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PREFACE 

The aim of Zbornik radova is to foster further growth of pure and applied mathe
matics, publishing papers which contain new ideas and scopes in the mathematics. 
The papers have to be prepared in such a manner that they can inform readers 
in a favourable way, introducing them in a narrower field of mathematical theories 

• 

pointing at research possibilities. It can be for the individual use or for discussions 
in College or University seminars. 

We are open for contacts and cooperations. 

Bogoljub Stankovic 
Editor-in-Chief 
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o. Introduction 

. First version of the present text appeared as one-semester course lecture notes 
in algebraic geometry. The course for graduate students of mathematics, of geo
metrieal, topological and algebraic orientation, took place in the spring semester of 
1994/95, and was organized on the initiative of Z. Markovic, head of Mathematical 
Institute in Belgrade, with great support from my colleagues from the Belgrade 
GTA Seminarl , especially R. Zivaljevic and S. Vrecica . 

• 
I had a difficult task. In a short course one should have reached some rele-

vant topics of algebraic geometry. Basics of algebraic geometry require an ample 
preliminary material, mostly from commutative algebra, homological algebra and 
topology. I tried to avoid this and to include only a minimal amount of such mate
rial. Consequently, the style of writing is laconic, with many references to existing 
(excellent) textbooks in algebraic geometry, but on the other side, it is consistent, 
in order to be readable, with some effort of course. The scope of the course should 
include some of the interesting and important results in algebraic geometry. Two 
such results are included, both classical but very important: the 27 lines on a cubic 
surface and the Riemann-Roch theorem for curves. I leave to the reader to judge, 
whether my task has been solved, and to which extent. 

The present text could serve different purposes. It could be used as an in
troduction for nonspecialists, who would like to understand what is going on in 
algebraic geometry, but are not willing to read long textbooks. It could also be 
used as a digest for students, who are preparing to take a serious course in alge
braic geometry. Nowadays, algebraic geometry became an indispensable tool in 
many closely related or even far standing disciplines, such as theoretical physics, 
combinatorics and many others. Specialists in these fields may also find this text 
useful. 

(1) 

1. Rational algebraic curves 

In the course of Calculus one evaluates indefinite integrals of the form 

R(x, J ax2 + bx + c)dx 

. 
Supported by Ministry of Science and Technology of Serbia, grant number 04M03/C 
1 GTA stands for: Geometry, Topology, Algebra 



8 Aleksandar T. Lipkovski 

where R(x, y) is a rational function with two .arguments. These are the simplest 
integrals with so called quadratic irrationalities. Some readers remember that these 
integrals are being calculated with the help of so-called Euler substitutions. There 
are three such substitutions (the types are not distinct): 

Type 1. If a> 0, one puts ../ax2 + bx + c = t - fox 

Type 11. If c > 0, one puts ../ax2 + bx + c = xt + Vc 
Type Ill. If the polynomial has real roots .A and j.L, ax2 + bx + c = a(~ - .A) 

(x - j.L), and we use ../ax2 + bx + c = t(x - .A). 

In all three cases, the differential R{x, y)dx is being rationalized and the 
integral evaluated in elementary functions. 

The Euler substitutions are described in traditional calculus textbooks, such 
as [30, p. 59]. A few students understand what is the real meaning of these substi
tutions. However, they have fine geometrical interpretation. Introduce the curve 
of second order 

(2) 

and its point (xo, yo). After the translation to that point, the equation of the curve 
• 
IS 

• 
(y - YO)2 + 2yo{y - yo) = a{x - xO)2 + 2axo{x - xo) + b{x - xo) 

Let y - Yo = t{x - xo) be the line through that point with variable" slope t (see the 
figure) 

(x, y) 
• 

The other, variable intersection point of the line and the curve (2) is obtained 
from the system " • 

(t2 - a).(x - xo) = (2axo + b) - 2Yot 

Y - Yo = t{x - xo) 

whose solution (x, y) depends rationally on t (for almost all t): 

(2axo + b) - 2Yot 
x = Xo + 2 

t -a 
y = Yo + t(x - xo) 
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After substitution in the integral, one obtains rational function of argument t and 
the integral evaluates easily: 

R(x, J ax2 + bx + c)dx = R(x(t), y(t))x' (t)dt = ... 

Euler substitutions can be deduced from this general algorithm by different special 
choices of the point (xo, yo). 

Type Ill. The point (xo, Yo) = (A, 0) lies on the curve and we put y = t(x - A). 
Type II. The point (xo, Yo) = (0, VC) lies on the curve and we put y-.,fC = xt. 
Type 1. Here the situation is slightly more complicated. In the case a > 0 the 

curve (2) is a hyperbola with asymptotic directions (y'a, ±1). As starting point 
(xo, Yo), one takes the point at the infinity of one of these two directions. Then 
the . lines through that point are exactly the lines y = y'ax + t parallel to the 
asymptote. Each of these lines intersects the· curve in one more point (x, y) and we 
use y = y'ax + t. 

From previous discussion one can see that the expressibillty ofthe integral (1) 
in elementary functions is based on the following specific property of the conic (2). 
There exist rational functions x = ~(t)j Y = 1J(t) of one argument t such that for 
different parameter values t, the corresponding point (~(t), 1J(t)) lies on the curve. 
In this way one obtains all (but one) points of the curve. More specifically, for eacll' 
point (x, y) =F (xo, Yo) on the curve (2) it is sufficient to draw a line through (xo, Yo) 
with the slope t = (y-Yo)/(x-xo). We say that in such case curve (2) has rational 
parametrization. One can easily show that every plane curve of second order has 
a rational parametrization. Such curves have been called unicursal. Today one 
rather uses the term rational curves. 

Let us now apply the above principle of evaluation of the integral (1) with 
irrationalities of the type JP(x) where P(x) is a polynomial of degree greater than 
2. In this case, along with the integral 

(3) R(x, JP(x))dx 

one should consider the curve 

(4) 
• 

Here we have different behavior. . Some of the curves (4) do admit rational 
parametrization, and some of them do not. 

Examples. 1. It is obvious that the curve y2 = x3 has rational parametriza:. 
tion (which one?). 

2. The curve y2 = x3 + x2 also has rational parametrization x = t2 - 1, 
y = t(t2 - 1), It is obtained when one finds the intersection points of the curve and 
the lines y = tx through (0,0). 
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. 3. The curve y2 = x3 + ax2 + bx + c has rational parametrization if and only. 
if the polynomial x3 + ax2 + bx + c has multiple root. 

When rational parametrization of the curve (4) exists, the integral (3) could 
be transformed into integral of rational function. How one evaluates the integral 
when there is no such parametrization? Interesting and complicated theory is 
obtained already when degree of the polynomial P(x) equals 3 or 4. It is sufficient 
to consider only the latter case, since degree 3 could be transformed to degree 4 by 
rational transformations. 

Example. For a given curve 

(5) 

the right-hand side polynomial of degree 3 has at least one real root. Applying the 
translation along x axis one could make this root 0 i.e., one could put c = O. After 
substitution y = tx we get 

a-t2 

x+ 2 

2 

+b-

The rational parametrization 

(6) 
a- t2 

x=u---
2 

y=t 

t2 2 
a- =0 

2 

a-t2 

~- 2 

• 

transforms the curve (5) in the curve of degree 4 with equation 

1 a2 

u2 = -t" - at2 + - b 4 4 

The parametrization (6) is rationally invertible it has a rational inverse 

y 
t =-, 

x 
a - (yjx)2 

u = X + -"""'"'"'"'-'--'-
2 

This is a very important fact, as we will see later. 

2. Plane algebraic curves. Polynomials in many variables 

, 

Now we should make the term "plane algebraic curve" more precise. Let K 
be field, so-called ground field, and K[x, y] polynomial ring in two variables with 
coefficients in K. , . 

Definition. Plane algebraic curve in the affine plane K2 = Ak is the set of ' 
points in the plane defined by algebraic polynomial equation 

x = {(x,y) E K21 f(x,y) = O} 
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where I(x,y) E K[x,yj. This set is denoted X = V(J). 
Even such simple definition leads to several problems. Naturally, one would 

like to establish a one-to-one correspondence between sets and their equations. 
However, already in the real analytic geometry there exist examples where basically 
different equations define the same set, or equations define sets that seem unnatural 
to call "curves". So, in the real plane, equations x = 0 and x2 = 0 define the x-axis, 
equations x2 + y2 = 0, (x2 + y2)2 = 0 and x6 + y4 = 0 define the point (0,0), and 
equation x2 + y2 + 1 = 0 defines the empty set. Immediately, two questions arise: 

first, how to treat objects which are produced by this definition but do not 
agree with our intuitive notion of "curve"; 

second, in which extent is the set X = V(J) determined by the polynomial I 
and how to modify the definition in order to get one-to-one correspondence. 

These problems are present already in the course of analytical geometry for 
first-year undergraduates. Problem with curves which "are not curves" is being 
bypassed by calling them "degenerate", etc. The question, in which extent is equa
tion determined by the set of points, is usually not treated at all. The first problem 
can be easily solved: one should consider complex numbers instead of real ones. 
This is known as the complexification process. In the general case, one should take 
the algebraic closure of the given field. The "empty" curves like V(x2 + y2 + 1) 
then disappear. In the sequel the ground field Kwill always be algebraically closed, 
unless the opposite is explicitly stated. Usually, it will be the field of complex 
numbers C. 

As to the second problem, it is being answered by the following fact, known as 
Study's lemma2 • Note that when polynomial I divides polynomial g, then 9 = Ih 
and every root of lis at the same time the root of g, that is V(J) C V(g). In the 
case of algebraically closed field the converse is also true. 

Lemma. Let K be algebraically closed field and I(x, y) E K[x, yj irreducible 
polynomial. H the polynomial g(x, y) E K[x, y) has a zero in every point of the 
curve X = V(J) (i.e., ifV(J) c V(g»), then I divides g. 

Proof. Let 9 :f: 0 (in the opposite, I divides g). Then also I :f: O. If I is· 
constant, then I divides g. Suppose I is not constant, but an actual polynomial, 
say in y: I(x,y) = ao(x)yn + ... E (K[x])[yj with ao :f: 0, n > O. Let us show 
that 9 is then also an actual polynomial in y. If 9 = g(x) E K[xj, then 0 :f: aog = 
ao(x)g(x) E K[x) a.nd there should exist ~ E K such that ao(~)g(~) :f: O. Since 
K is algebraically closed, there exists 1] E K such that I(~, 1]) = 0, which is a 
contradiction to the choice of~. Therefore, g(x,y) = bo(x)ym + ... E (K[x])[yj 
with bo :f: 0, m > o. 

Let now R = R(J,g) E K[x) be the resultant of polynomials I and 9 with 
respect to y. Let ~ E K be such that ao(~) :f: O. Since K is algebraically closed, 
there exists 1] E K such that I(~, 1]) = O. Then also g(~, 1]) = 0 and therefore 
R(~) = O. In such way, aoR = 0 E K[x). Since ao :f: 0, it must be R = 0, which 

2Eduard Study (1862-1930), German geometer (Fubini-Study metric in projective space) 
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means that f and 9 have a nontrivial common factor. However, f is irreducible 
and therefore f must divide 9. 

Corollary. Irreducible factors of curve's equation are determined uniquely 
(up to ordering). H f = pflp~2 ... p~. is a factorization in irreducible factors, then 
VU) = V(prlp~2 ., .p~.) = V(PIP2 ... Pk). 

This proof can easily be generalized for more than two variables. 

We see that in the case of algebraically closed field, one of all possible equa
tions of a given curve is determined uniquely by the condition that it has no multiple 
factors i.e., it is reduced. 

• 

Study's lemma is a special case of a very important theorem, which could 
be considered also as a generalization of the main theorem of algebra. It is a 
famous Hilbert's3 Nullstellensatz, which in its classical version states that "non
trivial" system of algebraic equations over an algebraically closed field always has 
a solution. Here "nontrivial" means that it is not possible to algebraically deduce 
a contradiction from the system. More precisely: 

IT the field Kis algebraically closed and ft, ... ,!k E K[Xl, . .• , xn] are polyno
mials in n variables such that there are no polynomials 91, ... ,9k E K[Xl, ... , xn] 
for which it would be 91ft + ... + 9kfk = 1, then the system of algebraic equations 

• • • 

has a solution. . 

It is known that polynomial ring in one variable over a field is a PID (principal 
ideal domain): it is even Euclidean. This is a consequence of the existence of Eu
clidean gcd division algorithm. However, in polynomial rings in two variables this is 
no more true. For instance, ideal (x, y) cannot be generated by single polynomial. 
However, in 1868 Gordan4 proved that it is possible to find a finite generating set 
of polynomials in every ideal. His proof was constructive - he described a construc
tion of such basis. Many mathematicians tried to generalize Gordan's construction 
to the case of more than two variables, but nobody could overcome computing dif
ficulties, and for twenty years this problem, known as Gordan's prob1em, remained 
open. In 1888 Hilbert proved in his famous basis theorem that every ideal in the 
polynomial ring with n variables has a finite basis. His proof was existential, not 
constructive. It has been said that Gordan, after he saw Hilbert's proof, said: "Das 
ist nicht Mathematik. Das ist Theologie!"s. Only when later Hilbert folffid a con
structive proof, Gordan was satisfied and said that theology has its merits. Only 
after this, existential proofs in mathematics became legitimate. 

3David Hilbert (1862-1943), German mathematician. Most famous for his list of problems 
for 20. century 

4Paul Albert Gordan (1837-1912), German mathematician 
5 "This is not mathematics. This is theology!" 

• 
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The notion of resultant was used in the proof of Study's lemma. Let us briefly 
describe it here. 

Let A be a UFD (unique factorization domain, factorial ring), say polynomial 
ring over a field, and let I, 9 E A[x] be two polynomials with coefficients in A, 
1= aoxm + ... + am, 9 = boxn + ... + bn (we allow also the possibility ao, bo = 0). 
Since A[x] is also a UFD, we are interested in their common divisors. The definition 
of a common divisor easily leads to the following lemma. 

Lemma. Polynomials I and 9 have nontrivial common divisor {:} there exist 
polynomials u, v E A[x], u, v '" 0 such that deg u < deg I, deg v < deg 9 and 
vI = ug. 

If one writes this condition explicitly, one has u = cOxm- 1 + .. , + Cm-I, . 

V = doxn
- l + ... + dn - l and from equality vI = ug one deduces 

, 
m n-l n m-I 

'"'" m-i '"'" d n-J'-l '"'" b n-i '"'" m-J'-l L...J aiX . L...J jX - L...J iX .' L...J CjX = ... 
i=O j=O i=O j=O 

m+n-l 

= E 
k=O 

E (aidj - biCj)x(m+n-I)-k = 0 
Hj=k 

and comparing the coefficients for x one obtains system of m + n linear equations 

E (aidj-biCj) =0 (k=O, ... ,m+n-l) 

or explicitly 

i+j=k 

=0 
=0 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

aOdn- 1 - bn-1Co 
aldn - l - bnCo 

- blCm-1 = 0 
=0 
=0 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

- bnCm-l = 0 

with m+n indeterminates Co, ... Cm-l,do, ... ,dn- 1. This system has nontrivial 
solution if and only if its determinant equals O. 

Definition. Determinant of this system, i.e., the determinant " 

al • • • am 
ao al • • • am n 

••• 

R(f,g) = ao al ••• am 
bo bl bn • • • 

bo b1 • • • bn 
m 

••• 

bo b1 ••• bn 
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is called resultant of polynomials !, 9 with respect to x. 

The resultant is a polynomial in coefficients ai and bj of degree m + n, homo
geneous in each group of indeterminates. Preceding discussion proved the following 
theorem. 

Theorem. Polynomials! and 9 have nontrivial common divisor if an! only 
if R(f, g) = O. 

Applications. 1. Solution of systems with two polynomial equations. Let 
!, g E K[x, y] = (K[x])[y] be two polynomials and R(f, g) = R(x) E K[x]. H 
(xo, yo) is a solution of the system 

, 

!(x,y) = 0, g(x,y) = 0 

then R(xo) = O. One consequence is, if the system has infinitely many solutions, 
then polynomials! and 9 have a nontrivial common divisor h = gcd(f, g) and the 
ideal (f,g) = (h) is principal. 

2. Parameter elimination. Suppose curve X is described by its rational 
parametrization 

x = Pl(t)/Ql(t) 

y = P2(t)/Q2(t) 

Let !(x, t) = Pl(t) - Ql(t)X, g(y, t) = P2(t) - Q2(t)y and let R = R(f,g) E K[x, y] 
be the resultant of these polynomials. Then 

. 

(xo, Yo) E X {:} 3to : !(xo, to) = g(yO, to) = 0 {:} R(xo, Yo) = 0 
• 

This means that the equation of X is R(x, y) = O. 

Example. Find the equation of the curve that has a parametrization x = t2 , 

Y = t 3 
- t. Here f = t2 

- x, 9 = t3 
- t - y and 

1 0 -x 0 0 
0 1 0 -x 0 

R(f,g) = 0 0 1 0 -x = y2 _ x3 + 2X2 - x 
1 0 -1 -y 0 
0 1 0 -1 -y 

Therefore, the equation of X is y2 = x3 - 2X2 + x. One could obtain it also without 
use of the resultant, but the present method is generally applicable. 

3. Transcendence degree. Hilbert's Nullstellensatz 

Let K be a field and L its extension. Subset S c K is algebraically inde
pendent over K if there is no polynomial relation between elements in S, i.e., if 
there is no polynomial ! E K[Xl,'" ,xn ] such that ! (Cl, ... ,en) = 0 for some 

--- - - - ----- - --- --- - ---

I 



I 
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Cl, . . . ,en E S. Family of algebraically independent sets is ordered by inclusion. 
Maximal elements of this family i.e., maximal algebraically independent sets are 
called transcendence bases of Lover K. For example, in the field of rational func
tions K(Xl, ... ,xn) the set {Xl, ... ,Xn} is one of its transcendence bases over K. 
Note that, if S is a transcendence basis of Lover K, then L is algebraic over 
K(S). Main statements about transcendence bases are analogous to corresponding 
statements about (linear) bases in vector spaces over fields. 

Theorem. A. Let L be the field generated over K by the set M and let 
N c M be its algebraically independent subset. There exists a transcendence 
basis B between N and M. In other words, algebraically independent set can be 
extended to transcendence basis by adding elements from a given generating set. 

Theorem. B. Every two transcendence bases of the field Lover K have the 
same cardinality. 

Cardinality of any (and every) transcendence basis of Lover K is called 
transcendence degree of that field extension. 

Our next goal is to prove Hilbert's Nullstellensatz. That will be done in few 
steps. 

Step 1. Let K be algebraically closed and L its finitely generated extension. 
There exist elements Zl, . .. , Zd+1 in L such that 

1. they generate Lover K, 

2. Zl, ... , Zd are algebraically independent, 

3. Zd+1 is algebraic over K(Zl, ... , Zd). 

Proof. Follows from the known theorem on the primitive element. 

Step 2. Let K be algebraically closed field and Ft, ... , Fm E K[tl' ... , tnj 
polynomials. H the system of equations Fl = 0, ... , Fm = 0 has a solution in 
finitely generated extension Lover K, then it has a solution in K also. 

Proof. L is of the form L :::; K(Xl, ... ,Xr,1]) where Xl,". ,Xr are al
gebraically independent over K and 1] is algebraic over' K(xt, ... ,xr). Let 
F(xl, ... ,xr,y) E K(Xl, ... ,xr)[yj be the minimal polynomial of 1]. Let now 
(el, ... ,en) be the solution of the system in Ln. Onehasei =Ci(Xl, ... ,Xr ,1]) for 
some polynomials Ci(xt, ... ,xr,y) E K(Xl, ... ,xr)[yj. Since F is minimal, there 
exist polynomials Qi such that 

identically with respect to Xl, ... , Xn y. Since K is infinite, there exist ele
ments al, ... ,an E K such that all denominators in coefficients of polynomials 
F,Ql' ... ,Qr,Cl , ... ,Cn E K(xt. ... ,xr)[yj and also the highest order coeffi
cient of polynomial F are different from 0 after substitution Xi = ai. Since K 
is algebraically closed, there exists (3 E K such that F(al, ... , ar , (3) = O. Then 
'Yi = Ci(al, ... , a r , (3) is the solution in Kn. 
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Step 3. If polynomials F l , ... ,Fm E K[tl,'" ,tn] do not generate the unit 
ideal, then the system Fl = 0, . " ,Fm = 0 has a solution in the field K. 

Proof. Ideal (Fl , ... ,Fm) is contained in some maximal ideal M. Therefore 
the quotient L = K[tl, ... ,tn]/M is a field. Let the image of ti in L be ~i' Obvi-
ously, L = K(6, ... ,~n) and (6, ... '~n) is a solution of our system in the field L. 
According to Step 2, there exists a solution in K. , 

Step 4. If the polynomial G equals zero in all zero-points in Kn of polynomials 
FI , ... ,Fm, then for some r, Gr E (FI , ... ,Fm). 

Proof. Introduce a new variable u and' consider polynomials FI , ... ,Fm' 
uG - 1 in the polynomial ring K[h, ... ,tn , u]. According to assumption, they 
do not have common roots in K, and therefore (Step 3) generate the unit ideal: 
there exist polynomials PI, ... ,Pm, Q E K[tt, ... ,tn, u] such that PIFI + ... + 
Pm Fm + Q(uG -1) = 1. This identity remains true after the substitution u = I/G. 
Eliminating the denominator, one obtains the necessary statement. This proves 
the Hilbert's Nullstellensatz. 

4. Algebraic sets and polynomial ideals 

Definition of algebraic sets in higher dimensional space generalizes the notion 
of plane algebraic curves. Intuitively, algebraic set is a solution set of system of 
polynomial equations: If h, ... ,/m E K[xl, ... ,xn], the set V(h, .. · ,/m) = 
{x E Kn I h(x) = .. , = Im(x) = O} of solutions of the system h(x) = ... = 
Im(x) = 0 is called algebraic set in the affine space Kn. For m = 1 (one equation), 
the corresponding set V (f) is called hypersurface. 

Even for plane algebraic curves it was not easy to establish a one-to-one corre
spondence between solution sets and equations: different equations could represent 
the same algebraic set. Instead of systems, let us consider their left-hand sides, that 
is, finite sets of polynomials. Instead of finite sets, it is useful to consider arbitrary 
sets of polynomials. . 

We shall use the notations A = K[XI' •.. ,xn ] for ground polynomial ring and 
X = Kn = Ai< for ambient affine point space in the whole section. 

Definition. For any subset S C K[XI"" ,xnJ, algebraic set in X defined by 
S is the set V(S) = {~= (~I'''' '~n) E X I'll E s, I(~) = O} eX. 

In this way one obtains the correspondence between subsets in A and subsets 
in X, that is, the mapping of partitive sets V : 1'(A) -+ 1'(X). Let us establish its 
elementary properties. _ 

Lemma 1. (a) SeT:::} V(T) c V(S) (more equations, less solutions). 

(b) V(0) = X, V(A) = 0. (c) V(SI U S2) = V(SI) n V(S2)' 
(d) V (/1, ... ,I m) = V (h) n ... nV (f m) (every algebraic set is the intersection 

of hypersurfaces). 

One can easily show that even for arbitrary unions V(Ua Sa) = na V(Sa). 
Does the analogous statement hold for intersections, at least for finite ones? 
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Lemma 2. If 1= (S) is the ideal generated by S ~ A, then V(S) = V(I). 

According to the Hilbert basis theorem, the ring A is Noetherian, I = 
(ft, ... ,fm) and V(S) = V(I) = V(ft, ... ,fm). Therefore, every set V(S) is 
algebraic set, described by finite set of equation. 

One sees, that the mapping V defines (anti)epirnorphism of partially ordered 
sets 

V : ideals inA ~ algebraic sets in X • 
• 

When do the different ideals define the same algebraic set? Here the main role is 
played by the Hilbert's Nullstellensatz. It could be stated in the following manner: 

if V(I) = 0, then I = A 

and its generalized form: 

if V(I) c V(J), then f E .Jj 

Here .Ji = RadI = {a E A 13r > 0: a r El} C A is the radical of the ideal I. 
Construction of radical of a given ideal is possible in every commutative ring and 
has the following main properties, which could be easily proved. 

Lemma 3. (a) .Ji is ideal in Ai (b) le J ~ .Ji c.JJ; (c) I C Vi; 
(d) J.Ji=Vi. 

Proposition. V(I) = V(J) <=>.Ji = .JJ 
Proof. The direction -<= follows from the easy fact that V(I) = V( .Ji). Let 

us prove the opposite direction ~. If V(I) c V(J) and J = (ft, ... ,fm), one has 

V(I) C V(Jd n ... n V(Jm) ~ 11,··· ,fm E .Ji ~ J c .Ji ~ .JJ c J.Ji = Vi . 
.Ji is the greatest element in the family of all ideals that define the algebraic set 
V (J). It coincides with its own radical. The ideal I is a radical ideal, if it coincides 
with its r~dical: I = Vi. In such way, the restriction of the mapping V 

V : radical ideals in A ~ algebraic sets in X 

becomes a bijection, that is, (anti)isomorphism of ordered sets. 

Example. In the case ofhypersurface V(J), if one factorizes the polynomial f 
into irreducible factors f = pr l p~2 ... p~. , it is easy to see that vrn = (Jred) where 
fred = Pl·. ·Pk· This agrees with earlier results on equations of plane algebraic 
curves, and motivates the notation of radical as a root. 

If one considers the mapping V restricted to ideals only, its behavior with 
respect to unions and intersections becomes better. 

Lemma 4. (a) nl< V(Ia) = V(Ua la) = V(Ea la); (b) V(lt) U V(I2) = 
V(Il n 12) = V(Itl2). 
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Proof. (a) follows from Lemma 2. Let us now prove (b). Since for any 
two ideals in the ring A one has ltI2 C 11 n 12 C 11, 12 and the mapping V is 
(anti)monotonic, V(lt) U V(h) C V(Il n 12) C V(III2)' IT X rt V(Id U V(I2), 
then there exist ft Ell , 12 E 12 such that ft(x) '" 0 and 12(x) '" O. Therefore 
(ft12)(x) '" 0 and x rt V(I1I2)' . 

The last property extends directly to finitf: unions of algebraic sets. 

Lemmas 1, 2 and 4 show that the family AlgSets X of all algebraic sets in X 
is closed with respect to finite unions and arbitrary intersections, and it contains 
whole X and the empty set 0. Therefore, this family is the family of closed sets of 
some topology on X = Kn = A~, called Zariski topology. Let us have a closer look 
on this topology. 

It follows from Lemma l(d), that the basis of this topology is the family of 
complements of hypersurfaces DU) = X \ VU), so called basic or principal open 
sets. This indicates that the Zariski topology is very coarse: open sets are unions 
of complements of hypersurfaces. 

For n = 1 the set VU) is finite, since it is the zero set of a polynomial in one 
variable. Therefore, in addition to the whole space and the empty set, closed sets 
in Kl are only finite sets of points. 

Finite sets are closed also for n = 2. Are there other closed sets? IT the 
set V(ft, ... , fm) is not finite, it follows from Study's lemma that polynomials 
ft, ... , fm have nontrivial gcd h, therefore fi = hgi and V(ft, ... , fm) = V(h) U 
V(gl, ... , gm). The set V(gl, ... , gm) is finite, and V(h) is a plane algebraic curve. 
In this way, closed sets are finite sets of points, plane algebraic curves and their 

• 
UDlOns. 

The Zariski topology is compact, in the sense that every open covering con
tains a finite sub covering. IT0 = n" V(Ia) = V(Ua la) = V(}:a la), then applying 
the Nullstellensatz and the basis theorem one has 1 = ftgl + '.' + f"g" for some 
Ii E la. and therefore 0 = V(Ial + ... + la,.) = V(Ia1 ) n··· n V(Ia,,). 

One could introduce the inverse operation for V. IT Y c X is a subset, 
consider the set of all polynomials that are "annihilated" on this set: 

I(Y) = {f E AIVx E Y, f(x) = O} 

It is easy to check the main properties of this operation . 
. 

Lemma 5. (a) I(Y) is ideal in Aj (b) Y C Z ~ I(Z) C I(Y)j (c) 1(0) = A, 
I(X) = (0). 

Proposition •. (a) J C I(V(J» = Vi for every ideal J in Aj 
(b) Y C V(I(Y» = Y for any subset Y in X (closure in the Zariski topology). 

In this way, we obtained the mapping 

I : algebraic sets in X -+ radical ideals in A 

as an inverse to the mapping V. 
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First step in classification of closed algebraic sets is the attempt to represent 
them as unions of simpler subsets. Lemma 4(b) shows that this is connected with 
product of ideals. It is known that, in a Noetherian ring, every ideal can be repre
sented as a product of primary ideals, and every radical ideal as a product of ptime 
ideals. This is a generalization of the factorization theorem for polynomials, and it 
is equivalent to it in the case of principal ideals: 

An arbitrary ideal I is primary if ab E I 1\ a f/. I =? b E ..fi and prime if ab El=? 
a E I V bEl. Every prime ideal is radical. Decomposition of radical ideal in the 
product of primes is connected with decomposition of algebraic sets in intersection 
of irreducible ones: 

• 

Definition. Algebraic set Y C X is irreducible if it can not be represented 
as union Y = Y1 U Y2 of two its proper algebraic subsets Yi" l'2 c Y, Yi, Y2 =F Y. 

Proposition. Algebraic set Y is irreducible {::} ideal I(Y) is prime. 

Proof. IT Y = YI U Y2 where Yi =F Y, then 3fi E I(Yi) \ I(Y). However, 
I(Y) = I(YdI(Y2 ) and fth E I(Y), so the ideal I(Y) is not prime. Conversely, if 
this ideal is not prime, then 3fi f/. I(Y) such that hh E I(Y). Let Ii = I(Y) + (fi) 
be ideals and Yi = V(Ii) = Y. n V(fi) corresponding closed sets (i = 1,2). Then 
Y = Y1 U Y2 is a nontrivial decomposition, since , 

x E Y =? (fth)(x) = 0 =? hex) = 0 V hex) = 0 =? x E Y1 V x E Y2 

Proposition. Every algebraic set can be decomposed in finite union of irre
ducible algebraic sets Y = Y1 u· . ·UYk I where Yi et Y; for i =F j. Such representation 
is detel mined uniquely (up to peznlUtation). 

Mapping V defines a bijection between prime ideals and irreducible algebraic 
sets 

V : prime ideals in A ~ irreducible algebraic sets in X 

Set of all prime ideals in commutative ring A is called (prime) spectrum of the ring 
A and denoted Spec A. 

This {anti)isomorphism of ordered sets sends minimal irreducible algebraic 
sets in X (thus points) to maximal elements of the set Spec A (thus maximal 
ideals in the ring A). Recall that the ideal of the ring A is maximal if it is not 
contained in any proper ideal except itself, that is, if it is a maximal element in 
the set of all proper ideals in A. One has V(I) = {O = {(el,' .. ,en)} {::} I = 
(Xl - et, ... , Xn - en) {::} I C A is maximal. We obtained a bijection 

• 

V : maximal ideals in A ~ points in X 

The set of all maximal ideals in the commutative ring A is called maximal spectrum 
and denoted Max A or Specm A. One could identify X ~ Max A, at least as 
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sets of points. However, the meaning of this identification is much deeper than 
simple bijection of sets, which becomes visible in the general theory of schemes. 
On the base of maximal (or prime) spectrum of the ring one could recover the full 
geometrical structure of the corresponding algebraic set. 

5. Regular functions and mappings. Rational functions. 
Dimension. Singularities 

In the description of geometrical objects there are always natural functions on 
these objects6 • For example, on vector spaces natural functions are linear functions, 
on topological spaces continuous ones, on smooth manifolds smooth functions, 

• 
on complex varieties holomorphic ones. What are the natural functions on 
algebraic sets? By analogy with other geometrical objects, it should be polynomial 
or rational functions. Such "naive" definition should be made more precise. 

Let us start with polynomial functions. Let V C X be algebraic set and 
I C A corresponding radical ideal. 

Definition. The function f : V -+ K is a polynomial or regular function 
on V if it is defined by a polynomial, that is, if there is a polynomial F E A = 
K[X17." ,xn ] such that Vx E V, f(x) = F(x). , 

All polynomial functions build a ring (and a K-algebra) with respect to usual 
operations of addition and multiplication of functions. Since two polynomials F 
and G define the same function {:} Vx E V, F(x) -G(x) = 0 {:} F-G E I, this ring 
could be identified with quotient ring AI I of the polynomial ring by the defining 
ideal of the algebraic set V. 

Definition. The ring AI I is called ring of regular functions or coordinate 
ring of the algebraic set V and denoted K[V]. 

Examples. (a) If V = {x} is a point, its corresponding ideal M is maximal 
and AIM ~ K is the ground field: function in apoint is uniquely determined by 
its value. More generally, for n points, K[V] ~ J( EEl ... EEl 1\. 

v 
n 

(b) For V = X one has 1= (0) and K[V] = A, which is natural. 

(c) If V = V(y-x2) is a parabola in the plane, its coordinate ring is isomorphic 
to polynomial ring in one variable, that is, to coordinate ring of a straight line: 
K[V] = K[x,y]/(y - x2) ~ K[x]. 

(d) If V = V(y2 -x3 ) is a semicubic parabola (a cusp curve), one has K[V] = 
K[x, y]/(y2 - x 3 ) ~ K[x] + K[x] . y. This is a K-algebra without zero-divisors, 
generated by two elements . 

• 

The ring K[V] is always a finitely generated K-algebra. Could it be charac-
terized by pure algebraic method? Since ideal I is radical,' this algebra does not 
contain nontrivial nilpotent elements it is reduced, as one says. The converse 
also holds: for any finitely generated reduced algebra B there exists an algebraic 

6It can be said that the definition of functions describes the corresponding geometrical 
object. This is formalized via ringed spaces - spaces with structure sheaf of rings 
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set V such that K[V] e:! B. It is enough to chose generators of B over K, that is, 
represent the algebra in the form B = K[b1, ••• , b,d and consider the epimorphism 
from the corresponding polynomial ring A = K[Xl, ... , Xm] ~ K[bl, ... , bm] = B, 
Xi t-+ bi. Its kernel I is the defining ideal for the algebraic set V. The choice 
of generators from the geometrical point of view corresponds to embedding of the 
algebraic set V into some affine space Km and vice versa. 

The properties of algebras K[V] are analogous to the properties of polynomi
al ring. The main point is that in these rings two Hilbert's theorems hold the 
basis theorem and the Nullstellensatz. These algebras are Noetherian, as quotients 
of Noetherian rings. The analogon of the Nullstellensatz is: if gl, ... , gm E K[V] 
and f E K[V] are such that f(x) = 0 for every X E V which satisfies the system 
gl(X) = ... = 9m(x) = 0, then for some r, r E (911 ... ,gm) C K[V]. Both the
orems, as well as other properties, follow from the known properties of quotient 
rings, the main of which is that for any commutative ring B and its ideal I, natural 
epimorphism h : B ~ B / I = B' defines an order-preserving bijection between 
ideals in B / I and these ideals in B which contain I, in which radical ideals cor
respond to radical ideals, prime to prime ideals, maximal to maximal ideals. IT J' 
is an ideal in B', the corresponding ideal in B is J = h-1(J') :> I and one has 
B / J e:! (B / I) / (J /1) = B' / J'. Let B = A be the polynomial ring, B' = K[V] 
the coordinate ring and I = I(V) the ideal of some algebraic set V. Ideal J :> I 
corresponds to the closed set V (J) = W CV. Ideal J / I = I (W) /I(V) of algebraic 
subset W in algebraic set V is denoted by Iv(W). Therefore, here we also have 
the corresponding bijections 

algebraic subsets in V {:} radical ideals in K[V] 

irreducible algebraic subsets in V {:} prime ideals in K[V] 

points in V {:} maximal ideals in K[V] 

The Zariski topology on V is induced from X = Kn. Its open base is also built by 
principal open sets D(g) = V \ V(g), 9 E K[V]. , 

U sing regular functions one can define mappings which connect algebraic 
sets and play the role of morphisms in the corresponding category. Let U C Kn, 
V C Km be two algebraic sets and cp : U ~ V a mapping. Composition with cp 
defines a mapping 

cp* : functions on V ~ functions on U 

in the usual way, by the formula cp* (J) = f 0 cp. 

Definition. We say that cp is a regular mapping, if cp* transforms regular 
functions into regular functions, that is, if f E K[V] =? cp* (J) E K[U]. 

Proposition. (a) cp is a regular mapping {:} it is defined in coordinates 
with m regular functions, that is, there exist It, ... , fm E K[U] such that cp(x) = 
(Jt(x), ... ,fm(x» E V for all x E U. 

• 
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(b) Hcp is regular, cp. : K[V] ~ K[U] is an algebra bomomorphism. 
(c) Conversely, for any algebra bomomorpbism h : K[V] ~ K[UJ tbere is a 

regular mapping cp : U ~ V such tbat cp. = h. 
(d) Tbe mapping 

U 

~l I ) 
• 

V K[V] 
is a contravariant functor. Tbe category of algebraic sets and regular mappings is 
equivalent to tbe category of finitely generated K-algebras witbout nilpotents (so 
called affine K -algebras) and bomomorpbisms. 

Proof. (a) H Yi E K[V] are coordinate functions (images of generators of 
polynomial ring in which the algebraic set V is defined) and cp·(Yi) = Ji E K[U], 
then for "Ix E U, i-th coordinate of the point cp(x) is Yi(cp(X» = CP·(Yi)(X) = 
Ji(x) and cp(x) = (ft (x), ... ,/m(x». Conversely, if cp is a mapping of that form 
and 9 E K[V] a regular function on V, then for "Ix E U, cp·(g)(x) = g(cp(x» = 
g(ft(x), ... ,/m(x» is a polynomial function of coordinates x, that is, a regular 
function. 

(b) is obvious. 
(c) Let again Yi E K[V] be coordinate functions and h(Yi) = li E K[UJ. 

Define for x E U, cp(x) = (ft(x), ... ,/m(x» and prove that cp(x) E V. In
deed, if F E I(V), then F(YI, ... ,Ym) = O. One has 0 = h(F(YI, •. ' ,Ym» = 
F(h(YI), ... , h(Ym» = F(ft, ... ,/m) and F(cp(x» = h(F)(x) = 0, and this means 
exactly that cp(x) E V. For x E U and 9 E K[V] one has cp. (g) (x) = g(cp(x» = 
g(ft (x), ... , Im(x» = g(h(Yl)(X), ... , h(Ym)(x» = h(g)(x) i.e., cp. = h. 

(d) This is also straightforward. 
Definition. Isomorphism 01 algebraic sets 7 is isomorphism in the categor

ical sense, that is, a regular mapping which has inverse regular mapping. In 
this equivalence of categories, it corresponds to isomorphism of algebras, Le., 
U ~ V {:} K[UJ ~ K[V]. 

Examples. 1. Projection cp{x, y) = x is a regular mapping of the hyperbola 
V = {xy = I} in the line Ai, but not an isomorphism (not even a set bijection). 
Corresponding algebras are K[x,y]/(xy -1) ~ K[t]. 

2. Mapping. cp : Al ~ V = {y2 = x3 }, t t-+ (t2 , t3 ) is regular and a set
theoretic bijection. However, it is not an isomorphism. The corresponding homo
morphism of algebras cp. : K[V] = K[x, y]/(y2 - x3 ) -+ K[t] = K[Al] is defined by 
x t-+ t2 , Y t-+ t3 • Its image is Im cp. = K[t2 , t 3] ~ K[t]. Since cp is a bijection, it has 
• • mverse mappmg 

1jJ: V -+ At, 1jJ(x,y) = 
y/x, (x,y) ~ (0,0) 

0, (x, y) = (0,0) 

7 Biregular isomorphism, as opposed to birational isomorphism which will be introduced 
later. 

• 

• 

-_. _ .. - .. 
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but it fails to be regular in the point (0,0). One could give the following informal 
interpretation. Algebra K[V] is smaller than K[AI], since in the latter there is a 
polynomial function with derivative in 0 different from 0, and in the former there 
is no such function: mapping is "leveling" all tangent vectors in O. 

3. Parabola y = xk is isomorphic to the line Al. The corresponding isomor
phisms are <p(x,y) = x, 1jJ(t) = (t, tk). 

4. Let V = {y2 = x3 + x2} be the alpha-curve. As we already know, it has 
a rational parametrization <p(t) = (t2 - 1, t3 - t). The parametrization defines a 
regular mapping <p: Al ~ V. Is this an isomorphism? More generally, is there an 
isomorphism of V and AI? . 

The examples show that, despite our wish to work only with polynomials, 
the involvement of rational functions is inevitable. Usual rational functions are not 
functions in a precise sense of the word - they have not to be defined everywhere. 
We are interested in rational functions on a given algebraic set, say curve C with 
equation f(x,y) = O. Rational functions on the whole plane are the elements of the 
fraction field K(x, y) of the polynomial ring K[x, y]. Two such rational functions 

. may define the same fuxiction on C. 

Example. On the circle C : x2 + y2 = 1 one has x2 = (1- y)(1 + y), so the 
two rational functions 

l-y 
<PI(X,y) = , 

x 
x 

<P2(x,y)=I+y 

(0,1) 

(0, -1) 

on C coincide in their common functional domain. Note that the domains of 
these two functions on C are different: the first is not defined in points (0,1) 
and (0, -1), the second only in (0, -1). They coincide in the Zariski open subset 
U = C\ {(O, 1), (0, -I)} of the curve C (see fig. 

Definition. Let V c An be irreducible closed set with coordinate ring K[V]. 
The fraction field K(V) of the domain K[V] is the field of rational functions on V 
(or simply the function field of V), and its elements rational functions on V. 

Let V C An be a closed set, x E V a point, U its open neighborhood and 
r : U ~ K a function in the neighborhood. FUnction r is regular at the point x if 
there exist polynomial functions f,g E K[V] such that g(x) '" 0 i.e., x E D(g) and 
r = f /g on Un D(g). 

Proposition. This local definition of regularity is consistent with the previ
ous global one. In other words, if the function r : V ~ K is regular in every point 
x E V, then r E K[V]. 

Proof. From the definition, for every x there is a representation r = f%/g% 
on D(g%). Due to 'compactness, V = U%EV D(g%) = D(gt} U ... U D(gm), or 
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(gz Ix E V) = (g1, ... ,gm) where gi = gz,· Since V(g1, ... ,gm) = 0, from the 
analogon of Nullstellensatz one has (g1,." , gm) = 1, or g1h1 + '" + gmhm = 1. 
Consider the polynomial function f = /th1 + ... + fmhm E K[V]. Since gigj = 0 
on V(gigj) and figj = I;gi on D(gigj) = D(gi) n D(gj), then gigjUigj -I;gi) = 0 
on whole V. Hwe write r = !t/gi = figi/g~, then we have figj = I;gi on whole V. 
Therefore I; = I·/; = Ei !;gihi = Ei figjhi = f· gj and r = f E K[V]. 

Definition. Let V C An be closed set, K[V] its coordinate ring and K(V) 
field of rational functions. H x E V is a point, all rational functions r E K(V) 
regular in x build a ring denoted by Oz,v or Oz and called the local ring of V at 
the point x. Regular function on whole V is a function, regular in every point of 
V. All regular functions on V also build a ring O(V). The preceding statement 
proves that O(V) = K[V]. One has also O(V) = nzEv Oz,v c Oz,v c K(V). 

The ring Oz,v consists of all rational functions from K(V) which has a rep
resentation where x is not a zero of the nominator (a pole of the function). All 

• 

regular functions which have a zero in x build a maximal ideal in K[V] and the 
ring Oz,v is its minimal extension in which all elements of the complement of this 
ideal become invertible. 

We could already note the importance of the principal open sets, which form 
the basis of the Zariski topology. The following result shall confirm this opinion . 

• 

Proposition. Principal open sets are affine: they are isomorphic to afline 
closed sets. 

Proof. Let V C An be an affine closed set with coordinate ring K[V], f E 
K[V] a regular function and DU) = V\ VU) = {x E Vlf(x) i: O} principal open 
set. Let J = I(V) C K[X1"" ,xn ] be the ideal of V and F defining polynomial 
for f. Introduce a new indeterminate y and consider the ideal I = J + (yF -1) C 
K[X1,'" ,xn , y]. H U = V(I) C An+! is a closed set, then 

K[U] = K[xb'" , XRJ y]/ (J + (yF -1» ~ (K[Xb ... ,xnJ/ J) (j-1] = K[V][f-1] 

that is, DU) ~ U. Geometrically, this is analogous to projection of the hyperbola 
on the axis (see the figure). 

y 

u 

v ;r 
• 

From the proof one can see that the principal open set DU) is the affine closed 
set corresponding to subalgebra K[V][f-1] C K(V). This subalgebra consists of all 
rational functions which in the denominator have only powers of f. In other words, 
it is a minimal extension of the algebra K[V] in which the set {f, p, p, ... } C 

---- -- - -- --- - ._.- -----
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K[V] becomes invertible. This construction, as well as the above construction 
of the local ring at the point, is called the localization of the ring with respect to 
multiplicative subset. It is very common in commutative algebra. Its oldest version 
is the construction of domain's fraction field, when all nonzero elements become 
invertible. 

Rational functions are used to define rational mappings, specific for algebraic 
geometry. Let X CAn and Y C Am be two algebraic sets, and X irreducible. 

Definition. Rational mapping f : X --+ Y is a mapping defined by m 
rational functions h, ... , fm E K(X} with the formula x I-t (h(x}, ... , fm(x» in 
every point x E X in which all functions are regular. 

Rational mapping is not everywheJ;e defined, only on an open set. The nota
tion should also stress the fact, that we have a partial function here. It is however, 
uniquely defined by its values in the domain of definition. In other words, if one has 
two rational mappings (on different open sets), which coincide on some nonempty 
open set, then they are equal. 

If the image of rational mapping f : X --+ Y is dense in Y, it defines a 
mapping of rational functions on Y to rational functions on X (by simple change 
of variables). In this way one has a monomorphism of fields K(Y} <-+ K(X}. Sim
ilarly to regular mappings and corresponding ring homomorphisms K[Y]--+ K[X], 
a functorial connection is defined between rational mappings and homomorphisms 
(i.e. inclusions) of function fields. That means that isomorphisms of fields corre
spond to "isomorphism" rational mappings. 

Definition. Rational mapping is a birational isomorphism, if it has in
verse rational mapping (inverse here means that the compositions are identities 
on nonempty open subsets!). Algebraic sets X and Y are birationally isomorphic, 
if there is a birational isomorphism between them, i.e., if K(X} !:!! K(Y}. Alge
braic set X is rational, if it is birationally isomorphic to affine space, that is, if 
K(X} !:!! K(Xl, . .. , xn). , 

As a result, there are two different equivalence relations and two classifications 
of algebraic sets. One is the finer classification up to isomorphism, or classification 
of coordinate rings, the other is the coarser birational classification, or classification 
of function fields. 

Example. The alpha-curve y2 = XS + X2 is rational: it has a rational 
parametrization which defines isomorphism of its function field with the field of 
usual rational functions in one variable K(x}. The same holds for semicubic parabo
la y2 = xs. However, if in the plane cubic curve y2 = Ps(x} the right-hand-side 
polynomial has no multiple roots, it is not rational. 

How should one properly define dimension of algebraic set? There are several 
characterizations of geometrical notion of dimension. The oldest description of 
dimension is probably one from the Euclid's "Elements": the point is the border of 
the line, the line is the border of the surface,. .. One says that the algebraic set V 
is of dimension d if d is a maximal length of strictly j.ncreasing chain {x} = Vo C 
Vl C ... C Vd = V of irreducible subvarieties in V. Due to connection between 
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irreducible subvarieties in V and prime ideals in K[V], d is at the same time the 
maximal length of strictly increasing chain (0) = 10 C 11 C ... C Id of proper 
prime ideals in K[V]. 

Definition. Krull dimension of commutative ring A is the maximal length 
of strictly increasing chain of proper prime ideals in A. 

So, the dimension of algebraic set equals to Krull dimension of its coordinate 
ring. For example, Krull dim K[X1' . " ,xn ] = n, in accordance to our intuition. 

In courses of commutative algebra it is shown that Krull dimension of the 
affine algebra (finitely generated reduced algebra over the ground field) is equal 
to the transcendence degree of the corresponding fraction filed Le. function field: 
dim V = Krull dim K[V] = tr degK K (V) [1, p. 150]. What is the geometrical 
meaning of this equality? H tr degK K (V) = d, then one could chose d algebraical
ly independent elements such that field extension K(V) ::> K(X1"" ,Xd) = K{Ad) 
is algebraic. This extension defines a regular mapping V -7 Ad, so-called nONnal
ization of the algebraic set V. Normalization is a finite morphism, which means 
also that it is a finite covering, i.e., over each point of Ad there are at most d points 
of V. This gives us another geometrical expJanation of dimension. 

Every local ring Oz.v (x E V) has the same dimension dim V. In local rings 
(rings with only one maximal ideal) there exists a connection between dimension 
and the maximal ideal itself: dimK M/ M2 2: Krulldim O. The ring Oz.v (and the 
point x) is regular, if the exact equality holds. What is the meaning of the vector 
space Mj M2? It consists of linear parts (Le., differentials) of all functions, regular 
and equal to zero in x. Therefore, its dual vector space "CM/ M2)* plays the role of 
the tangent space to the algebraic set V at the point x. The above inequality means 
that there can exist points which are not regular in the sense that the dimension of 
the tangent space is strictly greater than the dimension of V itself. Such points are 
special points. H V is defined by its global equations, they can be characterized in 
the following way. 

Definition. Point x E V is a singular point (singularity) of algebraic set 
V = VU1' ... ,fie) c An if it is a solution of the following system: 

• 

of- of-
hex) = 0 • (x) = ... = 0 • (x) = 0 (i = 1, ... ,k). 

Xl Xn 

In other words, the singular points are the points where the rank of the 

J acobi matrix (:!~ (x) ) ,:=1 •...• 1e drops down. In regular points this rank is equal to 
J=l •... n 

codimension of V. 

The algebraic definition of singular point, independent of the embedding of 
V in ambient affine space, was introduced by Zariski8 • He also proVed equivalence 
with above traditional analytical definition. 

80scar Zariski (1899-1986), italian and american algebraic geometer. 

, , 
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Algebraic sets without singularities, nonsingular varieties, are the closest anal
ogons of smooth manifolds or complex-analytic varieties. The presence of singular 
points complicates the structure of algebraic varieties and makes them interesting. 

Example. There are two typical plane singular cubics, which correspond to 
simplest types of singularities. These are the alpha-curve y2 = x3 + x2 with a nodal 
point (a "node"), and the semicubic parabola y2 = x3 with a cuspidal point (a 
"cusp"). 

The theory of singularities of algebraic varieties is a very deep theory, which 
itself requires a long introduction. There are many aspects of studying singulari
ties, such as classification by discrete invariants, topological structure, resolution of 
singularities, etc. One fruitful method for investigation of singularities of hypersur
faces is given by a combinatorial-geometrical invariant called Newton polyhedron. 
It was introduced by Newton, but it attracted proper attention only recently, main
ly in the work of Arnold's singularity group, in the 1970's (see [2]). Some simple, 
though interesting combinatorial connections between singularity and its Newton 
polyhedron were studied by the author [17]. ' 

6. Projectivization. Projective varieties 

Besides the algebraic closure of the ground field, there is one more problem in 
correspondence between the curve as a set of points on one side, and its equation 
on the other. IT the degree of the curve's equation is d, the number of intersection 
points with an arbitrary straight line is at most d, but it can also be less. 

Let C be a plain curve of degree d, defined by equation f(x,y) = 0 where 
f is a polynomial of degree d. IT L: x = a + bt, y = c + dt is a straight line, the 
intersection of C with L is determined by the equation 

f(a+ bt,c+ dt) = g(t) = ao(a,b,c,d)· t d + ... 

It can happen that some of the roots are multiple, that is, some intersections have 
higher order. The notion of intersection multiplicity resolves this problem (this, 
however, is not trivial). However, it can happen that the degree of the equation 
in t is strictly less than d, since the coefficient of the highest order term equals O. 
In the case of hyperbola and its asymptotic lines, the intersection point has "gone 
to infinity". Therefore, the points at the infinity should be introduced. It is done 
with the process of projectivization. 

