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Chapter 1 

EXTREME VALUE THEORY 

1. INTRODUCTION 

Extreme value theory is a separate branch of Statistics and Probability that deals with extreme 

events. This theory is based on the extremal type’s theorem, also called the three types theorem, 

stating that there are only three types of distributions that are needed to model the maximum or 

minimum of the collection of random observations from the same distribution. In other words, if 

you generate N data sets from the same distribution, and create a new data set that includes the 

maximum values from these N data sets, the resulting data set can only be described by one of 

the three models – specifically, the Gumbel, Frećhet and Weibell distributions. These models, 

along with the Generalized Extreme Value (GEV) distribution, are widely used in risk 

management, finance, insurance, economics, hydrology, material sciences, telecommunications, 

and many other industries dealing with extreme events. There are three fundamental 

mathematical results that illustrate the importance of extreme value theory (EVT) in risk 

management applications: 

(1) Extremal types Theorem. 

(2) Domain of attraction Theorem. 

(3) Criterion for choosing a high Threshold. 

 

1.1 Maxima and Minima 

(i) Maxima: Let  𝑋1, 𝑋2, … 𝑋𝑛  be a sequence of independent identically distributed (i.i.d.) random 

variables with distribution function 𝐹(𝑥) and suppose 

 𝑀𝑛  = max X1, X2 , … , Xn = max1≤𝑖≤𝑛 𝑋𝑖 , 

          𝑚𝑛   = min X1, X2, … , Xn    = min1≤𝑖≤𝑛 𝑋𝑖, 

        but the relation between max and min is, 

         min X1, X2, … , Xn   = −max⁡{−𝑋1,−𝑋2, … , −𝑋𝑛} , 

         min1≤𝑖≤𝑛 𝑋𝑖= −  max1≤𝑖≤𝑛(−𝑋𝑖). Then the distribution function of 𝑀𝑛  is 

         𝑃 𝑀𝑛 ≤ 𝑥 =P 𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥, … , 𝑋𝑛 ≤ 𝑥   , 
        𝑃 𝑀𝑛 ≤ 𝑥 = 𝑃 𝑋1 ≤ 𝑥 … 𝑃 𝑋𝑛 ≤ 𝑥 =  𝐹(𝑥) 𝑛 = 𝐹𝑛(𝑥), 𝑛 ≥ 1  𝑥𝜖ℛ, 𝑛𝜖𝑁. 
  

(ii) Minima: Generally, results for minima can be deduced from corresponding results for maxima 

by writing  min1≤𝑖≤𝑛 𝑋𝑖  =−  max1≤𝑖≤𝑛(−𝑋𝑖). In conjunction with minima, it can be useful to 

present results in terms of the survivor function 𝐹 = 1 − 𝐹.  
      We have 𝑃 𝑚𝑛 > 𝑥 =  1 − 𝐹(𝑥) 𝑛 =  𝐹 (𝑥) 𝑛 = 𝐹 𝑛 𝑥 .  
      Therefore, the distribution function of the minima is  

    𝑃 𝑚𝑛 ≤ 𝑥 = 1 −  1 − 𝐹(𝑥) 𝑛 = 1 − 𝐹 𝑛 𝑥 .  
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Definition 1.1.1. (Extreme Value Distributions for maxima). 
The following are the standard Extreme Value distribution functions for maxima:  

Type I. Gumbel:   Λ 𝑥 = 𝐺0 𝑥 = exp −𝑒−𝑥     ,       − ∞ < 𝑥 < +∞ ;   

 Type II. Frećhet:  Φ𝛼 𝑥 = 𝐺1,𝛼 𝑥 =  
exp −𝑥−𝛼 ,          𝑖𝑓 𝑥 > 0,
0,                            𝑖𝑓  𝑥 ≤ 0,

           𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0;  

Type III. Weibull: Ψ𝛼(𝑥) =  𝐺2,𝛼 𝑥 =  
exp − −𝑥 𝛼 ,      𝑖𝑓 𝑥 ≤ 0,            

1,                        𝑖𝑓 𝑥 > 0.       
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0.  

 

 

Definition 1.1.2. (Extreme Value Distributions for minima).  
 

 The standard converse Extreme Value distributions for minima are defined as: 

  

Λ
∗ 𝑥 = 1 − Λ −𝑥 , Φ∗ 𝑥 = 1 − Φ𝛼 −𝑥   𝑎𝑛𝑑 Ψ∗ 𝑥 = 1 − Ψ𝛼 −𝑥 . 

 

Then the following are the standard Extreme Value distribution functions for minima: 

 

Type I. Gumbel: Λ∗ 𝑥 = 𝐺0
∗ 𝑥 = 1 − exp −𝑒𝑥   ,       − ∞ < 𝑥 < +∞ ;   

 

Type II. Frećhet:  Φ𝛼
∗  𝑥 = 𝐺1,𝛼

∗ (𝑥) =  
1 − exp − −𝑥 −𝛼 ,      𝑖𝑓 𝑥 < 0,
1,                                      𝑖𝑓  𝑥 ≥ 0,

      𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0; 

 

 

Type III. Weibull  Ψ𝛼
∗ 𝑥 = 𝐺2,𝛼

∗  𝑥 =  
1 − exp −𝑥𝛼 ,     𝑖𝑓 𝑥 ≥ 0,            

0,                        𝑖𝑓 𝑥 < 0.       
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0.  

 

 
  

 Generalized Extreme value distribution (GEVD) 1.1.3. 

 
       The role of the generalized extreme value (GEV) distributions in the theory of 

extremes is analogous to that of the normal distribution in central limit theory for sums 

of random variables. 

Assume   𝑋1, 𝑋2, …  are independent identically distributed (i.i.d.) with finite variance and writing 

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 , 
for the sum of the first (n) random variables, the standard version of central limit theorem (CLT) 

says that appropriately normalized sums 
𝑆𝑛 −𝑎𝑛

𝑏𝑛
 converge in distribution to the standard normal 

distribution as (n) goes to infinity. The appropriate normalization used sequence of normalizing 

constant (𝑎𝑛)  and (𝑏𝑛 ) defined by 𝑎𝑛 = 𝑛𝐸(𝑋1) and 𝑏𝑛 =  𝑛 𝑣𝑎𝑟(𝑋1). 

In mathematical notation we have  lim𝑛→∞ 𝑃[𝑏𝑛
−1 (𝑆𝑛 − 𝑎𝑛) ≤ 𝑥] = Φ(𝑥), 𝑥𝜖ℛ.                      

For more details see [3], [5], [13], [14] and [20]. 
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Definition 1.1.4. (The Generalized Extreme Value (GEV) distribution) 
The classical extreme value theory is based on three asymptotic extreme value distributions 

identified by Fisher and Tippett (1928) [8]. The generalized extreme value (GEV) distribution 

introduced by Jenkinson (1955) combines the three distributions into a single mathematical form 

with the distribution function (DF) is given by 

 

𝐹𝐺𝐸𝑉 (𝑥; 𝜉, 𝜍, 𝜇)  =

 
 
 

 
 

𝑒𝑥𝑝  − 1 + 𝜉  
𝑥−𝜇

𝜍
  

−1

𝜉
 

𝑒𝑥𝑝  −𝑒− 
𝑥−𝜇

𝜍
  ;   𝜉 = 0;

 ;      𝜉 ≠ 0 

 

where 1 + 𝜉  
𝑥−𝜇

𝜍
 > 0, 𝜇𝜖ℛ is the location parameter, 𝜍 > 0 the scale parameter, and 𝜉𝜖ℛ the 

shape parameter.  

The parameter ξ is known as the shape parameter of the GEV distribution and 

 𝐹𝐺𝐸𝑉  (𝑥; 𝜉, 𝜍, 𝜇) defines a type of distribution: 

If ξ > 0 then  𝐹𝐺𝐸𝑉 (𝑥; 𝜉, 𝜍, 𝜇)  - Frećhet distribution. 

If ξ = 0 then  𝐹𝐺𝐸𝑉 (𝑥; 0, 𝜍, 𝜇)  - Gumbel distribution. 

If ξ < 0 then  𝐹𝐺𝐸𝑉 (𝑥; 𝜉, 𝜍, 𝜇)  - Weibull distribution. 

 

And all graphics are made in XTREMES program [23]. 

The following figure (1.1) is the distribution function for the generalized extreme value 

distribution. 

 

 
 

        Figure (1.1):  Distribution function for the generalized extreme value distribution. 
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 It has the following density function 

 

𝑓𝑔𝑒𝑣 (𝑥; 𝜉, 𝜍, 𝜇) =

 
 
 

 
 1

𝜍
 1 + 𝜉  

𝑥−𝜇

𝜍
  

− 1+1
𝜉
 

   𝑒𝑥𝑝  − 1 + 𝜉  
𝑥−𝜇

𝜍
  

−1

𝜉
 ;         𝜉 ≠ 0

1

𝜍
exp  − 

𝑥−𝜇

𝜍
 − exp  −  

𝑥−𝜇

𝜍
   ;                                     𝜉 = 0,

         

 

for  1 + 𝜉  
𝑥−𝜇

𝜍
 > 0. 

 

 

The following figure (1.2) is the probability density function for the generalized extreme value 

distribution. 

 

 

 

 
Figure (1.2):  Probability density function for the generalized extreme value distribution. 

 

 

Let 𝑀𝑛  be random variables such that 𝑀𝑛 = max 𝑋1, 𝑋2, … , 𝑋𝑛  and  𝐹𝑛 𝑥  be distribution 

function of 𝑀𝑛 . 

The right endpoint of a distribution will be denote by 𝑥𝐹 = 𝑠𝑢𝑝 𝑥𝜖ℛ ∶  F(x) < 1 , 

where F is any distribution. The Gumbel and Frećhet distribution have infinite right endpoint, 

but the decay of the tail of the Frećhet distribution is much slower than that of the Gumbel 

distribution. 
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Suppose that block maxima 𝑀𝑛  of independent identically distributed (i.i.d.) random variables 

converge in distribution under an appropriate normalization.  

Recalling that 𝑃 𝑀𝑛 ≤ 𝑥 = 𝐹𝑛 𝑥  we observe that this convergence means that there exist 

sequences of real constants (𝑎𝑛 ) and (𝑏𝑛 ), where 

𝑎𝑛 ≥ 0, 𝑏𝑛𝜖ℛ, 𝑛 ≥ 1 for all n, such that 

lim
𝑛→∞

𝑝  
𝑀𝑛 − 𝑏𝑛

𝑎𝑛
≤ 𝑥 = lim

𝑛→∞
𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 = 𝐺 𝑥 , 

for some non-degenerate distribution function 𝐺 𝑥 .  The role of the generalized extreme value 
distribution (GEVD) in the study of maxima is formalized by the following definition and 

theorem. 

Extremal Types Theorem 1.1.5 

The extreme type theorems play a central role of the study of extreme value theory. 

In the literature, Fisher and Tippett (1928) [8], were the first who discovered the extreme 

type theorems and later these results were proved in complete generality by Gnedenko 

(1943) [9]. Galambos (1987), Leadbetter, Lindgren and Rootzen (1983) [13], Leadbetter, 

Lindgren and Rootzen (1986) [14] and Resnick (1987) [20], are excellent reference books on the 

probabilistic aspect. 

 

Definition1.1.6 Two distribution functions 𝐹, and 𝐹∗, are called of the same type, iff there 

exists 𝑎 > 0, 𝑏𝜖ℛ such that 𝐹∗ 𝑎𝑥 + 𝑏 = 𝐹 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 

Theorem 1.1.7. Extremal Types Theorem (Fisher and Tippett, 1928; 

Gnedenko, 1943). 
Let {𝑋𝑛 , 𝑛 ≥ 1} be a sequence of independent identically distributed (i.i.d.) random variables 

with distribution F, and suppose there exist normalizing constants  

𝑎𝑛 > 0, 𝑏𝑛𝜖ℛ, 𝑛 ≥ 1 such that  

 

𝑃 𝑎𝑛
−1 𝑀𝑛 − 𝑏𝑛 ≤ 𝑥 = 𝐹𝑛 (𝑎𝑛𝑥 + 𝑏𝑛) → 𝐺(𝑥),                                    (1.1) 

 
where 𝐺(𝑥) is a non-degenerate limiting distribution. Then 𝐺(𝑥) belongs to the type of one of 

the following three distributions: 

 

Type I. Gumbel:   Λ 𝑥 = 𝐺0 𝑥 = exp −𝑒−𝑥     ,       − ∞ < 𝑥 < +∞ ;   

 Type II. Frećhet:  Φ𝛼 𝑥 = 𝐺1,𝛼 𝑥 =  
exp −𝑥−𝛼 ,          𝑖𝑓 𝑥 > 0,
0,                            𝑖𝑓  𝑥 ≤ 0,

           𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0;  

Type III. Weibull: Ψ𝛼(𝑥) =  𝐺2,𝛼 𝑥 =  
exp − −𝑥 𝛼 ,      𝑖𝑓 𝑥 ≤ 0,            

1,                        𝑖𝑓 𝑥 > 0.       
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0;  

where 𝛼 is a positive constant. We refer to Λ = 𝐺0 = 𝐸𝑉𝑜,   Φ𝛼 = 𝐺1,𝛼 = 𝐸𝑉1   
 𝑎𝑛𝑑 Ψ𝛼 =  𝐺2,𝛼 =  𝐸𝑉2 as the extreme value distributions, while the constants 𝑎𝒏 and 𝑏𝑛  from 

(1.1) are called the normalizing constants.                                                                     

  The details of the proof can be found in Resnick (1987) [20], Proposition 0.3, pp. 9-11 
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Definition1.1.8. (Extreme value distribution and extremal random variable). The 

distribution functions  Λ, Φ𝛼  and Ψ𝛼  as presented in theorem 1.1.7 are called standard extreme 

value distributions, random variables with these distributions are standard extremal random 

variables. 

 

The three limiting distributions in the (GEVD) family include 1.1.9. 

(i) The three types are known as the Gumbel, Frećhet and Weibull (strictly, negative Weibull), 

respectively. 

(ii) The Frećhet (type II) is bounded below, and the negative Weibull (type III) is bounded above. 

(iii) The standard Weibull is a distribution for minima. 

The figure (1.3) below shows Densities for Gumbel, Frećhet and Weibull functions respectively 

from left to right. 

 Three limiting distributions1.1.9. 

                                                                                                                                   

from left to right: 

 

                                                                                                                                      

Figure (1.3): Densities for Gumbel, Frećhet and Weibull functions respectively from left to right. 
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1.2 Max-stable distribution 

Definition 1.2.1. A non-degenerate distribution function G is called Max-stable if there  

 exist real constants  𝑎𝑛 > 0, 𝑏𝑛𝜖ℛ, 𝑛 ≥ 1 such that 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥,      𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 = 𝐺 𝑥 .  
Then 𝐺 𝑥  is one of the following three forms: Type I: Gumbel, Type II: Frećhet and Type III: 

Weibull. 

 

Remark 1.2.2. G is strictly stable iff 𝑏𝑛 = 0, for all n. 

We give a list of these constants when the max-stable distribution function is one of the standard 

extreme value (EV) distribution functions: 

 
(i) Gumbel:   Λ = 𝐺0:  𝑎𝑛 = 1, 𝑏𝑛 = ln 𝑛 . 

 

(ii) Frećhet:  Φ𝛼 = 𝐺1,𝛼 :  𝑎𝑛 = 𝑛
1
𝛼 ,   𝑏𝑛 = 0 . 

 

(iii) Weibull: Ψ𝛼 =  𝐺2,𝛼 : 𝑎𝑛 = 𝑛
−1
𝛼 , 𝑏𝑛 = 0.  

 

1.2.3. Examples: 

 
Example (1): 𝐺0 𝑥 = 𝑒𝑥𝑝 −𝑒−𝑥 , 𝑎𝑛 = 1, 𝑏𝑛 = ln 𝑛 ,   𝑥𝜖ℛ. 

 

Then  𝐺0 𝑎𝑛𝑥 + 𝑏𝑛    
𝑛

=  𝐺0 𝑥 + ln 𝑛    
𝑛

=  exp −𝑒−(𝑥+ln 𝑛)  
𝑛

 

 

=𝑒𝑥𝑝 −𝑒−𝑥 . 1
𝑛 . 𝑛 = 𝑒𝑥𝑝 −𝑒−𝑥 =  𝐺0 𝑥 . 

 

 

Example (2):  𝐺1,𝛼 𝑥 = exp −𝑥−𝛼 , 𝑎𝑛 = 𝑛
1
𝛼 ,   𝑏𝑛 = 0. 

 

Then  𝐺1,𝛼 𝑎𝑛𝑥 + 𝑏𝑛    
𝑛

=  𝐺1,𝛼  𝑛
1
𝛼𝑥   

𝑛

=  e
− 𝑛

1
𝛼𝑥  

–α

 

𝑛

= 𝑒
 −𝑥 −𝛼 .

1

𝑛
.𝑛 = 𝑒𝑥𝑝(− 𝑥 )−𝛼 =

 𝐺1,𝛼 𝑥 . 
 

 

Example (3): 𝐺2,𝛼 𝑥 = exp − −𝑥 𝛼 ,   𝑎𝑛 = 𝑛
−1
𝛼 , 𝑏𝑛 = 0 . Then 

 𝐺2,𝛼 𝑎𝑛𝑥 + 𝑏𝑛    
𝑛

=  𝐺2,𝛼  𝑛
−1
𝛼 𝑥   

𝑛

=  e
− −𝑛

−1
𝛼 𝑥  

α

 

𝑛

= 𝑒
 −(−𝑥) 𝛼 .

1

𝑛
.𝑛

= 𝑒𝑥𝑝(− −𝑥 )𝛼 =

 𝐺2,𝛼 𝑥 . 
 

 



8 
 

Definition1.2.4. (Slowly Varying and Regularly Varying Function) 

A positive measurable function L on (0, ∞) is called  

(i) Slowly varying at ∞ (write 𝐿𝜖ℛ𝑉0) 𝑖𝑓   lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
= 1,   𝑥 > 0. 

(ii) Regularly varying at ∞ with index 𝜌 𝑤𝑟𝑖𝑡𝑒 𝐿𝜖ℛ𝑉𝜌 𝑖𝑓 lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
= 𝑥𝜌  , 𝑥 > 0. 

