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o. Introduction 

The aim of this paper is to consider the necessity of introducing the generalized 
functions for the construction and solving mathematical models. 

Mathematical models in mechanics have been usually given by a partial differ­
ential equation with some boundary and initial conditions. 

With regards to the construction of a mathematical model the following remarks 
are worthy of mention: 

First we have to catch sight and then to select the basic elements of the situation 
(of the object) we wish to model. Consequently, a mathematical model is only an 
approximation of the object to which it corresponds. 

Or to put in another, more pessimistic consideration: All models are wrong, some 
models are ''useful'' [30J. But there are several requirements that mathematical 
models must satisfy in order to be "useful". Structural stability of the model is 
probably the most important requirement. Also, because of the approximate value 
of a model, it is natural to expect that if we can find a family of solutions to 
the model equation and if there exists a subfamily which is convergent, then the 
limit has also to be a solution. The difficulty lies in finding a topology not overly 
restrictive but such that the found limit has a meaning for the treated object. 

That is one of the sources of the ''weak'' and "generalized" solutions to mathe­
matical models which will be used in this paper, as well. 

Many authors have pointed at shortcomings of the classical analysis with regards 
to the solving partial differential equations. L. Hormander [27] illustrated them by 
the equation of the vibrating string 

82 82 

8x2 vex, t) - &t2 vex, t) = O. 

Its classical solution has been given by v(x, t) = f(x + t) + g(x - t), where f and 9 
are arbitrary functions with continuous second derivatives. In his opinion the limits 
of sequences of such solutions have also to be taken as solutions (Laplace operator 
has just this property). 

He continues with such a consideration for the nonhomogeneous equation 

82 82 

8x2 vex, t) - &t2 vex, t) = F(x, t), 

where F(x, t) is continuous and equals zero outside a bounded set. If F has also 
continuous first partial derivatives, then the cited nonhomogeneous equation has a 

7 
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classical solution 

v(x,t) = -~ II F(~,T)cIedT. 
'T-t+lz-el<O 

In case that F(x, t) is only continuous, the found solution v(x, t) has continuous 
first partial derivatives and has to be admitted as solution, as well. Such solutions 
are called "weak solutions". 

Secondly, partial differential equations have been given by partial derivatives 
which are very restrictive operations in usual topology in JRn (in classical analy­
sis) and have not to be continuous. The first systematic elaborated idea to over­
come these shortcomings of the classical derivatives has been given by S. 1. Sobolev 
(cf. [57]). He started from the space U'(O), p ~ 1, where 0 is an open set in JRn. 
Let cp,'IjJ E Cm(IT), supp'IjJ = K, K compact set in O. Then 

I [ fJ"l'IjJ(x) m+l () 8mcp(x) ] 
CP(x)8x;."1 ... 8x;::,n+(-1) 'ljJx 8X;."1 ... 8x;::>n dx=O, 

n ml + ... + mn = m. 

If we know only that cp E U'(O), P ~ 1, and that there exists wml, ... ,mn E LIoc(O) 
such that 

I [cp(x) 8x;:~.(~;::>n + (-1)m+l'IjJ(x)wm1, ... ,mn(x)]dx = 0 
n 

for every 'IjJ with the cited properties, then wm1, ... ,mn is defined as Sobolev's gener­
alized derivative 

8x;:::.(~~;::,n ~f wm1, ... ,mn (x). 

This is the basic idea for the theory of Sobolev's spaces which are very useful in 
the theory of partial differential equations. 

Schwartz's distributions (cf. [56]) generalize Sobolev's idea and represent a theory 
which gives impressive results in the theory of partial differential equations. To 
every locally integrable function it corresponds in a unique way a distribution. 
Every distribution has all partial derivatives which are continuous operators. The 
space V' of distributions is the least extension of the space of continuous functions in 
which all elements have all partial derivatives. Moreover, derivatives are continuous 
operators. Consequently, if we have a convergent sequence or a convergent filter 
with the countable basis of the filter (cf. [56, I, p. 53]) as solution to a linear partial 
differential equation in V', then the limit of this sequence or of this filter is also a 
solution to this equation. 

To this day many spaces of generalized functions have been elaborated (cf. [13], 
[18], [20], [24], [31], [32], [40], [47], [53], [56]) which can be useful in considering 
mathematical models. Not only to find a generalized solution to a model, but 
also to improve the classical methods for solving them. In this sense the integral 
transforms of generalized functions have an important role. 

A very significant fact is that the spaces of generalized functions have not only 
been used to solve a mathematical models, but also in the construction of models. 

~ F , " 
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Some elements and relations in the theoretical physics can be defined only by using 
generalized functions. Let us mention first of all the Dirac 0- ''function''. The 
quantum field theory is an impressive example of a theory which uses generalized 
functions to express some phenomena from physics (cf. [15], [16], [29], [65]). 

The utility of mathematics for many problems of science and society is increas­
ingly evident. However we can not neglect some doubt in this linking. Namely, 
mathematics pretends to claims of absolute certainty by means of mathematical 
proofs. But this certainty is paid for by logical disconnection from empirical re­
ality. One can find cited the following Einstein sentence (cf. (12]): "As far as the 
properties of mathematics refer to reality, they are not certain and as far as they 

. are certain, they do not refer to reality" . 
So in considerations mathematical models we have two extreme positions: 
First, if a solution to the constructed mathematical model is not quite mathe­

matically rigorous, but none the less leads to an excellent conformity with experi­
mental observation, then one can consider such solutions valued by nature, if not 
by mathematics. 

Second, one may choose to recognize mathematical models and their solutions 
if and only if the model is based on classical foundations and solutions have been 
obtained in absolute mathematical rigorousness. 

In this paper we shall work with generalized solutions which are: 

• well-defined; 
• obtained in a mathematically correct way which allows to see why their 

introduction is necessary; 
• solutions of linear mathematical models arising from mechanics and which 

claim can be validated by natural conditions; 
• elements of spaces acceptable to the specialists working in mechanics. 
• a pointer to the very abstract possibilities of the today's cutting-edge math­

ematics. 

The paper is divided into three parts. In the first we repeat some definitions and 
results from spaces of generalized functions we need subsequently. In the second 
part we give constructions of some interesting new mathematical models in me­
chanics. In the third we solve the constructed models illustrating the possibilities 
of methods which have been offered by generalized functions in solving mathemat­
ical models in mechanics. We have not insisted on complete mathematical proofs 
if they were overly large and if they can be found in the published papers cited. 

1. Spaces of generalized functions 
In this paper we use the space of distributions VI with some subspaces and the 

space of hyperfunctions B. 

1.1. The space of distributions. 

1.1.1. Definitions and notation. We repeat some definitions and facts that we need 
in our exposition. There are now a lot of books in which one can find spaces of 
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distributions elaborated in different volumes. We cite only some, we use (cf. [241, 
[56], [66]). If the cited result is not well-known, then we give the proof, as well. 

Let 0 denote an open subset ofJRn (0 can be Rn on the whole). The 8'l./.pport 0/ a 
function cp (suppcp) defined on 0 is the closure in 0 of the set {x E 0; cp(x) =f. o}. 
The space V(O) is the space {cp E COQ(JRn); suppcp CO}. A sequence {CPi} c V(O) 
converges in V(O) to zero if and only if there exists a compact set K C 0 such 
that: 

1. sUPPCPj C K, j EN; 

2. for every a = (ab .. ' ,an) E (N U {o})n == No, cPjo.) -+ 0 uniformly on K; 

(0.) ( 80.1 {jC1.n ) 
CPi = 8x'11'" 8x~n CPi' 

V'(O) is the space of all continuous linear functionals on V(O). It is called the 
space of distributions on O. The value of a distribution I at a function cp E V(O) 
will be denoted by U, cp). 

Every locally integrable function I on 0 defines the regular distribution (fl, by 
([f],cp) = fnf(x)cp(x)dx, cP E V(O). Two functions I,g E L?oc(O) define the same 
distribution [f] = [g] on 0 if and only if I = g a.e. on O. 

Suppose that 11,., E V'(JRn), Vy E V'(JRffl). By 

(w,cp) = (u"" (Vy, cp(x, y») = (vy , (u""cp(x, y») 

is defined the distribution w E V'(JRn+ffl ), where cP E V(JRn+ffl) and x, y denote 
variables in JRn and JRffl respectively. The distribution w is called tensor product of 
the distributions 'U", and Vy; one writes w = 'U", ® VY' 

Let U", and Vy belong to V' (JRn). If there exists a distribution z E V' (JRn) defined 
by (z, cp) = (11,,,, ® VY' cp(x + y», cp E V(JRn), then z is called the convolutionof u", 
and Vy and is denoted by u., * VY' 

From the properties of convolution we mention only: if cp E V(JRn) and 11, E 

V'(JRn), then cp * u E COQ(JRn) and cp * u = 11, * cp = (u"" cp(y - x». 
Let DfflU denote the m-th derivative in the sense of distributions (see Section 

1.1.2), then Dffl5 * U = DfflU , m = Cm1, ... , mn) E Na. 
An important subspace of V' (JRn) is the space of tempered distributions S' (JRn). 

Let us define it. By S(JRn) we denote the space of rapidly decreasing functions cp 
with the property that for every pair of multi-indices a,jjENa, suplxo.cp(P) (x)1 < 00. 

"'ERn 
The space oflinear continuous functional on S(JRn) is called the space a/tempered 

distributions and is denoted by S'(JRn). Let r denote the closed, convex and acute 
cone and C = intr. Let K be a compact set in JRn. By S'(r + K) is denoted the 
space of tempered distributions with supports in the closed set r + K c JRn. Then 
S' (r +) is defined by 

S'(f+) = U S'(r + K). 

The set S' er +) forms an algebra that is associative and commutative if for the 
operation of multiplication one takes the convolution, denoted by *. 



SOLVING LINEAR MATHEMATICAL MODELS IN MECHANICS 11 

1.1.2. Derivatives 01 a distribution. Let DOt, denote the ai-th derivative in Xi of a 
distribution. It is defined as 

Then for a = (al,"" an), DOt 1= DOtl ... DOt" I. 
We list some properties of the derivatives 01 distributions: 
1. Every distribution has all derivatives DOt, and DOt'DOti = DOti DOt', i,j = 

1, ... ,n. 
2. The differentiation of distributions is a linear and continuous mapping V' (0) _ 

V'(O). 
3. In particular, every regular distribution has derivatives of any order. In this 

sense every locally integrable function has distributional derivatives. The derivative 
of a regular distribution has not to be regular distribution. 

4. If F E Ca(O), a = (al,'" ,an), then Da[F] = [F(a)]. Moreover, if a E 
CCXl(O), then aDOt[F] = [aF(a)]. 

5. If F,G C C(O) and D",.[.FJ = [G], then there exists F~:) and F~:) = G, 
iE(l, ... ,n). 

6. Let 1] denote the function 

{
o, Ixl ~ 1, 

1](x)= exp(lxI2-1)-I, Ixl<I,lxI2=x~+ ... +x! 

and let c = JR"/(x)dx, Wk(X) = c-Ikn/(kx), Ol/k = {x ERn, d(x,O) ~ Ilk}, 
d(x,O) = infYEn Ix - yl· If I,g E 1»(0), 1 ~ p < 00 and Da[/J = [gJ, then for 
0 1 C 0 and (OI)I/k C 0, k ~ ko, IIU * §n)(a) - gIlLl'(nd - 0, n -+ 00, where 
§n = WI/n C V(O) and * is the sign of convolution. 

7. Some properties which can be useful in solving differential and partial differ­
ential equations. 

If 0 c R, 1.1 E V'(O) and Dmu(x) + Im_l(X)Dm-lu(x) + ... + lo(x)u(x) = F(x) , 
where Ii E CCXl(O), i = 0, 1, ... ,m - 1, and F E CP(O), p E No, then the solution 1.1 

is defined by a function belonging to Cm+p(O) and represents the classical solution. 
Let {§n}nEN, supp §n, n E N, belong to the compact set KeRn and [§nJ - 15 in 

V'(Rn); let also L be a linear differential operator with constant coefficients. Then 
every solution 1.1 E V'(Rn) to L(u) = ° is a limit in V'(JRn) of a sequ~nce {Uj}jEN 
of classical solutions to L( 1.1) = 0. The sequence {Uj} can be Uj = 1.1 * §j (cf. [64]). 

8. Derivatives of a regular distribution 
8.1. One dimensional case. Let I E C(P)«-oo,b)), p E No = Nu {O}, and Ha 

be a function such that Ha(x) = 0, -00 < x < a < b; Ha(x) = 1, ° ~ a ~ x < 
b. Denote by [Ha I] the regular distribution defined by Hal. Hence, [Ha/] E 
V'CC-oo,b», supp[Hal] C [a,b) or [Hal] E V'([a,b», as well as V'([a,b» = 
{TE V'(-oo,b);suppTC [a,b)}. By fJ~p)], PEN, we denote the distribution 
defined by the function I~p) equals to 1(P)(x) , x E (a,b) and equals zero for 
x E (-00, a) and is not defined for x = a. 
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Since the function (Haf)(k) has in general a discontinuity of the first kind in 
x = a, k = 0,1, ... ,p, by the well-known formula (cf. [56]) 

(1.1) 
DP[Haf] = [f?)] + f(P-l)(a)t5(x - a) + ... + f(a)t5(P-l)(x - a) 

= [J~p)] + Rp,a (f) = [Haf(p)] + Rp,a (f), 

where DP[HaIl is the derivative of order p in the sense of distributions, and (cf. [56]) 

Rp,a (f) = f(p-l) (a)t5(x - a) + ... + f(a)t5(p-l)(x - a). 

Definition 1.1. [60] Let a be a positive real number such that m-I < a < m 
for a fixed mEN. The a-th fractional derivative of a function f E C([O,oo» is 
defined by . 

'" 
f(a)(x) = 1 d!" J f(x - t)tm - 1- adt, x> 0, 

r(n - a) dxm 

o 

if this derivative exists. 

Proposition 1.1. Let a be a real number such that 0< a < 1 and let f E C«O, b)), 
f bounded on [O,e], e> 0, or, more generally, let If(x)1 ~ Mx-(fJ-a), ° < x < e, 
for an e > 0, ° < a < 13 < 1. Then: 

[J(a)(X)I(O,b)] = f(1 ~ a) D", [HO (x) j f(x - t)t-adt]. 
o 

Proof. By (1.1) . 

[J(a)(X)I(O,b)] = f(1 ~ a) D", [HO (x) j f(x - t)t-adt] 
o ., 

- r( 1 ) lim J f(x - t)t-adt 
1- a ",-+0+ 

o 

~ r(l ~,,)D. [H,(_) i f(- - ,)ead'j. 0 

'" We have to prove that lim J f(x - t)radt = 0. Let x > O. Then we have 
",-+0 0 

'" _ (2 - f3)x 1-(I3-a) J -a ( _!) 1-(13-«) 

- (1- (13 _ a))x t 1 x dt. 
o 
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Since 0 ~ t < x, 1(1 - tlx)I-(P-'Q)I < 1, 

I J:I: (x - t)-(P-Q)CQdtl ~ (2 - (3)x
1

-
P 

-+ 0 X -+ 0+. 
(1 - ((3 - 0:»(1 - 0:) , 

° 
We denote [f(Q)(x)l(o,b)] by DQ[HofJ. 

8.2. The n-dimensional case. We use the following notation: P = TI~l[ai,bi)' 
o ~ ai < bi, i = 1, ... ,n; 0 = He + P, then P C 0; H;:(x) = Hal(Xl)" . Ha .. (xn), 
Hai(Xi) = 1, ai ~ Xi < bi; Hai(Xi) = 0, Xi < ai, i = 1, ... , n. Let f be a function 
with continuous partial derivatives on 0; [H;: fJ is the distribution, defined by H';: f, 
belonging to V'(O) and to V'(P) , as well. Finally, (f:JP f la?;)ai is the function equal 
to f:JP f la?; on the intP U {x,Xj = aj, j i= i}, and equal to zero on 0 "P, but is 
not defined for Xi = ai. 

Proposition 1.2. With the notation as above, we have 

(1.2) 

where 

[ 
a,,-1 ] 

(1.3) R",ai(J) = H;: axf-t!(x)l:l:i=ai x O(Xi - ai) + ... 
• 

+ [Fa' f(x)l:l:i=ai] X oCP-l)(Xi - ai). 

Proof. The method of the proof is just the same as for (1.1). 0 

Proposition 1.3. With the notation as in Proposition 1.2, we have 

D~iD~JH::fJ = [H::::,?((~ftJai] 
:J • 

[ 
aq-l (a" ) ] 

+ H;: ax,?-1 a?;f ai (X)I:l:i=ai X O(Xj - aj) 
:J 

+ [n:: (:~f) ai (X)IZi=aJ] x O(Q-l)(Xj - aj) + D~Jlp,ai(J) . 
• 

Proof. We have only to apply D~i to (1.2). 0 

Remark. To realize D~iRp,ai we have to use (1.3). 
We illustrate the use of Proposition 1.3 by calculating the following expressions 

D:l:2Dzl[H~fJ, D~lD~2[H~fJ and D~lD~2[H~fJ. 
1) D:l:2D:l:l[~fJ. Let us start with the first derivatives. 

D:l:l[H~fJ = [H~(a:/)J +O(Xl- al) x [Ha2 (X2)f(ab X2)], 

DZ2[H~fJ = [H~(a:/) J + [Hal (xl)f(xl,a2)J x O(X2 - a2), 
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D"2D"I[H~f] = D"2 [H~(8~JtJ + 8(X1 - a1) X D"2[Ha2 (X2)f(ab
X

2)] 

= [H~ (8 88
2 

f) ) + D"1 [Hal (x1)f(X1, a2)] x 8(X2 - a2) 
Xl Xl al.a2 

_ f(a1, a2)8(X1 - a1) X 8(X2 - a2) + 8(X1 - all X D"2 [HQ2 (X2)f(a1x2)], 

( &) 8
2 

where -8 8 f = -8 8 f(x,y), (x,y) E (ab b1) X (a2'~)· 
X2 Xl at.a2 X2 Xl 

Remark. a) This formula is derived by supposing that: 

b) It follows that D"ID"2[H~J] = D"2D"I[H~f]. 
2) D~1 D~2 [H~f]. By a similar procedure as in 1) we have 

D;ID;2[H~fl = [H~(8 r8 2f) ] + D;I[HaJ(x!>a2)] x 8(1)(X2 - a2) 
xl X2 at.a2 

+ 8(1) (Xl _ al) x D~2[Ha2f(al>X2)] + D~1 [HaI8~2 f(xl,a2)] x 8(X2 - a2) 

+ 8(Xl - a1) x D;2 [Ha2 8~1 f(abX2)] - f(al, a2) (8(1) (Xl - al) X 8(1)(X2 - a2)) 

_ -88 f(ab a2)(8(1) (Xl- al) X8(X2-a2)) --88 f(al,a2)(8(xl- al) X8(1)(X2- a2)) 
X2 Xl 

82 
- -8 8 f(a!> a2) (8(Xl - al) x 8(X2 - a2)). 

Xl X2 
3) D~1 D~2 [H~fl, al = 0, b1 = 00 and 8 is Heaviside's function. 

[D~1 (::~f) J = r(1 ~ a)D"1 [H~( (::~ft2 *"1 8(xl)Xl<»] 

= reI ~ a) D"ID~2 ((H~f *"1 8(xl)Xl<») 

_ r(1 ~ a) D"1 [(H~ 8~2 f(xl, X2)\"2=Q2 *"1 8(x1)X1<»] x 8(X2) 

_ r(1 ~ a)D"1 ((H~f(Xl,X2)1"2=Q2 *"1 8(xl)X1<») x 8(1)(X2). 

9. If u, v E V'(Rn) and u * v exists, then for m = (m!> ... , mn) E NB one has 

Dm(u * v) = (Dmu * v) = (u * Dmv). 

$~ 
11"1 
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1.1.3. The converyence of a sequence of distributions. A sequence {Un}neN E 1J'(n) 
is called convergent to u E V'(n) if for every cp E V(n) the limit fun (un,cp) = 
(u, cp) exists and is finite. n-oo 

If the sequence {Un}neN C Lloc(n) converges in Lloc(n) to zero, then the se­
quence ([Un]}nEN C V'(n) converges to zero in V'(n), as well. In particular, the 
space C(n) can replace Lloc(n) in this statement (cf. [56]). 

1.1.4. Distributional-valued functions. Let no: c Rn and n t c Rm be open sets. We 
define the function won no: with values in 1J'(n t ); w: no: ~ x -+ w(x) E v'(n t ). 

Such a function w is called distributional-valued function. A distributional-valued 
function w defined on no: c R is of the class Cl if the limit 

lim<~«w(x +ee) - w(x»,cp)) 
",_0 e 

exists for every cp E Vent) where x and x + ee belong to no:, i.e. 

lim !(w(x+ee) -w(x» exists in V'(nt ). 
",-0 e 

We put by definition that in V'(n t ) 

lim !(w(x+ee) -w(x» =w~lJ)(x). 
",-0 e 

Repeating p times this procedure, we obtain the distributional-valued function of 
class CP (cf. [64]). 

1.1.5. The Laplace transform of distributions. To define the Laplace transform (in 
short LT) of distributions we start with the Laplace transform of tempered distri­
butions. The notion and definitions we will use were given in 1.1. 

If r + K is convex, as it will be in our case, then the LT of f E S' (r +) is defined 
by 

fez) = £(J)(z) = (J(t), e-zt
), z E G + iRn, 

where t = (t1, ... , tn), Z = (Zb .•. ' zn), zt = zlt1 + ... + zntn and G = intr. It is 
one to one operation. 

For the properties of so defined LT one can consult [66}. We shall cite only those 
used in the sequel: 

1) £(:;f)(Z) = (Zi)m£(J)(z) . 
• 

2) If f E S'(r+) and 9 E S'(r+), then £(J x g)(z,s) = £(J)(z)£(g)(s), 
z E G + iRn, sE G + ilRn. 

3) If f,g E S'(r+), then f * 9 E S'(r+) and £(J * g)(z) = £(J)(z)£(g)(z), 
zEG+iRn. 

4) If f E L1oc([O,oo» and is bounded in a neighborhood of zero, 0 < f3 < 1, 
n = 1, then £(J(fJ»(z) = zfJ £(J)(z). 

5) £(£5(t - to»(z) = e-zto . 
6) £(J)(z + a) = £(e-ot f)(z), Rea> O. 
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7) If f E L\oc(lR+) and If(x)1 ~ Meq." x ~ Xo > 0, then f(x)e- q., E S'(~) 
and 

J e-(z+q)t f(t) dt = J e-zte-qt f(t) dt = C(e-qt f)(z). 

R+ R+ 
Let 'H.io,~) (C), a ~ 0, (3 ~ 0, a ~ 0, denote the sets of holomorphic functions on 

C + iJRn which satisfy the following growth condition: 

If(z)1 ~ Mealzl(1 + IzI2)0/2(1 + d-~(x, 8C)), z = x +iy E C + iJRn, 

where 8C is the boundary of C and d(x,8C) is the distance between x and 8C. 
We set 

Proposition 1.4. [66, p. 1911 The algebras H+(C) and 8'(C·+) and also their 
su.balgebras Ho(C) and 8'(C·) are isomorphic. This isomorphism is accomplished 
via the LT. (C· = {t E Rnj tx = t1x1 + ... + tnxn ~ 0, \:Ix E Cl). 

A property of the defined LT which can be used in a practical way is the following: 
- Let P be the set rr~=l[ai,bi)' ° ~ ai < bi , i = 1, ... ,n. Then P is compact. 

Since ~ is a closed convex and acute cone, S' (~ + P) is well defined (see 1.1.1). 
- Let f E S'(~ + P). The LT of f, C(!), can be obtained by subsequent 

applications of the LT-s C1(f), ... , Cn(f), C(!) = C1(f) 0'" 0 Cn(f). 
- Ifq ~ 0, f ES'(C·+) andg = eD't f, then by definition £(g)(s) = (f(t), e-(s-D')t}, 

Res> q. 

- Let F(s) be a function holomorphic for Res > q. The function F(~ + q) is 
holomorphic for Re e > o. If F(~ + q) E 'H.(~), then there exists f E S'(iI4) such 
that C(eD't!)(s) = F(s). 

H. Komatsu defined the Laplace transform for any hyperfunction (cf. [33]). The 
same idea we use to define the Laplace transform for a large class of distributions. 

Let A be the vector space: 

A = {T E ewts'(~ + P); suppT c HR;. + P)" p}}, wE JR, 

where ewt = ewt1 ... ewt". A is a subspace of ewtS'(R;. + P). We can define an 

equivalence relation in ewts'(~ + P) by f '" 9 <=> f - 9 E A. Let B denote 

B = ewts'(~ + P)/A, bE B <=> b = class(T) == d(T), T E ewts'(~ + P). 

Definition 1.2. [601 Let V'(P) denote the space of distributions defined on P. 
Then 

V~(P) = {T E V'(p)j3T E ewtS'(~ +P)),Tlp = T}, 
where Tip is the restriction of T on P. Since V' is not a flabby sheaf, V~(P) f= 
V'(P). 

Proposition 1.S. ~(P) is algebraically isomorphic to B. 
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Proof. If T E V~(P), then there exists T E e",tS'(H4 + P) such that Tip = T. 
We can define the mapping>. : V'",(P) -+ B, for T E V'",(P), >.(T) = cl(T) E B. 
The inverse mapping >.-1 exists and >.-l(cl(T)) = Tip = T E V'(P). T does not 
depend on the chosen element from cl(T). If we take an other representative T1 of 
the clCT), then T1 = T + S, SE .4.. Then T11p = Tip. Now it is easily seen that >. 
is an algebraic-isomorphism of two vector spaces. 0 

Definition 1.3. The LT of elements in D~(P) is defined by 

.c(V~(P)) = .c(e",tS'(R:. + ]5))/.c(.4.). 

If T E D~(P), then L(T) = cl(LT), where T is such that Tip = T. 

Remark. Let Hp be the function Hp(t) = 1, t E P, H(t) = 0, tERn '- P. Then: 
a) If f E Lloc(iR+), then the regular distribution [Hpf] defined by Hpf belongs 

to V~(P) and f has the LT in the sense of Definition 1.3. 
b) If f E e"'t S' (iR+ + P +) and 9 E .4., then f * 9 E .4., as well. 

1.1.6_ Extension of a distribution. We know that there exist distributions defined 
on an open set 0 which can not be extended to an open set 0 1 :::> O. This is 
a consequence that V' is not a flabby shief. There are theorems which give the 
conditions for the extendability. We cite one such theorem we use in the sequel: 

Proposition 1.6. [64] Let T be a distribution on a bounded open set 0 C Rn and 
let 0 1 :::> 1'2. Then T is extendable to 0 1 if and only if there exist constants C and 
kENo satisfying I(T, cp}1 ::::; C 2: lim Icp(c)(x)1 for cp E V(O). 

Icl~kzER" 

1.2. The space of hyperfunctions. 

1.2.1. Notation and definitions. The space of hyperfunctions was introduced by M. 
Sato (cf. [52], [53]) in 1958. By H. Komatsu's opinion ([32]), the idea of hyperfunc­
tions has been employed most successfully since a long time ago. He cited some 
examples from mathematics and physics, to prove it. 

The theory of hyperfunctions in many variables calls for deep results in algebraic 
topology (cf. [32], [53]). But if one restricts oneself to the one dimensional case, 
this theory is of easier access. Fortunately we need only this theory of one variable. 

Let 0 be an open set in R and V an open set in C containing 0 as a relatively 
closed set (0 is a closed subset of V). Let V(V) denote the space of holomorphic 
functions on V. Then hyperfunctions on 0 are by definition the elements in the 
quotient space B(O) = V(V '- O)/O(V). If FE O(V'- n), then we denote by [F] 
the class of F; F is called a defining function of the hyperfunction [F]. 

The definition of B(O) does not depend on the choice of the complex neighbor­
hood ofV. 

B is a flabby sheaf. Consequently, if 0 1 is an open subset of n, then any hy­
perfunction f E B(Ol) can be extended to an j E B(n). This is a very important 
property of B. Distributions have not this property. That is the reason for Defini­
tion 1.2. 
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B(O) contains C(O), Lloc(O), 1>'(0), the space of real analytic functions on 0, 
ultradistributioris on 0.... One can find in [32] what conditions has to satisfy 
the defining function F of an hyperfunction I = [F] so that I belongs to some 
subspaces of B(O). 

Let 0 = (-00, b) and -00 < a < b; then the space ofhyperfunctions with support 
in [a, b) is B[a,b) = O(C.,<b" [a,b))/O(C.,<b), where C.,<b = {z E C; Rez < b}. 

1.2.2. The space of Laplace hyper/unctions and their Laplace transform. Let 0 be 
the radial compactification of the complex plane and V an open set in O. O'xP(V) 
the space of functions F on V such that F is holomorphic on C n V and on each 
compact set K c V, IF(z)1 ~ CeH1z1 , z E K n C, with constants Hand C. The 
space B['::c.,j of Laplace hyperfunctions with support in [a, 00] is defined by 

B[:oo] = oexP(O" [a,ooj)/OexP(O). 

An I E Br:,~] is represented by F E oexp(O" [a, 00]), I = [F] = {F + G; G E 

oexp(o)}. The Laplace transform C/(f.) of an f = [F] E B[':'oo] is defined by 

Cf(f.) = f e-ez F(z) dz E CBi'::c.,l' 
L 

where L is a path composed of a ray from e: to a point c < a and a ray from c to 
e:e with -1r /2 < a < (3 < 1r /2. 

Proposition 1.7. [33] The Laplace transformation C is an isomorphism Bi::.~] -+ 

CBe
[ xp ]' where lBex[ p ] is the space of all holomorphic functions j(f.) of exponential 
B,OO a,oo 

type defined on a neighborhood 0 of the semi-circle S = {e~; hi < 1r /2} in 0 such 
that 

(1.4) 
_ 1 A. 

lim -loglf(pe''Y)1 ~ -acos,)" hi < 1r/2. p_oo p . 

If j(f.) E CB;'~l' then a defining function F(z) of its inverse image I is given by 
the integral 

F(z) = -2
1 .100 

eez f(f.) df., 
1r~ So 

where So is a fixed point in 0 and the integral part is a convex curve in O. 

The restriction mapping oexp (0" [a, 00]) -+ O(C.,<b" [a, b)) induces a natural 
mapping w : B[':'oo] -+ B[a,b) which is surjective, but not injective. It has been 
proved (cf. [33]) that w is surjective and 

B[a,b) ~ B[':,~/Bi~)· 
Consequently, 

(1.5) .cB[a,b) ~ .cI1a',1] / .cB!r'ooj· 
If 9 E B(a,oo), then Cg = [Cg] = {ll1 + Ch; h E B[':'~]}, g E Bi::.~1' 11 E w- 1(g). 
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Let Lf::([O,oo» denote the ·space of locally integrable functions q on [0,00) 
satisfying Iq(x)1 ~ CeH"" HER, x ~ O. We write 9q for the element in B[o,oo) which 
corresponds to q. Then the classical Laplace transform of q, £q(s) = Iooo e-stq(t)dt, 
belongs to iBi;'~] (by Proposition 2.1) and iq may be regarded as the Laplace 

hyperfunction for which i8q(f.) = £q(f.); 8q is an extension of 9q on [0,00]. Here 9 
stands for the Heaviside function. 1 1 

T~e delta distribution 0 imbedded in B[;,~] is 0 = [- 21ri -;] and with the 
notation 

o(a)(x) = {DaO(X), a = 0,1, .. . 
x:j:a-1 Ir( -a), a =1= 0,1, ... , a E lR+ 

where x:j:a-1, a > ° is the distribution with support in IO,oo) and x:j:a-1 = x-a- 1, 
X > 0, then lo(a)(f.) = f.a , a E ~ U {O} and i(o(x - xo»)(f.) = e-o:oe , Xo > o. 
If l,g E Lloc([O, 00», then 91 * 9g = (91) * (9g) 1(-00,00) = 9(1 *g). Here 1 * g = 

J; l(t - r)g(r) dr is the convolution. 

1.2.3. Final comments. Let us remark the following facts which concern the hyper­
functions: 

1. It is a very large space containing the most interesting functions and gener­
alized function spaces. 

2. The Laplace transform of hyperfunctions is defined by (1.5), for hyperfunc­
tions having an arbitrary growth order. Specially, every locally integrable function 
on [0,00) has the Laplace transform in this sense. 

3. The space iB['::"'] has been characterized by (1.4). 

4. The Laplace transform i is a generalization of the classical one. If 1 E 

L1oc([0,00» and has a classical Laplace transform j(s), then it has il(s) and 
il(s) = j(s). 

5. The properties of i are the same as the properties of the Laplace transform 
of tempered distributions cited in Section 1.1.5. 

At the end we mention that H. Komatsu extended the theory of Laplace hyper­
functions to the hyperfunctions having values in a complex Banach space (cf. [36]) 
and applied it to find solutions to some partial differential equations using the 
theory of semigroups. 

2. Mathematical models of some elastic and viscoelastic rods 

In this Section we shall derive equations corresponding to lateral motion of elastic 
and viscoelastic rods with different boundary conditions, which will be treated in 
Section 3 or are treated in some of our papers listed in the References. 

2.1. Elastic axially loaded rod. Consider a rod shown in Figure 1. We shall 
consider in-plane motion of the rod. Let if - B - jj be a rectangular Cartesian 
coordinate system with the origin fixed at the point B of the rod. 

The rod is simply supported at end B and connected to the moving support at 
end C. At the end C the rod is loaded by an axiallorce F having fixed direction and 
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x 

FIGURE 1. Coordinate system and load configuration 

of intensity F(t) that may be a function of time. Also the rod is loaded by distributed 
forces of intensity q(S, t) per unit length of the rod axis in the undeformed state. 
We further assume that the rod is initial straight and that its length is L. Let S 
be the arc length of the rod axis. We consider an element of the rod of length dS 
in the undeformed state. In the deformed state the length of this element is ds, so 
that 

(2.1) 
ds-dS 

e= dS 

is the strain of the rod axis. We shall use S as the independent space variable, 80 

that S E [0, L}. In an arbitrary section of the rod the contact force Q and the 
contact couple M represent the influence of the part 10, S) on the part (S, L) of the 
rod. Let Q =H el + Ve2 and q(S, t) = q.,el +qye2 where el and e2 are unit vectors 
along the x and fj axis, respectively. Then, the equilibrium equations, written in 
the deformed configuration, for and element of the rod of the length dS in the 
undeformed state read 

8H 8V 8M 8x 8y 
(2.2) 8S =-q." 8S =-qy, 8S =-V 8S+ H 8S- m , 

where m denotes the intensity of the distributed couples along the length of the 
rod. To equations (2.2) we adjoin the following geometrical conditions 

8x 8y. 
8S = (1 + e) cos 19, 8S = (1 + e) sm 19, 

where 19 is the angle between the tangent to the rod axis at an arbitrary cross 
section and x axis. 

Next we formulate the constitutive equations. We neglect the influence of the 
shear stresses so that the cross section of the rod that is orthogonal to the rod axis 
in the undeformed state is orthogonal in the deformed state too (for more general 
rod theories that take into account the influence of the shear stresses see [2), for 
example). Then, the strain measures are 819/8S and e. Note that 819/8S is not the 
curvature", of the rod axis in the deformed state. Indeed, let s be the arc length 
of the rod axis in the deformed state. Then the curvature is ", = 819/8s, so that 

819 819 
8S = 8s (1 + e) = ",(1 + e), 
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where we used (2.1). We treat materially linear rod so that the contact couple 
is proportional to 819/ 8S and the strain of the rod axis e is proportional to the 
component of the contact force in the direction normal to the cross section in 
the deformed state (i.e., in the direction of the tangent to the rod axis). Let 
t = cos 1ge1 + sin 1ge2 be a unit tangent to the rod axis. Then the component of Q 
in the direction of t is N = V cos 19 + H sin 19. With this, the constitutive equations 
that we use are 

(2.3) 
d19 N V cos {} + H sin 19 

M=El dS ; e= EA = EA 

In (2.3) E is the modulus of elasticity of the material of the rod, A is the cross­
sectional area and I = fA TJ2dA is the second moment of inertia of the cross section 
with respect to the principal axes of the cross section passing through the center of 
gravity. The constants El and EA are called bending and extensional rigidity of the 
rod, respectively. We note that for the case of a rod with variable cross section both 
El and EA become functions of the arc length S. The constitutive equations (2.3) 
were given by Pfiiiger [45]. Note however that (2.3h does not have the important 
property that N ...... 00 as e ...... -1. Thus, (2.3h is valid only for e > -1. There are 
several generalizations of (2.3h that satisfy the property N ...... 00 as e ...... -1. For 
example, in [37] the relation 

e3 

N=EA-
1
-, 
+e 

was proposed, with EA > 0 being a constant. In [1] more complicated relation 

(2.4) EA ( 1) 
N= 1+'Y e+1- (e+1)"Y , 

with'Y> 0 was proposed. For e small, i.e., lel « 1, the normal force N obtained 
from (2.4) is of the form N = EAe + O(e2), that is (2.4) approximates the Hooke's 
law in the limit when lel ...... O. For further discussion on (2.3h see [2] and [39]. We 
shall use (2.3h but with the restriction 

(2.5) e> -1. 

Finally we define qx,qy and m. By using the D'Alembert's principle (active and 
inertial forces and couples are in equilibrium) we shall add to the active distributed 
forces and couples the inertial terms and obtain from the system (2.2)-(2.3) equa­
tions of motion of the rod. Thus, we assume that 

(2.6) 

where p is the mass density of the rod (mass of the rod per unit length of the rod 
axis in the undeformed state), J is the moment of inertia of the rod cross-section, 
q~res., q~res. are prescribed values of the distributed forces along the x and ii axes 
respectively and mpres. is the value of the prescribed distributed couples. 

With (2.6) we can write the complete system of equations describing in plane 
motion of an elastic rod with extensible axis 

8H _ 82x pres .. 
8S - p 8t2 - qx , 
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av lFy . 
as = -p &t2 + q~res'i 

aM =-V(l VCOS{J+HSin{J) .0 as + EA cos V 

H (1 V cos{J + H sin {J) '.0 J a
2

{J _ pres .. + + EA sm·v + at2 m , 

(2.7) .ax = (1 Vcos{J+Hsin{J) {J. as + EA cos , 

ay = (1 V cos{J + H sin{J) . {J. as + EA srn , 

8{} M 
as = El' 

To the system (2.7) we must add the boundary conditions. For the rod shown 
in Figure 1 those conditions read 

(2.8) 

H(L,t) = -F, M(O,t) = 0, M(£,t) = 0, 

x(O, t) = 0, y(O, t) =0, y(L, t) = 0. 

We define as a trivial solution the solution of (2.7), (2.8) in which the rod axis 
remains straight. Suppose that q~res'(S,t) = q&res'(S,t) = mpres'(S,t) = 0. It is 
easy to see that the trivial solution of (2.7),(2.8) is1 

HO(S,t) = -F, VO(S,t) = 0, MO(S,t) = 0, 

XO( S, t) = (1 - :A) S, yO( s, t) = 0, {J°(S, t) = 0. 

We study the disturbed motion of the trivial state. Thus, let us denote by LlH(S, t), 
... ,Ll V(S, t),. " ,bo{J(S, t) the perturbations of the variables HO(S, t), '" ,bo{JO(S, t) 
describing the trivial configuration. Then for the disturbed state we have 

(2.9) 

H(S, t) = HO(S, t) + boH(S, t), 

V(S,t) = VO(S,t) + LlV(S,t), 
= .............. . 

{J(S, t) = {J°(S, t) + bo{J(S, t). 

By substituting (2.9) into (2.7) and neglecting the higher order terms in LlH(S, t), 
... , Ll{J(S, t) we obtain 

aboH a2 Llx 
-as =p &t2 ' 

aLlV a2 Lly 
as =-Pfii2' 

aboM = -LlV(l-~) _ F(l- ~)Ll{J + J a2bo
{J 

as EA EA at2 ' 

lNote tha.t (2.5) requires tha.t F < EA 
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aflx ( 1 .) 
(2.10) as = 1 - EA ' 

afly ( F ) 
as = 1 - EA fltJ, 

afltJ flM 
as = El· 

The system (2.10) could be simplified if we assume that we can differentiate the 
functions involved. Thus, by differentiating (2.10h with respect to S and by using 
(2.10h and (2.10)s,6 we obtain 

{}4fly a2 y 1 {}4fly ( F ) a2 fly 
(2.11) El 8S4 + F aS2 - J (1- Fj EA) 8S2at2 + p 1 - EA at2 = 0, 

subject to 

(2.12) fly(O, t) = 0, fly(L, t) = 0, 
a2 fly 
aS2 (0, t) = 0, 

We write next the system (2.11), (2.12) in the dimensionless form. By introduc­
ing the following quantities 

S flY.2 I e=-, U=-, ~ =-, 
L L A 

L 
JI. = -:-, 

I 

_ FL2 _ (EI)1/2 J 
(2.13) >. - El' r - t pL4 ' a = pP' 

the system (2.11), (2.12) becomes 

{}4u 82u a {}4u ( >. ) a2u 
(2.14) ae4 + >. a~ - (1 _ >.j Jl.2) 8e28r2 + 1 - Jl.2 ar2 = 0, 

r> 0, 0 < e < 1, 

and 

(2.15) u(O, r) = 0, u(l, r) = 0, 

Equation (2.14) reduces to several special cases well known in mathematical physics. 
For example, suppose that we neglect compressibility of the rod axis. Then EA -.. 
00 and i 2 -.. 0 (see (2.13h) so that in this case the parameter JI., called slenderness 
ratio, tends to infinity Le., JI. -.. 00. By using this, from (2.14) we obtain 

{}4u &u {}4u a2u 
(2.16) ae4 +>'ae2 -aae2 8r2 + ar2 =0, r>O, O<e<1. 

