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0. Introduction

The aim of this paper is to consider the necessity of introducing the generalized
functions for the construction and solving mathematical models.

Mathematical models in mechanics have been usually given by a partial differ-
ential equation with some boundary and initial conditions.

With regards to the construction of a mathematical model the following remarks
are worthy of mention:

First we have to catch sight and then to select the basic elements of the situation
(of the object) we wish to model. Consequently, a mathematical model is only an
approximation of the object to which it corresponds.

Or to put in another, more pessimistic consideration: All models are wrong, some
models are “useful” {30]. But there are several requirements that mathematical
models must satisfy in order to be “useful”. Structural stability of the model is
probably the most important requirement. Also, because of the approximate value
of a model, it is natural to expect that if we can find a family of solutions to
the model equation and if there exists a subfamily which is convergent, then the
limit has also to be a solution. The difficulty lies in finding a topology not overly
restrictive but such that the found limit has a meaning for the treated object.

That is one of the sources of the “weak” and “generalized” solutions to mathe-
matical models which will be used in this paper, as well.

Many authors have pointed at shortcomings of the classical analysis with regards
to the solving partial differential equations. L. Hérmander [27] illustrated them by
the equation of the vibrating string

82 32
Wv(z,t) - -B?v(x,t) =0.

Its classical solution has been given by v(z,t) = f(z +t) + g(z — t), where fand g
are arbitrary functions with continuous second derivatives. In his opinion the limits
of sequences of such solutions have also to be taken as solutions (Laplace operator
has just this property).
He continues with such a consideration for the ponhomogeneous equation
5 52
5a7 v(z,t) — o v(z,t) = F(z,t),

where F'(z,t) is continuous and equals zero outside a bounded set. If F has also
continuous first partial derivatives, then the cited nonhomogeneous equation has a
7
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classical solution ) :

o(n,t)=—3 // F(€,7)dgdr.
T—t+|z—€|<0

In case that F(z,t) is only continuous, the found solution v(z,¢) has continuous
first partial derivatives and has to be admitted as solution, as well. Such solutions
are called “weak solutions”.

Secondly, partial differential equations have been given by partial derivatives
which are very restrictive operations in usual topology in R™ (in classical analy-
sis) and have not to be continuous. The first systematic elaborated idea to over-
come these shortcomings of the classical derivatives has been given by S. L. Sobolev
(cf. [57]). He started from the space LP(f2), p > 1, where  is an open set in R®.
Let ¢, € C™(Q1), suppy = K, K compact set in Q. Then

[ [060) g + ()™ 0e) g e ds =,

1] m1+ st my=m.

If we know only that ¢ € LP(Q), p > 1, and that there exists wm,,....m. € Lioc(f2)
such that

/ [00) ek + (1™ (e ()] d = 0

for every ¥ with the cited properties, then wp,, .. m, is defined as Sobolev’s gener-
alized derivative
Imp(z) et

BT B Umaeema(®)

This is the basic idea for the theory of Sobolev’s spaces which are very useful in
the theory of partial differential equations.

Schwartz’s distributions {cf. [56]) generalize Sobolev’s idea and represent a theory
which gives impressive results in the theory of partial differential equations. To
every locally integrable function it corresponds in a unique way a distribution.
Every distribution has all partial derivatives which are continuous operators. The
space D’ of distributions is the least extension of the space of continuous functions in
which all elements have all partial derivatives. Moreover, derivatives are continuous
operators. Consequently, if we have a convergent sequence or a convergent filter
with the countable basis of the filter (cf. [56, I, p. 53]) as solution to a linear partial
differential equation in 7’, then the limit of this sequence or of this filter is also a
solution to this equation.

To this day many spaces of generalized functions have been elaborated (cf. [13],
{18], [20], [24], [31], [32], [40], [47], [53], [56]) which can be useful in considering
mathematical models. Not only to find a generalized solution to a model, but
also to improve the classical methods for solving them. In this sense the integral
transforms of generalized functions have an important role.

A very significant fact is that the spaces of generalized functions have not only
been used to solve a mathematical models, but also in the construction of models.
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Some elements and relations in the theoretical physics can be defined only by using
generalized functions. Let us mention first of all the Dirac §-“function”. The
quantum field theory is an impressive example of a theory which uses generalized
functions to express some phenomena from physics (cf. [15], {16], [29], [65]).

The utility of mathematics for many problems of science and society is increas-
ingly evident. However we can not neglect some doubt in this linking. Namely,
mathematics pretends to claims of absolute certainty by means of mathematical
proofs. But this certainty is paid for by logical disconnection from empirical re-
ality. One can find cited the following Einstein sentence (cf. [12]): “As far as the
properties of mathematics refer to reality, they are not certain and as far as they
“are certain, they do not refer to reality”.

So in considerations mathematical models we have two extreme positions:

First, if a solution to the constructed mathematical model is not quite mathe-
madtically rigorous, but none the less leads to an excellent conformity with experi-
mental observation, then one can consider such solutions valued by nature, if not
by mathematics.

Second, one may choose to recognize mathematical models and their solutions
if and only if the model is based on classical foundations and solutions have been
obtained in absolute mathematical rigorousness.

In this paper we shall work with generalized solutions which are:

o well-defined;

s obtained in a mathematically correct way which allows to see why their
introduction is necessary;

¢ solutions of linear mathematical models arising from mechanics and which
claim can be validated by natural conditions;

o elements of spaces acceptable to the specialists working in mechanics.

e a pointer to the very abstract possibilities of the today’s cutting-edge math-
ematics.

The paper is divided into three parts. In the first we repeat some definitions and
results from spaces of generalized functions we need subsequently. In the second
part we give constructions of some interesting new mathematical models in me-
chanics. In the third we solve the constructed models illustrating the possibilities
of methods which have been offered by generalized functions in solving mathemat-
ical models in mechanics. We have not insisted on complete mathematical proofs
if they were overly large and if they can be found in the published papers cited.

1. Spaces of generalized functions

In this paper we use the space of distributions 7’ with some subspaces and the
space of hyperfunctions B.

1.1. The space of distributions.

1.1.1. Definitions and notation. We repeat some definitions and facts that we need
in our exposition. There are now a lot of books in which one can find spaces of
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distributions elaborated in different volumes. We cite only some, we use (cf. [24],
[56], [66]). If the cited result is not well-known, then we give the proof, as well.
Let {2 denote an open subset of R” (£1 can be R® on the whole). The support of a
function ¢ (suppy) defined on (2 is the closure in Q of the set {z € Q; p(z) # 0}.
The space D(Q) is the space {¢ € C°(R™); suppy C 01} A sequence {¢;} C D(Q?)
converges in D() to zero if and only if there exists a compact set X C 2 such
that:
1. suppp; CK,jeN;
2. for every a = (oy,...,an) € (NU{0})" = N, ') = 0 uniformly on K;
o aal aan
@ _ Yo

‘Pj — 5;_?_17 e W
D'(Q)) is the space of all continuous linear functionals on D(). It is called the
space of distributions on Q. The value of a distribution f at a function ¢ € D(Q)
will be denoted by (f, ¥). »

Every locally integrable function f on € defines the regular distribution [f], by
({1, 0) = fo f(2)e(z) dz, € D(Q). Two functions f,g € L},.(£1) define the same
distribution [f] = [g] on Q if and only if f = g a.e. on .

~ Suppose that u, € D'(R"), vy, € D'(R™). By

(w"P) = <'u:n (vy,ga(x,y)» = <vya <um‘P(x’y))>

is defined the distribution w € D’(R**™), where ¢ € D(R"*™) and z,y denote
variables in R” and R™ respectively. The distribution w is called tensor product of
the distributions u, and vy; one writes w = u, ® vy.

Let u, and v, belong to 7/(R™). If there exists a distribution z € D’(R™) defined
by {2, 0) = {u, ® vy, v(z +¥)), v € D(R™), then z is called the convolutionof u,
and vy and is denoted by u, * v,.

From the properties of convolution we mention only: if ¢ € D(R?) and u €
T’(R?), then g x u € C°(R™) and p* u = v * @ = (Uz, p(y — z)}).

Let D™u denote the m-th derivative in the sense of distributions (see Section
1.1.2), then D™§ x u = D™u, m = (m;y,...,ma) € N§.

An important subspace of T’(R") is the space of tempered distributions §'(R").
Let us define it. By S(R") we denote the space of rapidly decreasing functions ¢
with the property that for every pair of muiti-indices o, 3€ NZ, sul? |22 ()] < oo.

zeR™

The space of linear continuous functional on S(R™) is called the space of tempered
distributions and is denoted by S/(R"™). Let I’ denote the closed, convex and acute
cone and C = intT. Let K be a compact set in R*. By S'(T' + K)) is denoted the
space of tempered distributions with supports in the closed set I' + K C R™. Then
S'(I'+) is defined by

srH = {J §C+K).
KCR®

The set S’(T'+) forms an algebra that is associative and commutative if for the

operation of muitiplication one takes the convolution, denoted by *.
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1.1.2. Derivatives of a distribution. Let D* denote the a;-th derivative in z; of a
distribution. It is defined as

(D*f,0) ={(-1)*f,6{*)), feD(Q), pe D).

Then for a = (ay,...,0,), D*f = D* ... D* f.

We list some properties of the derivatives of distributions:

1. Every distribution has all derivatives D% and D* D% = D% D%, {,j =
1,...,n.

2. The differentiation of distributions is a linear and continuous mapping D’(Q) —
D'(Q).

3. In particular, every regular distribution has derivatives of any order. In this
sense every locally integrable function has distributional derivatives. The derivative
of a regular distribution has not to be regular distribution.

4. If F € C*(Q), a = (ai,-..,a), then D*[F] = [F()]. Moreover, if a €
C>(Q), then aD[F] = [aF(].

5. If F,G C C(Q) and D,,[F] = [G], then there exists F{Y and F{ = @,

i€ (l,...,n).
6. Let 1 denote the function
(.’t) = 0’ le ; 17
TE=Vexp(lzl? 1)1, Jal <1, |2fP =22+ +22

and let ¢ = [g. f(z)dz, wp(z) = k" f(kz), Qe = {z € R, d(z,0) < 1/k},
d(z,Q) = infyealz — y|. If f,g € L?(Q), 1 < p < o0 and D*[f] = [g], then for
Q; C N and Q)i C k2 ko, [|(f * 5a)(® — dllze(0,y — 0, n — oo, where
0n = wi/n C D() and * is the sign of convolution.

7. Some properties which can be useful in solving differential and partial differ-
ential equations.

IfQCR,ue D) and D™u(z) + frn-1(z) D™ u(z) +- - - + fo(z)u(z) = F(=z),
where f; € C*(Q),i=0,1,...,m—1, and F € CP(9), p € Ny, then the solution u
is defined by a function belonging to C™+7(Q2) and represents the classical solution.

Let {8, }nen, supp 8y, n € N, belong to the compact set K C R™ and [§,] — & in
D’'(R™); let also L be a linear differential operator with constant coefficients. Then
every solution u € D'(R™) to L(u) = 0 is a limit in D’'(R") of a sequence {u;}jeN
of classical solutions to L(u) = 0. The sequence {u;} can be u; = u % §; (cf. [64]).

8. Derivatives of a regular distribution

8.1. One dimensional case. Let f € CP)((~o0,b)), p € Ng = NU {0}, and H,
be a function such that H,(z) =0, —co<z<a < b Hy(z) =1,0<a <z <
b. Denote by [H,f] the regular distribution defined by H,f. Hence, [H,.f] €
D'((—o00,b)), supp[H.f] C [a,b) or [H,f] € D'([a,b)), as well as T’([a,b)) =
{T € D'(~00,b);suppT C [a,b)}. By [fép )], p € N, we denote the distribution
defined by the function £ equals to f®Xz), z € (a,b) and equals zero for
z € (—o00,a) and is not defined for z = a.
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Since the function (H,f)® has in general a discontinuity of the first kind in
z=a, k=0,1,...,p, by the well-known formula (cf. {56])
D?[Haf] = [fP] + f*D(@)s(z - a) + -+ + f(@)6® D (z ~ a)
= U+ Rpo(f) = [Haf P+ Rya(f),
where DP[H, f] is the derivative of order p in the sense of distributions, and (cf. [56])
Ryo(f) = fPV(a)o(z — a) + -+ + f(a)6®D(z — a).

Definition 1.1. [60] Let a be a positive real number such that m—1 < a < m
for a fixed m € N. The a-th fractional derivative of a function f € C([0,00)) is
defined by .

(L1)

() = _——-——-F(n ) dzm/f(x—t)t’"'l""dt x>0,

if this derivative exists.

Proposition 1.1. Let a be a real number such that 0 < a < 1 and let f € C((0,b)),
f bounded on [0, €], € > 0, or, more generally, let |f(z)| < Mz=¥-9), 0< z < ¢,
forane>0,0<a< < 1. Then:

[F 2 @)ion] = F(ll =50 Ho(z) / flz—tytedt|.
0 J

Proof. By (1.1)

[F@)on] = F(T]:-_a)Dz Ha(a:)/f(a:— it~ %dt

r—(f’_oT)z_.m f f(z - )t—=dt
- F(TIIZ)'D’ [Ho(:c) 0/ fle—- t)t""dt]. u)

x
We have to prove that lim J f(z—t)t~>dt = 0. Let 2 > 0. Then we have
xr— Q

/ (z — £)-B-ga g = (1__%‘._%5); / o (z — )= gs
0 0

- B)zl~(F~=) 7 —a 1—(B—c)
- O/t (-2 e
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Since 0 < t < z, |(1 ~ t/a:)l‘(ﬂ‘a)l <1,

/(x—t)‘(ﬂ-“)t-‘*dts (Gl Ll
1]

I-(B-a)l-a)
We denote [f(®)(z)|0,)] by D*[Hof).

z — 0%,

8.2. The n-dimensional case. We use the following notation: P = []_,[as,b:),
0<ai<b,i=1,..,n; Q=R_ + P, then P C ; H*(z) = H,,(z1) - ‘H, (z.),
a{(a:,) =1,a; < 2; < bj; Ha(x:) =0,z <@, i=1,...,n. Let f be a function
with continuous partial derivatives on Q; [H? f] is the dlstnbutlon defined by HZ f,
belonging to 7’(Q) and to D’(P), as well. Finally, (67 f/8z7 )a‘ is the function equa.l

to 82 f/8zf on the int PU {z,z; = aj, j # i}, and equal to zero on 2 \ P, but is
not defined for z; = a;.

Proposition 1.2. With the notation as above, we have

(12) D2z = (B2 (531), ] + Boaul), 2N,

where
~1

n O
(19) Bpoi() = [H2 5 mr f@ormas] X 8z =0 -
+ [H2 f(@)|zimar] x 677 V(z; ~ ).
Proof. The method of the proof is just the same as for (1.1). ()

Proposition 1.3. With the notation as in Proposition 1.2, we have

o402 (20 = (12 7 ((5)..)
+ ez aq; (2, @leyms] % 25~ 5

+[mz (;,;,;f) . @leymay | X 89D (@; = a5) + DL, Rpar(£):
Proof. We have only to apply D , to (1.2). O

Remark. To realize D, Rp,,, we have to use (1.3).

We illustrate the use of Proposition 1.3 by calculating the following expressions
D., D, [H2f), D2, D, [H2f] and D2, D2,[H2f).

1) D,,D,,[H? f]. Let us start with the first derivatives.

Dolt21] = [H2 (51, |+ 8(a1 = ax) x [Hoy (o) a2,

Dol = [B2(5=1), | + [Heu 1) o, 00)] % 8(m2 ),
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Dz, Dz [HZf] =Dy, [HZ (E%f)al] + ‘5(1’1 - 0.1) X Dza[Haz(zﬁ)f(a'l» 52)]

2
[H2 (3:!:88:::1 f) a a,] + Dz, [Hay (Il)f(’-’?1,a2)] x §(z2 — a2)
ey, 02)8(a: — az) X 8(zz = 02) + 8(z1 = 02) X Do Hoa ) sz

8 8?
where (mf)aha, = -B_xg_a—x—lf(x’ 'y), (z,y) € (al,bl) X (ag,bg).
Remark. a) This formula is derive& by supposing that:
( ) (zhzz)‘ = (-—f(xnaz))
a
(83:2 f) (z1, 12)‘ = (Ef(al, 1‘2)) .
b) It follows that D.,D.,[H2fl = D,,Dxl[Hzf].
2) D2 D?,[H;f]. By 2 similar procedure as in 1) we have
Py
02,02, 7211 = (2 (55553 ) o] + s (ool x 8002 02
+60(zy — a1) x D2, [Hay fa1,22)] + D2, [Ha1 72; f(wx,az)] x 8(za — a2)
+§(zy —@1) X D,=2 [Ha,——f(al,zg)] f(a1,a2) (6(1) (z1—a1) X 60 (zy — ag))

e éx—nf(al,ag) (5(1) (I]_—al) x6(x2-a2)) —-a—i-zf(al,ag)@(xl—al) X(S(l) (.’L‘z—'ag))

2
- 317?32:2'“(11' as) (5(.’51 —ay) X 8(zg — GQ))-
3) Dz D?,[H2f), a1 =0, by =0 and @ is Heaviside's function.
1 52 .
[ z1 ang) ] -P—(l—_—_—a—)Dn [Hz((-a—xzf)aa %z, 0(z1)2] )]
1 —a
= mD’IDga [(Hgf ¥, 0(z1)z1 )]
m D (B ey e S5 00

I\(l )DIJ [(-H'zf(xh5”2)l::3..u2 *zy 9(21)2 )] X 5(1)(32)'

9. If u,v € D'(R") and u * v exists, then for m =

(m1,...,Mn) € N7 one has
D™ (u*v) = (D"u*v) = (u* D™v).
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1.1.3. The convergence of a sequence of distributions. A sequence {us}nen € T'(Q)
is called convergent to u € D’() if for every ¢ € D(Q?) the limit lim (un,) =
(u, @) exists and is finite. nee

If the sequence {un}neN C L (Q) converges in LL () to zero, then the se-
quence {[u,]}nen € D'(R) converges to zero in D/(Q)), as well. In particular, the
space C(Q) can replace L _(Q) in this statement (cf. [56]).
1.1.4. Distributional-valued functions. Let Q, C R™ and Q; C R™ be open sets. We
define the function w on Q, with values in D'(£2,); w: Q, 3 £ — w(z) € D'(Q).
Such a function w is called distributional-valued function. A distributional-valued
function w defined on ), C R is of the class C! if the limit

. 1
lim( = ((w(z +£6) - w(z)), ) )
exists for every ¢ € D(f;) where z and z + &€ belong to Q,, i.e.
1 .
sh—l»no E(w(a: + &€) — w(z)) exists in D'(Qy).
We put by definition that in D/(Q;)
lim é-(w(a: +e8) —w(z)) = wg) (z).

Repeating p times this procedure, we obtain the distributional-valued function of
class CP (cf. [64]).

1.1.5. The Laplace transform of distributions. To define the Laplace transform (in
short LT) of distributions we start with the Laplace transform of tempered distri-
butions. The notion and definitions we will use were given in 1.1.

If '+ K is convex, as it will be in our case, then the LT of f € §'(T'+) is defined
by

f(2) =L(f)(2) = (f(t),e™**), z € C+iR",

where t = (£1,...,tn), 2= (21,...,2n), 2t =21ty + - + zptp, and C = intT. It is
one to one operation.

For the properties of so defined LT one can consult [66]. We shall cite only those
used in the sequel:

1) £( g ) (&) = (L))

2) If f € §'(C+) and g € S'(T'+), then L(f X g)(2,3) = L{F)(2)L(g)(s),
ze C+iR", se€ C+iR".

3) If f,g € S'(T'+), then fx g € S'(T'+) and L(f * g)(2) = L(f)(2)L(9)(2),
ze€ C+iR".

4) If f € Lioc([0,00)) and is bounded in a neighborhood of zero, 0 < 8 < 1,
n =1, then £L(f®))(2) = 2PL(f)(2).

5) L{8(t — to))(2) = e—=to.

6) L(f)(z+a) =L(e ™ f)(z), Rea > 0.
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7) If f € Lic(R?2) and |f(z)| € Me®, z > 7o > 0, then f(z)e~%* € S'(R})
and '

[eetiwa= [estevs@ya=ceene).

n
R} R}

Let ’H,(,a’ﬂ)(C), az 0,820, a2 0, denote the sets of holomorphic functions on
C +iR"™ which satisfy the following growth condition:

1(@)| € MeS#I(L+ [oP)2(1 + dP(2,80)), 2=z +iy € C + k",
where 8C is the boundary of C and d(z,dC) is the distance between = and 0C.
We set

Ha(C)= |J HEANC) and H(C) = | HalO).

arﬂ>0 az0

Proposition 1.4. [66, p. 191] The algebras H. (C) and S’(C*+) and also their
subalgebras Ho(C) and S'(C*) are isomorphic. This isomorphism is accomplished
via the LT. (C* ={t € R*; tx =t12, +--- + t,2, 2 0, V2 € C}).

A property of the defined LT which can be used in a practical way is the following:

- Let P be the set [];,l0i,5), 0< @i < bs, i =1,...,n. Then P is compact.
Since ﬁ: is a closed convex and acute cone, S (ﬁ: + P) is well defined (see 1.1.1).

-Let f e & (m + P). The LT of f, L(f), can be obtained by subsequent
applications of the LT-s L1(f),...,La(f), £{f) = L1(f) 0+ 0 La(f).

-Ifo > 0, feS'(C*4)and g = e”* f, then by definition L(g)(s) = {f(t),e~¢*~?%),
Res > 0.

- Let F(s) be a function holomorphic for Res > ¢. The function F(§ + o) is
holomorphic for Re £ > 0. If F(£ + o) € H(R, ), then there exists f € §'(R;) such
that L(e?tf)(s) = F(s).

H. Komatsu defined the Laplace transform for any hyperfunction (cf. [33]). The
same idea we use to define the Laplace transform for a large class of distributions.

Let A be the vector space:

A={T e e”'S'®, +P); suppT c {R} + P)\ P}}, weR, -

whereb et = e¥ti...e¥n, A is a subspace of e*!S'(R} + P). We can define an
equivalence relation in e*tS’ (ﬁ: +_P) by f ~ g<= f— g€ A Let B denote

B=¢S' (R} +P)/A, be B b=class(T) = d(T), T €e’'S'[, +P).
Definition 1.2. {60] Let D'(P) denote the space of distributions defined on P.
O DL(P) = (T DBy € 4 (€ + P T =T},
where T p is the restriction of T on P. Since D’ is not a flabby sheaf, D/ (P) #
'(P).
Proposition 1.5. D, (P) is algebraically isomorphic to B.
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Proof. If T € D.,(P), then there exists T € ¢“*S'(R, + P) such that T|p = T.
We can define the mapping ) : D/,(P) — B, for T € D, (P), X(T) = d(T) € B.
The inverse mapping A~! exists and A~}(cl(T")) = T|p = T € D'(P). T does not
depend on the chosen element from cl(T). If we take an other representative T} of
the cl(T), then Ty =T + S, S € A. Then Ti|p = T|p. Now it is easily seen that A
is an algebraic-isomorphism of two vector spaces. O

Definition 1.3. The LT of elements in D.,(P) is defined by

L(D,,(P)) = L(e**S' (R} + P))/L(A).
If T € D,(P), then L(T) = d(LT), where T is such that T|p =T

Remark. Let Hp be the function Hp(t) =1,t € P, H(t) =0, t € R* \ P. Then:
a) If f € Lioc(R+), then the regular distribution [Hpf] defined by Hpf belongs
to D, (P) and f has the LT in the sense of Definition 1.3.
b) If f € e“!S'(Ry + P,) and g € A, then f x g € A, as well.

1.1.6. Extension of a distribution. We know that there exist distributions defined
on an open set ) which can not be extended to an open set Q; D 1. This is
a consequence that D’ is not a flabby shief. There are theorems which give the
conditions for the extendability. We cite one such theorem we use in the sequel:

Proposition 1.6. [64] Let T be a distribution on a bounded open set Q C R® and
let Q; D Q. Then T is extendable to Q0 if and only if there exist constants C and
k € No satisfying (T, 0} <C 3 lim |¢()(z)] for € D(Q).

i<k ZERT ,

1.2. The space of hyperfunctions.

1.2.1. Notation and definitions. The space of hyperfunctions was introduced by M.
Sato (cf. [52], [53]) in 1958. By H. Komatsu’s opinion ({32]), the idea of hyperfunc-
tions has been employed most successfully since a long time ago. He cited some
examples from mathematics and physics, to prove it.

The theory of hyperfunctions in many variables calls for deep results in algebraic
topology (cf. [32], [53]). But if one restricts oneself to the one dimensional case,
this theory is of easier access. Fortunately we need only this theory of one variable.

Let £ be an open set in R and V an open set in C containing §2 as a relatively
closed set (12 is a closed subset of V'). Let O(V') denote the space of kolomorphic
functions on V. Then hyperfunctions on Q are by definition the elements in the
quotient space B(Q) = O(V \ Q)/O(V). If F € O(V \ ), then we denote by [F|
the class of F; F is called a defining function of the hyperfunction [F].

The definition of B(f1) does not depend on the choice of the complex neighbor-
hood of V.

