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Preface

The first Conference of the Seminar for Logic and Computer Science was held in
Novi Sad in 1987 and up to now it has been regularly held though there were no proceedings
of the conferences.

The VI Conference of the Seminar for Logic and Computer Science 44 %2 took place
at the Institute of Mathematics in Novi Sad, on 29*, 30®, and 31" of October 1992. The
Conference was well attended. There were 33 communications, 44 participants, 18 papers
and 15 abstracts in spite of all difficulties which have befallen Yugoslavia at that time.

This volume contains all accepted papers and abstracts of the Conference. All
presented papers were reviewed by at least two members of the Programme Committee
and/or by other competent specialists.

We use this opportunity to express our thanks to all members of the Programme
Committee for their effort and participation in the organization of the Conference.

Special thanks goes to the sponsors of the Conference:

- University of Novi Sad, and its rector Dr D. Herceg, ‘

- Institute of Mathematics in Novi Sad, and its director Dr A. Takali,
- City of Novi Sad, and its major Dr V. Divjakovié,

- EPS JP Elektrovojvodina, Novi Sad, and Miss M. Zmi¢,

- Elite Computers, Novi Sad, and Mr Z. Nadla¢ki,

- Sojaprotein, Becej, and Mr B. Bjeki¢,

- § Panonija Komerc, Novi Sad, and Mr M. Miliéevi¢,

- Efekt, Sremska Kamenica, and Mr Z. Slavik.

Novi Sad, April 1993. Dura Pauni¢, Ratko Togié, editors
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SOME COMMENTS ON PROGRAMMING IN PROLOG

Dragan M. Acketa and Snezana Matié-Kekic
Institute of Mathematics, 21000 Novi Sad,
Trg Dositeja Obradovica 4, Yugoslavia

Abstract

A number of hints concerning writing programs in PROLOG is pointed to and
illustrated by examples. Emphasis is put on the (global) stack problems related to

programs of a combinatorial nature.

Key words and phrases: translation to PROLOG, stack overflow, backtracking

1 Introduction

It is well-known that PROLOG is a declaralive programming language based on
backtracking search. Motivated by our programming experience, we arc making some
comments concerning the following related questions:

e translation from a procedural programming language (say, PASCAL) to PROLOG
o advantages of declarative approach with problems of a combinatorial nature

e stack limitations and ways of overcoming stack problems

o possibilities of an immediate control over the backtracking process

The presented examples were tested on ARITY PROLOG, version 4.0.

We use the well-known PROLOG predicates: member, append, reverse, dec, inc,

minimum, sum (members of a list). (see, e.g. [2,3.4.5]).

2  Some hints concerning translation to PROLOG

2.1  Output files

The following (non-standard) possibility may be used for writing into output files:

The command create(Out,’outfile.’) creates an output file called ?outfile”.
Commands of the form write(Out,...) are further used for writing into "outfile”.
It is required that the variable Out is always unified (directly or indirectly, by using
Out as an additional predicate argument) with Out in the call of create .
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2.2 For-loop

We sketch two possibilities for simulating PASCAL for-loop of the form:
for i := min to max do action( i );

a) ( [7], nrev.ari ) action :- for( Min, Max, I), action(I), fail. ,
where the predicate for is defined by:
for( Max, Max, Max) :- !. for( Min, Max, Min).
for( Min, Max, I ) :- inc( Min, Min1 ), for( Minl, Max, I ).

b) The call for( Min, Max, I) can be substituted by producing a list, from which
the indices of for-loop will be chosen:  interval( Min, Max, Interval),
choose( I, Interval) , where Interval = [ Min, Min+1, ... , Max J].

The predicate interval can befoundin [3], pp.120, while the predicate choose
is very similar to member, without cut in member (X, [X|T]) :-.!.

2.3 Some applications related to the predicate fail

It is well-known that the predicate fail may force producing all the answers to a
question. Each of these answers may correspond to a combinatorial object from a class
of objects which is being generated. We proceed with some other related hints.

2.3.1  Counting passes through a fail-based loop

The total number of objects generated by applying fail can be determined by
applying an outer counter within the working memory. Let one clause of the form ¢.”
be added for cach generated new object. The value of the counter Number can be
determined in the following manner:

generate :- generate_and_write_down_new_object, assert( c ), fail.
generate :- count( Number ), write( Number ).
count(N) :- retract( c ), !, dec(N,N1), count(N1). count( 0 ).

If the required combinatorial objects are obtained from a broader class of objects
(candidates), then it might be interesting to count the number of unsuccessful attempts,
i.e. the number of tested candidates before one good candidate is found. In this case
the first clause of generate can be replaced by the following one:

enerate :- enerate_candidate( Candidate ), assert( c ),
g 24
good_candidate( Candidate ), count(Number), write(Number), fail.

We used this method to count the number of attempts with the PROLOG program
for solving the "5 houses” problem by Lewis Baxter ([4] (Problem 85., pp. 151), [7],
zebra.ari). Instead of testing the total of (5!)° = 24.883.200.000 possibilities for
colours, drinks, nationalities, cigarettes and pets, which are corresponding to each one
of the five houses, it turned out that the program tested only 119 candidates, cach one
of which satisfied a set of fourteen constraints. Only one of these candidates was good
in the sense that it passed the permutations’ test (no overlaps and duplicates).



SOME COMMENTS ON PROGRAMMING IN PROLOG

2.3.2 Assignment to a ”global” variable

A brute simulation of the PASCAL assignment to a global variable can be performed
by using the built-in predicates retract and assert , with possible use of fail

in the first case.

Thus the assignment ali,j] := x to a global matrix a can be replaced by
clean( I, J ), assert( a( I, J, X)), where:
clean( I, J ) :- retract( a(I, J, Y) ), fail. clean( _, _ ).

The second clause of the predicate clean may be omitted, provided that one of

the following two situations occurs:

a) thecall clean( I, J ) isreplaced by not clean( I, J ) (thename "clean"
would be also reasonable to be replaced by "non_clean" in that case)

b) the calls of clean and assert are separated into two consecutive clauses with

the same head

If we are sure that multiple former calls of the form assert( a( I, J, _ ) )
were not possible, then fail need not be used and the call of clean can be completely
substituted by the call of retract.

2.3.3 ”Nesting” fail-based predicates

The following example (output of an m x n matrix) demonstrates a possibility
of using nested predicates which use fail ("nwM” and ”"nwR” are abbreviations for
"non_write_matrix” and "non_write_row” respectively):

nwM(M,N) :- for(1,M,I), not nwR(I,N ), nl, fail.
nwR(I,N) :- for(1,N,J), a(I,J,AIJ), write(AIJ), fail.

A shorter way to write down the same thing would be:
nwM(M,N) :- for(1,M,I), nl, for(i,N,J), a(I,J,AIJ), write(AIJ), fail.

3 Three approaches to translating to PROLOG

Each loop in PROLOG is activated either by recursion or by use of the predicate
fail. On the other hand, PASCAL is a procedural language, which supports recursive
programming. There are a lot of problems in which the use of PASCAL recursion
is arbitrary: it can be used, but need not . Suppose that we have both iterative
and recursive PASCAL program for a problem. There are three choices for writing a
PROLOG program for the same problem:

1. to simulate an iterative PASCAL program; the main PASCAL loop is replaced by
a PROLOG recursion
! our experience says that in most situations the iterative versions are more eflective. For example,
when generating random latin squares with an iterative PASCAL program (see also Section 5.), the stack
overflow error has appeared at size 23, while this error was present already at size 13 with a recursive
program, based on the same algorithm.
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2. to simulate a recursive PASCAL program; the PASCAL recursion is directly re-
placed by a PROLOG recursion

3. to write a PROLOG program independently of the PASCAL programs; advantages
of declarative programming are used

We illustrate these approaches on the example of generating partitions of natural
numbers.

3.1 Simulating iterative partitions

An iteration for generating partitions is explained by the following example:

Let be given N = 16 and Partition = [5,4,1,1,1,1,1,1,1] of N . The lexi-
cographically next partition Next = [5,3,3,3,2] is obtained by joining lists
First_part = [5,3] and Second_part = [3,3,2]. First_part is obtained by
deleting all the 1’s from Partition and by decreasing by 1 its last element greater than
1 (i.e., 4) to the value Last = 3. Sum of members of First_part is determined
(this sum is equal to 8).  Second_part is obtained by adding summands equal to
Last until N is reached (only the last summand of Second_part may be smaller
than Last).

We give the "shell” of a PROLOG predicate next_partition, which performs this
main step:

next_partition( N, Partition, Next ) :-
make_first_part( Partition, First_part, Last ),
sum( First_part, Sum ),
make_second_part( N, Sum, Last, Second_part ),
append( First_part, Second_part, Next ).

The main loop for generating all the partitions of N is simulated by calling p(N):

p( X ) := p( ¥N,[N] ).

pC N, [1IT] ) :- write( [1I1T] ), !. fail.

p( N, Partition ) :- write( Partition ), nl,
next_partition( N, Partition, Next ), p( N, Next ).

3.2 Simulating recursive PASCAL partitions

The following recursive PASCAL procedure p ([6], pp.116, sec. 6.1.6), called by
p( N, 1, 1 ) generates all the partitions of N :

procedure p( N, Min, K: integer);
var I: integer;
begin for I:= Min to (N div 2) do
begin Partition[K]:= I; p( N-I, I, K+1 ) end;
Partition[K]: = N; write_down( Partition )
end;
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The corresonding PROLOG program for generating partitions of N has the follow-
ing outlook:

p( N ) :=-p(N, 1, [1), fail.

p( N, Min, Temp ) -
Max is N // 2, interval( Min, Max,Int ), choose( I, Int ),
N.Iis N-1I, p(N_I, I, [I | Temp] ).

p( N, _ , Temp ) -
reverse( [ N | Temp ], Partition), write( Partition), nl.

The second and the third row of the second clause correspond to the for-loop and to
the action( I ) respectively

Note that the recursive call of p is almost directly simulated from the PASCAL
version. The main difference between the PASCAL and PROLOG versions is the way
of writing chosen summands ( I ) into partitions. In the first case are for that purpose
used array indices (third arguments of p ), while in the second case new summand is
written as the head of a list (this implies neccesity for reversing).

3.3 A direct construction of partitions in PROLOG

The following PROLOG program generates partitions of N as lists of non-increasing
summands. Each partition is generated by iterative addition of a new summand, which
is not greater then the last chosen summand ? (Min) and the complement (Rest) of the
current partial sum. The added summand (I) becomes the head of the list with the
current unknown tail T (advancing along the partition corresponds to decrease of the
tail).

p(N) :- p(N, N, 0, Partition), write(Partition), nl, fail.
PN, _y Nyefl) o= L
p(N, Min, Sum, [I|T] ) :-
Rest is N - Sum, minimum( Min, Rest, Current_max),
interval(1l, Current_max, Int), choose(I, Int),
Sumil is Sum + I, pll; I, Sumi, T).

4 Some experiences with stack limitations

In this section will be described a number of tests with simple PROLOG programs.
The purpose of these tests was to determine the (global) stack limitations and the
influence of small alterations of the programs (such as, e.g., adding or reordering some
conditions and clauses) to these limitations.

The main predicates of these programs have only one natural number ( N ) as an
argument. Each test should determine the maximum value M = max( N ) of N, for
which a program works (gives the answer "yes”). If this value is increased by 1, then

2 to preserve the non-increasing ordering
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the execution of the program is aborted, due to the stack overflow. The maximum value
of N is effectively determined by using the halving technique.

Two main predicates: g ("good”) and b ("bad”) were used for tests:

g() :- gn,0). g(,N) :- !. g(N,K) :- Ki is K+1, g(N,K1).
b(N) :- b(N,0). b(N,K) :- N > K, K1 is K+1, b(N,K1). b(N,N).

Both of these predicates are devoted to execution of the same task: to make the
required number N of passes through a loop. The cut condition, respectively the
condition N > K, are used for breaking the recursive calls.

”?Good” and "bad” version differ in the position of the recursive clause. The corre-
sponding maximal values M were found to be equal to 59377 and 524 respectively .
It is interesting that M increased to 580 with the predicate b , when the condition
K1 is K + 1 was replaced by the more effective built-in predicate inc(K,K1) . It
turned out that the value of M with the predicate g is disk-space-dependent *.

The values of M with composed calls ~ "c1(N) := b(N),b(N).”,

"c2(N) :- g(N),b(N).” and "c3(N) :- b(N),g(N).” have an interesting behaviour:

M with c1 is equal to 261, which is almost exactly half of 524 = M with b ;

M with c2 is also equal to 524 (it took ~ 10 sec both for success with N = 524 and for
failure with N = 525). M with c3 is equal to 523; however, it took approximately 2 sec,
30 sec, 1 min, 6 min for success with N equal to 250, 500, 512 and 523 respectively, and
only 10 sec for failure with N = 524. Explanation: the first call of "bad” b occupies a
large part of global stack, and leaves little room for the work of g.

The following two predicates, g3 and g2 ®, are obtained from g by introducing a
list argument:

g3(N) :- g3(N,0,L), write(L). g8(N,N,L) ¢t~ 1.
g3( N, K, T) :-KL isK+ 1, g3( N, K1, [ "H" | T ] ).
g2(N) :- g2(N,L), write(L). g200, [1) v= 15
g2( K, [ "H" | T] ) :- KL is K-1, g2( K1, T).

Two more predicates, b3 and b2 , are introduced so that the relationship between
the predicates, b3 and g3 , (also b2 and g2 ), is the same as the rclationship
between the predicates, b and g.

The following table contains the values of M obtained with 20 tests, which included
lists. "Good” and "bad” predicates are denoted by g and b. Columns are indexed
by triples VWH, where "V” from {2,3} denotes whether the 73" or ”2” version of
the predicate is used, "W” from {w,n} denotes whether or not the call of write is
activated, "H” from {1, K, N} denotes the variable which replaces " H " in predicates:

l3w1 3wK 3wN 3nl 3nK 3nN 2wl 2wK 2n1 or 2nk

g | 4064 3251 3251 4065 3252 3252 5418 4064 32767
b| 451 451 451 451 451 451 5412 4059 32767

3 The discussion concerning the ancestor predicate in (2], sec. 2.6.2. and [3], sec. 3.4., says that
the order of conditions within a recursive clause may have a much higher influence to the stack overflow
than the order of clauses themselves. Ilowever, this example shows that this second order may also have
a high influence.

1 we give the following explanation: if N > 32767, then the predicate is operates with real
numbers. The tests show that Arity Prolog Interpreter uses disk when manipulating these numbers.

% numbers ”3” and "2” are equal to the maximal number of arguments
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The last column is explained by entering real arithmetic at 2'*. 72" versions seem to
be more efficient than the corrersponding "3” versions, especially with b predicates
or when the writing is excluded. There is no much difference between b and g
predicates of "2” versions. It is interesting that "g3K” and "g3N” versions gave the
same results, which differed from the values for "g31” versions (similarly like ”2w1”
and "2wK”). Also note similar results for "2wK”, "3w1” and "3nl” versions of g.

A "good-good” composed call of the version "3wN” makes a very small reduction of
M in comparision with the single call (3249 versus 3251).

5 A way for overcoming stack problems

The main "shell” of a backtracking procedure has the following outlook:

REPEAT
IF forward_condition THEN BEGIN
Step_forwards ;
IF output_condition THEN
BEGIN Output( New_object ); Step_backwards END  END
ELSE  Step_backwards
UNTIL end_condition

When implementing a backtracking procedure, the built-in backtracking gives the
PROLOG user two important advantages:

e he need not write down the details of Step_forwards and Step_backwards

e moreover, he avoids IF-THEN-ELSE branching on forward_condition, which ‘
enables overcoming the stack problems like those in the following test with only ©
M="722: g() :- g(N,0)., where: g(N,N) :- 1.

g(N,K) :- K1 is K+1, K mod 2 0, !, g(N,K1).
g(N,K) :- K1 is K+1, K mod 2 1,0, gk,
This leads to a space optimal implementation 7.

"
Ll

Let some combinatorial objects be generated by backtracking and let PROLOG
be the used programming language. We are going to describe in more detail how to
replace  IF-THEN-ELSE branching, which leads to a controlled backtracking, by the
built-in PROLOG backtracking.

The objects should be represented by lists, which are gradually beeing extended.
Each new member H is added (as a new head) to the former sublist T |, provided that
forward_condition is satisfied. Thus we obtain the following PROLOG ”shell”:

objects :- mnew_object( [], L ), output( L ), fail.
new_object( L, L ) :- output_condition( L ), !.
new_object( T, L ) :-

forward_condition( H, T ), new_object( [HIT], L ).

5 compare with M > 50000 with the predicate g in Section 4.
7 the point with such an implementation is the possibilily of the program exccution, disregarding the
necessary lime
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5.1 Generating latin squares

We illustrate above ideas on the example of generating latin squares, N x N
matrices with elements in the sct S(N) = {1, ..., NV}, such that no two elements appear
in the same row or column.

Each latin square A may be generated by a backtracking procedure, an elementary
step of which is an attempt to fill in a field of the square. The ficld (7,7) may be
filled in only if all the fields (7',;') have already been filled in, where i < ¢ or
(" =4) and (5" < j)) -

Each element A(z,7), 1 <1i,7 <N, is chosen from the set
S(i,5) =W(i,j) — C(i,5), where: '

W(i, j) = S(N) - (Uil AG,k) U Ui Akg))
while the set C(7,j) is determined as follows:
— each Step_forwards activated on the position (z,7) adds the new chosen element
A(z,7) to the set C(i,j), while each Step_backwards makes C(i,j) equal to the
empty set.

The forward_condition on the position (z,j) is that S(i,j) is non-empty.

Both iterative and recursive PASCAL implementations of this procedure were de-

scribed in [1].

The PROLOG implementation based on the above "shell” uses:
output_condition(L) ¢ length of L isequal to N?
forward_condition( H , T ) : H € W(i,j), where

1 <j <N and the length of the sublist T isequalto (i —1)-N 4j — 1.

A consequence of using the built-in backtracking is the replacement of the set S(i, 7)
by the simpler set W(z,7) with forward_condition in the PROLOG version. Each
choice of H corresponds to a new node of the PROLOG search tree, and the set
C(i,7) is not neccessary.
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Abstract.We propose a revision of the systematization of mathe-
matical knowledge, having in mind some relevant logic principles. The
basic requirement of such an approach, which can be called relativism,
is to relativize each mathematical statement to the minimal mathemat-
ical, logical and linguistic context in which the considered statement
can be proved. The methodology of the investigation of formal math-
ematical and logical systems, their complexity, relatioships ete, as well
as the different kinds of indepedence results, will be of the particular

interest for the realization of such a program.

T

In order to present our standpoint picturesquely, let us consider
an imaginary example. Suppose we have collected the whole existing
mathematical texts in one place. The mathematical statements, to-
gether with their proofs, are the most important components of those
texts. This is the reason why we have to distinguish the proofs and
the statements as the notions of particular interest. So, by the effective
mathematical knowledge we mean the collection of all the written math-
ematical statements with their proofs. Imagine that one should make
a library (or a data basis) of the effective mathematical knowledge, i.
e. to make a selection, classification and systematization of the given
writings, respecting the following natural claim: to capture as little
as possible of the library space, but, nevertheless, to make the whole
knowledge accessible. Let us put ourselves in the role of the manager
making such a library and having a sufficient munber of experts at his

11991 Mathematics Subject Classification: 03A05, 00A30
*This work was supported in part by Science Fund of Serbia, grant

number 0401A.
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disposal. Owr first problem will bhe wlhich mstructions to give to our
cooperators with the aim to realize the following two goals: do not lose
anything of our effective knowledge and throw off everything superfiu-
ous. Next, the obtained set of statements and proofs should be ordered,
classified and systematized so to provide an addequate presenting of the
effective mathematical knowledge and its accessibility to the holders.

By all means, the following nstructions should not be doubtful:
(1) if we have a number of the same statements with the same proofs,
then we keep only one statement with its proof; (i1) if we have two
statements of the following form: If A and B, then C. , and If A, then
C. , with the same proofs, then we will keep only the second one with
its proof.

Note that the first of the above instructions is closely connected
to the contraction rule, while the second one results from our need to
respect one of the basic relevant logic principles by which we drop the
irrelevant hypotheses of each statement. After using such a procedure
we do not expect to use the logical rules of contraction and weakening
any more. It could be an mdicator that the kernel of logical principles
we use, will present fundamental principles of the linear logic.

Our central task is the systematization of the effective mathemat-
ical knowledge. The goal of systematization is to present explicitly a
narrow or, if possible, the minimal mathematical, logical and linguis-
tic context in which the considered statement is proved. This means
to quote each relevant mathematical hypothesis, as well as the whole
logical and linguistic ihstruments used in formulation and proof of the
given statement. Such a kind of information can be obtained by an
analysis of the very statement and its proof. For instance, the for-
mal systemns containing any part of the mathematical axioms of the
Zermelo-Fraenkel set theory, Peano arithietic, some algebraic struc-
tures etc, may be used as possible satisfactory frameworks of the math-
ematical context. The logical instuments arc classified already as formal
systems of different variants of constructive, relevant ete logics, as well,
while, in connection with the linguistic instriuments it would be valuable
to know the minimal complexity of the sentences—formulae appearing
in the statement under consideration, its proof and the corresponding
mathematical and logical context. In such a way we make the neces-

sary mathematical, logical and Linguistic relativization of the considered
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mathematical statement.

Such a kind of systematization will use the methodology developed
in the theory of formal mathematical and logical systems, the facts
on their complexity, relationships ete. Conscquently, the attempt to
realize the proposed systematization would stimulate further work in
these fields.

A standardization of denotation and definitions of the mathemati-
cal and logical systems and the other basic notions would contribute to
an easier realization of this systematization. This systematization may
cause some modification of the current mathematical subject classifica-
tion.

It would not be difficult to identify the influences of some tradi-
tional or contemporary philosophical aud foundational standpoints to
our approach, e. g., formalism or reverse mathematics.

And finally, let us say how we imagine a possible partial realization
of our program. It would be enough to begin with the claim that each
new mathematical result have to be presented in a form containing at
least three emphasized terms of reference which relativize precisely the
truth of the obtained result to the corresponding mathematical, logical
and linguistic context. Note that such a condition cannot be satisfied
easily due to the fact that the determination of such a context, in
itself, often presents a very complex and valuable mathematical result.
Moreover, every mathematical problem can be formulated as a problem
of finding the minimal mathematical context in which the corresponding
assertions are provable.
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Abstract: The genetic code has a key role in the process of protein synthesis - the very first part of
the complex pathway of information flow during the gene expression. A formal description of this
process is given by means ol formal language (hcory. An unconventional, more dynamic
representation of genetic code is also given, based on the regular grammar. The regular grammar
representation is compared with already existing representations and several new aspects of such a
representation are considered.

Keyworll.\'.' Formal language (heory, context-free grammar, regular grammar, genetic code, DNA,
RNA, protein synthesis

1. Introduction

The protein synthesis represents the first part of an extremely complex
pathway of information flow - from the gene to the gene's final effect on the organism
as a whole. According to the central dogma of molecular genetics we have the well
known scheme of information transfer

DNA -> RNA - protein
which means that, in fact, two processes are involved: transcription - the transfer of
information stored in DNA to RNA, and translation - further transfer of genetic
information from RNA to protein. The process of translation is governed by the
genetic code, which is of main interest in the present article.

The most common representations of genetic code are genetic code table [3, 8]
and genetic code circle [8]. A more dynamic representations by means of language
recognizer are given in [1]. Continuing in this dynamic manner, a new representation
using simple language generative device is proposed here.

The relationship between formal language theory and the phenomena related
with informational macromolecules is quite straightforward,  particularly with
processes of transcription and translation, because of their intrinsic linguistic nature.

In Section 2 the formal description of these two processes is introduced, in
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what we follow [1]. In Section 3 we give the representation of genetic code as a
context-free grammar that can be reduced to a regular grammar and we discuss several
characteristics of representation.

As general references for formal language theory we use [6,7] and as general
references for molecular genetics [3].

2. A formal description of protein synthesis process

Let D= {T, C, A, G} be the DNA alphabet. Then a DNA language D* is the
set of all strings of symbols in D having finite length. Similarly, let R* be a RNA
language over the RNA alphabet R = {U, C, A, G}. We denote elements of the sets
D and R as bases. Transcription is a function

t:D->R
given by its graph

graph(t) = {(T,U), (C,C), (A, A), (G,G)}

The biochemical mechanism of transcription, in particular the process of base-pairing,
suggests representation of t as a composition of two functions

= t2 * tl
given by their graphs

graph(t)) = { (T,A) ,(C,G), (A,T), (G.C) }

graph(ty) = { (T,A) (C.G), (A,U), (G,C) }

Function t has a (unique) natural extension to a function

t:p*->R*
over the strings of the DNA language. For each string x=NN;...N, in D*, where N; is
the symbol in D, we define ( with understanding that the image of empty string is again
empty string)

t(x) = (N UN,)...t(Ny)
i.e. the image of x is a concatenation of images of its components - bases. In an
analogous manner the extensions of t; and t, may be defined. (For a slightly different
approach to the formal definition of the DNA alphabet and DNA language see [4, 5]).
Let the protein language P* be a set of all strings over the protein alphabet
P = {Ala, Arg, Asp, AspN, Cys, GluN, Glu, Gly, His, Ileu, Leu, Lys, Met, Phe,
Pro, Ser, Thr, Tryp, Tyr, Val}
elements of which we shall call amino acids.

Translation is a partial function

g- ’I‘ o> [)
with

dom(g) =T - {UAA, UAG, UGA}
where T=R is a set of all triplets, strings with length 3 over R. We also denote the
elements of the set T as codons. The set |UAA, UAG, UGA} is denoted as
punctuation mark set. If we allow the image of each codon in this set to be an empty
string, then, analogously as for the translation function, there is an obvious extension
of function g over the strings in T*

gt T* - p*
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and the elements of the punctuation mark set specify amino acid chain termination
during the translation performed over a string of T*.

3. The genetic code represented as a re, oular grammar
8 8

The most common textbook representation of the genetic code - the genetic
code table - is, in fact, equivalent to the above-defined surjective mapping g: T -> P.
We present here a constructive model which express more faithfully the dynamics of
the translation process by means of regular grammar.

Namely, let G = (Vy, V, P, S) be a grammar, where

Vn=1{S. a, Ala, Arg, Asp, AspN, Cys, GluN, Glu, Gly, His, lleu, Leu, Lys,

Met, Phe, Pro, Ser, Thr, Tryp, Tyr, Val, Stop, Y. ¥ U c, A, G R}

is a set of variables (nonterminal symbols) with distinguished start symbol S,

Vr=R={U,C A, G)
is a set of terminal symbols and finally, 7 is a set of productions which consists of

(1) S->YUGa
(2)a-> Ala| Arg | Asp | AspN | Cys | GluN | Glu | Gly | His | Ileu | Leu | Lys | Met
| Phe | Pro | Ser | Thr | Tryp | Tyr | Val | Stop

(3) Met -> AUGa
(4) Tryp -> UGGa
(5) Ileu -> AUG'a

(6) Pro -> CCRa
(7) Thr -> ACRa
(8) Ala -> GCRa
(9) Val -> GURa
(10) Gly -> GGRa

(11) Phe -> UUYa
(12) Tyr -> UAYa
(13) Cys -> UGYa
(14) His -> CAYa
(15) AspN -> AAYa
(16) Asp -> GAYa

(17) GluN -> CAY'a
(18) Lys -> AAY'a
(19) Glu -> GAY'a

(20) Ser -> AGYa | UGRa
(21) Leu -> UUY'a | CURa
(22) Arg -> AGY'a| GURa
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(23) Stop -> UAY' | UGA

4 Y->U|C
@25 Y ->A|G
26)U'->C|A|G
Q7 C'->U|A|G
(28)4'->U|C|G
(29)G’->U|C|A
(BO)R->U|C|A|G

Because of their more clear biochemical interpretation we use as a
nn

nonterminals symbols consisting of more then one letter and also of a letter with "",
rather then conventionally used capital letters only.

The above-presented context-free grammar can be easily reduced, using the
rules (2) and (24)-(30) to eliminate the nonterminals ¥, Y, U’, 4', C', G'R and a, to
the following regular grammar:

G=(Vy, V1, P, S) - grammar

Vn = {8, a} - set of variables with start symbol S
Vr=R={U, C, A, G} - set of terminal symbols
P - set of productions

S->AUGa | GUGa

a-> {Met} AUGa |
{Tryp} UGGa |
{Ileu} AUUa | AUCa| AUAa
{Pro} CCUa | CCCa | CCAa|CCGa |
{Thr) ACUa| ACCa| ACAa| ACGa |
{Ala} GCUa | GCCa | ACAa | ACGa |
{Val} GUUa | GUCa | GUAa| GUGa |
(Gly) GGUa| GGCa | GGAa | GGGa |
{Phe} UUUa | UUCa |
{Tyr} UAUa| UACa |
{Cys} UGUa | UGCa |
{His} CAUa | CACa |
{AspN} AAUa| AACa |
{Asp) GAUa | GACa |
{GluN} CAAa | CAGa |
{Lys} AAAa| AAGa |

{Glu} GAAa| GAGa |
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{Ser}) AGUa|AGCa|UGUa| UGCa| UGAa | UGGa |
{Leu} UUAa | UUGa|CUUa| CUCa| CUAa | GUGa |
{Arg) AGAa|AGGa|GUUa | GUCa| GUAa | GUGa |
{Stop} UAA | UAG | UGA

But we rather keep the previous context-free form as a more compact and convenient
one for discussing some features of such a kind of representation.

Rules (1) and (25) imply that the well-formed triplet strings always begin with
AUG or GUG. Rules (23) and (25) define punctuation mark set, i.e. the fact that all
well-formed triplet strings end with UAA, UAG or UGA. Between the initiation and
termination codons, triplets coding for corresponding amino acid can be concatenated
according to the production rules (3)-(22) and (24)-(30).

The classic table representation operates with the notion of degeneracy of
genetic code - the occurrence of more then one codon per amino acid. Although we
have somehow reversed the direction representing the genetic code with regular
grammar starting with proteins (amino acid strings) and obtaining RNA (codons - base
triplets), the degeneracy is reflected in the number of possible derivations starting with
a certain amino acid.

From the rules (3) - (22) one can see that codons for the same amino acid
differ only in the third base. This is called wobble at this site. Only the initiation codon
is an exception of this rule, since the wobble appears at the first position, which is
reflected in rule (1).

The rules (26) - (28) are included only for the reasons of symmetry, they are
never used and, of course, might be omitted without any effect on the derivations.

It is worth to notice that amino acid which have similar chemical properties,
also have similar derivations, which, on the other hand, means that degeneracy and the
codon scheduling in the genetic code is not at random, but this is beyond the scope of
the article.

4. Conclusion

The regular grammar representation of the genetic code is a constructive
approach dealing with dynamic aspects of the code and in some way it parallels the
results given in [1]. The results presented in this article are only very modest formal
achievements and they represent only rough approximation of the processes of
information flow during protein biosynthesis. It is almost certain that the answers to
many open questions, for example the preprocession of RNA before the translation,
will require more powerful language generative devices than context-free grammar, let
alone regular grammar. However, it is hoped that our genetic code model will provide.
the basis for future software development and computer experimentation related with
the processes over the informational macromolecules.
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Abstract

A model that learns Present Tense inflexions according to the
person and the number of the subject is presented in parallel with a
model that learns to recognize the inflected forms. Activation
patterns generated in both patterns are inconvenient for correct
training. The amount of uncertainties of the output patterns is
observed for different classes of Pattern Associators within training
series of different length.

keywords:: Artificial intelligence, Natural language processing, Neural networks

1. Introduction

Slavonic languages have complex morphological structure and are highly
inflectional. Unlike the nouns which are morphologically simplified, Macedonian
verbs appear in a diversity of forms which represent the syntactical connection
of the verb in the sentence (Koneski (1987)). Therefore, the recognition of verb
inflexions is crucial moment for the parsing of Macedonian sentence.

Macedonian verb inflexions depend on:
- the person of the subject (first, second, third);
- the number of the subject (singular, plural);
- the final vowels of the third person form in singular and

- the Tense.

These changes can be represented by the network diagrams proposed by
Gross and applied for the French language in Silberztein (1989). In Present
Tense all inflected forms are generated by nine common elements: a, #, e, j, am,
w, me, Te and ar (Fig. 1.). The first three of them are both external and internal,
the fourth is embedded, while the last five are only external.
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Although the rules for inflexion generation are simple and very strict, it is | h
interesting to observe their acquisition. The most convenient model capable of |
learning is the Pattern Associator. It takes as input a pattern of activation on its | ;

i

inputs and produces a pattern of outputs based on the modifiable connections
linking the input and the output units.

/-/——:LQUM /—‘ LaUM ?ZIM

M — a oA —=H KWH —= &

\\:' me \—’ me \\_: me

= 16 Te Te

ar ar ——= ar

am j—= am j—=am

= =
SRR | [ ¥ B - SO  —= e 6po = H

\t me E me L me

Te Te Te

ar j—= ar j— ar

. Figure 1. Macedonian verb inflexions in Present Tense

——r—

2. Definition of the models

The person and the number of the subject determine six personal
pronouns: jas (1), t/ (you as singular), toj (he), nie (we), vie (you as plural) and
tie (they) represented by five binary input units: three for the person, two for
the number. Target patterns consist of nine binary units which indicate the
presence of the generated inflexion to the corresponding personal pronoun.
Here is the pattern file:

.

jas 10010 000110000
t 01010 111001000
too 00110 111000000
nie 10001 111000100
viee 01001 1171000010
tie 00101 100100001

Such definition of the input and target patterns may cause troubles within
the process of learning because the input 5-tuples are linearly dependent and
the target patterns differ slightly (toj vs. ti, nie or vie).



1al
nd
for
he

in
nd

DIFFERENT PATTERN ASSOCIATOR DEFINITIONS AFFECT THE LEARNING... 21
The inflexions themselves are described by seven binary input units. The
first six are in fact the vector columns in the first pattern file. They indicate the
possibility of connecting the appropriate inflexion to the word kernel defined in
Cundeva (1991). The seventh bit is added to point out the difference between
the second input pattern 7/ and the third, e. Target patterns are personal
pronouns. The pattern file (Fig. 2.) consists of two smaller groups. In the first
one three linearly independent 7-tuples generate same target value, while the
second consists of six independent 7-tuples and targets with total sum of
square differences (further on, tss) not smaller than 2. Macedonian Cyrillic letter
w is transliterated into § and represented as { according to the standard.

a 0111110 00110
/ 0111101 00110
e 0111100 00110
J 1000010 1T1011
am 1000000 10010
{ 0100000 01010
me 0001000 10001
te 0000100 01001
at 0000010 00101

Figure 2. Pattern file for inflexion determination

The activation rules determine the output value from the unit according to
the value of the net input which comes to it. The Pattern Associator can use:
- linear activation when the activation value is same as the net input;

- linear threshold

1 net; > O
= (1)
. 0 otherwise
- continuous sigmoid activation according to the function
1
= — 2
% pemneny/T =
where T is the temperature, usually set to 1 and
- stochastic activation with a probability p that the output is 1:
1
ploj=1) = —7— (3)

1< e—neti/T
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The learning rules are used to modify the patterns of connectivity. In the
very beginning all connections are set to O, but, after several exposures of the
pattern, by obtained experience, they converge to values with minimal tss. The
weights wj; specifying the strengths of the connections from input unit ij to

output unit o; in the Pattern Associator are adjusted by the Hebbian algorithm

AWij = £Oiij (4)

‘or by the error-correcting delta rule

AWij = £(ti-oi)ij (5)
Both network models, the model for inflexion recognition and the other
which recognizes personal pronouns according to the inflexions are inconvenient
for effective learning by the Pattern Associator. Therefore, it was interesting to
compare the results when different activation functions were used with both
learning rules. The curriculum patterns were presented in series of different
length. The first pattern was exposed 100, 200 and 1000 times, while the
second pattern became stabile after 200 learning trials, so the results were
obtained from series with 50, 100 and 200 exposures.

3. Comparative analyses of the models

The use of the Hebbian rule in all cases produced weight matrices with
strictly positive values. When linear, linear threshold and stochastic activation
functions were used all matrix series, independently on the learning rates and
on the duration of the learning diverged. For any input value, the output value
for the inflexion recognition was 111111111. Similarly, in the second model the
output values. were always 11111.

Continuous sigmoid activation generated convergent matrix series, but
the output values were constant: 000000000 for the inflexion recognition and
00000 for the pronoun recognition.

The delta rule was convenient for all activation functions except for the
continuous sigmoid. In this case, the output values were constantly zeroes.

3.1. Linear activation function

The model was tested with different learning rates. Th rate is a parameter
responsible for the changes made to the weights. its optimal value for the
inflexion recognition model with 6 input units is 0.167, but to accelerate the
learning the values 0.25, 0.5 and 1 were also used. The last value 1 generated
a divergent weight matrix series. In all other cases after 25 exposures weight

i e ek ewE
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matrices got stabilized. Both third person pronouns produced correct output
values. The other two person pronouns generated incorrect output values:
011000000 for both singular and 000000000 for both plural pronouns.

The second model was incapable of generating correct output values
except for the inflexion am. After 50 exposures of the pattern, with learning
rates smaller than 0.25 the output values for j, {, me and te were 00000, the
first three inflexions a, e and e produced an output 00100 and the last one at
generated the value 00001. When the learning rate was augmented, the output
value for / become 00200, the outputs for me and te become 00001, while the
output for at was set to its initial value 00000.

3.2. Linear threshold

After 7 training epoches independently on the learning rates, the weight
matrices became stabile. Their elements were varying between -2 and 2. The
range was greater for the rates higher than 0.25. The output values for both
first person pronouns were different from their target values, while the other
four were correct. It is worth noting that the output value for jas, 011010000 is
closer to the target value for toj, while the output 100100100 obtained for nie
suits better for tie. Slightly better recognition was obtained when stochastic
sigmoid activation was combined together with the linear threshold output. In
this case the output for jas remained the same 011010000, but the output for
nie became correct.

The second model for pronoun recognition got stabile after 7 training
epoches and all output values were exact.

3.3. Stochastic activation

This is the activation used for morphology acquisition and sentence
analysis (Rumelhart & McClelland (1988)). The logistic function depends on a
denominator T which scales the net input. In each further iteration previously
calculated value x is divided by T. When the divided value exceeds 11.5129,
the output value is set to 0.9999, for input value smaller than -11.5129 it is set
to 0.0001, otherwise it is calculated according to the equation (3).

The default value for the denominator T is 15. This value produced
matrices with big coefficients. Therefore, training was performed with T = 1.

On the other hand, the capability of efficient recognition with a linear
threshold activation suggested that the results obtained during the learning with
stochastic activation might differ when the linear threshold is suppressed or it is
used for correction of the obtained values.
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First two tables (Table 1. and 2.) contain the means and the deviations of
squared sum differences between the target and the output value for each
pronoun with default denominator. Local minima for three training series are
marked with *. The means marked with ** correspond to the minima in all
series without and with linear threshold output. First pronoun jas, similarly to
previously used activations generated incorrect outputs. The recognition was
getting better when the pattern was exposed more frequentiy. After 1000
iterations -with linear threshold output in average 1.4 bits were wrong and the
output was matched in less than 50% of the tests. Unexpected was the
behaviour of the pronouns toj, nie and tie. Their best recognition was in smaller
series rather than after 1000 exposures. The only pronoun with a tendency of
complete generation was vie. Although the learning of verb inflexions is a
morphology problem, it is obvious that this model does not solve it properly.

100 exposures 200 exposures 1000 exposures
pronouns | mean deviation mean deviation mean deviation
jas 2.667 1.192570 2.333 1.349897 1.400** | 0.711805
t 0.933 0.442217 0.800 0.748332 0.200* 0.400000
toj 1.733 1.181336 1.467* 0.805536 1.667 0.788811
nie 2.138 0.805536 1,333** | 1.011051 1.867 0.718022
vie 1.200 0.748332 0.333 0.471404 0.000** | 0.000000
tie 2,333 0.869227 2.000 0.966092 1.933* 1.062492

Table 1. Stochastic behaviour with linear threshold output and T = 15

100 exposures 200 exposures % 1000 exposures
ronouns | mean _deviation mean deviation mean deviation
Jas 2.600 0.952191 2.133 0.884433 1.867* 0.805536
t 0.533 0.805536 0.600 0.611010 0.133** | 0.339935
to/ 1.267** | 0.897775 2.167 1.067187 1.333 0.942809
nie 1.867 1.024153 2.600 0.879394 1.400* 0.711805
vie 0.867 0.884433 0.467 0.618241 0.133* 0.339935
tie 2.200 1.166190 1.067** | 0.679869 1.333 0.869227

Table 2. Stochastic behaviour with suppressed linear threshold and T = 15

The second pair of tables (Table 3. and 4.) correspond to the model when
T was set to 1. The results were better, particularly for the second person
pronouns t/ and vie, and the third person pronoun tie, but the other three were
generating wrong outputs in more than 50% of the tests. Similarly to previous
case, the best recognition for toj and nie was after 200 iterations.

The recognition was perfect when the ambiguous pronoun toj was
excluded from the pattern. In less than 100 iterations the model got stabile and
all output units were equal to their targets. Then, the obtained model was
trained with the excluded pronoun. The model needed 25 iterations to become
stabile again. Unfortunately, the pronouns toj and tie could not be recognized
even when the whole pattern was exposed.
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e 100 exposures 200 exposures 1000 exposures
quns mean deviation | mean | deviation mean_ deviation
Jjas 2.353 0.680932 2.059 0.872494 2.000* 0.970143
t 0.000** | 0.000000 0.000 | 0.000000 0.000 0.000000
(o] 1.353 0.588235 1.471 0.775936 1.176* 0.669464
nie 2.353 0.680932 2.294 ] 0.823530 2.235* 0.644379
vie 0.000* 0.000000 0.000 0.000000 0.000 0.000000
tie 0.529 0.696010 0.529° 0.605625 0.824 0.922611

Table 3.Stochastic behaviour with linear threshold output and T =

100 exposures 200 exposures 1000 exposures
pronouns | mean ' deviation mean deviation mean deviation
Jas 1.824** | 0.616946 2.176 0.616946 1.942 0.725225
t 0.118 0.322189 0.000* 0.000000 0.000 0.000000

0] 1.647 0.836039 0.941** 10.937493 1.942 0.802246
nie 1.824 0.616946 1.353** | 0.680932 2.529 0.775936
vie 0.000* 0.000000 0.000 0.000000 0.000 0.000000
tie 0.941 0.539127 0.824 0.705882 0.059** | 2.35294

Table 4. Stochastic behaviour with suppressed linear threshold and T = 1

Similarly to the previous case, the pronoun toj was excluded from the
pattern file and trained separately after the stabilization of the model. Finally,
the whole pattern was exposed. The recognition remamed incorrect for both
third person pronouns toj and tie.

The opposite model which recognizes the pronouns by the inflexions did
not need more than 200 training epoches. The first combination with T = 15
and pure stochastic activation (Table 5.) produced right outputs in more than
65% of the tests except for the inflexions e (37%), ; (47%) and at (34%).
When the denominator was set to 1, the matrices got stabile after 50 epoches
and the matching was correct in more than 85% of the tests. The exclusion of
the inflexion j from the pattern resulted with correct production of the output
units after 10 iterations.

.

50 exposures 100 exposures 200 exposures
inflexions | mean deviation mean deviation mean deviation
a 0.235 0.424183 0.235 0.424183 0.000* 0.000000
i 0.059 0.235294 0.353 0.588235 0.000* 0.000000
e 0.294 0.570315 0.176* 0.381220 0.636 0.481046
[ 1.000 0.766965 1.059 0.725225 0.636" 0.642824
am 1.118 0.831890 0.824 0.984306 0.000* 0.000000
{ 0.883 0.757888 0.883 0.831891 0.273* 0.445362
me 1.059 0.937493 0.824 0.605883 0.455* 0.655555
te 14118 1.022244 1.000 0.907485 0.546* 0.655555
at 1.353 1.233893 0.647* 0.680932 0.727 0.616576

Table 5. Stochastic activation function in pronoun recognition problem
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4. Conclusion

A
Macedonian verb inflexion acquisition cannot be well performed in th:
pronoun to inflexion direction. Fortunately, the inflexion to pronoun direction i
very convenient for fast training, particularly when the iinear threshold functiol
is used together with the error-correcting delta rule. This fact and th
bidirectionality of the Pattern Associator imply that the second neural networ
will be used for the both tasks: the recognition of the verb inflexions during th
sentence parsing and for their generation during the sentence synthesis. In th
comparative analysis of all Pattern Associator definitions unexpected was thi
incapability of the Hebbian rule in producing correct results with any activatiol
and output fungtion.

The extension of the problem from Present Tense to all Macedonial
tenses and clauses involves more than 25 different inflexions which generati
more than 200 synthetic and analytic forms (Simov et al. (1990)). Most of then
appear in different tenses and the amount of intersections is big. The number ¢
input units has to be augmented from 7 to more than 15 or even 20, while thi
number of output units has to remain the same, 5. The disproportion betwee|
the length of the units can be solved only by division of the network inti
several smaller, corresponding to .particular tense or clause. Another networ
will be a connection between these networks and it will point to any of them
The input units of this connective network will be the verbs themselve
described by their final vowels and by the corresponding inflexion in the thir(
person singular form. The outputs will point to the tense or the clause.
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Peirce’s law and laimnbda calculus

Silvia Ghilezan !

Abstract

The Curry-Howard isomorphism is an explicit connection between simply
typed lambda calculus and Heyting’s intuitionistic propositional logic. All
types inhabited in the simply typed are exactly all intuitionistically provable
formulae. It is known that Peirce’s law is intuitionistically not valid. By the
Curry-Howard isomorphism this corresponds to the fact that Peirce’s law is
not inhabited in simply typed lambda calculus. We present a direct proof,
within the simply typed lambda calculus that Peirce’s law is not inhabited.
First, we give some structural properties of lambda terms that are inhabitants
of certain types. Then according to these properties we show that it is not
possible to construct a lambda term that is an inhabitant of Peirce’s law.

Kew words: inhabitation, lambda calculus, Peirce’s law, provability.

Introduction

Lambda calculus and combinatory logic introduced in the 30’s by Schonfinkel,
Curry and Church were originally meant to form a more rigorous basis for the
foundation of logic and mathematics. Later on these investigations became rather
involved, but still systems obtained in this way present a different approach to
logic. Although the first systems were type {ree, they are in accordance with type
introduction and this is nowadays one of the joint fields of investigations both in
logic and theoretical computer science.

By changing the notion of the type on the one hand and by changing the notion
of the lambda term on the other, it is possible to obtain a whole variety of typed
lambda calculi. These systems form the Barendregt’s cube, see Barendregt, 1992.

The Curry-Howard isomorphism given in Howard (1969), 1980, is an explicit con-
nection between simply typed lambda calculus and Heyting’s intuitionistic propo-
sitional logic. It can be expanded to other constructive logics versus various typed
lambda calculi, e.g. second order propositional logic and polymorphic lambda cal-
culus. Also, it can be restricted to substructural logics and restricted typed lambda
calculi, e.g. relevant legic and M-typed calculus. It is a powerful connection since
by proving facts in logic one proves the corresponding facts in lambda calculus and
vice versa. ‘ '

Somme problems of interest in the systems of typed lambda calculi are:

1Faculty of Engineering, University of Novi Sad, Trg D. Obradovi¢a 6, 21000 Novi Sad,
Yugoslavia
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- Type-checking - is it decidable whether a given term has a given type?
- Typability - is there a type that can be assigned to a given term?
- Inhabitation - is there a term of a given type?

All three problems are decidable in simply typed lambda calculus; for other typed
lambda calculi some of these questions are still open, see Barendregt, 1992. In the
sence of the Curry-Howard isomorphism the problem of inhabitation in simply typed
lambda calculus is equivalent to the problem of provability in Heyting’s propositional
logic, which is known to be decidable. There are direct methods in lambda calculus
to prove the decidability of inhabitations, as well.

It is known that Peirce’s law is intuitionistically not valid. By the Curry-Howard
isomorphism this corresponds to the fact that Peirce’s law is not inhabited in the
simply typed lambda calculus. We present a direct proof, within simply typed
lambda calculus that Peirce’s law is not inhabited. First, we give some structural
properties of lambda terms that are inhabitants of certain types. Then according to
these properties we show that it is not possible to construct a lambda term that is
an inhabitant of Peirce’s law.

Simply typed lambda calculus and logic

First', let us recall some basic notions and notations of simply typed lambda
calculus, A —(for more details see Barendregt, 1992).

The set of types T' of A — is defined in the following way:
Definition 1.
(1) V={e,B,7,21,...} CT, V is a denumerable set of type variables.
(i) Ifo,7€T, theno - 7€T.

Let a, 8,7, a1, . .. be schematic letters for type variables and let o, 7, p, p, %, 01, . ..
be schematic letters for types.

Let A be the set of untyped (type—free) lambda terms defined in the following
way:

Definition 2.
(1) VC A, Vis a denumerable set of variables.
(1) If M,N € A, then MN € A.

(i) If M € A and z € V, then A\z.M € A.
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Let z,y, z,Z1, - . - be schematic letters [or term variables and M, N, P.OQ.Mi,...
schematic letters for lambda terms. The usual notion of f-reduction on A is given
by the following contraction rule

(Az.M)N —, M[N/z).

The expression M : o, called statement, where M € A,0 € T links the terms
of A and the types of T. The term M is the subject and o is the predicate of the
statement M : o. If z € V, then z : 7 is a basic statement. A basis is a set of basic
statements. -

I',A,Ty,... are used as schematic letters for bases. Intuitively, M : o means
that the term M is of type o.

Definition 3. The Curry version of the simply typed lambda calculus A — is defined
by the following rules

(start rule) (—;—E‘:Z:LUF
(> E) 'rM:0—-7TFN:o (= 1) Iz:oF-M: 71

'FMN:r 'FleM:0—-71
Some properties of A — that we need later are the Subject reduction property
and the Generation lemma.

Theorem 1. (Subject reduction) Let '+ M : 0 and M —5 N, thenT'F N : 0.

Theorem 2. (Generation lemma) Let ' M N : 7, then there is a type o such that
'M:0c—-7andTHN:o.

Further we shall consider provability in classical and intuitionistic propositional
logic, so let us recall their natural deduction formulation. It is known that intuition-
istic connectives are independent. We shall deal with implication only. In classical
logic connectives can be expressed by each other, e.g. — and — can generate all
other connectives. Thé natural deduction formulation of intuitionistic logic with —
and L is given by the following elimination and introduction rules
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Negation is defined by ~¢ = ¢ — L. