar to that of Proposition 11.7.4. Let % be a local
category of Q-algebras admitting homomorphic images; given any
A-system (A ,,2,,) of s -algebras and homomorphisms, where A is directed,
we form P =[] A4,, where the product is taken over all algebras 4, with
nonempty carrier, and consider the set T of threads in P, i.e. elements
X = (x,) such that for some 4, € A (depending on x) we have

Xy, =X, forall u = 1 = A,.

Two threads x and y are said to be equivalent if there is a 4, € A such that
x, = y;forall 2 = 2,. This relation is clearly reflexive and symmetric, and
because A is directed, it is also transitive, so that we have an equivalence
relation, q say, on 7. As in the proof of Proposition 11.7.4 we see that T is
a subalgebra of P and that q is a congruence on 7. Putting D =T/q, we
have, for each 4 € A, a homomorphism

(5) pr:A, =D
defined as follows: Given a € A;, consider the thread x given by

ﬂ'stj“ if.u;l

X, = "
“ |any element of 4,  otherwise.
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Clearly, the g-class containing x depends only on @ and not on the choice
of the coordinates x, with g * i. We may therefore write x? = ap;, and
note that for any u = 7, the element ax;, determines the same qg-class as
a, i.e.

UanlPu = Pa for 4 < .

We assert that D is the direct limit, with canonical homomorphisms p,.
To establish the universal property, let ¢,:A4; — B be a family of homo-
morphisms satisfying ;,¢, = ¢,. This means in effect that the coordinates
of any thread x are mapped by the ¢; to a family (b,) of elements of B
such that b, = b, for all A, = J, (for some 4, € A); moreover, this constant
value b, is the same for equivalent threads, and we therefore obtain a
mapping ¢: D — B, which is easily seen to satisfy

(6) $i = pit.

Now the images of the canonical mappings p,: 4, — D form a local system
of i -algebras for D, hence D is itself a #-algebra and each p, isa 4'-
homomorphism; further, since the ¢, are »#-homomorphisms, it follows
by (6) and the regularity of " that ¢ is a #-homomorphism. [}

EXERCISES

1. Verify that the embedding of # in #(¢) defines in fact a representation
of #(A) in A and show that for the case 4" = St this representation has a
universal functor and a couniversal functor.

2. Let ", &, .4 be any categories such that ¢ is subordinate to ¥ and &
subordinate to .4 ; verify that ¢ is subordinate to .#. If, further, the respresen-
tations of .# in % and of &% in J have universal functors U, ¥ respectively,
show that the representation of .# in 2 has the universal functor A — V(U(4)).
Conversely, if .# has a universal functor in ¢, then so does %, but .# may not
have a universal functor in %. (For the last part, take .4 = ("), with totally
unordered index sets, and . = % ,(#") the subcategory of finite’ families of
A -objects.)

3. Let . be subordinate to % and assume that the representation of & in
has a universal functor U. If, further, & admits free composition and a = L]al,
where (a,) is a family of #-objects, then U(a) is the free 2 "-composition of the
family (Ulay)).
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4. Prove that any residual category of Q-algebras admitting subalgebras
admits inverse limits.

5. If A4 is the direct limit of a directed system of Q-algebras, show that A
can be defined as an Q-algebra such that the canonical mappings are homo-
morphisms. If the algebras of the system belong to a category % admitting
homomorphic images, show that A is locally .

2. -WORD ALGEBRAS

We shall now apply the results of the preceding section to the category
(Q). Clearly, (Q) is subordinate to St, by the functor which associates with
each algebra its carrier. Thus we have a representation of St in (Q),
and our object is to show that this representation has a universal functor.
Such a functor associates with any set X an Q-algebra which we shall call
the Q-word algebra on X and denote by Wo(X). It is of some interest to
have a constructive existence proof of this algebra; we shall therefore
begin with the construction of Wq(X) and verify its universal property
later on.

Let Q be any operator domain and X any set, and define an Q-algebra
W(Q;X), the algebra of Q-rows in X, as follows: by an Q-row in X we
understand a finite sequence (i.e. an n-tuple for n = 1) of elements of the
disjoint sum Q LI X. On the set W(Q;X) of all Q-rows in X we define
an Q-algebra structure by juxtaposition; thus, if @ e Q(n) and a; e W(Q;X)
(i=1, -, n),say

a; = (i, du,) (a; e QU X),
then

(1) [ O (al.l!”'! alkn ale“') ankn’w)'

When X is disjoint from Q, we may replace the disjoint sum by the
ordinary union, and if we identify Q-rows consisting of a single term with the
corresponding element of Q u X, we can regard Q and X as subsets of
W(Q;X); then both sides of (1) may be denoted by

(2) Ay Qg Aoy g, O

For simplicity of notation we often assume that X is disjoint from Q; this
is no loss of generality, as will soon become clear.
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Definition

The subalgebra of W(Q;X) generated by X is called the Q-word algebra
on X and is denoted by Wq(X). Its elements are called Q-words in X, and
X is called its alphabet.

The first point to notice is that Wy(X) is determined essentially by the
cardinal of the set X.

Proposition 2.1
If X, Y are any sets, then the Q-word algebras on X and Y are isomorphic:

Wao(X) = Wo(Y),
if and only if X is equipotent to Y.

Proof:
VIf §: X - Y is a bijection, then we obtain an isomorphism between
W(Q:X) and W(Q;Y) by replacing, in each Q-row on X, each x € X by
x0. Restricting this isomorphism to Wy(X), we get a mapping whose
image is Wq(Y), it is clear that this is in fact an isomorphism between
Wo(X) and Wo(Y).

Conversely, assume that

(©) Wa(X) = Wa(Y).

On any Q-algebra A we may define a congruence q by putting @ = b(mod q)
if and only if @ = b or @ = xw, b = y@ for some x € A", y € A", w € Q(n),
@ € Q(m). The congruence properties are easily verified; we denote by AP
the quotient algebra A/q so defined. Then for any Q-word algebra
W = Wy(X), the algebra W° consists of the singletons of elements of X
and a further class which contains all the other elements. Thus |Wa(X)°|
= |X| + 1. If (3) holds, we therefore have

|X|+1=|Y]+1,

whence |X|=Y]. |} .

We remark that the isomorphism between Wq(X) and Wq(Y) obtained
in the first part of the proof is uniquely determined by 6. This follows
from a quite general lemma:

Lemma 2.2
Let A be an Q-algebra and X a generating set of A. Then any homomorphism
of A into another Q-algebra is completely determined by its restriction to X.
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For if 0, and 0, are two homomorphisms from 4 to B which agree
on X,
(4) x0, = x0,
for all x € X, let A" be the subset of all elements x € 4 for which (4) holds;
then A’ is a subalgebra of A, for, if @,0, = a0, (i = 1,---,n) and w € Q(n),
then

(a,-a,w)0, = (a,0)(a,0,)w
= (a,0,)-(a,0;)0 = (a,--a,w)0,.

Since A’ contains the generating set X of 4 by hypothesis, it follows that
A" = A, ie., (4) holds throughout 4. |}

To obtain a more explicit description of Q-words we introduce the
notions of length and valency. Given any Q-row in X,

W= CyCy (c;eQ Ll X),

we define the length of w as the integer N and denote it by /(w). The
valency of w, denoted by v(w), is defined as

v(w) =Y v(cy),
where
if ce X,
Be)= —n+1 ifece Q).

Thus the elements of X have the same valency as constant operators,
With these definitions we have the following criterion for an Q-row to be an
Q-word (cf, P. Hall [58]; for a history of the theorem see also Rosenbloom
[50]).

Theorem 2.3
An Q-row w =c¢,---cy in X is an Q-word if and only if for every left
segment w; = ¢,--¢c; of w,

(5) v(w) >0 (i=1,--N),
and further,
(6) v(w) = 1.

We remark that intuitively this is obvious, for v(c) essentially represents
the ‘element-balance’, for ¢ € Q L] X. Thus, if ¢ € Q(n), then ¢ requires an
input of # elements and has an output of one, so that

t(c) = output — input.
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Now (5) ensures that at any given stage there are enough elements to
operate on, and (6) states that the final output is one element.

To prove the theorem, we show more generally, by induction on the
length /(w), that w is a sequence of r Q-words if and only if (5) holds and

(6°) v(w) =r.
This includes the assertion of the theorem for r = 1. The result clearly
holds for words of length 1. Now let w be an Q-word, say

w=a;dw (a,€ Wo(X), o e Qn)).
By the induction hypothesis, we have v(a;) = 1 and »(@w) =1 — n; hence

tiwy=n+1-n=1.

Moreover, every left segment of each a; has positive valency, so the same
holds for w. Now, if w is a sequence of r words, then (5) again holds and
(6") follows by addition.

Conversely, let w be an Q-row satisfying (5) and (6). If I(w) = 1, then
t(w) =1 and we X1 Q(0), so w is then an Q-word. If iw) > 1, let
w = w'e, where ce QLI X and v(w’) =r >0 by (5). By the induction
hypothesis w’ is then a sequence of r* Q-words. Further, we have

v(c) = v(w) —ov(w) =r —r".
Now either r — r = 1 (then ¢ is an Q-word and hence w is a sequence of
r +1=r words), or r —r =1—5<0, in which case ¢ is an s-ary
operator. Now
s=r—(r=-1<r,

therefore we can form from ¢ and the s preceding words just one new
Q-word and obtain a sequence of r' — s + | =r Q-words, as asserted. |
From the proof of this theorem we obtain

Corollary 2.4
An Q-row satisfying (5) and (6') can be written as a sequence of r Q-words
W =W Wy W,
in exactly one way. ||
Corollary 2.5
If w = ¢, ¢y is any Q-word of the form
(7) W=da,-d,w (a; € Wo(X)),



120 Free Algebras [Chap. IlI]

then any proper subsequence w' =cic;.,---¢; (j—i <N —1), which is
itself an Q-word, occurs within a single factor a, of the expression (7).

For, if not, let w* = uv, where u is a right segment of @,. By the valency
condition for w', v(u) > 0, while the valency condition for @, shows that
v(u) <0 unless u = a,. Thus w' is of the form w' = a,a,,,--aw", where
v(w") = —(k — h)< 0. This is impossible if w” is a left segment of a,.,,
hence k =n and w" = w; but this is possible only if A =1 and w' =w,
which contradicts the hypothesis.  [j

Let A be any Q-algebra; from Corollary 2.4 it is easy to see that if in an
Q-word w in X we replace each element of X by an element of A, then we
obtain a uniquely determined element of A. This is clear if [w) = 1, so
let us assume that /(w) > 1 and use induction. We have

W = l,p] .-.“J"w‘

where @ € Q(n) and the w; are uniquely determined, by Corollary 2.4,
and are Q-words of shorter length than w. When we replace the elements
of X by elements of A, each w, becomes an element of 4, by induction,
and hence w does too. Moreover, the element of 4 obtained in this way
is unique. This remark will now be used to establish the universal property
for Q-word algebras.

Theorem 2.6
Let A be an Q-algebra and X an arbitrary set. Then any mapping 6: X — A
extends in just one way to a homomorphism 0: Wo(X) — A.

Proof:
We define a mapping 0: W,(X) > A to extend 0 as follows: Every
Q-word w is unique of the form

W=, Cy (c;e QLI X);

we write
wl = ¢} e,
where
P ifee Q,
“Tle0  ifcex

Thus wf is just the unique element of 4 obtained by replacing x € X by
x0. The remark preceding the theorem shows that wf is well-defined,
and it is easily verified that § is a homomorphism, which is unique by
Lemma 2.2. J
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If wis any Q-word in X, and x,,---,x, are the actual elements of X
occurring in w, then w may be regarded as a function of x,,--,x,, and we
shall often indicate its dependence on x,,---,x, by writing

W= WXy, X,).

If 0:X - A4 is any mapping into an Q-algebra 4 and x,0 = a;, then
the image of w under the induced homomorphism & is naturally denoted by

wl = w(a,, .a,).

The assertion of Theorem 2.6, that w(a,,---.a,) is uniquely determined
by w(x,,---,x,) and the mapping 0:x; - a,, depended essentially on the
fact that the operators are always written on one side of the row of
elements on which they act. Thus e.g. if *+’ is a binary operator and the
result of operating on (a,b) is denoted by ‘a + &', it is necessary to dis-
tinguish between

(8) a+b+c¢) and (a+b) +c

by placing parentheses (as we have done) or by some other means.
However, if in accordance with the notations used in Chapter II we write
‘ab+" for the result of operating by ‘+’, then the two expressions (8)
become

abc++ and ab +c+.

Now parentheses are no longer necessary; this observation is due to
Lukasiewicz. In particular cases we shall usually keep to the accepted
notation for operators.

An important consequence of Theorem 2.6 is the following result,
asserting the existence of presentations of Q-algebras (cf. I11.8 below).

Theorem 2.7
Any Q-algebra A can be expressed as a homomorphic image of an Q-word
algebra Wo(X). for a suitable set X.

For if X is any generating set of 4, then the identity mapping on X
may be extended to a homomorphism ¢: Wo(X) — 4. The image under
this homomorphism is a subalgebra of A4 containing X, and hence must be
A itself. Thus A is a homomorphic image of Wu(X). |}

Informally, the theorem may be taken to state that if 4 is an Q-algebra
generated by a set X, then any element @€ A can be expressed as an
Q-word in X, possibly in different ways. The minimum of the lengths of
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Q-words representing ¢ will be called the length of a relative to X and
denoted by /y(a), or more briefly by /a). It is clear that /(a) =1 if and
only if a e X u Q0); if /(a) > 1, then by taking an Q-word of length /(a)
representing @, we obtain a representation

©) a = b,--b,», where w € Q and la) = YI(b;) + 1.

Every element of 4 has finite length, relative to a given generating set of
A, and this makes it possible to prove results about 4 by induction on the
length. As a case in point we shall prove here a theorem due to Higman
[52], on ordered algebras, which is needed later (in Chapter VII). More
precisely, the result concerns preordered algebras, and we begin by
generalizing the notion of a partial well-ordering (I.4) to preordered sets.

A preordered set A is said to be partly well-ordered if every strictly
descending sequence’

ay > a; > -

terminates and every subset of pairwise incomparable elements in A is
finite. For ordered sets, this reduces to the previous definition; more
generally, if A is preordered and A/q is the associated ordered set (cf.
Exercise 1.3.6), then A is partly well-ordered if and only if the ordered set
A/q is partly well-ordered. Other ways of expressing this condition are
given in

Lemma 2.8
For any preordered set A the following three conditions are equivalent:

(i) Every infinite sequence in A contains an ascending subsequence, i.e.,
given (a;) in A, there is an infinite sequence (n') of integers such that
m’ <n' implies a,,. < a,..
(i) For every infinite sequence (a;) in A there exists a pair of integers m,n
such thatm <nand a,, < a,.
(iii) A is partly well-ordered.

Proof:

Evidently (i) implies (ii), and (ii) implies (iii), from the definition of a
partly well-ordered set; so it remains to show that (iii) implies (i). Thus
assume that A is partly well-ordered and take an infinite sequence (a;) in 4.
For the moment let us call an element a; sirictly minimal if a, < a; for

1 Recall that ‘a > b means ‘a = b but not b = a'.
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no n. Then the number of strictly minimal elements in the sequence
must be finite, and we can therefore choose one, say, a,. such that

(10) a. <a, for infinitely many n.

Omitting all terms a, which do not satisfy (10), we obtain an infinite
sequence, (b;) say, such that b, = a,. < b, for all n. Repeating the argu-
ment with the sequence (b;)(j = 2), we obtain by induction on # an infinite
ascending subsequence of (a;), which shows that (i) holds. |

If A and B are any preordered sets, then their Cartesian product 4 x B
is preordered by the rule

(a,b) < (a'.b") if and only if a <a’" and b < b'.

The Cartesian product of two partly well-ordered sets is again partly
well-ordered. For any infinite sequence of elements of the product con-
tains an infinite subsequence in which the first factors are in ascending
order, and this contains an infinite subsequence in which the second factors
are in ascending order. A corresponding definition and proof show that the
product of any finite number of partly well-ordered sets is again partly
well-ordered.

We now come to Q-algebras; an Q-algebra A is said to have a divisibility
preordering if its carrier is preordered in such a way that for any w € Q,

(a) a,-a,w < b,-b,w whenever a; < b, (i = 1,---,n),
(b) a<b,--bw whenever a < b, for some /.

Now Higman’s theorem may be stated as follows:

Theorem 2.9

Let A be an Q-algebra with a divisibility preordering, where Q is finite.
If A is generated by a set X which is partly well-ordered, then A is itself partly
well-ordered.

Proof:
If 4 is not partly well-ordered then there exists a sequence (a;) in A
such that

(1) a; % a; for all i,j such that i < j.

Let us call a sequence (a,) nonascending if it satisfies (11). Among all the
nonascending sequences (a,) in A we choose one in which a, is of minimal
length. Among the nonascending sequences beginning with this a, we
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choose one with a, of minimal length, and so on. Then the infinite
sequence a,,d,, -+ so constructed is itself nonascending. Now, for each

i =12, either l(a;) =1, or
(12) a; = by b0, byeAd, Z"(bik) + 1 = Ka,).

We note that when I(a;) = 1, then a, € X u Q(0), and since Q(0) is finite,
the set X u Q(0) is partly well-ordered. It follows that there can be at most
finitely many a; of length 1, since they form a nonascending sequence, by
(11). Thus the a; in (12) still form an infinite sequence.

We assert that the set, B say, of all elements b;, occurring in (12) is
partly well-ordered. For if this were not so, then we could find a non-
ascending sequence (b;.;.) (i = 1,2,--+) in B, i.e.

(13) byw € bjje  for all i,j such that i < j.

Let i, be the least value of i’ occurring in the sequence; then by omitting a
finite number of terms from the sequence, we may assume that i, = 1",
Now consider the sequence

(14} Ayyeeylyr-y, bl‘l's bZ’Z‘s'"'

If @, < b;.;. for some h < 1’ and some i, then a, < a;,, and this contradicts
(11). Thus a, £ b;;., and together with (11) and (13) this shows that (14)
is nonascending. But by (12), #b,,.) < l(a,.), and this contradicts the
choice of a,.. Thus, B contains no nonascending sequence, i.e., B is
partly well-ordered. Now Q is finite, so some @ € Q occurs infinitely often
in (12); hence by going over to a subsequence of (a;) we may assume that
w = w, for alli. Let a(w) = n; then the Cartesian power B" is again partly
well-ordered; hence the sequence a; = b;,--b;, contains an ascending
subsequence; but this contradicts (11), and the result follows. l

The theorem may also be stated in terms of graphs, and in fact the
above proof is based on the proof of a more general graph-theoretical
result given by Nash-Williams [63]; see also Kruskal [60] and Exercise 10
below.

EXERCISES

1. If every operator is written on one side of the row of elements on which it
acts, and for each n all the n-ary operators are written on the same side (i.e.
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either on the right or on the left), which may vary for different n, are paren-
theses needed?

2. (P. Hall.) Show that the number of Q-words of length & in which £,
occurrences are n-ary operators (regarding elements of X as O-ary operators) is

(k= 1!
Kotk ! ---

3. Show that an Q-algebra A is an Q-word algebra if there is a generating set
X such that for any w, @ € Q and any a;,b; € A4, (i) a,---a, ¢ X and (ii) @, ---a,0
= by b, implies that m =n, w = @, and a; = b;(i = 1,---,n).

4. Show that A is locally an Q-word algebra if and only if it satisfies (ii) of
Exercise 3. Give an example of an Q-algebra which is locally an Q-word algebra
without being itself an Q-word algebra. (Take Q to consist of a single unary
operator.) -

5. Show that any subalgebra of Wy(X) is of the form Wy(Y), for some Y.
(Take Y to be a minimal generating set of the subalgebra and apply Exercise 3).

6. Show that the automorphism group of the Q-word algebra on X is
isomorphic to the symmetric group on X.

7. Let A and B be Q-algebras on the same set X as the generating set and
denote by H the subalgebra of 4 x B generated by the elements (x,x) (x € X).
If £ is the projection 4 x B — A, restricted to H, show that e is always surjective,
and that it is an isomorphism for all choices of B (generated by X) if and only
if 4 is the Q-word algebra on X.

8. (P. Erdds.) Show that if a set X of positive integers is such that any infinite
subset contains two integers one of which divides the other, then the same
holds for the set of all products of elements of X.

9. If X is any preordered set, show that the Q-word algebra Wo(X) may be
given a divisibility preordering which induces the given preordering on X.

10. Let Q be a partly weli-ordered operator domain; then the Q-algebra A4
is said to have a divisibility preordering if it is preordered in such a way that for
any w, @€ Q,

(a") ay--a,0 < by---b o whenever a; < by, for some suffixes ' < 2" < «-- < /' in
the range 1,---,s and w < @,
(b) a < b,---b,e whenever a < b; for some /.

Verify that this reduces to the definition given in the text when Q is taken to be
finite and totally unordered. Show that with the new definition, Theorem 2.9
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holds for any partly well-ordered operator domain. (Show first that the finite
sequences of elements of B, defined as in the proof of Theorem 2.9, are partly
well-ordered, by regarding them as elements of the free semigroup on B and
applying Theorem 2.9; now use this semigroup in place of B" in the last part of
the proof.)

3. CLONES OF OPERATIONS

Let A be a nonempty set and denote by @(A) the set of all finitary
operations on A. As we have seen, an Q-algebra structure on A is specified
by a certain subset of @(A); from the operations in this subset, we can
form others by composition, and the decisive role is played not by the set
of operations on A4 defined by Q, but by the set of all operations obtainable
from them by composition. The way in which the operations on A are
combined may be regarded as the effect of certain operators acting on 0(4),
and they provide @(A) with a certain algebraic structure, which we shall now
describe more closely.

We remark that @(A4) has the form of a disjoint sum

o(4) =] o,(4),

where 0,(A) is the set of all n-ary operations on 4. Given any m elements
oy, -0, € 0, and f € 0, there exists a unique n-ary operation y defined by

(1 ¢y = (ca,) - (ca,,)f for all c e A".

This operation y will be denoted by «, -, and called the composition
of ay,+,o,, with f, so that we have

(2) oy o) = (cay)--(co)B.
Further, for each n > 0, there are n elements & € ¢, defined by
(3) ed = ¢, where ¢ = (¢, .c,) € A"

Thus the effect of 8 is to pick out the ith coordinate; 8} is called a wunit
operator. Now 0(A) may be regarded as a partial algebra with com-
position as (m + 1)-ary operation (at least in the instance (1)) and the
unit operators as 0-ary operations, whose values (in the instance (3)) are
n-ary operations on A. For each type of composition it is necessary to
specify its domain of definition; in fact, whether the composition of
a,,+,,, With f§ is defined depends only on the arities of a;,-- 8. Any set
of operations on A admitting the operations (1) and (3), i.e. closed under
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composition and containing the unit operators, is called a closed set of
operations on A, or more briefly, a clone on A (P. Hall). In particular,
@(A) is a clone, and a general clone on A is also referred to as a subclone
of €¢(A4). If #, ¢ are any clones, a clone-homomorphism F — 4 is a
mapping which preserves the arity of each element and is compatible
with the clone operations. Thus clones form an example of graded
algebras in the sense of Higgins [63].

Let 4 be an Q-algebra; then the action of Q on A defines certain
operations on A; the clone generated by these operators is called the clone
of action of Q on A. Denoting this clone by #, we see that the elements
of & are precisely those operations on 4 which can be obtained by
repeated composition from Q and the unit operators. It follows that the
Q-subalgebras of 4 are just those subsets of 4 which admit all the opera-
tions of #. Generally, if X is any subset of A4, then the set X.# consisting
of all the values of operations in # as the arguments range over X, is a
subset admitting %, and hence a subalgebra of A. It is in fact the sub-
algebra generated by X, as is easily seen. More precisely, we have

Proposition 3.1
Let A be an Q-algebra and F the clone of action of Qon A. If ¢ = (¢;,+++,c,)
€ A", then ¢ 7 is the Q-subalgebra of A generated by ¢,,--,c,.

The proof is an immediate consequence of the definition of #. |j

In order to study the clone of action of Q more closely we need the
notion of a centralizer in @(A4). Let a8 € 0(4), where A is any set, and
denote the arities of «, # by m, n respectively. If C is any m x n matrix
of elements of A, we can operate on each row of C with f and thus obtain
a column of m elements of 4, which may be written as Cf. For any column
b of m elements of A4, denote by ab the result of applying « to 5. Then by
applying « to the n columns of C, we obtain a row of n elements of A,
which is written «C. With these conventions both («C)f and «(Cf) are
defined as elements of A. If

(4) (2C)p = a(CP) for all m x n matrices C over A,

then we say that o and f commute. Thus e.g., in the case of an Q-algebra,
an Q-endomorphism is a unary operation commuting with all the opera-
tions defined by the elements of Q.

Let A be any set and U any subset of 0(A4); an element « of @(A) is said
to centralize U if it commutes with each element of U. The set of all
elements centralizing U is called the centralizer of U in @(A) and is denoted
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by U*, while the centralizer of 0(A) itself is called the centre of 0(A). For
ease of notation it is convenient to write the elements of U* on the opposite
side from the elements of U; thus if U acts from the right, U* acts from

the left, and the commutative law then takes the form of the associative
law (4).

Proposition 3.2
Let A be an arbitrary set; then the centralizer of any subset of 0(A) is a

subclone of O(A). In particular the centre of 0O(A) is the clone consisting of all
unit operators provided that A has more than one element.

Proof:
Clearly a unit operator commutes with every operation. Now let U
be any subset of 0(4); choose a,,--,x,, B € U*, where the «; are n-ary and

B is m-ary, and let n be any k-ary operation in U. Then for any k x n
matrix C over 4,

(nC) %y -tmB) = [(1Caty ]+ [(MC)tm]B
= [1(Catp)]--[n(Ct,) 1B
= {n[(Cay)--(Can)1}B
= n{[(Coy)-+~(Cx,,) 1B}
= n[C(ay - -a,B)],
which shows that U* also admits composition, and is therefore a clone.

Assume now that 4 has more than one element and let « belong to the
centre of 0(A). If « is O-ary its value must be fixed under every permutation
of A, which is false because A has more than one element. Therefore
a(®) =n > 1; now suppose that a # 5;’(i = 1,---,n); then the value of ca,
as ¢ = (c,,+,¢,) ranges over A", is different from ¢;. Thus we can find an
n % n matrix C over A such that the column Ca is different from all the
columns of C. Define § € (0,(A))" as follows (acting from the left); fx = x
for all columns x such that x # Ca, while (Cx) is the first column of C.
Then

(BC)x = Cu # (Car),
which is a contradiction; hence o must be a unit operator. [

Let 4 be an Q-algebra; denote the set of operations defined by the
action of Q by U and the clone of action of Q by #. Thus # is the clone
generated by U, and it is clear from Proposition 3.2 that the centralizer
U* of U also centralizes #. It follows that # < U**, but here equality
need not hold. We shall call U** the bicentralizer of Q; if, moreover,

©) F = U**,
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we say that Q acts bicentrally. This requirement (5) is very strong, and in
practice it is more useful to have weaker conditions. We shall say that Q
acts fully on A if for each ¢ € U** and each ¢ € A", where n = a(¢), there
exists ¢’ € # such that

(6) ch =cd'.
If for every finite set of n-tuples ¢,,---,¢, € A" there exists ¢’ € # such that
(7} Ci¢ = ciéf (‘F i 1,“‘,?’),

then Q is said to act densely on 4. Clearly, if Q acts bicentrally, it acts
densely, and if Q acts densely, it acts fully. If 4 is regarded as a discrete
topological space, then @,(A4) = A*" is a topological space with respect
to the product topology, and hence 0(4) =] ] ¢,(4) becomes a topological
space. The resulting topology is called the topology of pointwise conver-
gence, and to say that Q acts densely on 4 amounts to saying that &, the
clone of action of @, is dense in the bicentralizer of Q. When A is finite,
this is the same as acting bicentrally. More generally, we have

Proposition 3.3
Let A be an Q-algebra and denote the centralizer of Q by @.If for all

n, A* qua ®-algebra, is finitely generated, then Q) acts densely if and only
if Q acts bicentrally.

Proof:

Assume first that Q acts densely. Let ¢ be any element in the bicen-
tralizer of Q, say a(¢) = n. Any ¢ € A7 is of the form §Y, where 0 €®
and the rows of ¥ come from a finite generating set of A*. Since Y is

finite, the clone of action of () contains ¢’ such that y¢ = y¢' for each
row y of Y. Hence

cp =(0Y)¢ = 0(Y¢) = 0(Y¢") = (0Y)¢" = c¢’".

Thus (6) holds for all ¢ € A", which means that Q acts bicentrally. Con-
versely, any Q acting bicentrally acts densely. [j

We now go on to ask under what conditions Q acts densely. Our
main objective is the density theorem, which states that Q acts densely
on A if and only if it acts fully on 4" for all r. First we need a lemma on
bicentralizers.
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Lemma 3.4
Let A be an Q-algebra with bicentralizer . Then for anyr = 1, the bicentra-
lizer of Q acting on A" is also ®.

Proof:

Let ® be the centralizer of Q acting on 4 and ©’ the centralizer of Q
acting on A". Given any n-ary operator w € Q, an m-ary operation 6 on
A" commutes with o if for every m x n matrix C over 4",

(8) (0C)w = 0(Cw).

Since the values of @ are elements of A", & may be regarded as a row of
r (mr)-ary operations on A4:0,,---,0, say, and (8) just states that each 0,
commutes with ®, as operator on A. Thus 6 € ®" if and only if 0, ©
(i =1,---,r). Now let ® and @’ be the centralizers of © and ©' respectively;
we have to show that ® = ®. Given ¢ € ®’, where ¢ is n-ary say, then

¢ =(¢1,9)
consists of r (nr)-ary operations on A such that
©) (0C)p = 0(C¢)  for each 0 € © and Ce A™ "',

Here the notation indicates that Cis an m x n x r array of elements of A.
Each 0, acts on an m x r slab of C; we choose 6 such that 6, picks out the
(1,1)-element of the m x r slab. Such an operation is made up of unit
operators and therefore belongs to
©’. Now (9), with this choice of 0,
/ shows that ¢,, acting on an n x r
r slab, does not depend on the (4, j)-

element of the slab, except for j = 1.

r

n In other words, ¢,, and likewise each

Vigure 9 ¢,, may be regarded as an n-ary

operation. The same choice of 6

shows further that ¢, = --- = ¢,. Thus ¢ acts as n-ary operation on A.

Since it centralizes ©, it must belong to ®, whence ® = ®. Conversely, if
¢ € @, then ¢ centralizes @' because Q and ® acting on A" have the same
centralizer, and so ¢ e ®’. Thus @' = ®. I

Consider now an Q-algebra A; denote the clone of agction by # and
the bicentralizer by ®. To say that Q acts fully on 4 means: for each
ce A" and each n-ary ¢ € ® there exists ¢’ € # such that c¢ =c¢’. If
¢ =(ey,-+-,¢,), then ¢’ is an element of the Q-subalgebra generated by
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;¢ and conversely, every element of this subalgebra has the form
cd’ (¢' e ). Thus Q acts fully if and only if, for each ¢ e® and each
c e A", where a(¢) = n, c¢¢ € c#. Similarly, Q acts densely if and only if
for each ¢ e ® and each r x n matrix C over 4, C¢ belongs to the sub-
algebra of A" generated by the n columns of C. Since @ is also the bicentra-
lizer of Q acting on A", this just states that Q acts fully on 4" and we obtain

Theorem 3.5 (density theorem)
Let A be an Q-algebra. Then Q acts densely on A if and only if it acts fully
on A" forr=12,-. |}

To obtain useful conditions for the density theorem to hold it is necessary
to specialize the algebras somewhat. We shall consider only one con-
dition, which in particular may be applied in the case of modules over a
ring to obtain the usual form of the density theorem. An Q-algebra A is
said to be fully retractable if, for each integer n = 1,2,:-- and each sub-
algebra B of A", there exists an Q-endomorphism of 4" with B as image.
Then we have

Proposition 3.6
In any fully retractable Q-algebra A, Q acts densely on A.

Proof:

Fix r and let ¢ be the bicentralizer of Q acting on A”. Given any n-ary
operation g€, and any cy,..., ¢, € A%, denote by B the subalgebra of A
generated by the n columns of C =(£' ). If z is an endomorphism of A
with B as image, then C = zX, where X is an r x n matrix with
elements in 4. Hence

Cé = (zX)p = n(X¢) € B.

This shows that C¢ = C¢' for some ¢’ € &, because B is generated
by the columns of C; in other words, Q acts fully on 4, and hence, by
the density theorem, it acts densely on 4. |

If for our Q-algebras we take R-modules, where R is a given ring, then
any completely reducible module (i.e., any module which can be written
as a sum of irreducible modules) is fully retractable in the above sense,
because if M is completely reducible, then so is M”, and any submodule is
then a direct summand. In this way we obtain the Chevalley-Jacobson
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density theorem for modules (Jacobson [56], ch. VI): If M is a completely
reducible unital R-module, where R is a ring with unit element, then R
acts densely on M.

EXERCISES

1. Show that when A has one element, @(A) coincides with its centre.
2. For any set A, find the centralizer of 0,(A4) and, more generally, of 0,(A).

3. (P. Hall) An abstract clone is a partial algebra A defined as follows:
With each ¢ € A a nonnegative integer a(c) is associated ; 4 has constant operators
d® (i=1,---,n; n=1,2,--) such that «(d{"’) = n and for each integer r there is
an (r + 1)-ary operation

(.ali'":aan = al"'arb»u
which is defined whenever «(a,) = -+ = a(a,), «(b) = r; moreover, in this case
a(a,+-a,bp) = a(a,). These operations are subject to the laws

(i) (ablnu') X -(ab,,u)c,u = GIJCH.U,
where a = (a;,--,a,), b = (by,*+,b,), and «(a;) = n, a(by) = r, alc) = s,
(ii) ad\ u = a,,

where a is as in (i).

Show that every clone of operations is an abstract clone.

4. Define Wo(X) as an abstract clone and show that for any Q-algebra A
there is a natural clone homomorphism Wq(X) —=@(A4). Conversely, if 4 isany
set, show that any clone homomorphism Wy(X)—0(A) defines an Q-algebra
structure on A.

5. Let R be a ring, not necessarily with a unit element, and define an R-module
M to be completely reducible if any submodule of M is a direct summand and
xR =0 for x € M implies x = 0. Show that for any x € M, x € xR, and hence
verify that the density theorem still holds in this case.

4, REPRESENTATIONS IN CATEGORIES OF Q-ALGEBRAS

We have seen that the Q-word algebras may be described as the univer-
sal functor of the representation of the category St in (). This situation
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may be generalized by replacing St by a category % subordinate to St,
and replacing (Q) by a category 4 of Q-algebras subordinate to .#. This
gives rise to a representation of & in ¢ (called the natural representation),
and our object will be to find conditions for this representation to have a
universal functor.

In what follows, every subcategory #~ of () is assumed to be abstract
and regular, unless the contrary is stated. For such categories . the
notion of a representation will be restricted as follows: If % < St, we
shall say that & is represented in A if there is a representation of . in ¢
in the sense of III.1 such that (i) any admissible morphism p: X' — A
(X e Ob £, A € Ob &) determines a mapping (again denoted by p) from
the carrier of X to the carrier of A, (ii) the subalgebra 4, of 4 generated
by the image under p is a  -algebra, (iii) the inclusion i: 4, = A is a
A -homomorphism, and (iv) if p, is the result of cutting down p to A,,
so that p = pyi, then p, is admissible. Thus, e.g., if # is a hereditary
subcategory of (Q), these supplementary conditions merely state that
every admissible morphism p: X — A can be cut down to the subalgebra
generated by the image under p. Generally, if # <% <St, where
A" < (Q), then by the natural representation of % in 2 we understand the
representation whose admissible morphisms are all the #-morphisms

pr X4
from an #-object X to the ¥-carrier of a x# -algebra A4 such that the
subalgebra A4, generated by the image of any #-subobject of X under
the set mapping corresponding to p is a  -algebra and the inclusion
it Ay = A is a " -homomorphism. It is easily verified that this is in fact
a representation.

If «: X — Y is any set mapping, we shall also write im « in place of Xa.
We note the following consequence of the definitions.

Proposition 4.1
If a category & which is subordinate to St is represented in an abstract
regular category X of Q-algebras, and a universal functor (U,u) exists for this
representation, then U(X) is generated by im u.
Proof:
By definition, the universal mapping
u:X - UX)

is an admissible morphism. Let U, be the subalgebra of U= U(X)
generated by im u; then u = uyi, where u,: X — U, is admissible and
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i:U, —» U is the inclusion mapping. Hence there exists a unique X'-
homomorphism a: U — U, such that u, = ue. It follows that

U = Ul = ual.

Here both 1: U - U and ui: U — U are #-homomorphisms; hence, by
uniqueness, i = 1, which shows i to be surjective, ie., U, = U. |

Consider now a representation of a category % in a residual category
of Q-algebras. This representation is said to be residual if the following
condition holds: If 4 is a o -algebra which is a subdirect product of a
family (4,),.a of X -algebras with projections &;: 4 — 4;, then for any
mapping p from the carrier of an Z-object X to the carrier of A such that
pe; corresponds to an admissible morphism X - A, the mapping p itself
corresponds to an admissible morphism X — 4. With these definitions we
can state the main result on the existence of a universal functor.

Theorem 4.2

Let 3 be a residual category of non-empty Q-algebras and let & be
any category subordinate to St which has a residual representation in A".
Then the representation has a universal functor.

Proof:

Let X be an Z-object and Wy(X) the Q-word algebra on X, regarded
as a set, with the canonical injection
(1) p: X W.
Denote by (q,); . » the family of all congruences on Wsuch that W/q, € ObX’
and the mapping
(2 p(nat q,): X — W/a,
is admissible. Putting p, = p(nat q;) and A4, = W/a,, we have a family of
admissible mappings p;: X - 4,, and composing these we obtain a
mapping
3) a: X =»[[4..
Let U(X) be the subalgebra of A4 = []4, generated by im ¢; cutting down
o to U(X) we obtain from (3) a mapping

u:X - UX)

such that ui = o, where i:U(X) — A is the inclusion mapping. We assert
that (U,u) is the required functor. In the first place, if &, denotes the
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projection of [J4, onto A;, then for any e A,
&, = P

Thus o¢; is admissible for all 1 € A, and hence so is 0. Since o = ui, it
follows that U(X) is a A -algebra, / is a 4 -homomorphism, and u is
admissible. We note incidentally that since im p generates W, im p,
generates A; and so does im ieg;; but ie; is a homomorphism, whence
im je; = A,, i.e. ig; is an epimorphism. Therefore U(X) is a subdirect
product of the 4;.
Now let B be any  -algebra and
«:X—->B

an admissible mapping. Cutting down « to the subalgebra generated by
im «, we may assume that B is generated by im «. The mapping « may be
extended to an epimorphism

B:W — B,
if ker p = q, then § = (nat q)f*, where
B*:W|q B
is an isomorphism. Now = is admissible, and by construction,
o = pfi = p(nat q)f*;

since f* is an isomorphism, it follows that «f*~' = p(nat q) is admissible.
Hence q = q, for some 1 € A, and we have the following diagram:

u

P B iey
A

W W

nat q

X-

u(x)

where o' = ie;f*, and the square and all the triangles except possibly the
topmost one are commutative. By going round the other triangles and
the square, we find

a = pp = p(nat q)f* = uie,p* = ua',

so the topmost triangle commutes also, and 2 is the required mapping.
Clearly it is a #'-homomorphism (since ie; and f* are), and it is unique,
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forif o = ux; = wa,, then o, and «, agree on im v and hence (by Lemma 2.2)
on U(X), ie., ¢, = u,.

In particular, if # < %, then the natural representation of % in o
is residual and we obtain

Corollary 4.3
If A is a residual subcategory of (Q) and ¥ < & < St, then the natural
representation of £ in A" has a universal functor. |j

Corollary 4.4
If X is a hereditary subcategory of () admitting direct products and
H < & < St, then the natural representation of & in A has a universal

Sunctor. |}

Let # < St be represented in a category X of Q-algebras and suppose
that the universal functor U exists for this representation. If for every
Z-object X, the universal mapping

u:X - U(X)

is injective, the functor U is said to be injective. It is easily seen that the
universal functor U is injective if and only if each #-object X can be
represented by an injection in some % -algebra. For if p: X — A4 is an
admissible injection, then factoring by « we obtain p’: U(X) — 4 such that
p =up’, and since p is injective, it follows that ¥ must be injective. Con-
versely, when u is injective, we can take 4 = U(X) to obtain an injective
representation of X.

A universal functor often exists for representations other than algebraic
ones. For example, the category of compact Hausdorff spaces and con-
tinuous mappings is subordinate to the category of Hausdorff spaces and
continuous mappings (it is in fact a subcategory). The natural represen-
tation has a universal functor, which associates with every Hausdorff
space X a compact HausdorfT space U(X), called the Stone-Cech-compactifi
cation of X (cf. Samuel [48] or Kelley [55]). This functor is injective on the
subcategory of completely regular Hausdorff spaces (a space X is com-
pletely regular if for every point p € X and every neighbourhood N of p
there is a real-valued continuous function f on X such that f(p) =1,
f(x)=0 for x ¢ N).
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EXERCISES

L. If o and . are abstract regular categories of Q-algebras, show that any

abstract regular category containing both 2 and % as subcategories defines a
representation of .% in .

2. If # = (Q), # < Z < Stand & is regular and residual, verify that the
natural representation of % in . is residual.

5. FREE ALGEBRAS IN CATEGORIES OF Q-ALGEBRAS

We now specialize the results of the previous section to the case . = St.
If the universal functor for the natural representation of St in the category
A of Q-algebras exists, then for any set X, the algebra U(X) is called the
universal A -algebra on X. When the universal functor is injective, we may
identify X with its image in U(X); in this case U(X) is called the free
A'-algebra on X, while X is called a x-free generating set of U(X), and
we also say that % is a category with free algebras. By the functorial
property, the free J-algebra on X, when it exists, is determined up to
isomorphism by X. Thus e.g., (Q) is a category with free algebras, by
Theorem 2.6.

Clearly a trivial category cannot have free algebras on any set with more
than one element; in all other cases the existence of free algebras follows
from the existence of the universal functor:

Proposition 5.1

If A is a nontrivial category of Q-algebras and the universal functor exists
for the natural representation of St in X', then there is a cardinal number «
such that for every set X of cardinal at least «, the free X -algebra on X

exists. Moreover, every A -algebra is a homomorphic image of a free A -
algebra.

Proof:
By hypothesis " contains an algebra 4 with more than one element.
Let X, be a generating set of 4 which has more than one element; then the

inclusion mapping X, — A4 is admissible (in the natural representation),
hence the universal mapping

Ug: Xy = U(Xy)
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is injective. Put « = |X,|; then for any set X of cardinal at least «, there is
a surjection p: X — X,, and for any such p the mapping pu: X — U(Xy) is
admissible. Moreover, given x,y € X, x # y, we may choose p such that
xp # yp; therefore xpu, # ypuo, and so xu # yu, where u: X — U(X) is
the universal mapping. Since this holds for any pair of elements x,y of
X, u is injective.

In the proof we obtained A4 as the homomorphic image of the free
A -algebra U(X,); this applies if 4 is any  -algebra, and it establishes the
last assertion. ]

Under the hypotheses of Proposition 5.1, #" need not have free algebras
on all sets X: for example, the category consisting of all uncountable
groups and the trivial group (and all homomorphisms between them) has
a universal functor: U(X) is the free group on X if X is uncountable and is
the trivial group otherwise. Thus for finite nonempty sets X, U(X) is not
the free group on X. However, if % is hereditary, we can take A4 in the
proof of Proposition 5.1 to be generated by a two-element set X,, and
we thus obtain

Corollary 5.2

If X is a nontrivial hereditary category of Q-algebras and the universal
functor for the natural representation of St in A exists, then X is a category
with free algebras. ||

To find conditions for the existence of the universal functor, we use
Corollary 4.3. Combined with Proposition 5.1 this yields

Theorem 5.3

Let # be a subcategory of () which is nontrivial and residual. Then there
exists a cardinal number o such that for every set X of cardinal at least o, the
free A -algebra on X exists, and every A -algebra is a homomorphic image of a
free A -algebra. |

In particular, the conditions of this theorem hold for nontrivial heredi-
tary subcategories #* of () admitting direct products.

Consider now a category # of Q-algebras with free algebras. In this
case we shall write F(X) or F(X; ) in place of U(X). From the uniqueness
of free algebras we obtain a number of useful consequences.
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Proposition 5.4

Let X be a subcategory of (Q) with free algebras, X any set, and Y a
subset of X. If i:Y — X is the inclusion mapping, then the induced homo-
morphism F(i): F(Y) — F(X) is injective.