B is a flabby sheaf. Consequently, if ; is an open subset of {2, then any hy-
perfunction f € B(f);) can be extended to an f € B(f2). This is a very important
property of B. Distributions have not this property. That is the reason for Defini-
tion 1.2.
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B(Q) contains C(Q), Lioc(f2), T’(£), the space of real analytic functions on Q,

ultradistributions on Q.... One can find in [32] what conditions has to satisfy
the defining function F' of an hyperfunction f = [F] so that f belongs to some
subspaces of B({2).

Let Q@ = (—o00,b) and —o0 < a < b; then the space of hyperfunctions with support
in [a,b) is Bl ) = O(Czcp \ [a,))/O(C<), where C,p = {z € C; Rez < b}.

1.2.2. The space of Laplace hyperfunctions and their Laplace transform. Let O be
the radial compactification of the complex plane and V' an open set in O. O®*P(V)
the space of functions F' on V such that F is holomorphic on CNV and on each
compact set K C V, |F(2)] < Ce¥l*l, z € K N C, with constants H and C. The
space BE:"‘;] of Laplace hyperfunctions with support in [a, 0] is defined by

BX® = OP(0 \ [a, 0]) /O=P(O).

“(a,00)

An f € BX® ; is represented by F € 0=*(0O\ [a,0)), f = [F]={F+G; Ge

[a,00 .
O=**(0)}. The Laplace transform Lf(£) of an f = [F] € B%,, is defined by
4 (&) = / e ¥ F(z)dz € £B[°:";,],
L
where L is a path composed of a ray from €2 to a point ¢ < a and a ray from c to
€ with —n/2 < a < B < /2.

exp

Proposition 1.7. [33] The Laplace transformation L is an isomorphism B[a' o]
L-Bex‘;o], where LBP ! is the space of all holomorphic functions f (€) of exponential

(a, [a,00 .
type defined on a neighborhood §) of the semi-circle S = {e¥); || < w/2} in O such
that
— 1 2 i :
(1.4) lim F log|f(pe")| < —acosy, |yl < 7/2.

p—00

—

If f(€) € LBZ® ,, then a defining function F(z) of its inverse image f is given by

a,00)’

the integral
1 o Ez £ d
F(Z)—-z-;r?-/,‘o e** f(£) d¢,
where sg is a fized point in ) and the integral part is a convex curve in (.

The restriction mapping 0% (0 \ [a,00]) = O(Cz<s \ [a, b)) induces a natural
mapping w : B?:pm] — Biay which is surjective, but not injective. It has been
proved (cf. [33]) that w is surjective and

Biap) 2 By / Blpe
Consequently,
(1.5) LB[a,b) = £BF¢:pb] /[‘B[agfpco]

If g € Big cc), then L£g = [£§] = {£§ + Lh; h € By}, § € Bpng), § € w™'(g)-
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Let LP([0,00)) denote the space of locally integrable functions g on [0,c0)
satisfying |¢(z)| € Ce¥=, H € R, £ > 0. We write q for the element in Bj9,00) Which
corresponds to ¢. Then the classical Laplace transform of ¢, £g(s) = f0°° e~ *tq(t) dt,
belongs to EB?(;(,;;O} (by Proposition 2.1) and fg may be regarded as the Laplace
hyperfunction for which Eé:;(&') = Lq(é); fq is an extension of 9 on [0,00). Here 8
stands for the Heaviside function. 1

The delta. distribution 4 imbedded in B2, is 6 = [~ 5] and with the
. i 2nt z
notation
(a3 —
5(a)(2) - D—f_(f), a= 0,1,...
¥ T(-a), a#0,1,...,aeRy

where 27*1, & > 0 is the distribution with support in [0,00) and 7%~ =z~

z > 0, then £&(£) = ¢, € Ry U {0} and £(5(z — 20))(£) = e™%¢, o > O.
If f,9 € Lioc([0,0)), then 8f »8g = (8f) * (Og)l(_com) =0(f*g). Here fxg =
fot f(t — 1)g(7) dr is the convolution.

1.2.3. Final comments. Let us remark the following facts which concern the hyper-
functions:

1. It is a very large space containing the most interesting functions and gener-
alized function spaces.

2. The Laplace transform of hyperfunctions is defined by (1.5), for hyperfunc-
tions having an arbitrary growth order. Specially, every locally integrable function
on [0,00) has the Laplace transform in this sense.

3. The space £LB2® | has been characterized by (1.4).

fa,00] -

4. The Laplace transform £ is a generalization gf the classical one. If f €
I:loc([O,ooA)) and has a classical Laplace transform f(s), then it has £f(s) and
Lf(s) = f(s). )

5. The properties of £ are the same as the properties of the Laplace transform
of tempered distributions cited in Section 1.1.5.

At the end we mention that H. Komatsu extended the theory of Laplace hyper-
functions to the hyperfunctions having values in a complex Banach space (cf. [36])
and applied it to find solutions to some partial differential equations using the
theory of semigroups.

2. Mathematical models of some elastic and viscoelastic rods

In this Section we shall derive equations corresponding to lateral motion of elastic
and viscoelastic rods with different boundary conditions, which will be treated in
Section 3 or are treated in some of our papers listed in the References.

2.1. Elastic axially loaded rod. Consider a rod shown in Figure 1. We shall
consider in-plane motion of the rod. Let £ — B — § be a rectangular Cartesian
coordinate system with the origin fixed at the point B of the rod.

The rod is simply supported at end B and connected to the moving support at
end C. At the end C the rod is loaded by an axial force F having fixed direction and
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\%4
4__.‘.
M >q-dfs H+dH
qd§ y M+dM

V+dV

FiGURE 1. Coordinate system and load configuration

of intensity F'(t) that may be a function of time. Also the rod is loaded by distributed
Jorces of intensity q(S,t) per unit length of the rod axis in the undeformed state.
We further assume that the rod is initial straight and that its length is L. Let S
be the arc length of the rod axis. We consider an element of the rod of length dS
in the undeformed state. In the deformed state the length of this element is ds, so
that
ds—-dS

(2.1) €= —7
is the strain of the rod aris. We shall use S as the independent space variable, so
that S € {0, L]. In an arbitrary section of the rod the contact force Q and the
contact couple M represent the influence of the part [0, S) on the part (S, L] of the
rod. Let Q =He; +Veg and q(S,t) = q,e1 +gyeq where e; and e, are unit vectors
along the Z and § axis, respectively. Then, the equilibrium equations, written in
the deformed configuration, for and element of the rod of the length dS in the
undeformed state read
OH v oM Or By
-9 5w p5 - Vas tHas
where m denotes the intensity of the distributed couples along the length of the
rod. To equations (2.2) we adjoin the following geometrical conditions

oz

_ Oy _ .
55—(1+2)c0s19, -ag—(l+£)sm19,

where 9 is the angle between the tangent to the rod axis at an arbitrary cross
section and Z axis.

Next we formulate the constitutive equations. We neglect the influence of the
shear stresses so that the cross section of the rod that is orthogonal to the rod axis
in the undeformed state is orthogonal in the deformed state too (for more general
rod theories that take into account the influence of the shear stresses see [2}, for
example). Then, the strain measures are 09/0S and €. Note that 89/8S is not the
curvature s of the rod axis in the deformed state. Indeed, let s be the arc length
of the rod axis in the deformed state. Then the curvature is K = 89/8s, so that

& B8
35 = -5;(1+s) = k(l +¢),

m,

(2.2)
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where we used (2.1). We treat materially linear rod so that the contact couple
is proportional to 89/85 and the strain of the rod axis € is proportional to the
component of the contact force in the direction normal to the cross section in
the deformed state (i.e., in the direction of the tangent to the rod axis). Let
t = cosde; + sinde; be a unit tangent to the rod axis. Then the component of Q
in the direction of t is N = V cos 9 + Hsin9. With this, the constitutive equations

that we use are
dd N  Vecos?d+ Hsind
(2.3) M—Elg, E=Fi= T EBi

In (2.3) E is the modulus of elasticity of the material of the rod, A is the cross-
sectional area and I = f A n%dA is the second moment of inertia of the cross section
with respect to the principal axes of the cross section passing through the center of
gravity. The constants EJ and E A are called bending and extensional rigidity of the
rod, respectively. We note that for the case of a rod with variable cross section both
EI and EA become functions of the arc length S. The constitutive equations (2.3)
were given by Pfiliger [45]. Note however that (2.3); does not have the important
property that N — o0 as ¢ — —1. Thus, (2.3); is valid only for € > —1. There are
several generalizations of (2.3), that satisfy the property N — oo as € — —1. For
example, in [37] the relation

N e

=BAT e

was proposed, with EA > 0 being a constant. In [1] more complicated relation
EA 1

(2.4) N——1+7(s+1——(€+1)7),

with 4 > 0 was proposed. For £ small, i.e., J¢|] < 1, the normal force N obtained
from (2.4) is of the form N = EAc + O(e?), that is (2.4) approximates the Hooke's
law in the limit when |¢| — 0. For further discussion on (2.3)2 see [2] and [39]. We
shall use (2.3); but with the restriction

(2.5) e> -1 :

Finally we define ¢z,¢, and m. By using the D’Alembert’s principle (active and
inertial forces and couples are in equilibrium) we shall add to the active distributed
forces and couples the inertial terms and obtain from the system (2.2)—(2.3) equa-
tions of motion of the rod. Thus, we assume that

2 2 2
26) ¢= —p%t—f +&, &= —psz +gf™, m= —J%t—f- + mPre
where p is the mass density of the rod (mass of the rod per unit length of the rod
axis in the undeformed state), J is the moment of inertia of the rod cross-section,
qB™®*, gb™*s" are prescribed values of the distributed forces along the  and § axes
respectively and mP™ is the value of the prescribed distributed couples.

With (2.6) we can write the complete system of equations describing in plane
motion of an elastic rod with extensible axis

6H %z

__ ,pres.,

35 ~PE T



22 ATANACKOVIC AND STANKOVIC

v 8%y o
95 = Pam YU
oM Vcosd + Hsind '
—8? =-V (1 + T) cos?
Vecos? + Hsind L
+H(1+-———EA————-)sm19+J§t—2-—m 3
oz ., Vcosd 4 Hsind ]
(27) 3_5 = (1+——T—) COS’!’,
By Vecosd+ Hsind\ .
‘5§ = (1 + ———E‘A——) SlIl19,
o _ M-
8S ~ EI’

To the system (2.7) we must add the boundary conditions. For the rod shown
in Figure 1 those conditions read

H(L,t)=-F, M(0,t)=0, M(L,t)=0,
(2.8) z(0,t) =0, y(0,t)=0, wy(L,t)=0.

We define as a trivial solution the solution of (2.7), (2.8) in which the rod axis
remains straight. Suppose that g™ (S,t) = ¢b™(5,t) = mP™(S,t) = 0. It is
easy to see that the trivial solution of (2.7),(2.8) is!

HO(S,t)=—-F, V°S,t)=0, MO°S,t)=0,
29(S,) = (1 - E_i) S, ¥%S8,£)=0, 9°(S,t)=0.

We study the disturbed motion of the trivial state. Thus, let us denote by AH(S, ),
..., AV(S,1),..., A9(S,t) the perturbations of the variables H(S, t), ..., A9%(S,t)
describing the trivial configuration. Then for the disturbed state we have

H(S,t) = H%(S,t) + AH(S,¢t),

V(S,t) = VO(S,t) + AV (S, 1),
(2.9) : e .

9(S,t) = 9%(S,t) + A9(S, 1)

By substituting (2.9) into (2.7) and neglecting the higher order terms in AH(S, t),
..., A9(S, t) we obtain

COAH _ 8Az

% =l

AV _ &hy

35 T P

OAM F F A9
=5 =~AV(1-57) - F(1- 57) 89+ T~

INote that (2.5) requires that F < EA
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(2.10) %‘?— =(1- -ELA;)
849 _ AM
85 ~ EI

The system (2.10) could be simplified if we assume that we can differentiate the
functions involved. Thus, by differentiating (2.10)2 with respect to S and by using
(2.10); and (2.10)5,6 we obtain

Ay | 8%y 1 Ay F\ &Ay
@11)  Bloer +F g — G F/E4) 65708 +° (1 - EZ) 2a =0
subject to
%Ay 8%Ay
(2'12) Ay(o,t) =0, Ay(Lat) =0, _aTS"Q_(O: t) =0, 952 (Lrt) =0.

We write next the system (2.11), (2.12) in the dimensionless form. By introduc-
ing the following quantities ’

6 - Zr u L y U= At Br= i y
FL? EINY? J
2 = —— = — _— ——
(213) A=FF T t(pL4) L a=om
the system (2.11), (2.12) becomes
u 8%y a &u AN 8%
(2.14) T T S VY ToT (1 ~Z)egE =
>0, 0<é<],
and
8 8%y
(215) u(O)T) = 01 ‘ll.(l,’l') - 0, 8—52(0’ T) = 0, gg(l,T) =0.

Equation (2.14) reduces to several special cases well known in mathematical physics.
For exarple, suppose that we neglect compressibility of the rod axis. Then EA —
oo and i? — 0 (see (2.13)3) so that in this case the parameter u, called slenderness
ratio, tends to infinity i.e., # — co. By using this, from (2.14) we obtain

Hu + /\6214 —a Fu + _6_2ﬁ _
a¢4 g2 882872 T 912~
Equation (2.16) is valid for long and thin rods. Suppose further that the rotary

inertia term is small ie.,, J — 0. In this case @ — 0 and the equation (2.16)
becomes

(2.16) 0, >0, 0<£&<.

4 2
2£+Aa“ §E=Q >0, 0<é&¢<l.

(2.17) B4 ‘a—éq + 572
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Note that the parameter A could be constant or a function of time. The most
interesting cases are

(2.18) A=A+Bé1—-1), A=A+ Bsinflr,

where A, B, 7g and () are constants and §(7) is Dirac distribution.

Finally, for the case when the axial force is equal to zero, i.e., A = 0 equation
{2.17) becomes

&u 0% ’

(219) a—é_z‘*'—i:(), >0, 0<é<.
Equation (2.19) is a well known equation of lateral vxbra.txons of an elastic rod,
without the axial force.

‘We mention here a model, similar to (2.16) with A = 0 recently proposed in [49]
and [50]. It reads (in our notation)

&u Pu 32u
‘a—E; 3&23 + =0, 7>0, 0<é<.

In physical terms, the model (2.19) has the damping proportional to the rate of
change of the curvature of the rod. No derivation (or further physical explanation)
of the term —« 6?2 e is given in [49] and [50]. However it is stated that this new
model has good mathematical properties. Some of those properties are examined
in [28].

To each of the equations (2.16), (2.17), (2.19) the boundary conditions such as
(2.15) should be adjoined. For the sake of completeness we list here other, frequently
used, boundary conditions:

o Left end clamped, right end free
Su 8%u &u
‘U.(O, T) = 0, 'EE(O, T) = 0, 525(1, T) = 0, 553-(1, T) =0
e Left and right ends simply supported
62“(0 )=0, u(l,7)=0 32“(1 ) =0
5&‘2‘ yT)=U,  ull, =Y 'BF ] -

o Left end clamped, right end simply supported

u(0,7) =0,

du 8%u
u{0,7) =0, 55(0,1') =0, wu(l,7)=0, b—g(l,‘r) =0
e Left end clamped, right end clamped and free for axial movement

u(0,7) =0, g—Z(O, 7)=0 1,7)=

du Ju
) 5’5(117') - 01 ag(
o Left end clamped, right end loaded by a follower force

Bu 8? 8’
w07 =0, (0,1 =0, a—gg(l,f) =0, %(1,7) =0.
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Ficure 2. Elastic rod on a viscoleastic foundation

e Left end clamped, right end welded to a movable rigid plate (free for a
transversal movement)

du u &u
u(0,7) =0, (—92(0,1') =0, 55(1,1') =0, -525(1,1') =0.

We note that (2.17) for the rod with A = const and with different boundary
conditions was analyzed in many publications (see [2] for references). Equation
(2.16) with the boundary conditions corresponding to a simply supported rod and
with A (2) of the form (2.18) is treated, recently, in [63].

2.2. Elastic axially loaded rod on elastic and viscoelastic foundation. We
consider an elastic axially compressed rod on a special type of foundation, shown
in Figure 2.

The foundation is such that it produces a distributed force f in the vertical
direction, along the rod so that ¢gb™ = f(S,t). The function f(5,¢) is determined
by the constitutive equation of the foundation. For example, if

(2'20) f =—cy,

then foundation is called Winkler foundation. By substituting (2.20) into (2.7) and
performing the same steps as before, we obtain instead of (2.14) and (2.15) the
following equation

u 8% a &y Ay 8%u
(221) T eE T A aeen T (1‘ Iﬁ)b?ﬂ'*ﬂu:o’
7>0, 0<é<1,
subject to
5 8?
(2.22) u(0,7) =0, 5-5%(0, 7)=0, u(l,7)=0, a—g‘,‘-a, ) =0.

In (2.21) the constant 3 is given as 8 = cL3/EI. In Section 4 we shall analyze the
system (2.21), (2.22) for a special case when the rod is thin and long. In this case
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a = J/pL? — 0 (see (2.13)7). Also since the second moment of inertia I and the
cross sectional area are connected as I = cA™, where ¢>0and m > 1 we have
(see (2 13),) that the radius of gyration becomes i? = ¢A. Thus for thin and long
rods 42 -»Oa.ndp_———»oosothat(ZZI)becomw :

Hu 8w 8%

(2.23) —a—+)\a£2+6T2+ﬂu 0; r>0 O0<&<l.

Often foundation is made of viscoelastic material. In this case the functional
relation between f and y is more complicated than (2.20). For example in rail
track problems (see [23]) the following type of viscoelastic foundation is used

(224) f419f® = E(y + 7)),

where E,, 7,7, and 0 < a < 1 are constants. In (2.24) we used (-)(®) to denote
the a-th derivative of a function (-) taken in Riemann-Liouville form as (see [42],
{51} and Definition 1.1 in Section 2)

g()_g(a)__d_ 1 /t g(E)d€ d 1 / g(t—E)d£
dte dtT(l—-a) J, t-€)=" @t 't-a) £e
The dimension of the constants 7, and 7 is [time]®. The constants E,, 7 and 7, in
(2.24) are called of the pad and the relazation times, respectively. We assume that,
as a consequence of the second law of thermodynamics, the following inequality, is
satisfied (see [11] and [3])?
(2.25) E>0, 19>0, 1y>71q.

Now, by introducing new dimensionless function F = f/EL the system (2.23),
(2.24) becomes

2 Co 2
(2.26) %+A%€—Z— a __i/“g) agz;:? +(1 )‘;2 +F=0,
T > 0, 0<g<«1,
where
(2.27) F+aF® =y +bul®,
subject to

0,8=0 ult)=0 2t0H=0 2tu,y=0,
u(0,8)=0; u(l,t)=0; "a—g'é'(’)—" 362( )
and with the restriction b > a > 0, following from (2.25). The system (2.26),(2.27)
in the special case a = 0 was analyzed in [6].

Another important case is the case of an elastic rod on viscoelastic foundation
loaded by a concentrated force at the free end (see Figure 3). The follower type
concentrated force is a force having (in our case) constant intensity and the direction

21t one uses a rheological model shown under the rod in Figure 2, then the constants in (2.24)
are given as E = E1 By /(Ey + By), 7q = p/(Ex + E2), 7y /E = pEa [(Ey + E2) (see [54], (44]).
Here E;, E; are spring constants and p is the characteristic of a spnngpot” an element whose
stress-strin law is given as o = pe ), :
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FiIGURE 3. Elastic rod on viscoelastic foundation with the follower force

coinciding with the tangent to the rod axis at the point of application of force. For
the case of an elastic rod with follower force and without foundation (the so called
Beck’s rod) there exists lot of results, some of them presented in {2] and [17).

The differential equations of the problem, for the rod shown in Figure 3, may be
obtained by the same procedure as those used deriving (2.26) and are (see [8])

& Pu O
(2.28) 6_§7+’\5§7+5§+’6f=0’ 7>0 0<&<l1.
and
(2.29) f+af® =u+4bu®,

with 0 < a < 1. The boundary conditions are
(2.30) 0,7} =0 QE(O T)=0 22—’—‘-(1 T)=0 -ai]i(l T)=0 >0
e uiy, -\ a€ 3 — Y 662 ] - Y 663 ) = Y T .

The problems of existence and stability of the solution to (2.28)—(2.30) were treated
in [8]. The conclusion about stability of the system (2.28)~(2.30) i.e., the condition
that guarantees that the solution u(€, 7) is bounded when 7 — oo is very interesting.
Namely, it is shown that the critical value A of the parameter A (the rod is stable
if A € Acr) does not depend on parameter 8. Thus, the viscoelastic foundation
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does not increase the stability bound! This is known to hold for elastic column
with follower force on elastic foundation and constitutes the so called Herman—
Smith paradox. In [8] it was shown that the same holds when elastic foundation is
replaced with the viscoelastic foundation of fractional derivative type described by
(2.29).

Finally we mention the problem of determining stability boundary of an elastic
rod with rotary inertia positioned on viscoelastic foundation. In this case the
problem is described by the system of equations (2.26), (2.27) with o # 0. The
stability analysis and properties of the solution are examined in {9].

2.3. Viscoelastic axially loaded rod. We consider a special type of viscoelastic
rod made of material described by fractional derivatives of a strain. Suppose that
the rod is made of a material whose stress-strain relation is of the form (2.24). This
model is known as the generalized Zener model (see [11}, {3}, [54])

(2.31) )+ 1o D20 (t) = Eole(t) + 7 De(t)], t>0,

where 75, 8, Ey, Te and o are real constants. We note that (2.31) is a special case of a
stress strain relation treated in [5], [7]. By using the plane cross-section hypothesis
[2] we conclude that the strain in an element of the cross-section that is on the
distance z from the neutral plane is €, = 2/r = (89/8S) z. Thus, by multiplying
(2.31) by z and integrating over the cross-section of the rod A, we obtain

89 0
g5+ el 55‘} ’
where I is the second moment of inertia, ie., I = [, 22dA. For the linearized

version of the system (2.32) we can substitute 89/8S with 8%y/85? so that (2.32)
becomes

(2.32) M(t) + 7, D?M(t) = Eol [

& v, 9%y
(2.33) M(t) + 7, DPM(t) = Eol [ 553 T 7eDig SQ]
Equation (2.33) with 7, = 0 was used in [10] and in its general form (2.33) in [38]
and [4].

By substituting (2.33) in (2.10) we obtain

O Py P
659 oe2 T Hre T
%

(2.34) 3

+ p D2 —m—ny.‘m:O, >0 0<E&<1,

T 6_62-
subject to

m(0,7) =0, m(1,7)=0, u(0,7)=0, wu(l,7)=0.
In (2.34) we used the following dimensionless quantities

Ay _AML B, _FL?
YET METERI TTWeEe YT EI
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(2.35) g:%, p:‘r,'({)%)“/?, p1=Te(.£_§2.)‘*/2.

The second law of thermodynamics requires that u; > u.

An important generalization of (2.31) represents the so called five-parameter
model of viscoelastic body studied in [46] and [48]. Suppose we use constitutive
equation connecting the stress ¢ and strain ¢ in the form

0:(t) + 1o Do, (t) = Eole + 7.Die + 7, D) .

The plane cross-section hypothesis, together with the linearization of the expression
for curvature, leads to

8%y 8%y 8%y
g7 + 708 g + (r/*Dl gz |

The second law of thermodynamics in the case (2.36) requires that (see [11], [3],
[46] and [7])

(2.37) Y>> Te>T,>0.

(2.36) M(t) +7,DM () = EOI[

Introducing a dimensionless quantities {2.35) and

2 = ()"® = (7.)7/® (IEO) ,

we obtain, instead of the system (2.34), the following system of partial differential
equations of integer and fractional order
?m %
5&? ot =0
62u 8%u
352 mDz ae? T 6&'2
with the boundary conditions m(0,7) = 0, m(1,7) =0, u(0,7) =0, u(l,7) = 0.
The thermodynamic restrictions (2.37) become

+ po DY -m—-puDim=0;, 7>0, 0<&<1,

> Y2

We note that in all cases formulated up to now, the dimensionless axial force A can
have both constant and time dependent part. For the case when an axial load is
constant equal to B and additional load D is applied suddenly, at the time instant
To, we have A = B + CO(1 — 71p). Also if we have constant axial force and at the
time instant 79 an impulsive force is applied the axial force A in this case is given
as A = B 4+ Dé(t — 7)), where D is a constant.

Finally we present one more generalization of (2.31) and the corresponding con-
stitutive equation for moments. Suppose that the stress strain relation is given in
the form of so called distributed derivative model (see [5])

1 1
[ 6oy = [ gemeian,
0 1]
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where @5 (7y) and ¢.(7) are known functions that are determined from experiments
(constitutive functions). Then, the plane cross-section hypothesis and the proce-
dure used in deriving (2.32) and (2.36) leads to the constitutive equation for the
bending moment in the form

/01 be(NMD(E)dy =1 /0 ! 4 (%(t))md%

where [ is, again, the second the moment of inertia of the rod cross-section A.
The restrictions that the functions ¢,(y) and ¢.(7) must satisfy in order that the
second law of thermodynamics is not violated, are derived in [7].

