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PREFACE 

These Proceedings contain some of the papers which were submitted or 
presented at the Symposium "Set Theory. Foundations of Mathematics" held 
in Belgrade from August 29th to September 2nd 1977, on the occasion of the 
70th anniversary of Professor Djuro Kurepa. The Institute of Mathematics in 
Belgrade organized this Symposium. 

Because of the heterogeneity of the submitted reports, the Proceedings 
are arranged in the alphabetical order of the authors and not according to 
the subjects. At the end of the Proceedings a panel discussion, held during 
the Symposium, is attached. All reports are devoted to the work and results 
of Professor Djuro Kurepa on the occasion of his 70th anniversary. 

Professor Kurepa has about 180 published papers in various fields: set 
theory, algebra, topology, analysis, etc. therefore, we think that only a special 
publication of his collected papers would give an insight of his fertile scien­
tific work. 

The Institute of Mathematics in Belgrade has for the first time decided 
to organize a symposium in the mentioned fields. After the first result, we 
hope that such symposiums will become a continuel practice and that they 
will be held every fourth year either in Belgrade or in some other place in 
Yugoslavia. We also believe that we could in the future organize them in 
close cooperation with the Association of Symbolic Logic. 

At the end, we would like to use this opportunity to thank, before all, 
the members of the Scientific Committee for their support and suggestion, as 
weII as the sponsors of the Symposium i.e. The International Union of Mathe­
matician, The RebubIican Association for Science of F.R. of Serbia and 
The Union of Regional Associations for financial aid. 

We also express our thankfulness to all participants of the Symposium, 
particularly to those who gave their papers for inclusion in these Proceedings. 

Secretary 
of the Org. Committee 

T. AndjeJic 
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DESCRIPTIVE SET THEORY AND INFINITARY LANGUAGES 

John P. BURGESS 

Kurepa trees, partitions, lensen's principles, large cardinals, and other notions from com­
binatorial set theory play an enormous role in the model theory of generalized-quantifier languages. 
(See e.g. [29].) Borel and analytic sets, Polish group actions, and notions from descriptive set 
theory can play almost as large a role in the model theory of certain infinitary languages. (See 
[31] and [32].) The present paper is a study, by the methods of descriptive set theory, of the class 
of strong first-order languages. These, roughly, are the infinitary languages which are strong 
enough to express wellfoundedness, at least over countable structures, yet weak enough that the 
satisfaction relation is AI-definable. 

Examples, culled from the literature of exotic model theory, are present in § 1. The set­
-theoretic machinery for their study is set up in §§ 2-4. §§ 5 and 6 are devoted to an exposition 
of the properties shared by all strong first-order languages. Most notably: There is a quasi­
constructive complete proof procedure involving rules with NI premisses for any strong first-order 
language, and even the weak version of Beth's Definability Theorem fails for every such language. 

Many of the results in this paper date from the author's days as a student in R.L. Vaught's 
seminar at Berkeley, 1972-73. At that time I had the benefit of correspondence with Profs. Barwise 
and Moschovakis, and especially of frequent discussions with Prof. Vaught and D. E. Miller. 
Most of this work was included in [6], and a few items have appeared in print ([5]; [8], § 2). 
More recent discussions with Miller led to the discovery of the proof procedure and the counter­
example to Beth's Theorem alluded to above, and to the writing of this paper. 

§ 1 Some Infinitary Languages 

Throughout this paper structure means infinite structure and vocabulary (set 
of predicates, function symbols, and constants) means countable vocabulary. Re­
ferences for some possibly unfamiliar notions such as primitive recursive (PR) 
set functions or .6.1ZFC definability are recalled at the beginning of § 2. 

1.1 Borel-Game Logic LoB 

We introduce codes for Borel subsets of the power set w as follows: 
19 (0) = {CO, n): nEw}; 19 (IX + 1) = e (IX)U {(I, e): e~l9 (IX)} for IX even; 19 (IX + 1) = 
=t9(a)U{(2,f):f:w~~(IX)} for IX odd; 19(A)=U{l9(IX):IX<).,} at limits; 

19=19(wI ). The Borel set 43(e) coded by eE£ is determined as follows: 
43«(0, n»={u~w:nEu}; 43«(1, e»=complement of &3 (e); 43«2, f»= 
= U{&3(f(n» :nEw}. 

9 
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The class of formulas of LooB in a vocabulary R is the smallest class which 
(i) contains the atomic formulas of R; (ii) is closed under negation -,; (iii) is 
closed under (single) quantification 'ri, 3; (iv) is closed under conjunction and 
disjunction A, V, of arbitrary sets of formulas, so long as the result has only 
finitely many free variables; and (v) is closed under the following operation: 
Given e E 19 and 1-:/= 0 and formulas CPlo 1\ ... 'n (u1 ... Uk, vo'" v~ indexed by 
I < Cl) with free variables as shown, we may form the following formula cp (u1 ••• uk): 

(*B) A/oEI'v'vO V IIEI3r1 A'2EI 'v"2 V 13E13v,; ••• 

... {n:CPioi1 ... ln(U1· .• Uk, vo···vn)}E~(e) 

The class LooB (R) of sentences of LooB in vocabulary R consists of those for­
mulas without free variables. 

Satisfaction for LooB is defined as follows: Given an R-structure & and 
b1 ••• bk E 1 & \, the formula cP (u1 ••• u~ of (* B) suggests an infinite game for 
two players PRO and CON. CON opens by picking ioE/, aoEI&I. PRO res­
ponds with i1 El, a1 E \ & I. And so on until infinite sequences i = io, i1, i2 ••• 

and a=ao' a1' al'" are generated. PRO wins if {n:&I=CPloll ... ln(b1 '" bk, 
ao ... ~n)} EdB (e). Since the set of pairs i, a constituting wins for PRO is a 
Borel subset of I'" xl & \"', by Martin's Borel Determinacy Theorem [22], either 
PRO or else CON has a winning strategy for this game. We define & 1= cP (b1 ••• bk ) 

to hold if PRO has the winning strategy. 
If we wish to identify formulas with set-theoretic objects, we can proceed 

much as is done in [17] for L",\",. In particular we take nonlogical symbols to 
be just certain hereditarily countable sets. We can identify the formula of (* B) 
With, say, (e,(cp,,:O"E/<"'». It is then not hard to see that sentencehood for 
LooB is a PR notion. 

1.2. PROPOSITION Satisfaction for LOOB is A/FC. 

PROOF. Any notion defined by a reasonable induction from A1zFC notions is 
A1ZFC, so it suffices to show satisfaction for a formula of LooB can be defined 
in a A 1ZFC fashion in terms of satisfaction for its subformulas. We consider 
the case of the formula cP introduced by (* B). Fix ~ and b1 ••• bk E 1 ~ 1 as in 
the definition above of satisfaction for cp. Let I: I<"'x 1 ~ 1<'" -+ {O, I} code 
satisfaction for subformulas of cp: 

1(0", (ao'" aJ)= 0 ~ ~ I=cp" (b ... bk, ao'" an) 

A strategy for PRO in the game associated with cp is essentially a pair of 
functions :J': 1<'" x 1 ~ 1<'" -+ I, 7: I<UJ x 1& I<UJ -+ 1 & I. Applied to sequences 
i = io, i1 , i2 , • " and a = ao' ap a2 , •• , c7 and 7 produce the sequences: 

(1) s=io' :!,«((iJ, (ao)))' i1' :!'«((io' i1), (ao' a1»), i2,· .. 

t = ao, 7 «(io), (ao)))' a1, 7 «(io, i1), (ao, a1»), a2,··· 

Let O"n=O"n(:!', 7, i, a) be the finite sequence of the Oth through nth terms of 
s, and define 7 n similarly from t. In this notation, ~ 1= cP (b1 ••• bk ) iff: 

(2) 3 strategies :!" 7 'v' iE/"', ~E 1 & IUJ {n :1(0"., 't' .. ) = O}EdB (e) 
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Now it is well known that every Borel subset of the power set of <u can 
be obtained from elopen sets by the fusion operation (1). Indeed the usual 
proofs of this fact reveal that we can obtain an operation (cA) representation 
of c$(e) in a PR fashion from the code e, i.e. there is a PR function c1' 
from 19 to the power set of 2<0) X <u<0) such that for all xE20): 

{n: x (n) = O} G &) (e) ~ 3yE<u0) Vn (x I n, y I n)t= c1' (e) 

Thus (2) is equivalent to: 

(3) ::lcJ'. rJVi, aVxE20)VYE<u0)3n 

(x (n)#!(an, 't"n)v(xln, yln)EEc1'((l, e» 

where, let us recall, (1, e) codes the complement of &) (e). 

Now for given strategies jP, rJ let Q = Q. (:/, rJ) be the set of all four­
tuples in = (io' i l ••• in)' an=(ao' al'" an>, ~=(xo' Xl'" X2n+1)' "y)=(Yo' YI" 'Y2n+l) 
such that for all m~2n+ 1, xm=!(an, 't"J (where an' 't"n are the obvious initial 
segments of the sequences in (I» and (~I m + 1, "Y) I m + I)Ec1' ((1, e». Partially 
order Q by letting one four-tuple p be below another q if every component 
of p extends the corresponding component of q. Then (3) is equivalent to: 

(4) (a) 3:/, rJ (Q is wellfounded) 

Moreover, the existence of a winning strategy for PRO is equivalent to the 
nonexistence of a winning strategy for CON, so (a) is equivalent to: 

(4) (b) ,3:/, rJ (Q' is wellfounded) 

where Q' is defined dually to Q. Examination of the construction shows Q, Q' 
are obtained in a PR fashion from 3', rJ and the data e, f Every PR function 
is !::::..IZFC, as is the notion of wellfoundedness. Further Martin's Borel Determi­
nacy Theorem, which implies the equivalence of (4) (a) and (b) is provable in 
ZFC. It follows (4) provides a !::::../FC definition of satisfaction for ep in terms 
of satisfaction for its subformulas ep"" as required. 

1.3 LKB 

For any uncountable cardinal x, the formulas of LKB are those formulas 
of LKB which, as set-theoretic objects, are of hereditary cardinality <x; briefly: 
LKB=LC¥JBnH(x). Up to a harmless relabeIling, these are precisely the formulas 
with <x subformulas; and for regular x constitute the smallest class closed 
under " V, 3; under /\, V for sets of <x formulas; and under operation 
(*B) for index sets I of cardinality <x. 

1.4 Vaught's Closed-Game Logic LC¥JG 

Let eEl9 be a code for {<u}. For this e (*B) can be written more per­
spicuously: 

(*G) /\ foEI VVo V flEI 3vI ••• /\ n eplo ... in ~UI ••• Uk' VO'" vJ 

The sublanguage of LC¥JB obtained by allowing only this special case of (*B) 
we call L ooG . We also set L"'G = LocGnH(x). Vaught [31], [32] has extensively 
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investigated L001 G, and formulas of form (*G) with I countable and the Cjl" 
quantifier-free formulas of LfJ)fJ) are called Vaught formulas. The game associated 
with (*G) is closed, and since the determinateness of such games can be proved 
in ZFC-, satisfaction for LooG is 1:!.1ZFC-. 

Other fragments of LooB can be obtained by restricting the matrix of (*B) 
to other special forms, e.g. the G~-game logic of [6], ch.4C. 

1. 5 On Keisler's L (w) and Related Languages 

We form LooQB by restricting the game prefix in (*B) to allow only 
quantifiers: Given eEl9 and Cjln' nEw, we form: 

which can be regarded as a formula of LooB by inserting vacuous propositional 
operations. 

L001 QB = LooQB nHC coincides with the restriction to HC of the language 
Keisler [16] calls L(w). This observation justifies our assertion in [5] that satis­
faction for L (w)nHC is 1:!.1ZFC. 

L", QG is obtained by similarly restricting Loo G. Moschovakis and Barwise 
[2] have studied this language, which (unfortunately) is sometimes called Loo G. 

Though obviously (considering propositional logic) L001QG=LooQGnHC 
is weaker than Lool G, Vaught [32] remarks that over countable models with some 
coding built-in (e.g. models of arithmetic) the expressive power of the two language~ 
coincides. 

1.6. Propositionai Game Logic 

We form L=PB by restricting the game prefix in (*B) to allow only proposi­
tional operations. Thus given eE[; and I#- 50 and formulas Cjl,,(Ul ••• Uk) all in 
the same free variables, we form: 

This is equivalent to a formula of L oooo , viz: 

(1) 

V ~E2"+1. (~, y I n+ l)Ec!Y (e) 

( /\ m:5,lI. !; (m)=O Cjl"m 1\ /\ m:5,lI. !; (m) = 1 - Cjl"m) 

where c1' (e) is as in § 1.2 and an is the obvious initial segment of: 

io' :J' ((iJ), i1' :J' ((io' i 1», i2 , ••• 

In particular, wellfoundedness cannot be expressed in L ocPB. L001PB=LocPBnHC. 
however, still vastly exceeds L 00100 in expressive power, since if the formula in 
(*PB) is in L 001PB , we can only say the equivalent formula (1) is in L)..fJ) where 
A= (2No)+. 

L ocPG and L 001PG (defined the obvious way) have been studied by Green. 
[10], [11]. 
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1.7 Solitaire and Souslin-Quantifiers 

We form L<TJSB (resp. L<TJSG) by restricting the game prefix (*B) (resp. (*G» 
to allow only 3 and V. Formulas of these languages correspond to games in 
which PRO makes all the moves and CON is a passive spectator. LooSB and LoosG 
coincide in expressive power. Indeed we can assign in a PR fashion to every formula 
of the former an equivalent formula of the latter. 
For 

(*SB) V ioE/3vO V ilE/3vI V i2E dv2 ••• {n: ~ioil' •• in (UI'" Uk' vO'" vJ} E$ (e) 

is equivalent to: 

(1) V ioE I 3vo V ilE I 3v1 ••• V.YE"'''' 1\ nE'" V ~E2n+l, (I;,'y /n+I)Ec!J'(e) 

( V m:S;n. ~ (m)=O ~io ••. i/ll/\ 1\ m:S;n, ~ (m) = 1/ ~io ••• im) 

and hence to: 

(2) V foEI V .YoE",3vo V flEI V .YIE",3vl · .. 1\ nE'" V /;E2,,+I, (!;.(.Yo ••. .Yn»E;:c!J'(e) 

etc as in (1). 

Distributing 3 through V and vice versa, we also see that any formula 
of LoosG is equivalent to a formula of L<TJ"'I' Malitz has shown that the class of 
wellorderings of type a+a cannot be defined in L<TJoo, while Takeuti has observed 
that it is definable in L"'I QG. 

Further restricting (*SG) to allow only 3 produces Loo QSG. L"'I QSG = 
=LooQsGnHC has been studied by Moschovakis '~md others under the name 
Souslin-Quantifier Logic. Note that the usual formula expressing wellfoundedness 
stilI belongs to this language. 

1.8 Souslin Logic 

Restricting (*SG) to allow only V produces L<TJPSG. Explicitly this language 
allows: 

L><+PSG=LooPsGnH(x+) has been calIed x-Souslin Logic, or just Souslin Logic 
for x=~o' and has been extensively investigated [9J, [10J, [l1J. 

Of course (cf. § 1.6) L ooPSG does not exceed L<TJ'" in expressive power; but 
Souslin logic vastly exceeds L"'I"" For example, the class of countable well­
founded structures is a PC for Souslin logic, since a countable 5[( = (/5[( /' Ell!) is 
wellfounded iff it can be expanded to a model (/5[( /' Ell!, R~{) of: 

R linearly orders the universe in order type {U 1\ 

where ~n expresses that the in+lst element in the R-order stands in the relation 
F. to the inth element. This means that the well ordering number of Souslin logic 
is > {UI' the well ordering number of L"'I"" In fact, it may be as large as {U2; 



14 John P. Burgess 

see [7]. It is perhaps worth noting (following Vaught) that Souslin logic and 
L WIPG coincide in expressive power. For 

is equivalent to 
/\ ioEw ViI Ew /\ f2Ew V f3Ew ••• /\ 11 rpio i l". in 

V}oEwVitEwVhEw'" /\1I~joit"'}1I 
where the ~T are determined as follows: For O"Ecu<w let #(0") be the natural 
code for 0", 2,,(0) 3,,(1) 5,,(2) •• , For 't" = (jo' jl' ... j,.) let 1Ji" be the conjunction 
for all O"=(io' il> '" im) with #(O")<n of rpio' rpioko' rp/okoip rpiokollkp '" , where 
ko = f!iF«io» , kl = j*«(loi,», .... 

Green [11] shows that for all x the wellordering numbers of x-SousIin logic 
and L.HPG coincide and equal the least ordinal not H(x*) recursive in the sense 
of [4]. Moreover she shows for cf x>cu, x-Souslin logic and L;<'+IJ) coincide in 
expressive power. 

1.9 Kolmogorov R-Operation Logic 

The formation rules of LotJR allow us, given formulas indexed by (/<<»)<w 
to form the following horror: 

/\ loo Vvoo Viol 3v01 /\ i02 VV02 V i03 3V03 ••• 

V 1IoEw V ilo 3v10 /\ 111 VVll V in ~V12 /\ i13 VVl3 ... 

/\ "1 Ew /\ i 20 VV20 V 121 3v21 /\ i22 VV22 V i23 3v23 ••• 

... /\r rp(ioo ••. iono)' •• (iro ••• irnr) (U1 ••• Uk, Voo'" Vr1lr ) 

For fixed ~ and bl .•. bkE I ~ I the obvious game of length cu2 associated with 
(* R) is equivalent to the following game of length cu, in the sense that the same 
player has a winning strategy: CON picks elements of I and I ~ I which we call 
ioo and aoo. PRO then has three options: to challenge immediately, to pick elements 
we call iOb aOl and then challenge, or to pick such elements without challenging. 
If PRO does not challenge, CON then picks elements we call i02, a02, and PRO then 
again has the same three options. If PRO eventually does challenge just after 
iono ' aono have been picked, PRO then also picks elements we call i lO, alO' CON 
then has three options analogous to those PRO had earlier. If CON does not 
challenge, PRO picks another pair of elements, and CON has the same three 
options, and so on. If CON eventually challenges after ilnl , al", have been picked, 
he also picks elements we call i20, a20, and PRO has three opticns again, and so on. 
In the end, PRO wins if either each player challenges infinitely often and the matrix 
of (* R) comes out true with the a's replacing the v's and the b's the u's, or if at 
some point it is PRO's option to challenge and he lets infinitely many moves go 
by without doing so. We leave it to the reader to ~ee that this game really is equi­
valent to that suggested by (*R). Note that the set of sequences iElw, aEI~lw, 
which constitute a win for PRO is a Borel (in fact, Ga) set. This means we can 
associate to each formula of L ooR, in a PR fashion, an equivalent formula of 
LooB, and former language can be regarded as a sublanguage of the latter in a 
generalized sense. 

LwIR=LooRnHC was mentioned under the name L2 in [8], § 2. The langu­
ages LV, v>cuh mentioned there are all sublanguages of LocB in the same sense 
that LocR is. 
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§ 2. Some Definability Theory 

For any vocabulary R, let I (R) be the set of all R-structures with 
universe w. Kc;;. I (R) is invariant if for all ~EI R), ~,......, ~EK implies ~EK. 
We will be concerned with four classifications of invariant subsets of I (R). 

2.1 Recursion Theory 

Let X(R) be the product of one copy of 200n for each n-ary predicate in 
R, one copy of woon for each n-ary function symbol, and one copy of for each 
constant. Any xEX(R) corresponds in an obvious way to an ~xEI(R). E.g. 
if R has just one binary predicate, xE2ooXoo corresponds to the structure con­
sisting of universe w equipped with the binary relation whose characteristic 
function x is. K~X (R) is called invariant if the corresponding subset of I (R) 
is. This amounts to invariance under a natural action of the group w! of 
permutations of w on X (R); see [32J. 

At least for finite R, we can classify subsets of X (R) as !:~, TI~, d~, ari­
arithmetical, HYP, !:!, TI!, ~!, analytical, etc. according to their definability 
by various types of formulas of second-order arithmetic. For the elements of 
this theory see [27J, ch. 14-16. If we allow parameters to appear in the defi­
nitions we obtain the boldface notions !:~, etc. By tedious but routine coding, 
these boldface notions can be applied even to infinite R. We call a subset of 
I(R) ~~, etc., if the corresponding subset of X(R) is. 

2.2 Topology 

Give 2={O,l} and w the discrete topologies. Give each 21, w1 the product 
topology (making them homeomorphs of the Cantor and of the irrationals, res­
pectively). Give each X(R) the product topology. Finally give I (R) the topology 
that makes x ~ ~x a homeomorphism. Then each of these spaces is Polish 
(separable, admitting a complete metric). We may classify subsets as open, closed. 
Fa, GB, Borel, analytic, co-analytic (CA), PCA, projective, etc. For the elements 
of this theory see [19J. 

2.3 Set Theory 

We assume familiarity with the Levy hierarchy of formulas of the language 
of set theory. The appendix to C2J contains a useful summary of the needed mate­
rial. A class K is !:n(V) (resp. !:n(V» if it is definable over the universe V of set 
theory by a !:n formula without parameters (resp. with parameters). TIn(V) is 
defined similarly; and K is ~n(V) if both !:n(V) and TIn(V). The boldface notions 
are defined similarly. K is ~nT, where T is a fragment of ZFC, if it is ~n(V) 
by !:n and TIn definitions whose equivalence is provable in T. K is ~nT, if of form 
{x; (t, x)EK'} where K' is ~nT, and t is a parameter. We are most interested 
in the cases T=KP (Kripke-Platek admissible set theory, with Infinity), ZFC­
(Zermelo-Frankel set theory with Choice and without Power Set), and ZFC. 
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HC=H (~1) is the set of hereditarily countable sets. K~HC is "'2:.n(HC) (resp. 
"'2:.n(HC» if K is definable over HC by a "'2:.'11 formula without parameters (resp. 
with parameters from HC). The n and I). notions are similarly defined. 

Familiarity with the primitive recursive (PR) set functions of [14] is also 
assumed. These functions include all functions with reasonably simple inductive 
definitions. They are all 1).1 KP. A class K is PR if its characteristic function is, 
and is PR if of form {x: (t, x)EK'} for some PR K' and some parameter t. 

2.4 Model Theory 

Let L * be a language. A class K of R-structures is an elementary class 
for L*, in symbols EC(L*), if Kis of form Mod (cp)={~'(:%(I=cp} for some 
cpEL*(R). K is a pseudo-elementary or projective class for L*, in symbols PC(L*), 
if for some vocabulary S disjoint from R and some sentence cp' EL*(RUS) 
such that K is the class of all R-reducts of models of cp'. Equivalently, K is 
PC(L*) if it is of form Mod (3 S cp') for some existential second-order sen­
tence ::J S cp', cp' EL*(RUS). By abuse of language, we call K~q(R) EC(L*) 
or PC(L*) if it is the restriction of such a class to structures with universe cu. 

For the definition of language in the abstract see [2] or [3] (where langu­
ages are respectively called systems of logics and logics). We call a language L* 
first-order if: 

(1) Sentencehood for L* is a notion PR, or PR in parameters from HC; 
or the restriction of such a notion to some H(x). 

(2) Satisfaction for L* is a notion 1).1(V), or 1).1(V) in parameters from 
HC; or the restriction of such a notion to tpE some - H(x). 

These conditions correspond roughly to absoluteness as in [2] (where the 
terminology first-order is given some intuitive justification). All the languages 
of § 1 are first-order, as is each Lx",. We call a first-order language strong if: 

(3) L* is closed under ----', V, 3; under countable A, V ; under substitution 
of formulas of L",,,, for predicates; and the functions corresponding to these closure 
.conditions, e.g. the function cp_,cp, are PR, or PR in parameters from HC, 
or the restriction of such functions to some H(x). 

(4) The class of countable wellfounded structures is PC(L* nHC). 

Much of (3) is included in the definition of language in [3] (though not in 
{2D. These closure conditions guarantee that any PC(L *) class of R-structures 
is of form Mod (3 S cp') where S contains just a single binary predicate not in R. 
(4) corresponds roughly to the notion not bounded below CU1 of [2]. The languages 
·of § 1 are, but L",,,, is not, strong. 

2.5 Connections Among the Classifications 

Addison [1] observed that for any of the spaces we have been considering, 
the class of open sets and the class of L? sets coincide, and similarly: n? = closed, 

o 0 I I -. I I -
"'2:.2 = Fa> il2 = G8, 1).1 = Borel, LI = analytic, ill = CA, "'2:.2 = PCA. - - - - - -

I 

I 



Descriptive set theory and infinitary languages 17 

Ryll-Nardzewski, using Lopez-Escobar's Interpolation Theorem for L",."" 
showed that for invariant subsets of 'J., (R), Borel = EC (L",!",). Also analytic = 
PC (L",.",). See [20J. 

Kleene [I8J in effect showed that for subsets of any of the spaces we 
have been considering I:!+1 = I:n (HC). (Note that these spaces 'J., (R), X (R) are 
PR in parameter R, and are subsets of He.) 

Levy's Teorem (cf. Appendix to [2]) tells us that each H(x) is an elemen­
tary substructure of the universe V with respect to I:l formulas. It follows that 
for subsets of HC, ~l (HC) = ~l (V) in parameters from HC. 

Barwise [2J in effect shows that for cardinals X>6> and for invariant 
classes of structures, PR in parameters from H (x) = ,ifP in parameters from 
H(x) = EC(L"",). -

Jensen and Karp apparently knew that for subsets of the spaces we have 
been considering, ,il = PR in parameters from HC. 

Vaught's work [32] discloses the following: For a fixed Polish space, let 
cz,Q (0) = Borel sets; cz,Q (ex + I) = cz,Q (ex) plus complements of sets in cz,Q (oc) for ex 
odd; cz,Q(oc+ l)=sets obtainable from sets in cz,Q(oc) by (cA) for oc even; cz,Q(A)= 
= U{cz,Q(oc): OC<A} at limits; CZ,9=cz,Q(w1). Where the fusion operation (ell:) given 
sets Aa, crEw>"', produces u/E",wnnE",Afl n' Classically the sets in '1) are 
known as C-sets, and it is known cz,Q (1) - analytic sets. Then for invariant 
subsets of ::z: (R), C-sets =EC (L",.G), and moreover there is a level-by-Ievel 
correspondence between the CZ,R-hierarchy and the complexity of sentences of 
L",.G, with analytic = EC (Vaught sentences), where the Vaught sentences are, as 
in § 1.4, the simplest sentences of L"'.G - L",."" Moreover Ryll-Nardzewski's 
equation Borel = EC (L",.",) can be improved to establish a level-by-Ievel corres­
pondence between the Borel hierarchy and the complexity of sentences of L""",. 

We extended this work of Vaught's to scme other hierarchies in [8J, § 2 
and [6J, ch. 4. The following has been noted with varying degrees of explicitness 
by several people: 

2.6 PROPOSITION. For any strong first-order language L*, for invariant subsets 
of 'J., (R), ~l(V) in parameters from HC=PC(L*nHC). 

PROOF. That every PC(L*nHC) class is I:1(V) in parameters from HC is im­
mediate from the fact that satisfaction for [* is. To prove the converse fix a I:l 
formula ~ and a parameter IEHC defining an invariant Kr;:'J.,(R). 

Let E be the binary predicate of the language of set. theory. The class 
of countable wellfounded E-structures is PC (L*nHC). Say it is Mod(3S&) 
where &EL* ({ E}US)nHc. Define inductively for xEHC a characterizing 
formula Xx of L",.", by letting XxCv) be: 

!\yEx::JuEvX,y(u) '" VuEV V YExX,y(U). 

2 350PBBK pal\OBa 
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Let F be a singulary function symbol, and let r, a. t be constants. We assume 
these symbols and E and the symbols in S are all distinct from the symbols 
of R. Let T=RUSU{F, r,a,I}, and let epEL(T)nHCbe the conjunction of: 

(1) A large enough finite fragment of ZFC. 

(2) 3-

(3) Xl! (r) ,.., XI (t) 

(4) a is an r-structure with universe (U 

(5) IjJ (t, a) 

(6) F is an injection ,.., range F = universe of a. 
Plus for each n-ary predicate RE R : 

(7)R V V(XR (v) -+ V VI .•• Vn (R (Vi ... VJ ~ (F (Vi) ... F (Vn» E 

the a-interpretation of the symbol v» 
and similarly for function symbols and constants. Here in (4), (6), (7), the de­
finitions of structure, universe, and interpretation are to be written out in terms 
of E using the usual set-theoretic definitions. 

If mEK, then by Levy's Reflection Principle there is a countable transi­
tive model M of enough of ZFC with t, mEM and M f-1jJ (t, m). Using such an 
M it is easy to construct a SSE:1: (T) with i\ f-ep and i\ I R = m. 

Conversely given i\ f- ep with i\ i R = m, (1) and (2) guarantee that i\ is 
up to isomorphism a transitive set. Then (3), (4), (5) guarantee that the inter­
pretation a~ of -ti in i\ is an R-structure satisfying the definition of K. (We 
use here the fact that a ~I statement true inside some transitive set is actually 
true in the universe V.) Finally (5), (6) guarantee that m,......., a~, so by invari­
ance of K, mEK. 

