
UNIVERSITY OF BELGRADE

FACULTY OF MATHEMATICS

Kwasi Appiah Takyi

PREDICTION OF POPULATION SIZES OF AFRICAN COUNTRIES BY RECURRENT
NEURAL NETWORK

Master thesis

Belgrade, 2024

Mentor:

Prof. Mladen Nikolić
Faculty of Mathematics, University of Belgrade.

Members of Commission:

Prof. Zorica Stanimirović
Faculty of Mathematics, University of Belgrade.

Prof. Aleksandra Delić
Faculty of Mathematics, University of Belgrade.

Date of defence :

Contents

1 Introduction 1
1.1 Importance of population on earth . 1
1.2 Problems of some African countries . 2
1.3 Statement of problem . 5
1.4 Objectives . 6
1.5 Good predictive performance . 6
1.6 Structure of the thesis . 7

2 MACHINE LEARNING AND NEURAL NETWORKS 8
2.1 Basic concept of machine learning . 8

2.1.1 Model . 8
2.1.2 Loss . 9
2.1.3 Loss minimization . 9
2.1.4 Gradient descent . 10

2.2 Evaluation of machine learning models . 10
2.3 Feed forward neural network . 12

2.3.1 Structure of feed forward neural network 12
2.3.2 Forward propagation . 13
2.3.3 Backpropagation and training . 13

2.4 Recurrent neural network . 14
2.4.1 Key concepts of RNN . 15
2.4.2 Architecture of recurrent neural network 15
2.4.3 Characteristics of simple RNNs . 16

3 DATA IMPUTATION 17
3.1 Missing data and the concept of data imputation 17

3.1.1 Understanding missing data . 17
3.2 Basic methods of data imputation . 18

3.2.1 Linear interpolation . 18
3.2.2 Mean . 18
3.2.3 Indicators . 19

4 PREDICTION OF POPULATION SIZE 20
4.1 Description of predictive task . 21
4.2 Dataset description . 21

4.2.1 Features of the dataset . 21
4.3 Model description . 24

4.3.1 Important libraries . 24

4.3.2 Model architecture . 25
4.3.3 Training . 26
4.3.4 Quality metrics . 26
4.3.5 Implementation . 27

5 EXPERIMENTAL RESULTS 38
5.1 Aggregate results . 38
5.2 Per country analysis . 39

5.2.1 Visual summary . 39

6 CONCLUSION 46

Declaration

I hereby declare that this submission is my own work towards the award of the Master of Sci-

ence degree and that, to the best of my knowledge, it contains no material previously published

by another person nor material which had been accepted for the award of any other degree of

the university, except where due acknowledgement had been made in the text.

Acknowledgement

This thesis could not have materialized without the divine protection and guidance of the

Almighty God. First and foremost, I am immensely grateful to the government of the Re-

public of Serbia and Ghana, which provided me with the unique opportunity to pursue my

master’s degree at the University of Belgrade, Faculty of Mathematics under the "World in Ser-

bia" scholarship program. This collaboration has not only broadened my academic horizons

but has also allowed me to experience the rich culture and hospitality of Serbia.

My profound gratitude to the Serbian ministry of education, science and technology and other

ministries for their invaluable support during my master’s studies.

I extend my heartfelt appreciation to the Faculty of Mathematics and staff of the Department for

Numerical Mathematics and Optimization for providing a conducive and intellectually stimu-

lating environment for my studies. The resources and facilities made available to me have

significantly contributed to my research.

I am profoundly thankful to my lecturers Prof. Zorica Stanimirović (Head of Department),

Prof. Milan Dražić, Prof. Sandra Živanović, and Prof. Aleksandra Delić at the University

of Belgrade for their invaluable guidance, support, and encouragement. Their expertise and

insights have been instrumental in shaping this thesis. Special thanks go to my mentor Prof.

Mladen Nikolić, whose continuous support and constructive feedback have been pivotal in the

successful completion of this work. I am grateful to my lovely wife Mrs. Ruby Baidoo and

daughter Jenaiah Appiah Takyi, and other family members for being with me from the begin-

ning of this academic journey. Lastly, I would like to thank my fellow students and colleagues

at the University of Belgrade for their camaraderie, shared experiences, and the collaborative

spirit that made this journey memorable.

This thesis would not have been possible without the collective support and contributions of

all these individuals and institutions. Thank you all for being an integral part of this academic

endeavour.

Abstract

Population growth forecasting shows the future mortality and fertility rate, as well as migra-

tion of people from one country to another. This is really vital to the health system of every

country, especially the ones in Africa. The rate at which the population of Africa is increas-

ing, there is the need to pay active attention to it. Recently, machine learning concepts are

most growing and popular for predicting future values. In order to predict population growth,

the machine learning models are applied to a pool of indicators that affect population growth.

There was an issue of missing values in the respective data, hence three imputation method

were used. Namely, mean, linear interpolation, and linear interpolation with additional indi-

cators. The thesis investigates the population growth of 39 selected African countries using

time series forecasting machine learning technique recurrent neural network (RNN). The data

optimum prediction method is based on the method that gives lowest error rate through the use

of the RNN model. The Python programming language was used because it is user friendly and

it showed to be successful when solving most mathematical and statistical learning problems.

The libraries Pandas, Numpy, Scikit-Learn, Keras were utilized.

Keywords: Machine Learning, Recurrent Neural Network, Python, Time series forecasting,

Population, Feed Forward Neural Network, Data Imputation, Linear Interpolation, Mean,

Indicators.

Chapter 1

Introduction

1.1 Importance of population on earth

Population development is a significant factor in understanding numerous angles of human so-

ciety and the environment. Its significance can be assessed from a few viewpoints, including

financial, social, and political measurements. Here are a few key focuses outlining the signif-

icance of population growth in the world. A developing population can give a greater labour

drive, which can contribute to financial development. More labourers can lead to expanded gen-

eration and utilization, cultivating financial advancement. This can increase product and service

delivery, driving development and entrepreneurship. Populace development frequently leads to

urbanization, which requires the improvement of framework such as lodging, transportation,

and open administrations. This can drive improvements in living guidelines and quality of life.

A developing populace can improve social differences, cultivating imagination, advancement,

and social dynamism. Overseeing population development is basic for arranging and giving

satisfactory instruction and healthcare administrations. Quick development can strain these

frameworks, whereas well-managed development can lead to enhancements in human capital.

On the other hand, population growth increases the talent pool and human capital. Humans have

a distinctive life history even among our closest living relatives: compared to other primates, we

endure a long adolescent period of intensive growth, extreme dependency and learning; we ma-

ture and reproduce late; we have long reproductive careers with short inter-birth intervals; and

we enjoy a long post-reproductive lifespan [1]. It necessitates improvements in infrastructure

and public services, prompting governments to invest in beneficial sectors, such as healthcare,

transportation, and education. This can lead to higher living standards and improved quality

of life of citizens. Moreover, a youthful population can drive societal progress and adaptabil-

ity, ensuring a steady supply of future leaders and innovators. While population growth brings

numerous benefits, it also poses important environmental problems on societies.

1

Figure 1.1: A map showing the world’s population. Source: Max Roser (2018), https://
ourworldindata.org/world-population-cartogram.

1.2 Problems of some African countries

African countries encounter various challenges that stem from a complex interplay of histori-

cal, social, economic, environment, and political factors. The fastest-growing population in the

world is found in Africa. Figure 1.1. shows the world population as at 2018 [2]. If we compare

the population data of 2018 and 2022, it is evidence that some African countries like Demo-

cratic Republic of Congo, Ethiopia, and Nigeria are the countries driving this expansions. The

youthful demographic of the Africa population, with a median age of approximately 19.5 years

[3], in contrast to the global median age of 30.6 years as at 2024 [4], is a significant contribut-

ing element. The trend of rapid urbanisation is also noteworthy. Cities like Kinshasa, Nairobi,

Lagos, and other quickly growing cities are occasionally growing faster than the infrastructure

required to support this growth [5]. The migration from rural to urban areas in search of better

living and work opportunities is what fuels urbanization. Among these issues are governance

and political instability. Corruption remains a known issue, destroying development and public

trust in government institutions. Many African countries have damaged political institutions,

which led to poor governance and ineffective public administration. In recent times conflicts,

civil wars, and insurgencies disrupt social and economic instability, with regions like parts of

Nigeria, Ethiopia, Sahel and Somalia being particularly affected.

2

 https://ourworldindata.org/world-population-cartogram
 https://ourworldindata.org/world-population-cartogram

Figure 1.2: Unemployment rate in Africa from 2012 - 2024 by Statista.

A large proportion of the population in many African countries lives in poverty, with limited

access to basic needs such as shelter, clean and safe water for drinking and food. Figure 1.2.

shows the unemployment rate in Africa [6]. There is a high level of unemployment, specif-

ically among the youth, which can lead to economic stagnation and social tension. Many

African economies rely heavily on the export of primary commodities, which is exposing them

to global price variations. Also considering some social related issues such as healthcare and

education, healthcare administration is not well organised, leading to high rates of disease and

low life expectancy.

Diving into environmental challenges caused by high population growth, Africa can not be

excluded. Africa is commonly portrayed as the driver of a global "population explosion" [7].

This rapid growth is putting pressure on an already strained water and sanitation infrastructure,

with municipalities struggling to make improvements toward water and sanitation targets out-

lined in the Sustainable Development Goals [8].

Challenges include high fertility rates, varying migration patterns, and diverse economic con-

ditions, which complicate accurate population forecasting. Reliable predictions are crucial for

managing resources and planning for future development.

3

Figure 1.3: Illegal mining in some part of Ghana has polluted many water bodies and
caused land degradation due to increasing population and high job demands. Source: Em-
manuel Ofosu-Mensah Ababio. Historical and Modern Artisanal Small-Scale Mining in Akyem
Abuakwa, Ghana

Success requires cooperation between the public and business sectors, foreign partners, and

civil society. Below are some few suggestions to help mitigate the problems of increasing

population:

1. Economic development: This could be done by diversifying the economy to lessen

reliance on a small number of items. Making investments in vital infrastructure, such as

energy, ports, and highways. Giving support to Small and Medium Enterprises (SMEs)

by having access to markets and financing. The countries must encourage the integration

of regions and draw in foreign direct investment (FDI).