There are many equivalent ways to define projective space. A common one 
is to define the n-dimensional projective space IPn over the field K as the set of 
all one-dimensional subspaces, that is, the set of all lines through the origin in 
the vector space Kn+l. IT one considers a unit sphere in this space, each line in
tersects the sphere exactly in two antipodal points. For this reason, in topology, 
IPn is defined mostly as the sphere sn C Kn+l with its antipodal points identi
fied. We are interested in analytical approach to this construction: n-dimensional 
projective space IPn = 1P1< over K is the quotient of the set Kn+l \ {O} by the 
equivalence relation, induced by homothety: (Xo, Xl,' •. ,Xn ) "" (AXo, Axl,'" ,AXn ) 
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where A ",. O. Points in projective space are the corresponding equivalence classes, 
denoted x = (xo : Xl : ••• : xn). Therefore, (xo: Xl : ••• : Xn) = (AXo : AX1 : ... : AXn). 
Numbers Xi are homogeneous coordinates of the point x. Since there is always a co
ordinate different from 0, the space pn is covered by sets Ai = {x E pn I Xi ",. O} = 
{x = (Xo: ... : ~: ... : xn)} ~ Kn, each of them isomorphic to the affine space 

• An. These are the affine charts of the projective space. The transition from ho-
mogeneous coordinates of the point X = (Xo: Xl: .•. : Xn) in pn to coordinates 
(l:xl/xo: ... :xnlxo) ~ (xl/xo, ... ,xnlxo) in the affine chart A8 ~ An is called 
dehomogenization in Xo, and the converse transition from coordinates (Y1,'" ,Yn) 
in An to coordinates (1: Y1 : ... : Yn) in pn homogenization.. The complements 

of affine charts pn \ Af = {x E pn I Xi = O} = {x = (xo : '" : 9 : ... : Xn)} = 

P?-l ~ pn-1 are isomorphic to the projective space of dimension n - 1, that 
is pn= Ai U Pf-1. This decomposition is easily seen on the previous model also. 
If in the space K n+1 one considers the i-th coor-dinate hyperplane Xi: Xi = 0 and 
its parallel hyperplane Yi : Xi = 1, then one could divide the lines through the 
origin into two types: the lines which intersect hyperpl~e Yi and the lines which 
are parallel to it. Lines in the first family correspond to points of this hyperplane, 
and they form an affine space Yi ~ K n = An. The other family of lines is the 
set of all one-dimensional subspaces of the vector space Xi ~ Kn. They form a 
projective space pn-1 of dimension n - 1. Points in this projective space, that is, 
lines in Xi, represent the "points at infinity" of the corresponding parallel lines in 
the "finite" part Yi. The whole projective space pn is the (disjoint) union of its 
"finite" part Yi ~ An and its "points at infinity" complement' pn-1. Note that 
the distinction between finite points and points at infinity of the space pn is only 
formal, since it depends on coordinates. Every point could be made finite or infinite 
by corresponding change of coordinates. 

The next step is to define algebraic subsets in projective space. How-
. ever, there is a small difference comparing to affine case. Polynomial equa

tions in homogeneous coordinates in pn can always be considered to be homo
geneous. If 1 E K[so, Sl, .. , ,sn] is a polynomial over K in n + 1 indetermi
nates so, Sl,'" ,Sn, then it is represented as a sum of its homogeneous components 
1 = 10+ h + ... + Ir. If now ~ = (~o: ~1 : ... : ~n) is a point in pn for which I(~) = 0, 
then I(A~O,' .. ,A~n) = lo(~o, . .. ,~n) + Ah (~o, ... ,~n) + ... + Ar Ir(~o, . .. '~n) = 0 
for all A E K*. Since the field K is infinite, it follows that all li(~O, .. . '~n) = O. 

The transition from homogeneous polynomial I(so, ... ,sn) E K[so, ... ,sn] 
to polynomial 1(1, t1l'" ,tn ) E K[h, ... ,tn ] is called dehomogenization, and the 
transition from polynomial g(t l , ••. ,tn ) E K[t1l'" ,tn ] to homogeneous polynomi
al s~egg ·g(s11 so, ... ,snl so) E K[so, S1l .. ' ,sn] (this is a homogeneous polynomial!) 
homogenization ·with respect to so. 

Closed algebraic set V c pn is the set of common zeros of the finite (or 
infinite) set of polynomials 1 E K[so, ... ,Sn]' The correspondence between closed 
sets V and ideals I is the same as in the affine case, only the ideals obtained are 
not arbitrary, but with every polynomial they contain also all its homogeneous 

i -
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components. 

Definition. Ideal I C K[so, . .. ,sn] is homogeneous if: f El::} all homoge
neous components of f belong to I. 

Every homogeneous ideal has a basis of homogeneous polynomials. Therefore, 
every closed set in projective space can be defined by homogeneous equations. 

Another difference is the absence of Hilbert's Nullstellensatz: there are ho
mogeneous ideals defining the empty set. They can be easily described. 

Lemma. V(l) = 0 {:} for soine k, I::> I" := (so, ... ,sn)". 

Proof. The direction -<= is obvious since V(l,,) = 0. Conversely, let I be 
homogeneous and V(I) = 0. Let I = (h, ... ,fr) be some homogeneous basis, 
deg Ii = mi. Dehomogenized system 

h(l,tl,'" ,tn ) = 0 

• • • 

has no solutions, since an eventual solution would give a point in V(l). From the 
Nullstellensatz, one has 1 = h (1, t)gl (t)+·· -+ fr(l, t)gr(t) in the ring K[tb ... ,tn]. 
Homogenizing in so, that is multiplying by s;;,o, one has s;;'o E I. Therefore, all 
s~o, . .. ,s~n E I. IT now m = maJ!:(mo, ... ,mn ) and k = (m - l)(n + 1) + 1, 
then in every monomial s~o ..... s~n with ko + ... + kn ~ k at least one exponent 
ki ~ m ~ mi, and I" C I. 

Let V C IPn be a projective closed set. The process of dehomogenization in . 
So corresponds to intersection with affine chart A8. In other words, intersection 
V n A8 of the projective closed set V and an affine chart is an affine closed set. Its 
equations are obtained by dehomogenizing the equations of V with respect to so. 
It should be noted that V n A8 is closed as subset in A8 and open as subset in V. 
Conversely, let W C A8 ~ An be an affine closed set. Homogenizing its equations 
with respect to So one obtains equations of a projective closed set V = W c IPn 

which represents the closure of the set W with respect to Zariski topology in IPn , 

projective closure of W. It is obtained by adding the "points at infinity" to its 
"finite" part W = V n A8. 

The coordinate ring of the projective closed set V C IPn is defined in the 
same way as in the affine case. It is a quotient ring K[V] = K[so, . .. ,sn]/ l(V). 
Since the ideal l(V) is homogeneous, this ring is graded (in the affine case it may 
not be so). Its elements can not be interpreted as functions on V. Their value 
in points of V is not determined, since it depends on the choice of homogeneous 
coordinates. Also, the elements of its fraction field, "rational" functions, are not 
proper functions. Only those among them which originate from rational functions 
of degree 0 (that is, quotient of two polynomials of the same degree) define functions 
which have values in points of V, even then not all, but only the points in which the 
denominator is different from O. Therefore, the definition of rational and regular 
function has to be changed, and one should use the local definition of regularity. 
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Lemma. (& definition). Rational function in projective closed set V C pn 
is the Eraction of degree 0 in the field of Eractions of the ring K[V]. The set 
K(V) of all such Eractions of degree 0 is a field, the field 0/ rational functions of 
a projective closed set V. If x E V, the rational function r E K(V) is regular 
in the point x if it has a representation r = I/g, I,g E K[V}, x ~ V(g) c V. 
All functions regular in a given point x build a ring, denoted Oz.v or Oz and 
called local ring of V in x. Regular function on whole V is a function, regular 
in each point of V. All regular functions on V also build a ring O(V). One has 
O(V) = nzEv Oz.v C Oz.v c K(V). 

In the case of affine sets there are many regular functions, since O(V) = K[V}. 
However, in the projective case, it is not so. 

Proposition. The only global regular functions on irreducible projective 
closed set V are c~:>nstants: O(V) = K. 

Proof. Let K[V] = K[so, ... ,sn]/I(V) and Xi = simodI(V) coordinate 
functions on V. Then V = U~=l D(Xi) since n~l V(Xi) = V «xo, ... ,xn)) = 0. 
One could renumber coordinates in s\J.ch way that Xo, ... ,Xm f. 0, x m+1, •.• , Xn = 
o. Let r E O(V) be global regular function.· Then in every D(x,) function r has 
representation r = "Ix'i' where ni = degk Let now k = no+·· ·+nm • If the sum 
of exponents is ko + ... + km = k, then the function x~o ... x~'" . r E K[V] (since 
at least one ki 2:: ni). It follows that, if K[V],. is the subset of all homogeneous 
elements of degree k, then r' . K[V],. C K[V],. for alll E N. Particularly, r' . x~ E 
K[V],.. This means that the ring K[V][r] is finitely generated K[V]-submodule of 
a finitely generated (and Noetherian) K[V}:-module K[V] + l/x~. K[V]. Therefore 
r is integral over K[V], that is, r P + alrP- 1 + ... + ap = 0 for some ai E K[V]. By 
taking homogeneous components of degree 0 in the ring of fractions of the ring K[V], 
one sees by coefficient comparison that ai could be replaced by their homogeneous 
components of degree 0 i.e., constants from K. Therefore, r is algebraic over an 
algebraically closed field K, and r E K. 

The definition of regular and rational mappings is the same as in the affine 
case. Regular mapping of projective varieties I : X -t Y is a mapping which takes 
regular functions on Y in regular functions in X. Rational mapping I : X --+ Y 
can be defined in more ways. It is given by regular mapping I : U -t V where 
U C X and V C Y are open sets, and two such mappings are identified if they 
agree on a common open set. Rational mapping is not a function in the proper 
sense. As a function it is defined on some maximal open subset, the domain of the 
rational mapping. If X C JPn and Y C pm, rational mapping I : X --+ Y can 
be described by m + 1 homogeneous forms Fo, ... ,Fm of the same degree in n + 1 
indeterminates Xo, ... , xn , or by m + 1 rational functions 1o, ... ,I m on X. Some 
important examples will be stated later. 

Besides affine and projective closed sets, their open subsets also naturally 
appear. This is the most general type of variety we met by now. 

Definition. Open subset of projective closed subset is called quasiprojective 
variety. 
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Affine and projective closed sets are both quasiprojective varieties. All previ-
ously defined notions are transferred to quasiprojective varieties: regular functions 
(local definition), rational functions, local ring of the functions, regular in a given 
point, field of rational functions. Also, the notions of regular and rational mapping 
are transferred, as well as the notions of isomorphism and birational isomorphism. 
Two irreducible varieties are birationally isomorphic if and only if they contain two 
isomorphic open subsets [33, p. 69]. 

Definition. Quasiprojective variety isomorphic to an affine (projective) 
closed set, is called affine (projective) variety. 

These notions are introduced in order to study varieties independently of their 
embedding in the ambient space. As opposed to affine closed sets, the notion of 
affine variety is invariant with respect to isomorphism. 

A property of a ge0metrical object is local, if every point of it has an open 
neighborhood in which this property holds. For example, being a closed set is a 
local property. In the study of local properties, we can always restrict ourselves to 
affine varieties. 

Proposition. H X is quasiprojective variety and x EX, then x has a 
neighborhood isomorphic to an affine variety. 

Proof. Let Xc pn, XnAn = Y\Z where Y, Z C Y are closed in An. Since 
x E Y \ Z, there exists a polynomial F E K[An] such that F E I(Z) and F(x) -:j:. O. 
Then V(F) :J Z and D(F) = Y \ V(F). Let fhe ideal I(Y) = (FI , ... ,Fm) C 
K[An]. Consider the closed set W = V(FI' ... - ,Fm, y . F - 1) C An+!. Then the 
projection An+! -+ An defines a mapping cp : W -+ D(F) and 1jJ : D(F) -+ W by 
(Xl, ... ,xn) t--+ (Xl, ... ,Xn, 1/ F(Xb ... ,xn)).· 

Finally, let us state two important theorems which will be used in the sequel. 
In both cases, theorems are proved by local technique of reduction to affine case, 
and then by algebraic calculation in the polynomial ring. 

The first theorem states that projective varieties behave better than affine 
with respect to regular mappings. Regular image of an affine variety need not be 
closed (example: a projection of hyperbola onto axis). This can not happen for 
projective varieties. 

Theorem. (on closed image, [33, p. 76]). The image of the projective variety 
X under a regular mapping f : X -+ Y is a closed set in Y. 

The second theorem is analogous to the corresponding theorem from differ
ential geometry. A regular mapping foliates the domain into disjoint preimages of 
points-fibres over points. What is the dimension of each fibre? In differential 
geometry, it is equal to the difference between dimensions of the domain and its 
image. In algebraic situation this is the case "almost everywhere", that is, on an 
open subset. 

Theorem. (on dimension of fibres, [33, p. 97]). Let f : X -+ Y be regular -
mapping of an irreducible variety X of dimension n onto an irreducible variety Y of 
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dimension m. Then m ~ n, fibres 1-1 (y) over y E Y have dimension dim 1-1 (y) ~ 
n - m and the equality holds over a nonempty open set U C Y. 

7. Veronese and Grassmann varieties. Lines on surfaces 

7.1. The Veronese variety. Homogeneous polynomials F(xo, ... , xn) = 
2: aio ... inX~o '" x~n of degree m in n+ 1 indeterminates form a vector space 

io+···+in=m 
of dimension ~ = (n:am). The form F defines a projective hypersurface H = 
{F = O} C lP'n of degree m. Two forms define the same hypersurface if and only 
if they are proportional. Therefore, all projective hypersurfaces of degree m form 
a projective space lP'd;:'-l of dimension ~ - 1 = (n-:;,) - 1, with homogeneous 
coordinates (Vio ... i n I io + '" + in = m). 

Define a regular mapping V~ : lP'n -t lP'~-1 by (Uo: .•. : un) ~ Vio ... i n = 
u io ••• u in • Its image V~(lP'n) = V,.:: C lP'd;:' -1 is called Veronese variety. It is defined 
by equations Vio ... in . v;O ... ;n = Vko ... kn • Vlo .. .l.. (io + io = ko + 10, . •. , in + in = 
kn+ln). Namely, if these equations define the variety X~, then obviously V,.:: C X~. 
Conversely, one deduces from these equations that on X~ at least one coordinate 
of the form VO ... m ... O is different from zero, say VmO ... O i:- O. Then in the open set 
{ VmO ... 0 i:- O} :> X~ the mapping I 

u· - v o - m,O, ... ,0 

Ul = Vm-l,l, .•. ,0 

••• 

Un = Vm-l,O, ... ,1 

is regular and inverse for V~ : lP'n -t lP'd;:' -1. So, V~ : lP'n E:! V~ (lP'n) = V,.:: C lP'd;:' -1. 

The dimension of the Veronese variety V,.:: is n. 

Example 1. For n = 1, m = 3, VJ : lP'1 <-+ IP3. The equations of Vl C IP3 are 

where (V03 : V12 : V2l : V30) are the homogeneous coordinates in p3. Dehomogeniza
tion on V03 i:- 0, with notations x = v12jV03, Y = V2l jV03, Z = V30jV03, gives 

z=xy, y=X2, XZ=y2 

or y = x2, Z = x3 since the ideal (z - xy,y - X2,xz - y2) = (y - x 2,z'- x 3). 
Therefore, the Veronese curve vi C IP3 is exactly the space cubic (or the n01711-

curve) t ~ (t, t2 , t3 ). 

Example 2. More generally, if n = 1, the Veronese mapping V~ : IPl <-+ IPm 

is (x: y) ~ (xm : xm-ly: ... : ym). The system of equations for Veronese curve can 
be written as V;. = {(xo : Xl: • " : Xm) I (XO : Xl) = (Xl: X2) = ... = (Xm-l : Xm)} or 

rank Xo Xl ••• 

• • • 

Xm-l 

Xm 
<1 -
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In the affine chart the corresponding curve has rational parametrization t 1-4 

(t,t2 , ••• ,tm). 

Example 3. IT F(xo, ... ,xn ) = " ia 4,' £ f L. aia ... i .. Xo ••• Xn 1S a orm 0 
ia+···+i .. =m 

degree m and H = {F = O} C pn corresponding hypersurface, then V~(H) = 
V,:: n E where E is a hyperplane L: aia ... i .. Via ... i .. = 0 in pd;:' -1. Using this 

ia+··:+i .. =m 
fact it is easy to see that a complement of a hypersudace in pn is an affine variety 
(that is, isomorphic to an affine closed set). 

It is not difficult to prove that the Veronese variety V~ (pn) = V,:: C pd;:'-l 
is not contained in any linear subspace of pd;:' -1. 

• 

7.2. The Grassmannian. Let V be the vector space of dimension n. The set 
Gr(r, V) of all r-dimensional subspaces of the space V is called the Grassmannian of 
V (of corresponding dimension). IT LE Gr(r, V) is one such subspace and el,' ... ,er 
its basis, it defines an element e1 A ... A er E ArV of the exterior power of the vector 
space V. IT e~, ... ,e~ is another basis of L, then e~ A ... A e~ = et· e1 A ... A er where 
et = det Ce-+e, =I- 0 is the determinant of the transition matrix. This means that 
the element e1 A ... A er E NV defines a point in the projectivization. P(NV), 
which does not depend on the choice of base, but only on the subspace L. In this 
way one obtains a mapping P : Gr(r, V) ~ P(NV), L I--t P(L). It is easily seen 
that this is an injection, that is, Gr(r, V) <-+ p(Arv). If et, ... ,en is a basis in 
V, {eil A ... A ei .. } is a basis in A rv, the dimension of this vector space eqllals 
(~), and dimension of its projectivization equals (~) - 1. IT L E Gr(r, V), one 
has P(L) = L: Pil ... ""· eh A ... A ei ... The homogeneous coordinates {Pil ... i .. } 

il < ... <i .. 
of the point P(L) E P(NV) are called the Plii.cker9 coordinates of the subspace 
L E Gr(r, V). However, the mapping P is not surjective. Let us determine the 
image Im P. This reduces to a question, could one explicitly describe conditions 
that a vector x E ArV is decomposable, that is, has the form x = It A ... A fr. 
In order to solve it, one introduces a new operation in the exterior algebra of a 
vector space, a mapping V· x ArV ~ Ar - 1 V which "reduces" exterior degree, by 
the following inductive definition. 

Let U E V· be a linear function on V. For x E AOV = K define U.JX = O. For 
x E A1V = V define U.JX = (u,x) = u(x). In the general case, for vectors of the 
form x AyE NV (r ~ 2) (which generate whole NV) one defines u.J(x A y) = 
(u.Jx)Ay+ (-l)rxA(u.JY), and extends it linearly on arbitrary vectors. Finally, this 
mapping can be iteratively defined for vectors u = U1 A ..• AUk E AkV· (k ~ 2) 
and linearly extended on arbitrary vectors u E AkV·. One obtains a linear map 
AkV· X ArV ~ Ar-kV, (u,x) I--t U.JX, called cancellation10 • . 

Example. For r = 1 and X,y E V one has u.J(x Ay) = u(x) . y - u(y) . x. 
Particularly, for x =I- 0, x* E V· and x· .J(x A y) = y, which justifies the term. 

9Julius Plucker (1801-1868), German geometer, who first introduced homogeneous coordi
nates and coordinate method in projective geometry. He was teacher of Felix Klein. 

lOin Russian "CB6pTKa" 

'. 
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The following lemma shows the connection between cancellation and the 
Pliicker coordinates and can be proved straightforwardly. 

Lemma. Let e1,'" ,en be a basis in V and ei, ... ,e~ its dual basis in 
V*. If {Pit ... i,.} are Plucker coordinates of the vector x in e, then Pil"'i,. = 
ei,..J(··· (ei1.Jx) ... ). 

Proposition. A given vector x E NV is of the fOlm x = fI A ... A fr for any 
U E N-1V* one has (u.Jx) A x = O. 

Proof. Let us describe the proof in the case n = 4, r = 2. The direction:::} is 
checked easily. Prove the opposite direction. Let x = P12el Ae2 +P13el Ae3 + ... "# 0 
in some basis el, e2, e3, e4 and, say, P12 = 1. Let Ul, U2, U3, U4 be the dual basis 
in V*. From previous properties one has U2.J(U1.JX) = P12 = 1, (U1.JX) A x = 0, 
U2.J «U1.JX) A x) = 0, therefore 0 = (U2.J(U1.JX))Ax- (U1.JX) A (U2.JX) = x-(u1.Jx)A 
(U2.JX), and one has x = (U1.JX) A (U2.JX). I 

Vectors fI and 12 in the decomposition x = fIAh can be described explicitly. 
Namely, if x = e1 A e2 + P13e1 A e3 + P14e1 A e4 + P23e2 A e3 + P24e2 A e4 + P34e3 A e4 
<Pt2 = 1) and if fI = U1.JX = ... = e2 + P13e3 + P14e4, 12 = U2.JX = '" = 
-e1 + P23e3 + P24e4, then one sees that x = fI A 12 {:} P34 = P13P24 - P14P23· 

Note that it suffices to check the condition (u.Jx) A x = 0 only for basis 
vectors U E N-1 V* , which leads to a system of polynomial equations with respect 
to indeterminate Plucker coordinates: Therefore, the Grassmannian Gr(r, V) e! 
Im P C P(NV) has a natural structure of a projective algebraic variety, which 
parametrizes the set of all (r - I)-dimensional projective subspaces of a (n - 1)
dimensional projective space. It is clear that this variety does.not depend on the 
choice of the space V but only on its dimension n and therefore it is usually denoted 
Gr(r,n). In the sequel we shall be interested mostly in the case,n = 4, r = 2, that 
is, the case of the Grassmannian Gr(2, 4) of all projective lines in a projective space. 
Here the defining system could be explicitly written down and it simplifies to single 
equation: ' 

Pl2P34 - P13P24 + P14P23 = 0 

This equation defines a hypersurface IT C p5, Plucker hypers'/1,rjace. 

Lemma. If vectors fI = Xl el + ' .. + X4e4, 12 = Y1 e1 + ... + Y4e4 form 
a base of the plane L, then fI A 12 = ~(XiYj - XjYi)ei A ej and Plucker co
ordinates of the corresponding line are Pij = XiYj - XjYi. The plane L = 
Span{fI, h}. = {u.J(fI A h) I U E V *}. If U has coordinates 0:1,0:2,0:3,0:4 in the 
dual base '/1,1, U2, U3, U4, that is, U = 0:1 Ul + 0:2U2 + 0:3U3 + 0:4'/1,4, then U.J(fl A h) = 

u(fI)h - u(h)fI = ~i O:iXi ~j Yje; - ~i O:iYi ~j xjej = ~i (~j O:jPij) ei and 
projective coordinates of an arbitrary point of the corresponding projective line are 
Zi = ~j PijO:j (i = 1, ... ,4). . 

7.3. Lines on surfaces in projective space. We have seen that surfaces of 
a given degree m in projective space p3 are parametrized by points of projective 
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space ]p'k with k = (mr) - 1. Lines in projective space ]p'3. are parametrized by 
points of Plucker hypersurface IT C ]p's. We are interested in conditions when 
some surface contains some lines. Consider the product ]p'k x IT and its subset 
r = {(~, 17) 117 c 0 C ]p'k x IT of all pairs (~, 17) where ~ is a surface and 17 a line 
contained in it. 

Proposition. Tbe set r = {(~, 17) 117 c 0 C ]p'k x IT is closed, i.e., it is a 
projective variety. 

This follows directly from the following lemma. . 

. Lemma. Let 17 E IT be a line in ]p'3 witb PlUcker coordinates Pij (1 ~ i < 
j ~ 4) and ~ E ]p'k a surface of degree m witb coefficients qioili2 i 3 ('L ik = m). Tbe 
condition 17 C ~ is algebraic witb respect to P a.Dd q, bomogeneous on each group 
of indeterminates separately. 

Proof. Coordinates of arbitrary point on the line 17 are Zi = :Ej Pijaj 

(i = 1, ... ,4) with indeterminate 0.1,0.2,0.3,0.4. IT F(zl, Z2, Z3, Z4) = 0 is a ho
mogeneous equation of the surface ~, then 17 C ~ if and only if the equality 

F(:E j P1jaj, :Ej P2jaj, :Ej Pajaj, :Ej P4jaj) = 0 holds for all ai. This gives ho
mogeneous equations for P and q. 

Consider two projections cp : r -> ]p'k, (~, 17) t-+ ~ and 1/; : r ---+ IT, (~, 17) t-+ 17. 
These are regular mappings. The second projection 1/; is surjective, since any line is 
contained in at least one (say, reducible) surface of degree m. Let us calculate the 
dimension of the fibre 1/;-1 (17) = {(~, 17) 1 ~ :::> 17}. A coordinate transformation in ]p'3 

allows us to suppose that the equations for 17 are Zo = Zl = O. Then the equation 
of the surface ~ which contains this line hi1S to be of the form F(z) = zoG(z) + 
zlH(z). The set of all such homogeneous forms in the space of all forms of degree 
m in 4 indeterminates forms a linear subspace of dimension l. The form F(z) = 

• • :E qio ... i3Z~O ... Z~3 is of the form zoG(Z)+ZlH(Z) -<=> in each summand io ~ 
io+··+i3=m 
1 or i1 ~ 1, and this is a complement of the condition io = i1 = O. Therefore I = (the 
number of forms in 4 indeterminates) - (the number of forms in 2 indeterminates) = 
(mi3) - (mi1) = ~m(m + l)(m + 5). Now dim 1/;-1(17) = ~m(m + l)(m + 5) -1. 
All fibres have the same dimension and r is irreducible. According to the theorem 
of dimensions of fibres, dim r = dim 1/;(r) + dim 1/;-1 (17) = ~m(m + 1)(m + 5) + 3. 
Consider now the projection cp. According to the theorem on closed image, lP(r) c 
]p'k is a closed subset of dimension dim lP(r) ~ dim r. For a given surface ~ of 
degree m the fibre 1P-1(~) er consists of all pairs (~,1J) for which the line 17 lays 

. on the surface~. Obviously, if dim r < k = (':'i3) -1, IP cannot be surjective, that 
is, there are surfaces of degree m which do not contain lines. For ~ E cp(r), from 
the theorem of dimension of fibres it follows that dimlP-1 (~) ~ dim r - dim lP(r). 
Compare the values of k and dim r for different m: 

m 1 2 3 4 
k 3 9 19 34 

dimr 5 10 19 33 
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H m ~ 4, then dim r < k. This means that there is always a surface of degree m ~ 4 
on which there are no lines at all. Consider more closely the cases m = 1, 2, 3. For 
m = 1, surfaces of degree 1 are planes, parametrized by points of p3 (principle of 
projective duality!). On any plane there are infinitely many lines dimension of the 
fibre is ~ 2. For m = 2, surfaces of degree 2 are quadrics, parametrized by points 
of p9. On any quadric there are infinitely many lines - dimension of the fibre is ~ 1. 
The case m = 3 is most interesting. Cubic surfaces are parametrized by points of 
the space pl9. Here the dimension of non-empty fibres is ~ O. Now prove that this 
lower bound is reached, that is, there exists a cubic surface with only finitely many 
lines. Consider the surface xyz = 1. In the finite part of the space, A3, it does not 
contain any line, whereas in the plane at infinity p2 it contains three lines xyz = O. 
This means that dim cp(r) = dim r = 19 and that cp is surjective! We have just 
proved the following theorem . 

• 

Theorem. Any cubic surface contains a line. Tbe set of cubic surfaces tbat 
contain only finitely many lines is open in pl9. 

This is a classical result, showing a very specific method of proof in classical 
algebraic geometry: one example has proved the theorem. Cubic surfaces have 
been extensively studied. One of the most complete monographs on the subject is 
[21]. 

I 

8. Twenty-seven lines on a cubic surface 

We have proved that on any cubic surface there is at least one line and 
• 

that "almost all" cubic surfaces contain finitely many lines. How many? One of 
the most beautiful classical theorems of geometry says that any nonsingular cubic 
surface contains exactly 27 lines. 

Let S be nonsingular cubic surface in p3. Note the following simple facts. 

Lemma 1. H IT is a plane, tben S n IT is a pJane cubic curve. 

Lemma 2. H tbis cubic contains a line I, tben S n IT = I U {conic}. 

Lemma 3. H tbis conic is reducible, tben all three lines are different (tbere 
are no multiple lines) and tbeir configuration belongs to one of tbe following two 
types 

Proof. Coordinates could be chosen so that IT : {t = O}, I : {z = t = O} 
and S : {/(x, y, z, t) = O}. H l is the multiple line of the intersection S n IT, then 
f(x, y, z, t) = z2·a(x, y, z, t)+t·b(x, y, z, t) where a is a linear form and b a quadratic 
form. But then Sing S :::> {z = t = b(x, y, z, t) = O} =F 0 in p3. 
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Lemma 4. If the point PES, then al11ines I on S through Pare cop1anar 
(since all such I C Tp(S)) and there are at most three such lines. 

Lemma 5. If the line I C S, then there exist exactly 5 planes Ill, ... ,115 for 
which the corresponding conicQ = (SnIT)\1 is reducible, that is, SnITi = IU(/,u/D 
(see the figure) 

I' 1 

Proof. Let us choose the coordinates so that the line I has equation I : 
{z = t = O} and write the equation of the cubic surface in the form 

where al, b1, Cl are linear forms, a2, b2 quadratic forms a.lld a3 a cubic form. A 
bundle of planes through I has equation IT : JJZ = At, and one obtains the following 
equation of the conic in the intersection S n IT: 

This conic is reducible if and only if the corresponding determinant 

• 

equals zero. This is an equation of the fifth degree in A. It has at most five roots, 
that is, at most five corresponding planes in which the conic is reducible. Let us 
prove that there are exactly five such planes, i.e., that all these roots are different. 
This will 'follow from nonsingularity of the cubic surface S. We could suppose 
that one of the roots is A = 0 i.e., that IT = {z = O} is one of these planes. The 
intersection S n IT consists of three lines with one of the above two configuration 
types. 

Type 1. We can choose coordinates in such way that the three lines in the 
plane z = 0 are t = 0, x = 0 and x = t. The corresponding equation f is then f = 
x(x - t)t + Z9 where 9 is quadratic form. Comparing the corresponding coefficients, 
we obtain al = t + az, a2 = _t2 + zdl where d1 is linear form, and zlb1. Cl! b2 , a3. 

Since S is nonsingular at the point (0: 1: 0: 0), one has Cl = 1z, 1 =F O. 

Type 2. We can choose coordinates in such way that the three lines in the 
plane z = 0 are t = 0, x = 0 and y = O. The corresponding equation f is then 



• 
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f = xyt + zg where 9 is quadratic form. Comparing the corresponding coefficients, 
we obtain bl = t + az and z I al, Cl, a2, b2, as. Since S is nonsingular at the point 
(0: 0: 0: 1), one has as = 'Yzt2 + "', 'Y :f: O. 

In both cases the determinant has the form t:::. = z2h - 'Yzt4, and z = 0 is its 
single root. 

Lemma 6. Lines from different pairs Ii, I~ (i = 1, ... ,5) do not intersect. 
This follows from Lemma 4. 

Lemma 7. Ifm is a line on S that does not intersect with I, then m intersects 
with exactly one line of each pair li' I~ (i = 1, ... ,5). 

, 

Proof. Line m intersects with any plane in ]ps, therefore with ITi . However, 
it can not be contained in ITi since m does not intersect with I. Since S n ITi = 
l U (li U ID, m has to intersect with configuration Ii U I~, and due to Lemma 3 it can 
not intersect with both of these lines. 

Let now I and m be two nonintersecting lines on S. From previous results it 
follows that such lines exist. The line l determines 10 lines li' l~ (i = 1, ... ,5), and 
exactly one of the each pair intersects with m. Change the notations in such way 
that Ii intersect with m. The line m also determines its 10 lines, 5 pairs of lines, and 
exactly one of the each pair is the line li. Let these be the lines Ii' l~' (i = 1, ... ,5). 
Each line l~' does not intersect with any of lines lj (j :f: i) and therefore has to 
intersect all lines I} (j :f: i). One has a configuration of 1 + 1 + 5 + 5 + 5 = 17 lines. 

Lemma 8. a) Any 4 nonincident lines on S do not belong to a nonsingular 
quadric. (In such case the whole quadric would be contained in S, and the cubic S 
would be reducible.) 

b) Any 4 nonincident lines in ]ps that do not belong to a nonsingular quadric, 
could have at most two common incident lines. ' 

• 

Lemma 9. If n is a line on S different from the mentioned 17, then it 
intersects with exactly three of five lines li. 

Proof. If n intersects with at least four, then n = I or n = m, which is a 
contradiction. If n intersects with at most two, then it has to intersect with at 
least three of five lines I~ (since it intersects with exactly one line of each pair). Let 
these be, say, lines It, '2, l~, '4' These four nonincident lines on S already have two 
common incident lines I and l~. It follows then from Lemma 9 that n = I or n = l~ 
which is again a contradiction. 

Lemma 10. For any choice of three indexes {i, j, k} C {1, 2, 3, 4, 5} there is 
exactly one line lijk C S that intersects with three lines li, Ij and Ik. 

Proof. Choose one of the indexes, say i = 1 and consider the line h. From 
Lemma 5, one has 10 lines intersecting with it. Four of them are I, I~, m, l~. There 
are six lines left. From Lemma 9, each of them intersects with exactly two of the 
lines h, Is, 14 , I5. Since m = 6, each possibility is being realized. 



Algebraic geometry (selected topics) 39 

There are m = 10 new lines. These, with previous 17, add up to 27 lines on 
a cubic surface S. . 

Theorem. (Salmon, Cayley, 1849)11 On any nonsingular cubic surface there 
are exactly 27 lines. 

This remarkable theorem is among the most interesting results in geometry 
of the last century. The configuration of 27 lines has been extensively studied. In 
1869 Wiener produced a model of a cubic surface with all its 27 lines real and visible 
in the model (see [35, p. 127]). The automorphism group of the configuration of 
27 lines was first studied by Jordan12 [11]. The order of that group is 51840 = 
27345, and it has been later classified as the Weyl group Es. It has a simple 
subgroup of index 2 and of order 25920. There is a reach literature concerning 27 
lines. In the 20th century it has been slowly (and unjustly) forgotten. With the 
renaissance of algebraic geometry in the fifties, the investigation of cubic surfaces 
had its culmination in papers and the book of Manin [21], and the 27 lines theorem 
became an inevitable part of many introductory courses of algebraic geometry. Our 
proof follows the book of Reid [25]. 

9. Number of equations. Multiple subvarieties. Weil divisors 

In general, each additional equation in an affine or projective set's defining 
system decreases the dimension of the solution set by 1. However, it can happen 
that adding the equation does not change the dimension (if the equation is already 
contained in the ideal generated by previous ones). In other words, not all closed 
sets in A..n or JPn of codimension k could be defined by k equations. One has only 
codimV(ft,.·. ,h.) ~ k. 

Definition. The variety X C An of co dimension k (and dimension n - k) 
is a complete intersection if J(X) = (it, ... , !k) C K[Xl, ... ,xn ], and set-theoretic 
complete intersection if J(X) = ..jUl, ... ,!k). Clearly, each complete intersection 
is a set-theoretic one, but the converse does not hold. The variety X is a set
theoretic intersection if it can be represented as intersection of k hypersurfaces. 

Examples. 1. [8, p. 242], [31, p. 290, ex. 4.9] In A4 the set V(Xll X2) U 
V(X3,X4) has codimension 2, but can not be defined with two equations. 

2. [31, p. 32, ex. 2.17] H Xc JP3 is the projective closure of the space cubic 

x = t, Y = t2
, Z = t3 

the homogeneous ideal J(X) can not be generated by 2 elements. 

3. [31, p. 25, ex. 1.11] Affine space cubic can be defined with two equations, 
as intersection of two quadrics, a cylinder and a cone, since J(X) = (y-x2, y2 -xz). 
However, if X C A 3 is a space curve 

x = t3
, y = t4

, z = t 5 

llGeorge Salmon (1819-1904), Irish mathematician. Arthur Cayley (1821-1895), English 
mathematician. 

12Camille Jordan (1838-1922), French mathematician 
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then the corresponding ideal can not be generated by 2 elements. The intersection 
of any two of these three surfaces, besides the ~pace curve, contains a coordinate 
axis. The general case of a space curve 

has been treated only recently [32]. H Ci E N are the least positive integers such that 
niCi c njN+nkN (here, the triple (i,j, k) goes through all three cyclic permutations 
of the triple (1,2,3», then the ideal I(X) has 

(a) either two generators, I(X) = (XCI - zC3,yC2 - xr2Izr23) and the curve is a 
complete intersection. Example: (nb n2, n3) =, (4,5,6), I(X) = (x3 - Z2, y2 - XZ)i 
(b) or three generators, I(X) = (XCI - yrl2zrl3,yC2 - xr2Izr23,zc3 - xr3lyr32) and 
the curve is not a complete intersection. Example: (n1,n2,n3) = (3,4,5), I(X) = 
(x3 - yz, y2 - xz, Z2 _ x2y). ' 

Cases (a) and (b) could be distinguished algorithmically. The case (b) how
ever, is a set-theoretic complete intersection, since there is always a polynomial 
p(x,y,z) such that I(X) = ..j(P,ZC3 _xr3Iyr32). 

In codimension 1 the corresponding equality holds. Any subvariety in An 
or pn of codimension 1 can be given by one equation: it is a hypersurface. More 

, 

generally, if X is a nonsingular projective or affine variety and Y C X a subvariety 
of codimension 1, then near each of its points, it is defined by one equation, that 
is, "Ix E Y 3U 3 x such that I(Y n U} = (f) C K[U] is principal. In the proof, the 
factorial property of the local ring of regular point is used essentially [8, p. 241], 
[33, t. 1, pp. 90, 134]. 

Let us consider the multiplicity. Already in the case of curves we have seen 
that one has to take it into account. Radical ideals were introduced in order to 
remove the nilpotents from the coordinate ring. When one considers intersections 
of subvarieties, it becomes more complex. Let X be a variety and Y, Z c X 
two its subvarieties with corresponding ideals I(Y),I(Z). Then the intersection 
Y n Z = V (I (Y) + I (Z». However, the sum of two radical ideals does not have to 
be radical, it can contain nilpotents. 

Example 1. Let X = A2, K[X] = K[x,y] and let Y = V(y), Z = V(y-x2) 
be irreducible curves. The ideal I(Y) + I(Z) = (y) + (y - x2) = (x2,y) and the 
coordinate ring K[Y n Z] = K[x,y]/(x2,y) has a nilpotent x. This corresponds to 
the intuitively clear fact that the parabola and the line are tangent to each other 
in their intersection point, the multiplicity of that point being 2. 

Example 2. [14, p. 28] Consider the variety V = {xz = yz = O} C A3 in 
the affine space. One has V = V1 U lt2, where V1 = {x = y = O} is the coordinate 
axis and lt2 = {z = O} the coordinate plane. For corresponding ideals one has 
I(V) = (xz,yz) = (x,y) . (z) = 11 .12. The ideals h = I(V1) and 12 = I(V2) 
are prime, I(V) is radical and V = V1 U V2 is the irreducible decomposition of V. 
The corresponding coordinate ring is K[V] = K[x, y, z]/(xz, yz). Consider now the 
plane W = {x = z} C A3 with'the ideal I(W) = (x - z), and find the intersection 
V n W. The corresponding ideal is I(V n W) = I(V) + I(W) = (xz, yz, x - z), the 
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coordinate ring K[V n W] = K[x,y,z]/(xz,yz,x - z) ~ K[x,y]/(x2 ,xy). This is 
not aD. affine algebra: it contains a nilpotent x. This reflects the fact that in some 
way the origin is a double point of the intersection V nW, since it belongs to both 
components of the variety V. 

Examples show that, although radical ideals helped to avoid varieties with .. , 
mUltiple components, the mUltiplicity still appears when one considers intersections 
of varieties. The notion of mUltiplicity is one of the fundamental notions in algebraic 
geometry. To work with it, one must assign multiplicities to subvarieties and in 
this way introduce a new type of objects. The codimension 1 case is the simplest, 
since each such subvariety can be defined by a single equation. We will consider 
only this case. 

Definition. Let X be an irreducible nonsingular variety. Consider the set of 
all its irreducible subvarieties of codimension 1, and call its elements simple divisors. 
The free abelian group generated by this set is denoted Div X and called the divisor 
group of the variety X, its elements are divisors on X. A divisor is, therefore, 
a formal linear combination D = nl Cl + ... + n"C" of irreducible subvarieties 
Cl, ... , C" C X of codimension 1 with integer coefficients nl, .. ' , n" E Z. IT all 
coefficients are nonnegative, we say that the divisor is effective and denote this by 
D ~ O. Each divisor can be represented as a difference of two effective divisors. The 
number d = nl + ... + n" is called the degree of the divisor D = nl Cl + ... + n" C" 
and defines an epimorphism deg: Div(X) ~ Z. 

. Divisors introduced by this definition are called sometimes Weil divisors 13 , 

as opposed to more general Carlier divisor, which will be introduced later. 

To a rational function I(t) = t~~: :11'::. tt-=-~, '::, E K(t) on the affine line 
X = Alone could associate a divisor D = nlPl + ... + n"P" - ml Ql - ... - mlQI, 
as a formal linear combination of zeros and poles with corresponding multiplicities 
as coefficients, the so-called divisor 01 zeros and poles of the rational function. The 
analogous construction is possible in the general case. Let X be an irreducible 
variety and 1 E K(X) a rational function on X, I:F O. IT Cc X is an irreducible 
subvariety of codimension 1, then it is locally defined by one equation, that is, in 
some nonempty open set U C X one has C n U = V(p) where p E K[U]. 

Definition. 1) IT the function 1 E K[U], that is, it is regular on U, then, 
since the intersection n(p") = 0, 3k ~ 0 such that p" I I, pHI f I. This integer 
is uniquely determined and does not depend on the choice of local parameter p. 
The number k is called the order of (regular) function 1 along subvariety C and 
denoted k = ordc I. 

2) IT the function 1 is not regular, it has a representation 1 = g/h where 
g, h E K[U]. The order of (rational) function 1 along subvariety C is defined as 
the integer ordc 1 = ordc g - ordc h. This number does not depend on the choice 
of nonempty open set U. This follows from irreducibility of X, since two nonempty 
open sets always intersect and their intersection is nonempty and open. 

13after Andre Weil (1906-), French mathematician, one of the founders of the Bourbaki 
group, and not after Hermann WeyJ (1885-1955), German mathematician and physicist. 

• , 

.J 
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Lemma. Order of function along subvariety has the following properties: 

1) orde(fg) = orde f + orde g; 

2) orde(f + g) ~ min {orde f, orde g} (f + 9 '" 0). 

Lemma. For a given rational function f there are only finitely many irre
ducible subvarieties C of codimension 1 for which orde r", O. 

Definition. If f E K(X)* is a rational function, the formal linear combi
nation (f) = L: (orde f) . C has finitely many terms and represents a divisor on 

ecx 
X. It is called the divisor of the function f. The sum of all terms with positive 
coefficient is the divisor of zeros (f)o, and with negative coefficient the divisor of 
poles (f)oo of the function f. One has (f)o ~ 0, (f)oo ~ 0 and (f) = (f)o - (f)oo. 

The mapping div : K(X)* -T Div(X) , f ~ (f) is a homomorphism of 
groups (the first group is multiplicative, the second one additive). Namely, one has 
(fg) = (f) + (g). 

The divisor of a regular function is effective. The converse also holds. 

Lemma. If f E K(X)*, then (f) ~ 0 <=> f E K[X]. 

Proof. Let f be nonregular in x E X. One has a representation f = g/h rt 
Oz, g, hE Oz' Since the ring Oz is factorial, one could consider 9 and h relatively 
prime. Let p be a prime factor of h, which does not divide g. The variety V(P) 
has in some open neighborhood of x co dimension 1, therefore V(P) = C C X is a 
subvariety of codimension 1 and ordef < O. 

Corollary. On a nonsingular projective variety, rational function is deter
mined uniquely up to constant factor by its divisor. 

Proof. If (f) = (g), then 0 = (f) - (g) = (fg-l) and fg- 1 is a global regular 
function on a projective variety, that is, constant. ' 

Definition. Divisors of the form (f) where f is rational function on X, are 
called principal divisors. They form a subgroup P(X) C Div X of principal divisors 
in the group of all divisors. It is the image of the homomorphism div : K(X)* -+ 
Div(X). 

Is every ,divisor principal? In other words, could one represent a given divisor 
as a divisor of zeros and poles of some rational function? The answer depends 
on variety X and it is not always affirmative. There could be also nonprincipal 
divisors. More precise answer is given by the factorgroup Div(X)j P(X) = Cl(X), 
the divisor class group of the variety X. This quotient introduces a relation of 
linear equivalence of divisors: Dl '" D2 <=> Dl - D2 = (f) for some global rational 
function f. 

Examples. 1. Cl(An) = O. More generally, if the ring K[X] is factorial, 
then Cl(X) = O. 

2. Cl(pn) = Z. [33, t. 1, p. 188], [31, p. 175]. Each irreducible subvariety 
C C pn of codimension 1 is globally defined by a homogeneous equation, that is, 
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by irreducible homogeneous polynomial F, of degree m. Its affine parts are of the 
form GnA(j = V(F/x'O). Let D = n1G1 + ... +nkGk be an effective divisor on pn 
(with all ni > 0), forms Fi define subvarieties Gi and let F = F{'l ... F;:· be the 
corresponding product. Then (F) = n1(F1) + ... + nk(Fk) = D (more precisely, 
this holds in affine chart). In other words, ea.c4 effective divisor on pn is a divisor of 
a homogeneous polynomial form. Let now D be an arbitrary divisor, D = D1 - D2 
its decomposition as difference of effective divisol"s, and Di = (Gi) (i = 1,2) their 
representation by homogeneous forms. Let c4 = degDi and d = degD = d1 - d2 • 

Consider the rational function f = GI/xgG2 and its principal divisor (J). This 
is a global rational function of degree 0, that is, an element of the field K(pn). 
Its principal divisor is (J) + dH = D1 - D2 = D, where H is the divisor of the 

. hyperplane Xo = 0 (the hyperplane section divisor). This means that D ,.., dH and 
CI(pn) = Z . H ~ Z. 

Theorem. [31, p. 176] Let X be a nonsingular variety, Y C X its subvariety 
and U = X \ Y. Then 

(1) the mapping ,£niGi ~ ,£ni(Gi nU) is an epimorpbism Cl(X) ~ CI(U)j 

(2) ifcodimx Y ~ 2, then it is an isomorphism CI(X) 9!! CI(U)j 

(3) if codimx Y = I, then 1 1-+ 1 . Y defines a mapping Z ~ CI(X) and the 
sequence Z ~ CI(X) ~ CI(U) ~ 0 is exact. 

Example. IT Y C p2 is an irreducible curve of degree d, then CI(P2 \ Y) 9!! Zd. 
This can be easily proved i?y the previous theorem. 

10. The divisor class group of nonsingular quadric and cone 

Let us now determine the divisor class group of the nonsingular quadric Q. 
We shall represent the quadric by the so-called Segre embedding14• Stop for the 
moment to define the product of varieties. The set-theoretic (Cartesian) prod
uct of affine spaces is again an affine space: An X Am = An+m, and similarly 
for corresponding closed subsets. However, for projective closed sets, the situa
tion is more corp.plex. How should one define a structure of a projective variety 
on the set-theoretic product of two projective lines? Define the Segre embedding 
S:]p1 X pI ~ p3, (XO:X1) X (YO:Y1) ~ (.zoO:ZOl:ZIO:Z11) with Zij = XiYj. Th~ 
image S(P1 X pI) is on the quadric Q = {zoozu = ZOlZlO} C p3. Conversely, if 
the point (zoo: ZOl : ZIO: Zll) E Q, then at least one coordinate, say zoo =F 0, and 
S «zoo: zot} X (zoo: ZIO» = (ZooZoo: ZOOZOl : ZOOZ10: ZOl ZIO) = (zoo: ZOl : Z10: Zll). 

So, the mapping S defines bijection pI X pI ~ Q, which makes it possible to trans
port the structure of algebraic variety, induced on the quadric Q from the ambient 
space p3, on the set pI X PI. Could one define this structure independently from 
the embedding? Homogeneous polynomial on Q has the form F(zoo, ZOl, ZIO, Zll) = 
F(xoYo, XOYb XIYO, X1yt} = G(xo, Xl; Yo, Y1). This is a polynomial in two groups of 
variables, homogeneous in each group separately. The degree in each of the groups 
of variables need not to be equal: if s = degy G < degz G = r, then the equation 

14Corrado Segre (1863-1924), Italian geometer, famous by his work in birational geometry. 
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G = 0 is equivalent to the system y~-BG = yr-BG = O. Closed subsets ·in pl x pl 
are defined by systems of polynomial equations of the form G(xo, Xl i Yo, Yl) = 0, 
homogeneous in each group of variables separately. Subvarieties of codimension 
1 in pl X pl are defined by one such equation, as in standard projective space. 
Namely, if the polynomial F(XO,Xliyo,Yl) is homogeneous in each group of vari
ables separately, and if F factorizes in product of two polynomials F = G . H, 
then each of the factors must have the same homogeneity property. Let us deter
mine the divisor class group CI(pl x pl). The given divisor D E DiV(pl X pl), 
in addition to the usual degree degD, has two degrees degz D and degll D in each 
of the groups of variables, and one has deg D = degz D + degll D. In this way, 
one obtains an epimorphism Div(pl x pl) -+ Z2, D t-+ (degzD,degIlD). It is 
straightforward to check that its kernel is exactly the principal divisor subgroup, so 
CI(Pl x pl) ~ 'I}. The pair (degz D, deg

ll 
D) is called type of the divisor D. Segre 

embedding S : pl X pl -+ p3 defines a homomorphism Div(p3) -+ Div(Pl X pl) 
by intersection with Q. It extends to classes of divisors, and coincides with the 
diagonal embedding CI(P3) = Z -+ Z2 = CI(Pl X pl), 1 t-+ (1,1). 

Example. Apply this to the case of the projective space cubic C. It has the 
following parametrization: 

3 
Zll = V 

Obviously, C c Q. Is it possible to represent C as intersection of the quadric and 
some surface? Consider the cone K : ZOlZll = z~o. The intersection is KnQ = LUC 
where L is a line. The divisor class group is CI(P3) = Z· H ~ Z where H is 
the divisor of the (hyper)plane section, so K ,..., 2H. The diagonal ~mbedding 
gives K = 2 t-+ 2(1,1) = (2,2) = K n Q. The type of this divisor is K n Q = 
L + C = (2,2), and the type of the divisor L = (1,0). Therefore, one has the 
type of C = (2,2) - (1,0) = (1,2). Let now Y C p3 be the surface such that its 
intersection with the quadric is Y n Q = C. Then the type of the divisor Y n Q is, 
on one side, rC = r(1,2) = (r,2r) and on the other, dH = d(l, 1) = (d, d). Since 
(r,2r) :f. (d, d), this means that the answer to the above question is negative: there 
is no surface which would intersect the quadric Q by the curve C! 