2.7 Summary 

For any strong first-order language L *, and for invariant subsets of :1: (R), 
~~~: -

(a) ~~ = Borel = PR in parameters from HC = EC (LO),O», 

(b) ~~ = analytic = PC (LO)IO» = EC (Vaught sentences), 

(c) ~1=PCA=~i(HC)=~i(V) in parameters from HC=PC(L*nHC). 

~ 3 A Question of Vaugbt 

3.1 PROPOSITION. For any first-order language L*, and for invariant subsets 
of :1: (R), we have: 

EC(L*nHC)~Al= Ai (HC) 
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PROOF. We only give a sketch since our proof has appeared in [21]. The inclusion 
and the identity are immediate from 2.7 (c). We tacitly assume R is nontrivial, 
i.e. contains at least one binary predicate E. We say ~rEst:({E}) codes xEHC 
if ~ '"'-' (TC(y), E) where TC (y) = {y}UYU UY U UY U . .. is the transitive 
closure of y. An example to show the inclusion is proper is provided by 
{~Est:(R): 3tpEL*(R)nHC «I~I, Em) codes tp/\~I='tp)}. 

Vaught has asked whether for any invariant ~i K~st: (R) there is some 
first-order language L* for which K is EC(L*niic). We will show this ques­
tion cannot be answered in ZFC. 

3.2 A Positive Answer 

For any partially ordered set of forcing conditions (PO set) f}, let VtJl be the 
corresponding extension of the universe of set theory. (If you will, the Boolean­
-valued model associated with the complete Boolean algebra of regular open 
subsets of (}) For simplicity let us assume R finite. Then we may define K~X (R) 
to be absolutely ~~ if there exist ~i and rr~ formulas tp, tp in a parameter t 
from, say,w"', defIning K, such that for any PO set f}: 

(1) 

Here we are using elements t of V autonymously (writing t rather than (V). 
We extend this notion in the obvious way to st: (R). Note that if K is inva­
riant, then so is the .set defined by tp and t in any Vf}, since 

(2) ,3x, Y ~x '"'-' ~y /\ tp (t, x) /\ , ~ (t, y» 

is a true rri statement, and rr~ statements are absolute by Shoenfield's Theorem. 
We show now how, given an invariant absolutely ~~ K~st: (R) to construIt a 
first-order language L * ~ HC for which K is an EC. We begin by fixing defi­
nitions of the corresponding subset of X (R) satisfying (1) above. To further 
simplify matters we suppose R contains just one binary predicate E. 

For an arbitrary R-structure ~, let f}~) be the PO set of the injective 
elements of I~I<"', partially ordered by reverse inclusion, i.e. the usual condi­
tions for adjoining a generic bijecticn between wand I ~ I. Let x (~) be the 
following term of the forcing language for (} (~): 

{(p,«m, n),i»: pEf}(~)/\m,nEdom p/\ 

«(m, n)EEm /\ i = 0) V «m, n)EEEm /\ i = l))} 

i.e. the canonical term for an element x of X (R) with ~x,-.,..,~. By (1) and (2) 
we have: 

(3) 

2" 
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y? (m) 1= cp (t,.~ (~{)) ~ 3y E X (R) ~x "-' 2( /\ cp (t, y» 

~ 'v'yEX (R)(~.V--"'2( -+ cp (f, y» 

Any permutation h of Cll induces an automorphism Hh of (} ($ll) and a 
permutation u-+ uh of the terms of the forcing language. For any p, qE(}($ll) 
there is an h such that p, Hh (q) are compatible (weak homogeneity). For any 
h, X ($ll)h is stilI a term for an isomorph of 2(. It follows by (4) there cannot 
exist p, qE(} ($ll) one of which forces cp (t, x ($ll) and the other of which forces 
its negation. Thus: 

(5) Either y?(m) =cp(t, x (2(» or else vP(m)I....:-,cp(t, x($ll» 

Let K+ = {2(: Vi} (m) 1= cp (f, x ~)}. 
K + is invariant. For if £ "-' 2(, there is an isomorphism (} (£) "'-' (} ($ll) such 

that the induced map on terms carries x (£) to x ($ll). 

K+n:I(R)=K. For if xEX(R) and 2(xEK, then cp(f, x) is true and 
remains true in V'fI (mx) by Shoenfield's Theorem whence by (4) Vi} (mx) 1= 
I=CP(f, oX (2(x», i.e. 2(xEK+. Conversely, if 2(xEEK, by (3) and (4) 2(xEEK+. 

K+ is Al (V) in parameter f. For cp is equivalent over all models to some 
~l condition -6; and by the general theory of forcing there is a ~l 6' such that 
for all PO sets (}, all pE(}, and all terms it, Vi} 1::-6 (f, it) iff 6' «(},p, t, u) 
holds. Since, (} (2{) and oX (20 are PR functions of 2(, this implies K + is ~l (V) 
in parameter t. Using IjJ in place of cp we get ill in place of ~1" -

Now let L * be a language with but a single sentence pE HC, and 2( 1= p 
iff 2(EK+. L* is certainly first-order, and we can without difficulty fatten L* 
up to a strong language with@ut losing the first-order property. (Cf. [2].) 
Finally, K is EC (L *). 

The Solovay Absoluteness Theorem, [23], p. 152, implies that if V'x 3).. ).. -+ 

-+ (x) 2 <0>, then every A1 set is absolutely A1. Thus if enough large cardinals exist, 
Vaught's question has a positive answer. -

3.3 A Negative Answer 

It is wellknown that any class K which is ~l (V) in parameters from HC 
having Cl)l EK contains a closed unbounded (CUB) subset of Cl)l' It is also 
wellknown that if F assigns to each countable ordinal ex a well ordering of Cll 

in type ex, and for i = 2m (2 n + 1) E Cll, Dl = {ex: m precedes n in F (ex)}, then 
for some i, neither Dj nor Cll l - Dj contains a CUB set. Finally it is wellknown 
that if ClllL=CI)l then the function F may be taken to be ~l (V) and hence 
(since its domain is ORnHC) A l(HC). On this assumption, for suitable i, 
K = {2( E q ({ E}): 2( is a wellordering with order type E Dj} is a subset of 
q ({ ED which is invariant (in q ({ E)}» and Al (HC) hence At but which can­
not be the restriction to q ({ E}) of any (fully) invariant class which is Al (V) 
in parameters from HC. Thus if ClllL=Cllp Vaught's question has a negative aiiswer. 
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§ 4 Approximation Theory 

Let L *, L O be languages. By an approximation function for L *, L 0 we mean 
a function e: ORxL* -+Lo which preserves vocabulary; is PR, or PR in 
parameters from He, or is the restriction of such a function to some H(x); and 
which has the property that for any sentence ip of L * the following is valid: 
ip+--; A aEOR e (0:, ip). 

4.1 LEMMA. There exists an approximation function for Loo G, L oofA ' 

PROOF. The basic idea goes back to Moschovakis [25]; see also [31]. 
We define by induction of subformulas two preliminary functions elt, r7: 

OR xLoo G~LoofA' The easy clauses of the induction are: 

eIt (0:, ,ip) = I eIt (0:, ip) c7 (0:, ,ip) = c7 (0:, ip) 

eIt(o:, A <1»= v {c4(o:, ip):ipE<I>} 

eIt(o:, V <1»= v {dt(o:, ip):ipE<I>} 

c7(o:, A<I»=c7(o:; V <1»= A {c)O(o:, ip):ipE<I>} 

:;0 (0:, V Vip) =:7 (0:, 3 v ip) = V v:;O (0:, cp). 

For ip given by (*G) of §1.4 the definition is more complex. Fixing 0: and q> 
for the moment we define auxiliary functions dt*, :;0* with domains OR x /<W. 
OR respectively, by a subinductioll: 

eIt* (0, a) = An:s; length a dt (0:, CPa) 

~* (~+ I, cr) = V iEI dt* (~, cr~i) 
eIt* (A, cr) = A ~<A cft* (~, cr) at limits 

:;O*(~)= AnEw AaEln Vvo ... Vnn(dt*(~, cr)-+ dt*(~+ 1, cr». 

We then set: 

cft(o:, ip) =dt* (0:, 0) 

c7 (0:, q» = c7* (0:) A nEw A aEln Vvo ... Vvn c7 (0:, IPa). 

Readers of [31] should then have no difficulty in verifying that the follo-
wing are valid; 

(1) c7(o:, q»-+ c7(~, q» for o:<~ 

(2) V aEOR::i' (0:, ip) 

(3) :;0(0:, cp)-+ (ip+--; dt (0:, ip» for all 0: 

(4) q>+--; VaEOR(::i'(o:, ip)Adt(o:,ip» 

(5) ip +--; A aEOR (~(o:, cp) -+ dt (0:, cp». 

So it suffices to set '{J (0:, ip) = (~(o:, ip) -+ dt (0:, ip». 
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4.2 APPROXIMA nON THEOREM. Let L * be any first-order language. Then 
there exists an approximation function for L*, Loo(iJ' 

PROOF. By the Lemma it suffices to obtain an approximation function for 
L *, Loo G. For simplicity we will consider only the vocabulary R = {E}, E a binary 
predicate, and we will assume satisfaction for L * is Z;l(V) (no parameters). On 
these assumptions the approximation function will be PR. 

From the Z;1 definition of satisfaction we obtain a Z;~ formula 6 defining 
S={(x,Y)EX(R)2: 3cpEL*(R)nHC (y codes CPI\~xf-CP)} and a Z;~ formula 6-
defining the set S- obtained by replacing cp by -icp in the definition of S. (Cf. 
proof of Prop. 3.1.) The statement: 

(1) -,3 x, y (6 (x, y) 1\ 6- (x, y) 1\ ~x "-' ~y) 

is n~, hence absolute. 

From 6 we can obtain the index of a recursive functional F such that 
(x,y)ES iff: 

(2) 3 z F(x, y, z) is welIfounded. 

By Shoenfield's Theorem, the required z can be found in J(x, y), the class of 
sets constructible from x, y. Hence (2) is equivalent to the existence of IX<W1 
such that: 

(3) 3zEJet. (x, y) F(x, y, z) welIorders W in order type <IX where Jet. is the 
a.th level of the conshuctible hierarchy. From (3) we can readily obtain a Z; ~ 
formula ~ such that the following holds: 

(4) V x, y, z, z' (~z is embeddable in ~z, -+(~ (x, y, z) -+tjJ (x, y, z'») and 
for any x, y and for fixed a. and z wellordering W in order type a., (3) is 
equivalent to tjJ (x, y, z). Note that (4) is nL hence absolute. 

From this tjJ we can compute the index of an RE set W such that tjJ (x, y, z) 
is equivalent to: 

(5) 3wEwOl VnEw(xlln,ylln, zlin, wln)EW 

where xii n denotes the restriction of x to (n + 1) x (n + 1) for xEX(R) (= 20l X Ol). 
Now let cp be a sentence of L * (R), ~ an arbitrary R-structure. Let if> = if> (~), 

x=x(~) be as in § 3.2. Let ~=Q(cp) be the PO set of forcing conditions for 
making TC(cp) countable (i.e. for making cpEHC), and let y=y(cp) be the 
canonical term for an element of X(R) coding cp. Now if ~ I=cp, then ~, cp 

satisfy the Z;1 definition of satisfaction for L * in V, and will continue to do 
so in V9 x.Q.. Hence in that extension x and y will satisfy the :E~ definition 
6 of S. Conversely, if ~ 1= -, cp, x, y satisfy 6- in Vr]J x Q and so by (1) do 
not satisfy 6. So ~I=cp iff Vr]Jx.Q.I=6(x, y). By our detailed analysis of 6 
above, this condition is equivalent to: 

(6) Vr]Jx.Q.I=3a.<w13zEX(R) (~z"-'(IX, E) I\tjJ (X", y, z». 
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For fixed aEOR, let ~ (a) be the PO set of forcing conditions for collap­
sing a, and let z (a) be the canonical term for an element of X(R) with 
I2V ....... (a, E). We claim (6) is equivalent to the existence of a such that: 

(7) 

For if (7j holds for some a, then the 2:1 statement 3 z (l2!z is a wenordering 
A ~ (x, h z» holds in VfJJxflx~ (0(\ and hence by Shoenfield's Theorem in 

V fJJxfl , so (6) holds. Conversely, suppose (6) holds and let ~=card«(f>xQ)+, 
so ~ is still uncountable in VfJJxfl. For any pE(f>, qEQ, there will exist 
P'"5;p,q'"5;q and a<~such that (p',q') forces =:Iz(l2!z"-'(a,E)A~(x,y,z». 
It fonows (p', q', 1(3) forces the same thing, where /" is the trivial element of 
~ (~). By (4), (p', q', 1(3) forces 3 z(l2!z"-'(~, E) A ~ (X, y, z», and since p, q were 
arbitrary, (7) fonows. 

Now fixing a and ~ = ~ (a), z = z( a), (7) is equivalent to: 

(8) VfJJxflx~=3wEwWVnEw(xlln,y[ln, zlln, wlln)EW. 

For pE (f> with dom p ~ n, define ~ (n, p) to be what p forces xii n to be. Thus 
for i, j<n, (~(n, p»(i,j) is 0 if (p (i), p (j) E El}!, and I if not. Let "I), ~ be simi­
larly defined. Then we claim (8) is equivalent to: 

(9) V poEI}J, qoEQ, roE~ 3PI <Po' ql <%, rl <ro 3 wo' w1 Ew 

V P2<PI> q2<ql' r2<rI 3P3<P2' q3<q2' r3<r2 =:I w2' w3Ew ... 

. . . Vn (~(n, p,J, "I) (n, qn)'~ (n, r,J, (wo ... w,J) E W. 

We will omit the proof of this equivalence, since it is a special case of more 
general theorems of [15]. Now (9) is equivalent to the fonowing sentence 
holding in 12!: 

(10) AkoEw VVo··· l'ko-l distinct AkoEfl AroE~ 

VkIEw3vko···Vko+kl-l distinct Vql<qO Vrl<rO Vwo,WlEw ••• 

(A i,j:5,n, l;\i,j)=O VI EVj A A i,j:5,/I, 1;' (i,j)=l iViEv) 

where here distinct means not merely that Vko ... are distinct from each other, 
but also that they are distinct from vo ... Vko-l. Tedious but routine coding 
(cf. Vaught's remarks [32], § 3, on the closure of Lw,G on pa~sage to weak 
second-order logic) produces a sentence Q (a, cp) equivalent to (10) which belongs 
to LooG, and is independent of 12!. It suffIces to set e(a,cp)=iQ(a,icp). 

§ 5 The Anti-Beth Theorem 

Beth's Definabillity Theorem for a language L* asserts that for any voca­
bulary R and any binary predicate S and constants c, d not in R, that if cpE 
L *(RU{S}) is such that any R-structure 12! has at most one expansion to a model 
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of q>, then there exists aEL*(Ru{c,dn such that for any R-structure ~, if ~ 
has an expansion to a model of q>, then (~, {(a, b): ~, a, b) 1= an is that expan-
sion. Replacing "at most one" by "exactly one" produces the weak version of 
Beth's Theorem. 

5.1. ANTI-BETH THEOREM. Let L* be any strong first-order language. Then 
even the weak version of Beth's Theorem fails for L*nHC. 

PROOF. It may help to isolate first the descriptive-set-theoretic content of the 
construction. Let X=2"'x",. We think of subsets of Xn, as n-ary relations on X, 
writing Z(XI" .x,,) for (Xl'" xn)EZ. For xEX, iEw, define (X)l EX by 
(X)l (j, k)=x(l, 2i (2k+l». -

Suppose we are given a family r of subsets of and relations on X contai­
ning a T~X2 such that for all x: 

(1) ~x is wellfounded ~ ~y T(x,y) 

and satisfying: 

(2) r~~~ 

(3) All closed sets belong to r 
(4) r is closed under countable -

(5) r is closed under taking inverse images under continuous functions 
We show how, given an arbitrary ~~ set K, to construct a nlHEr such that: 

(6) 'v'x 3 Iy H (x, y) 

(7) 'v' x, y (H (x, y) -+ (K (x) ~ Y (0, 1) = 0». 

To begin with, fix ~l sets P, Q such that: 

(8) 'v'x(K(x)~3yP(x,y)~ -a yQ(x,y». 

Define a nl set A by: 

(9) A (x, y) ~ «y (0, 0) = 01\ P (x, (y)J') v (y (0, 0) = 1 A Q (x, (y)J). 

Note: 

(10) 'v'x3yA(x,y). 

Let Bo be a ~l set uniformizing A, i. e. Bo~A and 

(11) 'v'x3!yBo(x,y). 

By the standard analysis of J:!l sets there is a continuous Fo: X2 -+ X such that: 

(12) 'v'x,y(Bo(X'Y)~~Fo(X.Y) is wellfounded). 

Define: 

(13) Co(x,y,z,u)~z=FO(X,y)A T(z,u). 
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Note the graph of Fo is closed so by (3), (4), CoEr. Moreover by (I): 

(14) V x, y (Bo (x, y) f-; 3z, u Co (x, y, z, u». 

By (2) Co is ~L so there exists a I.!l set Doc:,.xs such that: 

(IS) V x, y, z, u(Co (x, y, z, u) ~ 3 v Do (x, y, z, v». 

Let Bt be a I.! 1 set uniformizing Do, so: 

(16) V x 3 !y, z, u, V Bt (x,y, z, u, v). 
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Reviewing the construction, it is clear the same y is involved in (11) and (16). 

Now iterate the above steps, picking Ft :Xs ~ X, Ctc:,.X7, Dt~X8, etc. 
In the end we define: 

(17) En (x, y) ~ Bn (x, (Y)o ... (Y)3n+ 3)' 

(18) Gn (x, y) f-; Cn (x, (y)o' .. (Y)3n+J. 

Since the maps y -+ «y)o' .. (y)i) are continuous, the En will be I.!l and, by (5)~ 
the Gn will belong to r. Finally, set: 

(19) H(x,y)~VnElI(x,y). 

Reviewing the construction, and noting that (Y)o (0, 0) = y (0, I), we get (6), (7). 
Moreover: 

(20) Vx,y(H(x,Y)f-;VnGn(x,y», 

which, with (4), implies HEr. 

Now to apply this construction to model theory. For nEw let Rn= 
{Rt ... Rn} where the Ri are binary predicates, and letS ll =RnU{EB,®},where 
EB, 0 are binary function symbols. Let L* be a strong first-order language. 
By the definition of strong, cf. §2.4, there is a sentence 'rEL*(R2)nHC such 
that the class of countable wellfounded RI-structures is Mod (3 Rz 'r). Define­
T~X2 by: 

(2 I) T(x, y) f-; ilf(x,y) 1== 'r, 
and let r be the smallest class containing T and closed under (3)-(5) above. 
It is wellknown that for any Borel z~xn there is a sentence ~EL"'I",(SlI) such 
that for all x t ••• xn: 

(22) Z (xt ••• xJ f-; (il{(XI" .Xn)' +, x) I==~, 

where +, x are the usual arithmetical operations on w. Now the closure condi­
tions required of r correspond to the closure conditions satisfied by strong 
languages: (3) corresponds to L"'I'" ~ L *, (4) to closure of L * under countable 
/\, and (5) to closure under substetution of formulas for predicates. Exploiting 
this correspondence, for every ZEr we can find a ~ in L*nHC satisfying (22) .. 
This, with 2.7 (c), implies (2). 
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Let now a ~~KCX be given, and suppose K is invariant. Let H be as 
constructed above from K, and let YlEL* (S2)(JHC correspond to H. Let 
<PoEL"'l"'(SO) express that EB, ® are up to isomorphism the usual arithmetical 
operations on <0. Let cp = (cpo 1\ 'Y]) V (''Po 1\ Vu, v,R2 (u, v». Then by (6) every 
Sl-structure ~ has a unique expansion to a model of cp. Suppose eEL* (SlU 
U {c, d}) is as required by Beth's Theorem. Using the closure properties of 
L* we can obtain from e a IjiEL*(Sl)nHC expressing that e holds of the 
identity element of EB and the identity element of ®. Then by (7): 

(23) Vx(K(x)~~x' +, x)I=Iji). 

It is not hard to see no Iji satisfying (23) can exist if K is the counterexample con­
structed in the proof of Prop. 3.1. This contraditiction shows Beth's Theorem 
fails. • 

§ 6 Some Model Theory 

We collect here what is known about first-order languages from §§ 1-5, 
from Barwise' work [2], and elsewhere. 

6.1 DOWNWARD LOWENHEIM-SKOLEM THEOREM. Let L* be a first­
-order language, x an infinite cardinal, 'PEL*nH(x+), ~ a model of cp, Z a 
subset of I~I with card Z~x. Then there is a substructure o2~~ with Z~lo2l, 
card I £ I = x, and £ f- <po 

PROOF. This is Prop. 2.1 of [2]. For the languages of § 1, a direct proof using 
Skolem functions is possible. 

If L * is a language and ~,o2 are structures of the same vocabulary, we 
say ~ and £ are L*-elementarily equivalent, in symbols ~==*o2, if they are 
models of exactly the same sentences of L*. We say ~~o2 if there exists a 
family :t: of partial isomorphisms between ~ and £ with the back-and-forth 
property (V!E:t:VaEI~13bElo2l !U{a, b)}E2' and vice versa). 

6.2 KARP PROPERTY. Let L* be a first-order language. Then for all struc­
tures ~, o2, ~=*o2 iff ~~o2. 

PROOF. For ==00'" this is due to Karp. For the general case it is Prop. 2.5 
of [2]. The equivalence of = * and = 00'" is greatly strengthened by the Approxi­
mation Theorem 4.2. 

We say a sentence 'P in vocabulary R is compact if for any vocabulary S 
disjoint from R, where we here allow, contrary to our convention everywhere 
else in this paper, uncountable S, and for any theory T~L",,,, (RUS), if <p is 
consistent with every finite subtheory of T, then 'P is consistent with T. 

<i.3 GOLD PROPERTY. Let L* be a first-order language, and 'P a sentence 
of L* such that both <p and ,<p are compact. Then <p is equivalent to a sen­
tence of L",,,, in the same vocabulary. 

PROOF. Gold [12] proves this for Loo", but examining her proof one sees it only 
uses the Karp Property. -
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6.4 UPWARD L6WENHEIM-SKOLEM THEOREMS 

(a) Let L * be a strong first-order language such that the class of all welIfounded 
structures is PC(L * C HC). Then for invariant classes of structures ~I(V) in para-
meters from HC=PC(L*i,HC). -

(b) Let L*, L* be languages satisfying the hypothesis of part (a). Then 
L*nHC, L*nHC have the same Hanf number. 

(c) Let l) be the common value of the Hanf numbers in part (b), then: 

{-LX [x ~ (w){w] <"fJ < {-LX [x ~ (Wl){W] 

provide these large cardinals exist. 
(d) Let L * be any first-order language. Then the Hanf number of L * n HC 

is less than {-LX[X~(Wl){W] if it exists. 

PROOF. (a) By invariant we here mean fully invariant (not just invariant in '!I. (R». 
(a) is then proved just like Prop. 2.6, but we need the stronger hypothesis. Of the 
languages in § 1, L wIG, for example, satisfies this hypothesis, while Souslin logic 
does not. 

(b) is immediate since the Hanf number depends only on the PCs. 
(c) These bound were computed by Silver for the language of purely universal 

sentences of LWI"'I' Technically this language is not strong, but it is close enough 
for the arguments for parts (a) and (b) to go through. These bounds apply, for 
example, to LW1G1 but not to Souslin logic. For the Hanf number of the latter, 
see [9], [7], [1 I]. 

(d) is now immediate since any first-order language can be fattend up to 
a strong one. (d) is Prop. 2.4 of [2], and our 2.6 and 3.4 are more explicit for­
mulations of things implicit in Balwise' proof. -

Craig's Interpolation Theorem for a language L* states that disjoint PC(L *) 
classes (in a given fixed vocabulary) can be separated by an EC(L*). This is equi­
valent to the conjuction of the I::1-Interpolation Theorem, which states that disjoint 
PC(L *) classes can be separated by a class which is simultaneously PC(L *) and 
co-PC(L*), with the Souslin-Kleene Theorem, which states that any class both 
PC(L*) and co-PC(L*) is EC(L*). Claig's Theorem implies Beth's, and the 
Souslin-Kleene Theorem implies the weak version of Beth's Theorem. 

6.5 ANTI-CRAIG THOREM. Let L* be a first-order language containing L"'2"" 
Then Craig's Theorem fails for L *. 
PROOF. In Prop. 2.11 of [2) Barwise derives this from Malitz' counterexample 
to Craig's Theorem for L"'2W , which depends on the facts that (w, E) and (Wt, E) 
can be characterized up to isomorphism in L W2"" and that any two structures 
for the empty vocabulary (vocabulary with no nonlogical symbols, just the logical 
predicate =) ~ and 53 satHy 2{~53. 

A~HC is complete n I (HC) if A is n I (HC) and for any ndHC)B there 
exist a PR function F and a parameter t EHC such that B~{x: F(r,x)EA}. 
No such set can be ~1 (HC) or ~1 (V) in parameters from HC. 

6.6 INCOMPLETENESS THEOREM. Let L * be a strong first-order language. 
Then the set of logically valid sentences of L * n He is complete 111 (HC). 
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PROOF. Barwise, Prop. 2.15 of [2], shows this set is not 'J:.1(HC). An obvious 
simplification of his proof shows it is indeed complete ill (HC). Given any com­
plete proof procedure for L* nHC, the set of valid sentences is {cp: 3 P (P is a 
proof of cp)}. Thus 6.6 says there can be no such proof procedure in which proofs 
are countable objects and being a proof is a property ~1 in parameters from He. 

Let a first-order language L* be given. We introduce a proof procedure 
for L * n H C by adjoining then the proof procedure for L Cil1Cil given in [1] the fol­
lowing rule of inference with ~1 premisses: 

If f-~ (or;, cp) for all or;<co1, then f-ep, 

where 7S is as in the Approximation Theorem 4.2. 

6.7 COMPLETENESS THEOREM. Let L* be a first-order language. The above 
proof procedure for L* nHC is sound and complete. 

PROOF. cpEL* is not valid if 3~3or;--'~f-13'(or;,cp). This is a 'J:.1 statement, and 
if epEHC, it is true iff it is true in HC, i.e. the ordinal or; may be taken <col 
and the model ~ may be taken countable. Soundness and completeness are now 
immediate from the soundness and completeness of the proof procedure in [17]. 

6.7 shows validity for L*nHC is 'J:.1 in parameters from HC plus the 
parameter COl' For particular languages fr~m § 1 similar proof procedures have 
been obtained by Moschovakis (unpublished) and Green [10].-

In the next four results R, S, T are disjoint nontrivial vocabularies. 

6.8 DECOMPOSITION THEOREM. Let L* be a first-order language, cpE 
EL*(RU8)nHC. Then there exist epIXEL"'I'" (R), or;<col> such that the followingis 
valid over countable structures: 

3Scp+-* Va.<CilICPIX' 

6.9 NUMBER OF MODELS. Let L* be a first-order language. epEL*(RUS)n 
nHC. Then up to isomorphism the number of countable models of 38 ep is 
either ~ ~l or else exactly 2~. 

6.10 REDUCTION THEOREM. Let L* be a strong firstorder language. Then 
for every ep,~EL*(RU8)nHC there exist epo'~oEL*(RUS)nHC such that the 
following are valid over countable models: 

(3 S CPo -+ :3 S cp) t\ (3 8 1/10 -+ :3 8 1/1) 

38 (cpvl/l) -+ 38 (CPo V 1/10) 

--, (3 S CPo t\ 3 S ~o) 

6.11 UNIFORMIZATION THEOREM. Assume every real is constructible. Let L* 
be a strong first-order language. Then for every cpEL*(RU8UT)nHC there 
exists ~EL*(RU8UT)nHC such that the following are valid over conuntable 
structures: 

3TI/I-+ 3Tcp 

3 S 3 T cp -+ 3 ! S 3 T 1/1. 

i 
i 
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PROOF. 6.8-6.10 are the model-theoretic translations of results about invariant 
~1 sets in [31]. 6.9 is of course immediate from 6.8 and a theorem of Morley 
on the number of countable models of a sentence of L OlIOl . 6.11 is similarly the model­
theoretic translation of an invariant uniformization theorem (see [26], or [8] §I). 
An (unpublished) example of Silver shows the restriction to countable models 
cannot be lifted in 6.10. Myers [26] shows 6.11 cannot be proved in ZFC alone. 
Cf. also [30] for related observations. 

6.12 THEOREM. Let L* be a strong first-order language. Then the following 
fail for L*nHC: 

(a) Craig's Interpolation Theorem 

(b) The Souslin-Kleene Theorem 

(c) The ~-Interpolation Theorem , 
(d) Beth's Definability Theorem 

(e) Weak Beth's Theorem 

PROOF. For (c) this is the model-theoretic translation of the fact that there exist 
disjoint invariant :2:1 sets which cannot be separated by a ~~ set. See [2], 
Prop. 2.13. (e) is Thm. 5.1, and this implies the rest. -

One large problem in the model theory of strong first-order languages remains 
open, which does not lend itself to abstract, descriptive-set-theoretic statement: 
Can we prove for, say, L OlIG , that any sentence preserved under substructure 
(resp. homomorphic image) is equivalent to a universal (resp. positive) sentence? 
Harnik [13] has proved preservation theorems for LOlIG for some symmetric re­
lations (LOlC<)-elementary equivalence, the p-isomorphi~m of Scott, isomorphism 
of di I ect squares, etc.); his results (by the proofs of [13] or by alternative proofs 
due to Miller) extend to some of the other languages of § 1. 
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ON A FOUNDATION FOR MATHEMATICS - A VIEW OF MATHEMATICS 1* 

Milan DURIC 

1. Introduction 

This paper represents the beginning of our final consideraticns of an approach 
to the foundations of mathematics initiated by the paper [5]. We shall deal in it 
with mathematical activity and its goals. We shall start frem the assumption that 
the primary goal of mathematical activity is the creation of certain entities which 
will comprise in themselves (all) that activity. Such entities, we shall call mathe­
matical entities. Our next assumption is that any performed mathematical activity 
creates conditions, i.e., makes a groundwork for a new mathematical activity and 
hence for the creation of new mathematical entities. These new entities ale of a 
higher level with respect to old ones. If we now assume that all mathematical entities 
constitute an edifice which we shall call the world of mathematics, then we shall 
have that this world consists of mathematical entities of various sorts and levels. 

In the creation of such a world we accept a symbolic form of presentation. 
Namely, we assume that there is a collection of symbols which stand for mathe­
matical entities of various sorts and levels. Such a collection will be a symbolic fr ame 
of the world of mathematics. We shall denote it by d. If we build up the world 
on this collection, then we shaH say that we have a symbolic form of the world 
of mathematics and of mathematical entities as its constituents. We shall obtain 
concrete mathematical entities by naming symbols of such a world according to 
their creative procedures given in the paper. 

If we assume that mathematical entities in question are certain organized 
wholes, which we call spatial wholes, then we might say that the world of mathe­
matics consists of spatial wholes of various sorts and levels. Together with these 
entities always go some other entities: connectives between them. In such a way 
we obtain that the world of mathematics consists of two sorts of entities of various 
levels. It means that for its creation is enough to start frem a subcoIlection ..Jll of 
d, consisting of two-sort symbols of various levels. Other symbols of d are then 
reserved to stand for properties and other things which are relevent for entities 
of At. 

* The first version of this paper was communicated in Mathematical Institute in December 
18, 1975. 
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The collection Ai will serve as a framework for the creation of the world 
of mathematics. We shall specify the fundamental acts necessary for its creation. 
The central act occupies of course the creaticn of spatial wholes - objects of the 
world. We shall define the concept of a spatial "",hole and point out its main features. 
Furthermore, we shall give some examples of spatial wholes and establish the link 
between the creation of particular kinds of spatial wholes and certain standard 
mathematical conceptions, like formalism and intuitionism. In such a manner 
we shall show that these conceptions justify our attitude concerning the goal of 
mathematical activity. Otherwise, all these investigations will serve as a basis for 
the process of formalization. 

2. Species and spatial wholes 

This section is devoted to a general discussion of the mathematical world 
and to main concepts which arise in the creation of this world. These concepts are 
species and spatial wholes. We shall see which mathematical activity is compriEed 
in their creation. 

Before we begin our consideration of the above concepts we would be shortly 
concerned with the activity of human beings in general and then within such an 
activity would find the position of the mathematical activity. 

Certainly, in a human activity one can always recognize two things: the goal 
of activity and means which men have at their disposal to attain the goal.When 
one is provided with these two things then he has still to decide in which manner 
to realize the activity. It means that he must have a plan - a scheme for its per­
forming; of course, there also must be criteria for deciding on each of these things. 

Before all, the goal of activity has to be determined according to our needs 
and wishes; these two things are otherwise restricted by certain external mcments. 
Since an activity is always realized within a frame which has its own principles, 
then we must take into account that it should not violate these principles. If the 
question is about the organization of a society, then we have principles of various 
kinds, like social, political and many others. All these particular moments are 
beyond our interest and therefore we shall not be concerned with them here. However, 
they will find their place in our global considerations of the organization of cS; 
of course, in a form which we shan be able to Eet up. 

We further have that means for attaining the goal of activity are different 
and determined according to our wishes to have some, in a certain ~ense, optimal 
properties of the goal. Independently of concrete goals people deal with discovering 
general and always new means for performing their activities and then in concrete 
situations utilize adequate ones according to desired prcrerties of the goals and 
considered objects by means of which they build them up. Clearly, we cannot apply 
any means to each collection of concrete objects. Thus when we specify means we 
decide on their choice according to the regarded collection of objects. At the end 
of these general considerations of activities of human beings we shall still be con­
cerned in short with plans for perfOlming activities. The plans are to be given in 
oral or written form and their purpose is to specify and also to memorize perfor­
mances of activity. 

Mathematics cannot be set apart from these general activities of human 
beings. It can deal with them only in abstract fOlms. According to our views, its 
goals are, in the main, creations of abstract spatial wholes, means for the purpme are 
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certain constructions - operations and plans of activity (re symbolic,schbp:lata. , '" ~ 

In the sequel we shaIl concern all these concepts. " , -. \ 

Now we shall begin with a general description of the "mathematical world 
and main activities for its building. We shall start from a large collection consisting 
of symbols of different sorts and levels. The levels of starting symbols of d we 
denote by -1 and the collection containing all these symbols by dO. We further 
have different-sort symbols of the levels 0, I, ... and respective collections db 
d2, ... which contain them. If we denote the hierarchy of all levels by g, then we 
can write the above collection as an indexed collection <d; I iEg). This coIlection 
is so far without any condition being imposed upon it and its elements. 

Since d contains various symbols in itself we therefore have to carry out 
some systematizations in it in order to make it capable of suiting our purposes. 
To do this we shaIl consider nature around us. Two basic concepts in it are real 
objects of various levels: electrons, atoms, molecules, actual objects we are surroun­
ded by etc. and forces among them. Forces on a level in nature may be of different 
characters and sources which we shall not discuss here. These two concepts are 
quite sufficient for building up the real world; forces are otherwise responsible for 
its existence as a whole, although they are not sufficient for a complete descirption 
of it: of all phenomena and events in it. Taking into account the former fact, we 
shall select in d, by the analogy, a collection ./It of two-sort symbols of different 
levels, which will be sufficient for our purposes: building up the mathematical 
world. One sort of symbols in it will correspond to objects: natural or abstract 
and the other to connectives between these symbols. The former symbols we shall 
caU objects and the latter, arrows. Thus, the collection .J1l consists of objects and 
arrows of various levels. Such a collection, which is otherwise quite natural, will 
serve as a framework for building up the mathematical world. Other symbols of 
d will only serve for its description. 

In what foIlows we shaIl make some further specifications in .J1l. Namely, 
we shall let the possibility to characterize and hence to differentiate the symbols 
of .J1l. We can do this by adjoining to each level of .J1l certain new symbols of d 
which will become certain integral parts of the symbols of .J1l, characterizing them. 
These new symbols we assume to be characteristic properties, which mathematical 
entities can be supposed to possesss. Since we have in ./It, on each level, two-sort 
symbols, then the adjoined symbols, to any level of ./It, have also to be two-sort: 
the ones for objects and the others for arrows. We here assume that there are some 
relationships between the properties of objects and arrows: we assume that arrows 
have properties of carrying information on objects and their properties; information 
are otherwise to be specified in each concrete case. 

By means of symbols representing properties of objects we can make certain 
selections in.J1l. These selections are our starting acts. What do we do, in fact? 
We select (all) objects on a level of j/t, agreeing in some common (attributes) -
characteristic property(ies), in particular collections. Such collecticns we then 
call species. We shall specify this somewhat more. 

Denote by ~ the collection of (all) possible properties which mathematical 
entities on a level of .J1l can be supposed to possess. By applying this collection to 
the considered level of .J1l we shall select various collections of objects and arrows 
on it. Let us see in which way. First, we shall concern the question of the selecticn 
of collections of objects on the regarded level of .J1l. 

3 3!)op&mt pa~oBa 
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Let us consider a many-valued function 

S : ~Ob ~ ../Itob l 

where ~ob means the collection of properties which mathematical objects on the 
considered level of ./It can be supposed to possess and ..IItob means the collection 
of objects on that level of ../It. Such a function we shall call the application of 
~ob to ./Itob. It assigns, to each property P E ~ob' a collection of objects of the 
considered level of ./It for each of which one can suppose to possess this property. 
Such a collection we shall call a species. Thus we define a species as follows: 

DEFINITION 1. By a species on a level of ../It we mean the image of a pro­
perty P under an application S of ~ob to ../Itob' which consists of (all) those objects 
of ./Itob for which one can suppose to possess this property. 

When a species S (P) is defined, then any mathematical object which has 
been or might have been generated before S(P) and which satisfies the condition 
P, is a member of the species S(P). In the sequel we shall deal with the mode of 
generation of mathematical objects and in such a way shall contribute to the speci­
fication of members of species. 

Although the study of species is not our main task in the paper, we shall still 
deal with certain concepts that concern them. At that, all used signs will have the 
usual meanings. Otherwise, one can find the definitions of these concepts in [11]. 

A species S(P) is empty if, in the application of S, we cannot select any object 
of ../Itob which satisfies the condition P. If the application S is a single-valued func­
tion, then we have the case of a singleton species. The size of a species is otherwise 
to be determined by its relating to the species of natural numbers as it is given 
in [11]. 

We further have certain relationships between species. These relations arise 
from the relationships which exist between the properties. If we have, for instance, 
that there is a relationship P ~ p' between two properties P and P' of ~ob' which 
means that, if an object has the property P, then it also has the property P', then 
we shall have that the species S(P) is contained in the species S(P'), or that it is a 
subspecies of the species S(P'). If the above is also valid conversely, then we shall 
say that the species S(P) and S(P') are equal. 

We can now define the concept of splitting up a species. If there is a relation 
S(P) = S (P')US (P"), where P' =FP", then we shall say that S (P) is split up into 
species S (P') and S (P"). If S (P') is here a subspecies of the species S (P) and 
S (P") the difference S (P) - S (P'), then we shall say that S (PI) is a detachable 
subspecies of S (P). 

One could deal now with further questions concerning species. However, 
we shall not do this, especially because some of these questions are not essential 
for this paper and since some of them will arise later in the consideration of species 
which are endowed with collections of arrows and then with a certain structure. 
Thus we shall consider that species are specified enough for our further purposes. 

Having finished with the selections of collections of objects on particular 
levels of ../It, called species, we shall be concerned with the selection of arrows. 
We shall assume that any species of any level of ..lit is endowed with a collection 
of arrows. Let us see in which manner we distribute arrows over species. If we have 
a species S (P), then we assume that arrows in S (P) are those which naturally 
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belong to it and will do so if they preserve the property P. This property is intrinsic 
for the objects of species. We shall call the arrows with this property relevant arrows 
So, their definition is as follows: 

DEFINITION 2. By an arrow relevant for the species under consideration 
we understand the arrow which preserves certain intrinsic properties characte­
rizing its objects. 

In such a way species of../lt are endowed with arrows which carry in themselves 
information on their objects: their structure and properties. From now on, when 
we say a species S (P), we shall alwas regard that it is endowed with a collection 
of relevant arrows. Here Sob (P) will mean the collection of objects of S (P) and 
SaT (P), the collection of arrows of S (P). Otherwise, if there is no possibility of 
confusion, we shall denote a species S (P) simply by S, i.e., we shaII identify it 
with the application S. 

Now, in order to make the species capable of satisfying our purposes we 
shall provide them with a certain fundamental structure. We assume here the struc­
ture of a (quasi)category*, In the following section we shaH explain what this 
structure means. 

Let S be a species on a level of ../It. Endow it with two unary functions 
<t:>o' '1)1: S -+ Sob and a binary function e : S2 -+ S. In that way we obtain a 
system <S; <t:>o, '1)1' e). We have the following meanings in this system: 
<t:>o (OI:)=x means that the object x is the source of the arrow 01:; <t:>1 (01:) = y 
means that the object y is the target of the arrow 01: and e (OI:,~)=y, which we shall 
also write as e (OI:,~; y), means that the arrow y is the composition of the arrow 01:, 

followed by the arrow ~. 

If we now involve certain laws to specify the functions in the above system, 
we shall obtain a desired fundamental structure. First, we have a structure called 
a quasi category : 

DEFINITION 3. By a quasicategory we mean a system <S; '1)0' <t:>1' e) for 
which the following two groups of laws hold: 

Cl. 

C2. 

<t:>n (<t:>m (01:)) = <t:>m(OI:), n, m=O, 1, 

=:1 ye (01:, ~; y) => '1)1 (01:) = <t:>o (~), 

e (QC, ~; y) => <t:>o (QC) = <t:>o (y) A <t:>1 (y) = <t:>1 (~), 

e (01:, ~; y) A e (QC, ~; y') => y = y'; 

e (<t:>o (QC), QC; QC) A e (QC, '1)1 (QC); QC). 

The symbols A, => and =:1 have usual meanings: A (and), => (if ...• 
then ... ) and 3 (there exists). If we do not take differently, these and other 
logical symbols will have only such meanings throughout the paper. 

* In our papers, we have called this term so far a fundamental (quasi)semigroupoid. We 
think that this term is better because it carries in itself a structural meaning of the concept. Mean­
while, this is only our opinion, And since category theory is a highly developed theory, then 
there is no reason for changing the names of it and its concepts. Therefore, we accept here the 
standard name - a (quasi)category. 

3" 
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If we add a new law to the first group of laws 

<t>1 (a) = <t>o (~) => ::I Y e (a, ~; y), 

:and also the law 

which means the associativity of e, then a quasicategory becomes a category [15] 

Furthermore, if we add the law 

C4. 

then from a quasicategory we obtain a quasisemigroupoid and from a category, a 
groupoid. 

If moreover we take that <t>O=<t>l and that both are constant functions, then 
a (quasi)semigroupoid is reduced to a (quasi)semigroup and a (quasi)groupoid to 
a (quasi)group. 

Certainly, a morphism between two (quasi) categories is a functor [15]; it 
lis a relevant arrow in our sense. We have further morphisms between functors, 
··called natural transformations, then morphisms between natural transformations, 
morphisms between these new morphisms etc. By this process of involving relevant 
arrows, we could define certain many-valued functors [6] between (quasi)cate,. 
gories possessing various structures as, for instance, the simplicial one, etc. 

Since we have specified the basic collections of symbols of ../fl, called species, 
:and have involved certain fundamental structures in them, we shall proceed further 
to make certain organizedwholes from them. From now on we shall fix the funda­
mental structure on species. We assume it to be a (quasi)category: it means a 
quasicategory or a category, when it is necessary. A species endowed with such a 
structure, we shall call a fundamental world. 

In order to make an organized whole fom a fundamental world in question 
we must claim that it allows some reasonable creations and other activities in itself. 
In what follows we shall deal with creations and collections on which they ought 
to be performed. 

The basic purpose of creations on a fundamental world is to give us a pos­
sibility to construct new objects from the old ones. We dealt in [6] with certain 
,creations on categories. We created certain concepts having certain geometrical 
shapes: cylinders, cones, etc. Here we shall be concerned with cones and cocones, 
since wanted constructions are contained in the creation of certain kinds of these. 
Thus, here cones and cocones are creative concepts. We shall call them simply 
,creative concepts. In what follows we shall explain what they mean. 

Bya cone in a fundamental world W we mean a triple (U, <P, {v}), consisting 
,of a subcollection U of W, a collection <P of arrows of Wand a singleton subcol-
1ection {v} of W, consisting of an object v of W, called the vertex of the cone, 
such that for any arrow a: u'~uEUar there are arrows cp: u~v and cp' : u'~v 
·of <P so that e (cp, a; cp') holds. In future, when it is obvious from the context 
'what is the basis and vertex of the cone, we shall always identify it with the collec­
,tion of arrows connecting these. 
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Let (£ (U)={<I>i I iEcll;} be the collection of all cones over U, endowed 
with the collection of cone-arrows. The initial object in this collection we shalF 
call the first cone, abbreviated f.c., and denote it by <l>c. A <l>c is defined in the­
following manner: for each <l>E(£ (U) there is an arrow y : VC-H, where VC is 
the vertex of <l>c and v of <1>, such that e (y,~; rp) holds, for rpE<I> and rpcE<I>c. 
In the opposite direction, we have the concept of a co cone with concepts of a 
cobasis and a covertex. The terminal object in the collection of all cocones over 
a collection in the world W we shall call the last cocone and abbreviate it as 1.c.c .. 

Vertices of f.c. and l.c.c., we called in [6J a sequent and a presequent, respec­
tively. If the basis of f.c. and the cobasis of Lc.c. contain only single objects, then 
their sequent and presequent we called a successor and a predecessor, respectively. 

The above objects: sequents and presequents will be constructive objects 
in our fundamental world. Such unique objects are well-known in category theory 
as colimits and limits, respectively. In this case, we shall diverge from standard 
terminology [15J and accept our terms for these objects. 

Since we have specified objects which are to be constructed we must now 
specify collections of the world, which will allow their construction. Moreover, we 
must specify certain conditions on the collections, which will determine the character 
of constructed objects. Thus, our basic task is to specify choices of collections on 
which we perform constructions and to specify certain requirements on them which 
will determine the peculiarity of constructed objects. 

First, we shall specify the concept of a choice in a fundamental world under 
consideration. 

DEFINITION 4. By a choice in a fundamental world W we mean an appli­
cation cr of a fundamental world J to the world W, i.e., a many-valued functor 

(J :J_ W, 

which assigns, to each object iEJ, a collection (J (i)C Wand to each arrow 
i-i' EJ, a relevant arrow (J (i) - (J (i'). The choice cr is lawlike, if there is a law 
or a collection of laws, according to which it is to be performed. 

A choice (J, determined by the collection of laws A, we shall denote by (JA. 
Thus, if we have the chosen collection (JA(i), iEJ, on W, then it will mean that 
it satisfies the conditions of A. 

In order to ensure the possibility of having various choices for single objects 
of J, we shall involve the concept of parametrized choice. 

DEFINITION 5. By a choice in the fundamental world W, parametrized 
by means of a fundamental world JP, we mean a collection of choices (5 = 
={(J81sE~ob} such that, if there is an arrow s-s'E~, then there is also a 
natural transformation (J8_(J8'. 

A natural transformaton 1) between two many-valued functors (J and "',. 
symbolically 1) : (J-'t', is defined in the same way as the transformation between 
single-valued ones, but with a difference: instead of an arrow, we now have the 
concept of a (co)cylinder [6]. Thus, while (J and 't' are many-valued functors~ 
1) : (J_'t' is a (co)cylinder with the lower (co)basis (J and the upper one in 't'. If one 
of these functors is single-valued, then we shall obtain concepts of a cocone and a 
cone, respectively. 
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We can represent a parametrized choice @3 as a collection of functors 
a::J'-?- Funmv(J, W) such that as, SE:J'Ob are many-valued functors of J to W 
and af, for an :J'-arrow J, are natural transformations; it means that, if f: s-?-s' 
is an :J'-arrow, then af: as-?- as' is a (co)cylinder. 

According to the definition, @3 constitutes a fundamental world: its objects 
are chosen collections of the fundamental world under consideration and arrows 
are cylinder-arrows [6]. 

Since our aim is not to have arbitrary choices but choices determined 
by certain conditions, then we shall impose these upon them. We shall assume 
that each choice asE@3 satisfies a collection A., SE:J'ob' of conditions. Such 
a choice, we shall denote by a;\s' Hence we have that €> consists of choices 

aAs' SEr!?ob' If A means the collection of collections As, SE:J'ob' then we 

shall write @3 by @3(A). Thus @3(A) will mean a collection of lawlike choices aAs, 
SE:J'ob' We shall call it the lawlike parametrized choice. Such a choice will 
constitute a fundamental world if the existence of an :J'-arrow s-?- s' implies 
the existence of a relevant arrow between collections As and As' and a natural 
transformation "f)s, s' : aAs -?- cr~s" A relevant arrow cp: As -?-As' together with a 

natural transformation "f)s, s' : aAs ~ a~s' will be a relevant arrow between 
elements of €>(A) which we shall simply call a choice-arrow. 

Certainly, a lawlike parametrized choice @3(A) will be specified when we 
specify its objects and these when we specify the collection A = {As I sEc7ob}' 
Thus in order to specify the choice @3(A) we have to specify collections As and their 
connectives. In what follows we shall be concerned, but only in general, with this 
question. 

There are two moments which we have to differentiate in each collection 
As of A: effective procedures by means of which we choose subcollections of 
the world under consideration and conditions which chosen collections have to 
satisfy, such as size, ordering, constructive properties, etc. First of all, we could 
specify various algorithms for choosing mentioned collections of objects and arrows 
of the world in question. Among them, however, we shall accept only those which 
ensure certain necessary properties of chosen collections and hence wanted pecu­
liarities of constructed objects. Of course, if we want to have peculiarities of the 
whole choice @3(A) we have moreover to specify connectives between its members. 
We could assume an example in which choices are sequences of objects and arrows 
between them, chosen by a collection of conditions, and choice-arrows are relevant 
arrows between these sequences. Throughout the paper, we shall deal with the further 
specification of the collection A. We shall also give some concrete examples. 

Besides conditions which are imposed upon objects of @3(A), we might also 
impose crtain conditions upon @3(A) as a whole. Namely, we might claim that 
€>(A) as a whole obeys certain conditions: to be directed for instance, to have some 
creative properties, etc. If n is such a collection of conditions on @3(A), then we 
shall emphasize this by writing e.fA) instead of '5(A). In the collection n, there 
may be reflected properties of the world c7 by means of which the choice €>(A) 

is parametrized. If we suppose that the collections of conditions A and n are 

III j. I 
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completely specified, then so is the choice (0~). Otherwise, the collections A and .0 
may be independent or that the collection .0 contains some further specifications 
of the collection A. 

From now on, a choice 6(A) on W, parametrized by the world :t, we 
shall regard as a many-valued functor of J into W which assigns, to each 
object i of J, the fundamental world 6~A) (i), objects of which are collections 
!T'A" (i), s E:t ob' of objects and arrows of W determined by rules of A. and relevant 
arrows of which are choice-arrows cr':A (i) ~ cr': (i), s, s' E:tob and which pos-• • 
sesses the· conditions of .0, and to each arrow i -+ i' of J, a relevant functor 
6fl) (i)-+ 6~) (i'), i.e., a functor which preserves intrinsic properties of the 
world (0~). 

Let ~ (W) = { (0~Xf3) I ex E cA !\ ~ E 4j} be the collection of lawlike paramet­
rized choices on the fundamental world W; at this we assume that there is a 

collection cJ'={:tcc I ex E cA} of parameter worlds. If 6~;(3) and 6~;~/)are two 
members of the collection ~ (W), then we can define a relevant arrow between 

h . f R ~ noc ~ nocl h' h' h h' t em. It IS a unctor : 1;:.1 (Af3) ~ 1;:.1 (Af3/) W IC assIgns, to eac c oIce 

cr~ E 6(n; )' a choice R (cr~ ) E 6(n;, I) and, to each choice-arrow cp E 6(n;) , s",f3 13 '",13 13 f3 

a choice-arrow R (CP)E6~~/) and moreover preserves the conditions of .0. Pro­
vided with such arrows it becomes a category. We shall return later to some 