3. Generalized solutions to some partial differential equations

3.1. Equation in a space of generalized functions which corresponds to a
partial differential equation. We denote by ( an open set belonging to R?. Let

3.1) P@)u(z,t) = f(z,1), (z.t) e, feC(n),

be a linear partial differential equation with coefficients belonging to €*°(£). To
equation (3.1), by the property 4 of the derivative in D'(2) (cf. Section 1, Subsection
1.1.2), it corresponds in D'(f2) the equation

(3:2) P(D)u(z, 1)} = [f(=.¢)}.

If there exists a solution u(£,t) to (3.1) such that u € CP(f2), where p = (p1,p2)
is the degree of the equation (3.1), this solution is called the classical solution. A
classical solution defines a distribution (regular) which is a solution to (3.2). If the
solution to (3.2) is not defined by a function from CP(Q) it is called genernlized
solution to (3.1). Conversely, if a solution w to (3.2) is the regular distribution
[u(z, t)], where u(z,t) € CP(Q), then u(z,t) is a solution to (3.1). In this paper we
use the so defined notations of a generalized and classical solution to (3.1).

Which generalized solution can be used depends on every concrete case. We are
_ here interested in those mathematical models which are coming from mechanics. We
are also going to point at the possibility to use the classical results in construction
of a generalized solution.

We will not give a general theory, but illustrate it by some special cases in
which generalized functions can improve the classical results or methods. However,
there is a general procedure which will be conducted in solving equations to obtain
classical and generalized solutions. It is the following:

First we find the equation (3.2) in 7(£2) which corresponds to the given equation
(3.1). Then we apply certain methods to solve such equation (3.2). Usually these
methods in D'(Q)) are less restrictive than the methods in spaces of numerical
functions.

If we find a solution u to (3.2}, then it can happen that it is defined by a function
u{z,t), u = [u(z,t)]. This function u(z,t) can belong to C?(f)) and consequently be
a classical solution to (3.1). Also it can belong to C(€)), 0 < ¢ < p, or to Li,c(Q)
and then u represents a generalized solution to (3.1). But in this case we can see
why u(z,t) can not be a classical solution to {3.1). Sometimes having generalized




SOLVING LINEAR MATHEMATICAL MODELS IN MECHANICS 31

solutions to (3.1) we can construct the classical ones as well. For example, let
P(D) in (3.2) be with constant coefficients, @ = R? and f = 0. Suppose that
u is a solution to such homogeneous equation (3.2). Then u is a limit in D’(R?)
of a sequence {u;};en of classical solutions to (3.1) with f = 0. Let {§;} be a
b-sequence, (6; € D(R?) and &; converges to § in D'(R?)). Now, the sequence
{uj}jen can be {u % d;}jen (cf. [64, p. 243)).

3.2. Construction of solutions by using fundamental solutions. We have seen
in Section 3.1 that to a linear partial differential equation

(3.3) P(O)u(z,t) = f(z,t), (z,t) CR? feC(R?),
with coefficients belonging to C*°(R?), it corresponds in D’(R?) the equation

P(D)[u(z,t)] = [f(z,1)].

A distribution E € D'(R?) is called a fundamental solution of the operator P(9),
by definition, if it satisfies the equation P(8)E = 4. If f in (3.2) is such that the
convolution E * [f(z,t)] exists and the operator P has constant coefficients, then
W = E %[ f(z,t)] is a solution to (3.2). In that case W is a generalized solution to
(3.3) belonging to D’(R?). In the mathematical literature one can find fundamental
solutions for different differential operators. (cf. for example [43]).

As an illustration we consider the equation

& 8? 8

(34) - Egu(t,ﬁ) + Abz?u(t,ﬁ) + -a—ﬁu(.t,g) =0, t>0 &fe]R,
which appears in mathematical models for many different phenomena subject to
different boundary and initial conditions (cf. Section 2 (2.1.18)).

It is well known that a solution to (3.4) is u(t,£) = Y(£)T(t), where Y and T
have the analytical from:

(3.5) - Y (€) = C coshri& + Cysinhri€ + Cycosraf + Cysinraé
(3.6) T(t) = Cscoswt + Cgsinwt, w? €Ry,
where '

. VAT F4w? ~ A . VATF4? + )
l — ———-—-——’ 2 — _——'—,
2 v 2

(cf. [2]). For w any complex number (cf. [2], [55]).

To find generalized solutions to (3.4) belonging to D’(R?) we have first to find the
equation in D’(R?) which corresponds to (3.4). In fact we seek for the corresponding
equation in 7’(R, x R), because this space is more suitable to find a fundamental
solution.

Suppose that there exists u(t,£) € Ct(2) (R4, R) such that:

1. u(t,£) is a solution to {3.4);

2. There exist ‘lixg u(t, §) = u1(€) € C(R), ‘l_i.ra u(t,8) =ug(€) € C(R).

Let [fu] denote the regular distribution defined by the function 6(t)u(¢, £), where
9 is the Heaviside function (8(¢) = 0, ¢t < 0; 8(t) = 1, t > 0). By the property of
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derivatives in D’ (cf. 8 in Section 1.1.2), to (3.4) there corresponds in D'(R+ xR) C
T’(R?) the following equation:

(D +ADZ + D{)i = [w1(€)] ® 8M(2) + [wa(8)] @ 8(2),
(37) (D} +P(D)i =,

where P(D¢) = Df + AD}, f = [w1(€)] ® S (t) + [ug(£)] ® 6(t) and i € T'(R?).
We seek for solutions to (3.7) with the property suppa C R, x R. g

By the lemma in {43, p. 30}, the operator D? + P(D;) is quasihyperbolic with
respect to t if and only if the following condition is satisfied:

dc > 0,d € R, V¢ € R : Re P(i€) — ¢(Im P(i€))? > d.

In our case P(if) = &4 — A2, For every £ € R, &* — A¢2 > —)%/4. Consequently
the operator D? + P(D;) is quasihyperbolic.

By Proposition 5 in [43, p. 32] the unique fundamental solution E of D? + P(D;)
with support in Ry x R and E € ¢*S’ for an « € R is given by '

sin (t/P(2niz
566 = B (L)) o
+/ P(2miz)
where F! is the inverse Fourier transform.
Using Bochner’s formula (cf. {56, VIi, 7, 22}, or {43, p. 19])

_ 12 7 sin (tv/P(2riz)) 12
E(tr KD H(t)?.ﬂl’l{l J m\/m z J_1/2(21r|£|x) dI,

. . . 1 cos2n|é|z
where J, is the Bessel function. Since J_y9(27|¢|z) = ———==—, we have
T Vigle

0

Suppose now that ul(E)A and u4(£) in (3.7) bave the properties that:
(3.9) (lwa(@)) @ 8(t)) + [EEE),  ([u2(6)] ® 5D(®)) * [E(, )]
exist, then there is a solution @ to (3.7) in D’(R?) with support in R, x R
i = ((a(6)] @ 5D ®)) + (2 ()] @ (2))) * B, €)]
= [ua ()] * [E(, )] + w1 ()] * DE(, £))-

This solution is unique in the vector space G C D'(R?). G consists of all ¢ €
D’ (R?) for which there exists E * g (cf. {67, Chapter III, §11.3]). We proved the
following:
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Theorem 3.1. [61] Let E be given by (3.8) and let G be the vector space belonging
to T'(R?) such that for every g € G there ezists [E] x g. Suppose that uy(€) and
uy(€) are in C(R) such that the convolutions (3.9) exist. Then
= [ug(§)] % [E(t,€)] + [u1(§)] * D E(4,€)]
is a solution to (Df + AD + D})ii = 0 in T'(Ry x R). But it is also the unique
solution in the space G C D'(R?) satisfying the initial condition in t in the sense
that
(Dg +ADZ + D})ii = [ua(€)] @ 8(¢) + [u1 (6)] ® 61 (2).

Remarks. 1. If u;(£) and ua(¢) also belong to C*(R), then by the property of
convolution (cf. Section 1 Subsection 1.2, property 9)

Dii = [ug(€)] # (B )] + [u{’ @) * DUEE.8), i=1,...,4.
2. If we have two solutions u, (¢, £) and ua(t, £) to (3.4) with some initial condition

01(0,8) = 42(0,€) and Ts (8,6)lic0 = va(t,E)limo, £ R,

then [ug(t,£)] = [u1(¢,£)] + h, where h =0 or k ¢ G. Let us prove it. The function
U(t,€) = ug(t,€) — uy(t,€) satisfies (3.4) with initial condition U (¢,€)|e=0 = 0,
i = 0,1, £ € R, consequently the regular distribution [U(¢,&)] € D'(R?) satisfies
(3.7) with f = 0. Then [U(t,£)] = h, where h =0 or h ¢ G. Hence [U(z,£)] =
[u2(t)£)] - [ul(tv €)] =h.

3. The well-known solution to (3.4) u(t,£) = Y (£)T'(t), where Y and T are given
by (3.5) and (3.6), has not the convolution with E(t, £) in the sense of distributions,
i.e., [u(t,€)] * [E(t,£)] does not exist. If it were true that [u(¢,£)] * [E(¢,£)] exists,
then by 3.4 and the property of convolution:

[u(t, )] = [u(t, ) + 8(¢,€) = [u(t, )] + (D] + P(Dg))[E(t, €)]

= (D2 + PDeIu(t, ) » 1562 )
2 2
= [(Z+ 2+ gm)ut8)] s (B0l =0

Thus u(¢,£) =0,t >0, £ €R.

4. If equation (3.7) with f = 0 has a solution belonging to D’(R?), it does not
belong to G.
Proof. A solution to (3.4) in D'(R?) is u(t,£) =0, (¢,£) € R2. By 2 if there is a
solution to (3.4) belonging to D’(R?) which is not identical zero, then it does not
belong to G and the proof is complete. 0

The solution u(t,£) = Y (¢)T(t), where Y and T have been given by (3.5) and
(3.6) respectively, is in fact a solution to

(YO + Y A(E) + Y (O)T(E) + (TD) - S T@))Y (€) =0, t>0, £ R,
for w? € R\ {0}. This equation can be written in the form

(P(;—Z) + 5; - w’)Y(g)T(t) =0,
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d d? 3
where P (EE) d§4 +A— T2 +w?. Let us suppose that w? > 0. Since

Pig) =& -2 +w?>0, £€R, w?-)/4>0,
by Proposition 6 in {43] there is the unique fundamental solution E,(t, £) of

dy &,
P (a_é) + i w
with support in R, 'x R and belonging to e2tS’ for an & € R. It has the following
representation

(310)  E.(t€) = E(t,§) - wH() / \/7_’_?__;511 (VB T)E(r, &) dr,
o

where E(t,£) is given by (3.8).

Theorem 3.2. If in the Theorem 1.1 instead of E(t,£) we take E,(t,£), given by
(3.10), then we obtain an other form of solutions to

d 2
(P(2)+ o)t n=s
d d4 d?
&)= e
3.3. Weak solutions to partial differential equation with boundary conditions.
We consider, as an illustration, the partial differential equations for the vibration
rod and for lateral vibrating of an elastic rod on Winkler foundation (cf. Section
2, Subsection 2.2). To find weak {generalized) solutions we use the classical well-
known results. That is the reason to consider them as a preliminary.
In this part we use some facts from the theory of linear differential operators
and from Fredholm theory of integral equations. We repeat them. Let L denote a
linear differential operator defined by the differential ezpression

I(u) = a.ou(")(.’c) oot a,._lu(l)(x) + anu(z), z1 <z < =z,

and by the homogeneous boundary condition U,(u) = 0, v = 1,...,n, so to say
a differential problem is defined. Figenvalues and eigenfunctions of the operator
L have been given by i(u) = 0, U,(u) =0, v = 1,...,n. Green’s function of the
operator L is the function G(z,£) with the followmg properties:

(1) G(z,£&) with its (n— 2) derivatives in z is continuous for z, £ e (a:l,a:g) and
satisfies the prescribed boundary conditions U, (u) =0, v =1,.

(2) Except at the point z = £ the (n — 1)-th and the n-th denvatlve in z are
continuous for z,£ € (z1,z2). At the point z = £ the (n — 1)-th derivative
in z has a jump discontinuity given by _

g1 o1 1
a n— 1G(£+0 £) 8 n— 1G(£ 0 5) 00(5)’ £€ (xhx‘l)'

with P( +w?, where w? —A2/4 > 0, w? > 0.
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(3) G(=,£) considered as a function of z satisfies the differential equation I(u) =
0,2, € (z1,22), 2 #&.

Proposition 3.1, If the differential problem
l(u)=0, U,(u)=0, v=1,...,n

has only the trivial solution u = 0, then L has one and only one Green’s function
G(z,£). This function G(z,€) is the kernel of the integral equation

(311) ue) =2 [ Cagu@d+ [ 6mos©d
which is equivalent to the differential problem
(u)+du=—f, U,,(u) =0, v=1,...,n.
(cf. [19, 1, p. 353]).
If a kernel K(z,£) of the integral equation (3.11) has the property that

Ioi9) = [[ Ks.00(0)pl@) dsat

can assume only positive or only negative values (unless ¢ vanishes identically) it
is said to be positive definite or negative definite in both cases it is definite. ¢ is
any function which is continuous or piecewise continuous in the basic domain.

Proposition 3.2. If K(z,£) is a continuous symmetric kernel of the integral equa-
tion (3.11), then every function g of the form

o@) = [ Ko,

where h is a piecewise continuous function on [0,7], can be expanded in a series in
the orthonormal eigenfunctions of K{z,£)

9(z) = igivi(x), gi(g,vi) = (—h/\—vﬁ.
i=1 *

where (g,v;) = fo" g(€)v;(€)dE. This series converges uniformly and absolutely
(cf. 19, I, p. 136]).

From the proof of this Propositidn we will use the following:
For every € > 0 there exists Ny(e) such that:

(3.12) Zn: lgil lvi(z)| < &, n,m = No(e), z €[0,].

i=m
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3.3.1. The classical theory of a vibmting rod. The mathematical model of the vi-
brating rod is (cf. Section 2, Subsection 2.1)

o 8?
(3.13) -a?u(a:,t) + Et_fu(x’t) =0, 0<z<m t>0.

Since for the construction of generalized solutions to (3.13) we use the classical
results, we quote some of them (cf. [19, I]).

If we suppose that the solution to (3.13) has the form u(z,t) = v(zx)g(t), then
equation (3.13) decomposes to two differential equations
(3.14) v¥(z) - Mv(z) =0, 0<z<m d@ (&) + Xg(t) =0, t>0.
In [19] five various types of boundary conditions have been analyzed (see also
Section 2, Subsection 2.1):

1L v®(z) = v®(2) = 0, for z =0 and z =, i.e., free ends

2. 9(z) =v¥(z) =0, forz=0and zr =, ie., simply supported ends
(3.15) 3.v(z) =vM(z) =0, forz=0and z =, ie., clamped ends

4. v (2) = v®(z) = 0, for z =0 and z =, i.e., moving clamped ends

5. v(0) = v(r), vM(0) = vM(x), v(0) = v®(x), v (0) = v (),

periodicity conditions.

In all these cases eigenvalues and eigenfunctions can be given explicitly. The
next Proposition gives the properties of these eigenvalues and eigenfunctions.

Proposition 3.3. For the differential problem (3.14); and one of boundary con-
ditions (3.15), there ezists a denumerable infinite system of eigenvalues A; 2> 0,
i € N and associated eigenfunctions, v;, i € N. Note that {\;}ien is not a bounded
set; {vi}ien is a complete system and arbitrary functions possessing continuous first
and second and piecewise continuous third and fourth derivatives may be expanded
in terms of these eigenfunctions.

By the solutions to equations (3.14) we can construct a family of solutions to
(3.15)

(3.16) ui(z,t) = vi(z)(a; cosyit + b;siny;t), i €N,

where a;, b; are arbitrary constants and »; = /A; (v/; is the principal branch),
i € N. This form of solutions contains also the initial condition in ¢:

u;(z,0) = a;vi(x); g—zu;(z,t) —o = bivvi(x).

It is easily seen that every finite sum ) u;(z,t) is a solution to (3.13), as well.

Let us go back to equation (3.14); with the boundary condition U,(v) = 0,
v = 1,...,4, which is one of the type (3.15). In this case we have that a linear
homogeneous operator L is given by l(v) = v (z) =0and U, (v) =0, v =1,... ,4.
From v*)(z) = 0, it follows that v(z) = C; + Caz + C32? + C42?, where C;, i =
1,...,4 are arbitrary constants. For the boundary condition U, (v) =0, v =1,...,4
we take for example (3.15)3. Then we have to find C;, i = 1,2,3,4 in such a way
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that the chosen condition U, (v) =0, v =1,...,4 is satisfied. It is easlly seen that
all the C; =0,i=1,...,4. Consequently v=0.

By Proposition 3. 1 there exists one and only one Green'’s function G{z, &) for
L. This Green’s functxon in our case is definite (cf. {19, p. 363]).

3.3.2. Construction of generalized solutions to (3.13), (3.14). Now, the equation
(3.13) can be drowned in 7'((0,7) x (0, 00)) by the property 4 in Section 1, Subsec-
tion 1.2 of the distributional derivative. To (3.13)'in 'D’(O 7)%(0,00)) it correspouds

(3.17) Difu(z,t)] 4+ Diu(z,t)] = .
Every solution to (3.13) defines a regular distribution, which is a solution to (3.17).

To u(z,t) = v(x)g(t) corresponds in D’((0, n) x (0, c0)) the distribution [u(z,t)] =
[v(z)] x [g(¢)] (tensor product). We know that (cf. [64, p. 120])

Dzv(z)g(8)] = Dzlv(z)] x [9(t)];
Di[v(z)g(t)] = [v(=)] x D{g(2)]-

We proceed to find [v(z)] and [9(t)] in such a way that [v(z)g(¢)] satisfies (3.17).
This equation (3.17) can be written in the form:

Difu(z)] x [g(t)] - Ao(@)] x [o(8)] + [v(z)] x D[a()] + ()] x [o8)] = 0.

Let us find A, [v(z)] and [¢(t)] so that

(3.18) Di[v(z)] - Alo(z)] =0, Di[g(t)] +MNg(2)] =0.
It is well known (cf. Property 7 in Section 1, Subsection 1.2 of the distributional
derivative) that these two equations (3.18) have only solutions defined by the solu-
tions to equations (3.14). Then solutions to (3.17) have been defined by functions
of the form (3.16) or by finite sums “of them. Consequently we have nothing new
for equation (3.17). '

To find generalized solutlons to (3 13), which are mterwtmg for our differential
problem (3.13), (3.15) we shall start from the classxcal results for thé equation
(8.13), we cited in Proposition 3.1.

The Green function G(z,£) for the operator L défined on the end of the Section
3.3.1 has all the properties we need so that Proposition 3.2 can be applied.

Let w;(z) and w,(z) be continuous functions and h;(z), i = 1,2, piecewise
continuous functions such that

(3.19) wi(z) = f Clz, E)hi(€)dé, e [0,n], i =1,2.
- . : .
Then by Proposition 3.2 we have
(3.20) wi(z) = S wis(a), i=1,2,
j=1

where {v;};en is the sequence of eigenfuncﬁions of G(z,£).
From (3.19) and properties of Green’s function it follows by (3.20) that the
functions w;(z), i = 1,2 are not only continuous, but they have also continuous
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first and second order derivatives. They satisfy the boundary condition, as well.
Because of the properties of eigenfunctions v;(z), i € N, to be continuous, to
have continuous first derivative and that v;(0) = 0, for every i € N, there exists
z; € (0,7), such that

(3:21) 223 [v{7(2) = ()| = Mi £0, i€,

and there exists = € (0, ), such that
(3.22) [vi(=zi)|/M: <1, ieN.

We will also use the property of the set {\;}ien of eigenvalues, not to be bounded.
Consequently there exists ig € N such that

(3-23) Nl<l, izi,.
We can now construct the function W{z, t)

o :
(3.24) W(z,t) = Ev,-‘(a:)(a,- cosyt + bsinyt), 0Kz <7, ¢ 2 0.
1
We consider two cases for constant a;j,b; € N:
. _wyws(eh)  wayvi(ag)
() o= 58, b= PR
wv;(5) wa;05(25)

(11) %= M V5 ! bJ - MJ'Vj !
where v; = \/—,/\ 20,jeN

The function W(x, t) has the following properties:

1) In case (i) it is a continuous function with a continuous first derivative in z
on [0,7) X [0,00). In case (ii) it has also a continuous derivative in 2.

First we prove the continuity proving that the two series which constitute the
function W (z, ) are uniformly convergent on [0, 7] x [0, o).

Case (i): By (3.12) and (3.22) we have for the first series

wy5;(25) = ?
Z —r () COSvjt < ) loulius@)l) <e
j=m J j=m
2 Ny, (z,t) € [0,7] x [0,00).
The proof for the second series is just the same.
Case (ii): We use now (3.23) in the proof of the continuity.
Let us consider the series

(1) wijv;(z ;,) ijV'J'(z;') —
(3.25) JZ_; (z )(-——-—-—— cosy; + ——_—Mj smv_,t).

By using again (3.12) and (3.21), we have
(1) w15v5(25) 2
z ( )T cos I/Jt

J—m

< @.. |w1,-uv,-<m;->l)2
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n,m 2 N(g). The treatment of the second series in (3.25) is the same.

Now we can conclude that in case (i) the function W (z,) given by (3.24) has a
continuous derivative in z. This derivative can be obtained by taking the derivative
of every member of the series in (3.24).

The proceeding of the proof that in case (ii) we have also the derivative in ¢ does
not differ of the proof of the derivative in 2.

2) In case (i) and (ii)

W(z,0) =Y v;(z)aj,
j=1

and this is a continuous function with continuous derivative on [0, #].
In case (ii) we have
8 & wa;v5(25)
sV @], = D u@ =
J=1
as well. The given series defines also a continuous function on [0, 7].
3) W (z,t) satisfies the boundary condition we chose (3.15)s.
4) W{(z,t) given by (3.24) is the limit of the sequence

(3.26) Wy(z,t) = Zvj(x)(a,- cosvt + bisinyt), n €N,

. J=1
in C([0, 7] x [0,00)). The elements of the sequence (3.26) are solutions to (3.13)
(cf. (3.16)).

It is easy now to prove

Theorem 3.3. Let us denote by: 1) {A\i}ien and {vi}icn the eigenvalues and
eigenfunctions respectively of the differential problem
v!(z) - Mv(z) =0,
v(z) =v(2) =0, forz=0andz =
2) {vi}ien the sequence defined by v; = VX, M 2 0, where VA; means the
principal branch, i € N.
3) {a;}jen and {b;}jen the sequences

. w95 (z5) wa;v5(2%)
(i) ;= __iH’j_J_, ;= _il\}—jl—’ or
) oy =), witilE)
oMy T My
where :
(3.27) M; = max [of"(2)] and 2 € (0,7), [os(@))l/M; <1, j €N,

Then the function W (z,t) = 372, vj(z)(a;jcosvst +bsinv;t), 0 z < 7, £ > 0
defines @ regular distribution (W (z,t)] € D'((0, ) x (0,00)). This distribution is a
solution to (3.17) and a generalized solution to (3.13), (3.15).
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The properties of the function W{z,t) are:

a) In case (1) and (ii) it is a continucus function with continuous first order
partial derivative in z on [0, 7] x [0, 00).

b) In case (ii) it has also a continuous first order partzal derivative in t on
[0, 7] x [0, 00).

c) In case (i) and (ii) we have W(z,0) = 322, v;(z)aj, = € [0,7], and this is a
continuous function with a continuous first order derivative on [0, 7]. ‘

d) In case (ii) we have %W(z, t)lt—o = 352, v(z)vsb, z € [0,7]. The given
series defines a continuous function on [0, 7], as well.

€) W (z,t) satisfies the boundary conditions W (z,0) = ZW (z,t) =0, forz =0
andz=m, and t 2 0.

£) In case (i) and (ii) D [W (z,t)] = [ W (z, t)] and in case (ii) D[W(z,t)] =
[&W (=:1)]

g) In case (i) and (ii) W (z,t) and in case (ii) & W (z,t) are bounded on {0, 7] x
[0, 00).
Proof. The function W(z,t) given by (3 24) defines a distribution because of its
property 1), we proved. O

If the sequence (3.26) consists of solutions to (3.13), (3.15)s, then the sequence
(Wa(z, t)])nen C D'((0,7) x (0,00)) is the sequence of solutions to (3.17). Since
the sequence (3.26) converges in C ([0, 7} x [0, 00)), the sequence ([Wy(z,t)])nen con-
verges in D’((0, 7) X (0, 00)) (cf. Section 1, Subsection 1.2). Consequently, [W(z, t)]
as the limit of the sequence of solutions to (3.17) is also a solution to (3.17).

The other cited properties of the function W (z, t) one can easily prove.

Remarks. 1) By (3.27) we have a family of functions because the sequence {z5}ien
C (0,7) has only to satisfy the inequality fos(z)I/M; <1, €N
2) If the solution to (3.13), (3.15)3 is of the form u(z,t) = v(z)g(t) we have

u(, 0) = g(0)v(z) and —%u(x, t)L=0 = ¢(O)v(x).