For the inclusion mapping i: ¥ — X has a right inverse 7: X - ¥ such
that it = 1y, hence F(i) has a right inverse and so is injective. |]

This proposition allows F( ¥)to be identified with a subalgebra of F(X),
clearly, this subalgebra is proper whenever ¥ is a proper subset of X,
hence X is a minimal generating set of F(X).

Proposition 5.5

Let A" be a subcategory of (Q) with free algebras, X a set, and q an equiva-
lence on X. Identify X with a subset of F(X) (by means of the universal
mapping) and let q be the congruence on F(X) generated by q. Then

) §nX=q,

and
F(X)/q = F(X]a).

Proof:

Put X' = X/q and write F = F(X), F' = F(X") for short. The natural
mapping 6:X — X' gives rise to a homomorphism F(8):F — F', whose
kernel T contains q and therefore also q. We assert that

() tnX?=gq.

Forif (x,y) e T n X2, then xF(0) = yF(0), and hence (x,y) € q;thust n X? = q
and the reverse inequality is clear. Since = g, we can factor F(0): F — F’
by nat g and obtain a homomorphism

3) ¢: Flg = F'.

Clearly this reduces to the identity on X’ = X/q. Therefore ¢ | X’ has an
inverse; this inverse extends to a homomorphism F'— F/q because F’
is free and so ¢ itself has an inverse, i.e. (3) is an isomorphism. This
means that T = q and now (1) follows from (2). |}

As an illustration (which will be used later), let 4 be the free .4 -algebra
on ab,c. If we add the relation b = ¢ we obtain the free 2 -algebra on
a and b.

Since two sets are equivalent (in the category St) if and only if they have
the same cardinal number, it follows that in a category " with free algebras
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there is just one free # -algebra F,, up to isomorphism, for each cardinal a.
This algebra is called the free # -algebra of rank a. The question now arises
whether free  -algebras of different ranks can be isomorphic. From the
remark following Proposition 5.4, it follows that the set X is a minimal
generating set of the free X -algebra F(X); therefore, by Proposition
11.5.5, two free % -algebras of different ranks are nonisomorphic if at
least one of the ranks is infinite. This no longer always holds when both
ranks are finite, but we have the following sufficient conditions, due to
Jénsson & Tarski [61].

Theorem 5.6

Let A be a subcategory of (Q) with free algebras and suppose that A" has
at least one finite algebra with more than one element. Then free X -algebras
of different ranks are nonisomorphic.

Proof:

By the remarks preceding the theorem, we need only consider the case
where both ranks are finite. We shall prove the stronger result that for
finite n, every generating set of F, has at least » elements. Thus » is
characterized by the isomorphism type of F, as the least cardinal of a
generating set of F,, from which the theorem follows.

Let X be a free generating set of F, consisting of n elements, ¥ any
other generating set, and B a finite A -algebra with more than one element.
By definition of F,, each mapping X — B can be extended to a unique
A -homomorphism F, — B; therefore, the set H of all A’-homomorphisms
F, — B is equipotent with B*. Let 0 € H; then the restriction 0| Y defines
a mapping Y — B, i.e. an element of BY, and distinct homomorphisms
define distinct mappings (by Lemma 2.2). Thus we have an injection
BX & BY. It follows that |B*| <|B'|, and since B,X are both finite,
n=|X<|Y. |

A further property of free algebras which for certain categories charac-
terizes the free algebras in a manner which is independent of the choice
of generating set, is the following

Proposition 5.7

Let A" be a category of Q-algebras with free algebras and let F be the free
A -algebra on a set X. If A, B are any X -algebras, p:F — Bisa X -homo-
morphism and x: A — B is a X -epimorphism, then there exists a X -homo-
morphism y: F = A such that yx = B (of course y may not be unique).
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Proof:
g - (SR =t

N\

B «

B

We define y on X as follows: Let x € X'; then xff € B and so xf§ = au for
some a € A. Choose such an a corresponding to each x e X and put
Xy = a; then, by definition,

xye = xp (xe X).

Now y may be extended to a homomorphism y:F — 4; then yx and f are
homomorphisms which agree on X and hence are equal. [j

A A -algebra F with the property stated in Proposition 5.7 is said to be
A -projective. Thus, the proposition states that every free # -algebra is
A -projective. For the category of groups and homomorphisms the
converse is true: every projective group is free. A similar result holds for
abelian groups, but the corresponding assertion for R-modules is false,
when R is a semisimple ring with minimum condition which is not a skew
field (cf. e.g. MacLane [63]).

EXERCISES

1. Show that the category of all nonabelian groups and the trivial group (with
all homomorphisms) has a universal functor but has no free groups on sets of a
single element.

2. Verify that for any category J with free algebras and any set X, the free
A -algebra on X has X as a minimal generating set.

3. Generalize Exercise 2.7 to categories with free algebras.

4. (Jénsson & Tarski.) Let " be a category with free algebras and denote
by F, the free 5 -algebra of rank n. If every n-element generating set of F, is a
free generating set (for all finite n), show that every generating set of F, has at
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least n elements, and deduce that the conclusion of Theorem 5.6 holds in this
case.

5. (Jonsson & Tarski.) Let Q consist of a binary and two unary operators,
whose effects are written x- y, x4, xp respectively, and denote by ¢ the category
of all Q-algebras such that x1-xp =x, (x*¥)A=x, (x:y)p = y. Given that
is a category with free algebras (proved in IV. 3.3 below), show that all free
o -algebras of nonzero finite rank are isomorphic. (If 4 is free on X |J {a, b}
and X ) {a, b} = 0, show that 4 is also free on X.)

6. (Malcev.) Let ¥ be a category with free algebras and F, the free -
algebra of rank n. If no proper quotient of F, is isomorphic to F,, then any
generating set of F, consisting of n elements is free.

7. Show that every unital module over a skew field is free, and deduce that the
lattice of submodules of such a module is complemented. (Use Proposition 5.7.)

8. (R. S. Pierce.) If & is an abstract hereditary category with free algebras
and Q% the category of homomorphic images (11.8), show that an algebra A is
Qi -free if and only if it is 2 -free.

6. FREE AND DIRECT COMPOSITION OF Q-ALGEBRAS

Two universal functors which exist for many categories of Q-algebras
are the free and direct composition introduced in I11.1. If % is any regular
category of Q-algebras, then J is subordinate to the category F(X)
of families of # -algebras (over totally unordered sets), and so we may
apply Corollary 4.3:

Theorem 6.1
Let A be any regular residual category of Q-algebras. Then the free
A -composition of any family of A -algebras exists. fl

In a category 4 with free composition, a # -algebra A is said to be the
free product of the X -algebras A,(i € A) if the A; are subalgebras of A,
with free composition P =| | 4;, such that

(i) there is an isomorphism 0:4 — P whose restriction to A, is the canonical

mapping,
(ii) A; n A, is the minimal subalgebra of A for 2 # u.

When a family (A4,) of .#-algebras is given, there may be no f-algebra
A which is their free product (for instance, it is necessary for the minimal
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subalgebras of all the A, to be isomorphic), but when such a free product
exists, it is by definition determined (up to isomorphism) by the free
composition of the 4,. Let us say that a # -algebra A is retractable if
there is a -homomorphism

8:4A-C

onto the minimal subalgebra C of A4 such that 6|C = 1. Then we can
state the following condition for free products to exist.

Proposition 6.2

Given a category X of Q-algebras, let (A;) be a family of A -algebras
whose free composition P exists. If each A, is retractable and for any i,p e A
the minimal subalgebras of A; and A, are isomorphic, then P is the free
product of the algebras A ;.

Proof:

The assertion holds trivially when A consists of a single element, so we
may assume that A has more than one element.

We have to show that the canonical mappings

(1) piiA; —»P

are injective, and identifying A4, with its image in P, we must then show that
the A4, intersect minimally in P. Let C; be the minimal subalgebra of 4;;
by hypothesis, there is a retraction

2 6,04, = C,,
and since all the C, are isomorphic, we can take an isomorphism
3) 9,:C; »C

with a fixed algebra C. Now take any pair of distinct indices of A, say
=1,2. We define a family of mappings 4, - 4, by

1 Fo,
¢é =" 819*01_] A # 1.

By the universal property, there exists a homomorphism ¢: P —.4, such
that ¢, = p,;¢. Taking 1 =1, we find that p;¢ = 1, whence p, is injec-
tive; moreover, if c e A,p; N A,p,, say ¢ =ap, = bp,, then cp =a¢, =a
and c¢¢ = b, = be, 0,07 € C,, whence aeC,, ¢=ap,eC,p,. Thus
Aypy N Aap, is contained in C,p,, and hence is the minimal subalgebra of P.
Since 1,2 were arbitrary in A, this shows P to be the free product. [}
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If every minimal # -subalgebra is trivial, the minimal subalgebras are
all isomorphic and every . -algebra is retractable; more generally, this
still holds if we only know that every # -algebra has a trivial subalgebra.
We need only introduce a 0-ary operator which picks out a specific trivial
subalgebra in each % -algebra. Thus, as a corollary of Proposition 6.2,
we obtain the following result, due to Sikorski [53].

Corollary 6.3

If every % -algebra has a trivial subalgebra and A" admits free composi-
tion amalgamating these subalgebras, then the free product of any family
of A -algebras exists. |

It will be shown in Chapter IV and may easily be verified by Theorem
6.1 that the category Gp of all groups admits free composition. Therefore,
by Corollary 6.3, Gp admits free products. A similar result holds for
semigroups and for rings, but not for rings with unit element (cf. Cohn [59]).

In conclusion we note a simple sufficient condition for the existence of
direct compositions.

Theorem 6.4

Let X be any category of Q-algebras admitting direct products. Then the
direct A -composition of any family of A -algebras exists and coincides with
the direct product.

To prove this result it is enough to show that the direct product P = A4,
with the projections ¢, as canonical homomorphisms satisfies the universal
property. Thus, given a family ¢,: B — A, of homomorphisms, we require
a homomorphism ¢: B — P such that ¢, = ¢¢,, i.c., for any b e B,

(©) bps; = b,.

Such a mapping ¢ is obtained by composing the ¢, it is uniquely deter-
mined by (4) and it is a #-homomorphism because the ¢, are. |

Examples to show that this condition is not necessary will be given in
the exercises.

EXERCISES

1. Show that for any category 2" with free algebras, which admits homomor-
phic images, the free composition of any family of 2 -algebras exists.
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2. Show that the category of finite abelian groups and homomorphisms admits
homomorphic images but has no free algebras. Further show that the family
(C,)a=1, where C,, is cyclic of order n, has no free composition in the class. (Use
Exercise 1 for the second part.)

3. Show that the category of commutative rings without zero-divisors has
free algebras, but does not admit homomorphic images. Give an example to
show that free compositions do not exist in general.

4. Show that the category of all finite abelian groups (and homomorphisms)
does not admit free composition.

5. (J. D. Reid.) Let % be a category of Q-algebras admitting free composi-
tion and let (4;) be a family of 2 -algebras which has a representation in
A;(1 € A). Show that the canonical mapping p,: 4, - UA; is injective. Deduce
Corollary 6.3.

6. Show that the category of abelian torsion groups does not admit direct
products, but does possess a direct composition. What happens for arbitrary
torsion groups?

7. DERIVED OPERATORS

Let Q be an operator domain; we have seen that on each Q-algebra 4,
a given element w € Q defines a certain operation. In addition to these
operations given explicitly there are the operations obtained by composing
the operators of Q, which constitute the clone of action of Q on 4. They
may also be expressed in terms of the clone structure on W (X), as indicated
in Exercise 3.4, but this will not be needed, as we shall not be concerned
with the process of composition. To obtain the operation defined by an
arbitrary Q-word w = w(x;,---,x,) in xy,~-,x,, let @ be the image in A
under the homomorphism defined by x; — a;, so that

a= W(ﬂl.' : "an)'

We may thus regard the word w as defining an »-ary operator Ww by the
rule
aya,w = w(a,,-.a,).

The operator W is said to be derived from Q. In this sense, every Q-word
gives rise to a derived operator; for a sufficiently large alphabet X, this
includes in particular the operators of Q itself; in fact this is true for any



146 Free Algebras [Chap. 1ll]

infinite set X. For, if w € Q(n) and x,,---,x, are any distinct elements of X,
then w is obtained from x,x,---x,w, or also from x,---x,x,®, but not from
XXy -xyo, unless 7 = 1. We remark that from each n-ary derived operator,
we obtain k-ary operations on A by specializing n — k of the arguments to
be elements of A. The unary derived operators and unary operations
obtained by specializing the derived operators are again called trans-
lations, or more precisely, derived translations, to stress the fact that they
may not be obtainable by specializing the operations of Q; thus in a
group G the operation x — x* cannot always be expressed in terms of the
operations axb and ax™'h.

The set of all derived operators of Q is denoted by Q. It is clear that any
Q-algebra A also admits ; more generally, the Q-subalgebras and
QO-subalgebras of 4 are the same. Now let Q' be a subset of Q; then Q' is
called a restriction of Q. Every Q-algebra A4 has an Q'-algebra structure
induced by restriction, and any subalgebra of 4 admits Q’, but not
necessarily conversely. Likewise, every Q-homomorphism is also an
Q'-homomorphism, but not necessarily conversely. In fact, the category
(Q) is subordinate to (Q), under the forgetful functor, which forgets the
part of Q not in Q'.

As an example, consider the category Gp of groups and consider the
commutator as a derived operator:

(M .yl =x7'y" xy.

By limiting ourselves to this operator, we may regard Gp as
subordinate to the category of groupoids, I' say. Then a I'-subalgebra of a
group is a subset of the group which is closed under commutation. Such a
subset need not admit inversion (e.g. a non-torsion abelian group): the
image admits inversion x — x~!, and if nonempty, it admits also the
constant operator e, but it may not admit multiplication, and so is not
always a subgroup (cf. Carmichael [37], p. 39).

This construction leads to a representation of groupoids in groups;
since Gp is residual and regular, the universal functor for this representa-
tion exists, by Theorem 4.2, Other examples will be considered in Chapter
VIL

If Q is an operator domain containing only unary and O-ary operators,
then every derived operator has arity at most one. This is intuitively
obvious, and may also be deduced from Theorem IL.5.6, which gave a
criterion of the operators to be at most unary, in terms of the lattice of
subalgebras. Similarly, it is possible to express in terms of the lattice of
subalgebras the condition that Q contain 0-ary operators only or unary
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operators only (Exercise 11.5.5). Once binary operators are admitted, this
is no longer possible; on the contrary, in most cases one can express all
the operators in terms of binary ones.

Theorem 7.1

Let Q be any operator domain; then there exists an operator domain Q*
consisting of at most binary operators, such that Q may be embedded in the
domain of derived operators of QF, and such that every Q-algebra A may
be embedded in an Q*-algebra A*. Moreover, if A is infinite, A* may be
taken to have the same carrier as A, whereas if A is finite, A* may be taken to
be countable.

In the proof we have to use the fact that an infinite set is equipotent with
its square. We shall assume this for now, so as not to interrupt the thread;
as we need a more general statement later on, we refer the reader to
Lemma VI.6.1 for the proof.

We shall take Q* to consist of one unary operator w’ for each operator
we Q, and an additional binary operator p. Suppose first that 4 is
infinite; then A4 is equipotent with 4% and so there is a bijection

vid = A%
More generally, we define the action of v on an n-tuple of A4 by the rule
(Karrees XV = (Kpyeees ).
Clearly, this provides a bijection between A" and A""'. It follows that

v* is a bijection between A4 and A'**. Now, for any w e Q(n) define the
action of the corresponding unary operator o’ € Q* by

(2) xo' =xv""w (n=1);

if n =0, we put x' = w. Denote v~' by u; then pu is a binary operator
on A, and by (2), whea n= 2,

.

Xy X = Xqo o X" T,

Hence o has been expressed as a derived Q*-operator. If A4 is finite, we
can embed it in a countable set A* and define the operators of Q arbi-
trarily on A*\A4; now we can apply the first part to define 4* as an Q*-
algebra. [

Of course the construction in this proof is not of any practical interest
because it depends essentially on the choice of the bijection v:A4 — A%
Another more practical method of reducing operators to binary ones is
given in Chapter 1V.
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It looks at first sight as if not every operation on a finite set can be
expressed in terms of binary ones. Thus on a set of k elements there
are k¥ n-ary operations, so that the number of ternary operations is
k*. By combining two binary operations «, S we can form four ternary
operations, namely xyaz@, xyfza, xyzaf, and xyzBa; so the number of
these operations is at most k*°, and this is less than k¥ for k > 5. We
note that for k = 3, the number of unary operations is 27, the number of
binary operations is 19,683, and the number of ternary operations is
nearly 1013, Despite these appearances to the contrary it can be shown
that the clone of any finite set is generated by binary operations, cf., 1X.
2, p. 338.

Let ¢ be any category of (-algebras and Q' a restriction of Q. If we
regard the objects of #” as (Y'-algebras, then with the #"-homomorphisms,
regarded as Q'-homomorphisms, they form a subcategory % of (Q"). The
category s.% will be denoted by 2# and called the category derived from
by restricting Q to ()'. For simplicity, let us assume that ¥ is hereditary;
then by applying Corollary 4.4 we obtain

Theorem 7.2

Let A be a hereditary category of Q-algebras admitting direct products
and let 4" be the category derived by restricting Q to Q'. Then there is a
universal functor for the natural representation of X" in A .

This follows once it is shown that " is subordinate to %", but this is
immediate from the definitions. [

In Chapter IV we shall give an explicit construction of this universal
functor for a wide class of categories, as well as a criterion for the functor
to be injective.

We conclude this section with a criterion for the commutativity of
congruences, expressed in terms of derived operators, which is due to
Malcev [54].

Theorem 7.3

Let A" be a category of Q-algebras with free algebras. Then the congruences
on every X -algebra are permutable if and only if there exists a derived
ternary operator  such that

(3) xxzm = z, Xzzw = X.

Proof:

If w exists, satisfying (3), then the translation axbw interchanges @ and
b; hence the congruences on any . -algebra 4 commute, by Proposition
I1.6.8. To prove the converse, take the free . -algebra F on a,b,c and
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denote by q the congruence generated by (4,b), and by r the congruence
generated by (b,c). Then (ac)eqer, and by hypothesis, ger =1t°g;
hence (a,c) € x© q, i.c. there exists d e F such that (a,d) e r and (d,c) € q.
Since d e F, we can express d as an Q-word in a,b,c say

d = abcw,
where @ is a ternary derived operator. Now by Proposition 5.5, Flq
is the free s -algebra on a,c and F/r is the free X -algebra on a,c. But
in F/q, d = ¢, whence
4 aacw = ¢,
while in Fjr, d = a, and so
(5) accw = a.

Both (4) and (5) are equations between the elements of the free #"-algebra on
a,c, and therefore these equations hold identically in every -algebra. J§

EXERCISES

1. Let © consist of a ternary operator @ and €’ consist of g,7 where xyo
= xxyw, Xyt = xyyw. If W, W' are the Q-word algebra and the Q'-word algebra,
respectively, on a set X, show that the canonical homomorphism W' — W
(obtained by extending the identity mapping 1: X — X) is not injective.

2. Show that there is no derived ternary operator on lattices to satisfy the
conditions of Theorem 7.3. (Take a totally ordered set.)

3. Show that on a relatively complemented lattice all congruences commute.
(Take xyzw to be the complement of y in [x AzxV z] and apply Theorem 7.3.)

4. Show that on a free groupoid with at least three free generators not all
congruences commute.

5. (Malcev.) A quasigroup may be defined as an algebra with three binary
operators, satisfying certain identities, namely the product abp and the solutions
of xbu = ¢, aypt = ¢, denoted by chp, cal respectively (cf. IV.2). Show that ona
nonempty quasigroup, regarded as an algebra with respect to g, A, and p, all
congruences commute. (Take xyzw = xayipaz/ip, where a is any fixed element.)

6. Let O be any operator domain, and suppose that with each w e Q(n), a
derived n-ary operator w,, is associated. If 4 is any Q-algebra and W = Wa(X),
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show that any mapping 0: X — A can be extended to a unique mapping 0: W — A
such that for any w € Q(n) and a e A",

(aw)d = (al)w,,.

Does this still hold if W is replaced by the free algebra on X in a category '
with free algebras and 4 by any J-algebra? (Try the category of algebras
with a unary operator x — x’ satisfying x' = x.)

8. PRESENTATIONS OF Q-ALGEBRAS

In practice, algebraic structures often arise in a natural way as sets of
homomorphisms of a given structure. For instance, groups arise as sets of
automorphisms, semigroups as sets of endomorphisms, rings as sets of
endomorphisms of abelian groups. But it may also happen that an Q-
algebra is defined abstractly, by its carrier together with the effect of the
operators—in the form of ‘multiplication tables’, giving for each n-ary
operator its effect on each n-tuple. This description can often be given in a
more economical form. Suppose for definiteness that we are dealing with
an algebra A in a given category J# of Q-algebras. Instead of prescribing
the whole carrier, it is enough to give a generating set X of A, and instead
of complete multiplication tables, we need only give enough entries to
determine the remaining ones completely. Each entry in the multiplication
table for w e Q(n) is of the form

a,--a,w=~hb (ay,-+,a,, b e A).

If we express ay,---,a,,b in terms of the generating set X, we obtain a
relation

f(x) = g(x),

where f,g are certain Q-words in x,,---,x, € X. Any set of relations which
suffices to determine the effect of all the operators in A4 is called a set of
defining relations for A in terms of the generating set X.

If @ is such a set of defining relations, the definition of 4 in terms of X
and @ is called a presentation of A and this is denoted by

) A= x{X|0).

For a given algebra A there are of course many presentations, since there
are usually many ways of choosing a generating set X, and depending on
this choice, and on &', many ways of choosing a set of defining relations.
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In practice, one tries to keep the category %" as small as possible so as to
simplify the defining relations. Thus, e.g., a presentation of a particular
group which happens to be abelian can usually be simplified if we restrict
ourselves to the category of abelian groups, since any relations expressing
commutativity can then be omitted.

It will be convenient to extend the notion of presentation defined above
as follows: Instead of taking X to be a generating set of 4, we allow X to
be any set of symbols each of which is identified with a certain element of
A in such a way that the elements of A so obtained form a generating set.
This is more general insofar as distinct elements of X may represent the
same element of 4. It also corresponds more closely to the practical use
that is made of presentations, for when the category J is suitably re-
stricted, any set X with any set of defining relations will give a "-algebra
(cf. Theorem 8.2 below), but it is usually a nontrivial problem to decide
when two given elements of X represent the same element of A (this is in
fact a special case of the word problem, cf. IIL9).

Thus a presentation of a # -algebra 4 is a set X together with a set ® of
relations between Q-words in X. We remark that when the category J" of
Q-algebras is unrestricted, the presentation X' {X|®} may define no
algebra at all in »#". For example, let %" be the category of infinite groups
and {X|®} the presentation of a finite group, say H{x|x* = 1}; clearly,
there is no infinite group with this presentation. To obtain a sufficient
condition which is convenient for the applications, we need a lemma,
which will be used again later.

Lemma 8.1

Let A and B be any Q-algebras. Given a set X and mappings «: X — A,
B: X — Bsuch that (i) A is generated by im «, (ii) any relation in A between the
elements xx (x € X) also holds between the corresponding elements xp in B;
then there exists a unique homomorphism ¢:A — B such that a¢ = p.

Proof:

Let W = Wq(X) be the Q-word algebra on X; then the mappings 2,
may be extended to homomorphisms &: W — A4, B:W — B respectively.
Since im & is a subalgebra of A containing im«, it follows by (i) that
ima = A, i.e. &is an epimorphism. Let q = ker &; then there is an iso-
morphism

ot Wilg— A,
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such that (nat q)«* = & Now by (ii), q < ker j, hence there exists a homo-
morphism f*: W/q — B such that (nat q)* = B. If we put ¢ = («*) g%,
then

ap = idd = i(nat q)a*$ = i(nat q)f* = if = p,

where i: X — W is the inclusion mapping. Thus ¢ is a mapping of the
required form, and it is unique because any two homomorphisms satisfying
the conditions of the lemma must agree on im « and hence on A. [ |

Theorem 8.2
Let A be a residual category of Q-algebras. Then every presentation
(2 H{X|®}

defines a A -algebra, unique up to isomorphism.

Proof:
Let W = Wy(X) and let (¢,);. o be the family of all epimorphisms from
W to some s -algebra A; such that

f(x¢;) =g(x¢;) for all relations (f,g) in ®.

If we put q; = ker ¢, then W/q, = A4,, and hence if q =MNgq,, W/qisa
subdirect product of the 4;, and so is a # -algebra. We assert that

3 Wlq= #{X|®)}.

In the first place, if ¢ = nat q, then X¢ generates W/q, and clearly, all the
relations ® hold in W/q: thus (3) will follow if we can show that @ is a set
of defining relations for W/q, as & -algebra. This amounts to showing that
every J -algebra generated by X with relations @ is a homomorphic image
of W/q. Let Bbea # -algebra generated by X with the relations ® holding;
then by the lemma there is a homomorphism 0: W/q — B which is induced
by the identity mapping on X, which is what we had to show. It is also
clear from this that the algebra given by the presentation (2) is unique up
to isomorphism. |

Later we shall meet important classes of categories in which the con-
dition of Theorem 8.2 is always satisfied. We have seen already that the
category of infinite groups does not satisfy this condition; it is not residual
because it does not contain the trivial group. As another corollary of the
lemma we have a theorem first proved by Dyck [1882] in the case of

groups.
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Theorem 8.3
Let A be any category of Q-algebras, and A any X -algebra, with the

presentation
A=a{X|0}.

If B is a X -algebra with generating set X, such that all the relations ® hold in
B, then B is a homomorphic image of A. |}

This theorem expresses the fact, which for residual categories also
follows from Theorem 8.2, that the algebra A with the presentation (1) is
universal for the representation of X in 2 -algebras by mappings such that
the relations @ hold for the images of the elements of X.

The presentation (1) of an algebra A is said to be finite, if both X and ®
are finite. For an algebra 4 which is finitely presented in this way, there is
a simple method of obtaining all finite presentations from a given one, due
(for groups) to Tietze (cf. Shoda [49]).

Theorem 8.4
Let o be a residual category of Q-algebras, and let A be a X -algebra
with a finite presentation

(1) A= x{X|D}.

Then any other finite presentation of A is obtained from (1) by the following
operations and their inverses:

(i) If (u,v) is a consequence of ®, replace ® by ® U {(u,v)}.
(ii) If wis any word in X and y is any letter not occurring in X, replace X by
X u{y}and® by ® u {(yu)}.

Proof:

Clearly (i) and (ii) when applied to any finite presentation of A yield
another finite presentation. Now let 4 be given by the finite presentation
(1) and let

(4) A=2{Y|¥}
be another finite presentation. Since (4) determines 4 only up to iso-
morphism, we may assume that X n Y =0. Now each yeY can be

expressed in terms of X by (1), say y =/f,(x), and we thus obtain the
presentation

(5) A=X{XuYOud}) @O ={pf(x)|yeY}
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from (1) by operations of the form (ii). But each element of ¥ is a
consequence of ® U @', so by applying (i) we get

(6) A=H{XuY|®ud UYL

Finally, each x € X has the form x = g,(y), and if

¥ ={(xg9.0)) |xe X},

we have, by another application of (ii),
@) A=K{Xu Y| oud u¥ uW¥}
Clearly (7) is symmetric in the presentations (1) and (4); by reversing the
steps, with the roles of (1) and (4) interchanged, we therefore reach (4). |j

The main application of this result is in the following situation: The
algebra A is given by a finite presentation (1) and Y is another generating
set. Then y = f(x) for each y € ¥, and as in the above proof we reach a
presentation (5). This may now be simplified by applying the inverses
of (i), (ii) to eliminate as many as possible of the elements of the old
generating set X. In using Theorem 8.4 it is important to note that we are
given that (1) and (4) are presentations of the same algebra. If we are given
merely two finite presentations, there is in general no method for deciding
when the corresponding algebras are isomorphic (the existence of such a

method in the general case would imply a positive solution of the word
problem, cf. 111.9).

EXERCISES

1. Let G be the group with the presentation G = Gp{x,y|x* =% = 1};if
z=xy~', show that in terms of y and z, G has the presentation G = Gp{y.z|»?
=(z)* =1}

2. Prove Theorems 8.2 and 8.3 by using Theorem 4.2. (See the remark
following Theorem 8.3.)

9. THE WORD PROBLEM

Let 2 be a residual category of Q-algebras, and let 4 be a # -algebra,
given by a presentation

) A =H{X|0}
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The elements of A4 are represented by Q-words in X, where two words
f, g represent the same element of 4 if and only if one can be obtained
from the other by applying the relations ® and the rules in 2. Here the
role of o is simply that of providing certain identical relations or laws
(cf. 1V.1) which must hold in ", Thus for the definition of 4 by means of
a presentation (1) to be of any practical value, we require an algorithm,
i.e. a rule for deciding in a finite number of steps when two Q-words in X
represent the same element of 4. The problem of finding such an
algorithm is called the word problem for A (in the presentation (1)). For
certain classes of algebras, the word problem has been completely solved;
thus e.g. the basis theorem for finitely generated abelian groups implies
that every finitely generated abelian group has a presentation for which the
word problem can be solved by inspection. The word problem has also
been solved for certain classes of nonabelian groups, but for groups in
general it has been shown to be insoluble. More precisely, there exist
groups with a presentation for which the word problem is insoluble
(Novikov [55], Boone [57], Britton [58]). Even if the word problem in a
group G is insoluble, in the sense described, there may be an algorithm
for enumerating all the pairs of words which represent equal elements in
G (though for a given pair, no means is at hand for deciding in a finite
number of steps whether they are equal). Such a group is said to have a
recursively soluble word problem. An example of such a group is any
finitely presented group, or more generally, any finitely generated subgroup
of a finitely presented group. Now Higman [61] has proved that con-
versely, every finitely generated group with a recursively soluble word
problem can be embedded in a finitely presented group. Since not every
finitely generated group can be so embedded, this shows the existence of
groups whose word problem is recursively insoluble.

To demonstrate the insolubility, one has of course to define much more
precisely what constitutes an algorithm. On the other hand, in proving the
solubility of word problems (which is all we shall do), the above vague
formulation is sufficient. We shall discuss one general method of solving
the word problem which can often be applied in practical cases. For
simplicity we take for # the category (Q) of all Q-algebras and homo-
morphisms, and suppose th.al the Q-algebra A has the presentation

(2) A =Q{X|e},
where ® consists of the relations
(3) 1;(x) = v;(x) (AeA).
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Thus A consists of equivalence classes of Q-words in X, where two Q-
words f, g are equivalent if and only if there exist words wg,w,, --,w, such
that wy, = f, w, = g, and in any successive pair of words w,_,, w,, one is
obtained from the other by replacing an occurrence of u;(x) by v;(x) (or
vice versa). These equivalence classes of words are just the g-classes of the
Q-word algebra W = Wy(X), where q is the congruence on W generated
by the pairs (u;.v;), and W/q= A. Let

(4) 0:W —A

be an epimorphism with kernel q; we recall that a transversal of 4 in W
is a subset 7 of W meeting each g-class in exactly one element. 7 may
also be characterized by the property that the restriction 0’ =0|T is a
bijection. In general 6" will not be a homomorphism, because T is not
necessarily a subalgebra of W. However, we can use 0 to define T as
Q-algebra isomorphic to A. Let t: W — W be the mapping which associ-
ates with each w e W the unique representative in 7 of the class w"; this
mapping 7 is called the retraction' associated with T. Then each w € Q(n)
defines an n-ary operation wy on T by the rule

a,-a,wr = (a,a,w)t.

This determines A (up to isomorphism) as soon as we know a transversal
T and the corresponding retraction z. Thus the word problem for A4 is
reduced to the determination of a transversal for 4 in W.

When A is given by the presentation (2), we have a homomorphism (4),
e.g. by taking 4 = W/g and 0 = nat g. Now if S is an arbitrary subset of
W, it is usually easy to determine whether the restriction 0| S is surjective.
If it is also injective it will follow that S is a transversal, but this is often
difficult to check directly. Instead we may proceed as follows: Let S be any
subset of W such that S* = W (i.e. 0] S is surjective), and for each we W
cheose an element wo € S n w' in such a way that we = w whenever
w e S. The resulting mapping o: W — S is no longer uniquely determined
by S (unless S is a transversal); let us call it an idempotent mapping com-
patible with q. We now define an Q-algebra structure on S by the rule

(5) a,-a,ws = (a,a,w)e (we Qn),a; eS).
Suppose that the relations (3) hold in S, i.e.

(6) u;(xo) = v,(xo).

!'In the special case when = is a homomorphism this agrees with the definition in I11.6.
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Then we assert that S is a transversal for 4. For since the defining
relations for 4 hold in the algebra S, it follows that S is a homomorphic
image of 4, under the mapping which takes x0 to xe (x € X). Hence for
any s,t €S, if s =1t (mod q), then s = s¢ = o = t. Therefore each class s*
meets S in a single element, and so S is a transversal.

If o is any residual category with free algebras, then the same reasoning
applies if in place of W we take F, the free s -algebra on X, though this is
of practical use only if the word problem can be solved for F.* Thus we
obtain

Theorem 9.1

Let 2 be a residual category with free algebras, and A a A -algebra given
by the presentation

(N A= AH{X|D},
where ® consists of the relations
u;(x) = v,(x) (LeA).

Further, let F be the free # -algebra on X and g the congruence generated by
all pairs (u,,v;)(A € A). Then
A = Fla.

Moreover, if S is a subset of F such that S° = Fand o is an idempotent mapping
of Finto S compatible with a, then Smay be defined as an Q-algebra by the rule

a,-a,ws = (a, a,w)o (we Qn),a; e S).
If the resulting Q-algebra is a # -algebra and satisfies the relations
u;(xo) = v;(xa),
then S is a transversal for A and the algebra S is isomorphic to A. |}

As an example in the use of this method, consider the definition of the
symmetric group of degree three by generators and defining relations.
We have the presentation

(7 G =Gplxy|x* =y* =1, x7"yx = y*}L.

2 For many categories ¥~ this is the case; for () itself the word problem has, of course, the
trivial solution that two words are equal if and only if they are identical.
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Using the given relations, we can reduce every group word in x and y
to the form

(8) x'y? (r=0,1;5=0,12).

Thus there are at most six g-classes, i.e., the order of G is at most six.
To show that it is exactly six, we must show that the six elements (8)
represent distinct elements of G. This may be done by taking a concrete
realization of G, i.e. an example of a group on two generators x and y
satisfying the defining relations of G. Since the symmetric group on three
letters is such a group, this proves that G has six elements. But we may
also establish the result without recourse to a realization of G, by applying
Theorem 9.1. Thus we take the six elements (8) in F, compute their
products in F, and reduce them to one of the elements (8). This gives the
following multiplication table:

1 x y xy y» x°

1 1 X y xy y:  xp
x x 1 xy ¥y o xyr y
y y x oy x| Xy
Xy xy oyroxpr 1Lox oy
7 y»oxy Looxry ox

1

xy? xpr y  ox yrooxy

We note incidentally that it is not necessary to define the mapping o for
the whole of F, but only for the products of the generators. To complete
the construction, it is now only necessary to show that the above table
defines a group for which the given relations between x and y are satisfied.
That the relations hold is immediate, from an inspection of the table, and
of the laws defining groups only the associative law is not immediately
obvious; but the process of checking it is purely mechanical, although
tedious. We note that once the number of possible g-classes has been
shown to be finite, as in this example, the remaining part of the problem
can always be carried out in a finite number of steps. We therefore obtain
the following corollary to Theorem 9.1:

Corollary 9.2

If F and q are as in Theorem 9.1 and S is a finite subset of F such that
S° = F and there is an algorithm associating with any element a of F an
element of S ~ a°, then the word problem for A = F|q is soluble. ]



[11.9] The Word Problem 159

As we saw in the above example, in the case of groups the main task is
the verification of the associative law. This work can be cut down if we
take as our category not the category of all groups but the category of
permutation groups on the set S.

There is a graphical representation of the process described in Theorem
9.1 which is sometimes helpful. We represent the elements of F as vertices
of a graph; let w € F be an element in which u; occurs, for some 4 € A, say

w = f(xu;),

where f'is an Q-word in the x’s and a single occurrence of u;. If w' is the
word defined by
w' = f(x,05).

then we draw a segment from w to w' in our graph and say: w' may be
reached by a direct move from w, and w is reached by an inverse move
from w'. In this way we obtain an oriented graph I" on the elements of F
as vertices. Clearly, the different q-classes are just the connected com-
ponents of I'. Now apply Theorem 1.4.9; let us call an element of F
reduced if no direct moves can be applied to it (i.e., if it is minimal in the
preordering on I'); then we have

Theorem 9.3
Let " be a residual category with free algebras and let A be a A -algebra
with the presentation
A =x{X|D).

Assume further that:

(i) Foreachw € F there exists an integer k such that the number of successive
direct moves which can be applied to w cannot exceed k.

(ii) If w, and w, are obtained by a direct move from the same element u € F,
then there is an element v € F which can be obtained by direct moves from
w, and w,.

Then each element w € F can be transformed by a finite number of direct
moves into a reduced word w, which depends only on w and not on the moves
chosen. Moreover, the reduced words form a transversal of A in F.

For the elements of A correspond to g-classes, i.e., connected com-
ponents of the graph defined by the presentation. Therefore the minimal
elements form a transversal of 4 in F, by Theorem 1.4.9, and the result
follows from Theorem 9.1. |
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The reduced word W is often called the normal form of w. This theorem
again provides a solution for the word problem for A as presented in (1):
to see whether w; and w, represent the same element of 4, we need only
pass to the corresponding reduced words w,, w, and see whether they
are equal.

We note that when 4 = (Q), condition (i) of the theorem is always
fulfilled if Au;) > I(v,) for all 2 € A, for then each move decreases the length
of w and so no more than /(w) can be applied in succession.

But in other cases care may be needed in applying the theorem. Sup-
pose e.g. that we have a ring, in which a direct move consists in replacing
an element u by w*. Then we have the infinite chain of reductions

O=u—-wv=v¥—-u=w*—-uw*=0=..

so (i) is not satisfied. However, in any concrete instance it is usually
clear what has to be done to make the result applicable. In the case of
rings a precise formulation, under quite general conditions, has been
given by G. M. Bergman; this is sketched in X. 4.

EXERCISE

1. Let 2" be a residual category of Q-algebras which has free algebras. If
there is an algorithm for deciding when two presentations define isomorphic
XA -algebras, show that the word problem for presentations of # -algebras is
soluble.



Chapter IV

Varieties

Many important classes of algebras occurring in practice, such as
groups, rings, lattices, etc., may be completely described by identical
relations. Such equational classes or varieties have many useful properties ;
in particular, they always possess free algebras, and the members of the
variety may be characterized as homomorphic images of the free algebras.
Any variety ¥~ of Q-algebras gives rise to a subcategory of (Q), namely the
full subcategory whose objects are all the members of ¥". The resulting
category is always local, residual, and hereditary, and admits homo-
morphic images and direct products. Conversely, the algebras of any
residual category admitting homomorphic images form a variety. Thus
most of the results of Chapter III apply to varieties; in addition, there
are a number of features special to varieties, which also are discussed
briefly.

1. DEFINITION AND BASIC PROPERTIES

Let an operator domain Q and a set X be given; as before, we write
W = Wo(X) for the Q-word algebra on X. If 4 is any Q-algebra and
a:W — A a homomorphism, then « maps any Q-word w to an element
wee of A, which is a value of win A. If we regard w as a derived operator,
then its values in A just constitute the image of the operation in 4 defined
by w.

161
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Definition

A law or identity over Q in the alphabet X is a pair (wy,w;) € W?, or
sometimes the equation
(1) Wy =W,
formed from this pair. We say that the law (1) holds in A, or that A
satisfies (1), if under every homomorphism W — A the values of w, and w,
coincide. In other words: the derived operators w, and w, define the same
operation on A.

This relation between laws and algebras establishes a Galois connexion
between the class of all Q-algebras (within a given universe U) and the set
of all laws in the given alphabet X. If £ is any set of laws, then ¥5(Z), the
variety defined by Z, is the class of all Q-algebras which satisfy all the laws
in £. Thus, by a variety of Q-algebras, we understand the class of all
Q-algebras satisfying some given set of laws. Other terms used instead of
‘variety’ are ‘equationally definable class’ (Tarski) and ‘primitive class’
(Malcev).

Of course varieties as defined above still depend on the alphabet X,
but we shall now show that all varieties may be obtained by using any
fixed alphabet which is infinite, but otherwise arbitrary. Usually, we shall
take as our standard alphabet a countable set

XO = {_\-]v\-z,...}

which is indexed by the positive integers.

Theorem 1.1

Let T be any set of laws over Q in an alphabet X. Then the variety defined
by  may also be defined by a set X, of laws in the standard alphabet X, (or
more generally, in any infinite alphabet).

Proof:

We shall say that two laws (not necessarily in the same alphabet) are
equivalent if in every Q-algebra, either both hold or neither holds. For
example, by renaming the variables, we pass from any law to an equivalent
law. Since any law in X depends only on finitely many elements in X,
we can always replace it by an equivalent law in X;, and thus obtain a
set T, of laws in X, which is equivalent to £. [

Henceforth we shall assume every variety to be defined by a set of
laws in the standard alphabet. We now look more closely at the Galois
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connexion between the class of all Q-algebras and W3, where W, = Wy(X,).
This Galois connexion defines two closure systems (cf. 11.1): a closed set
of Q-algebras is just a variety; to see what a closed set of laws is, we need
another definition. We shall say that a congruence q on an Q-algebra A
is fully invariant, if it admits every endomorphism of A.

Theorem 1.2

Let Wy = Wo(X,) be the Q-word algebra on the standard alphabet.
Then the Galois connexion between Q-algebras and laws establishes a natural
bijection between varieties of Q-algebras and fully invariant congruences
on W,.

Proof:

For any class € of Q-algebras, let ¢’ be the set of laws holding in all
%-algebras, and for any set X of laws, let £ = ¥7o(Z) be the variety defined
by Z. We note first that ¥’ is a fully invariant congruence on W,. The
congruence properties are clear: in every %-algebra we have w = w, for
any we W,; if w, =w, holds, then so does w, = w,, and if w, = w,,
wy = w; hold, then w, = w; holds too. Further, if u; =v; (i = 1,-+-,n) are
laws holding in 4 and ® € Q(n), then

Uy Uy = Uy 0@

holds in 4. Now let (w,,w,) € 4" and let 6 be any endomorphism of W,,.
If o: W, — A, where 4 €%, is any homomorphism, then so is fx, whence
w0 = wy0x. This shows that the law w,0 = w,0 holds in A4, and so
(w,0,w,0) € €'; thus €’ is fully invariant.

To complete the proof, we show that

2) =y
for any variety ¥, and
(3) 9" =q

for any fully invariant congruence q on W,.

By the definition of a variety, ¥ =X’ for some £ < W2: hence ¥ =
I" =%" =¥, ie, (2). Next, let q be a fully invariant congruence on W,.
We assert that

4) Wylaeq'.

To prove this it is enough to show that the laws corresponding to the
elements of q hold in Wy/q. Thus, let (w,,w,) € q and let «: W, — W,/q be
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any homomorphism. By Proposition II1.5.7 there is an endomorphism
o't Wy — W, which makes the diagram

Wy W,
nat g

Wola

commutative. Now q is fully invariant; hence (w,x',w,2’) € q, and so
wyo = wye'(nat q) = w,e'(nat q) = wya, as we wished to show. Thus (4)
holds. Turning to (3), we note that in any case q" = q. Now, if (wy,w;) ¢ q,
then w, = w, is not a law in W,/q, because w; # w,(mod q), but Wy/q e q’
by (4), and so (w,,w,) ¢ q"; therefore q" < q and (3) follows. [

From the definitions in 1.2, we see that the following classes of algebras
are varieties: groupoids, semigroups (with neutral element), groups (with
operators), abelian groups, rings (with unit element), R-modules (for a
given ring R), and lattices. Other classes of algebras which do not appear
to be varieties at frst sight may sometimes be defined as varieties. This
was already done for groups in 11.2. Similarly, we may define quasigroups
as a variety of algebras with three binary operators p, p, 4 by writing the
multiplication as aby, and if

(5) abp = ¢,

putting a = cbp, b =cal. In a quasigroup these operators satisfy the
laws

(6) XYuyp = X, XYUXA =Yy, Zypyp =2z, XIXA =12

Conversely, any (u,p,4)-algebra satisfying (6) is a quasigroup, as is easily
verified. Of course this is not entirely equivalent to the previous definition
of quasigroup, because the notion of subalgebra is different. For this
reason, the algebras of the variety defined by (6) are sometimes called
equasigroups. In the same way, loops (or more precisely, eloops) can be
defined as a variety of algebras with three binary operators and one 0-ary
operator.