Consider the cone X = V(xy - z2) C A3, with ideal [ = [(X) = (xy - z2) C 
K[x, y, z} and coordinate ring K[X] = K[x, y, z]J(xy- z2), and determine its divisor 
class group. The generators of the ring, the images of the indeterminates X, y, Z we 
will denote also x, y, z. The directrisse of the cone is the line Y = V (y, z) C X C 
A3, and this is an irreducible subvariety in X of codiniension 1 - a simple divisor 
in X. Corresponding chain ofideals in K[x,y,z] is 

(0) C (xy - Z2) c (y,z) c (x,y,z) 

However, after the factorization by [(X) one obtains the ideal [x(Y) = (y,z) c 
K[X], which is of height 1 but not principal! The corresponding chain of ideals is 

(0) C (xy - z2) C (y, z) C (x, y, z) 
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H (y, z) = (f) in K[X], then the corresponding originals in K[x, y, z] would satisfy 
y, z E (f, xy - z2), J E (y, z, xy - z2) = (y, z), and this gives a contradiction when 
one considers J modulo ideal (x, y, z)2 (that is, its linear components). So, Y '" 0 
in Cl(X)! Let us prove that 2Y = 0 in Cl(X), or that 2Y is principal. Consider the 
function yE K[X], and find a local equation of the set V(y) n X = Y in the open 
subset U = D(x)nX. Then K[U] = K[x,y,z,x- I ]/(xY- Z2) = K[x,x-l,z], y = 
X-I z2. One has Y n U = V(y, z) n U, the corresponding coordinate ring is K[Y n 
U] = K[x,x-l ,z]/(X-1z2,Z) = K[x,x-l,z]/(z). The local equation of Y in U is 
z = 0, the local parameter z. The function y E K[U] has the fOIm y = X-I z2. 
Therefore v(y) = 2 and the principal divisor is (y) = 2Y. Now, there is the exact 
sequence Z -+ Cl(X) --t Cl(X \ Y) --t 0, where the first mapping is 1 t-+ 1 . Y . 
The ring K[X \ Y] = K[X n D(y)] = K[y,y-t,z] is factorial, so Cl (X \ Y) = o. 
Therefore Z --t Cl(X) is an epimorphism and Cl (X) = Z/2Z = Z2. 

11. Group of points of nonsingular cubic. Elliptic curves 

As we have seen, the degree of the divisor defines a natural homomorphism 
of the divisor group on the group of integers Div(X) --t Z. In some cases it factors 
through principal divisors (that is, the principal divisors have degree 0) and defines 
epimorphism CI(X) --t Z. This was the case for projective space. This is also the 
case for nonsingular projective curves. 

Theorem. [33, t. 1, pp. 205-209] H X is a nonsingular projective curve, the 
degree of any principal divisor is O. 

The kernel Clo(X) of deg : Cl(X) --t Z is an important subgroup in Cl(X): 

Theorem. The following statements are equivalent: 

(1) the curve X is rational; 

(2) the group Clo(X) = 0, that is, Cl(X) !:!! Zj 

(3) there exist two different points P, Q E X such that P '" Q. 

Proof. H Clo(X) = 0, each divisor of degree 0 is principal, and for any two 
different points P, Q E X there is a nonconstant rational function J E K(X) such 
that P - Q = (f). This function defines a rational mapping <p : X --t )pI and 
K(X) = K(f), P is a zero and Q is a pole of the function J. 

Theorem. H X is a nonsingular cubic, then there exists a bijection Clo(X) = 
0, which induces the structure of Abelian group in the set of points of X. 

, 

Proof. Let 0 E X be an arbitrary but fixed point. Define the mapping 
X --t Clo(X), P t-+ Gp = P - O. It is injective since Gp = GQ ~ P - 0 '" 
Q - 0 ~ P '" Q. In order to show that this mapping is also surjective, let us prove 
that any effective divisor D E Div X, D > 0, is equivalent to the divisor of the form 
P + kO, by induction on deg D. 

1. H degD = 1, then D '" P = P + o· O. . 

2. Let degD > 1. Then D = D' + P, degD' = degD - 1, D' > O. By 
induction D' '" P + l . O. Then D '" P + Q + l· O. Find the point R such that 
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P + Q ,.... R + O. We do this by a geometrical construction. Suppose that points P 
and Q are different, and let p be the line that they determine. Let S be the third 
point of intersection of that line and the cubic X. Let q be the line through 0 and 
S and let R be the third intersection point of the line q and cubic X. Then one 
has P + Q + S ,.... (p) ,.... (q) ,.... 0 + S + Rand P + Q ,.... R + 0 (se the figure). In 
the case when some points coincide (P = Q or 0 = S), one takes tangents instead 
of secants p and q. 

P 

p 

We have proved that any effective divisor D > ° on X is equivalent to the 
divisor of the form P + kO, where 0 is a fixed point. Obviously, k = deg D - 1. 
If now D is a divisor of degree 0, then it is a difference of two effective divisors of 
the same degree D = Dl - D2 ,.... (R + k ·0) - (Q + k· 0) = R - Q. Using the 
same geometrical construction as above in reverse order, one finds the point S as 
intersection of X and the line through Rand 0, and then point P as intersection 
of the line through Q and S (see the same figure). One obtains P + Q,.... R+ 0 or 
D,.... R - Q,.... P - 0 = Cp. Therefore, the mapping P t-+ Gp is bijective. 

This bijection introduces a structure of an Abelian group on the set of points 
of the curve X. This structure is defined purely geometrically, by the constructions 
described above. The point 0 is the neutral element. If P and Q are two points 
of our curve, the point R is their sum, and S = - R. One could prove directly 
that this is a group. The most complicated part is the proof of associative law, 
elementary but long. 

How many nonisomorphic nonsingular cubics do exist? We shall give the 
answer to this question for complex ground field C. The equation of the plane 
nonsingular cubic is y2 = P3(X) where the right-hand-side polynomial of the third 
degree does nQthave multiple roots. By translation and homothety in x one could 
obtain two of its three roots to be ° and 1. In other words, P3(X) = x(x -l)(x - A) 
where the third root A =f:. 0,1 parametrizes all such curves. However, for different 
parameter values one could get isomorphic curves: curves y2 = x(x -l)(x + 1) and 
y2 = x(x - l)(x - 2) are obviously isomorphic by isomorphism x t-+ 1- x. 

The three element permutation group S3 (with six permutations) acts on 
the root triple (0,1, A). If we apply the linear transformation on x again after 
permutation, to obtain the root triple (0,1, >'), it is easy to check that A could take 
one of the following six values: A, :t. 1 - A, l~A' A: l' A~ l. It follows directly 
that all six curves which correspond to these parameter values are isomorphic. Let 
us produce a function in A, invariant with respect to this action and in this way 
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remove the six-ply ambiguity. An obvious candidate would be 

and another 

Definition. IT X is anonsingular cubic with the equation y2 = x(x-l)(x-A) 
(A i:- 0,1), the complex number 

is called the j-invariant of the curve X. 
The function A t-t j(X) defines a siX-to-one covering j : Al -+ Al, 

{A, :t.l - A, l~~' ~:l' ~il} t-t j(X), branched over points 0 and 1. The value 
of the j-invariant classifies nonsingular cubics, as the following theorem shows. 

Theorem. [15, p. 249], [31], ... a) Two cubics X are Y isomorphic {:} j(X) = 
j(Y). 

b) For any complex number a there is a curve X with j(X) = a. 

Therefore, nonisomorphic nonsingular cubics are parametrized by points of 
complex line. 

Nonsingular cubics are called also elliptic curves. This name originates from 
elliptic integrals. When the arc length of the ellipse (and other curves) is being 

_ calculated, the integrals of functions with radicals VP4(X) appear. In the spirit of 
lecture 1, these integrals are connected to curves y2 = P4(X), which are birationally 
isomorphic to nonsingular cubics. 

Classical theory of elliptic integrals culminated in the middle of the last cen
tury in the works of Legendre [15]. He reduced all elliptic integrals to the fol
lowing three basic types: first type F(cp) = !co

rp 
., second type E(cp) = 

sm2 z _ 

Jri Vl- k2 sin2 xdx and third type G(cp) = Jri . . The arc length 
(sm z-c) 102 sm2 z 

of the ellipse is expressed by the elliptic integral of the second type, and the first 
type appears in the arc length of the lemniscate. There is a famil)!- of curves with 
this property, discovered by Serret [28], which is connected to so~e interesting 
questions of the theory of elliptic curves and arithmetic. For more details see [23], 
[18]. 
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As we have seen, the set of points of elliptic curve forms an Abelian group. 
What is this group? 

Theorem. As a group, the elliptic curve X is a two-dimensional torus: 
X ~ CIA ~ JR/Z x JR/Z. 

Here A c C is a lattice, that is, a free additive subgroup A = Z + ZT C C of 
rank 2 over Z (T fJ. IR). 

Proof. [31, pp. 414-416] We will sketch the proof. It requires some classical 
theory of complex functions. 

Definition. The function p(z) = ~ + 2: [(.z!w)2 - ~] of the complex 
w€A\{O} 

argument z is called Weierstrass function. 

The Weierstrass function and its derivative p'(z) = - 2:w€A (.z':wls are dou
bly periodic complex functions with periods 1 and T, in other words A-periodic 
functions. They satisfy the equation (p')2 = 4p 3 - 92P - 93 where coefficients g2 = 
60 2: w-4 and 93 = 140 2: w-6 , and the discriminant a = 9~ - 279i :f. o. 

w€A\{O} w€A\{O} 
• 

It follows from these properties that if the lattice A is given, then the mapping 
C -t jp'2(C) defined with z J-7 (p(z), p'(z)) factors through homomorphism C -t 
Cl A and induces a bijection of the torus Cl L and the cubic y2 = 4x3 - 92X - 93. 
Conversely, if the cubic is given, that is, two numbers 92 and 93 satisfying 6 = 
9~ - 279i :f. 0, then one coUld show the existence of the lattice A such that its 
Weierstrass function satisfies the given equation. 

One could obtain also the connection between i-invarjant of the curve and its 
coefficients: J = 9i! 6 or i(X) = 17289va. 

Any lattice A or a complex number T fJ. lR defines an elliptic curve. Obviously, 
different values of T could define isomorphic curves, exactly when their i-invariants 
coincide. The following theorem describes when this takes place. 

Theorem. [31, p. 416] J(T) = J(T') {:} T' = ~;t: for some regular integer 

matrix (::) E G ~ (Z) 

In the sequel we shall show the connection between elliptic curves and number 
theory. -

• 

Let X be an elliptic curve with fixed origin 0 and corresponding group struc-
ture. For any n E N one has the mapping!pn : X -t X, P J-7 nP with !Pn(O) = O. 
One could show that this is a regular (polynomial) morphism and homomorphism 
of the group structure. . 

Definition. Endomorphism of the elliptic curve with fixed origin (X, 0) is 
algebraic morphism f: X -t X which maps the point 0 again in O. 

H f and 9 are two endomorphisms, define their sum in a usual way, pointwise 
(f + 9)(P) = f(P) + g(P), and their product as composition (f. g)(P) = f (g(P». 
The zero-element will be the constant function O(P) = 0, the neutral element -
the identity l(P) = P. 

, 
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Lemma. Endomorphism of elliptic curve is a homomorphism of its group 
structure. The set End(X, 0) of all endomorphisms is a ring. 

Theorem. [31, p. 417], [15, p. 18] There exists a bijection between endomor
phisms of the elliptic curve (X,O) and complex numbers a E C which leave the 
lattice invariant aA C A. In such way, an embedding is defined. 

Proof. From the Serre's theorem on isomorphism of algebraic and analytical 
structures on complex algebraic varieties [27], algebraic morphisms f : X -t X cor
respond to holomorphic morphisms f : Cl A -t CIA. Each such mapping extends 
to the mapping / : C -t C, /(A) C A. It is a holomorphic homomorphism in tp.e 
neighborhood of 0, so /(z) = ao + alZ t a2z2 + ... and /(Zl + Z2) = /(Zl) + /(Z2)' 
Comparing the coefficients in the equality ao + al(zl + Z2) + a2(zl + Z2)2 + '" = 
(ao+alzl +a2z~+'" )+(aO+alz2+a2z~+''') one obtains ao = a2 = aa = ... = 0 
and /(z) = alZ. 

So, End(X,O) = R = {a E C1aA C A} is a ring, Z eRe C. 
Let us now analyze more closely rings of the form R = {a E ClaA C A} 

where A = Z + Zr (r ft JR.) is a given lattice. Note that ReA, RA c A, that is, 
the lattice A is a R-module. 

Lemma. Each a E R is integral algebraic number, and R is a subring of the 
ring of integral algebraic numbers O. 

Proof. aA C A {:} a . 1 = a + br, a· r = c + dr where a, b, c, d are integers. 
Therefore, (a - a)(d - a) - ·bc = 0 and a 2 - (a + d)a + (ad - be) = O. 

Clearly, integers do leave any lattice invariant, or Z C R. When does the 
lattice admit nontrivial endomorphisms? 

Lemma. The ring R is strictly greater than the ring of integers Z {:} r is 
algebraic number of degree 2 over Q. 

Proof. One has: 3a E R, a ft. Z, aA C A {:} 3a, b, c, d E Z, b =F 0 such that 
a·1 = a+br, a·r = c+dr, and by elimination of a one obtains br2+(a-d)r-c = O. 
Conversely, if rE Q(v'-D) = Q[v'-D] for some DE Z, D > 0, r = r + s';-D, 
then 

R = {a = a + br I ar = ar + br2 EL} = {a + br ELl br2 EL} 

= {a + br I a, b, 2br, b(r2 + DS2) E Z} 

since br2 = -b(r2 + DS2) + 2brr. It is clear that R is strictly greater than Z. 

One has ReO = OnK where the field K = Q(r) = Q[r] = Q[v'-D], and ° is its ring of integers. Note that the lattice A is a projective R-module, since 
R®Q = L®Q = Q[r]. One has rankz R = dimQ R®Q ;;:: rankz ° = 2. This means 
that for some p E 0, ° = Z + Zp. Then Rn Zp is a subgroup in Zp, necessary of 
the form Rn Zp = c . Zp for some positive integer c E N. 

Lemma. (& definition) R = Z + c· Zp. The number c is called the conductor 
of the ring R. 

I 
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Proof. If x = a + bp E R, then bp.= x - a ERn Zp = c· Zp. In other words, 
c I b and x = a + c . b' p. 

• 
Example. Let D = 1, K = Q(i) = Q[ij and 0 = Z[ij = Z + Zi. 

1. If t = i, then R = 0 = Z[ij, c = 1 and R = Z + Zi. 

2. Ift = 2i, then R = Z[2ij ~ 0, c = 2 and R = Z+2Zi = {a + 2bi I a, bE Z}. 
, 
, 

Let us return to elliptic curves. Integers correspond to "trivial" endomor-
phisms I{Jn : X --+ X, P I-t nP. Is it possible to describe all elliptic curves which 
allow also nontrivial endomorphisms? The answer is given by a wonderful theorem 
of number theory. 

Definition. The elliptic curve X = Cl A is a curve with complex multiplica
tion, if End(X, 0) i: Z. 

Theorem. (Weber, Filter, Serre) If the curve X has complex multiplication, 
R = End(X,O) its ring of endomorphisms and K = Q[v'-Dj corresponding field 
of algebraic numbers, then 

(1) the invariant j = j(X) is an integral algebraic number; 

(2) Galois' group Gal(K(j)1 K) is Abe1ian, of order \Pic(R) I = ICI(R)\; 

(3) number j is rational {:} K(j) = K {:} ICI(R)I = 1 {:} ring 0 is factorial, 
and there are exactly 13 such values for j: 

• 

D 
(discriminant) 

1 
2 
3 
7 

11 
19 
43 
67 

163 

1 
3 
7 

3 

c 
(conductor) 

1 
• 

2 

3 

. . 
J 

(invariant) 
2633 

2653 

o 
_3353 

_215 

_21533 

~2183353 

_2153353113 
-2183353233293 

2333113 

243353 

3353173 

The groups CI(R) and Pic(R) which appear in the theorem are the class group 
of fractional ideals of the ring R, and the class group of projective R-modules of 
rank 1. 

The question how many factorial rings 0 exist, has been answered only re-
o 

cently. From classical theoretical considerations it followed that there are at most 
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ten, and the calculated tables for small values of D conta.ined only nine such rings 
(the above table with conductor 1). It was a long-standing open problem whether 
there is tenth ring (the so called problem 01 the tenth discriminant). In 1967 Stark 
[29] answered negatively and showed that there is no such ring (see [12, p. 438], [3, 
p. 253]). . 

12. Cartier divisors and group of points of singular cubic 

The notion of Weil divisor was introduced only for varieties that are nonsin
gular in codimension 1. In the case of curves, these are the nonsingular projective 
curves. But what about singular varieties? It would be possible to define divi
sors for arbitrary varieties as formal finite combinations D = :E niCi of irreducible 
subvarieties of codimension 1. However, already the notion of principal divisor 
(and the divisor class group) does not work: the multiplicity of a rational function 
can not be always consistently defined along subvariety of co dimension 1, since it 
may contain singular points. In this case one uses a different definition of divisor, 
suggested by connection between divisors and functions in projective space. 

The notion of divisor occurs as the answer to a classical question: is there a 
rational function that has zeros (ni > 0) and poles (ni < 0) of given multiplicity 
ni on given hypersurfaces Ci. If D = :Ei niCi is a divisor on JP'n, each irreducible 
subvariety Ci of codimension 1 is globally defined by one polynomial homogeneous 
irreducible equation gj = 0 and the solution of the problem is the rational function 
1 = n gfi. This is a global rational function on JP'n only if the degree of the divisor 
equals 0, that is, if :Eini = O. However, in any affine chart U; = {x;¥: O} it 
defines a proper rational function f; = f!xjEni

). Inaddition, the family {U;, f;} 
(j = 0, ... , n) has the property that functions f; /Ik have neither zeros nor poles 
on intersections U; n Uk, since corresponding factors cancellate. 

For arbitrary nonsingular variety X, in an analogous way, each Weil divisor 
D = :E niCi on X defines a family {U;, f;} consisting of covering U; of X and of 
rational functions f; E K(U;)* on each element of the covering, such that function 
f; on U; cuts out the principal divisor (/;) = D n U;, and rational functions I; / Ik 
have neither zeros nor poles on intersections Uj n Uk. One needs nonsingularity in 
order to describe each Ci locally by one equation gi = O. Such a family {U;, I;} 
is called coherent system 01 functions. Conversely, coherent system of functions 
{U;, f;} on X defines a divisor D = :EniCi on X: note that K(U;) is the field of 
fractions of the factorial domain K[U;] and represent f; in the form I; = n g':t. 
The coherency conditions uniquely determine subvarieties Ci and multiplicities ni. 
Two coherent systems of functions {U;, I;} and {Vk, gd define the same divisor 
if and only if corresponding principal divisors coincide: (/j) = (gk) on intersec
tions U; n Vk, that is, if rational functions f; / gk have neither zeros nor poles on 
U; n Vk • This defines equivalence on the family of coherent systems of functions. 
Corresponding equivalence classes are c~ed locally principal (or eartier divisors. 
~. Weil divisor corresponds to each Carlier divisor and vice versa, and this is a 
bijection. 

,'., 
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The good property of Cartier divisors is that they can be defined for arbitrary 
variety X, even when Well divisors can not. The product of two Cartier divisors 
{Uj, f;} and {Vk, gk} is a Cartier divisor {Uj n Vk, !;gk}, and this defines a 
group structure on the set CaDiv(X) of Cartier divisors. Analogously to Well 
divisors, this operation is written additively and called the snm. Every global 
rational function 1 on X defines a principal eartier divisor {X, J}. This defines 
a homomorphism K(X)* ~ CaDiv(X). The quotient group of Ca Div(X) by the 
subgroup of principal divisors is the group of Cartier divisor classes Ca CI(X) . 

. 

IT the variety X is nonsingular in codimension1, then there exist both Well 
and Cartier divisors .. The construction of Well divisor, corresponding to Cartier one, 
defines a homomorphism CaCI(X) ~ CI(X). The construction of Carlier divisor 
shows that this is an inclusion. However, it does not have to be a surjection, as the 
example of the simple cone shows. In this case, the group CI(X) = Z2 is generated 
by the class of the directrisse L of the cone. This directrisse can not be defined by 
one equation in anyneighborhood of cone's vertex, since any function which should 
describe L as a set of points, cuts out the divisor 2L. Therefore, L is not locally 
principal, every locally principal divisor is principal, and Ca CI(X) = o. 

Let us now calculate the Carlier divisor class group of the singular cubic 
X = V(y2z - x 3 ) C 1P'2 (the "cusp"-curve). That will introduce group structure 
on its set of nonsingular points, exactly as in the case of nonsingular cubic. Our 
construction follows that of [31, p. 187]. First prove an important lemma. 

Lemma. (''removing the point from divisor's support" ; (generalization see 
in [33, t.· 1, p. 193]). If X is a plane projective curve, P E X its point and 
D E Ca Div(X) Cartier divisor on X, tben tbere is a divisor D' ,..., D wbose support 
does not contain tbe given point. 

Proof. Let U be a neighborhood of P and 1 rational function defining locally 
principal divisor D in that neighborhood. Suppose that the support of the divisor 
contains the given point. This means that P is a zero or a pole of the function 1, of 
some mUltiplicity n. Take a global rational function 9 E K(X) which in the point 
P has zero or pole of multiplicity n. The divisor D' = D - (g) has the reqnired 
property, since the function 19-1 is regular in some neighborhood of P. 

Let now X =V(y2z - x3 ) C 1P'2 with singular point S = (0:0:1) and let 
y = X \ S be the nonsingular subvariety. Each Cartier divisor D E CaDiv(X) 
is equivalent to divisor D' whose support does not contain the point S, that is, 
whose local equation does not have a pole in that point. Therefore, D' is a Weil 
divisor on Y. IT D is principal, D' is such. The divisor D' has not to be uniquely 
determined, but its degree is. In such way, one defines the degree of divisor D, that 
is, a homomorphism Ca CI(X) ~ Z. Consider its subgroup Ca CI(X)O of divisor 
classes of degree 0 and, as in the case of nonsingular cubic, define a mapping 
<p : Y ~ CaCI(X)O, P 1-4 Dp = P - 0, where 0 = (0:1:0) is a chosen point 
(point at infinity of the y-axis). One could also prove, by construction similar to 
nonsingular cubic case, that <p is a bijection. One should only note that if in the 
equality P + Q = R + 0 points P and Q belong to Y, then the same holds for R. 
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The group operation on Ca CI(X)O is therefore carried to Y. The construction of 
the point P + Q is as before: if R is the third intersection point of the line through 
P and Q with the curve Y and T the third intersection point of line through Rand 
o with the curve, then P + Q = T. 

Note that Y = X \ s ~ Al since the curve X is rational. The corresponding 
isomorphism is given by the formula (x: Y: z) M x/y and its inverse t Ho (t : 1 : t3 ). 

However, Al has its usual structure of (additive) group, which is carried by this iso
morphism to Y, and this is exactly the described group structure: if P = (u : 1 : u3) 

and Q = (v: 1: v3), then T = «u + v): 1: (u + v)3). Namely, if one switches to the 
chart y'l 0, intersection of the curve Y : Z ="X3 and the line z = ax + {3 are the 
points P, Q and R whose x-coordinates are the roots of the equation x3 -ax-{3 = 0, 

• 

that is, tt, v and "-(u + v) respectively (Viet's rule!). The point T is symmetric to 
R with respect to the origin. Therefore, its x-coordinate equals u + v, which proves 

. " 

the assertion (see the figures). 

o 

s 

13. Sheaves and Czech cohomology 

In the past 40 years homology became an indispensable tool in algebraic ge
ometry. In the context of algebraic varieties these concepts are easily introduced 
via sheaf theory. Sheaves represent one of the most important contemporary tech
niques in algebraic geometry, and also in other geometrical theories, everywhere 
where one has local constructions and needs global invariants. Sheaves are the 
most important tool for globalization in modern geometry. In this short review it 
is not possible to develop the sheaf theory in its full extent. However, we will try 
to give some motivation, main definitions and examples. 

In the definition of fundamental geometrical objects such as topological and 
differential manifolds, complex analytical and algebraic varieties, the same general 
method is used. First; one introduces and studies objeCts which play the role of 
local models. For example, local models of differential manifolds are open domains 
in Rn. Then one builds global object from local models by procedure of gluing 
(identification) . 

Example. [20, p. 47] Two copies of the real line Rl can be glued along 
its open subsets U = Rl \ {O} in different ways, with two different identification 

• 
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functions f : U -t U. Using the function f(x) = x one obtains the line with 
doubled origin 0, and using the function f(x) = l/x one obtains the circle sphere 
Si. 

• 

In the process of gluing one should take care of corresponding local structure. 
The local structure of a geometrical object is described by the set of permissible 
functions on that object. Continuous functions, differentiable functions, analytical 
functions, rational functions all these are the classes of permissible functions for 
corresponding geometrical objects. By gluing of two local objects, identifying their 
parts, one must take care that on these common parts gluing takes permissible 
functions to permissible functions. One should know what permissible functions 
are, not only on the whole object, but also on its local parts. In such way one 
comes to a new type of structure, built by permissible functions. Let us explain it 
on the example of topological spaces, where the permissible functions are continuous • •• 

functions. For any open subset U c X one has a set C(U) of all real continuous 
functions on U. It is a ring with respect to usual addition and multiplication of 
functions. If Vc U, one has a homomorphism of rings P~ : C(U) -t C(V) defined 
by restriction of functions p~(/) = flv. Composition of restrictions is again a 
restriction: if W eVe U, then PW 0 p~ = p~. This provides us with the 
motivation for the following definition. 

Definition. Presheaf of objects of a given category C (of sets, rings, Abelian 
groups, ... ) on a topological space 4 is a contravariant functor F : top X -t C from 
partially ordered structure of open sets in X (viewed as a category) to category 
C. In other words, for each open subset U C X there is an object F(U) E ObC 
of corresponding type (a set, a ring, an Abelian group, ... ), and for any inclusion 
of open sets V C U there is a corresponding homomorphism p~ : F(U) -t F(V), 
p~ E Mor C, with the following properties: 

1) p~ = id; 2) if Wc V c U, then PW 0 p~ = p~. 
One uses the term "restriction" and the notation p~ (/) = flv also in the 

general case, although objects F(U) are not necessarily sets of functions, and ha
momorphisms p~-restrictions of functions. Elements of the set F(U) are called 
sections of the sheaf F over the open set U. Sections over whole X are called 
global sections. In the sequel, all objects F(U) will have at least the structure 
of Abelian group, and therefore one could speak about their subobjects, quotient 
objects, kernels and images of homomorphisms etc. 

Let us return to the presheaf of real continuous functions on topological space 
X. It has one specific property, concerning families of functions on coverings of 
X. Namely, if {Ua } is an open covering of X, then each continuous function f 
on X is uniquely determined by its restrictions flua on Ua . Conversely, a given 
family of functions fa on Ua determines a global function on whole X if and 
only if functions fa are coherent on intersections i.e., if for any two indexes and, 
faluanu" = ff3luanu". This property could be formalized in the following manner. 

Definition. Presheaf F on a topological space X is a sheaf if for any open 
subset U and its open cover {Ua } the following sequence of homomorphisms is 

• 

1 
I 
I 
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exact: 
0-+ F(U) cp) IT F(Ua) t/J) IT F(Ua nUp) 

a a,p 

where cp : f t-t {flua}, t/J : {fa} t-t {falu..,nu" - fpluanu,,}. In other words, 
Ker cp = 0, that is, if the families of restrictions 9f two sections coincide then these 
two sections itself also coincide; and Ker t/J = Im cp, that is, any family of sections 
which coincide on intersections originates from some global section. 

All important presheaves which we have already mentioned, are in fact 
sheaves. Such are: the sheaf of differentiable functions on a smooth manifold, 
the sheaf of analytical functions on a complex-analytic variety etc. In the case 
of sheaves, one could give the interpretation of sections and restrictions as proper 

. functions and corresponding restrictions, by technique of etale spaces. Even when 
a presheaf is not a sheaf, one could associate a sheaf to it, called associated sheaf, 
which is locally equal to given presheaf. 

Example. IT the space X has two connected components and F = Z is a 
presheaf of constant functions with integer values (that is, for any open subset U, 
F(U) = Z) then it is not a sheaf: a family of two functions, one on each component, 
which take two different values (say 0 and 1), agrees on intersections (they are all 
empty), but does not originate from a global section. 

Let F be a (pre)sheaf on X, x E X a point, U and V its open neighborhoods. 
One says that two sections f E F(U) and 9 E F(V) (over different neighborhoods) 
are equivalent if their restrictions coincide in some common neighborhood W C 
Un V. The quotient of the disjoint union llu:zEu F(U) of all sections over all 
neighborhoods of a given point is called genu of a (pre)sheaf F at the point x and 
denoted F z • For example, an element of germ of sheaf of continuous functions at the 
point x is a function continuous in some neighborhood of that point, and two such 
functions are identified if they coincide in some (maybe smaller) neighborhood of 
x. The associated sheaf may be defined in the following way. Consider the disjoint 
union llzEx Fz = E and the corresponding projection w : E -+ X, Fz -+ x. Let 
E be topologized by the smallest (coarsest) topology in which w is still continuous. 
One obtains the etale space of the presheaf F. For any open U eX, define 
F+(U) = r(U, F) as a set of all continuous functions s : U -+ E such that i = 
wo s : U -+ E -+ X is the identity on U. In this way one obtains a sheaf F+, 
the associated sheaf of the presheaf F. What is the direct connection between 
and F(U)? An element S E F+(U) can be interpreted as a family of sections 
Sa E F(Ua), coherent on intersections Ua n Ual, where U = {Ua} is an open cover 
of U. Two such families of sections in two different coverings U and V are identified 
if they agree on cross-intersections Ua n Vp. Presheaf F and associated sheaf F+ 
have equal germs Fz = Ft. 

Example. Associated sheaf F+ of the presheaf F of constant functions on a 
topological space X is the sheaf of locally constant functions. Their germs coinci~e 
in each point (these are the functions, constant in some neighborhood of given 
point). Even their sections on each connected component of the space coincide. 
However, if the space has more than one component, then F+ l' F. 

, 
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Morphism of sheaves is introduced in a standard categorical way: it is a 
natural transformation of functors. More precisely, morphism a : :F -t g consists 
of a family of homomorphisms au : :F(U) -t g(U) commuting with restrictions: 
av 0 P~.F = p~.G 0 au. IT all homomorphisms au : :F(U) C g (U) are inclusions, we 
say that :F C g is a subsheaf. The definition of quotient sheaf is more complicated. 
Namely, if:F C g is a subsheaf, quotient groups g(U)I:F(U) form only a presheaf. 
By definition, a quotient sheaf g I:F is the corresponding associated sheaf. One 
could write WI:F)(U) = [g(U)I:F(U)]+. Due to this construction, sections of the 
exact sequence of sheaves need not build an exact sequence. In other words, functor 
of sections is not right exact: if the sequence 0 -t :F -t g -t g I:F -t 0 is exact, 
only the sequence 0 -t :F(U) -t g (U) -t W I:F) (U) will be exact, and the last 
homomorphism need not be epimorphism. To the contrary, the functor of germs is 
exact: if the sequence 0 -t :F -t g -t g I:F -t 0 is exact, then for all x sequence 
o -t:F:c -t g:c -t WI:F):c -t 0 is also exact (and vice versa). 

Examples. 1. [20, p. 51] Let X = S1. Consider the sheaf C of continuous 
functions on X, its subsheaf Z of all constant functions and presheaf :F(U) = 
C(U)I Z(U). Cover X with two open sets: two half-circles overlapping at both 
ends, X = U1 U U2, U1 n U2 = Vi U V2. Let f = 0 be the zero-function on X, 
9 a continuous function on X which equals 0 on V1 and 1 on V2 and let it = 
flull 12 = glu2' Then, obviously ftlvl - 12lvl = 0, itlV2 - 12lv2 = 1. The pair 
{it, 12} defines a section of the sheaf :F+ = C IZ over U which does not originate 

. from :F(U) = C(U)IZ(U). 

2. [7, p. 134] IT X = C, 0 the sheaf of holomorphic functions on X and 0* 
the sheaf of (multiplicative groups of) holomorphic functions which are everywhere 
different from 0, the morphism exp : 0 -t 0*, locally defined by f t-+ exp(f) is an 
epimorphism of sheaves, since it is epi on germs: any holomorphic function different 
from 0 at the point x may in some neighborhood of that point be written as exp(f) 
for some holomorphic function f. However, if U is the open ring around 0, then 
expu : O(U) -t 0* (U) is not surjective. 

Let us return to algebraic varieties. IT X is an algebraic variety over alge
braically closed field K, then generally there is no natural topology on the set X. 
The only topology which we could use is the Zariski topology. Which are the per
missible functions? IT U C X is an open subset, let O(U) be the ring of regular 
functions on U. One obtains a sheaf 0 of rings on X, the structure sheaf of regular 
functions on X. IT instead of regular, one takes rational functions and lets ]('(U) 
be the field of rational functions on U, one gets the sheaf ](. of fields of rational 
functions on X. This is a constant sheaf if X is irreducible. 

Let us mention an important short exact sequence of sheaves (of mUltiplicative 
groups): 0 -t 0* -t ](.* -t ](.* 10* -t O. IT one compares the definition of Cartier 
divisor and the definition of quotient sheaf ](.* 10*, one sees that Cartier divisor on 
X is the same as global section of the sheaf ](.* 10*, that is, an element of the group 
(](.*IO*)(X) = r(X,](.*IO*). How to describe principal Cartier divisors? These 
are the classes of those coherent systems of functions {Ua, fa} for which there is a 
global function f such that fa = flu ... In other words, this is the image of the last 
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morphism in the sequence of global sections 0 -+ O*(X) -+ ~*(X) -+ (~* /O*)(X) 
which needs not to be a surjection. Note one fact. Let {U'I<! la} be coherent system 
of (rational) functions. This means that on all Ua n Up, functions gap = la/Ip are 
regular and different from 0, that is, gap E O*(UanUp). However, the system {gaP} 
is not arbitrary - it satisfies some special coherency conditions. For any index triple 
(0:, /3, 7) one should have ga/39p.., = la/Ip' 113/1.., = la/I.., = ga.., on the intersection 
Ua n Up nu..,. These conditions could be written in the fOIm gp..,g~gap = 1 and 
called the co cycle conditions. This homological terminology has its explanation, as 
we will shortly see. 

The exact sequence in the definition of sheaf extends naturally into a complex, 
Czech complex of the sheaf, determined by the given covering. Let:F be a sheaf 
on a topological space X and U = {Ua } an open covering of X. Introduce the 
notation Uaoal ... a. = uaOnUa1 n .. . nua• and define the cochajn group Ck(U,:F) = 
n(ao,alo'" ,a.) :F(Uaoal ... a.) for any k ~ 0 and also differentials d = dk : Ck(U,:F) -+ 
Ck+! (U,:F) with 

Therefore, rfJ : {Sa} t-+ {(Sp - Sa)luaP}' d1 
: {saP} t-+ {(sp.., - Sa.., + sap)luaP-Y} 

etc. Direct calculation shows that this is a proper differential, that is, cP = O. 
. ~. d1 

One obta.ins Czech complex CO(U,:F) ) C1(U,:F) ) C2(U,:F) -+ .... Its 
cohomology groups Hi(U,:F) = Ker~/Im~-1 (i > 0), HO(U,:F) = KerrfJ are 
called Czech cohomology groups of the sheaf :F on the space X corresponding to 
covering U. If one orders the set of indexes (for example, if the covering is finite) 
and leaves in the definition of Ck only all increasing k-tuples 0:0 < 0:1 < ... < O:k, 

that is, if we eliminate all terms of the product which differ only by the sequence of 
open sets, one could check that cohomology will not change. In the same manner, 
if the covering has finite dimension, that is, if there exists an integer d such that 
the intersection of any d + 1 elements of the covering is empty, then the cochains 
Ci for i > d are trivial, Czech complex is finite and corresponding cohomologies are 
trivial starting from the position d + 1. All this simplifies the explicit calculation. 

The sheaf condition for :F could be written also as HO(U,:F) = r(X,:F) = 
:F(X). Let us note that this does not depend on the covering U, thus justifying 
the notation HO(U,:F) = HO(X, :F). This may not be so for higher cohomologies. 
In the general·· case, relation of refinement of coverings gives us the connection 
between cohomology groups of the same sheaf over two different coverings, and one 
takes the direct limit by all coverings. This theory has been developed by Cartan, 
Leray and Serre. Soon afterwards, Grothendieck has founded cohomological theory 
for sheaves in a more general context, using resolvents and derived functors. A 
very nice exposition of this theory may be found in [31]. We shall not discuss the 
general cohomological theories in this short report. For us it will do, that there 
exist cohomological groups Hi(X,:F) which do not depend on the covering and 
which satisfy all usual theorems of homology theory, and also that the calculation 

, 

• 
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of Czech cohomology, described above, gives good results for some "well chosen" 
coverings. One of the most important results in homological algebra is the so-called 
long cohomological sequence: if 0 -+ :F -+ 9 -+ 1l -+ 0 is a short exact sequence of 
sheaves, then there exists a long exact sequence of cohomology 

o -+ HO(X,:F) -+ HO(X, Q) -+ HO(X,1l) 

vi 
HI (X, :F) -+ Hl(X, g) -+ HI (X, 1l) 

. vi 
H2(X,:F) -+ H2(X, g) -+ ... 

The beginning of the sequence is just the left exact sequence of global sections. 

Examples. 1. [31, p. 284J Let X = SI be the one-dimensional sphere with 
the (already introduced) covering by two overlapping half-circles U = {Ul, U2 }, 

X = Ul U U2, Ul n U2 = VI U V2 and let :F = Z be the constant sheaf. One 
has CO(U,:F) = :F(U) x :F(V) = Z x Z, Cl(U,:F) = :F(U n V) = z x Z and the 

corresponding differential in the Czech complex 0 -+ Co (U, :F) d) Cl (U,:F) -+ 
0-+ ... is d: (a, b) H (b- a, b-a). Cohomology groups are HO(U,:F) = Kerd = Z 
and Hl(U,:F) = Cokerd = Cl(U,:F)/Jmd = Z. 

2. [6, p. 61] Let X = JPl be the complex projective line with homogeneous 
coordinates u,v and usual affine covering U = {U, V}, U = {v i O}, V = {u i O}, 
U n V = C* and :F = 0 the sheaf of holomorphic functions. One has CO (U, 0) = 
O(U) x O(V), Cl(U, 0) = O(U n V) and the differential d: (f,g) H g - f where 
f = l:n>O anun E O(U), 9 = l:n>O bnvn E O(V). On the intersection Un V one 
has v = u-l and -

g - f = 0 {:} L bnu-n 
- L anun = 0 {:} ao = bo, an = bn = 0 (n >il) 

n~O n~O 

Therefore, HO(U,O) = C, that is, global holomorphic functions on X are only 
constants. For HI one gets 

3. [9, p. 34] Let us calculate the cohomology groups of the structure sheaf 
on nonprojective quasiprojective algebraic variety. Let X = A2 \ {(O, On be the 
plane without the origin, with coordinates 1.£, v and covering U = {U, V}, U = {v i 
O} = D(v), V = {U:f: O} = D(u) and let 0 be the sheaf of regular functions on X. 
One has O(U) = O(D(v» = K(u,vJctl} = K[u,v,v- l ], CO(U,O) = K[u, v, 1.£-1) x 
K[u,v,v- l ] and Cl(U,O) = o(unv) == K[u,v,u-l,V- l ], and also d: (f,g) H 

g- f. One gets HO(U, 0) = Ker d = K[u, v) = HO(A2, 0), that is, regular functions 
on X can be extended to the whole plane A2. Let us calculate now HI (U, 0) = 
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K[u,v,u-l,v-l]/Imd = K[{u-m,v-nlm, n > O}], therefore dimK Hl(U,O) = 00. 

The dimension of cohomology groups is not necessarily finite. 

4. [31, p. 284] Let us calculate cohomology groups of the sheaf of reg
ular differential fOIms on the projective line. Let again X = pI with usual 
coordinates and affine covering, and let 0 be the sheaf of regular differential 
forms [31, p. 224]. One has CO(U,O) = O(U) x O(V) = K[u]du x K[v]dv, 
C1(U,O) = O(U n V) = K[u,u-l]du and d : u ~ u, v ~ U-l, dv ~ -u-2du. 
Now, Kerd = {(f(u)du,g(v)dv) I f(u) + u-2g(u-l ) = o} = 0 (where f and 9 are 
polynomials), and HO(U, 0) = o. Further, 

Imd = {(J(u) + u-2g(U-I») du} = SpanK {undul nE Z \ {-I}} C K[u,u-l]du 

so HI(U, 0) = K· u-1du and dimK HI(U, 0) = 1. 

14. Genus of algebraic variety 

14.1. Topological genus of projective algebraic curve. Plane projective 
algebraic nonsingular curve (over the field of complex numbers) is a 2-dimensional 
compact smooth orientable manifold in C2 = ]R4. As it is known, such manifolds 
are uniquely classified by one integer parameter topological genus 9 (this is the 
number of "handles" on X). This number is called topological genus of the corre
sponding nonsingular curve. 

14.2. Arithmetical genus of projective variety. Theorem. (Hilbert's 
syzygy theorem) Let A = C(xo, ... ,xn] and M finitely generated graded A-module 
(M = E9k>O Mk as an Abelian group, and for any homogeneous polynomial f of 
degree d, 1· Mk C Mk+d). Then there exists a polynomial PM(t) E Qn[t] with 
rational coefficients, of degree at most n, such that dime Mk = PM(k) for k» O. 

Proof. Induction on n. 1. For n = -1, A = C, M is a finite-dimensional 
Cvector space, Mk = 0 for k» 0 and PM = o. , 

2. The inductive step. Multiplication homomorphism cp : Mic ~ Mk+l has 
kernel Kercp = N' = {m EM: Xnm = O} and cokernel Cokercp = Nil = M/xnM, 
so one has an exact sequence of vector spaces 

from which one has 

dim Mk+l - dim Mk = dim Nk'+l - dim Nk 

Since multiplication with Xn annulates N' and Nil, one can view it as finitely 
generated C(XI, ... ,xn_l]-modules. By the induction hypothesis, dimNk = P'(k), 
dim Nf+l = p II (k+ 1). We will use the following elementary lemma on polynomials. 

Lemma. For any rational polynomial f E Q[t] of degree d there exists a 
polynomial 9 E Q[t] of degree d + 1 such that f(t) = g(t + 1) - g(t). 

, 

, 
• 
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Proof. Since (t + l)d - td = d· td- 1 + "', the lemma follows by induction 
on degree of f. . 

From the lemma, PI/(k + 1) - PI(k) = Q(k + 1) - Q(k) for some polynomial 
Q, and 

dimMA:+1 ~ dim MA: = dim Nk'-tl - dimNk = PI/(k+ 1) - PI(k) = Q(k+ 1) - Q(k) 

Therefore, dim MA: = Q(k)+ constfor k» O. This proves the theorem. 

Definition. If X C pn is a projective algebraic variety and M = qX] = 
crxo, ... ,xnJI leX) its homogeneous coordinate ring, viewed as crxo, ... ,xn]
module, polynomial Px(t) := PM(t) is called Hilberl polynomial of X. 

Examples. 1) Projective n-dimensional space: M == A = crxo, ... ,xn ], 

MA: = {homogeneous forms of degree k with n+ 1 indeterminates}, dim MA: = (A:!n) 
and PM(t) = e~n) = 1· tnln!. 

2) Projective hypersurface of degreed: M = AI(f), where f is homogeneous 
f . 

of degree d. From the exact sequence 0 --+ AA:-d ~ AA: --+ [AI(f)]A: --+ 0 one has 
dim[AI(f)]A: = (A:!n) _ (A:-:+n) and PM(t) = e~n) _ (t+~-d) = d. (!":11)! + .... 

3) Particularly, for n = 2, that is, for plane projective algebraic curves of 
degree d one has PM(t) = (t12) - (t+;-d) = d· t + (1- (d-1Yd-2». 

Note that if f E Q[t] is a rational polynomial of degree n such that in n + 1 
consequent integer points k, k + 1, .. , ,k + n E Z it has integer values, then it can 
be written in the form pet) = an (!) +an-l (n:l) + .. '+ao with integer coefficients. 
Therefore, the highest order coefficient of the Hilbert polynomial has the form din! 
(d E Z), which can be guessed from previous examples. Examples also show that 
the degree of Hilbert polynomial equals the dimension of projective variety X. This 
is really so. One can show that not only the degree, but also the whole polynomial 
(all its coefficients) is an invariant of the variety, independent from the embedding 
X C pn. Some of the coefficients· (the first and the last) have a special meaning 
and geometrical interpretation. 

Definition. Let Px(t) = d· r;. + ... + Px(O). The coefficientd is called r. 
degree of projective variety X. The integer Pa(X) := (-IY[Px(O) - 1] is called 
arithmetical genus of the variety X. 

Example. Arithmetical genus of the plane algebraic nonsingular curve of 
degree d equals (d - 1)(d - 2)/2. 

One can see that the definition of arithmetical genus really does not depend 
on the embedding X C pn when it is expressed in terms of structure sheaf of the 
variety. Namely, if ~ is a sheaf on X, its Euler characteristic is defined by x(~) = 
dimHO(X,~) - dimHl(X,~) + .... One could prove that Euler characteristic of 
the structure sheaf 0 of regular functions on a variety X equals X(O) = Px(O). 
Therefore, the arithmetic genus of nonsingular projective variety X C pn equals 
Pa(X) = (-1Y[x(0) -11 where r = dimX. For curves this is reduced to equality 
Pa(X) = dim Hl(X, 0) = hl(X, 0). 
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14.3. Geometrical genus of projective variety. The notion of geometrical 
genus appears for the first time in the works of Riemann, connected with maximal 
number of linearly independent global differential forms on a Riemann surface. On 
the language of sheaves this can be expressed in the following way. Let 0 be the 
sheaf of regular differential forms on projective nonsingular variety X of dimension 
r. The canonical sheaf of the variety X is the sheaf Wx = NO, and the dimension 
of the space of its global sections geometrical genus. 

Definition. pg(X) = dimHO(X,wx). 

Example. Let X = pt be the complex projective line and X = U U V its 
standard affine covering. Then w = 0 and its restriction on U = At is a free 
O-module of rank 1, generated by the differential of the local coordinate duo Now, 

CO(X,w) = O(U) x O(V) = K[u]du x K[v]dv, 
CI(X,w) = O(U n V) = K[u, 1/u]du, 
d : '1.1. H '1.1., V t-+ ~, dv H -~du, 

Kerd = {(f(u)du,g(v)dv) I f(u) + 7u2g(~) = o} = 0, 

Cokerd = Cl /Jmd, Jmd = ([f(u) + u-2g(1/u)]du} = Span{uRdu,n # -1}, 
HO(X,w) = 0, HI(X,w) = K .1/'1.1.. du ~ K, hO = 0, hI = 1. 

Therefore, the geometrical genus equals pg (PI) = O. We have also calculated 
HI(pl,w). 

14.4. Equality of topological, algebraic and geometrical genus for non
singular projective curves. The most important types of geometrical theorems 
are probably the duality theorems, connecting complementary homological objects 
(homology and cohomology, homology of complementary dimension etc.). These 
are the key theorems of geometry and topology. Such is the Serre's duality theo
rem for projective nonsingular varieties, which expresses sheaf cohomology in terms 
of higher derived functors of the functor Hom(-,w) of complementary dimension. 
Due to our space restrictions, we shall only state the theorem and the corollary, in 
which we are now interested. 

Theorem. Hr-i(x,:F)* ~ Exti(:F,w) for all 0 ~ i ~ r (r = dim X) . . 

Corollary. Particularly, for i = 0 and :F = 0 (structure sheaf of regular 
functions) one obtains HO(X,w) = Hom(O,w) ~ Hr (X, 0)*. Therefore, the geo
metrical genus equals pg(X) = hO(X, w) = hr(x,O). For curves, r = 1 and this 
leads to equality pg(X) = Pa(X). This equality is valid only for curves. For surfaces 
a new component appears, so-called irregularity. Its existence was known already 
in the Italian geometrical school. In this case r = 2 and 

Pa(X) = (_1)2[x(0) -1] = hO(X, 0) - hl(X, 0) + h2(X, 0) -1 

= h2(X, 0) - hI (X, 0) = pg(X) - irr(X) 

The equality of arithmetical and topological genus for curves can be proved by 
complex-analytic means, naturally only when the main field is the field of complex 
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numbers, that is, when the topological genus is defined. Note that both arithmetical 
and geometrical genera can be defined for varieties over any algebraically closed 
field, not only the field of complex numbers. 

, . 

15. Vector space, associated to a divisor 

Let 00 E JPI be the point at infinity of the projective line. The polynomial 
f E K[JPI \ 00] of degree n has in 00 a pole of order n and does not have other 
poles. Vice versa, a rational function f E K(JPI) which has only one pole at 00, is 
a polynomial. One has 

deg f :$ n {:} (J) + n . 00 ~ 0 

The vector space of all polynomials of degree at most n (as a subset of the field of 
• 

rational functions) could be described by this condition. 

More generally, let X be a projective variety and D E Div X. 

Definition. L(D) = {J E K(X) I (J) + D ~ O} C K(X). This is a vector 
space over the ground field K, of dimension dimK L(D) = leD), the space of all 
rational functions whose zeros' and poles' divisor is bounded below by the divisor 
-D. 

Remarks. 1. If deg D :$ 0, then leD) = O. Global rational functions on a 
projective variety X have degree O. 

2. Spaces of equivalent divisors are isomorphic, that is, if DI ,... D2, then 
L(D1) ~ L(D2) and l(D1 ) = l(D2). Namely, if D1 - D2 = (9) where 9 E K(X) 
is a rational 'function, then the multiplication with 9 produces isomorphism of 
corresponding vector spaces, since 

f E L(D1) => (J) + DI ~ 0 => (J9) + D2 = (J) + (9) + D2 = (J) + DI ~ 0 

=> /9 E L(D2 ) 

Therefore, L(D) and leD) are well defined for classes of equivalent divisors. 

A priori, the space L(D) has not to be finitely dimensional. However, this is 
the case. We shall prove it for projective curves . 

Theorem. If X is a nonsingular projective curve and D divisor on X, then 
the number leD) is finite. 

Proof. Let D = PI + '" + Pn - Q1 - ... - Qm (n ~ m) with possible 
repetitions. Since L(D) C L(P1 + ... + Pn ), one could consider m = O. There is a 
sequence of vector subspaces L(O) C L(Pd c ... C L(P1 + ... + Pn ), and one sees 
that it suffices to prove dimL(D)/L(D-P) < 00. Let m be the multiplicity of Pin 
the divisor D and let u be the local parameter in P. Now f E L(D) => (J) + D ~ 0 
=> ordp f ~ -m => (um f)(P) E C. One has a linear mapping L(D) -+ C, f t-t 
(um f)(P) whose kernel equals {J E L(D) I (um f)(P) = O} = L(D - P). It follows 
that dimL(D)/L(D - P) :$ 1. 
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The proof even provides an upper bound of the dimension leD) :$ degD + 1. 
Attempting to calculate this dimension, lliemann obtained a lower bound, which 
was later named after him. 

Theorem. (lliemann's inequality) If 9 is the genus of the curve, then leD) ;::: 
degD+1-g. 

lliemann's student Roch made this inequa.ijty a precise equality, by calculat
ing the additional term. In this way he arrived to very important theorem, named 
later after lliemann and Roch. 

Theorem. (The lliemann-Roch theorem for curves) leD) - I(K - D) = 
deg D + 1 - 9 where K is the so called canonical divisor of the curve X. 

This theorem will be stated and proved later in a different context, using 
sheaves. 

16. linear systems 

Vector space of rational functions associated to a given divisor is a very im
portant object. In what follows, we will describe its connection to classical notion 
of linear system. -

It is known that through each five points of the projective plane in the general 
position passes exactly one curve of second order. Less known is perhaps such fact: 
if the curve of third order passes through eight of nine intersection points built by 
three pairs of lines in the plane, then it passes also through the ninth point. These 
and similar geometrical theorems were very important in the classical geometry of 
the last century. They were often proved using linear systems. The simplest linear 
system is mentioned even today in courses of analytical geometry: This is the 
bundle of lines in the plane - a set of all lines in the plane passing through a given 
point. The condition of passing through point can be written as a linear condition 
on (general) coefficients of line's equation. When, instead of a line, one takes an 
arbitrary plane algebraic curve of a given order, besides the condition of passing 
through a point (which is a linear condition on coefficients of curve's equation), one 
prescribes also the highest multiplicity of this point on the curve (surprisingly, this 
is also a linear condition on the coefficients!) and finally if, instead of one point, 
one takes a finite set of points with prescribed multiplicities (that is, an effective 
divisor), then one obtains a linear system of equations on curve's coefficients, or 
linear system for short. This notion can be defined more precisely in a different 
way. 

