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PREFACE

These Proceedings contain some of the papers which were submitted or
presented at the Symposium ’Set Theory. Foundations of Mathematics” held
in Belgrade from August 29th to September 2nd 1977, on the occasion of the
70th anniversary of Professor Djuro Kurepa. The Institute of Mathematics in
Belgrade organized this Symposium.

Because of the heterogeneity of the submltted reports, the Proceedings
are arranged in the alphabetical order of the authors and not according to
the subjects. At the end of the Proceedings a panel discussion, held during
the Symposium, is attached. All reports are devoted to the work and results
of Professor Djuro Kurepa on the occasion of his 70th anniversary.

Professor Kurepa has about 180 published papers in various fields: set
theory, algebra, topology, analysis, etc. therefore, we think that only a special
publication of his collected papers would give an insight of his fertile scien-
tific work.

The Institute of Mathematics in Belgrade has for the first time decided
to organize a symposium in the mentioned fields. After the first result, we
hope that such symposiums will become a continuel practice and that they
will be held every fourth year either in Belgrade or in some other place in
Yugoslavia. We also believe that we could in the future organize them in
close cooperation with the Association of Symbolic Logic.

At the end, we would like to use this opportunity to thank, before all,
the members of the Scientific Committee for their support and suggestion, as
well as the sponsors of the Symposium i.e. The International Union of Mathe-
matician, The Rebublican Association for Science of F.R. of Serbia and
The Union of Regional Associations for financial aid.

We also express our thankfulness to all participants of the Symposium,
particularly to those who gave their papers for inclusion in these Proceedings.

Sccretary
of the Org. Committee
T. Andjelié
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DESCRIPTIVE SET THEORY AND INFINITARY LANGUAGES

John P. BURGESS

Kurepa trees, partitions, Jensen’s principles, large cardinals, and other notions from com-
binatorial set theory play an enormous role in the model theory of generalized-quantifier languages.
(See e€.g. [29).) Borel and analytic sets, Polish group actions, and notions from descriptive set
theory can play almost as large a role in the model theory of certain infinitary languages. (See
[31] and [32]).) The present paper is a study, by the methods of descriptive set theory, of the class
of strong first-order languages. These, roughly, are the infinitary languages which are strong
enough to express wellfoundedness, at least over countable structures, yct weak enough that the
satisfaction relation is Aj-definable.

Examples, culled from the literature of exotic model theory, are present in § 1. The set-
-theoretic machinery for their study is set up in §§ 2-4. §§ 5 and 6 are devoted to an exposition
of the properties shared by all strong first-order languages. Most notubly: There is a guasi-
constructive complete proof procedure involving rules with ¥, premisses for any strong first-order
language, and even the weak version of Beth’s Definability Theorem fails for every such language.

Many of the results in this paper date from the author’s days as a student in R.L. Vaught’s
seminar at Berkeley, 1972-73. At that time I had the benefit of correspondence with Profs. Barwise
and Moschovakis, and especially of frequent discussions with Prof. Vaught and D. E. Miller,
Most of this work was included in [6), and a few items have appeared in print ([5]; [8], § 2).
More recent discussions with Miller led to the discovery of the proof procedure and the counter-
example to Beth's Theorem aliuded to above, and to the writing of this paper.

§ 1 Some Infinitary Languages

Throughout this paper siructure means infinite structure and vocabulary (set
of predicates, function symbols, and constants) means countable vocabulary. Re-
ferences for some possibly unfamiliar notions such as primitive recursive (PR)
set functions or A;#FC definability are recalled at the beginning of §2.

1.1 Borel-Game Logic L.z
We introduce codes for Borel subsets of the power set « as follows:

E(0)={(0, n):nEw}; x+1)=5@@U{(l, &:ecB(x)} for a even; (x+1)=
=85@U{2, N:fio—> &)} for a« odd; ) =U{8(x):a<<A} at limits;
=8 (w,). The Borel set B(e) coded by ec§ is determined as follows:
B0, M)={uCw:ncu}; B, €)=complement of e}y B2, )=
= U{B(M):nEw}.
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The class of formulas of L,z in a vocabulary R is the smallest class which
(i) contains the atomic formulas of R; (ii) is closed under negation —; (iii) is
closed under (single) quantification V¥, 3; (iv) is closed under conjunction and
disjunction A, V, of arbitrary sets of formulas, so long as the result has only
finitely many free variables; and (v) is closed under the following operation:
Given ec g and /54 @ and formulas &, ...4, (% ... %, v,...Vy) indexed.by
I< & with free variables as shown, we may form the following formula ¢ (y, . . . u.):

(*B) Afuefvvu VHEIBH Afzefvpz V,—lE;EI,,J_ . .
A g (U Uy Vo VIE R ()

The class L,p(R) of sentences of L,z in vocabulary R consists of those for-
mulas without free variables.

Satisfaction for L.p is defined as follows: Given an R-structure 2 and

.. b, & U, the formula @ (u, ... u) of (*B) suggests an infinite game for

two players PRO and CON CON opens by picking i1, g,& |?I| PRO res-
ponds with i,&1, a,€|%|. And so on until infinite sequences =i, i, i, ...
and a=a, ay, a;... are generated. PRO wins if {n: U =@y ...;0 (01 ... by
a, . . .Bn)}eof;(e). Since the set of pairs i, a constituting wins for PRO is a
Borel subset of /@ x|%[“, by Martin’s Borel Determinacy Theorem [22], either
PRO or else CON has a winning strategy for this game. We define W |—¢ (b, ... 5,)
to hold if PRO has the winning strategy. |

If we wish to identify formulas with set-theoretic objects, we can proceed
much as is done in [17] tor L, ,. In particular we take nonlogical symbols to
be just certain hereditarily countable sets. We can identify the formula of (*B)
with, say, (e, (9,:6=1<%)). It i1s then not hard to see that sentencehood for
L.p i1s a PR notion.

1.2. PROPOSITION Satisfaction for L.p is A%

PROOF. Any notion defined by a reasonable induction from A 2FC notions is
A ZTC, so it suffices to show satisfaction for a formula of L,z can be defined
in a A ZF¢ fashion in terms of satisfaction for its subformulas., We consider
the case of the formula ¢ introduced by (*8). Fix U and 4,...5,&}¥U| as in
the definition above of satisfaction for ¢. Let fil<@x|3(|<®— {0, 1} code
satisfaction for subformulas of ¢:

flo,(ay...a)) =0 |=e, (... by, a,...a,)

A strategy for PRO in the game associated with ¢ is essentially a pair of
functions F:I<e x| UYf~e—> [, J:I<ex|A[<®-— ||, Applied to sequences
i=iy,4,4,,... and a=¢g,, a;, a,,... 5° and T produce the sequences:

(D s=iy, 7 (i), (@), iy, F ((y> i) (25, @) Lrse ..

t=aq,, g(((f:})’ (@), ay, g'(((fu, i), (‘Iuﬂ ag}), ...

Let 6,=0,(.%, 7, i, a) be the finite sequence of the 0% through n* terms of
s, and define ¢/, similarly from t. In this notation, ¥ (= (b, ...by) iff:

2) 3 strategies ., T VieIo, ac|U|* {n:f(oa, 7.) =0}E B (e)



Descriptive set theory and infinitary languages 11

Now i1t is well known that every Borel subset of the power set of @ can
be obtained from clopen sets by the fusion operation (1). Indeed the usual
proofs of this fact reveal that we can obtain an operation (4) representation
of G3(e) in a PR fashion from the code e, i.e. there is a PR function 4
from & to the power set of 2<®x w<® such that for all x=2%:

{mxm=0G B Iycu>Vn(x|n y|mccq (e
Thus (2) 1s equivalent to:
(3) 3,9, T Vi, aVxE2° Vycw® 3n
(x @ FEf (0 ) v (3|0, y I MEN (1, &)

where, let us recall, (1, ¢) codes the complement of 43 (e).

Now for given strategies %7, J let 2 =2 (.5, 7) be the set of all four-
tuples i,=(i,,4; ... 0, apy=(ay, a1 ... @), E=0xp, X, . .. Xpn, s =Vo> 1+ -+ Vans 1)
such that for all m<2n+1, x,=f(c,, T, (where o,, 7, arc the obvious initial
segments of the sequences in (1)) and (E|m+ 1, n|m+ 1)==4 (1, €). Partially
order 2 by letting one four-tuple p be below another ¢ if every component
of p extends the corresponding component of ¢. Then (3) is equivalent to:

'Y (a) 3.5, T (2 is wellfounded)

Morcover, the existence of a winming strategy for PRO is equivalent to the
nonexistence of a winning strategy for CON, so (a) is equivalent to:

(4) (b) —3. .9, T (2’ is wellfounded)

where 2’ is defined dually to £. Examination of the construction shows &2, &’
are obtained in a PR fashion from %%, 7/ and the data ¢, . Every PR function
is AZFC, as is the notion of wellfoundedness. Further Martin’s Borel Determi-
nacy Theorem, which implies the equivalence of (4) (a) and (b) is provable in
ZFC. It follows (4) provides a A ZfC definition of satisfaction for ¢ in terms
of satisfaction for its subformulas ¢,, as required.

1.3 L,

For any uncountable cardinal x, the formulas of L., are those formulas
of L,p which, as set-theoretic objects, are of hereditary cardinality <Ix; briefly:
L,p=LopMH{(). Up to a harmless relabelling, these are precisely the formulas
with <<x subformulas; and for regular x constitute the smallest class closed
under —, ¥, 3; under A, V for sets of <<x formulas; and under operation
(*B) for index sets [ of cardinality <x.

1.4 Vaught’s Closed-Game Logic Lug

Let e€& be a code for {w}. For this ¢ (*B) can be written more per-
spicuously:

(*G) Al'uEfvvu \V’l']"EIHvl e /\ﬂ@lﬂ“-fﬂ {ul - = 'Hks 'l-’ﬂ o 'vn)

The sublanguage of L.p obtained by allowing only this special case of (,.B)
we call L., We also set L,o=LaogMH (). Vaught [31], {32] has extensively
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investigated L, ¢, and formulas of form («G) with I countable and the ¢,
quantifier-free formulas of L, are called Vaught formulas. The game associated
with (*G) is closed, and since the determinateness of such games can be proved
in ZFC—, satisfaction for L, is AZFC-,

Other fragments of L.z can be obtained by restricting the matrix of (#B)
to other special forms, e.g. the Gzp-game logic of [6], ch.4C.

1.5 On Keisler’'s L{w) and Related Languages

We form L,pp by restricting the game prefix in (xB) to allow only
quantifiers: Given e£§ and ¢,, 1€ w0, we form:

(+OB) Vv, v, Vv, 3 .. dm g, (U ., vy v E B

which can be regarded as a formula of L.g by inserting vacuous propositional
operations.

Lo, 08=LoorMHC coincides with the restriction to HC of the language
Keisler [16] calls L(w). This observation justifies our assertion in [5] that satis-
faction for L{(w)NHC is AZFC,

Leog 15 obtained by similarly restricting L. e Moschovakis and Barwise
[2] have studied this language, which (unfortunately) is sometimes called L. g.

Though obviously (considering propositional logic) L, o6=LegeMHC
is weaker than L, s, Vaught [32] remarks that over counrable models with some
coding built-in (e.g. models of arithmetic) the expressive power of the two languages
coincides.

1.6. Propositional Game Logic

We form L.pg by restricting the game prefix in (*B) to allow only proposi-
tional operations. Thus given e&§, and I+# @ and formulas ¢o(uy ... ux) all in
the same free variables, we form:

(»PB) Nict Viger Nipet Vel - @iy ... 1, .. 1)}E B (€)

This is equivalent to a formula of L., viz:

(1) V‘?I{m__*fj\' I V 'f‘\ —

1=l l,ih...  ycw® ‘ncw

VEc2mL &,y ne 1DEH ()
(/\m;—'—':n. E (r)=0 ’Fom!\ /\mf_in. E{m)=1 —‘Pﬂm)
where /4 (e) is as in §1.2 and o, is the obvious initial segment of:

o> o (o)) B1s o oy 10)s 15 - -

In particular, wellfoundedness cannot be expressed in L .ps. La,ps=LersMHC,
however, still vastly exceeds L, . in expressive power, since if the formula in
(+PB) is in L, pg, we can only say the equivalent formula (1) is in L;, where
= (QNo)+,
L.pg and L, pg (defined the obvious way) have been studied by Green
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1.7 Solitaire and Souslin-Quantifiers

We form L.sp (resp. Los¢) by restricting the game prefix (*B) (resp. (*G))
to allow only 3 and V. Formulas of these languages correspond to games in
which PRO makes all the moves and CON is a passive spectator. L,sp and L,se
coincide in expressive power. Indeed we can assign in a PR fashion to every formula
of the former an equivalent formula of the latter.

For
(#SB) ViectVierIMVierIvy ... {m @uiy. cin (- - -, Vo - V}EB(E)

is equivalent to:
(1) Vieer o Vyer -+ Vyeuo Aca Viert+, @ yintnech e

(V m<n, E=0 Pig...im A N\ m<n, E@y=1" Pig...im)

and hence to:

AV
(2) VfﬂE!v,}'nEtﬂapu . f[E‘IvJ’;Eﬂ-}HFIl.‘ AHE“}VEEF+1p (E.{Jn--—rn}}EC‘-/Y(ll

etc as in (1).

Distributing 1 through V and vice versa, we also se¢ that any formula
of L.se is equivalent to a formula of L..,. Malitz has shown that the class of
wellorderings of type «--2 cannot be defined in L., while Takeuti has observed
that it is definable in L, gc.

Further restricting (*SG) to allow only 3 produces Lwogse. L, os¢=
=Lwos¢MHC has been studied by Moschovakis and others under the name
Souslin-Quantifier Logic. Note that the usuval formula expressing wellfoundedness
still belongs to this language.

1.8 Sousiin Logic

Restricting (*SG) to allow only V produces L, pss. Explicitly this language
allows:

(xPSG) VetV net Vet NncwPloti. da
Lyips¢=Lopsc(H(x*) has been called x-Souslin Logic, or just Souslin Logic
for x=N,, and has been extensively investigated [9], [10], [11].

Of course (cf. §1.6) Lopsc does not exceed L., in expressive power; but
Souslin logic vastly exceeds L, .. For example, the class of countable well-
founded structures is a PC for Souslin logic, since a countable A= (|A|, EY) is

wellfounded iff it can be expanded to a model (% |, EY, R") of:
R linearly orders the universe in order type o A
=] VngMVJ'IENVE-zEW vee An{Pn

where ¢, expresses that the i,. element in the R-order stands in the relation
E to the i, element. This means that the wellordering number of Souslin logic
i >w,, the wellordering number of L, .. In fact, it may be as large as w,;
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see {7]. It is perhaps worth noting (following Vaught) that Souslin logic and
L, p¢ coincide in expressive power. For

AEOEmVEIEmAf;EmVI'_-,EW"' Ancpfnf:--vfn
is equivalent to

VicoVicoVheo -+ AaWiii... in
where the (., are determined as follows: For 6Cw<* let #(s) be the natural
code for o, 26 39 55 | For v={(j,, j,, -.. j.) let 4. be the conjunction

for all e=(iy, i1, ... i) with HH()<n of @i, Pikys Pikeirs Pigkoirkys » - - » WhHere
k:]:j:H:((iu}): kl =J4(Cipi )y

Green [11] shows that for all x the wellordering numbers of »-Souslin logic
and L, , p; coincide and equal the least ordinal not H{(x*) recursive in the sense
of [4]. Moreover she shows for cf x>, »-Souslin logic and L., coincide in

CXpressive power.

1.9 Kolmogorov R-Operation Logic

The formation rules of L., allow us, given formulas indexed by (J<«)<e
to form the following horror:

(*R) A fwvvuﬂ Vi W1 A sy Vvi}z Vigy gy « -
Vagco V fmaviﬂ A f1 Vvll v fna.vlz A ilavvlﬂ "
An‘lEm /\ fzgvvzﬂ VEEIHVZI Afzzvvzz V 5233‘?23 .

L /A\r q)“ﬂﬂ---f{]nn}.-.(irg-..frnr) (Hl o uk, Vuﬂ . o 13,-_.“,)

For fixed A and b ... hx=| U] the obvious game of length w? associated with
(*R) is equivalent to the following game of length w, in the sense that the same
player has a winning strategy: CON picks elements of 7 and [ | which we call
igo and apg. PRO then has three options: to challenge immediately, to pick elements
we call i1, a@p; and then chailenge, or to pick such elements without challenging.
If PRO does not challenge, CON then picks elements we call iy,, agp, and PRO then
again has the same three options. If PRO eventually dces challenge just after
ion,» Qon, have been picked, PRO then also picks elements we call i, aj9. CON
then has three options analogous to those PRO had ecarlier. If CON does not
challenge, PRO picks another pair of elements, and CON has the same three
options, and so on. If CON eventually challenges after 7y,,, @,,, have been picked,
he also picks elements we call iy, ag9, and PRO has three opticns again, and so on.
In the end, PRO wins if cither each player challenges infinitely ofien and the matrix
of (*R) comes out true with the a’s replacing the v’s and the b’s the u’s, or if at
some point it is PRO’s option to challenge and he lets infinitely many moves go
by without doing so. We leave it to the reader to see that this game really is equi-
valent to that suggested by (*R). Note that the set of sequences i€ 1%, a&|U|%,
which constitute a win for PRO is a Borel (in fact, G5) set. This means we can
associate to each formula of L,g, in a PR fashion, an equivalent formula of
L.s, and former language can be regarded as a sublanguuge of the latter in a
generalized sense.

Lo,x=LogMHC was mentioned under the name 22 in [8], § 2. The langu-
ages LY, v>>w;, mentioned there are all sublanguages of L.z in the same sense
that Lmﬂ 18.
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§ 2. Some Definability Theory

For any vocabulary R, let X(R) be the set of all R-structures with
universe w. KCXR) is invariant if for all Ac X R), A == VLE K implies AKX,
We will be concerned with four classifications of invariant subsets of X (R).

2.1 Recursion Theory

Let X (R) be the product of one copy of 297 for each »-ary predicate in
‘R, one copy of w®” for each n-ary function symbol, and one copy of for each
constant. Any x& X (R) corresponds in an obvious way to an Y,EX(R). E.g.
if R has just one binary predicate, x<29%% corresponds to the structure con-
sisting of universe w equipped with the binary relation whose characteristic
function x is. KCXR) is called invariant if the corresponding subset of X (R)
is. This amounts to nvariance under a natural action of the group w! of
permutations of © on X (R); see [32].

At least for finite R, we can classify subsets of X (R) as 0 IS, AL ari-
arithmetical, HYP, Z,, Il,, A, analytical, etc. according to their definability
by various types of formulas of second-order arithmetic. For the elements of
this theory see [27], ch. 14— 16, If we allow parameters to appear in the defi-
nitions we obtain the boldface notions Xy, etc. By tedious but routine coding,
these boldface notions can be applied even to infinite R. We call a subset of
X (R) Z., etc., if the corresponding subset of X (R) is.

2.2 Topology

Give 2={0,1} and « the discrete topologies. Give each 2/, ! the product
topology (making them homeomorphs of the Cantor and of the irrationals, res-
pectively). Give each X(R) the product topology. Finally give £ (R) the topology
that makes x-»> %, a homeomorphism. Then each of these spaces is Polish
(separable, admitting a complete metric). We may classify subsets as open, closed,
F,, G5, Borel, analytic, co-analytic {CA), PCA, projective, etc. For the elements

of this theory see [19].

2.3 Set Theory

We assume familiarity with the Levy hierarchy of formulas of the language
of set theory. The appendix to [2] contains a useful summary cf the needed mate-
rial. A class K158 XZ,(F) (resp. Zp(V)) if it is definable over the universe ¥ of set

theory by a 2, formula without parameters (resp. with parameters). II.(V) is
defined similarly; and K is Anx(¥) if both Zp(¥) and (V). The boldface notions
are defined similarly. X is A,7, where T is a fragment of ZIC, if it i1s Agx(V)
by 2. and II, definitions whose equivalence is provable in 7. K is A,T, if of form

{x:(¢, x)EK'} where X' is A,T, and ¢ is a parameter. We are most interested
mn the cases T=KP (Kripke-Platek admissible set theory, with Infinity), ZFC™
(Zermelo-Frankel set theory with Choice and without Power Set}, and ZFC.
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HC=H(%,) is the set of hereditarily countable sets. K{C HC is Z,(HC) (resp.
Za(HC)) if K is definable over HC by a 2, formula without parameters (resp.

with parameters from HC). The II and A notions are similarly defined.

Familiarity with the primitive recursive (PR) set functions of [14] is also
assumed. These functions include all functions with reasonably simple inductive
definitions. They are all A;%¥?. A class K is PR if its characteristic functicn is,
and is PR if of form {x:(f, x)EK’} for some PR K’ and some parameter ¢,

2.4 Model Theory

Let L* be a language. A class K of R-structures is an elementary class
for L*, in symbols EC(L*), if Kis of form Mod (p)={A:¥|=¢} for some
e L*(R). X 1s a pseudo-clementary or projective class for L™, in symbols PC(L*),
if for some vocabulary S disjoint from R and some sentence @' &L¥(RUS)
such that K is the class of all R-reducts of models of «'. Equivalently, K is
PC(L*) if it js of form Mod (38 ') for some existential second-order sen-
tence 38 ¢, ¢’ cL¥R_jS). By abuse of lanpuage, we call KCZL(R) EC(L*)
or PC(L*) if it is the restriction of such a class to structures with universe w.

For the definition of language in the abstract see [2] or [3] (where langu-
ages are respectively called systems of logics and logics). We call a language L*
first-order if:

(1) Sentencehood for L* 1s a notion PR, or PR in parameters from HC,;
or the restriction of such a notion to some H{x).

(2) Satisfaction for L* is a notion A (V), or A(V) in parameters from
HC; or the restriction of such a notion to ¢& some H{:x).

These counditions correspond roughly to absoluteness as in [2] (where the
terminology first-order is given some intuitive justification). All the langunages
of §1 are first-order, as is each L., We call a first-order language strong if:

(3) L* is closed under —, V, 3; under countable /., V ; under substitution
of formulas of L, for predicates; and the functions corresponding to these closure
conditions, e.g. the function ¢——¢, are PR, or PR in parameters from HC,
or the restriction of such functions to some H{(x).

(4) The class of countable wellfounded structures is PC(L*HC).

Much of (3) is included in the definition of language in [3] (though not in
12]). These closure conditions guarantee that any PC(L*) class of R-structures
is of form Mod (28 ¢") where 8 contains just a single binary predicate not in R.
{4) corresponds roughly to the notion not bounded below w| of [2]. The languages
of §1 are, but L., 1s not, strong.

2.5 Connections Among the Classifications

Addison [1] observed that for any of the spaces we have been considering,
the ciass of open sets and the class of =0 sets coincide, and similarly: H? = closed,

£ =F,, [1;=Gs Al~=Borel, X=analytic, IIj = Cd, I;=PCA.
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Ryll-Nardzewski, using Lopez-Escobar’s Interpolation Theorem for L,
showed that for invariant subsets of L (R), Borel= EC(L,,.). Also analytic=
PC(Lyw). See [20]. |

Kleene [18] in effect showed that for subsets of any of the spaces we
have been considering X, ;; =2, (HC). (Note that these spaces L (R), X (R) are
PR in parameter R, and are subsets of HC.)

Lévy's Teorem (cf. Appendix to [2]) tells us that each A (»x) is an elemen-
tary substructure of the universe ¥V with respect to 2, formulas. It follows that

for subsets of HC, X, (HC)=2,(V) in parameters from HC.

Barwise [2] in effect shows that for cardinals %>« and for invariant
classes of structures, PR in parameters from H(x)=Af" in parameters from
H(@)=EC(L,,). i

Jensen and Karp apparently knew that for subsets of the spaces we have
been considering, %} =PR in parameters from HC.

Vaught’s work [32] discloses the following: For a fixed Polish space, let
2 (0)=Borel sets; U(x—+1)=7(x) plus complements of sets in () for «
odd; 2 («+ 1)=sets obtainable from sets in 2 (x) by (A) for « even; U(A)=
= U{(a): a<<A} at limits; YU =%(w,). Where the fusion operation (/4) given
sets Ay, cCw?®, produces Ujsco®Mnew Aris. Classically the sets in 2! are
known as C-sets, and it is known < (1)==analytic sets. Then for invariant
subsets of <L (R), C-sets=EC(L,,), and moreover there 1s a level-by-level
correspondence between the “f-hierarchy and the complexity of sentences of
L, ¢ with analytic=EC (Vaught sentences), where the Vaught sentences are, as
in § 1.4, the simplest sentences of L, — Ly Moreover Ryll-Nardzewski’s
equation Borel=EC(L,,,) can be improved to establish a level-by-level corres-
pondence between the Borel hierarchy and the complexity of sentences of L, .

We extended this work of Vaught’s to scme other hierarchies in {8], §2
and [6], ch. 4. The following has been noted with varying degrees of explicitness
by several people:

2.6 PROPOSITION. For any strong first-order language L*, for invariant subsets
of %L (R), 234(¥) in parameters from HC=PC (L*NHC).

PROQOF. That every PC(L* N HC) class is %1(V) in parameters from HC is 1m-
mediate from the fact that satisfaction for L* is. To prove the converse fix a 2
formula ¢ and a parameter 1 & HC defining an invariant K S{(R).

Let & be the binary predicate of the language of set theory. The class

of countable wellfounded <-structures is PC(L¥MHC). Suy it 1s Mod (3 S 3¥)
where $CL*({<US)NMHC. Define inductively for x& HC a characterizing
formula y, of L., by letting yx, (v) be:

/\yExHH(—:ny(u) AVUcy ViyexXy (u).

2 3bopEAx panosa
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Let F be a singulary function symbol, and let r,a.t be constants. We assume
these symbols and & and the symbols in S are all distinct from the symbols
of R. Let T=RUSU{F, r, a, t}, and let & L(T)MHC be the conjunction of:

(1) A large enough finite fragment of ZFC.

(2) &

3) % (D~ %D

(4) a is an r-structure with universe o

) ¢ (& a)

() F 1s an injection ~ range F = universe of a.

Plus for each n-ary predicate RER:
(Ng Vv(xf(v) — Vv Ry, ...v) o> (Fv)... Fiv)&E
the a-interpretation of the symbol v))

and similarly for function symbols and constants. Here in (4), (6), (7), the de-
finitions of structure, universe, and interpretation are to be written out in terms
of & using the usual set-theoretic defimitions.

If WK, then by Lévy's Reflection Principle there is a countable transi-
tive model M of enough of ZFC with ¢, US M and M+ (¢, ). Using such an
M it is easy to construct a LEZ(T) with Lp-¢ and ¢|R=9L

Conversely given 8¢ with €[ R=%, (1) and (2) guarantee that £ is
up to isomorphism a transitive set. Then (3), (4), (5) guarantee that the inter-

pretation a~ of a in € is an R-structure satisfying the definition of K. (We
use here the fact that a X, statement true inside some transitive set is actually

true in the universe V.) Finally (5), (6) guarantee that A=a", so by invari-
ance of K, AEK.

2.7 Summary
For any strong first-order language L*, and for invariant subsets of ST (R),

we have:
(a) Aj =Borel=PR in parameters from HC = EC (Lo010)s

(b) Xt =analytic = PC (Lw,w) = EC (Vaught sentences),
(©) gé =PCA4 = %1 (HC) = %1 (V) in parameters from HC=PC(L*NHC).

§3 A Question of Vaught

3.1 PROPOSITION. For any first-order language L¥, and for invariant subsets

of L (R), we have:
EC(L*NHC)C A=A, (HC)
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PROOF. We only give a sketch since our proof has appeared in [21]. The inclusion
and the identity are immediate from 2.7 (¢). We tacitly assume R is nontrivial,
i.e. contains at least one binary predicate E. We say U< ({E}) codes x& HC

if A=(TC(y), €) where TC(y)={y}uyuuyuuy ... is the transitive
closure of y. An example to show the inclusion is proper is provided by

(AEX R): JQCL* (R)NHC (A, E®) codes p AU |= =)}

Vaught has asked whether for any invariant A; X % (R) there 1s some
first-order language L* for which X is EC (L*ﬁﬁC}. We will show this ques-
tion cannot be answered in ZFC.

3.2 A Positive Answer

For any partially ordered set of forcing conditions (PO set) /2, let ¥ be the
corresponding extension of the universe of set theory. (If you will, the Boolean-
-valued model associated with the complete Boolean algebra of regular open
subsets of /2) For simplicity let us assume R finite. Then we may define XC X (R)

to be absolutely A; if there exist X3 and Il formulas ¢, ¢ in a parameter ¢
from, say,w»®, defining K, such that for any PO set 7 '

(1) V2= Vx (o (t, x) > (1, X))

Here we are using elements ¢ of ¥ autonymously (writing ¢ rather than #).
We extend this notion in the obvious way to <€ (R). Note that if K is inva-

riant, then so is the set defined by ¢ and ¢ in any V7, since
(2) 23 y A=W Ao DA d ()

is a true II) statement, and I, statements are absolute by Shoenfield’s Theorem.
We show now how, given an invariant absolutely A K<L (R) to constrult a
first-order language L*C HC for which K is an EC. We begin by fixing defi-
nitions of the corresponding subset of X (R) satisfying (1) above. To further
simplify matters we suppose R contains just one binary predicate E.

For an arbitrary R-structure ¥, let 22 (A) be the PO set of the injective
elements of |A|<®, partially ordered by reverse inclusion, i.e. the usual condi-
tions for adjoining a generic bijecticn between « and |%;. Let X (A) be the
following term of the forcing language for /2 ():

{(p, ((m, n), D): pERP ) Am,nEdom p A
(((m, MEEX N i=0)V ((m, m)EEXAi=1)))

i.e. the canonical term for an element x of X (R) with A, ==. By (1) and (2)
we have:

(3) V2 = o (1, = () — P2, % (A))

2.
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4) r?Wi—o @, 2 ) o> IEXR) AU=AAo 1, )
S>VYEX (R, =UA— o, ¥)

| Any permutation 4 of « induces an automorphism H, of () and a
permutation #— #* of the terms of the forcing language. For any p,g&@ )
there is an A such that p, H;(q) are compatible (weak homogeneity). For any
h, x (A)* is still a term for an isomorph of A. It follows by (4) there cannot
exist p, <P (N) one of which forces ¢ (¢, x ()} and the other of which forces
its negation. Thus:

(5) Either V2D —g(t, x @) or else V7 & | — (¢, x30)
Let K+ ={A: V7 D=q(, W)}

K+ is invariant. For if 8=9, there is an isomorphism 72 (¥)==2 (A) such
that the induced map on terms carries x (%) to x(%).

K+tNR)=K For if xEX(R) and A, €K, then o, x) 15 true and
remains true in ¥? ) by Shoenfield’s Theorem whence by (4) V7 &=
= (2, * (U,)), ie. W zK+. Conversely, if A &K, by (3) and (4) U EKH.

K+ is A, (V) in parameter /. For ¢ is equivalent over all models to some
%, condition 0; and by the general theory of forcing there is a 2, 6" such that
for all PO sets /p, all pcp, and all terms @, VZ|=0(s, @) iff 0 (2, p, t, 1)
holds. Since, 72 (%) and () are PR functions of A, this implies K* is Z, (V)
in parameter £ Using ¢ in place of ¢ we get II, in place of Z,.

Now let L* be a language with but a single sentence pE HC, and | p
iff A=K+, L* is certainly first-order, and we can without difficulty fatten L*
up to a strong language witheut losing the first-order property. (CE {2].)
Finally, X is EC(L*).

The Solovay Absoluteness Theorem, [23], p. 152, implies that if Va3 i —
— (»),<%, then every A} set is absolutely Aj. Thus if enough large cardinals exist,
Vaught’s question has a positive answer. |

3.3 A4 Negative Answer

It is wellknown that any class K which is 2, (#) in parameters from HC

having o, €K contains a closed unbounded (CUB) subset of w,. It is also
wellknown that if F assigns to each countable ordinal « a wellordering of o
in type «, and for i=2"(2n+1)Ew, D,={a: m precedes n in F(«)}, then
for some i, neither D, nor w, —D, contains a CUB set. Finally it is wellknown
that if o, L=¢, then the function ¥ may be taken to be X, (V) and hence
(since its domain is ORMNHAC) A (HC). On this assumption, for suitable i,
K={c ({E}): A is a wellordering with order type =D;} is a subset of

L ({E}) which is invariant (in %€ ({£)})) and A, (HC) hence A;, but which can-
not be the restriction to “Z ({E}) of any (fully) invariant class which is A, (V)
in parameters from HC. Thus if of=w,, Vaught's question has a negative answer.



Descriptive set theory and infinitary languages 21

§ 4 Approximation Theory

Let L*, L° be languages. By an approximation function for L*, L® we mean
a function ¢: ORXL* -+ L" which preserves vocabulary; is PR, or PR in
parameters from HC, or s the restriction of such a function to some H{x); and
which has the property that for any sentence ¢ of L* the following is valid:

P> AacorC (% 9).
4.1 LEMMA. There exists an approximation function for L.¢, Lue-

PROOF. The basic idea goes back to Moschovakis [25]; see also [31].

We define by induction of subformulas two preliminary functions A4, %
ORxL,.¢=L.,. The easy clauses of the induction are:

A 9= A4 ) of (@ P =7 (2, 9)
S A=V {A( ¢):pc D}

A, VP)= V{A(x, 9):ecD}

F (@ AD)= P (a, VD)= A{F (%, 9): S D}

A, Vve)=Vv A(a, ¢) A (@, 3vp)=3v A(«, 9)

F e, Vve)= P, Ave)=Vv P (a, 9).

For ¢ given by (*G) of §1.4 the definition is more complex. Fixing « and ¢
for the moment we define auxiliary functions 4%, .%°* with domains OR x I<«,
OR respectively, by a subinduction:

A* (0, 6} = An<iengtho o/t (%, Do)

AT B+ L,0)=Vier A B 70

A¥(A, 0)= Apar AT (B, o) at limits

090* (B)= Anco Accrn Vl‘u---vﬂn(cfg* (B? G)'""" d%* (B+ L, G))
We then set:

U%(ms qJ)=CJ‘2'* (ﬂt, 0)

Q?O(’x? (P)=c9a* (‘I)AHEMAGEIN an...vvnc?’(m: ‘Pu)-

Readers of [31] should then have no difficulty in verifying that the follo-
wing are valid:

(1) F(x P> F (B, ¢) for a<B B
(2} Vacor S (%, 9)
(3) (%, ) = (> oA (2, 9)) for all «
(4) 2> Vacor (7 (% P A A (%, 9))
(5} 2> Aacor(S (% 9) > A («, 9)).
So it suffices to set % («, ¢)=(% (a, 9) > /2 («, @)).
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4.2 APPROXIMATION THEOREM. Let L* be any first-order language. Then
there exists an approximaticn function for L*, L.,

PROOF. By the Lemma it suffices to obtain an approximation function for
L*, L, ¢. For simplicity we will consider only the vocabulary R = {E}, £ a binary
predicate, and we will assume satisfaction for L* is 2;(}) (no parameters). On
these assumptions the approximation function will be PRK.

From the 2, definition of satisfaction we obtain a 5 formula 6 defining

={(x, NEXR: Joc L* (R)YNHC (y codes p AU i—1); and a 2] formula 9-

defining the set S~ obtained by replacing ¢ by — o 1n the definition of S. (Cf.
proof of Prop. 3.1.) The statement:

(1) —3xy0C. A (x AU =)

is I15, hence absolute.

From 6 we can obtain the index of a recursive functional F such that
(x, ) S iffs

(2) 3z F{x,y,z) is wellfounded.

By Shoenfield’s Theorem, the required z can be found in J(x, y), the class of
sets constructible from x, y. Hence (2) is equivalent to the existence of x<<w,
such that:

(3) d,&J(x,»y) F(x,y, z) wellorders & in order type <« where J, is the
ath level of the constsuctible hierarchy. From (3) we can readily obtain a X
formula ¢ such that the following holds:

(4) Vx,p 2z 2 (Y, is embeddable in WAy > (x, y, 2y > (x, y, z'))) and
for any x,y and for fixed « and z wellordering « 1n order type «, (3) is
equivalent to $(x, y, z). Note that (4) is I1;, hence absolute.

From this ¢ we can compute the index of an RE set W such that ¢ (x, y, 2)
is equivalent to:

(5) IwZw*Vrco(x||n yln, zijn,w n)=W

where x || denotes the restriction of x to (n+ 1) x (n+ 1) for x&C X (R) (=29%9),

Now let @ be a sentence of L* (R), 2 an arbitrary R-structure. Let @ =2 (),
x=x(20) be as in §3.2. Let 2 =2 () be the PO set of forcing conditions for
making TC () countable (i.e. for making @< HC), and let y=y(p) be the
canonical term for an element of X (R) coding ¢. Now if U|[—=¢, then A, ¢
satisfy the X, definition of satisfaction for L* in ¥, and will continue to do
50 in Vga"‘é‘2 Hence in that extension x and y will satisfy the X definition
9 of S. Conversely, if A |= g, X, y satisfy 9= in ¥”*2 and so by (1) do
not satisfy 6. So A '—q iff V@X-QIZB(J:, y). By our detailed analysis of 6

above, this condition is equivalent to:

(6) VP*2 |-—Ja<w IzEXR) W 2=(x, E)AP(, ¥, 2)).
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For fixed a COR, let R (a) be the PO set of forcing conditions fer collap-
sing a, and let z(«x) be the canonical term for an element of X (R) with
WU, ==(a, =). We claim (6) is equivalent to the existence of « such that:

(7) yPeLxR@| = (x, y, z(«)).

For if (7j holds for some «, then the >3 statement 1z (A, 15 a wellordering
Al (x, ¥, 2)) holds in pP<2xR@®)  and hence by Shoenfield’s Theorem in
yPx2 5o (6) holds. Conversely, suppose (6) holds and let B=card ("# x 2)*,
so B is still uncountable In y?*2  For any p&p, g= <, there will exist
P’ <p, ¢ =q and <@ such that (p’, ¢") forces 3z, = (x, E)AY (X, ¥, 2)).
It follows (p’, ¢', lg) forces the same thing, where /; is the trivial element of

R(B). By (4), (p', ¢, Ip) forces 3z (W, =B, ©)AY(x, y, 2)), and since p, g were
arbitrary, (7) follows.

Now fixing « and R="2R(«), z=z(«), (7) is equivalent to:
(3) VQKQKGQ:H}vEm”VnEm(x“n yl|n, zljn, w| ByEW.

For pc/? with dom pzn, define £(n, p) to be what p forces x||n to be. Thus

for 1, j<<n, (€(n, p)) (i, /) is O if (p(s), p(HEEY and 1 if not. Let 7, L be simi-
larly defined. Then we claim (8) is equivalent to:

(%) VPQECB Gy= — 9, f'gESQapripm g <Gy rl-{:rﬂaltﬂ, w,Cw
VD, <P <qp, 1y <<t AD3 <P 4342, 13 <1, TW,, WyEC ...
L REC P, 1 G, L 1) (R W)W

We will omit the proof of this equivalence, since it is a special case of more
general theorems of [15]. Now (9) is equivalent to the following sentence

holding 1n A:
(10) Akoo ¥V Vyo .- Vke—1 distinct Ao 2 A
VkIEma Vig« v« Vig+ky—1 distinct V @< g VTI{FD Y Wy, Wi EE s o
Aa Ve with &, nin, gy, C(n,r), (... w)CW
(Nijsnein=oV EV; A A jn g =1 Vi EY))

where here distinct means not merely that v, ... are distinct from each other,
but also that they are distinct from vy...v,.1. Tedious but routine coding
{(cf. Vaught’s remarks [32], § 3, on the closure of L, on passage to weak
second-order logic) produces 2 sentence £ («, ¢) equivalent to (10) which belongs
to L,g, and is independent of 9. It suffices to set C(x,9)=—2 («, —9).

§ 5 The Anti-Beth Theorem

Beth’s Definabillity Theorem for a language L* asserts that for any voca-
bulary R and any binary predicate S and constants ¢, d nct in R, that if ¢o&
L*(Ri_{S}) is such that any R-structure 2 has at most one expansion to a model



24 John P. Burgess

of ¢, then there exists 06 EL*(Ru{c,d}) such that for any R-structure U, if %A
has an expansion to a model of ¢, then (¥, {(a, d): (U, a, b){=0}) is that expan-

sion. Replacing ‘“‘at most one” by ‘‘exactly one” produces the weak version of
Beth’s Theorem.

5.1. ANTI-BETH THEOREM. Let L* be any strong first-order language. Then
even the weak version of Beth’s Theorem fails for L* W HC.

PROOF. It may help to isolate first the descriptive-set-theoretic content of the
construction, Let X=22x© We think of subsets of X* as m-ary relations on X,
writing Z(x, .. .xs) for (x;...xps)EZ. For x&X, icw, define (xhEX by
(x)l (j: k):x(ls 2/ (Zk'i_l))

Suppose we are given a family I' of subsets of and relations on X contai-
ning a T X? such that for all x:

(1) A, is wellfounded «—» Iy T(x,y)
and satisfying:

) TCA}

(3) All closed sets belong to I

(4) T is closed under countable —

(5) ' is closed under taking inverse images under continuous functions
We show how, given an arbitrary ﬁhi set K, to construct a HiHEI‘ such that:

(6) Vxdly H(x,y)
(7) ¥x,y (H(x,3)—> (K(x) &y (0, 1)=0)).
To begin with, fix E[{l sets P,  such that:
() Vx(K(x) > 3yP(x,y) > 1 yQ(x, ).
Define a I]i set A by:
(9 A%y o (Y0, 0=0APx(3))) v (y(0,0) =13 (x ()y)-
Note:
(10) Vx3y A(x, y).
Let B, be a IIj set uniformizing 4, i.e. B,C4 and
(11) ¥x3!y B, (x, ).
By the standard analysis of I}{ sets there is a continuous F,: X?— X such that;

(12) Vx! y (Bu- (x! }’) «— ﬂFﬂ (x. ») is Wellfounded).

Define:
(13) Cn(x:y: Z, u){_"z=Fg(x,y)A T (z, u).
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Note the graph of F, is closed so by (3), (4), C,&I'. Moreover by (1):
(14} Vx, y(By(x, y) >3z, u Cy(x, ¥, 2, u))-

By (2) C, is éi, so there exists a I_Ii set D,C X5 such that:
(15) Vx,y,z,u(C, (x, y, z, Wy «>»3v D, (x, y, z, V).

Let B, be a Ili set uniformizing D,, so:
(16 Vx3ly,z,u,v B, (x,y, z,u, V).

Reviewing the construction, it is clear the same y is involved in (11) and (16).

Now iterate the above steps, picking F,:X°— X, C,_X7, D,C X3, etc.
‘In the end we define:

(17) E,(x, ) > B, (X, (Mg -+ + (Dians 3)s

(18) G, (x, ) = Co(x, (- - - Msnss)-

Since the maps y — ((»),..-(»),) are continuous, the E, will be 1}} and, by (5),
the G, will belong to I'. Finally, set:

(19) H(x,y) > VnE,(x, y)

Reviewing the construction, and noting that (¥),(0, 0)=y (0, 1), we get (6), (7).
Moreover:

(20) Vx,y(H(x,y) > VnG,(x,)),

which, with (4), implies H<T.