If C is any fixed Q-algebra, then the Q-algebras over C form a variety;
for, as we saw in 1.2, an Q-algebra over C may be defined as an algebra
with operators Q and certain O-ary operators (corresponding to the
elements of C) satisfying certain laws.
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EXERCISES
1. Show that the algebra W/q in (4) if non-trivial is the free g"-algebra on X,.
2. Show that modular lattices form a variety.

3. Show that a variety of groups definable by a finite set of laws is also defin-
able by a single law.

4. (Malcev [54].) Let Q be a nonempty quasigroup and ue Q. Show that
Q@ is a loop with neutral element «, with respect to the derived operations
xyp' = xuudpuyip, xyp' = xuydpuulp, xyi' = wyuuipxip.

5. Show that groups may be defined, in terms of right division as binary opera-
tor, as nonempty algebras satisfying xzpyzpp = xpp, xxpyypypp = y. Similarly,
abelian groups are defined by the laws xxypp = v, xyppzp = xzpyp.

6. (Higman & Neumann [52].) Show that groups may be defined by the single
law xxxpypzpxxpxpzppp = y, and abelian groups by the single law xyzpyxppp

= Z.

2. FREE GROUPS AND FREE RINGS

A variety containing algebras with more than one element always has
free algebras. This will follow from the characterization of varieties
given in the next section, but it can also be seen directly: the free ¥ -
algebra on X is obtained by taking the Q-algebra

M A = Q(X|®),

where @ consists of all the instances of all the laws of ¥". In particular,
this ensures the existence of free algebras for the categories mentioned in
IV.1. For the free algebra to be of real use, however, there must be a
simple normal form for its elements, i.e., the word problem should admit a
simple solution. This is the case for groups and associative rings, and we
shall describe this normal form here, partly as an application of the tech-
niques of 111.8-9, and partly to throw more light on the concept of a free
algebra.

It is best to begin the discussion with semigroups. The normal form for
the elements of a free semigroup is extremely easy to obtain and is of use
in discussing groups and even general algebras (cf. IV.4).

Let Sg be the category of semigroups. To obtain the free semigroup on
a set X, we consider the groupoid ®, whose elements are all the nonempty
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rows of elements of X, with juxtaposition as multiplication. It is easily
seen that @, is associative, i.e. a semigroup, and since it is generated
by X, it must be a homomorphic image of the free groupoid I'y on X, i.e.
the word algebra on X. But any two elements of I'y which are identified by
this homomorphism can only differ in the placing of brackets (i.e., the
order in which the multiplications are performed), and therefore they
agree in every homomorphism into a semigroup. This shows that @, is
in fact the free semigroup on X; note that we have, in effect, used the
presentation (1), which dispenses with the verification of the universal
property.

If instead of Sg we consider the category Sg* of semigroups with
neutral element 1, the free semigroup with 1 on X is obtained by adjoining a
neutral element to @, i.e. by taking ®} =®, LI {1} and defining

al=la=a (aedy).

Interpreting 1 as the empty row, we may regard @} as the set of all rows in
X (including the empty row) with juxtaposition as multiplication. Some-
times it is more convenient to take X to be indexed, say X = (x;); then
the elements of @} are the monomials

X=X

“Xi,
corresponding to the different rows /= (i\,-,0,) obtainable from the
index set.

Coming now to groups, let us take as operator domain a set consisting
of a binary operator (multiplication), a unary operator (inversion), and a
0-ary operator 1 (the neutral element), and write down the free group on
X in the presentation (1). This presentation may still be simplified by the
following almost trivial

Lemma 2.1
If a group G is generated by a set Y admitting inversion, then the semigroup
with | generated by Y is also G.

We need only check that the inverse of any product of elements of ¥
is itself a product of elements of ¥, and this follows from the formula

@ G =0
because Y admits inversion. ||

Now let Fy be the free group on X and write X ' ={x""|xe X};
then the set ¥ = X u X ~! admits inversion and generates Fy, qua group.
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On the other hand, consider the semigroup with 1 defined by the presenta-
tion

(3) Ey=SgM{XuX'|xx'=x"'x=1(xe X)}

Since the relations of Ey all hold in Fy, it follows that Fy is a homomorphic
image of Ey, and if we use (2) to define inverses generally in Ey, then Ey is
actually a group and is therefore isomorphic to Fy. In this way we obtain a
presentation of the free group on X as a semigroupon ¥ = X u X " ';ie,
as a homomorphic image of ®;. To obtain a normal form for the elements
of Fy, we consider the graph on @}, whose segments are defined by the
direct moves

uxx v suw, ux'xv—w(ure D}, xe X)

and their inverses. Since a direct move decreases the length of each
word ( = element of ®}) to which it is applied, the number of direct moves
which can be applied to any word w is bounded by the length of w. More-
over, if w,, w, are each obtained by a direct move from the same element
u, then either: (i) these moves affect nonoverlapping regions of u, and so
can be carried out independently to yield an element v obtained from
each of wy, w; by a direct move: u = w, ¥y 'uszz " "us, wy = w2z us,
Wy = uy vy iy, and v = wu,u,, where v,z € Y or (ii) it may happen that
the moves affect overlapping regions, say w =u, vy 'yu, (ye Y) and
wy, w, are obtained by applying the moves yy™' =1, y7'y =1 to the
occurrence shown. In both cases, we reach u, yu,, and so w, = w,. Thus,
the conditions of Theorem I[11.9.3 are satisfied, and we therefore have
established a normal form for the reduced words:

Theorem 2.2
If Fy is the free group on X, then each element of Fy can be uniquely ex-
pressed as a word of the form

(4) VY2V, ieXu Xy # ). I

There are many other ways of proving this theorem; some of them,
using features special to groups. are possibly more direct than the above
proof, but none of them makes the assertion as trivial as it appears to be at
first sight. The crux of any proof is to establish that the elements (4) as
written down all represent different elements of Fy. A direct way of doing
this would be to take the expressions (4) themselves as elements of a group
and define a multiplication between them so as to obtain Fy, but then the
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associative law has to be verified (this would be an application of Theorem
I11.9.1). A slightly quicker way is to represent Fy as a permutation group
on the elements (4); here it is only necessary to check the conditions for a
representation.

As a second example we take the case of associative rings with unit
element 1. Since any such ring may be regarded as a linear algebra over
the ring of integers, we shall more generally consider linear K-algebras,
where K is a commutative and associative ring with 1. A linear K-algebra
A with 1 is then essentially a ring 4 with a canonical homomorphism
K — Z(A), where Z(A) = {z€ A|zx = xz for all x € A} is the centre of 4.
The category Asy of associative linear K-algebras with 1 is subordinate to
Sg*, and we can therefore represent Sg* in Asg. The universal functor
U(S) for this representation is called the semigroup algebra of S over K.
In terms of a presentation S = Sg*{X|®} of S we have

U(S) = Asg{X| @}

This becomes particularly simple if we take X = .S and ® the set of equa-
tions which make up the multiplication table of S. The elements of U(S)
are then expressed uniquely in the form Zsx,, where o, € K, se Sand o, = 0
for all but a finite number of 5. Addition and multiplication are defined by
the equations

Tsog + Lt = Is(a, + By),  (Esx)(Zep,) = Istaf,

where st is the product of s and ¢ in S. Thus U(S) may be described as the
free K-module on S as basis, with multiplication induced by the multi-
plication in S (i.e., basis elements multiply as in S and general elements by
linearity). We note in passing that this description does not depend on
the associative law in any way, so we may in the same way represent
groupoids in (nonassociative) linear K-algebras; for any groupoid T, the
groupoid algebra of T over K is the free K-module on T as basis, with
mutliplication induced by the multiplication in T".

To obtain the free K-algebra on X, we form the free semigroup with
1 on X and take its semigroup algebra over K. Taking X to be indexed, for
convenience, we may state the result as

Theorem 2.3

Let K be any commutative and associative ring with 1. Then, for any set
X = (x)), the free associative K-algebra with 1 on X is the free K-module on
the monomials x, as basis. ||
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The free commutative associative K-algebra on X (Ay, say) is obtained
similarly as the semigroup algebra over K of the free commutative semi-
group ®y on X. Taking X =(x,) again to be indexed, with a totally
ordered index set, we see that by the commutative law, the elements of
@, may be uniquely expressed as ascending monomials

X; =X X where i} < - <1,

i in?

Hence we obtain

Theorem 2.4

If K is as in Theorem 2.3 and X = (x)) is any set on a totally ordered index
set, then the free commutative and associative K-algebra with |1 on X is a
[free K-module on the ascending monomials in X as basis. [}

EXERCISES

1. (Morimoto.) If f(x,y) is a derived operator in a group, such that f(x, f(1,2))
= f(f(x,),z), show that f'is of one of the forms xy, yx, x, y, 1.

2. If f(x, y) is a derived operator in a variety of associative K-algebras with 1
(K an integral domain) such that f(x, f(y,z)) = f(f(x, y), z), show that fis of
one of the forms x, y, a + B(x + ») + yxy or @+ S(x + ) + 7¥x, where
ar + 8- =0

3. Show that the number of elements of length & in the free semigroup on
g free generators is ¢*, and in the free group on g free generators the number
is 2¢(2¢ — 1)*~'. What are the corresponding numbers for the free commutative
semigroup and the free abelian group?

3. THE GENERATION OF VARIETIES

From the definition of a variety it is not easy to tell whether a given
class of Q-algebras is a variety or not. We now give necessary and sufficient
conditions, due to Birkhoff [35], for this to be the case.

Theorem 3.1
A full subcategory X" of the category (Q) of all Q-algebras is a variety
if and only if the following three conditions are satisfied:
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(i) o is hereditary.
(ii) " admits homomorphic images.
(iii) " admits direct products.
Note that any category satisfying (ii) is abstract; if it satisfies (iii), it
contains the trivial algebra, as empty product.

Proof:

The necessity of the conditions is clear and may be left to the reader to
verify. To prove the sufficiency, we shall assume 2" to be nontrivial, since
the trivial abstract category is clearly a variety.

If ¥ denotes the class of all # -algebras, then it is clear that

2,
and we have to establish equality. Let 4 € ¥*" and express 4 as a homo-
morphic image of an Q-word algebra W on a sufficiently large set X (by
Theorem I11.2.7):
(1 0: W — A.
By Theorem I11.5.3 and the remark following it, % has free algebras of
any rank; let F be the free /# -algebra on X; then the identity mapping on
X may be extended to an epimorphism «: W — F with kernel q, say. If
(u,v) € q, then the Q-words u and v have the same value in F, and hence
in any -algebra; ie., u=v is a law of &, and therefore this law is
satisfied by A. Thus, u0 = v0; hence q < ker 0, and dividing (1) by nat q,
we obtain the epimorphism

0%:F - A.
Since F e ¥, it follows from (ii)that 4 e ¥". |}

By examining the last part of the proof we obtain

Corollary 3.2
Let F be a free algebra of a category A then every relation in F is a law
in " and conversely. 1

We also have the following consequences of Theorem 3.1:

Corollary 3.3
Every nontrivial variety' has free algebras. |

1 A variety is nontrivial if it is nontrivial as a category, i.c., if it contains algebras with more
than one element.
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Corollary 3.4
Every variety is local, residual, and admits free and direct composition.

This follows by Proposition 11.7.4, Theorem II11.6.1, and Theorem
mn.e4. J

Let o be any category of Q-algebras and ' the set of laws holding in
every Jf-algebra. Then " is the variety defined by 2 and is therefore
the least variety containing every # -algebra. We shall also say: #" is
the variety generated by 4", and we write

A" =vH.

From its definition in terms of a Galois connexion, it follows that v is a
closure operator on categories; in particular, # is v-closed if and only if
o is itself a variety. An explicit expression for v, due to P. Hall, is given in

Theorem 3.5
If A is any category of Q-algebras, then the variety generated by A~ con-
sists of all homomorphic images of subdirect products of A -algebras, i.e.

(2) V = QR.

Proof:

The two sides of (2), applied to a trivial category, evidently produce the
same result, so let ¢ be a nontrivial category. By Theorem 3.1, RHA S V¥~
and QR S Vv so it remains to prove the opposite inclusion. By
Theorem II1.5.3, R is a category which has free algebras of all ranks
exceeding some cardinal «, and every rR.f-algebra is a homomorphic
image of one of these free algebras. Now consider Qr " ; this consists of all
the homomorphic images of all the free r.o#-algebras. Thus Qr# has
free algebras of rank >a, and so SQrR#" has free algebras of any rank.
When the rank is positive, these algebras already lie in Qr#” (by Proposi-
tion III. 5.5), so Qr¢" has free algebras of all positive ranks. Now let
Aevia, A # @, take any generating set X # (J and let F be the free
QRr.f -algebra on X. Then any relation in Fis a law in 2 (by Corollary
3.2) and therefore holds in A; by Dyck’s theorem (Theorem III. 8.3) the
identity mapping on X extends to an epimorphism F — A, and so
A € Qr#". In the excluded case (4 = @) we can (formally) express A as
direct product of the empty family. Ji

From this theorem we obtain the following strengthening of Birkhoff’s
criterion (Theorem 3.1).
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Corollary 3.6
If X is any residual category admitting homomorphic images, then the
A -algebras form a variety.

For then vio¥ =QrA =X = 4. |1

We remark that neither Theorem 3.5 nor Corollary 3.6 contains an
assertion about /#-homomorphisms; in fact, it can be shown that every
residual category admitting homomorphic images is a full subcategory of
(Q), cf. Stanley [66].

The proof of Theorem 3.5 shows that if " is any category with free
algebras, then the class of all homomorphic images of all free J#"-algebras
forms a variety, which can only be vo#. It follows that the free # -algebra
on a set X is isomorphic to the free v.#-algebra on X, or, in other words,
since free algebras are determined only up to isomorphism and categories
are abstract, every free v.¢-algebra belongs to #". Conversely, if a free
vt -algebra is in o, it is also a free o -algebra. We thus obtain the
following criterion for a category to possess free algebras.

Proposition 3.7
A category A of Q-algebras possesses free algebras if and only if every free
v -algebra is a A -algebra. |}

This proposition applies not only to subcategories of (Q), but to any
class € of Q-algebras. Formally this could be brought within the above
framework by considering the category [#] consisting of all algebras
isomorphic to algebras in ¢, with all homomorphisms between them.
In applying the closure operators Q, R, v, we shall often omit the brackets
and write v instead of v[#], etc.

A case of special interest arises when % consists of a single algebra A.
Then V& is the least variety containing A4; we also say that A is a generic
algebra in v#, and write A instead of v{4}. Expressed differently, if ¥"is a
variety, then a generic algebra for ¥ is a ¥"-algebra A such that every law
of 4 holds in ¥,

Proposition 3.8
Every variety has generic algebras; in particular, if ¥ is a nontrivial
variety, then any free ¥ -algebra on an infinite alphabet is generic for ¥".
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Proof:

Clearly, the trivial algebra is generic for the trivial variety; so let ¥" be a
nontrivial variety and F a free ¥"-algebra on an infinite alphabet; then
F = v. Now let A € ¥"; then every finitely generated subalgebra of A4 is a
¥ -algebra, and hence is a homomorphic image of F. Therefore 4 is
locally F, but F is local (by Corollary 3.4),andso 4 e F. |}

We have seen that a variety ¥ may be defined either (i) by the set of all
its laws in some infinite alphabet (Theorem 1.1), or (ii) by the free ¥"-
algebra on some infinite alphabet (Proposition 3.8). When the alphabet
is finite, these two descriptions need no longer be equivalent. To discuss
the relation between them we first need some definitions.

Let ¥ be any variety and denote the free ¥ -algebra of rank n by F.(¥").
For any cardinal n, we shall associate with ¥~ two varieties ¥ and ¥",,
the one containing ¥~ and the other contained in it. Namely, ¥ is the
class of all Q-algebras satisfying all laws of ¥” in at most n letters, and ¥7,
is the class of all Q-algebras satisfying all the laws in F,(¥7). Itis clear from
this definition that ¥™" and ¥, are varieties, and the above remarks show
that ¥ = ¥", = ¥ for all infinite n. Further, it is easily verified that

Wy B EFE- B ey Uy, =Ny =9,

The least value of n such that ¥™ = ¥ is called the axiom rank of ¥
and is denoted by r,(¥7); the least n such that ¥, = ¥" is called the base
rank of ¥ and is denoted by r,(¥"). From the definition we see that r, is
the least integer such that ¥” may be defined by laws in r, letters (or Ny, if
no such integer exists), while r, is the least integer such that every ¥-
algebra satisfies all the laws holding in the free ¥ -algebra of rank ry, ie.,
such that F,(¥") is generic for ¥" (or N, if no such integer exists). In
general neither r, nor r, need be finite; we refer to Higman [59] for an
example of a variety of groups for which r, is infinite and to Lyndon [54]
for an example of a variety of algebras for which r, is infinite. It is not
known whether r, is finite for every variety of groups, but for many well-
known varieties of algebras both r, and r, are finite. To facilitate the cal-
culation of r,(¥") we may use

Proposition 3.9
Let ¥ be any variety of Q-algebras; then an algebra A belongs to ¥™" if
and only if all its n-generator subalgebras belong to V.
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Proof:

Put F, = F,(¥) and let X, be a free generating set of F,. By Corollary
3.2 any relation in F, is a law of ¥, and it clearly involves at most n letters.
Now assume that 4 € ¥ and let

3) 0:X, - A

be any mapping; then any relation in F, is a law of ¥ in at most n letters,
and therefore holds in A4 ; hence 0 extends to a homomorphism. This holds
for any mapping 0; therefore, all n-generator subalgebras of A are in 7.
Conversely, when this condition is satisfied, any mapping (3) extends to
a homomorphism, hence any law in at most n letters holds in A4 because it
holds in F,, and so Ae v". |}

As an application we determine the axiom and base ranks for the
variety Gp of all groups. Since groups can be defined by laws in 3 letters,
we have r,(Gp) < 3. We assert that equality holds; to establish this, it is
enough to show that Gp? = Gp, and this will follow if we exhibit a loop
whose 2-generator subloops are all groups. Such a loop is obtained by
taking the elements +e; where e; (i = 1,---,8) runs over a basis of the
Cayley-Dickson algebra, in the usual form (cf. e.g. Kuro$ [63], ch. V).
Next consider the base rank: since the free group of rank 2 contains free
groups of infinite rank as subgroups, we have r,(Gp) <2, and here
equality holds because the free group of rank 1 is abelian and so is certainly
not generic for Gp. Thus we have r,(Gp) = 3, r,(Gp) = 2.

Consider now a set X of laws in the » letters x,,---,x,. We may regard £
as a subset of W2, where W, is the Q-word algebra on x,,---,x,; thus we
may replace X by the fully invariant congruence on W, which it generates.
If the congruence is denoted by q, then F, = W,/q is the free algebra of
rank n for the variety £'. With these notations, we have (since q can be
any fully invariant congruence on W,)

Proposition 3.10

Let q be any fully invariant congruence on W, and put F, = W,/q. Given
any variety ¥, let x, be the set of all its laws in x,,---,x,. Then

(i) v, c qifand only if F,e ¥™".
(ii) xv,2qifandonlyif v, = q'.

In particular, v, = q if and only if ¥ = o', ¥, =F,, and this holds whenever
4) F.e¥v cq.
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Proof:

By definition, ¥™ = r,, from which (i) follows by Theorem 1.2, because
q and r, are both fully invariant. Next put G, = W,/r,; then G, is the free
¥ -algebra on x,,---,x,, and so ¥", = G,, from which (ii) follows. Now the
rest is clear if we observe that (4) implies ¥, = F,, ¥" =q". |}

For a more detailed study of ¥ and ¥°, when ¥ is a variety of groups,
we refer to H. Neumann [56].

The free algebras of the variety generated by a class ¥ of algebras may
be characterized as follows:

Theorem 3.11
Let % be a class of Q-algebras and ¥ the variety generated by €. Then a
¥ -algebra F is free on a subset X if and only if every mapping

¢:X—-A (4e®)

of X into an algebra A of € may be extended to a homomorphism ¢*: F — A.

Proof:

The necessity of the condition is clear. Conversely, suppose that it is
satisfied and let B e ¥". Then every mapping 0: X — B may be extended to
a homomorphism '

(5) G:W—DB,

where W = W,(X) is the Q-word algebra on X. Further, the inclusion
mapping X — F extends to an epimorphism W — F, so that we may
assume F = W/q, making an obvious identification. To complete the proof
we show that 0 can be factored by nat q, giving a mapping 0*: F — B which
extends 0. This will follow if we can show that

(6) q < ker 0.

Let (u,v) € q; to establish (6) we must show that uf = vf. This will
certainly follow if we can show that

(7 u=v

is a law in €, for then it must also be a law in B. Now let ¢: X — 4 be
any mapping, where 4 € %, and extend this to a homomorphism ¢*: F — A4;
then u%¢* = v"¢*, because 1" = v?. This shows (7) to be a law in 4, as
asserted; therefore Fis ¥*-free on X. |j



176 Varieties [Chap. IV]

This result enables us to give a simple characterization of Q-algebras
which are free for some variety ¥":

Corollary 3.12

Let A be an Q-algebra on the generating set X. Then A is free on X (for
some class of Q-algebras) if and only if every mapping X — A extends to an
endomorphism of A.

For this condition is clearly necessary, and the sufficiency follows from
Theorem 3.11. |}

An Q-algebra satisfying the condition of this corollary is often called
relatively free; thus A is relatively free on X if and only if 4 is A-free on X.
As examples of relatively free algebras, we have the free algebras of a given
variety; an example of an algebra which is not relatively free on any subset
is given in Exercise 2.

When A4 is a generic algebra of a variety ¥, then by Theorem 3.5 the
¥ -algebras can all be obtained as homomorphic images of subdirect
powers of 4. It is of interest to have a more explicit description of the
free ¥ -algebras in this case:

Theorem 3.13

Let A be any Q-algebra; then the free A-algebra of rank o is obtained as
follows: Let I be a set of cardinal « and for each i eI define a mapping
5;:A" - A by

®) ((@)jen)d; = a;.

Then the subalgebra of A*' generated by the elements §; (i € I) is the free
A-algebra on these elements.

Proof:

Let F be the subalgebra generated by the &; (i € I); given any a € A,
say a = (a;), denote by &, the projection of 44" on the corresponding
factor. If we restrict ¢, to F, this defines a homomorphism

e F— A,

and by (8) this maps é; to a;. Thus every mapping (§,) — A extends to a
homomorphism F — A, and by Theorem 3.11, this shows that Fis A-free
onthes. |
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When « is finite, say « = n, then the §; are just the unit operators in the
clone 0(A) (cf. 111.3); thus, the free A-algebra of rank » is the subalgebra
of A" generated by the n-ary unit operators. This is necessarily finite
when n and A are finite, and we thus obtain the following result, due to
B. H. Neumann [37], in the case of groups:

Corollary 3.14
If A is a finite Q-algebra, then every free A-algebra of finite rank is finite,
and hence every finitely generated A-algebra is finite. |}

The varieties of Q-algebras form a complete lattice, with greatest element
() and least element the trivial variety. In the case of groups, a multi-
plication can be defined on the set of subvarieties of Gp, and it turns out,
rather surprisingly, that the resulting groupoid is a free semigroup (B. H.,
H., and P. M. Neumann [62]). For general €, there is no multiplication,
but we still have the lattice structure. The atoms of this lattice (i.e. the
minimal nontrivial varieties) will be referred to as minimal varieties. They
are also called equationally complete classes, since they are defined by
maximal proper fully invariant congruences on the Q-word algebra
(corresponding to a maximal consistent set of laws). If W is the Q-word
algebra on a set X with more than one element, then a fully invariant
congruence q on W is proper if and only if it does not contain (x,y), where
x and y are any distinct elements of W. It follows that any proper fully
invariant congruence can be embedded in a maximal proper fully invariant
congruence on W. This proves

Proposition 3.15
Every nontrivial variety contains minimal varieties. |

In a minimal variety, any algebra with more than one element is generic;
we shall call the generic algebras of minimal varieties elementary; thus A is
elementary if and only if A is minimal.

Let ¥ be any nontrivial variety and .# a minimal variety contained
in ¥. Clearly F,(#) is a homomorphic image of F,(¥7), and since
F,(#) is generic for .# it follows that the minimal subvarieties of
are entirely determined by the relatively free homomorphic images of
Fy(¥). In particular, if F,(¥") is finite, then there are only finitely
many homomorphic images, and we obtain the following result, due to
D. Scott [56].
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Theorem 3.16

Let ¥ be any nontrivial variety such that F,(¥") is finite. Then ¥ contains
only ﬁni?e!y many minimal subvarieties. In particular, if A is a finite Q-
algebra with more than one element, then A contains only finitely many
minimal subvarieties.

The last part follows because F,(A) is finite, by Corollary 3.14. |}

Let us call 4 F,-simple if A is nontrivial, and for every nontrivial homo-
morphic image B of F,(A), we have

F,(A) = F(B).

The determination of elementary algebras is facilitated by the following
criterion, also due to Scott [56].

Theorem 3.17
An Q-algebra A is elementary if and only if, for some n > 1, A is F,-simple
and belongs to (A),.

Proof:

The conditions on A state that (i) any n-generator A-algebra B satisfies
(B), 2 (4),, and (ii) (4), 2 4. Since in any case, (B), < (4), < 4, the
conditions imply that B = A, whence
9) B=A.

Taking B to be any nontrivial algebra of some minimal subvariety
of A, we see from (9) that A must be minimal, and hence 4 is elementary.
Conversely, when A is elementary, then (9) holds for every nontrivial
A-algebra, and hence (i) and (i) hold for alln > 1. ]

When A is finite, these conditions enable one to test in a finite number of
steps whether 4 is elementary. As an illustration, we determine the
elementary groups. If G is an elementary group, then G is nontrivial, and
so contains nontrivial cyclic subgroups; taking a suitable factor of G, we
obtain a cyclic group Z, of prime order p in G. Since Z » is generic for G,
every G-group, and in particular G itself, is abelian and satisfies x” = 1,
i.e., G is elementary abelian. Conversely, an elementary abelian group is
easily seen to be elementary, using Theorem 3.17.

%

EXERCISES

1. Show that the conditions of Theorem 3.1 are independent, by verifying
that the class under (1) below satisfies all the conditions except (n) (n = i,--+,iv):
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(i) 0; (ii) the class of divisible abelian groups (G is divisible, if x" = a has a
solution x in G for every a in G and every positive integer n); (iii) the class of
torsion-free abelian groups; (iv) the class of finite abelian groups.

2. Show that a finite abelian p-group is relatively free if and only if it is
elementary abelian.

3. Let 4 be the category of all groups in which every maximal subgroup is
of infinite index, with all homomorphisms. Show that %" is not residual. (Use
Theorem 3.5.)

4. Let A = W/q be any Q-algebra, in a given presentation, where W is the
Q-word algebra on the standard alphabet, and denote by r the greatest fully
invariant congruence contained in q. Then W/r is the free A-algebra of count-
able rank.

5. (G. T. Haigh.) Let A be a finitely generated (-algebra, where Q is finite.
If g is a congruence such that A/q is finite, then q is finitely generated.

6. If ¥~ is any variety of algebras, show that the free algebras of rank m of
the varieties ¥, ¥, ¥, are all isomorphic, provided that n > m. Give an
example where all three varieties are distinct. (Take n =1, ¥" = associative
rings.)

7. Let A be relatively free on X. Then if X is infinite, A is the only variety for
which A is the free algebra on X. If X is finite with n elements, show that for
any variety ¥, the free ¥ -algebra of rank » is isomorphic to A4 if and only if

Acv (A
8. For any variety ¥, if #™ £ ¥ and r,(¥™) < n, show that r,(¥™) > n.

9. Show that for the variety of abelian groups, r, =3, r, = 1. (Use the loop
associated with the Pappus configuration, Exercise I1.2.12.)

10. Show that for the variety of associative rings, r, =3, r, = 2.

11. If As denotes the variety of associative rings, then As? is the variety of
alternative rings and As' is the variety of power-associative rings; show that for
As, r,=2,r,=3,andfor As', r,=1,r,=2.

12. An Q-algebra A is said to be n-primal, if the clone of action of Q on A4
includes all n-ary operations on A (cf. II1.3). Show that A4 is n-primal if and only
if A" is generated, qua Q-algebra, by the unit operators.

13. (A. L. Foster.) If Q is countable, show that any Q-algebra which is n-
primal for some » must be finite. (Observe that an infinite set has uncountably
many n-ary operations.)
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14. (A. L. Foster.) Let 4 be a nontrivial Q-algebra which is n-primal for
all n, and assume that Q is at most countable. Show that the extensions of A
in the variety A are the subdirect powers of 4 containing the constant functions.

15. (A. Tarski.) Show that an associative ring R is elementary if and only if
it is commutative and for some prime p, px =0 for all x € R and either xy =0
for all x,y € R or x* = x for all xe R.

16. (J. Kalicki & D. Scott.) Determine all elementary semigroups with two
elements.

17. (M. P. Schiitzenberger.) Show that a lattice is elementary if and only if it
is distributive. (Use Exercise 11.7.9.)

4. REPRESENTATIONS IN VARIETIES OF ALGEBRAS

We now apply the representation theory of 111.4 to varieties. Since every
variety is residual, a residual representation of a category % in a variety ¥
of Q-algebras has a universal functor, by Theorem 111.4.2. Now just as a
variety is a special type of residual category, so there is a special type of
residual representation, which may be defined by identities in case % is a
category of algebras (not necessarily with the same operator domain as
¥).

Thus, we now have two operator domains Q, ©, a variety ¥~ of Q-
algebras, and a category % of ®-algebras with free algebras. Consider any
mapping
0] p:B—A

from an Z-algebra B to a ¥ -algebra A; given a set wy,---,w, of ®-words
in xy,---,x, and two Q-words f.g in y,,---,y,, we say that the mapping (1)
satisfies the identity

o)) Swip,-wip) = glwip,--wp),

if the two sides of (2) are equal whenever x,,---,x, are replaced by arbitrary
elements of B. It is clear from the definition that for any set £ of identities
of the form (2), the set of all mappings from #-algebras to ¥ -algebras
satisfying the identities X defines a representation of % in ¥". These repre-
sentations defined by identities may be characterized as follows:

Theorem 4.1
Let v be a variety of algebras and % a category of algebras (not neces-
sarily with the same operator domain as ¥") with free algebras. Then a given
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representation of & in ¥~ may be defined by identities if and only if it is
residual and satisfies the following condition:
If p: B — A is a mapping from an £-algebra B to a ¥ -algebra A such that
for some Z-epimorphism p: B, — B the mapping fp: B, — A is admissible,
then p is itself admissible.

A representation of # in ¥ satisfying this last condition is said to admit
homomorphisms.

Proof:

The necessity of the conditions is clear, and their verification may be
left to the reader. Now assume that they are satisfied; then, by Theorem
111.4.2, there is a universal functor (U,u) for the representation of % in ¥,
and the mapping

3) u:B - U(B)

is admissible. Moreover, U(B) is generated by im u, by Proposition I111.4.1.
Let G be the free #-algebra on a set X, and consider any relation

4) Sxu) = glxu) (x;e X)

in U(G). We assert that (4) is identically satisfied by the representation.
If B:G — B is any £-homomorphism and f': U(G) - U(B) the induced
¥"-homomorphism, then putting x;f = b;, we have

®) fba) =f(xpu) = f(xw)p’ = g(xa)p’ = g(x.pu) = g(bu).

Now given any admissible mapping p:B — A(A4 € ¥), we have p = up*,
where p*: U(B) — A, and by (4) and (5),

S(bip) = f(ba)p* = glbau)p* = g(bip).

This shows that (4) is identically satisfied. Now let £ be the set of all
identities satisfied by the representation, and consider a mapping

(6) p:B>A (BeOb 2, Aev),

which satisfies all the identities of £. Take a free #-algebra G on a set X,
with an Z-epimorphism f:G — B; then U(G) is generated by im « and
any relation in U(G) between the elements xu (x € X)is an identity of ¥
and therefore also holds between the elements xfip, by the definition of p.
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By Lemma II1.8.1 there exists a ¥"-homomorphism f*: U(G) - A which
makes the diagram

G U

sj J’”

B— >4
p

commutative. Thus fp is admissible, and since f is an Z-epimorphism,
p is admissible. [J
From the necessity of the conditions we obtain

Corollary 4.2
If " and W are any varieties of algebras, then the universal functor exists
Jor any representation of W in ¥~ which is defined by identities. |

An important particular case is obtained if we take ¥ < % and consider
the natural representation of % in ¥". The admissible mappings are by
definition the mappings p:B — A from an %-algebra B to a ¥ -algebra A,
such that for any n-ary operator w acting in %, and any b,,---,b, € B,
we have

(7 (byp--bup) = (by-+-b,w)p.
Thus the natural representation of % in ¥, i.e. the representation of &

in ¥ by #-homomorphisms, is defined by the identities (7) and we have
proved

Corollary 4.3

Let ¥ be a variety of algebras which is subordinate to a category £ of
algebras (not necessarily with the same operator domain as ¥°) with free
algebras. Then the natural representation is defined by identities and has a
universal functor. |

Given any variety ¥ of Q-algebras, let ¥~ be the derived category
obtained by restricting Q to Q'. Then the ¥ -algebras are (up to iso-
morphism) the Q'-subalgebras of ¥™-algebras; hence ¥ is hereditary.
Moreover, if (B;);.4 is any family of ¥ -algebras, we may take B, to be
an Q'-subalgebra of a ¥"-algebra A4,. Hence the direct product 1B, is
an Q'-subalgebra of IT4;, and this shows that ¥** admits direct products.
By Corollary I11.5.2, ¥ is a category with free algebras, and this proves
the first part of
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Theorem 4.4

Let ¥ be a nontrivial variety of Q-algebras and V"' the derived category
of Q'-algebras obtained by restricting Q to Q'; then ¥ admits subalgebras
and direct products. Moreover, if F is the free ¥ -algebra on a set X, then the
Q'-subalgebra of F generated by X is the free ¥ '-algebra on X.

To prove the last assertion, let F* be the Q'-subalgebra of F generated
by X; then, by definition, F' € ¥”". Now any ¥'-algebra B is isomorphic
to an Q'-subalgebra of some ¥ -algebra 4, and we may take B to be
embedded in A, without loss of generality. Any mapping ¢:X — B
induces a mapping ¢i: X — A, where i:B — A is the inclusion mapping,
and ¢ may therefore be extended to an Q-homomorphism ¢:F—>A. The
restriction ¢’ = ¢ | F' is an Q'-homomorphism extending ¢, and since it is
determined by its values on X, is unique. This shows F’ to be the free
¥ -algebraon X. |

We note that ¥* need not be a variety. For example, if ¥ is the variety
of associative algebras and ¥ the derived category consisting of special
Jordan algebras (cf. VIL7), then ¥* does not admit homomorphic images,
and so is not a variety, although by Theorem 4.4 we may speak of the
‘free special Jordan algebra’ on any set.

In Corollary 4.3 we saw that the natural representation of a derived
category always has a universal functor. There is a simple criterion for
this functor to be injective, which is often useful.

Theorem 4.5

Let ¥ be a variety of Q-algebras and ¥’ the derived category obtained by
restricting the operator domain from Q to Q'. If B is a homomorphic image ofa
free ¥ '-algebra, say

B =Flq,

where F' is the ¥"'-subalgebra generated by X in F, the free ¥ -algebra on X,
and if § is the Q-congruence on F generated by q, then the universal ¥ -algebra
for Bis

(8) U(B) = Fla,
and the canonical mapping w: B — U(B) is injective if and only if

© gnF?=q
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Proof:

The canonical homomorphism 0:F' — B, when restricted to X and
combined with the mapping w:B — U(B), defines a mapping from X to
U(B) which extends to an Q-homomorphism 0:F — U(B). Since ker 0 = q,
it follows that ker 0 = q, and therefore ker f = g, because q is the least
Q-congruence containing q. Dividing by nat g, we find

(10) 0% : Fl§ — U(B).
Now in any case, q = § n F, hence there is an epimorphism
Fla-»F[q n F?= Fag,
(by the second isomorphism theorem), while
Fiq = Flg,

so altogether we obtain a homomorphism

(11) ¢:B=Flqg—Flg;
from the definition of 0* it follows that
(12) u = ¢p0*,

Now any admissible mapping «: B — 4 (4 € ¥") can be factored by u, so
that o = ua’; hence, by (12), o = ¢p0*a«". If we also had « = ¢f, then f and
0*z' would agree on im ¢, and hence on F/g, which shows that 6%« is
unique. Thus F/q has the universal mapping property and may therefore be
identified with U(B), with universal mapping (11). Now ker ¢ = (§ n F'?)/q,
and this is the diagonal if and only if (9) holds. ]

These results will be applied to linear algebras in Chapter VII; another
application, which is described below, provides a way of embedding
arbitrary Q-algebras in semigroups. The method is based on the con-
struction of Q-word algebras in I11.2, and is due in essence to Malcev [52],
who uses it to represent linear algebras in associative algebras.

Let Q be any operator domain and denote by Sg(Q) the class of all
semigroups over £, i.e. semigroups with the elements of Q as constant
operators. Clearly, this is a variety; we shall denote the semigroup
multiplication by *’ to avoid confusion. Any semigroup in Sg(Q) may be
regarded as an Q-algebra by defining

(13) Ay = Ay = Ay °A;° - ° @, ° W (w e Q(n)).



[IV.4] Representations in Varieties of Algebras 185

Thus, Sg(Q) < (), and so (Q) may be represented in Sg(Q) by the natural
representation. This has a universal functor, by Corollary 4.3; thus, to
each Q-algebra A there corresponds a semigroup U(A) over Q, together
with a mapping

(14) u:A — U(A)

which is an Q-homomorphism (regarding U(A) as Q-algebra by (13)),
and which is universal for homomorphisms of A4 into semigroups over Q.
We assert that (14) is injective ; to prove this, we need only show that 4 can
be faithfully represented in some semigroup over Q. Such a semigroup
may be constructed as follows. Let Z be the set of all finite rows of elements
of the disjoint sum A4 LI & (including the empty row), such that no con-
secutive block of n elements of A is followed by an element of Q(n). We
represent A by mappings of X into itself by associating with the element
a € A the operation p, defined by

(“"l!"'sxr)pa == (xls "',x,,a) (x,' eA | Q}

It is clear that (x;,---,x,,a) again belongs to £. Now Q is represented by
associating with @ € Q(n) the operation o, defined by

(xlv"'sxmsxm‘bl“'xrw) ifr=m +n=n
(xln'"9xr)am o and X; € Afori> m,
(X1, X,,0)  otherwise.

Now it is easily verified that

PaPa;" Pa,Fw = Pajaz...aner
Hence we have an Q-homomorphism of A4 into the semigroup of unary
operations on £. Moreover, if ( ) is the empty row, then

(Jpa=1(a) (aeA);

therefore p, = p, holds if and only if @ = b. The result thus established
may be summed up as

Proposition 4.6
Any Q-algebra A may be embedded in a semigroup over Q, and there is a
universal semigroup over Q for all such embeddings. ||

In the special case 4 = Wy(X)this is, of course, merely the embedding
in the semigroup of all Q-rows in X.
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In a variety, the free product need not exist (unlike the free composition),
and the problem of its existence is essentially one of showing that a certain
universal functor is injective. An alternative form of the definition of
free products in varieties is given in

Theorem 4.7
Let ¥~ be a variety; then a ¥ -algebra A is the free product of a family
(A,):¢ 4 of subalgebras, provided there exists for each ) € A a presentation

{15) A; = "V{XA](DA},

such that ¥{X|®} is a presentation for A, where X =11 X,,® =11 ®, and
Sor any pair ). # p, A; n A, is the minimal subalgebra of A.

Proof:

We first show that A4 is the free composition of the 4,. Since 4,
is only determined up to isomorphism by (15), we may take the X,
to be pairwise disjoint, and then put X = UX,. Let ¢,:4, > B be any
family of homomorphisms and consider the mapping ¢: ¥ — B such that
¢| X, =¢,| X,. Any relation between the elements of X in A is a con-
sequence of the relations ®,, and therefore also holds between their
images in B. Hence (by Lemma I11.8.1) ¢ can be extended to a homo-
morphism ¢: 4 — B which agrees with ¢, on X, and therefore also agrees
with ¢; on A4,. Moreover, ¢ is unique because its effect on the generating
set X of A is given. This shows 4 to be the free composition, with the
inclusions 4, — 4 as canonical homomorphisms. By hypothesis, different
factors intersect in the minimal subalgebra of 4, and this shows 4 to be
the free product. [}

From Corollary I11.6.3 we obtain

Corollary 4.8
Let v be a variety in which every minimal subalgebra is trivial; then the
free product of any family of ¥ -algebras exists. |

This corollary shows that the free product of groups, semigroups with 1,
rings, etc., exists. Of course it is necessary to specify the variety in which
we operate; thus, the free product of abelian groups is different according
to whether we are in the variety of all groups or that of all abelian groups.
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EXERCISES

1. Show that the free product of a family of ¥ -algebras exists if and only if
the free product exists for every finite subfamily; deduce that the property of
admitting free products is local. (Use Theorem 4.7.)

2. Let ¥ be a variety of algebras and % a category of algebras with free
algebras which has two representations Ry, R, in ¥” such that every R,-admiss-
ible mapping is also R,-admissible. If for each representation R; the universal
functor (U,,u;) exists, show that there is a canonical epimorphism

(16) 0: Uy(B)— Uy(B)  (BeOb 2).

If R, admits homomorphic images and if for some #-algebra B, (16) is an
isomorphism, show that v is an isomorphism for every homomorphic image of B.

3. Let ¥ be any variety of algebras and & = #(¥") the category of families
of ¥ -algebras (with totally unordered index set). Show that the universal func-
tor exists for the representation of #(¥”) in ¥~ by functions which are homomor-
phic in each argument. (When ¥ is the variety of abelian groups, this functor is
the tensor product.)

4. For any positive integer n, denote by Z, the ring of integers mod n. Obtain
necessary and sufficient conditions for the free product of Z,, and Z, to exist in
the category of: (i) commutative (and associative) rings; (ii) commutative rings
without zero divisors; (iii) commutative rings with 1. (In each case the condi-
tions must be such as to ensure that Z,,Z,, belong to the catégory.)

5. If i is a fixed group, show that the category of extensions of H admits
free products (this is also called the free product amalgamating H).

6. In any category a morphism y is called left (right) regular, if po = uf
(ept = Bp) implies o« = . Show that in the category Gp a left regular morphism
is an epimorphism and a right regular morphism is a monomorphism. (Use
Exercise 5.)

7. Show that any ordered set A may be embedded in a free lattice L in such a
way that the ordering in A is induced by that of L.

8. Given any variety ¥~ of Q-algebras, let Fy be the free ¥ -algebra on a set
X, and for any 4 € ¥~ denote by A(X) the free composition (in ¥7) of 4 and Fy.
Show that the canonical mapping 4 — A(X) is injective (the algebra A(X) is
called the extension of A obtained by adjoining the indeterminates x € X).



Chapter V

Relational Structures and Models

The concept of an algebra developed in Chapters II-1V includes most of
the algebraic structures encountered in practice, but there are some
important exceptions. Thus, although groups, rings, and vector spaces
are included, neither ordered groups nor fields satisfy the definition. To
see what modifications are necessary, we note that an ordered group is a
structure with certain operations, and besides, a relation. A field is a
structure with ‘operations’ which are not everywhere defined. As we
saw in 1.2, it would be formally possible to define both ordered groups and
fields as algebras, but only at the cost of some artificiality. For a natural
development one needs to have relations as well as operations, or at least
relations alone, since it turns out that operations may be obtained as a
special case. Furthermore, in writing down the definition of particular
structures it may be necessary to use inequalities as well as equations, This
is made possible by introducing logical connectives, and it leads to the
consideration of classes of algebras other than varieties.

1. RELATIONAL STRUCTURES OVER A PREDICATE DOMAIN

As in Chapter 11 we begin by taking a set Q of symbols such that with
each we Q a nonnegative integer « =a(w) is associated. However,
instead of using w to define an n-ary operation, we now wish to define

188
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more generally an (n + 1)-ary relation. For this reason, we shall refer to
the elements of Q in the present context as predicates rather than operators,
and Q is called a predicate domain. If a(w) = m— 1, then  is said to be
an m-ary predicate, and the arity of w, as predicate, is m. As before, we
put Q(n) = {weQ|a(w) = n}.

Definition

A relational structure over the predicate domain Q, or more briefly, an
Q-structure, is a nonempty set M with a rule which assigns to each n-ary
predicate w € Q an n-ary relation in M. As in algebras, the set M is called
the carrier of the Q-structure, and we shall not use a special notation to
distinguish between a structure and its carrier, as the intended meaning
will always be clear from the context.

Since an n-ary operation is a special case of an (n + 1)-ary relation, we
see that algebras may be regarded as a special case of relational structures.
Accordingly, an Q-structure M is said to be an algebra with respect to the
subdomain Q' of Q if for each w e Q' the relation in M defined by w is an
operation. In the general case, if w, is the relation in M defined by
we Q(m — 1) and a e M™, we often write

M E w(a)

and say that w(a) holds in M, to indicate that a € wy. If w(a) holds for
all @ e M™, we say that o is valid in M, and write

Mt w.