Further information can be found in Embrechts, P. [5], de Haan (1970) [15], Resnick [20] and 

many other textbooks. 

Examples 1.2.5. 

Example1: If 𝐿 𝑡 = ln 𝑡  𝑡𝑕𝑒𝑛 lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
= lim𝑡→∞

ln (𝑡𝑥)

ln (𝑡)
= lim𝑡→∞

𝑥
𝑡𝑥 

1
𝑡 

=
1

𝑡 

1
𝑡 

= 1, 

Satisfies (i) in definition (1.2.4) then 𝐿 𝑡 = ln 𝑡 is slowly varying at ∞. 

Example2: If 𝐿 𝑡 = 𝑡𝜌 ln 𝑥  𝑡𝑕𝑒𝑛 lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
= lim𝑡→∞

 𝑡𝑥 ρln (𝑡𝑥)

𝑡ρln (𝑡)
= 𝑥𝜌 lim𝑡→∞

 𝑡 ρln (𝑡𝑥)

𝑡ρln(𝑡)
=

𝑥𝜌 lim𝑡→∞

𝑥
𝑡𝑥 

1
𝑡 

= 𝑥𝜌
1

𝑡 

1
𝑡 

= 𝑥𝜌 . 1 = 𝑥𝜌 . 

Thus 𝐿 𝑡  is a regularly varying at ∞ with index 𝜌, and satisfies (ii) in definition (1.2.4). 

 Example 3: The functions: 𝑒𝑥 , sin 𝑥 + 2  𝑎𝑛𝑑  exp⁡{log 𝑥}, are not regularly varying. 

Example 4: The functions: log 𝑥, log 1 + x  , log log 𝑒 + 𝑥  𝑎𝑛𝑑 exp (log 𝑥)𝛼 , 

 0 < 𝛼 < 1,   are slowly varying. 

 

 

 

 

 

 

 

 

 



9 
 

1.3. Threshold Exceedances 

 

Generalized Pareto Distribution (GPD) 
 The main distributional model for exceedances over thresholds is the generalized Pareto 

distribution.                                                                                                                                   

For more information about (GPD) see [4], [5] and many other textbooks. 

 

Remark: 𝑋~ 𝑃𝑎𝑟𝑒𝑡𝑜  𝛼, 𝑘  the distribution function is given by 𝐹 𝑥 = 1 −  
𝑘

𝑘+𝑥
 

𝛼

, 

  𝛼 > 0, 𝑘 > 0, 𝑥 ≥ 0,  and  𝐸 𝑋𝑛 =
𝑘𝑛 𝑛!

 (𝛼−𝑖)𝑛
𝑖=1

 ,    𝛼 > 𝑛. 

 

Definition 1.3.1. (The Generalized Pareto Distribution (GPD)). 
 

The distribution function of the GPD is given by 

 

𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 =  
1 −  1 +

𝜉𝑥

𝜍
 

−1
𝜉

1 − 𝑒𝑥𝑝  
−𝑥

𝜍
 ;        𝜉 = 0,

  ;  𝜉 ≠ 0, 

 
where 𝜍 > 0, 𝑎𝑛𝑑 𝑥 ≥ 0 𝑤𝑕𝑒𝑛 𝜉 ≥ 0, 

and 0 ≤ 𝑥 ≤
−𝜍

𝜉
 𝑤𝑕𝑒𝑛  𝜉 < 0.  

The parameters  𝜉 and 𝜍 are respectively, as the shape and scale parameters. 

The following figure (1.4) is the distribution function for the generalized Pareto distribution. 

 

 
 

          Figure (1.4): Distribution function for the generalized Pareto distribution. 
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The following analytical relationship exists between the Generalized Pareto Distribution (GPD) 

functions 𝐹𝐺𝑃𝐷(𝑥) and the generalized extreme value (GEV) distribution functions 𝐹𝐺𝐸𝑉(𝑥) for 

𝜉-parameterization: 

𝐹𝐺𝑃𝐷 𝑥 = 1 + ln( 𝐹𝐺𝐸𝑉(𝑥)),   where 𝛼 =
1

𝜉
= 𝜉−1,    𝑖𝑓 ln( 𝐹𝐺𝐸𝑉 (𝑥)) > −1.  

The three limiting distributions in the GPD family include the Pareto, Beta, and Standard 

exponential distribution functions: 

(i) Exponential ( 𝐺𝑃0):         𝐹𝐺𝑃0
 𝑥 =  

1 − 𝑒−𝑥 ,    𝑥 ≥ 0,
0,                𝑥 < 0.

  

 

(ii) Pareto ( 𝐺𝑃1), 𝛼 > 0 ∶    𝐹𝐺𝑃1,𝛼
 𝑥 =  

1 − 𝑥−𝛼 ,    𝑥 ≥ 1,
0,                 𝑥 < 1.

      

 

(iii) Beta ( 𝐺𝑃2), 𝛼 < 0 ∶      𝐹𝐺𝑃2,𝛼
 𝑥 =  

1 − (−𝑥)−𝛼 , −1 ≤ 𝑥 ≤ 0,
0,                              𝑥 < −1.

  

 

 

 

                                                                                                                                                          The figure (1.5) below shows densities for Exponential, Pareto and Beta functions, respectively 

from left to right.  

from left to right: 

 

 
 

                                                                                                                                                          Figure (1.5): Densities for Exponential, Pareto and Beta functions respectively from left to right. 

to right. 
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Relationship between Extreme Value (EV) and Generalized Pareto (GP) 

distributions 1.3.2. 
The relationship for three different GP distributions for continuous distributions are given as 

follows: 

 

(i) The exponential distribution. 

The exponential distribution is denoted as 𝐺𝑃0. 

The exponential distribution function corresponds to the Gumbel distribution as follows: 

𝐹𝐺𝑃0
 𝑥 = 1 + ln( 𝐹𝐸𝑉0

(𝑥)) = 1 − exp⁡(−𝑥), 𝑥 ≥ 0.    

(ii) The Pareto distribution. 

The Pareto (or ordinary Pareto) distribution is denoted as 𝐺𝑃1,𝛼 . The Pareto distribution function 

corresponds to the Frećhet distribution as follows: 

 

𝐹𝐺𝑃1,𝛼
 𝑥 = 1 + ln( 𝐹𝐸𝑉1,𝛼

(𝑥)) = 1 − 𝑥−𝛼 ,    𝑓𝑜𝑟 𝑥 ≥ 1, 𝛼 > 0 .      

 

(iii) The Beta distribution. 

The Beta distribution is denoted as 𝐺𝑃2,𝛼 . The Beta distribution function corresponds to the 

Weibull distribution as follows: 

 

               𝐹𝐺𝑃2,𝛼
 𝑥 = 1 + ln( 𝐹𝐸𝑉2,𝛼

(𝑥)) = 1 −  −𝑥 −𝛼 ,    𝑓𝑜𝑟  − 1 ≤ 𝑥 ≤ 0, 𝛼 < 0.     

 

 

The Generalized Pareto Distribution (GPD) Properties 1.3.3: 
 

(1) If 𝜉 ≥ 0, the distribution function 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉  is that of an ordinary Pareto distribution with  

𝛼 =
1

𝜉
= 𝜉−1,   𝑘 =

𝜍

𝜉
= 𝜍𝜉−1. 

Proof: 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = 1 −  1 +
𝜉𝑥

𝜍
 

−1
𝜉

;   𝜉 > 0, 

                               = 1 −  
𝜍+𝜉𝑥

𝜍
 

−𝜉−1

= 1 −  
𝜍

𝜍+𝜉𝑥
 

𝜉−1

= 1 −  
𝜍𝜉−1

𝜍𝜉−1+𝑥
 

𝜉−1

, that is the Pareto 

with 𝛼 =
1

𝜉
= 𝜉−1,   𝑘 =

𝜍

𝜉
= 𝜍𝜉−1. 

(2) If 𝜉 = 0, the distribution function 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 0  is an exponential distribution. 

 

Proof: note that exponential distribution is given by 𝐹 𝑥; 𝜆 = 1 − exp −𝜆𝑥 ,   

consider 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 0 = 1 − exp  
−𝑥

𝜍
 = 1 − exp  

−1

𝜍
𝑥 = 𝐹(𝑥,

1

𝜍
). Thus,  

𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉  is an exponential distribution with parameter 𝜆 =
1

𝜍
 𝑤𝑕𝑒𝑛 𝜉 = 0.  

 

(3) If 𝜉 < 0, we have a short-tailed Pareto type II distribution. 

 
(4) lim𝜉→0 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 0 .  

Proof: lim𝜉→0 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = lim𝜉→0 1 −  1 +
𝜉𝑥

𝜍
 

−1
𝜉

,                        (1) 
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But   1 +
𝜉𝑥

𝜍
 

−1
𝜉

= 𝑒𝑥𝑝  ln  1 +
𝜉𝑥

𝜍
 

−1
𝜉
 = exp  

−1

𝜉
𝑙𝑛  

𝜍+𝜉𝑥

𝜍
   .        (2) 

Now we substitute the value of   1 +
𝜉𝑥

𝜍
 

−1
𝜉

 from (2) into (1). We obtain 

lim
𝜉→0

𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = lim
𝜉→0

1 − exp  
−1

𝜉
𝑙𝑛  

𝜍 + 𝜉𝑥

𝜍
  = 1 − lim

𝜉→0
exp  

−1

𝜉
𝑙𝑛  

𝜍 + 𝜉𝑥

𝜍
  , 

                                   = 1 − 𝑒𝑥𝑝  − lim𝜉→0

𝑙𝑛 
𝜍+𝜉𝑥

𝜍
 

𝜉
 = 1 − exp  − lim𝜉→0  

𝜍

𝜍+𝜉𝑥
 .

𝑥

𝜍
  , 

 by L’Hopitals rule      = 1 − 𝑒𝑥𝑝  − lim𝜉→0
𝑥

𝜍+𝜉𝑥
  = 1 − exp  

−𝑥

𝜍
 = 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 0 . 

Thus lim𝜉→0 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 0 .  

 

(5) We have 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 𝜖 𝐷𝐴(𝐹𝐺𝐸𝑉 𝑥; 𝜉, 𝜍, 𝜇 ),   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉𝜖𝑅.      
 

Proof: by Theorem 1.4.13.below for  𝜉 > 0, 

𝐹𝜖𝐷𝐴 𝐹𝐺𝐸𝑉 𝑥; 𝜉, 𝜍, 𝜇  ⇔ 𝐹   𝑥 = 𝑥−𝜉−1
𝐿 𝑥 ,  for some function L regularly varying at ∞,  

𝐹   𝑥 = 1 − 𝐹 𝑥 . 

First, to show that  1 −  𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = 𝑥−𝜉−1
𝐿 𝑥 . 

Consider 1 −  𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 = 1 −  1 −  1 +
𝜉𝑥

𝜍
 

−𝜉−1

 =  1 +
𝜉𝑥

𝜍
 

−𝜉−1

=  
𝜍+𝜉𝑥

𝜍
 

−𝜉−1

=

𝑥−𝜉−1
 

𝑥−1𝜍+𝜉

𝜍
 

−𝜉−1

= 𝑥−𝜉−1
 1

𝑥
+

𝜉

𝜍
 

−𝜉−1

= 𝑥−𝜉−1
𝐿 𝑥 ,   𝑤𝑕𝑒𝑟𝑒 𝐿 𝑥 =  1

𝑥
+

𝜉

𝜍
 

−𝜉−1

. 

 

Next, to show  𝐿 𝑥 =  1

𝑥
+

𝜉

𝜍
 

−𝜉−1

 is regularly varying at ∞. 

Consider 

lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
=  lim𝑡→∞

 1
𝑡𝑥

+
𝜉

𝜍
 
−𝜉−1

 1
𝑡

+
𝜉

𝜍
 
−𝜉−1 = lim𝑡→∞  

(𝑡𝑥)−1𝜍+𝜉

𝑡−1𝜍+𝜉
 

−𝜉−1

=  lim𝑡→∞
(𝑡𝑥)−1𝜍+𝜉

𝑡−1𝜍+𝜉
 

−𝜉−1

=

     lim𝑡→∞ 𝑥−1 −𝜉−1
=   𝑥−1 −𝜉−1

=  𝑥𝜉−1
.  Then 𝐿 𝑥   is regularly varying at ∞  with 

index 𝜉−1. Hence, 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 𝜖 𝐷𝐴 𝐹𝐺𝐸𝑉 𝑥; 𝜉, 𝜍, 𝜇  .   

(6) 𝐸 𝑋𝑘 = ∞,   𝑓𝑜𝑟 𝑘 ≥
1

𝜉
= 𝜉−1. 

(7) 𝐸 𝑋 =
𝜍

1−𝜉
 𝑓𝑜𝑟 𝜉 < 1, 𝑋~𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 . 

 

Remark 1.3.4:  
(1) The role of Generalized Extreme Value (GEV) in Extreme Value Theory (EVT) is a model for 

the block maximum distribution. 

(2) The role of Generalized Pareto Distribution (GPD) in Extreme Value Theory (EVT) is a model 

for the excess distribution over a high threshold. 

 

Definition 1.3.5. (Excess distribution over threshold u) 
Let 𝑋 be a random variable with distribution function 𝐹. The excess over the threshold u has 

distribution function 
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𝐹 𝑢  𝑥 = 𝑃 𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢 =
𝐹 𝑥 + 𝑢 − 𝐹(𝑢)

1 − 𝐹(𝑢)
, 𝑓𝑜𝑟 0 ≤ 𝑥 < 𝑥𝐹 − 𝑢,

𝑤𝑕𝑒𝑟𝑒  𝑥𝐹 = sup 𝑥 ∶ 𝐹 𝑥 < 1 ≤ ∞,   𝑥𝐹 = 𝑟𝑖𝑔𝑕𝑡 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 . 
 

Remark 1.3.6. The distribution function 𝐹 𝑢  is called the conditional excess distribution 

function.  

 

Definition 1.3.7. (Mean excess function) 
The mean excess function of a random variable 𝑋 with finite mean is given by  

𝑒𝐹𝑢 = 𝐸 𝑋 − 𝑢|𝑋 > 𝑢 =
1

1 − 𝐹(𝑢)
  1 − 𝐹(𝑥) 

∞

𝑢

𝑑𝑥 ,     𝑢 > 0. 

Examples 1.3.8. (Excess distribution of exponential and GPD) 
 

(1) If F is the distribution function of an exponential random variable then  

 𝐹 𝑢  𝑥 = 𝐹 𝑥 ;   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 
 

Proof: since 𝐹 𝑥 =  1 − 𝑒−𝜆𝑥 , 𝑥 ≥ 0,
0,                𝑥 < 0.

        where 𝜆 > 0, 

 

⇒ 𝐹 𝑢  𝑥 =
𝐹 𝑥 + 𝑢 − 𝐹(𝑢)

1 − 𝐹(𝑢)
= 𝑒−𝜆𝑢

 1 − 𝑒−𝜆𝑥  

𝑒−𝜆𝑢
= 1 − 𝑒−𝜆𝑥 = 𝐹 𝑥 , 

 

                       ⇒ 𝐹 𝑢  𝑥 = 𝐹 𝑥 . 
 

(2) If X  has distribution function,  

               𝐹 = 𝐹𝐺𝑃𝐷 𝑥; 𝜍, 𝜉 ⇒ 𝐹 𝑢  𝑥 = 𝐹𝐺𝑃𝐷 𝑥; 𝜍 𝑢 , 𝜉 ,    𝜍 𝑢 = 𝜍 + 𝜉(𝑢),    

where 0 ≤ 𝑥 < ∞ 𝑖𝑓 𝜉 > 0 𝑎𝑛𝑑 0 ≤ 𝑥 ≤
−𝜍

𝜉
 𝑖𝑓 𝜉 < 0.   

Proof: by definition 1.3.5,  𝐹 𝑢  𝑥 =
𝐹 𝑥+𝑢 −𝐹 𝑢 

1−𝐹 𝑢 
 , ⇒ 𝐹 𝑢  𝑥 =

𝐹𝐺𝑃𝐷  𝑥+𝑢 −𝐹𝐺𝑃𝐷  𝑢 

1−𝐹𝐺𝑃𝐷  𝑢 
= 

 

 1 −  1 +
𝜉 𝑥 + 𝑢 

𝜍  
−𝜉−1

 −  1 −  1 +
𝜉𝑢
𝜍  

−𝜉−1

 

1 −  1 −  1 +
𝜉𝑢
𝜍  

−𝜉−1

 

= 

 

 1 +
𝜉𝑢
𝜍  

−𝜉−1

−  1 +
𝜉 𝑥 + 𝑢 

𝜍  
−𝜉−1

 1 +
𝜉𝑢
𝜍  

−𝜉−1 = 1 −  
𝜍 + 𝜉 𝑥 + 𝑢 

𝜍 + 𝜉𝑢
 

−𝜉−1

= 

= 1 −  
𝜍 + 𝜉𝑥 + 𝜍 𝑢 − 𝜍

𝜍 + 𝜍 𝑢 − 𝜍
 

−𝜉−1

= 1 −  
𝜍 𝑢 + 𝜉𝑥

𝜍 𝑢 
 

−𝜉−1

= 1 −  1 +
𝜉𝑥

𝜍 𝑢 
 

−𝜉−1
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= 𝐹𝐺𝑃𝐷 𝑥; 𝜍 𝑢 , 𝜉 ,   𝑤𝑕𝑒𝑟𝑒  𝜍 𝑢 = 𝜍 + 𝜉(𝑢) ⇒ 𝜉(𝑢) = 𝜍 𝑢 − 𝜍.  
 

(3) Then mean excess function of the GPD can be calculated by  

𝐸 𝑋 =
𝜍

1 − 𝜉
, 𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1.3.7,    𝑒𝐹𝑢 =

𝜍 𝑢 

1 − 𝜉
=

𝜍 + 𝜉𝑢

1 − 𝜉
, 𝜍 + 𝜉𝑢 > 0, 

 where 0 ≤ 𝑢 < ∞ 𝑖𝑓 0 ≤  𝜉 < 1 𝑎𝑛𝑑 0 ≤ 𝑢 <
−𝜍

𝜉
 𝑖𝑓 𝜉 < 0. 

