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PREFACE 

These Lecture N otes provide а detailed introdнction to, as well as an expo­

sitioi1 of, research resнlts for var·ioнs, mostly two-dimensional, models o.f directed 

wall{s, interfaces, wetting, sнrface adsorption ( of polymeis), stacks, compact clнs­

ters (lattice animals), etc. The нnifying featнr-e of these models is that in most 

cases they can Ье solved analytically. Tl1e 1nethods нsed inclнde transfer matri­

ces, generating fнnctions, recнrre11ce relations, and difference eqнations, a11d in 

some cases involve нtilization of less fan1iliar matl1ematical techniqнes sнcl1 as 

conti11Hed fractions a11d q-series. 

\Ve emphasize an overall view of "\Vl1at can Ье learned generally of the sta­

tistical mechanics of a11isot1~opic systems, including phenomena near sнrfaces, Ьу 

stнdying the solvaЬle n1odels. Thнs, the concept of scaling and, wl1ere known, 

finite-size scaling properties are elнcidated. Scaling and statistical mechanics 

of anisotiopic systems in general are active reseaich topics. We hope that онr 

monogi~aph will pl~ovide а comprel1ensive sн.Ivey of exact model resнlts in tl1is 

field. 

\iVI1ile "\Ve do not give а11 exhat1stive list of refeie11ces, \Ve provide selected lit­

eratнi--e lists at tl1e e11d of eacl1 cl1apter, iilclнcli11g st1ggested ge11eial revie\v ai--ticles 

and books. The specific selection of topics a11d details of presentation have been 

infl.нenced i11 many cases Ьу Olll" own research inter-ests and experie11ce. \Ve \Visћ 

to thank Ollr colleagнes, D.B. Abral1a1n, NI. Bar1na, G. Bilalbegovic, Ј\1.С.Т.Р. 

Caivalho Baitelt, F. Family, М.Е. Fisl1er, G. Forgacs, H.L. Friscl1, Ј\:1.1. Glasser, 

S. Redner, Ј. Rнdnick, L.S. Schнlman, А.М. Szpilka, and R.I<:.P. Zia for re"\vard­

ing interactions ancl collaboratio11, "\Vl1icћ conti~ibнted to онr нnderstanding of 

tl1e pl1ysics of anisotiopic syste1ns. J\1ost of Olli researcl1 resнlts reported i11 tl1is 
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mo11ogi~aph l1ave come from wo1~l\: supported in part Ьу the United States National 

Scie11ce Foundatio11 (u11der grant DMR-86-01208 to VP), and Ьу the Donors of 

the Petroletlm Research Fu11d, administered Ьу the American Cl1emical Society 
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1. INTRODUCTION 

During the past several decades, geometricallattice models such as random 

walks, strings, clusters, etc., have played an important role in Statistical Me­

chanics and in particular, in the theory of critical phenomena. Lattice models, in 

spite of their apparent simplicity, can Ье successfully used in the studies of real 

physical systems, e.g., polymers and interfaces, to describe conformational and 

growth features, adsorption, wetting, etc. ln this monograph we consider several 

solvaЬle anisotropic lattice models and analyze their scaling behavior and in some 

cases, finite-size properties. 'Ve focus on simple mostly two-dimensionallattice 

models and emphasize generic features characterizing their scaling properties. 

ln order to make our models exactly solvaЬle, we impose "microscopic" re­

strictions such as partial or full directedness Ьу, e.g., disallowing certain steps in а 

random walk, or compactness for cluster models (lattice animals). The resulting 

anisotropic models are in many instances exactly solvaЬle Ьу methods including 

generating functions, transfer matrices, continued fractions, etc. Some of the less 

familiar mathematical techniques are briefiy reviewed in appropriate sections. 

The format of this monograph is as follows. ln Chapter 11, we study directed 

random walk models of polymer chain conformations. This is probaЬly the sim­

plest model that is solvaЬle in full detail on а d-dimensionallattice, and its scaling 

properties can Ье derived exactly. Ву assigning statistical weight to each turn 

in а walk, we can also describe the rod-to ... coil transition of linear polymers and 

analyze the appropriate scaling properties. Finally, we consider directed walks 

on finite-size lattices and derive some finite-size scaling results. 

Chapter 111 is devoted to the solid-on-solid models (SOS) of line interfaces. 

Geometrically, such interfaces are identical to directed random walks. However, 
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different interface configurations are assigned different energy. SOS models have 

been extensively used to describe depinning of interfaces in the presence of various 

substrate potentials. The most frequently used method of solution is the continu­

ous limit (differential equation) approximation, and we briefly review the results 

of such studies. However, in the presence of long range substrate potentials it is 

important to retain lattice ( discrete) description, since the continuous limit may 

not always Ье justified. We briefly survey mathematical methods of solution of 

the appropriate difference equations and describe exact results for wetting tran­

sitions in systems with short and long range substrate potentials. Finally, we 

analyze finite-size properties of fluctuating SOS interfaces, both unbound and in 

the regime near the wetting transition. 

Directed walk models of polymers can Ье used to study the behavior of а 

single polymer chain near an attractive surface. We describe such а study in 

Chapter IV. Ву assigning proper statistical weights to bulk and surface steps 

one can solve the model exactly (Ьу the transfer matrix method) and analyze 

adsorption-desorption transition at impenetraЬle and penetraЬle surfaces in two 

and three dimensional systems. 

Chapter V is devoted to the two dimensionallattice models of compact clus­

ters (lattice animals), which in many cases can Ье solved exactly for the generat­

ing functions of the cluster numbers. The mathematical methods for solving the 

appropriate difference equations are sometimes rather sophisticated, including, 

e.g., continued fractions and q-series. А brief review of these techniques is given. 

Finally, а solvaЬle model of finite-size scaling properties of the partially directed 

compact lattice animals is presented. In Chapter VI, we give а brief summary of 

the results and mention some open proЬlems. 



11. DIRECTED WALK MODELS OF POLYMER CONFORMATIONS 

In this chapter we consider directed self-avoiding walk (DSAW) models and 

their relevance for description of conformational properties of polymers. First, 

in Section А, several random walk models are defined and appropriate physi­

cal quantities introduced. Section В presents the generating function formalism 

for solution of DSAW proЬlems. In Section С we analyze in detail the rod-to­

coil transition of linear polymers and discuss the exact solution of this proЬlem. 

Section D is devoted to scaling properties of polymers in confined geometries. 

Selected literature is listed in Section Е. 

А. Definition of the model 

Linear polymers are probaЬly the simplest physical systems that can Ье stud­

ied in the framework of random walk models. They are long, chain-like molecules 

formed Ьу repetitions of а basic unit or segment. These monomer units are typi­

cally connected Ьу carbon-carbon covalent bonds, and а single polymer chain can 

consist of any number of basic units. More importantly, а long polymer chain is 

flexiЬle, i.e., it can assume different geometric configurations. Experimental evi­

dence shows that physical properties of polymers depend strongly on the statistics 

of their conformations. 

ln order to study the average geometrical features of polymers ( their sizes, 

shapes, etc.), а chain of N monomers is represented Ьу а broken line consisting 

of N segments. For mathematical convenience, the configurations of such а line 

or walk are considered on а regular d-dimensional lattice. Thus, in its simplest 

form, this approach models polymer configuration-s Ьу ordinary random walks, 
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i.e., а succession of N steps, starting from some origin and reaching an arbitrary 

end-point. The polymer of N monomer segments is represented Ьу an N-step 

walk. In Figs. 1 (a)-(d), several types of walks on а d = 2 square lattice, with 

successive steps labeled Ьу numbers, are shown for illustration. Depending on the 

physica.l situation, one may impose additional restrictions such as self-avoidance, 

directedness, etc., and we will return to these later. Presently, let us introduce 

some notation commonly used for all types of walks. 

One of the quantities of interest in characterizing the random walks is the 

number, с N, of different walks of length N. Specifically, for large values of N, 

the total number of walks is believed to grow according to 

(2.1) 

where the exponent 1 is universal, i.e., independent of the microscopic details such 

as the type of the underlying lattice (square, triangular, etc.). However, 1 may 

depend on the dimensionality, d, of the lattice and other global features like self­

avoidance, directedness, etc. The growth parameter џ in (2.1) is the connective 

constant, or cardinality, and, as we will see, plays the role analogous to that of 

the inverse critical temperature in phase transition models. Finally, the constant 

С in (2.1) is а nonuniversal coefficient, while the dots indicate higher-order terms 

which vanish as N ~ оо. 

Another characteristic quantity is the mean square end-to-end distance, 

(R1v), which has the limiting behavior 

(2.2) 

where the exponent v is also universal and characterizes the leading growth rate 

of the polymer size as N ~ оо. We emphasize that the scaling relations (2.1) 

and (2.2) are quite general. 
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Figure 1 

Nine-step walks on the square lattice: (а) Gaussian ( non self-avoiding); (Ь) self­

avoiding; (с) partially directed.SAW (+Х and ±У steps); ( d) fully directed SAW 

(+Х and +У steps only). 
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The knowledge of quantities like CN and (R~) enaЬles one to study geomet­

rical and statistical properties of polymer chains. For example, the number CN 

yields information on the conformational entropy of the chain. In addition, one 

can estaЬlish the analogy between CN, (R~), etc., and the well-known quantities 

in the critical phenomena theory. Specifically, the generating function for the 

numbers CN, 

оо 

,x(z) = L cNzN, 

N=O 

(2.3) 

where z is the "fugacity", is analogous to the susceptibility. (We take со = 1.) 

Similarly, the quantity 

(2.4) 

plays the role of the correlation length. Near criticality, the susceptibility and 

the correlation length behave as 

(2.5) 

These rela~ions follow from (2.1)-(2.4), with the critical fugacity value Zc = џ-1 . 

For technical reasons it is sometimes more convenient to put с0 = О in definitions 

like (2.3), i.e., not to include the walks with N = О steps. This has an effect 

of modifying tlн:~ pi'ecise form of, e.g., the correlation length (2.4); however, the' 

critical behavior near Zc remains unaffected. We use this convention in Section 

В, for instance. 

In the case of lattice walks with no restrictions (Gaussian random walks), 

relations (2.1)-(2.2) take simple forms 

(2.6) 
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In these expressions, J-lo is the coordination number of the lattice while а is the 

lattice spacing (step length). In the general case, џ is sometimes also termed the 

effective coordination number. Note that (2.6) implies 1 = 1 and v = 1/2, in the 

case of Gaussian walks, independent of the dimensionality of space, which is а 

typical mean-field property. The relations (2.6) can Ье derived easily if we recall 

that the probability for the walk to proceed from some point on the lattice in any 

direction is equal to the inverse of the coordination number, 1/ џ0 , and that the 

steps are statistically independent. Using definitions (2.3) and (2.4), with (2.6), 

we obtain 

1 2 
x(z) = 1 ' and e(z) = а zџо ' 

- zџо 1 - zџо 
(2.7) 

which is of the form (2.5) with Zc = 1/ J-lo. 

The Gaussian walk has simple properties because of its Markovian character, 

i.e., the successive steps are completely independent (uncorrelated). Such walk is 

illustrated in Fig. 1 (а). А more realistic model for conformational properties of 

polymers is obtained if the walk is subject to the restriction that it may pass only 

once through any lattice point. This restriction is appropriate for polymers in 

solutions, for instance. Such walk is ter1ned non-self-intersecting or self-avoiding 

(SAW). Examples of SAWs are shown in Fig. 1 (b)-(d). Enumeration of SAW on 

various lattices is а much studied proЬlem (in the literature on the subject this 

proЬlem is also termed the excluded volume proЬlem), but so far only few exact 

results have been conjectured, mostly in 2d. However, there is а large amount of 

numerical data obtained Ьу exact counting of walks for finite N (usually up to 

N rv 20), or Ьу Monte Carlo methods where walks of up to several hundred steps 

have been generated. These numerical studies show that CN and (R'Jv) for SAW 

behave according to (2.1) and (2.2), but that the exponents 1 and ·v depend on 

the dimensionality, d, of the lattice, and that J.-lc is somewhat less than the lattice 
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coordination number (for d > 1). Specifically, for d = 1 the exponents can Ье 

calculated exactly, giving /l = 1 and v1 = 1. For d = 2, the exact values have 

been conjectured, /2 = 43/32 and v2 = 3/4, while for d = З, numerical studies 

suggest /З rv 1.16 and Vз rv 0.59. Note that with increasing dimensionality of the 

lattice the exponents approach their "ideal" (Gaussian) values 1 = 1 and v = 1/2. 

Indeed, it has been shown that for d > 4, and up to logarithmic correction factors 

in d = 4, the SAW is characterized Ьу the same exponents as the Gaussian walk. 

In addition to self-avoidance, one·can introduce further constraints regarding 

the direction of the walk Ьу, e.g., preventing certain types of steps. With this 

restriction, а directed SAW is obtained. Figs. 1 (с)-( d) show two DSAWs on the 

square lattice: Fig. 1 (с) presents а DSAW in which negative-X steps are not 

allowed, while in Fig. 1 ( d) both negative-X and negative-Y steps are excluded. 

Such walks are of interest because they can Ье solved exactly in many instances; 

they also illustrate how а "microscopic" bias affects the exponents entering the 

scaling forms (2.1) and (2.2). In order to characterize DSAW, the preferred 

"directed" space axis must Ье identified. Because of the preferred direction of 

the walk, the mean square end-to-end distances (R7v 11 ) and (R'h 1.); corresponding, 

respectively, to displacements parallel and orthogonal to the directed axis, are 

expected to scale with different exponents, 

(2.8) 

and 

(2.9) 

Relation (2.1), however, remains unchanged. The exponents vll and v1. charac­

terize the correlations parallel and transverse to the directed axis. Note that the 
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axis of directedness of the walk does not have to coincide with the principallat­

tice axis. It turns out that, typically, the correlations parallel to the directed axis 

are effectively one-dimensional, and vll = 1; the orthogonal steps are effectively 

uncorrelated, and one finds the Gaussian exponent v 1. = 1/2. These conclusions, 

which also hold for higher dimensional lattices, are confirmed Ьу exact calcula­

tions described in the next section. 

В. Generating function formalism and exact results 

During the past several decades а number of methods, both numerical and 

analytical, have been developed for the solution of the random walk proЬlems. 

Among the numerical methods, we already mentioned the direct counting and 

Monte Carlo simulations. The analytical techniques include field theoretical 

methods, the transfer matrix approach, and various versions of the generating 

function metl1od. The transfer matrix method is useful in the studies of in­

terfaces, and will Ье described in Chapter III. In this chapter we focus on the 

generating function approach, which is one of the simplest techniques, and is also 

applicaЬle to other proЬlems that will Ье considered later. 

The generating function technique is frequently used for the solution of ran­

dom walk proЬlems and lattice statistics proЬlems in general. The approach is 

based on the following observation: Instead of calculating the quantities of inter­

est, e.g., CN, directly, it is often easier to calculate the function, e.g., x(z) in (2.3), 

which generates these quantities. Once the generating function is known, vari­

ous characteristic quantities are easily obtained Ьу, e.g., taking the appropriate 

derivatives. In order to illustrate the technique, let us consider the fully directed 

SA W on the two-dimensional square lattice, as illustrated in Fig. 1 ( d). 

The fully directed SA W (FDSA W) on the square lattice consists of steps 
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which start at the origin and are allowed to proceed only in the +Х or +У 

directions, see Fig. 1 (d). Here we take the Х and У axes to coincide with 

principal directions on the square lattice. The preferred axis of directedness of 

the walk ("time axis") is the У= Х line: each +аХ and +аУ step advances the 

walk Ьу afv'2 along the time axis, with а being the lattice spacing. We will carry 

out the calculation in the fixed fugacity, z, grand-canonical type ensemЬle. For 

each N -step SAW we assign statistical weight zN. То make the model slightly 

more general we also introduce statistical weight w for every turn ( of 90°) in the 

walk. (These turn-weighted models are used to describe single-chain rod-to-coil 

transition which we study in the next section.) Note also that ordinary FDSAW 

is obtained Ьу setting w= 1. The partition function for the N-step T-turn walk 

is then 

Z(z; w)= L zN wт. (2.10) 
all walks 

Throughout this section we will not include walks with N =О steps, i.e., ео =О in 

sums like (2.10). Thus, the susceptibility x(z), defined Ьу (2.3), is obtained from 

(2.10) as x(z) = 1 + Z(z; 1). То calculate the appropriate generating function 

we assign statistical weights: х per each +аХ step and у per each +аУ step. 

Let nx and ny denote the number of +Х and +У steps in а given walk, so that 

N = nx + ny. It is convenient to introduce three generating functions, 

G(x, у; w)= L xn., yny WT = Gx + Gy, 
all walks 

(2.11) 

(2.12) 

(2.13) 
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The sum in (2.11) is over all possiЬle walks. The sum in (2.12) is over all walks 

that start with the +аХ step, while the sum in (2.13) is over walks that start 

with the +аУ step. We are actually interested in the total generating function 

G(x,y;w) since Z(z;w) = G(z,z;w). However, the~restricted generating func­

tions Gx and Gy are easier to calculate. In particular, they satisfy the recursion 

relations which are illustrated schematically in Fig. 2, and which take the form 

(2.14) 

Gy =у+ yGy + wyGx. (2.15) 

Solving for Gx and Gy and using (2.11), we get 

х+ у+ 2(w- 1)ху 
G(x,y;w) = (1 )(1 ) 2 • 

-х -у -w ху 
(2.16) 

Thus, the required partition function is 

2z 
Z(z;w)=G(z,z;w)= ( ) . 

1- w+1 z 
(2.17) 

Note that Z(z; w) has а simple pole singularity at Zc = 1/(1 +w). With w= 1, 

we obtain Ьу expanding (2.17) that the number of ordinary FDSAW of length N 

lS 

(2.18) 

giving 1 = 1 and џ = 2. (This last result can Ье obtained directly if we recall that 

the probability for the FDSAW on the square lattice to proceed to any allowed 

lattice point equals 1/2, and that the steps are statistically independent.) 