Equation (2.16) is valid for long and thin rods. Suppose further that the rotary 
inertia term is small Le., J -.. o. In this case a -.. 0 and the equation (2.16) 
becomes 

(2.17) 
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Note that the parameter>. could be constant or a function of time. The most 
interesting cases are 

(2.18) >. = A +B8(7 -70), >. = A+ Bsin07, 

where A, B, 70 and 0 are constants and 8(7) is Dirac distribution. 
Finally, for the case when the axial force is equal to zero, i.e., >. = ° equation 

(2.17) becomes 

(2.19) 

Equation (2.19) is a well known equation of lateral vibrations of an elastic rod, 
without the axial force. 

We mention here a model, similar to (2.16) with>' = ° recently proposed in [49J 
and [50]. It reads (in our notation) 

EJ4v. (1311. 82 11. 
8~4 - Ot 8~287 + 872 = 0; 7 > 0, ° < ~ < 1. 

In physical terms, the model (2.19) has the damping proportional to the rate of 
change of the curvature of the rod. No derivation (or further physical explanation) 

of the term -Ot 8~~7 is given in [49J and [50J. However it is stated that this new 

model has good mathematical properties. Some of those properties are examined 
in [28J. 

To each of the equations (2.16), (2.17), (2.19) the bov.ndary conditions such as 
(2.15) should be adjoined. For the sake of completeness we list here other, frequently 
used, boundary conditions: 

• Left end clamped, right end free 

8v. 82 11. 8311. 
11.(0,7) = 0, 8~ (0, 7) = 0, 8~2 (1,7) = 0, 8~3 (1,7) = 0. 

• Left and right ends simply supported 

8211. 
11.(0,7) = 0, 8~2 (0, 7) = 0, 11.(1,7) = 0, 

• Left end clamped, right end simply supported 

11.(0,7) = 0, 
811. 
8~ (0,7) = 0, 11.(1,7) = 0, 

8211. 
8~2 (1,7) = 0. 

• Left end clamped, right end clamped and free for axial movement 

811. 811. 811. 
11.(0,7) = 0, 8~ (0, 7) = 0, 8~ (1,7) = 0, 8~ (1, 7) = 0. 

• Left end clamped, right end loaded by a follower force 

8v. 8211. 8311. 
11.(0,7) = 0, 8~ (0, 7) = 0, 8~2 (1,7) = 0, 8~3 (1,7) = 0. 
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y 

FIGURE 2. Elastic rod on a viscoleastic foundation 

• Left end clamped, right end welded to a movable rigid plate (free for a 
transversal movement) 

U(O,T) = 0, 
8u 
ae (I, T) = 0, 

fJ3u 
af.3 (I, T) = O. 

We note that (2.17) for the rod with >. = const and with different boundary 
conditions was analyzed in many publications (see [2] for references). Equation 
(2.16) with the boundary conditions corresponding to a simply supported rod and 
with>' (t) of the form (2.18) is treated, recently, in [63]. 

2.2. Elastic axially loaded rod on elastic and viscoelastic foundation. We 
consider an elastic axially compressed rod on a special type of foundation, shown 
in Figure 2. 

The foundation is such that it produces a distributed force f in the vertical 
direction, along the rod so that q~res. = f(S,t). The function f(S,t) is determined 
by the constitutive equation of the foundation. For example, if 

(2.20) f = -cy, 

then foundation is called Winkler foundation. By substituting (2.20) into (2.7) and 
performing the same steps as before, we obtain instead of (2.14) and (2.15) the 
following equation 

fJ4u a2u Cl fJ4u ( >. ) fJ2u 
(2.21) 8f.4 + >. 8f.2 - (1 _ >.j J.l.2) ae2fJr2 + 1 - J.l.2 aT2 +,Bu = 0, 

T> 0, 0 < e < I, 

subject to 

(2.22) U(O,T) = 0, 
fJ2u 
ae2 (0, T) = 0, u(l, T) = 0, 

In (2.21) the constant,B is given as,B = eL3/El. In Section 4 we shall analyze the 
system (2.21), (2.22) for a special case when the rod is thin and long. In this case 
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a = JlpL2 
-+ 0 (see (2.13h). Also since the second moment of inertia I and the 

cross sectional area are connected as I = cAm, where c > 0 and m > 1 we have 
(see (2.13h) that the radius of gyration becomes i 2 = cA. Thus for thin and long 
rods i 2 -+ 0 and JJ. = t -+ <Xl so that (2.21) becomes 

[J4u 82u 82u 
(2.23) 8f,4 +.>. 8e + 8r2 + f3u = 0; 7" > 0, 0 < f, < 1. 

Often foundation is made of viscoelastic material. In this.case the functional 
relation between f and y is more complicated than (2.20). For example in rail 
track problems (see [23]) the following type of viscoelastic foundation is used 

(2.24) f + 7"Qf(a) = E{y + 7"yy(a») , 

where E p , TQ, Ty and 0 < a < 1 are constants. In (2.24) we used o(a) to denote 
the a-th derivative of a function (-) taken in Riemann-Liouville form as (see [42], 
[51] and Definition 1.1 in Section 2) . 

~ t) _ (a) = d 1 rt g(f,) ~ = d 1 t get - f,) df, 
dtag( - g - dt f(1- a) Jo (t - f,)a dt r(l- a) Jo f,a . 

The dimension of the constants Ty and 7"Q is [time]a. The constants Bp, TQ and Ty in 
(2.24) are called of the pad and the relaxation times, respectively. We assume that, 
as a consequence of the second law of thermodynamics, the following inequality, is 
satisfied (see [11] and [3]? 

(2.25) E> 0, 7"Q > 0, Ty > TQ. 

Now, by introducing new dimensionless function F = f IEL the system (2.23), 
(2.24) becomes 

84u 8 2u . a [J4u ( A ) 82u 
(2.26) 8f,4 + A 8f,2 - (1 _ AII'2) 8f,28r2 + 1 - 1'2 8r2 + F = 0, 

where 

(2.27) 

subject to 

T > 0, 0 < f, < 1, 

F+aF(a) =u+bu(a), 

u(O, t) = 0; u(1, t) = 0; 

and with the restriction b > a > 0, following from (2.25). The system (2.26),(2.27) 
in the special case a = 0 was analyzed in [6]. 

Another important case is the case of an elastic rod on viscoelastic foundation 
loaded by a concentrated force at the free end (see Figure 3). The follower type 
concentrated force is a force having (in our case) constant intensity and the direCtion 

2If one uses a rheological model shown under the rod in Figure 2. then the constants in (2.24) 
are given as E = E l E 2 /(El + E2 ). TQ = p/(El + Eh). TV/E = pEh/(El + Eh) (see [54]. [44]). 
Here El. Eh are spring constants and p is the characteristic of a "springpot" an element whose 
stress-strin law is given as q = pe (a) . 



SOLVING LINEAR MATHEMATICAL MODELS IN MECHANICS 27 

FIGURE 3. Elastic rod on viscoelastic foundation with the follower force 

coinciding with the tangent to the rod axis at the point of application of force. For 
the case of an elastic rod with follower force and without foundation (the so called 
Beck's rod) there exists lot ofresults, some of them presented in [2] and [17]. 

The differential equations of the problem, for the" rod shown in Figure 3, may be 
obtained by the same procedure as those used deriving (2.26) and are (see [8]) 

(2.28) 

and 

(2.29) f + aj<a) = u + bu(a) , 

with ° < et < 1. The boundary conditions are 

8u B2u 
(2.30) u(O, r) = 0, 8f. (0, r) = 0, 81;.2 (1, r) = 0, 

(J3u 
81;.3 (1, r) = 0, r > 0. 

The problems of existence and stability of the solution to (2.28)-(2.30) were treated 
in [8]. The conclusion about stability of the system (2.28)-(2.30) i.e., the condition 
that guarantees that the solution u(f., r) is bounded when T -+ 00 is very interesting. 
Namely, it is shown that the critical value Acr of the parameter A (the rod is stable 
if A ~ Acr) does not depend on parameter {3. Thus, the viscoelastic foundation 
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does not increase the stability bound! This is known to hold for elastic column 
with follower force on elastic foundation and constitutes the so called Herman­
Smith paradox. In [8] it was shown that the same holds when elastic foundation is 
replaced with the viscoelastic foundation of fractional derivative type described by 
(2.29). 

Finally we mention the problem of determining stability boundary of an elastic 
rod with rotary inertia positioned on viscoelastic foundation. In this case the 
problem is described by the system of equations (2.26), (2.27) with a -I O. The 
stability analysis and properties of the solution are examined in [9). 

2.3. Viscoelastic axially loaded rod. We consider a special type of viscoelastic 
rod made of material described by fractional derivatives of a strain. Suppose that 
the rod is made of a material whose stress-strain relation is of the form (2.24). This 
model is known as the generalized Zener model (see [11], [3], [54]) 

(2.31) u(t) + T"ri/ u(t) = Eo [s(t) + TeDrS(t)] , t ~ 0, 

where r", {3, Eo, re and a are real constants. We note that (2.31) is a special case of a 
stress strain relation treated in [5], [7]. By using the plane cross-section hypothesis 
[2] we conclude that the strain in an element of the cross-section that is on the 
distance z from the neutral plane is Sz = zlr = (8-o18S) z. Thus, by multiplying 
(2.31) by z and integrating over the cross-section of the rod A, we obtain 

(2.32) fJ [M aM] M(t) + r"Dt M(t) = EoI 8S + reDt 8S ' 

where I is the second moment of inertia, i.e., I = fA z2dA. For the linearized 
version of the system (2.32) we can substitute EM I 8S with 82y I 8S2 so that (2.32) 
becomes 

(2.33) 

Equation (2.33) with T" = 0 was used in [10] and in its general form (2.33) in [38] 
and [4]. 

By substituting (2.33) in (2.10) we obtain 

82 fit 82u 82u 
8(2 + >. 8e2 + 8r2 = 0, 

(2.34) 

subject to 

fit(O, T) = 0, fit(l, r) = 0, u(O, r).= 0, u(l, T) = O. 

In (2.34) we used the following dimensionless quantities 

u= i, m= A::IL, T=tJ:li, 
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(2.35) S '(IEO)CI./2 e = L' J1. = Tq pL4 ' (
IEo)CI./2 

J1.1 = TE pL4 . 

The second law of thermodynamics requires that J1.1 > J1.. 
An important generalization of (2.31) represents the so called five-parameter 

model of viscoelastic body studied in [46] and [48]. Suppose we use constitutive 
equation connecting the stress rr and strain s in the form 

rr .. (t) + TqD~rr .. (t) = Eo fs + TED~s + T-,D-'s]. 

The plane cross-section hypothesis, together with the linearization of the expression 
for curvature, leads to 

(2.36) M(t) + TqD~ M(t) = EoI (;:~ + TED~ ;:~ + (rEP/Cl. Dj ;:~]. 
The second law of thermodynamics in the case (2.36) requires that (see [l1J, [3], 
[46J and [7]) 

(2.37) -y> a; T .. > Tq > O. 

Introducing a dimensionless quantities (2.35) and 

(
IEO)-,/2 J1.2 = (J1.1P/CI. = (T .. P/CI. - , pL4 

we obtain, instead of the system (2.34), the following system of partial differential 
equations of integer and fractional order 

a2m a2u a2u 
ae2 + >. ae2 + 8r2 = 0; 

a2u a2u a2u 
ae +J1.1D'; ae2 +J1.2D; ae2 -m -J1.D';m = OJ T> 0, 0 < e < 1, 

with the boundary conditions m(O, r) = 0, m(l, T) = 0, u(O, r) = 0, u(l, T) = O. 
The thermodynamic restrictions (2.37) become 

J1.1 > J1.; -y ~ a. 

We note that in all cases formulated up to now, the dimensionless axial force.A can 
have both constant and time dependent part. For the case when an axial load is 
constant equal to Band additional load D is applied suddenly, at the time instant 
TO, we have .A = B + CO(T - TO). Also if we have constant axial force and at the 
time instant TO an impulsive force is applied the axial force .A in this case is given 
as .A = B + DO(T - TO), where D is a constant. 

Finally we present one more generalization of (2.31) and the corresponding con­
stitutive equation for moments. Suppose that the stress strain relation is given in 
the form of so called distributed derivative model (see f5]) 

11 q,q(-y)rr(-,)d-y = 11 q,EC'Y)s(-,)d-y, 
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where <Ptr(-y) and <PE('Y) are known functions that are determined from experiments 
(constitutive functions). Then, the plane cross-section hypothesis and the proce­
dure used in deriving (2.32) and (2.36) leads to the constitutive equation for the 
bending moment in the form 

11 11 (82y )(-y) 
o <ptr(-y)Mb>(t)d'Y=l 0 <PE('Y) ae2(t) d'Y, 

where 1 is, again, the second the moment of inertia of the rod cross-section A. 
The restrictions that the functions <Ptr('Y) and <PE('Y) must satisfy in order that the 
second law of thermodynamics is not violated, are derived in [7J. 

3. Generalized solutions to some partial differential equations 

3.1. Equation in a space of generalized functions which corresponds to a 
partial differential equation. We denote by 0 an open set belonging to R2. Let 

(3.1) P(8)u(x,t) = f(x,t), (x,t) E 0, f E C(O), 

be a linear partial differential equation with coefficients belonging to COC(O). To 
equation (3.1), by the property 4 of the derivative in V/CO) (cf. Section 1, Subsection 
1.1.2), it corresponds in V/CO) the equation 

(3.2) P(D)[u(x, t)J = [f(x, t)J. 

If there exists a solution u(e, t) to (3.1) such that u E CP(O), where p = (Pl,P2) 
is the degree of the equation (3.1), this solution is called the classical solution. A 
classical solution defines a distribution (regular) which is a solution to (3.2). If the 
solution to (3.2) is not defined by a function from CP(O) it is called generalized 
solution to (3.1). Conversely, if a solution w to (3.2) is the regular distribution 
[u(x, t)J, where u(x, t) E CP(O), then u(x, t) is a solution to (3.1). In this paper we 
use the so defined notations of a generalized and classical solution to (3.1). 

Which generalized solution can be used depends on every concrete case. We are 
here interested in those mathematical models which are coming from mechanics. We 
are also going to point at the possibility to use the classical results in construction 
of a generalized solution. 

We will not give a general theory, but illustrate it by some special cases in 
which generalized functions can improve the classical results or methods. However, 
there is a general procedure which will be conducted in solving equations to obtain 
classical and generalized solutions. It is the following: 

First we find the equation (3.2) in V'(O) which corresponds to the given equation 
(3.1). Then we apply certain methods to solve such equation (3.2). Usually these 
methods in V'(O) are less restrictive than the methods in spaces of numerical 
functions. 

If we find a solution u to (3.2), then it can happen that it is defined by a function 
u(x, t), u = [u(x, t)J. This function u(x, t) can belong to CP(O) and consequently be 
a classical solution to (3.1). AL'Io it can belong to cq(O), 0 ~ q < P, or to L1oc(fl) 
and then u represents a generalized solution to (3.1). But in this case we can see 
why u(x, t) can not be a classical solution to (3.1). Sometimes having generalized 
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solutions to (3.1) we can construct the classical ones as well. For example, let 
P(D) in (3.2) be with constant coefficients, n = ]R2 and I = o. Suppose that 
u is a solution to such homogeneous equation (3.2). Then u is a limit in V'(JR2) 
of a sequence {Uj}jEN of classical solutions to (3.1) with I = O. Let {OJ} be a 
o-sequence, (OJ E V(JR2) and OJ converges to ° in V'(JR2)). Now, the sequence 
{Uj}jEN can be {U*Oj}jEN (cf. [64, p. 243]). 

3.2. Construction of solutions by using fundamental solutions. We have seen 
in Section 3.1 that to a linear partial differential equation 

(3.3) p(a)U(x, t) = I(x, t), (x, t) C JR2, lE C(JR2), 

with coefficients belonging to coo (]R2), it corresponds in V'(JR2) the equation 

P(D)[u(x, t)] = [/(x, t)]. 

A distribution E E V'(JR2) is called a Iundamental solution of the operator pea), 
by definition, if it satisfies the equation p(a)E = o. If I in (3.2) is such that the 
convolution E * [I(x, t)] exists and the operator P has constant coefficients, then 
W = E * [I(x, t)J is a solution to (3.2). In that case W is a generalized solution to 
(3.3) belonging to V'(lR?). In the mathematical literature one can find fundamental 
solutions for different differential operators. (cf. for example [43]). 

As an illustration we consider the equation 

(3.4) 

which appears in mathematical models for many different phenomena subject to 
different boundary and initial conditions (cf. Section 2 (2.1.18)). 

It is well known that a solution to (3.4) is u(t,~) = YWT(t), where Y and T 
have the analytical from: 

(3.5) Y(~) = Cl cosh rl~ + C2 sinhrl~ + C3 cosr2~ + C4 sinr2~ 

(3.6) T(t) = Cs cos wt + C6 sin wt, w2 E JR+, 

where 

J ..,1).2 + 4w2 -). J ..,1)..2 + 4w2 +).. 
rl = 2 ,r2 = 2 ' 

(cf. [2]). For w any complex number (cf. [2], [55]). 
To find generalized solutions to (3.4) belonging to V'(JR2) we have first to find the 

equation in V'(JR2) which corresponds to (3.4). In fact we seek for the corresponding 
equation in V'(iR+ x JR), because this space is more suitable to find a fundamental 
solution. 

Suppose that there exists u(t,~) E C~2) (JR+, JR) such that: 
1. u(t,~) is a solution to (3.4); 
2. There exist lim u(t,~) = ul(~)E C(JR), lim uP)(t,~) = U2(~) E C(JR). 

t-O+ t-O+ 
Let fOul denote the regular distribution defined by the function O(t)u(t, ~), where 

o is the Heaviside function (O(t) = 0, t < 0; O(t) = 1, t ~ 0). By the property of 
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derivatives in 1)' (cf. 8 in Section 1.1.2), to (3.4) there corresponds in 1J/(R+ xJR) C 
1J'(JR2) the following equation: 

(D~ + AD~ + Dnii = [Ul(e)] ® 5(1)(t) + [U2(e)] ® 5(t), 

or 

(3.7) (D; + P(DE»ii = I, 
where P(DE) = D~ + AD~, 1= [Ul(e)] ® 5(1)(t) + tU2(e)] ® 5(t) and ii E 1J'(JR2). 
We seek for solutions to (3.7) with the property suppii C ~ X JR. 

By the lemma in [43, p. 30], the operator Dl + P(DE) is quasihyperbolic with 
respect to t if and only if the following condition is satisfied: 

3c> 0, dE JR, Ve E JR : Re p(ie) - c(ImP(ie))2 ~ d. 

In our case p(ie) = e4 - Ae2. For every e E JR, ~ - ~2 ~ - A2 /4. Consequently 
the operator m + P(DE) is quasihyperbolic. 

By Proposition 5 in [43, p. 32] the unique fundamental solution E of Dl + P(DE) 
with support in R+ x JR and E E eatS' for an a E JR is given by . 

E(t ) = H(t):F.-1(Sin (tv'P(211"iX))) (t ) , e ., v' P(211"ix) , e , 
where ;:-1 is the inverse Fourier transform. 

Using Bochner's formula (cf. [56, VII, 7, 22], or [43, p. 19]) 

E(t, IW = H(t)211"Iel l/2 100 sin (tv'P(~1I"iX)) Xl/2 L l / 2(211"Ielx ) dx, 
v'P(211"~x) 

o 

. 1 cos 21l"lelx 
where Ju is the Bessel function. Smce L 1/ 2(211"Ielx ) = - ,Ii;;c' we have 

11" vlelx 

E(t, e) = 2H(t) 100 sin (tv'P(211"ix») cos(211"Ielx) dx. 
v' P(211"ix) .;x 

o 
(3.8) 

Suppose now that Ul(e) and U2(e) in (3.7) ha.ve the properties that: 

(3.9) ([U2(e)] ® 8(t)) * [E(t, e»). ([Ul (e)] ® 5(1)(t)) * lE(t, e)l 
exist, then there is a solution it to (3.7) in 1J/(JR2) with support in R+ X lR 

it = (([Ul(e)] ®8(1)(t))) + (lU2(e)] ®5(t))) * [E(t,e)] 

= [U2(e)] * [E(t, e)] + [Ul (e)l * Dt[E(t, e)]· 

This solution is unique in the vector space g C 1J'(JR2). g consists of all q E 
1J/(JR2) for which there exists E * q (cf. [67, Chapter Ill, §11.3]). We proved the 
following: 
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Theorem 3.1. [61} Let E be given by (3.8) and let 9 be the vector space belonging 
to V'(JR2) such that for every g E 9 there exists [E) * g. Suppose that Ul(e) and 
U2(e) are in C(JR) such that the convolutions (3.9) exist. Then 

U = [U2W] * [E(t,e)] + [Ul(e)] * Dt[E(t,e)] 

is a solution to (D~ + >'Dg + ~)u = 0 in V'(JR+ X JR). But it is also the unique 
solution in the space 9 C D' (JR2) satisfying the initial condition in t in the sense 
that 

(D~ + >'D~ + D~)u = [U2(e)] ® o(t) + [Ul(e)] ® O(l) (t). 

Remarks. 1. If UI(e) and U2(e) also belong to C4(JR), then by the property of 
convolution (cf. Section 1 Subsection 1.2, property 9) 

D~u = [u~i)(e)] * [E(t,e)] + [uii)(e)] * Dt[E(t,e»), i = 1, ... ,4. 

2. If we have two solutions UI(t,e) and U2(t, e) to (3.4) with some initial condition 

d d 
UI (0, e) = U2(0,e) and dt UI (t,e)/t=o = dt U2(t,e)/t=o, e E JR, 

then [U2(t,e)] = [UI(t,e)] + h, where h = 0 or h 'I. g. Let us prove it. The function 
U(t,e) = U2(t,e) - UI(t,e) satisfies (3.4) with initial condition U!i)(t,e)/t=o = 0, 
i = 0,1, e E R, consequently the regular distribution [U(t,e») E V'(JR2) satisfies 
(3.7) with f = O. Then [U(t,e») = h, where h = 0 or h 'I. g. Hence [U(t,e») = 
[U2(t,e») - [UI(t,e)] = h. 

3. The well-known solution to (3.4) u(t,e) = y(e)T(t), where Y and T are given 
by (3.5) and (3.6), has not the convolution with E(t, e) in the sense of distributions, 
i.e., [u(t,e)]* [E(t,e)] does not exist. If it were true that [u(t,e)] * [E(t,e») exists, 
then by 3.4 and the property of convolution: 

[u(t, e») = [u(t,e)] * o(t, e) = [u(t,e») * (Dl + P(De)} [E(t, e)] 

= «D~ + P(De))[u(t, e)]) * [E(t, e)] 

= [(:2 + ;4 + :;)u(t,e)] * [E(t,e)] =0. 

Thus u(t,e) = 0, t> 0, e E R. 
4. If equation (3.7) with f = 0 has a solution belonging to 1J/(JR2), it does not 

belong to g. 

Proof. A solution to (3.4) in 1J/(JR2) is u(t,e) = 0, (t,e) E JR2 . By 2 if there is a 
solution to (3.4) belonging to 1J/(JR2) which is not identical zero, then it does not 
belong to 9 and the proof is complete. 0 

The solution u(t,e) = Y(e)T(t), where Y and T have been given by (3.5) and 
(3.6) respectively, is in fact a solution to 

(y(4) (e) + >.y(2)(e) + w2Y(e»T(t) + (T(2)(t) - w2T(t»y(e) = 0, t >0, e E JR, 

for w2 E JR" {O}. This equation can be written in the form 

( ( d) d2 ) P de + dt2 - w2 Y(e)T(t) = 0, 
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(
d) d4 d2 . 

where P ~ = ~4 +).~ + w2
• Let us suppose that w2 > 0. Since 

P(i~) = e-' - ).~2 + w2 > 0, ~ E lR, w2 
- ).2/4> 0, 

by Proposition 6 in [43] there is the unique fundamental solution Ew(t,~) of 

( 
d d2 

2 
P d~) + dt2 - w 

with support in ii4x IR and belonging to eats' for an a E JR. It has the following 
representation 

(3.10) 

where E(t,~) is given by (3.8). 

Theorem 3.2. If in the Theorem 1.1 instead of E(t,~) we take Ew(t, ~), given by 
(3.10), then we obtain an other form of solutions to 

(p(~) + :t22 -w2)[u(t,~)] = ° 
. ( d ) _ d

4 
\ d

2 
2 2 2/ 2 w~th P ~ - d~4 + A ~ + w , where w -). 4 > 0, w > 0. 

3.3. Weak solutions to partial differential equation with boundary conditions. 
We consider, as an illustration, the partial differential equations for the vibration 
rod and for lateral vibrating of an elastic rod on Winkler foundation (cf. Section 
2, Subsection 2.2). To find weak (generalized) solutions we use the classical well­
known results. That is the reason to consider them as a preliminary. 

In this part we use some facts from the theory of linear differential operators 
and from Fredholm theory of integral equations. We repeat them. Let L denote a 
linear differential operator defined by the differential expression 

l(u) = aou(n) (x) + ... + an_1u(1) (x) + anu(x), Xl < X < X2, 

and by the homogeneous boundary condition Uv(u) = 0, v = 1, ... , n, so to say 
a differential problem is defined. Eigenvalues and eigenfunctions of the operator 
L have been given by l(u) = 0, Uv(u) = 0, v = 1, . .. ,n. Green's function of the 
operator L is the function G(x,~) with the following properties: 

(1) G(x,~) with its (n- 2) derivatives in x is continuous for x, ~ E (X1,X2) and 
satiSfies the prescribed boundary conditions Uv(u) = 0, v = 1, ... , n. 

(2) Except at the point x = ~ the (n - l)-th and the n-th derivative in X are 
continuous for x,~ E (XbX2). At the point x = ~ the (n-1)-th derivative 
in x has a jump discontinuity given by 

an-1 an-I 1 
8xn-1G(~ + O,~) - 8xn - 1 G(e - O,~) = - ao(~)' ~ E (Xl, X2). 
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(3) G(x,~) considered as a function of x satisfies the differential equation l(u) = 
0, x,~ E (Xl,X2), x =I=~. 

Proposition 3.1. If the differential problem 

l(u) =0, U,,(u) =0, v=I, ... ,n 

has only the trivial solution u = 0, then L has one and only one Green's function 
G (x , ~). This function G (x,~) is the kernel of the integral equation 

(3.11) u(x) = >.17r G(x,~)u(~)de + 17r G(x,~)f(~)de 
which is equivalent to the differential problem 

l(u)+>'u=-f, U,,(u) =0, v=I, ... ,n. 

(cf. [19, I, p. 353]). 

If a kernel K(x,~) of the integral equation (3.11) has the property that 

J(cp,cp) = ff K(s,~)cp(s)cp(~)dsd~ 
can assume only positive or only negative values (unless cp vanishes identically) it 
is said to be positive definite or negative definite in both cases it is definite. cp is 
any function which is continuous or piecewise continuous in the basic domain. 

Proposition 3.2. If K(x,~) is a continuous symmetric kernel of the integrnJ. equa­
tion (3.11), then every functiong of the form 

g(x) = 17r K(x,~)h(~)d~, 
where h is a piecewise continuous function on [0,11"], can be expanded in a series in 
the orthonormal eigenfunctions of K(x,~) 

where {g, Vi} == Jo7r 9(~)Vi(~) d~. This series converges uniformly and absolutely 
(cf. [19, I, p. 136]). 

From the proof of this Proposition we will use the following: 
For every £ > ° there exists No(£) such that: 

n 

(3.12) E Igi/ IVi(X)1 < £, n, m ~ No(£), x E [0,11"]. 
i=m 
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3.3.1. The classical theory of a vibrating rod. The mathematical model of the vi­
brating rod is (cf. Section 2, Subsection 2.1) 

()4 fP 
(3.13) 8x4 u(x, t) + f}t2 u(x, t) = 0, 0 < x < 11', t> O. 

Since for the construction of generalized solutions to (3.13) we use the classical 
results, we quote some of them (cf. [19, I)). 

If we suppose that the solution to (3.13) has the form u(x, t) = v(x )g(t), then 
equation (3.13) decomposes to two differential equations 

(3.14) v(4)(x) - AV(x) = 0, 0 < x < 1I'j g(2)(t) + Ag(t) = 0, t> o. 
In [19} five various types of boundary conditions have been analyzed (see also 
Section 2, Subsection 2.1): 

(3.15) 

1. V(2)(x) = V(3) (x) = 0, for x = 0 and x = 11', i.e., free ends 

2. vex) = V(2) (x) = 0, for x = 0 and x = 11', i.e., simply supported ends 

3. vex) = V(l) (x) = 0, for x = 0 and x = 11', i.e., clamped ends 

4. V(l)(x) = V(3) (x) = 0, for x = 0 and x = 11', i.e., moving clamped ends 

5. v(O) = v(1I'), v(l)(O) = V(l) (11') , v(2)(0) = V(2) (11'), v(3)(0) = V(3) (11'), 

periodicity conditions. 

In all these cases eigenvalues and eigenfunctions can be given explicitly. The 
next Proposition gives the properties of these eigenvalues and eigenfunctions. 

Proposition 3.3. For the differential problem (3.14h and one of boundary con­
ditions (3.15), there exists a denumerable infinite system of eigenvalues Ai ~ 0, 
i E N and associated eigenfunctions, Vi, i E N. Note that {AihEN is nOt a bounded 
set; {Vi hEN is a complete system and arbitrary functions possessing continuous first 
and second and pieceUlise continuous third and fourth derivatives may be expanded 
in terms of these eigenfunctions. 

By the solutions to equations (3.14) we can construct a family of solutions to 
(3.15) 

(3.16) Ui(X,t) = vi(x)(aicosvit+bisinvit), iEN, 

where ai, bi are arbitrary constants and Vi = ../Xi (../Xi is the principal branch), 
i E N. This form of solutions contains also the initial condition in t: 

Ui(X,O) = aivi(x)j f}t8 Ui(X, t)1 = biViVi(X). 
t=O 

It is easily seen that every finite sum L Ui(X, t) is a solution to (3.13), as well. 
Let us go back to equation (3.14h with the boundary condition Uv(v) = 0, 

V = 1, ... ,4, which is one of the type (3.15). In this case we have that a linear 
homogeneous operator L is given by l(v) = V(4) (x) = 0 and Uv(v) = 0, v = 1, ... ,4. 
From V(4)(X) = 0, it follov,lI that vex) = Cl + C2x + C3X2 + C4X3, where Ci, i = 
1, ... ,4 are arbitrary constants. For the boundary condition Uv(v) = 0, v = 1, ... ,4 
we take for example (3.15)a. Then we have to find Ci, i = 1,2,3,4 in such a way 

I 
1/ 

I 
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that the chosen condition U,,(v) ==0, v:;::: 1, ... ,4 is satisfied. It is easily seen that 
all the Ci = 0, i:;::: 1, ... ,4. Consequently v :;::: o. 

By Proposition 3.1, there exists one and only one Green's function G(x,~) for 
L. This Green's function in our case is definite (cf. [19, p. 363]). 

3.3.2. Construction of generalized solutions to (3.13), (3.14). Now, the equation 
(3.13) can be drowned in V'«O,1T) x (0,00» by the property 4 in Section I, Subsec­
tion 1.2 of the distributional derivative. To (3.13)·in V'(O,1T) x(O, 00» it corresponds 

(3.17) D!(u(x, t)] + Dnu(x,t)] :;::: o. 
Every solution to (3.13) defines a regular distribution, which is a solution to (3.17). 

To u(x, t) :;::: v(x)g(t) corresponds in V'«O,1T)X (0, 00» the distribution [u(x,t)J :;::: 
[v (x)] x [g(t)J (tensor product). We know that (cf. (64, p. 120]) 

D![v(x)g(t)J :;::: D![v(x)J x [g(t)J, 

DUv(x)g(t)J :;::: [v(x)J x D;[g(t)]. 

We proceed to find (v(x)J and [g(t)J in such a way that (v(x)g(t)] satisfies (3.17). 
This equation (3.17) can be written in the form: 

D![v(x)] x [g(t)]- A[V(X)J x (g(t)J + [v (:r)J x D~[g(t)] + A[V(X)J x [g(t)J :;::: o. 
Let us find A, [v(x)J and [g(t)J so that 

(3.18) D![v(x)J - A(V(X)J :;::: 0, m[g(t)] + A[g(t)J :;::: O. 

It is well known (cf. Property 7 in Section ·1, Subsection 1.2 of the distributional 
derivative) that these two equations (3.18) have only solutions defined by the solu­
tions to equations (3.14). Then !?olutions to (3.17) have been defined by functions 
of the form, (3.16) or by finite sUms of them. Consequently we have nothing new 
for equation (3.11). , ' ' , . ' . 

To find generalized solutions' to (3.13), which are interesting for our differential 
problem (3.13), (3.15) we shall start fz:om the claSsic8l results for the equation 
(3.13), we cited in Proposition 3.1. . . 

The Green function G(x,~) for the operator L defined on the end of the Section 
3.3.1 has all the properties we need so that Proposition 3.2 can be applied. 

Let W1(X) and W2(X) be continuous functions and hi(x), i ~ 1,2, piecewise 
continuous functions such that 

". 

(3.19) Wi(X):;::: J G(x,~)hi(e)de, x E [O,1TJ, i == 1,2. 
o 

Then by Proposition 3.2 we have 

(3.20) 
00 

Wi(X) :;::: 2: WijVj(X) , . i = 1,2, 
j=l 

where {Vj}jEN is the sequence ofeigenfunctions of G(x, e). 
From (3.19) and properties of Green's function it follows by (3.20) that the 

functions Wi(X), i = 1,2 are not only continuous, but they have also continuous 
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first and second order derivatives. They satisfy the boundary condition, as well. 
Because of the properties of eigenfunctions Vi(X), i E 1'1, to be continuous, to 
have continuous first derivative and that Vi(O) = 0, for every i E 1'1, there exists 
Xi E (0,1T), such that 

(3.21) max \V~l)(X)\ = \V~l)(Xi)\ == Mi f: 0, i E 1'1, 
0~"'~1f 

and there exists x~ E (0, 1T), such that 

(3.22) 

We will also use the property of the set {Ai heN of eigenvalues, not to be bounded. 
Consequently there exists io E 1'1 such that 

(3.23) Ail < 1, i ~ i o. 

We can now construct the function W(x, t) 
00 

(3.24) W(x, t) = L vj(x)(aj COSVjt + bj sinvjt), ° ~ X ~ 1T, t ~ 0. 
j=1 

We consider two cases for constant aj, bj EN: 

(1
.) W1jVj(xj) W2jVj(xj) 

aj = M
j 

, bj = M
j 

j 

(n 
.. ) W1jVj(xj) W2jVj(xj) 

aj = M ,bj = M ' jVj jVj 

where Vj = .;y:;, Aj ~ 0, j E N. 
The function W{x, t) has the following properties: 
1) In case (i) it is a continuous function with a continuous first derivative in x 

on [0,1T) X [0,00). In case (ii) it has also a continuous derivative in t. 
First we prove the continuity proving that the two series which constitute the 

function W{x, t) are uniformly convergent on IO,1T] X [0,00). 
Case (i): By (3.12) and (3.22) we have for the first series 

In W ·V·(X') 12 (n )2 ?: 11.~. j Vj(X)COSVjt ~ ~ \W1j\\Vj(X)\ < £ 

1=m 1 3= 

n, m ~ No, (x, t) E [0,1T] X IO, 00). 
The proof for the second series is just the same. 

Case (ii): We use now (3.23) in the proof of the continuity. 
Let us consider the series 

~ (1)( )(W1jVj{Xj) + W2jV;(xj). t) 
(3.25) 6 Vj x M. COSVj M. SlDVj. 

j=1 1 3 

By using again (3.12) and (3.21), we have 

In W ·V (X') 12 (n ) 2 j~ vY)(x) 11 ~j j COSVjt ~ j~ \w1jllVj(xj)\ < £, 
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n, m ~ N(e). The treatment of the second series in (3.25) is the same. 
Now we can conclude that in case (i) the function W(3:,t) given by (3.24) has a 

continuous derivative in x. This derivative can be obtained by taking the derivative 
of every member of the series in (3.24). 

The proceeding of the proof that in case (ii) we have also the derivative in t does 
not differ of the proof of the derivative in x. 

2) In case (i) and (n) 
00 

W(3:,O) = L vj(3:)aj, 
j=1 

and this is a continuous function with continuous derivative on [0,11"]. 
In case (n) we have 

!.-W( t)1 _ ~ .( )w2jVj(Xj) 
Q x, - L..J V3 X M ' 
vt t=O j=1 j 

as well. The given series defines also a continuous function on [0,11"]. 
3) W(x, t) satisfies the boundary condition we chose (3.IS}s. 
4) W(x, t) given by (3.24) is the limit of the sequence 

n 

(3.26) Wn(x,t) = 2:vj(x)(ajcosvjt+bjsinvjt), nEN, 
j=1 

in C ([0, 11"] X [0,00)). The elements of the sequence (3.26) are solutions to (3.13) 
(cf. (3.16)). 

It is easy now to prove 

Theorem 3.3. Let us denote by: 1) {Ai heN and {viheN the eigenvalues and 
eigenfunctions respectively of the differential problem 

v(4)(x) - .Av (x) = 0, 

vex) = V(l) (x) = 0, for x = 0 and x = 11". 

2) {lIihEN the sequence defined by lIi = ..;>:i, Ai ~ 0, where ..;>:i means the 
principal bmnch, i EN. 

3) {aj}jEN and {bj}jEN the sequences 

( i) 

(ii) 

where 

W2 ·v·(x'.) b. _ 1 1 1 
,- M

j 
, 

W2jVj(3:j) 
bj = , 

Mjllj 

or 

(3.27) Mj = max IVJ1) (3:)1 and 3:j E (0,11"), IVj(3:j)IIMj < 1, j EN. 
o~",~,.. 

Then the function W(x,t) = 2::%,1 Vj(x)(ajcosvjt+bjsinVjt), 0 ~ x ~ 11", t ~ 0 
defines a regular distribution [W(x, t)l E. D'«O, 11") X (0,00». This distribution is a 
solution to (3.17) and a genemlized solution to (3.13), (3.IS)s. 
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The properties of the function W(x, t) are: 
a) In case (i) and (ii) it is a continuOus function with continuous first order 

partial derivative in x on [0,11"] X [0,00). 
b) In case (ii) it has also a continuous first order partial derivative in t on 

[0,11"] X [0, 00). 
e) In case (i) and (ii) we have W(x, 0) = :Ej:1 vj(x)aj, x E [0,11"], and this is a 

continuous function with a continuous first order derivative on [0,11"]. . 

d) In case (ii) we have ! W(x, t)lt=o = :Ej:1 Vj(x)vjbj, x E [0,11"]. The given 

series defines a continuous function on [0,11"], as well. 
e) W(x, t) satisfies the boundary conditions W(x, o}= tz W(x, t) = 0, for x = ° 

and x = 11", and t ~ 0. 
1) In case (i) and (ii) D",[W(x,t)] = [I;W(x,t)] and in case (ii) Dt[W(x,t)] = 

[:t W (x, t)] z 

g) In case (i) and (ii) W(x,t) and in case (ii) ftW(x,t) are bounded on [0,11"] X 

[0,00). 

Proof. The function W(x, t) given by (3.24) defines a distribution because of its 
property 1), we proved. 0 

If the sequence (3.26) consists of solutions to (3.13), (3.15h, then the sequence 
([Wn(x, t)])nEN C V'«O, 11") x (0,00)) is the sequence of solutions to (3.17). Since 
the sequence (3.26) converges in C ([0, 11"] X [0, 00)), the sequence ([Wn(x, t)])nEN con­
verges in V'«O, 11") x (0, 00)) (cr. Section 1, Subsection 1.2). Consequently, (W(x, t)] 
as the limit of the sequence of solutions to (3.17) is also a solution to (3.17). 

The other cited properties of the function W(x, t) one can easily prove. 

Remarks. 1) By (3.27) we have a family offuncti~ns because the sequence {xj};EN 
C (0,11") has only to satisfy the inequality \v;(xj)\/M; < 1, j EN. . 

2) If the solution to (3.13), (3.15}3 is of the form u(x, t) = v(x)g(t) we have 

u(x, 0) = g(O)v(x) and ! u(x, t)L=o = g'(O)v(x). 

But in our case W(x, t) given by (3.27) which defines a generalized solution to (3.13), 
(3.15h satisfies a more general initial condition: in case (i) and (H) W(x,O) = 
:Ej:1 a;vj(x) and in case (ii) we have mor~ver 

8 00 

at W(x, t)l_ = I: bjvjvj(x). 
t=O ;=1 

3.3.3. Construction of generalized solutions to equation of the lateral vibration of 
an elastic rod on Winkler foundation. We consider the equation 

~ 82 

(3.28) 8x4 u(x, t) + at2 u(x, t) + ).q(x)u(x, t) = 0, ° < x < 11", t> 0, 

where q(x) ~ 0, x E [0,11"] with boundary condition: 

(3.29) u(O, t) = 88 u(x, t)1 = Oj u(1I", t) = 88 u(x, t)1 = 0, t ~ 0. 
x z=o X Z=~ 
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As in Section 3.3.2, we suppose that a solution of (3.28) is of the form u(x, t) = 
v(x)g(t); then equation (3.28) becomes 

84 82 

8x4 v(x)g(t) + .>.q(x)v(x)g(t) - wv(x)g(t) + 8x2 v(x)g(t) + wv(x)g(t) = 0, 

o < x < tr, t > O. 

To find v and 9 we use two equations 

V(4) (x) + >.q(x)v(x) - wv(x) = 0, 0 < x < tr, 

g(2)(t) +wg(t) = 0, t> 0, 

and the boundary condition 

(3.30) v(O) = v(1)(O) = 0, v(tr) = v(1)(tr) = o. 
Let L denote the differential expression L(v) = V(4) (x) +>.q(x)v(x). Note that L 

is self adjoint. To prove that L has Green's function we have to show (Proposition 
3.1) that from L(v) = 0 and (3.30) it follows that v = o. We will do it in two steps. 
First we consider the differential expression l(v) = v(4)(X) with (3.30). It is easily 
seen that V(4)(x) = 0 with (3.30) gives v = o. Then 1 has Green's function GI(X,e). 
We know that G,(x,e) is symmetric and definite (cf. [19, p. 363]). 