  

Theorem 1.3.9. (Pickands-Balkema-de Haan Theorem (1974)). 
             Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛  are n independent realizations of a random variable 𝑋 with a 

distribution function F(𝑥). Let 𝑥𝐹  be the finite or infinite right endpoint of the distribution F. The 

distribution function of the excesses over certain high threshold u is given by 

   𝐹 𝑢  𝑥 = 𝑃 𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢 =
𝐹 𝑥 + 𝑢 − 𝐹(𝑢)

1 − 𝐹(𝑢)
,   𝑓𝑜𝑟 0 ≤ 𝑥 < 𝑥𝐹 − 𝑢. 

      If 𝐹𝜖 𝐷𝐴 𝐹𝐺𝐸𝑉 𝑥; 𝜉, 𝜍, 𝜇  ,  then there exists a positive measurable function 𝜍 𝑢  such that 

lim
𝑥→𝑥𝐹

𝑠𝑢𝑝 𝐹 𝑢  𝑥 − 𝐹𝐺𝑃𝐷 𝑥; 𝜍 𝑢 , 𝜉  = 0.      
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1.4. Domain of attraction of the extremal type distributions. 

Definition 1.4.1. (Domain of Attraction (DA)). Suppose  𝑋𝑛 , 𝑛 ≥ 1  is a sequence of 

independent identically distributed (i.i.d.) random variables with the common distribution 

function F. The distribution F belongs to the domain of attraction of the extreme value 

distribution G, 𝐹𝜖𝐷𝐴 𝐺  if there exist constants 𝑎𝑛 > 0, 𝑏𝑛𝜖ℛ, 𝑛 ≥ 1 such that 

    𝐹𝑛  (𝑎𝑛𝑥 + 𝑏𝑛) = 𝑃[𝑀𝑛 ≤ 𝑎𝑛𝑥 + 𝑏𝑛] → 𝐺(𝑥), as n → ∞ , where   𝑀𝑛 = max1≤𝑖≤𝑛 𝑋𝑖  . 

The following theorem from [14] is very useful in finding the domain of attraction of F and gives 

necessary and sufficient conditions: 

Theorem 1.4.2. The following conditions are necessary and sufficient for a distribution function, 

F, to belong to the domain of attraction of the three extremal types: 

Type I Gumbel: There exists a strictly positive function 𝑔 𝑡  defined on the set  −∞, 𝑥𝐹 , such 

that for every real number 𝑥 the equality lim𝑡↑𝑥𝐹

1−𝐹(𝑡+𝑥𝑔 𝑡 )

1−𝐹(𝑡)
= 𝑒−𝑥    holds true. 

Type II Frećhet: 𝑥𝐹 = +∞,   and  lim𝑡→∞
1−𝐹(𝑡𝑥)

1−𝐹(𝑡)
= 𝑥−𝛼 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑥 > 0.   

Type III Weibull: 𝑥𝐹 < +∞, and lim𝑕↓0
1−𝐹(𝑥𝐹−𝑕𝑥)

1−𝐹(𝑥𝐹−𝑕)
= 𝑥𝛼 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 0 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑥 > 0.   

The proofs of the theorem can be found in Leadbetter et al. (1983) [13], Leadbetter et al. (1986) 

[14], Resnick (1987) [20], Galambos (1987), etc... 

 

 

Theorem 1.4.3.  (Characterization of DA (G)) 

The distribution function F belongs to the domain of attraction of the extreme value distribution 

G with norming constants 𝑎𝑛 > 0, 𝑏𝑛𝜖ℛ iff 

   lim𝑛→∞ 𝑛𝐹  𝑎𝑛𝑥 + 𝑏𝑛 = − ln 𝐺 𝑥 ,   𝑥𝜖ℛ , when 𝐺 𝑥 = 0 the limit is interpreted as ∞.  

Where 𝐹  𝑎𝑛𝑥 + 𝑏𝑛 = 1 − 𝐹 𝑎𝑛𝑥 + 𝑏𝑛 .  More information see [5], [20]. 

 

Definition 1.4.4. (Von Mises function). Let F  be a distribution function with right endpoint 

𝑥𝐹 ≤ ∞.  Suppose there exists some 𝑧 < 𝑥𝐹  such that F has representation                          

𝐹  𝑥 = 𝑐. 𝑒𝑥𝑝  − 
1

𝑎 𝑡 

𝑥

𝑧
𝑑𝑡 , 𝑧 < 𝑥 < 𝑥𝐹 , where c is some positive constant, a(.) is a positive 

and  absolutely continuous function with density 𝑎′  𝑎𝑛𝑑 lim𝑥↑𝑥𝐹
𝑎′  𝑥 = 0.  Then F is called a 

Von Mises function, the function a(.) is the auxiliary function of F.                                                    

For more details see Resnick [20], proposition 1.4. and de Haan [2]. 
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Theorem 1.4.5. (Von Mises Condition).  

(i)  Let F be an absolutely continuous distribution function with density f satisfying 

lim𝑥→∞
𝑥𝑓 (𝑥)

𝐹  𝑥 
= 𝛼 > 0,   𝑡𝑕𝑒𝑛  𝐹𝜖𝐷𝐴 Φ𝛼 .   

(ii) Let F be an absolutely continuous distribution function with density f which is 

positive on some finite interval (z, 𝑥𝐹). If 

lim𝑥↑𝑥𝐹

(𝑥𝐹−x )𝑓 𝑥 

𝐹  𝑥 
= 𝛼 > 0,   𝑡𝑕𝑒𝑛  𝐹𝜖𝐷𝐴 Ψ𝛼 .   

The proof for details see Resnik (1987) [20], proposition 1.15 and proposition 1.16, pp. 63. 

 

Properties of Von Mises functions 1.4.6. Every Von Mises function F is absolutely continuous 

on (z, 𝑥𝐹) with positive density f.  The auxiliary function can be chosen as 𝑎 𝑥 =
𝐹  𝑥 

𝑓(𝑥)
 . 

Moreover, the following properties hold: 

(i) If 𝑥𝐹 = ∞, then 𝐹  𝜖𝑅𝑉−∞  and limx→∞
𝑥𝑓 𝑥 

𝐹  𝑥 
= ∞. 

(ii) If 𝑥𝐹 < ∞, then 𝐹 (𝑥𝐹 − x−1 )𝜖𝑅𝑉−∞  and lim𝑥↑𝑥𝐹

(𝑥𝐹−x )𝑓 𝑥 

𝐹  𝑥 
= ∞. 

 For more details see [5], pp.140. 

Examples 1.4.7. 

We give some examples of Von Mises functions. See [5], pp. 139. 

Example (1): (Exponential distribution) 

𝐹  𝑥 = 𝑒−𝜆𝑥 , 𝑥 ≥ 0, 𝜆 > 0.  F is a Von Mises function with auxiliary function 𝑎 𝑥 = 𝜆−1. 

Proof:  𝐹  𝑥 = 1 − 𝐹 𝑥 = 𝑒−𝜆𝑥 ,     𝐹 𝑥 = 1 −  𝑒−𝜆𝑥  , 𝐹′ 𝑥 = 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 , 

then the auxiliary function 𝑎 𝑥 =
𝐹  𝑥 

𝑓 𝑥 
=

𝑒−𝜆𝑥

𝜆𝑒−𝜆𝑥 =
1

𝜆
= 𝜆−1. 

Example (2): (Weibull distribution) 

𝐹  𝑥 = 𝑒−𝑐𝑥𝜏
, 𝑥 ≥ 0,   𝑐, 𝜏 > 0.  F is a Von Mises function with auxiliary function       𝑎 𝑥 =

𝑐−1𝜏−1𝑥1−𝜏 , 𝑥 > 0. 

Proof:  𝐹  𝑥 = 1 − 𝐹 𝑥 = 𝑒−𝑐𝑥𝜏
,     𝐹 𝑥 = 1 −  𝑒−𝑐𝑥𝜏

 , 𝐹′ 𝑥 = 𝑓 𝑥 = 𝑒−𝑐𝑥𝜏
(𝑐𝜏𝑥𝜏−1), 

then the auxiliary function 𝑎 𝑥 =
𝐹  𝑥 

𝑓 𝑥 
=

𝑒−𝑐𝑥𝜏

𝑒−𝑐𝑥𝜏
(𝑐𝜏𝑥𝜏−1)

=
1

𝑐𝜏𝑥𝜏−1 = 𝑐−1𝜏−1𝑥1−𝜏 , 𝑥 > 0. 
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Theorem 1.4.8. (Von Mises(1936)). F is absolutely continuous distribution function and 

𝑥𝐹 = 𝑠𝑢𝑝 𝑥: 𝐹 𝑥 < 1 . If 

(i) 𝐹′′  𝑥 < 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜖 𝑧, 𝑥𝐹 , 𝑥𝐹 ≤ ∞. 

(ii) 𝐹′ 𝑥 = 0, 𝑓𝑜𝑟 𝑥 ≥ 𝑥𝐹 .  

(iii) lim𝑥→𝑥𝐹

𝐹′  𝑥 (1−𝐹 𝑥 )

 𝐹′  𝑥  
2 = 1,         𝑡𝑕𝑒𝑛 𝐹𝜖𝐷𝐴 Λ  . 

That is sufficient conditions for continuous function.                                                 

The proof for details see Resnik (1987) [20] and [5]. 

 

 

Example: Let 𝐹 𝑥 = 1 − 𝑒−𝑥 , 𝑥 > 0. 

𝑇𝑕𝑒𝑛 𝐹′ 𝑥 = 𝑓 𝑥 = 𝑒−𝑥 , 𝑥 ≥ 0, 

𝑎𝑛𝑑 𝑓 𝑥 =
𝐹′  𝑥 (1−𝐹 𝑥 )

 𝐹′  𝑥  
2 =

1−𝐹 𝑥 

𝐹′  𝑥 
=

𝑒−𝑥

𝑒−𝑥 = 1,  

Therefore 𝑓 ′ 𝑥 = 0, and 𝐹𝜖𝐷𝐴 Λ .  See Resnik (1987) [20], pp. 42. 

 

 

The following theorems from [14], [2] and [20] are giving necessary and sufficient conditions: 

Theorem 1.4.9. (Gnedenko (1943), Mejzler (1949), De Haan (1970)). For a distribution function 

F set 𝐻 𝑥 =
1

1−𝐹(𝑥)
 ,     𝑥𝐹 = sup 𝑡 ∶ 𝐹 𝑡 < 1  , so that 𝐻← = 𝐻−1 is defined on  1, ∞ .       

The following are equivalent: 

(i) 𝐹𝜖𝐷𝐴 Λ , if there exist constants 𝑎𝑛 > 0, 𝑏𝑛𝜖ℛ, 𝑛𝜖𝑁 such that 

lim𝑛→∞  𝐹𝑛   𝑎𝑛𝑥 + 𝑏𝑛 = exp⁡(−𝑒−𝑥),  for all 𝑥. 

(ii) 𝐻𝜖Γ, there exist 𝑔 such that for every real number 𝑥:  lim𝑡↑𝑥𝐹

1−𝐹(𝑡+𝑥𝑔 𝑡 )

1−𝐹(𝑡)
= 𝑒−𝑥    . 

 

(iii) 𝐻← = 𝐻−1𝜖Π, there exist a such that for all 𝑥 > 0:  
         
    lim𝑡→∞

𝐻−1 𝑡𝑥 −𝐻−1(𝑡)

𝑎(𝑡)
= ln 𝑥. 

The proofs for details see Resnik (1987) [20], proposition 0.10., pp. 28-30. 

 

 

Theorem 1.4.10. (De Haan, 1970). 𝐹𝜖𝐷𝐴 Λ    𝑖𝑓𝑓 lim𝑥→𝑥𝑥𝐹

(1−𝐹 𝑥 )   (
𝑥𝐹
𝑦

𝑥𝐹
𝑥

1−𝐹 𝑡 ) 𝑑𝑡 𝑑𝑦

   1−𝐹 𝑡  𝑑𝑡
𝑥𝐹
𝑥  

2 = 1,     

in this case 
1

1−𝐹
 𝜖 Γ, and the auxiliary function can be chosen 𝑔 𝑡 =

  (
𝑥𝐹
𝑦

𝑥𝐹
𝑥 1−𝐹 𝑡 ) 𝑑𝑡 𝑑𝑦

  1−𝐹 𝑡  𝑑𝑡
𝑥𝐹
𝑥

 ,     or 
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𝑔 𝑡 =
  1−𝐹 𝑡  𝑑𝑡

𝑥𝐹
𝑥

(1−𝐹 𝑥 )
 , and norming constants can be chosen                                                     

𝑎𝑛 = 𝑔 𝑏𝑛 ,   𝑏𝑛 = 𝐹−1 1 − 1

𝑛
 .                                                                                                            

The proofs for details see Resnik (1987) [20], proposition 1.9., pp. 48-50. 

 

Theorem 1.4.11. (De Haan, 1970). 𝐹𝜖𝐷𝐴 Λ  iff 

 lim𝑥→𝑥𝐹

  1−𝐹(𝑡) 𝛼𝑥𝐹
𝑥

𝑑𝑡

(1−𝐹 𝑥 )   1−𝐹(𝑡) 𝛼−1𝑥𝐹
𝑥 𝑑𝑡

=
𝛼−1

𝛼
, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 > 1. In this case is true for all 𝛼 > 1. The 

proof for details see Resnik (1987) [20], proposition 1.10., pp. 50-52. 

Domain of attraction of   Λ 𝑥 = 𝐺0 𝑥 = exp −𝑒−𝑥     ,       − ∞ < 𝑥 < +∞ . 

For a proof of the following Theorem we refer to Resnick [20], Corollary 1.7 and proposition 

1.9. 

Theorem 1.4.12.  (Characterization of DA (Λ)) Gnedenko, 1943. 

The distribution function F belongs to the domain of attraction of Λ, if and only if  𝑥𝐹 ≤ ∞,

𝐹  𝑥 = 1 − 𝐹 𝑥 = 𝑐 𝑥 𝑒𝑥𝑝  − 
𝑔 𝑡 

𝑎 𝑡 

𝑥

𝑧
𝑑𝑡 , 𝑧 < 𝑥 < 𝑥𝐹 ,                                                       

𝑤𝑕𝑒𝑟𝑒 𝑐 𝑥 → 𝑐 > 0, 𝑔 𝑥 → 1, 𝑎′ 𝑥 → 0 𝑎𝑠 𝑥 ↑ 𝑥𝐹 .  A possible choice for the function a is 

𝑎 𝑥 =  
𝐹  𝑡 

𝐹  𝑥 

𝑥𝐹

𝑥
𝑑𝑡, 𝑥 < 𝑥𝐹  .  If 𝐹𝜖𝐷𝐴  Λ ,  then in this case  𝑎𝑛

−1 𝑀𝑛 − 𝑏𝑛 
𝑑
→  Λ, where the 

norming constants 𝑎𝑛  can be chosen as  𝑎𝑛 = 𝑎 𝑏𝑛 = 𝐹−1 1 −  𝑛𝑒  −1 − 𝐹−1 1 − 1

𝑛
 ,    

 𝑏𝑛 = 𝐹−1 1 − 1

𝑛
 .   

 Domain of attraction of  Φ𝛼 𝑥 = exp −𝑥−𝛼    ,    𝑥 > 0. 

Theorem 1.4.13. (Characterization of DA (Φ𝛼)) 

The distribution function F belongs to the domain of attraction of Φ𝛼 , 𝛼 > 0, if and only if 

𝑥𝐹 = +∞, 𝐹  𝑥 = 1 − 𝐹 𝑥 = 𝑥−𝛼𝐿 𝑥 𝜖𝑅𝑉−𝛼 , for some function L slowly varying at ∞. If 

𝐹𝜖𝐷𝐴 Φ𝛼  ,  then in this case  𝑎𝑛
−1𝑀𝑛  

𝑑
→ Φ𝛼 ,  where the norming constants 𝑎𝑛  can be chosen as 

the  𝑎𝑛 = 𝐹−1 1 − 1

𝑛
 ,   𝑏𝑛 = 0.  

The proof for details see Resnik (1987) [20], pp. 54-57. 

Domain of attraction of  Ψ𝛼 𝑥 = exp − −𝑥 𝛼 , 𝑥 < 0. 
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Theorem 1.4.14. (Characterization of DA(Ψ𝛼 )) 

  The distribution function F belongs to the domain of attraction of Ψ𝛼 , 𝛼 > 0, if and only if 

  𝑥𝐹 < +∞, 𝑎𝑛𝑑 𝐹  𝑥 = 1 − 𝐹 𝑥𝐹 − 1

𝑥
  𝜖𝑅𝑉−𝛼 . If 𝐹𝜖𝐷𝐴 Ψ𝛼 , then in this case  

 𝑎𝑛
−1 𝑀𝑛 − 𝑥𝐹 

𝑑
→ Ψ𝛼 , where the norming constants 𝑎𝑛  can be chosen as   

  𝑎𝑛 = 𝑥𝐹 − 𝐹−1 1 − 1

𝑛
 , 𝑏𝑛 = 𝑥𝐹 .  

 The proofs for details see Resnik (1987) [20], pp. 59-62. And [5], pp. 135. 

 

Definition 1.4.15. See [5]. (Quantile function).                                                                           

The generalized inverse of the distribution function F,  

𝐹−1 𝑡 = 𝐹← 𝑡 = inf  𝑥𝜖ℛ: 𝐹 𝑥 ≥ 𝑡 ,   0 < 𝑡 < 1,  is called the quantile function of the 

distribution function F. The quantity  𝑥𝑡 = 𝐹−1 𝑡 = 𝐹← 𝑡  defines the t- quantile of F. 

The following figure (1.6) below is the quantile function for the generalized extreme value 

distribution. 

 

 

        Figure (1.6): quantile function for the generalized extreme value distribution. 
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                                                                                                                                              The domain of attraction of the distribution function F is determined by the asymptotic     

behavior of the tail 1 − 𝐹 𝑥 , as  𝑥 → +∞.                                                                                   

The following theorem from [14] is important for determining of normalizing constants  

𝑎𝑛  and 𝑏𝑛  in  1.1 . 