To indicate that o(a) does not hold in M, we write M ~ F w(a), and if
w is not valid in M, we write M ~ I w; here it must be borne in mind that
M ~ F @ does not mean that M ~ F w(a) for all @ e M™ (but merely that
this holds for some a). An Q-structure M in which every predicate is
valid is said to be full; clearly, such a structure is completely determined by
its carrier. By the rivial Q-structure we understand the full Q-structure
consisting of a single element.

Consider two Q-structures M and N. For any w e Q, we denote the
relations defined by @ in M and N by wy and wy respectively; further,
we write m = a(w)+ 1. We say that N is a substructure of M if the carrier
of N is a subset of that of M and

(1) Wy =Wy N N" (we Q(m—1);m=1.2,-).

Given M, if we take any nonempty subset N of M and define wy by (1),
we clearly obtain an Q-structure on N; thus, every subset N (#0) of an



190 Relational Structures and Models [Chap. V]

Q-structure M may be defined as a substructure of M in just one way, and
it is always this Q-structure on N which we have in mind, unless the
contrary is stated.

A mapping ¢ from one Q-structure M to another, ¥, is called a homo-
morphism if for each w € Q(m — 1) and a e M™,

if M E w(a), then N F w(ad),

where a¢ = (a,¢,--.a,¢) if a = (a,,---,a,). If the mapping ¢ has an inverse
which is also a homomorphism, we call ¢ an isomorphism from M to N;
we also say in this case that M and N are isomorphic, and write M = N.
If M is isomorphic to a substructure of N, we say that M is embeddable in
N. The terms ‘monomorphism’, ‘epimorphism’, ‘endomorphism’, and
‘automorphism’ are defined analogously to the case of algebras. It should
be noticed, however, that a bijective homomorphism need not be an iso-
morphism, i.e., the analogue of Lemma 11.3.6 is not true.

Given two Q-structures M and N, we say that N is a quotient of M if
there is an epimorphism 6:M — N such that for any w e Q(m — 1) and
beN™

N E w(b) if and only if there exists a e M™
such that a = b and M F w(a).

These conditions on @, together with the Q-structure on M, serve to
determine the Q-structure on N uniquely. Thus if M is any Q-structure
and q an equivalence on M, then the quotient set M/q together with the
mapping nat q determines a unique quotient structure on M/q, and in
speaking of M/q as an Q-structure it is always this quotient structure we
have in mind, unless the contrary is stated.

We remark that any product of homomorphisms, when defined, is again
a homomorphism; any mapping to a full Q-structure is a homomorphism
and a mapping from a full Q-structure is a homomorphism if and only if
the image is a full Q-structure.

Proposition 1.1

(i) Let ¢p:M — N be a homomorphism of Q-structures. Then N is a
quotient of M, provided that ¢ is surjective and the Q-structure on N is the
least for which ¢ is a homomorphism. (i) A quotient of a quotient of M is
again a quotient of M (up to isomorphism).

The proof of (i) is clear from the definitions. To prove (ii), let N be a
quotient of M and P a quotient of N, with epimorphisms «: M — N,
fi:N = P. Denote by P’ the least structure with the same carrier as P which
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makes «ff a homomorphism. Since o, f are homomorphisms, the structure
P’ is contained in the structure P (qua set of relations), i.e. the identity
mapping of the carrier induces a homomorphism P’ —P. Now let
we Q(m — 1) and ¢ € P" be such that Pk w(c¢). Then by definition, there
exists b € N™ such that bf = c and N F w(bh), and hence there exists a e M™
such that ax = b and Mk w(a). Now aaff = ¢; therefore P’ F w(c), and
this shows that the homomorphism P’ — P induced by the identity is an
isomorphism, i.e., P’ and P are equal. |}

Let (M,);.» be a family of Q-structures; then the Cartesian product
M = 1M, with the projections &;: M — M;, may be given an Q-structure
by the rule:

2) M = w(a) if and only if M; &= w(ae,;) for all 1€ A,

where ae M™, we Q(m — 1) m = 1,2,-+). In other words, M carries the
greatest Q-structure for which all the projections are homomorphisms.

2. BOOLEAN ALGEBRAS

For the further study of Q-structures it would be useful to have an
analogue of the Q-word algebra. Now the Q-word algebra on a set X may
be thought of as consisting of all derived operators applied to X. Simi-
larly, in the case of Q-structures one introduces derived predicates; however,
the set of these predicates is not an Q-structure, but an algebra, with
operators which are quite independent of Q. We shall therefore first study
these algebras abstractly; they are named after G. Boole, who first used
them in a systematic study of the propositional calculus.

We begin by recalling that a lattice L is distributive if and only if relative
complements in L (when they exist) are unique (Proposition 11.4.5). In
particular, if L has 0 and 1 and every element x has a complement x’, we
may regard x — x’ as a unary operator. Such a lattice is complemented in
the sense of the following

Definition

A lattice L is complemented if it has a least element 0 and a-unary
operator x — x’ such that

(1) X" =x,
2 (xvy)=x"ay,
3 xax =0.



192 Relational Structures and Models [Chap. V]

Clearly, complemented lattices form a variety with operators (v, A,’,0)
and laws (1)—(3), together with the lattice laws and the law

(4) 0vx=x,

characterizing 0 as the least element of L. Moreover, by (1) and (2), one
of v, can be expressed in terms of the other so that complemented
lattices may be defined in terms of (v,’,0) alone. We shall not carry this
out, but merely note the following consequences of (1)—(4):

By (4),0<xforall xel,ie.

(5) 0Ax=0.

If we put 1 =0’ and substitute from (5) and (4) into (2), we find
(6) lax=x; Lvx=1I

Therefore 1 is the greatest element of L. Further, from (3) and (1),
(7 x vl =1,

We now make the following

Definition

A Boolean algebra is a complemented distributive lattice.

From the definition it is clear that Boolean algebras form a variety.
Moreover, any order-isomorphism between Boolean algebras is a lattice-
isomorphism, and since this takes complementary pairs into complemen-
tary pairs, we have

Proposition 2.1
Any order-isomorphism between Boolean algebras is an isomorphism of

Boolean algebras. |}

Examples of Boolean Algebras

(i) The set #(A) of all subsets of a given set A4 is a Boolean algebra if
we take 0 =0 and for X < 4, X' = A\X. More generally, any system of
subsets of 4 including @ and closed under complements and finite unions
is a Boolean algebra; this is merely a subalgebra of #(A) as just defined
(such a subalgebra is called a field of sets on A).

(ii) In any interval 7 = [a,b] of a distributive lattice L, the set of elements
of I which have a complement in / forms a Boolean algebra.

(iii) The two-element lattice is a Boolean algebra. If the elements of
this lattice are @ and b, and a v b = b say, then a < b, and this becomes a
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Boolean algebra if we put @’ = b, b’ = a. This lattice will be denoted by 2.

(iv) Propositional logic analyses the form of statements which can be
made in a given context. If ‘P’ and ‘Q’ are any propositions, denoted by
the symbols p and g respectively, then one can form the propositions
‘P and Q’, ‘P or Q’, ‘not P’; these may be denoted by p A g, p v g, and
p’ respectively. With these definitions the set of propositions becomes a
Boolean algebra, if we regard two propositions as equal if they have the
same truth-value in all circumstances. Here the least element 0 is taken to
be ‘nobody is reading this book just now’ or some other proposition
known to be false.

An important example of a Boolean algebra is the following: Let R
be a ring in which every element is idempotent:

(8) x*=x forallxeR.

Then x+y=(x+)y?=x>+xy+yx+p*=x+xy+yx+y hence
xy 4+ yx = 0. Putting y = x, we find 2x =0, i.e. x = —x, and so

Xy = yx.

In other words, every ring satisfying (8) is commutative and of character-
istic 2. Assume now that in addition R has a unit element 1 and is associ-
ative; if we define in R the operations

xAay=xy, x'=1-x,

then R is a Boolean algebra with respect to these operations and the zero
of R as least element. The verification may be left to the reader. Con-
versely, in any Boolean algebra we may define ring operations by putting

Xxp=xAy, Xx+y=xary)vx aypy);

the resulting algebra is then an associative ring with 1 satisfying the idem-
potent law (8). Such a ring is said to be Boolean; with these definitions we
see that Boolean rings are entirely equivalent to Boolean algebras. Al-
though we shall mostly use the lattice operations, it is useful to bear the
ring operations in mind. For example, in a ring generated by a set X,
the distributive law enables us to express every element as a linear combi-
nation of products of elements of X. Similarly, in a Boolean algebra
generated by X, every element can be expressed as a sup of infs of elements
x and x’ (x € X); by duality, the same holds with v and A interchanged.
We state this as
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Proposition 2.2 (conjunctive normal form)
Let B be a Boolean algebra generated by x,,+++,x,; then every element of B is
of the form wy A = A w,, where

We =Y V o V Vi Yu=x;0rxi. [l

A Boolean algebra which is complete, as a lattice, is called a complete
Boolean algebra. For instance, #(A4) is complete, for any set 4; on the
other hand, the subalgebra of #(A) generated by the singletons is not
complete unless A is finite. In any Boolean algebra, complete or not, we
have the following laws, known as De Morgan’s laws:

Proposition 2.3
Let (a;) be any family of elements of a Boolean algebra B. If in either of the
equations

©9) (Va) =Aa,
(10) (Aa) =Va;

one side exists, then so does the other, and the two are equal.

Proof:
Suppose that @ = V a;; then a; < a for all i € I, and hence

a <a; foralliel

If also b < @ for all i € I, then b’ = a;, whence b’ = a, and so b < a’. This
shows that a’ = A, ie., (9). Thus, (9) holds whenever the left-hand side
exists; by duality, (10) holds whenever the left-hand side exists. Now
assume that the right-hand side of (9) exists; then, by what has been
proved about (10), Va =Va; exists and (9) again holds; (10) now
follows similarly. [}

Any Boolean algebra satisfies the following infinite distributive law:

(11) Va, nb)=(Vay) ab,

whenever both sides exist. There is, however, a more general distributive
law which need not hold. We shall say that a Boolean algebra B is com-
pletely distributive if, for any family of elements (a,); ;s of A, whenever
one side of the equation

@2 A(Yas) = Y, (pa)

I zeJT
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exists, then so does the other and both are equal. For example, the
algebra #(A) is complete and completely distributive, for any set A. It
turns out that this is essentially the only case, by the following result of
Tarski:

Theorem 2.4
A Boolean algebra which is complete and completely distributive is iso-
morphic to #B(A), for some set A.

Proof:
Let B be the given algebra and write
1=A(ava).

ach

Expanding the right-hand side by the distributive law, we have
(13) 1=V f(©),
CEB

where for any C < B,

£(© =(A a) A (A b’).
ael b¢C

We assert that every f(C) is either 0 or an atom, i.e., a minimal element
different from 0. For, if f(C) # 0 and 0 # ¢ < f(C), then either c e C, in
which case f(C) < c and so f(C) = ¢, or ¢ ¢ C, and then f(C) < ¢’, whence
¢ < ¢, which means that ¢ =¢ A ¢’ =0. This shows that in any case
¢ = f(C), so that f(C) is indeed an atom.

Let A be the set of all f(C) # 0; we shall show that B = #(4). To every
subset of A there corresponds an element of B, namely, its sup in B
(which exists because B is complete); conversely, if ce B, then ¢ =¢ A
(V f(0)), by (13), and hence

e =V{f(O)If(C) < ¢}.

Thus we have a bijection between B and %#(A); clearly, this is order-
preserving and therefore is an isomorphism. [

We remark that A is the set of atoms of B. In particular, if B is finite, it
is clearly complete and completely distributive and we obtain

Corollary 2.5
Any finite Boolean algebra is isomorphic to B(A) for some finite set A. |}
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We now consider homomorphisms of Boolean algebras. Since the
operations of a Boolean algebra may be expressed in terms of the oper-
ations of a Boolean ring, and vice versa, it follows that a homomorphism
of Boolean algebras is the same thing as a homomorphism of Boolean
rings. In particular, the kernel of such a homomorphism

¢:4A - B

is completely determined by the inverse image, N say, of 0. We shall
therefore call N an ideal (as in ring theory) even when we are considering
A and B as Boolean algebras. In terms of the lattice operations, an
ideal is given by the properties:

(i) if a,be N, thena v be N,

(ii) if a e N and b < a, then be N.
The ideal is proper, if

(iii) 1 ¢ N.
This last condition amounts to saying that N # 4. The inverse image of
1 in a homomorphism is called a dual ideal; if it is proper, i.e. associated

with a nontrivial homomorphism, it is called a filter of A. Thus, a filter is
determined by the properties dual to (i)—(iii) above:

(i') ifabe F,thena an beF,
(ii') ifae Fand b = a, then b € F,
(iii') 0 ¢ F.

Let R be a ring (not necessarily Boolean); then a maximal ideal of R is
understood to be an ideal of R which is maximal in the set of all proper
ideals of R. When R has a unit element 1, the proper ideals are just those
ideals which do not contain 1. Applying Corollary I1.6.4, we thus obtain

Theorem 2.6 (Krull)
Every proper ideal of a ring with 1 is contained in a maximal ideal. |}
In particular, this result may be applied to Boolean algebras. A maximal

filter in a Boolean algebra is usually called an w/trafilter; taking duals in
Theorem 2.6 we thus obtain

Theorem 2.7
Every filter of a Boolean algebra is contained in an ultrafilter. |}

There is another way of characterizing maximal ideals in a Boolean
algebra which is of great importance. It rests on the fact that simple
Boolean algebras are very easy to determine explicitly.
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Proposition 2.8
A Boolean algebra is simple if and only if it is isomorphic to 2.

For clearly 2 is simple; conversely, if A is simple, then 4 # 0 and A4
has no proper homomorphic images; i.e., no ideals apart from 0 and A.
Let ae A, a# 0; then the ideal generated by @ must be nonzero and
therefore equals A, whence ab =1 for some b e A. Hence a = a(ab) =
@*b = ab = 1. This shows that 4 = {0,1} = 2, as asserted. |J

We thus obtain the important

Corollary 2.9 (Tarski)
Let I be an ideal of a Boolean algebra A, then I is maximal if and only if
Ar=2. |

Expressed in terms of A itself, this means that an ideal 7 is maximal in
A if and only if for every a € A, either a e or a’ e I. By going over to
duals, we see that ultrafilters of 4 are characterized by the same property.

Later we shall mainly be concerned with filters of algebras which have
the form #(A). If I is any set, we shall understand by a filter # on I a
system of subsets of 7 which is a filter of #(I). The members of # are also
referred to as #-sets. A subsystem % of # which generates # (as filter) is
called a bhase of #. To obtain the dual ideal generated by % we form the
system %* consisting of all intersections of finite subsystems of % and take
the system of all sets containing an %*-set. The resulting dual ideal will
be a filter if and only if 0 ¢ #*. When this conditions holds, .# is said to
have the finite intersection property. Thus a system & is a filter base if and
only if it has the finite intersection property.

Let I be an infinite set of cardinal «, and denote by ® the system of all
subsets of / whose complement in 7 has cardinal less than «. Clearly, ® is a
filter on I, called the minimal Fréchet filter. By a Fréchet filter on I we
understand any filter containing ®. We shall sometimes want to know
when a given filter base is contained in a Fréchet filter. This is answered by

Proposition 2.10
A system & of subsets of I is contained in a Fréchet filter if and only if every
finite intersection of sets of & has cardinal equal to |I|.

For, clearly, & is contained in a Fréchet filter if and only if ¥ U ® is a
filter base; i.e., writing again &* for the system of finite intersections of
sets of &, if and only if every #*-set meets every ®-set. Now a subset J of
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1 meets every ®-set if and only if J is not contained in the complement of
any ®-set, i.e., if and only if [J| = [7]. |}

A filter # on I is said to be principal if it is generated by a single element
J, say. Clearly, such a filter is an ultrafilter if and only if J consists of a
single element, and on a finite set /, these are the only ultrafilters. An
infinite set always has nonprincipal ultrafilters, since e.g. the minimal
Fréchet filter is contained in an ultrafilter which is nonprincipal. However,
this proof of the existence of nonprincipal ultrafilters depends essentially
on Zorn’s lemma, and no explicit construction is known of a nonprincipal
ultrafilter.

This brief outline of Boolean algebras will suffice for the applications
we have in mind; of course it is not intended to be complete on any
aspect, or even a representative selection. The reader who wishes to read
a more comprehensive introduction is referred to Dwinger [61], or for a
more detailed account to Sikorski [60]; the papers of Halmos [62] indicate
a development specially suited to the applications to logic, including an
alternative treatment of the subject matter of this chapter.

EXERCISES

1. Give a set of laws for Boolean algebras in terms of (v, ', 0).

2. Let R be a commutative ring with 1, and denote by 7 the set of idempotents
of R. Show that 7 is a Boolean algebra relative to the operations: x A y = xy,
x" =1 — x. Describe the operations of [ as a Boolean ring, in terms of the ring
operations on R. Under what conditions is /, as a Boolean ring, a subring of R?

3. Prove (11) in a complete Boolean algebra; more generally, establish the

law (Aa) v (Aby) = A(a;v b)).
4. Determine all complete subalgebras of #(I), for any set I.

5. If I'is an infinite set and % is the system of finite subsets of /7, verify that
Z is an ideal in #([). Verify that the algebra #(/)/% has no atoms: show that
(I | # is not complete.

Show that the Boolean algebra of Lebesgue measurable sets in the unit
interval is complete but not completely distributive.

6. (M. H. Stone.) Show that the intersection of all maximal ideals of a
Boolean algebra is 0. Deduce that any Boolean algebra B is isomorphic to a
subalgebra of #(M), where M may be taken to be the set of all maximal ideals
of B. (If a # 0, observe that any maximal ideal containing @’ does not contain a;
now apply Proposition 11.7.1.)
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7. Show that the base rank for Boolean algebras is zero, i.e., that 2 is generic
in the variety of Boolean algebras. (Use Exercise 6.)

8. Show that every finitely generated Boolean algebra is finite. (Use Corol-
lary IV.3.14))

9. Show that any two finite Boolean algebras with the same number of ele-
ments are isomorphic. (Use Corollary 2.5 and the remark preceding it.)

10. Show that any two countably infinite Boolean algebras without atoms are
isomorphic.

11. Show that the free Boolean algebra on k free generators has 22“ elements.
(Take a set [ of k elements and show that any mapping #(/) — 2 can be built
up by Boolean operations from the characteristic functions on the singletons;
then apply Theorem IV.3.13.)

12. (A. L. Foster.) Show that finite Boolean algebras are n-primal for every
n. (Use Exercise 11 and Theorem 1V.3.13.)

13. Give an example of a complemented lattice which is not distributive and
show that Proposition 2.1 need not hold for such lattices. (Try a finite modular
lattice of length two.)

14. Show that with one exception, a finite complemented lattice has an even
number of elements.

15. In a Boolean algebra B, the mapping x — x" is an isomorphism of B with
its dual. Restate this fact in terms of Boolean rings.

16. Show that every nonprincipal ultrafilter on an infinite set includes all
subsets with a finite complement. Deduce that on a countable set every non-
principal ultrafilter is a Fréchet filter.

17. If A is a directed set, show that the right segments of 4 have the finite
intersection property.

18. If G is a group with trivial centre, show that the direct factors of G form
a Boolean algebra.

19. If C is any subalgebra of a Boolean algebra B, show that any homomor-
phism ¢:C—2 extends to a homomorphism ¢:B— 2. (Embed ker ¢ in a
maximal ideal of B and use Corollary 2.9.)

20. (Dwinger & Yaqub [63].) Show that the free product of any family of
Boolean algebra extensions of a fixed Boolean algebra C exists. (If C =2,
use Exercise 19 to prove that any Boolean algebra is retractable and apply
Proposition I11.6.2; for the general case, use the first part of Exercise 6.}
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3. DERIVED PREDICATES

The Q-structures have considerably less ‘structure’ than do the Q-
algebras; this can already be seen from the fact that every subset and every
quotient of an Q-structure again carries an Q-structure. It is therefore
necessary to restrict the notion of Q-structure by imposing further con-
ditions. The simplest form that such a condition can take is one which
asserts that a given predicate is valid in a given structure. More generally,
we can derive other predicates from the given ones, and our conditions
may then take the form of asserting certain derived predicates.

The set of derived predicates will be defined as a Boolean algebra as
follows. Let I be an infinite set of symbols called variables, and consider
the expressions

(1 e(ij)  (ijel),
(2) iy, i) (i,el, we Qm —1)).

Now a derived Q-predicate is essentially an element of the free Boolean
algebra on the expressions (1), (2) as free generators. This statement
requires some modification, to take account of quantifiers. Before intro-
ducing these, we note some definitions which, although not indispensable,
are helpful because they suggest the concepts to be defined later.

A derived predicate is also called a formula; a formula of the form (1)
or (2) is said to be atomic. If P, Q are any formulae, then P v Q is called
the disjunction of P and Q, P A Q is called their conjunction, and P’ is the
negation of P; this is also denoted by ~P. Any formula built up from
atomic formulae by using v and A alone (without ~) is called positive.
Further, P’ v Q is also denoted by P = Q and is called an implication,
and (P = Q) A (Q = P) is denoted by P <> Q and is called an equivalence.
Instead of 1 and 0, we write ¢ and frespectivzly (for “truth’ and ‘falsity’).

Before we can describe the relations corresponding to these predicates,
we have to determine the arity of each predicate. With each formula P,
we shall associate a finite set I, of variables, called the free variables of P;
the arity of P is then defined as the number of free variables of P. The set
I, of free variables of P is defined by induction on the length of P (as a
word in the Boolean algebra of formulae). For the atomic formula (1),
the free variables are /, j, and for (2) they are i,,-:,i,,. Thus, in particular,
the arity of (2) is m if and only if the variables occuring in w are distinct;
this shows that there is no ambiguity in the use of this term. Generally,
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if P and Q are any formulae and I, I, their sets of free variables, then
P v Qand P A Q have I, u I, and ~P has I, as set of free variables.

We now introduce two further operators on the set of formulae; they
are to be unary operators VY, :A called existential quantification and

universal quantification with respect to i. Thus, for each i € I, there is one
existential quantifier V and one universal quantifier A ; they are related
i i

by the equation
(3) AP=~(Y~P),

i

which shows each of them to be determined by the other. We also impose
the laws

@ VVP=Vr VVP-VVr (VP)v(Vo)=V(rv o)
i i i i i i i

and dually, the laws obtained by applying (3) to (4). In this way our set
of derived predicates is enlarged to include formulae with quantifiers.
We shall use the term ‘formula’ to mean any derived predicate in the new
sense, while a predicate in the former sense, i.e., one without quantifiers,
will now be called an open formula. 1f I, is the set of free variables of P,

then that of YP (or of A P) is Ip\{i}. Any variable occurring in a formula
as other thanla free vari;b!é is said to be bound; e.g., i is bound in VP. Of
course a variable may occur both free and bound: if i is free in P‘anci 0,
then i is bound in VP and hence both free and bound in (VP) A Q. In

such cases we can always rename the bound occurrence of i so as to avoid
confusion; i.e., instead of

5) (YP(:'J) A Q)

we may consider

6) (VP(.;'}) A QG),
i

where j € I does not occur elsewhere in P or Q. When we come to define
the relations corresponding to (5) and (6) we shall see that there is no
difference between them (just as laws in different variables may be equiva-
lent, cf. IV.1). Finally, a formula without free variables is called an
elementary sentence, or simply a sentence. Examples of sentences are
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t, f, and the formulae obtained by binding the free variables, i.e. applying
any quantifiers to all the free variables in some formula.

Let P be a formula with the free variables I, = {i,,--,i,}; we write this as
P(iy,,i,) or P(I;) and define an n-ary relation in each Q-structure M,
corresponding to P. If P is atomic, then P has the form (1) or (2). In
the first case, for any a,b € M, we put

M E e(a,b) if and only if @ = b.

For this reason we shall usually write i = instead of ‘&(i,j)’. When P
has the form (2), the meaning of P(ay,-a,) (ax € M) is given by the
definition of M as Q-structure. Now let P, Q be any formulae with Ip, I
as sets of free variables, for which relations in M have been defined, and
let 0:1, u I, - M be any mapping; then we put

M E P(I:0) v Q(I,0) if and only if M F P(I;0) or M £ Q(I,0),
and
ME ~P(I,0) if and only if M ~ & P(Is0).
In particular, M ¥ ~&(a,b) if and only if a # b; for this reason we usually
write ‘i # j instead of ‘~e&(i,j)’. Finally, we put
M £ VP(1,0) if and only if M k P(I,0") for some mapping
[ 0':1, = M such that jO = j0' for j # i.
Thus if Ip = {i1,"i,} and i = i,, then M F VP(i,as,--,a,) if and only if
M k P(b,a,,-a,) for some b e M. We also p‘ut
ME 1.

By induction on the length of words this defines, for each formula with
n distinct free variables, an n-ary relation in M. In particular, the effects
of A, =, <>and A are thus determined. It is often convenient to take 6 to
be a mapping from the whole of 7 to M and to write P0 instead of P(/,0);
with this notation it is easily verified that:

MEPO A QO ifand onlyif M F PO and M F Q0,

Mk PO = Q0 if and only if M F Q0 whenever M F P0,

Mk PO <= Q0 if and only if either both P8 and Q0 hold or
neither holds, in M,

MEAPO  if and only if M E PO’ for every mapping 0':1 - M

such that j0' = jO for all j # i.
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We also note that f never holds in M, and that a sentence P is valid in
M if and only if M F P <. Further, if a sentence holds in M, then it is
valid in M. Thus, for any sentence P,

either MFPor M} ~P.

From any formula we obtain a sentence by applying universal quantifiers
to all the free variables, which we indicate by prefixing A. Then for any
formula P,

M F P if and only if M E AP.

Two sentences P, Q are equivalent in M, in symbols M F P < Q,
precisely if

M F P if and only if M Q.

This means that as far as M is concerned, any sentence P may be replaced
by an equivalent sentence Q. For example, the sentences formed by
applying universal quantifiers to (5) and (6) are equivalent in any Q-
structure. Frequently, certain pairs of sentences which are equivalent in
any Q-structure are identified. This amounts to considering, not the
Boolean algebra of derived predicates, but a certain homomorphic image.
The defining relations are usually in the form of laws, so that we are in
effect dealing with a relatively free Boolean algebra. The defining laws of
this variety are called raurologies; it is not hard to see that every tautology
is a consequence of tautologies of the form

P=1,

and any sentence P occurring in a law of this form is also called a tautology.
The detailed study of sets of defining laws for tautologies belongs to the
predicate calculus (cf. Kleene [52], Church [56]). We shall not enter into
this subject, but merely note that each of the laws of a Boolean algebra
stated above corresponds in fact to a tautology which has to be verified, a
task which may be left to the reader. In what follows, we shall confine
ourselves to the Boolean algebra of derived predicates and its effect on
Q-structures. In other words, we shall only be concerned with the semantic
side of the predicate calculus, namely, the particular interpretation of the
formulae given above, and not with the syntactic side, which makes
deductions about the validity of a formula from its internal structure.
We note in passing that from the definition of a homomorphism as a
mapping preserving the Q-predicates, it follows that a homomorphism
need not preserve the derived predicates. This accounts for the fact that
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homomorphisms play a subordinate role in relational structures; we shall
return to this point in VL5.
A sentence of the form

(1) = (i) P(irs = s0n)s

where P(i;,-,i,) is an open formula with the free variables #,---,i, and
(i,) is a quantifier, standing for A or V, is said to be a prenex sentence, or a
sentence in prenex normal form. It may be shown that every sentence is
equivalent to one in prenex normal form. This is not very difficult, but we
shall confine ourselves to giving an example. Thus the sentence

) AA [RG) v RGD) A |V~ RG)

is not in prenex normal form as it stands, but it is equivalent to the prenex
sentence

®) A AV [RG,j) v RG] A [~ Rk K]

From the definitions we saw that any existential quantifier can be
expressed in terms of universal quantifiers, and vice versa, but in the
process of doing so the property of being prenex is usually lost. Therefore
the type of quantifier which occurs in a prenex sentence cannot generally
be varied at will. A prenex sentence is said to be universal if all its quanti-
fiers are universal, and existential if all its quantifiers are existential. In
particular, the prenex sentence obtained by applying A (V) to an open
formula is called its universal (existential) closure.

EXERCISES

1. Show that the relation P=Q between derived predicates is a preordering
and P<Q is the associated equivalence relation.

2. Verify that the defining laws of Boolean algebras and (4) are tautologies,
i.e. that the two sides of the equations define the same relation in each case.
Show also that

(Y2} (Ye)~Yersa

is not generally a tautology.
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3. Show that the sentences form a subalgebra S of the algebra of all derived
predicates and that for any Q-structure M, the sentences which do not hold in
M form a maximal ideal q in S. (Verify that S/q = 2.)

4. CLOSED SENTENCE CLASSES AND AXIOMATIC
MODEL CLASSES

Henceforth we take Q to be a fixed predicate domain and all Q-structures
occurring are understood to have their carrier in the universe U, fixed
once and for all. If M is any Q-structure and P a formula in the standard
alphabet I over Q, then we have defined the relation

(1) ME P

In this way we obtain a Galois connexion between the class [Q] of all
Q-structures and Q,, the set of all derived predicates (in /). By this con-
nexion,

(i) to any class € of Q-structures, there corresponds the set * of
all formulae which are valid in each M € %, and

(ii) to any set T of formulae there corresponds the class * of all those
Q-structures in which all the formulae of T are valid.

Any Q-structure in £* is called a model for Z, or a X-model; any sentence
in €* is called a rheorem in €, or a %-theorem. We note that not all
formulae in #* are ¥-theorems, but only those which have no free variables.
On the other hand, * is completely determined by its theorems, since a
formula P belongs to ¥* if and only if its universal closure is a #-theorem.

A class of Q-structures which is of the form T*, for some set X of sen-
tences, is said to be an axiomatic class, and £ a set of axioms. If T is
finite, the class £* is said to be elementary; replacing the finite set £ by
the conjunction of its elements, we see that an elementary class can
always be defined by a single axiom. A set of formulae of the form #*,
where ¢ is any class of Q-structures, is said to be model-closed; if € # 0,
the set ¥ is called a theory. The Galois connexion defined by (1) may now
be expressed as

Theorem 4.1
The model-closed sets of formulae over Q form a closure system which is
equipotent with the axiomatic classes of Q-structures by means of the natural
bijection
E -4 TE
¢ -%* |}
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We remark that a model-closed set is a theory if and only if it is a
proper subset of Q;. For a theory X is valid for some model, and hence
f¢X: conversely, a model-closed set which is not a theory is of the form
9* = 0,. Equivalently, we see that X is a theory if and only if /¢ Z.

It is of fundamental importance for the study of relational structures
that the system of model-closed sets is an algebraic closure system. In
formal logic this is proved by defining explicitly a set of finitary operators.
These have the form of rules of deduction (enabling one to derive new valid
formulae from given ones):

(i) f M- (P=Q)and M+ P, then M} Q (modus ponens).
(i) If M+ P, then M+ AP  (generalization).
i

The connexion with models is established by Godel’s completeness
theorem, which states that a set of formulae which admits the rules of
deduction, and is a proper subset of Q,, necessarily has a model. A
complete discussion of these matters, including a proof of Gédel’s theorem,
may be found in Church [56]. We shall not prove Gddel’s theorem here,
since an independent proof that the closure system of model-closed sets
is algebraic will be given in V.5. For the present we shall only indicate
briefly how Godel’s theorem implies that any set of formulae admitting
the rules of deduction is model-closed.

Let T be a set of formulae admitting all the rules of deduction; we have
to show that £ = £**. Since £ < Z** clearly holds, we need only prove
that £** < X: thus, given any formula P ¢ X, we have to find a model
for T in which P is not valid. Here P may be taken to be a sentence, without
loss of generality; we then have to find a model for £ U { ~P}. By Godel’s
theorem, it is enough to show that not every sentence can be derived from
T U {~P)}. Suppose that fcan be derived from X and ~P. By the finitary
character of the rules of deduction, it follows that f can be derived from
Sy,,S,,~P(S;eX). Applying the deduction theorem (cf. Church [56],
p. 196; this is essentially the converse of modus ponens), we find that
(~P) = f can be derived from S,,--,S,, and since £ admits the rules of
deduction, [(~P) =f] € X, but

(~P)=fl=(~~P)vfl=Pv[f=P;
thus P e ¥, which contradicts the choice of P. [}

Since a closed set of formulae admits all the rules of deduction, it
follows that the model-closed sets are precisely the sets admitting the
rules of deduction. This state of affairs (like Godel's theorem itself)
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prevails only in the predicate calculus of the first order. In more general
situations, such as the predicate calculus of the second order, where
quantifiers may be applied to predicate variables, the closure system of
model-closed sets of formulae is no longer algebraic, and therefore cannot
be described by finitary rules of deduction. Here it is understood that in
any model the variable n-ary predicates range over al/ n-tuples of elements
(giving rise to what is called a standard model). If more general models are
allowed, where the predicates may range over certain specified subsets of
n-tuples, the analogue of Gdédel's completeness theorem again holds, and
it follows as above that the closure system of model-closed sets is algebraic
(cf. Henkin [50]). Now the celebrated incompleteness theorem of Gadel
(cf. e.g. Kleene [52]) states that for any consistent set of formulae which
includes a model of the integers, there are sentences P which are undecidable
in the sense that neither P nor ~P can be derived from the formulae of the
system. Thus for any axiomatic system which includes the integers there
are certain (nonelementary) sentences which hold in all standard models
but are not provable, and so do not hold in all general models.

The Galois connexion described in Theorem 4.1 can be used in two
ways, either to study the structure of the formulae over Q in terms of
their models, or to study the Q-structures by means of their theorems.
However, this method has certain limitations; thus it will not enable us to
distinguish between two formulae which have the same models, or between
two Q-structures which have the same theorems. We therefore define:

(i) Two formulae P and Q are said to be congruent, P =~ Q, if for every
Q-structure M,

M = P@ for all 9: I — M if and only if M = Q0 for all : I — M.

(ii) Two Q-structures M and N are said to be elementarily equivalent or
indiscernible, M= N, whenever

M+ P if and only if N+ P for all P €Q,.

Clearly it is enough to demand that this hold for all sentences P. Since
for any sentence P, either M+ P or M+ ~ P, it follows that M = N
provided that N + P whenever M | P,

1t is easily verified that the relation ~, when restricted to the subalgebra
of all sentences, is an equivalence, and in fact a congruence, i.e. if P, ~ Q,
and P, ~ Q,, then P, A P, ~ Q, A Q, and ~ P, & ~ Q,. The quotient
algebra by this congruence is denoted by #(Q) and is called the Linden-
baum algebra over Q. Its elements will generally be denoted by small
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Greek letters; we shall also write (P) for the class of the sentence P, and
put M F o to mean M + P for some (and hence all) P e . The properties
of #(Q) are summed up in

Theorem 4.2

The Lindenbaum algebra #(Q) is a Boolean algebra which is a homo-
morphic image of the algebra of all sentences over Q. Each element of £(Q)
defines an elementary model class, and distinct elements of £(Q) lead to
distinct model classes. Further, if o, € £(Q), then

o < B if and only if M v f for any structure M such that M + a.

Only the last assertion requires proof. The statement that M F  whenever
M F o means that M F«if and only if M Fa A f, ie., « =a A ff, and this
just means that o < f. [ |

Instead of #(Q) one may wish to consider Q,, the Boolean algebra of
all derived predicates, but then it is necessary to take account of the
additional structure provided by the presence of quantifiers. The resulting
structures are called polyadic algebras and have been studied by Halmos [62]
and others. If one wants to build the notion of equality: *=" into the
structure as well, one obtains essentially the cvlindrical algebras of Tarski
(cf. Henkin & Tarski [61]); for a concise summary of the definitions and
the connexion between the two notions, see Galler [57].

Turning now to (ii) above, we see that *=" is an equivalence on the class
[Q] of all Q-structures. The equivalence classes are just the minimal
axiomatic classes of Q-structures; these are called the axiomatic types.
The set of all axiomatic types is called the meodel space over Q and will be
denoted by 7[Q]. The nature of this equivalence relation will concern
us rather more closely in the sequel, but it is considerably more complex
than the congruence relation between sentences, and not much is known
about it. For the moment we merely note

Proposition 4.3
If M and N are any Q-structures which are indiscernible and if M is finite,
then N is finite and |M| = |N|.

To prove this assertion, we need only write down a derived predicate which
expresses the fact that M has at least # elements. For any integer n, write

E(n) =V (i, # i) Ay # i) A = Al # i) A2 #83) A - A iy #1,)5
then E(n) holds in M if and only if M has at least »n elements. Therefore,
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if M is finite, with m elements, then E(») holds in M precisely forn = 1,---,m.
The same must be true for N and so N too has m elements. ||

From the above definitions it is clear that the Galois connexion of
Theorem 4.1 may equally well be considered as a Galois connexion
between the Lindenbaum algebra and the model space. Our next aim is to
identify the corresponding closure systems. We shall find that the theories
correspond to filters in the Lindenbaum algebra (Theorem 5.4), while the
closure system of axiomatic classes defines a certain topology on the
model space, which will be the subject of V.6.

EXERCISES

1. Show that any two distinct atomic formulae are incongruent.

2. Show that any formula is congruent to its universal closure: deduce that
‘~’is not a congruence on the whole of (3;.

3. Verify that the congruence classes of sentences of a given theory form a
filter in the Lindenbaum algebra.

5. ULTRAPRODUCTS AND THE COMPACTNESS THEOREM

Consider again the product of a family (M,),., of Q-structures:
M =TIM,, with projections &,: M — M,. We recall that the Q-structure
on M was defined by the rule

(1) M F w8 if and only if M, k w0, for all 1 e A,
and the definition of equality in M may be stated in the form
(2) M F &0 if and only if M, F e0¢, for all 1 e A.

Here 0:7 — M is any mapping. We now ask for what derived predicates
it is true that

(3) Mk PO if and only if M, k POs, for all /e A.
This certainly holds for all positive formulae; we need only show that

M |= PO or M = Q0 if and only if M = PO v 00,
M = P and M = Q0 if and only if M = PO A 00,
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and this is clear from the definitions. Similarly, it may be shown that if
(3) holds for P, then it holds for VP and AP but for formulae involving

negations (3) is no longer true. Thus for any formula P,

‘M E ~P0 means that “M, F ~Pfe, for all 1e A,
while
‘M ~F P8’ means that ‘M, F ~P0g, for some e A’.

The two statements on the right are not equivalent, except in trivial cases;
our object is to remedy this defect, i.e., to modify the definition of product
structure in some way such that ‘M F ~ P8’ comes to mean the same thing
as ‘M ~F P0’. This is achieved by introducing the notion of a reduced
product structure:

Let (M;);.a be a family of Q-structures; then, for any filter & on the
index-set A, the reduced product M of the M; (modulo £) is the quotient
of the Cartesian product M = IIM; defined by the rule

(4) aZ =b2 if and only if {1 e A|ae, = be,} € ;
together with the Q-structure defined by
(5) Mgk w0if and only if {2e A| M, F wle,} e 2.

The natural mapping M — M, will be denoted by a - a2 or nat 2,
and we shall also write M/2 for M, and @ = b (mod 2) instead of a2 =
b2. 1t is easily seen that a reduced product taken modulo a principal
filter is isomorphic to a direct product, taken over some of the factors;
such a product is said to be trivial. A reduced product taken modulo an
ultrafilter is called an ultraproduct, or in case all the factors are equal, an
ultrapower. The usefulness of ultraproducts derives from the following
fundamental result (Frayne, Morel, & Scott [62], Kochen [61], Los [55']):

Theorem 5.1 (ultraproduct theorem)
Let (M), . be a family of Q-structures, @ an ultrafilter on A, and write
M =1M;, M, =1IM,/2. Then for any formula P and any 0:1 - M,

(6) Mg E PO(nat 2) if and only if {1 e A| M, k Pb¢,} € 2.

Proof:

Let £ be the set of all formulae for which (6) holds; then £ contains ¢
and all atomic formulae, by the definition of ultraproduct (cf. (4) and
(5)), so in order to show that £ = Q,, we need only verify that £ admits
A.~,and V.

i
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Given any P,Q € X and any 0:1 — M, let us write

(7) X={leA|M,F Ple,}, Y={ieA|M;F Qbc},
Z={leA|M,F PO, n QO¢,}.

It is clear that Z = X n Y; now M, k PO(nat ) n Qf(nat %) if and only
if M,k PO(nat @) and M, F Qf(nat 2), i.e. if and only if Xe 2 and
Y € @ (because P, Q satisfy (6)). But this is true preciselyif Z= Xn Y e 2,
and so (6) holds for P a Q.

Secondly, if P € T, then M, F ~P0(nat 2) if and only if M, ~F P0(nat
), i.e. X ¢ 9, where X is given by (7); and since £ is an ultrafilter, this
holds if and only if A\X € 2, i.e. {ie A| M, F ~PO(nat @)} € 2. There-
fore ~PeX.

Finally, let PeX and suppose that M;F YPG(nat 2); then there

exists 0':] — M such that j6' = j0 for j # i, and M, F P0'(nat 2); hence
{AeA|M,FPO¢}e2,ie.

(8) Xo={AeA|M,rVPo¢}ec2.
i

Conversely, if (8) holds, choose 0":I — M such that j0' = j0 for j# i and
M, E P0'c; for A€ X,. Such ¢ exists by (8), because no M; is empty.
Then, by the choice of 0’, {Ae A| M, k P0’¢,} = X, and so M, F P0'(nat
), ie. My E VPO(nat 2). |}

i

If in Theorem 5.1 we take the formula P to be closed and put {P}* = ¢,
we obtain

Corollary 5.2
If ¥ is an elementary class, then TIM,/Z € X if and only if { e A| M, €
#tea. |}

In particular, if each M; e ", then M, € #. More generally, if 2" is
an axiomatic class, say # =¥, then 4 =M {a}* ie. . is an inter-

ael

section of elementary classes and we find

Corollary 5.3
Every axiomatic class admits ultraproducts. |}

It may be shown by examples that in general Corollary 5.2 no longer
holds for axiomatic classes (cf. Exercise 4).

Using ultraproducts we can now show that the closure system of
model-closed sets of formulae is algebraic. It will be sufficient to prove
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this in the Lindenbaum algebra £(Q) rather than the algebra of formulae
Q, itself. We shall in fact prove a more precise result:

Theorem 5.4
Let X be any subset of the Lindenbaum algebra £(Q); then the dual ideal
generated by X is just the model-closure £¥*,

Proof:
Denote by I the dual ideal generated by X; thus I consists of all z € £(Q)
which satisfy
azfyA--np, (BeX)
Clearly any Z-model is also a £-model, so that
9) e i

it remains to establish the reverse inclusion. Let ® be the family of sets
in which the principal ideals generated by the elements of T meet ¥: then
® has the finite intersection property (because the infimum of any finite
subset of Z belongs to X); therefore ® is contained in an ultrafilter 2 on
I (qua set). Now to prove equality in (9), take any A ¢X; then for each
o e X we have o € 4, and hence (by Theorem 4.2), there exists an Q-structure
M, in which « is valid, but not /. Put

Mg =¢151MJ9;

then, given « €%, we have M, « for all fe¥ such that f <, and so
Mg o, by the construction of ®. This holds for all « € £, hence M, e £*,
On the other hand, M,~ I A for all x € X; therefore Mgz~ F 4. This proves
that 1 ¢ ** and the equality in (9) is established. [J

This theorem shows that the model-closed sets are merely the dual
ideals of #(Q); moreover the filters in #(Q) are the theories. A theory is
said to be complete if it is maximal in the set of theories. Combining
. Theorems 5.4, 11.5.2, and V.2.7 we now have

Theorem 5.5
The closure system of model-closed sets of formulae is algebraic. Moreover,
every theory can be extended to a complete theory. |

A set of formulae is said to be consistent if it has a model. Thus X is
consistent if and only if /' ¢ £**, or, equivalently, if £ can be extended to a
theory. By Theorem 5.5 and the definition of algebraic closure systems
we now have
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Corollary 5.6

A set of formulae is consistent if and only if every finite subset is con-
sistent. i

This result is sometimes called the compactness theorem, for reasons
which will become clear in V.6. It was first obtained as a theorem in
logic by Godel (via his completeness theorem) and independently by
Skolem and Malcev (cf. Church [56]).

EXERCISES

1. Show that under the Galois connexion of Theorem 5.1, complete theories
correspond to axiomatic types.

2. Verify that an ultraproduct modulo a principal filter is isomorphic to
one of the factors (this explains why ultraproducts are only of interest in the
case of infinitely many factors).

