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PREFACE

The aim of Zbornik radova is to foster further growth of pure and applied mathe-
matics, publishing papers which contain new ideas and scopes in the mathematics.
The papers have to be prepared in such a manner that they can inform readers
in a favourable way, introducing them in a narrower field of mathematical theories
pointing at research possibilities. It can be for the individual use or for discussions
in College or University seminars.

We are open for contacts and cooperations.

Bogoljub Stankovi¢
Editor-in-Chief
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Uniformly n-regular rings and semigroups: A survey 9

Introduction

The main aim of this paper is to give a survey of the most important structural
properties of uniformly w-regular rings and semigroups. It is well-known that there
are many similarities between certain types of semigroups and related rings. For
example, we will see in Theorem 2.1 that the regularity of a semigroup can be
characterized by means of the properties of its left and right ideals, and in the
same way, the regularity of a ring can be characterized through its ring left and
right ideals. On the other hand, there are many significant differences between
the properties of certain types of semigroups and the properties of related rings.
For example, many concepts such as the left, right and complete regularity and
other, are different in Theory of semigroups, but they coincide in Theory of rings.
One of the main goals of this paper is exactly to underline both the similarities
and differences between related types of rings and semigroups. For that purpose
many interesting results of Theory of rings or Theory of semigroups will be omitted
here if they are not similar or essentially different than the corresponding result of
another theory.

There are two central places in the paper. The first one is Theorem 5.11
which asserts that a w-regular ring is uniformly #-regular if and only if it is an
ideal extension of a nil-ring by a Clifford ring. This theorem makes possible to
represent such rings by the Everett’s sums of nil-rings and Clifford rings. This has
shown oneself to be very useful in many situations. For example, using Theorem
5.11, a lot of known results concerning uniformly 7-regular semigroups can be very
successfully applied in Theory of rings.

Another crucial result is Theorem 5.44. This theorem describes rings whose
multiplicative semigroups are nil-extensions of unions of groups and it asserts that
such rings are exactly the direct sums of nil-rings and Clifford rings. We present
numerous known methods for decomposition of semigroups into a nil-extension of a
union of groups and we show that these methods have very significant applications
in Theory of rings, in decompositions of rings into the direct sum of a nil-ring and
a Clifford ring.

The purpose of this paper is twofold. At first, we intend to present the known
results concerning uniformly m-regular semigroups and applications of these results
in Theory of rings. On the other hand, we want also to interest ring-theoretists
and semigroup-theoretists for more intensive investigations in the considered area.

The paper is divided into six sections. In the first section we introduce the
necessary notions and notations and we present the main results concerning ideal
extensions of rings and their representation by the known Everett’s sums of rings.
In Sections 2 and 3 we introduce the notions of a regular, m-regular, completely
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m-regular and periodic ring and semigroup, and of a completely Archimedean semi-
group and we describe their basic properties. Structural characterizations of com-
pletely regular semigroups and rings are given in Section 4. The main tools that
we use there, are certain decomposition methods: semilattice decompositions, in
the case of semigroups, and subdirect sum decompositions, in the case of rings.

The main part of the whole paper is Section 5. In this section we first give
structural descriptions of uniformly #-regular semigroups and rings. After that we
present various characterizations of semigroups decomposable into a nil-extension
of a union of groups, and using these results we characterize the rings decomposable
into the direct sum of a nil-ring and Clifford ring.

Finally, in Section 6 we present certain applications of the results given in the
previous section. Here we study various types of semigroup identities satisfied on
the various classes of semigroups and rings. The classes of all identities satisfied
on the classes of the semilattices of Archimedean semigroups, the nil-extensions
of unions of groups, the bands of w-regular semigroups are described. The main
result in the part about the rings satisfying certain semigroup identities is the
characterization of all rings satisfying a semigroup identity of the form z1z5 .- - z,, =
w(zy,Z2,... ,2n), where jw| > n+ 1, given in the Theorem 6.29.

1. Preliminaries

In this section we introduce necessary notions and notations.

1.1. Basic notions and notations. Throughout this paper N will denote
the set of all positive integers, N? the set of all non-negative integers, and Z will
denote the ring of integers. By Z (z,y) we will denote the ring of all polynomials
with the variables z and y and the coefficients in Z.

For a semigroup (ring) S, E(S) will denote the set of all idempotents of S, and
for A C S, VA will denote the subset of S defined by VA = {z € S|(3n e N)z" €
A}. For a ring R. MR will denote the multiplicative semigroup of E. A subset A
of a semigroup (ring) S is called completely semiprime if for z € S, x? € A implies
x € A, completely prime if for z,y € S, xy € A implies that either x € Aory € A,
left consistent if for z,y € S, Ty € A implies x € A4, right consistent if for z,y € S,
Ty € A implies y € A, and it is consistent if it is both left and right consistent.

The expression S = S° means that S is a semigroup with the zero 0. Let
S be a semigroup (ring) with the zero 0. An element a € S is called a nilpotent
element (or a nilpotent) if there exists n € N such that a™ = 0, and the smallest
number n € N having this property is called the indezx of nilpotency of a. The set
of all nilpotents of S is denoted by Nil(S), and also N5(S) = {a € S|a®> = 0}. A
semigroup (ring) whose any element is nilpotent is called a nil-semigroup (nil-ring).
Forn € N, n > 2, a semigroup (ring) S is called n-nilpotent if S® = 0, and is called
nilpotent if it is n-nilpotent, for some n € N, n > 2. A 2-nilpotent semigroup (ring)
is called a null-semigroup (null-ring).
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For a semigroup S we say that is an ideal eztension of a semigroup T by a
semigroup @ if T is an ideal of S and the factor semigroup S/T is isomorphic
to Q. An ideal extension of a semigroup S by a nil-semigroup (resp. n-nilpotent
semigroup, nilpotent semigroup, null-semigroup) is called a nil-extension (resp. n-
nilpotent extension, nilpotent extension, null-extension) T. A subsemigroup T of
a semigroup S is called a retract of S if there exists a homomorphism ¢ of S onto
T such that ayp = a, for any a € T, and then ¢ is called a retraction of S onto T.
An ideal extension S of a semigroup T is called a retractive extension of T if T is
a retract of S.

By A* we denote the free semigroup over an alphabet A and by A* we denote
the free monoid over A. Forn € N, n > 4, A, = {z1,22,... ,2,}, A3 = {z,y, 2}
and A; = {z,y}. For a word w € A", wt will denote the set w* = {w™|n € N}.
By |w] we denote the length of a word w € A* and by |z|,, we denote the number
of appearances of the letter £ € A in the word w € A*. A word v € AT is a left
(right) cut of a word w € At if w = vu (w = uv), for some u € A*, and v is a
subword of w if w = u'vu”, for some v',u"” € A*. For w € A" such that |w| > 2,
by h®(w) (3 (w)) we denote the left (right) cut of w of the length 2. By h(w)
(t(w)) we denote the first (last) letter of a word w € A%, called the head (tail)
of w, and by c(w) we denote the set of all letters which appear in w, called the
content of w [246]. An expression w(z;,...,Z,) will mean that w is a word with
c(w) = {z1,... ,xn}. fwe AT and i € N, ¢ < |w], then l;(w) (r;(w)) will denote
the left (right) cut of w of the length i, ¢;(w) will denote the i-th letter of w and
for i,7 € N, 4,5 < |w|, i < j, m](w) will denote the subword w determined by:
w = l;_y (w)ym? (w)rjyj—j(w). For n € N, II,, will denote the word z;z2 ... 2, € A}.
IfweAtandz € A, thenz || w (z || w) if w=zv (w=vz), v € AT and z ¢ c(v).

!

T

Otherwise we write z f w (z }f w).
{ T

Let n € N, w € A7 and let S be a semigroup. By the value of the word w
in S, in a valuation a = (a1,82,-..,a0,), a; € S, i € {1,2,...,n}, in notation
w(a) or w(ay,as,...,a,), we mean the element wy € S, where p : AT - S is
the homomorphism determined by =, = a;, 1 € {1,2,...,n}. Also, we then
say that for i € {1,2,...,n}, the letter z; assumes the value a; in S, in notation
z; := a;. For two words u,v € A:;, the formal expression u = v we call an identity
(or a semigroup identity) over the alphabet A,, and for a semigroup S we say
that it satisfies the identity u = v, in notation S | u = v, if up = vy, for any
homomorphism ¢ from A} into S, i.e. if v and v have the same value for any
valuation in S. The class of all semigroups satisfying the identity u = v is denoted
by [u = v], and is called the variety determined by the identity v = v. Identities
u = v and v’ = v’ over an alphabet A} are p-equivalent if u' = v' can be obtained
from u = v by some permutation of letters. It is clear that p-equivalent identities
determine the same variety.

Let ¢ be a homomorphism of a free semigroup A% into a semigroup S. For

an identity over A, which is treated as a pair of words from A*, we say that it is
a solution of the equation uyp = vy if it is contained in the kernel of . Any trivial
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identity over A, i.e. an identity of the form w = w, is clearly a solution of the
equation uyp = vy, called the trivial solution of uy = vp. All other solutions of
up = vy, if they exist, are called non-trivial solutions of uy = ve.

Let ¥ be a set of non-trivial identities over an alphabet A. i.e. a subset of
A% x AT having the empty intersection with the equality relation on A*. For a
semigroup S we say that it satisfies variabily the set T of identities, or that it
satisfies the variable identity ¥, in notation S k=, X, if for any homomorphism ¢
from AT to S, the equation uw = vy has a solution in X (clearly, such solutions
are non-trivial). The class of all semigroups which satisfy the variable identity &
is denoted by [X], and is called a variable variety.

A semigroup S is called a band (resp. left zero band, right zero band, rectangular
band, left reqular band, right regular band, semilattice) if it belongs to the variety
[ = z?%] (resp. [zy = z], [zy = y), [z = 2%, zyz = x|, [z = 2°, zyz = z2y),
[z = 22, zyz = yzz2), [z = 2%, zy = yz]). If B is a band, we say that a semigroup S
is a band B of semigroups if B is a homomorphic image of S. When B is semilattice
(resp. left zero band, right zero band, rectangular band), then we say that S is a
semilattice (resp. left zero band, right zero band, matriz) of semigroups.

In this paper we will use several semigroups given by the following presenta-
tions:

B, = (a,b|a® = b* =0, aba = a, bab = b)
As = (a,e|a® =0, ¢’ =, aea=a, cae =€)
Nm — <alam+l — am+2’ a™ 7& am+1>

L3,1 :<a7f'0'2:a3af2:f7 a2f:a2,fa:f)

3

Ci :(a,e|a2:a ,el=e, ae =a, ea:a)

3 2 _ _ _ 2
,e’ =€, ae=a, ea=a’)

Ci2=(a,ela®=a
where m € N, and Rz ; (resp. C;;) will denote the dual semigroup of L3, (resp.
C12). By L2 (resp. Ry) we denote the two-element left zero (resp. right zero)
semigroup. Let Aj(, be the free semigroup over an alphabet Ay = {z; |k € N} and
let I = {ue A}f, | (3z; € AN)|zilu > 2}. Then I is an ideal of AT\,. By Dy we
will denote the factor semigroup (A}%)/I. It is clear that Dy is isomorphic to the
semigroup

({u € ARI(u) = c(u)} U {0}, ),
where the multiplication “-” is defined by

wv fu,v#0and c{u)Ne(v) =0

U-v = ;
0 otherwise

Dy is a nil-semigroup and it is not nilpotent.

The principal twosided (resp. left, right) ideal of a semigroup (ring) S generated
by an element a € S will be denoted by (a) (resp. (a)r, (a)r). The Green’s relations
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J, L, R, H and D on a semigroup S are defined by

alb & (a)r =(b)L; aRb & (a)r = (b)r;
aJb & (a)=(0b); H=LNR, D=CLR,

where a,b € S. The division relations |, |, | and | on a semigroup S are defined by
[ t

alb & be(a)L, a
!

alb & be(a),

and the relations —, ——, — and —» on S are defined by

b, a—b & (In€N)a"|b,

T

a-5b & (3n € N) a"

|
1

a-5b o (3neN)ad|b, a—b © (GneN)a”|b,
t

for a,b € S.

If a semigroup T is a homomorphic image of a subsemigroup T’ of a semigroup
S, then we say that T divides S through T'. If the intersection of all ideals of a
semigroup S is non-empty, then it is an ideal of S called the kernel of S. With
respect to set-theoretical union and intersection, the set of all left ideals of a semi-
group S, with the empty set included, is a lattice and it is denoted by £Zd(S). By
a discrete partially ordered set we mean a partially ordered set in which any two
elements are incomparable. An element of a semigroup (ring) S is called central if
it commutes with any element of S, and the set of all central elements of S is called
the center of S. A ring without non-zero nilpotent elements is called a reduced
7Ing.

For undefined notions and notations we refer to the books {36}, [48], [105],
(106), (128], [144], [147], [153], [195], [210], [241], [243)], [245], [246], [247],
[270], [291], [292], [301] and [313].

1.2. Everett’s sums of rings. In this section we talk about the general
problem of ideal extensions of rings. This problem is formulated in the following
way: Given rings A and B, construct all ideal extensions of a ring A by a ring B,
i.e. construct all rings R having the property that A is an ideal of R and the factor
ring R/A is isomorphic to B. A solution of this problem was given by Everett in
[113]. 1942, and is referred here as the Everett’s theorem.

The original version of the Everett’s theorem can be found in the book of
Rédei [270], 1961. The version which will be given here due to Miiller and Petrich
[217], 1971. The Everett’s construction, given in such a version, is a combination
of the well-known Schreier’s construction of all extensions of a group by another,
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and the construction of all ideal extensions of a semigroup by a semigroup with
zero, due to Yoshida [348], 1965. Namely, as in the group case, one chooses a
system of representatives of the cosets of A in R, and as in the semigroup case, one
makes a bitranslation of A by any of these representatives. Moreover, because the
representatives are chosen in different cosets, two “factor systems”, one for addition
and one for mulitiplication, have to be introduced. For more information concerning
Schreier’s extensions of groups we refer to Hall [131] and Rédei [270}, 1961, and
for more information about ideal extensions of semigroups we refer to the survey
article written by Petrich [240], 1970, and the book of the same author (241}, 1973.

To present the Everett’s construction we need the notion of a translational
hull of a ring. The translational hull occurs naturally when one is concerned with a
construction of ideal extensions of semigroups, and seeing that ring extensions can
be treated as their particular case, it appears also in ring theory, with the necessary
modification that all the functions in the definition be additive.

Let R be aring. An endomorphism A (g) of the additive group of R, written on
the left (right), is a left (right) translation of R if Mzy) = (Az)y ((zy)o = z(y0)).
for all -,y € R. A left translation A and a right translation ¢ of R are linked
if z(\y) = (zo)y, for all z,y € R, and in such a case the pair (A, g) is called a
bitranslation of R. Tt is sometimes convenient to consider a bitranslation (), p) as a
bioperator denoted by a single letter, say #, which acts as A, if it is written on the
left, and as p, if it is written on the right, i.e. 7z = Az and z7 = zp, for z € R. For
any a € R, the inner left (right) translation induced by a is the mapping A, (g,) of
R into itself defined by A,z = ar (z0, = za), for z € R, and the pair 7, = (A, 04)
is called the inner bitranslation of R induced by a.

A left translation A and a right translation g of a ring R are permutable if
(Az)o = A(zp), for all x € R, and a set T of bitranslations of R is permutable if for
all (A, 0),(N,0') € T, X and ¢' are permutable.

The set A(R) (P(R)) of all left (right) translations of a ring R is a ring under
the addition and the multiplication defined by:

A+ XNz =z + Nz (z(o+0)=z0+120 ),
ANz = A(Nz) (z(00") = (z0)0' ),

for A, X € A(R) (g,0 € P(R)) and = € R. The subring Q(R) of the direct sum of
rings A(R) and P(R), consisting of all bitranslations of R, is called the translational
hull of R. More information about translational hulls of rings and semigroups can
be found in [240] and [241].

Theorem 1.1. (Everett’s theorem) Let A and B be disjoint rings. Let 0 be a
function of B onto a set of permutable bitranslations of A, in notation 6 : a — 6% €
Q(A), a € B, and let |,], (,) : B x B — A be functions such that for all a,b,c € B
the following conditions hold:

(El) g + @b — gotd — T(a,b]5
(EQ) ge - Hb — eab = W(a,b);
(E3) {(ab,c) + (a,b)d¢ = {a,bc) + 6%(b,c);
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(E4) [0,0] = 0;

(ES5) [a,b] = [b,a];

(E6) [a,b]+ |a+b,c) =[a,b+c]+[b,c];

(E7) la,bj0° + (a + b,c) = {ac,bc] + {a,c) + (b,c);
(E8) 64[b,c] + {(a,b+ ¢) = [ab,ac] + (a,b) + (a,c).

Define an addition and a multiplication on R = A x B by:

(E9) (@,a) + (B,b) = (o + B + [a,b],a +b);
(E10) (a,a)-(B,b) = (aB + {(a,b) + 6 + a8’ ab),
a,B8€ A, a,be B. Then (R,+,-) is a ring isomorphic to an ideal extension of A
by B.
Conversely, every ideal extension of A by B can be so constructed.

A ring constructed as in the Everett’s theorem we call an Everett’s sum of rings
A and B by a triplet (6;[,1;(,)) of functions and we denote it by E(A, B;6;[,]; (,)).
The representation of a ring R as an Everett’s sum of some rings we call an Everett’s
representation of R.

More information about the Everett’s theorem can be found in [240] and [270].
There we can see that an Everett’s representation E(A, B;8;1,];(,}) of some ring
R is determined by the choice of a set of representatives of the cosets of A in R.
Namely, if for every coset a € B we choose a representative, in notation a’, then
the set {a' | a € B} determines the triplet (6;[,]; (,)) in the following way:

(E11) af* = a-d',0°a=a'-a, a€ A, a€ B,

(E12) [a,b] =a' +b' — (a+ D), a,b€ B;

(E13) (a,by =a’-b' —(a-b)!, a,b€ B.

Although an Everett’s representation of a ring is determined by the choice of repre-
sentatives of the related cosets, for any such choice we obtain equivalent Everett’s
sums. The precise conditions under which two Everett’s sums are equivalent were
given by Miiller and Petrich in [217], 1971, by the following theorem:

Theorem 1.2. Two Everett’ssums E(A, B;6;(,);(,)) and E(A4, B;6';[,1; (,)")
of rings A and B are equivalent if and only if there exists a mapping £ : B — A
such that 0§ = 0 and for all a,b € B the following conditions hold:
(a) (6")° = 6° + mpe;
(b) [a,b]' = [a,b] + af + b€ — (a + b)¢;
(©) (a,b)" = (a,b) +6°(b€) + (a&)® + (a€)(b€) — (ab)é.

Let n € Nand let w € AF. If X1, X5,..., X, are sets, then we will denote
by w(X;,Xs,...,X,) the set obtained by replacement of letters zy,>,...,z, in
w by sets X1, X», ..., X,, respectively, considering the Cartesian multiplication of
sets instead of the juxtapositions in w. Let R be aring, let P be a set of permutable
bitranslations of R and let p be an element of the Cartesian n-th power of RU P.
If at least one projection of u is in R, then w(y) will denote the element of R
obtained by replacement of any letter z;, i € {1,2,...,n}, by the i-th projection of
1, considering the multiplications in MR and MQ(R) and acting of bitranslations
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from P on elements of R, instead of the juxtapositions in w. Otherwise, if all the
projections of p are in P, then w(y) will denote the value of w in the semigroup
MQ(R), for the valuation p.

The following theorem, given by Ciri¢, Bogdanovi¢ and Petkovi¢ in [94], 1995,
describes more complicated multiplications in Everett’s sums of rings.

Theorem 1.3. Let R = E(A, B;0;(,};(,)), letn € N, n > 2, and assume that
w = ’LU(CIJ],..,,.’L'n) € A:, lw| =k, a= (ala"-yan) € B", a= (aly-”;an) € An’
&= (ag,a:),1€{1,...,n}, E=(&,..., &), and 6° = (8*,...,0°). Then for

;
B =) (({;(w))(a), (cir1 (W) @) (re—j-1(w))(6) + ((lx-1(w)){(a), (t(w))(a)),

7=1

|
[N

1)

the following statements hold:

(i) w(6®) =6 +mg,  and (i) w(¢)= ( > Mi(w) + ﬂ,w(a)>,

HEM,,

where M, = w(Xy1,...,X,) —{0°}, Xi = {ay,a:}, 1€ {1,...,n}.
Furthermore, if 8 A8¢ = 0, for all b,c € B and if k > 3, then

B = ((h(w))(a), (m5™* ())(@))6" ) + (11 (w))(a), (Hw))(a)).

There are many known constructions in Theory of rings which are special cases
of Everett’s sums. For example, the well known split extension of rings is in fact
an Everett’s sum of rings in which the functions [,] and (,) are zero functions, i.e.
la,b] = {a,b) = 0, for all a,b. In such a way we obtain also the well-known Dorroh
extension of a ring by a ring of integers, which realizes an embedding of a ring into
a ring with unity.

An interesting specialization of Everett’s sums was given by Ciri¢ and Bog-
danovi¢ in [80], 1990. An Everett’s sum E(A4, B;8;[,]; (,)) was called by them a
strong Everett’s sum if 6 is a zero homomorphism of B into Q(A4), i.e. if §* = =, for
any a € B. Such an Everett’s sum is denoted by E(A4, B;|,];(,)), and a representa-
tion of a ring R by such an Everett’s sum is called a strong Everett’s representation
of R. A ring R is called a strong extension of a ring A by a ring B if there exists a
strong Everett’s representation R = E(A, B;[,];(,))-

Using the concept of strong extensions of rings, Ciri¢ and Bogdanovi¢ in (80],
1990, gave the following construction of nilpotent rings:

Theorem 1.4. Letn € N, n > 2. A ring R is an (n + 1)-nilpotent ring if and
only if it is a strong extension of a null-ring by an n-nilpotent ring.

Recall that by a null-ring we mean a 2-nilpotent ring.

The same authors investigated also some other strong extensions of rings, and
some of the obtained results will be presented in the next sections. Here we will
give only some general properties of strong extensions.
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Theorem 1.5. Any strong extension of a ring by a ring with identity is iso-
morphic to their direct sum.

The previous result was obtained by Ciri¢ and Bogdanovié in [80], 1990, who
also stated the following problem: Is any strong extension of two rings isomorphic
to their direct sum?

An example of an Everett’s sum of two rings which is not equivalent to a strong
Everett’s sum of these rings is the following: Let n € N, n > 2, and let R be the
ring of all n x n upper triangular matrices over a field F. The set N of nilpotents
of R is the set of all matrices (a;;) from R for which a;; = 0, whenever 7 > 7, and
we have that IV is an ideal of R, the factor ring R/N is isomorphic to the ring F™,
and by the previous theorem, R cannot be a strong extension of N by F™.

Note that the previous theorem is similar to the following well-known result:

Theorem 1.6. Let A be a ring with an identity. Then a ring R is an ideal
extension of A if and only if 4 is a direct summand of R.

This theorem is in fact an immediate consequence of the result given by Ciri¢
and Bogdanovi¢ in [80], 1990, concerning retractive extensions of rings. A subring
A of aring R is called a retract of R if there exists a homomorphism ¢ of R onto
A such that ap = a, for any a € A. Such a homomorphism is called a retraction of
R onto A. If R is an ideal extension of A and there exists a retraction of R onto A,
we say that R is a retractive extension of A and that A is a retractive ideal of R.

Theorem 1.7. A ring R is a retractive ideal of a ring R if and only if A is a
direct summand of R.

Note that any ideal A with an identity of a ring R is a retract of R. Namely,
a retraction ¢ of R onto A is given by z¢ = ze, where x € R and e is an identity
of A.

More information concerning retractions of semigroups will be given in Sec-
tion 5.

2. On mr-reqular semigroups and rings

In this section we present the main properties of regular and w-regular semi-
groups and rings.

2.1. The reqularity in semigroups and rings. The regularity was first
defined in Ring theory by von Neumann in [224], 1936, and after that this definition
was naturally transmitted in Semigroup theory. By this definition, an element a of
a ring (semigroup) R is a regular element if there exists x € R such that a = aza,
and a ring (semigroup) is defined to be a regular ring (regular semigroup) if all its
elements are regular. Thierrin, who first investigated some general properties of
regular semigroups in [322], 1951, called them inversive semigroups (demi-groupes
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inversifs). The set of all regular elements of a semigroup (ring) S we call the regular
part of S and we denote it by Reg(S).

Many very important kinds of rings are regular. For example, such a prop-
erty have division rings, the full matrix ring over a division ring, the ring of linear
transformations of a vector space over a division ring, and many other rings. This
also holds for many significant concrete semigroups. For example, the full trans-
formation semigroup of an arbitrary finite set is regular, and the statement that
the full transformation semigroup of a set X is regular for any set X is equivalent
to the famous Axiom of Choice. For more information about general properties
of regular rings and semigroups we refer to the books: Goodearl [128], Steinfeld
[301], Petrich [245] and others. Here we give only some their properties which we
need in the further work. '

Theorem 2.1. The following conditions on a semigroup (ring) S are equiva-
lent:
(i) S is regular;
(i) AN B = BA, for any left ideal A and any right ideal B of S;
(i) any one-sided ideal of S is globally idempotent and BA is a quasi-ideal of
S, for any left ideal A and any right ideal B of S;
(iv) any principal left (right) ideal of S has an idempotent generator.

The equivalence of conditions (i) and (ii) was established by Iséki in [145],
1956, for semigroups, and Kovdcs in [160], 1956, for rings. Similar characterizations
of regular elements by principal one-sided ideals, and related characterizations of
regular semigroups and rings, were given by Lajos in {164], 1961, for semigroups,
and Szasz in [308], 1961, for rings. For many information on other interesting
properties of two-sided, one-sided, quasi- and bi-ideals of regular semigroups and
rings we refer to the book of Steinfeld [301], 1978.

The equivalence of conditions (i) and (iii) was proved by Calais in [67], 1961,
for semigroups, and by Steinfeld in [301], 1978, for rings. Finally, (i} < (iv) was
proved by von Neuman in [224], 1936 (see also Clifford and Preston [105], 1961).

If a is a regular element of a semigroup (ring) S, then the element z, whose
existence was postulated by the definition of the regularity, can be chosen such
that ¢ = aza and = = zaz, and any element z satisfying this condition, which is
not necessary unique, is called an inverse of a. This property of regular elements
was first observed by Thierrin in [323], 1952. A regular semigroup (ring) whose
any element has a unique inverse is called an inverse semigroup (inverse ring).
Inverse semigroups were first defined and investigated by Vagner in [335], 1952,
and [337], 1953, who called them generalized groups, and independently by Preston
in [252], [253], [254], 1954. The most significant example of inverse semigroups is
the semigroup of partial one-to-one mappings of a set X into itself, and is called
the symmetric inverse semigroup on X. Just as any group can be embedded in
a symmetric group, by the Cayley theorem, and any semigroup can be embedded
in a full transformation semigroup, so every inverse semigroup can be embedded
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into a symmetric inverse semigroup. This result is due to Vagner [332], 1952, and
Preston [254], 1954, and is known as the Vagner-Preston Representation Theorem.

For more information on inverse semigroups we refer to the books of Howie
(144, Chapter V], 1976, and Petrich [247], 1984. Here we quote only some charac-
terizations of these semigroups that we need in the further work.

Theorem 2.2. The following conditions on a semigroup S are equivalent:

(i) S is inverse;
(i1) S is regular and the idempotents of S commute;
(iii) any principal one-sided ideal of S has a unique idempotent generator.

The implication (ii) = (iii) was proved by Vagner in [335], 1952, and inde-
pendently by Preston in [252], 1954, (i) = (ii) was proved by Liber in {197}, 1954,
whereas the equivalence of all three conditions was proved by Munn and Penrose
in [219], 1955.

A natural generalization of inverse semigroups was given by Venkatesan in
[338], 1974, who defined a regular semigroup (ring) to be a left inverse (resp. right
inverse) semigroup (ring) if for all a,z,y € S, a = axa = aya implies az = ay
(resp. a = aza = aya implies za = ya). Left inverse semigroups are characterized
by the following theorem:

Theorem 2.3. The following conditions on a semigroup S are equivalent:

(i) S is left inverse;
(it) S is regular and E(S) is a left regular band;
(iil) any principal left ideal of S has a unique idempotent generator.

Another important kind of the regularity was introduced by Clifford in [99],
1941, who studied elements a of a semigroup S having the property that there
exists £ € S such that ¢ = azxa and ar = za, which we call now completely
regular elements, and semigroups whose any element is completely regular, called
completely regular semigroups. The complete regularity was also investigated by
Croisot in [107], 1953, who also studied elements a of a semigroup S for which
a € Sa?S (resp. a € Sa?, a € a®5), called intra-regular (resp. left regqular, right
reqular) elements, and semigroups whose every element is intra-regular (resp. left
regular, right regular), called intra-regular (resp. left regular, right regular) semi-
groups. Analogously we define intra-, left, right and completely regular rings and
elements of rings. As we will see in Section 4, the concepts of the left, right and
completely regular rings coincide, and in Ring theory such rings are known under
the names strongly regular and Abelian regular rings. The results of A. H. Clifford
and R. Croisot from the above mentioned papers concerning intra-, left, right and
completely regular semigroups will be also presented in Section 4. Here we give only
some their results which characterizes completely regular elements of a semigroup:

Theorem 2.4. The following conditions for an element a of a semigroup S
are equivalent:

(i) a is completely regular;
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(ii) a has an inverse which commutes with a;
(iii) a is contained in a subgroup of S;
(iv) a is left regular and right regular.

In view of the previous theorem, completely regular elements are often called
group elements, and the set of all completely regular elements of a semigroup (ring)
S is denoted by Gr(S) and is called the group part of 5. For any idempotent e of a
semigroup S, G. = {a € S|a € eSNSe, e € aSN Sa} is the mazimal subgroup of S
having e as its identity, and Gr(S) is a disjoint union of all maximal subgroups of
S. The existence of maximal subgroups was established by Schwarz in [278], 1943,
for periodic semigroups, and by Wallace in [340], 1953, and Kimura in [155], 1954,
for an arbitrary semigroup. The sets of all left, right and intra-regular elements of
a semigroup (ring) S are called the left reqular, right reqular and intre-regular part
of S, and are denoted by LReg(S), RReg(S) and Intra(S), respectively.

For any pair m,n € N, m + n > 1, Croisot in [107], 1953, also defined an
element a of a semigroup S to be (m,n)-regular if a € a™Sa™, where a° denotes
the identity adjoined to S. He proved that for all m,n > 2, the (m, 0)-regularity
is equivalent to the right regularity and the (0, n)-regularity is equivalent to the
left regularity, and for all m,n € N for which m + n > 3, the (m, n)-regularity
of a semigroup is equivalent to the complete regularity. As we see, the intra-
regularity is not included in this Croisot’s concept. But, by Lajos and Szdsz in
[192], 1975, for p,q,7 € N°, an element a of a semigroup S was defined to be
(p,q,7)-regular if a € a?Sa?Sa’”, and a semigroup S was defined to be a {(p,q,7)-
regular semigroup if any its element is (p,q,r)-regular. This definition obviously
includes the intra-regularity and many other interesting concepts. For example,
this definition includes the concept of quasi-regularity introduced by Calais in [67],
1961, as a generalization of the ordinary regularity, seeing that by Theorem 2.1, in a
regular semigroup (ring) any its one-sided ideal is globally idempotent. Namely, J.
Calais defined a semigroup (ring) to be left quasi-reqular (resp. right quasi-regular
if any its left ideal (resp. right ideal) is globally idempotent, and to be quasi-regular
if it is both left and right quasi-regular. The corresponding definitions can be given
for elements: an element a of a semigroup (ring) S is called left quasi-regular (resp.
right quasi-regular) if the principal left ideal (a)z (resp. the principal right ideal
- {a)Rr) generated by a is globally idempotent, and is called guasi-regular if it is both
left and right quasi-regular. It is easy to see that a semigroup (ring) is (left, right)
quasi-regular if and only if any its element is (left, right) quasi-regular. As Lajos
and Szdsz proved in [192], 1975, the left quasi-regular and the right quasi-regular
elements of a semigroup S are exactly the (0,1, 1)-regular and the (1, 1,0)-regular
elements of S, respectively.

Note that this concept of quasi-regularity differs to the well-known concept of
quasi-regularity of elements of rings which is used in the definition of the Jacobson
radical of a ring.

2.2. The m-regularity in semigroups and rings. In order to give a gener-
alization both of regular rings and of algebraic algebras and rings with minimum
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conditions on left or right ideals, Arens and Kaplansky in [11], 1948, and Kaplan-
sky in [150], 1950, defined w-regular rings. Following their terminology, an element
a of a semigroup (ring) S is called 7-regular (resp. left w-regular, right w-regular,
completely ©-reqular, intra-w-regular) if some its power is regular (resp. left reg-
ular, right regular, completely regular, intra-regular), and S is called a w-regular
(resp. left m-regular, right 7-regular, completely w-regular, intra-n-regular) if any
its element is m-regular (resp. left 7-regular, right 7-regular, completely w-regular,
intra-w-regular). In some origins several other names were used. For example,
Putcha in [255], 1973, Galbiati and Veronesi in [121]-[125], Shum, Ren and Guo in
[289], [290], [272] and [273], and others called w-regular semigroups guasi reqular,
whereas Edwards in [112], 1993, called them eventually regular. Completely 7-
regular semigroups were sometimes called quasi-completely reqular or group-bound,
and Shevrin in [285] and [296], 1994, called them epigroups. In theory of rings,
completely 7-regular rings are known as strongly 7-regular rings, as they were called
by Azumaya in [14], 1954. In order to unify the terminology used in this paper,
we use the name completely m-regular both for semigroups and rings.

Some variations of the m-regularity were also investigated by Fuchs and Ran-
gaswamy in {119], 1968. For a positive integer m, they called an element a of a
semigroup (ring) S m-regular if the power a™ is regular, and m-regular, if a™ is
regular for any n > m, and S is called an m-regular (resp. m-regular) semigroup
(ring) if any its element is mn-regular (resp. m-regular). Clearly, an element a is
w-regular if and only if it is m-regular for some m € N. If for an element a of a
semigroup (ring) S there exists m € N such that a is 7i-regular, we then say that
a is w-regular, and a semigroup (ring) whose any element is #-regular is called a
w-reqular semigroup (ring). If a is an element of a semigroup (ring) S and a™ is
left (resp. right, completely) regular for some m € N, then a" is left (resp. right,
completely) regular for any n > m.

Some relationships between the w-regularity, left 7-regularity,right 7-regularity,
complete m-regularity and intra-mw-regularity were investigated by many authors.
We give here the most important results concerning these relationships. The first
theorem that we give was proved by Bogdanovié¢ and Ciri¢ in [55], 1996:

Theorem 2.5. A semigroup S is left w-regular if and only if it is intra-m-
regular and Intra(S) = LReg(5).

By this theorem we. obtain the following interesting result:

Theorem 2.6. If S is a completely n-regular semigroup, then
Gr(S) = LReg(S) = RReg(S) = Intra(S) C Reg(S).

Note that there exists a completely n-regular semigroup S in which Gr(S) is
a proper subset of Reg(S). Completely n-regular semigroups whose regular part
coincide with the group part will be considered in Section 5.

Another theorem gives some connections between the complete w-regularity,
w-regularity and left (or right) m-regularity:
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Theorem 2.7. The following conditions on a semigroup S are equivalent:
(i) S is completely m-regular;
(i) S is left and right m-regular;
(i1) S is w-regular and left (or right) m-regular;
(iv) for any a € S there exists n € N such that o™ is regular and left {or right)
regular.

The equivalence of conditions (i) and (iv) was proved by Hongan in [143],
1986, and of (i) and (iii) by Bogdanovi¢ and Ciri¢ in [44], 1992.
For rings a more rigorous theorem holds:

Theorem 2.8. The following conditions on a ring R are equivalent:
(i) R is left m-regular;

(ii} R is right w-regular;

(iii) R is completely w-regular.

This very important theorem was proved by Dischinger in [108], 1976, and
another proof was given by Hirano in [139], 1978.

Clearly, any completely m-regular ring is 7-regular. Various conditions under
which a m-regular ring is completely regular were investigated by many authors.
The best known results from this area are the results obtained by Azumaya in
[14], 1954. He investigated rings in which the indices of nilpotency of all nilpotent
elements are bounded, called the rings of bounded indez and he proved the following
two theorems:

Theorem 2.9. If R is a ring of bounded index, then
RReg(R) = LReg(R) = Gr(R).

Theorem 2.10. Let R be a ring of bounded index. Then R is w-regular if
and only if it is completely m-regular.

In connection with the w-regularity, rings of bounded index were also investi-
gated by Tominaga in [329], 1955, and Hirano in {140], 1990.

As known, Moore in [215], 1936, Penrose in [234], 1955, and Rado in {264],
1956, introduced the notion of a generalized inverse of a matrix. Namely, by a
result obtained by Moore, but stated in a more convenient form by Penrose, for
any square complex matrix a there exists a unique complex matrix z such that
ara = a, rax = z and both az and xa are hermitian. Such a matrix z is called
the generalized inverse, or the Moore-Penrose inverse, of a. In order to give a
further generalization of generalized inverses, Drazin introduced in [110], 1958, the
following notion: Given a semigroup (ring) S and an element a € S. An element
x € S is called the pseudo-inverse, or the Drazin inverse, of a, if ax = za, 2°a = z
and there exists m € N such that a™ = a™*!'z. An element having a pseudo-
inverse is called pseudo-invertible, and also, a semigroup (ring) whose any element
is pseudo-invertible is called a pseudo-invertible semigroup (ring). As was shown
by Drazin, a pseudo-inverse of an element a, if it exists, is unique. He also proved
the following:
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Theorem 2.11. An element a of a semigroup (ring) S is pseudo-invertible if
and only if it is completely n-regular.

Let us note that an element a of a semigroup S is completely a-regular if and
only if there exists n € N such that the power a” lies in some subgroup of S (see
Theorem 2.4). The next theorem, proved by Drazin in {110}, 1958, and in a slightly
simplified form by Munn in [218], 1961, and known in Theory of semigroups as the
Munn’s lemma, gives an interesting property of such elements:

Theorem 2.12. Let a be an element of a semigroup S such that for some
n € N, a™ belongs to some subgroup G of S, and let e be the identity of this group.
Then ea = ae € G, and a™ € G, for each integer m > n.

Using the previous two theorems, pseudo-inverses can be represented in another
way. Namely, if a is a pseudo-invertible, or equivalently, a completely w-regular
element of a semigroup S, then a™ € G, for some n € N and ae € G, and then
the pseudo-inverse = of @ is given by = = (ae)™!, i.e. x is the group inverse of the
element ae in the group G.. If a is an element of a completely n-regular semigroup
S and a™ € G, for some n € N and e € E(S), then a° denotes the identity of G.,
ie a’=e.

An interesting characterization of completely 7-regular rings was given by
Ohori in [229], 1985. Before we exhibit this result, we must introduce some new
notions. These notions were introduced by Hirano, Tominaga and Yaqub in [142],
1988, but they are given here in a slightly modified form. Let A and B be two sub-
sets of a ring R. We say that R is (A, B)-representable if for any £ € R there exist
a € A and b € B such that z = a+ b, and that it is uniquely (A, B)-representable
if for any = € X there exist unique @ € A and b € B such that £ = a + b. Simi-
larly, we say that R is [4, B}-representable if for any z € R there exist a € A and
b € B such that z = a + b and ab = ba, and that it is uniquely [A, B]-representable
if for any x € R there exist unique a € A and b € B such that £ = a + b and
ab = ba. Clearly, any uniquely (A, B)-representable ring is (4, B)-representable,
any uniquely [A, B]-representable ring is [A, B]-representable, and all these rings
are (A, B)-representable.

The characterization of completely m-regular rings given by Ohori in [229],
1985, is the following:

Theorem 2.13. A ring R is completely n-regular if and only if it is [Nil(R),
Gr(R)]-representable.

In order to generalize the concept of an inverse semigroup, Galbiati and Veronesi
defined in [120], 1980, a semigroup (and also ring) to be w-inverse if it is =-
regular and any its regular element has a unique inverse. A further generalization
of these concept was given by Bogdanovi¢ in [35], 1984, who defined a semigroup
(or ring) S to be left (resp. right) m-inverse if it is m-regular and for all a,z,y € S,
a = aza = aya implies ax = za (resp. a = aza = aya implies za = ya). -

Similarly, a semigroup (ring) S is called completely m-inverse (resp. left com-
pletely m-inverse, right completely T-inverse) if it is completely m-regular and -
inverse (resp. left m-inverse, right 7-inverse).
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The following theorem, which characterizes left m-inverse semigroups, was
proved by Bogdanovié¢ in [35], 1984:

Theorem 2.14. The following conditions on a semigroup S are equivalent:

(i) S is left m-inverse;
(i) S is m-regular and for all e, f € E(S) there exists n € N such that (ef)" =
(ef)e
(i) S is n-regular and for any pair e, f € E(S) there exists n € N such that
(e L(fe);
(iv) for any a € S there exists n € N such that (a")p has a unique idempotent
generator.

A consequence of the previous theorem and its dual is the following result
obtained by Galbiati and Veronesi in [120], 1980, and Bogdanovi¢ in [33], 1982,
and [35], 1984.

Theorem 2.15. The following conditions on a semigroup S are equivalent:
(i) S is m-inverse;
(i1) S is left and right n-inverse;
(iii) S is w-regular and for all e, f € E(S) there exists n € N such that (ef)™ =
(fo)m.
(iv) S is m-regular and for any a € S there exists n € N such that (a™) and
(a™)r have unique idempotent generators.

Left completely w-inverse semigroups were studied by Bogdanovi¢ and Ciri¢ in
[44], 1992, where the following result was obtained:

Theorem 2.16. A semigroup S is left completely w-inverse if and only if it is
m-regular and for all a € S, e € E(S), there exists n € N such that (ea)™ = (ea)e.

Finally, completely #-inverse semigroups are characterized by the following
theorem, due to Galbiati and Veronesi [124], 1984.

Theorem 2.17. The following conditions on a semigroup S are equivalent:
(i) S is completely m-inverse;
(i1) S is left and right completely m-inverse;
(iii) S is m-regular and for all a € S, e € E(S) there exists n € N such that
(ea)™ = (ae)™. .

2.3. Periodic semigroups and rings. Periodic semigroups and rings are
among the most important special types of completely w-regular semigroups and
rings. They are defined as semigroups (rings) in which for any element a there
exist different m,n € N such that a™ = a", or equivalently, as semigroups (rings)
in which for any element a, some power of a is an idempotent.

Periodic semigroups and rings have many very interesting properties. For
example, the property “being periodic” is a hereditary property, both for semi-
groups and rings, and many subclasses of the class of periodic semigroups (rings)
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can be characterized in terms of variable identities, as we will see in Section 5.
Clearly, the whole class of periodic semigroups is definable by a variable identity
{z™ = z™|m,n € N, m # n} over the one-element alphabet. Also, all finite
semigroups and rings are periodic, and the periodicity was often investigated as a
generalization of the finiteness.

An element a of a semigroup (ring) S having the property that a™ = a", for
some different m,n € N, will be called a periodic element. An interesting type of
periodic elements of a semigroup (ring) are potent elements defined as follows: an
element a of a semigroup (ring) S is potent if a = a", for some n € N, n > 2. The
set, of all potent elements of S is denoted by P(S) and called the potent part of S.

Periodic rings have especially interesting properties. The next theorem, which
is due to Chacron [68], 1969, gives a criterion of periodicity of rings, known as the
Chacron’s criterion of the periodicity.

Theorem 2.18. A ring R is periodic if and only if for any a € R there exists
n € N and a polynomial p(z) with integer coefficients such that a™ = a™*!p(a).

Another proof of this theorem can be found in Bell [19], 1980.
The following properties of periodic rings were found by Bell in [18], 1977.

Theorem 2.19. Let R be a periodic ring. Then the following conditions
hold:
(a) for any a € R there exists n € N such that a — a™ € Nil(R);
(b) R is (Nil(R), P(R))-representable;
(c) ifI is an ideal of R and a+1 is a non-zero nilpotent of R/, then R contains
a nilpotent element u such that a = u (mod I).

By Grosen, Tominaga and Yaqub in [129], 1990, rings satisfying the condition
(b) of the above theorem were called weakly periodic rings. Therefore, the Bell’s
theorem asserts that any periodic ring is weakly periodic. The converse does not
hold, but Ohori in [229], 1985, found the conditions under which a weakly periodic
rings is periodic, and this result is given here as the following theorem:

Theorem 2.20. A ring R is periodic if and only if it is [P{R), Nil(R)]-represen-
table.

3. On completely Archimedean semigroups

The topic of this paper are uniformly #-regular semigroups and rings, i.e.
semigroups and rings decomposable into a semilattice of completely Archimedean
semigroups, or equivalently, into a semilattice of nil-extensions of completely simple
semigroups, so we must present the main properties of completely Archimedean and
completely simple semigroups.
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3.1. Completely simple semigroups. As known, a semigroup S having
no an ideal different than the whole S is called a simple semigroup, and similarly,
a semigroup S having no a left (resp. right) ideal different than the whole S is
called a left simple (resp. right simple) semigroup. In other words, a semigroup S
is simple (resp. left simple, right simple) if and only if a | b (resp. a | b, a | b), for

all a,b € S. The first papers from Theory of semigroups were devoted exactly to
these semigroups, because they are the closest generalization of groups. Namely, a
semigroup is a group if and only if it is both left and right simple. By Sushkevich
in [304], 1928, and [305], 1937, and Rees in [271], 1940, finite simple semigroups
and other significant special types of simple semigroups were investigated. In this
section we talk about the most important special types of these semigroups.
Semigroups which are both simple and left (resp. right) regular were called
by Bogdanovi¢ and Ciri¢ in [55], 1996, left (resp. right) completely simple. Some
characterizations of these semigroups are given by the following theorem:

Theorem 3.1. The following conditions on a semigroup S are equivalent:

(i) S is left completely simple;

(i1) S is simple and left n-regular;

(iii) S is simple and has a minimal left ideal;
(iv) S is a union of its minimal left ideals;

(v) S is a disjoint union of its principal left ideals;
(vi) any principal left ideal of S is a left simple subsemigroup of S;
(vil) any left ideal of S is right consistent,

(viil) S is a matrix of left simple semigroups;
(ix) S is a right zero band of left simple semigroups;
(x) | is a symmetric relation on S;
!

(xi) S/L is a discrete partially ordered set;
(xii) L£Zd(S) is a Boolean algebra;
{xiii) (Va,b€ S) a € Sha.

The equivalence of the conditions (iil), (iv), (vii) and (xiii)) was proved by
Croisot in [107], 1953, of (vi), (ix) and (xiii) by Bogdanovi¢ in [33], 1982, and of
(i), (ii), (viii), (ix), (x), (xi) and (xiii) by Bogdanovi¢ and Ciri¢ in [55], 1996. The
equivalence of the conditions (vii), (ix) and (xii) is an immediate consequence of
the results of Bogdanovi¢ and Ciri¢ from [53], 1995, concerning so-called right sum
decomposition of semigroups with zero. In the book of Clifford and Preston [106],
1967, semigroups satisfying the condition (xiii) of the above theorem were called
left stratified semigroups.

Another important type of simple semigroups are simple semigroups having a
primitive idempotent, called completely simple semigroups. Recall that an idempo-
tent e of a semigroup S is called primitive if it is minimal in the partially ordered set
of idempotents on S, i.e. if for f € E(S), ef = fe = f implies e = f. Completely
simple semigroups were first studied also by Sushkevich in [304], 1928, and [305],
1937, and Rees in [271], 1940, who gave the following fundamental representation
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theorem for these semigroups:

Theorem 3.2. Let G be a group, let I and A be non-empty sets and let P =
(pai) be a A x I matrix with entries in G. Define a multiplicationon S = GxIx A
by:

(aa ia A)(bu ja “) = (ap)\jba iv N)

Then S with so defined multiplication is a completely simple semigroup.
Conversely, any completely simple semigroup is isomorphic to some semigroup
constructed in this way.

The semigroup constructed in accordance with this recipe is called the Rees
matriz semigroup of type A x I over a group G with the sandwich matriz P, and
is denoted by M(G;I,A,P). The previous theorem is usually called the Rees-
Sushkevich theorem.

Some other characterizations of completely simple semigroups are given by the
following theorem:

Theorem 3.3. The following conditions on a semigroup S are equivalent:

(i) S is completely simple;
(i1) S is simple and completely w-regular;
(iii) S is simple and completely regular;
(iv) S is simple and has a minimal left ideal and a minimal right ideal;
(v) S is simple and has a minimal quasi-ideal;
(vi) S is a union of its minimal quasi-ideals;
(vil) S is left and right completely simple;
(viil) S is left (or right) completely simple and has an idempotent;
(ix) S is regular and all its idempotents are primitive;
(x) S is regular and a = aza implies ¢ = Taz;
(xi) S is regular and weakly cancellative;
(xii) (Va,b€ S)a € aSha;
(xii’) (Ya,b € S)a € abSa;
(xiii) | is a symmetric relation on S;

{
(xiv) S/H is a discrete partially ordered set.

The equivalence of conditions (i) and (iv) is from Clifford [100], 1948. The
assertion (i) < (ii) was proved by Munn in [218], 1961, and is known as the Munn
theorem. For periodic semigroups this assertion was proved by Rees in [271], 1940.
The equivalence of the conditions (iv) and (v) is a result of Schwarz from [279],
1951, and the equivalence of the conditions (v) and {vi) is derived from the results of
Steinfeld from [296], 1956 (see also his book [301]). For the proof of the equivalence
of conditions (i), (ix), {(x) and (xi) we refer to the book of Petrich [241], 1973. The
equivalence of the conditions (vii), (xii), (xii’), (xiii) and (xiv) is an immediate
consequence of Theorem 3.1 and its dual.

Special types of completely simple semigroups are left, right and rectangular
groups. A semigroup S is called a rectangular group if it is a direct product of a
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rectangular band and a group, and is called a left group (resp. right group) if it is a
direct product of a left zero band (resp. right zero band) and a group. Rectangular
groups and left groups are characterized by the following two theorems:

Theorem 3.4. The following conditions on a semigroup S are equivalent:

(i) S is a rectangular group;
(i) S is completely simple and E(S) is a subsemigroup of S;
(i) S is regular and E(S) is a rectangular band;
(iv) S = M(G;I,A,P) with py/'py; =p;ilpuj, foralli,je I, A u€A.

For the proof of this theorem we refer to the book of Petrich {241}, 1973.

Theorem 3.5. The following conditions on a semigroup S are equivalent:

(1) S is a left group;

(i1) S is left simple and right cancellative;

(ili) S is left simple and has an idempotent;

(iv) S has a right identity e and e € Sa, for any a € S;

(v) S is regular and right cancellative;

(vi) S is regular and E(S) is a right zero band;

(vii) for all a,b € S, the equation za = b has a unique solution in S;
(viii) for any a € S, the equation za® = a has a unique solution in S;

(ix) S is a left zero band of groups;

(x) (Va,be S)a € aSb;

(xi) § = M(G;I,A,P) with|I|=1.

The equivalence of conditions (i), (ii) and (iii) was proved by Sushkevich in
[304], 1928, for finite semigroups, and in [305], 1937, in the general case, and it was
also formulated (without proofs) by Clifford in [98], 1933. The assertion (i) < (iv)
was proved by Clifford in [98], 1933, (i) & (v) is an unpublished result of Munn,
and (i) & (x) was proved by Bogdanovi¢ and Stamenkovié in [66], 1988.

Now, in terms of left groups, right groups and groups, completely simple semi-
groups can be characterized as follows:

Theorem 3.6. The following conditions on a semigroup S are equivalent:
(1) S is completely simple;

(ii) S is a left zero band of right groups;

(i) S is a right zero band of left groups;

(iv) S is a matrix of groups.

The above theorem is an immediate consequence of the Rees-Sushkevich rep-
resentation theorem for completely simple semigroups, and also, of Theorem 3.1,
its dual and Theorem 3.3.

Note finally that the multiplicative semigroup of a non-trivial ring may not be
simple, since a semigroup with zero is simple only if it is trivial. But, simple semi-
groups can appear in Theory of rings as subsemigroups of multiplicative semigroups
of rings, as we will see later. On the other hand, in investigations of semigroups




Uniformly n-regular rings and semigroups: A survey 29

with zero one introduces other more suitable concepts. For example, one defines
a semigroup S = S° to be a 0-simple semigroup if S? # 0 and it has no an ideal
different than 0 and the whole S. Similarly, completely 0-simple semigroups one
defines as 0-simple semigroups having a 0-primitive idempotent, by which we mean
a minimal element in the partially ordered set of all non-zero idempotents of S. It
is interesting to note that these semigroups have also a representation theorem of
the Rees-Sushkevich type, through so-called Rees matrix semigroups over a group
with zero adjoined. More information on completely 0-simple semigroups can be
found in the books: Clifford and Preston [105], 1961, and [106], 1967, Howie [144],
1976, Steinfeld [301], 1978, Bogdanovi¢ and Ciri¢ (48], 1993, and others.

In theory of rings, a ring R having no an ideal different than 0 and the whole
ring R is called a simple ring. More information about them and on so-called Rees
matriz rings over a division ring can be found in the Petrich’s book [243], 1974.

3.2. Completely Archimedean semigroups. By a natural generalization
of semigroups considered in the previous section, the following semigroups one
obtains: A semigroup S is called an Archimedean semigroup if a — b, for all
a,b € S, and similarly, S is called a left Archimedean (resp. right Archimedean)

semigroup if a Ly (resp.a — b), for alla,be S. A semigroup which is both left:
and right Archimedean is called two-sided Archimedean, or shortly, a t-Archimedean
semigroup.

The structure of Archimedean semigroups is quite complicated, but when an
Archimedean semigroup is supplied by some additional property, such as the -
regularity, intra-, left, right or complete m-regularity, then its structure can be
described more precisely, as we will see in the further text.

First we present the following two theorems, due mostly to Putcha [255], 1973.

Theorem 3.7. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a simple semigroup;
(ii) S is Archimedean and intra-n-regular;
(iii) S is Archimedean and has an intra-regular element;
(iv) S is Archimedean and has a kernel;
(v) (Va,be€ S)(3n € N)a" € Sb’"S.

Theorem 3.8. The following conditions on a semigroup S are equivalent:

(1) S is a nil-extension of a left simple semigroup;
(i1) S is left Archimedean and intra-m-regular;
(iii) S is left Archimedean and left w-regular;
(iv) S is left Archimedean and has an intra-regular element;
(v) S is left Archimedean and has a left regular element;
(vi) S is left Archimedean and has a kernel;
(vil) (Va,b € S)(3In € N)a™ € Sp™t1.

By Theorem 3.7 it follows that a semigroup S is Archimedean and w-regular
if and only if it is a nil-extension of a regular simple semigroup.
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Left (resp. right) m-regular Archimedean semigroups were studied under the
name left (resp. right) completely Archimedean semigroups by Bogdanovi¢ and Cirié
in [59], where the following theorem was proved:

Theorem 3.9. The following conditions on a semigroup S are equivalent:

(1) S is left completely Archimedean;

(ii) S is a nil-extension of a left completely simple semigroup;
(iii) S is Archimedean and has a minimal left ideal;

(iv) (Va,b € S)(3n € N)a" € Sba".

In analogy with completely simple semigroups, Archimedean semigroups hav-
ing a primitive idempotents was called by Bogdanovi¢ in [36], 1985, completely
Archimedean semigroups. The structure of these semigroups is described by the
following theorem:

Theorem 3.10. The following conditions on a semigroup S are equivalent:

(i} S is completely Archimedean;
(i1} S is a nil-extension of a completely simple semigroup;
(iti) S is Archimedean and completely n-regular;
(iv) S is Archimedean and has a minimal left ideal and a minimal right ideal;
(v) S is Archimedean and has a minimal quasi-ideal;
(vi) S is left and right completely Archimedean;
(vil) S is left (or right) completely Archimedean and has an idempotent;
(viii) S is w-regular and all its idempotents are primitive;
(ix) (Va,b € S)(3n € N)a™ € a™Sba™;
(ix’) (Va,b€ S)(In € N)a™ € a""bSa™.

The equivalence of the conditions (ii), (viii), (ix) and (ix’) was proved by
Bogdanovié¢ and Mili¢ in [64], 1984, the assertion (i) <« (iii) due to Galbiati and
Veronesi [123], 1984, while (i) < (ii) is an immediate consequence of Theorems 3.7
and 3.3.

A representation theorem of the Rees-Sushkevich type for completely Archime-
dean semigroups was given by Shum and Ren in [289], 1995.

Before we give a theorem which characterizes nil-extensions of rectangular
groups, we must introduce the following notion: Let S and T be semigroups and
let a semigroup H be a common homomorphic image of S and T, with respect to
homomorphisms ¢ and 4, respectively. Then

P=1{(a,b) € SxT|ayp = by},

is a subsemigroup of the direct product S x T of semigroups S and T', and is called
a spined product of S and T with respect to H. It is known that P is a subdirect
product of S and 7. In Universal algebra this notion is known as a pullback product.
It was introduced by Fuchs in [117], 1952, and since studied by Fleischer in [{116],
1955, and Wenzel in [343], 1968. In Theory of semigroups these products have
been intensively studied by Kimura, Yamada, Ciri¢ and Bogdanovi¢ and others,
and the name “spined product” was introduced by Kimura in [156], 1958.
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Theorem 3.11. The following conditions on a semigroup S are equivalent:

(1) S is a nil-extension of a rectangular group;

(ii) S is completely Archimedean and E(S) is a subsemigroup of S;

(ili) S is w-regular and E(S) is a rectangular band;

(iv) S is m-regular and Archimedean and for any e € E(S), the mapping p. :
T v exe is a homomorphism of S onto eSe;

(v) S is a subdirect product of a group and a nil-extension of a rectangular
band;

(vi) S is a subdirect product of a group, a nil-extension of a left zero band and
a nil-extension of a right zero band;

(vil) S is a spined product of a nil-extension of a left group and a nil-extension
of a right group with respect to a nil-extension of a group.

The equivalence of the conditions (i), (v) and (vi) was established by Putcha
n [255], 1973, and of (i), (iii), (iv) and (vii) by Ren, Shum and Guo in [273]. Ren,
Shum and Guo also gave a representation theorem of the Rees-Sushkevich type for
these semigroups.

The next theorem, which characterizes nil-extensions of left groups, is mostly
due to Bogdanovi¢ and Mili¢ [64], 1984.

Theorem 3.12. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a left group;
(ii) S is left Archimedean and m-regular;
(iii) S is left Archimedean and right w-regular;
( v) S is left Archimedean and completely ©-regular;
(v) S is left Archimedean and has an idempotent;
(vi) § is w-regular and E(S) is a left zero band;
(vil) (Va,be S)(3n € N) a™ € a®Sa™b.

A Rees-Sushkevich type representation theorem for nil-extensions of left groups
was given by Shum, Ren and Guo in {290].

The previous theorem and its dual give the following:

Theorem 3.13. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a group;
(ii) S is m-regular and has a unique idempotent;
(iti) S is Archimedean and has a unique idempotent;
(iv) S is t-Archimedean and intra-m-regular;
(v) S is t-Archimedean and m-regular;
(vi) S is t-Archimedean and has an intra-regular element;
(vii) S is t-Archimedean and has an idempotent.

The equivalence of the conditions (i) and (iii) was established by Tamura in

[318], 1982.

Note finally that a semigroup with zero may be Archimedean if and only if
it is a nil-semigroup. so Ciri¢ and Bogdanovi¢ introduced in [89], 1996, a. concept
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more convenient for semigroups with zero, which generalizes both 0-simple and
Archimedean semigroups. Namely, they defined a semigroup S = S° to be a 0-
Archimedean semigroup if a — b, for all a,b € S — 0. These semigroups and some
their special types were also studied by Ciri¢ and Bogdanovié in [86], 1996, and
Ciri¢, Bogdanovié¢ and Bogdanovi¢ in [97).

4. Completely regular semigroups and rings

Although in Section 2 we have already discussed intra-, left, right and com-
pletely regular semigroups and rings, here we present their precise structure.

4.1. Completely regular semigroups. We start with intra-regular semi-
groups.
Theorem 4.1. The following conditions on a semigroup S are equivalent:
(i) S is intra-regular;
(i1) S is a union of simple semigroups;
(iii) any J-class of S is a subsemigroup;
{(iv) S is a semilattice of simple semigroups;
(v) any ideal of S is completely semiprime;
(vi) (Va,b € S){(a) N (b) = (ab);
(vil) AN B C AB, for any left ideal A and any right ideal B of 5.

The equivalence of conditions (i) and (vii) was proved by Lajos and Sz4sz in
[192], 1975. The rest of the theorem due to Croisot [107], 1953, and Anderson [7],
1952.

Combining the previous theorem with Theorem 2.1, the following theorem was
obtained:

Theorem 4.2. The following conditions on a semigroup S are equivalent:

(i) S is regular and intra-regular;
(i1) S is a semilattice of regular simple semigroups;
(i) AN B = ABnN BA, for any left ideal A and any right ideal B of S;
(iv) AN B C AB, for all bi-ideals (or quasi-ideals) A and B of S;
(v) any quasi-ideal of S is globally idempotent.

The equivalence of conditions (i) and (v) was established by Lajos in [177],
1972, and of (i) and (iv) by Lajos and Szdsz in {192}, 1975. By Lajos in [187],
1991, the proof of (i) < (iil) was attributed to Pondelicek. Finally, (i) < (ii) is an
immediate consequence of Theorem 4.1.

Structure of left regular semigroups was described by Croisot, 1953, and Bog-
danovi¢ and Cirié, 1996, who proved the following:
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Theorem 4.3. The following conditions on a semigroup S are equivalent:
(i) S is left regular;

(i1) S is intra-regular and left m-regular;

(iit) S is a union of left simple semigroups;

(iv) any L-class of S is a subsemigroup;

(v) S is a semilattice of left completely simple semigroups;

(vi) any left ideal of S is completely semiprime.

The equivalence of conditions (i), (ii) and (v) was proved by Bogdanovi¢ and
Ciri¢ in [107], 1996, and the rest is from Croisot [55], 1953.

For an element a of a semigroup (ring) S we say that it is left duo (right duo)
if the principal left (right) ideal generated by a is a two-sided ideal, and that a
is duo if it is both left and right duo. Similarly, a semigroup (ring) S is called
left duo (right duo) if any left (right) ideal of S is a two-sided ideal, and is called
duo if it is both left and right duo. The notion of a duo ring (semigroup) was
introduced by Feller in [114], 1958, and Thierrin in [325], 1960, the corresponding
definition for elements was given first by Steinfeld in {300}, 1973, and left and right
duo semigroups, rings and elements were first defined and studied by Lajos in [181]
and [182], 1974. Between these notions the following relationship holds:

Theorem 4.4. A semigroup (ring) is duo (resp. left duo, right duo) if and
only if any its element is duo (resp. left duo, right duo).

The previous theorem was proved by Kertész and Steinfeld in [154], 1974, and
Steinfeld in [300}, 1973, for the case of duo semigroups and rings.
Note also that the following holds:

Theorem 4.5. An element a of a semigroup (ring) S is duo (resp. left duo,
right duo) if and only if (a)r, = (a)r (resp. (a)r C (a)r, (a)r C (a)r)-

Recall that (a);, and (a)r denote the principal left and the principal right ideal
of S generated by a, respectively.

Now we are ready to give the following characterization of semilattices of left
simple semigroups.

Theorem 4.6. The following conditions on a semigroup S are equivalent:

(1) S is a semilattice of left simple semigroups;
(ii) S is left (or intra-) regular and left duo;
(iii) S is left quasi-regular and left duo;
(iv) AN B = AB, for all left ideals A and B of S.

The equivalence of conditions (i) and (ii) was proved by Petrich in [236), 1964,
the proof of (i) & (iv) was given by Saitd in [274], 1973, and the equivalence of
(ii) and (iii) is an immediate consequence of Theorem 4.3 and Theorem 1 from the
paper of Lajos and Szasz [192], 1975.