Now to apply this construction to model theory. For ncw let R7=
{R,...R,} where the R; are binary predicates, and let S"=R"_J{®, @}, where
@, ® are binary function symbols. Let L* be a strong first-order language.
By the definition of strong, cf. § 2.4, there is a sentence ~= L¥(R>)( HC such
that the class of countable wellfounded R!-structures is Mod (3R, ). Define
TCX? by:

@l T(x,p) U n|—m

and let I' be the smallest class containing T and closed under (3)—(5) above.
It is wellknown that for any Borel ZC X™ there is a sentence L& L, (S") such
that for all x,...x;

(22) Z0x; oy e, . was +5 X¥=0

where +, x are the usual arithmetical operations on «w. Now the closure condi-
tions required of I' correspond to the closure conditions satisfied by strong
languages: (3) corresponds to L, .CL* (4) to closure of L* under countable
A, and (5) to closure under substetution of formulas for predicates. Exploiting
this correspondence, for every Z& I we can find a € in L* HC satisfying (22).
This, with 2.7 (c), implies (2).
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Let now a A3K C X be given, and suppose K is invariant. Let H be as
constructed above from K, and let n&L*(S)NHC correspond to H. Let
@y & L, (S°) express that @, ® are up to isomorphism the usual arithmetical
operations on w. Let o= (g, An)V (TP, AVu,v—R, (1, v)). Then by (6) every
St-structure ¥ has a unique expansion to a model of ¢. Suppose B6&L* (ST
W{c,d}) is as required by Beth’s Theorem. Using the closure properties of
L* we can obtain from 0 a JEL*SYNHC expressing that 6 holds of the
identity element of @ and the identity element of ®. Then by (7):

(23) Vx (KX)ol +, X)[=19).

It is not hard to see no ¢ satisfying (23) can exist if X is the counterexample con-
structed in the proof of Prop. 3.1. This contraditiction shows Beth’s Theorem

fails. ”

§ 6 Some Model Theory

We collect here what is known about first-order languages from §§ 1-3,
from Barwise’ work [2], and elsewhere.

6.1 DOWNWARD LOWENHEIM-SKOLEM THEOREM. Let L* be a first-
-order language, » an infinite cardinal, p€L*¥N H(x*), ¥ a model of ¢, Z a
subset of || with card Z<x. Then there is a substructure LCH with ZC |/,
card |¢|=x, and 2}-».

PROOF. This is Prop. 2.1 of [2]. For the languages of § 1, a direct proof using
Skolem functions is possible.

If L* is a language and 9%, & are structures of the same vocabulary, we
say oA and ¥ are L*-elementarily equivalent, in symbols U=%*4, if they are
models of exactly the same sentences of L*. We say Y ~% if there exists a
family _%° of partial isomorphisms between 2 and ¥ with the back-and-forth

property (V/E FVac|U|FbE 8| fU{a, )}E S and vice versa).

6.2 KARP PROPERTY. Let L* be a first-order language. Then for all struc-
tures A, &, A=*L iff A~

PROOF. For =, this is due to Karp, For the general case it is Prop. 2.5
of [2]. The equivalence of ==* and =, is greatly strengthened by the Approxi-
mation Theorem 4.2.

We say a sentence ¢ in vocabulary R is compact if for any vocabulary S
disjoint from R, where we here allow, contrary to our convention everywhere
else in this paper, uncountable S, and for any theory 7C L., (RUS), if ¢ is
consistent with every finite subtheory of T, then ¢ is ccnsistent with T.

6.3 GOLD PROPERTY. Let L* be a first-order language, and ¢ a sentence

of L* such that both ¢ and —¢ are compact. Then ¢ is equivalent to a sen-
tence of L, in the sume vocabulary.

PROOF. Gold [12] proves this for L., but examining her proof one sees it only
uses the Karp Property. —
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6.4 UPWARD LOWENHEIM-SKOLEM THEOREMS

(a) Let L* be a strong first-order language such that the ciass of @/l welifounded
structures is PC(L* C HC). Then for invariant classes of structures 2(¥) in para-

meters from HC=PC(L* M HC).

(b) Let L*, L#* be languages satisfying the hypothesis of part (a). Then
L*NHC, L¥MHC-have the same Hanf number.

(c) Let n be the common value of the Hanf numbers in part (b), then:

pr [ — (m)fm] << pux [x— (m:};:m]

provide these large cardinals exist.
(d) Let L* be any first-order language. Then the Hanf number of L¥*(YHC

is less than px([x ~+(mj)§“”] if it exists.

PROOF. (a) By invariant we here mean fully invariant (not just invariant in <f (R)).
(a) is then proved just like Prop. 2.6, but we need the stronger hypothesis. Of the
languages in § 1, L, ¢ for example, satisfies this hypothesis, while Souslin logic
does not.

(b) is immediate since the Hanf number depends only on the PCs.

{c) These bound were computed by Silver for the language of purely univ ersal
sentences of L, . . Technically this language is not strong, but it 1s close enough
for the argumcnts for parts (a) and (b) to go through. Thesc bounds apply, for
example, to L, but not to Souslin logic. For the Hanf number of the latter,
see [9], (7), [L1].

(d) 1s now immediate since any first-order language can be fattend up to
a strong one. (d) is Prop. 2.4 of [2], and our 2.6 and 3.4 are more explicit for-
mulations of things tmplicit in Barwise’ proof. —

Craig’s Interpolation Theorem for a language L* states that disjoint PC(L*)
classes (in a given fixed vocabulary) can be separated by an EC(L*). This is equi-
valent to the conjuction of the A-Interpolation Theorem, which states that disjoint
PC(L*) classes can be separated by a class which is simultaneously PC(L*) and
co-PC(L*), with the Souslin-Kleene Theorem, which states that any class both
PC(L*) and co-PC(L*) is EC(L*). Craig’s Theorem implies Beth’s, and the
Souslin-Kleene Theorem implies the weak version of Beth’s Theorem.

6.5 ANTI-CRAIG THOREM. Let L* be a first-order language containing L.
Then Craig’s Theorem fails for L*.

PROOF. In Prop. 2.11 of [2] Barwise derives this from Maulitz’ counterexample
to Craig’s Theorem for L,,., which depends on the facts that (0, &) and (0,€)
can be charactertzed up to 1somorphism in L,,, and that any two structures

for the empty vocabulary (vocabulary with no nonlogical symbols, just the logical
predicate =) U and L sati:fy A=~L.

AC HC is complete I-IL(HC) if A 1s Hl(HC) and for any II; (HC) B there

exist a PR function F and a parameter t & HC such that B-—{x F(rx)eA)
No such set can be X, (HC) or Z£; (V) in parameters from HC.

6.6 INCOMPLETENESS THEOREM. Let L* be a strong first-order language.
Then the set of logically valid sentences of L*M HC is complete Il (HC).
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PROOF. Barwise, Prop. 2.15 of [2], shows this set is not 2;(HC). An obvious
simplification of his proof shows it i1s indeed complete 1} 1(HC). Given any com-

plete proof procedure for L* N HC, the set of valid sentences is {p :IP(P is a
proof of @)}. Thus 6.6 says there can be no such proof procedure in which proofs
are countable objects and being a proof 1s a property A; in parameters from. HC.

Let a first-order language L* be given. We introduce a proof procedure
for L*yHC by adjoining then the proof procedure for L, . given in [1] the fol-
lowing rule of inference with ¥; premisses:

If % (=, 9) for all e<w,, then |9,
where % is as in the Approximation Theorem 4.2.

6.7 COMPLETENESS THEOREM. Let L* be a first-order language. The above
proof procedure for L*(MHC is sound and complete.

PROOF. & L¥* js not valid if dAdaAF («, ¢). This is a X, statement, and
if € HC, it is true iff it is true in HC, i.e. the ordinal « may be taken <,
and the mode! A may be taken countable. Soundness and completeness are now
immediate from the soundness and completeness of the proof procedure in [17].

6.7 shows validity for L*NMHC is E_l in parameters from HC plus the

parameter w;. For particular languages from § 1 similar proof procedures have
been obtained by Moschovakis (unpublished) and Green [10]. —

In the next four results R, S, T are disjoint nontrivial vocabularies.

6.8 DECOMPOSITION THEOREM. Let L* be a first-order language, ¢&
EL*(RUS)NHC. Then there exist g, ELg,w (R), a<w;, such that the followingis
valid over countable structures:

ISQ¢> Vacw, Pu-

6.9 NUMBER OF MODELS. Let L* be a first-order language. o & L*(RUS)N
MYHC. Then up to isomorphism the number of countable models of 3S ¢ is

either <N, or else exactly Al

6.10 REDUCTION THEOREM. let L* be a strong firstorder language. Then
for every ¢, ¢ EL¥RIUS)M HC there exist @, $, &L*(R{US)NHC such that the
following are valid over countable models:

(IS¢, > ISPAE S, > 3ISY)

3S @V )= 23S (e, Vo)
~1(AS g, AIS )

6.11 UNIFORMIZATION THEOREM. Assume every real is constructible. Let L*
be a strong first-order language. Then for every oS L*(RUSUT)NHC there
exists S L*(RUSUT)NHC such that the following are valid over conuntable

structures:
ATy - 3To

3S3Te—I1SITY.
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PROOF. 6.8-—6.10 are the model-theoretic translations of results about invariant
%5 sets in [31]. 6.9 is of course immediate from 6.8 and a theorem of Morley

on the number of countable models of a sentence of Ly, 6.11 is similarly the model-
theoretic translation of an invariant uniformization theorem (see [26], or [8] §l).
An (unpublished) example of Siiver shows the restriction to countable models
cannot be lifted in 6.10. Myers [26] shows 6.1] cannot be proved in ZFC alone.
Cf also [30] for related observations.

6.12 THEOREM. Let L* be a strong ﬁrst-order language. Then the following
fail for L*NMHC':

(a) Craig’s Interpolation Theorem
(b) The Souslin-Kleene Theorem
(c) The A-Interpolation Theorem

" (d) Beth’s Definability Theorem
(e} Weak Beth’s Theorem

PROOF. For {c) this 1s the model-theoretic translation of the fact that there exist
disjoint invariant Ez sets which cannot be separated by a ﬁz set. See [2],
Prop. 2.13. (¢) is Thm. 5.1, and this implies the rest.

One large problem in the model theory of strong first-order languages remains
open, which does not lend itself to abstract, descriptive-set-theoretic statement:
Can we prove for, say, L, ¢, that any sentence preserved under substructure
(resp. homomorphic image) is equivalent to a universal (resp. positive) sentence?
Harmik [13] has proved preservation theorems for L, ¢ for some symmetric re-
lations (L,-elementary equivalence, the p-isomorphism of Scott, isomorphism
of ditect squares, etc.); his results (by the proofs of [13] or by alternative proofs
due to Miller) extend to some of the other languages of § 1.
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ON A FOUNDATION FOR MATHEMATICS — A VIEW OF MATHEMATICS I*

Milan PURIC

1. Introduction

This paper represents the beginning of our final consideraticns of an appreach
to the foundations of mathematics initiated by the paper [5]. We shall deal in it
with mathematical activity and its gcals. We chall start frcm the assumpticn that
the primary goal of mathematical activity is the creation of ceitain entities which
will comprise in themselves (all} that activity., Such entities, we shall call mathe-
matical entities. Our next assumption is that any performed mathematical activity
creates conditions, 1.e., makes a groundwork for a new mathematical activity and
hence for the creation of new mathematical entities. These new entities aie of a
higher level with respect to old ones. If we ncw assume that all mathematical entities
constitute an edifice which we shall call the world of mathematics, then we shall
have that this world consists of mathematical entities of varicus sorts and levels.

In the creation of such a world we accept a symbolic form of presentation.
Namely, we assume that there is a collection of symbols which stand for mathe-
matical entities of various sorts and levels. Such a collecticn will be a symbolic fiame
of the world of mathematics. We shall denote it by . If we build up the world
on this collection, then we shall say that we have a symbolic form of the world
of mathematics and of mathematical entities as its constituents., We shall obtain
concrete mathematical entities by naming symbols of such a world according to
their creative procedures given in the paper.

If we assume that mathematical entities In question are certain organized
wholes, which we call spatial wholes, then we might say that the world of mathe-
matics consists of spatial wholes of various sorts and levels. Together with these
entities always go some other entities: ccnnectives between them. In such a way
we obtain that the world of mathematics consists of two sorts of entities of various
levels. It means that for i1ts cieation is enough to start ficm a subcollecticn _# of
o, consisting of two-sort symbols of various levels. Other symbols of & are then
reserved to stand for properties and other things which aire relevent for entities

of .

* The first version of this paper was communicated in Mathematical Institute in December
18, 1975.
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The collection _# will serve as a framework for the creation of the world
of mathematics. We shall specify the fundamental acts necessary for its creation.
The central act occupies of course the creaticn of spatial wholes — objects of the
world. We shall define the concept of a spatial whole and point out its main features.
Furthermore, we shall give scme examples of spatial wholes and establish the link
between the creation of particular kinds of spatial wholes and certain standard
mathematical conceptions, like formalism and intuitionism. In such a manner
we shall show that these conceptions justify our attitude concerning the goal of
mathematical activity. Otherwise, all these investigations will serve as a basis for
the process of formalization.

2. Species and spatial wholes

This section is devoted to a general discussion of the mathematical world
and to main concepts which arise in the creation of this world. These concepts are
species and spatial wholes. We shall see which mathematical activity is compriced
in their creation.

Before we begin our consideration of the above concepts we would be shortly
concerned with the activity of human beings in general 2nd then within such an
activity would find the position of the mathematical activity.

Certainly, in a human activity one can always recognize two things: the goal
of activity and means which men have at their disposal to attain the goal.When
one is provided with these two things then he has still to decide in which manner
to realize the activity. It means that he must have a plan — a scheme for its per-
forming; of course, there also must be criteria for deciding cn each of these things.

Before all, the goal of activity has to be determined according to our needs
and wishes; these two things are otherwise restricted by certain external mcments.
Since an activity is always realized within a frame which has its own principles,
then we must take into account that it should not violate these principles. If the
question is about the organization of a society, then we have principles of various
kinds, Iike social, political and many others. All these particular moments are
beyond our interest and therefore we shall not be concerned with them here. However,
they will find their place in our global consideraticns of the organization of J;
of course, in a form which we shall be able to set up.

We further have that means for attaining the goal of activity are different
and determined according to our wishes to have scme, in a certain sense, optimal
properties of the goal. Independently of conciete goals people deal with discovering
general and always new means for performing their activities and then in concrete
situations utilize adequate ones according to desired prcrerties of the goals and
considered objects by means of which they build them up. Clearly, we cannot apply
any means to each collection of concrete objects. Thus when we specify means we
decide on their choice according to the regarded collecticn of objects. At the end
of these general considerations of activities ¢f humen kejngs we shall still be con-
cerned in short with plans for performing activities. The plans are to be given in
oral or written form and their purpose is to specify and also to memorize perfor-
mances of activity.

Mathematics cannot be set apart from these general activities of human
beings. It can deal with them only in abstract forms. According to cur views, its
goals are, in the main, creations of abstract spatial wholes, means for the purpose are
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certain constructions — operations and plans of activity are symbohc ‘$chemata.
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In the sequel we shall concern all these concepts. ) \
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Now we shall begin with a general description of the mathematlcal ,world
and main activities for its building. We shall start from a large collection conmstmg
of symbols of different sorts and levels. The levels of starting symbols of ' we
denote by -1 and the collection containing all these symbols by Jp. We further
have different-sort symbols of the levels 0, 1, ... and respective collections <y,
oo, . - - which contain them. If we denote the hierarchy of all levels by ¢f, then we
can write the above collection as an indexed collection {J;]|i&¢ ). This collection.
is so far without any condition being imposed upon it and its elements:, B

Since o contains various symbols in itself we therefore have to carry out
some systematizations in it in order to make it capable of suiting our purposes.
To do this we shall consider nature around us. Two basic concepts in it are real
objects of various levels: electrons, atoms, molecules, actual objects we are surroun-
ded by etc. and forces among them. Forces on a level in nature may be of different
characters and sources which we shall not discuss here. These two concepts are
quite sufficient for building up the real world; forces are otherwise responsible for
its existence as a whole, although they are not sufficient for a complete descirption
of it: of all phenomena and events in it. Taking into account the former fact, we
shall select in J, by the analogy, a collection _# of two-sort symbols of different
tevels, which will be sufficient for our purposes: building up the mathematical
world. One sort of symbols in it will correspond to objects: natural or abstract
and the other to connectives between these symbols. The former symbols we shall
call objects and the latter, arrows. Thus, the collection _7 consists of objects and
arrows of various levels. Such a collection, which is otherwise quite natural, will
serve as a framework for building up the mathematical world. Other symbols of
< will only serve for its description.

In what follows. we shall make some further specifications in _#. Namely,
we shall let the possibility to characterize and hence to differcntiate the symbols
of 7. We can do this by adjoining to each level of _# certain new symbols of J
which will become certain integral parts of the symbols of 4/, characterizing them.
These new symbols we assume to be characteristic properties, which mathematical
entities can be supposed to possesss. Since we have in _#, on each level, two-sort
symbols, then the adjoined symbols, to any level of _#gf, have also to be two-sort:
the ones for objects and the others for arrows. We here assume that there are some
relationships between the properties of objects and arrows: we assume that arrows
have properties of carrying information on objects and their properties; information
are otherwise to be specified in each concrete case. -

By means of symbols representing properties of objects we can make certain
selections in _#f. These selections are our starting acts. What do we do, in fact?
We select (all) objects on a level of _#, agreeing in some common- (attributes) —
characteristic property(ies), in particular collecticns. Such ccllecticns we then
call species. We shall specify this somewhat more.

Denote by B the collection of (all) possible properties which mathematical
entities on a level of # can be supposed to possess. By applying this ccllection to
the considered level of _# we shall select various collections of objects and arrows
on it. Let us see 1n which way. First, we shall concern the question of the selecticn
of collections of objects on the regarded level of .

3 30opaEx pagosa
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Let us consider a many-valued function
S:$ab+—/ﬂﬂﬁ’

where 3, means the collection of properties which mathematical objects on the
considered level of _/ can be supposed to possess and _#/, means the collection
of objects on that level of _7{. Such a function we shall call the application of
B, to M. It assigns, to each property PEP,,, a collection of objects of the
considered level of _#f for each of which one can suppose to possess this property.
Such a collection we shall call a species. Thus we define a species as follows;

DEFINITION 1. By a species on a levél of 4 we mean the image of a pro-
perty P under an application S of 3, to _#,,, which consists of (all) those objects
of _J,, for which one can suppose to possess this property.

When a species S(FP) is defined, then any mathematical object which has
been or might have been generated before S(P) and which satisfies the condition
P, is a member of the species S(P). In the sequel we shall deal with the mode of
generation of mathematical objects and in such a way shall contribute to the speci-
fication of members of species.

Although the study of species is not our main task in the paper, we shall still
deal with certain concepts that concern them. At that, all used signs will have the
usual meanings. Otherwise, one can find the definitions of these concepts in [11].

A species S(P) is empty if, in the application of S, we cannot select any object
of _M,, which satisfies the condition P. If the application S is a single-valued func-
tion, then we have the case of a singleton species. The size of a species is otherwise
to be determined by 1ts relating to the species of natural numbers as it is given
in [11].

We further have certain relationships between species. These relations arise
from the relationships which exist between the properties. If we have, for instance,
that there is a relationship P — P’ between two properties P and P’ of ¥, which
means that, if an object has the property P, then it also has the property P’, then
we shall have that the species S(P)is contained in the species S(P’), or that itisa
subspecies of the species S(P’). If the above is also valid ccnversely, then we shall
say that the species S(P) and S(P’) are equal.

We can now define the concept of splitting up a species. If there is a relation
S(Py=S(P)YJS(P'"), where P'£P", then we shall say that S (P) is split up into
species S(P’) and S(P’'). If S(P’) is here a subspecies of the species S(P) and
S (P’') the difference S (P)—S(F'), then we shall say that S(P’) is a detachable
subspecies of S(P).

One could deal now with further questions concerning species. However,
~we shall not do this, especially because some of these questions are not essential
for this paper and since some of them will arise later in the consideration of species
which are endowed with collections of arrows and then with a certain structure.
Thus we shall consider that species are specified enough for our further purposes.

Having finished with the selections of collections of objects on particular
levels of 7, called species, we shall be concerned with the selection of arrows.
We shall assume that any species of any level of _# is endowed with a collection
of arrows. Let us see in which manner we distribute arrows over species. If we have
a species S (P), then we assume that arrows in S (P) are those which naturally
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belong to it and will do so if they preserve the property P. This property is intrinsic
for the objects of species. We shall call the arrows with this property relevant arrows
So, their definition is as follows:

DEFINITION 2. By an arrow relevant for the species under consideration
we understand the arrow which preserves certain intrinsic properties characte-
rizing its objects.

In such a way species of _# are endowed with arrows which carry in themselves
information on their objects: their structure and properties. From now on, when
we say a species S (P), we shall alwas regard that it is endowed with a collection
of relevant arrows. Here § , (P) will mean the collection of objects of S(P) and
S_, (P), the collection of arrows of §(P). Otherwise, if there is no possibility of
confusion, we shall denote a species § (P) simply by S, i.e., we shall identify it
with the application S.

Now, in order to make the species capable of satisfying our purposes we
shall provide them with a certain fundamental structure. We assume here the struc-
ture of a (quasi)category*, In the following section we shall explain what this
structure means.

Let S be a species on a Jevel of /. Endow it with two unary functions
Do» D,: S —S,, and a binary function € : $2— S. In that way we obtain a
system {(S;D,, D, €). We have the following meanings in this system:
2, (x)=x means that the object x is the source of the arrow «; D, (@)=y
means that the object v is the target of the arrow o and ¢ («,f)=v, which we shall
also write as & (o,8; v), means that the arrow vy is the composition of the arrow «,
followed by the arrow .

If we now involve certain laws to specify the functions in the above system,
we shall obtain a desired fundamental structure. First, we have a structure called
a quasicategory:

DEFINITION 3. By a guasicategory we mean a system (S;,, D,,€) for
which the following two groups of laws hold:

Cl. D AD,, (DN =D (x), n,m=0, 1,
AYC(x B )= D (@D =Dp (B)
C(x B )= D0 =Do(MAD (V) =2, B)
Clx B VAC(x B Y)Y=>Y=Y)
2. C(Dy (), & &) AC (o0, Dy (); o).
The symbols A, = and 3 have usual meanings: A (and), = (Gf ...,

then...) and 3 {there exists). If we do not take differently, these and other
logical symbols will have only such meanings throughout the paper.

* In our papers, we have called this term so far a fundamental (quasi)semigroupoid. We
think that this term is better because it carries in itself a structural meaning of the concept. Mean-
while, this is only our opinion, And since category theory is a highly developed theory, then
there is no reason for changing the names of it and its concepts. Therefore, we accept here the
standard name — a (quast)category.

3*
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If we add a new law to the first group of laws

Dy (@) =%0 ®) > HTE(“: Bs )
and also the law
C3. LB HACE v OAC EDACE v B> n=E,

which means the associativity of ¢, then a quasicategory becomes a category [15]
Furthermore, 1f we add the law

C4. VadB(C(x B Dy@NACH, D, (@),

then from a quasicategory we obtain a quasisemigroupoid and from a category, a
groupoid.

If moreover we take that Dy=, and that both are constant functions, then
a (quasi)semigroupoid is reduced to a (quasi)semigroup and 2 (quasi)groupoid to
a (quasi)group. |

Certainly, a morphism between two (quasi) categories is a functor {15]; it
is a relevant arrow in our sense. We have further morphisms between functors,
called natural transformations, then morphisms between natural transformations,
morphisms between these new morphisms etc. By this process of involving relevant
arrows, we could define certain many-valued functors [6] between (quasi)cate-
gories possessing various structures as, for instance, the simplicial one, etc.

Since we have specified the basic collections of symbols of _#, called species,
and have involved certain fundamental structures in them, we shall proceed further
to make certain organized wholes from them. From now on we shall fix the funda-
mental structure on species. We assume it to be a (qudsi)category it means a
quasicategory or a category, when it is necessary. A species endowed with such a
structure, we shall call a fundamental world,

In order to make an organized whole fom a fundamental world in question
we must claim that it allows some reasonable creations and other activities in itself.
In what follows we shall deal with creations and collections on which they ought

to be performed.

The basic purpose of creations on a fundamental world is to give us a pos-
sibility to construct new objects from the old ones. We dealt in [6] with certain
creations on categories. We created certain concepts having certain geometrical
shapes: cylinders, cones, etc. Here we shall be concerned with cones and cocones,
since wanted constructions are contained in the creation of certain kinds of these.
Thus, here cones and cocones are creative concepts. We shall call them simply
creative concepts. In what follows we shall explain what they mean.

By a core in a fundamental world W we mean a triple (U, @, {v}), consisting
of a subcollection U of W, a collection ® of arrows of W and a smgleton subcol-
lection {v} of W, consisting of an object v of W, called the vertex of the cone,
such that for any arrow «: u'»>u& U, there are arrows @ :u—v and ¢’ :u’—+v
of ® so that € (o, x; ') holds. In future, when it is obvious from the context
what is the basis and vertex of the cone, we shall always identify it with the collec-
tion of arrows connecting these.
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Let € (U)={P,; iS4} be the collection of all cones over U, endowed
with the collection of cone-arrows. The initial object in this collection we shalf
call the first cone, abbreviated f.c., and denote it by ®°¢- A ©° s defined in the
following manner: for each @& € (U) there is an arrow ¥ : v—v, where ¥ is.
the vertex of @° and v of ®, such that € (v, 9°; @) holds, for ¢ =D and ¢*C P,
In the opposite direction, we have the concept of a cocone with concepts of a
cobasis and a covertex. The terminal object in the collection of all cocones over
a collection in the world W we shall call the last cocone and abbreviate it as l.c.c.

Vertices of f.c. and l.c.c., we called in [6] a sequent and a presequent, respec~
tively. If the basis of f.c. and the cobasis of l.c.c. contain only single objects, then
their sequent and presequent we called a successor and a predecessor, respectively.

The above objects: sequents and presequents will be constructive objects
in our fundamental world. Such unique objects are well-known in category theory
as colimits and limits, respectively. In tnis case, we shall diverge from standard
terminology [15] and accept our terms for these objects.

Since we have specified objects which are to be constructed we must now
specify collections of the world, which will allow their construction. Moreover, we
must specify certain conditions on the collections, which will determine the character
of constructed objects. Thus, our basic task is to specify choices of collections on
which we perform constructions and to specify certain requirenients on them which
will determine the peculiarity of constructed objects.

First, we shall specify the concept of a choice in a fundamental world under
consideration. |

DEFINITION 4. By a choice in a fundamental world W we mean an appli-
cation ¢ of a fundamental world J to the world W, ie., a many-valued functor

c:J—> W,

which assigns, to each object i&J, a collection ¢ (()C W and to each arrow
I—I'& J, a relevant arrow ¢ (i} — ¢ (i’). The choice ¢ is lawlike, if there is a law
or a collection of laws, according to which it is to be performed.

A choice o, determined by the collection of laws A, we shall denote by oa.
Thus, if we have the chosen collection 6a(i), 7€ J, on W, then it will mean that
it satisfies the conditions of A.

In order to ensure the possibility of having various choices for single objects
of J, we shall involve the cconcept of parametrized choice.

DEFINITION 5. By a choice in the fundamental world W, parametrized
by means of a fundamental world ., we mean a collection of choices & =
= {6%]s& .5, such that, if there is an arrow s— §' &%, then there is also a
natural transformation ¢%>g5’,

A natural transformaton v between two many-valued functors o and =,
symbolically 7 : o—1, is defined in the same way as the transformation between.
single-valued ones, but with a difference: instead of an arrow, we now have the
concept of a (co)cylinder [6]. Thus, while ¢ and + are many-valued functors,
7 161 is a (co)cylinder with the lower (co)basis o and the upper one in 1. If one
of these functors is single-valued, then we shall obtain concepts of a cocone and a
cone, respectively.



38 Milan Puri¢

We can represent a parametrized choice © as a collection of functors
6:.% — Fun,, (J, W) such that ¢*, s&.%,, are many-valued functors of Jto W
and o, for an % -arrow f, are natural transformations; it means that, if f:s>s'
is an Y-arrow, then ¢/:6°—¢¥ is & (co)cylinder.

According to the definition, © constitutes a fundamental world: its objects
are chosen collections of the fundamental world under consideration and arrows

are cylinder-arrows [6)].

Since our aim is not to have arbitrary choices but choices determined
by certain conditions, then we shall impose these upon them. We shall assume
that each choice 6°CS satisfies a collection A, s&. 4 ,,, of conditions. Such
a choice, we shall denote by oa .. Hence we have that & consists of choices

Ay SCoF s If A means the collection of collections A, &%, then we

shall write © by &ay. Thus Sy will mean a collection of lawlike choices o}y,
$E L We shall call 1t the lawlike parametrized choice. Such a choice will
constitute a fundamental world if the existence of an -arrow s— 5 implies
the existence of a relevant arrow between collections A, and Ay and a natural
transformation "¢ :oa — crf{s,. A relevant arrow oA, > Ay together with a

natural transformation 4%* :ch_— i, will be a relevant arrow between
elements of &, which we shall simply call a choice-arrow.

Certainly, a lawlike parametrized choice ©a), will be specified when we
specify its objects and these when we specify the collection A={A;|s&.%,.}.
Thus in order to specify the choice ©x, we have to specify collections A, and their
connectives. In what follows we shall be concerned, but only in general, with this
question.

There are two moments which we have to differentiate in each collection
A; of A: effective procedures by means of which we choose subcollections of
the world under consideration and conditions which chosen collections have to
satisfy, such as size, ordering, constructive properties, etc. First of all, we could
specify various algorithms for choosing mentioned collections of objects and arrows
of the world in question. Among them, however, we shall accept only those which
ensure certain necessary properties of chosen collections and hence wanted pecu-
liarities of constructed objects. Of course, if we want to have peculiarities of the
whole choice &4y we have moreover to specify connectives between its members.
We could assume an example in which choices are sequences of objects and arrows
between them, chosen by a collection of conditions, and choice-arrows are relevant
arrows between these sequences. Throughout the paper, we shall deal with the further
specification of the collection A, We shall also give some concrete examples.

Besides conditions which are imposed upon objects of &y, we might also
impose crtain conditions upon &(sy as a whole. Namely, we might claim that
©ay as a whole obeys certain conditions: to be directed for instance, to have some
creative properties, etc. If Q is such a collection of conditions on €4, then we

shall emphasize this by writing @&) instead of ©4). In the collection €}, there
may be reflected properties of the world ,% by means of which the choice &)
is parametrized. If we suppose that the collections of conditions A and {2 are
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completely specified, then so 1s the choice @ﬁ}. Otherwise, the collections A and
may be independent or that the collection {2 contains some further specifications
of the collection A.

From now on, a choice &, on W, parametrized by the world %, we
shall regard as a many-valued functor of J into W which assigns, to each
object i of J, the fundamental world @{M (i), objects of which are collections
a5 (0, 5 E .5 5 of objects and arrows of W determined by rules of A, and relevant
arrows of which are choice-arrows o} (i) o}, (i), 5, 5./, and which pos-
sesses the conditions of 2, and to each arrow i— i of J, a relevant functor
&n () Sy (i), ie., a functor which preserves intrinsic properties of the
world G,

Let (E(W)={@(n fﬂ)]mecﬁf\ﬁecﬁ@} be the collection of lawlike paramet-
rized choices on the fundamental world W; at this we assume that there is a

LY I
collection %P ={ Py | & 4} of parameter worlds. If @2@‘5) and @(Eﬂ,) are two
members of the collection & (W), then we can define a relevant arrow between

Qg
them. It is a functor R:@?fﬂ)—}@(fa,) which assigns, to each choice

£ (o 70 nar _ oy
ox E@(ﬂ )’ a choice R( )E @(_Aﬁ) and, to each choice arrowcpE@(A o) 7

R Y .
a chmce-arrow R(@)E@-(fﬂ,) and moreover preserves the conditions of L. Pro-
vided with such arrows it becomes a category. We shall return later to some
further questions concerning the collection € (W) and collections created on it.

Since we have finished with a general consideration of choices on W, we shall
be concerned with the concept of spatial whole. We have already said that this
concept arise from certain constructive activities on the world under consideration.
Since we have done all preparations for such activities, we shall proceed to specify
them.

Let ©(4) be a lawlike choice functor of J to the world W, parametrized
by the world .%°. As we have already seen, this functor assigns, to each object
ieJ, a fundamental world @81} (i) on W consisting of choices o4, (i), §E Py

and of choice-arrows as connectives between them. By means of this functor is
specified the choice activity on the considered fundamental world. Our ultimate
aim, however, is not such an activity, but the constructive activity. We shall ensure
this if we claim that chosen collections in the world allow some creations; we here
decided on cone and cocone creations. In that way, the choice activity on a fundamen-
tal world becomes a preparatory activity for the creative activity.

If we have, for instance, a choice oj,, SE ., in W and a cone as the creative
concept on it, then we can express this as a requirement that there is a single-valued
functor F¢:J— W and a natural transformation %°:ci,—F3. Certainly, the
triple (6a,, n® F®) is a cone with the vertex F?; we could say that the functor Fs

is a creative functor for the choice functor oi,. Hence we have that (ca,, % F¥)
(i), i€ J, is a cone with the vertex Fe(i)in the world W. We shall denote a cone over
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6h, by O, If all choices oy, ©&n) allow creations of cones, i.e., if for each
SE S o thereis a single-valued functor F together with a natural transformation

n? : oa,—F% then we shall emphasize this by {c}@&;. If it is the world about
cocones, then we shall accept the denotation (Cc,@fi). However, in future, we shall
simply write ,WSth) considering that this means that each choice of S(h, allows

a »-creation which may be a cone or a cocone, or even both them. These concepts,
as we have already said, are creative concepts in the paper with a common deno-
tation *; if its (co)basis 1s known, ¢ for instance, then we shall write it by ,o.
To mention that we could decide on broader kinds of creative concepts such as
cylinders and cocyhnders. However, we shall only deal with accepted concepts;
it means, cones and cocones. Otherwise, these cencepts, as we shall see later, are
able to incorporate in themselves logical concepts of production (derivation) with
vertices as produced — created objects, peculiarities of which are determined by

conditions being imposed on choices. If each choice of @&; allows thecreation
of the concept #, then we shall say that @&} is *-completed in itself or outside,
depending if the concept # belongs to C"Jf}u or not; of course, its (co)basis belongs
to it. As we know,the number of creative concepts of {*}@fi, and connectives
between these are determined by means of the world %

Itis clear that foreach s & %, there may exist many concs over the same choice
ox. as their basis, We could point this by writing s,c%,, if it is the world about
the creative concept *; here «& 4, where .4 means the number of creative con-
cepts over one and the same choice. However, among the possible creative concepts
we might decide on the ultimate ones, i.e., on f.c. and l.c.c. concepts: unique or
not unique.

Now, if we have a s-completed functor {*,@a), then the following question
arises: can we complete the functor ), as a whole? Certainly, we can do this.
Such a functor will be completed if there is a creative concept @ which will constitute
a cone or a cocone with it; clearly, @ is also a many-valued functor having the shape
of a creative concept. If the choice functor is e-completed, then we shall denote
it by .({*}@E\}). Certainly, the functor ¢(,S()) has complete its elements
and is completed as a whole.

There 1s an elementary proposition which establishes the link between
constructive objects of ¢(;)S¢h)): that one of ® and those of choices of S

PROPOSITION 1. If the concept e in .((*;.@5%]) is its Le.c. (or f.c), and if
moreover each creative concept 6a, of {*}@&) is lc.c. {or f.c.), then the covertex
(the vertex) of ® is the presequent of presequents (the sequent of sequents) of
choices of Sy

PROOF. Denote by U the collection of all presequents (sequents) of choices
Caes SC F o and by P (S) the covertex (the vertex) of the concept ®. Clearly, P (S)
1s the covertex (the vertex) of a cocone (a cone) over U(. It is easy to see that such
a cocone (cone) 1s lL.c.c. (f.c.). g
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Hence we have that the constructive object of the concept * is a construction

of constructions on choices of @f}n. In such a way we have a terminating procedure
for the creation of objects within a fundamental world. Such a terminating procedure
will be later utilized in the definition of proof.

A o-comp]etéd functor .((*]@?ﬁ)) will serve for the creation of a spatial whole
from the fundamental worlds making its domain and codomain: Jand W for instance.

This functor assigns, to the world J, a collection .((*}@%)) (J) of fundamental
worlds and functors chosen on W, We might claim that this functor is such that
this collection is also a fundamental world which moreover possesses some properties:
to have the first and the last object, to be directed, well-ordered, etc. We might
add to it some further requirements which govern the formaticn of wanted spatial
whole as, for instance, separation ones. Denote the collection of all such require-

ments on the functor by © and the functor itself by ¢ (S (x))e. By means of such
a functor we shall define the concept of spatial whole on a fundamental world.

DEFINITION 6. By an .’ J'-spatial organization on the fundamental world
W of a level of /4 we mean a choice functor *@3):.} — W, which assigns, to
each object i<J, a »-completed fundamental world {*}@&] (/) of W and, to each

arrow i—i'&J, a relevant functor {*}@?ﬂ) () = ) (i), for which there is a func-
tor e:J' =W, where J'C J, which assigns, to each object ic . J’, a creative con-

cept e (i) of the same type as those of (&' (i), i €J' and, to each J-arrow
i—i’, a relevant arrow between these concepts, together with a natural transfor-

mation v :e— (*}@g}} or ¥ :{*}@?j&}‘“’} e such that the triples (e, v, {*}@?ﬁj) @)
and ({*}@?ﬁ), v, ®) (i), iEJ areacocone and a cone respectivcly and such to satisfy
certain conditions given in the collection ©,.

- By an %’ J'-spatial whole we mean the triple {J, o ({*}@%})e, W > consisting
of the worlds J and W and of an $F -spatial organizaticn (4 Sa)e -

According to the definition, a spatial organization .({*}Eﬁ})g on a funda-
mental world gives a certain creative closeness and in such a way creative pos-
sibilities of the world. These possibilities and their peculiarities are, otherwise
determined by the collections of conditions A, £} and ® in which, as we have already
said, properties of the worlds ,%“and J may be included. By means of these collec-
tions, we are able to handle choices and creations on the world in question. In such
a way we enable that certain particularly chosen parts or the whole world allow
creative activity and moreover to obtain wanted kind of created cobjects in it.
In what follows we shall be concerned with certajn properties and further speci-
fications of spatial organizations on a fundamental world.

We shall get further peculiarities of spatial wholes if we suppose that the
functor @ﬁ) is transitive, i.¢., if we suppose that 63, & @&}: g3, @&} for each
57 - Hence we would have that &A is also a choice on the world in question
and that ca,, §& %, are its parts.

If we consider now a spatial organization such that the functor (*}@&} 18
transitive and such that together with 64, it contains the creative concept .Ga,,
then it can possess convenient properties. So, for instance, if we suppose that %
1s an ordinal, & for example, then we can prove the following
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PROPOSITION 2. If the functor (*}@?ﬂ} is transitive and parametrized by the
ordinal ®», then we can make it to be recursive.

PROOF. Take any choice ca, & @a}, kCe and the creative concept .o

over it. If we specify the conditions of £2 in such a way that this concept 1s the

choice for the next creation of the same type, i.e., if *aﬁ_l.rl = *(*aik) and in the

same time specify the choice op,, then ,a(h, will obviously be as required. ,

We can make it to have some other convenient properties: to be directed or
filtered, to have a simplicial form [6]; or, in a special case of this, the form of a tree,
etc. If it 1s the world about filters, then .({*,nﬁ]) will mean a e-completed fiiter;
with @ as a single-valued functor. They are completed filters in the collection

{*)@&) (J) of filters on W. If we have convenient arrows in this collection, then,
by means of such arrows, we can complete other filters relating them to the completed
ones. This completion is the essence of topological spatial organization (see [7)).

All specifications which we carry into .((*,@&))@ determine the peculiarities
of the structure of the whole in question. If this functor is completely specified,
and will be if we specify mentioned collections of conditions and corresponding
creative concepts, then we shail say that we have a specified spatial organization
on the fundamental world under consideration and hence specified the structural
type of the whole. Relevant arrows between spatial wholes with specified struc-
tural type, called spatial whole-arrows, are those ones preserving the type in ques-
tion. Continuous arrows, in the case of topological spatial wholes, are such
arrows [7).

Certainly, in the specifiication of the structural type of a spatial whole, we
have to differ wholes with one kind of creations on chosen collections: a cone or a
cocone creation and those with both kinds of them; which, of course, can be perfor-
med on the same or various collections. The former, we shall call spatial wholes
with the simple type and latter, spatial wholes with the mixed type. If two spatial
wholes have the same kind of creations — simple or mixed ones, we shall say that
they have the same creative type.

ﬂl:I

Let us consider, o nce again, the collection Ch(¥) of choice-functors @;( &)

e A and B 93, on a fundamental world W. As we know, any choice functor
of Ch(#¥) gives a spatial organization on W. It means that the collection Ch(W)
serves as a groundwork for the existence a new collection: a collection of spatial
organizations on W. We shall denote it by Sp(W). We could now deal with this
collection: select spatial organizaticns on W according to their structural type,
define relevant arrows between them and accordingly involve a fundamental
structure on selected collections, then define concepts of the sequent and presequent
spatial organization over W, etc. In such a way we make Sp(W) itself to carry a
certain spatial organization, However, this organization, with respect to those on
W, is of the higher level. This fact will be incorporated in our general requirement
concerning the existence of spatial wholes of various levels and their vertical
connection in. .

Now we shall deal with the question of involvement of new spatial organi-
zations over living ones. If we have a spatial whole on a fundamental world and
want to involve another one over it, we have to take into account that creations of
the new organization are relevant with respect to the former one, i.e., to preserve it.
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In such a way we ensure the compatibility of creations and together with choices
the compatibility of spatial organizations over one and the same fundamental
world; of course, at this, organizations may be of the same or various types.

Now we shall say a few words about the link of spatial organizations in a
single organization. If we have two simple and opposite types of spatial organizations,
those with cone and cocone creations, then we can combine them in an organi-
zation of mixed type assuming that one type of choices and creations is utilized
for choice purposes of another type. We have such a situation, for instance, in the
case of intuitiomistic spatial organizations.

We shall point out one more moment. Namely, we can involve a spatial organi-
zation on a fundamental world from an already defined spatial organization on that
world by means of certain well-defined operators. In this case we have to preserve
a part of living spatial organization and to involve a new part; a part which we are
going to involve. It means that operators have to be such to enable this. We have
this, for instance, in the case of topological spatial wholes [7]: we have involved
a topological organization on a fundamental world from an already defined spatial
organization: an l-semigroupoid by means of complementation and closure ope-
rators. We shall see later some other examples as for instance Post algebras

[13], etc.

Now we shall be concerned with the concept of a subwhole of a spatial
whole. This concept, we obtain in the following manner: Let {J, o((x\S%)e, W)

be a spatlal whole. By a sparral subwhole of this whole we mean a spatial whole
<J, .({*}@{ﬁ})g, W> where JCJ W(__W and .((*](5{11})@ s a SUbeﬂCth of
(S e which imposes the same type structure on W as .({*J@{m)@ on W.