But in our case W (z, t) given by (3.27) which defines a generalized solution to '(3.'13),
(3.15); satisfies a more general initial condition: in case (i) and (ii) W(z,0) =
3321 a5v;(z) and in case (i) we have moreover

6 o0
&-W(z, t)lz.—_o = ,; bjvyv;(z).

3.3.3. Construction of generalized solutions to equation of the lateral vibration of
an elastic rod on Winkler foundation. We consider the equation

ot a?
(3.28) b—x—‘i-u(a:, t)+ a;u(z, )+ M(z)u(z,t)=0, 0<z<w t>0,
where ¢(z) > 0, z € [0, 7] with boundary condition:

) )
(329)  u(0,8) = 5ula, t)lz=0 =0 ulm,t) = Ezu(z,t)lﬂr =0,t30.
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As in Section 3.3.2, we suppose that a solution of (3.28) is of the form u(z,t) =
v(z)g(t); then equation (3.28) becomes

B o(a)o(0) + Ma(a)o(@)o(t) ~ wnle)olt) + Logole)a(t) + wni(a)o(t) =0,
O<z<m t>0
To find v and g we use two equations
v4(z) + Ag(z)v(z) —~wv(z) =0, O<z <,
gD () +wg(t) =0, ¢>0,
and the boundary condition
(3.30) v(0) =v®(0) =0, v(x)=ovW(x)=0.

Let L denote the differential expression L(v) = v(¥)(z) + Ag(z)v(z). Note that L
is self adjoint. To prove that L has Green’s function we have to show (Proposition
3.1) that from L(v) = 0 and (3.30) it follows that v = 0. We will do it in two steps.
First we consider the differential expression {(v) = v(¥(z) with (3.30). It is easily
seen that v(¥)(z) = 0 with (3.30) gives v = 0. Then [ has Green’s function G(z, £).
We know that Gi(z,£) is symmetric and definite (cf. [19, p. 363]).

Now, in the second step, we use the fact that

(3.31) L(v) = v¥(z) + Ag(z)v(z) =0, with (2.31)
is equivalent to (cf. Proposition 3.1)

o@) =2 [ Gz, Oa(e)ole) de,
]

or

VA v(z) =2 [ @) Vi@ V@ v d
o

The kernel K(z,£) = Gi(z,£)+\/¢(z)q(€) is also symmetric and definite. Let us
denote by y(z) = 1/g(z) v(z). Then (3.31) is equivalent to

(3.32) v(o) = [ K@ oue) de.
0

Since K(z,£) is a continuous and symmetric kernel it possesses eigenvalues and
eigenfunctions. Their number is denumerably infinite (cf. [19, p. 22]). Let Ao be
a real number (positive) which is not an eigenvalue for the kernel K(z,£). Then
equation (3.32) and consequently equation (3.31) have only v = 0 as the solution.
Hence we know that Green’s function Gr(z,&) exists for L with (3.30). Since L is
self adjoint, GL(z, £) is symmetric and L has eigenvalues {A;}ien and eigenfunctions
{vi(z)}ien. Consequently we can apply Proposition 3.2. The consequence is that
we can construct generalized solutions to equation (3.28) {which depends on the
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chosen number Ao) with boundary condition (3.29) processing just in the same way
as in Section 3.3.2 for equation (3.13) with the same boundary condition.

We have to remark that in this case we do not know that the Green function
G is positive definite; the eigenvalues have not to be positive. Consequently we
can not assert that the function W(z,t) which defines the distributional solution
is bounded on [0, 7] x [0,00). The stability of the solution has to be considered
separately.

3.4. The Laplace transform applied to a partial differential equation. The
Laplace transform is very useful in solving partial differential equations. But we
have always to take into account that as a first condition for applicability of the
Laplace transform on a generalized function is to have its support bounded on the
left. In such a way when we have a partial differential equations with numerical
functions and look for the corresponding equation in a space of generalized functions
we have to use the Property 8 in Section 1, Subsection 1.2 of the derivative of a
generalized function.

Working with the Laplace transform, when we find a function F(s), Res > w > 0
and seek for a generalized function f, such that £f(s) = F(s), we have first to check
if such f exists. For this purpose Propositions 1.4 and Proposition 2.1 in Section
1 can help. Secondly, we have to find such f. In many cases f is a numerical
function. Thus, £~1(f) is the regular distribution [f] defined by the function f.
The solution still has not to be a classical one, because the derivatives in, general,
exist only in the distributional sense. An illustration how it reflects in solving a
partial differential equation one can find in [61]. We consider in 3.4.1 the case when
we apply the Laplace transform in one variable and in 3.4.2 in two variables to a
partial differential equation.

3.4.1. M-valued functions as solutions to a partial differential equation. Let M
denote one of the following spaces: the space of L-functions (cf. [21]), DL, (R4) or
B{e‘;‘,‘;o]. We use the Laplace transform which is defined for elements of these three
spaces, consequently for elements of M.

The partial differential equation we analyze is:

(3.33) ?iu(xt)+iz-u(xt)=0 0<z<1,t>0
. ax4 r at2 2 1 ] £
with the initial conditions
(3.34) u(z,0) = Bo(z), -(%u(z, t)L=0 =By(z), 0<z< 1
It is well-known that equation (3.33) has a solution of the form u(z,t) = v{z)g(t)
(cf. [2], [19]). In this case Bo(z) = v(z)g(0) and By(z) = v(z)g"(0).
Let {[u(z,t)]}ocz<1 denote a family of M-valued functions of class C* (cf. Sec-
tion 1, Subsection 1.4). For any fixed z, [u(z,t)] € M.

By the property 8.1 in Section 1, Subsection 1.2, to equation (3.33) it corresponds
in M the equation

(3.35) %[u(x, t)] + D?[u(z, t)] = By (2)8(t) + Bo(z)6V (), 0<z < 1.
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Now, the solutions to (3.35) are the generalized solutions to (3.33), (3.34). Our
aim is to find all the solutions to (3.35), i.e., all the generalized solutions to (3.33)
with Bo(z) = v(x)g(0) and B;(z) = v(2)g"(0) which are functions with values in
M.

Suppose that we have two such solutions to (3.35) with values.in M, w;(z) and
wa(z). Then wo(z) = wi{z) — wa(z) satisfies the homogenous equation (compare
to (3.35))

(3.36) gzwo(x) + D2uwy(z) =0, 0<z<1.

The Laplace transform in ¢ transforms (3.36) in

(337) %Wo(t,a + 82W0(Z,§) =0, O0<z<1,
where Wy(z,3) = L, (wo(z))(z,5). The equation (3.37) is a classical differential
equation in which s, Res > w > 0, is only a parameter.

The general solution to (3.37) is of the form

(3.38) Wo(z,3) = C1(3)e™” + Cq(8)€7?* + C3(s)e™" + Cy(8)e™*,
0<z<1, Res>uw,

where C;, 1 =1,...,4 are functionsof sand r;, 1 = 1,...,4 are solutions to equation
ri4 2 =0.

The Propositions 1.4 and 2.1 in Section 1, give the conditions which C;(s),
i =1,...,4, have to satisfy that wo(z) exists such that L(wo(z))(2,3) = Wo(z,3),
O0<z<l.

We known that [v(z)g(t)] is solution to (3.35) with Bo(z) = v(z)g(0) and
Bi(z) = v(z)¢tY(0). Then all the solutions to (3.35) with cited values for By
and B; which are functions with values in M are [v(z)g(t)] + wo(z).

In such a way we proved the following theorem:

Theorem 3.4. Let ui(z,t) = v(zx)g(t) be the well known classical solution to (3.33)
and let M denote one of the spaces: The space of L-functions (cf. [19]), D., (R,)
or BF(’,‘, ';o] .

All the solutions to (3.35), i.e., all the generalized solutions to (3.33) with initial
condition

u(z,0) = v(z)g(0) and %u(x,t)it:0 = v(z)g™(0)

which are functions in z with values in M are w(z) = [v(z)g(t)] + wo(z), where
L{wo(z))(3) = Wo(z,3) and Wo(x,3) is given by (3.38).

Applying the Laplace transform to (3.35) with any By and B; we obtain a
nonhomogeneous differential equation. The same procedure as for (3.37) gives us
the generalized solutions to (3.33), (3.34) for any By, B;.
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3.4.2. Solution of partial differential equation (3.33) by the Laplace transform. We
consider the equation i

& 8? 2
(3.39) Ezzu(z,t) + Bt—iu(z’t) =0, (z,t)eR],
with initial conditions:
‘ 8
1(0,¢) = F w(0,8)=0, t20,

k
(3.40) -a%u(o, f) = Aut), k=2,3, t30,

u(z,0) = Bo(z), -gt—u(x,O) = Byi(z), 220,

where [0(t)Ar(t)] € e*S'(Ry), k = 2,3, and [@(z)B;(z)] € P S'(Ry), i = 0,1,
p > 0. To find an equation in T’(R>) which corresponds to (3.40) for = > 0,
t > 0, we need the relations between derivatives in the sense of distributions and
the classical ones. .

Let 6%(z1,z3) = 6(z1)0(x2), where @ is the Heaviside function. For a function f
with continuous partial derivatives on R?, [§?f] is the distribution, defined by 62 f,

belonging to D'(R?) and to D’ (ﬁi), as well. Let (97f/027), denote the function

equal to 87 f/8z on the Ri and equal zero on R? < ﬁi, but is not defined for
(z1,22) € {(0,z2) U (21,0); zy >0, z2 > 0}.
With the notation as above we have (cf. 8.2 in Section 1, Subsection 1.2).

B tute 0+ S bu(e, 0] = 0646 x 59(2) + B0 4s(8)] x 8(2)

(3.41) + [0(z) By (z)] x 8(t) + [6(z) Bo(z)] x 6V (2).
Applying the LT we have
(2% + %) L{u)(2, 8) = L{A2)(8)z + L(As3)(s) + L(B1)(2) + L(Bo)(2)s,
or
L)) = 28,

with Q(z, 8) = £(A2)(s)z + £(A3)(s) + L(B1)(2) + L(Bo)(2)s. Since

1 1 ( 1 _ 1 )
28482 2s\22-—is 22+tis)’
we have
Q(z,5) _ Q(z,9) 1 1
(8.42) 24827 s (22 —is 224 is)'

By Proposition 1.4 in Section 1, and the property of the space H,, %(f;’} has
to be holomorphic in {(z,5) € C% Rez > w; > 0, Res > wp > 0}. Since
22 482 = (2— 21)(2+ 21)(2 — 20)(2 + 23), where z; = &™/4,/3, 20 = e¥"/4 /3, it is
necessary to have

Q(e¥™/4\/35,8) = 0 and Q(—€*/4\/5,5) =0
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or equivalently
(3.43) Q(e"/%\/5,5) = 0 and Q(e~*"/*\/3,3) = 0.

Let us consider the first addend in (3.42). Then (3.43); has to be satisfied which
gives

L(A)(3)e"™ /4 /5 + L(As)(s) + L(B1)(e"™/4\/3) + sL(Bo)(e™/*/3) = 0.
Now we can express £(A43)(s),
L(As)(s) = ~L{A)()e A5 = L(By)(e/4/5) — sL(Bo) €/ 3).

With such expressed £{A3)(s) the first addend in (3.42) is:

Qz8)  _ L(A2)(s)(z — e/4\/5)
2is(22 — is) 2is(2? — is) :

+ £B1(=) - L(B1)(e"/*\/3) + 8(L(Bo)(2) ~ L(Bo(e™™/* /5))
2is{z? — is)

L(4)(s) (C(Bl)(z)—C(Bl)(e"""‘\/'s’) N L(Bo)(z)—L(Bo)(eir/‘i\/g))

= 2is(z+ei /A ) disei™/a\[s 4™/ J5

1 1
(3.44) x (z— e/ J5) z+ei,.-/4\/§)).

By using the following formulas for the Laplace transform
£ (k) mafeereers

2+ a\/§
et 0t) _iaxy?
1 —azxyE\ _ (ax)*/(4t)
L (——ﬁe ) = —\/ﬁe , T ?0, Rea>0

= 0(t)x(az, t).
We can find the Laplace transforms in (3.44). Let us do it

-t (%) =L;to (C:l (z T ei17r/4\/§) C(g:.s)z(S))

= 5t (Fpe ) Jeetane)

2 NG
= gl ez, of (t = 1)/ 4a(r) .

The second addend in (3.44) is:

L(B1)(z) - ﬁ(Bx)(ei”/“\/E)( 1 1 )

(3.45) dise’* /4[5 z— /4[5 T Ix PEIIWA

We shall start with:

-1 £(B1)(2) = L(B1)(e"/* /3)
(3.46) £ ( 4isle‘”/4ﬁ(z-:e‘"/4\/§) )
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— £—1 O[,_l £(Bl)(z) ) _ L:—-l OL-I L(Bl)(ei"/4\/§)
z s \ digein/d V3(z+ei /A V3) s z \ dgeiw/d VeE(z+e™ /A f5) )
The first addend in (3.46) is

£t (31 (2)£3? ( 4(6.-1/4\/;)3(1&#/4\/3 + Z)) )

1 t 1
3.47 =L} -1 1 -
( ) 2z (Bl(z)‘ca 463""/48 *Ls (z+e"'/4\/§)\/3)
t

/ x(e"/4z, 1) dr % By (z).
0
For the second addend in (3.46) we have

_c—l ° [.-1 L(Bl)(e‘"/d\/;)
‘ * \dise*/4,/5(z + e*/4,/3)

. 1 1 1
=L in /4 B S o ¥ S
E" (E,, (Bl)(e \/;) 463'."/48 \/«;Lz (Z + Ci’r/4\/;)>

- -o—(aile"‘“/"‘/; / eV By (1) d‘r)
°

1
4e3iv/4

=—£—1 —_—
s 4e3in/4g ﬁ

. oo
1 ¢ _,(1 &=/
=d= g3 (5 [ By
0 |

oo
= LI / e'*i("‘"’)’/‘%_—Bl(T)dr

P bt
1 t o0 .
SH—. / du / x(¢™/4(z +7),u) By (r) dr.
0 0

Applying the inverse Laplace transformation the first fraction in (3.45) becomes
-1 [ £(B1)(2) = £(B1)(e/4V5)
disei"/4s,/3(z — ei7/4,/3) ‘
e EBYD o KB)EYE)
4ie""/4s\/§(z — 811/4‘/5) 4ie‘”/4aﬁ(z — eiw/d.\/;)

_ ng_/z ( £t ;}f_s SMEE B () — £ _s_% T /e-e"" Vi B, () du)

)
1 1 T 1 o0
— L7t [ #5E-9ViB (u)du - E—x___[e_et%(u_z)./:Bl(u) du
1 i1r/4( s / s
e 3\/5 2 8\/5 ]
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- .
_ -1 [ 1 et Fu-nvE
= 4ie""/4£' (sﬁ/e Bl(u)du)

(3.48)

t oo
= 4i;1/'4' / / X(e"/4(u — ), 7) By (u) dudr.
0 =z

If we collect all the results obtained in (3.47)—(3.48), then the inverse LT of (3.45)
is a function denoted by F(By, z,t, 7/4),

t oo
g 1 .
N — iv/4(,,
F(Buet D) =g [ [ u=2), B dudr
0 z

t

- ﬁr'/—«t / x(e™/4z, ) dr ¥ B\ (z)
0
[~ =)

. t

1 ir/4

+ g / du / X/ (z +7),u) By (r) dr.
0 0

To find the inverse LT of (3.44), it is yet to be find the inverse LT of

8(L(Bo)(z) — L(Bo)(e™/4{/3)) 1 1
(349) = 463;-:/48\0/; ( - s z4 eir/«lv/;)'

If we compare (3.49) with (3.45), we can observe that in the structure of (3.49) we
have additionally only a product by s. Since F(By,z,0,§) = 0, the inverse LT of
(3.49) is 8F (B, z, ¢, w/4) /Ot.

The procedure of finding the inverse Laplace transform of the second addend in
(3.42) is just the same as for the first one. The details, the complete solution and
the comments one can find in [61].

Remark. If in equation (3.39), (z,%) € (0,1) x R,, then we can consider the
equation (3.41) in D/, ((0,1) x Ry) (cf. Section 1, Subsection 1.5).

3.5. The case in which a generalized function appears just in the model. We
shall study the existence and properties of the solutions to the following system of
coupled partial differential equations (cf. Section 2, (2.3.4)):

FOm O P
ae? 082 T a2 T

2 2
(3.50) %E?+p1D§"-g—€%—m—pr‘m=0, t>0, 0<£<],

with boundary conditions

(3.51) m(0,t) =0, m{1,t) =0, u(0,t) =0, u(1,¢£)=0, t>0.
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We assume solutions to (3.50), (3.51) in the form m(€,t) = M(E)V (L), u(&,t) =
U(€)T(t). Then for every k = +1,%2,... the system (3.50), (3.51) reduces to

(3.52) M (€) = Cysinkn, Ui = Cysinkné,
and
— (km)?Vi(t) = Mkm 2T () + T (8) = 0,
(3.53) Vie() + 1V @) + (k) 2T (8) + pa (k)2 T () = 0, k € &N,

where C} are arbitrary constants.
Throughout this example we shall assume that, firstly p # 0, p; # 0 and secondly
FL2

=—m=B+A6(t—t0), t0>0~

The second assumption means that the axial force is subject to an impulsive change.
Consequently, in equation (4.4); we have the product §(t — tg)T}(¢). Since é can be
treated as a measure, this product has a meaning for any t5 > 0 if T}, € C([0, 00)).
Then 6(t — to)Tk(t) = Ti(to)d(t — to) (cf [56]). This fact one has to take into
account when we construct the generalized solutions. Such solution can be only a
regular generalized function defined by a continuous function Tj (t).

To solve the system (3.53) we will use the Laplace transform (cf. Section 1, Sub-
sections 1.5 and 2.2) applied on functions or generalized functions with support in
R;. A function and its derivatives with the support in Ry can have discontinuities
at zero. For this reason, when we construct the system in 7’(R) which corresponds
to the system (3.53), we have to take care of the property 8.1 of a derivative given
in Section 1, Subsection 1.2. Let us take for short in (3.53) that k= 1.

So if T is'bounded in [0,€), for an £ > 0 (an assumption which is supposed to
be satisfied in this case), then

DFe()T(8) = [0()DET(@)], 0<a <1,
DPBET(®)] = [BEOTD(B)] + T (0)8(8) + T(0)6M (8).
Consequently, to (3.53) it corresponds in D’ (R, )
D?*[0T] — Ba?|0T] - #2[8V] = T(0)6M () + TW(0)8(t) + 72 AT (t6)6(t — to),
pD*[V] + py 7% D*{OT) + [6V] + #%[6T] = O.

Applying the generalized Laplace transform (cf. 1.1.5) with the following notation:
L(0T))(s) = T(s), L8V)(s) = V(s), T(0) = To, and TM)(0) = T3, we have

—72V(s) — (Ba? — s?)T(s) = Tos + T} + 72 AT (to)e 0",
(3.54) (14 ps®)V (s) + 72 (1 + py s*)T(s) = 0.
The solution to system (3.54) is

~ L | _
T(s)= fj(—s)/—“ (T p + Tops + w2 AT (to)pe™**),
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sa+1/yl,

(3.55) V() = A06)

(T3 1 + Toprs + w2 AT (to)p1e™%*),

where
A(s) = ps®t? 4+ 8% 4 (un? — Bu)n?s® + (7% — B)n? = ps®+? 4 o2 4 as® + d,
and
= n?(uyn? ~ Bp); d=n%(x? - B).
The next step is to find the distribution which corresponds to (3.55). The main
part to the solution (3.55) is the function

(3.56) f(s) = s“,;“( 1)/ "

To the function f(s) we can apply Theorem 3 in [19, Vol 1, p. 263), as well. In fact,
there exists f € Liyc[0,00) and z; > 0, such that

z+ioo
(3.57) 10=55 [ eFds, 2>, t30,
(Lf)(s) = f (s) Here (£f)(s) denotes the classical Laplace transform of f defined
s (L)) = f e f(e)ar

Since the 1ntegral in (3.57) converges uniformly for 0t StL Y < oo, f(E)
is a continuous function in [0,c0). Consequently, f(t) is bounded in the interval
[0,€], 0 < £ < co. How such an integral can be calculated, see for example [25].
But we will find an analytic form for f which is, in our opinion, more suitable then
integral (3.57) (cf. [59]).

Let us analyze the function f defined by (3.57). Put c¢= %(d - a/ ). Then

L _ 1/u
A(s) (2 +afp)(s*+1/p) +c

=:(.92+a/yl)/(‘.:‘"+1/,u) (1+Z( C)y(a2+a/y)”(s°‘-:1/p)u)'

v=1

First we find the function ¢4 (t), ¢ > 0, such that

(3.58) (Loa)(s) = Z(— )"(32 +a/#)y(sa : l/y)v'

v=]1

Then,
1 1 1

Al) ~ u(e +a/u)e+ 17w
We will denote by w(t) the function

(3.59) w(t) = at* LEM(2),

(1 + (£¢a)(s)) .
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where z = —t*/p, t 2 0 and E,(2) is Mittag-Leffler's function (see [22] and [26])
We know that (Lw)(s) = (s*+1/p)~? (cf. [25]). In our analysis of the terms of the
series (3.58), we have to distinguish three cases: ¢ > 0, a =0 and a < 0. Thus,

TR (VE) £ ((sin/Bt+0@) ")) a>0
(82 +a/p) (s" + 1/p) = ¢ L{(t *w(t))™)(s), a=10

(V&) € ((smb /52t xw) ") ()o), a0,

where f*¥ means v-fold convolution of f. We have to evaluate the obtained con-
volutions. First for the function w given by (3.59) we need some properties of the
Mittag-Leffler function

Ba(z)= ZI‘(ak+1)

Namely, E,(z) is an entire functlon with the properties:
-1

Ba(s) = gy 3 + O™, lag(=2)| < (- /2, 2= oo,
2 k-l
EQe) = zl‘(ak+ 1)’
By [13, p. 36],
E{(:) = gy 75+ OUA1™), lang(-2)] < (1= 3a/a)m, 2= co.
Consequently,
w(t) 'I_T(ﬁ—jta_l F(l—)‘ta—l, t—-»O;
2

and
w(t) ~ O@t*"1), t—0;
w(t) ~ O(t*"1), t— oo.

Then, there exists a constant C; such that |w(t)] < C1t*~1, 0 < t < o0. Now, we
can estimate the terms in the series

o0
(3.60) $a(t) = Z(—c)"(\/p./a)”(sin Ve/prxw(r)™ (), 20,
v=1
in our three cases: ¢ > 0, a = 0, and a < 0. Let us start witha > 0. If v = 1,
a>0:
t

(s ol + o) 0] < G [ ro=har = G = Crpy, 2

0
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For any ve Nand t > 0,

|(sin va/pr*w(r)™ ()| < (1"( :1)) l’(t)
1 . tlatl)r-1
Serr S UG T)
Let us set F,(t) = (~¢)* (v/r/a)” (sin y/a/ut + w(r))™, v = 1,2,.... Then for

t>0,

SIROI< S (Ot gy < O BalClVifae) - 1),

Hence, the series (3 60) is absolute convergent for £ > 0 and $a(t) is bounded on
every compact set K C [0,00).
Now we have the following properties of F,,, v € N:

W) £E)) = (=0 (i) ()
@) ‘ofe"°‘|F,,(t)|dt\ICI"(\/,u/a)" gg(ém, v=12,...

o o0 o0
(3) The series Y, [ e *!F,(t)|dt < X (I—chz%/}—gl)y converges, if gt >
v=10 v=l
ldv/ECa.

By Theorem 2, in [19, Vol. 1, p. 305], £(¢a)(z) = a(s), & > 0, with $,(s) given
by (3.58).

In the other two cases the procedure is just the same. We have only to use the
following evaluations, for v € N and ¢ 2 0:

[+ lr) (8] < (o (Cur™ ) (0 = G5 (r+ T >) o
o+l w tlat+2)r—1
\Tevy) O=%pEra)y

gcyc?

and

v-1 :
[(sinh\/—a/p-r)w(t)l < ;‘(V) eV-a/ut ¢,
Now, the function f(s) in (3.56) is:

flo)= s,j(j)/"— R,

where $a(s) is given by (3.58). Consequently for ¢ > 0,

o) 10 =Ho = [ a0+ ((C a5ar) 40 0):

and
(3.62)

1000 = (€ tef@)0) = 2 [ ) O+ (67 mier) * 44) 0]
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where
$alt) = ;(—c)”((ﬁ t + v ) *e™).
Note that in all three case: a > 0, a = 0 and a < 0, we have f(0) = 0. Hence,
sf(s) = (LFD)(s). Also
1o )
AG) s°‘+1/ ————f(8) = L(w * f)(s), A( ) = L{w* fA)(s).
Now we can fix the form of the solution to (3.53), for t 2> 0,

T(t) = T3 pf(t) = TopfO () + 72 AT (to)po(t — to) £(t — to);
V) =T (1) + (5- - ) 1))
+Tom (f‘” )+ (7‘1: - %)(w * f(l))(t))
+ 72 AT (to) 1 6(t — to)( £(t—to) + (i - %) (W= f)(t— to))

where f(t) and f(!)(t) are given by (3.61) and (3.62). To analyze the character
of the solution (3.63) we will find the first and second derivatives of f. By (3.62)
FO(E), £ (t) and fO)(¢) belong to Cip,o0).