Let X be a projective nonsingular variety, D E Div(X) a divisor on X and 
L(D) the corresponding associated vector space. 

Definition. Complete linear system on X, defined by the divisor D is a set 
of divisors IDI = {D' E Div+ X I D' ,.... D} = {(I) + D I f E L(D)}. 

Note that (I) + D = (g) + D {:} (I) = (g) {:} f = ag, a E K* and therefore 
IDI = JP'(L(D» = Gr(L(D), 1) is a projective space of dimension dim IDI = leD) -1, 
the projectivization of the vector space L(D). 
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Definition. Linear system on X is a projective subspace of some complete 
linear system IDI. 

Suppose that L C IDI is a given linear system of dimension m. Since it is 
a projective subspace, it allows a coordinat~ation L ~ pm. Instead of identifying 
divisors of L with points of projective space, let us use the projective duality prin
ciple and identify them with linear forms on that space. In such way, one obtains 
coordinate isomorphism cp : L -+ (pm)". Let Xi E (pm)" be coordinate functions 
on pm and fi = cp-l(Xi) E L(D) corresponding rational functions (i = 0, ... ,m). 
Then a rational mapping ~ : X -+ pm, ~(x) = (fo(X) , ... ,fm(x» is defined. Show 
that conversely, any rational mapping of X in a projective space defines a linear 
system with chosen coordinatization. Let ~ : X -+ pm be rational mapping and 
- 0 ~ : K(pm) -+ K(X) the corresponding homomorphism of fields of rational 
functions. If l E (pm)" is a linear form on pm and H C pm a hyperplane it de
fines, then ~-l(H) C X is the zeros' divisor of the regular function I 0 ~ E K[X]. 
Set of all such divisors when I E (pm)" is a linear system L with coordinatization 
(pm)" -+ L, H ~ ~-l(H). 

Examples. Consider the case X = pn more closely. The class divisor group 
here is Cl(X) = Z, the given effective divisor D E Div+(X) is equivalent to a 
divisor (f) where f is a homogeneous polynomial of degree d = deg-f = deg D. 
Vector space L(D) is isomorphic to vector space V of all homogeneous polynomials 
of degree d and its dimension is (n!d), and full linear system IDI = Ld is its projec
tivization, of dimension N = (n!d) -1. Linear system of dimension m is a projective 
subspace of that space, with basis consisting of m + 1 homogeneous polynomials 
of degree d. If these are fo(x), ... ,fm(x) EVe K[xo,. " ,xn], the corresponding 
rational mapping is ~: pn -+ pm, (xo: ... :Xn) = X ~ (fo(x): ... :fm(x». Con
versely, any rational mapping is defined by such polynomials, which for their part 
define linear system i.e., vector subspace of dimension m + 1 in vector space V of 
all homogeneous polynomials of corresponding degree. 

1) n = 1, d = 2. Complete linear system 

L2 = {(f) If = a20x~ + all XOXl + a02xD 
defines a rational mapping ~ : pi -+ p2, ~(xo : Xl) = (X~ : XOXl : xn and ~(Pl) is a 

• comc. 

2) n = 2, d = 2. Complete linear system ~ has projective dimension 5 
and defines familiar Veronese rational mapping ~ : p2 -+ pS, ~(xo: Xl: X2) = 
(X~ : XOXl : XOX2 : X~ : XlX2 : x~) and ~(p2) = pt X pi. 

3) Rational mapping T : (xo: Xl : X2) ~ (-:;: * : t;) = (XlX2: X2XO : XOXl) 

is known as Cremona transformation of projective plane T : p2 -+ p2. What 
is the corresponding linear system? One has L = {(f)l f E V'} where 0 = 
{aOxlx2 + alX2XO + a2xoxd C V is a 3-dimensional subspace of 6-dimensional 
vector space of all homogeneous polynomials of degree 2 in 3 indeterminates. 
Each equation in V is the equation of a quadric passing through three points 
P = (1: 0: 0), Q = (0: 1: 0), R = (0: 0: 1). Conversely, any quadric passing through 
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these three points should have equation of that fOlm. Therefore, L is the linear 
system of all quadrics passing through points P, Q, R. Its projective dimension is 
2 i.e., it is a two-parameter family of quadrics passing through three given points. 
Such points are called basic points of a linear system. What is their connection 
to starting rational mapping? The points in which the mapping ~ is not regular 
are the solutions of the system XIX2 = X2XO = XOXl = 0 and these are exactly the 
three basic points. This is a general fact, not simply a coincidence. 

17. Sheaf. associated to a divisor 

Let X be a nonsingular projective variety and D a divisor on X. HOC /c 
are sheaves of regular and rational functions on X, then the vector space L(D) 
associated to divisor D appears on the level of global sections L(D) C /c(X), and 
for D = 0, L(O) = O(X) = K (the only global regular functions on a projective 
variety are constants). We want to define a sheaf, whose sections over open U 
would play a role of the vector space L(D nU). The given divisor D on X is 
locally principal, which means that any· point has a neighborhood U such that 
Ci n U = (/i) or D n U = E ni(/i) = (g), where /i E K[U] are regular on 
U and 9 = n IF" . The condition (f) + D ~ 0 for I E L(D) locally on U is 
(f) + Eni(fi) = (f) + (g) = (fg) ~ 0 i.e., on each component Ci nU of divisor 
D one has ordl ~ -ni, or I· 9 E K[U] = O(U) or equivalently I E l/g· O(U). 
One sees that the role of the space L(D n U) is played by the submodule of the 
field of rational functions in which the local equation 9 of the divisor D becomes 
invertible: O(U) C l/g·0(U) C /C(U) = /c(X). This enables us to define the space 
associated to a divisor D in more general setting of Cartier divisors. 

Definition. H D E CaDiv X is a Cartier divisor on a variety X, D = 
{(Ui' fi)}, the sheaf associated to D is the sheaf of submodules O(D) C /C of the 
sheaf of rational functions, generated by 1/ /i on Ui. 

Obviously, L(D) = HO(X, O(D» is the space of global sections of this sheaf, 
and l(D) = dim HO (X, O(D» = hO(O(D» its dimension. Higher cohomology 
groups of the sheaf O(D) provide new integer invariants, and their alternating sum 
- Euler characteristic of the sheaf~: x(~) = hO(~) - hl(~) + ... + (_I)nhn(~) 
where hi(~) = dim Hi(X, ~) and n = dimX. The Riemann-Roch theorem could 
now be formulated in the following way. We will also give the sketch of its proof [31, 
p. 376]. Although it is not possible to explain all technical details in a short review, 
this proof illustrates the power of the technique of sheaves and their cohomology 
in modern geometry. 

Theorem. (Riemann-Roch theorem for curves). If X is a nonsingular pro
jective curve, 0 its structure sheaf and D a divisor on X, then 

X(O(D» = deg D + X(O) 

Proof. Induction on degree of divisor. 1) H D = 0, then O(D) = 0 and the 
statement is obvious. 
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2) Let the formula hold for divisor D and let P E X. Consider P as a 
subvariety in X. Its structure sheaf is the "skyscraper" -sheaf K = /C p concentrated 
in the point P and zero outside it. Its sheaf of ideals is the sheaf O(-P). One has 
the short exact sequence of sheaves 

0-+ O(-P) -+ 0 -+ /Cp -+ 0 

which, after tensoring with locally free sheaf O(D + P) of rank 1, gives the exact 
sequence 

0-+ O(-P) ® O(D + P) -+ 0 ® O(D + P) -+ /Cp ® O(D + P) -+ 0 

or 
0-+ O(D) -+ O(D + P).-+ /Cp -+ 0 

Since the Euler characteristic is additive on exact sequences, and X(/Cp) = 1, one 
obtains X(O(D + P» = X(O(D» + 1 which proves the inductive step. 

How to deduce the previous statement of the lliemann-Roch theorem from 
this one? Since it is a curve case, the Euler characteristic contains only two terms 

x(O) = hO(O) - hl(O) = dimHO(X, 0) - dim Hl(X, 0) = 1-Pa(X) = 1- 9 

X(O(D» = hO(O(D» - hl(O(D» = I(D) - dim HI (O(D» 

The last term, introduced by Roch, could be interpreted in the following way. From 
Serre's duality theorem, one has 

Hl(X, O(D» ~ Hom(O(D),w) ~ Hom(O,w ® O(D)*) 

= HO(X,w ® O(D)*) = HO (X, O(K - D» 

where K is the canonical divisor, which corresponds to the canonical sheaf of differ
ential forms w. Now hl(O(D» = hO(O(K -D» = I(K -D) and the lliemann-Roch 
formula for curves takes its previous form: . 

• I(D) -1(K - D) = degD + 1- 9 

18. Applications of Riemann-Roch theorem for curves 

From the lliemann-Roch theorem on nonsingular projective curves one could 
directly derive important corollaries on degree of canonical divisor, curves of genus 
o and 1, and other. . 

Application 1. Put D = K, then I(K) -l(O) = degK - 9 + 1. Since, 
according to definition of canonical divisor, l(K) = 9, and since 1(0) = 1 one 
obtains that the degree of the canonical divisor is deg K = 29 - 2. 
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Application 2. IT divisor D has a sufficiently high degree, or more precisely 
if degD > 2g - 2 = degK, then deg(K - D) < 0 and I(K - D) = O. Therefore, 
l(D) = deg D + 1 - g. 

Application 3. Let X be a projective curve of genus 0 and D = P E X one 
point. Then 

I(D) = degD + 1- 9 + I(K - D) = 2 + I(K - D) ~ 2 

This means that the vector space L(D) contains a nonconstant rational function 
f with a pole of mUltiplicity 1 in the point P, that is, (J)oo = P. This function 
defines a rational mapping f : X -+ pI of degree 1. From this one could show that 
f is an isomorphism, that is, all curves of genus 0 are rational. 

Application 4. Let X be a nonsingular projective curve of genus 1, P E X 
its point and D = nP. Then deg K = 0 and for all n > 0 one has deg( K - nP) < 0 
and hO(K - nP) = O. ThereforehO(nP) = degnP - 9 + 1 = n. There is a sequence 
of vector spaces F>(O(P» c HO(O(2P» c ... C HO(O(nP» C ... of strictly 
increasing dimension 1 < 2 < 3 < ... < n < ... Rational functions in HO(O(nP)) 
do have a pole in P of multiplicity at most n. Particularly, for n = 2 one has 
dimHO(O(2P)) = 2 and this vector space has a \>asis {1,x}. Complete it to the 
basis {1,x,y} of HO(O(3P)). The seven functions 1, x, y, x 2, xy, x3, y2 must be 
linearly dependent in the six-dimensional space HO (O( 6P)). Each of them has only 
one pole in P, of multiplicity at most 0, 2, 3, 4, 5, 6, 6 respectively. One concludes 
that the coefficients in y2 and x 3 should be different from zero. By homothety with 
respect to x and y one could transform these coefficients to get 1, so the linear 
combination has the form y2 + aIXY + a2Y = x3 + bIx2 + ~x + b3. At last, by 
change y + HalX + a2) t-+ y (adding to a complete square) it could be transformed 
to the canonical form 

y2 = x3 + CIX
2 + C2 X + C3 

We obta.ined the canonical equation of nonsingular projective curve of genus 1. 
As we already know, X is nonsingular {:} the right-hand-side polynomial has only 
simple roots. We conclude that every nonsingular projective algebraic curve of 
genus 1 is a plane curve defined by such equation in P2. 

-
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Introduction 

M. Sato ([27], [28]) introduced a new class of generalized functions, called 
hyperfunctions, as the n-th derived sheaf of the sheaf of holomorphic functions. He 
left without proof many details in these papers. To this day, subsequent papers of 
mathematicians, especially Japanese, completed these "gaps" ([3], [10], [13], [15], 
[18], [20], [30]). 

Hyperfunctions have many important properties which are indispensable for 
an exquisite theory of partial differential equations, microfunctions, micro-local 
analysis, Fourier transform (cf. [13]). They became a major tool of several areas of 
analysis and applications. 

The set of hyperfunctions forms a flabby sheaf on Rn [20]. S~wartz's space 
D'(O) (0 is an open set in Rn) of distributions and the dual space of Gevrey class 
of functions on 0 are naturally contained in the space B(O), ofhyperfunctions on 0 
(cf. [13]). For the relations between hyperfunctions and other generalized functions 
we refer to [4], [5], [19], [22] and [23]. 

Since Sato's theory utilizes the most advanced concept of sheaf cohomologies, 
it is not so popular as Schwartz distributions or Beurling and Rollmieu ultradistri
butions. Also, there are a lot of introductory books on different types of generalized 
functions, but very few on Sato hyperfunctions. However there is a number of dif
ferent approaches to hyperfunctions. Some of them are based on the same idea as 
Schwartz's distributions. Martineau [13] started with the space A'(Rn) of analytic 
functionals carried by compact subsets of Rn. For any open set 0 eRn the space 
of hyperfunctions on 0 is defined so that its elements are locally equal to those in 
A'(Rn). A topology of hyperfunctions, has many exceptional features. (see also 
[1], [4], [13]). In the book [6] !mai introduced hyperfunctions from the viewpoint 
of applied mathematics. 

In 1988 appeared Kaneko's book [7] (English edition) which is intended to 
be the first easily accessible introduction to Sato's hyperfunctions. Kaneko defines 
hyperfunctions using boundary value .representation ("intuitive" method). Such an 
approach has been used from the very beginning only as an ·illustration. But after 
progress in the theory of Radon transform this approach has claimed its own place 
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in the foundation of hyperfunctions as a precise mathematical theory. The first 
rigorous proofs in this sense have beel) given by Morimoto [20]. There exist many 
papers on this subject. Kaneko's book is the first monograph with a systematic 
elaborated theory of hyperfunctions defined by boundary value representation. . 

Our aim is to draw attention, especially of young mathematicians, to hyper
functions and to Kaneko's book which is the main reference in this text and can be 
the next step to make acquaintance of hyperfunction. 

1. PRELIMINARIES 

We repeat some standard part of the theory of sheaves and sheaf cohomology 
we need to introduce hyperfunctions. For this part one can consult any book on 
algebraic analysis and sheaves theory, for example [10]. 

1.1. Notation and notions 

By X we denote a topological space and by S a locally closed set in X. S is 
"'locally closed set in X if it can be written as the intersection of an open and an 
closed set in X. Thus there exists an open set U C X containing S as relatively 
closed subset. In R every interval is locally closed. 

A cone in Rn will be denoted by r or by~; pr r = {x E r; IIxll = I}; r' cc r 
means that prfl C intrj rO = {e = (6,.·· ,en) E Rn;~ex = elXl, ... ,enxn ~ 0 
for every x = (Xl, ... ,xn ) E r} is called the "'dual cone to r. 

{Fo. j a EA} is a "'locally finite family of subset of F if for every x E F and 
every neighbourhood Vex) of x. Vex) n Fo. =J. 0 only for a finite number a E A. 

E = €Bo.EA Eo. is the "'direct sum of vector spaces Eo., a E A, if every x E E 
can be given in a unique way as the finite sum Exo., Xo. E Eo.. 

Let U = {U c X; U :J A} be the set of open sets containing A C X. To 
each U E U there is associated a C-vector space Eu and to each pair U, V, E U, 
U :J V, there is associated a C-linear mapping pv,u : Eu -+ Ev (restriction) in 
such a way that: i) puu = id; ii) pwu = pwv 0 pvu, whenever U :J V :J W. Then 
{Eu; U E U} is an "'inductive system of C-vector spaces. Let E = UUEU Eu (U 
is formed by taking the union of Eu's regarding the Eu's as mutually unrelated). 
Introduce an equivalence relation", in E as follows: F '" G (F E Eu, G E Ev) 
means that pwuF = pwvG in Ew for some W C Un V. The "'inductive limit is 

li~ Eu = El "'. 
UEU 

. 

Tere exists a natural mapping Pu : Eu -+ li~ Et!. 
UEU 

Example. Let 0 be an open set in R and U an open set in C, a neighbourhood 
of 0 in C. By O(U) is denoted the set of holomorphic functions on U. Then 
A(O) = li~ O(U) is the set of "'real analytic functions on O. 

u~o 
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1.2. Presheaves and sheaves 

We say that a *presheafF of C-vector spaces on X is given if: i) to each open 
set V C X there is associated a C-vector space F(V) and ii) to each pair (V, W), 
V :::> W, there is associated a C-linear mapping pw,v : F(V) -+ F(W) such that: 
a) pvv = id; b) pzwopwv = pzv, Z eVe W. Every element f ofF(V) is called 
a *section of F on U. We also write pwv(f) = fl w (*restriction of f E F(V) on 
W,W CV). 

A presheaf F is a *sheaf on X if for any open covering {U). : A E A} of an 
open set V C X we have the following properties: iii) if f E F(V) andflu.\ = 0 
for every U)., A E A, then f '1 0 (0 is the zero element of F(V)); iv) ,for a family 
{hi A EA}; h E F(U).), such that f).lu.\nu., = f,., I u.\ nu., , u).nu,.,:f. 0, there exists 
f E F(V) which has the property flu.\ = f)., AEA. 

A c V is the *S1J.pport of f E F(V) if V \ A is the largest open set contained 
in V on which f is zero. 

Remark. Usually presheaves and sheaves are defined for Abelian groups with 
Pwv Abelian group homomorphism. 

Examples L The sheaf 0 of holomorphic functions on cn; to each open set 
Vc cn there is associated O(V). 

2. The presheaf Ll on R (Lebesgue integrable functions). Ll is not a sheaf 
because iii) is not satisfied. Let U). = (-A, A) an.d h = 1 for A E Rt.. We can not 
find an fELl (R) such that flu.\ = 1 for every A E Rt.-

• 

3. The sheaf A of real analytic functions on Rn. 
Let F and G be two (pre)sheaves on X. A family h =. {hv} of C-linear 

mappings, hv : F(V) -+ G(V) is *a (pre)sheaf homomorphism if the following 
diagram commutes: . 

F(V) hv) G(V) 

F(W) ) G(W) 
hw 

Sheaf homomorphisms do not enlarge the support of a section. 
The linear differential operator with real analytic coefficients is a homomor

phism of the sheaf A of real analytic functions. 
F is said to be a *s1J.bsheaf of the sheaf G if for every open set V C X there is 

associated the inclusion iv : F(V) -+ G(V) such that i = {iv} constitutes a sheaf 
homomorphism. We write in short F C G. 

The restriction of the sheaf F to the open set V C X is the sheaf defined by: 
W -+ F(W) for every open set W C V; we denote it by F/v (attention, F/v is a 
sheaf and F(V) is a vector space). 

A sheaf F on X is *ftabby if for every open set V C X, PVX : F(X) -+ F(V) 
is surjective. 



76 B. Stankovic 

Proposition 1.1. If F is flabby, then for every pair of open sets (U, V), 
U ::> V, the restriction pvu : F(U) ~ F(V) is surjective. 

Proof. For a given v E F(V) there exists x E F(X) such that pvx(x) = Vj let 
pux(x) = u, then v = pvx(x) = pvu 0 pux(x) = pvu(u), where u E F(U). 0 

Let S be a locally closed set in X and U an open neighbourhood of it contain
ing S as a relatively closed subset. Denote by rs(X,F) = {s E F(U)j supps CS}, 
where F is a sheaf on X. 

Proposition 1.2. The definition of the C-vector space rs(X,F) does not 
depend on the choice of U. 

Proof. Let Ut and U2 be two such open neighbourhoods of S. Then Ut n U2 
is again such an open neighbourhood of S. Hence, it suffices to show that the 

. . 

restriction 

i: {s E F(Ut)j supps C S} ~ {s E F(U2 )jsUPPS C S} 

is an isomorphism when Ut ::> U2. But this is obvious because if s E F(U2), 
supp s C S C U2 C Ul , then s can be extended to 

s' E F(Ut), S'IU2 = S, S'lUl \U2 = O. 0 

A direct consequence of Proposition 1.2 is 

Proposition 1.3. ru(X,F) = F(U); rs(X, F) = rs(U,Flu), whereS is 
relatively closed subset of the open set U; if S is closed, then rs(X,F) = {s E 
F(X),supps CS}. 

Proposition 1.4. Let V be an open set in X and§ a locally closed set in X. 
The correspondence V ~ rsnv(X, F) constitutes a sheaf on X denoted by Ts(F). 
It may also be regarded as a sheaf on S. , 

Proof. It is obvious that Ts(F) is a presheaf. Also iii) and iv) follow from 
the fact that F is a sheaf. 

• 

Taking S as a topological space with the topology induced by X, then 
Ts(F)(V) = rsnv(X, F) and V ~ Ts(F)(V), VnS =I- 0, where V is any open set 
in X, defines a sheaf on S. 0 

Remark. If U is an open set in X, then Tu(F) = Flu and Ts(F)(X) = 
rs(X,F). 

Proposition 1.5. IfF is flabby, then Ts(F) is flabby, as well. 

Proof. Let U be an open set in X containing S as a relatively closed subset. 
We will prove that for any open set V C X, V nS is relatively closed subset of V nU. 
By definition of a locally closed set we have S = Os n Zs, where Os is an open set 
in X and Zs is a closed set in X. Then SnV = (Zs nOs) n V = Zs n (Os n V) . 

• 

Hence, S n V is locally closed in X. 

• 

- _ ... 
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To prove that S n V is relatively closed in V n U take an x E V n U and 
x f/. S n V. Since S is a relatively closed in U, there exists an open set 0 3 x, 
o C U such that S nO = 0. The open set 0 n V 3 x and 0 n Vc Un V. Also, 

(OnV)n(Vns)=(onV)ns=(OnS)nv=0. 

Consequently S n V is relatively closed in V nU. 
By Proposition 1.2, Ts(F)(V) = rsnv(X,F) = {s E F(V n U)j supps c 

S n V}. Therefore, for s E Ts(F)(V), sl(u\s)n(unv) = O. By Proposition 1.1 
there exists an Si E F((U \ S) u (U n V)) such that s'lu\s = 0, s'lvnu = s. By 
the same Proposition, Si can be extended to s = F(U), slu\s = O. Consequently 
sE rs(X, F) = Ts(F)(X). 0 

Let F be a (pre)sheaf on the topological space X.For an x E X and any 
open neighbourhood V of x, 

F z = li~ F(V), 
zEV 

is called the "'stalk of F at x. An element of F z is called "'a genn of sections of 
F at x. A germ consists of local sections of F, defined in a: neighbourhood of x, 
which coincide on a smaller neighbourhood of x. A section s E F(V) defines a germ 
Sz E F z at every point x E V. 

Proposition 1.6. If F is a sheaf and s E F(V), then s = 0 if and only if 
Sz = 0 for all x E V. 

The proof is a direct consequence of the definition of a sheaf (see property 
iii)). 

Attention. Make a distinction of Sz and s(x)j Sz = 0 means that s(y) = 0 for 
y belonging to a neighbourhood of x. 

For a presheaf F on X and for every open set V C X we construct the vector 
space F(V) = {s: V -t UzEv F z, such that for each x E V there exists an open 
set W C V, W 3 x and t E F(W), with the property that s(y) = t(y) for every 
YEW}. ' 

Proposition 1.7. Let-V be any open set in X. The correspondence: V -t 
F(V) with canonical restriction gives a sheaf on X and Fz = F z. 

Proof. It is obvious that F is a presheaf. First the verification of iii). Let 
{U~} be an open covering of the open set V C X and let s E F(V), slu). = O. 
There exists an open set W, x EWe U~, and t E F(W) such that s(y) = t(y) = 0 
for every yEW, It follows that s(x) = 0 as an element of F z for every x E U~ and 
for every U~ E {U~}. By definition of s, s = O. 

~ -
Verification of iv). Given {s~}, s~ E F(U~) with the property s~lu).nu" = 

slll u).nu", where U~ n Ull -::j:. 0. We construct s E F(V) such that slu). = s~ in the, 
following way: if x E V, then there exists U~, x E U~j now s(x) = s~(x). 

At the end we prove that Fz = F z (These two spaces are isomorphic). Let _ 
Sz E Fz , then Sz is given by an element f E F(V), where V is an open set conta.ining 

• 
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x. We can take a smaller open set W :3 x such that tJw = t E F(W). Then t 
-

determines an element of F z. Hence we constructed a mapping F z -+ F z. By the 
construction, it is surjective and an isomorphism. 0 

The constructed sheaf F is called *the sheaf associated with the presheaf F. 

Example. Let X = R and V be an open set in R. By V -+ L1 (V) is 
defined the presheaf of Lebesgue integrable functions. This is not a sheaf. The 
sheaf associated with- this presheaf is the *sheaf of locally integrable functions on 
R : V -+ Lloc(V). 

Let G be a fixed vector space associated to every open set V C X, V -+ 
F(V) = G. Take the identity mapping of G as the restriction. Then V -+ G defines 
a presheaf F on X. It is not a sheaf in general. The property iv) is not always 
satisfied. Suppose that V is not connected, namely that V = U1 U U2 where U1 and 
U2 are open set and U1nU2 = O. Let 91 E F(U1 ) = G and 92 E F(U2) = G, 91'" 92. 
We can not find a 9 E F(V) = G such that 91ul = 91 and 91u2 = 92. 

The sheaf associated to this presheaf F is called the *constant sheaf G x . The 
difference between F(V) and F(V) appears when V is not connected. _ 

IT G = {O}, Gx is a sheaf for each Xj it is denoted by O. 

Given a sheaf G on X and its subsheaf F. The correspondence: V -+ 
G(V)/F(V) (the quotient space) for open sets V C X gives a presheaf on X 
(property iv) is not always satisfied). The sheaf associated with this presheaf is 
called the *quotient sheaf of G by F and denoted by G/F. 

Let h : F -+ G be a sheaf homomorphism and V an open set in X. V-+ 
ker hv determines a subsheaf of F denoted by Ker h (kernel of h). We shall prove 
that Ker h is a sheaf. 

ker hv = {f E F(V)j hv(J) = O} is a vector space. With restrictions 
pwv, W C V, V -+ kerhv is a presheaf. Property ill). Let {U~} be an open 
covering of the open set V and f E kerhv, flu" = 0, U~ E {U~}. Since F is a 
sheaf, f = 0 on V and 0 E kerhv. Property.iv). With the same open covering 
{U~} of V let f~ E ker hu" = {f E F(U~)j hu" (J) = O}. IT U~ n U" "'0, tqen by 
supposition, f~ = f" on U~ nu". Since F is a sheaf, there exists f E F(V) such 
that flu" = f~. By the property of the sheaf homomorphism we have 

P~ v 0 hv(J) = hu" 0 p! ,v (J) = hu" (J~) = O. " . " 
Hence, hv(J)lu" = O. Since G is also a sheaf, hv(f) = 0 and J E kerhv. 

The correspondence: . V -+ im hv for an open set V C X defines a presheaf . 
• 

The sheaf associated with it is denoted by Imh (image of h). . 

Example. Consider the sheaf homomorphism ! : 0 -+ 0, where 0 is the 

sheaf of holomorphic functions on C. Ker ! is the constant sheaf Cc. The image 

of (d~) v : O(V) -+ O(V)i wher: V is an open set in C, consists of all functions 

• 

-----

• 



f whose contour integrals around any "hole" in V, if such a "hole" exists in V, are 
all zero because in this case 

II! 

F(z) = 
d 

f(~)df. E O(V) and dz F(z) = f(z), 

where z,Zo E V. The sheaf associated with the presheaf: V -tim (!)v(V) is 0 

(Im!=O). 
The presheaf homomorphism h : F -t G induces the C-linear mapping hz : 

F z -t Gz in the following way: Fz 3 Sz h_. (hv(s»z, where sE sz, s E F(V), 
V 3 x. We have to prove that this definition does not depend on the chosen 
representative of Sz and the open set VeX. Let t E sz, t E F(W), W 3 x. By _ 
definition of Sz there exists Z C V n W such that t(y) = s(y), Y E Z, or 

p~w(t) :;: p~v(s). 

By the property of homomorphism h we have: 

pC;v 0 hv(s) = hz 0 p~v(s) = hz 0 p~w(t) = pC;w 0 hw(t). 

Hence, hv(s)(y) = hw(t)(y), Y E Z and (hv(s»z = (hw(t»z. 
. , 

Proposition 1.8. (Imh)z = im hz • , 

Proof. DenotEl by H the presheaf V -t im hv, where V is any open set in 
X. Then by Proposition 1.7, (Imh)z = Hz for every x E X. By definition of hz , 

Hz = im hz because of Hz = li~ im hv. 0 
V3z 

Proposition 1.9. HF and G are two sheaves and Fe G, then F = G is 
equivalent to F z = G z for all x E x. 

Proof. Denote by i = (iv)- inclusion: F -t G. If F z = G z, then iz is 
surjective. We have to prove that iv issurjective for every open set VeX. 
Suppose that ~ E G(V), then ~ E ~z E G z, x E V. There exists Sz E F z such 
that Sz = ~z. Consequently, there exists SZ E F(Wz), Wz 3 x, Wz cV sich that 
~(y) = SZ(y), Y E WZ. The family of open sets {Wzj x E V} is an open covering 
of V. By property iv) there exists f E F(V) such that flw. := SZ for every x E V. 
Consequently, f = e on V. If F = G it is clear that F z = Gz for every x E X. 
o 

• 

1.3. Sheaf cohomology 

Let F h. G le. H be a sequence of sheaf homomorphisms where F, G, H 
are sheaves on X. This *sequence is said to be *exact at G if Imh = Kerk. (For 

short, *exact sequence).. In particula,;r, 0 -t G le. H is exact at G if and only if k 

is injectivej F h • ,G -t 0 is exact at G if and only if h is surjective . 

• 
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The same definition is for the exact sequence of vector spaces. . 

Proposition 1.10 .. The sequence F h) G k) H is exact at G if and only if 
the sequence of vector spaces. F '" h8) G", k8) H", is exact at G", for every x E x. 

Proof. According to propositions 1.8 and 1.9 the following three assertions are 
equivalent: Imh = Kerkj (Imh)", = (Kerk)",j imh", = kerk", for every x E X. 
o 

IT F h) G k) H is exact, then the sequence of vector spaces 

F(V) hv) G(V) kv) H(V) 

is not necessarily exact «Imh}v has not to be equal to imhv). But if the above 
sequence of vector spaces is exact at G(V) for all open sets V which constitute a 

fundamental system of neighbourhood of x, then F '" h_) G", k8) H", is exact in 
G",. 

. 

Proposition 1.11. Let F, F' and F" be sheaves on X, S be locally closed 
in X and V be an open set in X. 

h' h 
a) If 0 ) F' ) F ) F" is an exact sequence at F' and F, then the 

following sequences of vector spaces are exact 

(1) 0 ~ F'(V) h~) F(V) hv) F"(V)j 

(2) 0 ~ rs(X,F') ~ rs(X,F) ~ rs(X,F"). 

b) If 0 ~ F' h') F h) F" ~ 0 is an exact sequence and if further F' is 
flabby, then the following sequences of vector spaces are exact 

I ' 

(3) 0 ~ F'(V) hv) F(V) hv) F"(V) ~ OJ 

(4) 0 ~ rs(X,F') ~ rs(X, F) ~ rs(X,F") ~ o. 
, 

Proof. a) (1) First we shall show that h\,- is injective. Suppose that s' E F'(V} 
and h\,-(s'} = o. The injectivity of h' implies that h~(s~) = 0 (cf. Proposition 1.1O) 
for every x E V. Thus there exists a neighbourhood W", C V of x such that 
s'lw. = o. In such a way we constructed an open covering {W",j x E V} of V. By 
property iii}, s' = o. Therefore h\,- is injective. . 

Next we will prove that imh\,- C kerhv. Since by Proposition 1.10, (h", 0 

h~)(s~) = 0 for s' E F(V} and for each x E V, one can find a neighbourhood W(x} 
of x such that (hv oh\,- )(s')lw(",) = O. Since F" is a sheaf, by property iii) it follows 
that (hv 0 h\,-}(s') = O. Consequently, imh\,- C kerhv. 

It remains to prove that imh\,- :J kerhv. Let s E F(V} such that hv(s} = O. 
Then for each x E V, h",(s",) = 0 holds. By the exactness of the sequence in F '" 
there exists s~ E F'", such that h~(s~) = s"'. This implies that hw (s"'}lw. = slw. 

• • • 

for an open set W", 3 x, W", C V, and s'" E F'(W",), s'" E s~. Since hw. is injective, 
s'" is unique. Therefore we have s"'lw.nw" = slllw.nw". By property iv}, there 
exists s" E F'(V) such that s~. = s"'lw. for every x E V. Thus h\,-s" = s and 
kerhv C imh\,-. 
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a)(2) Let S be relatively closed in the open set U. It is only to be shown that 
supp 8" C S provided that supp 8 CS, where 8 and 8" are as in the above. 

Note that h~\S(8"lv\s) = 0 and that hhs is injective. Therefore 8hs = 0 
and supp s" C S. 

In b) it suffices to show that hv is surjective. We omit this proof. One can 
find it in [10, Proposition 1.1.2]. 0 

• 
h' h 

Corollary 1.1. Let 0 ~ F' ) F ) F" ~ 0 be an exact sequence of 
sheaves on a topological space X. H F', F are flabby, then F" is also flabby. 

Proof. Since F' is flabby, by Proposition l.11b) each row of the following 
commutative diagram is exact 

o ---t ) F'(X) 
h' x ) F(X) hx ) F"(X) ---t) 0 

p~xl pvx 1 p~xl 

o ---t ) F'(V) 
h' v ) F(V) hv ) F"(V) ---t) 0 

Thus hv is surjective. Because of the flabbiness of F, pvx is also surjective. Let 
s" E F"(V), then'there exists an element s E F(X) such that hv 0 pvx(s) = s". 
By the commutativity of the above diagram, s" = Pvx 0 hx(s)j hx(s) E F"(X) is 
the desired extension of s". Hence F" is flabby. 0 

hO 'h1 hP 
Corollary 1.2. Let 0 ~ FO ) Fl ) ... ~ F r ) G ~ 0 be an exact 

sequence of sheaves on X. H Fi, 0 $ j $ 'r are all flabby, then G is also flabby. 
Furthermore, the following sequences are exact 

hO hP o ~ FO(V) v) ••• ~ Fr(V) v) G(V) ~ 0, 

o ~ rs(X,FO) ~ ... ~ rs(x,Fr) ~ rs(X,G) ~ O. 

Prool The given long exact sequence can be decomposed into slanted short 
• 

exact sequences as follows: 

o 
~ 

o 
/" 

o 
/" 

h'/ 
o ~ FO hO) Fl h

1 
F2 h

2 
Fa ---'- F r ---'---t) ) ~ ... -r-r 

/" 
o 

h?/' 
GO 

h2~.l"i /" 
G 2 G r - 1 

/" ~ /" 
o 0 0 

G 

o 
/" 



\..JOrollary 1.1 to tne Slantea exact sequences succeSSivelY !rom tne len, we can see 
that every Gi, j = 0,1, ... , r - 1, and G are flabby. Applying Proposition 1.11b) 
the corresponding short sequences of vector spaces 

o -t Gi-1 (V) -t Fi (V) -t Gi (V) -t 0, j = 1, ... , r, 

are all exact. Combining these short sequences into one in the reversed procedure 
of that applied above, we obtain the first long exact sequence of vector spaces. 

For the second long sequence of vector spaces we have only to take care of 
the support of sections. 0 

• 

Let F be a sheaf on X. A *flabby resolution of F is an exact sequence 

with flabby sheaves I), j = 0, 1, .... The smallest integer r such that I) = 0, j > r 
(if it exists) is called *the length of this resolution. The minimum of the lengths of 
all flabby resolutions of F is called *the flabby dimension of F, denoted by fl dim F. 
Flabby dimension measures, roughly speaking, how far the sheaf F is distant from 
flabbiness. 

• 

IT F is flabby, then r = 0 since 0 -t F ') F -t 0 is an exact sequence 
(LO = F). 

Proposition 1.12. Every sheaf possesses a flabby resolution. 

Proof. For a sheaf F on X, we first construct a flabby sheaf CO(F) such that 

o -t F i) CO(F) is exact. Let CO(F) be the sheaf constructed in the following 
way. Let V be an open set in X. To V it corresponds the vector space 

. 

CO(F)(V) = { SO : V -t U F:t: such that SO,(x) E F:t: }. 
:t:EV 

IT s E F(V), then s defines an element SO E CO(F) where SO(x) = S:t: E F:t:. Thus, 
inclusion i : F -t CO(F) is a sheaf homomorphism. 

The property that CO(F) is flabby is obvious. In this way we constructed 
• o -t F ') CO(F). 

Next, for the quotient sheaf CO(F)jF we construct CO(CO(F)jF) in the same 
way as above and denote it by C1(F). Now we construct the following commutative 
diagram 



, 

, 
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o 

0-+ F 

F 

o 
• 

The sequence 0 -+ F '~ CO(F) is exact because Keri = {O}. The two slanted 
. • le 

sequences: 0 -+ CO(F)/F -+ Cl(F) and 0 -+ F ') CO(F) ~ CO(F)/F are also 

exact. Hence, Kerp = Ker (il 0 k) = Imi and 0 -+ F i ~ CO(F) p) Cl(F) is 
exact. 

H we continue the same procedure, then we obtain a flabby resolution of F 
given by the flabby sheaves d (F), i = 0,1, ... The constructed resolution is called 
the *canonical flabby resolution. 0 

Let {Kn} be a sequence of C-vector spaces and {dn} be a sequence of C
linear mappings, dn : Kn -+ Kn+l such that ~ 0 ~-l = 0, n E N. Then the 
sequence of pairs {(Kn, ~); n E N} is called *a cochain complex of C-vector spaces 
and is denoted by KO or (Ko, dO). An element of Kn is called *an n-cochain. By 
definition, im~-l C ker~, nE N. 

An element of ker ~ is called *an n-cocycle; an element of im ~-l is called 
*an n-coboundary. The quotient space ker ~ / im ~-l is said to be *the cohomology 
of degree n of the complex (Ko, dO) ~hich is denoted by Hn(Ko). Hn (Ko) is a vector 
space, but according to the traditional terminology (which started with a sequence 
{Kn} of Abelian groups it is called sometimes the n-th *cohomology group. 

If Hn(Ko) = 0, then the sequence {Kn} is exact at the term Kn. Hence, 
cohomologies provide the concept for measuring the non-exactness of a se~uence of 
vector spaces. 

Let F be a sheaf on X and {Ci (F)} be the sequence of flabby sheaves from 
the canonical flabby resolution. Denote by rs(X, CO (F» the complex of spaces 
{rs(X,Ci(F», i=O,l, ... }. 

The sequence of vector spaces 

is not necessarily exact. The cohomology of degree n of the complex r s(X, CO (F» 
we denote by H~(X, F) = Hn(r s(X, CO (F))) and call it *the n-th relative (local) 

• 
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cohomology of the pair (X, X \ S) with coefficients in F having support in S. IT S 
is an open set U in X, then we denote it by Hn(u, F) = Hn(r(U, C· (F))) and call 
it *the n-th absolute (global) cohomology of the open set U with coefficients in F. 

Note that Hs(X,F) can be defined by any flabby resolution of F (cf. [7, 
Theorem 1.1.1]). 

Proposition 1.13. For a sheafF, H~(X,F) = rs(X, F). IfF is flabby, then 
Hs(X,F) = 0, n ~ 1. 

Proof. By Proposition l.11a)(2) the sequence of vector spaces 

o -t rs(X,F) -t rs(X,CO(F)) do) rs(X,C1 (F)) 

is exact. Hence, by the definition of the O-th cohomology, H~(X, F) = Ker dJ = 
rs(X,F). 

. 

For the second part of the assertion, let us suppose that F is flabby. Cut the 
canonical flabby resolution to a bounded sequence 

o -t F -t CO(F) do) C1(F) -t ... dn
) c n +1(F) r+; Imer'+1 -t O. 

By Corollary 1.2 after Proposition 1.11 the last term (Imer'+1) is also flabby and 

o -t rs(X,F) -t rS(X,CO(F)) do) rS(X,C1 (F)) d 1
) ... d

n
) rs(X,Cn +1(F)) 

is exact. It follows that Hs(X, F) = 0, n ~ 1. D 

The *n-th derived sheaf Hs(F) of F is the sheaf associated with the following 
presheaf: V -t Hsnv(X,F). As we noted in Proposition 1.4 this presheaf Can be 
regarded as the presheaf S n V -t Hsnv (X, F) and Hs(F) can be considered as a 
sheaf on S. 

Since S is a locally closed set in X, there exists an open set U C X containing 
S as relatively closed subset. Then Hs(X, F) = Hs(U, Flu) and Hs(X, F) = 
Hs(U, F) (cf. Proposition 1.2). 

A closed set S in X is called *purely m-codimensional with respect to a sheaf 
• 

F if H~(F) = 0 for all j '" ni. 

Proposition 1.14 •. (Sato's theorem). Rn C cn is purely n-cqdimensional 
relative to the·sheafO. 

Sato's theorem gives a cohomological property of holomorphic functions. We 
omit the proof. A discussion of this theorem and its proof can be find in [7, Part 
11, Chapter 6, §5]. 

We have seen that: V -t Hsnv(F) is only a presheaf. The next proposition 
gives a sufficient condition that such a presheaf is also a sheaf. First we shall discuss 
the case n = 0 and cite a lemma. 

Since H~(X,F) = rs(X,F) (Proposition 1.13) and V -t rsnv(X,F) is the 
sheaf Ts(F) (Proposition 1.4), V -t H~nv(X, F) defines always a sheaf. 
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Lemma 1.1. Let 0 -+ F -+ LO -+ Ll -+ ... be a Babby resolution ofF and 
Ts(Lo) tbe correspondent sequence of sbeaves Ts(Li), j = 0, 1, ... : 

Ts(Lo): 0 -+ Ts(LO) tI'. Ts(Ll) ..:;d-+\ ... 

Tben H~(F) = KertJR/ImtJR-1. 

The proof is based on the inductive limit of the family of complexes and we 
omit it. (cf. [7, Lemma 5.2.8 and the remark after Definition 5.3.4]) . 

• 

Proposition 1.15. If H~(F) = 0 for 0 $ j $ n - 1, then tbe presbeaf: 
V -+ HHnv(V, F) is a sbeaf and bence H~(F)(V) = HHnv(V, F). 

Proof. By Lemma 1.1, the complex of sheaves Ts(L 0) given above 

is exact up to the (n -1)-st te¥m. Then 

0-+ Ts(Lo) tI'. Ts(Ll) d\ ... Ts(Ln- l ) 4"-,1 Imd"-l -+ 0 

is an exact sequence. By Proposition 1.5 every Ts(Li), j = 1, ... is flabby. By 
Corollary 1.2 the sheaf ImtJR-1 is also flabby and for any open set V C X 

0-+ rsnv(V, LO) 4, rsnv(V, Ll) ,d~) •.• -+rsnv(V, in-l) dv-,1 (Imd"-l )(V)-+O 

is exact. Now, we can construct the commutative diagram: 

, d--1 

rsnv(V;Ln:-l) v) rsnv(V,Ln ) 

£,,-1 
~ A 
(Im tJR-l )(V) 

?' '\, 
o 0 

From this diagram it followsthat (ImtJR-l)(V) = imdV-l. The sequence 

0-+ ImtJR-l -+ KertJR -+ H~(F) -+ 0 

is exact. Since ImtJR-1 is a flabby sheaf, by Proposition 1.11 b) (1), 

0-+ (ImtJR-1)(V) -+ (Kerd")(V) -+ H~(F)(V) -+ 0 

is exact. Consequently 

H~(F)(V) = (KertJR)/(ImtJR-1)(V) = kercrv/imd"y-l = HHnv(V, F). 0 
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1.4. Cech co homology 

Let F be a sheaf on a topological space X and U = {U~j A E A} be an 
open covering of X. Denote by q = (0'(0), ... ,O'(n)) a permutation of the set 
{O,I, ... ,n}. Denote by sgn b~o ... ~ .. the equivalence class related to the intersection 
U~o n ". n U~ .. as follows: Classify all the symbols b~o ... ~ .. into two sets by the 
relation: sgnb~o ... ~ .. = sgnq sgnb~ .. (O)"'~"(")' In particular, if in (Aa,,,. ,An) two 
elements are equal, then the expression sgn b~o ... ~ .. == O. 

Consider the set of formal expressions 

L sgnb~o"'~ .. CP~O ... ~n' CP~o ... ~ .. E F(U~ n ... n U~ .. ). 
(~o, ... ,~n)EAn+l 

for a fixed n E No and with the above convention on sgn b~O ... ~n' This set consti
tutes a C-vector space with the C-linear operations and it is denoted by Cn(U,F). 

We also define a subspace of Cn(U, F). Let S be a closed set in X and 
U' = {U~j A E A'}, A' c A, be an open covering of X \ S. Then by definition 

Cn(U mod U', F) = 

= { L sgn b~O ... ~n CP~O ... ~n E Cn(U, F)j CP~ ... ~ .. = 0 
(~o, ... ,~ .. )EA .. +l 

if (Aa,,,. ,An) E (A,)n+l}. 

FurthemlOre, let {6n } be a sequence of C-linear mappings which' map 
C"(U,F) -+ Cn+l(U,F) as follows: 

6
n

( L sgnb~o ... ~nCP~o ... ~n) 
(~o, ... '~n)EA"+1 

--

where 

CP~o ... ~ .. E F(U~o n ... n U~n) and 
. , 

CP~o ... ~ .. lu.\ == CP~o ... ~nlu.\ n ... nu.\ nu.\ E F(U~o n ... n U~ .. n U~ .. +J. ,,+1 0" ,,+1 

We shall prove that 6n +1 06n = 0, n = 0, 1,· ... 

6n
+1 06"( L . sgnho ... ~nCP~o ... ~ .. ) = 

(~o, ... ,~ .. )EAn+1 

--
, 

Because of /11, 'I = /1'1, 'I and sgnb, , , = TAO .. ·An U.\ nu.\ TAO .. ·A .. u.\ nu AO .. ·A .. +IAn+2 .. +1 .. +2 n+2 .\n+l 
- sgn b~0 ... ~n+2~"+1 the correspondent terms cancel each other in pairs. Conse
quently, 6n +l 06n = 0, n = 0, 1, ... 

• 

• 

, 
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It is clear that 6ft maps Cft (U mod U', F) into Cft+! (U mod U', F). In such a 
way we have two cochain complexes ofC-vector spaces, C" (U,F) = {Cft(U,F),6ft } 
and C"(U mod U',F) = {Cft(U mod U',F), 6ft }. Let us denote by Hft(U,F) = 
Hft(C"(U,F» and by Hft(U mod U',F) = Hft(C"(U mod U',F» and call them 
the n-th *(absolute) cohomology group 0/ the covering U with coefficients in F 
and the n-th *relative cohomology group 0/ the relative covering U mod U' with 
coefficients in F, respectively. 

We shall cite two theorems without proofs. 

Proposition 1.16. (Leray's theorem). Let X be a topological space and 
F C X be a closed set. Let V = {V~, A EA} be a covering of X and suppose that 
its part V' = {V~; A E A'}, A' c A, is a covering of X \ F. Then, for a sheafF on 

. X, there exist CAnonical mappings as follows: 

Cv : Hft(V mod V', F) -t H;(X, F). 

In addition, if Hft(V~ n ... n V~., F) = 0, n ~ 1, holds for any family of indices, 
then the above mappings are isomorphisms. (The covering {V~; A E A} satisfying 
this condition is called the Leray covering for the sheaf F). 

For the proof see for example [7, p. 268]. 
Before we cite the next theorem we shall recall some notions of complex 

analysis of several variables. 

A domain U c eft (an open and connected set in eft) is said to be *a domain 
of holomorphy if for every boundary point z E 8U there exists a function / E O(U) 
such that it cannot be analytically continued to any neighbourhood of z. An open 
set V C eft is called a *Stein open set if each connected component of it is a domain 
of holomorphy. The intersection of Stein open sets is also a Stein open set. 

Proposition 1.17. (Oka-Cartan-Serre theorem). Let V C eft be a Stein 
open set. Then Hft(V, 0) = 0, n ~ 1. 

For the proof see for example [7, pp. 307-308]. 

2. HYPERFUNCTIONS OF SEVERAL VARIABLES 

First we give a cohomological definition of the sheaf B of hyperfunctions 
following Sato's approach [28]. Secondly we pass to the "intuitive" definition and 
elaborate it following Kaneko's ideas and results [7]. 

2.1. Cohomological definitions of hyperfunctions 

Definition 2.1. (Sato). B = H~ .. (O) (regarded as a sheaf on R ft ). 

Proposition 2.1. Let n be an open set in Rft and let U be an open set 
in eft such that n = Rft n U and that n is relatiVely closed in U. Then B(n) = 
H8(U,0) = H8(eft , 0). 

, 

• 
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Proof. By Proposition 1.2, Ho(U,O) = HR (en ,0). Now by definition of 
HRft and by propositions 1.14 and 1.15 

B(fl) = HRft (O)(fl) = HRft (O)(U) = HRftnu(U, 0) = HR(U, 0). 0 

We can relate B(fl) with the n-th relative.cohomology group. . 

Let fl be an open set in Rn. By Grauert's theorem (cf. [7, p. 311]) there 
exists a Stein open set U c en such that fl = Rn n U and that fl is relatively 
closed in U. Denote by: 

Uj =un{z= (Z1, ... ,zn) E en; Imzj i'0}, j = 1, ... ,n; 

U = {U,U1,. .. ,Un}; U' = {U1, ... ,Un}j 

(2.1) U#fl = U1 n ... n Un = {z E U;Imzj i' 0, j = 1, ... ,n}j 
U#jfl = U1 n ... n Uj-1 n Uj +1 n ... n Un = 

={ZEUjImzki'0, k=I, ... ,j-l,j+l, ... ,n}. 

Proposition 2.2. Let fl be an open set in Rn and let U be a Stein open 
set in Cn such that fl = Rn n U and that fl is relatively closed in U. Then 
B(f!) ~ Hn(u mod U', O)(B(fl) is isomorphic to Hn(u mod U', 0», where the 
families of covering U and U' are as above. 

Proof. Let U be taken as a topological space and fl as the closed subset of 
U, then U is a covering of U and U' a covering of U \ fl. H U is a Stein open set, 
then Uj = Un {z E enjImZj i' O}, j = 1, ... ,n, is also a Stein open set because 
{z E C n ; ImZj i' O} is Stein. Also Ukl n ... nUk. for any set ofindices which belong 
to {I, ... , n} is Stein. By Proposition 1.17, Hn(Ukl n ... n Uk., 0) = 0, n ~ 1 for 
any set of indices which belong to {I, ... , n}. By Proposition 1.16 and Proposition 
2.1 

(2.2) Hn(u mod U', 0) ~ HR(u, 0) = B(fl). 

Corollary 2.1. Let fl, U, U and U' be as in Proposition 2.2; then 

• n 

B(fl) ~ O(U#fl) / L O(U#jfl). (2.3) 
j=1 

Proof. By Proposition 2.2, B(fl) = Hn(u mod U', 0). We have to construct 
Hn(u mod U', 0) when U, U and U' are given as in Proposition 2.2. 

A relative n-cochain is only of the form sgn bo ... n<po ... n, <PO •.. n E O(Uo n ... n 
Un) = 0(U1 n ... n Un), where Uo == U. This n-cochain is in the same time the 
n-cocycle. 

A relative (n - 1 )-cochain has the form 
n 

L sgn bO ••• j - 1 j+1. .. n!PO ... j-1 j+1...n, <PO ••• j-1j+1. .. n E O(U #jfl). 
j=1 



Its boundary is 

Hyperfunctions 

n . 

L( -1)j sgn bo ... nCPO ... j-1Hl. .. n' 

j=1 

Consequently (2.3) is true. 

Corollary 2.2. In one-dimensional case (2.3) has the form 

(2.4) B(n) ~ O(U \ n)/O(U). 