We can define one more kind of subwhole of a spatial whole {J, .({*)@(ﬂ})a , W
— a chotce subwhole. Namely, if Sq:.J—>Wis a many-valued functor consisting

of single-valued functors /¢ such that I8¢ o', for eachs< %, which is moreover
completed by a single-valued functor I, then the spatial whole {J, &, W)

is a choice subwhole of the considered spatial whole. Certainly, it is fully embedded

in the whole ¢J, .({*;@m)o, W). We could assume that functors I3, s& %, are
constructive functors for choices 6%. In that case the functor f for such a choice

h . . . . .
functor 6 will be the construction of constructions on mentioned choices.
Peculiarities of such a construction are determined by means of conditions of €.

Now we shall be concerned with certain internal activities in the creation
of a spatial whole on a fundamental world W. We shall enable this activity if,
besides objects of the world W, we include collections of subobjects of its objects
in the creative procedure. These new collections in W will allow certain new
creations of spatial wholes within the whole which we create on W and, of course,
their inclusion in the creation of the whole itself. In such a way we shall obtain
more creative possibilities and hence convenient properties of the whole which
we create on W. To do this we must claim that among the choices necessary for
the creatton of the whole there are also choices which will ensure the creativity of
spatial wholes on collections of subobjects. Spatial wholes which allow such an
activity we shall call spatial wholes with the local spatial organization. We define
them as follows:

DEFINITION 7. We shall say that a spatial whole on the world W will
admit a local spatial organization if there is a functor ¥ : W — W which assigns,
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to each object a= W, a species . (@) such that there is an arrow a—-,% (a) with
respect to which ¥ (@) strictly dominates g, and to each arrow a—a’ of Wa
species-arrow F (@) = F (a').

Certainly, a power-object functor, i.e., a functor which assigns, to each
object of W, the species of its subobjects is such a functor.

We now have to make the local spatial organization to be effective in the

considered spatial whole {J, ¢(Sth)e, W). We can ensure this by relating
the functor ¥ to a constructive functor being defined on this whole. For that
purpose, however, we have to assume that among choice-functors with domains
in J, there are also those ones with domains 1n the world # itself; it means that
we assume that W is a subworld of J.

DEFINITION 8. We shall say that a local spatial organization on a spatial
whole on the world W is effective if there is a choice-functor & : W— W such
that the functor ¥ is naturally equivalent to its sequent functor.

Topoi [10], for instance, are spatial wholes in which the local spatial orga-
nization is effective. This is realized by means of the existence of an object which
1s the representing object for the power-object functor.

Spatial wholes with the above property are very important because they
have certain levels-organizations. Namely, on each ¥ (a), where a is an arbitrary
object of the regarded spatial whole, we can involve a spatial organization; these
spatial organizations are internal ones. Hence we might say that the functor %
is in fact a spatial whole-functor, i.e., a functor which bears the structure of a
certain spatial whole. Spatial wholes on the object ¢ and on ¥ (a)are spatial
organizations on two consecutive levels, within a living spatial whele, the struc-
ture on ¥ (a) is the hyperspatial structure with respect to that on the object a.

Thus, spatial wholes with local spatial organizations admit different levels-
-orgapizations. With respect to levels of the collection _7 as a whole, these or-
ganizations are horizontal, i.e., along a fixed level of _#4/.

Since we have finished with considerations of horizontal organization of _/f,
1.e., with the organization of particular levels of 7, we shall do this with _# as
a whole. It means that we now have to organize _ vertically, i.e., to find the link
between symbols of various levels of _#, in order to obtain a coherent global organi-
zation of _7{. As we have already seen, we organize symbols of a level of 4 in
certain wholes. Now we assume that symbols of the first higher level with respect
to a level of _# which is under consideration represent wheles and arrcws teiween
these wholes of the latter level. In that case, we can talk about species of this new
level. Its members are clearly symbols which stand for spatial wholes and connec-
tives between these wholes of the first lower level. It means that, if we now want
to realize a spatial organization on this species we have to take into account
symbols which mean properties of symbols standing for its objects and arrows
Namely, creative capabilities of this species are determined by means of structural
and other characteristics of its objects and of course of specificaticns of arrows
in it.

Before the creation of spatial wholes on species of the new level of A. we
have to make them to be fundamental worlds. It means that we have to specify
them in that sense. Since arrows in species have to be relevant, then spatial wholes
-— objects in them have to be of the same structural type. Hence the notion — struc-
tural type is instrinsic for a species. This we could utilize to spefify them. Thus, as



On a foundation for mathematics — A view of mathematics I 45

a supplement to the specification of species, we would have that all objects in them
are those having the same structural type. In the same time we have the specification
of arrows in _/{: they are those which preserve structural types in question; we
called them relevant arrows.

If we now assume that all we have said above is valid for any two consecutive
levels of _#, then we could say that the world M is organized completely: hori-
zontally and vertically.

Finally, if we now view the organization of the mathematical world A, we
shall notice that it is inductive. Namely, in its organizing we have first to make the
organization of a level of 7 and after its ending have to pass over to organize
the first higher level. What this means? This means that we have to find (all) mathe-
matical entities on species of already created mathematical entities having the
particular structure characterized by spatial organizations here given and to
continue to create new mathematical entities on, in such a way, created entities.
To see which species of mathematical entities will admit a spatial organization we
have to know their choice and structural capabilities. Of course, this requires a
separate study of spatial wholes and their properties. |

In this approach, we assume that there exists a starting level with certain
starting objects from which we begin the creation of the world ; we could assume that
these objects are undivisible. Hence we have that all symbols of M, except the
starting ones, are created by processes given in the paper: objects have structural
Jorms of a certain spatial whole and arrows are such to preserve these forms. From
the creative processes arise properties of symbols which stand instead of mathe-
. matical entities. Hence we could say that symbols adjoined to symbols of _# to

Tepresent their characteristics are also creative and obtained in the process of creation
of the world of mathematics. g

3. Examples of spatial wholes

We shall deal in this section with certain concrete and typical examples of
spatlal wholes — wholes with specified structural types. They are topological and
intuitionistic spatial whole. These wholes are “detailly studied in [7] and [8]). Here
we shall only deal with their mode of generation., Afterwards we shall compare
these organizations to some standard mathematical conceptions as they are
formalism and intuitionism and see what they mean from the. standpoint of these
organizations. ' -

We obtain a topological spatial whole (J, &7, W) if we assume thatJ
15 a discrete fundamental world, i.e., a world consisting of objects and identity
arrows such that there is an injection functor I of it to ¥ and that & is a
transitive functor which assigns, to each i< J, a filter ©%7 (i) and that each such
filter allows a cocone creation in W, it means that it is completed in such a way
to make a cocone. The collection of all filters on W is endowed with relevant
arrows called opposite inclusions. With respect to these arrows the functor &7 is
supposed to obey certain conditions (see [7]). We can see that such a spatial
organization has two types of choices and two types of constructions: it allows
1) arbitrary f.c. creations and ii) l..c.c, creations on collections with restricted size;
it moreover contains the objects o and 1. Otherwise, a topological spatial
organization one can involve by means of certain operators as they are the
complementation and closure operator (see [7]).
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We could also here define the concept of the pseudotopological spatial whole.
It is enough to take, for this purpose, that the range of choice-functions is in the
collection of filters of a fundamental world. It means then that objects of these
functors are filters with filter-arrcws as cennectives. Certainly, we now can impose
the spatial structure of topological type on this new fundamental world consisting

of filters and filter-arrows.

An intuitionistic spatial whole o1 an intuitionistic topological space
(J, & W) one can obtain if one assumes that each o7 &, g W, is obtained
by means of presequent coustructions, which every finite collection of W is
assumed to admit, in the following manner: each o%(), i<J, consists of all
those objects &’ of W for which there is a W-arrow F(i) Aa —a, where A
means the presequent construction and F:J— W is a single-valued functor,
We assume that for each a& W, there is a single-valued functor S%:J— W
and a natural transformation %%:¢*— 8% such that (¢° 4%, 8% (i), i€/,
is an lc.c. in W: it will allow that creation in itself if moreover S2(i) & o%(i).
The functor $2 is the creative functor for the functor ¢%, i.c., its sequent functor.
We still claim that the existence of a connection — an arrcw between objects
a,a’— W implies the existence of a natural transformaticn between sequent
functors $* and S¢°.

Hence we could say that an intuitionistic topological space has constructively
closed parts. However, it has not this property as a whole. To ensure this we shall
assume that J and W have strict first objects [6] and that F is such to preserve
such an object. If this is fulfilled, then the space as a whole will posses the sequ-
ent of all its objects. We shall denote it by 1. This object is, otherwise, equal to
So(o’), where o and o' are strict first objects of W and J, respectively, Such a
space has the following properties:

a) it contains the objects ¢ and 1,

b) it is closed with respect to finile p esequents, and

¢) it is closed with respect to particular sequents, i.e., sequents of particularly
chosen subcollections.

We gave in [8] certain characterizations of intuitionistic topological spaces.
Moreover we gave the link between these and topological spaces. We proved the

foillowing

PROPOSITION 3. An Ny-topological space is an intuitionistic topological
space. |

Now we shall select certain operators on an intuitionistic topological space
having the object 0. Let {(J, &, W) be such a space determined by the functor
F and parametrized by the world W itself. The object S°(i), iEJ, in it is an
W-object satisfying the following condition: the presequent P (F(i), S°())=o.
If this object is unique then we might call it a pseudocomplement of the object
F(i). Furthermore, if J=W, then the composition C°=S5" - §° of the sequent
functor S¢ with itself gives us an operator called the closure operator. This ope-
rator has the following properties: there is a unique arrcw a— C%a), a& W,
then C°- Co=(? C%o)=1, etc. (see [B]).
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A particular kind of intuitionistic topological spaces are those which are
realized and parametrized by the world W itself, i.e., chcices of which are those
for which J=_%=W. These spaces, we can involve by means of certain operators:
functors possessing certain properties.

Let A be a (quasi) category with defined presequent creations P{a, a’),
a, a’ €A,. Denote by 8% a= 4,, a relative functor of 4 to A which assigns, to
each object b& A, an object 3%(b) and, to each arrow b->cE&4,,, an arrow
8 (c)—93,(b). If the functor 3,, where 8, is a functor such that 3,(b)=23%(a),
is right adjoint to the functor P(, @): A—> A, i.e., if there is a natural isomorphism

(P(a', a), b)=x(a’, 3,(b)),
then we have the following

PROPOSITION 4. The pair {A;d,) consisting of a (quasi)category A
having finite presequents and of a functor 3,: A — A, which is right adjoint of the
presequent functor P{ ,a) is an intuitionistic topological space.

PROOF. Certainly, the object 3,{b) is the unique sequent of all objects
a of A satisfying the above relation. Hence we can define a collection © of
choice functors, varying objects @ and b of A4, such that each has the sequent
functor and which moreover obeys the connection condition: if there is an arrow
a — ¢, then there is a natural transformaticn §*— 8% ,

There is a characterization of the space {A4;38,), which is specified 1n the
above proposition, given by the following

PROPOSITION 5. The intuitionistic topological space (A; 38,) is a dis-
tributive 1%-semigroupoid.

PROOF. It is an 1¥-semigroupoid by the definition: this follows from its
bicompleteness. Next we have to show that the distributive law
V (@ AB)= V a Ab,

a’ <A a' €A’

where A’ 1s a subcollection of objects of A and v and A are the marks for
sequents and presequents, respectively, holds in the space {A4; 3,).

Let A’ be the collection of all those a’ of 4 such that (a’, 3, (@) =(a’ A b, a).
Denote by P the collection of all presequents a' Ab, @’ €A, and by r the last

object of P [6]; it is the unique sequent of all P, ie., r= V (4" Ab). Hence
a’ S A7

we have that for every ac=A there is a morphism ¢’ Aa—r and then also a
morphism a’ 98, (r). Thus 3,(r) is a vertex of a cone over 4’. Since 3, (a) is
the unique sequent of all 4’, then there is a unique morphism 8, (a)—9, (r)
and hence a unique morphism §, (¢) Ab—r. On the other hund, since &, (@) A b
is a vertex of a cone over all P, then there is also a unique morphism r— 3, (a).

Hence we have r=23, (@) A b. Since 3,(a)= V a’, then the above relation holds.
EFEAF
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I we now claim that the space {(A;3,> has an effective local spatial
organization ensured by the existence of an object which is the representing cbject
for the power-object functor, then we shall obtain the concept of a topos.

We could give many more specifications of the functor'.(m@:&})@ n

{J, .((*)@?ﬁ))@r, W5 in order to obtain various kinds of spatial wholes and rela-
tionships between them. We could obtain various algebras, lattices, topological
algebras, numbers: natural and real, equational classes, etc. For instance,
pseudo-Boolean algebras, calied also Heyting algebras, one can obtain as a special
case of an intuitionistic topological space (4;3,): it is enough to take that there
are unique arrows between objects in it. If we provide this algebra by two collec-
tions of operators which have some preserving properties ccncerning the structure
of the algrebra and the collections themselves have some structure and connecting
properties, then we could obtain Post algebras. It means that these algebras are
certain special cases of spatial wholes involved by means of certain operators. We
shall not coccern further cases, but shall proceed to consider two standard
mathematical views: formalism and intuitionism. We shall see what these views
mean from the standpoint of spatial wholes.

A formal system or formalism can be regarded as a systematic scheme ac-
cording to which we organize a collection of symbols in a whole with precisely
established internal relations: relations between its concepts and rules for the
creation of these. We shall show that it creates a kind of spatial whole from such
a collection. In what follows we shall sketch such a system given in [9].

Let S be a collection of symbols. As it 1s well-known, a formal system dis-
tinguishes two collections of expressions made from elemenis of S: the collection
of terms T'(S) and the collection of formulas F(S). It also gives modes of generation
of these collections. The collection T{S) is generated from elements of § by means
of certain operations and the collection F(S) from 7(S), which is provided with
certain relations, by means of logical operations. It is moreover endowed with
effective rules for the denvation of formulas from some collections of these, as
premises. These rules are known as the rules of inference. According to them, we
may take a certain collection of fundamentally valid formulas of axioms and extend
it up to a collection of valid formulas or theorems:

Now we shall see what this story means from the standpoint of spatial wholes.
Certainly, the collection of symbols S, we can consider as a discrete fundamental
world. We are going to specify the kind of spatial whole which a formal system
involves on S. According to the above description, the collection T(S) is generated
in such a way to contain the collection S and to be closed with respect to finite
sequents and presequents. Hence, it is certainly a spatial whole on S.

The next coliection of expressions is F(S). Let us sec what kind of structure
involves the formal system on this collection. To show this we shall first deal with a
topological spatial orgunization on it. Suppose first that F(S) is endowed with certain
arrows by means of which it will become a fundamental world; it is enough to
take arrows called implications. A topological spatial organization is defined on
such a world by means of a many-valued functor ,,© of S to F(S) which assigns,
to each symbol s S, a filter (/S (s) in such a way that there is a single-valued functor
[ : S—F(S) and a natural transformation v : J—(,,©. Hence we have that (, v, 4,©)
(s), s& S, is a cocone on F{S). With respect to this struciure, F(S) becomes closed
with respect to arbitrary f.c. and restricted l.c.c. creations. We know {7] that such
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a structure we can involve by means of certain operators. Hence, we can represent
it as a system {F(S); A, V.,%,C), where A and V are the signs for the pre-
sequent and sequent operation respectively, % is the functor of complementation
and C is the closure functor on F(S). All these functors are defined in [7]. If we
now look at the structure which the formal system involves on F(S), we shall
notice that it is just such a structure and hence a spatial structure. :

It is clear that the structure on F(S) is of the first higher level with respect
to that on T'(S); objects of T'(S) are otherwise included in F(5) through atomic
formulas: collections of T(S) selected by certain relations. Thus, the following
proposition holds:

PROPOSITION 6. A formal system involves a two-levels spatial organization
on a collection of symbols S. 4

Since the structure on F(S) is of topological type, then we could involve
certain topological concepts in it, as they are open and closed formulas, separa-
tion and compactness conditions, etc. All these concepts one can derive from those
for topological spatial wholes. So, for instance, we can see quantifiers as closure
and interior operators which we defined in {7]. We shall here mention the defi-
nition of the closure operator. A closure operator on a fundamental world W is a
covariant functor C : W-—W which fulfils the following conditions:

Cl:C is a successor functor, i.e., a functor which assigns, to each object
ac W, an object C(a) which is the successor of a with respect to a W-arrow;

C2:C is an idempotent functor, i.€., such that C-C == C holds;

C3: Cis an f.c.<% -functor, i.e., a functor which prescrves f.c.’s over any
< cg-subcollection of W, where ¢y means its size;

C4: C leaves fixed the first object of W.

The interior operator is defined in a similar manner. The complementation
operator 1s defined as a contravariant functor with certain properties. All these
functors are not defined in general to be necessarily uniquc ones.

If obiects of the fundamental world are formulas with many variables, then
the quantification by variables we can realize by the iteration of these operators
along variables, i.e., as a system /—C,, — C, - C,,— ... of functors and natural
transformations, where I is the identity functor and xy, xy, ... stand for vari-
ables in question. By the application of the complementation operator to this
system we could obtain the case with the interior operator.

However, beside these concepts, there are other syntactic and semantic
concepts which are relevant to various types of formal systems such as proof,
consistency, model, etc. Therefore we have to put a general question: in which
manner we can find the place of these concepts within those of a spatial whole,

In what follows we shall deal with this question. We shall be concerned with
it only in general. We shall first consider the concept of proof.

It is well-known that a proof in a system is a procedure by means of which
we can deduce (produce) a formula from a collection of formulas using rules which
are established in the system which we are concerned with. Since our concept of
spatial whole contains in itself various creative procedures, then we can say generally
that an object, a formula for instance, is deducible — creative from a collection

4 35opHEEK pamopa
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of objects and arrows if there is a convergent — terminating procedure of ap-
plications of creative concepts which starts in this collection and terminates in the
desired object; otherwise, a production (derivation) in logical sense can be represen-
ted by our creative concept %; or, in a more broader case, by the concepts of
cylinder and cocylinder. Namely, a production or a derivation is a figure of the
form t;#,...t;—t, where t1,15,..., t; are mathematical objects of a certain
kind, terms and formulas for instance, called premises and the object ¢, the conclu-
sion of the production. We can represent such a figure by our creative concept * in
which the vertex will be the conclusion; ¢ ;... ¢, is its basis. Certainly, in

such a case, we can consider @&) as a collection of mutunally linked produticons.
In such a way we could obtain a Post system [12].

Now we have concepts like consistency and model. These concepts are
concerned with the characterization of a system, in our case, of a spatial whole.
What the consistency means. By means of this concept we ensure that the creative
procedure of the spatial whole in question cannot produce in it an object which is
in a certain sense contestable. Let us see in which manner we determine contes-
tability of an object. The standard way is by selecting certain valuation-fibers.
We do this by a relevant arrow — a morphism from the whole in question to the
spatial whole consisting of two distinguished and different objects denoted by O
and 1; in topoi, the representing object for the power-object functor serves for
these purposes. Let B be a spatial whole and f a morphism of Wto {0,1}. By f
we select on W two disjoint subcollections called fibers and take them as frames
for our purposes: they contain contestable and incontestable objects, respectively
and are otherwise bridged over by means of the complementation type functor.
Having these frames, we say that an object @ is a consequence of a subcollection
C of Wif a&f~I(1) for any f: W—{0, 1} such that CCf~I1), i.e., if a belongs
to the same fiber as C does. This fact is known as the semantic implication |—.
This implication we can represent as a certain natural transformation between a
functor 7 : W—W having its values in the collection CC W and a constant
functor c¢,:W—W having as its values the object 2. We can represent this situ-

tion as a many-valued functor 85=(I, [=, ¢)) of W to itself.

If there is no f such that f(C)=1, then one says that C is semantic incon-
sistent, otherwise it is semantic consistent. If £(C)=1, then it is customary to say
that f is a model for C. Hence we have that a collection C is semantic con-
sistent if 1t possesses a model. Certainly, models in this approach are certain sub-
collections which are closed with respect to certain objects; by such a process we
can establish if a created object belongs to the fiber or not. Having now models,
we could further deal with the concept of spatial structures on collections of them,
One could notice that such a situation belongs to our case of spatial wholes with
a local spatial organization.

Now we shall deal with the syntactic implication and its connection with the
semantic one. A syntactic implication Cl—a, from a subcollection CC W to an
object ac= W, as we have already seen, is a proof of a from C. We can represent

it as a many-valued functor PS¢ consisting of inductively connected creative
concepts which starts in C and terminates in g. If such a production gives us an
object which is contestable, then we shall say that C is deductively consistent.



On a foundation for mathematics — A view of mathematics 1 5t

We could now connect these two implications and hence many-valued func-

tors: the semantic Sg and the syntactic one PS of W to itself. Clearly, we
might say that |- is a specified form of the implication |—; namely, if there is
an incontestable and terminating procedure from a collection C, then there is
also the implication |—. Conversely, it i1s not always the case. Namely, in a general.
case of spatial organizations, we do not know always if there is a production.
which realize this implication.

Now we shall be concerned with intuitionism. First we shall deal with the
formal part of intuitionistic mathematics. We shall be concerned with the structural
type of the intuitionistic propositional logic. We shall show that the system of
axioms for this logic involves an intuitionistic topology on the collection of its
formaulas.

Let us consider the system of axioms for the intuitionistic propositional
logic given for instance in [13]. This system we shall write in a form which is
more convenient for us at this moment. Namely, we shall write 8%(a), or 8,(b),
instead of a—> b, S(a, b) instead of ayvb and P (g, b) instead of aA b, for two
formulas ¢ and 5. Taking this into account, we shall write the system of axioms
in the following form:

Al. a—>31(b),

A2. ¥-¢(a)— (3 (a) & (a),

A3, a—S8(a, b), b—~S(a, b),

Ad. 8% (a)— (3% (c) —=3° (S (q, ¢)),

AS. P(a, b)—a, P(a, b)—b,

Ab. 8 (a) (8¢ (a) >37 " (a),

A7. (P(a, B)—>¢) « (a—=(b)),

A8. P(a, /(@) —>b, SE(EA®) (a)—=A (a).

In what follows we shall analyse this system of axioms. We shall see what
these axioms mean from the standpoint of spatial whole.

Denote the class of formulas of this logic by % . Elements of this class
we shall call objects. This class is certainly provided with a class of unique con-
nectives; there is just one connective between two objects of ¥ . Endowed with
such connectives, ,¥ becomes a category. If we have a connective ¢—b between
objects a and b of ¥, then the object a is the hypothesis and b, the conclusion
of the connective.

Now we shall see what the above axioms specify on the category .7 . Before:
all the axioms Ad4. — A6. specify the category ¥ to be closed with respect to
finite sequent and presequent operations denoted by S and P, respectively; it
means that the category .¥ possesses finite sequents and presequents and hence:
that 1t is an I8, -semigroupoid ([6].

Let us consider now a functor & :.¥ —.F which assigns, to each object
ac ¥ , with respect to the chosen object b= .% , an object 3%(¢). Assume further

4‘
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the object 8%(a) to be the unique connective a—b between objects g, b,E F .
In such a way connectives between objects of ¥ also become objects of 7 .

The axioms Al. and A2. specify the functor 3, < .¥ . According to the
axiom Al., there is a connective between object ¢ and the object 38%b) being a
connective with respect to the object g. We can express this as the existence of a
natural transformation v : I—3,, where I is the identity functor of ¥ to itself
and 3§, the functor such that 8,(a)=2%b). According to the axiom A2. we have
the existence of connectives between functors. Namely, let b—c¢ be an object,
then, for the functor b*<, with respect to the connective cbject b—¢, we have the
existence of a natural transformation »® ¢ : 3b—-3§¢,

The axiom A7. means the adjointness relation of the functor 3, and the
presequent functor P ( ,b). This relation enables us to construct the connectives

of . in an effective manner.

Finally, the axiom AS8. specifies a functor </ :.¥ —.F which assigns, to
each object ac=,5 , an object <4 (a) such that the presequent of a and </ (a)
precedes all objects of [ ; it is certainly the strict first object.

From the above analysis of the axioms for the intuitionistic propositional
logic we have that the collection of formulas of this logic has the structure of an
intuitionistic space of the form {A4;38,> which possesses the strict first object;
here, 4 is an Ny-semigroupoid and 8, a functor on A4 having mentioned proper-
ties; this is the covariant form of the above functor. Hence the following proposition

holds:

PROPOSITION 7. The collection of formulas of the intuitionistic propositional
logic has the structure of an intuitionistic topological space. |

Hence we have that the system of axioms of the intuitionistic propositional
logic involves a certain kind of spatial structure of intuitionistic type on the
collection of its formulas; a spatial structure of another type 15 contained in buil-
ding up the collection of terms; this structure is of the first Jower level with
respect to that on the collection of formulas.

Now we shall deal with certain concepts of nonformalized intuitionistic
mathematics. The concepts which we shall concern herc are those given in [2],
{11] and [16]. First we have the concept of a species. This concept is already studied
in the paper and therefore we shall not be further concerned with it. Next concept
is that of a spread. We can obtain this concept by specifying the choice functor
@?A); it means by specifying the collections of conditicns A and 2, Let us see
in which way.

If we assume that the functor (*,@&; is specified, of course, by specifying A
and Q, in such a way to consists of many-valued functors of, k€K and 2w,
such that any (- Dth functor is in fact a cone over a =xth one, then we can
represent ,,S4, as a collection {, 6% | kE X A xCw}, where (of are many-valued
functors of the form ,oi"" = (,08, pix, Go) for k', k&= ; here, ppy are natural
transformations, .o = Fpr is a single-valued functor and G* are constant func-
tors. The determination of the successive concepts ,op ~' may be pictured as a
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process of progressive ramificaticn with simplicial branches: each branch gives a
simplicial concept [6). A spread is a fan if the collection G is finite.

We could deal with other concepts of this logic, as they are choice and
lawlike sequences, apartness relation, etc. We shall see for instance what the apar;'-
ness relation means. This relation, usually denoted by 3, differs objects in a
fundamental world and can serve for choice purposes. Namely, by means of it
we can select certain subcollections of the world, objects of which are either identical
or in this relation; this relation is otherwise defined to be symmetrical, i.e., such that
# (a, b) &3 (b, a), for any two objects @ and b. We could deal with this relation
as a special arrow, or to express it by means of arrows of the world in question.

According to this, we could say that we could find the position of (all) concepts
of (non)formalized intuiticnistic mathematics within thote cf spatial whole. And
since we have already said this for the case of formalism, then we might say in
general that the creation of spatial wholes contains in itself main parts of mathe-
matical activity.

4. Fundamental acts in creation of the world of mathematics

In this section, we shall formulate, but only in general, fundamental acts which
occur in the creaticn of the world which is intended to contain (all) objects of
mathematics and in the creaticn of which (all) mathematical activity is to be
exhausted. Such a world, we have called the world of mathematics. The acts in
question are extracted from preceding investigations. All preceding story, we can
summarize in five general acts. The first among the acts is the following one:

Al. Specification of the frame of the world

We have seen that it is enough to take as a symbolic frame for the creation
of the world of mathematics a collection _# consisting of two-soit symbols of
various levels. If we adjoin to these symbols some new symbols characterizing these,
then we shall arrive at the new act:

A2, Selection of basic collections

According to the adjoined symbols, representing properties of symbols
of _t, all symbols of any level of _g/ one can select in particular collections called
species. Namely, we first select objects on the considered level. which 'we "call
species, and afterwards make the distribution of arrcws over them. Then we
provide such collections of objects and arrows with certain fundamental structure

Hence, the next act is

A3. Formation of fundamental worlds

We assume that each species of any level of _g, provided with a collection
of arrows, bears a fundamental structute — the structure cf a (quasi)category.
It will possess such a structure if arrcws in it are relevant, i.e., if they preserve
intrinsic prcperties cf its cbjects. This structure serves as a grcuncwork for fur-
ther purposes contained in the following act:
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Ad. Organization of sp.atial wholes

Each fundamental world of any level of 4, one can organize in a spatial
-whole. This act i1s the central one. It contains in itself two activities: choice and
«creative activity. These activities are comprised in creations of spatial wholes of
various levels. We might say that spatial wholes are the main products of mathe-
‘matical activity and hence objects of an edifice which we have called the world of
‘mathematics. Hence we have that the world of mathematics consists of spatial
‘wholes of various sorts and levels; of course, together with arrows between them.,
‘These arrows horizontally connect spatial wholes. Meanwhile, their vertical con-
nection, i.e., the connection between levels is established by the following act:

AS. Vertical connection of spatial wholes

Each spatial whole of an arbitrary level of _7# is an object of a species of the
first higher level with respect to this level. Hence,species of each level of 4 consist
of spatial wholes, with specified structural type, of the first lower level with respect
to their level; they are also endowed with relevant arrows.

The above five acts give us a general procedure for the creation of the world
of mathematics. By following them and specifying structural types of spatial wholes
we specify the mathematical world. For the complete specification of the world, it
is necessary to know all structural types of spatial whole which we can involve on
a species of spatial wholes. This problem, however, requires a separate study of
various types of spatial wholes and their relationships. Therefore we shall not
«deal with it.

If we forget the structure of spatial wholes, then the world of mathematics
will consist of (quasi)categories of various levels; each (quasi)category of any
Tevel of _#{ has as objects (quasi) categories of the first lower level with respect to
its leve] and functors between them as arrows. If we assume that (quasi) categories
are discrete and accept a neccessary part of spatial structure we could obtain the
frame of the world // of [5].

Furthermore, as an idealization of the world of mathematics, we could obtain
the world of ordinal numbers and also of their cardinal capacities. Going along
levels we would have ordinals of various number classes. We could realize this by

assuming that choice-functors &, are completed transitive functors having the
tree structure.

It would be of an interest to find the link between cur approach and some
other approaches to the foundations of mathematics given for instance in [1].
Moreover one could deal with the connection of some other mathematical worlds,
as they are for instance worlds of set theory ([9], [14]), then the world of [3] and
others with our world. We shall deal with some of these questions in a separate
paper. Moreover we shall apply these investigations to develop some other mathe-
matical theories.

‘5. Conclusion

We have been concerned in this paper with general aspects of mathematical
:activity, We have seen that this activity has as its primary goal the creation of certain
.mathematical entities which we have called spatial wholes and of the world which
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contain all these entities. This world, we have called the world of mathematics.
We have specified certain features of it and its constituents. We have also given
fundamental acts for its creation. Certainly, there stil remains much work con-
cerning further characterizations of spatial wholes, heredity of their properties
along levels, etc.

In the next part of this paper, we shall try to formalize these investigations in
a system. We shall give main features of that system and then compare it to some
known system. Afterwards we shall return, once again, to the discussion of goals
of mathematical activity.

Since we consider that the investigations given in this paper reflect certain
features of the real world: its horizontal and vertical evolution and structure,
then we shall try to apply them to natural science. Thus, beside the problem of
further characterization of the concepts given in the paper and the formalization
- of this program, we have one more task.

Finally we should say a few words about all what we have done here. The
basic idea which has been leading us in this work bhas been to see mathematical
conceptions as various kind procedures by means of which one can create mathe-
matical entities called spatial wholes which have to comprise in themselves mathe-
matical and logical concepts We do not know if we have yet succeded in this.
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CONTINUUM PROBLEM AT MEASURABLE CARDINALS

Aleksandar JOVANOVIC

Exposition

Given any set, how to evaluate the cardinal of its pcwer set? The above is
known as continuum problem. In ZFC, initial ordinals can be taken to represent
cardinals. Thence the problem reads: determine functicn F, so that for all

ordinals a:
(0) 2% = g ).

Cantor has proved that 2°¢>@w,,,,for all «. Thercfore we cansplit F°
so that

(1) O F(x) = Og 1 fle)-

Putting f(x)=1, for « € Ord, we obtain a formulation of generalised continuum
hypothesis (GCH).
It is known that

(2) a<B implies F{e)<<F ()
and
(3) of O () > Wq-

The (3) is known as Konig’s lemma.

Here we shall first list important recent progress on the matter, assuming;
the fundamental results of Godel and Cohen are known.

In [7] Silver has proved the following theorem.

[.1. THEOREM: if w, is a singular cardinal of cofinality greater than
w, then:

(4) VR<a28=qwg,, implies 2%%*=q,,,.

However, the problem of all singular cardinals is still unsolved. In J. Stern [8}
we found the following hypothesis on singular cardinals, for which the consistency
and independence are open questions. HCS: let w, be a singular cardinal. Then

(4") VB<a 2" =wg, , implies 2°%*=w,,,.
Jensen in [6] has proved the next theorem.
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1.2. THEOREM: if negation of HCS is consistent with ZFC 50 is the axiom
of uncountable measurable cardinals (AM). -

For regular cardinals we have the fundamental result of Easton [3]:

1.3. THEOREM.: for any function F defined on all ordinals « such that
w, 1s a regular cardinal and F satisties (2) and (3), consistency of ZFC 1mp11es the
consistency of ZFC+EAp. Here EAp is the formula

V o Dy (F) 27 = 6p .

Here we note that 1.3. theorem, we found in Jech [5], theorem 37, in
a somewhat different notation. There presented formulation is adjusted for the
following theorem that we have proved, Let F and f be defined by () and (1).
From Chang and Keisler {1], section 4.2. we know that if there is an uncoun-
table measurable cardinal then there is a mormal ultrafilter on it.

1.4, THEOREM: let & be an uncountable measurable cardinal and let D
be a normal ultrafilter on it. Then

(5) {<K:2Fl=|B|*}& D implies 2F=k~.
(6) f@I<|IIr®]

Above [X| denotes a cardinal of X, J] is ultraproduct medulo normal
i

filter D. (5) says that if conttnuum hypothensis is true on a set in D, then it is
true at measurable cardinal k. Hence it implies that the value 2% is determined
when continuum hypothesis holds on a set in D. (5) is the special case of (6)
which can be read as: the number of cardinals « such that k<a<{2¥ is con-

strained with the value of |[[]f (B)!. Here f(B) is a nonempty subset of %,
D

which enumerates the cardinals from wg to 296,

| Now it 1s evident that the axiom of uncountable measurable cardinals con-
tradicts the Easton’s result given in 1.3. theorem; to check that, let k¥ and D
be as in 1.4. theorem. Define F

F(m):{m-i—l iff atk and cf wy =,
w42 iff a=k

This F satisfies (2) and (3), so by the conclusion of 1.3. theorem we can take
as axiom

Va&D,, (F) 2m“=mF{m}'

But the set of all regular cardinals less then k belongs to D. Hence by (5)
2k=k+, contradicting F (k)=k+2 which means that 2¥=k++ Moreover, since
(5) is a special case of (6), similiarly to above we see that if F violates the (6)
ZFC +AM +EAgp 1s inconsistent. What with the opposite question? Taking into
account Silver’s result that the consistency of ZFC-+AM implies the consis-
tency of ZFC+AM +GCH, we state the conjecture: let F be defined on all «
for which w, is regular and let F satisfy (2), (3) and (6). Then the consis-
tency of ZFC+AM implies the consistency of ZFC |- AM +EAp.
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As we have seen above, the continuum problem was separately treated for
singular and regular cardinals. But according to (6), may F be such to prevent
the existence of measurable cardinals? Then in ZFC -+ EA4Ar, HCS would become
a theorem.

Proof

First we list two D. Scott’s results on normal measure, as we found them
in the section 4.2. of Chang-Keisler [1].

DEFINITION. A filter D over a measuralbe cardinal & is said to be
normal if:

1. D is an k-complete nonprincipal ultrafilter;

2. in the ultrapower H(K, <>, the k-th element is the identity func-
L

tion on k.

2.1. THEOREM: let ¥ be an uncountable measurable cardinal. Then there
1s a normal ultrafilter over it.

2.2. THEOREM: if k is a measurable cardinal and P a normal ultra-
filter on it then

(R(k+1), e>gg[ (RB+1), ).

2.3. COROLLARY: let p(x) be a formula. Then
R+ 1), €0 [=e(k) iff {B<k:(RE@+D,C)me@RED.

As a consequence of the above we note that the set of strongly inaccessible cardinals
less than k& belongs to D. Also

[T] R@+1n)]|=2"
2.4, THEOREM: let D be an ultrafilter over a cardinal & .Let
A= (A4, < 4= 1;[ Ck, <) If fe*k and f(B)+ @

when B&k, then
[Ir@|=lepcu:e5<af B} .
i

PROOF: let g€ [ [ f(B). Then g&*k. Define
fe=k

1. gp={heﬂgfca):{f<k:g(f)=h(f)}61>}-

2. gh—{hCkk: {i<k:g(@)=h()}ED}.
It 1s clear that gDCgEI. Define m: [ [ f(B) — 4, by -.r:gﬂ:ggl. wis 1 —1, For,
D
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if gp£hp and g, hﬂell;[ f(B), then gp,Nh,= @. Suppose that mgp=mhp.

Then gg[=hf}1, and hence {I‘c:k:g(f)=h'(i)}ED. It follows that Ap=g,. Con-
tradiction. Put F= {ggle‘*ll :ggc: 4 f%l}. We shall prove that ={([] f (B)) = F.
D

Let go,= 1] F(B). Then {B<k:g(B)<f(PB)}=k&D. 1t follows  that ggf-::df%l.
D

Hence gEIEF. Let now g%{E{E Then x={f<k:g(B)<f(B)} =D. Let gC*k be
such that B
g@=2g@ if Pex

g(®=1 if BEkix.
Then gEgh g |1 g heref; gp=gn h
ge&g,,. But g&ﬂfﬁf(ﬁ) and gDErDI f(B). Therefore wgp=g, and thus
' L=
w maps | [ f(B) onto F.
. 0

2.5. THEOREM Jet k be a measurable cardinal, D a normal ultrafilter
over k. Then N={A4, < H>=U,<k, <> is well ordered with the relation. < ,.

Order type of U is greater than 2K,
PROOF. By lemma 4.2.13. from [1], <4 i1s a well ordering. Further

2k — H;IR(B+ 1)|gll_pl(k, <> |2~

Hence order type ot %=2% and obviously ot A<<|2%|+; defining & as b(B)=
=|R(B+1)|, we see that bc*k and hence bp<¥. The proof then follows
from 2.4. theorem and the fact that b, is not the last element in L.

2.6. COROLLARY for every fp < there is an crdinal vy, so that f5 is the
Ys—th element of A, and |11, f(B)|=|y,[; for every ordinal x<<ot¥ there is
an f*<*k, such that f; is the x-th element in .

Now we can give the proof of 1.4. theorem.

Functions F and / are defined by (@} and (1); if B<k then ¢f|B|<k,
wg<k, F(B)<k, 2°P<k and f(B)< k. Hence the restriction ft,&*k and (f})pE
EI;I (k, << ). We define

H={hpcU: {f<k:hB)E oy, wp,r@)MCara} D}

That is, for A,C H, h(3) is a cardinal and wg<hE <ws, ;). Hence, for every
hp< H, there is some g,< G, so that

(*) {B<k:h(B)=wg,p@} ED. Define n: H > G, with
T'-’hn_':gn iff (*).

It i1s easy to check that =/, does not depend on elements of Ay and that =
is 1-—1. Therefore
| H|<| G|,
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Let » be a cardinal such that k<{x<<2*. By the 2.6. corollary there is
an f*E*k, such that fp is the »-th ordmmal in U, eg. v - x. From the same

corollary
1@ =16 =Ix[=x

For the function g with the domain k, define the functicn

1gl=<|g@®)|:B<k).
L@ =111 7 ®]-x=

We have

That implies

which means that |f*| is at least »-th element in 9. Since |f*|p<{,fp

{B<k:| B < @)}ED), by choice of f* must be f“=,|f*| and hence
X={B<k:f*(B) is.a cardinal} < D.

Since qu=x}k and D is normal, we have

{B<k:f*@E=prED.

Let Sinac(k) be the set of strongly ina-zcessible cardinals less than k. As we
noticed, Sinac (k)& D. Now we have -

either {B‘f:k :fn: ([3) }mmﬂm} =D
or {B<k:*(B)<wg. @D

In the first case we would have

which would 1mply
2| [T @ =TI @l

DS (Sinac (k)) D

Hence Tfu;;ﬂ“, contradicting assumption for x.

Thus {B‘:k .'f“' (B){mﬁ+f([3}}e D.
Since %2k and f*=p!f*| we have

{B<k:f*@) Clop, wp,p@)NCard}eD.

It follows that there is some h,E H, so that f*Ch,, or equally fp & H. Since
x#% implies fp#fp, we have

I, 29N Card| = (k, 21\ Card |- | £ |<| HI<| G| = | T] @,

thus completing the proof of (6). Now let
X={B<k:2if'=IB|*}=D.
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This means that f(f)=1, when BEX. But from (6) we get
17 |<| T f(8)|=1. Hence 2¢=k+.

DS (x)

NOTE: in the above proof we had f}, defined on all B<Ck; to apply the
Easton’s argument we need f}, to be defined on y={B<k:wg is regular}.
Since y& D, such a difficulty can easily be avoided.

From above it follows that actually

Ekﬂmkﬂqrg CFB) O)e
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FROM FOUNDATIONS TO SCIENCE: JUSTIFYING
AND UNWINDING PROOFS

Georg KREISEL

Abstract. The first part of this paper recapitulates the general scheme of using techniques
developed for discredited foundational aims; specifically, proof theoretic techniques developed
for carrying out Hilbert’s programme. Since this programme relies on formalization, that is,
mechanization, an obvious use is in the mechanical *handling’ of proofs. — The second part of the
paper considers three different kinds of *handling:’ finding, checking and unwinding (transforming)
proofs. The principal, generally neglected conclusion is that mechanical unwinding presents the
most promising application of proof theoretic techniques; particularly where the passage from
the informal proof considered to a formalization of its relevant features is not particularly proble-
matic. Examples of such cases are proposed.

1. Background

It 1s a commonplace that the notions and problems (formulated in terms of
such notions) which occur to us when we know little about a subject are liable to
lose their prominence when we know more. This shift occurs even when, realisti-
cally speaking, the notions are quite precise. Here are two examples from so to
speak opposite extremes in the case of formulae and proofs.

I. When we know little, length of formulae (measurcd by the number of
symbols) will occur to most of us as a subjct of study. It is quite precise for
any given notation. But as we go into the subject, we find that length does not
determine the mathematical ‘behaviour’ of formulae at all well; for example, in
many decision procedures a bound on the number of quantifier alternations is
much more significant. This kind of thing is familiar from the natural sciences:
The (mechanical) behaviour of bodies is determined more by their weight and
moments of inertia than by their colour or (details of) their shape though colour
and shape strike the eye most.

2. When we know little, the first and often almost the only Yes-No question
to ask about a proof is whether it is valid or, perhaps, whether it uses valid
principles. Of course this question is meaningful (and often the answer is negative
when we have little experience with the subject; for example, 2 hundred years ago
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one applied the power set operation to what Cantor called a Vielheit, e.g. the
universe). But as we go into the subject we often reach a stage when any analysis
or — as one says — justification of the principles is unrewarding in a quite precise
sense: any analysis (tacitly: in terms of current concepts) is less convincing
than the recognition (=constatation, Konstatierung) of validity. This kind of
thing is familiar from experience with children who learn only slowly when it is
{intellectually) unrewarding to ask: Why? -— The case-study in the Appendix
illustrates in detail how experience with the subject matter affects the recognition

of vahdity.