The exponents v\1 and v 1.. can Ье also obtained from the generating function. 

Specifically, we define the kth-mom·ent parallel correlation length 
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-- + + 

Gy -- у + 

Figure 2 

Diagrammatic representation of the recursion relations (2.14) and (2.15). Full 

arrows denote all possiЬle walks with the initial step along that arrow. 
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""' k N Т 
(k) . k - Li rll z w 

[~11 (z, w)] = Z(z; w) ' (2.19) 

where r11 is the displacement parallel to the directed axis, of а given N-step T-turn 

walk. For the FDSAW this quantity is in fact given Ьу (a/V'i)(nx + ny)· Using 

(2.11) and (2.19), the kth-moment parallel correlation length is then represented 

as 

(k) • k _ _ 1 а 8 . 
( )k ( )k [~11 (z, w)] - Z V2 z дz G(z, z, w). (2.20) 

Similarly, we define the kth-moment perpendicular correlation length 

[c(k)( . )]k = Е r1_ zN wт 
~1. z,w - Z(z;w) ' (2.21) 

where r 1. is the displacement transverse to the directed axis, of а given N-step 

T-turn walk. This displacement can have both positive and negative values (sym­

metrically distributed), and is given Ьу (a/V'i)(nx- ny)· In order to express the 

kth-moment perpendicular correlation length (2.21) in terms of the derivative of 

the generating function, we put х = pz and у = р- 1 z in (2.11). Then (2.21) 

yields 

(2.22) 

Note that ~}_k) vanishes for all odd values of .k. Using the result (2.16), and 

calculating the derivatives as indicated in (2.20) and (2.22), we get 

(1) . _ ( а ) 1 
~11 (z,w)- V2 1-(l+w)z' (2.23) 

and 
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(2) . 2 _ (а2 ) 1-(w-1)z 
[~Ј. (z, w)] - 2 [1 +(w- 1)z][1- (w+ 1)z] · (2.24) 

Thus, we obtain vll = 1 and v .L = 1/2, as expected for DSAW ( see discussion 

following (2.9)). These results show that DSAW models have no really long-range 

self-avoidance effects. 

The above derivation for planar walks can Ье easily generalized to higher 

dimensional FDSAW on hypercubic lattices. Specifically, in analogy with (2.11), 

for the d-dimensional FDSAW we introduce the generating function 

d 

G(x1, х2, ... , xd; w)= L Gi(xl, ... , xd; w), 
i=l 

(2.25) 

where the restricted generating functions Gi correspond to walks which start 

with +a.Xi steps ( i = 1, ... , d). The restricted functions satisfy а d-dimensional_ 

generalization of the recursion relations (2.14) and (2.15), i.e., 

Gi = Xi + XiGi + WXi L Gj, 

j#i 

(2.26) 

which express the fact that а walk starting with the +aXi step can either end 

(weight xi), or continue along +Xi (weight xiGi), or turn to +Хј (weights 

wxiGj ). Straightforward calculations then yield 

d 

with 
Xi 

sd ="" ( ) . L....J1- 1-wx· 
i=l z 

(2.27) 

Thus, the partition function, 

zd 
Z(z;w) = G(z, ... ,z;w) = 1 _ [1 + (d _ 1)w]z' (2.28) 
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for FDSAW. is obtained. [Note that for d = 2 in (2.28), we reproduce (2.17).] It 

has а simple pole singularity at Zc = 1/[1 + (d- 1)w]. Expanding (2.28) with 

w= 1 we obtain CN = dN, i.e., Ьу comparing with (2.1), 'У= 1 and ЈЈ = d for the 

ordinary d-dimensional FDSA W. 

The exponents vll and v .L characterizing the sizes of this d-dimensional walk 

can Ье obtained Ьу generalizing the procedure used in the d = 2 case. In partic­

ular, it is easy to see that the parallel displacement r11 after N steps is 

(2.29) 

for а d-dimensional walk. Therefore, using definition (2.19), the first moment 

parallel correlation length is 

(1) . _ 1 ( а ) д . ~11 (z,w)- Z(z;w) Vd z8zZ(z,w). (2.30) 

Substituting the result (2.28) in this equation we get 

~(1) - (_!!___) 1 
11- vГа, 1-[1+(d-1)1v]z' 

(2.31) 

from which vll = 1 is obtained. Higher moments can Ье similarly calculated. For 

example, Ьу (2.19) and (2.29) we have 

(2) . 2 - а2 1 ( {) ) 2 . 
[~11 (z, w)] - d Z(z; w) z 8z Z(z, w), (2.32) 

which yields 

[~(2)( . )] 2 _ а2 1 + [1 + (d- 1)w]z 
11 z,w - d {1-[1+(d-1)w]z}2 ' 

(2.33) 

where we used (2.28). 

The first-moment perpendicular correlation length vanishes Ьу symmetry. 

The second moment is defined Ьу (2.21), and can Ье calculated Ьу noting that 
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d 
2 2 2 2~ 2 2 

r .l = r - r
11 

= а ~ ni - r
11

, (2.34) 
i=l 

from which 

(2) 2 (2) 2 _ а . и . 2 d [( !:} ) 2 ] [~11 ] +[~.L] - Z(z;w)~ Xa{)xi G(x1, ... ,xd,w) xj=z· (2.35) 

The resulting expression for '~) is 

(2). 2 _а2 (d-1)[1+(1~w)z] 
[~L (z, w)] - d [1- (1 - w)z]{1 - z[1 + (d- 1)w]}' (2.36) 

where we used (2.28) and. (2.33). Therefore, we obtain v .l = 1/2 for FDSAW 

on а d-dimensionallattice. Clearly, the correlation length exponents vll = 1 and 

v Ј. = 1/2 are independent of dimensionality. 

The full directedness of the SA W can Ье relaxed somewhat if, for instance, 

in the d = 2 case, steps in both +У and -У direction are allowed. One such walk 

is shown in Fig. 1 (с). The appropriate d-dimensional generalization is obtained 

when positive and negative steps along one of the d directions, say ±a.Xd, are 

allowed. With these restrictions а partially directed SAW (PDSAW) is obtained. 

Note that for such walks the self-avoidance condition reduces to "no immediate 

return" restriction. We now discuss the general d-dimensional PDSAW, from 

which the planar case is obtained simply Ьу setting d = 2. 

Let ni ( i = 1, ... , d- 1) and n± denote the number of the +аХ1, ... , +a.Xd-l, 

and ±a.Xd steps in а given N:..step walk, with 

d-l 
N = I:пi +п+ +n_. 

i=l 

(2.37) 

The generating function for the N-step, T-turn, d-dimensional walk is defined Ьу 



17 

(2.38) 

where the notation for the step weights is self-explanatory. The partial generating 

functions for walks with the first steps +a.i1 , ... , +aXd-l, ±a.Xd will Ье denoted 

G1, ... , Gd-l, G±, respectively. They satisfy the recursion relations 

for i < d. For G± we have 

d-l 
G± =Х±+ X±G± + wx±F with F = L Gi. 

i=l 

(2.39) 

(2.40) 

Su.mming the equations (2.39) over i = 1, ... , d- 1 and combining the result with 

(2.40) we obtain а system of three linear equations for F and G±. These are 

easily solved to yield the final result 

(2.41) 

with sd defined as in (2.27) and 

т( ) 
_ х+ х_ 

Х± = + . 
1- х+ 1- х_ 

(2.42) 

Note that the relation (2.27) for FDSAW is obtained from (2.41) if either х+ or 

х_ is set equal to zero. The partition function Z(z; w) = G(z, ... , z; z, z; w) for 

PDSAW is 

z z[(d + 1)(1- z) + 2dwz] 
(z;w) = 1- 2z- (d- 2)wz- [2(d -1)w2 - (d- 2)w -1]z2 ' 

(2.43) 
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with the simple pole singularity at 

2 
zc(w)= 2+w[d-2+v'd2 +4d-4]' 

(2.44) 

Since (2.43) is of the form rv (zc- z)-1
, we obtain that the number, CN, of 

PDSAW of length N is given Ьу (2.1) with 1 = 1 and J-l = 1/zc(w = 1; d), for all 

values of d. 

The correlation lengths can also Ье calculated from the generating function 

(2.41). Note that the parallel displacement is given Ьу 

а 

rll = (d- 1)1/2 (nl + ... + nd-1), (2.45) 

so that the kth-moment co'rrelation length, defined Ьу (2.19), can Ье expressed 

as 

(k) k _ _1 ( а )k [( 8 )k . . , ] 
[~11 ] _z v'd-l zдz G(z, ... ,z,x±,w) x±=z· (2.46) 

Using the results (2.41) and (2.46), with k = 1, we obtain after а long but 

straightforward algebra that ~~1 ) rv lj(zc- z) (explicit expression is too long 

to Ье reproduced here). Therefore v11 = 1 for PDSAW in any dimension d, as 

anticipated. Similarly, Ьу using the definition (2.21), and relations (2.34) with 

(2.45), and (2.46) with k = 2, we can also obtain ~~). After а long algebra (not 

given here) we find [~~)] 2 rv 1/(zc- z), and the result V.L = 1/2 finally follows. 

In summary, we have estaЬlished Ьу exact calculation that 1 = 1, vll = 1, 

and V.L = 1/2 for two types of DSAW, independent of the type and dimensional­

ity of the lattice. In fact, exact calculations for other 2d lattices (e.g., triangular) 

have been performed. Such calculations confirm that the exponent values do not 

depend on the lattice type. 
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С. Rod-to-coil transition of linear polymers 

In this section we use the results derived in Section Б to analyze the rod-to­

coil transition of polymer chains. We will particularly concentrate on the scaling 

properties of this transition. Rod-to-coil transitions in general exhibit an inter­

esting property of scaling function nonuniversality which, in the case of directed 

models, can Ье demonstrated explicitly. In the limit of infinite dimensionality, 

however, the universality is restored. 

То properly model the physical situation characterizing the rod-to-coil tran­

sition, we consider а "stiff chain" limit of а small statistical weight w for every 

turn in the walk. As already discussed, the appropriate partition function in the 

fixed fugacity ensemЬle of such turn-weighted DSAW model is 

Z(z;w) = (2.47) 
all walks 

for an N-step T-turn walk. As discussed in Section В, the walk with N = О 

steps is not included in this sum, i.e., с0 = О here. The physics of the rod-to­

coil transition is already apparent in (2.47): For small enough values of w, only 

the walks with no turns or small number of turns significantly contribute to the 

partition function, i.e., the fully extended, rod-like configurations statistically 

dominate. On the other hand, when w is not too small, the walks with many 

turns dominate in (2.47), and the coiled configurations are favored. The crossover 

between the two behaviors is termed the rod-to-coil transition. 

Let us now consider scaling in the rod-to-coil transition regime. This regime 

is defined Ьу w ---t О, N ---t оо, with the scaling combination 

w= wN, (2.48) 
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taking values 0(1). That w is linear in both w and N is а nontrivial property 

impli~d Ьу exact results for the Gaussian and directed walks, and Ьу numerical 

studies for isotropic SA W s. In the fixed fugacity ensemЬle, we will consider the 

equivalent of the scaling combination (2.48), but with the average number of 

steps, N(z; w), where 

N( . )-ENzNwT = 8lnZ(z;w) 
z, W - "" N Т - Z {) ' 

LJZ W Z 
(2.49) 

instead of N. The summation in (2.49) is over "all walks", as in (2.47). For fixed 

w, the quantity N(z;w) has а simple pole singularity at zc(w). Since Z(z;w) has 

а power law singularity ~,.vith the critical exponent /, one can further conclude 

that in the limit z---+ zc(w), with w fixed, 

N(z; w)~ f'Zc(w) . 
zc(w)-z 

(2.50) 

Recall that for DSAW, 1 = 1. Relation (2.50) takes а particularly simple form 

for w= О since zc(O) = 1. We have 

- 1 
N(z; О)= N(z) = . 

1-z 
(2.51) 

The scaling combination analogous to (2.48) can Ье defined as wN(z; w) or 

wN(z; О) = wN, and the two choices are equivalent up to а redefinition of the 

scaling function, see below. We use the second combination 

w= wN(z; О)= wN = w/(1- z) = w(z; w), (2.52) 

which in the scaling limit (w---+ О, N---+ оо), takes values 0(1). Physically, this 

means that for fixed w, long chains will Ье coiled provided N >> w- 1 . For fixed 

length N, stiff chains (w < < N-1) will Ье rodlike. Thus, the transition occurs 

when w and N-1 are comparaЬle, i.e., w is of order one. The use of N is for 
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technical convenience only; in principle the scaling relations could Ье formulated 

in terms of N(z; w). 

The scaling relations take the form 

Z(z;w)_ 1 ....- 1 -А() ( ) 
Z(z; О) = 1- (d- 1)w(N- 1) '"" 1- (d- 1)w - СЈ.;Ј ' 

2
·
53 

and 

N(z; w) 1 
N(z; О) ~ 1- (d- 1)w = В(СЈ.;Ј), (2.54) 

where we used (2.28) for the F'DSAW, and (2.49) to obtain N(z; w). The scaling 

functions А and В are defined in terms of the "linear scaling field" 

g = CVJ, (2.55) 

where the metric factor с can Ье determined from the fixed-w critical point value 

zc(w). Indeed, for fixed w > О, the functions Z(z; w) and N(z; w) diverge as 

[z- zc(w)]-l in the limit z--+ zc(w). The metric factor is given Ьу the scaling 

limiting behavior of the combination 

[1- zc(w)]N(z) ~ cw, (2.56) 

which yields 

CFD = d -1. (2.57) 

This fixes the scaling functions, 

(2.58) 
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Similar results can Ье derived in the case of d-dimensional PDSAW. Using 

the result (2.43) and the scaling function as in (2.53), we get 

1+d(1+2w) 
APD(cw) = (d + 1)[1- (d- 2)w- 2(d- 1)w2] · 

(2.59) 

The metric factor can Ье identified Ьу using the location of the singularity of 

Z(z; w). It is given Ьу (2.44) and, when combined with (2.49) and (2.56), gives 

d - 2 + Ј d2 + 4d - 4 
срп= --------

2 
(2.60) 

The expression for the average number of steps N(z; w) is very long. (It can Ье 

calculated straightforwardly Ьу the use of (2.49) and (2.43).) We only report here 

N(z; О)= (1- z)-1 = N(z). (2.61) 

The appropriate scaling function, defined as in (2.54), is then 

В _ 1+d(1+4w)+2(2d-l)w2 

PD(cw)- [1 + d(l + 2w)][l- (d- 2)w- 2(d- l)w2] • 
(2.62) 

In order to derive scaling relations for the correlation lengths we form ratios 

(k)( ) 
~11 z; w ""' p(k) ( ) k > 1, (2.63) (k) ~ cw ' 
~11 (z; О) 

and 

(k) ( ) ~L z; w ,.." Q(k) ( ) k even. (2.64) (k) ~ cw ' 
~1. (z;O) 

The scaling functions р( k) ( cw) and Q( k) ( cw) can Ье evaluated analytically Ьу the 

use of the results already derived for the d-dimensional FDSAW and PDSAW. Ex­

plicit expressions for the k = 1, 2 correlation length scaling functions for FDSAW 

are 
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(1) ( ) (2) ( ) 1 
PFD av = PFD av = 1- (d- 1)w' (2.65) 

and 

(2) 1 
Q FD(av) = J(l + w)[1- (d- 1)w]' 

(2.66) 

where we used (2.31), (2.33), and (2.36). Similarly, for d-dimensional PDSAW, 

the scaling functions can Ье obtained Ьу the use of (2.43) and (2.46). We get 

p(l) av _ (d + 1)(1 + 2w)2 

PD( ) - [1 + d(1 + 2w)][1- (d- 2)w- 2(d- 1)w2]' 
(2.67) 

р(2) cw _ d + 1 1 + 2w 
[ Ј 

1/2 

PD( ) - 1 + d(1 + 2w) 1- (d- 2)w- 2(d- 1)w2' 
(2.68) 

and 

(2) 2 (d + 1)[d + 2(2d- 1)w(1 +w)+ 2w3
] 

[Qpп(av)] = d(1+w)[1+d(1+2w)][1-(d-2)w-2(d-1)w2]" (2·69) 

It is obvious from these results that contrary to the conventional "scaling" 

wisdom, the scaling functions are nonuniversal (i.e., model dependent) for all 

finite dimei!SlOllalities d. However, it turns out that the FDSAW and PDSAW 

have the same scaling properties in the infinite dimensionality limit. Note that 

the scaling-field combination 

g = cw, (2.70) 

contains, in the d --t оо limit, additional unbounded parameter since for both 

models considered с ~ d, as d --t оо. Thus, as long as we define the scaling limit 
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with fixed dwN = 0(1), with d, w-1 , and N large, we can formally expand the 

scaling functions in powers of 1/d. We thus substitute gfc(d) for w and regard 

the scaling functions as functions of g and 1/d. The leading order result (in the 

1/ d expansion) is surprisingly simple, 

A(g; d), B(g; d), p(1,2)(g; ~), [Q(2)(g; d)]2 ~ (1- g)-1' (2.71) 

for both models. Thus, in the limit of infinite dimensionality, the universality of 

the scaling functions is restored. Finally, we note that the nonuniversality of the 

type just described can Ье also obtained for other types of lattices, and also for 

isotropic SAWs. It is related to the nonexistence of the field-theoretical scaling­

limiting continuum description of the stiff polymer chains. 

D. Finite-size scaling results 

Until now we have considered scaling properties of polymers on infinite lat­

tices. However, in all numerical simulations and in some experiments, polymers 

are confined to lattices (pores) of finite size. Experimentally, it is thus important 

to understand the influence of finiteness of the pore on the scaling properties and 

obtain corrections due to the finite size. Once the finite-size effects are known, 

the thermodynamic limit (infinite-size) quantities can Ье obtained Ьу proper ex­

trapolation of the numerical data. 