further questions concerning the collection ~ (W) and colIections created on it. 

Since we have finished with a general consideration of choices on W, we shall 
be concerned with the concept of spatial whole. We have already said that this 
concept arise from certain constructive activities on the world under consideration. 
Since we have done all preparations fer such activities, we shall proceed to specify 
them. 

Let (0~) be a lawlike choice functor of J to the world W, parametrized 
by the world:7'. As we have already seen, this functor assigns, to each object 
i EJ, a fundamental world 6fl) (i) on W consisting of choices cr~ (i), sE:7' ob' 
and of choice-arrows as connectives between them. By means of this functor is 
specified the choice activity on the considered fundamental world. Our ultimate 
aim, however, is not such an activity, but the constructive activity. We shall ensure 
this if we claim that chosen collections in the world allow some creations; we here 
decided on cone and cocone creations. In that way, the choice activity on a fundamen­
tal world becomes a preparatory activity for the creative activity. 

If we have, for instance, a choice cr-:"'., sE :7'obin Wand a cone as the creative 
concept on it, then we can express this as a requirement that there is a single-valued 
functor ps : J -+ Wand a natural transformation 1]8: cr~.-+ps. Certainly, the 
triple (cr-:"'., 1]8, PS) is a cone with the vertex PS; we could say that the functor Ps 
is a creative functor for the choice functor cr~ •. Hence we have that (cr~, 1]8, P8) 
(i), iEJ, is a cone with the vertex Ps (i) in the world W. We shall denote a cone over 
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cr~ by cr~. If all choices O'A., E6B,.) allow creations of cones, i.e., if for each 
sEc.Yob\hereis a single-valued functor ps together with a natural transformation 
1)8 : O'~--""Fs, then we shall emphasize this by (c)6B,.). If it is the world about 
cocones, then we shall accept the denotation (cc>6B,.). However, in future, we shall 
simply write (*)6rA) considering that this means that each choice of 6~) allows 
a *-creation which may be a cone or a cocone, or even both them. These concepts, 
as we have already said, are creative concepts in the paper with a common deno­
tation *; if its (co )basis is known, 0' for instance, then we shall write it by *0'. 
To mention that we could decide on broader kinds of creative concepts such as 
cylinders and cocylinders. However, we shall only deal with accepted concepts; 
it means, cones and cocones. Otherwise, these cencepts, as we shall see later, are 
able to incorporate in themselves logical concepts of production (derivation) with 
vertices as produced - created objects, peculiarities of which are determined by 
conditions being imposed on choices. If each choice of 6B,.) allows the creation 
of the concept *, then we shall say that 6ti) is *-completed in itself or outside, 
depending if the concept * belongs to 6B,.) or not; of course, its (co)basis belongs 
to it. As we know, the number of creative concepts of (*)6~) and connectives 
between these are determined by means of the world :5". 

Itis clear that for each sE:5"ob there may exist many cones over the same choice 
O'~s as their basis. We could point this by writing *<xO't, if it is the world about 
the creative concept *; here IX E elt, where rA means the number of creative con­
cepts over one and the same choice. However, among the possible creative concepts 
we might decide on the ultimate ones, i.e.,. on f.c. and 1.c.c. concepts: unique or 
not unique. 

Now, if we have a *-completed functor (*)6ti), then the following question 
arises: can we complete the functor (*)®B,.) as a whole? Certainly, we can do this. 
Such a functor will be completed if there is a creative concept. which will constitute 
a cone or a cocone with it; clearly, • is also a many-valued functor having the shape 
of a creative concept. If the choice functor is .-completed, then we shall denote 
it by .«*)6~»). Certainly, the functor .«*)®B..») has complete its elements 
and is completed as a whole. 

There is an elementary proposition which establishes the link between 
constructive objects of .«*)6B..»): that one of • and those of choices of ®B..). 

PROPOSITION 1. If the concept. in .(*)6~» is its f.c.c. (or fc.), and if 
moreover each creative concept *O'~ of (*)6B..) is f.c.c. (or fc.), then the covertex 
(the vertex) of. is the presequent of presequents (the sequent of sequents) of 
choices of 6B,.). 

PROOF. Denote by!Jl the collection of all presequents (sequents) of choices 
O'~s' sE:5"oband by P (S) thecovertex (the vertex) oftheconcept •. Clearly, P(S) 
is the covertex (the vertex) of a cocone (a cone) over !Jl. It is easy to see that such 
a cocone (cone) is l.c.c. (f.c.). I 
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Hence we have that the constructive object of the concept * is a construction 
of constructions on choices of <5~). In such a way we have a terminating procedure 
for the creation of objects within a fundamental world. Such a terminating procedure 
will be later utilized in the definition of proof. 

A e-completed functor • (*)<5?A» wiII serve for the creation of a spatial whole 
from the fundamental worlds making its domain and codomain: J and W for instance. 
This functor assigns, to the world J, a collection • (*)<5~» (J) of fundamental 
worlds and functors chosen on W. We might claim that this functor is such that 
this collection is also a fundamental world which moreover possesses some properties: 
to have the first and the last object, to be directed, well-ordered, etc. We might 
add to it some further requirements which govern the formation of wanted spatial 
whole as, for instance, separation ones. Denote the collection of all such require-
ments on the functor by 0 and the functor itself by • (*)<5?A»0 . By means of such 
a functor we shall define the concept of spatial whole on a fundamental world. 

DEFINITION 6. By an :/ J'-spatial organization on the fundamental world 
W of a level of.../lt we mean a choice functor *<5~): J -+ W, which assigns, to 
each object iEJ, a *-completed fundamental world (*)<5~)(i) of Wand, to each 
arrow i -+i' EJ, a relevant functor (*)<5~) (i) -+(*)<5[l) (i'), for which there is a func­
tor .:J'-+W, where J'cJ, which assigns, to each object iEJ', a creative con-
cept e (i) of the same type as those of (*)<5?A) (0, i E J' and, to each J'-arrow 
i -+ t, a relevant arrow between these concepts, together with a natural transfor-
mation y:. -+ (*)<5[b) or y': (*)<5?A)---+. such that the triples (e, y, (*/5?A» (i) 
and (*)<5?A), y', e) (i), iEJ' are a cocone and a cone respectively and such to satisfy 
certain conditions given in the collection 0. 

By an:/ J' -spatial whole we mean the triple < J, e (*)<5~»0, W> consisting 
of the worlds J and Wand of an :/ J'-spatial organization .(*)<5~»0. 

According to the definition, a spatial organization .(*)<5~»0 on a funda­
mental world gives a certain creative closeness and in such a way creative pos­
sibilities of the world. These possibilities and their peculiarities are, othel wise 
determined by the collections of conditions A, .Q and 0 in which, as we have already 
said, properties of the worlds jOand J may be included. By means of these collec­
tions, we are able to handle choices and creations on the world in question. In such 
a way we enable that certain particularly chosen parts or the whole world allow 
creative activity and moreover to obtain wanted kind of created objects in it. 
In what follows we shall be concerned with certain properties and further speci­
fications of spatial organizations on a fundamental world. 

We shall get further peculiarities of spatial wholes if we suppOEe that the 
f ~n. ····f h S E ~n s ~n i' h unctor O(A) IS tranSItIve, I.e., I we suppose t at (jA, O(A)=> (jA,C O(A) lor eac 
sE:/ob' Hence we would have that <5~) is also a choice on the world in question 
and that (j~s' SE:/ob are its parts. 

If we consider now a spatial organization such that the functor (*)<5~) is 
transitive and such that together with (j~s it contains the creative concept *(j~s' 
then it can possess convenient properties. So, for instance, if we suppose that:/ 
is an ordinal, 6.) for example, then we can prove the following 
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PROPOSITION 2. If the functor (*)®~) is transitive and parametrized by the 
ordinal w, then we can make it to be recursive. I 

PROOF. Take any choice O'~kE ®~), kEw and the creative concept *O'~k 
over it. If we specify the conditions of Q in such a way that this concept is the 
choice for the next creation of the same type, i.e., if *O'~t~1 = *(*O'~k) and in the 
same time specify the choice O'~o' then *O'~) will obviously be as required. I 

We can make it to have some other convenient properties: to be directed or 
filtered, to have a simplicial form [6]; or, in a special case of this, the form of a tree, 
etc. If it is the world about filters, then .«*)O'fi» will mean a e-completed filter; 
with e as a single-valued functor. They are completed filters in the collection 
(*)®~) (l) of filters on W. If we have convenient arrows in this collection, then, 
by means of such arrows, we can complete other filters relating them to the completed 
ones. This completion is the essence of topological spatial organization (see [7]). 

All specifications which we carry into .«*)®fi»@ determine the peculiarities 
of the structure of the whole in question. If this functor is completely specified, 
and will be if we specify mentioned collections of conditions and corresponding 
creative concepts, then we shall say that we have a specified spatial organization 
on the fundamental world under consideration and hence specified the structural 
type of the whole. Relevant arrows between spatial wholes with specified struc­
tural type, called spatial whole-arrows, are those ones preserving the type in ques­
tion. Continuous arrows, in the case of topological spatial wholes, are such 
arrows [7]. 

Certainly, in the specifiication of the structural type of a spatial whole, we 
have to differ wholes with one kind of creations on chosen collections: a cone or a 
cocone creation and those with both kinds of them; which, of course, can be perfor­
med on the same or various collections. The former, we shall call spatial wholes 
with the simple type and latter, spatial wholes with the mixed type. If two spatial 
wholes have the same kind of creations - simple or mixed ones, we shall say that 
they have the same creative type. 

Let us consider, 0 nce again, the collection Ch(W) of choice-functors ®~A(3) 

IXEc:It and ~E~, on a fundamental world W. As we know, any choice functor 
of Ch(W) gives a spatial organization on W. It means that the collection Ch(W) 
serves as a groundwork for the existence a new collection: a collection of spatial 
organizations on W. We shall denote it by SpeW). We could now deal with this 
collection: select spatial organizations on W according to their structural type, 
define relevant arrows between them and accordingly involve a fundamental 
structure on selected collections, then define concepts of the sequent and presequent 
spatial organization over W, etc. In such a way we make SpeW) itself to carry a 
certain spatial organization. However, this organization, with respect to those on 
W, is of the higher level. This fact will be incorporated in our general requirement 
concerning the existence of spatial wholes of various levels and their vertical 
connection in ./It. 

Now we shall deal with the question of involvement of new spatial organi­
zations over living ones. If we have a spatial whole on a fundamental world and 
want to involve another one over it, we have to take into account that creations of 
the new organization are relevant with respect to the former one, i.e., to preserve it. 
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In such a way we ensure the compatibility of creations and together with choices 
the compatibility of spatial organizations over one and the same fundamental 
world; of course, at this, organizations may be of the same or various types. 

Now we shall say a few words about the link of spatial organizations in a 
single organization. Ifwe have two simple and opposite types of spatial organizations, 
those with cone and co cone creations, then we can combine them in an organi­
zation of mixed type assuming that one type of choices and creations is utilized 
for choice purposes of another type. We have such a situation, for instance, in the 
case of intuitionistic spatial organizations. 

We shall point out one more moment. Namely, we can involve a spatialorgani­
zation on a fundamental world from an already defined spatial organization on that 
world by means of certain well-defined operators. In this case we have to preserve 
a part ofliving spatial organization and to involve a new part; a part which we are 
going to involve. It means that operators have to be such to enable this. We have 
this, for instance, in the case of topological spatial wholes [7J: we have involved 
a topological organization on a fundamental world from an already defined spatial 
organization: an I-semigroupoid by means of complementation and closure ope­
rators. We shall see later some other examples as for instance Post algebras 
[l3J, etc. 

Now we shall be concerned with the concept of a subwhole of a spatial 
whole. This concept, we obtain in the following manner: Let (J, .(*l5~)e, W) 
be a spatial whole. By a spatial sub whole of this whole we mean a spatial whole 

- -0 - - - -0 
(J, • (*)®(A»)e, W), where JCJ, WCW and .(*)@)(A»)e is a subfunctor of 
.(*)@)B,.»e which imposes the same type structure on W as .(*)@)~»)e on W. 

We can define one more kind of sub whole ofa spatial whole (J, .(c*)@)B..»)e, W) 
- a choice subwhole. Namely, if @)(/; : J --.,.. W is a many-valued functor consisting 
of single-valued functors J8 such that 18E*a~s for eachsEc7ob' which is moreover 
completed by a single-valued functor I, then the spatial whole (J, J®eh, W) 
is a choice sub whole of the considered spatial whole. Certainly, it is fully embedded 
in the whole <J, .(c*)®B..»)e, W). We could assume that functors [8, sEc70b are 
constructive functors for choices a8 • In that caSe the functor I for such a choice 
functor [@)C; will be the construction of constructions on mentioned choices. 
Peculiarities of such a construction are determined by means of conditions of .0. 

Now we shall be concerned with certain internal activities in the creation 
of a spatial whole on a fundamental world W. We shall enable this activity if, 
besides objects of the world W, we include collections of subobjects of its objects 
in the creative procedure. These new collections in W will allow certain new 
creations of spatial wholes within the whole which we create on Wand, of course, 
their inclusion in the creation of the whole itself. In such a way we shall obtain 
more creative pO'lSibilities and hence convenient properties of the whole which 

. we create on W. To do this we must claim that among the choices necessary for 
the creation of the whole there are also choices which will ensure the creativity of 
spatial wholes on collections of sUbobjects. Spatial wholes which allow such an 
activity we shall call spatial wholes with the local spatial organization. We define 
them as follows: 

DEFINITION 7. We shall say that a <;patial whole on the world W will 
admit a local spatial organization if there is a functor ~: W -+ W which assigns, 
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to each object aE W, a species :T(a) such that thereis an arrow a-:T(a) with 
respect to which :T (a) strictly dominates a, and to each arrow a - a' of W a 
species-arrow:r (a) -:r (a'). 

Certainly, a power-object functor, i.e., a functor which a~signs, to each 
object of W, the species of its subobjects is such a functor. 

We now have to make the local spatial organization to be effective in the 
considered spatial whole (J, .«*)®~»)El' W). We can ensure this by relating 
the functor :r to a constructive functor being defined on this whole. For that 
purpose, however, we have to assume that among choice-functors with domains 
in J, there are also those ones with domains in the world W itself; it mean~ that 
we assume that W is a subworld of J. 

DEFINITION 8. We shall say that a local spatial organization on a spatial 
whole on the world W is effective if there is a choice-functor B : W _ W such 
that the functor :r is naturally equivalent to its sequent functor. 

Topoi [10], for instance, are spatial wholes in which the local spatial orga­
nization is effective. This is realized by means of the existence of an object which 
is the representing object for the power-object functor. 

Spatial wholes with the above property are very important because they 
h.ave certain levels-organizations. Namely, on each :r (a), where a is an arbitrary 
object of the regarded spatial whole, we can involve a spatial organization; these 
spatial organizations are internal ones. Hence we might say that the functor:r 
is in fact a spatial whole-functor, i.e., a functor which bears the structure of a 
certain spatial whole. Spatial wholes on the object a and on :r (a) are spatial 
organizations on two consecutive levels, within a living spatial whole, the struc­
ture on :r (a) is the hyperspatiai structure with respect to that on the object a. 

Thus, spatial wholes with local spatial organizations admit different levels­
-organizations. With respect to levels of the collection ../It as a whole, these or­
ganizations are horizontal, i.e., along a fixed level of ../It. 

Since we have finished with considerations of horizontal organization of ../1l, 
i.e., with the organization of particular levels of ../1l, we shall do this with../1t as 
a whole. It means that we now have to organize .Jlt vertically, i.e., to find the link 
between symbols of various levels of ./It, in order to obtain a coherent global organi­
zation of ../It. As we have already seen, we organize symbols of a level of.Jlt in 
certain wholes. Now we assume that symbols of the first higher level with respect 
to a level of .Jlt which is under consideration repre~ent wholes and arrcws between 
these wholes of the latter level. In that case, we can talk about species of this new 
level. Its members are clearly symbols which stand for spatial wholes and connec­
tives between these wholes of the first lower level. It means that, if we now want 
to realize a spatial organization on this species we have to take into account 
symbols which mean properties of symbols standing for its objects and arrows 
Namely, creative capabilities of this species are determined by means of structural 
and other characteristics of its objects and of cour~e of specificaticns of arrows 
in it. 

Before the creation of spatial wholes on species of the new level of .At, we 
have to make them to be fundamental worlds. It means that we have to specify 
them in that sense. Since arrows in species have to be relevant, then spatial wholes 
- objects in them have to be of the same structural type. Hence the notion - struc­
tural type is instrinsic for a species. This we could utilize to spefify them. Thus, as. 
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a supplement to the specification of species, we would have that all objects in them 
are those having the same structural type. In the same time we have the specification 
of arrows in A: they are those which preserve structural types in question; we 
.called them relevant arrows. 

If we now assume that all we have said above is valid for any two consecutive 
levels of A, then we could say that the world M is organized completely: hori­
zontally and vertically. 

Finally, if we now view the organization of the mathematical world .A{, we 
shall notice that it is inductive. Namely, in its organizing we have first to make the 
organization of a level of ./It and after its ending have to pass over to organize 
the first higher level. What this means? This means that we have to find (all) mathe­
matical entities on species of already created mathematical entities having the 
particular structure characterized by spatial organizations here given and to 
-continue to create new mathematical entities on, in such a way, created entities. 
To see which species of mathematical entities will admit a spatial organization we 
have to know their choice and structural capabilities. Of course, this requires a 
separate study of spatial wholes and their properties. 

In this approach, we assume that there exists a starting level with certain 
starting objects from which we begin the creation of the world; we could assume that 
these objects are undivisible. Hence we have that all symbols of ./It, except the 
starting ones, are created by processes given in the paper: objects have structural 
forms of a certain spatial whole and arrows are such to preserve these forms. From 
the creative processes arise properties of symbols which stand instead of mathe-

. matical entities. Hence we could say that symbols adjoined to symbols of ./ltto 
represent their characteristics are also creative and obtained in the process of creation 
·of the world of mathematics. 

3. Examples of spatial wboles 

We shall deal in this section with certain concrete and typical examples of 
spatial wholes - wholes with specified structural types. They are topological and 
intuitionistic spatial whole. These wholes are detailly studied in [7] and [8]. Here 
we shall only deal with their mode of generation. Afterwards we shall compare 
these organizations to some standard l11athematical conceptions as they are 
formalism and intuitionism and see what they mean from the standpoint of these 
organizations. 

We obtain a topological spatial whole <J, ®top, W) if we assume that J 
is a discrete fundamental world, i.e., a world consisting of objects and identity 
arrows such that there is an injection functor I of it to Wand that ®top is a 
transitive functor which assigns, to each iEJ, a filter ®top (0 and that each such 
filter allows a cocone creation in W; it means that it is completed in such a way 
to make a cocone. The collection of all filters on W is endowed with relevant 
arrows called opposite inclusions. With respect to these arrows the functor ®top is 
supposed to obey certain conditions (see [7]). We can see that such a spatial 
<>rganization has two types of choices and two types of constructions: it allows 
i) arbitrary f.c. creations and ii) I..c.c. creations on collections with restricted size; 
it moreover contains the objects 0 and 1. Otherwise, a topological spatial 
organization one can involve by means of certain operators as they are the 
.complementation and closure operator (see [7]). 
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We could also here define the concept of the pseudo topological spatial whole. 
It is enough to take, for this purpose, that the range of choice-functions is in the 
collection of filters of a fundamental woIld. It means then that objects of these 
functors are filters with filter-arrcws as connectives. Certainly, we now can impose 
the spatial structure of topological type on this new fundamental world ccnsisting 
of filters and filter-arrows. 

An intuitionistic spatial whole or an intuitionistic topological space 
<J, Eiint, W) one can obtain if one assumes that each craEEiint, aEWob, is obtained 
by means of presequent constructions, which every finite collection of W is 
assumed to admit, in the following manner: each cra(i), iEJob consists of all 
those objects a' of W for which there is a W-arrow F(i) 1\ a' -+ a, where 1\ 
means the presequent construction and F: J -+ W is a single-valued functor. 
We assume that for each a E Wob, there is a single-valued functor sa: J -+ W 
and a natural transformation Yja: cra-+Sa such that (aa, Yja, sa) (i), iEJob 
is an 1.c.c. in W: it will allow that creation in itself if moreover sa(i) Eaa(i). 
The functor sa is the creative functor for the functor aa, i.e., its sequent functor. 
We still claim that the existence of a connection - an arrow between objects 
a, a' E W implies the existence of a natural transformation between sequent 
functors sa and sa'. 

Hence we could say that an intuitionistic topological space has constructively 
closed parts. However, it has not this property a'l a whole. To ensure this we shall 
assume that J and W have strict first objects [6] and that F is such to preserve 
such an object. If this is fulfilled, then the space as a whole will posses the sequ­
ent of all its objects. We shall denote it by 1. This object is, otherwise, equal to 
SO(o'), where 0 and 0' are strict first objects of Wand J, respectively, Such a 
space has the following properties: 

a) it contains the objects 0 and 1, 

b) it is closed with respect to fini:.e p esequents, and 

c) it is closed with respect to particular sequents, i.e., sequents of particularly 
chosen subcollections. 

We gave in [8] certain characterizations of intuitionistic topological spaces. 
Moreover we gave the link between these and topological spaces. We proved the 
following 

PROPOSITION 3. An ~o-topological space is an intuitionistic topological 
space. I 

Now we shall select certain operators on an intuitionistic topological space 
having the object o. Let (J, Eiint, W) be such a space determined by the functor 
F and parametrized by the world W itself. The object S°(i), iEJ, in it is an 
W-object satisfying the following condition: the presequent P(F(i), SO(i)) =0. 

If this object is unique then we might call it a pseudocomplement of the object 
F(i). Furthermore, if J = W, then the composition co=So . So of the sequent 
functor So with itself gives us an operator called the closure operator. This ope­
rator has the following properties: there is a unique arrew a -+ CO(a), a E W; 
then Co. C°'"'-'Co, CO(o)= 1, etc. (see [8]). 
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A particular kind of intuitionistic topological spa.ces are those which are 
realized and parametrized by the world W itself, i.e., chcices of which are those 
for which J =;7= W. These spaces, we can involve by means of certain operators: 
functors possessing certain properties. 

Let A be a (quasi) category with defined presequent creations P (a, a'), 
a, a' E Aob ' Denote by aa, a E Aob ' a relative functor of A to A which assigns, to 
each object bEA, an object aa(b) and, to each arroW b~cEAar' an arrow 
aa(c)~~a(b). If the functor ~a' where ~a is a functor such that ~a(b)=~b(a), 
is right adjoint to the functor P ( , a): A ~A, i.e., if there is a natural isomorphism 

(P(a', a), b)~ (a', ~a(b»), 

then we have the following 

PROPOSITION 4. The pair (A; 8a> consisting oJ a (quasi)category A 
having Jinite presequents and oJ a Junctor 8a: A -+ A, which is right adjoint oJ the 
presequent Junctor P ( ,a) is an intuitionistic topological space. 

PROOF. Certainly, the object 8aCb) is the unique sequent of all objects 
a' of A satisfying the above relation. Hence we can define a collection IS of 
choice functors, varying objects a and b of A, such that each has the sequent 
functor and which moreover obeys the connection condition: if there is an arrow 
a -+ c, then there is a natural transformation ~a -+ 8c• I 

There is a characterization of the space (A; ~a>' which is specified in the 
above proposition, given by the following 

PROPOSITION 5. The intuitionistic topological space (A; ~a> is a dis­
tributive 1 ~o-semigroupoid. 

PROOF. It is an 1 ~o-semigroupoid by the definition: this follows from its 
bicompleteness. Next we have to show that the distributive law 

V (a'l\b)':::::'. V a'l\b, 
a'EA' a'EA' 

where A' is a subcollection of objects of A and V and 1\ are the marks for 
sequents and presequents, respectively, holds in the space (A; ~a>' 

Let A' be the collection of all those a' of A such that (a', ab (a» = (a' /\ b, a). 
Denote by P the collection of all presequents a' 1\ b, a' E A, and by r the last 
object of P [6]; it is the unique sequent of al1 P, i.e., r= V (a'l\b). Hence 

a'EA' 
we have that for every aEA there is a morphism a' I\a~r and then also a 
morphism a' ~8b (r). Thus 8b (r) is a vertex of a cone over A'. Since ~b (a) is 
the unique sequent of all A', then there is a unique morphism ~b (a) -+~b (r) 
and hence a unique morphism 8b(a)l\~r. On the other hand, since ~b(a)l\b 
is a vertex of a cone over all P, then there is also a unique morphism r~~b (a). 
Hence we have r':::::'.~b (a) 1\ b. Since 8b (a) = V a', then the above relation holds .• 

a'EA' 
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If we now claim that the space (A; 3a> has an effective local spatial 
organization ensured by the existence of an object which is the representing cbject 
for the power-object functor, then we shall obtain the concept of a topos. 

We could give many more specifications of the functor .«*)ee\»)e in 
(J, .(*)(5~»)e', W) in order to obtain various kinds of spatial wholes and rela­
tionships between them. We could obtain various algebras, lattices, topological 
algebras, numbers: natural and real, equational classes, etc. For instance, 
pseudo-Boolean algebras, called also Heyting algebras, one can obtain as a special 
case of an intuitionistic topological space (A; 3a>: it is enough to take that there 
are unique arrows between objects in it. If we provide this algebra by two collec­
tions of operators which have some preserving properties concerning the structure 
of the algrebra and the collections themselves have some structure and connecting 
properties, then we could obtain Post algebras. It means that these algebras are 
certain special cases of spatial wholes involved by means of certain operators. We 
shaH not co>".cern further cases, but shall proceed to consider two standard 
mathematical views: formalism and intuitionic;m. We shall see what these views 
mean from the standpoint of spatial wholes. 

A formal system or formalism can be regarded as a systematic scheme ac­
cording to which we organize a collection of symbols in a whole with precisely 
established internal relations: relations between its concepts and rules for the 
creation of these. We shall show that it creates a kind of spatial whole from such 
a collection. In what follows we shall sketch such a system given in [9]. 

Let S be a collection of symbols. As it is well-known, a formal system dis­
tinguishes two collections of expressions made from elements of S: the collection 
of terms T(S) and the collection of formulas F(S). It also gives modes of generation 
of these collections. The collection T(S) is generated from elements of S by means 
of certain operations and the collection F(S) from T(S), which is provided with 
certain relations, by means of logical operations. It is moreover endowed with 
effective rules for the derivation of formulas from some collections of these, as 
premises. These rules are known as the rules of inference. According to them, we 
may take a certain collection of fundamentally valid formulas of axioms and extend 
it up to a collection of valid formulas or theorems. 

Now we shall see what this story means from the standpoint of spatial wholes. 
Certainly, the collection of c;ymbols S, we can consider as a discrete fundamental 
world. We are going to specify the kind of spatial whole which a formal system 
involves on S. According to the above description, the collection T(S) is generated 
in such a way to contain the collection S and to be closed with respect to finite 
sequents and presequents. Hence, it is certainly a spatial whole on S. . 

The next collection of expressions is F(S). Let us see what kind of structure 
involves the formal system on this collection. To show this we shall first deal with a 
topological spatial organization on it. Suppose first that F(S) is endowed with certain 
arrows by means of which it will become a fundamental world; it is enough to 
take arrows called implications. A topological spatial organization is defined on 
such a world by means of a many-valued functor (*liS of S to F(S) which assigns, 
to each symbol sES, a filter (*)(5(s) in such a way that there is a single-valued functor 
f: S~F(S) and a natural tramformation 'tj: f~(*)(5. Hence we have that (f, 'tj, (*)(5) 
(s), sES, is a co cone on F(S). With respect to this structure, F(S) becomes closed 
with respect to arbitrary f.c. and restricted l.c.c. creations. We know [7] that such 
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a structure we can involve by means of certain operators. Hence, we can represent 
it as a system <F(S); 1\, V, '(f,C), where 1\ and V are the signs for the pre­
sequent and sequent operation respectively, '(f is the functor of complementation 
and C is the closure functor on F(S). All these functors are defined in [7J. If we 
now look at the structure which the formal system involves on F(S), we shall 
notice that it is just such a structure and hence a spatial structure. 

It is clear that the structure on F(S) is of the first higher level with respect 
to that on T(S); objects of T (S) are otherwise included in F(S) through atomic 
formulas: collections of T(S) selected by certain relations. Thus, the following 
proposition hold'): 

PROPOSITION 6. A formal system involves a two-levels spatial organization 
on a collection of symbols S. I 

Since the structure on F(S) is of topological type, then we could involve 
certain topological concepts in it, as they are open and closed formulas, separa­
tion and compactness conditions, etc. All these concepts one can derive from those 
for topological spatial wholes. So, for instance, we can see quantifiers as closure 
and interior operators which we defined in [7]. We shall here mention the defi­
nition of the closure operator. A closure operator on a fundamental world W is a 
covariant functor C : W-+W which fulfils the following conditions: 

Cl : C is a successor functor, i.e., a functor which assigns, to each object 
aE W, an object C(a) which is the successor of a with respect to a W-arrow; 

C2: C is an idempotent functor, i.e., such that C' C '"'-' C holds; 
C3: C is an f.c. <c(3 -functor, i.e., a functor which preserves f.c.'s over any 

<c(3-subcollection of W, where C(3 means its size; 
C4: C leaves fixed the first object of W. 

The interior operator is defined in a similar manner. The complementation 
operator is defined as a contravariant functor with certain properties. All these 
functors are not defined in general to be necessarily unique ones. 

If objects of the fundamental world are formulas with many variables, then 
the quantification by variables we can realize by the iteration of these operators 
along variables, i.e., as a system I -+Cx ! -+ Cx ! • Cx2-+ ... of functors and natural 
transformations, where I is the identity functor and Xl> X2, ••• stand for vari­
ables in question. By the application of the complementation operator to this 
system we could obtain the case with the interior operator. 

However, beside these concepts, there are other syntactic and semantic 
concepts which are relevant to various types of formal systems such as proof, 
consistency, model, etc. Therefore we have to put a general question: in which 
manner we can find the place of these concepts within those of a spatial whole, 

In what follows we shall deal with this question. We shall be concerned with 
it only in general. We shall first consider the concept of proof. 

It is well-known that a proof in a system is a procedure by means of which 
we can deduce (produce) a formula from a collection of formulas using rules which 
are established in the system which we are concerned with. Since our concept of 
spatial whole contains in itself various creative procedures, then we can say generally 
that an object, a formula for instance, is deducible - creative from a collection 

4 350pBJll( pa.llOBa 
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of objects and arrows if there is a convergent - terminating procedure of ap­
plications of creative concepts which starts in this collection and terminates in the 
desired object; otherwise, a production (derivation) in logical sense can be represen­
ted by our creative concept *; or, in a more broader case, by the concepts of 
cylinder and cocylinder. Namely, a production or a derivation is a figure of the 
form tl t2 . .. tn--?-t, where t10 t2, ... , tn are mathematical objects of a certain 
kind, terms and formulas for instance, called premises and the object t, the conclu­
sion of the production. We can represent such a figure by our creative concept * in 
which the vertex will be the conclusion; tl t2 . .. tn is its basis. Certainly, in 
such a case, we can consider C5fl) as a collection of mutually linked produticons. 
In such a way we could obtain a Post system [12]. 

Now we have concepts like consistency and model. These concepts are 
concerned with the characterization of a system, in our case, of a spatial whole. 
What the consistency means. By means of this concept we ensure that the creative 
procedure of the spatial whole in question cannot produce in it an object which is 
in a certain sense contestable. Let us see in which manner we determine contes­
tability of an object. The standard way is by selecting certain valuation-fibers. 
We do this by a relevant arrow - a morphism from the whole in question to the 
spatial whole consisting of two distinguished and different objects denoted by 0 
and 1; in topoi, the representing object for the power-object functor serves for 
these purposes. Let W be a spatial whole and f a morphism of W to {O, I}. By f 
we select on W two disjoint sub collections called fibers and take them as frames 
for our purposes: they contain contestable and incontestable objects, respectively 
and are otherwise bridged over by means of the complementation type functor. 
Having these frames, we say that an object a is a consequence of a subcollection 
C of W if aEr1(1) for any f: W--?-{O, I} such that CC/- 1(l), i.e., if a belongs 
to the same fiber as C does. This fact is known as the semantic implication 1=. 
This implication we can represent as a certain natural transformation between a 
functor I: W--?-W having its values in the collection Cc Wand a constant 
functor ca: W --?- W having as its values the object a. We can represent this situ­
tion as a many-valued functor S~=(I, 1=, ca) of W to itself. 

If there is no f such that f(C)=l, then one says that C is semantic incon­
sistent, otherwise it is semantic consistent. If /(C)= 1, then it is customary to say 
that f is a model for C. Hence we have that a collection C is semantic con­
sistent if it possesses a model. Certainly, models in this approach are certain sub­
collections which are closed with respect to certain objects; by such a process we 
can establish if a created object belongs to the fiber or not. Having now models, 
we could further deal with the concept of spatial structures on collections of them. 
One could notice that such a situation belongs to our case of spatial wholes with 
a local spatial organization. 

Now we shall deal with the syntactic implication and its connection with the 
semantic one. A syntactic implication Cl-a, from a subcollection CC W to an 
object aE W, as we have already seen, is a proof of a from C. We can represent 
it as a many-valued functor P; consisting of inductively connected creative 
concepts which starts in C and terminates in a. If such a production gives us an 
object which is contestable, then we shall say that C is deductively consistent. 
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We could now connect these two implications and hence many-valued func­
tors: the semantic S; and the syntactic one p~ of W to itself. Clearly, we­
might say that f- is a specified form of the implication 1=; namely, if there is 
an incontestable and terminating procedure from a collection C, then there is. 
also the implication 1=. Conversely, it is not always the case. Namely, in a general, 
case of spatial organizations, we do not know always if there is a production 
which realize this implication. 

Now we shall be concerned with intuitionism. First we shall deal with the' 
formal part of intuitionistic mathematics. We shall be concerned with the structural 
type of the intuitionistic propositional logic. We shall show that the system Ot 
axioms for this logic involves an intuitionistic topology on the collection of its. 
formulas. 

Let us consider the system of axioms for the intuitionistic propositionat 
logic given for instance in [13]. This system we shall write in a form which is 
more convenient for us at this moment. Namely, we shall write ab(a), or aib), 
instead of a --+ b, Sea, b) instead of a V band P (a, b) instead of a 1\ b, for two 
formulas a and b. Taking this into account, we shall write the system of axioms 
in the following form: 

AI. a--+aa(b), 

A2. ab--+c (a) -? (ab (a) -? ac (a», 

A3. a-?S(a, b), b-?S(a, b), 

A4. ab(a)-?(ab(c)-?ab(S(a, c», 

AS. pea, b)-?a, pea, b)-?b, 

A6. ab (a) -?(aC (a)-?aP(b, c) (a), 

A7. (P(a, b)-?c) f-)- (a-?aC(b», 

In what follows we shall analyse this system of axioms. We shall see what 
these axioms mean from the standpoint of spatial whole. 

Denote the class of formulas of this logic by 3""'. Elements of this class 
we shall call objects. This class is certainly provided with a class of unique con­
nectives; there is just one connective between two objects of ;y-. Endowed with 
such connectives, ;y- becomes a category. If we have a connective a--+b between 
objects a and b of 3""', then the object a is the hypothesis and b, the conclusion 
of the connective. 

Now we shall see what the above axioms specify on the category ;y-. Before, 
all the axioms A4. - A6. specify the category 3""' to be closed with respect to' 
finite sequent and presequent operations denoted by S and P, respectively; it~ 
means that the category ;y- possesses finite sequents and presequents and hence: 
that it is an I~o -semigroupoid ([6]. 

Let us consider now a functor ab ::;---+:;- which assigns, to each object 
aE:;-, with respect to the chosen object bE:;-, an object ab(a). Assume further 

• 
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the object 8b(a) to be the unique connective a-+b between objects a, b, E:7'. 
In such a way connectives between objects of :7' also become objects of :7'. 

The axioms Ai. and A2. specify the functor 8b, bE:7'. According to the 
axiom AI., there is a connective between object a and the object 8Q (b) being a 
connective with respect to the object a. We can express this as the existence of a 
natural transformation 'YJ : 1-+8b, where I is the identity functor of :y- to itself 
and 8b the functor such that 8b(a)=8a(b). According to the axiom A2. we have 
the existence of connectives between functors. Namely, let b-+c be an object, 
then, for the functor b~, with respect to the connective object b-+c, we have the 
existence of a natural transformation 'YJb. c : 8b-+8c• 

The axiom A7. means the adjointness relation of the functor 8b and the 
presequent functor P ( , b). This relation enables us to construct the connectives 
of d in an effective manner. 

Finally, the axiom A8. specifies a functor of::;--+d which assigns, to 
each object aE:T", an object of (a) such that the presequent of a and of (a) 
precedes all objects of ::r; it is certainly the strict first object. 

From the above analysis of the axioms for the intuitionistic propositional 
logic we have that the collection of formulas of this logic has the structure of an 
intuitionistic space of the form (A; aa> which possesses the strict first object; 
here, A is an l~o-semigroupoid and 8a a functor on A having mentioned proper­
ties; this is the covariant form of the above functor. Hence the following proposition 
holds: 

PROPOSITION 7. The collection of formulas of the intuitionistic propositional 
logic has the structure of an intuitionistic topological space. I 

Hence we have that the system of axioms of the intuitionistic propositional 
logic involves a certain kind of spatial structure of intuitionistic type on the 
collection of its formulas; a spatial structure of another type is contained in buil­
ding up the collection of terms; this structure is of the first lower level with 
respect to that on the collection of formulas. 

Now we shall deal with certain concepts of nonformalized intuitionistic 
mathematics. The concepts which we shall concern here are those given in [2], 
[11] and [16]. First we have the concept of a species. This concept is already studied 
in the paper and therefore we shall not be further concerned with it. Next concept 
is that of a spread. We can obtain this concept by specifying the choice functor 
6rA); it means by specifying the collections of conditions A and n. Let us see 
in which way. 

If we assume that the functor (*)<5e..) is specified, of course, by specifying A 
and 0, in such a way to consists of many-valued functors crk, kEg(, and et.E:cu, 
such that any (oc+ l)th functor is in fact a cone over a octh one, then we can 
represent (*)<58.) as a collection {*cr~ I kEg(, 1\ et. Ecu}, where *crk are many-valued 
functors of the form *cr~+1=(*cr:', p:h, Gk) for k', kEg(,; here, Pk'k are natural 
transformations, *crZ, = Fk , is a single-valued functor and GIX are constant func­
tors. The determination of the successive concepts *cr:+ 1 may be pictured as a 
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process of progressive ramificaticn with simplicial branches: each branch gives a 
simplicial concept [6]. A spread is a fan if the collection 9(, is finite. 

We could deal with other concepts of this logic, as they are choice an,d 
lawlike sequences, apartness relation, etc. We shall see for instance what the apari­
ness relation means. This relation, usually denoted by #, differs objects in a 
fundamental world and can serve for choice purposes. Namely, by means of it 
we can select certain subcollections of the world, objects of which are either identical 
or in this relation; this relation is otherwise defined to be symmetrical, i.e., such that 
# (a, b) {:=? # (b, a), for any two objects a and b. We could deal with this relation 
as a special arrow, or to express it by means of arrows of the world in question. 

According to this, we could say that we could find the position of (all) concepts 
of (non)formaIized intuitionistic mathematics within thme of spatial whole. And 
since we have already said this for the ca~e of formali~m, then we might say in 
general that the creation of spatial wholes contains in itself main parts of mathe­
matical activity. 

4. Fundamental acts in creation of the world of mathematics 

In this section, we shall formulate, but only in general, fundamental acts whieh 
occur in the creaticn of the world which is intended to contain (all) objects of 
mathematics and in the creation of which (all) mathematical activity is to be 
exhausted. Such a world, we have called the world of mathematics. The acts in 
question are extracted from preceding investigations. All preceding story, we can 
summarize in five general acts. The first among the acts is the following one: 

At. Specification of the frame of the world 

We have seen that it is enough to take as a symbolic frame for the creation 
of the world of mathematics a collection JIl consisting of two-sort symbols of 
various levels. If we adjoin to these symbols some new symbols characterizing these, 
then we shall arrive at the new act: 

A2. Selection of basic collections 

According to the adjoined symbols, representing properties of symbols 
of ../It, all symbols of any level of ../It one can select in particular collections called 
species. Namely, we first select objects on the considered level. which we call 
species, and afterwards make the distribution of arrows over them. Then We 
provide such collections of objects and arrows with certain fundamental structure. 
Hence, the next act is . 

A3. Formation of fundamental worlds 

We assume that each species of any level of ../It, provided with a collection 
of arrows, bears a fundamental structure - the structure ef a (quasi)category. 
It wiII possess such a structure if arrcws in it are relevant, i.e., if they preserve 
intrinsic prcperties ef its objects. This structure ferves as a grcundwork for fur­
ther purposes contained in the following act: 
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A4. Organization of spatial wholes 

Each fundamental world of any level of ../It, one can organize in a spatial 
'whole. This act is the central one. It contains in itself two activities: choice and 
.creative activity. These activities are comprised in creations of spatial wholes of 
'various levels. We might say that spatial wholes are the main products of mathe­
:matical activity and hence objects of an edifice which we have called the world of 
mathematics. Hence we have that the world of mathematics consists of spatial 
'wholes of various sorts and levels; of course, together with arrows between them. 
These arrows horizontally connect spatial wholes. Meanwhile, their vertical con­
nection, i.e., the connection between levels is established by the following act: 

AS. Vertical connection of spatial wholes 

Each spatial whole of an arbitrary level of ../It is an object of a species of the 
first higher level with respect to this level. Hence,species of each level of ..lit consist 
of spatial wholes, with specified structural type, of the first lower level with respect 
to their level; they are also endowed with relevant arrows. 

The above five acts give us a general procedure for the creation of the world 
of mathematics. By following them and specifying structural types of spatial wholes 
we specify the mathematical world. For the complete specification of the world, it 
is necessary to know all structural types of spatial whole which we can involve on 
.a species of spatial wholes. This problem, however, requires a separate study of 
various types of spatial wholes and their relationships. Therefore we shall not 
,deal with it. 

If we forget the structure of spatial wholes, then the world of mathematics 
"Will consist of (quasi)categories of various levels; each (quasi)category of any 
:level of ..JIt has as objects (quasi) categories of the first lower level with respect to 
its level and functors between them as arrows. If we assume that (quasi) categories 
are discrete and accept a necessary part of spatial structure we could obtain the 
frame of the world 2L of [5]. 

Furthermore, as an idealization of the world of mathematics, we could obtain 
the world of ordinal numbers and also of their cardinal capacities. Going along 
!levels we would have ordinals of various number classes. We could realize this by 
,assuming that choice-functors @3fi\.) are completed transitive functors having the 
tree structure. 

It would be of an interest to find the link between our approach and some 
-other approaches to the foundations of mathematics given for instance in [1]. 
Moreover one could deal with the connection of some other mathematical worlds, 
,as they are for instance worlds of set theory ([9], [14]), then the world of [3] and 
,others with our world. We shall deal with some of these questions in a separate 
,paper. Moreover we shall apply these investigations to develop some other mathe­
matical theories. 

:5. Conclusion 

We have been concerned in this paper with general aspects of mathematical 
;activity. We have seen that this activity has as its primary goal the creation of certain 
.mathematical entities which we have called spatial wholes and of the world which 
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contain all these entities. This world, we have called the world of mathematics. 
We have specified certain features of it and its constituents. We have also given 
fundamental acts for its creation. Certainly, there still remains much work con­
cerning further characterizations of spatial wholes, heredity of their properties 
along levels, etc. 

In the next part of this paper, we shall try to formalize these investigations in 
a system. We shall give main features of that system and then compare it to some 
known system. Afterwards we shall return, once again, to the discussion of goals 
of mathematical activity. 

Since we consider that the investigations given in this paper reflect certain 
features of the real world: its horizontal and vertical evolution and structure, 
then we shall try to apply them to natural science. Thus, beside the problem of 
further characterization of the concepts given in the paper and the formalization 
of this program, we have one more task. 

Finally we should say a few words about all what we have done here. The 
basic idea which has been leading us in this work has been to see mathematical 