Now we go to the completely regular semigroups. Various characterizations of
these semigroups are collected in the following theorem:
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Theorem 4.7. The following conditions on a semigroup S are equivalent:
(i) S is completely regular;
(i) S is regular and left (or right) regular;
(1) S is a union of groups;
(iv}) any H-class of S is a subsemigroup;
(v) S is a semilattice of completely simple semigroups;
(vi) any one-sided ideal of S is completely semiprime;
(vii) any left (or right, bi-) ideal of S is a regular semigroup;
{viii) any principal bi-ideal of S has an idempotent generator.

The equivalence of conditions (i), (iii) and (v) was established by Clifford in
[99], 1941, of (1), (i) and (vi) by Croisot in [107], 1953, of (i) and (vii) by Lajos in
[184], 1983. As was noted by Lajos in [187], 1991, (i) < (viii) was proved in his
paper from 1976. Note that the analogue of the condition (vii) for two-sided ideals
is valid in any regular semigroup and ring (see Kaplansky [151], 1969, or Steinfeld
[301], 1978).

For various constructions of completely regular semigroups we refer to Lalle-
ment [194], 1967, Petrich [244], 1974, and (245], 1977, Clifford [104], 1976, Warne
[341], 1973, and Yamada [346], 1971.

Next we present the structure descriptions of the most important special types
of completely regular semigroups.

Theorem 4.8. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of rectangular groups;
(i) S is regular and a = axa implies a = ax’a
(ili) S is completely regular and E(S) is a subsemigroup.

(iv) S is completely regular and any inverse of any idempotent of S is an idem-
potent.

2.
’

The equivalence of conditions (iii) and (iv) is an immediate consequence of the
result of Reilly and Scheiblich from [269], 1967, by which in any regular semigroup
S, the idempotents of S form a subsemigroup if and only if any inverse of any
idempotent of S is an idempotent. For the proof of the rest of the theorem we refer
to Petrich [241]}, 1973.

Theorem 4.9. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left groups;

(ii) S is regular and a = aza implies az = az’a;

(i) S is completely regular and E(S) is a left regular band;

(iv) S is regular (or right reqular) and left duo;

{(v) S is quasi-regular (or right quasi-regular) and left duo;

(vi) AN B = BAB, for any left ideal A and any right ideal B of S;
(vit) AN B = AB, for any bi-ideal A and any right ideal B of S;
(vili) AN B = AB, for any bi-ideal A and any two-sided ideal B of S;

(ix) AN B = BA, for any left ideal A and any quasi-ideal B of S.
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The equivalence of conditions (i) and (iv) was established by Lajos in [178],
1972, and [182], 1974, of (i) and (viii} by Lajos in [177], 1972, and (i) & (v) is
a consequence of Theorem 4.6 and Theorem 1 from the paper of Lajos and Szasz
[192], 1975. The proofs of (i) < (ii) and (ii) < (iii) can be found in Petrich [241],
1973. Finally, the conditions (vi), (vii) and {ix) are assumed from the survey paper
of Lajos [187], 1991.

As we said before, completely regular semigroups were first investigated by
Clifford in [99], 1941, and in some origins these semigroups were called the Clifford
semigroups. But, some other authors, for example Howie in {144], 1976, used this
name for another class of semigroups, studied first also by Clifford in [99], 1941, and
following the terminology of these authors, in this paper by a Clifford semigroup
(ring) we mean a regular semigroup (ring) whose all idempotents are central. These
semigroups are characterized by the following theorem:

Theorem 4.10. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of groups;
(ii) S is a strong semilattice of groups;
(iii) S is a Clifford semigroup;
(iv) S is regular and a = aza implies ar = za;
(v) S is completely regular and E(S) is a semilattice;
(vi) S is completely regular and inverse;
(vil) S is regular (or left, right, intra regular) and duo;
(viil) S is quasi-regular (or left, right quasi-regular) and duo;
(ix) AN B = AB, for any left ideal A and any right ideal B of S;
(x) AN B = AB, for all bi-ideals A and B of S;
(xi) AN B = AB, for all quasi-ideals A and B of S;
(xii) S is regular and a subdirect product of groups with a zero possibly adjoined.

By Clifford in [99], 1941, the equivalence of conditions (i), (ii) and (ili) was
proved, the equivalence of conditions (iv), (v) and (vi) is an immediate consequence
of Theorem 2.2, (i) < (vii) was proved by Petrich in [236], 1964, and (i) & (xii)
by the same author in [242], 1973. The equivalence of the condition (i) or (vii) and
the conditions (ix), (x) and (xi) was established by Lajos in [167] and [168], 1969,
(170] and [171], 1970, and [174] and [175], 1971.

The previous theorem, applied to commutative semigroups, gives the following
their characterizations:

Theorem 4.11. The following conditions on a semigroup S are equivalent:

(1) S is a semilattice of Abelian groups;

(ii) S is a strong semilattice of Abelian groups;

(iii) S is regular and commutative;

(iv) S is quasi-regular and commutative;

(v) S is regular and a subdirect product of Abelian groups with a zero possibly
adjoined. '
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Various other characterizations of the semigroups considered here in terms of
two-sided, one-sided, bi- and quasi-ideals we refer to the book of Steinfeld {301],
1978, the survey paper of Lajos [187], 1991, and other their papers given in the
list of references.

4.2. Completely regular rings. In this section we will see that many of the
concepts from Theory of semigroups considered in the previous section coincide in
Theory of rings and are equivalent to the complete regularity. But, in Theory of
rings we have many interesting special types of completely regular rings, such as
Jacobson rings, p-rings, Boolean rings etc, whose main properties will be presented
here.

The first theorem that we quote here gives various equivalents of the complete
regularity of rings.

Theorem 4.12. The following conditions on a ring R are equivalent:

(i) R Is completely regular;
(i) R is left (right) regular;
(1ii) R is regular and intra-regular;
(iv) R is inverse;
{v) R is a Clifford ring;
(vi) R is regular and has no non-zero nilpotents;
(vii) R is a regular (left, right) duo ring;
(viii) R is an intra-regular (left, right) duo ring;
(ix) R is a (left, right) quasi-regular (left, right) duo ring;
(x) R is regular and a subdirect sum of division rings;
(xi) any left (right, bi-) ideal of R is a regular ring;
(xiil) AN B = AB, for any left ideal A and any right ideal B of R;
(xiii) AN B = AB, for all left (right) ideals A and B of R;
{xiv) AN B = AB, for all quasi-ideals A and B of R;
(xv) any quasi-ideal of R is globally idempotent.

The equivalence of conditions (v), (vi) and (vii) was proved by Schein in [276],
1966, although (vi) = (vii) was first stated by Calais in [67], 1961. The equivalence
of (vi) and (xvi) is due to Kovdacs [160], 1956, of {vii), (xii) and (xiii) is due to
Lajos [166], 1969, and [169], 1970, while (i) ¢ (xiii) is due to Andrunakievich
[8]. 1964, (vii) & (xiv) was proved by Lajos in [175], 1971, and Steinfeld in [299],
1971, (vi) & (x) by Forsythe and Mc Coy in [117}, 1946, (ii) & (xi) by Lajos in
[184], 1983, (ii) & (v) is from Lajos and Szasz [189] and [190], 1970. The proof
of (iii) & (xv) can be found in Steinfeld [301], 1978. Finally, the equivalence of (i)
and (ii) is an immediate consequence of the result of Azumaya given in Section 2
as Theorem 2.9. '

Let us hold our attention on the equivalence of the conditions (vi) and (x) of
the above theorem. This result can be viewed as a consequence of a more general
result obtained by Andrunakievich and Ryabuhin in [9], 1968, given by the following
theorem:
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Theorem 4.13. A ring R has no non-zero nilpotent elements if and only if it
is a subdirect sum of rings without zero divisors.

A proof of this theorem can be found also in their book [10], 1979 (see also
Thierrin [327], 1967). In the commutative case this theorem was proved by Krull
in [161], 1929, and [162], 1950.

An analogue of the previous theorem holds in Theory of semigroups. It was
proved by Park, Kim and Sohn in [233], 1988, and it follows directly from the
theorem that asserts that any completely semiprime ideal of a semigroup is an
intersection of some family of their completely prime ideals. The proofs of this
theorem given by Petrich in [241], 1973, and Park, Kim and Sohn in [233], 1988,
include an essential use of the Zorn lemma, but Ciri¢ and Bogdanovi¢ showed in [87)
and [91], 1996, that its proof can be derived from the general theory of semilattice
decompositions of semigroups, without recourse to transfinite methods.

Let us also note that direct sums of division rings were characterized by Ger-
chikov in [126], 1940, by the following theorem:

Theorem 4.14. A ring R Is a direct sum of division rings if and only if it
has no non-zero nilpotent elements and it satisfies minimum conditions on left (or
right) ideals.

In the case of commutative rings we have

Theorem 4.15. The following conditions on a ring R are equivalent:

(1) R is regular and commutative;
(i1) R is quasi-regular and commutative;
(iii) R is regular and a subdirect sum of fields.

As we said before, several special types of completely regular rings are of the
great importance in Theory of rings. The first of these types are Jacobson rings,
which one defines in the following way: A ring R is called a Jacobson ring if for
any a € R there exists n € N, n > 2 such that a™ = a. This condition is known
as the Jacobson’s a™ = a condition. This condition has appeared in investigations
. of algebraic algebras without nilpotent elements over a finite field, carried out
by Jacobson in [148], 1945. In this paper Jacobson proved that such algebras are
commutative and as a consequence he obtained the following very important result:

Theorem 4.16. (Jacobson’s a” = a theorem) Any Jacobson ring is commu-
tative.

This theorem can be viewed as a generalization of the celebrated Wedderburn’s
theorem from [342], 1905, which asserts that any finite division ring must be a field.

A complete characterization of Jacobson rings, in few ways, is given by the next
theorem, which is an immediate consequence of the Jacobson’s a™ = a theorem and

Theorem 4.12.
Theorem 4.17. The following conditions on a ring R _are equivalent:

(i) R is a Jacobson ring;
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(ii) R is commutative, regular and periodic;

(i) R is completely regular and periodic;

(iv) R is regular and a subdirect sum of periodic fields;
(v) MR is a semilattice of periodic groups;

(vi) MR is a semilattice of periodic Abelian groups.

A special case of Jacobson rings are the rings satisfying the semigroup identity
of the form z™ = z, where n > 2 is an integer. Such rings were studied by Ayoub and
Ayoub in {13], 1965, Luh in [203] and [204], 1967, and others. Luh characterized
in [203], 1967, these rings in terms of p*-rings, which are introduced by Mc Coy
and Montgomery in [211], 1937, in the following way: A ring R is called a p*-ring
if there exists a prime p and a positive integer k such that R has the characteristic
p and it satisfies the identity o =z Rings defined in such a way with kK = 1 are
known as p-rings. The theorem proved by Luh in [203], 1967, is the following;:

Theorem 4.18. The following conditions on a ring R are equivalent:

(i) R satisfies the identity ™ = z, for some integer n > 2;
(ii) R satisfies the identity P = z, for some prime p;
(iii) R is a direct sum of finitely many p*-rings.

Particularly, p-rings are characterized by the following theorem:

Theorem 4.19. Let p be a prime. A ring R is a p-ring if and only if it is a
subdirect sum of fields of integers modulo p.

Let us emphasize that p-rings, and consequently p*-rings, trace one’s origin to
the famous Boolean rings, defined as rings whose any element is an idempotent.
The following theorem characterizes these rings:

Theorem 4.20. The following conditions on a ring R are equivalent:

(i) R is a Boolean ring;

(ii) R is a 2-ring;

(i) R is a subdirect sum of fields of integers modulo 2;
(iv) MR is a band;

(v) MR is a semilattice.

For more information on Boolean rings, and especially on their connections
with Boolean algebras, we refer to the book of Abian {1], 1976, the paper of Stone
[302], 1936, and others.

Various subdirect and direct sums whose summands are division rings or inte-
gral domains were studied by Kovécz in [160], 1956, Sussman in [306], 1958, Abian
in [2], 1970, Chacron in [69], 1971, Wong in [345], 1976 and others.

5. Uniformly 7r-regular semigroups and rings

In Section 2 we seen that the left regular, right regular, intra-regular and group
part of a completely w-regular semigroup (ring) coincide, but in the general case,
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they form a proper subset of the regular part of S. This motivates as to give the
following definition: a w-regular semigroup (ring) S is called uniformly n-regular
if every its regular element is completely regular. Similarly, a 7-regular semigroup
(ring) whose any regular element is left (resp. right) regular will be called left (resp.
right) uniformly 7-regular. We will see later that all of these notions coincide.

The subject of this section are some general structural properties of uniformly
w-regular semigroups and rings. We will also consider uniformly w-inverse (resp.
left uniformly w-inverse, right uniformly w-inverse) semigroups (rings), defined as
uniformly w-regular semigroups (rings) which are also 7-inverse (resp. left 7-inverse,
right m-inverse), and uniformly periodic semigroups (rings), defined as semigroups
(rings) which are both uniformly w-regular and periodic.

5.1. Uniformly m-reqular semigroups. One of the celebrated results in
Theory of semigroups is the theorem of Tamura from [314], 1956, which asserts
that any semigroup has a greatest semilattice decomposition, whose components are
semilattice indecomposable semigroups. The smallest semilattice congruence on a
semigroup, which corresponds to this decomposition, has various characterizations,
but two of these characterization, given by Tamura in [317], 1972, and Putcha
in [257], 1974, are especially interesting. Namely, T. Tamura proved that the
transitive closure of the relation — on a semigroup S is a quasi-order on S whose
symmetric opening, i.e. 1ts natural equivalence, equals the smallest semilattice
congruence on S. On the other hand, M. S. Putcha started from the relation — on

S, defined as the symmetric opening of —, i.e. — =— N{—)~!, and he proved
that the smallest semilattice congruence on S equals the transitive closure of —.
In the special case when the relations — and — are transitive, we obtain exactly

semigroups having a decomposition into a semilattice of Archimedean semigroups,
as demonstrated by the following theorem:

Theorem 5.1. The following conditions on a semigroup S are equivalent:

(1) S is a semilattice of Archimedean semigroups;
(i) (Va,beS)a—b = a>—b;
(iii) (Va,b,c€ S)a—b&b—c = a—¢
(iv) (Va,b,c€S)a—c&b—c = ab— ¢
(v) (Va,be S)a—b = a®>—b;
(vi) (Va,b,c€ S)a—b& b—c = a—c;
(vii) (Va,b,c€ S)a—c& b—c = ab—c;
(viii) (Va,b€ S) a®> — ab;
(viii)’ (Va,b € S) b* — ab;
(ix) VA is an ideal (or left ideal, right ideal) of S, for any ideal A of S;
(x) VSabS = V/SaSN+/SbS, for all a,b€ S.

The first characterization of semilattices of Archimedean semigroups was given
by Putcha in [255], 1973, who proved the equivalence of conditions (i) and (ii) of
the above theorem. The equivalence of the conditions (ii), (iii) and (iv) was proved
by Tamura in [316], 1972. The condition (ii) is known as the power property, (iii)
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is the transitivity and (iv) is known as the common multiple property, or shortly
cm-property of a relation. The equivalence of the conditions (i), (v), (vi) and (vii)
was established by Bogdanovi¢, Ciri¢ and Popovié in [62], Ciri¢ and Bogdanovi¢
in [83], 1993, showed the equivalence of the conditions (i), (viii), (viii)’ and (ix),
while Kmet in [157], 1988, proved (i) < (ix). The condition (x) is obtained from
a more general result given by Ciri¢ and Bogdanovi¢ in [87), 1996.

Semilattices of left Archimedean semigroups are characterized by the following
theorem:

Theorem 5.2. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of left Archimedean semigroups;

(i) (Va,b€S)a~—b = a-b;

(iii) (Va,b€ S) a - ab;

(iv) VL is an ideal (or right ideal) of S, for any left ideal L of S;
(v) V/Sab=/San+/Sb, foralla,b € S.

The equivalence (i) < (i1) was proved by Putcha in [258], 1981, (i) < (iii) by
Bogdanovi¢ in [34], 1984, and the equivalence of (i), (iv) and (v) was established
by Bogdanovi¢ and Ciri¢ in [43], 1992.

By the previous theorem and its dual one obtains:

Theorem 5.3. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of t-Archimedean semigroups;

(ii) (Va,b€S)a——b = a-b;

(iii) (Va,b€ S) a — ab & b -2 ab;

(iv) VB is an ideal of S, for any bi-ideal B of S.

Supplying the above considered semigroups with the intra-m-regularity we ob-
tain the following two theorems:

Theorem 5.4. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of simple semigroups;
(i1) S is a semilattice Archimedean semigroups and it is intra w-regular;
(iii) S is intra-w-regular and any [J -class of S containing an intra-regular element
is a subsemigroup;
(iv) (Va,b € S)(In € N) (ab)™ € S(ba)"(ab)"S.

The equivalence of conditions (i), (ii) and (iii}) was given by Putcha in [255],
1973.

Theorem 5.5. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left simple semigroups;

(i) S is a semilattice left Archimedean semigroups and it is intra-m-regular;
(1) S is a semilattice left Archimedean semigroups and it is left w-regular;
(iv) (Va,b € S)(3n € N) (ab)™ € S(ad)"a.
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The next theorem, which characterizes semilattices of left completely Archime-
dean semigroups, was proved by Bogdanovi¢ and Ciri¢ in [59].

Theorem 5.6. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left completely Archimedean semigroups;
(i1) S is a semilattice of Archimedean semigroups and it is left w-regular;
(i) S is left w-regular and each L-class of S containing a left regular element is
a subsemigroup;
(iv) S is left w-regular and each J-class of S containing a left regular element
is a subsemigroup;

(v) (Va,b € S)(3n € N) (ab)” € Sa{ab)™.

Finally, we go to the uniformly @-regular semigroups. These semigroups are
characterized by the following theorem:

Theorem 5.7. The following conditions on a semigroup S are equivalent:
(i) S is uniformly m-regular;
(i) S is left (or right) uniformly w-regular;
(ii1) S is a semilattice of completely Archimedean semigroups;
(iv) S is a semilattice of Archimedean semigroups and it is completely n-regular;
(v) S is a semilattice of left completely Archimedean semigroups and it is right
m-regular;
(vi) S is a semilattice of left completely Archimedean semigroups and it is -
regular;
(vii) S is m-regular and any L-class of S containing an idempotent is a subsemi-
group;
(viii) S is completely m-regular and any J-class of S containing an idempotent is
a subsemigroup;
(ix) S is completely m-regular and any D-class of S containing a regular element
is a subsemigroup;
(x) S is completely m-regular and A, and B, don’t divide S through completely
m-regular subsemigroups of S;
(xi) (Va,b € S)(3n € N){(ab)™ € (ab)"bS{ab)";

The first characterization of semilattices of completely Archimedean semi-
groups was given by Putcha in [255], 1973, who proved that the conditions (iii),
(iv) and (viii) are equivalent. The equivalence of the conditions (i), (iii), (ix) and
(x) was stated without proofs by Shevrin in [282], 1977, and [284], 1981, and it was
proved in [285], 1994. Some of these conditions, and also some other conditions
equivalent to the uniform m-regularity of semigroups, were independently found
by Veronesi in [339], 1984. The conditions (ii), (v), (vi) and (vii) were given by
Bogdanovi¢ and Cirié¢ in [59], while (xi) is from Bogdanovi¢ [38], 1987.

Next we give the results obtained by Bogdanovié in [34], 1984, Bogdanovié
and Ciri¢ in [54], 1995, and Shevrin in [286], 1994.

Theorem 5.8. The following conditions on a semigroup S are equivalent:

(i) S Is a semilattice of nil-extensions of rectangular groups;
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(ii) S is m-regular and for all a,z € S, a = axa implies a = az?a?;
(i) S is uniformly m-regular and any inverse of any idempotent of S is an
idempotent;
(iv) S is uniformly w-regular and for all e, f € E(S) there exists n € N such
that (ef)™ = (ef)™*;
(v) S is completely n-regular and (ab)’ = (ab)®(ba)®(ab)?, for all a,b € S.

The results collected in the next theorem were also obtained by Bogdanovié in
[34], 1984, Bogdanovi¢ and Ciri¢ in [54], 1995, and Shevrin in [286], 1994.

Theorem 5.9. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left groups;
(if) S is a semilattice of left Archimedean semigroups and it is m-regular (or
right w-regular, completely m-regular);
(iii) S is left uniformly m-inverse;
(iv) S is w-regular and for all a,z € S, a = aza implies az = za’z;
v) S is completely w-regular and (ab)? = (ab)°(ba)°, for all a,b € S.
(vi) (Va,b€ S)(3n € N) (ab)™ € (ab)"S(ba)™.

Finally, semilattices of nil-extensions of groups are characterized by the follow-
ing theorem:

Theorem 5.10. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of groups;
(ii) S is a semilattice of t-Archimedean semigroups and it is w-regular (or intra-
m-reqular, left w-regular, right w-regular, completely w-regular);
(iii) S is w-regular and for all a,z € S, a = aza implies az = xa;
(iv) S is uniformly m-inverse;
(v) S is completely m-regular and (ab)? = (ba)°, for all a,b € S.
(vi) (Va,b€ S)(3n € N) (ab)™ € (ba)*S(ba)™.

The equivalence of the conditions (i) and (iv) was established by Veronesi in
[339], 1984, of (i), (ii), (iii) and (vi) by Bogdanovi¢ in [34], 1984, and of (i) & (v)
was proved by Shevrin in [286], 1994, and Bogdanovi¢ and Cirié in [54], 1995.

5.2. Uniformly m-regular rings. Uniformly n-regular rings have also a very
interesting structure characterization, given by the following theorem:

Theorem 5.11. The following conditions on a ring R are equivalent:

(i) R is uniformly w-regular;
(i) R is w-regular and Nil(R) is an ideal od MR;
(iii) R is w-regular and Nil(R) is an ideal od R;
(iv) R is w-regular and an ideal extension of a nil-ring by a Clifford ring;
(v) MR is a semilattice of completely Archimedean semigroups;
(vi) MR is a semilattice of left (or right) completely Archimedean semigroups;
(vil) MR is a semilattice of Archimedean semigroups and R is w-regular.
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The equivalence of the conditions (v), (ii) and (iii) was proved by Putcha in
[258], 1981, for completely m-regular rings, and the same proof was translated to
n-regular rings by Ciri¢ and Bogdanovié in [81], 1992, where also it was proved
that (i), i.e. {v), is equivalent to (iv) and (vii). The equivalence of the conditions
(v) and (vi) follows by Theorems 2.8 and 5.7.

Note that an analogue of the equivalence (v) < (vii) is not valid in Theory
of semigroups. For example, bicyclic semigroups are regular and simple, but these
are no uniformly m-regular.

As we will see later, the condition (iv) has a great importance, since it gives a
possibility to represent uniformly w-regular rings by Everett’s sums.

Problem. Can the equivalence of the conditions (i), (ii), and (iii) of the previous
theorem be proved if in (ii) and (iii) we omit the assumption that R is w-regular?

Some special cases of uniformly 7n-regular rings are also interesting. First we
give
Theorem 5.12. The following conditions on a ring R are equivalent:

(i) R is uniformly n-regular and for all e, f € E(R) there exists n € N such
that (ef)" = (ef)™*!;
(ii) R is uniformly w-regular and (ef)? = (ef)3, for all e, f € E(R);
(1ii) MR is a semilattice of nil-extensions of rectangular groups.

Rings whose multiplicative semigroups can be decomposed into a semilattice
of nil-extensions of left groups were investigated by Bogdanovi¢ and Ciri¢ in [44],
1992, who proved the following theorem:

Theorem 5.13. The following conditions on a ring R are equivalent:

(i) MR is a semilattice of nil-extensions of left groups;
(ii) R is left w-inverse;
(ili) R is left completely m-inverse;
(iv) R is w-regular and ea = eae, for any a € R and e € E(R);
(v) R is w-regular and E(R) is a left regular band.

The previous theorem and its dual yield the next theorem, proved also by
Bogdanovi¢ and Ciri¢ in [44], 1992.

Theorem 5.14. The following conditions on a ring R are equivalent:

(i) MR is a semilattice of nil-extensions of groups;

(it) R is w-inverse;

(iii) R is completely m-inverse;

{(iv) R is uniformly m-inverse;

(v) R is m-regular and the idempotents of R are central;
i)

(vi) R is w-regular and E(R) is a semilattice.

In the case of completely m-regular rings with an identity, Putcha in [258],
1981, showed that the above considered concepts coincide. Namely, he proved the
following:
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Theorem 5.15. The following conditions on a completely n-regular ring R
with the identity are equivalent:

(i) MR is a semilattice of left Archimedean semigroups;
(il) MR is a semilattice of right Archimedean semigroups;
(iil) MR is a semilattice of t-Archimedean semigroups;
(iv) the idempotents of R are central.

s

In the mentioned paper, M. S. Putcha gave an example of a ring that is a
semilattice of right Archimedean semigroups, but it is not a semilattice of left
Archimedean semigroups.

5.3. Uniformly periodic semigroups and rings. There are examples that
the property “being a semilattice of Archimedean semigroups” is not a hereditary
property. Semigroups on which this property is hereditary were investigated by
Bogdanovi¢, Ciri¢ and Mitrovi¢ in [60], 1995, where the following theorem was
given:

Theorem 5.16. The following conditions on a semigroup S are equivalent:

(1) any subsemigroup of S is a semilattice of Archimedean semigroups;
(ii) (Va,b€ S) ab 1 a?;
(i)’ (Va,b€ S) ab?1¥?;
(iii) S satisfies one of the following variable identities over As:
(a) {(zy)" = w|w € A3z2A} U A3z, n € N};
(b) {(zy)" = wlw € A3y2A3 UyAs, n € N};
(¢) {(zy)"z = w|w € A3z® A}, n € N};
(d) {(zy)"z = w|w € A3y? A3 UyAs U Ay, n € N}

Semigroups in which the property “being uniformly m-regular” is hereditary
are exactly the uniformly periodic semigroups. This is demonstrated by the next
theorem, proved in the same paper of S. Bogdanovi¢, M. Ciri¢ and M. Mitrovi¢.

Theorem 5.17. The following conditions on a semigroup S are equivalent:
(1) S is uniformly periodic;
(i) S is a semilattice of nil-extensions of periodic completely simple semigroups;
(iii) S is periodic and a semilattice of Archimedean semigroups;
(iv) any subsemigroup of S is uniformly w-regular;
(v) (Va,b € S)(3n € N) (ab)” = (ab)" ((ba)™(ab)™)";
(v)’ (Va,b€ S)(In € N) (ab)™ = ((ab)™(ba)™(ab)™)";
(vi) S satisfies one of the following variable identities over A,:
(a) {(zy)" = w|w € A3z? A3 U Az, |w| # 2n, n € N};
(b) {(zy)" = w|w € A3y>A3 UyA;, [wl # 20, n € N);
(0) {(ay)"z = wlw € A32> A3, Jw| #2041, n € N);
(d) {(zy)"r = w|w € A3Y2AZUYAL U A%y, |lw] #2n+ 1, n € N}.

The next theorem, which describes the structure of uniformly periodic rings,
is due to the authors.
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Theorem 5.18. The following conditions on a ring R are equivalent:
(i) R is uniformly periodic;

(ii) R is an ideal extension of a nil-ring by a Jacobson'’s ring;

(i) any subring of R is uniformly w-regular;

(iv) any subsemigroup of MR is uniformly n-regular;

v) MR is a semilattice of nil-extensions of periodic completely simple semi-

groups.

A special type of the above considered rings, namely the rings which are ideal
extensions of a nil-ring by a Boolean ring, were studied by Hirano, Tominaga and
Yaqub in [142], 1988, where the following theorem was proved:

Theorem 5.19. The following conditions on a ring R are equivalent:

(i) R is an ideal extension of a nil-ring by a Boolean ring;
(ii) (Va € R) a — a? € Nil(R);
(ii) R is [E(R), Nil(R)]-representable;
(iv) R is uniquely [E(R), Nil(R)]-representable.

In the same paper, Y. Hirano, H. Tominaga and A. Yaqub also considered the
condition of the form

(#)n (Va € R) z — 2™ € Nil(R),

where n € N, n > 2. By the above theorem, Nil(R) form an ideal of R, whenever a
ring R satisfies (# )2, but this does not holds for all » € N. Necessary and sufficient
conditions for n, under which Nil(R) is an ideal of R, for any ring R satisfying (#)x,
are determined by the following theorem, proved also in the above mentioned paper.

Theorem 5.20. Let n € N, n > 2. Then the following conditions are equiva-
lent:

(i) Nil(R) is an ideal of R, for any ring R which satisfies (#)n;
(ii) n Z 1{mod 3) and n #Z 1 (mod 8);
(iii) for each prime p, n # 1 (mod p* — 1);
(iv) for each prime p, M>(GF(p)) fails to satisfy (#).,.

5.4. Nil-extensions of unions of groups. The subject of this section are
semigroups decomposable into a nil-extension of a union of groups. In other words,
these are w-regular semigroups in which the group part form an ideal, and they are
one of the most significant special cases of uniformly 7-regular semigroups.

Except the mentioned semigroups, here we also consider certain their special
types, such as retractive, nilpotent and retractive nilpotent extensions of unions
of groups. Recall that we say that a semigroup S is a retractive extension of a
semigroup K if S is an ideal extension of K and there exists a retraction of S onto
K. These are extensions which can be more easily constructed than many other
kinds of extensions, and this make important their investigation.
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For n € N, a retractive (n + 1)-nilpotent extension S of a semigroup K was
called by Bogdanovi¢ and Mili¢ in [65], 1987, an n-inflation of K. These authors
also gave a general construction for such extensions. It is important to note that
1-inflations are called simply inflations, while 2-inflations are also known as strong
inflations. Inflations of semigroups were first defined and studied by Clifford in
[102], 1950, and strong inflations by Petrich in [238], 1967.

The first theorem which we quote here was proved by Bogdanovié¢ and Ciri¢ in
[41], 1991, and it describes nil-extensions of regular semigroups.

Theorem 5.21. A semigroup S is a nil-extension of a regular semigroup if
and only if for all z,a,y € S there exists n € N such that xa"y € za"ySza"y.

An immediate consequence of the previous theorem is the following:

Theorem 5.22. A semigroup S is a nil-extension of a union of groups if and
only if for all x,a,y € S there exists n € N such that za™y € za™yzSza™y.

Nil-extensions of semilattices of left groups are characterized similarly:

Theorem 5.23. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of left groups;
(ii) (Vz,a,y € S)(In € N) za™y € za"ySya™z;
(iil) S is w-regular and for all x,a,y € S there exists n € N such that za™y €
zSz.

The equivalences (i) < (iii) and (i) < (iv) are from Bogdanovi¢ and Ciri¢ [41],
1991, and [46], 1992, respectively.

When we deal with retractive nil-extensions of regular semigroups, the follow-
ing theorem has a crucial role:

Theorem 5.24. A semigroup S is a retractive nil-extension of a regular semi-
group if and only if it is a subdirect product of a nil-semigroup and a regular
semigroup.

The above theorem was proved by Bogdanovi¢ and Ciri¢ in [45], 1992. The
same authors in another paper [46], 1992, proved the following:
Theorem 5.25. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a union of groups;
(ii} S is a subdirect product of a nil-semigroup and a union of groups;
(iii) (Vz,a,y € S)(3n € N) za™y € 225y

A very interesting property of retractive nil-extensions of unions of groups was
found by Bogdanovié and Cirié in [41], 1991, who gave:

Theorem 5.26. Let a semigroup S be a nil-extension of a union of groups
K. Then an arbitrary retraction ¢ of S onto K has the following representation:

ap=ea ifa€VG,, forec E(S) (a € 8).
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In view of the Munn’s lemma (Theorem 2.12), if the above condition is fulfilled,
then ae = ea € G, so also ap = ae.
The next theorem was proved by Bogdanovié¢ and Ciri¢ in [46], 1992:

Theorem 5.27. A semigroup S is a retractive nil-extension of a semilattice
of left groups if and only if it is w-regular and the following condition holds:

(Vz,a,y € S)(3n € N) za™y € z°Sz.

Nil-extensions of Clifford semigroups (semilattices of groups) one considers in
the following theorem:

Theorem 5.28. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a semilattice of groups;
(ii) S is a retractive nil-extension of a semilattice of groups;
(iii) (Vz,a,y € S)}(3In € N) za"y € za"ySya™r Nya"zSza™y;
(iv) S is w-regular and for all z,a,y € S there exists n € N such that za™y €
xSz NySy.

The equivalence (i) < (ii) was proved by Bogdanovi¢ and Ciri¢ in [41], 1991.
The remaining conditions are derived from Theorem 5.23 and its dual.

Now we pass from nil-extensions to the nilpotent ones. For an arbitrary n € N,
a semigroup S which is an (n+ 1)-nilpotent extension of a regular semigroup (resp.
union of groups) can be characterized by a simple condition S+ C Reg(S) (resp.
Sn+l C Gr(S)). But, (n + 1)-nilpotent extensions of semilattices of left groups
have a more interesting characterization, given by the following theorem:

Theorem 5.29. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an (n + 1)-nilpotent extension of a semilattice of left groups;
(i1) S is m-regular (or right w-regular) and xS™ = 5™z, for any z € S;
(111) (VI1,$27 ., Tpy1 € S) T1Z2 - Tpy1 € T1T2 - '$n+15$1-

The equivalence of the conditions (i) and (iii) was proved by Bogdanovié¢ and
Stamenkovi¢ in [66], 1988.

As was proved by Bogdanovié¢ and Ciri¢ in [45), 1992, retractive nilpotent
extensions of regular semigroups can be also characterized in terms of subdirect
products:

Theorem 5.30. Let n € N. A semigroup S is an n-inflation of a regular
semigroup I{ if and only if it is a subdirect product of K and an (n + 1)-nilpotent
semigroup.

Applying this theorem to n-inflations of unions of groups we obtain the fol-
lowing:
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Theorem 5.31. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(1) S is an n-inflation of a union of groups;
(i1) S is a subdirect product of a union of groups and an {n + 1)-nilpotent

semigroup;
(iii) (Vz,y € S) zS" 1ty = 2257y°.

The equivalence of conditions (i) and (ii) was proved by Bogdanovié¢ and Mili¢
in [65], 1987. In the case n = 1 this was shown by Bogdanovi¢ in [37], 1985.
Next we quote

Theorem 5.32. Let n € N. A semigroup S is an n-inflation of a semilattice
of left groups if and only if the following condition holds:

Vz € §)zS™ = 225"z,
(

This theorem was proved by Bogdanovi¢ and Stamenkovi¢ in [66], 1988 (see
also Bogdanovié¢ and Ciri¢ [46], 1992), and by Bogdanovi¢ in [38], 1987, in the case
n=1

This section we finish giving the following theorem:

Theorem 5.33. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an (n + 1)-nilpotent extension of a semilattice of groups;
(ii) S is an n-inflation of a semilattice of groups;
(iii) (Vz,y € S) za™y € y?S™z.

These results are due to Bogdanovié¢ and Mili¢ [65], 1987. Inflations of semi-
lattices of groups were described in a similar way by Bogdanovi¢ in [37], 1985.

5.5. Nil-extensions of unions of periodic groups. The class of semigroups
which are nil-extensions of unions of groups, and certain its subclasses, have very
nice characterizations in terms of variable identities, which will be presented in this
section. Except the results whose origins we quote explicitly, all remaining results
are unpublished results of the authors.

For a given n € N, n > 3, at the start of the section we deal with semigroup
identities over A, of the form

(1) T1u(Ta, ..., Tn—1)Tn = W(T1,T2,... ,Tp),

and the following conditions concerning them:

(A1) for a fixed ¢ € {1,...,n}, z; appears once on one side of (1) and at most
twice on another side;
(B1) || # ful +2;
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(C1.1) z7 §fw; (C1.2) h¥(w) =z (C1.3) Ah(w) # zy;
i
(D1.1) z, fw; (D1.2) t@(w) = 22; (D1.3) t(w) # zn;
and we also deral with identities of the form
(2) ziu(zo, ... ,Zn) = 0(T1,. .. ,Tn_1)Tn,

and the following conditions concerning them:

(A2) for a fixed ¢ € {1,...,n}, z; appears once on one side of (2) and at most
twice on another side;

(B2) lul # [vf;

(C2.2) h®(v) =z (C2.3)  h(v) # x1;

(D2.2) P (u) = 22; (D2.3) t(u) # zn.

Let us observe that the following implications hold: (C1.2) = (C1.1)&(A.1),
(C1.3) = (C1.1), (D1.2) = (D1.1) & (A.1), (D1.3) = (D1.1), (C2.2) = (A2) and
(D2.2) = (A2).

The next five theorems are due to the authors:

Theorem 5.34. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a union of periodic groups;
(ii) (Vz,a,y € S)(Im,n € N) za™y = (za™y)™t!;
(iii) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (1) having the properties (Al), (B1), (C1.1) and (D1.1).

Theorem 5.35. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a union of periodic groups;
(i) (Vz,a,y € S)(In € N) za™y = z"Ha™y"t!;
(ili) (Vz,a,y € S)(3n € N) za"y"*t! = z"Hla"y;
(iv) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (1) having the properties (B1), (C1.2) and (D1.2);
(v) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (2) having the properties (B.2), (C2.2) and (D2.2).

Theorem 5.36. The following conditions on a semigroup S are equivalent:

(i) S is a nil-extension of a semilattice of periodic left groups;
(ii) (Vz,a,y € S)(3n € N) za"y = zayz™;
(iii) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (1) having the properties (A1), (B1), (C1.1) and (D1.3)

Theorem 5.37. The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a semilattice of periodic left groups;

(i) (Vz,a,y € S)(3n € N) za™y = z"Tla"yz™; :

(1) (Vz,a,y € S)(3n € N) za™ya™ = " a"y;

(iv) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (1) having the properties (B1), (C1.2) and (D1.3);
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(v) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (2) having the properties (B2), (C2.2) and (D2.3).

Theorem 5.38. The following conditions on a semigroup S are equivalent:
(i) S is a nil-extension of a semilattice of periodic groups;
(ii) (Vz,a,y € S)(3n € N) zay = y"za"yz";
(iii) (Vz,a,y € S)(3n € N) za"y" 1a™ = a2 la"y;
(iv) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (1) having the properties (A1), (B1), (C1.3) and (D1.3);
(v) for an integer n > 3, S satisfies the variable identity consisting of all iden-
tities of the form (2) having the properties (A2), (B2), (C2.3) and (D2.3).

For n € N, now we deal with semigroup identities over 4, of the form
(3) T1L2 " Tntl :'U)(.'El,xg,... 7$n+1)7

and the following conditions concerning them:

(A3) for a fixed i € {1,...,n + 1}, x; appears once on one side of (3) and at
most twice on another side;
(B3) w| > n+2:
(C3.1) =z fw; (C3.2) AP (w) = z}; (C3.3) h(w) # =;
]

(D3.1) Ty fw;  (D12) tPN(w) =274y (D13) H(w) # Tny;

The next theorems characterize various types of nilpotent extensions of unions
of groups.

Theorem 5.39. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an (n + 1)-nilpotent extension of a union of periodic groups;
(i) (VZ1,Z0,-.. ,Zn € S)(BM € N) 129 -+ Ty = (T1Z2 - Ty )™
(iil) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (A3), (B3), (C3.1) and (D3.1).

The equivalence (i) < (i) was proved by Bogdanovié¢ and Mili¢ in [65], 1987,
and for n = 1 by Bogdanovi¢ in [37], 1985. A condition similar to (iii) was given by
Putcha and Weissglass in [263], 1972 (they required that the condition (A3) holds
forallie {1,2,... ,n+1}).

Theorem 5.40. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an n-inflation of a union of periodic groups;
(i) (VZ1,T2,..- ,Zn € S)(AM € N) 2123 -+ Tpyp1 = :c;""sz .- -xnaszl_:ll;
(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (B3), (C3.2) and (D3.2).

The equivalence of the conditions (i) and (ii) was established by Bogdanovié
and Milié in [65], 1987, whereas in the case n = 1 this was shown by Bogdanovié
n [37], 1985.
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Theorem 5.41. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an (n + 1)-nilpotent extension of a semilattice of periodic left groups;
(i) (Vz1,22,...,20 € S)(BM EN) 1129 - Tpyy = T1T2 - Tp1 LT
(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (A3), (B3), (C3.1) and (D3.3).

A condition equivalent to (i), and similar to (ii), was given by Bogdanovi¢ and
Stamenkovié¢ in [66], 1988, and by Bogdanovi¢ in [38], 1987, for the case n = 1.
These remarks hold also for the next theorem.

Theorem 5.42. Let n € N. Then the following conditions on a semigroup S
are equivalent:

(i) S is an n-inflation of a semilattice of periodic left groups;
(i) (Vx1,22,...,2, € S)(BMEN) z122 - Tpyy = a:i"“:rg R MERE A
(i) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (B3), (C3.2) and (D3.3).

Theorem 5.43. Let n € N. Then the following conditions on a semigroup S
are equivalent:
(i) S is an (n + 1)-nilpotent extension of a semilattice of periodic groups;
(ii) S is an n-inflation of a semilattice of periodic groups;
(i) (Vz1,Z2,...,20, € S)YBM EN) 212y Ty = T4 T1 0 Tnp1 T
(iii) S satisfies the variable identity consisting of all identities of the form (3)
having the properties (A3), (B3), (C3.3) and (D3.3).

The equivalence (i) < (iii) was proved by Bogdanovi¢ and Mili¢ in [65], 1987,
while (i) & (iv) was shown by Putcha and Weissglass in [263], 1972. The related
results concerning the case n = 1 were given by Bogdanovi¢ in [37], 1985, and
Putcha and Weissglass in [262], 1971. The equivalence of the conditions (i) and
(ii) was obtained as a consequence of Theorem 5.28.

The theorems characterizing nilpotent and nil-extensions of bands, left regu-
lar bands and semilattices, and their retractive analogues, are very similar to the
previous ones, so they will be omitted. We only note that the variable identities
describing these semigroups consist of the corresponding identities from the above
theorems, having an additional property:

(A1-3)* for a fixed © € {1,...,z,} (resp. i € {1,...,zn}, ¢ €{1,... ,Tns1}), Ts
appears once on one side of (1) (resp. (2), (3)), and exactly twice on
another side.

This condition forces all subgroups of a semigroup to be one-element.

5.6. Direct sums of nil-rings and Clifford rings. In Section 5.2 we have
seen that the set of nilpotents of a m-regular ring is a ring ideal if and only if it is a
semigpoup.ideal. Here we show that this.property also holds for the group part of
such 4 ringl i.e. that the group part of a ﬂ—yehula.r ring is a ring ideal if and enly

et |
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if it is a semigroup ideal. In this case we get a decomposition of this ring into a
direct sum of a nil-ring and a Clifford ring, as it is demonstrated by the following
theorem:

Theorem 5.44. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a nil-ring and a Clifford ring;
(ii) R is a subdirect sum of a nil-ring and a Clifford ring;
(i) R is a strong extension of a nil-ring by a Clifford ring;
(iv) R is uniquely (Gr(R), Nil(R))-representable;
v) R is w-regular and uniquely (LReg(R), Nil{R))-representable;
(vi) R is w-regular and E(R) is contained in a reduced ideal of R;
(vii) MR is a nil-extension of a completely regular (or a Clifford) semigroup;
(viil) MR is a retractive nil-extension of a completely regular (or a Clifford)
semigroup;
(ix) MR is a subdirect product of a nil-semigroup and a completely regular (or
a Clifford) semigroup;
(x) MR is a direct product of a nil-semigroup and a completely regular (or a
Clifford) semigroup.

The equivalence of conditions (i), (v) and (vi) was proved by Hirano and Tomi-
naga in [141], 1985, and of (i) and (ii) by Bell and Tominaga in [23], 1986, Tominaga
[332]. For some related results see also Tominaga {331]. Ciri¢ and Bogdanovi¢ in
[80], 1990, showed that the conditions (iii), (vii) and (viii) are equivalent, and in
[90], 1996, they established the equivalence of the conditions (i), (vii) and (x).
The implications (i) = (ii) and (ii) = (ix) are obvious, while (ix) = (viii) is an
immediate consequence of Theorem 5.24.

For some related results see also Bell and Yaqub [24], 1987, and Abu-Khuzam
and Yaqub [4], 1985. Certain more general decompositions can be found in Hirano
and Tominaga [141], 1985, and Bell and Tominaga [23], 1986.

On the other hand, a special case of the above decompositions are decompo-
sitions into a direct sum of a nil-ring and a Jacobson ring. The results concerning
these decompositions are collected in the following theorem:

Theorem 5.45. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a nil-ring and a Jacobson ring;
(i1) R is a subdirect sum of a nil-ring and a Jacobson ring;
(iii) R is uniquely (P(R), Nil(R))-representable;
(iv) E(R) - No(R) = N3(R) - E(R) = 0 and R is [P(R), Nil(R)]-representable;
(v) R is periodic and E(R) is contained in a reduced ideal of R;
(vi) MR is a nil-extension of a union (or a semilattice) of periodic groups;
(vii) MR is a retractive nil-extension of a union (or a semilattice) of periodic
groups;
(viii) MR is a subdirect product of a nil-semigroup and a union (or a semilattice)
of periodic groups;
(ix) MR is a direct product of a nil-semigroup and a union (or a semilattice)
of periodic groups.
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The conditions (i}, (iil) and (iv) are equivalent by theorems proved by Bell and
Tominaga in [23], 1986, and Hirano, Tominaga and Yaqub in [142], 1988, although
(1) « (iii) was proved by Bell in [20], 1985, and Hirano and Tominaga in [141],
1985, under the assumption that R is periodic. The condition (v) is assumed from
Hirano and Tominaga {141], 1985. The equivalence of the conditions (i), (vii), (viii)
and (ix) was established by Ciri¢ and Bogdanovi¢ in [90], 1996.

By the next theorem we describe direct sums of nil-rings and Boolean rings.

Theorem 5.46. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a nil-ring and a Boolean ring;
(ii) R is a subdirect sum of a nil-ring and a Boolean ring;
(i) R is a strong extension of a nil-ring by a Boolean ring;
(iv) E(R) - N2(R) = N2(R) - E(R) = 0 and R satisfles one of the conditions of
Theorem 5.19;
(v) E(R)-N3(R) = Ny(R) - E(R) =0 and R is (E(R), Nil(R))-representable;
(vi) E(R)-N2(R) = No(R)-E(R) = 0 and R is uniquely (E(R), Nil{R))-represen-
table;
) MR is a nil-extension of a band (or a semilattice);
) MR is a retractive nil-extension of a band (or a semilaitice);
x) MR is a subdirect product of a nil-semigroup and a band (or a semilattice);
) MR is a direct product of a nil-semigroup and a band (or a semilattice).

Hirano, Tominaga and Yaqub in [142], 1988, proved that (i), (iv), (v) and (vi)
are equivalent. The remaining conditions were given by Ciri¢ and Bogdanovi¢ in
[80], 1990, and [90], 1996.

In the rest of the section we present the results characterizing direct sums of
nilpotent rings and of Clifford, Jacobson and Boolean rings.

Theorem 5.47. Let n € N. Then the following conditions on a ring R are
equivalent:
(i) R is a direct sum of an (n + 1)-nilpotent ring and a Clifford ring;
(if) R is a subdirect sum of an (n + 1)-nilpotent ring and a Clifford ring;
(iif) (Va € R) aR™ = aR"aq;
(iv) (Va € R) aR™ C R™a?;
(v) (Va € R) aR™ = a’R" & R"a = R"d?;
)
)

<

(vi) R™*! C LReg(R) (or R™*! C RReg(R));
(vii) MR is an (n+1)-nilpotent extension of a completely regular (or a Clifford)
semigroup;
(vili) MR is an n-inflation of a completely regular (or a Clifford) semigroup;
(ix) MR is a subdirect product of an (n + 1)-nilpotent semigroup and a com-
pletely regular (or a Clifford) semigroup;
(x) MR is a direct product of an (n+ 1)-nilpotent semigroup and a completely
regular (or a Clifford) semigroup. '

The conditions (iii) and (iv) are equivalent to their left-right analogues.

The equivalence of the conditions (i}, (iii), (iv) and (v) was proved by Chiba
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and Tominaga in [75], 1976, the condition (vi) is assumed from Komatsu and
Tominaga [138], 1989, and the remaining conditions are from Ciri¢ and Bogdanovi¢
[80], 1990, and [90], 1996. Note that the assertion (i) < (iii) is a consequence of
Theorems 2.8 and 5.29.

Theorem 5.48. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a null-ring and a Clifford ring;

(ii) R is a subdirect sum of a null-ring and a Clifford ring;

(i) (Va € R) aR = aRa;

(iv) (Va € R) aR C Ra?;

(v) (Va € R) aR = a’R & Ra = Ra?;

(vi) MR is a null-extension of a completely regular (or a Clifford) semigroup;

(viii) MR is an inflation of a completely regular (or a Clifford) semigroup;

(ix) MR is a subdirect product of a null-semigroup and a completely regular
(or a Clifford) semigroup;

(x) MR is a direct product of a null-semigroup and a completely regular (or a

Clifford) semigroup.

The conditions (ii) and (iv) are equivalent to their left-right analogues.

Rings satisfying (iii) were first studied by Szdsz in {309], 1972, and they are
known as P -rings. The equivalence of the conditions (i) and (iii) was established
by Ligh and Utumi in [301], 1974, and of (i), (iv) and (v) by Chiba and Tominaga
in [74], 1975.

Theorem 5.49. Let n € N. Then the following conditions on a ring R are
equivalent:
(i) R is a direct sum of an (n + 1)-nilpotent ring and a Jacobson ring;
(i1} R is a subdirect sum of an (n + 1)-nilpotent ring and a Jacobson ring;
(iii) R*™! C P(R);
(iv) MR satisfies a variable identity consisting of all identities of the form:

2
T1T2 - Tpy1 = (T1T2 - Tppr ) U,

withu € Al ;

(v) MR is an (n+1)-nilpotent extension of a union (or a semilattice) of periodic
groups;

(viii) MR is an n-inflation of a union (or a semilattice) of periodic groups;

(ix) MR is a subdirect product of an (n + 1)-nilpotent semigroup and a union
(or a semilattice) of periodic groups;

(x) MR is a direct product of an (n + 1)-nilpotent semigroup and a union (or
a semilattice) of periodic groups.

Characterizations of direct sums of (n + 1)-nilpotent rings and Jacobson rings
through the conditions (iii) and (iv) were given by H. Komatsu and H. Tominaga,
while the remaining conditions are due to the first two authors of this paper.
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Theorem 5.50. The following conditions on a ring R are equivalent:

(i) R is a direct sum of a null-ring and a Jacobson ring;
(ii) R is a subdirect sum of a null-ring and a Jacobson ring;
(iii) (Va,b € R)(3p(z,y) € Z(z,y)) ab= (ab)*p(a,b);
(iv) (Va,b€ R)(3p(z,y) € Z{z,y)) ab = (ba)*p(a,b);
(v) MR satisfies a variable identity consisting of all identities of the form zy =
(zy)™+!, with m € N;
(vi) MR is a null-extension of a union (or e semilattice) of periodic groups;
(vil) MR is an inflation of a union (or a semilattice) of periodic groups;
(viii) MR is a subdirect product of a null-semigroup and a union (or a semilat-
tice) of periodic groups;
(ix) MR is a direct product of a null-semigroup and a union (or a semilattice)
of periodic groups.

The equivalence (i) < (v) was proved by Ligh and Luh in [200], 1989, and
(iii) and (iv) are assumed from Bell and Ligh [22], 1989.

Note that the above considered rings are commutative. An elementary proof
of the commutativity of rings satisfying the condition (v) was given by O Searcéid
and Mac Hale in [232], 1986.

Note that all direct sums of nil-, nilpotent and null-rings and Jacobson rings
considered above can be characterized in terms of variable identities, using the
semigroup-theoretical results presented in the previous section. The next three
theorems, which were proved by Bell in [18], 1977, follow immediately from such
obtained characterizations.

Theorem 5.51. Let R be a ring satisfying one of the following variable iden-
tities over As:

(a) {zy = w||zlw > 2, |ylw > 2};

(b) {zy =w|w =yz", n €N, n>2};

(c) {zy=w|w=y"z, n€N, n>2};

(d) {zy = w|lylo = 0, [w| > 3);

(e) {zy = wllzlw =0, lw| 2 3};

(f) {zy = w|w = z™yz™, m,n € N};

(8) {zy = w|w=y™zy", m,n € N}.
Then R is commutative.

Theorem 5.52. If a periodic ring R satisfies a variable identity zy = w(z,y),
with w = yx, or h(w) = y and |z|, > 2, then R is commutative.

Theorem 5.53. If a ring R satisfies a variable identity zy = w(x,y), with
h{w) = y and |z|y > 2, then R is commutative.

6. Semigroups and rings satisfying certain semigroup identities

There are many semigroup identities for which it was observed that they in-
duce certain structural properties on semigroups on which they are satisfied. But,
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the general problem of finding all semigroup identities inducing a given structural
property was first stated by Clarke in [78], 1981, and in a more general form in the
Ph. D. thesis of Ciri¢ [79], 1991, and in the paper of Ciri¢ and Bogdanovi¢ [83],
1993. This problem was formulated in the following way:

(P1) for a given class X of semigroups, find all semigroup identities u = v having
the property [u = v] C X.
It was also stated one similar problem:

(P2) for given classes A} and A3 of semigroups, find all semigroup identities u = v
having the property [u = v]N A} C A5. :
Identities having the property {u = v] C X are called X'-identities, and identities

having the property [u = v] N &; C X, are called X > Xs-identities.

In other words, (P1) is the problem of finding all identities having the property
that every semigroup satisfying them must be in X, and (P2) is the problem of find-
ing all identities having the property that every semigroup from X; satisfying them
must be in X,. Problems of this type were treated only in the mentioned papers
of Clarke, Ciri¢ and Bogdanovié, and also by Ciri¢ and Bogdanovié in [84], 1994,
and [88], 1996. The results obtained in these papers, which characterize all iden-
tities that induce decompositions of semigroups into a semilattice of Archimedean
semigroups and nil-extensions into a union of groups, will be presented in Sections
1 and 2. In Section 3 we show how these results can be applied in Theory of rings.

As was proved by Chrislock in [77], 1969, any semigroup which satisfies a het-
erotype identity is a nil-extensions of a periodic completely simple semigroup, and
hence, any ring satisfying a heterotype semigroup identity is a nil-ring. Therefore,
studying of heterotype semigroup identities is not so interesting, and in this sec-
tion we aim our attention only to homotype semigroup identities. Our topic under
question will be identities of the form

(1) w(zy,za,...,2n) = 0(T1,Z2,... ,Tp),

where u,v € A} and c{u) = ¢(v) = 4,, n € N,n > 2. We will also treat a
particular case

(2) u(z,y) = v(z,y),

where u,v € AT and c(u) = c(v) = A,.
Before we give the results promised above, we introduce the following nota-
tions:

Notation | Class of semigroups| Notation Class of semigroups
A Archimedean CA completely Archimedean
LA left Archimedean LG left groups

TA t-Archimedean G groups

S semilattices N nil-semigroups

R w-reqular Ni k + 1-nilpotent

CS completely simple UG unions of groups
MxG rectangular groups
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Let X; and X5 be classes of semigroups. By A} o A» we denote the Maljcev’s
product of classes X; and A5, i.e. the class of all semigroups S on which there exists
a congruence p such that S/p is in A, and every p-class which is a subsemigroup
is in Xj. This product was introduced by Mal'cev in [206], 1967. The related
decomposition is called an A} o X;-decomposition. It is clear that X oS is the class
of all semilattices of semigroups from the class X. If A; is a subclass of the class NV,
then X] o A is a class of all semigroups which are ideal extensions of semigroups
from A} by semigroups from X,. Also, in such a case, by A; ® X> we denote a class
of all semigroups which are retract extensions of semigroups from X by semigroups
from As.

6.1. On Ao S-identities. Various types of A o S-identities have been inves-
tigated by many authors. The commutativity identity zy = yz is an identity for
which it has been first proved that it is an Ao S-identity. This was done by Tamura
and Kimura in [319], 1954. After that, the same property was established by Chris-
lock in [76], 1969, for the medial identity: z,22%324 = T1232224, by Tamura and
Shafer in [321], 1972, Tamura and Nordahl in {320], 1972, and Nordahl in [225],
1974, for the ezponential identity: (zy)" = z"y", n € N, n > 2, by Schutzenberger
in {277], 1976, for the identity (zy)" = ((zy)"(yz)"(zy)")n, n € N, by Sapir and
Suhanov in [275], 1985, for the identity (zy)™ = ((xy)m(ya:)m)n(zy)’", m,n € N,
and identities of the form z1za - Tn+1 = W(T1,T2,... ,Tnt1), » € N, etc. But,
the first general characterization of all A o S-identities was given by Ciri¢ and
Bogdanovi¢ in [83], 1993, who proved the following theorem:

Theorem 6.1. The following conditions for an identity (1) are equivalent:
(i) (1) is an A o S-identity;
(i1) (1) is not satisfied on the semigroup By;
(iii) there exists a homomorphism ¢ : A} — A3 and a permutation 7 of a set
{u, v} such that one of the following conditions hold:
(A1) (um)g € (zy)* and (vm)p ¢ (zy)*;
(A2) (um)yp € (zy)*z and (vr)p ¢ (zy)*z;
(iv) there exists k € N and w € A3z%A3 U A3y A} such that

[u=1] C [(zy)* = w].

One description of all identities which are satisfied on the semigroup B, was
given by Mashevitskii in [208], 1979, but it is quite complicated.

Using the above theorem, for many other significant semigroup identities it
can be proved that they are A o S-identities. For example, this can be proved
for permutation identities, by which we mean identities of the form z,z5- -z, =
T15Z25 - Tno, Where o is a non-identical permutation of the set {1,2,.:. ,n}, for
gquasi-permutation identities, which have the form

— 2
Ty TRo1YTh o Tn = Tl T(1-1)0Y Tlo * Tnos
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for some permutation ¢ of the set {1,2,...,n} and some k,l € {2,...,n}, and
other.

In the mentioned paper of Ciri¢ and Bogdanovié¢ [83], from 1993, the authors
also investigated some special types of A o S-identities, and all theorems from 6.4
to 6.9 were proved in this paper.

The next theorem says that the set of all A o S-identities coincides with the
set, of all identities which forces all 7-regular semigroups to be uniformly 7-regular.

Theorem 6.2. The identity (1) is a R > C.A o S-identity if and only if (1) is
an A o S-identity.

The following theorem, which is a consequence of the previous two theorems,
give an answer to one problem stated by Shevrin and Suhanov in {288], 1989, con-
cerning semigroup varieties consisting of semilattices of Archimedean semigroups.

Theorem 6.3. Let X' be a variety of semigroups. Then the following condi-
tions are equivalent:
(i) X CAoS;
{(if} X does not contain the semigroup By;
(iii) any regular semigroup from X is completely regular;
(iv) any completely 0-simple semigroup from X has no zero divisors;
(v) in any semigroup with zero from X the set of all nilpotents is a subsemi-

group;
(vi} in any semigroup with zero from X the set of all nilpotents is an ideal.

More information on semigroup varieties contained in A o S can be found in
Schutzenberger [277], 1976, Sapir and Suhanov [275], 1985, Shevrin and Volkov
[287], 1985, and Shevrin and Suhanov [288], 1989.

The next two theorems characterize identities which induce decompositions of
w-regular semigroups into a semilattice of left Archimedean semigroups and into a
semilattice of t-Archimedean semigroups.

Theorem 6.4. The following conditions for an identity (1) are equivalent:
(i) (1) is a 7R > (LG o N) o S-identity;

(1) (1) is not satisfied on semigroups By and R,;

(iii) (1) is an A o S-identity and t(u) # ¢(v).

Theorem 6.5. The following conditions for an identity (1) are equivalent:
(i) (1) is a 7R > (G o N) o S-identity;

(i) (1) is not satisfied on semigroups By, Ry and Ls;

(iii) (1) is an A o S-identity, h(u) # h(v) and t{u) # t(v).

Using the previous theorems, it can be proved that the identities of the form
Tl TnTmal  Tmtn = Tmtl " Tmen] - - Tn, called the (m,n)-commutativity
identities, are T.Ao S-identities. These identities were intensively studied by Babc-
sanyi in [15], 1991, Babcsanyi and Nagy in [16], 1993, Lajos in [185], 1990, and
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[186], 1991, and by Nagy in [221], 1992, and [222], [223], 1993. The assertion that
these identities are 7 A o S-identities was proved by Lajos in [185], 1990.
The next two theorems were also given by Ciri¢ and Bogdanovié¢ in [83], 1993:

Theorem 6.6. The following conditions for an identity (1) are equivalent:
(i) (1) isa7Rp> (CS ®N) o S-identity;

(ii) (1) is not satisfied on semigroups By, L3 1 and Rz 1;

(iii) (1) is an A o S-identity, h®) (u) # h®(v) and t?)(u) # t3) (v).

Theorem 6.7. The following conditions for an identity (1) are equivalent:
(i) (1) isanR o (LG ® N) o S-identity;

(ii) (1) Is not satisfied on semigroups By, L3 1 and Ry;

(iii) (1) is an A o S-identity, h{?) (u) # h{?)(v) and t(u) # t(v).

Identities over the two-element alphabet were systematically investigated by
Ciri¢ and Bogdanovié in [88], 1996. In this paper it was shown that A4 o S-identities
over the two-element alphabet have a more simple characterization, given by the
following theorem:

Theorem 6.8. The identity (2) is a A o S-identity if and only if it is p-
equivalent to one of the following identities:
(Bl) zy = w(z,y), where w # zy;
(B2) (zy)* = w(z,y), wherek € N, k> 2 and w ¢ (zy)*;
(B3) (zy)*z = w(z,y), where k € N and w ¢ (zy)* z;
(B4) zy* = w(z,y), wherek € N, k> 2 and w ¢ zyt;
(B5) z*y = w(z,y), where k € N, k> 2 and w ¢ zy.

In the same paper the authors proved the following two theorems:

Theorem 6.9. The following conditions for the identity (2) are equivalent:

(i) (2) is a LA o S-identity;
(ii) (2} is not satisfied on semigroups By and Rg;
(i) (2) is a A o S-identity and t(u) # t(v).

Theorem 6.10. The following conditions for the identity (2) are equivalent:

(i) (2) is a T A o S-identity;
(i1) (2) is not satisfied on semigroups By, Ry and Lo;
(ii1) (2) is a A o S-identity, t(u) # t(v) and h(u) # h(v).

Note that there are not any characterizations of £A o S-identities and T Ao S-
identities over the alphabet with more than two letters.
The next two theorems were also proved in [88]:

Theorem 6.11. The identity (2) is a CS > M x G-identity if and only if one
of the following conditions holds:

(C1) h(u) # h(v) or t(u) # t(v);
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(C2) (1) is p-equivalent to some identity of the form

:L,m]ynll_mgyng . Imhynh — :rklyllszyIQ . _zksyls

mi,ng, kj,l; €N, withged(pe,py.h—s) =1, wherep, = Z?:l mi—y.° k;

=1
h
andpy =3 o ni— Z]s.zl ;.
(C3) (1) is p-equivalent to some identity of the form

zmlynll‘mgyng c.p™n y"h.’limh“ — zklyllzbylz . IksylsIk£+l

mi,ni, kj,l; € N, withged(pz, py, h—s) = 1, wherep, = Z?:ll mi—Z;:i k;
h
andpy =37 ma— 201 s

Theorem 6.12. The identity (2) is a mR o (M x G o N) o S-identity if and
only if (2) is a A o S-identity and a CS > M x G-identity.