2. Healthcare: Africa’s undeveloped healthcare systems require creative thinking and un-

conventional solutions to overcome the existing service delivery deadlock. Public-private

projects, for instance, have to be pursued, in which multinational corporations that take

resources from Africa could be persuaded to reinvest a portion of their revenues on

healthcare for the populations that supply their labour force. The majority of issues and

their fixes are related to management, budgeting, and human resources. Setting these as

a top priority is crucial to enhancing health outcomes.

3. Governance and political stability: This is another source of some of the issues that

Africa is currently facing. Government agencies should be well-established, transparent,

and accountable in order to lessen it. Furthermore; establishing strict anti-corruption

guidelines and practices, promoting democratic processes, and upholding the law are

essential. Numerous instances suggest that the majority of laws support particular groups

of people.

4

4. Education and skills development: The majority of African nations continue to use

antiquated curricula; therefore, we must improve our curriculum and incorporate digital

literacy and critical thinking to modernise our educational system. A developed skill set

that can meet the demands of the market today is required.

5. Agriculture and food security: Leaders in Africa must advocate for climate-resilient

and sustainable farming practices, and give smallholder farmers access to markets, tech-

nology, and funding. In addiction, one should put in place initiatives to guarantee food

security and lessen hunger.

6. Environmental sustainability: Climate change is wreaking havoc on development in all

its forms. Therefore, minimising the harmful effects of climate change on our ecosystem

can be achieved by developing ways to address its implications. Preserving biodiversity

and natural resources is a very important point to consider. For instance, reducing the

illegal mining that occurs in certain nations, such as Nigeria, Ghana, and South Africa.

Additionally, investing in renewable energy sources will help reduce reliance on fossil

fuels.

7. Technology and innovations: It is necessary to make investments in digital infrastruc-

ture and guarantee that technology is accessible and affordable. Establishing an atmo-

sphere that promotes creativity and entrepreneurship. Additionally, improving gover-

nance and service delivery by utilising ICT more effectively.

1.3 Statement of problem

The growth in the size of the world population is often considered a major challenge for the

sustainable development of the world economy and the maintenance or improvement of the liv-

ing conditions of people around the world. Population growth is currently the most pronounced

in African countries, and it calls for special attention. Hence, accurate prediction of population

sizes is crucial for effective planning and resource allocation in African countries, where rapid

demographic changes and data collection challenges are prevalent. Traditional statistical meth-

ods often fall short in capturing the complex, non-linear patterns inherent in population growth.

Additionally, the presence of missing values in demographic datasets further complicates the

prediction process, leading to inaccurate estimates and suboptimal policy decisions. Therefore,

there is a critical need for advanced methodologies that can handle incomplete data and provide

reliable population forecasts.

5

1.4 Objectives

As the population size changes over time, it can be considered a time series. Machine learning

methods appropriate to time series and sequential data can be used to model it. This study’s

main goal is to create and assess a Recurrent Neural Network (RNN) model that can accurately

forecast the population sizes of African nations. The purpose of this study is to:

• Examine how successful RNNs are in representing the non-linear patterns and temporal

dependencies found in population data.

• Address the challenge of missing values in demographic datasets by employing impu-

tation techniques and incorporating mechanisms within the RNN architecture to handle

incomplete data.

• Compare the performance of the RNN model on various imputation method on the

dataset to highlight the advantages and potential improvements offered by machine learn-

ing approaches.

• Provide reliable population forecasts that can assist policymakers and stakeholders in

making informed decisions for sustainable development and resource allocation in African

countries.

• Analyse the outcome result and to identify the best model and imputation method for

each country.

1.5 Good predictive performance

Forecasting population sizes for African nations with recurrent neural networks (RNNs) may

be complicated because of various influencing factors like birth rate, GDP growth, death rates,

economic factors, migration, and governmental policies. The predictive accuracy may differ

based on the dataset and circumstances, but standard quality measures like mean squared error

(MSE), R-squared (R2), and mean absolute error (MAE) will be used to assess models effec-

tively.

Preliminary results indicate that the RNN model achieves good predictive performance on the

mean imputation method, accurately forecasting population sizes with lower error rates com-

pared to other imputation methods used in the experiment.

6

1.6 Structure of the thesis

This thesis has six chapters. Chapter 1 presents the motivation of the study. Chapter 2 will

focus on the machine learning and neural networks, taking into consideration the basic concepts

of ML (model, loss, loss minimization, gradient descent), basics of evaluation (training and

test set, root mean square error, absolute error), feed forward neural networks and recurrent

neural networks. Chapter 3 will discuss data imputation. Missing data and the concept of

data imputation, and basic methods of data imputation will briefly be discussed. Chapter 4

will present the prediction of population size. And the description of predictive task, dataset

description, model description, quality metrics and implementation (code snippets). Chapter

5 will highlight experimental results. Considering report on basic metrics and per-country

analysis. Finally, Chapter 6 will draw the conclusions.

7

Chapter 2

MACHINE LEARNING AND NEURAL
NETWORKS

Machine learning (ML) can be define as a process of building computer systems that automati-

cally improve with experience, and implement a learning process [9]. In contrast to traditional

programming, which requires a programmer to explicitly set the rules and logic, machine learn-

ing algorithms enable the system to derive patterns and insights from the data it receives. Ma-

chine learning can be categorised into three main types, namely supervised, unsupervised, and

reinforcement learning. In this chapter, we will be focusing on some aspect of ML.

2.1 Basic concept of machine learning

Machine learning is continuously growing in the IT world and gaining strength in different

business sectors. Although machine learning is in the developing phase, it is popular among

various technologies. It is a field of study that makes computers capable of automatically

learning and improving from experience. Hence, machine learning focuses on the strength of

computer programs with the help of collecting data from various observations. Major roles in

machine learning are performed by some concepts like model, loss, loss minimization, and gra-

dient descent. We shall briefly explain some of the relevant concept of ML in the subsections

[10].

2.1.1 Model

Machine learning model is a mathematical representation of real-world problems. It is a type

of mathematical model f (X ;w) that, after being "trained" on a given dataset X , can be used

to make predictions or classifications on new data. Examples are linear regression, neural

network, decision tree, etc. The main component of ML models are:

8

• Parameters (w): These are the numbers that the model learns from the training data.

For instance, in a linear regression model, these parameters are the coefficients which

multiply the variables.

• Hyperparameters: They are the external configurations set before training the model,

like the learning rate in gradient descent or the number of layers in a neural network.

2.1.2 Loss

The loss is a function L (y, f (X ;w)) that measures how well the models predictions match

the true values y. It quantifies the error between the predicted output and the actual output;

and thus measures the network’s performance in numerical terms [11]. The choice of a loss

function depends on various factors, including the nature of the problem, the distribution of the

data, and the desired characteristics of the model. Different loss functions emphasize different

aspects of model performance and may be more suitable for specific applications. Common

loss functions include:

• Mean squared error : MSE is a fundamental metric in the realm of machine learning, par-

ticularly in the domain of regression analysis. The mean squared error is a crucial metric

for evaluating the performance of predictive models. The mathematical formulation is

given below as:

L (y, f (X ;w)) =
1
k

k

∑
i=1

(yi − f (Xi;w))2. (2.1)

• Cross-entropy loss : It is used in classification tasks, and it can be computed mathemati-

cally as:

L (y, f (X ;w)) =−1
k

k

∑
i=1

[yi log f (Xi;w)+(1− yi) log(1− f (Xi;w))]. (2.2)

2.1.3 Loss minimization

Loss minimization is the process of changing the model’s parameters w to reduce the loss

function. The objective is to optimise the model’s performance by identifying the combination

of parameters that provide the least amount of loss. This process is also known as optimization.

It is defined as:

w∗ = argmin
w

L (y, f (X ;w)). (2.3)

9

2.1.4 Gradient descent

Gradient descent is known as one of the most commonly used optimization algorithms to train

machine learning models by means of minimizing errors between actual and expected results.

Again, gradient descent is also used to train neural networks. The higher the gradient, the

steeper the slope. Notices that, if the slope is zero, the model stops learning. Gradient descent

can be formulated mathematically as:

wi+1 = wi − k
∂L
∂w

, i = 1,2,3, . . . (2.4)

wi+1 is the next expected position of the model parameter, wi is the previous position, k is the

learning rate, and
∂L
∂w

is the gradient of the loss function with respect to w. Figure 2.1 gives an

overview of gradient descent [12].

Figure 2.1: Gradient descent in machine learning. Source: https://www.javatpoint.com/
gradient-descent-in-machine-learning

2.2 Evaluation of machine learning models

Model evaluation is a process that uses certain measures to help analyse model performance

[13]. The evaluation also helps to analyse the main weaknesses of the model. There are various

metrics such as precision, accuracy, recall, F1 score, area under the curve, confusion matrix,

mean absolute error and root mean square error. But in this work, we shall be focusing on mean

absolute error, R-squared, and root mean square error.

• Training set: [14] Training set refers to the dataset used in training a machine learning

model. It includes the input and the corresponding expected output, where the inputs are

the features or attributes that the model will use to make predictions, and the outputs are

the target values or labels that the model is expected to predict. The model learns from

this data by finding patterns and relationships between the inputs and outputs. Type of

training data hugely determines the ability of the model to generalize. Note that it is very

important to allocate a higher percentage of the data to the training set.

10

https://www.javatpoint.com/gradient-descent-in-machine-learning
https://www.javatpoint.com/gradient-descent-in-machine-learning

• Validation set : Validation set is a portion of the data from the training set often set aside

as to tune the model’s hyperparameters and prevent over-fitting. In machine learning, a

validation set is a subset of the dataset used to evaluate the performance of a model during

training. The primary purpose of the validation set is to provide an unbiased evaluation

of the model while tuning its hyperparameters, thus helping to prevent over-fitting and

ensure the model’s generalizability. When comparing multiple models, validation helps

in selecting the best model. The one that performs best on the validation set is usually

chosen as the final model.

• Test set: Once a machine learning model is built (with training data), one needs unseen

data to test the model. This data is called testing data. It is used to evaluate the per-

formance of the machine learning model. After training, the model makes predictions

on the test set, and these predictions are compared to the actual outputs to assess the

model’s performance. Figure 2.2 is an example of how data is split in data preprocessing

for machine learning.

Figure 2.2: Image showing the splitting procedure in ML. Source: https://builtin.com/
data-science/train-test-split

• Root mean squared error (RMSE): When we talk about RMSE in machine learning,

we are essentially addressing its role as a performance measure for algorithms that in-

volve prediction or forecasting. It provides an estimate of how far the predicted values

ŷi deviate on average, from the actual values yi in the dataset. It is valuable because it

retains the same units as the input, making it easier to interpret. The RMSE is given by:

RMSE =

√√√√1
k

k

∑
i=1

(yi − ŷi)2 (2.5)

• Mean absolute error (MAE): MAE is the average of the absolute differences between

the predicted values and the actual values. MAE takes the average of absolute errors for

a group of predictions and observations as a measurement of the magnitude of errors for

11

https://builtin.com/data-science/train-test-split
https://builtin.com/data-science/train-test-split

the entire group. MAE can also be referred as L1 loss function. It is often considered

more interpretable because it represents the average error in the same units as the original

data. The mean absolute error is mathematically given as:

MAE =
1
k

k

∑
i=1

|yi − ŷi| (2.6)

• R-Squared : The R2 measures the proportion of the variance in the dependent variable

that is predictable from the independent variables. A good R2 values for population

prediction, close to 1 indicates that a large proportion of the variance is explained by the

model. Below is the formulation of R-squared:

SSR =
k

∑
i=1

(yi − ŷi)
2 (2.7)

SS =
k

∑
i=1

(yi − ȳ)2, (2.8)

where ȳ is the mean of the true values,

R2 = 1− SSR
SS

. (2.9)

2.3 Feed forward neural network

One of the most basic kinds of artificial neural networks (ANNs) is a feedforward neural net-

work (FNN), sometimes referred to as a feedforward network. There are no cycles in the

connections made between the nodes in this network. It is called "feed forward" because the

information moves in only one direction, i.e., forward from the input nodes, through the hid-

den nodes (if any) to the output nodes. This is in contrast to recurrent neural networks, where

connections between nodes can create cycles and allow information to be fed-back into the

network.

2.3.1 Structure of feed forward neural network

Below is a detailed breakdown of the structure of the feed forward neural network:

1. Layers : Feed forward network has two main types of layers, each will be mentioned

and explain briefly below:

12

• Hidden layer : the layers that lie before the output layers are known as hidden

layers. The nodes (neurons) that make up each hidden layer weighs the inputs and

then routes the outputs through an activation function. These layers are in charge

of identifying intricate patterns in the data. The basic units that process inputs and

produce outputs are called nodes, or neurons. In a hidden layer, every node adds up

all of its inputs, weighs it, and then runs the output through an activation function.

• Output layer : the output layer produces the final output of the network. The number

of neurons in the output layer depends on the type of problem being solved (e.g.,

one neuron for binary classification, multiple neurons for multi-class classification,

or regression).

2. Activation function : Activation functions introduce non-linearity into the network, en-

abling it to learn complex patterns. Common activation functions include:

• Rectified linear units (ReLU): y(t) = max(0, t)

• Sigmoid : y(t) =
1

1+ e−t

• Hyperbolic tangent (tanh) : y(t) = tanh(t) =
et − e−t

et + e−t

• Leaky ReLU : y(t) = max(αt, t), where α is a small positive constant and t is the

input to the neurons.

2.3.2 Forward propagation

In forward propagation, the input data passes through the network layer by layer until it reaches

the output layer. Each neuron’s output in one layer becomes the input for the neurons in the

next layer. The forward pass computes the predicted output of the network. The forward flow of

data is designed to avoid data moving in a circular motion, which does not generate an output.

Pre-activation and activation occur at every hidden and output layer node of a neural network

during forward propagation. The weighted sum calculation is the pre-activation function. By

adding the bias to the weighted sum and then applying the activation function, a non-linear

relationships is created in the data.

2.3.3 Backpropagation and training

[15] Backpropagation is an algorithm specifically designed to compute the partial derivatives

of the loss function with respect to the weights of a neural network, essentially calculating the

13

gradient. The gradients obtained through backpropagation are utilized in gradient descent to

optimize the loss function, thereby adjusting the weights and improving the model’s perfor-

mance. This process is crucial for training neural networks efficiently.

2.4 Recurrent neural network

An artificial neural network that functions best with data that arrives in a specific order is called

a recurrent neural network (RNN). RNNs are helpful for tasks like voice recognition, language

translation, time series, and captioning photos. This is due to their ability to convert input

sequences into output sequences through processing. The "memory" that RNNs possess is one

unique feature. They are able to retain data from earlier inputs in the present processing step

as a result. Since a large portion of the data in the world is sequential, extra consideration must

be given while developing predictive models. [16]

Figure 2.3: Diagram illustrating the basic recurrent neural network. Source: Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with
Applications in R. Second edition, page 422.

Figure 2.3 shows the structure of the basic recurrent neural network. As it can be seen from

the figure, there are a series of vectors in the input {xl}l
1. The input sequence X is processed

sequentially by the network; each Xl flows into the hidden layer, which additionally receives

the activation vector Al−1 from the element before it as input. Every element of the sequence

is processed using the same sets of weights W , U , and B. From the current activation Al ,

the output layer generates a series of predictions Ol; usually, only the last of these, OL, is

significant. The network is represented succinctly to the left of the equal sign, and is unrolled

into a more explicit version to the right [17].

14

2.4.1 Key concepts of RNN

1. Sequential data : RNNs work especially well in applications involving sequential data.

RNNs are able to retain information over many time steps because they feature con-

nections that loop back on themselves, in contrast to feedforward neural networks. For

instance, we will be working with sequential data from 39 African nations in this work.

2. Hidden state : An RNN’s hidden state serves as a kind of memory that stores data about

previous processing operations. Based on the prior hidden state and the current input, the

hidden state is updated at each time step.

3. Weight sharing : The weights in an RNN are shared across all time steps. This is what

enables RNNs to generalize well to sequence data of varying lengths.

2.4.2 Architecture of recurrent neural network

RNNs have same input and output architecture as any other deep neural architecture. How-

ever, difference arise in the way information flows from input to output. Unlike deep neu-

ral network where we have different weight matrices for each dense network in RNN, the

weight across the network remains the same. Figure 2.3 represents the structure of a basic

RNN with sequence X = X1,X2,X3, . . . ,XL as input, a simple output Y , and a hidden-layer

sequence {Al}L
1 = A1,A2,A3, . . . ,AL. As the sequence is processed one vector Xl at a time, the

network updates the activations Al in the hidden layer, taking as input the vector Xl and the

activation vector Al−1 from the previous step in the sequence. Each Al feeds into the output

layer and produces a prediction Ol for Y . Assume that the hidden layer is made up of K units

AT
l = {Al1,Al2,Al3, . . . ,Alk} and that each vector Xl of the input sequence has p components

XT
l = {Xl1,Xl2, . . . ,Xl p}. In Figure 2.3, for the input layer, we use a matrix W to represent

the collection of K × (p+1) shared weights wk j. In a similar manner, U is a K×K matrix that

contains the weights uks of the hidden-to-hidden layers, and B is a K + 1 vector representing

the output layer’s weights βk. Below is a basic equations governing an RNN,

Alk = g(wk0 +
p

∑
j=1

wk jXl j +
K

∑
s=1

UksAL−1,s). (2.10)

The output Ol is computed as:

Ol = β0 +
K

∑
k=1

βkAlk . (2.11)

15

2.4.3 Characteristics of simple RNNs

1. Memory of past inputs : By maintaining a hidden state, RNNs can remember information

from previous time steps, making them suitable for sequential data.

2. Challenges with long sequences : Simple RNNs can struggle with long-term dependen-

cies due to issues like vanishing gradients, where the influence of older inputs diminishes

exponentially as the sequence length increases.

16

Chapter 3

DATA IMPUTATION

Missing data is a prevalent problem in data analysis and machine learning that can have a

big influence on model performance and outcomes. The techniques of substituting values for

missing values in a dataset are known as data imputation. This chapter will examine the idea

of missing data, the reasons for it, and the fundamental techniques for handling it with data

imputation.

3.1 Missing data and the concept of data imputation

The statement “without data, there is no machine learning” is one unquestionable truth. Finding

a trustworthy and accurate source of population data as well as other variables that influence a

country’s population is necessary, because the foundation of this thesis is population forecast.

The World Bank and United Nation are trustworthy source from which the data was gathered.

3.1.1 Understanding missing data

Missing data, also known as missing values, occurs when no data value is stored for a variable

in an observation. Missing data is one serious situation that can affect the performance of a

model. It can happen for various reasons, including: data loss, human error, and non-response.

Data imputation is the technique used to fill in the missing values in a dataset. The goal is to

provide a complete dataset that can be used for analysis without the biases or inaccuracies that

can arise from simply ignoring missing data. Imputation methods aim to maintain the statistical

properties of the original data.

The quantity and kind of missing data, the type of data, and the particular needs of the study all

influence the imputation method selection. Data imputation can be done in a number of ways,

from straightforward procedures to intricate algorithms.

17

3.2 Basic methods of data imputation

One of the simplest methods of imputation involves replacing missing values with the mean,

median, or mode of the available data [18]. There are others like; linear interpolation, k-nearest

neighbour (KNN), last observation carried forward (LOCF), next observation carried backward

(NOCB) and regression imputation. We shall be focusing on mean and linear interpolation as

far as this thesis is concern.

3.2.1 Linear interpolation

There are a number of common methods that are routinely used to help mitigate the problem of

missing data. One is linear interpolation. It is commonly used to fill in missing values in time

series data. It refers to interpolating or predicting missing data points using a linear function

that best fits the known data. It can be computed mathematically as:

y = y1 +(x− x1)
(y2 − y1)

(x2 − x1)
(3.1)

Where (x1,y1) are coordinate of the first data points, (x2,y2) are coordinates of the second data

point, and x is the point on which interpolation is performed and y is the interpolated value.