conceptions as various kind procedures by means of which one can create mathe­
matical entities called spatial wholes which have to comprise in themselves mathe­
matical and logical concepts We do not know if we have yet succeded in this. 
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CONTINUUM PROBLEM AT MEASURABLE CARDINALS 

Aleksandar JOV ANOVIC 

Exposition 

Given any set, how to evaluate the cardinal of its power set? The above is~ 
known as continuum problem. In ZFC, initial ordinals can be taken to represent 
cardinals. Thence the problem reads: determine function F, sO that for al1 
ordinals ex: 
(0) 2"''''=<UF(OC)' 

Cantor has proved that 2"''''~<uoc+ l' for all ex. Therefore we can split F" 
so that 

(1) <UF(OC) = <Uoc+f(oc)' 

Putting /(cx) = 1, for exEOrd, we obtain a formulation of generalised continuum 
hypothesis (GCH). 

(2) 
and 
(3) 

It is known that 

cx:::;;~ implies F(cx):::;;F(~) 

The (3) is known as K6nig's lemma. 
Here we shall first list important recent progress on the matter, assuming: 

the fundamental results of G6del and' Cohen are known. 
In [7] Silver has proved the following theorem. 

1.1. THEOREM: if <U oc is a singular cardinal of cofinality greater than. 
<u, then: 

(4) V~<ex2"'13=<U13+1 implies 2"''''=<UOC +l' 

However, the problem of all singular cardinals is stilI unsolved. In J. Stern [8JI 
we found the following hypothesis on singular cardinals, for which the consistency 
and independence are open questions. HCS: let <U oc be a singular cardinal. Then 

(4') V~<ex2"'13=<U13+1 implies 2"''''=<uoc +I ' 

Jensen in [6] has proved the next theorem. 
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1.2. THEOREM: if negation of HCS is consistent with ZFC so is the axiom 
of uncountable measurable cardinals (AM). 

For regular cardinals we have the fundamental result of Easton [3]: 

1.3. THEOREM: for any function F defined on all ordinals (1. such that 
CJ)~ is a regular cardinal and F satisfies (2) and (3), consistency of ZFC implies the 
consistency of ZFC+EAF. Here EAF is the formula 

V (1.EDom (F) 2"'''= CJ)F(cx)' 

Here we note that 1.3. theorem, we found in Jech [5], theorem 37, in 
a somewhat .different notation. There presented formulation is adjusted for the 
following theorem that we have proved. Let F and! be defined by (0) and (1). 
From Chang and Keisler [1], section 4.2. we know that if there is an uncoun­
table measurable cardinal then there is a normal ultrafilter on it. 

1.4. THEOREM: let k be an uncountable measurable cardinal and let D 
be a normal ultrafilter on it. Then 

(5) 

(6) 

{~<K:21~1=1~1+}ED implies 2k=k+. 

I!(k) 1<1 TI!(~) I· 
D . 

Above IXI denotes a cardinal of X, IT is ultraproduct modulo normal 
D 

filter D. (5) says that if continuum hypothensis is true on a set in D, then it is 
true at measurable cardinal k. Hence it implies that the value 2k is determined 
when continuum hypothesis holds on a set in D. (5) is the special case of (6) 
which can be read as: the number of cardinals (1. such that k<(1.<2k, is con-
strained with the value of In!(~)I. Here !(~) is a nonempty subset of k, 

D 
which enumerates the cardinals from CJ)13 to 2"'1" 

Now it is evident that the axiom of uncountable measurable cardinals con­
tradicts the Easton's result given in 1.3. theorem; to check that, let k and D 
be as in 1.4. theorem. Define F 

FW={(1.+1W(1.*k~dif~=~ 
(1.+2 if! (1.=k 

This F satisfies (2) and (3), so by the conclusion of 1.3. theorem we can take 
as axiom 

V ocEDom(F) 2"'''=CJ)F(~)' 

But the set of all regular cardinals less then k belongs to D. Hence by (5) 
2k=k+, contradicting F(k)=k+2 which means that 2k=k++. Moreover, since 
(5) is a special case of (6), similiarly to above we see that if F violates the (6) 
ZFC+AM +EAF is inconsistent. What with the opposite question? Taking into 
account Silver's result that the consistency of ZFC + AM implies the consis­
tency of ZFC+AM + GCH, we state the conjecture: let F be defined on all (1. 

for which CJ)~ is regular and let F satisfy (2), (3) and (6). Then the consis­
tency of ZFC + AM implies the consistency of ZFC + AM + EAF. 
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As we have seen above, the continuum problem was separately treated for 
singular and regular cardinals. But according to (6), may F be such to prevent 
the existence of measurable cardinals? Then in ZFC +EAF, HCS would become 
a theorem. 

Proof 

First we list two D. Scott's results on normal measure, as we found them 
in the section 4.2. of Chang-Keisler [IJ. 

DEFINITION. A filter D over a measuralbe cardinal k is said to be 
normal if: 

1. D is an k-complete nonprincipal ultrafilter; 

2. in the ultrapower n < K, < >, the k-th element is the identity func­
D 

tion on k. 

2.1. THEOREM: let k be an uncountable measurable cardinal. Then there 
is a normal ultrafilter over it. 

2.2. THEOREM: if k is a measurable cardinal and D a normal ultra­
filter on it then 

<R(k+I), E>:::n<R(~+I), E>. 
D 

2.3. COROLLARY: let <p(x) be a formula. Then 

<R(k+ I), E> 1= <p (k) if! {~<k: <R (~+ I), E > 1=<p(~)}ED. 

As a consequence of the above we note that the set of strongly inaccessible cardinals 
less than k belongs to D. Also 

I 11 R(~+ 1)1 =2k. 
D 

2.4. THEOREM: let D be an ultrafilter over a cardinal k .Let 

when ~ E k, then 

I n!(~) I = I {g!E~: g!<,d!} I· 
D 

PROOF: let gE n!(~). Then gEkk. Define 
/3Ek 

1. gD={hE n !(~):{i<k:g(i)=h(i)}ED}. 
(3Ek 

2. g!={hEkk: {i<k:g(i) =h(i)}ED}. 

It is clear that gDCg!. Define 'It:I1!(~)-+A, by 'ltgD=g!. 'It is 1-1. For, 
D 
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if gDi=hD and gD' hDETI f(~), then gDnhD= 0. Suppose that 1tgD=1thD. 
D 

Then g~=h~, and hence {i<k:g(i)=h(i)}ED. It follows that hD=gD. Con-

tradiction. Put F={g~E~:g~<Af~}. We shall prove that 1t(TI f(~»)=F. 
D 

Let gDEIT f(~). Then {~<k:g(~)<f(~)}=kED. It follows· that g~<Af~. 
D 

Hence g~EF. Let now g~EF. Then x={~<k:g(~)<f(~)}ED. Let gEkk be 
such that 

g(~)=g(~) if ~Ex 

g(~)= 1 if ~Ek\x. 

Then gEg~. But gE TI f(~) and gDETI f(~). Therefore 1tg~=g: and thus 
(3Ek D 

1t maps n f(~) onto F. 
D 

2.5. THEOREM let k be a measurable cardinal, D a normal ultrafilte,. 
over k. Then ~ = <A, <A) = IID <k, <) is well ordered with the relation. <A. 
Order type of ~ is greater thall 2k. 

PROOF. By lemma 4.2.l3. from [1], <A is a well ordering. Further 

2k= I TI R(~+ 1) kl IT <k, <) 1~2k. 
D D 

Hence order type ot ~~2k and obviously ot ~<12kl+; defining b as b(~)= 
= I R (~+ 1) " we see that bE k k and hence bD E~. The proof then follows. 
from 2.4. theorem and the fact that bD is not the last element in ~. 

2.6. COROLLARY for every fDE~ there is an ordinal YI so that fD is the 
Y/- th element of~, and 'IIDf(~) 1 =, Y/I; for every ordinal x<ot~ there is. 
an fx E kk, such that f~ is the x-th element in ~. 

Now we can give the proof of 1.4. theorem. 
Functions F andfare defined by (0) and (1); if ~<k then cfl~l<k,. 

w(3<k, F(~)<k, 2"'P<k and f(~)<k. Hence the restriction nkEkk and (ftk)DE 
ETI <k, <). We define 

D 

GI={gDE~:gD<AfD} and 

H = {hDE~: {~<k: h (~) E[w(3' w(3+/«(3»nCard} ED}. 

That is, for hDEH, h(~) is a cardinal and w(3~h(I3)<wl3+/(I3). Hence, for every' 
hD E H, there is some gD E G1 so that 

{~<k: h (~)=wl3+K(I3)}ED. Define 1t: H -+ G, with 

1t hD= gD iff (*). 

It is easy to check that 1t hD does not depend on elements of hD and that 7t: 

is 1-1. Therefore 
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Let x be a cardinal such that k~x<2k. By the 2.6. corollary there is 
an l"Ekk, such that I~ is the x-Ih ordinal in ~, ego Y/I< = x. From the same 
corollary 

I n I" (~) I = I G1" I = I xl = x. 
D 

For the function g with the domain k, define the functicn 

Igl=<Ig(~)I:~<k>. 
We have 

I TI I I" (~) 11 = I n jK (~) I = x. 
D D 

That implies 
IG11':.li=x and YI/"I~x, 

which means that 1/" I is at least x-th element in ~. Since 1/" ID~A I~ 
({~<k:I/"(~)I~/"(~)}ED), by choice of I" must be I"=DI/"I and hence 

X={~<k:f"(~) is·a cardinal}ED. 

Since Y
1

" = x~k and D is normal, we have 

{~<k :/" (~)~~}ED. 

Let Sinac (k) be the set of strongly ina~cessible cardinals less than k. As we 
noticed, Sinac(k)ED. Now we have 

either {~<k :/" (~)~Ctl~+/(~)} ED 

or {~<k :f"(~)<Ctl~+/(~)}ED. 

In the first case we would have 

{~EknSinac (k) :f"(~)~Ctl~+/(~) = b (~)}ED, 

which would imply 

2k~1 n f"(~) 1= I n f"(~) I· 
DnS (Sinac (k» D 

Hence Yr~2k, contradicting assumption for x.. 

Thus {~<k :/"(~)<Ctl~+/(f3)}ED. 
Since x ~ k and I" = D If'< I we have 

{~<k :/"(~)E[Ctlf3' Ctl~+/(f3»nCard}ED. 

It follows that there is some hDEH, so that l"EhD' or equally f~ EH. Since 
x#x' implies f~#f;;, we have 

thus completing the proof of (6). Now let 

X={~<k:21~'= I ~I+}ED. 
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This means that f(~)= 1, when ~EX. But from (6) we get 

If(k)I~/ n f(~)/= 1. Hence 2k=k+. 
DnS(x) 

NOTE: in the above proof we had nk defined on all ~<k; to apply the 
Baston's argument we need ftk to be defined on y={~<k:CJ.>~ is regular}. 
Since YED, such a difficulty can easily be avoided. 

From above it follows that actually 

2k :::;;;CJ.>k+ot (IT (f(~), <». 
D 
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FROM FOUNDATIONS TO SCIENCE: JUSTIFYING 
AND UNWINDING PROOFS 

Georg KREISEL 

Abstract. The first part of this paper recapitulates the general scheme of using techniques 
developed for discredited foundational aims; specifically, proof theoretic techniques developed 
for carrying out HiIbert's programme. Since this programme relies on formalization, that is, 
mechanization, an obvious use is in the mechanical 'handling' of proofs. - The second part of the 
paper considers three different kinds of 'handling:' finding, checking and unwinding (transforming) 
proofs. The principal, generally neglected conclusion is that mechanical unwinding presents the 
most promising application of proof theoretic techniques; particularly where the passage from 
the informal proof considered to a formalization of its relevant features is not particularly proble­
matic. Examples of such cases are proposed. 

I. Background 

It is a commonplace that the notions and problems (formulated in terms of 
such notions) which occur to us when we know little about a subject are liable to 
lose their prominence when we know more. This shift occurs even when, realisti­
cally speaking, the notions are quite precise. Here are two examples from so to 
speak opposite extremes in the case of formulae and proofs. 

1. When we know little, length of formulae (measured by the number of 
symbols) will occur to most of us as a subjct of study. It is quite precise for 
any given notation. But as we go into the subject, we find that length does not 
determine the mathematical 'behaviour' of formulae at all well; for example, in 
many decision procedures a bound on the number of quantifier alternations is 
much more significant. This kind of thing is familiar from the natural sciences; 
The (mechanical) behaviour of bodies is determined more by their weight and 
moments of inertia than by their colour or (details of) their shape though colour 
and shape strike the eye most. 

2. When we know little, the first and often almost the only Yes-No question 
to ask about a proof is whether it is valid or, perhaps, whether it uses valid 
principles. Of course this question is meaningful (and often the answer is negative 
when we have little experience with the subject; for example, a hundred years ago 
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.one applied the power set operation to what Cantor called a Vielheit, e.g. the 
universe). But as we go into the subject we often reach a stage when any analysis 
or - as one says - justification of the principles is unrewarding in a quite precise 
sense: any analysis (tacitly: in terms of current concepts) is less convincing 
than the recognition (=constatation, Konstatierung) of validity. This kind of 
thing is familiar from experience with children who learn only slowly when it is 
(intellectually) unrewarding to ask: Why? - The case-study in the Appendix 
illustrates in detail how experience with the subject matter affects the recognition 
.of validity. 

Perhaps the most famous attempt to pursue questions of validity to the bitter 
end is Hilbert's programme. Fairly recently, I have set out what I believe we 
have learned from work on this progamme [4]. The idea was to justify abstractly 
valid principles by the following kind of reduction. If an elementary statement 
has a proof 'It by such principles then it has also a proof 'It. by elementary 
means. And if the principles are formalized, the reduction is, in turn, expressed 
by an elementary statement (for details, see [4]). The latter should be proved by 
elementary means, once and for all; cf. Hilbert's famous 'final solution' ([4], 
pp. 111-112). 

As is well-known, the most striking so to speak legalistic defect of Hilbert's 
programme is established by Godel's incompleteness theorem; naturally modulo 
second thoughts about abstract validity. A far more specific, and therefore 
more convincing defect is established by looking at particular abstract principles 
which have been reduced according to Hilbert's aim, and to see what is gained 
·or lost by the reduction; cf. [4] pp. 116-117. Indeed, quite generally, defects 
of reductions are most easily seen in cases where they have been carried out, where 
Ockham's razor has been applied. Otherwise there is always a lingering doubt 
that we shall see something new and marvellous when 'unnecessary' growth has 
been removed. 

Be that as it may, it is quite clear that the 'reductions' involve transformations 
of proofs: 'It -r 'It •• And even if one has no doubts about (the validity of) 'It or 
less doubts about 'It than about 'It. (for example, because 'It. is more involved 
than 'It and so has a higher chance of containing copying errors), there remains the 
possibility that 'It. tells us something we want to know that 'It doesn't. Finding 
that 'something' becomes a principal problem: it may need more imagination 
than the step from 'It to 'lte' 

Remarks. (a) The problem above, of exploiting work done for the sake of 
discredited aims, is familiar in the philosophy of science under the somewhat 
grandiose heading: Logik der Forschung (logic of scientific discovery). It is very 
popular among scientists working on cosmology or theories of evolution where 
such problems are the order of the day. (b) In particular, what were principal 
notions or principal results for the discredited aims turn into lemmas, of interest 
only when reformulated, and combined with other constructions. A good example 
is provided by so-called consistency proofs using e:o-induction, reformulated as 
a formal equivalence between the logical principle of soundness (=refiection) and 
the mathematical principle of e:o-induction ([4], p. 121, 1. 7-8). This has re­
cently been combined with combinatorial arguments by Paris and Harrington 
Pl, who established an equivalence to a 'more' mathematical principle, namely 
their version of Ramsey's theorem, to which we return in the Appendix. 
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n. Mechanical Handling of Proofs 

For familiar foundational reasons which were recalled above, formalization 
of the principles studied (of course not: of the metamathematical methods used) 
is needed for Hilbert's programme. Others tried to connect formalization with 
mathematical rigour, which requires metamathematical arguments to be formalized 
too. However far-fetched all this may be for the phenomena of mathematical 
reasoning itself, formalization or, equivalently, mechanization is an obviously es­
sential element in the use of digital computers. since they operate only on formal data.1 

We consider here three kinds of uses: finding proofs, say for a given conjecture; 
checking proofs, of a given assertion; and transforming proofs, for example, a 
prima facie non-constructive proof of an existential theorem into a realization, 
an analytic proof of an algebraic theorem into an algebraic one, and the like. 

1. Past experience: computation and highbrow mathematics. Of course, the 
huge bulk of computer uses in pure or applied mathematies concerns computations 
or, more generally, classes of assertions A, for example, equations t=t', for which 
decision methods are known that can be realistically implemented by a computer. 
So formulated, the uses can be regarded as examples of finding or checking proofs; 
for example, if we think we have an argument for A, but are not sure2• However, 
the only feature of the argument which is relevant to this use is the conclusion A 
itself. The computer checks the result of the argument, and does not look at its 
details. Put differently, given the result, the computer makes a fresh start. As a 
corollary, the third type of use mentioned above, the transformation of proofs, 
does not occur here at all. 

In high-brow mathematics the situation is different. Finding and checking 
proofs are, at least generally, done without using mechanical rules. This is a com­
monplace as far as discovery is concerned. But also checking is rarely done mecha­
nically, for example, by careful comparison with some given set of formal rules 
(mathematicians make logical inferences, but seldom remember rules of predicate 
calculus even after having seen them). By far the most efficient checking is done by 
comparing or confronting intermediate steps with what is known already, possib­
ly in superficially quite different parts of mathematics. This is of course related to 
discovery where results from different areas of knowledge are combined. In short, 
for the phenomena of mathematical reasoning just mentioned the business of for­
malization seems quite far-fetched. 

In contrast there is another part of high-brow mathematical activity which 
does have a mechanical look, namely the analysis or unwinding of proofs; it is 
mechanical, once one has decided what to read off the proof. As a matter of empirical 
fact (cf. p. 113-116 of [5]), though mechanical, this unwinding occasionally 
makes one's head spin, and one gets lost - as in computations with large numbers. 
From this point of view it is promising to use computers for such unwinding. And, 
as suggested by Part I, methods developed in traditional proof theory turn out 
to be relevant here. 

1 Many instruments which are called 'computers' are here thought of as combining a (central) 
digital computer and a (peripheral) analogue device; the latter may operate on, say, continuou~ 
data, and then supplies the computer with discrete formal data. 

2 An 'essential element' and not necessarily the sum total; for example, if we are interested 
in a cOJUecture A, one type of use of a computer is to present not a formal proof of A, but of 
P.r'>-A with an invitation to the user to consider if PA is valid. 
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Reminders. To avoid a general air of unreality, it is as well to recall at this 
point a few simple facts. (a) Naturally, even if the programme of unwinding 
works out, it cannot be expected to be of comparable importance to, say, high speed 
computation. This is a particular case of the truism that the use of computers 
within mathematics is a very minor part of the total picture. (b) Conversely, inasmuch 
as the programme is useful, it cannot be expected that clever mathematics 
will often play an essential role. This is a particular case of the fact of experience, 
say in operational research, that one rarely gets a startling gain in efficiency 
by some new mathematical device for solving a (decision) problem. Far more 
often does one get an improvement by spotting constraints on the problem (as 
originally stated): one finds that in practice only few of the assertions occur which 
were thought to be relevant at first blush. Actually, this point applies to some 
extent within mathematics too when there are high, say exponential bounds for 
deciding all formulae of the class C; the practical conclusion is that one had better 
look for a more amenable class, say a subclass of C. (c) But also one should re­
member that there are occasional exceptions to the general features of present day 
high-brow mathematics emphasized above. The proof of the four-colour-conjectUle 
by Haken and Appel (explained in [1] with the benefit of advice from professional 
scientific journalists) was certainly discovered by a high-brow use of computers. 
At our present stage of experience it is as reasonable to look for a check without 
the use of computers as it would have been a hundred years ago to look for a 
finitist proof of a theorem discovered non-constructively. 

2. The passage from informal to formal proofs: the alleged spanner in the 
works. When one speaks of (mechanically) unwinding or, generally, transforming 
proofs, one has to have a proof to start with! So naively, it seems we need machinery 
to pass from some given informal proof 7t to corrcsponding formal data 7t' and 
perhaps (b) that, for a mechanical transformation, 7t' has to be built up by 
formal rules. Both these ideas are quite naive. The first neglects general experience 
in the application of theories, the second specific experience in proof theory. 

(a) What is needed is a formal representation of those features of 7t which 
are relevant to the transformation. Sure, cne can ask: How do you know what 
is relevant, (as a child asks: Why?) But, before one imposes unrealistic demands 
on uses of proof theory, it is much more profitable to remember how mathematical 
theories are applied elsewhere. If physical theory is to be applied to some phenome­
non, say the motion of the planets, it is left to the physicist to discover the physi­
cally significant features of the phenomenon. There is no 'machinery' for deciding 
whether chemical composition or cosmic radiation is significant - and if there 
were, the application of the machinery might take so long that the more significant 
features (position and velocity) are already out of date. The physicist uses a certain 
familiarity with the phenomena to spot the significant features. 

And physical theory is of use whenever the effort involved in the passage 
from the raw phenomenon to the choice of data is not out of all proportion to the 
effort of applying the theory to those data. 

(b) For the kind of unwinding mentioned in § 1, most details of a proof 
are not relevant; for example, none of the details involved in proving so-called 
identities, that is, O?-axioms, and if the latter are true then the transformed proof 
will again use only true CO?) axioms. 
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As a corollary, when we have the job of unwinding a proof 'Tt, we shall look 
for chunks of the proof that are used only for proving n?-theorems, and suppress 
them altogether from the representation 'Tt' to which the proof theoretical trans­
formation is applied; cf.: a physicist who is given data including the spectral 
lines of the light coming from a planet, will ignore this optical information if his 
job is to determine the motion of the planet. 

The fact that proof theoretic methods are occasionally of use, is not in doubt. 
As documented in [5], pp. 113-116, even without a computer they have been 
applied to unwind proofs, and to extract information which the discovelers of 
those proofs wanted to know and did not find by themselves. Spotting relevant 
features of those preofs was not a major obstacle. 

NB. Of course there is intrinsic logical and above all aesthetic interest in giving 
a closer analysis of the passage from informal preofs to (relevant) formal repre­
sentations. But under ordinary circumstances the me of wch a scheme is more 
likely to hamper than to help the effective application of computers in the unwin­
ding of proofs. - The reader should compare here cases of mechanizing the choice 
of relevant features in natural science. This was necessary, for example, when 
sending a robot to Mars to look for life, since only a limited number of types of 
measurement (of suppm;edly relevant data) could be incorpOlated. The robot was 
surely much better than a scientifically untrained or thoughtless obsener. But 
perceptive scientists en the fret would surely ha,e done better than the robot by 
not restricting themselves to a prescribed repertoire. 

3. New examples of candidates for mechanical unwinding. The 'new' examples 
are here regarded as a continuaticn of those discussed in [5], pp. 113-116 (where 
also some loose ends are pointed out which can probably be tied up by me of a 
computer). The 'old' examples concerned questions raised by distinguished mathe­
maticians a bout their own proofs, and so it was reascnable to take the interest of 
the questions for granted. The interest of the new questions will be discussed 
briefly at the end of (a), respectively (b) below; 'briefly' because, as always, 
only the general interest of an open problem can be decided, the exact interest 
depending on the specific solution. 

Warning. To fix ideas the unwinding considered below is done by normali­
zation or cut elimination (so that one ends up with a cut free proof). This is fine 
for realizations of existential theorems. It is net geed for finding, my, a first order 
plO of which corresponds to a higher order prcef (of my, a logical theorem). 
Giving a better unwinding, which in general associates a (first Older) proof with 
cut to higher order proofs, is certainly a principal open problem. 

(a) Milnor [6] showed by use of topological arguments that the only 
(possibly non-associative) division algebras over a real closed field have dimen­
mensions I, 2, 4, 8. So, for each integer n #1, 2, 4,8 there is a purely logical 
proof of the non-existence of a division algebra of dimension n from the axioms 
of real closed fields, since the property of being the mUltiplication table for ~uch 
an algebra is expreSEed by a first oreer formula. 

Problem. What do the (purely) logical first order procfs look like, which are 
obtained by unwinding Milnor's procf (say, for n=16, 64, 256)? 

5* 
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Reminder (from §2). Naturally, one will not formalize many details of Milnor's 
proof, but only those steps which are relevant to the unwinding procedure. 

It is known that Milnor's result does not extend to all (ordered) fields. 
A standard counter example is the following commutative and associative 
division algebra of dimension 3 over the rationals: 

The elements are of the form 

where a, b, c are rational. 

Sums and products are defined as usual, that is, for the field of rationals 
extended by (2. 

The irrationals (2 and ("4 satisfy cubic equations. This is optimal since 
inspection of standard methods yields the following: 

Corollary: For all odd n Milnor's result holds for ground fields in which 
every polynomial of degree n has a zero (The fields need not be real closed). 

Discussion. Mathematically speaking, the problem of unwinding presents a 
risk; specifically, when more is lost than gained. (A - conscious or unconscious 
- attraction of finitist foundations consisted in apparently removing this risk by 
the claim that the unwinding was needed for justifying Milnor's proof). The corollary 
above indicates one kind of possible gain, incidentally in terms of conventional 
concepts. The unwound proof will exhibit the particular (finite subset of) axioms 
for real closed fields that are needed for the conclusion, and may thus suggest a 
neat generalization of Milnor's result (to a larger class of fields). - On the other 
hand, foundationally or pedagogically speaking there is no risk. There are sufficiently 
many people with foundational convictions that unwinding is either always or 
never informative, that somebody is bound to learn something from the unwinding. 

(b) When - in contrast to (a) above - both mathematical and logical proofs 
of some (logical) formula are actually available, unwinding is used to compare 
the proofs. For example, suppose DO are (first order) axioms for dense orderings 
without first or last element, and that F is a formula in the language of DO with 
the single free variable x. Then DO ~ V xVx' (F ~ F') where F' is F [x/x']. For 
each such F, the implication can be proved by elimination of quantifiers, but also 
(mathematically) by use of the categoricity of DO for countable models and their 
automorphisms. The mathematical proof can be formalized in type theory, and 
unwound by normalization: but we really have no idea what the resulting (logical) 
proof looks like. 

Discussion. One, very familiar way of expressing the malaise produced by 
the existence of such spectacularly different proofs is to doubt the validity of the 
set-theoretic notions used in the mathematical proof. But note that there are also 
non-ideological doubts about - the concepts needed to state - structural rela­
tions between those proofs. 
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Appendix : a case study 

The purpose of this appendix is to expand the general discussion in Section I by 
reference to a specific case. Plenty offamiliar material could be used for this purpose, 
for example, the discovery and recognition of any of the basic current axiom systems. 
But I (and the readers likely to profit from this article) find hackneyed examples 
distasteful, and so a very interesting recent di~covery by Paris, already mentioned 
in the text, will be used instead. Besides, there is no analysis in print which puts 
this discovery into a broad context. 

Paris discovered a striking variant RTA ('A' for arithmetical) of Ramsey's 
own finite version RTF of his theorem RT on partitions of the set of pairs of a 
countable infinite set; for exact statements, see [71. According to the title of [71, 
the most remarkable property of RTA is that it is a 'mathematical' theorem which 
can be stated but not proved in first order arithmetic. As already indicated at the 
end of Part I, this alone is not particularly convincing since Eo-induction (for, 
say, the complete D? predicate) is hardly any more meta-mathematical than RTA , 

and has been known for more than 40 years to have the same remarkable property. 
This is made precise at the end of (b) below. 

(a) As for background, it has been known since the work of lockmch [21 that 
RT itself cannot be proved in most 'usual' conservative extensicns of first order 
arithmetic with full inducticn; more specificaIIy, any finite subset of axioms of those 
extensions is satisfied by some (finite) segment of the arithmetic hierarchy, and 
RT is not. On the other hand, Rip itEelf can be ccmfortably proved in first order 
arithmetic, in fact, bounds for the correspcnding Ramsey functions lie in E4-E~ 
of Grzegorczyk's hierarchy of the primitive lecursiYe functicns; cf. [81 p.140, 
Lemma 6. 

(b) Validity of RTA. Far znd &way the sirrplest precf of RTA mes a de­
duction (by compactness) frcm RT itEelf. The same applies to RTF" 

Corollary. Taken in their literal sense, as ng theorems, a separation between 
RTA and RTF (w to srezk, en the grcrrd cf a diffennt 'kird' of validity) is 
suspect. - More precisely, as cannot I::e rereated teo often, it is an assumption 
that the classification of theorems according to fOlmal derivability in any parti­
cular (incomplete) system is significant. The diEcovelY that RTF and RTA ale sepa­
rated by this classificaticn, using filst cleer alit} rretic, castE ecubt en the assumption 

The situation changes if interest shifts frem the litera] seme to bounds for 
Ramsey functions, specifically upper bounds. NB. It is a striking discovery that, 
in contrast to the bulk of elementalY mathematics, this shift is significant here: 
usually bounds are read off quite directly frem a preef of a ng theorem. 

Proofs via RT supply a-recursive hunds for Ecme a<E,o' by [31 inasmuch 
as the most obvious formalization of the preof of RT uses n~ -analysis (which 
is formally identical to the theory of the first level of ramified analysis [9]). As 
always this can be improved by bounding the complexity of the induction schema 
used in the proof of RT. - Evidently, these bounds are far beyond E4 which, 
by above, bounds the original Ramsey functions (of RTF). 

The proof of RTA in [71, via the so called 2? -reflection (or soundness) 
principle for first oreer ariLbmetic, EUtpli{S an <c-H(UHi,e tcud. This follows 
from - one direction of - the well-known equivalence, for example, in 1. 7-8 on 
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P 121 of [5], between Eo-induction and the reflection principle. For reference below: 
the bound in question is primitive recursive in 1.0 , the particular Eo-recursive 
function of Wainer's hierarchy (used in [10]). 

Discussion. Realistically speaking, this proof, though very agreeable to a 
logician, is unsatisfactory for those who really want to know bounds for Ramsey 
functions. (After all, for a logician, consistency is a much more interesting assertion 
than RTAl) The proof requires the verification that a number of arguments can 
be formalized in first order arithmetic; evidently, a delicate matter (for a novice) 
in a context where there are also arguments which cannot be so formalized, speci­
fically, proofs of RT) 

The best upper bound for RTA so far obtained is fEo(n+4), in [10]. The proof 
uses a careful proof-theoretic analysis of subsystems of first-order arithmetic in 
terms of Wainer's hierarchy. 

It seems plausible that the machinery of [10] can be developed to give this 
bound by means familiar to the principal consumer, the combinatorial mathematician 
interested in RT~. Specifically, one would use an ordering (of type EO) of finite 
partitions, called 'algebras of sets' in [10], and one would apply induction on that 
ordering to a combinatorial property of such partitions. In contrast, the unwinding 
of the proof of RTA in [7] together with the deduction of (I? - ) reflection from 
(I? - ) Eo-induction uses orderings of infinite cut-free proof trees and unfamiliar 
(derivability) properties of formulae at the nodes of those trees. 

(c) Formal underivability of RTA : lower bounds. Once again, a number of 
proofs are available. First of all, there are more or less familiar constructions of 
models, originally by Paris, later by Kochen-Kripke (unpublished), in which RTA 
fails. By itself, this does not establish any lower bounds at all because, after all, 
even a (numerically) true IT? statement can be formally underivable. The device 
used here is to have models in which all true n? -statements hold, and appeal to 
the fact that, for oc.<EO, all oc.-recursive functions are provably recursive. If a 
ITg-statement V x 3 yA (x, y) has an oc.-recursive bound, defined by a GOdel-number 
eoc ' then the IT?-statement 

(*) V xV z{T(eoc , x, z) -+ 3y [y < U (z) AA (x, y)]} 

is true, V x3z T(eoc ' x, z) provable, and so Vx3yA(x, y) is derivable from (*). 

Corollary (for people interested in the formal independence of I~ - Eo-in­
duction). Once one has (i) a model in which all theorems and all true n? -sentences 
of arithmetic do, but RTA does not hold, and (ii) any Eo-recursive upper bound 
for RTA (as in (b) above), it is immediate that f.o is not provably recursive. 

Secondly, there is the proof in [7] which derives the I?-reflection principle 
(in primitive recursive arithmetic) from RTA' Appealing again to the proof theoretic 
equivalence mentioned in (b), we find that any Ramsey function enumerates all 
oc.-recursive functions for oc.<EO, and so cannot be equal to any such function. 
Trivially, as in (*) above, no Ramsey function could be dominated by any such 
function either. In terms of Wainer's hierarchy (in [10]) : /.0 is primitive recursive 
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in any bound for RTA • This is done by unwinding the proofs of (i) (L:? - ) reflecticn 
from RTA in [7] and (ii) of (L:? -) eo-induction from (L:? -) reflection. 

Again, neither of the proofs mentioned can be satisfactory to the principal 
consumer because it involves the passage from provably recursive to <eo-recursive 
functions. Only the latter are so defined that the property in question, rapid growth, 
is evident. 

The third proof, by Solovay [10], shows, in terms familiar to the combinato­
rial mathematician, except for the notion 

0: - recursive function: 0: <eo, 

that all such functions are almost everywhere lower bounds for Ramsey functions 
of RTA • In fact, by [10], /.0 (n-4) is a lower bound. 

Discussion. There is, I believe, a useful parallel between Solovay's proof and 
Higman's well-known characterization of subgroups of finitely presented groups 
(ignoring for the moment the relative interest of this part of group theory and of 
the partition calculus resp.). Higman discovered that a few notions of recursion 
theory combined with a good deal of group theory permit a satisfactory answer 
to the question: 

Which finitely generated groups can be embedded in finitely presented groups? 

Solovay succeeds in using a notion first thrown up in proof theory to answer the 
question: 

How fast do Ramsey functions of RTA grow? 
Certainly, no bounds anywhere in combinatorial (or other ordinary) mathematics, 
have ever come near the (lower) bounds for RTA • A critical view of traditional proof 
theory, specifically of the consistency programme was of some help (as claimed at 
the end of Part I) because - on the traditional view - the emphasis on exten­
sional properties of provably recunive functions is quite trivial compared to the 
metamathematical methods used in the consistency proof. 

Remark. Just as the discovery (in [8], 16.4, based on section 14 about infinite 
cardinals) of the original lower bounds for RTF' Solovay's argument obviously 
involves the fruits of experience with infinitary partition calculus. This is a counterpart 
to Jensen's successful use in (infinitary) set theory of some developments in proof 
theory of Bachmann's ideas for defining fundamental sequences. Certainly, not 
everything is the same as everything else (unless viewed very superficially). But 
the particular traditional distinctions between 'the' finite and 'the' infinite are not 
all that important as far as proofs are concerned; certainly less than appears to the 
inexperienced. 
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PS (added March 1978). Since this paper was written, Part (b) of the Appendix has 
been improved. (i) On the formal side several of us noticed that Eo-induction (applied to 
arithmetic predicates) axiomatizes the arithmetic theorems, and hence 

'L? -a-induction: a<E1 

the n~-theorems which follow from RT in Lt? -analysis with induction restricted to arith­
metic predicates (with parameters). (ii) More interestingly, J. KETONEN established the con­
jecture at the end of (b), proving RTA by induction on (a predicate involving) the member­
ship relation in Ha, for a::;Eo' where Ha is his hierarchy of so called a-large, finite sets of 
natural numbers. (The relation is coded arithmetically). His proof uses a general scheme for 
weakening suitable definitions D of familiar closure conditions on ordinals " (Mahlo, weakly 
compact, n-subtle); roughly speaking, by rewriting (set-theoretic) D in combinatorial language 
Dc where the variables for ordinals used as indices are separated from those used as elements 
of sets. As a result it makes sense to let the set quantifiers in Dc range over ,,-large sets 
of natural numbers in place of arbitrary subsets of ordinals <". Ketonen's proof of RTA 
shows that 80 is the least ordinal which satisfies (the latter, arithmetic interpretation of) w-Sc 
where w-S is the appropriate definition of n-subtle for all n as a partition property. -Ketonen's 
scheme gives further substance to the Remark on p. 121 at the end of this paper. 

Incidentally, the formal work in 0) is sometimes useful for (ii), for example, to check 
bounds for (the least ordinal satisfying) Dc. 
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LE NOUVEL ESPRIT MATHEMATIQUE 

Maurice LOI 

Le sujet de cette conference tient d'abord it une question d'opportunite: je 
prepare un ouvrage dont le titre sera d'aiIleurs ceIui de la conference d'aujourd'hui. 
qui rappelle tout ce qU'eIIe devra it l'oeuvre de Gaston Bachelard en epistemologie. 
et il me sera particulierement utile d'avoir votre opinion sur les quelques idees que 
exposer devant vous. 

Ces idees sont it l'origine du Seminaire de philosophie et mathematiques. 
Elles ont leur source dans les travaux d'Albert Lautman, qui viennent d'etre 
reedites par les Editions 10/18 it Paris, et dans la constatation que 
l'enseignement, la philosophie et la culture meconnaissent le veritable esprit des 
mathematiques contemporaines, dont je voudrais montrer la liaison avec l'heuri­
stique. Meme lorsque les programmes ont ete modifies dans les ecoles, meme quand 
les notions nouveIIes y ont ete introduites, l'ancien epsrit dogmatique et sclerose 
regne toujours, oubIiant la dynamique de la science. La vie des concepts est ignoree 
et pour donner du mouvement it des notions mortes on a recours it I'agitation 
enfantine, it du bricolage, des exercices et des problemes destines it faire "secher" 
les eleves parce que les outiles necessaires it leur resolution ne leur sont pas toujours 
donnes, ce qui leurs impose des complications stupides. A l'oppose on encombre 
l'apprentissage de notions simples et necessaires de considerations pedantes et 
inutiles it ce niveau. C'est une conception depassee des mathematiques qui domine 
cette pedagogie ou rigueur et creativite sont trop souvent opposees, alors que 
l'accroissement de la rigueur mathematique et les recherches logiques' ont permis 
d'augmenter de fa~on considerable les moyens d'invention de l'esprit humain dans 
tous les domaines, comme je m'efforcerai de le montrer au cours de cette confe­
rence. Et c'est une autre raison de cette conference; le mepris contemporain de 
trop de personnes pour la deduction et la rigueur, le "deductivisme" disent-ils 
d'un ton meprisant. Or les conquetes essentieIles de la science ont ete obtenues avec 
l'intervention dominante de la deduction. L'impossibiIite d'y arriver par le moyen 
de simples inductions basees sur l'observation directe avait ete reconnue par Galil6e 
lui-meme comme je le rappeIIerai tout it l'heure. Or l'a priori est devenu signe da 
l'arbitraire, du conventionnel et Poincare n'a pas peu contribue it repandre cette 
idee. La science experimentale equivaut alors it la science objective. Bien sur. 
it y a eu un usage abusif de la deduction au Moyen-Age,e aboutissant it des the­
ories mystiques ou fantastiques, mais les alchimistes ont bien use aussi de la 
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methode experimentale. Ces medisances c~ntre la raison humaine ne doivent pas 
nous faire oubIier la fecondite de la deduction, qui n'est sterile qu'entre les mains 
des ignares. En fait, elle constitue souvent un moyen bien plus efficace et plus sur 
de recherche que l'experience ou l'observation directe. Mieux: sans elle la science 
ne peut pas se constituer. Meme dans l'etude des phenomenes sociaux, les plus hardis 
inventeurs et constructeurs de plans de reformes et les critiques les plus impitoyables 
des theories justificatrices des institutions et des regles sociales effectivement exi­
stantes, sont precisement ceux qui se distinguent par une plus gran de tendance 
a l'usage de la deduction, par exemple Rousseau et Marx. Or ce mepris et cette 
ignorance de la deduction ne permettent pas de juger correctement les mathemati­
ques, qu'on reduit a quelques recettes ou pro cedes de calcul sans portee au dela 
des exercices et des problemes d'examens et de concours. 11 est vrai que la societe 
de consommation les utilise comme moyen de selection pour recruter ses cadres. 
Mais les mathematiques ont quand-meme un autre interet et c'est la societe qu'il 
faut changer. 

I. L' essor des Mathematiques et leur valeur Inventive 

Les mathematiques, malgre leur anciennete, connaissent de nos jours un 
essor impetueux et accelere dont il est possible a un profane d'apprecier l'ampleur 
en consultant la circulaire mensuelle de la SMP donnant le programme des semi­
naires, colloques, congres, en visitant une bibliotheque specialisee; en feuilletant 
un numero de Mathematical Review, de Current mathematical Publications ou 
encore de Zentralblatt fur Mathematik und ihre Grenzgebiete. On sera impressionne 
par le nombre de problemes resolus et la variete des resultats obtenus, par la floraison 
de theories audacieuses, par la quantite de livres et de publications divers. Jean 
Dieudonne a pu ecrire: "On peut dire sans exageration qu'il y a eu plus de prob­
lemes mathematiques fondamentaux resolus depuis 1940 que de Thales a 1940"* 
L'age d'or, qui a commence pour les mathematiques au debut du XIXe siecle, 
n'est pas pret de fiuir. Cette premiere con~tatation prouve l'activite creatrice de 
l'esprit humain en mathematique pour elaborer des methodes et des theories 
nouvelles permettant de resoudre des problemes poses depuis longtemps, theories 
nouvelles qui font naitre inversement l'idee de pro blemes nouveaux, lesquels 
ne pouvaient etre formules abstraitement auparavant. Le degre d'abstraction de 
plus en plus pousse des mathematiques ne les empSche pas - au contraire, pour­
rait-on dire - d'Stre utili sees dans des secteurs les plus divers, ou ce sont parfois 
les theories et les idees les plus recentes et les plus elaborees qui se revelent les plus 
necessaires. Ainsi Einstein eut besoin au debut du siecle de la theorie des groupes, 
,de la geometrie riemanienne et du calcul tensoriel pour elaborer sa theorie de la 
Relativite. Ce faisant il ne procedait pas du tout a la fac;on dont l'imaginent encore 
en 1977 trop de personnes, utilisant un langage, un simple moyen d'expression 
pour une idee deja existante. Grace aux mathematiques formelles les plus elaborees 
et les plus eloignees de l'experience, des notions aussi fondamentales que l'espace 
et le temps, dont Kant avait fait des absolus, furent bouleverses. Des conclusions 
etonnantes, telles que celles de l'equivalence de la masse et de l'energie ont ete 
obtenues comme des consequences mathematiques du principe d'invariance par 
les transformations de Lorentz de toutes les equations gouvernant les phenomenes 
physiques. Le point de vue du mathernaticien triomphe de celui des empiristes. 

* Es ai sur l'unite des mathimatiques, par AlbeIt Lautman, p.20 note 2. 
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Consequence ce qui n'a pas assez retenu l'attention des philosophes, ni medifie notre 
culture colporteuse d'idees surrannees. 

Aussi, trop souvent, n'estime-t-on pas a sa juste valeur le role des mathe­
matiques dans la pen see scientifique. Or desormais eIIe est tout entiere presente 
dans son effort mathematique, ou, pour mieux dire, c'est l'effort mathematique 
qui forme l'axe de la decouverte. C'est l'expression aJgebdque qui seule, souvent, 
perm et de penser le phenomime, comme si l'esprit acquerrait des facultes nouveIIes 
en la maniant, rendant possible le mouvement spirituel de decouverte. Je pourrais 
citer d'autres exemples analogues de la physique: algebre steIIaire, geometrie 
symplectique, theorie des groupes etc, ou des sciences biologiques ou humaines, 
qui montreraient le role heuristique des mathematiques dans l'oeuvre de theori­
sation, de reflexion et de definition des concepts. C'est le premier aspect essentiel 
du Nouvel esprit mathematique d'etre une source d'idees qui permettent la com­
prehension et la maitrise des phenomenes comme l'avait reve Descartes dans sa 
philosophie pratique et conquerante : saisir l'intelligence des choses a partir de 
leurs vrais principes qui donnent la lumiere inteIIectuelIe, telIe est la veritable mathe­
matique, ou il n'opposait pas induction et deduction comme le font certains de 
nos contemporains, qui voient dans I'induction la source unique des inventions 
et considerent la "seche" deduction comme un simple moyen de preuve et d'expo­
~ition de resultats deja trouves. Or la conquete de verites importantes ne peut etre 
effectuee par la simple observation passive, mais exige l'exercice d'activites mentales 
bien plus elevees et compliquees. Dans la plupart des cas les experiences sont de 
simples verifications de conclusions auxqueUes les experimentateurs sont deja 
arrivees independamment d'eHes: "Je fus d'abord persuade par la raison avant 
d'etre assure par les sens" ecrivait Galilee (Dialogue des grands systemes, seconde 
journee). Pasteur, deux siecles plus tard, ajustement defini l'experimentation comme 
une observation guidee par des idees precon!(ues, c'est-a-dire, en d'autres termes, 
une observation precedee et accompagnee de procedes deductifs. 

Un precurseur : Descartes. 

Descartes avait le souci d'une logique feconde qui serve non seulement 
a exposer mais a decouvrir. Les matMmatiques 1'0nt justement seduit par l'evidence 
de leurs raisons et l'enchainement de leurs conclusions. Elles lui ont donne ses 
idees-des : toute verite est un degre, auquel on accede en partant du precedent 
et qui lui donne lui-meme un acces du suivant. Aux touts per!(us par l'intuition il 
faut desormais substituer des composes artificiels, fabriques par nous et dont par 
consequent la structure et tous les elements nous sont exactement connus. Ainsi la 
science, au lieu d'etre, comme le croyaient les anciens une contemplation d'objets 
ideaux, se presenter a desormais comme une creation de l'esprit, une compo­
sition syntMtique. La tiiche essentieIle du savant sera, par comequent, non pas 
d'apporter une nombreuse collection de resultats, mais de mettre sur pied de bons 
instruments de combinaison, de constituer une methode puissante et efficace. Les 
voies de la synthese algebrique sont ouvertes. Tel est precisement le but que Des­
cartes se propose avant toute chose. La physionomie nouvelIe que va prendre la 
science, c'est la geometrie qui la definit, qui la commente, et en donne en meme 
temps une vision concrete: par l'algebre, une algebre nouveIle il est vrai, clarifiee 
et perfectionnee, il est possible de resoudre les problemes relatifs aux grandeurs 
et auf figures en suivant une voie sure et reguliere. La surete, la regularite de la me­
thode ; voila ce qui est essentiel aux yeus de Descartes, voila ce qui doit distinguer 
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la science moderne de la geometrie ancienne, ce champ clos ou les virtuoses de la 
demonstration pouvaient seul se mouvoir et accomplir leurs prouesses. C'est en 
ce sens que Descartes est un precurseur du Nouvel esprit mathematique et pour 
ainsi dire de Bourbaki: l'algebre pour lui n'est pas un recueil de resultats, c'est une 
technique, c'est une methode de combinaison et de construction. Par le simple jeu 
du mecanisme algebrique nous faisons surgir un monde geometrique illimite que 
ne nous aurait jamais revele l'intuition directe de la figure. En rehabilitant le calcuI 
delaisse par les Grecs au profit de la geometrie, Descartes prepare la route pour la 
mathematique formelle. Tous les scrupules des geometres grecs touchant la defi­
nition des courbes s'evanouissent, et les detours qu'ils employaient pour y echapper 
perdent leur raison d'etre. La theorie de la construction geometrique devient inutile 
ainsi remplacees par cette synthese creatrice, autrement feconde qu'elle. 

II. Le role central du concept de fonction. 

Sous le velement de la notion de courbe apparait (bien sur i1 faudra attendre 
la fin du XVIIe siecle pour que le mot apparaisse et que l'idee soit precisee) la notion 
generale de fonction grosse de toutes les questions qui bientot surgiront a sa 
suite. Cette notion n'a pas seulement constitue un perfectionnement des mathe­
matiques, elle a marque un changement radical dans leur orientation, qui n'est pas 
toujours apprecie comme il convient malgre ses nombreuses consequences et appli­
cations pratiques. 

L'interet philosophique de cette decouverte a ete apprecie par la suite par 
quelques philosophes tels que Hegel ,Marx et Engels: le passage de la pensee de 
Parmenide a la pensee d'Heraclite. Hegel nota dans la Phenomeno!ogie de I'esprit 
que la tache pooagogique moderne est en quelque sorte inverse de la tache peda­
gogique antique, qu'il faut maintenant rendre fluides ces determinabilites. Telle 
est la tache qu'il se proposera dans sa Logique. Selon Parmenide tout etre intelligible 
par la raison doit etre considere comme invariable tandis que selon Heraclite c'est 
le changement qui est la loi dominante de l'univers. La constitution de la mathe­
matique grecque marqua le triomphe de Parmenide: la philosophie d'Heraclite 
ne laissant place a aucune fixite, elle aurait abouti a nier la valeur de la mathe­
matique et empeche le developpement de la science. Bien sur la pensee grecque 
est bien plus complexe que cette schematisation peut le laisser croire. Platon, par 