Consider а PDSA W on а finite square lattice of L11 х L .L sites along the Х 

and У directions, respectively. [The walk starts from some origin (Х= О, У= О) 

and can advance only in +Х and ±У directions.] For simplicity we consider 

periodic boundary conditions in the У direction, so that the walks are actually 

on the cylinder of length L11 and circumference L .L. (Here and further below we 
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assume the lattice constant а to Ье unity.) As in the case of infinite lattice, we 

analyze the properties of this walk Ьу the ·generating function technique. 
л 

То specify the walk we assign weights х, У+, and У- to every horizontal +Х, 

upward +У, and downward -У step. We also denote Ьу CNn+n- (LII, L.L) the 

number of N-step walks which start at the origin (Х =О, У= О) and have n+ 

upward and n_ downward steps. 

Consider first, for simplicity, the case L11 = оо. The generating function is 

(2.72) 

where the notation is self-explanatory. The sum over "all walks" now includes 

also the walks of N =О steps, i.e., we take с0 = 1 for convenience, in this section. 

This sum can Ье further expressed as 

н 
G(x, У+, у_; оо, L.L) = Н[1 + хН + (хН)2 + ... ] = , 

1-хН 
(2.73) 

where Н is the generating function for а walk parallel to the Y-axis, i.e., 

= 1 + У+ - у~_]_ + У- - у!:__]_ • 
1- У+ 1- У-

(2.74) 

The total number, CN, of N-step walks is obtained from the susceptibility 

(Х) 

x(z;oo,L.L) = G(z,z,z;oo,L.L) = L CN(OO,L_L)ZN. (2.75) 
N=O 

We get 
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1 + z- 2zL..L 
x(z;oo,L..L) = 1- 2z- z2 + 2zL..L+l' (2.76) 

For L1. =оо this yields the result (2.43), with d = 2, w = 1, and x(z; оо, оо) = 1+ 

Z(z; 1). The susceptibilityhas а simple pole singularity at the z-value Zc = v'2-1, 

(compare (2.44) with d = 2, w= 1), which represents а bulk critical point near 

which x(z; оо; оо) rv (zc-z)- 1 , with 1' = 1. Parallel and perpendicular correlation 

lengths are defined Ьу the relations analogous to (2.4). Specifically, 

. _ Е cN(RNII)zN 
~ll(z,oo,L..L) = l:cнzN , (2.77) 

with the mean parallel displacement defined Ьу 

(2.78) 

Note that (2.77), etc., differ from the quantities defined in Section В (i.e., ~~l) ја) 

Ьу the choice of с0 = 1 here. As mentioned, this does not affect the behavior near 

. Zc. From (2.72), (2.77), and (2.78) we have 

(2.79) 

Defining 

(2.80) 

one rediscovers the bulk singular behavior with vll = 1, 

(2.81) 

Similarly, for the perpendicular correlation length, we use 
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(2.82) 

with 

(2.83) 

This yields 

(2.84) 

where 
[ ( )

2 ] л 2 д д дf 
Dj_/=(1/f) z --- f+2z- . 

ду+ ду_ ду+ 
x=y+=Y-=Z 

Here we adopt а convention that а walk with total of, say, 2Lj_- 1 upward steps 

and no downward steps is regarded as having net vertical displacement of 2L 1_ - 1 

from the origin, not 1 as measured from the shortest path back to the origin. This 

is mathematically convenient and in the limit L1_ ~ оо reduces to the usual bulk 

definition of vertical displacement. We thus have 

with 

л 2z 2 L.1. 
D1_H(y+, у_; L1_) = (l _ z)2 + O(L1_z ). 

In the bulk limit this reduces to 

1 
с2 (z· оо· оо)~ -t-2v.J... 
~ј_ ' ' ~ 2 ' Zc 

as expected. 

1 
with Vj_ = -, 

' 2 

(2.85) 

(2.86) 

(2.87) 
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Let us now examine the correlation lengths (2.79) and (2.85) for finite Ll.. 

Note that (2.76) implies that the correlation lengths diverge (with exponents 

v11 = 1 and Vj_ = 1/2), but that the critical point is shifted to the z-value 

(2.88) 

Thus, at z = Zc, ~11 diverges exponentially with L1.: 

(2.89) 

This implies that in the limit of bulk criticality ( z ---+ z;, L l. ---+ оо) the new 

length scale appears in addition to the usual bulk correlation length ~ll(z; оо, оо). 

In order to present this in а more conventional form, we define (Ј =.- ln Zc > О 
and introduce an exponentially divergent length 

(2.90) 

Using (2.79) and .(2.86) we can express ~11 in the scaling form 

(2.91) 

'vith the scaling function given Ьу 

v 
W(v) = ..ј2 . 

2+v 
(2.92) 

With (2.80), this can Ье finally written in the form 

(2.93) 
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This equation shows that ~11 of the finite system has а scaling form consistent with 

the weak scaling hypothesis, i.e., it involves the additional length l11 ( L ..L) which 

grows exponentially with L1.. For the correlation length to оЬеу the strong scali.ng 

hypothesis, with L11 =оо, one would have 

(2.94) 

Instead, we have 

(2.95) 

with а similar result for the ~..L, see below. This is reminiscent of the scaling 

properties near а first-order transition in, e.g., Ising-type models (systems with 

scalar order parameter) on cylinders, where the corresponding length, ~1 (L..L) rv 

ехр( т Li-1 
), describes the average separation of interfaces orthogonal to the cylin­

der axis, with т being the surface tension, and Li-1 the cross-section of the 

cylinder. The domains of single phase are of the average length ~1 which diverges 

exponentially in the limit L1. ~оо. 

In the case of finite L11, the results are similar. The generating function is 

now 

so that ~11, defined Ьу (2.79), becomes 

(2.97) 
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with 

1 + z- 2zL-L 
Но = H(z, z; L1.) = . 

l-z 
(2.98) 

It has the asymptotic scaling form near bulk criticality 

(2.99) 

with the scaling function 

- и 

W( и, v) = W(v)- eufW(v)- 1' (2.100) 

which has again the form of the weak scaling hypothesis. The perpendicular 

correlation length is still given Ьу (2.85), with L11 < оо, and in the scaling region 

takes the form 

(2.101) 

which implies that its scaling properties are similar to those of ~11· 

In summary, the characteristic finite-size properties of the DSA W s are а 

consequence of their extreme anisotropy. Note, however, that scaling with expo­

nentiallength scales has not been observed in the case of directed percolation, for 

instance. Thus, the finite-size scaling properties of directed walk models have in­

teresting features which show that in models with continuous bulk transitions, but 

with anisotropic divergence of correlations, the conventional "power-law" scaling 

forms may not always hold. 
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111. LINE INTERFACES IN TWO DIMENSIONS: 

SOLID-ON-SOLID MODELS 

Solid-on-Solid (SOS) models have been extensively used to describe the 

properties of interfaces separating coexisting thermodynamic phases. In this 

chapter we study such models in 2d, i.e., for line interfaces. Specifically, we 

concentrate on the transfer matrix calculations appropriate for bound and fluctu­

ating interfaces and analyze scal~ng and finite-size properties of the SOS models. 

In Section А, definitions of the unrestricted and restricted lattice SOS models are 

given and basic features of the wetting transition in the presence of "contact" 

short-range substrate forces are presented. In Sections В and С we consider wet­

ting transitions in the presence of short- and long-range interactions and describe 

various results obtained in the continuous limit and Ьу other techniques, includ­

ing the generating function and continued fraction methods. Finite-size scaling 

for wetting (i.e., interfacial unbinding) is studied in Section D, while Section Е 

describes finite-size results for fluctuating (unbound) interfaces. Finally, Section 

F contains the list of selected literature. 

А. Wetting transitions in the SOS models 

In а two dimensional system with scalar order parameter ( e.g., ferromag­

netic Ising model), for Т < Те, the coexisting regions of + and - spontaneous 

magnetization are separated Ьу а line interface. А macroscopic contour separat­

ing + and - spins, can in principle assume complicated geometric configurations. 

However, it is generally accepted that for studying wetting transitions and related 

interfacial fluctuation phenomena it is sufficient to account for the SOS subset 
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of interface configurations (Fig. З) with по overhangs or ЬиЬЫеs. Such configu­

rations are specified as follows. Consider а planar square lattice of Ising spins, 

±1, at positions (Х, У) with integer О < Х < оо, IYI < оо, i.e., а semi-infinite · 

half plane geometry. The boundary spins are fixed at -1 for Х = О and + 1 for 

Х = оо, thus forcing an interface, which separates the region of predominantly 

- magnetization near the wall at Х = О from the region of + magnetization for 

large Х. In the SOS description of the interface (Fig. З), we consider spin con­

figurations with ny > 1leftmost spins (at Х= О, 1, ... , ny- 1) in each fixed-Y 

row taking values -1, while the remaining spins (at Х= ny, ny + 1, ... ) taking 

values +1. Here У= 0,±1,±2, ... labels the lattice rows: see Fig. З. 

Clearly, the SOS configurations of the interface are geometrically identical 

to the PDSAWs on the square lattice (with ±Х and +У steps). However, in the 

SOS models, different interface configurations have different energies. The SOS 

interfacial energy is specified Ьу the Hamiltonian 

Н/kвТ = L [И 1 ny- nv-1 1-W8lny + E(nv)]. 
у 

(З.1) 

Here И > О models the surface tension contribution. Contact interactions at-

tracting the interface to the wall at Х = О are represented Ьу the W > О term. 

The external-field and residual wall interactions are denoted Ьу Е( п). 

In (З.1), the difference lny- ny_1 1 can take on any value. Howev~r, it is 

mathematically convenient and physically acceptaЬle to further restrict the model 

to configurations with lп}т- ny·_ 11 =О or 1, for all У. Detailed studies indicate 

that such а restricted SOS model (RSOS) is identical with the unrestricted model 

in all the qualitative features of the wetting behavior. 

It is conYenient to introduce the notation 

О< и= e..;_u < 1, w= eW-E(l) > 1, (З.2) 
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у 

х 

wall + bulk 

-

Figure 3 

Solid-on-Solid modeling of Ising interface as а continuous structureless. string 

(with no overhangs, etc.). The lower part illustrates the lattice representatio:ri as 

а directed walk of ±Х and +У steps. 
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where we assume W> E(l) to avoid unilluminating mathematical complications. 

[The physically interesting interactions are usually such that W > > \Е(1) \.] Also, 

we denote Ьу n and т the ny values in two consecutive rows. Then the transfer 

matrix Т can Ье defined, with elements 

т \n-m.\ Б1n -E(n) (~ + ~ ) 
nm. =и w е uo,n-m. ul,\n-m.\ . {3.3) 

Note that we choose а nonsymmetric transfer matrix. Let 9m denote the right­

eigenvector elements. Then .the eigenvalue equations 

reduce to 

оо 

LTпm9m = Agn 
m=l 

which is а second order difference equation, with the boundary condition 

{3.4) 

(3.5) 

(3.6) 

In order to illustrate the mechanism of the wetting transition, we will now 

solve {3.5)-(3.6) with no external potential, i.e., E(n) · О. It is convenient to 

introduce two new variaЬles, t and Е, defined Ьу 

1 1 w 
--t 
w-1 

with 
w-1 

Uc = ' 2-w 

Л = 1 + 2и + 2иЕ. 

The general solution of (3.5) with Е( п)= О is 

(3.7) 

{3.8) 
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for € =!=-о, -2, (3.9) 

for Е=О,-2, (3.10) 

where 

(3.11) 

For Е > О, we have 1 < 1. On physical grounds w-e discard the exponentially 

growing term in (3.9), i.e., В= О. The eigenvector gn ех 'Уп is then dominated Ьу 

the "nonwet" spin configurations, with the layer of- spins extending the distance 

(3.12) 

from the wall. However, the boundary condition (3.6) "quantizes" the nonwet 

part of the spectrum, yielding at most one eigenvalue. One can show that this 

nonwet solution exists only for и< ис( w), corresponding to t <О in (3.7). 

The eigenvectors corresponding to -2 < Е < О are dominated Ьу the "wet" 

configurations with an unbounded - layer. (The range Е < -2 is of no physical 

interest.) The end points Е= О, -2 require special cpnsideration, which we omit 

here except to quote that В(Е =О) =О, gn(E =О) _А. For -2 <Е< О, we 

note that 1 and ,-l = 1* become complex (and conjugate), with lтl = 1. The 

boundary condition then determines the ratio А/ В; the "wet" spectrum is not 

quantized. It exists for all t, covering the Л range 1 - 2и < Л < 1 + 2и. 
The interfacial free energy а and the longitudinal correlation length ~11 of the 

system are given, as usual in transfer matrix calculations, in terms of the largest 

and second eigenvalues Ло and Л1 , with the corresponding Eo,l values, Ьу 
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а= -lnAo, ' (3.13) 

one should also use !(Ло) in (3.12) to obtain а definition of the transverse corre­

lation length. For t <О [и< uc(w)], which corresponds to the nonwet regime, 

explicit calculation yields 

while Л1 = 1 + 2и. For small negative t, we find Ьу expanding (3.14), 

1 2 
Ео~ 2t . 

(3.14) 

(3.15) 

Relations (3.7)-(3.8) can Ье used to obtain the following rather general small­

t and Ео expansion for а in (3.13), valid to O(t2) and О(Ео), 

_
1 

2-w 2(w-1) 2(w-1) 2 2(w-1) 
а- n -

2 
t- (

2 
)2 t - Ео+ .... 

w -w -w w 
(3.16) 

Note that this expansion does not depend on the particular form of Eo(t; w), e.g., 

(3.15). The singular part of the interfacial free energy is thus proportional to -Ео 

and is given Ьу 

w -1 2 
asing =- t 

w 
(3.17) 

for small negative t. (Note that the "regular part" of а has no obvious interpre­

tation unless one takes special care to relate the SOS parameters to the original 

Ising model formulation.) For the correlation lengths, we use (3.12)-(3.13) to get 

w -2 
~11 ~ 1 t ' w-

(3.18) 
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As t ---+ о-, there is а wetting critical point corresponding to the depinning of the 

interface from the wall. For positive t, Ло = 1 + 2и, with constant gn, and the 

spectrum is continuous (gapless). Thus, formally we obtain 

asing = о, ~11 = оо, ~ј_ = оо, (3.19) 

in the wet regime. These results illustrate some basic features of wetting transi­

tion in SOS models with short-range forces, and in the absence of the external 

potential Е (n). (These properties are believed to Ье valid for all two dimensional 

models with scalar order parameter.) 

ln the more general case, the nature of the wetting transition in the SOS 

model depends on the form of the external potential E(n ). The following choices 

of Е( n) are of particular interest. 

Exponential short-range potentials, behaving for large n according to 

Е( п)~ ce-An, А> О (n>> 1). (3.20) 

Such exponential potentials are generated in the process of renormalization of the 

wetting models with "contact" short-range forces. 

Power law long-range potentials, behaving for large n according to 

E(n) ~сп-Ф, ф> О (n>> 1). (3.21) 

Such poter1tials are of practical importance in Зd wetting, and have been exten­

sively studied for the 2d case. 

Applied field-like binding potentials, 

E(n) =сп 'Ф, с> О, 1/; >О. (3.22) 
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Potentials of this form always suppress the wetting transition (bind the inter­

face). However, one can study the с ~ о+ scaling behavior. The choice 'Ф = 1, 

corresponding to the applied magnetic field, is of special interest and has been 

considered Ьу many authors, within the differential eqtiation approximation, see 

below. 

In actual calculations, it is convenient to "de-exponen.tiate" the potential. 

For the long-range potentials of the type (3.21), one argues that the nature of 

the wetting transition depends mostly on the long-range tail while the short range 

features of the potential represent а perturbation of the contact, W, interaction 

in (3.1), provided lE(n)l << W for n= 0(1). Thus one can choose а power law 

potential 

E(n) = ln(1 +сп-Ф), ф> о, с- small, (3.23) 

which satisfies (3.21). In Section С we discuss an alternative choice of а power 

law potential, 

Е(п) = ln 1 + , [ с Ј 
п(п+1) .... (п+ф-1) 

(3.24) 

for integer ф= 1, 2, ... (and small с). 

А similar line of reasoning for the exponential potentials (3.20), is some­

what ambiguous since they are short-range all along. However, for mathematical 

convenience, the choice of the exponential potential 

E(n) = ln(1 + се-Ап), А> о, (3.25) 

is used, which allows derivation of analytic results, and а detailed analysis for 

small с ( see Section С). 
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"De-exponentiation" of the binding potentials (3.22), I.e., us1ng modified 

binding potentials 

Е( n) = ln(l +сп 1/Ј), ф > о, с> о, (3.26) 

obviously changes the large-n asymptotic form. However, it can Ье shown that 

the small-c scaling behavior is not affec~ed. 

В. Generating functions, differential equations, continued fractions 

In the presence of non-contact interactions, the lattice SOS models are no 

longer exactly solvaЬle, specifically (3.5) can not Ье solved for general Е( n). This 

section is devoted to various methods of obtaining approximate and in some cases 

exact results for the RSOS difference equation (3.5). 

Th~ generating function method for solving linear difference equations is well 

known. Here we emphasize features specific for the RSOS model applications. 

The generating function is defined Ьу 

(Х) 

G(z) = 2: gпzn-l = gl + g2z + gзz2 + .... (3.27) 
n=l 

Eq. (3.5) is then multiplied Ьу zn and summed over n ~ 2, 3, .... In some cases, 

one ends up with а closed form equation for G ( z). Specifically, for. potentials of 

the type (3.23), (3.24), (3.26), with integer ф, ф, one obtains differential equations 

for G(z). 

