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PREFACE 

The aim of Zbornik radova is to foster further growth of pure and applied mathe
matics, publishing papers which contain new ideas and scopes in the mathematics. 
The papers have to be prepared in such a manner that they can inform readers 
in a favourable way, introducing them in a narrower field of mathematical theories 
pointing at research possibilities. It can be for the individual use or for discussions 
in College or University seminars. 

We are open for contacts and cooperations. 

Bogoljub Stankovic 
Editor-in-Chief 
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ABSTRACT. It is known that graph invariants, which contain a great quantity 
of information on graph structure (for example, spectral invariants), are ob
tained by solving some extremal problems on graphs. Recently, such highly 
informative graph invariants are applied in solving optimization problems on 
graphs (e.g., the travelling salesman problem (TSP». Using these paradigms, 
several relations, interconnections and interactions between graph theory and 
mathematical programming are described in this study. A model of TSP based 
on semidefinite programming and algebraic connectivity of graphs is described. 
A class of relaxations of this TSP model is defined and some solution tech
niques based on this class are proposed. Several examples of graph invariants 
defined by some kind of optimization tasks are also presented. Using several 
spectrally based graph invariants we treat the graph isomorphism problem. 

1. Introduction 

In this study we want to elaborate the following two assertions; 

Assertion 1. Graph invariants, which contain a great quantity of information 
on graph structure, are obtained by solving some extremal problems on graphs. 

Assertion 2. Highly informative graph invariants are useful in solving opti
mization problems on graphs. 

If these assertions were mathematical statements, they should be proved in 
mathematical sense. We believe that they are true in an informal sense. Our ex
perience in research shows much evidence of their validity. In this study we shall 
present several mathematical results which support them. Using these paradigms, 
several relations, interconnections and interactions between graph theory and math
ematical programming are described. 

In this introductory section we present some of the basic results from math
ematical programming and graph theory which are necessary for the presentation 
of main ideas in Sections 2 and 3. In 1.1 an important optimization problem, the 
travelling salesman problem, is introduced. A highly informative graph invariant, 
the spectrum of a graph, is described in 1.2. Subsection 1.3 is devoted to semidefi
nite programming, a recently developed optimization technique and an important 
branch of mathematical programming. 

Section 2 elaborates Assertion 2 while Section 3 elaborates Assertion 1. 

Key words and phrases. Graph spectra, Algebraic connectivity, Graph isomorphism problem, 
Semidefinite programming, Travelling salesman problem, Branch-and-bound methods, Complexity 
indices, Clustering problems. 
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1.1. Travelling Salesman Problem. There is partly a joke, partly an advice 
in mathematics saying that if you do not know how to solve a problem you should 
find the first derivative and make it equal to zero. The point is that a great number 
of mathematical problems are optimization problems or can be reduced to them. 

We shall begin with an exception. 
Suppose that a salesman, starting from his home city, is to visit exactly once 

each city on a given list of cities and then to return home. It is reasonable for him 
to select the order in which he visits the cities so that the total of the distances 
travelled in his tour is as small as possible. This problem is called the travelling 
salesman problem (TSP). 

TSP is a typical problem of combinatorial optimization. There is an extensive 
literature on and an impressive theory of TSP. The theory includes algorithms and 
heuristics (with an emphasis on complexity questions) for solving TSP as well as 
several variations and related problems. There are applications of TSP in operations 
research and engineering. A nice monograph [51] sUlnmaries various aspects of the 
work that has been done concerning TSP. See also expository articles [49], [50]. 

Finding the travelling salesman's shortest route to pass n cities in such a way 
that each city is visited exactly once represents the traditional formulation of TSP. 
It is assumed that non-negative distances dij between the cities i,j (1 ::;; i < j ::;; n) 
are given and also that the travelling salesman starts his trip from an arbitrary city. 
If the travelling salesman does not return to the starting city, then the minimal 
traversed route is called an open route or simply a path. 

This problem cannot be solved using derivatives. This is because the problem 
has a discrete character: we have to minimize a function defined on a finite set 
(the set of permutations of n cities in this case). Such problems belong to the area 
of combinatorial optimization. There is the obvious brute force method to solve 
such optimization problems: to calculate the value of the objective function for 
all points in the domain and to select minimum values. However, in the case of 
TSP and of many other combinatorial optimization problems the execution time 
of a brute force algorithm on best computers would last for thousands of years for 
quite modest dimensions of the problem instances (say a couple of dozens of cities 
in the case of TSP). Since applications require solving large scale problems, many 
"clever" algorithms and heuristics have been developed and a theory of complexity 
of algorithms and problems has been established. 

One of most popular among algorithms which avoid total search is branch and 
bound. We shall describe branch and bound technique in a general framework with 
emphasis on the relevant details concerning the solving of the TSP. 

For the sake of simplicity, we restrict ourselves to the following optimization 
(minimization or maximization) problem on weighted graphs (networks), which is 
still very general: 

Let A be the set of all subgraphs of a graph G (with weights inherited from 
G). Let F ~ A be the set of all subgraphs of G which posses some additional 
properties. The subgraphs from F are called feasible. We seek in F the elements 
with extremal (minimal or maximal) weights. 
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Let us assume that our optimization problem is a minimization problem. In 
the case of maximization the procedure would be similar. 

In order to solve such a problem by a branch and bound algorithm, let n 
(:F ~ n ~ A) be a set of subgraphs for which there exists a polynomial time 
algorithm (say a) for finding the optimal element in n. The set n corresponds 
to some relaxed variant of our problem (some feasibility conditions need not hold 
anymore). 

To describe the algorithm (search procedure), we first introduce a search tree T 
as an auxiliary tool. T is a rooted tree with the root at a vertex r; all other vertices 
are the descendants of r. If f is any vertex, then its out-neighbors (called sons of 
f, f being their lather) are denoted by Si, ... , Sn· Each vertex, say f, corresponds 
to some subset nu) of n and to a subproblem of the original problem (usually 
obtained by including and/or excluding some edges of G from the solution). The 
root r corresponds to the whole set n. If I is a father and the solution of the 
relaxation task on the corresponding subproblem is not feasible and its length is 
smaller than the current lower bound (set at the beginning), then after branching 
at f by some branching rules (which "destroy" some "unfeasible details" in the 
solution of the relaxation task), the set nu) is split into mutually disjoint subsets 
n(sd, ... , n(sn) yealding new subproblems and new vertices in the search tree T. 
By solving the relaxation problem at some tree vertex with the use of the algorithm 
a, we obtain a lower bound for a feasible solution at this vertex. A global upper 
bound is provided at the beginning by taking any feasible subgraph (usually found 
by some quick heuristic). The branch and bound algorithm terminates when all 
subproblems in the search tree T are exhausted. 

The above described general scheme of a branch and bound algorithm can be 
specified to solve the TSP by taking :F to be the set of all Hamiltonian paths (or 
cycles or circuits - depending on the variant considered). 

For a more detailed treatment of branch and bound algorithms see for example 
[51, pp. 361-401]. 

1.2. Graph Spectra and Other Graph Invariants. The adjacency matrix of 
a (multi)(di)graph G, with vertex set {1,2, ... ,n}, is the n x n matrix A = (aij) 
whose (i, j)-entry aij is equal to the number of edges, or arcs, originating at the 
vertex i and terminating at the vertex j. Two vertices of G are said to be adjacent 
if they are connected by an edge or arc. Unless we indicate otherwise we shall 
assume that G is an undirected graph without loops or multiple edges. The degree 
of a vertex is the number of vertices adjacent to that vertex. 

The characteristic polynomial det(>.I - A) of the adjacency matrix A of G is 
called the characteristic polynomial of G and denoted by PG(A). The eigenvalues 
of A (Le., the zeros of det(>.I - A)) and the spectrum of A (which consists of the 
n eigenvalues) are also called the eigenvalues and the spectrum of G, respectively. 
The spectrum of G is denoted by spec G. These notions are independent of vertex 
labelling because a reordering of vertices results in a similar adjacency matrix. 
The eigenvalues of G are usually denoted by Ai, . .. , An; they are real because A is 
symmetric. Unless we indicate otherwise, we shall assume that Ai ~ A2 ~ '" ~ An 
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and use the notation Ai = Ai(G) for i = 1,2, ... , n. Clearly, isomorphic graphs 
have the same spectrum. 

The eigenvalues of A are the numbers A satisfying Ax = Ax for some non-zero 
vector x E an. Each such vector x is called an eigenvector of the matrix A (or of 
the labelled graph G) belonging to the eigenvalue A. The relation Ax = Ax can 
be interpreted in the following way: if x = (Xl, X2,"" Xn)T, then Axu = I:v,,",u Xv 

where the summation is over all neighbours v of the vertex u. If A is an eigenvalue 
of A then the set {x E an : Ax = Ax} is a subspace of an, called the eigenspace of 
A and denoted by c(A) or CA(A). Such eigenspaces are called eigenspaces of G. Of 
course, relabelling of the vertices in G will result in a permutation of coordinates 
in eigenvectors (and eigenspaces). 

The largest eigenvalue Al of a graph G is called the emphindex of G; since 
adjacency matrices are non-negative there is a corresponding eigenvector whose 
entries are all non-negative. 

Next we present certain notation, definitions and results from graph theory. 
As usual, K n , Cn and Pn denote respectively the complete graph, the cycle and 

the path on n vertices. 
mG denotes the union of m disjoint copies of G. We write V (G) for the vertex 

set of G, and E( G) for the edge set of G. 
If uv is an edge of G we write G - uv for the graph obtained from G by deleting 

uv. For v E V(G), G - v denotes the graph obtained from G by deleting the vertex 
v and all edges incident with v. More generally, for U ~ V(G), G - U is the 
subgraph of G induced by V(G) "U. 

A function defined on a family 9 of graphs is called a graph invariant for 
graphs in 9 if it is the same for isomorphic graphs in g. Usually, graph invariants 
are numbers (integers, reals, etc.) but can be more complex objects (families of 
numbers, vectors, matrices, etc.). 

Highly informative graph invariants from the title have not been defined pre
cisely; we use this term informally. We shall say that a graph invariant is highly 
informative if it can be obtained quickly (possibly by a polynomial time algorithm) 
and if it contains a lot of information on the graph structure. It would be de
sirable that the invariant fully determines the graph (up to isomorphism as it is 
usually said). Such invariants would be obviously useful in solving the graph iso
morphism problem, i.e., the problem of deciding whether or not two given graphs 
are isomorphic. 

Let us consider some examples of graph invariants 

1. Vertex degrees. The family of vertex degrees can be quickly calculated. 
However, the degree of a vertex is a kind of local invariant; it does not depend 
on the structure of the whole graph. Only neighbors of the vertex in question 
contribute to the value of its degree. It is not surprising that the family of vertex 
degrees does not say much on the graph structure, i.e. usually there are several 
graphs having a given family of vertex degrees. For example, a graph on 8 vertices 
having all vertex degrees equal to 2 can be one of the following three graphs: Cs, 
C5 U C3 , C4 U C4 . 

4 



OPTIMIZATION AND HIGHLY INFORMATIVE GRAPH INVARIANTS 11 

2. Spectrum. Family of graph eigenvalues is obtained by considering extremal 
values of the Rayleigh quotient of the adjacency matrix. Eigenvalues depend in 
general case on all details on graph structure. Therefore more can be said on graph 
structure in the case that we know graph eigenvalues than in the case of knowing 
vertex degrees. Let us analyze the situation with graphs in which the vertex degrees 
are equal to 2. Such graphs are called regular graphs of degree 2. 

Regular graphs of degree 2 are unions of cycles. One can verify by direct 
calculation that eigenvalues of the cycle en are real parts of the n-th roots of 2n, 
i.e., 

spec en = {Re V'fri} = {2 cos 2: j I j = 0, 1, ... , n - 1 } 

The largest eigenvalue is Ai = 2 (j = 0) and the next one is two-fold: A2 = A3 = 
k 

2 cos 2: (for j = 1 and j = n -1). Suppose now that G = U en,. Then 
i=i 

k . 

spec G = U { 2 cos 2~ j I j = 0, 1, ... ,ni - 1 } 
i=i n. 

Given spec G, we can first establish that G is regular (by Theorem 3.22 of [31]) of 
degree 2. This is already information contained in the family of vertex degrees. But 
here we have more. Finding the second largest eigenvalue in modulus in spec G, 
we can determine the size ni of the largest cycle in G. Gradually, by analyzing the 
whole spectrum we can determine the sizes of all cycles of G, i.e., determine G up 
to isomorphism. 

In this way we have proved the following theorem (see [121 or [31, p. 167}). 

THEOREM 1.1. A regular graph of degree 2 is characterized by its spectrum. 

The reader might think that unions of cycles are not so interesting graphs to 
justify the space devoted to their spectral characterizations. However, the impor
tance of this theorem will be shown in Subsection 2.1. 

It seems that graph theoretical invariants, which contain a lot of information 
about the graph structure and thus are useful for the graph isomorphism problem, 
are obtained by solving some kind of optimization problem. Eigenvalues are also 
obtained in this way (as extrema of the Rayleigh quotient). The same holds for 
angles of a graph [171. See 3.3 for other examples. 

3. A binary number. A graph G can be characterized by the largest (or least) 
binary number obtained by concatenation of rows (or rows of the upper triangle) of 
adjacency matrices of G. The ordering of vertices which yields the characterizing 
binary number can be considered as a canonical vertex ordering. One can consider 
several variations of this idea but it turns out that the known algorithms for finding 
the graph characterizing quantity are exponential (cf. [62], [4}). Here a high price 
has been paid. We have an invariant which tells everything about the graph but 
it is time consuming to determine it. (However, this does not mean that under 
certain circumstances the extremal binary number has not been successfully used 
in recognizing graphs). 
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From the point of view of practical computation it is not very important to 
decide whether the graph isomorphism problem is NP-complete or belongs to P. 
Experience has shown that any reasonable algorithm for graph isomorphism testing 
performs well in average. However, the problem has great theoretical significance. 
Leaving aside the implications in the theory of complexity of algorithms and prob
lems, one can say that the understanding of the kind of difficulties arising in the 
graph isomorphism problem enables the understanding of difficulties that appear 
in treating graph theory problems in general. 

After having got equanted with these three examples we might be inclined to 
believe that spectral type graph invariants represent a good compromise between 
different reqirements on graph invariants. Therefore we describe another variant in 
defining graph eigenvalues. 

Let G = (V, E) be an undirected simple graph, where V = {I, ... , n} is the set 
of vertices and E is the set of edges. The Laplacian L( G) of graph G is a symmetric 
matrix defined as L(G) = D(G) - A(G), where D(G) is the diagonal matrix with 
vertex degrees on the diagonal and A(G) is the adjacency matrix of G. 

The matrix L(G) is positive semidefinite. If J.ll ~ ... ~ J.ln are eigenvalues of 
L(G), then J.ll = 0 with the corresponding eigenvector e = (1, ... ,1). All other 
eigenvalues have eigenvectors which belong to the set 

S = {X = (Xl, ... ,Xn) E!Rn I tXi = 0, tx~ = I} 
According to Fiedler, the second smallest eigenvalue J.l2 of L(G), is called the 

algebraic connectivity of G and denoted by a(G). In [37] the following results are 
proved: 

THEOREM 1.2. The algebraic connectivitya(G) has the properties: 

(i) a(G) = minxTL(G)x 
xES 

(ii) a(G) ~ 0, a(G) > 0 if and only if G is connected. 

Fiedler shows that the notion of the Laplacian and the algebraic connectivity 
can be generalized to graphs with positively weighted edges. 

A C-edge-weighted graph Gc = (V, E, C) is defined by a graph G = (V, E) and 
a symmetric nonnegative weight matrix C such that Cij > 0 if and only if {i,j} E E. 
Now the Laplacian L(Gc) is defined as L(Gc ) = diagh, ... rn) - C, where ri is 
the sum of the i-th row of C. The Laplacian L(Gc) has similar characteristics as 
L(G). Namely it is symmetric, positive semidefinite with the smallest eigenvalue 
J.ll = 0 and the corresponding eigenvector e. As before, the algebraic connectivity 
a(Gc) is the second smallest eigenvalue of L(Gc), which enjoys similar properties 
to those in Theorem 1.2. 

THEOREM 1.3. (M. Fiedler [37]) The generalized algebraic connectivitya(Gc) 
has the following properties: 

(i) a(Gc) = minxT L(Gc)x 
:r:ES 

(ii) a( Gc) ~ 0, a( Gc) > 0 if and only if Gc is connected. 
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1.3. Semidefinite Programming. Semidefinite programming (SDP) has been 
one of the most active research areas in mathematical programming during the last 
decade. It is related to minimization of a linear function on the set of positive 
semidefinite matrices subject to linear constraints. 

Recall that a symmetric matrix is called positive semidefinite (positive definite) 
if its eigenvalues are nonnegative (positive). 

In order to define a semidefinite program, we need to introduce the appropriate 
notation. Let snxn denote the set of symmetric n x n matrices and let s~xn denote 
the set of positive semidefinite n x n matrices, Then s~xn is a closed convex cone 
in lRnxn of dimension n(n - 1)/2. We write X ~ 0 (X > 0) to denote that X is a 
symmetric positive semidefinite (positive definite) matrix, and we write X ~ Y to 
denote that X - Y ~ O. For A, B E lRnxn the F'robeinus product is defined by 

n n 

A 0 B = tr(ATB) = L Laijbij 
i=l j=l 

If A, BE snxn it follows that A 0 B = tr(AB). 
If A, B E s~xn it can be proved that A 0 B ~ 0 and that A 0 B = 0 implies 

AB = 0 (see [65]). 
Now a semidefinite program (SDP) can be formulated as: 

minimize CoX 

(1) subject to Ai 0 X = bi, i = 1, ... ,m 

X~O 

where C, AI, . .. ,Am E snxn, b = (b1 , • •• ,bm) E lRm are given parameters and the 
unknown n x n matrix X is symmetric positive semidefinite. In the sequel P and 
po will denote the feasible set of problem (1) and its relative interior, Le., 

p = {X E lRnxn I Ai 0 X = bi , i = 1, ... , m, X ~ O} 

po = {X E lRnxn I Ai 0 X = bi, i = 1, ... , m, X > O} 

Without loss of generality we may assume that matrices AI, . .. ,Am are linearly 
independent. It is easy to see that then (1) can be written in the form 

minimize 

(2) subject to 

Co + eT z 
p 

Fo + LZiFi ~ 0 
i=l 

where Z E lRP is the unknown vector, p = n(n + 1)/2 - m, and Fi E snxn, 
i = 0, ... ,p, Co E R, e E lRP are the corresponding parameters. Indeed, problem 
(1) has n2 scalar variables and m + n(n - 1)/2 linear equations (m given explicitly 
and n(n - 1)/2 following from the fact that X is symmetric). Hence there are 
n2 

- m - n(n -1)/2 = n(n + 1)/2 - m = p free variables which uniquely determine 
the remaining ones, Le., there exist (symmetric) matrices Fo, F1, ... ,Fp such that 

{X E snxn I Ai 0 X = bi , i = 1, ... , m} = {X = Fo + Zl F1 + ... + zp Fp I Z E lRP} 
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This implies that the feasible sets of (1) and (2) are equal. Moreover, 

CoX = Co (Fo + ZI Fl + ... + zp Fp) = C 0 Fo + ZI Co Fl + ... + zp C 0 Fp 

and we can take Co = C 0 Fo, c = (C 0 F1, ••• , C 0 Fp). 
Theoretical properties of the SDP problem have been studied in sixties, sev

enties and early eighties by several authors, e.g. Bellman, Fan [7], Craven, Mond 
[11], Fletcher [38], Rockafellar [63] Wolkowicz [67], etc. We shall state here only 
the main results. The dual problem associated to (1) is the following SDP problem 
of the type (2): 

maximize bT y 
m 

subject to I: Yi Ai :::;;; C, 
i=1 

which can be equivalently reformulated as: 

maximize bT Y 

(3) subject to 
i=1 

Z~O 

The feasible set of (3) and its relative interior will be denoted by D and DO, 
respectively, i.e. 

D = {(Z, y) E )gnxn x )gm I ~ Yi Ai + Z = C, Z ~ o} 
DO = {(Z, y) E )gnxn X )gm I ~ Yi Ai + Z = C, Z > o} 

It is easy to prove the following week duality theorem. 

THEOREM 1.4. If X E P, (Z,y) E D, then CoX ~ bTy. 

PROOF. We have 
m m 

(4) CoX = I: Yi Ai 0 X + Z 0 X = I: Yi bi + Z 0 X = bT Y + Z 0 X 
i=1 i=1 

As Z, X E s~xn it follows that Z 0 X ~ 0 and (4) implies CoX ~ bTy. 0 

Let p* and d* be the optimal values of primal (1) and dual (3), i.e., 

p* = inf CoX, 
XEP 

d* = sup bTy 
(Z,y)ED 

Theorem 1.4 implies p* ~ d*. Let P* and D* be the corresponding sets of optimal 
solutions, i.e., 

P* = {X E PlC 0 X= p*}, D* = {(Z,y) I bT Y = d*}. 

It is easy to construct examples demonstrating that the sets P* (D*) can be empty 
even if p* (d*) is finite, which is not the case in linear programming. The next 
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theorem gives conditions which guarantee that P* and D* are nonempty and that 
the duality gap p* - d* is equal to zero. 

THEOREM 1.5. (i) Suppose that one o/the/ollowing conditions hold: 1° po 1:- 0, 
2° DO 1:- 0. Then p* = d* . 

(ii) Suppose that 1° and 2° hold. Then P* "# 0, D* 1:- 0. 

The proof is an application of the duality theory from convex analysis (see e.g., 
[59], [63]). 

If both conditions 1° and 2° hold it is easy to see that the set P* x D* is equal 
to the set of solutions to the system 

(a) X Z = ° 
(5) 

(b) 
i=l 

(c) Ai 0 X - bi = 0, i = 1, ... , m 

(d) X ~ 0, Z ~ ° 
Indeed, if X and (Z, y) are optimal solutions of problems (1) and (3) their feasibility 
implies conditions (5b )-(5d). Moreover, CoX = p* = d* = bT y. Since by (4) 
Z 0 X = CoX - bT Y it follows that Z 0 X = 0, which implies X Z = 0, i.e., (5a) 
holds. 

Let now (X, Z, y) E jRnxn x jRnxn X jRm be a solution of (5a)-(5d). Then X 
and (Z,y) are feasible solutions of (1) and (3) and hence, by Theorem 1, CoX ~ 
p* ~ d* ~ bTy. As X Z = ° implies Z 0 X = ° from (4) it follows CoX = bTy, 
i.e., CoX = p*, bTy = d*. 

A strong impulse to further development of semidefinite programming was given 
by Nesterov and Nemirovski in a series of papers [55, 56, 57, 58, 59] written 
between 1988 and 1991 and by Alizadeh [2], who have shown independently that 
interior point methods for linear programming can be directly extended to SDP. 
For example, the parametrized logarithmic barrier problem for linear programming 
extends to SDP as: 

(6) 

minimize 

subject to 

CoX - t1n(detX) 

Ai 0 X = bi , i = 1, ... , m 

X>O 
n 

where In( det X) replaces the logarithmic barrier function 2: In Xj. The optimality 
conditions for this problem can be written as j=l 

(a) XZ-tI=O 
m 

(7) 
(b) LYi Ai + Z - C = ° 

i=l 

(C) Ai 0 X - bi = 0, i = 1, ... , m 

(d) X> 0, Z > ° 
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which in fact is a parametrization of optimality conditions (5a)-(5d). Under the 
assumptions 1° and 2° from Theorem 1.5 it can be shown that for each t > 0 
system (7a)-(7d) has the unique solution (Xt,Zt,Yt). Moreover, lim (Xt,Zt,Yt) = - ~~ 
(X", Z .. , y .. ), where X" solves (1) and (Z .. , y*) solves (3) (for a proof see [46]). 