Perhaps the most famous attempt to pursue questions of validity to the bitter
end is Hilbert’s programme. Fairly recently, I have set out what I believe we
have learned from work on this progamme [4]. The idea was to justify abstractly
valid principles by the following kind of reduction. If an elementary statement
has a proof w by such principles then it has also a proof =, by elementary
means. And if the principles are formalized, the reduction is, in turn, expressed
by an elementary statement (for details, see [4]). The latter should be proved by
elementary means, once and for all; cf. Hilbert’s famcus ‘final solution’ ({4],

pp- 111—112).

As is well-known, the most striking so to speak legalistic defect of Hilbert’s
programme is established by Gdédel’s incompleteness theorem; naturally modulo
second thoughts about abstract validity. A far more specific, and therefore
more convincing defect 1s established by looking at particular abstract principles
which have been reduced according to Hilbert’s aim, and to see what is gained
or lost by the reduction; cf. [4] pp. 116—117. Indeed, quite generally, defects
of reductions are most easily seen in cases where they have been carried out, where
Ockham’s razor has been applied. Otherwise there is always a lingering doubt
that we shall see something new and marvellous when ‘unnecessary’ growth has

been removed.

Be that as it may, it is quite clear that the ‘reductions’ involve transformations
of proofs: ®—m,. And even if one has no doubts about (the validity of) = or
less doubts about = than about =, (for example, because =, is more involved
than 7 and so has a higher chance of containing copying errors), there remains the
possibility that =, tells us something we want to know that m doesn’t. Finding
that ‘something’ becomes a principal problem: it may nced more imagination
than the step from = to w,.

Remarks. (a) The problem above, of exploiting work done for the sake of
discredited aims, is familiar in the philosophy of science under the somewhat
grandiose heading: Logik der Forschung (logic of scientific discovery). It is very
popular among scientists working on cosmology or theories of evolution where
such problems are the order of the day. (b) In particular, what were principal
notions or principal results for the discredited aims turn into lemmas, of interest
only when reformulated, and combined with other constructions. A good example
is provided by so-called consistency proofs using e,-induction, reformulated as
a formal equivalence between the logical principle of soundness (=reflection) and
the mathematical principle of eginduction ([4], p. 121, 1. 7—8). This has re-
cently been combined with combinatorial arguments by Paris and Harrington
[7], who established an equivalence to a ‘more’ mathematical principle, namely
their version of Ramsey’s theorem, to which we return in the Appendix.
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II. Mechanical Handling of Proofs

For familiar foundational reasons which were recalled above, formalization
of the principles studied (of course not: of the metamathematical methods used)
‘is needed for Hilbert’s programme. Others tried to connect formalization with
mathematical rigour, which requires metamathematical arguments to be formalized
too. However far-fetched all this may be for the phenomena of mathematical
reasoning itself, formalization or, equivalently, mechanizaticn is an obviously es-
sential element in the use of digital computers. since they operate only on formal data.!
We consider here three kinds of uses: finding proofs, say for a given conjecture;
checking proofs, of a given assertion; and fransforming proofs, for example, a
prima facie non-constructive proof of an existential theorem into a realization,
an analytic proof of an algebraic theorem into an algebraic one, and the like.

1. Past experience: compuiation and highbrow mathematics. Of course, the
huge bulk of computer uses in pure or applied mathematies concerns ccmputations
or, more generally, classes of assertions 4, for example, equations ¢t=¢’, for which
decision methods are known that can be realistically implemented by a computer.
So formulated, the uses can be regarded as examples of finding or checking proofs;
for example, if we think we have an argument for 4, but are not sure?. However,
the only feature of the argument which is relevant to this use is the conclusion 4
itself. The computer checks the result of the argument, and dces not look at its
details. Put differently, given the result, the computer makes & fresh start. As a
corollary, the third type of use mentioned above, the transformation of proofs,
does not occur here at all.

In high-brow mathematics the sitvation is different. Finding and checking
proofs are, at least generally, done without using mechanical rules. This is a com-
monplace as far as discovery is concerned. But also checking is rarely done mecha-
nically, for example, by caretul comparison with some given set of formal rules
(mathematicians make logical inferences, but seldom remember rules of predicate
calculus even after having seen them). By far the most efficient checking is done by
comparing or confronting intermediate steps with wbat is known already, possib-
ly in superficially quite different parts of mathematics. This is of course related to
discovery where results from different areas of knowledge are combined. In short,
for the phenomena of mathematical reasoning just mentioned the business of for-
malization seems quite far-fetched.

In contrast there is another part of high-brow mathematical activity which
does have a mechanical look, namely the analysis or unwinding of proofs; it is
mechanical, once one has decided what to read off the proof. As @ matter of empirical
fact (cf. p. 113—116 of [5]), though mechanical, this unwinding occasionally
makes one’s head spin, and one gets lost — as in computations with large numbers.
From this point of view it is promising to use computers for such unwinding. And,
as suggested by Part I, methods developed in traditional proof theory turn out
to be relevant here.

1 Many instruments which are called computers” are here thought of as combining a {central)
digital computer and a (peripherai) analogue device; the latter may operate on, say, continuous
data, and then supplies the computer with discrete formal data.

2 An ’‘essential element” and not necessarily the sum total; for example, if we are interested
in a conjecture A, one type of use of a computer is to present not a formal proof of A4, but of
P4—+A with an invitation to the user to consider if P, is valid.

3 3boprax pamgosa
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Reminders. To avoid a general air of unreality, it is as well to recall at this
point a few simple facts. (a) Naturally, even if the programme of unwinding
works out, it cannot be expected to be of comparable importance to, say, high speed
computation. This is a particular case of the truism that the use of computers
within mathematics is a very minor part of the total picture. {b) Conversely, inasmuch
as the programme is useful, it cannot be expected that clever mathematics
will often play an essential role. This 1s a particular case of the fact of experience,
say In operational research, that one rarely gets a startling gain in efficiency
by some new mathematical device for solving a (decision) problem. Far more
often does one get an improvement by spotting constraints on the problem (as
originally stated): one finds that in practice only few of the assertions occur which
were thought to be relevant at first blush. Actually, this point applies to some
extent within mathematics too when there are high, say cxponential bounds for
deciding all formulae of the class C; the practical conclusion 1s that one had better
look for a more amenable class, say a subclass of C. (c¢) But also one should re-
member that there are occasional exceptions to the general features of present day
high-brow mathematics emphasized above. The proof of the four-colour-conjecture
by Haken and Appel (explained in [1] with the benefit of advice from professional
scientific journalists) was certainly discovered by a high-brow use of computers.
At our present stage of experience it is as reasonable to look for a check without
the use of computers as it would have been a hundred years ago to lcck for a
finitist proof of a thecrem discovered non-constructively.

2. The passage from informal to formal proofs:. the alleged spanner in the
works. When one speaks of (mechanically) unwinding or, generally, transforming
proofs, one has to have a proof to start with! So naively, it seems we need machinery
to pass from some given informal proof © to corrcsponding formal data =" and
perhaps (b) that, for a mechanical transformation, =" has to be built up by
Sformal rules. Both these ideas are quite naive. The first ncglects general experience
in the application of theories, the second specific experience in proof theory.

(a) What 1s needed 1s a formal representation of those features of = which
are relevant to the transformaticn. Sure, cne can ask: How do you know what
is relevant, (as a child asks: Why?) But, before one imposes unrealistic demands
on uses of proof theory, it is much more profitable to remember how mathematical
theories are applied elsewhere. If physical theoryis to be applied to some phenome-
non, say the motion of the planets, it is left to the physicist to discover the physi-
cally significant features of the phenomenon. There is no ‘machinery’ for deciding
whether chemical composition or cosmic radiation is significant — and if there
were, the application of the machinery might take so long that the more significant
features {position and velocity) are already out of date. The physicist uses a certam
familiarity with the phenomena to spot the significant features.

And physical theory is of use whenever the effort involved in the passage
from the raw phenomenon to the choice of data is not out of all proportion to the
effort of applying the theory to those data.

(b) For the kind of unwinding mentioned in §1, most details of a proof
are not relevant; for example, none of the details involved in proving so-called

identities, that is, | |-axioms, and if the latter are true then the transformed proof
will again use only true (] [?) axioms.
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As a corollary, when we have the job of unwinding a proof =, we shall look

for chunks of the proof that are used only for proving | |-thcorems, and suppress
them altogether from the representaticn w' to which the prcef theoretical trans-
formation is applied; cf.: a physicist who i1s given data including the spectral
lines of the light coming from a planet, will ignore this optical informaticn if his
job is to determine the motion of the planet.

The fact that proof theoretic methods are occasionally of use, is not in doubt.
As documented in [5], pp. 113—116, even without a computer they have been
applied to unwind proofs, and to extract information which the discoverers of
those proofs wanted to know and did not find by themselves. Spotting rele\ant
features of those prcofs was not a major gbstacle,

NB. Of course there is intrinsic logical and above all aesthetic interest in giving
a closer analysis of the passage from informal prcofs to (1elevant) formal repre-
sentations. But under ordinary circumstances the use of such a scheme is more
likely to hamper than to help the effective application of ccmputers in the unwin-
ding of proofs. -— The reader should compare here cases of mechanizing the choice
of relevant features in natural science. This was necessary, for example, when
sending a robot to Mars to lock for life, since only a limited number of types of
measurement (of supposedly relevant data) could be incorperated. The robot was
surely much better than a scientifically untrained or thcughtless obcerver. But
perceptive scientists c¢n the spct would surely have done betier than the robot by
not restricting themselves to a prescribed repertoire,

3. New examples of candidates for mechanical unwinding. The ‘new’ examples
are here regarded as a continuaticn of those discussed in [5], pp. 113—116 (where
also some loose ends are pointed out which can prebably te tied up by use of a
computer). The ‘old’ examples concerned questions raised by distinguished mathe-
maticians about their own prccfs, and so it was reascnable to take the interest of
the questions for granted, The interest of the new questicns will be discussed
briefly at the end of (a), respectively (b) below; ‘briefly’ because, as always,
only the general interest ¢f an open problem can be decided, the exact interest
depending on the specific sclution.

Warning. To fix ideas the unwinding considered below is done by normali-
zation or cut elimination (so that one ends up with a cut free proof). This 1s fine
for realizations of existential theorems. It is nct gced for finding, say, a first order
proof which corresponds to a higher order prccef (cf say, a logical theorem).
Giving a better unawinding, which in general associates a (first oi1der) proof with
cut to higher order prccfs, is certainly a principal open problem.

(a) Milnor [6] showed by use of topological arguments that the only
{possibly non-associative) divisicn algebras cver a real closed field have dimen-
mensions 1, 2, 4, 8. So, for each integer n=£1, 2,4, 8 there is a purely logical
proof of the non-existence of a division algebra of dimensicn n from the axioms
of real closed fields, since the property of being the multiplicaticn table for such
an algebra is expressed by a first order fermula.

Problem. What do the (purely) logical first order procfs lcck like, which are
obtained by unwinding Milnor’s precf (say, for n=16, 64, 256)?

5*
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Reminder (from §2). Naturally, one will not formalize many details of Milnor’s
proof, but only those steps which are relevant to the unwinding procedure.

It is known that Milnor’s result does not extend to all (ordered) fields.
A standard counter example is the following commutative and associative
division algebra of dimension 3 over the rationals:

The elements are of the form

a+ b 2+ci 4,

where a, b, ¢ are rational.
Sums and products are defined as usual, that is, for the field of rationals
extended by 72.

The irrationals /2 and ) 4 satisfy cubic equations. This is optimal since
inspection of standard methods yields the following:

Corollary: For all odd n» Milnor’s result holds for ground fields in which
every polynomial of degree n has a zero (The fields need not be real closed).

Discussion. Mathematically speaking, the problem of unwinding presents a
risk; specifically, when more 1s lost than gained. (A — conscious or unconscious
— attraction of finitist foundations consisted in apparently removing this risk by
the claim that the unwinding was needed for justifying Milnor’s proof). The corollary
above indicates one kind of possible gain, incidentally in terms of conventional
concepts. The unwound proof will exhibit the particular (finite subset of) axioms
for real closed fields that are needed for the conclusion, and may thus suggest a
neat generalization of Milnor’s result (to a larger class of fields). — On the other
hand, foundationally or pedagogically speaking there is no risk. There are sufficiently
many people with foundational convictions that unwinding is either always or
never informative, that somebody is bound to learn something from the unwinding.

(b) When — in contrast to (a) above — both mathematical and logical proofs
of some (logical) formula are actually available, unwinding i1s used to compare
the proofs. For example, suppose DO are (first order) axioms for dense orderings
without first or last element, and that F is a formula in the language of DO with
the single free variable x. Then DO > VxVx' (F < F’) where F' is F[x/x’]. For
each such F, the implication can be proved by elimination of quantifiers, but also
{mathematically) by use of the categoricity of DO for countable models and their
automorphisms. The mathematical proof can be formalized in type theory, and
unwound by normalization: but we really have no idea what the resulting (logical)

proof looks like.

Discussion. One, very familiar way of expressing the malaise produced by
the existence of such spectacularly different proofs is to doubt the validity of the
set-theoretic notions used in the mathematical proof. But note that there are also
non-ideological doubts about — the concepts needed to state — structural rela-

tions between those proofs.
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Appendix : a case study

The purpose of this appendix is to expand the general discussicn in Section I by
reference to a specific case. Plenty of famtliar maternial could be used for this purpose,
for example, the discovery and recognition of any of the basic current axiom systems.
But I (and the readers likely to profit from this article) find hackneyed examples
distasteful, and so a very interesting recent discovery by Paris, already mentioned
in the text, will be used instead. Besides, there is no analysis in print which puts
this discovery into a broad context, '

Paris discovered a striking variant RT (A’ for arithmetical} of Ramsey’s
own finite version RT; of his theorem RT on partitions of the set of pairs of a
countable infinite set; for exact statements, see [7]. According to the title of [7],
the most remarkable property of RT, is that it is a ‘mathematical’ theorem which
can be stated but not proved in first order arithmetic. As already indicated at the
end of Part I, this alone is not particularly convincing since eg-induction {(for,

say, the complete [ [ predicate)is hardly any more meta-mathematical than RT pr
and has been known for more than 40 years to have the same remarkable property.

This is made precise at the end of (b) below.

(a) As for background, it has been known since the work cf Jockusch [2] that
RT itself cannot be proved in most “usual’ conservative extensicns of first order
arithmetic with full inducticn; more specifically, any finite subset of axioms of those
extensions 1s satisfied by scme (finite) segment of the arithmetic hierarchy, and
RT is not. On the other hand, RT7} itself can be ccmfortably proved in first order
arithmetic, in fact, bounds for the correspending Ramsey functions lie in E—E,
of Grzegorczyk’s hierarchy of the primitive iecursive functicns; cf. {8] p.140,
Lemma 6.

(b) Validity of RT,. Far end away the simplest prccf of RT, utes a de-
duction (by compactness) frcm RT itself, The same applies to RT%.

Corollary. Taken in their literal sense, as ] 12 theorems, a separation between
RT, and RT; (o to spezk, cn the grcvrd cf a different ‘kivd” of validity) is
suspect. — More precisely, as cannct te repeated tco cften, it is an assumption
that the classificaticn of thecrems according to foimal derivability in any parti-
cular (incomplete) system 1s significant. The discovery that R7, and RT, aie sepa-
rated by this classificaticn, using fitrst c1der antt wetic, ca¢ts Ccutbt cn the assumption

The situation changes if interest shifts ficm the literal <ense to bounds for
Ramsey functions, specifically upper bounds. NB. It 1s a striking discovery that,
in contrast to the bulk of elementaiy mathematics, this shift is significent here:

usually bounds are read off quite directly ficm a precf of a 1'[2 theorem.
Proofs via RT supply a-recursive tcunds for scme a<<e,,, by [3] mmasmuch

as the most obvious formalizaticn cf the preof of RT uses [ [} — analysis (which
is formally identical to the theory of the first level of ramified analysis [9]). As
always this can be improved by bounding the complexity of the inducticn schema
used in the proof of RT. — Evidently, these bounds are far beycnd E, which,
by above, bounds the original Ramsey functions (of RT ).

The proof of RT, in [7], via the so called >1-reflection (or soundness)
principle for first orcder arithmetic, surplies an gg-1¢cvisive tevrd. This follows
from — one direction of — the well-kncwn equivalence, for example, in 1. 7—3 on
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p 121 of [5], between ep-induction and the reflection principle. For reference below:
the bound in question is primitive recursive in f,,, the particular egrecursive
function of Wainer’s hierarchy (used in [10]).

Discussion. Realistically speaking, this proof, though very agreeable to a
logician, is unsatisfactory for those who really want to know bounds for Ramsey
functions. (After all, for a logician, consistency is a much more interesting assertion
than RT,!) The proof requires the verification that a number of arguments can
be formalized in first order arithmetic; evidently, a delicaie matter (for a novice)
in a context where there are also arguments which cannot be so formalized, speci-
fically, proofs of RT !

| The best upper bound for RT, so far obtained 1s £ (#7 +4), in [10]. The pro.of
uses a careful proof-theoretic analysis of subsystems of first-order arithmetic in
terms of Wainer’s hierarchy.

It seems plausible that the machinery of [10] can be developed to give this
bound by means familiar to the principal consumer, the combinatorial mathematician
interested in RT,. Specifically, one would use an ordering (of type g) of finite
partitions, called ‘algebras of sets’ in [10], and one would apply induction on that
ordering to a combinatorial property of such partitions. In contrast, the unwinding

of the proof of RT, in [7] together with the deduction of (Zl—)reﬂectmn from

(3 =) e induction uses orderings of infinite cut-free preof trees and unfamiliar
(derivability) properties of formulae at the nodes of those trees.

(c) Formal underivability of RT, :lower bounds. Once again, a number of
proofs are available. First of all, there are more or less familiar constructions of
models, originally by Paris, later by Kochen-Kripke (unpublished), in which RT,
fails. By itself, this does not establish any lower bounds at all because, after all,

even a (numerically) true H? statement can be formally underivable. The device

used here is to have models in which all true [ ]}-statements hold, and appeal to
the fact that, for o<z all «-recursive functions are provably recursive. If a

] I3-statement V x3 yA4 (x, y) has an «-recursive bound, defined by a G6del-number
€y, then the H?—stutement

*) VxVz{T(eq, x, 2) > Ayly <UD A A(x, I}
is true, Vx3z T (ey. x, z) provable, and so Vx3y A(x, v) is derivable from (¥).

Corollary (for people interested in the formal indcpendence of Z?ﬁsﬂ-in—

duction). Once one has (i) a mode! in which all theorems and all true l—[?-scntences
of arithmetic do, but RT, does not hold, and (ii) any sy-recursive upper bound
for RT, (as in (b) above), it is immediate that /. is not provably recursive.

Secondly, there is the proof in [7] which derives the 2 j-reflection principle
(in primitive recursive arithmetic) from RT,. Appealing again to the proof theoretic
equivalence mentioned in (b), we find that any Ramsey function enumerates all
a-recursive functions for «<eg, and so cannot be equal to any such function,
Trivially, as in (*) above, no Ramsey function could be dominated by any such
function either. In terms of Wainer’s hierarchy (in [10)) : f;, is primitive recursive
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in any bound for RT ;. This is done by unwinding the proofs of (i) (Z?—) reflecticn
from RT, in [7] and (ii) of (2.—) e-induction from (37—) reflection.

Again, neither of the proofs mentioned can be satisfactory to the principal
consumer because it involves the passage from provably recursive to <Cgp-recursive
functions. Only the latter are so defined that the property in qucstion, rapid growth,
1s evident. |

The third proof, by Solovay [10], shows, in terms familiar to the combinato-
rial mathematician, except for the notion

o - recursive function: «<Cgp,

that all such functions are almost everywhere lower bounds for Ramsey functions
of RT,. In fact, by [10], f;, (=—4) is a lower bound.

Discussion. There is, 1 believe, a useful parallel between Solovay’s proof and
Higman’s well-known characterization of subgroups of finitely presented groups
(ignoring for the moment the relative interest of this part of group theory and of
the partition calculus resp.). Higman discovered that a few notions of recursion
theory combined with a good deal of group theory permit a satisfactory answer
to the question:

Which finitely generated groups can be embedded in finitely presented groups?

Solovay succeeds in using a notion first thrown up in proof theory to answer the
question:;

How fast do Ramsey functions of RT, grow?

Certainly, no bounds anywhere in combinatorial (or other ordinary) mathematics,
have ever come near the (lower) bounds for RT . A critical view of traditional proof
theory, specifically of the consistency programme was of some help (as claimed at
the end of Part I) because — on the traditional view — the emphasis on exten-
sional properties of provably recursive functions is quite trivial compared to the
metamathematical methods used in the consistency proof.

Remark. Just as the discovery (in [8], 16. 4, based on section 14 about infinite
cardinals) of the original lower bounds for RT., Solovay’s argument obviously
involves the fruits of experience with infinitary partition calculus. This is a counterpart
to Jensen’s successful use in (infinitary) set theory of some developments in proof
theory of Bachmann’s ideas for defining fundamental sequences. Certainly, not
everything is the same as everything else (unless viewed very superficially). But
the particular traditional distinctions between ‘the’ finite and ‘the’ infinite are not
all that important as far as proofs are concerned; certainly less than appears to the
inexperienced.
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PS (added March 1978). Since this paper was written, Part (b) of the Appendix has
been improved. (i} On the formal side several of us noticed that ep-induction (applied to
arithmetic predicates) axiomatizes the arithmetic theorems, and hence

Z? —a—induction: a<¢,

the Hg—thenrems which follow from RT in AY—analysis with induction restricted to arith-

metic predicates (with parameters). (i) More interestingly, J. KeToNEN established the con-
jecture at the end of (b), proving RT, by induction on (a predicate involving) the member-
ship relation in He, for a<g,, where He is his hierarchy of so called a-large, finite sets of
natural numbers. {The relation is coded arithmetically). His proof uses a general scheme for
weakening suitable definitions D of familiar closure conditions on ordinals » (Mahlo, weakly
compact, n-subtle); roughly speaking, by rewriting (set-theoretic) I in combinatorial language
D, where the variables for ordinals used as indices are separated from those used as elements
of sets, As a result it makes sense to let the set quantifiers in D, range over x-large sets
of natural numbers in place of arbitrary subsets of ordinals <x. Ketonen’s proof of RT,
shows that ¢, is the least ordinal which satisfies (the latter, arithmetic interpretation of) w—S,
where w-S is the appropriate definition of n-subtle for all n as a partition property. -Ketonen's
scheme gives further substance to the Remark on p. 121 at the end of this paper.

Incidentally, the forma! work in (i) is sometimes useful for (ii), for example, to check
bounds for (the least ordinal satisfying) D..
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LE NOUVEL ESPRIT MATHEMATIQUE

Maurice LOI

Le sujet de cette conférence tient d’abord a une question d’opportunité: je
prépare un ouvrage dont le titre sera d’ailleurs celui de la conférence d’auvjourd’hui,
qui rappelle tout ce qu’elle devra a I'oeuvre de Gaston Bachelard en épistémologie,
et il me sera particuliérement utile d’avoir votre opinion sur les quelques idées que
exposer devant vous.

Ces idées sont a l'origine du Séminaire de philosophie et mathématiques.
Elles ont leur source dans les travaux d’Albert Lautman, qui viennent d’étre
réédités par les Editions 10/18 & Paris, et dans la constatation que
I'enseignement, la philosophie et la culture méconnaissent le véritable esprit . des
mathématiques contemporaines, dont je voudrais montrer la lraison avec I’heuri-
stique. Méme lorsque les programmes ont été modifiés dans les écoles, méme quand
les notions nouvelles y ont été introduites, Pancien epsrit dogmatique et sclérosé
régne toujours, oubliant la dynamique de la science. La vie des concepts est ignorée
et pour donner du mouvement 4 des notions mortes on a recours a 'agitation
enfantine, a du bricolage, des exercices et des problémes destinés a faire *‘sécher™
les éleéves parce que les outiles nécessaires & leur résolution ne leur sont pas toujours
donnés, ce qui leurs impose des complications stupides. A 'opposé on encombre
lapprentissage de notions simples et nécessaires de considérations pédantes et
inutiles a ce ntveau, C’est une conception dépassée des mathématiques qui domine
cette pédagogie ou rigueur et créativité sont trop souvent opposées, alors que
I'accroissement de la rigueur mathématique et les recherches logiques ont permis
d’augmenter de fagon considérable les moyens d’invention de I'esprit humain dans
tous les domaines, comme je m’efforceral de le montrer au cours de cette confé-
rence. Et c’est une autre raison de cette conférence; le mépris contemporain de
trop de personnes pour la déduction et la rigueur, le “‘déductivisme™ disent-ils
d’un ton méprisant. Or les conquétes essentielles de la science ont été obtenues avec
I'intervention dominante de la déduction. L’impossibilité d’y arriver par le moyen
de simples inductions basées sur 'observation directe avait été reconnue par Galilée
luni-méme comme je le rappellerai tout a I’heure. Or I’a priori est devenu signe da
Parbitraire, du conventionnel et Poincaré n’a pas peu contribué a répandre cette
idée. La science expérimentale équivaut alors a la science objective, Bien siir,
il y a eu un usage abusif de la déduction au Moyen-Age,e aboutissant i des thé-
ories mystiques ou fantastiques, mais les alchimistes ont bien usé aussi de la
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méthode expérimentale. Ces médisances contre la raison humaine ne doivent pas
nous faire oublier la fécondité de la déduction, qui n’est stérile qu’entre les mains
des ignares. En fait, elle constitue souvent un moyen bien plus efficace et plus siir
de recherche que ’expérience ou I'observation directe. Micux: sans elle la science
ne peut pas se constituer. Méme dans I’étude des phénomeénes sociaux, les plus hardis
inventeurs et constructeurs de plans de réformes et les critiques les plus impitoyables
des théories justificatrices des institutions et des regles sociales effectivement exi-
stantes, sont précisément ceux qui se distinguent par une plus grande tendance
a l'usage de la déduction, par exemple Rousseau et Marx. Or ce mépris et cette
ignorance de la déduction ne permettent pas de juger correctement les mathémati-
ques, qu'on réduit & quelques recettes ou procédés de calcul sans portée au deld
des exercices et des probléemes d’examens et de concours. Il est vrai que Ia société
de consommation les utilise comme moyen de sélection pour recruter ses cadres.
Mais les mathématiques ont quand-méme un autre intérét et c’est la société qu’il
faut changer.

I. L’essor des Mathématiques et leur valeur Invéntive

Les mathématiques, malgré leur anciennété, connaissent de nos jours un
essor impétueux et accéléré dont il est possible & un profane d’apprécier 'ampleur
en consultant la circulaire mensuelle de la SMF donnant le programme des sémi-
naires, colloques, congres, en visitant une bibliothéque spccialisée; en feuilletant
un numéro de Mathematical Review, de Current mathematical Publications ou
encore de Zentralblatt fiir Mathematik und ihre Grenzgebiete. On sera impressionné
par le nombre de problémes résolus et la variété des résultats obtenus, par la floraison
de théories audacieuses, par la quantité de livres et de publications divers. Jean
Dieudonné a pu écrire: ““On peut dire sans exagération qu’il vy a eu plus de prob-
lemes mathématiques fondamentaux résolus depuis 1940 que de Thales & 19407*
L’age d’or, qui a commencé pour les mathématiques au debut du XIXe siecle,
n’est pas prét de finir. Cette premiére constatation prouve [‘activité créatrice de
I'esprit humain en mathématique pour élaborer des méthcdes et des théories
nouvelles permettant de résoudre des problémes posés depuis longtemps, théories
nouvelles qui font naitre inversement !'idée de problémes nouveaux, lesquels
ne pouvalent étre formulés abstraitement auparavant. Le degré d’abstraction de
plus en plus poussé des mathématiques ne les empéche pas — au contraire, pour-
rait-on dire — d’étre utilisées dans des secteurs les plus divers, ou ce sont parfois
les théories et les idées les plus récentes et les plus élaborées qui se révelent les plus
necessaires, Ainsi Einstein eut besoin au début du siécle de la théorie des groupes,
de la géométrie riemanienne et du calcul tensoriel pour élaborer sa théorie de la
Relativité. Ce faisant il ne procédait pas du tout a la fagon dont 'imaginent encore
en 1977 trop de personnes, utilisant un langage, un simple moyen d’expression
pour une i1dée déja existante, Gréce aux mathématiques formelles les plus élaborées
et les plus éloignées de I'expérience, des notions aussi fondamentales que ’espace
et le temps, dont Kant avait fait des absolus, furent bouleversés. Des conclusions
étonnantes, telles que cclles de 1'équivalence de la masse et de 1'énergie ont été
obtenues comme des conséquences mathématiques du principe d’invariance par
les transformations de Lorentz de toutes les équations gouvernant les phénomeénes
physiques. Le point de vue du mathématicien triomphe de celur des empiristes.

* Es af sur Punité des mathématigues, par Albert Lautman, p.20 note 2.
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Conséquence ce qui n’a pas assez retenu Iattention des philosophes, ni medifié notre
culture colporteuse d’idées surrannées.

Aussi, trop souvent, n’estime-t-on pas & sa juste valeur le rdle des mathé-
matiques dans la pensée scientifique. Or désormais elle est tout entiére présente
dans son effort mathématique, ou, pour mieux dire, c’est 'effort mathématique
qui forme ’axe de la découverte. C'est I'expression algébrique qui seule, souvent,
permet de penser le phénoméne, comme si ’esprit acquerrait des facuités nouvelles
en la maniant, rendant possible le mouvement spirituel de découverte. Je pourrais
citer d’autres exemples analogues de la physique: algébre stellaire, géométrie
symplectique, théorie des groupes etc, ou des sciences biologiques ou humaines,
qui montreraient le réle heuristique des mathématiques dans I’ceuvre de théori-
sation, de réflexion et de définition des concepts. Clest le premier aspect essentiel
du Nouvel esprit mathématique d’étre une source d’idées qui permettent la com-
préhension et la maitrise des phénoménes comme I’avait révé Descartes dans sa
philosophie pratique et conquérante : saisir 'intelligence des choses a partir de
leurs vrais principes qui donnent la lumiere intellectuelle, telle est la véritable mathé-
matique, ou il n’opposait pas induction et déduction comme le font certains de
nos contemporains, qui voient dans 'induction la source unique des inventions
et considérent la *‘séche™ déduction comme un simple moyen de preuve et d’expo-
sition de résultats déja trouvés, Or la conquéte de vérités importantes ne peut étre
effectuée par la simple observation passive, mais exige I'exercice d’activités mentales
bien plus ¢levées et compliquées. Dans la plupart des cas les expériences sont de
simples vérifications de conclusions auxquelles les expérimentateurs sont déji
arrivées indépendamment d’elles: ““Je fus d’abord persuadé par la raison avant
d’étre assuré par les sens” écrivait Galilée (Dialogue des grands systémes, seconde
journée). Pasteur, deux si¢cles plus tard, a justement défini ’expérimentation comme
une observation guidée par des idées précongues, c’est-a-dire, en d’autres termes,
une observation précédée et accompagnée de procédés déductifs.

Un précurseur : Descartes.

Descartes avait le souci d’une logique féconde qui scrve non seulement
a exposer mais & découvrir. Les mathématiques 'ont justement séduit par ’évidence
de leurs raisons et I'enchainement de leurs conclusions. Elles lui ont donné ses
idées-clés : toute vérité est un degré, auquel on accéde en partant du précédent
et qui lui donne lui-méme un accés du suivant. Aux touts pergus par l'intuition il
faut désormais substituer des composés artificiels, fabriqués par nous et dont par
conséquent la structure et tous les €léments nous sont exactement connus. Ainsi la
science, au lieu d’étre, comme le croyaient les anciens une contemplaticn d’objets
idéaux, se présentera désormais comme une création dc Pesprit, une compo-
sition synthétique. La tdche essentielle du savant sera, par conséquent, non pas
d’apporter une nombreuse collection de résultats, mais de mettre sur pied de bons
instruments de combinaison, de constituer une méthode puissante et efficace. Les
voles de la synthése algébrique sont ouvertes. Tel est précicément le but que Des-
cartes se propose avant toute chose. La physionomie nouvclle que va prendre la
science, c’est la géométrie qui la définit, qui la commente, ¢t en donne en méme
temps une vision concréte : par 1’algébre, une algébre nouvelle il est vrai, clarifiée
et perfectionnée, il est possible de résoudre les problémes relatifs aux grandeurs
et auf figures en suivant une voie sire et réguliére. La siireté, la régularité de la mé-
thode ; voila ce qui est essentiel aux yeus de Descartes, voila ce qui doit distinguer
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la science moderne de la géométrie ancienne, ce champ clos ou les virtuoses de la
démonstration pouvaient seul se mouvoir et accomplir leurs prouesses. C'est en
ce sens que Descartes est un précurseur du Nouvel esprit mathématique et pour
ainsi dire de Bourbaki: I'algébre pour lui n’est pas un recueil de résultats, c’est une
technique, c’est une méthode de combinaison et de construction. Par le simple jen
du mécanisme algébrique nous faisons surgir un monde géométrique 1llimité que
ne nous aurait jamais révélé I'intuition directe de la figure. En réhabilitant le calcul
délaissé par les Grecs au profit de la géométrie, Descartes prépare la route pour la
mathématique formelle. Tous les scrupules des géométres grecs touchant la défi-
nition des courbes s’évanouissent, et les détours qu’ils employaient pour y échapper
perdent leur raison d’étre. La théorie de la construction géométrique devient inutile
ainsi remplacées par cette synthése créatrice, autrement féconde qu’elle.

II. Le role central du concept de fonction.

Sous le véiement de la notion de courbe apparait (bien siir 1l faudra attendre
la fin du XVIle siécle pour que le mot apparaisse et que 1'idée soit précisée) la notion
générale de fonction grosse de toutes les questions qui bientdt surgiront 4 sa
suite. Cette notion n’a pas sculement constitué un perfectionnement des mathé-
matiques, elle a marqué un changement radical dans leur orientation, qui n’est pas.
toujours apprécié comme il convient malgré ses nombreuses conséquences et appli-
cations pratiques, |

L’intérét philosophique de cette découverte a été apprécié par la suite par
quelques philosophes tels que Hegel ,Marx et Engels: le passage de la pensée de
Parménide A la pensée d’Héraclite. Hegel nota dans la Phénoménologie de Pesprit
que la tiche pédagogique moderne est en quelgue sorte inversc de la tiche péda-
cogique antique, qu’il faut maintenant rendre fluides ces déterminabilités. Telle
est la tache qu’il se proposera dans sa Logigue. Selon Parménide tout étre intelligible
par la raison doit étre considéré comme invariable tandis que selon Héraclite c’est
le changement qui est la loi dominante de 'univers. La constitution de la mathé-
matique grecque marqua le triomphe de Parménide: la philosophie d’Héraclite
ne laissant place 4 aucune fixité, elle aurait abouti & nier fa valeur de la mathé-
matique et empéché le développement de la science. Bien siir la pensée grecque
est bien plus complexe que cette schématisation peut le laisser croire. Platon, par
exemple, fut tout autant fasciné par Héraclite que par Parménide, mais il appelle
dialectique ce qui sera appelé plus tard métaphysique. Car Platon avait déja une
conception riche et souple de la raison, qui savatt s’inspirer des déccuvertes de
la science. Ausst n’est-ce pas un hasard si Albert Lautman fit si souvent référence
a Platon lorsque vers les années trente du XXe siécle il voulut élaborer une philo-
sophie mathématique. Tel fut aussi I'effort de Brunschwig et de Bachelard. Mais
au XVIle siécle Pascal opposait encore esprit de géométrie et esprit de finesse
alors que le mathématicien moderne use autant de 'un et de "autre. Une consta-
tation doit étre soulignée: le dogmatisme fut d’abord surmcnté dans la science.
Voila une legon dont Bachelard sut tenmir compte mais que bien des philosophes
contemporains devraient méditer.

Quelle fut 'importance de ce tourpant dans la pensée mathématique?

Pour la science grecque tout probléme se ramenait a la recherche d’un ou
plusieurs nombres, déterminées d’une maniére compléte queique implicite, par les
données de la question, Manifeste en ce qui concerne les problémes d’arithmeétique,
cela m’était pas moins certain dans le domaine géométrique, puisque les figures
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considérées pas les Anciens {points, droites, plans, cercles etc.) dépendaient chacune
d’un nombre fini et méme peu élevé de parameétres. Etudier les relations entre
certains nombres laissées invariables dans tout le cours du raisonnement ainsi que
la maniére d’utiliser ces relations pour calculer quelques—uns d’entre eux, les autres
érant supposés donnés, voild ce que se sont proposé mathematmlens Jusqu an

XVIle siécle.

D’Eudoxe et Archiméde a Leibniz et Newton.

Eudoxe et Archiméde furent des exceptions et n’eurent pas de successeurs
directs. Le cadre de la géométrie antique ne fut réellement dépassé et une arme
nouvelle donnée a la science que lorsqu’on considéra la variation continue de
certains éléments numériques ou géométriques — ce qui revient au méme. — liés
les uns aux autres et ainsi furent jetées les bases de I’édifice que devaient achever
Newton et Leibniz,

Mais ce stade devait étre bientdt dépasse. Il ne consituait que le début d’une
€volution qui n’a cessé par la suite de se poursuivre dans le méme sens et elle se
continue encore a I’heure actuelle. Lorsque Ies notions nouvelles déduites de celles
de fonction furent appliquées a la physique et eurent montré la légitimité de ce
nouveau point de vue, que le calcul infinitésimal permettait pour la premiére fois
d’aborder: il n'était plus possible & la science de le laisser de c6té. Dés que 'on
commenga & s’attaquer au mouvement, a capter Uinvisible c’est-a-dire le change-
ment — ce qui n’avait pas été posstble avant qu’on disposit des instruments mathé-
matiques adéquats — et 4 mettre ses lois &4 la base de Ia physique, il apparut que
dans I’étude de la nature on ne pouvait continuer a considérer comme seule indi-
vidualité, comme seul objet de recherches, le nombre déterminé ou ses équivalents
géométriques (point, droite, cercle etc.) L’€tre mathématique, en un mot, ne fut
plus le nombre: ce fut la loi de variation, la fonction, qui devint le centre autour
duquel s’organise la science. La mathématique n’était pas seulement enrichie de
nouvelles méthodes, elle était transformée dans son objet et dans ses fondements.

La transformation ne fut pas totale du premier coup. L’Analyse ne fit pas
d’un seul coup le saut qu’elle allait étre obligée de faire et garda un pied sur la rive
qu’elle devait guitter. C'est seulement au XIXe siécle avec Fourier, Dirichlet,
Cauchy, Riemann, que la notion de fonction prit son sens moderne et toute sa
portée: une fonction y=f(x) ne s’obtient plus nécessairement par un certain
nombre d’opérations prises dans une liste déterminée quelle qu’elle soit. Clest
une correspondance quelconque établie entre chaque valeur attribuée a x et
une valeur y, supposée seulement déterminée dés que la premiere est donnée,
mals sans qu’on s’astreigne 4 employer pour cela tels ou tels modes de détermi-
nation plutdét que d’autres.

La nouvelle tendance dialectique de la science et Punité des mathématigues.

Cette fois la novelle tendance de la science ne pouvait pas manquer de prendre
consclence d’elle-méme. Définir une fonction arbitraire, c’est défimr sa valeur
pour chaque valeur de x; si cette fonction est supposée représentés par une ligne,
cette ligne est, elle aussi, quelconque, et n’est déterminée que lorsqu’on. connait
chaque point. La connaissance de la fonction ou de la courbe équivaut donc non
plus a celle de certains nombres mais a celle d’une infinité de nombres. Et c’est
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encore sous cette forme que ce pesaient les nouveaux problemes, ot aucune image
simple ne s’offrait plus a 'esprit. Lintuition géométrique ne pouvait plus rien
nous apprendre. Pour remédier 4 cette ignorance, la raiscn ne pouvait le faire
qu’analytiquement: il fallait créer et développer la Théorie des ensembles. Bien sfir
il faudrait, dans le méme ordre d’icées, pailer du calcul des variaticns, des équa-
tions différentielles et intégrales, du calcul fencticnnel, de la théorie du potentiel
et de bien d’autres choses pour montrer pourquot le concept de fonction marque
bien le début d’une ére nouvelle et qu’il en est le noeud essentiel. Si je me suis
attardé quelque peu sur cette notion fondamentale qui a cuvert des portes nouvelles
a la pensée, c’est parce que dans I’enseignement, en France du moins, elle a été
quelque peu obscurcie par un engoument exagéré et naif en faveur du concept
d’ensemble ou de relation. Bien slir on a dit et répété: ‘‘la mathématique moderne
est la science des relations™ en oubliant de préciser que la relation fondamentale
de base de ’édifice, reste la fonction. Russell 'a bien vu, qui lu1 fait jouer le roéle
essentiel dans The Principles of Mathematics, ou un chapitre est consacré aussi a
la notion de variable, une des notions essentielles de la nouvelle mathématique.
Mais comme Pécrivit Hermann Weyl en 1949: ““Nul ne peut dire ce qu’est une
variable”*, Elle n’atteint quelque précisicn qu’avec le développement de la théorie
des ensembles et des mathématignes. Birkoff et Mac Lane preclament, eux, le mot
d’ordre: *‘tout est fonction” dans leur traité d’algebre. 1! sagit alors du concept
pris dans toute son ampleur qui est cmniprésent en science et non sous sa forme la
plus pauvre, comme dans trocp de manuels d’enseignement.

Non seulement le concept de fonction fut & Porigine des travaux de Cantor
et il devient le véritable objet du calcul fonctionnel exactement au méme titre qu'un
point ou un nombre, mais il peut €tre pris comme notion fondamentale et primitive
pour exprimer les propriétés de certains ensembles sans faire appel aux €léments.
C’est lui qui sous des noms divers: application, homcmorphisme, hcméomorphisme
morphisme, isomorphisme, transformation, correspcndance interpiétation, repré-
sentation, opérateur, foncteur etc. est si souvent utili<é. Ces divers syncnymes sug-
gérent une activité féconde tissant 'unité profcnde des mathématiques, parce
qu’elle a pour but de révéler des rapports qui illuminent les données, Elle est devenue
la clé de vouite de Pévidence et avait d¢ja retenu Pattenticn au XIXe siécle de mathé-
maticiens comme Lejeune-Dirichlet et Dedekind. Le premicr écrivait: “Il arrive
trés souvent en mathématiques ou dans les autres sciences que si un systéme d’objets
ou d’éléments @ est donné, chanque élément «w détérmine sort remplacé d’aprés
une certaine lot par un élément déterminé ' correspondant i «”. On a habitude
d’appeler substitution un tel acte et on dit que «” est le transformé de o par cette
substitution et £, lequel est constitué par les o’ le transformé de £2. 11 est encore
plus commode de dire, comme nous le ferons, que cette substitution est une ap-
plication de £, que ' est I'image de w et £}’ 'image de {}'. Dedekind ajoute en
note: “C’est dans cette capacité de ’esprit de comparer un object » avec un objet
w’, ou de mettre w et &’ en relation, ou de faire correspendie & @ un @', capacité
sans laquelle il n’y aurait tout simplement pas de pensée, que repose aussi, ccmme
je le montrerai ailleurs, toute Parithmétique.” L’idée de la définition de I'appli-
cation dans ‘Zahlen’ remonte en effet a Dirichlet: “Par une application f d’un
ensemble S j’entends une loi qui attache a chaque élément déterminé s de .S un
objet déterminé qui s’appellera 'image de s7**

* Philosophy of Mathematics and Natural Science
** Zahlentheorie hrsg. von R. Dedekind, 1879 — 163 pp 469—70 cité par J. Largeault:

Logique et philosophie de Frege p. 418.
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Clifford a son tour attira 'attention sur le rdle crucial du concept de fonction:
““La mise sur pied d'une correspondance entre deux ensembles et la recherche des
propriétés qui se conservent au cours de cette correspcndance, peut étre considérée
comme l'idée centrale des mathématiques modernes: on la retrouve a travers
toute la science pure et ses applications.”*

III. La fin du dogmatisme et les limites de Descartes

Aprés avoir souligné les grands mérites de D’épistémologie cartésienne, il
est nécessaire d’en tracer les limites précises et de sculigner ce qu’elle peut contenir
de périmé en 1977. A ce sujct je peux suivie presque & la lettre le dernier chapitre
du Nouvel Esprit scientifique de Gaston Bachelard.