exemple, fut tout autant fascine par Heraclite que par Parmenide, mais il appelle 
dialectique ce qui sera appele plus tard metaphysique. Car Platon avait deja une 
conception riche et souple de la raison, qui savait s'inspirer des decouvertes de 
la science. Aussi n'est-ce pas un hasard si Albert Lautman fit si souvent reference 
a Platon lorsque vers les annees trente du XXe siecle il voulut elaborer une philo­
sophie mathematique. Tel fut aussi l'effort de Brunschwig et de Bachelard. Mais 
au XVIIe siec1e Pascal opposait encore esprit de geometrie et esprit de finesse 
alors que le mathematicien moderne use autant de l'un et de l'autre. Une consta­
tation doit etre soulignee: le dogmatisme fut d'abord surmonte dans la science. 
Voila une le<;on dont Bachelard sut tenir compte mais que bien des philofOphes 
contemporains devraient mediter. 

QueUe fut l'importance de ce tournant dans la pensee mathematique? 
Pour la science grecque tout probleme se ramenait a la recherche d'un ou 

plusieurs nombres, deterrninees d'une maniere complete quoique implicite, par les 
donnees de la question. Manifeste en ce qui concerne les problemes d'arithmetique. 
cela n'etait pas moins certain dans le domaine geometrique, puisque les figures 
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-considerees pas les Anciens (points, droites, plans, cerc1es etc.) dependaient chacune 
d'un nombre fini et meme peu eleve de parametres. Etudier les relations entre 
certains nombres laissees invariables dans tout le cours du raisonnement ainsi que 
la maniere d'utiliser ces relations pour caIculer quelques-uns d'entre eux, les autres 
erant supposes donnes, voila ce que se sont propose mathematiciens jusqu'au 
XVIIe siec1e. 

D'Eudoxe et Archimede a Leibniz et Newton. 

Eudoxe et Archimede furent des exceptions et n'eurent pas de successeurs 
·directs. Le cadre de la geometrie antique ne fut reel1ement depasse et une arme 
nouveI1e donnee it la science que lorsqu'on considera la variation continue de 
,certains elements numeriques ou geometriques - ce qui revient au meme. - lies 
les uns aux autres et ainsi furent jetees les bases de l'edifice que devaient achever 
Newton et Leibniz. 

Mais ce stade devait etre bientot depasse. II ne consituait que le debut d'une 
evolution qui n'a cesse par la suite de se poursuivre dans le meme sens et eUe se 
continue encore a I'heure actuel1e. Lorsque les notions nouvelles deduites de celIes 
de fonction furent appliquees it la physique et eurent montre la Iegitimite de ce 
nouveau point de vue, que le caIcul infinitesimal permettait pour la premiere fois 
d'aborder: il n'etait plus possible it la science de le laisser de cote. Des que 1'0n 
commenya it s'attaquer au mouvement, it capter I'invisible c'est-a-dire le change­
ment - ce qui n'avait pas ete possible avant qu'on disposat des instruments mathe­
matiques adequats - et it mettre ses lois it. la base de la physique, il apparut que 
dans I'etude de la nature on ne pouvait continuer a considerer comme seule indi­
vidualite, comme seul objet de recherches, le nombre determine ou ses equivalents 
geometriques (point, droite, cerc1e etc.) L'etre mathematique, en un mot, ne fut 
plus le nombre: ce fut la loi de variation, la fonction, qui devint le centre autour 
duquel s'organise la science. La mathematique n'etait pas seulement enrichie de 
nouveIles methodes, eIIe etait transformee dans son objet et dans ses fondements. 

La transformation ne fut pas totale du premier coup. L'Analyse ne fit pas 
d'un seul coup le saut qu'elle al1ait etre obligee de faire et garda un pied sur la rive 
qu'eIle devait quitter. C'est seulement au XIXe siec1e avec Fourier, Dirichlet, 
Cauchy, Riemann, que la notion de fonction prit son sens moderne et toute sa 
portee: une fonction y=f(x) ne s'obtient plus necessairement par un certain 
nombre d'operations prises dans une liste determinee quel1e qu'el1e soit. C'est 
une correspondance que1conque etabIie entre chaque valeur attribuee it. x et 
une valeur y, supposee seulement determinee des que la premiere est donnee, 
mais sans qu'on s'astreigne a employer pour cela teIs ou tels modes de determi­
nation plutot que d'autres. 

La nouveJJe tendance dialectique de la science et I'unite des mathematiques. 

eette fois la novelle tendance de la science ne pouvait pas manquer de prendre 
·conscience d'el1e-meme. Definir une fonction arbitraire, c'est definir sa valeur 
pour chaque valeur de x; si cette fonction est supposee representes par une ligne, 
-cette Iigne est, eIle aussi, quelconque, et n'est determinee que lorsqu'on connait 
chaque point. La connaissance de la fonction ou de la courbe equivaut donc non 
plus a ceIle de certains nombres mais it. cel1e d'une infinite de nombres. Et c'est 
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encore sous cette forme que re posaient les nouveaux probH:mes, ou aucune image 
simple ne s'offrait plus a l'esprit. L'intuition geometrique ne pouvait plus rien 
nous apprendre. Pour remedier a cette ignorance, la raison ne pouvait le faire 
qU'analytiquement: il fallait creer et developper la Theorie des ensembles. Bien sur 
il faudrait, dans le meme ordre d'icees, paller du calcul des variaticns, des equa­
tions differentielles et integrales, du calcul foncticnnel, de la theOl ie du potentiel 
et de bien d'autres choses pour montrer pourquoi le concept de fonction marque 
bien le debut d'une ere nouvelle et qu'il en est le noeud essentiel. Si je me suis 
attarde quelque peu sur cette notion fondamentale qui a ouvert des partes nouvelles 
a la pensee, c'est parce que dans l'enseignement, en France du moins, elle a ete 
quelque peu obscurcie par un engoument exagere et naif en faveur du concept 
d'ensemble ou de relation. Bien sur on a dit et repete: "la mathematique moderne 
est la science des relations" en oubliant de preciser que la relation fondamentale 
de base de l'edifice, reste la fonction. Russell l'a bien vu, qui lui fait jouer le role 
essentiel dans The Principles of Mathematics, ou un chapitre est cons acre aussi a 
la notion de variable, une des notions essentielles de la nouvelle mathematique. 
Mais comme l'ecrivit Hermann Weyl en 1949: "Nul ne peut dire ce qu'est une 
variable"*. Elle n'atteint quelque precision qu'avec le developpement de la theorie 
des ensembles et des mathematiqnes. Birkoff et Mac Lane prcc1ament, eux, le mot 
d'ordre: "tout est fonction" dans leur traite d'algebre. Il s'agit alors du concept 
pris dans toute son ampleur qui est omnipresent en science et non sous sa ferme la 
plus pauvre, comme dans trop de manuels d'enseignement. 

Non seulement le concept de fonction fut a l'origine des travaux de Cantor 
et i1 devient le veritable objet du caIcul fonctionnel exact{ment au meme titre qu'un 
point ou un nombre, mais il peut etre pris comme notion fondamentale et primitive 
pour exprimer les proprietes de certains ensembles sans faire appel aux elements. 
C'est lui qui sous des noms divers: application, homcmorphisme, hcmeomorphisme 
morphisme, isomorphisme, transformation, correspcndance interplet&tion, repre­
sentation, operateur, foncteur etc. est si souvent utiliu!. Ces divers synonymes sug­
gerent une activite feconde tissant l'unite profcnde des mathematiques, parce 
qU'elle a pour but de revel er des rapports qui illuminent les donnees. Elle est devenue 
la c1e de voute de l'evidence et avait deja retenu l'attenticn au XIXe siec1e de mathe­
maticiens comme Lejeune-Dirichlet et Dedekind. Le premier ecrivait: "Il arrive 
tres souvent en mathematiques ou dans les al.ltres sciences que si un systeme d'objets 
ou d'elements (0 est donne, chanque element (0 determine soit remplace d'apres 
une certaine loi par un element determine (0' correspondant a (0". On a l'habitude 
d'appeler substitution un tel acte et on dit que (0' est le transforme de (0 par cette 
substitution et n, lequel est constitue par les (0' le transforme de n. Il est encore 
plus commode de dire, comme nous le ferons, que cette substitution est une ap­
plication de n, que (0' est I'image de (0 et n' l'image de n'. Dedekind ajoute en 
note: "C'est dans cette capacite de I'esprit de comparer un object (0 avec un objet 
(0', ou de mettre (0 et (0' en relation, ou de faire correspendre a (0 un (0', capacite 
sans laquelle il n'y aurait tout simplement pas de pensee, que repme aussi, ccmme 
je le montrerai ailleurs, toute l'arithmetique." L'idee de la definition de l'appli­
cation dans 'Zahlen' remonte en effet a Dirichlet: "Par une application f d'un 
ensemble S j'entends une loi qui attache a chaque element determine s de S un 
objet determine qui s'appellera l'image de s"** 

'" Philosophy of Mathematics and Natural Science 
"'* Zahlentheorie hrsg. von R. Dedekind, 1879 - 163 pp 469-70 cite par J. Largeault: 

Logique et philosophie de Frege p. 418. 



Le nouvel esprit mathematique 79 

Clifford a son tour attira l'attention sur le role crucial du concept de fonction: 
"La mise sur pied d'une correspondance entre deux emembles et la recherche des 
proprietes qui se conservent au cours de cette corre~pcndance, peut etre consideree 
comme l'idee centrale des mathematiques modernes: on la retrouve a travers 
toute la science pure et ses applications."* 

ID. La fin du dogmatisme et les limites de Descartes 

Apres avoir souligne les grands merites de l'epistemologie cartesienne, i1 
est necessaire d'en tracer les limites preciEes et de Eculigrier ce qu'el1e peut contenir 
de perime en 1977. A ce sujet je peux suivre pre~qve a la lettre le dernier chapitre 
du NOllvel Esprit scientijiqlle de Gaston Bachelard. 

Tout d'abord le dogmatisme de la methode, qui fut notons-le quelquefois 
le fait des cartesiens plutot que de Descartes lui-meme, devient un frein pour la 
connaissance. Les complications inutiIes qui se rencontrent dans beaucoup de 
resultats cIassiques sont justement dues a l'emploi de methcdes qui n'ont rien a 
voir avec le resuItat escompte, de methodes n'admettant pas, en general, le meme 
groupe de transformations que le resultat. L'importance accordee a l'intuition, . 
au simple: a l'evidence et aux idees innees ne convient plus du tout a la science 
moderne Oll meme des notions comme celles d'espace et de temps sont bouleverseEe, 
pas plus que le hautain mepris pour la logique formalle. Leibniz serait un meilleur 
guide, comme l'a note Bourbaki. 

L'intuition cartesienne, certes, est l'intuition intel1ectuelle, l'aperception du 
rapport logique de principe a consequence, tandis que Kant n'admettra plus 
d'autre intuition que l'intuition sensible et repous~era avec force l'intuition intel1ec­
tuelle qui est pour lui le vice fondamental de toutes les metaphysiques anterieures, 
y compris la metaphysique cartesienne. Sortir du sommeil dogmatique etait certai­
nement indispensable, comme l'a ecrit Kant, mais il ne fallait pas oublier que sans 
stabiIite il n'y a plus de science: "Donne-moi un endroit ou Ee tenir felme et j'eb­
ranlerai le monde" notait deja Aristote. La pemee scientifique determine dans l'uni­
vers changeant les points fixes, les poles inamovibles et s'en sert comme de reperes. 
Vne des premieres demarches de I'esprit humain fut de decouvrir sous le devenir, 
ou au-dessus, des permanences. De la sont nes Ies probIemes de la substance, de 
l'essence, de la forme, de l'etre, de l'existence, de la verite, sur lesqueIs mediterent 
les metaphysiciens mais qui furent aussi au centre de l'activite mathematique, acti­
vite d'Oll surgirent de nouvelles manieres de penEer et l'esprit acquit des capacites 
insoup~onnees. En grec le terme meme d'''episteme'' est etymoIogiquement 
derive d'une racine signifiant "fermete" et "stabilite". Ainsi le changement a-t-iJ 
ete d'abord considere comme une degradation et non pas comme un progres. 
La methode scientifique conduit a un equilibre stable, a la stabilisation et a la 
consolidation du monde des perceptions et des pensees, sans JesqueIs le changement 
ne peut etre maitrise. Le cas des mathematiques est exemplaire: la geometrie est 
I'etude des proprietes invariantes dans un deplacement ou queIquefois dans une 
similitude. Depuis Klein et Sophus Lie une geometrie est dewrmais l'etude des 
proprietes invariantes d'un groupe de transfOlmations, la topologie est une geo­
metrie dont le groupe est celui des homeomorphiEmes etc. Klein a, en effet, montre 
avec beaucoup de force que le plus important pour une geometrie n'est pas la nature 

* Cite par Jean-Claude Pont dans la Topologie algehrique p. 121 (Mathematical papers 
pp 334-5). 
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des points qu'elle etudie, mais la structure du groupes de transformaticns qui y 
definit l'egalite des deux figures. Il faudrait citer aussi la theorie des invariants 
algebriques dont l'interet retient encore I'attention des mathematiciens, la theorie 
de la relativite en physique theorique oil l'essentiel ce sont les absolus, les invariants. 

Tout changement d'ailleurs n'est pas forcement un progres, mais l'esprit a 
besoin d'une certaine tension pour progresser. Vne feconde bipolarite lui est 
indispensable. Et c'est un mathematicien qui le note, Jean Dieudonne, dans son 
avantpropos a l'oeuvre d'Albert Lautman (p.17): Tant il est vrai que le grand 
laboratoire des idees, c'est desormais au sein de la science qu'il se trouve. On peut 
dire que les vrais savants sont a la pointe de la culture et de l'innovation. Malheu­
reusement la philosophie contemporaine non seulement n'est plus l'antichambre 
de la science, mais elle ignore la science contemporaine dont elle se fait une concep­
tion dogmatique, et Bachelard est une exception. Pourtaint les Grecs avaient deja 
tres bien saisi la necessite de cette tension de l'esprit. Lorsqu'un probleme etait 
resolu Platon "tenait la blessure ouverte" et se refusait a "cacher derriere un mot 
la difficulte du concept". Aristote affirmait que la science commence avec l'eton­
nement. Mais la mode en 1977, oil tout un chacun se reclame pourtant de la science, 
n'est plus a l'etonnement. Tout est presente comme allant de soi, naturel, facile, 
a l'aide d'une philosophie paresseuse qui est la negation de la veritable culture. 
Celle-ci ne peut ignorer l'extraordinaire essor des mathematiques, oil nous voyons 
a l' oeuvre l'effort de la raison et le triomphe de l'intelligence. I! n'est plus possible 
d'immobiliser la perspective de la clarte intellectuelle, d'imaginer que le plan des 
pensees les plus claires se presente toujours le premier, que ce plan do it rester le 
plan de reference et que toutes les autres recherches s'ordonnent a partir du plan 
de la clarte primitive. Le simple est une conquete et non plus une donnee ou un 
point de depart. 

L'ideal de complexite. 

Le temps cartesien des natures simples et absolues est revolu. On pourrait 
dire que c'est un ideal de complexite qui anime la science contemporaine, ou plutot 
i1 s'est etabli un veritable chasse-croise du simple au complexe et inversement. 
HI! n'y a pas de route royale pour la science" disait le mathematicien grec Menechme, 
l'un des precepteurs d'Alexandre le Grand, qui rempla~a l'incomparable Eudoxe 
precurseur des mathematiques modernes. Les mathematiques sont abstruses et 
difficiles et toute assertion qu'elles sont simples n'est vraie que pour les inities ou 
les pseudo-pedagogues a la suite de Piaget. Mais on paye cher cette facilite, cette 
confiance dans l'acquis et le spontane, ce repos dans les idees re~ues. 

Tout le probleme de l'intuition se trouve bouleverse. Des concepts aussi 
primitifs que "point", "droite", "plan", "espace", "nombre", etc ont ete enrichis 
a tel point qu'ils presentent maintenant de multiples facettes. Us se sont complexi­
fies en s'enrichissant. Vne telle variete d'aspects exige qu'on en finisse avec la stupide 
raideur dont font preuve trop d'enseignants ou de formateurs d'enseignants, qui 
soutiennent encore qu'un concept doit etre note d'une seule et unique fa~on partout 
et toujours sous peine d'ambiguite Ils ne voient pas que c'est precisement le choix 
du bon formalisme, du langage adequat au but poursuivi, a la solution d'un 
probleme out tout simplement a l'enonce precis et rigoureux de ce probleme qui 
est devenu la caracteristique de la pensee mathematique contemporaine, de son 
intelligence et de sa souplesse. On saisit mieux pourquoi les mathematiciens accor-
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dent tant d'importance non seulement au result at mais aussi au style et a. I'eJe­
gance, pourquoi la "beaute", c'est-a.-dire l'exacte concordance entre les mcyens 
mis en oeuvre et les fins it atteindre, occupe une teIIe place dans les motivaticns 
profondes des mathematiciens. Si les rapports entre la pensee et le langage mathe­
matique etaient aussi rigides que les ignorants le pretendent, tout le monde ferait 
et ecrirait des mathematiques de la meme fa~on uniforme. Ce n'est heureusen:ent 
pas le cas! 

La conscience claire du sens axiomatique des principes mathematiques doit 
etre acquise pour bien dessiner le simple apres une etude approfondie du complexe. 
La liste des axiomes dans la geometrie plane axiomatique de Hilbert n'est pas 
seulement plus complete que ceIle d'Euclide: ils correspondent desormais it un 
point de vue diametralement oppose au point de vue constructif. En eifet, aulieu 
de d6finir les points, droites etc. it partir d'autres notions pour en d6duire emuite 
leurs proprietes, elle laisse la nature de ces objets completement indeterminees se 
contentant d'enoncer leurs proprietes fondamentales, qualifiees 'axiomes'. Et 
l'exemple de l'axiomatique de Hilbert ne devait pas reste iso16. En particulier 
l'AIgebre aIIait de cette fa~on se constituer d'une maniere autonome. Le style des 
ecrits mathematiques en fut profondement modifie comme l'a note Claude Che­
valley dans un article de la Revue de M ha physique et de M orale en 1935: "Ce 
souci d'exacte ad6quation des methodes remet en honneur, tout en Iui donnant 
un sens precis, la recherche de I'elegance des demonstrations, queIque peu negligee 
par les geometres de l'ecole precedente" (p.382). 

Pour etre utile l'intuition doit etre savante et rationnelIe, sinon elle est 'un 
obstacle epistemologique', comme aimait it dire Bachelard, et non plus une aide. 
En particulier la suprematie de la geometrie eucIidienne ne saurait etre plus legitime 
que la suprematie du groupe des deplacements. En fait ce groupe est relativement 
pauvre; i1 a cede la place a des groupes plus riches, plus aptes a decrire ration­
neIlement I'experience fine. On comprend aIors l'abandon total de I'opinon de 
Poincare relative it la commodite supreme de la geometrie euclidienne. Cette 
opinion est plus qu'une erreur partielle et l'on trouve it m6diter plus qu'un conseil 
de prudence dans les previsions eu Gestin de la raison humaine. En la rectifiant 
on aboutit a. une veritable revolution dans le domaine rationnel et I'on apprecie 
mieux le role createur de I'esprit mathematique. L'idee est communement admise 
en g6netique aujourd'hui que I'evolution biologique dans l'espece humaine s'est 
considerablement ralentie et a et6 relayee par une evolution culturelle*. Dans la 
formation de l'intelligence, les mathematiques ont certainement occupe une place 
centrale pour en former la charpente. Valery dit quelque part dans Eupalinos: 
"Les nombres ont ete les premiers mots." 

Mathematiques et phiIosophie 

Mais les philosophes en 1977 s'occupent de tout: politique, linguistique, 
histoire, sociologie, economie, psychologie, psychanaIyse, archeologie du fexe, 
arts, statut de la philosphie etc, mais ils ignorent souvent les mathematiques, riches 
pourtant d'idees philosophiques. I1 est vrai que les mathematiciens le leur rendent 
bien en meprisant la philosophie comme une vaine speculation sans interet, qui 
a perdu sa source principale et le terrain privilegie oil nais~ent les problemes es-

* Voir a ce sujet Atlan N (1975) Variabilite des cultures et riabiliti genitique. Ann. genet. 18, 
n. 3 149-152. 
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sentiels de la connaissance. Car la math6matique et la philosophie sont nees ensemble 
en Grece: Thales est considere comme le createur des math6matiques, du moins 
au sens oil nous l'entendons c'est-a.-dire dans leur rigueur demonstrative, et les 
historiens de la philosophie voient en lui l'initiateur de la speculation rationnelle. 

C'est Kant qui a etabli entre la metaphysique et la mathematique une op­
position tranch6e et on peut dater de cette epoque la scission entre la science et la 
philosophie. 11 a insiste sur leur heterogeneite absolue, sans doute preccupe d'e­
tablir la valeur objective de la science et de ruiner au contraire celle de la meta­
physique comme connaissance speCUlative et transcendante. Mais c'est aussi au 
point de vue historique parce qu'il veut reagir c~ntre la philosophie de Leibniz et 
et de Wolff. 11 affirme que les jugements mathematiques sont synthetiques a. priori 
et surtout qu'ils sont necessairement et exclusivement fondes sur l'intuition, alors 
que Leibniz les considerait comme analytiques et reposant sur le principe 
d'identite. La math6matique et la logique modernes donneres raison a. Leibniz 
contre Kant, comme l'a si bien note Bourbaki. Kant croyait que la logique n'avait 
pas fait un pas depuis Aristote et n'en ferait plus aucun; la logique moderne a 
donne a. cette assertion le plus eclatant dementi. D'autre part il concevait la mathe­
matique comme la science du nombre et de la grandeur et croyait que la methode 
mathematique n'est applicable qu'a. ces objets speciaux. Or la math6matique moderne 
a rompu le cadre oil la tradition l'enfermait et veri fie cette parole de Boole: "11 
n'est pas de l'essence des math6matiques de s'occuper exclusivement des idees de 
nombre et de grandeur."* Boole en inventant le calcul logique et Grassmann en 
inventant le calcul geometrique n'ont fait que ressusciter des idees de Leibniz et 
realiser au XIXe siecle la Caracteristique universelle. 

Leibniz plus moderoe que Kant 

En ce sens on peut dire que Leibniz est plus moderne que Kant. La fusion 
de la logique et de la math6matique, que Leibniz avait entrevue est aujourd'hui 
realisee, mais le developpement de la science a montle l'erreur de Kant d'avoir 
considere l'espace et le temps comme des absolus eternels de notre sensibilite. 
Son dogmatisme sur ces problemes influen~ bien des savants et des philosophes, 
comme par exemple Renri Poincare, qu'it empecha de decouvrir la Relativite, 
alors qu'il disposait de tout I'outilage technique necessaire a. la constitution de la 
th6orie. Or a. cette epoque, c'est-a.-dire dans les premieres annees du siecle, c'est le 
moment oil, en Fran~, sous la conduite du meme Renri Poincare, de Borel, de 
Baire et Lebesgue, les notions nouvelles de Cantor sont introduites dans la theorie 
des fonctions de variable reelle. Elles en bouleversent les principes et les conceptions 
classiques. La logique traditionnelle montre immediatement sont insuffisance, car 
des paradoxes sont inventes, dont la refutation est malaisee et reste douteuse, des 
raisonnements dont les faiblesses ne peuvent etre demontrees menent a des conclu­
sions incertaines ou difficiles a admettre. Cette crise atteint sa plus grande acuite 
exactement en 1904 l'annee du centenaire de la mort de Kant, lorsque Zermelo 
publie son fameux th6oreme. 

Une revision de concepts les plus fondamentaux de l' Analyse parait alors 
necessaire. Qu'est-ce que definir en math6matiques? Une existence ne peut-elle 
pas etre purement nominale et nu1lement reelle? Un ensemble peut-il etre considere 
comme defini sans que chaque element le soit aussi? Qu'est-ce qu'un concept 

• Laws of Thought p. 12 
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mathematique veritablement pense? Hadamard et Denjoy se refuserent alors it 
borner la verite mathematique aux lisieres de ce que les hommes sont cap abIes 
d'exprimer immediatement par leurs conventions de langage. Denoncer alors 
certaines conception de Kant comme le fit, seul, le phiIosophe Louis Couturat, exi­
geait un courage certain. Car les idees de Kant regnaient sans partage dam les 
milieux mathematiques et phiIosophiques. Deux grands mathematiciens comme 
Poincare et HiIbert s'en reclamaient ouvertement. Or ces idees kantiennes etaient 
devenues une entrave it l'essor de l'esprirt scientifique, dont Kant avait pourtant 
vu toute la puissance. Mais apres avoir fait sa revolution copemicienne il ne sut pas 
en tirer toutes les consequences et fut trop preoccupe de mettre des bomes it la 
raison. Ce sont les savants qui ont fait ce travail, tout particulierement en mat he­
matiques. Ils n'ont pu le faire qu'en se liberant des oeilleres d'une culture depassee. 

IV. Nature des mathematiques 

Arrive a ce point, je voudrais examiner la question de la nature des mathe­
matiques, qui est sous-jacente a mon propos et it toute presentation des mathe­
matiques, donc de leur enseignement. TraditionneIIement deux theses se sont 
affrontees dans l'histoire. La premiere consiste it supposer l'existence d'un monde 
ideal et complet d'objets mathematiques que les mathematiciens doivent decouvrir. 
Cette premiere conception est appelee platonicienne par reference aux monde des 
Idees de Platon, encore que ce dernier, malgre le role essentiel qu'il accordait aux 
mathematiques, les considerat comme intermediaires entre les Idees et la realite. 
Cette conception fut et est encore ceIIe de nombreux mathematiciens ou phiIosophes 
rationnalistes. Frege et Hermite s'en reclamerent ouvertement. L'imagination n'a 
alors aucun role, le savant decouvre ce qui existe deja en dehors de lui "tout comme 
le geographe" aimait it dire Frege, lequel refusa violemment le nouveau point de 
vue de Hilbert sur la geometrie dans la mesure oil il lui semblait compromettre 
l'objectivite de la science. 

La deuxieme these consiste it. considerer que les notions mathematiques 
s'obtiennent par abstraction a partir des objets sensibles du monde reel. Cette 
deuxieme conception fut avancee par Aristote, "le chef des empiristes" disait Kant, 
et eIle fut effectivement la leur au cours de l'histoire tout comme it. notre epoque. 
Le critere de la verite mathematique reside alors essentieIlement dans les applica­
tions pratiques, la rigueur semble negligeable et meme, un raffinement inutiIe. 
L'observation et l'experimentation sont les sources fondamentales des innovations. 
Alors le bricolage, le tatonnement, l'a peu pres jouercnt un role essentiel dans 
l'enseignement. Dans cette conception l'accord avec le monde reel ne pose aucun 
probleme et va de soi, la physique et la technique sont les sources fecondes dont le 
mathematicien ne doit pas s'ecarter sous peine de sterilite. 

Un epistemologue contemporain, lean-Toussaint Desanti a resume le pro­
bleme en ecrivant: "Les mathematiques sont elles du cieI, sont-elles de la terre? 

Une creation humaine 

En fait une troisieme conception existe, bien plus interessante mais souvent 
meconnue: les mathematiques sont une creation humaine. Une teIle solution donne 
it l'imagination une importance fondamentale. Elle fut adoptee dans l'histoire par 
certains mathematiciens et philosophes mais curieusement n'a pas retenu l'at­
tention. EIle rapproche l'activite du mathematicien de celIe du poete, de l'artiste. 
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Eile rend compte des preoccupations d'harmonie et d'esthetique qui animent souvent 
les mathematicien, Certains d'entre eux les considerent meme comme essentielles 
et caracteristiques de leur activite. Les nombres sont pour Dedekind comme pour 
Hankel des creations de l'esprit humain: "Je conseillerais plutot, ecrit-il a Weber 
·de ne pas entendre par nombre la classe meme, mais quelque chOEe de nouveau ... 
que l'esprit engendre. Nous sommes de race divine et possedons ... le pouvoir de 
·creer." A la meme epoque Cantor proclamait: "L'essence des mathematiques, 
,c'est la liberte!" et Weierstrass renchCrisEait: "Le veritable mathCmaticien est un 
poete". Wittgenstein indiqua: "Le mathCmaticien est un inventeur, non un deco­
uvreur."*. Plus pres de nous Albert Lautman, Jean CavailIes et Gaston Bachelard 
·conyurent les mathCmatiques de cette'maniere. Leon Brunschwig insista, lui aussi 
sur la dynamique de l'intelligence mathCmatique. Cette conception des mathC­
matiques les libere de l'escalavage du reel des empiristes dogmatiques et des liens 
au rationnalisme classique. 

Cette revelation de la veritable nature des mathematiques, l'idee d'une nouvelle 
orientation philosphique est contemporaine de la geometrie non euclidienne, qui 
prouva la capacite de l'esprit a creer de toutes pIeces un domaine de pensee dont 
la contradiction avec les "verites intuitives" etait flagrante. La Theorie de la Rela­
tivite exigea aussi une nouvelIe philosophie de l'espace et du temps qui ne pouvait 
plus et re une philosophie du donne, Oll l'intuition est fondamentale. La raison devait 
se mettre a l'ecole des mathCmatiques les plus modernes et les plus eloignees de la 
culture traditionnelle: les tenseurs, les differents sortes d'algebres et de geometries 
devenaient les instruments habituels du physicien. Le formalisme le plus ab strait 
se revelait indispensable pour I'investigation la plus concrete. La metaphore celebre 
de Kant dans sa preface a la Critique de la raison pure sur l'erreur de la colombe 
platonicienne devait etre renversee: le vide du formalisme est indispensable pour 
atteindre les profondeurs de l'objet. L'esprit doit prendre de l'altitude pour mieux 
dominer sa proie. Trop pres du but la vue man que de perspective pour elaborer 
la theorie necessaire. L'immCdiatete de la capture n'est pas le propre de l'homme. 
C'est par la pensee et l'effort qu'il est devenu un geant. 

Le rOle de l'imagination et de la philosophie 

Dans une telle conception des mathCmatiques l'imagination a toute sa place, 
qu'Hilbert a soulignees. A la question "Comment un homme qui etait mathC­
maticien peut-il ecrire des romans?" - "Mais c'est tout simple, repond Hilbert, 
it n'avait pas assez d'imagination pour les mathCmatiques, mais il en avait assez 
pour les romans."* C'est une autre caracteristique du Nouvel Esprit mathematique 
que de donner ce role essentiel en mathematiques a l'imagination, tout a fait 
it l'oppose de la conception dominante du XVIIe siecle. Ce n'est plus "la folle" 
au logis", responsable des divagations de l'esprit, mais ce qui donne sa forme, 
sa couleur et son relief a une pensee nouvelle. 

Pour Descartes l'erreur s'introduit par l'intervention intempestive d'une 
puissance qu'il exorcise: l'imagination. Pascal est encore plus net dans ses 
Pensees**: "C'est cette partie decevante dans l'homme, cette maitresse d'erreur et 
,de faussete et d'autant plus fourbe qu'elle ne l'est pas toujors; car elle serait regIe 
:infaillible de verite si elle l'etait du mensonge. Mais etant le plus souvent fausse, 

* Constance Reid, Hi/bert, Springer Verlag 1970 p. 175. 
** Edition Brunswicg Hachette 1945 pp 362-363-367 et passim. 



Le nouvel esprit matbematique 8S: 

eIle ne donne aucune marque de ~a qualite, marquant du mcme caractere le vrai et 
le faux." - "Je ne parJe pas des fous, je parJe des plus sages et c'est parmi eux que 
I'imagination a le grand don de persuader les Hommes. La raison a beau crier, elle 
ne peut mettra le prix aux choses." 

Au XVIIe siecIe I'invention est avant tout l'oeuvre de la raison. Leibniz 
occupe peut-ctTe une place a part avec le sens tres vif qu'il a eu du changement,. 
de l'activite essentielle a toute realite. Il depasse le mecanisme cartesien et prelude 
a l'energetisme et au transformisme modernes. La Caracteristique et la Logique 
se confondent pour lui avec la combinatoire, l'art de pemer et sur tout l'art d'in­
venter, qui n'est autre que la Mathematique. Car Leibniz a trop conscience de 
l'unite de I'esprit humain et de I'unite de la science pour separer syntheEe et analy~e. 
Ce sont les logiciens empiristes qui opposent les sciences d€dt:ctives et les sciences 
inductives, comme s'il y avait deux methodes distinctes et contraires pour decou­
vrir et demontrer la verite. La mathematique formeIle et abstraite est la veritable 
logique des autres sciences et l'on peut dire sans paradoxe que la seule methode 
experimentale est la deduction. 

L'imagination creatrice est a l'oeuvre en mathematiques et remet en cause 
la doctrine traditionneIIe d'une rai£On absolue et immuable, philosophie dogmatique 
perimee. L'esprit doit fe plier aux conditions du savoir, se mettre a l'ecole des 
mathematiques, cette invention humaine qui avec quelques autres comme le langage~ 
la poesie, la musique etc, ont cree l'homme tel qu'il est et lui ont permis de se 
rendre maitre et possesseur de la nature. Vne teIle conception dynamique et vivante 
pose en termes essentiellement nouveaux le probleme de la verite, de l'objectivite. 
de la subjectivite, de la necessite et de la rigueur, des rapports des math6matiques 
avec le reel. Les solutions du rationalisme dogmatique ou de l'empirisme opportu­
niste, en fait tout aussi dogmatique, sincn plus, ne peuvent plus ctre adoptees. 
Elle souligne avec force l'importance des definitions, car on observe et on decrit 
ce qui existe, mais on doit definir ce que l'esprit cree et qui n'est pas donne. On 
comprend mieux aussi le role fondamental des th60remes d'existence et de la 
coherence en mathematiques. Ce sont le!' notions de base. Avec ces theoremes. 
d'existence les mathematiciens cherchent un critere tres large applicable a une' 
multitude de problemes differetits pour savoir si une solution existe ou non. Vne fois. 
trouve le caractere garantissant I'existence d'une solution, nous pouvons chercher 
a la decouvrir avec I'assurance que cette recherche ne sera pas vaine. L'importance 
de ces theoremes d'existence est garantie par la pratique des math6maticiens. Les 
etudiants et les pedagogues sont souvent sceptiques a leur sujet car il existe une: 
grande difference entre les preuves de l'existence d'une solution et les methodes: 
utilisees pour trouver ces solutions. Vn theoreme d'existence doit s'appliquer dans 
tous les cas: sa determination est souvent difficile et son application effective peur 
etre compliquee et fastidieuse. Vn exmple moderne communique par J. Dieudonne 
suffira a le montrer. La demonstration d'un tel theoreme de la theorie des groupes, 
demontre par l'absurde en 1963 par Waiter Feit et John G. Thompson occupe 258 
grandes pages du Pacific Journal of Mathematics. Son enonce est pourtaint relative­
ment simple et court: tous les groupes finis d'ordre impair sont resolubles. I1 est vrai 
que la plupart des exemples presentes aux etudiants sont simples et I'existence peut 
ctre demontree par des methodes plus simples et en general constructives. Aussi pen­
sent-ils souvent a la metaphysique quand on esquisse devant eux la notion d'exis-­
tence de solutions. Pcurtant c'est une question fondamentale liee a la solution des 
problemes plus traditionnels. Songeons a la fameuse question de la trisection de­
l'angle avec la regIe et le compas, ou a celle de la resolution des equations alge-
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briques. Quand le probU:me de l'existence fut clairement pose, on sut y repondre. 
Dans la recherche moderne les questions d'existence sont posees d'abord et les 
reponses sont absolument vitales afin que les theories reposent sur de saines fonda­
tions. Pour s'on rendre compte il suffit de consulter le Traite d'Analyse de Goursat, 
ou celui, plus recent, de Dieudonne. Il y a la une exigence profonde de l'esprit 
humain qui ne peut etre negligee. L'imagination intervient aussi dans l'elaboration 
de nouveaux formalismes, de nouveaux automatisme. Ceux-ci dechargent l'esprit, 
certes, de certaines operations fastidieuses, mais ne dispensent pas, contrairement 
a ce que certains pretendent, de penser. Bien plutOt, grace a eux, l'esprit acquiert 
de nouvelles capacites, i1 apprend a penser avec des fleches, avec des diagrammes, 
avec de nouveaux languages qui sont autant d'instruments decuplant ses possibilites. 
D'autre part les grands mathematiciens, c'est-a-dire ceux qui trouvent une nouvelle 
fa90n d'envisager une question, une nouvelle methode pour resoudre un probleme 
jusque la insoluble, ne se contentent jamais d'utiliser mecaniquement les pro cedes 
classiques. Ils poussent d'abord aussi loin que possible l'exploration des sources 
des automatismes employes et savent restituer ainsi a la pens6e son autonomie, 
grace a quoi elle pourra prendre un nouvel essor par deli'l. les frontieres Oll elle 
s'etait d'abord crue prisonniere. Souvent la recherche conduit a une nouvelle 
theorie ou a un renouvellement complet de la problematique traditionnelle. Ce 
travail d'investigation, qui est la veritable vie de l'esprit, une preuve de sa liberte, 
ne devrait pas laisser indifferents les philosophes ni les hommes de culture. 11 devrait 
etre, comme par le passe au coeur de leurs preoccupations et permettre de rehabi­
liter des auteurs injustement oublies, qui avaient compris, eux, la richesse spirituelle 
des mathematiques, tels Louis Couturat et Albert Lautman, par exemple, qui 
virent en elle une des plus hautes manifestations de la puissance productrice de 
I'intelligence. 

Malheureusement le dogmatisme, s'il n'est plus soutenable en sciences est 
toujours present dans la philosophie et la pedagogie qui suivent les modes les plus 
contestables, les pretendus novateurs en pedagogie etant souvent les plus fermes 
a l'opinion des autres, qu'ils refusent d'examiner, J'en connais qui vous traitent 
en ennemis si vous ne partagez pas leur foi. C'est pourquoi vous ne trouverez pas 
le Nouvel Esprit Mathematique dans les manuels ou les instructions officielles. 
11 faut, pour le connaitre, vous adresser aux mathematiciens. 11 faut entrer en contact 
avec l'oeuvre d'un maitre. Abel (1802-1829) a qui l'on domandait comment i1 
avait fait pour produire des resultats aussi remarquables en six ou sept ans repondit: 
"En etudiant les maitres et non pas leurs disciples." 

C'est la science en train de se faire qui nous montre le chemin d'une philoso­
phie et d'une culture adequates aux innovations scientifiques, face a toutes les 
demissions de l'esprit. 

Ecole Normale Superieure, 
rue d'U!m. Paris 75000, France 
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HOMOGENEOUS-UNIVERSAL MODELS OF THEORIES WHICH 
HAVE MODEL COMPLETIONS 

Zarko MIJAlLOVIC 

1. Introduction 

In the present work our attention is turned to those lonnson classes of models 
wh;ch are classes of models of theories which have model completions. Main 
reason for that lies in the fact that the class of models of a theory which has 
the model completion is almost a lonnson class, therefore that part of model 
theory which concern model completions may be applied in full power. In such 
sense this paper is closly related to the works of others as of M. Yasuhara [6J, 
Comfort-Negreponties [3] etc. (relatively complete list of references on the sub­
ject can be found in the works just cited). The terminology that is used in this 
paper is mostly according to [2] and [5], however we repeat some of it, since 
it is not uniquely determined in general, and also some assumptions and con­
ventions are introduced. 

A language is denoted by L, the language of a theory T by L (T) and of 
a model III by L(Ill). It is assumed throughout that L (T) is countable and 
that T has infinite models. Universes of models 1ll,}S, (i£, •.• are denoted by A, 
B, C respectively, and the cardinal number of A by lA I. By 9Jl(T) is denoted 
the class of all models of T. As usual 1ll<}S means that III is an elementary 
submodel of }S and III < 1}S states the fact that }S is an existential extension 
of III (i.e. Ills}s and for every existential formula t/J and valuation a in A III I=t/J raJ) 
iff}s I=t/J [a]. Symbol a stands for a sequence ab a2, ... ,an if the subscript n is 
of no importance in the consideration. So if j is a function, then ja stands for 
jal,jaZ,' .. ,jan. The arrow in a diagram Ill--+}s represents an unnamed embed-

ding j: III --+}S and simiIiarly ~, ~ represent an (unnamed) isomorphism and an 
elementary embedding respectively. If an arrow has more then one occurence in 
a diagram, then each occurrence of the arrow may represent a different embedding. 
A name of an element aEA is denoted by a. A model III is an universal model 
of T if it is a model of T and if for every}S 1= T, IB I ~ lA I, }S is embeddable 
into Ill. A model}S of T is a homogeneous model of T if for every III 1= T, 
IAI<IBI, the diagram }s+-Ill--+}s can be 

~. .~ .. Q3 

~~/ 
completed to the shown commutative diagram. 
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A model ~ is an elementary universal model of T if ~ 1= T and for every 
< 

model Q3, Q3=~ and I A 1 ~ 1 B 1 implies Q3 -~. A model ~ is an elementary 
homogeneous model of T if ~ 1= T and for every set X ~ A, 1 XI < 1 A I, and 
any map p: X -+A (~, X)xEX=(~'P X)xEX implies the existence of an automor-

phism f: ~ ~ ~ such that ft X = p. With Tv, TV3 are denoted respectively the 
sets of universal, universal-existential sentences which are consequences of T. 
We state well known basic facts which relate theories Tv, TV3 to the threory T. 

THEOREM 1.1. 1 ° ~ 1= Tv iff there is )S 1= T such that ~ ~ )S. 

2° ~ 1= TV3 iff there is )S 1= T such that ~< 1 Q3. --1 

In connection with this theorem, we remark that in general the follo­
wing holds: ~1=Trrn+l iff there is )Si=T such that ~<n)S' where Trrn is the set 
of all I1~ consequences of T and ~<n)S means that ~ ~ Q3 and for every I1~ 
formula y; and assigmnent a in A ~ 1= y; [a] iff )S 1= Ha]. 

For convenience we repeat the definition of a notion of Jonnson class of 
models (for basic properties of Jonnson classes see for example [1] and [3]). A 
class K of models of a language L is a Jonnson class if K satisfies the follo­
wing conditions: 

1 ° K contains models of arbitrarily large cardinals. 
2° K is closed under isomorphic images. 
3° K has the joint embedding property (lE): For any ~,Q3EK there is 

(fEK such that ~-+(f+--)S. 

4° K has the amalgamation property (AP): For any ~,)S, (£EK diagram 
)S +-- ~ -+ (£ can be amalgamated to the commutative diagram. In the terminology 
of M. Yasuhara [6] every ~ is amalgamative in K. 

5° K is closed under union of chains of models. 

6~ For any ~ E K and X ~ A, 1 XI < k, there is )S ~ A, )S E K, IBI<k 
such that X ~ B (k is an infinite cardinal). 

Under cited conditions, as B. Jonnson has shown (1960), if k = k~ then K 
contains an universal-homogeneous model for K. In this paper it is assumed that 
K is an elementary class i.e. K=5JR(T) for some T. If 5JR(T) is a Jonnson class 
we say simply that T is a Jonnson theory (similar convention is applied to any 
property P which concern the class W('(T) By LST (Lowenheim-Skolem-Tarski) 
theorem, T satisfies 1° and 6° for k~Wl' By Chang-Los-Suzko preservation theo­
rem T has property 5° iff T has universal-existential axiomatization. Hence, the 
really problem that may occur is "Does T have lE and AP?". 

The property lE can be syntatically described. 
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PROPOSITION 1.2. A theory T has JE iff the following holds: If e, 0/ 
are basic formulas (i.e. conjuncticns cf atomic and negaticns of atomic formulas) 
then the comi~ tency of theodes T + ~ x e, T + ~ ji ~ implies the consistency of 
of T + 3 x e + ~ ji ~ . 

PROOF (=» Let ~,iB 1= T such that ~ 1= ~ x e, iB I=::J ji ~ where e, ~ are 
basic formulas. By JE there is (£ 1= T such that ~ -7- (£ +-- iB, hence (£ 1= T + 
3xe+~ji~. 

( ~) Let ~,iB 1= T and assume that there is no (£ i= T such that ~ -7- (£ +-- Q). 
Then the theory r = T + A (~) + A (iB) (A ~O is the diagram of ~), is inconsistent, 
hence there are .. basic formulas e (x), e (ji) and a .. E A, bE B such that e (a)E 
A (~) and ~ (b) E A (iB) so that T + e (a) + ~ (b) is inconsistent. Hence T I­
e(a) => l ~ (b) so TI- V xV ji l (e (x) !\ o/(ji», {Xl"'" Xn} n {Yl"" ,Ym}= 0. 
Therefore TI-l (~xe(x)!\~jio/(ji» and ~1=::Jxe, iB I=::Jjilj;, but this contra­
dicts our hypothesis. -j 

COROLLARY 1.3. Assume that any two countable models of T can be 
embedded into a model of T. Then T has JE. 

PROOF Let e, ~ be basic formulas and assume that T + 3 x e, T + 3 ji 0/ 
are consistent theories. By LST theorem there are countable mcdels ~, Q) of T 
such that ~ 1= ~ x e, Q)I= 3 ji Ij;. By JE for countable models there is (£ 1= T so 
that ~ ---?(£ +-- Q). Then (£ 1= ::J x e !\ ~ ji Ij; so T + ::J x e + ::J ji Ij; is a consistent theory. -J 

In some cases properties JE and AP are transferred from one theory to 
another. Let us see some examples of such kind. 

PROPOSITION 1.4. lOT has JE iff Tv has JE. 
20 (M. Yasuhara, [6]) T has AP iff TV3 has AP. 

PROOF 10 (=» Assume that T has JE, and let ~,iB i= Tv' Then there 
are ~', iB' 1= T such that ~~~', iB~iB'. T has JE so ~', iB' can be embedded 
into a model (£ I=- T. Since (£ 1= Tv, Tv has JE. (~) Proof is trivial. 

20 Assume that T has AP. Let ~,iB, (£ be models of T V3 and 

(1) iBd~~(£. 

Remark It is sufficient to amalgamate diagrGms of the form (1) since every 
diagram of the sort iB +-- ~ -7- (£ can be completed to the commutative diagram (2). 

We want to transfer the diagram (1) to T i.e. to construct a ccmmutative 
diagram (3). 
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The existence of the model 5ll' is provided by T.Ll, moreover it may be 
taken 5ll<15ll'. Now we prove that any diagram of the form 

(4) ~J5ll<I5ll' 

can be amalgamated. Consider the theory r = T + /),. (~) + /),. (5ll') where ~ = 
(~, b, ahEB. aEA, 5ll' = (5ll, a', a)a'EA'. aEA. r is consistent theory~ Assume it is 
not. In such a case there are basic formulas 6 (z, x), Iji (ji, x) so that 6 (b, a) E 
/),. (~) and Iji (a' a) E /),. (5ll) for some a E A, a' EA', bE Band T + 6 (b, a) + 
Iji (if, a) is inconsistent. Hence T/-- 'v' xyz (6 (z, x) => llji (y, x», so since the formula 
'v' xyz (6 (z, x) => llji (y, x» is universal, ~ 1= 6 (~, {J) => 'v' Y llji (y, ~), and thus 
~ 1= 'v' Y llji (y, a). But 5ll < 15ll' so 5ll' 1= 'v' Y llji (y,~) so 5ll' 1= llji (i!', 4), what 
is contradiction. Hence r has a model ~' = ~, Cb' Ca', Ca)aEA. bEB. a' EA' and (4) 
is amalgamated to the diagram (5) where p (b) = Cb' q (a') = Ca'. 

Q31 

(5) Q37 ~ 
~' 

.;} ~ 
~ 

In similar way a model (£' is obtained with the required property and 
therefore the diagram (3). T has AP so ~'+- 5ll' -+(£' can be amalgamated and 
therefore ~C5ll=:)(£ can too. 

( <=) Trivally holds. -j 

COROLLARY 1.5. If T has lE and AP then TV3 is a J6nnson theory. -j 

If T has AP, it is not necessarily that T has too. For example, this case 
occur whenever T is model complete, but not submodel complete. 

2. Full models 
Now we consider those theories T which have model completion T*. 

Hence, it is assumed (here and throughout) that T has a model completion. For 
convenience we repeat the definition of the notion of model completion (it was 
introduced by A. Robinskon, see [4], [5]). A theory T* is model completion of 
T if the following holds: 
1 ° Every model of T* is a model of T. 
2° Every model of T is a submodel of a model of T*. 
3° Any diagram ~ +- 5ll-+(£, 5ll1= T, ~,(£ 1= T* can be amalgamated to the 
commutative diagram: 

Some of basic properties of this notion are: 
If T has a model completion, then it is unique 
(up to logical equivalence). T* is model complete 
and has universal-existential axiomatization. 

It turns out that T and T* have in com­
mon properties lE and AP. 
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THEOREM 2.1. 1° T has JE if! T* has JE. 

2° T and T* have AP. 
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PROOF 1 ° ( ~) Let ~,Q3I= T* and assume that T has JE. Since T* 1= T 
it follows ~,Q3I= T so there is ~ 1= T such that ~ -+ ~+- Q3. Since T* is model 
completion of T, it can be chosen ~ 1= T*. 

( <=) It follows immediately since every model of T is a submodel of T*. 

2° According to the property 3° of model completion and since every model 
of T* is a model of T, it follows that T* has AP. 

Now, let ~, Q3, ~ be models of T and assume that Q3+-~-+~. This diagram 
can be transferred into a diagram in T* i. e. there is a commutative diagram (1). 
Existence of ~' is provided by property 2° of model completion. Further, there 
is a model Q3" of T* such that Q3-+Q3". According to the property 3° diagram (2) 
can be amalgamated to the commutative diagram (3). In the similar way the model 
<£' is obtained, and so the diagram (1) exists. The diagram Q3' +- ~' -+ <£' can be 
amalgamated. so we have obtained commutative diagrams (4) and (5). -l 

Q3.', .([' 

t ~2[I~ t 
Q3 t ,cr 
~2[~ 

(1) 21', )8', ~' 1= T* 

Q3' 

m"~ ~, 
'<.J ~ 

'" ............. 
............. 

.............................. 1 t 
--------....... -, 2.( 

(3) 

~ 

y~ 
Q3' Cf' 

~2.('/ 
(5) 

~I=T* 

COROLLARY 2.2. T* is the model completion of TV3 • -l 
It should be remarked that T* in general is not a model completion of 

Tv (but it is the model companion of Tv)' 
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COROLLARY 2.3. (Test for a class to be a Jonnso11 class). Assume that a 
theory T has a model completion T*, universal-existential axiomatizaticn and a 
prime medel. Then T is a Jonnson theory. 

PROOF Closure of T under unien of chains of models of T follows from 
universal-existential axiomatizaticn and AP frem the plevious theorem. Since T 
has a plime model sn: (i.e. sn: is embeddable into every model of T), for any )S, (f 1= T 
a diagram )S +- sn: -+ (f exists and by AP it can be amalgamated, so T has lE. -i 

Since T* has universal-existential axiomatization and AP, it may lack 
only lE in order to be a Jonnson theory. Model complete theory T is model com­
pletion of itself, so if T has a prime model, then it is a Jonnson theory. We have 
assumed that T has model completion T*, so AP is· provided for T but lE 
is not in general. However the question of lE can be removed if the following 
relation ~ T is introduced in WC (T). 

DEFINITION 2.4. Models sn:, )S of T are compatible in T, sn: ~ T)S' iff 
there is a model (f of T such that sn: -+ (f+-)S. (Often the subscript T will be 
omitted in ~ T ). 

A model sn: of T is a semiuniversal model of T if for any model )SI= T 
sn: ~)S and IB I::::;; I A I implies )S -+ m, that is, sn: is an universal model in the 
class of all models compatible with m. A model sn: of T is a full model of T' 
if m is semiuniversal and homogenecus model of T. A n:.odel sn: of T is a semi­
prime model of T if it is prime in the class of all models of T compatible with sn:. 

EXAMPLE 2.5. If T is the theory of fields, then the Galois field Zp is 
semi prime model of T. Every algebraically cloEed field F of infinite transcedentaI 
degree over Zp is semi universal and in fact a full mcdel of T. 

In the following proposition the basic preperties of the relation ~ are given. 

PROPOSITION 2.6. 1° m=)S implies m~T)S for any theory T which 
has m, )S as models. 
2° m-+)S implies m~)S. 
3° The relation ~ is an equvalence relation in WC (T). 
4 ° Assume that m,)S, (f 1= T. If m=)S and )S ~ (f then m ~ (f. 
5° Let m,)S be models of T*. Then m=)S is equivalent to m ~ )S. 
6° If T has a prime model, then every semiprime model of T is prime and every 
semi universal model is universal. 

Proofs of these assertions are simple so they are omitted. 

THEOREM 2.7. Let m be a model of T and C(m) the class of all models 
of T compatible with m. Then C(m) is an elementary class of models with JE 
and AP. If T has an universal-existential axiomatization, then Tw. = Th (C (m)) is 
a l6nnson theory. If C* (m) is the class of all models of T* in which models 
of c (m) are embeddable, then T~=Th(C*(m)) is a complete theory and the­
model completion of Tw.. Also, c*(m) is a class of equivalence under ~ TO. 
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PROOF In order to prove that C(~) is an elementary class we use the 
theorem (Frayne, Morel, Scott) which states that a class ef models is elementary 
if it is closed under elementary equivalence and uItraprccucts. So let ~E C~) and 
(£=~. Then [1= T and [~~ so [EC(~. Further, assume that ~iEC(~), 
iEI. Hence there are models Q3; so that ~i--.,.Q3i+-~' Let U be an ultrafilter 
over l. Then ~ and ~'= IT ~;/U are embedded into IT Q3;/U. Since ~' is a 

iEG iEl 

model of T, it follows that ~'~ T~' and therefore C (~) is an elementary class. 
That T2{ satisfies JE and AP it is obvious. So assume that T is closed under 
union of chains of models and let us prove that T 2{ is too. Since 
IDl(T2{) is an elementary class it suffices to prove that T2{ is closed under coun­
table chains of models. Therefore let ~l~~Z~'" where ~nEC(~), nEw, and 
5l{' = U ~n' Then ~' 1= T. Further consider models ~1 = ~1' a1)a' EA" 5l{z = (5l{z, 

n --

aI, a2) a'EA,. a2EA2 , •• • and r = T2{+ ~ (~l) +~(~z) + .. '. The theory r is fini-
telly consistent, hence there is a model ~ 1= f i.e. ~!= T and ~' --.,. Q3. Thus 