89 

Prool. In this case n = Rn U and U' consists of only one element U1 = {z E 
U, Imz :f:. a}. Then u#n = Ul = U \ nand U#ln = U. With this notation (2.3) 
gives (2.4). 0 

Consequently, in one-dimensional case, B(n) is given by the quotient space 
O(U \ n)/O(U). Every equivalence class [F], where, F E O(U \ n), is considered 
to be a hyperfunction I on n c R; the function F is called a *defining /unction 01 

I· 
In many-dimensional case we have the same situation. Every equivalence 

class [F] where F E O(U#n) is considered to be a hyperfunction / E B(n), where 
n is an open set belonging to Rn. F is called the *defining /unction of / and we 
write / = [Fj. 

Proposition 2.3. The sheafB is flabby. 

For the proof see [7, pp. 350-351]. 

/ E B(n) is said to be 0 on an open set n' C n if /101 = O. *The support of 
lE B(n) (for short supp f) is the complement in n of the largest open subset of 
n on which I equals zero. 

Between different operations on hyperfunctions we define some of them. De
note by n an open set in Rn. 

Let / = [F] and 9 = [G] be elements of B(n) and A,1] be two complex 
numbers. Then AI + 1]g = [AF + 1]G] E B(n); thus B(n) has a C-vector space 
structure. 

For a real analytic function cP E A(n) there exists an open set U C cn 
such that n C U and cP E O(U). Therefore we can define the multiplication by 
cp E A(n) : cpI = [cpFj, where I = [F] E B(n). 

• 

Every / = [Fj E B(n) has all derivatives. IT we adopt the abbreviation: D~ = 
Dr ... D~n, Dj = a/ox;. j = 1, ... ,n, then D~I = [D~Fj. Moreover, the linear 
partial differential operator with real analytic coefficients P(x, D) = :E aa(x)DO< 

lal$m 
acts as a sheaf homomorphism on the sheaf B, (Ial = al + ... + an). 

The sheaf A of real analytic functions: n -+ A(n) is a subsheaf of B. To 
• 

define this natural mapping A ~ B, let us start with an element cp E A(n) and let 
U be an open set in en such that cp is holomorphic on U. Introduce the function 
,p such that 

,p(z) = cp(z), z E (n + ir.,.); ,p(z) = 0, z E (U#n) \ (n + ir.,.) 
, 



• 

, 

90 B. Stankovic 

where r 0' is any orthant in Rn. Then the looked-for mapping i is: <p -+ [4>]. The 
defined mapping i does not depend on the chosen r 0'. 

*The singular support of lE B(O) (for short sing supp f) is the complement 
in 0 of the largest open set 0' cO such that 1101 is real analytic. 

The next proposition shows an important property of the sheaf B and also 
that many properties of this sheaf can be obtained from properties of the holomor
phic functions. 

Proposition 2.4. Let 0 be an open set in Rn. If 9 E B(O), then the equation 
(8j8xt}l(x) = g(x) admits a solution I E B(O) and every solution (8j8xdl(x) = 
o is a hyperfunction depending only on the variables (X2, ..• ,xn ). 

Proof. Since B is flabby, 9 can be extended to an element belonging to 
B(Rn). Thus we can take 0 = Rn and g EB(Rn). Let G be a defining function 
of g, G E o(cn#Rn). From the theory of hoiomorphic functions there exists 
a function F E o(cn#Rn) such that (8j8zt}F(z) = G(z). Then the sought 
hyperfunction is I = [F]. 

The second part of the proof is not so easy because the hyperfunction zero is 
n ' 

defined by any element of the vector space E O(U#jO). 
j=1 

• 
By the same reason as in the first part of the proof we can take 0 = {x E 

Rnj IXjl < q, j = 1, ... ,n}. Denote by U the convex open set in cn, U = 0 +iRn, 
and by F the defining function of I which satisfiys the equation (8j8xt}I(x) = o. 
Then F satisfies 

n 

(2.5) (8j8z1 )F(z) = LGj(z)lu#o, Gj E O(U#jO), j = 1, ... ,n. 
j=1 

By the same property of holomorphic functions, we used in the first part of the 
proof, there exist Hj E O(U#jO), j = 1, ... ,n, such that (8j8z1)Hj(z) = Gj(z), 
j = 1, ... , n, because U #jO is an open set in C n consisting of convex components. 
Consequently (2.5) has now the form 

n 

8 n 
8 (F(z) - L Hj(z)lu#o) = o. 

ZI . 1 
3= 

• 

It follows that F(z) - E Hj(z)lu#o E O(U#O) and depends on (Z2, ... ,zn) only. 
j=l 

Denote by r; the a-th orthant in Rn and by Vu = (0 + irO') n U, then 
U#O = UO' Vu. If by 0 1 is denoted the set 0 1 = {Ixjl < qj j = 2, ... , n}, then the 

n 
function F(z) - E Hj(z)lu#o can be continued to ({lxll < q}+iR) x (01 +ir;-l), 

j=l 
being constant in Zl. 

This shows that I is a hyperfunction which depends on (X2, ... , xn) only. 
o 
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A more general assertion can be proved. Let P(D) be a differential operator 
with constant coefficients of the elliptic type. Denote by A P = {u E Ai P(D)u = 
O} then 0 -+ AP -+ B P(~) B -+ 0 is a flabby resolution of AP [30]. 

Definition 2.2. An infinite-order differential operator 

J(D) = L baDa, (Ial = al + '" + an), 
lal~O 

with coefficients satisfying limlal-+oo l\Vbaa! = 0, is called a local operator with 
constant coefficients. 

By properties of holomorphic functions the series 

J(D)F = L baDa F, F E O(U) . 
lal~O 

converges locally uniformly in U. Hence a local operator is an endomorphism of 
the sheaf 0 and induces also an endomorphism of the sheaf B. 

Moreover, a hyperfunction f with support only at the origin is uniquely ex
pressible as 

f = J(D)6 = L ba Da 6, 
lal~O 

where J(D) is an appropriate local operator (see [7, p. 156]). 

2.2. Hyperfunctions defined by boundary value representation 

2.2.1. Definition and main properties. In the next definition of hyperfunc
tions we need the notion of infinitesimal wedge. 

Definition 2.3. Let 0 be an open set in Rn and r an open cone in Rn. An 
open set W C C n is called an infinitesimal wedge (for short Lw.) of type 0 + irO 
if it satisfies the following conditions: 

a) Wc O+iri 
b) For every proper subcone r', r' cc r and for every E > 0, there exists 6> 0 

such that W :J OE + i(r' n {Yi lIylI < 6}), where OE = {x E 0; d(x, ao) > E}; 0 is 
the edge of this i. w. 

There are infinitely many infinitesimal wedges of type O+irOj such an Lw. we 
denote by the same symbol O+irO or by O+iI. We also express by FE O(O+irO) 
the fact that F is holomorphic on one of such Lw. of type 0 + irO. 

Consider X(O) = $rO(O + irO), where r ranges over all open cones V in R. 
By the local Bochner theorem, if F is holomorphic on an i.w. 0 + iI of the type - -O+irO, then it is also holomorphic on O+iI, where I is the convex hull of I. Thus 
we can assume, without loss of generality, that every r is convex. 

X(O) is a C-vector space with the C-linear operation: .\ $:=1 Fi +11 EBj:l Gj 
= '\Fl $ ... $ .\Fn $11G1 $ ... $ 11Gm, where Fi E 0(0 + ir iO), i = 1, ... ,n, and 
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Gj E 0(0 + irjO), j = 1, ... ,m. Using the notation + in place of EEl, consider 
the C-vector space Y(O) generated by the elements of X(O) of the following form: 
Ft +F~-F3' where Fj E O(O+irjO), j = 1,2,3 and r~nr~ :J r~j F{{z)+F2(z) = 
F3(z) holds on the common domain. In particular if FE 0(0 + irO) and r' c r, 
then the difference of F and its restriction on i.w. of type 0 + ir'O also belong to 
Y(O). 

Definition 2.4. The mapping 

(2.6) 0-+ X(O)/Y(O), 

where 0 is an open set in Rn, defines a presheaf on Rnj we denote it by B. 
(H 0' C 0, then the restriction ro,o : B(O) -+ B(O') is defined as usually via 
restriction of functions). 

Denote by F(x + irO) an element of the quotient space X(O)/Y(O) deter
mined by F E 0(0 + ill, where 0 + il is an i.w. of the type 0 + irO. Any element -of B(O) is represented by 

m 

(2.7) !(x) = L Fj(x + irjO) 
j=1 

where {Fjjj = 1, ... ,m} is the set which gives the defining function of!. 

To prove the next proposition we need the assertions of a lemma cited below. 
The proof of this lemma is easy and one can find it in [7, p. 332] . 

• 

Lemma 2.1. Suppose tbat tbe vectors 11°,111 , ... ,11n belong to Rn and 
that the open balf spaces determined by them: E". = {y E Rnj (11',y) > O}, 
i = 0,1, ... ,n satisfy 

(2.8) 

Tben the following statements bold: 

a) E"o n E,,1 n ... nE" .. = 0 -
b) Any n vectors of 11°,111 , ••. ,11n are linearly independent. Hence the inter

section of balf spaces corresponding to them is a proper open convex cone. 

c) Denote by rj = E"o n ... nE,,; n .. nE" ... Let j, k E {O, 1, .. , n}. Tben 
~ ~ 

r j + rA: = E"o n ... n E,,; n '" nE". n ... nE" .. , where the notation ~ denotes 
suppression of the factor under it. 

Proposition 2.5. The presbeafB defined by (2.6) is isomorphic to the n-th 
derived sbeafH~ .. (O) as a presbeaf and hence it is actually a sheaf. 

Proof. Let 11°,111 , ... ,11n E Rn be such that (2.8) holds, where E~. = {y E 
Rnj (11',y) > O}, i = 0,1, ... ,n, are the open half spaces determined by 11i. Set 
Uj = (Rn+iE,,; )nU, j = 0, 1, ... ,n, and UnH == U. U = {Uo, U1 , ... ,Un, UnH }, 
U' = {Uo, U1 ,. " ,Un} give a relative Stein covering of the pair of open sets (U, U \ 
0), where U is a Stein open set in cn such that Un Rn = 0 and 0 is relatively 
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closed in U. Now we can follow the idea of the proof of Corollary 2.1. Just by 
the same reasons as in the proof of Proposition 2.2, (2.3) holds. Thus a relative 
n-cochain with respect to the constructed covering is of the form 

n 

(2.9) L: sgn bo .. .j ... nH F;(z), F; E O(Uo n ... n fj; n ... n UnH), j = 0,1, ... ,n. 
;=0 

(The notation~denotes suppression of the factor under it). 

By Lemma 2.1 a), E"o n E"l n ... nE" .. = 0. It follows that there exist no 
relative (n + 1)-cochains and (2.9) is necessarily' a relative cocycle. 

A relative (n - 1)-cochain is of the form 

~ sgnb - - F-le(z) L-J O ... ; ... Ie ... n+l' , 
j<1e 
~ ~ 

F;1e E O(Uo n ... n U; n ... n UIe n ... n UnH ), j, k = 0, ... ,n, 
and its boundary is 

n 

L: bo ... i ... nH (L:( _I)1e F;Ie(z) + L:(-I)leH Flej(z»). 
j=O le>; Ie<j 

~ 

Denote by r; = E"on ... nE,,; n ... nE" ... By Lemma 2.1 b) and c), rj is a proper cone 
~ ~ ~ 

in Rn and uon ... nUjn ... nUnH = (Rn+irj)nUj uon ... nu;n ... nUlen ... nUnH = 
(Rn + i(rj + r le» nu. 

As in Proposition 2.2 and Corollary 2.1 we conclude that 

n 

(2.10) B(n) ~ L: O«Rn + ir;) nu) / L: O«Rn + i(rj + r le» nu). 
j=O ;<Ie 

Now we can define a C-linear mapping B(n) ~ B(n) which is consistent with 
restrictions so that it is a presheaf homomorphism: Suppose that the functions 

~ 

Fj E O(Uo n ... n Uj n ... nUn), j = 0,1, ... ,n. 

We associate with the element f E B(n), given by (Fo, ••• ,Fn ), the element 

n 

(2.11) L( -1)j F;(x + irjO) E B(n). 
j=O 

We have to construct the inverse correspondence to this one. Take an el
ement F(x + irO) E B(n) given by F E O(n + irO). Determine n + 1 vectors 
TJo, TJl , ••• ,TJn E Rn in such a way that E"l n ... nE" .. cc r and that (2.8) holds. We 
also assume that the n-simplex fonned by TJl, ••• ,TJn is compatible with the orienta
tion of Rn. Choose a Stein open set U C cn, U n Rn = n such that n is relatively 
closed in U and that F(z) is holomorphic on the i.w. (n+i(E"l n ... nE" .. »nu. Now 
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we can construct the relative covering U = {Uo, . .. ,Un+l}, U' = {Uo, . .. ,Un} of 
the pair (U, U \ n), where Uj = (n + iE"i) nu, j = 0,1, ... ,n, and Un+l == U. 
With this relative covering the function F defines an element of Hn(u mod U', 0) 
and an element of HR(U,O) = B(n) as in the first part of the proof. Mori
moto (see [7, p. 335]) proved that this element does not depend on the choice 
of the vectors 170 ,171 , ••• ,17n • To the obtained element, by C-linear mapping 
B(n) -+ B(n) defined in the second part of the proof, it corresponds F(x + iroO), 
where ro = E,,1 n ... nE" .. cc r. By the definition of the equivalence class in X(n), 
F(x + iroO) = F(x + irO). Consequently, the composition of homomorphisms just 
defined, B(n) -+ B(n) -+ B(n) is the identity mapping. Analogously, it can be 
proved that the composition B(n) -+ B(n) -+ B(n) is the identity mapping, as 
well. 0 

In one-dimensional case there is only two open cones with vertex at zero: 
r + = ~ and r _ = R_ .. IT U c C is an open set such that un R = n, n is 
relatively closed in U, then U+ = Un {z E Cj Imz > O} and U_ = un {z E 
Cj Imz < O} are infinitesimal wedges. Now (2.7) can be given as follows 

f{x) = F+{x + i~O) - F_{x + iR_O), 

where F+ E O{n + i~O) and F_ E O(n + iR_O). We write for short 

(2.12) f(x) = F+(x + iO) - F_{x - iO). 

(F+,F_) is "'the pair of defining functions of f. 
~ 

Remark. After Proposition 2.5 we can identify B and B and we shall write -only B for the both sheaves. The definition of hyperfunctions via B is said to 
be "intuitive" definition or definition by boundary value representation. The "in
tuitive" definition is easier to understand and to apply in solving mathematical 
models. But theoretically it is in some sense incomplete. First, expression (2.7) is 
not invariant under coordinate transformations. Secondly, it is not easy to check 
that a given hyperfunction is zero in a neighbourhood of a point. , 

The elementary operations, we gave for the elements of B(n), can be easily 
transfered if these elements have the form given in (2.7). Let 

f(x) = L Fj{x + irjO) and g(x) = L Gk(x + ir~O) 
j k 

be elements of B{n) given in the form as in (2.7) then: 

Af(x) +l7g(x) = LAFj(x +irjO) + Ll7Gk(X+ir~O), 17,A,p E C 
j k 

(!pf)(x) = L(!pFj)(x + irjO), !p E A(n) 
• 

:I 

D: f(x) = L(D~ Fj)(x + irjO) . 
• 

:I 

, 
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2.2.2. Microfunctions. When we investigate solutions of mathematical 
models focusing our attention on points in which these solutions have their singu
larities, we need not the sheaf B but the sheaf of microfunctions 'R,. The theory. 
and applications of microfunctions are significantly developed within last years (d. 
[13]). For the further study of microfunctions and micro-local operators one can 
derive a profit from the book [10]; see also [24]. 

The construction of the sheaf'R, we shall give in one-dimensional case because 
of simplicity, but our intention is to explain the concept and the idea of microfunc
tions theory in many-dimensional case, too. According to this purpose we shall 

, 

adapt the more general notation than are really needed in one-dimensional case. 

Definition 2.5. Let SO = {±1} and denote a point (x,e) of R x SO by 
(x, (e/i)dxoo) for convenience. A hyperfunction f is said to be microanalytic at 
the point (x, (l/i)dxoo) if a pair of defining functions (F+,F_) of f can be both 
analytically continued to U+ = un {z E C; Imz > O}, where U is a suitable 
complex neighbourhood of x. Similarly, f is said to be microanalytic at the point 
(x, -(l/i)dxoo) if F+ and F_ can be both analytically continued to U_ = Un{z E 
C; Imz < O}. 

From the definition of the set of points, where f is microanalytic, it follows 
that this set is an open set in R x So. 

Definition 2.6. The set of all points where the hyperfunction f is not micro
analytic is called the singular spectrum of f (for short SS f). 

If 11' : R x SO -t R is a natural projection, then If(SS f) = sing supp f. 
The linear differential operator with real analytic coefficients does not enlarge the 
singular spectmm of a hyperfunction. 

The first idea to investigate local properties of hyperfunctions required the 
construction of the quotient sheaf B / A. But for the singular spectrum of a hy
perfunction, B/ A was still incomplete. So we have to introduce an other quotient 
sp~. I 

Definition 2.7. Let h : X -t Y be a continuous mapping of a topological 
space X into a topological space Y. Let U be an open set in X and V be any open 
set belonging to Y and containing h(U). For a sheaf G on Y; the correspondence 
U -t lim G(V) is a presheaf on X. Its associated sheaf is called the inverse 

--tl V:::>h(U) 
sheaf of G by h and is denoted by h -1 G. 

In particular when f is an open function, if for every y E Y and open set 
U C X, Un f-1(y) is connected, then f- 1G(U) = G(f(U» holds. 

Let us apply the construction of the inverse sheaf to the canonical projection 
11' : R x SO -t R. Let 0 1 x {idxoo} U O2 X {-idxoo} be an open set in R x SO (01 

and O2 are open in R). Then we have 

1l'-1B(01 x {idxoo} U O2 x {-idxoo}) = B(01) EB B(02) 

Definition 2.8. We have the following two sheaves over R x SO; 

, 

• 
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1. The subsheaf A * oh·-1 B defined by 

A*(f!1 x {idxoo}Uf!2 x {-idxoo} = 

= {f E B(f!dj SSf n f!1 x {idxoo} = 0} 

EB {f E B(f!2)j SS f n f!2 x {-idxoo} = 0}. 

2. The sheaf of microfunctions: n = 11"-1 B/ A *. 

From 2 we have the exact sequence: 0 -t A * -t 11"-1 B -t n -t O. 

The sheaf 'R has the following main properties: 

Proposition 2.6. 1. n is a flabby sheaf. 

2. For any open set U C R x So, n(U) = 11"-1 B(U)/ A *(U), or equivalently 

o -t A*(U) -t 1I"-1B(U) -t n(U) -t 0 

is an exact sequence. 

3. The linear differential operator with real analytic coefficients induces a 
sheaf endomorphism n -t n. . 

For the proof see for example [7, pp. 53-55]. 

Let F E O(U), where U C C is a domain (open and connected set) and a 
neighbourhood of a point a. Define D-1 by -

z 

(2.13) D-1 F(z) = F«()d( 

with an appropriate path connecting a and z. Consider the infinite series of oper
ators 

<Xl 
(2.14) Q(z,Dz ) = L: bk(Z)D;k. 

k=1 

Definition 2.9. Operator (2.14) whose coefficients satisfy the following condi-
tion 

1. bk(Z) are holomorphic in a complex domain U cC; 

2. limsuPk-t<Xl {lSUPzEK Ibk(Z)l/k! < 00 

holds for every compact set K C U, is called a *.pseudo-differential operator or a 
micro-differential operator of order ~ O • 

. A pseudo-differential operator of order ~ 0 defines a sheaf endomorphism of 
n in a special way via germs (cf. [7, p. 61]).· 

2.3. Fourier hyperfunctions and the Fourier transform of them 

2.3.1. Mainly used approaches to Fourier hyperfunctions. 1. *Sato's 
definition ([27] for the proofs see also [12]). Denote by nn the compactification of 
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Rn, Dn = Rn U S~-1, obtained by adding points at infinity in all directions. A 
fundamental system of neighbourhoods of a point at infinity (aoo) is 

U B,r(aoo) = {x E Rn; (x IlIxl/) E B, I/xll ~ r} U {xoo; x E B}, 

where B is a neighbourhood of the point a in sn-1. 0 will be the sheaf on Dn+iRn 
defined as follows: For any open set U C Dn+iRn, O(U) consists ofthose elements 
of O(U n en) which satisfy W(z)1 $ CV,E exp{ El Rezl) unifounly for any open set - -V c en, Vc U and for every E > 0, where V is the closure of V in Dn + iRn. If 

. U c en, then O(U) = O(U). Hence, Olen = 0 It is proved that nn C Dn +iRn 
is purely n-codimensional relative to 6 ([25J). The n-th derived sheaf Hj)n (0), 
denoted by Q and regarded as a sheaf on Dn; is called the sheaf *0/ Fourier 
hyperfunctions (0/ slowly increasing hyperfunctions). Q is flabby sheaf on Dn. In 
particular QIRn = Hll.n (0) = B. Hence the sequence 

Q(Rn) -t B(Rn) -t 0 

is exact. 

One of the main results on the sheaf Q is the following proposition. 

Proposition 2.7. [7] Let U C Dn + iRn be an open set such that un en is 
convex and Imz is bounded on 8(U n en). Then Hk(U, 0) = 0 for k ~ 1. Hence, 
in particular if we choose a convex neighbourhood I of 0 E Rn, then U = D n + il, 
Uj = (Dn + iI) n {lmzj i O}, j = 1, ... , n, is a relative lR.ray i!lJ.vering for the pair . 
(Dn + il, (Dn + il) \ Dn) relative to the sheaf 0 and the representation 

n 

Q(Dn) = O«Dn + il)#Dn) /:E O{(Dn + il)#JDn) 
. 1 ' J= 

is valid. 

This theorem gives a possibility of another approach to the Fourier hyper
functions. Namely, the set of Fourier hyperfunctions caD be defined as 

n 

O«Dn + il)#Dn) /:E O«Dn + il)#JDn). 
j=1 

2. *Zharinou's definition [35]. Denote by TM = Rn + iM and by SM(e) = 
sup{ -ye; y E M}, where ye = Y1e1 + ... + Ynen and M C Rn. Let A and B be 
bounded domains in Rn. We denote by ~(A, B) the Banach space of holomorphic 
functions on TA with the norm 

... 
The space ~, defined as the inductive limit over all A and B which contain 

zero, ... 
~ = ~ ~(A,B) 

A30,B30 
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- -is a DFS space. The dual space, ~', is an FS space (Frechet-Schwartz). ~, 
is isomorphic to the space of Fourier hyperfunctions. The Fourier transfonn of .... .....-
/ E ~, is given by (F/,tp) = (f, Ftp), tp E ~ and is an automorphism on ~'. 

3. "Intuitive" definition 0/ Fourier hyperfunctions. The systematic exposition 
of this approach one can find in [7]. We shall follow it in the next part. 

2.3.2. "Intuitive" definition of Fourier hyperfunctions. Let r; be an 
open cone in R" and D" + iI; an infinitesimal wedge of type D" + ir;O. F; E 
O{D" + iI;) means that F; is holomorphic on R" + iI; and for every e > 0, 
IF;{z)1 ~ CV,E exp{el Rezl) uniformly for any open set V CC", iT c D" + iI;. 

Consider X = EarO{D" + irO) where r ranges over all open convex cones. X 
is a C-vector space. We denote by Y the ~vector space generated by the elements -
of X of the following form: F1 + F2 - Fa, where F; E O{D" + ir;O), j = 1,2,3, 
and r 1 (') r 2 ::> ra; F1(Z) + F2{Z) = Fa(z) holds on the common domain. 

Denote by Q = X/Y. This is a C-vector space too. By F{x+irO) we denote 
the element of the quotient space Q determined by F E O(D" + if). 

H F2 = 0 and Fa can be extended to D" + iJt, then Fa can be substituted by 
F1 in Ear. "-

Corollary 8.5.4 in the book of Kaneko [7]· asserts that Q{D") = Q. The proof 
is just the same as the proof for Proposition 2.5. We shall prove only that there 
exists a homomorphism Q(D") -+ Q. Notice that Proposition 2.7 asserts that 

" 
Q{D") = O«D" + iI)#D") / L O«D" + iI)#iD") .. 

;=1 
-Then every element of Q{D") is represented by F E O{(D" + iI)#D") and F -consists of 2" independent holomorphic functions FIT, FIT E O{D" + iIIT ) where 

D" + iIIT is an infinitesimal wedge of the form D" + ir ITO, r IT is the u-th orthant -in R". To F we associate the following element of Q: 

LsgnuFIT(x + ir ITO). , 
IT 

Any element G; E O«D"+iI)#iD") is holomorphic across the interface Imz; = O. 
The pairs given by G; in the sum :ElT sgn uFIT {x + ir ITO) cancel each other because 
of the definition of Y in Q. Thus the mapping Q(D") -+ Q is well defined and it 
is C-linear. 0 . ~ 

In Q{D") is defined a topology. First, we define a family of seminorms II'IIK,E 
in O«D" + iI)#D") == E: For every compact set K cc I \ {O} and e > 0 

IIFIIK,E = sup IF{z)le-EIRezl, FEE. 
zER"+iK 

The set of all such seminorms reduces essentially to a countable family and O«D"+ 
iI)#D") turns out to be a Frechet space. It is also a Montel space. Since the space 
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n _ _ 

H == I: O«Dn+iI)#jDn) is a closed subspace of O«Dn+if)#Dn), the quotient 
j=1 ' 

space E / H admits the structure of a Frechet and Montel space. H 11" is the canonical 
mapping: E -t E / H, then 11" is an open mapping. A family of seminorms on Q(Dn) 
is given by 

~ ~ 

PK,e(F) = h~~ IIF + hllK,u F E F ~ Q(Dn
). 

Since the space Q is isomorphic to the space Q(Dn), this isomorphism induces 
a topology on Q. In this way the construction of 'Q gives an approach to the 
Fourier hyperfunctions, easier then the classical one, given by Sato which uses the -cohomology theory. Every element I E Q is given by 

N 

(2.15) I(x) = L:Fj(x+irjO), 
j=1 

where every Fj(x + irjO) denotes the element of the quotient space Q determined -by Fj E O(Dn + ifj), j = 1, ... , N. The functions Fj, j = 1, ... , N define a 
function F and we write I = [F]. 

The relation between Fourier hyperfunctions and hyperfunctions is unexpect
ed. Namely, we have a well defined mapping Q -t B(Rn): given I E Q by (2.15), 
it can be regarded as a hypedunction in the form (2.3) with the same defining func
tion. Theorem 8.4.4 in Kaneko's book [7] asserts that this is a surjective mapping. 

Let cp be a real analytic function such that it can be analytically continuable 
to a complex neighbourhood U C D n + iRn of D n ' and suMt that cp(z) E O(U). H 
lE Q, then the multiplication is defined by: cpI = [cpF), where I = [F). 

-
2.3.3. Fourier transform of Fourier hyperfunctions. Kaneko [7) has ex

plained Sato's fundamental ideas concerning the Fourier transform as follows. De
note by .1" the Fouriertransform. Let I E Q, where I(x) = F+(x+i~O)-F_(x+ 
iR_O) then .1"(f) = [4>], where 

o 0 

4>+«() = e-i(:r:+ill+>{ F+(x + iy+)dx - e-i(:r:+ill->{ F_(x + iy_)dx, Im ( > 0, 

-00 

00 

-00 

00 
• 

4>-«() = e-i(:r:+iIl+>{F+(x + iy+)dx - e-i(:r:+ill->{F_(x + iy_)dx, Im( < 0, 
# 

o o 

where y+ > ° and y_ < ° are fixed belonging to the infinitesimal wedges R + i~O 
and R + iR_O, respectively. 

All the integrals have a meaning because of: -i(x + iy)(~ + il1) = Xl1 + ~y - -
i(x~ -l1Y). 

- To give a precise definition of the Fourier transform of elements belonging to 
Q we need the following proposition. 
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Let F E Q(Dn+iI), where Rn+iI is an infinitesimal wedge of type Rn+irO. 
It is said that F *decreases exponentially outside a closed convex proper cone A ° 
if restricting Re z outside any cone containing A ° as a proper subcone, then F 
satisfies the estimate IF(z)1 = O(exp(-8IRezl» for a suitable 8 > 0 and locally 
uniformly for y E I. 

Proposition 2.8. Suppose that for ,an infinitesimal wedge Rn + iI of type 
(Rn + irO) the function F E Q(Dn + iI) and decreases exponentially outside a 
closed convex proper cone AO (AO is the dual cone to the cone A). Set 

G(,) = 

Imz=1I 

for any y E I. Then it converges locally uniformly in' ranging over an infinitesimal -wedge Rn-iJ oftypeRn-iAO and G E O(Dn-iJ). Furthermore, G(,) decreases 
exponentially outside ra. Hence .1"[F(x + irO)] = G(e - iAO), where G E Q, as 
well. 

Proof. Let K be a fixed compact set belonging to -A. Choose the cone Ai< 
containing AO such that Re(-iz') = X1] + ye ~ -cKlxl + ye for 1] E K, x E Ai<, 
where CK > O. We can now analyse the function G(,). 

G(,) = 

Imz=1IEl 

-- e-i(z+i1l)' F(x + iy)dx +' / 
e-(z+i1l)' F(x + iy)dx. 

/j,! 
K 

• -The first integral converges locally uniformly in' E Rn +iK because F E O(Dn + 
iI) and Re(-iz') ~ -cKlxl +ye. For the second integral we can use that IF(z)1 = 
OCe-5Izl ) locally uniformly for y E I. IT we suppose that 1] E K n {11]1 < 8K} for a 
suitable chosen 8K, then the second integral converges locally uniformly on Rn + 
i(K n {11]1 < 8K }). Hence, G(,) is a holomorphic function in , on an infinitesimal 
wedge of type Rn - iAO. From the both integrals we can draw out the factor e 1l( 

Consequently G E Q(Dn - iJ) and if e moves outside a cone containing rO as a 
proper subcone, we have ye ~ -811 Iel, 811 > O. Thus G(,) decreases expo'nentially 
outside rO. 0 ' 

-In order to define the Fourier transform of an element f E Q, f = [F] = 
I:~=l Fm(x + ir mO) we shall first prove that Fm, m = 1, ... ,M, can be made 
decomposed into a finite sum of functions decreasing exponentially outside a closed 
convex cone. One of such decomposition can be in the following way: 

Let alc = ±1, k = 1, ... ,nj the multi signature a = (aI, ... ,an) determines 
the cone r.,. as the a-th orthant in Rn. Put X+(t) = et /(1 + et), x-et) = 1/(1 + et) 
and x.,.(z) = X"'l (ZI) ... X.,.,. (zn). Every X.,.(z) decreases exponentially along the 
real axis outside any cone containing the closed a-th orthant as a proper subcone 
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and E.,. X.,.(z) = 1. These properties of X.,. make possible the decomposition of 
Fm, Fm(z) = E.,. x.,. (z)Fm(z), where each term X(z)Fm{z) decreases exponentially 
outside the closed u-th ortbant. Consequently, the Fourier hyperfunction 1 = [F] 
can be given in the form 

N 

(2.16) I(x) = L UIe(x + irleO), 
1e=1 

where UIe E 6(0" + ille), 0" + ille is an infinitesimal wedge of the form R" + 
irleO and IUIe(z)1 = O(exp(-6IRezl» for a 6 '> 0 when restricting Rez outside 
any cone containing a fixed cone ~~ but locally uniformly for Imz E lie. 

Definition 2.10. The Fourier transform of 1 = [F] given by (2.16) is 

N 

.1'[/] = L .1'[UIe(x + irleO)]. 
1e=1 

By Proposition 2.8 it maps Q into Q. One can prove (Lemma 8.3.3 in [7]) 
that .1'[/] does not depend on the decomposition of the defining function F into 
finite sums of hyperfunctions decreasing exponentially outside a closed convex cone. 

By Proposition 2.8 it is easy to define the inverse Fourier transform .1'-1: 

.1'-1[G](z) = (2!)" eiz<G«()cIe == F(z). 
Im<='IE-J 

The properties of F and G given in Proposition 2.8 make elementary the proof 
that .1'-1.1' = .1'.1'-1 = id. Hence this holds for any Fourier hyperfunction and the -Fourier transform is an automorphism of Q. 

-
We saw that the mapping Q --t B(R") is surjective. \In this sense every 

hyperfunction has the Fourier transform. , \ 
• 

2.3.4. An other definition of the Fourier transform of Fourier hyper
functions. First we shall define the space P.. Let 6 be a positive constant and 
I an open set in R" containing o. Then 6-6(0" + il) is defined as the set of 
holomorphic functions F on R" + il such that for every compact set K cc I and 
every e > 0 there exists CK,E > 0, IF(z)1 ~ CK,Eexp(-(6 -e)IRezl) uniformly for 
z E R"+iK. Then 

p. = ~~6-6(D" +il) 
1306+0 

with the topology of inductive limit. 
• 

It is easy to prove that if 1 E 6-6(0" + i{lyl < 'Y}), the Fourier transform 
, 

.1'1 = 1«() = e-i.z< I(z)dx E 6-'1(0" + i{1111 < cS}), Iyl < '1. 

Im.z=!I 

• 
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The Fourier transform is an automorphism of p •. P. is called the space of *rapidly 
decreasing real analytic functions. 

By Theorem 8.6.2 in [7], P. and Q are topological dual to each other. The 
inner product is given by 

where 

n 

(f,cp) = f(x)cp(x)dx = L 
)'=11 (.) mz=,I' 

N 

(cpF;) (z)dx, 

y(j) El;, cp E p., f =' [F] = :E F;(x + ir;O) E Q. 
;=1 

-The Fourier transform acts as a topological automorphism on Q and (:F f, cp) = 
(f, :Fcp) is valid.· . 

-Let us remark that the space ~ in Zharinov's approach is just the space P •. 
This gives a connection between Zharinov's approach and the other two. Also the 
three different definitions of the Fourier transform give the same operation. - . Remark. The proof that ~, is isomorphic to Q(Dn) can be find in [12]. 

2.4. Asymptotic behaviour of Fourier hyperfunctions and its applications 
• 

Asymptotic behaviour of generalized functions has an important role in the 
analysis of solutions to mathematical models, to precise the asymptotics of integral 
transforms or to discuss some problems in the theoretical phisics. 

2.4,1. Quasiasymptotics. As we cited in 2.3.1, Zharinov [35] defined the - -space~' which is isomorphic to Q or Q(Dn). But in the same paper he constructed - - -the space A'(O) c ~', where 0 is a domain in Rn. For an el~ment of N(O), he 
defined the quasiasymptotics. 

Let r be a convex closed acute cone in Rn. We denote by E = int ro, where 
ro is the dual cone to r. We will follow Zharinov's definitions and results given in 
[34] and [35]. 

Let A and B be two bounded domains in Rn. Denote by SB(e) = sup{ -ye; 
y E B} and by A( A, B) the Banach space of functions holomorphic on Rn + iA and 
such that 

IIcpll~BB = sup{e-BB(e)lcp(e + il1)li 'E Rn + iA} < 00 

with the topology given by the norm 11 . II~BB. It is easy to see that A(A, B) C 
A(A',B'), when A' C A and B CB'. With the inclusion mapping PAB,A'B': 
A(A,B) -4 A(A',B') we can define· 

X (E) = lim A(A, B); 
• A30, Bcc~ 

~(E)= lim 
~ 

BCC~,OEA 

A(B,A). 

The space X (E) is a DFS space and its dual space "'iJ (E) is an FS space. But 
+.- -"ii - -'A (E) is an FS space. Zharinov (cf. [35]) proved that ~'r C A (E) c ~', where ~, - -is defined in 2.3.1 and ~'r = {g E ~'; supp g C q. 
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Now we can cite the definition of the quasiasymptotics (cf. [34]) . 
.... 

Definition 2.11. Suppose that 9 E A'(E) and that p is a positive and contin-
uous function on (0,00). If there exists 

.... 
lim g(t()j pet) = h«(} in N(E), h:F 0, 

t-+oo 

then it is said that 9 has the quasiasymptotics related to p . 
.... 

Since N(E) is an FS space, the limit in Definition 2.11 is equivalent with 

lim (g(tf.)j pet), <p(f.» = (h, <p), h:F ° 
t-+oo 

.... 
for every <p E A(E). 

Similarly as for the quasiasymptotics of distributions (cf. [33]) one can prove 
that p and h in Definition 2.11 have the following properties: 

• 

1) p has the form pet) = tOt L(t), et E R: and L is Karamata's slowly varying 
function [9]; 

2) h is homogeneous of degree et. 

The defined quasiasymptotic behaviour of Fourier hyperfunctions (".an be used 
to precise properties of solutions to mathematic8J. models (partial differential equa
tions, integral equations, ... ) as it is done by means of the quasiasymptotics of 
distributions (cf. [33]). Applications of the quasiasymptotic behaviour of Fourier 
hyperfunctions are not yet developed but one can expect interesting results of such 
investigations. 

To illustrate the applications of the quasiasymptotics we cite an Abelian type 
theorem for the Laplace transform of Fourier hyperfunctions (cf. [34]). But first we .... 
have to define the Laplace transform of elements belonging to N(E). 

For a fixed z E Rn + iB, where B is a bounded subset of E, eiz E A(A, B) 
for every bounded set A and lIeiz 1I~8B = e8A (z), z = x + iy. Thus for every fixed 
z E Rn + iE, eiz~ E A(E). 

.... 
Definition 2.12. The Laplace transfoIm of 9 E N(E), Cg, is defined by 

Cg(z) = (g(f.), eiz~), z ERn + iE. 

In [35] Zharinov have proved that the Laplace transform defines an isomor
phism A' (E) onto A (~). With this property and the cited properties of the family 
of functions {ei%~; z E Rn + iE} it is easy to prove the following proposition of the 
Abelian type. 

.... 
Proposition 2.9. Suppose that g, h E N(E) and pet) = tOt L(t), et E R. . +:-

Denote by G = Cg and H = Ch, then G,H E A (E). H 
.... 

g{tf.)j pet) --+ h(f.), t --+ 00, in A'(E), 

then 
G(zjt)jtn pet) --+ H(z), t --+ 00, in A (E) . 

• 
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In [34] one can find other properties of the quasiasymptotics of Fourier hy
perfunctions. 

Let us remark that Komatsu in [16] has also defined the Lap1ace transform 
of a subspace of hyperfunctions, denoted by B[:,':x,), and in [17] he has related his 
theory with other theories of the Laplace transfOIm of generalized functions. 

2.4.2. S-asymptotics. An other asymptotic behaviour has been defined for 
distributions (ultradistributions) and has been applied in the quantum field theory 
(d. [25], [26]). It is called the S-asymptotics. It is easy to extend it to Fourier 
hyperfunctions. 

Definition 2.13. Suppose that c is a positive function defined on RR and 
f E Q(DR). f is said to have the S-asymptotics related to c in the cone r if there 
exists 

(2.17) lim f(· + k) = h in Q(DR ), h ~ O. 
.er, 11.11 .... 00 c(k) 

Since Q(DR) is a Montel space, (2.17) can be given in the fOIm: 

(2.18) lim (f(x+k) (x»-(h ') hJ.O 
.er,O.II .... oo c(k) , I{J -, I{J , r" 

for every I{J E P •. 

The next examples shows that Definition 2.13 is not a trivial extension of 
the S-asymptotics of distributions. Let P(D) be a local operator Llol~o bO DO, 
bO =F O. The Fourier hyperfunction f = 1 + P(D)6 has the S-asymptotics related 
to c = 1 in any cone r and with the limit h = 1 but f is not a distribution. For 
the S-asymptotics of f it is enough to prove that 

lim (P(D)6(x + k), rp(x» = 0, I{J E p •. 
, .er, 11.11 .... 00 ' , 

Since P(D) maps P. into p., 

(P(D)6(x + k), l{J(x» = (6(x + k), P( -D)I{J(x» = 1/J(k), 

where 1/J = P( -D)rp. By the property of elements belonging to p. (see 2.3.4) 
lim 1/J(k) = 0 for every cone r . 

• er, 11.11 .... 00 

A hyperfunction 9 supported by the origin is uniquely expressible as 9 = 
.P(D)6, where P(D) is a local operator. In such a way, with the above, we proved 
that every Fourier hyperfunction with support {O} has the limit, given in (2.17) 
and (2.18), equal zero. . 

Since P(D)6 = Llol~o bo D o6 is a distribution if and only if bo ~ 0 fora 
finite Dumber of a, the Fourier hyperfunction 1 + P(D)6 is not a distribution, but 
it has the S-asymptotics related to c = 1. 

We can also find such coefficients bo of the local operator P(D) such that 
f = 1 + P(D)6 is not defined by an ultradistribution belonging to the Gevrey class 

• 
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D(S)' or D{s}', s > 1. Because of simplicity, we shall consider one-dimensional case. 
Choose P(D) such that the coefficients of P(D) are: bn = (n!)-(l+Cn ), nE N, where 
en = (10Iogn)-1. With these coefficients, P{D) is a local operator. Namely, 

lim "'bnn! = lim (n!)-1/(nlog log n) = O. 
n-+oo n-+oo 

Also any ultradistribution in Gevrey class s > 1, supported by {O}, is of the 
fOIm 

00 

(2.19) J(D)6 = Lan Dn6, lanl ~ Ckn/{n!)· 
n=O 

with some constants k and C (Beurling's type) or for any k > 0 with a constant C 
(Roumieu's type). But bn = (n!)-(l+c .. ) does not satisfy condition for coefficients 
of J(D) in (2.19). Namely, since en -+ 0 when n -+ 00, for any s > 1, there exists 
no such that 1 < 1 + en < 8, n ~ no. Thus, 

(n!)-(l+cn ) > Ckn /(n!)-, n ~ no, k > o. 

Consequently, P(D)6 does not represent an ultradistribution. 

However we can suppose that P(D)6 is an ultradistribution 9 with support 
{O} in Gevrey class s > 1. Then we would have an ultradifferential operator J1(D) 
such that ' 

00 

9 = J1 (D)6 = L en D n 6, lenl ~ Ckn /(n!)·. . 
n=O 

But in this case J1(D) would be a local operator, J1(D) 1: P(D). This contradicts 
the fact that a hyperfunction with support at {O} is given by a unique local operator. 

The defined S-asymptotics can be also used in order to precise the behaviour 
• •• 

of solutions to mathematical models as it is done wi,th the S-asymptotics of distri-
butions (cf. [26]). We shall illustrate this with the problem of asymptotic behaviour 
of solutions to equations given by local operators. . 

Since a local operator maps continuously Q(Dn) into Q(Dn), we have: 

Proposition 2.10. Suppose that f E Q(Dn) and has the S-asymptotics 
related to c and to the cone r with the limit h. Then 

liro P(D)f(x + k) = P(D)h in Q(Dn ). 

ker,lIkll-+oo c(h) 

Corollary. A necessary condition that a solution of the equation P(D)x = f 
has the S-asymptotics related to c and to the cone r with the limit u is that f has 
the limit (2.16) with h = P(D)u. 

H P(D) fulfils some additional properties, we would have in the Corollary not 
only necessary, but necessary and sufficient condition. Such a case is if P(D)y = 6 
has a solution in Q-'Y(Dn), 'Y> O. . 
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Let us remark that we have only first results concerning the asymptotics of 
Fourier hyperfunctions. Regarding the definition of the asymptotic behaviour of 
hyperfunction in general case we do not know that such a definition exists. 

2.4.3. Asymptotics Taylor expansion. Estrada and Kanwal [2] elaborated a 
method of asymptotic expansions for distributions quite different in relation to the 
methods which can be find for distributions in [21], [26], [31] and [33]. The results 
of Estrada and Kanwal gave a nice confiunation that the asymptotic expansions 

. , 
have arisen in several fields of applications as a powerful technique. They started 
by considering the asymptotic Taylor expansion for distributions, its application 
and generalizations. 

Definition 2.14. IT fED', then for a fixed e E Rn and e ER 

f(x + ee),.... f: D"~(X) (ee)", as e -+ 0, 

1"1=0 , 

(2.20) 

which means that for any function wED and for any N E N 

. N" 
(f(x + Eel, w(x» = L (D f(~, w(x») (ee)" + o (eN +1 ), 

1"1=0 . 

as e -+ O. The formal series in (2.20) is called the asymptotic Taylor expansion for 
f (on the straight line {hejh ER}). 

For any fED', (2.20) holds. Also, Definition 2.14 can be applied to any 
space of generalized functions defined as the dual space A' of a basic space A of 
smooth functions. Since the space of Fourier hyperfunctions is a space of this type, 
Definition 2.14 can be repeated with the space Q(Dn) instead of D'. 

Concerning this definition a natural question arises: What are necessary and 
sufficient conditions that the asymptotic Taylor expansion for a genemlized function 
f is in the same time the Taylor series for f, convergent in the space ofgenemlized 
functions. 

The answer on this question for distributions and ultradistributions one can 
find in [32]. For the Fourier hyperfunction we can prove 

Proposition 2.11. The asymptotic Taylor expansion (2.20) for u E Q(Dn) 
on the straight line {hej hER}, where ei :f:. 0, i = 1, ... ,n, is the Taylor series 
convergent in Q(Dn) when TJe E B(O, TJoe) for an TJo > 0 if and only if there exists an 
r = (rl, ... ,rn ), ri > 0, i = 1, ... ,n, such that u is determined by a real analytic 
function which can be extended as a holomorphic function on {z E enj I Im Zi I < 
ri,i=I, ... ,n}. 

The proof is based on two Kaneko's results. First every Fourier hyperfunction 
u E Q(Dn) can be given in the form u = Pl(D)f, where PI (D) is an elliptic local 
operator and f is an infinitely differentiable function of infra exponential growth [7]. 
Second, there exist an elliptic local operator P2 (D) and an infinitely differentiable 

.' 
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function 9 *rapidly decreasing (lg(x) I ~ G exp( -allxll) , x E Rn for some a > 0) 
such that 6 = P2(D)g (6 is the delta distribution) [8]. 
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Part I. CLASSICAL THEORY 

The aim of lecture notes is to present the basic facts of the theory of pseudo
differential operators and to give sufficiently enough motivations for further study 
of this very important theory. Also, in the notes authors develop the theory of 
pseudodifferential operators within Colombeau's new generalized functions. 

Pseudo differential operators are generalization of differential operators. They 
form the minimal algebra of operators in which each elliptic operator has the inverse 
up to a smoothing operator. Thus, the roots of the theory of pseudodifferential 
operators are in the theory of elliptic operators. This theory is used for microlocal 
analysis of equations, the hypoellipticity for example. In the second part we show 
this for the (hypo )elliptic pseudodifferential equations with coefficients in the space 
of Colombeau's generalized functions. 

Part I of the notes was written when the first two authors had studied the 
classical theory of pseudodifferential operators, as a part of their doctoral studies, 
under the coordination of the third author, who prepared a seminar on that topic at 
the Institute of Mathematics of Novi Sad University during 1988/89 and 1990/91. 
The authors documented their work, writing down an extensive paper (in Serbian), 
proving the theorems, explaining in details various examples etc. Some parts of 
this unpublished material constitute these notes. The main references for Part I 
are monographs [10], [19] and [20]. 

Part II is devoted to the pseudodifferential calculus within Colombeau's space 
od generalized functions, Q. The idea was established by the authors during the 
seminar on Colombeau's theory which took place in 1989/1990. The third author 
made a coherent theory on pseudo differential operators in Colombeau's sense of 
new generalized functions [16], during his stay in Japan at the Tokyo University in 
the winter of 1992/1993. . 

It was not an easy job to present so large theory on around sixty pages, 
the number which was predicted by the editor. Because of that our exposition 
is of fragmented character in some parts. We think that the reader can find in 
the notes enough information for further study of pseudodifferential and Fourier 
integral operators. 

We assume that the reader is familiar with the basic notions of functional 
analysis, distribution theory and the theory of partial differential equations. For 
further study we refer to [10], [11], [15], [19] [20]. 
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1. Introduction 

If K is a compact subset of an open set 0, 0 C lR, and l/l is Coo function, 

1Il/llla,K = sup laP l/l(x) I· 
IIPII$a 
zEK 

Denote by Va,K the Banach space of Coo functions l/l on 0 such that supp l/l c K 
and 1Il/llla,K < 00. The projective limit of Va,K, as 11011 --t 00, is denoted by 1JK. 
The Schwartz's space of test functions V(O) is defined as the inductive limit of 
spaces VK as K cc 0 and the union of K's exhaust O. We will use the notation 
Cif = V(O). (The notation K cc lR or K cc 0 means that K is compact inlR 
or C.) The strong dual of the spaces V(O) and 1J'(0) is called the Schwartz space 
of distributions. The space of distributions with compact supports is denoted by 
&(0)'. It is the strong dual of the space smooth functions on 0 with the uniform 
convergence of all the derivatives on compact subsets. 

Schwartz's space of rapidly decreasing functions is defined by 

Its strong dual is the space of tempered distributions S'. 

The Fourier transformation of a function u E L1 is defined by 

.r(u)(~) = u(~) = e-izeu(x) dx, ~ E lRn , 
Rn 

and the inverse transfoImation by 

.r-1(U)(~) = (21l")-n eiZeu(x)dx, ~ E lRn. 
Rn 

If u is supported by a compact set, then the Fourier-Laplace transformation 
is defined as above with ~ substituted by , E cn. 

The Fourier transformation is an isomorphism of S (resp. S') onto the same 
space. 

The Sobolev space HB(lRn), s E lR consists of tempered distributions f which 
~ 

Fourier transform f satisfies the following condition 

We shall give Palley-Wiener theorem which will be used often in this work. 

"Let K be a convex compact subset of lRn and let H be its characteristic 
function. If u is a distribution of order N supported by K, then for its Fourier
Laplace transformation satisfies 

(1.1) 
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Every entire function on en which satisfies (1.1) is a Fourier-Laplace trans
formation of a distribution with the support contained in K. 

IT u E Cgo(K), then for every N E N 

(1.2) 

Conversely, if (1.2) holds for an entire function and for every N, then it is a Fourier
Laplace transformation of some function u E Cgo(K). 

2. Elliptic operators with constant coefficients 

As a motivation for the theory of pseudodifferential operators we give the 
construction of a parametrix for elliptic operators. 

2.1. Parametrix of elliptic operator with constant coefficients. Let us 
consider the following equation in S' 

(2.1) P(D)u = 2: caDau = f, 
lal~m 

where fEc' is given D = (D 1 , D2 , ... , Dn), Dj = -A.8~" Ca E C, lal :$ m. IT 
J 

a solution exists, then 
P(~)u(~) = j(~), ~ E Rn, 

and formally, u(e) = j (~) / P(~). Therefore, a formal solution to problem (2.1) is 
given by 

(2.2) 

The integral on the right-hand side in (2.2) is not defined in general because of 
A 

zeros of P({) and the behavior of f({) in infinity. There are some special cases in 
which a modification of (2.2) gives the solution to (2.1). We will discuss one of such 
cases. 

Let P(D) be a differential operator of order m, (Le. the corresponding poly
nomial P(~) is of order m) and let 

where Pm = Elal=m GaDa and Q(~) is polynomial of order not greater than (m-I). 
The operator Pm{D) is called the principal symbol of P(D). 

Note Pm(>'~) = Ampm(~)' for every A > 0 and ~ E Rn, Le. the polynomial 
Pm{~) is a positive homogeneous function of order m. This implies that the set of 
zeros of the polynomial Pm(~) (the variety of Pm), for m > 0 is a cone and it is 
called the characteristic cone. 

• 

Definition 2.1. A differential operator P(D) of order mjs elliptic if Pm(~) # 0, 
for every ~ E Rn\{o}, where Pm{D) is the principal symbol of the operator P{D). 
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Example 2.1. If the dimension of the space equals one, then all the differential 
operators with constant coefficients are elliptic. 

Example 2.2. The Laplace operator 

6. _ ( 8 )2 + ( 8 )2 + ... + ( 8 )2 
- 8X1 8X2 8xn 

is elliptic. Its principal symbol is -lel2 = -e~ - ... - e!. 
Example 2.3. For n = 2, the Cauchy-Riemann operator . 