                                                                                                                                              Theorem 1.4.16. Let {𝑋𝑛} be an independent identically distributed (i.i.d.) sequence random 

variables. Let 𝜏𝜖[0, +∞), and suppose that {𝑢𝑛 } is a sequence of real numbers, such that 

𝑛 1 − 𝐹 𝑢𝑛  → 𝜏, 𝑎𝑠 𝑛 → ∞, then 𝑃 𝑀𝑛 ≤ 𝑢𝑛 → 𝑒−𝜏 , 𝑎𝑠 𝑛 → ∞. 

The proofs of the theorem can be found in Leadbetter et al. (1983) [13], [14], Resnick (1987) 

[20], Galambos (1987), etc... 

 

 

Examples of Domain of Attraction 1.4.17. 

Example (1) Exponential distribution (type I, Gumbel) 

We consider 𝐹 𝑥 = 1 − 𝑒−𝑥  .  We have 
1−𝐹 𝑡+𝑥𝑔 𝑡  

1−𝐹 𝑡 
=

𝑒− 𝑡+𝑥𝑔  𝑥  

𝑒−𝑡 = 𝑒−𝑥𝑔 𝑡 = 𝑒−𝑥 , 𝑖𝑓 𝑔 𝑡 = 1. 

Therefore, the distribution function 𝐹 𝑥 , belongs to the domain of attraction of the function 

𝐺0 𝑥 , and we have the type (I) of extreme value distribution, i.e. there exist constants 𝑎𝑛and 𝑏𝑛 , 

such that the following equality holds true: 

𝑃  𝑀𝑛 ≤
𝑥

𝑎𝑛
+ 𝑏𝑛 → exp −𝑒−𝑥 . 

We now determine the constants  𝑎𝑛and 𝑏𝑛 .  

Let us first determine the constant 𝑢𝑛 , such that   1 − 𝐹(𝑢𝑛) ~  
1

𝑛
 𝑒−𝑥   as 𝑛 → ∞, 𝑖. 𝑒.    

1 − 𝐹 𝑥 = 𝑒−𝑥                           (1.1), 

it follows from (1.1) that 1 − 𝐹 𝑢𝑛 = 𝑒−𝑢𝑛 ,   𝜏 = 𝑒−𝑥 , 

then 𝑒−𝑢𝑛 ~ 𝜏
𝑛  , 𝜏 > 0, 

   ln 𝑒−𝑢𝑛 ~ ln 𝜏
𝑛  ,                                  𝑏𝑢𝑡 𝜏 = 𝑒−𝑥  𝑡𝑕𝑒𝑛 ln 𝜏 = −𝑥, 

−𝑢𝑛~ ln 𝜏 − ln 𝑛,     𝑠𝑜  −𝑢𝑛~ −  𝑥 + ln 𝑛 ,  

then  𝑢𝑛~ 𝑥 + ln 𝑛 , 𝑎𝑠 𝑛 → ∞, 

𝑃 𝑀𝑛 ≤ 𝑢𝑛 → 𝑒−𝜏 , 𝑎𝑠 𝑛 → ∞.  

Using Theorem 1.4.16 we obtain 



21 
 

 𝑃 𝑀𝑛 ≤ 𝑥 + ln 𝑛 → 𝑒−𝑒−𝑥
,                        (1) 

but 𝑃  𝑀𝑛 ≤
𝑥

𝑎𝑛
+ 𝑏𝑛 → 𝐺 𝑥                     2 . 

Now we compare the equation (1) with the equation (2). We obtain  

 𝑎𝑛 = 1, 𝑏𝑛 = ln 𝑛  𝑎𝑛𝑑  𝐺 𝑥 = 𝑒−𝑒−𝑥
. 

 

Example (2) Pareto distribution (or Pareto’s law) (type II, Frećhet) 

We consider 𝐹 𝑥 = 1 − 𝑥−𝛼 ,    𝛼 > 0,    𝑥 ≥ 1.  We have lim𝑡→∞
1−𝐹(𝑡𝑥)

1−𝐹(𝑡)
=

(𝑡𝑥)−𝛼

(𝑡)−𝛼
= 𝑥−𝛼 . 

In this example, the distribution function 𝐹 𝑥 , belongs to the domain of attraction of the 

function 𝐺1 𝑥 , and we have the type (II) of extreme value distribution, i.e. there exist 

constants 𝑎𝑛and 𝑏𝑛 , such that the following equality holds true: 

𝑃  𝑀𝑛 ≤
𝑥

𝑎𝑛
+ 𝑏𝑛 → exp −𝑥−𝛼 . 

We now determine the constants  𝑎𝑛and 𝑏𝑛 .  

Let us first determine the constant 𝑢𝑛 , such that   1 − 𝐹(𝑢𝑛) ~  
1

𝑛
𝑥−𝛼  , , 𝛼 > 0,   as 𝑛 → ∞, 𝑖. 𝑒.    

1 − 𝐹 𝑢𝑛  ~ 𝜏 𝑛 , 𝜏 = 𝑥−𝛼 ,     𝜏 > 0,    

 𝑢𝑛 −𝛼~
𝑥−𝛼

𝑛
, 𝑎𝑠 𝑛 → ∞,     

  𝑢𝑛 −𝛼~  
𝑥

𝑛
−1
𝛼

 
−𝛼

, 𝑎𝑠 𝑛 → ∞,  and we obtain 

𝑢𝑛~ 𝑛
1

𝛼𝑥, 𝑎𝑠 𝑛 → ∞.  

Using Theorem 1.4.16 we obtain 

 𝑃  𝑀𝑛 ≤ 𝑛
1

𝛼𝑥 → 𝑒−𝑥−𝛼
 ,    𝑎𝑠 𝑛 → ∞,                  

 we get 𝑎𝑛 = 𝑛
−1

𝛼 , 𝑏𝑛 = 0 𝑎𝑛𝑑  𝐺 𝑥 = 𝑒−𝑥−𝛼
. 
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Example (3) Uniform distribution (type III, Weibull) 

We consider 𝐹 𝑥 = 1 − 𝑥    𝑜𝑛  0,1 .    

Obviously 𝑥𝐹 = 1, and we have lim𝑕↓0
1−𝐹(𝑥𝐹−𝑕𝑥)

1−𝐹(𝑥𝐹−𝑕)
= lim

𝑕↓0

1−𝐹(1−𝑕𝑥)

1−𝐹(1−𝑕)
= lim𝑕↓0

1−𝑕𝑥

1−𝑕
= lim𝑕↓0

−𝑥

−1
=

𝑥, by LHopitals Rule,   𝛼 = 1. 

So 𝐹𝜖𝐷𝐴 Ψ1  (of type III) Weibull distribution. 

We now determine the constants  𝑎𝑛and 𝑏𝑛 .  

Let us first determine the constant 𝑢𝑛 , such that   1 − 𝐹(𝑢𝑛) ~  
1

𝑛
𝑥 , , 𝛼 > 0,   as 𝑛 → ∞, 𝑖. 𝑒.    

   1 − 𝐹 𝑢𝑛  ~ 𝜏 𝑛 , 𝜏 = 𝑥,     𝜏 > 0, 

    𝑢𝑛~
𝑥

𝑛
 ,      𝑎𝑠 𝑛 → ∞, 

 𝑃 𝑀𝑛 ≤ 𝑢𝑛 → 𝑒−𝜏 , 𝑎𝑠 𝑛 → ∞. 

Using Theorem 1.4.16 we obtain 

 𝑃  𝑀𝑛 ≤
𝑥

𝑛
 → 𝑒−𝑥  ,    𝑎𝑠 𝑛 → ∞,                  

 thus, 𝑎𝑛 = 𝑛, 𝑏𝑛 = 0 𝑎𝑛𝑑  𝐺 𝑥 = 𝑒−𝑥 . 

 

Example (4): If  𝐹 𝑥 =  1 − 𝑒
1
𝑥 , 𝑥 < 0

1,           𝑥 ≥ 0.   
                

Determine the type of extreme value distribution and the normalizing constants? 

We consider 𝐹 𝑥 = 1 − 𝑒
1
𝑥 .  

 We have 
1−𝐹 𝑡+𝑥𝑔 𝑡  

1−𝐹 𝑡 
=

𝑒
1

𝑡+𝑥𝑔  𝑥 

𝑒
1
𝑡

= 𝑒
−𝑥𝑔  𝑡 

𝑡 𝑡+𝑥𝑔  𝑡  = 𝑒
−𝑥𝑡2

𝑡2+𝑥𝑡3 = 𝑒
−𝑥

1+𝑥𝑡 ,      𝑝𝑢𝑡 𝑔 𝑡 = 𝑡2 , ⇒

lim𝑡→0− 𝑒
−𝑥

1+𝑥𝑡 = 𝑒−𝑥 , 𝑎𝑠 𝑡 → 0−, ⇒  

lim
𝑡→0−

1 − 𝐹(𝑡 + 𝑥𝑔 𝑡 )

1 − 𝐹(𝑡)
= 𝑒−𝑥    , 𝑎𝑠 𝑡 → 0−, 

then 𝐹𝜖𝐷𝐴 Λ(x)  (of type I, Gumbel distribution). 

We now determine the constants 𝑎𝑛 , 𝑏𝑛 . 
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We consider 𝐹 𝑥 = 1 − 𝑒
1
𝑥 , 𝑥 < 0,        ⇒ 1 − 𝐹 𝑥 = 𝑒

1
𝑥 , 𝑥 < 0,          (4.1) 

𝑡𝑕𝑒𝑛 1 − 𝐹 𝑢𝑛  ~ 𝜏 𝑛 ,       𝜏 > 0,      𝜏 = 𝑒
1
𝑥  

1 − 𝐹 𝑢𝑛  ~ 𝑒
1
𝑥

𝑛 ,     𝑥 < 0,   (note that   𝜏 = 𝑒
1
𝑥 ⇒ ln 𝜏 =

1

𝑥
, 𝜏 > 0). 

 From (4.1)⇒ 𝑒
1

𝑢𝑛  ~ 𝑒
1
𝑥

𝑛  ⇒ ln 𝑒
1

𝑢𝑛 ~ ln( 𝑒
1
𝑥

𝑛 ) ⇒
1

𝑢𝑛
~ ln( 𝑒

1
𝑥

𝑛 ) ⇒ 𝑢𝑛~  ln 𝑒
1
𝑥

𝑛  

−1

, 

𝑢𝑛~  ln 𝑒
1
𝑥 − ln 𝑛 

−1

⇒ 𝑢𝑛~  
1

𝑥
− ln 𝑛 

−1

⇒ 𝑢𝑛~ ln 𝜏 − ln 𝑛 −1, 

𝑃 𝑀𝑛 ≤ 𝑢𝑛 → 𝑒−𝜏 , 𝑎𝑠 𝑛 → ∞, 

𝜏 = 𝑒−𝑥 , 𝑥𝜖𝑅,    𝑢𝑛 =  ln 𝜏 − ln 𝑛 −1, 

   𝑢𝑛 =  ln 𝑒−𝑥 − ln 𝑛 −1 =  −𝑥 − ln 𝑛 −1 = − 𝑥 + ln 𝑛 −1, 

⇒  𝑃 𝑀𝑛 ≤ − 𝑥 + ln 𝑛 −1 → exp −𝑒−𝑥 , 

But  𝑥 + ln 𝑛 −1 =  ln 𝑛 𝑥

ln 𝑛
+ 1  

−1
=  ln 𝑛 −1  1 −

𝑥

ln 𝑛
+ 𝜍  

1

ln 𝑛
  =

1

ln 𝑛
−

𝑥

 ln 𝑛 2 +

𝜍  
1

 ln 𝑛 2 , 

⇒  𝑀𝑛 ≤ − 𝑥 + ln 𝑛 −1 =  𝑀𝑛 ≤ −
1

ln 𝑛
+

𝑥

 ln 𝑛 2
+ 𝜍  

1

 ln 𝑛 2
   

=  𝑀𝑛 ≤  
− ln 𝑛 + 𝑥 + 𝜍 1 

 ln 𝑛 2
 =   ln 𝑛 2. 𝑀𝑛 + ln 𝑛 ≤ 𝑥 + 𝜍 1  , 

=   ln 𝑛 2  𝑀𝑛 +
1

ln 𝑛
 ≤ 𝑥 + 𝜍(1) ⇒ 𝑀𝑛 ≤

𝑥

 ln 𝑛 2
−

1

ln 𝑛
 , 

Using Theorem 1.4.16 we obtain  𝑃  𝑀𝑛 ≤
𝑥

 ln 𝑛 2 −
1

ln 𝑛
 → 𝑒−𝑒

1
𝑥  . 

Thus 𝑎𝑛 =  ln 𝑛 2  𝑎𝑛𝑑  𝑏𝑛 = −
1

ln 𝑛
= − ln 𝑛 −1. 

 

Example (5) suppose 𝑋1, 𝑋2, … be financial loss, independent identically distributed (i.i.d.) with 

distribution function F and defined as; 𝐹 𝑥 = 1 − exp −𝜆𝑥  𝑤𝑕𝑒𝑟𝑒 𝜆 > 0, 𝑥 > 0. Choose 

normalizing sequences  

𝑎𝑛 =
1

𝜆
, 𝑏𝑛 =

ln 𝑛

𝜆
,     Calculate 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 ? 
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Proof: Since 𝐹 𝑥 = 1 − exp −𝜆𝑥 ,  then 𝐹𝑛 𝑥 = 1 − 𝑒𝑥𝑝 −𝜆𝑥 𝑛   

So that  𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 = 𝐹𝑛  
1

𝜆
𝑥 +

ln 𝑛

𝜆
 =  1 − 𝑒𝑥𝑝  −𝜆  

1

𝜆
𝑥 +

ln 𝑛

𝜆
   

𝑛

= 

=  1 − exp⁡(−𝑥 − ln 𝑛) 𝑛 =  1 − exp −𝑥 . exp ln n−1  𝑛 = 

 1 −
exp  −𝑥 

𝑛
 

𝑛

=  1 −
1

𝑛
exp −𝑥  

𝑛

, then 𝐺 𝑥 = lim𝑛→∞ 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 = 

= lim
𝑛→∞

 1 −
1

𝑛
exp −𝑥  

𝑛

= 𝑒𝑥𝑝 −𝑒−𝑥 = 𝐺0 𝑥 = Λ 𝑥 . 

Thus 𝐹𝜖𝐷𝐴 Λ(x) . 
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1.5. Tailes 

Definition 1.5.1. (Fat –tailed distribution) 

The distribution of random variable X is said to have a fat tail if 

 𝑃 𝑋 > 𝑥 = 𝐹  𝑥 = 1 − 𝐹 𝑥 ~𝑥−𝛼 , 𝑎𝑠 𝑥 → ∞, 𝛼 > 0. 

Remark 1.5.2 Cauchy distributions are examples of fat-tail distributions. 

Definition 1.5.3. (Heavy-tailed distribution) 

The distribution of a random variable X with distribution function F is said to have a heavy right 

tail if lim𝑥→∞ 𝑒𝜆𝑥𝐹  𝑥 = ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 > 0,   𝐹  𝑥 = 1 − 𝐹 𝑥 , 𝐹  𝑥  =   𝑃 𝑋 > 𝑥 . 

Definition 1.5.4. (Long-tailed distribution) 

 The distribution of a random variable X with distribution function F is said to have a long right 

tail if lim𝑥→∞ 𝑃 𝑋 > 𝑥 + 𝑡 ∶ 𝑋 > 𝑥 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0, or equivalently  

𝐹  𝑥 + 𝑡 ~𝐹  𝑥 , 𝑎𝑠 𝑥 → ∞. 

Remark 1.5.5.  Extreme Value Theory (EVT): Three types of distributions 

Type I (Gumbel): Medium tail. 

Type II (Frećhet): Heavy tail. 

Type III (Weibull): Short tail. 
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1.6. Tail equivalence 

Definition 1.6.1. See [5], [20] (Tail equivalence)  

Two distribution functions F(x) and G(x) are called tail equivalent if they have the same right 

endpoint, i.e. if 𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0 and lim𝑥→𝑥0
𝐹

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐴 > 0 𝑎𝑛𝑑              

 𝑥0 = 𝑖𝑛𝑓 𝑥: 𝐹 𝑥 = 1 . 

 

Definition 1.6.2. (Tail equivalence) 

           Two distribution functions F(x) and G(x) are right tail equivalent iff  

𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0, 1 − 𝐹 𝑥 ~1 − 𝐺 𝑥  𝑎𝑠 𝑥 → 𝑥0−; 𝑎𝑛𝑑  lim
𝑥→𝑥0−

1 − 𝐹(𝑥)

1 − 𝐺(𝑥)
= 1. 

 

            The following Theorems and Results from [7], [9], [19] and [20]. 

Definition 1.6.3. Two distribution functions U(x) and V(x) are of the same type if for some  

𝐴 > 0, 𝐵𝜖𝑅,    𝑉 𝑥 = 𝑈 𝐴𝑥 + 𝐵 ,  for all x. 

 

Theorem 1.6.4. Suppose U(x) and V(x) are two non-degenerate distribution functions. If for a 

sequence 𝐹𝑛 𝑥 is a distribution functions and constants 𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1 𝑎𝑛𝑑  

𝛼𝑛 > 0, 𝛽𝑛𝜖𝑅,   𝐹𝑛 𝑎𝑛  𝑥 + 𝑏𝑛 →𝑐 𝑈 𝑥 ,     𝐹𝑛 𝛼𝑛𝑥 + 𝛽𝑛 →𝑐 𝑉 𝑥 ,                         

⟹
𝛼𝑛

𝑎𝑛
→ 𝐴 > 0,    

𝛽𝑛 − 𝑏𝑛

𝑎𝑛
→ 𝐵𝜖𝑅  𝑎𝑛𝑑 𝑉 𝑥 = 𝑈 𝐴𝑥 + 𝐵 . 

 

Remark 1.6.5. The set of normalizing constants 𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1  is asymptotically 

equivalent to the set of normalizing constants 𝛼𝑛 > 0, 𝛽𝑛𝜖𝑅, 𝑛 ≥ 1 𝑖𝑓𝑓 
𝛼𝑛

𝑎𝑛
→ 1,

𝛽𝑛 −𝑏𝑛

𝑎𝑛
→ 0.    
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Domain of attraction results: 

Theorem 1.6.6. F(x) and G(x) are distribution functions such that lim𝑥→𝑥0−
1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝛼, 

 0 < 𝛼 < ∞. If there exist normalizing constants  𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1 such that 

            𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Φ 𝑥                     (1.6.1),                                                                      

Φ(𝑥) non-degenerate, then   𝐺𝑛(𝑎𝑛𝑥 + 𝑏𝑛) → Φ𝛼−1
 𝑥 . 