~~~ and ~'~Q3, so ~' ~~. Now we prove that T~ is a complete theory and 
model completion of T2{. That C* (~) is an elementary class it can be proved 
as it was done for C ~). Assume that 58, [E C* ~). Then there are Q3', [' E 
e~) so that ~'~ Q3 and [' ~ [. Since Q3' ~ [' it foHows Q3 ~ [ and there­
fore Q3=[ because Q3, [ are models of T*. Hence, T~ is a .,complete theory. 

The last two statements are easy to prove. -j 

Now we proceed to description of saturated models of T*. 

THEOREM 2.8. 1° If [ is an infinite saturated model of T* then [ is 
a full model of T. 

2° If [ is a full model of T of cardinaIity OC~Wl then [ is a saturated 
model of T*. 

PROOF. During this proof we shall use the theorem which states that a 
model [ is saturated iff it is elementary universal and elementary homogeneous. 

10 Assume that [ is a saturated model of T*. 

CLAIM. [ is a semiunil'ersal model of T. For that let ~~ [ and IAI~ 
lel. Further, there is Q31= T* such that ~ --.,.~ and by LST theorem it may 
be assumed that IBI = max (IAI, w). Then Q3 ~ [, so Q3=[ and by universality 
of ~ it foHows Q3--.,.[ and therefore ~--.,.~. 

CLAIM. [ is a homogeneous model of T. Let [L ~ ~ [ and I A I < I Cl. 
Define a partial isomorphism p on [ by pfa=ga, aEA. Since T* is the mo­
del completion of T, it follows ([,ja)aEA=([,pfa)aEA so there is an automor­
phism h: [ ~ [ such that p~h. 

20 Assume that [ is a fuH model of T. 
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CLAIM. ~ is a model of T*. For that let ~ = cf oc. Then there is a sequ­
ence of sets X~, ~<~ so that (1) if ~<~ then X!;~X1;, (2) IX!;I<oc, (3) c= 
U X!;. By transfinite induction we define a sequence of models $ll~, m!;, 
!;<~ 

~<~ so that the following hold: (4) For all ~<~ ~~~1; (5) If ~~ 1 then 
~!;~$ll!; (6) X!;~AI;' (7) IA!;I, IBd<oc and (8) ~!; 1= T*. 

Let $llo be such that 5lla<~, Xo~Ao and IAol~cu, its existence is provided 
by LST theorem. Assume ~~ 1 and ~I; has been defined. By the induc­
tive hypothesis IBd<oc. Therefore, since IXd<oc, IBI;UX!;I<oc. Hence by LST 
theorem there is $ll!;<~ so that B!;UX!;~A!; and IA!;I=IB!;UX;I. Thus IA;I<oc, 
~!;~$ll!;, and X;~A;. 

Models ~; are defined in the following way. 
If ~<oc is a limit ordinal, ~#O, then ~; = U ~l;. The theory T* is 

1;<1; 
closed under union of chains of models, hence ~!; 1= T*. Now assume that 
~=~+ 1. By the induction hypothesis $lll;~~, IAd<oc. Further, there is ~I=T* 
so that $lll; ~ ~ and by LST theorem it may be taken I BI = lAd i.e. IBI < oc. 
T* is amalgamative, therefore the diagram ~d~~~ is completed to the 
amalgam (9) 

(9) 

Hence ~ ~~. Since ~ is a semiuniversal model, there is f: ~ _ ~. Also, 
~ is oc-homogeneous model, so there is an automorphism h of ~ so that the 
diagram (10) commutes. 

h 

(10) UI 

c 

Let ~; = hf~). Then ~d= T*, $llr;~~!; and IB!;I < oc. At the end we set 
~o = ~1· It should be observed that ~ is a limit ordinal, so for all ~ < ~ m!;+l 
is defined, hence $ll1;~~+1 and X!;~Bi;+l. Therefore ~= U ~!;. Since T* is 

I;<~ 
closed under union of chains of models, it follows that ~ 1= T*. 
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CLAIM. ~ is an elementary universal model of T*. For that, let ~ be 
a model of T*, IBI~(X and ~=(£. Then ~~(£ and ~ 1= T so there is f: ~-+~. 
Since T* is model complete, f is elementary in fact. 

CLAIM. (£ is an elementary homogeneous model. In order to prove this 
assertion we need the following ... 

DEFINITION 2.9. A model ~ is a weak homogeneous model if every 

diagram of the sort ~?- ~ ~~, IAI < IDI, can be completed in the commutative 
diagram: 

y 

(The following question can be stated: Does the weak homogeneity 
implies elementary homogeneity?) 

It is obvious that ~ is a weak homogeneous model. That ~ is elementary 
homogeneous follows directly from the previous claim and the foHowing ... 

LEMMA (MorIy-Vaught) If (£ is an elementary universal model then (£ is 
weak homogenous iff it is elementary homogeneous. 

For the proof see [3; 11.14]. -1 
There are several results similar to the previous theorem. We would like to 

mention two theorems of such kind. One is in [3; 11.19] and it is connected 
with the notion of conservative enlargement L of a class of models K. This 
theorem aserts that (X homogenous-universal models of K and L coincide. How­
ever, in this theorem uniformity in assigment of models of class L to models 
of class K is assumed, what is not the case in our theorem. The second one is the 
theorem of H. Simmons (6; 3.4.1) which states that if a given theory has the model 
companion, then all its k-objective (in the sense of M. Yasuhara [6]) models 
are k-saturated. 

3. Full models of a theory with a dense ordering 

In some cases it is possible to say exactly in which cardinals a theory T 
has full models, and according to the theorem 2.8., its mcdel completion has 
saturated models. 

THEOREM 3.1. Let ~ be a saturated model of cardinality (X and assume 
that it (or its definable expansion) contains a nontriviai dense partial ordering, 
i.e. in ~ holds 'v' xy::l z(x<y=>x<z<y). Then an 'YJO( set can be embedded int.o 
~ and therefore (X = (X c; • 
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PROOF Let g be a maximal chain without endpoints and X, Y~g so 
that X<Y(i.e. for all uEX, all vEY, u<v), \XUY\<cx. The set l::(x)={u< 
x \ uEX}U{x<v \ vE Y} is finitely consistent with Th (~XUy), hence 1: (x) is 
realized in ~, i~. there is aEA so that ~ 1= l:: (a). Therefore X <a< Y. Assume 
that a$g. Let bEg. Then there are the following possibilities: 

10 For some uEX b~u, so b~a. 

20 For some vE Y v~b, so a~b. 

30 X<b<Y. 

If 30 does not hold for any bEg, then by 10 and 20 gU {a} is linearly 
ordered, so by maximality of g aEg, but this contradicts to our assumption. 
Hence aEg or there is bEg so that X<b< Y, in any case there is cEg 
so that X<c< Y. Thus, g is an "1)01: set so Igl~cx. But gc;;;,A, hence Igl =cx. Hence 

ex 
g is an "1)01: set of cardinality cx so (Gillman, cf. [3]) cx = cx...... -I 

Assume that T is a Jonnson theory. According to the theory of Jonnson 
classes, if cx>c.u and cx = cx~ then there is a homogeneous-universal model of T of 
cardinality cx. By the previous theorem we have the following ... 

COROLLARY 3.2. Assume that T contains a nontrivial partial dense 
ordering, and let cx be a cardinal, cx>c.u. Then T has a full model and T* has 

ex 
a saturated model of cardinality cx iff cx =cx...... -I 

We list several examples of theories with ordering on which previous theo­
rems can be applied. 

T 

1. Theory of linear ordering. 

2. Theory of linearly ordered Abelian 
groups. 

3. Theory of Boolean algebras. 

4. Theory of distributive lattices with 
endpoints. 

5. Theory of ordered fields. 

T* 

Theory of linear dense ordering 
without endpoints. 

Theory of linearly ordered Abelian 
divisible groups. 

Theory of atomless Boolean alge­
bras 

Theory of distributive, complemen­
tary, dense lattices with endpoints 

Theory of o. dered real closed fields. 

Depending on a theory several names are connected with the theory in two 
sense: lOIn proof that an appropriate theory T* is a model completion of T, 20 

That the class of models of T is a Jonnson class. For informations of that kind 
one may consult [2], [3] and [4]. 
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REPRESENTATION THEOREM FOR MINIMAL a-ALGEBRAS 

Kanji NAMBA 

The purpose of this paper is to state some properties of minimal separating 
a-algebras and of a-compact topological spaces. Original motivation of this work 
is to consider the problem of existence of a minimal separating a-algebra without 
any singleton. This fine problem, comes from a problem of statistics, is proposed 
by H. Morimoto who communicated me the following elementary but funda­
mental example of such a a-algebra which appears in [18]: 

Let X be an uncountable set and x be an element of X, then the a-algebra 
consisting of subsets A of X with the property that "xEA and A is co-coun­
table or xEA and A is countable" is minimal separating and does not con­
tain {x}. 

In statistics, various a-fields are considered as mathematical expressions of 
statistical experiments. In some special cases, one of the properties of the a-fields 
with statistical relevance called "pairwise sufficiency" reduces to their separating 
property. 

Existence of minimal pairwise sufficient a-fields is of interest and the a-field 
given at the outset of this paper is one such example. It naturally leads to the 
question as to whether any more examples exists and, further, how they are charac­
terized, and these are exactly the problem treated here. 

Considering the structure of the above example, it is natural to imagine that 
there are many other types of such a-algebras, and this is realized by considering 
a natural correspondence between the notions of minimality of a-algebras and a-com­
pactness of related topological spaces, and that of a-complete 2-valued measures 
and limit points of a-topological spaces. 

The author wishes to express his thanks to Prof. H. Morimoto for his generous 
support and encouragement. 

• Work supported by Grant in Aid for Scientific Research 1977 section D #264054, section 
A #234002. 
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1. Definitions, notions and elementary properties 

We begin with the notions and definitions of concepts needed for the des­
criptions and discussions below. A cardinal number k is called regular if it is not 
a A sum of smaller cardinals for all A<k. A set B consisting of subsets of X is 
called a k-algebra over X provided that it is closed under complementation and 
A-union for all A<k. Cl)l"algebra is usually called a er-algebra, that is, closed under 
complementation and countable union. k-algebra B is calIed a separating algebra 
if for any distinct elements x, y of X, there is a set A of B such that xEA but 
yEEA, in other words if 

VAEB(xEA=yEA)-x=y. 

k-algebra B is called minimal if it is minimal in the sense of set inclusion. A subset 
{Gi : iEI} of k-algebra B is called a generator of B if it is the smallest 
k-algebra containing the subset. For a k-algebra B the following two properties 
are equivalent: 

(a) B is minimal separating, 

(b) {G,: iEI} is a generator of B if and only if it separates the points of X. 

Let {Gi : iE/} be a generator of separating k-algebra B over X, and put 

GiO=G, and G/1 =X -G,. 

Then there is a natural correspondence j between X and a subset Y of 21 which 
consists of functions with domain I and values in 2={0, I} in such a way that 

By this correspondence j, the set X may be considered as a subset Y of 21 and 
B may be considered as a k-algebra over Y with the generators 

Y1k={pE Y:p(i)=k}, 
because of the property 

G1k=j-l (Yilt) 

and inverse image keeps complementation and union. Of course such B is always 
a separating algebra. 

Let a be a subset of I with the cardinality less than k, that is, #a<k, by 
a neighbourhood of pE Y of 21 we mean the set 

U (p; a) ={qE Y: V iEa (p (i) = q (i»}. 

The k-topology of Y is introduced by the system of neighbourhoods 

Up={U(p; a):aCI,#a<k}. 

Cl) and Cl)l-topology are usually called weak and er-topology, respectively. A k-to­
pological space Y, i.e. the subspace Y of 21 with k-topology, is called A-com­
pact if for any function which associates p with its neighbourhood U(p; ap), there 
is a subset b of Y with #b<A such that 

YC U U(p; op). 
pEb 
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It is well-known that this property is characterized by the following properties: 

(a) Let {OJ :jEJ} be an open covering of Y, then there is a subset b of J with 
#b<A such that 

YC U 0,. 
'Eb 

A dual form of this expression is: 

(b) Let {Cl :jEJ} be a family of closed subsets of Y with less than A intersection 
property, that is 

# b<A-+ n Cj =/= {O, 
jEb 

then their intersection is not empty, namely 

n C,=/= {O. 
jEJ 

Let X and Y be k-topological spaces of 21 and 2J, respectively. Then a 
function f: X-+Y is called uniformely continuous if there is a function 

g: Pk (J) -+Pk (l) 

where PJc(/)={aC/: #a<k} such that for all bEPk(J) and pEX 

U(p; g(b»CU(f(p); b). 

Let A be a subset of k-topologicaI space Y of 21. Then a subset a of with 
#a<k is called a support of A if for every p, qE Y, 

ViEa (p(i) = q(i» -+pEA ==qEA. 

A subset A with support is closed and open, i.e. a elopen set of Y. Let B* 
be the set of all such subsets of Y. Then B* is a k-aIgebra provided that k is a 
regular cardinal. It is also clear that B* is a separating k-algebra including the 
k-algebra generated by its basic open sets. 

Let Y be a k-topological space of 21. Then it is called a k-space if for any 
subset a of 1 with #a<k, there is a subset b of Y with #b<k such that 

Ye u U(p; a). 
pEb 

By this definition, we have that k-compact k-topological space is a k-space. 

2. k-compactness and minimality of k-algebras 

We begin with an easy property of k-spaces. 

LEMMA 1. In k-space Y of 21, the k-algebra B* of sets with support of 
cardinality less than k coincides with the k-aJgebra B generated by the basic open 
sets of Y. 

PROOF. Let A be an element of B*, then there is a subset a of -I with 
#a<k such that 

A= U U(p; a). 
pEA 
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Since Y is a k-space, there is a subset b of Y with #b<k such that 

U U(p; a)= U U(p; a)= U n Yjp(i)' 
pEA pEb pEbiEa 

By the definition of B, it is closed under less than k union and intersection. 
Therefore we have 

This means that B=B* by the inclusion mentioned above. 
Next lemma reveals a property of minimality of k-algebras. 

LEMMA 2. Suppose that the k-algebra B generated by all the basic open 
sets of k-topological space Y of 21 ia a minimal separating k-algebra. Then Y 
is k-compact and hence a k-space. 

PROOF. Suppose Y is not k-compact, then there is a function 

p-?U (p; ap) 

such that for any subset b of Y with #b<k, we have 

Y - U U (p; op) -=/= 0. 
pEb 

Let BI be the set of all A in B with the following property: 

(1) There is a subset b of Y with #b<k such that for any q, rE Y 

q, rEt: U U (p; ap) -?qEA=rEA. 
pEb 

Since k is a regular cardinal, we have that BI is a k-algebra. Now we shall show 
that BI is separating. Suppose p-=/=q, then since B is separating, there is a set 
A of B such that pEA but qEEA, so we have 

pEAnU(p; ap) and qEEAnU(p; 0p)' 

By the definition of Bl> we have An U(p; ap) EBI and so it is separating. By the 
minimality of B, we have B=BI. 

Since the basic open set YjO belongs to B for every i, we have a subset 
bi of Y with #bl<k such that 

q, rEE U U (p; ap) -?(qE Y/osrE Yio)' 
PEb j 

Hence there is a function s: [_2 such that 

We consider a neighbourhood of s in k-topological space 21, 

W(s, a)={pE2': iEa(p(i)=s(i))}. 
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For any subset a of I with #a<k, we put 

b= Ubi' 
lEa 

then we have #b<k and 

0:;l:Y - U U(p; ap) C n Y/ s(/} = YnW(s; a). 
pEb lEa 

Now we shall show that s is an element of Y. 
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So suppose sEE Y and let p* be a fixed element of Y. Let B2 be the set of all 
A in B with the following property: 

(2) There is a subset a of I with #a<k such that any for qE Y 

qEW(s; a)~(qEA p*EA). 
By the relation 

W(s; U a/)= n W(s; al)' 
IEc IEc 

we see that B2 is a k-aIgebra. Now we shall show that B2 is separating. let p, q be 
two elements of Y such that p=/=q. Then we have p=/=p* or q:;l:p*, so we may as­
sume p=/=p*. Since p*, q, s=/=p, there is a subset a of I with #a<k such that 

q, p*ct U (p; a), U (p; a) n W(s; a) = 0. 

This means that for any rE Y, we have 

rEW(s; a)~(rEU(p; a) p*EU(p; a». 

By the definition of B2, we have U(p; a)EB2 and qEEU(p;a). This means that B2 
is separating and so by minimality of B, we have B=B2. By p*:;l:s, there is a subset 
a of I with #a<k such that 

U(p*; a)nW(s; a)= 0. 

Since U(p*; a)EB2, there is a subset a1 of I with #al<k such that 

rEW(s, al)~(rEU(p*; a)==p*EU(p*; a»). 

We consider a point 

q*EY- U U(p; ap)CynW(s; aUal) 
pEc· 

where c* = Ubi' then by q*EW(s; ai...Jal)CW(S; a), we have 
iEaual 

q*EU(P*; a). 
This contradicts with 

U(p*; a)nW(s; a)= 0. 

This contradiction shows that sE Y, that is Y is close. 

Now we consider the neighbourhood U(s; a1). Then by putting 

b*= U bt 
tEas 
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we have :j:j:b*<k and 

Y - U U (p; ap) C U (s; as) = Y () W (s; as). 
pEb* 

This means that 

which contradicts to the choice of U(p, ap). Hence Y is k-compact. 

LEMMA 3. Let X and Y be k-topological spaces of 21 and 2J. If X is 
k-compact and f: X-+Y is continuous, then f is uniformly continuous and the 
image f(X) is k-compact. 

PROOF. Let f: X-+Y be continuous and a be a subset of J with :j:j:a<k. 
By the continuity of f, there is a subset ap of I such that 

f(U(p; ap»CU(f(p); a). 

By the k-compactness of X, we have a subset b(a) of X with :j:j:b(a)<k such 
that 

Now we put 

xc U U(p; ap). 
PEb(a) 

a*= U ap' 
pEb(a) 

For qEX, there is pEb(a) such that qE U(p; ap), so we have 

rEU(q; a*)CU(p; ap)-+f(r)EU(f(p); a). 

This means that 

f(U(q; a*»CU(f(P); a)=U(f(q); a), 

so f is uniformly continuous. 
To each q in f(x), let there correspond bq, any subset of J with :j:j:bq<k, 

and consider the function 

q-+V(q; bq) 

defined on f(X). By the continuity of f, there is a similar 

p -'? U (p; ap) 

on X such that 

Since X is k-compact, we have a subset c of X with :j:j:c <k such that 

XC U U (p; ap). 
pEc 

Hence we have 
f(X) C Uf(U(p; ap»C U V (f(p); bf(p»· 

pEc pEc 

This means that f(X) is k-compact. 
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LEMMA 4. Let X and Y be k-topological spaces of 21 and 2J. If X is k-com­
pact and I: X~Y is a 1-1 onto continuous function, then 1-1 : Y~X is uni­
formly continuous. 

PROOF. Let A be a closed subset of X. Then A is k-compact as a closed 
subset of X, so I(A) is k-compact and so a closed subset of Y. This means that 
the image of a closed set is closed, and since I is I-I onto, the image of open 
set is open. By the relation I(U)=(f-1)-I(U), we have that the inverse image of 
an open set U by 1-1 is open. This means that the function 1-1 is contionuous. 
Since Y -I (X) is k-compact,l-l is uniformly continuous. 

LEMMA 5. Let X be a k-compact subset of 21 with k-topology. Then the 
k-algebra B generated by the basic open sets of X is a minimal k-algebra. 

PROOF. Let {Gj : jEJ} be a separating subset of B. By B* we denote the 
k-algebra generated by {Gj:jEJ). Now we define a function I: X ~2J by the 
relation 

f(P)(j)=k-=:pEGjk 

where Gjo=Gj and Gj1 =X-Gj. Since X is k-compact and so a k-space, we 
have that every element of B has a support. This means that the above function 
I is continuous. Since {Gj :jEJ} is separating, I is I-I. Let Y be I (X), then 

I:X~Y 

is a I-I onto continuous function. Hence its inverse 

1-1: Y~X 

is uniformly continuous. This means that for any i of I, there is a subset bi of 
J with #b'i<k such that 

f- 1 (V (f (P); bi» C U (p; {i}). 

By the compactness of Y, there is a subset c of Y with #c<k such that 

y= U V(q; bi)' 
qEc 

Hence by the relation 

pEf-1 (V (q; {k}»-/(p)(k) = q(k). 
we have 

1-1 (V (f(p); bl» = n f- 1 (V (f(p); {k}» = n Gk/(p)(k)' 
kEbl kEbl 

Hence by the definition of B*, we have 

U(p;{i})= U n Gk/(q)(k)EB*. 
/(q)EC kEbl 

q (i)=p(i) 

Since {U(p; {i} : i E I} is a generator of B, we have B =B*. This means that every 
separating subsets of B is a generator of B, hence B is a minimal separating 
k-algebra. 

Combining these lemmas, we have the following 
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THEOREM. Let X be a subset of 21 with k-topology. Then the k-algebra 
generated by the basic open sets of X is minimal separating if and. only if X is 
k-compact. 

3. Examples and remarks 

Let X be a totally disconnected k-comp1ete topological space, that is, any 
distinct points of X are separated by a elopen set and the intersection of less than 
k open sets is again an open set. Let {Gt : iEl} be a separating elopen basis of X. 
Then X can be considered as a subspace of 21 with k-topology. In the k-topolo-
gical space 21, the element of X, the closure of X, means a k-additive 2-valused 
measure on k-algebra B determined by the basic open sets of X. The cannonica1 
relation of point p of X and measure p.p is 

pEA=p.p(A)= 1. 

Since in the k-topologica1 space X, we have the relation 

( U Av) = u Av 
'lEa 'lEa 

for every a with #a <k, the additivity condition follows.. And if A EB, then 
it has a support a with #a <k and so 

AnX-A= 0. 

Conversely any k-additive 2-valued measure p. : B-+2 determines an element of 
21 by p(i)=l-p.(Gt) which belongs to the closure of X in 21. Hence the elosure 
X is just the set of all k-additive 2-valued measures on B. An element of X is 
called a principal or a point measure and an element of x-X is a non-principal 
measure. The notion of k-additive 2-valued measure and k-complete maximal 
filter or ideal are considered as alternating expressions of the same concept by con­
sidering the element of 2={0,1} as quantity 0,1 or as truth value ° = falsity, 
1 = truth. 

Next, we shall give some examples of k-compact sets by showing the following 
lemma 

LEMMA 6. Let A be a cardinal number. Then the set 

X?-={fE21: #{iEI:f(i) = l}~A} 

is k-compact in the k-topological space 21 if and only if 

PROOF. First, if there is some 'Y) which satisfies 

A~'Y)<k~'1)). 

then X?- is not k-compact. Because we can take a subset a of I with #a ='Y). 

then we have 
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We associate a neighbourhood U(p; a) for every p of X", then no less than k 
union cover X" and so it is not k-compact. The case k~"A is trivial. 

Next, we shall show that V'"A<k(r/,<k) implies the k-compactness of 
X". Let U(p; ap) be a given neighbourhood of p in X". We shall show X" can be 
covered by less than k union of U(p; ap)'s. Let I be a function with the domain 
in I and values in 2, we denote by 1* the function 1* : /-+2 defined by 

1* (i) = {/(i) if iEdom (I) 
o if i El - dom (I) 

By the induction on v, we define a subset ay of I as follows 

ao=a0* 

where {O is the empty function. For a successor ordinal, we put 

where Ila is the restriction of I to a. For a limit ordinal, we put 

ay = U a,. 
"<v 

We shall show that #ay<k for all V<A+, the smallest cardinal greater 
than A. Since the case that v is a limit ordinal is clear by the regularity of k and 
"A +~2).<k, we shall show that #av<k implies #aV+l <k. So we consider the set 

dv = {/I av :/E X~J, 

then by the assumption of #a and by the property of A, we have #dy~ #a/<k, 
so using #aUI Qy).<k for each lEX", we have 

(1) 

(2) 

#aV +1 ~ 2: #af*<k. 
ff;'dv 

Next, we consider two cases 

aV+l-ay= {O for all V<A+. 

The case (1): For every IEXA, we have 

For any lEX)., consider (flay)*EX", then by (1), we have 

IEU «(11 ay)*; aUI Qy).)' 

so we obtain that 

X). C U U (1*; a,.). 
fEdy 

This means that X" can be covered by less than k union of given neighbourhoods. 
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The case (2): We put 

Av = {fEX"}. : a(f I av)" - av=/=<l>}, 
and assume that 

Then we have for all v <)"+, 

Suppose thatf(i)=O for all iEav+1-av, then 

(fl aV+l)* = (fl av)*' 

Hence we have 

This contradiction shows that for all v<)"+, there exists an iEaV+l - av such that 
f(i)=1. This means that 

# {iEI:f(i) = I}>)", 

which contradicts the assumption fEX"}., and so we have 

X"}.=X"}.- n Av= U (X"}.-Av)· 
v<"A+ v<"A+ 

LetfEX"}.-A.,. Then we have that aUlayl*Cav and so 

X"}.-AvC U U(f*; afo). 
fEdv 

Hence we have 

where d* = U dv and the condition #d*<k follows from )"+:::;;2"A<k. There-
v<"A+ 

fore X"}. can be covered by less than k unicn ef given neighbourhocds. Any way, 
the space X"}. is k-compact. 

By the proof of above lemma, we have that if a family D of subsets of I 
satisfies the condition 

(1) 

(2) 

aED, bCa-+bED, 

#a<k-+ #{bED: bCa}<k, 

then the set of all representing functions of the sets in D is k-cempact. For example, 
if D satisfies the conditions and a partial ordering ~ is defined on I, then the 
set D' of elements of D which is well-ordered or linearly ordered by ~, sati~fies 
this condition. Hence if k=(2"')+, then the set of all well-ordered countable sub~ets 
of I is k-compact. But of course this set is not CUI-compact, namely not a-compact, 
if I includes a countable increasing sequence. 

By using Lemma 6 and the property that the continuous image of a k-com­
pact set is k-compact, we have that 

XI,"}. = {qE21 : #{iEI: q (i)=I=f(i)}~)"} 
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is k-compact for any!: 1--+2 and A such that 'VYj <k (",,/·<k). Hence any closed 
subset of less than k union of such X1,A is also k-compact. 

Now, we consider the case k>w, for example k=Wb then for any Yj<k 
and n<w, we have Yjn=Yj<k. By this, the set 

X:={fE21: #{iEI:f(i) = l}<w}, 

being a union of countable k-compact sets, is k-compact. Since each point of 
this set is not an isolated point, the k-algebra determined by this- k-compact set 
is an example of a minimal separating k-algebra without a singleton. Since there 
is no restriction on the cardinality of index set I, each cardinality determines at 
least one non isomorphic minimal separating k-algebra without a singleton. One 
may consider, may be pathological, the k-compact space consisting of all finite 
sets, in which case the minimal separating k-algebra consists of elements which 
are not sets but classes. 

Now we consider, for example, the space wl with k-topology. Since each 
natural number n of cu can be considered as an element of 2e.> by usual binary 
expansion, we may consider 

So we have that the set 

XC: = {!Ecu1 : #{iE/:!(i):;60}<w} 

is le-compact, and the le-algebra generated by its basic open sets 

{lEX: :f(i) = n} 

is minimal separating and have no singleton. 
One intuitive example of minimal separating er-algebra would be as follows: 

Suppose there are at most countably many particles and their states, the family 
X of all positions and states of finite particles in, for example, n-dimensional 
Euclidean space forms a er-compact set, and the er-algebra determined by this 
topological space is minimal separating er-algebra without singleton. 

We consider the property 

(*) 

If A<le and k is regular, then (*) implies 

k A= 2: Yj"<k2 =k<k+ 
71<k 

hence k+ also satisfies the property (*). On the other hand, if cf(k), the cofi­
nality of k, satisfies cf(k)~A, then cf(kA»A, by Konig's theorem, so we have 
k+~kA and so k+ does not satisfy the property (*). The least cardinal greater 
than Yjo satisfying (*) is defined by k=(YjOA)+, because (Yjl)A=Yjo"-<k. 

If for example the continuum hypothesis 2e.> =CUl is true, then 

{fE21: #{iEI:f(i) = l}~cu} 

is k-compact for k=CU2, CU3,'" but not for k=CUb CUe.>+h'" 
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Interesting problem concerning this is the problem of implication 

'Vn<oo(2c,) = OOn+l)-+2c,)c,) =OOc,)+1 

which is proposed by R. M. Solovay, and is called the singular cardinals problem 
And this problem is equivalent to OO",+2-compactness of above set Xc,) under the 
assumption of 

'Vn<oo (2c,)n = OOn+1) 

Another interesting problem is explicit characterization of 001 or a-compact 
sets, for example the existence of a-compact set which is not included in the conti-
nuous image of the set of the form xt. And the characterization of the structure 
of complete Boolean algebra determined by closed subsets of 21 divided by the 
ideal of k-compact sets. 

The case k =00 is well-known case of weak topology, by Tihonov theorem 
the topological space 21 is compact, hence a subset is compact if and only if it 
is closed. This means that the oo-algebra (Boolean algebra of clopen sets) B generated 
by basic open sets of X is minimal separating if and only if X is closed. There is 
natural correspondence between the closure X of X and the set B* of all maximal 
filters (or ideals) of B. 

We have already mentioned that every k-compact k-topological space X 
of 21 is a k-space. Now we consider the problem of converse implication. That 
is, whether every closed k-space in k-topological space in 21 is k-compact or not. 

When I =k, this property is known as tree property. To explain about this, 
we define the notion of binary tree, here we say simply a tree. A subset T of 
P = U 2V is called a k-tree if the following conditions are satisfied: 

v<k 

(a) fET, gEP, gCf-+gET, 

(b) O<#(Tlv)<k where Tlv={fET:dom(f)=v} and v<k. 

A function I: k_2 is called a total branch of T if 

'Vv<k (fl vET). 

We say that a cardinal k have the tree property if every k-tree has a total branch. 

LEMMA 7. k has tree property if and only if every closed k-space in the­
k-topological space 2" is k-compact. 

PROOF. Let T be a k-tree without any total branch. For any lET, we as­
sociate a function 1* : k-3 defined by 

1*(v)={f(V) if vEdom(f) 
2 if v Ek-dom (f). 

Then by the inclusion 3C22, we may consider 1* as an element of 2" by 
3"C(22)"=22xk=2". Now we consider a subset T* of 2" defined by 

T* = {f* E 2k :fE T}. 
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Then T* is a k-space. Since T has no total branch, T* is a closed subset of 2k 
and each point of which is an isolated point. Let U(p ;ap ) be a neighbourhood 
of p in T* with 

Then by #T*=k, we have that T* cannot be covered by less than k union of 
such neighbourhoods. This means that T* is a closed k-space which is not 
k-compact. 

Next, suppose k has the tree property and X be a closed k-space which is not 
k-compact. Let {U(P; vp) :pEX} be a covering of X by which X cannot be 
covered by less than k union of the sets. Let T be the set of functions defined by 

T={fl v :/EX, T cannot be covered by <k of U(p; vp)'s}. Since X is a 
k-space which is not k-compact, T is a k-tree. Hence, by tree property of k~ 
T has a total branch I: k-+2. But since X is closed, we have lEX. This means 
that lE U(f; 'If) and so I1 vfEi:T, which is a contradiction. 

Followings are known examples about this notion: 

(1) cu has tree property. This is known as Konig's infinity lemma or Brower's fan 
theorem and is a special case of Tihonov's compactness theorem. 

(2) CUI does not have tree property. Such an example is known as Aronszajn tree 

(3) (Specker) if a regular cardinal k satisfies 'rIv<k(2v~k), then k+ does not 
have the tree property. 

(4) (J. Silver) if k is a real valued measurable then k has tree property. 
It is known, by R. M. Solovay, that the consistency of existence of 2-valued 

measurable cardinal and that of real-valued measurable cardinal are equivalent 
under ZFC, Zermelo-Fraenkel set theory with axiom of choice. And every real­
-valued measurable cardinal is weakly inaccessible cardinal less than or equal 
to 2"', every 2-valued measurable cardinal is strongly inaccessible, that is, k is 
regular and 'rI v<k (2v<k). 

In the case k is strongly inaccessible, every subset X of k-topological space 
21 is always a k-space, and the property 

'rIv<k(#(T/ v)<k) 

is always satisfied. In this case k is called weakly compact. That, is, a cardinal k 
is weakly compact if 

2k with k-topology is k-compact. 

Followings are known about this notion: 

(1) the fir'>t strongly inaccessible, the first Mahlo cardinal is not weakly compact_ 
More generally the first cardinal satisfying 'ltll property is not weakly compact. 

(2) every measurable cardinal is weakly compact and it is a limit of weakly com­
pact cardinals. 

J. Silver proved that the consistency of existence of weakly compact cardinal 
implies the consistency of 

"CU2 as tree property" 

with the exioms of set theory ZFC. 
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More general case is considered and it is called strongly compact, or simply 
compact, cardinal if for any set 1 

21 with k-topology is k-compact. 

This notion is also described by using tree like structures. A subset T of 

P={f/ a:aC1, :J:I:a<k} 

is called a k-function tree if the following conditions are satisfied: 

(a) 

(b) 

fET, gEP, gCf-+gET, 

O<:J:I:{fET:dom(f)=a}<kfor'o/<k and :J:I:a<k. 

A function f: 1-+2 is called a total function of T if 

VaC1(:J:I:a<k-+flaE1). 

We say that a cardinal k has the k-function tree property if every k-function 
tree has a total function. For strongly inaccessible cardinals, strong compactness 
is equivalent to function tree property. For example, we know the followings; 

(1) every strongly compact cardinal is measurable. 

(2) (V openka-Hrbacek) if strongly compact cardinal exists then V =l=L(a) for 
every set a. 

(3) (R. Solovay) 2"=)..+ for every singular strong limit cardinal greater than a 
compact cardinal. 

(4) if there exists a strongly compact cardinal, then the first strongly compact car­
dinal can be the first measurable cardinal. 
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PRESENTATION OF NATURAL DEDUCTION 

R. P. NEDERPELT* 

Introduction 

The merits of a system of natural deduction are not only determined by its 
value as a logical system in itself. Since it formalizes deductions in a manner close 
to intuitive reasoning, natural deduction can also be used as a (logical) framework 
for mathematical argumentation. One may say that many mathematical texts 
are tacitly based on a form of natural deduction, as regards the logical part of the 
deductive patterns. 

laskowski and Gentzen constructed the first systems of natural deduction 
in the early thirties (see Prawitz [7, appendix CD. Many suggestions have been 
made since with a view to formalizing the natural deduction structure pre£ent in 
usual mathematical reasonings. 

Text-books concerned with logic on this basis are, for instance, Quine [9J, 
Suppes [IOJ and Kalish-Montague [5J. The incorporation of a natural deduction 
system in the common mathematical practice can be very useful, in particular for 
didactical purposes. 

In section I of this paper we shaIl propose another system of natural deduc­
tion, resembling that of Kalish and Montague, which can be used for the logical 
part of mathematics. The system to be described is quite satisfactory in practice, 
as became apparent when applying it to undergraduate mathematics tuition. 

A natural way of reasoning in mathematics has, however, more aspects than 
the logical ones. These other, non-logical aspects were isolated by N.G. de Bruijn. 
His investigations led to a system called "the mathematical language Automath" 
(see [1]), which may serve as a formal notational system for rendering mathematics 
in a natural manner. The system is founded en typed lambda-calculus, not on 
axiomatic set theory. 

* The author is employed in the Mathematics department of the Eindhoven University of 
Technology in the Netherlands. -

Thanks are due to N.G. de Bruijn, D.T. van Daalen and R.c. de Vrijer for helpful com­
ments, and to A.V. Zimmermann for remarks concerning the English language. 
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In section 11 of this paper we shall describe, in coherence with section I, 
the major principles of such a "system of natural reasoning". The description will 
be rather informal and incomplete. 

It will also be shown how the rules of natural deduction can be expressed 
within the system, so that an important part of natural reasoning finds a formalized 
counterpart. In systems like this, a large part of everyday mathematics can actually 
be expressed, as is shown in e.g. Jutting [4] and Zucker [11]. 

The structure underlying a system like de Bruijn's can be made clearer by 
uniformations, leading to a system which is a typed lambda-calculus, the types 
themselves having a lambda structure. This uniform system will be described in 
section III of this paper. It does not have the natural aspects of the other systems. 
It has, however, a relatively simple and transparent structure and is therefore very 
useful for theoretical investigations into "systems of natural reasoning", e.g. with 
respect to (strong) normalizability. We shall give a precise description of this 
system and summarize some of its properties. 

I. A practical system of natural deduction 

With the aim of obtaining a practical system for natural deduction, directly 
applicable in everyday mathematics, we reformulate the introduction and elimi­
nation rules for 1\, V, =>, -', \I and :3 (see e.g. Prawitz [7] or [8]), with modifi-
cations to be described below. . 

Basic units in the system!> we shall call sentences, written in a sequential (not 
a tree-like) order, one sentence below the other. A sentence can express something 
like an axiom, a theorem, a definition, an assumption or a derived statement. If 
desired, one may add comments, e.g. containing justification for a derived sta­
tement. Such justifications may be based on logical rules (like the introduction and 
elimination rules), on premisses, valid assumptions and previous results, but also 
on mathematical arguments; this part of the reasoning is not formalized in the 
present system. 

As primitive symbols we have the logical constants 1\, V, =>, -', \I, :3 and 
contradiction. We do not consider the logical constant <=? primitive; it can be 
defined in the usual manner in terms of 1\ and =>. 

We note that in mathematical practice the following observation is often 
used: if "Fimplies G" is a derived rule, then a proof of F suffices as a proof of G. 
(Thus a proof of b is also a proof of a => b, and so on.) We embody this meta-rule 
in the present system, for practical reasons. 

A. Introduction rules 

Assumptions play an essential role in natural deduction. They are generally 
used with the purpose of simplifying in a natural manner the statement which has 
to be proved: a particular related statement is temporarily taken as an added datum, 
another statement, simpler than the original one, is the new object for proving. 
As soon as this aim is achieved, the assumption is "discharged", and the original 
statement has been proved. 

This way of dealing with assumptions will be expressed in the notations used: 
sentences which are assumptions will be specially marked by a box; the range of 
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validity of an assumption will be marked by a vertical line starting from the left 
end of the box. 

Thus doing it becomes apparent how the outer structure ef a statement to be 
proved is reflected in its proof, as is often the case. For example, a proof of 
VxEA [P(x) =>Q (x)] will usually have the following shape: 

Let xEA I 

Assume P (x) I 

Q(x) 

For presenting an outer proof structure in this manner it is desirable to organize 
a proof in such a way that validity ranges of assumptions are disjoint or nested: 
one should arrange these validity ranges in a bIcck configuraticn as is known 
from programming languages. 

From this example it may be seen that the sentence "Let xEA" will appear 
as an assumption in our V-introduction rule. Our preference for assumptions 
rather than parameters in this rule is prompted by mathematical practice: in a proof 
of VxEA [P(x)], the natural first step is: "Let xEA". 

It will be clear that the latter sentence is not an assumption in the proper 
sense, as it also introduces the variable x. There is, however, a strong analogy 
with "normal" assumptions of the kind "Assume p", notably with respect to 
validity and use. Therefore we shall all the same call "Let xEA" an assumption, 
distinguishing this kind of assumption from the other by using the word "let" 
instead of "assume". 

Our V -introduction rule deviates from the usual rules. Our argument for 
this is that the two "natural" proofs for a V b look like a proof of an implication; 
for example: start with; "Assume I a" and derive a proof of b. Because our 
system is based on classical logic (see subsection C), the usual V -introduction rules 
are derived rules. (We confine ourselves to one rule for V -introduction and one 
for 1\ -introduction, the symmetry of V and 1\ being presuppmed.) 

Thus we propose the following standard proof schemes for intrcduction 
of 1\, V,::>, I, 'land 3, respectively: 

1. ., . 
Assume I a I Assume a I Assume a I 

a 

2 . . . . . . . ... .. . 
b b contradiction 

b - - - , 

conc1.: a 1\ b cone!.: aVb cone!.: a::>b conc1.: ,a 
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Let xEA 

tEA 

P(x) P(t) 

concl.: VxEA[P(X)] concl.: 3xEA [P (x)] 

In applying any of these schemes one should insert (from above downwards) 
a sequence of sentences in the place of the dots, each sentence being justifiable in 
the sense explained before. 

B. Elimination rules 

We denote the legitimacy of a deduction of G from F by: 

F.'. G. As elimination rules for 1\, V, =>, -', V and 3 we propose: 

al\b.· .a 

aVb, a=>c, b=>c.·.c 

a=>b, a.·.b 

-, a, a.'. contradiction 

VXEA[P(X)], tEA. ·.P(t) 

3xEA [P (x)], VxEA [P (x) => Q] ... Q 

In the 3-eIimination rule Q must not depend on x. 

In a way, each elimination rule is the inverse of the corresponding introduc­
tion rule (cf. Prawitz [7, p.33]). There is, however, an essential difference in use 
between the two kinds of rules which, in our opinion, disturbs the symmetry: 
in principle, introduction rules give the general structure of a proof (cr. what has 
been mentioned in subsection A), elimination rules, however, are used for procee­
ding stepwise in the body of the proof. The difference in the notation of introduction 
and elimination rules, as shown above, reflects this asymmetry. 

C. Double negation rule 

Because logic, as it is generally used, is classical, we add the double nega­
tion rule: 

The absurdity rule (contradiction .'. a) is now a derived rule. 
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The main difference between the logical system described above and the 
usual Gentzen-type systems are found in the \/- and V -introduction rules. The 
block structure for validity ranges of assumptions is also present in the system of 
KaIish and Montague ([5]). The latter system employs an existential instantiation 
rule instead of the usual 3-elimination rule (cf. the comment by Prawitz on this 
subject in Appendix C of [7]). 

The system outlined above is suitable for tuition purposes. It has the advan­
tages of natural deduction, both in setting up proofs and in understanding them. 
It also agrees closely with usual patterns of reasoning: a proof written with the aid 
of this system scarcely deviates from usual proofs, the differences being hardly mOTe 
than boxes and validity lines. 

On the other hand, as stated in the beginning of this section, formalization 
in the above system is not pushed very far. There are no formal devices for frequently 
occurring mathematical routines, like applying a theorem or a definition, justifying 
a deduction step, and so on. In the next section we shall describe how these sides 
of mathematical reasoning can be effectively formalized. 

H. A system for natural reasoning 

We shall describe a system with a wide range of applications and a high level 
of formalization. The system now to be proposed is natural in the sense that it is 
closely related to the usual way of reasoning and proving in mathematics. In the 
first instance, the system refers mainly to the nonlogical part of mathematics. 
However, rules oflogic can be expressed and applied in the system. One may choose 
natural deduction as a basic for logic, in the manner of the previous section (as 
we do in 11 F), thus preserving the "natural" character of the system. 

The system is directly derived from the "mathematical language Automath", 
designed by N.G. de Bruijn for rendering mathematical texts in a formal way 
(see [1]). Various versions of this language have been developed by de Bruijn, in 
cooperation with, among others, D.T. van Daalen, L.S. Jutting and J. Zucker 
(see [2]). Most of the features of these various versions will be present in the "system 
for natural reasoning", which we shall describe in this section. 

A text formalized in such a system consists of a sequence of sentences, con­
structed one by one in accordance with the rules of the system, the "syntax". We 
shall not discuss the syntax rules in detail. For this we refer to the precise definitions 
of a few Automath systems in [2] or [3]. 

A mathematical text selected for being formalized in a system like the one at 
issue must not show any omission in its chain of reasoning; if necessary, it must 
be made complete. An appropriate "translation" of that text, i.e. a formalization 
in the system, will be complete as well, in the sense that every sentence can be 
mechanically verified as to correctness according to the syntax. The latter property 
obviously implies that one may attach a high degree of mathematical cogency to 
.a text, which has been translated and verified in such a system. 

A number of mathematical texts have actually been formalized in systems of 
this kind. For example: Jutting has translated a well-known mathematical text 
(see [4]), and the formalized text has been verified by means of a computer programme; 
Zucker formalized a part of classical real analysis (cf. [11]). 
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A. Typing 

In mathematics one usually attaches types to objects; one says: x is a natural 
number, p is a proposition. In our system we incorporate a relation "s has type t" 
in a formal way, denoted as s: t. 

We fix two basic terms: 7t' and 't', representing the type of all propositions 
and the type of all "classes", respectively. For example: (p ~ q) : 7t' and N : 't'. 
(Here N denotes the class of all natural numbers). A class like N can be the type 
of some term of lower rank, as, for instance, in the sentence x : N. But a pro­
position like p ~ q can likewise be the type of some term, viz. its proof, as we shall 
now explain. 