Now, in the second step, we use the fact that 

(3.31) L(v) = V(4) (x) + >.q(x)v(x) = 0, with (2.31) 

is equivalent to (cf. Proposition 3.1) 
". 

vex) = >. J G,(x,e)q(e)v(e)cte, 
o 

or ,.. 
v'q(x)v(x) =>. J G,(x, e) v'q (x)q (e) v'q(e) v(e) df 

o 
The kernel K(x,e) = G,(x,e).,jrq('x')q'(e:t") is also symmetric and definite. Let us 
denote by y(x) = Jq(x)v(x). Then (3.31) is equivalent to 

,.. 
(3.32) y(x) = >. J K(x,e)y(e) df 

o 
Since K(x,e) is a continuous and symmetric kernel it possesses eigenvalues and 
eigenfunctions. Their number is denumerably infinite (cf. [19, p. 22]). Let >'0 be 
a real number (positive) which is not an eigenvalue for the kernel K(x,e). Then 
equation (3.32) and consequently equation (3.31) have only v = 0 as the solution. 
Hence we know that Green's function GL(x,e) exists for L with (3.30). Since Lis 
self adjoint, G d:c, e) is symmetric and L has eigenvalues {>'i hEN and eigenfunctions 
{vi(x)hEN. Consequently we can apply Proposition 3.2. The consequence is that 
we can construct generalized solutions to equation (3.28) (which depends on the 
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chosen number '>'0) with boundary condition (3.29) processing just in the same way 
as in Section 3.3.2 for equation (3.13) with the same boundary condition. 

We have to remark that in this case we do not know that the Green function 
G L is positive definite; the eigenvalues have not to be positive. Consequently we 
can not assert that the function W(x, t) which defines the distributional solution 
is bounded on [0,11"] X [0,00). The stability of the solution has to be considered 
separately. 

3.4. The Laplace transform applied to a partial differential equation. The 
Laplace transform is very useful in solving partial differential equations. But we 
have always to take into account that as a first condition for applicability of the 
Laplace transform on a generalized function is to have its support bounded on the 
left. In such a way when we have a partial differential equations with numerical 
functions and look for the corresponding equation in a space of generalized functions 
we have to use the Property 8 in Section 1, Subsection 1.2 of the derivative of a 
generalized function. 

Working with the Laplace transform, when we find a function F(s), Re s > w > ° 
and seek for a generalized function I, such that £I(s) = F(s), we have first to check 
if such I exists. For this purpose Propositions 1.4 and Proposition 2.1 in Section 
1 can help. Secondly, we have to find such I. In many cases j is a numerical 
function. Thus, £-lU) is the regular distribution [I] defined by the function f. 
The solution still has not to be a classical one, because the derivatives in, general, 
exist only in the distributional sense. An illustration how it reflects in solving a 
partial differential equation one can find in [61]. We consider in 3.4.1 the case when 
we apply the Laplace transform in one variable and in 3.4.2 in two variables to a 
partial differential equation. 

3.4.1. M-valued junctions as solutions to a partial differential equation. Let M 
denote one of the following spaces: the space of L-functions (cf. [21}), V'w(iR+) or 
B;,~). We use the Laplace transform which is defined for elements of these three 
spaces, consequently for elements of M. 

The partial differential equation we analyze is: 

~ 82 

(3.33) 8x4 uex, t) + 8t2 u(x, t) = 0, ° < x < 1, t > 0, 

with the initial conditions 

(3.34) u(x, 0) = Bo(x), 88 u(x, t)1 = Bl (x), ° < x < 1. t t=o 
It is well-known that equation (3.33) has a solution of the form u(x, t) = v(x)g(t) 
(cf. [2], [19]). In this case Bo(x) = v(x)g(O) and Bl (x) = V(X)g(l)(O). 

Let {[u(x, t)]}O<.,<l denote a family of M-valued functions of class C4 (cf. Sec­
tion 1, Subsection 1.4). For any fixed x, [1.1 (x, t)] EM. 

By the property 8.1 in Section 1, Subsection 1.2, to equation (3.33) it corresponds 
in M the equation 

8 
(3.35) 8x

4 
[u(x, t)] + D~[u(x, t)1 = Bl (x)c5(t) + Bo(x)c5(l) (t), ° < x < 1. 
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Now, the solutions to (3.35) are the generalized solutions to (3.33), (3.34). Our 
aim is to find all the solutions to (3.35), i.e., all the generalized solutions to (3.33) 
with Bo(x) = v(x)g(O) and BI(x) = V(X)g{l) (0) which are functions with values in 
M. 

Suppose that we have two such solutions to (3.35) with values in M, Wl(X) and 
W2(X). Then Wo (x) = WI(X) - W2(X) satisfies the homogenous equation (compare 
to (3.35» 

(3.36) !4 Wo (x) + D~wo(x) = 0, 0 < x < 1. 

The Laplace transform in t transforms (3.36) in 

(3.37) fJ4 2 ( 8x4 Wo(x,S) +s Wo x,S) = 0, 0 < x < I, 

where Wo(x,S) = £t(wo(x»(x,S). The equation (3.37) is a classical differential 
equation in which s, Res> w> 0, is only a parameter. 

The general solution to (3.37) is of the form 

(3.38) Wo(x, S) = Cl (s)erl
2: + C2(s)er2

2: + C3(s)er3
2: + C4 (s)er

'2:, 

0< x < I, Res> w, 

where Ci , i = 1, ... ,4 are functions of s and ri, i = 1, ... ,4 are solutions to equation 
r 4 + s2 = O. 

The Propositions 1.4 and 2.1 in Section 1, give the conditions which Ci(s), 
i = 1, ... ,4, have to satisfy that wo(x) exists such that £(wo(x))(x,S) = Wo(x,S), 
O<x<1. 

We known that [v(x)g(t)] is solution to (3.35) with Bo(x) = v(x)g(O) and 
BI(X) = v (x)g(l) (0). Then all the solutions to (3.35) with cited values for Bo 
and BI which are functions with values in M are [v(x)g(t)] + wo(x). 

In such a way we proved the following theorem: 

Theorem 3.4. Let UI(X,t) = v(x)g(t) be the well known classical solution to (3.33) 
and let M denote one of the spaces: The space of L-functions (cf. [19]), V~ (R+) 

_xp 
or D[O,oo)' 

All the solutions to (3.35), i.e., all the generalized solutions to (3.33) with initial 
condition 

u(x, 0) = v(x)g(O) and 88 u(x,t)1 = v(x)g{I)(O) 
t t;:O 

which are junctions in x with values in M are w(x) = [v(x)g(t)] + wo(x), where 
£(wo(x))(S) = Wo(x,8) and Wo (x, 8) is given by (3.38). 

Applying the Laplace transform to (3.35) with any Bo and BI we obtain a 
nonhomogeneous differential equation. The same procedure as for (3.37) gives us 
the generalized solutions to (3.33), (3.34) for any Bo, BI . 
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3.4.2. Solution of partial dijjere""tial equation (3.33) by the Laplace transform. We 
consider the equation 

&4 82 

(3.39) 8X4u(x, t)+ 8t2U(X,t) =0, (X,t) eR!, 

with initial conditions: 
8 

u(O,t) = 8x u(O,t) = 0, t ~ 0, 

8k 

(3.40) 8
x

k u(O, t) = Ak(t), k = 2,3, t ~ 0, 

8 
u(X, 0) = Bo(x), 8tu(x,O) = Bl(X), x ~ 0, 

where [8(t)Ak(t)] e ePtS'(R+) , k = 2,3, and [8(x)Bi(X)] e ePtS'(R+), i = 0,1, 

p > o. To find an equation in V'(R~) which corresponds to (3.40) for x > 0, 
t > 0, we need the relations between derivatives in the sense of distributions and 
the classical ones. 

Let 82(xl,x2) = 8(Xt)0(X2), where 0 is the Heaviside function. For a function I 
with continuous partial derivatives on]R2, [021] is the distribution, defined by 02 I, 
belonging to V'(R2) and to V'(R!), as well. Let (fJP I /8if) 0 denote the function 

equal to 8P 1/8xf on the R~ and equal zero on R2 " R~, but is not defined for 
(Xl,X2) e {(0,X2)U(Xl,O); Xl ~ 0, X2 ~ O}. 

With the notation as above we have (cf. 8.2 in Section 1, Subsection 1.2). 

&4 82 

8
x
4 [u(x, t)] + 8t2 [u(x, t)] = [lJ(t}A2(t}] x 6(1)(x) + [lJ(t}A3(t}] x 6(x} 

(3.41) + [8(x)Bl(X)] x 6(t) + [8(x)Bo(x)] x 6(1)(t}. 

Applying the LT we have 

(Z4 + s2).c(u)(z, s) = .c(A2)(S)Z + .c(A3)(S) + .c(B1)(z) + .c(Bo)(z)s, 

or 
Q(z, s) 

.c(1/.)(z,s) = -4--2' 
Z +s 

with Q(z, s) = .c(A2)(S}Z + £(A3}(S) + .c(Bl}(z) + .c(Bo)(z)s. Since 

1 1( 1 1) 
Z4 + s2 = 2;s z2 - is - z2 + is ' 

we have 

(3.42) Q(z, 5) Q(z,s) ( 1 1) 
z4 + 52 = ~ z2 - is - z2 + is • 

By Proposition 1.4 in Section 1, and the property of the space 1i+, ~i~~l has 
to be holomorphic in {(Z,5) e C2; Rez > Wl > 0, Res > W2 > O}. Since 
z4 + s2 = (z - Zl)(Z + zd(z - Z2)(Z + Z2), where ZI = ei7r/ 4 ..j8, Z2 = e3i7r/4..j8, it is 
necessary to have 
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or equivalently 

(3.43) Q(ei1r/4..[8,S) = 0 and Q(e-i1r/4.fS,s) = O. 

Let us consider the first addend in (3.42). Then (3.43)t has to be satisfied which 
gives 

£(A2)(s)ei1r/4JS + £(A3)(S) + £(B1)(ei1r/4JS) + s£(Bo) ( ei1r/4JS) = O. 

Now we can express £(A3)(S), 

£(A3)(S) = -£(A2)(s)ei1r/4J$ - £(B1) (ei1r/4..[8) - s£(Bo) (ei1r/4 JS). 

With such expressed £(A3)(S) the first addend in (3.42) is: 

Q(z,s) _ £(A2)(s)(z - ei1r/4"fS) 
2is(z2 - is) - 2is(z2 - is) 

£(B1)(Z) - £(B1)(ei1r/4"fS) + s(£(Bo)(z) - £ (Bo(ei7r/4VS» 
+ 2is(~2 - is) 

_ £(A2)(S) (£(B1)(Z)-£(Bd(ei1r/4"fS) £(Bo)(z) -£(Bo)(ei1r/4J$)) 
- 2is(z+ei1r/4JS) + 4isei1r/4vs + 4iei1r/4vs 

(3.44) x (z _ ei!/4"fS) - z + ei!/4vs) ). 

By using the following formulas for the Lapla.ce transform 

£-1 ( 1 ) = 8(x)e-azVs 
Z z +avs 

£-1 (_1 e-azVs) = 8(t) e-(az)2/(4t) x> () Rea> 0 
"VS ..firi ,. , ' 

= 8(t)x(ax, t). 

We can find the Lapla.ce transforms in (3.44). Let us do it 

£-1 ( £(A2~(S) ) = £-1 0 (£-1 ( ~ ) £(A~)(S») 
2is(z + el1r/4.j8) " Z Z + el1r/4.j8 2ts 

= ;i£;1 (.)s e-el"'.Vsz) .)s£(A2)(S) 

t 

= 8(x)8(t) x(ei1r/4x t): J(t - r)-1/2 A (r)dr 
2if(lj2)' 2· 

o 
The second addend in (3.44) is: 

£(Bt)(z) - £(Bt)(ei7r/4"fS) (1 1) 
(3.45) 4isei1r/4vs z _ ei7r/4vs - z + ei1r/4vs . 

We shall start with: 

(3.46) £-1 (£(B1).(Z) - £.(Bt}(.e
i1r

/
4
"fS)) 

4ise"r/4VS( Z + el7r/ 4 VS) 
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= £-1 0 £-1 ( £(Bt}(Z).) _ £-1 £-1 ( £(B1)(e
i1f

/
4
.f8) ) 

Z 8 4isei1f/4y'8(z+ei1f/4.f8) B 0 Z 4isei1f/4y'8(z+ei1f/4.f8)· 

The first addend in (3.46) is 

£;1 (Bl(Z)£;l (4(ei1f/4.f8)Stei1f/4..;B + z») ) 

(347) = £-1 (B ()£-1 1 t £-1 1 ) 
• Z 1 Z • 4eSi1f/4s * • (z + ei1f/4y'8).ji 

t 

- 1 / (i1f/4 20 () - 4eSi1f/ 4 X e :e, r) dr * B1 :e . 
o 

For the second addend in (3.46) we have 

_£-1 0 £-1 ( £(B1)(e
i1f

/
4
.f8) ) 

• Z 4isei1f/4.ji(z + ei1f/4y'8) 

= _£;1 (£.(B1)(e
i
ll'/4y'8). 4eSi~/4s . ~£;1 C + ei~/4.ji) ) 

"" = _,,-1 ( 1 8 (:e) _ehl
/

42O,fi/ -ehl
/
4,fi'r'B ( ) d ) 

L.. 4e3i1l'/4s .ji eel r r 
o 

"" = d - _1_ t ,.-1 (..!... / -e,,,/4,fi(2O+'r')B ( )d ) 
4e3i1l'/4 * L.. .ji e 1 r r 

o 

"" 
= --~_! /e- ti(2O+'r')2/ t _l_B (r)dr 

4eS'1r /4 .;;a 1 
o 

t "" 

= ----:-!-/4 /du/ x(ei1r
/
4 (:e +r),u)B1(r)dr. 4te'1I' 

o 0 

Applying the inverse Laplace transformation the first fraction in (3.45) becomes 

£-1 (£(B1)(Z) - £(lh)(e
i1f

/4.f8)) 
4isei1r/4s..;B(z - eill'/4.f8) 

= £-1 £(B1)(Z) _ £-1 £(B1)(ei1r/4.f8) 
4iei1r/4sy'8(z - ei ll'/4.f8) 4ieill'/4s.ji(z - ei1r/ 4 .f8) 

__ 1_ ("_1_1_ e'''/4 2O,fi 20 B ( ) _ "_1_1_ e'''/4.2O /"" -e,,,/4.rIlUB ( )d ) 
- .' /4 L.. r;; e * 1:e L.. r;; e e 1 u u 4le'1r SyS SyS 

o 

__ 1_(£_1_1_/
20 

it(2O-u),fiB ( )d _£-1_1_/"" _e''I<u-z),r. B ( )d 
- 4iei1r/ 4 • sy'8 e 1 U U • sy'8 e 1 U U 

o 0 
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If we collect all the results obtained in (3.47)-(3.48), then the inverse LT of (3.45) 
is a function denoted by F{Bl , X, t, 7r /4), 

t 00 

F( BlJx,t,~) = - 4ie!lr/4 j f x(e
ilr

/
4

(u - x), r)Bl(u)dudr 
o :z: 

t 

- 4ie!lr/4 j x(e
ilr

/
4
x,r)dr:Bl (x) 

o 
t 00 

+ ~/4 jdujx(eilr/4(x +r),u)Bl{r)dr. 4le'lr 
o 0 

To find the inverse LT of (3.44), it is yet to be find the inverse LT of 

s(£(Bo)(z) - £(Bo)(eilr/4Vi) (1 1) 
(3.49) 4e3ilr/4s..j8 z _ eilr/4..j8 - z + eilr/4..j8 . 

If we compare (3.49) with (3.45), we can observe that in the structure of (3.49) we 
have additionally only a product by s. Since F(Bo, x, 0, f) = 0, the inverse LT of 
(3.49) is 8F (Bo, x, t, 7r /4) /&t. 

The procedure of finding the inverse Laplace transform of the second addend in 
(3.42) is just the same as for the first one. The details, the complete solution and 
the comments one can find in [61]. 

Remark. If in equation (3.39), (x, t) E (0,1) x lR+, then we can consider the 
equation (3.41) in V~((O, 1) x lR+) (cf. Section 1, Subsection 1.5). 

3.5. The case in which a generalized function appears just in the model. We 
shall study the existence and properties of the solutions to the following system of 
coupled partial differential equations (cl. Section 2, (2.3.4»: 

. 82m 82u 82u 
8f.2 + >. 8f.2 + &t2 = 0, 

(3.50) 

with boundary conditions 

(3.51) m(O,t) =0, m(l,t) =0, u(O,t) =0, u(l,t) =0, t~ O. 
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We assume solutions to (3.50), (3.51) in the form m(e, t) = M(e)V(t), u(e, t) = 
U(e)T(t). Then for every k = ±1, ±2, ... the system (3.50), (3.51) reduces to 

(3.52) Mk(e) = Ck sin ktre, Uk = Ck sin ktre, 
and 

_(ktr)2Vk(t) - >.(ktr)2Tk(t) + 1i2)(t) = 0, 

(3.53) Vk(t) + J1.V1°)(t) + (k-lllTk(t) + J1.1(ktr)2T~o)(t) = 0, k E ±N, 

where Ck are arbitrary constants. 
Throughout tlllS example we shall assume that, firstly J1. =1= 0, J1.1 =1= 0 and secondly 

FL2 
>. == Eo! = B + A8(t - to), to > o. 

The second assumption means that the axial force is subject to an impulsive change. 
Consequently, in equation (4.4h we have the product 8(t- to)n(t). Since 8 can be 
treated as a measure, this product has a meaning for any to > 0 if Tk E C([O, (0)). 
Then 8(t - to)Tk(t) = Tk(to)8(t - to) (cf. [56]). This fact one has to take into 
account when we construct the generalized solutions. Such solution can be only a 
regular generalized function defined by a continuous function net). 

To solve the system (3.53) we will use the Laplace transform (cf. Section 1, Sub­
sections 1.5 and 2.2) applied on functions or generalized functions with support in 
iR+. A function and its derivatives with the support in iR+ can have discontinuities 
at zero. For this reason, when we construct the system in V'(R) which corresponds 
to the system (3.53), we have to take care of the property 8.1 of a derivative given 
in Section 1, Subsection 1.2. Let us take for short in (3.53) that k = 1. 

So if T is bounded in [0, e), for an £ > 0 (an assumption which is supposed to 
be satisfied in this case), then 

Df[8(t)T(t)] = (8(t)DfT(t)], 0 < a < 1, 

D?)[8(t)T(t)] = [8 (t)T(2) (t)] + T(1)(0)8(t) + T(0)8(1) (t). 

Consequently, to (3.53) it corresponds in V'(~) 

D2[8T] - B1I"2[8T] - 1I"2[8V] = T(0)8(1)(t) + T(l) (0)8(t) + 11"2 AT(to)8(t - to), 

J1.DO[8V] + J.t11l"2 DO[OT] + [8V] + 11"2[8T] = o. 
Applying the generalized Laplace transform (cf. 1.1.5) with the following notation: 
£[(OT)](s) = T(s), £[8V](s) = V(s), T(O) = To, and T(l) (0) = TJ, we have 

_1I"2V(s) - (B1I"2 - s2)T(s) = Tos + TJ + 11"2 AT(to)e-to8 , 

(3.54) (1 + J1.S0)V(s) + 11"2(1 + J1.1s0)T(s) = o. 
The solution to system (3.54) is 

~ sO+l/J1. 2 
T(s) = ~(s) (T6J.t + TOJ1.s + 11" AT(to)J1.e- toS

), 
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~ so. + l/Jl-l·( 1 2 to.) 
(3.55) -V{S) == ~(S) TOJl-l + TOJl-lS +11' AT(to)Jl-le- , 

where 

~(s) == J..£so.+2 + s2 + (J..£11l'2 - BJ..£)1I'2sc< + (11'2 - B)1I'2 = Jl-sc<+2 + S2 + aso. + d, 

and 
a == ~(Jl-11l'2 - BJ..£)j d == 11'2(11'2 - B). 

The next step is to find the distribution which corresponds to (3.55). The main 
part to the solution (3.55) is the function 

(3.56) ](s) == so.:C:{JI-. 

To the function ](s) we can apply Theorem 3 in (19, Voll, p. 263], as well. In fact, 
there exists f E Lloc[O, 00) and Xl > 0, such that 

.,+ioo 

(3.57) 1ft ~ f(t) = 211'i e • f(s) ds, x> Xli t ~ 0, 
.,-loo 

(£f)(s) == ](s). Here (£1)(s) denotes the classical Laplace transform of f defined 
00 

as (£1)(s) = J e-·t f(t) dt. 
o 

Since the integral in (3.57) converges uniformly for ° ~ to ~ t ~ tl < 00, f(t) 
is a continuous function in [0,00). Consequently, f(t) is bounded in the interval 
(O,eJ, ° < e < 00. How such an integral can be calculated, see for example [25J. 
But we will find an analytic form for f which is, in our opinion, more suitable then 
integral (3.57) (cf. [59]). 

Let us analyze the function f defined by (3.57). Put c = Hd - a/ JI-). Then 

I 1/JI-
~(s) = (S2 + a/JI-) (sa +l/JI-) +c 

= (s2+ a/:{(;a+l/JI-) x (1+ ~(-C)VC2:a/Jl-fCa:1/Jl-f). 
First we find the function q,a(t), t ~ 0, such that 

(3.58) (£q,a)(S) == ~(-CtC2 +la/Jl-f Ca: l/Jl-f· 

Then, 
1 1 1 

- = ( (1 + (£t/Ja)(S». 
~(s) JI- s2+ a/JI-)(sa+l/JI-) 

We will denote by wet) the function 

(3.59) wet) == ata
-

l E~})(z), 
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where Z = _tOt / p, t ~ 0 and Ea(i) is Mittag-LefHer's function (see [22] and [26]). 
We know that (Cw)(s) = (sa + l/p)-l (cf. [25]). In our analysis of the terms of the 
series (3.58), we have to distinguish three cases: a > 0, a = 0 and a < o. Thus, 

1 v 1 {( v¥f 1: ((Siny0h w(t»)"V) (8), a> 0 

(82+a/lJ (sa +1/) = 1:«t*w~t))"V)(8), 'v a=O 

(ffJ 1: ((sinh yl=ih w(t») ) (S)(8), a < 0, 

where rv means v-fold convolution of f. We have to evaluate the obtained con­
volutions. First for the function w given by (3.59) we need some properties of the 
Mittag-Leffier function 

00 k 

Ea(z) = 2: r( ~ 1)· 
k=O et + 

Namely, Ea(z) is an entire function with the properties: 

-1 1 
Ea(z) = r(l- et) ; + 0(lzl-2

), 1 arg( -z)1 < (1 - et/2)7r, z -+ 00, 

00 kzk-1 
Ei1)(z) = (; r(etk + 1)· 

By [13, p. 36], 

E$}>(z) = r(l ~ et) :2 + 0(lz l-3
), larg(-z)1 < (1- 3et/4)7r, z -+ 00. 

Consequently, 

(t) et ta - l 1 t a - l t 0 
w IV f(l + et) = f(et) ,-+ j 

w(t) IV et ta-1p2~ = _~ C(l+a), t -+ 00, 
r(l- et) t2a r(-et) 

and 

w(t) IV O(ta - l ), t -+ Oj 

w(t) IV O(ta- l ), t -+ 00. 

Then, there exists a constant Cl such that Iw(t)1 ~ C1ta - l , 0 < t < 00. Now, we 
can estimate the terms in the series 

00 

(3.60) cPa(t) = 2: (-et (...(iiJa)v (sin v'a/ pT * W(T)rV(t), t ~ 0, 

in our three cases: a > 0, a = 0, and a < O. Let us start with a > O. If v = 1, 
a> 0: 
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For any 11 E N and t ~ 0, 

I(sinv'a/~T*w(r)r"(t)1 ~ C2'(r(::I)f"(t) 

1 t(a+l),,-l 
~ 0,,£-1 __ ~ C"=-=-~-,..,.. 
"<: 2 S(a+1)" "<: 2r(lI(a+l»)" 

Let us set F,,(t) = (-c)"(~"(sin v'a/~r * w(r»)*", /I = 1,2, .... Then for 
t ~ 0, 

~ /F,,(t)/ ~ r l ~ (lC/v'~/ata+1)" r(II~+ 1) ~ rl(Ea(lC/v'~/ata+1) -1). 

Hence, the series (3.60) is absolute convergent for t ~ 0 and <Pa(t) is bounded on 
every compact set K c [0,00). 

Now we have the following properties of F", 11 E N: 

(1) £(Fv)(s) = (-C)v(s2+~/,.r (S";1/,.)"; 
00 

(2) J e-xot/F,,(t)/dt ~ /cI"(v'~/a)"C2~' 11 = 1,2, ... 
o ~ 

(3) The series "~ll e-xot/F,,(t)/dt ~ "~1 ('C1'foftC2)" converges, if xg+l > 

/clPoC 2. 

By Theorem 2, in [19, Vol. 1, p. 305], £(<Po)(x) = ~(s), a > 0, with ~o(s) given 
by (3.58). 

In the other two cases the procedure is just the same. We have only to use the 
following evaluations, for 11 E N and t ~ 0: 

/(r*w(r)}*"(t)/ ~ (r*(Clra- l»*"(t) = C2'(r * ~~:;f"(t) 

( 
ra+l ) *" t(a+2),,-1 

~ C2' rea + 2) (t) = C2' f(lI(a + 2»' 

and t,,-1 
l(sinhv'-a/~r)*"(t)1 ~ f(lI) e";-o/,.t, t ~ O. 

Now, the function i{s) in (3.56) is: 

A sa + 1/~ 1 1 ~ 
J(s) = ~(s) = It s2 + a/~ (1 + <Po (s», 

where ~o(s) is given by (3.58). Consequently for t ~ 0, 

(3.61) J(t) = (£-Ij)(t) = ; [(£-1 s2 : a/~)(t) + ((£-1 s2: a/~) * <Po )(t)], 

and 
(3.62) 

j<1)(t) = (£-lsj(s»)(t) = ; [(£-1 s2 : a/Jet) + ((£-1 s2 : a/J * <Po )(t)], 
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where 
co 

4>a.(t) = :E(-ct((C-1 2 1 / )." * WO,,) (t). 
,,=1 S +a p. 

Note that in all three case: a > 0, a = 0 and a < 0, we have /(0) = O. Hence, 
sj(s) = (C/{1})(S). Also 

1 1" s {} 
A(s) = sa + l/p./(s) = C(w * /)(s), A(s) = C(w * f 1 )(s). 

Now we can fix the form of the solution to (3.53), for t ~ 0, 

T(t) = TJp.f(t) = Top.f{1}(t) +11'2 AT(to)piJ(t - to)f(t- to); 

-Vet) = TJP.1(f(t) + (:1 - ;)(w * f)(t)) 

(3.63) 
+ TOP.1(f{1}(t) + (:1 - ;)(w * f{1})(t)) 

+ 11'2 AT(to)P.18(t - to) (f(t - to) + (:1 - ~) (w * f)(t - to») 

where f(t) and f{l}(t) are given by (3.61) and (3.62). To analyze the character 
of the solution (3.63) we will find the first and second derivatives of f. By (3.62) 
f{1}(t), /('J}(t) and f{3}(t) belong to C[o.co}' 

From the properties of the generalized Laplace transform it follows that (3.63) 
is the unique solution in L\oc([O,oo)) such that T and V are bounded in [O,E] for 
E> O. 

We state now the main results of this section: 

Theorem 3.5. A solution to (3.53) is given by (3.63). This solution is continuous 
on [0,00). If A = 0, then the solution belongs to C~.co} and is a classical one; it 
can be obtained by the classical Laplace transform. In the general case the junctions 
T(t) and Vet) define regular distributions [T(t)] and [Vet)] which are solutions to 
(77) and generalized solution to (3.53). 

Remark. The continuity of T and V follows from the fact that f(O) = O. 

Theorem 3.6. A family of solutions to (3.50) and (3.51) is 

mlc(e, t) = MIc(e)Vi.(t), Ulc(e, t) = UIc(e)TIc(t), k e ±N, 

where Mic and UIc are given by (3.52), keN, and VIc and Tic are given by (3.63) 
when instead of 11' we take 1I'k. 

3.6. Localization of the solution. The mathematical model of lateral vibration 
of a viscoelastic axially loaded rod (cf. Section 2, (2.3.12)) is 

(3.64) 

fPm fPu fPu 
ae + >. ae2 + 8t2 = 0; 

a2
u DafPu ~8 fPu Da 0 0 c 1 ae2 + P.1 t ae + P.2Vi ae2 = m + p. t m, < t, < .. < , 

I 



SOLVING LINEAR. MATHEMATICAL MODELS IN MECHANICS 53 

with the boundary conditions: 

(3.65) m(O, t) = OJ m(l, t) = OJ u(O, t) = 0, u(l, t) = 0, t ~ O. 

We consider the vibrations of the rod when it is loaded by a compressive axial 
force F such that the intensity .>. of the force F is .>. = B + AO( t - to), to > 0, where 
o is Heaviside's function and A, B are constants. 

To stress possibilities of the Laplace transform of generalized functions C cf. Sec­
tion 1, Subsections 1.5 and 1.2) we consider more general system which can appear 
as a model of a.n other situation, as well, namely: 

82m 82u 82u 
8e2 +.>. 8t,,2 + 8t2 = g(t) sin h·e, kEN, 

(3.66) 
82u 82u P 82u 
8t,,2 +}Jl Df 8e2 + }J2 Dt 8t,,2 = m + }JDfm, 

0< t, 0 < e < 1, with the same boundary conditions (3.65), where 9 E C([O,oo» 
and without any growth condition. In case g = 0 system (3.66) becomes (3.64). 

Let us remark that in system (3.66) we have a coefficient which is a discontinuous 
function with a discontinuity in t = to > O. Since the product of a discontinuous 
function and a generalized function, e.g., of a distribution and a hyperfunction, is 
not defined, we can not to expect such a generalized solution to (3.66). So we have 
to localize the procedure of the construction of the solutions to (3.66). Therefore, 
we construct a solution for the domain Dl = {(e, t); 0 < e < 1, 0 < t < to} with 
boundary conditions (3.65) and initial conditions in t = 0 and then for the domain 
D2 = {(e, t)j 0 < e < 1, to < t} using the Laplace transform presented in Section 
1, Subsection 1.1.5. At the end we tIY to find a "global" solution to (3.66). 

We start with the separation of variables. 
Let us suppose tha.t the solutions of the system (3.66), (3.65) have the from 

m(t",t) = M(t,,)V(t), u(t",t) = U(t,,)T(t). 

It is easily seen that for M and U, which satisfy the boundary conditions from 
(5.2), we have a family of solutions: 

Mk(e) = Cksin brt"i Uk(t,,) = Cksin h·e, kEN. 

In order to find the corresponding values Tk and Vk we have to solve the system: 

(3.67) T~2)(t) - '>'(kninCt) - (k1liVk(t) = g(t)j 

Vk(t) + JtV~")Ct) + (k7r)2TkCt) + }Jl(k7r)2Tl") + }J2(k7r)2Tj/>(t) = 0, 0 < t. 

We start with the domain D I . Then we analyze system (3.67) in the interval 
(0, to) with initial condition in t = 0 and with.>. = B. In this case to (3.67) it 
corresponds in 'D~([O,to» (cf. 8.1 Section 1, Subsection 1.1.2): 

(3.68) D2[HoTkJ - B(k7r)2[HoTkJ - (k7r)2[Hov,.,] = [Hog] + TkOO(l)(t) + Tloo(t), 

[HOVkJ + }JD"[HoVkJ + (k7r)2[HoTkJ + }Jl(k7r)2 D"[HoTkl + }J2(k7r)2 nP[HoTkl = 0, 
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where TkO = Tk(O), Tfo = T~l)(O). Applying the LT to (3.68) we get 

(3.69) 
(s2 - B(h)2{tk(S) - (h)2Vk(S) = j(s) + TkOS + Tfo + ri(s); 

(1 + JL8a)v k(S) + (h)2(1 + PlSa
' + P2aP)Tk(s) = T2(s), 

where Tb T2 E.A. For simplicity we solve system (3.68) fork = 1. Let 

! 
s2 - B1f2 -1f2 ! 

D.IO(S) = 1f2(1 + PlSa + P2 sP) (1 + JL8a) 

= JL82+a + s2 + 1f2(P11f2 - Bp)sa + 1f4p2aP + 1f2(1f2 - B) 

= JL82+a + s2 + asa + baP + d, 

where a = 1f2(Pl1f2 - Bp), b = 1f4Jl-2, d = 1f2(1f2 - B), 

D. ()_ITlOs+Tlo+j(S)+Tl(S) -1f2 ! 
11 S - r2(s) (1 + JL8a) 

= p(sa + l/p)(Tlos + Tlo + j(s) + rl(s» + 1f2r2(S), 

D. () _I s2 - B1f2 TlOS + Tlo + j(s) + Tl(S)! 
12 S - 1f2(1 + P1Sa + P2 sP) r2 s 

= -1f2(T10Jl-2Sl+,8 + TlOP1Sl+a + TIOs + TfoP1 Sa + TfoP2S,8 + Tfo) 

-1f4(1 + P1Sa + p2aP)j(s) - 1f2(1 + PlSa + Jl-2aP)rl(S) + (s2 - B1f2)r2(S)' 

If in D.IO, D.1l and D.12 w~repla.c! 1f with h, then we have D.ko, D.kl and D.k2 
respectively. The solutions Tk(s), V k(S), kEN to system (3.69) are 

-T~ ( ) - D.kl(S), V~ ( ) _ D.k2(S) 
k S - D.kO(S) ' k S - D.kO(S)· 

Suppose that D.kO(S) "1= 0, Res > x£ > 0, kEN. Let us introduce the new variable 
(k = S - x~ in D.ki(S)/ D.kO(S), i = 1,2, 

D.ki(S) D.ki«(k + x~) _ .. 
~( ) = D. «( 0) = Qki«(k), ,= 1,2, kEN. 
UkO s kO k + Xk 

Now the functions Qki«(k) are holomorphic on Il4 + ilR and belong to the space 
1-£(lR+). Hence, there exist qki E S'(i4) such that 

or 

(qki(t), e-Ckt} = Qki«(k), i = 1,2, kEN, 

( () -(B-4)t) D.ki(S) Re o· 1 2 k 1IJ 
qki t , e = D.kO(S) ' s> xk, ,= ,. El". 

Hence, a solution to the system (3.68) for a fixed kEN is: 

T,;(t) = e"'~tqkl(t)ho.b)j 
VkO(t) = e:z:~tqk2(t)ho.b)' 
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Note that ~ and V~ belong to V' ([0, b» for every b, 0 < b < 00 (cf. Section 1, 
Subsection 1.1.5). 

By the similar method as we applied in [59] we can prove that ~ and Vf.0 are 
regular distributions defined by TA: and Vie which have the following properties for 
kEN: 

(1) Tk E C2«0, to]) n Cl([O, to]), 'Ii2) E Veto, to]) n C«O, to)); T~2)(t) is not 
bounded in t = 0, lim Tk(t) = TkO, kEN. 

t-o+ 
(2) Vie E L1([O, to]) n C«O, to]) and Vie(t) is not bounded at t = 0, Vie(t) = 

O(r(tJ-o<», kEN but it satisfies Proposition 1.1 in Section 1. 

If additionally Tk(O) = 0, then Tk E C2([0, toD and Vk E C([O, toD, VPl E Veto, to])n 
C«O, to». 

Consequently, by our definition of the classical solution and generalized solution, 
in Dl we have a classical solution to (3.66). The functions Tk and Vk, kEN, which 
satisfy (3.67) in (0, to) are 

Tk(t) = Tk(O)(~FOt+l(t) + Fl(t» 

(3.70) + TP)(O)(~FOt(t) + Fo(t») + «~FOt + Fo) * g)(t)j 

and 

Vr.(t) = _(k1r)2 {Tk(0)~2Fl+tJ(t) + ~lFl+o«t) + Fl(t)] 

+ T~1)(0)[~lFo:(t) + ~2FtJ(t) + Fo(t)] 

(3.71) +«~lFOt+~2FtJ+.Fo)*g)(t)}, O<t<to, 

where Fp(t) = C-1(sP/AkO(S»(t), 0 ~ t < to (cf. [62]). 
With regard to domain D2 we have to find a solution to system (3.67) but in the 

interval (to, b) for any b > to, and), = B+A. We proceed in the following way: First 
we have to localize the supposed solution to (3.67) on the interval (to, b). Then we 
suppose that there exists a solution Tk, Vk to (3.67) such that HtoTk E Cl ([to, b», 
(HtoTk)(2) E Ll([to, b»j Vr. E C«to, b» n V([to, b». 

By (1.1) and Proposition 1.1 in Section 1, to (3.67), on the interval [to, b) it 
corresponds in V~([to, b» 

(3.72) D2[HtoTkl - (A + B)(k1r)2[HtoTkl - (k1r)2[Hto Vk) 

= Tk(to)D16(t - to) + T~1)(to)6(t - to) + [Htog}j 

and 

[Hto Vk] + I-'DO<[Hto VkJ + (k1r)2[HtoTkl + 1-'1 (k1r)2 DOt [HtoTkl + 1-'2 (k1r)2 .vP[HtoTkl = O. 

Let 

Tk E ewtS'(R+ + [to,b» such that Tkl(-oo,b) = HtoTk, 

Vk E ewtS'(R+ + [to, b») such that V",I(-oo,b) = HtoVk 

9 E ewtS'(R+ + [to,b)) such that 91(-00,6) = Htog· 
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Applying to (3.72) the defined LT, we get 

(S2_ (A+B)(k1r)2)Tk(S)- (k1r)2Vk(S) = Tk(to)se-to·+Tp> (to)e- to• +~(s)+fi (s); 

. (1 + psa)v k(S) + (k1l")2(1 + P1Sa + P2J1)"Tk(S) = r2(s), 

where T1 and T2 eA. By Tk is d~ot~ the LT ofTk. 
When we solve this system in Tk, V k and use the inverse LT, we get 

(HtoTk)(t) = Tk(to)8(t - to)(pGa+1 (t - to) + G1 (t - to)) 

+ ~1>(to)8(t - to)(pGa(t - to) + Go(t - to)) 

(3.73) + (pGa + Go) * Htog)(t); 

(HtoVk)(t) 

= -(k1r)2{Tk(to)8(t - to)lJL2G1+P(t - to) + P1Ga+1(t - to) + G1(t - to)] 

(3.74) + T~1>(to)8(t - to)lJL1Ga(t - to) + p2Gp(t - to) + Go(t - to)] 

+ [(P1Ga + JL2Gp + Go) * (Htog)](t)}, to < t < b, 

where Gp(t) = £-1(sp/A~o), A~o equals Ako in which instead of B we have A+B. 
Therefore, we can use the properties of solution (3.70), (3.71) to system (3.67) 
taking into account that we have A + B instead of B. 

We have now a solution for the domain D1 , given by (3.70), (3.71) and a solution 
for the domain D2 given by (3.73), (3.74). The properties of HtoTk and Hto Vk in 
t = to follow by the properties of Tk and Vk in t = O. 

Theorem 3.7. If in the system (3.66) with the boundary condition (3.65), >. = B 
and 9 E C([O, b», for any b > 0, then we have the classical solutions in (0,1) x (0, b) 
for every b > 0.' These solutions are 

(3.75) mk({, t) = Ck sink1reYk(t), Uk({,t) = Cksink1reVk(t), keN, 

where Tk, Vk are of the form (3.70), (3.71) forO<t<b. In case>. = B+A8(t-to), 
o < to, A # 0, there exist the regular distributions Rk, Qk E D'«O, 1) x (0, b» 
defined by the functions rk(e, t) and qk({, t) respectively, keN, such that: 

(1) rk and qk belong to COO([O, 1]) x L1([0, bD, 0 < to < b < 00. 

(2) The restriction of rk({, t) and qk({, t) to D1 are mk({, t) anduk(e, t) given 
by (3.75), where Vk and Tk have been given by (3.70) and (3.71); 

(3) The restriction of Tk(e, t) and qk(e, t) to D2 are the same functions mk and 
Uk given by (3.75) in which instead ofTk and Vi. we have HtoTk and Hto Vk 
given by (3.73), (3.74). 

Proof. We have only to prove that two regular distributions defined on D1 U D2 by 
mk({, t) and Uk(e, t) for a fixed kEN can be extended to (0,1) x (0, b) for any b, 
o < to < b < 00. By the properties of Vk and Tk, we cited it is easily seen that the 
condition of Proposition 1.6 in Section 1 is sa.tisfied. Consequently such extension 
e~~. 0 



Bibliography 

[1] S.S. Antman and J.F. Pierce, Global beha1lior of buckled states of compressible elastic rods, 
SIAM J. Appl. Math. 50 (1990),395-419. 