8 1(8 .8) 
8z = 2" 8x +~8y 

is elliptic, and its principal symbol is i(e + il-')/2. 

Lemma 2.2. Let P(D) be an elliptic differential operator. Then the set of 
zeros of the polynomial p(e) is compact in ]Rn. . 

Proof. If P(D) = Pm(D) + Q(D) as above, then Pm(e) i= 0, for e E sn-1, 
where sn-l is the closed unit sphere in Rn. Because of that 

IPm(e)1 2: c> 0, e E sn-1. 

If 0 i= e E Rn, then e/lel E sn-1. This implies !Pm (e!IW I 2: C and because of the 
positive homogeneity of Pm (e) we have 

The order of polynomial Q(e) is not greater than m - I, and therefore, 

IQ(e)I$C1Ielm- 1
, eE]Rn, lel>1. 

Let e E Rn satisfy p(e) = 0 and lel > 1. Then we have 

clelm $ !Pm(e)1 = IQ(e)1 $ c1Ielm -
1. ' 

This implies lel $ Cl/C. Thus the set of zeros of p(e) is bounded. 0 

Let P(D) be an elliptic operator such that its variety is contained in the ball 
L(O,p), with the center at zero and radius p and let lI:(e) E coo(]Rn) be such that 
lI:(e) = 0 for lel < p and lI:(e) = 1 for lel > p' > p. Denote 

This formal integral makes sense within the space of tempered distributions. 
It is the Fourier transformation of a tempered distribution. 

In the sequel we will use the notation which have to be understood in the 
distributional sense. 

It will be shown that v(x) is not the solution of equation (2.1), but it differs 
from it only by a smooth function. 

'. 
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Formally (in fact in the sense of the tempered distributions) 
, 

P(D)v(x) = (2!)n R" eiz~ j«(.)K.(e) de = .r--1(j(e)K.(e»(x) 

= (:F-1 (j(e» - :F-1(j(e)(1- K.(e)))(x) = I(x) - RI(x), 

• 

Note that K.(e)/p(e) is a tempered distribution on Rn since it is a bounded 
smooth function. Since . 

.. 

for large enough lel, it follows that JC = :F-1(K.(e)/p(e» is a tempered distribution, 
and 

vex} = :F-1(j(e)K.(e)/p(e))(x) 

= (:F-1(K.(e)/p(e) * :F-1(j(e)))(x) = (JC * f)(x). 

Since the function (1- K.) E C~, the Palley-Wiener theorem implies that its Fourier 
transform h = :F-1(1 - K.} can be extended on en as an analytic function of 
exponential type, such that its restriction on Rn belongs to S. Then RI = h * I 
which implies 

(2.3) P(D)(JC * I}{x) = I{x) - h * I{x) .. 

Let us define operators R and K by 

R : &' -+ Coo, R: I -+ RI, 
• 

K : &' -+ S' , K : I -+ K I := JC * I. 
Then, R is a smoothing operator i.e. a linear and continuous mapping from &' to 
Coo. 

Using this notation we write (2.3) as P{D) = K = I - R. The operator K 
is called the parametrix of the differential operator P{D). H it is known, then the 
solution of equation 

(2.4) P{D)E = () 

(the fundamental solution for P(D» exists, and u = E * I is the solution to 
problem (2.1). By the classical theory, equation P(D)w = h has a solution which 

. is an analytic function on en. Solution to equation (2.4) is E = JC + w (because 
P(D}JC = () - h and P(D)w = h). 

3. Integral operators • 

3.1. Kernel theorem. Schwartz's kernel theorem is the basis one for the 
theory of integral operators is based on it. 

• 
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Definition ~.l. Let Xi be open subsets of Rn;, and let Ui E C(Xi), i E {1,2}. 
Then the continuous function U1 ® U2 on Xl x X 2 defined by 

(U1 ®U2)(X1,X2) = u1(xdu2(X2), Xi E Xi, 

is called the tensor product U1 and U2. 

Proposition 3.2. Let Ui E V'(Xi), i = 1,2. Then there exists a distribution 
U E V'(X1 x X 2) such that . 

U(l/J1 ® l/J2) = U1(l/Jt}U2(l/J2), l/Ji E C8"(Xi), i = 1,2. 

Proof. Let us define 

u(l/J) = U1(U2(l/J(XllX2))), l/J E C8"(X1 x X 2), 

(where Ui depends only on Xi). It is clear that the assertion of the proposition holds 
for U and u(l/J) = U2 (U1 (l/J». 0 

Note, if Ui Ee', i = 1,2, then u(l/J) = U2(U1(l/J», l/J E COO(X1 x X 2). 
The distribution U is called the tensor product of U1 and U2 and it is denoted 

by U = U1 ® U2. 

Definition 3.3. A linear and continuous operator A : V(X2) -+ V '(X1) is 
called integral operator. 

Theorem 3.4. Let K E V'(X1 x X 2). By 

(3.1) 

is determinated a linear operator A : V(X2) -+ V'(X1). It is continuous, in the 
sense that Al/Jj -+ 0 in the spaceV' (X1), when l/Jj -+ 0 in C8"(X2), i.e. it determines 
an integral operator. 

Conversely, for every integral operator A there exists one and only one dis
tribution K such that (3.1) holds. It is called the kernel of the operator A. 

We refer to [10] for the proof. 

Example 3.1. The kernel of the identity operator V(X) -+ V'(X), Acp = cp, 
where X is an open set in Rn, is given by 

(K,l/J) = l/J(x,x)dx, l/J E C8"(X x X), 
x 

i.e. K(x,y) = 8(x - y). It has the support on the diagonal. 

We will use the following notation. If A c X and B c X x Y then 

A 0 B := {y E Y, (3x E A)«x, y) E B)}. 

If A c Y and B c X x Y, then 

(3.2) BoA := {x E X, (3y E A)«x, y) E B)}. 
• 
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Note that if A is a compact set and B is closed, then BoA is a closed set. 

In the following proposition we assume that suppK = B C Xl X X2, A = 
suppu C X 2• 

Proposition 3.5. If K E V'(Xl x X 2 ) is the kernel of the integral operator 
A: V(Xl ) -t V' (X2 ), then suppAu C suppK 0 suppu, u E C(f(X2).· 

Proof. Let us suppose that Xl fI. (supp K 0 supp u). Then there exists a 
neighborhood V of Xl such that Vn(suppK osuppu) = 0 because the set suppK 0 

suppu is closed. IT v E C(f(V), then 

(supp(v ® u» n suppK = 0, 

and therefore (Au, v) = 0, i.e. Au = 0 on V, and Xl fI. supp Au. 0 

3.2. Proper integral operators. Let E and F be topological spaces and 
f be a continuous mapping of E into F. The mapping f is proper if for every 
compact set KeF the set f-l(K) is compact in E. 

Definition 3.6. Let X and Y be open sets in Rn. An integral operator 
A : C(f(Y) -t V'(X) is proper if the mappings 11"1 : SUPpKA(X,y) -t X and 
11"2: SUppKA(X,y) -t Y are proper, where KA(X,y) is the kernel of A and 11"1 and 
11"2 are the first and the second projection, respectively . 

. 

Proposition 3.7. An integral operator A : C8"(Y) -t V'(X) is proper if 
and only if distributions KA(X, y)cp(y) and KA(X, y)ifJ(x) have compact supports in 
X x Y for arbitrary functions ifJ E C(f(Y) and cp E C(f(X). 

Proof. Let A be a proper integral operator, ifJ E C(f(Y) and cp E C~(X). 
Since 

SUppKA(X,y)cp(y) c SUPpKA(X,y) n1l"2l(suppcp(y», 

it follows that SUppKA(X,y)cp(y) is a compact set. Analogously KA(X,y)ifJ(y) E 
£'(X x Y). 

Assume that for every ifJ E C~(Y) and cp E C~(X) the distributions 
KA(X,y)cp(y) and KA(X,y)ifJ(y) belong to £'(X x Y). We will show that for arbi
trary compact sets Kl and K2 of X and Y, respectively, the sets 

suPpKA n1l"2l(K2) and SUPpKA n1l"I l (Kl ) 

are compact in X x Y. Let ifJ E C(f (Y) and ifJ(y) = 1 in some neighborhood of the 
set K2. It follows 

• 

which implies the compactness of the set supp KA n1l"2l (K2). Analogously one can 
prove the compactness of the set supp KA n 11"11 (Kl ). 0 

Proposition 3.8. If an integral operator A is proper, then its transpose 
operator ~ is proper, as well. 

• 
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Proof. Theorem 3.4 implies that there exists KA(X,y) E V'(X x Y) and 
K ~(y,x) E V'(Y x X), such that 

(Au,v) = (KA(i,y),u(y)v(x» 

(~v,u) = (K~(y,x),v(x)u(y», 
for every u E CQ'(Y) and v E CQ'(X) 

Since (Au, v) = (u, ~v), it follows 

(KA(X, y), u(y)v(x» = (K~(y, x), v(x)u(y», 

i.e. KA(X,y) = K~(y,x) in 1)(X,Y). Thus it follows that $1 is a'proper operator 
if A is a proper operator. D 

Example 3.2. Let P : CQ'(Y) -t 1)'(X) be a continuous linear operator. Let 
(c/Jj)jEJ, and (CPi)iEI be sequences in CQ'(X) and CQ'(Y) respectively. Let the 
families of sets (suppc/Jj)jEJ and (SUPPCPi)iEI be locally finite. (A family (Aa)aEA 
of subsets of )Rn is locally finite if for every x E )Rn and a bounded neighbourhood 
B of X, B n Aa =F 0 only for finitely many a E A.) The mapping u ~ Qu, where 

(3.3) (Qu) (x)= Lc/Jj(x)P(cpj(Y)u(y»(x), u E CQ'(Y), x E X 
jEJ 

is a proper integral operator. 
, . 

Because of the local finiteness of the family (c/Jj)jEJ the above sum is finite 
for every fixed x. One can simply check that Q : CQ'(Y) -t V'(X) is an integral 
operator. Let us show that it is proper. Let t/J E CQ'(X). Since P is an integral 
operator, Theorem 3.4 implies that there exists a kernel Kp(x;y) E 1)'(X x Y), 
such that 

«Qu)(x), t/J(x» = (L c/Jj (x)(Kp (x, y), cpj(Y)u(y», t/J(x») 
jEJ 

• 

= L «Kp(x, y), CPj (y)u(y», c/Jj(x)t/J(x» 
jEJ 

= L(Kp(x, y), CPj (y)u(y)c/Jj (x)t/J(x» 
jEJ 

= (L Kp(x, y)cpj(y)c/Jj(x), u(Y)t/J(x»). 
jEJ 

Here we have used the fact that the sums are finite. The kernel of the integral 
operator Q equals 

L Kp(x, y)cpj(y)c/Jj(x). 
jEJ 

As cp E CQ'(Y) (analogously c/J E CQ'(X» the set supp I:jEJ Kp(x, y)cpj(y)c/Jj(x)cp(y) 
(supp I:jEJ Kp(x,Y)CPj(y)c/Jj(x)c/J(x» is compact, since the sum is finite. From The
orem 3.7 it follows that Q is a proper integral operator. 
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Note that (3.3) is well defined for u E COO(y). 

Proposition 3.9. If A: Ccf(Y) -.. V'(X) is a proper integral operator, with 
the kernel KA and ifu E Ccf(Y), then 

, 

(3.4) supp(Au) c (SUPpKA) 0 (suppu) , 

and (SUppKA) 0 (suppu) is compact. 

Proof. By Proposition 3.5, supp Au c supp KA 0 supp u. We have 

(Au,t/J) = (KA(X,y),u(y)t/J(x» = (KA(X,Y)U(y),t/J(x» . 

Let us denote T = SUppKA, R = suppu. Since R is a compact set, it follows that 
ToR is a closed set. Let W = Y \ (T 0 R) and assume t/J E COX>(W). This means 
that T n (supp t/J x R) = 0. The kernel theorem and the fact (Au, t/J) = 0 imply 
that (3.4). Let us prove that ToR is a compact set. From (3.2) it follows 

(suppKA) 0 (suppu) = 11'1 (supp KA n1l'21(suppu». 

The set SUppKA n 11'21 (suppu) is compact, since suppu is a compact set and 
11'2 : supp KA -.. Y is a proper mapping. Therefore 11'1 (supp KA n 11'21 (supp u» is a 
compact set as a continuous image of a compact set. 0 

Theorem 3.10. If A: C8"(Y) -.. 'D'(X) is a proper integral operator, then 
it can be continuously and linearly extended to an operator A: COO(Y) -.. V'{X). 

Proof. Let A : C8"(Y) -.. 'D'(X) be a proper integral operator, u E Ccf(Y), 
v E C8"(X), by Theorem 3.4, there exists KA(X,y) E V' (X x Y) such that 

(Au, v} = (KA(X,y),u(y)v(x» .. • 

Let {<pj }jEJCN be a partition of unity with the properties 

Let 

(1) <pj C C8"(X x Y), j E J, and the collection of supports {sUPP<Pj};EJ is 
locally finite, 

(2) 'EjEJ<Pj(x,y) = 1 for every(x,y) E X x Y, 
(3) <Pj(x,y) ~ 0 for every(x,y) E X x Y and j E J. -

K(X,y) = <Pj(X,y) 
j: SUPP'I'jnSUpp KAi'0 

-Clearly, K(X,y) E COO(X x Y). Define the operator A: COO(y) -.. 'D'(X) by 

(Au(x),v(x» = (KA(X,y),K(X,y)U(y)v(x», u E COO (Y),v E COO(X). 

The set SUppK(X,y)U(Y)v(x) is compact. Namely SUppKA(X,y)V(x) is compact 
and it implies that a family of functions <pj such that supp <pj n supp KA :I 0, - -is finite. Therefore A is well defined. From the definition it follows that A is a 
continuous linear operator. Also, if u E Ccf (Y), then 

(Au(x),v(x)} = (KA(X,y)K(X,y),u(y)v(x)} = (KA(X,y),u(y)v(x», 
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-since K. = 1 on SUPpKA. We conclude that A is a linear continuous extension of 
the operator A. 0 

Theorem 3.11. An integral operator A: C.f(Y) -t V'(X) is proper if and 
only if: 

(1) For every compact subset M of Y there exists a compact subset M1 of X 
such that if supp u c M then supp Au C Ml, where u E C.f(Y). 

(2) For every compact subset L of X there exists a compact subset S ofY such 
that if supp v C L, then supp ~u C S, where v E C.f(X). 

Proof. Let us prove that condition (2) is equivalent with the following one 

(2*) For every compact subset L of X there exists a compact subset S of Y such 
that if u = 0 on S, then Au = 0 on L for u E C8"(Y). 
Assume that (2*) does not hold, Le. there exists a compact set Lo such that for 

every compact set S there exits u E C8" (Y) such that supp u C Y \ S, (Au, v) # 0 
for some v with supp v c Lo. Let (2) holds and let Sl be related to the set Lo by 
condition (2). For every v E C8"(X), with supp v C Lo, it follows that support of 
~v is in Sl. Let u E C8" (Y) and let the support of u be in the complement of Sl. 
We should have that (v, Au) # 0 for some v E C8" with support in Lo, but it is not 
true, since (v, Au) = (~v, u) and (~v, u) = 0, for every v with supp v C Lo. 

Analogously one can prove that (2*) implies (2). 

Let us suppose (1) and (2*). We will show that the mapping 71'2 : supp KA(X, y) 
-t Y is proper. Suppose that M is an arbitrary compact subset of Y and N is a 
compact subset of X, which is related to the first one by (1). Then we will prove 

(3.5) 71';-1 (M) n SUppKA C N x M. 

Let (xo, Yo) E (X\N) x M, and let a function w(x, y) = v(x)u(y) be such that 
suppv C X \ N, suppu C M, w f; 0 in some neighborhood of the point (xo,Yo) 
and w E C8"(X x Y). We have (KA,W) = (Au(x),v(x» = 0 which implies that 
(XO,yo) rt 71';-1 (M) n (SUPpKA)' This implies (3.5). The proof that the mapping 
71'1 : supp KA(x, y) -t X is proper is similar 

Let A be a proper integral operator. Condition (1) follows immediately from 
the properties of a proper integral operator and condition (2) follows from the fact 
that ~ is a proper integral operator. 0 

3.3 Smoothing operators. 
Definition 3.12. A continuous linear operator A : £'(X2) -t COO(Xt}, X1and 

X2 are open in JRn, is called a smoothing operator. 
, 

IT a distribution K(XllX2) belongs to the space COO(X1 x X 2), then the op-, 
erator A defined on £ (X2) by 

(A(U(X2)))(Xt) = (K(XltX2),U(X2»), Xl E Xl, U E £'(X2) 

is a smoothing operator. To prove it we need the following lemma. 
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Lemma 3.13. The lineal L of the set of translations of <5-distribution (L = 
(Ef=1 ai<5(x - Xi), ai -E C, Xi E X}) is dense in the space £/(X). 

Proof. We will show the assertion for n = 1 and X = R. For n > 1 and 
X C Rn the proof is analogous. Let tP E Ccf (R). We have 

(3 

{tP,,p) = tP(x),p(x) dx, 

for every ,p E COO(R). The integral on the right-hand side is equal to the limit 
value of Riemann's sum i.e. . 

n n 

(tP,,p) = lim "tP(Xi),p(Xi)Axi = Hm "ado(x - Xi), ,p(x», n-+oo L.J n-+oo L.J 
~1 ~1 

where ai = tP(Xi)Axi. This implies that L:~=1 aio(x - Xi) converges to tP E Ccf(R) 
in £' (R), i.e. that the set of finite linear combinations of delta distributions is dense 
in Ccf(lR). Since Ccf(R) is dense in £/(R), it follows that this set is dense in £/(R). 
o ' 

Theorem 3.14. An operator A: £/(X2) -+ COO(Xl) is a smoothing operator 
if and only if there exists a distribution K(Xb X2) E COO(Xl x X2) such that 

• 

Proof. Let A: £/(X2 ) -+ COO(Xl ) be a smoothing operator. Denote 

K(Xl, a) = A(a(· - a»(xl), a E X2, Xl E Xl. 
. 

Let a be fixed and K(Xl, a) be a function of Xl. It is an element of COO(Xl). We 
will show that for every fixed Xl E Xl, K(Xb·) is a function in COO(X2). This 
will imply K(Xl,X2) E COO(Xl x X2). Thus, let Xl be fixed, {an}nEN C X2 and 
limn-+oo an = a E X 2 • Then 

(which is equivalent to limn-+ooK(xl,an) = K(xl,a)), because of the continuity 
of A and the fact that <5(X2 - an) -+ 0(X2 - a) in £/(X2) as n -+ 00. Therefore, 
K (Xl, a) is continuous with respect to the variable a. We have ' 

K(xl,a + h) - K(xl,a) A(0(X2 - a - h»(Xl) - A(<5(X2 - a»(xd 
h = ---O..-'-"'-----~~h:----c......;..~-'-~= 

• 

(
0(X2 - a - h) - <5(X2 -ar) = A h (Xl). 

Since 
0(X2 - a - h) - <5(X2 - a) £/( ). CO/(X) 

h -+ U X2 - a 1D c, 2, h -+ 0, 

the continuity of A implies 

li K(Xl,a+h)-K(Xl,a) A(£/( » 
m h = U X2 - a . 

h-+O 

-
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Analogously one can continue the proof for all the derivatives. This means that the 
• mappmg 

is in COO(Xl x X2) 

It remains to prove that KA = K,- where KA is the kernel of A. Since 
(KA(Xl,X2),U(X2» E COO(Xl), it is enough to prove 

(KA(Xl, X2), U(X2» = K(Xlo X2)U(X2) dx2, U E Cij>(X2). 
X2 

As we have shown in Lemma 3.13, L is dense in C~(X2)' Thus, there exists 
I:f;l ai O(X2 - x~i) in L which converges to U in E'(X2) as r -t 00. From above it 
follows (Xl E Xl) 

p .. 

(KA(Xl,X2),U(X2» = lim A("aio(x2 -x~i»)(xd 
... n~oo L..J 

i=l 
P.. P .. 

= lim "aiK(xl,X~i) = lim (K(Xl,:J:2)'" aio(x2 - X~i») n~oo L...J n~oo L...J 
i=l i=l 

• p .. 

= (K(Xl' X2), nl~n;.,:E aio(x2-- X~i») = (K(Xlo X2), U(X2» 

--

i=l 

K(Xlo X2)U(X2) dx2 
X2 

o 

4. Oscillatory integrals 

The notion of oscillatory integral is the crucial one for the theory of pseudo
differential and Fourier integral operators. 

In oder to explain the oscillatory integrals we will consider the definition of 
generalized Fourier transformation of continuous functions u(x) for which there 
exists positive real number c and mEN such that 

(4.1) 

In other words we will give the meaning to the right-hand side of equality 

(4.2) (u,4» = 

when a continuous function U satisfies (4.1). Later on we shall give a method which 
will be applied in the general case. -

Let kEN and 1/1 E S If U E S, then the integral (4.2) makes sense, since 

e-i %( = (1 + IxI2)-k(1- D~l _ ... - D~Jke-i%(. 

-
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Then we have 

(u,1jJ) = 1£(x)1jJ(~)(1 + IxI2)-k(1 - D~l - ... - D~Jke-iz( dx de. 
R" R" 

The integration by parts implies 

(4.3) (u,1jJ) = e-iz( (1 + IxI2)-k1£(x)(1 - D~l - ... - D~.y1jJ(~) dx de. 
R" R" 

The right-hand side of (4.3) is defined not only when 1£ E S(Rn) but as well as 
when 1£ satisfies (4.1) and k > m + n. 

Let us suppose (4.1). Since:F: S'(Rn) ~ S'(Rn) is the isomorphism, it 
follows u(~) E S'(Rn). Let t/J E Ctf(Rn), t/J(O) = 1 and 

e-iZ(t/J(ex)1£(x)1jJ(~)dxde, 1jJ E S(Rn ), e > o. 

where the integral on the right-hand side converges because of (4.1). Analogously 
as above, for kENO, we obtain 

, 

I,p,e = e-iz(t/J(ex)(1 + IxI2)-k1£(x)(1 - D~l - ... - D~" )k1jJ(~) dx de. 
R" R" , 

. 

Let k > m + n. By the Lebesgue theorem, it follows that there exists I E R such 
that limE~o I,p,E = I. Note that the integral in (4.3) does not depend on k for which 
k > m + n. We define the mapping S(Rn) 3 1jJ t-+ (u,1jJ) = I(1jJ) which gives the 
definition of u as an element of S'(R). 

4.1. 
(formally) 

Space of symbols S;;:5(X, RN). Let X be an open set in Rn and let 
, 

-
(4.4) I,p(au)= ei,p(z'()a(x, ~)u(x) dxd~, 1£ E Cgo(x), 

RN RN 

where functions t/J and a are the phase function and the symbol defined as follows. 

Definition 4.1. A real valued function t/J which is of the class COO(X x 
(RN\{O})) positively homogeneous of order 1 with respect to the variable ~ 
(Le. t/J(x,t~) = tt/J(x,~) for every x E Rn,~ E RN,t E R, t > 0) and which 
does not have characteristic points on X x (RN\ {O}) (Le. 0 ¥- dt/J(x,~) = 
(t/JZ1'··. ,t/Jz", t/J(l'··· ,t/JeN) for ~ ¥- 0), is called a phase function. 

Definition 4.2. Let m, p, 5 E R, 0 < p $ 1, 0 ~ 5 < 1. 

Elements of the space S;;:5(X, RN), which are called symbols, are functions 
a(x,~) E COO (X x RN) such that for arbitrary multi-indices a and f3 and arbitrary 
compact set K C X there exists a constant CQ ,f3,K > 0 such that 

18r8~a(x, ~)I $ cQ ,f3,K(1 + Iwm-pIQIHIf3I, x E K, ~ E RN 

Example 4.1. (1 + I~\)m E Sr.o. 
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We will use the following notations 

sm(x, ]RN) = SrO(X, ]RN), S;::5 = S;::5(X, ]RN), 

S;,'5(X, ]RN) = U S;::5(X, ]RN), S;,r(X, RN) = n S;::5(X, ]RN). 
m m 

The space sm is called the space of standard symbols. 

Let us introduce the topology in the space S;::5' Suppose that (K"),,eN is a 
sequence of compact sets such that 

00' 

K1 C K2 ... C K" C ... c X, U K" = X . 
.,=1 

For a(x,~) E S;::5 define 

lIa(x,~)II" = sup lara~a(x,~)I(l + 1~I)-m+pa-5.8. 
zeK",eeRN ,lal</I,I.81 <" 

It is clear that 11 . 11." V E N is a growing sequence of seminormsj it defines the 
, 

topology on S;::5 such that S;::5 is F'reshet's space. 

One can simply prove: 

Proposition 4.3. Ha E S;::5(X, Rn), then araga E S~5-plal+5I.81(X, ]RN). H 

a E sm (X RN) and b E sm' (X JRN) then a . b E sm+m' (X JRN) p,o , p,5 , p,o' . 

The right-hand side in (4.4), where a(x,~) E S;::o(X,JRN ) and </J(x,~), is a 
phase function, is called an oscillatory integral. Our aim will be to give the meaning 
to the integral, which in the general case does not converge absolutely. 

Theorem 4.4. Let </J(x, ~), (x,~) E X X JRN, be a phase function. There 
exists an operator 

(4.5) 

such that aj(x,~) E SO(X,]RN), bk(X,~),c(x,~) E S-1(X,JRN ) and that for its 
transpose operator (determined by f (L<p)'I/; = f <p(t L'I/;), <p, 'I/; E Cff) 

N a n a 
t Lu(x,~) = - f;t a~j (aju) - t; OXk (bk U ) + c(x,~) 

there holds t LeitP = eitP . 

Note that the operator L is not uniquely determined. 
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. 

where 1/J(x,e} E COO(X x (IRn\{o})} is a positively homogeneous of order -2 as a 
function of variable e. It follows 

-i1/J(I: 1~12 8cjJ 8 + t 8cjJ 8 )ei </> = ei </>, 

;=1 8~j 8{j k=1 8Xk 8Xk 

and it remains only to take care of the singularity in e = O. 

Let II:W E Ccf(lRn} be such that II:(~) = 1 for I{I < 1/4 and II:(~) = 0 for 
I~I > 1/2. Let us define 

. N 2 8cjJ 8 n 8cjJ 8 
M = -t(l - 1I:)1/J [~If.1 8{j 8~j + ~ 8Xk 8Xk] + 11:. 

Note M ei </> = ei</>. By using Proposition 4.3 one can prove.that the coefficients of 
t M = L satisfy the asserted conditions. Since t M = L, it follows t L = M. 0 

For rn' > rn we have S;;:6 c S;;:~ and the identity mapping I : S;;:6 -+ S;;:~ is 
continuous. 

Theorem 4.5. Let rn' > rn and let B be a bounded subset in S;;:6' The 
topologies in B induced by 

(a) topology of pointwise convergence on S;;:~, 
(b) the topology of the uniform convergence on compact sets (topology from , 

£(X, IRn») on S;;:6 and 
, 

(c) the topology of the space S;::6 are the same. 

Proof. We will give the proof of this assertion from [15]. Let us recall that a 
convergence satisfies the Urysohn condition if the following holds: 

A sequence is convergent if and only if its every subsequence has a convergent -
subsequence. 

It is obvious that all of the mentioned topologies are Hausdorff, that they 
fulfill the Urysohn axiom (because they are topological convergencies) and that the 
first two are weaker that the third one on B. 

We will show that the set B is relatively compact in S;;:~ (every sequence in , 
B has a convergent subsequence in the sense of the convergence in S;::6)' Since B 
is a bounded subset of S;;:6' a sequence {cjJn}nEN c B is bounded in the sense of 
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convergence in E(X X RN). Therefore it has a convergent subsequence <Pk" which 
converges to <P E COO(X X RN). 

Note that for every compact set K and a, /3 E NO' 

18r~ <Pk" (x, e)1 :::; cK,Q,p(1 + Iwm-pIQIHIPI, x E K, ~ E RN, 

where CK,Q,p does not depend on the subsequence. It implies 

, 
Therefore <P E S;::6' We have 

(1 + lel)-ml+pIQI-6IPI18r8~ (<pk" (x, e) - <p(x, em :::; 2CK,Q,p(1 + 1~l)m-m', 

xEK, eERN , 

for fixed compact set K eX, a E N~, /3 E NO. Therefore, there exists a > 0 such 
that for lel > a the left-hand side of the inequality is less than e > 0 independently 
of kn • 

For lel :::; a the set K x {e, lel :::; a} is compact. Since the sequence <Pk" 
converges to <P in the sense of convergence in E, it follows 

I . 

(1 + lw-m +pIQI-6IPI18r~(<pk" (x, e) - <p(x, e))1 < e, 

for some no EN, kn > no, (x,{) E K x {e, I{I :::; a}. Thus, every sequence in B has 
a convergent subsequence in S;::;. 

Now we will prove that (a) implies (c). Let a sequence in B be pointwisely 
convergent. We have proved that every subsequence of it has a convergent subse-
. I 

quence in S;::6' From Urysohn's condition follows the assertion. 0 

4.2. The oscillatory integral and its properties. Let u E C~(X), a E 
S;::6(X x \RN), X is open in Rn and m < -N. Note, if a E S;::6 and s = min(p, 1-6), 
then the properties of L (cf. (4.5)) and a imply that there exists C> 0 such that 

ILk(a(x, e)u(x))I :::; C(1 + leDm-ks, x E X, { E \RN . 

. With the above assumptions the integral on the right-hand side of (4.4) makes 
sense. Moreover 

(4.6) It/>(au) = eit/>(z,() Lk(a(x, {)u(x)) dx cl{ 
R" RN 

and 

where 

C = lu(x)1 dx (1 + IWm cl{. 
X RN 

- -- ._-
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This implies that a 1-+ 1t{1(au) is a continuous mapping S;::6 -+ C. In the following 
theorem we shall show that this mapping has a continuous extension on S:,'6 = 
Um>O S;::6· This extension is called the oscillation integral and it is denoted by 

(4.7) 1t{1(au) = eit{l(z'()a(x, e)u(x) dxde [osc]. 
R" RN . 

Theorem 4.6. Let p E (0,1], 6 E [0,1) and r/J be a phase function. For a 
fixed 1£ E C~(X) def1ne 1t{1(·u) by 

a H It{I(au) = eit{l(z'()a(x, e)u(x) dxde, 
R" RN 

a E S:,'6 = U S;::6(X, aN) 
m,p,6 

when that integral is absolutely convergent. Then 1t{1(."") can be extended uniquely 
on the whole S~ such that the mapping 1£ 1-+ 1t{1(au), a E S;::6(X, ]RN), is continuous 
and linear (i.e. it is a distribution). 

Proof. Let lI:(e) E C~(]RN), lI:(e) = 1 in a neighborhood of zero and 1I:,,(e) = 
lI:(e/v), v E N. The set {1I:,,(e)a(x, e), v E N} is bounded in S;::6(X, aN), therefore 

1I:,,(e)a(x, e) converges to a(x, e) in S;::;(X, aN), as v -+ 00 for rn' > rn. Also it 
converges pointwise. This follows from Theorem 4.5. The integral is absolutely 
convergent because 11:" and 1£ are compactly supported and therefore 

-- eit{l(Z,() Lie (a(x, e) 11:" (e)u(x» dxde, 1£ E cgo(X) 
R" RN 

(cf. (4.6». It is clear that 

eit{l( Z ,() Lie (a( x, e) 11:" (e)u (x» dxde 
R" RN 

converges to 

(4.9) eit{l(Z,() Lie (a(x, e)u(x» dxde, 
R" RN 

as v -+ 00, since a(x,e)II:,,(e) converges to a(x,e) in S;::;(X,]RN) and Lie maps 

S;;;(X, ]Rn) continuously in S;::;-ks, for 8 = min(p, 1-6). This implies the conver
gence of the integral in (4.8). Let us denote this limit by 

(4.10) eit{l(Z'()a(x, e)u(x) dx ~ [osc]. 
R" RN 

Since for fixed v, 1) 3 1£ 1-+ 1t{1(all:"u) defines a distribution and 1t{1(all:"u) converges 
to 1t{1(au) for every 1£ E V. By the sequential completeness of 1)', it follows that 
1£ H 1t{1(au) is a distribution. . 

• 
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Therefore (4.10) is defined by (4.9). Clearly, in (4.8) the operator L can be 
substituted by any other one which has the properties as in Theorem 4.4 and we 
can take any k such that m - ks < -N. This implies that (4.10) does not depend 
on L and k, i.e. 

V(X) 3 u t-7 I",(au)= ei",(z,e>a(x, {)u(x) dxd{ [osc.], 
R" RN 

is an element of the space 1J'(X). 

The same proof show that (4.8) does not ~epend on the choice of I\:II({) with 
the prescribed properties. 0 . 

Example 4.2. Let us show that 

c5(x) = (21r) eiz·e . 1 de [osc.]. 
R" R" 

Note, 1 E ~,6. Let I\: E C~(X), I\:({) = 1 in a neighborhood of zero and u E C~. 
Then I\:({/t) -+ 1 in Sra as t -+ 00 and , 

= 1\:(0) 
R" 

We have used .1"(.1"-l(U({))(x) = u(x), which implies .1"(.1"-1 (u({)) (0) = u(O). 

4.3. Singularities of an oscillatory integral. Let X be open in IRA and 

C'" = {(x, e), x E X, { E RN\ {O}, 4>e(x, {) = O}, S'" = 1rl C"" R", = X\S"" 

where 1rl : (X x RN\ {O}) -+ X being the first projection of the set (X x RN\ {O}). 
Since S'" is closed, R", is open. 

The set C", is a cone with respect to {, because 4>(x, {) is homogeneous function 
of {of order 1 and 84>/8{ is homogeneous of order o. 

Theorem 4.7. Denote by A the distribution defined by (A,u) = I",(au), 
u E C~(X). Then SingsuppA CS",. 

Recall, Sing supp A is the complement of the maximal open set where A is 
smooth. 

Proof. We will show that there exists A E COO(R",) such that 

I",(au) = A(x)u(x) dx, u E C[f'(R",). 
x 

.. _-----
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We shall show that there exists L = L: aj(x, e) at +c(x, e), where aj E so (14, aN), 
_ c E S-1 (Rt/l, aN) such that Leit/l = eit/l. Put 

-

N a a 

where tP satisfies -itPL:f=1IeI2IltI2eit/l = eit/l, e:F 0, K. E c.rcaN ) and K.(e) = 1 
for lel < 1. Then M eit/l = eit/l and put Leit/l = M eit/l. Thus 

N a a~ 
Lv. = ~ ae. (i(l - K.)tPleI2 

ae u) + K.u. 
3=1 1 

Let K. E C8"(JRn), K.(O) = 1 and K.,,(e) = K.(e/v), v E N. Note, for every K cc X 

IMka(x, e)1 ~ C(l + leDm-k, e E JR!', x E K. 

Therefore 

(A,u) = lim 
"-.00 

= lim 
"-.00 

eit/l(z,() Lk (K.,,(e)a(x, e)v.(x» de dx 
Rn RN 

-- ( eit/l(Z,() Lka(x, e) de)u(x) dx. 
Rn RN 

A(x) = eit/l(z,() Lka(x,e) de [osc]. 
RN 

(It does not depend on k.) For large enough k the integral exists in ordinary 
sense and the function A is continuous. Moreover, we can differentiate A(x) by 
differentiating the function under the integral sign. This is the consequence of 
the fact that ~(x, e) is a homogeneous function of e of order 1 as well as all its 
derivatives with respect to x. Note, if a function r(e) is homogeneous of order 1, 
then 

Ir(e)1 < const· (1 + lW, e E aN. 

This implies that by taking large enough k differentiation under the integral is 
legitimate. Thus for any p E No we have A(x) E CP(Rt/l). 0 

Analogously one can prove: 

Proposition 4.8. Ha E S;;:6(X, JRN) and a = 0 in some conic neighborhood 
of the set Ct/l, then A E Coo (X), where A is defined by (A, v.) = ft/l (av.). 

5. Fourier integral operators 

We shall give some introductory facts which are useful for the theory of pseu
do differential operators. 
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5.1. Definition and the basic properties. Let X and Y be open sets in Rnl 
and Rn2 , p > 0, 6 < 1. Let 

Au(x) = ei,p(z'II'()a(x,y,~)u(y)dyc:te, u E Co(Y), x E X, [osc.] 
Y RN . 

where 4>(x,y,~) is a phase function on (XxY)xRN and a(x,y,~) E S;:'6(XXY, RN). 
Under these conditions the integral 

(5.1) {Au, v} = ei,p(z,II'()a(x, y, ~)u(y)v(x) dx dy~, v E Co(X) 
x Y RN 

is defined as an oscillatory integral. For fixed u the right-hand side in (5.1) defines 
a distribution Au E V'(X) (see Theorem 4.6). 

Remark 5.1. In the sequel we will not write explicitly [osc.] for integrals which 
are defined as oscillatory integrals. It will clear from the context. 

Definition 5.1. An operator A : Ccf(Y) -+ V'(X) defined by (5.1) is called 
a Fourier integral operator with a phase function 4>(x, y,~) and an amplitude 
a(x,y,~). . 

Every smoothing integral operator can be written in the fOIm of a Fourier 
integral operator: 

Theorem 5.2. An integral operator A : Ccf(Y) -+ V'(X) is a smooth
ing operator if and only if there exists a phase function 4>(x, y,~) and amplitude 
a(x, y,~) E SI~ such that , 

(5.2) Au(x) = ei,p(z,II'()a(x, y, ~)u(y) dy~. 
Y RN 

Proof. Let A be of the form (5.2). If a(x, y,~) E SI.': it is clear that the 
kernel of the operator 

ei,p(z,II'()a(x, y,~) ~ 
RN 

is of the class COO(X x Y). 

Conversely, by Theorem 3.14 there exists K(x, y) E COO(X x Y) such that 

Au(x) = {K(x, y), u(y» = K(x,y)u(y) dy 
Y 

-- ei,p(z'II'()(K(x,y)e-i,p(z'II'()I\:(~»u(y)dy~, u E Co, x EX, 
Y RN 

where 4> is an arbitrary phase function, I\: E Ccf(RN ), I I\:(~) d~ = 1 and I\:(~) = 0 
in some neighbourhood of zero. 

Since a(x,y,~) = K(x,y)e-i4>(z'II'()I\:(~) E SI':, the assertion follows. 0 , 
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A distribution KA E V/(X X Y) defined as the oscillatory integral 

• 

(KA,W) = ei«>(Z,II'()a(x, y, e)w(x, y) dx dy de [osc.] , 
x Y RN 

w E Cg:' (X X Y), is the kernel of the operator A. It is the kernel of the operator A 
• smce 

(Au,v) = (KA(X,y),u(y)v(x)},u E Cg:'(Y), v E Cg:'(X). 

Proposition 5.3. Let A be a Fourier integral operator given by (5.1), and 
let KA be its kernel. Then KA E COO(Rq,), where 

Rt/J = {(x,y), "le E IRN\{o}, tP«x, V, e) ,; a}. 

H a(x, y, e) = a in a conic neighbourhood of the set 

Ct/J = {(x, y, e), tP~(x, y, e) = O}, 

then KA E COO(X X Y). 

Proof. It follows immediately from Theorem 4.7 and Proposition 4.8. 0 

Remark 5.2. Different pairs tPt, at and tP2, a2 may define the same operator 
A of the form (5.1). Moreover, a function a(x,y,e) is not completely determined 
by the operator A, even when the phase function'tP is fixed. 

Let A : Cg:'(X) -+ V'(X) be a Fourier integral operator given by (5.l). We 
shall evaluate the form of ~ and A*. Recall, ~: Cg:'(X) -+ V'(X) such that 

(Au,v) = (u, ~v), u E Cgo(X), v E Cgo(X) 
• 1.e. 

{Au, v} = eit/J(Z,II'()a(x, y, e)u(y)v(x) dx dyde = (u,tAv). 
x Y RN 

We have 
(~v(x»(y) = eit/J(Z,II'()a(x, y, e)v(x) dx de, 

x RN 

for y E Y = X. By the change of the variables x t-+ y and V t-+ x, we obtain 

(5.3) (~v(y»(x) = eit/J(II,Z'()a(y, x, {)v(y) dy cl{. 
Y RN 

Therefore, for x E X 

(5.4) (~v(y»(x) = ei~(Z'II'()a(x, V, e)v(y) dy cl{. 
x RN . 

(The above integrals are oscillatory integrals.) This proves 
'. 

Proposition 5.4. The phase function and the amplitude of ~ are defined 
by ~(x, v, e) = tP(y, x, e) and a(x, y, e) = a(y, x, e)· , 
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The operator A* is determined by (A1.£,v) = (1.£, A*v), A* : C~(X) -+ 1Y(X). 
Therefore ' 

(1.£,tAv) = (A1.£, v) = (A1.£,v) = (1.£,A*v) = (1.£,B), 

for 1.£ E C~(X) and v E C~(X) i.e. 

(5.5) ~v(x) = A*v(x) = e-,</lClI,:t'()a(y, x, e)v(y) dy ~, 
Y RN 

and for y E Y = X 

(5.6) (A*v(x»(y) = e'\OC:t,lI'()b(x, y, e)v(x) dx~. 
x RN 

Proposition 5.5. The phase function and the amplitude of A* are given by 
<p(x, y, e) = 4>(y, X, e) and b(x, y, e) = a(y, X, e)· 

5.2. Fourier integral operator with operator phase function. 
Definition 5.6. Phase function 4>(x, y, e), X E X ,yE Y I X, Y are open in an I 

is an operator phase function if the following holds 

(5. 7) 4>~,e (x, y, e) = (4)1Il>" .• ,4>lIn' 4>(1" .. ,4>(J ~ P for e ~ 0, x E X, Y E Y, 

(5.8) 4>~,e(x, y, e) ~ ° for e ~ 0, x E X, yE Y. 

Proposition 5.7. H (5.7) holds then the operator A : C~(Y) -+ V'(X), 
determined by (5.1), continuously map C~(Y) into COO(X). 

Proof. From (5.7) it follows that 4>(x,y,e), considered as function of (y,e), 
is a phase function (x is a parameter). By Theorem 4.7 there exists an operator L 
(which does not contain 8/ 8x) such that t Le'</l = e'</l. Analogously as in the proof 
of Theorem 4.7 (with operator L instead of M) we obtain 

(A1.£, v) = 

--

e,</lC:t,lI,() a(x, y, e)1.£(y )v(x) dx dy ~ 
x Y RN 

( e,</lC:t,lI,e) Lk(a(x, y, e)1.£(y» dy~) v(x) dx, 
x Y RN 

for 1.£ E C~(Y) and v E C~(X). Therefore, as in Theorem 4.7 

(A1.£(Y»(x) = ei </lC:t,lI,() L~,e(a(x, y, e)1.£(Y» dy~, x E X, 
Y RN .. 

we can prove that A1.£ is a smooth function. 0 

Proposition 5.8. If (5.8) holds, then the operator A : C~(Y) -+ V'(X), 
given by (5.2), can be linearly and continuously extended to A : &'(Y) -+ 1)'(X), 
where the topologies in E' (Y) and V' (X) are weak topologies. 
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Proof. The transpose operator ~ : C~(X) -t V'(Y) of the operator A : 
C~(Y) -t V'(X) is given by 

(~v(x))(y) = ei4>(2l'!I'~)a(x,y,e)v(x)dx~,v E C:f(X). 
X RN 

From (5.8) by the previous theorem it follows ~ : C~(X) -t Coo(Y). Therefore 
t(11) : £,(Y) -t V'(X). Since t(~)IGO'(Y) = A and t(~) : £'(Y) -t V'(X) is a linear 
and continuous mapping~ the assertion of the proposition follows. 0 

From the previous two proposition it follows 

Theorem 5.9. Let A: C~(Y) -t V' (X) be a Fourier integral operator with 
an operator phase function tfJ. Then 

a) A: C~(Y) -t Coo(X), 
b) A can be linearly and continuously extended to A: £'(Y) -t V'(X), 

c) 11: C(f(X) -t Coo(y), 

d) 11 can be linearly and continuously extended to 11 : £'(X) -t V'(Y). 

For the singular support the following estimation holds. 

Theorem 5.10. Let A : £'(Y) -t V'(X) be a Fourier integral operator with 
an operator phase function tfJ. Then 

Sing supp Au C S4> 0 Sing supp u, U E £' (Y), 

where Rq, = ((x,y), tfJdx,y) =j:. 0 for every e E JRN\{O}} and S4> = (X x Y)\Rq,. 

Proof. Let Ul E £'(U), where U is fixed neighbourhood of K = Singsuppu 
such that U = Ul on some neighbourhood of K c U. Then for U2 = Ul - U we 
have SUPPU2 C Y \ K. Since U2 E C(f(Y) and A : C(f(Y) -+ Coo(X), it follows 
AU2 E Coo(X). IT we show that 

(5.9) Sing supp AUl C M = S4> 0 supp Ul, 

it will means that Sing supp Au C Sing supp AUl CM C S4>0U. By letting U -+ K, 
we will have 

Sing supp Au C S4> 0 K = Sq, 0 Sing supp u. 

Let us prove (5.9). Let Ko = SUPPU1, K' C X such that K' x Ko c Rq, (K' c 
X \ M» and let X' x X C R4> be a neighbourhood of K' x Ko. We have 

(Ah, k) = 14>(ahk), 

for hE C(f(X) and k E C(f(X'). By Theorem 4.7 

Sing supp A C Sq,. 

It follows A E Coo(X' x X). Therefore Singsupp AUl eX \ K', which implies the 
theorem. 0 
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A = . L aa(x)Da , 
lal:$m 

where aa(x) E C~(X), X c an. Using the Fourier transform we obtain 

Dau(x) = (211")-n eaei(Z-II)(u(y) dy de. 
R2n 

It implies, 

Au(x) = (211")-n ei(Z-II)(O"A(X,e)u(y)dyde, 
R2n 

where O"A = L:1al:$m aa(x)ea and is called the symbol of the operator A. Since 
O"A(X,e) E sm(x x an), A is a Fourier integral operator. 

Example A solution to the Cauchy problem 

(5.10) 
82 E 8 

c-2 8t2 - AE = 0, E(O, x) = 0, 8t E(O, x) = 6(x), 

E = E(t, x), t E lR, x E an, is given by 

ei(ctl(l+z() _ e-i(ctl(l+z() 
(5.11) (211")-1 E(t, x) = 2ilelc de [osc]. 

Let us prove it. Applying the Fourier transformation on equation (5.10) we obtain 

2 -
_2 8 E I 2 -( ) C 8t2 + el E t, e = 0, 

where E(t,e) = F(E(t,x))(e). Let us fix e. We obtain an ordinary differential 
equation (with respect to the variable t) which solution is E(t, e) = cle-itcl(1 + 
c2eitcl(l. It follows 

-
E(O, x) = ° => E(O, e) = ° => Cl + C2 = ° 

8 -=> FtE(O, e) = 1 = F(6(x)) => -Cl + C2 = l/iclel· 

Therefore (5.11) holds. 

Example 5.3. Pseudodifferential operators. 

If nl = n2 = N = n and X = Y, then a Fourier integral operator with a 
phase function </J(x, y, e) = (x - y)e is called a pseudodifferential operator (iItDO). 

6. Pseudo differential operators 

Pseudodifferential operators generalizes differential and singular integral op
erators. In this section we shall analyze the basic properties of pseudodifferential 
operators . 
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6.1. Definition and the properties. Let X be an open set in JRn; then a 
Fourier integral operator A: Ccf(X) -+ V'(X) given by 

(6.1) Au(x) = ei (z-II)(a(x, y, e)u(y) dy de 
x Rft 

, 

is called a pseudodifferential operator, for short ~DO. 

Example 6.1. An example of a pseudodifferential operator which is not a 
differential operator is a singular operator in JRn given by 

A () ( ) L(x, (x - y)/Ix - yl)u( )'d 
= a x u x + v.p. Ix _ yln y y 

= a(x)u(x) + 1im L(x, (~ - y)~~x - yl) u(y) dy, 
&-+0 III-zl~& X - Y 

where a E COO(JRn), L = L(x,w) E coo(JRn x sn-l) (sn-l is a unit sphere in JRn) 
such that 

L(x, w)dw = 0, x E JRn
• 

5,,-1 

With accuracy up to the operator with a smooth kernel, the operator A has 
an amplitude a(x, e) = a(x)+x(e)g(x, y), where X E coo(JRn), X(e) = 1, for lel ~ 1, 

X(e) = 0, for lel ~ 1/2 and 9 = IZ!III" L( x, 1:=:1)· 
Theorem 6.1. Let A: Ccf(X) -+ 'D'(X) be a ~DO, KA be tbe kernel of 

the operator A and let A be tbe diagonal in XxX. Then 

a) KA E COO«X x X)\A). 

b) Operator A defines linear and continuous mappings A: Ccf(X) -+ COO(X), 
A: £'(X) -+ V'(X). Hu E £'(X), tben SingsuppAu C Singsuppu. (Tbis 
property is called the pseudolocaJjty of the operator A.) 

c) The operators;t and A* define linear and continuous mappings 
• 

~: Ccf(X) -+ COO(X), ~: £'(X) -+ 'D'(X)i 

A* : COO(X) -+ COO(X), A*: £'(X) -+ 'D'(X). 

Proof. a) The phase function for a ~DO A is <p(x, y, e) = (x ..... y)e. Therefore 
R", = X x X\A, since <p( = (x-y). By putting X = Y, Proposition 5.3 immediately 
implies KA E COO«X x X)\A). 

b) The following conditions are fulfilled for phase function of the operator A 
• 

<p~.(x, y, e) = (-el' ... , -en, Xl - Yi, . .. , Xn - Yn) # 0, 

<p~.(x,y,e) = (6,··· ,en,XI-YI, ... ,Xn -Yn) #0, 

for e:j:. 0, x,y E X. Therefore A : C~(X) -+ V'(X) is a Fourier integral operator 
with the operator phase function. The assertions a) and c) follow from Theorem 

, 

• 
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5.9. Since S.p = A, where S.p is the set attached to the operator A determined in 
Theorem 5.10. From this theorem it follows that Sing supp Au c A 0 Sing supp u = 
Singsuppu. 

c) Let A : C~(X) -+ V'(X) be a wOO given by (6.1). We shall evaluate 
the forms of ~ : C~(X) -+ V'(X) and A* : C~(X) -+ V'(X). Note that these 
operators are again pseudodifferential operators and the assertion c) follows from 
b) 

From (5.3) it follows 

ei (Z-II)( -() a(y, x, e)v(y) dy dI;., 
X Rn 

for v E C~(X). By changing of variables -e -+ e, we obtain 

• 

for v E C~(X), Le. 

(6.2) ei(Z-II)(ii(x, y, e)v(y) dll dI;., v E C~(X). 
X Rn 

where ii(x, y, e) = a(y, x, -e). From (5.5) it follows 

A*v(x) = (21r)-n ei(Z-II)(a(y,x,e)v(y)dydl;., v E C~(X), 
X Rn 

• l.e. 

(6.3) A*v(x) = (21r)-n ei(z-lI)(b(x, y, e)v(y) dy dI;., v E C~(X), 
X Rn 

where b(x, y, e) = a(y, x, e). 0 

Remark 6.1. Linear differential operators fulfills the condition of locality 
(supp Au c supp u, u E C~(X», which for wOO's in general case do not hold. 

6.2. Algebra of pseudodifferential operators and its symbols. 
6.2.1. Proper pseudo differential operators. 

Definition 6.2. Pseudodifferential operator A : Cr(X) -+ V'(X), X is open 
in IRn, is proper if it is proper as an integral operator. 

For example, linear differential operators (5.10) are proper wOO. 

Theorem 6.3. Let A be a proper W DO. Then, A defines linear and con
tinuous mapping A : C(f(X) -+ C(f(X) which can be linearly and continually 
continued to mappings 

A: E'(X) -+ E'(X), A: COO(X) -+ COO(X), A: V'(X) -+ V'(X). 
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Proof. By Theorem 6.1 A : C~(X) -+ COO(X) and by Proposition 3.9 
. 