6.2. On UG o N-identities. There are many papers in which some types
of UG o N-identities have been investigated. The identity zy = y™z™, for m,n €
N, m +n > 3, was studied by Tully in [334], the identity zy = (zy)™, m €
N, m > 2, by Gerhard in [127], 1977, the distributive identities zyz = zyzz
and zyz = zzyz by Petrich in [239], 1969, etc. Various UG o A-identities of
the form z;1xs - - Tper = w(zy, 22, ... ,Tny1) were investigated by Bogdanovié¢ and
Stamenkovié in [66], 1988, Ciri¢ and Bogdanovi¢ in [80], 1990, Tishchenko in [328),
1991, and others. Tamura in {310}, 1969, stated the general problem of describ-
ing structure of semigroups satisfying an identity of the form zy = w(z,y), where
|w] > 3, known as Tamura’s problem. Various cases appearing in this problem were
treated in the mentioned paper of Tamura, and also by Lee in [196], 1973, Clarke
in [78], 1981, and Bogdanovi¢ in [38], 1987. Complete solutions of all possible cases
of the Tamura’s problem were given by Ciri¢ and Bogdanovié in [88], 1996. More
information on problems of Tamura’s type can be found in another survey paper
of Bogdanovi¢ and Cirié [49], 1993.

A complete description of all /4G o A/-identities was given by Ciri¢ and Bog-
danovi¢ in [84], 1994, by the following theorem:

Theorem 6.13. The following conditions for an identity (1) are equivalent:

(1) (1) is a UG o N-identity;

(ii) (1) is not satisfied on semigroups Cy 1, C, 2 and Cy 5;
(iii) M(u) # O(v) and (1) is p-equivalent to some identity of one of the following

forms:
(D1) 1w (T2, Tn) = V(T1,. .., Tn1)Tn,
where 1 } v’ and z, fu';
l r
(D2) Tu'T, =0,

where z1,x, tu';21 § v’ and z, f v';
i T
(D3) 1w (Z2, ... ,2n) =V (22,... ,xo)T1.

In the same paper the next two theorems were obtained:
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Theorem 6.14. The following conditions for an identity (1) are equivalent:
(i) (1) is a (£G o S) o N-identity;

(i) (1) is not satisfied on semigroups Cy 1, Ci 2, C2; and Ry;

(iii) (1) is a UG o N-identity and t(u) # t(v).

Theorem 6.15. The following conditions for an identity (1) are equivalent:
(i) (1) is a (G o S) o N-identity;
(ii) (1) isa (G o S) ® N-identity;
(111) (1) is not satisfied on semigroups Cy 1, Cy 2, C21, Ry and Ly;
(iv) (1) is a UG o N-identity, t(u) # t(v) and h(u) # h(v).

Identities which induce retractive nil-extensions of a union of groups were
characterized in the following way:

Theorem 6.16. The following conditions for an identity (1) are equivalent:
(1) (1) is a UG ® N -identity;

(ii) (1) is not satisfied on semigroups C; 1, C12, €21, Lg; and Rs ;;

(iit) (1) is a UG o N-identity, h® (u) # h(v) and tP(u) # tP)(v).

Theorem 6.17. The following conditions for an identity (1) are equivalent:
(i) (1) is a (LG o S) ® N-identity;

(i) (1) is not satisfied on semigroups C; 1, Cy12, Ca1, L3 and Ry;

(iil) (1) is a UG o N-identity, h® (u) # h® (v) and t(u) # t(v).

Further we consider identities which induce nilpotent and retractive nilpotent
extensions of a union of groups. These identities are described by the next two
theorems which are also due to Ciri¢ and Bogdanovi¢ [84], 1994.

Theorem 6.18. Let k € N. Then the following conditions for an identity (1)
are equivalent:

(i) (1) is a UG o Ny-identity;

(i1) (1) is not satisfied on semigroups Cy1, Cy 2, Co1, Dy and Ngyq;
(iii) n < k + 1 and (1) is p-equivalent to some identity of the form

1Ty ... Ty — W,

where lw} > n+ 1,z § w and z,, f w.
! !

Theorem 6.19. Let k € N. Then the following conditions for an identity (1)
are equivalent:
(i) (1) is a UG ® Ny-identity;
(i1) (1) is not satisfied on semigroups Cy 1, C12, C21, L3 1, R3 1, Dy and Nyyq;
(iii) (1) is p-equivalent to some identity of the form

.’L‘ll'g....'l,'n = w,

where |w} > n + 1, R () # 2125 and t) (V) # zp_12,.
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Applying the above results to the case of identities over the two-element al-

phabet, Ciri¢ and Bogdanovi¢ obtained in [88], 1996, the following two theorems:

Theorem 6.20. The identity (2) is a UG o N-identity if and only if it is
p-equivalent to an identity of one of the following forms:
(F1) zy = w(z,y), where w # yz, w ¢ zy* and w ¢ =V y;
(F2) zy™ = z"y, wherem,n € N, m,n > 2.

Theorem 6.21. The identity (2) is a UG ® N-identity if and only if it is
p-equivalent to an identity of one of the following forms:
(G1) zy = w, where w € A}, Jw| > 3, A'® (w) # zy and t) (w) # zy;
(G2) zy™ = z™y, wherem,n € N, m,n > 2.

Finally, a consequence of the previous theorem is the following theorem proved
by Clarke in [78], 1981:

Theorem 6.22. A semigroup identity determines a variety of inflations of
unions of groups if and only if this identity has one of the following forms:
(i) = = w, where w # ;
(ii) zy = w, where w # yz is a word which neither begins nor ends with zy.

6.3. Rings satisfying certain semigroup identities. The results presented
in the previous two sections, together with the results given in Section 5, make a
possibility to give very nice descriptions of the structure of rings satisfying certain
semigroup identities. These descriptions will be presented in this section. But, we
first introduce some necessary notions.

For a semigroup identity u = v over the alphabet 4,, n € N, n > 2, and
for i € {1,2,...,n}, let p; = “l‘ilu - Ixilvl. If there exists 1 € {1,2,...,n}
such that p; # 0, then we say that u = v is a periodic identity, and the number
p = gcd(p1,pa, .- ,pn) is called the period of this identity. When we deal with
the two-element alphabet A = {z,y}, then p; = ||z]u — lzlo], Py = |yl — |y|u|
and p = ged(pg,py). Otherwise, if p; = 0, for any ¢ € {1,2,... ,n}, then we say
that the identity uw = v is aperiodic. In some origins periodic identities were called
unbalanced, and aperiodic identities were called balanced. But, our terminology is
justified by the following theorem:

Theorem 6.23. The following conditions for a semigroup identity u = v are
equivalent:
(i) [u = v] consists of m-regular semigroups;
(ii) {u = v] consists of completely n-regular semigroups;
(1) [u = v] consists of periodic semigroups;
(iv) u = v is a periodic identity.

As was noted by Ciri¢ and Bogdanovi¢ in [90], 1996, any group satisfying
a semigroup identity of the period p satisfies also the identity = = zP*!, and
any commutative semigroup satisfying the identity z = zP*!, satisfies also any
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identity of the period p. Using these properties and Theorems 5.44 and 6.13, in the
mentioned paper Ciri¢ and Bogdanovié proved the following

Theorem 6.24. A ring R satisfies an UG o N -identity of the period p if and
only if R is a direct sum of a nil-ring that satisfies the same identity and a nil-ring
that satisfies the identity x = P!,

As a consequence of this result, the same authors also obtained

Theorem 6.25. Any ring which satisfies the identity zy = w(x,y), with
w ¢ zyt UzTy, is commutative.

In the same paper the authors gave some examples which justify that the
previous assertion does not hold for identities of the form zy = zy™ and zy = 2"y,
n € N.

Many well-known results in Theory of rings are consequences of the above
quoted theorems. Here we present the results obtained by Abian and Mc Worter in
[3], 1964, and Lee in [196], 1973.

Let p be a prime. A ring R is called a pre p-ring if it is a commutative ring of
the characteristic p and it satisfies an identity xy? = zPy. The structure of these
rings was described by Abian and Mc Worter in [3], 1964, in the following way:

Theorem 6.26. Let p be a prime. A ring R is a pre-p-ring if and only if it is
a direct sum of a p-ring and a pre-p-nil-ring.

On the other hand, Lee investigated in {196}, 1973, rings satisfying a system
of identities (zy)" = zy = z"y". He proved the following two theorems:

Theorem 6.27. Let n € N, n > 2. A ring R satisfies a system of identities
(z+y)" =™ +y", (zy)™ = zy = z™y", if and only if it is a direct sum of a ring
satisfying the identity z = =" and a null-ring.

Theorem 6.28. A ring R satisfies a system of identities (zy)? = zy = z%y?
if and only if it is a direct sum of a Boolean ring a null-ring.

Except for the rings satisfying a G o N-identity, very nice structural descrip-
tions can be given for rings satisfying certain other A o S-identities, especially the
periodic ones. The main tool used in these descriptions are Theorems 5.11 and 6.1,
and the Everett’s representations of rings which follow by these theorems.

Here we present results concerning the structure of rings satisfying a semigroup
identity of the form

(3) z1~--zn:w(zl,...,$n),

where n € N, n > 2, ¢(w) = A, and |w| > n + 1. Identities of this form have been
investigated by many authors, and the general result characterizing rings satisfying
an arbitrary semigroup identity of this form was given by Ciri¢, Bogdanovi¢ and
Petkovié in [94], 1995.
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The identity (3) is a periodic A o S-identity. Let p be its period and let

h = max ({z lw=2z1 - zu(Tit1,--- ,Tn)} UO),
t = max ({l |w=1v'(21, ..., Tnot)Tnuts1 - Tn) UO).

The quadruplet (n,p, h,t) was called the characteristic quadruplet of the identity
(3) [94]. Clearly, h +t < n— 1, and the following conditions hold:

Ty Tn =21 Tpw(Thyl, o, Ta),

with Zpy1 fu, if h > 1,
1

t
Ty Tp = U (T, .. azn—t)zn—t+1 <o Tp,

with z,_( o/, if t > 1, and
T

Ty T =Ty TRU(Thal, Tnet)Ta—t41  Tn,
with Zpo1 fv, Tn-t v, ifR>1andt > 1.
l T
Using the above notion, M. Ciri¢, S. Bogdanovi¢ and T. Petkovié¢ proved the
following theorem:

Theorem 6.29. Let (3) be an identity with the characteristic quadruplet
(n,p, h,t). Then the following conditions for a ring R are equivalent:
(i) R satisfies (3);
(ii) R is an ideal extension of an n-nilpotent ring N by a ring satisfving the
identity z = zP*! and

N"1.E(R)=E(R)- N = E(R)-N - E(R) = 0;

(iii) R is an ideal extension of an n-nilpotent ring N by a ring satisfying the
identity r = zP*! and

N1 . Reg(R) = Reg(R) - N'*! = Reg(R) - N - Reg(R) = 0;

(iv) R= E(N,Q;6;1,1;(,)), where N is an n-nilpotent ring, Q is a ring satisfying
the identity x = zP*!, and

6°No° =0, for allb,c € Q.

Nit1gh — gb N+l — for each b€ Q.

In the particular case when the characteristic quadruplet of (3) has the form
(n,p,0,0), the same authors obtained the following:
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Theorem 6.30. Let (3) be an identity with the characteristic quadruplet
(n,p,0,0). Then a ring R satisfies the identity (3) if and only if R is a direct sum
of an n-nilpotent ring and a ring satisfying the identity z = zP+1.

The previous theorem is a consequence both of Theorems 6.24 and 6.29.
M. Ciri¢, S. Bogdanovi¢ and T. Petkovié¢ gave also a consequent classification
of semigroup identities over the two-element and the three-element alphabet.

Theorem 6.31. For the identity
(4) zy = w(z,y),

with w € AT, |w| > 3, there are exactly three possibilities:

(1) (4) has the characteristic quadruplet (2,p,0,0), and then a ring satisfies (4)
if and only if it is a direct sum of a ring satisfying ¢ = zP*! and a null-ring,
and consequently these rings are commutative.

(i1) (4) has the characteristic quadruplet (2,p,1,0), and this holds if and only
if it is of the form zy = zyP*!.

(iii) (4) has the characteristic quadruplet (2,p,0, 1), and this holds if and only
if it is of the form zy = zP*1y.

Theorem 6.32. For the identity

with w € Af, |w| > 4, there are exactly six possibilities:

(i) (5) has the characteristic quadruplet (3,p,0,0), and then a ring satisfies
(5) if and only if it is a direct sum of a ring satisfying z = zP*! and a
3-nilpotent ring.

(i1) (5) has the characteristic quadruplet (3,p,1,0), and this holds if and only
if it is of the form zyz = zu(y, z), |u| > 3.

(iil) (5) has the characteristic quadruplet (3,p,0,1), and this holds if and only
if it is of the form zyz = v(z,y)z, |v] > 3.

(iv) (5) has the characteristic quadruplet (3,p,2,0), and this holds if and only
if it is of the form zyz = TyzPT1.

(v) (5) has the characteristic quadruplet (3,p,0,2), and this holds if and only
if it is of the form zyz = Pt lyz.

(vi) (5) has the characteristic quadruplet (3,p,1,1), and this holds if and only
if it is of the form zyz = zyPt! 2.

Important particular types of the identities of the form (3) are the identities
xyz = zyzz and xyz = zzyz. Rings satisfying the first one are known as left
distributive (or left self distributive) rings, and the rings satisfying another identity
are right distributive (or right self distributive). These rings have an important role
when we study rings whose any additive endomorphism is also multiplicative (see
Birkenmeier and Heatherly [27], 1990). Left distributive rings were investigated by
Birkenmaier, Heatherly and Kepka in [29], 1992. Using Theorem 6.29, these rings
can be characterized as follows:
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Theorem 6.33. A ring R is left distributive if and only if it is an ideal ex-
tension of a 3-nilpotent ring N by a Boolean ring, and the following conditions
hold:

E(R)-N-E(R)=N-E(R)=E(R) - N*=0.

Rings which are both left and right distributive are known as distributive rings.
These rings are characterized by the following theorem proved by Petrich in [239],
1969.

Theorem 6.34. A ring R is distributive if and only if it is a direct sum of a
Boolean ring and a 3-nilpotent ring.

One generalization of distributive rings was introduced by Ciri¢ and Bog-
danovié¢ in [80], 1990, who defined a ring K to be n-distributive, wheren € N, n > 2,
if it satisfies the system of identities

T1Xo - Tny1 = (371552)(1113) T (I1$n+1),

T1T2 - Tnyy = (T1Tnt1)(T2Tny1)  (Tnlngr)-

These rings can be characterized as follows:

Theorem 6.35. A ring R is n-distributive if and only if it is a direct sum of
a ring satisfying the identity = ™ and a (n + 1)-nilpotent ring.

Note finally that rings satisfying identities of the form
1Ty Ty = wW(Ty, T2,... ,Tn)

(without the assumption |w| > n + 1) were studied by Putcha and Yaqub in {260],
1972. They proved that in such a ring R, the commutator ideal C'(R) is a nilpo-
tent ideal, and there exists m € N such that R™C(R)R™ = 0. Rings satisfying
permutation identities were studied by Birkenmeier and Heatherly in [26] and [28].
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INTRODUCTION

This lecture notes give a survey of basic facts related to geometry of manifolds
endowed with a torsion free connection. We pay the attention especially on geome-
tries which come from the existence on some characteristic torsion free connection
closely related to some metric, in general case of an arbitrary signature. So we study
in this spirit affine differential geometry, Weyl and Codazzi geometries. One can
join naturally these two structures: a torsion free connection and a metric, and the
corresponding groups of transformations. We present basic facts related to these
groups. To study geometry of manifolds endowed with a torsion free connection, a
powerful tool is, of course, the corresponding curvatures. Therefore the curvature
is appeared in all five sections of this lecture notes. In Section I we give the defini-
tions of curvatures and some of their properties. Section II is devoted to curvatures
which are invariant with respect to some groups of transformations. These groups
are closely related to classical groups: GL(m,R),U(m), SO(m) etc. We use well
developed representation theory of these groups to enlight curvature from this point
of view. It is the content of Section III. To prove the irreducibility of some vector
space of curvatures one can use different methods. We pay the attention especially
on these ones closely related to the Weyl classical invariance theory. It allows to
study also some relations between topology and analysis of these manifolds with
their geometry. So we develop the theory of characteristic classes in Section IV and
differential operators of Laplace type in Section V. Among characteristic classes
we pay the attention on Chern classes and their dependence on some groups of
transformations and curvature symmetries. To fulfill our programme related to the
influence of Weyl classical invariance theory into the theory of differential operators
of Laplace type we study the heat equation method. Several operators of Laplace
type are studied more sistematically.

Finally, there are various possibilities to present some material related to this
topic. The author of this lecture notes choose this one closely related to her main
interest through previous twenty years. Her interest yields in the cooperation with
other colleagues a series of results which are presented too.

We omit the proofs as it is far from the framework of these notes. We rather
give the advantage to the results to present the riches of this topic to motivate the
readers into further investigations. Of course to go into this level we suggest to use
the corresponding monographs and papers, mentioned in the convenient moment
throughout this notes.

As it is usual the contribution of colleagues friends and institutions to the
quality of manuscript is significant. I would like to acknowledge all of them, bur
first of all to Prof. B. Stankovi¢, who has initiated and encouraged writing this
manuscript.



I. MANIFOLDS WITH A TORSION FREE CONNECTION

I.1. Definitions and basic notions

The straight lines play a very important role in the geometry of a plane. There-
fore, it would be useful to have lines on surfaces with the analogous properties to
these ones of straight lines. But the definition of such lines on surfaces is not so
evident as straight lines have several characteristic properties and hence it is not
clear which one should characterize “straight lines” on surfaces, i.e., which one can
be generalized, and specially which generalizations give the same and which one
give different lines. Among these properties are the followings:

(PL1) The curvature of a straight line (in a plane) vanishes.

(PL2) For any two points there exists the unique straight line which consists both
of them.

(PL3) The tangent vectors on a straight line are mutually parallel

All of these properties can be generalized for lines on a surface. To obtain this
one we use heavily a linear connection. Studying the same problem on a smooth
manifold M™ of the dimension m we need also a linear connection. Hence we give
its definition in a full generality. More details one can find in [61], [82], [85], etc.

Definition 1.1. Let X be the modul of vector fields over the ring of smooth
functions C®(M) on M. A linear connection on the manifold M is a map V :
X(M) x X(M) — X(M), such that for all z,y,z € X(M), 7 € Rand f € C®(M)
it yields

(i) Vely+2)=Vy+Vez and Vyry =1V,y,
(ii) Veiyz =Voz4+ Vyz and Viy = fV,y,
(iii) Vofy=(zf)y+ fV,y (Leibnitz formula).

The operator V, : X(M) — X(M) is the covariant derivative in the direction
of a vector field x. 0

If (u,U) is a chart and {8/8u'},, 1 < i < m the corresponding coordinate base
of tangent space T, M, for any p € U, then arbitrary vector field z can be given in
the following way ZX"%, Xt € C*(M). A linear connection V is determined
by the vector fields 3, Joui (0/0u?). It allows to introduce the Christoffel symbols
of V. :

Definition 1.2. Let V be a linear connection on the manifold M and (u,U)
a chart. Christoffel symbols of V with respect to the chart (u,U) are functions
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I“f]- € C*(M) defined by

0 . 0
Va/aw'(ﬁ) = a F?j&;ﬂ' ()

Let a: I — M be a curve. The tangent vector field T, of a curve « is given
by (Ta)aqr) = (ax)(d/dt),t € R. Usually we use the notation T for T, if there is no
confusion. Locally we have

dot %)
fot = Z dt “ <6“i>a(t)‘

Let y be a vector field defined along a curve a. We say y is parallel along o if
Vr,y = 0. A curve o on a manifold M is geodesic (with respect to the connection
V) if Vr,To = 0. Let (M,g) be a Riemannian manifold endowed with a linear
connection V. The connection V is metric if it satisfies

z9(y,z) = 9(Vzy,2) + 9(y, V= 2),
for all z,y,z € X(M). A linear connection V is symmetric or torsion free if we have
(1.1) Vey = Vyz = [z,y]

for all z,y € X(M). A connection V is torsion free if and only if it yields I'}; = I'¥;
for all 1 < 1,7,k < m in an arbitrary coordinate chart. There exists a unique metric
symmetric connection V on a Riemannian manifold (M, g). This connection V is
called Lewi-Civita connection.
Definition 1.3. The curvature tensor of type (1,3) of arbitrary connection V is
the map R : ¥xXxX — X defined by relation R(z,y)z = V;Vy2-V V. 2-V[, 2.
The curvature tensor of Levi-Civita connection is called Riemann curvature tensor.
a

In a local coordinate system one can find
0 7] 0 ;0
R(2, 2.0 oy gl
Ou’l’ Ouk/ dut Z K Gl
where the components Rjkil are defined by

m 0
Rjkzl = Flji,k - Flki,j + erirsnk and F;’i,k = -a?(rgz)

Riemann curvature tensor of type (0,4) isthe map R: X xXXxXxX — C®(M),
given by the relation R(z,y,z,w) = g{R(z,y)z, w).
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The curvature tensor of type (1,3) of arbitrary connection V satisfies the fol-
lowing relation

(1.2) R(z,y)z = — Ry, z)z;

for torsion free connection we have also

(1.3) R{z,y)z + R(z,z)y + R(y,2)z = 0,

(the first Bianchi identity), and

(1.4) (VuR)(z,y)z + (Vo R)(y,v)z + (V,R)(v,2)z =0

(the second Bianchi identity). Riemann curvature tensor fulfills all these relations
(1.2)~(1.4) and

(15) R(z,y,z,w) = _R(wayawaz)y
(1.6) R(w,z,2,y) = R(z,y,w,2).

The curvature tensor of a metric connection satisfies symmetry relations (1.2),
(1.5) and (1.6).

Let II be a 2-dimensional subspace of tangent space T,M. The sectional cur-
vature of I is K,(II) = R(z,y,y,z)(p), where {z,y} is an orthonormal base of II.
If z,y are two arbitrary vectors in II, then

— R(z7y’ y7$)
=Pyl — g(z.y)?’

K, (1)

where ||z||? = g(z,z). M is a space of the constant sectional curvature if K,(II)
is independent of the choice of Il in T, M, where p is an arbitrary point of M and
depends on p € M. The Riemann curvature tensor of this space is given by

R(u,v,z,w) = Kp(g(u, 2)9(v,w) = g(u, w)g(v, 2)).

If K,(II) is independent of Il in T, M in all p € M then K is same everywhere on
M.

Some information about the geometry of M give Ricci and scalar curvatures.
These curvatures are very powerful tool in studying of Einstein spaces and other
topics. Let ©p(xp, yp) : TpM — T, M be the map defined by the relation

9p(fl:pv yp)vp = R(Upv l'p)yp-

Then O,(z,,yp) is linear for all p € M and z,,y, € T, M. Consequently, there
exists the trace of ©p(xp, yp)-
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Definition 1.4. Ricci curvature tensor p is the correspondence between points
p € M and maps S, : Tp,M x T,M — R, given by p,(zp,yp) = trace(O,(z,,yp))-
Ricci curvature in a direction z is py(z, ). a

Definition 1.5. Let (M, g) be a Riemann manifold with Ricci curvature p.
The scalar curvature 7 of M in a point p is defined by 7 = Y"1, pp((zi)p, (zi)p),
where {z1p,...,Znp} is an orthonormal base of the tangent space T, M. O

Einstein space is Riemann space (M, g) such that p, = ~g,.

In general case Ricci curvature tensor is neither symmetric nor skew-symmetric.
But, p, corresponding to Levi-Civita connection is symmetric. Manifolds endowed
with special type connections will be studied in next sections.

A skew-symmetric Ricci tensor naturally appeared on manifolds which admit
absolute parallelizability of directions (see for example [100, §§49, 89]). More
precisely, it means the following. Let (M, V) be a differentiable manifold with a
symmetric connection V. If a vector field v defined along a curve -y collinear with
some parallel vector field w we say the direction of v is parallel. A manifold M
admits aebsolute parallelizability of directions if every direction given in a p € M
can be included in some field with parallel directions along every curve.

A skew-symmetric Ricci tensor is appeared also in the complete decomposition
of a curvature tensor for V in the spirit of the representation theory of classical
groups (see Section III).

»I.2. Affine differential geometry

Torsion free, Ricci symmetric connections arise naturally in affine differential
geometry and motivate the discussion of the previous section. We review this
geometry briefly and refer to {10], [33], [97], [111], [124] for further details.

Let A be a real afline space which is modeled on a vector space V' of dimension
m+1. Let V* be the dual space. If a € 2, we may identify To,2 =V and T;% = V*.

Let (-,-) : V* x V = R be the natural pairing between V* and V. Let z be a
smooth hypersurface immersion of M into 2. If p € M, let

C(M),={XeV*:(X,dz(v)) =0,Vv e T,M}

be the conormal space at p; we let C (M) be the corresponding conormal line bundle
over M. We assume C'(M) is trivial and choose a non vanishing conormal field X .

We say the hypersurface z(M) is regulor if and only if rank(X,dX)=m + 1,
for every point of M; we impose this condition henceforth. Then X is an immersion
X : M — V* which is transversal to X(M). Define y = y(X): M — V by the
conditions (X, y) =1 and (dX,y) = 0.

The triple (z,X,y) is called a hypersurface with relative normalization; we
remark that y need not be an immersion. The relative structure equations given
below contain the fundamental geometric quantities of hypersurface theory: two
connections V, V*, the relative shape (Weingarten) operator S, and two symmetric
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forms h and S. Let V be the flat affine connection on 2.

vvy = dy(v) = —d.’L‘(S(’U)),
(2.1) Vwdz(v) = dz(V,v) + h{v, w)y,
VwdX (v) = dX(Viv) — S(v,w)X.

The first equation is called the Weingarten equation, the second two are the Gauss
equations. Symmetric form h is called the Blaschke metric. Generally, it is indefi-
nite. If h is positive definite, this means that the immersed hypersurface z(M) is

locally strongly convex.

The relative shape operator S is self-adjoint with respect to h and is related to
the auxiliary shape operator S by the identity S(v,w) = h(S(v),w) = h(v, S(w)).
It is useful to define a (1, 2) difference tensor C, a totally symmetric relative cubic
form C’, and the Tchebychef form T by:

C = %(V -V, C,w,z):=h(C,w),z), T(z):=m! Trn(C(z,-)).

Let ;' denotes multiple covariant differentiation with respect to the Levi-Civita
connection V(h). T has the following useful symmetry property [123]: T.; = Tj.;.
We note that both V (the induced connection) and V* (the conormal connec-

tion) are torsion free connections on T'M. They are conjugate with respect to the

Levi-Civita connection; which implies 3(V + V*) = V(h). Consequently, we may

express V = V(h) + C and V* = V(h) - C.
The curvature tensors R, R*, R(h) of V, V*, V(h) respectively can be ex-
pressed by the Gauss equations

R(u,v)w = h(v,w)Su — h(u,w)Sv,
R*(u,v)w = S(v, w)u — S(u,w)v,
(22)  R(h)(w,v)u = C(C(w,u),v) — C(C(v,u),w)

+ %{S(v,u)w — S(w,u)v + h{v,u)S(w) — h{w, u)S(v)}.

Let Ri;, R};, R(h)i; be the components of Ricci tensors Rie, Ric”, Ric(h) for

V, V*, V(h) respectively relative to a local orthonormal frame. We use the metric
to raise and lower indices and identify S = S. Then:

Ri]' = éijSkk — SZ] and R:] = (m — 1)5,‘]'.

We denote the normalized mean curvature by H := m~1S;;; the normalized
traces are then equal

(m —1)7} Trp(Ric) = (m — 1)7! Try, Ric* = mH.

o L
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We construct the extrinsic curvature invariants of relative geometry from S
and h. Let {\',..., A} be the eigenvalues of S relative to h:

det(S — AR) = 0.

These are the principal curvatures. Let {Hy,...,Hn} be the corresponding
normed elementary symmetric functions. For example the relative mean curvature
is given by mH, = A + - + A"

We fix a volume form or determinant on 2. Then there is, up to orientation, a
unique equiaffine unimodular normalization which is invariant under the unimod-
ular group. Admitting arbitrary volume forms, all such normalizations differ by a
non-zero constant factor. The class of equiaffine normalizations can be character-
ized within the class of relative normalizations by the vanishing of the Tchebychev
form. We call such a hypersurface with equiaffine normalization a Blaschke hyper-
surface. The vanishing of T" simplifies the local invariants greatly.

We take y = —x to define the centroaffine normalization. This geometry is
invariant with respect to the subgroup of regular affine mappings which fix the
origin of . Let X, be the equiaffine conormal field and let { = —({z, X,) be the
equiaffine support, function. We choose the orientation so that { > 0. Then

N 2
S=h, H.=1 for r=1,...,m, and T———%dln(()

Among relative normalizations significant one is Euclidean normalization. Let
z : M — E be a hypersurface, let Y be a conormal and y transversal. The
pair {Y,y} is called a Fuclidean normalization with respect to the given Euclidean
structure of E if ¥ and y can be identified by the Riesz theorem and (Y y) = 1.
We write Y =y = p.

As a consequence of this definition one can express the regularity of a hypersur-
face in terms of Euclidean hypersurface geometry. More precisely, let z : M — E
be a hypersurface. Then the following properties are equivalent:

(i) z is non-degenerate.

(ii) The Euclidean Gauss-map is an immersion.

(iii) The Euclidean Weingarten operator is regular.

(iv) The third fundamental form III is positive definite on M.
{v) The second fundamental form II is regular.

We express the relative quantities (in the following on the left) for the Eu-
clidean normalization in terms of quantities of Euclidean hypersurface theory (on
the right).

(a) S(E) =1b, (b) R(E) =11, (c) V(E) = V(I),
(d) S(B)=111, () V*(E) =V(III),  (f) V(h) =V{I),
() —2C(E) = V(DIT = ~V(IIDII,  (h) —2C(E)(v,w) = b~ ((V(I).b)(w)),
(i) C(B) = 3(VU) ~ VD) = V(I) - V{II) = V(II) - V(III),
() T(E) = —5—d 1g|Hp (E)|, where b is the Weingarten operator.

Consider a pair of non-degenerate hypersurfaces z: M — V and *z : M — V*

such that (z,*z) = ~1, (d*z,z) = 0, and (z,dz) = 0. Such a pair is called a polar



92 Bokan

pair. These relations are satisfied for a non degenerate hypersurface z : M — V and
its centroaffine conormal map *z := X : M — V*. This indicates the important
role which centroaffine differential geometry has for the investigation of polar pairs.
We recall some facts about the controlling geometry of polar pairs and refer to [OS,
§7.2] for further details ‘

S=h=*h= 98
V="V V="V,
C=-*C, T=-"T, R="R

Let 4 be a unit normal on an Euclidean sphere S™(r) C E of radius r» and
with center z9. S™(r) can be characterized by the relation ru = x — zg, or more
generally by p and (z — z¢) being parallel. Studying quadrics we conclude that
all quadrics with center zo have the property that the equiaffine normal satisfies
y(e) = —H(e)z+zo. One can generalizes this notion in relative geometry as follows.

Let z : M — 2 be a regular hypersurface with relative normalization {Y,y}.
Then {z,Y,y} is called a proper relative sphere with center z¢ if

(2.3) y = Mz — z0), A€ C™(M).

{z,Y,y} is called an improper relative sphere if y = const # 0. A point p € M is
called a relative umbilic if the relative principal curvatures coincide

ki(p) = ka(p) = -+ = km(p).

A consequence of the Weingarten equation in (2.1) is that A = const in (2.3).

Since y = —z per definition in centroaffine geometry it follows any hyper-
surface with centroaffine normalization is a relative sphere with respect to this
normalization.

Usually relative spheres with respect to the equiaffine normalization are called
affine spheres (instead of equiaffine spheres). Any quadric is an affine sphere. If a
regular quadric has a center xg, it is a proper affine sphere with center z¢ (exam-
ples: ellipsoids, hyperboloids are proper affine spheres; paraboloids are improper
affine spheres). In the following theorems we give some characterizations of relative
spheres and affine ones.

Theorem 2.1. (a) Each of the following properties (i)-(vi) characterizes a
relative sphere: '

(i) S =X-id on M (where X € C®(M) and X # 0 for proper relative spheres

and X = 0 for improper relative spheres).

(i) S=X-hon M, A€ C®(M).

(iii) mV(W)T =+ C on M.

(iv) V(h)C is totally symmetric on M.

(v) VC is totally symmetric on M.
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(vi) Ric = Ric® on M.
(b) S = Ah implies A = const = H.
(c¢) If x is a relative sphere, then for eachp € M:
(i) p is an umbilic;
(i) 3 i, (ki = k;j)? = m||Hh = S|> = m[||S||®> - mH?] = 0. O

Theorem 2.2. Let z be regular with relative normalization {Y,y}. Then x is
a proper relative sphere with center x if and only if p(xo) = (Y, zo—x) = const # 0.

0
Theorem 2.3. A regular hypersurface z with relative normalization {Y,y} is
an improper relative sphere if and only if S = 0. ]

We refer to [10], [11], [32], [68}-[72], [74]-(76], [95], [111], [122], [134], for
many examples including classifications of subclasses of affine spheres.

The complete classification is yet unknown. One tries to classify subclasses of
affine spheres. In the following theorem is given a result related to this topic.

Theorem 2.4. A locally strongly convex affine hypersphere with constant
equiaffine sectional curvature is either a quadric or equiaffinely equivalent to the
hypersurface z'z* ... z™*! =1, where ' : A — R is a coordinate function. O

We refer to [133] for the proof.

In case of an indefinite metric there are classifications for m = 2 in [75], [120],
and for m = 3 in [76]. Other classifications results one can find in [31], [117],
[134], etc.

There is a serious of results about compact affine spheres where many of the
results are related to the spectral geometry of the equiaffine Laplacian (see [114],
[115], [119] etc). We refer also Section V of this paper.

In [122] was studied existence and uniqueness problem about 2-spheres. Cer-
tain types of PDE’s play an important role for the local and global classification of
affine spheres in the equiaffine theory. One of the first PDE which was used in the
theory of affine spheres is an expression for the Laplacian of the Pick invariant (see
[10, §76]). Simon [121] extends this PDE to non-degenerate hypersurface. Monge-
Ampere equations are used to investigate improper affine spheres and hyperbolic
affine spheres.

A characterization of quadrics and improper affine spheres in terms of symme-
try properties of VC and V2( is given in [22].

1.3. Weyl geometry

As we know the metric h of a semi-Riemannian manifold (AZ, k) is parallel
or covariantly constant with respect to the corresponding Levi-Civita connection.
The main purpose of this section is to study a torsion free connection ™V satisfying
the recurrence condition for the metric. This connection has been introduced by
H. Weyl.

Weyl [138] attempted a unification of gravitation and electromagnetism in a
model of space-time geometry combining both structures. His particular approach
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failed for physical reasons but his model is still studied in mathematics (see, for ex-
ample, [42], [49]-[53], [106], {130],) and in mathematical physics (see, for example
54)).

We begin our discussion by introducing some notational conventions. Let
(M,h) be a semi-Riemannian manifold of dimension m > 2. Fix a torsion free
connection PV, called the Weyl connection, on the tangent bundle of M. We begin
the definition of a Weyl structure by assuming that there exists a one-form 6 =6,
so that

(3.1) "Vh =20, ®h.

Let € = €{20} be the conformal class defined by h (for more details, see
Section II, 4), and let ¥ = T{20} be the corresponding collection of one-forms 0.
Here and in the following we identify metrics in € which merely differ by a constant
positive factor. So there is a bijective correspondence between elements of € and
of T. We will call the triple 20 = (¥V,€,T) a Weyl structure on M and we will

call (M,20) a Weyl manifold.
The compatibility condition described in equation (3.1) is invariant under so-
called gauge transformations

(3.2) h— gh:=ph and § = g6 := 0+ d—;—(ln 8),

for B € C(M). We note that C$°(M) acts transitively on € and on T.

It is well known that a Weyl structure 20 can be generated from a given
pair {h,0} (where h is a semi-Riemannian metric and where 6 is a 1-form) in the
following way. Let, u,v,... be vector fields on M and let *V = V(h) be the
Levi-Civita connection of h. Let 6 be the vector field dual to the 1-form 6, i.e.,
h(w,8) = B(w). We define a(u,v,w) := h((*V, —"V,)v,w). Since ¥V and "V are
torsion free, a(u,v,w) = a(v,u,w). Since *Vh = 0 and since ™V satisfies equation
(3.1), we have

a(u,v,w) + alu, w,v) + 20(w)h(v, w) = 0,
(3.3) ou,v,w) = —é(u)h(v,w) - é(v)h(u,w) + é(w)h(u,v),
' vy 0 =" Vv — 8(u)v — 8(v)u + h(u,v)8.

Conversely, if equations (3.3) are satisfied, then ¥V = “’V(h,é) is a torsion free
connection and equation (3.1) is satisfied. One can generates a Weyl structure from
an arbitrary semi-Riemannian metric k and from an arbitrary 1-form f by using
equation (3.3) to define ¥V and using the action of C$°(M) defined in equation
(3.2) to generate the classes € and ¥; see [138] or [42] for further details.

We use the sign convention of [61] to define the curvature of ¥V. Hence

mR('U.,'U) = mvu "Vy - mvv mvu - mv[u,v]
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is the curvature corresponding to Weyl connection ®V. For h € €, Weyl introduced
the 2-form ®F := dfj, as a gauge invariant of a given Weyl structure. He called it
the length curvature or distance curvature {138, p. 124]. We have that F and R
are related by the equation

(3.4) Wz, ®R(u,v)z) = "F(u,v)h{z, z).
Weyl defined the directional curvature ® K by
(3.5) P K(u,v)w = "Ru,v)w — " F(u,v)w.

The curvature ™R of ™V and the Weyl directional curvature ™ K are also gauge in-
variants. Relations (3.4) and (3.5) imply the orthogonality relation h(™ K (u, v)w, w)
= 0, for any A € € and for any vector field w. Moreover ®F and ™K satisfy re-
spectively symmetry and skew-symmetry relations

h(®F(u,v)w,z) = (" F(u,v)z,w),
h("K(u,v)w, z) = —h(K(u,v)z,w).

As a local result the following is known: if the Weyl connection ™V is metric,
then the length curvature vanishes identically. Conversely, if F' = déy, = 0, equation
(3.2) implies that the cohomology class [éh (20)] € H'(M) of the closed form 6 (70)
does not depend on the choice of a metric in 20. Conversely, if ®F = df, = 0
equation (3.2) implies that the cohomology class [0,(20)] € H(M) of the closed
form 6, (20) is gauge invariant and does not depend on the choice of a metric in 20.
The following is well known; see, for example, [52], [106], [130].

Proposition 3.1. The following assertions are equivalent:

(i) we have ® F(20) = 0 and [0,(28)] = 0 in H*(M);

(ii) there exists h € €(20) such that "Vh = 0; i.e,, ™V is the Levi-Civita
connection of h. 0

Il. SOME TRANSFORMATIONS OF SMOOTH MANIFOLDS

I1.1. Projective transformations

The main purpose of this section is to study projective transformations of a
smooth manifold (M, V) endowed with a torsion free connection V. More details
one can find in [41], [64], [109], [112].

Amap f: (M,V) = (M.V) of manifolds with torsion free connections is called
projective if for each geodesic v of V, f o+ is a reparametrization of a geodesic of
V, i.e., there exists a strictly increasing C* function h on some open interval such
that f o~ ok is a V-geodesic. Linear connections V and V on M are projectively
equivalent if the identity map of M is projective. A projective transformation of
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(M, V) is a diffeomorphism which is projective. The transformation s is projective
on M, if the pull back s*V of the connection is projectively related to V, i.e., if
there exists a global 1-form m = 7(s) on M such that

(1.1 §*Vyv = Vv + n(u)v + 7(v)u,

) in mind, if s and ¢
-7(t), where § is the

for arbitrary smooth vector fields u,v € X(M). Having (1
are two projective transformations, we find #(st) = w(s) +
cotangent map, i.e. [§- 7] p = 5 [7]p.

If a transformation s of M preserves geodesics and the affine character of
the parameter on each geodesic, then s is called an affine transformation of the
connection V or simply of the manifold M, and we say that s leaves the connection
V invariant.

It is well-known that the Weyl projective curvature tensor has the form

1
§

P(R){(u,v)w = R({u,v)w + [mp(u, w) + plw,u)]v

m?2—1
(1.2) - e lmalvw) + p(w, )
+ ——lp(u,0) = plo,)lw,

for any m > 2, and for m = 2 we have P(R)(u,v)w = 0, where u,v,w, - € (M)
(see for example {110}, [112], [136]). P(R) is a tensor that is invariant with respect
to each projective transformation of M. P(R) characterizes a space of constant
sectional curvature in very nice way: P(R) = 0 if and only if M™ (m > 2) is space
of constant curvature (in that case R is the Riemannian curvature of M™).

A manifold (M, V) is said to be a projectively flat, if it can be related to a flat
space by a projective map. We know that the curvature tensor of a flat space is
equal to zero: R(u,v) = 0, and therefore the Ricci tensor p is equal to zero also.
Due to this fact from (1.2) we have the Weyl projective curvature tensor P(R) of
a flat space vanishes. Since the tensor P(R) is invariant with respect to projective
transformations, we have immediately P(R) of a projectively flat space vanishes.
The inverse theorem is valid also. Namely, if P(R) of a manifold (M, V) vanishes
then (M, V) is a projectively flat space.

One can use (2.2) in Section I to see (M, V*) is a projectively flat space.

Ishihara studied in [56] the groups of projective and affine transformations.
Among others he investigated the conditions that these groups coincide.

Theorem 1.1. If (M, V) is a compact manifold with a torsion free connection
V and the Ricci tensor of V vanishes identically in M, then the group of projective
transformations of M coincides with its subgroup of affine transformations. O

If M is also irreducible then Ishihara has proved that the group of projective
transformations of M coincides with its group of isometries.

Projective transformations are closely related with projective structures (see
[60]). A projective structure on a m-dimensional manifold is determined if there
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exists an atlas on M with transition functions being projective transformations [65].

Projective structure can be considered also in terms of subbundles of principal fiber

bundles of 2-frames which structure group satisfies certain conditions (see [60]).
We refer also [83] for the references related this topic.

i1.2. Holomorphically projective transformations

Before studying holomorphically projective transformations we need to intro-
duce an almost complex structure.

An almost complex structure J on a smooth manifold M 2™ is an endomorphism
J such that J2 = —J on TM, where I is the identity. We say V is a complez
symmetric connection if it satisfies (1.1) of Section I and the following relation

(2.1) VJ =0

The curvature R of V satisfies besides of {1.2)-(1.4) of Section I also the Kahler
identity R(u,v) o J = J o R(u,v), for u,v € X(M). A manifold M>™ endowed with
an almost complex structure J is an almost complex manifold (M, J). An almost
complex manifold (M, J) may be endowed with a complex symmetric connection
V if the Nijenhuis tensor S of M, given by

S(u,v) = [u,v] + J[Ju,v] + Ju, Ju] - [Ju, Jv]

vanishes (see [101], {105]). An almost complex manifold (M, J) such that S = 0
may be also endowed with a complez atlas, i.e., with complex coordinates. This
manifold is called a complez manifold.

Especially, a complex symmetric connection V is a holomorphic affine con-
nection if R(u,v) = —R(Ju,Jv), or an affine Kahler connection when one has
R(u,v) = R(Ju, Jv).

Holomorphic affine connections naturally appeared in the context of semi-
Riemannian manifolds with the metric of signature (n,n) as well as in complex
affine and projective differential geometry (see [38], [59], [96], [98], [99] for more
details).

If a semi-Riemannian manifold (M,g) is endowed with an almost complex
structure J satisfying (2.1) with respect to the corresponding Levi-Civita connec-
tion then (M, g,J) is a Kdhler manifold.

Let Il be a 2-dimensional subspace of tangent space T, M, spanned by vectors
(u, Ju), for any unit vector u € T,M. The holomorphic sectional curvature of M g is
KH,(Ilg) = R(u, Ju, Ju,u)(p). M is a space of the constant holomorphic sectional
curvature if K H,(I1y) is independent of the choice of Iy in T,M, where p is an
arbitrary point of M and depends on p € M. Its Riemann curvature tensor is given
b

Y R(u,v,z,w) = KHp(g(u, z)g(v, w)
~ g, w)g(v,2) + g(u, J2)g(v, Ju)
— glu, Jw)g(v, Jz) + 29(u, Jv)g(z, Jw)).
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Let (M?™,g,J) be a connected Kahler manifold (m > 2). If KH,(Tly) is
invariant by J, depends only on p, then M is a space of constant holomorphic
sectional curvature.

A Hermitian manifold is a complex manifold endowed with a Riemannian
metric g such that

(2.2) 9(Ju, Jv) = g(u,v),

for all u,v € X(M). More details about other types of almost complex manifolds
endowed with a metric g satisfying (2.2) one can find in [46].

A curve 7 is the holomorphically planar curve if its tangent vector field T
belongs to the plane spanned by the vectors T and JT under parallel displacement
with respect to a complex symmetric connection V along the curve ~; ie., if T
satisfies the relation VT = p(t)T + o (t)JT, where p(t) and o(t) are some functions
of a real parameter ¢. )

A diffeomorphism f : (M,V) = (M, V) of manifolds with complex symmetric
connections is called holomorphically projective if the image of any holomorphically
planar curve of M is also holomorphically planar curve of M. More details about
these diffeomorphisms and curves one can find in [83].

Let (M?™ V,J) be a complex manifold, where V is the corresponding com-
plex symmetric connection. Tashiro [129] has studied some transformations of
(M?™ ¥, J). The transformation s is holomorphically projective on (M?™,V J) if
it preserves the system of holomorphically planar curves, i.e., if the pull back s*V
of the complex symmetric connection V is holomorphically projective related to V,
i.e., if there exists a global 1-form 7= = w(s) on M such that

§*Vuv = Vo + m{u)v + w(v)u — n(Ju)Jv — 7(Jv)Ju,

for arbitrary smooth vector fields u,v. He has proved that the holomorphically
projective curvature tensor

HP(R)(u,v)w = R(u,v),w+ P(v,w)u — P(u,w)v — P(u,v)w+ P(v,u)w
— P(v, Jw)Ju + P(u, Jw)Jv + P(u, Jv)Jw — P(v, Ju)Jw,

where

Pl0) = ~ g [plu,0)+ (p(u,0) +plo,4) = p(Ju, Tv) = p(Jo, Ju)],

1
2(m +1 2(m — 1)

is invariant with respect to each holomorphically projective transformation of V.
This tensor plays a similar role in studying of a manifold endowed with a complex
symmetric connection as the Weyl projective curvature tensor in studying of mani-
folds with a torsion free connection. So, HP(R) of a holomorphically projective flat
space vanishes. A complex manifold (M2™, J, V) is said to be a holomorphically
projective flat, if it can be related to a flat space by a holomorphically projective
map. HP(R) characterizes a space of constant holomorphical sectional curvature
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as follows: HP(R) = 0 if and only if M?™ is a space of constant holomorphic
sectional curvature. Ishihara in [55] has found the conditions that the group of
holomorphically projective transformations coincides with its subgroup of affine
transformations. More precisely, he proved the following theorem.

Theorem 2.1. If a complex manifold M of complex dimension m > 1 is
complete with respect to a complex symmetric connection V and the Ricci ten-
sor of M vanishes identically in M, then the group of holomorphically projective
transformations of M coincides with its subgroup of affine transformations. 0

Moreover, if M is a compact Kahler manifold then Ishihara has proved that
the identity component of its group of holomorphically projective transformations
for the Levi-Civita connection coincides with the identity component of its group
of isometries.

11.3. C-holomorphically projective transformations

As we have seen in I1.2 a C™ differentiable manifold M?™ is said to have
an almost complex structure if there exists on TM a field J of endomorphisms
of tangent spaces such that J? = ~I, I being the identity transformation. Every
manifold carrying an almost complex structure must have an even dimension.

The notion of almost contact structure generalizes these structures in the case
of the odd dimension. A {2m + 1)-dimensional C°° manifold M is said to have an
almost contact structure (p, £, n) if it admits a field of endomorphisms ¢, a vector
field ¢ and a 1-form 7 such that ¢? = ~T+7®¢, 4n(€) = 1. The following relations
also hold ¢(¢) = 0, no ¢ = 0, rankp = 2m. We remark that any odd dimensional
orientable compact manifold M has Euler characteristic equal to zero, and there
exists at least one non singular vector field £ on M. On every almost contact
manifold M there exists a Riemannian metric ¢ satisfying

g(z, &) = n(z), glez,vy) = g(z,y) — n(x)n(y),

g is said to be compatible with the structure (p,€,n) and (p,&,n,g) is called an
almost contact metric structure. We refer to {7] for more details.

Example 3.1. Let M?™*! be a C*® orientable hypersurface of an almost
Hermitian manifold M2 *2 with almost complex structure J and Hermitian metric
G.

Then there exists a vector field C along M?™*! transverse to M2™*! such
that JC is tangent to M2™+1 (otherwise an almost complex structure on M?m+1!
would exist, which is impossible). Thus, we can find a vector field £ on M?™*! such
that C = J¢ is transverse to M>™*+1. The relation Ju = pu + n(u)C defines the
tensor field ¢ of type (1,1) and the 1-form 5 on M?™*! satisfying > = —I+ Q&
and noy = 0. Since & = 0 and n(£) = 1 also hold, (¢, £, n) defines an almost
contact structure on M2™*1. Moreover, the metric g induced by G is the metric
compatible with the almost contact structure (y, &, ). O

Example 3.2. Let M?™ be an almost complex manifold with almost complex
structure J. We consider the manifold M>™+! = M?™ x R, though a similar
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construction can be made for the product /%™ x S'. Denote a vector field on
M?m+1 by (u, f4) where u is tangent to M?™, t is the coordinate of R and f is a
C® function on M?™*! Then n = dt, £ = (0, Ed;) and (,o(u,fgdz) = {Ju,0) define
an almost contact structure (i, £,n) on M2™m+1 O

An odd-dimensional parallelizable manifold, especially any odd-dimensional
Lie group, carries an almost contact structure.

As is well known, if (M?™*+1 . £ 7) is an almost contact manifold, the linear
map J defined on the product M?™+! x R by the relation

J(ﬂ; fad;) = (sou - fé,n(U)%),
where f is a C* real-valued function on M?™*1 xR, is an almost complex structure
on M?™+1 x R: thus we have J? = —I. In particular, if J is integrable, the almost
contact structure (p,&,n) is normal.

The almost contact structure {p,£,7n) is said to be normal if and only if the
tensors N, N, N2 NG) vanish on M?™*! where

N(u,v) = [, 0)(u,v) + dn(u,v)€, NP (u,v) = (L.9)(u),

(3.6)
N, v) = (Loum)(v) = (Eoun)(w),  NP(u) = (Len)(u),
£ denotes the Lie differentiation and |, )] is the Nijenhuis torsion tensor of .

The normal almost contact structure generalizes, in the odd dimension, the
complex structure.

If an almost complex structure J is integrable then [J, J] = 0. As a consequence
there exists a torsion free adopted connection V, i.e., satisfying VJ = 0. Thus it
appears of interest to construct some connection V on the almost contact manifold
(M?™+1 ¢ 1) which gives rise to an adapted connection V on M2™*! x R.

Definition 3.3. [79] A linear connection V on an almost contact manifold
(M?™+1 o, & n) is called an adopted connection if it satisfies the following system

(Vaplo = nlo)ha + 3 (dn(ou, hv) — dn(u, p0))E,

(31) (Vun)(v) = (dntu, ) + dnfipu, pu),

Vit = pu— 3dn(u, €)%

where h=T—-{®n. O

We refer to [{80] for more details related to the results which follow. Notice that
the system (3.1) is not the only solution to our initial problem V.J = 0. One can
check that the general family of the adopted connections V on the almost contact
manifold (M2?™+1, p, &, 7n) is given by the equation

Vuv = Vyv + P(u,v),
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where V is an arbitrary initial connection and P is given by

1

Plu,v) = 5(Vup)ov — (ub)n(v) + 5(Vup) 0 + Sn(VuOn(v)e

4 (w)gu ~ ldn(u,) + dnlgu, )€ + (& - 0)QLu,v).

Here @ denotes an arbitrary tensor field of type (1.2) and ® = %(1@]——(,0@@),
TI®I-h®h).

We remark the curvature tensor as well as the Ricci tensor of an adopted
connection on a normal almost contact manifold (M?™*!, », £ 1) have some inter-
esting properties which allow us to consider some transformations, in the spirit of
the sections I11.2.

Definition 3.4. Let V be a torsion free connection adopted to the normal
almost contact structure (p,&,n) on M2™+1. A curve v is C-flat (almost-contact
flat) with respect to V if VyT = p(t)T + o(t)T, where T denotes the vector
tangent to v and p, ¢ are smooth real valued functions along . 0

S]

We remark that in this case the subspace spanned by 7" and T is not trans-
ported by parallelism along . Namely, Vr(¢T) does not belong to the space
spanned by T and ¢T'. However, one can show that the dimension of this subspace
is constant along -y and this dimension can be 2,1 or 0.

Remark. We introduced in [25] the concept of C-flat paths, obtaining a C-
projective tensor in normal almost contact manifolds, endowed, with- a torsion free
connection whose fundamental tensors p, £ and n are parallel.

The torsion free linear connections V, V adapted to the normal almost contact
structure (p,&,7n) are C-projectively related if they have the same C-flat curve.
One can show that two torsion free connections V, V adopted to the normal almost
contact structure (i, £,n) are C-projectively related if and only if

Vv = Vyv + P(u,v),
where P(u,v) = a(u)hv + a(v)hu — B(u)pv — B(v)pu, with a an arbitrary 1-form
satisfying a(¢) = 0, B(u) = a(pu). Consequently, since V,V fulfill the same
conditions (3.1), their difference tensor P satisfies the same relations as in the case

where ¢, {,n are parallel.
Matzeu has proved in [80] that the tensor field W(R) given by

W (R)(u,v)z = hR(u,v)z + {L(u,v) — L(v,u) }hz + {L(u,v) + n(u)n(z)}hv
— {L(v,z) + n(v)n(2) }hu — {L(u, pv) = L(v,pu) + dn(u,v)}pz

(3.2) - {L(u,cpz) + —;—dn(u,z)}cpv + {L(v,cpz) + %dn(v, z)}tpu,
with
(3.3) L(u,v) = %ﬁ{P(R)(U, hv) + m[P(R)(h%U)

+ p(R)(hv,u) — p(R)(u, pv) — p(R)(pv, sOU)]} + kdn(u,v), k= const,
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is C-projectively invariant. Moreover, if kin (3.3) is given by k = 5

1
Ty all traces
of W(R) m+

trace(W(R)(u,v)),  trace{u — W(R)(u,v)z)
trace(oW (R)(u,v)), trace(u — oW (R)(u,v)z)

vanish.
We say torsion free connection adopted to the normal almost contact structure
(p, &, m) is C-projectively flat if its C-projective curvature tensor W (R) vanishes.
We refer [80] for the proof of the following theorem.

Theorem 3.5. For mn > 2 the torsion free adopted connection V is C-
projectively flat if and only if it can be transformed locally by a C-projective
transformation into a torsion free adopted connection V whose curvature tensor R
satisfies the condition

hR(u,v)z = {—n(u)hv + n(v)hu}n(z) + dn(u, v)pz + %dn(u, 2)pu — %dn(v, 2)pu.0

The case m = 1 has been studied by Oproiu in [103]. It is also interesting that
there does not exist a flat adopted connection from a C-projective transformation.
But, in the framework of V with parallelizable (¢, £,7) it exists.

A special class of normal almost contact metric spaces (M?™*! ¢ £ n, g) is
Sasakian one satisfying the condition 5 A dn™ # 0 (dn™ is m-th exterior power).
The Levi-Civita connection V of g for Sasakian manifold is an adopted one. A
Sasakian manifold is C-projectively flat if and only if it has constant y-sectional
curvature.

I1.4. Conformal transformations

Let (M, g) be an m-dimensional Riemannian manifold. Locally the metric is
given by ds? = g;;dz*dz?, where the g;; are the components of g with respect to the
natural frames of a local coordinate system (z*). A metric g* on M is said to be
conformally related to g if it is proportional to g, that is, if there is a function 8 > 0
on M such that g* = 3?g. We denote by € a conformal class of Riemannian metrics
on a smooth manifold M, of dimension m > 2. By a conformal transformation of A
is meant a differentiable homeomorphism f of M onto itself with the property that
fr(ds?) = B%ds?, where f* is the induced map in the bundle of frames and 3 is a
positive function on M. The set of conformal transformations of M forms a group.
Moreover, it can be shown that it is a Lie transformation group. A diffeomorphism
f of M onto itself is called an isometry if it preserves the metric tensor.

Under a conformal transformation of metric, the curvature tensor R(u,v)w
will be transformed into

R’ (u,v)w = R(u,v)w — o(w,v)v + o(w,v)u — glw,u)v + g(w,v)u,

=
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where ¢ is the tensor of type (0,2) with components ojx = B,k —B;Bc+ 39 BoBegik,
and u the corresponding type (1,1) tensor with components

pi = ongt, (ﬁj = a(lgzgyﬁ>

Let m > 2. The tensor

Clu,v)w = R(u,v)w - —n%(p(w,u)v - p(w,v)u + g(w,u)Sw) — g(w,v}S(u))

+ (m——ﬂm(g(w’u)v - g(w,v)u),
where S is the Ricci endomorphism g(Su,v) = p(u,v), is invariant under a confor-
mal transformation of a metric, i.e. C*(u,v)w = C(u,v)w. This tensor is called
the Weyl conformal curvature tensor. The case m = 3 is interesting. Indeed, by
choosing an orthogonal coordinate system (gi; = 0, ¢ # j) at a point, it is readily
shown that the Weyl conformal curvature tensor vanishes.

Consider a Riemannian manifold (M, g) and let ¢g* be a conformally related
locally flat metric. Under these circumstances M is said to be locally conformally

flat. Let
Ol v,0) = = (Vup)(,9) = (Vup) (w,0)
1

" 2(m—1)(m-2)

(g(ua U)VwT - g(ua IU)V.,T)-

One can prove the following theorem

Theorem 4.1. A necessary and sufficient condition that a Riemannian mani-
fold of dimension m > 3 be a conformally flat is that its Weyl conformal curvature
tensor vanish. For m = 3, it is necessary and sufficient that the tensor C(u,v,w)
vanishes, i.e. C(u,v,w) = 0. O

There exist numerous examples of conformally flat spaces. For example, a
Riemannian manifold of constant curvature is conformally flat, provided m > 3.

Any two 2-dimensional Riemannian manifolds are conformally related, as the
quadratic form ds? for m = 2 is reducible to the form A[(du!)2+(du?)?] (in infinitely
many ways).

For more details one can use [45], [64], [140] etc.

1L.5. Codazzi geometry

Codazzi structure is constructed from a conformal and a projective structure
using the Codazzi equations. A torsion free connection *V and a semi-Riemannian
metric k are said to satisfy the Codazzi equation or to be Codazzi compatible if

(5.1) (*Vh)(v,w) = ("Vh)(u,w).
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A projective class ‘B of torsion free connections and a conformal class € of semi-
Riemannian metrics are said to be Codazzi compatible if there exists *V € B and
h € € which are Codazzi compatible. We extend the action of the gauge group to
define *V — 5V where 3V is defined by taking 7 = dln 8 in (1.1):

(5.2) pVuv ="Vyv+dlnB(u)v + dln f(v)u.

One can check easily the Codazzi equations are preserved by gauge equivalence.
A Codazzi structure £ on M is a pair (€,3) where the conformal class of semi-
Riemannian metrics € and the projective class P are Codazzi compatible. A Co-
dazzi manifold (M, R) is a manifold endowed with the Codazzi structure.

Suppose now that (h,*V) are Codazzi compatible. Let C := *V — V(h) be a
(1,2) tensor and let C be the associated cubic form. Since *V and V(h) are torsion
free, C is a symmetric (1,2) tensor and C(u,v,w) = C(v,u,w). The relation (5.1)
and this symmetry implies C(u,v,w) = C{w,v,u) and consequently C is totally
symmetric.

Assuming that h is a semi-Riemannian metric and C is a totally symmetric
cubic form one can construct a conjugate triple (*V, h, V), i.e. a triple (*V,h, V)
satisfying

(5.3) uh(v,w) = h(Vy,v,w) + h(v,” V,w).

Therefore, let *V := V(h) + C, where C is the associated symmetric (1,2) tensor
field. Since C is symmetric, *V is torsion free and the Codazzi equation (5.1) is
satisfied. If we put V := V(h) — C one can check the triple (*V, k, V) satisfies
(5.3), i.e., it is a conjugate triple.

If 90 is a Weyl structure one can define an associated Codazzi structure £(20).
We may recover also the Weyl structure from the associated Codazzi structure. We
refer to {20] for more details.

I1l. DECOMPOSITIONS OF CURVATURE TENSORS
UNDER THE ACTION OF SOME CLASSICAL GROUPS
AND THEIR APPLICATIONS

The main purpose of this section is to consider a curvature for a torsion free
connection from the algebraic point of view and to see why it does provide insight in
some problems of differential geometry, topology etc. It is possible also to study the
various curvatures which appear in differential geometry in different context (see
[73]). Let us mention that it is possible in this spirit to study some classification of
almost Hermitian manifolds (48], Riemannian homogeneous structure [132] etc. Of
course all these decompositions are, in principle, consequences of general theorems
of groups representations (see {135]).

More precisely, the proofs of theorems are based on the following facts. Let
® be a Lie group, V a real vector space and V* its dual space. When £ is a &-
concomitant between two spaces, & acting on these spaces then the image for £
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of an invariant subspace is also invariant. Further, the image is irreducible when
the first space is irreducible. Also an invariant subspace of ® V* is irreducible
for the action of some group if and only if the space of its quadratic invariants is
1-dimensional.

H1.1. Some historical remarks

The development of the theory of the decomposition was initiated by Singer
and Thorpe [125]. Let (V, g) be an m-dimensional real vector space with positive
definite inner product and denote by R,(V) the vector space of all symmetric
linear transformations of the space of 2-vectors of V. All tensors having the same
symmetries as the Riemannian curvature tensor including the first Bianchi identity
belong also to R (V). Singer and Thorpe gave a geometrically useful description of
the splitting of R;(V) under the action of O(n) into four components. One of the
projections gives the Weyl conformal tensor. Their considerations are as follows.

Let a tensor R of type (1,3) over V be a bilinear mapping

R:V xV -5 Hom(V,V): (z,y) = R(z,y).

We use the notation R(z,y,z,w) = g(R(z,y)z,w). Let Ry(V) and R(V) be
the subspaces of ®*V* consisting of all tensors having the same symmetries as
the curvature tensor, the first for metric connections, the second for Levi-Civita
connections. It means, R € Ry(V) if it yields ‘

(a) R(z,y) = —R(y,z)
(b) R(z,y) is a skew-symmetric endomorphism of V| i.e.,

R(z,y,z,w) + R(z,y,w,2) =0

and R € R(V} if R satisfies (a), (b) and the first Bianchi identity
(¢) oR(z,y)z = 0, where ¢ denotes the cyclic sum over z, y and z.

The Ricci tensor p(R) of type (0,2) associated with R is symmetric bilinear
function on V x V defined by p(R)(z,y) = trace(z € V — R(z,z)y € V). Then
the Ricci tensor @ = Q(R) of type (1,1) is given by p(R)(z,y) = ¢(Qz,y) and the
trace of @ is called the scalar curvature 7 = 7(R) of R.

Further, let a be the standard representation of the orthogonal group O(n) in
V. Then there is a natural induced representation & of O(n) in Ry(V') given by

&(a)(R)(z,y,2,w) = R(a(a™)z,a(a™ )y, ala™)z, ala™w).

for all z,y,z,w € V, R € Rp(V) and a € O(n).

Theorem 1.1. Ry(V) = R; ®Ro ® R3 ® Ry, R(V) =Ry ®R3 d Ry.
(i) R € Ry iff the sectional curvature is zero.
(i) R € Ry & R, iff the sectional curvature of R is constant.
(iii} R € Ry1 @ R3 iff the Ricci tensor of R is zero.
(iv) R € Ri®R2®R3 iff the Ricci tensor of R is a scalar multiple of the identity.
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(v) RER, ®R3s &Ry iff the scalar curvature of R is zero. 0

Furthermore, the action of O(n) in Ry(V) is irreducible on each R;, i =
1,2,3,4. Since a curvature tensor R, corresponding to the Levi Civita connec-
tion V of a Riemannian manifold M satisfies the first Bianchi identity, we have
R € R{f = Ry & R3 & Ry. Statement (iv) of Theorem 1.1 implies a very nice
characterization of an Einstein space as follows: a Riemannian manifold M has
curvature tensor in & = Ry & R3 at each point if and only if M is an Einstein
space. The R3-component of a curvature tensor of M is its Weyl conformal curva-
ture tensor.