Tout d’abord le dogmatisme de la méthode, qui fut notons-le quelquefois
le fait des cartésiens plutdot que de Descartes lul-méme, devient un frein pour la
connaissance. Les complications inutiles qui se rencontrent dans beauccup de
résultats classiques sont justement dues a I'emploi de méthcdes qui n’ont rien a
voir avec le résultat escompté, de méthodes n’admettant pas, en général, le méme
groupe de transformaticns que le résultat. L’importance accordée a lintuition,
au simple: a I'évidence ct aux idées innées ne convient plus du tout & la science
moderne ol méme des notions comme celles d’espace et de temps sont bouleversése,
pas plus que le hautain mépris pour la logique formalle. Leitniz serait un meilleur
guide, comme I’a noté Bourbaki.

L’intuition cartésienne, certes, est 'intuttion iniellectuclle, aperception du
rapport logique de principe & conséquence, tandis que Kant n’admettra plus
d’autre intuiticn que P'intuition sensible et repoussera avec force I'intuition intellec-
tuelle qui est pour lui le vice fondamental de toutes les métaphysiques antérreures,
y compris la métaphysique cartésienne. Sortir du sommeil dogmatique etait certai-
nement indispensable, comme I'a écrit Kant, mais il ne fallait pas oublier que sans
stabilité il n’y a plus de science: ““Donne-moi un endroit ou e tenir ferme et j°éb-
ranlerai le monde™ notait déja Aristote. La pensée scientifique détermine dans I'uni-
vers changeant les points fixes, les pdles inamovibles et s’en sert comme de reperes.
Une des premiéres démarches de I'esprit humain fut de découvrir sous le devenir,
ou au-dessus, des permanénces. De 1a sont nés les problemes de la substance, de
Pessence, de la forme, de 1'étre, de Pexistence, de la vérité, sur lesquels méditérent
les métaphysiciens mais qui furent aussi au centre de I'activité mathématique, acti-
vité d’oll surgirent de nouvelles maniéres de penser et 'esprit acquit des capacités
insoupgonnées. FEn grec le terme méme d’““épistémé” est étymologiquement
dérivé d’une racine signifiant ‘‘fermeté” et ‘‘stabilité”. Ainsi le changement a-t-il
été d’abord considéré comme une dégradation et non pas commeé un Pprogres.
La méthode scientifique conduit 4 un équilibre stable, a la stabilisaticn et a la
consolidation du monde des perceptions et des pensées, sans lesquels le changement
ne peut &tre maitrisé. Le cas des mathématiques est exemplaire: la géométrie est
I’étude des propriétés invariantes dans un déplacement ou quelquefois dans une
similitude. Depuis Klein et Sophus Lie une géométrie est désormais I'étude des
propriétés invariantes d’un groupe de transformations, la tcpologie est une geéo-
métrie dont le groupe est celui des homéomorphismes etc. Klein a, en effet, montre
avec beaucoup de force que le plus important pour une géométrie n’est pas la nature

* Cité par Jean-Claude Pont dans Ia Topologie algébrique p. 121 (Mathematical papers
pp 334-5).
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des points qu’elle étudie, mais la structure du groupes de transformaticns qui y
définit 1’égalité des deux figures. 1l faudrait citer aussi la théorie des invariants
algébriques dont l'intérét retient encore I'attention des mathématiciens, la théorie
de la relativité en physique théorique ol I’essentiel ce sont les absolus, les invariants.

Tout changement d’atlleurs n’est pas forcément un progrés, mais ’esprit a
besoin d’une certaine tension pour progresser. Une féconde bipolarité lui est
indispensable. Et c’est un mathématicien qui le note, Jean Dieudonné, dans son
avantpropos a l'oeuvre d’Albert Lautman (p.17): Tant il est vrai que le grand
laboratoire des 1dées, ¢’est désormais au sein de la science qu’il se trouve. On peut
dire que les vrais savants sont a la pointe de la culture et de I’innovation. Malheu-
reusement la philosophie contemporaine non seulement n’est plus 'antichambre
de la science, mais elle ignore la science contemporaine dont elle se fait une concep-
tion dogmatique, et Bachelard est une exception. Pourtaint les Grecs avaient déja
trés bien saisi la nécessité de cette tension de lesprit. Lorsquun probléme était
résolu Platon *‘tenait la blessure ouverte” et se refusait a ‘‘cacher derriére un mot
la difficulté du concept™. Aristote affirmait que la science commence avec 1’éton-
nement. Mais la mode en 1977, ol tout un chacun se réclame pourtant de la science,
n’est plus a I’étonnement. Tout est présenté comme allant de soi, naturel, facile,
a P’aide d’une philosophie paresseuse qui est la négation de la véritable culture.
Celle-ci ne peut ignorer I'extraordinaire essor des mathématiques, ol nous voyons
a I’ oeuvre 'effort de la raison et le triomphe de I'intelligence. Il n’est plus possible
d’immobiliser la perspective de la clarté intellectuelle, d’imaginer que le plan des
pensées les plus claires se présente toujours le premier, que ce plan doit rester le
plan de référence et que toutes les autres recherches s’ordonnent & partir du plan
de la clarté primitive. Le simple est une conquéte et non plus une donnée ou un
point de départ,

L’ideal de complexite.

Le temps cartésien des natures simples et absolues est révolu. On pourrait
dire que c’est un idéal de complexité qui anime la science contemporaine, ou plutdt
il s’est établi un véritable chassé-croisé du simple au complexe et inversement,
“Il n’y a pas de route royale pour la science™ disait le mathématicien grec Ménechme,
I'un des précepteurs d’Alexandre le Grand, qui remplaca lI'incomparable Eudoxe
précurseur des mathématiques modernes. Les mathématiques sont abstruses et
difficiles et toute assertion qu’elles sont simples n’est vraie que pour les initiés ou
les pseudo-pédagogues & la suite de Piaget. Mais on paye cher cette facilité, cette
confiance dans 'acquis et le spontané, ce repos dans les 1dées regues.

Tout le probléme de Vintuition se trouve bouleversé. Des concepts aussi
primitifs que “‘point”, *‘droite”, ‘‘plan”, ‘“‘espace”, ‘‘nombre”, etc ont été enrichis
4 tel point qu’ils préscntent maintenant de multiples facettes. Ils se sont complexi-
fiés en s’enrichissant. Une telle variété d’aspects exige qu’on cn finisse avec la stupide
raideur dont font preuve trop d’enseignants ou de formateurs d’enseignants, qui
soutiennent encore qu'un concept doit étre noté d’une seule et unique fagon partout
et toujours sous peine d’ambiguité Ils ne voient pas que c'est précisément le choix
du bon formalisme, du langage adéquat au but poursulvi, 3 la solution d’un
probleme out tout simplement a ’énoncé précis et rigoureux de ce probléme qui
est devenu la caractéristique de la pensée mathéematique contemporaine, de son
intelligence et de sa souplesse. On saisit mieux pourquoi les mathématiciens accor-
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dent tant d’importance non seulement au résultat mais aussi au style et a 1’gl¢-
gance, pourquol la ‘“‘beauté”, c’est-a-dire I'exacte concordance entre les mcyens
mis en oeuvre et les fins i atteindre, cccupe une telle place dans les motivaticns
profondes des mathématiciens. Si les rapports entre la pensée ct le langage mathé-
matique étaient aussi rigides que les ignorants le prétendent, tout le monde ferait
et écrirait des mathématiques de la méme fagon uniforme. Ce n’est heureusement
pas le cas!

La conscience claire du sens axiomatique des principes mathématiques doit
étre acquise pour bien dessiner le simple aprés une étude approfondie du complexe.
La liste des axiomes dans la géométrie plane axiomatique de Hilbert n’est pas
seulement plus compléte que celle d’Euclide: ils correspondent désormais a4 un
point de vue diamétralement opposé au point de vue constructif. En effet, au lieu
de définir les points, droites etc. & partir d’autres notions pour en déduire ensuite
leurs propriétés, elle laisse la nature de ces objets complétement indéterminées se
contentant d’énoncer leurs propriétés fondamentales, qualifiées ’axiomes’. Et
Pexemple de 'axiomatique de Hilbert ne devait pas resté isolé, En particulier
I’Algeébre allait de cette fagon se constituer d’une maniére autonome. Le style des
écrits mathématiques en fut profondément modifié comme I’a noté Claude Che-
valley dans un article de la Revue de Métaphysique et de Morale en 1935: “Ce
souci d’exacte adéquation des méthodes remet en honneur, tout en lui donnant
un sens précis, la recherche de 'élégance des démonstrations, quelque peu négligée
par les géomeétres de I’école précédente” (p.382).

Pour étre utile I'intuition doit étre savante et rationnelle, sinon elle est 'un
obstacle épistémologique’, comme aimait 4 dire Bachelard, et non plus une aide.
En particulier 1a suprématie de Ia géométrie euclidienne ne saurait étre plus légitime
que la suprématie du groupe des déplacements. En fait ce groupe est relativement
pauvre; il a cédé la place & des groupes plus riches, plus aptes 4 décrire ration-
nellement 'expérience fine. On comprend alors I’abandon total de I'opinon de
Poincaré relative i la commcdité supréme de la géométric euclidienne. Cette
opinion est plus qu’une erreur partielle et 'on trouve a4 méditer plus qu’un conseil
de prudence dans les prévisicns cu cestin de la raison humaine. En la rectifiant
on aboutit & une véritable révolution dans le domaine rationnel et ’on apprécie
mieux le role créateur de Pesprit mathématique. L’idée est communément admise
en génétique aujourd’hui que ’évolution biologique dans I'espéce humaine s’est
considérablement ralentie et a été relayée par une évolution culturelle*. Dans la
formation de intelligence, les mathématiques ont certainement occupé une place
centrale pour en former la charpente. Valéry dit quelque part dans Eupalinos:
“Les nombres ont ¢té les premiers mots.”

Mathématiques et philosophie

Mais les philosophes en 1977 s’occupent de tout: politique, linguistique,
histoire, sociologie, ¢économie, psychologie, psychanalyse, archéologie du cexe,
arts, statut de la philosphie etc, mais ils 1ignorent souvent les mathématiques, riches
pourtant d’idées philosophiques. Il est vrai que les mathématiciens le leur rendent
bien en méprisant la philosophie comme une vaine spéculation sans intérét, qui
a perdu sa source principale et le terrain privilégié ol naissent les problemes es-

* Voir a ce sujet Atlan N (1975) Variabilité des cultures et riabilité génétique. Ann. genet. 18,
n. 3 149—152.
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sentiels de la connaissance. Car la mathématique et la philosophie sont nées ensemble
en Gréce: Thalés est considéré comme le créateur des mathématiques, du moins
au sens ou nous ’entendons c’est-a-dire dans leur rigueur démonstrative, et les
historiens de la philosophie voient en lui Iinitiateur de la spéculation rationnelle.

C’est Kant qui a établi entre la métaphysique et la mathématique une op-
position tranchée et on peut dater de cette époque la scission entre la science et Ja
philosophie. Il a insisté sur leur hétérogénéité absolue, sans doute préccupé d’é-
tablir 1a valeur objective de la science et de ruiner auw contraire celle de ia méta-
physique comme connaissance spéculative et transcendante. Mais c’est aussi au
point de vue historique parce qu’il veut réagir contre la philosophie de Leibniz et
et de Wolff. Il affirme que les jugements mathématiques sont synthétiques & priori
et surtout qu’ils sont nécessairement et exclusivement fondés sur Pintuition, alors
que Leibniz les considérait comme analytiques et reposant sur le principe
d’identité. La mathématique et la logique modernes donnéres raison a Leibniz
contre Kant, comme I'a si bien noté Bourbaki. Kant croyait que la logique n’avait
pas fait un pas depuis Aristote et n’en ferait plus aucun: la logique moderne a
donné i cette assertion le plus éclatant démenti. D’autre part il concevait la mathé-
matique comme la science du nombre et de la grandeur et croyait que la méthode
mathématique n’est applicable qu’a ces objets spéciaux. Or la mathématique moderne
a rompu le cadre ou la tradition 'enfermait et vérifié cetie parole de Boole: ‘Il
n’est pas de l'essence des mathématiques de s’occuper exclusivement des idées de
nombre et de grandeur.”* Boole en inventant le calcul logique et Grassmann en
inventant le calcul géomeétrique n’ont fait que ressusciter des idées de Leibniz et
réaliser au XIXe siecle la Caractéristique universelle.

Leibniz plus moderne que Kant

En ce sens on peut dire que Leibniz est plus moderne que Kant. La fusion
de Ia logique et de la mathématique, que Leibniz avait entrevue est aujourd’hui
réalisée, mais le développement de la science a montié 'crreur de Kant d’avoir
considéré l'espace et le temps comme des absolus éterncls de notre sensibilité.
Son dogmatisme sur ces problémes influenca bien des savants et des philosophes,
comme par exemple Henri Poincaré, qu’il empécha de découvrir Ia Relativité,
alors qu’il disposait de tout I'outilage technique nécessaire a la constitution de la
théorie. Or a cette époque, c’est-a-dire dans les premiéres années du siécle, Cest le
moment oW, en Frange, sous la conduite du méme Henri Poincaré, de Borel, de
Baire et Lebesgue, les notions nouvelles de Cantor sont introduites dans la théorie
des fonctions de variable réelle. Elles en bouleversent les principes et les conceptions
classiques. La logique traditionnelle montre immédiatement sont insuffisance, car
des paradoxes sont inventés, dont la réfutation est malaisée et reste douteuse, des
raisonnements dont les faiblesses ne peuvent étre démontrées ménent a des conclu-
sions incertaines ou difficiles 3 admettre. Cette crise atteint sa plus grande acuité
exactement en 1904 I'année du centenaire de la mort de Kant, lorsque Zermelo
publie son fameux théoréme.

Une révision de concepts les plus fondamentaux de I’Analyse parait alors
nécessaire. Qu’est-ce que définir en mathématiques? Une existence ne peut-elle
pas €tre purement nominale et nullement réelle? Un ensemble peut-il étre considéré
comme défini sans que chaque élément le soit aussi? Qu’est-ce qu’un concept

* Laws of Though: p. 12
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mathématique véritablement pensé? Hadamard et Denjoy se refuserent alors a
borner la vérité mathématique aux lisieres de ce que les hommes sont capables
d’exprimer immédiatement par leurs conventions de langage. Dénoncer alors
certaines conception de Kant comme le fit, seul, le philosophe Louis Couturat, exi-
geait un courage certain, Car les idées de Kant régnaient sans partage dans les
milieux mathématiques et philosophiques. Deux grands mathématiciens comme
Poincaré et Hilbert s’en réclamaient ouvertement. Or ces idées kantiennes étaient
devenues une entrave 2 ’essor de ’esprirt scientifique, dont Kant avait pourtant
vu toute la puissance. Mais apres avoir fait sa révolution copernicienne il ne sut pas
en tirer toutes les conséquences et fut trop préoccupé de metire des bornes a la
raison. Ce sont les savants qui ont fait ce travail, tout particuliérement en mathé-
matiques. Ils n’ont pu le faire qu’en se libérant des ceilléres d’une culture dépassée.

IV, Nature des mathématiques

Arrivé a ce point, je voudrais examiner la question de la nature des mathé-
matiques, qui est sous-jacente & mon propos et a toute présentation des mathé-
matiques, donc de leur enseignement. Traditionnellement deux théses se sont
affrontées dans ’histoire. La premiére consiste a supposer I'existence d’un monde
idéal et complet d’objets mathématiques que les mathématiciens doivent découvrir.
Cette premiére conception est appelée platenicienne par référence aux monde des
Idées de Platon, encore que ce dernier, malgré le role essentiel qu’ll accordait aux
mathématiques, les considért comme intermédiaires entre les Idées et la réalité.
Cette conception fut et est encore celle de nombreux mathématiciens ou philosophes
rationnalistes. Frege et Hermite s’en réclamerent cuvertement. L’imagination n’a
alors aucun rdle, le savant découvre ce qui existe déja en dehors de lui “tout comme
le géographe™ aimait a dire Frege, lequel refusa violemment le nouveau point de
vue de Hilbert sur la géométric dans la mesure ou il hui semblait compromettre
Pobjectivité de la science.

La deuxiéme thése consiste & considérer que les noticns mathématigues
s'obtiennent par abstraction & partir des objets sensibles du monde réel. Cette
deuxiéme conception fut avancée par Aristote, le chef des empiristes™ disait Kant,
et elle fut effectivement 1a leur au cours de I'histoire tout comme & notre époque.
Le critére de la vérité mathématique réside alors essentiellement dans les applica-
tions pratiques, la rigueur semble négligeable et méme, un raffinement inutile.
L’observation et expérimentation sont les sources fondamentales des innovations.
Alors le bricolage, le titonnement, 1'd peu prés jouercnt un réle essentiel dans
I'enseignement. Dans cette conception 'accord avec le monde réel ne pose aucun
probléme et va de soi, la physique et la technique sont les sources fécondes dont le
mathématicien ne doit pas s’écarter sous peine de stérilité.

Un épistémologue contemporain, Jean-Toussaint Desanti a résumé le pro-
bleme en écrivant: “Les mathématiques sont elles du ciel, sont-elles de la terre?

Une création humaine

En fait une troisiéme conception existe, bien plus intéressante mais souvent
méconnue: Jes mathématiques sont une création humaine. Une telle solution donne
a 'imagination une importance fondamentale. Elle fut adoptée dans I'histoire par
certains mathématiciens et philosophes mais curieusement n’a pas retenu [’at-
tention. Elle rapproche T'activité du mathématicien de celle du poéte, de l'artiste.

H*
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Elle rend compte des préoccupations d’harmonie et d’esthétique qui animent souvent
les mathématicien, Certains d’entre eux les considérent méme comme essentielles
et caractéristiques de leur activité, Les nombres sont pour Dedekind comme pour
Hankel des créations de 'esprit humain: ,,Je conseillerais plutdt, écrit-il 4 Weber
de ne pas entendre par nombre la classe méme, mais quelque chose de nouveau...
que 'esprit engendre. Nous sommes de race divine et possédons ... le pouvoir de
créer.” A la méme époque Cantor proclamait: ‘‘L’essence des mathématiques,
c’est la liberté!” et Weierstrass renchériscait: *“‘Le véritable mathématicien est un
potte”. Wittgenstein indiqua: “Le mathématicien est un inventeur, non un déco-
uvreur.”’*. Plus preés de nous Albert Lautman, Jean Cavaillés et Gaston Bachelard
congurent les mathématiques de cette maniére. Léon Brunschwig insista, lui aussi
sur la dynamique de lintelligence mathématique. Cetie conception des mathé-
matiques les libére de l'escalavage du réel des empiristes dogmatiques et des liens
du rationnalisme classique.

Cette révelation de la véritable nature des mathématiques, I’idée d’une nouvelle
orientation philosphique est contemporaine de la géométrie non euclidienne, qui
prouva la capacité de I'esprit & créer de toutes pléces un domaine de pensée dont
la contradiction avec les “‘vérités intuitives” était flagrante. La Théorie de la Rela-
tivité exigea aussi une nouvelle philosophie de I'espace et du temps qui ne pouvait
plus étre une philosophie du donné, o I'intuition est fondamentale. La raison devait
se mettre a I’école des mathématiques les plus modernes et les plus éloignées de la
culture traditionnelle: les tenseurs, les différents sortes d’algebres et de géométries
devenaient les instruments habituels du physicien. Le formalisme le plus abstrait
se révélait indispensable pour Pinvestigation la plus concréte, La métaphore célébre
de Kant dans sa préface 4 la Critiqgue de la raison pure sur Perreur de la colombe
platonicienne devait €tre renversée: le vide du formalisme est indispensable pour
atteindre les profondeurs de l'objet. L’esprit doit prendre de Paltitude pour mieux
dominer sa proie. Trop prés du but la vue manque de perspective pour élaborer
la théorie nécessaire. L immédiateté de la capture n’est pas le propre de ’homme.
C’est par la pensée et l'effort qu’il est devenu un géant.

Le rdle de l'imagination et de la philosophie

Dans une telle conception des mathématiques 'imagination a toute sa place,
qu’Hilbert a soulignées. A la question ““Comment un homme qui était mathé-
maticien peut-il écrire des romans?’ — ‘‘Mais c’est tout simple, répond Hilbert,
il n’avait pas assez d’imagination pour les mathématiqucs, mais il en avait assez
pour les romans.”* C’est une autre caractéristique du Nouvel Esprit mathématique
que de donner ce rdle essentiel en mathématiques 4 I'imagination, tout & fait
a 'opposé de la conception dominante du XVIle siécle. Ce n’est plus ‘“la folle™
du logis™, responsable des divagations de l'esprit, mais ce qui donne sa forme,
sa couleur et son relief 2 une pensée nouvelle.

Pour Descartes Verreur s’intrcduit par Dintervention intempestive d’une
puissance qu’il exorcise: l'imagination. Pascal est encore plus net dans ses
Pensées**: “C'est cette partie décevante dans ’homme, cette maitresse d’erreur et
de faunsgseté et d’autant plus fourbe qu’elle ne Pest pas toujors; car elle serait régle
infaillible de vérité si elle I'était du mensonge. Mais étant le plus souvent fausse,

* Constance Reid, Hilbert, Springer Verlag 1970 p. 175.
** Edition Brunswicg Hachette 1945 pp 362-—363—367 ¢t passim.
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elle ne donne aucune marque de sa qualité, marquant du méme caractére le vrai et
Je faux.”” — “‘Je ne parle pas des fous, je parle des plus sages et c’est parmi eux que
I’imagination a le grand don de persuader les Hommes. La raison a beau crier, elle
ne peut mettra le prix aux choses.”

Au XVlIle siécle 'invention est avant tout I'oeuvre de lu raison. lLeibniz
occupe peut-&tre une place & part avec le sens trés vif qu’il a eu du changement,
de lactivité essentielle & toute réalité. Il dépasse le mécanisnic cartésien et prélude
4 D’énergétisme et au transformisme modernes. La Caractéristique et la Logique
se confondent pour lui avec la combinatoire, 'art de pencser et surtout I’art d’in-
venter, qui n'est autre que la Mathématique. Car Leibniz a trop conscience de
I’unité de I’esprit humain et de I'unité de la science pour séparer synthése et analyse.
Ce sont les logiciens empiristes qui opposent les sciences déductives et les sciences
inductives, comme s’1l y avait deux méthodes distinctes et contiaites pour décou-
vrir et démontrer la vérité. La mathématique formelle et abstraite est la véritable
logique des autres sciences et I’on peut dire sans paradoxe que la seule méthode
expérimentale est la déduction.

L’imagination créatrice est a I'ceuvre en mathématiques ct remet en cause
la doctrine traditionnelle d’une raison absolue et immuable, philocophie dogmatique
périmée. L’esprit doit se plier aux conditions du savoir, se mettre & I’école des
mathématiques, cette inventicn humaine qui avec quelques autres comme le langage,
la poésie, la musique etc, ont créé 'homme tel qu’il est et lui ont permis de se -
rendré maitre et possesseur de !a nature. Une telle conception dynamique et vivante
pose en termes essentiellement nouveaux le probleme de la vérité, de 'objectivité,
de la subjectivité, de la nécessité et de la rigueur, des rapports des mathématiques
avec le réel. Les solutions du rationalisme dogmatique ou de I'empirisme opportu-
niste, en fait tout aussi dogmatique, sincn plus, ne peuvent plus étre adoptées.
Elle souligne avec force 'importance des définitions, car on observe et on décrit
ce qui existe, mais on doit définir ce que ’esprit crée et qui n’cst pas donné. On
comprend mieux aussi le role fondamental des théorémes d’existence et de la
cohérence en mathématiques. Ce sont ler notions de base. Avec ces théorémes.
d’existence les mathématiciens cherchent un critére tres large applicable a une
multitude de problémes différents pour savoir si une solution existe ou non. Une fois
trouvé le caractére garantissant D’existence d’une solution, nous pouvons chercher
a la découvrir avec I'assurance que cette recherche ne sera pas vaine, L’importance
de ces théorémes d’existence est garantie par la pratique des mathématiciens. Les
étudiants et les pédagogues sont souvent sceptiques a leur sujet car il existe une
grande différence entre les preuves de existence d’une solution et les méthodes:
utilisées pour trouver ces solutiocns. Un théoréme d’existence doit s’appliquer dans
tous les cas: sa déterminaticn est souvent difficile et son application effective peur
étre compliquée et fastidieuse. Un exmple moderne communiqué par J. Dieudonné
suffira a le montrer. La démonstration d’un tel théoréme de la théorie des groupes,
démontré par 'absurde en 1963 par Walter Feit et John G. Thompson occupe 258
grandes pages du Pacific Journal of Mathematics. Son énoncé est pourtaint relative-
ment simple et court: tous les groupes finis d’ordre impair sont résolubles. II est vrai
que la plupart des exemples présentés aux €étudiants sont simples et ’existence peut
étre démoentrée par des méthodes plus simples et en général constructives. Aussi pen~
sent-1ls souvent a la métaphysique quand on esquisse devant eux la notion d’exis-
tence de solutions, Pcurtant ¢’est une question fondamentale lice a la solution des
problemes plus traditicnnels. Songeons d la fameuse question de la trisection de
angle avec la régle et le compas, ou a celle de la résclution des équations algé-
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briques, Quand le probléme de I’existence fut clairement posé, on sut y répondre.
Dans ia recherche moderne les questions d’existence sont posées d’abord et les
réponses sont absolument vitales afin que les théories reposent sur de saines fonda-
tions. Pour s’on rendre compte il suffit de consulter le Traité d’Analyse de Goursat,
ou celui, plus récent, de Dieudonné. Il y a 14 une exigence profonde de l’esprit
humain qui ne peut &tre négligée. L'imagination intervient aussi dans I’élaboration
de nouveaux formalismes, de nouveaux automatisme. Ceux-ci déchargent I’esprit,
certes, de certaines opérations fastidicuses, mais ne dispensent pas, contrairement
a ce que certains prétendent, de penser. Bien plutdt, grice a eux, I’esprit acquiert
de nouvelles capacités, il apprend a4 pengser avec des fléches, avec des diagrammes,
avec de nouveaux languages qui sont autant d’instruments décuplant ses possibilités.
D’autre part les grands mathématiciens, ¢’est-a-dire ceux qui trouvent une nouvelle
fagon d’envisager une question, une nouvelie méthode pour résoudre un probléme
jusque 13 insoluble, n¢ se contentent jamais d’utiliser mécaniquement les procédés
classiques. Ils poussent d’abord aussi loin que possible Vexploration des sources
~des automatismes employés et savent restituer ainsi a la pensée son autonomie,
grice a quoi elle pourra prendre un nouvel essor par deld les frontiéres ou elle
s'était d’abord crue prisonniére. Souvent la recherche conduit & une nouvelle
théorie ou & un renouveliement complet de la problématique traditionnelle. Ce
travail d’investigation, qui est la véritable vie de l'esprit, une preuve de sa liberté,
ne devrait pas laisser indifférents les philosophes ni les hommes de culture. Il devrait
étre, comme par le passé au coeur de leurs préoccupations et permettre de réhabi-
liter des auteurs injustement oubliés, qui avaient compris, eux, la richesse spirituelle
des mathématiques, tels Louis Couturat et Albert Lautman, par exemple, qui
virent en elle une des plus hautes manifestations de la puissance productrice de
I'intelligence.

Malheureusement le dogmatisme, s'il n’est plus soutenable en sciences est
toujours présent dans la philosophic et la pédagogie qui suivent les modes les plus
contestables, les prétendus novateurs en pédagogie étant souvent les plus fermés
A 'opinion des autres, qu’ils refusent d’examiner, Jen connais qui vous traitent
en ennemis si vous ne partagez pas leur foi. Clest pourquor vous ne trouverez pas
le Nouvel Esprit Mathématique dans les manuels ou les instructions officielles.
Il faut, pour le connaitre, vous adresser aux mathématiciens. [l faut entrer en contact
avec 'oeuvre d’un maitre. Abel (1802—1829) & qui 'on domandait comment il
avait fait pour produire des résultats aussi remarquables en six ou sept ans répondit:
“En étudiant les malitres et non pas leurs disciples.” :

. C’est la science en train de se faire qui nous montre le chemin d’une philoso-
phie et d’une culture adéquates aux innovations scientifiques, face a toutes les
démissions de l’esprit.

Ecoie Normale Supérieure,
rué¢ d'Ulm. Paris 75000, France
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HOMOGENEOUS-UNIYERSAL MODELS OF THEORIES WHICH
HAVE MODEL COMPLETIONS

Zarko MIJAJTLOVIC

1. Introduction

In the present work our attention is turned to those Jénnson classes of models
which are classes of models of theories which have model completions. Main
reason for that lies in the fact that the class of models of @ theory which has
the model completion is almost a Jonnson class, thercfore that part of model
theory which concern model completions may be applied in full power. In such
sense this paper is closly related to the works of others as of M. Yasuhara [6],
Comfort-Negreponties [3] etc. (relatively complete list of references on the sub-
ject can be found in the works just cited). The terminology that is used in this
paper is mostly according to [2] and [5], however we repeuat some of it, since
it is not uniquely determined in general, and also some assumptions and con-
ventions are introduced.

A language 1s denoted by L, the language of a theory T by L(T) and of
a model A by LA). Tt is assumed throughout that L (7) is countable and
that 7T has infinite models. Universes of models 2,8, 8,... are denoted by A,
B, C respectively, and the cardinal number of 4 by |4]. By R(T) is denoted
the class of all models of T. As usual A<PB means that I is an elementary
submodel of B and A< B states the fact that B is an cxistential extension
of A (i.e. AT B and for every existential formula ¢ and valuation a in 4 A|{=¢ [a])

iff B|=¢ [a]. Symbol d stands for a sequence ay,ay, ..., an if the subscript » is
of no importance in the consideration. So if f is a function, then fd stands for
far, fas, . . ., fan. The arrow in a diagram A —B represents an unnamed embed-

ding f: A—->B and similiarly -, f-*represent an (unnamed) isomorphism and an
elementary embedding respectively. If an arrow has more then one occurence in
a diagram, then each occurrence of the arrow may represent a different embedding.
A name of an element a=A 1s denoted by a. A model ¥ is an universal model

of T if it is a model of 7 and if for every B|=T7,|B|<i4, B isembeddable
into A. A model B of T is a homogenecous model of T if for every A= T,
|4|<<|B], the diagram B<«—U—->B can be

completed to the shown commutative diagram.

87
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A model U is an elementary universal model of 7 if A|[= T and for every

model B, B=U and [4] < | B| implies BS5U A model U is an e]ementary
homogeneous model of T if A|=T and for every set X C 4, | X|<<|A|,
any map p:X—>A QL X)cx=®, p x)xcx implies the existence of an automor-

phism f: %= U such that f}X=p. With T, T,; are dcnoted respectively the
scts of universal, universal-existential sentences which are consequences of T.
We state well known basic facts which relate theories 7, T,y to the threory T.

THEOREM 1.1. 1° A | =T, iff there is B|=T such that Y C B.
2° W |=Tyq iff there is B|-T such that A<, B. -

In connection with this theorem, we remark that in general the follo-
wing holds: A |= Tn,,, iff there is B/= T such that A< B, where Ty, is the set
of all II, consequences of T and 9[{,,55 means that % T B and for every II,
formula ¢ and assignment a in 4 U |- ¢ [a] iff B ['“u{;[a]

For convenience we repeat the definition of a notion of Jonnson class of
models (for basic properties of Jonnson classes see for cxample [1] and [3]). A
class K of models of a language L is-a Jonnson class i K satisfies the follo-
wing conditions:

1° K contains models of arbitrarily large cardinals.
2° K is closed under isomorphic images.

3° K has the joint embedding property (JE): For any U, BEK there Is
EcK such that U —C« 8.

4° K has the amalgamation property (AP): For any U, B,EEK diagram
B« N —E can be amalgamated to the commutative diagram. In the terminology
of M. Yasuhara [6] every U is amalgamative in K.

/\
\/

5° K is closed under union of chains of models.

6; For any A ¢ K and X C 4, | X| < k, there is JCA B E K, |Bl<k
such that X C B (k is an infinite cardinal).

Under cited conditions, as B. Jonnson has shown (1960), if k=k® then K
contains an universal-homogeneous model for K. In this paper it is assumed that
K is an elementary class i.e. K= (T) for some 7. If I (T) is a Jénnson class
we say simply that T is a JOnnson theory (similar convention is applied to any
property P which concern the class JR(7T) By LST (l.6wenheim-Skolem-Tarski)
theorem, T satisfies 1° and 6° for k> w;. By Chang-Los-Suzko preservation theo-
rem T has property 5° iff T has universal-existential axiomatization. Hence, the
really problem that may occur is “Does T have JE and A4P?".

The property JE can be syntatically described.
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PROPOSITION 1.2. A theory T has JE iff the fcellowing holds: If 6, ¢
are basic formulas (i.e. conjuncticns c¢f atomic and negaticns of atomic formulas)
then the consistency of theoiies T+3X0, T+3y¢ implics the consistency of
of T+3xi0+354.

PROOF (=) Let 3, BI=7T such that A =320, B|=35¢ where 6, § are
basic formulas. By JE there is €|=7 such that A —->C«B, hence E|= T+
I%£6+35 . _ |

(<) Let %A, %B|= T and assume that there is no € |= Tsuch that A >CB.
Then the theory =T+ AQRD)+A(B) (A ) is the diagram of %), is inconsistent,
hence there are basic formulas §(%), 6(9) and d@ € 4, b = B such that 0 (3)c
A®) and ¢(b) = A(B) so that T+9(@)+ (k) is inconsistent. Hence T |

0@ =>19}) so TEYEVITO@AYE), {x,...,x NV {¥, - n}=2.
Therefore T—1Ex0E A3 F¢(3)) and A |Z3£6, B -3 4, but this contra-
dicts our hypothesis. —

COROLLARY 1.3. Assume that any two countable models of T can be
embedded into a model of 7. Then T has JE,

PROOF Let 6, ¢ be basic formulas and assume that 7+3x6, T+3I $ ¢
are consistent theories. By LST theorem there are countable mcdels %, B of T
such that A|=3%0, B[-3 $¢. By JE for countable models there is €= T so
that { -8« B. Then € —IZGAIFY so T+220+3 3¢ is a consistent theory., —

In some cases properties JE and AP are transferred from one theory to
another. Let us see some examples of such kind. -

PROPOSITION 1.4. 1° T has JE iff T, has JE.
2° (M. Yasuhara, [6) T has AP ff T, has AP.

PROOF 1° (=) Assume that 7 has JE, and let 2, B[ T, . Then there
are U, B [= T such that AW, BCHB'. T has JE so A, B’ can “be embedded
into a model € |- 7. Since L|“T , T, has JE. (<) Proof is trivial.

2° Assume that T has AP, Let U, B,E be models of 7, and
(D BOACE,

Remark It is sufficient to amalgamate diagrams of the form (1) since every
diagram of the sort B« A& can be completed to the commutative diagram (2).

CBJ _G:'I
o~ !
B B : T~ ﬂ,/ ‘
GG B «
S
A 7 - A
(2) (3)

We want to transfer the diagram (1) to T i.e. to ccnstruct a ccmmutative
diagram (3).
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"

The existence of the model A’ is provided by 7.1.1, moreover it may be
taken A<, WA. Now we prove that any diagram of the form

(H BOYU <, W

can be amalgamated, Consider the theory I'=T+A(+A®) where D=
(B, b, Q)pep aca, N =, Qwca,aca. I is consistent theory. Assume -t is
not. In such a case there are basic formulas 6(Z,%), ¢ (¥, %) so that §(b,3) C
A(B) and Y@@ EAMN) for some dc A, @ €A, b=Band T+6(5, )+
$ (@', &) is inconsistent. Hence TV 257 (8 (Z, % = 1 ¥ (§, ), so since the formula
Vxyz(O0 (G, %)= 19 (F, %) is universal, B{=0(5,d) > V 714 (#,d), and thus
Bl=Vi1¢(3,a).But U< W so WEVHFTL(H,8) so W=14(@,4), what
is contradiction. Hence I” has a model B =B, ¢, o) 4, bcn wvcar and (4)
is amalgamated to the diagram (5) where p(b)=c,. q(¢')=cw.

B
P 4q
5 . / \ ) ,
B c
A

In similar way a model € is obtained with the required property and
therefore the diagram (3). 7 has AP so B'«—A' - can be amalgamated and

therefore BCADE can too.
(<) Trivally holds. -

COROLLARY 1.5. It T has-JE and AP then T, is a Jonnson theory. —

If T has AP, it is not necessarily that T has too. For example, this case
occur whenever 7 is model complete, but not submodel complete.

2. Full models

Now we consider those theories T which have model completion T*,
Hence, it is assumed (here and throughout) that T has a model completion. For
convenience we repeat the definition of the notion of model completion (it was
introduced by A. Robinskon, see [4], [5]). A theory T* is model completion of
T if the following holds:
1° Every model of T#% is a model of T.
2° Every model of T is a submodel of a model of T*.
3° Any diagram B« A€, A=T, B, €|=T* can be amalgamated to the
commutative diagram:

Some of basic properties of this notion are:

and has universal-existential axiomatization.

It turns out that 7 and T* have in com-
mon properties JE and AP.

D
;:.// \;:_\ If T has a model completion, then it is unique
%3 o (up to logical equivalence). T* is model complete
A
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THEOREM 2.1. 1° T has JE iff T* has JE.
2° T and T* have AP.

PROOF 1°(=>) Let 2,8 |=7T* and assume that 7 has JE. Since T* |- T
it follows A, B|=T so there is €{=7T such that A — C«B. Since T* is model

completion of T, it can be chosen &= T*.
(<) It follows immediately since every model of T is a submodel of T*.

2° According to the property 3° of model completion and since every model
of T#% is a model of T, it follows that T* has AP.

Now, let H, B, € be models of T and assume that B« A€, This diagram
can be transferred into & diagram in T* i.e. there is a commutative diagram (1).
Existence of ¥’ is provided by property 2° of model completion. Further, there
is a model B’ of T* such that B =B, According to the property 3° diagram (2)
can be amalgamated to the commutative diagram (3). In the similar way the model
€' is obtained, and so the diagram (1) exists. The diagram B <N —E' can be

amalgamated, so we have obtained commutative diagrams (4) and (5). -
%.‘H _(}:l EB” %[ll
I \ Q[l/ ‘ \x\
B | g N t
S~ B oy
1 A, P, e =7 (2)
%3’ , D
9311/ \ ; " \S\ o
I
H““--.. 3 ~—_ ? 0
B - | of —
(3) 4)
)
B of D |=T*
(3)

COROLLARY 2.2. T™* is the model completion of T, -
It should be remarked that T* in general is not a model completion of

T, (but it is the model companion of T,).
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COROLLARY 2.3. (Test for a class to be a Jonnsen class). Assume that a
theory T has a model completion 7%, universal-existential axiomatizaticn and a
prime mcdel. Then T is a Jonnson theory.

PROOE Clcsure of T under unicn of chains of models of T follows from
universal-existential axiomatizaticn and AP fream the pievious theorem. Since T
has a prime model U (i.e. A is embeddable into every model of T), for any B,E |~ T
a diagram B« A > exists and by AP it can be amalgameted, so T has JE. -

Since T* has universal-existential axiomatization and AP, it may lack
only JE in order to be a Jénnson theory. Model complete theory T is medel com-
pletion of itself, so if 7 has a prime model, then it is a2 Jénnson theory. We have
assumed that 7 has model completicn 7%, so AP is provided for T but JE
is not in general. However the question cf JE can be remcved if the following
relation ~ is introduced in I (7).

DEFINITION 2.4. Mcdels %A, B of T are compatible in T, A~,B, iff
there is a model € of T such that A —->CE«B. (Often the subscript T will be
omitted in ~z).

A model N of T is a semiuniversal model of T if for any model B|=T
H~B and |B|<<|A4] implies B>, that is, ¥ is an universal model in the
class of all models compatible with . A model ¥ of T is a full model of T
if ¥ is semiuniversal and homogenecus mcdel of T. A ncdel U of T is a semi-
prime model of T if it is prime in the class of all models ¢f 7 compatible with 2.

EXAMPLE 2.5. If T 1s the theory of fields, then the Galois field Z, is
semipiime mocdel of T. Every algebraically cloced field F of infinite transcedental
degree over Z, 1s semiuniversal and in fact a full mcdel of T.

In the following proposition the basic prcperties of the relaticn ~ are given.

PROPOSITION 2.6. 1° A=B implies A~,B for any theory T which
has U, B as models.

2° A—-B implies A~B.

3° The relation ~ is an equvalence relation in IR (7).

4° Assume that U, B, 0 =7 If A=V and B~ then A~E.

5 Let %, B be models of 7*. Then A=Y is equivalent to A~B.

6° If T has a prime model, then every semiprime mcdel of T is prime and every
semiuniversal model is universal.

Proofs of these assertions are simple so they are omitted.

THEOREM 2.7. Let A be a model of T and C() the class of all models
of T compatible with . Then C(N) is an elementary cluss of models with JE
and AP. If T has an universal-existential axiomatization, then Toy=Th (C(N)) is
a Jonnson theory. If C*(A) is the class of all models of T* in which models
of C{A) are embeddable, then Tﬁ=Th(C*(@[)) is a complete theory and the
model completion of To. Also, C*) is a class of equivalence under = rs.
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PROOF In order to prove that C(U) is an elementary class we use the
theorem (Frayne, Morel, Scott) which states that a class c¢f models is elementary
if it is closed under elementary equivalence and ultraprcducts. So let BE C() and
€=%B. Then €=T and €= so E&C(N). Further, assume that A< C @),
i1 Hence there are models B; so that 9;—»B;«A. Let U be an ultrafilter
over I. Then U and A" = H%I JU are embedded into [ [ B, /U. Since A is a

i=f

model of T, it follows tha.t U~ W, and therefore C () is an elementary class.
That Ty satisfies JE and AP it 18 obvious. So assume that 7 is closed under
union of chains of models and let us prove that Ty is too. Since
SIN(Ty) 1s an elementary class it suffices to prove that 7y is closed under coun-
table chains of models. Therefore let A, CAU,C... where A, cC@), nEw, and
W' =yW,. Then A |=T. Further consider models ¥ = (U}, dVac,,, A=,

dl, az)ﬂaIEAI,EzEAz,.. . and '= TQI+ ﬁ(i![l)-i—ﬂ(illz)-{- . The thﬂDI’}’ I 15 fini-
telly consistent, hence there is a model i’3|“1" i.e. EBI—T and A —>B. Thus
B and A ~9B, so U ~A. Now we prove that Tgﬂ is a complete theory and
model completion of Ty. That C* () is an elementary class it can be proved
as it was done for C (). Assume that B,EC* (). Then there are B, ¢ <
C@) so that B'CHB and ' CE. Since B'~E it follows B~E and there-
fore B=E because B, € are models of T*. Hence, Tgs[ i1s a complete theory.