The key idea of interior-point methods for SDP is to use Newton method in 
order to get approximate solutions of the parametrized system (7a)-(7d). A typical 
algorithm can be described as follows: 

Algorithm: 
Input: Xo E po, (Zo,Yo) E DO, € > 0 
Initialization: Set k = 0, to = Xo 0 Zo/n 
Repeat until tk < € do 

(1) Set in (7a)-(7d) t = tk 
(2) Compute the Newton direction (t6.Xk, t6.Zk, t6.Yk) at (Xk' Zk,Yk). 
(3) Choose G:k > 0 such that 
(Xk+l,Zk+l,Yk+l) = (Xk,Zk,Yk) + G:k(t6.Xk,t6.Zk,t6.Yk) E pO x DO 
(4) Set tk+l = Xk+l 0 Zk+1/n, k ~ k + 1 

End. 
It should be noted that (7a) can be represented in many different ways, includ

ing for example (X Z + Z X) /2 - t I = 0, resulting in many different nonequivalent 
Newton directions, and hence different SDP methods. In terms of theoretical perfor
mance, the best SDP methods are guaranteed to reduce duality gap of the iterates 
by a fixed proportion in O(..;n) iterations. This is identical to the complexity result 
for linear programming with n variables, even though the number of scalar variables 
in SDP is much larger (there are n(n + 1)/2 entries in the symmetric matrix X). 
More precisely, the algorithm stops in O( Jnlog xO::eZO ) iterations, while the com
plexity of a single iteration of the algorithm is typically O(max{ m 2n2 , mn3 , m 3 } ). 

This gives the overall complexity bound O(max{m2n2.S,mn3.S,m3no.S}). 
There are many active research areas in semidefinite programming varying from 

development of different interior point algorithms and investigating their proper
ties to writing efficient SDP codes capable of handling large sparse SDP problems. 
Special attention is payed to applications of SDP, which are very wide. The types 
of constraints that can be modelled in the SDP framework include linear inequal
ities, convex quadratic inequalities, lower bounds on matrix norms, lower bounds 
on determinants of symmetric positive semi definite matrices, lower bounds on the 
geometric mean of a nonnegative vector, etc. Using these and other constructions 
the following problems can be stated as SDP problems: optimizing a convex qua
dratic form subject to convex quadratic inequalities, minimizing the volume of an 
ellipsoid that covers a given set of points and ellipsoids, maximizing the volume of 
an ellipsoid that is contained in a given polytope, a variety of maximum eigenvalue 
and minimum eigenvalue problems, etc. In particular, there is a growing interest 
in applications of SDP in combinatorial optimization where it is used in order to 
get satisfactory lower bounds on the optimal objective function value. Some exam
ples are SDP relaxations for the max-cut problem, graph coloring problem and the 
travelling salesman problem. The next section gives a detailed description of SDP 
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approach to the travelling salesman problem. A comprehensive survey of theory, 
algorithms and applications of semidefinite programming can be found in a recently 
published monograph [68]. 

2. Using Spectral Invariants in Problems 
of Combinatorial Optimization 

In this section we elaborate Assertion 2 by describing the use of algebraic con
nectivity of a graph in solving TSP and in some clustering problems. In Subsection 
2.1 we describe a model of TSP based on semidefinite programming and algebraic 
connectivity of graphs. Another way of using graph spectra in treating TSP is given 
in Subsection 2.2, where we introduce complexity indices for TSP. Subsection 2.3 
describes some problems of clustering binary vectors and provides another example 
of using highly informative graph invariants in solving optimization problems. 

2.1. Discrete Semidefinite Programming Model for TSP. Let G = (V, E) 
be a complete undirected graph, where, as before, V = {I, ... , n} is the set of 
vertices and E is the set of edges. To each edge {i,j} E E a distance (cost) 
dij is associated such that the distance matrix D = (dij)nxn is symmetric and 
dii = 0, i = 1, ... , n. Now the symmetric travelling salesman problem (TSP) can 
be formulated as follows: find a Hamiltonian circuit of G with minimal cost. 

Algebraic connectivity of a Hamiltonian circuit is well knowJ;l. in the theory 
of graph spectra (see e.g. [31)). Since the graph is regular of degree 2, we have 
L = 21 - A. Hence, the Laplacian of a circuit with n vertices has the spectrum 

2 - 2cos(21fjln), j = 1, ... ,n 

and the second smallest eigenvalue is obtained for j = 1 and j = n - 1, i.e., JL2 = 
J.L3 = 2 - 2 cos(21f In). This value will be denoted by hn , i.e., hn = 2 - 2 cos(21f In). 

Now, Theorem 1.1 of Section 1.2 will be transformed into a form which is 
very useful in solving TSP. The next theorem, which gives a basis for the discrete 
semidefinite programming model of TSP, has been proved in [24] as a consequence of 
a more general result. For the sake of completeness we supply here a self-contained 
proof following [25]. 

THEOREM 2.1. Let H be a spanning subgraph of G such that d(i) = 2, i = 
1, ... , n, where d(i) is the degree of vertex i with respect to H, and let L(H) = 
(lij )nxn be the corresponding Laplacian. Let a and f3 be real parameters such that 
a> hnln, 0 < f3 ::::; hn · Then H is a Hamiltonian circuit if and only if the matrix 
X = L(H) + aJ - f31 is positive semidefinite, where J is the n x n matrix with all 
entries equal to one and I is the unit matrix of order n. 

PROOF. Let 0 = J.L1 ::::; JL2 ::::; ••• ::::; JLn be the eigenvalues of L(H) and let Xl = e 
and Xi E S, i = 2, ... ,n, be the corresponding eigenvectors which form a basis for 
]Rn. It is easy to check that J has two eigenvalues: 0, with multiplicity n -1 and the 
corresponding eigenvectors X2, ••• , xn, and n with e as its eigenvector. Therefore 

Xe = (L + aJ - f3I)e = (an - f3)e 

Xxi = (L + aJ - f3I)xi = (JLi - f3)Xi, i = 2, ... ,n 
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which means that an - /3 and Pi - /3, i = 2, ... , n are eigenvalues of X with 
eigenvectors e, x2, ... , xn , respectively. 

The conditions of Theorem 2.1 garantee that H is a 2-matching, i.e., it is either 
a Hamiltonian circuit or a collection of at least two disjoint subcircuits. In the first 
case P2 = hn' while in the second, according to Theorem 1.2, P2 = O. As a > hn/n 
in both cases it follows that an - /3 > P2 -./3, i.e., the smallest eigenvalue of X is 
equal to P2 - /3. 

Suppose that H is a Hamiltonian circuit. Then /3 :::;; hn implies P2 - /3 = 
hn - /3 ~ 0, i.e., matrix X is positive semidefinite. Suppose now that X is positive 
semidefinite. Then P2 - /3 ~ 0 and /3 > 0 imply P2 = a(H) > 0 and by Theorem 
1.2 it follows that H is a connected 2-matching, i.e., a Hamiltonian circuit. 0 

It follows from Theorem 2.1 that a spanning sub graph H of G is a Hamiltonian 
circuit if and only if its Laplacian L(H) satisfies the following conditions: 

(8) lii = 2, i = 1, ... ,n 

(9) X = L(H) + aJ - /31 is positive semidefinite, a > hn/n, 0 < /3 :::; hn 

Starting from (8) and (9) the following discrete semi definite programming 
model of TSP can be defined 

(10) 

subject to 

(11) 

(12) 

(13) 

(14) 

Xii = 2 + a - {3, i = 1, ... , n 
n 

L Xij = na - /3, i = 1, ... , n 
j=l 

Xij E {a -I,a}, i,j = 1, ... ,n,i < j 
X~O, 

where X ~ 0 denotes that the matrix X = (Xij)nxn is symmetric and positive 
semi definite and a and {3 are chosen according to Theorem 2.1. Matrix L = X + 
{3I - aJ represents the Laplacian of a Hamiltonian circuit if and only if X satisfies 
(11)-(14). Indeed, constraints (11)-(13) provide that L has the form of a Laplacian 
with diagonal entries equal to 2, while condition (14) guarantees that L corresponds 
to a Hamiltonian circuit. Therefore, if X* is an optimal solution of problem (10)
(14), then L* = X* + {3I - aJ is the Laplacian of an optimal Hamiltonian circuit 

n n 

of G with the objective function value L L (-~dij)lij = F(X*). 
i=l j=1 

(15) 

The well-known integer programming formulation of TSP reads: 

minimize L L dijXij 
iEV j>i 

, 
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subject to 

(16) LXii + LXii = 2, i E V; 
i<i i>i 

(17) LLxii ~ \5\-1, for all 5 cV, 5 -::I 0; 
iES iES 

i>i 
(18) xii = 0 or 1 i, j E V, j > i. 

The subtour elimination inequalities (17) can also be written as 

L LXii + L LXii ~ 2, for all 5 c V, 5 =F 0. 
iESiEV-S iEV-SiES 

i>i i>i 

Each of n constraints in group (16) requires exactly two edges to be incident 
to every ver~ex and constraints of type (17) are subtour elimination constraints 
excluding the subtours with less than n vertices. 

It is important to note that in our discrete semi definite programming model of 
TSP (10)-(14), the single condition (14) replaces all subtour elimination constraints 
in the standard integer programming model! 

A natural semidefinite relaxation of the travelling salesman problem is obtained 
when discrete conditions (13) are replaced by inequality conditions: 

(19) minimize F(X) 

subject to 

(20) 

(21) 

(22) 

(23) 

Xii = 2 + a - {3, i = 1, ... , n 
n 

LXii = na - {3, i = 1, ... , n 
i=1 

a-I ~ xii ~ a, i, j = 1, ... ,n, i < j 
X~O 

It is easy to see that the relaxation (19)-(23) can be expressed in the standard 
form of an SDP problem. Indeed, constraint (20) can be represented as Ai 0 X = 
2 + a - {3, where 0 is the Frobenius product and Ai is a symmetric n x n matrix 
with 1 at the position (i, i) and all other entries equal to O. Similarly, condition 
(21) is equivalent to Bi 0 X = 2(na - (3), where Bi has 2 at the position (i, i) 
while all the remaining elements of the i-th row and the i-th column are equal to 
1, and all the other entries are zero. Finally, condition (22) can be expressed as 
2(a - 1) ~ Cii 0 X ~ 2a, where Cii has 1 at the positions (i,j) and (j, i) and 
zero otherwise. Since SDP problem (19)-(23) depends on parameters a and {3 it 
represents a class of semidefinite relaxations of TSP. In the sequel, members of this 
class will be referred to as SDP relaxations. 

Let us denote by P and po the feasible set of problem (19)-(23) and its relative 
interior. For each X E P the corresponding Laplacian L = X + f31 - aJ can 
be interpreted as the Laplacian of the weighted graph GL = (V,EL,CL), where 
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EL = {{i,j} E E 11ii < O} and CL = 21 - L. If a and f3 satisfy the conditions 
of Theorem 2.1 then, using similar arguments as in the proof of Theorem 2.1, it 
can be shown that X ;;:: 0 is equivalent to a(GL) ;;:: f3 (see also [24]). Hence, by 
Theorem 1.3 graph G L is connected. It immediately follows that 2-matchings with 
disjoint subcircuits cannot correspond to any X in P. 

It is easy to see that po =I 0. Indeed, if e.g. L = (2 + _2_)1 _ _ 2_J, 
n-I n-I 

then X = t + aJ - f31 = (2 + _2_ - (3)1 + (a - _2_)J has the eigenvalues 
n-I n-I 

2 + ~I - f3 with the multiplicity n - 1 and na - f3 with the multiplicity 1. Since 
n-

na - f3 > 0 and 2 + ~I - f3 ;;:: 2 + ~I - hn > 0 for n ;;:: 4, it follows that 
n- n-

X E po, n;;:: 4. 
For f3 < hn matrices X which correspond to Laplacians of Hamiltonian circuits 

are in po, while for f3 = hn these matrices belong to P " PO. It is clear that the 
best relaxation is obtained for f3 = hn . Concerning the parameter a, it is always 
sufficient to choose a = 1. 

The semidefinite relaxation (19)-(23) is substantially different from the existing 
TSP relaxations. It should be pointed out that it cannot be theoretically compared 
neither with 2-matching nor with I-tree. Indeed, if we consider TSP model (10)
(14) it is easy to see that X which corresponds to the Laplacian of a 2-matching 
satisfies (11)-(13) but need not satisfy (14). In the case of I-tree, the condition 
(11) is relaxed, while (12), (13) and (14) hold (see [24]). Preliminary numerical 
experiments on randomly generated problems with 10 ~ n ~ 20 which are reported 
in [24], indicate that SDP relaxation gives considerably better lower bounds than 
both I-tree and 2-matching. 

We have implemented two branch and bound algorithms with the SDP relax
ation (with a = 1, (3 = hn ) and one with the I-tree relaxation. The last one was 
implemented to check the correctness of the results. All algorithms are based on the 
general branch and bound scheme as described in [51]. We used a FORTRAN im
plementation of the branch and bound shell from the package TSP-SOLVER [21], 
[29]. An initial upper bound was obtained in all cases by the 3-optimal heuristic. 
The depth first search was used to select the next subproblem. 

The two branch and bound algorithms differ only in their branching rules (the 
first one defined by Vollgnant and Jonker, see [25]): 

Algorithm 1. At the first vertex of degree greater than 2 in the weighted 
graph representing the SDP solution an edge is excluded in each son; 

Algorithm 2. The first non-integer entry of the SDP solution matrix is re
placed in the sons by 0 and 1 respectively. 

Inequality conditions (22) were handled adding n2 - n slack variables each 
represented by a 1 x 1 block as accepted by the software. 

For solving the SDP relaxation tasks we used a modification of CSDP 2.3 
software package developed by Borchers [8, 9] in C language. The package is 
based on a predictor-corrector variant of the interior point algorithm presented by 

z:::q 
I 
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Helmberg, Rendl, Vanderbei, Wolkowicz [43]. The experiments were performed on 
an Alpha 8005/400 computer. Preliminary computational results were reported in 
[25]. A part of the results is presented in the next subsection. Further numerical 
evidence with larger TSP instances is given in [47], [48]. 

2.2. Complexity Indices for TSP. In this section we will illustrate how some 
invariants related to the solution of SDP relaxation (19)-(23) could be implemented 
as complexity indices in an adaptive solution approach for TSP. Such an approach, 
introduced in [29], is based on the following principles: 

For a given branch and bound (B&B) algorithm and a given maximal number 
of relaxation tasks Rs which are allowed to be solved within the algorithm, TSP 
instances are classified into two classes: hard and easy instances. The hard class 
contains TSP instances for which solving more than Rs relaxation tasks is required 
to reach an optimal solution, while the easy class consists of the remaining instances. 

Since hard instances usually require a lot of computing time, there is some in
terest to recognize such instances before the algorithm starts. If a concrete instance 
is recognized to be hard, instead of finding an exact solution, a suboptimal solution 
could be found by an efficient heuristic. 

The recognition of hard and easy instances is realized using the notion of com
plexity indices. 

Given an instance of the TSP, the instance complexity of this instance for the 
given B&B algorithm can be defined as the number of relaxation tasks which need 
to be solved within the applied algorithm to reach an optimal solution. 

Any number assigned to an instance which contains some information on the 
instance complexity (with respect to a given B&B algorithm) will be called a com
plexity index. 

Usually, complexity index is a numerical graph invariant of a (weighted) graph 
related to the solution of the relaxation task for the instance considered. In the 
context of this study, special attention will be paid to highly informative graph 
invariants, since we might expect that just these will serve as good complexity 
indices. 

Here we assume that there exists an efficient (polynomial)'algorithm for deter
mining the index under the consideration. 

Since an instance complexity of the TSP for a given B&B algorithm is related 
to the number of relaxation tasks, it is reasonable to determine the value of a 
complexity index on the basis of solved relaxation tasks within the algorithm. This 
is based on the expectation that the branch and bound algorithm will run for 
longer, the more relaxation solution(s) are distanced from an optimal solution, and 
that this information could be extracted from one or several relaxation solution(s). 
Each type of a possible relaxation used in some variant of B&B algorithm offers a 
variety of complexity indices. In this way complexity indices depend upon a B&B 
algorithm and so special complexity indices for each variant of a B&B algorithm 
can be introduced. 

There are no theoretical results described in the literature which would indicate 
the existence of efficient complexity indices for a particular instance of NP-hard 
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problems, in spite of the fact that this would be of obvious practical importance. 
As a mater of fact, we do not see how a theory of complexity indices for instances 
of NP-hard problems could be set up based on known results. 

The idea of complexity indices has been initiated in [54] in relation to the TSP. 
The indices offered have been intuitively justified and their validity supported by 
some experimental results. The largest eigenvalue of the adjacency matrix of a 
minimal spanning tree has been introduced in [15]] as a complexity index for the 
travelling salesman problem and its validity supported by some results from the 
theory of graph spectra [31]. 

As a selection criterion for the most informative index, the measure of statistical 
dependence of the value of the complexity index and the number of the solved 
relaxation tasks is used. This measure ought to reflect as much as possible the 
extent and the type of the dependence. It is also pointed out in [15] that the 
efficiency of complexity indices is related to statistical distribution of the set of 
instances which are intended to be solved. 

Let N be a set of the TSP instances defined by distance matrices with elements 
(Le., arc lengths) from a given distribution. Let the output of the applied branch 
and bound algorithm be presented by two sequences of real numbers (bi) and (Ci), 
i = 1,2, ... , 1Nl, where bi is the number of solved relaxation tasks and Ci is the 
value of the corresponding complexity index, both referring to the i-th instance of 
the TSP in the set N. Under this assumptions we can interpret sequences (bi) and 
(Ci) as the realizations of random variables Band C in a statistical experiment. 

The measure of dependence of a complexity index and the number of solved re
laxation tasks can be interpreted as a degree of dependence of the random variables 
C and B and estimated by the methods of correlation analysis. 

The coefficient of linear correlation for two sequences (bi ) and (Ci) is defined 
by 

1 1Nl 
CBe = ~ L(bi - mB)(Ci - me), 

B e i=l 

where mB, me and {lB, {le are mean values and variances of the corresponding 
sequences (bi) and (Ci), respectively. 

Under the assumption that the random variables Band C obey the normal 
distribution, the correlation coefficient CBe is a reliable estimation of linear de
pendence of the random variables B and C. 

The efficiency of the complexity index can be statistically estimated measuring 
the linear correlation between the index value and the number of relaxation tasks 
solved within the B&B algorithm. 

Several invariants can be considered as complexity indices for the TSP with 
respect to B&B algorithms based on SDP relaxation [26]: 

Let X be the solution of SDP relaxation (19)-(23) and L = X + hn 1 - J. Then 
L determines the weighted graph WL = (V,EL,CL), where EL = {{i,j} EEl 
lij < O} and CL = 21 - L, the corresponding unweighted graph GL = (V, EL) and 
a stochastic matrix SL = 1 - ~L. The most efficient indices introduced in [26] are 
the following: 
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11: the number of edges of G L 

12 : the second smallest eigenvalue of the Laplacian of GL 
loo (loo) n 

13: the entropy of SL, Le., value equal to 0 ~ ~ log2 - ~ -"2 
(I,J)EEL 

n 

14: I: II-'i - 1-':1, where 1-'1, 1-'2,···,l-'n and I-'i, 1-'2""'1-'~ are sequences of 
i=l 

nondecreasing eigenvalues of the Laplacians of GLand a Hamiltonian 
circuit, respectively. 

Is: the same sum as in 14 but with eigenvalues of the Laplacian of W L instead 
ofGL. 

Is: the number of vertices of the G L with degrees greater than 2. 

The efficiency of indices h, k = 1, ... ,6, has been investigated in [26]: 
For each dimension 20, 25, 30, 35 we consider 50 randomly generated TSP 

instances with distances uniformly distributed in the interval [1,999]. To each 
instance one of B&B algorithms based on SDP relaxation is applied (see Subsection 
2.1). 

The coefficients of the linear correlation between values of indices Ik (k = 
1, ... ,6) and the number of relaxation tasks for dimensions n = 20, 25, 30, 35 
are summarized in Table 1. Results indicate that the most reliable indices are 11 , 

14 and 16 with almost significant correlation. 

TABLE 1. Values of the linear correlation coefficients 

index 11 12 13 14 Is 16 
n 
20 0.53 0.35 0.51 0.53 0.53 0.53 
25 0.48 0.49 0.21 0.48 0.48 0.49 
30 0.29 0.21 0.32 0.29 0.42 0.33 
35 0.56 0.52 0.37 0.56 0.38 0.55 
average value 0.47 0.39 0.35 0.47 0.45 0.48 

Index 14 is a spectrally based invariant and, having in view facts from Subsec
tion 1.2, one would expect that it performs better than 11 and 16 • The obtained 
experimental results presented in this subsection indicate the lack of theoretical 
explanations of phenomena with complexity indices, the need for experiments with 
instances of higher dimensions and, perhaps, the need for better classification of 
graph invariants than the intuitive approach, adopted in this study on highly in
formative graph invariants. 

An idea how to improve the results with complexity indices is already given in 
another context in [29, pp. 23-25]. One can consider linear combinations of already 
defined complexity indices as well as the invariants of some short edge subgraphs 
of the input weighted graph. 

We shall describe now our adaptive procedure for solving TSP. 
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The most important parameter in the adaptive solution approach for TSP is I* 
which represents the estimated value of the complexity index I corresponding to the 
maximal allowed number of solved relaxation tasks Rs. In general Rs depends on 
the problem dimension n and this function is chosen by the user, while I* depends 
on both n and statistical distribution of TSP instances. The value of 1* is used to 
classify instances in hard and easy classes in the following way [29]: 

(1) easy instances, I ~ I*, and (2) hard instances, I > I*. 

More precisely, when I ~ I* , then the number of generated sub problems within 
the branch and bound procedure is expected to be less than Rs, while for I > I* 
this number is expected to be greater than Rs. 

In the case when the solution process for TSP is based on SDP relaxation easy 
instances can be solved by one of B&B algorithms from Subsection 2.1, while hard 
instances are handled by a heuristic developed in [27]. The heuristic uses limited 
branching based on the number of edges with weights equal to one in the graph W L. 

Namely, already mentioned experiments with a set of 50 randomly generated TSP 
instances for each of dimensions n=20, 25, 30, 35 show that high percentage of edges 
from WL with weights equal to one stay in the optimal Hamiltonian circuit, which 
is illustrated in Table 2. This suggests the following modification of the branch 
and bound algorithms from Subsection 2.1. Starting from an initial upper bound 
obtained by the 3-opt heuristic and the solution X of the initial SDP relaxation, all 
edges from WL with weights equal to one are fixed, and the branching is performed 
on the remaining edges. 

TABLE 2 

1 2 3 4 
20 79.8% 97.7% 84% 
25 84.1% 98.2% 78% 
30 82.2% 98.1% 74% 
35 85.4% 97.4% 60% 

The proposed heuristic solves the TSP by limited branching and therefore it 
has in the worst case exponential complexity. Nevertheless it performs very well 
in practice, which is illustrated in Table 3. The test examples are the same as in 
Table 2. 

The columns in Table 2 contain the following data: 

(1) dimension n of TSP; 
(2) the average percentage of the edges with weights equal to one in WL w.r.t. 

n; 
(3) the. average percentage of edges from WL with weights equal to one which 

stay in the optimal solution; 
(4) the percentage of TSP instances for which all edges from W L with weights 

equal to one stay in the optimal solution. 

"""'" 
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TABLE 3. Performance of the heuristic 

1 2 3 4 5 
20 93.6% 53.2% 0.14% 5 
25 85.1% 59.6% 0.12% 7 
30 79.2% 72.9% 0.37% 8 
35 62.5% 89.6% 0.62% 10 

The columns in Table 3 contain the following data: 

(1) dimension of TSP; 

6 
31 
80 
47 
92 

(2) percentage of instances for which optimal solution was reached; 
(3) percentage of instances for which the heuristic improved the initial upper 

bound obtained by 3-opt heuristic; 
(4) average relative distance from the optimal objective function value 

«(fH - fopt)/ fopt)%); 
(5) average number of subproblems solved within the heuristic; 
(6) maximal number of subproblems solved within the heuristic. 

In [27] the described adaptive solution procedure was tested on the same set 
of randomly generated instances used to generate Tables 1,2 and 3. 

Before solving the instances we need first to decide upon the value of Rs-the 
maximal number of relaxation tasks which are allowed to be solved within the 
adaptive procedure. Here for each dimension we take that Rs is equal to the 
maximal number of sub problems solved within the heuristic given in column 6 of 
Table 3. As suggested in [27] the most reliable estimation for lie was achieved by 
averaging those values in the correlation field which were equal (or approximatively 
equal) to Rs. 