3. If & is an axiomatic class of Q-structures, show that the infinite -
structures again form an axiomatic class. (Use the sentences E(n) defined in
Proposition 4.3.)

4. Let A be any axiomatic class of Q-structures; if " contains finite struc-
tures with arbitrarily large numbers of elements, show that Corollary 5.2 does
not hold for 5.

5. Show that any ultrapower of a finite structure of n elements again has n
elements.

6. Show that any ultraproduct of infinite structures is again infinite.

7. Show that a theory is complete if and only if for every sentence P, either
P or ~P belongs to the theory. Deduce that for any Q-structure M, the set of
sentences valid in M is a complete theory.

8. If © is any theory and P is a sentence such that ® u { ~P} is inconsistent,
show that P e ©.

6. THE MODEL SPACE

We now consider the closure system of axiomatic model classes in
more detail. Since the formulae do not allow us to distinguish between
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Q-structures of a given type, we may as well take as objects of the discussion
the axiomatic types rather than the individual Q-structures. Thus we have
the natural mapping M — (M) from [Q] to Z[Q], which associates with
each Q-structure its type. The inverse images of subsets of 7 [Q] under
this mapping are those classes of Q-structures which are unions of types,
called rype classes for short. Thus a type class is a class #" of Q-structures
such that

if Me # and M = N, then Ne .

The axiomatic model classes may be used to define a topology of
F[Q], which is described in

Theorem 6.1

The axiomatic model classes form a topological closure system on the
model space F[Q). Under the corresponding topology 7 [Q] is a totally
disconnected compact Hausdorff space.

A topological space with the properties named is sometimes called a
Boolean space.

Proof:

Let %,, €, be axiomatic model classes, say €, = ZF (r = 1,2); we assert
that € = %, u %, is axiomatic. This will follow if we show that €** < .
Let M be an Q-structure which is not in %; then M ¢ % ,(r = 1,2), so there
is a %,-theorem P, which is not valid in M. Hence P, v P, is a ¢-theorem
which is not valid in M, i.e. M ¢ €**. Thus €** = ¢, which shows that
the axiomatic classes form a topological closure system. Moreover, the
empty class is axiomatic, since it may be defined by /. say, and we therefore
have a topology. The closed sets are intersections of sets of the form {P}*,
where P is any sentence. Since the complement of {P}* is of the same
form., namely { ~P}*, it follows that there is a base consisting of closed
and open sets (‘clopen sets’), so that the topology is totally disconnected.
Further, if (M) and () are distinct types, then there is a sentence P which
is valid in M but not in N. Hence ~P is valid in N but not in M, and
{P}*, { ~P}* are nonintersecting neighbourhoods of (M), (N) respectively,
which shows that we have a HausdorfT space.

To prove compactness, let (¢,),,, be a family of closed sets with the
finite intersection property. If %, = £}, then for any finite subset A, of A,

Uz)y*=N%, #0:
Ao

Ao
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in particular, every finite subset of £ = U X, is consistent. Therefore so is
T itself, by Corollary 5.6, and hence

Ng, =x*+0.

This establishes the compactness. [j

Corollary 6.2

The elementary classes correspond to those subsets of 7 [Q] which are
both open and closed. In other words, an axiomatic model class is elementary
if and only if its complement is also axiomatic.

For clearly every elementary class defines a subset of 7 [Q] which is
both open and closed. Conversely, suppose that ¥ is both open and
closed; being open, % can be expressed as a union of elementary classes,
¢ =U %, say. Since % is also closed, it is compact and is therefore covered
by a finite subfamily of the €, say ¥ =%, u .- U %,; hence ¥ is itself
elementary. |j

In connexion with this corollary we note that the elementary classes
correspond to the elements of the Lindenbaum-algebra #(Q), and in fact
this correspondence is bijective.

The closure operation in the model space may be described in terms of
ultraproducts as follows (Taimanov [62]):

Proposition 6.3

Let S be any subset of 7[Q] and N any Q-structure; then the type (N)
belongs to the closure of S if and only if there is a family (M ;) . o of S-structures
and an ultrafilter 2 on A such that

(1 N=TIM,/%.

Proof:

By definition, (N)eS if and only if every S-theorem is valid in N.
Therefore if (1) holds, it follows by the ultraproduct theorem (Theorem
5.1) that (N)eS. Conversely, let (V) €S and take a model M, in each
type 4 belonging to S. Since every S-theorem is valid in N, any sentence
P valid in N has a model in S (because otherwise ~P would be an S-
theorem). For each z € £(Q) such that N\ «, define a subset E, of A by

E,={AeA|M+a);

then E, # 0 and the E, admit finite intersections, for if P e, Q € f3, then
E, n E, = E,, where y = (P A Q). Hence, there is an ultrafilter 2 on A
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containing all the E,. We assert that (1) holds for this choice of M, =
M, /2. Forif N F o, then E, € 2, and hence M, I o; thus N = M,, ie.,
. 1

From this proposition we obtain the following generalization of
Corollary 5.3.

Corollary 6.4
A type class is axiomatic if and only if it admits ultraproducts. |}

For a more precise result we refer to VI.6; here we content ourselves
with pointing out another consequence of Proposition 6.3. An axiomatic
type is just a point of the space 7 [Q] and is therefore closed. Since ultra-
powers are a special case of ultraproducts, taken within a single type, we
obtain from Corollary 6.4

Corollary 6.5
Any type class admits ultrapowers. |

Any axiomatic class # is a closed subspace of Z[Q], and under the
induced topology this is again a totally disconnected compact Hausdorff
space. The intersections of arbitrary axiomatic (or elementary) classes
with " will be called relatively axiomatic (or elementary) classes in .
The most important use made of relative classes is in the case of Q-
structures which are algebras with respect to a subdomain Q¥ of Q. We
have to show that the class of Q-structures which are algebras with
respect to Q* is axiomatic. This is done by constructing sentences which
express the fact that the predicates in Q* define operations (not merely
relations). Let w € Q be an (n + 1)-ary predicate. Then the sentence

(2) Av_w(‘:ls"'!imj)

is called the determinateness condition for w, 1t is valid in an Q-structure
M if and only if, for every n-tuple (a,,---,a,) in M, there is at least one
be M such that w(a,,-,a,b) holds; in other words, if o defines a—
possibly many-valued—operation in M. To obtain an operation in our
sense we need a second sentence, the wuniqueness condition for w:

(3) A [((iy, i) A 0iyyeink)) = (= K)].

This expresses the fact that to each n-tuple (a,,---,a,) in M there is at
most one b € M such that M F w(a,, ,a,,b). Thus (2) and (3) together just
state that w defines an n-ary operation in M.
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Now let ©* be a subdomain of Q and X the set consisting of the deter-
minateness and uniqueness conditions for all the elements of Q*. Then
the axiomatic class defined by X is just the class of all Q-structures which
are Q*-algebras. Applying Theorem 6.1, we thus obtain

Theorem 6.6

The types of all Q-structures which are Q*-algebras form a closed (and
hence compact) subspace of the model space 7 [Q]. Any axiomatic algebra
class is relatively elementary if and only if its complement is also relatively
elementary. |}

In practice we shall write operators in the operational form of Chapter II
rather than the relational form used here. This is done merely for con-
venience; the reader may, if he wishes, transcribe all sentences in purely
relational form. For example, if o is a ternary relation which in a certain
structure M defines a binary operation, then the commutative law for this
operation, written out in full, reads

A [(w(i1,f2,f3) A iz,iy,i)) = (i = )],
while the associative law is given by
A [(w{fl!ffhi‘t) A @ig,isis) A w(fZafaJa) A w(fh".ﬁsfﬁ')) = (is = I;)].

It may be noted that both these laws are described by universal sentences,
although the determinateness condition needed to define  as an operation
was not universal.

We now give some examples of relatively axiomatic classes.

(i) Ordered sets. Let Q consist of a single binary relation p; then the
elementary class defined by

@ A [ ~p(i.)]
(5) A [(p(i.]) A p(jik)) = p(iJo)]

is essentially the class of ordered sets. Lattices may be singled out by adding
the axioms

(6). AYI} [(p(ik) A p, (k) A (plid) A p(iD) = p (k)] (r=1,2);

Here we have put ‘p,(i.j)’ for *p(i.j) v (i =j) and *p(i,j) for ‘p, (i), for
brevity. It is important here to bear in mind the difference between sub-
structures and subalgebras; thus a substructure of a lattice as defined
above is not in general a sublattice.
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(i) Ordered groups. We now take Q to consist of the group operators
and a binary predicate p. Then ordered groups may be defined by the
group axioms, together with (4) and (5) above and
(7) A [p(i.f) = (p(ik,jk) A plkikj)].

(iii) Fields. A field may be defined as a commutative (and associative)
ring satisfying the condition

(8) AYW#@ww=ﬁl

As a rule the ring consisting of 0 alone is excluded, e.g. by adding the
sentence
) V(i # 0).

As a further example we have the fields of a given finite characteristic.
For every natural number » we have in any field (as in any additive group)
the derived operator x — nx, where

nx=x+x+-+x (7 summands).
Now a field of characteristic # may be defined by the sentences
(10) A (ni =0),
(11) VIi#0)AQRi#0) A A((n—1)i#0)].

As is well known (cf. e.g. v.d.Waerden [37]), this class is nonempty if and
only if nis prime. The fields of characteristic zero may be defined by taking
all the sentences (11), for n = 1,2,---. Hence they also form an axiomatic

class, but as we shall see in a moment, this class is no longer elementary.
We first note the following consequence of Theorem 6.6 (cf. Robinson

[63]).

Theorem 6.7
Let T be any set of sentences about fields. If there are fields of arbitrarily

high characteristic satisfying X, then there are fields of characteristic zero
satisfying Z.

Proof:

Let o, be the class of fields defined by £ and (11); thus %, consists of
all Z-models of characteristic at least #n. The fields of characteristic zero
which satisfy ¥ form the intersection MN.#,. Now by hypothesis,

Hy D Hy 2
is a chain of nonempty closed subsets of a compact space. hence their
intersection is also nonempty, as we wished to show. [}
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Let P be any sentence which is valid in every field of characteristic zero.
If we apply the theorem with £ = {~ P}, we obtain

Corollary 6.8
An elementary sentence which holds in every field of characteristic zero

also holds in every field of sufficiently high characteristic. |}

Now if the class of all fields of characteristic zero were elementary, let P
be a sentence defining this class. By Corollary 6.8, P would then also hold
for all fields whose characteristic exceeds a certain number n,; in other
words, there would be no fields of finite characteristic greater than n,.
This is a contradiction and it proves

Corollary 6.9
The class of fields of characteristic zero is not relatively elementary. |}

EXERCISES
1. Show that the model space 7 [Q] has a countable base if and only if Q is
at most countable.

2. Let A be any Boolean algebra and denote by A* the subset of 2* consisting
of all homomorphisms A4 — 2. Show that A4* is a Boolean space with respect to
the topology induced by the product topology in 2*. Use this fact to give another
proof of Theorem 6.1.

3. If X is any Boolean space, then the set X'* of clopen (= closed and open)
subsets forms a Boolean algebra. In particular, if X = 4%, for some Boolean
algebra A (cf. Exercise 2), then A** =~ A; moreover, X ** is homeomorphic to X.

4. Show that the model classes admitting ultraproducts form a topological
closure system and that the resulting topology is compact.

5, Show that a type class J is elementary if and only if both % and its
complement in 7 [Q] admit ultraproducts.

6. Show that the class of fields of finite characteristic is not axiomatic.

7. Show that the class of all finite groups is not axiomatic.

8. Show that the class of all finite ordered sets satisfying the axiom
AV [(pGik) npllef) v (0Uik) A pli) v (= 1))

is elementary.



Chapter VI

Axiomatic Model Classes

As we saw in Chapter V, some properties of Q-structures can be
expressed by means of elementary sentences, while others cannot. We now
take the analysis one step further: we consider various properties of
axiomatic model classes and enquire to what extent these may be character-
ized by the form of the defining sentences. The chapter concludes with an
elegant characterization, due to Keisler [61], of axiomatic model classes
in terms of ultraproducts.

1. REDUCTS AND ENLARGEMENTS

Let Q be any predicate domain and % an axiomatic model class,
which is taken to be fixed in what follows, The sentences defining % will
be called the basic axioms; #-structures will simply be called models,
and the terms submodel, quotient model, etc. will all be understood to refer
to &, when nothing else is said. All classes of Q-structures are hence-
forth considered relative to #; thus if % is any class of Q-structures, by a
%-model is meant a member of ¥ n %. Here % may be the class of all
Q-algebras, or more generally, the class of Q-structures which are algebras
with respect to Q* = Q, or also the class of all Q-structures.

If Q' is any subdomain of Q, then to every model M there corresponds a
unique Q'-structure M| Q', called the Q'-reduct of M, which is obtained
from M by ignoring the predicates which do not belong to Q, and any
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basic axioms containing such predicates. In particular, a finite reduct of M
is a reduct M| Q,, where Q; is a finite subset of Q. Conversely, given an
Q'-structure N, if there exists a model M whose Q'-reduct is N, we call
M an Q-enlargement of N. Such an enlargement is said to be finite if
Q\Q' is finite, unary if Q\Q’ contains only unary predicates; Q itself is also
referred to as an enlargement of Q.

For classes of models we can define closure operations as for Q-algebras.
A model class will be called abstract, if it contains with any model all its
isomorphic copies; for any abstract class ¥ of models we write:

s% for the class of submodels of #-models.

H% for the class of homomorphic images of #-models.

p% for the class of products of ¥-models.

L% for the class of locally ¥ models: M € L% whenever M has a local
system of s%-models.

L% for the class of sublocally ¥ models: M e L% whenever every finite
substructure of M can be embedded in a ¥-model.

An s-closed class is said to be hereditary; it will usually be clear from the
context whether this term refers to subalgebras or substructures. An
L-closed class is said to be locally defined and an L-closed class is said to be
sublocally defined.

It is clear that
LY S L%,

but equality need not hold. E.g., if & is the class of abelian groups and
% the class of periodic groups (in %), then L% = % while L% = £. In
general, every locally ¥ model is sublocally %, and every sublocally
defined class is locally defined.

If % is any class of models and Q' = Q, we denote by ¢ | Q' the class of
all Q'-reducts of ¥-models. It is easily verified that for any axiomatic
class ¢, M is a ¥-model if and only if, for every finite subdomain Q; of Q,
M| Q;is a (4| Q,)-model. From this remark it follows that an axiomatic
class ¢ is closed under any of the operations s, H, P, L, L if and only if
% |Q, is closed (within £ | Q) under the operation, for all finite sub-
domains Q; of Q. This allows one in most cases to make a reduction to
the case where Q is finite. Of course in most algebraic systems Q is finite
in any case; an exception is the class of vector spaces over an infinite field.

The following criterion for hereditary classes to be locally defined is
often useful. We recall that a class is inductive if it admits suprema, i.e.,
unions of chains.
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Proposition 1.1
Let € be a hereditary class of models, then € is locally defined if and only if ¢
is inductive.

Proof:

Assume that ¢ is locally defined and let (M),  » be any chain of %-
models. Such a chain, to be admissible, must belong to our universe U,
qua collection of sets; this is the case if M, e Uforeach ieAand Ae U
(cf. 1.10), and it ensures that M = UM, e U. Now (M) is a local system
of ¥-models for M; therefore M e L% = %. Conversely, suppose that @ is
inductive and let M be a model with a local system of #-models (= s%-
models). By Proposition 1.5.9, ¥ admits unions of directed sets, and so
Meé. |

A characterization of sentences defining inductive model classes has been
given by Chang [59].

EXERCISES

1. Let A be any closure operator on classes of models, and define an operator
Ay by therule: M e A % if and onlyif M|Q, e A(%|Q,) for all finite subdomains
Q, of Q. Determine which of the operators defined in VL1 satisfy A, = A.

2. A class % of Q-structures is said to be reductive, if M € € holds if and only
if M|Q,e%|Q, forall finite subdomains Q, of Q. Show that for any reductive
class € and any operator A, A;% = A%.

2. THE LOCAL DETERMINATION OF CLASSES

Axiomatic classes have the important property that they are determined
locally in the sense that s% is sublocally defined for any axiomatic class %.
Naturally this is of particular interest for hereditary classes; moreover
there is a simple criterion for these classes to be axiomatic. These two
results are not directly related, but both depend on the possibility of
describing the notion of inclusion by elementary sentences. We therefore
begin with this description.

Let M be any model and A a set containing the carrier of M. Our
object is to construct a set of sentences A over the predicate domain
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Q1 A, where the elements of A are distinct unary predicates, such that
the models of A are precisely the extensions of a model with carrier A in
which M is embedded as a submodel. Thus A consists of the determinate-
ness and uniqueness conditions for A,

(1) VY i) (Len),
) A A MG =>=)} (AeA),

together with sentences expressing that different elements of A define
different predicates:

(3) A {(2() A u(j)) = (i # )} for all iueA such that 2 # p.

In particular, to each element a of M there corresponds a unary predicate
a(i). Now for each a = (a,,-+,a,) € M" and each w € Q(n — 1), we include
in A the sentences

(4) A{al(jl) A A an{.in) = w(ilv'”’fn)} if M F w{al,---,a,,],
(5] A {al(‘.l) My all(fﬂ) T w(f-l)"'sfﬂ)} if M ~F w(ah"'san)'

If we identify the unique element for which 2 is valid with 2, we see that
each A-model N contains A as a subset. Moreover, (4) and (3) state
that the restriction to M of the inclusion mapping A — N is actually an
embedding. The set of sentences (1)-(5) is called the diagram of M with
constants A. Itis clear that (4) and (5) are valid with every open formula in
place of w. The set A obtained by taking (1)-(3) and (4), (5) for every
formula of QLI A (not necessarily open) is called the complete diagram
of M with constants A. A model of the complete diagram of M is an
instance of an elementary extension of M, to be discussed in VL.3.

Using the notion of a diagram we can establish the following principle
of localization (Henkin [53], Robinson [63]).

Theorem 2.1
If € is any axiomatic model class, then s is sublocally defined.

Proof:

Let % =¥* and consider any model M. We must show that M es%
whenever every finite submodel of M is embeddable in a ¢-model. Let A
be the diagram of M with constants M; then M € s¢ provided that X u A
is consistent, and by compactness (Cor. V.5.6), this is true whenever every
finite subset of £ U A is consistent. Let £, U A, be such a subset, where
I, cXand A, € A, and let N be the (finite) set of elements of M occurring
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as constants in A; then any extension of Nis a A,-model. By assumption
on M, N es%; thus there is a ¥-model containing N. This %-model
satisfies £ and A,; hence £, U A, is consistent. It follows that £ u A
is consistent and so there is a Z-model extending M. |}

This result may be used in two ways. First we obtain localization
theorems for classes of the form s%, where % is axiomatic, and in particular
for the hereditary axiomatic classes. Second, if ¢ is a class such that s% is
not sublocally defined, then Theorem 2.1 shows that % is not axiomatic.
However, we remark that the necessary condition of Theorem 2.1 for  to
be axiomatic is not sufficient (cf. ErSov [62]).

We may apply Theorem 2.1 to algebras by singling out a subdomain
Q* of Q and considering those Q-structures which are Q*-algebras.

Corollary 2.2

Let A be an axiomatic class of Q-structures which are Q*-algebras, then
an Q-model M can be embedded in a X -algebra if and only if every finite
submodel of M can be embedded in a X -algebra. [}

Usually the structure to be embedded is itself an algebra (possibly with
a different operator domain), and in that case the following consequence of
Corollary 2.2 is often sufficient.

Corollary 2.3

Let A be an axiomatic class of Q-structures which are Q*-algebras, and
let % be a class of algebras represented in # . Then an ¥-algebra B can be
embedded in a A -algebra provided that for every finite subset X of B, there
exists a A -algebra Ay and an admissible mapping 0: X — Ay such that the
restriction 0| X is injective. |}

We turn now to the problem of describing hereditary classes. This will
involve the diagram of a finite reduct of a finite structure, and it is of
importance here to express this diagram (without constants) by a single
elementary sentence. This is accomplished by

Lemma 2.4

Let M be a finite Q-structure, where Q is a finite predicate domain. Then
there is an existential sentence P in a number of variables not exceeding | M|
such that the class of P-models consists precisely of those models which con-
tain a submodel isomorphic to M.
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Proof:
Let M = {a,,---,a,} and consider the following set of formulae in the
variables 1,2, k:

(6) i #J for any pair (i,j) of distinct variables,
and for each we Q(n — 1) and each n-tuple (i,,--.i,) (1 <i, <k),
(7 (iy,+y0,) if Mk o(a;,a,,),

(8) ~ofiyi,) M ~F ola,a;).

Since Q and M are finite, the total number of formulae (6)-(8) is finite.
If we form their conjunction and bind all the variables by existential quanti-
fiers we obtain a sentence which is clearly of the required form. [}

Proposition 2.5

A model class € is the elementary class defined by a universal sentence if
and only if € is abstract and hereditary, and there exists a finite subdomain Q
of Qand a positive integer n such that a model M lies in€ whenever N | Q, can
be embedded in a (% | Q;)-model, for every submodel N of M with at most
n elements.

Proof:

Let P be a universal sentence which defines ¥. If M F P, then P holds
in any model isomorphic to M and in any submodel of M; the third con-
dition is also satisfied if we take for Q, the set of predicates occurring in P
and for »n the number of variables in P.

Now let @ be a class satisfying the conditions of the proposition, with
given Q, and n. The number of open formulae in at most n variables over
Q. is finite; we can therefore form the conjunction P, of all such formulae
which hold in each (4| Q,)-model. Let & be the model class defined by
Pgy; then 2 may also be defined by the universal sentence, P say, corres-
ponding to P, (obtained from P, by applying universal quantifiers);
hence, by the first part of the proof, 2 satisfies the conditions of the
proposition. We complete the proof by showing that

)] € =29.

If Me%, then M|Q, belongs to ¥|Q, and is therefore a P-model.
Since P only involves predicates from Q,, it follows that M is itself a
P-model, i.e., M € . This proves one half of (9). Next, let M e 2, i.e.,
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M F P, and take any submodel N of M with at most » elements. Since P is
universal, we have

(10) NEP.

Applying the lemma to N | Q,, we obtain an existential sentence Q in at
most n variables which holds in just those Q,-models which have a
submodel isomorphic to N | Q,. The negation ~Q of Q is equivalent to a
universal sentence Q' in at most n variables, as is easily seen. By (10), Q’
does not follow from P, because Q' does not hold in N. From the definition
of P this means that Q' does not hold in | Q,; thus there is a (¢ | Q,)-
model, N’ say, in which Q' is not valid. Hence, Q is valid in N', but Q was
the sentence describing N | Q,sowehavea (% | Q,)-model N'in which N | Q,
can be embedded. By hypothesis this means that M € €, i.e. (9) holds. |

We note two simple consequences of this result.

Corollary 2.6
An elementary sentence defines a hereditary class if and only if it is con-
gruent to a universal sentence.

For a universal sentence clearly defines a hereditary class, and hence so
does any sentence congruent to it. Conversely, if P defines a hereditary
class, then {P}* satisfies all the conditions of Proposition 2.5 and may
therefore be defined by a universal sentence Q. Now it is clear that P is
congruent to Q. ||

A property is said to be persistent if it holds in a model M whenever it
holds in some submodel of M. By taking negations we obtain from
Corollary 2.6:

Corollary 2.7
An elementary sentence expresses a persistent property if and only if it is
congruent to an existential sentence. [

Hereditary axiomatic classes may now be characterized as follows (Los
[55], Robinson [63]):

Theorem 2.8
For any model class € the following three conditions are equivalent:

(i) € is hereditary and axiomatic,
(ii) € is hereditary and €|Q, is sublocally defined for every finite
subdomain Q; of Q,
(iii) % is defined by a set of universal sentences.
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A class satisfying (iii) (and hence (i) and (ii)) is called a universal class,
or also an open sentence class, since it may be defined by open formulae.

Proof:

The implication (i) = (ii) follows by Theorem 2.1. To prove that
(ii) = (iii), we take a class % satisfying (ii), and for every finite subset Q,
of Q and every positive integer n we denote by 4(Q,,n) the class of all
models M such that the Q-reduct of any submodel with at most » elements
can be embedded in a (¢ | ,)-model. The class €(Q,,n) then satisfies the
conditions of Proposition 2.5 and can therefore be defined by a universal
sentence. By (ii), M € € if and only if M e €(Q,,n) for all Q, and all n,
ie.

€ = Ne(Q,,n),

where the intersection is taken over all the pairs (Q,,n). Hence ¢ may be
defined by a set of universal sentences. Finally, (iii) = (i) holds trivially. [}

If we specialize to algebras by taking the predicates of a subdomain
Q* to be operators, we obtain a criterion for an axiomatic class of algebras
to admit subalgebras. We leave the formulation of this result to the
reader and mention only the

Corollary 2.9
If € is a universal class of algebras, then A € € if and only if every finitely
generated subalgebra of Aisin6. |}

This is much weaker than the theorem, even for finite Q*. For example,
the class of periodic groups is locally defined, but not sublocally defined;
thus it is not a universal class (it is not even an axiomatic class) although
the conditions of the corollary are satisfied.

EXERCISES

1. Show that a universal class is elementary if and only if it can be defined
by a single universal sentence.

2. Show that the class of periodic groups is not axiomatic. (Apply Corollary
2.2, taking M to be an infinite cyclic group; note that Corollary 2.3 cannot be
used here.)
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3. If € is an axiomatic class, show that % is a universal class.

4. If % is an elementary class, so that $% is universal, then S% need not be

itself elementary. For example the class of semigroups % such that

VAV [(h = h) AGik =) alli = /)]

h ikl
consists of all groups, regarded as semigroups admitting division. If % is re-
garded as class of algebras, verify that % consists of all semigroups embeddable
in groups. (A set of universal sentences defining 8% has been determined by
Malcev [39,] cf. VIL3, who has also shown that s% is not elementary (Malcev

[401)).
5. (Malcev.) Show that the class of free groups is not axiomatic.
6. (Kargapolov.) Show that the class of locally free groups is not axiomatic.

7. A group G is said to satisfy the normalizer condition if every proper sub-
group is distinct from its normalizer. Verify that the class of groups satisfying
the normalizer condition is hereditary (cf. Kuro§ [56]; this class is not locally
defined and therefore is not axiomatic).

8. If % is the class of all Q-algebras and % is any class of Q-algebras, show that
an algebra A is sublocally %, provided that for every finite subset X of A, the
subalgebra J(X) generated by X has a congruence q separating X such that

J(X)/qe €.

3. ELEMENTARY EXTENSIONS

We have seen that the notion of homomorphism is not invariant under
passage to derived predicates. This defect may be remedied by introducing
elementary mappings. A mapping between Q-structures

¢:M— N
is said to be elementary, if for any formula P and any 0:1 - M,
(1) if M F PO, then N E Pf¢.

Clearly an elementary mapping is a homomorphism, but in fact we can
say much more:

Proposition 3.1
If $:M — N is an elementary mapping, then ¢ is injective and for any
Sformula P and 6:1 - M,

2 ME PO ifandonlyif NFE POg.
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To see that ¢ is injective, we need only apply (1) with ‘i # j* for P.
Now one half of (2) is just a restatement of (1), while the other half
follows by replacing P by ~P in (1). |}

Let N be any Q-structure and M a substructure of N. Then N is said to
be an elementary extension of M if the inclusion mapping 1: M — N is
elementary. We shall express this relation between M and N by writing
M<N. If M < N and N < M, this means that M and N have the same
carrier, and the identity mapping between them is an isomorphism. As
in the case of algebras, we shall regard M and N as the same structure in
this case, so that < defines an ordering on [Q]. Under this ordering [Q]
is inductive, for if (M;),. » is a chain, let M be its union and define an
Q-structure on M by the rule that the inclusion mappings M; — M be
elementary. Then M becomes an Q-structure which is an elementary
extension of all the M.

If ¢:M — N is any elementary mapping between Q-structures, then
M and N are indiscernible, as follows by taking P in Proposition 3.1 to be
any sentence. It may happen, however, that an extension N/M of Q-
structures is not elementary, even though M and N are indiscernible. For
example, the positive integers are indiscernible from the positive even
integers, qua ordered set, and they form an extension, but not an elemen-
tary extension, since 2 is a successor in one model but not the other.

We shall now give some criteria for elementary extensions (for these and
others cf. Tarski & Vaught [57]). If M is an Q-structure and X a subset
of M, then we shall denote by (M,X ) the unary enlargement of M
obtained by regarding the elements of X as constant operators (defined
by unary predicates corresponding to the elements of X'). Thus e.g. for
X =M, {(M,M) is a model of the diagram of M with constants M.

Theorem 3.2
For any extension N|M of Q-structures the following three conditions are
equivalent:
(i) M <N,
(i) For every formula P and every 0:1 — M, if N k (VP)0, then there
i

exists 0':1 -+ M such that j0' = jO for j # i and N F PO'.
(iii) For every finite subset X of M, (M, X ) = (N,X ).

Proof:
(ii) = (i). Let @ be the set of all formulae P such that
3) for every 0:1 - M, if N F PO, then M F P0.
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We have to show that @ includes all formulae. Clearly, every open
formula belongs to @; further, if P e ®, then A_Pe‘b, and by (ii), also

VP e®. Thus (3) holds for all formulae P, whe;'lce M<N.
t (i) = (iii). Let {N,X >+ P, where P is of the form
P = P55 %5) (x, € X).
Take elements iy,...,i, € I which do not occur in P; then for any 0:1 - M
such that a;, = xy,...,.@;, = X,, if @ = P(i,..,1n),
Nt (V0)0, therefore M F (V Q)0,

ie., (M,X>F P. Repeating the argument with P replaced by ~P, we
obtain the converse: if {(M,X> F P, then {(N,X) F P.

(iii) = (ii). Assume that (iii) holds and let P, iel and 0:/ - M be
given such that NV F (YP)E?. Let J be the subset of I occurring in P and

denote by X the image of J\{i} under 8; then {N, X F (YP)B, where on the
right all the jO (j # i) are regarded as constant. Hence {M,X ) F (V_P)ﬂ,

i.e., for some 0':1 — M such that j0' = jo for j # i (j € J), we have M k P0';
and this still holds if we take j0' = j@ for all j # i. Therefore (ii) is satis-
fied. [}

Corollary 3.3
Let B|A be an extension of Q-structures which are Q*-algebras. If for

every finitely generated subalgebra A, of A and every b€ B, there is an
automorphism of B which leaves A, elementwise fixed and maps b into A,
then A < B.

This follows by verifying that condition (ii) of Theorem 3.2 is satis-
fied.

The notion of elementary extension may be used to construct from a
given Q-structure M, others indiscernible from M, of a prescribed cardinal
1. There are essentially two results (both due to Tarski & Vaught [57]),
according as A is greater or less than |[M|. To avoid trivialities one has of
course to assume that all the cardinals involved are infinite (cf. Proposition
V.4.3).

Theorem 3.4
Let M be an infinite Q-structure, X any subset of M, and 2 any infinite

cardinal such that
max(|Q, |X]) <4 < [M].
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Then there exists an Q-structure L of cardinal . such that
XcL<M.

Proof:
From the hypotheses it follows that M contains subsets Y of cardinal 4
which contain X. Let ¥ be such a set, and for each formula P involving

the finite subset J of I, each i € [ and each 0:J — Y such that Mk (VP) 0,

choose a definite x € M such that M k P0’, where 0':J — M is given by
wi X if j=1,
7o _{jﬁ if j # i.
Let Y’ be the set of all such x € M; then | Y'| = 4, because the number of
formulae is max{|Q|.No} < 4. Moreover, taking P to be ‘i = j’, we see that

Y  Y'. If we apply the same construction to Y’, we obtain a set ¥, and
continuing in this way, we obtain an ascending chain

YecYcY -

Its union L is again of cardinal 1 and contains X. Moreover L < M, by
condition (ii) of Theorem 3.2. |§
Taking X =0, we obtain

Corollary 3.5
Every infinite Q-structure, over a finite or countable domain Q, is an elemen-
tary extension of a countable Q-structure. |

In particular this implies the well-known

Lowenheim-Skolem theorem
Every consistent theory over a countable predicate domain has a countable
model. |}

More generally, it follows that any consistent theory has a model of
cardinal not exceeding max(|Q|,N,). This shows in particular that the
model space introduced in V.6 does not depend on the particular universe,
but only on Q.

To obtain Q-structures with greater cardinal, we use

Theorem 3.6
Let M be an infinite Q-structure and 1 a cardinal such that A = max(|M|,
|QI); then M has an elementary extension of cardinal A.
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Proof:

Let A be any set of cardinal A which contains M, and denote by A the
complete diagram of M with constants A (cf. VI.2). Any finite subset of A
has a model, namely M; we need only pick suitable elements of M to
represent the finite number of elements of A involved. Therefore A has a
model N, by compactness. By construction, N contains A and is an
elementary extension of M. Hence its cardinal is at least 4, and by
Theorem 3.4 there is an extension L of cardinal 4 which contains M. Since
M < N,L<N, M <L, it follows that M <L. [}

Corollary 3.7
If M is any infinite Q-structure and . = max{|Q|Ro}, then there is an Q-
structure of cardinal A which is indiscernible from M. |}

As an application, we shall give a simple test for a theory to be com-
plete, due to Vaught [54]. We recall that a complete theory is a maximal
consistent set of sentences. In other words, a theory is complete if and only
if all its models are indiscernible. Thus to obtain a complete theory we
need only pick an Q-structure M and take the set of all sentences valid in M.
However, this does not provide an easy test which can be applied to a given
set of axioms. In order to discuss Vaught’s test we need the notion of
categoricity. In general, a theory is said to be categorieal, if all its models
are isomorphic. Clearly, any categorical theory is complete, but the
elementary theories we are discussing can never be categorical (by Corol-
lary 3.7) except in the trivial case of a complete theory with a finite model
(Proposition V.4.3). We therefore define a theory © to be a-caregorical,
where « is a given cardinal, if any two ©-models of cardinal « are iso-
morphic. With this definition we have

Theorem 3.8 (Vaught [54])
Let © be any elementary theory without finite models, which is «-categorical
for some cardinal o, where

o =zmax{|Q|Ng}-
Then © is complete.

Proof:

If ® is not complete, then for some sentence P, neither P nor ~P
belongs to ©, and so both ® u {P} and © U { ~ P} are consistent (cf. V.5).
Let M, be a model for ® u {P} and M, a model for ® u { ~P}. These
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models are both ®-models and are therefore infinite; by Corollary 3.7,
there exist Q-structures N,, N, of cardinal « and indiscernible from M, M,
respectively. But then N, and N, are ©-models, and hence are isomorphic,
which contradicts the fact that N, F P, N, + ~P. |}

EXERCISES

1. If M is any Q-structure, show that any ultrapower of M is an elementary
extension of M.

2. Show that a theory without finite models is complete provided that for
some o = max{|Q|, Mo} all its models of cardinal « are indiscernible.

3. Apply Vaught's test to show that the following theories are complete:

(i) Densely ordered sets (with or without end-points). (Cf. Exercise 1.5.9.)
(i) Infinite-dimensional vector spaces over a given field.
(iii) Algebraically closed fields of given characteristic. (Cf. VIL.2.)
(iv) Nontrivial Boolean algebras without atoms. (Cf. Exercise V.2.10.)

4. Given an Q-structure A, there exists an elementary extension of A which
is an ultraproduct of the finite substructures of A.

4. p-CLOSED CLASSES AND QUASIVARIETIES

We now consider more closely the form which universal sentences can
take. Any universal sentence over Q is of the form

(1) AP,

where P is an open formula in a finite number of free variables. Thus P is
built up from atomic formulae by ~, v, and a . Using the conjunctive
normal form, we can express P as a conjunction of formulae of the type

(2 Q=E v VE,

where each E, is an atomic formula or the negation of an atomic formula.
Accordingly we call E, a positive or negative constituent of Q. Now P is
valid in a given structure M if and only if all the terms Q composing it are
valid in M; we may therefore limit ourselves to the consideration of
formulae of the form (2). For any Q given by (2), we write

oW =E v vE_ vE. v VE, (k =1,
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Let £ be any set of universal sentences; as long as we are only interested
in the model class defined by X, we may replace the sentences in by the
corresponding open formulae (obtained by omitting all quantifiers), and
these may be replaced by their conjunctive components (2). Thus we may
assume X to consist of formulae of the form (2). A formula Q in Z is said
to be reducible in ¥, if Q has more than one component and Q® e X** for
some k = 1,---,r; otherwise it is called irreducible in £. Thus to say that Q
is irreducible in £ means that Q has one component only, or that for each
k = 1,---,r, there is a -model M, such that M, ~ F Q®.

Proposition 4.1

Every universal class can be defined by a set T of open formulae which are
irreducible in T.

For we have seen that a universal class # may be defined by a set £ of
formulae of the form (2). Now any reducible formula in £ may be replaced
by a formula with fewer components without affecting X; repeating this
process if necessary, we thus obtain a formula which is irreducible in Z. [ |

Lemma 4.2
Let X be a set of irreducible open formulae such that the model class defined

by T is p-closed. Then no formula in £ can have more than one positive
component.

Proof:

Suppose that X includes a formula Q = E, v E, v -+ v E,, where E;
and E, are positive. Let M, be a E-model in which Q" is not valid. Thus
M FAN(E, VE,v--VvE) and M,V (~E A ~E; A A ~E),
and therefore

MtV (E, A ~Ey A - A ~E);
similarly,
MV (~E AEy A ~Ey A A ~E,).

Choose 0, :1 — M, such that
M,k (E, A ~E; A - A ~E)B,
and 6,:1 — M, such that

M,E(~E AE; A ~Ey A o A ~E)0,;
then
Myx MyF(~E; A ~E3 A -+ A ~E,)(0,,0,),
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where (6,,0,) stands for the mapping i — (i6,,if,). But this means that
M, x M, ~+ Q, which contradicts the fact that X is p-closed. [}

Note that in the proof we have only used products of two factors; in
fact any class admitting direct products of two factors clearly admits direct
products of any finite number of factors, and such a class, if axiomatic,
admits direct products of any number of factors, by a result of Vaught
[547].

The lemma shows that any formula in £ has one of the forms
(3) ~A, v ~A, v v ~A,,

(4) Ay A AA, = A,

where the A’s are atomic formulae. Now clearly, if (M) is a family of
Q-structures satisfying a given formula of the form (3) or (4), then the
direct product ITM; also satisfies this formula; thus we obtain (McKinsey
[43], Kogalovskii [59]):

Theorem 4.3
A universal model class admits direct products if and only if it has a defining
system of formulae of the form (3) or (4). |}

The same result holds if we replace ‘model class’ by ‘class of algebras’,
as follows by relativising the proof of the theorem.

A formula of the form (4) is called a Horn formula (Horn [51]), and any
sentence, not necessarily universal, obtained by quantifying a Horn
formula 1s called a Horn sentence. Further, a Horn class is a model class
defined by Horn sentences. A universal Horn class of algebras is also
called a quasivariety (or quasiprimitive class). Theorem 4.3 shows that
every quasivariety admits direct products; conversely, a universal class
admitting direct products is a quasivariety if no formula (3) occurs in the
definition. Now the trivial Q-structure (i.e., the full one-element structure)
satisfies every formula (4) but no formula (3). We thus find that a universal
class is a Horn class if and only if it admits direct products; for then it
contains the trivial structure as empty product. For algebras this
yields

Corollary 4.4
A universal class of algebras is a quasivariety if and only if it admits direct
products. & -

" As examples of quasivarieties we mention caricellation semigroups, or
semigroups embeddable in groups (cf. Exercise 2.4 and VIL.3), or ordered
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semigroups. On the other hand, totally ordered semigroups do not form a
quasivariety; neither do integral domains.

Since quasivarieties admit subalgebras and direct products, we have, by
Corollary II1.5.2,

Proposition 4.5
Every quasivariety has free algebras.  |j

For further results on quasivarieties, including an abstract characteri-
zation (in terms of categories) the reader may be referred to Malcev [56],
[58"].

The remarks preceding Corollary 4.4 give a convenient characterization
of universal p-closed classes; no such simple criterion is known for general
p-closed classes. It is true that any Horn sentence is preserved under direct
products, and even under reduced direct products (cf. V.5). This was
proved by Chang & Morel [58], who also showed that there are sentences
preserved under direct products which are not equivalent to any Horn
sentence (cf. Exercise 3).

EXERCISES

L. If 5 is any universal class of algebras, show that the subdirect products of
Jf-algebras form a quasivariety. Verify that the quasivariety generated by
integral domains consists of all commutative rings without nilpotent elements
(apart from 0).

2. Show that every quasivariety is generated by its subdirectly irreducible
elements

3. Obtain an elementary sentence expressing the fact that a Boolean algebra
is trivial or contains an atom. Show that this sentence is preserved under direct
products but not under reduced products. (Chang & Morel [58]; by the result
quoted in the text, this sentence is not equivalent to a Horn sentence.)

5. CLASSES ADMITTING HOMOMORPHIC IMAGES

The ‘duality’ between subsets and quotients would require a characteri-
zation of axiomatic model classes which are H-closed. Such a characteri-
zation indeed exists, but neither it nor its proof is in any way dual to the
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hereditary case discussed in V1.2, Let us call a sentence positive if it
arises by quantification from a positive formula and negative if it can
be expressed as the negation of a positive sentence. It was shown by
Lyndon [59'] that an axiomatic model class is H-closed if and only if it can
be defined by positive sentences. The proof requires a fairly detailed
analysis of the structure of the formulae which can occur, and we shall
therefore confine ourselves here to proving the result for the special case of
universal classes over a finite predicate domain. For these classes the
principle of localization (Theorem 2.1) is available, and a proof can be
given which somewhat resembles the proof of the characterization of
hereditary axiomatic classes (Theorem 2.8). At the same time it shows the
limitations of the above mentioned duality. We begin with a lemma which
takes the place of Lemma 2.4.

Lemma 5.1

Let Q be a finite domain and M a finite Q-structure. Then there is a positive
universal sentence P such that the P-models are precisely those structures
which do not possess a substructure with M as homomorphic image.

Proof:

Let M = {a,...,a,,} and let N be an Q-structure which has a substructure
with M as homomorphic image. This means that N contains m elements
by,...,b,, such that the following hold in N:

() by # b, whenever i 5 j,
(2) ~a(by,,...,by) whenever M F ~a(a;,,....a;).

For, we need only pick for b; an element of N which maps to @, in the homo-
morphism. Conversely, if all the formulae (1),(2) hold in N, then the
mapping b; — a; is a homomorphism from a substructure of N to M. Now
the total number of formulae (1),(2) is finite and each is the negation of an
atomic formula. Their conjunction is therefore of the form ~P(b,,...,b,),
where P is a positive formula. By construction, N has a substructure with
M as homomorphic image if and only if

N+ V ~P(iy,....in),
and therefore N does not possess such a substructure if and only if
NEAPG,,...i0).

Since P is positive, this is a sentence of the required form. [j
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Theorem 5.2
A universal model class over a finite predicate domain admits homomorphic
images if and only if it can be defined by means of universal positive sentences.

Proof:

Clearly, a positive sentence holding in a given Q-model holds in all its
homomorphic images; therefore, a universal model class defined by
positive sentences admits homomorphic images (without any restriction
on the size of Q).

Now let @ be a universal model class (over a finite domain Q), admitting
homomorphic images. If Z is the model class defined by all universal
positive sentences in %, then clearly

(3) € cB;

we complete the proof by showing that equality holds in (3). Thus suppose
that there is an Q-model M such that

(4) Me%, M¢s.

Since % is sublocally defined (Theorem 2.1), there is a finite submodel of
M which is not in €. But any submodel of M again lies in 2, and we can
thus take M in (4) to be finite. Let P be the positive universal sentence
characterizing the Q-models which have no submodel with M as homo-
morphic image. If there is a $-model, N say, for which P does not hold,
then M is a homomorphic image of a submodel of N and therefore belongs
to €. But this contradicts (4); hence every ¢-model satisfies P. By defini-
tion of 2, every Z-model must satisfy P too, whereas M clearly does not
satisfy P. This contradicts the fact that M € 2, so that (4) is impossible,
ie¢=92 |

If we consider only ©-models which are algebras (relative to some
subdomain Q%), we obtain

Corollary 5.3

A universal class of Q*-algebras (over a finite predicate domain containing
Q*) admits homomorphic (algebra-) images if and only if it can be defined
(within the class of all Q*-algebras) by positive universal sentences. 1

EXERCISE

1. Show that if P is a universal sentence, then the class of P-models admits
homomorphic images if and only if P is equivalent to a universal positive
sentence. (Use Corollary V.6.2 and compactness.)
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6. THE CHARACTERIZATION OF AXIOMATIC MODEL CLASSES

We saw in Theorem V.6.4 that a type class, i.e. a union of types, is
axiomatic if and only if it admits ultraproducts, but this result tells us
nothing about the relation between Q-structures belonging to the same
type. We now show that two Q-structures belong to the same type (i.e.
are indiscernible) if and only if they have isomorphic ultrapowers. From
this it is easy to derive a criterion for any model class to be axiomatic,
without assuming it to be a type class. These results are due to Keisler
[61], the basic theorem from which all others are derived being Theorem
6.2 below. In the proof of this theorem (and its consequences) it is however
necessary to make a further assumption, which we shall now discuss.