The last two statements are easy to prove. —
Now we proceed to description of saturated models of T*.

THEOREM 2.8. 1° If § is an infinite saturated model of T* then ¢ is
a full model of T.

2° If € 1s a full model of T of cardinality a>>«w,; then & is a saturated
model of TF,

PROOF. During this proof we shall use the theorem which states that a
model § is saturated iff it is elementary universal and elementary homogeneous.

1°  Assume that § 1s a saturated model of T*.

| CLAIM. G is a semiuniversal model of T. For that let A~E and |4
{C|. Further, there is B|=7T* such that A —B and by LST theorem it may
be assumed that |B|=max(|4|, ®). Then B~E, so B=E and by universality
of § it follows B->C and therefore A —C.

CLAIM. € is a homogeneous model of T. Let C<A5E and |Al<|C].
Define a partial isomorphism p on §& by pfa=ga, acA4. Since T* is the mo-
del completion of T, it follows (€, fa)eca=(C, pfa)scs so there is an automor-
phism #: € 5 @ such that pCh.

2° Assume that ¢ is a full model of T.
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CLAIM. € is a model of T*. For that let B=cf«. Then there is a sequ-
ence of sets X;, £<fB so that (1) if E<¥ then X:C Xy, (2) |Xel<a, (3) C=

\J Xe. By transfinite induction we define a sequence of models g, By,
E<f
£<{@ so that the following hold: (4) For all <& W .CHe (5) If E,:?'l then

Be CU: (6) X CAe, (7) |4:, 1Bej<a and (8) B |= T*.

Let %, be such that A <€, X,C A4, and |4, |< o, its existence is provided
by LST theorem. Assume £2>1 and B has been defined, By the induc-
tive hypothesis |Bg|<<a. Therefore, since |X¢|<a«, |Bf\UX:<<x. Hence by LST
theorem there is ;<< so that BeUXeC A; and |Az| =|B: UXz|. Thus |4g|<a,
B CUe, and Xp C 4.

Models B are defined in the following way.

If £<o is a limit ordinal, £540, then Bg=1{J)B;. The theory T* is
L<§
closed under union of chains of models, hence B¢ |=7* Now assume that

£=C+1. By the induction hypothesis -C €, [4y| <. Further, there is B|=T*
so that A.CB and by LST theorem it may be taken |Bj=|dy ie. |Bl<«.
T* is amalgamative, therefore the diagram C2DU.CH is completed to the
amalgam (9)

C_:D
@:/ \Q}

9

Hence B~C, Since € is a semiuniversal model, there is f: B—-E. Also,
€ is o-homogeneous model, so there is an automorphism % of € so that the
diagram (10) commutes.

E A «
(10) L] f
3 o C B

Let B =hAf(B). Then B |=T*, U CB; and [Bg|<x. At the end we set
B, =2B,. It should be observed that B is a limit ordinal, so for all << Be,y

is defined, hence s Be,, and X CBe,,. Therefore & =) B,. Since T* is
E<f
closed under union of chains of models, it follows that € |=T%,
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CLAIM. € is an clementary universal model of T*. For that, let B be
a model of T*, |B|<{« and B=E. Then B~E and B|— T so there is [ B —EC.
Since T* is model complete, f is elementary in fact.

CLAIM. € is an elemertary hamogeneous model. In order to prove thlS
assertion we need the following. .

DEFINITION 2.9. 4 model ® is a weak homogenecous model if every
diagram of the sort D AS D, |A|<<|D|, can be completed in the commutative
diagram:

0
\ /
o

(The following question can be stated: Does the weak homogeneity
implies elementary homogeneity?)

It is obvious that & is a weak homogeneous model. That € is elementary
homogenecus follows directly from the previous claim and the followmg. ..

LEMMA (Morly-Vaught) If € is an elementary universal model then € is
weak homogenous iff it is elementary homogeneous.

For the proof see [3; 11.14]. —

There are several results similar to the previous theorem. We would like to
mention two theorems of such kind. One is in [3;11.19] and it is connected
with the notion of conservative enlargement L of a class of models K. This
theorem aserts that « homogenous-universal models of X and L coincide. How-
ever, In this theorem uniformity in assigment of models of class I to models
of class K is assumed, what is not the case in our theorem. The second one is the
theorem of H. Simmons (6; 3.4.1) which states that if a given theory has the model
companion, then all its k-objective (in the sense of M. Yasuhara [6]) models
are k-saturated.

3. Full models of a theory with a dense ordering

In some cases it is possible to say exactly in which cardinals a theory T
has full models, and according to the theorem 2.8., its mcdel completion has
saturated models.

THEOREM 3.1. Let % be a saturated model of cardinality o and assume
that it (or its definable expansion) contains a nontrivial dense partial ordering,
fe. in W holds ¥ xy3z(x<y=>x<z<y). Then an v, set can be embedded into

A and therefore w—=al.
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PROOF Let g be a maximal chain without endpoints and X, Y g so
that X< Y (i.e. for all uc X, all v&Y, u<y), |XYUY|<« The set X(x)={u<
x|l uc X} U{x<v|v&€ Y} is finitely consistent with 77 (Uxyy), hence E(xy is
realized in 9, ie. there is a& 4 so that U |= Z (a). Therefore X<a< Y. Assume
that ad-g. Let bcg. Then there are the following possibilities:

1° For some u&X b<<u, so b<a.
2° For some v Y v<Ch, so a<b.
3 X<bsl.

If 3° does not hold for any b&g, then by 1° and 2° glU{a} is linearly
ordered, so by maximality of g a<g, but this contradicts to our assumption.
Hence acg or there is bCg so that X<<b< Y, in any case there is cCg
so that X<c< Y. Thus, g is an ¥, set 50 |g|=«. But gC 4, hence |g|=«. Hence

g 1s an 7, set of cardinality « so (Gillman, cf. [3]) x=0—.

Assume that 7 is a Jénnson theory. According to the theory of Jonnson
classes, if «a>w and o =2 then there is a homogeneous-universal model of T of
cardinality o. By the previous theorem we have the following. ..

COROLLARY 3.2. Assume that T contains a nontrivial partial dense
ordering, and let « be a cardinal, «a>w. Then 7 has a full model and T* has

a saturated model of cardinality o iff e -~
We list several examples of theories with ordering on which previous theo-
rems can be applied.

] T*
1. Theory of linear ordering. Theory of linear dense ordering
without endpoints.
2, Theory of linearly ordered Abelian Theory of linearly ordered Abelian
groups. divisible groups.
3. Theory of Boolean algebras. Theory of atomless Boolean alge-
bras
4. Theory of distributive lattices with Theory of distributive, complemen-
endpoints. tary, dense lattices with endpoints
5. Theory of ordered fields. Theory of o.dered real closed fields.

Depending on a theory several names are connected with the theory in two
sense: 1° In proof that an appropriate theory T* is a model completion of 7, 2°

That the class of models of T is a Jonnson class. For informations of that kind
one may consult [2], [3] and [4].
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REPRESENTATION THEOREM FOR MINIMAL o-ALGEBRAS
Kanji NAMBA

The purpose of this paper is to state some properties of minimal separating
g-algebras and of s-compact topological spaces. Original motivation of this work
is to consider the problem of existence of a minimal separating s-algebra without
any singleton. This fine problem, comes from a problem of statistics, is proposed
by H. Morimoto who communicated me the following elementary but funda-
mental example of such a c-algebra which appears in [18]:

Let X be an uncountable set and x be an element of X, then the o-algebra
consisting of subsets 4 of X with the property that “x& A4 and A4 is co-coun-
table or x< A4 and A is countable” is minimal separating and does not con-
tain {x}.

In statistics, various o-fields are considered as mathematical expressions of
statistical experiments. In some special cases, one of the properties of the o-fields
with statistical relevance called “pairwise sufficiency” reduces to their separating
property.

Existence of minimal pairwise sufficient o-fields is of interest and the o-field
given at the outset of this paper is one such example. It naturally leads to the
question as to whether any more examples exists and, further, how they are charac-
terized, and these are exactly the problem treated here.

Considering the structure of the above example, it is natural to imagine that
there are many other types of such o-algebras, and this is realized by considering
a natural correspondence between the notions of minimality of c-algebras and s-com-
pactness of related topological spaces, and that of s-complete 2-valued measures
and limit points of o-topological spaces.

The author wishes to express his thanks to Prof. H. Morimoto for his generous
support and encouragement.

* Work supported by Grant in Aid for Scientific Research 1977 section D 264054, section
A $:234002.
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1. Definitions, notions and elementary properties

- 'We begin with the notions and definitions of concepts needed for the des-
criptions and discussions below. A cardinal number k is called regular if it is not
a A sum of smaller cardinals for all A< k. A set B consisting of subsets of X is
called a k-algebra over X provided that it is closed under complementation and
A-union for all A<<k. w;-algebra is usually called a o-algebra, that is, closed under
complementation and countable union. k-aigebra B is called a separating algebra
if for any distinct elements x, y of X, there is a set 4 of B such that xE A4 but

y&E A, in other words if
YVACB(x&CA=yc A) —»>x=y.
k-algebra B is called minimal if it is minimal in the sense of set inclusion. A subset

{G,:icI} of k-algebra B is called a generator of B if it is the smallest
k-algebra containing the subset. For a k-algebra B the following two properties

are equivalent:

(a) B is minimal separating,

(b) {G;:iecI} is a generator of B if and only if it separates the points of X.
Let {G,:i& I} be a generator of separating k-algebra B over X, and put

Giﬂ = G‘ aﬂd Gﬂ '“X"" Gi.

Then there is a natural correspondence j between X and a subset Y of 27 which
consists of functions with domain I and values in 2={0, 1} in such a way that

() () =k=xEGy.

By this correspondence j, the set X may be considered as a subset ¥ of 27 and
B may be considered as a k-algebra over Y with the generators

Yp={pcY:p(@)=k},
Gi=J7"1 (Y

and inverse image keeps complementation and union. Of course such B is always

a separating algebra.
Let a be a subset of I with the cardinality less than k, that is, 3a<k, by

a neighbourhoad of pC Y of 27 we mean the set
U(p; a)={gcY:Vica(p(@)=q ()}
The k-topology of Y is introduced by the system of neighbourhoods
U,={U(p;, a):aCI3a<kj.

o and w -topology are usually called weak and o-topology, respectively. A k-to-
pological space Y, 1.e. the subspace Y of 27 with k-topology, is called A-com-
pact if for any function which associates p with its neighbourhood U{p; a;), there
is a subset & of Y with 3:b5<A such that

YC U ap).
Pch

because of the property
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It is well-known that this property is characterized by the following properties:

(@) Let {O;:j&J} be an open covering of ¥, then there is a subset b of J with
H# b<h such that

YC U O,
jeb

A dual form of this expression is:

(b) Let {C, : j&J} be a family of closed subsets of ¥ with less than A intersection
property, that is

ick

then their intersection is not empty, namely

NC#2.

- jer

Let X and Y be k-topological spaces of 27 and 27, respectively. Then a
function f: X—Y is called uniformely continuous if there is a function

g: P (J) > P ()
where Pu(l)={aC1I: $a<k)} such that for all bEPx(J) and p& X

Up; e @)U (f(p); b).

Let A be a subset of k-topological space ¥ of 2L, Then a subset a of with
Ha<k is called a support of 4 if for every p,q& Y,

Vica(p(iy=q@))>pcA=qc A.

A subset 4 with support is closed and open, i.e. a clopen set of Y, Let B¥
be the set of all such subsets of ¥, Then B* is a k-algebra provided that k is a
regular cardinal. It is also clear that B¥ is a separating k-algebra including the
k-algebra generated by its basic open sets.

Let ¥ be a k-topological space of 2/, Then 1t is called a k-space if for any
subset a of [ with $Ha<k, there is a subset & of Y with 4+b< & such that

YC U Ul(p; a).

p<h

By this definition, we have that k-compact k-topological space 1s a k-space.

2. k-compactess and minimality of k-algebras

We begin with an easy property of k-spaces.

LEMMA 1. In k-space Y of 2I, the k-algebra B* of sets with support of
cardinality less than k coincides with the k-algebra B generated by the basic open
sets of Y.

PROOF. Let 4 be an clement of B*, then there is a subset a of I with

Ha<k such that
A= QU (p a).

p=A
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Since Y is a k-space, there is a subset b of Y with #b<k such that

UUpa= VU@ a=U N Y,
pcA peEb pchbica

By" the definition of B, it 1s closed under less than & union and intersection.

Therefore we have
A= U N Yip{:‘}eB'
pEbica

This means that B=B8* by the inclusion mentioned above.
Next lemama reveals a property of minimality of k-algebras.

LEMMA 2. Suppose that the k-algebra B generated by all the basic open
sets of k-topological space Y of 27 ia a minimal separating k-algebra. Then ¥
is k-compact and hence a k-space.

PROOF. Suppose Y is not k-compact, then there i1s a function
p—>U(p; a)
such that for any subset b of Y with $:b<k, we have

Y- QU(p; a,)# 3.
pch

Let B; be the set of all 4 in B with the following property:
(1) There is a subset b of Y with H:b<k such that for any q,rEY

g, rd: JUU(p; a)) >qcd=rc A

reh

Since k is a regular cardinal, we have that B; 1s a k-algebra. Now we shall show
that B; is separating. Suppose p#¢q, then since B 1s separating, there is a set
A of B such that p=A4 but g 4, so we have

pEANU(p; a) and gEANU (p; ay).

By the definition of B, we have ANU(p; ap)= By and so it is separating. By the
minimality of B, we have B=5B;,

Since the basic open set Y, belongs to B for every i, we have a subset
by of Y with #:5,<k such that

g, ri& g’ Up; ) >@SYy=rCY,)
P=b;

Hence there is a function s:7—2 such that

Y- LUU(p a) CY
PEY;

We consider a neighbourhood of s in k-topological space 27,

W(s, a)={pc2" ica(p(@=s()}
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p—

For any subset a of I with Jta<k, we put

b = U bl',
f=a

then we have Hb<k and
7Y~ YU a)C 0 Y= YOW (s 0)

peb

Now we shall show that s is an element of Y.
So suppose s&E Y and let p* be a fixed element of Y. Let B, be the set of all
A in B with the following property:

{2) There is a subset a of I with Ha<k such ihat any for 4= Y

qEW(s; ) >(@eA=p*c A).
By the relation
Ws; U a)=N W(s; a),

ice ice
we see that B, is a k-algebra. Now we shall show that B, is separating. let p, g be
two elements of Y such that p=~g. Then we have p#p* or g#p¥*, so we may as-
sume p=£p*. Since p*, g, s£p, there is a subset @ of I with ffa<k such that
g, P*CU(p; a), U(p; dOW(s; )= ©.

This means that for any r& Y, we have

rcW(is, a)—>@cU(p; ay=p*cCU (p; a)).
By the definition of B,, we have U(p; a)&B; and g4~ U (p;a). This means that B,
is separating and so by minimality of B, we have B=B8,. By p*+ s, there is a subset
a of I with Ha<k such that

Up*s a)NW (s, a)= 2.

Since U(p*; a)EB,, there 15 a subset a; of I with F:a; <k such that
reWis, a) (U (p*; @)=p*cU (p*; a)).

We consider a point
g*cY—- U U(pa)CYNW(s; ala)

pi=c*

where ¢*= J b, then by g*cW(s; aua)C W (s; a), we have

icaJay
g*eU (p*; a).
This contradicts with
Up* anW(s; a= .
This contradiction shows that s ¥, that is Y is close.
Now we consider the neighbourhood U(s; ¢;). Then by putting

b*= U bi

fEGg
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we have 3Hb¥<k and
| Y— QU a)CU(s a)=YNW(s; ay)
o

cb
This means that
YC UU(p a)U(s; a)
p<b
which contradicts to the choice of U(p, ap). Hence Y is k-compact.

LEMMA 3. Let X and Y be k-topological spaces of 27 and 27. If X is
k-compact and f: X—Y is continuous, then f is uniformly continuous and the
image f(X) is k-compact.

PROOF. 1let f: X—Y be continuous and a be a subset of J with Fa<k.
By the continuity of f, there is a subset ap of I such that

JW (p; a))U (f(p); a).

By the k-compactness of X, we have a subset b(a) of X with $#b(a)<k such
that
XC U U(p; a)
P<h(g)
Now we put
a*= U a,
Pebi@

For g€ X, there is p=bh(a) such that ¢& U(p; ap), so we have

rU (g, a®)CU(p; ap) ~f()EU (f(p); @).
This means that

JWU (g a*NCU(f(p) )=U(f(9); a),

so f is uniformly continuous.

To each g in f(X), let there correspond b,, any subset of J with $£b, <k,
and consider the function

gV (g by)
defined on f(X). By the continuity of f, there is a similar

p—=>U(p; ap)
on X such that

JW(p; @)V (f(D); brp)-

Since X is k-compact, we have a subset ¢ of X with 3tc <k such that

XC U U(p; ay)

pEe
Hence we have

FEX) T USUp a))C UV (f(0) by

pee PEc
This means that f(X) is k-compact.
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LEMMA 4. Let X and Y be k-topological spaces of 27 and 27. If X is k-com-
pact and f: X—Y is a 1—1 onto continuous function, then f~! : ¥—X is uni-
formly continuous.

PROOF. Let A be a closed subset of X. Then A4 is k-compact as a closed
subset of X, so f(A) is k-compact and so a closed subset of Y. This means that
the image of a closed set is closed, and since f is 1—1 onto, the image of open
set is open. By the relation f(U)=(f-1)-1(U), we have that the inverse image of
an open set U by f~! is open. This means that the function f-1 is contionuous.
Since Y =f(X) is k-compact, f~1 is uniformly continuous.

LEMMA 5. Let X be a k-compact subset of 2/ with k-topology. Then the
k-algebra B generated by the basic open sets of X is a minimal k-algebra,

PROOF. Let {G;: j&=J} be a separating subset of B. By B¥ we denote the
k-algebra generated by {G,:fcJ). Now we define a function f: X—27 by the

relation
J@Y()=k=pc ij

where Gy=G; and G;=X--G;. Since X is k-compact and so a k-space, we
have that every element of B has a support. This means that the above function

f is continuous. Since {G, :j&J} is separating, fis I—1. Let ¥ be f(X), then
f:X—>Y

is a 1—1 onto continuous function. Hence iis inverse
f1:Y->X

is uniformly continuous. This means that for any i of I, thcre 1s a subset b; of
J with $+bs<<k such that

FHV (f(p); B CU (ps {i})-

By the compactness of Y, there is a subset ¢ of Y with #c¢<k such that

Y= LEJ Vg b).
g
Hence by the relation

pEST Vg (KD)=f(p) (k) =q ).

we have
YV b))= O YV @s kD) = M Giri o
kch; kehy

Hence by the definition of B*, we have

Ulp; iD= U N GrpmEB*
fla)ee kebhi
g {f)=p (i)
Since {U(p;{i} :i&I}is a generator of B, we have B=FE*  This means that every
separating subsets of B is a generator of B, hence B is a minimal separating
k-algebra,

Combining these lemmas, we have the following
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THEOREM. Let X be a subset of 27 with k-topology. Then the k-algebra
generated by the basic open sets of X is minmimal separating if and, only if X is
k-compact.

3.. Examples and remarks

Let X be a totally disconnected k-complete topological space, that is, any
distinct points of X are separated by a clopen set and the intersection of less than
k open sets is again an open set. Let {G; : i&- T} be a separating clopen basis of X.
Then X can be considered as a subspace of 21 with k-topology., In the k-topolo-

gical space 27, the element of X, the closure of X, means a k-additive 2-valused
measure on k-algebra B determined by the basic open sets of X. The cannonicatl

relation of point p of X and measure wp is
pEA=p,(4)=1.
Since in the k-topological space X, we have the relation

(UA.,)= U‘Jv

NYe=a via

for every a with Fta <7k, the additivity condition follows.. And if A< B, then
it has a support g with Ha<k and so

ANX—-A= 2.

Conversely any k-additive 2-valued measure p : B—>2 determines an element of
%" by p(i)=1—u(Gi) which belongs to the closure of X in 2!, Hence the closure
X is just the set of all k-additive 2-valued measures on B. An element of X is

called a principal or a point measure and an element of X—X is a non-principal
measure. The notion of k-additive 2-valued measure and k-complete maximal
filter or ideal are considered as alternating expressions of the same concept by con-
sidering the element of 2=/0,1} as quantity 0,1 or as truth value O=falsity,
1 = truth.

Next, we shall give some examples of k-compact sets by showing the following
lemma

LEMMA 6. Let 2 be a cardinal number. Then the set
X, = {fE2: HHE L f() = 1} <)
is k-compact in the k-topological space 27 if and only if
¥ <k (mr<k).
PROOF. First, if there is some % which satisfies

A<k

then X, is not k-compact. Because we can take a subset g of I with $a=n,
then we have

H{fS 2 H{ica: f(D)=1}<A =2k,
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We associate a neighbourhood U(p; a) for every p of X,, then no less than &
union cover X, and so it is not k-compact. The case k<CA is trivial.

Next, we shall show that Vi<k(ny*<k) implies the k-compactness of
X,. Let U(p; ap) be a given neighbourhood of p in X,. We shall show X, can be
covered by less than &k union of U(p; ap)’s. Let f be a function with the domain
in I and values in 2, we denote by f* the function f* : I—2 defined by

0 if icI—dom (f)
By the induction on v, we define a subset a, of I as follows
ﬂﬂ——*‘ﬂgt

where @ is the empty function. For a successor ordinal, we put

{I?+1 =fELTJx. a{f!gv)‘
A

where fla is the restriction of £ to a. For a limit ordinal, we put

a,= ) a..
TV

We shall show that $ta,<<k for all v<<Aat, the smallest cardinal greater
than A. Since the case that v is a limit ordinal is clear by the regularity of Xk and
At<{2 <k, we shall show that $a,<k implies Ha,,,< k. Sc we consider the set

d‘#:{fl ay: fEXy},

then by the assumption of #ta¢ and by the property of A, we have #d, < #a,2 <k,
50 using FHa(s|a )<<k for each fEX,, we have

Hay s Z Hap<k.

fed,
Next, we consider two cases
(D Qy.,— dy= & for some v<IA+,
(2) a,,,—a,= @ for all v+,
The case (1): For every fEX,, we have
a(f | apsC v+ =y
For any f& X;, consider (f|a,)* & X;, then by (1), we have
FEU(flad*; acr)ay)s
so we obtain that
X,C fLeJd,,U (S5 ap).

This means that X, can be covered by less than k£ union of given neighbourhoods.
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The case (2): We put

-A? = {fEXl . ags| a)* ﬂ\,,# (I)},
a_nd assume that

fe€ N A,

v AT

Then we have for all v<At,

ﬂ(fl av*—l * —av+1#¢.

Suppose that f(i)=0 for all i&aq, ., —a,, then
(fl ﬂt".r+1)='l=(fl av)**

Hence we have

a(f|“v+1)*= Af1ay* "y,

This contradiction shows that for all v<A\*, there exists an i€a,,,; — a, such that
f({)=1. This means that

# (i€ I:f()=1}>),
which contradicts the assumption f&EX;, and so we have
X=X— N 4y= U (Xyh—4).

Y AF v At

Let f& X;, —A,. Then we have that a¢s.y+Cay and so
Xo—A,C U U(Sf?; ape).
fed,

Hence we have

X, C U U(* ap)
fedar

where d¥= U d, and the condition Hd*<«<k follows from ra+={2*«< k., There-
VI
fore X, can be covered by less than &k unicn of given necighbourhccds. Any way,

the space X, is k-compact.
By the proof of above lemma, we have that if a family D of subsets of [
satisfies the condition

(1) aD, bCa—->be D,
2) Sra<k > #{bCEDbC al <k,

then the set of all representing functions of the setsin D 15 A-compact. For example,
if D satisfies the conditions and a partial ordering < is defined on I, then the
set D’ of elements of D which is well-ordered or linearly ordered by <, satisfies
this condition. Hence if &k =(2¢)*, then the set of all well-ordered countable subsets
of I 1s k-compact. But of course this set is not wy-compeact, namely not s-compact,
if I includes a countable increasing sequence.

By using Lemma 6 and the property that the continuous image of a k-com-
pact set 1s k-compact, we have that

Xp={ge2: f{icl: gD ASDI<R)
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is k-compact for any f:I—2 and A such that Vy<<k(n*<k). Hence any closed
subset of less than k union of such X, is also k-compact.

Now, we consider the case k>w, for example &k —=w;, then for any n<k
and n<w, we have n*=v<k. By this, the set

Yo={fe2: #{CI:f(i)= )<},

being a union of countable k-compact sets, is k-compact. Since each point of
~ this set is not an isolated point, the k-algebra determined by this- k-compact set
is an example of a minimal separating k-algebra without a singleton. Since there
is no restriction on the cardinality of index set I, each cardinality determines at
least one pon isomorphic minimal separating k-algebra without a singleton. One
may consider, may be pathological, the k-compact space consisting of all finite
sets, in which case the minimal separating k-algebra consists of elements which
are not sets but classes. |

Now we consider, for example, the space w! with k-topology. Since each
natural number n of « can be considered as an element of 2% by usual binary
expansion, we may consider

wl C(29) =201
So we have that the set
Xo={fco: H{ELf()#0} <}
is k-compact, and the k-algebra generated by its basic open sets
{(fexd fo=n

is minimal separating and have no singleton.

One intuitive example of minimal separating o-algebra would be as follows:
Suppose there are at most countably many particles and their states, the family
X of all positions and states of finite particles in, for example, r-dimensional
Fuclidean space forms a s-compact set, and the c-algebra determined by this
topological space is minimal separating c-algebra without singleton.

We consider the property
*) <k (i <k).
If A<k and k is regular, then (*) implies
k= 2 n1{k2=k<kl+

n<k

hence k+ also satisfies the property (*). On the other hand, if ¢f(k), the cofi-
nality of k, satisfies ¢f(k)<{», then ¢f(k*)>A, by Koénig’s theorem, so we have
k+*<<k* and so k+ does not satisfy the property (*). The least cardinal greater
than vg satisfying (*) is defined by k=(n,)t, because (n,*)* =y <k.

If for example the continuum hypothesis 29 =w; is true, then

(fe2t: {icl fl) =1} <o}

is k-compact for K=y, w3, ... but not for k=wi, wutt,-
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Interesting problem concerning this 1s the problem of implication

Yn<ow (2” = Wy + l) — 2% = (41

which is proposed by R. M. Solovay, and is called the singular cardinals problem
And this problem is equivalent to w,z-compactness of above set X, under the

assumption of
Vn<o (zmn = mn+l)

Another interesting problem is explicit characterization of ®; or s-compact
sets, for example the existence of s-compact set which is not included in the conti-
nuous image of the set of the form X¥. And the characterization of the structure
of complete Boolean aigebra determined by closed subsets of 27 divided by the
ideal of k-compact sets.

The case k= is well-known case of weak topology, by Tihonov theorem
the topological space 2{ is compact, hence a subset 1s compact if and only if it
is closed. This means that the w-algebra (Boolean algebra of clopen sets) B generated
by basic open sets of X is minimal separating if and only if X is closed. There is

natural correspondence between the closure X of X and the set B* of all maximal

filters (or ideals) of B.

We have already mentioned that every k-compact k-topological space X
of 27 is a k-space. Now we consider the problem of converse implication. That
is, whether every closed k-space in k-topological space in 27 is k-compact or not.

When I=k, this property is known as tree property. To explain about this,

we define the notion of binary tree, here we say simply a tree. A subset T of
P= 1) 2° is called a k-tree if the following conditions are satisfied:

vk
(a) feT, gcP, gCfog&T,
(b) 0<4:(T|v)<k where T|v={f&cT:dom(f)=v} and v<k.
A function f:k—2 is called a total branch of T if

Vv<k (flveT).
We say that a cardinal £ have the tree property if every k-tree has a total branch.

LEMMA 7. k£ has tree property if and only if every closed k-space in the
k-topological space 2% i1s k-compact.

PROOF. Let T be a k-tree without any total branch. For any f& T, we as-
sociate a function f* : k—3 defined by

£ if vEdom (£)
2 if vEk-dom (f).

Then by the inclusion 322, we may consider f* as an element of 2% by
35 (22)k=22xk=2% Now we consider a subset T* of 2% defined by

T*={f*c2*.fcT}

f"‘(v)={
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Then T* is a k-space. Since 7 has no total branch, T* is a closed subset of 2%
and each point of which is an isolated point. Let U(p;a,) be a neighbourhood
of p in T* with |
U(p; a,)NT*={p}.
Then by HT*=k, we have that T* cannot be covered by less than &k union of
such neighbourhoods. This means that T* is a closed k-space which is not
k-compact. |

Next, suppose k has the tree property and X be a closed k-space which is not

k-compact. Let {U(p; vp) :pE X} be a covering of X by which X cannot be
covered by less than &k union of the sets. Let T be the set of functions defined by

T={f|v:f&X, T cannot be covered by <k of U(p; vp)'s}. Since X is a
k-space which is not k-compact, T 1s a k-tree. Hence, by tree property of %,
T has a total branch f: k—2. But since X is.closed, we have f& X. This means
that fE U(f; v;) and so f|v,4-T, which is a contradiction.

Followings are known examples about this notion:

(1) @ has tree property. This is known as K&nig’s infinity lemma or Brower’s fan
theorem and is a special case of Tihonov’s compactness theorem.

(2) w; does not have tree property. Such an example is known as Aronszajn tree

(3) (Specker) if a regular cardinal k satisfies Vv<k(2¥<k), then k* does not
have the tree property.
(4) (J. Silver) if k¥ is a real valued measurable then X has tree property.

It is known, by R. M. Solovay, that the consistency of existence of 2-valued
measurable cardinal and that of real-valued measurable cardinal are equivalent
under ZFC, Zermelo-Fracnkel set theory with axiom of choice. And every real-
-valued measurable cardinal is weakly inaccessible cardinal less than or equal
to 29, every 2-valued measurable cardinal is strongly inaccessible, that 1s, k is
regular and V v<<k (2"< k).

In the case k 1s strongly inaccessible, every subset X of k-topological space
27 1s always a k-space, and the property

Y v <k ($#(T| V<)

1s always satisfied. In this case k is called weakly compact. That, is, a cardinal &
is weakly compact if

2% with k-topology is k-compact.

Followings are known about this notion:

(1) the first strongly inaccessible, the first Mahlo cardinal is not weakly compact.
More generally the first cardinal satisfying m,! property 1s not weakly compact.

(2) every measurable cardinal is weakly compact and it is a limit of weakly com-
pact cardinals.

J. Silver proved that the consistency of existence of weakly compact cardinal
implies the consistency of

“w4 as tree property”

with the exioms of set theory ZFC.
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More general case is considered and it is called strongly compact, or simply
compact, cardinal if for any set f

21 with k-topology is k-compact.
This notion is also described by using tree like structures. A subset T of
P={f|a:aCl, #a<k} |

is called a k-function tree if the following conditions are satisfied:

(@) fET, g&P, gCf>g€T,
(b) O<H{fCT:dom(f)=a}<kforv<k and Ha<k.

A function f:I—2 is called a total function of T if

YaCl(Ha<k—>flacT).

We say that a cardinal k has the k-function tree property if every k-function
tree has a total function. For strongly inaccessible cardinals, strong compactness
is equivalent to function tree property. For example, we know the followings,

(1) every strongly compact cardinal is measurable.

(2) (Vopenka-Hrbacek) if strongly compact cardinal exists then V=£L(a) for
every set a.

(3) (R. Solovay) 2*=it for every singular strong limit cardinal greater than a
compact cardinal.

(4) if there exists a strongly compact cardinal, then the first strongly compact car-
dinal can be the first measurable cardinal.
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PRESENTATION OF NATURAL DEDUCTION

R. P. NEDERPELT#*

Introduction

The merits of a system of natural deduction are not only determined by its
value as a logical system in itself. Since it formalizes deductions in a manner close
to intuitive reasoning, natural deduction can also be used as a (logical) framework
for mathematical argumentation. One may say that many mathematical texts
are tacitly based on a form of natural deduction, as regards the logical part of the
deductive patterns.

Jaskowski and Gentzen constructed the first systems of natural deduction
in the early thirties (see: Prawitz [7, appendix C]). Many suggestions have been
made since with a view to formalizing the natural deducticn atructure present in
usual mathematical reasonings.

Text-books concerned with logic on this basis are, for instance, Quine [9],
Suppes [10] and Kalish-Montague [5]. The incorporation of a natural deduction
system in the common mathematical practice can be very useful, in particular for
didactical purposes.

In section I of this paper we shall propose another system of natural deduc-
tton, resembling that of Kalish and Montague, which can te used for the logical
part of mathematics., The system to be described is quite satlisfactory in practice,
as became apparent when applying it to undergraduvate mathematics tuition,

A natural way of reasoning in mathematics has, however, more aspects than
the logical ones. These other, non-logical aspects were isolated by N.G. de Bruijn.
His investigations led to a system called ‘‘the mathematical language Automath”
(see [1]), which may serve as a formal notational system for rendering mathematics
in a natural manner. The system is founded on typed lambda-calculus, not on
axiomatic set theory.

* The author is employed in the Mathematics department of the Eindhoven University of
Technology in the Netherlands. —

Thanks are due to N.G. de Bruijn, D.T. van Daalen and R.C. de Vrijer for helpful com-
ments, and to A.V. Zimmermann for remarks concerning the English language.
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In section II of this paper we shall describe, in coherence with section ],
the major principles of such a *‘system of natural reasoning”. The description will
be rather informal and incomplete.

It will also be shown how the rules of natural deduction can be expressed
within the system, so that an important part of natural reasoning finds a formalized
counterpart. In systems like this, a large part of everyday mathematics can actually
be expressed, as is shown in e.g. Jutting [4] and Zucker [I1].

The structure underlying a system like de Bruijn’s can be made clearer by
uniformations, leading to a system which is a typed lambda-calculus, the types
themselves having a lambda structure. This uniform system will be described in
section IIF of this paper. It does not have the natural aspecis of the other systems.
It has, however, a relatively simple and transparent structure and is therefore very
useful for theoretical investigations into “‘systems of natural reasoning”, e.g. with
respect to (strong) normalizability. We shall give a precise description of this
systemn and summarize some of its properties.

I. A practical system of natural deduction

With the aim of obtaining a practical system for natural deduction, directly
applicable in everyday mathematics, we reformulate the introduction and elimi-
nation rules for A, VvV, >, 1,V and 3 (see e.g. Prawitz [7] or [8]), with modifi-
cations to be described below. |

Basic units in the systems we shall call sentences, written in a sequential (not
a tree-like) order, one sentence below the other. A sentence can express something
like an axiom, a theorem, a definition, an assumption or a derived statement. If
desired, one may add comments, e.g. containing justification for a derived sta-
tement. Such justifications may be based on logical rules (like the introduction and
elimination rules), on premisses, valid assumptions and previous results, but also
on mathematical arguments; this part of the reasoning is not formalized in the
present system.

As primitive symbols we have the logical constants A, V, =, 1, ¥V, 3 and
contradiction. We do not consider the logical constant <> primitive; it can be
defined in the usual manner in terms of A and —.

We note that in mathematical practice the following observation is often
used: if ““Fimplies G’ 1s a derived rule, then a proof of F suffices as a proof of G.
(Thus a proof of b is also a proof of @ = b, and so on.} We embody this meta-rule
in the present system, for practical reasons.

A. Introduction rules

Assumptions play an essential role in natural deduction. They are generally
used with the purpose of simplifying in a natural manner the statement which has
to be proved: a particular related statement is temporarily taken as an added datum,
another statement, simpler than the original one, is the new object for proving.
As soon as this aim is achieved, the assumption is ‘‘discharged”, and the original
statement bas been proved.

This way of dealing with assumptions will be expressed in the notations used:
sentences which are assumptions will be specially marked by a box; the range of
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validity of an assumption will be marked by a vertical line starting from the left
end of the box.

Thus doing it becomes apparent how the cuter structure of a statement to be
proved is reflected in its proof, as is often the case. For example, a proof of
Vica [P(X) = Q(x)] will usually have the following shape:

Let xc A {

Assume P (x)l

a2 (x)

For presenting an outer proof structure in this manner it is cesirable to organize
a proof in such a way that validity ranges of assumptions are disjoint or nested:
one should arrange these validity ranges in a blcck configuraticn as is known
from programming languages.

From this example it may be seen that the sentence *‘Let x&& A will appear
as an assumption in our V-introduction rule. Our preference for assumptions
rather than parameters in this rule is prompted by mathematical practice: in a proof
of Vxc4 [P(x)], the natural first step i1s: “Let xc 4.

It will be clear that the latter sentence is not an assumption in the proper
sense, as it also introduces the variable x. There is, however, a streng analogy
with ““normal” assumptions of the kind ““Assume p”, notably with respect to
validity and use. Therefore we shall all the same call *‘Let x<= A" an assumption,
distinguishing this kind of assumption from the other by using the word “‘let”
instead of ‘‘assume”.

Our V -introduction rule deviates from the usual rules. Our argument for
this is that the two ‘“‘natural” proofs for a v b look like a proof of an implication;
for example: start with : “Assume —1 4" and derive a proof of b. Because our
- system is based on classical logic (see subsection C), the usual V -intreduction rules
are derived rules. (We confine ourselves to one rule for V-intrcduction and one
for A-introduction, the symmetty of ¥V and A being piesuprosed.)

Thus we propose the following standard proof schemes for intrcduction
of A, V, =, 1,V and 3, respectively:

1. . r §
Assume 1 g Assume a Assume a
a 4
2. .. - - [ ] L ] L - [ ] - . .
b b contradiction

b b — —_— !

concl.: aA b concl.: aVb concl.: a=b concl.: —a
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Let x& A l
t=A
| P(x) P (5
concl.: Viea[P (x)] concl.: F.ca P (X)]

In applying any of these schemes one should insert (from above downwards)
a sequence of sentences in the place of the dots, each sentence being justifiable in
the sense explained before.

B. Elimination rules

We denote the legitimacy of a deduction of G from F by:

F...G. As elimination rules for A, V, =, 5,V and 3 we propose:

apb. .a
avb, a=>c, b=c.".¢
a=>b, a.".b

- —a, a.. contradiction
Veea[P(x)], t€A. . P(0)
FealP (X)) VecalP(x) =>0].7. 0
In the 3-elimination rule @ must not depend on x,

In a way, each elimination rule is the inverse of the corresponding introduc-
tion rule (cf. Prawitz [7, p.33]). There is, however, an essential difference in use
between the two kinds of rules which, in our opinion, disturbs the symmetry:
in principle, introduction rules give the general structure of a proof (cf. what has
been mentioned in subsection A), elimination rules, however, are used for procee-
ding stepwise in the body of the proof. The difference in the notation of introduction
and elimination rules, as shown above, reflects this asymmetry.

C. Double negation rule

Because logic, as it is generally used, is classical, we add the double nega-
tion rule:

1T 1g.*.a

The absurdity rule (contradiction .°. a) is now a derived rule.
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ar

The main difference between the logical system described above and the
usual Gentzen-type systems are found in the V- and V -introduction rules. The
block structure for validity ranges of assumptions is also present in the system of
Kalish and Montague ([5]). The latter system employs an exisiential instantiation
rule instead of the usual 3-elimination rule (cf. the comment by Prawitz on this
subject in Appendix C of [7]. :

The system outlined above is suitable for tuition purposcs. It has the advan-
tages of natural deduction, both in setting up proofs and in understanding them.
It also agrees closely with usual patterns of reasoning: a proof written with the aid
of this system scarcely deviates from usual proofs, the differences being hardly moie
than boxes and validity lines,

On the other hand, as stated in the beginning of this scction, formalization
in the above system is not pushed very far. There are no formal devices for frequently
occurring mathematical routines, like applying a theorem or a definition, justifying
a deduction step, and so on. In the next section we shall describe how these sides
of mathematical reasoning can be effectively formalized.

I A system for matural reasoning

We shall describe a system with a wide range of applications and a high level
of formalization. The system now to be proposed is natural in the sense that it is
closely related to the usual way of reasoning and proving in mathematics. In the
first instance, the system refers mainly to the nonlogical part of mathematics.
However, rules of logic can be expressed and applied in the system. One may choose
natural deduction as a basic for logic, in the manner of the previous section (as
we do in II F), thus preserving the ““natural” character of the system.

The system is directly derived from the ‘““mathematical language Automath™,
designed by N.G. de Bruijn for rendering mathematical texts in a formal way
{see [L]). Various versions of this language have been developed by de Bruijn, in
cooperation with, among others, D.T. van Daalen, L.5. Jutting and J. Zucker
(see [2]). Most of the features of these various versions will be present in the “‘system
for natural reasoning”, which we shall describe in this section.

A text formalized in such a system consists of a sequence of sentences, con-
structed one by one in accordance with the rules of the system, the “‘syntax”. We
shail not discuss the syntax rules in detail. For this we refer to the precise definitions
of a few Automath systems in [2] or [3].

A mathematical text selected for being formalized in a system like the one at
1ssue must not show any omission in its chain of reasoning; if necessary, it must
be made complete. An appropriate “‘translation’ of that text, i.e. a formalization
in the system, will be complete as well, in the sense that every sentence can be
mechanically verified as to correctness according to the syntax. The latter property
obviously implies that one may attach a high degree of mathematical cogency to
a text, which has been translated and verified in such a system.

A number of mathematical texts have actually been formalized in systems of
this kind. For example: Jutting has translated a well-known mathematical text
{see [4]), and the formalized text has been verified by means of a computer programme;
Zucker formalized a part of classical real analysis (cf. [11]).
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A. Typing

In mathematics one usually attaches types to objects; cne says: x is a natural
number, p is a proposition. in our system we incorporate a relation *‘s has type ¢
in a formal way, denoted as s:¢.

We fix two basic terms: = and =, representing the type of all propositions
and the type of all ‘““classes”, respectively. For example: (p > ¢g):m and N : ~.
(Here N denotes the class of all natural numbers). A class like N can be the type
of some term of lower rank, as, for instance, in the sentence x : N. But a pro-
position like p =g can likewise be the type of some term, viz. its proof, as we shall

now explain.

It is common in mathematics to deal with proofs of propositions only at a
meta-level. Contrary to this, we shall incorporate proofs as terms in our system,
denoted and manipulated just as the other terms in the system. This idea is well-
known (for references: see [il, p. 135]). It is based on the observation that a proof
of a proposition results frecm a kind of ““‘construction™.