3.2.2 Mean

Mean imputation is a technique used in statistics and data analysis to handle missing data

within a dataset. When a dataset has missing values, mean imputation fills in these gaps with

the mean (average) value of the non-missing data for that particular variable. In this thesis,

the dataset is split into training, validation and test set according the percentage 80%, 10% and

10% respectively; the mean from each column (feature) of the train data was calculated to fill

the missing values in both the validation and test set. A simple mathematical formulation is

given below:

Mean(x̄) =
x1 + x2 + · · ·+ xn

n
, (3.2)

where x1,x2, . . . ,xn are data points or observed values.

Some of the merits of this imputation method is:

• It is easy to understand.

18

• Easy to implement and also keeps the number of records the same, thereby avoiding the

loss of data.

And some of the demerits are:

• It reduces the variability in the dataset, as the imputed values are the same for each

missing value within a variable.

• correlations can be distorted between variables, potentially leading to incorrect conclu-

sions.

We shall discuss it a bit more in the next chapter.

3.2.3 Indicators

An indicator is a binary variable (taking values of 0 or 1) that signifies the presence or ab-

sence of a specific values or attributes within a dataset. Additional columns corresponding to

the number of features in our data were created to indicate 0’s for non-missing values and 1

otherwise. Indicators are used for various purposes, including:

• Preserving information: indicators preserves the information about missing data by la-

belling missing values with an indicator column. This information may be crucial for the

model to understand missingness-related patterns or correlations.

• Preventing data loss: instead of discarding rows with missing values, creating an indi-

cator column allows us to use the available data more effectively. This is particularly

important when the dataset is small or the missing data is substantial.

19

Chapter 4

PREDICTION OF POPULATION SIZE

This chapter provides an overview of the importance of population prediction, description of

predictive task, dataset description, model description, quality metrics and implementation of

code.

With the recent advancement in artificial intelligence, especially recurrent neural networks

(RNNs), and the growing availability of open-source data, it is possible to build better pre-

dictions for population future sizes at a disaggregate geographical level. These predictions can

help solve various real-world problems, such as infrastructure and residential planning and po-

litical boundary delimitation studies. The proposed project aims to deal with estimate building-

based population prediction by making use of a data-driven approach and cutting-edge artificial

intelligence, the recurrent neural network (RNN). This method is simple, straightforward, and

promising. However, the data errors and assumptions built into the method may affect the re-

sults.

Population prediction is a difficult problem since the population can change due to a variety

of factors such as births, deaths, and people moving in and out of the area. Planning a range of

services, such as power, water, transport, schools, and medical centers if the population exceeds

a certain size, can be costly. Conversely, the building of facilities such as services and infras-

tructure is expensive, and it would be a waste of resources if the facilities that are provided are

not used. Therefore, a better estimation of the population would result in better community

planning and development projects.

Although all kinds of predictive modeling have been employed for these attempts, the recent

advances in the deep learning field, particularly regarding recurrent neural networks, or RNNs,

with their in-built feedback mechanisms for the process of predictions, have shown the capa-

bility to drive this development to a level surpassing what has been achieved before, achieving

goals that resolve some setbacks with conventional approaches.

20

4.1 Description of predictive task

The predictive task involves forecasting the population size of a given region over a specified

period. The prediction model will take into account historical population data along with other

relevant demographic and socio-economic factors. The primary objective is to minimize the

error between the predicted population size and the actual observed values.

Some specific goals of predictive task are:

• Creating a predictive model that can manage big datasets and generate precise projec-

tions.

• Determining the main causes of population shifts.

• Evaluating the model’s performance using standard quality metrics.

4.2 Dataset description

The dataset used for this study comprises historical population data along with various demo-

graphic and socio-economic indicators. The data is sourced from international organizations

such as the United Nations and World Bank. These are annual data (63 data points per coun-

try) covering the years 1960 to 2022. 39 African nations from the region’s West, East, South,

North, and Central are taken into consideration. The lack of availability and sufficient data

points for this endeavour was the reason why certain African countries were left out. Further-

more, it is well known that large datasets are necessary for machine learning models to learn

and develop accurate patterns for predictions. Countries considered in this studies are Alge-

ria, Angola, Benin, Burkina Faso, Burundi, Cameroon, Chad, Congo Republic, Cote D’voire,

Democratic Republic of Congo, Egypt, Equatorial Guinea, Eswatini, Gabon, Gambia, Ghana,

Guinea-Bissau, Kenya, Lesotho, Lybia, Mali, Morocco, Mozambique, Namibia, Niger, Nige-

ria, Rwanda, Senegal, Sierra Leone, South Africa, Sub-Sahara, Sudan, Tanzania, Togo, Tunisia,

Uganda, Zambia and Zimbabwe.

4.2.1 Features of the dataset

Prediction of population size is influenced by many factors, in this study’s we will consider

only ten. The table below shows the respective countries with their features and the number of

missing values.

21

Table 4.1: Analysis of missing values for each country.

No. Country GDP EGS IGS RG U G I Ind AFF MT P
1 Algeria 1 0 1 1 1 1 39 39 0 0
2 Angola 21 40 44 1 1 21 35 35 20 0
3 Benin 1 0 1 1 1 1 0 0 0 0
4 Burkina Faso 1 3 9 1 1 1 0 0 0 0
5 Burundi 1 0 38 1 1 1 10 10 0 0
6 Cameroon 1 5 1 1 1 1 5 5 0 0
7 Chad 1 0 5 1 1 1 0 0 0 0
8 Congo Rep 1 0 1 1 1 1 0 0 0 0
9 Cote D’voire 1 0 37 1 1 1 0 0 0 0

10 DR Congo 1 34 1 1 1 1 34 34 0 0
11 Egypt 1 0 1 1 1 1 0 0 5 0
12 Equatorial Guinea 21 45 46 1 1 21 46 46 4 0
13 Eswatini 11 1 2 1 1 11 6 1 0 0
14 Gabon 1 0 1 1 1 1 0 0 0 0
15 Gambia 8 6 45 1 1 7 6 6 6 0
16 Ghana 1 0 47 1 1 1 5 0 0 0
17 Guinea 27 26 47 1 1 27 26 26 26 0
18 Guinea Bissau 11 12 45 1 1 11 12 12 10 0
19 Kenya 1 0 1 1 1 1 0 0 0 0
20 Lesotho 1 26 3 1 1 17 3 0 0 0
21 Lybia 40 33 46 1 1 40 42 42 30 0
22 Mali 8 7 8 1 1 8 7 7 7 0
23 Morocco 7 0 1 1 1 7 5 5 0 0
24 Mozambique 21 32 22 1 1 32 32 32 31 0
25 Namibia 21 20 21 1 1 21 20 20 20 0
26 Niger 1 0 31 1 1 1 1 1 0 0
27 Nigeria 1 1 23 1 1 1 21 21 0 0
28 Rwanda 1 0 1 1 1 1 5 5 0 0
29 Senegal 1 0 1 1 1 1 0 0 0 0
30 Sierra Leone 1 5 9 1 1 1 5 5 0 0
31 South Africa 1 0 1 1 1 1 0 0 0 0
32 Sub-Sahara 1 0 22 1 1 1 21 21 0 0
33 Sudan 1 0 1 1 1 1 0 0 0 0
34 Tanzania 29 30 31 1 1 29 30 30 28 0
35 Togo 1 0 1 1 1 1 0 0 0 0

Notice that GDP, EGS, IGS, RG, UG, I, IND, AFF, MT, and P represents annual GDP growth,

exports of goods and services, import of goods and services, rural growth, urban growth, in-

flation, GDP deflator, industry (including construction), value added (% of GDP), agriculture,

forestry, and fishing, value added (% of GDP), merchandise trade, and population respectively.

Due to these missing values, it was necessary to introduce the imputation method. Below is a

22

Table 4.1 (cont.)

No. Country GDP EGS IGS RG U G I Ind AFF MT P
36 Tunisia 6 5 6 1 1 6 5 5 5 0
37 Uganda 23 0 23 1 1 23 0 0 0 0
38 Zambia 1 34 13 1 1 1 0 0 0 0
39 Zimbabwe 1 16 18 1 1 1 10 6 0 0

brief explanation of the features used in this work:

1. Annual GDP growth (GDP): This gauges a nation’s overall economic health. Better

living conditions and employment prospects are frequently correlated with higher GDP

growth, which may promote immigration and higher birth rates and hence population

expansion

2. Exports of goods and services (EGS): A healthy export industry is a sign of a healthy

economy, which might draw job seekers. Additionally, infrastructure improvements and

better public services might result from export-led growth, which can affect population

dynamics.

3. Import of goods and services (IGS): A high import volume may indicate robust eco-

nomic activity and consumer demand. This might draw labourers from other areas or

nations, changing the distribution and size of the population.

4. Rural growth (RG): Variations in these rates shed light on rural migration trends and

economic prospects. Growing rural areas may be a sign of improved living standards or

more employment prospects in the agricultural or rural industries.

5. Urban growth (UG): The growth of the urban population is a crucial aspect of popula-

tion studies. People from rural areas and other countries are drawn to cities because they

often provide better healthcare, education, work prospects, and living conditions.

6. Inflation, GDP deflator (annual %) (I): This gauges inflation and shifts in price levels.

Excessive inflation can reduce savings and purchasing power, which may have an impact

on birth rates and migration trends as people look for more stable economic conditions.

7. Industry (including construction), value added (% of GDP) (Ind): This shows how

much the construction and industrial sectors contribute to the economy. A robust indus-

trial sector can influence population growth by generating a large number of employment

that draw workers and their families.

23

8. Agriculture, forestry, and fishing, value added (% of GDP) (AFF): The impact of

the agriculture, forestry, and fishing sector’s value added on population growth is mul-

tifaceted and context-dependent. It encompasses economic, social, and environmental

dimensions, all of which interplay to shape population dynamics.

9. Merchandise trade (% of GDP) (MT): This percentage illustrates how significant trade

is to the economy as a whole. Elevated trade volumes may suggest economic trans-

parency and assimilation into the worldwide marketplace, which may result in shifts in

the population due to immigration and economic prospects.

10. Population (P): Population is the term typically used to refer to the number of people in

a single area. Governments conduct a census to quantify the size of a resident population

within a given jurisdiction.

4.3 Model description

The key objective of the RNN model in this study is to predict the population size of some

selected African countries based on historical data which has been explained earlier in our pre-

vious section.