From the properties of the generalized Laplace transform it follows that (3.63)
is the unique solution in Ljoc([0, 00)) such that T and V are bounded in [0, €] for
€>0.

We state now the main results of this section:

(3.63)

Theorem 3.5. A solution to (3.53) is given by (3. 63) This solution is continuous
on [0,00). If A =0, then the solution belongs to’ C[O ) and i3 a classical one; it
can be obtained by the classical Laplace transform. In the general case the functions
T(t) and V(t) define regular distributions {T'(t)] and [V(t)] which are solutions to
(2?) and generalized solution to (3.53).

Remark. The continuity of T and V follows from the fact that f(0) =
Theorem 3.6. A family of solutions to (3.50) and (3.51) is
mi(€,8) = Mi()Ve(t), ur(,t) = Ur(§)Tic(t), k€N,

where M and Uy, are given by (3.52), k € N, and Vi, and Ti are given by (3.63)
when instead of © we take wk.
3.6. Localization of the solution. The mathematical model of lateral vibration
of a viscoelastic axially loaded rod (cf. Section 2, (2.3.12)) is

&m + )‘a'zu 8214

o

+u1ng—2€2—+me-5£-5=m+uD;’m, 0<t, 0<E<],

._0;

8%

(38)  3m
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with the boundary conditions:
(3.65) m(0,8)=0; m(1,8)=0; u(0,¢)=0, u(1,8)=0, t2>0.

We consider the vibrations of the rod when it is loaded by a compressive axial
force F such that the intensity X of the force F' is A = B+ A8{t —tp), to > 0, where
6 is Heaviside’s function and A, B are constants.

To stress possibilities of the Laplace transform of generalized functions (cf. Sec-
tion 1, Subsections 1.5 and 1.2) we consider more general system which can appear
as a model of an other situation, as well, namely:

Pm 0% O .
853 +Aa£2 -a—ta--g(t)smkﬂ'ﬁ, keN,
(3.66) .
-6-§7+M1 D?3€2 +paDf gg—m'ﬂlD?m

0 <t 0< ¢ <1, with the same boundary conditions (3.65), where g € ([0, 0))
and without any growth condition. In case g = 0 system (3.66) becomes (3.64).

Let us remark that in system (3.66) we have a coefficient which is a discontinuous
function with a discontinuity in ¢ = ¢3 > 0. Since the product of a discontinuous
function and a generalized function, e.g., of a distribution and a hyperfunction, is
not defined, we can not to expect such a generalized solution to (3.66). So we have
to localize the procedure of the construction of the solutions to (3.66). Therefore,
we construct a solution for the domain Dy = {(£,t); 0 < £ < 1, 0 < £ < &g} with
boundary conditions (3.65) and initial conditions in ¢ = 0 and then for the domain
Dy = {(&,t); 0 < £ <1, tg < t} using the Laplace transform presented in Section
1, Subsection 1.1.5. At the end we try to find a “global” solution to (3.66).

We start with the separation of variables.

Let us suppose that the solutions of the system (3.66), (3.65) have the from

m(§,t) = MEV(Z), v, t) = UET®).

It is easily seen that for M and U, which satisfy the boundary conditions from
(5.2), we have a family of solutions:

M) =Crsin kn§; Up(§) =Crsinkn§, keN.
In order to find the corresponding values T} and Vi we have to solve the system:
(3.67) TP () — Ak )T (8) — (k)2 Vi (£) = g(8);
Vi() + Vi) + (km) 2Tk (8) + gy (k)2 T + pa (k)2 TPV () =0, 0 < 2.

We start with the domain D;. Then we analyze system (3.67) in the interval
(0,£0) with initial condition in ¢ = 0 and with A = B. In this case to (3.67) it
corresponds in DL ([0,5)) (cf. 8.1 Section 1, Subsection 1.1.2):

(3.68)  D*[HoTy] — B(km)*[HoTw] — (km)2[HoVa) = [Hog] + Tkod® (t) 4 To(t),
[HoVi] + uD*[HoVi] + (km)?[HoTi) + oy (k) DA{HoTi] + pua(k)® DP[HoTi] =
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where Ty = Ti(0), Tl = T¢"(0). Applying the LT to (3.68) we get

(8% = BUow)*)Ta(s) - (bm)*T(s) = 5(s) + Thos + Tho +Fa(s);
(1 ps*)Tkle) + (b2 (1+ pas® + o) T(s) = Fa(o),

where r;, 3 € A. For simplicity we solve system (3.68) for k = 1. Let

s? — Br? —?
T2 (14 p1s® + pas®) (14 ps®)
— p.32+a+82 -|-7I'2(p.11l'2 —Bp)8a+7f4p28ﬂ +1|.2(1(2 _B)

(3.69)

Am(s) =

= ps**e 4 5% 4 ag® + bsP + d,
where a = #2(u7? — By), b= n*pg, d =x?(x? - B),
Tyos +Tho +3(s) +F1(s)  —n?
A — 410 10" 1
() 7(6) (1-+ ps%)
= p(s* +1/p)(Tro8 + T}y + 5(s) + F1(s)) + 7°Fa(s),
_ s2 — Brr? Tyos + Ty + 3(s) +Fi(s)
B12(0) = a1 4 g6 4 ppo?) fas

= 12 (Thopas™ P + Tropm8*T* + Tios + Tigpy 8* + Thopas® + Th)

= (1 + ps® + pas®)G(s) — W21 + p1s® + pasP)Fi(s) + (s* — Br?)fa(s).
If in Ao, Ajr and Ajg we_ replacg 7. with kw, then we have Ak, Ag; and Aps
respectively. The solutions T (s), Vi(s), k € N to system (3.69) are
Akl (8) . Akg(s)
Ago(s)’ Ako(s)
Suppose that Ago(s) # 0, Res > z0 > 0, k € N. Let us introduce the new variable
(r=38— .'):2 in Ak;(s)/Ako(s), i=1,2,

%k (s) = ﬁk (s) =

Ari(s)  Apille +19) o .
Ako(s) ~ Dio(Ce+29) — Qri(le), 1=1,2, keN.

Now the functions Qgi((x) are holomorphic on Ry + iR and belong to the space
H(R4). Hence, there exist gi; € S'(R4) such that

(gri(t), € %) = Qui(¢x), i=1,2, k€N,

or

—(s— Dyi(s)

.t’e (" Zg)t = —_—=,

(ot )= 5

Hence, a solution to the system (3.68) for a fixed k € N is:
TE(t) = e g0 (&) .1y

V2(t) = e*¥qa(t)| 0.

Res>z%,i=1,2. keN,




SOLVING LINEAR MATHEMATICAL MODELS IN MECHANICS 85

Note that 7¢ and V2 belong to D’([0,b)) for every b, 0 < b < oo (cf. Section 1,
Subsection 1.1.5).

By the similar method as we applied in [59] we can prove that 70 and V are
regular distributions defined by T}, and V}, which have the following properties for
keN:

(1) T € C((0,t0]) N CL([0,ta]), T € L([0, to]) N C((0,2]); TE2(t) is not
bounded in t =0, tlix& Ti(t) =Tko, k€ N.

(2) Vi € LY([0,20]) N C((0,t0])) and Vi(?) is not bounded at ¢t = 0, Vi(t) =
O(t~#~)), k € N but it satisfies Proposition 1.1 in Section 1.

If additionally T} (0) = 0, then T}, € C2([0, to]) and Vi € C([0, £g]), Vk(l) € LY([o,z])n
C((0,t0))-

Consequently, by our definition of the classical solution and generalized solution,
in D; we have a classical solution to (3.66). The functions T} and Vi, k € N, which
satisfy (3.67) in (0,20} are ’

Ti(t) = Tr(0)(pFasr (t) + F1(2))
(3.70) + T (0) (Falt) + Fo()) + ((1Fa + Fo) + 9)(t);
and - .
Vi(t) = = (o) {Th(0) 2 Fiys (8) + p1Frsa(t) + Fi(2)]
+ T (0) 1 Fa(t) + paFa (2) + Folt)]
(3.71) + (1 Fa+ p2Fp + Fo) + g)(£)}, 0<t<to,

where Fp(t) = £ (s?/ Aro(8))(t), 0 <t < o (cf. [62]).

With regard to domain Dy we have to find a solution to system (3.67) but in the
interval (¢, b) for any b > o, and A = B+A. We proceed in the following way: First
we have to localize the supposed solution to (3.67) on the interval (£o,b). Then we
suppose that there exists a solution Tk, Vi to (3.67) such that H,, Tk € C}([to,b)),
(H:, Ti)® € Li([to,b)); Vi € C((to, b)) N L ([to, ). _

By (1.1) and Proposition 1.1 in Section 1, to (3.67), on the interval [fo,d) it
corresponds in D/ ([to, b))

(3.72) D*[H,Ti] — (A + B)(kr)*[Heo T} — (km)*[Heo Vi)
= Ti(to) D 8(t ~ to) + TSV (ta)d(t — to) + [Heo gl

and
(Htolflg]-{‘[JDa[Hgo‘/k]+(ICW)Q[HtoTk]+#1(kﬂ)2Da[HgoTk]+#2(k7r)2Dﬁ [He T} = 0.
Let

Tk € 'S’ Ry + [to, b)) such that Til—cory = HeoTh,

Vi € e“'S' (R4 + [to,b)) such that Vi|(—copy = Hi Vi

geets (ﬁ-}- + [to,b)) such that -g_l(-—oo,b) = Hiyg.
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Applying to (3.72) the defined LT, we get
(s~ (A+B)(kn)*) Ti ()~ (k)T (s) = Tilto)se ™" + T (to)e~ 0" +3(s)+F1 (o)
(14 ps® V() + (k)2 (L + p15% + pasP)T(s) = Fa(s),

where ry and r, € A. By ’f‘k is dgpoted the LT of T.
When we solve this system in T, Vi and use the inverse LT, we get

(Heo T )(t) = Tie(£0)0(t — t0) (G asa [t — to) + C1(t — to))
+ TN (80)6(t — to) (G alt — to) + Golt — to))

(3.73) + (4G + Go) * Hyg)(t);

(HuVi)(t) |

= —(kr)? {Ti(t0)O(t — to) [kaG1r45(t — to) + p1Gas1 (t — to) + G1(t — to)]
(3.74) + T (£0)0(t — to)[11Galt — to) + paGalt —to) + Colt — to))

+[(11Ga + #2aGp + Go) * (Hig)I(1)}, to <t <b,

where Gp(t) = L71(sP[A}y), Dk equals Ago in which instead of B we have A+ B.
Therefore, we can use the properties of solution (3.70), (3.71) to system (3.67)
taking into account that we have A + B instead of B.

‘We have now a solution for the domain Dy, given by (3.70), (3.71) and a solution
for the domain Dj given by (3.73), (3.74). The properties of Hy, Tk and Hi, Vi in
t = to follow by the properties of Ty and V3 int =0,

Theorem 3.7. If in the system (3.66) with the boundary condition (3.65), A= B
and g € C([0,b)), for any b > 0, then we have the classical solutions in (0,1) x (0, b)
for every b > 0. These solutions are
(3.75) m(€,t) = Cr sinkwfVi(t), uk(€,t) =CrsinknéVi(t), ke N,
where Tk, Vi are of the form (3.70), (3.71) for 0<t<b. In case A = B+ A6(t—to),
0 < ty, A # 0, there exist the regular distributions Ri,Qx € D'((0,1) x (0,b))
defined by the functions ri(€,t) and gi(€,t) respectively, k € N, such that:
(1) 7 and gx belong to C*([0,1]) x L1({0,3]), 0 < to < b < oo.
(2) The restriction of ri(€,t) and qi(£,t) to Dy are mi(£,t) andur(é,t) given
by (3.75), where Vi, and T}, have been given by (3.70) and (3.71);
(3) The restriction of ri(£,t) and gi(£,t) to Dy are the same functions m;. and
ug given by (3.75) in which instead of T and Vi we have H;, T and Hy, Vi
given by (3.73), (3.74).

Proof. We have only to prove that two regular distributions defined on D, U D by
my(€,t) and ui(£,¢) for a fixed k € N can be extended to (0,1) x (0,b) for any b,
0 < tg < b < co. By the properties of Vi and T}, we cited it is easily seen that the
condition of Proposition 1.6 in Section 1 is satisfied. Consequently such extension
exists. O
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Introduction

The aim of this survey article is to explain basic ideas of generalized function
algebras (Part I), to illustrate the analysis of second order PDEs (Part II) and first
order hyperbolic systems (Part III) with singular coefficients and singular data.

Part I deals with the basic definitions of Colombeau type spaces and algebras,
while Parts II and III present main statements of our investigations on PDEs of
quoted types. Especially, complete proofs on solving elliptic linear equations with
singular coefficients and singular data are given.

Colombeau had constructed his well-known algebras by purely algebraic meth-
ods, {9, 10]. Since then, algebras of Colombeau generalized numbers and functions
became a very useful framework for linear problems with singularities and especially
for nonlinear problems. Here we refer to monographs (3, 11, 29, 31, 68, 72] for the
so-called Colombeau approach and for another approach, we refer to monographs
(87, 88].

Many linear and nonlinear problems with irregular data or irregular coefficients,
have been successfully analyzed by the mean of appropriate approximations through
nets of C* functions which fits into Colombeau algebra G of generalized functions.
We extend the references of this article in order to emphasize a part of large lit-
erature related to linear and nonlinear equations in the framework of generalized
function algebras. .

For the general theory of Colombeau type generalized functions, beside the
quoted monographs, we refer to [29, 30, 46, 48, 49, 50] for generalized functions
on manifolds, to [4, 5, 17, 18, 21, 62, 83, 98] for embeddings of different function
spaces and to [19, 24, 25, 63, 89, 90] for the topology in Colombeau generalized
function algebras and spaces.

Linear equations and pseudodiffierential operators were studied in {23, 34, 35,
52, 66, 82], while local and microlocal analysis within Colombeau type algebras
were studied in [37, 38, 55, 56, 76, 78, 91].

Concerning nonlinear equations, not mentioned in this paper, one can see also
(3, 15, 20, 27, 28, 36, 47, 64, 92].

We give in Part I a general concept of extending the theory of locally convex
spaces and algebras to the corresponding Colombeau type spaces and algebras.
Since we are mainly interested in equations, we give several constructions which
are related to Sobolev and Holder spaces of functions. Also, for the later use of
a class of stochastic equations, we recall the definition of a generalized stochastic
process. In the last subsection of Part II, we introduce generalized semigroups of
operators which will be used in the analysis of a semilinear heat equation with
singularities.

63
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We present in Part II, Subsection 1.1 our method of solving various classes of
second order elliptic linear differential equations with strong singularities in the
framework of generalized function algebras. We start with the Whitney type def-
initions of generalized functions on closed sets. Then, with all the details, we
construct and discuss corresponding boundary value problems in relation to the
classical results. The results of this subsection are not published before.

A quasilinear Dirichlet problem for uniformly elliptic equations whose coefficients
have the lack of regularity assumptions and with singular boundary conditions is
considered in Subsection 1.2 [84]. In our setting of a problem, we replace an equa-
tion div A(Du) = 0 with a net of equations with regular coefficients and a singular
boundary condition with an appropriate regularized net of boundary conditions.

In Subsection 2.1 is considered a semilinear wave equations [60] in space dimen-
sion n £ 9 with singular data and various types of nonlinearities. In general, a
nonlinear term is regularized with respect to a small parameter € such that it be-
comes globally Lipschitz for each £. A net of solutions to a net of Cauchy problems
obtained in this way determines a generalized solution. For certain growth condi-
tions on a nonlinear term the equation is uniquely solved without regularizations.
Note, in certain cases, a solution to the regularized equation is also a solution to
the non-regularized one. : )

Subsection 2.2 deals with some classes of wave equations with stochastic pertur-
bations as singularities. '

We study in Section 3 [67] a class of heat equations with singularities extending
the use of semigroups to some classes of PDE’s with singular coeflicients. The gen-
eral idea is simple and it lies in the core of a construction of generalized functions.
Regularized PDE, in fact a net of equations, is solved with an appropriate net of
semigroups. The solution obtained in this way will represent a generalized func-
tion. For this reason, we will use different variants of Colombeau-like generalized
function algebras. By the use of semigroups related to the Schrédinger operator
A —V we present the results concerning the semilinear heat equation with singular
Cauchy data.

Part III is devoted to solving a class of Riemann problems to one-dimensional
2% 2 conservation law systems which do not always admit a classical entropy solution
consisting of elementary waves. Two new solution types, delta and singular shock
waves, could appear in such a situation. We shall use two solutions concepts for
describing them.

~ Also, we shall briefly describe what might happen when such a wave interacts
with the wave of the same type or with some other elementary wave. .

We present in the Appendix a very general construction of generalized function
Colombeau type algebras through a purely topological description of such algebras.
We will show that such algebras fit very well in the general theory of the well known
sequence spaces forming appropriate algebras [17}.




PART |: BASIC DEFINITIONS

1. Different algebras and spaces of generalized functions

1.1. Extensions over locally convex spaces and algebras. This subsection con-
tains special constructions of Colombeau type algebras. One can find a more ab-
stract general approach in [17] as well as in the Appendix.

Let E be a vector space on C with an increasing sequence of seminorms p,,,
n € N. The space of moderate nets of £ar(E), respectively, of null nets of N'(E), is
constituted by nets R, € E(®! with the properties

(Vn € N)(Ja € R)(pn(Re) = O(%)),
respectively, (Vn € N)(Vb € R)(un(Re) = O(e?)).

(O is the Landau symbol.) The quotient space G(E) = Ep (F)/N(E) with elements
[Fel, [Gel, - - -, (equivalence classes are denoted by []) is called the Colombeau ex-
tension of E. Putting va(Re) = sup{a; pn(Rc) = O(e®)} and en((Re)e, (Se)e) =
exp (—vﬂ (Re—Sg)) ,n € N, we obtain that (e, ), is a sequence of ultra-pseudometrics
defining the ultra-metric topology (sharp topology) on G(E).

If E = C (or E = R) and the seminorms are equal to the absolute value,
then the corresponding spaces are &, Np; & is an algebra and Ap is an ideal
and, as a quotient, one obtains Colombeau algebra. of generalized complex numbers
C = &/ Nj (or R). These algebras are not fields as expected at the first sight, but
rings. If a set O is open in R™ and £ = C°°(0) is endowed with the usual sequence
of seminorms (this is Schwartz space £(0)),

pr.(@) = sup [, v € No,
. zeK, |alSy
where (K,), is an increasing sequence of compact sets that exhausts O, then the
above definition gives Colombeau simplified algebra G(O) = Ea(0)/N(O) [9], [72].
Its elements are called generalized functions and we keep this name for elements of
any spaces or algebras constructed as extensions of some functional space E.
Then the embedding of compactly supported Schwartz distributions (elements of
£'(0)) is made through the convolution with a net of mollifiers ¢, = e "¢(-/¢) con-
structed by a rapidly decreasing function ¢ € S(R™) with the properties [¢(t) dt =
1, [t™¢(t)dt = 0, m € N™. The embedding is given by f +— [f * ¢c|o]- By the
sheaf properties of D'(0) and G(0O), this embedding is extended to D'(0).
Besides a cited paper, one can also look in [9] for Colombeau’s original approach.
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1.2. Colombeau generalized functions with uniform bounds. In general, for an
open set O C R, denote by C;°(0) the algebra of smooth functions on O bounded
together with all their derivatives.

We shall briefly repeat some definitions of Colombeau algebra given in (77].
Denote R2 := R x (0,00), R2 := R x [0,00). Let C2°(R?) be a set of all functions

u € C® (R ) satisfying ule(o 1) € CP(Rx (0,T)) for every T > 0. Let us remark
that every element of C°(R%) has a smooth extension up to the line {t = 0}, i.e.,
CoR2) = C’°°(]R ). This is also true for C3°(R3).

We will give explicit definitions an one can easily make the description of these
spaces and algebras as in Subsection 1.1. Epg(R3) is the set of all maps G :
(0,1) x R2 - R, (g,z,t) — Ge(z,t), G, € C°°(R ) for every € € (0, 1) satisfying:
for every (a B) € N3 and T > 0, there exists N € N such that

sup  |828°G.(xz,t)| = O(e™"), ase — 0.
(z,t)eRX(0,T)

Ng(R?) is the set of all G, € Epr,o(R2) satisfying: for every (a, B) € N,aeR
and T>0
sup 10200 Ge(z,t)| = O(e%), as € — 0.
(z.t)ERx (0,T)

Clearly, Ng(R%) is an ideal of the multiplicative differential algebra Epr,q(R%).
Thus one defines the multiplicative differential algebra G4(R2) of generalized func-
tions by G4(R2) = Ear,o(R3)/N(R2). All operations in G, (R? ) are defined by the
corresponding ones in Ep,4(R3).

If one uses Cg°(O) instead of C$°(R?), for an open connected set O C R™, one
obtains £y g(O), Ny(O) and consequently, the space of generalized functions on a
real line, G,(O).

Additionally, if functions from Epr,¢(R) and NVg(R) are substituted with reals,
one obtains the ring 7,0 and it ideal Ay, respectively. Thus, the ring of generalized
real numbers is defined by R = Ex7,0/No.

In the sequel, G denotes an element (equivalence class) in G4(O) defined by
Ge €€ M,g (O)

Since C’°"(IR2 )=C (R ), a restriction of a generalized function to {t = 0} is
defined in the followmg way. For given G € G,(R?%), its restriction Gli=o € Gg(R) is
the’ ‘class determined by a function G, (z,0) € Em,o(R). In the same way as above,

{}(:c ct) € Gy(R) is defined by Ge(z — ct) € Em,4(R).
= I G € Gy and f is a smooth function polynomially bounded together with
all its derivatives, then one can easily show that the composition f(G), defined
by a representative f(Ge), G € G, makes sense. It means that f(G.) € Eu g if
Ge € Epmg, and f(Ge) — f(He) € Ny if Ge — He € N

The equality in the space of the generalized functions G, is not appropriate for
conservation laws as one can see in [72]. A generadized function G € G,(O) is said to
be associated with u € D'(0), G =~ v, if for somef(-"and hence every) representative
Ge of G, Ge = u in D/(0) as € — 0. Two generahzed functions G and H are said

‘f(. -
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to be associated, G = H, if G — H 0. One can easily verify that the assocxatlon
is linear and an equivalence relation.

A generalized function G € G4(O) is pointwiselly non-negative if for every z € O,
G(z) > 0, i.e., there exists Z, € Np such that G.(z) > Z., for € small enough.

A generalized function G € G,(0) is distributionally non-negative if for every
Y € C§°(0), [o Ge(z)¥(x) > 0, for & small enough.

Let u € Dy (R). Let Ag be the set of all functions ¢ € D(R) satisfying ¢(z) > 0,
z €R, [¢(z)dz =1 and supp ¢ C [-1,1). Let @.(z) = '¢(zx/c), € R. Then

tg s u > class of u * ¢,

defines a mapping of D} (R) into G4(R). It is clear that 14 commutes with the
derivation. Also, t4(8) is a class defined by a delta net 4.

1.3. Generalized function algebras over Holder spaces. Let O be a bounded
open set in R® and & € (—1,1). Recall [26, p. 94], a domain O and its boundary
are of class C¥*, for 0 € a < 1, if at each point =g € 80 there is a ball B = B,
and a bijection ¢ : B — D such that (BN O) C R}, ¥(BN30) C dRY, and
¥ € CH*(B), ¥~ € C**(D). A domain O has a boundary portion T € 80 of
class C* if at each point zo € T there is a ball B;, in which the above conditions
are satisfied and BN 30 C T.

We will consider the Colombeau extensions in cases E = C**(0), k € N and
E = C>(0). We will use the norms

k.0 = sup{}f®(z)}; |p| < k,z € O},
[fle,0,0 = |flk,0 + [flk,a,05 k € Ng,

where, for f € C*(0), k € Ny,

fO (=)~ FPW)
|z —yl*

The completion of C®°(0) with respect to the norm | - |xa,0 defines B =
C**(0), k € N. Recall, if k + @ < k' + ¢, then the embedding of C¥*(()
into C*@'(0) is a compact linear operator.

Note that the sequences of norms || - ||x,e; & € N and || - ||5, ¥ € N define the
same uniform structure on C*(0) as the usual one.

In case E = C*(0), we need one more construction. Let G, be a net in C%*(0)
such that

[f]k,a,o = sup {' ? (.'l,‘, y) € 0 z#y, ’p‘ k}

G. € C**(0), e€<ex, k€N,
where ¢, strictly decreases to zero.
Two such nets are in relation, G, ~ R, if
Ge = R., ¢ <e¢g, for some g € (0,1).

This is an equivalence relation and with the corresponding classes, elements in
C%*(0)/~, we define spaces Ey[E], N[E]. Then we define the corresponding
Colombeau type space G[E] = Ex[E]/N[E]. Note that there exists a canonical
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isomorphism of G[E] onto G(E) if E = C®(0). In case E = C%*(0), we have
G(E) = G[E]. |

1.4. Colombeau-Sabolev type spaces and algebras. Although we have intro-
duced two general concepts of constructions of generalized function algebras, still
the flexibility of Colombeau main idea enable us to construct some other types of
spaces and algebras useful in the analysis of problems with singularities.