Proof: Suppose first F(x) and G(x) are tail equivalent and (1.6.1) holds. 

Since 
1−𝐹(𝑥)

1−𝐺(𝑥)
→ 𝛼, 𝑎𝑠 𝑥 → 𝑥0 − ,   1 − 𝐺 𝑥 ~𝛼−1 1 − 𝐹 𝑥  , 

An equivalent formulation of (1.6.1) is 𝑛 1 − 𝐹 𝑎𝑛𝑥 + 𝑏𝑛  → − ln Φ 𝑥 , 

for 𝑥 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 Φ 𝑥 > 0. For such 𝑥,  𝑎𝑛𝑥 + 𝑏𝑛 → 𝑥0 − , and hence from tail equivalence  

𝑛 1 − 𝐺 𝑎𝑛𝑥 + 𝑏𝑛  ~𝑛𝛼−1 1 − 𝐹 𝑎𝑛𝑥 + 𝑏𝑛  → −𝛼−1 ln Φ 𝑥 , 

Then  𝐺𝑛(𝑎𝑛𝑥 + 𝑏𝑛) → Φ𝛼−1
 𝑥 . 

 

Remark 1.6.7. From three extreme value we have for all x and 𝛾 > 0: 

(i)  Λ 𝑥 𝛾 = Λ 𝑥 − ln 𝛾 ,            

(ii) Φ𝛼 𝑥 𝛾 = Φ𝛼 𝛾−𝛼−1
𝑥 , 

(iii) Ψ𝛼 (𝑥)𝛾 = Ψ𝛼 𝛾𝛼−1
𝑥 . 

 

Result 1.6.8. F(x) and G(x) are distribution functions and Φ𝛼 𝑥  is an extreme value 

distribution. Suppose 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Φ𝛼 𝑥 , 𝑓𝑜𝑟   𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. 

Then 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ𝛼 𝐴𝑥 + 𝐵  𝑎𝑛𝑑 𝐴 > 0  𝑖𝑓𝑓 𝐵 = 0 𝑎𝑛𝑑 lim𝑥→∞
1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝐴𝛼 . 

Proof: if lim𝑥→∞
1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝐴𝛼 ,  then by Theorem 1.6.6 we have that 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →

 Φ𝛼 𝑥  𝐴−𝛼
= Φ𝛼 𝐴𝑥 ,  and from remark 1.6.7. (ii) Then  Φ𝛼 𝑥  𝐴−𝛼

= Φ𝛼  𝐴−𝛼 −𝛼−1
𝑥 =

Φ𝛼 𝐴𝑥 . 

For the converse, we can let 𝑎𝑛 = 𝐹−1 1 − 1

𝑛
 = 𝜇𝑛

𝐹 ,   𝑏𝑛 = 0, so that we are given that  

𝐺𝑛  
𝑎𝑛

𝐴
𝑥 + 𝑏𝑛 − 𝑎𝑛

𝐵

𝐴
 → Φ𝛼 𝑥  𝑎𝑠 𝑛 → ∞, then 
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  𝐺𝑛  
𝜇𝑛

𝐹

𝐴
𝑥 −

𝜇𝑛
𝐹𝐵

𝐴
 → Φ𝛼 𝑥  𝑎𝑠 𝑛 → ∞,                    (1.6.2)  

Then from (1.6.2) we obtain 𝑎𝑛 =
𝜇𝑛

𝐹

𝐴
,   𝑏𝑛 = −

𝜇𝑛
𝐹𝐵

𝐴
 . 

But since 𝐺(𝑥)𝜖Φ𝛼 𝑥 , we have that 𝐺𝑛 𝜇𝑛
𝐺𝑥 → Φ𝛼 𝑥   𝑎𝑠 𝑛 → ∞,                (1.6.3) 

then from (1.6.3) we obtain 𝛼𝑛 = 𝜇𝑛
𝐺 ,   𝛽𝑛 = 0, and therefore by Theorem 1.6.4 

𝛼𝑛

𝑎𝑛
→ 1 ⟹

𝜇𝑛
𝐺

𝜇 𝑛
𝐹

𝐴

=
𝜇𝑛

𝐺

𝜇𝑛
𝐹 ⟶ 𝐴−1                                                     (1.6.4) and 

𝑏𝑛 − 𝛽𝑛

𝛼𝑛
→ 0 ⟹

−
𝜇𝑛

𝐹𝐵
𝐴

− 0

𝜇𝑛
𝐺 =

−𝜇𝑛
𝐹𝐵𝐴−1

𝜇𝑛
𝐺 ⟶ 0             (1.6.5)       𝑎𝑠 𝑛 → ∞. 

Since 𝐴 > 0,  (1.6.4) and (1.6.5) can both hold iff 𝐵 = 0.   

Given any 𝜀 > 0,  there exists because of (1.6.4) an integer 𝑁𝜀  such that for  𝑛 >  𝑁𝜀 , we have    

 
𝜇𝑛

𝐺

𝜇𝑛
𝐹

− 𝐴−1 < 𝜀,   − 𝜀 <
𝜇𝑛

𝐺

𝜇𝑛
𝐹

− 𝐴−1 < 𝜀, 

𝑖. 𝑒. ,    𝜇𝑛
𝐹 𝐴−1 − 𝜀 < 𝜇𝑛

𝐺 <  𝐴−1 + 𝜀 𝜇𝑛
𝐹 . 

Since 𝜇𝑛
𝐺 < 𝜇𝑛+1

𝐺 → ∞, we have that for every x sufficiently large there exists an integer 

𝑛 = 𝑛 𝑥  such that 𝑥𝜀 𝜇𝑛
𝐺 , 𝜇𝑛+1

𝐺  . Then 
1−𝐹 𝑥 

1−𝐺 𝑥 
≤

1−𝐹 𝜇𝑛
𝐺 

1−𝐺 𝜇𝑛+1
𝐺  

≤ 

 1 − 𝐹 𝜇𝑛
𝐹 𝐴−1 − 𝜀    𝑛 + 1 =

1 − 𝐹 𝜇𝑛
𝐹 𝐴−1 − 𝜀  

1 − 𝐹 𝜇𝑛
𝐹 

  𝑛 + 1  1 − 𝐹 𝜇𝑛
𝐹   →  𝐴−1 − 𝜀 −𝛼 , 

𝑎𝑠 𝑛 → ∞,  by Theorem 1.4.2 (type II). 

Therefore lim𝑥→∞
1−𝐹 𝑥 

1−𝐺 𝑥 
≤  𝐴−1 − 𝜀 −𝛼 ,   similarly 

lim𝑥→∞
1−𝐹 𝑥 

1−𝐺 𝑥 
≥  𝐴−1 + 𝜀 −𝛼 , and since 𝜀 is arbitrary lim𝑥→∞

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴𝛼 . 

Result 1.6.9. F(x) and G(x) are distribution functions and Ψ𝛼 𝑥  is an extreme value distribution. 

Suppose 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Ψ𝛼 𝑥 , 𝑓𝑜𝑟   𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. 

Then  𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Ψ𝛼 𝐴𝑥 + 𝐵  𝑎𝑛𝑑 𝐴 > 0  𝑖𝑓𝑓 𝐵 = 0, 𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0  𝑎𝑛𝑑  

lim
𝑥→𝑥0

−

1 − 𝐹(𝑥)

1 − 𝐺(𝑥)
= 𝐴−𝛼 . 
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Proof: if lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝐴−𝛼 ,  then by Theorem 1.6.6 we have  𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →

 Ψ𝛼 𝑥  𝐴𝛼
= Ψ𝛼 𝐴𝑥 ,  and from remark 1.6.7. (iii) Then  Ψ𝛼 𝑥  𝐴𝛼

= Ψ𝛼  𝐴𝛼 𝛼−1
𝑥 =

Ψ𝛼 𝐴𝑥 . 

For the converse, we can suppose 𝑎𝑛 = 𝑥0
𝐹 − 𝜇𝑛

𝐹 ,   𝑏𝑛 = 𝑥0
𝐹 , so that we are given that  

𝐺𝑛  
𝑎𝑛

𝐴
𝑥 + 𝑏𝑛 − 𝑎𝑛

𝐵

𝐴
 → Ψ𝛼 𝑥  𝑎𝑠 𝑛 → ∞, then 

𝐺𝑛  𝑥0
𝐹 − 𝜇𝑛

𝐹 𝐴−1𝑥 + 𝑥0
𝐹 − (𝑥0

𝐹 − 𝜇𝑛
𝐹)𝐴−1𝐵 ⟶ Ψ𝛼 𝑥 ,                  (1.6.6) 

Then from (1.6.6) we obtain 𝑎𝑛 =  𝑥0
𝐹 − 𝜇𝑛

𝐹 𝐴−1,   𝑏𝑛 = 𝑥0
𝐹 − (𝑥0

𝐹 − 𝜇𝑛
𝐹)𝐴−1𝐵. 

This means that  𝐺 𝑥 𝜖Ψ𝛼 𝑥 . Therefore 𝑥0
𝐺 < ∞ 𝑎𝑛𝑑  

 𝐺𝑛  𝑥0
𝐺 − 𝜇𝑛

𝐺 𝑥 + 𝑥0
𝐺 → Ψ𝛼 𝑥   𝑎𝑠 𝑛 → ∞,                                                            (1.6.7) 

Then from (1.6.7) we obtain 𝛼𝑛 = 𝑥0
𝐺−𝜇𝑛

𝐺 ,   𝛽𝑛 = 𝑥0
𝐺 , and therefore by Theorem 1.6.4 

𝛼𝑛

𝑎𝑛
→ 1 ⟹

𝑥0
𝐺−𝜇𝑛

𝐺

 𝑥0
𝐹−𝜇𝑛

𝐹 𝐴−1 → 1 ⟹
𝑥0

𝐹−𝜇𝑛
𝐹

𝑥0
𝐺−𝜇𝑛

𝐺 ⟶ 𝐴,                                                 (1.6.8)   and 

 

𝛽𝑛 − 𝑏𝑛

𝛼𝑛
→ 0 ⟹

𝑥0
𝐺 −  𝑥0

𝐹 − (𝑥0
𝐹 − 𝜇𝑛

𝐹)𝐴−1𝐵 

𝑥0
𝐺−𝜇𝑛

𝐺 ⟶ 0,                               (1.6.9)       𝑎𝑠 𝑛 → ∞. 

Combining (1.6.8) and (1.6.9) we have that  
𝑥0

𝐺− 𝑥0
𝐹−𝐴(𝑥0

𝐺−𝜇𝑛
𝐺)𝐴−1𝐵 

𝑥0
𝐺−𝜇𝑛

𝐺 ⟶ 0,                                  

then  
𝑥0

𝐺−𝑥0
𝐹

𝑥0
𝐺−𝜇𝑛

𝐺 + 𝐵 ⟶ 0, and since 𝑥0
𝐺−𝜇𝑛

𝐺 ⟶ 0, we have 𝑥0
𝐺 = 𝑥0

𝐹 = 𝑥0 and 𝐵 = 0. 

From (1.6.8) for any 𝜀 > 0,  there exists 𝑁𝜀  such that for  𝑛 >  𝑁𝜀 , we have    

 
𝑥0 − 𝜇𝑛

𝐺

𝑥0 − 𝜇𝑛
𝐹

− 𝐴−1 < 𝜀,   − 𝜀 <
𝑥0 − 𝜇𝑛

𝐺

𝑥0 − 𝜇𝑛
𝐹

− 𝐴−1 < 𝜀, 

𝑖. 𝑒. , 𝑥0 −  𝑥0 − 𝜇𝑛
𝐹   𝐴−1 + 𝜀 < 𝜇𝑛

𝐺 < 𝑥0 −  𝐴−1 − 𝜀  𝑥0 − 𝜇𝑛
𝐹 . 

 For any  𝑥 < 𝑥0  but sufficiently close to 𝑥0, there exists an integer 𝑛 = 𝑛 𝑥  such that 

𝑥 𝜖  𝜇𝑛
𝐺 , 𝜇𝑛+1

𝐺  . Then  
1−𝐹 𝑥 

1−𝐺 𝑥 
≤

1−𝐹 𝜇𝑛
𝐺 

1−𝐺 𝜇𝑛+1
𝐺  

≤ 
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 1 − 𝐹 𝑥0 −  𝑥0 − 𝜇𝑛
𝐹   𝐴−1 + 𝜀    𝑛 + 1 

=
1 − 𝐹 𝑥0 −  𝑥0 − 𝜇𝑛

𝐹   𝐴−1 + 𝜀  

1 − 𝐹 𝑥0 −  𝑥0 − 𝜇𝑛
𝐹   

  𝑛 + 1  1 − 𝐹 𝑥0 −  𝑥0 − 𝜇𝑛
𝐹     

→  𝐴−1 + 𝜀 𝛼 , 

𝑎𝑠 𝑛 → ∞,  by Theorem 1.4.2 (type III). 

Therefore lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
≤  𝐴−1 + 𝜀 𝛼 .  Similarly 

lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
≥  𝐴−1 − 𝜀 𝛼 ,  and since 𝜀 is arbitrary lim𝑥→𝑥0

−
1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴−𝛼 . 

Corollary 1.6.10. Let F(x) and G(x) are distribution functions. 

(i) If 𝐹𝑛 𝜇𝑛
𝐹𝑥 → Φ𝛼 𝑥  𝑎𝑛𝑑 

𝜇𝑛
𝐺

𝜇𝑛
𝐹 → 𝐴−1 then lim𝑥→∞

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴𝛼 . 

(ii) If 𝑥0
𝐹 = 𝑥0

𝐺 < ∞, 𝐹𝑛  𝑥0 − 𝜇𝑛
𝐹 𝑥 + 𝑥0 → Ψ𝛼 𝑥 , 𝑎𝑛𝑑 lim𝑛→∞

𝑥0−𝜇𝑛
𝐺

𝑥0−𝜇𝑛
𝐹 = 𝐴−1, 

  𝑡𝑕𝑒𝑛  lim
𝑥→𝑥0

−

1 − 𝐹(𝑥)

1 − 𝐺(𝑥)
= 𝐴−𝛼 . 

Result 1.6.11. F(x) and G(x) are distribution functions. Suppose 

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Φ𝛼 𝑥 , 𝑓𝑜𝑟   𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. 

If   𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝑥 , Φ 𝑥  non-degenerate, then Φ 𝑥 = Φ𝛼 (𝐴𝑥) for some 𝐴 > 0  and  

lim
𝑥→∞

1 − 𝐹 𝑥 

1 − 𝐺 𝑥 
= 𝐴𝛼 . 

Proof: To show 𝛽 = 𝛼 : we have  𝐺𝑛 𝐴−1𝜇𝑛
𝐹𝑥 →  Φ𝛽 𝑥  and  𝐺𝑛 𝜇𝑛

𝐺𝑥 →  Φ𝛽 𝑥  so that by 

Theorem 1.6.4,    
𝜇𝑛

𝐺

𝜇𝑛
𝐹 → 𝐴−1.  By corollary 1.6.10. (i), lim𝑥→∞

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴𝛼 , 

But 𝑛 1 − 𝐹 𝜇𝑛
𝐹𝑥  → − ln Φ𝛼 𝑥 = 𝑥−𝛼 ,                                          1.6.10  

and 𝑛 1 − 𝐺 𝜇𝑛
𝐹𝑥  → − ln Φ𝛽 𝐴𝑥 =  𝐴𝑥 −𝛽  ,                              (1.6.11)              

𝑎𝑠 𝑛 → ∞.  Dividing gives  

lim
𝑛→∞

1 − 𝐹 𝜇𝑛
𝐹𝑥 

1 − 𝐺 𝜇𝑛
𝐹𝑥 

= lim
𝑛→∞

𝑥−𝛼

 𝐴𝑥 −𝛽
= 𝐴𝛽 . 𝑥𝛽−𝛼 . 

Since lim𝑥→∞
1−𝐹 𝑥 

1−𝐺 𝑥 
= lim𝑥→∞ 𝐴𝛽 . 𝑥𝛽−𝛼 = 𝐴𝛼  𝑎𝑛𝑑 𝜇𝑛

𝐹 → ∞, suppose 𝛽 = 𝛼 . 
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Result 1.6.12. F(x) and G(x) are distribution functions. Suppose 

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Ψ𝛼 𝑥 , 𝑓𝑜𝑟   𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. 

If   𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝑥 , Φ 𝑥  non-degenerate, then Φ 𝑥 = Ψ𝛼 (𝐴𝑥) for some 𝐴 > 0, 

𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0 ,  and lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝐴−𝛼 . 

Proof: To show 𝛽 = 𝛼 : we have 𝐺𝑛  𝑥0 − 𝜇𝑛
𝐹 𝐴−1𝑥 + 𝑥0 →  Ψ𝛽 𝑥 ,   

𝐺𝑛  𝑥0 − 𝜇𝑛
𝐺 𝑥 + 𝑥0 →  Ψ𝛽 𝑥 ,   so that by Theorem 1.6.4,  lim𝑛→∞

𝑥0−𝜇𝑛
𝐺

𝑥0−𝜇𝑛
𝐹 = 𝐴−1.  

 By corollary 1.6.10. (ii),  lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴−𝛼 . 

Also,  𝑛 1 − 𝐹( 𝑥0 − 𝜇𝑛
𝐹 𝑥 + 𝑥0) → − ln Ψ𝛼 𝑥 =  −𝑥 𝛼   ,                                        1.6.12  

and  𝑛 1 − 𝐺( 𝑥0 − 𝜇𝑛
𝐹 𝑥 + 𝑥0) → − ln Ψ𝛽 𝐴𝑥 =  −𝐴𝑥 𝛽    ,                                   (1.6.13)              

𝑎𝑠 𝑛 → ∞.  Dividing gives  

lim
𝑛→∞

1 − 𝐹( 𝑥0 − 𝜇𝑛
𝐹 𝑥 + 𝑥0)

1 − 𝐺( 𝑥0 − 𝜇𝑛
𝐹 𝑥 + 𝑥0)

= lim
𝑛→∞

 −𝑥 𝛼   

 −𝐴𝑥 𝛽
= 𝐴−𝛽 . 𝑥𝛼−𝛽 . 