(2] T. M. Atanackovic, Stability theory of elastic rods, World Scientific, River Edge, N.J., 1991. 
(3] T.M. Atanackovic, A modified Zener model of a viscoelastic body, Continuum Mech. Ther­

modyn. 14 (2002), 131-148. 
(4] T. M. Atanackovic, B. Stankovic, Dynamics of a Viscoelastic rod of Fractional Derivative 

7Ype, Zeitschrift fUr Angewandte Mathematik und Mechanik (ZAMM) 82 (2002),311-386. 
(5] T. M. Atanackovic, A model for the uniaxial isothennal defonnation of a Viscoelastic body, 

Acta Mechanica 159 (2002), 11-86. 
(6] T. M. Atanaclcovic and B. Stankovic, Stability of an Elastic rod on a Froctional derivative 

type of Foundation, J. Sound Vibration (in press). 
(1] T. M. Atanackovic, On a distributed derivative model of a viscoelastic body, Comptes rendus 

de.l' Acad~mie des Sciences - Mechanics 331 (2003) 681-692. 
(8J T. M. Atanackovic and B. Stankovic, On a system of differential equations with fractional 

derivatives arising in rod Theory, J. Phys. A: Math. Gen. 31 (2004), 1241-1250. 
[9] T. M. Atanackovic and B. Stankovic, On the copmpressed elastic rod with rotary inertia on 

viscoelastic foundation, Preprint. 
(10] B. S. Baelic and T. M. Atanaekovic, Stability and creep of a fractional derivative order vis­

coelastic rod, Bull. Aead. Serbe Sci. Arts, Cl. Sci. Math. Natur. 21 (2000), 115-131. 
(11] R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior, Jour­

nal of Rheology 30 (1986), 133-155. 
(12] H. Bass, The Camegie Initiative on the Doctorate: The case of Mathematics, Notices AMS 

50:1 (2003), 161-116. . 
(13] L. Berg, Asymptotische Auffassung der Operatorenrechnung, Studia Math. 21 (1962), 215-

229. 
[14] L. Berg, Asymptotische Darstellungen und Entwlcklungen, VEB Deutscher Verlag der Wis-

. senschaften, Berlin, 1968. 
(15] N.N. Bogolubov, V.S. Vladimirov and A.N. Tavkelidze, On automodel asymptotics in quan­

tum field theory, Proc. Steklov Inst. Math. Issue 1 (1918),21-54. 
(16] Yu. Brichkov, Yu. Shirokov, On asymptotic behavior of the Fourier transfonn, TMF 4:3 

(1910),301-309 (in Russian). 
[11] J. Carr and Z.M. Malharden, Beck's problem, SIAM J. Appl. Math. 31:2 (1919), 261-262. 
(18] J. F. Colombeau, Elementary Introduction to New Generalized Functions, North Holand, 

Amsterdam, 1985. 
(19] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 

1953. 
[20] V.A. Ditkin, On the.theory of operational calculus, DokI. AN SSSR 123 (1958),395-396 (in 

RUSSian). 
[21J G. Doetsch, Haudbuch der Laplace-Transfonnation, I and 11, Birkhiiuser, Basel, 1950-1955. 
[22] A. Erd~lyi (Editor), Higher Transcendental Functions, MeGraw-Hill, New York, 1955. 
[23J R. A. Fenander, A fractional derivative railpad model included in a railway track mode~ J. 

Sound Vibration 212 (1998),889-903 . 
. (24] I. M. Gelfand, G. E. Shilov, Generalized /unctions, I, 2,3, Moscow, 1958 (in Russian). 



58 ATANACKOVlt AND STANKOVlt 

(25) R. Gorenflo and F. Mainardi, Fractional calculus: Integrol and differential equations of frac­
tional omer, in: Fractional Calculus in Continuum Mechanics, (Ed--s: A. Carpinteri, F. 
Mainardi), Springer-Verlag, Wien, 1991, pp. 223-216. 

(26) R. Gorenflo, Yu. Luchko, S. Rogozin, Mittag-LetJler type /unctions: notes on growth proper­
ties and distributions of zeros, Preprint A-04/91, Fachbereich Mathematik und Informatik, 
Freie Universitat, Berlin (1997). 

(21) L. Hormander, The Analysis of Linear Partial Differential Operators, I, n, Springer-Verlag, 
Berlin, 1983; (Mir, Moskva, 1986). 

(28) W. T. Van Horssen and M.A. Zarubinskaya, On and Elastic Dissipation Model for a Can-
tileuered Beam, Quarterly Appl. Math. 61 (2003), 565-513. 

[29} I. Imai, Applied Hyperfunction theory, Kluwer, Dordrecht, 1992. 
(30) F. Jensen, How to succeed in Modelling, Qual. Reliab. Engng. Int. 15 (1999), 159. 
[31} H. Komatsu, Ultradistributions, I, J. Fac. SaL Univ. Tokyo, Sect. lA Math. 20 (1973), 23-105. 
(32) H. Komatsu, An introduction to the theory of hyperfunctions, Lecture Notes in Mathematics 

287, Springer-Verlag, Berlin, 1973. 
[33} H. Komatsu, Laplace transforms of hyperfunctions - a new foundation of the Heuiside cal­

culus, J. Fac. Sci., Univ. Tokyo, Sec. lA, 34 (1987),805-820. 
(34) H. Komatsu, Solution of differential equations, by means of Laplace hwerfunctions, structure 

of solutions of differential equations, Katata/Kyoto, 1995, World Sciientific, River Edge, N.J. 
1996, pp. 221-252. 

[35) H. Komatsu, Operational calculus, hyperfunctions and ultradistributions, Algebraic Analysis 
I, Academic Press, 1988,351-372. 

(36) H. Komatsu, Operational calculus and semi-groups of operators, Lecture Notes in Math. 
1540 (1993), 213-234. 

(31) F. K. Labisch, On shearable nonlinearly elastic rings, Int. J. Eng. Sciences 30 (1992), 101-117. 
[38) G.-G. Li, Z.-Y. Zhu and C.-J. Cheng, Dynamical stability of fliscoelastic column with frac­

tional derivative constitutive relation, Appl. Math. Mech. 22 (2001), 294-303. 
(39) A. Magnusson, M. Ristinamaa and C. Ljung, Behaflior of the extensible elastica solution, 

Int. J. Solids Structures 38 (2001), 8441-8457. 
[40) J. Mikusi6ski, Sur les fondements du calcul opiratoire, Studia Math. 11 (1995),41-70. 
[41) J. Mikusi6ski, Operational Calculus, 1, 11, Pergamon Press, 1983. 
[42J K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1914. 
[43J N. Ortner, Construction of FUndamental Solutions, in: Topics in Boundary Element Re-

search, Ed. C. A. Brebbia, 1981. 
[44) K. D. Papoulia and J. M. Kelly, Visco-Hyperelastic Model for Filled Rubbers Used in Vibra­

tion Isolation, ASME J. Eng. Materials and Technology, 119 (1997), 292-297. 
{45J A. PflUger, Stabilitiitsprobleme der El/l8tistatik, Springer-Verlag, Berlin, 1964. 
(46J T. Pirtz, Five-parameter fractional derivative model for polymeric damping materials, J. 

Sound Vibration 265 (2003), 935-952. 
[471 E. E. Rosinger, Non-Linear Partial Differential Equations, An Algebraic View of Generolized 

Solutions, North-Holland, Amsterdam, 1990. 
[48) Yu. Rossikhin, and M. V. Shitikova, Analysis of Dynamic Behaflior of Viscoelastic rods 

Whose Rheological Models Contain Fractional Derivatives of Two Different Orders, Z. 
Angew. Math. (ZAMM) 81 (2001),363-376. 

(49J D. L. Russell, On the positive root of the fourth derivative operator, Quarterly Appl. Math. 
16 (1988), 751-753. 

[50) D. L. Russell, A comparison of certain elastic dissipation mechanisms via decoupling and 
projection techniques, Quarterly Appl. Math. 19 (2001),374-396. 

[51) S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives, Gordon 
and Breach, Amsterdam, 1993. 

[52) M. Sato, Theory of Hyperfunctions, Sugaku 10 (1958), 1-27, (In Japanese). 
[53) M. Sato, Theory of hyperfunctions, J. Fa.c. Sci. Univ. Tokyo, Sec. 18 (1959), 139-193. 

1 



SOLVING LINEAR MATHEMATICAL MODELS IN MECHANICS 59 

[54) A. Schmidt and L. Gaul, Implementation tIOn Stoffgesetzen mit fmktionalen Ableitungen in 
die Finite Elemente Methode, Z. Angewandte Math. Mech. (ZAMM) 83 (2003), 26-31. 

[55) A. P. Seyranian, Bifurcations of Eigenvalues and Stability Problems in Mechanics, in: Modem 
Problems of Structural Stability, Springer-Verlag, 2002. 

[56) L. Schwartz, Thiorie des distributions, Hermann, Paris, I, 11, 1951. 
[51) S. L. Soboleff, Mithode nonvelle d resondre le probleme de Oauchy pourles iquations liniaires 

hyperbolic normales, Mat. Sb. 1 (43) (1936),39-12. 
[58) B. Stankovic, Hyperjunctions, Zbornik radova 1(15), Matemati<'!ki Institut SANU, Beograd 

(1991),11-110. 
[59) B. Stankovic, T.M. Atanackovic, On a model of a viscoelastic rod, Fractional calculus and 

Applied Analysis 4:4 (2001),502-522. 
[60) B. Stankovic, Solution of mathematical models by localization, Bu!. Acad. Serbe Sci. Arts, 

Cl. Sci. Math. Natur. 21 (2002), 1-11. 
[61) B. Stankovic, Solutions to a partial differential equation that appear in Mechanics, Bull. 

Acad. Serbe Sci. Arts, Sci. Math. 28 (2003),41-60. 
[62) B. Stankovic, T. M. Atanackovic, On a viscoelastic rod with constitutive equation contain­

ing fractional derivatives of two different orders, Mathematics and Mechanics of solids (to 
appear). 

[63) B. Stankovic and T. M. Atanackovic, On the copmpressed elastic rod with rotary inertia and 
varying compressive force, Preprint. 

[64) Z. Szmydt, Fourier transformation and linear differential equations, PWN - Polish Scientific 
publishers, Warszawa, 1911. 

[65) V.S. VIadimirov, B.1. Zavjalov, Tauberian theorems in quantum field theory, Itogi Nauki i 
tehniki, Sovremenie problemi matematiki 25 (1980), 95-130 (in Russian). 

[66) V.S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1919. 
[61) V.S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1988 (in RUSSian). 



/ 

, 1 11 ~1 " :111 I 



Marko Nedeljkov and Stevan Pilipovic 

GENERALIZED FUNCTION ALGEBRAS 
AND PDEs WITH SINGULARITIES. 

A SURVEY 



CONTENTS 

Introduction •.................................................... 63 
PART I: BASIC DEFINITIONS •............................•... 65 
1. Different algebras and spaces of generalized functions ......... 65 
1.1. Extensions over locally convex spaces and algebras .................... 65 
1.2. Colombeau generalized functions with uniform bounds ................. 66 

1.3. Generalized function algebras over Holder spaces ...................... 67 
1.4. Colombeau-Sobolev type spaces and algebras .......................... 68 
1.5. Generalized stochastic processes ....................................... 68 
1.6. Vector valued Colombeau type spaces ................................. 70 
2. Generalized semigroups .....•....•........•.... .o •• .o .......... .o. 71 
PART 11: SECOND ORDER EQUATIONS ...... .o ••••••••••••••• 74 
3. Elliptic PDEs ............ ~ ..•.............. .o •••••••• .o ••••••••• 74 
3.1. Linear elliptic PDE ........... ~ ........................................ 74 
3.2. Quasilinear elliptic PDE ............................................... 85 
4. Hyperbolic PDEs .............•................................ 87 
4.1. Semilinear wave equation .............................................. 87 
4.2. Stocbastic wave equations .............................................. 88 
5. Semilinear parabolic PDE ..................................... 90 
PART Ill: HYPERBOLIC SYSTEMS ............................ 94 
6. Semilinear hyperbolic systems ................................. 94 
7. Systems of conservation laws . . . . . . . . . . .. .. . . . . . . .. . . . .. .. . . .. .. .. .. . .. .. . 95 
7.1. Introduction ........................................................... 95 
7.2. Some examples ......................................................... 96 
7.3. Solution concepts ...................................................... 98 
7.4. Existence theorems ................................................... 103 
7.5. Intersection of delta or singular shock waves with themselves and other 

elementary waves ............................................................ 106 
7.6. Numerical verification ................................................. 109 
7.7. Open problems ....................................................... 109 
8. Appendix ................................................................... 110 
8.1. Algebras of weighted sequence spaces ............................... " 110 
8.2. Association ........................................................... 114 
References .................................................................... 116 



Introduction 

The aim of this survey article is to explain basic ideas of generalized function 
algebras (Part I), to illustrate the analysis of second order PDEs (Part 11) and first 
order hyperbolic systems (Part Ill) with singular coefficients and singular data. 

Part I deals with the basic definitions of Colombeau type spaces and algebras, 
while Parts 11 and III present main statements of our investigations on PDEs of 
quoted types. Especially, complete proofs on solving elliptic linear equations with 
singular coefficients and singular data are given. 

Colombeau had constructed his well-known algebras by purely algebraic meth­
ods, [9, 10]. Since then, algebras of Colombeau generalized numbers and functions 
became a very useful framework for linear problems with singularities and especially 
for nonlinear problems. Here we refer to monographs [3, 11, 29, 31, 68, 72] for the 
so-called Colombeau approach and for another approach, we refer to monographs 
[87,88]. 

Many linear and nonlinear problems with irregular data or irregular coefficients, 
have been successfully analyzed by the mean of appropriate approximations through 
nets of Coo functions which fits into Colombeau algebra 9 of generalized functions. 
We extend the references of this article in order to emphasize a part of large lit­
erature related to linear and nonlinear equations in the framework of generalized 
function algebras. 

For the general theory of Colombeau type generalized functions, beside the 
quoted monographs, we refer to [29, 30, 46, 48, 49, 50] for generalized functions 
on manifolds, to [4, 5, 17, 18, 21, 62, 83, 98] for embeddings of different function 
spaces and to [19, 24, 25, 63, 89, 90] for the topology in Colombeau generalized 
function algebras and spaces. 

Linear equations and pseudodiffierential operators were studied in [23, 34, 35, 
52, 66, 82], while local and microlocal analysis within Colombeau type algebras 
were studied in [37, 38, 55, 56, 76, 78, 91]. 

Concerning nonlinear equations, not mentioned in this paper, one can see also 
[3,15, 20, 27, 28, 36, 47, 64, 92]. 

We give in Part I a general concept of extending the theory of locally convex 
spaces and algebras to the corresponding Colombeau type spaces and algebras. 
Since we are mainly interested in equations, we give several constructions which 
are related to Sobolev and Holder spaces of functions. Also, for the later use of 
a class of stochastic equations, we recall the definition of a generalized stochastic 
process. In the last subsection of Part I1, we introduce generalized semigroups of 
operators which will be used in the analysis of a semilinear heat equation with 
singularities. 
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We present in Part Il, Subsection 1.1 our method of solving various classes of 
second order elliptic linear differential equations with strong singularities in the 
framework of generalized function algebras. We start with the Whitney type def­
initions of generalized functions on closed sets. Then, with all the details, we 
construct and discuss corresponding boundary value problems in relation to the 
classical results. The results of this subsection are not published before. 

A quasilinear Dirichlet problem for uniformly elliptic equations whose coefficients 
have the lack of regularity assumptions and with singular boundary conditions is 
considered in Subsection 1.2 [84J. In our setting of a problem, we replace an equa­
tion div A(Du) = 0 with a net of equations with regular coefficients and a singular 
boundary condition with an appropriate regularized net of boundary conditions. 

In Subsection 2.1 is considered a semilinear wave equations [60] in space dimen­
sion n :::;; 9 with singular data and various types of nonlinearities. In general, a 
nonlinear term is regularized with respect to a small parameter e such that it be­
comes globally Lipschitz for each e. A net of solutions to a net of Cauchy problems 
obtained in this way determines a generalized solution. For certain growth condi­
tions on a nonlinear term the equation is uniquely solved without regularizations. 
Note, in certain cases, a solution to the regularized equation is also a solution to 
the non-regularized one. . 

Subsection 2.2 deals with some classes of wave equations with stochastic pertur­
bations as singularities. 

We study in Section 3 [67J a class of heat equations with singularities extending 
the use of semigroups to some classes of PDE's with singular coefficients. The gen­
eral idea is simple and it lies in the core of a construction of generalized functions. 
Regularized PDE, in fact a net of equations, is solved with an appropriate net of 
semigroups. The solution obtained in this way will represent a generalized func­
tion. For this reason, we will use different variants of Colombeau-like generalized 
function algebras. By the use of semigroups related to the Schrodinger operator 
~ - V we present the results concerning the semilinear heat equation with singular 
Cauchy data. 

Part III is devoted to solving a class of Riemann problems to one-dimensional 
2 x 2 conservation law systems which do not always admit a classical entropy solution 
consisting of elementary waves. Two new solution types, delta and singular shock 
waves, could appear in such a situation. We shall use two solutions concepts for 
describing them. 

Also, we shall briefly describe what might happen when such a wave interacts 
with the wave of the same type or with some other elementary wave. 

We present in the Appendix a very general construction of generalized function 
Colombeau type algebras through a purely topological description of such algebras. 
We will show that such algebras fit very well in the general theory of the well known 
sequence spaces forming appropriate algebras [17J. 



PART I: BASIC DEFINITIONS 

1. Different algebras and spaces of generalized functions 

1.1. Extensions over locally convex spaces and algebras. This subsection con­
tains special constructions of Colombeau type algebras. One can find a mO.le ab-
stract general approach in [17] as well as in the Appendix. '" 

Let E be a vector space on C with an increasing sequence of seminorms J.Ln, 
nE N. The space of moderate nets of eM(E), respectively, of null nets of N(E), is 
constituted by nets Re E E(O,l} with the properties 

(Yn E N)(3a E 1R)(f.Ln(Re) = O(ea)), 

respectively, (Yn E N)(Yb E R)(J.Ln(Re) = O(eb». 
(0 is the Landau symbol.) The quotient space gee) = eM (E)/N(E) with elements 
[Fe!, [Ge!, . .. , (equivalence classes are denoted by ['D is called the Colombeau ex­
tension of E. Putting vn(Re) = sup{a; J.Ln(Re) = O(ea)} and en (Re)e, (Se)e) = 
exp (-vn(Re-S.:») , nE N, we obtain that (en)n is a sequence ofultra-pseudometrics 
defining the ultra-metric topology (sharp topology) on gee). 

If E = C (or E = JR) and the seminorms are equal to the absolute value, 
then the corresponding spaces are Eo, No; Eo is an algebra and No is an ideal 
and, as a quotient, one obtains Colombeau algebra of generalized complex numbers 
t = eo/No (or IR). These algebras are not fields as expected at the first sight, but 
rings. If a set 0 is open in Rn and E = Coo(O) is endowed with the usual sequence 
of seminorms (this is Schwartz space E(O», 

J.LK",II(<I» = sup I <fo(O:) (x)l, v E No, 
"'EK",lo:l~1I 

where (KII)II is an increasing sequence of compact sets that exhausis 0, thEm the 
above definition gives Colombeau simplified algebra g(O) = eM(O)/N(O) [9], [72]. 
Its elements are called generalized functions and we keep this name for elements of 
any spaces or algebras constructed as extensions of some functional space E. 

Then the embedding of compactly supported Schwartz distributions (elements of 
E' (0)) is made through the convolution with a net of mollifiers <foe = e-n<fo(-fe) con­
structed by a rapidly decreasing function <fo E S(Rn) with the properties J <fo(t) dt = 
1, J tm<fo(t) dt = 0, m E Nn. The embedding is given by 1 1--+ [I * <foeloJ. By the 
sheaf properties of V' (0) and g (0), this embedding is extended to V' (0). 

Besides a cited paper, one can also look in [9J for Colombeau's original approach. 
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1.2. Colombeau generalized functions with uniform bounds. In general, for an 
open set 0 C Rn, denote by Cb' (0) the algebra of smooth functions on 0 bounded 
together with all their derivatives. 

We shall briefly repeat some definitions of Colombeau algebra given in [77J. 
Denote R~:= R x (0,00), R~:= R x [0,00). Let Cf(R~) be a set ofall functions 

u E COO(lR~) satisfying UIRX(O,T) E Cr(R x (0, T)) for every T > O. Let us remark 
that every element of Cr(lR~) has a smooth extension up to the line {t = O}, Le., 

Cb' (R~) = Cr (R~). This is also true for Cf (R~). 
We will give explicit definitions an one can easily make the description of these 

spaces and algebras as in Subsection 1.1. EM,g(R~) is the set of all maps G : 
(0,1) x R~ -+ R, (c,x, t) f-+ GE(x, t), GE E Cf(lR~) for everye E (0,1) satisfying: 
for eyery (a, (3) E Ma and T > 0, there exists N E M such that .. 

sup 18~af GE(x, t)1 = O(e-N
), as e -+ O. 

(x,t)eRx (O,T) 

Ng(R~) is the set of all GE:. E EM,g(R~) satisfying: for every (a, (3) E Ma, a E R 
andT>O 

sup 18~8eGE(X, t)1 = V(ea), as e -+ 0. 
(x,t)elRx (O,T) 

Clearly, Ng(R~) is an ideal of the multiplicative differential algebra EM,g(R~). 
Thus one defines the multiplicative differential algebra gg(R~) of generalized func­
tions by gg(R~) = EM,g(R~)/Ng(R~). All operations in Qg(lR~) are defined by the 
corresponding ones in EM,g(R~). 

If one uses Cr(O) instead of Cr(lR~), for an open connected set 0 C Rn, one 
obtains EM,g{O), Ng(O) and consequently, the space of generalized functions on a 
real line, Qg(O). 

Additionally, if functions from EM,g(R) and Ng(R) are substituted with reals, 
one obtains the ring EM,o and it ideal No, respectively. Thus, the ring of generalized 
real numbers is defined by iR = EM,O/No. 

In the sequel, G denotes an element (equivalence class) in Qg(O) defined by 
GE E EM,g(O). 

Since Cf(lR~) = Cf(lR~), a restriction of a generalized function to {t = O} is 
de~ed in the following way. For given G E Qg(R~), its restriction Glt=o E Qg(lR) is 
th~"class determined by a function Ge(x, 0) E EM,g(R). In the same way as above, 

. ,q(x - et) E Qg(lR) is defined by Ge(x - et) E EM,g(R) . 

. ~'" If G E Qg and I is a smooth function polynomially bounded together with 
all its derivatives, then one can easily show that the composition I(G), defined 
by a representative I(GE ), G E Qg makes sense. It means that I(GE ) E EM,g if 
Ge E EM,g, and I(Ge) - I(He) E N g if Ge - He E N g • 

The equality in the space of the generalized functions (;g is not appropriate for 
conservation laws as one can see in [72J. A gener~~ed function G E (;g(O) is said to 
be associated with u E V'(O), G ~ u, if for some;J'and hence every) representative 
GE of G, GE -+ u in 1)'(0) as t -+ O. Two geUfir~,llzed functions G and H are said 

,I •• 
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to be associated, G ~ H, if G - H ~ O. One can easily verify that the association 
is linear and an equivalence relation. 

A generalized function G E Qg(O) is pointwiselly non-negative iffor every x E 0, 
G(x) ~ 0, i.e., there exists Ze E No such that Ge(x) ~ Ze, for c small enough. 

A generalized function G E Qg( 0) is distributionally non-negative if for every 
t/J E CirCO), 10 Ge(x)1jJ(x) ~ 0, for c small enough. 

Let U E V!,,,,, (R). Let Aa be the set of all functions 4> E VCR) satisfying </J(x) ~ 0, 
x E R, I 4>(x) dx = 1 and supp 4> C [-1,1]. Let 4>e(x) = c- l 4>(x/c), x E lR.. Then 

£4> : u....... class of u * <Pe 

defines a mapping of 1JL,oo (R) into Qg(R). It is clear that £4> commutes with the 
derivation. Also, £4>(8) is a class defined by a delta net <Pe. 

1.3. Generalized function algebras over Holder spaces. Let 0 be a bounded 
open set in Rn and a E (-1,1). Recall [26, p. 94], a domain 0 and its boundary 
are of class Ck,o., for 0 ~ a :;;;; 1, if at each point Xo E 80 there is a ball B = Bxo 
and a bijection t/J : B - D such that 1jJ(B n 0) c R+, 1jJ(B n 80) c 8R+, and 
1jJ E Ck,o.(B), 1jJ-l E Ck,o.(D). A domain 0 has a boundary portion T E 80 of 
class Ck,o. if at each point Xo E T there is a ball Bxo in which the above conditions 
are satisfied and B n 80 c T. 

We will consider the Colombeau extensions in cases E = Ck,Q(O), kEN and 
E = COO(O). We will use the norms 

Iflk,O = sup{lip)(x)l; Ipl :;;;; k,x EO}, 

Iflk,Q,O = Iflk,O + [f]k,Q,O, kENo, 

where, for f E COO(O), kENo, 

{ 
If(p) (x) - f(p) (Y)I } 

[f]k,Q,O = sup Ix _ ylQ ; (x, y) E 0, x =I y, Ipl = k . 

The completion of COO(O) with respect to the norm I . Ik,Q,O defines Ek = 
Ck,o:(O), kEN. Recall, if k + a < k' + a', then the embedding of Ck,o:(O) 
into Ck',Q' (0) is a compact linear operator. 

Note that the sequences of norms 11· IIk,Q' kEN and 11 . Ilk, kEN define the 
same uniform structure on COO(O) as the usual one. 

In case E = COO(O), we need one more construction. Let Ce be a net in OO,Q(O) 
such that 

Ce E Ck,QeO), c < Ck, kEN, 

where Ck strictly decreases to zero. 
Two such nets are in relation, Ge '" Re, if 

Ct: = Re, e < eo, for some co E (0,1). 

This is an equivalence relation and with the corresponding classes, elements in 
00,0:(0)/"-,, we define spaces CM [E], N[E]. Then we define the corresponding 
Colombeau type space Q[E] = cM[El/N[E]. Note that there exists a canonical 
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isomorphism of Q[EJ onto Q(E) if E = 0 00 (0). In case E = Ok,Gt(O), we have 
Q(E) = Q[E]. 

1.4. Colombeau-Sobolev type spaces and algebras. Although we have intro­
duced two general concepts of constructions of generalized function algebras, still 
the flexibility of Colombeau main idea enable us to construct some other types of 
spaces and algebras useful in the analysis of problems with singularities. 

Let 0 be an open, connected subset on~n with a smooth boundary. Let HT,S(O) 
be Sobolev space of functions in £S(O) with all distributional derivatives of order 
lal ~ r belonging to £S(O), equipped with the usual norm. In case s = 2, we 
simply write HT(O). One can find Colombeau type algebras QLp,Lq in [7] and [60J. 
We shall describe the special case of the last one, YL2,Ll space, denoted by Q2,2 in 
the present paper. 

£2,2([0, T) x lRn) is the algebra of all G& E £([0, T) x Rn) with the property that 
for all T > ° and a E N~ there exists N E N such that 

II<JGtG&IIL2([o,T)XRn) = O(c-N
). 

We say that n8GtGe:IIL2 is moderate or that it has a moderate bound. 
N2,2([0, T) x Rn) is the algebra of all Gi; E £([0, T) x Rn) with the property that 

for all T > 0, a E N8 and a E R 

118Gt
Ge:IIL2([o,T)XRn) = O(eB

). 

We say that 118GtGe:lIL2 is negligible. 
As above, we define 

Q2,2([0, T) x Rn) = £2,2([0, T) x Rn)/N2,2([O, T) X Rn). 

One can similarly define spaces £2,2(Rn), N2,2(Rn) and Q2,2(Rn) but indepen­
dently of time variable t. 

Let Q denote [0, T) x 0 or O. The proof that N2,2(Q) is an ideal of £2,2(Q) is 
given in [7]. Sobolev embedding theorems give that £2,2(Q) C &g(Q) andN2,2(Q) C 
Ng(Q). Thus there exists a canonical mapping Q2,2(Q) -t Yg(Q). Also, this means 
that in Q2,2(Q) instead of L2-norm on the strip [0, T) x Rn one can use LOO-norm 
on [0, T) and L2-norm on Rn and vice versa. 

1.5. Generalized stochastic processes. At the beginning we recall some basic 
facts from classical stochastic analysis. Let (n, 1::, p.) be a probability space. A 
weakly measurable mapping 

X : n -t 1)' (Rd) 

is called a generalized stochastic process on Rd. 
For each fixed function cp E V(Rd), the mapping n -t R defined by 

w -t (X(w),cp) 

is a random variable. 
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The space of generalized stochastic processes will be denoted by Vb(Rd). The 
characteristic functional of a process X is 

CX(<p) = J ei{X(w),'P}dJL(w), <pE V(Rd ). 

Take probability space to be the space of tempered distributions 0 = S' (Rd) 
and E to be the Borel a-algebra generated by the weak topology. Then there is a 
unique probability measure JL on (0, E) such that 

! ei{X(w),'P)dJL(w) = e-!II'Plli2<-d) , <p E S(Rd ). 

It is a well known result following from the Bochner-Minlos theorem (see [39], 
for example). White noise process W : 0 -+ V'(Rd) is the identity mapping 

It is a generalized Gaussian process with mean zero and variance 

where E denotes expectation. 

Definition 1. Qg-Golombeau random generalized function on a probability space 
(0, E,JL) isa mapping U: 0 ~ Qg(Q) such that there exists a function U: (0,1) x 
Q x 0 ~ R with the following properties: 

1) For fixed e E (0,1), (x,w) ~ U(e,X,W) is jointly measurable in Q x O. 

2) e ~ U(e,·, w) belongs to E:g(Q) almost surely in wE 0, and it is a representative 
of U(w). 

By Q~(Q) we denote the algebra of Qg-Colombeau random generalized func­
tions on O. A family of Qg-Colombeau random generalized functions is called 
Qg-Colombeau generalized stochastic process. 

Definition 2. Q2,2-Golombeau random generalized function on a probability space 
(0, E, JL) is a mapping U : 0 -+ Q2,2(Q) such that there exists a function U : 
(0,1) x Q x 0 -+ R with the following properties: 

1) For fixed e E (0,1), (x, w) -+ U (e, x, w) is jointly measurable in Q x O. 

2) e ~ U(e,., w) belongs to E:2 ,2(Q) almost surely in wE 0, and it is a representative 
of U(w). 

By Q~2(Q) we denote the algebra of Q2,2-Colombeau random generalized func-. 
tions on O. A family of Q2,2-Colombeau random generalized functions is called 
Q2,2-Colombeau generalized stochastic process. 

As usual, the variable e will be written as a subindex 
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1.6. Vector valued Colombeau type spaces. We will make some necessary mod­
ifications to define and use generalized seIUigroups. The main difference comparing 
with the previous section is that one does not need all derivatives of a representa­
tive. This will open new possibilities for applications, but also make a work with 
them more complicated (spaces of such generalized functions are not algebras in 
general). 

Definition 3. GC1,H2 ([0, T) : Rn) (respectively NC1,H2 ([0, T) : R~», T > 0, is the 
vector space of nets Ge of functions 

G" E CO ([0, T) : H2(Rn)) n Cl (0, T) : L2(Rn» , e E (0,1) 

with the property: for every T1 E (0, T) there exists a E R, (respectively, for every 
a E R) such that 

(1) max { sup IIGe (t)IIH2, sup 118tGe (t)IIL2} = O(ca
), ase - 0. 

tE[O,T) tE[Tl,T) 

. ([ ) ) GOl H2 ([O,T): Rn). C 
The quotlent space 901,H2 0, T : Rn = N

0
1',H2 ([0, T) : Rn) IS a olombeau 

type vector space. 
Dropping the conditions on OtGe in (1) we obtain spaces GCO,H2 ([0, T) : Rn), 

Noo,H' ([0, T) : Rn) and 900,H2 ([0, T) : Rn). 

By Sobolev lemma we have 

Lemma 4. [fn ~ 3, then G01,H2 ([O,T): Rn) is an algebra with the multiplication 
andNol,H2 ([O,T): Rn) is an ideal OfG01,H2 ([O,T): Rn). Therefore, gOl,H2 ([O,T): Rn) 
is an algebra with the multiplication. The same holds for 
GOO,H2 ([0, T) : Rn), N oo,H2 ([0, T) : Rn) and 900,H2 ([0, T) : Rn). 

Substituting H2-norm with L2-norm in (1) we obtain vector spaces 

G01,L2 ([0, T) : ]Rn), N01,£2 ([0, T) : Rn) and 9Cl,L2 ([0, T) : Rn). 

Canonical mapping Lp : 90l,H2 ([0, T) : Rn) -+ 9Cl,£2 ([0, T) : Rn) is defined by 
L£2(G) = H, where H = [GEl and Ge is a representative of G. 

Space 9H2(Rn) is defined in a similar way as 90l,H2(Rn), but with representa­
tives independent of time variable t. This space is also an algebra in case n ~ 3. 
Let us give more details for space 9B',OO ([0, T) : Rn). 

GH2,OO (Rn), (respectively, N H2,OO (Rn» is the space of nets Ge of functions Ge E 
H2,oo (Rn), e E (0,1), with the property: there exists a E]R (respectively, for every 
a E R) such that 

IIGo:IIH2,OO(Rn) = O(e"), ase - 0. 

Both spaces are algebras with the usual multiplication and .IV H2,<>o (Rn) is an 
ideal. Colombeau type algebra is defined by 
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2. Generalized semigroups 

The definitions and assertions are from [67]. 
Let (E, // ·ID be a Banach space and let £(E) be the space of all linear continuous 

mappings E -+ E. 

Definition 5. SEM([O,oo) : £(E») is the space of nets S£ of continuous mappings 
Se : [0,00) -+ £(E), e E (0,1), with the properties S£(O) = I, e E (0,1), and that 
for every T > ° there exists a E IR. such that 

(2) sup //S£(t)// = O(ea
), as e -+ 0. 

te[O,T) 

SN ([0,00) : £(E») is the space of nets Ne of continuous mappings Ne : [0,00) -+ 

£(E), £ E (0,1), with the properties: 
(a) For every bE IR. and T> 0, sup //N£(t)// = O(eb), as e ..... 0. 

te[0 ,T) 

(b) There exists a net H£ in £(E) such that !imt_O N£(t) x = HeX, for every 
t 

X E E and e small enough, and for every b > 0, //H£II = O(eb), as e -+ 0. 

Proposition 6. SEM ([0, 00) : £(E» is an algebra with respect to composition and 
SN([O,oo) : £(E») is an ideal of SEM ([0, 00) : £(E»). 

Now we define Colombeau type algebra as the factor algebra 

SG([O ). £(E» = SEM([O,oo): £(E» 
,00 . SN([O,oo):£(E»' 

Elements of SG([O, 00) : £(E») will be denoted by S = [S£], where Se is a repre­
sentative of the above class. 

Definition 7. S E SG([O, 00) : £(E» is called a Colombeau Co-semigroup if it 
has a representative Se such that, for some eo> 0, SE is a Co-semigroup, for every 
e < eo. 

In the sequel we will use only representatives Se of a Colombeau Co-semigroup 
S which are Co-semigroups, for e small enough. 

Proposition 8. Let S£ and 8e be representatives of a Colombeau Co-semigroup S, 
with the infinitesimal generators Ae, e < £0, and ..4e, £ < £0, respectively, where eo 
and £0 correspond (in the sense of Definition 7) to S£ and 8£, respectively. Then 
D(A£) = D(..1£), for every e < So = min{eo,£o} and Ae - ..1£ can be extended to 
be an element of £(E), denoted again by A£ - k. Moreover, for every a E JR, 
llAe - ..4£11 = o(£a), as e -+ 0. 

Now we define the infinitesimal generator of a Colombeau Co-semigroup S. De­
note by A the set of pairs (Ae, D(Ae» where Ae is a closed linear operator on E 
with dense domain D(A£) C E, for every e E (0,1). We introduce an equivalence 
relation in A by: (Ae, D(A£» '" (..4e, D(..4e» ifthere exists £0 E (0,1) such that 
D(Ae) ,; D(..1e), for every e < £0, and for every a E IR. there exists C > ° such 
that, for x E D(Ae), //(Ae - ..4£)x// :s;; c£a//x //, as e -+ 0. 
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Since A« has a dense domain in E, A£ - A« can be extended to be an operator 
in C(E) satisfying IIA" - A«II = O(ea), e --/0, for every a E JR. 

We denote by A the corresponding element of the quotient space AI"'. Due to 
Proposition 8, the following definition makes sense. 

Definition 9. A E AI'" is the infinitesimal generator of a Colombeau Go-semigroup 
S if there exists a representative A~ of A such that A" is the infinitesimal generator 
of S«, for e small enough. 

We collect some obvious properties in the following proposition (cf. [79]). 

Proposition 10. Let S be a Golombeau. Go-semigrou.p with the infinitesimal gen­
erator A. Then there exists eo E (0,1) such that: 
(a) Mapping t t-+ S,,(t)x ; [0,00) -t E is continuous for every x E E and £ < eo. 

(b) 

(c) 

(d) For every x E D(A«) and t ~ 0, S,,(t)x E D(A,,) and 

d 
dtS,,(t)x = AES~(t)X = S,,(t)A~x, £ < £0· 

(e) Let S« and S~ be representatives of Golombeau Go-semigroup S, with infini­
tesimal generators A~ and A«, e < eo, respectively. Then, for every a E It and 
t~O 

lI;tS~(t) - A"S«(t)1I = O(ea
), as e -t O. 

(f) For every x E D(A~) and every t, s ~ 0, 

S~(t)x - S~(s)x = 1t S,,(r)A~xdr = 1t A"SE (r)x dr, e < eo. 

Theorem 11. Let Sand S be two Golombeau. Go-semigroups with infinitesimal 
generators A and E, respectively. If A = E, then S = S. 
Example 12. Semigroups of Schrodinger-type operators. Let V E QW2.OO (JRn) be 
oflogarithmic type. Then clliferential operators AEu = (A-VE)u, 11. E W2(Rn), £ < 
1, are infinitesimal generators of Go-semigroups SE' e < 1, and SE is a representative 
of a generalized Go-semigroup SESe ([0,00) ; C(L2(Rn»). 

Let e < 1. Operator A« is the infinitesimal generator of the corresponding 
Go-semigroup SE; [0,00) -t C(L2(JRn» defined by the Feynman-Ka.c formula: 

S£(t)1/I(x) = 10 exp ( -1t 

VE(w(s» ds )1/I(W(t» dJ.L.,(w), t ~ 0, x E Rn, 

for 1/1 E L2(JRn), where 0 = IItE[o,oo) Rn and J.L., is the Wiener measure concentra.ted 
at x E JRn (cf. [86] or [95]). 
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The assumption on V implies that there exists 0 > 0 such that 

ISe(t)1fJ(x)1 ~ exp(t SUP!Ve(8)1) r 11fJ(w(t»ldJ.L.,(w) 
sERn 10 

= oS-Ct(47Tt)-n/2 r exp ( Ix - YI
2

)11fJ(Y)ldy, 
l R" 4t 

for every t > 0, x E )Rn and oS < 1. Recall that the heat kernel is given by 

1 ( X2) En(t,x) = (47Tt)n/2 exp - 4t ' t> 0, x E )Rn, 

and its £1 ()Rn)-norm equals 1 for every t> O. By the Young inequality, 

IS.,(t)1fJ1 ~ e-CtIlEn(t, ')II£1(Rn)II1fJIIL2(R")' t> 0, oS < 1. 

73 

Therefore, there exists 00 > 0 such that SUPtE[O,T) IIS.,(t)1fJIIL2 ~ 00oS-cT Il1fJIlL2, 
oS < I. for every T, i.e .• SeCt). t E [O.T]. sa.tisfies relation (2) and 

S = [Se1 E sa ([0,00) : .c(L2()Rn»). 

Remark 13. We refer to [70] for an approach to generalized semigroup theory 
based on uniformly continuous classical semigroups. 



PART 11: SECOND ORDER EQUATIONS 

3. Elliptic PDEs 

3.1. Linear elliptic PDE. We will consider elliptic boundary value problems with 
very singular boundary data and coefficients. Because of that the solutions are 
considered in a large space of generalized functions and moreover, the concept of 
being a solution is adequately extended. 
3.1.1. Introduction. The restriction of a generalized function on A c 0 is 
defined by the restriction of a representative. Recall, the support of G E g(O) is 
the complement of the largest open subset of 0 where G is the zero generalized 
function. The space of all compactly supported generalized functions is denoted by 
gc(O). 

In the sequel we use the notation (A)_-r = {x EA: dist(x,8A) ~ 'Y} and 
4>'1 = -y-"4>(·h), -y > 0, where 4> = 4>1 (XI) ···4>,,(x,,) E C8"(]Rn), f 4>.(x)dx = 1, 
i = 1, ... , n. Note that 4>-r, -y > 0 is a delta net. For the sake of simplicity, let us 
assume that 4> is a radially symmetric, positive function in the open unit ball and 
that 4> is supported by the closed unit ball in ]Rn. Let.,pe = l(nh. * 4>£. We define 
an inclusion L of V/(O) into g(O) in the following way. If 9 E V/CO), then L(g) = G 
is represented by Ge = (g . .,p.;) * 4>e. 

Let D be some space of test functions. We say that Gl> G2 E g(O) are equal 

in D-sense, GI ~ G2 , if (Gl> <p) = (G2 , <p) in C for every <p E D. Similarly, a 

generalized function GI and 9 E JIJ>' equals in JIJ>-sense, G l g g, if (Gl,<p) = (g,<p) 
for every cp E D. Usually, D denotes Sobolev space Hm or H[f. 

The s-association (~s), s ~ 0 of generalized complex numbers is defined as 
follows. For C E C, G ~s 0 means that C has a representative G£ such that 

Ge = o(&s) as & -+ o. If G I ,G2 are in g(O), then Cl ~s G2 if (Cl - C2 ,cp) ~8 0 
for every cp E JIJ>. If s = 0, then the notation ... -association is often used instead 
of ... -O-association. As in the previous case one can define association between a 
generalized function in g and a generalized function in JIJ>'. 

We will recall the definition of the space of generalized functions on a closed set 
(cf. [5]) in order to give a meaning to the Dirichlet problem in EM and thus in g. 