Recurrent Neural Networks (RNNs) are particularly well-suited for sequential data due to their

inherent design and characteristics in the following ways: temporal dynamics, memory of pre-

vious input, variable length sequence, and parameter sharing.

4.3.1 Important libraries

• os: Manages file system interactions. Useful for loading data from files, saving model

checkpoints, and organizing directories for input and output data.

• Pandas (pd): Provides data structures and data analysis tools.It is essential for data

preprocessing, cleaning, and manipulation. It helps in loading datasets into DataFrame

objects, which makes it easier to handle time-series data and perform operations like

merging, filtering, and aggregation.

• Numpy (np): Supports large, multi-dimensional arrays and matrices, along with a col-

lection of mathematical functions to operate on these arrays. Crucial for numerical op-

erations and handling array-based data. RNNs often require operations on matrices, and

numpy provides efficient tools for such computations.

24

• Scikit-learn (sklearn): Provides simple and efficient tools for data mining and data

analysis. It is useful for preprocessing data (e.g., scaling, encoding), splitting datasets,

and evaluating models using metrics. While sklearn is not used for building RNNs, it

supports tasks like feature selection, model validation, and splitting data into training

and test sets.

• Tensorflow (tf): is an open-source library for machine learning and deep learning de-

veloped by Google. It is used for building and training machine learning models, par-

ticularly neural networks. tensorflow provides a flexible platform for implementing both

high-level and low-level machine learning models.

• Keras: It is a high-level API that simplifies the creation of RNN layers (e.g., Sim-

pleRNN, LSTM, GRU) and models. Facilitates model compilation, training, and evalua-

tion with user-friendly functions and methods.

• matplotlib and pyplot (plt): is a plotting library for the Python programming language

and its numerical mathematics extension numpy. It is employed in the production of an-

imated, interactive, and static visualisations. It is crucial for displaying data, identifying

trends, and presenting findings.

• LearningRateScheduler: It is a callback in keras, this allows adjustment in the learning

rate when training the model. Helps in optimizing the training process by dynamically

changing the learning rate according to a predefined schedule. This can lead to faster

convergence and improved model performance.

4.3.2 Model architecture

As various architect of our model has be mentioned earlier, we shall have a specific description

in this section. Below is a detailed explanation of how the model is designed for this work.

1. Input : It accepts sequences of normalized population counts. The input shape is having

a dimension of (50,11), where 50 is the number of time steps and 11 is the number of

features in the x-training set i.e., all the columns in the training data except the target

column.

2. Recurrent layer: A simple recurrent neural network with 64 hidden units and a Leaky

ReLU (with α = 0.3) activation function is used.

25

3. Dense layer: A fully connected layer with one neuron and a Leaky ReLU (with α = 0.3)

activation function to predict the next year’s population is also used.

4.3.3 Training

Model training is carried out after all preprocessing steps are done. Below are few specifications

engaged during the process:

1. Loss function: In this experiment, we used the mean squared error (MSE) as the loss

function.

2. Optimizer: The Adam optimizer is used.

3. Hyperparameters: A Learning rate of 0.001, epoch of 3000, and a batch size of 128 is

employed in the training.

4. Training procedure: As explained in chapter 2, the training, validation and test set is split

in the percentage 80, 10 and 10 respectively. Each consists of 39 (countries) sequences

of training_size in years, but each is shifted in time. The evaluation is performed only on

the part of the test set which is not overlapping with training and validation sets.

4.3.4 Quality metrics

To evaluate the quality of the population prediction models, various metrics are used:

• Mean absolute error (MAE): MAE measures the average magnitude of errors in the pre-

dictions, without considering their direction.

• Mean squared error (MSE): MSE calculates the average of the squares of the errors,

giving more weight to larger errors.

• Root mean squared error (RMSE): The square root of MSE, providing an error metric in

the same units as the population data.

• R-squared (R2): Indicates the proportion of the variance in the dependent variable that is

predictable from the independent variables.

These metrics help in assessing the accuracy and reliability of the prediction models, guiding

further improvements and adjustments.

26

4.3.5 Implementation

Below are code snippets illustrating the recurrent neural network implementation.

1. Mean imputation.

1 import os
2 import pandas as pd
3 import numpy as np
4 from sklearn . model_selection import train_test_split
5 from sklearn . preprocessing import MinMaxScaler
6 import tensorflow as tf
7 from tensorflow .keras. models import Sequential
8 from tensorflow .keras. layers import SimpleRNN , Dense , ...

LeakyReLU
9 from tensorflow .keras. optimizers import Adam

10 from sklearn . metrics import mean_squared_error
11 from matplotlib import pyplot as plt
12 from tensorflow .keras. callbacks import ...

LearningRateScheduler
13

14 # Get files from directory
15 directory = 'E:\\ Data '
16 csv_files = [file for file in os. listdir (directory) if ...

file. endswith ('.csv ')]
17

18 # Percentage of data for each split
19 train_percent = 0.8
20 val_percent = 0.1
21 test_percent = 0.1
22

23 # Creating empty DataFrame to stack datasets
24 stacked_train = pd. DataFrame ()
25 stacked_val = pd. DataFrame ()
26 stacked_test = pd. DataFrame ()
27

28 for file in csv_files :
29 file_path = os.path.join(directory , file)
30 df = pd. read_csv (file_path)
31 df = df.iloc [: ,:11]
32 df['Population '] = df.loc [:,'Population '] / 100000
33 df['target '] = df.loc [:,'Population ']. shift (-1)
34 df = df.iloc [: -1]
35

36 # Calculating the number of rows
37 total_rows = len(df)
38 val_size = int(val_percent * total_rows)
39 test_size = int(test_percent * total_rows)
40 train_size = total_rows -val_size - test_size
41

27

42 train = df.iloc [: train_size , :]
43 val = df.iloc[val_size : train_size + val_size , :]
44 test = df.iloc[val_size + test_size :, :]
45

46 # Using mean of training set for each column to fill ...

the missing values in the test and validation set
47 mean_value = train.mean ()
48 train_imputed = train. fillna (mean_value)
49 val_imputed = val. fillna (mean_value)
50 test_imputed = test. fillna (mean_value)
51

52 # Stacking datasets
53 stacked_train = pd. concat ([stacked_train , ...

train_imputed], ignore_index =False)
54 stacked_val = pd. concat ([stacked_val , val_imputed], ...

ignore_index =False)
55 stacked_test = pd. concat ([stacked_test , test_imputed], ...

ignore_index =False)
56

57

58 # Read stacked_train data files from path
59 stacked_train_data = ...

pd. read_csv (os.path.join(stacked_train_folder_path , ...

'stacked_train .csv '))
60

61 target_column = 'Population '
62 x_stacked_train = ...

stacked_train_data .drop(target_column , axis =1)
63 y_stacked_train = ...

pd. DataFrame (stacked_train_data [target_column])
64

65 # Reshaping the data for RNN input (num_samples , ...

num_time_step , num_features)
66 x_stacked_train = x_stacked_train . values . reshape (-1, ...

train_size , x_stacked_train .shape [1])
67

68 y_stacked_train = y_stacked_train . values . reshape (-1, ...

train_size)
69

70 stacked_val_data = ...

pd. read_csv (os.path.join(stacked_val_folder_path , ...

'stacked_val .csv '))
71 x_stacked_val = stacked_val_data .drop(target_column , ...

axis =1)
72 y_stacked_val = ...

pd. DataFrame (stacked_val_data [target_column])
73

74 # Reshaping validation data
75 x_stacked_val = x_stacked_val . values . reshape ((-1, ...

train_size , x_stacked_val .shape [1]))
76 y_stacked_val = y_stacked_val . values . reshape (-1, ...

28

train_size)
77

78 # Setting path to folder containg stacked csv files
79 stacked_test_folder_path = 'test_imputed_folder '
80

81

82 # Read the stacked test data
83 stacked_test_data = ...

pd. read_csv (os.path.join(stacked_test_folder_path , ...

'stacked_test .csv '))
84 x_stacked_test = stacked_test_data .drop(target_column , ...

axis =1)
85 y_stacked_test = ...

pd. DataFrame (stacked_test_data [target_column])
86

87 x_stacked_test = x_stacked_test . values . reshape ((-1, ...

train_size , x_stacked_test .shape [1]))
88

89 y_stacked_test = y_stacked_test . values . reshape (-1, ...

train_size)
90

91 # Defining my RNN model
92

93 def build_rnn_model (hidden_units , dense_units , ...

input_shape , activation):
94 model = Sequential ()
95 model.add(SimpleRNN (hidden_units , ...

input_shape = input_shape , activation = activation [0], ...

return_sequences =True))
96 model.add(Dense(units= dense_units , ...

activation = activation [1]))
97 model. compile (loss='mean_squared_error ', ...

optimizer =Adam(learning_rate =0.001))
98 return model
99

100 input_shape = (x_stacked_train .shape [1], ...

x_stacked_train .shape [2])
101 model = build_rnn_model (hidden_units =64, dense_units ...

=1, input_shape = input_shape , ...

activation =[LeakyReLU (alpha =0.3) , LeakyReLU (alpha =0.3)])
102 history = model.fit(x_stacked_train , y_stacked_train , ...

epochs = 3000 , batch_size =128 , ...

validation_data =(x_stacked_val , y_stacked_val))
103

104 # Making prediction on the training set and computing ...

the mean absolute error
105 train_pred = ...

model. predict (x_stacked_train). reshape ((39 , -1))
106 np.mean(np.abs(train_pred - y_stacked_train))
107

108 val_pred = ...

29

model. predict (x_stacked_val). reshape ((39 , -1))[:,- val_size :-1]
109 np.mean(np.abs(val_pred - y_stacked_val [:,- val_size : -1]))
110

111 test_pred = ...

model. predict (x_stacked_test). reshape ((39 , -1))[:,- test_size :
112 -1]
113 np.mean(np.abs(test_pred - y_stacked_test [:,- test_size : -1]))
114

115

116 # Calclating the naive forecast error.
117 np.mean(np.abs(y_stacked_test [:,- test_size :-1]-
118 x_stacked_test [:,- test_size :-1,-1]))
119

120 for i in range(y_stacked_test .shape [0]):
121 y_pred = test_pred [i]
122 y_true = y_stacked_test [i,- test_size :-1]
123 sum_squares_residuals = np.sum ((y_true - y_pred)**2)
124 sum_squares = np.sum ((y_true -np.mean(y_pred))**2)
125 R2 = 1- sum_squares_residuals / sum_squares
126 print(f" Country : { csv_files [i]. split ('.') [0]} R2: ...