In order to illustrate the generating function approach, iiicluding the quan­

tization of the "nonwet" eigenvalues imposed Ьу the boundary condition (3.6), 

we turn again to the simple solvaЬle case Е( n) = О. [Here and below we will Ье 

mostly interested in the nonwet regime of finite D"sing, ~11 and ~..L , while (3.19) is 
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typical for the wet phase.] The appropriate equation for G(z) is then algebraic, 

[и (1 + z2
) + (1- Л)z] G(z) =[и+ (1- Л)z] 91 + UZ92· (3.28) 

Ву using (3.8) and (3.11), this can Ье represented as 

(3.29) 

The nonwet solution corresponds to 9п ~ О for large n. Since 9п are the Taylor 

coefficients of G(z), we conclude that two conditions must Ье satisfied. First, 

Е > О is needed to have real О < ~ < 1. Secondly, the singularity at z = ~ 
yielding exponentially divergent 9п, must Ье cancelled. However, the ratio 92/91 

can Ье replaced Ьу 

92 w(1 + t) + 2Е 
(3.30) 

91 w 

as implied Ьу the boundary condition (3.6), with (3.7)-(3.8). Canceling the pole at 

~ yields therefore the relation between Е and t which determines the "quantized" 

eigenvalue Eo(t; w), see (3.14)-(3.15). Note that since the original difference equa­

tions, (3.5) and (3.6), are linear, G(z) has an arbitrary coefficient 91 , in (3.29). 

In order to describe the "continuum" differential equation approach, let us 

introduce the notation 

[ 
w -1 Ј Е( п)= ln 1 + w V(n) , (3.31) 

which effectively defines V(n) for n = 1, 2, З, .... After some algebra, equation 

(3.5) [with (3.7), (3.8), (3.31)] can Ье expressed as 
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n> 1. 

(3.32) 

А standard procedure for the critical reg1on near the wetting transition ( or 

rounded transition in the case of -binding potentials), i.e., for small t and Е, is 

to approximate (3.32) Ьу the differential equation 

д2 (Х) - ix2 + V(X)g(X) = ( -2E)g(X), (3.33) 

where О < Х < оо is а continuous counterpart of n. Indeed, the fluctuations 

become large near the transition, and the magnetization profile varies over large 

distances ( comparaЬle to ~.L)· Thus, the discreteness of the original proЬlem will 

Ье "washed out". [The small O(t, Е) terms have been discarded in the coefficient 

of the potential.] 

The boundary condition (3.30) is written as 

92-91 2 --- =t+ -Е, 
91 w 

(3.34) 

and is replaced Ьу 

9'(0) 
g(O) = t. (3.35) 

Neglecting the Е term is justified since for sharp continuous wetting transitions 

Е rv ltl2 -o: with а< 1. For first-order wetting transitions (а= 1) and for binding 

potentials, more care may Ье required. 

It should Ье emphasized that in defining the potentials and the Х -coordinate 

displacements (n and Х), we assume that the lattice spacing is 1. In the contin­

uous differential equation approximation, one may wish to introduce the lattice 
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spacing а, so that the distance from the wall is actually па (or Ха). The coef­

ficients с and А in the definitions (3.20)-(3.26) of the interaction potentials can 

then Ье appropriately related to the "physical" quantities which remain finite 

while а~ О in the continuous limit. 

Relation (3.33) is а quantum mechanical Schrodinger equation with potential 

V(X) and with the boundary condition which corresponds to а point-like attract­

ing (for t < О) delta-function potential at the origin, 2tб(Х). The V(X) =О wet­

ting transition corresponds to the disappearance of the bound state as t ~ о-. 

[То make this interpretation precise, one should restrict consideration to even 

wave functions and extend the proЬlem to -оо < Х < оо symmetrically, i.e., 

with V(IXI)]. We will return to (3.33)-(3.35) in Section С, in connection with 

potentials (3.24). 

А more ad hoc approach is to define the 2d SOS model Ьу the quantum 

mechanical ( QM) Hamiltonian with а potential consisting of а hard wall at Х = О, 

followed Ьу а potential well at, say, О < Х < Ь,. and parameters adjusted to have 

one loosely bound state. Long-range potentials of the form (3.23), (3.26) are 

then introduced, i.e., 

V(X) =ех-Ф, ф> о, (3.36) 

or 

v(x) = сх1ЈЈ, 1/Ј > о, с > о, (3.37) 

with С _ cw / (w - 1). Both the discrete and continuous SOS models in all 

their varieties supposedly approximate the original Ising proЬlem to the extent 

of describing the wetting transition singularities. Thus, there is no а priori clas­

sification Ьу the degree of approximation. We believe, however, that in the case 

of the first-order transitions, and for the description of interfacial pinning Ьу 



44 

the binding potentials deep in the wet regime (t > 0), the discrete models are 

more appropriate, and the physical interpretation of their parameters is more 

transparent. 

Although we do not intend to review in detail all the QM results availaЬle 

in the literature, let us mention some conclusions of general interest. Consider 

first the power law potentials (3.36). For ф > 2, the mechanism of the wetting 

transition Ьу the disappearance of the bound state into the continuum is not 

changed. Nonanalytic corrections to scaling are present, e.g., in (3.15), however, 

the leading order dependence asing rv -t2 remains unchanged (with а modified 

t). For О < ф < 2 and с< О, the wetting transition is suppressed: the potential is 

strong enough to pin the interface to the wall. In the spectrallanguage, there are 

always bound states in addition to the continuous spectrum. For t > О, one finds 

asing rv lс\ 2 /( 2 -Ф) for small lcl, up to possiЬle logarithmic corrections for t ~ О. 

А detailed study of the ф= 1 case has been reported for the discrete difference 

equation, see below. It transpires that the wetting transition is first-order for 

с > О, with some unusual properties, e.g., divergent correlation lengths ( at least 

for ф= 1). 

For the binding potentials (3.37), the,spectrum is always discrete. There is 

no wetting transition. For t > О, one has rт . rv с2 /(2 +'Ф) Detailed results v Slllg • 

including the с, t --+ О crossover scaling forms for various quantities are availaЬle 

in some cases. Finally, in the borderline case ф = 2 in (3.36), а rich phase 

diagram with nonuniversal critical, multicritical, and first-order transitions has 

been discovered. 

А linear second order difference equation, like (3.5), can Ье solved formally 

in terms of continued fractions (this method will Ье used extensively in Chapter 

V). Thus, we introduce the ratios 
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(3.38) 

so that R 1 is given Ьу the right hand side of (3.30). The difference equation (3.32) 

is then divided Ьу Уп and after some rearrangement of terms expressed as 

n> 2. (3.39) 

This can Ье iterated to generate а continued fraction expansion for Rk (k > 1). 

Specifically, for R 1 we obtain [see (3.30)] 

2 
1 + t +-Е= 

w 
(3.40) 

1 

2(1 +Е)+ i/(2)- --------
1
--------

2(1+E)+i7(3)-------1-----~ 
- 1 

2(1 + Е) + V(4) - -
2(1 +Е)+ V(5) - ... 

where 

- [ 2(w-1) Ј V(n) = 1 + w Е- t V(n). 

Eq. (3.40) is а formal implicit equation for Е( t). 

Generally, the second-order difference equation (3.32) has two linearly inde­

pendent solutions, say, g~1 ) and g~2 ). There is some arbitrariness in selecting the 

two solutions. However, if one can select them, in such а way that 
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(3.41) 

then g~1 ) is termed the minimal solution. The existence of the minimal solution is 

not granted. Indeed, our calculations in the previous section for the case Е( n) = О 
corresponding to V(n) =О, indicate that the minimal solution exists for Е > О, 

in which case it is the physical "nonwet" solution A'f'n. However, none of the two 

solutions for -2 < Е < О are minimal. [On the borderline, Е = О, the physical 

solution 9п = const is minimal.] The differential equation approximation (see 

above) suggests that the nonwet solution being the minimal solution is а general 

rule. Indeed, it corresponds to the quantized localized ground state eigenfunction 

in QM calculations which decays at least exponentially as Х ~+оо. On the other 

hand, the eigenfunctions of the continuous spectrum are linear combinations of 

two running waves none of which is "minimal" as Х ~ +оо. 

An important theorem Ьу Pincherle relates the convergence of the continued 

fraction for R1 ( and Rk with k > 1) to the existence of the minimal solution. 

Indeed, the right hand side of (3.40), and similar continued fractions for k > 1, 

converge if and only if the difference equation possesses the minimal solution. 

Furthermore, the values of the continued fractions give Rk for the minimal so­

lution, i.e., 9п = g~1 ) in (3.41). Thus, (3.40) is а well defined equation for the 

ranges of the parameters t, w, and those of V (n), for which the nonwet solution 

exists, and its free energy is given Ьу the largest root Eo(t; w, ... ). 

The line of the argument can Ье reversed. The general mathematical theory 

of the convergence of continued fractions can Ье invoked to make some of the 

conclusions on the spectrum of the proЬlem more rigorous. For example, for the 

binding potentials (3.22), (3.26) corresponding to V(n) -+ оо for large n, the 

appropriate type of continued fractions converge for all Е. Thus the boundary 

conditions will quantize all "energies" Е. However, for all other potentials intro-
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duced in Section А, with V(n) ---+ О, one can prove that the continued fraction 

converges for Е> О [and sometimes for Е= О, depending on the details of V(n)], 

but it diverges for -2 < Е < О. Thus, only the Е > О part of the physically 

relevant spectrum is quantized and can represent nonwet solutions. 

The continued fraction in (3.40) is of the type called а J-fraction in the 

mathematical literature. Unfortunately, not much is known about the analytic 

form of such fractions for Е ---+ о+. In the case of potentials V (n) ---+ О ( for large 

n), Е = О is а special point since, as already mentioned, the J-fraction converges 

only for Е > О or Е > О. This can Ье seen in the simplest case of no external 

potential. Indeed, for V(n) = О the continued fraction is easily evaluated: for 

Е> О, it converges to !"(Е), see (3.11), and (3.40) reduces to 

(3.42) 

Thus the continued fraction, and t( Е), have а f'V ЈЕ singularity as Е ---+ о+. Note 

that (3.42) yields (3.14). Specifically, for small Е, (3.42) is just t ~ -Vfi which 

has one nonwet solution (3.15), for t < О only. Generally, the continued fraction 

equation (3.40) becomes an algebraic equation for E(t) if V(n) is of finite range, 

i.e., V(n > nmax) =О. 

С. Exact solutions of RSOS models with external potentials 

In this section we describe two analytic solutions of the RSOS model, for 

short- and long-range external potentials. First, consider the exponential poten­

tial 

V(n) = ce-An' А>О. (3.43) 
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In the notation of Eqs. (3.25) and (3.31), С 

equation (3.'32) reads 

cw / (w - 1). The difference 

[ 
2(w-1) . ] An 

Уп+l - 2(1 + Е)Уп + Уп-1 = 1 + W Е- t Се- Уп· (3.44) 

The difference equations of this type will Ье analyzed in detail in Chapter V. 

Here, we only indicate that the following series for the minimal solution (we keep 

Е > О here) can Ье used, 

оо 

Уп= 'Уп L Pme-Aпm, 
т=О 

where the coefficients Рт satisfy the first-order recursion (m > 0), 

(3.45) 

['У (е-Ат- 1) + "(-1 (eAm- 1)] Pm =С [ 1 + 2(w w-
1) Е- t] Pm-1, (3.46) 

obtained Ьу substituting (3.45) in (3.44). With а convenient choice р0 = 1, we 

get 

Pm = cm [1 + 2(w w- 1) Е- t] m п ['У-1 (eAk- 1) -'У (1- е-Аk)Г1' (3.47) 
k=l 

for т = 1, 2, .... The boundary condition [see (3.30)] reduces to 

2 """'оо -2Ат 
L,.,т=оРте 

1 + t + -€ = 1 """'оо . -Ат . 
w L,.,т=О Рт е 

(3.48) 

This implicit equation for E(t) is rather complicated for general С. However, 

the series on the right hand side are power series in С since Р т = О (ст). Thus, 

for small С а systematic expansion scheme can Ье developed Ьу accounting for 
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corrections due to successively higher powers of С. The leading singularity ( rv ЈЕ) 

oft(E) still comes from the coefficient 'У on the right hand side of (3.48), see (3.11). 

Thus, the nature of the wetting transition is not changed (at least, for small С). 

For example, (3.15) is replaced Ьу 

(3.49) 

where the shifted t-variaЬle can Ье calculated to а desired accuracy, as а power 

series in С. For example, to О( С), 

(3.50) 

(3.51) 

Let us now consider the class of power law, long-range potentials defined Ьу 

(3.24) for mathematical convenience. Thus, we have 

с 
V(n) = , 

п(п+1) ... (п+ф-1) 
(3.52) 

where ф= 1, 2, 3, ... and 

с - cw . (3.53) 
w-l 

Multiplication of the difference equation (3.32) Ьу Czn-l /V(n) and summation 

over n = 2, 3, ... yields after some algebra the following differential equation for 

the generating function [see (3.27)], 

а Ф 
дzФ [zФ-l (z- 1) (z- ,-l) G(z)] = (3.54) 

c[l+ 
2(w;;; l)E -t] [G(z) -gl] +(ф!) [g2- (!+!-1)gl], 
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where 1'(Е) is defined Ьу (3.11). The closed form solution of (3.54), with the 

additional condition (3.30), is known only for the case ф= 1. 

The inhomogeneous term in (3.54) is а constant. Thus, additional 

z-differentiation yields а homogeneous differential equation of order Ф+ 1. Small­

z analysis then indicates that out of its ф+ 1 linearly independent solutions only 

two admit power series expansion around z =О. The conditions G(O) = g1 and 

G'(O) = g2 then determine the coeffi.cients of the linear combination of these two 

solutions. Thus, we end up with 

(3.55) 

For the wet regime, -2 < Е < О, the singularities of fk(z) nearest to the origin 

will Ье on the unit circle, in fact, at z = 1' and 1'-1 = 1'* (where 11'1 = 1). The 

ratio g2/ g1 is fixed Ьу (3.34),. however, there is no quantization of Е. In the nonwet 

regime, Е > О, the additional condition of cancelling, in G(z), the singularity of 

fk(z) at z = 1' < 1 to let the singularity at z = 1'-1 dominate the convergence of 

the power series (3.27), willlead to the quantization of Е. 

General expectations for ф= 1, 2, З, ... presented above, have been checked 

in detail Ьу exact calculations for the simplest case ф = 1. The explicit form of 

fk(z) (not given here) involves hypergeometric functions. The resulting equation 

for Eo(t; w, с) is rather complicated, and is not reproduced here. Scaling analysis 

for small t, Е and с yields the following results. For с < О potentials, causing 

attraction of the interface to the substrate, the wetting transition is no longer 

sharp. The rounding is described asymptotically Ьу the crossover scaling form 

-2 (t- tc) Ео~ с р с ' (3.56) 

where 
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с = cwo 1 ( wo - 1) , with w0 = е w, (3.57) 

and 

wo [ wo ( wo )] tc= 1clnlcl+ 1+ f+ln с+о(с), 
wo - wo - 1 wo - 1 

(3.58) 

with Euler's constant t: = 0.5772156649 .... Details on the form of the scaling 

function Р, and implications of (3.56), can Ье found in the references listed at 

the end of this chapter. Note, in particular, the logarithmic nonscaling shift in t 

which is an unusual feature. 

For с> О potentials, which repel the interface thus competing with the con­

tact wall interaction, the wetting transition remains sharp. However, it becomes 

first-order, but with divergent correlation lengths. The scaling form (3.56) ap­

plies with а different scaling function Р. However, Р = О for t > tc, and Р 

vanishes linearly as t ---+ t-;: one finds 

(3.59) 

for small fixed с > О. This is reminiscent of а first-order transition since the 

derivative дЕо 1 дt is discontinuous at tc. However, for the correlation lengths ~11 

and ~·.L one finds а continuous divergence with new exponents v11 = 1 and v .L = ~ 

( different from v11 = 2, v .L = 1 for с = 0). Here ~ll is defined Ьу the leading 

transfer matrix spectral gap, see (3.13), while ~.L is defined Ьу the exponential 

tail of the decay of gn (which may lead to results different from the definition Ьу 

moments, in this case). 



52 

D. Finite-size effects for the wetting transition in two dimensions 

So far we have considered wetting transition in the RSOS model on the 

semi-infinite two dimensionallattice. In this section we will analyze the effect of 

finite size on this transition. Specifically, we study the RSOS model as defined in 

Section А, but on the infinite strip of·width N, i.e., О< Х< N. In addition, we 

add to the Hamiltonian (3.1) the contact potential W which attracts the interface 

to the wall at Х = N, similar to the one at the Х = О wall. Throughout this 

section we will take Е( n) = О. Thus, the transfer matrix Т has elements 

(3.60) 

The eigenvalue proЬlem is solved in close analogy with the N = оо case. The 

difference equation for the eigenvector elements 9п is again 

9п + u(gn-l + 9n+l) = Лgn, for 1 < n< N, (3.61) 

while the boundary conditions now read 

(3.62) 

The general solution of (3.61) is given Ьу (3.9) or (3.10), with А and В determined 

Ьу the boundary condition (3.62). This yields а linear homogeneous system from 

which, Ь)' eqlla.ting tb.e determinant to zero, we get the relation 

(3.63) 

One solution to this equation is Л = 1 + 2и, corresponding to 1 = 1. However, 

this is а spurious root leading, for general N, to the vanishing eigenvector 9п =О, 

except for и= Uc (bulk transition point), given Ьу (3.7), with 9п = 1. Using the 
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notation introduced in (3.7)-(3.8), relation (3.63) can Ье expanded, to the leading 

order in t and Е, as 

~ + t = ±e-2v'2€N (~- t). (3.64) 

Analysis of these equations (with ЈЕ = +iJ=f for negative Е) involves long 

but straightforward algebra, and we only summarize the results here. Equations 

(3.64) admit solutions of the scaling form 

(3.65) 

There are at most two positive-Q roots. However, there are unbounded number 

of negative-Q roots with the corresponding Ek < 0 values condensing with density 

,....., N 2 to form the upper edge of the continuous spectrum which in the bulk limit 

covers the Л range [1 - 2и, 1 + 2и]. 
The functions 9о(() and 91(() corresponding to the two largest-.A roots are 

given implicitly Ьу the relations 

( = -V9o tanh VQ;;72 for (<О, 9о >О; (3.66) 

1Г2 
( = ~tan)-9o/2 for (>о, - 2 < 9о <О; (3.67) 

( = -JQ; coth JQ;}2 for ( < -v'2, gl >О; (3.68) 

(3.69) 

The free energy scaling function 90 ( () is analytic at the origin [ as is gl ( ()] and 

can Ье expanded in the power series 9о(() = -v'2( + i(2 + .... For ( ~ оо, 
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corresponding to t ~ N-1 , i.e., to the "wet" edge of the critical region, we have 

90 (() ~ -1r2 /2. Thus, the singular part of the free energy vanishes according 

to lelrv N-2 , which is typical of the critical "soft mode" phases. For ( -+ -оо, 

-t ~ N-1 , in the "nonwet" regime we find 90 ( () ~ ( 2 up to exponentially 

small corrections. Note that in the limit 1(1 -+ оо the bulk critical behavior 

E~Ьulk) ~ t2 /2 or О, for t < О or t > О is recovered, see (3.15). The correlation 

length scaling follows from (3.13), 

(3.70) 

The difference 90 - 91 is· finite for all ( > О, and in the limit ( -+ +оо, suggesting 

that ~11 rv N 2 • At ( = О this is the expected scaling result since the exponent 

2 must Ье v11/v..L for which .the bulk values are vll = 2 and V..L = 1. The N 2 

divergence for large positive ( is another characteristic feature of the critical 

"soft mode" wet phase. ln the "nonwet regime" limit ( -+ -оо, however, we find 

9о - 91 ~ 8(2ev'2(. Thus, for -t ~ N-1 , ~11 rv t-2 exp(ltiN). The exponential 

divergence of the correlation length is in accord with the general expectations for 

finite-size strips with nearly broken symmetry. 