Let X be a non-void subset of ]Rn and {G~, a E N~} be a family of mappings 
G~ : (O,I)xX -+ C. Denote by EW,M(X) the vector space of families {G~, a E No} 
which satisfy the following conditions: 
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(a) {G'i, a E N8} has a locally moderate growth when € -+ O. This means that for 
every a E No and Xo E X there exist a neighborhood V of Xo, N E R, G > 0 and 
'1 > 0 such that IG'i(x)1 ~ GcN , x E V nx, € E (0,'1). 
(b) There exists '1 > 0 such that the family {X 3 x 1-+ G'i(x), € < 1], a E No} 
satisfies requirements defining Whitney's Goo -function on X, that is for every m. E 

N, a E No, lal ~ m and Xo E X there exist a neighborhood V of Xo and Ct: > 0 
such that 

(3) IG~(x) - L (x - x''ff3~,:+fJ(x') I ~ eelx - x'lm-1Ct/-l, 
IfJl:>;m-lal 

for every x, x, E V, c: E (0,1]). 
(c) Constants Ce are locally bounded above by C€-N as € -+ O. More precisely, for 
every mEN, a E No, lal ~ m and Xo E X there exist a neighborhood V of xo, 
NE R, G> 0 and 'T/ > 0 such that (3) holds with Ce = Gc:-N • 

The ideal./lfw(X) of GW,M(X) is the set of those {G'i, a E N8} which satisfy: 
for every a E N8, and Xo E X there exists a neighborhood V of Xo such that for 
every q > 0 there exist G > 0 and 'T/ > 0 such that IG,:(x)1 ~ Gc:q

, x E V n X, 
c: E (O,'T/). 

Put gw(X) = GW,M(X)/./IfW(X). Clearly, if G E g(O), where 0 is an open set 
containing X, then {DCtGelx, a E No} E GW,M defines the restriction Glx E 9w. 

Theorem 14. [5J Let X be a closed subset of Rn. Then the restriction map 
9(Rn) -+ 9w(X) is surjective. In particv.iar, for given {G'i, a E N8} E GW,M(X) 
there exists Fe E GM(lRn ) such that {DCtFElx - G'i, a E No} E ./Ifw(X). 

3.1.2. Generalized Dirichlet problem. A differential operator of the form 
P(x, D) = E1CtI:>;m aa(x)DCt, where aa E 9(lRn), is called a generalized differential 
operator. A representative of P(x, D) is given by PE(x, D) = Llal:>;m aCt,E(x )Da, 
where aa,E E GM (Rn , is a representative of aCt, la\ ~ m. Note that if ba,E is another 
representative of aCt, lal ~ m., then 

2::: o.a,g(x)DCtG,. - 2::: ba,e(x)DCtG,. E ./If(Rn), G,. E GM(Rn). 
I Ctl:>;m ICtI:>;m 

Let 0 be a bounded open set in Rn, HE 9(Rn) and let FE gw(80) be defined 
by a family {FeCt , a E No}. Consider the following boundary value problem 

(4) P(x,D)GDO~O) H, in 0, Glao =F (DO'(O) =Hm(O)nH;;,-l(O». 

Theorem 14 implies that there exists F E g(Rn) such that Flao = F. Let 
V = P(x, D)F and. U be a solution to the problem 

DO'(O) 
P(x,D)U ~ H - V in 0, UI80 = O. 

Then G = U + F is a solution to (4). 
So, in the sequel we shall consider the following problem 

DO'(O) . 
(s) P(x,D)G ~ HID 0, Glao = 0, 
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in terms of representatives, 

lirn j(P£(x, D)G" (x) - H,,(x))1/;(x) cb: = 0, 1/; E ]1)0(0) ,,-0 
{D"'G£lao, a E No} E Nw (80). 

Theorem 15. With the assumptions given above, for every s ~ 0 there exists a 
solution G E 9(JRn) to (5) in ]l)o(O)-s-associated sense. 

Proof. Let P;(x, D) = :E1"'I~m a""" (x)D'" be the adjoint operator to P,,(x, D). 
Since 0.",,£ E EM(JRn), there exist Ph > 0 and Cl > 0 such that 

B£ =max{IVii",,£(x)l, la",,£(x)l, x EO, lal::;; m}::;; Cle-Fh , 

. for e small enough, say e < '11. 
Let e E (0, '11) be given. Let IT" be a cube {x : IXil ::;; b, i = 1, ... , n}, which 

contains O. Put N" = B"be-q /2, where q will be determined later, and divide IT£ 
by hyperplanes 

Xi = bk/N£, i= 1, ... ,n, k= 0,±1, ... ,±(N" -1), N£ EN, 

into (2N£)n cubes· IT j ,,,, j = 1, ... , (2N£)n. These cubes can be renumerated such 
that ITj , j = 1, ... , J" cover 0 and denote OJ,£ = OnITj ,£. Then J£ = C?(e-ri(q+N1» 
as e -+ o. 

Denote by X j,£ the center of ITj,£ and A",,;,£ = a",AXj,£). For e small enough, 
let {1/;j,.:} be a partition of the unity defined in the following way . 

• 7. 1 A.. ./, .(i;j,£ . 1 1. 
'f'j,,, = OJ,. * 'f'£<I, 'f'j," = J. - , J = , ... , £. 

Lj=l 1/;j,£ 

Note that 1/;j,,, == 1 on Rj,,, C OJ,,, and mes(supp1/;j,,,,, Rj,,,) ::;; Coed, where Co 
does not depend on j and d to be chosen later. Moreover, 

sup lIa""" - .A"',j,,, 11 LOO (OJ,.) ::;; B" 2~ = e
q

• 
l"'l~m, j'>.1. " 

Since H" E EM(JRn), there exist N2 > 0 and C2 > 0 such that 

IIH"1/;j,,, 11 Loo (0) ::;; IIH"ULoo(o) ::;; C2e-N2, j = 1, .. . , J", 

for e small enough. Denote Hj ,,, := H"1/;j,,,. 
Let Gj ,,, E EM(JRn) be a solution to 

Pj,£(D)Gj ,,, = L Ao,j,,,D"'Gj ,,, = Hj ,,,, j ::;; J", 

l"'l~m 

which exists by Theorem 1 in (S2], where Pj,,,(D) is the adjoint operator for 
PJ,£(D) = LI"'I";m A...,;,£D"': Put Gj,£(x) = Gj,,,(x)~j,£(x)~,,(x). where 

~j" = 1(K ) , * 4>,,<1/2, ~" = 1(0) <11 * 4>,,<1/4, j ::;; J". 
1 i.e ..,..cCil/2 . -3e 4 
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Let Kj,E. = {z E Gj,E.: Gj,E.(x) ~ Cj,E.(x)}, j::: 1, ... ,JE.' Obviously, 

sup mes(Gj,t: "Kj,E.) = G(e:nd) as e: -+ O. 
j:(,.J. 

By inspecting the proof of Theorem 1 in [82] one can see that there exist Co, M > 0 
and No > 0, which depend only on H and aa such that 

sup IICj,t:IILoo(15) ~ CoCM- No , 
j~J. 

for e small enough. 
One can easily see that supp(Gi,t:) nsupp(Gi,t:) = 0, i:/: j and Gj,t: E &M(G). 
Let Gt: = 2:,;::1 Gi,l: and let 'if; be an arbitrary function in 1!)3'(G) ::: Hm(G) n 

Her- 1(G). Then 

1 'if;(Z)PE.(X' D) t Gj,e(z) -1 'if; (z) HE. (x) dx = 11 + h 
o j=1 0 

where 

r J. r J. 
h = ir: 'if;(z)PE.(x,D) LGi,e(X) - ir: 'if;(x) LPjAD)GiAx)dz, 

o j=1 0 j=1 

12 = r 'if;(x) }:pjAD)Gj,e(X) - r'if;(z)Ht:(x)dx. k j~ k 
By using Ht: = 2:,;::1 Hj,E.' and Pi,t:(D)Ci,e ::: Hj,t:, j ~ Jt:, and passing to the 
adjoint operators, we have 

J. 

~ C1c 1\\II'if;IIHm(o)IICj,ellLoo(3) 2:)mes(Oj,E." Kj,E.»1/2 
j=l 

= O(e:d/2-Nl-No-M-n(Q+Ntl), e: -+ O. 
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This implies that 1121-'-+ 0 as & --+ 0 if d > 2(N1 +No+M +n(q+N1)). Thus, the 
first constant d is now determined. Further on, 

IItI ~ t, IL;,. 1f;(x)(P£(x,D)G;,E(X) - P;,E(D)Gj,E(X))dXI 

+ t, IlJ .. ,KJ .. 1f;(x) (PE (x, D) Gj ,£ (x) - Pj,E(D)Gj,e(x))dXI 

~ ~ IL
J
,. Gj,E (x) (PE· (x, D)1f;(x) - P;'AD)1f;(x)) dxl 

+ t, IlJ"'KJ,. Gj,t:{x)(P;(x, D)1f;(x) - Pj~E(D)1f;(x)) dxl 
J. r 

~ L Jl IGj,E(x)1 L la",E(x) - A,,,,j,EI·ID"1f;(x)1 dx 
j=l K J,. l"l~m 

+ L lE ~up 1 IGj ,E(x)I'lIa",EIILoo(o,>ID"1f;(x)ldx 
l"l~m J~J. O; •• ,KJ,. 

~ &q L 10 IGj ,E(x)I·ID"1f;(x)1 dx 
l"l~m 

+ le L lIa",eIlLoo(o) ~up (1 I Gj,t:{X) 12) 1/2 I1D"1f;IIL'(0) 
l"l~m J~J. 0i •• ,KJ •• 

~ gQIlGe IlL2(0) 111f;IIHm(o) 

+ le L lIa",EIILoo(O) ~up 111f;IIHm(o) 11 Gj,e 11 LOO (0) (mes(Oj,e '- K j ,e))1/2 
o:"m 3~J£ 

~ &Q 11 Gj,e 11 Loo (0) (mes( 0))1/2111f;IIHm(0) 

+ CS
d

/
2

-
n

(HN1) 111f;1I Hm (0) L lIa",EIILoo(O) ~Up IIGj,eIlLoo(o) 
l"l~m J~J. 

~ O(&q-M-No) + O(gd/2-n(Q+Nll-NI-M-NO), & --+ O. 

This implies that 1111 --+ 0 as & --+ 0 if d > 2(n(q + N1) + N1 + M + No) and 
q > M + No. More precisely, 1111 and 1121 are 1IDQ'-s-associated with zero if one 
chooses q > M + No + s, and then d > 2(n(q + N1) + N1 + M + No) + s. This 
proves the theorem. 0 

Remark 16. Denote by 1ID~,a,t (0) the space of nets with elements WEE cm,a (0) n 
H;'-l(O), & E (0,1) such that IID"w£IILoo(O) = O(ct), & --+ 0, lal ~ m. Then 
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If q > M + No + s + t and d > 2(n(q + NI) + NI + M + No + t) + s, then 

I (Pe: (x, D)G€, ~€} - (H€, ~€}I = o(eS
), as e -+ 0, ~e: E Jl)~,t(O), 

i.e., for every s > 0 there exists a solution to 

D;;"'(O) . 
P(x, D)G ~S Hm 0, Glao = o. 

This result will be used in the following two theorems. The assumption 'It e: E 
lPa'-l(O) is crucial in the construction of the solution. This will restrict applica­
tions of the above theorem to strictly elliptic problem of order greater than two. 

3.1.3. Applications. Let 
n n 

(6) L = L aij(x)D,Dj + Lb,(x)Di +c(x) 
',j=1 i=1 

be a differential operator with real coefficients such that 

(7) 

Assume that 

(8) n is bounded and an is of Goo class. 

Remark 17. For a method used in this and the following section, the regularization 
of coefficients of a differential operator and a function h is needed. Since Goo(O) is 
not dense in G5:(O) = Go,5:(O), er E (0, I), (cf. [97, Remark 2 in 4.5.1]) we suppose 
that the coefficients and h are in G1(0). 

Assume that there exist >. > 0 and A > 0 such that 
n 

(9) >'1~12 ~ L aij(x)~i~j ~ AI~12, x E n, ~ ERn. 
,';=1 

By Theorem 6.14 and (6.42) in [261, we have 

(10) 

(11) 

If hE 0&(0), there exists a unique solution 9 E 0 2'&(0) 
to Dirichlet problem Lg = h in n, 9 = 0 on an and 

Let h E Gl(TI), h = 0 outside of 0 and He: = h * ~€ (<fo is a radially symmetric 
function in GOO(Rn) f <fo(x)dx = 1, ~€ = cn<fo(_. le).) Consider the Dirichlet 
problems 

(12) 

(13) 

(14) 

Lg = h in n, glao = 0, 

LZe: = He: in n, Z£I&!1 = 0, for fixed e E (0,1), 

H2(!1)nHJ(0) . 
LG ~ Hill n, Ciao =0. 
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The last equation means that 

(15) lim j(LGE. - HE.)1/Jdx = 0, for every 1/J E H2(0.) n HJ(o.) , Glon E Nw (00), 
"'-a 

in terms of representatives. Let g, Z", and Gt: be solutions to (12), (13) and (15), 
respectively, where solutions 9 and ZE. exist by (10) and Gt: is the solution given in 
Theorem 15. 

Theorem 18. Let Land 0. satisfy assumptions given above. Moreover, assume 
that L has coefficients which are smooth on 0. The generalized solution G to (14) 
constructed in Theorem 15 is C&(O) n HJ(o.)-associated, & > 0, with the classical 
solution 9 to (12). 

Proof. By [97], Theorem 1 in 4.5.2, C&(O) = [CO (0) , Cl (0)]&. (L .]& denotes an 
interpolation space.) This implies [97, (7) in 4.5.2], 

(16) IIfllc"(TI) ~ IIfll~~tn)lIfll~l(TI)' f E C
1(0). 

and in the special case, 

IIh - HE. 11 c.,(n) ~ IIh - H",II~~tn)lIh - H",II~l(TI) ~ 0, £ ~ 0, 

where h and Ht: are the functions from (12) and (15) respectively. 
The above inequality, boundedness of 0. and (11) imply IIg - Zt:IIH1(n) -+ 0, as 

£ ~ 0 and 

j (9(X) - Z .. (x»8(x)dx ~ 0, as £ ~ 0,8 E c&CTI) n HJ(o.). 

We have to prove that 

In (G",(x) - Zt:(x»8(x) dx - 0, as £ ~ O. 

The boundary value problem L*1/J = 8 in 0., 1/Jlon = 0 has a solution in C2,&(0) n 
HJ(o.). This follows from (10) since the adjoint operator L* satisfies the assump­
tions given in this paragraph. We have 

In Gt:(x)8(x)dx = In Gt:(x)L*1/J(x)dx = In LG .. (x)1/J(x)dx, 

in Z",(x)8(x) dx = in ZE.(x)L*1/J(x) dx, 1/J E C2,o.(0) n HJ(o.). 

By Theorem 15 

in (G",(x) - Z",(x»8(x)dx = l (LGE-(x) - H",(x»1/J(x)dx ~ 0, as e - O. 

This proves the theorem. o 
We continue to consider L of the form (6) which satisfies (7), (8) and (9). Let 

IT satisfies the cone property [97, Definition in 4.2.3J in addition. Let 
n n 

LE = L aij,,,,(x)DiDj + 1)i,,,,(x)Di +CE.(x) 
id=l i=l 
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be regularized operator for L, where (loa"j) * 1>t!(x) = aijAx), (lobi) * 1>e(X) = 
bi,t!(x), (loc) * 1>~(x) = ce(x), x E JR, 1>e(X) = 4J( -x). Clearly, ct!(Y) ~ 0, yEn. 

0- 1-Since aij,~ -+ aij, bi,e -+ bi and Ce -+ C in C (n) and C (n) as e -+ 0, one gets 
convergence in C i5t (O), too. 

Multiplying aij in (9) by 10, then multiplying all the members of (9) by 4J~(y-x) 
and by integrating over Rn, we obtain 

where YEn, ~ E Rn, e < co. By using radial symmetry and non-negativity of the 
function 4J and the cone property of 0, 

l~~-~.~r ~~-~~~b>~ 
o Jr ... h . 

where r x,h is a cone with the vertex at zero and height h, and y E x + r x,h C n. 
The constant D does not depend on e and we have 

n 

D.xI~12 ~ L aij,t!(x)~i~j ~ Alel2, x E n, ~ E Rn,e ~ eo. 
i,j=1 

Theorem 19. Let L satisfy given assumptions. Then the generalized solution G 
to 

_ H 2 (0)nHJ(0) 
LG ~ H in n, Glao = 0, 

constructed in Theorem 15, is Ci5t(O) n HJ(n)-associated to the classical solution 
g E H2·i5t(n) to (12). 

Proof Let 0 E CIi(n) n HJ(n) be given. Then (10) and (11) applied to Lt! imply 
that for every e E (0,1) the solution wt! to L:wt! = 0 in n, wt!lao. = 0 belongs to 
C2,i5t(0) n HJ(n) and 

sup IDPWt!(x)1 ~ c(sup IO(x)1 + sup IO~x) - ~~Y)I) = 1I0Ilc&(o)' e E (0,1), 
1t31~2.xEn xEO :z:.yEO X - Y a 

where C > 0 depends only on .x, A and the diameter of the set n. By the remark 
after Theorem 15 we have that for every s > 0 there exists Gt! such that 

(Lt!G~, Wt!) - (H~, Wt!) = aCeS), e -+ O. 

Denote by Zt! a smooth Solution to Lt!zt! = Ht! in n, Zt!I80 = 0, e E (0,1) is fixed. 
Then 

(17) In (Ge(x) ~ Ze(x»O(x)dx = In (G,(x) - ZE(x»)L;WE(x)dx 

= In (LEGe(x) - LeZ,,(x»w,(x) dx = (Lt!G, - Ht!, w,,) = aCeS), e -+ O. 
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Let He = Le9, where 9 E O2'&{O) is the solution to (12). Inequality (11) and (16) 
imply 

n n 

II{Le: - L)9110&(IT) ~ I: I: lIaij,e - aij/lo&(0)IIDiDj9I1Loo(!1) 
i=1 j=1 
n 

+ I: IIbi,e: - billo&(o) 11 Di9 11 LOO(!1) + lice - clbs(o) 11911 Loo(!1) -+ 0, 
i=1 

O Thi ' l' h t H- h 0&(0) 0 O· H- H c&(O) 0 ( . as e -+. S lIDp les t a e - -+ as e -+ ,I.e., e - e -+ smce 
hE Cl(O). Finally, (10) implies IIZe - 91/02,6(0) ~ Cl/He - Hel/c&(o) -+ O. This 
and (17) prove the theorem. 0 

3.1.4. A class of generalized elliptic differential operators of order 2m. 
Consider a family of equations 

(18) 

where: 

Pe(x, D)Ge = I: aa,e:(x)DQGe(x) = He(x), x E 0, 
lal~2m 

1. 0 is an open bounded set with a smooth boundary a~. 
2. aa,e: E EM(lRn) is complex valued, lal ~ 2m, He E EM(JRn). 
3. For every e E (0, eo), Pe (x, D) is uniformly and strongly elliptic (cf. [96, Ch. 36, 
(36.3)]) and moreover, there exist Co> 0 and Po ~ 0 such that 

CoePollull~"'(!1) ~ Re(Pe(x,D)u, u)L2(O) , u E cgo. e < eo. 

Then, for every fixed e < eo, 

Pe (x, D) : H({'(O) -+ H-m(O) is a surjective isomorphism 

and the solution to (18) satisfies IIGeIlH'" ~ Co le-Po 11 He 11 H-'" (0). 
(19) 

(cf. [96, Theorem 36.2, Lemma 23.1]) 
The second assumption means that there exist 111,112 > 0 such that 

(20) sup lIaa,eIlLoo(o) = O(e-V1
), 

lal~m 

(21) IIHellLoo(o) = O(e-V:l), as e -+ O. 

Note that (21) implies IIHeIlH-"'(!1) = O(e-1I2
), as e -+ O. 

Theorem 20. Let Pe (x, D), He and 0 satisfy the conditions given above. Then: 
(a) For every s ~ 0 there exists a solution Gs,e E EM(Rn) to (18) in the mm(o)­

s-associated sense, i.e., 

(Pe (x, D)Gs,e - He:, 1/J) = o(eS), e -+ 0, 1/J E Hgm(o) 

and {DaGs,elao = 0, a E N~} E Nw(aO). The solution constructed in the proof 
will be called s-solution. 
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(b) Let Ts,e: be an s-solution tOPe:(x, D)Ts,e: = Re:, where Re: satisfies (21). More­
over, assume that 

C(Po+som) liRe: - He:IIH-m(o) -+ 0 as e -+ 0, 

where so> VI +V2+Po+S. Then Ts,e: and Gs,e: are H-m(n)-o-associated. Specially, 
if Re: and He: are in the same class of Q(O), then the appropriate solutions are 
H-m(O)-s-associated for arbitrary s > O. This is a kind of the uniqueness of 
solution to (18). 

(c) Let P(X, D) have coo(Rn) coefficients which satisfy condition 3 with Po = 0 
and let Co do not depend on e. Assume that H E H-m(n) is of the form H = 
E1QI:s;;m DQ fQ' where fQ E L2(0), fQ(x) = 0 for x fj 0, lal ~ m. Let 

(i) U E Her(O) be the solution to P(x, D)U = H, Ulao = 0 (which exists by the 
Lax-Milgram Lemma) and 
(ii) Gs,e: be the s-solution to 

(22) P(x,D)Gs,e: = He: in 0, Ge:lao = 0, 

in Hgm-s-associated sense, where He: = H * </>e:d for an appropriate d = des) > o. 
H-"'(O) 

Then U ::::: Go. 
(d) Denote by Ge: the solution in JOl)(O)-O-associated sense to (22) constructed in 
the proof of Theorem 15 and by Go,e: the solution to (22) in Hgm(O)-O-associated 

Dp(O) 
sense. Then Ge: ::::: Go,e:, where JOp(O) is the set of all nets We: in H8(0) such 
that there exist a Junction 1/; E Hgm(o) and 1] > 0 such that We: = P;1/;, for every 
e < 1]. 

Proof. (a) Recall, (19) implies that for every fixed e < eo there exists a solution 
ge E Her(O) to equation Pe: (x, D)ge = He, in 0, that is 

(23) (Pe: (x, D)ge, 1/;) = (He,1/;), 1/; E Ho(O). 

By ellipticity of Pe (x, D) for every fixed c, the solution ge to (23) is in Coo(n). Let 
us prove that ge: E eM(n). Let Di be an arbitrary derivative of the first order. 
Then 

Di(Pe(X, D)ge(x» = Pe:(x,D)Dige(x) + Pe(x, D)ge:(x) , 
where Pe(x,D) = EIQI:S;;2mDiaQ,e(x)DQge(x). Integration by parts implies 

II Pe:(-, D)ge/lH-m(o) = sup 1 [ Fe (x, D)ge(x)</>(X) dxl 
1I<flIlHm(o):S;;1 10 

~ sup 11 L bQ,e(x)DQge(x)I·1 L C{3,e:D{3</>(x)I dx, 
1I<flIlH"' (o):S;;1 0 IQI:S;;m 1.8I:S;;m 

where bQ,e, c{3,e E eM(:Rn), lal ~ m, 1,81 ~ m. Since (19) and (23) imply 

/lge/lH"'(O) = O(e-(PO+/.I2», e -+ 0, 

then 
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and 

Pe (X, D) Di9E (X) = DiHe(x) - FE (X, D)9E(X) E H-m n EM (Rn) 

for a suitable V3 > O. Thus, (19) implies IIDigEIIH"'(o) = O(e-1J4), e -+ 0, for some 
V4 > o. By induction with the respect to the orders of derivatives, it follows that 
gE E EM(!l). Put 

(24) 

where So will be determined later. Note that mes(!l" (!l)-E'O) = O(eSo ) as e -+ o. 
Define GS,E = geX,E. Then Gs,e E EM (Rn) since ge E EM(Rn). 

For arbitrary "p E mm, 
IIel = I (PE (X, D)Gs,e - HE, "p}1 = I{Gs,e - HE, P;(X, D)"p) I 

~ k !ge(x)(1 - X,E(X)!·IP;(X, D)1/l(x)I dx 

~ 2 sup lIaQ,eIlLoo(IT)II"pIlH2"'(O) 11geIlL2(O) (mes(!l ,,(!l)_e'oW/2 
IClI~m 

= O(eSO -(1J1+1J2+Po»), e -+ o. 

The assertion follows by choosing so> VI + V2 + Po + s. 
(b) Let te be the solution to (23) when He is replaced by Re and Te = tEX,E' 

where x'e is given by (24). Then, (19) implies 

IIGa,e - Ts,EIIHm(o) = 1I(9s,E - ts,e)X,eI!H"'(O) 

Now, for 1/l E H-m(!l) 

~ sup 119s,e - ts,eIlH"'(O) IIDClII:E ilL'" (0) 
IQI~m 

~ Cc;-le- Po e-somIIFE - REIIH-"'(O). 

!(GS,E - Ts,E' "p}1 ~ CHGs,e - Ta,EIIH"'(o)II"pIlH-m(o) ~ Cle-Po-somllFe - ReI!H-"'(O) 

and the proof follows. 

(c) The assertion is a direct consequence of (b). 

(d) Let WE E Jl)p(n) and Ge be the solution constructed in Theorem 15. By the 
definition of Jl)p(!l) there exists"pl E H6m (n) such that P;(x, D)"pl = WE for every 
e < 1]. Then 

10 (Ge - GO,E)(X)WE(x) dx = k (GE - GO,e)(X)P;(x, D)"pl(X) dx 

= k Pe(x,D)(GE - GO,e)(x)1/l1{x)dx -+ 0, e -+ O. 

This proves (d). o 
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3.2. Quasilinear elliptic POE. First we give a simple example in order to illustrate 
our approach to a class of quasiIinear elliptic PDE. 

Example 21. Let 0(0,1)(Xl,X2) = 0(XdO(X2 -1), (Xl,X2) E R2 be the delta distri­
bution concentrated at (0,1) and Bl be the ball with the radius 1 and center (0,0). 
Define 0(0,1) 18B1 by (0(0,1) 18B1' <p) = <p(0, 1), where <p is a smooth function on the 
circle aBl . Consider a Dirichlet problem formally written as 

~u(x) = 0, x E Bl C lR?, UI8B1 = 0(0,1)18B1' 

We approximate 0(Xl)0(X2 - 1) by a net :2 <p(:l )<p(X2; 1), (Xl,X2) E JR2, e E 

(0,1), with the properties <p E C8"(JR), f <p = 1 and sUPP<P E [-1,1] (the net of 
mollifiers). Then, we replace the given problem with the family of problems 

~u£(x) = 0, x E Bl C JR2, 

I 1 (Xl) (v'l-Xi -1) U£ 8B1 = e2 <p -; <p e ' IXll < e 
and zero on the rest of the boundary. 

Using the Poisson formula we obtain a family of solutions U£ of corresponding 
classical solutions. 

Assume that <p(0) = O. Then, in the sense of the weak convergence in V'(Bl ), 

IxI2 
1 1 11 U£(x) -jo I(x) = c'" 2 (- 1)2 as e -jo 0, where C'" = --4 <p'(0) u2<p(u) duo 

Xl + X2 - 11" -1 

Note that I is a solution to ~u = 0 in Bl. Moreover, for any point (XlO,X20) E 
aBl ,,(0,1) 

. x~ +x~ -1 ) 
lim 2 2 = 0 «Xl,X2 E Bd (:1:1,:1:2)-(:1:10,:1:20) Xl + X2 - 2X2 + 1 

and, for () = 11"/2, lim 2 r2 - 1 1 = -00. This shows the "blow up" of a solution 
r_l- r -2r+ 

at (0,1). 

Let ~ be a net of elliptic nonlinear operators of divergent type of the form 

(25) Q£(u) = div A£(Du) = a~j(Du)Di,jU,e < 1, 

where a!,j(p) = DpiA~(P), or, in case n = 2, let Q£ be a net of elliptic nonIinear 
operators of the form 

(26) Q£(u)=a~j(x,u,Du)Di,jU, UECOO(O). 

We assume that a!,j, e E (0, 1) are smqoth functions on O. If A£ and A£ denote 
respectively the minimum and maximum eigenvalues, then we have 

0< A£(x,t,p)leI2 ~ a!,j(x,t,p)eiej ~ A£(x,t,p)leI2, 

pE JRn, e E JRn " {O}, X E 0, t E JR, e < eO. 

Assume additionally: 
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(27) ('Vd E No)(3ld E R)(3ad ER) 

{ 
lB;a!d(x, t,p)! 0- t R Rn }",( Id) 

SUp (1 + It I + IpDGd j X E , E , P E = v e . 

(28) (3C > O)(3J.L > O)(3b ER) 

el-' b C b 

C 
(1 + It I + Ipl) ~ Ae:(X, t,p» ~ Ae:(x, t,p) ~ -(1 + It I + IPI) , el-' 

pERn
, XEO, tER,e<eo. 

In the case when the net Qe: is of the form (26) then n = 2, and ifit is of the divergent 
form (25), then we exclude variables x and t in the conditions given above. Note 
that condition (28) implies Ae:jAe: ~ C2je21-', e < eO. We will consider this net in 
the framework of QCIo, ... In this case we will use the notation :F = £Ck,,,,. With 
the given properties Qe: is called the net of uniformly elliptic moderate continuous 
operators. 

Example 22. (i) All the examples given in [26, pp. 260-262], for n = 2 can serve 
as examples in our framework but now with singular boundary conditions. 

(ll) Consider in R3 the operator 

Q(x,u,Du) = (1+ t,8(Di))6.U (8 is the delta distribution). 

With the regularization of 8 = lime:-+o :cP(~), we have 

Qe:(x,u, Du) = (~cP(D;U) + ~cP(D:u)~cP(D:u) + l)6.U. 

(cP is a compactly supported smooth function with the integral equals 1.) Then 

Ae: = 1 and Ae: = (~<p(:l) + ~cP(:2) ~<p(P:) + 1). 
This operator is of the form (25) for which all the assumptions given above hold. 

We need a "slope condition" adapted to the setting of Colombeau theory. 

Definition 23. Let E = Ck,,,,(O) for some kEN (cf. 1.1 and QCk,,,,), ,pe: E :F = 
£Ck,,,, and re: = {(x, ze:), x E 80, Ze: = ,pe: (x)}. The boundary 80 satisfies a 
moderate slope condition if for any Pe: E re: there exist hyperplanes 1f':-p and 1f'; p 

defined by Ze: = 1f':p, (x) and Ze: = 1f';'P. (x) such that ' , , • 

1f';'p, (x) ~ ,pe:(x) ~ 1f':'P. (x), x E 80, c < co 

and such that for some K > 0 and some mER, 

sup{ID1f':'p. (x)l, ID1f';'p. (X)liX E 80, Pe: E re:} ~ Kern, e < eO. 

Proposition 24. Let Qe: be a net of uniformly elliptic operators of the form (25) 
or (26) with a!,j E Ck+l(O) (k E N) satisfying (27) with d ~ k + 1 and (28). 
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Let E = Ck+2,a(o), 1/Jf; E eCk+2,a, where ao is of ck+2,a class and it satisfies a 
moderate slope condition with 1/J,., Then, there exists U,. E eCIe+2,.. such that 

~(Uf;) = 0, Uf;180 = 1/Jf;, e < 1. 

This theorem implies the solvability in gCIe,a. The process of regularization of 
equation div A(Du) = 0, ul80 = 1/J with singular coefficients and singular data 
leads to the approximated net of solutions by the mean of previous theorem. 

4. Hyperbolic POEs 

4.1. Semilinear wave equation. In our approach we connect two areas: the L2_ 
theory for the nonlinear wave equation 

(29) a;u -.6u + g(u) = 0, g(O) = 0, u = u(x, t), x E ]Rn, t ~ 0, 

with the initial data 

u(x, 0) = a(x), Ut (x, ) = b(x), x E]Rn, 

involving energy estimates and the theory of generalized functions where nonlinear 
operations makes sense for a large collection of singular objects. 

Concerning g, if it is not globally Lipschitz, then it is substituted by a net 
of globally Lipschitz functions g,.(u). Then the obtained net of equations, called 
regularized equation, is solved for each fixed e. 

In some cases 9 is not regularized and the growth conditions on 9 are involved 
for the existence and uniqueness of a solution similarly as in the classical theory. 

We use here the algebra goo,L2([0,T) X ]Rn). Also we use the notation F = 
C£2([O, T) x ]Rn), Consider a family of equations in eoo,£2([O, T) x ]Rn) 

(30) (a; - .6)Gf; = -g(Gf;), G,.lt=o = Af;' atGf;lt=o = Bf;, e E (0,1), 

where A,., B,. E coo,p(]Rn) and 9 : ]Rn --+ ]R is smooth, polynomially bounded 
together with all its derivatives and g(O) = O. 

Equation (30), with the regularization g,. instead of 9 is called the regularized 
equation for (29). 

Proposition 25. a) Let n ~ 5. Then there exists a regularized net g,. such that 
for every T > 0 there exists a unique solution to (30) in goo,L2([0,T) X ]Rn). 

b) Let n = 6 and let IIAdlH3,2 and IIB,.IIH2,2 be bounded by (Iog(log(c1)W, as 
e --+ 0, where s < 1. Then there exists a regularized net g,. such that for every 
T> 0 there exists a unique solution to (30) in goo,L2([0,T) X ]Rn). 

Remark 26. Let n = 7, In order to obtain the existence of a unique solution· 
with the moderate growth of all its derivatives, we need that H3,2-norms of initial 
data are bounded by log(Iog .. , (log e-1) ... )8 with respect to e for some s and q. --------q 

This follows from [80, Theorem 4.8). Cases n = 8,9 can be handled out using the 
procedure and Lemmas 2.1-2.20 in the same paper as well as a composition ofthe 
logarithmic function sufficiently many times. 
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The proof of quoted theorem for n = 3 implies the next corollary. 

Corollary 21. Let n = 3, g(y) be globally Lipschitz and its first derivative be 
polynomially bounded. Then for every T > 0 there exists a solution to (30) in 
QOO,L2({0, T) x JRn). 

Remark 28. If g(y) is globally Lipschitz, for n = 4,5,6, we need to assume 
appropriate conditions for the first and second derivatives of g. If n = 7,8,9, then 
the assumptions of corollary are more complicated. 

For a non-regularized wave equation, the following is true. 

Proposition 29. Equation 

(a; - b.)G = _G3
, Glt=o = A, atGlt=o = B, 

where A, B E Qoo,L2(1R3), has a unique solution in QOO,L2 ([0, T) X JR3) for every T > 0 
if there exist representatives of initial data such that 

1I(V'2 AE , V' BE )IIL2 = o((loge-1)1/2). 

The presented results are from [60]. One can look also in [10, 74J for some other 
results concerning the wave equation. 

4.2. Stochastic wave equations. We will present the main results from the paper 
[69] concerning the different stochastic wave equations. Before that, we have to 
define Colombeau generalized processes like in [75]. 

Consider the problem 

(31) 

(32) 

({if - a;)U + F(U). S = 0, 

Ult=o = A, atUlt=o = B, 

where A and B are Q2,2-Colombeau generalized stochastic processes on JR, that is, 
A, BE Qr,2(R), and S E Qr,2([0, T) x JR) is Q2,2-Colombeau generalized stochastic 
process on R2 with compact support. We suppose that the function F is smooth, 
polynomially bounded together with all its derivatives and that F(O) = O. We look 
for a solution U E Qr,2([0, T) x R). We substitute F by a family of smooth functions 
FE, e E (0,1), which is called the regularization of F. This is done in the following 
way. We choose the smooth function FE with the property that there exists a net 
aE such that for every 0: E No there exist eo E (0,1) and ma EN such that 

FE(y) = F(y), forlyl ~ aE, e < eo 

"DaFE(y)"Loo = O(a;'a). 

In the sequel we shall denote m = sUPlal"l ma. 
Denote by F = [Fel, where FE E er,2([0, T) x R) has properties as above. Then, 

instead of non-regularized equation (31)-(32), we consider the regularized one 

(33) (a; - a~)U + F(U). S = 0, 

(34) UI{t=o} = A, atul{t=o} = B, 

, where S = [SE] E Qr,2([0, T) x R) and A, B E Q¥,2(JR). 
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Note that for Ue , Ye E t'¥,2([O, T) x R) such that Ue - Ye E -"'T,2([0, T) x R), we 
have that F(Ue ) - F(Ve ) E -"'T,2([0, T) x R). 

First, one can see the connection of regularized and non-regularized one dimen­
sional wave equation in the following theorem. 

Theorem 30. Let G, a primitive function of F, be nonnegative and G(O) = 0. Let 
Colombeau generalized stochastic process S E Q¥,2(R) be nonnegative and depend 
only on the variable x, i.e., there exists a representative Se of S such that Se (x) ~ 0, 
for all e small enough and x ER. Suppose that II(Be,8xAe)"L2 = o(ae), as e -t 0, 
where ae is the corresponding net used in regularization of function F. Then, for 
every T > 0, the solution to the regularized equation (33)-(34) is also the solution 
to the non-regularized equation (31)-(32). 

4.2.1. Cubic wave equation with nonnegative stochastic process. We 
consider the problem 

(35) 

(36) 

(8; - t6.)U + U3
• S = 0, 

UJ{t=O} = A, 8tU/{t=O} = B, 

where we suppose that A, B E Q¥,2(R3) are Q2,2-Colombeau generalized stochastic 
processes such that 

(37) 

and S E Q~(R3) is nonnegative Qg-Colombeau generalized stochastic process which 
depends only· on variable x and such that 

(38) 

Theorem 31. Let stochastic processes A, BE Q¥2(R3) have representatives which 
satisfy condition (37) and S E Q~(R3) be nonn~gative stochastic process that de­
pends only on variable x and has a representative which satisfies (38). Then, for ev­
eryT> 0, problem (35),(36) has a unique solution almost surely in Q¥,2([0,T)xR3). 

Remark 32. If a Colombeau stochastic generalized process S is a image of a 
generalized stochastic process, then one can use a regularization which ensures 
estimate (38). This remark could be added after each further assertion when we 
need 'estimates on a stochastic term. 

4.2.2. Cubic wave equation with multiplicative stochastic process. We 
consider the problem 

(39) (8; - t6.)U + U . S + U3 = 0, 

(40) U/{t=O} = A,:,8tU/{t=O} = B, 
t.l!'.,. 

where stochastic processes A, BE Q¥2(R3) are such that 
...... ' ' 

(41) /I (Be, VAe)"i2 = 0((1oge-1)1/2), 
.~. 
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and S E Q~([O, T) X JR3) is such that 

(42) IISEIILoo = o(log(loge-1)1/2T). 

Theorem 33. Let Y2,2-Colombeau generalized stochastic processes A, B E Q~2(JR,3) 
satisfy condition (41) and Qg-Colombeau stochastic process S E Q~([O,T) X JR,3) 

satisfy (42). Then, for every T > 0, problem (39)-{40) has a unique solution 
almost surely in Q~2([0, T) x JR,3). 

4.2.3. Cubic Klein-Gordon equation with additive stochastic process. 
We consider the problem 

(43) (a;-6)U+U+U3 +S=0, 

(44) UI{t=o} = A, atul{t=o} = B, 

where stochastic processes A, B E Q~2(JR3) satisfy 

(45) 11 (BE' V'AE)lb = O(loge-1)1/2), 

and S E Q~2([0, T) X JR,3) is such that 

(46) IISEIILoo = 0 ((loge-1) 1/2) 

(47) SE has a compact support. 

Theorem 34. Let Q2,2-Colombeau generalized stochastic processes A, B E Q~2(JR3) 
and S E Q~2([0, T) X JR3) satisfy conditions (45) and (46)-(47), respectively. Then, 
forT> 0, the problem (43)-(44) has a unique solution almost surely in g¥2([0, T)x 
JR3). ' 

The literature concerning the stochastic wave equation and generalized processes 
is quite rich. One can look in papers [1] or [75], for example. 

5. Semilinear parabolic PDE 

Two types of equations in generalized functions algebra, YC1,H~([0, T) : JRn) 
(given below). The first one is a Cauchy problem 

(at -l:l.)U + VU = 0, U(O, x) = Uo(x), 

where potential V is a singular distribution, for example the delta distribution or 
a linear combination of its derivatives. It will be presented here. 

The second type is a nonlinear Cauchy problem 

(at -l:l.)U + VU =' f(t, U), U(O, x) = Uo(x), 

where f satisfies certain conditions. 
In both types of equations Uo is an element of Colombeau-type space, YH2(JR,n). 

This involves singular data, embedded singular distributions, for example of the 
form Uo = L~=o fP) i h E £2, i = 0,1,2, again the important standpoint of our 
approach. 
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We will present the use of generalized Co-semigroups in solving a class of heat 
equations with singular potentials and singular data. First note that the multipli­
cation of elements G E QH2,oo (JRn) and H E QCl,H2 ([O,T) : Rn) gives an element 
in QCl,H2 ([O,T): Rn). Indeed, if GE E eH2,oo (Rn) and HE E eCl,H2 ([O,T): Rn) 
then GeRE E eCl,H2 ([O,T) : Rn). 

Similarly, if GE E N H2,OO (lRn) or HE E NCl,H2 ([O,T) : Rn), then GEHE E 
NCl,H2 ([0, T) : Rn). Thus, multiplication of potential V E QH2,oo (Rn) and a func­
tion U E QCl,H2 ([0, T) : Rn) which is expected to be a solution to equation 

8tU = (A - V)U, U(O, x) = Uo(x), 

makes sense. 

Definition 35. Let A be represented by a net AE , £ E (0, 1), of linear operators with 
the common domain H2(Rn) and with ranges in L2(Rn). A generalized function 
G E QCl,H2([0,T) : Rn), T> 0, is said to be a solution to equation 8t G = AG if 

sup 118tGE(t,·) - AEGE(t, ·)IIL2(lRn) = o(£a), for every a E lR.. 
t€[O,T) 

5.0.4. General potential. We will consider in this subsection singular potentials, 
elements of QH2,oo (Rn). Especially when the potential is a power of the delta 
generalized function. 

Theorem 36. Let V E QH2,oo (Rn) be of logarithmic type, Uo = Wod E QH2 (Rn) 
and [SE] be defined as in Example 12. LetT > 0. Then U = SUo E QCl,H2 ([O,T) : Rn) 
(UE(t, x) = SE(t)UOE(x), £ < 1) is the unique solution to equation 

(48) 8t U(t,x) - AU(t,x) + V(x)U(t,x) = 0, U(O,x) = Uo(x). 

in the sense of Definition 35. 

Note that in our construction of a solution to (48) the perturbations with ele­
ments in N H2,oo null-nets do not effect the solution. More precisely, if VE is substi­
tuted by Ve + RE, RE E NH2,OO, in (48), we have the same generalized solution. 

5.0.5. Powers of the generalized delta function as a potential. Let rpE be 
a net of mollifiers 

(49) 

where rp E,C~(Rn), frp(~):~x = 1 and rp(x) ~ 0, x E Rn. It represents the 
generalized:delta function 8 = [rpE1 E Q(Rn). 

Different rpE'S (with the prescribed properties on rp) define different infinitesimal 
generators~ Let us show this. Put AE = A - rpE and AE = A - 4>E' £ < 1. The 
equality of illfi.llitesimal generators W9uld imply that 

II(AE - AeJulli2 ~ £-2n ( I~(Y) - 4>(yWlu(£y)12dt ~ ca£all ulli2, £ < 1 
la" .:;.61--

for every a > ° (and correspo~ding Ca> 0). Thus, it follows that rp = 4>. 
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Let mEN. We will use the 8m = [4>~]mEN as the definition of m-th power of 
8 E Q(]Rn). Let Ae;,mu = (~ - 4>~)u, U E H2(]Rn), e < 1. Ae;,m is the infinitesimal 
generator of the seInigroup 

Se;,m: [0,00) -+ £(L2(]Rn», Se;(t) = exp«A - 4>':)t), t ~ 0 (cf. [79]). 

It follows that Se;,m is a representative of a generalized Co-seroigroup S E £G([O, 00) : 
£(L2(]Rn)). 

We know that Se;,m1/J, e < 1 and 1jJ E L2(]Rn), given by 

Se;(t)1jJ(x) = la exp (-lot 4>;'(W(S»ds) 1jJ(w(t»dJ.L:z:(w), x E ]Rn, t ~ O. 

Since 4>E:(x) ~ 0, x ERn, e < 1, it follows that the set {SE:,m: e E (0,1), t ~ O} is 
bounded in £(L2(Rn» (not only moderate). Thus (31) holds for SE:,m. 

Our goal is to prove the following theorem, where the assumption n ~ 2 is 
crucial. 

Theorem 37. Let n ~ 2, mEN, T> 0 and Uo E H2(Rn). Then 

(50) UE:,m(t,x) = la exp (-lot e-mn4>m(W~S») dS) Uo(w(t»dJ.L:z:(w), 

x E Rn, t ~ 0, e < 1 

defines a representative of a solution U E QC1,H2 ([0, T) : ]Rn) to the equation 

8t U(t,x) - ~U(t,x) + <F(x)U(t,x) = 0, U(O,x) = Uo(x). 

The solution is unique in the sense of Definition 35. 
Moreover net (50) converges to (j(t,.) = e-6.tUo(-) uniformly on compact sets 

of Rn of H2(Rn), for every t ~ O. 

We need several notions and properties of n-dimensional Brownian motions, 
n ~ 2. Recall that the hitting time TA of a subset A of Rn is defined by TA = 
inf{t> 0: wet) E A} (tA = 00 if wet) rt A for all t > 0). We refer to [85, Ch. 1 
Sec. 2], for the elementary properties of hitting times. Recall, a Borel set A is said 
to be polar if J.L:z:({w EO: wet) E A for some t < oo}) = O. We will use the fact 
that everyone-point set is polar for n ~ 2. This is not true for n = 1 and that is 
the essential reason for different results in the cases n ~ 2 and n = 1. 

Let BE: = {x E Rn: I\xl\ ~ el, B = B l . Take e E (0,1), t > 0 and define 

WB.(t) = {TB_ < t} = {w: there exists 0 < s < t, w(s) E Be:}, 

WB. = U WB_(t). 
t>o 

Clearly, WB_(t) c WB_(S), 0 < t ~ s. Note that 

WB.(S) " WB.(t) = {t ~ TB. < s}, 0 < t < s 

and 

(51) WB.(S) " WB.(t) c WB. " WB.(t) C {t -1 < TB.}, 

fors>t>1. 
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Choose an increasing sequence (tm)m such that tm+l > tm + 1, and (51) holds 
for every mEN. 

Lemma 38. 1) For every compact subset K o/JRn and e < 1, there exists a constant 
CE > 0 such that J.L:z:{WB.) ~ CE. 2) lim sup J.L:z:{WB.) = O. 

E-+°:z:eK 

Powers of the generalized delta function, 60., Cl E CO, 1), are defined in this paper 
by 

(52) 8'" = [(ePE)'" * ePel, e E (0,1). 

The reason for introducing (52) is simple: When Cl E (0,1), the function eP~, 
e < 1 is not smooth, in general. NotE!.,. generalized function [ePE*ePE] is only associated 
with the generalized delta function t= rePel. 

Since one-point sets are not polar for n = 1, we could not use the same arguments 
as in the case n ~ 2. Note that functions in H2(R) are continuous and bounded. 

Proposition 39. Let Cl E (0,1), T> 0 and Uo E H2{JR). Then by 

(~3) UE{t,x) = la exp (-1t
(ePE)'" * ePe{W{s»dS) Uo{w(t»dJ.L:z:(w) 

t > 0, x E JR, e < 1, 

is defined a representative ofa solution U{t,x) E QCl.H2{[0,T) x JR) to equation 

8tU{t, x) - flU{t, x) + 80. {x)U{t, x) = 0, U(O, x) = Uo{x). 

The solution is unique in the sense of Definition 35. 
Net (53) has a subsequence (Ue".Ot{t,X» ... eN, converging to U(t,x) = e-AtUo(x), 

t ~ 0, x E JR in the weak topology 0IL2([0, T) x R). 

Example 40. Assume n ~ 2, T > 0, V E Hl.oo(JRn), and f E Cl ([0, 00) X JRn) 
satisfies f(s, 0) = 0, sE Rand If(s, YI) - f(s, Y2)1 ~ clYl - Y21· 

Let Uo(x) = 8{x), x E Rn, i.e., UOe = ePe, e < 1 (cf. (49». Then for fixed e < 1, 

8tUE(t,x) = (fl:z: - V{x»Ut:{t,x) + f(t,Ue{t,x», Ut:{O,x) = ePe, 

has a unique classical solution Ue in CO{[O, T), Ll(JRn» n Cl«O, T), £l{JRn» and 
Ue(t,x) E H2.l(JRn» for every t > O. Again we have Ue(t,x) E CO((O, T) : H2(JRn», 
e < 1. We will show that there exists a sequence (Ut:.,) ... eN converging to some U E 
Lroc«O,T),JRn), 1 ~ q < n/(n -1), in Lroc«O,T),Rn) such that 8tU = (A - V)U 
in 1)'((0, T), Rn). 

Remark 41. The classical theory of seroigroups is used here as a tool for finding 
generalized solutions to a nonlinear heat equations. One can find different approach 
in [12], [33] or [lOOj. 



PART Ill: HYPERBOLIC SYSTEMS 

6. Semilinear hyperbolic systems 

Let 

(54) (at + A(x, t)ax)Y(x, t) = F(x, t,y(x, t)), y(x,O) = A(x) 

be a semilinear hyperbolic system, where A is a real diagonal matrix and a mapping 
y 1-+ F(x, t, y) is in OM(Cn ) with uniform bounds for (x, t) E K CC ]R2. In [72J 
a generalized solution to (54) is constructed when A is an arbitrary generalized 
function and F has a bounded gradient with respect to y for (x, t) E K CC ]R2. 

Here, F is substituted by Fh(e) which has a bounded gradient with respect to 
y for every fixed e and converges pointwisely to F as e .-. O. Our aim is to find a 
generalized solution to 

(55) (at + A(x, t)ax)Y(x, t) = F*)(x, t, Y(x, t)), Y(x,O) = A(x). 

We fix a decreasing function h: (0,1).-. (0,00) such that heel = O((logc1)l/2), 
h(e) .-. 00 as e .-. O. 

Denote by Br the cube Ixl ~ r, It I ~ r, Iyl ~ r, where y = (UI, Vb ... , Un, vn). 
Let ei be a decreasing sequence of positive numbers such that h(eHt} = i, i E N. 
This implies that h(e) ~ i-I if e < ei. Let 

Si = Bi n {(x, t,u,v), IF(x, t,u,v)1 ~ i-I} 

n . .{(x, t,u,v), lV'u,uF(x, t,u, v)1 ~ i-I}, i EN. 

Let Ki be the characteristic function of Si, i E N. Put 

Kh(e) = (Ki * 4Jl/h(e»), e E [eHl,ei), i E N, 

F~(e) = FkKh(e), e E (0, Cl), k E {I, ... , n}. 

Then there exists a constant G = G(Go) > 0 and cl > 0 such that 

IIFh(e)IILoo(R2+2n) ~ Gh(e) 

11 V' u,uFh(e) 11 Loo (lR2+2n) ~ Gh(e)2, e E (0, et). 

Definition 42. G = (Gb"" Gn ) E (Q(JR2))n is a solution to (55) if any of its 
representative Ge satisfies the system 

(56) (at + A(x, t)ax)Ge(x, t) = Fh(e) (x, t, Ge(x, t)) + dl,e(x, t), 

Ge;(x,O) = Ae(x) + d2,e;(X), 
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where AE E (CM(JR))" is a representative for some d2,E E (N(R))", and d1,E E 
(N(JR2))". We call (55) and (56) the h-regularized system. 

Theorem 43. Assume that every component of the mapping y ~ F(x,t,y) be­
longs to OM(Cn

) and has uniform bounds for (x, t) E K <s ]R2. Then the h­
regularized system (55) has a unique solution in (Q(R2))" whenever the initial data 
is in (Q(JR))". 

The proof follows by using the method of characteristics and the fixed point 
theorem. 

Theorem 44. Let the initial data A in (54) belong to (C (JR)) " . 
(a) The solution Gh to the regularized system (55) is LOO-associated with the 

continuous local solution g to (54) in KTo1 for some To > O. 
(b) Assume that (54) is globally well posed. Then the solution Gh to (55) is 

LOO-associated with the continuous solution g to (54) on each KT' 

Remark 45. If for every compact set K C JR2 there exists C > 0 such that 

sup /F(x,t,y)I~C or sup lV'yF(x,t,y)I~C, 
(x,t)EK,yECn (x,t)€K,yECn 

then system (54) is globally well posed. 

The presented assertions are from [65]. One can look also in [71] or [2]. Multi­
dimensional case is done in [52], initial-boundary problem is a topic of paper [43], 
while some nice results in special cases can be found in papers [14] and [73]. 

7. Systems of conservation laws 
7.1. Introduction. For an n x n hyperbolic system (n real eigenvalues) in ~ne 
space dimension 

(57) Ut + f(U)x = 0, U: 0 C]R2 -+ Rn, f: ]Rn -+ JR 

with Riemann initial data 

(58) Ult=o = { g~: x<O, 
x>O, 

Uo, U1 are real vectors, 

there exists a unique entropy solution, provided 11 U1 - UoII LOO small enough (Lax in 
50's (see [53], for example)). The classical solution to the above Riemann problem 
consists of shock, rarefaction waves and contact discontinuities. (If n real eigenval­
ues are all different, then system (57) is called strictly hyperbolic.) Also, methods 
for solving an arbitrary Cauchy problem (Glimm scheme, wave front tracking algo­
rithm (Di Perna for 2 x 2 system (70's), Bressan et all (90's) for n x n system), see 
[8] are based on the fact that the total variatipn of the initial data is small enough. 

So, the first reason for introducing solutions containing Dirac a distribution is 
a possible managing of the system with" large" initial total variation. The second 
reason for doing this is that some systems of conservation laws, perturbed by a 
"viscosity" matrix, Ut + f(U)x =' cA(U)Uxx have solutions which limit contaiIis 
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terms with 8 distribution, as c --+ 0 ([72J and [41]). The third reason is that if one 
perturb Riemann data by smooth functions 

Ult=o = UO,e --+ {g~: : ~ ~ , as c --+ 0, 

local smooth solution has not only gradient catastrophe (the case of shock waves), 
but also V~O catastrophe (the Loo norm of the smooth solution goes to infinity in 
a finite time). 

The aim of this section is threefold: 
1. We shall give two solution concepts where 8 function appears (delta and 

singular shock waves), see [57J, [58J or [61J. 
2. Describe when it is possible to find such solutions (delta and delta singular 

locus, see [58J for these notions). 
3. Give some results of interaction of delta and singular shock waves with other 

types of elementary waves in some special cases (see [59J or [61]). 
At the end, we shall present some of numerous open problems concerning the 

above topics. 

7.2. Some examples. Dirac 8 distribution, as a part of a viscosity limit for 
solutions to some systems of conservation laws was numerically observed in [51]. 
In papers [72] and [41) is proved that the viscosity limit of some Riemann data for 
the system 

Ut + (u2 /2)x =0 

Vt + (uv)x = 0 

contain 8 distribution. In [42], the arbitrary Riemann problem for the system 

Ut + (u2 
- v)x = 0 

Vt + (u3/3 - u)x = 0 
(59) 

which is a modified model of spreading ion acoustic waves is solved. For some initial 
data (Ul is in the area Q7 at Figure 1), the solution (in approximating sense) is 
given by 

Ue(X, t) = Ge(x - et) + a/f p( x - cD, 
ve(x, t) = He(x - et) + a2 ~ p2 (X - c~), 

where Ge and Ht: converge to appropriate step functions defined by the Riemann 
initial data, p~(-) := C 1p2(·/c), where p E C~~ f p2 = 1, converges to the delta 
distribution and p! converges to zero in V' as c --+ 0, i = 1,3. 

Pressureless gas dynamics model 

(60) 
Ut + (uv)x = 0 

(uvh + (uv2 )x iF 0 
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u=uo-3 

~ u=u 0-2 J 

FIGURE 1. Singular shock wave area 

can be transformed (after the elimination of the variable Ut from the second equa­
tion) into 

Ut + (u
2)z = 0 

Vt + (uv)z = 0 

for which the Riemann problem is solved in [94]. Some of the solutions contains 
b distribution as a term. The authors used Dafermos-Di Perna viscosity limit 
method (viscous term is given by Etuzz , so the viscous approximation allows self­
similar solutions), and the results are justified by assuming that U E Loo, v is a 
Borel measure, and U has an appropriate value at line of discontinuity. 

The same ideas are used in [99] for the systems of the form 

Ut + (f(u)v)z = 0 

(uv)t + (f(u)v2)z = o. 
In [40], a measure theoretic solution to the above system is given. 
In [32], a solution to an arbitrary Riemann problem for the system 

Ut+(u
2/2)z=0 

(61) 
Vt + «u -l)v)z = 0 

which is a very simplified MHD-model, by using Vol'pert idea of multiplication 
of functions with bounded total variation and distributions. In some cases, the 
solution contains a term with b distribution. 

Finally, we shall mention the paper [22], where the author found viscosity limits 
to the Riemann problem 

Ut + (f(u»z = 0 

(uv)t + (g(u)v)z = 0 
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(under mild assumptions on functions f and g). Again, some limits contain 8 
distribution as a term. 

7.3. Solution concepts. In the sequel we shall restrict ourselves to 2 x 2 systems, 
i.e., system (57) we shall write in the following form 

(62) 
Ut + (h(u)v + h(u»x = 0 

where h, 12, g1, g2 are smooth functions, polynomially bounded with all its deriva­
tives. One can see that the above system can be substituted by more general one 

(it (u)v + 12(u))t + (h(u)v + 12 (u»x = 0 

(91 (u)v + 92 (u))t + (g1(U)V + g2(U»):1: = 0, 

without any major change in statements and concepts given here. 
As it was written in the introduction, we shall present two solution concepts 

which are suitable for multiplication of distributions (in fact, 8 distribution with 
a discontinuous function). The first one is based on the Colombeau generalized 
function space introduced in [77]. The second one is based on splitting 8 distribution 
into two parts, which are divided by a discontinuity line. 

7.3.1. First solution concept. We shall use Colombeau space Qg in this section. 
Let us start with a simple lemma often used in the rest of it. 

Lemma 46. The generalized function defined by the representative 4>E (x - et) E 
£M,g(JR~), 4> E Al, c E JR, is associated with 8(x - et) E V'(lR~). 

Proof Let 1jJ E C8"(JRf) and 

lE:= 11 e-14>«X-et)/e)1jJ(x,t)dxdt. 

Changing the variables (x - ct)/e t-+ y, t 1-+ s, using the Lebesgue dominated 
convergence theorem and the properties of the functions from Ao gives 

lE = 114>(y)1jJ(ey +cs,s)dy ds 

--+ 1 (1 4>(y) dY) 1jJ(cs, s) ds = 1 1jJ(cs, s) ds, as e --+ O. 0 

The step functions, mapped by " into Qg (JR), belong to the following important 
class of generalized functions. G E Qg(O) is said to be of a bounded type if 

sup IGE(x)1 = 0(1) as e --+ 0, 
xED 

for every T > O. 

Definition 47. (a) G E Q(JR) is said to be a generalized step function with value 
(Yo, Y1) if it is of bounded type and 

GE(y) = {YO, Y <-c 
Y1, Y > e 
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FIGURE 2. Delta shock wave 

Denote [G] ;= YI - Yo. 
(b) D E Qg(R) is said to be generalized slitted delta function (S6-function for 

short) with value (ao,etI) if D = aOD-+etID+, whereaO+aI = 1 andD± E Qg(R) 
are associated to delta distribution and D-G ~ yo6 and D+G ~ yI6, for any 
generalized step function G with value (Yo, yI). 

Remark 48. One can give fixed representatives for a generalized split delta func­
tion in the following way 

D;(y) ;= ~<p(Y - ~±2e)), <P E.Aa. 

Note that D: are in fact shifted model delta nets. 

Lemma 49. If G is a generalized step function with value (Yo, YI) and D is an 
S6-function with value (ao, aI), then the following hold. 

(i) f(G) is a generalized step function with value (J(YO).!(YI)), where f is a smooth 
function. 

(ii) 

Proof The proof is a straightforward consequence of the definitions. o 
Remark 50. The support property of S6-function ensures the uniqueness in the 
association sense of its product with a generalized step function. This was done in 
order to deal with conservation law systems given is a general form. Of course that 
some other choices can be more efficient in specific cases (see [11] and literature 
there, for example). 

The generalized initial data for our system are now generalized step functions G 
and H with values (uo, uI) and (vo, VI), respectively. One can see that the inclusion 
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by £<1> of a classical step function· gives a generalized step function in the sense of 
Definition 47 (a) for every 4> E Aa· 

Definition 51. (U, V) E (Y(Rt»2 is called delta shock wave solution to Riemann 
problem (62, 58) if (a) and (b) hold: . 

(a) Ut + Ch(U)V + hCU, V»:z: ~ 0 

Vi + (91(U)V + 92(U, V)):z: ~ O. 

Ult=o = G, V\t=o = H. 

(b) U(x, t) = G(x-et), and Vex, t) = H(x-et)+s(t)(t3oD-(x-et)+{3tD+(x-et)). 
Here, G and H are generalized step functions, h,9i, i = 1,2, are smooth func­

tions polynomially bounded together with all their derivatives, hand 92 are also 
sublinearly bounded with respect to V, C E R is a speed of the shock wave, 
s E 0 1([0, (0», s(O) = 0, 130 + 131 = 1, and D = t3oD-(x - et) + t31D+(X - et) 
is an S8-function. 

The function s(t)f30 is called the left-handed strength of the wave, and S(t)t31 is 
called the right-handed strength of the wave. Its sum (s(t)) is called the strength 
of delta or singular shock wave. 

Definition 52. A generalized function d E Og(R) is said to be m-singular delta 
function (mSD-function for short) with value (130,131) if d = t3od- + t31d+, d± E 
Og(R.), (d±)i ~ 0, i E {I, ... , m-I}, (d±)m ~ 8, (d-)mG ~ Y05 and (d+)mG ~ Y15, 
for each generalized step function G with value (Yo, Y1)' 

Let m be an odd positive integer. A generalized function d E Og(R) is said 
to be m/-singular delta function (m/SD-function for short) with value (130,131) if 
d = t3od- + t31d+, d± E Og(R), (d±)i ~ 0, i E {I, ... , m - 2, m}, (d±)'n-1 ~ 5, 
(d-)m-1G ~ Y08 and (d+)m-1G ~ Y18, for each generalized step function G with 
value (Yo, yd· (That implies 130' + fJf' = 1.) 

An S8-function D and an mSD-function (or an m'SD-function) d are said to be 
compatible if dln D ~ 0 (or dln- 1 D ~ 0). 

Remark 53. One can construct such functions in a similar way as an S5-function, 
with suppd; C (-00, e), suppdt C (e,oo). Compatibility conditions can be 
achieved by demanding that D and d have disjoint supports for e small enough, for 
example. 

The definition of m'SD-function d implies Gdln ~ 0 if G is a generalized step 
function. 

Now we shall give the definition of singular shock wave and a useful lemma. 

Definition 54. (U, V) E (O(lRt))2 is called singular shcck wave solution to Rie­
mann problem (1-3) if (a) and (b) hold: 

(a) Ut + (h(U)V + h(U, V»:z: ~ 0 

Vi + (91 (U)V + 92(U, V)):z: ~ O. 

Ult=o = G, V\t=o = H. 
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FIGURE 4. m' part of a singular shock wave 

(b) U(x, t) = G(x - et) + 81 (t)(aod-(x - et) + ald+(x - et», 

vex, t) = H(x - et) + 82(t)(!30D-(x - et) + f31D+(X - et)) 

+ 83 (t)(1'od-(x - et) + 1'ld+(X - et». 

Here G and H are generalized step functions, fi,Ui, i = 1,2, are polynomials 
of the degree at most me E R is a speed of the shock, 8,81,82 E 0 1([0,00)), 
81(0) = 82(0) = 83(0) = 0, D is an S6-function, as before, and dj are mSD or 
m'SD-function, j = 1,2. 

Here, the strength of a singular shock wave is 82(t), and the left-and right-hand 
sided strengths are defined as in the case of delta shock wave. 

From Definition 52 it follows that ~ +a~ = f3~ + f3~ = 1'0 +1'1 = 1, where k = m 
in the case of mSD-and k = m-I in the case of m'SD-functions. 
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Lemma 55. a) Let d E Qg(R) be an mBD-function with value ({30, (3l), (3'{f + f3r = 
1, G E Qg(R) genemlized step function with value (YO,Yl), sE CI(Rt), s(O) = 0, 
and r(y) = 2::'0 a;y' be a real valued polynomial. Then 

r(G(x - et)) + s(t)d(x - et» 

~ r(G(x - et)) + amSm(t)(mn(d-)m(x - et) + ~(ct+)m(x - et)) 

~ r(G(x - et)) + amsm(t)o(x - et). 

b) Let d E Qg(R) be an m' BD-function with value {{30, {3t}, mn-l + (3f'-1 = 1, 
while G, sand r are as above. Then 

r(G(x - et) + s(t)d(x - et)) 

~ r(G(x - et)) + am_ISm-l(t) (mn-l(d-)m-l(x - et) + ~-l(ct+)m-l(x - et)) 

+ mamSm-l(t) (f3;;"-IYo(d-)m-1 (x - et) + (3f'-IYl(d+)m-l(x - et)) 

~ r(G(x - et» + am_ISm- 1 (t)o(x - et) 

+ mamSm- l (t)({3;;,,-lyO + (3;n-IyI)o(x - et). 

7.3.2. Second solution concept. We shall now briefly describe the second 
solution concept we are using. Suppose R~ is divided into finitely disjoint open 
sets 0, f. 0, i = 1, .. , , n with piecewise smooth boundary curves ri, i = 1, ... ,m, 
that is Oi n Oj = 0, U~=l Oi = R~ where 0; denotes the closure of Oi. Let C(Oi) 
be the space of bounded and continuous real-valued functions on Oi, equipped with 
the LOO-norm. Let M(Oi)' be the space of measures on Oi. 

We consider the spaces Cr = n~=l C(Oi)' Mr = n~=l M(O,). The product of 
an element G = (Gb . .. , Gn) E Cr and D = (D l , ... , Dn) E Mr is defined as an 
element D· G = (DlGI , ... , DnGn) E Mr, where each component is defined as the 
usual product of a continuous function and a measure. 

Every measure on Oi can be viewed as a measure on R~ with support in Oi. 
This way we obtain a mapping 

m: Mr --+ M(R~) 

m : D I-t DI + D2 + ... + Dn . 

A typical example is obtained when R~ is divided into two regions 0 1 , O2 by a 

piecewise smooth curve x = 'Y(t). The delta function o(x - 'Y(t)) E M(R~) along 
the line x = 'Y(t) can be split in a non unique way into a left-hand side D- E M(Ol) 
and the right-hand component D+ E M(02) such that 

o(x - 'Y(t)) = a:o(t)D- + a:l(t)D+ = m(a:o(t)D- + a:l(t)D+) 

with a:o(t) +a:l(t) = 1. A solution of the form 

u(x, t) = G(x - et) 
(63) 

vex, t) = H(x - et) + s(t)(a:oD- + a:lD+) 

is called delta shock wave. 
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The solution concept which allows to incorporate such two sided delta functions 
as well as shock waves is modeled along the lines of the classical weak solution 
concept and proceeds as follows: 
Step 1: Perform all nonlinear operations of functions in the space Cr. 
Step 2: Perform multiplications with measures in the space Mr. 
Step 3: Map the space Mr into M(JR~) by means of the map m and embed it into 
the space of distributions. 
Step 4: Perform the differentiation in the sense of distributions and require that 
the equation is satisfied in this sense. 

Note that in the case of absence of a measure part (Step 2), this is the precisely 
the concept of a weak solution to equations in divergence form. 

7.4. Existence theorems. Delta locus is the set of all points Ul = (UI,Vl) ER? 
such that there exists a delta shock solution to system (62,58). Singular delta locus 
is the set of all points Ul E ]R2 such that there exists a singular shock solution to 
system (62), (58). In this case h, 12, 91 and 92 have to be polynomials. 

As one can see, these definitions are just a simple analogue to the definition of 
Hugoniot locus. 

7.4.1. Existence theorems using the first solution concept. We shall present 
(without proofs) two theorems about delta locus and singular delta locus from [58]. 

Theorem 56. a) Let !I ¥: const. Then a delta shock wave solution to (62), (58) 
exists ifuo:f Ul, h(uo) :f h(Ul) and 

c= 
!I (Ul)Vl + h(ul,vd - !I (uo)vo - h(uo,vo) 

Ul-UO 
9l(UO)!I(Ul) - 9l(Ul)h(uo) 
=~~~~~~~~~~ 

!I(Ul) - h(uo) 

(64) 

where c is the velocity of the delta shock. The set of all points (uI,vd such that 
(64) holds is the delta locus of the system (for the point (uo,vo»). 

b) If !I (uo) = fl(uI) = 0 (specially, if !I := 0) and 91 ¥: const, then the delta 
locus is the set of all points (UI, VI) such that91 (uo) :f 91 (uI). 

c) If !I := 0 and 91 := b E JR, then the delta locus is the set of all points (Ul, VI) 

such that b(Ul - uo) = h(ul) - h(uo). 

The main point of the proof is to express c from the first equation of the system 
and then substitute this value of c into the second one. Then, one has to find 
appropriate set) = at, and other coefficients to "compensate" so called Rankine­
Hugoniot deficit in the second equation and eliminate terms associated to 6'. The 
exact proof contains a lot of details, so we shall omit it. One has to use the 
definitions and lemmas above. 

For the second theorem, we have to make same assumption and give notation. 
Suppose that the maximal degree of all polynomials in the fiuxes equals m. Let 

m m m m 

!I(Y) = I>l,iyi, hey) = 2:a2,iyi, 91(Y) = 2: bl,iyi, 92(Y) = 2: b2,iyi. 

i=O i=O i=O i=O 
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The following lemma is obvious consequence of the given definitions. 

Lemma 57. a) Let d E Qg(R) be an mSD-function with value ({30, {31), /3(f + f3r = 
1, C E Qg(R) generalized step function with value (Yo,yd, sE Cl(R+), s(O) = 0, 
and let fey) = E:'o aiyi be a real valued polynomial. Then 

f(C(x - et» + s(t)d(x - et» 

~ f(C(x - et» + amsm(t) (f30(d-)m(x - et) + {3f'(d+)m(x - et») 
~ f(C(x - et» + amsm(t)6(x - et). 

b) Let d E Qg(R) be an m'SD-function with value (/30, {31), {3~-1 + {3~-1 = 1, 
while C, sand f are as above. Then 

f(C(x - et) + s(t)d(x - et)) 

~ f(C(x - et» + am_lSm-l(t)({3~-l(d-)m-l(x - et) + f3f'-l(d+)m-l(x - et» 

+ mamsm-l(t)({3~-lYo(d-)m-l(x - et) + {3f'-lYl(d+)m-l(x - et» 

~ f(C(x - et» + am_lSm- 1 (t)6(x - et) 

+ mamsm-l(t)({3~-lyO + {3~-lYl)6(x - et). 

Now, we are in position to state the main theorem in this subsection. 

Theorem 58. Let C(x - et) and H(x - et) be generalized step functions with the 
speed c and values (uo, Ul) and (vo, vd, respectively. Let 

a = C(Vl - Vo) - (gl(Ul)Vl + g2(uI) - gl(ua)VO - g2(ua» = c[H]- [gl(C)H + g2(C)] 

be Rankine-Hugoniot deficit. 
A singular shock wave solution exists if one of the following two assertions are 

true: 
(i) There exists a solution (ao, Yo) E R2 to the system 

a[h(G)]ao + U[HJal,mYO = u(vlal,m + a2,m) + ah(ul) 

a[gl(G)lao + u[H]b1,mYo = u(vlb1,m + ~,m) + a(91(ul) - c), 

for some u E lR" {O}. If m is an even number, then u also has to be positive and 
Yo E [0, 1J. 

(ii) m is an odd number and there exists a solution (ao, Yo) E lR x lR+ to the 
system 

a[h(G)]ao + u(al,m-l[G] + mal,m[GH] + ma2,m[C])yo 

= u(al,m-lVl + mal,mUlVl + ma2,mUl + a2,m-d + ah(ul) 

a[91(G)]aO + u(b1,m-l[G] + mbl,m[GH] + m~,m[G])yO 
= u(b1,m-lVl + mb1,mUIVl + mb2,mUl + b2,m-l) + a(gl(ul) - c) 

for some u E lR+. 
The speed of the singular shock waves is always given by 

h(udvl + h(Ul) - h(uo)vo - h(uo) [h(G)H + h(G)] c= = 
Ul - Uo [G] 
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Again, we shall omit the proof because it is even longer than the proof of the 
previous theorem, and the idea is almost the same. The main difference is that 
now d± plays significant role in constructing a solution, even they are zeros in 
distributional sense. 

Remark 59. By using the first solution concept, all results from the introduction 
are recovered, except (60). System (60) does not have delta shock wave solution, 
but singular shock wave solution, where the density of the gas is distributionally 
greater or equal to zero. This singular shock solution gives the same distribution 
limit as the original one, obtained by using the measure theoretical and vanishing 
viscosity in method given in [99] and [40]. 

Remark 60. Let us note that the delta locus is just a curve in lR~ and the delta 
singular locus is an area, in general. This has deep consequence: it is not easy to 
solve arbitrary Riemann problem without using a singular delta shock locus. The 
usual delta shock wave can not be followed or can not follow any of the elementary 
waves, if the system (57) is strictly hyperbolic. But the combination of I-rarefaction 
and singular shock wave or singular shock and 2-rarefaction wave is quite possible, 
even in this case. 

7.4.2. Existence theorems using the second solution concept. In the paper 
(57], the following theorem is proved. 

Theorem 61. A point (Ut.Vl) is in the delta locus of a point (uo,vo) for the 
Riemann problem (62,58) if hand 92 do not depend on v and the followin9 holds: 

(a) 91(UO):I 91 (ut) , (b) ft(uo} k1(91(Ul) - e) - ft(Ul) kl(91(UO) - e) 
91 (ut) - 91 (uo) - 91 (ut) - 91 (uo) , 

where kl = e[G] - [ft(G)H + h(G)], and e is a speed of the delta shock wave. 

We shall prove the theorem, just to show the simplicity of this solution concept. 

Proof Let us denote by so(t) = s(t)f30 and SI(t) = S(t){31. The substitution of 
functions in (63) into (62)-(58) and the use of the Rankine-Hugoniot conditions 
gives the following equation 

(-C[G]+[Jl (G)H + h(G)])5(x-et)+(ft (so(t)uo)5- (x-et) + ft (SI (t)ut}5+(x-et»x 

= (-e[G] +[ft(G)H + h(G)])5(x-et) + (ft(so(t)uo) + ft(SI(t)Ul»5'(x-et) = O. 

Suppose that Uo :I Ul. From the above equation, one obtains the value of the speed 
e and the coupling equations for So and SI: 

(65) 
c = [/t(G)H + h(G)]/[G] 

Doing the same for the second equation, one obtains 

- e[H] + (so(t) + SI (t»)' 5(x - et) - c(so(t) + st}5'(x - et) 

(66) + [91 (G)H + 92(G)]5(x - et) + (SO(t)91 (uo) + SI (t)91 (ul»5'(x - et) = O. 
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Since cis already determined, 

(so(t) + SI(t))' = c[H] - [91 (G)H + 92 (G)] , i.e., so(t) + SI(t) = kIt, 

and kl is called Rankine-Hugoniot deficit [42]. Now, one obtains the following 
system of equations for So and SI: 

(91(UO) - c)so(t) + (91(Ul) - C)SI(t) = 0 

so(t) + SI(t) = kIt. 

If 91 (uo) = 91(UI), then kl = 0, i.e., there is no delta shock wave solution. Other-
wise, 

(t) - k l (91(Ul) - c) (t) _ kl(C - 91 (Uo)) 
So - , SI -

91(Ul) - 9l(UO) 91(Ut} - 9l(UO) 
are determined. Using these values and the second equation in (65), one gets the 
assertion of the theorem. 

Now, let Uo = Ul. Then, from the above equations, one can see that kl = ° and 
there is no delta shock wave solution to (62)-(58). 0 

Remark 62. Again, the solutions admitting delta shock wave, mentioned in in­
troduction has also the same solution in this sense, except (60). 

7.4.3. Admissibility conditions. A delta or singular shock wave is said to be 
admissible wave (entropy one) if it is overcompressive, i.e. A.(uo) ~ c ~ A.(uI), 
i = 1, ... ,n, where Ai is i-th characteristics for the system Ut + V f(u)ux = 0, which 
is equivalent to (62) for smooth solutions, and cis a speed of the delta or singular 
shock wave. 

If the i-th characteristic field is linearly degenerate, i.e., V Ai . ri = 0, where ri 
is i-th eigenvector for the matrix V f, then the delta or singular shock wave with 
singular support on the i-th characteristics is admissible and called delta or singular 
delta discontinuity (one can see [61] for a precise definition). 

7.5. Intersection of delta or singular shock waves with themselves and other 
elementary waves. The main idea is simple: if delta or singular shock wave inter­
acts with some (delta or singular) shock wave at the point (xo, to), one has to solve 
the new initial data problem 

(67) u\t=to = {uo, x < Xo, v\t='o = {vo, x < xo, + ,8(xo,'o). 
U2, x < Xoj V2, X < Xo, 

Before considering interaction of delta or singular shock wave with a rarefaction 
wave, in order to see what result is expected one can decompose the rarefaction 
wave into a large family of approximate, but non-entropy physical waves. 

In the case of interaction of delta or singular shock wave with rarefaction or 
shock wave, , is a strength of an initial delta or singular shock wave. If delta or 
singular shock waves interacts mutually, then, is sum of strengths of these waves. 

Definition 63. The set of points (U2,VZ) for which there exists a solution to (62), 
(67) in a form of delta (singular) shock wave is called ,-second delta (singular delta) 
locus. 
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FIGURE 5. Splitting of singular shock wave 

7.5.1. Some results for the first solution concept. A second singular locus 
is not easy to write in a simple form for general case (62), and we shall skip it 
here. Let us just mention that a "Y-second delta (singular delta) locus contains as 
its subset delta (singular delta) locus for "Y > 0, as it was shown in [59]. 

The major problem is intersection of a delta or singular shock wave and rar­
efaction wave due to continuous integration of delta function and some continuous 
function (rarefaction fan). One has to solve an ordinary differential equation and 
consider the admissibility condition afterward. Due to this fact, the singular sup­
port of singular shock wave is a curve, not a straight line as before. In special 
cases it can be done more easily. For example, for system (59) a complete analysis 
of interaction for singular shock waves and any other elementary wave or another 
singular shock wave is done (see [59]). 

We shall present one phenomena obtained in the cited paper. For an usual 
Riemann problem, a strength of singular shock wave increases (linearly) with time. 
During a interaction with rarefaction wave it can decrease with time. If the strength 
reaches zero, then the singular shock wave decouples into two ordinary shock waves 
(see Figure 5, where ''initial shock wave" is non-admissible one-it is a result of 
rarefaction wave approximation with a fan of such shock waves) 

7.5.2. Some results for the second solution concept. In contrast to previous 
case, there exist a theorem describing the second delta locus in a simple form. 
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FIGURE 6. Delta contact discontinuity and unbounded part of so­
lution 

Theorem 64. A point (U2, V2) is in the second delta locus of the point (uo, vo) if 
one of the following is true. 

( a) il ¥:- const and 

il(u2)v2 + !l(U2) - !l(uo)vo - !l(uo) _ g1(UO)!l(U2) - g1(U2)!l(UO) 
U2 - Uo - !l(U2) - il(uo) 

(b) !l E 0 and 91 (uo) ;l: 91 (U2) 

(c) If (U2, V2) is in a Hugoniot locus of the point (ua, vo). 

But, complete analysis is done only for system (61) so far (up to our knowledge). 
Again, we obtained few new interesting things. The first one is an existence of delta 
contact discontinuity (which is possible only if a given system is not genuinely 
nonlinear). And the second one is that we start with piecewise constant function, 
the solution can be unbounded in a region with Lebesgue measure greater than 
zero. That is, a part of solution (after intersection of a delta shock wave and 
rarefaction wave) is L~c function (going to infinity as 1/..;Y as y -+ 0). One can see 
illustration in Figure 6: the function w is unbounded, the linel denotes the delta 
contact discontinuity curve, while the line 2 denotes a shock wave curve. We shall 
demonstrate how a delta shock curve x = c(t) can be found during the intersection 
of delta shock wave and rarefaction wave in the case of system (61). 

The function x = c(t) has to satisfy the following ordinary differential equation: 

(68) -d(t)(C~)-uo)+~((C~t)f -u~)=O, c(to)=xo, 

which has the unique solution c(t) = uot - ay'2(uo - U1)t, t ~ to. This example 
also shows why the intersection problem depends highly on a system in question: 
The equation (68) should be explicitly solved, which is not always possible. 
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But the main problems and interesting phenomena of this intersection appears 
when the delta shock wave is no longer overcompressive during the interaction. One 
can found complete results in [61]. 

7.6. Numerical verification. Let us give an example for a possible approach in 
numerical verification of a delta or singular shock wave. Using the first solution 
method in [58J one can find a singular shock wave solution to (60) for some Riemann 
data which converges to the measure valued solution described in [40J or [99J. After 
a "natural" change of variables uv 1-+ wane gets the following system in evolution 
form 

(69) 
Ut +wx = 0 

Wt + (w2 /u)x = 0 

which makes sense because u is the density, and there is no vacuum state in this case. 
'Transformed system do not permit measure theoretical results for some initial data, 
since square of w appears in the flux function. But, using Colombeau generalized 
functions, it has the same (up to association relation) solutions for all initial data 
as the original one. 

For the system (69) after mollifying the initial data in a usual way (convolution 
with a delta model net), one can try to use finite volume scheme (modified Godunov 
scheme, see [54]) together with moving mesh method [93J. This was done in [16]. 
Obtained solution resembles the solution given in [58] (obtained by the first solution 
method). 

Remark 65. The word "resembles" in the above context means that the numerical 
speed of a singular shock wave is arbitrarily near the theoretical one, and the masses 
delta function part of singular shock wave are linearly growing with respect to time, 
as expected. 

Conservation law systems and generalized functions are subject of a large number 
of papers. We shall refer to book [11], where one can find a further reference and 
many nice examples for Colombeau generalized function approach. 

7.7. Open problems. As it was announced in the beginning of this part, now we 
shall present some of numerous open problems. More dimensional cases are totally 
excluded from the list bellow, because the number and form of problems in this 
case is quite large and vogue. 

(i) Uniqueness in some sense (No results so far). 
(ii) Avoiding not wanted delta or singular delta shock waves (Overcompress­

ibility condition is not enough). 
(iii) Overcome linearity in one variable (There are some results using Colombeau 

generalized functions). 
(iv) General interactions of these new singularities (Probably, the solution highly 

depends on particular systems). 
(v) How delta shock waves can be followed (or follow) rarefaction wave, as 

singular shock waves do (No results so far). 
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8. Appendix 

8.1. Algebras of weighted sequence spaces. In this appendix we give another 
approach to the Colombeau type algebras which is related to the topological struc­
ture of certain exponentially weighted sequence spaceS. All these classes of algebras 
are simply determined by the (locally convex) space E, and a sequence of weights 
r : N - ~ (or sequence of sequences) which serves to construct an ultrametric on 
the sequence space EN. The sequence r = (rn)n is assumed to be decreasing to zero. 
This implies that sequence spaces under consideration (C EN) contain as a subspace 
E rv *diag EN and that they induce the discrete topology on E. This is well-known 
for the sharp topology for Colombeau type algebras. But our analysis implies that 
if one has a Colombeau type algebra containing the Dirac delta distribution 8 as 
an embedded Colombeau generalized function, then the topology induced on the 
basic space must be discrete. This is an analogous result to the Schviartz's "impos­
sibility result" concerning the product of distributions. construction of Colombeau 
type algebras. 

In order to simplify the construction, we will consider sequences (fn)nEN instead 
of nets le:. The passage from one to another concept is simple: with e = l/n 
and reversely. Consider a semi-normed algebra (E,p) such that p(ab) ~ p{a)p(b), 
a, bEE and a sequence r E JR.~ decreasing to zero. Define for I E EN 

m IIp,r := limsupp(fnrn
• 

n-oo 

This is well defined for any I E EN, with values in R+ := R+ U {oo}. With 
this definition, let Fp,r = {I E EN : • I Ip,r < oo}, lCp,r = {I E EN : I I Ip,r = a}. 
Then the following holds: 

Proposition 66. (a) The function dp,r : Fp,r x Fp,r - R+, (f,g) 1-+ • 1- 9 Bp,r, 
is an ultrapseudometric on Fp,r. 

(b) Fp,r is a subalgebra 01 EN, and ICp,r is an ideal 01 Fp,ri thus gp,r := Fp,r/ICp,r 
is an algebra. 

(c) dp,r : gp,r X gp,r -~, (F, G) 1-+ dp,r(/, g), is an ultrametric on gp,r, where 
lE F, 9 E G are any representatives 01 the classes F = I+ICp,r resp. G = g+ICp,r. 

(d) gp,r = Fp,r/ICp,r is a topological algebra, the quotient topology being the same 
than the topology induced by the ultrametric J...,r. 

We give the construction of generalized constants. For this, E will be the un­
derlying field R or C, and p = 1·1 the absolute value. For r = lflog, we get the 
ring of Colombeau's numbers C (and i). Let rn = !o!n' n ~ 2. 

Colombeau's algebras of generalized constants represented by sequences with 
polynomial growth modulo sequences of more than polynomial decrease, because 

limsuplxnll/logn < 00 ~ 30: limsuplxnll/logn = 0 

~ 3B, 3no,V'n > no: IXnl ~ B10g n = n10gB 

~ 3,: IXnl = o(n'"Y). 
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If we put, limsup = 0 (for the ideal) then the corresponding C above equals zero 
and thus \:IB > 0 resp. \:I"{ we have IXnl = o(n'Y). 

Consider now Holder type spaces E = Ck,Q(O) (cf. [26]), a E (0,1] and kENo 
(with 1·lk,Q-norm It is a Banach space and we can apply the same construction with 
P = 11·" k,Q' The corresponding Colombeau type algebra is defined by 9C1c,a :=:F / /C, 
where 

F:= {u E (Ck,Q(O»N llimsup "Unll~ < oo}, 

/C:= {u E (Ck,Q(O»N llimsup !lunll~ = o}. 

This algebra will be used for the analysis of elliptic equation in Part 11. 

8.1.1. Constructions with locally convex vector spaces. Consider now an 
algebra E which is a locally convex vector space on C, equipped with an arbitrary 
set of seminorms pEP determining its locally convex structure. Assume that 

Let 

\:Ip E P, 3p E P, C E R+ : \:Ix,y E E: p(xy) ~ Cfi(x)fi(y). 

Fp,r = {f E Efl I \:Ip E P : If Ip,r < 00 } , 

/Cp,r = {f E EN I \:Ip E P : If Ip,r = 0 } . 

Then the following holds: 

Proposition 67. (a) For every pEP, dp,r: EN X EN -+ R+, (f,g) 1-+ If - g Ip,r, 
is an ultrapseudometric on Fp,r. 

(b) Fp,r is a (sub-)algebra of EN, and /Cp,r is an ideal of Fp,r' 
(c) 9p,r := Fp,r//Cp,r is an algebra. 
(d) For every pEP, dp,r : 9p,r x 9p,r -+ 14, (F,C) 1-+ dp,r(f,g) is an ultra­

metric on gp,r, where f,g are any representatives of the classes F = f+/Cp,r resp. 
C = g + K:p,r' 

(e) 9p ,r := Fp ,r / /Cp ,r is a topological algebra, the quotient topology being the 

same than the topology induced by the family of ultrametrics {dp,r } pEP' 

Example 68. Let E = COO(O), P = WII}.'EN with PII(f):= sup If(Q)(x)l, 
and r = 1/ log. Then, 9p,r = Fp,r/K:p,r with IQI~II, Ixl~1I 

Fp,r = {Un)n E coo(O)N I \:Iv EN: limsuPPII(fn)I/1og n < oo}, 
n .... oo 

K:p,r = {Un)n E coo(O)N I \:Iv EN: limsuPPII(fn)I/log n = a}. 
n-oo 

we obtain the simplified Colombeau algebra 9a' 

So called full Colombeau algebra 9 is related to a more delicate procedure and 
it is omitted. We only note that the embedding of Schwartz distributions and of 
smooth functions into 9 is well known. Also it is well known that the multiplication 
of smooth function embedded into 9 is the usual multiplication. 
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Example 69. The following example is also of interest. Take E = VLP(O), p> 1, 
P = {PII}IIEN with PII(f) := sup IIf(a)IILP, and r = 1/log. Then, QLP = Fp,r/Kp,r 
with lal~1I 

Fp,r = {(fn)n E VLP(O)N I Vv EN: limsuPPII(fn)l/logn < oo}, 
n-oo 

Kp,r = {(fn)n E VLP(O)N I Vv EN: limsuPPII(fn)l/logn = o}. 
n-oo 

is Colombeau type algebra used for the investigations of wave and heat equation. 

8.1.2. Projective and inductive limits. Projective limit. The construction that 
follows leads to algebras of generalized ultradistributions of Beurling and Roumieu 
type. We will give only the general concepts of the construction. 

Let (Et:, p~ ) I-',IIEN be a family of semi-normed algebras over C, such that 

Vp,v EN: E~+l ~ E~, Et:+l ~ E~, 

where ~ means continuously embedded. This implies that there exist constants 
et:, 6t: E 1R+ such that 

Vp,v EN: ~ ~ et:~+l' ~ ~ et:~+l, 

but without loss of generality one can take et:, et: = 1, Vp, v E N. Then let 
+-- +--
E := proj lim El-' = proj limproj limEt: = proj lim E~. 

p.~oo £1-+00 

Define 

F p,r = {f E EN I V p, v EN: m f .p~, r < 00 } , 

+-- . { +--N } K p,r = fEE I V p, v EN: • f .p~, r = 0 . 

(Here P == (~) 11)1-' stands (on the l.h.s.) for the whole family of seminorms.) Then 
Proposition 67 holds, with the slight changes of notations introduced above. 

Inductive limit Consider now a family (E::'~)I-',IIEN of semi-normed spaces over 
C, such that 

(70) Vp,v EN: Et: ~ E~+l' E~+l ~ E~. 

This implies that there exist constants et:, 6t: E lR+ such that 

Vp, v EN: ~+l ~ et: p~, ~ ~ 6t: 1>':+1, 

but again one can assume et:, 6:: = 1, V p, v EN. Now let 
--t 

Vj1. EN: El-' = *indlimE~. 
11-00 

Assume that for every p, v', v" E N there exist v E N and e > 0 such that 

P~(f9) ~ ep~/(f)p~II(9), f E E~/ 9 E E~II' 
--t --t 

Note that (70) implies that Vj1. EN: EI-'+l ~ El-'. Now let 
--t --t 

E := proj lim El-' = proj lim *ind lim Et:, 
1-'-00 1-'-00 11--+00 
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and define 

Fp,r:= {f E EN I 'tIJI. E N,3v EN: f E (E~)N". f 1rJ.:,r < OO}, 
Kp,r := {f E EN I 'tIJL E N,3v EN: f E (E~)N". f Ip~,r = o}. 

~ 

Proposition 70. (i) Writing ~ for both, +:- or 7, we have that :F p,r is an algebra 
~ ~ +-+ ~ +-+ 

and IC p,r is an ideal of :F p,r; thus, 9 p,r := :F p,r/ IC p,r is an algebra. 

(ii) For every JI., v EN, dp:; : (Et)N x (Et)N -+ R+ defined by dp~(f,g) = • f­
g 1rJ.:,r is an ultrapseudometric on (Et)N. Moreover (dp:;)""v induces a topological 

+-
algebra structure on :F p,r (since dp:;(O, f . g) ~ dp:; (0, f)dp:;(O, g») such that the 

~ 

intersection of neighborhoods of zero equals IC p,r. 
+- +- +-

(iii) From (ii) , 9 p,r = :F p,r/ ICp,r becomes a topological algebra which topology 

can be defined by the family ofultrametrics (dp:;)""v, where dp:;([f], [g]) = drJ.:(f,g), 
[hI stands for the class of h. 

(iv) If 7", denotes the inductive limit topology on :Ft,r = UVEN«ie)N,d""v), 
-+ 

JI. E N, then :F p,r is a topological algebra for the projective limit topology of the 
family (:Ft,r' 7",)1'" 

(ie)N, consists of elements f E (Ee)N with finite d""v(f). 
Without assuming completeness of E, it holds: 

+-
Proposition 71. (i) ~ p,r is complete. 

(ii) If for all JL E N, a subset of J~,r is bounded if and only if it is a bounded 
-+ 

subset of (Et)N for some v E N, then :F p,r is sequentially complete. 

8.1.3. Comments on the Schwartz' impossibility result. In the definition 
-+ +-

of sequence spaces :F p,r resp. :F p,T> we assumed Tn '\, 0 as n -+ 00. Clearly, one 
could consider sequence spaces of the same type with T n only bounded, or even 

+-+ +-+ 
Tn -+ 00. In the former case (Tn bounded), the space :F p,r (where . stands for 
+:- or 7) contains *diag EN topology, via the embedding E 3 f 1-+ (f)n E EN. In 
the second case (when Tn -+ 00), this embedding is not possible. 

+-+ 
In the case we consider (Tn -+ 0), the induced topology on E is a discrete 

topology. But this is necessarily so, since we want to include "divergent" sequences 
+-+ 

in :F p,r. 
In order to have an appropriate topological algebra containing "8" , we must have 

that our generalized topological algebra induces a discrete topology on the original 
~ 

algebra E. This conclusion is in analogy to Schwartz' impossibility statement for 
multiplication of distributions. 

8.1.4. Sequences of scales. We can consider a sequence (Tm)m of positive 
sequences (T~)n such that 

'tIm, nE N: T:+l ~ T:i Hm T~ = O. 
n-oo 
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In addition to this, we request either of the following conditions: 

\lm,n EN: r:+1 ~ r: or \lm,n EN: r:+l ~ r:. 

Then let, in the first resp. second case : 

Fp,r = n Fp,rm, Kp,r = U Kp,rm 

mEN mEN 

resp. F p,r = U F p,rm , K p,r = n K p,r'" 
mEN mEN 

~ +-+ +;::1 
(where again p = ~)v,~). Then again, 9 p,r := F p,rl '" p,r will be an algebra. 

The following example cower so called Egorov's type algebra. r;:' = {Ol' ~ff n ~ m 
,1 n>m 

gives the Egorov-type algebras, where the "subalgebra" contains everything and the 
ideal contains only stationary null sequences. 

8.1.5. General remarks on embeddings of duals. Under mild assumptions 
+-+ 

on E, we can show that our algebras of (classes of) sequences contains elements of 
+-+ 

the strong dual space E'. Let GO(RS) be the space of continuous functions with 
projective topology given by sup norms on the balls of radius v E W, Pv(f) = 

+-+ 
sup{lf(x)l; Ixl ~ II}. We shall assume in the sequel that E is a dense subspace of 

+-+ 
GO(RS) and the inclusion mapping E ~ G°(lRS) is continuous. Then, we have the 
following 

+-+ +-+ 
Propos~on 72. (i) 0: E ~ C, 0(4)) := 110) is an element of E'. 
(ii) Let E be sequentially weakly dense in E'. Then, a sequence (on)n E En (Go)' 
with the property 31], () > 0 : \In EN: sup 10n(x)1 < 1], converging weakly to 0, 
cannot be bounded in E. _ \x\>6 

Thus, the appropriate choice of the sequence r appeared to be important to have 
at least 0 embedded into the corresponding algebra. It can be chosen such that: 

+-
In E case, for every IL, 11 E N 

limsupPe(onr" = A~ and 31L0,1I0: A~:f. o. 
n-oo 

~ 

In E case, for every IL E N exists 11 E N such that the above limit holds. 

8.2. Association. The notion of a weak limit or of a weak solutions is transferred 
to generalized function algebras to various notions of associations. Thus their 
importance is underlined through the applications to nonlinear equations or linear 
one with singularities. 
General concept: J - X-association. The J - X-association of elements F, G E 
9 = F I /C is defined in terms of an additive subgroup J of F containing the ideal 
/C, and a set X of generalized numbers, by 

F ~ G {=} \Ix EX: X· (F - G) E J I/C. 
:f,X 



GENERALIZED FUNCTION ALGEBRAS AND PDES WITH SINGULARITIES 115 

As :r is not an ideal, the association is not compatible with the multiplication in :F 
(not even by generalized numbers, only by elements of E). However, in the case of 
differential algebras, :r is usually chosen such that::::: is stable under differentiation. 
If the set X contains only number 1, then we simply write F ::::: G ~ F - G E 

.7 
:r /K. 

For example, consider N = {x E eN llimxn = O}, the set of null sequences. 
This gives usual association of generalized numbers, 

[x] '" [y] ~ [x]::::: [y] ~ Xn - Yn -+ 0 
N 

which is well defined because all elements of the ideal tend to zero. 
Strong s-association. is defined for s E JR+ by 

F ~ G ~ F ~) G with :r~:~ = {f E:F I 'fp E P: I I mp,r < e-S
}. 

For s = 0, we write F:!z'C and simply call them strongly associated. On the other 
hand, F ~ G for all s ~ 0 implies F = G. 
Weak associations. The following types of associations are defined in terms of a 

+--+ 
duality product I (.,.> : E x D -+ e, and 

:r =:rM = {J E EN 1'11/1 E D: ((In,1/1))n EM}. 

where M is some additive subgroup of eN. 

s - D' -association is defined by F ~ G ~ F ::::: G with Xs = {[ (es / rn ) n] } 
for s E JR. .7N'X. 

Example 73. In the case of Colombeau's algebra this has already been considered 
(with D = V): For s = 0 we get the so-called weak association [I] ::::: [g] ~ 
In - gn -+ 0 in V'. For s =1= 0, [I] t::, [g] ~ nS(Jn - gn) -+ 0 in'D'. In the case of 
ultradistributions, we take D = v(m) and es/ ru = exp[snml-l] for Beurling case, 
and analogous definitions in the Roumieu case. 

s 
Weak s-association is defined by F::::: G ~ F::::: G where 1= Jj.I,r,s for any 

sw .71 
SE JR. For s = 0, we write F ::::: G and call F and G strong-weak associated. 

Remark 74. Weak s-association implies s - D' -association, but conversely s - D'­
association only implies weak s' -association with s' < s. 

In stands for a test function space such that E '-+ D'. 
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Introduction 

This article is an enlarged version of the talk given by the author on the Meeting 
on Mathematical Methods in Models of Mechanics, organized by Serbian Academy 
of Sciences and Arts in its Novi Sad Branch in October 2003. 

We devoted the talk to the 10th anniversary of the Seminar on Mathemat~ 
ical Methods in· Mechanics, which is being hold in the Mathematical Institute 
SANU. Main scientific topics in the focus of the Seminar in that period (1993-
2003) are geometry of integrable dynamical systems, connections with complex 
algebro-geometric and finite-zone integration methods, applications in models of 
classical, quantum and statistical mechanics etc. Here, we are going to give a brief 
review of classical results and modern research streams in these areas, as well as 
the original results. 

The article is organized as follows. The next two sections contain necessary 
notions and statements from algebraic geometry and integrable dynamical systems 
- in Section 1 we list basic definitions related to the theory of integrable systems, 
while Section 2 is a brief introduction to the theory of Riemann sUrfaces. In order 
to keep the presentation reasonably short, we intensively assume two references 
published in last few years in Belgrade [50, 26], and we refer readers to them 
for details and clarifications regarding algebraic geometry and Poisson structures. 
Let us emphasize that these mathematical techniques are the main tools for the 
research performed in the framework of the Seminar on Mathematical Methods in 
Mechanics. 

In Section 3 we give a concise review of classical and modern results concerning 
the motion of the rigid body about the fixed point. In Section 4, the original results 
concerning a generalization of the classical Hess-Appel'rot rigid body system and 
its integration in both classical and algebro-geometric ways are presented [22, 23]. 

In Section 5 we return again to classical subjects, presenting Poncelet theorem 
on closed polygonal lines inscribed in one and circumscribed about another conic 
in the plane and Cayley's condition that describe analytically such polygons. In 
Section 6, billiards as an important class of dynamical systems are introduced. 
In Section 7 , we present the original results - the generalization of the Cayley's 
condition related to elliptical billiards in the space of arbitrary finite dimension 
[27, 28]. Section 8 is aimed to present the author's results on separable potential 
perturbations of integrable billiard systems [16, 17]. The last Section 9 is devoted to 
exactly solvable models in Statistical Mechanics and problems of algebro-geometric 
classification of the solutions of the Quantum Yang-Baxter equation. Some of the 
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author's results, obtained in the general framework of Krichever's approach based 
on vacuum curvrs and vectors (see [46, 18, 19,20]), are presented. 

1. Poisson structures and completely integrable systems 

The algebra Coo (M) of smooth functions on a symplectic manifold (M, w) admits 
a binary operation {f, g} := w(X" Xg), where X, and Xg are Hamiltonian vector 
fields defined by Hamiltonians f and g. Its basic properties are 

• bilinearitYi 
• antisymmetricity: {f,g} = -{g, J}. 
• the Jacobi identity: {{f, g}, h} + {{g, h}, J} + { {h, J}, g} = o. 
• the Leibnitz rule: {f,gh} = {f,g}h + g{f, h}. 

A more general class of manifolds are Poisson manifolds. 

Definition 1. Poisson algebra is a commutative algebra with an antisymmetric 
bilinear operation {-,.} satisfying the Jacobi identity and the Leibnitz rule. A 
manifold M is a Poisson manifold if there is an operation {.,.} giving to Coo(M) a 
structure of a Poisson algebra. 

Let H be a smooth function on a Poisson manifold M. Then the dynamical 
system x = {x,H} is a Hamiltonian system with the Hamiltonian function H. A 
function F which is constant along the trajectories of the system is called a first 
integral. For a Hamiltonian system with the Hamiltonian function H, a function F 
is a first integral if and only if {H, F} = O. 

Let us recall that for functions F, H for which {H, F} == 0 we say that they are 
in involution. Specially, since {H, H} = 0, the Hamiltonian function itself is a first 
integral for the Hamiltonian system. The following fundamental theorem describes 
the topological structure of flows of an important class of Hamiltonian systems. 

Theorem 1 (Liouville-Arnol'd). Let M be a symplectic manifold and assume n = 
! dime M) functions in involution Fl , ... ,Fn : M --+ IR are given. 

Denote c:= (Cl, ... ,en) E Rn and Mc = {x E M I Fk(X) = Ck}. If the functions 
Fb . .. , Fn are independent on Mc, then: 

1. Mc is a smooth manifold, invariant with respect to the Hamiltonian diffeo­
morphism generated by functions Fk. 

2. If the manifold Mc is compact and connected, then it is diffeomorphic to a 
torus 1'" = (Sl)n. 

3. There exist coordinates ('Pl!' .. , 'Pn) E 1'" such that the Hamiltonian equations 
with the Hamiltonian Fl have the form CPl = Wl,e,' .. , CPn = Wn,e linearizing the 
flow. 

Definition 2. A Hamiltonian system (M2n, w, H) that has n independent first 
integrals in involution is completely integrable in Liouville sense. 

All Hamiltonian systems with one degree of freedom are obvious examples of 
completely integrable systems. Starting with two degrees of freedom, the situation 
is not simple at all any more. 
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Example 1. The problem of geodesics on the surfaces of revolution in ]R3 is com­
pletely integrable. 

Example 2. The problem of geodesics on ellipsoid in En is completely integrable, 
as a consequence of the J acobi-Chasles theorem. 

Completely integrable systems have, according to Theorem 1, very regular dy­
namics. However, they are very rare. Although, for any such a system, there exist 
action-angle coordinates where this system could be explicitly integrated, the con­
struction of those coordinates is not explicit. Thus, in the theory of completely 
integrable systems two basic and usually difficult questions exist: 

• For a given system to show that it is completely integrable; 
• For a given complr:;tely integrable system to perform explicit integration. 

For the systems given in the first two examples, integration is done by methods 
of separation of variables of Hamilton-Jacobi equation. After 1967 and discovery 
of infinite-dimensional completely integrable systems, such as Korteweg - de Vries 
equation, new techniques of solving such problems were found. These techniques are 
based on the inverse scattering methods, and some additional analytical, algebraic 
or algebro-geometric theories are used. 

2. Riemann surfaces, a brief introduction 

Theorem 2. The next three definitions of genus are equivalent: 

• 9 = ~ dimHhR(E) 
• g=dim01(E) = dimbO(E; ( 1) 
• 9 = dimb1(E; 0). 

Thus, on a Riemaun surface of a genus g, there exist exactly 9 linearly in­
dependent holomorphic differentials. Let as consider now a case of elliptic and 
hyper-elliptic curves. 

Example 3. On a hyper-eIliptic curve of genus 9 given by the equation 

y2 = P2g+l(X), . 
I-I 

one basis of holomorphic differentials consists of Wi = P z () dz, i = 1, ... ,g. 
(For 9 = 1 the case of elliptic curves is included.) 2g+1 z 

Theorem 3 (Riemann-Roch). Let D be a divisor on compact Riemann surface E 
of genus g. Then flO(E; OD) and fll(E; OD) are finitely dimensional vector spaces 
and 

dimbO(E; OD) - dimb1(E; OD) = 1 - 9 + deg(D). 

Definition 3. A divisor D satisfying l(K - D) = 0 is called nonspecial. Otherwise, 
a divisor D is special, and the number l(l< - D) is called the index of speCiality. 

From Poincare-Hopf theorem, it follows 

Proposition 1. On a curve r of genus g, the degree of canonical divisor Kr is 
deg K r = 2g - 2. A ny divisor D of degree greater than 2g - 2 is nonspecial. 
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Definition 4. A Riemann surface r of genus greater then 1 is hyper-elUptic if there 
exists a holomorphic two-sheeted covering 1f' : r .-. al. 
Example 4. If a Riemann surface is hyper-elliptic in the sense of the last definition, 
then it represents a normalization of a curve given by the equation 

y2 = P29+2(X), g ~ 2. 

Two-sheeted covering 1i induces an involution a on the hyper-eUiptic curve r. 
If the curve is defined by the last equation, then the involution is given by the 
formula a(x, y) = (x, -y), and the set B of fixed points of the involution is in one 
to one correspondence with the set B' = {Xl, ... ,X2g+2} of zeroes of the polynomial 
P2g+2 = a I1(x - Xi)' 

Exercise 1. Let P, Q be two arbitrary points on the hyper-elliptic curve r. Prove 
that the divisors P + a(P) and Q + a(Q) are equivalent. 

The cla.'3S of divisors P + a(P) we denote by L. It does not depend, according 
. to the last Exercise, on the choice of the point P. Let T c B be a subset with even 
cardinality. We use the following notation: 

eT = L Pi_I~IL. 
P;ET ~ 

Exercise 2. Prove: 

• 2eT = O. 
• eTl + eT2 = eT1DoT2' where A denotes the symmetric set difference. 
• eTl = eT2 if and only if Tl = T2 or Tl = B '- T2 · 

• On hyper-elliptic curve r of genus g, it holds Kr = (g - 1)L. 

2.1. Matrix of periods of a Riemann surface. Suppose r is a given, compact, 
nonsingular Riemann surface of genus g. Denote by (al,"" ag , bl, .. . ,bg ) a basis 
of homologies Hl (r, Z), which is canonical, i.e., such that 

ai 0 aj = bi 0 bj = 0, aj 0 bj = Cij, i, j == 1, ... ,g. 

Denote by f' the fWldamental4g-angle, with edges alblal1bl1 ... agbga;lb;l. The 

surface r can be realized by gluing the edges of f'. 
Let w, w' be closed differential on r, and let 

~= f w, la, Bi = f w, ~ = f w', 
lb. lai B~ = 1 w' . , 

b; 

for i = 1, ... , g be their periods on canonical basis of cycles. Then 

I" f w" w' = t(AiB~ - A~Bi)' 
Jr i=l 

Let us fix a basis of holomorphic differentials [W1," . ,wgl such that 

r Wk = 21f'iCjk, j, k = 1, ... ,g. la; 
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For a basis normalized in that way, denote by Bjk the matrix of b-periods: 

Bjk = r Wb j, k = 1, ... , g. lbj 
Definition 5. The matrix Bjk is called period matrix of a Riemann surface r. 
Proposition 2 (Riemann bilinear relations). For the period matrix Bjk of a Rie­
mann surface, it holds: 

• The matrix B is symmetric. 
• The matrix B has a negatively defined real part. 

Definition 6. A matrix B is called Riemannian matrix, if it satisfies properties of 
the 1a.'3t proposition. The set of such 9 X 9 matrices is called the Sigel half-plane 
and is denoted by'Hg • 

Thus, every period matrix of a Riemann surface is a Riemannian matrix. The 
converse question is highly nontrivial: Which Riemannian matrices are period ma­
trices of some Riemann surface? This classical and very important problem of XIX 
century algebraic geometry is known as the Riemann-Shottke problem and it was 
open for more than a century. It was solved quite recently, in the middle of 1980's, 
using the techniques of the soliton theory, Japanese mathematician Shiota proved 
the so-called Novikov's conjecture. We will tell something more about this at the 
and of this Section. 

2.2. Jacobian of a Riemann surface. The Abel map. Denote the standard 
basis of (:g by e = [el,' .. , eg ], (ei)k = 6i k. 

Exercise 3. Let B be a Riemannian matrix. Then 2g vectors el,' .. , eg, Bel,"" Beg 
are linearly independent over JR. 

Let us consider an integer-valued lattice AB in (:g generated by the vectors 271"iej, 
Bek, k,j = 1, ... ,g: 

AB: 271"iM +BN, M,N E zg. 

Then 2g-dimensiona.l torus '['2g = '['(B) = (:g / AB defines a g-dimensional Abel 
variety, a g-dimensional complex torus. 

Definition 7. If a mat.rix B is a period matrix of some Riemann surface r of genus 
g, then 1!'(B) is called the Jacobian variety of a surface r, denoted by '['(B) = 
Jac(r). 

Let a compact, smooth Riemann surface r of genus 9 be given with some canon­
ical basis of homologies ( a, b) and with corresponding normalized basis of holomor­
phic differentials [Wl! ... , wg ]. Choosing an arbitrary point Po on r, let us consider 
9 A bel integrals 

Ui(P) = rP 

Wj, i = 1, ... ,g, 
jpo 

assuming one and the same integration path every time. 
Together with holomorphic differentials, known also as Abel differentials of the 

first kind, meromorphic differentials play important role as well. 
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Definition 8. The Abel differeritials of the second kind w~) are meromorphic 
differentials with a unique pole at a point P of order n + 1, locally represented by 

(n) dz 
wp =zn+1+···. 

The Abel differentials of the third kind wPQ are determined by unique simple poles 
P, Q with residua +1,-1. 

These differentials are uniquely determined by the conditions: 

r wPQ = 0, i = 1, ... ,g. laj 
Exercise 4. Prove the following formulae 

(1) 1 (n) _ 1 dn - 1 MQ) 
wp - 1 ' i=l, ... ,g,nEN, 

bj n! dz n -

(2) r WPQ=l

P 

Wi, i=l, ... ,g, 
lb j Q 

where Wi = h(z) dz locally represents basic holomorphic differential around a point 
Q. 

Exercise 5. Given four arbitrary points on a Riemann surface, prove: 

l Q2 wQaQ. = rQ
• WQ1Q2' 

Q1 lQa 
Exercise 6. Prove that the formula 

(3) 

defines a mapping A: r ~ Jac(r). 

Definition 9. The mapping A: r ~ Jac(r) defined by formula (3) is called the 
Abel mapping. 

The natural question is wether g'iven points P1, ... , Pn and Q1,"" Qn represent 
a divisor of zeroes and poles of some meromorphic function on a surface r. The 
answer is given in the following 

Theorem 4 (Abel). Given points H, ... , Pn and Q1. ... , Qn form divisors of ze­
roes and poles of a meromorphic function on a Riemann surface r if and only if 
the relation 

n n 

LA(P.) = LA(Q;) 
.=1 ;=1 

takes place on the Jacobian Jac(r). 
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2.3. Riemann theta-function. An important tool is introduced by the following 

Definition 10. Given an arbitrary gxg Riemann matrix B, BE 'H.g • The Riemann 
theta-function B( z, B) is defined by the series: 

(4) B(z, B) = L exp(Bn,n) + (n,z». 
nEZg 

Proposition 3. The series (4) converges uniformly and absolutely on every com­
pact subset of <C X 'H.g and it defines a holomorphic function. 

Proposition 4. The following periodic relations are valid: 

B(z+2rriek,B) =B(z,B), k=l, ... ,g, 

B(z + Bek, B) = exp(-Bkk /2 - Zk) B(z,B), k = 1, ... ,g. 

Similarly, Riemann theta-functions with characteristics can be introduced for 
arbitrary real vectors a,b ERg: 

B[2a, 2bJ(z) = exp{~(Ba, a) + (z + 2rrib, a) }B(z + 2rrib +Ba). 

2.4. The Jacobi inversion problem and the Riemann theorem about zeroes 
of a theta-function. Starting from the case of genus 2 Riemann ~urfaces, there is 
no sense to invert fixed Abel integral. The following system 

l
PI 

dz l p2 
dz 

( 1 = rDT.::\ + rDT.::\' 
Po y P5(Z) Po y Ps(z) 

(2 = {PI zdz + (P2 zdz 
JPo ";Ps(z) Jpo ";P5(Z) ' 

we are going to consider in the next section, in connection with the Kowalevski 
case of rigid body motion. The problem is to determine points PI, P2 as functions 
of given values (1,(2' Observing symmetric appearance of points PI and P2 in 
the above formulae, the problem can be reduced to find expressions of symmetric 
functions of PI, Pa, through (1, (2' Historically, it was J acobi who solved this 
problem in genus two case. 

For an arbitrary genus, corresponding general J acobi problem of inversion was 
formulated and solved by Riemann. 

Given an arbitrary, smooth Riemann surface r of genus g, with a fixed canonical 
basis of homology cycles and corresponding basis of holomorphic differentials. By 
using the Abel mapping, we define 

n 

An: sn(r) -> Jac(r), An(Pt, ... ,Pn) = LA(Pi), 
i=1 

where sn(x) denotes symmetric n-th degree of a set X. 

Proposition 5. Let a nonspecial divisor D = PI + ... + Pg be given; then in a 
neighborhood of the point Ag(P1 , •.• ,Pg) E Jac(r) the mapping Ag is invertible. 
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In the general case, the divisor D = H + ... + Pg .is nonspecial. Thus, the 
inverse of the mapping Ag is defined almost everywhere. To find explicitly the 
inverse, Riemann essentially used theta-functions. Let us present some of their 
basic properties, necessary for the solution of the Jacobi inversion problem. 

Suppose a vector f E C9 be given. Consider the function F(P) = 8(A(P) - I). 
where 8(z) = 8(z, B) is the theta-function of the surface r. Function F is well 
defined and analytic on the fundamental 4g-angle t, and for almost all f it is not 
identically equal zero. 

Proposition 6. Ij the junction F is not identically zero, then it has exactly 9 
zeroes in t. 
Definition 11. A vector /C = (Klo ... ,Kg), where 

K· = 27ri + Bjj 
- _1 '" (1 (P) l P 

.) 1 2 2 . L., WI w, , 
7rl 1#1 a, Po 

j=1,oo.,g, 

is called the vector of Riemann constants. 

Proposition 1. If a function F is not identically zero and if Plo 00 • ,Pg are its 
zeroes, then Ag(Pl , . .. , Pg) = f - /C. 

Theorem 5 (Riemann). Given a vector f such that F(P) = 8(A(P) - /C - I) is 
not identically zero. Then: 

• the junction F has exactly 9 zeroes Pl, . .. ,Pg, giving the solution of the 
Jacobi problem Ui(Pl ) + ... + 'Ui(Pg ) = h, i = 1,. " ,g. 

• The divisor H + ... + Pg is nonspecial. 

The set of zeroes of the theta-function defined on the Jacobian of the Riemann 
surface r is called the theta divisor or the e-divisor of the Riemann surface, denoted 
also by er. 

2.5. The Baker-Akhiezer function. In the theory of integrable systems an im­
portant role plays the notion of the Baker-Akhiezer function. 

Definition 12. Given n points Pl , ... ,Pn on a Riemann surface of genus g, with 
local parameters kit, i = 1, ... , n' kil(Pi ) = 0, n polynomials qi(k) and a nonspe­
cial divisor D, then n-point Baker-Akhiezer function 1/J corresponding to the data, 
is 

• meromorphic on r" {Pl , ... ,Pn }; 

• for its divisor it holds (1/J) + D ~ 0; 
• when P tends to ~, the function 1/J(P) exp(-qi (ki (P)) is analytical. 

Theorem 6. [33J Given a nonspecial divisor D of degree N. Then the dimension 
of the space of Baker-Akhiezer junction is N - 9 + 1. 
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Example 5. If N = g, then the Baker-Akhiezer function .,p is determind uniquely 
up to a scalar factor. It is given by the formula 

n p e( A(P) + j~l U(qJ) - A(D) - JC) . 

.,p(P) = a exp (~h Oqj) e (A(P) - A(D) - JC) , 

where nqJ are Abel differentials of the second order, with a principle part around P j 

of the form dqj(kj(P» normalized by the condition of annul at ion of the a periods; 
27riU(qj) are the vectors of their b-periods. 

2.6. Riemann-Shottke problem and Novikov's conjecture. We saw that every 
period matrix of a Riemann surface is a Riemannian matrix. The converse question 
which Riemannian matrices are period matrices of some Riemann surface is clas­
sical and very important problem of XIX century algebraic geometry known as the 
Riemann-Shottke problem. It was solved quite recently, in the middle of 1980's, us­
ing the techniques of the Baker-Akhiezer functions and the soliton theory, through 
the so-called Novikov's conjecture. (see [32]) 

It was known after Krichever (see [33J and references therein) that there exist 
certain theta-function formulae associated with period matrices which give solutions 
of the K adomtsev-Petviashvili (KP) equation from the soliton theory 

(Ut + uu'" + u""""')'" + ul/l/ = O. 

The Novikov conjecture is a converse statement that a Riemannian matrix is a 
period matrix only if it gives a solution· of KP equation through the Krichever 
formulae. 

In a weak form the Novikov conjecture has been proven by Dubrovin in 1981 
[32J. The complete solution of Novikov's conjecture and the Riemrum-8hottke 
problem was done byShiota in 1986 [60, 57J. The highlight of Shiota's proof was 
use of a notion of tau-function introduced by Sato school few years before, giving 
opportunity to involve simultaneously the whole hierarchy of integrable systems 
associated with the KP equation. 

3. Rotations of a heavy rigid body about a fixed point 

Let us consider rotations of a rigid body about a fixed point 0, under the grav­
itational field. Motion of the rigid body is represented in two coordinate systems: 
the fixed Oxyz, and the moving frame OXYZ, which is attached to the body. 

Traditionally, vectors in the fixed frame are denoted by small letters, and in the 
moving frame by capital letters. The vector net) = (p,q,r) will denote angular 
velocity in the moving frame and velocity V of a point Q is V = 0 x Q. Now 
the kinetic momentum G becomes G = JJJ".Q x (n x Q)dm = J(O), where the 
operator J is symmetric and called inertia tensor of a rigid body. 

The operator J defines quadratic form which gives the ellipsoid of inertia of 
the body (J X, X) = 1. The ellipsoid describes the mass distribution in the body. 
Choosing the basis e = [i,j,kJ where the operator J is diagonal, we get [JJe = 
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I = diag(A, B, C). These three mnnbers A, B, C, the principal momenta of inertia, 
which describe the mass distribution, together with the coordinates of the mass 
center X = (xo, Yo, zo), give complete description of the dynamical properties of the 
rigid body. (Instead of A, B, C we will also use III 12, 13 as a notation for the 
principal momenta.) 

In the same basis the vector of kinetic momentum becomes 

G = Api +Bqj + Crk. 

Denote by f = h, -y', rJl) coordinates of the vertical orth in the moving frame. 
Gravitational force acts in direction of f, and assuming mg = 1, we get L = X X f, 
where L is the principal momentum of forces. From the equation G = L, the first 
group of the Euler.,..Poisson equations follow: 

(5) M= Mx n+X xf, 

where M = In. 
The second group of Euler-Poisson equations follow from the fact that the vector 

f is fixed in the space: 

(6) r=f x n. 
The equations (5) and (6) are six differential equations of motion on 12 and f as 
functions of time. 

3.1. The first integrals of motion. Integrable cases. The Euler-Poisson equa­
tions always have three first integrals of motion: 

F1 = ~ (m, (2) + (f, X) (energy integral), 

F2 = (f,f) (= 1), Fa = (1O,f). 

The Euler case (1751). It is defined by the condition X = 0. The additional first 
integral is F4 = (M, M). 

The Lagrange case (1788). This case is defined by the conditions A = B and 
X = (0,0, zo). So, the ellipsoid of inertia is symmetric, and mass-center is placed 
on the symmetry axis. Additional first integral, linear in impulses, is F4 = M3 · 

The Kowalevski case. It is well known that Kowalevski, in her celebrated 1889 
paper [45], starting with a careful analysis of the solutions of the Euler and the La­
grange case of rigid-body motion, formulated a problem to describe the pammeters 
(A, B, C, xo, Yo, zo), for which the Euler-Poisson equations have a general solution 
in the form of uniform functions with only moving poles as singularities. Here 
1= diag(A, B, C) represents the inertia operator, and X = (xo, Yo, zo) is the center 
of mass of the rigid body. 

Then, in §1 of [45], some necessary conditions were formulated and a new case 
was discovered, now known as Kowalevski case, as a. unique possible beside the 
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cases of Euler and Lagrange: A = B = 2C, X = (xo,O,O). Additional first integral 
found by Kowalevski is of the fourth degree in impulses 

( 
2 2 Xo )2 ( XO)2 F4 = 01 - O2 + 13 r 1 + 20102 + 13 r2 . 

The integration of the Kowalevski case. The problem of Kowalevski of a 
motion of a rigid body about a fixed point, can be reduced to the solution of the 
system 

(7) 

where Si are so-called Kowalevski variables. 
However, considering the situation where all momenta of inertia are different, 

Kowalevski came to the relation analogue to the following (see [39]): 

xoV A(B - C) + YOV B(C - A) + zoVC(A - B) = 0. 

And she concluded that it should be Xo = Yo = zo in such a case, giving the Euler 
case. 

But, it was Appel'rot who noticed in the beginning of 1890's, that the last 
relation admits one more case, not mentioned by KowaIevski: 

xoV A(B - C) + zoVC(A - B) = 0, Yo = 0, 

under the assumption A > B > C. Such systems were considered also by Hess, 
even before Appel'rot, in 1890. But such intriguing position corresponding to the 
Kowalevski paper, made the Hess-Appel'rot systems very attractive for leading 
Russian mathematicians from the end of XIX century. After few years, Nekrasov 
and Lyapunov provided new arguments and they demonstrated that the Hess­
Appel'rot systems did not satisfy the condition investigated by Kowalevski, which 
means that conclusion of §1 of [45] was correct. 

A few years ago, we constructed a Lax representation for it (see [22]). We 
provided the Lax representation for all new systems, generalizing the Lax pair 
from [22]. It appeared that new systems belong to the class of isoholomorphic 
systems. This class of systems was introduced and studied in [23J, in connection 
with the Lagrange bitop. 

Such systems have specific distribution of zeroes in Lax matrices. Therefore 
standard integration technics of [31, 1J cannot be applied directly. Its integration 
requires more detailed analysis of geometry of the Prym varieties and it is based 
on Mumford's relation on theta-divisors of unramified double coverings. 

The L operator, a quadratic polynomial in >. of the form>. 2C + >'M + r, in the 
case n = 4 satisfies the condition L12 = L21 = L34 = L43 = 0. Such a situation, 
explicitly excluded by Adler-van Moerbeke (see [1, Theorem 1]) and implicitly by 
Dubrovin (see [31, Lemma 5 and Corollary]) has been studied for the first time in 
[23]. 

Study of the spectral curve and the Baker-Akhiezer function for the four-dimen­
sional Hess-Appel'rot systems (see [24, 25]) shows that, similarly to [23J, dynamics 
of the system is related to certain Prym variety IT. It is connected to the evolution 
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of divisors of some meromorphic differentials a;. From the condition on zeroes of 
the Lax matrix, it follows that differentials a~, a~, al, a~ are holomorphic during 
the whole evolution. Compatibility of this requirement with dynamics is based on 
Mumford's relation n- c e, (see [23]), where n- is a translation of the Prym 
variety n. 
Classical Hess-Appel'rot system. Let J1 < J2 < J3 and X = (xo, Yo, zo). Hess in 
[42] and Appel'rot in [4] found that if the inertia momenta and the radius vector 
of center of masses satisfy the conditions 

(8) 

then, the surface 

(9) 

is invariant. Integration of such system, using classical techniques can be found in 
[39]. In [22], an L-A pair for the Hess-Appel'rot system is constructed: 

L(A) = [L(A), A(A)], 

L(A) = A2C + AM + f, A(A) = AX + a, C = J~~:3x, 
where the skew-symmetric matrices represent the vectors denoted by the same 
letter. Also, the basic steps in algebra-geometric integration procedure are given. 

The Zhukovskir geometric interpretation of the conditions (8), (9) (see [67, 49]) 
Let us consider the ellipsoid 

M? +M:j +M~ =1 
J1 h J3 ' 

and the plane containing the middle axis and intersecting the ellipsoid through a 
circle. Denote by l corresponding normal to the plane, which passes through the 
fixed point O. Then the conditions (8), (9) mean that the center of masses lies on 
the line l. 