Let O be an open, connected subset of R® with a smooth boundary. Let H"*(0)
be Sobolev space of functions in L?(0) with all distributional derivatives of order
la| < r belonging to L*(0), equipped with the usual norm. In case s = 2, we
simply write H™(O). One can find Colombeau type algebras Gr» 1« in [7] and [60].
We shall describe the special case of the last one, G2 12 space, denoted by Ga 2 in
the present paper.

£2,2([0, T) x R™) is the algebra of all G, € £([0,T) x R®) with the property that
for all T > 0 and o € N§ there exists N € N such that

16%Geli Lago.7yxmm) = O(€™Y).

We say that |0*G||L2 is moderate or that it has a moderate bound.
Ny ,2([0, T) x R™) is the algebra of all G € £([0,T) x R™) with the property that
forallT>0,a€Njanda€eR

190*Gell 3o, )y = O(€®).

We say that [[0°G.| 13 is negligible.
As above, we define

G2,2([0,T) x R™) = &25([0,T) x R™)/N,2([0,T) x R™).

One canp similarly define spaces £;2(R™), N2 2(R") and Gp 2(R™) but indepen-
dently of time variable ¢.

Let @ denote [0,T) x O or O. The proof that N, 2(Q) is an ideal of £2(Q) is
given in [7]. Sobolev embedding theorems give that £22(Q) C £,(Q) and N3 2(Q) C
NL(Q). Thus there exists a canonical mapping G2,2(Q) — G¢(Q). Also, this means
that in G2 2(Q) instead of L2-norm on the strip [0, T) x R™ one can use L*-norm
on [0,T) and L%-norm on R™ and vice versa.

1.5. Generalized stochastic processes. At the beginning we recall some basic
facts from classical stochastic analysis. Let (,%,u) be a probability space. A
weakly measurable mapping

X:Q -DRY

is called a generalized stochastic process on R¢.
For each fixed function ¢ € DP(R?), the mapping © — R defined by

w — (X(w), )

is a random variable.
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The space of generalized stochastic processes will be denoted by D4 (R?). The
characteristic functional of a process X is

Cx(p) = / X)) du(w), p'e DRY).

Take probability space to be the space of tempered distributions Q = S'(R%)
and ¥ to be the Borel o-algebra generated by the weak topology. Then there is a
unique probability measure p on (Q, L) such that

‘/B“X(w)"p)du(w) = e—%"‘t’"iz(‘d), g€ S(Rd)

It is a well known result following from the Bochner-Minlos theorem (see {39],
for example). White noise process W :  — 7’(R?) is the identity mapping

(W(w),9) = (w,9), ¢ € DR?).

It is a generalized Gaussian process with mean zero and variance

D(W(p)) = BW(9)?) = lelFamey
where E denotes expectation.

Definition 1. Gg-Colombeau random generalized function on a probability space
(2, X, i) is'a mapping U : Q — G,(Q) such that there exists a function U : (0,1) x
@ x Q@ — R with the following properties:

1) For fixed € € (0, 1), (z,w) — Ule, z,w) is jointly measurable in Q x 2.

2) e — Ul(g, -,w) belongs to £,(Q) almost surely in w € £, and it is a representative
of U(w).

By g?(Q) we denote the algebra of G,-Colombeau random generalized func-
tions on 2. A family of G,-Colombeau random generalized functions is called
Gy-Colombeau generalized stochastic process.

Definition 2. G o- Colombeau random generalized function on a probability space
(%, Z,p) is a mapping U : @ — Gy o(Q) such that there exists a function U :
(0,1) x @ x 2 — R with the following properties:

1) For fixed € € (0,1), (z,w) — Ul(e, z,w) is jointly measurable in Q x .

2) g — U{e, -,w) belongs to £3,2(Q) almost surely in w € §, and it is a representative
of U(w). .

By G£,(Q) we denote the algebra of G 3-Colombeau random generalized func-
tions on Q. A family of G;3-Colombeau random generalized functions is called
G2,2-Colombeau generalized stochastic process.

As usual, the variable € will be written as a subindex
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1.6. Vector valued Colombeau type spaces. We will make some necessary mod-
ifications to define and use generalized semigroups. The main difference comparing
with the previous section is that one does not need all derivatives of a representa-
tive. This will open new possibilities for applications, but also make a work with
them more complicated (spaces of such generalized functions are not algebras in
general).

Definition 3. £c1 g2 ([0, T) : R™) (respectively Ne1 g2 ([0, T) : R™)), T > 0, is the
vector space of nets G, of functions

G. € C°({0,T) : H*R™)) N C* ((0,T) : L*R™)), € € (0,1)
with the property: for every 71 € (0,T) there exists a € R, (respectively, for every
a € R) such that .
1) ma.x{ sup [|Ge(®)|lg2, sup HatG’E(t)"Lz} = O0(e®), ase — 0.
tefo,T) telTh,T)

Eor g2 ([0,T) : R™)

is a Colombeau
Ner g ([0,T) : Rm)

The quotient space Ger g2 ([0,T) : R?) =

type vector space.
Dropping the conditions on 8;G. in (1) we obtain spaces £go g2 ([0, T) : R?),
Nco’Hn ([0, T) : R") and gc-o'Hz ([0, T) H R").

By Sobolev lemma we have

Lemma 4. Ifn < 3, then £ g2 ([0,T) : R™) is an algebra with the multiplication

and Nea g2 ([0, T) : R™) is an ideal of Eca g2 ([0, T) : R™). Therefore, Ger g2 ([0,T) :

is an algebra with the multiplication. The same holds for
gcosz ([O,T) :Rn), Nco,Hz ([O,T) : R"’) and gco,Hz ([O,T) . Rn)

Substituting H2-norm with L?-norm in (1) we obtain vector spaces
gcl,Lz ([0, T) . Rn), Ncl,Lz ([0, T) : Rn) and gcl,La ([O,T) : Rn) .

Canonical mapping tz2 : Gor g2 ([0,T) : R*) — G 12 ([0, T) : R?) is defined by
t12(G) = H, where H = [G.] and G, is a representative of G.

Space Gy2(R™) is defined in a similar way as Ge1 g2(R™), but with representa-
tives independent, of time variable . This space is also an algebra in case n < 3.
Let us give more details for space Gp2. ([0,T) : R™).

Epa (R™), (respectively, N2, (R?)) is the space of nets G, of functions G, €
H?%* (R"), ¢ € (0,1), with the property: there exists a € R (respectively, for every
a € R) such that

NGell .o mny = O(e?), ase — 0.

Both spaces are algebras with the usual multiplication and Ayz.. (R") is an
ideal. Colombeau type algebra is defined by

Egzen (R?)

)

R™)
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2. Generalized semigroups

The definitions and assertions are from [67].
Let (E,]-|) be a Banach space and let L{E) be the space of all linear continuous
mappings F — E.

Definition 5. SEx([0,00) : L(E)) is the space of nets S, of continuous mappings
Se 1 [0,00) — L(E), € € (0,1), with the properties S,(0) = I, € € (0,1), and that
for every T > 0 there exists a € R such that

(2 sup "SE(t)" =0(e%), ase— 0.
telo.T
SN([0,00) : L(E)) is the space of nets N, of continuous mappings N, : [0,00) —

L(E), € € (0,1), with the properties:
(a) For every b€ R and T > 0, sup "N Ol = O(e”), as€— 0.
te(0,T’

{(b) There exists a net H, in £(E) such that lim;_o Ne(®)
z € E and ¢ small enough, and for every b > 0, [|H,|| = O(e%), as € — 0.

z = H.z, for every

Proposition 6. SE([0,c0) : L(E)) is an algebra with respect to composition and
SN ([0,00) : L(E)) is an ideal of SE([0,00) : L(E)).
Now we define Colombeau type algebra as the factor algebra
SEp ([0,00) : L(E))
SN ([0,00) : L(E))
Elements of SG([0,00) : L(E)) will be denoted by S = [S.], where S; is a repre-
sentative of the above class.

Definition 7. S € SG([0,00) : L(E)) is called a Colombeau Cy-semigroup if it
has a representative S, such that, for some g¢ > 0, S is a Cy-semigroup, for every
£ < &g.

SG ([0,00) : L(E)) =

In the sequel we will use only representatives S, of a Colombeau Cp-semigroup
S which are Cy-semigroups, for £ small enough.

Proposition 8. Let Se and §; be representatives of a Colombeau Co-semigroup S,
with the infinitesimal generators A,, € < &9, and A, € < £o, respectively, where &o
and £y correspond (in the sense of Definition 7) to S. and S., respectively. Then
D(A,) = D(fie), for every € < & = min {eo,&p} and A, — A, can be eztended to
be an element of L(E), denoted again by A, — A;. Moreover, for every a € R,
[|Ae = Ae]| = O(e?), as e — 0.

Now we define the infinitesimal generator of a Colombeau Cy-semigroup S. De-
note by A the set of pairs (A., D(A,)) where A, is a closed linear operator on E
with dense domain D(A4,) C E, for every € € (0,1). We introduce an equivalence
relation in A by: (Ae, D(4e)) ~ (Ae, D(A:)) if there exists €0 € (0,1) such that
D(A:) = D(A.), for every € < €0, and for every a € R there exists C > 0 such
that, for z € D(A.), [|(Ae — Ae)z|| < Cedjjz||, as € — 0.
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Since A, has a dense domain in E, A - Ae can be extended to be an operator
in L(E) satisfying |4, — A]| = O(e®), € = 0, for every a € R.

We denote by A the corresponding element of the quotient space A/~. Due to
Proposition 8, the following definition makes sense.

Definition 9. A € A/~ is the infinitesimal generator of a Colombeau Cy-semigroup
S if there exists a representative A, of A such that A, is the infinitesimal generator
of S, for € small enough.

We collect some obvious properties in the following proposition (cf. [79]).

Proposition 10. Let S be a Colombeau Cy-semigroup with the infinitesimal gen-
erator A. Then there exists €9 € (0,1) such that:
(a) Mapping t — S.(t)z : [0,00) — E is continuous for every x € E and € < &,.

t+h
() Jlim -’];- / Su(s)z ds = S.(&)z, € < €0, z € E.
- t

t
(©) / Se(s)zds € D(A.), e < g0, z € E.
0
(d) For every x € D(A.) and t 2 0, S,(t)z € D(A,) and
2 5.(t)e = AcSi(t)r = Selt) ez € < o

() Let S, and S, be representatives of Colombeau Cy-semigroup S, with infini-
tesimal generators A, and A,, € < €g, respectively. Then, for every a € R and
t20
d -
“EES,(t) - AESE(t)” = O(e°), ase— 0.

(f) For every z € D(A,) and everyt,s > 0,
¢ ¢
Se(t)z — Se(s)z = / Se(r)Aczdr = / A Se(T)zdT, € < 6.
s 8

Theorem 11. Let S and S be two Colombeau Co-semigroups with infinitesimal
generators A and B, respectively. If A= B, then S = S.

Example 12. Semigroups of Schrédinger-type operators. Let V € Gyra.e0 (R™) be
of logarithmic type. Then differential operators A.u = (A~ V,)u, u € W(R™), ¢ <
1, are infinitesimal generators of Cg-semigroups S,, € < 1, and S, is a representative
of a generalized Co-semigroup S € SG ([0, 00) : L(L*(R™))).

Let ¢ < 1. Operator A, is the infinitesimal generator of the corresponding
Cy-semigroup S, : [0,00) — L(L2(R")) defined by the Feynman-Kac formula:

@) = [ ow(- | Valw(e) i) ((t) ), 30, 2 € R,

for ¢ € L*(R*), where O = [];c(0,00) R7 and gz, is the Wiener measure concentrated
at = € R” (cf. [86] or [95]).
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The assumption on V' impli%'that there exists C > 0 such that
IS:(e10(2)] < exp(t sup Vi) | Ww(Eldiae)
seRn o

—al2
=eoxamy = [ exp(~EZ i
for every t > 0, z € R™ and € < 1. Recall that the heat kernel is given by
E.(t,z)= —I——exp(-—f) t>0,zeR"
’ (4nt)n/2 4/’ ! !

and its L'(R™)-norm equals 1 for every ¢t > 0. By the Young inequality,
1S.(t)¥] < e~Ct||Ealt, Mer@myllrz@n), 1> 0, e < 1.

Therefore, there exists Co > 0 such that sup,go 1y |Se(£)¥llzs < Coe~ Ty 2,
g <1, forevery T, ie., Sc(t), t € [0, T), satisfies relation (2) and

S =[S € SG ([0,00) : L(LA(R™))).

Remark 13. We refer to [70] for an approach to generalized semigroup theory
based on uniformly continuous classical semigroups.



PART 1I: SECOND ORDER EQUATIONS

3. Elliptic PDEs

3.1. Linear elliptic PDE. We will consider elliptic boundary value problems with
very singular boundary data and coefficients. Because of that the solutions are
considered in a large space of generalized functions and moreover, the concept of
being a solution is adequately extended.

3.1.1. Introduction. The restriction of a generalized function on A C Q is
defined by the restriction of a representative. Recall, the support of G € G(Q) is
the complement of the largest open subset of {} where G is the zero generalized
function. The space of all compactly supported generalized functions is denoted by
2(9).

In the sequel we use the notation (A)_, = {z € A : dist(z,84) > v} and
by = 7"6(-/7), ¥ > 0, Where ¢ = ¢1(z1) - $n(zn) € CR(R™), [ $i(z)dz = 1,
i =1,...,n. Note that ¢, v > 0 is a'delta net. For the sake of simplicity, let us
assume that ¢ is a radially symmetric, positive function in the open unit ball and
that ¢ is supported by the closed unit ball in R". Let ¥, = 1(q),, * .. We define
an inclusion ¢ of D/(€)) into G(Q2) in the following way. If g € D(QQ), then 1(g) = G
is represented by G, = (g - ¥c) * ¢e.

Let D be some space of test functions. We say that Gy,G2 € G(?) are equal
in D-sense, G, L Gy, if (G1,¢) = (G3,¢) in C for every ¢ € D. Similarly, a
generalized function G; and g € IV equals in D-sense, Gy 2 g, if {(G1,¥) = {(g,¢)
for every ¢ € . Usually, ID denotes Sobolev space H™ or HF*.

The s-association (~%,), 8 2> 0 of generalized complex numbers is defined as
follows. For G € C, G =~ 0 means that G has a representative G, such that
Ge = oe?) as € — 0. If Gy, Gy are in G(Q), then Gy N, Gy if (C1 ~ Ga, ) ~4 0
for every ¢ € . If s = 0, then the notation . .. -association is often used instead
of ...-O-association. As in the previous case one can define association between a
generalized function in G and a generalized function in IV,

‘We will recall the definition of the space of generalized functions on a closed set
(cf. [5]) in order to give a meaning to the Dirichlet problem in £, and thus in G.

Let X be a non-void subset of R* and {GZ, o € N} be a family of mappings
@2 :(0,1)x X — C. Denote by Ew,um(X) the vector space of families {GZ, a € N3}
which satisfy the following conditions:
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(a) {G2, a € N}} has a locally moderate growth when € — 0. This means that for
every o € N and zg € X there exist a neighborhood V of o, N € R, C > 0 and
7> 0 such that |G¢(z)| < Ce™ N,z eV X, ee(0,7).

(b) There exists 7 > 0 such that the family {X 3 z — GZ(z), € < 9, o € N}
satisfies requirements defining Whitney’s C°°-function on X, that is for every m €
N, a € N3, |o] < m and zg € X there exist a neighborhood V of zp and ¢, > 0
such that

3

HOEEDY (z—o )"B?‘:*ﬂ €2)

< Cgl.’t _ m/lm—[a[-l,

jBlsm—|aj

for every z,2' € V, £ € (0,n).

(c) Constants ¢, are locally bounded above by ce™V as & — 0. More precisely, for
every m € N, o € N3, |¢] € m and z¢ € X there exist a neighborhood V of zq,
N €R, C> 0 and 7> 0 such that (3) holds with ¢, = Ce~V.

The ideal Nw (X) of Ew,m(X) is the set of those {G%, o € N§} which satisty:
for every o € N§, and zg € X there exists a neighborhood V of zq such that for
every ¢ > O there exist C > 0 and n > 0 such that |G%(2)] < Ce%, z € VN X,
g€ (0,n).

Put Gw (X) = Ewm(X)/Nw(X). Clearly, if G € G({2), where () is an open set
containing X, then {D*G,|x, a € N}} € Ew.ar defines the restriction Gly € Gw.
Theorem 14. {5] Let X be a closed subset of R®. Then the restriction map
G(R™) — Gw(X) is surjective. In particular, for given {G¢, a € N§} € Ew m(X)
there exists F, € Eq(R™) such that {D*F,|x — G%, o€ N§} € Nw(X).

3.1.2. Generalized Dirichlet problem. A differential operator of the form
P(z,D) = ¥ |01¢m 2a(z) D, Where ao € G(R"), is called a generalized differential
operator. A representative of P(z, D) is given by Pe(z, D) = 3_41¢m Ga,e(z) D%,
where oo € E{R”, is a representative of a,, Jof < m. Note that if b, . is another
representative of a,, of < m, then
Y 60e(2)D%Ge— Y bae(z) DG, € N(R?), G, € Ep(R™).
lajgm jal<m

Let O be a bounded open set in R*, H € G(R™) and let F' € Gw (d0) be defined

by a family {FZ, o € N§}. Consider the following boundary value problem
Dy (O

@) PeD)G " H, 0, Cloo=F DFO)=H™0)nH0)).

Theorem 14 implies that there exists ¥ € G(R") such that Flso = F. Let
V = P{z, D)F and U be a solution to the problem

Dz (0) .
Pz, D)U "= H-VinO, Ulsgo =0.

Then G = U + F is a solution to (4).

So, in the sequel we shall consider the following problem

DM (O
(%) P(z,0)¢ "=” Hin 0, Glso =0,
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in terms of representatives,

timy [ (P.(z, D)Gu(a) - Hele))¥la)do = 0, ¥ € DP(0)

{D*G,|s0, & € N3} € Nw (80).
Theorem 15. With the assumptions given above, for every s 2> 0 there exists a
solution G € G(R™) to (5) in D (O)-s-associated sense.
Proof. Let P}(z,D) = 3 4/ ¢mGae(z)D* be the adjoint operator to Pe(z, D).
Since 84, € Ep(R™), there exist Ny > 0and C; > 0 such that

B, = max {|Vig,e(2)], |da,e(z)], z €0, Jof < m} < C’ls

- for € small enough, say £ < ;.

Let £ € (0,7;) be given. Let II, be a cube {z : |z;| < b, i = 1,...,n}, which
contains 0. Put N, = B, be 9/2, where q will be determined later, and divide II,
by hyperplanes

z;=bk[N,, i=1,...,n, k=0,%1,..., (N, — 1), N, € N,

into (2N,)" cubes IL;,, j = 1,...,(2N,)". These cubes can be renumerated such
thatII;, j = 1,..., Je cover O and denote Oy = ONII .. Then J, = O(e~"a+M))
ase — 0. -

Denote by X, the center of Il and Ag j = Ga,(Xj,¢). For € small enough,
let {1;} be a partition of the unity defined in the following way.

1/’~j,¢
Ej;l ¢j,e
Note that ¥, = 1 on K. C O;. and mes(supp ¥, \ Kj.) < Coe?, where Cy
does not depend on j and d to be chosen later. Moreover,

1z.‘i,€ = 10_1,¢ * g, 1/’_7',: = ji=1,..., JE_.

- b
|a|<m,I;'SJ. I e e e ©s) = 2N,

Since H, € E_JM(]R"), there exist N3 > 0 and Cy > 0 such that
, NHebjell Lo 0y S |Hell Lo m) < Coee™, j=1,...,J,

for € small enough. Denote H; , := H,9; ..

Let G; . € Em(R™) be a solution to 4

'Pjﬁ(D)éj:E = Z Aa‘,j,zDaéj,e = Hj,a‘) i< Je
lal<m

which exists by Theorem 1 in [82], where P;,(D) is the adjoint operator for
P} e(D) = Elajgm Awie D% Put Gje(z) = Gje(2);,6(2)&c (=), where

Kje = 1(}?‘,,_‘)_._“/2 * ¢£¢/21 £ = 1(0)_3‘4/‘ * ¢54/4a J< Je.
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Let Kje ={z € Oj : Gje(z) =Gje(2)}, 5 =1,...,Jc. Obviously,

sup mes(Oj . \ K; ) =O0(c"Y) as e — 0.

J<Je
By inspecting the proof of Theorem 1 in [82] one can see that there exist Co, M > 0
and Ny > 0, which depend only on H and e, such that

sup 1Gs.e @) € Cog~M~To,

PATS

for € small enough. _
One can easily see that supp(G;.) Nsupp(G,.) =9, i # j and G;. € Em(O).
Let G, = Y_7%, Gj ¢ and let  be an arbitrary function in D*(0) = H™(0)n
H7~1(0). Then

Je
/O ¥(2)Pu(z, D);G,-'s(x) - /O (@) Ho(z)dz = I + I,

where
Je Je
I = Pz, D)S Gja(z) - P;o(D)C;(z) dz,
) /owx) (= ),;1 () /mej; (D)Gjelz) dz
Je
I = /O ¢(m);P,-,E(D)G,-,E(x)- /O V() Ho(z) dz.
By using He = 7%, He, a0d P;o(D)Gje = Hje, 5 < Je, and passing to the

adjoint operators, we have

Uzi =

Js ~
;::1 /O Fe(D)Y(2)(Gjelz) ~ Gj,e(z))dzl

Je
<y /O P2 (DYb()] - G ()] 11 = 5. e(2)Ec(2)| o

g=1
Je

<30 T faaelime) [ I 1G5 @) = ryl@lec(e)l
3=1jal<m o

Using Cauchy-Schwartz inequality and bounds for aq, |a] < m it follows

_ Je B 1/2
1l < Cre™™ [$llumeoy Y ( /O |Gje(@)?11 ~ ﬁj.e(Z)fe(x)lzdx)
ie .

=1

Je
< e M llamo)1Giell ooy D (mes(Oje \ Kij )2
-~

— O(Edlz—ﬁl—ﬁo—M—n(q+ﬁ1))’ £ — 0‘
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This implies that |I] = 0 as € — 0ifd > 2(N1 + No+ M +n(g+ Np)). Thus, the
first constant d is now determined. Further on,

|1] <

Je
> [, #E P DIG1u(2) = Pue(DIG s

+Z

/ V(&) (Pe(z, D)Ge(2) — Pyl D)Giselo)) d
Oj,e~Kj.e

s

i (@) (P (z, D)y(z) — Py (D)o(z)) da‘l

Je
+2

LGP Divla) - Fie(D)bia) dxl
Oj,e~Kj,e

i=1
Je

< [ 165@ T foae@) ~ Angl-1D°(a)]
j=17 Kise |e]<m

+ X demw [ (6 Naaelin D) do
e~ fie

lojgm  I<Je

<t 3 [ (Gl IDw(a)l s

lal<m

1/2
+ Je Z "aaz“z,oo(O) SUP (/o,‘\xj. |Ga‘,e(1‘)|2) DYl 20y

la|<m
< N GellL2 (o) l¥l o)
+Je Z lGa.ell L°°(O) suP [l o) “Ga,s"Lw(U) (mes(Oj,e \ K, E))lﬂ

asm

< €9)|Gjell Lo 7y (8 (O)) V29| 1m0
+ Ced PRl g0y S laaell o) 592 ICsell i@y

lajg<m

< O(Eq—M—No) +0(€d/2—n(q+N1) Nl——M—No)’ e— 0.

This implies that |I| —» 0 as e — 0if d > 2(n(q + M)+ Ny + M + Np) and
g > M + No. More precisely, |I;| and |I5] are DiJ*-s-associated with zero if one
chooses ¢ > M + Ny + s, and then d > 2(n(q+N1) +MN +M+No) + s. This
proves the theorem. (W

Remark 16. Denote by Df»%*(O) the space of nets with elements ¥, € C™%(0)N
H1(0), € € (0,1) such that D%l oo 5y = Oe™), € = 0, || < m. Then
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[Lellzmoy € D (mes(ONY? DT |l oo ) = Oe™), € = 0.

lelgm
fg>M+Ny+s+tandd> 2(n(q+N1)+N1 +M+No+t)+s, then
[(Pe(z, D)G,, ¥} — (H,, ¥.)| = ofe®), ase — 0, ¥, € DB"”(O),
i.e., for every s > 0 there exists a solution to

[at (o)
P(:!:, D)G g H,m O, Glao = 0.

This result will be used in the following two theorems. The assumption ¥, €
HTY(0) is crucial in the construction of the solution. This will restrict applica-
tions of the above theorem to strictly elliptic problem of order greater than two.

3.1.3. Applications. Let

n n
(6) L= ay(z)DiD; + Y _ bi(z)Di +c(2)
i,j=1 i=1
be a differential operator with real coefficients such that
(7 aij, bi,c€ C1(Q), ¢ <0, aij=dj;, i,j=1,...,n.
Assume that
(8 1 is bounded and 90 is of C™ class.

Remark 17. For a method used in this and the following section, the regularization
of coefficients of a differential operator and a function h is needed. Since C°(11) is
not dense in C%{Q) = C%4(QN), & € (0,1), (cf. [97, Remark 2 in 4.5.1]) we suppose
that the coefficients and k are in C*(Q).