The Ьulk perpendicular correlation length ~~ulk) is given Ьу the spatial vari­

ation of the eigenvector entries Уп· lndeed, the identification !'±n rv exp(=fn/~..L) 
leads to ~~ulk) = (-lnf')-1 , see (3.12). The critical behavior of this quantity 

is given in (3.18), i.e., ~~ulk) ~ ltl-1 , for t < О. Thus, the finite-size scaling 

variaЬle \(1 ех ltiN can Ье identified with N/~~ulk), at least in the nonwet scaling 

regime. Finally, we should note that exponentially diverging correlation length 

~11 exists for all О < и < и-;, outside the critical region. Examination of (3.63) 

gives ~11 rv exp[N/~~ulk)], valid as long as ис- и ~ N-1 . The existence of this 

length is reminiscent of the similar phenomenon observed with finite-size scaling 

in directed random walks (Chapter 11). ln the present case, the exponentially 
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diverging length scale corresponds to the У -distance between the "tunnelings" of 

the bound interface from one wall to another. 

Е. Finite-size effects for fluctuating interfaces 

In this section we explore finite-size scaling properties of unbound fluctuating 

interfaces. In order to make the proЬlem somewhat more general, we consider 

inclined (tilted) interfaces. The model is specified as follows. 

Consider а planar square lattice of Ising (± 1) spins located at lattice points 

(Х, У), with Х = О, 1, 2, ... , L, and У = ±~, ±~, ... ,±(М - ~ ), as shown in 

Fig. 4. Бу virtue of the boundary conditions, the SOS contour begins at (0, О) 

and ends at (L, т), see Fig. 4, so that the average inclination of the interface 

can Ье measured Ьу the angle 8, given Ьу tan (} = т/ L. The SOS interface 

configurations are uniquely specified Ьу the set of interface heights hi, measured 

from the reference level У = О, as shown in Fig. 4. The heights can take integer 

values 

hi=0,±1,±2, ... ,±(M-1), for i=1,2, ... ,L-1, (3. 71) 

with the additional requirement that h0 = О and hL = т. The SOS interfacial 

energy is specified Ьу the Hamiltonian 

L-l 

Н/kвТ =и L \hi+l- hi\ + (L + l)V, (3. 72) 
i=l 

where, as in (3.1), и > О is the surface tension contribution, and we have in­

cluded the constant term V(L + 1) which accounts for the number of times the 

interface cuts across the vertical bonds (each time а contribution V is added). 

Since there are no pinning potentials, this interface is free to fluctuate. Ву the 
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Figure 4 

Two dimensional Ising model with inclined interface pinned Ьу its end-points 

(0, О) and (L, т). The average inclination angle is sp~cified Ьу tan О = тј L~ 

А typical SOS interface configuration is shown Ьу th~ solid line and is uniquely 

specified Ьу the height variaЬles hi. 
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use, of the transfer matrix technique, the partition function, Z sos( m, L; М) = 
E{hi} ехр( -Н/kвТ), can Ье evaluated exactly for both restricted and unre­

stricted SOS models (interested reader should consult references listed in Section 

F). However, the full answer, which involves hypergeometric functions, is not il­

luminating. Thus, we quote below the final results appropriate for the finite-size 

analysis. 

It turns out that for т~ L, i.e., for small inclination angles О, and neglecting 

finite-M effects (which are exponentially small for М = O(L)), the partition 

function can Ье written in the characteristic Gaussian form, 

( 
KL ) 1/2 ( KLL()

2
) 

Zsos(m,L;M=oo)~exp(-чL) 
2

1rL ехр -
2 

. (3.73) 

Note that (3.73) is just the probability distribution for а directed random walk 

to start from the origin and reach the point (L, т). The distribution is Gaussian 

in О, as seen in (3.73), with width rv 1/Vf. (This random walk property of line 

interfaces in two dimensions has found extensive uses in the literature.) 

The leading finite-size contributions for TL and KL are obtained explicitly as 

the standard 0(1/ L) "endpoint" corrections, 

(3.74) 

where т and к are bulk surface tension and surface stiffness coefficient, respec­

tively, while а and Ь are some finite-size coefficients. With и = ехр( -И) and 

v = ехр(-V), we have the explicit тesults 

т= -ln[v(1 + 2u)], 
1 +2и 

(RSOS model), (3.75) к=---
2и 

(1- u) 2 

К=---
2u 

(SOS model), (3.76) 
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a=-lnv, 
1- 2и- 8и2 

Ь = 8u2 (RSOS model), 

а= -lnv, Ь = (1 - u)2 (1 + 4u + и2 ) 
8и2 

(SOS model). 

(3.77) 

(3.78) 

If the inclin~tion angle (} is. fixed Ьу the requirement т = L tan (}, then 

the anisotropic surface tension (more precisely, interfacial free energy), per unit 

length, in units of kвТ, is obtained from 

cos () 
u(O,L;M) = --y-lnZsos(LtanO,L;M), (3.79) 

which in 2d is an even function of О. Using (3.73)-(3.78), the following finite-size 

expressions for the surface tension and its second derivative are obtained 

lnL a-ln~ (1) 
u(O,L;M) = и(О,оо;оо) + 2L + L +о L , (3.80) 

and 

"( ) "( ln L Ь- а+ ln ~ ( 1 ) и О, L; М = и О, оо; оо) - 2L + L · + о L · (3.81) 

Note that the bulk quantities are generally defined via 

о-(()' оо; оо) = ~ (}2 0(04) 
() т+2"" + ' cos 

(3.82) 

with 

т = а(О, оо; оо) > О, "" = а(О, оо; оо) +а" (0, оо; оо) > О. (3.83) 
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Results (3.73), (3.80)-(3.81) hold generally within the capillary-wave theory. They 

are explicitly verified Ьу the SOS model calculations. Note in particular the lead­

ing ±(lnL)/2L corrections in (3.80)-(3.81) which contain no free parameters. 

Finally, we mention that the model just analyzed can Ье solved exactly for the 

finite-size corrections in its full lattice Ising version. The results are similar to 

(3.80)-(3.81 ). 

F. Selected literature 

Recently, several comprehensive reviews of the wetting transitions and re­

lated surface phenomena have .been puЬlished. The following articles are general 

surveys of the field. 

S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, 

edited Ьу С. Domb and J.L. Lebowitz (Academic, New York, 1988) 

М.Е. Fisher, Ј. Chem. Soc., Faraday Trans. II, 82, 1569 (1986) 

D. Sullivan and М.М. Telo da Gama, in Fluid and Interfacial Phenomena, 

edited Ьу С.А. Croxton (Wiley, New York, 1986) 

P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985) 

The following reviews put emphasis on wetting transitions in the two dimen­

sional Ising and SOS models. 
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V. Privman and N.M. Svrakic, Ј. Statist. Phys. 51, 1111 (1988) 

D.B. Abraham, in Phase Transitions and Critical Phenomena, Vol. 10, 

edited Ьу С; .Do~b and J.L. Lebowitz (Academic, New York,.1986) 

Results on fluctuations of unbound 2d interfaces, as well as on wetting, in 

finite-size geometries, have been collected from the. following recent works: М.Р. 

Gelfand and М.Е. Fisher, In.t. Ј. Thermophysics, in print (1989); V. Privman, 

Phys. Rev. Lett. 61, 183 (1988); V. Privman and N.M. Svrakic, Phys. Rev. 

В37, 3713 and 5974 (1988); N.M. Svrakic, V. Privman and D.B. Abraham, Ј. 

Statist. Phys. 53, 1041 (1988). 



IV. POLYMERS АТ SURFACES 

The behavior of а single polymer chain near an attractive surface is а subject 

of consideraЬle experimental and theoretical importance. Such а chain may un­

dergo adsorption-desorption transition from the state when it is mostly attached 

to the surface, to the state of detachment when the temperature is increased. 

This behavior finds applications in lubrication, adhesion, surface protection, etc. 

Ву methods similar to the techniques described in Chapters II and III, one can 

solve directed random walk models of polymer chains near surfaces (rigid or pene­

traЬle) and study the corresponding transition. In Section А, the relevant models 

are defined, and the adsorption-desorption transition at an impenetraЬle surface 

is analyzed exactly for two and three dimensional systems. Section В is devoted 

to а similar proЬlem near а symmetric penetraЬle surface. Finally, Section С lists 

selected literature. 

А. Directed models of polymer adsorption 

In order to study the statistical properties of polymer chains, we model their 

configurations Ьу self-avoiding random walks (SAWs) on а lattice. (We consider 

here both the 2d sq11are and Зd simple cubic lattices, and take, for simplicity, the 

lattice spacing to Ье unity.) Thus, the polymer chain consists of random self­

avoiding steps (monomers) of unit length. То make this model exactly solvaЬle, 

we impose directedness along the +Х axis, i.e., steps in the -Х direction are not 

allowed (this makes the walk partially directed). The attracting surface or wall, 

is positioned at the Х axis, for the 2d model, and at the Х Z plane for the 3d 

model. In the case of an impenetraЬle surface ( considered in this section) the 
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polymer can not extend below the Х axis ( or Х Z plane in Зd), i.e., only steps at 

У > О are allowed. We consider а polymer chain which is attached Ьу one end 

to the origin (grafted polymer), while the other end can Ье either pinned to the 

surface or free ( dangling). 

Consider а walk with the total of N steps, Ns of which are at the surface 

(i.e., +Х, or ±Z steps at У= 0). All allowed steps are assigned statistical weight 

or fugacity z. Furthermore, the steps at the surface have the total excess surface 

energy Es = -fJ 8 N 8 , with typically fJ 8 > О, i.e., to each surface step we assign 

additional weight 

( 4.1) 

The thermodynamic behavior of the chain is obtained from the partition function 

Z(z,w) = L zNwNв. 
all walks 

As usual, the average length of the walk is obtained from 

(N( )) 
= ~NzNwNв = дlnZ(z,w) 

z,w ~zNwNв - z дz . 

Sirn.ilarly, the average number of monomers at the surface is 

(4.2) 

(4.3) 

(4.4) 

The quantity of physical interest is the fraction ој adsorbed monomers, Cs (w), 

i.e., the fraction of the chain segments at the surface in the infinite-chain limit. 

This is given Ьу 

с ( ) _ 
1
. (Ns(z, w)) 

s w - llli ' 
z--+z00 (w) (N(z,w)) 

(4.5) 
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where z00 (w) is the fugacity value for which (N) --+ оо. For simplicity, we describe 

the calculations for the 2d case, and only quote the 3d results, which can Ье 

obtained Ьу а straightforward generalization. 

In order to calculate the partition function ( 4.2) we use the transfer matrix 

approach as described in Chapter III; indeed, our model in 2d is quite similar to 

the SOS model of line interfaces. The configurations of the chain are uniquely 

specified Ьу the heights hi (i.e., Y-values) above the surface, with i = О, 1, 2, .... 

The proЬlem can Ье further simplified if the restriction 

(4.6) 

is imposed, i.e, at most а single ±У step is allowed between any two +Х steps. 

This corresponds to the restricted model, similar to the RSOS model. Consider а 

partition function, ZL, for walks with exactly L steps in the positive Х direction, 

i.e., the walk ending at Х = L. The total partition function ( 4.2) is then obtained 

as 

оо 

(4.7) 

where the term Z0 accounts for the walks with no steps in the +Х direction, 

zaU) = z/(1- z) or zaR) = z for the unrestricted (U) or restricted (R) models. 

When L > 1, in the case of the unrestricted model, we have 

with 

оо 

z},U) = ZL L Бо,hо z8ш у' 
{hi}=O 

L 

в= L \hi+l- hi\, 
i=O 

L 

and У= LБo,hi· 
i=l 

(4.8) 

(4.9) 
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The delta-term in ( 4.8) ensures that one end of the chain is pinned at the origin. 

The pinning of both ends can Ье accomplished Ьу the additional factor 8o,hL+t 

in (4.8). Here В represents the totallength of all vertical steps, whereas Т= Ns 

for а given configuration. The partition function ZL in (4.8) can Ье evaluated Ьу 

the transfer matrix method. Specifically, we define the transfer matrix Т, with 

elements 

т - zln-m\wБo,n nm- · ( 4.10) 

Then the summand in ( 4.8) can Ье represented as 

( 4.11) 

Therefore, we have 

( 4.12) 

where the column vectors 'R. and L account for the end effects, while the super­

script (t) in (4.12) denotes the transpose. The vector L has entries Lo = 1, 

- О (for the pinned end of the chain). For 'R., we have 'R.o = -1 
w ' 

1 (for the dangling end). If both ends of the chain are pinned, one 

must use 'R.m>O = О. In the case of the restricted model, the formulation is the 

same, except that one uses 

T (R) ( {: + {: ) \n-m\ Бо n mn = VO,n-m Vl,\n-m\ z W ' , (4.13) 

instead of ( 4.10). Clearly the transfer matrices with elements ( 4.10) and ( 4.13) are 

identical with the corresponding matrices for the SOS and RSOS models analyzed 

in Chapter III. However, the thermodynamic ensemЬle and the partition function 
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Z are differer1t. Na.r11ely, substituting ( 4.12) in ( 4. 7) and omitting the unimportant 

term Z0 , we get 

Z = z[R(t)T2(1- zT)- 1 L:], ( 4.14) 

for both unrestricted and restricted models. Let us denote Ьу Л the eigenvalues 

of Т. Then the partition function (4.14) becomes singular for ZAmax = 1, where 

Ат ах is the largest eigenvalue of Т. This equation defines Z 00 (w) < 1. As 

discussed in Chapter III, the spectrum for both models consists of а continuous 

band of eigenvalues, with "plane wave" eigenvectors, and at most one bound state 

(bs) eigenvalue which corresponds to the eigenvector decaying as ехр( -wn). The 

values of Льs and w are obtained from the conditions 

(U), ( 4.15) 

and 

Л-1 
h ' -w cos w = 

2
z , л- w = wze , (R), ( 4.16) 

for the unrestricted and restricted models, respectively. The solution for Льs, with 

w> О, exists provided w> w*(z), where 

w(U)(z) = _1_ 
* 1 ' -z 

( 4.17) 

The continuous spectrum exists for all w, giving Л in the range (1- z)/(1 + z) < 

л<И) < (1 + z)/(1- z), and 1- 2z < Л(R) < 1 + 2z. 

As long as w> w*, the bound state eigenvalue Льs, calculated from (4.15) or 

( 4.16), is above the upper edge Лсопt of the continuous spectrum, where Л~~2t = 

(1 + z)/(1- z), л~~2t = 1 + 2z. In this regime, the equation ZAmax = 1 for Zoo(w) 

reduces to zЛьs = 1, i.e., 
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w(1- z2)(1 + z- zw) = 1, (U), ( 4.18) 

and 

( 4.19) 

for the unrestricted and restricted models, respectively. The intersection of the 

curve w = w*(z), see (4.17), with (4.18) or (4.19) defines the critical point 

(zc,wc) = (V'i- 1,1 + 1/V'i) or (1/2,4/3), for the unrestricted and restricted 

models, respectively. 

For w > Wc, one finds that the equation ZAmax = 1 is satisfied in the regime 

where it reduces to z Льs = 1, and а nontrivial function Z 00 (w) is given implicitly 

Ьу (4.18) or (4.19). However, for w < Wc, it turns out that ZAmax = 1 is solved 

in the regime where it is represented Ьу ZAcont = 1, and z00 (w) = Zc is constant. 

This phase diagram is shown in Fig. 5. 

The values Z 00 (w) correspond to chains with (N) = оо, as refl.ected Ьу а 

singularity in Z(z,w), for fixed w. Specifically, as z ~ z~(w) for w> Wc, we 

have 

1 
Z(z,w)"' ( ) . 

Z00 W - Z 
( 4.20) 

As w -т Wc from above, we have Z00 (w) --+ Zc with zero slope: · see Fig. 5. 

Ву using ( 4.20), with ( 4.3)-( 4.5), we conclude that both (N(z, w)) and (Ns(z, w)) 

diverge rv [zoo( w) - z]-l, while the fraction of adsorbed monomers is given Ьу 

Cs(w) = _ w dz00 (w) 
Z00 (w) dw 

( 4.21) 

As w --+ wt, the fraction of adsorbed monomers vanishes linearly. The condition 

w > Wc specifies the adsorbed regime. For large values of w (strongly attractive 
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Figure 5 

Adsorption-desorption phase diagram for the unrestricted model in 2d. 
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surface, or low temperature), Cs(w) can Ье expanded in powers of 1/w, 

3 4 
Cs(w) = 1- 3- 4 + ... , 

w w 
( 4.22) 

for both models. The results for the two models differ in О( w -s). The fraction 

of adsorbed monomers is shown in Fig. 6. For w < Wc, we have Z00 (w) = Zc, 

yielding Cs( w < wc) = О. This corresponds to the desorbed polymer phase. 