It is common in mathematics to deal with proofs of propositions only at a 
meta-Ievel. Contrary to this, we shall incorporate proofs as terms in our system, 
denoted and manipulated just as the other terms in the system. This idea is well­
known (for references: see [11, p. 135]). It is based on the observation that a proof 
of a proposition results from a kind of "construction". 

As type of a proof we take the proposition it proves; if t is a proof for 
p => q, we write t: (p ~ q). Conversely, if r : 7t' and t : r then (proof) t as­
serts (proposition) r. 

By the above agreements concerning typing we obtain a hierarchical relation 
between terms of the system. Terms 7t' and 't' are (the only) representatives of 
the highest level of ah/ltraction, to be assigned degree O. Terms like p ~ q 
and N belong to a lower level (degree 1); terms like x and t belong to the lowest 
level (degree 2). In the present system we restrict ourselves to these three levels. 

There is a notable contrast between our relation : ("has type") and the 
set-theoretical relation E("is element of"). In set-theory, an element may belong 
to different classes: xEN implies xER, since NCR. As to relation:, however. 
we impose uniqueness of type: each term of degree 1 or 2 has a fixed type. (For a 
remark on this uniqueness: see the following subsection.) Typing thereby becomes 
an unambiguous, effective procedure; this facilitates mechanical checking. 

Thus, in the case that Nand R have been introduced independently. 
"natural number x" cannot be considered as a real number by a direct embedding 
of N into R. This has obvious disadvantages, like the necessity of some non-trivial 
embedding device; on the other hand, obscuring identifications are absent. 

B. Conversions 

We note the complicating circumstance that a term in the system may have 
different manifestations, being interchangeable by means of conversions. There 
are three kinds of basic conversions. The first results from the application of a 
definition to (part of) a term; this is called definitional conversion (for an example: 
see subsection D). The second concerns the application of a function to an argu­
ment; it is called functional conversion or [1-conversion (see subsection E). The third 
is caused by the renaming of a certain variable in a few occurrences in a term. 
without disturbing the pattern of binding in the term; it will be called renaming 
conversion or ex-conversion. 
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Conversions change a term in appearance, without changing its nature. 
Different appearances of one term, related by conversions, will be called equivalent. 

The above implies that the "uniqueness of type", discussed in subsection A, 
should be understood modulo conversion. 

C. Assumptions 

In the natural deduction system of § I, assumptions appeared in two shapes ~ 
either in the simple version "Assume p", or in the more complex version 
"Let xEA" (cf. I A). Since we regard proofs as terms, we may replace the former 
version by "Let t be a proof of proposition p". The latter version becomes 
"Let x be a term which has type A", in correspondence with our view upon 
typing. Formally, both versions of assumptions can be denoted, quite similarly" 

by the sentences 1 t : p 1 and 1 x : AI, respectively, t and x being variables, p and 

A being terms. (An arbitrary assumption I U : v 1 can be correctly interpreted by 

regarding the type of v.) 

D. Axioms, definitions, theorems 

We shall now describe how axioms, definitions and theorems can be incorpo­
rated. 

Axioms (including basic notions) will be denoted by means of a double box._ 

For example, in regarding N as a basic notion we obtain the sentence: I ~ /. 
Then Peano's first axiom will be rendered by: \1 one: N 1\. Axioms may contain 

one or more assumptions, like in Peano's second axiom, postulating a successor 
to every natural number; we may express this axicm by means of two sentences:-

1 x : N 1 11 s (x) : N 1\. Here the assumption variable x returns in the latter 

sentence. 
In such cases, when a sentence depends on an assumption variable, one may 

instantiate, i.e. (simultaneously) substitute a term for each occurrence of this va-­
riable in the sentence. It is then a natural requirement that the substituted term has 
an "appropriate" type. For example, from the last axiom one may infer that. 
sCone) has type N. Analogous rules hold in the case in which a sentence depends. 
on more than one variable. 

Definitions will be written as in the following examples: 

two: =s(one):N, three: =s(two):N, 

1 y:N I plustwo (y): =~ (s(y»:N. 

In the last example the definition consists of two sentences, the latter depending; 
on the former. 
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The three above examples concern definitions of terms of degree 2. It is also 
possible to write a sentence containing a definition of a term of degree 1; such a 
term defines a "class", a proposition or a predicate. 

For proofs of theorems we use the same notation as for definitions that 
concern terms of degree 2. We justify this policy with the following remark: a proof 
of a theorem th (where th: 7t) fixes a term p with p : th, while a definition of an 
"object" belonging to a "class" cl (where cl: 7t) fixes a term b with b: cl. 

We shall show in an example how a theorem can be expressed (and proved). 
Suppose that the relation equality for natural numbers (= N) is given as a basic. 

notion by I x:NI 1 y:N 1 11 (X=NY):7t 11· Let reflexivity of =N be given 

by axiom: 

Ix:NI 11 refis(x):(x=Nx) 11· 

Now a proof of the theorem plustwo (one) = N three can be expressed by: 

proof 1 : = refis (s (s (one)): (plustwo (one) = N three). 

At first sight this seems incorrect, because the axiom for reflexivity 
yields the relation 

refis (s (s (one»): (s (s (one» = NS (s (one»), 

by substituting s (s (one» for x. But by means of definitional conversion (see 
subsection B) and instantiation we may change (plus two (one) = N three) into 
(s (s (one» = N (s (s {one»), by applying the definitions given above of plustwo (one), 
three and two. 

As some of our examples showed, axioms and definitions may consist of 
more than one sentence, all but the last being assumptions. This may also be the 
case with (proved) theorems. Such an initial sequence of assumptions is called a 
context for the axiom, definition or theorem at issue; the assumption variables of 
a context may occur in the final sentence. The interdependence may even be stronger: 
each assumption variable in a context may occur in "type-parts" of assumptions 
which follow in that context. See, for instance, the axiom for the double negation 
rule, given in subsection F. 

E. Functions 

Functional abstraction and application form part of the system. For functional 
abstraction we use an adapted lambda-calculus notation, demonstrated by the 
following definition: idfun: =[AX : N]x : [AX : N] N. Here [AX: N]x is the 
identity function for natural numbers; the type of this function, NN, is denoted by 
the "type-valued function" [AX: N]N. Application of funtcion f to argument x 
is denoted by {x}f A motivation of the unusual order of function and argument is 
given in [6, p. 11-12]. 

A natural requirement regarding functions is that an argument of a function 
must have a type equivalent (in the sense explained in subsection B) to the domain 
of that function. 
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For functions and arguments the laws of functional conversion (also called 
f3-conversion) hold, allowing for example the conversion of {A HAx' : B] C into 
~C, i.e. the result of substituting term A for all free occurrences of x in term C. 
(We gave a general description of conversions in subsection B; q.v.) 

Example: application of idfun to two yields {two} idfun, which is equivalent 
to {two} [Ax' : N]x by definitional conversion. Then by functional conversion we 
may change the latter into two. Hence, {two} idfun and two are equivalent: they 
are both "appearances of the same term". 

F. Deduction rules 

As "tated before, logical rules are not primitive in the present system: one 
may choose one's own logical basis. We shall show how one may incorporate rules 
for natural deduction by means of axioms and definitions. In this respect the formal 
correspondences between => and V on one hand and functional abstraction on the 
other, can be successfully exploited. 

For example, the "meaning" of p => q is that for every proof of proposition 
p we may produce a proof of proposition q. This is a functional relation. Hence 
it seems natural to define p => q as type-valued function [Ax' : p ]q. Then application 
of modus ponens can be simply effectuated by functional application (and a few 
conversions) : 

1 s:p 1 I t:(p=>q) I modponapp(s,t): ={s}t:q. 

The "meaning" of VxEA[P(X)] is that to every x in A, a proof of P(x) can 
be attached. This is again a functional relation. So one may define VxEA[P(X)] as 
the type-valued function [AX : A]P(x). The role of the V-elimination rule will again 
be taken over by the rule of functional application. 

Contradiction may be introduced as basic notion: 

11 contradiction: re 11. Then, p can be defined as p => contradiction. Now 1-

elimination becomes a special case of modus ponens. 

The double negation rule has to be expressed by means of an axiom as follow,,: 

I p:re I I n:, (,p) I 11 doubneg(p,n):p 11· 

The logical constants 1\, V, {:::} and 3 can be defined in terms of =>,' 
and V, in the usual way. The introduction and elimination rules for 1\, V and :3 
.can subsequently be derived as theorems. 

Ill. A uniform system 

In the system of § II there exists a strong correspondence between contexts 
("sequences of assumptions", see II D) and functional abstractions. For example, 

the axiom I x : NI/I s(x): N 11, using a context consisting of a single assump-
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tion, could be replaced by /1 S: [Ax : N] N 1/, using functional abstraction. 

The role of "instantiation", substitution of a term for an assumption variable 
(cf. n D), will be taken over by functional application: s(two) becomes {two }S. 

We shall now propose a uniform system, developed by de Bruijn and Ne­
derpelt (see [6]), wherein, to begin with, all assumptions- are written as abstractions 
of the form [Ak: L J. We denote axioms and basic notions as abstractions, too, 
because one may regard these as being assumptions with unlimited validity range. 
For example, the above axiom will be written as [AS: [AX: N]N]. 

Definitions obtain a uniformized shape as well, because instead of, e.g., 
z : =A : B, A and B being terms, we write {A} [:Az : BJ. Here variable z is defined 
as being functional application term A, both having type B. The role of defini­
tional conversion (replacement of z by A) is taken over by functional conversion: 
{A HA z : B] C is equivalent to ~ C. 

It this system we write theorems together with their proofs, in a manner 
similar to that in which definitions are written. For example: {D} [:Az : El may 
express theorem E and its proof D, z being a name for the proof. 

In the case in which a definition or a proved theorem depends on a non-empty 
context, the formulation in the present system is somewhat more complicated than 
suggested above. 

By means of uniformation, such as above, we obtain a simplified system, 
which is a typed lambda-calculus with lambda-structured types and two constants: 
'It and 't'. This typed lambda-calculus, which we call A, can be regarded as a model 
for "systems of natural reasoning" like that described in § n, in the sense that 
it gives a simple and uniform framework for such systems. 

As an example we give the reformulation of the theorem plustwo (one)= N three 
discussed in § n. In A this theorem becomes a single line, containing all needed 
information: 

[AN :'t'] [AS: [Ax:N] N] [A ONE:N] {{ONE} S} [A TWO :N] 

{{TWO}S}[ATHREE:NJ {[Ay:N]{{y} S}S} [PLUSTWO, 

[AY :N] N] [A ISN: [AX:N] [AY: N]'It] [AREFIS: [Ax:N] 

{x} {x} ISN] {{ONE} PLUSTWO} {THREE} lSN. 

The proof of this theorem looks similar, but for the last part 

{{ONE}PLUSTWO}{THREE}ISN, which reads: 

{{{ ONE} S} S} REFIS. 

We do not uniformize 'It and 't' into one constant, as is done in [6], since 
we wish to prevent assertions concerning propositions from having consequences. 
for "classes", and vice versa. The double negation rule, for example, would in that 
case imply some form of the axiom of choice (cf. [11, p. 141]). 

We shall now give a precise definition of A as being a class of terms in a. 
typed lambda-calculus. 

The alphabet under consideration consists of constants 'It and 't', an infinite 
number of variables: x, y, . .. and the improper symbols [, ], {, }, A and : • 
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Terms are recursively defined by: 
(1) 7t and 't' are terms; each variable x is a term. 
(2) If A and B are terms and if x is a variable, then lAx : A1B and {A}B 

. are terms. 
The relation: K is a subterm of L is the reflexive and transitive relation 

generated by: 
A and Bare sub terms of fAx: A1B and of {A }B. 

TypeK is a partial function from the set of subterms occurring in term K 
to the set of all terms, which function is recursively defined by: 

(1) If variable x occurs in K as a subterm and x is bound by lAx: A1 
in K, then TypeK(X)=A. 

(2) (monotony:) If [AY: AlB is a subterm of K, if TypeK(B) is defined and 
if TypeK(B) = C, then TypeK([Ay: A]B) = [Ay : A1C. Under analogous condi­
tions: TypeK({A }B) = {A }C. 

DegreeK is a partial function from the set of subterms occurring in term K 
to the set of the non-negative integers, which function is recursively defined by: 

(1) If subterm A of K ends in 't' or 7t, then degree[(A) = O. 
(2) If subterm A of K ends in variable x, bound by [Ax: Bl, and if 

degreeK(B) is defined, then degreeK(A) = degreeK(B)+1. 
(In A there is no upper bound for the values of the degree function.) 

Bound terms are terms without free variables. 
(In bound terms all subterms have a degree and all subterms not ending 

in 't' or 7t have a type.) 

a.-reduction, denoted >ClP is the monotonous relation generated by 
fA x: B1 C> (X fAY: Bl; C, with the usual restriction that the pattern of binding may 
not be disturbed. 

~-reduction, denoted >(3, is the monotonous relation generated by 
{A} [Ax : B1C>(3 ~C. (In substituting A for x, variables must be renamed in 
the usual way, in order to prevent "clash of variables".) 

Reduction, denoted >, is the reflexive and transitive closure of both a.- and 
~-reduction. If K>L, then L is called a reduct of K. (One may consider reduc­
tion as "one-way conversion"; cf. § II B and E.) 

Legitimate terms are bound terms K with the following property: For each 
subterm of K of the form {A}B there exist C and D with the properties that 
Typek(B) > [y, C1D and that TypeK(A) and C have a common reduct; here 
y = degree (B) and Typek is TypeK iterated y times, which iteration is defined 
in the natural way. 

Now A is defined as the set of all legitimate terms. 
The limitation to legitimate instead of bound terms has two reasons. The 

first is of a intuitive nature: it is a natural requirement for a system, close to ma­
thematical practice, that arguments A may only be related to terms B with 
an appropriate functional character. That is to say, B must, in a sense, be a func-
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tion with a certain domain C. Moreover, argument A must be an object belon­
ging to this domain C. 

A second reason is that function applications (~reductions) to bound terms 
may bring about a non-terminating process, just as in ordinary A-calculus. In 
restricting oneself to legitimate terms this is impossible (see following theorem (3)). 

We conclude with four theorems valuable for theoretical purposes: 
(1) Church-Rosser property or diamond property: If A >B and A >C, then 

Band C have a common reduct. 
(2) Normalization: Every term in A has a normal form (Le. a reduct to 

which no ~-reduction can be applied), which is effectively computable; this 
normal form is unique but for IX-reduction. 

(3) Strong normalization: For no A in A is there an infinite reduction 
sequence A>~Al>~A2>~ .... 

(4) Closure: If A is in A and A >B, then B is in A. 
For proofs of these theorems: see [6] and [3]. 
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ON THE QUANTIFffiR OF LIMITING REALIZABILITY 

N. A. SHANIN 

Logical connectives intermediate between 3 and 3 as well as between V 
and V [3xF denotes l 'v' xl F and (FI V FJ denotes l Cl FI & l FJJ are some­
times useful in searching for interesting "in contents" constructive analogs 
of theoremes of classical mathematics. We introduce two such logical connectives 
prompted by the theory of limiting computable (in other terms semicomputable) 
functions, namely the quantifier of limiting realizability 3 and the limiting dis-

junction V. They are defined in terms of the basic connectives of constructive 

logic as follows: 

:3 z F ~ 3y «y stab) & 'v' z«z lim· valy) ~ F», 

(FJ V FJ "=; :3x «x = 0-+ FI ) & (X*0~F2»' 
--> 

The expression (y stab) stands for the condition ~y is a gOdelnumber of 
a stabilizing unary total recursive function }> (this means: a godel number of 
such a total unary recursive function f for which a value Xo of the argument 
quasi-exists (ll3) such that f(xo+x)=f(xo) for any x). (z lim· val y) stands for 
the condition ~z is the limit value of the unary recursive function with gOdelnumber 
y}>. Several properties of 3, V have been presented in the report. A detailed 

exposition can be found in [l]. 
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HECKOJIbKO KOMEJIHATOPHbIX TIPOEJIEM 

3.neCb rrpHBO.!UI:TCIl HeCKOJlbKO .nOBOJlbHO oorrmx 3a.na'l, K KOTOPbIM II oopamaJlCll B DOe­
Jle,UHee BpeMll. no HeKOTopblM H3 HHX .aaIOTCR 'IaCTHble HJlH npHKH.aO'lHble pe3YJlbTaTbl. 
IiOJlbWHHCTBO D3 :nux npooneM HaCTonbKO mHpOKH, '1TO oe30CHOBaTeJlbHO OlKH.aaTb CKoporo 
B HC'IeprrblBalOmero UX pemeHHll, O,llHaKO H MeHee oOmHe npO,llBDlKeHHll no 3THM 3a.na'laM 
Dpe.nCTaBHJlH ObI HeCOMHeHHblD: HHTepec. BOT rrepe'leHb oOcYlK.naeMbIX 3.necb TeMaTHIC: 

I KpHTepuD: raMHJlbTOHOBOCTH. 

11 3aKoH $aKTOpH3aIIHH. 

HI PeanH3yeMOCTb BaneHTHOCTeD:. 

IV CTpYKTYPHble KOHCTaHTbI. 

V CTPYKTYPHO-BeKTopHbIe nOKpbITHll. 

BblpalKalO CBOIO HCKpeHHlOIO npH3HaTeJlbHOCTb rrpocjJeccopy ,lllK. K. POTe H .nOKTOPY K. liaK­
JIaBCICOMY, KOTopble BO MHOrOM CIIOCOOCTBOBaJlH HalIHcaHHIO :noit paooTbl. 

I. KpuTepuii raMUJIbTOBOBOCTH. 

COrJIaCHO TeopeMe MeHrepa, CM. [I], rpail> d - CBH3eH TOr.lla H TOJThKO 
Tor.lla, KOr.lla JIl06aH napa ero BepwuH coe.n;UHeHa no KpaHHeH Mepe d BepIllHHHo­
HenepeceKalO1I.{UMHcH TIyTHMH. I>y.n;eM rOBopHTh, 'ITO rpz.cp d-nOKpl>malOme­

CBH3eH, eCJIH BCHKaH napa ero BepllluH coe.n;UHtHa no KpaiiHeii Mepe d BepIllHHHo­
-HenepeceKalOmHMHCH nYTHMH TaKUMH, 'ITO nyTH 3TH nOKphmalOT Bcex BepIllUHbI 
rpa4>a, T.e. MHO)l(eCTBO Bcex BeplllHH Bcex 3THX nYTeH eCTh Bce MHO)l(eCTBO 
BepIllUH rpacpa. rpa4> 6y.n;eM HMeHOBah 'IeTHO-nOKpl>m2.lOme-CBH3Hl>IM, eCJIH .n;JIH 
BCHKOH napl>l ero BepIllHH cymeCTByeT B 3TOM rpail>e CIfCTeMa H3 'IeTHOrO '{HCJIa 
BepIllHHHO-HenepeCeKalOIIl,HXCH H nOKpl>malOIllHX nYTeH, COe.llHHHlOmHX 3TH 

BepIllHHbI. 

rMI10TE3A. Fpap zaMUJlbmOH06 mozoa u mOJlbKO mozoa, KoziJa OH 'lemHO­
nOKpbl6alOUle C6Jl3eH. 

Heo6xo.n;HMOCTh O'leBH.n;Ha, nOCKOJlhKY BCHKa» napa BeplllIfH raMHJIhTOHOBOro 
I1.HKJIa COe.llIfHHMa B TO'IHOCTU .n;ByMH Bepllll1HHO-HenepeceKllOmHMI1ClI H nOKpl>I­
BalOIIl,HMH nYTHMH. Kpl1TepHii CTaHOBI1TCH TaBTOJIOfH'lBLIM, eCJIH B rpc..cpe 
HMeeTCH BeplllHHa, CTeneHh KOTOPOH He npeBOCXO,lUIT Tpex. 

I1yCTh G-nJIOCKUH rpa4> , KOTOpbIii 'IernO-nOKPhlBalOlIle_CBH3eH Tor.n;a JIu60 
HaH.n;eTClI napa BepIllUH coe.llIfHUMall .n;ByMH 1iIeplI1HHHO-HenepeCeK~IOIIl,HMHClI H 
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nOKpbIBalOIUHMH nynIMH, H 3Ha'lHT G-raMHJIbTOHOb, JIH60 BCHKaH nap a ero 

BepllIHH coe;:urnHMa no KpaHHeH Mepe '1eTblpbMH BepllIHHHO-HenepeCeKaIOIUHMHC5I 

H nOKbIBalOmHMH nynlMH, HO nOCJIe,llHee, B '1aCTHOCTH, BJIe'leT TOT <\JaKT, '1TO 

G HBJI5IeTC5I '1eTbIpeXCBH3HbIM rpa<\JOM, a COrJIaCHO TeopeMe TaTTa [2] nJIOCKHH 

H '1eTbIpeXCB5I3HbIH rpa<\J 5IBJI5IeTC5I raMHJIbTOHOBbIM. TaKHM 06pa30M HMeeT MeCTO 

TEOPEMA. IIJlocKuii zparji ZaMUJlbmOH08 mozoa u mO/lbKO mozoa, Kozoa 
OH tJemHo-nOKpb18alOU/e-C8J13eH. 

I1MelOlUHeCH .LJ:OCTaTO'lHble YCJIOBH5I raMHJIbTOHOBOCTH, CM. [I], pe.LJ:yrJ;HPYlOT 

3a,ll;a'lY K CJIY'IalO HaJIH'IHH napbI BepllIHH COe.LJ:HHHMOH He CJIHIIlKOM 60JIblllHM 

'1eTHbIM '1HCJIOM BepllIHHHO-HenepeceKalOlUHXC5I H nOKpbmalOIUHX nYTen B Hen­

JIOCKOM rpa<\Je. Ha6JIlO.LJ:aeTCH, HaKOHen, H aJIrOpHTMH'IeCKOe "paBHOBeCHe" 

:nOH rHnOTe3bI. 

BbIpa)l(alO 6JIarO,ll;apHOCTb .LJ:OKTOpy lO. B. MaTHHCeBH'IY, 6ece,m.I C KOTOPbIM 

nOMOrJIH 60JIee TO'lHO c<P0PMYJIHpOBaTb 3TY rHnOTe3Y. 

[1] F., HARARY "Graph Theory". Addison-Wesley P. C. 1969; pyccKllii nepeBOp;: XapapH <P., 
"TeopHfl rpa$oB", "MHp", MocKBa, 1973. 

[2] W. T., TUTTE A theorem on planar graphs, Trans. of the Amer. Math. Soc., 82 (1956); 
N I, 99-116; PYCCKHlt nepeBOp;: Tan Y. T., TeopeMa 0 nJIOCKHX rpa$ax. KHo. COop­
BIlK (ROBafl cepHfl), 10, (1973), 66-86. 

n. 3aKOH cl»aKTopU3aQUU. 

Qepe3 (P, :::;;) 6Y.LJ:eM 0603Ha'laTb JIOKaJIbHO KOHe'IHOe 'IaCTH'IHo-ynopH.LJ:O'leH­

Hoe P C OTHOllleHHeM 'IaCTH'IHOrO nopH.LJ:Ka ::;;; Ha HeM, CM. [1, 2]. ITocpe.LJ:CT­

BOM F 6Y.LJ:eM 0603Ha'IaTb <\JaKTOprBaI . .\MlO, T. e. pa36HeHHe, MHO)l(eCTBa P, TalC 

'1TO <\JaKTopMHO)l(eCTBO F (P) = {fi} eCTb MHO)l(eCTBO HenepeceKalOIIlMXCH KJIaCCOB 

3KBMBClJIeHTHOCTH fi~P 06'be.LJ:MHeHHe KOTOPbIX .LJ:<.eT Bce P. ITpM'IeM 6Y.LJ:eM 

npe.LJ:nOJIaraTb, '1TO <\JdKTopH3anH5I FKaKHM-TO 06pa30M "HaCJIe.LJ:yeT" nopH.LJ:OK :::;;, 

T. e. nopH.LJ:OK :::;; Ha P nOCpe.LJ:CTBOM <\J_~KTOpM3anMH MH.LJ:ynHPYeT HeKOTOpbrH 

HOBbIH nOPMOK -< Ha <\JaKTOpMHO)l(eCTBe F(P), HanpHMep, no npaBHJIy: 

IlTaK, nyCTb HMeeTC5I MHO)l(eCTBO (P, :::;;) Hero <\JaKTOpMHO)l(eCTBO (F, <) = 

= (F(P, :::;;), <). 
(~) Kozoa MHO)KeCm80 (F, <) Jl8/lJlemCJI lIacmutJHo-ynopJlootJeHHblM? 

(~) KaK C6J13aHbl Me)Koy co6oii Me6uyc-rjiYHKIl,UU [Lp U [Lp? 

K CO)l(aneHMlO B paMKax POTOBCKHX anre6p HHnH.LJ:eHnHH AI (P) H AI (F) 
OTBeT Ha OCHOBHOR Bonpoc (~) CMJIbHO 3aBMCMT OT OTBeTa Ha nepBbIM: Bonpoc. 

OKa3aJIOCb B03MO)l(HbIM npeO.LJ:OJIeTb 3TO HeY.LJ:06cTBO, CM. [2]; 6bIJI nocTpoeH 

KJIaCC aJIre6p HrlnH.LJ:e -1UMM: AIK (P) C H.LJ:POM K, KOTopbIe onpe.LJ:eJIeHbl M .LJ:JI5I 

"nJIOXHX" nOpH.LJ:KOB, HanpMMep, npM OTCYCTBMM TpaH3MTHBHOCTH. CTaJIO 6bITb 

pe30HHO rOBopHTb H 0 HaJIH'IMH '1HCTO TeXHHlJ.eCKOii, <\JOPMaJIbHoii CBH3H 

Me)I(.LJ:y [Lp H [LF' 
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CeHlfac 3HaHHe 3aKOHa $aKTopH3aD;HH orpaHHlfeHO CJIYlfaeM CYlUeCTBOBa­

HIDl MeiKP:Y (P~J H (F, <) CHJIbHO aJIre6paHlfeCKHX CBH3eH THna CBH3H raJIya, 

CM. [3]. 
BOT KOHKpeTHaH 3ap:alfa Ha :ny TeMY: IIYCTh (B (Sn), <;:) - 6eJIJIHaH, T.e. 

lfaCTHlfHO ynopHp:olfeHHoe MHO)KeCTBO Beex HeynOp5Jp:OlfeHHbIX pa36HeHHH MHOiKe­

CTBa Sn = {a l , az' . .. , an} ynOp5Jp:OlfeHHoe no CKJIeHKe 6JIOKOB. IIycTb F-q,aKTo­
pH3au;mI 6eJIJIHaHa no pa3MepaM 6JIOKOB, Torp:a (F(B(Sn)' <;:), <)=(F, <)= 
= (p(nj' ~)- eCTb 'IaCTHlfHO ynOp5Jp:OlfeHHoe MHOiKeCTBO napTHD;HH, T. e. Hey­

nop5JP:O'IeHHbIH pa36HeHHH lfHCJIa n Ha HarypaJIbHble CJIaraeMble. Me6HYc-$YHKD;HH 

napTHD;HH HeH3BeCTHa. 

JIHTepaTypa 

[1] ROTA G. - C., On the foundations of combinatorial theory, 1, Theory of Mobius 
fUllctions, Z. Wahrsheinlichkeitstheorie, 2, (1964), 340- 368. 

[2] CTEqKHH li. C., DUHapHble rPYHlCl(UU Ha ynopfliJo'leHHblX MHo3lCecm«ax (meopeMbI 05pa­
u/eHufl), TpY,1J;bI MHAH, 143, (1977), 178-186. 

[3] BACLA WSKI K., Galois connections and the Leray Spectral Sequence, Adv. in math., 
25, (1977), )Vg3, 191-215; see also his Ph. D. Thesis, Harvard, 1976. 

nI. PeaJIH3yeMocTb BaJIeHTHocTeii. 

IIpH perneHHH 3KCTpeMaJIbHbIX 3ap:a'I 0 rHrreprpa$ax BbI5JBJIHIOTC5J BeCbMa 

Ba)KHble lfHCJIeHHble xapaKTepHcTHKH nmeprpa<j>oB - HX BaneHTHOCTH, CM. [I]. 
IIycTb Sn = {al , az, ... , an} - HeyrropHp:OlfeHHoe n-3JIeMeHTHOe MHO)KeCTBO (Bep­

JlJHH), H rryCTh Ck (Sn) = {S<;:Sn: I SI = k} - MHOiKeCTBO BceX k-nO,n:MHO)KeCTB S", 
HJIH HHalfe - nOJIHbIH k-rpa<j>; nOJIOiKUM 

n 

f]J (S,,) = .L Ck (Sn)· 
k=O 

PaCCMaTpHBaIOTCH rHlleprpa$bI G = {ei } <;: f]J (Sn) H k-rpa$bI Gk <;: Ck (S,,). BaneHT­

HOCTh v(S, q; G) OT CHCTeMbI BepJlJHH S<;:Sn, lfHCJIa qEN+{O} H rHneprpa<j>a 

G<;:f]J (Sn) onpep:eJIHeTCH KaK lfHCJIO 

v(S, q; G)=/{eEG:/e(JS/=q}/. (I) 

.5ICHO, 'ITO rrpH / S / = q = 1 3TO eCTb o6bIlfHa5J CTerreHb. ECJIH eCTb p:Ba rHrrep­

rpaq,a G, F<;:f]J(S,,), TO 

2: v(S,q; G)= .L v(e, q; F), (2) 
SEF eEG 

H B lfaCTHOCTH 

.L v(Sp,q;G)=.L v(S",};G). (j) (n -j) . 
Spr;;Sn j q p-q 

(3) 

KpOMe Toro 

v(Sp,q; G)=.L (- l)l(q+i) .L v(Sq+;> q+i; G). 
i?O q SHir;;Sp 

(4) 

ECTeCTBeHeH Borrpoc 0 peanH3yeMocTH lfHCJIOBbIX IIOCJIep:OBaTeJIbHOCTeH 

BaneHIHOCTHMH HeKOToporo rHrreprpa<jJa. 
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(oc) KaKUM YCIlOBUJlM OOIl)/(Ha yiJoBllemeOpJlmb '1UCIlOeaJl nOClleOOBamellbHOCmb 

{VI} 1 ~ i ~ ( : ) OIlJl mozo '1m06bl cyU/ecmeoBall zunepzpaifj G E:l (U3 HeKomopozo 

anpuopHoZO Kllacca zunepzpaifjoB :l) maKou, '1mo 

{Vi}I~~(;)={v(Sp, q; G)lsp<:sn ? 

3pnem H raJIJIaH, CM. [1] B n. 1, pemHJIH !ny 3ana'l)' nJUI 06bl'lHbIX 
cTeneHeii p = q = 1 H 06bl'lHbIX rpa<!JoB. 3necb MbI "eCTeCTBeHHbIM" o6pa30M 
BbmeneM HX OrpaHH'IeHHH Ha {Vi}' lh (4) npH G = G2~ C2 (Sn) H q= 1 HaXOnHM 

MH 

L v(Sp 1; G2)=V(Sp, 1; G2)+2 L V(S2' 2; G2)= 
~<:~ ~<:~ 

=v(Sp, 1; G2)+2v(Sp, 2; G2)=v(Sn-Sp, 1; G2)+2v(Sp, 2; G2)~ 

~v(Sn-Sp, 1; G2)+p(p-l)~p(p-l)+ L v(Sp 1; G2)!\p, 
SI <: sn-sp 

(3necb H Be3ne naJIee a!\p = min {a, p }), '1TO H naeT H3BeCTHoe HepaBeHcTBo 
3pnema - raJIJIaH 

p n 

L Vi~P(P- 1)+ L v/!\p. 
I-I l=p+1 

YCJIOBHe '1eTHOCTH CYMMbI I: VI CJIe)lyeT H3 (3). OnHaKo 3ana'la He pemeHa na)Ke 
JlJIH 06bI'1HbIX cTeneHeii B mneprpa<lJcKoM CJIy'lae. AeB)lHeH [2] HMeeT nJIH !noro 
CJIyqaH peKypcHBHble OrpaHH'IeHHH Ha {v;}. n03TOMY MO)KHO nOHHTepeCOBaThCH 
H 60JIee 'IaCTHbIM BOnpOCOM; neHCTBHTeJ1bHO JIH BCH HH<!JopMaWiH 0 CBH3HX 
Me)KJlY BaJIeHTHOCTHMH 3aKJIIO'IeHa B (3) H (4)? 3necb MbI 06paTHM BHHMaHHe 
JIHDIh Ha o,znm rrpocToii <!JaKT. 

TEOPEMA. ilycmb {li} l~i~G) - noclleooBameAbHocmb ~eAblX Heom­

pUl{amellbHblx '1UCeA. I!AJl mozo '1m06bl nocAeOOBameAbHOCmb {Vi} peOllU30Bbl8allQCb 
BalleHmHOCmJlMU {VI (Sp, I,' GI)} HeKomopozo 1-zpaifja Gl~ Cl (Sn) Heo6xoouMO U 
ooCmamO'lHO, '1m06bl 

(5) 

(6) 
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$opMYJIa (6) 03Ha'laeT, '1TO 'lBCJIO 0 ~OJI)KHO BnOCJIe~OBaTeJIbHOCrn {VI} HaJIH­

'1eCTBOBaTb POBHO ( ~) C ~ m) pa3, '1HCJIO I-poBHO (7) (; = 7) pa3 H T. ~., 
no~p06Hee 0603Ha'leHIDI CM. [1]. "IIpHMe'laTebHO, '1TO B 3TOM CJIyqae cyme­

cTByeT H KOHCTPYKTHBHhlH KpmepHii, HMeHHO (6) MO)KHO 3aMeHHTb Ha YCJIOBHe 

{Vi} = {I Sm 11 Sp I }Sp~sn. (Smr;Sn). (7) 

nOCKOJIbKY npaBble '1aCTH (6) H (7) B TO'lHOCTH COBna~aIOT. B '1aCTHOCTH H3 (7) 
H HeMe~JIeHHO CJIe~yeT ~OCTaTO'IHOCTb TeopeMbI. 

[1] CTElJKHH Ji. C., 0505UjeHHble 6aAeHmHocmu, MaTeM. 3aMeTICH, 17, (1975), N2 3, 
433-442; aHrmdtcICKiI: nepeso,/\: Stechkin B. S., Generalized valences, Math. Notes, 
17 (1975), N 3-4, 252-258. 

[2] DEWDNEY A. K., Degree sequences in complexes and hypergraphs Proc. of the Amer. 
Math. Soc., 53, (1975), N!! 2, 535-540. 

IV. CTpYlnYPHLle KOHCTaHTLI. 

B nocJIe~HHii nepHO~ CBoeH )KH3HH ITaJIb TypaH 60JIbWOe BHHMaHHe 

y~emIJI KOM6HHaTopHo-reOMeTpH'leCKHM BonpocaM, BonpocaM Ka'leCTBeHHoro 

HCnOJIb30BaHHH 3KCTpeMaJIbHbIX KOM6HHaTopHLIX 3Ma'l, [1-6]. B '1aCTHOCTH, 

3TO npHBeJIO K O.nHOH 'IHCTO reOMeTpH'IeCKOH 3a~a'Ie, KOTOPYIO Mhl 3~ecb no­

nhlTaeMCH H3JIO)l(HTh C HaH60JIhWeH nOJIHOToH. 

ITyCTh X - JIHHeiiHOe HOpMHpOBaHHoe npOCTpaHCTBO, '1epe3 (1k = {oc1 , ••• , (Xk} 
6y~eM 0603Ha'laTb COBOKynHOCTH H3 k TO'leK 3Toro npOCTpaHCTBa, npH'IeM~H 
npOCTOTbI npHMeM, 'ITO lIocdl= I, i= 1, ... ,k, XOTH 3TO OrpaHH'IeHHe B 60JIL­

WHHCTBe CJIyqaeB MO)l(HO 3aMeHHTh H 60JIee cJIa6hlM. ITyCTb k~/?::-I - n;eJlble 
'1HCJIa, nOJIO)l(HM 

8(/, k; X)=min max lI~oc", 
"kkX "/r;;"k aE"1 

ICOHCTaHTbl 3TH 6y.neM Ha3hIBaTh CTpYICTYPHbIMH reOMeTpH'IeCICHMH KOHCTaHTaMH. 

3a~aqa 3aICJI10'laeTCH B HX BhI'IHCJIeHHH ~H ~aHHoro npOCTpaHCTBa, HJIH)I(e ICJIaCCa 

npOCTpaHCTB ~aHHoro THna; 

!(/, k) = inf 8 (I, k; X), 8(1, k) = sup 8 (I, k: X), 
x x 

r~e inf H sup 6epeTCH no BceM npOCTpaHCTBaM ~aHHoro TEa. 

TIPHHHTO o6oca6JIHBaTb TOT Cnen;HaJIbHbIH CJIyqaH, Kor~a 1 = 2, 3TO CBll-

3aHO C TeM, 'ITO B 3TOM cJIY'Iae MaKCHMH3an;HH ~HHHOH ~HarOHaJIH napaJIJIeJIO­

rpaMMa 3ICBHBaJIeHTHa MHHHMH3aUHH era ICOPOTICOii ~HarOHaJIH, TO'lHee, nyCTb 

d (2, k; X) = max min IIoc1 - (X211 , 
""~x at.a2E"", 

TaK Ha3hlBaeMhle ynaKoBo'lHble KOHCTaHTbI. Tor~a ecJIH B X BhlITOJIHHeTCH npa­

BHJIO napaJIJIeJIOrpaMMa, TO 
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TaK 'ITO 3a,naQH BbI'IHCJIeHHH CTpyKTypHbIX H yrraKoBo'lHbIX KOHCTaHT B nOM 

CJIy'lae 3KBHBaJIeHTHbI ,no Tex rrop, rrOKa ,neHCTByeT rrpaBHJIO rrapaJIJIeJIorpaMMa, 

npH ero HapYUleHHH 3a,nallH "paCCJIaHBaIOTC}I". 

CTPYKTypHble KOHCTaHTbI MO)I(HO rrOHHMaTb H KaK JIOKaJIbHyro xapaKTepH­

CTHKY 3arrOJIHeHH}{ Bcero rrpOCTpaHCTBa e,UHHH'IHbIMH UlapaMH. 

HMeeTC}I O'leHb rJIy60KaH CBH3h CTPYKTypHbIX KOHCTaHT C 'IHCJIaMH TypaHa. 

llyCTb n~k;;::/~ 1 - neJIhIe 'IHCJIa, rryCTb T(n, k, I) 0603Ha'laeT TO HaHMeHb-

Ulee m, ,nJI}I KOToporo cymeCTByeT m-qJIeHHoe ceMeHCTBO F={sli)}, 1 ~i~m 
H3 l-rro,nMHo>KecTB S/~Sn (MHO>KecTBa Sn={ap a2 , ••• , an} H3 n 3JIeMeHToB) 

TaKoe, qTO 

BbI'IHCJIeHHe T (n, k, I) ecTh KOM6HHaTopHaH rrp06JIeMa TypaHa, CM. [7]. OKa-

3hIBaeTC}I HMeeT MeCTO CJIe,nYIOlU,a}l 

TEOPEMA. llycm& n~k~/;;::l, a X - AUHeUHoe HOpMupo8aHHoe npo­
cmpaHcm80, m020a OAR 8CRK020 an~X HauoemCR no KpailHeU Mepe T (n, k, I) 
nOOMHO)KeCm8a a/~ an maKUX, llmO 

11 ~ IX 11;;::8 (I, k; X). 
exEa, 

)1,OKA3ATEJIbCTBO. Ha MHO>KeCTBO TO'leK an KaK Ha BepUlHHax nOCT­

POHM I-rpal\> GI c;;, Cl (an) rro rrpaBHJIY: 1 TOqeK a/~ an C'IHTaeM 3a O,UHO l-pe6po 

TOr,na H TOJIhKO TOr,na, KOr,na P': IX 11;;::8 (I, k: X). PaccMOTPHM rroCTpoeHHhlH 
exEa, 

TaKHM 06pa30M I-rpal\> G', OH co,nep>KHT no KpaHHeH Mepe T (n, k, I) pe6ep, 

nOCKOJIbKY B npOTHBHOM cJIY'lae, COrJIaCHO onpe,neJIeHHIO T (n, k, I) 

3 a~~ an: 'v' a/~ aZ 112: IX 11 <8 (I, k; X), 
exEa, 

HJIH, 'ITO O,nHO H TO)l(e, 

HO TOr,na 

CTaJIO 6hlTh 

min max 11 L IX 11 <S (I, k; X), 
ak~X a,~ a,. ex.''::a, 

HO 3TO rrpOTHBOpe'lHT orrpe,neJIeHHIO S (I, k; X). 'I T.,n. 

HeKoTopble 'IaCTHhle CJIyqaH 3TOH TeOpeMhI 6bIJIH H3BeCTHbI H paHhUle. 

Ho HMeHHO ,naHHaSl 06I1lHOCTb n03BOJIHJIa nepeHecTH npHJIO>KeHH}I B 6aHaXOBO 

npOCTpaHCTBO. llpHBe,neM O,nHH pe3YJIbTaT KOTOPblH rrpHHa,nJIe>KHT B. ApeCTOBY 

H B. Eep,nhlUleBY, (npHBo,nHTC}I C COrJIaCHSI aBTopOB). 
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TEOPEMA. flycmb B 6aHaxo13o npOCmpaHCml30, moziJa ~(2, 3)=inf8(2, 3; 
B 

B) = 2/3, ziJe inf oepemcfl, no 6ceM 6aHaxo6blM npocmpaHCml3aM. 

,n:OKA3ATEJlbCTBO. TIoKax<eM cnepBa, 'ITO .n;JHI BCHKoro 6aHaxoBa 
npocTpaHcTBa 8 (2, 3; B)~2/3; nOJIOX<HM h = rnax 11 ~ IX 1', H nYCTb 0"3 = {1Xl> OCz, 1X3}' 

G2~G3 "'EG2 

Tor.n;a eCJIH IXI + IXl = Zp 1X1 + 1X3 = zZ' IXZ + 1X3 = Z3' TO 1I ZII/ ~h B CHJIY onpe.n;eJIeHHH h, 
1 

HO Tor.n;a 1X1=-(Zl+ZZ-ZJ, 3Ha'IHT 
2 

1 3 
1 =!I 1X11/~2(!lzllI +11 zzl/ +1/ z311)~2h, 

V 0"3~B rnax "~IX 11 =h~2/3, 
G2kG3 "'EG2 

3Ha'IHT 8(2, 3; B)~2/3. 
,n:OKax<eM Tenepb 06paTHoe HepaBeHCTBO, paCMOTpHM )J;JIH noro TpeXMep­

Hoe npOCTpaHCTBO 11 H TpH BeKTopa H3 Hero 

OCI ={1/3, 1/3, 1/3}, IXz ={ -1/3, -1/3, 1/3}, oc3 ={1/3, -1/3, -1/3}, 

nOCKOJIbKY 11 x + y //11 = ~ ! Xi + YI I, TO JIerKO BH.n;eTb 'ITO B .n;aHHOM cJI)"Iae 
i 

11 IX, + 1X211 = // IXz + 1X3/! = IllXz + 1X3 11 = 2/3. H T . .n;. 

AHaJIOrH'IHbJH pe3YJIbTaT .n;JIH CJIY'IaH rHJIb6epTOBa npOCTpaHCTBa 6bIJI 
nOJIY'IeH .u;. KaTOHOH [3], KOTOPbTH nOKa3aJI, 'ITO 8 (2; 3; H) = 1. 3TO B qaCTHOCTH 
n03BOJIHeT CpaBHHTb BepOHTHOCTHble npHJIox<eHHH nOCJIe.n;HHX .n;BYX TeopeM 
B CJIyqae rHJIb6epTOBa 

(fl{ 11 ~ +"fj II~x}~ 1/2(fl {II ~ lI~x}2 
H 6aHaXOBa 

(fl{I/~+"fjI/~ ~ x}~ ~ (fl{ll~I:~x}Z 
npOCTPaHCTB; 3.n;eCb ~ H "fj - He3aBHCHMbJe H o.n;HHaKOBO pacnpe.n;eJIeHHbJe B X 
CJIY'IaHHble BeKTOpbJ. 

JIHrepaTypa 
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B KOMOHHaTopHKe", "Mup", MocKBa, 1976. 
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v. CTpyraYPHo-BeKTOpHhle DOKPLlTRB. 

nYCTb ~ = {al' a2, ••• , am ••• } - HeKOTopoe (KOHetJHoe) MHO)l(eCTBO, 

a < - 6HHapHoe OTHOIIIeHHe Ha HeM. nYCTb V, - 0603HatJaeT MHO)l(ecTBO 

BceX t - MepHbIX BeKTOPOB V = (VI' V2 ' •• , , v,) TaKUX, tJTO Vi E~, i = 1, 2, ... t. 
BBep;eM Ha 3TOM MHO)l(eCTBe BeKTopOB V, 6HHapHoe OTHorneHHe ~ no npaBIDIY 

'Vu, vEVt u~V~t4==<Vi'VI' l~i~t. 