{R2 :.3f} Mean: {np.mean(y_pred):.3f}")
127

128 # Plotting training and validation loss
129 plt.plot(history . history ['loss '], label= 'Training Loss ')
130 plt.plot(history . history ['val_loss '], label= ...

'Validation Loss ')
131 plt. legend ()
132 plt.title('Training and Validation Loss over epochs ')
133 plt.show ()

2. Linear interpolation.

1 import os
2 import pandas as pd
3 import numpy as np
4 from sklearn . model_selection import train_test_split
5 from sklearn . preprocessing import MinMaxScaler
6 import tensorflow as tf
7 from tensorflow .keras. models import Sequential
8 from tensorflow .keras. layers import SimpleRNN , Dense , ...

LeakyReLU
9 from tensorflow .keras. optimizers import Adam

10 from sklearn . metrics import mean_squared_error
11 from matplotlib import pyplot as plt
12 from tensorflow .keras. callbacks import ...

LearningRateScheduler
13

14 # Get files from directory
15 directory = 'E:\\ Data '

30

16 csv_files = [file for file in os. listdir (directory) if ...

file. endswith ('.csv ')]
17

18 # Percentage of data for each split
19 train_percent = 0.8
20 val_percent = 0.1
21 test_percent = 0.1
22

23 # Creating empty Dataframe to stack datasets
24 stacked_train = pd. DataFrame ()
25 stacked_val = pd. DataFrame ()
26 stacked_test = pd. DataFrame ()
27

28 for file in csv_files :
29 file_path = os.path.join(directory , file)
30 df = pd. read_csv (file_path)
31

32 df = df. interpolate ().ffill ().bfill ()
33

34 df = df.iloc [:, :11]
35 df['Population '] = df.loc [:, 'Population ']/100000
36 df['target '] = df.loc [:, 'Population ']. shift (-1)
37 df = df.iloc [: -1]
38

39 # Calculating the number of rows and sizes of splits ...

respectively
40 total_rows = len(df)
41 val_size = int(val_percent * total_rows)
42 test_size = int(test_percent * total_rows)
43 train_size = total_rows -val_size - test_size
44

45 train = df.iloc [: train_size , :]
46 val = df.iloc[val_size : train_size + val_size , :]
47 test = df.iloc[val_size + test_size :, :]
48

49 # Stacking datasets
50 stacked_train = pd. concat ([stacked_train , train], ...

ignore_index =False)
51 stacked_val = pd. concat ([stacked_val , val], ...

ignore_index =False)
52 stacked_test = pd. concat ([stacked_test , test], ...

ignore_index =False)
53

54

55 # Read the stacked train data
56 stacked_train_data = ...

pd. read_csv (os.path.join(stacked_train_folder_path , ...

'stacked_train .csv '))
57

58 target_column = 'Population '
59 x_stacked_train = ...

31

stacked_train_data .drop(target_column , axis =1)
60 y_stacked_train = ...

pd. DataFrame (stacked_train_data [target_column])
61

62 # Reshaping the data for RNN input(num_samples , ...

num_time_steps , num_features)
63 x_stacked_train = x_stacked_train . values . reshape ((-1, ...

train_size , x_stacked_train .shape [1]))
64

65 y_stacked_train = ...

y_stacked_train . values . reshape (-1, train_size)
66

67 stacked_val_data = ...

pd. read_csv (os.path.join(stacked_val_folder_path , ...

'stacked_val .csv '))
68 x_stacked_val = stacked_val_data .drop(target_column , ...

axis =1)
69 y_stacked_val = ...

pd. DataFrame (stacked_val_data [target_column])
70

71 # Reshaping validation data
72 x_stacked_val = x_stacked_val . values . reshape ((-1, ...

train_size , x_stacked_val .shape [1]))
73

74 y_stacked_val = y_stacked_val . values . reshape (-1, ...

train_size)
75

76 # Setting the path to the test folder containing ...

stacked csv files for test set
77 stacked_test_folder_path = 'test_interpolate_folder '
78

79 # Read the stacked test data
80 stacked_test_data = ...

pd. read_csv (os.path.join(stacked_test_folder_path , ...

'stacked_test .csv '))
81 x_stacked_test = stacked_test_data .drop(target_column , ...

axis =1)
82 y_stacked_test = ...

pd. DataFrame (stacked_test_data [target_column])
83

84 # Reshaping the stacked test data
85 x_stacked_test = x_stacked_test . values . reshape ((-1, ...

train_size , x_stacked_test .shape [1]))
86

87

88 y_stacked_test = y_stacked_test . values . reshape (-1, ...

train_size)
89

90 # Defining my model RNN
91

92 def build_rnn_model (hidden_units , dense_units , ...

32

input_shape , activation):
93 model = Sequential ()
94 model.add(SimpleRNN (hidden_units , ...

input_shape = input_shape , activation = activation [0], ...

return_sequences =True))
95 model.add(Dense(units= dense_units , ...

activation = activation [1]))
96 model. compile (loss='mean_squared_error ', ...

optimizer =Adam(learning_rate =0.001))
97 return model
98

99 input_shape = (x_stacked_train .shape [1], ...

x_stacked_train .shape [2])
100 # Building and training RNN model on the stacked train ...

data
101 model = build_rnn_model (hidden_units = 64, ...

dense_units =1, input_shape = input_shape , ...

activation =[LeakyReLU (alpha =0.3) , LeakyReLU (alpha =0.3)])
102 history = model.fit(x_stacked_train , y_stacked_train , ...

epochs =3000 , batch_size =128 , ...

validation_data =(x_stacked_val , y_stacked_val))
103

104 # Making prediction on the training set and computing ...

the mean absolute error
105 train_pred = ...

model. predict (x_stacked_train). reshape ((39 , -1))
106 np.mean(np.abs(train_pred - y_stacked_train))
107

108 val_pred = model. predict (x_stacked_val). reshape ((39 , - ...

1))[:,- val_size :-1]
109 np.mean(np.abs(val_pred - y_stacked_val [:,- val_size : -1]))
110

111 test_pred = model. predict (x_stacked_test). reshape ((39 , ...

-1))[:,- test_size :-1]
112 np.mean(np.abs(test_pred - y_stacked_test [:,- test_size : -1]))
113

114 # Calculating the naive forecast error.
115 np.mean(np.abs(y_stacked_test [:,- test_size :-1]-
116 x_stacked_test [:,- test_size :-1,-1]))
117

118 for i in range(y_stacked_test .shape [0]):
119 y_pred = test_pred [i]
120 y_true = y_stacked_test [i,- test_size :-1]
121 sum_squares_residuals = np.sum ((y_true - y_pred)**2)
122 sum_squares = np.sum ((y_true - np.mean(y_true))**2)
123 R2 = 1 - sum_squares_residuals / sum_squares
124 print(f" Country : { csv_files [i]. split ('.') [0]} R2: ...

{R2 :.3f} Mean: {np.mean(y_true):.3f}")
125

126 # Plotting Training and Validation Loss
127 plt.plot(history . history ['loss '], label = 'Training Loss ')

33

128 plt.plot(history . history ['val_loss '], label = ...

'Validation Loss ')
129 plt. legend ()
130 plt.title('Training and Validation Loss over epochs ')
131 plt.show ()

3. Linear interpolation + indicators

1 import os
2 import pandas as pd
3 import numpy as np
4 from sklearn . model_selection import train_test_split
5 from sklearn . preprocessing import MinMaxScaler
6 import tensorflow as tf
7 from tensorflow .keras. models import Sequential
8 from tensorflow .keras. layers import SimpleRNN , Dense , ...

LeakyReLU
9 from tensorflow .keras. optimizers import Adam

10 from sklearn . metrics import mean_squared_error
11 from matplotlib import pyplot as plt
12 from tensorflow .keras. callbacks import ...

LearningRateScheduler
13

14 # Get files from directory
15 directory = 'E:\\ Data '
16 csv_files = [file for file in os. listdir (directory) if ...

file. endswith ('.csv ')]
17

18 # Percentage of data for each split
19 train_percent = 0.8
20 val_percent = 0.1
21 test_percent = 0.1
22

23 # Creating empty DataFrame to stacked my datasets
24 stacked_train = pd. DataFrame ()
25 stacked_val = pd. DataFrame ()
26 stacked_test = pd. DataFrame ()
27

28 for file in csv_files :
29 file_path =os.path.join(directory , file)
30 df = pd. read_csv (file_path)
31 df= df.iloc [: ,:11]
32 df['Population '] = df.loc [:, 'Population '] / 100000
33 df['target '] = df.loc [:, 'Population ']. shift (-1)
34 df = df.iloc [: -1]
35

36 df_indicator = df. interpolate ().ffill ().bfill ()
37

38 # Creating a new DataFrame for imputation

34

39 df_interpolated = df_indicator .copy ()
40 # Adding new columns filled with ones and zeros
41 for column in df. columns :
42 new_column_name = column + " _indicator "
43 df_interpolated [new_column_name] = 1
44 df_interpolated [new_column_name] = ...

df_interpolated [new_column_name] * ...

df[column]. isna (). astype (int)
45 # Calculating the number of rows and sizes of splits ...

respectively
46 total_rows = len(df_interpolated)
47 val_size = int(val_percent * total_rows)
48 test_size = int(test_percent * total_rows)
49 train_size = total_rows - val_size - test_size
50

51 # Splitting the dataset into training , validation and ...

testing sets
52 train = df_interpolated .iloc [: train_size , :]
53 val = df_interpolated .iloc[val_size : train_size + ...

val_size , :]
54 test = df_interpolated .iloc[val_size + test_size :, :]
55 print(df.shape , train.shape , val.shape , test.shape)
56

57 # Stacking datasets
58 stacked_train = pd. concat ([stacked_train , train], ...

ignore_index =True)
59 stacked_val = pd. concat ([stacked_val , val], ...

ignore_index =True)
60 stacked_test = pd. concat ([stacked_test , test], ...

ignore_index =True)
61

62 # Read the stacked train data
63 stacked_train_data = ...

pd. read_csv (os.path.join(stacked_train_folder_path , ...