The behavior of the partition function near the singularity at Z 00 (w) defines 

the exponent 1 [compare (2.7)]. Specifically, for w> wc, Z(z, w) behaves accord­

ing to ( 4.20) as z --+ z~, giving 11 = 1 and 111 = 1, where the subscript indicates 

whether the chain is pinned to the surface Ьу one or both ends. The behavior is 

different when z --+ z~ = z; at fixed w < Wc. The appropriate analysis involves 

spectral decomposition of the transfer matrix and is not detailed here. We only 

quote the results: /1 = 1/2 and /11 = -1/2. Finally, at the borderline (i.e., 

w = wc), one has the multicritical values 11 = 1 and 111 = 1/2. The surface 

scaling relation, 211 - /11 = 1 + v ..L, is satisfied for both w < Wc and w = Wc. 

[Recall that for directed walks without the surface, the bulk exponents 1 and v ..L 

are 1 and 1/2, respectively.] 

For 3d systems, the analysis is similar. However, only the restricted model 

has been solved exactly. Since the unrestricted and restricted models in 2d have 

almost identical behavior, we anticipate that the description within the restricted 

3d model should suffi.ce. [The restriction is that there is at. most one ±У or ±Z 

step between any two +Х steps.] We omit the details of this calculation and only 

quote the results for the fraction of adsorbed monomers. One finds that Cs (w) 

vanishes linearly as w --+ Wc = (23- VГl)/16 from above. When w is large, the 

(1/w)-expansion yields 

2 12 83 
Cs(w) = 1-- + - 2 - - 3 + ... , 

w w w 
( 4.23) 
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Figure 6 

The fraction of adsorbed monomers for the unrestricted (U) and restricted (R) 

models in 2d, as well as for the Зd model. 
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which should Ье compared with ( 4.22). Clearly, the adsorption for large w is 

much weaker than in the 2d ·case, which is p·robaЬly due to the large "phase 

space" availaЬle to the fluctuating chain. The behavior of the fraction of adsorbed 

monomers for the full range of parameters is shown in Fig. б. 

In summary, the behavior of polymers near surfaces in 2d and Зd systems is 

qualitatively similar, for directed models, exhibiting adsorption-desorption tran­

sition at the model-dependent values of surface interaction parameters. This 

transition is caused Ьу the competition between the energy gain in adsorption, 

and the entropy increase of the detached polymer, and can Ье driven Ьу temper­

ature: Recall that w = exp(rls/kвT). 

В. Polymer chains at penetraЬle surfaces 

Using the methods described in the previous section, one can also analyze the 

behavior of the polymer chain near а penetraЬle surface. Physically, such а surface 

corresponds, e.g., to an interface between two media. In this section we assume 

the polymer interactions with these media to Ье symmetric. In experimental 

realizations, the two media can Ье different ( asymmetric), and then the behavior 

near the adsorption-desorption transition is generically the same as that studied 

in the previous section. However, the symmetric case is interesting because there 

is no loss in entropy when а grafted chain is adsorbed at the surface. One thus 

anticipates that the depinning. transition in this case can not Ье induced Ьу the 

temperature increase, but only Ьу making the surface repulsive, i.e., we anticipate 

that Wc = 1. 

Consider а directed random walk model of polymer chains on а 2d or 3d 

lattice, as described in the previous section. The surface is defined at the Х axis 

in 2d (Х Z plane in Зd). The walk starts at the origin (grafted polymer) and is 
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directed along +Х axis. We allow steps on Ьoth sides of the surface. Let N Ье the 

total number of steps in the walk, N 8 of which are at the surface. In the grand 

canonical ensemЬle, the statistical weight (fugacity), z, is assigned to each step 

of the walk. Furthermore, steps at the surface are assigned additional weight w. 

Note that w > 1 correspond to attraction, while w < 1 would describe а repulsive 

surface. For such а walk the partition function is given Ьу ( 4.2). Similarly, the 

definitions of the average length of the walk, the average number of surface steps, 

and the fraction of adsorbed monomers, are given Ьу ( 4.3)-( 4.5) respectively. 

The solution of this model can Ье obtained Ьу the transfer matrix method 

in close analogy with the impenetraЬle surface case. Throughout this section we 

will only consider the restricted model. For the 2d case, the transfer matrix is 

of the form (4.13), and the partition function is calculated from (4.14). How­

ever, the indices m, n in ( 4.13) are no longer restricted to nonnegative values. 

Mathematically, the emergence of the singularity at z00 (w) is the same as for the 

impenetraЬle surface. However, we will see below that w*(z) = Wc = 1. 

The spectrum of the transfer matrix is similar to the one described in the 

previous section, with the bound state eigenvector now decaying as ехр( -wln\), 

with w > О. The conditions for the existence of the bound state are 

and 

А-1 
cosh w= 

2
z , 

А- w= 2wze-ro, 

( 4.24) 

( 4.25) 

which differs from ( 4.16) Ьу the factor of 2. The. bound state eigenvalue exists 

provided w > w* = 1, and satisfies Льs > 1 + 2z. (The continuous spectrum 

is the same as for the impenetraЬle case.) For w < 1, the maximum eigenvalue 
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corresponds to the upper edge of the continuous spectrum and is given Ьу Acont = 

1 + 2z. 

Similar results can Ье derived for the Зd system. Specifically, we have 

,\- 1- 2z 
coshш = 

2
z , ( 4.26) 

and 

( 4.27) 

instead of ( 4.24)-( 4.25). The condition for the existence of the bound state is 

again w > w* = 1, with Льs > 1 + 4z. For w < 1 the maximum eigenvalue 

corresponds to the upper edge of the continuous spectrum: Acont = 1 + 4z. 

The condition zЛьs = 1 can Ье written in the form 

4w2 z4 = (1- wz)(2w- wz- 1), ( 4.28) 

in 2d, and 

4w2 z4 = (2wz2 + wz -1)(2wz2 + wz- 2w + 1), ( 4.29) 

in Зd. These relations define zcю(w) for w> w*= 1. The critical point, (zc,wc), 

is at (1/2, 1) for 2d and (( VI7 -1)/8, 1) for Зd. (Note that Zc values are identical 

with those for the impenetraЬle surface.) 

Using the relation (4.21), we find that the fraction of adsorbed monomers 

C8 (w)- О for w< 1. This corresponds to the desorbed regime. Note that w< 1 

corresponds to а repulsive surface, i.e., Пs <О in (4.1). On the other hand, for 

w > 1 the fraction of adsorbed monomers has а finite value which for w ~ 1 can 

Ье expanded in the form 



73 

1 

0.6 

0.2 

о 1 3 5 
w 

Figure 7 

Fraction of adsorbed monomers at а symmetric penetraЬle surface in 2d and Зd. 



74 

C(2d)(w) = 1-~- .!_-s wз w4 ... , ( 4.30) 

and 

(Зd) 2 12 86 cs (w)=1--+2-з+···· w w w 
( 4.31) 

The full results, obtained Ьу using ( 4.21 ), are shown in Fig. 7. Finally, а detailed 

calculation (not presented here) of the exponents "ll and "lll yields the values 

identical with those given in Section А. 
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solvaЬle model of isotropic Gaussian walks at surfaces (not discussed here) has 

been studied Ьу R.J. Rubin, Ј. Chem. Phys. 43, 2392 (1965). 



V. MODELS OF STACKS AND СОМРАСТ CLUSTERS 

Cluster models ( also termed lattice animal models), together with random 

walks, surfaces, solid-on-solid strings and sheets, etc., serve as prototype lattice 

systems with "geometric" phase transitions. Typically, cluster models involve а 

set of N distinct connected points (sites) or links (bonds), on а d-dimensional 

lattice, with each point connected to the origin through other cluster points; the 

origin point belongs to the cluster. Geometric connectivity rules, such as com­

pactness, directedness, etc., define different classes of cluster models. А quantity 

that characterizes statistical "entropic" properties of cluster models is the total 

number, с N, of different N -point clusters that can Ье formed with а prescribed 

connectivity. 

In this chapter we study а class of compact 2d cluster models which are 

equivalent to stacking models. In many cases they can Ье solved exactly for the 

partition functions which generate the cluster numbers CN. Specifically, in Sec­

tion А, we study the model of stacking of squares at а line wall, which can Ье 

easily solved Ьу the generating function method, and serves to illustrate some of 

the general features of compact cluster models. Section В is devoted to а more 

complicated circle stacking model. The solution of this proЬlem fully illustrates 

mathematical complexity of some of the compact cluster models. The methods 

that are useful in such solutions, namely the generating function and continued 

fraction techniques, are outlined in Section С. Other stacking models (squares, 

circles), with different building rules, are described in Section D. Solutions of these 

models require further mathematical developmeilts, beyond conventional meth­

ods, which we outline in Section Е. Analysis of finite-size properties of compact 

lattice animals is presented in Section F, where we also obtain the cluster-radius 
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exponents vн = 1 and v .L = 1/2. Finally, in Section G, we list selected literature. 

А. Stacking of squares at а line wall 

Consider а 2d "castle wall" built up from N squares, as shown in Fig. 8. 

The base row of the cluster must Ье continuous. Higher rows can have gaps. 

However, each column must Ье continuous "self-supporting". Our goal is to 

calculate the total number CN of different N-site clusters, i.e., the number of 

possiЬle arrangements of N squares consistent. with the above restrictions. In 

order to avoid counting clusters that differ only Ьу overall translations, we pin 

the lowest leftmost square with its center at (Х, У) = (0, 0), see Fig. 8. Let CN,k 

denote the number of different clusters with exactly k squares in the leftmost 

Х= О column (k = 2 in Fig. 8). Obviously, CN,k =О for N < k, and CN,N = 1. 

Define the restricted partition functions which generate the numbers CN,k Ьу 

<Х) 

Fk(z) = L CN,kZN-k, k > 1. (5.1) 
N=k 

These functions satisfy the following recursion relations, 

Fk(z) = 1 + L zmFm(z), (5.2) 
m=l 

where each term specifies one possiЬle configuration of the next column centered 

at Х = 1. The term 1 corresponds to no second colunш (the k = N cluster). 

Each т > О term in (5.2) sums up all configurations with exactly т squares at 

Х = 1, with Fm(z) accounting for all possiЬle arrangements of the remaining 

squares in the Х > 1 columns. 

The total partition function G ( z) for the cluster numbers с N, is given Ьу 
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х .. 

Figure 8 

Stacking of squares according to the "castle wall" connectivity rules. 
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оо оо 

G(z) = L CNZN = LzkFk(z), (5.3) 
N=l k=l 

where the last step is self-explanatory [see (5.1)]. Inspection of (5.2) gives 

Fk(z) = 1 + G(z), for all k. (5.4) 

Finally, substitution in (5.2) yields 

оо 

1 + G = 1 + (1 + G) L zm, (5.5) 
m=l 

or 
z 

G(z)= l-2z' (5.6) 

The Taylor series coefficients of G(z) are the desired cluster numbers CN [see 

(5.3)]. Thus, 

for the square-stacking model. 

2N-1 
CN = (5.7) 

More generally, the large-N form of CN, applicaЬle to most cluster models is 

(5.8) 

Here С and Л are model dependent (nonuniversal), while the "critical exponent" 

fJ is universal for large classes of models which differ Ьу the details of the "micro­

scopic" connectivity rules, lattice structure, etc., but share global "macroscopic" 

features like directedness, compactness, dimensionality of space. Comparing (5.7) 

and (5.8) we have () = О, for the square-stacking model. 

As usual, the large-N behavior of the Taylor coefficients с N, of the partition 

function is controlled Ьу the singularity nearest to the origin, on the real, positive 
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z axis (since all CN > 0). ln the present case, G(z) is the ratio of two polynomials, 

and the singularity is а simple pole at Zc = 1/ А = ! . [Recall that random walk 

generating functions (Chapter 11) have similar singular behavior.] 

В. Stacking of circles at а line wall 

ln this section we consider stackings of circles at а line wall as illustrated Ьу 

the open circles in Fig. 9: N circles are positioned in such а way that the base 

row is continuous. The higher rows can have gaps, however, each circle must Ье 

"supported" Ьу having both lower-Y neighbors occupied. The centers then follow 

the pattern of the triangular lattice with spacing equal to the circle diameter. 

ln order to solve this model Ьу the generating function technique, we extend 

the allowed configurations to include additional k - 1 base circles along а lattice 

direction forming 60° with the negative Х axis. The case k = З is illustrated in 

Fig. 9. The k - 1 = 2 full circles are part of the base. Together with the open 

circles they can "support" additional circles (full circles in Fig. 9). 

Let CN,k denote the number of distinct N-circle clusters with exactly k circles 

in the 60° base ( counting the circle which also belongs to the horizontal base, the 

length of which is not restricted). The fixed-k partition functions Fk(z) defined 

as in ( 5.1), satisfy the recursion relations 

k+l 

Fk(z) = 1 + L zmFm(z), k > 1. (5.9) 
m=l 

As in Section А, the terms on the right sum up configurations with different 

number, m, of circles in the 60° row next to the base 60° row. Note that Ьу the 

stacking rules, т cannot exceed k + 1. Replacing (5.9) Ьу the first difference, we 

get а second-order difference equation 
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Figure 9 

Compact self-supporting stacking of circles at а line ·wall ( open circles). ·Full 

circles illustrate the two additional 60° base circles, and the circles supported Ьу 

the extended base. 
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(5.10) 

with the boundary condition 

(5.11) 

Note that the partition function for the original circle-stacking proЬlem is given 

Ьу 

оо 

G(z) = L CN,lZN = zF1(z). (5.12) 
N=l 

Methods of solving difference equations of the type (5.10) will Ье discussed 

in detail in Section С. Her·e, we only quote the results. The general solution of 

(5.10) can Ье represented as 

(5.13) 

where the q-series 

(5.14) 

with qo = 1 and 

n 

qп(z) = П (1- zj), for n> 1, (5.15) 
j=l 

represents the "physical" or regular at z = О (for k > -2) solution. One can 

show that the second linearly independent solution Фk(z) is power-law-singular 

at z =О for sufficiently large k. Furthermore, in the mathematical nomenclature, 

фk(z) is the minimal solution in that 
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(5.16) 

for all z values of "physical" interest, i.e., for О < z < 1. А more detailed 

discussion of the minimal solution concept is given in Chapter III; see discussion 

following (3.41). 

The boundary condition (5.11) can Ье satisfied with B(z) =О and 

(5.17) 

in (5.13). Thus, the partition function (5.12) .for the circle-stacking proЬlem 

reduces to 

z 
G(z)= ј ( )' 1 - z - z2 Ф2 ( z) Ф1 z 

(5.18) 

The q-series Фk(z) are analytic for lzl < 1, with а natural boundary of essential 

singularities at the unit circle. However, the nearest-to-the-origin singularity of 

G(z) is а simple isolated pole at the first zero of the denominator of (5.18), at 

z = Zc = 1/ Л, as shown in Fig. 10, similar to other compact cluster models with 

extensive entropy (Л> 1). We get 

Zc = Л -l = 0.576148769 ... ; (5.19) 

furthermore, we have () = О for the universal exponent in (5.8), while for the 

nonuniversal prefactor we obtain С= 0.31236 .... 
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0.2 

Figure 10 

0.4 
z 

Zc 

0.6 

The function z/G(z), see equation (5.18). The leading pole in G(z) at Zc = 
0.576 ... is followed Ьу а sequence of zeros-poles ( outside the z range shown) which 

accumulate at . . z = 1-. 
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С. Continued fraction and generating function techniques 

In this section we outline two methods which are particularly useful in solu­

tion of difference equations associated with stacking models. А standard math­

ematical approach to linear second-order difference equations utilizes continued 

fractions to calculate the minimal solution [see(5.16)]. We illustrate the technique 

for the circle-stacking proЬlem of Section В. 

The difference equation (5.10) is reformulated in terms of the ratios 

(5.20) 

as 

(5.21) 

(5.22) 

This relation can Ье iterated to generate а "backward" continued fraction repre­

sentation 

1 
Rk( z) = ----z--=k-+_2 __ (5.23) 

1-------
zk+З 

l- k+4 z 
1----

1- ... 

The Pincherle theorem (see Chapter III) then ensures а one-to-one correspon­

dence between the convergence of the continued fractions (5.23) and the existence 

of the minimal solution given Ьу 
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k-l 

Фk(z) = Фо(z) П Rj(z), k > 1. (5.24) 
ј=О 

(Note that Фk(z) is defined up to an arbitrary z-dependent coeffi.cient, ф0 (z), 

since (5.10) is linear.) 

For the "physical" partition function (5.18), one could use the continued 

fraction representation, e.g., in the form 

1 
G(z) = ------- 1, (5.25) 

z 
1----~--

z2 
1------

zз 
1----

1- ... 

involving the so-called Ramanujan's continued fraction. This representation can 

Ье used to reproduce all the conclusions on the analytic structure of G(z) men­

tioned in Section В. The continued fraction representation is also not inferior to 

the infinite-sum forms like (5.14), for nt1merical computation purposes. However, 

the infinite-sum representations are more familiar. They can Ье obtained in many 

cases Ьу utilizing sum-product identities from the classical works of Ramanujan. 

For ph.ysical applications and in particular, to analyze the complex-plane 

singularities, an infinite-product representation of а partition function would Ье 

valuaЬle. We are not aware of any mathematical results appropriate for G(z) 

here. However, infinite-product forms have been utilized in other applications 

of the q-series in Physics. We will see in Section D, that in some cases both 

the minimal and some of the other linearly independent solutions are physically 

relevant. When one solution (minimal) is availaЬle, the order of the difference 

equation can Ье reduced Ьу one, Ьу standard methods. 