If « is any infinite cardinal, then there are cardinals larger than «, e.g.
2%, and hence there is a least such cardinal. We denote this least cardinal
greater than « by «™ ; by Theorem 1.5.6, we have

) at <2

In particular, if @ = N,, then 2% is the cardinal of the real line (the
‘continuum’) and Cantor’s continuum hypothesis states that for « = N,
equality holds in (1), i.e., writing ¥, for N,

(2) Ry =2%.
The assertion
3) o = 2F for any infinite cardinal «

is called the generalized continuum hypothesis. 1t has never been proved,
even for o = W, although Gédel [40] has shown it to be consistent with
the axioms of set theory, assuming that these are consistent. Here it is
not necessary to include the axiom of choice; its consistency is proved in
the same way. Further, in place of the existence of universes, Godel merely
assumes the existence of infinite sets. If one adopts the axiomatic stand-
point it is therefore reasonable to include (3) as an axiom (particularly in
view of the fact that (3) has also been shown to be independent of the other
axioms of set theory, by P. J. Cohen [63]). There is also a more naive
standpoint which argues that by analysing more closely the intuitive notion
of a set one may be able to isolate a further assertion about sets, which
intuitively is ‘obvious’ and which, taken as an axiom, will together with
the other axioms entail the truth of (3). (However, if one is prepared to
rely on intuition, one must also be prepared for the opposite conclusion,
that (3) may turn out to be ‘obviously’ false). The reader may be referred
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to Godel [47] for an illuminating discussion of the whole question;
we shall not pursue this point here, but henceforth assume (3). Any
results in whose proof (3) is used will be marked GCH (generalized con-
tinuum hypothesis).

Before coming to the main result we need a lemma, which generalizes
Proposition 1.5.8. If « is any ordinal number, then by an «-term sequence
we mean a family indexed by «. Further, we shall identify any cardinal «
with the first ordinal number which has cardinal e.

Lemma 6.1

Let o be an infinite cardinal, § an ordinal such that p < o, and (Xe)s<p a
p-term sequence of sets, each of cardinal o. Then each X contains a subset
Y., again of cardinal o, such that the (Y;) form a disjoint family.

We remark that if ®,; denotes the statement of the lemma, then @,
implies the equation

4) afp =a  for f<a(and =N,
and in particular,
(5) o =a (o = Wo)-

For if we take any set X of cardinal « and put X; = X for ¢ < §, then by
®,,, there is a f-term sequence of disjoint subsets of X, each of cardinal «,
whence off <«. Since the reverse inequality is evident, (4) follows.

To prove the lemma it is clearly enough to take the case f =a; we
shall use transfinite induction on «. Let y be any ordinal such that y < «,
and assume that for each pair &, n of ordinals less than y we have an
n-term sequence Y, such that

(1) Y., is a sequence of distinct elements of X.
(ii) If n" < n, then Y, is a left segment of ¥,
(iii) For & #¢& Y, 0 Yg, =0,

If y is a limit ordinal, define Y, by the formula

Y:'r =U Yers
n<y
then the Y., are again pairwise disjoint, and each is a y-term sequence of
distinct elements of X;. If y is not a limit ordinal, say y = J + 1, we de-
fine Y., (by transfinite induction on £) by adjoining a single element
from X. to Y in such a way that (i)-(iii) remain true for n = y. Since
[UY,,| = I3> = I7| by (5 (using the induction hypothesis on y), while
z
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| Xe| = & >yl, this is always possible. Having defined Y,, wecannow define
Y,, by taking any y-term sequence of distinct elements of X, which do not
belong to U Y;,. Again this is possible by (5), and Y, for n <’y is defined
as the appropriate left segment of Y,,. By induction we thus obtain Y,
for each pair &,n <, to satisfy (i)-(iii). Now put
Y,=U
n

<a

s

then Y, is an a-term sequence of distinct elements of X; such that Y; n ¥,
=0 for & # &, by (iii), as required. i

Theorem 6.2 (GCH) (Keisler [61])

Let o be a cardinal number not less than max{|Q|, ¥o} and let I be any set
of cardinal a. Then for any two families (A})ier, (B)ier of Q-structures of
cardinal at most o« the following two assertions are equivalent.

(i) There exist Fréchet ultrafilters 9, & on I such that

[14,/2 = TIB,/é.
(ii) For any elementary sentence P, either
(6) [{iel|lA;F P} =a,
or
(7) {iel|B;+ ~P}| =o.

Proof:

(i) = (ii). If P holds in fewer than « 4’s, then ~P holds for all A’s
of a @-set, and therefore holds in the ultraproduct. By the isomorphism
(i), ~P holds in all the B’s of an é&-set, whence (7).

(i) = (i). Write 4 =T14;, B=TIB; and denote the projections by
¢;:A — A;, {;:B— B, Further, let us well-order 4 and B:A = (@g)s<a+»
B = (by)s<as s WE remark that here the GCH has been used, to ensure that
A and B can be indexed by the ordinals less than «*. Now any ordinal
can be uniquely expressed in the form 4 + n, where 4 is a limit ordinal (or
zero) and # is a natural number (cf. Exercise 1.5.5). Our first objective will
be to construct a-term sequences (a’), (b') in A and B respectively, such
that for any limit ordinal 4 and any natural number n,

(a) Gis2, =540

(b] b:1+2.1+1 = h;‘__;r

(c) For any elementary sentence P over Q and an a-term sequence of
unary predicates, denote by {(A.a'¢;> the unary enlargement of
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A; in which the unary predicates are constant operators with
values aj¢;, and analogously for (B.,b'(;>; then either

()] Hiell{A,a'e) F P} =a,
or

(&) Hiel|{Bub'{;)F ~P}| =a.

The construction is by transfinite induction: if (az), (bz) have been con-
structed for & < y to satisfy (a)-(c), then we define @, and b; as follows:

(a) y = A + 2n, where 2 is a limit ordinal or zero and n is a natural number.
We put @, = a;., and write I' for the set of formulae P(k) over Q and a
y-term sequence (p;);~, of unary predicates such that for fewer than «
suffixes i € 1,

(10) (Apa‘e) ~ FY(P-,(k) A P(k)),
ie.,
(A aze)ec, D F ~Pla, &)

Since |y| <« and the cardinal of the set of all formulae does not exceed «,
it follows that |I'| <« For each Pe I put

(11) Xp = {i e I|{Byb';> F Y P(k)}.

By (c), with V P(k) in place of P, we see that |X,| =« whenever P e I'.
k

We now use Lemma 6.1 to replace Xp by a subset Xp such that |X5| =«
and the X} are pairwise disjoint. Then by (11), there is an element fe B
such that

(12) {(Bb'{» EP(fT) for i e X;.
If we define b}, ,, by the equation
b:1+ 2n =f;

then (c) holds for y = 2 + 2n. For if ~P holds in fewer than « structures
(A (aie)s<y+,» and if p, does not occur in P, then by the induction
hypothesis (using (c)), P holds in « structures {B;(bil;)e<,+,>, while if
p, does occur, say P = P(p,), then by (10), P(k) e T', and so (12) shows
that P holds for a structures {(B,(b:{):<,+1.

(b) y = A+ 2n + 1. Here we merely repeat the construction with the
roles of @’ and b’ interchanged.

For y =1 the hypothesis (c) just reduces to condition (ii), which is
assumed to hold, and we therefore obtain structures A7 = (A, a’e;> and
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B¥ = (B,b'{;> over Q*, a unary enlargement of Q by « unary predicates.
For each elementary sentence P over Q* we define two subsets of I:
Yp={iel|A*}+ P},
Zp={iel|B'}F P}
It is clear that Y_, =1\Yp, Yp,o= Y n Y, and similarly for Z.
Moreover, by (c), either P holds for « structures 4F or ~P holds for «
structures BY: thus if ®(/) denotes the minimal Fréchet filter on /, either
Y.p¢®()or Zp ¢ d(I). If we replace P by ~P, this states that

(13) if ¥, e®(7), then Z_p ¢ O(I).

Let &, be the set of all Z, such that ¥, e ®(/). Then &, is closed under
finite intersections, and by (13), every &g-set has cardinal «. Hence by
Proposition V.2.10, there is a Fréchet ultrafilter € containing &,. Next
let 2, be the set of all Y, such that Z, € &; then Z, again is a filter base
and every Z,-set has cardinal «, since any J € Z, has the form J = Y,
where Z, € &, hence Z._, ¢ &,, and so by the definition of &,, Y. ¢ ®(/),
ie., |[J| =a. It follows that there is a Fréchet ultrafilter ¢ containing
Dy

If P is any sentence over Q¥, then

Ype @ ifand only if Z, € 6.

Forif Y,e 2, then Y_p ¢ 2, hence Y_p ¢ 2, and so Z_, ¢ &; therefore
Zy € &. Conversely, if Z, € &, then Y,e 2, and so Y, e 2. Consider
now the correspondence a; «<»b; between 4 and B. If a; = a,(mod 2),
then the sentence

Y (p:lk) n oK)

holds on a @-set of structures AF, and therefore it holds on an &-set of

structures BY, i.e. b; = bj(mod &); by symmetry, the converse also holds.
This means that the correspondence a; — b; induces a bijection between
A/2 and B/&. Moreover, a sentence P holds in {(4/2.a’|%) if and only
if Ype @, ie. Zpeé&,ie. if and only if P holds in {B/&,b'/&). Therefore
the correspondence a;/% « b/& is an isomorphism, i.e. A/Z = Blé. |
For a proof of Theorem 6.2 without GCH see Shelah [71].
Theorem 6.2 has the following consequences (Keisler [61]):

Theorem 6.3 (GCH)
Two Q-structures M and N are indiscernible if and only if there exist ultra-
powers M'|2 and N'|& of M and N respectively which are isomorphic.



244 Axiomatic Model Classes [Chap. VI]

Here I can be taken to be any set of cardinal o, where o« = max{|Q|, N} and
o = max{|M|,IN|}.

This follows by taking 4; = M, B, = N in Theorem 6.2. |}
In the results which follow, we denote for any model class %, by #"’
the class of all structures not in %",

Corollary 6.4 (GCH)
The model class X is a type class if and only if both X and A" admit
ultrapowers.

For if » is a type class, then so is 4", and any type class admits ultra-
powers, by Corollary V.6.5. Conversely, if both # and " admit ultra-
powers, then by Theorem 6.3, every -model is discernible from every
A '-model, hence ¥ is a type class. |

Corollary 6.5 (GCH)
The model class A is axiomatic if and only if A admits ultraproducts and
X" admits ultrapowers.

For the conditions are necessary by Corollary V.6.4; and when they are
satisfied, # is a type class by Corollary 6.4 and hence is axiomatic by
Corollary V.6.4. |}

Corollary 6.6 (GCH)
The model class # is elementary if and only if both A and #' admit
ultraproducts.

This follows from the preceding result and Corollary V.6.2. ]

As another consequence of Theorem 6.3 we note that for any infinite
Q-structure M and any given cardinal o, there exist ultrapowers of M
whose cardinal exceeds o. For by Corollary 3.7, there exists an Q-structure
N of cardinal exceeding « and indiscernible from M. Now any ultrapower
of N has cardinal at least | N| (cf. Exercise 3.1) and so the result follows by
Theorem 6.3. The information so conveyed is not very precise, and in
any case it is of interest to have a more direct estimate of the cardinal of an
ultrapower. In the simplest case one has the following result, due to
Halmos and Kochen (Kochen [61]; for related results see Frayne, Morel,
& Scott [62]). We remark that the proof does not depend on any of the
preceding theorems.
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Theorem 6.7

Let (M,),.x be a sequence of finite sets such that for any finite number k,
only finitely many sets M, are of cardinal k. Then if @ is any nonprincipal
ultrafilter on the set of positive integers N, M, = TIM,|@ has cardinal 2%°.

Proof:
Clearly,

IMg| < [TIM,| = 2%,

so to complete the proof we need only construct an injection 2V — M,,.
We may assume that the M, are ordered by size, i.e. the numbering is so
arranged that m < n implies |M,| <|M,|. Put I =2"; then I' may be
realized as the set of all sequences of 0's and 1’s; we denote by I', the set
of finite sequences of length k. Each T is finite, and for a given n we shall
denote by k, the greatest integer k such that || < |M,|. It follows that
there is an injection

¢n: rk,. = Mu
and moreover
ITi,] < IM,| for all n’ = n.

Now define ¢:I" - 1M, as follows. If y € I"and y, is the section consisting
of the first & terms of y, then we put

(79)s = V. Pn

If h:TIM, - TIM,/2 is the natural mapping nat 2, we assert that ¢h:I"
- M, is injective. For if y,6 T and y # &, then for some iy, 7, # 6,
for all n = n,, and since the complement of any finite set lies in 2, y¢h
# oph. |J

Given two families of sets (M), (N,) over the same index set 7, and an
ultrafilter 2 on I, we can form the ultraproducts M, = IIM,/2 and
Ng =TIN;/%. Clearly any family of mappings ¢,: M; —» N, extends to a
mapping of the products ¢:TIM; - IIN,; moreover, elements which are
congruent to each other mod% are mapped to elements congruent mod 2,
so that we obtain a mapping ¢,: Mz —» N,. We note that ¢, is injective
if and only if ¢, is injective for all i belonging to some Z-set; in particular,
if each ¢, is injective, then so is ¢4. It follows that the cardinal |Mg| is
an increasing function of the cardinal of each factor. Taking 7 and each
M; to be countable, and applying Theorem 6.7, we obtain
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Corollary 6.8
Any ultraproduct of a countable family of countable sets with respect to a
nonprincipal ultrafilter has cardinal 2%. |}

This applies in particular to countable ultrapowers of a countable set.

EXERCISE

1. Show that Theorem 6.7 does not hold if there are infinitely many sets of a
given (finite) cardinal k. (If N, is the set of suffixes for which |M,| = k, construct
a Fréchet ultrafilter containing N,.)



Chapter VII

Applications

In the course of the first six chapters a number of applications to
particular situations were obtained by specializing the general theory.
However, it is much more common for specific problems to fall into two
parts, of which one, involving universal algebra, is relatively simple,
while the more substantial piece of work still remains to be done. A typical
instance is the universal mapping problem, in which the proof that the
universal functor is injective is often the most difficult part, and one where
universal algebra has less to contribute. Nevertheless, the use of universal
algebra often helps to simplify the proof by setting out the precise nature
of what has to be proved. These points are illustrated by the applications
given in this chapter.

1. THE NATURAL NUMBERS

The natural numbers have already been discussed briefly in Chapter 1,
where a way was sketched of defining them within the framework of general
set theory. Besides this method, which goes back to Frege, there is the
axiomatic approach due to Peano. This is rather closer to the spirit of
abstract algebra, and we shall now look at the natural numbers from this
point of view. In the main we shall follow the very lucid account by
Henkin [60], to which the reader is referred for further details and references.

Peano takes as his starting point the following five axioms:

247
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P.1. 0is a number.

P.2. Every number x has a uniquely determined successor x".

P.3. Forallx, x'#0.

P4. If x' =y’ then x = y.

P.5 (principle of induction)
Any set of numbers which includes 0, and with each number x includes
its successor x’, includes all numbers.

The first four of these axioms may be expressed as elementary sentences:
we take a unary predicate v (to represent 0) and a binary predicate ¢ (to
represent the successor function). Then the axioms become

P.1. VA (@) A () =G = /)]
P.2. AVA(o(i)j) A(a(ik) = (j = k))).

P'3. Alo(i,j) = ~v()))
P 4. A[(a(ik) na(jk)) = (i = /)]

For the induction principle (P.5) no such translation is possible, for as
we shall see later, there exist systems which satisfy all elementary sentences
holding for the natural numbers, but not the induction principle.

We shall not be concerned here with the question whether systems satis-
fying P.1-5 exist; for us, this is settled affirmatively by the axioms of set
theory in Chapter 1. Let N be any system satisfying P.1-5; then P.2
states that there is a unary operation defined on N, while P.1 asserts the
existence of a distinguished element of N, i.e., a constant operator. We
may therefore consider N as an algebra with a 0-ary operator, zero, and a
unary operator, the successor function. Now P.5 may be expressed by
saying that N has no proper subalgebras, or equivalently, that N is genera-
ted by the empty set.

Guided by these considerations, we define an induction algebra as an
algebra with a constant operator (written 0) and a unary operator (written
x —x’), with the empty set as generating set. An induction algebra is
said to be numeral if it satisfies P.3-4 as well. Now the usual development
of the integers from Peano’s axioms shows that there is in effect only one
numeral algebra. We shall obtain this result as a consequence of

Theorem 1.1
A numeral algebra is the free induction algebra on 0 as free generating set.

We shall prove this theorem by the following
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Lemma. Every element # 0 of an induction algebra A is a successor of an
element of A.

For the set of successors of elements of A, together with 0, is a sub-
algebra and hence coincides with 4. ||

To prove the theorem, let N be a numeral algebra and I any induction
algebra. We have to find a homomorphism N — I; this will necessarily
be an epimorphism, and from this the result will follow. We form the
direct product N x I; the subalgebra H generated by 0 is again an
induction algebra. Now let & be the restriction to H of the projection
N x I - N. The image of H is a subalgebra of N, and hence must be
N itself. We assert that ¢ is injective; this amounts to saying that for
each xe N,

(1) there exists a unique y € I such that (x,y) € H.

Let S be the subset of N consisting of all elements x € N satisfying (1);
then we must show that S = N, and this will follow if we show that Sis a
subalgebra of N.

(i) 0 =(0,0) € H; if (0,y) € H for some y # 0, then (0,y) # 0, and hence
by the lemma, (0,y) = (u,v)’ = (',v), i.e. u’ = 0. But this contradicts P.3;
therefore (0,y) € H only when y = 0, which shows that 0 € S.

(ii) If x € S, then there exists y such that (x,y) € H, and hence (x,y") € H.
Assume that (x',y,), (x",y,) € H; then since x’ # 0, it follows that (x",y;) # 0,
and so (x',p,) is a successor in H, say (x',y;) = (u,v)" = (uj,v}), where
(uyv;) € H. Now u; = x' = u5, and by P4, u; = u, = x. Since xe S and
(x,v,) € H(i = 1, 2), it follows that v = v,; therefore v{ = v}, i.e. y; = y.
Thus x' satisfies (1), and so x" € S.

We have now shown that S = N, i.e. (1) holds for all xe N. Let x0 be
the unique element y of I defined in this way; then 0: N — ['is the required
homomorphism. i

Since numeral algebras exist, it follows that the free induction algebra
(which is unique up to isomorphism) satisfies P.3-4 and we obtain

Corollary 1.2
The numeral algebra is unique up to isomorphism. ||

Theorem 1.1 forms the basis for the notion of definition by induction.
This is most clearly seen in the case of addition. Let N be a numeral
algebra, and for any a € N, denote by N, the subset of N generated from
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a by the successor function. This set N, may itself be regarded as an
induction algebra, with a as zero element. Hence by Theorem 1.1 thereis a
homomorphism «,: N — N,. In detail this means that

Ou, =a, x'u,=/(xa,).

If we denote the homomorphism «, by +a, these equations take on the
familiar form

0+a=a, x+a=(x+a).

It is important to note that whereas the method of proof by induc-
tion requires only P.5 and so holds in any induction algebra, a defini-
tion by induction usually needs further justification. For example, in the
case of addition in N we must show that there exists a homomorphism
of N into N,; of course, with Theorem 1.1 at our disposal this follows
immediately (in most accounts a direct justification is given, based on
P.3-4).

Consider now the definition of multiplication in N; this is a mapping of
N into itself, u, (for each a € N), satisfying

Op, =0, x'p,=xp, +a.

Since N is in fact a word algebra, there exists a unique mapping u,: N = N
satisfying these equations (cf. Exercise 111.7.6). A similar definition by
induction can be applied to any function on N. The details may be left to
the reader.

We conclude with an example of a structure which is indiscernible from,
but not isomorphic to, the natural numbers. Such a structure is called a
nonstandard model of the natural numbers. Let N be the set of natural
numbers, regarded as a numeral algebra, and let M = N*/% be an ultra-
power with respect to a nonprincipal ultrafilter 2 on N. Then M is
indiscernible from N, but not isomorphic to N, since by Corollary VI.6.8
M is uncountable and so is not even equipotent with N. It may also be
verified directly that M does not satisfy P.5; the subalgebra of M generated
by 0 consists of all mappings N — N which are constant on a Z-set. Now
% is a nonprincipal ultrafilter and so contains no finite sets; therefore the
identity mapping on N is not constant on any Z-set, and so does not belong
to the minimal subalgebra of M; hence M has proper subalgebras, in
contradiction with P.5.

In a similar way one can construct nonstandard models of set theory by
taking sets to be defined axiomatically, in terms of the binary relation e
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(and equality). E.g., if @ is the class of all ordinal numbers in a given
universe, then ¢ is a model of set theory in this sense, and any ultrapower
of @ will again be a model, but in this ultrapower the ordering will in
general not be a well-ordering (cf. Vopenka [62]; also Exercise 8 below).
In Chapter I we bypassed these difficulties by adopting a relatively naive
point of view, from which the axioms are regarded as self-evident assertions
about intuitively known concepts. A glance at the axioms will convince
the reader that they certainly cannot all be translated into elementary
sentences; the study of theories defined by more general sorts of sen-
tences, and their interpretations, lies outside the scope of this book. See
Barwise [77] for a comprehensive survey.

It should be observed that one can in a sense ‘approximate’ P. 5 by
elementary sentences, by replacing it by an axiom scheme. If L is a
language referring to the natural numbers (N, 0, ’, +, x), we may for
each unary predicate @ in L introduce the axiom (a(0)A A [a(x) =
a(x)]) = N\,a(x). This infinite family of elementary sentences still is
weaker than P. 5, since a nonstandard model of N will satisfy all of them
but not P. 5. Nevertheless it will yield a large class of the consequences of
P. 5 that are expressible in elementary sentences. However, no recursively
enumerable axiom scheme can yield all first order theorems of arithmetic,
by Gdodel’s incompleteness theorem.

EXERCISES

1. Show that each nonfree induction algebra 7 is determined up to isomorphism
by two integers r,1 (r = 0, n = 1), such that if §: N — I is the unique homomor-
phism of Theorem 1.1, then x0 = y0 if and only if x=r, y2r, and x=y
(mod n) or x = y. In the exercises which follow, the induction algebra here deter-
mined is denoted by /, .

2. Show that every induction algebra 7 is relatively free; deduce that the
definition by induction may be applied to endomorphisms of 7, and use this to
define addition in /. Can multiplication be defined in /? Can exponentiation be
defined in 17

3. Give a direct proof that every induction algebra satisfies either P.3 or P.4.
4. Determine all induction algebras satisfying P.6: x" # x for all x.

5. Prove in detail the validity of the inductive definition for free induction
algebras; i.e., show that if N is the free induction algebra, then for every ae N
and fe I (where [ is some induction algebra), there exists a unique mapping
f: N — I such that 06 = a, x'0 = f(x).
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6. Give a direct proof that a free induction algebra satisfies P.3-4. (Consider
suitable mappings from the algebra to [ ,.)

7. Express the fact that the natural numbers form a totally ordered set in
terms of elementary sentences, using only zero, the successor function and
addition. Deduce that every ultrapower of the natural numbers is totally
ordered.

8. Prove that the well-ordering of the natural numbers cannot be expressed
in terms of elementary sentences. (Construct an ultrapower which is not well-
ordered.)

9. Show that in any model of the natural numbers any nonzero element is a
SUCCessor.

10. (Henkin.) Show that there are countable nonstandard models of the
natural numbers. (Apply Theorem VI.3.4 to a suitable ultrapower of the
integers.)

11. Let Q be the set of nonnegative rational numbers and Z the set of all
integers, both in their natural ordering, and consider the subset 4 of O x Z
consisting of all (x,y) except those for which x =0, y < 0. If A4 is ordered lexi-
cographically, i.e., (x,y) < (zt) if and only if x <z or x =2z and y <1, then
each element of A4 has an immediate successor. Show that A4 is a nonstandard
model of the integers, and that every countable nonstandard model is iso-
morphic to 4. (Use Exercises 10 and 1.5.9.)

2. ABSTRACT DEPENDENCE RELATIONS

The theory of linear dependence in a vector space over a field presents
so many similarities with the theory of algebraic dependence in a field
over a given ground field that the general theorems are usually deduced
from a few axioms common to both theories (v.d.Waerden [37], Zariski
& Samuel [58]). It is therefore natural to formulate these axioms in the
context of universal algebra. This makes a comprehensive treatment
possible, including the notion of algebraic closure.

An abstract dependence relation on a set S is given by a system 2 of
subsets of S such that

(1) any subset X of S belongs to 2 if and only if some finite nonempty
subset of X belongs to 2.

A subset of S is called dependent if it belongs to 2, and independent
otherwise. It is clear from (1) that any subset of S containing a dependent
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set is itself dependent; in other words, any subset of an independent set is
independent. Further, the empty set is independent.

Let S be a set with a dependence relation; an element a of S is said to
depend on a subset X of S, if @ € X or if there is an independent subset X’
of X such that X' u {a} is dependent. The set of all elements which depend
on Xis called the span of X and is denoted by (X ). If (X} = §, Xis called
a spanning set of S; an independent spanning set of S is called a basis of S.

An obvious example of a dependence relation is provided by the notion
of linear dependence in a vector space over a field (not necessarily com-
mutative). Secondly, if E is a commutative field, then the usual notion of
algebraic dependence (over a fixed subfield F of E) is another instance of a
dependence relation. Both types of dependence have the property that

@) KX =<X).

When (2) holds, the dependence relation is said to be transitive. Such
dependence relations can also be described by means of a certain type of
algebraic closure operator:

Proposition 2.1
For any transitive dependence relation, the mapping X — (X') is an
algebraic closure operator with the following exchange property:

(3) Ify¢(X>andye {X v {z}), then z e {X U {y}>.

Conversely, any algebraic closure operator with the exchange property (3)
arises in this way from a transitive dependence relation.

Proof:

For the moment let us call a subset T of S closed, if (Ty =T. We first
show that the closed sets form a closure system: indeed, if B = C,,
where (C,) is a family of closed sets, let B, be an independent subset of
B such that B, u {y} is dependent; since B, = C; for all A, we have
y e (C,> = C,, hence y e N C; = B, which shows B to be closed. Next, if
y e (X, then by definition there is an independent subset X’ of X such
that X' u {y} is dependent. By hypothesis, X" u {y} must have a finite
dependent subset Y, say. If y ¢ ¥, then Y = X', which contradicts the
independence of X'. Hence y e Y, i.e. Y is of the form Y’ v {y}, where
Y’ € X', and therefore Y’ is independent. Thus y e (¥'), where Y"is a
finite subset of X. This proves that the closed sets form an algebraic
closure system, and since (X ) is closed by (2), we have an algebraic
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closure operator. To verify (3) we note that as an immediate consequence
of the definitions,

(4) if X is independent and X v {y} is dependent, then y e (X ).

Now assume that y ¢ (XD, ye (X u{z}). Since y is dependent on
X v {z}, it is dependent on a finite subset ¥ of X u {z}, and by taking Y
to be minimal with this property, we ensure that Y is independent. Now if
z ¢ Y, then Y would be a subset of X, and so y € (X ), contradicting our
assumption. Therefore ze ¥, say Y = Y u {z}, where Y = X. Now
Y’ u {y} is independent, because y ¢ (YY", and Y'u {y,z} = Y U {y} is
dependent, hence ze (Y’ u {y}> = (X U {y}).

Conversely, let X — [X] be any algebraic closure operator with the
exchange property, and define X to be dependent if, for some y € X,
y € [X\{»}], and independent otherwise. Since the operator is algebraic, it
follows that any dependent set has a finite dependent subset, and clearly
any set containing a dependent set is itself dependent so (1) holds. Con-
dition (2) holds by definition, and this shows that we have a transitive
dependence relation. Now, for any X = S, y € S, we have y e [X] if and
only if y € [X '] for some finite subset X’ of X; taking X' minimal we may
assume that X' is independent. It follows that y € (X ') = (X ), and hence
[X] < <X). Conversely, if ye{X), then again ye (X') for a finite
independent subset X * of X. This means that X u {y} is dependent, i.e.
for some ze X'u {y}, ze [X'u {y}\{z}]; by the exchange property it
follows that y € [X'] and [X '] = [X]; therefore [X] =<(X ). |}

When we are dealing with dependence relations on Q-algebras, the re-
lation will usually be defined not for a single algebra, but for a whole
class of algebras. A dependence relation on the algebras of a certain
category # of Q-algebras and homomorphisms is said to be algebraic, if
it is transitive and
(i) every closed subset of a #-algebra is again a # -algebra,

(ii) for any #-homomorphism 0:4 — B and any X = 4, (X )0 < (X0}.

We note that since X = (X, we have X0 = (X )@, and so when (ii)
is satisfied, we have

(X0 = (X0).

Suppose that % is a category with free algebras. Given any # -algebra
A and a subset X of A4, let ¢:Fy - A be the homomorphism from the
free s -algebra F, on X to A which extends the identity mapping on X.
We define X to be independent if this homomorphism is injective, and
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dependent otherwise. In other words, X is independent if and only if the
subalgebra of A generated by X is free on X. It is easily verified that the
dependence thus defined satisfies (1), and in many cases also (2), though
not always, e.g. not for groups (see below). The relation thus defined will
be called the standard dependence on A (relative to 2¢). It always satisfies
condition (ii) above, but not necessarily (i), although again this holds in
many special cases. We now give some examples of the standard depend-
ence in algebras:

(i) The category of R-modules, where R is any ring. The standard depen-
dence reduces to linear dependence for R-modules, which generalizes the
notion of linear dependence over a field. This dependence is algebraic if
e.g. R is a commutative integral domain with I, acting unitally.

(ii) The category of linear K-algebras, where K is a commutative ring with
1. The standard dependence generalizes the notion of algebraic depen-
dence (with K as coefficient domain). If K is an integral domain and the
K-algebras are taken to be commutative with injective mappings, then the
dependence is algebraic.

(ili) The category of extensions of a fixed X -algebra. Let X be any
category of Q-algebras and C a fixed J#-algebra; then the # -algebras
over C may be regarded as algebras over a unary enlargement of Q (with a
constant operator corresponding to each element of C); in this way we
obtain a new category # . The standard dependence in %" may be defined
whenever # admits free composition; this is also referred to as the stand-
ard dependence in 4" over C.

(iv) The category of free groups and homomorphisms. A subset X of a
free group F is independent if and only if Gp(X) is free on X as free
generating set. For any element x of F denote by /(x) the length of x (in
terms of some fixed free generating set of F) and more generally, for any
finite subset X = {x,,---,x,} of F, write/(X) = Zl(x,). Define a preordering on
the finite subsets of F by putting X < Y whenever Gp(X') = Gp(Y) and
I(X) < I(Y). Then it may be shown that (i) the finite subsets of Fsatisfy the
minimum condition with respect to this preordering, and (ii) any minimal
set is independent. It follows that every finitely generated subgroup of a free
group is free. This special case of Schreier’s theorem (all subgroups of
free groups are free) is due to Nielsen; for details of his method and other
applications see M. Hall [59]. The same method may be applied in the
case of free Lie algebras over a field (cf. Cohn [64]).

We now return to general transitive dependence relations. Qur first
task is to derive the existence of bases and the invariance of the dimension
the proofs follow a pattern which is familiar from linear algebra.
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Lemma 2.2
Let S be a set with a transitive dependence relation and let X be a subset of
S. Then the following three assertions are equivalent:

(i) X is a maximal independent subset of S.
(ii) X is a minimal spanning set of S.
(iii) X is a basis of S.

The proof is almost immediate, for a basis is both maximal
independent and minimal spanning. Conversely, if X is maximal inde-
pendent, then any element y of S either belongs to X or is such that
X u {y} is dependent, whence y € (X ) in either case. If X is minimal
spanning, then it cannot be dependent, for otherwise it could be replaced
by a proper subset which still spans S.

Lemma 2.3 (exchange lemma)

Let S be a set with a transitive dependence relation. If X is an independ-
ent set and Y is a spanning set of S, then there is a subset Y' of Y such that
XY =0and X u Y'is a basis for S.

Proof:
Consider the system # of independent subsets Z of S such that
(&) XYeZecXuY.

Since X is independent, there are such sets; moreover, if (Z;) is any
chain of sets in ., then the union Z = U Z, is again in .#, for it clearly
satisfies (5), and if it were dependent, then some finite subset of Z would
be dependent; this would be contained in some member of the chain
(Z,), in contradiction with the fact that all the Z, are independent. By
Zorn’s lemma, # has a maximal element M; by the maximality, every
element of Y either belongs to M or depends on M, whence (M) = (Y
= S. This proves that M is a basis of S. Since X s M < X u ¥, Mis of
the form M = X u Y, where Y’ = M\X satisfies V' = ¥, V' n X =0. ||

The exchange lemma shows in particular that S has a basis:

Theorem 2.4

Let S be a set with a transitive dependence relation. Then S has a basis;
more precisely, if X is any independent set and Y any spanning set of S such
that X < Y, then there is a basis B of S such that
(6) XeBcY.

Moreover, any two bases have the same cardinal.
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Proof:

Let X, ¥ be given as in the enunciation; then X u ¥ = ¥, and so by
Lemma 2.3 there is a basis satisfying (6). In particular, taking X =0,
Y = S, we see that there always is a basis.

Now let B, C be any two bases of S. If one of B, C is infinite, then so is
the other, and both have the same cardinal, by Proposition IL.5.5, using
Theorem 11.5.2 to interpret the closure system on S as system of sub-
algebras. If B and C are both finite, let B n C = {a;,"--,a,}, B = {a,,"-,a,,
by,++,b,} and C = {a,,--.,a,,¢,,+-,c,}, where distinct elements are denoted
by distinct letters or suffixes. We shall use induction on max(r,s). If
r=0ors=0, then B< C or C = B, and the result is clear. So we may
assume r = 1, s = 1; further, r > s without loss of generality, so that in
fact r > 1. By Lemma 2.3, the set {a,,-,a,b,} may be completed to a
basis D by using elements of C, say

D = {ay,~-,a,,by,¢;,, ¢, g
Now D has n + 1 elements in common with B and ¢ (<r) elements besides,
while B has r — 1 elements besides, so by the induction hypothesis,
1B| = |D|, i.e.
r=t+1.
Since r > 1, it follows that ¢ = 1, and so D also has at least n + 1 elements
in common with C. Using the induction hypothesis once again, we find

that
s=t+1,

and hencer = 5. |

As an illustration, the standard dependence in groups does not satisfy
the conclusion of Th. 2.4 and so cannot be transitive (i.e. (2) does not
hold here).

In order to formulate a notion of algebraic closure one might proceed
as follows: Let & be a category of Q-algebras with an algebraic depen-
dence relation. An extension E/A of s -algebras is said to be algebraic
if A spans E. Now it may seem natural to define a . -algebra to be
algebraically closed if it has no proper algebraic extension ; sucffa definition
would meet with difficulties because usually there will be no algebraically
closed algebras in this sense, simply because we can always adjoin elements
to A which are algebraic over 0. The difficulty may be avoided by factoring
out such elements and allowing only those extensions of A4 from which
no elements can be factored out without collapsing part of 4. Thus we
make this

Definition
An extension E/A of s -algebras is said to be retractable if there is a
homomorphism 0: E/A — F/A which is not injective ; the image of @ is also
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called a retraction of E/A. 1If no such homomorphism exists, the extension
is said to be irretractable. Further, E/A is an algebraic extension (relative
to some algebraic dependence relation) if 4 spans E.

Proposition 2.5
Let A be a category of Q-algebras admitting homomorphic images. Then
any extension E|A of 4 -algebras has aretraction whichis itself irretractable.

Proof:

Consider the congruences on E which separate 4; by Corollary 11.6.4
there is a maximal such congruence, q say. The natural homomorphism
E — E/q = E say, restricted to A, is injective and may therefore be used to
embed A4 in E. The resulting extension E/A is irretractable, for if not, then
it would have a nontrivial congruence r separating 4, which by Corollary
I1.3.12 corresponds to a congruence r on E which properly contains q
and separates 4, contradicting the definition of q. |

Let o be a category of algebras with an algebraic dependence relation.
Then an extension E/A of 2 -algebras is said to be algebraically closed if
E|A is algebraic and irretractable, and given any algebraic irretractable
extension C/B, any embedding B — 4 extends to an embedding C — E.
It follows immediately from this definition that if 6:B — 4 is a mono-
morphism and C/B any algebraic extension, then 0 may be extended to
a homomorphism 0':C — E. For if C’/B is an irretractable retraction of
C/B, this is still algebraic, and so may be embedded in E/A; combining
this with the natural homomorphism C — C' we obtain the required
homomorphism.

If we apply this definition to the case of the standard dependence in
vector spaces (i.e. linear dependence), we see that no proper extension of a
vector space can be algebraic; this explains why the notion of algebraic
closure, as here defined, plays no role in the usual treatment of vector
spaces. Taking next the case of standard dependence of field extensions
(i.e. algebraic dependence in the usual sense), we see that every field ex-
tension E/F is irretractable, so that our definition of algebraically closed
extension agrees here with the familiar notion.

Our object is to show that under suitable conditions on &, every
o -algebra has an algebraically closed extension and that this is determined
up to isomorphism by 4. To establish this result we have to make another
assumption, which is satisfied in most cases: We assume the dependence
relation to be such that
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I. Any algebraic irretractable extension of A has cardinal at most
max(|4],|2[.Ro)-

Further, " is said to be directed if, for any two extensions of A4, there
exists a third containing them both. We can now state conditions for an
algebraic closure to exist:

Theorem 2.6

Let X be a directed local category of Q-algebras admitting homomorphic
images, and suppose that an algebraic dependence relation is given on A,
satisfying condition 1. Then for every A -algebra A, there exists an algeb-
raically closed extension A|A, and A is determined up to isomorphism by A.

Proof:

Let y = max(|A4],|Q[,N,); by assumption, any algebraic irretractable
extension of A has cardinal at most y. Further, since 2 is directed, any two
extensions E;/4 (i = 1,2) are contained in a third, E/4 say. If E,/A are
algebraic, then on replacing E by the set of elements depending on A4
(in E), we may assume that E/A is algebraic too. If, in addition, the E,/4
are irretractable, then any congruence on E separating 4 will also separate
E;, and dividing out by a maximal such congruence we obtain an irretrac-
table extension which is still algebraic and in which the E; can again be
embedded. Thus the family of algebraic irretractable extensions of A is
directed by inclusion. Let (E;/4) be a family of algebraic irretractable
extensions of 4 such that any algebraic irretractable extension of A4 is
isomorphic to some E;/A4, and define a preorder by putting E; < E,
whenever there is a monomorphism E; — E, (over A); then the E, form a
directed system whose limit £ may be defined as an Q-algebra (Exercise
I11.1.5), and this is in fact a #"-algebra containing 4, because " is local.
Each element of E lies in some E, and so is dependent on A; moreover,
E/A is irretractable, because any homomorphism 6 of E/A4 which is not
injective must identify a pair of distinct elements x,y say of E, and if E,
contains x and y, then 6| E; is not injective, which contradicts the irretracta-
bility of E;. This proves that E/A is algebraic irretractable. To prove that
E/A is algebraically closed, we must show that for any algebraic irretrac-
table extension C/B and any embedding 0:B — A there is an embedding
0': C — E extending 6. By identifying B with its image under 6 we may
regard E as an extension of B. Let F/B be an extension containing C/B
and E/B, then F contains 4 and so may be regarded as an extension of
A. Since E/A and C/B are algebraic, we may take F/A to be algebraic too.
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If q is any congruence on F which separates A, then q also separates B
and so it separates C. Therefore an irretractable retraction of F/A4 still
contains C. But E/4 was maximal algebraic irrectractable, therefore F
is embeddable in E and hence so is C.

In order to show that E is determined up to isomorphism by A4, we first
show that E/A is a minimal algebraically closed extension of 4. For
suppose that F/4 is a proper subextension of E/4 which is also algebraically
closed. Then E/A may be embedded in F/A4, and replacing F by the image
of E in the embedding, we may assume F/A4 to be isomorphic to E/A. It
thus follows that E/A4 has a proper extension E’/4 isomorphic to itself, and
so algebraic irretractable. Repeating this process, we obtain an ascending
well-ordered sequence of extensions of A, all algebraic irretractable:

EJAcE|AcE|Ac- cE®4d c -

At a limit ordinal we have an algebraic irretractable extension of A,
which can again be embedded in E/4, and so the process can be continued.
If we continue this sequence to an ordinal whose cardinal exceeds y, we
obtain an extension E/A which is algebraic irretractable but has cardinal
greater than y, which is a contradiction. Therefore no proper subextension
of E/A can be algebraically closed.

Now let E/A, F/A be any two algebraically closed extensions of A.
Then F/A may be embedded in E/A; the image is again algebraically closed
and hence by the minimality of E it coincides with E. This shows that
E/A=F/A. |}

The algebraically closed extension of A4 determined up to isomorphism
by A is called the algebraic closure of A. From the proof we obtain

Corollary 2.7
If E| A is any extension of A containing an algebraic closure A of A, then A
is uniquely determined within E us the set of elements of E which depend on

4. 1

For example, the category of (commutative) fields of a given character-
istic is local and directed and admits homomorphic images (the only
homomorphic images here are isomorphic images; in other words, every
field is an irretractable extension of its prime field, and hence every field
extension is irretractable). Since an equation of degree n cannot have more
than n roots, and over a field F of infinite cardinal y there are N,y =7
equations, it follows that an algebraic extension of F (necessarily irretrac-
table) has cardinal at most y. Thus condition I is satisfied, and Theorem
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2.6 may be applied to deduce the existence of an algebraic closure of a
given field.

For skew fields there is no corresponding result because the standard
dependence is not algebraic (it does not even satisfy Th. 2.4, cf. Cohn
[77°]). However it can be shown that the class of skew fields is directed:
based on this fact there is a construction possessing some of the pro-
perties of an algebraic closure, namely the existential closure (cf. Ch.
IX).

The proof of Theorem 2.6 may be simplified if 4 has an extension I/4
such that /is algebraically closed, as extension of itself. An algebra I with
this property is said to be injective; thus an algebra [ is injective if any
embedding B — [ may be extended to any algebraic irretractable extension
Cof B,

Proposition 2.8
If A is contained in an injective algebra I, then any maximal algebraic
irretractable subextension of 1/ A is an algebraic closure of A.

Proof:

The algebraic irretractable subextensions of I/4 form an inductive
system, hence there is a maximal such subextension, E/A4 say. Now, if
BJA is any algebraic irretractable subextension of //A, then there is some
algebraic subextension C/4 of I/A containing both E/4 and B/A. Let
C'/A4 be an irretractable retraction of C/4; then C’/4 is again algebraic and
B/A, E/A may be embedded in C'/4. Now the inclusion mapping E — I
may be extended to an embedding of C’ in /, because [ is injective. By
the maximality of E it follows that C' = E; this means that B/A can be
embedded in E/A4. If C/B is any algebraic irretractable extension, then
any embedding B— 4 may be extended to a homomorphism C - [,
which is necessarily an embedding, and hence C can be embedded in E.
This proves E/A to be algebraically closed. Now the uniqueness of E is
proved as follows. We observe that E is in fact injective, since any alge-
braic irretractable extension of E can be embedded in 7 and then embedded
in E. As in the proof of Theorem 2.6, the result will follow if we can
show that E is a minimal injective subalgebra of I containing 4. Thus let
F|A be any subextension of E/A which is also injective; then the identity
on F extends to an embedding E — F, which is possible only if F = E,
hence E is minimal, as asserted. [
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To illustrate Proposition 2.8, let K be the category of unital R-modules
(over an associative ring R with 1) and take all nonempty subsets of a
module to be dependent. Then every module can be embedded in an
injective module (cf. e.g. MacLane [63]), and therefore every module has
an algebraic closure which is uniquely determined (up to isomorphism)
as the maximal irretractable extension, or equivalently, the minimal in-
jective extension. This is usually known as the injective hull of the given
module.

Still other definitions of algebraic closure are possible. In particular, by
making more specific assumptions it is possible to deduce condition I (or
to avoid it altogether). E.g., W. R. Scott [51] defines an algebra A4 to be
weakly algebraically closed if (in effect) every finitely presented extension
of A has a retraction onto A4; with this definition a hypothesis of the type
of condition I is not required. Another type of condition which entails I
is considered by Jonsson [62] (cf. Exercise 6).

Dependence relations occur (in one form or another) in may different
contexts and they have been studied intensively under the name matroid
theory; for a recent account see Welsh [76].