PaccMaTpHBaeTCSl np06JIeMa nOKpbITHH, o6maSl nOCTaHOBKa KOTOPOH TaKOBa: 

nYCTb Q, p~ Vr, KaKOBO TO HaHMeHbrnee Q' ~ Q, P;JIH KOToporo 

ITPHHHTO, op;HaKO, ee 41opMYJIHPoBaTb P;JIH HeKOTopbIX CneIJ;HaJIbHbIX nop;MHO­

)l(eCTB MHO)l(eCTBa V" HMeHHO, eCJIU Ha V, BBeCTU HeKOTopoe OTHorneHHe 3KBH­

BaJIeHTHOCTU, nopo)l(p;alOmee pa36ueHue Vt Ha HenepeceKalOmueCH KJIaCCbl 3KBH-

BaJIeHTHOCTU V~i), TaK tJTO 2: V}i) = V" TO B KatJeCTBe Q H P 06bI'lHO paCCMaTpu-
I 

BaIOT vf) U V~k) - KaKUe-TO U3 3TUX KJIaCCOB. B pSI,lJ,e CJIYtJaeB npHHaP;JIe)l(HOCTU 

BeKTOpa KJIaccy 3KBHBaJIeHTHOCTU yp;aeTcH up;eHTHrPHIJ;upOBaTb co 3HatJeHUSlMH 

HeKOTopoii "BeCOBoii" 41YHKIJ;mr. PaCCMOTpUM HecKOJIbKO KOHKpeTHbIX 3ap;atJ. 

ITYCTb (~, <) = (r} (Sn)' ~) eCTb 6YJIeaH (UJIU n-MepHbIH rnnepKy6), TaK 
'lTO JII06aH KOMnOHeHTa Vi 3TO eCTb HeKOTopoe nO,LJ;MHO)l(eCTBO VI ~ Sn MHO)l(eCTBa 

Sn H3 n 3JIeMeHTOB; 3anHCb I v,I 0603HatJaeT tJUCJIO tJJIeHOB 3TOrO nOp;MHO)l(eCTBa, 

TaK 'lTO 0 ~ I Vi I ~n. PaCCMOTpHM HeCKOJIbKO cnOC060B 3a p;aHIDI OTHorneHHH 

3KBHBaJIeHTHOCTU Ha MHO)l(eCTBe BeKTopOB Vt ,l1;JIH 3Toro CJIYtJaH 

B 3TOM cJIYtJae BCHKHii KJIaCC 3KBHBaJIeHTHOCTH op;H03HatJHO onpep;eJIHeTCSl "Beco­

BbIM" BeKTOpOMr =(rl' r2 , •• , rt) rp;e O~ri~n, i= 1, 2, '" , t. ITYCTb k HT -
p;sa TaKHX BeKTOpa, npHtJeM kl ~ li' i = 1, 2, ... , t, Bonpoc 3aKJIlOtJaeTCSl B Ha-

XO)l(,lJ;eHHU HaHMeHbIIIero nOKpbtruSl KJIaCCa v}k) KJIaCCOM V?" B 3TOM cJIYtJae 

otJeBH,l1;Ha CJIeP;YIOmaSl 

TEOPEMA. l[UCIlO 6eKmopo6 U3 Vf> 6 HaUMeHbUleM nOKpblmuu Kllacca V~k5 
KllaCCOM V?' pa6HO 

t 

IT T(n. ki' li), 
I-I 

zoe T IlUCIlO TypaHa. 

nYCTb G,-0603HMaeT HeKOTOpylO rpynny t-nop;CTaHOBOK, nOJIO)l(HM Torp;a 

TaK 'lTO 3KBHBaJIeHTHOCTb ("') OTBetJaeT TOMY CJIYtJalO, Kor p;a Gt COCTOUT TOJIbKO 

U3 TO)l(,lJ;eCTBeHHoii nop;CTaHOBKU. ECJIU Gt-CUMMeTpUtJeCKaSl rpynna BceX t-nop;­
CTaHOBOK, TO "BeCOBoii" 41YHKIJ;ueii CJIY)l(aT HeynopSlp;OtJeHHble CUCTeMbI COCTOJl­

IJJ.He U3 t tJuceJI. 
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M B 3TOM lfaCHOM CJI)"fae 3a.ualfa He perneHa. 

TIYCTb Tenepb OTHorneHHe 3KBHBaJIeHTOCTH 3a.uaeTCH no npaBHJIy: 

t t 

Vu, vEVtU~ V8 L IUII= L IVII 
1~1 1=1 

3.ueCb BCHKilli KJIaCC xapaKTepH3yeTcH O.uHHM "BeCOBblM" lfHCJIOM; eCTeCTBeHHO 

pacnpocTpaHHTb 3TOT CJIYlfaH Ha paBeHCTBO KaKHX-TO <PYHKll;HOHaJIOB onpe.ue­

JIeHHbIX Ha Vt • 

TIpHMepOM HHoro (ell:, <) MO)I(eT CJIY)lGITb JIHHeHHo-ynopH.uOqeHHOe 

MHO)I(eCTBO, B 3TOM CJIyqae BCHKHH BeKTOp V E Vt MO)I(HO HHTepnpeTHpOBaTh 

KaK HeKOTopoe MYJIbTHMHO)I(eCTBO, B KOTOPOM i-bIH 3JIeMeHT nOBTopeH Vi pa3. 

HeBeJIHK nporpecc H B 3TOM CJI)"fae, CM [lJ. 
HaKOHell;, reoMeTpHlfeCKHe HHTepnpeTall;HH npHBo.uHT K HCCJIe.uOBaHHIO 

CJI)"faH Kor.ua (c/I:, =<) HMeeT BH.u 

((2 

TIpHBe.ueHHbIe BbIUIe npHMepbI 3a.uaBaeMbIX Ha Vt OTHorneHHH 3KBHBaJIeHT­

HOCTH HMeJOT CMblCJI H .uJIH BCHKoro (cit, =<) B CJI)"fae Kor.ua =< lfaCTHlfHbIH 

rropH.uOK, rrOCKOJIbKY BCHKoe lfaCTHlfHO yrropH.uOlfeHHoe MHO)I(eCTBO BJIO)I(HMO 

B HeKOTopbIH rHrrepKy6. 

MMeeTCH HeCKOJIbKO KOHKpeTHbIX peaJIH3all;HH 3TOH rrp06JIeMbI, TaK eCJIH 

t= 1, TO HMeeM rrp06JIeMY rrOKpbITHH B yrrpH.uoqeHHOM MHO)I(eCTBe (cII;, =<), 
eCJIH rrpH 3TOM (cit, =<) = (1jJ (S,J, ~), a 3KHBaJIeHTHOCTb 3a.uaeTCH JIJ06bIM H3 

npHBe.ueHHblX Bblrne cnoco60B, TO nOJI)"faeM np06JIeMY TypaHa; eCJIH )I(e (ell:, =<) 
= (t)) (SI)' ~) t = n, TO .uJIH CJIYlfaH ( ~) r.ue Gt-CHMMeTpHlfeCKaH rpynrra HJIM 

,r(JIH CJIyqaH (~) onHTb-TaKH nOJI)"faeM np06JIeMy TypaHa. 3.ueCb H Bblpa)I(alO 

CBOIO 6JIaro.uapHOCTb H. H. KY3JOPHHY 03HaKOMHBrneMY MeHH C HeKOTopblMH 

Cnell;HaJIbHbIMH CJIyqaHMH 3TOH np06JIeMaTHKH. 

JIRTepaTypa 

[IJ CAMERON P. J., van-LINT J. H., "Graph theory coding theory, and block designs" 
London Math. Soc., Lecture Notes, 19. C. U. P., 1975. 
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MATHEMATICS AND PIllLOSOPHY 

Panel discussion* 

Dedicated to Professor lJuro KUREPA 

on the Occasion of His 70th Birthday 

Speech by Kajetan SEPER, Zagreb 

Ladies and Gentlemen, 

In the first place I wish to thank the Organizing Committee of the Symposium 
for having accepted our proposal to hold this panel discussion. 

This discussion being dedicated to Professor Duro Kurepa on the occasion 
of his 70th birthday, I am taking this opportunity to say a few words about 
Professor Kurepa. Please excuse me for the digIessions I shaH make. 

When I was attending the high school at Osijek, somewhere in 1951 or 1952, 
I came accross Professor Kurepa's work "Teorija skupova", a first text-book on sets 
in our country. By that time I had read the well-known Moritz Cantor's "Vor­
lesungen liber Geschichte der Mathematik", and a bit of philosophical logic and 
ordinary mathematics which I found in our libraries. No wonder that the sets were 
a refreshment for me. Even now I remember the footnote of the text on the null 
set and the all set. At that time the theory was attractive to me. However, I have 
never been fully satisfied with it: at the beginning I thought I did not understand 
what the theory was about, and later on I realized that I had to accept the theory 
in order to be able to understand what it was about. 

As an undergraduate at the Department of Mathematics of the Faculty of 
Natural Sciences and Mathematics of the University of Zagreb, I met Professor 
Kurepa personally, in 1953 or 1954, studied with him and passed through a number 
of courses and seminars. Mathematical logic did not exist in Zagreb at all, neither 
did any foundational studies, with the exception of the traditional course in the 
foundations of geometry, but Professor Kurepa announced a list of various themes, 
among them the propositional calculus, the predicate calculus, axiomatics of 
real numbers, and the like. That was crucial for the whole further development 
of mathematical logic and foundations of mathematics in Zagreb, in Croatia, and 
perhaps in Yugoslavia, too. 

* This panel discussion was organized by the Zagreb section of the Seminar for construc­
tive mathematics and model theory Zagreb-Beograd (of the Mathematical Department of the 
Faculty of Natural Sciences and Mathematics, Zagreb, and the Mathematical Institute, Beograd). 

139 



140 Kajetan Seper 

Once I tried to sketch Prof. Kurepa's influence concerning mathematical logic 
in Zagreb. Regardless of the interinfluential laterals, I obtained a four-rank tree. 
I called it Kurepa "small tree". Of course, this tree should be enlarged by taking 
into the account his influence concerning other mathematical theories - set theory, 
topology etc., together with his influence in other or bigger regions - Belgrade, 
Yugoslavia etc. 

It is not my intention to give here any account of Professor Kurepa's work, 
his activity, influence and importance - although I should perhaps apologize 
for that - but to say - and I feel obliged to do so - that Professor Kurepa has 
not been just a professional mathematician, a teacher and a pedagogue, but a real 
scientist and a philosopher, a humanist, and a human in the best sense of the word. 
He was the father, the originator and the pioneer of mathematical logic and foun­
dational studies in Croatia, and of modern mathematical theories in Croatia and 
Yugoslavia. Generally speaking, he was catalizer, and initiator, a bringer and a 
transferer of knowledge. 

As a student of his, and an admirer of his personality, with all of its virtues 
and individualities, qualities and peculiarities, temperament and character, I full­
heartedly thank Professor Kurepa, in my own name and in the name of all of 
my colleagues, for everything he has done both as a scientist and as a man. 
Happy anniversary and many happy returns of the day! 

CONSTRUCTIVE PROCESSES IN MATHEMATICS 

Mathlmatical and Philosophical Aspect 

SOME THESES CONCERNING THE DEVELOPMENT OF 
MATHEMATICS 

Kajetan SEPER, Zagreb 

1. Our introductory general thesis is that constructive mathematics, in a broad 
sense, is a measure for determining the value of mathematics as a positive science 
in all epochs, and especially at present. In our current opinion, the development of 
mathematics can be compared with a two-side balance: one side carries the practical, 
numerical, computer-computational, concrete, constructive mathematics, and the 
other - the theoretic, conceptual, abstract, non-constructive, platonistic mathe­
matics. Although this balance has never been balanced, one yet clearly observes 
in each epoch an overloading of one of its sides. Its balancing by the new, the 
progressive and the necessary is the golden transition period; this pericd is the 
most valuable time interval in the historical development of mathematics both 
for its fruits and for its influence. 

1. At the very beginning of civilization the scales did not actually exist. AIl 
mathematics was concrete, practical, inductive; in other words, if we UEe the 
comparison mentioned above, the constructive side of the balance overweigheq. 

2. It was the scientific and philosophical genius of the ancient Greeks that 
created the balance, i.e. the other side, the abstract, the theoretic, the deductive one. 
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3. This theoretic side already overweighed at the time of the ancient Greeks, and 
such a state was transmitted to and prevailed through the Middle Ages. 
4. The European spirit, commerci'al and early-industrial, rebalanced the 
scales, and 
5. raised the overloaded side by putting heavy weights onto the neglected 
side - the infinitesimal calculus has by no means been called a calculus at random, 
and mathematics and natural sciences became undi.scernible. 
6. The europeanized Greek genius again loaded the research with axioms and 
deductions, the actual infinity, and the absolute, and 
7. created the Cantorian intellecto-universe. Thus the abstract theoretic side 
prevailed and its closed empire of ideas got its name: PLATONISM. 
8. The force of history, however, is stronger than the ideas; science,and production, 
and society develop and so does the need for an equilibrium and also the require­
ment for a new open system, for a constructive universe, for CONSTRUCTIVISM. 
9. Perspectives: 
a) We co~ecture "Periodicity". It should be mentioned that this conjecture concerns 
the immediate future; otherwise, we do not conjecture anything. 
b I ) Goodman and Myhill conjecture "Compatibility and Interaction". 

Cf. [11, p.83: 
"One can distinguish two traditions in the study of the foundations of mathematics. 
The non-constructive tradition, represented today by set theory and category 
theory, ... (and) the constructive tradition (which) is represented tcday by intuitio­
nism and much of proof theory. These two tendencies in foundational studies are 
not incompatible. Rather, it is the interaction between them that is likely to lead 
to the most fruitful development of foundations as a whole. Current examples 
include the use of infinite proof-figures in proof theory and the use of elementary, 
rather than higher order, theories in studying categories. Our subject here is a 
recent development in constructivity which promises to open new avenues for 
such interaction." 

Cf. [11, p. 94: 
"Thus one may hope that the ultimate bastion of classical idealism, set theory, can 
be made to give way piecemeal to the insights which, in particular cases, it gives 
into the structure of its own objects." 
b2) Trostnikov conjectures "Quantitative Gnoseology". 

Cf. [21, p. 252: 
"B03MO)l(HO, B 0Y,l(YlIleM npOH30H.lleT CJIe,l()'lOlIlee: MeTaMaTeMaTHKa BCTynHT 
B oOJIee TecHYlO, qeM HhlHe, CBH3 c onpe.lleJIeHHHMH pa3.lleJJaMH MaTepHaJJUCTH­
qeCKOH q,UJIOCOq,HH U nCUXOJIOfUU U TaK oopa3yeTcH OOJIaCTh, KOTOPyro MO)l(HO 
Ha3BaTb "KO/lutteCm8eHHOJl ZHOCeO/lOZUfI", npe.llMeTOM KOTOPOB 0Y.lleT npOOJJeMa 
COfJIaCOBaHHH pa3JIHtLibIX "H3J.IKOB (Ka)l(,l(bIB U3 KOTOPbIX onupaeTcH Ha CBOIO 
cneD;Hq,U'IecKYlO cTpyKTypy c03HaHUH), c nOMClD1O KOTOPbIX MY KOHCTpYHpyeM, 
Bep Uq,UD;HpyeM U nepeKoHcTpyupyeM OO'beKThI Hawero" HaY'IHofo c03HaHHH, Bee 
nOJIHee U fJIYO)l(e npoHHKaH B TaBHbI MaTepuH." 

2. From this observation it seem s to us III a t balancing is historically neces­
sary in order for mathematics to be able to enter a new epoch, and that preponderance 
of one scale is a characteristic feature of each epoch. Therefore it seems to us that we 
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are living in the transition period of balancing by means of historically heavier weights 
of the constructive, the numerical, the discrete ,the finite. This is our first conclusive 
general thesis. 

3. The process perceived clearly parallels the socio-economic systems in the 
evolution from the primitive society, through slavery, feudalism, and early capitalism, 
up to the contemporary systems (highly developed capitalism and socialism). This 
correspodence suggests to us and substantiates our opinicn that Constructive 
Mathematics is. a Socio-Economo-Political Problem, and not just a Philosophical 
One, as it is widely accepted, spread and debated. This is our second conclusive 
general thesis. 
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[Discussed by N.A. Shanin (Leningrad), S.R. Zervos (Athens), M. Krasner 
(Paris), Th. Stavropoulos (Athens), S. Panayiotis (Athens), J. Pe1ant (Plague), 

. D. Rosenzweig (Zagreb).] 

CONTRIBUTION TO THE DISCUSSION 

M. KRASNER, Paris 

KRASNER: Prof. Shanin said that the constructivism, in caracterizing certain 
mathematical objects by means of some information (which he compared to the macrosco­
pical information of quantum mechanics), is considering only such objects and reasons 
only in passing from information to information. Even in supposing such "informational" 
point of view admitted, I don't believe that the information used by constructivists is the 
only possible and that the constructivistic way of using it is exhausting. 

From another side, Prof. Shanin believes that constructive mathematical objects are 
more able to imitate (or "model") that of experimental sciences, that do that of clas­
sical mathematics and he considers this circumstance as a decisive advantage of the 
constructivistic point of view. If even it was so, I think that the mathematics, as any 
other adult science, has its Own internal logic, and the existence and the interest if its 
objects are not determined by their ability of imitation of objects of other sciences or 
of material world. In particular, many highly interesting objects of alge bra and of number 
theory have, until now, no relations with that of experimental or human sciences, 
even when they can be described constructivistically. 

Let us remind the discussion between Borel, Hadamard and Lebesgue. It is clear 
that the constructivism is a development (and accomplishment) of Borel's ideas, and that 
usual naive and axiomatic set theory as basis of all classical mathematics derives from 
Hadamard's point of view (with some Hilbertian aftertaste). But, thGe exists a point 
of view inspired by Lebesgue's ideas, the "definitionism", where only the objects having 
a definition exist (clearly, the word "definition" has not so a narrow sense as for Lebesgue: 
in particular, there may exist definitionistic systems, where the definitions may not be finite)' 
The definitionism uses a wider information than constructivism, and in a wider way, 
although constructivistic objects are ? ~ ong the definitionistic ones, and the "relative'. 
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study of only constructivistic objects has (rather mathematical, than logical or philosophica) 
interest for a definitionist (and ,even, for a platonistic or axiomatic mathematician). 

[In translating in Russian, I added: "Prof. Shanin gave the impression, by what he 
said, that every problem about constructivistic objects is soluble. That is certainly wrong. "]. 

SHANIN: But, when we prove the existence of a solution of some problems, this 
proof gives, in the same time, a construction of some such solutions. 

KRASNER: Yes, but there are constructivi<;ticaIly formulable problems, for 
which the constructivism, exactly as the ordinary mathematics, can give no answer, for 
example that of the validity of the Fermat's last theorem. 

So, I recognize the interest of the constructivi<;tic point of view, but I consider it 
as too narrow for me. 

SHANIN: How too narrow? And all the hierarchy of the constructivistic types? 
For every part of Analysis a constructivistic analogue could be built. 

KRASNER: For example, in constructivism do not exist the property of being an 
object or, also, properties opposite in absolute sense (I must say that they, also, don't 
really exist in the naive and in ZF-axiomatic set theory). 

SHANIN: The arguments of Prof. Krasner about the autonomy of mathematics 
in respect to other sciences are a typical example of what happens when a constructivist 
and a classical mathematician meet ..... etc, ... 

KRASNER: But I am not a classical mathematician from point of view of 
Foundations. 

DIOPHANTINE EQUATIONS AND CONSISTENCY OF 
FORMAL THEORIES* 

Mirko MIHALJINEC, Zagreb 

For any recursively-enumerably axiomatizable first order formal theory, 
the set of Godel numbers of its theorems is recursively enumerable. Of this kind 
are for instance the theory P (formalized Peano's arithmetics, see [IJ, pp.43, 
300-301, it might be better to speak about Peano-arithmetics because the axiom 
of induction is expressed for formulas with one free variable in the language of the 
signature (0, S, +, . ,<», the theory S (formalized second order arithmetics, 
[IJ, pp.334-335), the theory ZFC (formalized set theory with the axiom of choice, 
[2J, pp.507-508). If f is a recursive function which enumerates such a set of 
G6del numbers, and if a is the GodeI number of a false formula (e .g. 0 =s (0) 
in the language of P), then the consistency of the theory can be expressed in the 
following way: 1 (3x)f(x)=a. As the set of values off(range, codomain off) 
is recursively enumerable, according to the MatijaseviC's theorem it is diophantine 
(see [4]), and there is a polynomial p (see [8]) in 14 variables with integral ccefficients 
such that consistency of the theory in question is equivalent to the formula = 
1 (3 XI) ••• (3 X13) P (a, Xl' ••• ,x13)=O (the coefficients of that polynomial can 
be effectively calculated as soon as the theory is specified, although it is practically 
impossible because of the size of the numbers involved). Even more, in order to 
check whether a formula of the language of such a theOI y is a theorem, one should 
calculate its Godel number b and check if the equation p (b, Xl' ••• ,x13)=O has 
a solution in nonnegative integers (although the corresponding algorithm, for 
instance for above mentioned theories, does not exist - that is connected with the 

* Translated from the Serbo-Croatian by D. Rosenweig. 
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negative answer to the Hilbert's tenth problem). An important consequence is that 
provability of a statement can be reduced to solvability of a completely specified 
diophantine equation. From the viewpoint that the theory ZFC contains (almost) 
all of contemporary mathematics, it might be said that all mathematical problems 
can be reduced to solvability of corresponding diophantine equations. A word 
of caution is however necessary in this place, as such a view about ZFC certainly 
is exaggerated, because a formal system, however rich, cannot contain all of mathe­
matics. Clear interpretability of a system is as important as its consistency. 

If we compare the GOdel's second theorem about unprovability of consistency 
of a formal system P within the system itself ([1], pp.307-315) with the Gentzen's 
proof (which is finitary-constructive) of consistency of P ([1], pp.315-327), we can 
see that it has undoubtfully been proved in an arithmetically clear way that the 
equation p (a, Xl' ••• ,x13)=O has no solution in nonnegative integers xl> ... , X13 

and that this statement is not provable in the system P. 
It is hence an enrichment of Peano-arithmetics and the theory of diophantine 

equations. Although consistency of P can be proved in the system S ([1], pp.338-3 39) 
that proof is (unlike the Getzen's one) not finitary-constructive, as such a proof 
for consistency of S is not known ([I], p.342) even after the results of Spector and 
Tait (see [7], p.7), and the possibility of such a proof is highly doubtful. This certainly 
holds for ZFC too, so we cannot be convinced about unsolvability of the diophantine 
equation derived from the statement "ZFC is consistent". 

Solvability of diophantine equations has been object of research for a long 
time ([9], [10], [6], [3], pp.176-195, [14]). The methods of contemporary algebraic 
geometry and model theory do enrich our knowlegde about diophantine equations 
([11], [12], [13], [15]). The question is, are the results so obtained provable as theo­
rems in P, are there among them some theorems which are provable in a finitalY­
-constructive way and which are not theorems of P? Is there a statement about 
unsolvability of some diophantine equation which is provable in a finitary-construc­
tive way and which is not a theorem of S (may be even not of ZFC)? 

"The study of diophantine equations, that is the solution of equations in 
integers, or, alternatively, in rationals, is as old as mathematics itself. It has exer­
cised a fascination throughout the centuries and the number of isolated results is 
immense [as it is witnessed, for example, by Dickson's thIee tomes]. Some more-or-less 
general techniques and theories have been developed and there are some grandiose 
conjectures, but the body of knowledge is less systematic than that in mOle recently 
established branches of mathematics because here we are concerned with the most 
basic and intractable mathematical material: the rational integers." ([13], pp.193 
-194). 

"I wish to note expressly that Theorem XI (and the corresponding results 
for M and A) do not contradict Hilbert's formalistic viewpoint. For this viewpoint 
presupposes only the existence of a consistency proof in which nothing but finitary 
means of proof is used, and it is conceivable that there exist finitary proofs that 
can not be expressed in the formalism of P (or M or A)." (K. Godel, [5], p.106.) 
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[Discussed by A.N. Sanin (Leningrad), S.P. Zervos (Athens), Z. MijajloviC (Belgrade).] 

ON MARKOV'S PRINCIPLE* 

N.A. SHANIN, Leningrad 

Professor Shanin kindly conformed to the request of the organizer of the 
pane] discussion to give a special lecture on Markov's principle, to speak especially 
in behalf of it, and to present the related point of view of those constructivists, pri­
marily of Markov and of Shanin himself, who express their opinion about the 
consistency with the idealizations and intuitil'e notions accepted ill constructive 
mathematics of that principle. 

During the discussion we brought out our objections to the application and 
the plausibility of the principle in constructive mathematics. 

At the end of the discussion we came to a terminological agreement only: 
according to the term 'constructive' in (the algorithmic foundations of) 'constnctive 
mathematics' one has to distinguish at least two levels of abstraction and security. 
Markov's principle is concerned with the higher level i.e. with constructive mathe­
matics in a wide (or wider) sense. 

[Discussed by K. Seper (Zagreb), D. Rosenzweig (Zagreb), M. Mihaljinec (Zagreb).] 

'" Summarized by K. Seper 

10 360pUUK pa,QOBB 



146 S. N. Shanin 

1. Contribution to the Discussion of Markov's Principle. 

Kajetan SEPER, Zagreb 

Constructive mathematics (CM) is the science of constructive processes (CP's) and constructive 
objects (CO's) - the results of such processes in case the processes terminate, and of our abilities 
of realizing these processes. More precisely, CP's are defined in terms of algorithms of various kind 
and CO's in terms of words in specific alphabets. The abstraction of potential realizability (APR), 
and the related idea of potential infinity based on it, is a characteristic feature of CM. Constructive 
mathematical logic is formed on the basis of CM, and depends upon CM; it models one's intuitive 
constructive thinking formally by means of syntactical and semantical systems. Our discussion is 
carried through on an intuitive ground, and is concerned with the phrase 'the process of applying 
an algorithm to an admissible input value terminates', or synonimously, 'the algorithmic process 
terminates in afinite number of steps'. Our initial attitude is that this phrase should be 'inunediately 
clear' by our constructive point of view; in other words, that the phrase means that "we are able 
to indicate, actually or potentially ullder APR, the number of steps needed for terminating the appli­
cation of the process, or equivalently, one of its upper bounds'. That number will be caned here the 
halting characteristic of the process. During the discussion Markov's principle (MP) will be mentioned 
frequently. 

We are discussing here the following problem: Is the acceptance and use of MP ill CM 
legitimate i.e. consistent with the idealizations and intuitive notions accepted in CM, and with AP R, 
especially? 

We have objections to the acceptance and use of MP in CM. One applies it only when one 
does not have such a good insight in the algorithmic process under consideration that allows him 
to infer termination of the process, or, we hope seldom, if one does not care about it. In such a case, 
however, one is very often able to infer 'the impossibility of nontermination of the process' ('A') i.e. 
the impossibility of continuation of the development of the process after each step. Then, by use 
of MP, one is allowed to infer 'termination of the process' ('B*'), and, as a consequence, to treat 
the result of the process as being a CO. Of course, in order to find the result actually one i~ allowed 
to develop the process as long as he wants. Such a procedure is just suggested by the constructivists 
who accept MP and who believe that the process will finally stop. If one succeeds to compute the 
result, the application of MP becomes superfluous. Otherwise, generally one is in essentially the 
same position as if he did not have the information A - it does not indicate anything about 
termination, and it is left to one's decision of how long will he compute. So, we consider B* as 
not established by A, but rather as an open problem. 

MARKOV himself, in his papers written before 1967, clarifies the principle by saying that 
he does not see any reason of knowing in advance exactly the halting characteristic of the process 
as being a necessary condition for asserting termination of the process. As a matter of fact, a number 
of great theorems in all branches of CM are obtained by using MP. In SANIN's well-known 
papers on constructive mathematical logic, MP is accepted and widely incorporated in the whole 
body of his semantical anlysis of the propositions of current CM i.e. CM + MP. (We wish to notice 
here that we got a feeling, after reading MARKOV's papers published after 1967, that even 
MARKOV would not treat the principle in such a generality any more.) 

In our opinion, however, the acceptance of MP alters the intuitive notions of our cons­
tructive universe, and the entire motivation for CM, radically. The notion of 'finiteness' 
(effective, static, determined, bounded, actual or obtaining possibly under APR), which is essential 
and primary in our understanding of CP's, CO's and the idea of potential infinity, becomes altered 
into another weakened notion of 'floating finiteness' (nonefi'ective, dynamic, nondetermined, 
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nonbounded, obtaining via potential infinity), or 'potential noninfinity' i.e. non-' potential infi­
nity'. So, the notions of 'termination' and 'CO' become altered, too; they become a kind of 
'floating termination' and 'floating CO', respectively. The difference between the two notions of 

·'finiteness', or 'termination', or 'CO', the one being 'effective' and the other 'floating', can be 
characterized in the following way. The former is persistently actual or potential under APR, and 
so based on APR directly, and is defined by an existential quantifier (which in turn has to be inter­
preted by means of some contensive arguments), The latter, however, is unsteadily procedure-like, 
and based on the idea of potential ilif'inity, and so based on APR, too, but indirectly, and is defined 
by a negated universal quantifier. In CM the primary notion is that of effective finiteness (effective 
termination, effective CO), directly established under APR, and that of potential infinity being 
secondary and defined by it. In CM+MP the primary notion is that of potential infinity, based 
on APR, and that of floating finiteness (floating termination, floating CO) being secondary and 
defined by it. 

We do not say that MP is inconsistent with APR and the like. In any way, APR does not 
imply the idea of floating finiteness (floating termination, floating CO). We just say that this idea is 
based on the idea of potential infinity, and so on APR indirectly. 

We do not say that MP is an additional idealization to APR and the like, either. (Cf. also 
ROSENZWEIG's discussion in this symposium.) Although we could say so, if we have in mind 
our understanding of constructiveness i.e. the essential and primary notions of finiteness, termination, 
CO etc., and, in addition, if we have in mind that, if we are working in CM+MP, we indeed 
abstract from our actual knowing of termination and argue as if such knowing is present, we yet 
avoid to say so. By saying that the acceptance of MP introduces an additional idealization into the 
body of CM, we could not abstain from saying that the acceptance extends the limited computational 
and combinatorial power of homo sapiens from outside, and, consequently, - we are ftnnly 
convinced - that it extends the class of constructively true propositions, too, and so, that it is 
not consistent with APR and the like, and that it contradicts to the essential and primary construc­
tiveness in its whole, as well. 

Exactly in the same sense as BROUWER abstracts from laws determining the components 
of sequences one after the other, and introduces in this way so-called 'choice sequences' (or synoni­
mously, 'infinitely proceeding sequences'), so does MARKOV abstract from halting characteristics 
determining terminations and the corresponding results of algorithmic processes, and introduces 
in this way what we are calling here, 'floating termination' and 'floating CO'. 

According to HEYTING ([11, p.71), "the only essential feature" of the components of 
a choice sequence "is that it does not matter by which means they are determined one after the 
other", and so, choice sequences "are not constructible objects in the strict sense". 

How could the conlponents of a sequence (termination of an algorithmic process and the 
corresponding result) be determined, if not by a law (haiting characteristic)? 

How could we know they are determined, if not by knowing a law (halting characteristic, 
respectively)? 

We do say, however, that CM +MP, in relation to CM, deals with another weaker conceptual 
subject, and that it does not treat the fundamental constructive notions, such as finiteness, termi­
nation, CO etc., adequately. We consider CM + MP as the science of floating CO's. In such a theory 
CO's get mixed among all the weaker and weaker floating CO's. We do not feel any scientific, or 
philosophical, or practical reason to accept such a weak form of CO's, and in the same time not 
to accept for instance infinitely proceeding sequences or the like. We do not feel any need for a 
'closure' of 'all' the - wider and wider classes of - total functions i.e. total algorithms, which 
in a definite sense MP implies. (We mean by that, that MP eliminates the known troubles with the 
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existential quantifier in the definition of these functions i.e. the circulus vitiosus in the definition. 
See also addenda below.) We consider MP just as an approximate guiding principle, heuristic in 
nature, and its application as an ephemeral quasi-constructive guiding argumentation. Theoretically 
the subject is much more interesting, and the relation of CM to CM + MP should be examined 
formally in more detail. Nevertheless, we prefer any modeling of the notions of the wider and 
weaker theory CM + MP in the frame of the (narrower and stronger) theory CM i.e. in the frame 
of the strict CM. For instance, instead of having the notions of total functions, decidable set etc. 
in CM + MP, we prefer to manage them in CM by the notions of weakly total function, weakly 
decidable set etc., respectively. In fact, we feel and believe that ultraconstructivistic tendency in one 
or another form - we are considering complexity theory as one of the various aspects of the 
tendency - wi\l play a role sine qua non in the development of mathematics in the future. 

Addenda. Now, we wish to give here some quotations and comments. 

After HEYTING's and PETER's clarification of the point (see the quotations given below), 
it is generally supposed that everybody working in this area is familiar with what the problem 
is about. 

"There ought to be distinguished between 

a) theories of the constructible; 
b) constructive theories." ([1], p.69.) 

"The notion of a constructible object must be a primitive notion in this sense that must 
be clear what it means that a given operation is the construction of a certain object. It has been 
explained by Miss Peter in her conference in this colloquium that any attempt to define the notion 
of a constructive theory leads to a vicious circle, because the definition always contains an existential 
quantifier, which in its turn must be interpreted constructively." ([I], p.70.) 

"Als eine Zusammenfassung und Verallgemeinerung der durch diesen speziellen Rekursions­
arten definierten Funktionen ist der HERBRAND-GODEL-KLEENEsche Begriff der allge­
mein-rekursiven Funktion entstanden [4]. Das ist ein sehr nUtzlicher Begriff, da er die einheitliche 
Behandlung siimtlicher speziellen rekursiven Funktionsarten ermoglicht; bisher ist aber keine 
allgemein-rekursive Funktion bekannt, die fUr irgendeine mathematische Unetrsuchung wichtig ist, 
und nicht unter eine der bekannten speziellen rekursiven Funktionsarten eingereiht werden 
konnte. Aber der Hauptziel bei der EinfUhrung dieses Begriffes war eben die exakte Fassung des 
KonstruktiviUitsbegriffes. Die sogenannte Churchsche Thesis identifiziert den Begriff der bere­
chenbaren Funktion mit diesem Begriff. Hier mochte ich nicht darauf eingehen, worUber Kalmar 
sprechen wird, niimlich ob tatsiichlich alle berechenbaren Funktionen allgemein-rekursiv sind; 
ich mochte gerade die entgegengesetzte Frage aufwerfen: konnen die allgemein-rekursiven Funk­
tionen samtIich mit Recht "effektiv-berechenbar", d.h. "konstruktiv" genannt werden? 

Eine aUgemein-rekursive Funktion wird durch ein Gleichungssystem angegeben, wobei 
vorausgesetzt wird, dass es zu jeder Stelle ein endliches Berechnungsverfahren gibt, welche aus 
Einsetzungen von Zahlen fUr Variablen und Ersetzungen von Gleichem durch Gleiches besteht, 
und den Wert der betrachteten Funktion an der angegebenen Stelle eindeutig liefert. Nun ist aber 
dieses "es gibt" etwas unsicheres, wie darauf schon der sprachliche Ausdruck hinweist, und zwar 
in den meisten Sprachen. "Es gibt" - wer denn? "11 y a" d.h. "er hat da" - wer und wo? "There 
is" d.h. "da ist" - wo denn? Kleene meint, wer das in dieser AIIgemeinheit nicht annimmt, mag 
dieses "es gibt" konstruktivauffassen. Das ist leicht zu sagen, gerade da bisher keine echt-allgemein­
-rekursive Funktion bekannt ist, und so kann man nicht wissen, was mit einer solchen Einschran­
kung verloren geht. So werden eigentIich zwei Begriffe der allgemein-rekursiven Funktion defioiert: 
einer mit klassisch aufgefasstem, und einer mit intuitionistisch aufgefas~tem "es gibt". Es ware 
interessant durch ein Beispiel zu zeigen, inwiefern der letztere Begriff enger ist, namlich durch eine 
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Funktion, welche klassisch allgemein-rekursiv ist und intuitionistisch nicht; das ist aber kaum zu 
hoffen, da in den bisherigen Betrachtungen noch Uberhaupt kein Beispiel fUr eine allgemein - und 
nicht speziell-rekursive Funktion vorgekommen ist. Nun, der klassische Begriff der allgemein­
-rekursiven Funktion ist nicht konstruktiv, und die intuitionistische (Definition) enthalt ein 
Circulus vitiosus: hier soli das in del' Definition aufretende "es gibt" konstruktiv sein - man 
wollte aber gerade mit dieser Definition der Allgemein-Rekursivitat die Konstruktivitat exakt 
definieren. 

Derselbe Circulus vitiosus taucht liberall auf, wie man ihn auch umgehen mag." ([2], 
pp.227 and 228.) 

"Es hat den Anschein, dass sich der Konstruktivitatsbegriff iiberhaupt nicht zirkelfrei 
erfassen Hisst." ([2], p.233.) 

However, even after HEYTlNG's and PETER's papers, MENDELSON argues as if he 
did not know what is the subject about, and moreover, he gives a misleading statement of the 
subject of PETER's discussion. We quote here sec.2 of his paper entirely. 

"2. According to the precise mathematical definition, a function /(Xl, ... ,x,,) is general 
recursive if there exists a system of equations E for computing f, i.e. for any Xl, ... ,X", there 
exists a computation from E of the value of /(X1, ... ,Xn) (Kleene [5]). Both occurrences of the 
exitential quantifier "there exists" are meant here in the non-constructive classical sense. To this, 
Peter ([2], p.229) makes the following objections: (i) The existential quantifier must be interpreted 
constructively; otherwise, the functions defined in this way cannot be considered constructive. 
(ii) If the existential qualifiers are meant in the construtive sense, and if the notion of "con­
structive" is defined in terms of general recursive functions, then this procedure contains a 
vicious circle. 

Both objections seem to be without foundation. " (6. I am assuming that Peter intends 
"constructive" to have the same meaning as "effectively computable".) In the case of (i), the 
general recursive functions defined using the non-constructive existential quantifiers are certainly 
effectively computable in the sense in which this expression is used in Church's Thesis; no bound 
is set in advance on the number of steps required for computing the value of an effectively computable 
function, and it is not demanded that the computer know in advance how many steps will be needed. 
In addition, for a function to be computable by a system of equations it is not necessary that human 
beings ever know this fact, just as it is not necessary for human beings to prove a given function 
continuous in order that the function be continuous. Since objection (i) is thus seen to be unjusti­
fied, there is no need to assume, as is done in (ii), that the existential quatifiers are interpreted 
constructively. However, there is another error in (ii); "constructive" (or "effectively computable") 
is not defined in terms of general recursive functions. Church's Thesis is not a definition; rather 
it states that the class of general recursive functions has the same extension as the class of effectively 
computable functions; and the latter class has its own independent intuitive meaning. Thus, there 
is no vicious circle implicit in Church's Thesis". ([3], pp.202 and 203.) 

MENDELSON's objections to PETER's objections to the definition of general (i.e. total) 
recursive functions are seen immediately to be without foundation and unjustified. His discussion 
is carried through in the non-constructive classical sense, in another universe, in a universe of 
speechifying, and so it has nothing to do with PETER's criticism. The discussion failed to hit the 
point. PETER intends "constructive" to have the same meaning as "effectively computable"; it is 
demanded that the computer knows in advance how many steps will be needed for computing the 
value of an effectively computable function; and, in addition, for a function to be computable by a 
system of equations it is necessary that human beings know this fact, just as it is necessary for 
human b~ing~ to prove a given function continuous in order that the function be continuous. 
Otherwise, human beings will try to solve all these open problems. PETER's initial question is: 
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Can all the general (i.e. total) recursive functions properly be called "effectively computable" 
i.e. "constructive", ([2], p.228.) Nowhere in PETER's paper one can find any mentioning that 
Church's Thesis is a definition, or that there is a vicious circle implicit in Church's Thesis, but 
that it seems that the notion of constructiveness (or finite-computability, or constructive theory, 
or effectively computable total function) cannot be made precise by a net mathematical definition 
that would be free of a vicious circle ([2], p.233). It seems as MENDELSON did re-discover in 
his paper that the class of effectively computable functions has its own independent intuitive 
meaning ([3], p.203). 

KLEENE explains the situation very carefully and restrainedly. We give here a quotation 
of a passage from the fourth paragraph of footnote 171 in his text-book. 

"We have been assuming without close examination the CONVERSE OF CHURCH'S 
THESIS: If a function is TI/ring con,plltable (or general recllrsive, or A-definable), then it is intui­
tively computable (or effectively calculable). In defending this implication to an intuitionist, or to 
any other kind of constructivist who considers an algorithm to exist only when it is proved by his 
standards that it always works, we only ask him to accept the following: if the hypothesis that a 
function is Turing computable holds by his standards, so does the conclusion. Put thus, it is hard 
to see how it can be questioned. Only if one allows a nonconstructive interpretation of the hypo­
thesis, and yet insists on a constructive interpretation of the conclusion, is the converse of Church's 
thesis in doubt. "([6], p.241.) 

Unfortunately, KLEENE does not discuss the meaning of 'it is proved by a constructivist's 
standards that an algorithm always works (i.e. terminates),. 

Undoubtly, SANIN's new 1973 paper is fully influenced by HEYTlNG's and PETER's 
papers, or at leasts by the facts they discuss. According to SANIN ([7], pp.217, 218,222, and 223), 
let us consider some propositions with their clarifications, and some definitions. 

Let A be any alphabet, A any algorithm over the alphabet A, and P any A-word (i.e. word 
in A). 

(Cl) [(C9), (ClO)] The process of applying algorithm A to P terminates [is potentially infinite, is 
not potentially infinite]. 

(Cz) [(C- 11)] For any A-word X, the process of applying A to X terminates [is not potentially 
infinite]. 

(C- 12) For any natural number n, -, WA (P, n). 

Here W A (X, n) stands for the condition "The process of applying algorithm A to word X 
terminates after not more than n steps". Obviously, this conditiOn is testable by means of an algo­
rithm applicable to (i.e. total with respect to) every word of the form X, n. 

The notion of 'total algorithm with respect to words of a certain type' is defined in this case 
by (C* 2) ([7], p.218), an obvious generalization of (Cz). The sign - in (C-u) indicates an inessential 
for our discussion modification of (Cu). (C-IV slightly differs symbolically from (Cd. 

(Cl) [ (Cz)] is said to be trlle if it has a potentially realizable contensive demonstration. 

An algorithm A over the alphabet A is said to be total (with respect to all A-words) if proposi­
tion (Cz) is true. 

(C9) is clarified (or 'deciphered') by (C- 12)' 

(ClO) and (C- 11) are correspondingly clarified. 

We cannot imagine any such potentially realizable contensive demonstration of (C,) which 
would not indicate the haIting characteristic. On the other hand, if we accept MP, as a conten­
sively conclusive argumentation, as SANIN does in the paper, then we do not see why termination 
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i.e. (Cl) is not clarified or defined by (C10) i.e. by l It n l WA (P, n), and totalness i.e. (Cz) by 
(C- Il) i.e. by 't Xl 't nl WA (X, n), where the prefixed quantifier - connective combinations are to 
be interpreted contensively as usual. By the acceptance of MP, a pure contensive demonstration 
of (Cl), i.e. such that does not make use of MP, get mixed among contensive demonstrations 
of (C]) that make use of it. 

According to PETER ([2], p.22S), there are indeed two notions of general (Le. total) recursive 
function that depends on the interpretation of 'there is' in the definition. The one is the classical 
notion and the other the intuitionistical (Le. constructive) notion. However, the former is not a 
constructive notion, and the definition of the latter contains always a vicious circle. Nowadays 
'there is' is interpreted contensively, or, in other words, is considered as a primitive notion, and 
is not defined by a net mathematical definition; hence, there is no viciolls circle in the'definition' 
of the constructive notion of total recursive function. If 'there is' is interpreted in the sense of 
general applicability of MP, one more notion of total recursive function (call it MP - constructive, 
or floating-constructive) is introduced that has an intermediate status between those before 
mentioned. 
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2. Contribution to the Discussion of Markov's Principle 

Dean ROSENZWEIG, Zagreb 

I see Markov's principle (MP) as a way around the difficulties arising in constructive 
interpretation of the quantifiers occurring in the definition of a total recursive function. A 
constructivist mathematician could live very well just with and open hierarchy of known total 
functions, e. g. of Peter-recursions. If one however insists on a closed, general definition, then 
such a directed application of reductio ad absurdum is the only known way to secure it. An 
attempt to interprete It x 3 Y T (a, x, y) just like any other sentence of the Same form falls into 
an endless loop, while leaving such an interpretation to unspecified intutive arguments makes 
the demarcation between constructivism and intuitionism seem quite arbitrary and unmotivated. 

So I understand MP as an additional idealization, consistent with but certainly not derivede 
from the abstraction of potential realizability and constrllctive interpretation of logical connec­
tives and quantifiers. 
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Results proved by means of "constructive mathematics in the narrow sense", i.e. without 
MP, could de described as computations with an a priori upper bound on computational 
complexity. In such a case a programmer could say: "I could compute this if only I had 
computing apparatus of such and such speed, "where "such and such" means a previously 
known function. On the other hand, results proved in "extended constructive mathematics", 
i.e. by MP, represent computations with no a priori complexity bound. No real or imaginary 
programmer, however powerful a computer he had, could risk an uncontrolled run of such 
a program. 

These arguments are of course highly theoretical, as in any presently conceivable 
situation only first three or four levels of the Grzegorczyk hierarchy are effectively computable 
(compulable in the sense of German berechenbar; more complex functions are effectively 
rechenbar but not berechenbar by humans in this time). 

Nevertheless, such considerations guide me to distinguish between constructive mathe­
matics without and with MP as different degrees of idealization, hence to try to eliminate MP 
where possible and to isolate results for which I don't know how to eliminate it. 

K. Seper 
Fakultet strojarstva i brodogradnje 
Salajeva 5 
41000 Zagreb 
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