Assume that there exist A > 0 and A > 0 such that
n
(9) NEP <Y ayl2)ed; <AlEP z €9, £eR™
ig=1
By Theorem 6.14 and (6.42) in [26], we have
If h € C%(£1), there exists a unique solution g € C**(f1)

10
(10) to Dirichlet problem Lg=h in 2, g = 0 on 80 and

(11) lgllcra < Clibllcs @y, - for some C > 0.

Let A € C*(Q), h = 0 outside of O and H, = h % de (¢ is a radially symmetric
function in CP(R™) [é(z)dxr = 1, ¢, = € ¢(— - /e).) Consider the Dirichlet
problems

(12) Lg=hin(, glaa =0,

(13) LZ,=H,inQ, Z|on =0, for fixed £ € (0,1),
HYQ)AH}Q

(14) e TR g q, Gleg =0
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The last equation means that
(15) 2}_13(1) /(LG’E — H.ypdz =0, for every ¥ € H2(0) N H3(0), Glaa € Nw (89),

in terms of representatives. Let g, Z; and G, be solutions to (12), (13) and (15),
respectively, where solutions ¢ and Z, exist by (10} and G, is the solution given in
Theorem 15.

Theorem 18. Let L and ) satisfy assumptions given above. Moreover, assume
that L has coefficients which are smooth on Q. The generalized solution G to (14)
constructed in Theorem 15 is C*(Q1) N H}()-associated, & > 0, with the classical
solution g to (12).

Proof. By [97], Theorem 1 in 4.5.2, C&(f1) = [C°(Q),C*@)]s. ([-,-]s denotes an
interpolation space.) This implies [97, (7) in 4.5.2],

(16) I flca < IIfII;ffg)llfllgx(ﬁ,, fect@).
and in the special case,

ih— Hs"cﬁ(ﬁ) < ffr- Hellé?féi) e - Htugl(ﬁ) —0,e—0,

where h and H, are the functions from (12) and (15) respectively.
The above inequality, boundedness of §1 and (11) imply {|g — Ze{| g1 (@) — 0, as
€ — 0 and

/ (9(2) — Ze(€))8(z) dz — 0, as € — 0, 8 € CX@) N HL(Q).
We have to prove that
/(Gs(z) ~ Z(x))0(z)dz — 0, ase — 0.
2

The boundary value problem L*4 = @ in £, ¥|an = 0 has a solution in C%%({1) N
H}(). This follows from (10) since the adjoint operator L* satisfies the assump-
tions given in this paragraph. We have

/ Ce(2)8(z) do = / Ce(2)L*¥(z) dz = f LC(z)(z) dz,
Q Q Q

/ Zo()0(x) dz = / Zo(@)L*¥(z) dz, ¥ € C¥4(T) N HA(Q).
Q Q
By Theorem 15
/ (Cu(z) ~ Zu(z))0(z) dz = / (LG(x) ~ Ho(®))$(z) dz — O, as & — 0.
4] Q
This proves the theorem. O

__ We continue to consider L of the form (6) which satisfies (7), (8) and (9). Let
Q) satisfies the cone property {97, Definition in 4.2.3] in addition. Let

L= Z @ij,e(z)D: D + Zb;,g(z)D,- +c.(z)
i=1

i,5=1
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be regularized operator for L, where (1aai;) * de(z) = aije(z), (Labi) * de(z) =
bie(z), (Lac) * @e(z) = celz), = € R, ¢e(z) = ¢(—7). Clearly, ce(y) < 0, y € Q.
Since aij — aij, bie — b; and ¢ — cin Co(ﬁ) and Cl(ﬁ) as € — 0, one gets
convergence in C%(12), too.

Multiplying a;; in (9) by 1q, then multiplying all the members of (9) by ¢ (y—z)
and by integrating over R™, we obtain

NeP [ 6:u-2)dy < 3 asulaleits < AP [ oety—2)dy < A,

i,j=1

where y € Q, £ € R™, £ < &9. By using radial symmetry and non-negativity of the
function ¢ and the cone property of €2,

|ew-2a> [ elv-2)ay>D>0,
[¢} | Y

where I'; ; is a cone with the vertex at zero and height h, and y € 2 + Tz C Q.
The constant D does not depend on £ and we have

n
DNEP < ) aije(2)ets S AP, 2 €9, € €R™ e < e

HLi=1

Theorem 19. Let L satisfy given assumptions.” Then the generalized solution G
to
. HXMNHL(Q
16T R g inQ, Glon =0,
constructed in Theorem 15, is C%(Q) N H}(N)-associated to the classical solution
g € H»%(Q) to (12).

Proof. Let 6 € C*(X1) N H3(?) be given. Then (10) and (11) applied to L. imply
that for every € € (0,1) the solution ¥, to Li¥, = 8 in Q, ¥,|sq = 0 belongs to
C>%(Q) N H}(N2) and

|6(z) — 6(y)l

DA%, (z sc(su 8(z)| + su 3
sup |D"¥(x)| zegl (@) P TR—g

18<2,z€0Q z,yeQ

where C > 0 depends only on A, A and the diameter of the set 2. By the remaik
after Theorem 15 we have that for every s > 0 there exists G, such that

(EsGea‘I’e) - (Hu ‘I'e) = o(ea), €—=0.

Denote by Z, a smooth solution to L. Z, = H, in Q, Zlon =0, € € (0,1) is fixed.
Then’ . : . g

1) [ (6ulo) = Ze(a)o(e)do = [ (Gulo) - Zia) L2V} o

o= / (ZeGe(a:) - Esz,(z)) U (z)dz = (LeGe ~ H,, T.) = o(e®), € — 0.
Q

) = WBllca € € ©,1),
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Let H, = L.g, where g € Cz’&(ﬁ) is the solution to (12). Inequality (11) and (16)
imply

n n
l(Ze = Dgllcag < Y D Nasje — asjll ga ey 1 DiDigllL=(a)

i=1 j=1

n
+ 3 lbie — billgs @y 1 DigllLea) + llce — cllag lgllze@ — 0,
t=1
c e o ci(@) X 3 (@ .
as € — 0. This implies that H. —h "~— " 0ase — 0, ie, H,— H, — " 0 (since
h € C'(S). Finally, (10) implies [|Z, — gll¢cs.amy < ClHe ~ Hellcagy — 0- This
and (17) prove the theorem. O

C

3.1.4. A class of generalized elliptic differential operators of order 2m.
Consider a family of equations :

Pz, D)Ge= Y 0ae(z)D*Ge(z) = He(c), s €,
(18) lajg2m

{D*Geloq, a € Ng} € Nw(89),
where:
1. Q is an open bounded set with a smooth boundary 9f1.
2. 8a,e € Ep(R™) is complex valued, |a| < 2m, H, € Ex(R™).
3. For every ¢ € (0,&9), P:(z, D) is uniformly and strongly elliptic (cf. [96, Ch. 36,
(36.3)]) and moreover, there exist Cg > 0 and pg > 0 such that

CQEPO ﬂu"%{m(m S Re(Pe(x, D)’U., U)Lz(g), NS Cgo’ £ < gg.

Then, for every fixed € < gy,
P.(z, D) : HF*(Q) — H~™(1) is a surjective isomorphism
and the solution to (18) satisfies [[Ge|la= < Cgle P | H, || sr-m ().

(cf. [96, Theorem 36.2, Lemma 23.1})
The second assumption means that there exist v1,v2 > 0 such that

(20) sup [laa,ell poogmy = O(6™),
<m

al<

(19)

(21) lHell poormy = O(6™*2), as e — 0.
Note that (21) implies || H.||g-m(q) = O(e™*?), as € = 0.
Theorem 20. Let P.(z,D), H, and Q satisfy the conditions given above. Then:

(a) For every s > 0 there exists a solution G, . € Ep(R™) to (18) in the H3™(Q)-
s-associated sense, i.e.,

(Pe(z, D)Gs,e — He,¥) = 0(€®), € = 0, ¥ € HI™()

and {D%G;Jag = 0, a € N3} € Nw(0). The solution constructed in the proof
will be called s-solution.
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(b) Let Ts ¢ be an s-solution toP,(z, D)Ts . = R, where R, satisfies (21). More-
over, assume that

E—(po+som) ”RE - H;"H—m(g) —+0ase— O,

where s > vi+ve+po+s. Then T and G, are H™™(2)-0-associated. Specially,
if Re and H, are in the same class of G(QU), then the appropriate solutions are
H~™(Q)-3-associated for arbitrary 3 > 0. This is a kind of the uniqueness of
solution to (18).

(c) Let P(z,D) have C*®(R™) coefficients which satisfy condition 3 with py =0
and let Cy do not depend on €. Assume that H € H™™(Q) is of the form H =
Ylalgm D% fa, where fo € L3(R), fo(z) =0 forz ¢ Q, || <m. Let
(i) U € HF*(Q) be the solution to P(z,D)U = H, Ulsq = 0 (which ezists by the
Laz-Milgram Lemma) and
(ii) Gs,e be the s-solution to
(22) P(za D)Gs,e =H, inQ, Gelaﬂ =0,
in HZ™-s-associated sense, where He = H * ¢a for an appropriate d = d(s) > 0.
Then U =7 Go.

(d) Denote by G, the solution in DF*(Q)-0-associated sense to (22) constructed in

the proof of Theorem 15 and by Gy the solution to (22) in HZ™(Q)-0-associated
Dp(Q
sense. Then G. ':~£' ) Go,e, where Dp(Q) is the set of all nets ¥, in HY(Q) such

that there exist a function ¢ € HZ™(QY) and 17 > 0 such that ¥, = Py, for every
<.
Proof. (a) Recall, (19) implies that for every fixed € < €y there exists a solution
ge € HF*(Q) to equation P.(z,D)g. = He, in Q, that is
(23) (Pe(z, D)ge, ¥) = (He, %), ¥ € Hy' ().
By ellipticity of P.(z, D) for every fixed €, the solution g, to (23) is in C*®(Q). Let
us prove that g. € Ey(). Let D; be an arbitrary derivative of the first order.
Then

Di(Pe(z: D)QE(*'B)) = Pe(x, D)Dige(z) + Pg(l‘, D)ge(z)ﬁ
where P.(z,D) = 2 laj<am Diba,e(z)D*ge(z). Integration by parts implies

126, Dhacln-ny = w0 | [ 2o Dhautalotras
gl zzmmy<11/Q
< sup / Z ba,e(z)D%ge(z)] - Z cp,«DPp(z)| dz,
ol gymay<1 JQ Jal<m 18l<m

where ba,e, cp,e € Em(R™), lo] < m, || < m. Since (19) and (23) imply
|gellzrm () = O~ ®0+2)), ¢ — 0,

then 3
”PE('1D)g€”H-'"(Q) = O(E_Va): e—0,
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and
P.(z, D)Dig.(z) = D;H.(z) — Pe(z, D)ge(z) € H™™ N Epe(R™)

for a suitable v3 > 0. Thus, (19) implies || D;g.|| gm(a) = O(e™**), € — 0, for some
vg > 0. By induction with the respect to the orders of derivatives, it follows that
g: € SM(Q). Put

(24) Ke = 1(Q)_y.n0,s * Pevo /45

where sg will be determined later. Note that mes(Q\ () -2 ) = O(e*®) as € — 0.
Define G, = gcke. Then G, € Ex(R") since g, € Ep(R™).
For arbitrary ¢ € HZ™,

el = [(Pe(z, D)Gs,c — He,¥)| = (Gs,e — He, Fe (z, D)¥)]
< [ lo@)a - meloDl - Pz, Do)l do
<2 :uP "aa.e"Lw(n)"'xb"H”"(Q) |91l L2 () (mes(2 \ (@) —ew0 )2

- 0(&.30-(u1+m+po)), e — 0.

The assertion follows by choosing s¢ > 11 + v9 + po + s.

(b) Let t. be the solution to (23) when H, is replaced by R, and T, = tsx,e,
where k. is given by (24). Then, (19) implies

|Gs.e — Ta.e"H"'(n) = [[(gs,e ~ fS.e)K'e"H'“(ﬂ)
< sup {[gs,e — ta,s"H'"(n)"Da'ie"L”(Q)
ayem
< Ca-le—poe_som"Fe had Rs"H—m(Q).
Now, for % € H-™(R) |
{Gs,e = Ts,e, 9} < CllGse = Taell am () ”'l’"H-m(ﬂ) Cre7 P70, — Re| g-m(q)

and the proof follows.
(c) The assertion is a direct consequence of (b).

(d) Let ¥, € Dp(Q) and G, be the solution constructed in Theorem 15. By the
definition of Dp () there exists 1, € HZ™(Q) such that P} (z, D)y = ¥, for every
€ < 1. Then

/ (Ge ~ Goe)(x)Tefz) dz = / (Ge — Go,e)(z)F7 (z, D)y (z) dx
Q Q
- /ﬂ Pz, D)(Ge — Go.0)(z)d1(z) dz — 0, € — 0.

This proves (d). O
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3.2. Quasilinear elliptic PDE. First we give a simple example in order to illustrate
our approach to a class of quasilinear elliptic PDE.

Example 21. Let d9,1)(z1,22) = 6(z1)0(z2 — 1), (z1,Z2) € R? be the delta distri-
bution concentrated at (0,1) and B; be the ball with the radius 1 and center (0, 0).
Define (g 1)| o5, DY {80,1)] o8, %) = ¢(0,1), where ¢ is a smooth function on the
circle 8B;. Consider a Dirichlet problem formally written as

Au(z) =0,z € B; C R?, ulgp, = 5(0,1)|331.
1

-1
We approximate §(z;1)d(z2 — 1) by a net Z_IEqS( p )¢(z26 ), (z1,z2) €R%, e €
(0,1), with the properties ¢ € C§°(R), ¢ = 1 and suppg € [-1,1] (the net of
mollifiers). Then, we replace the given problem with the family of problems

Au(z) =0, z € B; CR?

1 /xq l—-z7-1
uelan = 6_2¢(?)¢( e 1 )1 Izll <e

and zero on the rest of the boundary.

Using the Poisson formula we obtain a family of solutions U. of corresponding
classical solutions.

Assume that ¢(0) = 0. Then, in the sense of the weak convergence in D'(B;),
|z -1
ai+ (2 - 1)?

Note that f is a solution to Au = 0 in B;. Moreover, for any point (z10,Z20) €
dB; \ (0,1)

Ue(z) — f(z) =Cy as € — 0,where Cy = —4—11r—¢’(0) /1 uZ¢(u) du.
-1

22 4+22 -1
li L2 =0 ((z1, B
(zl,zz)—'r(xim,xzo) 22+ z2—2r,+1 ((@1,25) € B)
2 _
and, for 8 = /2, lim _r=1 —00. This shows the “blow up” of a solution
rele 72 — 21 +1
at (0,1).
Let Q. be a net of elliptic nonlinear operators of divergent type of the form

(25) Q. (u) = div A (Du) = a*¥(Du)D; ju,e < 1,

where a7 (p) = Dp, Ai(p), or, in case n = 2, let Q. be a net of elliptic nonlinear
operators of the form

(26) Q(u)= af;j(:r,u, Du)D; ju, u € C>(0).

We assume that a7, € € (0,1) are smooth functions on O. If A\, and A, denote
respectively the minimum and maximum eigenvalues, then we have

0 < Ac(z, 6, D) < a7z, p)6it; < Ac(m, t,D)IEP,
peER™ £€R*\ {0}, 2€0, teR, e <egg.
Assume additionally:
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(27) (Vde N3)(3l; € R)(Jaq € ]R)

|8%aii(z, t, p) = !
t "y = 4).
SP{(1+lt|+lp|)“4 z €0, G]R,pGR} O(e™)

(28) (3C > 0)(3u > 0)(Ib € R)

e C
Z A+ p)° < Al t,9)) < Ae(z,t,0) < (1 + [t + D),
peER™ z€0,teR,e < e

In the case when the net Q, is of the form (26) then » = 2, and if it is of the divergent
form (25), then we exclude variables z and ¢ in the conditions given above. Note
that condition (28) implies A./A. < C?/e?*, € < g9. We will consider this net in
the framework of Gok.o. In this case we will use the notation F = Egr.a. With
the given properties Q. is called the net of uniformly elliptic moderate continuous
operators.

Example 22. (i) All the examples given in {26, pp. 260-262], for n = 2 can serve
as.examples in our framework but now with singular boundary conditions.
(ii) Consider in R? the operator

3
Q(z,u, Du) = (1 + Z 6(D,-)) Au (4 is the delta distribution).

i=1
With the regularization of § = lim._.o ldJ(;) we have
Quley D) = (26(P2) + 20(P2) 20(7) + 1) du
(¢ is a compactly supported smooth function with the integral equals 1.) Then
o=t = ((2) + 12 1o(2) ).

e \e e'\e/e"\e
This operator is of the form (25) for which all the assumptions given above hold.

We need a “slope condition” adapted to the setting of Colombeau theory.
Definition 23. Let E = C*%2(0) for some k € N (cf. 1.1 and Ggr.a), e € F =

Eore and Te = {(z,2.), * € 80, 2z = Ye(z)}. The boundary 9O satisfies a
+

moderate slope condition if for any F. € I'c there exist hyperplanes n_ p and 7, p,
defined by z =} p (z) and z, = 7 p () such that
7, p, (%) < Pe(z) < W::P‘(:L'), 2z €80, € < g
and such that for some K > 0 and some m € R,
sup{|Dn}p, ()|, |Dx; p, (z)l;z € BO, P: € Te} < Ke™, e < eo.

Proposition 24. Let Q. be a net of uniformly elliptic operators of the form (25)
or (26) with a%d € C*+(0) (k € N) satisfying (27) with d < k+ 1 and (28).
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Let E = C*22(0), ¢, € Egrira, where O is of CF+22 class and it satisfies a
moderate slope condition with .. Then, there exists U, € Egrrz.a such that

Qe(UE) = 0, Uelao = "pg, E< 1.

This theorem implies the solvability in Ggk.«. The process of regularization of
equation div A(Du) = 0, ugo = % with singular coefficients and singular data
leads to the approximated net of solutions by the mean of previous theorem.

4. Hyperbolic PDEs

4.1. Semilinear wave equation. In our approach we connect two areas: the L2-
theory for the nonlinear wave equation

(29) O2u— Au+g(u) =0, g(0) =0, u =u(z,t), € R, t >0,
with the initial data
u(z,0) = a(z), uz,) =b(z), r € R",

involving energy estimates and the theory of generalized functions where nonlinear
operations makes sense for a large collection of singular objects.

Concerning g, if it is not globally Lipschitz, then it is substituted by a net
of globally Lipschitz functions g.(u). Then the obtained net of equations, called
regularized equation, is solved for each fixed e. '

In some cases g is not regularized and the growth conditions on g are involved
for the existence and uniqueness of a solution similarly as in the classical theory.

We use here the algebra G, 12([0,T") x R"). Also we use the notation F =
&r2([0,T) x R™). Consider a family of equations in £, £2([0,T) x R")

(30) (3? - A)Gs = —g(Ge): G5|t=0 = Am atGelt=0 = Bey g€ (0’ 1):

where A.,B. € £,2(R") and g : R® — R is smooth, polynomially bounded
together with all its derivatives and g(0) = 0.

Equation (30), with the regularization g. instead of g is called the regularized
equation for (29). '

Proposition 25. a) Let n < 5. Then there exists a regularized net g, such that
for every T > 0 there exists a unique solution to (30) in G, £2([0,T) x R?).

b) Let n = 6 and let || A.|| 3.2 and ||Be| 2.2 be bounded by (log(log(e~1)))?, as
€ — 0, where s < 1. Then there exists a regularized net g such that for every
T > 0 there exists a unique solution to (30) in G 12([0,T) x R™).

Remark 26. Let n = 7. In order to obtain the existence of a unique solution

with the moderate growth of all its derivatives, we need that H32-norms of initial

data are bounded by log(log...(loge™1)...)* with respect to & for some s and gq.
N e tna?

: q
This follows from [80, Theorem 4.8]. Cases n = 8,9 can be handled out using the
procedure and Lemmas 2.1-2.20 in the same paper as well as a composition of the
logarithmic function sufficiently many times.
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The proof of quoted theorem forn =3 implies the next corollary.

Corollary 27. Let n = 3, g{y) be globally Lipschitz and its first derivative be
polynomially bounded. Then for every T > 0 there ezists a solution to (30) in
Goo,12([0, T') X R™).

Remark 28. If g(y) is globally Lipschitz, for n = 4,5,6, we need to assume
appropriate conditions for the first and second derivatives of g. If n = 7,8, 9, then
the assumptions of corollary are more complicated.

For a non-regularized wave equation, the following is true.

Proposition 29. Eguation S
(87 - A)G = —G?, Gli=0 = A, 8,Gle=0 = B,
where A, B € Goo 12(R3), has a unique solution in Goo, 12 ([0, T) X R3) for every T > 0
if there exist representatives of initial data such that
(V2 Ae, VBe)llzs = o((loge™*)'/?).

The presented results are from [60]. One can look also in [10, 74] for some other
results concerning the wave equation.

4.2. Stochastic wave equations. We will present the main results from the paper

[69] concerning the different stochastic wave equations. Before that, we have to

define Colombeau generalized processes like in [75]. ‘
Consider the problem

(31) (B2 -3)U+FU)-S=0,
(32) U|t=0 = A, atU|t=0 = B7
where A and B are G; 2-Colombeau generalized stochastic processes on' R, that is,
A,B € G§(R), and S € G,([0, T) x R) is Ga,2-Colombeau generalized stochastic
process on R? with compact support. We suppose that the function F is smooth,
polynomially bounded together with all its derivatives and that F(0) = 0. We look
for a solution U € G&,([0, T') X R). We substitute F' by a family of smooth functions
F,, £ € (0,1), which is called the regularization of F. This is done in the following
way. We choose the smooth function F, with the property that there exists a net
ae such that for every a € Ny there exist g¢ € (0,1) and m* € N such that

Fe(y) = F(y),forly] < ae, € <o

|D*Fe (W)l = O(ag*)-

In the sequel we shall denote m = supq¢; M®.

Denote by F = [F,], where F, € £535([0, T) x R) has properties as above. Then,
instead of non-regularized equation (31)-(32), we consider the regularized one
(33) (02 - AU + F(U)-S =0,

(34) Ul¢t=0y = 4, G:U|(¢=0y = B,

. where S = [S.] € 6£,([0,T) x R) and A, B € G§,(R).
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Note that for Uy, Vi € £2,([0,T) x R) such that U, — V; € N§4([0,T) x R), we
have that F(U,) — F(V.) € N3,([0,T) x R).

First, one can see the connection of regularized and non-regularized one dimen-
sional wave equation in the following theorem.

Theorem 30. Let G, a primitive function of F, be nonnegative and G(0) = 0. Let
Colombeau generalized stochastic process S € gﬁz(R) be nonnegative and depend
only on the variable z, i.e., there ezists a representative S, of S such that S.(z) > 0,
for all € small enough and = € R. Suppose that ||(Be, 0z Ae)l| 2 = o(ae), ase — 0,
where a, is the corresponding net used in regularization of function F. Then, for
every T > 0, the solution to the regularized equation (33)—34) is also the solution
to the non-regularized equation (31)—(32).

4.2.1. Cubic wave equation with nonnegative stochastic process. We
consider the problem

(35) (B} -AWU+U*-8=0,
(36) Ulgt=0y = 4, 0U|4=0y = B

where we suppose that 4, B € G35 (R®) are Gj,2-Colombeau generalized stochastic
processes such that

(37) I(Be, VAl 2 = o((loge™)4),

and S € g” (R3) is nonnegative G4-Colombeau generalized stochastlc process which
depends only on variable z and such that

(38) Sellze = o((loge™)"/2).

Theorem 31. Let stochastic processes A, B € G§,(R®) have representatives which
satisfy condition (37) and S € G$(R®) be nonnegative stochastic process that de-
pends only on variable x and has a representative which satisfies (38). Then, for ev-
ery T > 0, problem (35),(36) has a unique solution almost surely in G§,([0, T)xR3).

Remark 32. If a Colombeau stochastic generalized process S is a image of a
generalized stochastic process, then one can use a regularization which ensures
estimate (38). This remark could be added after each further assertion when we
need 'estimates on a stochastic term.

%

4.2.2. Cubic wave equation with multiblicative stochastic process. We
consider the problem

(39) (33-A)U+U-S+U3=o
(40) Ul(t=0} = 4,.0:U I{t_o}
where stochastic processes 4, B € G, $,(R3) are ‘such that -

(41) "(B€1 VAE)”L2 = O((lOgE 1)1/2):
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and S € g;’([O,T) x R3) is such that
(42) ISellze = o(log(loge™")*/2T).

Theorem 33. Let Go 2-Colombeau generalized stochastic processes A, B € ggfz(]R?)
satisfy condition (41) and Gg-Colombeau stochastic process S € g;’([O, T) x R3)
satisfy (42). Then, for every T > 0, problem (39)—(40) has a unique solution
almost surely in G§%, ([0, T) x R3).

4.2.3. Cubic Klein—Gordon equation with additive stochastic process.
‘We consider the problem

(43) @2 -D)U+U+U+S5=0,
(44) Ulg=0y = A, 8:U|y=0) = B,
where stochastic processes A, B € ggz(RS) satisfy

(45) (B, VAl 12 = o((loge™)!/%),
and S € G§,([0,T) x R3) is such that

(46) ISelz= = o (loge™)""?)
47 Se has a compact support.