Since lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
= lim𝑥→𝑥0

− 𝐴−𝛽 . 𝑥𝛼−𝛽 = 𝐴−𝛼 , for all 𝑥 < 0  𝑎𝑛𝑑 𝜇𝑛
𝐹 → ∞, assume 𝛽 = 𝛼. 

 

Corollary 1.6.13. Let F(x) and G(x) are distribution functions. Suppose there exist  

  𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1, such that 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Λ 𝑥 .  If 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝑥 , 

Φ 𝑥  non-degenerate, then Φ 𝑥 = Λ(𝐴𝑥 + 𝐵), for some 𝐴 > 0, 𝐵. 

 

Result 1.6.14. F(x) and G(x) are distribution functions. Suppose 

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Λ 𝑥 , 𝑓𝑜𝑟   𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. Then 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Λ 𝐴𝑥 + 𝐵 ,  

and 𝐴 > 0 iff 𝐴 = 1, 𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0,  and lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝑒𝐵 . 

 

Theorem 1.6.15.  Let F(x) and G(x) are distribution functions and let 𝛷 𝑥  be an extreme value 

distribution. Suppose F(x) 𝜖 Φ 𝑥  and that 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝑥 , for normalizing constants  
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  𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. Then 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Φ′(x),  Φ′(x) non-degenerate, iff for some 

𝐴 > 0, 𝐵:   Φ′ x =  Φ 𝐴𝑥 + 𝐵 ,     𝑥0
𝐹 = 𝑥0

𝐺 = 𝑥0,      lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
 exists,   and if  

(i) Φ 𝑥 = Φ𝛼 𝑥 ,  then 𝐵 = 0  and lim𝑥→∞
1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴𝛼 ; 

(ii) Φ 𝑥 = Ψ𝛼 𝑥 ,  then 𝐵 = 0  and lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
= 𝐴−𝛼 ; 

(iii) Φ 𝑥 = Λ 𝑥 ,   then 𝐴 = 1   and  lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
= 𝑒𝐵 . 

 

Theorem 1.6.16.  F(x) and G(x) are distribution functions and  𝛷 𝑥  be an extreme value 

distribution. Suppose 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝑥 , for normalizing constants  

  𝑎𝑛 > 0, 𝑏𝑛𝜖𝑅, 𝑛 ≥ 1. Then  𝐹𝐺 𝑛 𝑎𝑛𝑥 + 𝑏𝑛 = 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ 𝐴𝑥 + 𝐵 , 

Iff 

(i) Φ 𝑥 = Φ𝛼 𝑥 : 𝐵 = 0, 0 < 𝐴 ≤ 1, and lim𝑥→∞
1−𝐹 𝑥 

1−𝐺 𝑥 
=  𝐴−𝛼 − 1 −1.  

(ii) Φ 𝑥 = Ψ𝛼 𝑥 : 𝐵 = 0, 1 ≤ 𝐴 < ∞, and lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐺 𝑥 
=  𝐴𝛼 − 1 −1.  

(iii) Φ 𝑥 = Λ 𝑥 : 𝐴 = 1, 𝐵 < 0 and, lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
=  𝑒−𝛽 − 1 

−1
. 

Proof (i) by Theorem 1.6.15. Replacing 𝐺 𝑥  𝑏𝑦 𝐹𝐺 𝑥  we have that B=0 and 

 lim𝑥→∞
1−𝐹 𝑥 

1−𝐹𝐺 𝑥 
= 𝐴𝛼 .  For 𝑥 > 0,   

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 . 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Φ𝛼 𝐴𝑥 ,                                  1.6.14  

and                 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Φ𝛼 𝑥  ,                                                             1.6.15 ,  

 so that, since  𝐹𝐺 𝑛 𝑎𝑛𝑥 + 𝑏𝑛 ≤ 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 , we have Φ𝛼 𝐴𝑥 ≤ Φ𝛼 𝑥 .  Therefore, 

𝐴𝑥 ≤ 𝑥 and 𝐴 ≤ 1. Also for 𝑥 > 0,  

Dividing gives 
𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  .𝐺𝑛  𝑎𝑛 𝑥+𝑏𝑛  

𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  
→

Φ𝛼  𝐴𝑥 

Φ𝛼  𝑥 
 𝑡𝑕𝑒𝑛 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →

Φ𝛼  𝐴𝑥 

Φ𝛼  𝑥 
= 

Φ𝛼  𝐴−𝛼 − 1 −𝛼−1
𝑥 ,  and by Theorem 1.6.15. (i) we have lim𝑥→∞

1−𝐹 𝑥 

1−𝐺 𝑥 
=  𝐴−𝛼 − 1 −1. 

Proof (ii) by Theorem 1.6.15. Replacing 𝐺 𝑥  𝑏𝑦 𝐹𝐺 𝑥  we have that B=0 and 

 lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐹𝐺 𝑥 
= 𝐴−𝛼 .  For 𝑥 > 0,   

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 . 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 → Ψ𝛼 𝐴𝑥 ,                                          1.6.16  
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   and                𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Ψ𝛼 𝑥 ,                                                                1.6.17 ,  

so that, since  𝐹𝐺 𝑛 𝑎𝑛𝑥 + 𝑏𝑛 ≤ 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 , so that Ψ𝛼 𝐴𝑥 ≤ Ψ𝛼 𝑥   and for 𝑥 < 0, 

𝐴𝑥 ≤ 𝑥 so that 𝐴 ≥ 1. 

Dividing gives 
𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  .𝐺𝑛  𝑎𝑛 𝑥+𝑏𝑛  

𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  
→

Ψ𝛼  𝐴𝑥 

Ψ𝛼  𝑥 
 𝑡𝑕𝑒𝑛 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →

Ψ𝛼  𝐴𝑥 

Ψ𝛼  𝑥 
= 

Ψ𝛼  𝐴𝛼 − 1 𝛼−1
𝑥 ,  and by Theorem 1.6.15.(ii) we have lim𝑥→𝑥0

−
1−𝐹 𝑥 

1−𝐺 𝑥 
=  𝐴𝛼 − 1 −1. 

Proof (iii) by Theorem 1.6.15. Replacing 𝐺 𝑥  𝑏𝑦 𝐹𝐺 𝑥  we have that A=1 and 

 lim𝑥→𝑥0
−

1−𝐹 𝑥 

1−𝐹𝐺 𝑥 
= 𝑒𝐵 .  For 𝑥 > 0,   

𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 . 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →  Λ 𝑥 + 𝐵 ,                                   1.6.18  

      and                 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →   Λ 𝑥  ,                                                          1.6.19 ,  

so that, since  𝐹𝐺 𝑛 𝑎𝑛𝑥 + 𝑏𝑛 ≤ 𝐹𝑛 𝑎𝑛𝑥 + 𝑏𝑛 , we have Λ 𝑥 + 𝐵 ≤ Λ 𝑥 .  Therefore  

𝑥 + 𝐵 ≤ 𝑥 and 𝐵 ≤ 0. 

Dividing gives  
𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  .𝐺𝑛  𝑎𝑛 𝑥+𝑏𝑛  

𝐹𝑛  𝑎𝑛 𝑥+𝑏𝑛  
→

Λ 𝑥+𝐵 

Λ 𝑥 
 𝑡𝑕𝑒𝑛 𝐺𝑛 𝑎𝑛𝑥 + 𝑏𝑛 →

Λ 𝑥+𝐵 

Λ 𝑥 
= 

Λ 𝑥 − ln 𝑒−𝐵 − 1  ,  and by Theorem 1.6.15. (iii) we have lim𝑥→𝑥0
−

1−𝐹(𝑥)

1−𝐺(𝑥)
=  𝑒−𝛽 − 1 

−1
. 
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Chapter2 

STABLE DISTRIBUTIONS ON THE REAL LINE 

2. INTRODUCTION 

Stable distributions are a rich class of probability distributions that allow skewness and heavy 

tails and have many mathematical properties. In probability theory, a random variable is said to 

be stable distributed if it has the property that a linear combination of two independent copies of 

the variable has the same distribution. The stable distribution family is also sometimes referred 

to as the Levy alpha-stable distribution. The general stable distribution requires four parameters 

for complete description: 𝑆𝛼 𝜍, 𝛽, 𝜇 ,  where  𝛼𝜖(0,2] is an index of stability and also called the 

tail index, tail exponent or characteristic exponent, a skewness parameter 𝛽𝜖 −1,1 ,  a scale 

parameter 𝜍 > 0 and a location parameter 𝜇𝜖𝑅.                                                                                   

And all graphics are made in XTREMES program [23]. 

The figure (2.1) below shows Probability Density Function when 

 (𝛼 = 2,1.5,1,0.5, 𝛽 = 0, 𝜍 = 1, 𝜇 = 0). 

  
Figure (2.1): Probability Density Function when (𝛼 = 2,1.5,1,0.5, 𝛽 = 0, 𝜍 = 1, 𝜇 = 0). 
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 The figure below shows Distribution Function when (𝛼 = 2,1.5,1,0.5, 𝛽 = 0, 𝜍 = 1, 𝜇 = 0). 

 

       Figure (2.2): Distribution Function when (𝛼 = 2,1.5,1,0.5, 𝛽 = 0, 𝜍 = 1, 𝜇 = 0). 

 

The following Theorems and Definitions from [22], [10]. 

2.1 Definitions 

Here we give four equivalent definitions of a stable distribution. 

The first two definitions explain why these distributions are called stable, and the third definition 

related it with the central limit theorem, the fourth definition specifies the characteristic function 

of a stable random variable. 

 

Definition 2.1.1 A random variable X is called a stable distribution if for any positive numbers A 

and B, there is a positive number C and a real number D such that  

𝐴𝑋1 + 𝐵𝑋2 =𝑑 𝐶𝑋 + 𝐷,                                                                                                     2.1.1 ,       

where 𝑋1 and 𝑋2 are independent copies of X, and where " =𝑑 " denotes equality in distribution. 

 

 

 Remark (i) If equation (2.1.1) holds for D=0, then it is called strictly stable. 

               (ii) If  𝑋 =𝑑− 𝑋, then it is called symmetric stable. 
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Theorem 2.1.2. For any stable random variable X, there is a number 𝛼𝜖(0,2] such that the 

number C in (2.1.1) satisfies 

𝐶𝛼 = 𝐴𝛼 + 𝐵𝛼 ,                                                                                                          2.1.2  

where 𝛼 is called the index of stability or characteristic exponent. 

 

Example 2.1.3. if X is a Gaussian random variable with mean 𝜇 and variance 𝜍2 

 𝑋~𝑁(𝜇, 𝜍2) , then X is stable with 𝛼 = 2, because  

𝐴𝑋1 + 𝐵𝑋2~𝑁  𝐴 + 𝐵 𝜇, (𝐴2 + 𝐵2) 𝜍2 ,   i.e., (1.1.1) holds with  

𝐶 =  𝐴2 + 𝐵2 𝑎𝑛𝑑 𝐷 =  𝐴 + 𝐵 − 𝐶 𝜇 . 

 

Definition 2.1.4 (equivalent to definition 2.1.1).  A random variable X is called a stable 

distribution if for any 𝑛 ≥ 2, there is a positive number 𝐶𝑛  and a real number 𝐷𝑛  such that  

𝑋1+𝑋2 + ⋯ + 𝑋𝑛 =𝑑 𝐶𝑛𝑋 + 𝐷𝑛 ,                                                                             (2.1.3) 

 

where 𝑋𝑖  are independent copies of 𝑋.. 

 

Remark (i) The first definition displays continuous combinations of two independent identically 

distributed random variables, while the second definition displays the sum of any number of 

independent identically distributed random variables. 

(ii) If equation (2.1.3) holds, then 𝐶𝑛 = 𝑛
1

𝛼 ,   for some 𝛼𝜖 0,2 . 

 

Definition 2.1.5 (Equivalent to definitions 2.1.1and 2.1.4). A random variable X is called a stable 

distribution if it has a domain of attraction, i.e., if there exists a sequence of independent 

identically distributed random variables 𝑌1, 𝑌2, …,  and sequences of positive numbers  𝑑𝑛  and 

real numbers 𝑎𝑛  such that  

𝑌1 + 𝑌2 + ⋯ + 𝑌𝑛

𝑑𝑛
+ 𝑎𝑛 →𝑑 𝑋,                                                                           (2.1.4) 

where →𝑑denotes convergence in distribution. 
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Remark (i) If X is Gaussian, and 𝑌𝑖  are independent identically distributed (i.i.d.) with finite 

variance, then equation (2.1.4) is just the central limit theorem.  

(ii) When 𝑑𝑛 = 𝑛
1

𝛼 , Y is said to belong to the “normal” domain of attraction X. 

Generally, 𝑑𝑛 = 𝑛
1

𝛼𝐿 𝑛 , where L(x), 𝑥 > 0, is a slowly varying function at infinity, that is, 

lim𝑡→∞
𝐿(𝑡𝑥)

𝐿(𝑡)
= 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0. The function 𝐿 𝑥 = ln 𝑥,  for example, is slowly varying at 

infinity (see examples 1.2.5, p. 18 in the first chapter). 

 

 

Definition 2.1.6  (equivalent to definitions 2.1.1, 2.1.4 and 2.1.5). A random variable X is called 

a stable distribution if there exists, 0 < 𝛼 ≤ 2,   𝜍 ≥ 0, −1 ≤ 𝛽 ≤ 1, 𝜇 is a real number such 

that the characteristic function of stable distribution has the following form: 

   𝐸𝑒𝑥𝑝 𝑖𝜃𝑋 =  
exp⁡{−𝜍𝛼  𝜃 𝛼(1 − 𝑖𝛽(𝑠𝑖𝑔𝑛𝜃) tan

𝜋𝛼

2
) + 𝑖𝜇𝜃}         𝑖𝑓 𝛼 ≠ 1,

exp⁡{−𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln 𝜃 ) + 𝑖𝜇𝜃}            𝑖𝑓 𝛼 = 1,

       (2.1.5) 

            and 

𝑠𝑖𝑔𝑛 𝜃 =  

1    𝑖𝑓  𝜃 > 0,
0       𝑖𝑓  𝜃 = 0,

−1      𝑖𝑓 𝜃 < 0.  

  

 

Remark 2.1.7.  Since (2.1.5) is characterized by four parameters, 𝛼𝜖 0,2 , 

 𝜍 ≥ 0, 𝛽𝜖 −1,1 , 𝜇𝜖𝑅, we will denote stable distributions by 𝑆𝛼 𝜍, 𝛽, 𝜇   and write 

𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇 .  

 

Remark 2.1.8. When 𝛼 = 2, the characteristic function (2.1.5) becomes   

𝐸𝑒𝑥𝑝 𝑖𝜃𝑋 = 𝑒𝑥𝑝 𝑖𝜇𝜃 − 𝜍2𝜃2 .  This is the characteristic function of a Gaussian random 

variable with mean 𝜇 and variance 2𝜍2 . 

Remark 2.1.9. There are only three special cases in which a closed form expression is known for 

a stable distributions probability density function. These are the Gaussian case (𝛼 = 2, 𝛽 = 0), 

Cauchy case (𝛼 = 1, 𝛽 = 0), and Levy case (𝛼 = 0.5, 𝛽 = ±1) with the following densities: 

(1) The Gaussian distribution 𝑆2 𝜍, 0, 𝜇 = 𝑁 𝜇, 2𝜍2 ,  whose density is 

                               𝑓 𝑥 =
1

2𝜍 𝜋
𝑒

−
 𝑥−𝜇  2

4𝜍2  ,      − ∞ < 𝑥 < ∞. 

The distribution function, for which there is no closed form expression, is 
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 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = Φ  
(𝑥−𝜇)

𝜍
 ,  where Φ 𝑍 = Probability that a standard normal random 

variable is less than or equal Z. 

 

(2) The Cauchy distribution 𝑆1 𝜍, 0, 𝜇 , whose density is  

𝑓 𝑥 =
𝜍

𝜋( 𝑥 − 𝜇 2 + 𝜍2)
 ,   − ∞ < 𝑥 < ∞.     

 

(3) The Levy distribution 𝑆0.5 𝜍, 1, 𝜇 , whose density is                        

  𝑓 𝑥 =
 𝜍

 2𝜋(𝑥 − 𝜇)
3
2

𝑒
−

𝜍
2(𝑥−𝜇)  ,      𝜇 < 𝑥 < ∞ . 

 

 

The figure below shows graphics of Probability density functions for Gaussian when (𝛼 =

2, 𝛽 = 0), Cauchy when (𝛼 = 1, 𝛽 = 0), and Levy when (𝛼 = 0.5, 𝛽 = ±1), respectively from 

left to right. 

 

 

 Figure (2.3): Probability density functions for Gaussian when (𝛼 = 2, 𝛽 = 0), Cauchy when 

(𝛼 = 1, 𝛽 = 0), and Levy when (𝛼 = 0.5, 𝛽 = ±1), respectively from left to right. 
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The figure below shows graphics of Probability density functions for Gaussian when (𝛼 =

2, 𝛽 = 0 ) (black line), Cauchy when (𝛼 = 1, 𝛽 = 0) (red line), Levy when (𝛼 = 0.5, 𝛽 = ±1) 

(green line). 

 

 

Figure (2.4): Probability density functions for Gaussian when (𝛼 = 2, 𝛽 = 0) (black line), 

Cauchy when (𝛼 = 1, 𝛽 = 0) (red line), Levy when (𝛼 = 0.5, 𝛽 = ±1) (green line). 

 

 

 

 

 

 

 

 

 



40 
 

The figure below shows Stable densities in the  𝑆𝛼 1,0,0 ,  

parameterization, 𝛼 = 1, 1.5, 1.8, 1.95, 2 . 

 

 
        Figure (2.5): Stable densities in the  𝑆𝛼 1,0,0 , parameterization, 

          𝛼 =  1, 1.5, 1.8, 1.95, 2 . 
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The figure below shows Stable densities in the 𝑆0.8 1, 𝛽, 0 , parameterization,  

  𝛽 = −1, −0.8, −0.5, 0, 0.5, 0.8, 𝑎𝑛𝑑 1 . 