The performance of the adaptive solution procedure can be measured by two 
parameters f and t determined on the basis of the whole set of considered TSP 
instances. The parameter f represents the average percentage difference between 
the objective function value fad obtained by the adaptive procedure and the optimal 
objective function value fopt determined by the B&B algorithm, i.e. 

f = fad - foPt%. 
fopt 

Value t is the "saving" of CPU-time, Le., the percentage difference between the 
average number of solved relaxation tasks within the B&B and the adaptive pro
cedure. 

In order to measure the quality of the adaptive solution with one parameter 
we use the value k = t/(1 + f /100) proposed in [29]. 

The adaptive procedure was tested on the same sets of TSP instances for each 
of complexity indices lk' k = 1, ... ,6 as before. According to [27], the best per
formance was obtained for 16 • 

In Table 4 we report on relevant details for this case. 



26 CVETKOVIC. CANGALOVIC AND KOVACEVIC-VUJCIC 

TABLE 4. Results of the adaptive procedure for 16 

n 20 25 30 35 
I; 14 12 11 12 

No. of hard instances 10 11 25 23 
No. of detected hard instances 11 15 27 23 
No. of easy instances 37 36 23 25 
No. of detected easy instances 36 32 21 25 
No. of incorrectly classified instances 7 16 10 10 
exactness of decision 85.1% 66.00% 79.2% 79.2% 

f 0.01% 0.05% 0.21% 0.21% 
average No. of subproblems 
in adaptive algorithm 13 36 56 61 
average No. of subproblems 
in optimal algorithm 23 69 198 238 

t 43.5% 47.8% 71.7% 74.4% 
k 43.5% 47.8% 71.6% 74.2% 

TABLE 5 

index 11 12 h 14 Is 16 
average exactness 
of decision 76.8% 73.7% 69.5% 76.3% 71.0% 77.4% 
average value k 57.1% 46.4% 56.6% 56.1% 59.3% 59.3% 

The results for the remaining complexity indices were also reasonable. Table 5 
summarizes the most important indicators of the efficiency of the adaptive proce
dure: the average exactness of decision per dimension and the average value k per 
dimension. 

On the basis of results presented in Tables 4 and 5 we can conclude that both the 
exactness of decision and the quality measure k are satisfactory for all complexity 
indices. 

Another use of complexity indices in the TSP solving procedures is described 
in [32). A new search strategy in B&B algorithms has been developed. The tra
ditional backtrack strategies (depth-first search and breath-first search) are not 
optimal and therefore the so called jumptrack strategies have been considered in 
the literature. In such strategies any active sub problem can be selected follow
ing certain criteria. Usually, one selects a subproblem with smallest lower bound. 
Complexity indices have been introduced in [32] to help to select next subproblem. 
An ordered list of interesting subproblems has been introduced. The strategy takes 
the first subproblem from the list and branches it using the depth-first search until 
a complexity index starts to increase. Several variants of such a search strategy 
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have been described in [32]. Computational results show better behaviour of these 
strategies compared with other ones. 

2.3. Data Clustering. In this subsection we consider the problem of clustering 
data (see, e.g., [1], [3]). Clusters in some cases are obtained by solving some 
optimization problems. Again the algebraic connectivity of a graph is useful. 

The algebraic connectivity is known to be a very useful parameter for describing 
the "shape" of a graph (see, e.g., [31, p. 266]). Indeed, low algebraic connectivity 
shows small connectivity and girth and high diameter, although such a statement 
lacks a precise formulation. In the context of clustering, low algebraic connectivity 
indicates that the graph has good clustering properties. 

The data are usually represented by vectors from ]Rn. Euclidean or other kind 
of distance function d(x, y) is assumed to be defined for any x, y E ]Rn. Given a set 
of vectors from ]Rn, the problem is to partition it into subsets called clusters under 
various conditions. Clustering methods are supposed to produce clusters which 
have the property that vectors from the same cluster in some sense are "closer" one 
to the other than the vectors from different clusters. The number of clusters may 
but need not to be given in advance. Sometimes cardinalities of clusters are given 
or limited by additional conditions. 

There are difficulties in applying traditional clustering procedures to discrete 
data. We describe a graph theoretical approach in clustering binary vectors. New 
clustering procedures are combined from several algorithms and heuristics from 
graph theory and combinatorial optimization. 

We consider clustering of discrete data. A typical example of discrete data are 
binary vectors, i.e. elements of Bn where B = {O, I}. When standard clustering 
procedures (see, e.g., [1], [3]) are applied to binary vectors, the resulting clustering 
has usually a low quality. Among other things, the clustering is highly dependent 
of the ordering of vectors. 

To avoid these difficulties it seems reasonable to use specific properties of dis
crete data and to apply combinatorial, including graph theoretical, tools in handling 
the problem. We have developed a number of complex graph theoretical procedures 
for clustering binary vectors [16], [18], [20]. See also [22] and [61]. 

A hypercube Hn of dimension n is the graph whose vertex set is Bn and two 
n-tuples are adjacent if they differ in exactly one coordinate. The number of coor
dinates in which n-tuples x, y E Bn differ is called the Hamming distance between 
x and y. 

For a graph G we define its k-th power Gk. The graph Gk has the same vertex 
set as G and vertices x and y are adjacent in Gk if they are at (graph theoretical) 
distance at most k in G. For k = 0 the graph Gk consists of isolated vertices. For 
k = 1 we have Gk = G. If X is a subset of the vertex set of a graph G, then G(X) 
denotes the subgraph of G induced by X. 

Let X c Bn be a set of binary vectors (n-tuples) which is to be clustered. Our 
procedures for clustering make use of the graph sequence 
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which is called the basic graph sequence. 
Note that two vectors x, y E X are at the Hamming distance k if they are 

not adjacent in H~-l(X) and are adjacent in H~(X). For i = 1, ... , n the graph 
H~(X) has all edges from H~-l (X) plus those ones connecting vectors at Hamming 
distance i. H~(X) has only isolated vertices while H:;(X) is a complete graph. 

Let the vertex set X of a graph G be partitioned into subsets X l ,X2 , ••• ,Xm . 

A condensation of G is a weighted graph on vertices Xl, X2, ... , Xm (called super
vertices) in which Xi and Xj are connected by an edge if there is at least one edge 
between Xi and Xj in G. Both supervertices and edges in the condensation carry 
weights. The weight of the supervertex Xi is equal to /Xi/ while the weight of the 
edge between Xi and X j is equal to the number of edges between Xi and Xj. We 
consider a condensation as a multigraph where edge weights are interpreted as edge 
multiplicities while supervertices as vertices and supervertex weights are ignored. 

In the clustering procedure, which will be described, some algorithms and 
heuristics, described in the literature, will be used. We shall define them here 
(see [18] for details). 

Algorithm CP. This is an algorithms for finding components of a graph. 
Algorithm JM. This is an algorithm for partitioning a connected (multi-) 

graph into two parts. 
Heuristic KL. This is a heuristic for partitioning the vertex set of a (multi-) 

graph into two parts of given cardinalities with a minimum number of edges between 
vertices from different parts [45]. 

Let X be a set of binary vectors of dimension n and suppose we have to cluster 
it into k (k > 1) clusters. For k = 2 we consider the problem in two variants: 
1° Cluster cardinalities are not given, 2° Cluster cardinalities are given. 

Our procedure consists of two phases. 

Phase 1. We form the basic graph sequence. Let Ci be the number of com
ponents of H~(X). Components are sequentially determined in graphs from the 
basic sequence by algorithm CP. We have Co = /X/ ~ Cl ~ C2 ~ .•. ~ cn = l. 

There is a non-negative integer s such that Cs ~ k > Cs+l' If Cs = k, the 
components of H~(X) are clusters and the procedure is finished. If Cs > k > cs+! 
we proceed to Phase 2. 

Phase 2. We distinguish cases: 1) k = 2 and 2) k> 2. 

Case k = 2. Now H~+!(X) is connected and we consider the condensation 
of the graph H~+! (X) in which components of H~(X) play role of supervertices. 

We consider two subcases: 
1 ° Cluster cardinalities are not given; 
2° Cluster cardinalities are given. 

Sub case 1°. If Cs > 10 any of the following two procedures can be applied 
to the condensation of H~+l(X): 

a) algorithm JM; 
b) heuristic KL. 
In any of these cases we get two clusters and the whole procedure is finished. 

....... 
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In variant b) the user can select the range of cluster cardinalities and the 
number of randomly generated starting clusterings. The result in variant a) can 
serve as a hint for the range of cluster cardinalities in variant b). 

If Cs ~ 10, we form all partitions of the vertex set of the condensation of 
H~+1(X) into two parts since there are only 2C

' - 2 such partitions. We find the 
best partition with respect to a selected quality criterion (e.g., minimizing the edge 
number between two parts). The whole procedure is thus finished. 

Subcase 2°. We apply algorithm JM to the condensation of H~+1 (X). If the 
partition thus obtained shows cluster cardinalities required, we have done. Oth
erwise we apply heuristic KL to the graph H~+1 where the starting partitions are 
formed on the basis of information obtained by the working of the algorithm JM. 
Let p, q (p ~ q) be the required cluster cardinalities. Let algorithm JM have given 
a solution with cluster cardinalities r, s (r ~ s). If p < r, from the cluster of 
cardinality r we choose those p vertices for which moduli of the coordinates of the 
eigenvector from algorithm JM are as great as possible. If p > r, then q < s, and 
from the cluster of cardinality s we choose q vertices as above. The result of the 
working of heuristic KL for the starting partition so formed is compared with result 
for other, randomly generated, starting partitions. 

Case k > 2. Now we have Cs > k > Cs+! and we get a clustering into k 
clusters in one of the following two ways 

1) by splitting some of Cs+1 components of the graph H~+l(X) into parts; 
2) by uniting some of Cs components of H~(X). 
We use first way if k is closer to Cs+! than to Cs and the second one otherwise. 
Splitting components we perform by partitioning a component into two parts 

and by iterating this procedure. First we partition components of H~+! (X) which 
do not exist in H~ (X) and if there are not sufficiently many such components 
we treat sequentially those which exist in H~(X) and not in H~-l(X) for i = 
s, s-I, .... For components of H~(X) (i = s+ 1, s, ... ) we form condensations with 
supervertices corresponding to components of H;:l(X) and for each condensation 
we determine the ratio of the algebraic connectivity and the number of vertices. 
Condensations are ordered by this ratio and partitioned sequentially into two parts 
starting from those with a smallest ratio. In each step of partitioning the newly 
generated components are treated as above. For partitioning components into two 
parts we apply the procedure from the case k = 2 above. 

When uniting components we consider all possibilities of uniting if Cs - k < 
4. Otherwise we apply the Ward method, which is one of the best hierarchical 
clustering methods (see, e.g., [11, [3]). 

Algorithm JM and the calculation of the algebraic connectivity have complexity 
O(IXI3 ) while other parts of the procedure have lower complexities. Therefore the 
whole procedure has complexity O(IXI3 ) and this is the same as in many standard 
clustering procedures. However, theoretical reasons and numerical experiments 
show that the graph theoretical procedure is superior to standard procedures in 
clustering binary vectors. 
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3. Defining Graph Invariants 
by Solving Optimization Problems on Graphs 

Section 3 elaborates Assertion 1. Subsection 3.1 introduces star bases and a 
canonical star basis of a graph. This basis is obtained by solving several optimiza
tion tasks and is useful in treating the graph isomorphism problem. It is shown in 
3.2 that using canonical star basis one can construct a polynomial time algorithm 
for checking the isomorphism of graphs with bounded multiplicities of eigenvalues. 
Other examples of defining highly informative graph invariants are given in 3.3. 

3.1. Star Partitions and Canonical Star Bases. Spectral techniques in graph 
theory are based on the eigenvalues of the adjacency and other graph matrices. 
These techniques have been further developed by considering, in addition, some 
invariants of eigenspaces of graphs, namely graph angles. Introduction of star 
partitions and canonical bases can be considered as a result of efforts in the same 
direction - to enrich spectral techniques in graph theory. 

Let G be a graph with vertices 1, ... ,n and (0, I)-adjacency matrix A. Let 
f.Ll, .•. ,f.Lm (f.Ll > ... > f.Lm) be the distinct eigenvalues of A, with corresponding 
eigenspaces SI, ... ,Sm' For each i E {I, ... ,m}, let ki be the multiplicity of f.Li. 

Let us consider the spectral decomposition of A: 

A = f.LlPl + ... + f.LmPm. 

Thus Pi represents the orthogonal projection onto Si and, if {eb ... ,en} is the 
standard orthonormal basis of jRn, the vectors Piel, ... ,Pien constitute a eutactic 
star (see [33]). Norms of vectors from these eutactic stars are angles of a graph. 
Rows (or columns) of Pi are vectors of the eutactic star associated with Si. The 
Gram matrix of these vectors is just the matrix Pi. 

A partition Xl U ... UXm of the vertex set {I, ... , n} is called a star partition, 
with star cells Xl"'" X m , if for each i E {I, ... , m} the vectors Piej (j E Xi) 
are linearly independent. In this situation a comparison of dimensions shows that 
IXil = k i (i = 1, ... , m) and the vectors Piej (j E Xi) form a basis Bi of Si. Then 
Bl U ... U Bm is a basis of jRn, called in [33] a star basis corresponding to A (a 
construction applicable to any symmetric matrix with real entries). 

It was shown in [33] that the following three theorems hold. 

THEOREM 3.1. Every graph G has a star partition. 

THEOREM 3.2. The partition XlU··· UXm is a star partition if and only if for 
each i E {I, ... , n}, f.,ti is not an eigenvalue of G - Xi' 

THEOREM 3.3. (Reconstruction theorem) A graph G is uniquely determined by 
an eigenvalue f.Li, the subgraph G - Xi, and the subgraph G - E(Xi ) where Xi is a 
star cell belonging to f.Li and E(X) is the set of edges of G whose both end points 
are in the set X. 

It has been shown in [34] that it is possible to construct one star partition of a 
graph G in time bounded by a polynomial function of the number n of vertices of 
the graph G. One approach is related to the Hungarian algorithm for constructing 

I. 
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a perfect matching in a bipartite graph. The complexity of this approach is at most 
O(n4 ). The other approach uses matroid theory and a rough complexity estimation 
is O(nS). 

Let S be the matrix of a basis S of eigenvectors (in particular, a star basis or 
even some kind of the canonical basis) of ]Rn corresponding to a graph G. Columns 
of S are vectors of S. We have S = (Sl'" Srn), where Si is the matrix of the 
star basis Si of the eigenspace £(J.LJ. The adjacency matrix A can be expressed in 
the form A = SAS-1 where A is a diagonal matrix with eigenvalues of A at the 
main diagonal. Putting (S-1)T = (Xl'" Xm) and using relation S-lS = I we get 
Xi = (SrSi)-lSr. This is sufficient to prove the following proposition. 

Proposition 1. We have A = J.L1S1(S,[Sl)-lS,[ + ... + J.LmSm(S~Sm)-lS~. 
Proposition 1 gives the spectral decomposition of the adjacency matrix A of a 

graph. Hence, Pi = Si(SrSi)Sr is the projection onto the i-th eigenspace £(J.Li). 
The matrix Wi = Sr Si is the Gram matrix of the star basis Si of the eigenspace 
£ (J.Li). (If the basis is orthonormal Wi is equal to a unit matrix). 

If S is a precisely defined canonical basis, eigenvalues J.Ll, .•• , J.Lm and matrices 
Sl, ... , Sm comprise the canonical code of a graph. All graph properties can be de
rived from the canonical code of the graph at least by reconstructing the adjacency 
matrix A and applying some graph theoretical algorithms. Of course, it would be 
of interest to derive procedures for a more direct link between the canonical code 
of the graph and the graph properties we are interested in. 

The problem is how to select a canonical basis of eigenvectors. Without addi
tional restrictions there are infinitely many such bases and if we want to select one 
by an optimization task, the set of feasible solutions is infinite and compact so that 
we are led to a problem of continual (global) optimization. However, if we restrict 
ourselves to star bases, we encounter a problem of finding an extremal value of a 
function defined on a finite set since the number of star bases is finite. Hence, we 
have to solve a problem of combinatorial optimization. 

Let us note that the number of star bases of a graph, although finite, is very 
large since we have to consider star bases corresponding to all orders (permutations) 
of the vertex set. 

Given a graph G on n vertices, the notion of a canonical basis of eigenvectors of 
G for ]Rn which is related to the notions of the star basis and the star partition of G 
has been introduced in [33J. This canonical basis is called the canonical star basis. 
The canonical star basis is unique for a graph i.e. it does not depend on the vertex 
labelling. Finding this canonical basis involves several extremal tasks similarly as 
in finding an extremal binary number (see Subsection 1.2). To construct this basis 
we have introduced a total order of graphs, called CGO (canonical graph ordering) 
and a quasi-order of vertices called CVO (canonical vertex ordering). Both CGO 
and evo are defined recursively in terms of graphs with fewer than n vertices. 

The definition of the canonical star basis enables the formulation of the follow
ing theorem (whose proof is obvious): 

THEOREM 3.4. Two graphs are isomorphic if and only if they have the same 
eigenvalues and the same canonical bases. 
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Several improvements to the procedure from [33] have been proposed in [19]. 
See also [35]. One can show that the procedure is reduced in some parts to special 
cases of some well-known combinatorial optimization problems, such as the maximal 
matching problem, the minimal cut problem, the maximal clique problem, etc. 
This sheds some light on the algorithmical complexity of the procedure for finding 
a canonical basis, i.e., tells something about the graph isomorphism problem. 

A procedure for testing the isomorphism of graphs, which is based on the 
spectral decomposition of matrices has been described in [69]. 

Since the canonical star basis together with eigenvalues of G determines G up to 
isomorphism, algorithms for finding the canonical basis and some of its variations 
are studied in [19]. The emphasis is given on the following three special cases: 
graphs with distinct eigenvalues, graphs with bounded eigenvalue multiplicities 
and strongly regular graphs. This technique provides another proof of a result of 
L. Babai et al. [5] that isomorphism testing for graphs with bounded eigenvalue 
multiplicities can be performed in polynomial time (see next subsection). One can 
show that the canonical basis in strongly regular graphs is related to the graph 
decomposition into two strongly regular induced subgraphs (these decompositions 
are described in [41]). Examples of distinguishing between cospectral :strongly 
regular graphs by means of the canonical basis are provided. The behaviour of star 
partitions of regular graphs under operations of complementation and switching is 
studied in [19] as well. 

The canonical star basis (and star bases in general) can be very useful in study
ing other problems. 

3.2. The Maximal Clique Problem and Bounded Multiplicities. The pro
cedure of finding the canonical star basis can be designed so that it contains a kind 
of the maximal clique problem. This is especially useful in the case of graphs with 
bounded multiplicities of eigenvalues. This subsection is mainly written following 
[19]. 

A star basis of a graph G with distinct eigenvalues !J.l , ... , ,!J.m of multiplicities 
kl' ... ,km is characterized by weighted graphs W1 , ••• , W m of orders k1 ,.· • , km, 
respectively (see the comment after Proposition 1 in the previous subsection). In 
orthodox star bases (i.e., bases among which the canonical star basis is selected) 
the sequence W 1 , ••• , W m is lexicographically maximal using ordering of weighted 
graphs specially defined in [33], [19], [35], i.e., canonical weighted graphs ordering 
(CWGO) and canonical weighted graphs vertex ordering (CWGVO). Instead of 
finding several (or all) star bases and selecting maximal ones among them, we 
can find maximal sequences W1 , •.• , W m and check whether star bases with such 
sequences exist. 

Let us assume that G is a connected graph. Then J.LI is a simple eigenvalue 
and WI is reduced to squares of coordinates of the eigenvector belonging to !J.I' 
As proved in [34] any vertex can form a star cell Xl for !J.I. Hence, for WI we 
select the square of a coordinate of the eigenvector belonging to!J.I with a maximal 
modulus. 

""""" 
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Next we have to select X 2, the star cell belonging to J.L2. That means we have 
to find a principal submatrix W2 of P2 of order k2 so that the weighted graph 
determined by W2 is maximal. Now we can consider P2 as a weighted graph in 
which we have to find a clique of order k2 with a maximal weight if we define the 
weight of a clique just to be the matrix W2 • We decide which of two given cliques 
has greater weight in accordance with ordering of weighted graphs (CWGO). The 
complexity of this decision depends on the order of the clique. 

Finding a maximal clique in a weighted graph has been considered in [6J. The 
problem is essentially similar to the problem of finding a (maximal) clique in a 

graph without weights on edges [42]. Roughly speaking, we have to check all (~) 

principal submatrices of order ki . If ki is fixed, (~) is a polynomial in n of degree 

ki , i.e., (~) = O(nk .). If the size of the clique is not restricted, the problem of 

finding a maximal clique (decision version) is known to be NP-complete. Note that 

C:J for a fixed c (0 < c< 1) is not polynomially bounded. 

Once we have found X2 such that W2 is maximal we can decide easily whether 
a star partition exists in which X2 is a cell. (A necessary but not sufficient condition 
for this is that the graph G - X2 does not have an eigenvalue J.L2. An example is 
provided by the Petersen graph; there is no star partition in which Xl uX2 induces 
Cs.) 

More generally, given any partially built partition we can in a polynomial time, 
using algorithms from [34], extend it to a star partition or establish that this cannot 
be done. 

It should be noted that our reductions of the graph isomorphism problem to 
some well known combinatorial optimization problems do not involve general cases 
of these problems; in fact, we have special cases determined by special features of 
weight matrices in question (eigenvector and projector matrices). This is important 
especially in the case when the gen:eral problem is NP-complete (NP-hard) as in 
the case of the problem of finding a maximal clique. Note that such reductions of 
the graph isomorphism problem to special cases of NP-hard problems (of unknown 
complexities) have been already noticed elsewhere (see [64] where a special case of 
the maximal clique problem occurs). 

It has been proved by L. Babai et al. [5] that isomorphism testing for graphs 
with bounded multiplicities of eigenvalues can be performed in a polynomial time. 

Using above ideas we can confirm this result. 
If eigenvalue multiplicities are bounded by an absolute constant a, then the size 

of the maximal clique we have to find is limited also to at most a. It is known that 
a maximal clique of limited size can be found in a polynomial time, i.e., in time 
O(nG) in this case. We can in a polynomial time examine and keep information 
on all induced subgraphs whose vertex sets have cardinalities equal to eigenvalue 
multiplicities. 
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Hence we can find an orthodox star basis in a polynomial time. In fact, we 
can find all orthodox star bases in a polynomial time and go on in finding quasi
canonical bases and the canonical basis. 

Ordering vertices in star cells of orthodox star bases by corresponding eWGVOs 
can be done in a time bounded by a function of the constant a. We can imagine 
that for testing isomorphism of graphs in which each eigenvalue has multiplicity 
at most a we have prepared a (finite) table of automorphism groups and evo for 
graphs with at most a vertices. (It is even possible to use all orderings-at most a!-of 
vectors in an orthodox star basis.) Hence, all maximization procedures, needed to 
find the canonical star basis, can be performed in polynomial time and the result 
by L. Babai et al. follows. 

Remark 1. The result can be extended to graphs (as noted also in [5]) 
in which all but one eigenvaIue have bounded multiplicities and this property is 
hereditary (holds also for any induced subraph). The hereditarity of the property 
in question was not assumed in [5]. Perhaps it can be avoided also here but we 
have assumed it since the multiplicity of an eigenvalue can increase when going 
from graphs to subgraphs and the subgraph induced by the star cell corresponding 
to the eigenvalue of unbounded multiplicity can have more than one eigenvalue 
above the bound for eigenvalues. In this case we modify the notion of an ortho
dox star basis in such a way that the matrix Wi corresponding to the eigenvalue 
jJi, whose multiplicity is not bounded, is put at the end of the original matrix se
quence W1 , ••• , W m which should be lexicographically maximal (Le., we have now 
the sequence W1 , ..• , Wi-l, Wi+b ... , Wn, W i ). Namely, we readily find in polyno
mial time star cells corresponding to matrices W1 , ..• , Wi- 1 , Wi+l, ... , Wn while 
the cell of unbounded size, corresponding to W i is determined by the vertices which 
remain. It is also not necessary to order vertices in this star cell; it is sufficient to 
use the Reconstruction theorem (Theorem 3.3 from Subsection 3.1). 