To study the action of SO(n), especially for dim V' = 4, Singer and Thorpe have
used the star operator *. They studied also in [125] the problem of a normal form
for the curvature tensor of a 4-dimensional oriented Einstein manifold by analyzing
the critical point behavior of the sectional curvature function o. In this case, the
function o on each 2-plane is equal to its value on the orthogonal complement. Using
this characterization, they have shown that the curvature function o is completely
determined by its critical point behaviour and they have shown what the locus of
critical points looks like.

The relationship between the Euler-Poincaré characteristic, the arithmetic
genus a(M) and the decomposition of the space of curvature operators at a point
of 4-dimensional compact Riemannian manifold has been studied by Gray [47].
Applications of the decomposition of R(V) involving orthogonal Radon transfor-
mations were given by Strichartz [127]. An algebraic interpretation of the Weyl
conformal curvature tensor due to Singer and Thorpe makes possible the develop-
ment of the theory of submanifolds in conformal differential geometry more up to
date (see [67]).

The complete decomposition of Ry (V) C R(V), dimV = 2m, satisfying the
Kahler identity, under the action of U (V) was treated by Sitaramaya [126] (see also
(57], [88]). Tricerri and Vanhecke [131)] have found the complete decomposition
of R(V') under the action of U(V). They have obtained new conformal invariants
among components of the complete decomposition of R(V) on almost Hermitian
manifolds:

We refer to [24] for more details.

111.2. The action of general linear group

The main purpose of this section is to interpret the Weyl projective curvature
tensor as one of the projection operators in the decomposition of tensors having all
the symmetries of curvature tensors for torsion free connections under the action
of the general linear group GL(V). We refer to [127] for some details.

In this section V denotes m-dimensional (m > 2) real vector space, V* its dual
space, and V} the space of (1,3) tensors T'(u,v, z,w) with u,v,2 € V and w € V*.
The group GL(V) acts naturally on V3 by

1 —l)Tw)‘

()T (u,v,z,w) = T(g 7 u, 97 v, 972, (g
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Let n(m) be representations of GL(V), where m = (my,...,my,) is the highest
weight of the representation, with m; > mo > -+ > m,,, all m; integers, and
for simplicity of notation we delete strings of zeroes (so that 7(2,—1) stands for
7(2,0,...,0,—1). Let R(V) be a subspace of tensors with symmetries as the cur-
vature of a torsion free connection. So for R € R(V) we have

(2.1) R(u,v,z,w) = —R(v,u, z,w),
R(u,v,z,w) + R(v,z,u,w) + R(z,u,v,w) = 0,
where R(u,v,z,w) = (R(u,v)z,w). We denote the Ricci contraction by p(R) =

con(1,4)R. It maps R(V) onto V,. The space V, splits as n(2) & «(1,1), the
symmetric and skew-symmetric tensors. Consequently, we have

R(V)==(2) ®&n(1,1) ® ker(p).

One can check easily that ker(p) is also irreducible. We introduce two special
products ®; and ® to describe the corresponding projection operators. For @ € V}
and S € V, we have

QO Su,v,z,w) = Qv,w)(S(u,2z) + S(z,u) — Qu,w)(S(v,2) + S(z,v))
Q ®2 S(U, v, 2z, ’U)) = Q('U,'UJ)(S(U, Z) - 5(27 ’U,)) - Q(u7 UJ)(S(’U, Z) - S(Z,’U))
+ 2Q(Z, ’UI)(S(U, ’U) - S(U, u))
By direct computation one can check @ ® S, @ @2‘5’ € R(V) with p(Q ©; S)
symmetric and p (Q ®2 S) skew-symmetric. Henceforth we have

Theorem 2.1. Under the action of GL(V), the space R(V) decomposes as
(2} n(1,1) ®n(2,1,-1),

(when m = 2 the third component is deleted) with corresponding projections

P(2)R = 5 d @2 p(R),

1
(m—1)

1
P(2v11"1)R = R - 2(m - 1)6 Gl p(R) -

1
P -
3 ©1 p(R), 1,1 R Am+ 1)

1
Q(—m—rl_)é ©2 p(R)a

where § is Kronecker symbol.

The (2,1, —1) component is the kernel of p, while

(p(R)(u,v) + p(R)(v, u))

(p(R)(v,u) — p(T)(u,v)).

(P R)(u,v) =

P(P(1,1)R)(U:U) =

DO = N} =
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The corresponding dimensions and highest weight vectors are as follows:

Components | Dimension Highest Weight Vector
7(2) sm(m+1) Yrlerner) ®er ®ep
7(1,1) gmim—1) [ (2 he)@er Qe+ (61 Nex) Qex @ e+
(er Nez) ®er ®ej)
m(2,1,-1) | im%i(m? - 4) (e1hex) ®e; ®el,
R(V) im?(m?® - 1)

If V = T, M then one can compare (1.2) in Section II with P, 1 _1)R to see
that they coincide and consequently the Weyl projective curvature tensor is really
an irreducible component in the proceeding decomposition. One can see easily that
the Weyl projective curvature tensor fulfills the algebraic conditions (2.2), (2.3) and
p(P(R)) = 0.

Strichartz in [127] has studied the complete decomposition of the vector space
of the first covariant derivative of curvature tensors for torsion free connections
under the action of GL(V'). Using these decompositions he has proved that a pro-
jectively flat affine manifold with skew-symmetric Ricci curvature must be locally
affine symmetric.

111.3. The action of the group SO(m)

Studying projective transformations of a Riemannian manifold (M, g) we nat-
urally combine two structures: the positive definite metric ¢ and torsion free con-
nections ¥V, which can be, for example, projectively equivalent to the Levi-Civita
connection. Therefore we are interested now in the complete decomposition of
R(V) from the section II1.2 under the action of SO{m). We refer to [23] for more
details.

Let V be an m-dimensional real vector space endowed with positive definite
inner product {-,-). A tensor R of type (1,3) over V is a bilinear mapping

R:V xV = Hom(V,V) : (z,y) — R(z,y).

R is called a curvature tensor over V if it has the following properties for all
z,y,2,w € V:
(1) R(‘T:y) = _R(yvr)a
(ii) the first Bianchi identity, i.e. o R(z,y)z = 0, where o denotes the cyclic sum
with respect to z,y and z.
We also use the notation R(z,y,2,w) = g(R(z,y)z,w). We denote by R(V)
the vector space of all curvature tensors over V. In addition to the Ricci tensor
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p(R) for a curvature tensor R € R(V) it makes sense to define the second trace
p(R) by

ﬁ(R)(:an) = ZR(ei;z)ei7y)7 z,y € V7
=1

where {e;} is an arbitrary orthonormal basis of V. The traces p(R) and p(R) are
orthogonal. Moreover, they are neither symmetric nor skew-symmetric in general
case. The scalar curvature 7 = 7(R) of R is defined as the trace of @ = Q(R),
given by p(R)(z,y) = ({z,y). Now one can define all the components of the

decomposition of R(V). We put

RYV)={Re R(V)|p(R) and p(R) are skew-symmetric},

R(V)={ReR(V)|p(R) and p(R) are symmetric},

Rp(V) ={R € R(V) ] p(r) is zero},

Ro(V) = RY(V)NR(V)={Re R(V) | p(R) and p(R) are zero},
W, = orthogonal complement of Ro(V') in R,(V)NR*(V),
Wy = orthogonal complement of Ro(V) in R,(V) N R*(V),
W3 = orthogonal complement of R,(V) NR*(v) in R*(V),

W, @ W, = orthogonal complement of R,(V) N R*(V) in R¥(V),

Wy ={Re W, ®W,|7(R) is zero},
W, = orthogonal complement of W, in W; @ Ws,
We = {R € Ro(V) | R(z,y, 2,w) = —R(z,y,w, 2); T,y,z,w €V},
W; ={R € Ro(V) | R(z,y,2,w) = R(z,y,w, 2z); z,y,z,w € V},
Wg = orthogonal complement of W & Wy in Re(V).

So we can state the decomposition theorem for R(V).

Theorem 3.1. We have

where W; are orthogonal invariant subspaces under the action of SO(V) (m > 2).
Moreover,

(i) The decomposition (3.1) is irreducible for m > 4.

(ii) For m = 4 we have Wg = W+ @ W~ where W* = {R € W; | R = +R},

and the other factors are irreducible.

(iii) For m = 3 we have W = Ws = {0} and the other factors are irreducible.

(iv) For m = 2 we have Wy = Wy = Wg = W; = Wy = {0} and the other factors
are irreducible. _ O

We compare the decompositions in subsections I111.2 and II1.3 to see

m(2)=Wi@W,, =(1,1)=Ws, n(2,1,-1)=R,(V).
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If we suppose z,y, 2, ... € X(M), the algebra of C™ vector fields on (M, g) and R
and p the curvature and the Ricci tensor respectively then the projective curvature
tensor P(R) associated with R is the orthogonal projection of R on R,(X(M)).
We recall that the Weyl conformal curvature tensor belongs to the Rj-component
from Singer-Thorpe decomposition, which is irreducible under the action of the
group O(V'). The projective component R,(V) is not irreducible under the action
of O(V) or SO(V).

The complete decomposition of R(V) given by Theorem 3.1. is very useful in
the study of the group of projective transformations on some manifold M™ and its
subgroups. We recall that an equiaffine transformation is an affine volume preserv-
ing transformation of a manifold (M, V). On a manifold (M™, V) there exists an
equiaffine transformation if and only if the Ricci tensor p(R), corresponding to any
symmetric connection V, is symmetric. Let us mention some of these results.

Theorem 3.2. Let (M,V, g) be a Riemannian manifold endowed with a sym-
metric connection V such that W3 = 0. Then the group of affine transformations
coincides with its subgroup of equiaffine transformations. O

Theorem 3.3. If a Riemannian manifold (M™, g) is compact and Wy = W; =
Wa = 0 then the group P(M) of all projective transformations coincides with its
subgroup A(M) of all affine transformations. d

Some of components in (3.1) have other interesting geometric properties. So,
Nikéevié¢ has proved in [91] that Ro(X(M)) is conformally invariant.

Let us point out that for some torsion free connections the corresponding
curvature tensor has some of its projections on W; (¢ = 1,...,8) equal to zero.
Namely, if V is the Levi-Civita connection then we have

P(R) e W & W, for m > 4,
PRYeWs@WT oW, for m =4,
P(R) e Ws, for m = 3.

We refer to [28] for more details.

The decomposition (3.1) is not unique. The second one is given in [23] which
is closely related with the decomposition of curvature tensors for Weyl connections
under the action of the conformal group CO(m) [53].

I11.4. The action of the group U(m)

The main purpose of this section is to study algebraic properties of a holo-
morphically projective curvature tensor on Hermitian manifold. Therefore we start
with some considerations in a vector space endowed with some structures. We refer
to [81] for some details.

Let V be a 2m-~dimensional real vector space endowed with the complex struc-
ture J, compatible with the positive definite inner product g, i.e.

S =1, g(Jz,Jy) = g(z,v),
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for all z,y € V and where I denotes the identity transformation of V. A tensor R
of type (1,3) over V is bilinear mapping

R:V xV = Hom(V,V) : (z,y) » R(z,y).

R is called a curvature tensor over V if it has the following properties for all
T,y,z,w € V:
(1) R(Qi,y) = —R(y,z),
(ii) oR(z,y)z =0 (the first Bianchi identity)
(i) JR(x,y) = R(z,y)J (the Kihler identity).
We use also the notation R(z,y,z,w) = g(R(z,y)z,w).
Let R(V) denotes the vector space of all curvature tensors over V. This space
has a natural inner product defined with that on V:

2m

(R,R)= > g(R(ese)ex, Riei.e;)ex),

i4.k=1

where R,R € R(V) and {e;} is an orthonormal basis of V. A natural induced
representation of U(m) in R(V) is the same as of O(m) in the previous sections.

To describe a complete decomposition of R(V') under the action of U(m) we
need some basic notations. There are independent traces as follows:

2m
R)(z,y) = }:R enT,y,e),  T(R) =Y Rleiej ej,e),

1,7=1
2m
(‘7: y ZR €i, T, ehy T*(R) = Z R(ei:eja‘]ejaei);
1,7=1
where {e1,...,em,Je1,...,Jen} is an arbitrary basis of V. The trace p = p(R), as

we have seen in the Section I, is called the Ricci tensor, and 7 = 7(R) is the scalar

curvature of R.
In general, the traces p and p are neither symmetric nor skew-symmetric and

always we have p(Jx, Jy) = p(z,y); p and p belong to V2 = V* @ V*, where V* is
the dual space of V. Let (-,-) be the inner product on V*(V) given by:

2n
(@,8) = > alei,e;)Bleie;), fora, e VA(V).

i,j=1

Now we introduce some tensors, and operators that we need to define components
in the complete decomposition of R(V).

m(z,y)z : = g(z,2)y — gy, 2)x + g(Jz, 2)Jy — 9(Jy, 2)Jz + 29(Jz,y)J 2,
mo(xz,y)z 1 = g(Jz, 2)y — 9(Jy, 2)x + 29(Jz,y)z — g(z, 2) Jy + 9(y, z) Jx.
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Let ¢ be the operator defined by
d(R)(z,y, z,w) := R(Jz, Jy, z,w), Re€ R(V),
and R* and R~ be the vector subspaces of R(V) given by

R+ :{Re R(V)|¢(R) = R}, R~ :={ReR(V)|#R)=—R).

The vector space R{V') consists some subspaces which one can define in terms

of traces symmetry properties. So we have
Wo:={ReR(V)|7(R)=7"(R) =0},
Ry :={ReR(V)|p(R) =0},
Ro:={ReR(V)|p(R) = h(R) =0},
R, :={ReR(V)|p(R)#0and p(R)(z,y) = p(R)(y, )}
Ry ={ReR(V)|p(R) # 0and p(R)(z,y) = —p(R){y, )},
R; = {ReR(V) | b(R)(z,y) = p(R)(y, )},
Ri:={Re€R(V) | p(R)(z,y) = —ply, )}

Now we can define all components in the compete decomposition of R(V').

Definition 4.1. We put

Wy :={R€R"NRy | R(z,y,2,w) = —R(z,y,w,2)},
Wio:={Re€R"NRy | R(z,y, 2,w) = R(z,y,w,2)},
W, : = orthogonal complement of Wy ® Wigin Rt N Ry,

W, :=R+OR;, Wy = L(71);

Wi :=RTnN R, We 1= L(m2) :

W5 : = orthogonal complement of Ry in Ry N ’R;,

Wy : = orthogonal complement of Rg in Ry NR3,

Wi :=R™ NRy,
W, :=R™ NR; = orthogonal complement of W; in R,
Wy : =R~ NR, = orthogonal complement of W3 in Rj.

Thus we obtain

Theorem 4.2. IfdimV = 2m,m > 3, then R(V) = W) & --- & Wy if
m = 2,W;; = Wi, = {0} and R(V) = W, & --- & Wyg. These subspaces are
mutually orthogonal and invariant under the action of U(m). 0O

Recalling that an invariant subspace is irreducible if it does not contain a
nontrivial invariant subspace, we have also
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Theorem 4.3. The decomposition of R{(V') given above is irreducible under
the action of U(m). O

The projections of R € R(V) on W; (i = 1,2,...,12) and the dimensions of
W; have been done also in [81].

Let M be a 2m-dimensional C* manifold with an almost complex structure
J and a Hermitian inner product g. Then, for all u,v € ¥(M), the Lie algebra of
C® vector fields on M, we have J?u = —u, g(Ju,Jv) = g(u,v). It is known (see
[90], [139]) that the existence on M of an arbitrary torsion free connection V s.t.
VJ = 0 is equivalent, to the vanishing of the Nijenhuis tensor defined by

Nj(u,v) = [Ju, Jv] — J[Ju,v] — Ju, Jv] — [u,v], wu;v € X(M).

For every p € M, the tangent space T, has a Hermitian structure given by (J),,
9jp)- Now let R(V) be the vector bundle on M with fibre R(T, M); the decomposi-
tion of R(T, L) gives rise to a decomposition of R(M) into orthogonal subbundles
with respect to the fibre metric introduced by g on R(M). We shall still denote the
components of this decomposition by W;,7 =1,2,...,12. If V is an arbitrary linear
torsion free connection, the corresponding curvature tensor is a section of the vector
bundle R(M) and it is not difficult to check that its HP(R)-component in each
point p € M gives the well-known holomorphical projective curvature tensor associ-
ated with V (see [27], [139]); as a consequence, every subspace W;, i = 7,8,...,12
of the decomposition is holomorphically projective invariant.

If some of the W; vanish then the corresponding manifold has special groups
of transformations and we have the following theorems (we refer [92]) for more
details).

Theorem 4.4. Let (M,g) be a Hermitian manifold with a torsion free con-
nection. If the homogeneous holonomy group of M has no invariant hyperplane,
or if the restricted homogeneous holonomy group has no invariant covariant vector
and Wy = --- = Wg = 0 then HP(M) = A(M). a

We denote here by HP(M) the group of all holomorphically projective trans-
formations of M and denote by A(M) the group of all affine transformations of
M.

Theorem 4.5. If a Hermitian manifold (M, g) endowed with a torsion free
connection V is complete with respect toV and Wy = --- = Wg =0 then HP(M) =
A(M). g

I1.5. The action of the group U(m) x 1

In Section II.3 we have introduced C-projective transformations on a normal
almost contact manifold and have found C-projective curvature tensor - invariant
with respect to these transformations. The key point was the existence of a tor-
sion free adopted connection V. The main purpose of this section is to study the
curvature tensor R of V. especially its C-projective curvature tensor W(R) from
algebraic point of view.
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We use (3.2) of Section II to check
(5.1) W(R)(u,v)p = oW (R)(u,v), W{(R)(u,v)é = 0.

Now starting from (5.1) we shall define certain special curvature tensor fields on
M?m*+1 which will become useful for our discussion.

Definition 5.1. Let (M?™*! ¢, £, n) be a normal almost contact manifold.
We define the difference curvature tensor field of the torsion free adopted connection
V as K(R) = hR — hR, where R is the curvature tensor field of V and hR is given
by
(5.2)

hR(u,v)z = {—n(u)hv + n(v)hu}n(z) + dn(u, v)wz + —12—d77(u., 2)pv — %dn(v, 2)pu.d

Notice that AR can be considered as the component on the vector subbundle
H = Kern of TM?™*! of the curvature tensor field R of a torsion free adopted
connection V on M 2™+ Taking into account the properties of R and p(R) we find

(5.3) K(R)(u,v)z = -K(R)(v,u)z,
(5.4) o K(R)(u,v)z =0 (the first Bianchi identity),
(5.5) K(R)(u,v)pz = oK (R)(u,v)z, K(R)(u,v){=0,

p(K(R))(u,v) = tr(z = K(R)(z,u)v) = p(R)(u,v) = p(R)(u,v),

(5:6) p(K(R))(w,€) = 0.

H1.5.1. The vector space K(V). Let V be an (2m + 1)-dimensional real
vector space endowed with an almost contact structure (y, £,m) and a compatible
inner product g and let V* be the dual of V. Then, the (1,1) tensor ¢, the vector
£ € V and the one-form i € V* satisfy the relations:

(PZ'—“IV +'£®777 77(5)_—'17
wE=0, nop=90
glpz, 0y) = g(z,y) —n(@)nly), z,yeV.

A tensor R of type (1,3) over V is a bilinear mapping R : V x ¥V — Hom(V, V),
(z,y) = R(z,y). We say that R is a curvature tensor over V if

R(z,y) = ~R(y3), and o Rz, y)z =0

We denote by R(V) the vector space of all curvature tensors over V. One can
consider the following inner product, induced by g¢:

2m+1
(R,R) =Y g(R(ei,e;)ex, Rleie;)ex),  R,ReR(V),

1

s R R BRI o 5
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where {e;},7=1,...,2m+ 1 is an arbitrary orthonormal basis of V. Furthermore,
the representation a of U(m) x 1 in V induces a representation & of U(m) x 1 in
R(V) in the following way

a:U(m)x1 - gl(R(V)), r—a(r), reU{m)x1,

where &(r)(R)(z,y, z,w) = R(a(r™ 1)z, a(r 1y, a(r 1)z, a(rw), for all z,y, z,
w € V. It follows that the mapping R — &(r)R is an isometry for R(V); therefore
(a(r)R, a(r)R) = (R, R), which implies that the orthogonal complement of an
invariant subspace of R(V) is also invariant and the representation & is completely
reducible.

Taking into account the properties (5.3)-(5.6) of a “difference curvature tensor
field” we shall denote by K the curvature tensors over V such that

(5.7) K(z,y)pz = pK(z,y)z and K(z,y){ = 0,
for all z,y,2 € V, or equivalently, if K(z,y,2,w) = g(K(x,y)z,w), we have

5.8) K(z,y,z,w) = K(z,y, 92, pw),
' K(z,y,§,w) =0, K(z,y,2,§) =n(K(z,y)z) =0.
Let K(V) be the vector subspace of R(V), whose elements are all K, satisfying
(5.7). This subspace of R(V) is invariant for &.

K (V) may be splited into direct sum of two subspaces K; and K, defined as
follows

Ky ={K e K(V) | K(z,{,z,w) = 0},
K2 ={K e KV)| K(z,y,z,w) = n(z)K(£,y,2,w) + n(y) K (x, &, z,w)}.

It means
(5.9) K(V) =K, & K,

and moreover K; and K3 are mutually orthogonal and invariant with respect to the
action of U(m) x 1.

Now let H = Kern; H is a 2m-dimensional Hermitian vector space with
(¢ly,9lH) as Hermitian structure and U(m) x 1|y ~ U(m); further, the vector
space K, is naturally isomorphic to the vector space K(H) given by the curvature
tensors over H which satisfy the Kahler identity. This isomorphism allows us to
use the results of Section II1.4. concerning the decomposition of K(H) with respect
to the action of U(m) to obtain the decomposition of K.

To simplify our notation, in the following, we shall denote for every £ € V the
component on H by &; that is, £ = hz, where h = Iy — n ® £ is the projection on
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H. First, we notice that for any K € K(V') there are only two possible independent
traces associated with K, analogously to these ones in I111.4. i.e.

2m-+1

ZKel,yze

ZKel7y’€17 7 y?zeu

where {e;}, % =1,2,...,2m + 1 is an arbitrary orthonormal basis of V. Further,
we have two scalar curvatures

= Z K(ei, ej, €4, 65),
%]

= ZK(ei,ej,Sﬂejaei)-

4.
One can check easily
p(K)(y, 2) = p(K) (¥, 2) + n(y)p(K)(E, 2),

LK) (py, pz) = p(K)(y, 2).

In general, p(K) and p(K) are neither symmetric nor antisymmetric; moreover
p(K)(£,2) =0 for every K € Ky, while for K € Ky, p(K) reduces to n(y)p(K)(&, 2)
and p(K) = 0.

We omit all details related to the decomposition of K;, because of the previous
comments, and pay the attention only on the decomposition of KXo C K. First of
all, we note that K(&,y, z,w) = K (£, z,y,w), for every K € K, Next, we introduce
the endomorphism é on K, defined by

oK) (z,y,z,w) = {n(2)[g(py, pw)p(K)(E, 2) + 9(pz, pw) p(K) (&, 9)

= gy, w)p(K)(E, vz) — glpz, w)p(K)(E, vy)]
= n(¥)lglwz, pw)p(K) (&, 2) + glpz, pw)p(K) (&, )
— glyz, w)p(K) (€, 92) — g(pz, w)p(K)(, ¢2)]},

" 2m +2

for any z,y,2z,w € V. If we take into account p(6(K)) = p(K) we can check easily
5(K) € Ko, 6% = 6 and § commutes with the action of U(m) x 1.
Now we define the following subspaces of Ko

Wiz =Kerd = {K € K2 | p(K) =0}, Wiy =Im$,

and state the following theorem.
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Theorem 5.2. IfdimV = 2m + 1, m > 2, then K9 = Wy3 & Wy4. The
subspaces W3 and W14 are mutually orthogonal and invariant under the action of
U(m) x 1. In particular, for m = 1, W3 = {0} and K, = Wy,. O

We use now (5.8), the isomorphism of Xy and R(H), Theorem 4.2. and The-
orem 5.2. to obtain the following decomposition theorem for K(V'):

Theorem 5.3. If dimV = 2m + 1, m > 3, then
(5.10) K(V)=W1&---® Wiy

and the subspaces W; are U(m) x 1 - invariant and mutually orthogonal. For
m = 2, Wy, = Wiy = {0} and when m = 1, the decomposition reduces to K(V) =
Ws @ We @ Wiy 0

111.5.2. Some geometric results. Let (M2™+! » ¢ 1, g) be a normal almost
contact metric manifold. For every p € M?™*! the vector space T, M ?™+! has an
induced almost contact structure (yp,7,,&p) with compatible inner product g,. If
we denote by (M 2™ F1) the vector bundle on M?™+! with fibre K(T, M?™+1) the
decomposition (5.10) gives rise to a decomposition of K(M?™+1) into orthogonal
subbundles with respect to the fibre metric induced by g on K(M2™*1). We use
the same notation W;, ¢ = 1,...,14 for the components of this decomposition.

Let V be a torsion free adapted connection on M2™*+! with curvature tensor
R. Then, the difference tensor field K(R) is a section of K(M2™+1). Let @;
be the projections of K on the subspaces W; (i = 1,...,14). Recalling that
K(R) = hR — hR, where hR is given by (5.2) with W(R) = 0, we can state

Proposition 5.4. Let (M?™*! . £ n,g) be a normal almost contact metric
manifold. If V is an adapted torsion free connection on M>™*! with curvature
tensor R, we have

13
W(R) =) QiK(R)), K(R)=hR~hR
i=7
and the spaces W;, i = 7,8,...,13 of the decomposition (5.9) are C-projectively
invariant. O
If (M?™+ . € n,g) is a Sasakian manifold, then dn(u,v) = 2g(pu, v), where
u,v,z, - € X(MPH),
As we know, the Levi-Civita connection V on M?™*1 is one of adapted con-
nections, and the system (3.1) in Section II is reduced to the simpler one

(Vup)v = n(wu - g(u,v)¢, (Vuzn)(v) = g(pu,v),
vu{ = Yu, Vug =0
(Vudn)(v,z) = 2n(v)g(u, z) — 2n(2)g(u,v) = 2n(R(v, 2)u).

Among Sasakian manifolds one can characterizes these ones of constant y-sectional
curvature using the previous results. More precisely, we have
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Proposition 5.5. Let (M?*™*! ¢ £ n,9), m > 3 be a Sasakian manifold.
Then K(R) = Qs(K(R)) € W5 if and only if it has constant p-sectional curvature
c # -3 (M2m+1 # R2m+1(_3)). O

Corollary 5.6. Let (M2™+! . £,n,9), m > 3 be a Sasakian manifold #
R*+1(-3). Then K(R) = Qs(K(R)) € Ws, if and only if it is C-projectively flat.
O

We refer to (78] for characterization of other classes of Sasakian manifolds
using the decomposition of curvature tensors and the corresponding examples (see
also 8], (9], [66] etc.).

A normal almost contact metric manifold (M 2™+ o, £ 7, g) has a cosymplectic
structure if the fundamental 2-form (2 defined by Q(u,v) = 2¢(pu, v) and the 1-form
n are closed on M2™*+1 Examples of cosymplectic manifolds are provided by the
products M x S, where M is any Kihler manifold. For a cosymplectic manifold
Matzeu {78] has proved

(1) K(R) = R = Qs(K(R)) € Ws if and only if it has constant y-sectional curva-

ture ¢ = m?—fni_gﬁ,
(ii) K(R) = R = Qs(K(R))+ Q¢(K (R)) if and only if it is n-Einstein, i.e. p(K) =

a(g —n®n), where a = 12(7"? is constant.
We refer also to [78] for the studying of real hypersurfaces on complex space

forms in this spirit.

IV. THE CHARACTERISTIC CLASSES

IV.1. Some basis notions and definitions

Let GL{m, R) be the full general linear group and gl(m, R) be the Lie algebra of
GL(m,R); this is the Lie algebra of real m x m matrices. A map @ : gl(m,R) —» C
is invariant if Q(gAg™!) = Q(A) for all A € gl(m,R) and for all g € GL(m,R). Let
Q be the ring of invariant polynomials. One can decompose Q = &9, as a graded
ring, where @, is the subspace of invariant polynomials which are homogeneous of
degree v. Let

P— _1 v
Ch(A) := EV:Ch, for Ch,(A) := Tr{(———”%A) }
v-=1
C(4) = det (I + %= A) = 1+ Co(A) + -+ + Cm(4)

define the Chern character and total Chern polynomial, Ch, € Q, and C, € Q,.
The Chern characters and the Chern polynomials generate the characteristic ring:
Q =C[C),...,Cn] and Q@ = C[Chy,...,Chy]. If Q € Q, we polarize Q to define a
multilinear form Q(A;,...,A,) so that Q(A) = Q(4,...,A) and Q(A,...,A,) =
QgAig™, .., gAg™").
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We shall restrict our attention to the tangent bundle T M henceforth; let V be
an arbitrary connection on TM and R the corresponding curvature tensor. If {e;}
is a local frame for TM, then R(e;,e;)e; = Rijkle,. We shall let

1 o
R = R{. = ERi]’klel Ael

be the associated 2-form valued endomorphism. As we are not assuming that a
metric is given, we do not restrict to orthonormal frames. Thus the structure group
is the full general linear group GL(m, R) and not the orthogonal group O(m).

If Q € Q,, we define

Q(V) = Q(R,...,R) € C®(A*¥ M)

by substitution; the value is independent of the frame chosen and associates a closed
differential form of degree 2v to any connection V on TM. The corresponding
cohomology class [Q(V)] € H*(M;C) is independent of the connection V chosen;
as we shall see later. These are the characteristic forms and classes. For more
details one can use also [35], [40], [61].

From now on we deal with complex manifolds.

We express now C1, C? and C, by using a suitable chosen frame of TM. Let
Ey,JE1,..., En, JE;,, be a real base for tangent space T,M and w*,@?,...,w™,
@™ the corresponding dual base for Ty M. Then we will write Ep,s = JE; = E;
and similarly w™*" = w", 1 < s, r < m. We suppose summation for every pair of
repeated indexes. We use also the following ranges for indexes 1,j,s,7 = 1,2,...,m,
and I,J,5,R = 1,2,...,2m. We denote JEs = Eg and R(u,v)Es = Ry,s®Eg.
For u = E;; v = E; we simplify notation and write RE,EJSR = Ryyst.

It will be useful for our consideration of Chern classes to introduce the following
traces:

(1.1) w(u,v) = %tr{w — R(u,v)w} = Ryvs',
(1.2) B, v) = 3 (w0 Blu, Johw) = Ryt

for u,v € T,M ®C and w € T, M. After some computations one can express these
traces in terms of the Ricci tensor as follows

27i(u, v) = plu,v) + p(Jv, Ju),
20(u,v) = p(v,u) — plu, v).
We put R{(u,v) = Ryyr’, ice., Rr’ = Rpsr’/w® Aw® and
0] (u,v) = ~(R](y,v) - V=1IR{(v,v)),
for u,v € T,M ® C. Then (©7) is a matrix of complex 2-forms and

1
2w/ —1

det (57 - 07) =1+ C1+-+Cn
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is a globally defined closed form which represents the total Chern class of M via de
Rham’s theorem (see [61, vol. II, p. 307]). Chern classes determined by C;,C5 are
denoted by c;,c; respectively. In particular, the Chern forms Cy, C,, and C? are
given by

VT g VT i
C, = o Z@i: —Qﬂ—(Ri_*/_m?)’

1 . :
2 __ 1 J
Cl=-13 > einel
1<i<ij<m
1 _ : , . A P - .
—TE}:HMAM!RMRQ—WMEA@+RJMwL
T 1<i<i<m
Co=-—5 Y {0in0)-0lr0})
1<i<j<m
——5 Y ARIARI-RIARI - RIARL + RIARY)

1<igj<m

1l

~V=IRIARL + REAR] — RIARE — REAR))).

We consider Chern numbers y,(M) = [, C; and 77 (M) = f,, C for a com-
pact complex surface M and similarly 7* = [ p CT* for an arbitrary complex
compact m-dimensional manifold.

Let A € o(m) be a skew-symmetric matrix. Then Cy,41(A) = 0 and we de-
fine P,(A) = (—-1)"C2,(A); P =3 P,(A) is the total Pontrjegin polynomial. The
{P,} for 2v < m generate the characteristic ring of the orthogonal group O(m). We
can always choose a Riemannian metric g for M and use the associated Levi-Civita
connection V(g) to compute the characteristic classes of the tangent bundle. This
reduces the structure group to O(m) and shows that only the Pontrjagin classes are
relevant in the study of the primary characteristic classes of 7M. From the point of
view of cohomology, the connection plays an unessential role; however, in many geo-
metrical applications one must work with differential forms not cohomology classes.
We illustrate it by the following facts. Let dz be the volume element of compact
4-dimensional orientable M, where M is without boundary. The Chern-Gauss-
Bonnet formula {36] and the Atiyah-Patodi-Singer formula [1] yields formulas for
the Buler-Poincaré characteristic x (M) and the signature Sign(M):

x(M) = /M E4(V(g))dz, Sign(M)= %/M Pi(V{g)),

where 1
Ey(V(g)) = W(RijjiRkllk — 4R Ran + Ry Rije),
1
Pi(V(g)) = ~3om? RijkleRjik3k4ekl Aek2 A eks A ke

The interior integrands E; and P, are primary characteristic forms, not characteris-
tic classes. But to express x(M) and Sign(M) of compact 4-dimensional orientable

i 4
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manifold M with smooth boundary M # ¢ we need also secondary characteristic
forms.

We introduce firstly relative secondary characteristic forms and later absolute
ones.

The space of all connections is an affine space; the space of torsion free connec-
tions is an affine subspace. If V; are connections on TM, let V, :=tV; +(1-1)Vo.
Let ¥ = V; — Vy; ¥ is an invariantly defined 1-form valued endomorphism. Let
R(t) be the associated curvature. Let ¢} € Q,. Let

TQ(V1,Vg): = u/ol Q(Y,R(t),...,R(t))dt;

dTQ(V1, Vo) = Q(V1) ~ Q(Vo).

This shows that [Q(V1)] = [@(Vo)] in de Rham cohomology. Note that we have:
TQ(Vy, V1) +TQ(V1,Va) =TQ(Vy, Vs) + exact form.

(1.3)

Suppose now that M is a 4-dimensional Riemannian manifold with smooth non-
empty boundary M. Let g be a Riemannian metric on M. Let indices 1,7,k
and [ range from 1 to 4 and index a local orthonormal frame {e;} for the tangent
bundle. At a point of the boundary of M, we assume e, is the inward unit normal
and let indices a,b,c range from 1 to 3. Let Loy := (V(g)e,€5,€4) be the second
fundamental form on M. We choose z = (y,t) to be local coordinates for M near
OM so the curves t — (y,t) are unit speed geodesics perpendicular to dM. This
identifies a neighborhood of M in M with a collared neighborhood X = M x (0, €)
for some € > 0. Let hoy be the associated product metric. We denote by V,, Vg the
Levi-Civita connections of h, hy respectively. The TP, (Vy, Vo) is given by

1
5 LabR4acd€b AeS A €d,

TPI(VI;VO) = TPI(L,Vt) = _16_,/1,

and consequently
1 1
Sign(M) = 3 [ (V) -3 [ TR V(R) - n(om),
3 M 3 aM

where the invariant n{JM) is intrinsic to OM and we will not be concerned with
this invariant here; see [40] for details.

To define absolute secondary characteristic forms we need the principal frame
bundle 7 : P — M for TM. A local section e to P is a frame e = {e;} for TM. Let
g be the natural inclusion of GL(m,R) in the Lie algebra gl(m,R) of m x m real
matrices. The Maurer-Cartan form dgg~! on GL(m,R) is a gl(m, R) valued 1-form
on GL(m,R) which is invariant under right multiplication. Let V be a connection
on TM. Fix a local frame field e for T'M; this is often called a choice of gauge. We
denote by w the associated connection 1-form, Ve; = wf- ej. Let

O:=0(V):=dgg~' + gwg™!,
Q:=QUV) :=g(dw-wAw)g ' =g(x*R)g™".
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These are Lie algebra valued forms on the principal bundle P which do not depend
on the local frame field chosen. If @ € Q,, then we have Q() = n*Q(V). We set
Q) = tdO — 120 A © = tQ + (t — t2)O A © and define

1
(1.4) TQ(V) ::u/o Q(0,Q(1),...,Q(t))dt.

We refer to Chern and Simons {37, Propositions 3.2, 3.7 and 3.8] for the proof of:

Theorem 1.1. Let Q € Q5 and Q € Q,,. (1) We have dTQ(V) = 7n*Q(V).
(2) We have T(QQ)(V) = TQ(V)An*Q(V) + exact = m°Q(V) ATQ(V) + exact.
(3) Let V, be a smooth 1 parameter family of connections. Let A := 0,V ,|,=0.

Then 8,TQ(V,)lp=0 = vQ(A,Qo, ..., Q) + exact. O

Suppose M is parallelizable. Let e be a global frame for the principal frame
" bundle P. Let Ve = 0 define the connection ¢V. We use equations (1.3) and (1.4)
to see that

1
e TQV) = /0 Qe Ry, Re) = TQIV,E V),

where w, = Ve and Ry = tdw, — t2we Awe = tR + (t — t2)w, A we.

We note that R; is the curvature of the connection t¢V + (1 - t)V. Fix
g € GL(m, R). Since Q is GL invariant, we have e*TQ(V) = (ge)*T Q(V).

Let Q € Q,. Suppose that Q(V) = 0. Then ¢*TQ(V) is a closed form on M
of degree 2v — 1 and [e*TQ(V)] in H?*~1(M;C) is independent of the homotopy
class of e. 'We say that Q is integral if Q is the image of an integral class in the
classifying space; see [37, §3] for details; the Pontrjagin polynomials are integral.

Theorem 1.2. Let Q € Q,. Assume that M is parallelizable and Q(V) = 0.
(1) If Q is integral, then [e* T Q(V)] is independent of e in H?>~1(M;C/Z).
(2) If v is odd, then [e*TQ(V)] is independent of € in H>*~1(M;C). O

IV.2. Characteristic classes and symmetries of a curvature tensor

The main purpose of this section is to study topology of a manifold endowed
with a torsion free connection which curvature tensor has symmetries, invariant
under the action of some classical groups in the spirit of Section II.

The relations between topology and the existence of some flat connection have
been studied by Milnor [87], Auslander [2], Benzécri [5] etc.

The topological obstruction of the existence of a complex torsion free connec-
tion with skew-symmetric Ricci tensor has been studied in [12]. More precisely, we
proved if V is a complex torsion free connection on a Riemann surface M and the
Ricci tensor p for V is skew-symmetric then v, (M) = [, u G =0

Let us remark if M is a sphere S? we have v;(M) # 0. Therefore there
is no a complex torsion free connection V with the skew-symmetric Ricci tensor
globally defined on S2. The local existence of this connection is proved by its
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construction. Namely, (52, g) is the standard sphere with the standard embedding
into the Euclidean space R® determined by

x=cosasinf, y=sinasinf, z=cosf, 0<a<2m 0<fB <.

The Christoffe] symbols for our complex connection are given by the following
formulas

- 1-cosf = -1+ cosp
Féz = . F%z = A
sin 3 sin
- 1 - )
fh=th= o Th=-sin

2, =T% =T} =1-cosf;

(see [12] for more details).

Having in mind the previously mentioned facts, torus T2 is a good candidate to
permite a globally defined torsion free connection V with the skew-symmetric Ricci
tensor. Really, let #; = cosa, z2 =sina, z3 = cosf, 4 =sinf8, 0 < a < 27,
0 < B < 2m, be the standard embedding of the torus into the Euclidean space
R*. Let I_“f]- 1,3,k = 1,2) be the Christoffel symbols for a complex torsion free

connection V. Then

F}I = F%z = F§1 = _‘Fég = —cosasin 3,
I,=T03=T0%= —Ffl = sin @ cos (.

We point out these connections belong to the class of affine conformal invari-
ants, studied by Simon in [{123].

The Chern characteristic classes of complex surfaces endowed with a holomor-
phic affine connection V have been studied in [14]. The following theorem considers
complex surfaces with all vanishing characteristic classes.

Theorem 2.1. Let M be a complex surface (dim M = 2) endowed with a
holomorphic affine connection V. Then its Chern characteristic classes Cy and
C? vanish. Moreover, if M is a complex equiaffine surface (V permits a parallel
complex 2-form “w) then C; also vanishes. O

One can find in [14] the examples of nonflat holomorphic affine connections
on the torus T and the Euclidean space R¢. A

Let us assume for our complex torsion free connection V to have a symmetric
curvature operator, i.e. R(z,y) satisfies the relation g(R(z,y)z,v) = g(R(z,y)v, 2).
Then R satisfies also the following relations

R(Jz,Jy) = R(z,y), plz,y) = —-p(y,z), p(Jz,Jy) = p(z,y),

(see [93] for the proof). Now one can use the results from the section IV.1 to study
the Chern characteristic classes of a Hermite surface M endowed with a complex
torsion free connection V with the symmetric curvature operator and conclude

[Ci(M)] =0, [CM)]=0, [Co(M)]=[782] = [b],
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where
1

= 16m2 = 1602
[|RIl, llp]| are the norms of the curvature and the Ricci tensor, i.e.

@lpll? = IRI%®2, & (72 — ||R|I*) 2,

8

IR = Z RpoixRpaoik, lloll* = Z PPQPPQ

and ® = Y wi Aw' is the fundamental 2-form; assuming that (w?, w?) is the corre-
sponding dual base for (E;, JE;). Moreover, we have also some geometrical conse-
quences. More precisely we have

Theorem 2.2. Suppose that a torsion free complex connection V exists on a
_compact Hermite surface M with 7* = 0. Then yo(M) < 0. The equality holds if
and only if V is a flat connection. O

Corollary 2.3. Let (M,J) be a compact Hermite surface which admits a
Kahler-Einstein metric. Then every complex torsion free connection with 7* = (
on M is flat. O

We refer to [16] for more details related to the symmetric curvature operators
and topology. One can find also some examples of complex torsion free connections
on reducible Hermite surface M with the generic R € R(T, M) or with R belonging
to some vector subspaces of R(1, M), which are invariant or, irreducible under the
action of the unitary group U(m). Some of examples show that the compactness
of M is an essential assumption in Theorem 2.2 and Corollary 2.3.

"~ IV.3. The relations between characteristic classes
and projective geometry

If we are interested in relations between topology and geometry of a smooth
manifold we must work with differential forms. The main purpose of this section is
to study invariance of characteristic forms with respect to some group of transfor-
mations. We are interested in also does the topology of a manifold M determine
the relations between the group of holomorphically projective transformations, the
group of projective transformations and the group of affine transformations on M.

First, we are interested in the invariance of characteristic forms. Conformally
equivalent metrics and projectively equivalent torsion free connections have the
same characteristic forms. More precisely, it yields

Theorem 3.1. Let Q € Q, and let § € CL(M).

(1) Let V(h) be the Levi-Civita connection of a semi-Riemannian metric.
Then Q(V(h)) = Q(VB(h)), where B(h) = Bh.

(2) Let V and V be two projectively equivalent torsion free connections.
Then Q(V) = Q(V). 0

We refer {3], [15] for the proof of this theorem.
Matzeu [77] has studied the Chern algebra of the complex vector subbundle
H of TM defined as H = Kern, where M is normal almost contact manifold.
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The corresponding conditions to have invariant Chern forms under C-projective
transformations have been found. We refer to Section II1.5. for basic notations.
Suppose that V is an adapted symmetric connection with symmetric Ricci tensor
field and D is its restriction to the vector subbundle H of T M defined as H = Kern.
The D is the complex connection with the Ricci tensor p(K) symmetric too. We
refer to [77] for the proofs of the following theorems.

Theorem 3.2. If the connection D with symmetric Ricci tensor field has the
first Chern form proportional to dn, then all its Chern forms are C-projectively
invariant. 0

Theorem 3.3. All the Chern forms of a C-projectively flat adopted connection
are C-projectively invariant. O

Theorem 3.4. The Chern classes of a C-projectively flat manifold are trivial. O}

One can use the traces u, ii given by (1.1), (1.2) and Chern numbers to prove
the following theorems related to the influence of topology of M in the group of
projective transformations and its subgroup of affine transformations. We refer to
[13] for details.

Theorem 3.5. Let M, dim¢ M = m, be a compact complex manifold with a
complex symmetric connection V. If
(i) p(u,v) = p(v,u), and p(Ju, Jv) = p(u,v),
(ii) [ is a semi-definite bilinear form, of rank 0 or m, nonnegative if m is odd,
(iii}) v{*(M) < 0 then the group of all projective diffeomorphisms of the connection
V coincides with the group of all affine diffeomorphisms of the same connection. O

Theorem 3.6. Let M be a surface of general type with a complex symmetric
connection V. If
(i) p(v,u) = p(u,v), and p(Ju, Jv) = p(u,v),
(ii) i is a semi-definite bilinear form of rank 0 or m, nonnegative if m is odd,
(iii) ¥2(M) < 0, then the group of all projective diffeomorphisms of the connection
V coincides with the group of all affine diffeomorphisms of the same connection. O

Under the assumptions of Theorems 3.5. or 3.6. one can prove the group of
holomorphically projective transformations coincides with the group of affine trans-
formations of V.

In the general case the group of projective diffeomorphisms, the group of affine
diffeomorphisms and the isometry group do not coincide for a. Riemannian manifold
(M, g). Nagano [89] has proved that if M is a complete Riemannian manifold with
parallel Ricci tensor then the largest connected group of projective transformations
of M coincides with the largest connected group of affine transformations of A/
unless M is a space of positive constant sectional curvature. For Kahler manifolds
problems of this type have been studied in [13]. So we have '

Theorem 3.7. Let M be a compact Kihler manifold of complex dimension
m > 1. If: (i) 7 = constant, (ii) ¢; =0, then
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(a) the group of all projective diffeomorphisms of the Levi-Civita connection
coincides with the group of all affine diffeomorphisms of the same connection;

(b) the identity component of the group of all holomorphically projective dif-
feomorphisms of the Levi-Civita connection coincides with the identity component
of its group of isometries. O

Kobayashi and Ochiai have studied in [62] holomorphic normal projective con-
nections on complex manifolds and classified all compact complex analytic surfaces
which admit flat holomorphic projective connections. They have proved in [63]
a complex analytic surface of general type, which admits a holomorphic (normal)
projective connection, is covered by a unit ball B2 C C? without ramification.

IV.4. Characteristic classes and affine differential geometry

Let us recall, if z is a nondegenerate embedding of a manifold M as a hyper-
surface in affine space, we let {z, X,y) be a relative normalization. This defines a
triple (V, h, V*) on M, where h is a semi-Riemannian metric, and where V and V*
are torsion free connections on the tangent bundle TM. If @ is an invariant poly-
nomial, then Q(V) = 0, Q(V(h)) = 0 and Q(V*) = 0. Moreover, the secondary
characteristic forms of the connections V,V* V(h) vanish. To be more precise we
introduce a decomposable invariant polynomial @ by the relation Q = )", Q; 1Q 2,
where 0 # Q;; € Q,(i,; and v(i,j) > 0. For the proofs of following lemma and
theorems we refer [15].

Lemma 4.1. Let (V,h,V*) be the conjugate triple defined by a relative
normalization (z,X,y) of an affine embedding of an orientable manifold M. Let
Qeq,.

(1) If Q is decomposable, then [T,Q(V)] = 0, [TQ(V(h))] =0, and [T,Q(V*)] =0
in H*~1(M,C).

(2) The classes [TQ(V)], [T:Q(V*)], and [TQ(V(h))] in H*~(M,C) are affine
invariants; these cohomology classes are independent of the relative normal-

ization chosen. O

Theorem 4.2. Let (V,h,V*) be the conjugate triple defined by a relative
normalization (z,X,y) of an affine embedding of an orientable manifold M. Let
Qe€q,.

(1) We have [T,Q(V)] =0 in H*~}(M;C).

(2) If Q is integral and if v is even, then [TQ(V*)] = 0in H?*~Y(M;C/Z).

(3) If v is odd, then [T,Q(V*)] = 0 in H*~}(M;C).

(4) If v is even, then [T,Q(V(h))] = 0 in H*~}(M;C).

(5) If v is odd and if h is definite, then [T,Q(V(h))] =0 in H**~}(M,C). O

One can apply these results to 3-dimensional affine differential geometry to
construct obstructions to realizing the conformal class of a Riemannian metric as
the second fundamental form of an embedding; this generalizes work of Chern and
Simons [37].

To state the corresponding theorem we have in mind that if A is a compact
orientable 3-dimensional manifold, then M is parallelizable. Hence we can choose a
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global frame f for TM. If Q € Q3, then @ = c¢P, + decomposable, so we need only
to study [7;P;], where P; is the first Pontrjagin form. Since P; is a real integral
differential form, we define

(V) = /M F*TP(V) € R/Z.

One can prove that ®(V) is independent of the particular parallelization f
which is chosen. Consequently, Theorem 4.2 implies

Theorem 4.3. Let (M, g,) be a 3-dimensional Riemannian manifold.

(1) If there exists an immersion z : M — R* so that gy is conformally equivalent
to the first fundamental form of z, then ®(V(g)) =0 in R/Z.

(2) If there exists an immersion z : M — R* so that gy is conformally equivalent
to the second fundamental form of z, then ®(V(g)) =0 in R/Z. 0

We refer to [15] for details of the proof of this theorem and also for other
references related to other applications of the secondary characteristic forms in
3-dimensional geometry and in mathematical physics.

V. DIFFERENTIAL OPERATORS OF LAPLACE TYPE

The main purpose of this Section is to study the second order differential
operators of Laplace type which are naturally appeared in differential geometry. Of
course, the most interesting for us are these operators which depend on a torsion
free connection, and relations between the spectrum of operators from one side and
geometry and topology of a manifold from other side. To study these problems
we explore the heat equation method. We refer to monographs (6], [34], [44], and
expository papers [30], [39], [58] [84] etc. for more details.

V.1. Definitions and basic notations

Let M be a compact Riemannian manifold of dimension m. The Laplace-
Beltrami operator (shorter the Laplacian) is an operator

(L) A(f) = — + (grad f),
where f € C®(M), i.e. in coordinates A = — Y, - g7'0i(99" 9;), for g = \/det(gy;).
For example if the metric is given by ds* = h(dz® + dy?), then A = g71(82 + 32).

Let fi(z) denote the temperature in a time ¢ and a point z € M. If we assume
the heat trasfers into the coolest direction, then f;(z) satisfies the equation

(1.2) ' %erAf:O.



128 Bokan

We say fo{z) is an eigenfunction of A with the eigenvalue X € Rifit yields A(fp) =
X - fo. One can check then fi(z) = e *fy(z) satisfies the heat equation (1.2).
Therefore, f; may be interpreted as “a heat wave” with “the frequency” e~ t.

The theory of partial differential operators implies that there exist countable
set of eigenvalues \; and for every A; the finite-dimensional family of eigenfunctions
fi, such that we have A(f;) = A;f;. Furthermore, A; are positive, and A; — oo
when i = co. The collection {);}, together with the multiplicities of each A;, is the
spectrum of a manifold M.

If one struck M with a mallet than A; may be interpreted as the sounds emitted
by M, assuming that sound satisfies a similar equation to that of heat.

Weyl [137] has proved that the spectrum of M determine one of significant
geometrical invariant - volume of M. This was a reason to believe that the spectrum
determines completely the geometry of Kac [58] formulated this problem in a lovely
question: “Can one hear a shape of a drum”. The example of two 16th dimensional
non-isometric torus [86] with the same spectrum have shown that expectations
were excessively strong. Many examples have been constructed later on (see [30],
[84] etc.) using different methods to show the same things.

We say manifolds M; and M, are isospectral if they have the same spectrum.

A function Hi(z,y) is a fundamental solution of the heat equation (or a heat
kernel) if

(13) (2 +a)H=0,
(1.4) - im | Hi(z,y)f(y)dy = f(x),
M

for any f € C*°(M). One can use (1.3) and (1.4) to check that the general solution
fi(z) of the heat equation with initial equation fo(z) = f is given by the formula

filz) = /M Hy(z, ) (v)dy.

We look for H; to fulfill the following conditions

(i) Hy(z,y) is uniquely determined by (1.3) and (1.4).

(ii) If M is a compact manifold and {f;} is an orthonormal base of eigenfunc-
tions with corresponding eigenvalues {A;}, then

Hy(z,y) = > e M filz)fily)-
i
Now we use (ii) to eliminate f;s and describe A;s. Therefore, we put

wr(H,) = /M Hi(z,z)dz.
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Consequently

tr(H,) = trpe e t2 :/ Ze‘*"tfiz(l')dz
M
= e"\"t/ fldz =) et
Yo [ ey

If t — 0% then there is a power serious expansion, asymptoticaly equivalent to

Se Mt e,
00
Ze—t/\.- ~ Zan(A)t(n—m)/Z
i n=0

where a,(A) are spectral invariants determined by local geometry of M. If M is a
manifold with boundary, i.e. M # ¢, then azk+1(A) # 0 and they depend on the
boundary conditions

Bpf = flam =0  (Dirichlet boundary condition)  or
B f = (8, + S)|lap (modified Neumann boundary condition).

These results may be generalized for a partial differential operator D of order
d > 0 on a smooth vector bundle. We assume the leading symbol of D is self-adjoint
and positive definite. If the boundary of M is non-empty, we impose boundary
conditions B and let Domain(Dp) = {w € C®(V) : Bw = 0}. We assume the
boundary conditions B are strongly elliptic; see Gilkey [44, §1.11].

Let f € C®(M) be an auxiliary test function. Then there is an asymptotic
series at t | 07 of the form

o]

trp2(fe™tP5) ~ ) an(f, D, Bt /4

n=0

see Gilkey [44, Theorem 1.11.4] for details. The global invariants a,(f, D, B) are lo-
cally computable. Let 8% f be the v** normal covariant derivative of f. Then there
exists local measure valued invariants A, (z, D) defined for z € M and A%, (y, D, B)
defined for y € M such that

(1.5) an(f, D, B) = /fAnzD > / (0% F) A%, (y, D, B).

0<r<n—1

From now on we study the local geometry of operators of Laplace type. Let
D = —(¢"*8,0, + A°8, + B) be an operator of Laplace type on C*°(M), for A7 €
End(M) and B € End(M). One can note that Dirichlet and modified Neumann
boundary conditions are strongly elliptic for second order operators of Laplace type.
We refer to [43] for the proof of
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Lemma 1.1. There exists a unique connection Vp on C*{M) and a unique
function Ep € C*(M) so that D = —(t1(V%) + Ep). If wp is the connection
1-form of Vp, then

1 14 a v
wps = ig"é(A +9"°Tg.u"), and

Ep=B- gyu(auwD,u +wWp,,Wp,u — wD,aFg,vua)- O

We set f = 1 in (1.5) to recover the invariants a,(D,B) for an operator of
Laplace type. We use now these invariants to express A,(z,D). Let Qp;; be
the curvature of the connection Vp on C®(M) and let ’;’ be multiple covariant
differentiation with respect to the Levi-Civita connection. We refer to Gilkey {43],
[44] for the proof of the following theorem:

Theorem 1.2. Let D = D(Vp, Ep) on C™°(M).
(a) Ao(z,D) = (4m)~™/2.
(b) As(z, D) = 6~ 1(4x)~™/%(r, + 6 Ep).
(c) A4(z,D) = 3601 (47)"™/2{60(Ep); kk + 607,Ep + 180(Ep)? +
30Qp,i;0p.i; + 12(7)ukk + 5(7g)* — 2|py|* + 2| Rg[?}.

We suppose given some auxiliary geometric structure J on which C{°(M) also
acts. For g € € and s € J we assume given a natural operator D = D{g, s} on
M which is of Laplace type. Let D — gD := D(gg,s), where g — g = fg,
B € CP(M),g € €, and let M(B) be function multiplication. An operator D is
said to transform conformally if gD = M(B%)o Do M(3%) for a+b=—-1.1f D
transforms conformally, the conformal index theorem of Branson and Orsted [29]
and Parker and Rosenberg [104] shows that a, (D) = am (g D).

V.2. Asymptotics of Laplacians
defined by torsion free connections

In this section we present the heat equation asymptotics of the Laplacians
defined by torsion free connections.

V.2.1. Laplacians on the tangent bundle of a manifold without
boundary. We assume that (M™, g) is a compact Riemannian manifold without
boundary of dimension m > 1. We choose a local coordinates to have d; and dz®
as local coordinate frames for the tangent TM™ and cotangent T* M ™ bundles re-
spectively. If V is a torsion free connection on TM™ we denote by w; € End(TM™)
the connection 1-form of V '

V(’)j = dr’ ® w,-(aj) = ’wijkd.'lii ® Ok.

Since V is torsion free it follows w;;* = w;;*. Let VR be the curvature of V. Let
9V = V(g) be the Levi-Civita connection corresponding to the metric g. Then
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IV(9;) = T'ij*dz* ® O and 6 = V — 9V is tensorial and 6;;* = w;;* — T;;5. We
introduce also the tensor 7 € TM™ by contracting the first two indices of §:

]:i — gjkgjki — gjk(wjki _ iji)-

The dual connection V* on T*M™ is defined by d(u,a) = (Vu,a) + (u, V*a), for
any smooth vector field © and smooth covector field a. Consequently

V*(da?) = ~dz* ® w}(0;) = ~wy'ds' ® dz*.
IfvV*®1+1®V is the tensor product connection on T*M™ @ TM™, then
(2.1) P=P(V)=-¢g{V'®1+1®V};V; on C®(TMm™)

is a second order PDQO of Laplace type.
We shall use Roman indices for a coordinate frame and Greek indices for an
orthonormal frame. We refer to [26] for the proof of:

Theorem 2.1. Let P = P(V) be a PDO of Laplace type given by (2.1).
Then
(a) ao(P) = m - vol(M),
(b) ax(P) = & [,,(2r — 3F, F,),
(c) as(P) = 555 [, {m{57% — 2p* — 2p* + 2R? + 157(2F,,, — F, o)
+ 82T - FF)? + R(Fup — Fuw)?} + T(3002)}). O

We define the Hessian Hy for a torsion free connection V on T'M by
(Hv f)(u,v) = u(v(f)) — Vuo(f).

One can check easily that (Hv f)(u,v) = (Hv f)(v,u) and Hy is tensorial in X and
Y. The normalized Hessian H(f) := Hv(f) + (m — 1)71 fpy arises naturally in
the study of Codazzi equations; see [108] for details. We contract the normalized
Hessian for a torsion free connection with symmetric Ricci tensor py to define an
operator of Laplace type

(2.2) Df =D(g,V)f = —trg{Hv(f) + (m~ 1) fpv}.

In general case, D need not be self-adjoint.
If V and V are projectively equivalent, as in (1.1) Section II, then we may
choose a local primitive ¢ so d¢ = 7. Then

(2.3) He = e?Hye ?;

i.e. the operators Hg and Hy are locally conjugate. Furthermore, if § = €2¥g,
then (2.3) implies

(2.4) D(3,V) =e2¥*9D(g,V)e®.
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If [x] = 0 in the first cohomology group H'(M), then ¢ is globally defined and
D(g,V) and D(g,V) are conjugate and hence isospectral. We refer to (17]-[19],
[21] for more details related to this operator.
Let K be a Codazzi structure, let (g,* V) € K and ¥V be the Weyl connection
defined by K. Then we use (2.2) and define
(i) Let *D := D{g,* V} be the trace of the normalized Hessian of *V.
(i) Let “D := D{g," V} be the trace of the normalized Hessian of ¥ V.
(iil) Let YA := —tr, ¥Vd be the scalar Laplacian of ¥V.
(iv) Let 90 := —try §4d + (m — 2)7(g)/4(m — 1) be the conformal Laplacian.

V.3. Geometry reflected by the spectrum

As we already know torsion free connections arise naturally in affine differential
geometry and Weyl geometry. The main purpose of this section is to study geometry
of a manifold in the framework previously mentioned, reflected by the spectrum of
an differential operator of Laplace type. One can find more details in [17]-[21] and
[26].

V.3.1. Affine differential geometry reflected by the spectrum. In this
subsection we deal with smooth hypersurfaces M™ immersed into an affine space
A™F1 Because of the convinience reason througout this subsection we denote
by 'V, 2V the induced connection and the conormal connection. We suppose
the Blaschke metric G positive definite henceforth; this means that the immersed
hypersurface z{M™) is locally strongly convex. Let P = P(IV,G) = Pz, X,v)
on C®(TM™) be defined by (2.1). The spectral geometry of P should play an
important role in affine geometry. Since the Blaschke metric G and first affine
connection 'V are defined by expressions which are invariant under the group of
affine transformations, the operator P and its spectrum are affinely invariant.

One can compute the heat equation invariants.

Lemma 3.1. (a) Cy* = 6;;%, (b)) wy;* ='Ty;*. () F, = mT,,
(d) tr(ﬂz) = 1Ri]‘kl 1Rij[k = —2{m(m — :l)H2 - —715 Z(/\l — Aj)2}. [}
: i<j
We combine now Lemma. 3.1 and Theorem 2.1 with results from Section 1.2.
to prove the following theorems.

Theorem 3.2. Let £ and T : M™ — A™*! define hyperovaloids with the
same regular relative spherical indicatrix y = § which are P isospectral. Then z
and % are translation equivalent. 0

Theorem 3.3. Let z and Z : M? — A3 be ovaloids with centroaffine normal-
ization which are P isospectral. If z(M?) is an ellipsoid, then Z(M?) is an ellipsoid.
O

Theorem 3.4. Let M; be ovaloids with equiaffine normalization and M, an
ellipsoid. If for M_l =M, My:=M
() [y H= [z H, [y tr() = [z t(1) or
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(i) [, H? = fMH2 Jutr(1) = [ tr(1), H? >0
(H? is the second elementary curvature function)
then M = M, is an ellipsoid. 0
We study now affine geometry reflected by the spectrum of the operator D
given by (2.2). Since the 'V are torsion free, Ricci symmetric connections, we can
apply the results of Section V.2. to this setting. Let

'Dp:=D(G,'V), *D:=D(G,?V) and °D:=D(G,°V)

be the associated operators of Laplace type on C®(M); these operators and their
spectra are affine invariants of (z, X, y).

We now compute the expressions of Lemma 1.1, which we need to obtain the
coefficients in the corresponding heat equation asymptotics.

Lemma 3.5. Let D=1'D andlet e = 1 orlet D = 2D and let e = —1. Then:
1 .
Do =¢C, wp= —5emT, Qp =0,
1
Ep=mH - - 2ITI2 —emTz 1. 0

Theorem 3.6. Let z: M — A be a hyperovaloid. Let D =D and let ¢ = 1
orlet D ="2D andlet ¢ = —~1. Then:
(a) Ao(z, D) = (4m)"™/2. ag(D) = (4m)™™/% [, 1.
(b) Ax(z,D) = (4m)~™/?{iry + mH — }m?|T|? + LemTy;}
a2(D) = (4m)=™/2 [, {11, + mH — m?(T}2).
(c) As(z,D) = (4n)~™/?360~1 {607 (mH — ;m?|T|* + temT;;) +
180(mH — Im?[T|? + jemTy;)? + 60(mH — m?|T)? + LemTy,),; +
127Gk + 5Té - 2':00,2 + 2IRG|2}. (]
One can combine Lemma 3.5 and Theorem 3.6 with results from Section 1.2.
to prove the following theorems, which consider affine geometry reflected by the
spectrums of *D.

Theorem 3.7. Let D ='D or D = ?D.
(a) Let (z,X,y) be a relative normalization. Then

m—1
+5

(47r)m/2{a2(D) (GD) <m/ H.

Equality holds if and only if the normalization is equiaffine.
(b) If the normalization is equiaffine, then

m(m + 5)/MH < 6(4m)™%ay(D) < m{m + 5)/ (H+J).

Equality holds on the left or on the right hand side if and only if the hyperovaloid
is an ellipsoid. [}
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Theorem 3.8. Let D = 1D or D = 2D. With the centroaffine normalization:
(a) ap(D) = (47)~™/2 fM 1. ay(D) = (4n)~™/? fM(%TG +m— %m2|’f’|2).
(b) 6(4m)™/?{ay(D) — mao(D)} < [, 7¢ with equality if and only if the hyper-
ovaloid is an ellipsoid.
(c) Let z(M?) and £(M?) be ovaloids in 3 space with centroaffine normalization
which are D isospectral. Then z is an ellipsoid if and only if % is an ellipsoid. 0O

As we have mentioned already the operators !D are not self-adjoint in general
case. The following theorem deals with the conditions to have self-adjoint operators
‘D.

Theorem 3.9. (1) Let {z, X,y} be the Euclidean normalization. Then the
following assertions are equivalent

1-a) The Gauss-Kronecker curvature K = K,, is constant.

1-b) We have 'D =2D.

1-c) The operator D or the operator 2D is self-adjoint.

(2) Let = be a compact centroaffine hypersurface with non-empty boundary. The
following assertions are equivalent:

2-a) We have'D = 2D.

2-b) We have that ' D or %D is self-adjoint.

2-c) We have that z is a proper affine sphere.

(3) Let x be a compact centroaffine hypersurface without boundary. Then the
following assertions are equivalent:

3-a) We have'D =2 D.

3-b) We have that ! D or 2D is self-adjoint.

3-¢) We have that x is a hyperovalloid. O

Dirichlet boundary conditions on affine hypersurface with boundary were con-
sidered by Schwenk [113], [128] and Simon [116]. Their methods are different from
this one.

V.3.2. Projective geometry reflected by the spectrum. In general, con-
structing projective invariants is quite difficult. One such example is the projective
curvature tensor of H. Weyl (see Section IL1., especialy the formula (1.2)). This
subsection deals with spectral invariants which are also projectively invariant. More
precisely we have

Theorem 3.10. Let vﬁ be torsion free projectively equivalent connections
on a Riemannian manifold (M,g). Let D = D(g,V) and D = D(g, V).

(a) An(z, D) = An(z, D) and A%(y, D, B) = A(y, D, B).

(b) a,,(D_,B) = a,(D, B). O

If m is odd, and if the boundary of M is empty, there is a global spectral
invariant called the functional determinant which can be defined in this context.

For Re(s) > 0, let ((s, D) := trp2(D~*), where we project on the complement
of the kernel of D to avoid the 0-spectrum. This has a meromorphic extension to
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C with isolated simple poles on the real axis. The origin is a regular value and
¢'(0) := — log(det(D)) is a global invariant of D.

Theorem 3.11. Let V,V be torsion free projectively equivalent connections
on a Riemannian manifold (M,g) and § € G(g); If the boundary of M is empty
and if m = dim M is odd, then ¢'(0,D) = ¢'(0, D). ]

V.3.3. Invariants of Codazzi and Weyl structures. The relation (2.4)
informs us that the operator D, given by (2.2) transforms conformally. This implies
one can apply the conformal index theorem of Branson and Orsted [29] and Parker
and Rosenberg [104] to prove the following lemma.

Lema 3.12. (i) Let D be an operator of Laplace type given by (2.2). Then
am(D(9,V)) = am(D(9, V))-

(ii) We have that a, (* D), am(®D),an(*4), and a,,(90) are gauge invariants
of a Codazzi structure K. O

One can compute the endomorphism E and the curvature § for four natural
operators defined in Section V.2.

Lemma 3.13. We have
(i) E{*D} = {(m+2)7(g, V) — (m = 2)7(g)}/4(m — 1).
(1) Q{*D} = —(m+ 2)*F/2.
(iii) E{*D} = —(m — 2)8,8/2 — (m = 2)|10lI2/4 + (m — 1)~17(g,* V).
(iv) Q{*D} = —(m — 2)¥F/2 )
(v) B{*A} = —(m —2)8,8/2 — (m — 2)*||6]|7/4.
(vi) QPA) = —(m —2)VF/2.
(vii) E{?90} = —(m — 2)7(g9)/4(m — 1) and Q{*0} = 0. ]
We refer to [20] for the proof of this Lemma and more details related to the
operators *D, YD, ¥V and 90.
We use now Lemma 3.13 and Theorem 1.2 in dimensions m = 2 and m = 4.
Let x{M) be the Euler-Poincare characteristic of M. The Chern Gauss Bonnet
theorem yields

X(M?) = (4m)~} /M 7(9) (), (),
X(M*) = (327%) "1 /M{uyRuz — 402 + 7(9)?} (2)dvy (2).

Theorem 3.14. Let dim(M) = 2. Then
(i) a2(* D) = x(M)[6 + (4m) " [, (9, V)dy,(x).
(ii) ax(*D) = x(M)/6 + (4m)7* [}, 7(9," V)(z)dvy ().
(i) a3(*A) = x(M)/6.
(iv) ax(900) = x(M)/6. ' O
Theorem 3.15. Let dim(M) = 4. Let W be the Weyl conformal curvature.
Then
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(1) ay(*D) = - 180 ) 4+ m Ly BlIEW 2 + 270\ F |5 + 457(g,* V)?}dyy(z).
(i) ay(*D) = — 130 M) m B2 + 30| FI|2 + 457(g,” V)2 }dy,( x)
(iii) ag(vA) = - 4 me{wwug + 301°F|I2 + 57(h,* V2}d, (z
(iv) as(90) = —‘—1—(83) + (—4,?)2—3‘56 fM{3”gWHg}dV9 z). O
If f is a scalar invariant, let f[M]:= [, f » f(x)dvy(z). The Euler characteristic

is a topological invariant of M which does not depend on the Codazzi structure.
Then we use Theorem 3.15 to prove the following Corollary:

Corollary 3.16. (i) The invariants 7(g,"” V)?(M], | F||2[M] and llew |2(M]
of a Weyl structure on M are determined by x(M) and by the spectrum of the
operators *D, ¥ D, and Y A.

(i) We have 32n2x(M*) > 457(g,* V)?[M] + 270||* F||2[M) — (47)?360a4(* D)
with equality if, and only if, the class € is conformally flat.

(i) We have 32n°x(M*) > 457(g,* V)2[M] + 3||9W||2(M] — (47)2360a4(* D)
with equality if, and only if, the length curvature *F = {. O
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Preface

This paper gives a self-contained, comprehensive treatment of the theories of
sequence spaces and measures of noncompactness, as well as a survey of some of
the authors’ recent research results in these fields. It contains subjects of lectures
at the universities of Ni§, Novi Sad and Belgrade, Giessen (Germany) and Irbid
(Jordan), and talks given by the authors at various international conferences in the
Czech Republic, Germany, Hungary, India, Italy, Jordan, Poland and Yugoslavia.

For the first time, methods from the fields of summability, in particular of
sequence spaces and matrix transformations on one hand, and of measures of non-
compactness on the other are successfully linked on a large scale to obtain necessary
and sufficient conditions for matrix maps between certain sequence spaces of a gen-
eral class to be compact operators. The original idea for research in this field dates
back to the classical paper of L. W. Cohen and N. Dunford [10]. In this paper they
gave necessary and suflicient conditions for matrix transformations from {; to {,, I,
to ¢o and [, to {;, and found the norm of these transformations. Furthermore they
established necessary and sufficient conditions for these operators to be compact.
Although the concept of measure of noncompactness is not explicitly mentioned in
their paper, their studies and techniques are very closely related to our research.

These notes are addressed to both experts and nonexperts with an interest in
getting acquainted with sequence spaces and measures of noncompactness. They
could also be used as a guideline for research and teaching at graduate and post
graduate levels.

Sections 1 and 2 deal with the necessary basic concepts and results of the
theory of FK spaces, their duals, matrix transformations and measures of noncom-
pactness. Although most of the results presented are well known and can be found,
for instance, in [105, 108, 107, 91] concerning Section 1, and in [1, 7, 86] concerning
Section 2, proofs are given in almost all cases to make the paper self—contained.

In Section 3, the authors give their own research results and apply the meth-
ods and results of the first two chapters to characterize matrix transformations
between sequence spaces closely related to various concepts of summability, such as
ordinary and strong summability, spaces of difference sequences of higher order and
of strongly convergent and bounded sequences. Finally they apply the Hausdorff
measure of noncompactness to give necessary and sufficient conditions for a matrix
map bétween these spaces to be a compact operator.

Although there is a very wide range of problems for further research relat-
ed to the presented topics, only the most closely related and possibly interesting
will be mentioned here. We hope that the results presented here will be a useful
introduction to further studies in the following fields. Concerning measures of non-
compactness it seems most interesting to study when operators between sequence
spaces are strictly singular [45, 104], Fredholm or semi-Fredholm {16, 17, 19, 21].
Results in this direction could also be applied in the perturbation theory of Fred-
holm and semi-Fredholm operators. The authors’ research is also connected with
A. Wilansky’s results [106], and will be in this direction. Concerning the theory
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(P.5) if (M) is a sequence of scalars with A, = A (n - o0) and (z,) is a
sequence of vectors with p(z,—z) = 0 (n = 00), then p(Apz,—Az) 2 0 (n — 0)
(continuity of multiplication by scalars).

If p is a paranorm on X, then (X,p), or X for short, is called a paranormed
space. A paranorm p for which p(z) = 0 implies £ = 0 is called total For any
two paranorms p and g, p is called stronger than g if, whenever (z,) is a sequence
such that p(z,) = 0 (n = o0), then also ¢(z,) = 0 (n = o). If pis stronger
than g, then q is said to be weaker than p. If p is stronger than ¢ and g is stronger
than p, then p and ¢ are called equivalent. If p is stronger than ¢, but p and ¢ are
not equivalent, then p is said to be strictly stronger than ¢, and ¢ is called strictly
weaker than p.

It is easy to see that every totally peranormed space is a linear metric space.
The converse is also true. The metric of any linear metric space is given by some
total paranorm (cf. [105, Theorem 10.4.2, p. 183]). A sequence of paranorms may
be used to define a paranorm.

Theorem 1.2. Let (pr)f2, be a sequence of paranorms on a linear space X.
We define the so-called Fréchet combination of (py) by |

[o 0]
1 pi(z)
(1.1) plx) = E ——————  forallzx € X.
n=0 2k 1 +pk(x)

Then:
(a) p is a paranorm on X and satisfies

(1.2)  p(zp) = 0 (n — o0) if and only if pr(zn) = 0 (n = c0)  for each k;

(b) p is the weakest paranorm which is stronger than every py;
(c) p is total if and only if every py, is total.

Proof. (a) Conditions (P.1), (P.2) and (P.3) in Definition 1.1 are obvious,
since every py is a paranorm. To prove condition (P.4), we observe that, for all
reals a and b with 0 < a < b, we have a(1 +b) =a+ab < b+ ab= b(1+a) and so
a/(1+a) < b/(1+b). Applying this with 0 < a = pe(z +9) < pr(a) + pily) = b,
we conclude

pezt+y) o pe@) +pely) o pelo) Pe(y)
T+pr(z+y) — 1+pu(@) +pe(y) ~ T+pelz) 1+ pely)

for all k,

and from this p(z + y) < p(z) + p(y). To prove the statement in (1.2), we first
assume pg(z,) = 0 (n = oo) for each k. Since

< 2@ 0 ik
1+pk(:rn)
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and Y 72, 1/2% converges, the series

converges uniformly in n. Thus lim,_, e p(z,) = 0.
Conversely, we assume p(z,) — 0, (n — 00) and fix k. Then

1 pe(zn)
— _PE\TR] < n

2k 1 +pk(1'n) - p(z )

implies pr(z,) < 2¥p(z,) + 2°pr(za)p(zxn). Since p(z,) — 0 (n = o0), it follows
that 2¥p(z,) < 1 for all sufficiently large n, hence px(z,)(1 ~ 2*p(z,)) < 2*p(z,,)
for all sufficiently large n, and consequently

k
pi(zn) < : 2'p(zn) for all sufficiently large n.

— 28p(z,,)

This implies pi(z,) — 0 (n — 00).

To prove condition (P.5), let A, — A and p(z, — z) — 0 (n — o00). By the
statement in (1.2), pr(zn — ) = 0 (n — o0) for all k, and, since every p; is a
paranorm, this implies px(A,z, — Az) = 0 (n = oo) for all k. Now it follows from
the statement in (1.2) that p(Apz, — Az) = 0 (n = o00).

(b) Let ¢ be a paranorm which i stronger than every p;. Then ¢(z,) — 0
(n — oo) implies pr(z,) — 0 (n — oo) for all k, and, by the statement in (1.2),
p(x,) = 0 (n — o0). Thus ¢ is stronger than p. ’

(c) Part (c) is trivial. 0

Let us recall that a subset S of a linear space X is said to be absorbing if for
each z € X there is € > 0 such that Az € S for all scalars A with |A] < e.

Remark 1.3. Let (X, p) be a paranormed space. Then the open neighbour-
hoods of 0, N.(0) = {z € X : p(z) < r}, are absorbing for all r > 0.

Proof. We assume that is N,(0) is not absorbing for some r > 0. Then
there are x € X and a sequence (A,)5%, of scalars with A, — 0 (n — o0) and
Anz ¢ N;(0) for all n = 0,1,.... But this means p(A,z) > r for all n contradicting
condition (P.5) in Definition 1.1. O

Example 1.4. The set C of complex numbers with the usual algebraic op-
erations and p = | - |, the modulus, is a totally paranormed space. If we put
d(z,w) = |z — w| for all z,w € C, then (C,d) is a Fréchet space. _

By w, we denote the set of all complex sequences z = (24)72, which becomes

a linear space with z + y = (zr + yx)72o and Az = (Azi)2, or all z,y € w and
A € C. As an immediate consequence of Theorem 1.2 and Example 1.4, we obtain
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Theorem 1.5. The set w is a Fréchet space with respect to the metric d
defined by

o0
1 ok —ye|
. :§ — fi .
(1.3) d(z,y) 2 1+|-'13k-yk| orall z,y € w

Furthermore convergence in (w,d) and coordinatewise convergence are equivalent,
that is (™) — z (n = o) in (w,d) if and only if zgc") — zx (n — o0) for every k.

Now we introduce the concept of a Schauder basis. For further studies on bases
we refer the reader to (46, 74].

Definition 1.6. A Schauder basis of a linear metric space X is a sequence
(bn) of vectors such that for each vector z € P there is a unique sequence (A,) of
scalars with $ oo . Apbp = z, that is Mmoo D one; Anbn = .

For finite dimensional spaces, the concepts of Schauder and algebraic bases
coincide. In most cases of interest, however, the concepts differ. Every linear space
has an algebraic basis. But there are linear metric spaces without a Schauder basis,
as we shall see later in this subsection.

Example 1.7. For each n = O, 1,..., let e be the sequence with e(") =1
and e(") = 0 for k # n. Then (e{™)%, is a Schauder basis of w. More precisely,
every sequence T = (zx)§2, € w has a umque representation z = 3_7-  zxel®) that
is limm o eo 2™ = x for z[’"] = Zk: zre®)| the m-section of z.

A metric space (X, d) is called separable if it has a countable dense set. That
means there is a countable set A C X such that for all e > 0 and for all z € X
there is an element a € A with d(z,a) < ¢.

Theorem 1.8. Every complex linear metric space X with Schauder basis is
separable.
Proof. Let (b,) be a Schauder basis of X. For each m € N, we put

m o0
Am:{anbn:pn€Q+iQ (n:l,Z,...,m)} and A = U Am

n=1 m=1

Then A is a countable set in X and it is easy to see that A is dense in X. O

Example 1.9. The set lo = {z € w : supy, |zx| < o0} of all bounded sequences
is a Banach space with ||z||cc = supy |zk| ( € loo) which has no Schauder basis.

Proof. The proof that (I, ||-|lco) is 2 Banach space is standard and left to the
reader. To show that I, has no Schauder basis, we show that [, is not separable
and apply Theorem 1.8. We assume that [, is separable. Then there is a countable
dense set A = {a, : n =0,1,...} C loo. For every n, let U, = Nyj3(an) = {z €

o0 1T — anlloo < 1/3}. Since A C loo is dense, loo C s g Un. The set

B={0,1}o={zew:z,e{0,1} forall k=10,1,...} Cloo
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is uncountable. Therefore there must be a set U, which contains at least two
distinct sequences z and z’ of B. Then

lz ~ xllloo >1 and |lz- I’”oo <z - am“oo + ”a'm - :17/“00 < 2/3,

a contradiction. Therefore I, cannot be separable. O
At the end of this subsection we study the so—called classical sequence spaces
o = {z € w: suplzi] < oo},
&
c={z€w: lim zx = for some l € C},

k—oo

coz{wa:len;Ozk:O}

of all bounded, convergent and null sequences, and

o
lp:{a:Ew:ZIzklp<oo} for 1 <p < oo.
k=0

The following result gives the algebraic and topological properties of the sets [,
¢, co and [,.

Theorem 1.10. (a) Each of the sets lw, ¢ and ¢ is a Banach space with
[| lloo defined by ||z||oc = supy |zx|. Moreover [z} < ||z|loo for all k = 0,1,....

(b) The sets I, are Banach spaces for 1 < p < oo with || - ||, defined by
llall, = (50, Jzkl?) /7. Moreover |zx| < |lall, for all k = 0,1, ..

(c) The sequence (e!™)°% is a Schauder basis for each of the spaces ¢ and [,
for 1 < p < co. More precisely, every sequence = (z,)5e, in any of these spaces
has a unique representation r = Z;’fzo zae(,

(d) Let e be the sequence with e, = 1 for all k = 0,1,.... We put bl% = ¢
and b = e("=1) forn = 1,2,.... Then the sequence (b("™)%, is a Schauder basis
for c. More precisely, every sequence x = (2,)32, € ¢ has a unique representation
z=le+ Y0 o(zn — )e™ where l = I(z) = limp 00 Tn.

(e) The space lo, has no Schauder basis.

Proof. Part (e) is Example 1.9. Parts (a) to (d) are standard and therefore left
to the reader. (The triangle inequality for || - ||, follows by Minkowski’s inequality
(see appendix A.4.2).) 0

1.2. Introduction into the theory of FK spaces. In this subsection, we shall
give an introduction into the general theory of FK spaces. It is the most powerful
tool for the solution of problems of various kinds in summability, in particular in
the characterization of matrix transformations between sequence spaces. Most of
the results of this subsection can be found in [108].

We saw in Theorem 1.5 that the set w is a Fréchet space with the metric
d defined in (1.3) and that convergence in w and coordinatewise convergence are
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equivalent. Furthermore, by Theorem 1.10, the spaces I, ¢, cand I (1 < p < o0)
are Banach spaces with the norms || - || and |} - ||;, and convergence in any one
of these spaces implies coordinatewise convergence by the inequalities in Theorem
1.10 parts (a) and (b). Thus the metric generated by these norms is stronger than
the metric of w on them.

Definition 1.11. A Fréchet sequence space (X, dx) is said to be an FK space
if its metric dx is stronger than the metric d|x of w on X. A BK space is an FK
space which is a Banach space.

Remark 1.12. (a) Some authors include local convezity in the definition of
FK spaces. But much of the theory can be developed without local convexity.

(b) By definition, an FK space X is continuously embedded in w, that is the
inclusion map ¢ : (X,dx )« (w,d) defined by t(z) = z (z € X) is continuous. An
FK space X is a Fréchet sequence space with continuous coordinates Py : X +— C
defined by Py(z) =z (k=0,1,...) for all z € X.

Example 1.13. The space w is an FK space with its natural metric d. The
spaces loo, ¢, ¢p and I, (1 £ p < 00) are BK spaces with their natural norms.

Theorem 1.14. Let (X,dx) be a Fréchet space, (Y,dy) an FK space and
f: X =Y alinear map. Then f: (X,dx) — (Y,d|y) is continuous if and only if
f:(X,dx) - (Y,dy) is continuous.

Proof. First we assume that f : (X,dx) ~ (Y,dy) is continuous. Since
Y is an FK space its metric dy is stronger than the metric dly of w on Y. So
f:(X,dx) — (Y,d|y) is continuous.

Conversely we assume that f : (X,dx) — (Y,d}y) is continuous. Since (Y, d|y)
is a Hausdorff space and f is continuous, the graph of f, graph(f) = {(z, f(z)) :
z € X}, is a closed set in (X,dx) x (Y,d|y) by the closed graph lemma (see
appendix A.4.4), hence a closed set in (X, dx) x (Y, dy), since the FK metric dy
is stronger than dly. By the closed graph theorem (see appendix A.4.5), the map
f:(X,dx) — (Y,dy) is continuous. 0

Corollary 1.15. Let X be a Fréchet space, Y an FK space, f : X —» Y

a linear map and P, the n-th co-ordinate, that is P.(y) = y. (y € Y) for all
n=20,1,.... Ifeachmap P,o f: X — C is continuous, sois f : X —» Y.

Proof. Since P,o f : X — C is continuous for each n, the map f : X = w

is continuous by the equivalence of coordinatewise convergence and convergence in
w. By Theorem 1.14, f : X — Y is continuous. 0

By ¢ we denote the set of all finite sequences that is of sequences that terminate
in zeros.
We shall frequently make use of the following result.

Remark 1.16. Let X D ¢ be an FK space and a € w. If the series Y o axTx
converges for each z € X, then the linear functional f, : X — C defined by

oo
fal®)=> ayz forallze X
k=0
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1s continuous.

Proof. For each n € Ny, we define the linear functional f,, : X — C by
fan(z) = 3 ¢_garzk for all z € X. Since X is an FK space, the coordinates
P, : X = C are continuous on X for all k = 0,1,..., and so are the functionals
faon = 2 pegarPr (n=10,1,...). Foreach z € X, f,(z) = lim,Lo fon(x) exists,
and so f, : X = C is continuous by the Banach-Steinhaus theorem (see appendix
A4.6). 0

For the next result we shall need some notations.
Given any two subsets X and Y of w and any infinite matrix A = (ank) .,
of complex numbers, we shall write A,, = (an )72, for the sequence in the n-th

row of A,
oo

An(z) = }:ankzk (zreX)foralln=01,...
k=0

(provided the series converge) and
Az) = (An(2))7%0-

Furthermore let (X,Y) be the class of all matrices A that map X into Y, that is
for which the series A, (z) converge for all z € X and for all n, and A(z) € ¥ for
allz e X.

Theorem 1.17. Any matrix map between FK spaces is continuous.

Proof. Let X and Y be FK spaces, A € (X,Y) and the map f4 : X = Y
be defined by fa(z) = A(z) for all z € X. Since the maps P, o fa : X = C
are continuous for all n € Ny by Remark 1.16, the linear map f4 is continuous by
Corollary 1.15. ]

Definition 1.18. An FK space X D ¢ has AK if, for every sequence z =
(k)0 € X,

m

00
T = Z:cke(k), that is z(™ = sze(k’) -z (m — 00),
k=0 k=0

and X has AD if ¢ is dense in X. If an FK space has AK or AD we also say that
it is an AK or AD space.

Remark 1.19. Every AK space has AD. The converse is not true in general.

Proof. The first part is trivial, and the second part can be found in {108,
Example 5.2.5, p. 78]. 0

Example 1.20. The spaces w, ¢p and I, (1 < p < o0) all have AK by Example
1.7 and Theorem 1.10.
The FK metric of an FK space will turn out to be unique.
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Theorem 1.21. Let X and Y be FK spaces and X C Y. Then the metric
dx on X is stronger than the metric dy|x of Y on X. The metrics are equivalent
if and only if X is a closed subspace of Y. In particular, the metric of an FK space
is unique, this means there is at most one way to make a linear subspace of w into
an FK space.

Proof. Let ¢ : (X,dx) = (Y,dy) be the inclusion map. Since X is an FK
space, ¢ : (X,dx) — (Y,dly) is continuous, and so is ¢ : (X,dx) — (Y,dy) by
Theorem 1.14. Thus dx is stronger than dy|x. The uniqueness of an FK space
is shown in exactly the same way. Let X be closed in Y, then X becomes an FK
space with dy|x, and the uniqueness of an FK metric implies that dx and dy|x
are equivalent.

Conversely, if dx and dy|x are equivalent, then X is a complete subspace of
Y, hence a closed subspace of Y. 0

Example 1.22. The BK spaces ¢y and ¢ are closed subspaces of lo,. Thus
the BK norms on ¢g, ¢ and Iy, must be the same. The BK space !, is a subspace
of o, which is not closed in l. Thus its BK norm || - |]; is strictly stronger than
the BK norm || - ||oc 00 leo-

1.3. Matrix transformations into I, ¢ and cq. In this subsection we shall
apply the results of Subsection 1.2 to characterize classes (X,Y) where X is any FK
space and Y is any of the spaces I, ¢ and ¢p. We shall need some more notations.

If X C w is a linear metric space with respect to dx and a,zo € X, then we
shall write

Sslzo] = Sx.slzo] = {z € X : dx(z,20) < 6} (6 > 0)

S o

1T e Sl/D[O]} (D > 0)
k=0

lallp = lallx o = sup{

provided the expression on the right exists and is finite. By Remark 1.6, this is the
case whenever X is an FK space and the series 3,  arzy converge for all z € X.

If X is a BK space we write
> apzi| Izl = 1}.
k=0

Let X and Y be two Fréchet spaces. By B(X,Y) we denote the set of all continuous
linear operators L : X — Y, and we write X' = B(X, C) for the set of all continuous
linear functionals on X, the set X' is called the continuous dual of X. f X and Y
are normed spaces and L € B(X,Y), then we write

la* = llall = sup{

(1.4) LI = sup{llL(z)|| : l]z]| = 1}  for all L € B(X,Y).

for the operator norm of L; furthermore we write X* for X’ with the norm in (1.4),
that is || f|| = sup{|f(z)} : llz|| = 1} for all f € X".

s
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Let A be an infinite matrix, D a positive real and X an FK space. Then we

put
M} p(X,leo) = sup | Anl|p

and, if X is a BK space, then we write

M3(X,le0) = sup||An|l".

Theorem 1.23. Let X and Y be FK spaces.

(a) Then (X,Y) C B(X,Y), that is, every A € (X,Y) defines a linear operator
La€ B(X,Y) where Ly(z) = A(z) forallz € X.

(b) Then A € (X,l) if and only if

(1.5) lAllp = M} p(X,le) < o0 for some D > 0.

If X is a BK space and A € (X,ls), then [|A|* = M3(X,lo) = [|Lal] < .
(¢) If (b%)$2, is a Schauder basis for X, and Y; a closed FK space in Y, then
A€ (X,Yy) ifand only if A€ (X,Y) and A(B'®)) € Y; for all k =0,1,. ...

Proof. Part (a) is Theorem 1.17. (b) First we assume that condition (1.5)
holds. Then, for all z € S;,p[0], the series An(z) (n = 0,1,...) converge and
A(z) € loo- Since the set S;,p[0] is absorbing by Remark 1.3, we conclude that
An(z) converges for each z € X and A(z) € Iy, for all z € X, hence A € (X,l).

Conversely, we assume A € (X,lo). Then L4 is continuous by part (a). Hence
there exist a neighbourhood N of 0 in X and a real D > 0 such that S;,p[0] C N
and ||La(x)|| < 1 for all z € N. This implies condition (1.5). If X is a BK space,
then L4 € B(X,Y) implies

[|A(Z)]|oo = s&xlp]An(z)] =[lLa(z)|leo < |Lal] forall z € X with ||z|| = 1.

Thus |An(z)] < ||L4 for all n and for all z € X with [|z]| = 1, and, by the definition
of the norm || - ||*, :

(1.6) A" = sup I 4. [" < [L all-

Further, given € > 0, there is € X with |jz|| = 1 such that ||A(z)||eo > ||Lal|—€/2,
and there is n(z) € No with |A,,;)(z)| > [|A(z)]lco —€/2, consequently | A, (z)| >
[[La]] — e. Therefore ||A]|* = sup, [|Axll* > |ILal| — €. Since € > 0 was arbitrary,
IAII* > IL4ll, and, with (1.6), we have |AJ]* = L]l

(c) The necessity of the conditions for A € (X, Y}) is trivial.

Conversely, if A € (4,Y), then Ly € B(X,Y). Since Y; is a closed subspace
of Y, the FK metrics of ¥ and Y are the same by Theorem 1.21. Consequently, if
S is any subset in Yy, then, for its closures closy, (S) and closy|,, (S) with respect
to the metrics dy, and dylyl , we have

(1.7) closy, (S) = closyy,, (5).
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Let z € X and SB = {3/, Mb®) :m € No, M\ € C (k=0,1,...)} denote the
span of {b*) : k=0,1,...}. Since L4 (b*)) € Y; for all k = 0,1, .. and the metrics
dy, and dyh,1 are equivalent, the map LAISB (X,dx) = (Y1,dy,) is continuous.
Further, since (b*)%2, is a basis of X, we have SB = X. Therefore, by (1.7) and
the continuity of LA'SB’ we have

La(X) = La(SB) = closy, (La|gz(SB)) = closy,, (Lals,(SB))
C C]OSlel (Yl) = Yl

Thus A(z) €Y forall z € X. O

1.4. The a- and B-duals of sets of sequences. In this subsection we shall
study the so—called a-, f- and continuous dual spaces of sets of sequences. The
first two kinds of dual spaces naturally arise in the study of absolute and ordinary
convergence of sequences from a subset of w.

Furthermore the conditions given in Subsection 1.3 for an infinite matrix A
to be in the classes (X, ), (X, ¢) and (X, co) for arbitrary FK spaces X involved
the norm of the operator L4 defined by La(z) = A(zx). Since A € (X,Y) can only
hold if A,(z) = Y req @nkTx converges for all z € X and for alln = 0,1,..., it is
essential to know the set of all sequences a € w for which Z,;“;O arxy converges for
all z € X, the so—called f-dual of X. Finally, if X and Y are given FK spaces,
then we intend to replace the operator norm in the conditions for 4 € (X,Y) by
conditions for the entries of the matrix A. In many cases this can be achieved by
replacing the operator norm by the natural norm on the f-dual of X.

The o- and S-duals are special cases of the so—called multiplier spaces.

Definition 1.24. Let X and Y be subsets of w.

(a) For all z € w, we write 271 xY = {z € w: zz = (zx2x)2,y € Y}. The
set Z=M(X,)Y)=exz '*Y ={a€w:azeY forallze X} is called the
multiplier space of X and Y.

(b) By cs and bs, we denote the set of all convergent and bounded series, respec-
tively, that is cs = {z € w: Y o Zk converges} and bs = {z € w: (Y 1_7k)%, €
lso}, and we define the norm || - ||ss on ¢s and bs by ||z|les = sup,, | Y r_qzk|- In
the special case where Y = I; or Y = cs, the multiplier spaces X = M (X, ;)
and XP = M(X,cs) are called the a— or Kéthe-Toeplitz and B-duals of X. If
1 denotes either of the symbols a or 3, then X C w is said to be j-perfect if
X = (Xt)t =X.

Lemma 1.25. Let X,Y,Z C w and {X; : § € A} be any collection of subsets
of w. Then:
(1) XCcM(M(X,)Y)Y)
(17) X C Z implies M(Z,Y)C M(X,Y)
(1) M(X,)Y)=MMM(X,Y),Y)Y)
(iv) M (Usea Xs,Y) = Nsca M(X5,Y).

Proof. (i) If z € X, thenaz € Y for all a € M(X,Y), and consequently z €
M(M(X,Y),Y).

Sen el e s G
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(i) Let X C Z. fae M(Z,Y), thenaz € Y for all z € Z, hence az € Y for
all z € X, since X C Z. Thusae M(X,Y).
(iii) We apply (i) with X replaced by M(X,Y) to obtain

M(X,Y)C M(M(M(X,Y),Y),Y).

Conversely, by (i), X ¢ M{(M(X,Y),Y), and so (ii) with Z = M(M(X,Y),Y)
yields M{(M(M(X,Y),Y),Y) Cc M(X,Y).

(iv) First X5 C U X, for all 6 € A implies M( |J Xé,y) C N M(Xs,Y)
by part (i). scA s€A feA

Conversely, if a € [); M(X;,Y), then a € M(X;,Y) for all § € A, and so we
have ax € Y for all § € A and for all z € Xs5. This implies ax € Y for all z €
Usea X, hence a € M(Usea X5,Y). Thus (s s M(X5,Y) C M(Useq X5, Y).
0

As an immediate consequence of Lemma 1.25 we obtain

Corollary 1.26. Let X,Y C w and {Xs:6 € A} be a collection of subsets of
w. If 1 denotes either of the symbols a or 3, then
() Xcxit (i4) X CY implies Yt C X1
(i) Xt = X (iv)  (Usea X5)' = Nsca X3-

A subset X of w is said to be normal if z € X and |Zx| < |zx| (K =0,1,...)
together imply z € X.

Remark 1.27. Obviously X® C X?# for arbitrary X C w. If X is a normal
subset of w, then X = X7.

Proof. The first part is obvious. For the second part, we have to show X?
X% Leta € X? and z € X be given. We define the sequence y by yx = sgn(zy)|zx|
for k = 0,1,.... Then obviously |yx| < |zi| for all k, and consequently y € X,
since X is normal, and so azx € cs. Further, by the definition of the sequence y,
ay = (|ar||z|)72o = laz]| € cs, hence az € ;. Since z € X was arbitrary, a € X 2.
This shows X? C X°. O

Example 1.28. We have:
(i) M(co,c) = loo, (il) M(c,c) = ¢, (iii) M(leo, ¢) = co.

Proof. (i) If a € I, then az € ¢ for all z € ¢p, and s0 I C M(co,C)-
Conversely we assume a ¢ l. Then there is a subsequence (ax;)$2, of the
sequence a such that |ag,| > j+1for all j =0,1,.... We define the sequence z by

{ (—l)j/akj for k = k;
T =

i =0,1,...).
0 fork#k O 0b-)

(1.8)

Then z € cp and ax,;zy; = (=1)7 for all j = 0,1,..., hence azx ¢ ¢. This shows
M(co,¢) C leo.
(ii) If a € ¢, then az € c for all z € ¢, and so ¢ C M(c,c).
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Conversely we assume a ¢ c. Since e € c and ae = a ¢ ¢, we have a ¢ M(c,c).
This shows M(c,c) C c.

(iii) If a € co, then az € ¢ for all z € I, and so ¢g C M(ls, ¢).

Conversely we assume a ¢ co. Then there are a real b > 0 and a subsequence
(ax; )52 of the sequence a such that |ag;| > b for all j = 0,1,.... We define the
sequence z as in (1.8). Then & € Iy and ay;zx; = (—1)7 for 7 = 0,1,..., hence
a ¢ M(ly,c). This shows M(ly,c) C co. a

Now we shall give the a— and S-duals of the classical sequence spaces.

Theorem 1.29. Let { denote either of the symbols a or 8. Then

(a) wt=¢and ¢' = w.

(b) lI = loo, l;f7 =l,for1 <p<ooandqg=p/(p-1), and for all a € lﬁ,
lally, = llallee and {lall; = llally for 1 <p < oo.

(¢) ¢ =c =1, =h and |lalz, = llall} = llall;,, = llally for all a € I,.

The multiplier space of two BK spaces will turn out to be a BK space.

Theorem 1.30. Let (X,||- |ix) and (Y,||-{ly) be BK spaces with X O ¢ and
Z = M(X,Y). Then Z is a BK space with || - || defined by

lizll = llzllx = sup{llzzlly : llzllx =1}  forallz € Z.

Proof. It is well known that B = B(X,Y) is a Banach space. Each z € Z
defines a diagonal matrix map 2 : X + Y where Z(z) = zz for all z € X which
is continuous by Theorem 1.17. This embeds Z in B, for if £ = 0, then z(e(™) =
(22)22o = 0 = 2. To see that the coordinates are continuous, we fix n € Ny and
put u = 1/||e||x and v = ||e™||y. Then ||ue™||x = 1 and

wvlzal = ullzae™{ly = ulle™zlly = [lwe™)zlly < ll2ll = ||z for all n.

It remains to show that Z is a closed subspace of B. Let (2(™))2°_, be a sequence
in B with 2(™) — T ¢ B. For each fixed X € X, we obtain (™) (z) - T(z) € Y
(m — o) and since Y is a BK space, this implies (4(™)(z)); — (T(z))i, that is
2™z, = (T(x))k (m — o) for each fixed k. We put = = e®). Then z{™ —
(T(e™))x = tx (m — 00), and so mkz,(cm) = (T(z))k (m — o0) and z,z™ —
(T(z))x, (m —= 00). Therefore T(z) = stforallz € X, andso T = t. a

Corollary 1.31. The a- and - duals of a BK space X are BK spaces with
respect to |lalla = llallx,o = sup{llazli = Yyl larzsl : llzl] < 1} and |lalls =
llallx,z = sup{llazlles = sup, | >of_q axzk| : llzl] < 1}

Example 1.32. Let X be any of the spaces I, ¢, co and [, for 1 < p < 0.
Then the norms || - ||xs, || - II%, || - |x,a and || - || x,s are equivalent on X5.

Proof. The norm || - ||% and the natural norm || - ||xs are equal on X# by
Theorem 1.29. Since each set X? is a BK space with its natural norm, || - || x» and
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I-Ilx 5 are equivalent by Corollary 1.31 and Theorem 1.21. Finally, since X* = X7
for each set X, the norms || - || x,o and || - ||x 5 are equivalent by Corollary 1.31 and
Theorem 1.21. 0O

The analogues of Theorem 1.30 and Corollary 1.31 do not hold for FK spaces
in general.

Remark 1.33. The space w is an FK space and w® = w? = ¢ and ¢ has no
Fréchet metric (cf. [108, 4.0.5, p. 51]).

1.5. The continuous duals of the classical sequence spaces. In this sub-
section we shall give the continuous duals of the spaces I, for 1 < p < o0, ¢ and
Cg.

There is a close relation between the f-dual and the continuous dual of an
FK space which is very useful in the determination of the continuous duals of the
spaces I, ¢ and ¢g.

Theorem 1.34. Let X be a BK space and X D ¢. Then there is a linear
one-to-one map T : X? — X'; we denote this by X? ¢ X'. If X has AK, then T
is onto.

Proof. We define the map T on X? as follows. For every a € X7 let Ta :
X ~ C be defined by (T'a)(z) = 5 pogarzk for all z € X. Since a € X ?, the series
> reo axzk converge for all z € X, and obviously T'a is linear. Further, since X is
an FK space, Ta € X' for ach a € X?. Therefore T : X# s X'. Further it is easy
to see that T is linear.

To show that T is one-to-one, we assume a,b € X? with T'a = Th. This means
(Ta)(z) = (Tb)(z) for all z € X. Since ¢ C X, we may choose = = e*) for each
k € Ny and obtain (Ta)(e®) = ay = by = (Th)(e'®)) for k = 0,1,..., and so a = b.

Now we assume that X has AK and f € X'. We put a, = f(e!™) for n =
0,1,.... Let z € X be given. Thenz =3 ;7 z,e®)  since X has AK, and f € X'
implies f(z) = S oo zkf(e®)) = S0 Jarzk = (Ta)(z). As z € X was arbitrary
and the series converge, a € X% and f = Ta. This shows that T is onto X'. (]

Now we shall give the continuous duals of the classical sequence spaces.

Two linear spaces (X,||-||x) and (Y,|| - |ly) are called norm isomorphic if
there is an isomorphism 7 : X — Y such that ||T(z)|ly = ||z||x for all z € X; we
shall write X ~ Y.

Theorem 1.35. We have:

(a) I; ~l for 0 <p<1andl;~1, for1 <p< oo whereq=p/(p-1);

(b) g = 1y;

(¢c) f € ¢* if and only if f(z) = Ix; + D pep@rTk With a € I; where | =
limg—oo 2k and Xy = f(€) = Y repax- Furthermore ||f||* = |xs] + llall:.

It is worth mentioning that the continuous dual of {, is not isomorphic to a
sequence space (cf. [40, 31.1, pp. 427, 428] or (105, Example 6.4.8, pp. 93, 94]).

For further studies concerning multiplier spaces, some important special cases,
f- and continuous duals, we refer the reader to [108, 91, 22, 23].



160 Malkowsky and Rakogevié

1.6. Matrix transformations between some classical sequence spaces. We
now apply the results of the previous subsections to characterize certain classes of
matrix transformations between some classical sequence spaces by giving necessary
and sufficient conditions on the entries of a matrix to belong to the respective class.

Let A be an infinite matrix. We write ¢ = p/(p—1) for 1 < p < 0, ¢ = oo for
p=1and q=1for p= 00, put

) 1Alloo = sup, x an| (p=1)
Mally,loo) =
P Al = sup, (o lanel?) (1< p < 00)
and consider the conditions
(1.9) nlgx;oankzo (k=0,1,...),
o
(1.10) Jim (?;6 ank) =0,
(1.11) lim anr =1l forsomely € C(k=0,1,...)
n— 00
o0
(1.12) '}Ln;o (kz—o ank> =1 forsomeleC.

Theorem 1.36. We have
(@) (co,loo) = (€,lo0) = (loo,loo) and A € (lw,lso) if and only if

(1.13) Ma(leos loo) = SUP(Z lank|> < 0o,
' k=0

n

(b) A € (co,cp) if and only if conditions (1.13) and (1.9) hold;
(c) A € (c,co) if and only if conditions (1.13), (1.9) and (1.10) hold;
(d) A € (co,c) if and only if conditions (1.13) and (1.11) hold;
(e) A € (c,c) if and only if conditions (1.13), (1.11) and (1.12) hold.

Proof. (a) We have A € (lx,lx) if and only if condition (1.13) holds by
Theorems 1.23 and 1.29.

Further, if condition (1.13) holds, then A € (Ix, loo) C (co, ¢), since co C loo.

Conversely, let A € (co,l00). Then sup, ||A,||;, < o0 by Theorem 1.23 (b).
Since the series A,(x) converge for all  and n, we have fa, € ¢ for all n
where fa, (z) = ZI:.O_—.O ankxk for all z € ¢g, hence |fa, (z)] < ||fa.ll = HAnHZO
We fix n € Nyg. Let m € Ny be arbitrary. We define the sequence z!™™ by
gl = 7 sen(ank)el®). Then zl™m € ¢, [|z™ ™|l < 1 and |fa, (zl™™)| =
i lankl < |Anllz,- Since m € No was arbitrary, ||Anllh = Yoo, lank| < |Aall},
for all n = 0,1, .... Therefore condition {1.13) must hold. Finally ¢y C ¢ C Il and
(€0, loo) = (loo, o) together imply (¢, loo) = (loo, loo)-

Parts (b) to (e) follow from part (a), Theorem 1.23 (c) and Theorem 1.10. O

Similarly, we obtain
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Theorem 1.37. Let 1 < p < oo. Then:
(a) A € (Ip,1x) if and only if

(1.14) M(Ly, o) < 00

(b) A € (Iy, o) if and only if conditions (1.14) and (1.9) hold;
(¢) A € (Ip,c) if and only if conditions (1.14) and (1.11) hold.

2. Measures of concompactness

In Section 1 we developed and applied parts of the FK space theory to give
necessary and sufficient conditions for A € (X,Y’) for given sequence spaces. The
most important result was that matrix transformations between FK spaces are con-
tinuous. It is quite natural to find conditions for a matrix map between FK spaces
to define a compact operator. This can be achieved by applying the Hausdorff
measure of noncompactness. The first measure of noncompactness, the function a,
was defined and studied by Kuratowski [41] in 1930. It is surprising that later in
1955 Darbo [12] was the first who continued to use the function a. Darbo proved
that if T is a continuous self-mapping of a nonempty, bounded, closed and convex
subset C of a Banach space X such that a(T(Q)) < ka(Q) for all Q C C, where
k € (0,1) is a constant, then T has at least one fixed point in the set C. Darbo’s
fixed point theorem is a very important generalization of Schauder’s fixed point
theorem and it includes the existence part of Banach’s fixed point theorem.

Other measures were introduced by Goldenstein, Gohberg and Markus (the ball
measures of noncompaciness, Hausdorff measure of noncompactness) {19] in 1957
(later studied by Goldenstein and Markus [20] in 1968), Istratesku {30] in 1972
and others. Apparently Goldenstein, Gohberg and Markus were not aware of the
work of Kuratowski and Darbo. It is surprising that Darbo’s theorem was almost
never noticed and applied, not till in the seventies mathematicians working in op-
erator theory, functional analysis and differential equations begun to apply Darbo’s
theorem and developed the theory connected with measures of noncompactness.

The use of these measures is discussed for example in the monographs [1, 6, 7,
24, 25, 28, 31, 42, 86, 99, 100}, Ph. D. theses [2, 4, 75, 77, 83, 102] and expository
papers [47, 93, 104]. We refer the reader to these works with references given there.

2.1. Introduction. Let us recall some definitions and results which are proba-
bly well known. If M and S are subsets of a metric space (X, d) and € > 0, then the
set S is called e-net of M if for any £ € M there exists s € S, such that d(z,s) < e.
If the set S is finite, then the e-net S of M is called finite e-net. The set M is
said to be totally bounded if it has a finite e-net for every e > 0. It is well known,
that a subset M of a metric space X is compact if every sequence (z,) in M has
a convergent subsequence, and in this case the limit of that subsequence is in M.
The set M is said to be relatively compact if the closure M of M is a compact set.
If the set M is relatively compact, then M is totally bounded. If the metric space
(X,d) is complete, then the set M is relatively compact if and only if it is totally
bounded. It is easy to prove that a subset M of a metric space X is relatively
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compact if and only if every sequence (z,) in M has a convergent subsequence; in
that case the limit of that subsequence need not be in M.

If z € X and r > 0, then the open ball with centre at = and radijus r is denoted
by B(z,r), B(z,7) = {y € X : d(z,y) < r}. If X is a normed space, then we denote
by Bx the closed unit ball in X and by Sx the unit sphere in X. Let Mx (or
simply M) be the set of all nonempty and bounded subsets of a metric space (X, d),
and let M (or simply M€) be the subfamily of Mx consisting of all closed sets.
Further, let Ay (or simply A) be the set of all nonempty and relatively compact
subsets of (X,d). Let dg : Mx x Mx — R be the function defined by

(2.1) dy (S, Q) = max{supd(z,Q),supd(y,S)} (S,Q e Mx).
T€S yeQ

The function dy is called Hausdorff distance, and dy(S,Q) (S, Q@ € Mx) is the
Hausdorff distance of sets S and Q.
Let us remark that f § # F C X, r > 0 and

B(F,r)= | B(z,r)={ye X :dly, F) <r}

z€eF
is the open ball with centre in F and radius r, then (2.1) is equivalent to

dy(S,Q) = inf{e>0:SC B(Q,e) and QCK(S,6)}, (5 Q€ Mx).

It is well known that (Mx,dn) is a pseudometric space and that (M5, dy) is a
metric space.

Let X and Y be infinite-dimensional complex Banach spaces and denote the set
of bounded linear operators from X into Y by B(X,Y). We put B(X) = B(X, X).
For T in B(X,Y), N(T) and R(T) will denote, respectively, the null space and the
range space of T'. A linear operator L from X to Y is called compact (or completely
continuous) if D(L) = X for the domain of L, and for every sequence {z,} C X
such that ||z,|} < C, the sequence {L(z,)} has a subsequence which converges in
Y. A compact operator is bounded. An operator L in B(X,Y") is of finite rank
if dim R(L) < oo. An operator of finite rank is clearly compact. Let F(X,Y),
K(X,Y) denote the set of all finite rank and compact operators from X to Y,
respectively. Set F(X) = F(X,X) and K(X) = K(X, X).

Let X be a vector space over the field F. A subset F of X is said to be convez
ifdz+(1-MNye€ Eforall z,y € E and for all A € (0,1).

Clearly the intersection of any family of convex sets is a convex set. If F'is a
subset of X, then the intersection of all convex sets that contain F is called convex
cover or convex hull of F denoted by co(F).

The vector subspace linF' is the set of all linear combinations of elements in
F. We shall prove that there is an analogous representation of the set co(F). Let
us mention that a convex combination of elements of the set F is an element of the
form

MTy + -+ AMZn (miEF, )\izo(izl,...,n),Z)\izl(nEN))
: i=1

Let us write cvx(F') for the set of all convex combinations of elements of the set F.
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Theorem 2.1. If X is a vector space over the field F and E, FE,, ... E,, are
convex subsets of X and F C X, then

(2.2) cvx(FE) C E,
(2.3) co(F) = cvx(F),

(24) CO(OE,‘):{Zn:)\iEii/\iZO,i)\izl,izl,...,Tl}.
i=1 i=1 =1

Proof. To prove (2.2), it suffices to show that for any n > 2

T
(2.5) ;€ E,A;>0(=1,...n) and Z/\i =1 together
: i=1

imply Mz +---4+ Az, € E.

We shall use the method of mathematical induction. For n = 2 the statement
clearly is true. Suppose that the statement in (2.5) is true for a natural number
n > 2, and let us prove the statement forn+1. If z; € £, \; >0 (¢t =1,... ,n+1)
and 301X, = 1, then there are two cases: first, if Y7 A; = 0, then ); = 0
(i=1,...,n)and \iZ1 + -+ Apt1Tnt1 = Tnp1 € E; second, if A = Z:l:l A #0,
then A1z1 + -+ Apy1Zns1 = A A7 2 + -+ A A7 2,) + Apg1Tny € E. Thus
we have shown inclusion (2.2).

It follows from (2.2) that cvx(F) C co(F). Hence, since co(F) is a convex
subset of X, it suffices to show that cvx(F) is convex. Suppose that A € (0,1), and
z,y € cvx(F). Then there exist n,m € N, a;, z; (i = 1,... ,n) with } 1 a; =
1, Bj,y; (7 = 1,...,m) with 3770, B; = 1 such that z = ) 7 a;z; and y =
Yoy Biyg. Now 301 dai+ 3070 (1~A)8; = A+(1=)) = 1 implies Az+(1-A)y €
cvx(F). Hence we have proved (2.3).

Weput S = {32, ME A\ >0, (i=1,...,n) %" A =1}. By (2.2)
it follows that S C co(lJ>., E;). Since J;_; E; C S, to prove (2.4), it suffices to
- show that S is convex. Suppose that A € (0,1) and z,y € 5. Now there exist
ai,zi(t=1,...,n) with > ;e =1, B,y (i =1,... ,n,) with >r ., Bi =1such
that £ = Y o 0T, y = Y o, Biys. Weput 4 = da; + (1 = N)Bi (2 = 1,...n).
Since Ei,... Ey, are convex, there exist z; € E; (i = 1,... n) such that

(2.6) Aa;T; + (1 - MBiyi =viz; fori=1,... n.

Let us remark

(2.7) DNov=AY i+ (1-X)) B=r+(1-))=1
i=1 =1 i=1
By (2.6) and (2.7) we have Az + (1 ~ Ny = ) o, iz € S. 7 D

We continue with the study of convex sets in normed spaces.
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Lemma 2.2. Let Q be a bounded subset of a normed space X. Then for any
z€X

(2.8) sup ||z — y|| = sup ||z — z||.
y€co(Q) 2€Q

Proof. To prove (2.8), it suffices to show the inequality “<”. If y € co (Q),
then there exist z; € @, A; > 0(i = 1,... n) such that Z:;l Ai=land y =
SNz Fromz—y =31 Mz — Y Mz = 3, Mz - ), it follows that

iz —yll < ity Aille — zil] < sup.eq iz - 2]l a

Corollary 2.3. Let Q be a bounded subset of a normed space X. Then the
sets @ and co(Q) have equal diameter, that is diam(Q) = diam(co(Q)).

Proof. This follows by Lemma 2.2. 0

Let @ be a nonempty and bounded subset of a normed space X. Then the
convez closure of @, is denoted by Conv(Q) , and Conv(Q) is the smallest convex

and closed subset of X that contains Q. It is easy to prove that Conv(Q) = co(Q).

Corollary 2.4. Let @ be a bounded subset of a normed space X. Then the
sets @ and Conv(Q) have equal diameters, that is diam(Q) = diam(Conv(Q)).

Proof. This follows from Corollary 2.3.
0

2.2. The Kuratowski measure of noncompactness. The notation of mea-
sure of noncompactness (a— measure or set-measure), introduced by Kuratowski
[41], and the associated notion of an a- contraction, have proved useful in sever-
al areas of functional analysis, operator theory and differential equations (see for
example, [1, 6, 7]). We start with some results from Kuratowski [41, 42].

Definition 2.5. Let (X, d) be a metric space and @ a bounded subset of X.
Then the Kuratowski measure of noncompactness of Q , denoted by a(@), is the
infimum of the set of all numbers ¢ > 0 such that @ can be covered by a finite
number of sets with diameters < ¢, that is
(2.9)

a(Q):inf{e>0:QC USi, S; C X, diam(S5;) <e(i:1,...,n;n€N)}.

i=1

The function a is called Kuratowski’s measure of noncompactness. Clearly
(2.10) a(Q) < diam(Q) for each bounded subset @ of X.

As an immediate consequence of Definition 2.5, we obtain.
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Lemma 2.6. Let @, Q; and Q2 be bounded subsets of a complete metric
space (X,d). Then:

(2.11) o(Q) =0 ifand only if Q is compact,
(2.12) a(Q) = a(Q),

(2.13) Q1 C Qs implies a(Qy) < a(Q2),
(2.14) a(@Q U Q2) = max{a(Q1), a(Q2)},
(2.15) a(@1 N Q2) < min{a(Q1), o(Q2)}-

Proof. The statements in (2.11) and (2.13) follow from Definition 2.5.

Clearly a(Q) < a(Q). Let € > 0, S; be a bounded subset of X with diam(S;) <
efori=1,...,n,and @ C Ur;Si. Then @ ¢ UL, S = UL, S:. Since
diam(S;) = diam(S;), we conclude a(Q) < a(Q). This proves equality (2.12).

From (2.13), we have a(Q1) < a{@Q; U@2) and ¢(Q2) < a(@Q; U @2), and so

(2.16) max{a(Q1),a(Q2)} < a(Q1UQ2).

Let max{a(Q1),a(®2)} = s and € > 0. By Definition 2.5 we know that @, and
()2 can be covered by a finite number of subsets of diameter smaller than s + e.
Obviously, the union of these covers is a finite cover of ¢J; U Q2. Hence, we have
a(Q1UQs) < s+ ¢, and now we obtain (2.14) from (2.16). From Q; N Q2 C Q1
and Q1 NQ2 C Q2 we obtain a(Q1NQ2) < (@) and a(Q1NQ2) < a(Q2). Hence
a(@1 N Q2) < min{a(@;),(Q2)}. This proves inequality (2.15). 0

The next theorem is a generalization of the well-known Cantor intersection
theorem.

Theorem 2.7. (Kuratowski [41]) Let (X,d) be a complete metric space. If
(Fp) Is a decreasing sequence of nonempty, closed and bounded subsets of X such
that limy, o a(Fy,) = 0, then the intersection Foo = (Voo Fy, is a nonempty and
compact subset of X.

Proof. Theset Fy is a closed subset of X. Since Fo, C Fyforalln=1,2,...,
we obtain from (2.11) and (2.1.3) that F, is a compact set. Now we show F,, # 0.
Letx, € F,(n=1,2,...)and X, = {z;:i>n}forn=1,2,.... Since X, C F,,
we obtain from (2.11), (2.13) and (2.14)

(2.17) a(X1) = a(Xn) < a(F,) for each n.

The assumption of the theorem and (2.17) together imply a(X;) = 0, hence X;
is a relatively compact set. Thus the sequence (z,) has a convergent subsequence
with limit x € X, say. Since F), is closed in X, weget z € F, foralln =1,2,...,
that is z € F. . 0O

If X is a normed space, then the function o has some additional properties
connected with the vector (linear) structures of a normed space [12].
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Theorem 2.8. (Darbo [12]) Let Q, Q1 and Q2 be bounded subsets of a
normed space X. Then:

(2.18) (@ + Q2) < (@) + (@),
(2.19) a{Q+z)=a(Q) foreachz e X,
(2.20) a(AQ) = |Me(Q) for each X € F,
(2.21) a(Q) = a(co(@)).

Proof. Let S; be a bounded subset of X with diam(S;) < d for each i =
1,...,nand Q; C U, Si. Furthermore, let G; be a bounded subset of X with
diam(G;) < p for each j =1,... ,m and @2 C Uj_, G;. Then

(2.22) Q+QcllJS:i+G;) and diam(S:+G;) < d+p.

1=1j=1

It follows from (2.22) that a(@; + @Q2) < d+ p. This shows inequality (2.18). Let
z € X. By (2.18) it follows that

(2.23) a(@ +z) < a(@) + a({z}) = «(Q),
and by the same argument we have
(2.249) a(Q) = a((Q +7) + (-2)) £ Q@ + 2) + a({-z}) = a(Q + 7).

Now we obtain (2.19) from (2.23) and (2.24).

For A = 0, equality (2.20) is obvious. Let S; be a bounded subset of X
with diam(S;) < d for ¢ = 1,...,n and Q; C U._; Si. Then for any X € F,
AQ C UL, AS; and diam(AS;) = |Mdiam S;. Hence it follows that a(AQ) <
M @(@). If X # 0, analogously we have a(Q) = a(A71(AQ)) < (A7 a(AQ), that
is |Ma(Q) < a{)Q). This proves (2.20). -

Now we prove (2.21). Clearly a(Q) < a(co @), and it suffices to show afco
Q) € a(Q). Let S; be a bounded subset of X with diam(S;) < d for each 1 =
1,...,nand Q = U}, Si. By Theorem 2.1 it follows that .

(225) CO(Q) = {i MNZi A > O,i)\i =1,z; € CO(SI') (7, =1,... ,n)}.
=1 =1

Let € > 0 and S={(M,..., ) : 0o M =1,X%>0(G=1,...,n)}. Then Sis
a compact subset of (R, || - lleo), Where {[(A1,..., An)lloo = SUPy<j<n JAi|- We put
M = sup{||z|| : £ € U, co(S;)}. Let T = {(tj1,...,tjn):j=1,...,m} CSbe
a finite ¢/(Mn) -net for S, with respect to the || ||c -norm. Hence, if 31 | \iz;
is a convex combination of elements of (), where we suppose that z; € co(S;) for
i=1,...,n, then there exists (t;1,... ,tjn) € T such that

€
(226) H(Ala ey An) - (tj’l, ey tj,n)“oo < M’I'L.
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Since

n
(227) Z )\i-'rz Zt 1-'1:1 + Z ] i xl’
i=1

it follows from (2.25), (2.26) and (2.27) that

(2.28) U{Ztﬂco } MHZB“

7=1

where Bi = {z € X : ||z}l < M} fori=1,2,...,n. Now, by (2.4), (2.5), (2.18),
(2.20), Corollary 2.3 and (2.28), we have

a(co(Q)) <a<U{Et]1co(S }) (M En:B,-)

J=1 i=1
< ll;njag(ma(Z t;.ico(S; )) + —— Za(B)

< max t;ia(co(Sy) + M— 2nM

n

< d max tJ1+2E<d+26
=1

O

Let us remark that Darbo [12] proved (2.21) and, then applied it in the proof
of his famous fixed point theorem [12, 1, 7, 86, 100]. His fixed point theorem is a
very important generalization of the Schauder fixed point theorem, and is the first
important result with applications of Kuratowski’s measure of noncompactness.

Let X be an infinite-dimensional normed space and Bx the closed unit ball
in X. Then, clearly a(Bx) < 2, but Furi and Vignoli [18] and Nussbaum [79] have
shown more precisely:

Theorem 2.9. (Furi-Vignoli [18], Nussbaum [79]) Let X be an infinite-di-
mensional normed space. Then a(Bx) = 2. ‘

Proof. Clearly a(Bx) < 2. If a(Bx) < 2, then there exist bounded and
closed subsets @; of X with diam(Q;) < 2fori =1,... ,n such that Bx C U, Q:.
Let {z1,... z,} be alinearly independent subset of X and E, be the set of all linear
combinations of elements of the set {z,...,z,} with real coefficients. Clearly,
E, is a real n-dimensional normed space (the norm on E,,, of course, being the
restriction of the norm on X). By S, = {z € E,, : ||z|| = 1}, we denote the unit
sphere of E,. Let us mention that S, C |, S» N @i, diam(S, N Q;) < 2 and
S, NQ; is a closed subset of E, for each i = 1,... n. This is a contradiction to the
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well-known Ljusternik-Snirelman-Borsuk theorem (see the proof in [86] or in [15,
pp- 303-307]: If S, is the unit sphere of an n-dimensional real normed space E,,
F; a closed subset of E,, foreachi=1,... ,nand S, C U?:l F;, then there exists
ig € {1,...,n} such that the set S, N F;; contains a pair of antipodial points, that
is, there exists zg € S, N Fy,, such that {zg,—z¢} C S, N F},. O

2.3. The Hausdorff measure of noncompactness. Usually it is complicat-
ed to find the exact value of a(Q)). Another measure of noncompactness, which
is more applicable in many cases, were introduced and studied by Goldenstein,
Gohberg and Markus (the ball measures of noncompactness, Hausdorff measure
of noncompactness) [19] in 1957 (later studied by Goldenstein and Markus [20] in
1968), is given in the next definition.

Definition 2.10. Let (X, d) be a metric space and ¢ a bounded subset of X.
Then the Hausdorff measure of noncompactness of the set Q, denoted by x(Q) is
defined to be the infimum of the set of all reals ¢ > 0 such that @ can be covered
by a finite number of balls of radii < e, that is

(2.29) x(Q)=inf{e>0:QC U B(zi,mi), z; € X, r; <e(i=1,... n)n € N}.

i=1

The function yx is called Hausdorff measure of noncompactness.

Let us remark that in the definition of the Hausdorff measure of noncompact-
ness of the set @ it is not supposed that centres of the balls which cover @ belong
to Q. Hence, (2.29) can equivalently be stated as follows:

(2.30) x(Q) = inf{e > 0: @ has a finite e-net in X}.

The Hausdorfl measure of noncompactness is often called ball measure of non-
compactness. The next lemma and theorem could be proved analogously as in the
case of the Kuratowski measure of noncompactness.

Lemma 2.11. Let ,Q; and Q2 be bounded subsets of the metric space
(X,d). Then

x(@Q) =0 ifand only if @ is totally bounded,

x(Q) = x(Q),

@1 C Q2 implies x(Q1) < x(Q2),
x(Q1 U Q2) = max{x(Q1), x(Q2)},
x(Q1 N Q2) < min{x(Q1), x(Q2)}-

Proof. The proof is left as an exercise for the reader. O
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Theorem 2.12. Let Q, ), and Q2 be bounded subsets of the normed space
X. Then

x(Q1 + Q2) < x(Q1) + x(Q2),
¥(Q+z)=x(Q) foreachze X,
x(AQ) = |Mx(Q) foreach AeF
(2.31) x(Q) = x(co(Q)).-
Proof. The proof is left as an exercise for the reader. O

The next theorem shows that the functions « and y are in some sense equiva-
lent.

Theorem 2.13. Let (X, d) be a metric space and @ be a bounded subset of
X. Then

(2.32) x(@) < a(Q) < 2x(Q)-

Proof. Let € > 0. If {z1,... ,z,} is an e-net of Q, then {Q N B(z;,€)}; is
a cover of @ with sets of diameter < 2e. This shows a(Q) < 2x{Q). To prove the
left side inequality in (2.32), let us suppose that {S;}%, is a cover of @ with sets
of diameter < ¢ and y; € S; fori = 1,... k. Now {y1,... ,yx} is an e-net of Q.
This proves x{(Q) < a(Q). ’ O

Let us remark that the inequalities (2.32) are best possible in general, as an
example shows. These measures are closely related to geometric propertieé of the
space and it is possible to improve the inequality x(Q) < a(Q) in certain spaces
(see e.g. Dominguez Benavides and Ayerbe [14], Webb and Weiyu Zhao [103]). For
example (see [1], [7]) in Hilbert space, v2x(Q) < a(@) < 2x(Q), and in I? for
1 <p<oo, ¥2x(Q) < Q) < 2x(Q).

Theorem 2.14. Let X be an infinite-dimensional normed space and Bx be
the closed unit ball of X. Then x(Bx) = 1.

Proof. Obviously x{Bx) < 1. If x(Bx) = g < 1, then we choose ¢ > 0 such
that ¢ + ¢ < 1. Now there exists a (g + ¢)-net of Bx, say {z1,...,z}. Hence

k
(233) Bx C U{$i+(q+6)B‘x}.
i=1

Now it follows from Lemmas 2.11 and 2.12 that
(2.34) g = x(Bx) < max x({zi + (¢+ €)Bx}) = (¢ + €)q.

Since g + € < 1, by (2.33) we have ¢ = 0, that is Bx is a totally bounded set. But
this is impossible since X is an infinite-dimensional space. Hence x(Bx) =1. O
Let us remark that Theorem 2.14 follows from Theorems 2.9 and 2:13. (But
we offer another proof.)
Now we shall show how to compute the Hausdorff measure of noncompactness
in the spaces ¢, for 1 < p < oo and cp.
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Theorem 2.15. Let Q be a bounded subset of the normed space X, where
X isdy, for1 < p < ooorc. IfP, : X = X is the operator defined by

P.(z1,%2,...) = {21, Z2,... , Zpn, 0,0,...) for (z;,%2,...) € X; then
(235) X(Q) = Jim sup |7 - Pa)al|
n OOIEQ

Proof. Clearly
(2.36) QC PR+ (I-P)Q.

It follows from Lemma 2.11, Theorem 2.12 and (2.36) that

(2.37)  x(Q) < x(PnQ) +x((I - P)Q) =x((I - Pr)Q) £ sup (I = Pp)z|l.

Since the limit in (2.35) clearly exists, we have by (2.37)

(2.38) x(Q) < lim sup ||(I - Pn)zl].
n—o0 IEQ
Now we prove the converse inequality in (2.38). Let € > 0 and {z1,...,2zx} be a

X(Q) + €]-net of Q. It is easy to prove that
(2.39) Q C{z1,.-., 2} + [x(Q) + €] Bx.

It follows from (2.39) that for any = € Q there exist z € {z1,...,2;} and s € Bx
such that z = z + [x(Q) + €]s. Hence

(2.40) sup ||(I — Pp)z|| < sup [[( = Pa)zill + [x(Q) + €]
TEQ 1<i<k

Finally, (2.40) implies lim,_, e Sup,¢q |(1 — Po)zl| < x(Q) + €. O

Concerning the space £o(R), to the best of our knowledge is the following
theorem (13, Proposition 3.5].

Theorem 2.16. (Dominguez Benavides [13]) Let £, be the real normed space
of bounded sequences with sup-norm and () be a bounded subset of £,,. Then
a(Q) = 2x(Q).

Proof. We know that a(Q) < 2x(Q). Let € > 0 and @, ... ,Q, be subsets
of £oo(R) such that Q@ C U, Q; and diamQ; < &(Q) + €. For any k € N we
put ap; = inf{zg : (z;) € Qi}, B, = sup{zx : (z5) € Qi}, cki = (ki + Bri)/2,
B; = B((ck,i)32,((Q) +€)/2) for i = 1,... ,n. It is easy to prove that Q; C B;.
Hence x(Q) < (a(Q) + €)/2, that is 2x(Q) < a(Q). ’ O

We shall prove that the Hausdorff measure of nbncompactness is connected
with the Hausdorff distance.
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Theorem 2.17. Let (X,d) be a metric space. Then (M5 ,dy) is a metric
space.

Proof. Clearly dy(S,Q) = 0if and only if S = Q, and dp (S, Q) = du(Q, S)
for all S,Q € M5%.

To show the triangle inequality, suppose S,Q,F € M,z € S, y € @Q and
z € F. 1t is easy to prove d(z,F) < d(z,y) + d(y, F) < d(z,y) + du(Q,F), and
this implies

d(z, F) < ;22 d(z,y) +dy(Q, F) = d(z,Q) + du(Q, F)
(2.41) <dy(S,Q) +du(Q, F).
Replacing z and F by 2 and S in (2.41), respectively, we obtain
(2.42) d(2,5) < du(F,Q) +dn(Q,5)

Finally, (2.41) and (2.42) together imply dg (S, F) < dy(S,Q) +dy(Q, F). O

Theorem 2.18. Let (X,d) be a metric space, Q,Q1,@2 € Mx, and N§ be
the set of all nonempty and compact subsets of (X, d). Then

(2.43) Ix(@1) = x(Q2)] < dn(Q1,Q2),
(2.44) x(Q) = du(Q,N%).

Proof. Let € > 0 and d = dy(Q1,Q2). Then it follows from (2.29) and (2.1)
that there exists a finite set S C X, such that

(2.45) Q1 C B(Q2,d+¢) and Q2 C B(S,x(Q2) +¢).
Furthermore, (2.45) implies
(2.46) @1 C B(S,d + x(Q2) + 2¢),
and so we conclude
(2.47) X(@1) < X(Q2) +d + 2.
Now (2.43) clearly follows from (2.47).
To prove (2.44), let us remark that the inequality < in (2.44) follows from

(2.43). Therefore it suffices to show the inequality >. If ¢ > 0, then there exists a
finite set F C X, such that

(2.48) QC B(F,x(Q)+¢) and FC B(Q,x(Q)+é).

Now (2.48) and (2.1) together imply du(Q,N%) < du(Q,F) < x(Q) + «. 0
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Corollary 2.19. Let N§ be the set of all nonempty and compact subsets of
a complete metric space (X,d). Then N§ is a closed subset of (M%,dg).

Proof. This is an immediate consequence of (2.44). a

If the centres of the balls in Definition 2.10 are in ) we have

Definition 2.20. Let (X, d) be a metric space and () a bounded subset of X.
Then the inner Hausdorff measure of noncompactness of the set Q, denoted by
xi(Q) is defined to be the infimum of the set of all reals € > 0 such that @ can be
covered by a finite number of balls of radii < € and centers in Q, that is

xi(Q) :inf{e >0:QC U B(zi,ri), z;€Q, ri<e(i=1,... n)n¢€ N}.

1=1

The function x; is called inner Hausdorff measure of noncompactness. Hence
the formula in Definition 2.20 can equivalently be stated as follows:

xi(Q) = inf{e > 0: @ has a finite e-net in Q}.
If Q, @; and @, are bounded subsets of the metric space (X, d), then

xi(@) =0 ifandonlyif @ istotally bounded,

xi(Q) = Xi(Q)7

but in general
@1 C Q2 doesnot imply xi(Q1) < xi(Q2),

and

xi (@1 U Q2) # max{x:(Q1), x:(Q2)}-
Let Q, @1 and (2 be bounded subset of the normed space X. Then

Xi(Q1 + Q2) < x:i(Q1) #+ xi(Q2),
xi(Q@ + 1) = xi(@) for each z € X|
xi(AQ) = Axi(Q) for each A €F,

but in general

xi(Q) # xi(co(Q)).

In the fixed point theory in normed space (or more generally in locally convex
spaces) the relation a(Q) = a(co(Q)) is of great importance. Let us remark that
0. Hadzi¢ [26], among other things, studied the inner Hausdorff measure of non-
compactness in paranormed spaces. She proved under some additional conditions
the inequality x;(co(@)) < ¢[x:(@)), where ¢ : [0,00) — [0,00), and, then got some
fixed point theorems for multivalued mappings in general topological vector spaces.
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Istratescu’s measure of noncompactness is closely related to the Hausdorff and
Kuratowski measures of noncompactness. Before we give its definition, we need to
recall that a bounded subset @ of a complete metric space (X, d) is to be said €-
discrete if d(z,y) > e for all z,y € Q with = # y. Obviously, the set Q is relatively
compact if and only if every e—discrete set is finite for all ¢ > 0.

Definition 2.21. (Istratescu, [30]) Let (X,d) be a complete metric space
and @ a bounded subset of X. Then the Istratescu measure of noncompaciness
(B-measure, I —-measure) of Q, is denoted by 3(Q), and defined by

B(Q) = inf{e > 0 : @ has no infinite e-discrete subsets}.

The function 8 is called Istrdtesku’s measure of noncompactness. Let us remark
[11] that 8 can be defined also by

B(Q) = sup{e > 0 : ¢ contains an infinite e~discrete set},

and the above mentioned properties of a are also valid for § (see e.g. [1, 7, 11]).

Theorem 2.22. (Danesg, [11]) Let (X,d) be a metric space and @) be a bound-
ed subset of X. Then

x(Q) < x:(Q) < B(Q) < a(Q) < 2x(Q).

Hence, in particular, 2a(Q) < B(@) < a(Q) and x(Q) < H(Q) < 2x(Q).

Now we shall point out the well-known result of Goldenstein, Gohberg and
Markus [19, Theorem 1] (see also [7, Theorem 6.1.1} or [1. 1.8.1]) concerning the
Hausdorff measure of noncompactness in Banach spaces with Schauder basis. Let X -
be a Banach space with a Schauder basis {e;, e, ... }. Then each element x € X has
a unique representation z = ) .o, ¢;(z)e; where the functions ¢; are the basis func-
tionals. Let P, : X — X be the projector onto the linear span of {e1,es,...,e,},
that is P,(z) = Y., ¢i(z)e;. Then, in view of the Banach-Steinhaus theorem, all
operators P, and I — P, are equibounded. Now we shall prove

Theorem 2.23. (Goldenstein, Gohberg and Markus [19]) Let X be a Banach
space with a Schauder basis {ej,es,...}, Q be a bounded subset of X, and P, :
X ~ X the projector onto the linear span of {e1,es,...,e,}. Then

> imsup (sop U7 = P)@)I) < x(@) <

(2.49)

I

< inf sup [I(7 = Pa)(@)l| <lim sup (sup |I(Z = P)(@)]]),
" zeQ n—00 €Q

where a = limsup,,_, ., [|[I — Pall-

Proof. Clearly, for any natural number n we have

(2.50) QC PR+ (- F)Q.
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It follows from Lemma 2.11, Theorem 2.12 and (2.50) that

(2.51)  x(Q) £ x(PaQ) + x((I — Po)Q) = x((I - Pn)Q) < sup (I = Po)(z)l].

Now we obtain

252 x(Q) <inf sup [[(I - Pu)(@)] < limsup (sup - Pn)(mm),
z€Q

n ozeQ n—00

Hence it suffices to show the first inequality in (2.49). Let ¢ > 0 and {z1,..., 2}
be a [x(Q) + ¢]-net of Q. It is easy to show that Q C {21,... ,2¢} + [x(Q) + €| Bx.
This implies that for any = € Q there exist z € {z;,... , 2} and s € By such that

T =z + [x(Q) +¢]s, and so

sup ||(1 — Pa)(@)ll £ sup [T = Pa)(zi)ll + [X(Q) + (T — Pa)Il.
z€Q 1<i<k

This implies

lim sup(sup W - Pn)(a:)ll) < (x(@)+¢€ lirrln—)s;p I — P,

n—oo ‘zeQ
O

Let us mention that concerning the number @ in Theorem 2.23, if X = ¢, then
a =1, but if X = ¢, then a = 2 (see e.g. {7, p. 22}).

2.4. Operators. So far we “measured” the noncompactness of a bounded
subset, of a metric space. Now we “measure” the noncompactness of an operator.

Definition 2.24. Let k; and k; any of the measures of noncompactness
defined above on the Banach spaces X and Y, respectively. An operator L : X — Y

is said to be (K, k2 )-bounded if

(2.53) L(Q) € My for each Q € Mx
and there exists a real k with 0 < k < 0o such that

(2.54) ko (L(Q)) < kr1(Q)  for each Q € M.

If an operator L is (K1, k2)-bounded then the number || K|, «, defined by
(2.55) NLllky ko = inf{k > 0: k2(L(Q)) < kx1(Q) for each Q € Mx}

is called (1, ko)-operator norm of L, or (K1, Ko)-measure of noncompactness of
L, or simply measures of noncompactness of L.

If Ky = ko = K, then we write ||L}|. instead of ||L||x x-

The next theorem is related to the Hausdorft measure of noncompactness.
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Theorem 2.25. Let X and Y be Banach spaces and L € B(X,Y). Then
ILIlx = x(L(Sx)) = x(L(Bx))-

Proof. We write B = Bx and S = Sx. Since co(S) = Bx and L{co(S)) =
co(L(S)), it follows from (2.31) that

(2.56) X(L(B)) = x(L(co(S)) = x(coL(5)) = x(L(S)),

hence we have by (2.55) and Theorem 2.14 x(L(B)) < [|L||5. Now we show ||L]|,, <
Xx(L(B)). Let @ € M and {z;}, be a finite r-net of Q. Then Q C .., B(z;,7)
and obviously

(2.57) L(Q) c | J L(B(z:,1)).

=1

It follows from (2.57), Lemma 2.11 and Theorem 2.12 that

K@) < (U LB ) = x(LBO.1)) = r(L(B)),
and we have X(L(@)) < X(QX(L(B)) 0

Corollary 2.26. Let X, Y and Z be Banach spaces, L € B(X,Y), L €
B(Y,Z) and || - ||k the quotient norm on the Banach space B(X,Y)/K(X,Y).

Then |{ - ||y is a seminorm on B(X,Y) and
(2.58) ILlly =0 ifandonlyif L€ K(X,Y),
(2.59) 1Ll < NIL]I,
(2.60) IL + K||y = |IL]ly, for each K € K(X,Y),
(2.61) L o Lily < IZilx 1Ll
(2.62) IL1lx < LIl -
Proof. The proof is left as an exercise to the reader. O

The following results will give a technique for the evaluation of the Hausdorff
measure of noncompactness of an operator on the space ;.

Theorem 2.27. We have L € B(l1,l1) if and only if there exists an infinite
matrix A = (ank)5y—o of complex numbers such that

(2.63) 1All = sup D lan| < o0

n=0

(2.64) L(z) = A(z) forallz €l;.
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In this case
(2.65) LAl = 1AL,

and the operator L uniquely determines the matrix A = (ank);’fk. The operator L
is said to be given (defined) by the matriz A.

Proof. First we assume L € B(X,Y). We write L,, = P, o L for all n where
P, denotes the n—th coordinate, and put a,x = L,(e®)) for all n,k = 0,1,....
Since l; is a BK space, we have L, € I} for each n and so L,(z) = An(z) for each
n by Theorem 1.35. This yields the representation in (2.64). If we choose z = e{*),
then

ILENM: = D 1€ = lank| < ILYle® ) = IL]]  for all

n=0 n=0

that is

(2.66) Al = s‘fcpz |ank| < ||| < o0

n=0

and (2.63) holds. Further

(2.67) L@ =) 4@ <) lmel Y lankt < NAllllzlly  for all z € 1y,

k=0 k=0 n=0

and so ||L}| < ||A]|. This and (2.66) together yield (2.65).

Conversely let condition (2.63) hold. Then obviously sup; |anx| < oo for all n,
that is A, € X8 for all n. Let z € . As in (2.67), we obtain A(z) € [; by (2.63),
whence A € (l3,1;). We define the linear operator L : Iy — I; by (2.64). Then
L € B(l1,1;) by Theorem 1.23 (a). 0

Theorem 2.28. (Goldenstein, Gohberg and Markus [19]) Let L € B(li,1;)
be given by an infinite matrix A = (ank)n’y—o- Then

(2.68) 1Ll = Yim sup D lanl.

n=m

Proof. We write S = 5y,. It follows from Theorems 2.15 and 2.27 that

00
5 Onk Tk

k=0

(2.69) 1Ll = x(L(S)) = lim sup 3~

e Iesn:m




Theory of sequence spaces 177

The limit in (2.68) obviously exists. From

) oo oo 0 o
sup 1> ankzi| SSup 30 > lamszi =supd D Janellzi]
€S z€S z€S

n=m'k=0 n=m k=0 k=0 n=m

o0
< sup Z [@nk
k n=m
and (2.69) we obtain

(2.70) 1Ll < Jim sup > lankl-

n=m

To prove the converse inequality, we choose z = el¥) € ;. Since L(e®)) =
AF = (an1)%2,, Theorem 2.15 implies

X(L(eM) ik =0,1,...}) = lim sup > lank] < X(L(S)).

This and inequality (2.70) together yield (2.68). 0
As an immediate consequence of Theorem 2.28, we have

Corollary 2.29. Let L € B{(l},li) be given by the infinite matrix A =
(ank)k=o- Then L is compact if and only if

oo
lim sup Z lank) = 0.

m—0o0 k e
Let us mention that measures of noncompactness are of special interest in
spectral theory, the theory of Fredholm and semi-Fredholm operators (see e.g. [8,
9,17, 19, 21, 45, 78, 87, 88, 89, 93, 94, 101, 102, 110, 115, 116].

3. Matrix domains

In this section, we shall deal with sequence spaces related to the concepts of
ordinary and strong summability, spaces of sequences of differences and sequences
that are strongly converhent and bounded. We shall characterize matrix transfor-
mations between these spaces and apply the Hausdorff measure of noncompactness
to give necessary and sufficient conditions for these matrix maps to be compact
operators. This section contains some of our recent research results which can be
found in [34, 64, 65, 68, 69, 70, 71, 72, 73] and in the survey articles [32, 66, 67].

Let A be an infinite matrix and = = (24)§2, be a sequence. The sequence z is
said to be A-summable tol € C if

An(z) = Zankxk =1 {n— o0); weshall write z = I(A).
k=0
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This means A, € z° = 7! x ¢s for all n and A(z) € c.
The sequence z is said to be strongly summable A tol € C if

o0
Zanklrk == 0 (n—o0); weshall write z — [[A].
k=0

The sequence z is said to be absolutely summable A if

[ee]

3 (@] < oo

n=0

We shall mainly be interested in the first two concepts.

3.1. Ordinary and strong matrix domains. In this subsection, we define
ordinary and strong matriz domains and study their topological properties.
Definition 3.1. Let X be a set of sequences and A an infinite matrix. The

sets
Xa={zew: Alz) € X}

and

Xy = {z €w: Allz]) = (D anklorl) oy € X}
k=0

are called the (ordinary) matriz domain and strong matriz domain of A. In the
special case where X = ¢, the sets ca and ¢4} are called convergence domain and
strong convergence domain of A.

The sets ca and c[4) are closely related to the concepts of ordinary and strong
summability. Obviously z — [(A) if and only if £ € ¢4 and z — [[A] if and only if
z —le € (co)(a)-

It is known that the ordinary matrix domain of an FK space again is an FK
space {108, Theorem 4.3.12, p. 63] or [91, Proposition 4.2.1, p. 101]. Since we shall
here confine our studies to BK spaces and matrix domains of triangles, we shall
only prove the special result. We need the following

Lemma 3.2. Let X be a linear space, (Y, ||-||) a normed space andT : X — Y
a linear one-to-one map. Then X becomes a normed space with ||z||x = ||T(z)||-
If, in addition, Y is a Banach space and T is onto Y, then (X, || ||x) is a Banach
space.

Proof. The proof is elementary and left to the reader. O

Theorem 3.3. Let T be a triangle and (X, || -||) be a BK space. Then X7 is
a BK space with ||z||lr = ||T ()]}

Proof. We define the map Ly : Xr — X by Lr(z) = T(z) for all z €
Xr. Then Lr is linear, one-to-one, since T' is a triangle, and onto X, since
Xr = L;l(X) and Ly is one-to-one. By Lemma 3.2, X7 is a Banach space.
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To show that the coordinates are continuous in X7, let z{™ — z in Xp. Then
y{" = Ti(z™) - yx = Ti(z), since X is a BK space. Let S be the inverse of T,
also a triangle. Then zgcn) = Zf:o Skjy](-n) - Zf:o 5k;y; = xx. This shows that

the coordinates are continuous on Xrp. (N}
As a special case of Theorem 3.3, we obtain

Corollary 3.4. {108, Theorem 4.3.13, p. 64] Let T be a triangle. Then cr is
a BK space with ||z||T .00 = [|T(2)]]co-

Theorem 3.5. [108, Theorem 4.3.14, p. 64] If X is a closed subspace of Y,
then X 4 is a closed subspace of Y4.

Proof. Define themap f: Y4 — ¥ by f(y) = A(y), a continuous map. Then
fa is continuous by Theorem 1.17, and so X4 = f~!(X) is closed. 0

A result similar to Theorem 3.3 holds for the strong matrix domains of trian-
gles. We call a norm || -|| a sequence space X monotone, if |Z,| < |zx| (k =0,1,...)
implies ||Z]| < |||

Theorem 3.6. [34, Theorem 1] Let X be a normal BK space with monotone
norm || - ||, T a triangle and B a positive triangle. Then Xg) is a BK space with
lzll x5, = 1B(Iz])|| for all z € X|p).

Proof. We write ||-||" = || || x5, for short. Obviously, |- ||’ is a norm on X|p;.
Further, since X is a BK space,

2™ — z|| = |B(jz™ ~z)| = 0 (m — co)

implies B, (|z(™ — z|) = 37 _, bnklx,(cm) — x| — 0 {m - oo) for all n. Thus

1
llm) — z, < TBn(,I(m) —z|) 50 (m—o00) foralln.
nn

Hence the norm || - ||’ is stronger than the metric of w on X|p;. Let (z(™)%_; be
a Cauchy sequence in X|p), hence in w by what we have just shown. Then there is
¥ € w such that

(3.1) 2™ Sy inw.
Further, by the completeness of X, there is z € X such that
(3.2) B(jz'™|) > z in X.

From (3.1), we conclude xim) — yi (m — o0) for each fixed k, hence B, (|z(™)]) —
B, (Jy]) (m — oo) for all n, and consequently

(3.3) B(lz™)) - B(ly) inw.
Finally (3.2) and (3.3) together imply 2z = B(Jy|) € X, that is y € Xg. a

There is no general method to find the Schauder basis of a matrix domain X 4
or X|4) from that of X not even when A is a positive triangle. We give a special
result which will be applied later.
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Theorem 3.7. [34, Theorem 2] (a) Let X be a BK space with basis (b*)%.,
U={u€w:u #0forallk} uw €U and ¥ = (1/u)- 4% (k = 0,1,...) where
1/u = (1/ug)2,. Then (¢®))2  is a basis for Y = u™ x X.

{b) Let u € U be a sequence such that |ug| < |u1| < ... and |u,| = oo for
n — oo, and T a triangle with t,, = 1/u, (0 <k <n) and t,, = 0 (k > n) for all
n=0,1,.... Then (cp)r has AK. ‘

Proof. (a) Let || - || be the BK norm on X. Then Y is a BK space with
wlle = |lu-yll (v € ¥) by Theorem 3.3. Further u-c* =5* ¢ X (k=0,1,...)
implies ¢® € Y (k = 0,1,...). Finally let y € Y be given. Thenu-y =z € X
and zi™ = 7 Ab® =z (m — 00) in X. We put y*™ = (1/u)-z{™. Then
w-yi™ = 2™ 5 g = u-yinX, hence y'™ — yin Y, that is y = Y oo, Aect®.

Obviously, this representation is unique.

1 n

— > xk‘, by Theorem
Un k=0

3.3. Further |un| — oo (n — oo) implies ¢ C (co)r. Let € > 0 and z € (co)r be
given. Then there is a nonnegative integer ng such that |Th(z)| < €/2 for all n > ng.

Let m > ng. Then

(b) (co)T is a BK space with respect to ||z{}(c,), = sup
n

n
Jjz - a:[m]I)(CO)T = sup |— Z zi| < sup |Tu(z) < +[Thm(z)f < e.
n>m+1| Un [t} n>m+1
Obviously, the representation is unique. O

3.2. Matrix transformations into matrix domains. In this subsection, we
shall show that, for triangles T', the characterizations of the classes (X,Y} and
(X,Y{7)) can be reduced to that of (X,Y).

Theorem 3.8. [65, Theorem 1], [71, Proposition 3.4] Let T be a triangle.

(a) Then, for arbitrary subsets X and Y of w, A € (X,Y7r) if and only if
B=TAe€ (X,Y).

{(b) Further, if X and Y are BK spaces and A € (X,Yr), then

(3.4) ILall = Il

Proof. (a) The proof of part (a) is straightforward and can be found in [65,
Theorem 1].

(b) Let A € (X,Y7). Since Y is a BK space and T" a triangle, Y is a BK space
with
(3.5) ' lllyr =17y (v € Y1)

by Theorem 3.3. Thus A is continuous by Theorem 1.17 and consequently

(3:6)  lILall = sup{liLa(@)llyy : llzll = 1} = sup{[|A(2)llyy : =l = 1} < oo
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Further, since B is continuous,
(3.7) ILgll = sup{llLs(z)|ly : [lzll = 1} = sup{||B(z)|ly : l|zll = 1} < co.

Let £ € X. Since A, € XP foralln = 0,1,..., we have z € wy. Further T,, € ¢
(n = 0,1,...), since T is a triangle. Thus B(z) = (TA)(z) = T(A(z)) (cf. [108,
Theorem 1.4.4, p. 8]), and (3.4) follows from (3.5), (3.6) and (3.7). O

For the characterization of the class (X,Y|r)), we need the following lemma.
Lemma 3.9. [81] Let ag,a1,...,a, € C. Then

S il

keN

n
Z lax| <4- max
Py Ne{o,...,n}

Proof. First we consider the case where ag,as,...,a, € R. We put N* =
{ke{0,....,n}:ar >0} and N~ ={k € {0,...,n} :a; <0}. Then

ke

ar| = ag| + ar) < 2- max agl.
Dlarl=] D arl+) > an <2 max 1) a
k=0 keEN+ EEN- keN
Now let ag,a1,...,a, € C. We write ax = ar + 6 (k = 0,1,...,n). For any

subset N of {0,...,n}, we write

TN = Zak, YN = Zﬂk and zy =zn +iyny = Zak.

keN keN kEN

Now we choose subsets NV,, N; and N, of {0,...,n} such that

zy. | = max |zn], = max and |z
lzn, | oL} n}l Ny lynd n}lle B

= max Z .
Nc{o,..., NcC{0,....n ! NI

,,,,,

Then, for all N C {0,...,n}, we have |zn|, [yn| < |zn.| and |zn, |+ yn]| < 2¢]2n,
Thus, by the first part of the proof,

n n n
S larl <3 el + 3 18l < 20w, | + lyn D) <
k=0 k=0 k=0
>

keEN

=4- max

<4
- IZN‘ NC{0,...,n}
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Theorem 3.10. [70, Theorem 2] Let A be an infinite matrix, B a positive
triangle. For each m € Ny, let N, be a subset of the set {0,1,...,m}, N =
(Nm)%_, the sequence of the subsets Ny, and N the set of all such sequences N.
Furthermore, for each N € N, we define the matrix SN = SN (A) by

sN, = Z bmnank (M, k=0,1,...).
nENm
Then, for arbitrary subsets X of w and any normal set Y of sequences, A € (X,Y|p;)
if and only if SN (A) € (X,Y) for all sequences N in N.
Proof. First we assume A € (X,Y|g)). Then A, € X# (n = 0,1,...) implies

SN ¢ XP for all m and all N € NV. For each z € X, we put y = B(|(A(z)]). Then
A(z) € Yip, that is y € Y, and

oo
N

E SmkTk

k=0

for all N € N together imply SV (z) € Y for all N € N, since Y is normal. Thus
SN e(X,Y)forall Ne N.

Conversely we assume SV € (X,Y) for all N € N. Then SY € X7 for all m
and for all N € N, in particular, for N = ({m})%_,, SY = bmmAm € XP hence
A € XP, since by, # 0. Further, let € X be given. For every m = 0,1,..., we

choose the set N&V) C {0,...,} such that

l Z bmnAn (33)

neNt®
Then, by Lemma 3.9,

Iym| <4- ' Z brnAn(z)

nENr(r?)

ISh (z)] = < lym| (m=0,1,...)

oo
Z bmnE AnkTyk
k=0

nENm

max bmnAn ()
N c{0,...,m}

=4 |S¥"(z)].

By hypothesis, SV'” (z) € Y, and the normality of Y implies y = B(|A(z)|) € Y,
that is A € (X,Y[p))- O

3.3. Bounded and convergent difference sequences of order m. Now we
apply the results of the previous subsections to sets of of bounded and convergent
sequences of order m which may be considered as ordinary matrix domains of a
certain triangle. We shall give their Schauder bases and their a— and -duals. The
results may be found in {69] and [39, 63] in the special case m = 1.

Let m denote a positive integer throughout and the operators A(m) $(m) .
w +— w be defined by

(1} k
(A(l)I)k :A(l)l‘k =T — Tg-1, (Zx)k: ZI]' (k:O,l,...),

A = AW o Alm=1) =Yoo (m > 2).
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We shall write A = A{) for short and use the convention that any term with a
negative subscript is equal to naught. For any subset X of w let

X(AM)={zew:a™ze X}.

We shall be interested in the cases where X = ¢y, X = cor X = 4. The following
results are well known and can be found in [27]:

(38) (A<m>z>k=i<—1>f(T)xk_j= > (" e

j=0 j=max{0,k—m}

(3.9) ((f:)z)kzzkmer:__;-l)zj (k=0,1,...),

(m) (m)
(3.10) > oAl =A™ 6" =id, the identity on w,

j=0

(3.11) zk:(m“L;_l):(mZk) (k=0,1,...)

there are positive constants M;, M, such that
(3.12) {

k
Myk™ < <m]': ) < Myk™forallk=1,2...

As an immediate consequence of Example 1.13 and Theorems 3.3 and 3.5, we
obtain

Corollary 3.11. [69, Proposition 1] Let m be a positive integer. Then the
sets loo (A™), ¢(A™) and co(A™) are BK spaces with || - || defined by

i(—l)j Cl) T—j

llz| = sup|(At™z), | = sup
k k1o

and co(A(™) and ¢(A™) are closed subspaces of lo,(A™).

Now we shall give Schauder bases for the spaces co(A(™) and ¢(A(™).
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Theorem 3.12. [69, Theorem 1] Let m be a positive integer. We define the
sequences b*(m) by

b (m) = (m+n> (n=0,1,...),

n

b(k)(m):{o (n<k-1) (k=0,1,...).

(M) (k)

(a) Then (b'%)(m))L., is a basis of co(A™)). More precisely, every sequence
T = (24)%, € co(A™) has a unique representation

(3.13) T = i A (m)b®) (m) where M (m) = (A™z), (k=0,1,...).

k=0
(b) Then (b*}(m))$2._, is a basis of ¢(A™)). More precisely, every sequence

z = ()32, € ¢(A™) has a unique representation

(3.14) T = Y+ Z ) = Db®) (m) wherel = hm (A(m Z)k-
k=0

Proof. (a) For k =0,1,..., we put

k-1 .

0 <k-1

k) = e — E e, that is b;k) = { (] - )
=0 1 (G2k).

Then by {3.9) and (3.11),

(m—1)
(Tww) o3 (mtin ot
n = n—J

DD () B P )
0 (n<k-1),
k

o m—-1+n—j-1\ S~ /m-1+1-1 m-1+n-—k
(TR (TS e2e
n-—17 -0 n

=k

hence b9 (m) = ™ Vpk) (k= 0,1,...), and by (3.10),
(3.15) AMPE (m) = AR =e®) e ¢y (k=0,1,...)
Thus

(3.16) b8 (m) € eo(A™) (k=0,1,...).
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Let z = (z4)2, € co(A (m)) be given. For every nonnegamve integer p, we put
= S0 _o M (m)b*) (m). Then by the linearity of A and by (3.15)

p p
Alm) (o) — Z)\k(m)ﬁ(m)b(k)(m) - Z(A(m)x)ke(k)

k=0 k=0

0 (n<p)

(M) _ P)y
A (-T T />.n - { (A(m)l‘)n (TL 2p+ 1)

Given € > 0 there is an integer po such that [(A(™)z),| < £/2 for all p > pg, hence

llz — 2| = sup |(A™z),| < sup [(A™M),| <e/2<e
n>p n>po

for all p > py. This proves the representation in (3.13). To show the uniqueness

of this representation we assume z = 3 poo uxd®). Since A 1 o (A) — ¢
obviously is a continuous linear operator, we have by {3.15)

(A(m)I)H = Z#k‘(A(nl)b(k>)1z Z#he(k) = Hn (n :0:1))
k=0

(b) First b~ (m) = Z( Je implies A™p(=1)(m) = e € c, that is b~ D(m) €
¢(A™). In view of (3.16) and the fact that co(A™)) C ¢(A <m>) we have b(*¥)(m) €
(A for all k = —1,0,1,.... Let z = (z4)2, € c(A(™) be given. Then there
is a unique number [ such that (3.14) holds. We put y =z — - b(=1(m). Then

Ay = Az — =D (m)) = Al™g —le, thatis y € co(A™),

and it follows from part (a) that z has a unique representation (3.14). O

Now we shall give the a-duals of the sets co(A™)), ¢(A(™)) and I, (A(™). If
u € U, then obviously

(3.17) (W« X) = (1/u)7 « XT (1 € {o, B}) for every subset X of w.

Theorem 3.13. [69, Theorem 2] Let m be a positive integer.
(a) We put M*(m) = {a € w: Y 1o, lar]/k™ < o0}. Then

(3.18) (co(AT™))" = ((AT)) = (I (A™)N* = M (m).
(b) We put M**(m) = {a € w: supy>, lax|k™™ < 0o}. Then

(3.19) (co(A™)) % = (c(AUINT = (o (AN = M2 (m).
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Proof. (a) First we assume a € M*(m). Then
(3.20) D laglk™ < oo.

Let z € loo(A!™)). Then there is a positive constant M such that A ), | < M
(k=0,1,...), and by (3.10), (3.9), (3.11), (3.12) and (3.20)

(£())
< glﬂkl; (er:-_jj—l)i(A(m)x)j
i akl(m+k> <M. MzZlak]km < 00.

k=0

S ol = Z o]

k=0

Thus we have shown
o

(3.21) M2 (m) C (loo(A™))%.

Conversely let a ¢ Me(m). By (3.12), there is a sequence (k(s))52, of integers
0= k(0) < k(1) < ... such that

k(s+1)—1
m+k
(3.22) > Iak|< f

)25+1 (3:0117'--)‘
k=k(s)

We define the sequence z by

3_—:1 1 k(l§_1<m+k—j—1)+ 1 Ek: <m+k—j—1)
e ey k= St k=J
(k(s) <k <k(s+1)—1;5=0,1,...).

If we define the sequence y € co by yx = 1/(s+ 1) for k(s) <k < k(s+1) =1 (s =
1,...), then it easily follows from (3.9) that z = Z(m)y. Thus Al™Mz =y € ¢
and T € ¢o(AU™). On the other hand by (3.11) and (3.22)

E(s+1)—1 E(s4+1)—1 1 Efmjo1
S feal> Y el (")
kek(s) k=k(s) =0

= k(si)-lla] mEEY 1 s=0,1,...)
P k P > s=0,1,...).

k=k(s)
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Thus a ¢ ¢o(A{™), and we have shown
(3.23) (co(AT™))* € M (m).

Since co(A™) C ¢(A™) C loo(A™), (3.18) follows from (3.21) and (3.23).
(b) Since y = (zx+1)52o € M*(m) if and only if y € ((k+1)™)2 )1 11, and
since ¢ = lo, identity (3.19) follows from (3.17) and part (a). 0
To determine the f~duals of the sets co(A™), ¢(A(™)) and Io(A(™)), we need
a few results.

Lemma 3.14. [69, Lemma 1] Let m be a positive integer. Then for arbitrary
sequences a

m+E\\
(ak< f )) € cs if and only if (akkm):o:l € cs.
k=1

Proof. We define the sequences b and ¢ by

(k=1,2,...) and c=1/b.

Since cs? = bv [108, Theorem 7.3.5(v), p. 110], it suffices to show that b,c € bv. It
is well known that limg_, 00 b = 1/m! [27, p. 97]. Therefore we have to show that b
is monotone. We define the function f on [0,1/2]) by f(z) = (14+mz)(1—z)™. Then
fi(z) = —m(1 - )™ Y (m+ 1)z <0 for all z € [0,1/2], whence f(z) < f(0) =1
for all z € [0,1/2]. Thus

beyr k+14m k™ ( m )( 1 \™ 1
= ={1+—- 1 - —— = — | <1
b F+1 (k+D)m T Erl kr1 Nrvi) s

for all £ > 1. O

Lemma 3.15. [63, Lemma 1] Let (P,) be a sequence of non decreasing posi-
tive reals. Then y € cs implies

. > Yn+k-1 _
i (2 ) <o

P,
k1 n+k

Proof. The proof can be found in [39, Lemma 3} and [63, Lemma 1]. O

Corollary 3.16. [63, Corollary 1] Let (P,)3%; be a sequence of nondecreasing
positive reals. Thena € (Pn)~"*cs implies R € (Pn)™'xc, where Ry, = > 021 ak
(n=1,2,...).

Proof. Put yp = Prri1ary; (k=1,2,...) in Lemma 3.15. 0
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We shall frequently apply the following two versions of Abel’s summation by
parts: Let b, c € w. We put

(1) [>e)
s=s(c) = Zc and, if ¢ € ¢s, Ry = Ry(c) = ch (k=0,1,...).
i=k

Then

(3.24) S beck = =) skAbeyy +spbny (R =0,1,...)
k=0 k=0

(3.25) Y bkck =Y RpDbr —bpRayy (n=0,1,...).
k=0 k=0

Theorem 3.17. [69, Theorem 3) Let m be a positive integer.
(a) We put R} = Ry = 32, a5, By = £, B™ D (k = 0,1,...) for
m > 2 and

o0 oo
M- (m) = {a Ew: Zakkm converges and Z |RU™| < oo}.

k=0 k=0
Then
(3.26) (81))° = (1oo(A™))? = ML (m).
(b) Further, let c§ denote the set of all positive sequences in ¢o. We put

o0 k .

. fkoj-1

ME(m) = {a Ew: Z ak <m . j] )v]- converges for all v € cg}
k=0  j=0 :

Then
(3.27) (co(A™))” = M (m).
Proof. (a) For all positive integers p let s®) = Z(p)e; we write s = s{1). First

we assume m = 1 and write MZ = ME (1). Let a € MZ. Then

(3.28) Rely
(3.29) as € cs
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Now condition (3.29) and Corollary 3.16 together imply

o0

(3.30) (Rn+18n) € Co.

n=0
Let z € Io(A). From (3.25) with b = z and ¢ = a, we have

n

(3.31) > ez = Y Ri(Az)k — Ropiza (n=0,1,...).

k=0 k=0
Since Az € lo,, condition (3.28) implies
(3.32) , RAz € ¢s.

Further there is a constant M > 0 such that [(Az)i] < M for all k and so [z,] <
I(Z(l)(A“)x))kf < M(n+ 1) = M3, for all n. Now condition (3.30) implies

oo

(3.33) (Ro4122)

n=0 (S Co-

Finally (3.31), (3.32) and (3.33) together imply az € c¢s for all z € [, that is
a € (lo(A))P.

Conversely, let @ € (c(A))?. Then az € cs for all z € ¢(A). First e € ¢(A)
implies a = ae € cs, hence the sequence R is defined. Further, for £ = s, we have
Az = e € ¢, that is £ € ¢(A), and condition (3.29) holds. By Corollary 3.16, we
have (3.30), and again this yields {3.33) for all z € ¢(A). From (3.31) we conclude
RAz € csforall z € ¢(A), and so R € ¢® = 1;. Now we assume that identity (3.26)
holds for some integer m > 1. Let a € MZ (m + 1). Then by
(3.34) R = R™(R) € 1.
and, by Lemma 3.14,

(3.35) as™*) ¢ ¢s

Applying identity (3.24) with b = R and ¢ = s(™) we obtain
n n
(3.36) ngcm)Rk = Zaksim“) + Rop18™Y (n=0,1,...).
k=0 k=0

By Corollary 3.16, condition (3.35) implies
(3.37) (Rng1syt)> € o
and consequently by (3.36)

(3.38) s"™R € cs
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Now, by assumption, (3.34) and (3.38) together imply
(3.39) R € (loo(A))°.

Let z € lo(A™*D) be given. Since z € loo(A™*V) if and only if y = Az ¢
I (AY™), condition (3.39) implies

(3.40) RAz € cs forall z € loo(AMTD),

Further there is a positive constant M such that [(A(™+1g);| < M (j =0,1,...)

and thus
(m+1) k .
< (757 )| (ae)
. — 3 ;

x| = ,( Z (A(m+1)($)))k
=0
<M J_Zi:o (m Zf; j) = J\/I((TS:M)6>}c ~ M. 52171+1)

for k= 0,1,..., and condition (3.37) implies

oo

(341) (Rn..)_]ﬂ?n) € Cp.

n=0

Finally (3.31), (3.40) and (3.41) together imply az € cs for all z € I (A,
consequently a € (lm(A(m“)))B.

Conversely let a € (c(A(m“)))ﬁ. Then ax € cs for all z € c(A"*+D). First,
e € c(A™+1)) implies a = ae € cs, hence the sequence R is defined. Further for
7 = s(m*+1) we have AlMm+lg = A(’”“)(Z(mﬂ}e) = e € ¢, that is x € ¢(A(MFD),
and condition (3.35) is satisfied. By Corollary 3.16, we have (3.37) and again this
yields (3.41) for all z € ¢(A™+V)). From (3.31) we conclude RAx € ¢s for all z €
c(A(™tY)) and consequently R € (c(A™)))?. This implies R™+1) = R™(R) € 1,
by assumption.

(b) For all positive integers p and all sequences v € cg, let t(P(v) = Z(P) (v);
we write t(v) = #V(v). The proof of part (b) is exactly the same as that of part
(a) with s, s™) and s{™*1) replaced by t(v), ™ (v) and (™1 (). O

Remark 3.18. By [63, Theorem 2 (c)] it is obvious that (co(A(™)))? #
(oo (A™))8.

3.4. Matrix transformations in the spaces cq(A™)), ¢(A™)) and 1. (A™)
and their measures of noncompactness. In this subsection we shall characterize
matrix transformations between the spaces of bounded and convergent m~th order
difference sequences and apply the Hausdorfl measure of noncompactness to give
necessary and sufficient conditions for these matrix maps to be compact operators.
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Lemma 3.19. [69, Lemma 4] Let m be a positive integer Then
(3.42) lalf* = 1Rl = 3 1R{™)
k=0

on any of the spaces (co(A™))?, (c(A™))8 and (oo (AU™))E.

Proof. Let X be any of the sequences cg, c or loo. If m = 1 and a €
(X(AM))P, then

[ee) o0
(3.43) Zakxk = ZR;{k)A(])mk for all z € X (A™)
k=0 k=0

by the proof of Theorem 3.17. Since z € X (AM) if and only if AMz € X, this
implies RY) € X# = 1. It is well known that || - ||* = || - || on X7, and (3.42)
follows from the definition of the norm on X (A(1).

Now we assume that (3.42) holds for some integer m > 1. Let a € X (A(™+1),
Again, by the proof of Theorem 3.17, (3.43) holds for all z € X (A(™*1)) Since
z € X(AHD) if and only if A € X(A(™), this implies R € (X(A(™))P,
and by assumption [la[|* = [|R™(RM)||; = ||[R™+V)]);. dJ

Theorem 3.20. {69, Theorem 4] Let m be a positive integer and A be an infi-
nite matrix. For each n, we put RU}) = Ry = D2y anj and RUY = PRy R,(:;l—l)
for m > 2.

(a) Then A € (loo(A™), 1) if and only if

oo
(3.44) Z k™ay,, converges for allm =0,1,...
k=0
and
o0
(3.45) sup Y |RUY| < 0.
N k=0

Further (Ioo(A™),loo) = (c(A™),1,).
(b) Then A € (co(A™), 1) if and only if condition (3.45) holds and

o0 k .
k—j-1
(3.46) ,;:0 Ak .EZO: (m +k —j] )'Uj converges for all v € ¢
and for alln =0,1,....

(c) Then A € (co(A™), o) if and only if conditions (3.45) and (3.46) hold
and

(3.47) nlLH;O(Z (m ‘jlj]j B k)anj) =0 (k=01,...)
=k
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(d) Then A € (co(A™), c) if and only if conditions (3.45) and (3.46) hold and

o fm—-14+j—k
(3.48) nlergo(Z;c( ik )anj)zzk (k=0,1,...).
]:

(e) Then A € (c(A'™),¢o) if and only if conditions (3.45), (3.46), (3.47) hold

and
(3.48) lim (Z (”“.”) an,-> = 0.

(f) Then A € (¢(A'™),¢) if and only if conditions (3.45), (3.46), (3.48) hold
and

3.50 lim ( ( . )an) =1_3.

Proof. (a) Let A € (Io(A™),15). Then 4, € (lo(A™))P forn=10,1,...,
and, by Theorem 3.17 (a), condition (3.44) holds for all n and Y2 , [Rf:,’;)l < 00
(n = 0,1,...). Further [JA|I* = sup,(X req }Rf:,':)}) < o0 by Theorem 1.23 (b)
and Lemma 3.19. Conversely let conditions (3.44) and (3.45) hold. By Theorem
3.17 (a), this implies A, € (Io(A(™))P for all n, and again Theorem 1.23 (b)
and Lemma 3.19 together imply A € (lo(A(™),ls). Clearly (Ioo(A™), 1) C
(c(A™)1). I A € (c(A(™),ls), then condition (3.45) follows from Theorems
1.23 (b) and 3.17 (a) and Lemma 3.19. Further 4, € (c(AM))F = (I (A™))P
and condition (3.44) holds (see Theorem 3.17 (a)). Therefore A € (Io(A™), 1)
by what we have shown above.

{(b) The proof of part (b) is exactly the same as that of the first part of part
{(a) with condition {4.3) and Theorem 3.17 (a) replaced by condition (3.46) and
Theorem 3.17 (b).

Parts (c) to (f) follow from Theorem 1.23 {c) and parts (a) or (b), since
co(A1™) and ¢(A{™) are closed subspaces of Io(A™)) by Corollary 3.11. a

As a corollary of Theorems 1.23 and 3.8, we have

Corollary 3.21. ({71, Corollary 3.5] Let X be a BK space.
(a) Then A € (X,loo(A™)) if and only if

i (- (nri l) A

I=max{0,n~m}

*

< 00.

(3.51) M{(X,loo(AP)) = sup

n

(b) Further, if (b*)% is a basis of X, then A € (X, co(A™)) if and only if
condition (3.51) holds and

n

: n-1f ™ )y Y _ .
(3.52) lim > (=1 (n - z) Alb )) =0 for each k;
l=max{0,n—-m}
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A € (X, c(AU™)) if and only if condition (3.51) holds and

. - _1yn—I m (k) = = :
(3.53) nli)rrgo (1 %: }( 1) (n _ l)Al(b )) =ar foreachk =0,1,...;
=max{0,n—m

Remark 3.22. (a) If X =1, (1 < p < o0) and Y is any of the spaces l,,(A(™)),
c(AU™) and co(A(™), then the conditions for 4 € (X,Y) follow from the respective
ones in Corollary 3.21 by replacing the norm ||-||* in condition (3.51) by the natural
norm on the 8-dual of I, that ison i, (g =p/(p—1),1 < p < 00;¢ = co,p = 1)
which is norm isomorphic to [;. Hence we have

S (=D Yau

I=max{0,n—m}

9> (1<p<oo)

w(§

n k=0

M(lp, 1o (A™)) =

n

2 (=), an

l=max{0,n—m}

p=1).

sup
n,k

(b) Let s be a nonnegative integer. If X is any of the spaces l,,(A(®)), ¢(A)
and ¢p(A(®)), and Y is any of the spaces loo(A(™), ¢(A(™) and ¢o(A(™), then
the conditions for 4 € (X,Y) are obtained from the respective ones in Theorem
3.20 by replacing the entries of the matrix A by those of the matrix B = T A, for

instance
sup || Bnl|* = sup |R¥(B,)l < oo
n n

where

B.= Y (- (n"j l)A,.

I=max{0,n—m}

Theorem 3.23. [71, Theorem 4] Let A be as in Theorem 3.20, and for any
integers m,n,r, n > r, set

(3.54) 14017 = sup |R™ (4a)ll
Let X be either co(A(™) or X = ¢(A™)), and let A € (X, co). Then we have
(3.55) IZally = lim [l4).
Let X be either co(A(™) or X = ¢(A™), and let A € (X,c). Then we have
LT (r) - (r)
(3.56) 5 - lim [JA)IY <L ally < lim [JAI".
2 rooo r—00

Let X be either loo(A(™), co(A™) or X = ¢(A(™), and let A € (X,ls). Then
we have

(3.57) 0<|[Lally < lim {1417,
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Proof. Let us remark that the limits in (3.55), (3.56) and (3.57) exist. We
put B = {z € X : |lz]] < 1}. In the case 4 € (X,co) for X = co(A((™) or
X = ¢(A("™)), we have by Theorem 2.23

(3.5 L all = X(AB) = Jim, |sup 1T = P)AG)I]
T oo EEB
where P, : ¢g — ¢p for r = 0,1,... is the projector on the first r + 1 coordinates,

that is P.(z) = (zo,%1,..-,2,,0,0,...) for £ = (z) € cp; (let us remark that
I ~ Pl =1forr=0,1,...). Further we have by Theorem 3.20

(3.59) HAN™ = sup (T - P (A()]],
z€B

and by (3.58) we get (3.55).

To prove (3.56) let us remark that every sequence = = (21)72, € ¢ has a unique
representation z = le + 3 po.o(zx — )e® where I € C is such that z —le € ¢. Let
us define P, : ¢+ c by Pr(z) =le+ Y _o{zk — De®) for r = 0,1,.... It is easy to
prove that ||I - P.|| = 2 for r = 0,1,.... Now the proof of (3.56) is similar as in
the case (3.55), and we omit it.

To prove (3.57), we define P, : loo — loo by Pr(z) = (20, 21,-..,2,,0,0,...) for
z = (z4) € ls and r = 0,1,.... It is clear that A(B) C P.(A(B))+ (I -F,)(A(B)).
Now, by the elementary properties of function the x we have

x(A(B)) < x(Pr(A(B))) + x(( — P)(A(B))) = x(( - Pr)(A(B))
(3.60) < 221;“(1 - P )(A(=))]]-

Finally we get (3.57) by Theorem 3.20. 0
As a corollary of the theorem above, we have

Corollary 3.24. [71, Corollary 4.3] Let A be as in Theorem 3.23. Then if
A€ (X,co) for X = co(A™) or X = ¢(A™), or if A € (X,¢) for X = co(Al™)
or X = ¢(A{™), then in all cases we have

(3.61) L4 is compact if and only if lim [[A]|") = 0.

Further, if A € (X,loo) for X = Io(A™), X = co(A™) or X = ¢(A™), then we
have

(3.62) La is compact if lim ||A|) = 0.
P00

The following example will show that it is possible for L4 in (3.62) to be
compact in the case lim;_o ||4]] > 0, and hence in general we have just “if” in
{3.62).
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Example 3.25. Let the matrix A be defined by A, = e® (n = 0,1,...).
Then obviously R(™(A,,) = e(® for all n, and 4 € (Ioo(A™),ls). Further,

AN = sup JIRT (AR)]l: = sup @]}y =1>0 forall 7,
n>r n>r

whence lim,_,  [|4]|'") > 0. Since A(z) = z¢e for all z € l,o(A™), A is a compact
operator.
Concerning Corollary 3.2.1 and the measures of noncompactness we have

Theorem 3.26. [71, Theorem 4.5] Let X be a BK space and let A be as in
Corollary 3.21 Then for all integers m,n,r, n > r, we put

S (o (")

j=max{0,n—m}

*

(3.63) 4% = sup

n>r

Further, if X has a Schauder basis, and A € (X, co(A™))), then we have
(3.64) L allx = lim (4],
If X has a Schauder basis, and A € (X, c(A(™)), then we have
(3.65) S tim AN < 1Zall < im 415,
2 r—oo r—00
Finally, if A € (X,loo(AU™)), then we have

(3.66) 0<[|Zally < lim 14)5.

Proof. Let us remark that the limits in (3.64), (3.65) and (3.66) exist. We
put B ={z € X :|jz]] < 1}. To prove (3.64), we have by Theorems 3.12 and 2.23

(3.6) Lalk = x(A(B) = fim [sup 17 - P4
where P, : co(A™) 5 ¢o(A™) (r = 0,1,...) is the projector defined by
(3.68) P (z) = Z Ak (m)b™*) (m),

k=0

for z = S ho o A (m)b*) (m) € co(A™)) and the Schauder basis (b%)(m))32, of
co(A™)) (see Theorem 3.12). Let us remark that ||/ — P,|j = 1 for (r = 0,1,...).
Further we have by Theorem 3.8

(3.69) A1) = sup 1T — P)(A@),
z€EB



196 Malkowsky and Rakocevi¢
To prove (3.65), let us remark (see Theorem 3.12) that ¢(A{™)) has the Scha-
uder basis b'¥)(m) k = ~1,0,1,..., and every z € ¢(A'™)) has a unique represen.

tation

o0
(370) =0 m)+ Y (w(m) - )b (m)  where 1= lim (A™z),.
=0 k— o0

Now let us define P, : c(A™) = ¢(A™) (r = 0,1,...) by

(3.71) Po(z) = 1 (m) + Y (Ak(m) = Hp*) (m).
k=0
It is easy to show that || — P,|| = 2for r = 0,1,.... Now the proof of (3.65) is

similar as in the case (3.64), and we omit it.

Finally in order to prove (3.66), we define P : Io(A(™) w3 [ (A(™), by
P(z) = (zg,21,...,27,0,0,...) for z = (z4) € lo(A™) and r = 0,1,.... It is
clear that A(B) C P.(A(B))+(I—F;)(A(B)). Now, by the elementary properties of
the function x, we again have (3.60) and, then (3.66) by Theorem 3.8 and Corollary
3.21. ]

As a corollary of the theorem above, we have

Corollary 3.27. [71, Corollary 4.6) Let X be a BK space and let A and HAHX)
be as in Theorem 3.26. If X has a Schauder basis, and either A € (X, co(A™)) or
A € (X,c(A™)), then L, is compact if and only iflim, e ”AHX) = 0. Further,
if A€ (X,loo(AU™)), then L4 is compact if lim,_ e |lAH(Ar) =0.

Finally we obtain several corollaries concerning Remark 3.22.

Corollary 3.28. [71, Corollary 4.7] If either A € (I?,co(A™)) or A €
(1P, e(A™)) (1 < p < 00), then

L 4 is compact if and only if
o0

lim sup (Z i (~1)"7 (nil])ajk

r—00
TR Nk=0 j=max{0,n—m}

q) =0, g=p/lp-1).

Further, if either A € (oo, co(A™)) or A € (o, c(A™)), then

L 4 is compact if and only if

n

e

j=max{0,n—m}

lim sup =0.

TR0 a>rk

If A€ (IP,1o(AU™)) for 1 < p < o0, then

L 4 is compact if
o0

lim sup (Z Zn: (=1)"7 (nn_l j) ajk

r-300
n>T N\p=o j=max{0,n-m}

q) =0, g=p/(p-1).
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Finally, if A € (loo,loo(A™)), then

= 0.

| > (nT)““

j=max{0,n—m}

L4 is compact if lim sup
TR0 n>rk

From Corollary 3.24, Theorem 3.20 and Remark 3.22, we have

Corollary 3.29. [71, Corollary 4.8] Let s and m be non negative integers.
If A€ (X,c(A™) for X = co(A)) or X = ¢(AD)), or if A € (X, c(A™) for
X =co(A®)) or X = ¢(A'®)), then in all cases we have

L4 is compact if and only if

Iim sup
T—30Q n>r

w5 o))

j=max{0,n—-m}

Further, if A € (X,loo(A™) for X = 1o(A®)), X = ¢o(A)) or X = ¢(A)), then

we have
= > o (,)8)

j=max{0,n—m}

lfo'

L is compact if lim sup
r-—=00 n>r

3.5. Sequences of weighted means. In this subsection, we shall study sets of
weighted means sequences , give their bases and determine their f- and continuous
duals. The results can be found in [34].

Let (qx)72, be a positive sequence, ) be the sequence with @, = Z::O qr
(n=0,1,...) and the matrix /V; be defined by

N, _ Qk/Qn (OSkSn) _
(Nq)n,k—{o (k > n) (n=0,1,...).

Then we define the sets (N,q)o = (co)]\-,q, (N,q) = cy, and (N, @)oo = (loo) s, of
sequences that are (N,¢) summable to naught, summable and bounded, respec-
tively.

For any x € X, we write 7 = 7(z) for the sequence defined by

Tn = (Nq)n(m) = 51‘2%271; (n=0,1,...),
" k=0

and 7 is called the sequence of the Nq or weighted means of r. As an immediate
consequence of Example 1.13 and Theorems 3.3 and 3.5, we obtain
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Proposition 3.30. (cf. [34, Corollary 1]) Each of the sets (N, g)o, (N, ¢) and
(N,q)eo is a BK space with

k3

@1—" kz:qwk

=0

llzllx, = sup
n

Further, if @, — oo (n — oc), then (N,q)o has AK, and every sequence x =
(z£)72o € (N,q) has a unique representation = = le + Y02 o(zx — )e!*) where
[ € Cissuch that x — le € (N, q)o.

We define the operator A™ 1w wby Atz = (AY2)k) o = (T ~ Ze41) .-

Theorem 3.31. [34, Theorem 6] Let g = (gi)32, be a positive sequence and
() the sequence with 0, = ZZ:O gr (n=0,1,...). We write 1/q for the sequence
(1/gn)3o, and put My = {a € w: Q(A%a) € 1}, No = (1/a) '+ (MiN(Q ™" *l)),
N =Q/g) ' * (M N(Q P *e)) and Noo = (1)) x (M N (Q™ " xcp)). Then
(N,q)g = No, (N,9)f = N and (N, )5, = Noo.

Proof. We put X; = (1/¢)! * M; and observe that

1
(3.72) Ty = ;(Qka - Qp-17k-1) (k=0,1,...) forallz € w
k

and for all n = 0,1,...

n n n~—1
(3.73) Zakl‘k = Z %A(Qkﬂ;) = Z (QkaA+ (a—k>> + 'ai‘%"fn-
E—0 k=0 qk k=0 qk Gn
Let a € Xi, that is QA% (a/g) € [y = &,. Thus 7-(QA*(a/q)) € ¢s for all T € o,
hence for all 7 € c and 7 € ¢o. Further a € (Q/q)~! * ¢o implies (aQ/g)T € o
for all 7 € l. Since 7 = 7(x) € lo if and only if v € (N,q)e0, ax € cs for
all z € (N,q)eo by (3.73), that is @ € (N,q)2,. Similarly a € (Q/g)™) * ¢ or
a € (Q/q) * Iy imply a € (N,g)? or a € (N,q)g. Thus we have proved Ny C
(N,@)5, N € (IV,q) and Now C (N, )5, i
To prove the converse inclusions we first assume az € c¢s for all z € (N, g)o.
Then az € ¢ for all z € (N, g)o, hence (a/q)A(QT) € co for all 7 = 7(z) € o,
whence

%A(Qk(—l)kml) = ("‘1),6%(@“7’“ + Qr-1{meal) = 0 for all 7 € co.

This implies (aQ/q)T € ¢o for all 7 € ¢g, and thus aQ/q € is, by Example 1.28.
From (3.73), we conclude QA*(a/q)7 € cs for all 7 € ¢, that is QA (a/q) € cg =
l;. Thus a € X;, and we have proved (N, q)g C M.

Now let az € cs for all z € (N,g). Then az € cs for all z € (N,q)o, and
consequently a € (N,q)g C Xi. Thus by (3.73), (aQ/q)7 € c for all 7 € ¢, hence
aQ/q € ¢ by Example 1.28. This proves (N, q)eo C N.

Finally let az € cs for all z € (N,q)eo- Then again a € X3, and by (3.73),
(a@/q)T € c for all 7 € lw, hence aQ/q € c¢o by Example 1.28. This proves

(N,q)P C N )
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3.6. Matrix transformations in the spaces (N,q)o, (IV,q) and (N,q)s
and their measures of noncompactness. We need the following proposition

Proposition 3.32. {72, Proposition 3.1) On any of the spaces (N, q)5 (N, q)?
and (N,q)2 | we have

o)

Proof. Given any sequence z we shall write 7" = 7(z[") (n = 0,1,...)

where z[™ is the n-section of z. Let a € Ay and n be a nonnegative integer. We
define the sequence b™ by

n—1

la])* = sgp(Z Qs

k=0

an Qn
an

Qg Qr41

qk r+1

QrA*(a/g)k  (0<k<n)
ban] = anQn/Qn (k = Tl)
0 (k>n)

and put ||a||x = sup,, Hb[nlul = supn(};‘zozo Ib&"]{). Then

n—1

> n s ar n n a'n k¢ n
S aaf?| =[S 2a@ry < 3 |Qur At /o] + [ =2z
k=0 k=0 % k=0 In
n—1 a Q
< st;pln{c"]l- (Z QeA*(a/q)k| + | )
v k=0 n
= [|2l™) 5, 160112 = flallvlle™) 5, -
Thus
(3.74) llall” < llalln-

To prove the converse inequality let n be an arbitrary integer. We define the
sequence z(™ by 1 (z(™) = sign(bgc"]) for k=0,1,.... Then 7(z(™) = for k > n,
that is z(®) € (N, q)o, Hx(")llﬁn = HT(x("‘))HoO <1 and

Sax”| = 3ot = 3O < lall
k=0 k=0 k=0

Since n was arbitrary, we have ||a||; < |la]|*. This and (3.74) together yield the
conclusion. 0

As a corollary of Theorems 1.23 and 3.31 and Proposition 3.32 we obtain
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Corollary 3.33. {72, Corollary 3.4] Let ¢ = (qx)}2, be a positive sequence
and Qn = Y 7_o Gk — 00 (n = 00).
(a) Then A € ((N,q)oo,loo) if and only if

Ank _ An k41
ax k+1

a
le ”ml> < 00

dm

m—1
(375) MU, le) = s0p( 1 Qs

N\ k=0

and
(3.76) ApQJg€co foralln=0,1,....
(b) Then A € ((N,q),l) if and only if condition (3.75) holds and
(3.77) Ap@QJ/qg€c foralln=0,1,....
(c) Then A € ((N,q)o,leo) if and only condition (3.75) holds.
(d) Then A € ((N,q)o,co) if and only condition (3.75) holds and
(3.78) lim ape =0 forallk=0,1,....
n—00
(e) Then A € ((N,q)o,c) if and only if condition (3.75) holds and
(3.79) le Opk =l forallk=0,1,....
(f) Then A € ((N, q), co) if and only if conditions (3.75), (3.77) and (3.78) hold
and
(3.80) Jim Y ank =0.
k=0
(g) Then A € ((N,q),c) if and only if conditions (3.75), (3.77) and (3.79) hold
and
o
(3.81) lim Y ank =L
k=0

As a corollary of Theorem 3.8 and Corollary 3.33, we obtain

Corollary 3.34. [72, Corollary 3.5] Let X be a BK space, (i), a positive
sequence and P, = S} _,px (n=0,1,...). Then A € (X, (N,p)oc) if and only if

1 m
Pm Z Pn An

n=0

*

< 00.

(3.82) ~ M(X,(N,p)e) = sup
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Further, if (b¥)32, is a basis of X, then A € (X,(N,p)o) if and only if condition
(3.82) holds and

m—0o0

1 m
' — § 0y = -
(3.83) lim (Pm nzopnAn(b )) =0 forallk=0,1,...,
and A € (X, (N, p)) if and only if condition (3.83) holds and

1« ,
i F)y) = -
(3.84) lim (——n: nE_OpnAn(b )) =1l forall k=0,1,....

m—00

Remark 3.35. (a) If X =, (1 <r < co0) and Y is any of the spaces (N, D)oo,
(N,p) and (NV,p)o, then the conditions for A € (X,Y) follow from the respective
ones in Corollary 3.34 by replacing the norm ||-||* in condition (3.82) by the natural
norm on Iy where s=ocforr=1and s=r/(r — 1) for 1 <7 < oo, that is

I —m
Supm,k P Zn:() Pnlnk
m

M(lr; (Nap)oo) =

s

1

Z = p’ll Qnk
P n=0
m

(1<r < oo,

SUP, ko

and by replacing the terms A, (b*)) in conditions (3.83) and (3.84) by the terms

ank-
{b) We consider the conditions

n— 1 m n m
= Sup( Qr 7 Zp[ (A+A1/q) I + @ Z])[G}n ) < 00,
m,n k:O m 1:0 k n m 1:0
(3.86) (a”’“Q’“> € ¢ (n=0,1,...),
G k=0
(3.87) (21'195) €c (n=0,1,...),
qr k=0
1 m
(3.88) 7Jijnm<—13—zpnank> =0 (k=0,1,...),
m =0
(389) 735!]@(}‘3;— anank) :lk (k,‘: 0,1,...),
M n=0
1 m [o0]
(3.90) Jim (S ope(Lam) ) =0
™M =0 k=l
1 m o0
(3.91) Jim (5 Y (am ) ) =1
™ n=0 k=0
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Then
€ ((N,9)00, (N,p)oo) and only if (3.85) and (3.86);
€ ((N,q),(N,p)s)  andonly if (3.85) and (3.87);
€ ((N,9)0,(N,9)ee) and only if (3.85);
€ ((N,q)o, (N,p)o) and only if (3.85) and (3.88);
€ (N, q)o, (N ) and only if (3.85) and (3.89);
A€ ((N,q),(N,p) and only if (3.85), (3.87), (3.88) and (3.90);
A e ((N,q), (N,p)) and only if (3.85), (3.87), (3.89) and (3.91).

Theorem 3.36. [72, Theorem 4.2] Let A be as in Corollary 3.33, and for all
integers n,r, n > r, set
anm
# Qnl2m])

(3.92) AN = sup(Z Qi| ==

n>r k=0
Let X be either (N,q)g or X = (N,q), and let A € (X,cp). Then we have

ML all = Jim (4]

_ Gnke41
qk qr+1

Let X be either (N,q)o or X = (N,q), and let A € (X,c). Then we have
1
i (r) i (r)
5 - m JAIT < HHLallx < Tim AT

Let X be either (N,q)o, (N,q) or X = (N,q)e, and let A € (X,lo). Then we
have 0 < ”LA”X < im0 ”A”(T)

Proof. The proof follows exactly the same lines as that of Theorem 3.26. O

As a corollary of the theorem above, we have

Corollary 3.37. [72, Corollary 4.3] Let A be as in Theorem 3.36. Then if
Ae(X,c) for X = (N,q)gor X =(N,q),orif4d € (X,c) for X = (N,q)p or X =
(N,q), then in all cases we have L4 is compact if and only if lim, o ||A]|(" = 0.
Further, if A € (X,lo0) for X = (N,q)o, X = (N,q) or X = (N, q)oo, then we have
(3.93) L4 is compact if lgn 1Al = o.

00

The following example will show that it is possible for L4 in (3.93) to be
compact in the case lim, Lo [[A]](") > 0, and hence in general we have just ” if” in
(3.93).

Example 3.38. Let the matrix A be defined by A, = e(® (n =0,1,...) and
gn = 2" forn=20,1,2,.... Then M((N @)ooyl ) =sup,(1+(2-2"")] < 3, and
by Corollary 3.33 we know that A € { (N §)oosloo). Further

1
") = - ) =3-
AN = sup [1 + (2 2n)]-3 o1 forall

whence lim, o0 [|4]|” = 3 > 0. Since A(z) = zoep for all z € (N, q)o0, La is a
compact operator.
Now we continue with the following auxiliary result.

e
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Lemma 3.39. [72, Lemma 4.5] Let ¢ > 0 (k =0,1,...) and Qn = 3 1, 9k
— oo (n = o0). Let r > 0 and the operators By : (N,q)o = (N,q)o and
B (N, q) — (N,q) be defined by

(e}
Bz = Y ze, (2 € (IV,q)o)
k=r+1
oo

BDz= 3" (zz - De®, (z€(N,qg)

k=r+1
where | = lim, 00 7 (z). Then

(3.94) 1B =1+ 6%

(3.95) (1B = 2.

Proof. First we show identity (3.94). Let z € (IV,q)o. Since Tn(B(()T)(z)) =0
for0 <n<r,and, forn>r+1,

n

, 1 Q-
172 (BS (2))] = | 5~ Gar| = () ~ Z270(2)
° Q" k;l o Qn
< (1 N ch;)uxnm,q)w,

it follows that 0
185 @l < (14 52

IET.

r+1

and consequently

(3.96) | 1B <14 2o
Qr+l
Defining the sequence z by
-1 (0<k<r)
Qr + Qra (k=r+1)
o = gr+1
_rt oy
q-r+2
L 0 (k>r+3),
we conclude r,(z) = -1for0<n<r
QT QT
Triq(z) = — + +1=1
+1( ) Qr+l Qr+1

(*Qr +Qr + Qrp1 — (@r + Qr+l)> = —gi (n>r+2).

=L
 @Qn

Tn ()
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Since Qn — 00 (n — ), we have z € (N,q)o and ||z|l(5,,, = 1. Further

(Qr+Qr+1)=1+éf—;—l

Tr1 (B (@) = Q1+1

and Tn(B(()T)(-T)) =0 for n # r + 1. Therefore

(r) _ Qr Q- i
Il Bo (f‘)“(ﬁ,q)w =1+ Q1 (1 + Qr+l)’|xll(NaQ)oa
and HB(()T)H > 1+ Q,/Qrr1. Now this and (3.96) together yield identity (3.94).
Now we prove identity (3.95). Let z € (N,g). Since 7,(B{")(z)) = 0 for
0<n<rand forn>r+1,

(BN = |5 2wl “)| = |nfe) - Fone) - 14
<+ Lol + |1 -2,

since |l] = limp_y00 |7 (@) < Hlzll(7 4y, » it follows that |7 (B ()] < 2lzll(8.0)
for n > r + 1 and consequently

(3.97) (1B < 2.
Defining the sequence = by
-1 0<k<n
Tp =4 2Qr41/¢r11 — 1 (k=r1+1)
-1 k>r+2),
we conclude 7, (z) = ~1for 0 <n < r,

Try1(T) = Qr1+1 (’Qr +2Q, — Qr+1) =1

n

Tn(z) = —1“ (“Qr +2Qr41 — Z Qk) = _l_(_'Qn -+ 2Q1~+1)

Qn e Qn
_ Qr-H
=142 1 (> 42).
@n
Hence ||zlj(v,q.. = 1 and limp oo 7e(z) = —1, that is © € (N,g). Finally

(B (z)) =00 <n <),

1 (B (2)) = g: (€raa +1) =2

(B N(2)) = z% <2 (n>r+2).

This implies ||B7]| > 2, and together with (3.97) we obtain (3.95). a

Concerning Corollary 3.34 and the measures of noncompactness we have
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Theorem 3.40. [72, Theorem 4.6] Let X be a BK space, let A be as in
Corollary 3.34, and let P, — oo{(m — o0). Then for all integers m,r, m > r, we

put
oL )
”A”(N,P)oo - rsnu>pr Pm ”Z_:Opn/'ln
Further, if X has a Schauder basis, and A € (X,(N,p)o). then we have
1 . T . T
(3.98) o dim AR )< Lally < Jim AY

where b = limsup,,_, (2 — pn/Pn). )
If X has a Schauder basis, and A € (X, (N,p)), then we have

1 r . T
(3.99) 5 lm JAIR ) < Zall < Jim Al -
Finally, if A € (X,(N,p)s.), then we have
(3.100) 0 < [ILally < lim 1417 .

Proof. Let us remark that the limits in (3.98), (3.99) and (3.100) exist. We
put B = {z € X : |jz|| < 1}. Suppose that 4 € (X, (N,p)o). Let B (N p)o
(N,p)o be the projector defined in Lemma 3.39. Then by (3.94) we have that
HB(()T)H = 2-p,/P,. Now, to prove (3.98), we have by Theorem 2.23 and Proposition
3.30

3 timsup (sup 1B (A ) < x(A(B) < imsup (sup 15 (G ).

b z€B z€B

=300 r—»CO
where b = lim sup,_, o, HB((,T)H. This proves (3.98), since

up 1B (AN = 1141
sup 1B (AN = 1417,

To prove (3.99) let us remark (see Proposition 3.30) that (/V,p) has the Schauder
basis e,el¥) k = 0,1,..., and every (zx)%2, € (/V,g) has a unique representa-
tion z = le + Y roo(zk — )e®), where I € C is such that z —le € (V,p)o. Let
B . (N,p)o ~ (N,p)o be the projector defined by (see Lemma 3.39) B\")(z) =
S i1 (e — D)et¥). Then we have [|B(|| = 2 by (3.95). Now the proof of (3.99)
is similar as in the case (3.98), and we omit it. Let us prove (3.100). Now define
Pr: (N,D)oo — (N,p)oo, by Pr(z) = (x0,21,--., ,0,0,...) for all z = (1) €
(N,p)oo and r = 1,2,.... It is clear that A(B) C P.(A(B)) + (I - P,)(A(B)). By
Remark 3.22 (b) it follows that P, is a bounded operator, and since it is obviously a
finite-rank, it is a compact operator. Now, by the elementary properties of function
x we have

X(A(B)) < x(Pr(A(B))) + x((I = P:)(A(B))) = x((I ~ P,)(A(B))
< sup (7 = Pr)(A@DI = 1417, ...

As a corollary of the theorem above we have
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Corollary 3.41. (72, Corollary 4.7] Let X be a BK space and let A and
H4|| (N.p) be as in Theorem 4.6. If X has a Schauder basis, and either A ¢

(X,(N,p)g) or A € (X,(N,p)), then L 4 is compact if and only if hm HAH(N » =0
Further, if A € (X,(N,p)o), then L4 is compact if lim HAHEB = 0.
=00 -,P)

Now we get several corollaries concerning Remark 3.22.

Corollary 3.42. [72, Corollary 4.8] If either A € (I*,(N,p)o) or 4 € (I, (N, p))
for 1 < u < oo, then

L is compact if and only if
o0 1 m
Tlirr;o [Tsnu;)T (Z m anank
k=0 n=0
Further, if either 4 € (I*,(N,p)o)) or A € (ll,(N,p))). then

Z DPrlQnj

”)1/“] =0 wherev=u/(u-1).

):

L, is compact if and only if  lim ( sup

700 \n>rk

If 4¢€ (I*,(N,p)) for 1 <u < oo, then

L4 is compact if
lim |su Ank
T—00 [m>I:‘ <}Z(:) an "

Finally, if A € (I*,(N,p)), then

vy 1/v
) J:O where v = u/(u - 1).

anank )

From Corollary 3.41, Theorem 3.8 and Remark 3.22 (b), we have

Corollary 3.43. {72, Corollary 4.9] If A € (X, (N,p)o) for X = (N,q)o or
X =(N,q), orif A€ (X,(N,p)) for X = (N,q)o or X = (N,gq), then we have in

all cases
l—‘—' Zl’tam )}

Further, if A € (X, (N,p)oo) for X = (N,q)e0, X = (V,q)o or X = (N,q), then

we have

La is compact if lim (sup

™00 \n>r,k

L4 is compact if and only if

n—1
i o (S op

m>r,m

m

ZP/ (AF A /g

L4 is compact if

n—~1
Th_1>1010 { sup (Z Qul—

m>r,n

m

ZP!(A+A1/Q

Zplaln

nm

%
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3.7. Spaces of strongly summable and convergent sequences. In this
subsection, we shall study spaces of strongly summable and strongly convergent
sequences and give their dual spaces. The results of this subsection can be found
in [59, 64, 65, 70].

For X C w and any real p > 0, we write

Xiap = {z €w: A(lz]?) € X}.

If p=1, then we omit the index p and write X{g; = X|pp for short.
Let Cy be the Cesdro matrix of order 1, that is (C1)px = I/nfor 1 <k < n
and O for k >n (n=0,1,...). For 0 < p < 0o, Maddox [51, 54] defined the sets

) 1 n
wh = (Co)jcylp = {r Ew: nlin;o(; Z [zkfp) _ 0}’
k=1

wp, = {x € w:z —le € wh for some complex number [ },
p 0

who = (leo)icyjr-

These sets are special cases of the so-called mixed normed spaces (see e.g. [38, 35,
36, 59, 22, 23]). Here we shall only deal with the cases 1 < p < oo. The following
result is well known.

Proposition 3.44. (51, 59] Each of the set wo, w? and w®, is a BK space for
1 <p < o with

1/p
(3.101) ',l,’:SIi}g(;lu— Z ]zklp) :

w} has AK; every sequence x = (z4)%, € wP has a unique representation T =
le + 502 (zx — )e'¥) where [ € C is such that x — le € wf.

Let 1 = (un)$2, be a nondecreasing sequence of positive reals tending to
infinity. If (n(v))S2, is a sequence such that 0 = n(0) < n(1) < n(2) < ..., then
we denote the set of all integers & with n(v) < k < n{v+1) —1 by K and we
write ), and max, for the sum and maximum taken over all k in i), We define

the matrices B = (bnt )3 and B = (l),,k)fjf’kzo by

1/An (0<k<n) - 1/ A1) (k € K<v>)
bnk = an buk =
0 (k <n) 0 (k¢ K<¥>).
Further, let A(u) be the matrix with
—Hn—1 (k’ =71 — 1)

App(pt) =< tn (k=mn) (n=0,1,...) where u_; =0.
0 (otherwise)
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We define the sets (76, 64]

co(p) = ({co)iB)) a(uys o) = ((co) g a(u)s
cp)={zew:z~lec co(u)}, ip={rew:z~lec &olw)},
oo (1) = (oo )(B]) A () Coe (1) = (o)) Ay -

The following result is well known.

Proposition 3.45. [64, Theorem 2 (¢)] Let u = (11n)5%, be a nondecreasing
sequence of positive reals tending to infinity. Then each of the spaces co(p), c(p)
and ¢ (1) is 2 BK space

el = 1B(A @)oo = sp(ui IIERINES 1);

co(p) has AK; every sequence © = (z1)32, € ¢y has a unique representation z =
le + 352 (zy, — 1)e®) where ! € C is such that z — le € co{p).

A sequence A = (A\,)5%, of positive reals is called exponentially bounded if
there is an integer m > 2 such that for all integers v there is at least one A, in the
interval {m*,m***). It is known (cf. [64, Lemma 1]) that a nondecreasing sequence
A = (M), of positive reals is exponentially bounded if and only if there are reals
s < t such that 0 < s < Ap(u)/An@+1y £t < 1 for some subsequence (An41))5%,
for all v = 0,1,...; such a subsequence is called an associated subsequence.

The following result is well known.

Proposition 3.46. [64, Theorem 2] Let A = (A\,)$2, be a nondecreasing
exponentially bounded sequence of positive reals and (An(,41))s2 an associated
subsequence. Then co(A) = & (A), c(A) = &A) and coo(A) = éo(A). The norms
llz}l" and

ol = UBAWN) e = s0p (5 S fhes Moo

are equivalent on cg(A), ¢(A) and coo(A). Thus each of the spaces co(A), c(A) and
coo(A) is a BK space with || - ||.

Proposition 3.47. [51] and [59, Theorems 4 and 6] Let K{*) = [27,2v+1 1]
(v=0,1,...). We put

{a Ew: ;\.__.‘:ZV/I’max,, lax] < oo} (p=1)

MP = v=0 y
ka4 q
. v/p q - g = P
{aew.’/§02 (Z:,Iakl) <oo} (1<p<oo,q p—l)
o0
> 2v/P max, [ax] (p=1)
lallpe = { “2° for all a € MP.

Vizvlv(gu]akw)”q (1<p< o)

Then (wh)8 = (wP)P = (wB)P = MP and ||a||* = ||al|m» on MP.

BRI e e L i i
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Proposition 3.48. [65, Lemma 2] Let A = (A,)3%,, be a nondecreasing ex-
ponentially bounded sequence of positive reals and (A, (,41))5%o an associated sub-

sequence. We put
25| <=}
k=n

llalle(ay = ZO)\H(,,H)mVa.X ; X;I for all a € C(A).

C(A)

o0
{a & W Z/\”("‘H) m‘?x

v=0

Then (co(A))? = (c(A))? = (coo(A))? = C(A) and [la]l* = llallc(a) on C(A).
As an immediate consequence of Theorems 3.8 and 3.10 we obtain

Corollary 3.49. [70, Corollary 1] Let X be an arbitrary FK space. Further,
let p = (1n)22, be a nondecreasing sequence of positive reals tending to infinity.
We write wo = wy etc., for short and put

24

M(X, we) = sup( max

m>1 \NmC{l.., nEN
= Ay — pp-14n- .
M(X, coo(pr)) = Su_p <chn{]gf‘_qm}“ e (HnAn = pin-14n-1 D>
(a) Then A € (X, wo) if and only if
(3.102) M(X, weo) < 00 for some D > 0.

Furthermore, if (b%)%,, is a basis of X, then A € (X, wo) if and only if condition
(3.102) holds and

m—00

1 — )
. im | — AN =0 forallk=
(3.103) lim (m,g‘l'A’( )1> or 0,1,...;

A € (X,w) if and only if condition (3.102) holds and there are complex numbers
Iy (k=0,1,...) such that

(3.104) lim ( Z[An b)) — 1) |> =0 forallk=0,1,....

m—0o0
n=1

Finally, if X is a normed space and A € (X,Y) for Y = wg,w Or wey, then, for

= sup(, max 125> ),

N, 1,.., m
m2>1 m Cq{ m} neEN.,
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we have
(3.103) HA,_ < LAl < 4 AL
(b) Then A € (X, coo(p)) if and only if
(3.106) M(X,con(u)) < 00 for some D > 0.

Further, if (b¥)22, is a basis of X, then A € (X,coln)) if and only if condition
(3.106) holds and

(3.107) lim( Zl“n (k) — pn_lAnﬂl(b(’”)t):o

m—o0

forallk = 0,1,...; A € {X,c(p)) if and only if condition (3.107) holds and there
are complex numbers [, such that

(3.108) ,JE,*‘( 5 a4 ) = ) = i1 (A 1<b<’~>—zk>l)=o

™ n=0

forallk=0,1,....
Finally, if X is normed and A € (X,Y) for Y = co(u), c(p) or coo(p), then, for

“A” = S'Llp (N C{O """ m) neXN: (/ln n Un—lAn—l )7
we have
(3.109) AN S ILall < 4-HAIE (-

Proof. All we have to show are inequalities (3.105) and (3.109). Let A €
{X,Y) where ¥ = wp, w or wWe. Then

Iiz Anla)

nEN,

< —Z!A (@) < HLall

forall m =1,2,...,all N C N,, and all ||z|| = 1. This implies
(3.110) AN, < IILall-

Further, given ¢ > 0 there is £ € X with [|z|] = 1 such that

e u~sup( ZM ) 2 Bl - /2
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and there is an integer m(z) such that

m(z)
1
@ 2o @) 2 A = /2
consequently
1 m(z)
) 42 [An(@)] > |Lall —e.
By Lemma 3.9
1 1 m(zx)
q - Nm(z)Cr?lé?F.,m(z)}(m ne%,;mAn(I) ) > (@) nzz:l [An(z)] > ||Lall — €

and so 4 - ||A|l;,. > [|Lall — €. Since € > 0 was arbitrary, 4 - [|A|l;, > [|[La]l.

Together with inequality (3.110) this yields (3.105). The inequalities in (3.109) are
proved similarly. O

Remark 3.50. If X is a given BK space, and Y is any of the spaces wyg,
W, Weo, Co(p), c(u) Or coo(p), then the conditions for 4 € (X,Y) follow from the
respective ones in Corollary 3.49 by replacing the norms {|- ||}, in conditions (3.102)
and (3.106) by the natural norms on the S-duals of X. We shall write

max for

m

max Y = co(p), c(1), coo (),

{ max i Y = wg, w, Weo
N.,.c{1,..., m}

q= p/(p - 1) for1 < p< oo, An(“nank) = HnQnk — Bn-10n—1k

max for max Z for Z

2w <h<2eH o1

v 2 <h<2avH1
(a) For X =1, we have
( 1
sup| max| sup|— Ank (p=1)
m Nm E ™M nenN,,
M(lp,weo) = 0 |1 g
sup(ﬂlak 2= 2 ank )) (1<p< o),
m Nm \p=11TM nEN,

| ~

)) (p=1)
q)) (1<p< o).

Ay (Nnank)

m ng

k
i ‘i' Z An(#'nank)‘

k=1lHm neN,

Z

M(lpv Coolft)) = 4

w
3c
ko]
TN TN
=5
Y8
/“\/;‘\/‘\
c
k=
=
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(b) For X = w? , we have

x 1
sup (max(Z 2P maxi— 3 anx
m m v=( v m nEN,

) e

oo 1 o\ 1/q
sup(max(z 2"”’(2— > ank > )) for 1 < p< oo,
m m \y=0 v | neN,,
and
Mk, c =
oC
sup (ma (Z 2v/P max|— S An(pnonk) )) forp=1 ,
=0 Y | Htm neNy, :
0 1 q\ 1/q
sup (max( ) 2"/‘”( Y. An(pnank) ) )) for 1 <p< oo. |
m Nem =0 v {lm neNm, ty

(c) Let A = (Ax)Z, be an exponentially bounded sequence of positive reals and
(Me(r))s2o be an assocxated subsequence. We write max, and ), for the maximum
and the sum taken over all integers k such that k(v) < k < k(v + 1) — 1. Then for
X = ¢eo{A) we have :

i%(% > ana') ))

j=k neN,,

M(coo(A). weo) = sup (rrjglax (Z Ak(v-+1)MAX

™ N\y=0
and

M(Coo(A)aCOO(ﬂ)) =

sup (r?vax (Z )\k(,,ﬂ)max

v=0 i=k

£ 5 ).

neN,,

The main result of this subsection is the following theorem (see Corollary 3.49).

Theorem 3.51. {70, Theorem 3] Let A, X and Y be as in Corollary 3.49
(a) If X is a normed space and A € (X,Y) for Y = wy,w and we, then, for

24

(m) — oy
e :>p(

ka{m-H, Lk 'LEN
we have
(3.111) lim JANGY < ILally <4 - lim JANSY i Y = w,
m— o0 m o0 .
1
2 (m) T (M) f Yy =
(3.112) 5 dm JAICY < Lally <4 dim JANSY i Y =w,
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(3.113) 0<[[Zally <4~ lim JAIGY  if Y = we.

(b) If X is a normed space and A € (X,Y) forY = co(p),e(p) and coo (1),
then, for

1 *
3.114 Al = ( — iAi — pio1As
(3.114) H I = sup (| max ';v; piAi = pi1Ai
] m .k

we have

(3115)  lim AT < [Lafly <4 Jim AN 0f Y = co(p),
(3.116)

57 Jim AN < Lallx < 4 dim NANTif Y = c(p),

(3.117) 0 < lZally <4 lim A Y = cog(p).

Proof. Let us remark that the limits in (3.111) and (3.115) exist. We put
B ={z¢€ X :l|lzf] £1}. In the case ¥ = wp we have by Theorem 2.23

(3.118) ILally = x(A(B)) = lim jsup [|( - P771)(A(1))!l],

m— 00 -’EEB
where P, : wo. — wo, m = 1,2,..., is the projector on the first mm coordinates,
that is Pp,(z) = (21,%2,...,2m,0,0,...) for z = (x;) € wp; (let us remark that

W — Pyull=1form=1,2,...). For given € > 0 there is € B such that

(3.119) I = Pr)(A()IE > I(1 = Pr)(A)]] - /2.

Now there is an integer k(x) > m such that

k(z)

(3120) T 2 @) > I = P (Al - 5

i=m+1

Further by Lemma 3.9

Z Ai(x)

1EN Jk(z)

1 k(z) |
)2 X L

i=m+1

Now, by (3.119) and (3.120) we get

1
max —_—T
mok(e) CmH L, k(2)} K(T)

Z A;(z)

1€ Now ke(z)

(3121) 4- (N ) > T - Pu)(A)] - e.
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Since € > () was arbitrary and z € B, from (3.121) we have for each m

1
;oD A

PENm &

(3.122) NI~ Pr) (AN < 4-

)}

Hence, by (3.118) and (3.122) we get the right inequality in (3.111). To prove the
left inequality in (3.111), suppose that m is an integer, k > m, Np, ;. C {m + 1,
...,k} and z € B. Then

sup max
k>m \Nm e C{m+1....k}

k
<3 Y M@ Y @I <0 - Ba)AE)I

1€ENm & i=m+1

]% > A

iE€EN .«

Thus for all m and k& > m we have

“% T Ai” < W = )TN,

ENL &

and by (3.118) we get the left inequality in (3.111).

To prove (3.112) we recall that every sequence x = (14);2, € w has a unique
representation « = le + 3 oo, (zx — 1)e'®) where ! € C is such that = — le € w. Let
us define P, : w > w by Py (z) = le+ 3 jo (zx — et for m = 1,2,.... It is easy
to prove that {|I — P}l = 2 for m = 1,2,.... Now the proof of(3.112) is similar as
in the case (3.111), and we omit it.

Let us prove (3.113). Now define Py, : Woo  Woe DY Prn(x) = (21,22, . . ., T,
0,...)forallz = (z:) € weo and m = 1,2,.... Tt is clear that A(B) C P (A(B))+
(I = Pn){A(B)). Now, by the elementary properties of the function x we have

x(A(B)) < x(Pm(A(B))) + x((I - Pn)(A(B))) = x((I ~ Pr)(A(B))
(3.123) s sup I = P )(Az)I]-

Since the limit in (3.113) obviously exists, by (3.123) and from the proof of the
right inequality in (3.111) we get (3.113).

Let us mention that inequalities (3.115), (3.116) and (3.117) are proved simi-
larly as the inequalities (3.111), (3.112) and (3.113). O

Now as a corollary of the theorem above we have
Corollary 3.52. [70, Corollary 2] Let A,X and Y be as in Theorem 3.51.
Then for A € (X,Y) we have
A is compact if and only if {Alj,,, < oo and

lim |4)I(™ = o, if Y =wy and w,
m—00
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A is compact if ||Al|y,, < 0o and

lim JAf{™ =0,  if ¥ =we,

A is compact if and only if ||A|]._(.) < oo and

™ =0,  if ¥ =co(u) and (),

: {
T,P_T)noo ”A”Cx(ﬂ) =

A is compact Iif ||All. () < oo and
: (m) oy oo
mh_r;noo Al () =0 if Y = eoo ).

Now, concerning Remark 3.50, we get several corollaries.

Corollary 3.53. [70, Corollary 3] Let A, X and Y be as in Theorem 3.51
and in Remark 3.50 {(a). We shall write maxy

. for Maxy,, , c{m+1,...k}- For
A€ (X,Y) and X =1, we set for each m

1
sup (max (sup - 3 ay )) forp=1
(m) k>m A\ Vm.k J k‘ieN,,,,k
Al(lpawoo) ™ = % |1 g\ 1/¢q
sup(max(}: = 3 ay ) ) forl < p < oo,
k>m \Nmx \jZ11 K ie Ny, 4 ‘

and

1
sup (max(sup — > Ai(piaij)
k>m \Nm .k J IHE GeN,

sup (max ( 5

k>m \Nnk j=1

) rp=

M(lpvcoo(u))(m): g\ 1/¢
) ) for1 < p< co.

1
— ) Ai(miasg)
Mk €N, &

Now we have

A is compact if and only if M (l,, we,) < 0o and

lim M(l,,we)™ =0,  if ¥ =uwp and w,
nt— 00

A is compact if M(l,, ws) < oo and

lim M (l,, we)™ =0, if Y = we,
m—+0Q

A is compact if and only if M(l,, ceo(p)) < 0o and
lim M(ly,coo ()™ =0,  if ¥ =co(u) and c(u),
m-—300

A is compact if M(l,, coo(pt)) < 00 and
lim M(lp,coo(1)™ =0,  if ¥ = coo(ps).
m—00
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Corollary 3.54. [70, Corollary 4] Let A,X and Y be as in Theorem 3.51
and in Remark 3.50 (b). We shall write maxn,,, for maxn, ,c{m+1,.x}- For
Ae (X,Y) and X = wb,, we set for each m

) o0 1
sup (max(z 2P maxyegjconioa|T DL 4y ))
E>m \NVm.& \v=0 - K ieNm
for p=1

M(wgo,woo)(’"’ = o 1 a\ 1/q

sup (max(z 2"/”( b - 2 i ) ))
k>m \Vm.k \p=0 2v<j<avti~] kiENm,k

L for 1< p< oo,

and

M (wEy, coo ()™

))

k>m m.k \p=1 Bk ieN,, &
forp=1

= 4 . 1 oy 1/q
sup (max(Z 2v/P ( > — > Ai(pag;) ) ))
k>m \WNm.k \p=1 v <j<2et 1| Mk iEN Lk

for 1 < p < oo.

-~

Now we have

A is compact if and only if M(w? , wee) < 00 and

m M (w?,, we)™ =0, if Y = wg and w,
mM—>00

A is compact if M(w?,, we) < oo and

lim M (wP,, we)™, if Y = weo,
m-—30Q

A is compact if and only if M(wh,,ceo{p1)) < 00 and
lim M(w8,coo(p))™ =0,  if Y =cop) and c(p),
m—oQ

A is compact if M(wE,, ceo(pt)) < 00 and

lim M(wh, coo(m))™ =0,  if ¥ = coo(ps).
m—0o0
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Corollary 3.55. [70, Corollary 5] Let A, X and Y be as in Theorem 3.51
and in Remark 3.50 (c). We shall write maxy,, , for maxy, ,c{m+1,.}- For
A€ (X,Y), if X = co(A), c(A) or ceo(A), we set for each m

M{coo(A), e )™

(o @)
1 /1
enlon(Een s [F1(5 )

k>m v=0

and

Mcoo(A), coo (N))(m

e (ma\<z/\r(u+l) (V)<rr§r(u+1) IIZ < i Z Ay (‘uza”))

k>m N ieN,,

)

Now we have

A is compact if and only if M(coo(A), wee) < 00 and
lim M(CDO(A),wOO)("”) =0, if Y =wp and w,

P3O0

A is compact if M{coo(A), Weo) < 00 and
lim M (coo(A), weo)™ =0, if Y = weo,

m—00

A is compact if and only if M(coo(A), coo(p)) < 0o and
lim M (oo (A), oo ()™ =0, if 'Y =co(p) and c(p),
M—r00

A is compact if M(cso(A), Coolpt)) < 00 and
lim M (coo(A), coo ()™ =0, iFY = coolp).

m-—00

3.8. Further results. In this subsection, we shall give the characterizations
of the classes (X,Y) where X ={; and Y = wZ, wP, w} (1 < p < 00), or X = wy,
W, Weo and ¥ =1, (1 < p <o), 0r X = wp, W, Weo and ¥ = wh, w? and wk,
(1 < p < 00). Furthermore we shall apply the Hausdorff measure of compactness to
give necessary and sufficient conditions for a linear operator between these spaces
to be compact. The results can be found in [73].

Let a € w. Then we write

Zakxk Nzl mp = 1}.

k=1

lal** = llalle = sup{
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Lemma 3.56. {73, Lemma 1] Let 1 < p < 0.

(a) Then (w})? = (wP)? = (w},)® = M? and [la]l" = |lallrew on MP (cf. [49]
or [65, Lemma 2]). Further the sets MP are BK spaces with the norms || - || ;s (cf.
{59, Theorem 2 (a)]), and it is easy to see that the spaces MP have AK.

(b) Then wk, is B-perfect, that is (wZ,)?’ = wh, and (w§)?® = (wP)P8 = 2,
(cf. [59, Theorem 4 (b) and (c)]) and |jal|** = llall,z, on (MP)F = wB (cf. [63,
Theorem 6 (b)]).

If A is an infinite matrix, then we write A7 for its transpose.

Theorem 3.57. [73, Theorem 1} Let 1 < p < 0. Then
(a) A € (l,,w?,) if and only if

1 m
(3.124) M({,wh) = sup(— Z ]ank|”> < o0;
m.k \ T n=1
(b) A € (I, w§) if and only if condition (3.124) holds and

(1
(3.125) lim (;@- Z lanklp) =0 for all k;

m—0o0
n=1

(c) A € (I3, wP) if and only if condition (3.124) holds and there is a sequence
(MAe)22, € w such that

m—300

1 m
. i — e — AP} = k.
(3.126) lim (mZIa k= Ag ) 0 forallk

‘n=1

Proof. {a) condition (3.124) follows from [108, Example 8.4.1, p. 126] with
Y =wk .
(b) Parts (b) and (c) follow from part (a) and [70, Theorem 1 (c}}]. 0

By T we denote the set of all strictly increasing sequences (¢, )72, of integers

such that for each v there is one and only one t, with 2 <t, < 27! ~ 1. We put

E Gnk

¢ o0
sup (Z 2max
neN

Nen \v=0 v
finite

) (p=1

p>) (1<p<oo)
) o=

Z 2"an,ty

veN

2 2Yany,
vEN

M(wo,lp) = { sup (Sup(i

NCNg \teT \n=1

sup (sup (sup
\ NCNg \teT \ n
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Theorem 3.58. [73, Theorem 2] Let 1 < p < oo. Then
(3.127) (w0,1p) = (w,15) = (Woo, Lp);
further A € (wq,l,) if and only if

(3.128) M(wog,1p) < oo.

Proof. The case p = 1 follows from Lemma 3.56 (a) and from [63, Theorem
1] with X = wp, w, Weo-

For 1 < p < oo, we apply [108, Theorem 8.3.9, p.124] with X = wg and Z = [,
whereg=1forp=ooandg=p/(p—-1) for 1 < p < oo. Since X and Z are BK
spaces with AKX, we obtain (wq,l,;) = (woﬁﬂ,lp) = (Weo,!p). (The second equality
holds in view of Lemma 3.56 (b).) Since wg C w C we,, we have established the
identities in (3.127). Further, by [108, Theorem 8.3.9], A € (wo,l,) if and only
if AT ¢ (lq,wg) = (l4, M!), by Lemma 3.56 (a). Finally, by [59, Theorem 7],
AT € (1, MY) if and only if M (wo, 1) < co. O

Let us remark that an application of [70, Theorem 1 (b)] and Lemma 3.56
(a) yields A € (wo,ls) if and only if sup,, D .o, 2“max,|ank| < oo, a condition
equivalent to condition (3.128) in Theorem 3.58 for p = o0.

We write N for the set of all integers n with 24 <n < 2¢+1 _ 1 and we put

x 1
sup( max (Z 2Ymax{— Y ank )) (p=1)
jeNo NN \ 20" v | 20 5
]M('IU(),’LUgO) = 1 m 1 P
sup (SUP<SUP<~ 212 spant, >)> (1<p< o).
NCNg \teT \ m M n=1jveN 2

Theorem 3.59. [73, Theorem 3] Let 1 < p < oc.
(a) Then

(3.129) (wo, w?,) = (w,wh) = (Weo, wh);
further A € (wo,w?,) if and only if
(3.130) M (wp,w?,) < oo;
(b) A € (wo,w?) if and only if conditions (3.130) and (3.125) hold; A €

(wo,wP) if and only if conditions (3.130) and (3.126) hold; A € (w,w}) if and only
if conditions (3.130) and (3.125) hold and

P

-

o0
§ Qnk
k=1

. 1 <
(3.131) nfﬂnoo(E Zl
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A € (w,wP) if and only if conditions (3.130) and (3.126) hold and

(3.132) n}i_xng< Z

oo

}:nk—

P
) =0 for some complex number ).

Proof. (a) For p = 1, part (a) is an immediate consequence of |63, Korollar

2] and Lemma 3.56 (a).
For 1 < p < oo, the identities in (3.129) follow by an argument similar to that
in the proof of Theorem 3.58. We apply [108, Theorem 8.3.9] with X = wy and
= MP to conclude A4 € (wp,w?) if and only if AT € (MP,wh) = (MP, M}),
Finally, by {59, Theorem 7], AT € (MP?, M?) if and only if M (wp,w?,) < oo.
(b) Part (b) follows from |70, Theorem 1 (c)], the fact that wy has AK and
the representation for sequences in w given in Proposition 3.45. |

Now we shall give estimates for the operator norm ||L4||. We put
m /p

]\/[;;(ll./‘ujp ‘Sup( Z ‘ankl ) (1 S p< OO))

m.k n=1

and for any BK space X

My(X, 1) = sup Y An
Nfnite €N
M5(X, 1) = sup || 4nl",

)

Zﬂ Y A

neN,

3

Mi(X, we) = Sup( max
’ m NLCNG)

D24,

BEN

Mi(X, M") = sup (

NCNy

Theorem 3.60. {73, Theorem 4] (a) Let 1 < p < oo, ||-||g=, the norm on w¥,

defined by
1/p
(3.133) lellzs, = sup( anp)

and A € (I;,w?,). Then
(3.134) ILall = ML (L, W)
(b) Let X be an arbitrary BK space. If A € (X,11), then

(3.135) AL (X, 1) < LAl < 4- M3(X, 1),

A
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If Ae(X,lx), then

(3.136) HLAll = M3 (X, loo).

If|| - lw. is the norm on wy, defined in (3.101) and A € (X, wy,), then
(3.137) MA(X, weo) S HLall <4 MA(X, weo).

(c) Let X be an arbitrary BK space and A € (X, M), then

(3.138) MAX, M) < JILall €4 MA(X, MY).

Proof. (a) Let 4 € (I;,w8), 2 € [y with |jz|l; = 32,2 |24 = 1 and m € N
be given. Then we have by Minkowski’s inequality

(= 5 |4<>l) ~ (5 5

n=1 n=1

o

Z Ank Ly

k=1
< Ma(h,wh),

m

p>1/p i“”( Zl%ﬂ) /p

n=1

hence, since m was arbitrary, [JA(z){lgz, < M3(l,, w2, ) and consequently
(3.139) ILall = sup{llA(z)llaz, <Mzl = 1} < Ma(h, @)

Now let z = e®) (k=1,2,...). Then z € Iy, ||z|l; = 1 and

1 m 1/p
e, =50 (= D lanal?) < 1L
n=xl
together imply
(3.140) Ml wh) < {|Lall-

Finally, from (3.139) and (3.140), we conclude (3.134).
(b) First we show (3.135). Let 4 € (X,1), z € X with ||zf| =1 and m € N be

given. Then
[o0]
( Z ank) Ty
k=1

neN

m

Ap() < 4-
;l (@ <4 max

Since m was arbitrary, we conclude ||A(z)|l; < 4- M3(X,l;) and consequently

<4 MAX ).

(3.141) ILall < 4- M3(X,0).

Conversely, let N C N be an arbitrary finite set. Then given ¢ > 0 there is a

sequence z = z(N,e) € X such that ||z|] = 1 and ” > A,,,”’r <ty An(x)l +e.
neN neN
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Therefore

5 4

neN

< S lAn@) +e <A@ + € < ILall +e.
n=1

Since N € N and ¢ > 0 were arbitrary,
(3.142) MA(X, ) < ||Lall

Finally, from (3.141) and (3.142), we conclude (3.135) Equality (3.136) is Theorem
1.23 (b). The inequalities in (3.137) are shown in exactly the same way as those
in {70, Corollary 1 (a), (2.8)] with m, Ny, C {1,...,m} and 1/m replaced by p,
N, C N and 1/24.

(c) Let A € (X, M), z € X with |lz|| = 1 and po € Ny be given. We choose
n, € N (u=0,1,...) such that |A,, (z)] = max,eyw |4n(z)]. Then we have

0,...
C{0,...,p0} aeN

o0
= 4~Nc?8ax Z(Z 2”“71,;,‘:) Ty

,,,,, Ko} ko1 \ieN

> 2 A,

HEN

Ho
2)2“’/1%(1)] <4 _max > 24 A, ()
I_‘,:

) =4 - M5(X, M.

<4- sup (sup
NeNp \teT

Since this holds for all up € Ny, we conclude [[A(z)[]an < 4 - M5(X, M) and
consequently

(3.143) HLall <4~ MA(X, M)
Conversely, let N € Ny, t € T and € > 0 be given. Then there is a sequence

z =z(N,t,¢) € X suchthat |z]] = 1and || 30, v 2¥ A¢, [I" <130 e v 24 As, ()] +e.
Therefore

> 2vA,,

BEN

<Y 2 max |Au(0)] +e = [|A@@)|Ian +e S ILall +e
4=0 neNx)

Since N € Ng, t € T and € > 0 were arbitrary, we have M} (X, M) < ||L4ll.
Finally, from this and (3.143), we conclude (3.138). 0

Now we apply the previous results to estimate the operator norms of the matrix
transformations characterized in Theorems 3.57, 3.58 and 3.59.

B A o i i S e i




Theory of sequence spaces 223

Let X be any of the spaces wp, w and we,. We put
Mi(X, ;) = sup ( 2"max a k)
0= o (S eme] Y o),

N fin neN

Mi(X,lx) = sup(ZZ max]anko

n

v=0

1
MA(X, we) = sup( max (Z 2Ymax o
v=0

u Nch(u)

2 an

neEN,

)

22 an.t,

veN

)

and, for 1 < p< oo and ¢ =p/(p-1),

My (lg, MY) = sup (sup(z

NCNo \teT \ [ 3

2 Yans,

veN

My (MP. M) = sup <sup<sup< Z

NCNg \teT \ p REN)

7))

Corollary 3.61. [73, Corollary 1] Let X be any of the spaces wg, w and we
and || - ||,,z, the norm defined in (3.101).
If Ae (X,ly), then M3(X, ) <||Lall £4-ML(X,1).
If A€ (X,ly), then ||Lall = MA(X,lx).
Fae(X,l,)(l<p<oo,g= ;{’—1), then M’y (lg, M*) < [|ILall < 4- M1 (1, MY).
IfAe (X,woo) then M3(X, weo) < |Lall <4 MA(X, weo).
If Ae(X,wE) (1<p< o), then My (MP, M) <||Lal| <4-M ar(MPL M),

We need with the following auxiliary lemma.

Lemma 3.62. [73, Lemma 2] (a) Let Py, : wh — wh for 1 <p < oo and m =
1,2,... be the projector on the first m coordinates, that is Py, (z) = (1, %2, ..., Tm,
0,0,...) forz = (z;) € wh. Then || — Ppll=1,m=1,2,.

(b) For z € wP, we use the representation in Proposmon 3.44 and define P, :
wP = wP by Pp(z) =le+ S pe, (zr —1)e®) form =1,2,.... Then ||I — P,|| = 2
form=1,2,....

Proof. (a) It is clear that ||I — Pyl < 1. Since I — P,, # O is a bounded

linear operator and projector, we have ||[I — P,,|| > 1. This proves {a).
(b) Let z = ()%, € w?. Then z has the representation in Proposition 3.44,

and we obtain

N7 = Po)(@l =10, 0, zmsr = LTy — || < lzfl + 1] < 2.
N——r

m

Hence || — Pyll €2, m =1,2,.... To prove that ||I — P,j| > 2, let € > 0. Then,

since
k 1/13
2{ —— 2 (k
(m+k> 2 (k- o0),
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there exists kg € N such that

k‘ 1/17
2( 0 ) >2—¢.
m + kg

w=(,. ..,1,-1,...,-1,1,1,1,...).
\—\/'—'/‘—V_—/

m ko

Let up € wP be defined by

Then |jugfl = 1,1 =1 and

uu—Pm)(uo)nz( ! -2%)”":2( ko )”p>z_e.

m + kg m + kg
“ Hence HI — P-m“ > 2 — ¢, that is HI — Pm“ > 2. 0
Theorem 3.63. {73, Theorem 5] Let 1 < p < 00, || - ||zz, the norm on w}, w?

and w?, defined in (3.133). We put

1 u 1/p
M;;(zl,mgo)(m):slip(; > ]ankV’) )

u>m n=m+1
(a) If A € (I, w]), then
(3.144) ILally = ﬂ}i_l,noo M3 (1, WE) (my-
(b) If A € (I3,wP), then
(245) 3 lim MaGh 32 < DAl < Jim M50, 0) o,
(c) If A € (I;,wr), then
(3.146) 0 <Hilall < lim ME(L, DE) (m)-

Proof. Let us remark that the limits in (3.144), (3.145) and (3.146) exist. We
put B = {z € {1 : ||z} < 1}. In the case (a) we have by the inequality in Theorem
2.23

3147)  Ealh = x(AB) = timfsup 7 = Pr)(ADI],
where P, : wh v wh for m = 1,2,... is the projector on the first m coordinates,

that is P (z) = (21,22,...,2m,0,0,...) for z = (z;) € wl. Let us recall that by

E]
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Lemma 3.62 (c) we have |[I — Ppll = 1,m = 1,2,.... Let Ap;) = (ank) be the
infinite matrix defined by a,x =0if 1 <n <m and a, = aur if m < n. Now, by
{3.134) we have

S‘Ug ”(1 - Pm)(A(I)>|| = ”LA(m)” = Af;(,n)(llﬂbgo)(m) = A[;(ll:wgo)(7rz)
TE

Part (a) now follows from this and (3.147).

(b) Let z = ()72, € w). Then z has the representation in Proposition 3.44,
and we define P, : wP = wP by Pp(z) = le+ 5 o, (zx — De® for m = 1.2,.. ..
By Lemma 3.62 (b) we know that || — P,,,Jl = 2 form = 1,2,.... Now the proof
of (b) is similar as in the case (a), and we omit it.

Let us prove (3.146). Now define P,, : wf > wF_ by P () = (1,72, . ... T,
0,...) for z = (x;) € wh, and m = 1,2,.... It is clear that A(B) C Pn(A(B)) +
{I — Pu)(A(B)). Now, by the elementary properties of the function x we have

x(A(B)) < x(Pn(A(B))) + x((I = Pu)(A(B))) = x((I - Py )(A(B))
(3.148) < sup NI = Po) (AN = 1L a0 ll-

Since the limit in (3.146) obviously exists, by (3.148) and (3.135) we get (3.146).
0

Now as a corollary of the above theorem we have

Corollary 3.64. [73, Corollary 2] If either A € (I;,wg) or A € (I, w}). then

L is compact if and only if lim Mj(ly, w8 )m) = 0.
m—00

If A € (,,wh,), then

(3.149) La  iscompact if lim Mj(ly, w8 )m) = 0.

M =300

The following example will show that it is possible for L4 in (3.149) to be
compact in the case limmp o0 M3(11, W8, )(m) > 0, and hence in general we have
just “if” in (3.149).

Example 3.65. [73, Example 1] Let the matrix A be defined by an, = 1 if
n=1andan, =0if n # 1. Then M}(l;,wE ) =1and 4 € (I;,wr,). Further

. _ 1 v 1/p u—m 1/p
Mu(L, w8 )im) = sup (ﬂ Z }ank]p> = sup ( ) =1

k>1,u>m n=m+1 k>lu>m u

Whence limy, 00 M3 (11, %5, )(my = 1 > 0. Since A(z) = reforallz € 3, Ly is a
compact operator.
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Now, concerning Corollary 3.61 we continue to study the measures of noncom-
pactness of operators when the final spaces are the spaces I, and w? . Let X be
any of the spaces wp, w and wy,. For m € N we put

)

E Anfk

0
MA(X, ) (my = sup ( 2Ymax
v=0 v nenN

NCI~{1,2,...m}
N finite

o0
M(X,loo)(m) = sup ( Q”mfxlank[)
v=0

n>m

51,: Z Ani

5=
)

z : v
2 an,tu

vEN

o
M X,w = su max 2Ymax
A( 00)(7)1) M>Pn (N“C]\Y(p) (';) v

and, for 1 <p<ooand ¢g=p/(p—1),

oo
My lg, M )(my = sup (Sup<
ar(ly (m) = e, \rer n:;-(—l

Z 2Vafn,t.,

veEN

: 1 N\
M* MP,MI = su (Sup (Sup<._—_ ) >>
AT( )(m) NCNO\{]I?Q,..,,’I'H} teT \ p 2 ng\l:“‘)

Theorem 3.66. [73, Theorem 6] Let X be any of the spaces wy, w and we,
and || - ||, the norm defined in (3.101). If A € (X,!;), then

(3150)  lim MA(X,0)m < all < 4 lim MEC ).
If A€ (X, lw), then
(3.151) HLall < Tm M3CX Lo (-
IfAe(X,l;) (1<p<oo,qg=p/(p—1)), then
(3.152) lim Mz (lg, MY iy < HLally <4+ Jim Me(l, MYy
IfA e (X,wy), then
(3.153) HLally <4- "}i_inoo MA(X, Weo) (m)-
If Ae(X,wh) (1< p< o), then
(3.154) [Lallx <4 m Mir(AMP, M),

Proof. Let us remark that the limits in (3.150) to (3.154) exist. Let Py, : P >
P form =1,2,... and 1 € p < o be the projector on the first m coordinates,
that is Py{z) = (z1,22,...,2m,0,0,...) for ¢ = (z;) € IP. Tt is easy to check
that |[I ~ P,ll=1,m =1,2,.... Now the proof of (3.150) and (3.152) (when final
spaces have a basis) can be given by the method of proof of Theorem 3.63 (a), while

in the proof of (3.151), (3.153), and (3.154) (when final spaces have no basis) we
can use the method of the proof of Theorem 3.63 (c). _ 0

Now as a corollary of the theorem above we have

. “wwg
e



Theory of sequence spaces 227

Corollary 3.67. |73, Corollary 3] Let X be any of the spaces wp, w and wq,
and || - |,». the norm defined in (3.101). If A € (X,1,), then

(3.155) L, is compact if and only if  lim M3(X,l1)my = 0.
m-—00

If A€ (X,ly), then

(3.156) Ly iscompactif  lim MA(X,le)(m) =0.
m—oG

IfAde(X.ly) (1<p<oo,qg=p/(p-1)), then

(3.157) L, is compact if and only if TJLI_I}]OO M (ly, M) (my = 0.

If A€ (X, we), then

(3.158) L, is compact if  lim M3(X, we)im) = 0.
m— o

IfAe (X, wh) (1 <p< o), then

(3.159) L, iscompact if lim AJZT(MP,MI)(,H) =0.

mMm— 00

Let us remark that it is possible for L4 in (3.156), (3.158) and (3.159) to be
compact in the cases limy; o0 M3 (X, loo)(m) > 0, limy 00 M3 (X, Woo)(m) > 0 and
lim 00 M7 (MP, M1) (1) > 0, respectively. This can be proved by Example 3.65.

4 Appendix

In this appendix, we collect the results from Functional Analysis needed in the
previous sections.

4.1. Inequalities.

Theorem A.4.1. (Hélder’s inequality) Let 1 < p < oc, ¢ = p/(p ~ 1) and
L0y Z1s-- T, Y0,Y15---,yn € C. Then

k}::olilfkyk, < (Ig)l%lp)l/p (’é lyqu)

Ifx €ly and y € 1y, then zy = (Tryr)ieo € b and ||lzylli < [lzllllyllq-

1/q

Theorem A.4.2. (Minkowski’s inequality) Let 1 < p < oo and xp,Z1,...,Zn,
Yo, ¥Y1y---3Yn S C Then

1/ 1/p

(g}lik +yklp>l/p < (kz:;)lzkl”> ’ + <kz:(:)lykfp>

Ifzr,yel, thenz+ye€l, and llz + Z/”p < lelp + llyllp-
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Theorem A.4.3. {Jensen’s inequality) Let p > 0 and z¢,%:,...,2, € C.
Then

4

n Ifp
(Z [zkl") is a decreasing function in p,
k=0

that is, if r > s > 0, then

Ser) < ()
k=0

k=0

Ifp>p', thenly Cly.
4.2. The closed graph theorem and the Banach~Steinhaus theorem.

Theorem A.4.4. (Closed graph lemma) Any continuous map into a Hausdorff
space has closed graph (105, Theorem 11.1.1, p. 195].

Theorem A.4.5. (Closed graph theorem) If X and Y are Fréchet spaces and
f:X =Y is alinear map with closed graph, then f is continuous [105, Theorem
11.2.2, p. 200).

Theorem A.4.6. (Banach-Steinhaus theorem) Let (f,)5°., be a pointwise
convergent sequence of continuous linear functionals on a Fréchet space X. Then
f defined by

f(z) = tim fo(z) forallze X,
n-—>o00

is continuous {105, Corollary 11.2.4, p. 200].
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1. introduction

Let X be a topological space and let P, (n = 1,2,...) and P be probability
measures defined on the Borel sigma field generated by open subsets of X. We say
that the sequence {P,} converges weakly to P, in notation P, —> P if

& iim_ [ f(@)aPa(o) = [ fz)aP()
n—+00 J y X
for every continuous and bounded real valued function f : & — R. In terms of ran-
dom variables, let X,; (n =1,2,...) and X be X-valued random variables defined
on a common probability space and let P,, and P be corresponding distributions,
that is, P, (B) = Prob(X,, € B), where B is a Borel set in X'. Then we say that the
sequence X, converges weakly to X and write X, == X ifandonlyif P, = P.
As we shall see in Section 4, there are many stronger convergence concepts
than the introduced one. However, the weak convergence is a very powerful tool
in Probability Theory, partly due to its comparative simplicity and partly due to
its natural behavior in some typical problems. The weak convergence appears in
Probability chiefly in the following classes of problems.

e Knowing that P, = P we may replace P, by P for n large enough. A
typical example is the Central Limit Theorem (any of its versions), which
enables us to conclude that the properly normalized sum of random variables
has approximately a unit Gaussian law.

¢ Conversely, if P, = P then we may approximate P with F,, for n large
enough. A typical example of this sort is the approximation of Dirac’s delta
function {understood as a density of a point mass at zero) by, say triangle-
shaped functions. '

¢ In some problems, like stochastic approximation procedures, we would like to
have a strong convergence result X, = X. However, the conditions required
to prove the strong convergence are usually very complex and the proofs are
difficult and very involved. Then, one usually replaces the strong convergence
with some weaker forms; on¢ is often satisfies with X, = X.

e It is not always easy to construct a measure with specified properties. If we
need to show just its existence, sometimes we are able to construct a sequence
(or a net) of measures which can be proved to be weakly convergent and that
its limit satisfy the desired properties. For example, this procedure is usually
applied to show the existence of the Wiener measure.

The concept of weak convergence is so well established in Probability Theory
that hardly any textbook even mention its topological heritage. It, indeed, is not
too important in many applications, but a complete grasp of the definition of the
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weak convergence is not possible without understanding its rationale. The first
part of this paper (Sections 2 and 3) is an introduction to weak convergence of
probability measures from the topological point of view. Since the set of probabil-
ity measures is not closed under weak convergence (as we shall see, the limit of a
net of probability measures need not be a probability measure), for a full under-
standing of the complete concept, one has to investigate a wider structure, which
turns out to be the set of all finitely additive Radon measures. In this context we
present results concerning the Baire field and sigma field, which are usually omitted
when discussing probability measures. In Section 4 we consider weak convergence
of probability measures and present classical results regarding metrics of weak con-
vergence. In Section 5 we show that the set of probability measures is not closed
and effectively show the existence of a finitely, but not countably additive measure
in the closure of the set of probability measures. Section 6 deals with the famous
Prohorov’s theorem on metric spaces. In Section 7 we consider weak convergence of
probability measures on Hilbert spaces. Here we observe a separable Hilbert space
equipped with weak and strong topology and in both cases we give necessary and
sufficient conditions for relative compactness of a set of probability measures.

2. Weak convergence in topology

2.1. Topology induced by a subset of algebraic dual. Let X be a vector
space over a field F', where F stands for R or C. Let X’ be the set of all linear
maps X — F (so called algebraic dual space). Let Y C A’ be a subspace such
that Y separates points in X, i.e., if p(x) = ¢(y) for all p € Y then x = y. Define
Y -topology on X’ by the sub-base

{7 (V)| p €Y, V open set in F}

The base of Y -topology is obtained by taking finite intersections of sub-base ele-
ments. Equivalently, a base at zero for the Y-topology is consisted of sets

Ogy,on = {2 €X | pj(z) <l forj=1,...,n},

where {¢1,... ,n} is an arbitrary finite set of elements in V.

This topology is a HausdorfI one, since we assumed that Y separates point of
X. That is, if z # y are points in X, then there is a ¢ € Y so that ¢(z) # v(y)
and consequently there are disjoint open sets V; and V, in F so that ¢(z) € V,
and ¢(y) € V,, hence o1 (V) N~ 1(V,) = 0.

The convergence in ¥ -topology may be described as

Tg— 1T < olzg) = p(z) forallpe?,
where {d} is a directed set. It is important to know that Y-topology may not be

metrizable, even in some simple cases, as we shall see later. So, sequences must not
be used as a replacement for nets.



240 Merkle

If Y7 C Y, C A, then the Y; topology is obviously weaker (contains no more
open sets) than the Y5 topology. Therefore, if z; — x in Y2-topology, then it also
converges in Y] topology, and the converse is not generally true.

2.2. Weak topology. Now we observe only locally convex Hausdorff (LC)
topological vector spaces (TVS) X, i.e., those that have a basis for the topology
consisted of convex sets. Let A* be the topological dual of X, i.e., the space of all
continuous linear functionals X +— F. By one version of the Hahn-Banach theorem,
X* separates points in X, if X is a LC TVS. Then X”-topology on X is called the
weak topology. Since for every ¢ € A'* we have that

zq4 — T in the original topology of X = ¢{(z;) — =,

we see that the weak topology is weaker than the original (strong) topology of X.
The space X equipped with the weak topology will be denoted by &),.

2.3. Example. Let X be a real separable infinitely dimensional Hilbert space,
with the inner product {-,-) and the norm || - ||. Then z,, converges weakly to z if
and only if (y,z,) = (y,z) for any y € X. Let x, = e, be an orthonormal base
for X. Then since |[y]|* = Y (v, en)? < +00, we see that (y,e,) — 0 for any y € X
and so the sequence e, converges weakly to 0. However, since |le, — e ||> = 2, this
sequence does not converge in the norm topology of X. [

On finitely dimensional TVS, the weak and the strong topology coincide.. How-
ever, on infinitely dimensional spaces, the weak topology exhibits some peculiar
properties, as we shall see in the next subsection.

2.4. How weak is the weak topology? Let us firstly grasp some clues to
understand the weak topology. We start with kernels of linear functionals and we
prove the following theorem.

Theorem. If dimX > 1, then there is no linear functional ¢ € X' with
kerp = {0}.

Proof. Suppose that kerp = {0} and let 21,22 be arbitrary elements in X,
z1,%9 # 0. Then let A = @(z1}/¢(x2), which is well defined, since ¢(z2) # 0 by
assumptions. Let y = z; — Azg. Then p(y) = ¢(z1) — Ap(zs) = 0, hence y = 0,
i.e., x; = Azy. Since x;, x5 are arbitrary, the dimension of X is 1. O

Let sp A denote the set of all finite linear combinations of elements of the set
A

2.5. Theorem. Let X be a vector space over F and let py,... ,pn € A,
Then (i) and (ii) below are equivalent:

() ¢ €sp{or,---on} (i) Nz kerp; Ckerg

Proof. Suppose that (i) holds, that is, p(z) = > 1, aipi(z). Then clearly,
pi(z) = 0 for all 7 implies that ¢(x) = 0, which proves (ii). Conversely, assume
that (ii) holds. Define a mapping T : X — F" by T'(z) = (pi(x),... , pn(z))
and define S(T'(z)) = ¢(z). Then S is well defined on the range of T, since if
T(z) = T(y) then =z — y is in ker; for all ¢, hence * — y is in kery and so
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S(z) = S(y). Clearly, S is a linear map and its extension to F™ must be of the
form F(t1,... ,tn) = a1ty + -+ - + auty,, which means that

w(z) = S(p1(x),. .. ,on(T)) = 11 (z) + - + anpn(x),

which was to be proved. [
From Theorem 2.5 we get an immediate generalization of Theorem 2.4:

2.6. Corollary. If X is an infinitely dimensional TVS and if ¢y, ... , ¢, are
arbitrary linear functionals, then ()_, kerg; # {0}.

Proof. Suppose that ()., kerp; = {0}. Then for any ¢ € X’ we have that
{0} C ker p and then, by Theorem 2.5, ¢ € sp {¥1,...,9n}, which means that X’
is finite dimensional, and so is X, which contradicts the assumption. O

The next theorem describes a fundamental weakness of the weak topology.

2.7. Theorem. If X is an infinitely dimensional TVS then each weakly open
set contains a non-trivial subspace.

Proof. Let U C & be a weakly open set. Without loss of generality, assume
that 0 € U (otherwise, do a translation). Then U must contain a set of the form

Otp],m,tp,, = {IL' € X l (pl(l:) < 1:"‘ ,(ﬂn((l:) < 1}7

for some 1, ... , @, € X*. Then clearly Ule keryp; C Oy, . . C U and according
to Corollary 2.6 {JI_, ker ¢; is a non-trivial subspace.

2.8. Corollary. Let X be an infinitely dimensional normed space. Then an
open ball of X is not weakly open.

Proof. Let B be an open ball in A. If it were open in the weak topology,
then (by Theorem 2.7) it would have contained a nontrivial subspace, which is not
possible (for instance, it is not possible that |jaz|] < r for all scalars @). O

So, the next theorem may come as a surprise.

2.9. Theorem. Let X be a LC TVS. Then X and X, have the same closed
convex sets. For each convex S C X we have that S* = S, where S¥ is the closure
of S in the weak topology. U

2.10. Example. Let X be a separable metric space. Denote by B, the
Borel sigma field generated by norm-open sets and let B, be the Borel sigma field
generated by weakly open sets. Since any weakly open set is also norm-open, we
generally have that 5,, C B,, but not conversely. In this special case, each strongly
open set is a countable union of closed balls, which are, by Theorem 2.9 also weakly
closed. So, B; C B, which gives that, in a separable metric space, B; = B,,. O

From Theorem 2.9 it follows that a closed ball in a normed space X is also
weakly closed. But from Theorem 2.7 we see that the weak interior of any ball in
an infinitely dimensional normed space is an empty set! '

2.11. Weak star topology on a dual space. We are now going to introduce
a yet weaker than the weak topology. Let X be a LC TVS and let A be its
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topological dual. Define a mapping ® : X = (X*)' by ®,(¢) = ¢(z), where z € X
and p € X*. This map is linear and one-to one (the one-to one property follows
from the fact that X* separates points). Now we can observe the ®(X)-topology
on X*. It is customary to identify ®(X) with X itself (especially in the case when
X is a normed space, since then the natural topologies on X' and ®(X) coincide).
So, the X-topology on X* is called the weak-* (weak star) topology. In fact, this
is the topology of pointwise convergence of functionals, since

wg @ (w—*) < gulz) = p(z) foreveryz e X.

2.12. Three topologies on duals of normed spaces. Let X be a normed
space. Then its topological dual X is also normed, with {jpl} = supy,y<; le(z)]-
This norm defines the strong topology of X*. Further, the weak topology on X* is
defined as X**-topology and the weak star is A'-topology on A*. Since X C A™**,
the weak star topology is weaker than the weak one, which is in turn weaker than
the strong topology. Due to the order between topologies, it is not possible that a
sequence {(or a net) converges to one limit in one of mentioned topologies and to
another limit in other topology. So, for instance, if a sequence converges to some x
in the, say, weak star topology, then in the strong topology it either converges to
z or does not converge at all.

2.13. Example. Let ¢y be the set of all real sequences converging to zero, with
the norm |[|z]| = sup, |z»|. Then it is well known that ¢§ = {; and ¢§* =} = I,
where 1; is the space of sequences with the norm [zfl;;, = 3" |zn| < +00 and 1l is
the space of bounded sequences with ||z]|cc = sup, |T»]- Linear maps are realized
via so called duality pairing (z,y), acting like inner products with one component
from A and the other one from X*. Observe a sequence in I}, z,, = {#),} and let
y = {yx} be an element in [;. Then x, converges to y:

- Strongly, if Jlzn — y]| = sup |zkn — Y&l = 0 as n = +o00.
- Weakly, if (€,%n) = Y, EkTh,n — Dy Exyr, for any £ = {&} € leo.
- Weak-star, if ), &Tkn — 25 ks, for any & = {&} € co.