 

 

           Figure (2.6): Stable densities in the 𝑆0.8 1, 𝛽, 0 , parameterization, 

              𝛽 = −1, −0.8, −0.5, 0, 0.5, 0.8, 𝑎𝑛𝑑 1 . 
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The figure below shows Stable densities in the 𝑆𝛼 1,0.5,0 , parameterization, 

  𝛼 = 0.5, 0.75, 1, 1.25,1.5  

 

             Figure (2.7): Stable densities in the 𝑆𝛼 1,0.5,0 , parameterization, 

               𝛼 = 0.5, 0.75, 1, 1.25,1.5 . 
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The following properties from [22]. 

 

2.2  Properties of stable random variables: 

 

Property 2.2.1.  Let 𝑋1𝑎𝑛𝑑 𝑋2  be independent random variables with 𝑋𝑖~𝑆𝛼 𝜍𝑖 , 𝛽𝑖 , 𝜇𝑖 ,   

  𝑖 = 1,2.  𝑡𝑕𝑒𝑛 𝑋1 + 𝑋2~𝑆𝛼 𝜍, 𝛽, 𝜇 , 𝑤𝑖𝑡𝑕  

𝜍 =  𝜍1
𝛼 + 𝜍2

𝛼 
1
𝛼 , 𝛽 =

𝛽1𝜍1
𝛼 + 𝛽2𝜍2

𝛼

𝜍1
𝛼 + 𝜍2

𝛼 , 𝜇 = 𝜇1 + 𝜇2. 

 

Proof: Use equation (2.1.5) and first we verify this for 𝛼 ≠ 1. By independence, 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑋1 + 𝑋2 = ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋1 + ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋2 , 

 ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋1 = −𝜍1
𝛼  𝜃 𝛼(1 − 𝑖𝛽1 𝑠𝑖𝑔𝑛𝜃 tan

𝜋𝛼

2
) + 𝑖𝜇1𝜃 ,               (2.2.1) 

  ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋2 = −𝜍2
𝛼  𝜃 𝛼(1 − 𝑖𝛽2(𝑠𝑖𝑔𝑛𝜃) tan

𝜋𝛼

2
) + 𝑖𝜇2𝜃 ,                              (2.2.2) 

equation (2.2.1) + (2.2.2), then we get  

 

= −(𝜍1
𝛼 + 𝜍2

𝛼)  𝜃 𝛼 + 𝑖 𝜃 𝛼(𝛽1𝜍1
𝛼 + 𝛽2𝜍2

𝛼 ) 𝑠𝑖𝑔𝑛𝜃 tan
𝜋𝛼

2
+ 𝑖𝜃(𝜇1 + 𝜇2), 

= −(𝜍1
𝛼 + 𝜍2

𝛼)  𝜃 𝛼  1 − 𝑖
𝛽1𝜍1

𝛼 +𝛽2𝜍2
𝛼

𝜍1
𝛼 +𝜍2

𝛼 𝑠𝑖𝑔𝑛𝜃 tan
𝜋𝛼

2
 +  𝑖𝜃(𝜇1 + 𝜇2), 

then,  𝜍 =  𝜍1
𝛼 + 𝜍2

𝛼 
1

𝛼 , 𝛽 =
𝛽1𝜍1

𝛼 +𝛽2𝜍2
𝛼

𝜍1
𝛼 +𝜍2

𝛼 , 𝜇 = 𝜇1 + 𝜇2. 

 

Second we verify for 𝛼 = 1. By independence,  

 ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋1  =−𝜍1 𝜃 (1 + 𝑖𝛽1
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln 𝜃 ) + 𝑖𝜇1𝜃,                       (2.2.3) 

 ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋2 = −𝜍2 𝜃 (1 + 𝑖𝛽2
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln 𝜃 ) + 𝑖𝜇2𝜃,                     (2.2.4) 

then (2.2.3) + (2.2.4), we get  

= − 𝜍1 + 𝜍2  𝜃  1 + 𝑖
𝛽1𝜍1 + 𝛽2𝜍2

𝜍1 + 𝜍2

2

𝜋
 𝑠𝑖𝑔𝑛𝜃 ln 𝜃    +  𝑖𝜃 𝜇1 + 𝜇2 , 

then,  𝜍 = 𝜍1 + 𝜍2, 𝛽 =
𝛽1𝜍1+𝛽2𝜍2

𝜍1+𝜍2
, 𝜇 = 𝜇1 + 𝜇2. 

 

Property 2.2.2. Let  𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇  and let (a) be a real constant. Then  

𝑋 + 𝑎~𝑆𝛼 𝜍, 𝛽, 𝜇 + 𝑎 . 

Proof: (i) If  𝛼 ≠ 1,  then 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑋 + 𝑎 = ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋 + ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑎 , 

But  ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋 = −𝜍𝛼  𝜃 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛𝜃 tan
𝜋𝛼

2
) + 𝑖𝜇𝜃 ,                                (2.2.5)                                       
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  and  ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑎 = 𝑖𝑎𝜃,                                                                                                  (2.2.6) 

because 𝐸𝑒𝑥𝑝𝑖𝜃𝑎 = 𝐸 𝑒𝑖𝜃𝑎  =  𝑃𝑛𝑒𝑖𝜃𝑎 = 𝑒𝑖𝜃𝑎  𝑃𝑛𝑛 = 𝑒𝑖𝜃𝑎 . 1 = 𝑒𝑖𝜃𝑎 .𝑛  

Then  2.2.5 + (2.2.6), we get 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑋 + 𝑎 = − 𝜍𝛼  𝜃 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛𝜃 tan
𝜋𝛼

2
) + 𝑖(𝜇 + 𝑎)𝜃 ,         𝑖𝑓  𝛼 ≠ 1. 

 

 

                  (ii) If 𝛼 = 1, then 

          ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑋 + 𝑎 = −𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln 𝜃 ) + 𝑖𝜇𝜃 + 𝑖𝑎𝜃,  

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑋 + 𝑎 = −𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛𝜃) ln 𝜃 ) + 𝑖𝜃(𝜇 + 𝑎),          𝑖𝑓 𝛼 = 1. 

Then, 𝑋 + 𝑎~𝑆𝛼 𝜍, 𝛽, 𝜇 + 𝑎 . 

 

                                       

Property 2.2.3. Let 𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇  and let (a) be a non-zero real constant. Then  

𝑎𝑋~𝑆𝛼  𝑎 𝜍, 𝑠𝑖𝑔𝑛(𝑎)𝛽, 𝑎𝜇 ,                                                 𝑖𝑓 𝛼 ≠ 1 , 

𝑎𝑋~𝑆1   𝑎 𝜍, 𝑠𝑖𝑔𝑛 𝑎 𝛽, 𝑎𝜇 −
2

𝜋
𝑎(ln 𝑎 )𝜍𝛽 ,               𝑖𝑓 𝛼 = 1. 

 

Proof: (i) if  𝛼 ≠ 1,  then 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑎𝑋 = − 𝜍𝛼  𝜃𝑎 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛(𝑎𝜃) tan
𝜋𝛼

2
) + 𝑖𝜇(𝑎𝜃) , 

                        

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑎𝑋 = −  𝜍 𝑎  𝛼  𝜃 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛(𝑎)𝑠𝑖𝑔𝑛(𝜃) tan
𝜋𝛼

2
) + 𝑖(𝜇𝑎)𝜃 , 

then  

𝑎𝑋~𝑆𝛼  𝑎 𝜍, 𝑠𝑖𝑔𝑛(𝑎)𝛽, 𝑎𝜇 ,                                                 𝑖𝑓 𝛼 ≠ 1 . 

 

                  (ii) If 𝛼 = 1, then 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑎𝑋 = −𝜍 𝜃𝑎 (1 + 𝑖𝛽
2

𝜋
(𝑠𝑖𝑔𝑛(𝑎𝜃)) ln 𝑎𝜃 ) + 𝑖𝜇(𝑎𝜃), 

ln 𝐸𝑒𝑥𝑝𝑖𝜃 𝑎𝑋 = − a 𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛 𝑎 𝑠𝑖𝑔𝑛 𝜃 {ln 𝑎 + ln 𝜃 }) + 𝑖𝜇(𝑎𝜃), 

= − a 𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛 𝑎 𝑠𝑖𝑔𝑛 𝜃 ln 𝜃 ) + 𝑖  𝜇𝑎 − 𝛽

2

𝜋
 a  𝜃 𝜍. 𝑠𝑖𝑔𝑛 𝑎 . ln 𝑎 𝑠𝑖𝑔𝑛 𝜃  𝜃 , 

then  
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𝑎𝑋~𝑆1   𝑎 𝜍, 𝑠𝑖𝑔𝑛 𝑎 𝛽, 𝑎𝜇 −
2

𝜋
 𝑎  ln 𝑎  𝜍𝛽. 𝑠𝑖𝑔𝑛 𝑎  ,               𝑖𝑓 𝛼 = 1. 

 

Property 2.2.4. For any 0 < 𝛼 < 2, 

𝑋~𝑆𝛼 𝜍, 𝛽, 0 ⟺ −𝑋~𝑆𝛼 𝜍, −𝛽, 0 . 

 

Proof :(i) 

 ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋 = − 𝜍𝛼  𝜃 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛(𝜃) tan
𝜋𝛼

2
) + 𝑖𝜇𝜃 , 

but  𝑆𝛼 𝜍, 𝛽, 0 = −𝜍𝛼  𝜃 𝛼(1 − 𝑖𝛽 𝑠𝑖𝑔𝑛(𝜃) tan
𝜋𝛼

2
) ,          if 𝛼 ≠ 1, 

and  𝑆𝛼 𝜍, 𝛽, 0 = −𝜍 𝜃 (1 + 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛𝜃 ln 𝜃 ),                     if 𝛼 = 1, 

then 𝑋~𝑆𝛼 𝜍, 𝛽, 0 . 

 

(ii)  𝑆𝛼 𝜍, −𝛽, 0 = −𝜍𝛼  𝜃 𝛼(1 + 𝑖𝛽 𝑠𝑖𝑔𝑛𝜃) tan
𝜋𝛼

2
) ,          if 𝛼 ≠ 1, 

= − 𝜍𝛼  𝜃 𝛼(1 + 𝑖𝛽 𝑠𝑖𝑔𝑛𝜃) tan
𝜋𝛼

2
)  , 

 

and  𝑆𝛼 𝜍, −𝛽, 0 = −𝜍 𝜃 (1 − 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛𝜃 ln 𝜃 ),                 if 𝛼 = 1, 

= −  𝜍 𝜃 (1 − 𝑖𝛽
2

𝜋
𝑠𝑖𝑔𝑛𝜃 ln 𝜃 )  , 

then −𝑋~𝑆𝛼 𝜍, −𝛽, 0 , 

 from (i) and (ii) then we get  𝑋~𝑆𝛼 𝜍, 𝛽, 0 ⟺ −𝑋~𝑆𝛼 𝜍, −𝛽, 0 . 

 

Remark in property 2.2.4. The distribution 𝑆𝛼 𝜍, 𝛽, 0  is said to be skewed to the right if 𝛽 > 0 

and to the left if 𝛽 < 0. It is said to be totally skewed to the right if 𝛽 = 1 and totally skewed to 

the left if 𝛽 = −1. 

 

Property 2.2.5.  𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇  is symmetric if and only if 𝛽 = 0 𝑎𝑛𝑑 𝜇 = 0.  It is symmetric 

about 𝜇 if and only if 𝛽 = 0. 

Proof:  For a random variable to be symmetric, it is necessary and sufficient that its characteristic 

function be real.  By (2.1.5), when 𝛽 = 0, 𝜇 = 0 then 

  ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋 = − 𝜍𝛼  𝜃 𝛼 ,         if 𝛼 ≠ 1, 

  ln 𝐸𝑒𝑥𝑝𝑖𝜃𝑋 = − 𝜍 𝜃 ,              if 𝛼 = 1. 

 

Remark 2.2.6.  Asymmetric stable random variable is strictly stable, but a strictly stable random 

variable is not necessarily symmetric. 
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The figure below shows Symmetric stable densities and distribution functions for 𝑍~𝑆𝛼 1,0,0 ,  

𝛼 =  0.7, 1.3,1.9 . 

 

 
       Figure (2.8): Symmetric stable densities for 𝑍~𝑆𝛼 1,0,0 ,  𝛼 =  0.7, 1.3,1.9 . 
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Figure (2.9): Symmetric stable distribution functions for 𝑍~𝑆𝛼 1,0,0 ,  𝛼 =  0.7, 1.3,1.9 . 

 

 

 

Property 2.2.7. Let  𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇 , with 𝛼 ≠ 1.  Then X is strictly stable if and only if 𝜇 = 0. 

Proof: let 𝑋1, 𝑋2 be independent copies of X and let A and B be arbitrary positive constants. 

By properties (2.2.1) and (2.2.3), 

𝐴𝑋1 + 𝐵𝑋2~𝑆𝛼  𝜍 𝐴𝛼 + 𝐵𝛼 
1

𝛼 , 𝛽, 𝜇(𝐴 + 𝐵) .  We must set 𝐶 =  𝐴𝛼 + 𝐵𝛼 
1

𝛼  in (2.1.1) by 

properties (2.2.2) and (2.2.3), 

𝐶𝑋 + 𝐷~𝑆𝛼  𝜍 𝐴𝛼 + 𝐵𝛼 
1
𝛼 , 𝛽, 𝜇 𝐴𝛼 + 𝐵𝛼 

1
𝛼 + 𝐷 , 

and therefore, we have 𝐴𝑋1 + 𝐵𝑋2 =𝑑 𝐶𝑋 + 𝐷 𝑤𝑖𝑡𝑕 𝐷 = 0 𝑖𝑓𝑓 𝜇 = 0. 

 

Corollary 2.2.8. Let  𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇 , with 𝛼 ≠ 1.  Then 𝑋 − 𝜇 is strictly stable. 

Proof: use properties 2.2.2 and 2.2.7. 

 

Remark 2.2.9. Thus, any alpha stable random variable with 𝛼 ≠ 1 can be made strictly stable by 

shifting. This is not true when 𝛼 = 1. 
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Property 2.2.10.  Let  𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇 , with 𝛼 = 1.  Then X is strictly stable if and only if 𝛽 = 0. 

Proof:  let 𝑋1, 𝑋2 be independent copies of X and let 𝐴 > 0, 𝐵 > 0. 

And use properties 2.2.3 and 2.2.1. 

 

Corollary 2.2.11. If 𝑋1, 𝑋2, … , 𝑋𝑛  are independent identically distributed 𝑆𝛼 𝜍, 𝛽, 𝜇 , then 

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 =𝑑 𝑛
1

𝛼𝑋1 + 𝜇  𝑛 − 𝑛
1

𝛼 ,                              𝑖𝑓 𝛼 ≠ 1, 

and 

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 =𝑑 𝑛𝑋1 +
2

𝜋
𝜍𝛽,                                             𝑖𝑓 𝛼 = 1. 

 

Remark 2.2.12. The random variable 𝑋~𝑆𝛼 𝜍, 1,0  with 0 < 𝛼 < 1 is called a stable 

subordinator. 

 

Proposition 2.2.13. The “Laplace transform” 𝐸𝑒−𝛾𝑥 , 𝛾 ≥ 0, of the random variable 

𝑋~𝑆𝛼 𝜍, 1,0 , 0 < 𝛼 ≤ 2, 𝜍 ≥ 0, equals 

𝐸𝑒−𝛾𝑥 = 𝑒𝑥𝑝  −
𝜍𝛼

cos
𝜋𝛼
2

. 𝛾𝛼                                                  𝑖𝑓  𝛼 ≠ 1, 

and       

𝐸𝑒−𝛾𝑥 = 𝑒𝑥𝑝  𝜍.
2

𝜋
𝛾 ln 𝛾                                                     𝑖𝑓  𝛼 = 1. 

 

Remark 2.2.14. The constant  −𝜍𝛼  cos
𝜋𝛼

2
 

−1

 is negative if 0 < 𝛼 < 1, and is positive if 

, 1 < 𝛼 ≤ 2. It equals 𝜍2 when 𝛼 = 2. 

 

Property 2.2.15. Let X have distribution 𝑆𝛼 𝜍, 𝛽, 0  with 𝛼 < 2.  Then there exist two 

independent identically distributed (i.i.d.) random variables 𝑌1 𝑎𝑛𝑑 𝑌2 with common distribution 

𝑆𝛼 𝜍, 1,0  such that  

𝑋 =𝑑  
1 + 𝛽

2
 

1
𝛼

𝑌1 −  
1 − 𝛽

2
 

1
𝛼

𝑌2 ,                                                                          𝑖𝑓 𝛼 ≠ 1, 

and 

𝑋 =𝑑  
1 + 𝛽

2
 𝑌1 −  

1 − 𝛽

2
 𝑌2 + 𝜍  

1 + 𝛽

𝜋
ln

1 + 𝛽

2
−

1 − 𝛽

𝜋
ln

1 − 𝛽

2
 ,        𝑖𝑓  𝛼 = 1. 

 

Proof use properties 2.2.1, 2.2.2 and 2.2.3. in [22]. 

 

 

 

Property 2.2.16.  Stable distributions are infinitely divisible. 
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2.3  Overview in infinitely divisible: 

Stable distributions have a long history in the subject of probability. They form a subset of the 

class of so-called “infinitely-divisible” distributions, a class of characteristic functions at the 

heart of general central limit theory.  

 

The following definitions and Theorems from [11]. 

 

Definition 2.3.1.  A distribution function 𝐹 𝑥  and the corresponding characteristic function 

𝑓 𝑡  are said to be infinitely divisible if for every positive integer n there exist a characteristic 

function 𝑓𝑛(𝑡) such that 𝑓 𝑡 =  𝑓𝑛(𝑡) 𝑛  𝑡𝑕𝑒𝑛  𝑓𝑛 𝑡 =  𝑓 𝑡 
𝑛

 ,                             (2.3.1) 

 

Examples 2.3.2. Of infinitely divisible distributions include: 

(i) The normal distribution with parameters (𝜇, 𝜍2) is infinitely divisible, because the characteristic 

function of the normal distribution has the form 𝑓 𝑡 = 𝑒𝑖𝜇𝑡 −
𝜍2𝑡2

2  , so that then for every positive 

integer n there exist a characteristic function 𝑓𝑛(𝑡) such that   𝑓𝑛 𝑡 = 𝑒
𝑖
𝜇

𝑛
𝑡−

1

2
 

𝜍

 𝑛
 

2
𝑡2

 is the 

characteristic function of the normal distribution with parameters  
𝜇

𝑛
,

𝜍

 𝑛
 . 