Remark 2. Let us finally note that the graph isomorphism problem can 
be also reduced to a problem of finding a certain kind of matching in an auxiliary 
bipartite graph. However, the number of vertices ofthis bipartite graph depends on 
multiplicities of eigenvalues. The graph in question is the incidence graph between 
the set of distinct eigenvalues of the original graph G and the set of subsets of the 
vertex set of G with cardinalities equal to multiplicities of eigenvalues. There is 
an edge between vertices representing an eigenvalue jJ and a subset X of vertices 
if and only if jXj is equal to the multiplicity of jJ and G - X does not have an 
eigenvalue jJ. A star partition of G is represented by a matching which satisfies 
some additional requirements but we shall not go into details. 

As indicated, using canonical star bases we can relate the graph isomorphism 
problem to some problems of combinatorial optimization (the problem of finding 
a maximal matching, the maximal clique problem, the problem of finding a bipar
tition with an extremal number of edges between the parts, etc.). Some of these 
problems can be solved in polynomial time while the others are known to be NP
hard. Arguments pro and contra the existence of a polynomial algorithm for the 
graph isomorphism problem both exist. 

1 
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3.3. Other Highly Informative Graph Invariants. In this final subsection we 
shortly report on some other graph invariants which can be considered as highly 
informative. 

Spectra of weighted adjacency matrices have served to introduce a new impor
tant graph invariant in [66J. For a connected graph G we introduce the class AG of 
matrices A = (aij) for which aij > 0 if i and j are adjacent and aij = 0 otherwise. 
Let jJ.l, jJ.2, .•• ,jJ.m (jJ.l > jJ.2 > '" > jJ.m) be distinct eigenvalues of A with multi
plicities kl = 1, k2 , .•• , km, respectively. Let p.( G) = max k2 , where maximum is 
taken over the class AG. For example, p.(Kn) = n-1 and p.(K3,3) = 4. It is proved 
that G is planar if and only if p.(G) :::; 3. It is conjectured that p.(G) ~ X(G) - 1, 
where X(G) is the chromatic number of G. The validity of this conjecture would 
imply the four color theorem! 

The Lovasz theta function has been introduced in [53] when solving a long 
standing problem in information theory. The theta function can be defined in 
many equivalent ways: via an extremal problem concerning eigenvalues of graphs, 
via a semidefinite programming model and in some other ways. For a short review 
on this important graph invariant see [39]. 

See [10J for other interesting graph invariants. 
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Preface 

This expository paper consists of the various uniqueness theorems which fol
low, in general, from the length-area principle of Grotzsch. The structure of this 
paper is as follows. In Section I we give the main ideas and basic results. In the 
subsections A, B, C, D and E we discuss connections between the Grotzsch princi
ple, Teichmiiller's approach, the Main Inequality and Dirichlet's principle. In the 
subsections F and G we consider extremal problems for quasiconformal mappings. 
In particular, we give short review of new results and solve some problems, which 
originally were subject of investigation of Teichmiiller, Reich, Strebel and the other 
mathematicians. 

In Section II we give the outline of proofs of some properties of harmonic maps, 
using different tools: Dirichlet's principle, minimizing sequences, different versions 
of Reich-Strebel inequality. We also give a proof of well-known Beurling theorem. 

In Section III using Lemma Cl we prove the inequality of Reich and Strebel for 
Riemann surfaces of finite analytic type and new version of an inequality of Reich 
and Strebel. We use this result to study the uniqueness properties of harmonic 
mappings (see section II). 

Section IV is an extended version of the lecture given by the author at VIII 
Romanian-Finish Seminar, Iassy, August '99. 

Recently, in [MMIJ, [BMM] and [BLMM], characterizations of unique extremal
ity and example of unique extremal dilatation of nonconstant modulus have been 
obtained. 

In this section our primary purpose is to give a short exposition of some of 
the main result of the authors' joint papers, mentioned above, and sketch further 
progress in the study of a more general concept. We also discuss the Beltrami 
equation, and we show the necessity of the Hamilton-Krushkal condition. 

The most part of the paper consists of the lectures communicated by the author 
and the other members of the Seminar, at the University of Belgrade during several 
last years. The author also talked extensively about this subject in a number of 
places. 

43 
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I. Introduction 

A. The problem of Grotzsch. If Q is a square and R is a rectangle, not a 
square, there is no conformal mapping of Q on R which maps vertices on vertices. 
Instead, Grotzsch asked for the most nearly conformal mapping of this kind and 
took the first step toward the creation of a theory of quasiconformal mappings. 

Let w = fez) be a mapping from one region to another. Recall that we use 
notation dl = pdz + qaz, where p = 81 and q = 81. The complex (Beltrami) 
dilatation is J.i.f = Belt [I] = q/p. The dilatation of I is 

D _lpl + Iql 
f - Ipl-Iql· 

We pass to the Grotzsch problem and give it a precise meaning by saying that 
f is most nearly conformal if sup D f is as small as possible. 

Let R, R' be two rectangles with sides a, b and a', b' . We may assume that 
K = ~ : ~ ~ 1. The mapping I is supposed to be Cl-homeomorphism from R 
onto R', which takes a-sides into a-sides and b-sides into b-sides. Next, let rx be 
the vertical segment which is the intersection of the line Re z = x with R and "Ix 
the curve which is the image of r x under I. Using the geometric obvious inequality 
b' :::; length(,x) and the Cauchy-Schwarz inequality one gets K :::; supD,. The 
minimum is attained for the affine mapping. Note that the restriction to Cl_ 
mapping is not essential. The last inequality holds for quasiconformal mapping 
(see, for example, [Ah2]). 

B. Teichmuller approach. Teicmiiller, following Grotzsch, showed that any 
homotopic equivalence class of quasiconformal mappings from a compact Riemann 
surface M to a compact Riemann surface N contains a unique mapping whose 
maximal dilatation K is minimum. Moreover, this unique mapping can be de
scribed geometrically in terms of holomorphic quadratic differentials on M. Such 
a differential gives a way of cutting up the surface M into the euclidean rectangles. 
These quadratic differentials locally have the form ~ = <pc z) dz2

, where <p is holo
morphic and they admit a picture as an orthogonal pair of foliations (horizontal 
and vertical lines ), given locally by lines {Re ( = const} and {Im ( = const}, where 
(= J J<P(z) dz, away from zeros of~, is natural parameter. The Teichmiiller map 
has the form of a stretching by a factor K l / 2 along the horizontal lines in this 
rectangles and a shrinking by a factor K- l / 2 along vertical lines. 

C. The Main Inequality. This expository paper consists of the various unique
ness theorems which follow, in general, from the length-area principle of Grotzsch. 
A powerful version of this principle was given by Marden and Strebel. They called 
it the minimum norm property for holomorphic quadratic differentials. 

Marden and Strebel stated the principle by way of comparison with harmonic 
quadratic differentials. Gardiner gave two improvements of this principle. In the 
first version, one takes a minimum over all Ll-measurable quadratic differentials. 
These differentials satisfy an inequality of line integrals taken over arcs which are 
segments of regular vertical trajectories of a given quadratic differential. 
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In the second version, the minimum is taken over all conformal quadratic differ
entials satisfying an inequality of line integrals over all homotopy classes of simple 
closed curves. These principles lead to the following results: The Main Inequality 
of Reich and Strebel, the uniqueness part of Teichmiiller's theorem, the sufficiency 
of the Hamilton-Krushkal condition for extremal dilatation. 

Let A denote the unit disc and 

_ 11 - tt(z) l~f;~112 
T~'P(z) - 1 -11l(Z)12 

We will refer to the following result as the Reich-Strebel inequality or the Main 
Inequality. 

Theorem RS (Reich and Strebel). Suppose that f is a quasiconformal home
omorphism of A onto itself which is the identity on aA. Then, with Il = III 

//I'P(z)1 dxdy ~ //I'P(z)IT/L'P(Z) dxdy, 
t.. t.. 

for every analytic integrable function 'P on A. 

Various forms of this result play a major role in the theory of quasiconformal 
mappings and have many applications. For applications to extremal and uniquely 
extremal quasiconformal mappings, we refer the interested reader to the book by 
Gardiner [G], and for some recent results to [MM1], [BMM], [BLMM] and [Re3]. 

D. The energy integral. Let M and N be two Riemann surfaces with local 
conformal metrics a(z)ldzI 2 and p(z)ldwI2 and let f : M r-+ N. It is convenient 
for us to use the notation in local coordinates df = (a f) dz + ([) f) dE and p = a f, 
q = [) f. The energy integral (Douglas-Dirichlet functional) of f is 

E(f,p) = /M e(f)adxdy, 

where e(f) is the energy density defined by 

e(f)(z) = (lp12 + Iq12) p :fz~z) . 
If p is the euclidean metric (p = 1 on N), then the energy integral of f is Dirichlet 
integral. 

A critical point of the energy functional is called harmonic mapping. The 
Euler-Lagrange equation for the energy functional is: 

fzz + (a(logp» 0 f pq = O. 

Thus harmonic maps arise from a geometric variational problem and asfar as we 
know, one can not study solutions of this equation, using classical theory of elliptic 
equations. 

In order to explain our ideas and results it is convenient to suppose that M 
and N are domains in C. Recall that A denote the unit disc. Now, we will state 
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a simple, but useful, property of harmonic maps (related to natural parameter). 
Again, we suppose, as at the beginning, that 1 is a harmonic mapping between 
Riemann surfaces M and N. Then cp(z) dz2 is a holomorphic quadratic differential 
on M, where cp = po Ipij in a local coordinate. 

Let P be a regular point for cp(z) dz2 on M and let ( be a natural parameter 
centered at P. If we compute p and q with respect to natural parameter, then we 
have useful formula po lpij = l. 

In Section II we will give an outline of proofs of some properties of harmonic 
maps, using different tools: Dirichlet's principle, minimizing sequences, different 
versions of Reich-Strebel inequality, etc. For general properties of harmonic maps 
we refer the interested reader to Eells and Lemaire ([ELl], [EL2]) , Jost [J], Schoen 
[Sc], Schoen and Yau [SY] and further references there. 

E. The Main Inequality and Dirichlet's principle. Now we will state a for
mula for the energy density which explains connection between Dirichlet principle 
for harmonic maps (in general sense) and via the Main Inequality with Grotzsch 
principle (an integral version of this formula appears in [ReS2J, see also [We] and 
[M3]). Suppose that p is a metric density on A, 1 is Cl function on ~ and let h 
be a diffeomorphism of A onto itself which is the identity on the boundary of A. 
If v = Belt[h], then 

-1 [1+/v/2 V] 
e(f 0 h ) = 1 _ /v/ 2 e(f) - 4 Re 1 -/v/ 2 cp , 

where cp = cp(f) = p 0 1 pij. Hence, 

e(f 0 h-1
) - e(f) = 2(/cp/T.,cp -/cpl) + r(h), 

where 
2/v/ 2 

r(h) = r(h, f) = 1 _/v/ 2 (e(f) - 2/cpl) ~ O. 

If 1 is a harmonic mapping (with respect to p), then cp = cp(f) is a holomorphic 
function on A. Hence, using the Main Inequality we obtain a version of Dirichlet 
principle for harmonic mappings (in general sense): 

E(f 0 h-1) ~ E(f). 

We expect further applications of the Main Inequality in this direction. In order 
to illustrate this we will outline a short proof of Dirichlet's principle (Theorem DP) 
for the euclidean harmonic functions using trajectories of holomorphic quadratic 
differentials. 

Theorem DP. (Dirichtet's principle) Suppose that 
(a) 9 is continuous function on A. 
(b) 9 has the first partial derivatives which are continuous on A 
(c) the energy integral 01 9 is finite. 

11 u is continuous on A, harmonic on A and il u = 9 on the boundary 01 A, then 
D(g) ~ D(u), where the inequality equals il and only ilu = 9 on A. 

..., 
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Prool. Suppose that 9 and u are real functions and u is harmonic on D... There 
exists holomorphic function I on D.. such that Re I = u on D... If we consider this 
mapping I as a natural parameter, we can divide D.. on a finite number of disjoint 
quadrilaterals ~k. In each ~k the mapping I is univalent and maps each ~k on a 
horizontally convex domains D k • Using an approach as in Grotzsch principle, one 
can conclude 

Ilk Igradgl
2
dxdy ~ area(Dk) = Ilk (u; +u~)dxdy. 

Summing these inequalities we get the Dirichlet's principle. 
In Section II we state a version of Dirichlet's principle for harmonic mappings 

and generalize the classical area theorem in different directions (see [M1D. Also, in 
Section II we study uniqueness of harmonic mappings using Dirichlet's principle, 
minimizing sequences and different versions of the main inequality (see [MM2J, 
(MM3] and [M1D and we give a proof of Beurling theorem (Theorem B2) using the 
vertical trajectory of the corresponding holomorphic function. A review of known 
results in this direction is given in this section too. 

F. Extremal dilatation. In this section we give a short report concerning 
extremal mappings. Interested reader can learn more about extremal mappings 
from Strebel's survey article [86], Reich's papers (Re8], [Re9] and Earle-Li Zhong's 
[ELi], all of which we highly recommend. Extremal mappings have been one of the 
main topics in the theory of quasiconformal mappings, since its earliest days, when 
Grotzsch solved the extremal problem for two rectangles. In order to discuss them 
we need to review some familiar definitions. A homeomorphism f from a domain G 
onto another is called quasiconformal if f is ACL (absolutely continuous on lines) 
in G and I/zI ~ klfzl a.e. in G, for some real number k, with 0 ~ k < 1. It is well 
known that if f is a quasiconformal mapping defined on the region G, then the 
function fz is nonzero a.e. in G. The function I-'f = JzI fz is therefore a well de
fined bounded measurable function on G, called the complex dilatation or Beltrami 
coefficient of I. Let QC denote the space of all quasiconformal mappings from D.. 
onto itself. Two elements I, 9 EQC are equivalent if f = 9 on aD... For a given 
f EQC we denote the equivalence class of f EQC by Qf = [j] or lI-'], where I-' = I-'f· 
We also use the notation ko([f]) = inf{l\l-'glloo : 9 E Qf}. We let LOO = Loo(D..) be 
the space of essentially bounded complex-valued measurable functions on D.., and 
let M be the open unit ball in LOO. For any I-' in M there exists a quasiconformal 
solution f : D.. ~ D.. of the Beltrami equation 

(F1) al = I-'al 

unique up to a post composition by a Mobius transformation. We let P' be the 
solution f of (F1) normalized by f(i) = i, f(l) = 1 and f(-l) = -1. Two 
elements 1-'0 and 1-'1 in M are equivalent if fJ.l.O and fJ.l.l coincide on aD... For 
given I-' E M the equivalence class (1-'] contains at least one element 1-'0 such that 
l\l-'ol\oo = inf{l\vl\oo : v E [I-']). Such a 1-'0 is referred to as an extremal complex 
dilatation and fo = fJ.l.O as an extremal quasiconformal mapping (abbreviated EQC 
mapping). 
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Let Q be the Banach space consisting of holomorphic functions cp, belonging 
to Ll = Ll(D.), with norm 

I/cpl/ = J i Icp(z)1 dxdy < 00, cp E Q. 

Instead of Q the notations A and L~ are also used. 
For f.1. E LOO we consider the linear functional Ap.(cp) = (f.1., cp), cp E Q, where 

(f.1., cp) = J i f.1.(z)cp(z) dxdy, 

and denote by IIf.1.II* = IIAp.II the norm of f.1. as an element of the dual space of Q. For 
f.1. E LOO we say that it satisfies the Hamilton-Krushkal condition if IIf.1.II* = 1If.1.1I00. 

We are now ready to state the main result about extremal complex dilatations. 

Theorem HKRS. (Hamilton-Krushkal and Reich-Strebel) Let f.1. EM. A 
necessary and sufficient condition that fP. is an EQC mapping is that IIf.1.II* = 1If.1.1I00. 

G. Unique extrer:nality. Ahlfors and Bers showed that T has a complex struc
ture with tangent space at the base point isomorphic to Banach space Q*. Two 
tangent vectors f.1. and v in the tangent space to M determine the same tangent 
vector in T if and only if 

i Cpf.1. = L cpv, for all cp E Q. 

If f.1. and v have this property, we write f.1. ",,* v and we say that they represent 
the same Teichmiiller infinitesimal equivalence class or, more briefly, that they are 
infinitesimally equivalent. The space of equivalence classes is denoted by B. A given 
f.1. is said to be extremal in its infinitesimal Teichmiiller class if IIf.1.IIoo ~ IIvll oo , for 
any v infinitesimally equivalent to f.1.. 

Recall that Hamilton, Krushkal, Reich and Strebel showed that a Beltrami 
coefficient v in M is extremal in its class in T if and only if v is extremal in its 
class in B. It was natural to consider whether the analogous statement holds for the 
unique extremality. In several articles Reich showed that in many special situations 
the two notions of unique extremality coincide and he conjectured that the notions 
may coincide in general. In [BLMM] (see also [MM1] and [BMMJ) we have recently 
proved the answer to this conjecture is affirmative. 

Theorem Gl. (The Equivalence Theorem I) f.1. is uniquely extremal in its 
Teichmuller class if and only if f.1. is extremal in its infinitesimally class. 

The proof of this theorem is based on estimates which allow us to compare two 
Beltrami coefficients f.1. and v in the same global equivalence class and two Beltrami 
differentials in the same infinitesimal equivalence class. These estimates generalize 
ReiGh's Delta inequality for Beltrami differentials in the same equivalence class (see 
[R8]). Unlike Reich's forms of the Delta inequalities, our forms do not require either 
one of the Beltrami coefficients to have constant absolute value. 

The generalized Delta inequality is our first step towards obtaining the criterion 
for the unique extremality of Beltrami differentials. The next important step is the 
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analysis of the proof of Hahn-Banach theorem and its applications to our setting. In 
particular, we obtain the following necessary and sufficient criterion for the unique 
extremality of given Beltrami coefficient X. 

Theorem G2. (Characterization Theorem I) Beltrami coefficient X is uniquely 
extremal if and only if for every admissible variation TJ of X there exists a sequence 
<fJn in Q(6.) such that 

(a) 6(<fJn) = lI<fJnllllTJlloo - ReJA <fJnTJ ~ 0 
(b) lim inf l<fJn(z)/ > 0, for almost all z in E(TJ). n-+oo 
Here, an admissible variation TJ of X is any Beltrami differential that does not 

increase the LOO-norm of X, and which is allowed to differ from X only on the set 
where /X(z)/ ~ s < /Ix 1100 , where s is a constant, and the extremal set E(TJ) is 
the set where TJ(z) = /ITJI/oo. This criterion is analogous to the Hamilton-Krushkal, 
Reich-Strebel necessary and sufficient criterion for the extremality. Namely, X is 
extremal if and only if there is a sequence CPn of holomorphic quadratic differential 
of norm 1 such that 

I/xl/oo - Re i TJCPn ~ O. 

This criterion is among listed in the theorem in Section 11, in [BLMM], which 
we called the Characterization Theorem. The Characterization Theorem applies 
to many interesting situations. For instance, we can say precisely when a Beltrami 
differential of the form k\cp(z)\/cp(z), with cp a holomorphic quadratic differential 
with I\cpl\ = 00, is uniquely extremal. 

There are many examples of extremal Beltrami differentials with nonconstant 
modulus, but all examples of uniquely extremal Beltrami differentials known up to 
our papers [BLMM] and [BMM] were of the general Teichmiiller type. Moreover, 
many results obtained studying the extremal problems speak in favor of the con
jecture that all uniquely extremal Beltrami differentials JL satisfy \JL(z) \ = I/JLlloo, 
for almost all z. Surprisingly, we disprove this conjecture and show that there are 
uniquely extremal Beltrami differentials with nonconstant modulus. 

11. Dirichlet's Principle, Uniqueness of Harmonic maps 
and Related Problems 

A. Introduction and some basic properties. The main purpose of this sec
tion is to give a short review of some results related to harmonic maps, commu
nicated by the author and the other members of the Seminar, at University of 
Belgrade, during several last years. Also in this section we give a review of known 
results in this direction. 

Al. Let M and N be two Riemann surfaces with local conformal metrics 
a(z)ldz\2 and p(z)/dw/2 and let f : M I-t N. It is convenient for us to use notation 
in local coordinates df = (a J)dz + ([) J)dz and p = a f, q = [) f. The energy integral 
of f is 

E(f,p) = iM e(f)adxdy, 
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where e(f) is the energy density defined by 

e(f)(z) = (lp12 + IqI2)P 0 I(z). 
cr(z) 

A critical point of the energy functional is called harmonic mapping. The 
Euler-Lagrange equation for the energy functional is: 

(AI) Id + (8{logp») 0 I pq = o. 
Thus harmonic maps arise from a geometric variational problem and as far as we 
know, one can not study solutions of this equation, using classical theory of elliptic 
equations. 

In this section we will give an outline of the proofs of some properties of har
monic maps, using different tools: Dirichlet's principle, minimizing sequences, dif
ferent versions of Reich-Strebel inequality, etc. For general properties of harmonic 
maps we refer the interested reader to Eells and Lemaire ((ELl], (EL2]), Jost (J], 
Schoen [Sc], Schoen and Yau (SY] and further references there. In order to explain 
our ideas and results it is convenient to suppose that M and N are the domains in 
C. Let A denote the unit disc. If I : M t-7 N is harmonic map, then <p = po I pij 
is a holomorphic function. For the sake of the reader, we will sketch a proof of this 
result in the case when M = A and N is a domain in C, with the metric p(w)ldwl. 

Let>.. be a complex valued function of class Cl with compact support in A and 
let <.I.ie(z) = z + e>..(z). Then, 

e>.. .. 
Ve = Belt[<.I.ie] = 1 >.. + f z 

If I is a stationary point of the energy integral, using an expression (see [ReS2]) 
for E(f 0 <.I.i-;l, p) - E(f, p), we conclude that 

J L 8>"(z)<p(z) dx dy = O. 

Since <p is integrable function on A, it follows that <p is an analytic function on A, 
by Weyl's lemma. 

Now, we will state some simple, but useful, properties of harmonic maps. 

A2. Properties of harmonic maps related to natural parameter. Again, 
we suppose, as at the beginning, that I is harmonic mapping between Riemann 
surfaces M and N. Then <p(z)dz2 is a holomorphic quadratic differential on M, 
where <p = po Ip fj in a local coordinate. 

Let P be a regular point for <p(z)dz2 on M and let ( be a natural parameter 
centered at P. If we compute p and q with respect to natural parameter, then we 
have important formula 

(A2) polpfj= I 

Now, easy computation gives: 

1( 2 2 -) pfj= 4 lid -1/'11 - 2iReld'l 
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Combining this formula with (A2), we find that iF. and f are orthogonal (if we 
consider them as vectors). Also, we can show that Jacobi~ J = IpI2 -lql2 = 0 if 
and only if J" = o. 

A3. Using Aronszajn's generalization of Carleman's result we can prove the 
following uniqueness property: 

Theorem S. If f is a harmonic mapping of an open connected set D c M 
and 1 = 0 on an open subset of D, then 1 = 0 throughout D. 

General version of this result, which is concerned with the case when M and N 
are Riemannian manifolds, is known as Sampson's Unique Continuation Theorem 
(see [Sa] and [EL2]). 

A4. The symmetry property. 
Theorem RP. (The reflection principle) Suppose L is a segment of the real 

axis, 0+ is a region in H+ = {z : Irn z > O}, and every t E L is the center of 
an open disc B t such that H+ n B t lies in n+. Let n- be the reflection of n+ : 
n- = {z: z E n+}. Suppose u is harmonic in n+ and limn>-o+oo u(zn) = 0 lor every 
sequence {zn} in n+ which converges to a point on L. Then there is a function U, 
harmonic in 0 = n+ u L u n- such that U = u in n+. This function U satisfies 
the relation U(z) = -U(z), zEn. 

Proof. We extend u to 0 by defining U(z) = 0, for Z E L, and U(z) = -U(z), 
for Z E 0-. 