'stacked_train .csv '))
64 stacked_val_data = ...

pd. read_csv (os.path.join(stacked_val_folder_path , ...

'stacked_val .csv '))
65 stacked_test_data = ...

pd. read_csv (os.path.join(stacked_test_folder_path , ...

'stacked_test .csv '))
66

67 target_column = 'Population '
68 x_stacked_train = ...

stacked_train_data .drop(target_column , axis =1)
69 y_stacked_train = ...

pd. DataFrame (stacked_train_data [target_column])
70

71 # Reshaping the data for RNN input(num_sample , ...

num_time_steps , num_features)
72 x_stacked_train = x_stacked_train . values . reshape ((-1, ...

35

train_size , x_stacked_train .shape [1]))
73 y_stacked_train = y_stacked_train . values . reshape (-1, ...

train_size)
74

75 x_stacked_val = stacked_val_data .drop(target_column , ...

axis =1)
76 y_stacked_val = ...

pd. DataFrame (stacked_val_data [target_column])
77

78 # Reshaping validation data
79 x_stacked_val = x_stacked_val . values . reshape (-1, ...

train_size , x_stacked_val .shape [1])
80 y_stacked_val = y_stacked_val . values . reshape (-1, ...

train_size)
81

82 x_stacked_test = stacked_test_data .drop(target_column , ...

axis =1)
83 y_stacked_test = ...

pd. DataFrame (stacked_test_data [target_column])
84

85 # Reshaping the stacked test data
86 x_stacked_test = x_stacked_test . values . reshape ((-1, ...

train_size , x_stacked_test .shape [1]))
87

88 y_stacked_test = y_stacked_test . values . reshape (-1, ...

train_size)
89

90 # Defining my model RNN
91

92 def build_rnn_model (hidden_units , dense_units , ...

input_shape , activation):
93 model = Sequential ()
94 model.add(SimpleRNN (hidden_units , ...

input_shape = input_shape , activation = activation [0], ...

return_sequences =True))
95 model.add(Dense(units= dense_units , ...

activation = activation [1]))
96 model. compile (loss='mean_squared_error ', ...

optimizer =Adam(learning_rate =0.004))
97 return model
98

99 input_shape = (x_stacked_train .shape [1], ...

x_stacked_train .shape [2])
100 # Building and training the RNN model on the stacked ...

train data
101 model = build_rnn_model (hidden_units =64, dense_units = ...

1, input_shape = input_shape , ...

activation =[LeakyReLU (alpha =0.3) , LeakyReLU (alpha =0.3)])
102 history = model.fit(x_stacked_train , y_stacked_train , ...

epochs = 3000 , batch_size = 128, ...

validation_data =(x_stacked_val , y_stacked_val))

36

103

104 # Making prediction on the training set and computing ...

the mean absolute error
105 train_pred = ...

model. predict (x_stacked_train). reshape ((39 , -1))
106 np.mean(np.abs(train_pred - y_stacked_train))
107

108 val_pred = ...

model. predict (x_stacked_val). reshape ((39 , -1))[:,- val_size :-1]
109 np.mean(np.abs(val_pred - y_stacked_val [:,- val_size : -1]))
110

111 test_pred = ...

model. predict (x_stacked_test). reshape ((39 , -1))[:,- test_size :
112 -1]
113 np.mean(np.abs(test_pred - y_stacked_test [:,- test_size : -1]))
114

115 # Calculating the naive forecast error.
116 np.mean(np.abs(y_stacked_test [:,- test_size :-1]-
117 x_stacked_test [:,- test_size :-1,-1]))
118

119 for i in range(y_stacked_test .shape [0]):
120 y_pred = test_pred [i]
121 y_true = y_stacked_test [i,- test_size :-1]
122 sum_squares_residuals = np.sum ((y_true - y_pred)**2)
123 sum_squares = np.sum ((y_true - np.mean(y_true))**2)
124 R2 = 1 - sum_squares_residuals / sum_squares
125 print(f" Country : { csv_files [i]. split ('.') [0]}) R2: ...

{R2 :.3f} Mean: {np.mean(y_pred):.3f}")
126

127 # Plotting Training and Validation Loss
128 plt.plot(history . history ['loss '], label = 'Training Loss ')
129 plt.plot(history . history ['val_loss '], label = ...

'Validation Loss ')
130 plt. legend ()
131 plt.title('Training and Validation Loss over Epochs ')
132 plt.show ()

37

Chapter 5

EXPERIMENTAL RESULTS

This work used the methodology depicted in Fig 5.1 to experimentally assess the impact of

missing value imputation in the time series forecasting problem. The first stage is to use data

preprocessing techniques including data reduction, cleansing, and transformation to create a

refined dataset. The missing values in the dataset are then filled in using imputation techniques.

We used three different imputation techniques for this process: mean substitution, linear in-

terpolation, and linear interpolation plus corresponding indicators. Once each imputed dataset

was trained, the various forecasting models were used. Finally, loss functions were used to

compare and assess the forecasting models’ performance.

Figure 5.1: A design for the experimental procedure for this work.

5.1 Aggregate results

We show here the aggregate results for all countries. We show results for different imputation

methods when used with RNN model. We compare these forecasting methods with one naive

forecasting method.

A naive forecast is a simple prediction method where the forecast for a future value is assumed

to be the same as the most recent observed value. In the context of time series data, this means

38

predicting that the next value in the series will be the same as the last observed value.

Table 5.1: A table showing prediction accuracies of the RNN model on all three imputation
methods.

Method Naive forecast error MAE train pred MAE val pred MAE test pred
Mean 14.398 1.246 1.190 1.547
Inter 14.398 1.295 1.597 2.050
Inter + ind 14.398 3.838 3.863 4.257

5.2 Per country analysis

In this section, the analysis of the results obtained for all the countries involved will be dis-

cussed, and various tables will be shown accordingly. Below are tables for the results attained

for all three imputation methods evaluated by the RNN model.

5.2.1 Visual summary

The graph shows the losses obtained during the training of the RNN model on the training and

validation set. After the 3000 epochs, the loss on training (train) sets are 4.8812, 4.1485 and

16.0477 for mean, interpolation and interpolation + indicators imputation respectively. And that

of validation (val) are 6.3309, 11.3007 and 19.4815 for mean, interpolation and interpolation

+ indicators imputation respectively. Below gives pictures of how all losses declined with

increasing epochs.

Note that interpolation and indicators are shorten in the Table 5.5 as inter and ind respectively.

And mean absolute error as MAE.

39

Figure 5.2: A graph plot showing the loss over epochs on training and validation sets for mean
imputation method.

Figure 5.3: A graph plot showing the loss over epochs on training and validation sets for
interpolation method.

Figure 5.4: A graph plot showing the loss over epochs on training and validation sets for
interpolation + indicators.

40

1. Mean imputation method.

Table 5.2: Results of R2 values and mean population sizes of mean imputation

Country R2 mean population (hundred thousands)
Algeria 0.982 417.751
Angola 0.978 314.863
Benin 0.998 119.301
Burkina Faso 1.000 204.037
Burundi 0.983 115.238
Cameroon 0.997 251.414
Chad 0.982 156.935
Congo Rep 0.484 54.458
Cote d’Ivoire 0.999 255.089
DR Congo 0.978 876.680
Egypt 0.937 1029.919
Equatorial Guinea 0.406 15.701
Eswatini -1.121 11.717
Gabon 0.291 22.467
Gambia 0.111 24.461
Ghana 0.995 308.324
Guinea 0.983 125.066
Guinea-Bissau -3.374 19.330
Kenya 0.991 498.151
Lesotho 0.816 22.121
Libya -1.017 65.124
Mali 0.998 199.791
Morocco 0.800 356.336
Mozambique 0.997 294.754
Namibia 0.798 24.127
Niger 0.988 227.344
Nigeria 0.976 1995.116
Rwanda 0.992 124.977
Senegal 1.000 155.957
Sierra Leone 0.979 78.497
South Africa 0.763 569.957
Sub-Saharan Africa 1.000 10929.046
Sudan 0.983 421.646
Tanzania 0.994 582.650
Togo 0.962 80.133

41

Table 5.2 (cont.)

Country R2 mean population (hundred thousands)
Tunisia 0.850 118.673
Uganda 0.991 417.341
Zambia 0.988 179.205
Zimbabwe 0.679 152.588

2. Linear interpolation method.

Table 5.3: Results of R2 values and mean population sizes of African countries

Country R2 mean population (hundred thousands)
Algeria 0.986 419.120
Angola 0.987 312.838
Benin 0.962 119.462
Burkina Faso 0.994 203.957
Cameroon 0.996 250.910
Chad 0.972 156.108
Congo Rep -0.884 54.426
Cote d’Ivoire 0.998 255.030
DR Congo 0.956 871.123
Egypt 0.983 1036.796
Equatorial Guinea 0.882 15.002
Burundi 0.957 115.295
Eswatini -20.838 11.609
Gabon 0.197 21.908
Gambia 0.038 24.452
Ghana 0.985 308.700
Guinea 0.784 125.619
Kenya 0.997 499.467
Lesotho 0.306 21.985
Libya -0.280 64.723
Guinea-Bissau -16.292 19.251
Mali 0.997 199.474
Morocco 0.835 359.112
Mozambique 0.996 294.307

42

Table 5.3 (cont.)

Country R2 mean population (hundred thousands)
Namibia 0.525 24.059
Niger 0.992 226.028
Nigeria 0.992 1984.365
Rwanda 0.989 125.349
Senegal 0.998 155.842
Sierra Leone 0.779 78.627
South Africa 0.846 574.584
Sub-Saharan Africa 0.997 10930.593
Sudan 0.970 419.457
Tanzania 0.991 580.673
Togo 0.799 80.493
Tunisia 0.758 119.282
Uganda 0.987 415.489
Zambia 0.989 178.420
Zimbabwe -1.419 150.561

3. Linear interpolation + indicators.

Table 5.4: Results of R2 values and mean population sizes of African countries

Country R2 Mean population (hundred thousands)
Algeria 0.780 413.994
Angola 0.985 311.057
Benin 0.338 115.488
Burkina Faso 0.778 200.257
Burundi 0.517 112.036
Cameroon 0.911 247.979
Chad 0.772 152.639
Congo Rep -3.672 50.565
Cote d’Ivoire 0.818 251.109

43

Table 5.4 (cont.)