The generating function approach to linear second-order equations consists 

of considering the generating function 
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оо 

P(z, t) = L Fk(z)tk-l. (5.26) 
k=l 

When the difference equation is multiplied Ьу tk-l and summed over k, one some­

times ends up with а tractaЬle equation for P(z, t). Specifically, for difference 

equations with constant (k-independent) coefficients, algebraic equations for Р 

are obtained. Equations with coefficients involving integral powers of k yield 

differential equations for Р; this case is important in the solid-on-solid model 

studies (see Chapter III). However, difference equations with exponential-in-k 

coefficients, like zk, lead to functional equations for P(z, t) which are rather diffi­

cult to solve in general. The generating function method, and related techniques, 

e.g., Laplace's method, complement the continued fraction approach. However, 

they can also Ье used for equations of order higher than second, and in some 

cases are advantageous even for second-order difference equations. 

For compact cluster models considered here, one typically obtains а func­

tional equation for P(z, t), of the form 

P(z, t) = a(z, t) + b(z, t)P(z, tz). (5.27) 

Mathematicalliterature on equations of this sort is limited. When the resulting 

series is well defined, one can use а solution obtained Ьу iterating (5.27) an infinite 

number of times, 

(5.28) 

The solution of (5.27) is linear in а in the sense that for 

(5.29) 
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one has 

(5.30) 

as can Ье seen explicitly for (5.28). 

For the circle stacking proЬlem considered in Section В, the appropriate 

equation (5.27) has coeffi.cients 

(5.31) 

z 
b(z, t) = ( ) . 

t 1- t 
(5.32) 

Each solution is а linear combination of the type (5.30), with а 1 = (1- t)- 1 , а2 = 

[t(1- t)]-1 . The coeffi.cients a 1 ,2 (z) involve two unknown functions F1 ,2 (z). One 

relation between the coeffi.cierits is provided Ьу the boundary condition (5.11). 

Another condition must therefore result from the "analyticity" requirement on 

P(z, t), near t =О. 

However, expansion (5.28) is ill-defined in this case. The generating function 

method can Ье applied to this proЬlem if we consider modified functions 

(5.33) 

satisfying 

(5.34) 

After а tedious calculation utilizing (5.28), one ends up with an expression for 

the partition function G(z). However, it is much more complicated than (5.18) 

or (5.25). We omit the details of this calculation. 
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D. Other stacking models 

Using the techniques outlined in the previous section we can obtain analytic 

results for the generating functions of а variety of cluster models with different 

stacking rules. Several of them are described in this section. 

Consider first а "one-tooth" stacking of squares in а pyramid-like shape 

illustrated in Fig. 11: The model is similar to that of Section А, but with the 

additional requirement that each row is continuous. The quantity of interest is 

the total number CN of pyramids that can Ье built from N squares. Let CN,k 

denote the number of distinct N -square pyramids with exactly k squares in the 

base row. As usual, we define the restricted partition functions Ьу (5.1). The 

appropriate recursion relations are 

k 

Fk = 1 + L(k- т+ 1)zmFm. (5.35) 
m=l 

The important change here, as compared to the recursions considered in Sections 

А-В, is the factor (k- т+ 1) accounting for the number of ways in which the 

second horizontal row of т < k squares can Ье positioned. The k = 1, 2 relations 

provide the boundary conditions which can Ье simplified to 

1 
F1(z) = -

1
-, 
-z 

1 
F2(z) = ( )2. 1-z 

For higher k relations, we form second differences to obtain 

(5.36) 

(5.37) 

Examination of (5.35) suggests that all Fk are rational functions of the form 

(5.38) 
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Figure 11 

Stacking of squares in а pyramid-like shape. 
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[see (5.15)], where Qk are polynomials. Finally, note that the total partition 

function for the single-pyramid proЬlem is given Ьу 

G(z) = P(z, z), (5.39) 

[see (5.3), (5.26)]. 

Let us apply the generating function method to (5.36) - (5.37). Proceeding 

along the lines of Section С, we get 

р( ) 
_ (1- z- 2t)F1 (z) + t(1- z2)F2(z) z Р( ) 

z, t - (1 - t)2 + (1 - t)2 z, tz . (5.40) 

Since there are two boundary conditions, we expect that both linearly independent 

solutions are physically acceptaЬle. In this case F1 ,2 are known explicitly. Thus, 

(5.40) reduces to (5.27) with 

1 
а=--

1- t' 

Ву using (5.28), P(z, t) is obtained as 

z 
Ь= . 

(1- t) 2 
(5.41) 

(5.42) 

For t = z, this is identical with the result obtained Ьу Temperley for G(z) [see 

(5.39)] Ьу а different method, 

(5.43) 

This function has an essential singularity at z = 1, analysis of which yields the 

large-N cluster numbers as 
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(5.44) 

where С and J-l are known constants. This result is different from the generic 

lattice animal form (5.8). It is interesting to mention in this connection а model 

of filling а corner Ьу squares obtained Ьу imposing additional constraint in the 

one-pyramid square stacking model, namely that the leftmost column must not Ье 

shorter than any other column in the cluster. The resulting model is equivalent to 

enumeration of nonincreasing partitions of N. Thus, detailed results are availaЬle, 

specifically, 

(5.45) 

(with different С and р). The exponent. of the power law prefactors in (5.44) -

(5.45) is not universal, unlike (} in (5.8). 

Turning back to the one-pyramid packings of squares, we derive an explicit 

form for the restricted partition functions Fk(z) Ьу expanding (5.42) in powers 

of t. We use the identity 

(5.46) 

to get 

(5.47) 

where 

k 
_ ~ qn+j-l(z)qn+k-j-l(z) 

Tk n = L.-J ( ) ( ) · 
' ј=О qj Z qk- ј Z 

(5.48) 

This douЬle-sum representation is rather complicated. (See further below.) 
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The continued fraction method can Ье used to derive the form of the minimal 

solution of (5.37). We will only quote some results here. Continued fractions of 

the type appropriate for (5.37), have been analyzed Ьу Ramanujan. As а result, 

an infinite series representation is availaЬle, 

(5.49) 

However, for this proЬlem the other linearly independent solution, Фk, is also 

physically admissiЬle. Ву reducing the order of the equation using а known 

solution, we get an extremely complicated result. 

· However, а relatively simple representation for Фk(z) can Ье obtained Ьу the 

method described later in Section Е. Thus, 

(5.50) 

where 

n 1 
sп(z) = 2"'"' 1 ., 6 -z1 

j=l 

for n> 1. (5.51) 

Бу imposing the boundary conditions, we get 

Fk = (1- z)(фkФz -2ФzФk)- (фkФl- Ф1Фk). 
(1- z) (ф1Ф2- Ф2Ф1) 

(5.52) 

Another solution of (5.37), 'l/Jk(z), linearly independent of фk(z), is known in the 

theory of q-ultraspherical polynomials, 

(5.53) 

This can Ье used in place of Фk in (5.52). 
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Pyramid-shape or "one tooth" stacking of circles is illustrated in Fig. 12. 

The stacking rules are identical to those of Section В (Fig. 9), but now each row 

must Ье continuous (no gaps) .. Let CN,k denote the number of distinct N-circle 

clusters with k circles in the base. Note that CN = Е~=К CN,k, where К is the 

smallest integer greater or equal ( v'SN + 1 - 1)/2. The restricted generating 

functions satisfy 

k-l 

Fk(z) = 1 + L: (k- m)zm Fm(z), k > 2, (5.54) 
m=l 

with F1 (z) = 1. Ву forming the second difference, this is reduced to 

(5.55) 

with the boundary conditions 

F2 = 1 + z. (5.56) 

Examination of (5.54) leads to the conclusion that all Fk(z) are polynomials of 

degree k(k- 1)/2. The structure of this proЬlem is quite similar to that of the 

pyramid-of-squares stackings considered above. Therefore, we only list some 

central results here. 

The generating function method can Ье invoked for the pyramid circle stack­

ings. Similarly to the pyramid-of-squares, the boundary conditions (5.56) are 

used to yield 

1 
a(z, t) = -

1
-, 
-t 

Thus, (5.28) takes the form 

zt 
Ь( z' t) = ( 1 - t )2 . (5.57) 
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Figure 12 

Pyramid-shape stacking of circles at а line wall. 
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(5.58) 

The total partition function, first obtained Ьу Auluck Ьу а different method, is 

given Ьу 

оо z(n-l)(n+2)/2 (1 _ zn) 
G(z) = P(z,z) = L 2 (z) . 

n=l qn 
(5.59) 

This function has an essential singularity at Zc = 1, analysis of which yields 

(5.60) 

(Unfortunately, the form of the power-law prefactor here is not known.) 

Difference equation (5.55) can Ье also analyzed Ьу continued fraction tech­

niques: we only quote the form of the minimal solution, 

оо zn(n+2k+l)/2 
Фk(z) = L 2(z) . 

п=О qn 
(5.61) 

This infinite series form of фk(z) follows from yet another of the Ramanujan's 

results. In fact, ·both solutions of (5.55) are physically acceptaЬle. The second 

solution ca.n. he found Ьу the method of Section Е, 

оо zn(n+2k+l)/2 
Фk(z) = k + L 2 (k- n+ sn). 

n=l qn 
(5.62) 

The boundary conditions then imply 

Fk · (1 + z) (ф1 Фk- фkФl)- (ф2Фk- фkФ2). 

Ф1 Ф2- Ф2Ф1 
(5.63) 

Next, let us consider the partially directed compact lattice animal model, 

illustrated in Fig. 13. The model is most easily described as having N squares 
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Figure 13 

А partially directed compact lattice animal. 
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positioned in ( contintlOllS) columns. The neighboring columns must touch Ьу at 

least one square. А formulation according to directed square lattice animal rules 

is also possiЬle. 

Let k denote the number of squares in the leftmost "root" column, and CN,k 

Ье the number of distinct N -square k-root clusters. Then the restricted partition 

functions ( 5.1) satisfy 

оо 

Fk(z) = 1 + L (k +т- 1) zm Fm(z). 
m=l 

Бу forming the second difference, we get 

with the boundary conditions (k = 1, 2 in (5.64)), 

оо 

F1 = 1 + L mzmFm, 
m=l 

оо 

F2 = 1 + L(m + 1)zmFm. 
m=l 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

This proЬlem is interesting in that (5.65) has constant coeffi.cients. Thus, it 

can Ье solved in full detail, including for finite-size properties: see Section F. 

Specifically, the minimal solution is simply фk( z) = 1, while the other linear 

independent solution is Фk(z) = k. Both solutions are physically acceptaЬle. We 

have 

Fk(z) = kA(z) + B(z). (5.68) 

The coeffi.cient functions А and В are determined Ьу (5.66)-(5.67). One gets 
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Fk(z) = kz(l- z)3 + (1- 3z + z2)(1- z)2. 
1 - 5z + 7 z2 - 4z3 

The total partition function is given Ьу 

~ k z(1- z) 3 

G(z)= ~z Fk(z)= l-5z+7z2-4zз· 
k=l 

(5.69) 

(5.70) 

All the partition functions, (5.69) - (5.70), have а simple pole singularity at 

Zc = _л-l, where 

л = 3.20556943 .... (5. 71) 

or 

л= 12 
(6v'177- 71)1/3 - (6v'177 + 71)1/3 + 7. 

(5.72) 

Thus, for this model (5.8) applies, with (} = О. 

Finally, consider the fully directed compact lattice animal model. Although 

this model can Ье defined according to the square lattice directed animal rules, 

it can also Ье described as stackings of circles: see Fig. 14. Continuous (no 

horizontal gaps) rows of circles are put on top of each other with the requirement 

that each circle not in the base is supported Ьу having at least one of its lower 

neighbors present. (Thus, the difference with the pyramid stackings of circles is 

that there "support" meant both lower neighbors occupied.) The whole cluster 

is supported Ьу а single base circle ( origin in the lattice animal formulation). 

As usual, we consider the restricted partition functions Fk(z) for the numbers 

CN,k of N-circle, k-base clusters, satisfying 

k+l 

Fk(z) = 1 + L (k- т+ 2)zm Fm(z). (5.73) 
m=l 
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Figure 14 

А fully directed compact lattice animal. 
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Except for the two boundary conditions, 

(5.74) 

(5.75) 

the recursions (5.73) can Ье reduced to 

(5. 76) 

This is а third order difference equation. Since there are two boundary conditions, 

one anticipates two physically "regular" and one "irregular" solutions. Various 

studies have found а simple pole singularity in the partition functions (i.e., О= О 

in (5.8)}, at Zc = л-l with 

л = 2.661857944. . . . (5.77) 

The exact solution of this model has been achieved along the following lines. 

Note that all the difference equations encountered in the stacking models have 

discrete first or second derivatives on their left hand sides. This is related to 

the fact that the multiplicity factors, like (k- т+ 2) in (5.73) are, respectively, 

constants or linear functions, in their k-dependence. Ву inspecting the mini­

mal solutions obtained for the second-order difference equations in the preceding 

examples, we can guess one solution for 

(5.78) 

It is 
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(5.79) 

Similarly, 

(5.80) 

is solved Ьу 

оо 

щ(z) = Lq;2zn(l(n-l)+2(k+m)]/2. (5.81) 
n=O 

Thus, we have one solution for (5.76), 

(5.82) 

regular at z = О for k > -3. Formally, one can then reduce the order of the 

difference equation and apply the continued fraction method to derive the second 

regular solution. However, the resulting expressions turn out to Ье extremely 

complicated. The generating function method is also not useful because (5.28) is 

ill-defined. 

The second "physical" solution, Фk(z), has been obtained Ьу а different 

method, described in the next section. We only quote the result for Фk here 

(5.83) 

Thus, for the original proЬlem (5.76) we have 

(5.84) 
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with A(z) and B(z) determined Ьу the boundary conditions (5.74)-(5.75). Then 

the total partition function is given Ьу G(z) = zF1(z). After а straightforward 

but long algebra we obtain 

G (1- z2)012(z)- z30 13(z) 
(z) = z (l + z)(l- 3z + z2)012(z)- z3(1- 2z)Olз(z) + z502з(z)' (5.85) 

where 

(5.86) 

As in the case of several other stacking proЬlems considered in this section, 

the generating function G(z) has intricate pattern of singularities in the complex­

z plane. (The behavior of this. function is similar to the circle stacking proЬlem, 

Section В, as shown in Fig. 10.) However, for models with Л > 1, the leading 

large-N growth rate is determined Ьу the singularity (simple pole) nearest to the 

origin, at Zc = 1/ Л. 

The solutions of several stacking models presented here illustrate the impor­

tant features of this class of compact animals. If the stacking rules are sufficiently 

relaxed to allow clusters with finite entropy N-1 ln CN --+ ln Л per element ( circle, 

square) in the large-N limit, i.e., Л > 1, then the universal form (5.8) applies 

with () = О. Models with more restrictive rules have entropy vanishing as N-112 

[see (5.44), (5.45), (5.60)]. 

Е. Asymptotic properties of the physical solutions 

In this section we develop some mathematical aspects of the solution of stack­

ing models considered above. The nonautonomous difference equations encoun­

tered in several compact cluster models considered in this chapter, were always 



104 

of the form (5.78) or (5.80). Depending on the value of the nonnegative integer l, 

these equations may have several solutions. However, the physically acceptaЬle 

solutions must Ье regular for small z. Furthermore, the series 

(5.87) 

in (5.3), etc., must converge in the physically relevant part of the range О < z < 1 

since (5.87) always represents some sort of а partition function. 

Thus, for large k, the right sides of (5.78) and (5.80) asymptotically vanish 

for the "physical" solutions. It follows that there is exactly one such solution, 

(5.79), of (5.78), i.e., фk(z) = vk(z). It has а finite limit v00 (z) = 1 as k ~ оо 

for fixed О < z < 1. Difference equation (5.80), however, has two "physical" 

solutions, фk(z) = uk(z) of (5.81), and Фk(z), with large-k behaviors 

Фk(z) ~ 1, (5.88) 

and 

Фk(z) гv Poo(z)k, for О< z < 1. (5.89) 

It is interesting to recall that we always had exactly the right number of boundary 

conditions, (5.11), (5.36), (5.56), (5.74)-(5.75), requiring one solution of (5.78), 

but two solutions of (5.80). 

The asymptotically constant solution, which tends to unity when k ~ оо, is 

о btained from the following ansatze: For ( 5. 78), we try 

оо 

Фk(z) = L q;; 1 zkn fп(z), (5.90) 
n=O 
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which, upon substitution into (5.78), yields а first-order difference equation for 

fп(z), which can then Ье solved Ьу а straightforward iteration. Similarly, for 

(5.80), the appropriate ansatz is 

оо 

Фk(z) = L q;:2 zkn fп(z), (5.91) 
п=О 

which also leads to а first-order equation for fп(z). (А similar approach was used 

in our solution of the difference equation (3.44) in Chapter III.) 

The second physical solution of (5.80), asymptotically linear in k, can Ье 

obtained in the form 

(5.92) 

Substitution in (5.80) and use of the fact that фk is а solution, yield after some 

algebra the following inhomogeneous equation for 9k(z), 

(5.93) 

This equation can Ье solved Ьу the ansatz 

оо zn[l(n-1)+2(k+m)]/2 

gk = "L 2 (z) Рп(z), 
п=О qn 

(5.94) 

inspired Ьу (5.91). Indeed, after а long but straightforward calculation, one 

concludes that Рп must satisfy the first-order equation 

2 
Pп+l(z) = Рп(z) + l- 2 + l _ zn+l' for n> О. (5.95) 

Note that Фk(z) can Ье redefined up to an additive term of the form h(z)фk(z)~-

This allows the convenient choice p0 (z) =О, yielding 
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Рп(z) = n(l- 2) + sп(z), for n> 1, (5.96)' 

where sn(z) is defined Ьу (5.51). Finally, the second "physical" solution of (5.80) 

is obtained as 

оо zn[l(n-1)+2(k+m)]/2 

Фk(z) = k + '2:: 2 [k +n (1- 2) + sn]. 
n=l qn 

(5.97) 

Note that this choice corresponds to p00 (z) = 1 in (5.89). With the appropriate 

values of l and т in (5.97) we obtain the relations (5.50), (5.62) and (5.83). 

F. Finite-size and growth properties of compact animals 

In order to analyze the finite-size properties of compact clusters, we con­

sider the partially directed compact lattice animal model, described in Section С 

and Fig. 13. This model is of particular interest because some of its finite-size 

properties can Ье obtained analytically. It is therefore instructive to present the 

calculation in some detail. 

Let us first consider the definition of dimensions of directed lattice animals. 

For the 2d partially directed compact lattice animals of size N, one can define 

(see below) two cluster radii, R11(N) and Rj_(N), which grow according to 

and (5.98) 

as N ~ оо [compare (2.8)-(2.9)]. The indices 1/ and ј_ indicate cluster dimensions 

parallel and orthogonal to the directed axis (horizontal, Х axis). 

Consider the N-site partially directed compact lattice animal as shown in 

Fig. 13, with the leftmost "root" column ( of k sites) positioned at Х = О. 
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Denote Ьу X n the Х coordinates of the sites: n = 1, 2, ... , N. Let the index а 

label all k-root animals, and define the generating function 

N(a) 

Fk(z, и)= L zN(a)-kuB(a), З( а) = L Xn(a), (5.99) 
а n=l 

where N (а) is the number of sites in the ath animal and X n (а) are the appropriate 

Х coordinates. This definition reduces to (5.1) for и= 1, i.e., Fk(z, 1) = Fk(z), 

satisfying (5.64). А measure of animal dimension along the Х axis can Ье defined 

Ьу averaging the center-of-mass Х coordinate 

(5.100) 

over the different N-site animals. Summing over all the N-site animals (labeled 

Ьу index Ь), we have 

(5.101) 

where CN is the total number of different N-site animals. [Note that first-moment 

definition for Rj_(N) vanishes identically.] Ву (5.8) and (5.98), 

CN N 
NcNRII(N) = LLxn(Ь) rv Nvii-O+lлN. (5.102) 

b=l n=l 

It is convenient to define R11 (N, k) for k-root clusters only. The relevant generat­

ing function takes the form 

R ( ) = [8Fk(z,и)] _ ~ 7\r R (N k) N-k 
k Z - Ви - ~ 1 v CN 11 , Z • 

, и=l N=k 
(5.103) 

After these preliminary definitions we now calculate Fk(z, и). Note that 

these generating functions satisfy 
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оо 

Fk(z, и)= 1 + L (k + m- 1) L zN(a)иB(a)+N(a), (5.104) 
m=l а 

which reduces to (5.64) for и = 1. This can Ье further rewritten as 

оо 

Fk (z, и)= 1 + L (k + m- 1)(zи)m Fm(zи, и). (5.105) 
m=l 

The и = 1 relation is solved Ьу (5.69), giving CN in the form (5.8), with () = О 
and Л > 1 [see (5.71)]. In order to obtain R11(N) we calculate the derivative as 

indicated in (5.103). Using (5.105) with z replaced Ьу zји, we get 

dFk(z, 1) ~ 
Rk(z) = z dz + L.,; (k + m- 1)zm Rm(z). 

m=l 

(5.106) 

Ву forming the second difference and using (5.65), this can Ье further rewritten 

in the form 

(5.107) 

Rk(z) = kC(z) + D(z), (5.108) 

where C(z) and D(z) are determined from the boundary condition obtained from 

(5.106) with k = 1, 2. After а long algebra one gets 

C(z) = z(1- z)4(1- 2z)(1- 4z + 10z2 
- 8z3 + 8z4 

- 2z5
), 

(1- 5z + 7z2- 4zЗ)З 

2z2(1- z) 3 (1- 5z + 10z2 - 12z3 + 15z4 - 7z5 + 2z6 ) 
D(z) = . 

(1- 5z + 7z2- 4zЗ)З 

(5.109) 

(5.110) 
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Ву using (5.104), the generating function for the quantities NcNR11(N) can Ье 

expressed in terms of Rk(z) as 

оо оо 

E(z) = :L [NcNRII(z)]zN = :L zkRk(z), (5.111) 
N=l k=l 

which, Ьу (5.108), gives 

E(z) = z(1- z)-2 [C(z) + (1- z)D(z)]. (5.112) 

The asymptotic behavior of (5.102) corresponds to the (1-,\z)-( 1111+2-0) singular­

ity of E(z). From (5.109); (5.110) and (5.112), it follows that vll = 1 for compact 

directed animals. The corresponding calculation of v .L, characterizing the cluster 

dimension along the symmetric (У) axis, requires the use of the second or higher 

even-power moments of the size distribution. This calculation (not detailed here) 

has been performed on а computer, with the result V.L = 1/2. (Recall that similar 

exponent values have been obtained for the PDSA W in Chapter II.) 

The caliper size distribution along the Х axis can Ье also calculated. Let 

CN,k(L) denote the number of distinct N-site k-root animals with exactly L 

columns, i.e., with Х ranging from О to L - 1. Obviously, we have the rela­

tions 

{
о, 

CN,k(L) = k, 
БN,k, 

Recursion relations for с N ,k ( L) are 

N-k-(L-2) 

for N < k + ( L - 1), 
for N = k + ( L - 1), 
for L = 1. 

CN,k(L) = L (k +т- l)cN-k,m(L- 1), 
m=l 

(5.113) 

(5.114) 

where the upper limit for т is obtained from the condition mmax+(L-2) = N -k. 

It is convenient to introduce а douЬle-generating function, 
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оо оо 

Gk(z, v) = L L CN,k(L)zN-kvL, 
L=l N=k+(L-l) 

which, with (5.113), reduces to 

оо оо 

Gk(z, v)- v ..:_ L L cн,k(L)zN-kvL. 
L=2 N=k+(L-l) 

Ву (5.114), we obtain а triple sum which can Ье rearranged to give 

Form this relation Gk(z, v) can Ье obtained in the form 

Gk(z, v) = v[kA(z, v) + B(z, v)], 

(5.115) 

(5.116) 

(5.117) 

(5.118) 

with A(z, v) and B(z, v) evaluated Ьу substituting (5.118) in (5.117) with k = 1, 2. 

А long algebra gives 

А vz(l- z? · 
(z,v)= [l-(4+v)z+(6+v)z2 -(4-v+v2)z3 +(l-v)z4]' 

(5.119) 

В( ) (1- z)2[(1- z)2
- vz] 

z,v = [1-(4+v)z+(6+v)z2 -(4-v+v2 )z3 +(1-v)z4 ]" 
(5.120) 

Note that A(z, 1) and B(z, 1) reduce to A(z) and B(z) in (5.68). 

The parallel cluster size measure, r11 ( N), can also Ье defined as the first 

moment of the spanning size L, i.e., 

N 

CNrii(N) = L LcN(L) I'J Nvll~() лN' (5.121) 
L=l 
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with 

N-(L-l) 

CN(L) = L CN,k(L). (5.122) 
k=l 

The appropriate generating function is defined as 

оо оо N N -(L-l) 

H(z) = L [cNrн(N)]zN = 2:": 2:": 2:": LcN,k(L)zN. (5.123) 
N=l N=l L=l k=l 

This can Ье further rearranged to give 

H(z) = [ :v t, zkGk(z, v)] v=l = [:v A(z, v)] v=l. (5.124) 

Using (5.119) we finally obtain 

H(z) = z(l- z)3 (1- 4z + 6z2
- 3z3 + z4

) 

(1-5z+7z2 -4z3)2 · 
(5.125) 

Since the asymptotic form in (5.121) corresponds to the (1- Лz)-(v11-B+l) singu­

larity in H(z), the result (5.125) confirms vll = 1. 

We can now address the question of finite-size properties. Observe that 

A(z, v), given Ьу (5.119), can Ье represented as 

оо оо оо 

A(z,v) = LzkGk(z,v) = L vL L cN(L)zN, (5.126) 
k=l L=l N=L 

with cN(L) given Ьу (5.122). If we regard the zN factor as fugacity in the grand 

canonical ensemЬle, then A(z, v) generates the fixed-L partition functions 

оо 

ZL(z) = L cN(L)zN, (5.127) 
N=L 
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which can Ье used in calculating thermodynamic quantities. Also, one possiЬle 

definition of parallel correlation length is 

~ll(z) = [дlnA(z,v)] 
дv v=l 

ll(z) _1 
А( z' 1) ""' ( Zc - z) ' (5.128) 

where the asymptotic divergence with vll = 1 follows from the explicit results 

derived earlier. 

Consider now the system of finite extent М along the Х axis, i.e., the Х 

coordinates of the cluster sites are restricted to О, 1, ... ,М- 1. The appropriate 

generating function is analogous to A(z, v) in (5.126), but with L values restricted 

to L <М, 

м 

Ам(z, v) = 2::: vL ZL(z). 
L=l 

In analogy with (2.53) one can define а scaling function, Р((), via 

Ам(z, 1) ~Р((), 
A 00 (z, 1) 

where the scaling combination. ( is defined Ьу 

( = M/~11(z) rv (zc- z)M. 

(5.129) 

(5.130) 

(5.131) 

Similarly, in analogy with (5.128), we ca:ri define the finite-size correlation length 

with the scaling behavior given Ьу 

~м(z) ~ Q((). 
~ll(z) 

(5.132) 

(5.133) 
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Let us now consider the ratio (5.130). The М = оо generating function 

A(z, v) given Ьу (5.119) can Ье written in the form 

(1 _ z )
3 

-1 [ 1 1 Ј 
A(z,v) = 2 [v-(z)- v+(z)] l ( ) - l ( ) , z 1 - v v_ z 1 - v v+ z 

(5.134) 

with 

(1 z) 2 

V± ( z) = - ~2 [1 + z ± Ј 1 + бz + z2], (5.135) 

being the roots of the denominator of (5.119). The fixed-L partition function 

ZL(z), defined Ьу (5.129), is therefore given Ьу 

1- Z L L 
ZL(z) = [v: (z)- v-t (z)]. 

v'1 + 6z + z2 
(5.136) 

With this result one can calculate exactly various finite-M quantities. For the 

scaling analysis it is convenient to calculate the difference 

оо 

A00 (z, 1)- Ам(z, 1) = :Е ZL(z). (5.137) 
L=M+l 

The functions V±(z) given Ьу (5.135), have the following property for О< z < zc: 

-v+(z) > v_(z) > 1; (5.138) 

while at Zc, we have -v+(zc) > v_(zc) = 1. For large М and L the contribution to 

(5.137) due to the v+(z) term in (5.136) is exponentially small. The contribution 

from v_(z) diverges as z---+ z~. Thus, the differenc~ in (5.137) becomes 

1-z v:M(z) 
Aoo(z, 1)- Ам(z, 1) ~ ( ) 1. v1 + 6z + z 2 v_ z -

(5.139) 
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In the limit z--+ z;, the denominator in this expression vanishes, while v:M (z) 

can Ье expressed as 

(5.140) 

The constant k can Ье obtained explicitly: after а long calculation one gets k = 1. 

Using this result, we finally obtain the scaling function 

(5.141) 

with К= 1 as z --+ Zc (this result also requires а lengthy calculation). In deriving 

(5.141) we used (5.139)-(5.140) and the definition (5.130). Thus, the finite-size 

scaling function, 

(5.142) 

is obtained. [Similarly, one can calculate the scaling function Q( () defined Ьу 

(5.133). We omit the details of this calculation.] 
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VI. SUMMARY 

In this work we have considered three classes of lattice models: walks, inter­

faces, and clusters, both at surfaces and in the bulk. Restrictions of directedness 

and compactness have rendered many of these models exactly solvaЬle, some in 

full detail including scaling and finite-size behavior. Our goal has been to present 

these solutions and emphasize the resulting scaling properties. 

In Chapter II we have considered directed walk models for conformational 

properties of linear polymers. These models have been solved in general dimen­

sionality d, and their scaling properties analyzed exactly. We thus feel that this 

class of proЬlems is reasonaЬly well understood. Of cours~, from the point of 

view of exact solutions the isotropic self-avoiding walk models for d > 2 remain 

а major challenge. 

Chapter III is devoted to two dimensional SOS models of interfaces, and our 

analysis has been focussed on the wetting transition. This model has been solved 

exactly only for а limited number of external (substrate) potentials including 

short range, and 1/r long range potentials. Recall that the RSOS model with the 

l/r potential exhibits unusual features such as а nonscaling shift of the critical 

( wetting) temperature and, for the appropriate values of potential parameters, 

undergoes а first-order transition with divergent correlation lengths. It would 

Ье valuaЬle to have solutions of discrete models with other types of long range 

potentials. On the more technical side, the development of the mathematical 

theory of analytic properties of the continued fraction (3.40) would Ье highly 

desiraЬle. With such а theory, the continued fraction method for solving equations 

like (3.5) would yield results of practical interest. 
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The directed polymer chain adsorption, studied in Chapter IV, is one of 

the few solvaЬle models of surface effects in two and three dimensional systems. 

An important extension of this model would Ье to consider the behavior of the 

collection of chains near а surface. 

Finally, in Chapter V, we have described exact solutions of several compact 

cluster models. In addition, we have analyzed finite-size properties of the partially 

directed compact lattice animal model. It would Ье useful to have а similar 

finite-size study performed for other models, particularly in the cases when the 

generating functions have essential singularities. 

We emphasize that all the above models were considered on regular lattices. 

Recent results Ьу several workers suggest that introduction of randomness or 

impurities of various types leads to dramatic changes in behavior. Finally, as а 

more general reminder, we mention that exact solutions of the three-dimensional 

SOS and cluster models are scarce. 
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eigenvalue о о о о о о о о о о о о о о о о о о ••••••••••••••••••••••••• 35-36,40-41,52,65,71-72 

eigenvector ... о о о о о о о о о о о о о о о о о. о о о о о о о о о о о о о о о о о о о. о о. о о о о 35-36,52,54,65,71 

ensemЬle . о о о ••••••••••••••••• о •••••••••• о •••••••••••• о •••• 10,19-20,64,71,111 

entropy (entropic) ................................. о. о ••••••• 6,70,76,83,103 

expansion ( expand) ..................... 11,15,24,37 ,45,48,50,53,68, 72,88,92 
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exponent .................. 4,7-9,11,15-16,18,20,28,51,54,68,7 4, 77,79,83,92,109 

FDSAW (fully directed SAW) ............................ 10-11,13-17,21-23 

finite (finite-size) ...... 1-2,7,23-24,28-30,32,40,43,4 7,52,54-55,57-60, 72,76,98, 

103-104,106,111-117 

fluctuation (fluctuating) ............................. 2,32-33,42,55,57,60,70 

fraction (continued rv) .... 1-2,32,40,44-47,62,66,68-73,76,85-87,93,96,102,116 

fugacity .............................................. 6,10,19-20,62-63,71,111 

Gaussian ........................................................ 5-9,20,57,75 

grafted (rv polymer chain) ........................................ 62,70-71 

infinite ......................................... 19,23-25,33,52,62,86-87,93,96 

interaction ........................................... 32-33,35,39-40,43,51,70 

interface (interfacial) ....... 1-2,9,29,32-34,36-39,44,50-52,55-60,63,70,74,116 

Ising ............................................... 29,32-34,37,43,55-56,59-60 

isotropic ........................................................ 20,24,75,116 

matrix .................................... 1-2,9,32,35-36,51-52,57,63-64,68,71 

method ........... 1-2,7 ,9,32,40,44,61 ,64, 70-71,76,82,85-88,91,93-94,96,102,116 

moment ........................................... 11,13,15,18,51,107,109,110 

monomer .................................................. 3-4,61-62,66,68-73 

multicritical ........................................................... 44,68 

nonsymmetric ................ · ............................................ 35 

nonuniversal ............................................. 4,19,23-24,44,79,83 

PDSAW (partially directed SAW) ....................... 16-18,22-24,33,109 

pinning .................................................. 44,55-56,62,64,68,77 

pole (simple rv) ....................... 11,15,18,20,26,41,80,83-84,99,101,103 

polymer ................................ 1-4,6-7,19,24,31,61-62,68,70-71,74,116 

potential ................................. 2,35,38-40,42-44,46-4 7,49-52,55,116 

q-series ........................................................... 2,82-83,86 
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radius ( cluster radii) ................................................ 76,106 

random ( t'V walk) ......................... 1,3-4,6,9,31,54,57,61,70, 76,80,117 

rod-to-coil ( t'V transition) ......................................... 1,3,10,19 

RSOS (restricted SOS) ......................... 33,40,47,52,57-58,63-64,116 

SAW (self-avoiding walk) ........................ 3,5,7-11,13-24,30,33,61,109 

scale ............................................................... 8,28,30,55 

self-avoiding .............................................. 3-5,7-8,14,16,61,116 

shape ........................................................... 3,89-90,94-95 

solid-on-solid ( t'V model) ...................................... 1,32,34,76,87 

solvaЬle ................................................. 1-2,40,61,75,116-117 

SOS (solid-on-solid) ........... 2,32-33,37-38,40,43,47,52,55-60,63-64,116-117-

spectrum ( t'V of eigenvalues; spectral) ......... 36,38,44,46-4 7,51 ,65,68, 71-72 

spin .............................................................. 32-33,36,55 

stack (stacking) ...................... 76-83,85,88-90,92,94-95,99,101,103,115 

statistical (statistics) ......................... 1-3,6-7,9-11,19,31,61-62,71,76 

string ............................................... , ................. 1,34,76 

substrate ........................................................ 2,32,50,116 

surface ................................ 2,29,33,55,57-59,61-63,68,70-76,116-117 

susceptibility ..................................................... 6,10,25-26 

symmetric (symmetry) ............................ 13,15,43,54,61,70,73,109 

temperature .................................................. 4,61,68,70,116 

universal ................................................ 4,19,24,79,83,92,103 