Having this interpretation in mind, we choose the basis of moving frame such 
that the third axis is l, the second one is directed as the middle axis of ellipsoid, 
and the first one is chosen according to the orientation of the orthogonal frame. 
In this basis (see [9]), particular integral (9) becomes F4 = M3 = 0, the matrix J 
obtains the form: 

J = (~ J1 J~3), 
J13 0 h 

and X = (0,0, zo). This will serve us as a motivation for the definition of the 
four-dimensional Hess-Appel'rot system. 
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4. The definition of Lagrange bitop and its basic properties 

The equations of motion of a heavy n-dimensional rigid body fixed at a point in 
the moving frame are: 

(10) 

where the moving frame is such that the matrix I is diagonal in it, diag(h,.·., In). 
Here Mij = (Ii+Ij)Oij E so(n) is the kinetic momentum, 0 E so(n) is the angular 
velocity, X E so( n) is a given constant matrix (describing a generalized center of the 
mass), f E so( n). Then Ii + I j are the principal inertia momenta. These equations 
are on the semidirect product so(n) x so(n) and they were introduced in [59J. 

We are going to consider a four-dimensional case of these equations defined by 

o 0 ) o 0 
o X34 

-X34 0 

(11) 
( 

0 X12 
_ -X12 0 

X- 0 0 

o 0 

with the conditions a I b, XI2,X34 10, IX12111x341. We will call this system the 
Lagrange bitop. 

Proposition 8. [22J The equations of motion (10) under the conditions (11) have 
an L-A pair representation Lp.) = [L(>.) , A(>')J, where 

(12) L(>.) = >.2C +>'M+f, A(>')=>'X+O, 

and C = (a +b)x. 

One can observe that both leading terms in the operators L and A (matrices C 
and X) are skewsymmetric, while in [31, 32, 34, 51, 8J one is always symmetric and 
another one is skewsymmetric. 

Before analyzing the spectral properties of the matrices L(>.) , we will change the 
coordinates in order to diagonalize the matrix C. In this new basis the matrices 
L(>.) have the form L(>.) = U-l L(>')U, 

( 

-i.6.34 0 -/3; - i/3~ i/33 - /34 ) 
L(>.) _ 0 i.6.34 -i/3; - /3~ -/33 + i/34 

- /33 - i/34 -i/33 + /34 -i.6.12 0 ' 
i/3; + /3~ /3; + i/34 0 i.6.12 

where .6.12 = >.2C12 + >'M12 + f12' .6.34 = >.2C34 + >'M34 + f34, and 

/33 = X3 + >'Y3, X3 = ~(fI3 + if23) , 

/34= X4 + >'Y4, X4 = ~(f14 + if24) , 

/3; = X3 + >'ih, Y3 = ~(MI3 + iM23) , 

/3~ = X4 + >'i14, Y4 == ~(MI4 + iM24)' 



136 VLADIMIR DRAGOVIC 

The spectral polynomial p()..,J.L) = det(L()..) - J.L ·1) has the form 

p().., J.L) = J.L4 + p()")J.L2 + [Q()..)]2, 

where 

P()..) = 6~2 + 6~ + 4f33f3i + 4f34f3~, Q()..) = 6 126 34 + 2i(f3if34 - f33f3~). 

We can rewrite it in terms of Mij and fij: 

P()..) = A)..4 + B)..3 + D)..2 + E)" + F, Q()..) = C)..4 + H)..3 + ])..2 + J)"+ K. 

Their coefficients 

A = Cr2 + C~4 = (C+, C+) + (C_, C_), 

B = 2C34 M34 +2C12 M12 = 2«C+,M+} + (C_,M_}), 

D = Mr3 + M{4 + Mi3 + M{2 + M~ + 2C12f 12 + 2C34f 34 

= (M+,M+) + (M_,M_) +2«C+,f+} + (C_,f _}), 

E = 2f12M12 + 2f13M13 + 2f14M14 + 2f23M23 + 2f24M24 + 2f34M34 

= 2«f +,M+) + (f _,M_}), 

F = ri2 + fi3 + fi4 + f~3 + f~4 + f~ = (f +, f +) + (f _, f _), 

C = C12C34 = (C+,C_), 

H = C34M12 + C12M34 = (C+, M_) + (C_, M+), 
1= C34f 12 + f 34C12 + M12M34 + M23M14 - M13M24 

= (C+, f _) + (C_, f +) + (M+, M_), 

J = M34f12 + M12f34 + M14f23 + M23fl4 - f13 M24 - f 24 M13 

= (M+,f _) + (M_,f +), 
(13) K = f34f12 + f23f14 - f13f24 = (f +,f _). 

are integrals of motion of the system (10), (11). We used two vectors M+,M_ E R3 
which correspond to Mij E 80(4) according to 

( 

0 -M! M~ 
M3 0 -M.~ 

(M+,M_) ~ -M~ M1 0 

M!.. M! M: 

-M!..) -M:: 
-M: 

o 
Here M~ are the j-th coordinates of the vector M+. The system (10), (11) is 
Hamiltonian with the Hamiltonian function 

1 
H = 2" (M130 13 + Ml40 14 + M230 23 + M12 0 12 + M34( 34) + X12f 12 + X34f34 

The algebra so(4) x 80(4) is 12 dimensional. The general orbits of the coadjoint 
action are 8 dimensional. According to [59], the Casimir functions are coefficients 
of )..0,)..,)..4 in the polynomials [detL()..)p/2 and -~Tr(L()..))2. 

Since 

[detL()..)]1/2 = C)..4 + H)..3 + [)..2 + J).. + K, -~ Tr(L()..))2 = AA4 + E)" + F, 
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the Casimir functions are J, K, E, F. Nontrivial integrals of motion are B, D, H, I. 
They are in involution. Nontrivial integrals of motion are B, D, H, I are indepen­
dent in the case X12 f. ±X34. When IX121 = IX34I, then 2H = B or 2H = -B and 
there are only 3 independent integrals in involution. So we have 

Proposition 9. [22] For IX121 f. IX34/, the system (10), (11) is completely inte­
gmble in the Liouville sense. 

There are two families of integrable Euler-Poisson equations introduced by Ra.tiu 
in [59]. The genemlized symmetric case is defined by the conditions 

h = '" = In, X arbitrary; 

and the generalized Lagmnge case which is defined by 

11 = 12 = a, 13 = ... = In = b, Xij = 0 if (i,j) f. {(1,2), (2, I)}. 

The system (10), (11) does not fall in any of those families and together with them 
it makes the complete list of systems with the L operator of the form 

L(>.) = >.2C + >'M + r. 
Proposition 10. [22] If X12 f. 0, then the Euler-Poisson equations (10) could be 
written in the form (12) (with arbitrary C) if and only if the equations (10) describe 
the generalized symmetric case, the generalized Lagmnge case or the Lagmnge bitop, 
including the case X12 = ±X34' 

One can compare this with [63, Theorem 15, ch. 53]. The proofs of the Propo­
sitions 8-10 can be found in [22]. 

The L(>.) matrix is a quadratic polynomial in the spectral parameter>' with 
matrix coefficients. The general theories describing the isospectral deformations 
for polynomials with matrix coefficients were developed by Dubrovin [31,32] in the 
middle of 70's and by Adler, van Moerbeke [1] few years later. Dubrovin's approach 
was based on the Baker-Akhiezer function. Both approaches were applied in rigid 
body problems (see [51, 1] respectively). 

But, as it was shown in [23], non of these two theories can be directly applied in 
cases like this. Necessary modifications were suggested in [23], where the procedure 
of algebro-geometric integration was presented. It is based on some nontrivial 
facts from the theory of Prym varieties, such as the Mumford relation on theta 
divisors of unramified double coverings and the Mumford-Dalalyan theory (see 
[23, 55, 56, 13, 61, 62]). 

Here we are going to follow closely the procedure from [23], with necessary 
changes, calculations and comments. As usual, we start with the spectral curve 
r : det(L(>.) - J.t. 1) = O. So, we have 

r : J.t4 + J.t2(A~2 + A~4 + 413313;' + 413413;) + [A12A34 + 2i(f3;'f34 - 13313;)]2 = O. 

There is an involution (1 : (>',J.t) -. (>., -J.t) on the curve r, which corresponds to 
the skew-symmetry of the matrix L(>'). Denote the factor-curve by r 1 = r /(1. 

Lemma 1. The curve r 1 is a smooth hyperelliptic curve of the genus g(r1) = 3. 
The arithmetic genus of the curve r is ga(r) = 9. 
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Proof. The curve: r1 : 1.1.2 + P()..)u + [Q()..)]2 = 0, is hyperelliptic, and its equation 
in the canonical forme is u~ = [P(>.)j2 /4 - [Q(>.)] 2 , where 1.1.1 = 1.1. + P(>.)/2. Since 
[P()..)j2 /4 - [Q()..)j2 is a polynomial of the degree 8, the genus of the curve r 1 is 
g(rl ) = 3. The curve r is a double covering of r ll and the ramification divisor is 
of the degree 8. According to the Riemann-Hurwitz formula, the arithmetic genus 
of r is ga(r) = 9. 

Lemma 2. The spectral curve r has lour ordinary double points Si, i = 1, ... ,4. 
The genus 01 its normalization f is five. 

Lemma 3. The singular points Si 01 the curve r are fixed points 01 the involution 
Cf. The involution Cf exchanges the two branches 01 r at Si. 

Together with the curve r 1, one can consider curves Cl and C2 defined by the 
equations 

Cl : v 2 = P(>.)/2 + Q(>.), C2 : v2 = P()")/2 - Q()..). 
Since the curve r 1 is hyperelliptic, in a study of the Prym variety IT the Mumford 

-Dalalyan theory can be applied (see [28, 24, IOD. Thus, using the previous Lemma, 
we come to 

Theorem 7. a) The Prymian IT is isomorphic to the product 01 the curves E i : 

IT = Jac(Cl ) x Jac(C2)' 

b) The curve f is the desingularization 01 r 1 x p1 C2 and Cl x p1 r l' 
c) The canonical polarization divisor B 01 IT satisfies 

B = El X 92 + 9 1 X ~, 

where Si is the theta-divisor 01 E i • 

4.1. Equally splitting double hyperelliptic coverings. According to the Mumford 
-Dalalyan theory (see [56, 13, 61]), double unramified coverings over a hyperelliptic 
curve y2 = P29+2(X) of genus 9 are in the correspondence with the divisions of 
the set of the zeroes of the polynomial P2g+2 on two disjoint nonempty subsets 
with even number of elements. We will consider those coverings which correspond 
to the divisions on subsets with equal number 01 elements and we can call them 
equallysplitting, since the Prym variety splits then as a sum of two varieties of equal 
dimension. 

Now, let us consider with the fixed operator A from (12) the whole hierarchy of 
systems defined by the Lax equations 

t<:) = [L<:),A], L<:)()") = )..NB+>.N-1Ml + ... +MN. 

So L<:) (>.) is a polynomial in ).. of degree N :2: 2, and the matrix B is proportional 
to the matrix x: B = dX. 

Generalizing the situation from the subection above, we see that the spectral 
curve r N is a singular curve of the form 

PN(>', J.l.) = J.l.4 + PN(>')J.l.2 + [QN()..)]2 = 0, 
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where the polynomials PN,QN have degree degPN = degQN = 2N. So, its 
normalization is a double covering over the hyperelliptic curve 

of genus gN = 2N - 1. This covering corresponds to the division of the set of 
zeroes on subsets of zeroes of the polynomials PN /2 - Q N and PN /2 + Q N. This 
is an equallysplitting covering under the assumption IX121 i= IX341 we fixed at the 
beginning. It is easy to see that all equallysplitting coverings can be realized in 
such a way. So we have 

Theorem 8. The Lagrange bitop hierarchy realizes all equallysplitting coverings 
over the hyperelliptic curves of odd genus. 

5. The Poncelet theorem and Cayley's type conditions 

The following integrable mechanical system is well known: motion of a free 
particle within an ellipsoid in the Euclidean space of any dimension d. On the 
boundary, the particle obeys the billiard law. Integrability of the system is related 
to classical geometrical properties of elliptical billiards: the Chasles, Poncelet and 
Cayley theorems. According to the Chasles theorem [5] every line in this space is 
tangent to d-1 quadrics confocal to the outer ellipsoid. Even more, all segments of 
the particle's trajectory are tangent to the same d-1 quadrics [5, 53]. The Poncelet 
theorem [58, 6, 47, 12, 11] put some light on closed billiard trajectories: there exists 
a closed trajectory with d - 1 given confocal caustics if and only if infinitely many 
such trajectories exist, and all of them have the same period. Since the periodicity 
of a billiard trajectory depends only on its caustic surfaces, it is a natural question 
to find an analytical connection between them and corresponding period. 

Cayley found [10J an analytical condition for caustic conics in the Euclidean 
plane case. Algebra-geometric proof of Cayley's theorem from Griffiths and Harris 
paper [41] is going to be presented now. 

Given two ellipses C(x) = 0 and D(x) = 0 in the plane. From a given point a of 
the first ellipse, there exist two tangents t1, t2 on the second conic. These tangents 
intersect the first one, beside the point a, also at the points b1 , ~ respectively. The 
Chasles correspondence relates the points b1 and ~ to the point a. 

Theorem 9 (Poncelet). Given a polygon inscribed in one of the conics and sub­
scribed around the another. Then there exist infinitely many such polygons; every 
point of the first ellipse is a vertex of one of them. ALL those polygons have the 
same number of edges. 

Next question is to find an analytical condition to determine weather for two 
given conics there exist n-tangle inscribed in one of them and subscribed around 
the another one. Such a condition was established by Cayley. 

Theorem 10 (Cayley). There exist an n-tangle inscribed in D and subscribed 
around C if and only if 
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Cp+1 CP+2 C2p- 1 Cp+1 Cp+2 C2p 
where in the first case n = 2p, and n = 2p + 1 in the second. The matrix elements 
are determined from the development: ..;c + )"D = A + B)" + C2 ),.2 + C3),.3 + .... 

A mechanical interpretation of these theorems will be done in the next Section. 
There are several proofs of these theorems. All of them are based on the theory 

of elliptic curves and functions. 
Let C and D be two conics in cp2

, intersecting at four points XO,X1,X2,X3. The 
dual conic D' consists of tangents on D. Let us consider a configuration 

E = {(x, e) I x E e} c C x D'. 

Then, E is a Riemann surface with two involutions i(x,e) = (x',e), i'(x',e) = 
. (x', 0. Their composition j = i' 0 i is given by j(x, e) = (x', e'). 

Thus, the Poncelet construction, starting with p = (x, e) gives a polygon with n 
edges if and only if jn (P) = p. 

A mapping E -+ <C : (x, e) 1--4 x is two-sheeted covering of a Riemann sphere 
a 1, with four ramification points XO,X1,X2,X3. Applying the Hurvitz formula, we 
get X(E) = 2X(P1) - 4 = 0, i.e., E is an elliptic curve. 

One can chose (xo,eo) as neutral element of the group of the elliptic curve E, 
and denote p = (xJ) = j(xo, eo). 

To prove the Poncelet theorem, one has to show that: 
the condition jn(p) = p does not depend on choice of the point p. 
It follows from the next theorem. 

Theorem 11. The Poncelet construction with arbitrary initial condition q = (x, e) 
leads to a closed n-tangle if and only if np = 0 on the elliptic curve E. 

Suppose a pencil of conics containing the points XO,X1,X2,X3 is done by Dt : 

tC(x) + D(x) = o. The determinant det(tC + D) is a polynomial of third degree in 
t, with roots t1, t2, t3 different from zero. For t =1= ti, we construct a tangent on Dt 
which contains Xo. Let x(t) be the second intersecting point of this tangent with 
the conic C. The values t = t. are mapped to Xi, and t = 00 to Xo, since Doo = C. 
In this way, we have proved the following 

Proposition 11. The elliptic curve E is birationally equivalent to the Riemann 
sur/ace of an algebraic function y'det(tC + D) with the origin corresponding to the 
point t = 00 and with the point p = (x, e) corresponding to one of two points over 
t= O. 

Now, the Cayley condition can be derived from the previous results, by using 
the following 

Proposition 12. Given an elliptic curve E: y2 = (x-a)(x-b)(x-c), witha,b,c 
mutually different, not equal to zero. Suppose the point corresponding to x = 00 is 



ALGEBRO-GEOMETRIC INTEGRATION IN MECHANICS 141 

chosen to be neutral on E and suppose p is one of two points which correspond to 
x = O. Then, p is of a finite order n if and only if . 

C3 C4 Cm+! C2 C3 Cm+! 

C4 C5 Cm+2 = 0, C3 C4 Cm+2 = 0, 

Cm+! Cm+2 C2m- 1 Cm+! Cm+2 C2m 

for n = 2m in the first, and for n = 2m + 1 in the second case, where matrix 
elements are defined by 

..j(x - a) (x - b)(x - c) = A+ Bx+ C2x2 + C3x3 + .... 
The generalization of Cayley's theorem for arbitrary finite dimension is estab­

lished by Dragovic and Radnovic [27, 28, 29, 30}. This generalization was done in 
[27, 28} by use of the Veselov-Moser discrete quadratic L - A pair for the classical 
Heisenberg magnetic model [54}. 

The integrability of elliptical billiard systems in the Lobachevsky space was 
proved by Veselov in [64}. There, Veselov used discrete linear L - A pair, which is 
quite different from the one used in the Euclidean case. 

6. Basic notions on billiard systems 

Let (Q,g) be ad-dimensional Riemannian manifold and let D C Q be a domain 
with a smooth boundary r. Let 7r : T*Q -+ Q be a natural projection and let g-1 
be the contravariant metric on the cotangent bundle, in coordinates 

/p/ = ..jg-1(p,p) = V9ijPiPj' pE T;Q. 

Consider the reflection mapping r : 7r-1r -+ 7r-1r, p_ ....... p+, which associates 
the covector p+ E T;Q, x E r to a covector p_ E T;Q such that the following 
conditions hold: 

/p+/ = lp-I, p+ - p- 1. r. 
A billiard in D is a dynamical system with the phase space M = T* D whose 
trajectories are geodesics given by the Hamiltonian equations 

. 8H . 8H H(P) 1 -1(p ) 
P = - 8x' x = 8p' ,x = "2g., ,p, 

reflected at points x E r according to the billiard law: r(p_) = p+. Here p_ and 
p+ denote the moment a before and after the reflection. If some potential force 
field V(x) is added than the system is described with the same reflection law and 
Hamiltonian equations with the Hamiltonian H(p,x) = tg;1(p,p) + Vex). 

A function f : T*Q -+ lR is an integral of the billiard system if it commutes with 
the Hamiltonian ({f,H} = 0) and does not change under the reflection (f(x,p) = 
f(x, r(p», x Er). The billiard is completely integrable in the sense of BirkhoJJ if 
it has d integrals polynomial in the momenta, which are in involution, and almost 
everywhere independent (see [47)). 
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The classical integrable examples, with smooth boundary, are billiards inside 
ellipsoids on the Euclidean and hyperbolic spaces and spheres, with integrals qua­
dratic in the velocities [47]. These systems can be also considered as discrete 
integrable systems [54]. The explicit integrations in terms of theta-functions are 
performed by Veselov, Moser and Fedorov (see [54], [36]). 

7. Periodical trajectories of elliptical billiards in IRd 

In this section, first, we are going to list the main steps of algebro-geometric 
integration of the elliptic billiard, following [54]. Then, the connection between 
periodic billiard trajectories and points of finite order on the corresponding hyper­
elliptic curve will be established and the Cayley-type conditions will be derived, as 
they were obtained in [27, 28]. 

7.1. XYZ Model and lsospectral Curves. Following [54], the billiard system will 
be considered as a system with the discrete time. Using its integration procedure, 
the connection between periodic billiard trajectories and points of finite order on 
the corresponding hyperelliptic curve will be established. 

Elliptical Billiard as a Mechanical System with the Discrete Time. Let the 
ellipsoid in IRd be given by (Ax, x) = 1. We can assume that A is a diagonal matrix, 
with different eigenvalues. The billiard motion within the ellipsoid is determined 
by the following equations: 

where 

Xk+1 - Xk = J..!kYk+1 

Yk+1 - Yk = IIk Axk, 

Here Xk is a sequence of points of billiard bounces, while Yk = \ Xk - Xk- 1\ are the 
Xk - Xk-1 

momenta. 

Connection between Billiard and XYZ Model. To the billiard system with 
the discrete time, Heisenberg XYZ model can be joined, in the way described by 
Veselov and Maser in [54] and which is going to be presented here. 

Consider the mapping cp : (x, y) ...... (x', Y') given by 

x~ = JYk+1 = J(Yk + IIkAxk), y~ = -r1Xk, J = A -!. 
Notice that the dynamics of cp contains the billiard dynamics: 

x~ = JY~+l = -Xk+1, y~ = -J-1x~ = -Yk+1. 

and define the sequence (Xk, Yk): 

(xo, YO) := (xo, Yo), (Xk+1, Yk+1) := cp(Xk, Yk), 

which obeys the following relations: 

Xk+1 = JYk + IIk J - 1xk, Yk+1 = -J-1xk, 
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where the parameter Ilk is such that IYkl = 1, (.AXk,X.,) = 1. This can be rewritten 
in the following way: 

Xk+1 + Xk-1 = IIkJ-1Xk. 
Now, for the sequence qk := J-1 Xk , we have: 

qk+1 + qk-1 = IIk J - 1qk, Iqkl = 1. 

These equations represent the equations of the discrete Heisenberg XYZ system. 

Theorem 12. [54J Let (Xk' Yk) be the sequence connected with elliptical billiard 
in the described way. Then qk = J-1 Xk is a solution of the discrete Heisenberg 
system. 

Conversely, if qk is a solution to the Heisenberg system, then the sequence Xk = 
( -1) k J q2k is a trajectory of the discrete billiard within an ellipsoid. 

Integration of the Discrete Heisenberg XYZ System. Usual scheme of 
algebro-geometric integration contains the following [54J. First, the sequence Lk(>') 
of matrix polynomials has to be determined, together with a factorization 

L(>.) = B(>')C(>') H C(>.)B(>.) = B'(>')C'(>') = L'(>') , 

such that the dynamics L H L' corresponds to the dynamics of the system qk. 
For each problem, finding this sequence of matrices requires a separate search and 
a mathematician with the excellent intuition. All matrices Lk are mutually sim­
ilar, and they determine the same isospectral curve r : det(L(>.) - p.I) = O. The 
factorization Lk = BkCk gives splitting of spectrum of Lk. Denote by.,pk the corre­
sponding eigenvectors. Consider these vectors as meromorphic functions on r and 
denote their pole divisors by Dk' 

The sequence of divisors is linear on the Jacobian of the isospectral curve, and 
this enables us to find, conversely, eigenfunctions .,pk, then matrices Lk, and, finally, 
the sequence (qk). 

Now, integration of the discrete XYZ system by this method will be shortly 
presented. Details of the procedure can be found in [54J. 

The equations of discrete XYZ model are equivalent to the isospectral deforma­
tion: 

where 

Lk(>') = J2 + >'qk-1 1\ Jqk - >.2qk_1 ® qk-lJ Ak(>') = J - >'qk ® qk-1. 

The equation of the isospectral curve r : det(L(>.) - p.I) = 0 can be written in the 
following form: 

d-l d 

(14) 112 = IT (p. - P.i) IT (p. - Jj), 
i=1 ;=1 

where 11 = >. rrt,:; (p. - P.i) and P.1, ... ,P.d-1 are zeroes of the function: 
d 

"" ( J) _ " Fi(X, y) 
'l'1J X, Y - L.J _ J~ , 

i=1 P. • 
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2 ,,(XA Jy)l; 
Pi = Xi + L.... J~ _ p' X = qk-b Y = qk· 

#i • 3 

It can be proved that 1-'1, ... , I-'d-1 are parameters of the caustics corresponding to 
the billiard trajectory [53]. Another way for obtaining the same conclusion is to 
calculate them directly by taking the first segment of the billiard trajectory to be 
parallel to a coordinate axe. 

If eigenvectors ,pk of matrices Lk(>') are known, it is possible to determine 
uniquely members of the sequence qk. Let Dk be the divisor of poles of function 
"pk on curve f. Then [54]: 

Dk+l = Dk + Poo - Po, 

where P 00 is the point corresponding to the value I-' = 00 and Po to I-' = 0, >. = 
(qk, J-1qk+d- 1. 

7.2. Characterization of Periodical Billiard Trajectories. In the next lemmae, 
we establish a connection between periodic billiard sequences qk and periodic divi­
sors Dk. 

Lemma 4. [27] Sequence of divisors Dk is n-periodic if and only if the sequence 
qk is also periodic with the period n or qk+n = -qk for all k. 

Lemma 5. [27] The billiard is, up to the central symmetry, periodic with the period 
n if and only if the divisor sequence Dk joined to the corresponding Heisenberg XYZ 
system is also periodic, with the period 2n. 

Applying the previous lemma, we obtain the main statement of this section: 

Theorem 13. [28] A condition on a billiard trajectory inside ellipsoid Qo in Rd, 
with non-degenerate caustics QP1" .. , QPd-l' to be periodic, up to the central sym­
metry, with the period n 2: d is: 

( 

Bn+l Bn . . . Bd+l) 

rank .~~.~~ .. . ~n.~~ ........... . ~.d~.2. . < n - d + 1, 

B 2n- 1 B 2n- 2 ... B n+d-1 

Cases of Singular Isospectral Curve. When all ab·.·, ad, I-'b·.· ,l-'d-1 are 
mutually different, then the isospectral curve has no singularities in the affine part. 
However, singularities appear in the following three cases and their combinations: 

(i) ai = 1-'; for some i,j. The isospectral curve (14) decomposes into a rational and 
a hyperelliptic curve. Geometrically, this means that the caustic corresponding 
to I-'i degenerates into the hyperplane Xi = o. The billiard trajectory can be 
asymptotically tending to that hyperplane (and therefore cannot be periodic), or 
completely placed in this hyperplane. Therefore, closed trajectories appear when 
they are placed in a coordinate hyperplane. Such a motion can be discussed like in 
the case of dimension d - 1. 
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(ii) ai = aj for some i =1= j. The boundary Qo is symmetric. 

(iii) I-'i = I-'j for some i =1= j. The billiard trajectory is placed on the corresponding 
confocal quadric hyper-surface. 

In the cases (ii) and (iii) the isospectral curve r is a hyperelliptic curve with 
singularities. In spite of their different geometrical nature, they both need the 
same analysis of the condition 2nPo rv 2nE for the singular curve (14). 

Aa a consequence of the Theorem 13, it can be applied not only for the case 
of the regular isospectral curve, but in the cases (ii) and (iii), too. Therefore, the 
following interesting property holds. 

Theorem 14. If the billiard trajectory within an ellipsoid in d-dimensional Eu.cle­
dean space is periodic, u.p to the central symmetry, with the period n < d, then it 
is placed in one of the n-dimensional planes of symmetry of the ellipsoid. 

Proof. This follows immediately from Theorem 13 and the fact that the section 
of a confocal family of quadrics with a coordinate hyperplane is again a confocal 
family. 0 

This property can be seen easily for d = 3. 

Example 6. Consider the billiard motion in an ellipsoid in the 3-dimensional space, 
with 1-'1 = /1-2, when the segments of the trajectory are placed on generatrices of 
the corresponding one-folded hyperboloid, confocal to the ellipsoid. If there existed 
a periodic trajectory with period n = d = 3, the three bounces would have been 
co planar, and the intersection of that plane and the quadric would have consisted 
of three lines, which is impossible. It is obvious that any periodic trajectory with 
period n = 2 is placed along one of the axes of the ellipsoid. So, there is no periodic 
trajectories contained in a confocal quadric surface, with period less or equal to 3. 

8. Separable perturbations of integrable billiards 

Appell introduced four families of hypergeometric functions of two variables in 
1880's. Soon, he applied them in a solution of the Tisserand problem in the celestial 
mechanics. The Appell functions have several other applications, for example in 
the theory of algebraic equations, algebraic surfaces... The aim of this paper is 
to point out the relationship between the Appell functions F4 and another subject 
from classical mechanics-separability of variables in the Hamilton-Jacobi equations. 

The equation 

(15) ),V",y + 3 (yV", - xVy) + (y2 - x2)v.,y + xy (V",,,, - Vyy ) = 0, 

appeared in Kozlov's paper [44] as a condition on the function V = V(x,y) to be 
an integrable perturbation of certain type for billiard systems inside an ellipse 

x2 y2 
(16) A + B = 1, >. = A-B. 
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This equation is a special case of the Bertrand-Darboux equation [7, 14,66] 

(Vyy - V",,,,)(-2axy - b'y - bx +cd + 2 V", y(ay2 - ax2 + by - b'x+c- c') 

+ V",(6ay + 3b) + Vy ( -6ax - 3b') = 0. 

It corresponds to the choice a = -1/2, b = b' = Cl = 0, C - d = ->./2. The 
Bertrand-Darboux equation represents the necessary and sufficient condition for a 
natural mechanical system with two degrees of freedom 

1 
H = 2(P~ + p~) + V(x,y) 

to be separable in elliptical coordinates or some of their degenerations. 
Solutions of the equation (15) in the form of the Laurent polynomials in x, y were 

described in [16, 17]. The starting observation of this paper, that such solutions 
are simply related to the well-known hypergeometric functions of the Appell type 
is presented. Such a relation automatically gives a wider class of solutions of the 
equation (15)- new potentials are obtained for non-integer parameters. But what 
is more important, it shows the existence of a connection between separability of 
classical systems on one hand, and the theory of hypergeometric functions on the 
other one. Basic references for the AppeU functions are [2, 3, 65]. Further, in 
section 3, similar formulae for potential perturbations for the Jacobi problem for 
geodesics on an ellipsoid from [16]. 

In the case of more than two degrees of freedom, the natural generalization for 
the equation (15) is the system: 

The system 

(a. - ar )-1 (x~v..s - XiXr Vis) = (ai - as)-l (x~v..s - XiXs Vir) i f. r f. s f. ij 
(ai - ~ )-lXiXr (Vii - v..r) - L (ai - aj )-lXiXj V;r 

j#i,r 

+ Vir [~ (ai - aj )-lx~ + (a,. - ai)-l(x; - X;)] 
3#·,r 

+ Vir + 3(ai - ar )-1 (Xr Vi - Xi v..) = 0, i f. r, 

where Vi = aV/aXi, of (n - 1)(;) equations was formulated in [52] for arbitrary 
number of degrees of freedom n. In [52] the generalization of the Bertrand-Darboux 
theorem is proved. According to that theorem, the solutions of the system are 
potentials separable in generalized elliptic coordinates. 

Some deeper explanation of the connection between the separability in elliptic 
coordinates and the Appell hypergeometric functions is not known yet. 

8.1. Basic notations. The function F4 is one of the four hypergeometric functions 
in two variables introduced by Appell [2, 31 and defined as a series: 

( ) 
~ (a)m+n(b)m+n xm yn 

F4 a,b,c,djx,y = ~ () (d) -'I' 
Cm n m. n. 
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where (a)n is the standard Pochha.mmer symbol: 

r(a+n) 
(a)n = rea) = a(a + 1) ... (a + n - 1), (a)o = 1, 

(For example rn! = (l)m.) 

147 

The series F4 is convergent for v'X+../Y ~ 1. The functions F4 can be analytically 
continued to the solutions of the equations: 

~F 2~F ~F & 
x(l- x) Ox2 - Y {)y2 - 2xy Ox{)y + [e - (a + b + l)x] Ox 

OF 
-(a+b+l)Y {)y -abF=O, 

y(l- y) 02F _ x 202F _ 2xy ~F + [d _ (a +b+ l)y] OF 
Oy2 Ox2 Ox{)y Oy 

OF 
- (a + b + l)x Ox - abF = 0, 

8.2. Billiard inside an ellipse and its separable perturbations. Following [44, 
15,16] we will start with a billiard system which describes a particle moving freely 
within an ellipse (2). At the boundary we assume elastic reflections with equal 
impact and reflection angles. This system is completely integrable and it has an 
additional integral 

x2 ii (xy - yx)2 
Kl = A + B - AB . 

We are interested in a potential perturbations V = Vex, y) such that the perturbed 
system has an integral Kl of the form Kl = K1 + k1(x, y), where kl = k1(x, y) 
depends only on coordinates. This specific condition leads to the equation (15) on 
V (see [44]). 

In [15, 16] the Laurent polynomial solutions of the equation (15) were given. 
The basic set of solutions consists of the functions 

k-2 k-i-l 
Vk = L(-I)i L Uki8(X,y,>.) + y-2k, kEN, 

i=O 8=1 
k-2k-i-l 

Wk=L L(-lYUki8(y,X,>.)+x-2k , kEN, 
i=O 8=1 

where 

u (s + i-I) [1 - (k - i)][2 - (k - i)] . .. [s - (k - i)] 28 -2k+2i 
kis = i >.s+iS! x Y . 

Now, we are going to rewrite the above formulae: 

k-2 k-i-l 
Vk=L(-l)i L Ukis(X,y,>.)+y-2k, kEN 

i=O 8=1 
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k-2 i k-i-1 . r(S+ i)r(s + i - k + 1) x 2$y2(i-k) -2k 

= t;(-I) ~ rei + l)r(s)r(i - k+ l)r(s + 1) ,\8+i + y 

= ~ (1- k)"" 1 S+i-1 2 - $H-1 X -y + 1 
( 

k-2k-i-1() (k) 2s( 2)i ) 

y2k to ~ i!(l)s_lS!(l- k)i >.$ >.i 

( 
2 k-2 k-i-2 () ( k) (2)$ ( 2)i ) 

_ ~ (1- k)=-"" 1 sH 2 - sH x ~ + 1 
- y2k >. ~ ~ (2) (1 - k)· s!>.s i!>.i 

.=0 S=O 8 • 

= yk~k «1- k)xF4(1; 2 - kj 2, 1- k, X, -y) + 1), 

where x = x 2 / >., y = _y2 / >., and F4 is the Appell function. We have just obtained 
a simple formula which expresses the potentials Vk , from [16], for kEN through 
the Appell functions. (The scalar coefficient >. -k is not essential and we will not 
write it any more). We can use this formula to spread the family of solutions of the 
equation (15) out of the set of the Laurent polynomials. We obtain new solutions 
of the equation (15) if we let the parameter k in the last formula to be arbitrary, 
not only a natural number. 

Let V(x,y) = L:anmxnym. Then the equation (15) reduces to 

>'nman,m = (n + m) (man-2,m - nan,m-2). 

If one of the indices, for example the first one, belongs to Z, then V does not have 
essential singularities. Put aO,-2,. = 1, where, is not necessary an integer. 

Let us define 

and denote 

(17) V,. = y-,. «1 - ,)xF4(1, 2 -"2,1-,, x, y) + 1). 

Then we have 

Theorem 15. Every /unction V,. given with (17) and, E C is a solu.tion 0/ the 
equation (15)). 

The theorem gives new potentials for noninteger ,. 
Mechanical interpretation. With, E R- and the coefficient multiplying V-y 

positive, we have potential barrier along x-axis. We can consider billiard motion 
in upper half plane. Then we can assume that a cut is done along negative part of 
y-axis, in order to get unique-valued real function as a potential. 

8.3. The Jacobi problem for geodesics on an ellipsoid. The Jacobi problem for 
the geodesics on an ellipsoid 

x 2 y2 z2 
-+-+-=1 
A B C 
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has an additional integral 

( 
X2 y2 Z2 ) (i:2 ii %2) 

K1 = A2 + B2 + C2 A + B + C . 

Potential perturbations V = Vex, y, z) such that perturbed systems have integrals 
of the form K1 ::: Kl + k(x, y, z) satisfy the following system (see [16]) 

( 
x2 y2 z2 ) A _ B y V., x Vy ( x 2 y2 ) 
A2 + B2 + C2 V.,y AB - 3 B2 if + 3 A2 B + A3 - B3 v.,y 

xy (Vyy Vu) zx V zy V - 0 + AB A-If + CA2 zy- CB2 z.,-

( 
x2 y2 z2 ) B - C z Vy y Vz ( y2 z2 ) 
A2 + B2 + C2 Vyz BC - 3 C2 B + 3 B2 C + B3 - C3 VyZ 

(18) 
yz (Vzz Vyy ) xy xz_ + BC If - c + AB2 Vu - AC2 V.,y - 0 

( 
x2 y2 Z2 ) C - A x Vz z v., ( Z2 x 2 ) 
A2 + B2 + C2 Vz., AC - 3 A2 C + 3 C2 if + C3 - A3 Vz., 

XZ (Vu Vu) zy yx 
+ AC C - if + BC2 V.,y - BA2 VyZ = 0 

The last system (18) replaces the equation (15) in this problem. Solutions of the 
system in the Laurent polynomial form were found in [16]. We can transform them 
in the following way. 

Vlo(x, y, z) = 2: (-IY (s +: -1) (x2)-Io+k(y2Y(z2io-(Hs}-l 
O:5k:5s,k+c:5lo 

x cs+k(C - A)B(C - B)k2Hs( -10 + 1) ... (-10 + (k + s)) (z2)lo-(Hs}-1 
BkA8(B - A)k+s2s2ks!(-10 + 1) ... (-10 + k) 

_ " (s + k - 1)!( -10 + 1)(-10 + 2)S+k_1(z2)lo [x2C(A - C)]8 [y2 C (C - B)]k 
- L....J k!(s - 1)!s!( -10 + l)k(x2)lo z2(B - A)A z2(B - A)B 

= (-10 + 1) (z2) lo " (l)s+k-l (-10 + 2) .. +k-1 xSyk 
x 2 L (2)s-1(-10 + l)k 

= (-10 +1) (;:) lo F4(1;-10 +2;2,-10 + l,x,y), 

where 
x2C(A - C) • y2C(C - B) • 
z2(B - A)A = x, z2(B - A)B = y 

In the above formulae 10 is an integer. We have the straightforward generalization: 

Theorem 16. For every, E C the function 

V-y = (-, + 1) (;:) -y F4(1; -, + 2;2,-,+ 1,x,y), 

is a solution of the system (18). 
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9. Algebro-geometric approach to 
the quantum Yang-Baxter equation 

One of the central objects in mathematical physics in last 25 years is the R 
matrix, or the solution R(t, h) of the quantum Yang-Baxter equation 

R12(t1 - t2, h)R13(t1' h)R'23(t2' h) = R23(t2' h)(R13(tb h)R12(t1 - t2, h). 

Here t is so called spectral parameter and h is Planck constant. If the h dependence 
satisfies the quasi-classical property R = 1+ hr + O(h2) the classical r-matrix r 
satisfies the classical Yang-Baxter equation. Classification of the solutions of the 
classical Yang-Baxter equation was done by Belavin and Drinfeld in 1982. The 
problem of classification of the quantum R matrices is still open. Some results 
have been obtained in the basic 4 x 4 case (see [46, 18, 19,20]). 

Krichever In [46] applied the idea of "finite-gap" integration to the theory of the 
Yang equation 

R12 i 13 L'23 = L'23 L13 R12. 

The principal objects that are considered are 2n x 2n matrices L, understood as 
2 x 2 matrices whose elements are n x n matrices; L = l;p is considered as a 
linear operator in the tensor product en ® e2 • The theorem from [46] uniquely 
characterizes them by the following spectral data: 

(1) the vacuum vectors, i.e., vectors of the form X®U, which L maps to vectors 
of the same form Y ® V, where X, Y E en and U, V E e2; 

(2) the vacuum curve r : P(u, v) = det L = 0, where L} = Vf3 L;~Ua, (Vf3) = 
(1, -v), Xn = Yn = U2 = V2 = 1; UI = U, VI = v; 

(3) the divisors of the vector-valued functions X(u, v), Y(u, v), U(u, v), V(u, v), 
which are meromorphic on the curve r. But the Krichever method used in 
[46, 18, 19, 20, 21] works with even-dimensional matrices. Here we want to 
discus the case of odd-dimensional matrices considering the case of 9 x 9 
matrices. We introduce the notion of vacuum locus as an analogue of the 
vacuum curve. We also show that a vacuum locus could be a finite set for 
some of the solutions of the quantum Yang-Baxter equation. 

Now, the matrices L = l;;3 are considered as a linear operator in the tensor 
product e3 ® e3 . The same is for matrices R. As before, we want to parametrize 
the vacuum vectors, i.e., vectors of the form X ® U, which L maps to vectors of 
the same form Y ® V, where X, Y, U, V E e3 . Assume the notation: 

ut = (uI, u2,1), V t = (VI,V2' 1), VI = (l,O,-VI), V2 = (O,1,-v2)' 

The vacuum locus is the set which parametrizes the vacuum vectors. 
Lemma-Definition The affine part of the vacuum locus is the set of (lI.b tL2, Vb V2) 
E e4 such that 

P(UbtL2,VI,V2) := detL(A) = ° 
identically in A, where L~(A) = (Vi + Ali2)f3 L~pUa. 

The lemma follows from the fact that if two regular matrix binomials of the first 
degree are equivalent then they are strictly equivalent (see [37]). The condition 
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detL(>.) = 0 identically in >. gives four equations in C4 since detL(>.) is a polyno­
~al of.the third degree in >.. So, fo~ the general.matrix L, the set P('U1>'U2,Vl,V2) 

IS a firute subset of C4. The working hypothesIs among the specialists was that 
in a case of the solutions of the quantum Yang-Baxter equation which depend on 
spectral parameter, there should be an algebraic curve which parametrizes some of 
the vacuum vectors. However, even in the case of the solutions of the Yang-Baxter 
equation it is possible that the vacuum locus is a. finite set. This can be proved for 
the famous Izergin-Korepin 9 x 9 R-matrix (see [43]). 

Proposition 13. The 'Vacuum locus for the Izergin-Korepin R-matrix is a finite 
set. 

The structure of this set is still not clear. In order to a.pply some of the Krichever 
ideas such set should have a subset which satisfies two conditions: 

• it is closed for the composition of relations properly defined; 
• it is big enough to give a possibility to reconstruct matrices R, L, L' and 

their products. 
This could lead to the construction of the solutions of the Yang-Baxter equation 

in which spectral parameter belongs to some discrete group. 
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