Example 1. It is not difficult to verify that function J(z) = 2x + i cos Y is 
harmonic mapping from C into C with respect to the corresponding metric. This 
function is periodic with respect to y. The next result shows that this periodicity 
is typical. 

Theorem Ml. Suppose that I: C t-+ C is a harmonic mapping, given w.r.t. 
natural parameter and that Jacobian 011 equals zero on the real axis. Then I(z) = 
I(z). 

The proof of this result is based on the Theorem S. 

B. Dirichlet's principle and related problems. B1. If the metric density 
p == 1 on N, then the equation (1) reduces to Izz = O. In this case we say 
that I is a harmonic function and write DU] instead of E(J,l) for the energy 
integral. Recall that 6. denote the unit disc. Also we will use the notation D[4>, 1/1] = 
I It. (4)x1/lx + 4>y1/ly) dx dy. 

The following lemma is crucial in the proof of Dirichle's principle. 

Lemma DP. Suppose that 
(a) u and h are continuous on 6. and h == 0 on 86. 
(b) u is harmonic on 6. and h has the continuous partial derivatives of the 

first order on 6. 
(c) u and h have the finite Dirichlet's integral on 6.. 

Then D[u, h] = O. 

First we will state the Dirichlet's principle for harmonic function. 
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Theorem OP. (Dirichtet's principle) Suppose that 
(a) 9 is continuous function on A.. 
(b) 9 has the first partial derivatives which are continuous on A. 
(c) the energy integral of g is finite. 

If u is continuous on A., harmonic on b.. and if u = 9 on the boundary of A., 
then D(g) ~ D(u), where the inequality equals if and only if u = 9 on A.. 

Proof. If h = 9 - u, then Lemma DP shows that, 

D[g] = D[u] + 2D[u, h] + D[h] = D[u] + D[h] > D[u], 

unless D[hJ = 0, i.e., h has the constant value zero. 

Now, we are going to discuss some results related to Dirichlet's principle. In 
[M1] we gave a proof of Theorem M2 (see bellow) based on Dirichlet's principle. 
Before we state this result we need some definitions and we will state the area 
theorem and a result of Lehto-Kiihnau, which motivated us. 

B2. An area theorem of Lehto-Kuhnau type for harmonic maps. First, 
we are going to prove the area theorem, which is an important tool in theory of 
univalent functions. 

Theorem A. (The area theorem) Let w = J(z) = z + al + ... + an + ... be 
z zn 

an univalent analytic function on E = {z : Izl > I} and let G = C" f(E) be the 
omitted set. Then 

Proof. Let Kp be the circle Izl = p > 1, with the positive orientation, and set 

Jp = Jp(f) = ~ [ fd]. iKp 

If J = u + iv and if "Ip denotes the image curve of Kp, we have 

Jp = [ udv 
i"fp 

and by elementary calculus this represent the area enclosed by "Ip. Hence Jp > O. 
Direct calculation gives 

Jp = ~ [ (z+ I: ::) (1- I:klikz-k-1)dZ 
i Kp k=l k=l 

= ~ Lp (z + ~ ::) (z- ~klikZ-k)d8 

= 1T [p2 _ ~ klakI2p-2k]. 

00 

Thus L: klak 12 p-2k < p2, and theorem follows for p 1-7 1. 
k=l 

< 
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Let us consider conformal mapping h which belongs to class E, i.e., h is univa
lent in E = {z : I z\ > 1} and has a power series expansion of the form 

n=l 

in E. If h has a quasiconformal extension to the plane with complex dilatation 1-', 
satisfying the inequality 111-'1100 = k < 1, we say that h belongs to the subclass Ek 
of E. Lehto [L1], [L2] and Kiihnau [K] established the area theorem for Ek. 

00 
Theorem LK. (Lehto-Kiihnau) Let h E Ek' Then 'Enlan l2 ~ k2

. The 
estimate is sharp. n=l 

If we denote by P the area of the omitted set of h(E), then Theorem LK states 
that P ~ 11"(1 - k2). 

Before we state the Theorem M2, which is a generalization of Theorem LK to 
univalent harmonic mappings, we need some definitions. Let E' be the set of all 
harmonic, orientation-preserving, univalent mappings 

h(z) = z + J(z) + g(z) + A log Izl 

on E, where J(z) = 'E:'=l anz-n and g(z) = 'E:'=l bnz-n are analytic on E and 
A E C. Let Ek denote the set of all homeomorphisms h of C onto itself such that: 
(a) the restriction of h on E belongs to E' and (b) the restriction of h on the unit 
disk U = {z : Izl < 1} is a quasiconformal mapping with complex dilatation I-' 
satisfying 111-'1100 ~ k < l. 

The Area theorem can be established for Ek. Recall, that P denote the area 
of the omitted set of h(E). Also, it is convenient to use notations r = 'E:'=l nlan 12 
and 8 = 1 + 2 Re b1 + l, where 1 = 'E:=l nlbnl2. 

Theorem M2. Let h E Ek. Then 
(a) P ~ 11"(1 - k2)8; (b) The equality holds in (a) if and only if 

h(z) = z + cz-1 + cg(z) + g(z) + A log \z\, 
00 

where g(z) = 'E bnz-n is analytic on E; and Icl = k, A E C. 
n=l 

Since P = 11"(8 - r) the next result follows immediately from Theorem Ml. 

Corollary Ml. If h E E~, then r ~ k2 8. 

Finally we state a generalization of the area theorem to analytic functions. 

Theorem Al. Letw = f(z) = M+ al + ... + an + ... be an analytic function 
z zn 

on E = {z : Izl > I} and let G = C" f(E) be the omitted set. Then 

(B1) 11" (IAI2 - fk 1akl2 ) ~ area(G). 
k=l 

Equality holds if and only if f is a univalent function on E. 
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Proof. Let Kp be the circle /z/ = p with positive orientation and let "(p be the 
curve defined by the equation w = Jp(eit ) = J(pe it ), 0::::; t ::::; 211". For given w ::J:. 00 

let n(w) be the number ofroots of J(z) = win /zl > p. Assume that J ::J:. w on Kp 
and A ::J:. O. Since J has a pole of order 1 at 00, we have J(z) ::J:. w in /z/ ~ r for a 
large r and consequently, by the argument principle, 

(B2) 1 1 f'(z) 
n(w) = -2 . J( ) dz = 1 - X(,,(p, w), 

1I"Z Kr-Kp Z.,... W 

where X = xbp,w) is the winding number (or index) of the curve "(p with respect 
to the point w. By the analytic Green's theorem (see, for example [Po]), the area 

(B3) I p=-2
1

. r wdw=.!.. r xbp,w)dudv. 
m i-yp 11" iJR2 

Let Gp be the set omitted by J on Ep = {/z/ > p}. By (1) wE Gp if and only if 
X(,,(p, w) = 1. Also, it follows from (1) that X(,,(p, w) is an integer less than or equal 
to zero if w f/. Gp. This together with (B3) gives 

(B4) 

Direct calculation as in the proof of area theorem gives (B1). For the case of 
equality see [M]. 

B3. Extremal metrics and modulus. In this item we are going to give a proof 
of a Beurling result, which is a modification of the proof in [Ah1]. Also, we outline 
a new proof of the Beurling result, using minimizing sequences. Our approach is 
influenced by Courant's book (see [C]) and Gehring's work in 1R3 space (see [Gel] 
and [Ge2J). Some generalizations of Gehring's results are presented in [AMS]. 

In unpublished work Beurling has given the following elegant and useful crite
rion. Before we state Beurling result we need a few definitions. 

Let D be a region in the plane, and let f be family of curves and let p(z) ~ 0, 
be Borel measurable function defined in the z-plane. We say that p is admissible 
for f, iffor every rectifiable "( E f, f-y p/dz/ exists and 00 ~ f-y p/dz/ ~ 1. In these 
circumstances every rectifiable arc "( has a well defined p-Iength 

Lb, p) = !, p/dz/, 

which may be infinite, and the open set D has a p-area A = Ap = A(p, D). The 
modulus of f, M = Mn(f), with respect to D, is defined as inf A(D,p) for admis
sible p. The extremal length of f in D is defined as the reciprocal of the modulus. 
The extremal length is denoted by A = An (f). 

Theorem Bl. (Beurling's theorem) The metric Po is extremal for f if f 
contains a subfamily fo with the following properties: 

(a) I-y po/dz/ = 1, for all "( E fo; 
(b) for real-valued h in D the conditions I-y h/dz/ > 0 for all "( E fo imply 

IIn hpo dxdy ~ O. 

2Q 
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Let n be an open set and let El, ~ be two sets in the closure of n. Take f to 
be the set of connected arcs in n which join El and E2 • The extremallength >'(f) 
is called the extremal distance of El and E2 in 0, and we denote it by dn(El,E2). 

Example 1. The extremal distance between vertical sides of a rectangle R = 
{z = x + iy : a < x < b, c < y < d} is >. = ~=~. 

Proof. Let Ay = [a+iy, b+iy] and fo is the family of curves {Ay: c ~ y ~ d}. 
If we take Po = 1 Beurling's criterion is satisfied, and Po = 1 is extremal metric. 

Example 2. Let A be the ring A = A(rl,r2) = {z: rl < Izl < r2}. If f is the 
family of arcs in A, which join circles KTl = {z : Izl = rt} and KT2 = {z : Izl = r2}, 
then 

(B5) 

Proof. Let A' = A" (rl,r2) and R = {w : lnrl < u < lnr2, 0 < v < 2n}. 
Since exp maps conformally R onto A', using the Example 1 we get (B5). 

Now, we state a result of Beurling, which express the Dirichlet's integral by 
means of extremal distance (see [Ah1]). 

Theorem B2. (Beurling's theorem) Let 0 be a region in the complex plane 
bounded by a finite number of analytic Jordan curves, let Eo and El be disjoint and 
consist of finite number of closed arcs or curves in the boundary of o. Then the 
extremal distance dn(Eo, El) is the reciprocal of the Dirichlet integral 

D(u) = fl(u~+U~)dXdY, 
where u satisfies: 

(i) u is bounded and harmonic in n 
(ii) u has a continuous extension to n u E8 U Ef, and u = 0 on Eo and u = 1 

on El 
(iii) the normal derivative {)u/{)n exists and vanishes on Co (C denote the 

full boundary of 0, Co = C - (Eo U Er), and E8 and Ef denote relative interiors 
of Eo and El as a subset of C). 

The proof of this theorem in [Ah1] is based on two important ingredients: 
1) the existence of solution of a mixed Dirichlet-Neuman problem (we denote 

it by u) 
2) decomposition of a domain on rings and quadrilateral sub domains using, 

in fact, the orthogonal and vertical trajectories of quadratic differential defined by 
u. 

For the theory of trajectories of holomorphic quadratic differentials see [Gal 
and [S2]. 

Proof of Theorem B2. Let A be the set of the end points of the El and E2 as 
subsets of C. The reflection principle shows that u has a harmonic extension across 
ao" A. 
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Let Zo E A, for example, Zo E El. We can chose a local conjugate v in 0 near 
Zo such that, on the boundary, U = 0 on one side of Zo and v = 0 on the other side 
of zoo Then, by the reflection principle, there exists neighborhood V of Zo and an 
analytic function cp in V" {zo} such that cp = (u + iv)2 in 0 n V. Hence, cp is an 
analytic function on V and has a simple zero at ZOo Therefore, Ux - iuy must tend 
to 00, and the number of critical points in IT" A is finite. 

Locally, for every Zo E ao " A there exists a neighborhood V of Zo and an 
analytic function f on V such that Re f = u on V. Hence, we can define horizontal 
trajectories with respect to w = fez). 

The part of noncritical horizontal trajectory "( which is in IT can be parameter
ized with parameter interval 1= [0,1] such that: 

1. "( join El and E2 in 0 (more precisely "(0, 1) C 0, "(0) E El and "(1) E E2). 
2. Re"( is strictly increasing function on I and Re"(O) = 0, Re"(l) = 1. 

Hence, we conclude that up to a set of Lebesgue 2-dimensional measure zero there 
exists finite number of disjoint quadrilateral Ek, k = 1, 2, ... , n, such that: 

1. 0 = UZ=l Ek 
2. Each Ek is swept out with noncritical horizontal trajectories 
3. There exists rectangles Rk of width 1 and height mk and conformal (uni

valent) mapping «P = «Pk of Ek onto Rk such that Re«Pk = u on Ek. Hence, 

mk=jrr /«p'/2dxdy and m='tmk=D(u). 
J'Ek k=l 

Together rectangles Rk fill out a rectangle with sides 1 and D(u). After appropriate 
identification we obtain a model of 0 with El and E2 as vertical sides. 

From this model and Beurling theorem (Theorem Bl) it is immediately clear 
that the euclidean metric is extremal, and we conclude that dn(El ,E2 ) = l/D(u). 

Our first purpose was to give more elementary proof of this result (that is, 
with no use of these two subjects), using a minimizing sequence (see, for example 
Courant's book [C]), and to derive some equalities not contained in the proof of 
Beurling's theorem. During our work on this problem we become aware of Gehring's 
works (see [Gel] and [Ge2]), which strongly influenced our research. 

In [Gel] and [Ge2] Gehring proved that essentially Vaisrua's definition of ex
tremal distance between Eo and El in 0 is equivalent to the Dirichlet's integral 
definition due to Loewner (see [Lo]) if 0 is a ring domain in 1R3 , and Eo and El are 
boundary components of O. Gehring used this result to study quasiconformal map
pings in space. We generalize this result to the setting of smooth domains in IRn. 
An application of this result gives a short proof of Beurling's Theorem. As we un
derstand, there are additional technical difficulties if we work with general domains 
instead of ring domains. Before we state the result we need a few definitions. 

Definition Bl. Let 0 be an open set in IRn and r a set whose elements "( are 
rectifiable arcs in O. Let p be a nonnegative Bore! measurable function in 0 (such 
p we will call metric). We can define the p-Iength of"( by 

L(,,(,p) = ip/dx/ 

-

I 

I 
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the p-volume of n as 

v(n,p) = l/ndV(x) 

where dV is the n-dimensional Lebesgue measure in lRn
, and the minimum length 

of r by L(r, p) = inf..,Ef Lb, p). The modulus of r in n is defined by 

() 
. V(n,p) 

mod 0 r = U;f L(r,p)n' 

where p is subject to the condition 0 < V(n, p) < 00. The extremallength of r in 
n is defined as Ao(r) = mod o(r)l/l-n. 

Definition B2. Let n be an open set in lRn , and let Eo, El be two sets in the 
closure of n. Take r to be the set of connected arcs in n which join Eo and El, 
i.e. each 'Y E r has one endpoint in Eo and the other in El and all other points of 
'Y are in n. The extremallength A(r) is called the extremal distance of Eo and El 
in n, and we denote it by dn(Eo, El). 

Now, let n be a bounded region whose boundary consists of a finite number 
of Cl hypersurfaces. IT Eo and El are disjoint, and each is a finite union of closed 
hypersurfaces contained in the boundary of n, then we define the conformal n
capacity of n as 

c[n, Eo, Ell =inf ( IVulf1 dV(x), 
u 10 

where infimum is taken over all functions u : n -+ lR which are differentiable in n, 
continuous in n and have boundary values 0 on Eo and 1 on El. 

The proof of the following theorem is given in [AMS]. 

Theorem AMS. If n is a bounded domain, whose boundary consists of a finite 
number of Cl hypersur/aces, and if Eo and El are disjoint sets of the boundary of 
n consisting of finite number of closed hypersurfaces, then we have 

. V(n, f) 
mod o(r) = lIf L(r,f)n = C[n,Eo,Ed, 

where f is any metric in nand r is the family of all Jordan arcs joining Eo and 
El inside n. 

The case n = 2 of previous theorem enables us to give a short proof of Theorem 
B. In fact, the proof immediately follows from Theorem 1.3 (see [C]), which gives 
a solution of a mixed Dirichlet-Neuman problem. 

The proof of Theorem 1.3 in Courant's book [C], is based on using minimizing 
sequences. We believe that we can use minimizing sequences as Gehring in [Gel] 
to show existence of the extremal admissible function u E E(n, Eo, EI) such that 

C[n, Eo, El] = In IVulndV. 

84. Dirichlet's principle for harmonic mappings. Let N be complete Rie
mannian manifold of dimension n and let its metric in local coordinates be given 
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by (gik), with Christoffel symbols r~l' For 1 E H 1,2(M,N) we define the energy 
density 

and the energy as 

E(J) = ~ fM e(J)a
2
dxdy = ~ /M Lgik(J), (J;I: + 1;1;) dxdy, 

where we write 1 = (jI, P, ... , r) in local coordinates. A solution of the corre
sponding Euler-Lagrange equation t::.li + Ttl (J! I! + I; I~) = 0, i = 1,2, ... , n, is 
called harmonic map. 

Theorem M3. (Dirichlet's principle for harmonic mappings) Let N be Rie
mannian n-dimensional manifold and 1 : t::. 1--7 N be a harmonic mapping. If ~ is 
diffeomorphism of t::. onto itself, which is identity on at::., then E(J o~) ~ E(J). 

C. Uniqueness of harmonic maps. Our further discussion is concerned mainly 
with the case when M and N are domains in complex plane C. Recall, that the 
following result enables us to use theory of trajectory of holomorphic quadratic 
differentials. 

Cl. If f is a harmonic mapping between Riemann surfaces M and N with 
local conformal metrics a(z)ldzI2 and p(w)ldwI2, respectively, then cp = ppijdz2 

is a holomorphic quadratic differential. For example if M and N are subset of 
the complex plane C, this simply means that the function ppij is a holomorphic 
function. This enables us to use the techniques and results from the theory of 
holomorphic functions. 

C2. Markovic and the author, using a version of Reich-Strebel inequality, 
proved the following uniqueness property. 

Theorem MM. Suppose that 
(a) 1 and 9 are harmonic diffeomorphisms of t::. onto itself 
(b) 1 and 9 are continuous on t::. 
(c) f = 9 on at::.. 

If, in addit~on, we suppose that the energy integrals of f and 9 are finite, they are 
identical. 

This result was communicated on our Seminar at Belgrade University in 1996. 
and at Nevannlina Colloquium, Switzerland 1997. The proof is based on the next 
lemma if f and 9 are diffeomorphisms of t::. onto itself and on a new version of 
Reich-Strebel ineqUality in general case. 

Lemma MM. Suppose that f and 9 are difJeomorphisms of t::. onto 3. and 
that f is harmonic with respect to conformal metric ds = p(w)/dwl on 3.. If we 
suppose in addition, that E(J) < +00 and that f = 9 on at::., then 

( (l-/ti(()/ 11 + MB/ti(()/1
2 

J il p(() d~ dry ~ J il p(() 1 + Iti(()1 1 -lx(()12 d~ dry, 

---
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where ji, = Belt(j-l), X = Belt(g-l) and p«() = p«() 1 ~~(IJ)'2 . 
We will outline a proof of Theorem MM in the case that 1 = Id on 86. and 

that 1 is diffeomorphism of 6. onto itself. For the proof it is useful to observe that 
if 1 is harmonic, then Beltrami dilatation I-' of 1 has the form 

/-L(z) = s(z) Icp(z)1 , 
cp(z) 

where s is non-negative measurable function and cp = po Ipq is an analytic function. 
Thus we have that expression /-Lcp/lcpl, which appears in Reich-Strebel inequality 
equals 11-'1 and we get 

i Icpl dx dy ~ i Icpl ~ ~ I:: dx dy. 

If cp is not identically zero we get /-L = 0 a.e. Hence we conclude that 1 is 
conformal mapping. Since 1 = Id on 86., we get that 1 = Id on 6.. In general, 
we need a version of main inequality which holds for the mapping whose maximal 
dilatation can be 1. 

Cl Markovic and the author have proved that 1 = 9 under weaker conditions, 
then in Theorem MM. The following two results will appear in [MM3]. 

Theorem MM!. Suppose that 
(a) 1 is homeomorphism 01 6. onto itself 
(b) 1 has the first generalized derivatives on 6. 
(c) 1 is identity on 86. 
(d) 1 is harmonic w. r. t. some metric density p on 6. 
(e) Hopf differential of 1 is integrable on 6.. 

Then 1 is the identity on 6.. 

Theorem MM2. (The uniqueness property). Suppose that 
(a) 1 and 9 are homeomorphisms 01 6. onto itself and 1 = 9 on 86. 
(b) 1 and 9 are loco q.c. on 6. 
(c) 1 and 9 are harmonic w.r.t. some metric density p on 6. 
(d) Hopf differentials of 1 and 9 are integrable on 6.. 

Then 1 and 9 are identical. 

Also, we might add that we have a generalization of this result if instead of 
the unit disk, we consider Riemann surfaces. Recall, if the metric p == 1 on N, 
which is open subset of complex plane C (euclidean case), we will say harmonic 
function instead of harmonic mapping. Thus in euclidean case this result says that 
the solution of classical Dirichlet problem is unique. 

The proof of Theorem MM2 is based on a new version of Riech-Strebel inequal
ity. Note that if 1 and 9 are harmonic property (A) says that function cp = po Ipij 
and 1j; = pogAB are holomorphic functions on the unit disk, where we use notation 
A = 8g, B = 8g. The idea of the proof is to apply a new version of Reich-Strebel 
inequality to functions cp and 1j;. 
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In the next item we are going to give a short discussion of known result related 
to uniqueness of harmonic maps. 

C4. We refer the interested reader to (J] for the global uniqueness theorem of 
AI'ber and Hartman, for the result of Jager and Kaul and for further references. 

Theorem AH (AI'ber and Hartman). Let U : M t-t N be a harmonic map 
between compact Riemannian manifolds (without boundary). Suppose N has neg
ative sectional curvature. Then U is unique harmonic map in its homotopy class 
unless u(M) is a point or a closed geodesic. 

If the sectional curvature of N is non-positive, then for any two homotopic 
harmonic uo, Ul : M t-t N, there exist a family Ut : M t-t N of harmonic 
maps, with the property that the curves Ut(x), for fixed x E M, t E [O,lJ varying, 
constitute a family of parallel geodesics, parameterized proportionally to arc length. 
In particular, all maps Ut have the same energy. 

Theorem JK (Jager and Kaul). Suppose that Ui IT t-t N (i = 1,2) are 
harmonic maps of class CO(IT,N) n C2(n,N), 0, is a bounded domain in some 
Riemannian manifold, and Ui(IT) C B(P,p), where B(P,p) is a geodesic ball in N, 
disjoint to the cut locus of p and with radius p < 7r/2K, where K

2is an upper bound 
for the sectional curvature of B(p, p). If Ul = U2 on 80" then Ul == U2' 

We refer the interested reader to the Schoen-Yau book [SYJ for uniqueness 
theorems concerning harmonic maps into non-positive curved metric spaces and 
further references. 

After writing the previous version E. Reich pointed out to us that H. Wei [We] 
studied uniqueness property of harmonic mappings. Also, we became aware of the 
Coron-Helein paper [CH1. H. Wei using the formula for the energy of variation of 
a mapping (see [ReS2J) and Reich-Strebel inequality, proved a weaker version of 
Theorem 2 concerning q.c. mapping. Namely, H. Wei proved Theorem MM2 under 
additional hypotheses that 

(c) f and g are q.c. mappings on the unit disk A onto itself 
(d) the metric density p is an integrable function on A. 

Note that the hypotheses ( c) and (d) provide that the energy integral of f and g 
are finite. 

In [CHJ, Coron-Helein used completely different approach then H. Wei in [We] 
to study minimizing harmonic mappings. Their approach was based on decompo
sition of given metric g on A as the sum of two metrics c and h such that c is 
conformal metric of the euclidean metric e , h has non-positive Gaussian curvature 
and Id is harmonic map between (A,e) and (A,h). 

Theorem CH (Coron-Helein). Let (M,h) and (N,g) be two Riemannian 
compact surfaces of class coo possibly with boundary. Then any smooth harmonic 
difJeomorphism between (M, h) and (N, g) is minimizing in its homotopy class. 
Moreover, if 8M is nonempty or if the genus of M is strictly larger then one, then 
such a difJeomorphism is the unique minimizing map in its homotopy class. 

I 

I 
11 
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D. Related results. First, we will give an application of Theorem MM2 in the 
case when the energy integral is infinite. 