As type of a proof we take the proposition it proves; if ¢ is a proof for
p=gq, we write ¢:(p = q). Conversely, if r :w and 7:r then (preof) ¢ as-
serts (propositicn) 7,

By the above agreements concerning typing we obtain a hierarchical relation
between terms of the system. Terms m and vt are (the only) representatives of
the highest level of abstraction, to be assigned degree 0. Terms like p = ¢
and N belong to a lower level (degree 1); terms like x and ¢ belong to the lowest
level (degree 2). In the present system we restrict ourselves to these thice levels.

There iIs a notable contrast between our relation :(‘““has type’) and the
set-theoretical relation & (“‘is element of”). In set-theory, an element may belong
to different classes: x¢=N implies x&ER, since NCR. As to relation:, however,
we impose wniqueness of type: each term of degree 1 or 2 has a fixed type. (For a
remark on this uniqueness: see the following subsection.) Typing thereby becomes
an unambiguous, effective procedure; this facilitates mechanical checking.

Thus, in the case that N and R have been intrcduced independently,
“natural number x” cannot be considered as a real number by a direct embedding
of N into R. This has obvious disadvantages, like the necessity of some non-trivial
embedding device; on the other hand, obscuring identifications are absent.

B. Conversions

We note the complicating circumstance thet a term in the system may have
different manifestations, being interchangeable by means of conversions. There
are three kinds of basic conversions. The first results frcm the application of a
definition to (part of) a term; this is called definitional conversion (for an example:
see subsection D). The second concerns the applicaticn of a function to an argu-
ment; it is called functional conversion or B-conversion (see subsection E). The third
is caused by the renaming of a certain variable in a few occurrences in a term,
without disturbing the pattern of binding in the term; it will be called renaming
conversion Or -CODVEISION.
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Conversions change a term in appearance, without changing its nature.
Different appearances of one term, related by conversions, will be called equivalent.

The above implies that the “uniqueness of type”, discussed in subsection A,
should be understood modulo conversion.

C. Assumptions

In the natural deduction system of § I, assumptions appcared in two shapes:
etther in the simple version “‘Assume p”, or in the more complex version
“Let xc A” (cf. I A). Since we regard proofs as terms, we may replace the former
version by “‘Let f be a proof of proposition p”. The latter version becomes
“Let x be a term which has type 4”, in correspondence with our view upon
typing. Formally, both versions -of assumptions can be denoted, quite similarly,

by the sentences It : pl and ’x r A |, respectively, ¢ and x being variables, p and

A being terms. (An arbitrary assumption Iu :vl can be correctly interpreted by

regarding the type of v.)

D. Axioms, definitions, theorems

We shall now describe how axioms, definitions and theorems can be incorpo-
rated.
Axioms (including basic notions) will be denoted by means of a double box.

IN:TI.

For example, in regarding N as a basic notion we obtain the sentence:

| one : N ll Axioms may contain
I

Then Peanc’s first axiom will be rendered by:

ong or more assumptions, like in Peano’s second axiom, postulating a successor
to every natural number; we may express this axicm by means of two sentences:

'x:Nl ’| s(x):N \

sentence.
In such cases, when a sentence depends on an assumption variable, one may

instantiate, 1.e. (simultaneously)} substitute a term for each occurrence of this va-
riable in the sentence. It 1s then a natural requirement that the substituted term has
an ‘‘appropriate’” type. For example, from the last axiom one may infer that
5s(one) has type N. Analogous rules hold in the case in which a sentence depends.
on more than one variable. |

Definitions will be written as in the following examples:

. Here the assumption variable x rcturns in the latter

two . =s(one):. N, three : =s(two): N,

}y:N \ plustwo (y) : =3 (s(»)):N.

In the last example the definition consists of two sentences, the latter depending:
on the former.
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The three above examples concern definitions of terms of degree 2. It is also
possible to write a sentence containing 2 definition of a term of degree 1; such a
term defines a “‘class”, a proposition or a predicate.

For proofs of theorems we use the same notation as for definitions that
concern terms of degree 2. We justify thus policy with the following remark; a proof
of a theorem th (where rh:7) fixes a term p with p : th, while a definition of an
“object” belonging to a ‘‘class” ¢l (where ¢/ : =) fixes a term b with & :cl

We shall show in an example how a theorem can be expressed (and proved).
Suppose that the relation equality for natural numbers (=) is given as a basic.

notion by lx:Nl Iy:j ] (x=py¥)i7 I( Let reflexivity of =, be given
by axiom:
| x:N | | refis(x):(x=yx) |l

Now a proof of the theorem plustwo (one)=, three can be expressed by:
proof 1 : =refis (5(s(one))) : (plustwo (one) =  three).

At first sight this seems incorrect, because the axiom for reflexivity
yields the relation

refis (s (s (one))) : (s (s (one)) = x5 (s (0ne))) ,

by substituting s(s(one)) for x. But by means of definitional conversion (see
subsection B) and instantiation we may change (plustwo (one)=y three) into
(s (s (one)) = 5 (s (s {one))), by applying the definitions given above of plustwo (one),
three and two.

As some of our examples showed, axioms and definitions may consist of
more than one sentence, all but the last being assumptions. This may also be the
case with (proved) theorems. Such an initial sequence of assumptions is called a
context for the axiom, definition or theorem at issue; the assumption variables of
a context may occur in the final sentence. The interdependence may even be stronger:
cach assumption variable in a context may occur in “‘type-parts” of assumptions
which follow in that context. See, for instance, the axiom for the double negation
rule, given In subsection F.

E. Functions

Functional abstraction and application form part of the system, For functional
abstraction we use an adapted lambda-calculus notation, demonstrated by the
following definition: idfun ;=[x :Nlx:[Ax :N]JN. Hecre [Ax:N]x is the
identity function for natural numbers; the type of this function, NN, is denoted by
the “‘type-valued function” [Ax : NIN. Application of funtcion f to argument x
is denoted by {x}f. A motivation of the unusual order of function and argument is
given in [6, p. 11—12]. |

A natural requirement regarding functions is that an argument of a function
must have a type equivalent (in the sense explained in subsection B) to the domain
of that function.
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For functions and arguments the laws of functional conversion (also called
f-conversion) hold, allowing for example the conversion of {4}[Ax :B]C into

%C, i.e. the result of substituting term A for all free occurrences of x in term C.
{(We gave a general description of conversions in subsection B; q.v.)

Example: application of idfun to two yields {two} idfun, which is equivalent
to {two}[Ax : NJx by definitional conversion. Then by functional conversion we
may change the latter into fwo. Hence, {rwo}idfun and two are equivalent: they
are both “‘appearances of the same term”.

F. Deduction rules

As stated before, logical rules are not primitive in the present system: one
may choose one’s own logical basis. We shall show how one may incorporate rules
for natural deduction by means of axioms and definitions. In this respect the formal
correspondences between = and V on one hand and functional abstraction on the
other, can be successfully exploited.

For example, the “meaning” of p = ¢ is that for every proof of proposition
p we may produce a proof of proposition q. This is a functional relation. Hence
it seems natural to define p = ¢ as type-valued function [Ax : plg. Then application
of modus ponens can be simply effectuated by functional application (and a few
conversions):

I|.a?:4,=::ﬁ | ‘ t:{p=>q) modponapp (s, t): ={s}t:q.

The ““meaning” of V,-4[P(x)] is that to every x in 4, a proof of P(x) can
be attached. This is again a functional relation. So one may define V,-4[P(x)] as
the type-valued function [»x : 4]P(x)}. The role of the V-elimination rule will again
be taken over by the rule of functional application.

Contradiction may be 1ntroduced as basic notion:

| contradiction : = ||. Then — p can be defined as p = contradiction. Now - -

elimination becomes a special case of modus ponens.
The double negation rule has to be expressed by means of an axiom as follows:

Ip:ﬂ:| |n:—|(—|p)‘ “doubneg(p,n):p”.

The logical constants A, V, © and 3 can be defined in terms of =, —
and V, in the usual way. The introduction and elimination rules for A, V and 3
can subsequently be derived as theorems.

IIl. A uniform system

In the system of § II there exists a strong correspondence between contexts
{“‘sequences of assumptions”, see II D) and functional abstractions. For example,

, using a context consisting of a single assump-

the axiom |x : N| || () N |
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tion, could be replaced by ’I S:[ax :N]N |

The role of *‘instantiation”, substitution of a term for an assumption variable
(cf. II D), will be taken over by functional application: s{fivo) becomes {fwo}S.

We shall now propose a uniform system, developed by de Bruijn and Ne-
derpelt (see [6]), wherein, to begin with, all assumptions are written as abstractions
“of the form [k :L]. We denote axioms and basic notions as abstractions, too,
because one may regard these as being assumptions with unlimited validity range.
For example, the above axiom will be written as [AS : [Ax:N]N].

Definitions obtain a uniformized shape as well, because instead of, e.g.,
z:=A :B, A and B being terms, we write {4 }[’z : B]. Here variable z is defined
as being functional application term A4, both having type B. The role of defini-
tional conversion (replacement of z by A4) is taken over by functional conversion:
{A}[7z:B]C is equivalent to %C.

It this systemm we write theorems together with their preoofs, in a manner
similar to that in which definitions are written. For example: {D}[’z : E] may
express theorem E and its proof D, z being a name for the proof.

In the case in which a definition or a proved theorem depends on a non-empty
context, the formulation in the present system is somewhat more complicated than
suggested above.

By means of uniformation, such as above, we obtain a simplified system,
which is a typed lambda-calculus with lambda-structured tvpes and two constants:
= and <. This typed lambda-calculus, which we call A, can be regarded as a model
for ““systems of natural reasoning” like that described in § IL in the sense that
it gives a simple and uniform framework for such systems.

As an example we give the reformulation of the theorem plustwo(one)=,; three
discussed in § II. In A this theorem becomes a single line, containing all needed
information:

[AN:t][AS:[Ax:N]N][» ONE:N]{{ONE} S} [» TWO :N]
H{TWO} SYATHREE :NJ{[ry:Ni{{y} S} S} [PLUSTWO,
[Ay:NIN]J[AISN:[rx:N][Ay:N]=][A REFIS:[» x:N]

{x}{x} ISN){{ONE} PLUSTWO}{THREE} ISN.

The proof of this theorem looks similar, but for the last part
{{ONE} PLUSTWO} {THREE} ISN, which reads:

{{{ONE} S} S} REFIS.

We do not uniformize = and t into one constant, as is done in [6], since
we wish to prevent assertions concerning propositions frcm having consequences.
for ““classes™, and vice versa. The double negation rule, for example, would in that
case imply some form of the axiom of choice (cf. {11, p. 141}).

We shall now give a precise definition of A as being a class of terms in a
typed lambda-calculus.

The alphabet under consideration consists of constents = and =, an infinite
number of varigbles: x,y,... and the improper symbols {, J, {, }, A and : .

, using functional abstraction.
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Terms are recursively defined by:
(1) = and = are terms; each variable x is a term.
(2) If A and B are terms and if x is a variable, then [bx : A]B and {4}B

* are terms.

The relation: K is a subtermm of I is the reflexive and transitive relation
generated by:

A and B are subterms of [Ax : A]1B and of {A4}B.

Typer is a partial function from the set of subterms occurring in term X
to the set of all terms, which function is recursively defined by:

(1) If variable x occurs in K as a subterm and x is bound by [Ax: A]
in KX, then Typeg(x)=4.

(2) (monotony:) If [Ay : A1B is a subterm of X, if Typey(B) is defined and
if Typeg(B) = C, then Typeg([ry : A]B) = [Ay : A]C. Under analogous condi-
tions: Typeg({41B) = {4}C.

Degreeg is a partial function from the set of subterms occurring in term K
to the set of the non-negative integers, which function is recursively defined by:

(1) If subterm A of K ends in v or =, then degree,(4) = 0.

(2) If subterm A4 of K ends in variable x, bound by [Ax:B], and if
degree(B) is defined, then degree,(4) = degree,(B)4-1.

(In A there is no upper bound for the values of the degree function.)

Bound terms are terms without free variables.

(In bound terms all subterms have a degree and all subterms not ending
in T or = have a type.)

«-reduction, denoted >,, is the monotonous relation generated by

[Ax:B] C>4[Ay: B],C, with the usual restriction that the pattern of binding may
not be disturbed.

B-reduction, denoted >, is the monotonous relation generated by

{A}[»x : BIC>3%C. (In substituting 4 for x, variables must be renamed in
the usual way, in order to prevent ‘‘clash of variables”.)

Reduction, denoted >, is the reflexive and transitive closure of both «- and
B-reduction. If KX>L, then L is called a reduct of K. (One may consider reduc-
tion as “‘one-way conversion”; ¢f. § II B and E.)

Legitimate terms are bound terms K with the following property: For each
subterm of K of the form {4}B there exist C and D with the properties that

Typex(B) > [y, C]D and that Typep(4) and C have a common reduct; here
vy = degree (B) and Type}} is Type, iterated ~ times, which iteration is defined
in the natural way.

Now A is defined as the set of all legitimate terms.

The limitation to legitimate instead of bound terms has two reasons. The
first is of a intuitive nature: it is a natural requirement for a system, close to ma-
thematical practice, that arguments 4 may only be related to terms B with
an appropriate functional character. That is to say, B must, in a sense, be a func-
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tion with a certain domain C. Moreover, argument 4 must be an object belon-
ging to this domain C.

A second reason is that function applications (B-reductions) to bound terms
may bring about a non-terminating process, just as in ordinary A-calculus. In
restricting oneself to legitimate terms this is impossible (see following theorem (3)).

We conclude with four theorems valuable for theoretical purposes:

(1) Church-Rosser property or diamond property: If A>>B and A>C, then
B and C have a common reduct.

(2) Normalization: Every term in A has a normal form (i.e. a reduct to
which no B-reduction can be applied), which is effectively computable; this
normal form is unique but for «-reduction.

(3) Strong normalization: For no A in A is there an infinite reduction
sequence A >p A1>>pAz>p ... . |

{4) Closure: If A is in A and A>>B, then B is in A.

For proofs of these theorems: see [6] and [3]
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ON THE QUANTIFIER OF LIMITING REALIZABILITY
N. A. SHANIN

Logical connectives intermediate between 3 and 3 as well as between V
and V[3xF denotes 1VxF and (F, V F,) denotes (] F, & F,)] are some-
times useful in searching for interesting ‘‘in contents” constructive analogs
of theoremes of classical mathematics. We introduce two such logical connectives

prompted by the theory of limiting computable (in other terms semicomputable)
functions, namely the quantifier of limiting realizability 3 and the limiting dis-

—_

junction V. They are defined in terms of the basic connectives of constructive
—

logic as follows:
dzF = 3Jy({(ystab) &V z ((z im . val y) - F)),

(FIVF)=3x{(x=0-> F))&(x£0—>F),)).

The expression (¥ stab) stands for the condition <£y i1s a godelnumber of
a stabilizing unary total recursive function >> (this means: a gddel number of
such a total unary recursive function f for which a value xy of the argument
quasi-exists (173) such that f{xe+x)=f(xq) for any x). (z!lim-val y) stands for
the condition <€z is the limit value of the unary recursive function with gédelnumber
¥y >>. Several properties of 3, VV have been presented in the report. A detailed

—_—r =

exposition can be found in [1].
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HECKOJIbKO KOMBMHATOPHbLIX IIPOBJIEM

b. C. CTEUKHH

3nech NPRBOOMTCH HeCKONRKO NOBONBHO ODIEMX 3aia¥d, K KOTOPsIM # oDpamancd g noc-
nenAee BpeMAa. [lo BeKOTOpbiM U3 HAX JAIOTCA HaCTHBIE HIH DPUKHAOUHLE Pe3yNpTATHL
BONbIDHHCTBO B3 3TUX npOoDneM HACTONBKC IMHPOXHA, 4TO JE30CHOBATENHHO OXHOATH CKOPOro
H HCYepNBIBAIOWIETO MX pelleHs N, OOHAKO H MeHee ODIIEe OpONBHXeHHA NO 3TEM 3a0av9aM
OpeacTaBHiE Onl HecOMHECHHLIE mHTepec. BOT mepedenn obcyXpaeMplx 30SCh TEMATHK:

1 KpaTepslf raMHEIBTOHOBOCTH.

II 3akon daxropE3amul.

ITT PeanaiyeMOCTh BaneHTHEOCTCH.

1V CIpykTYpHBIE KOHCTAHTHL.

VYV CrpykTypHO-BEKTOpHEIe NOKPBITHI.

Bripaxaio c¢BOW HCKPEHHIOW NPH3HATENBROCTE npodeccopy Hx. K. Pore m poxropy K. bax-
JIABCKOMY, KOTOpBIE BO MHOroM cnocoDCTROBaNA HanmcawRlo 3TOR padoThHL

I. KpaTepu#fi ramMu/sTOHOBOCTR,

Cornacao teopeme Menrepa, oM. [I}, rpad d — cB3cH TOrma B TOABKO
Torda, korga nmobas mapa €ro BEpPLUHH COENHHEHA MO kpafined Mepe d BeplUMHHO-
HEMCPeCEeKaOMMMHECH TIYTAMHA. bynemM TroBopuTs, 4910 rIpodp d-DOKpBIBaIOLIlE-
CBA3CH, €CJIH BCAKas Iapa €ro BEPIUHH COCIMHCHA IO KPuHHEH Mepe d BEPIUAHHO-
-HEeTIepeCeKAOMAMKCA OYTAMH TAKAMH, YTO TIYTH 3TH MOKPbLIBAIOT BCEX BEPILIMHBI
rpada, T.e. MHOXSCTBO BCEX BePIIMH BceX I3THX NOYyTeH eCThb BCe MHOXECTBO
Bepiiug rpada. I'pad OyneM MMEHOBab 4eTHO-TIOKPLIBE FONIIE-CBA3HBIM, €CNIH [AJIS
BCAKOi Maphl ero BepLINH CYLIECTByeT B 3TOM Ipade CHCTEMA H3 HeTHOIG YHCAA
BEepLUHHHO-HellepeCeKalOMMXCs ¥ HOKpPLIBAIOIMUX NyTEH, COeNUHAMILHMX 5TH
BepILHHLL.

TATIOTE3A. Ipap camussmonos mo2d0a u moabko mozda, Ko20a oH YemHo-
NOKpHIGaIOue CGA3EH.

Heob6xoAMMOCTh OYeBHIHA, DOCKONBKY BCAKAA NApa BepLUIHE TAMHJIBTOHOBOTO
OUKIA COEAMHWMA B TOYHOCTH ABYMS$ BEPILHHHO-HEIlepecek: IOIUMMHCA B DOKPHI-
BAIOIIAMH nyTAMH. KpuTeprii CTZHOBHTCA TABTOJNOIAYHBIM, e€ciu B rpade
UMEETCS BEPINHHA, CTENeHb KOTOpoH He IpeBOCXOAHT TPEX.

Ilycte G-mnockuit rpad, KOTOPHIA 4eTHO-NOKPHIBAIONIC-CBA3€H, TOrja audo
HalifleTcd Tapa BeplUHH COeJMHEMAHd ABYMS BEpIIMHHO-HEIECPECEKAFOUIMMUCA U
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HOKPBIBAIOINMME IIYTAMH, H 3HAYAT G-TaMHNLTOHOB, JuOO0 BCAKas Napa ero
BepPIUMH COEUHUMA MO KpalHed Mepe HeThIpbMs BEPLIMHHO-HeepecekarLUIMMHCS
¥ TOKBIBAIOIIMMHE NYTAMH, HO TOCNEHHEE, B YaCTHOCTH, BIEYET TOT (PAKT, HTO
G gBnsieTcs YeThIpeXcBsi3HbBIM IpadoM, a cornacuo teopeme Tarra [2] MROCKUH
U 4eTHIPeXCBAIHLIA rpad sABsSeTCA IAMUIBTOHOBBIM. TaxuM 00pazoM HMMeEeT MECTO

TEOPEMA. [Maockuii 2pald zamMuabmon0o8 mozda u pioAbko mozda, Ko20a
oOH HEMHG-HOKPBISHFOH;E"CGHS'EH.

MmMmeronmecs gocTaTOMHBIE YCAOBUA FaMHAIBTOHOBOCTY, ¢M. [[], peayuupyror
jafady K CIydarw Ha/JMYAA Napbl BSPIUMH COCAMHHMOHW HE CIHILKOM OOJbLUMM
YeTHBIM YHCOM BEPILMHHO-HETIEPECeKaAIUMXCA M TMOKPBIBAOLIKX NyTed B Hen-
nockoM rpade. Habnmronmaercd, HakoHel, H aJiTOPUTMHUYECKOE ,,PABHOBECHE"!
3TOU THIOTE3HL

Brrpaxaro 6naroJapaocts goktopy FO. B. MaTasacesndy, Oeceapl ¢ KOTOPBIM
noMorin OoJiee TOYHO CHOPMYIHPOBATH 3Ty T'MIOTE3Y.
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I1. 3axon ¢axTopu3anHn.

Uepes (P, <) Oyoem 0003HATATE JIOKAJILHO KOHEYHOE YACTHIHO-YHOPANOYER-
Hoe P ¢ OTHOLIEHMEM 4YaCTUYHOTO mopsaxa < Ha Hem, oM. [l, 2]. Ilocpeact-
BoM F Oyaem o0003Hi4aTe (PAKTOPH3aUWIO, T. €. pasbuedue, MHOXecTBa P, Tax
9T0 (akTOpMHOXECTBO F(P)={f;} €CTh MHOKECTBO HEICPECEKAIOILIUXCA KIACCOB
skBuB.eHTHOCTH f;C P oOBeamHenme KoTopbix aceT Bece P. Ilpuvyem Oyaem
Opefnoaarath, 4To GoXTopH3alud F KaKuM-To 00pa3oM ,,HuCneayeT NOpsIOK <,
T. €. HNOPSIOK <. Ha P r1mocpeacTBOM (P IKTOPHIALMHM HHAYLUUDPYET HEKOTOPBIH
HOBBII MOPAAOK =, Ha QaxTopmMaoxkecTBe F(P), Hampumcep, Mo NPIBRIY:

ﬁ%fzﬁgpfeﬁ(f': 1, 2):.?1%92'

WTak, nycTs wMeeTcs MHOKeCcTBO (P, <) M ero ¢aktopmuoxectso (F, <) =
=(F(P, <), ).

(¢) Kozda muoxecmeo (F, =) RA6AReMCA 4a@CMUuO-YROPAOOUEHHbIM?!

(B) Kax ceazanst mexdy coboii Meduyc-pynxuuu yp U pp?

K coxaneustro B paMkax poToBckuX anredbp munuaeinud AT{P) u AJ(F)
OTBET Ha OCHOBHO# BONPOC () CHABHO 34ABACHT OT OTBeTa Ha HEPBLIH BOOPOC.
Oxazajlock BO3ZMOXHLIM NOpeoliofieTs 3T0 Heyaobereo, oM. [2]; Onn nocTpoed
Kjaacc aiarebp wduuteduuit A/K(P) ¢ agpom K, KOTODBie ONpeaeneHbl X AJA
,,JUIOXKX'* HOPAAKOB, HATIpHMEP, OPY OTCYCTBHH Tpax3uTuBHOCTH. CTano OHITHL
Pe30HHO TOBOPUTh M O HAJMHMMMHM YHCTO TCXHHYecKOH, ¢(OpMaiibHOH CBA3H

MEXAY {p ¥ HUr.
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Ceiiac 3naHUEC 3aKOHAZ (DAKTOPH3AUMH OrpaHMYCHO CIv4aeM CYLIECTBOBA-
HEst Mexay (P<) m (F, =) cuipHO ajrebpamydeckux cps3ci tunma cesasu [anya,
oM. [3].

BoT xoskpeTHas 3agaua Ha 3Ty Temy: Ilyers (B(S,), ) — benmmaH, T.€,
YacTHYHO YIOPAJOYEHHOE MHOMKECTBO BCeX HEYHNOPSAOHeHHDbIX pa3zOueHuit MHOXe-
crea S,=1{a,, a,,..., a,} YIOPANOYEHHOE MO ckJehke Osioxop. Ilycte F-akto-
pusaums GenanuaHa mo pasmepam Onokom, Torma (F(B(S,), L), <)=(F, )=
= (P, <)— €CTh HaCTHYHO YIOOPAAOYEHHOS MHOXECTBO HNAPTHUHH, T.€, HEY-
TopANoYeHHbIi pa3OueHnl YHClia # Ha HaTypanbubie ciharaeMble. Mebuyc-pyBrnus
HapTHLHHE HeH3BECTHA.

JInTeparypa
[1] ROTA G. — C., On the foundations of combinatorial theory, 1, Theory of Mdbius
functions, Z. Wahrsheinlichkeitstheorie, 2, (1964), 340— 368.

21 CTEUYKHWH B. C., burapusie (QyRKuu HA YROPIJOUEHHRIX MHOMCECHEax (meopemwt obpa-
wenusa). Tpynet MUAH, 143, (1977), 178—186.

3] BACLAWSKI K., Galois connections and the Leray Spectral Sequence, Adv. in math.,
25, (1977), Ne3, 191—215; see also his Ph. D. Thesis, Harvard, 1976.

III. Peanu3yeMOCTh BAaJeHTHOCTEH.

ITpu pelueHVE 3KCTPEMANBHBIX 3a7a4 O reuneprpag@ax BBUIBISIOTCE BEChbMa
BaXCHBIE YMCJICHHBIE XApdKTCPHCTHUKH THneprpadoB — ux BaneHTHOCTH, oM. [ 1]
IMycty S,={a,, a,,..., a,} — HeyHopsadoieHHoe n-3JIEMEHTHOe MHOXECTBO (BEp-
muH), 1 nycrs CX(S,)={SCS,:|5|=4%} — MHOXECTBO BCEX K-IOAMHOXECTSB S,
WM WBaYe — IOOIHBIA A-rpa; OOMoXum

PS)=S CHS,.
k=0

PaccMmaTtpusarorca rameprpadel G={e,} P (S,) 1 k-rpadet G*C C¥(S,). Banent-
HocTh v(S, g; G) or cucrembt BepmaR SCS,, uAcna ¢ (—N-+ {0} u runeprpada
GCP(S,) onpedenserca Kak 44Cio

v(S, ¢; G)=|{eSG:lenS|=q}|. (1

dcno, wto mpH |S|=¢=1 3To eCrb ODOBIMHas Cremeds, Lonm ecth [Ba rumep-
rpada G, FC2(S,), 10

> VS, g, G)= 3 vie q; F), (2)
S F e (T
K B HacTHOCTH
NP ‘
S ¥(S,. g G) = z(’)( “")v(s,,,;; 6) 3)
SpC Sy i \d/\P—q
Kpome Toro
: g+ §
P(Sp,ql G): Z(“l) z v(Sq+;‘1 q—i_‘f': G) (4)
i =0 9 ] 544iCSp

EcrecTBeded BOOpOC O peald3yeMOCTH YHCJIOBHIX TIOCHEA0BATEIBHOCTEH
BAJICHTHOCTAMM HEKOTOpOro rumeprpada.

g
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—

(2) Kaxum ycaosuam 00.axHa y008AemsOPAMe HUCAOEUA NOCALO08AMEALHOCM

n
{v} lsgf.s;( )aﬁﬂ mozo umobesl cywjecmeosan 2unepzpap G=_% (uz nexomopozo

anpuoprozo Kaacca 2unepzpagos ) maxoii, umo

{Vl-} tecis :) = {'I’ (Spr g G)}SPQSH ?

Oprewr ® Tamnam, cm. [1] B m 1, penmny 2Ty 3amady ans oOBIMHBIX
cTeneHeit p=¢g=1 m oOBMHEIX rpadoB. 3mecs MKl ,,eCTCCTBEHHBIM®® o0pa3oM
BeIBeicM HX orparmqeHEud Ha {v;}. M3 (4) npn G=G*C C°(S,) ® g=1 maxopum

(S, LG)= 3 v(S, L6 -2 F v(S,, 2, 6),
$185p S,CSp
HIIA
2. v(S, E6)=v(S,, ,G)+2 2 v(S,,2; D)=

8,8 S, Sp

=V (5,5 13 GH+2v(S,, 2; GY=v(S,-S,, 1; GH+2v(S,, 2; G

V(= S, L G +p(p-D<p(p-D+_ 2 v{S, 1, GHAp,

t & Sn—5p

(3mecs ® Bezme janee aAp=min{a, p}), 9TO H [aeT W3BECTHOE HEPABEHCTBO
Oppema — Naanau

P
ZPE‘QP(P— 1)+ z V,AD.
i—1

fimpy4l

YciloBue YETHOCTH CYMMBI 2y, cnedyeT M3 (3). OnHako 3apgava He pellleHa Jaxe
Oag oORMHBIX creneHed B runeprpagckoM ciyvae. Jdepaue#t 2] ameeT ang 3Toro
Clydyas peKypCHBHBle orpaHmveHdms Ha {v,}. TlosTomy MOXHO IIOHHTEPECOBATBHCA
A Oonee YacTHBIM BOOPOCOM: HAeHCTBHATENHLHO NH Bcsd MHbPopMalMd o CBA3sX
MEXJY BAJICHTHOCTaMH 3axjirogeHa B (3) # (4)? 3mece Mpl obpaTdM BHHMAaHHE
A¥IME Ha OJWH OpOCTOil QakT,.

n

P
puameasHvix yuced. [Jan mozo umobsl nocaedosamespvrocms {v,} peasusoevisaiacy

easenmuocmamu {v,(S,, 1; G")} nexomopozo 1-zpaga G'_ C'(S,) reobxooumo u
docmamouro, umobul

TEOPEMA. Hycmy {s} lgié( ) — nOCAL008AMEeABHOCb  UeAblx Heom-

(Z;) v,EO(mod ( n-l )) ; ()

f=1 p—1

ey =3CO(T) (227 (6)

P—1

zde m=f:2?v, (n—l)‘

p-1
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QopmMyna (6) o3Hagaer, YTO WHACAO 0 JOMXHO BHOCIEAOBaTe/IbHOCTH {v,} Halm-
n—m n—m
_ p r—1
noapodbtee obosHavenua com. [I]. TIpaMeyaTtebHO, YTO0 B TOM ChAydae Cyuie-
CTBYeT M KOHCTPYKTHBHBIH XpUTepuit, mBMeHHO (6) MOXHO 3aMEHHTh HA YCJIOBHE

{vf} = { l SmnSp | }Spgsm (SmCSha), (7)

DOCKOJIbKY OpaBekle YacTd (6) ¥ (7) B TOYHOCTH coBOazaloT. B dacTHOCTH U3 (7)
A HEMELJIeHHO CISAYEeT AOCTATOYHOCTh TEOpeMBL.

m m
YeCTBOBATh POBHO (0) ( ) pas, Yucio 1-poBHO ( , ) ( ) paz H T. 4.,

JlnTeparypa

{1] CTEYKUH B. C., Obodwennvie easewmuocmu, Martem. 3amertkm, 17, (1975), e 3,
433—442; anrnmiickuit nepeson: Stechkin B, 8., Generalized valences, Math. Notes,
17 (1975), N 3—4, 252-258.

[2] DEWDNEY A. K., Degree sequences in complexes and hypergraphs Proc. of the Amﬁf.
Math. Soc., 53, (1975), Ne 2, 535—540.

IV. CTpyKTypHBIe KOHCTAHTLI,

B mocnepumii mepmon cBoeit xm3HH Ilane Typan 6Gonbiioe BHAManme
yaensj KOMOMHATOPHO-TEOMETPHYeCKHM  BOIPOCAM, BONPOCAM  KaveCTBEHHOTO
ACHOJIE30BaHKA JKCTpPEMaJIbHEIX KOMOHMRaTOpHBIX 3anad, [1—6]. B vacrrOCTH,
3TO NPHBEIIO K OJHOM WYHCTO reoMcTpHYECKOH 3ajade, KOTOPYK Mbl 34eCh IO-
OEITACMCH H3JIOXHTER ¢ Haubonemed moONMHOTOM.

IIycts X — n¥HeliHOe HOPMHPOBaHHOE HPOCTPAHCTBO, 1epe3 6, = {&;,. .., &}
OyaeM 00o03Ha4aThk COBOKYIHOCTH H3 K TOYeK 3TOr0O MPOCTPAHCTBA, TIPHYEM JUIA
OpOCTOTHL OpHMEM, 4TO ||ofl=1, i=1, ..., k, X0Ta 3TO0 orpaHmYcERe B 0O0J]b-
IUAHCTRBE CIyYaes MOXHO 3aMeHuTh H Ooyee cnabpmM. Ilycrs k=/221 — Uennle
9uCia, MONOXKHM

3, k; X)=min max ||Z «l|],

o, CX "Ig"k aEo;

KOHCTAHTHI 9TH OyJeM HA3bIBATh CTPYKTYPHBIMH T€OMETPHUECKHMH KOHCTAHTAMH.
3anava 3axKO4aeTCAd B MX BBIYHCIEHUM JUIA OAHHOTO HPOCTPAHCTBA, HIIH XKE K/Iacca
IPOCTPAHCTE OJAHHOrO THIIA;

3 Ky=infS{, k; X), 8(, k) =sup3(l, k: X),
X X

roe inf u sup Oepercg mo BceM IPOCTpPaHCTBAM NAHHOrO THITA.

ITppaaTo o0ocabnuBaTh TOT ChoEUMAJBLHBIH CiIy4ail, xorga /=2, 3TO CBA-
3aHO ¢ TE€M, 9TO B 37TOM Cjydae MaKCHMHU3AUMWA JJIHHHOH AMArOHAIH Mapajilleno-
rpaMMa 3KBHBANCHTHA MHHUMH3ALMH €ro KOPOTKOM AuaroHasiv, To4Hee, IyCThb

d(2, k; X)= max min ||« —a,l,
ﬂk(_:x ull‘IEuk

TAK Ha3blBaeMBble YNaKOBOYHBIC KOHCTAHTHL Torma ecjim B X BBIIQJIHSETCH Opa-
BHJO IapajuieiorpaMma, TO |

322 k; ) +d2 (2, k; X)=4.
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Tax 49T0 3a0a4Yd BLIYHCIICHHS CTPYKTYPHBIX H YI2KOBOUHLIX KOHCTAHT B ITOM
cyqac 3KBABAJICHTHB! A0 TeX IOp, HOKAa NeHCTBYET NPaBH/IO0 HapasulesorpaMma,
Op4d ero HapylIcHUH 34834M ,,paccrausaloTcs.

CTpyKTypHBle KOHCT2HThl MOXHO INOHMMATE H Kak JIOKaJIbHYIO XapaxTepH-
CTHKY 3amloOJIHEHWs BCErQ IIPOCTPAHCTBA €AMHHYHLIMH IlIapaMH,

Hmeerca odedbp I1yOokas CBA3b CTPYKTYPHBIX KOHCTaHT € uMcliaMM TypaHa.
Iycry n2k>21>>1 — uenwle 4dcna, nycetes 1 (n, k, I} obo3HayaeT TO HaWMEHb-
L i -
mee m, A KOTOPOTO CYIUECTBYET M-WICHHOE CEMENCTBO F={S}}}, 1<i<m
u3 J-moamuOXects S,CS, (MuoxectBa S,={a,,a,,...,a,} H3 n 3eMCHIOB)
TaxKoe, 4TO

VS CSISCS{SIEFR

Briyncnesme 7 (n, k, I) ectb xomOuHaTopHas npobrema TypaHa, cMm. [7). Oka-
3BIBaeTCId HMEET MECTO CASAyHoLIas

TEOPEMA. Ifycmes nzkzlz21, a X — aungiinoe HOpMUpOSaHHOe nNpo-
cmpaHcmeo, moz20a 04a ecaxko2o ¢,C X wnatidemca no xpatived mepe T (n, k, 1)
nodMHoXKecmea c;_ G, maxux, wmo

|2 afj=3( k X).

u:Ecrl

JOKA3ATEJILCTBO. Ha mMHOXeCTBO TOYEK &, KAk HA BEpPIUHHAX IIOCT-
porm l-rpad G'C C'(a,) no upasuny: [ Touek o,C 6, cuHTaem 3a omHO I-pebpo

TOTAA M TOJIBLKO Torda, xorga | a|=8(, k: X) PaccyMoTpuM mOCTpoeHHBIN
a.EuI

TakuM obpasoM [lrpap GY, on comepxur Do kpanHe# mepe T(nm, k, 1) pebep,

DOCKONBbKY B NPOTHBHOM Cilydae, corjacHo ompepneiexure 7T (n, k, 1)

»
H G'jc(; Gﬂ . V Gf_..
WIH, 4TO OIHO M TOXE,

JorCo,imax || 2 «l|<d(, & X),

a,C u; @ €a;

HO Torha
min matz m“ém&x“Zm“iS(f k; X),

6,CX 0,Co, aca, uan aa
cTano OLiTh

min max” all<s K X),

o, Xﬂi_aku o

HO 3TO NpOTHBOpPEHUT onpelencHuio 8 (/, k; X). 1 T. g.

HexoTopele dYacTHBlE clnyYaWm 3TOH TeopeMsl ObUIM HM3BECTHHI M paHbILE.
Ho uMenHO pnaHHas OOGIIHOCTh HO3BONMJIA HEPEeHeCTH TIPWIOXKeHHA B OaHAXOBO
opocTpadcTso. [IpuBesem oamH pe3ynbTaT KOTOpHIH Ipudagiexur B, Apecrosy
H B. bepaeiesy, (IpUBOOUTCE € COLJIACHS aBTOPOB).
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TEOPEMA. ITycms B 6anaxcso npocmparcmeo, moeda 3(2, 3)=infd (2, 3
B
B)=2/3, 20e inf bepemcs no ecem GanaxosviM npocmpancmsa.

OOKA3ATEJIBCTBO. IlokaxeM cmepsa, 4TO [IAs BCAKOro OaHaxosa

npocTpanctea § (2, 3; B)>>2/3; nonoxuM h=max || 2 « ||, ¥ nycts 6, ={«,, «,, 3}
o303 aeay
Torfa €citi a, + &, = 2, &, + 0y = Z,, &, + &y =2, TO ||z;|| <</ B cuty onpenenenns h,

|
HO TOrja o = ? (z, + 2z, —2z,), 3HAYAT

1 3
1=| o HE;-_Z"(”zl 11z i +1] 2 ”)5;-.?;’:

CJIe[I0BATENILHO
Vo,CB max |[|[Zal=h>2/3,

a0y aa,

3HauuT ©(2, 3; B)>=2/3.

JlokaxeM Temeph OOpaTHOE HEPABEHCTBO, PACMOTPHM /I 3TOrO TPeXMep-
HOe HpPOCTPAHCTBO /, H TPH BEKTOpa H3 HeEro

« ={1/3, 1/3, 1/3}, a, ={—1/3, —1/3, 1/3}, @, = {1/3, —1/3, — 1/3},
nockoneky |[x+y|, =Z|x;+y[, TO JNerko BHAETH HYTO B OAEHOM CJyvae

oy 4oy || =] 2+ a5 || =] o0, + 25 }=2/3. & T. Ie

AHaJIOTHYHBIH pe3yiaeTaT a1 ciaydas runsdeproBa mpocTpaHcTBa GBI
ponyuen JI. KaTonoii [3], xoropbli nokasan, uro 8(2; 3; H)= 1. DT0o B 9aCTHOCTH
I03BOASeT CPaBHHUTL BEPOATHOCTHRIE IIPHJIOXKESHHA UOCHEIHHX JABYX TeOopeM
B Clly4ae TH/IbOepTOBa

PUE+nlZx; =122 {||§ (=X}

H HaHaxoBa

{1z tnl> T x|z BUIEE= Y

OpOCTPaHCTB; 3AeCh & H Y) -— HE3aBHCHMBIE H OAHHAKOBO pacOpedelieHHLE B X
CIIy4aHHble BEXTOPHL.

JluTrepaTypa

[IIl TURAN P.. Grafok, gnometria és generalizdlt potencidlok, Elvadas a Bnlya:l Janos Mat.
Tarsulat rendezésében, 1968, nov 22-én.

[2] TURAN P., On some applications of graph theory to analysis, Proc. of the Int. Conf.
on Constr, Functiun Theory. Varna, May 19—25, 1970, Sofia, 1972, 351—338.

(3] KATONA CY., Grafok, vektorok és valdsziniiségszdmitdsi egyenlotlenségek, Mat. Lapok,
20, (1969), N 1--2 123—127.

[4] SOS V. T., On extremal problems in graph theory, in ,,Combinatorial structures and
their appls, Proc. Calgary Inter. Conf, Calgary, Alta, 1969, Gardon and Breach, New-
-York, 19'?0, 407—410. '

{5]) ERDOS P., On some applications of graph-theory I, I, IIl, Meir, 1 — Discrete Math.,
2, (1972), N 3, 207—228; S¢s V.T.,, H —,Stud. in pure Math“. A. P. London,
1971, 89—99; Turan P., III — Can. Math. Bull. 15, (1972), N I, 27—32.

[6] KATOHA ., Hepageucmea 043 pacnpedesenun OQaunel CymMmbl  CAYNQHHBIX 8eKMODOE,
Teop. Bep. U e mpum. 22 (1977), N 3, 466—481.

(7 ERDOS P., SPENCER J., ,,Probalistic methods in combinatories* Akadémiai Klad6
Budapest, 19?4 pyccknii nepeson: Idpaéu [1., Cnerscep k., ,,BeposTHOCTbIE MeTOABI
B koMOuHaTOpHKE, ,,Mup*, Mockea, 1976.
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V. CIpyKkTYpHO-BeKTOpHLIe NOKPHITHSL,

Nycts A={a,a, ...,a,...} — HeKOTOpoe (kKoHEYHOEe) MHOXECTBO,
a < — OmmapHoe orTHouIeHHe Ha HeM. IlycTh V, — oOo3HavaeT MHOXECTBO
BCEX ! — MEPHBIX BexTOpoB v =(v,, v,, ..., V,) Takux, uTo v,CA4, i=1,2, ... ¢

BeeaeM Ha 3TOM MHOXKECTRBE BEKTOPOB Vl GHHEPHOE OTHOUICHHE «-".;.: 0o npapuiny
VE, ?E:- V, E%F@E{%ﬁvh Ia";_:__l‘x{;‘_f

PaccMarpuBacres mpolJieMa NOKPHITAH, ODNIas nocraHoBKAa KOTOPOH TaxkoBa:
Iycts Q, PCV,, xakoso To Haumenbmee Q' C O, [ KOTOpPOTo

VpePigcQ'iq<p.