Country R2 Mean population (hundred thousands)
DR Congo 0.998 872.273
Egypt 0.958 1031.381
Equatorial Guinea -24.001 11.541
Eswatini -592.966 8.361
Gabon -14.245 19.107
Gambia -10.171 21.438
Ghana 0.734 303.953
Guinea 0.180 121.551
Guinea-Bissau -33.574 15.549
Kenya 0.999 499.430
Lesotho -70.553 18.693
Libya -7.350 61.412
Mali 0.865 196.207
Morocco -0.636 351.988
Mozambique 0.902 290.507
Namibia -26.072 21.029
Niger 0.971 223.976
Nigeria 0.920 2003.880
Rwanda 0.143 121.377
Senegal 0.644 152.288
Sierra Leone -1.499 74.511
South Africa -0.316 564.477
Sub-Saharan Africa 0.999 10916.004
Sudan 0.996 418.770
Tanzania 0.997 581.885
Togo -0.867 76.727
Tunisia -7.188 114.466
Uganda 1.000 415.339
Zambia 0.802 175.029
Zimbabwe -0.672 145.216

44

Table 5.5: A summary of the best prediction of each country by the recurrent neural network
based on the imputation methods.

Country R2 Mean population (hundred thousands) Best method
Algeria 0.986 419.120 Interpolation
Angola 0.987 312.838 Interpolation
Benin 0.998 119.301 Mean
Burkina Faso 1.00 204.037 Mean
Burundi 0.983 115.238 Mean
Cameroon 0.997 251.414 Mean
Chad 0.982 156.935 Mean
Congo Rep 0.484 54.458 Mean
Cote d’Ivoire 0.999 255.089 Mean
DR Congo 0.998 872.273 Inter + ind
Egypt 0.983 1036.796 Interpolation
Equatorial Guinea 0.882 15.002 Interpolation
Eswatini -1.121 11.717 Mean
Gabon 0.291 22.467 Mean
Gambia 0.111 24.461 Mean
Ghana 0.995 308.324 Mean
Guinea 0.983 125.066 Mean
Guinea-Bissau -3.374 19.330 Mean
Kenya 0.999 499.430 Inter + ind
Lesotho 0.816 22.121 Mean
Libya -0.280 64.723 Interpolation
Mali 0.998 199.791 Mean
Morocco 0.835 359.112 Interpolation
Mozambique 0.997 294.754 Mean
Namibia 0.798 24.127 Mean
Niger 0.992 226.028 Interpolation
Nigeria 0.992 1984.365 Interpolation
Rwanda 0.992 124.977 Mean
Senegal 1.00 155.957 Mean
Sierra Leone 0.979 78.497 Mean
South Africa 0.846 574.584 Interpolation
Sub-Saharan Africa 1.00 10929.046 Mean
Sudan 0.996 418.770 Inter + ind
Tanzania 0.997 581.885 Inter + ind
Togo 0.962 80.133 Mean
Tunisia 0.850 118.673 Mean
Uganda 1.00 415.339 Inter + ind
Zambia 0.989 580.673 Interpolation
Zimbabwe 0.679 152.588 Mean

45

Chapter 6

CONCLUSION

In this thesis, we have explored the application of recurrent neural networks (RNNs) for pre-

dicting the population sizes of African countries. The primary motivation behind this study

was to leverage advanced machine learning techniques to address the challenges of population

forecasting in a diverse and dynamic region of Africa. The main conclusions and future work

directions are listed below.

• Model Performance: Strong prediction power was shown by the RNN model in most of

the African countries on the mean imputation method. The model was able to accurately

represent the trends and patterns in population increase, according to performance criteria

like the mean population values and R2 values. And interpolation + indicators performed

poorly according to Table 5.4.

• Country specific insights: Tables 5.5 show the best imputation method for each country

based on its R2 and mean population values. From the Table 5.5, it can be seen that the

RNN model performed very well and have higher predictive accuracy on countries like

Burkina Faso, DR Congo, Senegal, Sub-Saharan Africa, Cote d’Ivoire, Benin,Mozambique,

Ghana, Algeria,Niger, Egypt, Nigeria, Kenya, Uganda, etc. And performed very poor on

countries like Guinea-Bissau, Libya, Eswatini, Gambia, Gabon. Others need improve-

ment to perform much better, for instance Zimbabwe, Tunisia, Namibia, etc. If we ex-

amine from Table 4.1, the magnitude of the missing values are mega, but the predictions

by the model looks very powerful.

• Future work: While the results of this study are promising, there are several areas for

future work. Further enhancements to the RNN model, such as incorporating additional

data sources (e.g., economic indicators, migration patterns) and experimenting with more

sophisticated architectures like long short-term memory (LSTM) networks or gated re-

current units (GRUs), could improve prediction accuracy.

46

• Final remarks: Machine learning holds great promise for solving intricate demographic

problems, as evidenced by the use of RNNs to forecast population sizes in African na-

tions. The knowledge acquired from this research can be used as a basis for better strate-

gic planning and decision-making, which will ultimately aid in the sustainable develop-

ment of the African continent. Predictive models’ capabilities will advance along with

data collecting and technology, opening the door to ever more precise and useful popula-

tion estimates.

47

Bibliography

[1] Carillo, Maria Rosaria, Vincenzo Lombardo, and Alberto Zazzaro. "The rise and

fall of family firms in the process of development." Journal of Economic Growth 24

(2019): 43-78.

[2] Ritchie, Hannah, Veronika Samborska, and Max Roser. "Urbanization." Our world

in data (2024).

[3] Graham, Victoria. "Youth Participation in Anglophone Africa. In Brittle Democra-

cies: Comparing Politics in Anglophone Africa", edited by Heather A. Thuynsma

(2020).

[4] World Demographics. Available at: https://www.worldometers.info/

demographics/world-demographics/#median-age.

[5] Freire, Maria Emilia. "Urbanization and green growth in Africa." The Growth Dia-

logue 1 (2013): 1-38.

[6] Unemployment Rate in Africa. Available at: https://www.statista.com/

statistics/1319860/unemployment-rate-in-africa.

[7] Woeste, Peter. "The World-an Old-Age Home." (2019): 9.

[8] Uinted Nations General Assembly. Transforming our World: The 2030 Agenda for

Sustainable Development. A/RES/70/1.

[9] Ayodele, Taiwo Oladipupo. "Types of machine learning algorithms." New advances

in machine learning 3, no. 19-48 (2010): 5-1.

[10] Basic Concepts in Machine Learning. Available at: https://www.javatpoint.

com/basic-concepts-in-machine-learning.

[11] Loss Function. Available at: https://www.datacamp.com/tutorial/

loss-function-in-machine-learning.

48

https://www.worldometers.info/demographics/world-demographics/#median-age
https://www.worldometers.info/demographics/world-demographics/#median-age
https://www.statista.com/statistics/1319860/unemployment-rate-in-africa
https://www.statista.com/statistics/1319860/unemployment-rate-in-africa
https://www.javatpoint.com/basic-concepts-in-machine-learning
https://www.javatpoint.com/basic-concepts-in-machine-learning
https://www.datacamp.com/tutorial/loss-function-in-machine-learning
https://www.datacamp.com/tutorial/loss-function-in-machine-learning

[12] Gradient Descent in Machine Learning. Available at: https://www.javatpoint.

com/gradient-descent-in-machine-learning.

[13] Machine Learning Model Evaluation. Available at: https://www.

geeksforgeeks.org/machine-learning-model-evaluation/.

[14] The Difference Between Training Data vs Test Data in Ma-

chine Learning. Available at: https://www.obviously.ai/post/

the-difference-between-training-data-vs-test-data-in-machine-learning.

[15] Backpropagation. Available at: https://builtin.com/machine-learning/

backpropagation-neural-network#:~:text=Backpropagation.

[16] Hewamalage, Hansika, Christoph Bergmeir, and Kasun Bandara. "Recurrent neural

networks for time series forecasting: Current status and future directions." Interna-

tional Journal of Forecasting 37, no. 1 (2021): 388-427.

[17] Gareth, James, Witten Daniela, Hastie Trevor, and Tibshirani Robert. An introduc-

tion to statistical learning: with applications in R. Spinger, 2013.

[18] Kaiser, Jiří. "Dealing with Missing Values in Data." Journal of Systems Integration

(1804-2724) 5, no. 1 (2014).

49

https://www.javatpoint.com/gradient-descent-in-machine-learning
https://www.javatpoint.com/gradient-descent-in-machine-learning
https://www.geeksforgeeks.org/machine-learning-model-evaluation/
https://www.geeksforgeeks.org/machine-learning-model-evaluation/
https://www.obviously.ai/post/the-difference-between-training-data-vs-test-data-in-machine-learning
https://www.obviously.ai/post/the-difference-between-training-data-vs-test-data-in-machine-learning
https://builtin.com/machine-learning/backpropagation-neural-network#:~:text=Backpropagation
https://builtin.com/machine-learning/backpropagation-neural-network#:~:text=Backpropagation

	Introduction
	Importance of population on earth
	Problems of some African countries
	Statement of problem
	Objectives
	Good predictive performance
	Structure of the thesis

	MACHINE LEARNING AND NEURAL NETWORKS
	Basic concept of machine learning
	Model
	Loss
	Loss minimization
	Gradient descent

	Evaluation of machine learning models
	Feed forward neural network
	Structure of feed forward neural network
	Forward propagation
	Backpropagation and training

	Recurrent neural network
	Key concepts of RNN
	Architecture of recurrent neural network
	Characteristics of simple RNNs

	DATA IMPUTATION
	Missing data and the concept of data imputation
	Understanding missing data

	Basic methods of data imputation
	Linear interpolation
	Mean
	Indicators

	PREDICTION OF POPULATION SIZE
	Description of predictive task
	Dataset description
	Features of the dataset

	Model description
	Important libraries
	Model architecture
	Training
	Quality metrics
	Implementation

	EXPERIMENTAL RESULTS
	Aggregate results
	Per country analysis
	Visual summary

	CONCLUSION