EXERCISES

1. Let R be a noncommutative integral domain; show that the standard
dependence in R-modules is algebraic if and only if any two nonzero right ideals
of R have a nonzero intersection.

2. (H. Whitney.) Let " be a graph; a subgraph I'y of I is said to be dependent
if Iy contains a circuit. Verify that this is a transitive dependence relation.

3. Show that the convex subsets of the plane form a closure system which
does not possess the exchange property.

4. For any R-module M (over a fixed ring R) define a family of submodules
to be dependent if their sum is not direct. Show that this is a dependence
relation on the set of all submodules of M which is not transitive in general.

5. (A. Kertész.) Given a group G, denote by G, the set of all elements a of G
such that the normal subgroup of G generated by a is minimal (among the non-
trivial normal subgroups). If the span of X < G, is defined as the normal sub-
group generated by X, show that this defines a transitive dependence relation
on G,. Deduce that any two decompositions of G into a direct product of simple
groups (if any exist) have the same number of factors.
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6. Two elements x and y of an extension E/A are said to be A-isomorphic if
the mapping x — y extends to an isomorphism A(x) = A(y) leaving A element-
wise fixed. If, in the standard dependence relation, any element algebraic over 4
is A-isomorphic to only a finite number of elements, show that this dependence
satisfies condition I (cf. Jonsson [62]).

3. THE DIVISION PROBLEM FOR SEMIGROUPS AND RINGS

A group may be regarded as a semigroup admitting division. Hence, for
a given semigroup, one may ask whether there exists a group containing it.
In more formal terms, the variety Gp (of groups) is subordinate to the
variety Sg (of semigroups), and therefore Sg may be represented in Gp.
Moreover, by Corollary 1V.4.3, this representation has a universal functor.
This means that with every semigroup S there is associated a group U(S)
and a homomorphism

e))] u:S - U(S),

such that every homomorphism ¢ of S into a group G can be factored
uniquely by u to give a homomorphism ¢:U(S) - G. We shall call U(S)
the universal group of the semigroup S.

Clearly, S can be embedded in a group if and only if (1) is injective; the
division problem for semigroups consists in finding practical criteria for a
semigroup to be embeddable in a group. Although the finding of such
criteria may take one outside the domain of universal algebra, the abstract
setting is quite likely to simplify the proof of such a criterion, once it has
been found. We shall illustrate this by two examples: the first is a proof of
Malcev’s necessary and sufficient conditions for embeddability; in the
second we consider semigroups of endomorphisms of an algebra A and
obtain conditions under which A has an extension A* with automorphisms
inducing the given endomorphisms.

Let S be any semigroup and G a group containing S and generated by
it; then it is clear that G is a homomorphic image of U(S) by a congruence
separating S, i.e. by a normal subgroup of U(S) which meets the set
SS-1 = {st~!|s, t € S} in the unit element only. Conversely, if G is any
homomorphic image of U(S) by a congruence separating S (assuming S
to be embedded in U(S)), then u may be used to embed S in G in such a
way that § generates G. Any such group G will be called a group of
fractions of S. Unlike the universal group, a group of fractions does not
always exist, and when it does exist, it need not be unique (cf. Exercise 3).
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The first step in embedding a semigroup in a group is to adjoin a unit
element, if this is not there already. This can always be done; we take an
element 1 and define a multiplication on the set S' = S1{1} by keeping
the multiplication on S as before and writing

al=la=a (aeS").

Now it is clear that if S can be embedded in a group then either S has a
unit element or S' can be embedded in a group. We may therefore restrict
our attention to semigroups with 1. Thus instead of Sg we shall only be
dealing with Sg*, the variety of semigroups with 1 (regarded as a constant
operator), and all semigroups occurring in the sequel are assumed to
belong to Sg*.

If S is any semigroup, then a subset P of S is said to be potentially
invertible, if there is a monomorphism of S into a semigroup 7 in which
the elements of P have inverses. Thus, S has a group of fractions if and
only if § is itself potentially invertible. By the localization principle
we can state:

Proposition 3.1
A semigroup S has a group of fractions whenever any finite subset of Sis
potentially invertible. |}

Now suppose that we are given a semigroup S and a subset P of S, and
we wish to test whether P is potentially invertible. For each element p
of P we adjoin an indeterminate p~ to S and denote the semigroup so
obtained by S(P). Let q be the congruence on S(P) generated by all the
pairs (pp~, 1), (p~p, 1), where p € P; then the quotient S(P)/q is the
universal semigroup for S with inverses for the elements of P, and we
have to find conditions under which the mapping nat g, restricted to S,
is injective. This is of the type of the word problem (I11.9), and no crite-
rion is known which is generally applicable, practically useful, and
simple. However, the general conditions have been put into a very strik-
ing form, which although not simple, is useful in some cases. Our
description follows the paper by Malcev [39], with some simplifications.
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The key step is to modify the construction of S(P) above. Given S and
a subset P, we take, for each p e P, two indeterminates p~ and p*, and
denote by S(P) the semigroup obtained by adjoining all these elements to S.
Let g be the congruence on S(P) generated by all the pairs (p~p,1), (pp*,1),
where p € P; then the quotient S(P)/q is again the universal semigroup for
S with inverses for the elements of P, for if the images of p, p~, p* under
nat q are denoted by @, a”, a*, then a @ =aa* = 1, and hence

To describe g more closely, we repregent the elements of S(P) as the
vertices of a graph, with segments defined by four kinds of moves,
indicated by the following symbols:

( : insertpp [ : insert pp*;
) : delete p—p, ] : delete ppt.

Thus e.g. (can be applied to any element w of S(P), expressed as a product
w = wvin any way, and gives rise to a segment from w to up—pv; similarly
for | ,while ) , ] can only be applied to elements of S(P) which contain
p~p, pp” respectively. This is just the graphical representation described
in [11.9, and it is clear that the different q-classes are the connected com-
ponents of the graph. It follows that P is potentially invertible if and only
if distinct elements of § lie in different components of the graph. To make
this statement more explicit, let w,v be any two elements of S(P) which
lie in the same component, and consider a path from u to ». It is described
by a chain of elements

(2) Wo = U, Wy, W, =D,

of S(P), where successive elements w;_,, w; are obtained from each other
by a move. Since the p~ are indeterminates, each p~ occurring at a
certain place in w; either was introduced by a move in passing from w,_,
to w;, or occurred already in w;_, ; similarly, it will occur in w;,, unless it
disappears by a move in passing from w; to w;,,. In any case, we can trace
each occurrence of p~ from its first appearance in the chain (2) to its
disappearance, and similarly for each occurrence of p*. We now fix our
attention on a particular occurrence of p ~. Ifin (2) we assume that w,v € S,
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then p~ cannot occur in u or v, so it must enter at some stage, say at the
ith move:
( :wiy=ab, w,=ap pb (a,b e S(P))
and exit at some later stage, say at the jth move:
) iwiy=dppb, w=akb (a',b" € S(P)).

The moves from i to j — 1 will transform a to @’ and pb to pb’, each move
affecting either one or the other. Now the changes on pbh cannot be post-
poned until after the jth move because pb’ is then no longer present, but the
changes on a can be so postponed, because @’ has not been changed by
the jth move. In particular, we may postpone all the moves by which a
becomes a’ until after the step which gets rid of p~. Thus, when p~ exits,
we have

ap~ph’ — ab’,
and this is followed by the series of moves which change ab’ to a’b’.

To describe this situation let us call the part to the left of any occurrence
of p~ (or to the right of any occurrence of p*) the passive part, and the part
to the right (or in the case of p*, to the left) the active part. Then we have
shown that any changes in the passive part of an occurrence of p~ can be
postponed until after the exit of p~. For the moment let us call an occur-
rence of p~ or p* in any term of the chain (2) regular if no changes take
place in its passive part. We now show that a path connecting two
elements of S can always be replaced by one in which all occurrences
are regular.

Lemma 3.2

Given any chain
2) Wo = U, Wi, W, =0
connecting two elements u and v of S, there exists a chain

Wo = Uy Wiy s Wooygy, Wo =10
of the same length connecting u and v in which all occurrences are regular.
In particular, any two elements of S congruent mod q can be connected by
such a chain.
Proof:

Consider the first move by which an irregular occurrence enters; let
this be p~, entering at the ith move: w;_, — w,, and leaving at the jth move.
The part of the chain from i to j is

ab' aP-Pb""aa’PvPb’a a’bfa
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and this may be replaced by
ab, ap pb,---.ap pb', ab',---.a'b’,

as we have seen. The new chain is again of length » and the given occur-
rence of p~ is now regular. Moreover, the number of irregular occurrences
has not been increased, for any p* occurring in @ must have been irregular
to begin with, and any p~ occurring regularly in @ will occur regularly in
the new chain. Thus, the number of irregular occurrences has been
diminished by one at least, and the result follows by induction. [}

Consider now a chain (2), all of whose occurrences are regular. It is
clear that in any term w; of such a chain, any element p~ will occur to the
left of any element ¢*; of two factors p—, p'~, the one lying further to the
right will have been introduced later, while the reverse holds of the
factors g*. Let us call the part of any term w; between the rightmost p—
and the leftmost ¢* the active region. The change at each step takes place
in this region: if the active region of w; is fand the step w; — w,,, has the
form (, then this step consists in choosing a factorization ' = ab and
inserting p~p between a and b, so the active region of w,.; will be pb.
The p~ just introduced will leave the chain at some step ), say in passing
from w; to w;;. Then the active region of w; must have the form [’ =
pb’; that of w;,, is obtained by removing p and reattaching the factor «
split off at the 7th step, giving as active region ab’. Likewise, at a step [
the active region changes from cd to cg and at the corresponding step
] it changes from ¢’q to ¢’d. These changes may be summarized in the
following table, where R(*), L(¥) indicate the active region before and
after the move * respectively:

( ) [ ]
R(*) ab pb’ cd c'q
L(*) pb ab’ cq c'd.

Now, if the moves in a chain connecting « to v are «,,---,x,, we have the
equations

(€) L(o) = R(#z), L(%) = R(@3), s L(%,-1) = R(3,),

which express the fact that after the (i — 1)th move has been carried out,
the active region is the same as before the ith move is carried out. Since
the active regions are the only part which changes, the equations (3) are
precisely the expression of the fact that a chain (2) (with regular occur-
rences) exists, connecting v and v. At the beginning and end of the chain
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the active regions are u and v respectively, and for embeddability these
must be equal; this is expressed by the equation

4 L(z,) = R(2y).

Thus with the sequence #,,-,%, of moves we associate the condition
(3) = (4). If all these conditions hold, then the congruence q separates
S and the embedding is possible. Clearly these conditions are also
necessary.

To find all sequences «,,--,¢, which can occur, we observe that the
sequence must contain as many terms ( as ) . If the moves ( are num-
bered from 1 to r say, in the order of their appearance, then of the cor-
responding occurrences py , if two appear in the same term w;, the one with
the higher suffix must be to the right of the other, for the left of the latter
is a passive region. It follows that the one with the higher suffix must also
exit first (otherwise, its passive region would be disturbed). Moreover, in
any left segment «;,-a, there must be at least as many (’s as ) ’s.
Thus the terms ( , ) are matched in such a way that no pair separates
another pair; let us call this a bracket formation for short (Tamari [62]).
Similar remarks apply to | and ] and we thus obtain

Theorem 3.3 ( Malcev [39].)

Let S be a semigroup and P any subset of S. With any finite sequence
ty,-,0, 0f pairs (, ) and | , | such that the round brackets form a bracket
formation, and likewise the square brackets, we associate the condition

&) L) = R(#2),+, L(#ty-1) = R(2,) = L(2) = R(ey),

for all abb'c,c’deS and p,q € P, where these letters are given as label
the suffix of the corresponding bracket and L(*), R(*) are taken from the
above table. Then the conditions (5), for all such sequences, are necessary and
sufficient for P to be potentially invertible. [}

In particular, if we take P to be S itself, or more generally, a generating
set of S, we obtain necessary and sufficient conditions for S to have a
group of fractions.

As an example, consider the simplest condition, corresponding to the
sequence ( ) . This reads

pb = pb’ = ab’' = ab,

and it is essentially the condition for left cancellation by elements of
P (as one sees by taking @ =1). Similarly, [ ] corresponds to right
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cancellation. The next condition, corresponding to ( [ ) ] , states that

(©) pb=cd, cq=pb’, ab’=cyq
implies
@) ¢'d = ab.

It is not hard to show that the semigroup with generators a, b, ¢, d, b’,
¢, p, g and relations (6) satisfies cancellation but not (7); this provides an
example of a semigroup admitting cancellation but not embeddable in a
group (Malcev [37]). More generally, it can be shown (Malcev [40]) that
for every integer n there exist conditions (5) of length » which are not
implied by all the shorter conditions taken together. Thus the infinite set
of conditions in Theorem 3.3 cannot in general be replaced by a finite
subset.

Just as groups arise naturally as permutations of a set, so semigroups
arise as mappings of a set into itself. It is therefore natural to ask
the following: Given a set A4 and a semigroup ¥ of mappings of A
into itself, when does there exist a set A* containing A, together with a
group of permutations which induce the given mappings on 4? An
obvious necessary condition is that the given mappings on A4 be injective;
once this holds, it is almost trivial to construct a set A* with the required
group of permutations. In particular, the given semigroup need not be
embeddable in a group at all; that the construction is possible neverthe-
less, rests on the fact that different permutations of 4* may induce the
same mapping on A. Thus the problem as stated is not very closely related
to the division problem in semigroups unless we establish a bijection
between the given semigroup of mappings of 4 and a permutation group
of A*. If we try to find necessary and sufficient conditions, we are again
led to conditions of the Malcev type (Theorem 3.3); we therefore have to
make further restrictions in order to find a suitable sufficient condition.

A natural restriction, which at the same time increases the scope of the
method, is to put a structure on A and to consider only mappings com-
patible with this structure; thus, we shall assume that A is an Q-algebra
with a semigroup of endomorphisms. Consider first the case of a single
endomorphism #, and assume that 0 is injective. Then @ provides an
isomorphism between 4 and a subalgebra 4" of A. One can therefore
define 8! on A4’, and since A’ = A, the mapping 0~ ' can be extended to an
isomorphism of A onto an algebra 4, containing 4. Continuing in this
way, one obtains an ascending sequence of algebras containing A (and,
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incidentally, all isomorphic to A4); their union 4* is the required extension.

This construction can be generalized by replacing the ascending
sequence by a directed system. Correspondingly, this will allow us to apply
the method to semigroups which are directed by left-divisibility, i.e.
semigroups I such that

(8) given o, € X there exist «’,f" € Z such that aff’ = fo’.

A semigroup satisfying this condition is said to be directed. We note that
any commutative semigroup, and in particular, any semigroup generated
by a single element, is always directed.
Let A be a # -algebra, where 4 is some category of Q-algebras. Then
a semigroup I is said to act on A by injections, if with each x€Z an
injective endomorphism 0, of A is associated such that
0,5 = 0,0p, 0, =1

*

where 1 denotes the identity mapping on 4. For brevity we shall simply
write xo instead of x0,. Now the result to be proved may be stated as
follows:

Theorem 3.4

Let A be a A -algebra and let T be a semigroup acting on A by injections.
If T satisfies cancellation on both sides and is directed, then there is a locally
A algebra A* with the following properties:

(i) A is a subalgebra of A*.
(i)  acts on A* by automorphisms which extend the action of Z on A.
(iii) Every element of A* is of the form a0, ", for some ae€ A and « € X.

Moreover, A* is determined up to isomorphism by (i)-(iii).

Proof:

Let us write |f to indicate that o4 = f for some 1€X; then *|’ is a
preordering of X, for which I is directed, by hypothesis. We refine this
relation by writing « < f# whenever there exist o', " € £ such that

aff' =iz’ and A = Ad'.

Clearly, if «|f, then o < fi, hence the relation < is reflexive. We assert
that it is again a preordering on X which directs £, For suppose that
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o <p, <y and take A,pu,A",u" € X such that al = fu, AL = Ap, A" = yy',
A)' = Ap'. Let p,i'| v say, v = ux’ = I'x; then adk’ = fiv = yu'x, and

Al = Aux' = Av € Ap'k.

Therefore « < 7, i.e., < is a preordering of Z. Now if a,f € Z, then a,f|y
for some yeX; hence <y and so < again directs £. We note also
that like | the relation < is preserved by left multiplication.

Let A,u € £ be such that

(9) Al = Ap;
then there is a uniquely defined injection « of A4 such that
(10) Xopt = X2 (xe A);

for, every element x/ is of the form yu, with a uniquely determined
element y. We denote this endomorphism o« more briefly by 4u ™!, recalling
however that this notation has only been justified under the assumption
(9). Applying any v e X to (10), we obtain

(11) Xopy = xAv,

and conversely, (11) implies (10), because v is injective. This shows that
for the injection « defined by (10),

(12) a =t = (W)

Now for each « € X take a copy A, of A with an isomorphism #,: 4 — A,
and embed A4 in 4, by a monomorphism ¢,:

(13) X, = (xo)n,  (x€A).
Given «,f €  such that « < ff, we define a monomorphism
(14) hop: A —+ Ay

as follows: let ad = fiu, A% < Ap; then we put x¢,, = xn, 'Au~'ny; this
definition does not depend on the choice of Ay; for, if also «i’ = i’
and Al < Ay, let pv' =p'v; then woldv' =’ = fpu'v =0a0l'v, hence
v’ = A'v by left cancellation, and so,
Wt = )T = () T = e
We note that formally, ¢, = ¢, '¢,; hence we have

‘bmﬂ‘ps)l = d)'x',l (Of é ﬁ ﬂ .l") and
$u = 1.
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This shows that (14) is a directed system of ¢ -algebras and monomor-
phisms. Let A* be the direct limit; this is locally »#, with monomorphisms

(15) ggi A, > A%,
such that
(16) €, = Paptp (@< p).

By (16) and (13) we have

£y = ¢m¢.ﬂ.£m). 3 'Fc_‘l'?u.sga,
hence

Naba = AMaaape

Let us denote the monomorphism #,¢,:4 = A* by (,; then the last equa-
tion reads {, = A{,;; it follows that for any x € 4 and any o,f,A € X,

(17) (x)lp = (xtA) g5
To define the action of £ on A*, take any x € X and any x e A%, say
x = yly (B € Z). By hypothesis, a4 = fiu for some A,u € I; we define xa by
putting
(18) xa = (yp)l;.
If we also had «d’ = pu’ (1',1" € £), then uv’ = p'v for some v,v" € I, hence
al'v = fu'y = v’ =adv', ie. I'v=21v, and so by (17),
()i = v )ay = (')
= (yu)an

This shows the right-hand side of (18) to be independent of the choice of
4 and pu. Now (18) defines an action of £ on 4*, for if «,f € £ and x = y{,,
let y4 = au, up = Pv; then yip = oup = afiv, and hence

(x)B = (0B = (PALIB = yApl, = (W) = x(ap),

x1=yl,=x.
Further, if x is of the form y{,, then (18) reads
le = (pa)Ly.

Therefore if we embed 4 in A* by identifying x e A with x(,, then the
action of £ on A*, when restricted to A4, corresponds to the given action
on 4. Moreover, since

(xGo)a = (xa)o = x{; = x,
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it follows that to every x e A* there corresponds an « e€XZ such that
xo € A, i.e. every element of 4* is of the form ax~ ! where a € A. The same
equation shows that {, is the inverse of «, which is therefore an automor-
phism.

To establish the uniqueness of 4*, let U be the universal Q-algebra
with the property (ii) of the theorem (with U for 4*); clearly there is such
an algebra (by Corollary IV.4.3, taking % to be the category consisting of
all algebras isomorphic to 4 and monomorphisms between them), and
since A* has been found satisfying (ii) and (i), the canonical homomor-
phism A — U is injective; since A* satisfies (iii), it is generated by A
(under the action of the elements of £ and their inverses), and therefore
A* is a homomorphic image of U. If it is a proper homomorphic image,
assume that in 4%,

(19) xa~t=ppt
and let «1 = fu; then
XA =xa"tad =y~ Pu = yu;

it follows that x4 = yu in A, and hence in U; applying (x4) ™', we see that
(19) already holds in U; therefore 4* is an isomorphic image of U and so
is unique up to isomorphism. [j

For abstract semigroups, this result provides a simple sufficient con-
dition for a group of fractions to exist (cf. Dubreil [43]):

Proposition 3.5

Let S be any cancellation semigroup which is directed (by left-divisibility);
then S has a group of fractions G ; moreover, G is determined up to isomorphism
by S, and is such that G = SS™'. Conversely, any semigroup S with a group
of fractions G = SS™" isdirected.

To prove this result we need only let .S act on itself by right multiplica-
tions and apply the theorem. The last part is obtained as follows: If S
has a group of fractions of the form SS™', then for any a,be S, a™'b is
of the form wv™', i.e. a~'b = uv ™', and multiplying up we obtain bv = au,
whence S is directed. [

Returning to the situation of Theorem 3.4, we note that any constant
element of A, i.e. the value of a 0O-ary operator in A, is necessarily left
fixed by every endomorphism of A. Let us say that X acts regularly on A
if any two distinct elements of ¥ have different effects on every non-
constant element of A. Then we have
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Corollary 3.6
If Z, A, and A* are as in Theorem 3.4 and T acts regularly on A, then it
also acts regularly on A*.

For assume that x € 4 and «,f,y € £ are such that
(20) xy~'a = xy~'B, where xy~' is not constant;

then either xy # x or y =1 and x € 4. In the latter case, « = f§ by hypo-
thesis. Otherwise there exist A,u,A',u" € £ such that al = yu, A" = yu’ and
hence there are v,v’ € £ such that 2v' = 1'v = p say. It follows that

(21) v =ap, yu'v=Pp,
and multiplying (20) by p, we obtain
xpv' = xy tap = xy"'Bp = xp'v.
Since xy # x, x is not constant; therefore uv' = u'v, and by (21),

ap = yuv' = ypu'v = fp;
therefore o = 8 as asserted. ]

The division problem for rings, namely, to obtain conditions for an
associative ring to be embeddable in a field (not necessarily commutative),
is very much more difficult than the corresponding problem for semigroups.
Again there is no loss of generality if we limit ourselves to rings with a
unit element 1, and we may further assume that 1 # 0. Any field containing
R as a subring and generated by R will be called a field of fractions for R.

In the first place, we cannot assert the existence of a universal field
for a given ring (even when a field of fractions exists) by appealing to
universal algebra, since fields do not form a variety. In fact, taking fields
as they are, we can show that there is no universal field in general. In the
special case of commutative rings and fields, the existence of a universal
field for a given ring can be established if one operates not in the category
of fields and homomorphisms but in the category of fields and places,
i.e., generalized homomorphisms which map some of the field elements to
infinity (cf. e.g. Lang [58]). There is no difficulty in defining places for
skew fields, but at present it is not even known whether the resulting
category has anything corresponding to free fields.

A second difficulty, which also did not arise for semigroups, is that if we
adjoin the inverses of all the nonzero elements to a ring R (assuming R
to have a field of fractions), then the ring generated need not be a field;
e.g. if a,b e R, ab# 0, then ab™" + ba™' may not have an inverse of the
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form wr ™! with u,v € R. However, in the special case when R has a field
of fractions whose elements are all of the form uv™! (u,v € R, v # 0), all
these difficulties disappear, and one has the following elegant result, due
to Ore [31]:

Theorem 3.7

Let R be an associative ring (with a unit element 1 # Q), whose nonzero
elements form a semigroup under multiplication which is directed by left-
divisibility; then there exists a skew field K containing R as subring, such that
every element of K is of the formab™" (a,b € R). Moreover, K is determined
up to isomorphism by R.

A ring R satisfying the conditions of Theorem 3.7 is called a (right)
Ore domain.

Proof:

Denote the set of nonzero elements of R by R*. By hypothesis, R* # 0,
and it is a semigroup under multiplication if and only if R has no zero
divisors: when this is so, R* necessarily satisfies cancellation: ab = ac
implies that a(b — ¢) =0, and if a,b,c € R*, this means that b = ¢; right
cancellation follows similarly. By Proposition 3.5, R* may be embedded
in a group, whose elements are all of the form ab~!(a, b € R*). We shall
write K for the set consisting of this group together with 0. Then K is
closed under multiplication and every non-zero element has an inverse.
Moreover, K is closed under the operation x — x + I, for if x = ab™1,
then x + | = (a + b)b~!. To show that K is a field we need only show
that it admits addition: Let x, y € K; then

if y=0,

x
XHY=\xp ' + 1)y ify#0.

Thus, R has been embedded in a field of the required form. Moreover, K*,
the set of nonzero elements of K, is uniquely determined as the group of
fractions of R*, and hence K is unique (up to isomorphism). [ |

The construction of Theorem 3.7 has been generalized to rings whose
multiplicative semigroup satisfies the conditions of Theorem 3.7 residually



276 Applications [Chap. VII]

(Cohn [61]). This enables one to embed free associative algebras in fields.
Another method of embedding free associative algebras in fields, due to
Malcev [48] and Neumann [49], is based on the fact that free groups
may be totally ordered (Neumann [49']) and the group algebra (over a
commutative field F) of the free group on X contains the free associative
algebra on X over F as subalgebra. The embedding is now accomplished
by using

Theorem 3.8 (Malcev, Neumann)
The group algebra over a commutative field F of a totally ordered group G
can be embedded in a field.

Proof (Higman [52]):

Consider the direct power F¢, regarded as a vector space over F. With
every element /e F¢ we associate a subset D(f) of G, its support, defined
by

D(f)={seG|f(s) #0}.

Let 4 be the subset of F% consisting of all elements with well-ordered
support. Formally, each element of 4 may be written as a power series:
f=Zf(s)s. The sum of two such power series again belongs to 4, because
the union of two well-ordered sets is again well ordered. We define
products in A by setting

@) g = EF(5))Eg(0)i) = z( p “fIS)g(r))u-

Given u € G, the equation st = u has only finitely many solutions (s,f) in
D(f) x D(g), because both supports are well-ordered. This shows the
inner sum on the right of (22) to be finite; now D(fg) is the image of
D(f) x D(g) under the mapping (s,f) - st, and is well-ordered (as the
image of a partly well-ordered set, cf. I11.2). Hence the element fg defined
by (22) lies in A4, and it is easily verified that with these definitions A forms
an algebra over F containing the group algebra of G as subalgebra (namely,
the subalgebra of elements of finite support).

Now consider an element of 4 of the form 1 — f, where f(s) =0 for
s<1. We assert that 1 +f+f2 + -« can be rearranged as a power
series. For the free semigroup on D(f) with the divisibility ordering is
partly well-ordered by Theorem I11.2.9; it follows that U D(f") is partly
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well-ordered, and moreover, no element of G can belong to infinitely
many of the D(f"), because the solutions (s, --,s,) of

S]'”Sn = U

for fixed u, are pairwise incomparable elements of a partly well-ordered
set. This shows 1 + f+f2 + --- to be an element of A4, and it is easily
verified that it is in fact the inverse of 1 — f. Now every nonzero element
of A is of the form su(l —f), where x € F, 2 # 0, u € G, and f(s) = 0 for
s < 1. Thus it has an inverse in A4, and this shows 4 to be a field. [

None of these methods of embedding a free associative algebra in a
field is purely algebraic, in that they all involve limiting processes, and
this makes it difficult to decide whether the fields obtained are ‘universal’
in any sense. However, by comparing these constructions with an earlier
algebraic construction by R. Moufang [37], one obtains two noniso-
morphic fields of fractions of a given free associative algebra.

In the 1930’s Malcev raised the question whether a ring R exists
whose non-zero elements form a semigroup which is embeddable in
a group, without R being embeddable in a field. Such examples have
recently been found; they are briefly discussed on p. 342f.

EXERCISES

1. Show that any idempotent element of a cancellation semigroup § is
necessarily the unit element of S, and deduce that a cancellation semigroup has
at most one idempotent.

2. Verify that the semigroup defined by the relations (6) admits two-sided
cancellation. (Use Theorem II1.9.3 to obtain a normal form.)

3. (Malcev.) Show that the free semigroup on two free generators a,b can be
embedded in G = Gp{a,b|(ab~')* = 1} and in H = Gp{a,b|(ab™")* =1}, and
that G, H are groups of fractions for .S which are nonisomorphic. Show that §
has nonisomorphic groups of fractions which are irretractable as extensions of
S. (Apply Proposition VII.2.5 to G and H.)

4. Show that a semigroup S is embeddable in a group if and only if, for each
peSthere is an embedding of S in a cancellation semigroup which maps p to
an invertible element.

5. Define a sequence of moves to be admissible if it is of the form described in
Theorem 3.3. Show that in Theorem 3.3 it is enough to take those sequences
which do not contain any admissible proper subsequences.
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6. Verify directly the conditions of Theorem 3.3 for directed cancellation
semigroups.

7. Let S be a cancellation semigroup in which any two elements with a com-
mon right-multiple have a least common right-multiple (unique up to right
multiplication by invertible elements). Show that in applying Theorem 3.3 one
need only consider admissible sequences not containing ( [ ) as a subsequence.
(Write down the condition for a sequence --- ( [ ) --- and show that it can
be replaced by the condition for the sequence --- [ ---.)

8. Let S be a semigroup and p an element of S such that ap = pa’ for
any a,a’ € S implies that either a=a" =1 or a = pb, a’ = bp. Show that p is
potentially invertible.

9. Let S be a semigroup and C a subset of the centre of S such that S admits
cancellation by every element of C. Show that C is potentially invertible.

10. Show that the semigroup S = Sg*{a,b|ba = ab"} (where r is a positive
integer) satisfies cancellation and is directed. (Obtain a normal form for the
elements of S.)

11. Show that a subdirect product of two directed semigroups need not be
directed. (Take the semigroup of Exercise 10, for different integers r.)

12. Show that any (associative) ring may be embedded in a ring with 1.
If R! denotes the universal ‘ring with 1’ for R, obtain necessary and sufficient
conditions on R for R' to have no zero divisors.

13. (Goldie.) Show that every integral domain with maximum condition on
right ideals is a right Ore domain. (If a,b have no common right-multiple, show
that the right ideals generated by b,ab,---,a"b form a strictly ascending chain.)

14. (Albert.) Show that any totally ordered ring has no zero divisors. If
such a ring is an Ore domain, show that the ordering has a unique extension to
the field of fractions.

15. (Amitsur.) Let " be the class of rings of a given characteristic (0 or p).
Show that any integral domain (not necessarily commutative) in %" which
satisfies any law not holding throughout .#" is embeddable in a (skew) field.

16. Let R be any ring with 1, and M a multiplicatively closed subset of R
which contains 1 but no zero divisors, and which is directed by left-divisibility.
If, for each ae M, there exists beM such that Rb<aR, and moreover,
Mx n M 0 implies xe M, show that R may be embedded in a ring S such
that the elements of M are invertible in S and each element of S has the form
am™'(aeR, meM).
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17. (H. Friedman.) Consider the group G of permutations of the real line
R generated by @i x — x + land §: x = x3.1s G free on a, §8?

18. Let F(x) be the field of rational functions in x over a commutative field
F, and denote by @, ff, y the endomorphisms generated by x— —x, o
x — x? respectively. Then F(x) can be embedded in a field E which has auto-
morphisms o', 8, 7 inducing a, 3, y respectively on F(x), but the semigroup ¥
generated by the endomorphisms a, 3, y of F(x)cannot be extended to act on
E (note that ¥ does not satisfy cancellation).

4. THE DIVISION PROBLEM FOR GROUPOIDS

The division problem discussed in VII.3 becomes easier, oddly enough,
if one drops the associativity condition. The problem now is to embed a
groupoid in a quasigroup. Since a quasigroup admits unique left and right
division, it is obviously necessary, for a groupoid G to be embeddable in a
quasigroup, that G possess left and right cancellation. This condition is
also sufficient for the embedding to be possible (Bates [47], Evans [51]).
We shall use the semigroup representation of algebras (Proposition
1V.4.6) to establish this fact. In the proof it is convenient to deal with left
and right division separately; thus, we define a groupoid G to be a right
quasigroup, if the equation

(O] xa=b

has a unique solution in G, for all a,b € G. Clearly a right quasigroup, and
more generally, any groupoid contained in a right quasigroup as sub-
groupoid, possesses right cancellation:

2 If ac = be, thena =b.

Lemma 4.1

Let G be a groupoid with right cancellation; then G may be embedded in
a right quasigroup G*. Moreover, if G satisfies left cancellation, then so
does G*.

Proof:

We first construct an extension G, of G in which the equation (1) can
be solved for all @ € G and all b € G,. Let S be the free semigroup (with 1)
on the set G and two further elements p,p (distinct from the elements of G)
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as free generating set. Denote by q the congruence on S generated by the
pairs (auap,l), (apap,1), (abu,c), (cbp,a), where a,b,c range over all ele-
ments of G such that ab =c¢ in G. Writing S" = S/q, we see that the
natural homomorphism x — x’ of S onto S’ has the properties

(ab) =a'd’ abed,
v'a'p'a'p' =va'pay =u uesS.

Interpreting p and p as the operators of multiplication and right division,
we thus obtain an embedding of the required kind provided we can show
that q separates G and that the cancellation conditions hold. Consider the
graph defined by the presentation of S"; its segments are obtained by taking
the moves

3) uapapy — uv,

4) uapapy — uv,

(5) uabpw — ucv,
. (6) uchpv — uav,

and their inverses, where w,v € S, a,b,c € G, and ab = c in G. We note that
by right cancellation a is uniquely determined by b and ¢, so that the move
(6), when possible, is completely determined by its initial vertex uchpv.

Qur object is to show that the conditions of Theorem 111.9.3 are verified.
Clearly, each move (3)-(6) decreases the length of any word w to which
it is applied; therefore we reach a reduced word after a finite number of
steps which is bounded by the length of w. Suppose now that two words
w;, w, have each been obtained by a move (3)-(6) from the same word w;
we must show that by applying further moves to w, and w, we can reach
the same word from both. This is clear if the parts of w affected by the
moves leading to w, and w, do not overlap. Now an overlap can only
occur for the following pairs of moves: (3) and (4), (3) and (5), (4) and (6).
If (3) and (4) overlap, w must have the form w = wauapapv or w = uapapapv,
say the former. Applying either (3) or (4) we obtain uauv, and so w, = w,
in this case; the same conclusion holds if w = uapapapv. Next, let (3)
and (5) overlap; then w = uabubpr; applying (3) and (5) we obtain
w, = uav and w, = ucbpe respectively, where ¢ = ab. If we apply (6) to
w», we obtain uav = w,. The case where (4) and (6) overlap is treated
similarly.

Thus the conditions of Theorem 111.9.3 are satisfied, and we conclude
that the reduced words in S form a transversal for S". Since each element
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of G is clearly reduced, this shows that G is embedded in S’. Let T be
the subalgebra of S with respect to the operators p and p, generated by G;
its image 7" under nat q is a groupoid containing G which admits right
division by all the elements of G, i.e. the equation

xap =g (aeG,geT)
has a unique solution in 7", namely

x = gap.

Here we have identified the elements of G and p,p with their images under
nat q. To verify right cancellation in 77, let w,v,w € T be such that

(7 uwp=vwe (mod q).

We may take u, v, and w to be reduced words, without loss of generality;
if both sides of (7) are reduced, then they must be equal, and so u = v,
by cancellation in the free semigroup S. This leaves the case where either
side of (7) is reducible. Now T is just the {u,p}-word algebra on G; there-
fore any proper subword of uwp must occur in z or w (Corollary I11.2.5); but
each move (3)-(6) has the effect of replacing a certain word by another
word. Therefore any reduction on a proper subword of wwu takes place
entirely within # or w and so can already be carried out in u or w respec-
tively. Since # and w are reduced, it follows that wwy is reduced except
when u,w € G, in which case uwu = ¢ € G. In that case vwu must also be
reducible, for if not, we should obtain an equality vwu =c¢ between
reduced words, which leads to a contradiction (e.g. by comparing lengths).
Therefore v also belongs to G; by (7) we have uw =vw in G and by
cancellation in G we find that u = v.
Assume now that G satisfies left cancellation and let

®) uvp = uwp(mod q),

where u, v, w are again reduced elements of 7. The same argument as
before shows that if either side can be reduced, then so can the other, and
u, v, we G; now v = w follows by cancellation in G.

We have now constructed a groupoid 7" containing G, in which the
equation (1) has a unique solution for any a€ G, be T°, and T" has (left
or right) cancellation whenever G does. Let us put G, =7’ and apply
the same process to G, ; repeating the construction we obtain an ascending
chain

GeG,=G; -
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of groupoids, all with right cancellation; their direct limit G* is again a
groupoid with right cancellation. Moreover, given any equation (1) in
G*, we can find » such that a,b € G,, and by construction, (1) has a solu-
tion in G, ,, and therefore in G*. Owing to right cancellation, the solution
is unique. Thus G* is a right quasigroup containing G. If, further, G has
left cancellation, so do G,, G,, -+, and therefore their direct limit G* also
has left cancellation (because this is a local property). [}

It is clear by symmetry that a corresponding lemma holds with right
and left interchanged throughout (with an obvious definition of a left
quasigroup). Therefore, if we take a groupoid G with two-sided can-
cellation, we can embed G in a right quasigroup with left cancellation and
embed this in turn in a left quasigroup with right cancellation, G’ say.
Then any equation

(9) xa=b or ay=h5,

where a,b € G, has a solution in G'. If we repeat this construction, we
again obtain an ascending chain

GeG'csG" <

whose direct limit H is a quasigroup containing G. For, given any equa-
tion of the form (9) in H, we can take n such that a,b € G and then solve
the equation in G“*"); thus the equation has a solution in H, and this is,
unique because / has two-sided cancellation. This proves

Theorem 4.2

Any groupoid with two-sided cancellation can be embedded in a quasi-
group. |}

We remark that a result similar to Lemma 4.1, involving one-sided
division, can be proved for semigroups by the same method (Cohn [56]),
but the resulting semigroup does not possess cancellation even when we
start with a cancellation semigroup. For this reason, the method cannot
be extended to two-sided division, a limitation which is to be expected in
view of Malcev’s theorem (Theorem 3.3).

In the case of nonassociative rings (NA-rings for short), there are also
simple necessary and sufficient conditions for embeddability in a NA-field
(i.e. a ring whose nonzero elements form a quasigroup under multiplica-
tion) (Neumann [51]). As in the commutative case, a category of NA-
fields and places can be defined, and the representation of NA-rings in
this category can be shown to have a universal functor (Skornyakov [57]).
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EXERCISES

1. Show that every cancellation groupoid with a unit element can be em-
bedded in a loop.

2. Show that any groupoid can be embedded in a groupoid with division,
i.e. a groupoid in which every equation xa = b or ay = b hasat least one solution.

3. Obtain a normal form for the elements of a free quasigroup on a single
free generator. (Use Theorem I11.2.3 and Proposition 1V.4.6.)

5. LINEAR ALGEBRAS

One of the main applications of the representation theory of IV.4 is to
the representation of Lie and Jordan algebras in associative algebras.
Although the basic situation is the same in the Lie and in the Jordan case,
there are many differences of detail, and each theory has its own peculiar
difficulties, which are chiefly due to the presence of the associative law.
We shall therefore devote this section to the case of not necessarily associa-
tive linear algebras, and in the following sections we shall consider the
effect of associativity.

Let K be any commutative and associative ring with 1, and denote by
(K) the category of all linear K-algebras (not necessarily associative).
When K = Z, the ring of integers, (Z) is essentially the category of all
rings. The multiplication in a K-algebra may be denoted by an operator
symbol p,

(0] aby,

in the notation of Chapter II; it is more usual to omit the symbol alto-
gether, but since the associative law need not hold, it is now necessary in
repeated products to use parentheses, to distinguish e.g. (ab)c and a(bc).

We shall adopt a compromise notation by using parentheses, but leaving
out the left-hand parenthesis. Thus the product of @ by b will be written

2 ab).

This is in effect the notation (1), with )’ in place of *x’. Thus the associa-
tive law would now read: ab)c) = abc)).

Now consider any law in a K-algebra; such a law may be brought to the
form

3) f=0,



284 Applications [Chap. VII]

where f'is a word in the free K-algebra, Ky say, on some alphabet X. As
in IV.2, we may show that Ky is the groupoid algebra over K on Ty, the
free groupoid on X. Thus every element of Ky is uniquely expressible as

f=Zf(s)s,
where f(s) € K, s e 'y, and f(s) = 0 for all but a finite number of elements
5. With each element s of I'y, a positive integer /(s) is associated, its length,
equal to the number of factors (or equivalently: one greater than the
number of parentheses). With its help, we define the degree of f as

d(f) = max{l(s) | f(s) # 0}.

For f =0, this is interpreted as —co.

Any systematic study of varieties of linear K-algebras would proceed
by considering the possible sets of laws. Now the laws (3) may be classi-
fied by their degree. For general degree n this is a formidable task, in-
volving the representation theory of the symmetric group on n letters and
the general linear group over K (cf. Malcev [50], Specht [50], Cohn [52]),
and unless a definite problem is kept in mind, such a classification would
probably not yield a good return on the effort involved. We shall therefore
confine ourselves to the simplest case, namely, when n < 2 and K is a field.
The complete result is then given by

Theorem 5.1

Let K be any (commutative) field; then any law for linear K-algebras, of
degree at most two, and not holding identically, is equivalent to one of the
Sfollowing: (i) x =0; (i) xy) = 0; (iii) x*) — x =0 (idempotent law); (iv)
x?) = 0 (alternating law); (v) xy) — yx) = 0 (commutative law). Moreover,
case (iii) is possible only if K is the field of two elements.

Proof:
Any law involves only a finite number of distinct indeterminates; now
the most general law of degree two in xy,---,x, is

4 Ixp; + Zxx)fy; =0.

If we fix & and put x; =0 for i # k in (4), we obtain
(5) X + X )P = (k =1,-n);
subtracting the equations (5) from (4), we get
(6) Y xx)By=0.

]
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Thus, (4) entails (5) and (6), and conversely, when (5) and (6) hold, we
can deduce (4), so that (4) is equivalent to (5) and (6).

Suppose now that not all the «; are zero, say o; # 0. Then dividing by
oy, we obtain from (5)

(M x +x*)y =0,

where we have written x for x,. If y = 0, we thus obtain the law x = 0, and
this clearly implies (4), so that we have case (i). In any case, if we replace x
in (7) by x4 (4 € K) and subtract the result from (7) multiplied by 4%, we get
x(A* — J) = 0; this again leads to case (i), unless 2> = 2 for all elements 2
of K, which can only happen when K consists of two elements. When this
is so, and case (i) does not hold, we therefore have

(8) x*) —x=0.

If in (8) we replace x by x + y and then simplify, using (8) (as in V.2), we
obtain

©) xy) + yx) =0.
Thus, using (8) alone we can reduce (4) to the form
(IG) lz}x;x_’)}'u = 0.

If this is not identically zero, let y;; # 0; then putting x; =x; = x, x, =0
(k # i,j), we obtain x?) = 0, which together with (8) shows that x =0, i.e.
case (i). In the alternative case (10) vanishes identically, i.e. (8) implies (6),
and only (5) is left. But we have seen that this can only give case (i) or
case (iii), and in the latter case K is the field of two elements.

It remains to discuss the case when all the «; in (4) vanish. Putting all
except two of the variables equal to zero, we obtain from (6) the laws

(11) xixj)ﬁij + xjxi)JBji =0 (i,j = 1,-+5,n),

which together are equivalent to (6). If B, # Oforsome k, orif f;; + f; #0
for some i,j, we can deduce the law

(12) x*) =0

from (5) or (11) respectively (remembering that now o, = 0 in (5)). From
(12) we obtain (9) (by replacing x by x + y and using (12) to simplify the
result), and this may again be used to reduce (4) to the form (10). If this
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is not identically zero, say if y;; # 0, then putting all except x; and x; equal
to zero, we derive the law

(13) xy) =0,

and conversely, (13) implies (4) (under our assumption that all the o,
vanish). Thus we have case (ii); on the other hand, if the form (10) obtained
is identically zero, this means that (12) entails (4), and is therefore equiva-
lent to (4), i.e., case (iv).

There remains only the case where f§,, = 0 for all £ in (5), so that (5)
holds identically, and g;; + p,;; = O for all #,jin (11). Since (4) is not identi-
cally satisfied, some f,; is different from zero, and we thus obtain

xy) — yx) =0;
conversely, this may be used to reduce (6) to zero, and so is equivalent to
our original law (4), i.e., we have case (v). [}

For o =1i,...,v, denote by (K), the variety of linear K-algebras defined
by law («) of Theorem 5.1. Clearly (K); is the trivial variety and (K);; is the
variety of ‘zero algebras’, i.e., K-modules regarded as linear algebras with
multiplication identically zero. (K);;; is the variety of idempotent algebras;
in the presence of the associative law, these are just the Boolean algebras
(cf. V.2), but it is easy to construct nonassociative algebras in (K);;; (cf.
Exercise 2). In fact, general (i.e., nonlinear) algebras have been con-
structed, all of whose two-generator subalgebras are Boolean algebras, but
which are not themselves Boolean algebras (Diamond & McKinsey [47]).
Such algebras cannot be linear, by the result of Exercise | below. They show
that Boolean algebras have axiom rank at least three (cf. 1V.3); since
Boolean algebras may be defined by laws in three variables, the axiom
rank is actually equal to three.