01. Suppose that 
(a) f and 9 are harmonic diffeomorphisms from the tl onto itselfw.r.t. Poincare 

metric. 
(b) Hopf differentials cp = Hopf(f) and 1j; = Hopf(g) are integrable on tl. 

Since cp and 1j; belong to Bers space (see, for example, [Ah2] , [W] and [AMM] for 
definition and properties of Bers space) a result of Wan [W] shows that f and 9 
are q.c. mappings of tl onto itself. If, in addition, we suppose that f = 9 on the 
boundary of the unit disk, an application of Theorem MM2 shows that f and 9 are 
identical. 

Note that every harmonic diffeomorphism of tl onto itself w.r.t. Poincare 
metric has infinite energy integral. 

The following example shows that without assumption that Hopf differentials 
are integrable Theorem MM! is not valid. 

02. Let cp be the conformal mapping of the unit disk tl onto upper half-plane 
H and let pew) = \cp'(w)\. Next, let 9 = 1j; 0 h 0 cp, where 1j; is the inverse function 
of cp and h is given by h(z) = x + iky, k > O. We leave to the reader to verify that 
9 is q.c. harmonic mapping (w.r.t. p) of the unit disk tl onto itself and that 9 = Id 
on the boundary of tl. 

Although, the metric defined by the density p is flat on the complex plane C 
except at one point, Theorem MM! is not valid. 

03. In connection with the parts (D!) and (D2) of this section, we will give a 
short discussion (we follow Schoen [Sc]). 

There is an interesting conjecture which is due to Schoen (see also [Sc]). 

Conjecture. The q.c. harmonic homeomorphisms from the unit disk tl onto 
itself, w.r.t. Poincare metric, are parameterized by the boundary values of q.c. 
maps of the disk. 

This is a question which involves proving both an existence and a uniqueness 
theorem. The existence result for this ideal boundary value problem has been 
shown by Li and Tam [LT!] under the additional hypothesis that boundary map be 
sufficiently differentiable. They have also obtained counterexamples to uniqueness 
without the quasi-conformal hypothesis (but with continuity) and then proved the 
uniqueness part of Schoen's conjecture (see [LT2]). 

A result of Wan [W] gives a parameterisation of the q.c. harmonic homeomor
phisms of tl in terms of bounded holomorphic quadratic differentials on tl. Wan 
has shown that if f is q.c. mapping, then Hopf differential of f is bounded w.r.t. the 
Poincare metric on tl. Conversely, he has shown that for any bounded holomor
phic quadratic differential <P on tl there is a unique q.c. harmonic homeomorphism 
f : tl ~ tl such that Hopf(f) = <P. 

04. Theorem MM2 remains valid if the condition (b) (in the hypotheses of 
Theorem MM2 is replaced by the following. 

(e) f, 9 and their inverse mapping have £2-derivatives. 
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The idea of the proof is as follows. If the condition (e) holds then one can get 
that I 0 g-1 and go I-I have Ll-derivatives and its partial derivatives satisfy the 
chain rule (for a details see Lemma 6.4 of [LV, p. 151]). 

It is well-known that the condition (b) implies the condition (e) (see, for ex
ample, [LV]). 

For a development of theory of harmonic mappings by means of Sobolev spaces, 
we refer to Schoen-Yau book [SY]. 

D5. Harmonic maps and extremal QC mapping. Before we state the results, 
we need some notations. Suppose that f is quasi-conformal mapping of the unit 
disk A onto itself. Let k[f] = esssup{IJLf(z)1 : z E A} and let Q (J) denote the 
collection of all q.c. mappings of A whose pointwise boundary values on 8.60 agree 
with those of I. We call I extremal (in its Teichmiiller class) if k[J] ~ k[g] for every 
9 E Q(J). An extremal q.c. mapping f is uniquely extremal (in its Teichmiiller 
class) if k[J1 < k[g1 for every other 9 in Q(J). 

Theorem M4. (The first removable singularity theorem). Suppose that 
(a) I is q.c. mapping from A onto A 
(b) f is a harmonic function with respect to the metric density p on A , K, 

where K is compact subset of A 
(c) f is extremal in its Teichmuller class 
(d) there are two positive constant m and M such that m ~ Icp(z)1 ~ M for 

each z EA, K, where cp is Hopf differential of f. 
Then cp has an analytic extension cp from A ,K to A and JL(z) = k Icp(z)//cp(z) 

a.e. in A, where k is a constant. 

Theorem MS. (The second removable singularity theorem). Suppose that 
(a) f is uniquely extremal q.c. mapping, in its class, from A onto A 
(b) f is a harmonic function with respect to the metric density p on A ,K, 

where K is compact subset of A. 
Then we have the same conclusion as in the previous theorem. 

During our work with Bozin on the problems related to uniquely extremal q.c. 
mapping [BMM], we also obtained some results of this type. 

Ill. New version of the Main Inequality 

Analyzing the proof of the Grotzsch principle we discovered the following 
lemma. Let D be a vertically convex domain of finite area in the complex plane C 
and let F be a mapping from the domain D onto the domain G. Suppose that we 
have metric ds = p(w)ldwl on G. Let r", be the interval which is the intersection 
of D by the straight line Re z = x and let "(,,, be the curve which is the image of r '" 
under F. Let p(x,y) = x be the projection and let (a:,{3) = p(D). 

Lemma 1. With the notation and hypothesis just stated, suppose (in addition) 
that the mapping F is homeomorphism which has the first generalized derivatives 
and that 

length(r",) ~ 1 p(w)ldwl a.e. in (a:,{3). 
'"Y~ 

• 
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Then 

area(D) ~ [ffa p2(W)dUdvf/2[f£ Tv~d17r/2, 
where v = Belt[F]. 

The proof of this lemma will be given in the section C of this section. Note 
that this lemma enables us to get a new version of the Main Inequality (Theorem 
1, section D) which is applicable to mappings which are not quasiconformal. But 
first, we are going to give a proof of the Reich-Strebel inequality in the case of 
lliemann surfaces of finite analytic type using this lemma. 

A. The inequality of Reich and Strebel. It is convenient to use notation . 
11_JL(z)~12 

Tpcp(z) = l-IJL(z)12 

Theorem RS. (Reich and Strebel) Let R be a Riemann surface of finite ana
lytic type and let cp be integrable holomorphic quadratic differential on R. Let f be 
a quasiconformal self mapping of R which is homotopic to the identity map and let 
JL be the Beltrami coefficient of f. Then 

(AI) f jlcp(z)1 dxdy ~ jjlcp(z)ITpCP(Z) dxdy. 
R R 

Proof. Suppose that all noncritical trajectory of cp are closed. Up to a set of 
Lebesgue 2-dimensional measure zero R = U :Ek, where :Ek are disjoint ring do
mains. Each:Ek is swept out by a family of vertical trajectories of the holomorphic 
quadratic differential cp(z)dz2 , and in each :Ek there exists a single valued univalent 
branch ( = «Pk(Z) of J JCP(z) dz. 

Each region «Pk(:Ek) is a rectangle Rk = {( : 0 < ~ < ak, 0 < 17 < bk}. Let 
W k = «Pk" 1, Fk = f 0 W k, 0 = Of. = W k(r f.), where re is vertical interval which is the 
intersection of Rk with the straight line Re ( = ~, and let 'Y = 'Yf, = f(Of.). Since 
the closed trajectories are shortest in their homotopy class (see Theorem 17.1 of 
[S2]), we obtain 

then by Lemma 1 ak bk ~ Ak Bk. Using the change of variables Z = «p;1«(), we get 

Bk2 = jjlcp(z)1 Tpcp(z)dxdy. 
Ek 
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Now, an application of Cauchy-Schwarz inequality, as in the proof of the new 
version of the Main Inequality (see bellow), gives (AI). 

Using the fact that quadratic differentials with closed trajectories are dense in 
Q (see Theorem 25.2 of [S2]) , we can get the Main Inequality in general. 

B. The Problem of Grotzsch. B1. In order to motivate the statement and 
proof of our version of the Main Inequality we will emphasize the main points in 
the proof of Grotzsch's principle. We will follow [MM2], where we announced the 
results of this section. 

If Q is a square and R is a rectangle, not a square, there is no conformal 
mapping of Q on R which maps vertices on vertices. Instead, Grotzsch asked for 
the most nearly conformal mapping of this kind and took the first step toward the 
creation of a theory of quasiconformal mappings. 

Let w = I(z) be a mapping from one region to another. Recall that we use 
notation dI = pdz + qaz, where p = 81 and q = 81. The complex (Beltrami) 
dilatataion is ILl = Belt[Il = q/p. The dilatation of 1 is: 

D - Ipl + Iql 
1- Ipl-Iq!" 

We pass to the Grotzsch problem and give it a precise meaning by saying that 
1 is most nearly conformal if sup D I is as small as possible. Let R, R' be two 
rectangles with sides a, b and a', b'. We may assume that K = f,- : ~ ~ 1. The 
mapping 1 is supposed to be C1-homeomorphism from R onto R', which takes 
a-sides into a-sides and b-sides into b-sides. Next, let r x be the vertical segment 
which is the intersection of the line Re z = x with R and 'Yx the curve which is 
image of r x under 1. 

The starting point of Grotzsch's approach is the geometric obvious inequality 

(BI) 

Using: 

(B2) 

b 

b' ~ lengthbx) = f Ip - ql dy. 

o 

f f J, dxdy = a'b', 
R 

where J, denotes the Jacobian of 1, and the Cauchy-Schwarz inequality one gets 

(B3) 

The minimum is attained for the affine mapping. We note the following connections 
to with Grotzsch's problem. The restriction to Cl-mapping is not essential. The 
inequality (B3) holds for quasiconformal mapping (see, for example, [Ah2]). 

In order to give a version of Grotzsch principle concerning mappings with £1-
derivatives, we need the following definitior:. 

« 

. i 
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B2. Definition of V-derivatives. Let D be a domain in C. We say that 
a function J : D t4 C has V-derivatives, p ~ 1, if it satisfies the following two 
conditions: 

(a) J is absolutely continuous on lines in D 
(b) The partial derivatives le and Jy belong to LP in every compact subset of 

D. 

When we say that J has first generalized derivatives in D this means that J has 
Ll-derivatives in D. For various characterizations of functions with LP-derivatives 
and their important role in the theory of quasiconformal mappings we refer to 
Chapters III to VI of the book by Lehto Virtanen [LV]. 

B3. A version of Grotzsch's principle. Before, we give further extension of 
Grotzsch's principle, it is useful to consider the following example when (B1) and 
(B3) does not hold. 

Example 1. Let a : I t4 I, where I = [0,1], be Cantor function and let 
J(z) = x + i(y + a(y)). 

Note that this function does not satisfy ACL property and that the known 
formula for the length of curve by means of first partial derivatives does not hold. 

Suppose that 

(a) J is a homeomorphism of closed rectangle R onto the closed rectangle R' 
which maps a-sides onto a'-sides and b-sides onto b'-sides. 

(b) J has the first generalized derivatives on R. 

In order to get some conclusion we can follow the outline of the proof of 
Grotzsch principle from the subsection B1 of this section. We need the follow
ing definition. At the point z where J.L (z) is defined and 1J.L(z) 1 i= 1 we define TJ.'(z) 
by 

11 - J.L(z)1 2 

TJ.'(z) = 1-1J.L(z)12 

Also, at point z where Ip(z)1 = Iq(z)1 we define TJ.' (z) to be zero if p(z) = q(z) 
and +00 if p(z) i= q(z). 

Now, we can give the precise meaning of TJ.'cp by means of Tx, where X = 
J.Lcp/lcpl· 

Since J satisfies the ACL-property, inequality (B1) holds for a.a. x E [O,al. 
In order to prove inequality (B4) (see below), we can suppose that TJ.' is defined 

and finite a.e. on R, because otherwise the right-hand side of (B4) is infinite. 
Next, we can integrate w.r.t. dx over [0, al and use the fact that the Jacobian 

J, = 1P12 (1 - 1J.L12) a.e. on R. 

Instead of (B2), we have 

I Jj dxdy ~ area(R') = a'b'. 

R 
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Now, an application of Cauchy-Schwarz inequality gives 

(B4) 
[ ]

1/2 

area(R)~ ~ [area(RI)]1/2 II TJl 

R 

Further development of the ideas outlined above leads us to Lemma 1 (see 
below), which will be used in the proof of the new version of the Main Inequality. 

C. Proofs of lemma 1 and lemma 2. For the sake of the reader recall the 
statement of the Lemma l. 

Let D be a vertically convex domain of finite area in the complex plane C and 
let F be a mapping from the domain D onto the domain G. Suppose that we have 
metric ds = p(w)ldwl on G. Let rx be the interval which is the intersection of D 
by the straight line Re z = x and let "Ix be the curve which is the image of r x under 
F. Let p(x, y) = x be the projection and let (a,/3) = p(D). 

Lemma 1. With the notation and hypothesis just stated, suppose (in addition) 
that the mapping F is homeomorphism which has first generalized derivatives and 
that 

(Cl) length(rx) ~ J p(w)ldwl a.e. in (a,/3). 

'Yz 

Then 

(C2) 

where 11 = Belt[FJ. 

Proof. We will use the notation dF = P d( + Q dC, where P = BF and 
Q = BF. We can suppose that Tv is defined and finite a.e. on D, because otherwise 
the right-hand side of (C2) is infinite. With definition of Tv in mind, this means 
that P = Q a.e. on A, where A is the set on which Jacobian JF equals zero. Since 
F is absolutely continuous on r x for a.a. x E (a, /3), we find 

p -length("(x) = J (p 0 F)(()IPlil - III dry. 

rz 
By Fubini's theorem and assumption (Cl), 

(area)(D) ~ J J (p 0 F)(()IPlil - III d~ dry. 

D 

Since JF = IP1 2 (1 - 11112) a.e. on D, the term on the right can be written in the 
form 

r = J I (p 0 F) (()ipf2T;/2 d~ dry. 

D 

< 
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Next, using the Cauchy-Schwarz inequality we conclude that T ~ Al/2. Bl/2, where 

A = II (p2 0 F)(z) h(z) dx dy and B = [/1 Tv d{ dry]. 
D D 

Let C = II p2(W) dudv. We need the following lemma to finish the proof. 
G 

Lemma 2. We have A ~ C. 

Proof. Let the measure p, be defined by 

p,(E) = I h(z) dxdy and P,F(E) = m(F(E)), 
E 

for every Lebesgue measurable set E. Since F is a homeomorphism which possesses 
finite partial derivatives a.e. in D, by Lemma 3.3 of [LV, p. 131], we have p,(E) ~ 
P,F(E), and therefore we have the desired result. 

O. Proof of new version of the Main Inequality. There are several papers 
of Reich and Strebel which concern various forms of the Main Inequality. Our proof 
is based on their ideas. 

Here, we will give a complete proof of the Theorem 1, because we need to 
be careful when we work with mappings whose dilatation is not bounded. For 
convenience of the reader let us recall the statement of Theorem l. 

Theorem 1. Suppose that 
(a) f is a homeomorphism of t:.. onto itself 
(b) f has first generalized derivatives on t:.. 
(c) f is the identity on at:... 

Then the inequality 

II Icp(z)1 dx dy ~ II Icp(z)ITt£cp(z) dx dy 
.c:.. .c:.. 

holds for every analytic integrable function cP on t:... 

01. First, we observe that Theorem 1 can be reduced to the case when cP 
is also analytic on at:... Namely, let CPr, 0 < r < 1, be the function defined by 
CPr(Z) = cp(rz), z E t:... If Theorem 1 holds for every CPr, 0 < r < 1, then, when 
r approaches 1 we conclude that the theorem holds for cP, by Lebesgue dominated 
convergence theorem. 

Suppose that cP is an analytic function in t:... The following decomposition is 
possible (see [SI] and [SS]). Up to a set of Lebesgue 2-dimensional measure zero, 
D. = U~=l :Ek, where {:Ek} are disjoint simple connected "strip" domains. Each 
:Ek is swept out by a family of vertical trajectories of the holomorphic quadratic 
differential cp(z) dz2 and in each :Ek there exists a single valued schlicht branch 
( = IPk(Z) of I ..jcp(z) dz. Each region Dk = IPk(:Ek) is vertically convex. 

In [S] it is merely assumed that cP is analytic on t:.., instead of at:.., so that 
count ably many, instead of merely finitely many :Ek, can occur. Actually, in our 
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use of the strip domains, the advantage of limiting ourselves to finitely many is 
purely didactic. 

For the local and global behavior of the trajectories of holomorphic quadratic 
differentials we refer reader to Strebel's book ([S2]). 

The following fact is important in the proof of Theorem 1. 

02. The vertical trajectories of holomorphic quadratic differential are globally 
geodesics in Teichmiiller's metric ds2 = 1<p(z)lldzI2. Note that (= <Pk(Z) is a 
single-valued branch of I.jiPdz in :Ek and that Dk = <Pk(:Ek) and rx = r~ is the 
interval which is intersection of Dk by straight line Rez = x. Let Ox = <pk"l(rx) and 
Gk = f(:Ek). Thus Ox is trajectory of holomorphic quadratic differential <p(z) dz2. 
Let "Ix = f(Ox). Since Ox is a global geodesic in Teichmilller metric, we have 

ds2 = 1<p(z)lldzI2, 

length(rx) = f 1<p(zW/2Idzl ~ ~'" 1<p(wW/2 Idwl· 
8", 

Thus we can apply Lemma 1 to the function Fk = f o<Pk"l and pew) = I <p(w)j1/2 . 
Hence, by Lemma 1, 

(D1) f f 1<p(z)1 dx dy = area(Dk) ~ AkBk, 

Eh 

where 

A, = [I/I(O(W)ldUdvt' and B, = [1/ T"d~d"r2, v = v, = Bell(F,). 
Gh Dh 

Using the change of variables z = <P k" 1 
( (), we get 

Bk 2 = jjl<p(z)1 TIJ<p(z) dx dy. 
Eh 

Further application of the Cauchy-Schwarz lemma and (D1) gives 
n n 

L (<p - area(:Ek)) ~ L AkBk ~ A· B, 
k=l k=l 

where 

A = (~A~r/2 and B = (~B~r/2 
Now, Theorem 1 follows from the fact that 

A = [If 1<P(Z)ldxdyr 
A 

where J.l = Belt[J). 

4 
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IV. Extremal QC 

A. Introduction. This subsections an expanded version of the lecture given 
by the author at The VIII Romanian-Finish Seminar, Iassy, August '99 (see [M4]). 
Recently, in [MMl], [BMM] and [BLMM], characterizations of unique extremality 
and example of unique extremal dilatation of nonconstant modulus have been ob
tained. Our primary purpose is to give a short exposition of some of the main result 
of the authors' joint papers, mentioned above, and sketch further progress in the 
study of a more general concept. In order to simplify exposition it is convenient to 
restrict mainly considerations in this review to the disc 6.. 

In order to introduce and discuss a more general concept of unique extremality 
we need a few definitions. Let QC denote the space of all quasiconformal mappings 
from D. onto itself. Two elements f, 9 EQC are equivalent if f = 9 on 86.. For a 
given f EQC we denote the equivalence class of f by QJ = [I] or [J.tj, where J.t = J.tJ. 
Recall some definitions from the introduction. We also use the notation, 

ko([fJ) = inf{lIJ.tglloo : 9 E QJ}. 

We let LOO = Loo(D.) be the space of essentially bounded complex-valued mea
surable functions on D., and let M be the open unit ball in Loo. For any J.t in M 
there exists a quasiconformal solution f : 6. t-+ 6. of the Beltrami equation 

(AI) af= J.t8f 

unique up to a postcomposition by a M6bius transformation. 
We let fll be the solution f of (AI) normalized by f(i) = i, f(l) = 1 and 

f(-I) =-1. 
We say two elements J.to and J.tl in M are equivalent if fllo and fill coincide on 

86. and write J.to '" J.tl . 
The universal Teichmiiller space T = T(D.) is the space of equivalence classes 

of Beltrami coefficient J.t in the unit ball M of the space LOO = Loo(6.) of all 
essentially bounded functions on D.. The equivalence class of the zero dilatation 
is the base point in T. For dilatation J.t the extremal set E = E(J.t) is the set 
where 1J.t(z)1 = 1IJ.t1l00. We say that X is uniquely extremal on its extremal set E if 
the hypothesis that J.t is equivalent to X, in its Teichmiiller class together with the 
condition 11J.t1l00 ~ Ilxlloo, imply that J.t = X a.e. on E. One verifies easily that if X 
is uniquely extremal on its extremal set E and if the measure of E is positive, then 
X is an extremal dilatation. 

In order to prove that f EQC is extremal (or uniquely extremal) we need 
estimates which allow us to compare Beltrami dilatation J.tJ of f, with J.tg, for the 
other 9 E Q J. It appears that the main inequality of Reich and Strebel is a major 
tool in theory of extremal quasiconformal mappings. Using the main inequality in 
[BLMM] we have derived an inequality, which we called Delta inequality, and we 
have shown that the Delta inequality is suitable for studying unique extremality. 

In order to give a characterization of a given dilatation X, which is uniquely 
extremal on its extremal set E = E(X), we make a variation Xr of X on a compact 
set K c E. It turns out that [Xr] is a Strebel point. Using Strebel Frame Mapping 
Criterion and the main inequality, we show that for T E (0, TO), where TO is a positive 
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number small enough, there is a unit vector cP = CPr such that 

6(cp) = 6x(cp) = I/xl/oo - L Xcpdxdy ~ 2r L Icpl· 

Here Q is the subspace of L1 = L1(~) consisting of holomorphic function in ~. 
Now, if A = AX is the linear functional defined by A(cp) = ffLlXCPdxdy, we can 

elementary show that 

(1) Ax has a unique norm-preserving extension from Q to Qx 
Here X is defined by X = X on E, X = 0 on ~ " E and Qx is the smallest 

subspace of L1 which contains Q U {X}. 
Proof that (1) implies that X is uniquely extremal on E is based on the Delta 

inequality. Analysis of the proof of Hahn-Banach Theorem shows that (1) is equiv
alent to 

(2) There exists sequence {Un} in Q such that A(Un) = A(X) + Ilxlloollx-unll + 
0(1), where 0(1) -+ 0, when n -+ 00. 

Hence, using the classical result that L1-convergence of a sequence of functions 
{In} implies that there exists subsequence {ink}' which converges a.e. on the 
corresponding set, and the Delta inequality, we can prove the following result. 

Theorem A. X is uniquely extremal on its extremal set E il and only il 
emph(3) X satisfies Reich condition on E, 

that is, there exists sequence {CPn} in Q, such that 
(a) c5(CPn) = IICPnllllXlloo - Re fA CPnX -+ 0 
(b) limn-+oo inf ICPn(z) I > 0 lor almost all z in E(X)· 

This criterion has many applications concerning precise characterizations (The
orem G2 and Corollary G3) and removable properties (Theorem G3 and Theorem 
G4) of unique extremal dilatation of Teichmiiller type. Also, this criterion can be 
used to construct unique extremal dilatation of nonconstant modulus. 

B. Extremal dilatation. In this section we give a short report concerning 
extremal mappings. The interested reader can learn more about extremal mappings 
from Strebel's survey article [S6], Reich's papers [Re8], [Re9] and Earle-Li Zhong's 
[ELi] , all of which we highly recommend. Extremal mappings have been one of 
the main topics in the theory of quasiconformal mappings, since its earliest days, 
when Grotzsch solved the extremal problem for two rectangles. In order to discuss 
them we need to review some familiar definitions. 

A homeomorphism I from a domain G onto another is called quasiconformal if 
I is ACL (absolutely continuous on lines) in G and Ihl ~ klfzl a.e. in G, for some 
real number k, with 0 ~ k < l. 

It is well known that if I is a quasiconformal mapping defined on the region 
G, then the function Iz is nonzero a.e. in G. The function J.LI = IzI Iz is therefore 
a well defined bounded measurable function on G, called the complex dilatation or 
Beltrami coefficient of I. 