(6.4) supp(Au) c (suppKA ) 0 (suppu), u E C~, 

where KA is the kernel of A. The set on the right-hand side of (6.4) is compact. 
This immediately implies A : C~(X) -+ C~(X). Continuity of the operator 
A : C~(X) -+ C~(X) easily follows. Since (6.2) holds and ~ defines a proper 
wDO, it follows ~ : C~(X) -+ C~(X), and 

t(~) : V/eX) -+ V'(X). 

Since t(~)lc8'" = A, we have that A : C~(X) -+ C~(X) can be linearly and 
continuously extended to a mapping A: V'(X) -+ V'(X). 

By Theorem 6.1, the operator A : C~(X) -+ V'(X) can be linearly and 
continuously continued to mapping A : £'(X) -+ V'(X). Then (6.4) holds for 
u E £'(X), as well. The prooffollows from the fact that C~(X) is dense in £'(X). 
This means that the continuation (6.2) maps £'(X) in £'(X). 0 

, 

Proposition 6.4. Let A be a proper W DO. Then ~ : C~ (X) -+ C~ (X) can 
be linearly and continuously extended to the mappings 

~: £'(X) -+ £'(X), ~: COO(X) -+ COO(X), ~: V'(X) -+ V'(X). 

Proof. The proof is analogous to the proof of the previous theorem because 
of the duality of operators A and ~. 0 

We will prove that the space of pseudodifferential operators is an algebra with 
respect to operation of composition. 

From Theorem 6.3 it follows that the composition of two proper wDO defines 
a linear and continuous operator on everyone of the spaces C~(X), £'(X), COO(X) 
or V'(X). 

Definition 6.S. It is said that a(x, y,~) E S;;;6(X x X x ]Rn) is an amplitude 
with a proper support if the projections . 

11'1 : SUPPz,y a(x, y,~) -+ X, 11'2: SUPPz,y a(x, y,~) -+ X 

are proper for every ~ E an. 
Theorem 6.6. Let 

Au(x) = (211')-n ei(z-y)ea(x, y, ~)u(y) dy de [osc], u E O~(X) 

be a proper pseudodifIerential operator, where a(x,y,~) E S;;;6. Then A can be 
defined by the formula ... 

Au(x) = (211')-n ei(;C-y)eb(x, y, ~)u(y) dy de [osc] , u E C~, 

wbere b(x, y,~) E S;;;6 is an amplitude witb a proper support. 
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Proof. Let the functions K,(x,y) and 'Pi(x,y) be the ones constructed in the 
proof of Theorem 3.10, KA be a kernel of the operator A. It can be easily seen that 

K,(x,y) = 'Pi(x,y) E COO(X x X) 
supp 'Pjnsupp KA#0 

and that supp K,(x, y) is contained in some neighbourhood of supp KA. Let us show 
that 11'1 : supp 1\";( x, y) -+ X is a proper mapping, i.e. that for every compact subset 
K in X the set SUppK,(x,y) n 1I'11(K) is compact. We have 

SUppK,(x,y) n1l'11(K) C supp( l: 'Pj(x,y») n1l'11(K) 
SUPP'PjnSUppKA#O 

c u (supp 'Pi (x, y) n 11'11 (K». 
supp 'Pjnsupp KA#O 

This union is finite, because A is a proper wno, 1I'11(K) nsupp KA is compact and 
a family supp 'Pi is locally finite. Since supp K,(x, y) n 11'11 (K) is a closed subset of 
a finite union of compact sets, it is compact, too. In the same way, it can be shown 
that the mapping 11'2: SUPPK,(X,Y) -+ X is proper. 

We will show that the amplitude b(x,y,~) = I\";(x,y)a(x,y,~) belongs to the 
space of symbols 8;;:6 and that it has a proper support. It has a proper support, 
because sUPPz,yb(x,y,{) C SUppK,(x,y) and the first and second projections of 
SUppK, are proper mappings. From a(x,y,~) E S;;:6 it follows b(x,y,~) E S;;:6' For 
every u E Ccf(X) and v E Ccf(X) . 

(Au(x),v(x» = {KA{X,y),u(y)v(x» = {KA(X,y),K,(x,y)u(y)v(x» 

-- ei(y-z)ea{x, y, ~)K,(x, y)v(x)u(y) dx dy cl{ [osc.]. 

This proves the last part of the assertion. 0 

Let us note that if a(x,y,{) has a proper support, then the integral (6.1) is 
defined for every u E COO(X). More precisely, we have 

Theorem 6.7. A proper pseudodifIerential operator continuously and lin
early maps COO(X) into COO(X). 

Theorem 6.8. Every pseudodifIerential operator A: Ccf(X) -+1)'(X) is of 
the form A = A1 + A2, where A1 is a proper operator and A2 is a smoothing one. 

Proof. Let A be an arbitrary pseudodifferential operator and let for u E 
Ccf(X) 

Then 
• 

• 

• 

- -- ---- -----

• 
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where I\:(x,y) is smooth and I\:(x,y) = 1 in some neighbourhood of the diagonal A 
such that the both projection 11"1 : supp I\:(x, y) ~ X and 11"2 : supp I\:(x, y) ~ X are 
proper mapping. (The construction of a function I\: is given in the proof of Theorem 
3.10.) 

The operator AI, defined by 

ei(z-y)( I\:(x, y)a(x, y, e)u(y) dy de. 

is proper. The proof is analogous to a part of the proof of Theorem 6.6. The 
function e i(z-y)(l - I\:(x, y)) a(x, y, e) equals zero in some neighbourhood of the 
diagonal and out of the diagonal it is Coo. So the operator A2 defined by 

for u E C~(X) is a smoothing operator by Theorem 6.1. 0 

6.2.2. The symbol of a proper pseudodifferential operator. 

Definition 6.9 Let A be a proper 'lino. The function 0' A (x, e) defined on 
X x Rn, X is open in Rn, by 

(6.5) 

where ee(x) = eiz(, is called a symbol of the pseudodifferential operator A. 

H O'A(X,e) is a symbol of a proper 'linO, then O'A(X,e) E Coo(X x Rn), 
because A is a linear and continuous mapping Coo(X) ~ Coo(X) and e t-t ei(z is 
COO-function with respect to e with values in Coo(X). Let us write u E C~(X) as 

u(y) = (211")-n 
Rn 

The continuity of A and the fact that 

• 

in [(Rn) (where on the left-hand side we have a sequence of integral sums) imply 

(Au(y))(x) = (211")-n 

u E C~(X), i.e. • 

(6.6) (Au(y))(x) = (211")-n 
Rn Rn 

From (6.5) and (6.6) it follows that the symbol O'A(X,e) determines the operator 
A. 
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• 

We shall show in Theorem 7.1 that if A has an amplitude in S;::& and 8 < p, 
then O'A(X,e) E S;::&, so the integral on the left-hand side in (6.6) can be considered 
as the oscillating one. 

II A is an arbitrary qiDO on X, then the function O'A(X, e), which is a symbol 
of a proper qiDO Al on X such that A - Al is smoothing, is called the symbol of 
A. In this case a symbol is not uniquely deterlllinated and two symbols differs by 
a function r(x, e) E S-oo. 

6.2.3. Asymptotic decomposition in S;::& 

Definition 6.10. Let a; (x, e) E S;'J (X x Rn), j = 1,2, ... , lim;~oo m; = -00, 

a(x, e) E Coo(X x Rn). Then a is an asymptotic sum of ak, 

00 

a(x,e) ~ La;(x,e), 
;=1. 

if for every integer r ~ 2 there holds 

r-l 

a(x, e) - L a; (x, e) E S-:'i(X, RN), 
;=1 

where mr = max;~rm;. Note a E S-:'i(X, RN). 

Theorem 6.11. Let a; E S;'J (X, RN), j E N, lim;~oo m; = -00. Tben 
tbere exists a function a(x, e) such tbat 

()() 

a(x, e) ~ La;(x,e). 
;=1 

If tbere exists anotber function a' witb tbe same property 

00 

a'(x, e) ~ La;(x,e), 
;=1 

tben a - a' E S-oo(X x Rn). 

Tbe proof will be given in tbe case p = 1, 8 = O. We follow tbe proof given 
in [11J. First, we sball prove tbe following two lemmas. 

Lemma 6.12. Let K. E Ccf'(JRn), K.(e) = 1 in some neigbbourbood of e = 0 
and K..\(e) = K.(..\e). Tben tbe set {..\-k(l- K.>')}O<>'~l is bounded in S~o(X, Rn) for 
every'k ~ O. 

Proof. Let us prove that the functions 
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are bo:unded independently on oX E (0,1]. Since for K. there holds 

we have 

First, we shall prove it for /3 = O. Let R > 1 be large enough such that K.(e) = 0 for 
lel > Rand K.(e) = 1 for lel < l/R. If 0 < oX ~ 1 and (1-K.>.) '" 0, then lel2: l/AR, 

«1 + le\)oX)-" ~ «l/RoX)oX)-" ~ R" 

and 
loX-"(l- K.>.)I ~ CoR"(l + IW". 

If (-k)p (1 - K.>.) '" 0 for /3 '" (0,0, ... 0), then lel ~ R/ oX. This implies 

«1 + le\)oX)IPI ~ «1 + R/oX)oX)IPI ~ (R+ l)IPI 

and 

o 

Lemma 6.13. Let {F,,} be a sequence ofFtecbet spaces such that Fk+l c F" 
and the topology in Fk+l is stronger than the topology induced by F". For every 
k, let (ai:') be a sequence of elements in F" which converges to 0 as m -+ 00. Then 
there exists a sequence m" such that for every N the series I:,,> N a~· converges 
in FN' -

Proof. Let P1,(1 E N) be a fundamental sequence of seminorms inF", kEN, 
, such that P'" ~ p~H, I E N. By a simple procedure one can substitute a sequence 

with equivalent one such that there holds P1, ~ P1,H' k, I E' N. For example, P1, can 
be substituted by 

sup p~'IF •. ",<" -
Since limm -+oo ai:' = 0, let us chose m" (increase ask increases) such that p~(a~·) ~ 
2-". Then for I < k there holds -

so, for every I 2: 0 the series I::'N p',,(a~·) converges. Since FN is Frechet space 
it folloyvs that E:'N a~· converges in FN. 0 

Proof of Theorem 6.11. One can suppose that a" E slc1'(X x JRn) when k 2: 1. 
This can be achieved by summing elements in the sequences if it is necessary. Let 
ai:' = (l-K.l/m)ak, where K.l/m is defined in the proof of Theorem 4.7. Thesequence 
(1 - K.l/m) converges to zero in SI and ai:' converges to zero in S-"+1 as m -+ 00. 
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Lemma 6.13 implies that one can chose a sequence mk such that for every N :::: 1 
the series E~N a~· converges in S-N+l. Let a = E~o a~·. Then a is a symbol 
and 

00 

a - ~ ak = ~ (a~· - ak) + ~ a~· E S-N+l, 
k<N k<N k=N 

because (a~· - ak) = -K.l/mak E S-oo for every k. So a ~ E ak. Second part of 
the assertion is obvious. 

Theorem 6.14. Let aj E S;::HX x JR.n),limj-+oo mj = -00, a E Coo(XxJR.n ). 

Assume: 
1) For every compact set K c X and for all multi-indices a, (3 there exist 

constants I" = l"(a,{3,K) and C = C(a,{3,K) such that 

(6.7) laea~a(x,{)1 ~ C(l + IW",x E K. 

2) If for every compact set K c X there exists a sequence of real numbers 
1'" = I",(K), I EN, and a sequence of constants C, = C,(K) such that 1'" --+ -00 for 
1 --+ 00 and 

'-I 
(6.8) la(x,{) - ~aj(x,{)1 ~ C,(1+ IW"', x E K. 

j=1 

Then 
00 

a(x, {) ~ ~ aj(x, e). 
j=1 

Proof. First we will prove the following assertion. 
has continuous derivatives f'(t) and f"(t) in [-1,1]. 
SUP_1<t<1 IfW(t)l, j = 0,2. Then - -
(6.9) 

By Lagrange's theorem, 

If'(t) - 1'(0)1 ~ A21tl, t E [-1,1]. 

Because of that, 

Let the function f(t) 
Let us denote Aj = 

If'(t)1 :::: ~lf'(O)I, if A21tl ~ ~lf'(O)I, It I ~ l. 
Let us denote fl = min {2~2If'(0)1, 1}. There holds 

If'(t)1 :::: ~lf'(O)I, t E [-fl, fl] 

and 

2Ao :::: If(fl) - f( -fl)1 :::: 2fl~lf'(0)1. 
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It follows 
11'(0)1 $ 2~/6. = 2~ max{2A2/11'(0)1, I}, 

which implies (6.9). Now by (6.9) we have the estimate needed for the proofs of 
theorem. 

Also, we need the following estimate. Let Kl and K2 be compact sets in Rn 
such that Kl C int K2. Then there exists a constant C > 0 such that for every 
COO-function f in a neighbourhood of K2 

(6.10) (sup E IDa f(x)lf 
ZeKl lal=l 

• 

$ c sup If(x)1 + ( sup If(x)1 + sup E IDa f(x)I). 
ZeK2 ZeK2 ZeK2 lal=2 

Now we give the proof of the assertion in the theorem. Let b ~ L::l aj(x, e) (such 
b exists by Theorem 6.11) and let d(x, e) = a(x, e) - b(x, e). By the assumptions, 
for arbitrary compact set K C X there holds 

laea~d(x,e)1 $ C(l + IW",x E K. 

where C and JL depend on a, (3, K and 

(6.11) 

where Cr = Cr(K). Let us denote d(x,D) = d(x,e + D). Then 

a~~d(x,D)I17=O = ae~d(x,e). 
~ ~ 

By (6.10), for Kl = K x {O}, K2 = K x {lel $ I}, where K is a compact set in X 
~ 

such that K C int K and from (6.11) it follows that for D = 0 there holds 

sup L: laea~d(x,e)l)2 $ C(l + Iw-r[(l + Iw-r + (1 + leD"], 
zeK lal+I.819 

where r is arbitrary, JL = JL(a, (3, K) and C = C(a, (3, K, r). Moreover, for x E K 
and lal + 1{31 $ 1 the function aea~ d(x, €) decreases faster than each power of I€I 
as lel ~ 00. By induction, it follows that dE S-oo(X, Rn). 0 

7. Calculus with symbols 

The simplicity of the calculus with symbols is the central point of the theory 
of 'lino. The majn ideas of their calculus are given in Theorems 7.1 and (7.6) below. 

7.1. Symbol of a proper 'lino. Let fJ < p. This will be a permanent 
assumption in the rest of the notes. 

Theorem 7.1. Let A be a proper 'liDO given by (6.1) and O"A(X,e) be its 
symbo1. Then 

(7.1) 
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where the asymptotic sum is taken over all the multi-indices. 

Remark that 8t D~a(x, y, {)III=:X: E sm-(p-6)lal. 

Proof. We will apply Theorem 6.14. We can assume that the amplitude 
a(x, y, {) is properly supported. Then by (6.5) 
(7.2) 

U A (x, {) = e-i(:X: A(eille ) (x) = (27l")-n a(x, y, {)ei(:X:-l/)" ei (II-:x:)e dyd'19 [osc], 
R2" 

(for fixed x the integration by y is made over a compact set). If K is a compact 
subset of X, then for x E K (7.2) determines the oscillating integral depending on 
the parameter x. Let us change the variables by z = y - x, 1] = {) - {. Then 

(7.3) (27l")nUA (x,{) = a(x,x+z,{+1])e- iZ f/dzd1]. 
R2" 

Expand a(x,x + z,{ + 1]) into the Taylor series at 1]0 = 0 with the powers of 1]. 
Then, 

(7.4) a(x,x+z,e+1])= L: ata(x,x+z,{)1]ajO!+rN(x,x+Z,{,1]), 

where 

(7.5) 

lal5N-l 

N1]a 
TN(X, x + z, e, 1]) = L: , 

o. 
lal=N 

1 

(1- t)N-1ata(x,x + z,e + t1]) dt. 
o 

Let us note that for every { E ]Rn and x E K, a(x, x + z, {) is compactly supported 
with respect to variable z. By the Fourier transform 

(7.6) (27l")-n 8ta(x, x + z, {)1]ae-izf/ dz d1] 
R2" 

= .r-l(.r(i-Ialata;a(x,x + z,{))(1]))(z)lz=o 

= at D~a(x, x + z, e)lz=o. 

This gives 

UA(X,e) = L: ~atD~a(x,y,{)III=:x:+(27l")-n 
lal5N o. 

Integration by parts gives, from (7.3), 

where 11 is a even and nonnegative number. By using 

• 
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the above equality implies 

(1 + 17112)(1'-(1-6)11)/2 d71, 
R" 

where p = max (m - pial + 151.81,0), x E K and v is large enough. Thus, we obta,in 
estimates of the form (6.7). 

Let us estimate the rest of the series. Substitute a and rN {defined by (7.5) 
in (7.3). After the change of the order of integration (first by t, then by z and 71), 
let US note that we have to estimate the integral 

Ra,t{X, e) = (21r)-n e-i%1/71a8ra(X, x + z, e + t71) dz d71, 
R2n 

where lal = N, uniformly over t E (0,1] and x E K. Integration by parts gives 

Ra,t{x, e) = (21r)-n e-iZ1/8r D:a(x, x + z, e + t71) dzd71· 
R2" 

Let 
Ra,t{x,e) = R~,t{x,e) + R~,t{x,e), 

where R~,t{x, e) is the integral over the set {(Z,71), 1711 ~ lel/2} and R~,t(x, e) 
over its complement. (Recall, z belongs to a compact set.) H 1711 ~ lel/2, then 
lel/2 ~ le + t711 ~ 3Iel/2. Since the measure of the domain of the integration of 
R~,t (x, e) with respect to 71 variable is less or equal to Cleln

, then 

IR~,t{x,e)1 ~ C{1 + leI2)(m-(p-6)N+n)/2, 

where C does not depend on e and t. Let us estimate R~,t (x, e). By using 

(1 + 1711 2)-1I/2{1- D;l - ... - D;nt/2e-iZ1/ = e-iz1/, 

where v is even positive integer, let us integrate by parts. Then R~,t{x,e) is a finite 
sum of terms of the form 

Ra,{J,t{x, e) = (21r)-n e-iZ1/{1 + 712)-1I/28r D:+{J a{x, x + z, e + t71) dz d71, 
11/1>1~1/2 

where 1,81 ~ v. Since x and z belong to a compact set for 1711 > lel/2 there holds 

18r D:+{Ja(x, x + z, e + t71) 1 ~ C{1 + 17112)(m-(p-6)N+cSII)/2, 

form-{p-c5)N+c5v ~ 0, i.e.18rD~+{Ja{x,x+z,e+t71)1 ~ Cform-{p-c5)N+c5v < 
o. In both cases C does not depend on e, 71 and t. For large enough v there holds 

IRa,{J,t{x, e)1 ~ C {1 + 17112)(1'-(1-6)11)/2 d71, 
11/1> 1~1/2 ' 

where p = max {m - (p - c5)N, 0). Hp - (1 - c5)v + n + 1 < 0, then 

, 
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where C does not depend on x, e, t if x E K and t E (0,1]. For v large enough we 
have 

IRa,t(x, e)1 ~ C(1 + leI2)(m-(p-6)N+n)/2, x E K, t E (0,1]. 

By Theorem 6.14 the proof follows. Note that the assumption p > 6 is crucial for 
the proof. 0 

Proposition 7.2 Let A be a proper 'liDO, O"A(X,e) its symbol and O"A(X, e) 
a symbol of~. Then, 

Proof. By (6.6) 

~v(x) = (21l")-n ei(Z-tl){O"A(y,-e)v(y)dy~. 

The assertion follows from (7.1). 0 

Analogously, one can prove the following assertion. 

Proposition 7.3. Let A be a proper 'liDO with a symbol O"A(X,e) and A* 
its adjoint operator. If 0";" (x, e) is a symbol of adjoint operator, then 

O";"(x,e) ~ L \8eD~O"A. a. 
a 

Definition 7.4 A dual symbol UA(X,e) for A is given by 

UA(X,e) = O"'A(X,-e) . 

. By using t(~) = A we obtain 

(7.7) 

The following .proposition follows immediately. 

Proposition 7.5. UA(X,e) ~ E(-8daD~O"A(X,e)/a!. 

7.2. Composition of proper 'lino's. 
Theorem 7.6. Let A and B be proper 'liDO's in X Can, O"A(X, e), O"B(X,e) 

their symbols and C = BA. Then C is a proper 'liDO, with the symbol O"BA (x, e) 
which is given by 
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• . (1 8)' Recall D~ = 7-i 8Z . 

Proof. Note, the dual symbol is used for representation (7.7): 

-- .. 
(Au)(e) = 

By (6.6) 

Bu(x) = 
which implies 

Clearly, if O"A E S;::l and O"B E S;::;, then O"BUA E S;:1+m2 and thus the symbol of 
C is in S;::l +m2. Analogously, we have that the symbol of tc =t At B is in S;::; +m2 • 

By Theorem 3.11 it follows that C is proper. 

Let us find the symbol for C. By using Theorem 7.1 and Proposition 7.5 we 
have 

a 

(7.8) 
a 

~ :E ar[O"B(X,e)( -ad.8 D~+.8O"A(X,e)]/a!,8!. 
a,.8 

Leibnitz formula implies 

=:E:E ( :E (-1)1.81,8~6!)[alo"B(x,e)][a;D=+'Yo"A(x,e))]h!. 
'Y " .8+6=" 

We shall use the following identity 

for x = (1, ... ,1), Y = (1, ... , 1). This gives 

:E (-1) 1.81 ~ , = 1, 
10 r ,8.6. ... +o=a 

:E (-1)1.81 ~6' = 
.8+6=a ,8 .. 

0, a i: 0 

1, a = 0 
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and by substituting this in (7.8), the assertion of theorem follows. 0 

Proposition 7.7. Let O"A E S:HX,JRn),O"B E S:i(x,JRn),o =5 fJ < p =5 1 
and let B be a proper operator. Then the operators AB, BA are determined by 
the symbols in S;::J+m2(X, JRn). 

Proof. Let A = Al + R, where A is a proper wDO and R has a kernel 
KR(X, e) E COO (X x X). Then, BR and RB have smooth kernels. Let us prove 
this for BR. Let <p E Cijl. We have 

B(R<p)(x) = (21r)-n ei(z-Y)(R<p)(y)b(x,y,e)dyde 
R2" 

-- ei(Z-Y)( KR(Y, t)b(x, y, e)<p(t) dy de <p(t) dt. 
R" R2" 

Thus the kernel of BR equals 

(_I)r [).rei(z-Y)(KR(y,t)b(x,y,e) dyde. 
R2" Ix - yl2r 

--

Since Ix - YI > d > 0 by taking enough large r, we obtain that the kernel of BR is 
smooth with respect to x and t. The same holds for RB. 0 

7.3. Classical symbols and pseudo differential operators. 
Definition 7.8. A classical symbol is a function a(x, e) E Coo(X x JRn), X is 

open in Rn which has an asymptotic expansion 

00 

(7.10) a(x, e) I!::l L am_;(x, e), 
;=0 

for some complex rn, where am-;(x,e) E Coo(X x (Rn \ {O})) are positively homo
geneous with respect to e of order m - j, j = 0,1, .... The set of such symbols is 
denoted by csm(x x JRn) and the corresponding pseudo differential operators are 
called classical pseudodifferential operators. am is called the main symbol. 

Note am -; is not smooth for e = 0 and should be cuted off in an appropriate 
way. 

If ak(X,e) is positive homogeneous with respect to e of order k, then 
a(a~ak(x, e) is positive homogeneous with respect to e of order k -Ial. 'Because 
of that, 

CSm(X x JRn) C sRe(m) (X x JRn). 

The following proposition can be easily proved 

.. ---- .. - ----- ---
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Proposition 7.9. a) H A and B are proper classical pseudodifIerential op
erators determinated by the symbols in CSm1 and csm2, then BA is a classical 
pseudodifIerential operator with the symbol in csml+m2(X). 

b) HA is a classical operator then ;t and A· are also classical with the symbols 
in the same class. 

7.4. Hypoellipticity and ellipticity. Parametrix. As we already said, 'liDO 
are fov.nded in the development for the theory of elliptic and hypoelliptic operators. 
The construction of a parametrix for a given hypoelliptic operator which is to follow 
is the most important application of the pseudodifferential calculus. Note that in 
the first section we gave the motivation of the whole theory by considering elliptic 
operators. 

Definition 7.10. A function a(x,~) E COO(X x ]Rn), where X is open in ]Rn, 

is hypoelliptic symbol if the following holds. 

a) There exist reals m and mo such that for every compact set K C X there 
exist positive constants R, Cl, C2 such that 

(7.11) 
-

. b) There exist p, a, 0 $ a < p $ 1 such that for every compact set K c X 
there exists a constant R such that for every pair of multi-indices cr, f3 there exists 
a constant Co:,{3,K such that 

(7.12) I(at~ a(x, ~))a-l (x, ~)I $ Co:,{3,KI~I-plo:IHI{3I, I~I ~ R, x E K. 

The class of hypoelliptic symbols is denoted by HS;::rO(X x ]Rn). From 
(7.11) and (7.12) it follows HS;::6m o(X x ]Rn) C S;;:.s(X x ]Rn). 

Definition 7.11. 'liDO A is called hypoelliptic if there exists a proper wDO A1 
with the symbol H S;::ro (X x ]Rn), such that A = A1 + Rlo where R1 is smoothing. 

IT m = mo then a is called elliptic, i. e. A is called elliptic 'liDO . 
• 

Let us note that in the decomposition of a hypoelliptic operator A = A1 + R1, 
where Rl is smoothing and A1 is a proper 'liDO, it follows that its symbol belongs 
to HS;::rO(X x ]Rn). 

Recall, A = 2: lo: l:5m ao:(x)DO: is called elliptic, ifits principal symbol satisfies 

(7.13) am(x,~) = L ao:(x)~O: # 0, (x,~) E X x (]Rn \ {O}). 
lo:l=m 

Example 7.1. Examples of hypoelliptic operators. 

The Heat operator at - 2::=1 a;, is an example of a hypoelliptic and not 
elliptic operator. 

(2) Differential operator D; + y2 D; + >"D%, Re>.. = 0 is hypoelliptic if and 
only if >.. # 2k + 1, k E Z, while 

Dy + iayrD%, Rea # 0, 
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is hypoelliptic if and only if r = 2k, kEN. 

(3) Pseudodifferential operator DII+iayr VDi + D~, Rea =F 0, is hypoelliptic 

if r is even or r is odd and Re a > 0, and the pseudodifferential operator given by 
the symbol P(x, e) = 1 + IxI2111el2p is hypoelliptic for I'/v < 1. 

Remark 7.1. The change of the variables does not preserve the hypoellipticity. 
For example, the change of variables 

Yi = Xi, i = 1, . " , n, T = t + xV2 

in the heat operator, gives a non-hypoelliptic operator. 

Proposition .7.12. For a differential operator A the following two conditions 
are equivalent 

a) A is elliptic. b) The symbol of A is in HS'(':om(X x Rn). 

Proof. The implication b) => a) is obvious. For the another part of the proof 
we note that the symbol of A is 

(7.14) 

IT a) holds, then 

a(x,e) = I: aa(x)ea. 
lal$m 

a(x, e)/am(x, e) = 1 + Ll(X, e) +.:. + Lm(x,e), 

• 

where Lj(x,e) E COO(X x (JRn\{O})) are homogeneous in respect to e of order -j. 
This implies (7.11), while (7.12) follows in the same manner. 0 

Definition Z.13. A classical operator A is called elliptic if its majn symbol 
am(x,e) E csm(x x JRn) satisfies (7.13). 

Proposition 7.12 holds for a classical wDO. More precisely, if a symbol of A 
satisfies (7.11) for m = mo then it satisfies (7.12), too. This means that in the case 
of the symbols of elliptic operators we can omit the condition (7.12) for them. This 
follows from the following proposition. 

Proposition 7.14. Let u(x,e) E HS;::rO(X x JRn). Then 

u-1(x,e) E HS;,,;,-mo(X x JRn) 

for e large enough, lel > eo > O. Further on, for any pair of multi-indices a, fJ E NO, 
(7.15) 8l8~u(x,e)/u(x,e) E S;,:I~IHI(3I, 

for e large enough. 

Proof. One can simply prove (7.15) for lal = IfJl = 1. Let P E ~n. By 
induction with respect to Ipl, it can be shown that 

(7.16) (JP 8(a,(3)u(x, e) = f L 8po+«(3,a)u(x, e) IT 8P' u(x, e) . 
u(x, e) k=O po+ ... +Pk=P u(x, e) 1=1 U(X, e) 
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Now (7.15) follows from (7.16) by induction. 0 

Theorem 7.15. Let A be a proper pseudodifferential operator with a symbol 
in HS;:rO(X x JRn), 6 < p. Then there exists a proper pseudodifferential operator 

B with a symbol in HS;,;,·-mo(X x JRn) such that 

(7.17) BA = 1+ Rt. AB = 1+ R2, 

where Rb R2 are smoothing operators and I is the unity operator. 

H B' is an operator with the same property, then B - B' is a smoothing 
operator. 

Proof. LetO'A be the symbol oftheoperator A. Chose bo(x, e) E HS;,;,·-mo(X 
x JRn) such that bo(x,e) = 0'.:41 (x,e) for large enough e and a proper pseudodif
ferential operator Bo with a symbol in Hs;,;,·-mo(X x JRn) such that O'Bo - bo E 
S-oo(X x JRn). Let us show that 

, 

BoA = I -Ro, 

where the symbol of Ro is in S;,~p-6)(X X JRn). By Theorem 7.6 it follows that 

O'BoA(X,e) ::::: 1 + :E 8;0'.:41 DC;O'A/a! = 1 + :E 8;0'.:41 DC;O'A/(a!0'.:410'A) 
lal~l lal~l 

for large enough e. Propo~ition 7.14 implies that Ro has the symbol in S;'~P-6). 
Let Co be a proper wDO which satisfies 

00 

(7.18) Co ::::: :E( -l)j m, • I.e. 
j=O 
00 

(7.19) 0'00 ::::: :E( -l)j~. 
j=O 

From (7.18) immediately follows that the operator Co (I +Ro) - I is smoothing, so, 
if we put BI = CoBo we obtain 

(7.20) B 1A= I +R1' 

where R1 is smoothing. It is clear from the construction that the symbol of B1 
belongs to HS;,;,·-mo(X x JRn). Analogously, we obtain that the symbol of the 

operator B2 is in H S;,;,·-mo (X x JRn) for which 
, 

(7.21) 

where R2 is smoothing. 

Let B1 and B2 be a pair of wDO's for which (7.20) and (7.21) hold. We 
can suppose that they are proper operators. By multiplying the right-hand side of 
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(7.20) with B2 (in fact by applying B2) and by using (7.21) we obtain BI - B2 = 
RIB2 - BIR2 and RIB2 - BI~ is smoothing. 0 

Definition 7.16. The operator B satisfying (7.17) is called a parametrix of 
the operator A. 

Note that an elliptic operator A with a symbol belonging to S;:AX x JRn) 
has a parametrix B with a symbol in HS;,r:,-m(X x JRn). 

Proposition 7.17. Let A be a hypoelliptic wDO. Then 

(7.22) Sing supp Au = Sing supp u, u E ['(X). 

If A is also a proper operator, then (7.22) holds for every u E V'(X). 

Proof. The relation Sing supp Au C Sing supp u follows from the pseudolo
cality of the operator A. Let B be a proper wDO which is a parametrix of the 
operator A. Then from the equation u = B(Au) - Rlu and pseudolocality of the 
operator B it follows that 

Sing supp u C Sing supp Au USing supp RI u. 

Since RIU E COO(X) (and Sing supp RIu = 0) the assertion follows. 0 

This was a global aspect of hypoellipticity of wDO's. Now, we shall give few 
assertions about a local hypoellipticity. 

Definition 7.18. A class of symbols in Hs;:.;.mo(xo, {a) consists of symbols 
in S;:6' which are hypoelliptic at (xo, {a), i.e. which satisfies the conditions of 
Definition 7.10 in the set of the form U x r R ,,, where U is a neighbourhood of the 

point Xo and r R ,,, = {~, I liT - ~I < 1], I{I > R}. 
A wDO A is called hypoelliptic at Xo (locally hypoelliptic at xo) if there 

exists a proper wDO Al with a symbol in HS;::rO(xo, {) for every { E JRn such 
that A = Al + RI, where RI is smoothing in a neighbourhood of Xo. Locally elliptic 
wDO are analogously defined. 

The following assertion can be proved in the same way as in Theorem 7.15. 

Proposition 7.19. Let an operator A be hypoe11iptic at Xo (and proper). 
Then there exists an operator B, hypoelliptic at Xo (and proper) such that 

(7.23) BA = I + RI, AB = 1+ R2, 

where RI, R2 are smoothing operators in a neighbourhood of Xo, and I denotes 
identity operator. If B' is an operator with the same property as B, then B - B' 
is smoothing in a neighbourhood of Xo. 

Let A be a classical elliptic wDO with a symbol a(x, {) such that 

00 

a(x, {) ~ L am_;(x, {), 
;=0 
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where a.n-;(x,~) E Coo(X x (JRn\{o}»,am_;(x,~) is positively Q,omogeneous with 
respect to ~ of order m - j, j E N, and am(x,~) '" 0, x E X, ~ '" o. 

Let B be a parametrix of A given by the symbol b(x, ~). We shall prove that 
b(x,~) has an asymptotic expansion 

• 

00 

b(x,~) ~ :ELm-;(x,~), 
j=O 

where Lm_j(x,~) E Coo(X x (JRn\{O})), b_m-j(x,~) is positively homogeneous 
with respect to ~ of order -m - j, j E N. The formula for composition implies 

a 

(7.24) :E 8;am-k(X,~)D~Lm-j(x,~)/o:! ~ 1. 
a,k,; 

By factoring the expression with respect to the degree of homogeneity we obtajn 
the following system of equations 

(7.25) amLm = 1,amL m-; + :E (8;am-k)(D~Lm-I)/O:! = 0, 
k+l+lal=; 

1<; 
j = 1,2, .... 

The functions b_m-;(x,~) in (7.25) are uniquely determinated and we have to find 
a proper 'ltDO B such that O'B(X,~) - b(x,~) E S-OO(X x JRn). Such B is the 
solution to the system. 

8. Wave front sets and 'ltDO 

The notion of the wave front set was introduced by Hormander [10] and, 
independently, by Sato (he called it singular spectrum). It is a basic notion of 
microlocal analysis. 

Pseudo differential operators do not increase the wave front set and this is 
one of the most important property of this class of oper~tors. For example, if we 
apply the method of parametrix on elliptic operators, then the set of micro local 
singularities will not be changed. 

--
8.1. Sobolev spaces and the wave front set. First we recall some properties 

of Sobolev spaces. 

A distribution I belongs to HB(JRn) if and only if (1- b.)B/2 lE L2(JRn). 

Note that (1 - b.)B/2 is an elliptic 'ltDO of order 8. (Note in this section we 
deal with operators with symbols in SB = S:,o, 8 E JR.) 

Let X be an open set in ]Rn. Then Htoc(X) is the space of distributions 
I E V(X) such that Al E L~oc(X) where A is proper elliptic pseudodifferential 
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operator of order s. Note, I E Lloc(X) if and only if for every cp E Cg'(X), 
Icp E L2(X). 

Proposition 8.1. (1) Let I E 1J'(X). Then I E HtoC<X) if and only if 
AI E Lloc(X) for every proper \.[I DO A of order s. 

(2) A(Htoc(X» c H;o~m(x) for every \.[IDO A of order m. 

Proof. (1) Let A be a proper \.[IDO. Then SI E Lloc since AI = AB-IB/, 
where B is a proper elliptic operator of order s. Thus the assertion follows. 

(2) Since the composition of two proper operators of orders ml and m2 is a 
proper one of order ml + m2, Part 1 implies that A(Htoc) C H;o~m, where A is a 
proper pseudo differential operator of order m. 0 

Note that U --+ Htoc(U) is a sheaf with respect to the restrictions. (For the 
definition of a sheaf we refer to next section) 

Definition 8.2 Let K be a compact subset of X. Define HI< = H;oc(X) n 1J'K 
(where V K denotes the space of distributions with supports in K). 

With the appropriate scalar product, HK(X) is a Hilbert space (H;oc(X) is 
a Frechet space). 

The following assertion is important for the microlocal analysis of distribu-
tions. . 

Theorem 8.3. Let A be a proper elliptic pseudodifferential operator of 
order m on X and lE V'(X). If Allx. E H;oc(X'), then Ilx. E H;o~m(x'), where 
X' C X, X is an open set. 

Proof. Let B be a proper operator in Hs-ml.-m which is a parametrix for 
A (BA = 1+ R, where R is a smoothing operator). We have shown in Proposition 
7.9 that for every I E V'(X), BAI - lE COO(X). Let x E X and 9 = </JAI, where 
</J E Cg'(X), and </J = 1 in a compact neighbourhood of x. Then 9 E H;oc(X) and 
g-Allv = 0, where V = intK. Moreover, (Bg-BAf)lv, (Bg-1)lv E COO(V) and 
since B is of the order -m, by Proposition 8.1, (2) it follows that Bg E H;o~m(x). 
So Ilv E Hs+m(V). This holds for every x E X' and this implies Ilx. E H;o~m(x'). 
o 

Definition 8.4. Let X be open in ]Rn, (xo,eo) E X X (an\{O}) and u E V'(X). 
Then (xo, eo) is not in WF(u) if there exists v E £'(X) such that u = v in a 
neighbourhood of Xo and there exists e > 0 such that for every N > 0 there exists 
eN > 0 such that 

(8.1) 

that is, v(e) rapidly decreases in a conic neighbourhood of eo. In this case it is said 
that u is microlocally regular in (xo, eo). 

The closed conic set WF(u) C X x (an\{O}) (closure in X x an \ {O} of the 
complement of the set of all microlocally regular points) is called the wave front 
set of the distribution u. 
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Theorem 8.5. If (xo,eo) is not in WF(u), then (xo,eo) is not in WF(tptt) 
for every tp E C:'. 

Proof. Let re be an open cone of the form re = {.,., I Tfu - ~ < E} and 
v EE', u = v in a neighbourhood of Xo. Then 

.. -
(cpv)(e) = v(e -1])cj;(1]) d1] + v(e -1])cj;(1]) d1], 

I'IISR I'II>R 

for e E re, where R will be deteImined later. We have 

(1 + le - .,.,I}P(1 + 11]I}-L d1] 
I'II>R 

where we have used the Paley-Wiener theorem for v E E' and tp E c:, (Iv(e)1 :5 

C(1 + IWP, Icj;(e) I :5 (l:\tDL ). This implies 

11jv(e)1 :5 C sup Iv(e -1])1 + CCL(1 + lel)p (1 + 11]l}p-L d1] 
I'IISR I'II>R 

5: CC sup Iv(e -1])1 + CCdl + leI)P Rn+p-L. 
I'IISR 

Put R = lel l / 2 • IT e belongs to a cone re', E' < E, then e -1] Ere for large enough 
e and 11]1 < R. Beside that, le -1]1 ~ lel and Rn+p-L ~ lel(n+p-L)/2. For large 

- -
enough L we obtain that (cpv)(e) rapidly decreases when lel-+ oo,e Ere'. 0 

By this theorem it follows that in Definition 7.10 we can take v = tptt, tp E 
C:'(X), tp = 1 in a neighbourhood of Xo. 

Example 8.1. 1. WF(o(x» = {(O, e), e E an \ {On. 2. Since O(Xl) = 
O(Xl) ® il:R,,-I, where an - l = {x' = (X2, ... , xn)} and il:R,,-l = 1 for x' E an - l , it 
follows that WF(o(xd) = {«O, x'), (ell 0», x' E an -l, el E a \ {On. 

Proposition 8.6. Let 11": X x (JRn\{o}) -+ X be the natural projection and 
let u E V'(X). Then 1I"WF(u) = Sing supp u. 

. 

Proof. IT Xo is not element of Sing suppu, then by taking tp E C:'(X),tp(x) = 
1 in a neighbourhood of xo, and tp(x) = 0 in a neighbourhood of Singsuppu, 

- "-

we obtain that tpu E C:'(X). This implies (cpv) E S(JRn ) and thus Xo is not in 
1I"WF(u). 

Let Xo f/ 1I"WF(u). For every eo E sn-l there exist tpF.o E C:'(X) and a 
conic neighbourhood rF.o of eo such that tpF.o(x) = 1 in a neighbourhood of Xo and 

(tpF.ou}(e) rapidly decreases in rF.o. Since sn-l is compact there exist finitely many 
points 6, ... , eN such that sn-l is covered by r (1 n sn-l , ... , r F.N n sn-l. Thus, 

r(w" ,fF.N cover an\{O}. Then, by putting tp = n~l tp(;, we obtain that (tptt) 
rapidly decreases, and this means tptt E C:'(X), i.e. u E Coo in a neighbourhood 
of Xo. So, Xo is not in Singsuppu. 0 
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Proposition 8.7. Let u E P(X) and (xo, ~o) ~ WF(u). Then there exists a 
classical \If DO A of order 0 such that 0' A = 1 (mod S-oo) in a conic neighbourhood 
of(xo,~o) and Au E C~(X). 

(Recall that a conic neighbourhood of (xo, ~o) is of the form U x rR.eo' where 
U is a neighbourhood of Xo and rR.eo a cone around ~o (cf. Definition 7.18) 

.. ... 
Proof. Let cp E C~(X), cp = 1 around Xo. Then (cpu)({) rapidly decreases in a 

conic neighbourhood of ~o. Let X(e) E coo(lRn),X(t{) = X(~) for t ~ 1, I~I ~ 1 (X is 
homogeneous of order 0 for I~I ~ 1.), X(~) = 1 in some small enough neighbourhood 

of ~o. This means that X(~)(CPU)(~) rapidly decreases, so X(D)(cp(x)u(x» E COO(X). 
But then 1jJ(x)X(D)(cp(x)u(x» E C~(X) if 1jJ(x) E C~(X). We can take 1jJ such 
that 1jJ(x) = 1 in a neighbourhood of Xo. Then A = 1jJ(x)X(D)cp(x) satisfies all 
assertions of the proposition. 0 

Note that the operator A = 1jJ(x)X(D)cp(x) from the previous proposition is 
locally elliptic (see Definition 7.18). 

Theorem 8.8. Letu E 1)'(X) , (xo,~o) E Xx (JRn\{o}) be given as well as the 
classical operator A defined by the principal symbol am (x,~) E C sm (X x JRn). Let 
either u E ['(X) or A be proper. Suppose that am(xo,~o) "10 and Au E COO(X). 
Then (xo,~o) ~ WF(u). 

Proof. By Proposition 7.19 and Section 7.4, we can make the parametrix for 
a classical elliptic operators. So there exists a classical pseudodifferential operator 
B with the symbol in cs-m(x x JRn), such that O'BA = 1(modS-00

). Since 
BAu E COO(X) we can assume that O'A = 1(modS-00

) in a conic neighbourhood 
of (xo,~o). 

Let X(~) = 1 in a neighbourhood of ~o, X(~) E coo(JRn),X(~) is homogeneous 
of zero order with respect to ~ for I~I ~ 1 and let cp(x) E C~(lRn), cp = 1 in a 
neighbourhood of Xo. Let the supports of cp, X be chosen such that 

x(~)cp(x)O' A (x, {) = X(~)cp(x) (mod S-oo). 

Then X(D)cp(x)A - X(D)cp(x) is smoothing operator, and since X(D)cp(x)Au E 
Coo(X), it follows 

, 

(8.2) 

IT we prove that 

(8.3) 

.... ... .... ... 
then it would follow that X(~)(cpu)(~) E S(JRn ), and specially, (cpu)(~) would rapidly 
decrease in a conic neighbourhood of ~o, what we are aimed to prove. 

The implication (8.2) {:: (8.3) follows from the following lemma, which is 
formulated separately because it has a more general meaning. 0 
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Lemma 8.9. Let v E £'(]Rn),X(e) E S;::o, p > O. Then for every N > 0 and 
et E NO there exists Co,N such that 

(8.4) IDOx{D)v{x) I ~ co,Nlxl-N, x ERn, d{x,suppv) ~ 1. 

Proof. We can consider only the case et = 0, because eOX{e) E S;;,~Hol. Also, 
we may assume that v is continuous because every element v E £' (]Rn) is of the 
form v = L:hl~p D"'v.." v.., E C{]Rn). We have 

I 
(8.5) X{D)v{x) = (27r)-n 

Integration by parts gives 

Ix - YI-2N{_~()Nei(z-II)( = ei (Z-II)( 

From (8.5), with d{x,suppv) ~ 1, we have 

By choosing large enough N, such that (_~e)N X(e) E S;,;;-I, one can see that the 
integral in (8.6) converges absolutely and satisfies C(l + X2)-N. 0 

Definition 8.10. Let A be a classical pseudodifferential operator with the 
symbol in csm(x x ]Rn). Then 

char(A) = {(x,e) E X x (Rn\{O}), am(x,e) = O}. 

Theorem 8.8 directly implies the following important (and practical) charac
terization of the wave front set. 

Theorem 8.11. (1) Let u E £'(X) and A be a classical ~DO with a symbol 
in csm(x x Rn). If Au E COO(X), then WF(u) C char(A). 

(2) Let u E £'(X). Then WF(u) = n char(A), where the intersection is taken 
over all classical operators of the order zero (with the symbols in CSO(X x ]Rn») 
for which Au E COO(X). 

(3) Let u E V'(X). Then WF(u) = n char(A) , where the intersection is taken 
over all proper classical operators of the order zero for which Au E COO{X). 

(4) Let A be a proper ~DO with the symbol in csm(x x ]Rn), U E V', or 
u E £'(X). If am(xo, eo) =F 0 and (xo, eo) ~ WF(Au), then (xo,eo) ~ WF(u). This 
means 

(8.7) WF{u) C char(A) U WF{Au). 

The importance ofthe second assertion is that the definition ofWF{u) makes 
sense if X is a manifold (see Section 9.1). This theorem gives us the estimate of 
the propagation of singularities of a pseudodifferential equation. 
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Theorem 8.12. (Microlocallity of wDO's) Let u E TY, A be a wDO with 
symbol in S;;:6(X x an), 0 ::; 6 < p ::; 1 and let A be proper or u E £/(X). If 
(xo, eo) ~ WF(Au). In other words 

(8.8) WF(Au) C WF(u). 

Proof. The condition (xo,eo) ~ WF(u) is equivalent to the existence of a 
proper classical wDO of order 0 such that Pu E Coo(X) and up = 1(modS-00

) in 
a conic neighbourhood of (xo, eo). Let Q be a proper classical wDO of order zero 
such that qo(xo, eo) # 0 (qO is the main symbol of Q) and uQ E S-oo outside some 
small conic neighbourhood of (xo, eo) an d 

PQ = Q a.nd QP = Q (mod smoothing operators). 

We shall show that QAu E Coo(X) because Up = 1 (mod S-oo) in a conic neigh
bourhood of (xo, eo) a.nd UQA -UQAP E S-oo in this neighbourhood, and uQ E S-oo 
out of it. We have that QA - QAP is smoothing. So, it is enough to verify that 
QAPu E Coo(X). But this follows immediately, because Pu E Coo(X). The fact 
that (xo, eo) ~ WF(Au) follows from the previous theorem. 0 

From the two previous theorems we have the following theorem. 

Theorem 8.13. If u E £/(X) and A is a classical wDO with a symbol in 
csm(x x an), then 

WF(Au) C WF(u) C WF(Au) U char(A). 

With the assumption that A is proper, the assertion holds for u E V' (X). Specially, 
if the operator A is elliptic, then WF(Au) = WF(u). 

8.2. Microfunctions. In this section we shall present the notion of a micro
function by following [11]. Microfunctions are the equivalence classes in the space 
of distributions whose tepresentatives are determined only with their singularities. 

First, we shall present some of the basic facts of sheaf theory. 

Let X be a topological space, U be an open set in X. Let {:F(U)}Uopen set inX 
be a family of vector spaces. For U such that V C U there exists a linear mapping 
PVU : :F(U) -+ :F(V) such that :F(U) is a vector space of the functions on U and 

PUU = id and pwv 0 PVU = PWU, 

for W eVe U. 
The family {:F(U),pu,v, U, V c X} is a presheaf. :F(U) is called the set of 

sections. In the sequel we shall consider the case when :F(U) is a subspace of :F(V) 
and if pu,v is a restriction of f E :F(U), then pu,v f = flY is a restriction of f to 
V for V C U. 

Presheaf is a sheaf if the following two conditions are satisfied. 

(i) Let U = U~EA U~ (all sets are open) and f E :F(U). IT for every ~ E A 
flu~ = 0, then flu = O. 
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(ii) Let f>.. E F(U).) and let for every A,p E A, I). = I~ in U). n Uw Then there 
exists I E F(U)'EA U).) such that Ilu>, = I).· 
Let F and Q be presheaves or sheaves on a topological space X. The family 

h = {hu} of linear mappings F(U) -+ Q(U) is a (pre)sheaf homomorphism if the 
following diagram commutes I 

F(U) h
u • Q(U) 

F(V) ---+) Q(V) 
hv 

Let F and Q be presheaves on a topological space X. Then F is a subpresheaf 
of Q if for every open set U there exists associated inclusion iu : F(U) -+ Q(U) 
such that the family i = {iu} is a presheaf homomorphism. In the same way we 
define a subsheaf. 

Let F be a (pre)sheaf on X and x EX. Then Fz = limindzEu F(U) is called 
a stalk in x. An element in Fz is called a section germ or a germ of Fin x. 

For a presheaf F one can construct a sheaf F with the same stalks as in F. 
This sheaf is called the associated sheaf for presheaf F. IT a presheaf F satisfies 
condition (i) for sheaves, then its associated sheaf is simply defined: 

F(U) = limind{u>'l ((s).) Is). E F(U).), s).lu>,nu,. = s~lu>,nu,.}, 

where U). are open subsets of U. 
Now we shall present the definition of a microfunction. 

Let X be an open set in JRn and SX = X X sn-l. Let U be an open set in 
SX and CU be a cone generated by U in X x JRn: 

CU = {(x,Ae)l(x,e) E U,A > O}. 

Let us define 

om(u) = sm(CU)jS-oo(CU) and O(U) = U om(u) = Soo(CU)jS-oo(CU). 
mEN 

The elements of these sets are called classes of pseudodifferential operators (of order 
m) on U. IT there are no misunderstandings, we shall omit the word "class". 

Let us define 
Sing(X) = V' (X)jCoo (X). 

This is a space of singularities on X. The family Sing(X), X c JR, is a sheaf. For 
I E V', the support of I in Sing(X) is Sing supp I in V'. wDO acts as a local 
operator on the space of singularities, which means that it does nod increase the 
singular support of the distribution (pseudolocality). 

Definition 8.14. Let lE V'(X) and (x,e) E X x JRn \ {O}. It is said that I 
is a COO-function in (x, e) if there exists a proper wDO A, elliptic in (x, e), such 
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that Af E Coo(X). Singular spectrum of f, SingSpf, is the closure of the set of 
all points (x,~) in X x an in which f is not Coo. 

Definition 8.15. Let f E V'(X) and U be an open set in SX. We say that 
f E Coo(U) if SingSp f nU = 0. The microfunction defined by f in U is a class of 
f modulo the space Coo(U). I 

By Section 8.2, one can see that the notions of WF and Sing Sp are equivalent, 
so in the sequel we shall use only the notion of the wave front set instead of singular 
spectrum. ' 

We shall define the sheaf of the microfunctions in one dimension. 

Recall, '[)' (X), X c a is a sheaf of the distributions and SO = {-I, I} is the 
unit circle in a. 

We say that u E V'(X) is microanalytical in (x, 1) (resp. (x, -1», x E X if 
there exists a neighbourhood U of x and v E e', u = v on U such that for every 
NE N there exists a constant CN such that 

1.r(v}(~)1 < CN(I + e)-N/2, ~ > 0 (resp. ~ < 0). 

The point (x, ~o) (where ~o = 1 or -1) is in WF u if and only if it is not microana
lytical in (x, ~o). 