IpuaATO, OAHaKO, €€ (POPMYTHAPOBATH AN HEKOTOPHIX CrElUaNBHBIX HOAMHO-
KecTB MHOXecCTBa V,, HMeHHO, €cId HAa V, BBECTH HEKOTOPOE OTHOLUCHHE 3KBH-
BaJIEHTHOCTH, HOpOXAaroiliee paibueHue V, HA HenepecexkaroUECd KJIACCH! IKBH-

panenTrOCcTH VY, Tax uto 2 VP =V,, To B KadecTBe { H P OOBIMHO paccMaTpH-
{

pator V? 5 V) — xekue-To B3 3THX KIacCoB. B pame clyyaes IPHARIICKHOCTH
BEKTOPa KJACCy JKBHBAJICHTHOCTH YyAA€TCA HIGHTHOHIMPOBATH CO 3HAYEHHSIMH
HEKOTOPOH ,,BeCOBOH* (QyHKHH, PacCMOTPHM HECKOJbKO KOHKpeTHBIX 3amad.
Mycte (A, <) =25y, C) -ectb Gynean (Mau n-MepHBUA rHnepky6), Tak
910 JM100as KOMIOOHEHTA V; 3TO €CTh HEKOTOPOE MOoAMHOXecTBO v;_ S, MHOXECTBA
S, H3 n 3JIEMeHTOB; 3aIuCh |v;| 0603HAYAET YHCIO WICHOB 3TOrO NOAMHOXKECTBA,
Tak 9To 0<{iv;|<{n. PaccMOTpHM HeckoJbko cnoco0oOB 3a JaHHEA OTHOIUCHHS
IKBHBAJICHTHOCTH HA MHOXKECTBE BEKTOPOB V, Mg 3TOrO CJjlydas

Vu, FEVrE“"?@UEIL ‘Zél: =ty [Z[ri)=(|'v1[, il'zi’ cer s ;Vr])! (~)
B 3TOM CIIy1ae BCAKHE KRAcC 3KBHBAJIEHTHOCTH OJHO3HAYHO OHpeAenseTrcs ,,BECo-
BEIM‘‘ BEKTOPOM 7 ={(r,, I,, ... n) Tne 0<Cri<n, i=1,2, ..., ¢t Ilycte k B! —

OBa TAaKHX BeKTopa, mpvuem k; =/, i=1, 2, ..., ¢, BoOpoc 3aKJoyaeTcs B Ha-

k ()
XOXKACHUY HAMMEHRIEro OOKPHITHA KJacca V} ) kaccom VE’, B 3TOM CHay4dae
O4YeBHIHA CleAyromas

) k)
TEOPEMA. Yucao sexmopog Uz VY & Haumensuiem HOKpbIMUY KAdcca y

kaaccom V' pasno
H
[1 7 ki, b,

20e T wucao Typana.
Ilycts G,-00603HawaeT HEKOTOPYIO IpymMy (-MOACTAHOBOK, IONOXKHM TOTHA

YU, VeV, unva36EG o (|0 .o 5 |2 D=(vils -5 (%] (~)

TAK 4YTO IKBABANEHTHOCTH (~~) OTBEYAET TOMY CIY4YarQ, Koraa G, COCTORT TOJBKO
3 TOXOSCTBEHHOH WojacTaHOBKH. Ecmu G~cuMMeTpuyeckas Trpynna BeeX f-IOX-
CTAHOBOK, TO ,,BeCOBOii‘‘ (PpyHKIHMel CIyXAT HEYMOPAAOYEHHBIC CUCTEMBl COCTOA-
e H3 { qHUCes.
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M B 3TOM YacHOM cliydae 3ajlaya He pelleHa.
IIycTh Temeph OTHOLLEHHE 3KBHBANCHTOCTH 3aJaeTcs 1O TPABUIY:

! t
Vu, VeV,um ve 2 lul=3 v (=)
i=1 i=1
3nech BCAKMH KJIACC XapaKTepulyercs OAHUM ,,BECOBEIM‘ YICJIOM; €CTECTBEHHO
pacOpoCTPaHHTE: 3TOT Ciaydall Ha PaBeHCTBO KakUX-TO (pyHKIHOHAJNOB ompele-
JeHBBIX Ha V,.

ITpamepom mHOrO (4, =) MOXKET CIYXUTh JIHHCHHO-YIOPAROYEHHOE
MHOXEeCTBO, B 3TOM CJiyyae BCAKHH BeKTOop v &V, MOXHO HHTEPNPETHPOBATh
KaK HEeXKOTOpoe MYNBLTHMHOXECTBO, B KOTOPOM i-bIH 3/1eMEHT MOBTODEH V; pas.
Hesenux mporpecc ¥ B aToM ciaydae, cM [1].

HakoHen, reoMeTpHYecKkde HHTEpPIOPEeTAIHWH INPUBOAAT K HCCAELOBAHHIO
cnydas koraa (4, =) MMeeT BuJ

4 ; ;3 Uq

O

HpusenesHble BBHIG NPHMEpPHL 33JaBaeMBIX HA V, OTHOUIEHWH 3KBHBAJICHT-
HOCTH HMEKT CMBICA U IS BCAKOTO (4, <0) B clydae xorga =< YacTHUYHBIH
NOPAAOK, IDOCKQJIBKY BCAKOE YaCTHYHO YHNOPANOYEHHOE MHOXKECTBO BIIOXKHUMO
B HEKOTOPBLIA runepkyo.

HMmeercs HECKOJBKO KOHKPETHBIX peanu3anud 3ToH npolieMEl, Tak eCJH
t=1, 10 uMeeM npobGheMy MNOKPLITHH B YIOPSIJOYCHHOM MHOXECTHBE (4, <),
ecnd TpH 3ToM (A4, <} =(P(S,), C), a IKNBAJICHTHOCTE 3aJaeTcs J1:0ObIM H3
OPUBEASHHBIX BHILIe CMOCo60B, TO moaydaeM mpobiemy Typana; ecnm ke (4, <)
=(7(S,), O) t=n, 10 gna cnydad (=) roe G-CHMMeTpHYecKas Tpynna M
I cnydas (&) onaTh-Takd MHodydaeM Ipobnemy Typana. 31ecs 4 BLIpaxaro
ceolo Onaropapuocts H. H. Ky3ropuny O3HaKOMHUBUIEMY MEHS C HEKOTOPBIMH
CeIHAaJALHEIMHA CHYMasMH 5TOi npobieMaTHKH.

JIuTepatypa

[1] CAMERON P. J, van-LINT J. H., ,.Graph theory coding theory, and block designs'
London Math. Soc., Lecture Notes, 19, C. U, P., 1975.
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MATHEMATICS AND PHILOSOPHY

Panel discussion®

Dedicated to Professor Puro KUREPA
on the Occasion of His 70th Birthday

Speech by Kajetan gEPER, Zagreb

Ladies and Gentlemen,

In the first place I wish to thank the Organizing Committee of the Symposium
for having accepted our proposal to hold this panel discussion.

This discussion being dedicated to Professor Puro Kurepa on the occasion
of his 70th birthday, I am taking this opportunity to say a few words about
Professor Kurepa. Please excuse me for the digressions I shall make.

When 1 was attending the high school at Osijek, somewhere in 1951 or 19352,
I came accross Professor Kurepa’s work ““Teorija skupova™, a first text-book on sets
in our country. By that time I had read the well-known Moritz Cantor’s ‘“Vor-
lesungen iber Geschichte der Mathematik™, and a bit of philosophical logic and
ordinary mathematics which I found in our libraries. No wonder that the sets were
a refreshment for me. Even now I remember the footnote of the text on the null
set and the all set. At that time the theory was attractive 10 me. However, I have
never been fully satisfied with it: at the beginning I thought I did not understand
what the theory was about, and later on I realized that I had to accept the theory
in order to be able to understand what it was about.

As an undergraduate at the Department of Mathematics of the Faculty of
Natural Sciences and Mathematics of the University of Zagreb, 1 met Professor
Kurepa personally, in 1953 or 1954, studied with him and passed through a number
of courses and seminars. Mathematical logic did not exist in Zagreb at all, neither
did any foundational studies, with the exception of the traditional course in the
foundations of geometry, but Professor Kurepa announced a list of various themes,
among them the propositional calculus, the predicate calculus, axiomatics of
real numbers, and the like. That was crucial for the whole further development
of mathematical logic and foundations of mathematics in Zagreb, in Croatia, and
perhaps in Yugoslavia, too.

——

* This panel discussion was organized by the Zagreb section of the Seminar for construc-
tive mathematics and model theory Zagreb—RBeograd (of the Mathematical Department of the
Faculty of Natural Sciences and Mathematics, Zagreb, and the Mathematical Institute, Beograd,.
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Once I tried to sketch Prof. Kurepa’s influence concerning mathematical logic
in Zagreb. Regardless of the interinfluential laterals, I obtained a four-rapk tree.
I called it Kurepa “small tree™. Of course, this tree should be enlarged by taking
into the account his influence concerning other mathematical theories — set theory,
topology etc., together with his influence in other or bigger regions — Belgrade
Yugoslavia etc.

It 1s not my intention to give here any account of Professor Kurepa’s work,
his activity, influence and importance — although I should perhaps apologize
for that — but to say — and I feel obliged to do so — that Professor Kurepa has
not been just a professional mathematician, a teacher and a pedagogue, but a real
scientist and a philosopher, a humanist, and a human in the best sense of the word.
He was the father, the originator and the pioneer of mathematical loglc and foun-
dational studies in Croatia, and of modern mathematical theories in Croatia and
Yugoslavia. Generally speaking, he was catalizer, and 1nitiator, a bringer and a
transferer of knowledge.

As a student of his, and an admirer of his personality, with all of its virtues
and individualities, qualities and peculiarities, temperament and character, 1 full-
heartedly thank Professor Kurepa, in my own name and in the name of all of
my colleagues, for everything he has done both as a scientist and as a man.
Happy anniversary and many happy returns of the day!

CONSTRUCTIVE PROCESSES IN MATHEMATICS
Mathlmatical and Philosophical Aspect

SOME THESES CONCERNING THE DEVELOPMENT OF
MATHEMATICS

Kajetan SEPER, Zagreb

1. Our introductory general thesis is that constructive mathematics, in a broad
sense, is a measure for determining the value of mathematics as a positive science
in all epochs, and especially at present. In our current opinion, the development of
mathematics can be compared with a two-side balance: one side carries the practical,
numerical, computer-computational, concrete, constructive mathematics, and the
other — the theoretic, conceptual, abstract, non-constructive, platonistic mathe-
matics. Although this balance has never been balanced, one yet clearly observes
in each epoch an overloading of one of its sides. Its balancing by the new, the
progressive and the necessary is the golden transiticn period; this pericd is the
most valuable time interval in the historical develocpment of mathematics both
for its fruits and for its influence.

1. At the very beginning of ctvilization the scales did not actually exist, All
mathematics was concrete, practical, inductive; in other words, if we use the
comparison mentioned above, the constructive side of the balance overweighed.

2. It was the scientific and philosophical genius of the ancient Greeks that
created the balance, i.e. the other side, the abstract, the theoretic, the deductive one.



Constructive processes in mathematics 141

3. This theoretic side already overweighed at the time of the ancient Greeks, and
such a state was transmitted to and prevailed through the Middle Ages.

4. The European spirit, commercial and early-industrial, rebalanced the
scales, and

5. raised the overloaded side by putting heavy weights onto the neglected
side — the infinitesimal calculus has by no means been called a calculus at random,
and mathematics and natural sciences became undiscernible.

6. The europeanized Greek genmius again loaded the research with axioms and
deductions, the actual infinity, and the absolute, and

7. created the Cantorian intellecto-universe. Thus the abstract theoretic side
prevailed and its closed empire of ideas got its name: PLATONISM.

8. The force of history, however,is stronger than the ideas; science, and production,
and society develop and so does the need for an equilibrium and also the require-
ment for a new open system, for a constructive universe, for CONSTRUCTIVISM.

9.  Perspectives;

a) We conjecture ““Periodicity”. It should be mentioned that this conjecture concerns
the immediate future; otherwise, we do not conjecture anything.

b;) Goodman and Myhill conjecture ““Compatibility and Interaction”.

Cf. [1], p.83:

““One can distinguish two traditions in the study of the foundations of mathematics.
The non-constructive tradition, represented today by set theory and category
theory, ... (and) the constructive tradition (which) is repiesented tcday by intuitio-
nism and much of proof theory. These two tendencies in foundational studies are
not incompatible. Rather, it is the interaction between them that is likely to lead
to the most fruitful development of foundations as a whole. Current examples
include the use of infinite proof-figures in proof theory and the use of elementary,
rather than higher order, theories in studying categories. Cur subject here is a
recent development in constructivity which promises to open new avenues for
such interaction.”

Cf. [1], p. 94:

“Thus one may hope that the ultimate bastion of classical idealism, set theory, can
be made to give way piecemeal to the insights which, in particular cases, it gives
into the structure of its own objects.”

bs) Trostnikov conjectures *“‘Quantitative Gnoseology’.

Cf. 2], p. 252:

“Bo3MOXHO, B OyOynieM NpPOH30MIeT cieaywoulee: MeTaMaTéMaTHKA BCTYNHT
B DoJee TeCHYK), 9€M HbIHE, CBA3 ¢ OOpPEAEJIEHHMMH pa3fciiME MaTepHaACTH-
yeckoit punocoduu u ACHXOJOrdd H Tak obpazyercd 00JacTh, KOTOPYIO MOXKHO
HA3BaTh “‘KOAUNECMGEHHAR 2HOCeos0zua”, NPEAMETOM KOTOpoH OylaeT npodliema
COTAACOBAHUA PAINMUYABIX “A3BIKOB (KaXOLIE W3 KOTOPBIX ONHPAeTCA HA CBOIK
cneniuYecKyro CTPYKTYPY CO3HaHHs), ¢ LOMCIUIO KOTOPBIX MY KOHCTDYHPYEM,
Bep HUUUPYEM H NEPEKOHCTPYHpYEM OOBEKTHI HALIero” Hay4uoro CO3HAaHHA, BCE
OoJIHee H TJy0xe IPOHHKas B TaHHBI MaTepHd.‘

2. From this observation it seems to us tkat balancing is historically neces-
sary in order for mathematics to be able to enter a new epoch, and that preponderance
of one scale is a characteristic feature of each epoch. Therefore it seems to us fhat we
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are living in the transition period of balancing by means of historically heavier weights -
of the constructive, the numerical, the discrete ,the finite. This is our first cenclusive

general thesis.

3. The process perceived clearly parallels the socio-economic systems in the
evolution from the primitive society, through slavery, feudalism, and early capitalism,
up to the contemporary systems (highly developed capitalism and socialism): This
correspodence suggests to us and substantiates our opinion that Constructive
Mathematics is a Socio-Economo-Political Problem, and not just a Philosophical
One, as it is widely accepted, spread and debated. This is our second conclusive

general thesis,
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[Discussed by N.A. Shanin (Leningrad), S.R. Zervos (Athens), M. Krasner
(Paris), Th. Stavropoulos (Athens), S. Panayiotis {Athens), J. Pelant (Prague),

- ID. Rosenzweig (Zagreb).]

CONTRIBUTION TO THE DISCUSSION

M. KRASNER, Paris

KRASNER: Prof. Shanin said that the constructivism, in caracterizing certain
mathematical objects by means of some information (which he compared to the macrosco-
pical information of quantum mechanics), is considering only such objects and reasons
only in passing from information to information. Even in supposing such “informational™
point of view admitted, I don’t believe that the information used by constructivists is the
only possible and that the constructivistic way of using it 18 exhausting.

From another side, Prof. Shanin believes that constructive mathematical objects are
more able to imitate (or “model’”) that of experimental sciences, that do that of clas-
sical mathematics and he considers this circumstance as a decisive advantage of the
constructivistic point of view. If even it was so, I think that the mathematics, as any
other adult science, has its own internal logic, and the existence and the interest if its
objects are not determined by their ability of imitation of cbjects of other sciences or
of material world. In particular, many highly interesting objccts of algebra and of number
theory have, until now, no relations with that of experimental or human sciences,
even when they can be described constructivistically.

Let us remind the discussion between Borel, Hadamard and Lebesgue. It is clear
that the constructivism is a development (and accomplishment) of Borel’s ideas, and that
usual naive and axiomatic set theory as basis of all classical mathematics derives from
Hadamard’s point of view (with some Hilbertian aftertaste). But, there exists a point
of view inspired by Lebesgue’s ideas, the *‘definitionism™, where only the objects having
a definition exist {clearly, the word “definition’ has not so 2 narrow sense as for Lebesgue:
in particular, there may exist definitionistic systems, where the definitions may not be finite)’
The definitionism uses a wider information than constructivism, and in a wider way,
although constructivistic objects are 2~ ong the definitionistic ones, and the “relative’,
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study of only constructivistic objects has (rather mathematical, than logical or philosophica)
interest for a definitionist {(and ,even, for a platonistic or axiomatic mathematician).
[In translating in Russian, I added: “Prof. Shanin gave the nnpression, by what he
said, that every problem about constructivistic objects is soluble. That is certainly wrong.”’].
SHANIN: But, when we prove the existence of a solution of some problems, this
proof gives, in the same time, a construction of some such solutions.
KRASNER: Yes, but there are constructivistically formulable problems, fc:r
which the constructivism, exactly as the ordinary mathematics, can gwe no answer, for

example that of the validity of the Fermat’s last theorem.
So, I recognize the interest of the constructivistic point of view, but I consider it

as too narrow for me.

SHANIN: How too narrow? And all the hierarchy of the c:nnstructmstlc types?
For every part of Analysis a constructivistic analogue could be built.

KRASNER: For example, in constructivism do not exist the property of being an
object or, also, properties opposite in absolute sense (I must say that they, also, don’t
really exist in the naive and in ZF-axiomatic set theory).

SHANIN: The arguments of Prof. Krasner about the autonomy of mathematics
in respect to other sciences arc a typical example of what happens when a constructivist
and a classical mathematician meet ..... etc, ...

KRASNER: But I am not a classical mathematician from point of view of
Foundations.

DIOPHANTINE EQUATIONS AND CONSISTENCY OF
FORMAL THEORIES*

Mirko MIHALJINEC, Zagreb

For any recursively-enumerably axiomatizable first order formal theory,
the set of Gddel numbers of its theorems is recursively enumecrable. Of this kind
are for instance the theory P (formalized Peano’s arithmetics, see [1], pp.43,
300—301, it might be better to speak about Peano-arithmetics because the axjom
of induction is expressed for formulas with one free variable in the language of the
signature {0, S, -+, - ,<>), the theory S (formalized second order arithmetics,
[1) pp.334—3335), the theory ZFC (formalized set theory with the axiom of choice,
[2], pp.507—308). If fis a recursive function which enumerates such a set of
Godel numbers, and if @ 1s the Gédel number of a false formula (e.g. 0=s5(0)
in the language of P), then the consistency of the theory can be expressed in the
following way: 7(3x) f(x)=a. As the set of values of f (range, codomain of f}
is recursively enumerable, according to the Matijasevic’s theorem it is dicphantine
(see [4]), and there is a2 polynomial p (see [8]) in 14 variables with integral ccefficients
such that consistency of the theory in question is equivalent to the formula:
13x)...8x3)p (@ x,,...,x,;)=0 (the coefficients of that polynomial can
be effectively calculated as soon as the theory is specified, although it is practically
impossible because of the size of the numbers involved). Even more, in order to
check whether a formula of the language of such a theory is a theorem, one should
calculate 1ts Godel number b and check if the equation p (b, xi, ..., x;;)==0 has
a soluticn in nonnegative integers {(although the correspcnding algorithm, for
instance for above mentioned theories, does not exist — that is connected with the

* Translated from the Serbo-Croatian by D. Rosenweig.
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negative answer to the Hilbert’s tenth problem). An important consequence is that
provability of a statement can be reduced to solvability of a completely specified
diophantine equation. From the viewpoint that the theory ZFC contains (almost)
all of contemporary mathematics, it might be said that all mathematical problems
can be reduced to solvability of corresponding diophantine equations. A word
of caution is however necessary in this place, as such a view about ZFC certainly
is exaggerated, because a formal system, however rich, cannot contain all of mathe-
matics. Clear interpretability of a system 1s as important as its consistency.

If we compare the Godel’s second theorem about unprovability of consistency
of a formal system P within the system itself ([1], pp.307—315) with the Gentzen’s
proof (which is finitary-ccnstructive) of consistency of P ([1], pp.315—327), we can
see that it has undoub:fully been proved in an arithmetically clear way that the
equation p(a, x;,..., X;;)=0 has no solution in nonnegative integers x,, ..., X,
and that this statement is not provable in the system P.

It is hence an enrichment of Peano-arithmetics and the theory of diophantine
equations. Although consistency of Pcan be proved in the system § (1], pp.338—339)
that proof is (unlike the Getzen’s one) not finitary-constructive, as such a proof
for consistency of S 1s not known ([1], p.342) even after the results of Spector and
Tait (see [7], p.7), and the possibility of such a proof is highly doubtful, This certainly
holds for ZFC too, so we cannot be convinced about unsolvability of the diophantine
equation derived from the statement <“ZFC is consistent’.

Solvability of diophantine equations has been object of research for a long
time ([9], [10], [6], [3], pp.-176—-195, [14]). The methods of contemporary algebraic
geometry and model theory do enrich our knowlegde about diophantine equations
([11], 112], [13], [15]). The question is, are the results so obtained provable as theo-
rems in P, are there among them some theorems which are provable in a finutary-
~constructive way and which are not theorems of P? Is there a statement about
unsolvability of some diophantine equation which is provable in a finitary-construc-
tive way and which 1s not a theorem of S (may be even not of ZFC)?

“The study of diophantine equations, that is the solution of equations in
integers, or, alternatively, in rationals, is as old as mathematics itself, It has exer-
cised a fascination throughout the centuries and the number of isolated results is
immense {as 1t is witnessed, for example, by Dickson’s three tcmes]. Some more-or-less
general techniques and theories have been developed and there are some grandiose
conjectures, but the body of knowledge is less systematic than that in more recently
established branches of mathematics because here we are ccncerned with the most
basic and intractable mathematical material: the rational integers.” ([13], pp.193
—194).

“I wish to note expressly that Theorem XI (and the corresponding results
for M and A4) do not contradict Hilbert’s formalistic viewpoint. For this viewpoint
presupposes only the existence of a consistency proof in which nothing but finitary
means of proof is used, and it is conceivable that there exist finitary proofs that
cannot be expressed in the formalism of P (or M or 4).” (K. G&del, [5], p.106.)
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[Discussed by A.N. Sanin (Leningrad), S.P. Zervos (Athens), Z. Mijajlovi¢ (Belgrade).]

ON MARKOV’S PRINCIPLE*

N.A. SHANIN, Leningrad

Professor Shanin kindly conformed to the request of the organizer of the
panel discussion to give a special lecture on Markov’s principle, to speak especially
in behalf of it, and to present the related point of view of those constructivists, pri-
marily of Markov and of Shanin himself, who express their opinion about the
consistency with the idealizations and Intuitive notions accepted in constructive
mathematics of that principle.

During the discussion we brought out our objections to the application and
the plausibility of the principle in constructive mathematics.

At the end of the discussion we came to a terminclogical agreement cnly:
according to the term constructive’ in (the algorithmic foundaticns of) ‘constivetive
mathematics’ one has to distinguish a¢ least two levels of abstruction and security.
Markov’s principle is concerned with the higher level 1.e. with constructive mathe-
matics in a wide (or wider) sense.

[Discussed by K. Seper (Zagreb), D. Rosenzweig (Zagreb), M. Mihaljinec (Zagreb).]

* Summarized by K. Seper
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1. Contribution to the Discussion of Markov’s Principle.

Kajetan SEPER, Zagreb

Constructive mathematics (CM) is the science of constructive processes (CP’s) and constructive
objects (CO’s) — the results of such processes in case the processes terminate, and of our abilities
of realizing these processes. More precisely, CP's are defined in terms of algorithms of various kind
and CO’s in terms of words in specific alphabets. The abstraction of potential realizability (APR),
and the related idea of porential infinity based on it, is a characteristic feature of CM. Constructive
mathematical logic is formed on the basis of CM, and depends upon CM; it models one’s intuitive
constructive thinking formally by means of syntactical and semantical systems. Qur discussion is
carried through on an intuitive ground, and is concerned with the phrase 'the process of applying
an algorithm to an admissible input value ferminates’, or synonimously, ’the algorithmic process
terminates in a finite numbcr of steps’. Our initial attitude is that this phrase should be 'immediately
clear’ by our constructive point of view; in other words, that the phrasc means that *we are able
to indicate, actually or potentially under APR, the number of steps needed for terminating the appli-
cation of the process, or equivalently, one of its upper bounds’. That number will be called here the
halting characreristic of the process. During the discussion Markov's principle (MP) will be mentioned
frequently.

We are discussing here the following problem: Is the acceptance and use of MP in CM
legitimate i.e. consistent with the idealizations and intuitive notions accepted in CM, and with APR,
especially?

We have objections to the acceptance and use of MP in CM. One applies it only when one
does not have such a good insight in the algorithmic process under consideration that allows him
to infer termimnation of the process, or, we hope seldom, if one does not care about it, In such a case,
however, one is very often able to infer *‘the impossibility of nontermination of the process’ (*A’) i.e,
the impossibility of continuation of the development of the process afier each step. Then, by use
of MP, one is allowed to infer ‘termination of the process’ (‘B*"), and, as a consequence, to treat
the result of the process as being a CO. Of course, in order to find the result actually one is atlowed
to develop the process as long as he wants. Such a procedure is just suggested by the constructivists
who accept MP and who believe that the process will finally stop. If one succeeds to compute the
result, the application of MP becomes superfluous. Otherwise, generally one is in essentially the
same position as if he did not have the information A — it does not indicate anything about
termination, and it is left t0 one’s decision of how long will he compute. So, we consider B* as
not established by A, but rather as an open probiem.

MARKOYVY himself, in his papers written before 1967, clarifies the principle by saying that
he does not see any reason of knowing in advance exactly the halting characteristic of the process
as being a necessary condition for asserting termination of the process. As a matter of fact, a number
of great theorems in all branches of CM are obtained by using MP. In SANIN’s well-known
papers on constructive mathematical logic, MP is accepted and widely incorporated in the whole
body of his semantical anlysis of the propositions of current CM i.e. CM+MP. (We wish to notice
here that we got a feeling, after reading MARKOV’s papers published after 1967, that even
MARKOQOV would not treat the principle in such a generality any more.)

In cur opinion, however, the acceptance of MP alters the intuitive notions of our cons-
tructive universe, and the entire motivation for CM, radically. The notion of ‘finiteness’
(effective, static, determined, bounded, actual or obtaining possibly under APR), which is essential
and primary in our understanding of CP’s, CQ’s and the idea of potential infinity, becomes altered
into another weakened notion of ’fleating finiteness’ (noneffective, dynamic, nondetermined,
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nonbounded, obtaining via polential infinity), or ‘petential noninfinity’ ic. non-' potential infie
nity’. So, the notions of ‘termination’ and “CQO’ become altered, too; they become a kind of
‘floating termination’ and ‘fleating CO’, respectively, The difference betwcen the two notions of
“‘finiteness’, or ‘termination’, or ‘CO’, the one being ‘effective’ and the other ‘floating’, can be
characterized in the following way. The former is persistently actual or porential under APR, and
so based on APR directly, and is defined by an existential quantifier (which in turn bas to be inter-
preted by means of some contensive arguments), The latter, however, 1s unsteadily procedure-like,
and based on the 1dea of potential infinity, and so based on APR, too, but indirectly, and is defined
by a negated wnversal quantifier. In CM the primary notion is that of effective finiteness (effective
termination, effective CQ), directly established under APR, and that of potential infipity being
secondary and defined by it. In CM+-MP the primary notion is that of potential infinity, based
on APR, and that of floating finiteness (floating termination, floating CO) being secondary and
defined by it.

We do not say that MP is inconsistent with APR and the like. In any way, APR does not
imply the idea of floating finiteness (floating termination, floating CO). We just say that this idea is
based on the idea of potential infinity, and so on APR indirectly.

We do not say that MP is an additional idealization to APR and the like, either. {Cf. also
ROSENZWEIG's discussion il this symposium.) Although we could say so, if we have in mind
our understanding of constructiveness i.e. the essential and primary notions of finiteness, termination,
CO efc., and, in addition, if we have in mind that, if we are working in CM+4+MP, we indeed
abstract from our actual knowing of termination and argue as if such knowing is present, we vet
avoid to say so. By saying that the acceptance of MP introduces an additional idealization into the
body of CM, we could not abstain from saying that the acceptance extends the limited computational
and combinatorial power of fioine sapiens from outside, and, consequently, — we are firmly
convinced — that it exrends the class of constructively true propositions, too, and so, that it is
not consistent with APR and the like, and that it contradicts to the essential and primary construc-
tiveness in its whole, as well. -

Exactly in the same sense as BROUWER abstracts from [aws determining the components
of sequences one after the other, and introduces in this way so-called ‘cholce sequences’ (or synoni-
mously, ‘infinitely proceeding sequences’), so does MARKOQY abstract from halting characteristics
determining terminations and the corresponding results of algorithmic processes, and introduces
in this way what we are calling here, ‘floating termination’ and ‘floating CQO’,

According to HEYTING ({i}, p.71), “‘the only essential feature” of the components of
a choice sequence *‘is that it does not matter by which means they are determined one after the
other”, and so, choice sequences ‘‘are not constructible objects in the sirict sense”,

How could the components of a sequence (termination of an algorithmic process and the
corresponding result) be determined, if not by a law (halting characteristic)?

How could we know they are determined, if not by knowing a law (halting characteristic,
respectively)?

We do say, however, that CM 4+ MP, in relation to CM, deals with another weaker conceptual
subject, and that i« does not treat the fundamental constructive notions, such as finiteness, termi-
nation, CO etc., adeguately. We consider CM +MP as the science of floating CO’s. In such a theory
CO’s get mixed among all the weaker and weaker floating CO'’s. We do not feel any scientific, or
philosophical, or practical reason to accept such a weak form of CO’s, and in the same time not
to accept for instance infinitely proceeding sequences or the like. We do not feel any need for a
‘closure’ of “all’ the — wider and wider classes of — foral functions i.e. foral algorithms, which
in a definite sense MP implies. (We mean by that, that MP eliminates the known troubles with the

10*
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existential quantifier in the definition of these functions i.e. the circulns vitiosus in the definition.
See also addendn below.) We consider MP just as an approximate guiling principle, heuristic in
nature, and its application as an ephemeral quasi-constructive guiding urpumentation. Theoretically
the subject is much more interesting, and the relation of CM to CM--MP should be examined
formally in more detail. Ncvertheless, we prefer any modeling of the notions of the wider and
weaker theory CM +MP in the frame of the (narrower and stronger) theory CM i.e. in the frame
of the strict CM. For instance, instead of having the notions of total functions, decidable set etc.
in CM-+MP, we prefer to manage them in CM by the notions of weakly rotal function, weakly
decidable set etc., respectivelv. In fact, we feel and believe that witraconseructivistic tendency in one
or another forni — we are considering complexity theory as one of the various aspects of the
tendency — will play a role sine qua non in the development of mathematics in the future,

Addenda. Now, we wish to give here some queotations and coniments,

After HEYTING®s and PETER’s clarification of the point {(see the quotations given below),
it is generally supposed that everybody working in this area is familiar with what the problem
1s about.

*““There ought to be distinguished between

a) theories of the constructitble;
b) constructive theories.” {[1], p.69.)

“The notion of a constructible object must be a primitive notion in this sense that must
be clear what it means thal a given operation is the construction of a certain object. It has been
explained by Miss Péter in her conference in this colloquium that any attempt to define the notion
of a constructive theory leads to a vicious circle, because the definition always contains an existential
quantifier, which in its turn must be interpreted constructively.” ([I], p.70.)

““Als eine Zusammenfassung und Verallgemeinerung der durch dicsen speziellen Rekursions-
arten definierten Funktionen ist der HERBRAND-GODEL-KLEENEsche Begriff der allge-
mein-rekursiven Funktion cnistanden [4]. Das ist etn sehr niitzlicher Begriff, da er die einheitliche
Behandlung sdmtlicher spezicllen rekursiven Funktionsarten ermoglicht; bisher ist aber keine
allgemein-rekursive Funktion bekannt, die fiir irgendeine mathematische Unetrsuchung wichtig ist,
und nicht unter eine der bekannten speziellen rekursiven Funktionsarten eingeretht werden
konnte. Aber der Hauptziel bei der Einfithrung dieses Begriffes war chen die exakte Fassung des
Konstruktivititsbegriffes. Die sogenannte Churchsche Thesis identifiziert den Begriff der bere-
chenbaren Funktion mit diesem Begriff. Hier méchte ich nicht darauf eingehen, woriiber Kalmar
sprechen wird, nimlich ob tatsdchlich alle berechenbaren Funktionen allgemein-rekursiv sind,
ich mochte gerade die entgegengesetzte Frage aufwerfen; konnen die allgemein-rekursiven Funk-
tionen simtlich mit Recht “‘effektiv-berechenbar”, d.h. *‘konstrukii~” penannt werden?

Fine allgemein-rekursive Funktion wird durch ein Gleichungssystem angegeben, wobei
vorausgesetzt wird, dass es zu jeder Stelle ein endliches Berechnungsverfahren gibt, welche aus
Einsetzungen von Zahlen fir Variablen und Ersetzungen von Glejchem durch Gleiches besteht,
und den Wert der betrachtcten Funktion an der angegebenen Stelle cindeutig liefert. Nun ist aber
dieses “‘es gibt™ etwas unsicheres, wie darauf schon der sprachliche Ausdruck hinweist, und zwar
int den meisten Sprachen. “Es gibt” — wer denn? **1l y a” d.h. “‘er hat da” — wer und wo? ““There
1s” d.h. “*da ist” — wo denn? Kleene meint, wer das in dieser Allgemeinheit nicht annimmt, mag
dieses “‘es gibt™ konstruktiv auffassen. Das ist leicht zu sagen, gerade da bisher keine echi-allgemein-
-rekursive Funktion bekannt ist, und so kann man nicht wissen, was mit eipner solchen Einschrin-
kung verloren geht. So werden eigentlich zwei Begriffe der allgemein-rekursiven Funktion definiert:
einer mit klassisch aufgefasstem, und einer mit intuitionistisch aufgefasstem ‘‘es gibt”. Es wire
interessant durch ein Beispiel zu zeigen, inwiefern der letztere Begrift enger ist, ndmlich durch eine
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Funktion, welche kilassisch allgemcin-rekursiv ist und intuitionistisch nicht; das ist aber kaum zu
hoffen, da in den bisherigen Betrachtungen noch iiberhaupt kein Beispiel fiir eine allgemein — und
nicht speziell-rekursive Funktion vorgekommen ist. Nun, der klassische Begriff der allgemein-
-rekursiven Funktion ist nicht konstruktiv, und die intuitionistische (Definitiom) enthilt ein
Circulus vitiosus: hier soll das in der Definition aufretende ‘‘es gibt” konstruktiv sein — man
wollte aber gerade mit dieser Definition der Allgemein-Rekursivitit dic Konstruktivitdt exakt
definieren.

Derselbe Circulus vitiosus taucht iiberall auf, wie man ihn auch wmgehen mag." ({2],
pp.227 and 228.)

““Bs hat den Anschein, dass sich der Konstruktivititsbegrilf Gibcriaupt nicht zickelfrei
erfassen lasst.” ([2), p-233.)

However, even after HEYTING’s and PETER’s papers, MENDILSON argues as if he
did not know what is the subject about, and moreover, he gives a mislcading statement of the
subject of PETER’s discussion. We quote here sec.2 of his paper entirely.

“2. According to the precise mathematical definition, a function f{xy, ..., xa) is general
recursive if there exists a system of equations E for computing f, i.e. for any xi, ..., xa, there
exists a computation from E of the value of f(x|,..., xp) (Kleene [3]). Both occurrences of the
exitential quantifier “‘there exists’” are meant here in the non-constructive classical sense. To this,
Péter ([2], p.229) makes the following objections: (i) The existential quaniitier must be interpreted
constructively; otherwise, the functions defined in this way cannot be considered constructive.
(i) If the existentinal quatifiers are meant in the construtive sense, and if the notion of ‘‘con-
structive” is defined in terms of general recursive functions, thea this procedure contains a
vicious circle. '

Both objections seem to be without foundation. “ (6. I am assuming that Péter intends
“‘constructive” to have the same meaning as ‘‘effectively computable’™.) In the case of (i), the
general recursive functions defined using the non-constructive existential quantifiers are certainly
effectively computable in the sense in which this expression is used in Church’s Thesis; no bound
Is set in advance on the number of steps required for computing the value of an effectively computable
. function, and it 1s not demandead that the computer know in advaince how many steps will be needed.
In addition, for a function to be computable by a system of equations it is not necessary that human
beings ever know this fact, just as it is not necessary for human beings to prove a given function
continucus in order that the function be continuous. Since objection (i) is thus seen to be unjusti-
fied, there is no need tO assume, 4s 18 done in (ii), that the existential quatifiers are interpreted
constructively. However, there is another error in (ii}; “‘constructive” {or “effectively computable™)
Is not defined in terms of general recursive functions. Church’s Thesis is not a definition; rather
it states that the class of general recursive functions has the same extension as the class of effectively
computable functions; and the latter ¢lass has its own independent tntuitive meaning. Thus, there
is no vicious circle implicit in Church's Thesis’". ({3], pp.202 and 203.)

MENDELSON’s objections to PETER’s objections to the definition of general (i.e. total)
recursive functions are seen inunediately to be without foundation and unjustified. His discussion
is carried through in the non-constructive classical sense, in another universe, in a universe of
speechifying, and so it has nothing to do with PETER’s criticism. The discussion failed to hit the
point. PETER intends ‘‘constructive™ to have the same meaning as ‘‘effectively computable”; it is
demanded that the computer knows in advance how many steps wiil be needed for computing the
value of an effectively computable function; and, in addition, for a function to be computable by a
system of equations it is necessary that human beings know this fact, just as it is necessary for
human bzings t0 prove a given function continuous in order that the function be continuous.
Otherwise, human beings will try to solve all these open problems. PETER’s initial question is;
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Can all the general (i.e. total) recursive functions properly be called “‘effectively computable”
i.e. “‘coustructive”, ([2], p.228.) Nowhere in PETER’s paper one can find any mentioning that
Church’s Thesis is a definition, or that there is a vicious circle implicit in Church's Thesis, but
that it seems that the notion of constructiveness (or finite-computabilitv, or constructive theory,
or effectively computable tolal function) cannot be made precise by a net mathematical definition
that would be free of a vicious circle ([2), p.233). It seems as MENDFELSON did re-discover in
his paper that the class of eflfectively computable functions has #s own independent intuitive
meaning ({3}, p.203).

KLEENE explains the situation very carefully and restrainedly. We give here a quotation
of a passage from the fourth paragraph of footnote 171 in his text-book.

““We have been assuming without close examination the CONVERSE OF CHURCH'S
THESIS: If a function is Turing computable (or general recursive, or »-definable), then it is intui-
tively computable {(or effectively calculable). In defending this implication to an intuitionist, or to
any other kind of constructivist who considers an algorithm to exist only when it is proved by his
standards that it always works, we only ask him to accept the following: if the hypothests that a
function is Turing computable holds by his standards, so does the conclusion. Put thus, it is hard
to see how it can be questioned. Only if one allows a nonconstructive interpretation of the hypo-
thesis, and yet insists on a constructive interpretation of the conclusion, is the converse of Church’s
thesis in doubt. “‘([6], p.241.}

Unfortunately, KLEENE does not discuss the meaning of ’it is proved by a constructivist’s
standards that an algorithm always works (i.e. terminates)’.

Undoubtly, SANIN's new 1973 paper is fully influenced by HEYTING’s and PETER’s
papers, or at leasts by the fucts they discuss. According to SANIN ([7]. pp.217, 218, 222, and 223),
let us consider some propositions with their clarifications, and some definitions,

Let A be any alphabct, A any algorithm over the alphabet A, and P any A-word (i.e. word
in A).

(C1) [(Cy), (Cro}] The process of applying algorithm A to P terminates [is potentially infinite, is

not potentially infinite].

(C2)[(C-,))] For any A-word X, the process of applying A to X terminates [is not potentially
infintite].

(C—,,} For any natural number »n, — Wa (P, n).

Here Wa (X, n) stands for the condition ‘‘The process of applyving algorithm A to word X
terminates after not more than # steps”. Obviously, this condition is testable by means of an algo-
rithm applicable to (i.e. total wiih respect t0) every word of the form X, »n.

The notton of ‘total algorithm with respect to words of a certain fype’ is defined in this case
by (C*)) (7], p.218), an obvious generalization of (Cy). The sign — in (C ~ () indicates an inessential
for our discussion modification of (C;;). (C—2) slightly differs symbolically from (Ciz).

(C) [(C2)] is said to be rrue if it has a potentially realizable contensive demonstration.

An algorithm A over the alphabet A is said to be tofal (with respect to all A-words) if proposi-
tion (Cp) is true.

(C,) is clarified (or ‘deciphered’) by (C—,).

(Cio) and {C~11) are correspondingly clarified.

We cannot imagine any such potentially realizable contensive demonstration of (C;) which
would not indicate the halting characteristic. On the other hand, if we accept MP, as a conten-
sively conclusive argumentation, as SANIN does in the paper, then we do not see why termination
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i.e. (C1) is not clarified or defined by (C,)) i.e. by 1V n 1 Wa(P, n), and toralness ie. (Ca) by
(C— ) e by vX1VnrTWA (X, n), where the prefixed quantifier — connective combinations are to
be interpreted contensively as usual. By the acceptance of MP, a pure contensive demonstration
of (C;), i.e. such that does not make use of MP, get mixed among coniensive demonstrations
of (C,) that make use of it. '

According to PETER ([2], p.228), there are indeed two notions of general (i.e. total) recursive
function that depends on the interpretation of ‘there is’ in the definition. The one is the classical
notion and the other the intuitionistical (i.e. constructive) notion. However, the former is not a
constructive notion, and the definition of the latter contains always a vicious circle. Nowadays
‘there is’ is interpreted contensively, or, in other words, is considered as n primitive notion, and
ts not defined by a net mathematical definition; hence, there is no vicious circle in the’definition’
of the constructive notion of total recursive function. If ‘there is’ is interpreted in the sense of
general applicability of MP, one more notion of total recursive function {call it MP — constrictive,
or floating-constructive) is introduced that has an intermediate status beiween those before
mentioned.
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2. Contribution to the Discussion of Markov's Principle

Dean ROSENZWEIG, Zagreb

I see Markov’s principle (MP) as a way around the difficulties arising in constructive
interpretation of the quantifiers occurring in the definition of a totil recursive function. A
constructivist mathematician could live very well just with and open hierarchy of known total
functions, e.g. of Péter-recursions. If one however insists on a closed. general definition, then
such a directed application of reductio ad absurdum is the only Known way to secure it. An
atterapt to interprete v x3y 7 (a, x, ») just like any other sentence ot the same form falls into
an endless loop, while leaving such an interpretation to unspecified intutive arguments makes
the demarcation between constructivism and intuitionismn seem quite arbitrary and unmotivated,

So T understand MP as an additional idealization, consistent with but certainly not derivede
from the abstraction of potential realizability and constructive interpretation of logical connec-
tives and quantifiers.
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Results proved by means of “constructive mathematics in the narrow sense*, i.e. without
MP, could de described as computations with an @ priori upper bound on computational
complexity. In such a case a programmer could say: “I could compute this if only I had
computing apparatus of such and such speed, “where “such and such,, means a previously
known function. On the other hand, results proved in “extended constructive mathematics',
i.e. by MP, represent computations with no a priori complexity bound. No real or imaginary
programmer, however powerful a computer he had, could risk an uncontrolled run of such
a program.

These arguments are of course highly theoretical, as in anyv presently conceivable
situation only first three or four levels of the Grzegorczyk hierarchy are effectively computable
{(compulable in the sense of German berechenbar; more complex functions are effectively
rechenbar but not berechenbcr by humans in this time). |

Nevertheless, such considerations guide me to distinguish betwcen constructive mathe-
matics without and with MP as different degrees of idealization, hence to try to eliminate MP
where possible and to isolate results for which T don't know how te eliminate it.

K. Seper

Fakultet strojarstva i brodogradnje
Salajeva 5

41000 Zagreb
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