-
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The positive number 

K(I) = 1 + IIJL/lloo 
1-IIJLllloo 

is called the maximal dilatation of f. We say that f is K -quasiconformal if f 
is a quasiconformal mapping and K (I) ~ K. Let QC denote the space of all 
quasiconformal mappings from ~ onto itself. Two elements f, 9 EQC are equivalent 
if f = 9 on a~. For a given f EQC we denote the equivalence class of f EQC by 
QI = Ul or (JLl, where JL = JLI' Also we use notation 

. 1 + ko 
ko([fD = mf{IIJLglloo : 9 E Q/} and Ko([fD = 1 _ k

o
' 

We let LOO = LOO(~) be the space of essentially bounded complex-valued measur
able functions on ~, and let M be the open unit ball in LOO. For any JL in M there 
exists a quasiconformal solution f : ~ ~ ~ of the Beltrami equation 

(1) af = JLaf 

unique up to a post composition by a Mobius transformation. 
We let fJJ be the solution f of (1) normalized by f(i) = i, f(l) = 1 and 

f (-1) = -1. Two elements JLo and JLl in M are equivalent if fJJO and fJJl coincide on 
a~. For given JL E M the equivalence class [JLl contains at least one element JLo such 
that IIJLolloo = inf{lIvlloo : v E [JLJ}. Such a JLo is referred to as an extremal complex 
dilatation and fo = fJJO as an extremal quasiconformal mapping (abbreviated EQC 
mapping). 

As we mentioned, we restrict mainly considerations in this review to the disc 
and only consider a few examples concerning the other Jordan domains. 

For discussion concerning subregions of the plane, which are not necessarily 
simply-connected, we refer the interested reader to the paper [ELi], which we follow 
in this section. 

Let Zi, 1 ~ i ~ 4, be four distinct points on the unit circle SI, and let Wi, 

1 ~ i ~ 4, be their images under some sense-preserving homeomorphism h of the 
closed unit disc ~ onto itself. Let S be the set of all quasiconformal mappings 9 of 
the open unit disc ~ onto itself which maps Zi to Wi, 1 ~ i ~ 4. 

Let </J and 1j; be conformal mappings of the two discs onto horizontal rectangles, 
R and R', which map the distinguished points (vertices) on vertices ofrectangles. 
Let AK be the horizontal stretching of R onto R' defined by AK«() = K~ + iTJ, 
where ( = e + iTJ. Then f = 1j;-1 0 AK 0 </J is the unique extremal mapping. 

It is easy to compute the Beltrami dilatation of f, that we have just described. 
One finds that 

(2) 

Note that the holomorphic function (</J')2 belongs to Q(~) since its £1 norm 
equals the area of rectangle R. 

Teichmiiller discovered that many extremal quasiconformal mappings have Bel
trami dilatation whose form resembles (2). 
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In recognition of the importance of that discovery, a Beltrami coefficient J.L in a 
plane region G is called a Teichmiiller dilatation if there are number k E [0,1) and 
a holomorphic function cP E Q(G), not identically zero, such that J.L = klcpl/cp, a.e. 
in G. 

If we do not require that cp is integrable we will say that J.L is Teichmiiller 
dilatation in general sense (or J.L has Teichmiiller type). Here, for a given domain 
G c C, by Q (G) we denote the space of all holomorphic function cp in L 1 (G). A 
quasiconformal mapping I whose Beltrami coefficient is a Teichmiiller dilatation is 
called a Teichmiiller mapping. 

Let Q be the Banach space consisting of holomorphic functions cp, belonging 
to L1 = L1(~), with norm 

IIcplI = f i1cp(z)1 dxdy < 00, cp E Q. 

For J.L E Loo we consider the linear functional Ap.(cp) = (J.L,CP), cp E Q, where 

(J.L,CP) = fLJ.L(Z)CP(Z)dXdY, 

and denote by IIJ.LII* = IIAp.1I the norm of J.L as an element of the dual space of Q. For 
J.L E LOO we say that it satisfies the Hamilton-Krushkal condition if IIJ.LII* = 1IJ.L1100. 

We are now ready to state the main result about extremal complex dilatations. 

Theorem HKRS. (Hamilton-Krushkal and Reich-Strebel) Let J.L EM. A 
necessary and sufficient condition that IP. is an EQC mapping is that 

(3) 

We are going to prove the necessity of Hamilton-Krushkal condition for a qua
siconformal mapping to be extremal in its Teichmiiller class (see Theorem HK 
bellow). For the proof we need two lemmas. 

Let N denote the subspace of LOO(~) which is orthogonal to Q. Differentials 
which belong to N are called infinitesimally trivial. 

For the proof of the next Lemma see Lehto [L2]. 

Lemma Bl. Let v E Nand IIvll oo < 2. Then, lor 0 :::; t :::; 1/4, there is a 
at E [tv] such that lIatlloo :::; 12 t2. 

Lemma KRS. Let IP. be extremal. If J.L and X represent the same infinitesimal 
equivalence class, then 1IJ.L1l00 :::; Ilxlloo. 

Proof. Set ko = 1IJ.L1l00, k = IIxlloo. We assume that k < ko and prove that IP. 
cannot be extremal. Writing v = J.L - X, we first prove that for fA = f 0 (ftV)-l 
has a smaller maximal dilatation than fP.. Since 

>.«() = J.L - tv 1, where () = pip, p = 8lv , 
1 - tJ.Lv () 

direct calculation gives I>'«()I = 1J.L(z)l- At + O(t2), where 

tv 1 - 1J.L(z)12 -
(= I (z), A = Ap.,x(z) = IJ.L(Z) I ReJ.L(z)v(z) 

-
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and the remainder term O(t2 ) is uniformly bounded in z. 
Write El = {z Ell: II'(z)1 < (k + ko)/2}, ~ = Ll '- El. In ~, 

pJi I' k+ko ko-k 
Re ~ = 11'1- Re 11'1;; ~ -2 - - k = -2-

and therefore 

A ~ ~(1 - k~)(ko - k). 

Hence, IA«)I < ko - mot. But, if at is as in Lemma B1, then r = fA 0 r l and ff.' 
belong to the same Teichmiiller class. We have 

11 11 
IIAlloo + lIatlloo ko - mot + 12t2 

Too:;;; 1 _ lIat 1100 < 1 - 12t2 

Theorem HK. If jI-' is extremal in its equivalence class, then 

(4) 

Proof. By the Hahn-Banach theorem and Riesz representation theorem there 
exists X E M such that f.L and X represent the same infinitesimal class and IIxlloo = 
IIAf.'11 = 1If.L1I*· Since IIxlloo = 1If.L1I* :;;; 1If.L1l00, the equality (4) follows from Lemma 
KRS. 

The necessary condition (4) for f.L to be extremal is also sufficient. Reich and 
Strebel proved this using their "Main Inequality". We find it is convenient to 
formulate Hamilton-Krushkal's condition in terms of Hamilton sequences. 

Definition Bl. Let f.LJ be the Beltrami coefficient of some quasiconformal 
mapping f of the unit disc Ll onto itself. A Hamilton sequence for f.L J, is a sequence 
in Q, such that IICPnll = 1, for all n, and Um (f.L, CPn) = 1If.L1l00. n--+oo 

Now we can state theorem of Hamilton-Krushkal and Reich-Strebel in the form 

Theorem Bl. Let f be a quasiconformal mapping of the unit disc Ll onto 
itself, and let f.LJ be its Beltrami coefficient. Then f is extremal in its class [f] if 
and only if f.LJ has a Hamilton sequence. 

Corollary Bl. Every Teichmiiller mapping is extremal in its equivalence class. 

Proof. If f is a Teichmiiller mapping, then its Beltrami coefficient f.L J can be 
written in the form f.LJ = klcpl/cp, with 0 < k < 1, cP E Q and IlcplI = 1. The 
sequence {CPn}, with CPn = cP, for all n, is obviously a Hamilton sequence for f.L J. 

Not all extremal quasiconformal mappings are Teichmiiller mappings. The first 
counterexample occurs in the famous paper [BA]. 

Example Bl. Let H be the upper half plane and K > 1. In the section 5 of 
[BA] it is shown that the quasiconformal mapping f(z) = z IzlK - l of H onto itself 
is extremal in its class. A simple calculation shows that 

11/J(z)1 
f.LJ(z) = k 1/J(z) , z E H, 
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where k = (K -1)/(K + 1) and t/J(z) = z-2. This has the same form as Teichmiiller 
mapping, but t/J is not Teichmiiller mapping, because t/J is not an integrable function 
on the upper half plane. 

The question whether f is uniquely extremal mapping in its class was not 
considered in [BA]. One method for studying extremal mappings that are not Te
ichmiiller mappings is to use degenerating Hamilton sequences. 

Let J.Lf be the Beltrami coefficient of the quasiconformal mapping f. The 
Hamilton sequence {CPn} for J.Ltp is degenerating if CPn converges zero uniformly on 
compact subsets on .6. as n -7 00. The connection between degenerating Hamilton 
sequences and Teichmiiller mappings is given by the following. 

Lemma B2. (Reich and Strebel) If J.Lf has a Hamilton sequence that does not 
degenerate, then f is a Teichmiiller mapping. 

For a proof of this Lemma see for example Earle-Li Zhong [EL] (see also Lehto 
[L2)). Lemma B2 shows that it is desirable to find geometric condition on an ex
tremal mapping that will prevent its Beltrami coefficient from having a degenerating 
Hamilton sequences. Strebel's Frame Mapping Criterion provides such conditions 
in terms of the boundary dilatation, which we shall now define. 

The boundary dilatation H([J.L]) of the Teichmiiller class of J.L is the infimum 
over all elements v in the equivalence class of J.L in T of the quantity 

1 + h*(v) 
1- h*(v)· 

Here h * (v) is the infimum over all compact subsets K contained in .6. of the essential 
supremum of Beltrami coefficient v(z) as z varies over .6. "K. As usual, we let 

H*( )_1+h*(J.L) 
J.L - 1- h*(p,)" 

For f EQC, also, we define H*(J) = H*(P,f) and H([J]) = H([P,f])· 

Theorem B2. (Strebel Frame Mapping Criterion) Let f E QC and let f be 
extremal in its class Qf. If H([J]) < K(J), then 

(a) P,J has no degenerating Hamilton sequences 
(b) f is a Teichmiiller mapping. 

For a proof of this theorem see for example Gardiner [Ga]. 

Example B2. (Strebel's chimney) In [SI], Strebel made another breakthrough 
by constructing the first example of a nonuniquely extremal Beltrami coefficient. 
Strebel considered the plane region 

V = {z = x + iy : Ixl < 1} U {z = x + iy: y < O}, 

now known as Strebel's chimney. For every real number K > 1, the quasiconformal 
homeomorphism fK(Z) = x + iKy of V is extremal in its class TK E T(V). On the 
other hand, TK contains infinitely many distinct extremal mappings. For instance, 
hdz) = fK(z), for y ~ 0, and hdz) = h(z), for y < 0, is extremal in TK for every 
LE [1/K,K]. 

-
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C. Unique extremality. In this section we shortly discuss results of authors' 
joint paper [BLMM] (see also [MM1] and [BMM]). For studying unique extremality 
it is convenient to use the following result. 

Proposition Cl. Let'P be conformal mapping of the domain D onto V. Then 
11 is uniquely extremal on V if and only if p.{z) = 1I{'P(z))'P'{z)/'P'{z) is uniquely 
extremal on D. 

8trebel has proved in [83] that the horizontal stretching A{ w) = AK (w) = 
Ku + iv, K > 1, in V = {w : Ivl < rr/4} is the unique extremal in its equivalence 
class. The proof of Strebel's result has also been given in [ELi], using Reich's 
method (see also [Re9]). 

Using conformal mapping w = 'P{z) = ~lnz - i of H onto V one can show 
that the Beurling-Ahlfors mapping f is the uniquely extremal mapping in its class. 

Ahlfors and Bers showed that T has a complex structure with tangent space 
at the base point isomorphic to Banach space Q*. Two tangent vectors p. and 11 in 
the tangent space to M determine the same tangent vector in T if and only if 

i 'Pp. = i 'P1I, for all 'P E Q. 

IT p. and 11 have this property, we say that they represent the same Teichmiiller 
infinitesimal equivale e class or, more briefly, that they are infinitesimally equiv
alent. The space of equivalence classes is denoted by B. A given p. is said to be 
extremal in its infinitesimal Teichmiiller class if 1Ip.1l00 ~ 11111100, for any 11 infinites
imally equivalent to p.. 

Recall that Hamilton, Krushkal, Reich and Strebel showed that a Beltrami 
coefficient 11 in M is extremal in its class in T if and only if 11 is extremal in 
its class in B. It was natural to consider whether the analogous statement holds 
for the unique extremality. In several articles Reich showed that in many special 
situations the two notions of unique extremality coincide and conjectured that the 
notions may coincide in general. In [BLMM] (see also [MM1] and [BMM]) we have 
recently proved the answer to this conjecture is affirmative. 

Theorem Cl. (The Equivalence Theorem I) p. is uniquely extremal in its 
Teichmuller class if and only if p. is uniquely extremal in its infinitesimally class. 

Proof of this theorem is based on estimates which allow us to compare two 
Beltrami coefficients p. and 11 in the same global equivalence class and two Beltrami 
differentials in the same infinitesimal equivalence' class. These estimates generalize 
Reich's Delta inequality for Beltrami differentials in the same equivalence class (see 
[R8]). Unlike Reich's forms ofthe Delta inequalities, our forms do not require either 
one of the Beltrami coefficients to have constant absolute value. 

The generalized Delta inequality is our first step towards obtaining the criterion 
for the unique extremality of Beltrami differentials. The next important step is the 
analysis of the proof of Hahn-Banach theorem and its applications to our setting. In 
particular, we obtain the following necessary and sufficient criterion for the unique 
extremality of given Beltrami coefficient x. 
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Theorem C2. (Characterization Theorem I) Beltrami coefficient X is uniquely 
extremal if and only if for every admissible variation TJ of X there exist a sequence 
CPn in A{R) such that 

(a) <5{CPn) = IICPnllllTJlloo - Re JR CPnTJ -t 0 
(b) lim inf ICPn(z) I > 0, for almost all Z in E(TJ). 

n~oo 

Here, an admissible variation TJ of X is any Beltrami differential that does not 
increase the Loo-norm of X, and which is allowed to differ from X only on the set 
where Ix(z)1 ~ s < IIxlloo, where s is a constant, and the extremal set E(TJ) is 
the set where TJ(z) = IITJlloo. This criterion is analogous to the Hamilton-Krushkal, 
Reich-Strebel necessary and sufficient criterion for the extremality. Namely, X is 
extremal if and only if there is a sequence CPn of holomorphic quadratic differential 
of norm 1 such that 

IIxlloo - Re L TJCPn -t O. 

This criterion is among listed in the theorem in Section 11, in [BLMM], which 
we called the Characterization Theorem. The Characterization Theorem applies 
to many interesting situations .. For instance, we can say precisely when a Beltrami 
differential of the form klcp(z)l/cp(z), with cP a holomorphic quadratic differential 
with IIcplI = 00, is uniquely extremal. 

There are many examples of extremal Beltrami differentials with nonconstant 
modulus, but all examples of uniquely extremal Beltrami differentials known up to 
our papers [BLMM] and [BMM] were of the general Teichmiiller type. Moreover, 
many results obtained studying the extremal problems speak in favour of the con
jecture that all uniquely extremal Beltrami differentials J.L satisfy IJ.L(Z) I = lIJ.Llloo, 
for almost all z. Surprisingly, we disprove this conjecture and show that there are 
uniquely extremal Beltrami differentials with nonconstant modulus. 

D. The main inequalities. Let.6. denote the unit disc, 

I 
cp(z) 12 Sp.CP 11 - J.L(z) I:~~~I 12 

Sp.CP = 1 - J.L(z) Icp(z)1 and Tp.cp(z) = 1 _ 1J.L(z)12 = 1 _ 1J.L(z)12 

We will refer to the following result as the Reich-Strebel inequality or the Main 
Inequality. 

Theorem RS. (Reich and Strebel). Suppose that f is a quasiconformal home
omorphism of.6. onto itself which is the identity on 8.6.. Then, with J.L = J.LI 

II Icp(z)ldxdy ~ Illcp(z)ITp.cp(Z)dxdY, 
t:. t:. 

for every analytic integrable function cP on .6.. 

Various forms of this result play a major role in the theory of quasiconformal 
mappings and have many applications. 
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For applications to extremal and uniquely extremal quasiconformal mappings, 
we refer the interested reader to the book by Gardiner ([G]), and for some recent 
results to [MM1], [BMM] , [BLMM], [Re3] and [Re9] . 

Let f and 9 be two equivalent quasiconformal mappings on A and let 

JL = JLf = Belt[f], Cl: = JLf- 1 0 f, (3 = JLg-l 0 f and 7 = JLf!... 
Cl: 

Then 9-1 0 f is the identity on aA, and, if we apply the Reich-Strebel inequality 
to F = 9-10 f, we get 

(1) 1 ~ J J 1<p(z)IT,,<pT_r//<pdxdy, 
A 

where lJ = (1 - JL<P/I<pI}(1- JL<P/I<pI}-1 and <P E Q, 11<p1I = 1. Note that Cl: ~ -JLP/p, 
7 = -pJp(3 and 

S-r//<P 
T -r//<P = 1 _ 1(312 • 

Now, we are going to state two consequences of the Main Inequality, known as 
the fundamental Reich-Strebel inequalities (inequalities (2) and (3) below). IT 
Ko = KO([JLD and 9 E Qf is an extremal quasiconformal mapping, then inequality 
(1) yields 

(2) ;0 ~ J J I <pIT,,<p dx dy. 
A 

Suppose now that JL is a Teichmiiller differential, i.e., JL = kol<Pol/<Po for some 
<Po E Q, with II<PolI = 1 and 0 < ko < 1. Then (J = 1 and T/l<Po = KOl, where 
Ko = ~~:~. Suppose that 11 equivalent to kol<Pol/<Po, where lI<polI = 1. 

It means that there exists 9 = r, which is is equivalent to f = f". Therefore, 
the inequality (1) becomes 

(3) Ko ~ J J I <Po IT -r<PO dx dy 
A 

Since 1171100 = 11(31100 = 11111100, it follows from (3) that Ko ~ ~~II~II:, which 
implies ko ~ 11111100 and, therefore, ko I <Po 1/ <Po has minimal norm among all equivalent 
Beltrami dilatations 11. Moreover, if ko = 11111100, then the inequality (3) yields 

(4) Ko ~ J J l<PoIT_ II <Po dxdy ~ Ko, 
A 

and so (4) is an equality and this obviously implies first that Cl: = (3, i.e., f- l = 9-1 . 

Hence f = 9 and therefore 11 = kol<pol/<Po almost everywhere. 
We have proved the following theorem. 

Theorem T. (Teichmiiller Uniqueness Theorem) Suppose that JL = kl<pl/<p, 
where 0 < k < 1 and <P is an element of norm 1 in Q. Then JL = kl<pl/<p is uniquely 
extremal in its Teichmuller class on A. 
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Note that Teichmiillet Uniqueness Theorem also follows directly from the Delta 
inequality, which will be considered in the next subsection. 

E. Delta inequality. One verifies easily that the main inequality of Reich and 
Strebel can be stated in the following form. 

Theorem El. (Reich and Strebel) textitSuppose that f is a quasiconfomal 
homeomorphism of A onto itself which is the identity on aA.Then, with J-L = J-LI 

Re!! 1~J.t12<PdXdY~!! 1~::121<pldXdY, forall<pEQ. 
~ ~ 

A simple calculation shows that this inequality is equivalent to the inequality 
(1) (see below), which is a starting point in the proof of the Delta inequality. 

Theorem E2. (The Delta inequality in T) Let J-L and v belong to the same 
class in T, f = f JJ , 9 = 1", a = Belt[f-1] 0 f, f3 = Belt[g-l] 0 f, p = la(z) - f3(z)j2 
and I = I(<p) = J~ pl<pl. If Ilvll oo ~ k = IIJ-Llloo, then I(<p) ~ C8JJ (<p), <p E Q, where 
C is a constant which depends only on k = 1IJ.t1l00. 

Proof. We will prove this result under additional hypothesis that IJ-LI is bounded 
from below by a positive constant s, for almost every z in A. For a complete 
proof we refer the interested reader to [BLMM]. Let P = (a - f3)(1 - afj)a-1 and 
Q = (1 - laI2)(1 - 1f312). Then for any <p E Q we have as an easy consequence of 
the Main Inequality 

(1) 

In order to get an estimate involving 8{<p} add to both sides l = J~ laIR;/I<pI. We 
get 

r lalReP-p r P J ~ Q 1<p1 ~ Re J ~ Q (lall<p1 - J-L<p). 

Furthermore, lal ReP - p = Ap + B(lal-If3I), where A = 2-1Ial-1(1-laI)2 and 
B = 2-1Ial-1 (lal + 1f31)(1-laI2). Hence, the inequality (1) can be rewritten in the 
form 

(2) L cil<pl ~ J(<p) + s(<p), 

where 

J(<p) = Re L ~ (1J-L1I<p1- J.t<p) and s(<p) = L ~ (lf3I-lal)l<pl· 

Since J-L is bounded from below by a positive constant s > 0 in A, A and B are 
bounded, using (2) and the estimate 1f31-lal ~ k -IJ-LI, one can show that there is 
a constant c, which depends only on k = 1IJ.t1l00 and s, such that I ~ c(lt + r{ <p}), 
where 

11 = L v'P1IJ-L<pI- J-L<pl and r = r{<p} = L (k -1J-LDI<pI· 

-
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Using Cauchy-Schwarz inequality and the identity Ilwl- wl2 = 2Iwl(lwl- Re w), we 
obtain 11 ~ cI1/261/2. Using this and the inequality T ~ &, we get I ~ c(I1/2&1/2 + 
6), and therefore I ~ C(k, s)6. 

F. More general concept of unique extremality. We say that X E M is 
uniquely extremal on its extremal set E if IEI > 0 and the hypothesis that Jl. is 
equivalent to X, in its Teichmiiller class together with the condition 1iJl.1i00 ~ Iixlioo, 
imply that Jl. = X a.e. on E. 

We say that X E LOO satisfies unique extension property on its extremal set 
E (or we say that X is unique extremal on E in its infinitesimal Teichmiiller class 
B), if IEI > 0 and the hypothesis that Jl. is equivalent to X, in its infinitesimal 
Teichmiiller class B together with the condition 1iJl.1i00 ~ Iixlioo, imply that Jl. = X 
a.e. on E. 

Theorem Ft. (The Equivalence Theorem II) Let X E M and E be its extremal 
set. Then the following conditions are equivalent 

(a) X is uniquely extremal on E 
(b) X satisfies unique extension property on E. 

Note that an immediate consequence of this result is the Equivalence Theorem 
when dilatation has constant absolute value. First, we give a few definitions and 
lemmas, on which the proof is based. 

Now, we will introduce the variation property and prove Lemma VT, Lemma 
V and two other lemmas (we develop them in T and B) which utilize variational 
property. 

Definition Ft. Let Jl. E Loo, k = 1IJl.1100 < 1 and E be its extremal set. We say 
that Jl. satisfies variational property on E in T if for each compact subset K c E 
and for each r > 0 

(1 + r)ko((p.rD > ko([Jl.D, 

where Jl.r = ~ in KC and Jl.r = Jl. in K. 
l+r 

In a parallel manner, we define the variational property in B. 

Definition F2. Let Jl. E Loo, k = 11Jl.1i00 and E be its extremal set. We say 
that Jl. satisfies variational property on E in B if for each compact subset K C E 
and for each r > 0 

lIJl.rll. > 1IJl.1I., 
where Jl.r = Jl. in KC and Jl.r = (1 + r)Jl. in K. 

Lemma VTl. If Jl. is uniquely extremal on its extremal set E, then Jl. satisfies 
variational property on E in T. 

Proof. Let K C E be a set of positive measure and let Jl.r be the variation of Jl. 
to K. Assume that H(Jl.r) = KO(Jl.r). Then, there exists v in Teichmiiller class of 
Jl.r such that Iivlloo ~ so· 

Let 9 = f" 0 gr, where gr = (f1J.~ )-1 0 flJ.. As in [BLMM] the reader can verify 
that K(g) ~ K(fIJ.). Using that gr converges uniformly to the identity on K, when 
r --t 0+, one can show that the set A = Kngr(K) has positive measure if r E (0, ro) 
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for Some positive ro. This means that f and 9 are distinct on the set B = g;l{A). 
Since BeE has positive measure and f is uniquely extremal on E this yields a 
contradiction. 