Let us define a subsheaf Coo* ofthe sheaves V'(X) x {-I} EBV'(X) x {I} in 
the following way. Definition 8.16. Let 

Coo* = {f E V'(X)j WF(u) n X x {-I} = 0} 

EB {J E V'(X}j WF(u} nX x {I} = 0}. 

The associated sheaf for a presheaf V' (X) x {-I} EB V' (X) x {I} / Coo* is denoted 
by C and it is called the sheaf of microfunctions. 

Intuitively, f E V'(X} defines a germ in (x,~o) (eo = ±I) modulo germs of 
any Crz,eo)-function which are microlocal in (x, ~o). 

The support of a microfunction is a wave froni set of a distribution which 
defines it. 

9. Change of variables 

. Let (y,"1) -+ (x,~), (y,"1) E V, (x,e) E U, be a diffeomorphism where U 
and V are conic regions in an x aN and anI x aN, respectively, x = x(y, 77), 
e = ~(y, 77), where x(y, 77) is positively homogeneous of order 0 and e(y, 77} positively 
homogeneous of order 1 with respect to 77. Let b(Y,77} = a(x(y, 77}, e(y, 77» . 

Theorem 9.1. Let a(x, e} E S;::6(U). Assume that one of conditions 
a) p + 5 = 1; b) p + 5 ~ 1 and x = x(y}; c) x = x(y}, e = e("1}; 

holds. Then b E S;::6 (V). 

Let us consider the oscillating integral 

ei9(z,e)a(x,e}u(x}dxcLe [osc] = (A(x},u(x», 
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where 
A(x) = eiq,(z,() a(x, {) de [osc] 

and where we use the same notions as in the Section 5. 

A phase function l/J( x, {) is called regular if d( al/J / a{j ), j = 1,... , N, is a 
linearly independent set in Cq" i. e. if the range of the matrix (l/J((l/J(z)Nx(N+n) 
equals to N. . 

(We shall use the notation 

N al/J n al/J 
d(al/J/a{j) = L: a{ a{. dele + L: ax ae. dxle, 

1e=1 le J 1e=1 le J 

and let us remind that Cq, = ((x,{), l/J(x,{) = O} and Rq, = X \ C.) 
Let a E S;::.s(X x ]RN) and a = 0 in a conic neighbourhood of Cq,. Then 

A E COO(1Rq,) and one can simply prove that A E COO(X). 
The following lemma is interesting in its own. It is called Hadamard's lemma. 

Lemma 9.2. Let l/J1(X,{), ... ,l/JIe(x,{) be in COO(U) and let them be posi
tively homogeneous of order 0 with respect to {. Let dl/J1, .. : , dl/J1e be linearly in
dependent on the set C = ((x,{) E UIl/Jj(x,{) = 0, j = 1, ... ,k} and a E S;::.s(U), 
ale = 0 and p + 6 = 1. Then there exists aj(x,{) E ~t.s(U), j = 1, ... ,k such 
that 

le 

(9.1) a = L: ajl/Jj. 
j=1 

If a(x, {) has a zero of infinite order on C, then the same holds for all aj(x, {) on 
C as well. 

Theorem 9.3. Let l/J be a regular phase function, a E,S;::.s(X x ]RN) and let 
one of the following conditions hold:· 

1) p > 6 and p + 6 = 1, 2) P > 6 and l/J is linear with respect to {. 

Then: a) If a has a zero of infinite order in Cq" then A(x) E COO(X). 

b) If a = 0 in Cq" then there exists b E S;:'i(p-.s)(X x ]RN) such that 

1q,(au) = 141(00) for every u E Cff(X). 

Proof. Suppose that 1) holds. If ale = 0, by previous lemma, we can write 

N 

(9.2) a = L:ajl/Jj,aj E s;;;t.s(U), 
j=1 

where l/Jj = al/J/a{j. By using the fact that l/Jjeiq, = -i 8~i eiq, and integrating by 
parts, we obtajn 

• 
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Since :~; E S;::t.s-P(U), we have proved the assertion a). This implies that if a has 
an infinite order zero in CiP' then b can be chosen such that it has the same property. 
Thus, we can transfer the assertion a) to the case a(x, e) E s;,f (X x aN), where 
M is arbitrary large. But, then the integral 

A(x) = eiiP(Z'()a(x,e) £le 
RN 

absolutely uniformly converges with respect to x, as well as all the integrals which 
ca.n be obtained from it by differentiating the integrand with respect to x of order 
up to I(M), where I(M) --t 00 as M --t 00, which implies the smoothness of A(x). 
o 

Let '" : X --t Xl (X and Xl are open), x = ",(t) , x E Xl C an, t E X c an 
be a diffeomorphism. Then the induced mapping, the pull back, ",* : COO(Xt} --t 

COO(X) is defined by ("'*t/J)(t) = (t/J 0 "')(t) = t/J(",(t». . 
Let A be a 'liDO on X. We define Al : COO(Xl ) --t COO(Xl) by the diagram 

COO (X) 

~·l 
COO (Xl) 

where "'I = ",-1. Then 

Alu = (A(u 0 ",)(x» 0 "'11 i.e. 

AlU(X) = (211") ei(~l(Z)-P)(a("'l(X),p,e)u(",(p»dp£le. 
R2 .. 

If we change the variables by p = "'I (y), then 

(9.3) AlU(X) = (211") ei(~l(Z)-~l(U»(a("'l(x)''''l(y),e)u(Y)la'''lldY£le, 
R2.. ay 

where ap/ay = a",l/8y and la"'l/ayl is Jacobian. 
This means that Al is a Fourier integral opera.tor with the phase function 

l/J(x,y,e) = ("'1 (x) - "'1 (y»e· . 

Theorem 9.4. With the above notation, Al is a pseudodifIerential operator 
for 1 - p $ J < p. 

This will be a special case of the following theorem. 

Theorem 9.5. Let <p be a phase function on X x X x an such that 
1) l/J(x,y,e) is linear with respect to e. 
2) l/J(x,y, e) = 0 if and only if x = y. 

Let A be a Fourier integral operator 

(9.4) Au(x) = eiiP(z,u,fJ)a(x,y,fJ)u(y)dyd8, 
R2 .. 

• 

/ 



Pseudodifferential operators 165 

where a E S;;:6 and 1 - P $ 0 < p. Then A is a pseudo differential operator with an 
amplitude in S;;:6' 

We need the following lemma for the proof. 

Lemma 9.6. Let assumptions 1) and 2) of Tbeorem 9.5 bold. Tben tbere 
exists a neigbbourbood X of tbe diagonal ~ and a Coo mapping 1/J : X -+ Gl (n, JR) 
(regular matrices of order n on JR) such tbat: 

a) 4>(x, y, 1/J(x, y)e) = «x - y), e}, (x, Y) E X2. 

b) det1/J(x,x) .det4>~(x,y,e)I3I=z = 1. 

Proof. By 1), 
n 

4>(x,y,O) = ~4>j(x,y)Oj. 
j=l 

Now, by 2) we have 4>j(x,x) = 0 and if 4>j(x,y) = 0 for j = 1, ... ,n, then x = y. 
Note, 

(4)~,4>~) = 4>~.(J = (t :4> OJ, •.• ,t :4> OJ,4>l,''' ,4>n). 
o 1 xl 0 1 Xn 
]= ]= 

By differentiating the expression 4>(x, x, 8) = 0 with respect to x, it follows 

(9.5) 

4>~(x,y,8)lz=31 + 4>~(x,y,8h'=31 = 0, 

4>~ (x, x, 8) = -4>~ (x, x, 8). 

• I.e. 

From 4>8(x,x,O) = 0 and 4>~.31.(J(x,y,8)lz=31 ~ 0 it follows 4>~(x,y,8)lz=31 ~ O. IT 
this is not true, then (9.5) implies 4>~(x,y,8)lz=1I = 0, i. e. 4>~.31.(J(x,y,8)lz=1I = 0, 
which gives a contradiction. This means that there exists k E {l, ... ,n} such that 
",n 8<Pi 8 J. 0 L.Jj=l 8z. jlz=1I r ,so 

(9.6) 

By Hadamard's lemma (Lemma 9.2), for close enough x and y we have 

n 

4>;(x,y) = ~4>kj(X,Y)(Xk -Yk), 
k=l 

. 

where 4>kj E Coo (X'), X' is some neighbourhood of the diagonal in X x X. We also 
have 

(9.7) ,/.. o( ) _ 84>j(x,y) I 
'l'k] x, X - 8 . Xk Z=II 

Denote by 4>(x,y) the matrix (4)kj(X,y)). From (9.6) and (9.7) it follows that there 
exists a neighbourhood 0 of the diagonal in X x X such that det 4>(x, y) ~ 0 for 
(x, y) E O. Let 

(9.8) 1/J(x, y) = 4>(x, y)-l (the inverse of 4» 

, 

/ 
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Since 
n 

ljJ(x,y,8) = L ljJkj(x,y)8j (Xk - y,,:) = «x - y),ljJ(x,y)8), 
j,k=l 

by putting ljJ(x,y)8 = ~ we obtain a), while b) follows from (9.7) and (9.8). 0 

Proof of Theorem 9.5. We assume that a(x,y,8) equals 0 for (x,y) E X x 
X \ 0', where 0' C 0 and 0' is a neighbourhood of /}.. By putting 8 = ljJ(x,y)-l~ 
in (9.4) we obtain 

From Theorem 9.1 it follows that al(x,y,~) = a(x,y,tP(x,y)~) is in S;::6(X x X x 
an) . 

9.1. Pseudodifferential operators on Coo-manifolds. We will give the 
definition of pseudodifferential operators on a manifold, but before that we shall 
recall the definitions of the theory of generalized functions on a manifold. Let us 
remind that Hausdorff topological space M is locally Euclidean of dimension n if 
every point in M has a neighbourhood which is homeomorphic to an open subset 
of an. 

IT tp is a homomorphism of an open set U c M on an open subset of an, 
tp is called the coordinate mapping and (U, tp) is called the coordinate system or 
coordinate section. Recall, a differentiable structure :F of the class Ck, k E [1,00], 
on a locally Euclidean space M is a collection of coordinate systems {(Ua , tpa), £lE 
A} which satisfies: . 

(i)] UaEA Ua = M. 

(il) tpa 0 tppl is of the class Ck in tp{3(Ua n U{3) for every a,{3 E A. 

(iii) The collection :F is maximal with respect to (ii) which means that if (U, tp) is 
a coordinate system such that tp 0 tp;;l and tpa 0 tp-l are of the class Ck for 
every a E A, then (U, tp) E :F. 

IT :Fo = {(Ua , tpa), a E A} is an arbitrary collection of coordinate systems 
satisfying (i) and (ii), then there exists a unique differentiable structure:F contain
ing :Fo. :Fo is called the atlas of a manifold M. 

, 

In the sequel we shall consider only COO-manifolds. Let M and N be coo_ 
manifolds. 

Let 0 C M be open. Then F: 0 -t a is a COO-function on 0, (f E Coo(O» 
if f 0 tp-ll<p(uno) is a COO-function for every coordinate section (U,tp). 

A mapping tP : M -t N is of the class Coo if for every two coordinate sections 
(U, tp) on M and (Ul , tpt) on N, tpl 0 tP 0 tp-ll<p(u) is a COO-function. 

The important construction in the analysis on manifolds is the partition of 
unity. Let M be a manifold and U = {Ua , a E A} be a cover of M. Then there 

, 
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exists a Coo partition of unity {CPi, i E N} corresponding to the cover U such that 
supp CPi is compact for every i E N and supp CPi C U at for some a EA. 

H v E C~(u) (where U = cp(U», then we define 

U= 
v 0 cP, 

o , 
in U, 
otherwise. 

The definition is the same if v E Ck(U) or v E V(U). We shall use the 
notation U = v 0 cp. 

Let U E Ck(M) and Uk = U 0 cp;1, where (Uk,CPk) is an arbitrary coordinate 
section. There holds: 

(a) U = Uk 0 CPk = Uk' 0 CPk' on Uk n Uk', 
(b) Uk = Uk' 0 (CPk' 0 cp;1), which is denoted by (CPk' 0 cp;1)*Uk' = Uk. 

Conversely, if (b) holds for arbitrary sections (Uk,CPk) and (Uk',CPk'), then 
there exists a unique function U E Ck(M) satisfying (a). 

Definition 9.7. Let:F = {(Uk, CPk), k E A} be a differentiable structure of a 
manifold M. H there exists a distribution Uk in V'(CPk(Uk» for every coordinate 
section (Uk,tpk) and if / 

(c) Uk = Uk' 0 (tpk' 0 tp;1) on tpk(Uk n Uk'), 
then {Uk, k E A} is a distribution in M. We shall denote it by U E V'(M), and 
that is in fact the notation for the family {Uk, k E A}. We shall use the notation 

-1 Uk = U 0 CPk . 

This definition generalizes the definition of a function in Ck(M). The proof 
of the next theorem is omitted. 

Theorem 9.8. Let :F = {(Uk, tpk), k E Aa} be an atlas for M. If {Uk, k E 
Aa} is a family of distributions in V'(CPk(Uk» satisfying (c) for every k,k' in AQ , 

Then there exist one and only one distribution U E V'(M) such that 

U 0 tp;1 = Uk for every k E Aa. 

There appears a natural question: Why one can not 'define the distribu
tion on a manifold M as a continuous linear function on C~(M)? The reason is 
that there does not exist an invariant procedure for the definition of the integral 
J jl/J, j E C(M), l/J E CCf'(M) such that j can be identified with a continuous linear 
functional. 

Let U be a continuous linear functional on C~(M). For every (Uk,CPk), by 

Uk(l/J) = u(l/J 0 tpk), l/J E C~(Uk) 

is defined an element in V'(tpk(Uk». But {Uk, k E A} does not satisfy condition 
(c). 

Let l/J E C~(tpk(Uk n Uk'», Then 

(Uk,l/J) = (U,l/JOtpk) = (U,l/J 0 CPk otp;,t 0cpk') = (Uk',l/JOCPk ocp;.1). 

, 
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By the change of variables: t = CPk ° cp;,l(x) we obtain 

(uk(t),cfo(t)) = (uk,(x),cfo0cpk ° cp;,l (x» = (Uk'(CPk' ocp;l(t»,cfo(t)1
8

CPk' o;:;l(X) I), ' 
• l.e. 

(9.9) 

This is similar to condition (c), but now we have an additional multiplication by 
Jacoby's determinant which equals 18cpk ° cp;,l(x)/8tl. 

A family {Uk' k E A} of elements in 1)'(CPk(Uk)) satisfying (9.9) is called a 
distributional density. 

In the same way we define a Ck-density by (9.9). 

IT a is a strictly positive Coo-density on M, and U E 1)'(M), then au is the 
distributional density, and the mapping u ~ au is a bijection of the space of the 
distributions to the space of distributional densities. 

Let U be a distributional density and x = cp(y). There holds 

(9.10) (cp*U(x),t/J(x» = (u(y),cp*t/J(y» = (u(y),t/J(cp(y))) / 

= (U(cp-l (x)), 1 Jlt/J(x)) , 

where IJI is a Jacoby's determinant. This formula will be useful for the definition 
of a pseudodifferential operator on a manifold which acts on distributions with 
compact supports. 

Let A be a linear operator, A : C8"(M) ~ COO (M), where M is an n
dimensional COO-manifold. Let (U, cp) be a coordinate section of the manifolds. 
Then the commutative diagram 

C8"(U) A ) Coo(U) 

~·T T ~. 
C8"CU) ---+) COO CU) 

Al 

uniquely defines the operator Al. 

Definition 9.9. A: C8P(M) ~ Coo(M) is a wOO on M if for every coordinate 
section the operator Al defined above, is a wOO on Ul. 

By using (9.10) and the analogous procedure as in the case of ordinary wOO's 
and like in the previous definition we have that A is a wOO on a manifold if Al is 
a wOO on U, where Al is defined by the following commutative diagram 

['(U) 

~;lT 
['(U) 

A ) 1)'(U) 

1~· 
----+) 1)'(U) 

Al 
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Theorem 9.5 ensures that a q,DO on an open set X C IRn can be considered as q,DO 
on manifold X. Theorem 9.1 shows that S;;:t5(T* M) is well defined for I-p 5 d < p. 

Part 11. COLOMBEAU GENERALIZED FUNCTIONS AND q,DO 

In this part we present the basic concept of the pseudodifferential calculus in 
the frame of Colombeau's generalized functions. It is developed in [16), [17), [18) 
, [12) as well as by Oberguggenberger [14). 

10. Basic notions 

We recall in this section the notation and notions in Colombeau's theory. 

Ao(lRn) denotes the set of the functions </J in C8"(lRn) such that JR" </J(t) dt = 
1, Aq(lRn) = {</J E .40, JRn ti</J(t) dt = 0, 0 < lil 5 q}, q E N, where t i = ti1 

••• t~. 

Obviously, if </J E Aq, q E No, then for every e: > 0, </Je(x) = e:-n</J(x/e:), 
x E IRn, belongs to Aq. 

IT </J E .40, then it's support number d(</J) is defined by 

d(</J) = sup{lxl, </J(x) :I O}. 

In the sequel we assume that </J in .40 has the support number equals one, 
d(</J) = 1, i.e. supp</J C B(O, 1). 

Denote by &[0) the set of the functions R: .40 x 0 --? C, (</J, x) ..... R(</J, x), 
which are in Coo(O) for every fixed </J. Note that for any I E Coo(O), the mapping 
(</J,x) ..... I(x), (</J,x) E .40 x 0, defines an element in &[0) which does not""'depend 
on </J. 

The space of functions R : .40 --? C (resp.lR) is denoted by &o(C) (resp. 
&0 (IR». It is an algebra and it is subalgebra of &[0) in the sense of natural identi
fication of R E &0(C) (resp. &o(IR», R: (</J,x) ..... C(</J) E C (resp. IR). 

A function R E &[0) is called moderate if for every K cc 0 and 0: E No 
there exists N E No such that, for every </J E AN, there exist 1] > 0 and C > 0 such 

• 

that 
180<R(</Je,x)1 5 Ce:-N, x E K, 0 < e: < 1]. 

The set of all moderate elements is denoted by &M[O). 

The set of all moderate elements in &0(C) (resp. &0(1R», denoted by &OM(C) 
(resp. &OM(IR», consists of elements RE &0(C) (resp. &0(1R» which satisfy: There 
exists N E No such that for every </J E AN there exist 1] > 0 and C > 0 such that 

IR(</Je)1 < Ce:-N, 0 < e: < 1]. 

Clearly &M[O) and &OM(C) (resp. &OM(IR» are associative subalgebras of &[0) 
and &0(C) (resp. eo(IR». 

, 
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Denote by r the set of sequences {aq } of positive numbers which strictly 
increase to infinity. 

An element RE CM[O] is called a null element if for every K cc 0 and every 
Cl! E Ni) there exist N E No and {aq } E r such that for every q ~ N and every 
t/J E Aq there exists '1 > 0 and 0 > 0 such that 

\8''' R(t/JE' x)1 $ Oeoq
-

N
, x E K, 0 < e < '1. 

The space of null elements is denoted by N[O]. 
The space of null elements of to(C) (resp. to(JR)) denoted by No(C) (resp. 

No(JR)) consists of all the elements R E COM(C) (resp. tOM(1R)) with the following 
property: There exist N E No and {aq } E r such that for every q ~ N and every 
t/J E Aq there exists '1 > 0 and 0 > 0 such that . 

IR(t/JE)1 $ Oeoq
-

N
, 0 < e < '1. 

Clearly, N[O] and No (C) (resp. No(JR)) are ideals of CM [0] and COM(C) (resp. 
COM(JR)). 

The spaces of generalized functions on 0, g(O), generalized complex numbers 
C and generalized real nnmbers it are defined by 

g(O) = cM[O]fN[O], C = cOM(C)/No(C), it = cOM(JR)/No(JR). 

o I--t g(O) is a sheaf. This implies the natural definition of the support, SUPPg g. 

Note that C and it are not fields and C = it + iR. Because of that, from now 
on, we shall use the symbols COM = COM(C) and No = No(C). 

The classical complex numbers are embedded in C by -
C 3 z I--t R(t/J) = z, t/J E Aa. 

Let 9 E V'. 
4>(y) = t/J( -y). 

Then Cd(g) E g is given by the representative 9 * ~E' where 
• 

Ct is the set of all elements G E C with the following property: For every 
f3 E Ni) there exist N E N, a E JR and 'Y > 0 such that for every t/J E AN there exist 
o > 0 and '1 > 0 such that 

Iafi'G(t/JE,X)1 $ 0(1 + Ixl)'Yeo
, for e < '1, x E JRn

• 

Nt is the set of elements G E E:t. with the property: For every f3 E Ni) there 
exist 'Y > 0, N E N and 9 E r such that for every t/J E Aq, q ~ N, there exist 0 > 0 
and '1 > 0 such that 

Iafi'G(t/JE,X)1 $ 0(1 + IxIFeg(q)-N,fore < '1, x E JRn
• 

It is an ideal of Ct. 
Colombeau's space of tempered generalized functions is defined by gt = 

Ct/Nt. 
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It is said that G E g (G E gt) is equal to H E g (H E gt) in generalized 
distribution sense, G = H(g.d.) (in generalized tempered distribution sense, G = 
H(g.t.d.», if for every ,p E V (,p E S) , 

(G - H, 'p) = 0 in C. 

A E C is associated to eEC, A ~ c, if there exists N E N such that 
lime-+o AI/I.e = c for every t/J E AN. 

G E g is associated to H E g, G ~ H, if for every ,p E 1) there exists N E N 
such that for every t/J E AN 

The definition of t-association is obtained if one takes ,p E S instead of ,p E 1) 

above. 

For the microlocal analysis of Colombeau's generalized functions we shall 
define a subalgebra goo(n) by following Oberguggenberger [13]. 

goo(n) is the set of all G E g(n) which have representatives G(t/J, x) E £M[n] 
with the property: For every K cc n there is N E N such that for every et E No, 
there is M E No such that for every t/J E AN there are C > 0 and '1 > 0 such that 

that 

sup IG(a)(t/Je,x)1 ~ Ce-N , 0 < e <.'1. 
zeK 

One can prove that goo(n) is a subalgebra of g(f!). 

Proposition 10.1. 1. goo (n) n V' (n) = Coo (n) ((13]). 

2. goo(n), n c !Rn is a sheaf. 
• 

3. G E g(n) is goo in n l C n if it is goo at every pOint ofn l . 

The last assertion means: For every x E nl there are open sets U and V such 

x E U, 0' cc V, V cc nl 

and a function ,p E C8"(V), ,p == 1 on 0', such that ,pG E goo(n l ). 

Definition 10.2. Let G E g(n). The complement of the largest open set of n 
in which G is goo is .called the singular support of G, SingsuPPg G. 

Recall, it is said that G is goo in n l C n if Glnl E goo(n l ). 

The set Sing SUPPg G, G E g(n) is defined to be the complement of the largest 
open set n' C n such that Gin. = O. 

From Proposition 10.1 we have that for distributions 

Sing supp / = Sing SUPPg Cd /, / E V' (n). 

Denote by gc(n) the set of all elements in g(n) which have compact supports. 
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IT G E 9c(0), then it belongs to 9c(lR.~) by defining 

G(tP,x) = 0, tP E.40, x E IRn\supPgG 

(and by using the sheaf property of 9 (IRn ) ). \ , 

For every,pl and ,p2 in Ccf (IRn), where ,pl and ,p2 equals one on corresponding 
neighborhoods of suppgG, 

determine the same element in 9t(lRn). They are equal in 9(lRn). 

Thus the mapping M : 9c(lRn) -+ 9t(lRn), symbolically written by 

is linear, multiplicative and injective, which will enable us to consider 9c(lRn) as a 
subspace of 9t(lRn). • 

IT G E 9t(lRn), then Glw E 9(w) is defined by a representative G(tP€, ·)1101, 
where G(tP€,·) is a representative of G. 

IT f E S' (IRn) then Cdt f denotes the corresponding element in 9t (IRn) defined 
by 

(f * ~)(x) + G(tP,x), where G(tP,x) E M[lRn]. 

Let G E 9t(lRn) and w be an open set. IT Glw determines an element in 
9°O(w), then we say that it is 9~ in w, where we use this notation to emphasize 
that the generalized function in consideration is from 9t(lRn). 

Let G E 9(0) and if Glw E 9°O(w) where w is a bounded open set in O. Then 
M(ltG), where It E Ccf(lRn) is equal to 1 on W, is 9~ in w. 

(Recall M(ltG) = Itl(X)(It(X)G(tP,x) +N[O]) + M [lRn].) 

Thus the singular support of G E 9t (IRn) is the singular support of G consid
ered as an element of 9(lRn). We define the subalgebra 9~(lRn) as follows. 

9~(lRn) is the set of all U E 9t(lRn) which have a representative G(tP,x) E 
tt[lRn] with the property: There is N E N such that for every et E N~ there is 
M E No such that for every tP E AM there are C > 0 and 1'/ > 0 such that 

IG(a) (tP, x)1 ::; C(1 + Ixl)M e-N , 0 < e < 1'/ • 
• 

Note, if G E 9~(lRn) then G E 9°O(JRn). 

Let ~ E Ccf (IRn) such that ~ = 1 in some neighborhood of zero. Then 
~€(x) = ~(Xe), e E (0,1), is called a unit net. 

Let ~€ be a unit net, B a measurable subset of IRn and G E 9t. Then we 
define 

t,,, 
G(x)dx E C by its representative G(tP€,x)~€(x)dx E EO,M. 

B B 



• 
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IT B = JRn then the symbol t,p is used. One can easily prove that G(<!JE,·) ENt. 
implies iB G(<!JE, X)/JE(X) dx E Co. Thus the definition of the integral in Qt makes 
sense. , 

-

11. Pseudo differential operators -

We will give the simplest definitions of an amplitude of type p = 1, u = O. 

Definition 11.1. The set of amplitudes Sr; = Sr;(JRn x JRn x JRn x (0, 1)), m E 
JR, is the set of functions a(x, y,~, e), smooth in (x, y,~) E (JRn)3 for everye E (0,1], 
continuous in e E (0,1] for every (x,y,~) E (JRn)3, such that there exists,N E No 
such that for every a,{j,'Y E Ni: there exists C = C(a,{j,'Y) > 0 such that 

(11.1) 

IT there exists N E No such that for every m E JR and every a, (j, 'Y E Ni: there 
exists C = C(a,{j,'Y, m) > 0 such that (11.1) holds, then a(x,y,~,e) E S;oo. 

The following set of amplitudes is suitable for the calculus in the frame of 
Colombeau's generalized functions. 

Definition 11.2. The set of amplitudes S;: = S;:(JRn x JRn x ]Rn X (0,1)), 
m E JR, is the set of functions a with the same regularity properties as in Definition 
11.1 but which satisfies the following: 

There exists N E No such that for every a, (j, 'Y E No there exist C = 
C(a,{j,'Y) and k = k(a,{j,'Y) such that 

18l8~8Ja(x,y,~,e)1 ~ e~ (1 + Ixnk(l + IWm- 1crl , (x,y,~) E (JRn)3,e E (0,1]. 

Elements of S;,.OO are appropriately defined. In this case constants C and k depend 
also on m. 

We will use Definition 11.1 in Section 11 and later in order to avoid a lot of 
technical difficulties which may appear. 

Definition 11.3. Let a E S;:, r E No and /JIE (~), /J2E (y) be unit nets from 
CIf(JRr) and CIf(~), respectively. Let GE Qt(JRn). 

We define Ap2r and AP1P2 on Qt(JRn) by 

( ) A G(<!J ) - 1 ei(x-!l,() (1 _ D. )[(iml+n)/21+r 
11.2 I-'2r E, X - (21l")n R2n (1 + 1~12)[(Iml+n)/21+r !I 

X (a(x,y,~,e)/J2E(y)G(<!JE,y)dycLe, (<!J,x) E Aa x JR 

where [(Iml + n)/2] is the integer part of (Iml+ n)/2, and by 

(11.3) AI-'11-'2G(<!JE' x) 
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Note, if m < -n then we take r = ° in (11.2) and 

AI'2G(cPe, x) = AI'2G(cPe, x) 
1 -- (211')n 

Theorem 11.4. 1. AI'2r and AI'11'2 are linear mappings from ~ft(JRn) to 
~ft (JRn). 

2. For every I'le(e),1'2e(y),r and G E Qt(JRn), AI'2rG and AI'1P2G are equal 
in (g.t.d.) sense. 

3. For every I'le(e),P1e(e),1'2e(Y),P2e(Y) and G. E Qt (JRn), AI'112G and 
Aii1ii2G are equal in (g.t.d.) sense. 

Proof. The proof of 1 is obvious. Note that (11.3) is equal to 

A G(cP ) - 1 ei(z-tl,() (1 A )[(lml+n)/21+r 
1'11'2 e, X - (211")n R2n (1 + leI2)«iml+n)/21+r - tI 

/ 

X (a(x, y, e, e)l'le(e)1'2e(y)G(cPe, y» dy de. 
Since the proof of 3 is typical for the calculus we will collect here the equalities 

and the estimations which will be used in the sequel. 

There holds 

(1 - Az)-ei(z-tl,() = (1 + le I)B ei(z-tl,() , 

(1- At)8(I- Az)Pei(z-tl,() .( _ t) 
-'--...,..,--" .. ..:..,..-.:::-:-:-....,.....;=-:-=__ = e' z tI ... 

(I+ly21)8(I+le2I)p , 
(11.5) 

(1 - Az)Bei(z-tl.() = (1 + A
tI

)8ei(Z-tl,(). 

A unit net I'e(e), e E (0,11, where I'(e) = 1, lel ~ A, I'(e) = 0, lel ~ B > A, 
satisfies the following estimation. Let Cl E Ni). Since 

laarl'e(e)1 = lelarlaarl'(ee)l, A ~ leel ~ B 

it follows 

(11.6) 

IT I'e and Pe are unit n~!s determined by different functions 1'1 and 1'2 then, by the 
above notation, . 

(11. 7) Il'e(e) - Pe (e)1 = 0, for lel ~ min~, A} and lel ~ max~, B} . 

Now, we will give the proof of 3. Let"" E S(JRn) and 1= fR(AI'11'2G(cPe,x)
Aii1ii2G(cPe, x»",,(x) dx. By (11.5), for enough large 8 and p, we have 

1= ei(z-tl.()· 1 (1- A()B(I- Az)P 
Ra.. (1 + IYI2)B 

x ag:i~~~) + G(cPe, y)(l'le (e)1'2e (1l) -P1e(e)P2e(y» ""(x) dx dy dz. 
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Note that the differentiation with respect to y is changed by differentiation with 
respect to x. By using the identity, 

we have that I is smaller than the linear combination of factors of the form 

R3n (1 + ~YI2).la:af (~~' ,~i;;p 1'laHpIE(e) - illE(e))1 
x Ip2E(y)I'IG(<PE,y)I'lah,p(x)1 dxdydz 

, -

1 laqar aCx,y,e) I lat - (t)1 
Ra (1 + lyI2)- z e (1 + lel2)p . eP1E

" 

x Ip2E(Y) - il2E(y)I·IG(<PE, y)I'lah,p(x)1 dx dy dz, 

where Iql, Ihl $ 2p, Irl, It I $ 2s. The properties of a(x, y, e, c) imply that for suitable 
constants 

la:af (~~',~i;;p 1'laHpIE(e) - illE(e))1 $ 

C(l + Ix!)"(l + leI2)-p+m-- $ C1cP+B-m(1 + Ix!)". 

since the left side is equal to 0 for lel <const/s. Note that 

C 
IG(<PE' Y)P2E(y)1 dy $ c No (1 + ly!)PO P2E(y) dy $ Cc-No-po-n. 

Rn Rn 

By choosing enough large p and s, this implies that for every d > 0 the members 
of the form (11.8) are o(cd), c -+ O. 

To prove that the members of the form (11.8) are o(cd), c -+ 0, for every 
d> 0, we have to estimate the factor 

1 

which is different from zero if Iyl > co~st, and to take sufficiently large s. 

This proves 3. The proof of 2 is almost the same. 0 

The relation g.~d. is the relation of equivalence in ~ft(JRn). So, the mappings 
Ap2r and A p1P2 are equal if they are considered as the mappings from gt(JRn) into 
gt (JRn) / g.~d .. 

Definition 11.5. The mappings Ap2r and Ap1P2 are the representatives of the 
• mappmg 

A: gt(JRn) -+ gt(,4!n)l g.~d. 

which is called the pseudodifferential operator which corresponds to a E S:;. 
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, 

Proposition 11.6. If a E S;"OO, then for every J.'le(e}, J.'2e(y} and rE No the 
operators Ap2rG(<Pe, x} and Ap1P2 G(<Pe, x} are in g~(JRn}. 

Proof. Let r = O. We will prove that 

is in gro(JRn}. Other parts of the proposition may be proved in a similar way by 
using (11.2). 

Let a E Ni:. Then 

laQ (Ap2 G(<Pe,x»1 = • 

I (2!}n 
, 

By using 

la~a(x,y,e,c}1 ~ Cm,Qc-N (1 + Ixl)k(1 + lel)m, x,y,e E JRn
, c E (0,1], 

which holds for enough large -m (where N does not depend on m and a), 

IG(<Pe,y»1 ~ Cc-NI (1 + lyl)Nl, yE JRn, c E (0,'1), <P E AN 

and 

we obtajn: 

IT N2 = N + NI + n, then for every a E N~ there is MEN such that for 
every <P E AM there are C > 0 and '1 > 0 such that 

Wl:(Ap2 G(<Pe,x»1 ~ Cc-N2 (1 + Ixl)}M, 0 < c < '1. 0 

IT an amplitude a E S;: does not depend on c, i.e. a = a(x, y, e}, then it 
determines a convenient pseudodifferential operator which will be denoted by A: 

It can be extended on S' (Rn) to be linear and continuous mapping from S' (JRn) 
into itself. 

In fact, 

where ii(x, y, e) = a(y, x, e) is continuous and linear: S(JRn) -t S(JRn} and A = 
t( tAl is continuous and linear: S'(JRn) -t S'(JRn). 

- -_. . .. - -- .-.. --



Pseudodifferential operators 177 

We will compare A and A but before that we need the following definition 
and proposition. 

Definition 11.7. IT a E S;; and G E Qc (R.n), then AG = A(MG). Let 
G(tPE' x), (tPE, x) E Ao x R.n, be a representative of G and K. E Ccf(R.n), K. == 1 on 
suPPgG. Then, 

K.{x )G( tPE' x), x E R.n , tP E Ao, 
is a representative of MG E Qt{lRn). AG = A(MG) is defined by 2 in Theorem 
11.4 

" 

AI'1l'2(MG)(tPE'x) = (211")-n. ei (Z-lI,e>a(x,y,e,e)J.LIE(e)K.(y)G(tPE,Y) dy d{. 
R2n 

From the next proposition it follows that this definition does not depend on K.. 

Proposition 11.8. H K.l,'K.2 E COO are equal to 1 on SUPPg G then 

in Qt(R.n). 

The following proposition also can be proved. 

Proposition 11.9. Let a E S;; be independent on e and let f E S'(R.n). 

Then A(Cdt f) = Cdt(Af) in Qt(R.n)/ g.;:d .. 

12. Pseudolocal property and the microlocalization 

Denote Q~ (0) = Qoo (O)nQc(O). Clearly, if G E Q~ (0) then MG E Q~ (R.n). 
In the sequel we will consider Qc(O) and Q~(O) as subspaces of Qt{R.n). 

Without the proof we give the following theorem. 

Theorem 12.1. Let a E S;; and G E Q~{R.n). Then, AG E Q~(R.n)f g.;:d .. 
More precisely, for every J.LIE(e), J.L2E{y) and rENo, AI'2rG(tPE' x) and A'HI'2G(tPE' x) 
are in Q~(R.n) and they are equal in (g.t.d.) sense . 

• 

Definition 12.2. Let G E Qt(R.n) and A be a pSElUdodifferential operator. It 
is said that AG is regular at x E R.n if there exists an open set w :3 x such that for 
every unit nets J.LIE, J.L2E and rENo, 

AI'1l'2(G)lw and AI'2r (G)lw belong to QOO(w). 

The singular support of AG, Sing suppgAG, is the complement of a set of points in 
which AG is regular. IT x (resp. any point of w) does not belong to SingsuPPg AG, 

then it is said that AG is Q~ / g.::d. in x (resp. in w). 

Proposition 12.3. Let G E Qc(R.n), a E S;;. Then, 

SingsupPgAG c SingsuPPgG. 
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More precisely, for every /J1e (~), /J2e (y) and r E No, 

SingsuPPg AI'2crG C SingsuPPg G, 

. SingsuPPg AI'lcl'2cG C SingsuPPg G. 

Proof. Let G be goo in a neighborhood w of Xo. We shall show that AG = 
A(MG) is in gr' / g.~d. in some open set W1 3 xo, such that Lilt CC w. 

Let 11:1 E C~(w) such that 11:1 == 1 on Lilt and let 11:2 E C~(w) such that 11:2 == 1 
on K1 = sUPP 11:1 . 

. For small enough e, we have 

1I:1(x)Ap1P2G(4>e,x) = 
1 

As earlier we have that 11 is gr' in Rn. So we have to prove the same for h. 
Let kEN. Then 

By using (11.3) and Leibniz's rule one can prove that 

16~(a(x, y,~,e)/J1e(~»1 $ ~~ (1 + IxW· (1 + Iwm- 2nk 

-
$ e

CNk (1 + ICI)m-2nk, (: E Rn E .. y,.., X SUPPII:1, 

-where Ck and Ck are suitable constants. By taking large enough k we can apply the 
same procedure as in the proof of Proposition 11.9. This implies that 12 E gr'(Rn). 
o 

The notion of the wave front for Colombeau's generalized functions has been 
introduced by Scarpalezos [18] as a natural generalization of the wave front for 
distributions. 

Definition 12.4. A tempered generalized function G is called goo-rapidly 
decreasing if it has a representative G(4)e,x) with the following property. There 
exists N E N such that for every a E Nl: and pEN there is no E N such that for 
every 4> E Ana there are C > 0 and J > 0 such that 

IDQ G(4)e,x)1 $ Ce-N (1 + IxI2)-p/2, X ERn. 
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Clearly, if G E goo(Rn) n gc(Rn), then MG is goo-rapidly decreasing. IT 
G E g(O) and cp E Ccf(O), then we will denote M(cpG) simply by cpG. 

Let cp E Ccf(Rn) and G(t/1e,·) be a representative of G. We define :F(cpG) E 
gt (Rn) by a representative I 

(12.1) 

where:F denotes the Fourier transfoImation in LI(Rn). One can prove easily that 
this definition makes sense. Also, the following proposition is simple. 

Proposition 12.5. If representative (12.1) has the properties given in Defi
nition 12.4, then cpG E g~. 

line. 

(12.2) 

We denote by r a convex open cone in Rn which does not contain a straight 

Let (xo, e) EO x (Rn \ {O}). The following functions will be used. 

(a) cp E Ccf(O), cp = 1 in a neighbourhood of Xo; 

supptP c r, tP is positive-homogeneous 
, 

of degree zero in r and tP = 1 in a neighbourhood of eo., 
I 

Definition 12.6. It is said that G E g(Rn) is goo-rapidly decreasing in a cone 
r iffor every eo E r there is tP with the properties in (12.2)(b) such that tPG is 
goo-rapidly decreasing. 

The cone Eg(G) is the set of all1J E Rn \ {O} for which does not exist tP with 
the properties in (12.2)(b) such that tPG is goo-rapidly decreasing . 

. 

Definition 12.7. It is said that G E g(O) is microlocally regular in an open 
conic set 'Y COx Rn (conic in the second variable) if for every (xo, eo) E 0 x (Rn \ 
{O}) there exist an open neighborhood 0 0 of xo, a conic neighborhood ro of eo, 
and functions cp and tP with the properties in (12.2) (with 0 0 and ro instead 0 and 
r) such that tP(e):Ft(cpG)(e) is goo-rapidly decreasing. The wave front of G E g 
denoted by WF 9 G, is the complement of the union of all conic open sets 'Y where 
G is microlocally regular. 

By using functions cp and tP satisfying (12.2) and a unit net Pe we define 
operator tP(D)pcp on gt(lRn) by G -+ tP(D)p(cpG), where 

Clearly tP(D)pcp(·) maps gt(Rn) into itself and it defines a pseudodifferential oper
ator. Because of (11.2), (11.3), (11.4) and the estimate 

IOOtP(e) I ~ Calel-a, lel > R, 

one can prove that tP(D)Pl (cpG) and tP(D)P2(cpG) are equal in (g.t.d.) sense for 
every unit nets Pie and P2e. The amplitude of tP(D)cp is a(x, y, e, e) = tP(e)cp(y)· 

-
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Proposition 12.8. A point (XO, ~O) f/. WF 9 G, G E g (0), if and only if there 
exist smooth functions <p, tjJ with the properties in (12.2) and a unit net JLe such 
that tjJ(D)p (<pG) E g~. ; 

The proofs of the following propositions are similar to the classical one in 
distribution theory and because of that they are omitted. 

Proposition 12.9 If h E CO'(JRn) and G E g(JRn), then WFg(hG) C 
WFg(G). 

This proposition implies 

Corollary 12.10. WFgG = ((x,~), ~ E ~gz(G) = nh~g(hG)}, where the 
intersection is taken over all h E CO'. 

-

Denote T*O = 0 x JRn and 11' : T*O -t 0 the first projection. 

Proposition 12.11. 11' WF 9 G = Sing SUPPg G 

Proposition 12.12. Let f E 1)'(0). Then WF f = WFg Cdf. 

For the propagation of singularities of a pseudodifferential operator we need 
the following definition. 

\ 
Definition 12.13. WFg AG, G E gt, is the complement of the set of points 

(xo, ~o) E 0 x (JRn \ {O}) such that for every unit nets JLlE, JL2e and rENo, 

Ap1P2 (G)lw and Ap2r(G)lw 

are microlocally regular at (xo, eo). 
-

Proposition 12.14. Let G E gc(O) and A be a pseudodifferential operator. 
Then 

WFgAG C WFgG. \. 

13. Composition of pseudodifferential operators 

The results of the sections which are to follow are proved in [12]. We shell 
present only the definitions and assertions without proofs. 

First, we define properly supported pseudodifferential operators. 

Let a E Sr: and hE CO'(JR) such that h(t) = 1, It I ~ to, h(t) = 0, It I > tl > 
to. We decompose a representative AP1P2 of A as follows: 

Ap1P2G(<I>e,x) = Ap1P2 G(<I>e , x) + Ap1P2 G(<I>e , x), G E gt(JRn), 

where 

Ap1P2 G(<I>e,X) = 
1 

(211')n 
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and AI'11'2 has (1 - h(lx - yl)) instead of h(lx - yl) in the double integral. 

Let (~,E) be arbitrary, but fixed. Then the function 

(x,y) ~ h(lx - YDa(x,y,~,E) 
/ 

is properly supported which means that the inverses for the first and second projec
tion of a compact set in JRn intersect the support of this function over the compact 
sets. 

One can easily prove that h(lx - yl)a(x,y,~,E) E S,:. 
Definition 13.1. Pseudodifferential operator corresponding to a E S': satis

fying the property that for every (~,E) E JRn x (0,1], 

(JRn )2 3 (x,y) ~ a(x,y,e,E), 

is properly supported, is called a properly supported pseudodifferential operator. 

Pseudodifferential operator which maps Qc(JRn) into Q~(R.n)/ g~d is called 
the smoothing pseudodifferential operator. 

As in Proposition 11.6 one can prove 

Proposition 13.2. AI'11'2 : Qc(JRn) --+ Q~(JRn). 

So, for every pseudodifferential operator 

there exists a properly supported pseudo differential operator 

A : Qt (JRn) --+ Qt (JRn) / g~d 

such that A - A is a smoothing pseudo differential operator .. 
• 

.I 

, 

Remark The extension of a properly supported pseudodifferential operator 
on Q(JRn) may be done as follows. Let A be properly supported.with the properly 
supported amplitude a E S': and let {lti' i E N} be a partition of unity with 
elements in C~ (JRn ). 

Let G E Q(JRn). Put 

AG(4)E' x) = :EA(ltiG)(4>E'X). 
iEN 

• 

Since /tiG E Qc(lRn ), any member in the sum is well defined. 

One can prove easily that 

Al'l 1'2 G(4)E , x) E £M[JRn] 

for every unit nets J.'iE and J.'2E' and that for different unit nets the corresponding 
elements are equal in (g.t.d.) sense. 

-
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Let a E S':' bE S,:' detelmine operators A and B by representatives Ap1P2 
and Bi'Ii'2' where J.'le,J-'2e, file and fi2e are unit nets. Put 

(Ap1P2 0 Bi'Ii'2)G = Ap1P2 «Bi'Ii'2)G), G E gt(]Rn). 

The following proposition shows that the composition of properly supported 
pseudodifferential operators AB defined by a representative given above is well 
defined and it can be proved by a direct calculation. 

Proposition 13.3. Let a E S;. For every eight unit nets J.'le(e), f.i2e(Y), 
Ple(e), fi2e(Y), J.'3e(e), J.'4e(Y), P3e(e), P4e(Y) and G E gt(]Rn,) 

Ap1P2 (Bihi'2 G) and Ap3P" (Bi'3i'" G) 

are equal in (g.t.d.) sense in gt(]Rn). 

From now on we shall assume that amplitudes are defined by Definition 11.1. 
• 

Properly supported amplitudes will be indicated by a. By A is denoted the 
corresponding pseudodifferential operator. 

. , - . . 
Theorem 13.4 Let a E s;, b E s; . Then the composition of A and B is 

represented by 

(13.1) 

where 

(13.2) k(X,y,e,E) = 
1 

(211")n 

\ 

i(fI-Z (-'7) ( C )b( ) - () d d e . a X,z, .. ,E z,Y,17,E f.i2e 17 z 17, 
R2 .. 

x,y,z,e,17 E ]Rn, E E (0,1]0), (1]0 = 1]0(</1». 

Moreover, k(X,y,e,E) E s;:+m' and it is pr;operly supported. 

14. Calculus with symbols. Hypoelliptic operator 

Definition 14.1. By S:; = sm(]Rn x ]Rn X [0,1» is denoted the subspace of 
S;(]Rn x]Rn x]Rn X [0,1» consisting of amplitudes a(X,e,E) independent ofy for 
which (11.1) holds. By S;goo is denoted the set of elements from S;oo which do 
not depend on y. Elements of S:; are called the symbols of degree m. 

--
As before, it can be proved that every a E S:; defines a pseudodifferential 

operator A: gt(]Rn) -t gt(]Rn)/ g.~d .. 

Definition 14.2 A fOlmal symbol is a sequence of symbols a; E S:;;, j E No, 
such that m; -t -00 strictly, and N; ::; N < 00 (N; are exponents of E for ail. It 
is denoted by 

00 

Ea;(X,e,E). 
;=0 
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AB in standard theory one can make the construction of the true symbol: 

Proposition 14.3. There exists a E S:;o such that for every jo E No, 

• 
" Smio a - L..J ai E .g • 

i<io 

It is deteJ.llIinated uniquely modulo S;goo . 

Theorem 14.4. For every amplitude a(x,y,e,e) E Sr;' there exists the 
symbol a(x,e,e) E S:; which determinates the same pseudodifferential operator 

A : gt (Rn) -+ gt (Rn) / g.~d. modulo the smoothing pseudodiflerential operator A. 
Thus, 

determines a E S:;. 
For example, 

\ 

is the symbol for t/J(D)cp. 

Theorem 14.5. Let A and B be pseudodiflerential operators with the sym-, .. 
bols a E S:; and b E S:; and let A and B be the corresponding properly supported 
operators. The symbol of the properly supported operator AB is given by 

(-i)lal . L ,ota(x,e,e)a:b(x,e,e). 
et. 

aEN~ 

We are going to give the microlocal analysis of solutions of a pseudodifferential 
equation. For this we need the next definition. 

Definition 14.6. A pseudodifferential operator A in 0 is smoothing in (xo, eo) 
E 0 x (JRn \ {O}) if there exist cp E Ccf(O), cp = 1 in a neighborhood of Xo, and a 
convex open cone r, a neighborhood of eo, such that the symbol a(x,e,e) of A has 
the following property: 

There is N > 0 such that for every et, {J E N8 and M E No there is Ca,P,M ~ 0 
such that 

18:afcp(x)a(x,e,e)1 $ Ca ,p,Me-N (1 + lW-M, X E 0, e ErR, lel > R. 

A pseudodifferential operator A in 0 is said to be smoothing in a conic open subset 
'Y of 0 x (Rn \ {O}) if it is smoothing in every point of 'Y. 

The complement in 0 x (Rn \ {O}) of the union of all conic open sets in which 
A is regularizing is called the microsu~port of A and it is denoted by p. SUPPg A. 

- . - - ------ -- - --- - ---- - ------ - -- ---- --- -- ----- - - -------- ---- --- - --- ------ -,_. ---------- "- - - -- -- --- --- -- -' ... ----~----------- --------------._-----.--- .,- ----- - ----------
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Proposition 14.7. Let G E ge(n) and (xo,€o) E n x (]RA \ {a}). Then 
(xo, {a) f/. WF 9 G if and only if there is a conic open neighborhood '1 of(xo, {a) in nx 
(IRA \ {a}) such that B IJ11J2 G E green) (BlJlrG E green») for any pseudodifIerential 
operator B in n whose microsupport is contained in '1. 

Theorem 14.8. Let A be a pseudodifIerential operator which is smoothing 
in a conic open set '1 ofn x (]RA \ {o}). If the wave front ofG E ge(O) is contained 
in '1' C'Y, then SingsuPPg A(G) is empty. . 

The previous two propositions simply imply the following important assertion. 

Proposition 14.9. Let A be a properly supported pseudodifIerential opera
tor in n and G E g(n). Then 

WFg(AG) C (WFgG)nJ.'supPgA. 

Definition 14.10. A proper pseudodifferenti~ operator P with a symbol 
[vex, {, e)] is called hypoelliptic if the following holds: 

(1) There exists N E I'll such that for every compact set K C IRA there exist 
{o > 0 and M > 0 such that for every t/J E AN there exist C > 0 and '1 > 0 such 
that 

(14.1) C-1(1 + lW-MeN :51P(x,{,e)1 :5 C(I+ I{DMe-N , 

for x E K, I{I ~ {a, e < '1. 
(2) There exists N E I'll such that for every compact set K C IRA there exists 

{o > 0 such that for every t/J E AN there exist Ca,p > 0 and '1 > 0 such that 
, 

I DeD~P(X,{,e) I I I 
(14.2) p(x, {, e) :5 Ca ,p(1 + I{I)- a , X E K, I{I ~ {a, e < '1. 

Without a proof we give 

Theorem 14.11. (i) Let P be a proper pseudodifIerential operator with 
symbol p(X,{,e) whi(:b, satisfies Definition 14.6. Then the following holds: There 
exists N E I'll such that for every compact set K C IRA there exists {o > 0 such that 
for every t/J E AN there exist C~,p > 0 and '1 > 0 such that . 

I DeD~p(x,{,e)-ll I I 
(14.3) p(x, {, e)-l :5 Ca ,p(1 + I{D- a , X E K, I{I ~ {a, e < '1. ' 

(ll) For every hypoelliptic pseudodifIerential operator P there exists a proper 
pseudodifIerential operator Q such that PQ - I E 8-00

, and QP - I E 8-00
• 

, 

Proposition 14.12. Let P be a hypoelliptic pseudodifIerential operator. 
Then 

for every G E g. 



Pseudodifferential operators 185 

Pseudodifferential operator P is called elliptic with a classical amplitude if 
its symbol p( x, e, c) satisfies the following inequality 

• 

(14.4) 

instead of (14.1). One can prove that (14.4) implies (14.2) and that means that 
there exist a parametrix for such pseudodifferential operators, too. 

Pseudodifferential operator is caned elliptic if 

holds instead of (14.1). As in the previous case, one can prove that then (14.5) 
implies (14.2), and this implies the existence of the parametrix for A. 

- -~ - ~-- ---- ----- -- ~- - - ---- ---
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