The algebras of (K);, are called anticommutative’ or (-—)-algebras.
There is a natural way of representing (—)-algebras in linear K-algebras,
which we shall now describe. With each K-algebra 4 we may associate
another K-algebra A4 ~, whose K-module structure is the same as that of A,
but whose multiplication is given by

(14) xy] = xy) — px).
We shall call A~ the ( —)-algebra associated with A; clearly, it is in fact
a ( —)-algebra, whose operations are derived from those of A. In this way

! From some points of view it would be more natural to call these algebras alternating;
we have avoided this name because of possible confusion with alternative algebras (cf.
Exercise 6).
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the category (K) of all linear K-algebras becomes subordinate to (K);,.
Now, by Corollary 1V.4.3 the representation (14) of (—)-algebras in
K-algebras has a universal functor, associating with each (—)-algebra B
a linear K-algebra U(B) and a homomorphism

(15) u:B-UB)",

which is universal for homomorphisms of B into an algebra of the form
A~. Assume now that K is a field of characteristic not two; then on any
(—)-algebra B, with multiplication xy], a second multiplication xy) may
be defined by setting

(16) xy) = $xyl.

If the algebra so obtained is denoted by B®, then the identity mapping
provides a representation of B in B*, because

xy) — yx) = ¥(xy] = yx]) = xy].
Thus every (—)-algebra has a faithful representation (14), and it follows
that (15) is an embedding. For this reason, U(B) is called the wniversal

linear K-envelope of B, even in the case of a general ground ring, when (15)
need not be injective. We may sum up our result as

Theorem 5.2

Let K be any field of characteristic not two; then any anticommutative
K-algebra may be embedded in the ( —)-algebra of a suitable linear K-algebra,
and there is a universal K-algebra, the universal linear K-envelope of B, for all
such embeddings. |

The result holds for any field, although not for any ring K (cf. Exercises
3 and 4). It may be used e.g. to prove that subalgebras of free (—)-
algebras (over a field) are again free (SirSov [54]), using the corresponding
result for linear algebras (Kuro$ [47], Witt [53]); but we shall not enter
into the details.

The algebras of (K), are just the commutative (not necessarily associ-
ative) algebras. With each K-algebra A we associate a commutative algebra
A*, its (+)-algebra, by taking the K-module 4 with the multiplication

(17) xy} = xy) + px).

As before this gives rise to a universal functor which associates with each
commutative algebra C a linear K-algebra ¥(C) and a homomorphism

(18) v:C - V(C)*,
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which is universal for homomorphisms of C into algebras of the form 4",
where A is a linear K-algebra. When K is a field of characteristic not
two, the identity mapping of C into C%, defined as in (16), again provides
a faithful representation, and we thus obtain

Theorem 5.3

Let K be any field of characteristic not two; then any commutative
K-algebra may be embedded in the ( +)-algebra of a suitable linear K-algebra,
and there is a universal K-algebra for all such embeddings. |

EXERCISES

1. Show that any ring with | (but not assumed to be associative) which
satisfies the law xy)y) = xy), is a Boolean algebra.

2. Show that the commutative algebra with unit element 1, over the ground
field of two elements, with basis 1, a, b, ¢, and relations a*) = a, b*) = b, ab) = ac)
= ¢%) = ¢, bc) = 0, is nonassociative and belongs to (K);;;.

3. Show that for a ground field of characteristic two, the universal functors
U and V for the representation of (—)- and (+ )-algebras are still injective. (Use
a totally ordered basis to construct a faithful representation.)

4. Let F be a field of characteristic two and K the associative and commu-
tative F-algebra generated by a. 8, y with the relations «? = % = 3 = 0. Show
that the universal functor U is not injective for free algebras over this ring K.
(Take the (—)-algebra with generators a, b, ¢ and relation aa + b3 = ¢y, and
show that every representation maps ab] a3 to zero.)

5. (Kaplansky.) Show that in a linear algebra over a field of characteristic
zero, every law is equivalent to laws which are linear homogeneous in each
variable.

6. Show that any variety of linear algebras with | over a field of characteristic
zero, which is defined by laws of degree at most three, is defined by one or
more of the following laws, where A(x,y,z) = xy)z) — x12)), x1] = xy) — yx):
(i) xp) = yx), (i) ¥H)x) = xx?)), (iii) xv)z] + yz]x] + zx]r] = 0 (Jacobi identity),
(iv) A(x,,2) = 0 (associative law), (v) A(x,y,x) = 0 (flexible law), (vi) A(x,p,)
=0 (right-alternative law), (vii) xy]y] = 0, (viii) xy]z] = xz]y], (ix) A(x,y,z) =
Alz,y,x), (x) xy)z) — xz)y) — yz)x) + zv)x) = A{x)2)) — xz¥)) — vzx)) + zyx))},
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and the laws obtained by reversing the order of the factors (i.e. taking the anti-
isomorphs) of (vi) and (x).

7. Show that in an associative algebra satisfying the law xy]z] = 0, the derived
operation axy) + fiyx) defines an associative multiplication for all o, f.

8. Let A be a (+)-algebra (with coefficient ring K); then a K-module M with
a mapping v:4 x M — M, which is linear in each argument, is called an A-
module. Tf the multiplication in A is denoted by p, show that the direct product
E = A x M, with the multiplication

(a,x) - (b,y) = (abyu, ayv + bxv),

is a (+)-algebra containing A as subalgebra and M as ideal. (This is called the
split null extension of M by A.)

9. (Tamari [62].) If nonassociative products are distinguished by enclosing
the second factor in brackets, show that each bracket formation of r pairs
(, ) gives rise to a different way of bracketing a product of  + | factors, and
that all possible ways are thus accounted for. Deduce the formula

b= (2r) _( 2r )
r r—1
for the number b, of bracketing a product of r + 1 factors. (If st denotes the
r+1

number of all sequences of / terms ‘(* and k terms *)’, show that sy — b, = 5771,
by changing in any sequence the last unmatched )" into (’.)

6. LIE ALGEBRAS

Let K be any commutative and associative ring with 1 and denote by
As(K) the category of associative K-algebras. Since As(K) is a (full)
subcategory of (K), it is again subordinate to the category of anticom-
mutative algebras, which we shall here denote by (K)~ (instead of (K);,).
We therefore have a natural representation of (K) ™ in As(K). An admissible
mapping is just a K-linear mapping p such that

(1) u( xp]) = u(x)u(y) — p(y)u(x).

The admissible mappings are therefore defined by identities, and it
follows (by Corollary 1V.4.2) that there is a universal functor, associating
with every ( —)-algebra X a unique associative algebra U(X), the universal
associative envelope of X, with a canonical homomorphism

2 u: X = U(X).



290 Applications [Chap. VII]

This homomorphism is not usually injective; in fact, it is easily verified
that any element of the form

3) xylz] + yzlx] + zx]y]

is mapped to zero. We therefore confine our attention to (—)-algebras
in which this expression vanishes identically, and define:
A Lie algebra is a (—)-algebra satisfying the law

(4) xylz] + pzlx] + zx]y] =0 (Jacobi identity).

The previous remark shows that X must be a Lie algebra if (2) is to be
injective;a Lie algebra for which (2)is injective is said to be special. Over a
field as coefficient domain, every Lie algebra is special. This follows from
the Rirkhoff-Witt theorem, which, moreover, gives a basis for the universal
associative envelope of a Lie algebra L, in terms of a basis of L. Below
we shall give a proof of this result, but first we consider the special case of
a free Lie algebra. Here we shall prove rather more, namely we shall give a
basis of the algebra in terms of a free generating set. In particular, this
provides a solution of the word problem for free Lie algebras.

Let X be any totally ordered set and consider the free semigroup @, on X.
The elements of @y, called the words in X, are the finite rows of elements
of X and may be ordered lexicographically. More precisely, if « = u-+-u,,
v =vyv, (U5 € X), then we put w < v whenever u; = v, fori = 1,k — 1
and w, < vy, orw; = v, for i =1,-,sand r>s. With this definition, ® is
totally ordered; if e.g. x;, < x, < x3, then x,;x;x3x, < x,x;x,. Two words
u, v are said to be cyelic conjugates if u = ab, v = ba. A word u is said to be
regular if, for any factorization u = ab (a.b # 1), we have u > ba; thus a
word is regular if it comes after all its cyclic conjugates. We note that
u = a" with k > 1 is impossible for a regular word ; further, we remark that

(5) if u is regular and « < v, then wv < vu.

For if u <v and uv = vu, then u = vz, and so vzv > wz, ie. zv > vz,
which contradicts the regularity of w.

We now use the regular words to define nonassociative ‘basic products’,
which are to serve as a basis in our free Lie algebra. Let I'y be the free
groupoid on X its elements are rows of elements of X, bracketed in some
way. We indicate such products by writing [«], where there are n — 1
pairs of brackets if # has degree n (or n — 2 pairs if we omit the outermost
pair, as we shall do occasionally).
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Definition

A product [u] is called basic if either u € X, or the following conditions
hold:
(i) if [#] = [v][w], then [v], [w] are basic and v > w,
(ii) if [u] = [[v,][v.]][w], then v, < w.

This defines basic products by induction on the degree. E.g., if X =
{x,y} with x < y, then the basic products include

x, s [, [yx]x] - ([ [Dyx]d), -

The notation soon becomes unwieldy, but the situation is saved by the
following

Lemma 6.1
Every word u in X can be bracketed in just one way so as to be of the form
(6) u = [b,][bs]-[b,), by <by < - <),

where each [b,] is basic.

Moreover, if in any basic product [u] the brackets are removed, the resulting
word is regular, and conversely, each regular word u can be bracketed in just
one way as a basic product.

Proof:

We use induction on the length (= degree) of u. Let x; be the first element
of X (in the ordering) which occurs in «. If x; occurs in the first place in u,
we have

U =X,
where v has shorter length, and by the induction hypothesis, v = [b,]...[5,],
where b, < ... < b,; hence

(7 u = [x][b.]+[b/).

Now the only basic product beginning with x; is x; itself. Hence r > 1
except when u = x;; moreover, x; < b,. This shows that (7)is of the
required form and is unique.

Next, suppose that x; does not occur in the first place in u, so that

U= X;- X (x; > x9)

In any division of u into basic products, the only one beginning with x,
is x, itself, as we have just seen. But the first basic product begins with x;
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and so comes after x,. Thus, there is no division of the form (6) with x, as
factor. Now take any x, in ¥ which is preceded by x; # x,. Since x, is not
the initial letter of a basic product (in any division of the form (6)), it can
only be the final letter of some part, itself basic, of a basic product:
[[w]x,], say. But if w has degree greater than one, say w = w,w,, then
w, > x;, and this contradicts the fact that [w]x, is basic. Thus, w = x;,
and in any division of « into basic products, x;x, must occur as a factor.
By bracketing x,x, together and regarding it as a single letter we obtain a
shorter word, and using the induction hypothesis we obtain a unique
factorization (6) of u.

If in (6), r > 1, then using (5), we have b; < b;fori < j, and hence b;b; <
b;b;. This shows that

blbl“‘br < bzb]b_;"'b, = = bzbJ"'brbl;

hence, if r > 1, ¥ cannot be regular. Thus if u is regular, there is just one
way of bracketing « to obtain a basic product [u]. Conversely, if [v] is a
basic product, then either u has degree 1, and so is regular, or u has degree
greater than 1, and x, is the earliest letter occurring in u; then the first
occurrence of x; in [u] is in the combination [xx,] with x; > x,. Regarding
this as a new letter and using induction on the degree, we see that any
cyclic conjugate of w must precede u, except possibly one starting with x;
itself. But this also precedes u because wu clearly cannot start with x,.
Thus u is regular, as asserted. [

We can now prove a theorem giving a canonical basis for free Lie
algebras. The proof (as well as that of Lemma 6.1) is based on that of
SirSov [58] (cf. also M. Hall [50] and P. Hall [58]).

Theorem 6.2
Let L be the free Lie algebra on a totally ordered set X. Then the basic
products in X form a basis of L, as free K-module.

Proof:

We first show that the basic products in X span L. Any element of
degree greater than one in L is a linear combination of terms [v][w],
where [v] and [w] may be taken to be basic, by the induction hypothesis,
and we may assume that v > w, by anticommutativity. If [¢] has degree 1
or if [v] = [v,][vz2], where v, <w, then [v][w] is also basic. Otherwise
v, > w, and we have by the Jacobi identity

®) wlw] = —{lw2]wllles] + [0y ][w]lle-].
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Now oy, v;, and w are regular, and v, > v, > w; hence v,v; > v,v; and
v,w > wo, ; therefore

Uy UaW > Uy W > UaWUy.

Secondly, v,w > wo,, and so v,,w > vywo,. By induction on the order
(of terms of the same degree), the terms on the right of (8) can be expressed
in terms of basic products, and hence so can [v][w]. This shows that the
basic products span L.

To prove the independence, let A be the free associative algebra on X
and let [X] be the subalgebra of 4~ generated by X. Then [X]is a Lie
algebra on X, and since L is free on X, the identity mapping on X can be
extended to a homomorphism

©) L-[X]

We shall complete the proof of the theorem by showing that the basic
products in [X] are linearly independent over K. This will show inci-
dentally that (9) is an isomorphism. Any basic product has the form [u],
where u is regular. We assert that when [u] is written out in terms of
associative words in A4, then

(10) [u] = u + words preceding « in the ordering.

For let [] = [v][w]; then by induction on the degree, since [v] and [w]
may be taken to be basic,

[v] =0+ v¥, [w]=w+w?

where v* denotes terms preceding v and w* denotes terms preceding w.
Now
[4] = [v + v%, w + w*] = ow + v*w + ow* + v¥w*
—wp — wo¥ — w¥p — wp*,

On the right, all the terms in the first line precede vw, and those in the
second line precede wo, which itself precedes vw, by the regularity of u.
This proves (10). If we now have a relation

(ll} ZC(,'IJ.‘ = (G[EK),

between distinct basic products, let [1,] be the last basic product (in the
ordering) occurring in (11) with a nonzero coefficient. Writing out (11)
in terms of associative words, we find that

o, + earlier words = 0,



294 Applications [Chap. VII]

which is a contradiction. Hence the basic products are linearly indepen-
dent. J§

Theorem 6.3 (Birkhoff [37], Witt [37].)

Let L be any Lie algebra over a field K, with basis B. If B is totally ordered
in any way, then the universal associative envelope U(L) of L has the basis of
ascending products

(12) biby+b, (bieB, b, <-<b,).

In particular, L is special.

Proof:
Suppose first that L is free on X; then we have a homomorphism
(13) ¢:L—[X]

of L into the Lie algebra generated by X in A4 ~, where A is the free associ-
ative algebra on X. Now, any admissible mapping « of L into an associ-
ative algebra C (i.e., any homomorphism «:L — C~) induces a mapping
%5: X = C. This can be extended to a homomorphism «': 4 — C, because
A is free. Now ¢a’ and « are two homomorphisms of L into C~ which
agree on X and hence on L. Thus, 2 may be factored by ¢, and the mapping
o', restricted to [X ], is unique because it is determined by its values on X.
This shows that [X], with the canonical mapping (13), is the universal
associative envelope of L; we shall show that the products

(14) [by]-[6]  ([bi] basic, by < <b)

form a basis of 4. In the proof of Theorem 6.2 we saw that any basic
product [A] has the form

[b] = b + terms preceding b.
Hence, if « is any word in X, then by Lemma 6.1,

u="bbyb, (b < <h);
thus,

(15) u = [by][b;]---[b,] + earlier terms.

Now the distinct words « form a basis of 4, and by (15) these basic
elements can be expressed recursively in terms of the products (14);
therefore the latter again form a basis. Taking » = 1, we see that the
mapping (13) is injective, so L may be identified with a subspace of A.
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Let L' be the subspace of A4 spanned by all products (14) with at most
r factors. Since for any two basic products b, b;,

bib; = b;b; +2, Pikbx (yijx € K),

it follows that in any product of r basic products, the factors commute
(mod L"™1), so that L contains all expressions of degree r in the basic
products, taken in any order. In particular, if B is any basis of L, ordered
in some way, then the ascending products of degree r in B form a basis of
L™ (mod L™™1).

Now let L be any Lie algebra and write L = F/N, where F is a free Lie
algebra and N is an ideal of F. If B is any basis of F of the form B =
B’ U B', where B’ is a basis of N and B” is a basis for a complement of N
in F, then U(F) has a basis of elements

(16) v’

when v’, v” run over the ascending products in B’, B" respectively. Since N
is an ideal in F, the subspace V" of U(F) spanned by the elements (16) with
v # 1 forms an ideal in U(F). For if v'¢v" is of degree r, say v* = bby---by,
v" =b, b, (s=1), and be B, suppose that b,_; <b <b;; then, by
induction on r, we have

bybb = bybi_ bbb, (mod ¥V n F7h).

Here the right-hand side belongs to V¥, whence b,:--b,b € V, and similarly,
bb,---b, € V. This shows that ¥ admits multiplication by all elements of B,
and hence by all elements of F, i.e. it is an ideal. The quotient U(F)/V has
the basis of elements ¢”, i.e. all ascending products in B”, and since V' =2 N,
the natural mapping F - U(F) induces a mapping L — U(F)/V such that
the diagram

= > U(F)
L UR)/V

commutes. Thus we have a homomorphism U(L)— U(F)/V, and since
the ascending products in B” are linearly independent in U(F)/V, they are
also independent in U(L); clearly, they span U(L), and hence they form a
basis. ]

We remark that it is also possible to prove this theorem without using
Theorem 6.2, by a direct, though somewhat lengthy, computation (cf. e.g.
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Cartan & Eilenberg [56], ch. 13). That method has the advantage of
applying to any Lie algebra which is free as K-module, so that it is not
necessary to assume K to be a field. The Birkhoff-Witt theorem has been
formulated for arbitrary Lie K-algebras, and has been established for any
Lie algebras over a principal ideal domain (Lazard [54]), and more
generally, any Dedekind domain (Cartier [58]), but it does not hold in all
cases, since there exist Lie algebras which are not special (Cartier [58],
SirSov [53]). In all examples of nonspecial Lie algebras the additive group
of L has torsion elements, and in fact it has been shown that a Lie algebra
without torsion elements # 0 is necessarily special (Cohn[63]).

In conclusion we return to the free Lie algebra F and compute the
dimension i, of F,, the component of degree n of F, in case Fis of rank g.
Given any word u of length n, either all the cyclic conjugates of u are dis-
tinct, in which case u is conjugate to exactly one regular word, or « has the
form v*, where v has length d = n/k and is conjugate to just one regular
word. Therefore if we enumerate all the ¢" words of length n we get, for
each factor d of n, all the regular words of length d, each repeated d times.
Thus

q =¢§’ diy;

to solve this for ,, we write this down for all divisors of a given n and
solve recursively for mj,:

(1?) ”'f’.. =qn - Z an‘p: + Z qm‘p:pz — i,

piln Pipaln

where p,,p,.--- run over the distinct primes dividing n. To write this more
concisely, we introduce the Mobius function p(r):

—1)* if r = p,py---pi (distinct primes),

¢
Hr) = 0 otherwise.

Then (17) yields

Theorem 6.4 (Witt's formula)
Let F be the free Lie algebra on x,,---,x, and F, the component of degree n
of F; then the dimension of F, is given by

_l nid
o= udg.
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EXERCISES

1. Let L be any Lie algebra and denote by p, the right multiplication x — xa).
Show that a — p, is an admissible mapping from L to #(L), the ring of K-linear
mappings on L.

2. Show that a nonzero Lie algebra cannot have a unit element.

3. Show that if X is a generating set for a Lie algebra L, then L is spanned by
the left-normed products in X, where a product is said to be left-normed if any
factor is of degree | or is a product in which the left-hand factor is left normed
and the right-hand factor is of degree 1. (Note that by an application of Th. 6.2,
the basic products in X with respect to any ordering also span L. However in
general, basic products are not left normed, nor vice versa.)

4. In the free Lie algebra on {x} |J ¥, show that the left-normed products
obtained by bracketing the elements xy; --- y, (y;€ Y¥) appropriately form a
basis for the elements of degree n + 1 linear in x.

5. In the free Lie algebra on xy, ..., x,, show that the dimension of the space
of elements of degree n; in x; is
(E)l
4l

1 )
Z Y u(d)

where n = Zn,.

7. JORDAN ALGEBRAS

We now consider the natural representation of the category (K), of
commutative algebras in As(K). For brevity, we denote the product in
(+)-algebras by x-y and in associative algebras by xy (as before). More-
over, we shall assume that K contains an element 1 satisfying the equation

1+41=1
This is satisfied e.g. if K is a field of characteristic not two. An admissible
mapping is a K-linear mapping p satisfying
(&) wa-a) = 2u(a)*.
By linearity and commutativity we have
ab=14{(a+b)(a+b)—aa—->b-b}.
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Substituting into (1) and using the linearity of u, we obtain
@ ula-b) = pla)u(b) + u(b)u(a).

The process by which (2) was obtained from (1) is called linearization;
we shall also say that (2) was obtained by linearizing (1).

Again there is a universal functor associating with every ( +)-algebra X
an associative algebra which we denote by ¥'(X), and a canonical mapping

3) v X = V'(X).

To determine when v’ is injective, we again look for elements in the
free (+)-algebra which are mapped to zero by v’. It turns out that there
are no such elements of degree less than four. The most general element" of
degree four which is mapped to zero by v' is

©) (e-p)y? = (xy?) .
The corresponding law
(5) (xPy? = xy?)y=0

is called the Jordan identity, and any (+)-algebra satisfying the law (5) is
called a Jordan algebra. What has been said shows that if v* is injective,
then X must be a Jordan algebra; such a Jordan algebra is said to be
special. A K-linear mapping satisfying (1) will be called a special represen-
tation or associative specialization.

The reader may now expect a treatment of Jordan algebras which runs
parallel to the theory of Lie algebras. It turns out, however, that there are
fundamental differences which lead to a completely different development
of Jordan algebras. The first of these differences is the seemingly in-
significant one, that whereas the Jacobi identity is of degree three (which is
also the degree of the associative law), the Jordan identity is of degree four.
This already makes it unreasonable to expect the Jordan identity to be a
full substitute for the associative law. Thus, even when K is a field of
characteristic zero, there are Jordan algebras which are not special. The
best known of these ‘exceptional’ Jordan algebras is the algebra M3 of
Hermitian 3 x 3 matrices over the Cayley-Dickson algebra (Albert [34],
[50]). The class of special Jordan algebras clearly admits subalgebras and
direct products, but it is not a variety, as will be shown in Proposition 7.9
by an example of an exceptional Jordan algebra which is a homomorphic

1 In the sense that the fully invariant ideal generated by the word (4) contains every element
of degree four mapped to zero by v’



[VIL7] Jordan Algebras 299

image of a special Jordan algebra (Cohn [54]). Thus if ¢ is the variety of
all Jordan algebras and #" the class of special Jordan algebras, we have

(6) Frherpafleug

Here the first inequality is strict, by what has been said. Now Albert &
Paige [59] have shown that the exceptional Jordan algebra M?$ is not a
homomorphic image of a special Jordan algebra, and therefore does not
belong to v, #'. This shows the second inequality in (6) to be strict. It
means in effect that there are laws which hold in all special Jordan algebras
but not in all Jordan algebras. The proof by Albert and Paige gave no
explicit identities, although it appeared from the proofthat there should be
such identities of degree not exceeding 45. In fact some identities (of
degrees 8 and 9) holding in special Jordan algebras, but not in all Jordan
algebras, have now been found by C. M. Glennie [63].

In any Jordan algebra J, we denote by R, the right multiplication

@) R,:x— x-a.

This is also called the regular representation of J; in contradistinction to
the Lie case, this is not in general an admissible mapping of J into Z(J),
the ring of K-linear transformations of /. However, it does satisfy certain
identities which follow from the Jordan identity. In the first place, we
have from (5)

(8) R,R,: = R,:R;;
secondly, we can linearize (5) and express it as an operator equation acting
on one of the variables replacing y. Thus, denoting the left-hand side of
(5) by f(»), consider the expression f(u +v +w) — f(u +v) —f(v + w) —
Sf(w+u) +f(u) +f(v) +f(w). Its vanishing is expressed by the equation
X u)vw) +x0)wu) +xwurv)
=uUv)-X)w) + v w)x)u) + wou)x)o).

Writing this as an operator equation for w, we obtain
(9) RarRx'u *+ Rqu‘r.- + RxRu'u s Ru'f.r)'s) = RvaRu + RHRSR?.”

Any K-linear mapping y of a Jordan algebra into an associative algebra
satisfying the identities (8), (9) (with R replaced by ) is called a Jordan
representation or multiplication specialization of J. It is easily verified that
a special representation of a Jordan algebra is also a Jordan representa-
tion (cf. Exercise 2).

Consider a special Jordan algebra B, contained in an associative alge-
bra 4. If we denote right and left multiplication by a € 4 by p, and 4,,
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respectively, and the regular representation in B by R,, then, since x-y
= xy+ yx, it follows that

(10) Bk p

Now it is clear that both 4, and p,, restricted to B, are special represen-
tations, and moreover, the associative law in A: (ax)b = a(xb) may be
stated as

(11) LaPy = Pola

This expresses the fact that the representations 4 and p commute, and
it shows that the regular representation @ — R, in B is the sum of two com-
muting special representations. We shall generally call a K-linear mapping
of a Jordan algebra a semispecial representation if it can be expressed as
a sum of two commuting special representations. Then what we have
shown may be expressed as

Proposition 7.1
The regular representation of a special Jordan algebra is semispecial. |

Since the regular representation of any Jordan algebra is a Jordan
representation, Proposition 7.1 makes it seem plausible that any semi-
special representation is a Jordan representation, and this is easily seen to
be the case, by a direct verification, which may be left to the reader.
Moreover, a special representation p may be trivially expressed as a sum
of two commuting special representations:

u(a) = u(a) + 0,

and is therefore semispecial. We thus have three types of representations
of Jordan algebras, in decreasing order of generality:

(i) general representations,
(ii) semispecial representations,
(iii) special representations.

Of these (i) and (ii) are defined by identities and hence possess universal
functors V, V' with canonical mappings v, v’ respectively. Likewise
semispecial representations have a universal functor (V”, v”), where
" = v + v}, the v/ being special representations. More precisely, given
any semispecial representation p: J— A4 and a decomposition into
commuting special representations z = & + f, there is a unique semi-

special representation p*: V" — A such that a = vi*, 8= vou*. We
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need only put V" = V' @ V,vi=v @ 1, v; = 1@, v/ = v + j;
it is easily verified that (¥", v") has the desired universal property. We
note explicitly, if v/(a) = a’ for short, then

(12) LA EX ® y) = Xalx;) ® B(yy) (x;, yi €J),
where the right-hand side is well-defined because x’ = 0 implies a(x) =
B(x) = 0.

The canonical mappings v, v", v’ are also called the universal general,
semispecial and special representation respectively. Here (V', v') agrees
with the functor on (+ )-algebras introduced earlier. Since the representa-
tions are in decreasing order of generality, we have natural homomor-
phisms g: V(J) — V"(J), z: V"(J) — V'(J), where 7 corresponds to the
decomposition v = v" 4 0. These mappings can be combined with the
canonical mappings v, v”, v' into a commutative diagram

J >J =T
W)y————V Iy—— V)

Since each of V, V", V' is generated by the image of J, the mappings o, t
are both surjective. Whether they are injective depends on whether the
canonical mappings are injective, and we therefore begin by considering
these.

The universal special representation v’ is injective if and only if J is
special, by the definition of a special Jordan algebra. It follows im-
mediately that for special Jordan algebras, v” is also injective; conversely,
when v” is injective, then J has a faithful semispecial representation, and
hence a faithful special representation in a direct product of two associa-
tive algebras, replacing the representation a — u(a), where up(a) = a(a)
+ p(a) with «, p special, by: a@ = («(a),f(a)). Thus J is again special.
Turning now to v, we show that this is always injective, by constructing,
for any Jordan algebra J, a faithful general representation. LetJ' =J x ()
be the direct product of J and a free K-module generated by u, and define
a multiplication in J' by

(a,ou)(b,pu) = (a*b + ab + pa,afu) (a,bed; o,peK).
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Thus J' is just the algebra obtained by adjoining a unit element u to J.
It is easily verified that J' is again a Jordan algebra; hence its regular
representation is a Jordan representation. Now a — R, is a faithful
mapping from J to #(J'), because R, = R, implies thata = u-a =ub = b;
thus R, is a faithful Jordan representation of J, Summing up, we have

Proposition 7.2

The universal Jordan representation v is always injective, while the universal
semispecial representation v" and the universal special representation v’ are
injective if and only if the Jordan algebra is special. |}

Corollary 7.3
The mapping o:V(J) - V'(J) is not injective except possibly when J is
special.

For if ¢ is injective, then ve = v” is injective, and this can happen only
if J is special. |

We remark that ¢ need not be injective, even when J is special, as
may be seen by considering the Jordan algebra of 3 x 3 Hermitian matrices
over the quaternions (cf. Jacobson [54]); another example will be indicated
later,

By contrast 7 is not injective, except in trivial cases. Thus, let J be a Jor-
dan algebra over a field K, and assume that t is injective.

Since 7(1 ® v'(a)) = 0 for all ae J, we find that | ® v'(¢) = 0 for all
aeJ, hence V'(J) = 0.

We remark that / may well be nonzero even when V'(J) = 0. For ex-
ample, the exceptional Jordan algebra M§ mentioned earlier is simple;
now the kernel of the universal special representation v’ is clearly an
ideal in M$ and, being nonzero, must coincide with the whole algebra.
Thus, im v' = 0, and since V''(J) is generated by im v’, we have V'(M$)
=,

As for associative and Lie algebras, we have a correspondence between
representations and modules. Thus if J is any Jordan algebra, then by a
Jordan module for J one understands a K-module M together with a
Jordan representation J - £(M). Given a Jordan module M for J, with
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representation: a — p(a), we may form the split null extension E =J x M
with multiplication

(a,x) (b,y) = (a-byu(a) + xu(b))  (a,bel; x,ye M);

(cf. Exercise 5.8) and it is not hard to verify, using (8) and (9), that E is
again a Jordan algebra. In terms of E there is a simple criterion for a
representation of J to be semispecial (Jacobson [54]):

Proposition 7.4

Let J be a special Jordan algebra and M a J-module; then the representation
defined by M is semispecial if and only if the split null extension J x M is a
special Jordan algebra.

Proof:

Let a — p(a) be the representation defined by M if this is semispecial,
let u(a) = o(a) + fi(a), where a,f are commuting special representations of
J by lincar transformations of M.Since J is special, we may take it to be
embedded in ¥'(J)(i.e.as subalgebra of (F'(J))"). Now form the product
V'(J) x M with the multiplication

(a, X)(b, ¥) = (ab, xa(b) + yf(a)) (a.beJ;x, yeM).

Since V'(J)is universal for special representations, this defines an associa-
tive algebra structure on 4 = V'(J) x M, and it is easily seen that £ =
J x M is a subalgebra of A*. Conversely, if £ is embedded in the (+)-
algebra of some associative algebra A4, then we have for any xe M, aeJ,

X'a =xa+ax in A,

hence u(a) = p, + A, and this shows u to be semispecial. [

So far, all associative algebras have been assumed to possess a unit
element 1. Now the Jordan algebra may itself have a unit element, which
we shall denote by , to avoid confusion. This leads to a further subdivision
of representations, according to their effect on u. Let u be any Jordan
representation and write g, = u(u); then by (9),

: 1y +2p3 = 3pui =0,
15,
(13) (e — D2y — 1) =0.

Moreover, ; is central in ¥(J). For by linearizing (8) and using x, u, u
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as variables we obtain

1) ) + 2p() p(x) = 20 x) pelu) + puwe) px),
hence pp(x) = p(x)y for all x € J. Since V(J) is generated by p(J), we
see that g is central.

Thus we see that in any Jordan representation (over a field) the opera-
tor representing p has eigenvalues 0, 4, and 1. In particular, if I is the
unit element of }(J), then we have a decomposition

=1+ 1, + 14
of | into mutually orthogonal central idempotents, and a corresponding
decomposition
(14) V() = Vo) @ V() @ Vi)
of V(J), where V(J) is the universal associative envelope for representa-
tions @ — p(a) such that
(15) uw) =il (i =0,41).

The representation y is called wnital, special unital, or a zero representation,
according as (15) holds with i =1, §, or 0. Clearly a zero representation
of J is identically zero on J: applying (9) with v = u. p(u) = 0, we have

w(x) = pu - x) = 0.
If u is special unital, then by (9),

wa?) = pa?-u) = 2u@u(a-u) + plwu(a?) — 2p(@)u(u)p(a)
=2u(a)® + jul@?) — ua)*,
hence p(a?) = 2u(a)?, i.e. p is in fact special. Consider now F’(J) and
V'(J); they have decompositions precisely analogous to (14). Since every
zero representation and every special unital representation is special and
a fortiori semispecial, we obtain the canonical isomorphisms

Vild)= Vi(J) = VolJ); Vi) = Vi) = V).
In particular, it follows that the canonical mapping
a:V(J)—-V'(J)
is an isomorphism if and only if the induced mapping
g1z Vi) = Vi)

is an isomorphism (Jacobson [54]). The result may be expressed as
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Proposition 7.5

The universal general representation of a Jordan algebra J with unit element
is semispecial if and only if the universal unital representation of J is semi-
special. |}

The structure theory of Jordan algebras is farthest advanced in the case
of finite-dimensional Jordan algebras over a field (Albert [47]). We shall
not enter into this theory (mainly because universal algebra has little
bearing on it), but instead apply the theory of IV.4 to construct nonspecial
Jordan algebras and non-semispecial representations. Henceforth all
Jordan algebras are understood to be over a field K of characteristic not
two.

Let A4 be the free associative algebra on X and denote by (X)* the
subalgebra of A* generated by X; the elements of (X)* are also called
Jordan elements in X. Our first task is to find a test for an element of 4
to be a Jordan element. Such a test is known only when X has at most
three elements, and is obtained as follows. On 4 we define a linear
mapping a — a*, the reversal operator, by the equation

(16) (%1232 %)% = X2 X2 Xy (x;€ X)

together with linearity. This determines the mapping completely, because
the monomials x,x,+-x, form a basis for 4. We note that

(ab)* = b*a*, a**=a  (abeA),

An element a € A4 satisfying the equation a* = a is said to be reversible.
For any a € A, we write

{a} = ¥a + a¥);

from this definition it is clear that {@} is reversible, for all elements a of A.
The set of all reversible elements of A is denoted by H; it is a subalgebra
of A* which contains (X)*, but need not be equal to it. To verify this,
let us assume that X has at least four distinct elements x,x,,x3,X,, and
consider the tetrad

an {x1x203%,}.

Clearly this lies in H, but it does not belong to (X)*, for if we apply all
24 permutations = to the variables x,---,x;, multiply by the sign of the
permutation =, and sum, we obtain from (17):

2(31gn n}xlnxl X 3r X4,
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because (1,2,3,4) differs from (4,3,2,1) by an even permutation. On the
other hand, the same operation performed on a Jordan element linear in
each of x,,x,,x5,x, gives zero, because any such element is a sum of terms
involving a factor {x;x;}. However, we obtain the whole of H once we
include the tetrads in the generating set (Cohn [54]):

Theorem 7.6
The (+)-algebra H of reversible elements of A is generated by X and all the

tetrads (17) where x; € X.

Proof:

Let H' be the subalgebra of A™ generated by X and the tetrads; then it
is clear that H' = H; to prove equality, we need only show that p,
= {x,---x,} € H for any x; € X. For n =0,1,2 this is clear, so w¢ may use
induction on n. Thus for n = 3,

(18) {xy x50} + {xz 2,0} = x {x0x,} =0 (mod H),
by the induction hypothesis. Thus, mod H’, the product p, changes sign

under the permutation (1,---,n); in particular, when » is odd, this proves
that p, € H'. For even values of n greater than two, we have

{x1x2}{x3--x,} =0 (mod H'),
whence
{x126223 %} + {X3Xgr X, X1 X2} + {X2X X3, }
+ {x3x,xx,3 =0 (mod H’),
or, using (18),

(19) {xixz---x,} = —{xX, X500 X} (mod H).

Since the permutations (12---n) and (12) generate the symmetric group,
we see by repeated application of (18) and (19) that p, is skew-symmetric
(mod H’). Hence p, € H' unless x,,---x, are all distinct. For n = 4, this
reduces all products to tetrads (17) with distinct arguments, so we may
assume that n = 6 and » is even. Then,

{xyx223%,} {x5x,} =0 (mod H'),
ie.
{22203 X500+ X} 4+ (X4 X3 XX X50--x,} =0 (mod HY),

and hence p, € H'; this shows that H' = H. |}
When X has less than four elements, no tetrads occur, and we obtain
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Corvollary 7.7
In the free associative algebra on three free generators x,y.z, the set H
of reversible elements is precisely the subalgebra generated by x,y,z. |}

In other words, an expression in x,y,z is a Jordan element if and only
if it is reversible. As a consequence we have

Theorem 7.8
Any homomorphic image of a two-generator special Jordan algebra is
special.

Proof:

Let A be free associative on x and y, and denote by J the subalgebra of
A" generated by x and y; thus J is the free special Jordan algebra on x
and y. We have to show that any homomorphic image of J is special, and
by Theorem IV.4.5, this will follow if we show that for any ideal N of J,

(20) ANAnJ = N.

Any element of ANA nJ is a sum of terms aub + b*ua*, where a,b € A
and u € N. Now consider the element azb + b*za* in the free associative
algebra on x,y,z. Clearly this is reversible, and by Corollary 7.7 it can be
expressed as a Jordan element in x, y, z:

azb + b*za* = f(x,y,2).
Hence
aub + b*ua* = f(x,y,u) € N.

Since N € ANAnJ in any case, this proves (20), and the assertion
follows. [

This theorem, together with the result of SirSov [56] that the free Jordan
algebra on two free generators is special, shows that in fact every two-
generator Jordan algebra is special. In this context it is of interest to note
that the exceptional Jordan algebra M$§ can be generated by three elements.
We shall not prove that this algebra is exceptional, nor even that it is a
Jordan algebra, but instead we shall construct a homomorphic image of a
special Jordan algebra which is exceptional. Let A be the free associative
algebra on x,y,z and J the Jordan algebra generated by x,y,z. Consider
the ideal P in J generated by u = x-y(=1(xy + yx)); if J/P were special, we
should have APA nJ = P, whence

{uxyz} e P.
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This means that there is a Jordan element f(u,x,y,z) in four free variables
which reduces to {uxyz} when we put u = x-y. Hence f must be a linear
combination of reversible elements which are homogeneous linear in
each of w,x,y,z. Taking only the terms ending in z, we see that the only
contributions come from v, = {uxyz}, v, = {uyxz}, vy = {xyuz}, vy = {yxuz},
vs = {xuyz}, ve = {yuxz}. When we specialize to u = x-y, only vs; has a
term in x*y?z and only v, has a term in y*x?z, so neither of these can occur
Now xy*xz occurs only in v, and v,, so these must occur with opposite
coefficients, « and —ao respectively, say. Similarly, yxyxz occurs only in
v; and vy, so v, has coefficient —z. But the contributions to xyxyz and
yx*yz must be equal, and this can only happen when « = 0; this leaves
only v,, and we have seen that v, = {uxyz} is not a Jordan slement in
u,x,y,z. This establishes

Proposition 7.9

The homomorphic image of the free special Jordan algebra on x,y,z ob-
tained by adjoining the relation x'y =0 is exceptional. In particular, the
class ¢ of special Jordan algebras is not a variety. |}

In the same way, it may be shown that the Jordan algebra generated
by x,v,z with relations x*y =0 and Z* =0, where Z is the ideal gener-

ated by z, is exceptional. But this is just the split null extension of
the algebra
(21) Flxylx-y =0}

by the universal general representation. Hence by Proposition 7.4 this
representation is not semispecial; thus in (21) we have a special Jordan
algebra for which the canonical mapping o: ¥(J) — ¥"(J) is not an iso-
morphism. This result is of special interest in view of Macdonald’s theo-
rem (Macdonald [60] or also Jacobson [62]), which states that any
identity in x,p,z and linear in z, which holds in all special Jordan algebras,
holds in all Jordan algebras. An equivalent formulation of the theorem
states that the universal general representation of the free Jordan algebra
F, on two free generators is semispecial (in particular, Sir§ov’s theorem
quoted earlier follows from this). From this one may deduce, using
the same technique as in the proof of Theorem 7.8, that all represen-
tations of F, are semispecial, in contrast to the representations of the
algebra (21).
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EXERCISES

1. Show that every Jordan algebra satisfies the law
(@*h)y-c—(a*c)-b=2ab)c)-a—2ac)b)a
Is this law (in a (+)-algebra) equivalent to the Jordan identity?
2. Verify that every semispecial representation is a Jordan representation.

3. Verify that the split null extension of an A-module M, where 4 is a (+)-
algebra (cf. Exercise 5.8) is a Jordan algebra if and only if A is a Jordan
algebra and M defines a Jordan representation.

4. If N is the kernel of a general representation of a Jordan algebra J, verify
that A(k,a,b) = A(ak.b) = A(a,b,k) =0 (mod N) for all a,be A, k e N, where
Ala,bc) = (a-b)-c —a-(b-c). When the representation is special, show that
maoreover N is an ideal of J.

5. 1f A is an associative algebra with | over a field of characteristic not two.
show that an element a € 4 has an inverse b in 4 if and only if the equations
a-b=2a% - b=4aholdin A".

6. Show that a Jordan algebra on a single generator is associative.

7. If J is a Jordan algebra on a single generator, show that 1'(J) is commuta-
tive; give an example of an associative Jordan algebra whose universal associa-
tive envelope for special representations is not commutative.

8. Let J be an n-dimensional vector space (over a field of characteristic not
two), and define an algebra structure on J by putting x - y =0 (x,p€J).
Verify that J is a Jordan algebra and describe the associative algebras V'(J)
and V(J).

9. (i) Let J be a Jordan algebra, X a generating set of J and ¢ an element of
JIf RR.= RR, and R R. = RR,, for all x.ye X, show that R.R, =
R, R forallaelJ.

(ii) Deduce that for all positive integers i and j, every Jordan algebra satisfies

the identity R,.;R,-; = Ry.Ry.

(iii) Show that (i) does not hold if J is merely generated by X {c} or if we

onit the second equation from the hypothesis.

10. Let ¥ be the free Jordan algebra on two generators x, y. Show that the
subalgebra of V generated by x. x - 1, (x - y) + ¥, ... is the free special Jordan
algebra on this countable set.



Foreword to the supplements

Since the appearance of the first edition there has been much activity
in universal algebra. Most of this has been the technical development of
the subject, and so does not primarily concern us here, since we are
more interested in the applications. But the power and scope of the
subject has been greatly increased by two outside influences, namely
category theory and logic, particularly model theory. In the supplement-
ary chapters we can do no more than survey some of the salient features
of the new development, and pick out one or two details of particular
relevance to the topics in the main body of the book.

In quite another direction computer science (‘information theory’)
has made a study of automata, which has revealed an underlying similar-
ity with the kind of structure encountered in universal algebra; this has
been brought out particularly clearly in algebraic language theory. It
would take us too far afield to develop this ab ovo, but we include a
survey article on the subject which appeared recently, as Chapter XI.
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Chapter VIII

Category Theory and Universal
Algebra

1. THE PRINCIPLE OF DUALITY

One of the more notable features of the axioms for an abstract category
is the complete duality; this plays an important role in simplifying proofs.
However, most of the concrete categories such as Sets, Groups, Rings,
and Modules are not self-dual. This means that not all the important
features of these categories can be described by a self-dual set of axioms,
and it is an interesting task to push the description in terms of self-dual
axioms as far as possible. There is also the practical advantage that any
result obtained as a consequence of these axioms may immediately be
dualized.

Perhaps the best illustration of this phenomencn is the categorical
description of modules. What may be regarded as a particularly useful
self-dual approximation to a category of modules is the notion of an
‘abelian category’, and the Mitchell-Freyd embedding theorem (cf.
Mitchell [65], p. 104 or Gabriel [62]) makes it explicit what has to be
added to obtain a category of modules over a ring. Most notable among
the non-self-dual conditions holding in the category of modules over a
ring is Grothendieck’s axiom AB.5 (C.3 in Mitchell). This is essentially
the relation at the foot of p. 85 in Ex. I1.5.8.
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For a simple example illustrating the lack of duality we consider St,
the category of sets. This category has direct and inverse limits and every
set is the direct limit of its