Lemma VT2. Let J.L satisfies variational property on E in T and le~ K C E 
be compact set of positive measure on which IJ.LI = 1IJ.L1100 < 1. Then for each r > 0 
there is a unit vector <p E Q such that 

(1) 81J.{<p) ~ 2r L 1<p1· 

Proof. Let ko = ko{[J.L]), So = ko/{l + r), J.Lr = It;: in KC and J.Lr = J.L in K. 
Since H([J.Lr]) ~ H*(J.Lr) ~ ~::~ and by Lemma VT, KO([J.Lr]) > ~i::~, we conclude 
that the extremal dilatation Ko is strictly greater then the boundary dilatation H. 
Thus [J.Lr] is a Strebel point in T and by Strebel's frame mapping theorem there 
exists Sr = ko([PrD > ko and a unit vector <p E Q such that J.Lr and s~1.<e.I. are 

. 'P 
equivalent in T. 

Therefore, by Reich-Strebel's second fundamental inequality (see the inequality 
(3) in Section C and also [GaD, 

1 + So 1 + Sr 11 111 + J.Lr~12 -- ~ -- ~ <p ----,,....:-:,c';:-
1 - So ...., 1 - Sr"'" A 1-IJ.LrI2 

A simple calculation as in [BLMM] gives (1). 

Now, we are going to prove that condition (a) implies the condition (b) in 
Theorem Fl. 

Proof. Let J.L be uniquely extremal on its extremal set E in its Teichmiiller class 
and ko = ko([J.L]). Suppose that J.L does not satisfy the condition (b). Hence, there 
exists v, distinct from J.L on E, such that J.L and v belong to the same class in B and 
11 vII 00 ~ ko. Therefore, there exist 10 E (0, ko) and a compact set K C E of positive 
measure such that 1J.L(z) - v(z)1 ~ 210, a.e. on K. Since 

81J.(<P)=koll<pIl- Re iJ.L;v<p, <pEQ and 1J.L;VI~d, a.e.on K, 

where d = Jk5 - 102, we conclude that (ko - d)II<pIIK ~ 81J.(<p). Here we use the 
notation 1I<pIIK = ffK 1<p1 dx dy. Hence, using Lemma VT1 and Lemma VT2 one 
can get a contradiction. 

Lemma VI. If J.L satisfies unique extension property on its extremal set E, 
then J.L satisfies variational property on E in B. 

Proof. Contrary, suppose that lIJ.Lrll* ~ k = 1IJ.L1l00 for some r > 0 and some 
compact set K C E, where J.Lr = J.L in KC and J.Lr = (1 + r)J.L in K. Then there is a 
non-zero annihilator TJ E N such that IIJ.Lr + TJlloo ~ k. 

Let J.Ll = f.L + fTJ, where 10 = (1 + r)-l. By using similarity of the triangles, one 
can check that 1IJ.L11I ~ k. Since f.Ll E [J.L], we conclude that f.Ll = f.L, i.e., TJ = O. 
Thus we have a contradiction. 

-
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Lemma V2. Let J.L satisfy the variational property on E in B and let K C E 
be a compact set of positive measure on which IJ.LI = 1IJ.L1l00 = k. Then for each 
r > 0 there is a unit vector cP E Q such that 

djJ(cp) :s;; kr IK Icpl· 

Proof. Let J.Lr = J.L in KC, J.Lr = (1 + r)J.L in K and let Ar be a linear functional 
defined by Ar(CP) = Re(J.Lr,cp), cP E Q. Since J.L satisfies variational property in B, 
there exists a unit vector cP E Q such that Ar(CP) ~ k. Therefore, 

djJ(cp) = k - A(cp) :s;; Ar(CP) - A(cp). 

Since 

Ar(CP) - A(cp) = Re(J.Lr - J.L, cp) = Re [rJ.L' 

one can find that 

djJ(cp) :s;; IAr(CP) - A(cp)1 :s;; rk [Icpl. 

Now, we can complete the proof of Theorem Fl. 
One can easily verify, by using Lemma VI, Lemma V2 and the Delta inequality, 

that condition (b) implies condition (a). 

G. Uniquely extremal differentials of Teichmfiller type. In this section we 
will give some applications of the Characterization Theorem using Reich sequences. 
Using new tools available in infinitesimal cotangent space Q (such as compactness 
of certain families of holomorphic functions and mean value theorem) we can prove 
some properties of uniquely extremal dilatation of Teichmiiller type. 

Let X be a linear space with norm and let M be a subspace of X and let A 
be a real bounded linear functional on M. We define the functional 15 = 15>. on M 
by d(cp) = IIAllllcplI- A(cp), cP E M. We say that a sequence {CPn} from M is weak 
Hamilton sequence for A if dn = d(CPn) converges to zero. 

Suppose now that X = Ll(6.) and M = Q. Recall that we denote by Q = Q(6.) 
the space of Ll-integrable analytic functions on 6., and that X E Loo(6.) is uniquely 
extremal in infinitesimal class (abbreviated by X E HBU) if the linear function 
Ax E Q* induced by X, Ax(cp) = (X, cp), has a unique norm-preserving extension 
from Q to a bounded linear functional on Ll(6.). 

We say that X E Loo(6.) satisfies Reich condition on a set S C 6. (or, we say 
that CPn is Reich sequence for X on S) if 

(1) there is a weak Hamilton sequence CPn for Ax 
(2) liminf ICPn(z)1 > 0 a.e. in S. 

If X satisfies Reich condition on 6. we will simply say that X satisfies Reich 
condition and, also, that CPn is Reich sequence. Now, we can state an immediate 
corollary of Characterization Theorem. 

Corollary G 1. If X is uniquely extremal, then X satisfies Reich condition on 
its extremal set. 
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Corollary G2. If Ixl is constant, then X is uniquely extremal if and only if X 
satisfies Reich condition. 

Example Gl. IT f(z) = Kx + iy, K > 1, is the affine stretch, defined on a 
plane domain D, then the Beltrami coefficient J.t of f has the form 

J.t(z) = k lCPol , 
CPo 

K-1 
with CPo = 1 and k = --. 

K+1 

In [Re5], Reich has shown that if there exist a sequence CPn in Q(D) such that: 
(a) CPn(z) ~ cpo(z) for all zED and (b) 8(CPn) = IICPnll - Re ID CPn ~ 0, 

then f(z) is uniquely extremal. 
Also, in [Re5], Reich showed that a sequence cp(z) = e-z / n in Q(D) satisfies 

conditions (a) and (b) for D = Da = {z : y > Ixl a }, with a: > 3, and asked 
interesting question. 

Question G. Whether the conditions (a) and (b) are not only sufficient but 
also necessary for unique extremality. 

Theorem G2 and Corollary G3 (see below) provide an affirmative answer to 
this question in more general situation. 

Concerning the Reich sequences, the next example is interesting. 

Example G2. Let 1/J(z) = (1- z)-2, X = k I~I, 0 < k < 1. Then X is uniquely 
extremal on ~. 'f' 

It is interesting to note that iftn ~ 1- and 1/Jn{z) = (1-tnz)-2, then 8(1/Jn) ~ 
7r{1 - In 2), when n ~ 00. Thus, 1/Jn is not Reich sequence. 

Recall that we say that /-L is Teichmiiller differential in general sense on ~ if 
/-L = kl1/JI/1/J, where 1/J is an analytic function on ~, which is not identically zero. 
We say that Reich sequence 1/Jn for J.t = kl1/JI/1/J is normalized at a point Zo E G if 
1/Jn(ZO) ~ 1/J(zo) i O. 

The outline of the proof of the next lemma shows how one can use the pres
ence of analytic function in definition of Teichmiiller differential to show that each 
normalized Reich sequence forms a normal family. 

Lemma G 1. Let X be a Teichmiiller differential in general sense defined by 
X = kl1/JI/1/J, where k is number in [0,1) and 1/J is an analytic function on ~ and 
let 1/Jn be normalized Reich sequence for X at a point Zo and let D = D(zo, r) be the 
disc such that 1/J has no zeros on D. Then 1/Jn converges uniformly to 1/J on D. 

Proof. There exist disc Dl with cent er at Zo and of radius rl > r, such that 
D C Dl and that 1/J has no zeros on D1 , and positive numbers m and M such that 
m ~ 11/J(z) I ~ M for each z E D1 • Let CPn = 1/JnN and 

1 1 1/Jnl1/J1 
8n = 8n (Dd = k l1/Jnl - Re k~. 

Dl Dl 'f' 

(1) 

Hence 

-
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This inequality, with the mean value theorem, shows that CPn, and therefore 
1/Jn, form a normal family on D1• Therefore, there is a subsequence 1/Jn which _ k 

converges uniformly to 1/Jo on D. By letting n to infinity in (1) (by D instead of 
D 1 ) and using normalization that 1/Jo = 1/J at zo, we conclude that 1/Jo = 1/J on D. 
This actually shows that 1/Jn converges uniformly to 1/J on D. 

The proof of the next result is based on Lemma G 1. 

Theorem G2. Let X be uniquey extremal on /). and let X be Teichmiiller differ
ential (in general sense) defined by an analytic function cp. Then every normalized 
Reich sequence CPn converges uniformly on compact subsets of /). to cp. 

Corollary G3. [BLMM] Let X be Teichmiiller dilatation in general sense 
defined by some analytic function cP in /).. Then X is uniquely extremal if and 
only if there exists Reich sequence CPn in Q, which uniformly converges on compact 
subsets of /).. 

Further developments of the ideas outlined in the proof of Lemma G 1 leads to 
the following results. 

Theorem G3. (The first removable singularity Theorem) Let K be a compact 
subset of /)., G = /). ...... K and cP an analytic function on G. Suppose that 

(a) fJ. is an extremal dilatation on /). 
(b) fJ. = slcpl/cp on G, 

where s is non-negative measurable function on G. If there exist two positive con
stants m and M, such that m ~ Icp(z) ~ M, for all z E G, then 

(a) cP has an analytic extension tj; from G to /). 
(b) fJ. = kltj;1! tj; a. e. in /).. 

Theorem G4. (The second removable singularity Theorem) Let X be uniquely 
extremal on /). and let X be multiple of nonnegative measurable function and Te
ichmiiller differential defined by analytic function cP on the complement of a compact 
set KC/).. Then 

(a) cP has an analytic extension tj; from G to /). 
(b) fJ. = kltj;1! tj; a. e. in /).. 
During author's work with Bozin, Lakic and Markovic, on the subject con

cerning unique extremality, we wrote several drafts, in which the proofs of some 
versions of Theorem G3 and Theorem G4 have been given. 

H. Unique extremality and approximation sequences. In this section we 
briefly discuss some results from [BLMM] and only announce new results (see below 
Lemma H3, Proposition H3-H4 and Theorem H1-H2). 

Let M be a subspace of a normed linear space X and let A be a linear functional 
on M and >. be its real part. Put 

X(xo) = inf{>.(y) + 1I>'lIlly - xoll : yE M} 

~(xo) = sup{>.(x) -11>'lllIx - xoll : x EM}. 

Analysis of the proof of the Hahn-Banach Theorem leads to the following. 
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Proposition HI. Linear functional A has a unique Hahn-Banach norm
preserving extension from M to X if and only if ~(xo) = X(xo), for each Xo E 
X ...... M. 

The details of the proof are left to the reader. 

Lemma HI. Let>. have unique Hahn-Banach norm-preserving extension from 
M to X. Then for each Xo EX ...... M there exist sequences Un, Vn E M such that 

(1) >.(Un ) = >,(xo) + 1I>.lIl1un - xoll + 0(1) 
(2) >.(Vn ) = >.(xo) -11>'lIllvn - xoll + 0(1) 
(3) >.(Wn) = 1I>'1I(llxo - Un 11 + IIxo - vnlD + 0(1), where Wn = Un - Vn 
(4) Wn is weak Hamilton sequence for >.. 

We say that >. satisfies unique approximation property at Xo EX ...... M if there 
exist sequences {Un} and {vn}, in M, such that the condition (3) is satisfied. 

The following result follows from Lemma 1 and Proposition 1. 

Proposition H2. Let A be a bounded linear functional on M and>. be its real 
part. Then A has unique Hahn-Banach norm-preserving extension from M to X if 
and only if >. satisfies unique approximation property at each Xo EX ...... M. 

We say that 'ljJo E Ll(bo) is an extremal vector for linear function>. = >'x, if 
>.('ljJo) = kll'ljJolI, where k = IIxll oo · 

For a given X E LOO(bo), it is convenient to mark the extremal vector X defined 
by X = X, on E and X = 0, on bo ...... E. 

The further discussion will show that X has an important role in characteriza
tions of uniquely extremal dilatation x. 

Lemma H2. If X E H BU, then X satisfies Reich condition on its extremal set 
E. 

Proof. Applying the part (1) of Lemma to the function 'ljJ, defined by 'ljJ = X, 
we find that there exist a sequence Un EA such that 

(5) >.('ljJ) + 1I'ljJ - unll + 0(1) = >.(un), where>. denotes >'x· 

Since )..('ljJ) = 11'ljJ1I and )..(un) ~ lIunll ~ 1 1'ljJ 11 + lIun - 'ljJ11, we obtain, using (5), that 

(6) 11'ljJ11 + lIun - 'ljJ1I + 0(1) = lIun ll· 
Hence, )..(un) = 11 Un 11 + 0(1). Thus Un is weak Hamilton sequence for )... 

Using (6) we conclude that lIanll -t 0, n -t 00, where an = 1'ljJ1 + 1'ljJ -unl-Iunl· 
Hence, there exist subsequence ank which converges to zero a.e. on bo. Since, 
Iunl ;;:: 1'ljJ1- an, it follows that Hm inf IUnk (Z)I ;;:: 1'ljJ(z) I a.e. on bo. 

k--++oo 

Recall that E = {z E bo : Ix(z)1 = k}. 

Lemma H3. Let'ljJo be an extremal vector for >'x and A = {z E bo : 'ljJo(z) # O}. 
Then 

x(z) = k l'ljJo(z)l, z E An E. 
'ljJo(z) 

Proposition H3. If >'(x) = ~(X), then X is uniquely extremal on its extremal 
set E. 
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Let Qx. be the smallest subset of £1 which contains Q U {X}. For a given 
fJ. E Loo, it is convenient to consider A = Ap. as a linear functional on L1, defined 
by Ap.(f) = Re(fJ.,1), fELl. 

Proposition H4. If fJ. is a extremal dilatation on A and 1/Jo E L1 an extremal 
vector, then "X(1/Jo) = A(1/Jo), where A = Ap.-

Theorem HI. (The Characterization Theorem II) Let X E Loo. The following 
conditions are equivalent 

(7) X is uniquely extremal on its extremal set 
(8) AX has a unique norm-preserving extension from Q to Qx. 
(9) There exists sequence {CPn}, with CPn E Q for all n, such that 

A(CPn) = A(X) + IIXIl .. IICPn - xII + 0(1) 

(10) X satisfies Reich condition on its extremal set E. 

Theorem H2. Let X E Loo(A) and k = IIxlloo. If there exist Reich sequence 
CPn for x, on its extremal set E, then 

(11) klCPnl/CPn converges to X a.e. on its extremal set E 
(12) If two-dimensional Lebesgue measure of E is positive, then 

lim r X ICPnl = k. 
n~oo lE CPn 

I. Construction. Before we state next results we introduce a class of sets which 
is important in our investigation. Let K be a compact subset of CC whose comple
ment is connected in CC and interior is empty. We say that K is a special Mergelyan's 
set (a special M-set). Motivation for this definition is famous Mergelyan's Theorem. 

Mergelyan's Theorem. If K is a compact set in the plane whose complement 
is connected, if f is a continuous complex function on K which is holomorphic 
in the interior of K, and if f > 0, then there exist a polynomial P such that 
If(z) - P(z)1 < f for all z E K. 

Note that K need not be connected. 

Recall that we denote by Q = Q(A) the space of L1-integrable analytic func
tions on A, and that X E LOO(A) is uniquely extremal in infinitesimal class (abbre
viated by X E HBU) if the linear function Ax E Q* induced by X, Ax(cp) = (X,CP), 
has a unique norm-preserving extension from Q to a bounded linear functional on 
L1(A). 

If X E HBU and k = Ilxlloo, then esssup Ix(z)1 = k over each open set G c A, 
as has been observed by Reich [Re7]. Therefore, the following question (see [Re7] 
and [S6]) is natural. 

Question I. Does X E HBU actually imply that Ix(z)l= k a.e.? 

The next theorem shows that the answer to corresponding question, concerning 
the more general concept of unique extremal dilation, is negative. 
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Theorem 11. Let K C A be a compact set of positive measure, whose comple- , 
ment is connected and let 0 = A , K. Then there exist X E Loo (A) such that X is 
zero on I<, X is uniquely extremal on 0 and Ix(z)1 = k > 0 a.e. on O. 

Outline of proof. Inductively, we can find a sequence of polynomials {Pn} and 
increasing sequence of compact special M -sets Kn such that 

(1) Kn and K are disjunct 
(2) complement of Fn = K u Kn is connected 
(3) I U:=l Knl = 101 
(4) IPn(z)1 < 1/2 for each z E K and IPn(z)1 > 2 for each z E Kn 
(5) CtnI1-lPn+l(z)1 /Pn+l(z)1 ~ 2-n, for each z E Kn+l, where 

tpn = P1P2 ... Pn, Ctn = max{ltpn(z)1 : z E Kn+d 
(6) III Itpnl - IF,,+l Itpnl ~ 1/n, where Fn = K U Kn. 

Let Xn = kltpnl/tpn, 0 < k < 1 and define X to be zero on K. We leave to the 
reader to show that Xn(z) is a Cauchy sequence a.e. on 0, that is X(z) = limXn(z) 
exists a.e. on OJ and that tpn is Reich sequence on 0 for X. 

It is interesting that the following surprisingly simple lemma plays a role in 
construction unique extremal dilatation with nonconstant modulus. 

Lemma Re. If K is a special Mergelyan's set and v annihilator of Q in Loo 
such that supp vC K, then v = O. 

This lemma was proved by Reich in [Re7] (see also [MM1] and [BLMM]). The 
following result is an immediate corollary of Theorem 11 and Lemma Re. 

Theorem 12 [BLMM]. Let K C A be a special Mergelyan's set of positive 
measure. Then there exist X E H BU such that X{z) = 0 in K and Ix(z)1 = k > 0 
a.e. inI<c=A,K. 

We refer to the proof of this result as the construction of uniquely extremal 
dilatation with nonconstant modulus (shortly the construction). 

After writing the final version of this paper, Reich [Re9] has modified the proof 
of Theorem 12, given in [BLMM], using Runge theorem instead of Mergelyan's 
theorem. 

Further simplifications of the construction has been given by author during his 
lectures at Scoala Normala Superioara Buchurest (SNSB), 2003-2004 (to appear in 
[MlO]). 

Outline of new construction. Recall, if K C C is a compact set and do not 
separat(' the plane, we say that K is M-set ("Mergelyan set")j we call K a special 
M -set if in addition K has empty interior and positive 2-dimensional measure. 

Using Runge, we can prove the following result. 
Lemma Ma. Let K be a M -set and G be a Jordan domain such that GnK = 0. 

For given positive numbers p, q and c, there exists polynomial Q such that 
(ad IQI < p on K; (a2) q < IQI on G; (a3) 11-IQI/QI < con F = KUG 

Remark: There is an entire function which satisfies the above conditions and 
in addition has no zeros in C. For suitable Q close to constant functions on K ~nd 
G the entire function cP = eQ- 1 satisfies the above conditions. . 

-
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Let K be a M -set and D be a Jordan domain such that KeD. Then there 
exists sequence of Jordan-domains I n such that 

00 

(1) I n C Int In+1, U J" = D" K. 
1 

We say that sequence of Jordan-domains I n exhaust D "K. Inductively, we will 
find a sequence of polynomials Pn and an increasing sequence of Jordan-domains 
Gn which exhaust D " K such that: 

(b1) IPnl < 1/2 on K and IPnl > 2 on Gn 
(b2 ) iD l<Pnl - iF l<pnl < 11n, where <Pn = P1 .. , Pn and Fn = K U Gn . .. +1 
(b3) anI1-IPn+1I/Pn+11 < 2-n- 1

, where an = max{l<pn{z)1 : z E Fn+d. 
We call Ln = D " Fn canal. Roughly speaking, by (bt) and (b2 ), we control 

polynomial <Pn respectively on Fn and Ln+1! but we do not control on canal Ln 
(more precisely on Ln "Ln+1)' Thus, we do not have any estimates of growth of 
an from above. At this point, it seems that it is difficult to overcome this problem. 
However, we can overcome this problem using (b3), which has a crucial role. More 
precisely, applications of Lemma Ma (a3) shows that there exists polynomial Pn+1 
such that estimate in (b3) holds. Now, we can modify <Pn on Fn+1 by means of 
polynomial Pn+1; i.e., we construct the function <Pn+1 = Pn+1<Pn' 

The function l<pnl/<pn is defined except on the set Zn of zeros of polynomial <Pn. 
Let Z = U~ Zn. IT we define ILn to be 1 on Z for every n ~ 1 and ILn = l<Pnll<Pn 
on C" Z. Since <Pn+1 = Pn+1<Pn, by b3) we have anIILn+1{Z) - ILn(z)1 < 2-n- 1 for 
z E Fn+1' 

Since an is obviously increasing sequence, then a standard argument shows that 
ILn{Z) is a Cauchy sequence on D; that is IL{Z) = limILn{Z) exists on D and that 
anIIL{z) - ILn{z)1 < 2-n for Z E Fn+1. Hence, lI<Pnll = AJJ [<Pnl + 0(1) on D. Since 
l<Pn(z)1 -+ 00 on D" (K U Z), <Pn satisfies Re-condition on D" K and therefore IL 
is uniquely extremal on D" K. Hence, we get 

Proposition. 11 K is a special M -set and X measurable /unction, which is 
equal IL on D "K and IIxlloo ~ 1, then X is uniquely extremal on D. 

Note that Theorem 12 can be considered as a corollary of this result. 

J. Beltrami equation. Suppose that I has V derivatives in the complex plane 
C and that I{z) -+ 0 as z -+ 00. With the notation 

Tw = -.!. fr ( w{() ~ dry 
7r le (- z 

we then obtain from Green's formula 

(1) 1= Tal. 
For smooth w with compact support we define the Hilbert transform H w of w by 
Hw = 8(Tw). By differentiation we obtain an expression for H as principle value 

. 1 f~ w«() (Hw)(z) = hm -- «( )2~ dry, 
£-+0+ 7r A. - z 



88 MIODRAG MATELJEVIC 

where At = {(: f < 1(1 < l/f}. 
Fix 0 < k < 1, and let LOO(k, R) denote the measurable functions on C, 

bounded by k, and supported in the disc BR. We let QC1(k, R) denote the 
continuous differentiable homeomorphisms J of C such that lJ J = p.8 J, for some 
p. E LOO(k, R), normalized so that J(z) = z + 0(1/ z), as z t-t 00. 

Let J E QC1 (k, R). Then by (1), 

J(z) - z = T(8f) (z). 

Thus, if we set 9 = 8J -1 and use 8J = p.8J, we obtain 

9 = H(8f) = H(p.8f) = H(p.g) + H(p.). 

In terms of the operator HI-'(g) = H(p.g), 9 E LP, we obtain the equation 

(2) (I - HI-')g = H(p.). 

IT we fix p = p(k) > 2 so that IIHI-'II < 1, then I - HI-' is invertible. Thus, we can 
solve the equation (2) for 9 to obtain 

(3) 9 = (I - HI-')-l H(p.) E LP. 

Theorem 1. Fix 0 < k < 1, R > 0 and p = p(k) > 2 as above. For 
p. E LOO(k, R), there is a Junction J on C, normalized so that J(z) = z + O(~) at 
00, with distribution derivatives satisfying the Beltrami equation lJ J = p.8 J. 

Outline of the proof: Define 9 by (3) and define J(z) = z+T(p.g+p.). Since T is 
the convolution operator with kernel 1/ z locally in L1, f is continuous. Moreover, 
J is normalized at 00, and 

al = p.g + p., 81 = 1 + H(p.g + p.) = 1 + 9 

in the sense of distributions, so f satisfies the Beltrami equation. 
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