Theorem 34. Let Gz 2-Colombeau generalized stochastic processes A, B € Qr?,z (R3)
and S € G, ([0, T') x R3) satisfy conditions (45) and (46)—(47), respectively. Then,
for T > 0, the problem (43)—~(44) has a unigue solution almost surely in G, ([0, T) x
R3).

The literature concerning the stochastic wave equation and generalized processes
is quite rich. One can look in papers [1] or [75], for example.

5. Semilinear parabolic PDE

Two types of equations in generalized functions algebra, Ge, m2([0,T) : RY)
(given below). The first one is a Cauchy problem

(8, — AU + VU =0, U(0,z) = Uo(z),

where potential V is a singular distribution, for example the delta distribution or
a linear combination of its derivatives. It will be presented here.
The second type is a nonlinear Cauchy problem

8, — AW + VU = f(t,U), U(0,z) = Up(x),

. where f satisfies certain conditions.
In both types of equations Uy is an element of Colombeau-type space, Gy2 (R™).
This involves singular data, embedded singular distributions, for example of the

form Uy = E?=o f,.(i); fi € L%, i = 0,1,2, again the important standpoint of our
approach.
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We will present the use of generalized Co-semigroups in solving a class of heat
equations with singular potentials and singular data. First note that the multipli-
cation of elements G € G2 (R™) and H € Ger g2 ([0,T) : R™) gives an element
in Gor g2 ([0, T) : R™). Indeed, if G € Ex2.= (R™) and H, € Ecr i ([O’T) :R")
then GeH, € Ec1 g2 ([0,T) : R™).

Similarly, if G. € Np2 (R®) or He € Ne1g2([0,T) : R™), then G.H, €
Ner, g2 ([0,T) : R™) . Thus, multiplication of potential V' € Gg2,e (R™) and a func-
tion U € Ger y2 ([0, T) : R™) which is expected to be a solution to equation

U = (A -V)U, U(0,z) = Us(z),
makes sense.

Definition 35. Let A be represented by a net A,, € € (0, 1), of linear operators with
the common domain H?(R") and with ranges in L2(R"). A generalized function
G € Geor x2([0,T) : R™), T > 0, is said to be a solution to equation 8;G = AG if

sup [|6;Ge(t,-) — AcGe(t, )l L2y = O(€?), for every a € R.
t€l0,7)

5.0.4. General potential. We will consider in this subsection singular potentials,
elements of Gg2.« (R™). Especially when the potential is a power of the delta
generalized function.

Theorem 36. Let V € Gya. (R™) be of logarithmic type, Up = [Uoe] € Gyz (R™)
and [S] be defined as in Ezample 12. LetT > 0. ThenU = SUp € Gcr g2 ([0,T) : R™)
(Ue(t, z) = S:(t)Use(z), € < 1) is the unique solution to equation
(48) SU(t,z) — AU(t, z) + V(z)U(t,z) = 0, U(0,z) = Up(z).
in the sense of Definition 35.

Note that in our construction of a solution to (48) the perturbations with ele-

ments in N1, null-nets do not effect the solution. More precisely, if V; is substi-
tuted by V. + Re, R, € N2, in (48), we have the same generalized solution.

5.0.5. Powers of the generalized delta function as a potential. Let ¢, be
a net of mollifiers

(49) . ) 4¢’€ = 5_n¢('/€)1 €€ (07 1)1

where ¢ € C°(R"), [¢(z)dz = 1 and ¢(z) > 0, z € R™. It represents the
generalized:delta function § = [¢.] € G(R™).

Different ¢.’s (with the prescribed properties on ¢) define different infinitesimal
generators. Let us show this. Put A, = A — ¢, and /L =A - ¢~>E, e < 1. The
equality of infinitesimal generators would imply that

e = AJulla =& [ 166) - BPIu(en)Pde < el & < 1
g

for every a > 0 (and correspd;ding C. > 0). Thus, it follows that ¢ = @.
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Let m € N. We will use the 6™ = [#7*)men as the definition of m-th power of
8 € G(R™). Let A, nu = (A — ¢™)u, u € H(R"), € < 1. A m is the infinitesimal
generator of the semigroup
Se.m 1 [0,00) — L{L2(R™)), S.(t) = exp((A — ¢T)t), t > 0 (cf. [79)).
It follows that S, , is a representative of a generalized Cp-semigroup S € LG([0, 00) :
L(L*(R™)).
We know that S, 1, € < 1 and ¢ € LZ(R™), given by

t
S.)(a) = [ exp (— / ¢:*(w<s»ds) Hw(®)dpa(w), T ER™, £3 0,

Since ¢.(z) 2 0, z € R", € < 1, it follows that the set {S;.m : €€ (0,1), t > 0} is
bounded in £{L?(R™)) (not only moderate). Thus (31) holds for S¢,m.

Our goal is to prove the following theorem, where the assumption n > 2 is
crucial.

Theorem 37. Letn > 2, meN, T >0 and Uy € H*(R"). Then

t
) Um(tie) = [ e (= [ emmmom (220 ) o) st
o 0 €
ze€R* t20,e<1
defines a representative of a solution U € Gen g3([0,T) : R™) to the equation
8, U(t,z) — AU(t,z) + 6™ (z)U(t,z) = 0, U(0,z) = Up(z).
The solution is unique in the sense of Definition 35.

Moreover net (50) converges to U(t,-) = e~2tUy(-) uniformly on compact sets
of R™ of H*(R™), for everyt > 0. .

We need several notions and properties of n-dimensional Brownian motions,
n 2 2. Recall that the hitting time 74 of a subset A of R™ is defined by 74 =
inf{t > 0: w(t) € A} (ta = oo if w(t) & A for all t > 0). We refer to (85, Ch. 1
Sec. 2], for the elementary properties of hitting times. Recall, a Borel set A is said
to be polar if pz({w € O : w(t) € A for some t < 00}) = 0. We will use the fact
that every one-point set is polar for n > 2. This is not true for n = 1 and that is
the essential reason for different results in the casesn > 2 and n= 1.

Let B. ={z € R": |z|| <&}, B= B;. Takee € (0,1), ¢t > 0 and define

W, (t) = {rB. <t} ={w: there exists 0 < s < t, w(s) € B},
Wa, = | Wa.(t).

>0
Clearly, Wg, (t) C Wpg,_(s), 0 < t £ s. Note that

We () ~\Wgp (t)={t<78 <s8},0<t<s
and ’
(51) Wa, (s) \Wpg,(t) C W, ~\Wp,(t) C{t—1< 78,1},
fors>t>1.
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Choose an increasing sequence (tm)m such that tmy1 > tm + 1, and (51) holds
for every m € N.

Lemma 38. 1) For every compact subset K of R™ ande < 1, there exists a constant
Ce > 0 such that (W ) < C.. 2) lin(l) sup u(Wg, ) =0.
e—=UzeK

Powers of the generalized delta function, §%, a € (0, 1), are defined in this paper
by
(52) 0% = [(ge)® x ¢, € € (0,1).

The reason for introducing (52) is simple: When o € (0,1), the function ¢2,
€ < lisnot smooth, in general. Note, generalized function [¢.*¢,] is only associated
with the generalized delta function 8 = [¢].

Since one-point sets are not polar for n = 1, we could not use the same arguments
as in the case n > 2. Note that functions in H2(R) are continuous and bounded.

Proposition 39. Let a € (0,1), T > 0 and Uy € H?(R). Then by

i t
(59) Uutt2) = [ exp (= [[ (807 » belole) ds ) Uafo) dia(e)
t>0,z€eR, e<1,
is defined a representative of a solution U(t,z) € Go1,y2([0,T) x R) to equation
8:U(t,z) — AU(t,z) +6*(z)U(t,z) =0, U(0,z) = Up(z).
The solution is unigque in the sense of Definition 35. l

Net (53) has a subsequence (U., a(t, T)),eN, converging to U(t,z) = e~2tUy(z),
> 0, z € R in the weak topology of L2([0,T) x R).

Example 40. Assumen > 2, T > 0, V € H**°(R"™), and f € Cl([O o0) x R?)
satisfies f(s,0) =0, s € R a.nd [£(s,51) — f(s,12)] < Cly1 — v2-
Let Up(z) = 6(z), z € R™, i.e., Upe = e, € < 1 (cf. (49)}. Then for fixed € < 1,

8Uc(t, ) = (Az — V(2))Ue(t, 2) + (8, Ue(t, 7)), Ue(0,2) = ¢,

has a unique classical solution U, in C°([0,T), L*(R"™)) N C*((0,T), L*(R™)) and
U.(t,z) € H*1(R™)) for every t > 0. Again we have U,(t,z) € C°((0,T) : H%(R™)),
r-: < 1. We will show that there exists a sequence (U,, ).en converging to some U €
((0,7),R™), 1< g< nf(n—1),in L ((0,T),R™) such that 8,U = (A - V)U

loc loc

in D'((0,T),R™).

Remark 41. The classical theory of semigroups is used here as a tool for finding
generalized solutions to a nonlinear heat equatlons One can find different approach
in [12] [33] or {100].



PART 11l: HYPERBOLIC SYSTEMS

6. Semilinear hyperbolic systems

Let
(54) (8 + Az, 1)0z)y(z, t) = F(z, t,y(z, 1)), y(z,0) = A(z)
be a semilinear hyperbolic system, where A is a real diagonal matrix and a mapping
y +— F(z,t,y) is in Oy(C*) with uniform bounds for (z,t) € K cC R2. In [72]
a generalized solution to (54) is constructed when A is an arbitrary generalized
function and F has a bounded gradient with respect to y for (z,t) € K cC R2

Here, F is substituted by Fj() which has a bounded gradient with respect to
y for every fixed € and converges pointwisely to F as £ — 0. Qur aim is to find a
generalized solution to
(55) (0 + Az, 1)32)Y (x,t) = Fi(y(z,t,Y(x, 1)), Y(z,0) = A(z).

We fix a decreasing function h : (0,1) — (0, 00) such that h(e) = O((loge~1)1/2),
h(g) = o0 ase — 0.

Denote by B, the cube |z] < r, |t] £ r, |y| < r, where y = (u1,v1, ..., Un, Un).
Let &; be a decreasing sequence of positive numbers such that h{e;41) =14, i € N.
This implies that h(e) 21— 1ife <ég;. Let

Si = B;n{(z,t,u,v), |F(z,t,u,v)| <i-1}
N{(z,t,u,v), [VuuF(z,tu,v)| <i—-1}, i €N
Let k; be the characteristic function of S;, ¢ € N. Put
Kh(e) = (Ki * P1/n(e))y € € [Eis1, &), i €N,
_ F,’f(e) = F*kpey, € € (0,61), k€ {l,...,n}.
Then there exists a constant C = C(Cp) > 0 and €; > 0 such that
1Fne) 1z @asan) < Che)
| Va0 Frie) || oo (ma+2my < Ch(e)?, € € (0,€1).
Definition 42. G = (Gy,-..,G,) € (G(R?))" is a solution to (55) if any of its
representative G, satisfies the system
(56) (8t + A(z,8)02)Ge(,t) = Fi(e)(x,t, Ge(2, 1)) + du,e(z, 1),
Ge(z,0) = A (z) + d2c(2),
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where A, € (Em(R))" is & représentative for some dy. € (N(R))", and d;, ¢
(M(R?))". We call (55) and (56) the h-regularized system. '

Theorem 43. Assume that every component of the mapping y — F(z,t,y) be-
longs to Oy (C™) and has uniform bounds for (z,t) € K € R2  Then the h-
regularized system (55) has a unique solution in (G(R?))™ whenever the initial datq
is in (G(R))™. ’

The proof follows by using the method of characteristics and the fixed point
theorem.

Theorem 44. Let the initial data A in (54) belong to (C(R))".

(a) The solution G to the regularized system (55) is L™-associated with the
continuous local solution g to (54) in Kr,, for some Ty > 0.

(b) Assume that (54) is globally well posed. Then the solution Gy, to (55) is
L>™-associated with the continuous solution g to (54) on each Kr.

Remark 45. If for every compact set K C R? there exists C > 0 such that

sup |F(z,t,y)| < C or sup |VyF(z,t,y)] < C,
(z,t)EK,yeC™ (z,t)EK,yeCn

then system (54) is globally well posed.

- The presented assertions are from {65]. One can look also in {71] or (2]. Multi-
dimensional case is done in [52], initial-boundary problem is a topic of paper [43],
while some nice results in special cases can be found in papers [14] and [73].

7. Systems of conservation laws

7.1. Introduction. For an n x n hyperbolic system (n real eigenvalues) in one
space dimension

(57) U+ f(U): =0, U:0OCcRZ—-R", f:R*"—R
with Riemann initial data '

. Us, <0,

t=0 = 0, V1 )
(58) Ult=0 = U >0 Up, Uy are real vectors

there exists a unique entropy solution, provided ||U; — Up|| L small enough (Lax in
50’s (see [53], for example)). The classical solution to the above Riemann problem
consists of shock, rarefaction waves and contact discontinuities. (If n real eigenval-
ues are all different, then system (57) is called strictly hyperbolic.) Also, methods
for solving an arbitrary Cauchy problem (Glimm scheme, wave front tracking algo-
rithm (Di Perna for 2 x 2 system (70’s), Bressan et all (90s) for n x n system), see
[8] are based on the fact that the total variation of the initial data is small enough.

So, the first reason for introducing solutions containing Dirac § distribution is
a possible managing of the system with ”large” initial total variation. The second
reason for doing this is that some systems of conservation laws, perturbed by a
“viscosity” matrix, Uy + f(U)z = €A(U)Uz, have solutions which limit contains
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terms with ¢ distribution, as € — 0 ([72] and [41]). The third reason is that if one
perturb Riemann data by smooth functions

_ Up, <0
U"=°_U°"—’{U1, z>0 * B8E0,

local smooth solution has not only gradient catastrophe (the case of shock waves),
but also L™ catastrophe (the L* norm of the smooth solution goes to infinity in
a finite time).

The aim of this section is threefold:

1. We shall give two solution concepts where ¢ function appears (delta and
singular shock waves), see [57), [58] or [61].

2. Describe when it is possible to find such solitions (delta and delta singular
locus, see [58] for these notions).

3. Give some results of interaction of delta and singular shock waves with other
types of elementary waves in some special cases (see [59] or [61]).

At the end, we shall present some of numerous open problems concerning the
above topics.

7.2. Some examples. Dirac § distribution, as a part of a viscosity limit for
solutions to some systems of conservation laws was numerically observed in [51].
In papers {72] and [41] is proved that the viscosity limit of some Riemann data for
the system
ue + (4%/2)z =0
v+ (uv); =0
contain § distribution. In [42], the arbitrary Riemann problem for the system
ut+(u2—v)z =0
v+ (u¥/3-u) =0

which is a modified model of spreading ion acoustic waves is solved. For some initial
data (u; is in the area Q7 at Figure 1), the solution (in approximating sense) is
given by

(59)

4 t
ue(z,t) = Ge(z — ct) +a,\/;p(z - CE)’
- H.(z— 2t 2t
ve(z,t) = He(z — ct) +a 2P (z cs),

- where G, and H, converge to appropriate step functions defined by the Riemann
initial data, p?(-) := e=1p?(-/€), where p € C°, [ p? = 1, converges to the delta
distribution and p¢ converges to zero in D’ ase — 0, %= 1,3.

Pressureless gas dynamics model

ug + (uv); =0

(60) (uv); + (uv?); =0
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FIGURE 1. Singular shock wave area

can be transformed (after the elimination of the variable u; from the second equa-
tion) into

us + (uz), =0

v+ (), =0
for which the Riemann problem is solved in [94]. Some of the solutions contains
¢ distribution as a term. The authors used Dafermos-Di Perna viscosity limit
method (viscous term is given by etu,., so the viscous approximation allows self-
similar solutions), and the results are justified by assuming that v € L, v is a

Borel measure, and u has an appropriate value at line of discontinuity.
The same ideas are used in [99] for the systems of the form

us + (f(w)v)s = 0
(wv)e + (f(u)v*)z =0.

In (40}, a measure theoretic solution to the above system is given.
In {32], a solution to an arbitrary Riemann problem for the system

ue + (¥2/2). =0
(61)
w+ (@ = 1o)s =0
which is a very simplified MHD-model, by using Vol'pert idea of multiplication
of functions with bounded total variation and distributions. In some cases, the
solution contains a term with ¢ distribution.
Finally, we shall mention the paper [22], where the author found viscosity limits
to the Riemann problem ‘
ug + (f(u))z =0
(w)e + (g(w)v)z =0
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(under mild assumptions on functions f and g). Again, some limits contain
distribution as a term. '

1.3. Solution concepts. In the sequel we shall restrict ourselves to 2 x 2 systems,
i.e., system (57) we shall write in the following form

ug + (f1(u)v + fz(u))z =0
vt + (g1 (w)v + g2(u))e =0,

where f1, fo, 91, g2 are smooth functions, polynomially bounded with all its deriva-
tives. One can see that the above system can be substituted by more general one

(A + fa(w))e + (fi(u)v + fo(w))s =0
(G1(u)v + G2(u))e + (91 (uw)v + g2(u))= =0,
without any major change in statements and concepts given here.
As it was written in the introduction, we shall present two solution concepts
which are suitable for multiplication of distributions (in fact, § distribution with
a discontinuous function). The first one is based on the Colombeau generalized

function space introduced in {77]. The second one is based on splitting & distribution
into two parts, which are divided by a discontinuity line.

(62)

7.3.1. First solution concept. We shall use Colombeau space G, in this section.
Let us start with a simple lemma often used in the rest of it.

Lemma 46. The generalized function defined by the representative ¢.(x — ct) €
Em,g(R2), ¢ € Ao, c ER, is associated with 6(x — ct) € D'(R3).

Proof. Let ¢ € C§°(RY) and
L= / / e1o((z — t) Je) iz, £) dz dt.

Changing the variables (z — ct)/e — y, t +— s, using the Lebesgue dominated
convergence theorem and the properties of the functions from Ag gives

I = / S(y)b(ey + cs, s) dy ds
—»/</¢(y)dy)1/1(cs,s)ds=/¢(c§,s)ds, sse—0. O

The step functions, mapped by ¢ into Gg(R), belong to the following important
class of generalized functions. G € G4(O) is said to be of a bounded type if
sup |Ge(x)| = O(1) as e — 0,
x€0

for every T > 0.

Definition 47. (a) G € G(R) is said to be a generalized step function with value
(¥0, 1) if it is of bounded type and

Ge(y) = {

Yo, Yy < —€
Y1, Y>¢€
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~ e :
iHeconst | ' H is a Heaviside function
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FI1GURE 2. Delta shock wave

Denote [G] := y1 — yo.

(b) D € G4(R) is said to be generalized slitted delta functlon (Sé-function for
short) with value (g, 1) if D = agD~+a1 D, where ag+a; = 1 and D* € Ge(R)
are associated to delta distribution and D~G =~ yod and D*G = y;4, for any
generalized step function G with value (yo,1)-

Remark 48. One can give fixed representatives for a generalized split delta func-
tion in the following way

1 ry—(£2e
Note that D are in fact shifted model delta nets.
Lemma 49. If G is a generalized step function with value (yo,y1) and D is an
Sé-function with value (ag, a1), then the following hold.
(i) f(G) is a generalized step function with value (f(yo), f(v1)), where f is a smooth
SJunction.
(i) G- D = (yoao + y101)d.
Proof. The proof is a straightforward consequence of the definitions. ]
Remark 50. The support property of Sé-function ensures the uniqueness in the
association sense of its product with a generalized step function. This was done in
order to deal with conservation law systems given is a general form. Of course that

some other choices. can be more efficient in specific cases (see [11] and literature
there, for example).

The generalized initial data for our system are now generalized step functions G
and H with values (ug, u1) and (vg, v1), respectively. One can see that the inclusion
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by 14 of a classical step function gives a generalized step function in the sense of
Definition 47 (a) for every ¢ € Aop.

Definition 51. (U, V) € (G(R%))? is called delta shock wave solution to Riemann
problem (62, 58) if (a) and (b) hold:

(a) Us + (L(U)V + f2(U,V))s =
Vi + (1(U)V + g2(U, V) = 0.
U|t=0 = G, V|t=0 = H.

(b) U(z,t) = G(z—ct), and V(z,t) = H(z—ct)+5(t)(fo D~ (z—ct)+ S D (z—ct)).

Here, G and H are generalized step functions, f;, g, ¢ = 1,2, are smooth func-
tions polynomially bounded together with all their derivatives, fo and go are also
sublinearly bounded with respect to V, ¢ € R is a speed of the shock wave,
s € C1([0,00)), 5(0) = 0, fo+ f1 = 1, and D = FoD~(z — ct) + LD*(z — ct)
is an Sé-function.

The function s(t)fy is called the left-handed strength of the wave, and s(t)5; is
called the right-handed strength of the wave. Its sum (s(t)) is called the strength
of delta or singular shock wave.

Definition 52. A generalized function d € G,(R) is said to be m-singular delta
function (mSD-function for short) with value (8o, 81) if d = Bod™ + Bid™*, dF €
Gy(R), (d*) = 0,i € {1,...,m—1}, (d¢¥)™ = §, (d~)™G = yob and (d+)™G =~ 16,
for each generalized step function G with value (yo,¥1)-

Let m be an odd positive integer. A generalized function d € Gy(R) is said
to be m'-singular delta function (m’SD-function for short) with value (o, £1) if
d = fod™ + Brd*, df € G4(R), (d*)' = 0,i € {1,...,m - 2,m}, (¢¥)™! = ¢,
(d~)™1G = yo6 and (d*)™"1G = y, 4, for each generalized step function G with
value (yo,y1). (That implies S§* + A7* = 1.)

An Sé-function D and an mSD-function (or an m/SD-function) d are said to be
compatible if ™D = 0 (or d™~1D = 0).

Remark 53. One can construct such functions in a similar way as an Sé-function,
with suppd; C (—o0,¢), suppdy C (g,00). Compatibility conditions can be
achieved by demanding that D and d have disjoint supports for £ small enough, for
example.

The definition of m/SD-function d implies Gd™ =~ 0 if G is a generalized step
function.

Now we shall give the definition of singular shock wave and a useful lemma.

Definition 54. (U, V) € (G(R%))? is called singular shock wave solution to Rie-
mann problem (1-3) if (a) and (b) hold:
(a) Ut + (LU + f2(U, V) = 0
Vi + (01(U)V + 2(U, V))z = 0.
Ulsmo = G, V}emo = H.
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(b) U(z,t) = G(z ~ ct) + 81 (t) (aod ™ (z — ct) + aud™ (z ~ t)),
V(z,t) = H(z — ct) + 83(t)(Bo D™ (z — ct) + 81 D* (z - ct))
+ 83(t)(v0d ™ (z — ct) + md* (z — ct)).

Here G and H are generalized step functions, f;,¢:;, ¢ = 1,2, are polynomials
of the degree at most m ¢ € R is a speed of the shock, s,3;,32 € C([0,00)),
81(0) = 83(0) = s3(0) = 0, D is an Sé-function, as before, and d; are mSD or
m/SD-function, j =1, 2.

Here, the strength of a singular shock wave is s9(t), and the left-and right-hand
sided strengths are defined as in the case of delta shock wave.

From Definition 52 it follows that of +of = g5 +8F =y +71 =1, wherek=m
in the case of mSD-and k = m — 1 in the case of m’SD-functions.
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Lemma 55. a) Let d € Gy(R) be an mSD-function with value (Bo, 1), B + 67 =
1, G € G4(R) generalized step function with value (yo,11), s € C1(R;), s(0) = 0,
and T(y) = X iro aiy® be a real valued polynomial. Then
I'(G(z — ct)) + s(t)d(z — ct))
% TG — o)) + ams™ (1) (B (d”)™(z — ct) + B (dH)™(z — ct))
~T(G(z — ct)) + ams™(t)6(z — ct).
b) Let d € Gg(R) be an m'SD-function with value (Bo,B1), B + 67 1 =1
while G, s and T are as above. Then
[(G(z — ct) + s(t)d(z — ct))
= D(G( — ct)) + am-18™ @) (65 (7)™ "z — o) + A7 71T e — b))
+mams™ (1) (5 v (d7)™ & — o) + A7 ()™ He — o))
~T(G(z - ct)) + am—15™" (£)é(z ~ ct)
+mams™ ()65 yo + BT y1)é(z - ct).

7.3.2. Second solution concept. We shall now briefly describe the second
solution concept we are using. Suppose R is divided into finitely disjoint open
sets O; #0,i=1,...,n with p_igc_ewise smooth boundary curves I';, i = 1,...,m,
that is 0; N O; = 0, |, O; = R2 where O; denotes the closure of O;. Let C(O;)
be the space of bounded a.nd continuous real-valued functions on O;, equipped with
the L*-norm. Let M(O;), be the space of measures on O;.

We consider the spaces Cr =[], C(0;), Mr = [T, M(O;). The product of
an element G = (Gy,...,Gr) € Cr and D = (Dy,...,Dp) € Mr is defined as an
element D-G = (D, Gl, ., DnGr) € Mr, where each component is defined as t