(ii) The Poisson distribution with parameters (𝑥, 𝜆) is infinitely divisible, because the characteristic 

function of the Poisson distribution has the form 𝑓 𝑡 = 𝑒𝜆 𝑒 𝑖𝑡𝑥 −1 , so that then for every 

positive integer n there exist a characteristic function 𝑓𝑛(𝑡) such that   𝑓𝑛 𝑡 = 𝑒
𝜆

𝑛
 𝑒 𝑖𝑡𝑥 −1 

 is the 

characteristic function of the Poisson  distribution with parameters  𝑥,
𝜆

𝑛
 . 

(iii) Cauchy distribution and the “chi-squared” distribution. 

 

Theorem 2.3.3. The characteristic function of an infinitely divisible distribution never vanishes. 

Proof:  

Give example: The discrete random variables taking the values -1, 0, 1, with probability 
1

8
,

3

4
,

1

8
, 

its characteristic function? 

𝑓 𝑡 = 𝐸 𝑒𝑖𝑡𝑥  =  𝑃𝑛

𝑛

𝑒𝑖𝑡𝑥𝑛 =
3 + cos 𝑡

4
 , 

where  𝑒𝑖𝑡 = cos 𝑡 + 𝑖 sin 𝑡   𝑎𝑛𝑑  𝑒−𝑖𝑡 = cos 𝑡 − 𝑖 sin 𝑡, 

then the result is positive and therefore does not vanish. 
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Before the construction of the general theory two basic elementary types of such random 

functions were known: 

(i) The normal type then the characteristic function 𝑓𝑛(𝑡)  is given by the formula 

log 𝑓𝑛 𝑡 = n  𝑖𝜇𝑡 −
𝜍2𝑡2

2
 ,                                               (2.3.2) 

(ii) The Poisson type then the characteristic function 𝑓𝑛(𝑡)  is given by the formula 

log 𝑓𝑛 𝑡 = nλ 𝑒𝑖𝑡𝑥 − 1 ,                                                  (2.3.3), 

By combining (2.3.2) and (2.3.3) then we get the formula is 

log 𝑓𝑛 𝑡 = n  𝑖𝜇𝑡 −
𝜍2𝑡2

2
+ 𝜆   𝑒𝑖𝑡𝑥 − 1 

+∞

−∞
𝑑𝐹 𝑥   ,                                              2.3.4 ,   

log 𝑓𝑛 𝑡 = n  𝑖𝜇𝑡 −
𝜍2𝑡2

2
+   𝑒𝑖𝑡𝑥 − 1 

0

−∞

𝑑𝑀 𝑥 +   𝑒𝑖𝑡𝑥 − 1 

+∞

0

𝑑𝑁 𝑥   ,          2.3.5 , 

where   𝑒𝑖𝑡𝑥 − 1 
0

−∞
𝑑𝑀 𝑥 = lim𝑎→0   𝑒𝑖𝑡𝑥 − 1 

𝑎

−∞
𝑑𝑀 𝑥 ,   𝑎 < 0,  and 

               𝑒𝑖𝑡𝑥 − 1 
∞

0
𝑑𝑁 𝑥 = lim𝑎→0   𝑒𝑖𝑡𝑥 − 1 

∞

𝑎
𝑑𝑁 𝑥 ,   𝑎 > 0,  

then  log 𝑓𝑛 𝑡 = n  
𝑖𝜇𝑡 −

𝜍2𝑡2

2
+   𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥 

0

−∞
𝑑𝑀 𝑥 

+   𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥 
+∞

0
𝑑𝑁 𝑥 

   ,                                  2.3.6 , 

log 𝑓𝑛 𝑡 = n  𝑖𝜇𝑡 −
𝜍2𝑡2

2
+   𝑒𝑖𝑡𝑥 − 1 −

𝑖𝑡𝑥

1 + 𝑥2
 

0

−∞

𝑑𝑀 𝑥 +   𝑒𝑖𝑡𝑥 − 1 −
𝑖𝑡𝑥

1 + 𝑥2
 

+∞

0

𝑑𝑁 𝑥   

and 

log 𝑓(𝑡) =  𝑖𝜇𝑡 −
𝜍2𝑡2

2
+   𝑒𝑖𝑡𝑥 − 1 −

𝑖𝑡𝑥

1 + 𝑥2
 

0

−∞

𝑑𝑀 𝑥 +   𝑒𝑖𝑡𝑥 − 1 −
𝑖𝑡𝑥

1 + 𝑥2
 

+∞

0

𝑑𝑁 𝑥  . 
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Can be illustrated the formulas by the following theorems: 

Theorem 2.3.4. The Levy-Khinchine canonical representation: 

 The function 𝑓 𝑡  is the characteristic function of an infinitely divisible distribution if and only 

if it can be written in the form: 

 log  𝑓 𝑡 = 𝑖𝜇𝑡 +   𝑒𝑖𝑡𝑥 − 1 −
𝑖𝑡𝑥

1+𝑥2 
∞

−∞

1+𝑥2

𝑥2 𝑑𝐺 𝑥 ,  where 𝜇 is a real constant, 𝐺 𝑥  is a non-

decreasing and bounded function, such that 𝐺 −∞ = 0 and the integral at 𝑥 = 0 is equal 
−𝑡2

2
 ,  

i.e.,   𝑒𝑖𝑡𝑥 − 1 −
𝑖𝑡𝑥

1+𝑥2 
1+𝑥2

𝑥2  
𝑥=0

=
−𝑡2

2
. 

 

Theorem 2.3.5. The Levy canonical representation: 

The function 𝑓 𝑡  is the characteristic function of an infinitely divisible distribution if and only if 

it can be written in the form: 

 log  𝑓 𝑡 = 𝑖𝜇𝑡 −
𝜍2

2
𝑡2 +   𝑒𝑖𝑡𝑥 − 1 −

𝑖𝑡𝑥

1+𝑥2 
0

−∞
𝑑𝑀 𝑥 +   𝑒𝑖𝑡𝑥 − 1 −

𝑖𝑡𝑥

1+𝑥2 
∞

0
𝑑𝑁 𝑥 ,  

 where 𝜇 is a real constant, 𝜍2 is a real and non negative constant and the functions 

𝑀 𝑥 , 𝑁 𝑥 satisfy the following conditions: 

(i) 𝑀 𝑥  𝑎𝑛𝑑 𝑁(𝑥) are non-decreasing in  −∞, 0  𝑎𝑛𝑑  0, +∞ . 

(ii) 𝑀 −∞ =  𝑁 +∞ = 0. 

(iii) The integrals  𝑥20

−𝜀
𝑑𝑀 𝑥 +  𝑥2𝜀

0
𝑑𝑁 𝑥  are finite for every 𝜀 > 0. 

 

 

Theorem 2.3.6. The Kolmogorov canonical representation: 

The function 𝑓 𝑡  is the characteristic function of an infinitely divisible distribution with finite 

second moment iff it can be written in the form: 

 log  𝑓 𝑡 = 𝑖𝜇𝑡 +   𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥 
∞

−∞

𝑑𝐾(𝑥)

𝑥2 ,  where 𝜇 is a real constant, 𝐾 𝑥  is a non-

decreasing and bounded function, such that 𝐾 −∞ = 0 and the integral at 𝑥 = 0 is equal 
−𝑡2

2
,  

i.e.,  𝑒𝑖𝑡𝑥 − 1 − 𝑖𝑡𝑥 
1

𝑥2
 
𝑥=0

=
−𝑡2

2
. 
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2.4 .Tail probabilities 

 

Theorem 2.4.1. below concerns the asymptotic behavior of the tail probabilities  

𝑃 𝑋 > 𝑥  and 𝑃 𝑋 < −𝑥  as 𝑥 → ∞. In the Gaussian case 𝛼 = 2, 

  𝑃 𝑋 < −𝑥 = 𝑃 𝑋 > 𝑥 ~
1

2𝜍𝑥 𝜋
𝑒

−𝑥2

4𝜍2  ,     𝑎𝑠  𝑥 → ∞,    see (Feller 1966) [7]. 

When 𝛼 < 2, however, the tail probabilities behave like 𝑥−𝛼 . 

The statement 𝑕 𝑥 ~𝑔 𝑥  𝑎𝑠 𝑥 → ∞, will mean lim𝑥→∞
𝑕 𝑥 

𝑔 𝑥 
= 1. 

 

Theorem 2.4.1. Tail behavior: if 𝑋~𝑆𝛼 𝜍, 𝛽, 𝜇  with 0 < 𝛼 < 2, −1 ≤ 𝛽 ≤ 1, then there exists a 

non zero constant 𝐶𝛼 ≠ 0,  such that, 

 lim𝑥→∞ 𝑥𝛼𝑃 𝑋 > 𝑥 =
𝐶𝛼 (1+𝛽)𝜍𝛼

2
 ,  

lim𝑥→∞ 𝑥𝛼𝑃 𝑋 < −𝑥 =
𝐶𝛼 (1−𝛽)𝜍𝛼

2
 ,  

where  𝐶𝛼 =   𝑥−𝛼 sin 𝑥𝑑𝑥
∞

0
 
−1

=

 
 

 

 

1−𝛼

Г(2−𝛼) cos  𝜋𝛼
2  

               𝑖𝑓 𝛼 ≠ 1,                        

2
𝜋                                   𝑖𝑓 𝛼 = 1.                     

  
 

       

(Property 1.2.15, Samorodnitsky and Taqqu (1994)) in [22]. 

For all 𝛼 < 2 and −1 < 𝛽 < 1, both tail probabilities and densities are asymptotically power 

laws. 

When 𝛽 = −1, the right tail of the distribution is not asymptotically a power law, 

 Likewise, when 𝛽 = 1, the left tail of the distribution is not asymptotically a power law. 

 

2.5. Mixed distributions: 

Let 𝑋1 and 𝑋2 be random variables with distribution functions 𝐹1 𝑥 and 𝐹2 𝑥 , respectively, and   

     𝑋 =  
𝑋1    𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝,
𝑋2   𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞,

     where 𝑝 + 𝑞 = 1.        

The distribution function of the random variable 𝑋 is given by                                                   

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = 𝑝𝑃 𝑋1 ≤ 𝑥 + 𝑞𝑃 𝑋2 ≤ 𝑥 = 𝑝𝐹1 𝑥 + 𝑞𝐹2 𝑥 ,   
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and is called the mixture of the distributions determined by the functions 𝐹1 𝑎𝑛𝑑 𝐹2. 

We now proceed to study the distribution of extreme values of sequences of independent 

identically distributed random variables with the distribution which is the mixture of stable 

distributions.  

2.5.1. Mixture of stable distributions 

In paper [16], (Mladenović, P., Extreme values of the sequences of independent random 

variables with mixed distributions, MATEMATIČKI VESNIK, 51 (1999), 29- 37.) extreme 

values of mixture of normal distributions and mixture of Cauchy distributions were studied, and 

the following was proved: 

(1) Normalizing constants for maximum in the case of mixture of normal distributions depend on 

only one of the components in this mixture. 

(2) Normalizing constants for maximum in the case of mixture of Cauchy distributions depend 

on both components in this mixture. 

Here we consider the mixtures of stable distributions. See above Theorem 2.4.1 tail behavior, 

will be useful in our proofs. 

As a special case, if 𝑋 ~ 𝑆𝛼 𝜍, 0,0 , 𝑡𝑕𝑒𝑛 𝑎𝑠 𝑥 → ∞, 

                                               𝑃 𝑋 > 𝑥  ~ 𝜍𝛼 𝐶𝛼

2
𝑥−𝛼 . 

Suppose now 𝑋 ~ 𝑆𝛼 𝜍, −1,0 .  Since 𝛽 = −1, Theorem 2.4.1 gives lim𝑥→∞ 𝑥𝛼 𝑃 𝑋 > 𝑥 =

0, 𝑖. 𝑒.,   𝑃 𝑋 > 𝑥  tends to zero faster than  𝑥−𝛼  as   𝑥 → ∞.  

When  𝛼 > 1, 𝑎𝑠 𝑥 → ∞, 

      𝑃 𝑋 > 𝑥  ~ 
1

 2𝜋𝛼  𝛼−1 
 

𝑥

𝛼𝜍𝛼 
 

−𝛼

2 𝛼−1 
𝑒𝑥𝑝  − 𝛼 − 1  

𝑥

𝛼𝜍𝛼 
 

𝛼

𝛼−1
  , 

 where  𝜍𝛼 = 𝜍  cos
𝜋

2
(2 − 𝛼) 

−1

𝛼
 . 

When 𝛼 = 1, 

𝑃 𝑋 > 𝑥  ~ 
1

 2𝜋
𝑒𝑥𝑝  −

 𝜋 2𝜍  𝑥 − 1

2
− 𝑒 𝜋 2𝜍  𝑥−1 . 
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Theorem 2.5.2.  Let  𝑋𝑛  be a sequence of independent random variables such that                                         

𝑋𝑛  ~  
𝑆𝛼 𝜍1, 0,0 ,    𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝,

𝑆𝛼 𝜍2, 0,0 ,   𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞,
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

where 𝑝, 𝑞 > 0  𝑎𝑛𝑑  𝑋 ~  𝑆𝛼 𝜍, 0,0  denotes the stable distribution with 

 𝑃 𝑋 > 𝑥  ~ 𝜍𝛼 𝐶𝛼

2
𝑥−𝛼   and 0 < 𝛼 < 2, 𝜍1 ≠ 𝜍2. 

Let 𝑀𝑛 = max1≤𝑗≤𝑛 𝑋𝑗  .   Then, the limiting distribution of  𝑀𝑛  is given by  

𝑃 𝑎𝑛 𝑀𝑛 − 𝑏𝑛 ≤ 𝑥 → exp −𝑥−𝛼 , 𝑛 → ∞,                                                                               

 where the normalizing constants 𝑎𝑛  and 𝑏𝑛  are given by  

  𝑎𝑛 =  𝑛𝐶 
−1

𝛼  and   𝑏𝑛 = 0 , 

with  𝐶 =  𝑝𝐴 + 𝑞𝐵 , 𝐴 =
𝐶𝛼𝜍1

𝛼

2
  and  𝐵 =

𝐶𝛼𝜍2
𝛼

2
.                                                                                                                      

Proof of Theorem 2.5.2: The distribution function of the random variable X is given by                                                  

𝐹 𝑥 = 𝑝𝐹1 𝑥 + 𝑞𝐹2 𝑥   where 𝑋1 ~ 𝑆𝛼 𝜍1, 0,0  and 𝑋2 ~ 𝑆𝛼 𝜍2, 0,0 .  

Then   1 − 𝐹1 𝑥 = 𝑃 𝑋1 > 𝑥  ~ 𝐴𝑥−𝛼  and 1 − 𝐹2 𝑥 = 𝑃 𝑋2 > 𝑥  ~ 𝐵𝑥−𝛼  , 

where  𝐴 =
𝐶𝛼𝜍1

𝛼

2
 and 𝐵 =

𝐶𝛼𝜍2
𝛼

2
 . 

For the function   𝐹 𝑥 = 𝑝𝐹1 𝑥 + 𝑞𝐹2 𝑥 , we obtain 

1 − 𝐹 𝑥  ~  𝐶𝑥−𝛼 , where 𝐶 =  𝑝𝐴 + 𝑞𝐵 ,   𝑥 → ∞. 

We now consider the asymptotic behavior of the tail 1 − 𝐹 𝑥 ,  as 𝑥 → ∞.  𝐹𝑜𝑟 𝑥 > 0, we have  

lim
𝑡→∞

1 − 𝐹(𝑡𝑥)

1 − 𝐹(𝑡)
= lim

𝑡→∞

𝐶(𝑡𝑥)−𝛼

𝐶(𝑡)−𝛼
= lim

𝑡→∞
𝑥−𝛼 = 𝑥−𝛼 .  

Hence, the distribution function 𝐹 𝑥 , belongs to the domain of attraction of the function 

𝐺1 𝑥 , and we have the type (II) of extreme value distribution, i.e. there exist 

constants 𝑎𝑛and 𝑏𝑛 , such that the following equality holds true: 

𝑃  𝑀𝑛 ≤
𝑥

𝑎𝑛
+ 𝑏𝑛 → exp −𝑥−𝛼 . 

We now determine the constants  𝑎𝑛and 𝑏𝑛 .  

Let us first determine the constant 𝑢𝑛 , such that   1 − 𝐹(𝑢𝑛) ~  
1

𝑛
𝑥−𝛼    as 𝑛 → ∞, 𝑖. 𝑒.    
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1 − 𝑝𝐹1 𝑢𝑛 − 𝑞𝐹2 𝑢𝑛  ~  
1

𝑛
𝑥−𝛼    as  𝑛 → ∞. That means 

 𝐶(𝑢𝑛)−𝛼  ~  
1

𝑛
𝑥−𝛼  , 𝑛 → ∞,    

(𝑢𝑛)−𝛼~
𝑥−𝛼

𝐶𝑛
 ,   𝑛 → ∞,   

(𝑢𝑛)−𝛼~  
𝑥

 𝐶𝑛 
−1
𝛼

 

−𝛼

  ,   𝑛 → ∞,  and we obtain 

   𝑢𝑛  ~  (𝑛𝐶)
1

𝛼  𝑥 ,  as  𝑛 → ∞. 

Using Theorem 1.4.16. in chapter 1, we obtain 

𝑃  𝑀𝑛 ≤  𝑛𝐶 
1

𝛼  𝑥 → exp −𝑥−𝛼 ,    as 𝑛 → ∞                         (2.5.1), 

but 𝑃  𝑀𝑛 ≤
𝑥

𝑎𝑛
+ 𝑏𝑛 → 𝐺 𝑥 ,                                                       2.5.2  . 

Now we compare the equation (2.5.1) with the equation (2.5.2). We obtain 

      𝑎𝑛 =  𝑛𝐶 
−1

𝛼   and 𝑏𝑛 = 0  

 where 𝐶 =  𝑝𝐴 + 𝑞𝐵 , 𝐴 =
𝐶𝛼𝜍1

𝛼

2
 , 𝐵 =

𝐶𝛼𝜍2
𝛼

2
 𝑎𝑛𝑑 𝐺 𝑥 = exp −𝑥−𝛼 .    ∎   
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