Now observe the sequence e, = {0,0,...,0,1,0,...) € {; (with 1 as the n-th
component). Then (£,e,) = &, and if £ € ¢g then (¢, en) — 0, hence e, converges
to 0 weak star. However, if £ € ., then (£, e,;,) need not converge, so e, does not
converge in the weak topology. Further, in the norm topology e,, does not converge
to zero, because |le,|| = 1 for all n; therefore, {e,} is not convergent in the strong
topology of I;.

2.14. Canonical injections. Let X be a normed space, let X* be its topo-
logical dual space and let X** = (X™)* be its second dual. If ||z|| is a norm on X,
then the norm on A is defined by [lp|l = supy,<1 l¢(z)ll. The norm on A™** is
then defined by ||@|| = supy,y<; |®(p)]. Observe the canonical mapping X + X**
which is defined, as in 2.11 by
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Then for each z € X, ®, is a continuous linear functional defined on A'*, and so it
i1s a member of A** with the norm
(2)
1220 = sup [8.(0)| =sup{|o( )| Izl | w € 2, sup (@) < 1} < ).
ll=ll flzll<1

fleli<1

On the other hand, by one version of the Hahn-Banach theorem, if X is a normed
space, for each z € X there exists g € X with |lgof| = 1 and po(z) = ||z]|.
Therefore,

(3) 192l = “Slﬁgl [2(0)] > P2(0) = po(z) = ||z]|.
From (2) and (3) it follows that ||®.|| = ||z{|. So, the canonical mapping z — &,

is bicontinuous, i.e.,
Tpn 22 = &, — b,

Further, as we already observed in 2.11, this mapping is linear and one-to one
injection from X to X**. Since ®(X) is isomorphic and isometric to X, it can
be identified with X in the algebraic and topological sense. This fact is usually
denoted as X C A**. If &(X) = X**, we say that X is a reflexive space, usually
denoted as X = A™**.

2.15. Example. Each Hilbert space is reflexive. Due to the Riesz rep-
resentation theorem, any linear functional in a Hilbert space H is of the form
wy(z) = (y,z), where y € H and also ||| = ||y]l. Hence, we may identify ¢, with
y and write H* = H. This equality means, in fact, that there exists a canonical
injection (in fact, bijection) H — H* realized by the mapping y > ¢,

From H* = H it follows that H** = (H*)* = H, i.e., H is reflexive.

The space ¢p introduced in the example 2.13 is not reflexive, since ¢§* = l-
However, ¢g C 1. O

2.16. Inclusions. Now suppose that X, C X are vector spaces with the same
norm ||-]|. Let ¢ be a continuous linear functional defined on A,. Then clearly, the
restriction of ¢ to A) is a continuous linear functional on A7 and therefore we have
that Ay C Ay . For the second duals we similarly find that A7* C AJ*. Hence,

M Ch = AT DA = AT CA”.

A paradoxical situation may arise if we have two Hilbert spaces H; C H;. Then by
canonical injection we have Hy = H; and H; = H», which would lead to H; C H;!
This example shows that we have to be cautious while using equality as a symbol
for canonical injection.

2.17. Weak star compact sets. For investigation of convergence, it is im-
portant to understand the structure of compact sets. Let X’ be a normed space. It
is well known that a closed ball of A" is compact in the strong topology if and only



244 Merkle

if X* is finitely dimensional. Since X* is also a normed space, the same holds for
X'*. However, in the weak star topology, we have the following result.

2.17. Theorem (Banach-Alaoglu). Let X be an arbitrary normed space. A
closed ball of X* is weak star compact.

Proof. Without a loss of generality, observe a closed unit ball of X'*, call it
B. Hence, B contains all linear continuous mappings ¢ from X' to F such that
lp(z)] < |lzl| for all x € X. For any ¢ € X, define D, = {t € F | |¢|] < ||=|}}
and K =[], cx Ds, with a product topology on K. If f is an element of K and
f(z) its co-ordinate in K, then f is a function f: X — F. The product topology
is the topology of pointwise convergence: fy — f if and only if fi(z) — f(z) for
any z € X. So, B with the weak topology on it is a subset of K. Since each D,
is compact, Tychonov’s theorem states that K is also compact, so we just need to
show that B is closed in K. To this end, let 4 be a net in B which converges to
some f € K. Then it is trivial to show that f must be linear; then by |pq(z)| < ||zl
it follows that f is also continuous and that {|f}| < 1. Therefore, f € B and B is
closed, hence compact. O

2.19. Remark. Tychonov’s theorem states that the product space []; A&; in
the product topology as explained above, is compact if and only if each of A is
compact. The proof of Banach-Alaoglu theorem relies on Tychonov’s theorem, and
the proof of the latter, in the part which is used here, relies on the Axiom of Choice
{(more precisely, Zorn’s lemma, cf. [9, 15, 35, 36]). O

This theorem implies that any bounded sequence in X'* must have a convergent,
subnet. Unfortunately, such a subnet need not be a sequence, since the weak star
topology on X* need not be metrizable. However, the next theorem claims that in
one special case we can introduce a metric.

2.20. Theorem. Let X be a separable normed vector space. Then the w — *
topology on a closed ball of X* is metrizable.

Proof. Assume, without a loss of generality that B is the closed unit ball
(centered at the origin) of the dual A* of a separable normed vector space A’. The
metrization of B can be realized, for instance, as follows. Let 1,2 € B, s0

sup pi(z) <1, i=1,2
el <1

Let {x,} be a dense countable set in the unit ball of X. Define

d{py,p2) = Z |S01(I.n)2—n(pg(xn){.

Then |1 {zn) — @2(z2)] < [z = @2l - llzall < 2 and the series converges, so d is
a well defined function (even on-the whole space X*). It is now a matter of an
exercise to show that the d-topology on B coincides with the w — * topology.
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2.21. Corollary. Let X be a separable normed vector space and let X* be
its topological dual space. Then every bounded sequence {®,} € X* has a weak
star convergent subsequence.

Proof. Every bounded sequence is contained in some closed ball B, which is,
by Theorem 2.18, weak star compact. By Theorem 2.20, the weak star topology
on B is metrizable, i.e., there is a metric d such that

pa = (w—%) &> d(va,p) = 0.

In a metric space, compactness is equivalent to sequential compactness, so, any
sequence in B has a convergent subsequence. O

2.22. Example. Let H be a separable Hilbert space. Since it is reflexive,
weak and weak star topology coincide. Define a metric

d(l;y) — Z |<$ -'23:17 En)‘

where {e,} is an orthonormal base in H. We shall prove that this metric also
generates the weak topology on the unit ball of H. Suppose that z,, — = weakly,
ie., (x,,y) = (z,y) for any y € H, where ||z,|| < 1,]jz]| < 1. Since

Hzn — z,ex)] < llzn — 2| - llexll < 2,

the series

(T, ex) — (T, ex)]
d(zn,7) = ) |
k
converges uniformly in n and so, by evaluating limits under the sum, we conclude

that
lim d(z,,z)=0.

n—+oo

Conversely, let d(zn,z) = 0 as n — 400, where {|z,]] < 1 and |jz|] < 1. Then it
follows that (x,, — z,ex) — 0 for every k. Now for any y € H,

(Tn,y) ~ (z,y) = Z(ln -z, er) (Y, ex)-
k
By Cauchy-Schwarz inequality,

+0o0 T
|3 G =z en)| < 3 Ko~ a,en)l- Ly, en)
k=m

k=m

+-00 +oc 1/2
< (Z <1En - 11")ek)2 Z (y7€k>2)
k=m o L,:m' »
< lew = all- (Y we0)?)
k=m

+oo 1/
S 2( Z <y7€k>2)
k=m



246 Merkle

and therefore, the series ), (zn, — z,ex)(y, ex) converges uniformly with respect to
n. Hence,

ngr_}?oo(xﬂv y) - <‘T7 y) = - nEToo(xn - I’ek)(y,ek) =0.

So, {z,} converges weakly to z.

However, the metric described here does not generate the weak topology on
the whole H. To see this, let =, = ne,. Then d(z,,0) — 0 as n = 400, but
{Zn,y) = n{en,y), which need not converge.

3. Finitely additive measures and Radon integrals

3.1. Spaces of measures as dual spaces. In general, it might be very hard
to find the dual space of a given space, i.e., to represent it (via canonical injections)
in terms of some well known structure. We are particularly interested in spaces of
measures; it turns out that they can be viewed as dual spaces of some spaces of
functions. The functionals on spaces of functions are expressed as integrals:

o(f) = / £(8) du(t)

where p is a measure which determines a functional. Then by a canonical injection,
we can identify functionals and corresponding measures. There are several results
in various levels of difficulty, depending on assumptions that one imposes on the
underlying space X on which we observe measures. In this section we will present
the most general result [1] regarding an arbitrary topological space. It turns out
that finitely additive measures are the key notion in this general setting.

Although a traditional probabilist works solely with countably additive mea-
sures on sigma fields, their presence in Probability has a purpose to make mathe-
matics simpler and is by no means natural. As Kolmogorov [19, p. 15] points out,
“dots in describing any observable random process we can obtain only finite fields
of probability. Infinite fields of probability occur only as idealized models of real
random processes”. Finitely additive measures have recently arose an increasing
interest in Probability, so the exposition which follows may be interesting in its
own rights.

3.2. Fields and sigma fields. Let X be a set and F a class of its subsets such
that '
1) X € F,
2) Be F = B'€F,
3) By,By € F = B; UDBs € .F Then we say that F is a field. If 3) is replaced
by stronger requirement
3) B1,Bs,... ¢ F = Uf‘;l B; € F, then we say that F is a sigma field.
It is easy to see that a field is closed under finitely many set operations of any
kind. Further, let F;, i € I, be fields on X. Then F = ﬂie, Fi is also a field, where
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I is any collection of indices. This follows trivially by verification of conditions
1)-3) above.

Given any collection of sets A which are subsets of X, there is a field which
contains A: it is the family of all subsets of X. The intersection of all fields that
contain A is called the field generated by A. Obviously, a field F generated by
A is the smallest field that contains A4, in the sense that there is no field which is
properly contained in F and contains A.

A sigma field is closed under countably many set operations. We define a sigma
field generated by a collection of sets in much the same way as in the case of fields.

3.3. Borel field. Let X be a topological space. The field generated by the
collection of all open sets is called the Borel field. Since the complement of an open
set, is a closed set, the Borel field is also generated by the collection of all closed
sets.

Borel sigma field is the sigma field generated by open or closed sets. In sepa-
rable metric spaces, the Borel sigma field is also generated by open or closed balls,
since any open set can be expressed as a countable union of such balls.

Specifically, on the real line, Borel sigma field is generated by open and closed
intervals of any kind. However, Borel field is not generated by intervals, since an
arbitrary open set need not be represented as a finite union of intervals.

3.4. Baire field. Let X be a topological space and let C'(X') be the collection
of all bounded and continuous real valued functions defined on X. The Baire field
is the field generated by the collection of sets

A={zZcXx|z=fY0C),

where f is any function in C(X) and C is any closed set of real numbers.

Boundedness of functions in C(X) is not relevant, but is assumed here for
the purposes of this paper. Indeed, for any continuous function f : X + R, the
function g(z) = arctg f(z) is a continuous bounded function defined on X and the
collection of all ¢~!(C) coincides with the collection of all f=1(C), where C runs
over closed subsets of R.

It is well known that for any closed set C' C R there is a continuous bounded
function gc such that g5'({0}) = C (this is a consequence of a more general
result that holds, for instance, on metric spaces, see 6, Theorem 1.2]. For an
f € C(X) and a closed set C C R, define F(z) = gco(f(z)). Then F € C(X) and
F~1({0}) = f~*(C). Therefore, we may think of the Baire field as being generated
by sets of the form f~1({0}), for f € C(X).

Let us recall that f "} (AUB) = f~}(A)Uf~1(B) and f~1(ANB) = f~1(4A)N
f7YB); also f~1(A") = (f~1(A))" if the complement is taken with respect to the
domain of f. Hence, we have:

JTHCH U FTHC) = FHCLUE); (F7HC) = f7HC)

-and also X = f~I(R), for any f. Therefore, the Baire field is also generated by
the collection of the sets f~1(0), where O is an open set of real numbers and
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f € C{X). Further,
(fHC)) = f710), where O =’ is an open set.

Now it is clear that if A belongs to the Borel field in R and if f € C{X), then
f71(A) belongs to the Baire field in X.

From now on, sets of the form f~1(C), where C is closed in R, will be called
Z-sets, and the sets of the form f~1(0), with O being an open set in R, will be
called U-sets.

Since the inverse image (with a continuous function) of any open (resp. closed)
set is again an open (resp. closed) set, we see that Z-sets are closed and U-sets are
open in X. Hence, the Baire field is a subset of Borel field; the same relation holds
for the sigma fields. The converse is not generally true, since a closed set need not
be a Z-set. With some restrictions on topology of X, the converse becomes true,
for instance, in metric spaces. In general, in normal spaces in which every closed
set can be represented as a countable intersection of open sets {so called G set),
every closed set is a Z-set (cf. [15, Corollary 1.5.11]) and so the Baire and the Borel
field coincide.

'3.5. Theorem. The family of Z-sets is closed under finite unions and count-
able intersections. The family of U-sets is closed under countable unions and finite
intersections.

Proof. By 3.4, a set is a Z-set if and only if it is of the form f~!({0}) for
some f € C(X). So,let Z; = f71({0)), Zo = £, 1({0}). If g(2) = f1(x)f2(z), then
9 1({0}) = Z, U Z», so the union of two Z-sets is again a Z-set. Let Zy, Z»,...
be Z-sets. Then there are continuous and bounded functions fy, f2,... such that
Zn = f71{{0}),n = 1,2,.... Define the function

g2
Fla)=2 2,1,,5,:?,2’

n=1

where [[f,|] = sup,cx |f(z)|. Since the above series is uniformly convergent on
X, F is a continuous and bounded function; moreover, F(z) = 0 if and only if
fa(z) = 0 for all n > 1. Hence F~'({0}) = (.., Z,, which proves that any
countable intersection of Z-sets is a Z-set.

Statements about U-sets can be proved by taking complements.

3.6. Measures and regularity. Let X be a topological space. Let u be a
non-negative and finitely additive set function on some field or a sigma field F of
subsets of X, with values in [0, +o0] (allowing +co if not specified otherwise). Such
a function will be called a measure.

We say that a set A € F is p-regular if

(4) p(A) =sup{u(Z) | Z C 4} = inf{p(U) | AC U},

where Z and U are generic notations for Z-sets and U-sets respectively.
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If all sets in F are p-regular, we say that the measure u is regular.

Note that a prerequisite for regularity is that all Z-sets and U-sets must be
measurable, which is the case if F contains the Baire field. In the next theorem we
give alternative conditions for regularity.

3.7. Theorem. Let X be a topological space, F a field which contains the
Baire field and 1 a measure on F. A set A € F with u(A) < +oo is p-regular if
and only if either of the following holds:

(i) For each € > 0 there exists a Z-set Z, and an U-set U, so that

(5) Z.CACU. and p(U:\Z.) <e.
(ii) There are Z-sets Z1,Zz,... and U-sets U;,Us, ... such that
1 CZyC---CAC---UyCcl;,

and
plA)= lim p(Zy)= Lm p(Un).

Proof. (i) is straightforward, using properties of the infimum and the supre-
mum. (ii) Suppose that A4 is g-regular. Then for each n there is a Z-set Z; such
that Z; C A and p(A) — 1/n < u(Z}) < p(A). Let Z, = Zfu---U Z2, for
n =1,2,.... Then Z, are Z-sets by Theorem 3.5. Further, Z; C Zo C --- C A
and u(A) — 1/n < u(Z,) < p(A), hence im u(Z,) = p{A). The part regarding U,
can be proved similarly.

Conversely, if there exist Z, and U, as in the statement of the theorem, then
for a fixed € > 0 there is an n such that Z, C A and 0 < u(A) — u(Z,) < €, hence
u(A) is the least upper bound for u(Z) over all Z-subsets of A. Similarly, it follows
that u(A) is the greatest lower bound for u(U), over all U-sets that contain A.

3.8. Remark. The previous theorem does not imply either the countable
additivity or continuity of u. Also it holds regardless whether u is defined on a
sigma field or just on a field.

3.9. Theorem. Suppose that p is a countably additive measure defined on
a sigma field F which contains the Baire field. Then a set A € F, u(A) < +oo, is
p-regular if and only if there are Z-sets 21,23, ... and U-sets U;,Us, ... such that

Z1CZyC---CAC---UsCclUy

and

+o0
,u(A\ U Zn) =0, p(ﬂ U, \A) =0.
n=1

n=1

Proof. By the previous theorem, A is u-regular if and only if u(A) = lim u(Z,,)
= limu(U,); by continuity property of sigma additive measures we have that
lim u(Z,) = p(lJ,, Z») and lim u(Uy,) = p((), Un), which ends the proof.
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3.10. Theorem Let X be a topological space and F a field which contains
the Baire field. Let p be a measure on F, with u(X) < +oo. Then the family R of
all p-regular sets in F is a field.

Proof. Since X = f~(R) and R is open and closed, it follows that both
conditions in {4) hold and so X € R.

Suppose that A € R. Then for a fixed € > 0 there are sets Z. and U, such
that (5) holds. Taking complements we get

UlcA' czl, Z\NU!=U;\ Z,

which implies that A’ is also p-regular.
Finally, suppose that Ay, As,... An € R. By Theorem 3.7(i), for any given
€ > 0, there are Z-sets Z; and U-sets U; such that

Z:C A, CU; and u(Ui\Z,-)<§E;, Pi=32,...

Let A=, A, Z=UL,Ziand U = J;_, U;. Then Zisa Z-set and U is a
U-set and we have

K

(6) ZCACU and p(UNZ) <Y pUi~ Z)K e,

so AeR.

3.11. Theorem. Let X be a topological space, 7 a sigma field that contains
the Baire field. Let u be a countably additive measure on F, with u(X) < +oo.
Then the family R of all y-regular sets in F is a sigma field.

Proof. In the light of Theorem 3.10, we need to prove only that a countable

“union of p-regular sets is p-regular.

Let A;, A;, ... be p-regular sets; for any € > 0, there are Z-sets Z; and U-sets

U; such that
ZiC A CU; and pUisZ:) < 56‘

Let A =2, 4, Z=U2, Ziand U = J;2, U;. Then U is a U-set (Theorem 3.5)
and Z can be approximated by a finite union Z™W = |JI_, Z;, where n is chosen in
such a way that x(Z ~ Z(™) < & (continuity of the countably additive measure).
So, we have that

pUNZY < (U Z) + p(Z ~ 20 < 2,

which ends the proof.
3.12. Theorem. Let X be a topological space, F the Baire sigma field and
i a countably additive measure on F, with u{X) < +oco. Then u is regular.

Proof. By Theorem 3.11, all py-regular sets make a sigma field R. We need
to show that R = F, which will be accomplished if we show that each Z-set is
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p-regular. So, let Z be a Z-set. Then there is a function f € C(X) such that
Z = f~40). Let O, = (=1/n,1/n) and U, = f~}(0,). ThenU; DU, D---D Z
and N,,U, = Z. By continuity of countably additive measure u we have that
w(Z) = lim, u(Up), so the condition of Theorem 3.7(ii) holds (with Z,, = Z for all
n), hence Z is y-regular.

3.13. Remark. Theorem 3.12 implies that only non-countably additive mea-
sures may be non-regular. The condition of regularity as defined here obviously
turns out to be natural for Baire fields. However, in Borel fields, one often uses
a different concept of regularity, which is the approximation by closed sets rather
than by sets of the form f~1(C). In spaces in which any closed set is G, any
countably additive measure is regular (on Borel sigma field) in the latter sense, cf.
(27].

3.14. Radon measures and Radon integrals. Let X be a topological space
and let F be the Baire field on X. Let M™T(X) be the set of all non-negative,
finite, finitely additive and regular measures on F. A generalized measure (or a
Radon finitely additive measure) is any set function on F which can be represented
as m(A) = my(A) - ma(A), where my,mp; € MT(X). The set of all generalized
measures will be denoted by M(X). It is a linear vector space; a norm can be
introduced by the so called total variation of a measure:

(7) Im| = m™(X) + m™(X),

where mT(X) = sup{m(B) | B € F}, m(X) = —inf{m(B) | B € F}. M(X)
with the norm (7) is a Banach space.

We are now ready to define an integral of a bounded function with respect to a
generalized measure. Let f be an F-measurable function and suppose that ||f]| =
K < +oo. Let Ay, 4,,... , Ay be any partition of the interval [~ K, K] into disjoint
intervals (or, in general, sets from the Borel field on R) and let B; = f~'(4;). In
each A; choose a point y; and make the integral sum

Sd:Zyim(Bi)’ WthEd:<A1;-~~;An7yl7"' ;yn)-

1=1

If we direct the set {d} in a usual way, saying that d; < dy if the partition in d, is
finer than the one in dy, then we can prove that Sy is a Cauchy net, hence there is
a finite limit, which is the integral of f with respect to the finitely additive measure

m, [ f(z)dm(z).
3.15. Theorem (Aleksandrov {1]). For an arbitrary topological space X, any
linear continuous functional on C(X) is of the form

(8) o(f) = (fym) = / f(z) dm(z),

Moreover,

sup l/ f(z) dm(x)] = |m|.

IFn<a
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There is an isometrical, isomorphical and one to one mapping between the
space of all continuous linear functionals on C(X) and the space M(X); in that
sense we write C(X)* = M(X). O

In some special cases, C(X)* has a simpler structure. For example, if X is a
compact topological space, then C({X)* can be identified with the set of all Baire
countably additive R-valued measures on the Baire sigma-field of X. If, in addition,
X is a compact metric space, then C(X) is a separable normed vector space and
C(X)* is the set of all Borel R-valued countably additive measures on X.

4. Weak convergence in probability

4.1. Convergence of probability measures. Let now X be a metric space
and let B be the sigma field of Borel (= Baire) subsets of X. Let M;(X) be the
set of all probability measures on X. Then according to 3.15, M;(X) is a subset of
the unit ball in C(X)*. The structure of the second dual C(X)** is too complex,
but it is well known that B(X) - the set of all bounded Borel-measurable functions
is a subset of C(X)**. So, we have the following inclusions:

Original space: C(X)
Dual space: M(X); My (X)) Cc M(X)
Second dual: C(X) C B(X)C C(X)".

Let (f, u) be defined as in {8). On M({X) we may observe the following topologies:
e The uniform topology [struk], with the norm sup |(f, u){, where the supremum
is taken over the unit ball in B(X).
The strong topology, defined by sup |{f, 11)|, where the supremum is taken over
the unit ball in C(X).
o The weak topology defined by (f, p), for f € M*(X) = C(X)**.
e The B(X)-topology, defined by (f, u}, for f € B(X).
¢ The weak star topology, defined by (f, u), where f € C(X).

First four topologies are too strong, and they do not respect a topological
structure of X, as the following example shows.

Example. Let §;, §, be point masses at x and y respectively. Then (f,d;) —
(f,6y) = f(z) — f(y). If z and y are close in X, then f(x) and f(y) need not be
close unless f is continuous. So, in this example, the weak or B(X)-topology are
inadequate, but the weak star topology preserves the closedness of z and y. O

The convergence in the weak star topology is usually called the weak conver-
gence in the probabilistic literature. This does not lead to a confusion, since the
true weak convergence is never studied.

If pg converges weakly to p, we write pg == p.

The weak star convergence of probability measures is well investigated. We
shall firstly give equivalent bases for weak star topology on the whole set M™*(X).
So, the next theorem is not restricted to probability measures.

Let us recall that we say that A is a continuity set for a measure i on a Borel
algebra B if (8A) = 0, or, equivalently, if u(A4) = u(A4) = u(A4°), where 8A is the




Weak convergence of probability measures 253

boundary, A is the closure and A° is the interior of A. On a Baire algebra we will
say that A is a continuity set for y if there is an U-set U and a Z-set Z such that
UCACZand u(Z~\U)=0.

4.2. Theorem [34, p. 56]. Let W be the weak star topology on M¥(X),
where X Is a topological space. Then the following families of sets make a local
base of W around some measure g € M*(X):

Bo = {p|{fi,pn) = (fi,po)l <&, 1=1,...k}, fi € C(X)
By = {p|p(F) < po(F;)+¢,i=1,...,k}, F;areZ-setsin X
By = {u| pu(Gi) > po(Gi) —¢, i=1,... ,k}, G;areU-setsin X
= {p||p(A:) — pe(Ai)| <e, t=1,...,k}, A, are continuity sets for ug,

If X is a metric space, then we deal with the Borel algebra and so F; above
can be taken to be closed and G; to be open sets.

As a straightforward consequence, we get the following

4.3. Theorem. Measures with a finite support are dense in M*(X).
Proof. Let pup € M7 (X) and let B(uo) be its neighborhood of the form

B(UO) :{NIM(E) <ﬂ0(ﬂ)+€: i=1,... ,k},

where F; are fixed Z-sets. The family of sets F; together with their intersections
and the complement of their union defines a finite partition of X. In each set B
of this partition choose a point zp and define p;(zp) = po(B). The measure yu; is
with a finite support (hence, countably additive!) and clearly p;(F;) = po(F;); so
#1 € B{uo)-

4.4. Theorem. Let yg4 be a net of measures in M*(X) and let gy € M*(X)

The following statements are equivalent [6, 30, 34]:
(i) pa => po, i-e, img [ fdug = [ fduo, for each f € C(X).

(i) Tim pa(F) < pO(F) for any Z-set F' C X and lim pg(X) = po(X).
(iii) lim pa(G) > po(G) for each U-set G C X and lim pg(X) = po(X).
(iv) lim pq(A) = po(A) for each continuity set for pq.

In a special case when we have probability measures on a metric space X,
there is a richer structure that yields additional equivalent conditions. To proceed
we need some facts on semicontinuous functions.

4.5. Semicontinuous functions. Let X be a metric space. A function f :
X + R is called upper semicontinuous if fim f(z,) < f(z) for each sequence {zn}
such that =, — z. The function f is lower semicontinuous if lim f(z,) > f(z) for
each sequence z,, — .

An important property of semicontinuous functions is that for each MeR
the set {z | f(z) < M} is open for an upper semicontinuous function and the set
{z | f(z) > M} is open for a lower semicontinuous functions.
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4.6. Theorem. Let pq be a net of probability measures on a metric space X
and let py be a probability measure on X. The following statements are equivalent
{6, 30]:

(i) na = po, ie., limg [ fdpa= [ fdpo, for each f € C(X).
(i) Yimg [ fdug = [ fdpo for each f € Cy(X) (uniformly continnous and bounded
functions).
(i) Tim pg(F) < po(F) for any closed set F C X.
(iv) lim pg(G) > po(G) for each open set G C X.
(v) lim pg{A) = pug(A) for each continuity set for pg.
(vi) Tim [ fdpq < [ fdpg for each upper semicontinuous and bounded from above

function f : X — R.

(vii) im [ fdpa > [ fdpo for each lower semicontinuous and bounded from below

function f : X —» R.

(viii) lim [ fdpg = [ fdpg for each pg a.e. continuous function f : X — R.

4.7. Vague convergence. In [32], a concept of so called vague convergence
is introduced as follows. Let K(X) be the set of all continuous functions with a
compact support defined on X. Then we say that pg converges vaguely to u if
{fpay = {f, ) for each f € K(X). This kind of convergence is clearly weaker
than the weak star convergence. For example, the sequence §, converges vaguely
to 0, although it does not converge in the weak star sense.

4.8. Metrics of weak convergence. By Theorem 2.20, the weak star topology
on the closed unit ball of M(X) is metrizable if C{X) is a separable metric space,
which is the case if and only if X is a compact space. However, even if the weak
star topology of the unit ball of M is not metrizable, this topology on the set of all
probability measures may be metrizable; as a matter of fact, it probably is always
metrizable, as we shall see in the subsequent discussion.

4.9. Theorem. Let X be a separable metric space. Then the weak star
topology on M,{X) is metrizable by the metric

(9) d(P,Q)=inf{e¢>0]|Q(B) < P(B°)+¢, P(B)<P(Q°)+¢, Be B},

where B¢ = {z € S | d{z, B) < ¢}, and B is the Borel sigma algebra. O

The metric (9) is known as Lévy’s metric or Prohorov’s metric [6, 30]. Al-
though the proof of Theorem 4.9 relies on separability of X, it has to be noted
that the metrizability of M, (X) is related to the so called problem of measure {6,
12] and that the examples of non-metrizable M;(X) are not known. So, there is a
strongly founded conjecture that for any metric space X, the topology of the weak
star convergence on the set M;(X) is metrizable and one metric is given by (9).

Moreover, it is known that, if X is a complete separable metric space (Polish
space), then so is M{{X).

There is another metric of weak star convergence [30, p. 117], similar to the
one introduced in Theorem 2.20.

4.10. Theorem. Let X be a separable metric space. Then there is a countable
set {f1, fa, ...} of uniformly continuous bounded real valued functions with values
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in [0,1] so that the span of this set is dense in the set of all uniformly continuous
and bounded functions on X . Now define

+oo _
,O(P,Q) — Z l(fnaP)2n<fnyQ)l.

Then p is a metric on M{(X), which is topologically equivalent to Prohorov’s
metric.

This theorem can be proved by noticing that the condition p(Py,@) — 0 is
equivalent to the condition (ii) of Theorem 4.6 applied to P; and Q. Since the
condition (ii) holds (as an equivalent condition to weak star convergence) only for
countably additive measures, we conclude that the metric of Theorem 4.10 can not
generally be extended to the unit ball of M(X); hence, the unit ball of M(X)
generally is not metrizable.

5. Finitely, but not countably additive measures
in the closure of the set of probability measures

In this section we discuss topics of relative weak star compactness and closed-
ness of the set of all probability measures. We will show that in a non-compact
topological space X, under slight additional assumptions (say, if X is a metric s-
pace) the set of probability measures My is not closed under the weak star limits.
We actually show the existence of an additive, but not countably additive measure
in the closure of M;. The fact that M; is not closed is the main rationale for
Prohorov’s theorem, which will be presented in the next section.

5.1. Nets and filters. Nets and filters are introduced in Mathematics as
generalizations of sequences. Nets were defined and discussed in papers of Moore
[moore] in a context of determining a precise meaning of the limit of integral sums;
early developments of nets can be found in papers [8, 18, 25, 26, 33]. Filters were
introduced by Cartan [10, 11] in the second decade of 20th century. The theory of
both filters and nets was completed by the mid of 20th century. We will give here
a brief account of basic definitions and theorems, largely taken from [35, Sections
11 and 12].

A set D is called a directed set if there is a relation < on D such that

(i) zx<zforallze D
(i) fz<yandy < zthenz <z
(iii) For any z,y € D thereisa z € D sothat z < z and y < 2.

A netin a set X is any mapping of a directed set D into X, usually denoted
by z4, say, like sequences.

Let D and FE be directed sets and let ¢ be a function £ — D such that:

(1) a <b = ¢(a) < p(b) for each a,b € E;
(i1) For each d € D there is an e € E so that d < ¢(e).

Then z.(.) is a subnet of the net x4; more often denoted by g, .

Let X be a topological space. We say that a net z4,d € D converges to some
point z € X if for each neighborhood U of z there is a dy € D so that z4 € U
whenever d > dy.
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Let S C X. We say that z4,d € D is eventually (or residually) in § if there is
a dyp € D so that 4 € S whenever d > dy. Hence, a net 2, converges to x iff it is
eventually in every neighborhood of z.

A net z4 is called an ultranetif for each S C X it is eventually in S or eventually
in ',

Let S be any nonempty set. A collection F of non-empty subsets of S is called
a filter if

iy Se F. :
(ii) If By,By € F then BN By € F.
(i1) If By € F and By C B5 C S, then B; € F.

A subcollection Fo C F is a base for the filter ¥ if ¥ = {B C S| B D
By for some By € Fo}, that is, if F is consisted of all supersets of sets in Fy. Any
collection Fy can be a base for some filter F provided that given any two sets
A, B¢ Fpthereisa C € Fgsothat C C ANB.

In a topological space X, the set of all neighborhoods of some fixed point z is
a filter, called the neighborhood filter. Its base is the neighborhood base at z.

A filter Fi is finer than the filter 75 if 7} D F3.

We say that a filter F in a topological space X convergesto x € X if F is finer
than the neighborhood filter at z.

A filter F is called principal or fized if MNper B # 0; otherwise it is called
non-pricipal or free.

A filter F on S is called an ultrafilter if there no filter on S which is strictly
finer than F. It can be shown [35, Theorem 12.11] that a filter F is an ultrafilter
iff for any B € S either B € F or B’ € F. For example, the family of all sets that
contain a fixed point = € X is an ultrafilter on X.

5.2. Relation between nets and filters. Both nets and filters are used
to describe convergence and related notions. In fact, there is a close relationship
between nets and filters.

Let 4,d € D be a net in X. The sets By, = {zq | d > dy} make a base for a
filter F; we say that the filter F is generated by the net z4.

Conversely, let F be a filter on a set S. Let D be the set of all pairs (z, F),
where F' runs over F and z € F. Define the order by (z;,F1) < (22, F2) <
F, D F». Then the mapping (z, F') = z is a net based on F.

5.3. Conditions for compactness. A topological space X is called compact
if every open cover has a finite subcover. The following conditions are equivalent
{35, Theorem 17.4]:

a) X is compact

b) each family of closed subsets of X with the finite intersection property has an
non-empty intersection,

¢) for each filter in X there is a finer convergent filter,

d) each net in X has a convergent subnet,

e) each ultrafilter in X is convergent,

f) each ultranet in X is convergent.
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5.4. Space of probability measures is not closed in M. Since M(X), the
space of generalized measures introduced in 3.14, is the dual space of the normed
space C(X), by Theorem 2.18 its unit ball By = {m € M | |m| = 1} is compact
in the weak star topology. If M;(X), the space of all probability measures, were
closed in M(X), then it would have been also compact, being a subset of By. Then
(at least if X is a separable metric space), since the topology on AM;{X) is metriz-
able, any sequence of probability measures would have had a weak star convergent
subsequence and Prohorov’s theorem and the notion of tightness (Section 6) would
not be of any interest. However, this is not generally true. For example, for X = R,
the sequence {P,} of point masses at n = 1,2, ... clearly does not have any weak
star convergent subsequence. However, it must have a convergent subnet, and the
limiting measure is in M ~ M;.

Here we give a rather general result [20] which proves the existence of a mea-
sure in the closure of M;(X), which is not a probability measure (not countably
additive). Before we proceed, we need a lemma concerning normal spaces. Recall
that a topological space X is called normal if for any two disjoint closed sets 4
and B in X there are disjoint open sets U and V such that A C U and B C V.
Equivalently, a space X is normal if and only if for any two disjoint sets 4 and B
there is an f € C(X) such that f(A) = {0}, f(B) = {1} and 0 < f(z) < 1 for all
xz € X (Urysohn’s lemma).

5.5. Lemma. Let X be a normal space which contains an infinite sequence
S = {z1,%2,...} with no cluster points. Then for any infinite proper subset So C S
thereis a function f € C(X) such that f(z) = 0ifz € Sp and f(z) = 1ifz € S\Sp.

Proof. Let Sg be any infinite proper subset of S and let S; = S~ Sp. Then Sy
and S; are closed sets (no cluster points), hence by normality, the desired function
exists.

5.6. Theorem. Let X be a normal topological space and suppose that it
contains a countable subset S = {x;,z2,...} with no cluster points. Let P, be
point masses at x,, that is, P,(B) =1 if z, € B and P,(B) = 0 otherwise. Then
there exists a w — * limit of a subnet P,, of the sequence of point masses P,. Any
such limit i satisfies:

(i) For any set B C X it holds either ¢(B) = 0 or Y(B) = 1, with ¥(S) = 1.
(ii) 1) is a finitely (but not countably) additive set function
(iii) For every finite or empty set B C X, (B) = 0.

The corresponding subnet nq is the net based on the filter of sets of 1-measure
1.

Proof. From the previous considerations it follows that {P,} has a cluster
point. Clearly, we must have a directed set D and a net z4 € S such that

(10) lim f (z) = / f(z) d (),

for some measure ¥ in the unit ball of M(X) and for all f € C(X). Then %
is additive; further, it is a straightforward consequence of (10) that ¥ has to be
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concentrated on S, i.e., ¥(S) = 1 and also that ¢(B) = 0 for any finite set B
(otherwise, one could modify f in such a way that the right hand side of (10)
changes without affecting the left hand side). Since ¥(S) = 1 and ¥(z,) = 0 for
each n, ¥ is not countably additive. Hence, (ii} and (iii) are proved. It remains to
show that ¥(B) must be 0 or 1 for any B. Suppose contrary, that there exists a set
B with ¥(B) = ¢, 0 < g < 1. Then SN B is neither a finite nor a cofinite set. For
a dp being fixed, infinitely many x4 with d > dy belong either to B or to B’. By
Lemma 5.5, there is an f € C(X) which takes value 1 at SN B and 0 at SN B'.
Then the right hand side of (10) equals ¥(B) = ¢ and for any € > 0 there is a dy
so that for each d > dp, |f(z4) — g| < e. Now suppose that B contains infinitely
many z4’s for d > dp, then we’d have {1 — g| < ¢; otherwise |g] < € which are both
impossible.

Therefore, we proved that any ¥ which is a w — x limit of a subnet {P,}
satisfies conditions (i)—(iii). An analysis of the construction of Radon integral with
respect to ¥, in 3.14, reveals that the subnet of convergence is the net based on the
ultrafilter F consisted of sets with (B) = 1.

5.7. Remarks. In any at least countable set X there exists a measure ¢
which satisfies conditions (i)-(iii). This can be shown using theory of filters and
the Axiom of Choice. The family of all sets B C X with ¥{B) = 1 makes a non-
principal ultrafilter. The existence of non-principal ultrafilters can be proved, but
there is no concrete example of such a filter.

Theorem 5.6 holds, for instance, in any non-compact metric space.

6. Tightness and Prohorov’s theorem

Although the notion of tightness can be defined in a more general context, in
this section we observe only probability measures on metric spaces. Hence, X will
denote a metric space, B a Borel sigma field and M;(X) the set of all probability

measures.
6.1. Definition. Let P be a set of probability measures on X. We say that

P is tight if for any ¢ > O there is a compact set K C X such that pu(K') <e.
The notion of tightness makes sense even if P is a singleton. In this case we
have the following result.

6.2. Theorem. If X is a complete and separable metric space, then each
probability measure is tight.

Proof. By separability of X, for each n there is a sequence 4,,,, 4,,,... of
open balls of radii 1/n that cover X. Choose i, so that

and let
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Since K C (J;«;, Ai, for each n, K is totally bounded set in a complete metric
space and hence K is compact. Further,

+o00 , +oo 1
P <Y P(UA)) <eX 5=
n=1 i<in 1=x1

hence P(K') < P(K') < e.

6.3. Definition. We say that a set P of probability measures is relatively
compact if any sequence of probability measures P, € P contains a subsequence
P, which converges weak star to a probability measure in M;(X). O

A precise topological term for relative compactness would be relative sequential
compactness in M;(X).

6.4. Remark. If X is compact, then from the previous section it follows
that any set of probability measures is relatively compact. Otherwise, we need
some conditions which are easier to check. One such condition is given in the next
theorem. The proof presented here relies on the material of the previous section
and departs from a classical presentation.

6.5. Theorem (Prohorov [28]). Let X be an arbitrary metric space and let
P be a tight set of measures. Then P is relatively compact.

Proof. Let X be a metric space and let P be a tight set of Borel probability
measures on it. Then for each n € IV, let K, be a compact subset of X such that
P(K,;) >1-1/n for all P € P; we may assume that K3 C K, C ---. A unit
ball in any of spaces C(K,)* is compact and metrizable. For a given sequence
{P.} of probability measures in P, its restriction to a compact space K, has a
convergent subsequence. Then we can use a diagonal argument to show that there
is a subsequence Py such that

(11) Py = P™ onk, n=12...

for some measures P(") on K,,. Since K,, are increasing sets, the restriction of P(")
to K,,_; must coincide with P("~V. Since P is in the dual space of C(K,), it
is countably additive, and by (11), P()(K,) > 1 —¢.

Now if B is a Borel subset of X, define

P(B)= lim P™(BNK,).

n—+oo
The limit here exists because of
PMNBNK,) > P™YBNK,_y) =P N BNK,_),

hence the sequence { P (BN K,)} is increasing and clearly is bounded from above
by 1. To show that P+ == P, we use the characterization of Theorem 4.6(iii).
Let F be any closed set in X. From (11) we have that

imPv(FNK,) <P™(FNK,) foreachn=1,2,...
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Further,
1
P (F) < Pu(F N Ky + ~

and so
1

— — 1
lim Py (F) < lim P (F 0 Kn) + = < PrUENK,) + ~

Letting now n — +oo we get that

that is, Py == P.

6.6. Theorem. Let X be a complete separable metric space. If P Is a
relatively compact set of probability measures on X, then P is tight.

Proof. By Theorem 4.9, the weak star topology on M;j is metrizable, so
relative sequential compactness of P as defined in 6.3 becomes the topological
compactness of P, that is, any open cover of P has a finite subcover. Here we
understand that the closure of P is in the metric space M;. Without loss of
generality, we may and will assume that P itself is compact in M;.

Fix e > 0 and § > 0. If P € P, then by Theorem 6.2 it is tight, so there is a
compact set K p such that P(Kp) > 1—¢/2. Being compact, Kp is totally bounded,
that is, it can be covered with finitely many open é-balls Bp;, i = 1,2,... ,kp. Let
Gp = U?, Bp:. By Theorem 4.2, there is a neighborhood of P (in the weak star
topology of M(X)) of the form

Up = {n| u(Gp) > P(Gp) ~¢/2}

The family {Up} pep makes an open cover of P and hence there is a finite subcover,
say Up,,... ,Up,. Then let K5 = Ji_, Gp,;. For any Q € P we have that

Q(Gp) > P(Gp) +¢/2> P(Kp)—€/2 > 1—¢,

which implies that also Q(K;s) > 1—¢. Let now K be the closure of the intersection
of all K, ,,; it is a closed and totally bounded set, hence compact, and we have that
QK)>1~cforall PeP.

7. Weak convergence of probability measures on Hilbert spaces

In this section we firstly review basic fact related to the weak convergence of
probability measures on finite dimensional vector spaces. The simple characteristic
function technique which is usually applied there, becomes more complex on infinite
dimensional Hilbert spaces.

7.1. Weak convergence of probability measures on R*. On finite dimen-
sional spaces, the notion of weak convergence of probability measures coincides
with the notion of convergence of distributions (see [6], for example). If F,, and
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F are distribution functions of k-dimensional random variables X,, and X respec-
tively, and if lim Fy, (x) = F(z) in each point T € R* where F is continuous, then
we say that the corresponding sequence X, converges to X in distribution. This
occurs if and only if P, = P, where F,, and P are probability measures on R™
- distributions of X, and X respectively.

A useful tool for investigation of weak convergence is the notion of a character-
istic function. If P is a probability measure on R¥, then its characteristic function
is defined by

(12) o(t) = / e!t=) dp(x)
Rk

where

k
x:(xl,.--,-'Ek), t:(tly"'atk): <taw):ZtlI1
=1

It is a well known fact (Bochner’s theorem) that a function ¢ defined on R*
is a characteristic function of some probability measure if and only if it is positive
definite, continuous at origin and ¢(0) = 1.

It is also a basic fact that P, == P if and only if lim,, ¢, () = (t), where ¢,
and ¢ are the corresponding characteristic functions. This is indeed a very strong
result, since it says that it suffices to test the condition (1) with only two (classes
of) functions, = + cos(t, z) and z — sin(t, x).

7.2. Positive definite functions. Let X be any linear vector space. A
complex valued function ¢ defined on X is said to be positive (or non-negative)
definite if for any finite A = (ay,... ,a,) € C" and z = (z1,... ,z2,) € X" the
following holds:

n n

Z Zai&jcp(xi - :cj) 2 0.

i=1 j=1

Positive definite functions have some interesting properties, which can be
proved directly from the above definition, using an appropriate choice of 4 and
z. We list some of these properties (see [21] for proofs):

(i) ©(0) >0

(i) © p(x) = p(-1)

(i1i) lp(x)] < 9(0)

(iv) lo(z) — 0(¥)]* < 20(0)(p(0) — Rep(z — )
v) ©(0) — Re p(22) < 4(p(0) — Rep(z))

From (iv) it immediately follows that a positive definite function is uniformly
continuous on X with respect to any metric topology if and only if its real part is
continuous at zero.
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7.3. Characteristic functions on Hilbert spaces. Let H be a real separable
Hilbert space. Let (-,-) and || - || be the inner product and the norm which defines
the topology on H and let {e;} be an orthonormal basis.

Let P be a probability measure on H. The corresponding characteristic func-
tion is defined formally in the same way as in finite dimensional spaces:

(13) olz) = / eXeV dP(y), ze€H.
H

A characteristic function uniquely determines the corresponding measure [27].

It is easy to see that the function defined by (13) is positive definite and
continuous at zero (with respect to the given norm). However, these properties are
not sufficient for a function to be a characteristic function, as in finite dimensional
cases. In order to proceed further, we need some facts about Hilbertian seminorms.

7.4. Hilbertian seminorms. A real valued function p defined on a vector
space X is called a Hilbertian seminorm if for all z,z;,2: € X and a € R:
(i) p(z) 20
(it) plaz) = |alp(z)
(iii) p(z1 + z2) < p(1) + pl22)
(iv) p(z) > O for some z € X
(v) pX(z1 + 72) + pHay ~ 32) = 2(p*(21) + p*(22)) ,
Due to (v), for a Hilbertian seminorm p one can define the corresponding inner
product:

(14 plz,y) = 30H o + 72) ~ Pl — 22))

Let now H be a Hilbert space. Besides its norm, one can define various Hilber-
tian seminorms on /. One such seminorm is, for example,

n

Z(m,ei)z, n€ N,

i=1

(15) pn(x) =

where {e;} is an orthonormal basis with respect to the original norm. The inner
product which corresponds to the seminorm (15)-is given by

pn(l‘a y) = Z(x7 6i><y’ ei>‘

i=1

Let IT denotes the set of all Hilbertian seminorms p that satisfy

(16) p(z) < Cljz|| for some C > 0

+o0
an sz(ei) < 400,
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for an orthonormal (with respect to the original norm) basis {e;}. It can be shown
that the quantity in (17) does not depend on the choice of an orthonormal basis in
H (see [22] for the proof and more details). Seminorms p, defined by (15) belong
to II, since pn(z) < |jz|| and 3 p2(e;) = n.

It is easy to see that

(18) pell = cpell foranyc>0
and
(19) pl,..A,anH—'——‘—?\[Z)f+pg+-"+p%€n.

Now denote by Z a topology on H defined by the following basis of neighbor-
hoods at zero:
{z€ H|pi(z) <er,---,pn(z) <en},

where p1,... ,pn € II, n € N, g; > 0. Equivalently, by (18) and (19), a basis of
neighborhoods at zero for the Z-topology is given by

{z € H|p(z) < e}, pell, e>0.

Then a sequence {z,} converges in the 7 - topology to z if and only if lim,, p(x,, —
z) = 0 for any p € II. The Z-topology is stronger than the norm topology. If a
function ¢ defined on H is continuous in the Z-topology it must be norm continuous,
but the converse does not hold.

7.5. Theorem. Let ¢ be the characteristic function of a probability measure
P on H. Then for any € > 0 there is a seminorm p. € Il such that for all x € H,
(20) 1—Rey(z) < pi(z) +¢

and  is Z-continuous on H.

Proof. Since H is a complete separable normed space, by Theorem 6.2 the
probability measure P is tight. That is, for a given € > 0 there exists a compact
set K. C H such that P(K') < /2. So, we have that

1 - Reg(z) = / (1~ cos(z,y)) dP(y) < / (1 - cos(z, ) dP(y) + ¢

€

< %/Ks(a:,deP(y)wLE

Since K, is compact and y +— (z,y)? is a continuous function, then it is bounded
on K. and we may define

ey ro=(3 ] @wrarw)”.
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It is now easy to show that p. is a Hilbertian seminorm which satisfies (16) and
(17), hence (20) is proved. From the inequality (iv) in 7.2 and (20) we have that

lo(z) = w(y)I® < 2(p2(z - y) +€),

which implies the uniform continuity of ¢ in Z topology.

7.6. Example. Consider the function f(z) = e~I=I?/2_ 1t is norm con-
tinuous and f(0) = 1. Using Schoenberg’s theorem (5] it can be shown that f
is a positive definite function. Suppose that f is Z-continuous. Then the norm
is also Z-continuous, which implies that there is a p € II and a § > 0 so that
p(z) < § = |jz]| < 1/2. For such a p we have that ) p*(e;) < +o00, hence there
is an e; such that p(e;) < & and so ||e;]} < 1/2, which is a contradiction.

By Theorem 7.5, f is not a characteristic function on H. 3

The next theorem is proved by Sazonov [29].

7.7. Theorem. A function ¢ : H + C is the characteristic function of a
probability measure if and only if it is positive definite, T-continuous at zero and

¢(0) = 1.

7.8. Weak convergence on H via characteristic functions. Contrary to
finite dimensional cases, the convergence of characteristic functions alone is not
sufficient for weak convergence of probability measures. Here is where relative
compactness of probability measures plays a key role.

Theorem. Let {P,} be a sequence of probability measures on H and let ¢,, be
the corresponding characteristic functions. Let P and ¢ be a probability measure
and its characteristic function. If P, == P then lim, p,(2) = p(z) forallz € H.

Conversely, if a sequence P,, of probability measures on H is relatively compact
and lim, pn(z) = @(z) for all x € H, then there exists a probability measure P
such that ¢ is its characteristic function and P, = P.

Proof. Since the mapping z — e'®¥) is norm-continuous, we have that
P, = P implies v, (z} = y(z) for all z € H. To show the converse, assume that
{P,} is relatively compact and that lim, n(z) = ¢(z) for all z € H, but {P,}
does not converge weakly. Then there are two subsequences { Py} and {P,~} with
different limits, P2} and P®). Then characteristic functions ¢, and @,» converge
to different limits (i.e., to characteristic functions of P! and P(®) respectively),
which is a contradiction to the assumption that {y,} is a convergent sequence.

7.9. Example. Let P, be point masses at e,. The corresponding charac-
teristic functions are p,(z) = e, where z,, = (z,e,). Then for every x € H,
lim, w,{z) = 1 and 1 is the characteristic function of the point mass at zero, F.
But clearly, { P,} is not a weakly convergent sequence, assuming that H is equipped
with the norm topology. To show that exactly, note that if P, = P in the norm
topology, then P can only be Fy because of convergence of characteristic functions.
Now since H is a normed space, there is an f € C(H) such that f(B;,,) = 1 and
f(B;/z) = 0, where B, is the ball centered at zero with the radius r. For such a
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function we have
/f(:r) dP,(z) = f(en,) =0 and /f(l) dPy(z) = f(0) =0,

so P, does not weakly converge to P.

7.10. Weak convergence on H with respect to strong and weak topology.
In this item, we observe H with the strong (norm) topology (H,) and with the weak
topology as defined in 2.2 (H,,). Although, by 2.10, the Borel sets are the same in
both cases, there is a difference in the concepts of weak convergence of measures,
arising from the fact that C(H,,) is in general a proper subset of C(H,). Hence,
if P, = P in H,, we need some additional requirements to conclude that
P, — P in H,, unless H is finite dimensional, in which case H,, = H,. In the
next two theorems we show that an additional necessary and sufficient condition is
“uniform finite dimensional approximation”, expressed by (22) below.

7.11. Theorem. Let {P,} be a sequence of probability measures on H. If
P, = P in H, and for alle > 0,

+oo

(22) liJ{[n 31111p Pn<;\,(z,e,:)2 > E) =0,

then P, — P in H,.
Proof. By Theorem 4.6(ii), it suffices to show that, under the above assump-
tions,

(23) /f(x) dP,(z) —>/f(m)dP(3:),

for every uniformly norm continuous and bounded function f. The idea of the
proof is to approximate f by a function which is continuous and bounded in H,,..
For z € H let gn(z) = Zfi}l(z,ei)ei. Then gn is a linear operator H — H,
llgn (@)l < (N —1)l|z|| for all z € H and hence [|lgn(z) — gn (W] < (N —1)|lz — yll,
so gn is uniformly continuous. Let now f be any norm continuous real valued
function on H,, with || f|| = M. The function z — f(gn(z)) is continuous in H,,.
Consider the difference dy(z) = f(z) — f(gn(2)) and fix a ¢ > 0. By uniform

continuity of f, there is an € > 0 so that

+0o0

ldn(z)| < 6 whenever [z~ gn(2)[* = ) (z,e:)? <e.
i=N

By (22), for such an € we can find Ny so that for each N > Ny we have

+o00

(24) P,(AN) <6 for every n, where Ay = {l‘ €EH l X:(:z,e,-)2 > 5}.
=N
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Now for any N > Ng we have

| [ 1@ Puto) = [ slomta aPu@)] = | [ dnia) dpw (o)

(29) <|[ av@aro)]+|[ v araa)
<64 2M5 = 8(1+2M,).

Further, by continuity of f, the fact that gn(z) — z as N — oo and the dominated
convergence theorem, for N > N; we have

(26) [ fonte) i@ - [ s(@)ap@)| <
Finally, since f(g(-)) € C(Hy), we have that

(21) |[ 1@ aruia) - [ san@)ap@) <5

where N > max(Ny, N1). The weak convergence of P, in H; follows now from
(25)-(27).

7.12. Theorem. Any weak star convergent sequence of probability measures
{P.} in H, satisfies (22).

Proof. Suppose that P, = P in H,;. For an € > 0, let Ax be defined by
(24). Since Ay is closed in the norm topology, by Theorem 4.6(iv) we have that,
for any fixed NV,

(28) im P,(An) < P(An).

Since {An} is a decreasing sequence of sets with ﬂ]’:,fl An = 0, by continuity of
probability measures we have that

(29) Jim P(An) = 0.

Now fix a § > 0 and choose Ny large enough so that P(An,) <8 for N > Ny. By
(28), there are only finitely many measures, say P,,,... , P,, such that P,,(An,) >

&; however, by continuity, there is an integer N; > Ny such that P, (An) < € for
all N > N;. Hence, for N > N; we have that

sup Pr(An) <6,

which is equivalent with (22).
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7.13. Theorem. Let P be a relatively compact set of probability measures
in Hy,. Then it is relatively compact in H; if and only if

+o0

(30) lim ]s;égp(;v(z,e& > e) =0,

for any € > 0.

Proof. By Theorem 7.11, (30) is a sufficient additional condition for relative
compactness in Hs;. Conversely, suppose that P is relatively compact in H, but
(30) does not hold. Then there is an € > 0 and a A > 0 such that for each n there
isan N > n and P, € P so that

+o0

(31) Po(Y (me?>e) >

i=N

By weak compactness in Hy, there is a weakly convergent subsequence of {P,},
which together with (31) contradicts Theorem 7.12. Therefore, (30) holds.

7.14. Theorem (Prohorov’s theorem in H,). Forr=1,2,...,let B, = {z €
H | ||z|] <r}. A set of probability measures P Is relatively compact on H,, if and
only if for every € > 0 there is an integer r > 1 such that P(B,) < ¢ for all P € P.

Proof. A key point in the proof is the observation that H,, may be represented
as the union of balls B, = {z € H | |lz|]| <r},r =1,2,..., which are compact sets
in the weak topology (Theorem 2.18) and the weak topology on B, is metrizable.
So, the proof of the “if” part goes in the same way as the proof of Theorem 6.5.

For the converse, it suffices to prove that if P, is a weakly convergent sequence
in H,, then for each € > 0 there is a ball B, such that P,(B)) < ¢ for all n. Indeed,
assuming that we proved such a claim, suppose that P is relatively compact and
that there is an € > 0 such that for each positive integer n there is a measure P, € P
with P(B)],) > e. Then there is a subsequence P,,» which is weakly convergent in H,,
to some probability measure P, and we have that P, (B.,) > ¢. Since n’ = +oo0,
this is a contradiction with the assumed claim.

So, let P, — P in H,, where P,, and P are probability measures. Then
by continuity of P, for any € > 0 there is a ball B, such that P(B,) > 1 ~¢/2.
Consider now the open sets (in fact, U-sets) in H,:

m

k
, . 1
G’i,r) :{zeHl E (x,ei)2<r2+g}, kom=1,2,...
=1

Then it is easy to see that the sets GLT) are decreasing as & and m increase.

,mn
Moreover,



268 Merkle

By Theorem 4.4, for each k and m we have
lim Pa(G{7),) > P(G) 21~ 2,
hence there is an ng such that
Pn(G(r) y>1—¢ foralln>ng.
For a fixed n, letting here K = 400 and m — +00; we get
Pp(B,) >1—¢ foralln> ny.

Now, for each of measures P; (1 < i < ng — 1) there is a ball B,, such that
Pi(B;,) >1—¢. Let R = max{r,r{,r2,... ,rno—1}. Then P,(Bgr) > 1-¢ for all
n > 1, which was to be proved.

7.15. Example. Let P, be unit masses at e,, as in Example 7.9. We will
show that P, is relatively compact in H,,. Indeed, all P, are concentrated in By,
hence by Theorem 7.14, the sequence {F,} is relatively compact. Moreover, since
en — 0 in the weak topology (Example 2.3), then f(e,) — f(0) for any f € C(H,,).
Hence, [ f(z)dP,(z) = f(en) = [ f(z)dPo(z), where Py is the unit mass at 0. So,
{P.} is a weakly convergent sequence in H,,, P, == Fp, which is also consistent
with Example 7.9.

7.16. Relative compactness via characteristic functions. In the next two
theorems, we give conditions for relative compactness in H,, and H; in terms of
characteristic functions. Recall that by Theorem 7.5, to each characteristic function
v and an € > 0 there corresponds a Hilbertian seminorm p, such that (20) holds.
Let P = {P,} be a set of probability, where a belongs to an index set 4. A
seminorm which corresponds to the characteristic function ¢, of a given P, with
an £ > 0 in the sense of (20), will be denoted by p, . Let us note that p, . are not
uniquely determined. One natural choice is given by (21).

In the proofs of the next two theorems, a key role is played by the integration
of a Hilbertian seminorm with respect to a finite dimensional Gaussian measure.
Let p be a Hilbertian seminorm and p(-,-) a corresponding inner product as in
(14). Suppose G is an N-dimensional Gaussian measure which is concentrated on
R" spanned by {e1,e3,...,en}, as a product of N coordinate measures A (0, o?).

Then

N N
[r@de=[ o3 i, 3_2561) 4010
= ZZ/ z;x;plei, ;) dG(x)

i=1 j=1
N

:;/ ziples, e;) dG(x)

(32) = UZZPQ(GJ
i=1
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7.17. Theorem A set of probability measures P = {P, | « € A} is relatively

compact in Hy, if and only if for every € > 0 there is a set of seminorms {p, ¢ }aca
such that

+00
(33) sup Zpi_s(ei) < +00.
€A i=1 ’

Proof. By Theorem 7.14, we need to show that the condition (33) is equivalent
to the condition that for any € > 0 there is a ball B, such that

(34) P,(B.)<e forall P, eP.

For a given ¢ > 0, assume that (34) holds for £/2 in place of € and with some
B,. Then, as in the proof of Theorem 7.5, we show that

1-Repy(z) < pae +¢,

where ¢, is the characteristic function of P, and
2 1 2
(35) @) =3 [ @) dPau)

Then we have that
+o0 1
S e =5 [ IvlaPaty) <77,
i=1 2 B,

so (33) holds.
Conversely, fix an € > 0 and assume that (33) holds for some family of semi-

norms {pa.}. Let
_ N
Ay = {y € H | Z(y,ei)2 > rz}, N=1,2,...
=1

Note that A,; C A2 C -~ and ULY, 4,n = B, so

(36) NHTOO Po(Arn) = Pa(B;)

For an y € A, v we have that

N

1 . _ 1
1—exp(——272— Z(y,ei)z) >1-e 12> 3
i=1
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and so, for every P, € P,
1 1

_ — 2

5Pa(Ar,N) < /A,,N(l exp( 573 -2:1 y)) dP,(y)

2

N
(37) <1—/exp( Z )dPo,(y).

Let G be a Gaussian measure on R", defined as the product of coordinate Gaussian
measures NV'(0,1/r?). Its characteristic function is y — exp(— Zfil y?/2r2) and

we have

1 N
09 [ e(gpSan)ano= [ [ oo ) ar e
Let

Pan(2) / exp( Zyz ) dPa(y).

Forz = Zf;l z;e; we have that 9, N () = @a(z) and so Re o n(z) > 1-p2 (z)—
. Then from (38) we get

1 &, \
/exp(—éﬁ ;yi)dPa(y) > 1—/RN Poc(z)dG(z) — € |

1 N
(39) = —-;Z Pac(e) -

From (37) and (39) we find that
Py,(ArN) < = Zp e+ 35

Now let N — 400 and use (36) to get

+00

3 2
Pa(Bql-) S ;2_ Zpa,s(ei) + 357

=1

which proves that (33) implies (34).

7.18. Theorem. Suppose that P = {P, | « € A} is a relatively compact set
of probability measures in H,,. Then the following conditions are equivalent:
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(i) For any € > 0 there is a choice of {pae}aca SO that

+o00
lim su 2 (e:) =0,
N——>+ooa€gi__ZNpaE( l)
(ii) For any ¢ > 0,
+o0

lim sup Pa(z(z, e)? > 6) =0.

N—+00 gc A et

Proof. Assume that (i) holds. From (20) it follows that

Re / exp(i(z, y)) dPa(z) > 1~ € ~ p2,(y).

271

Put here y = Zf:zv aje; and integrate with respect to the product of coordinate

Gaussian N(0, 1) measures to get

/exp(—— :S (

7

2o

Now letting S — +o00 and using the monotone convergence theorem, we obtain

1% R
(40) [exw(~5 X t@e?) dPa(@) 2 1= = 3 (e
Jj=N

=N

Introduce the notations:

DN | =
]

I
z

+o0
Z p?x,e (€j) = Sae(IV),
J=N

Then for any A > 0, (40) yields:

1 €= Sac(N) < / exp(~X (N)) dPy (z)

s
:r,ej)Q) dP,(z) > 1-¢- Z P2 . (e5)-
j=N

(z,e;)> = X(N).

- / exp(~X (V) dPa(z) + / exp(~ X (IV)) dPa(z)
X(N)<A X(N)>A

< Po(X(N) < A) + e Pa(X(N) 2 )
=1—(1—eM)Pa(X(N) > 1),

wherefrom we get

€ + 5up, Sa (V)

sup Pa(X(N) 2 A) < TR
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Letting here N — +00 and then ¢ — 0 and assuming that (i) holds, we obtain (ii)
(with 2X in place of €). Note that this part is independent of the assumption that
P is relatively compact in H,,.

To prove the opposite direction, assume that P is relatively compact in H,,
and that (ii) holds. Let p, . be seminorms defined by (35). Then we have

+o00
2 Z pi,s(ei) = /
i=N B

Taking the supremum with respect to o, letting N = 400 and A — 0, we obtain
(i).

7.19. Theorem. A set P = {P, | a € A} of probability measures on H,
is relatively compact if and only if for every € > O there is a set of seminorms
{Po.c}aca, related to P, as in (20), such that the following two conditions hold:

(i) For every e > 0,

400

+o00
(z,€:)? dPa(z) S A+72Pa (Y (z,€0)? > )\).
N =N

roj=

+00

sup Zpi,g(ei) < 400.
a€A)

(ii) For every € > 0,

Proof. Directly from theorems 7.13, 7.17 and 7.18.

7.20. Remarks. Let us remark that if the above conditions on seminorms
hold for one choice of the family p, ., they need not hold for some other choice. For
instance, suppose that & = 1,2, ... and let p, . be a family of seminorms related to
characteristic functions via (20) and satisfying (33). Then the family of seminorms
qn,c defined by ¢2 , (2) = np}, (z)/ S P2 (e;) also satisfies (20), but not (33).

Theorem 7.19 is proved in [27] by different means. The analysis of a rela-
tionship between weak convergence on H,, and H; is adopted from [23]. Separate
conditions in H,, may be useful since they are easier to check.
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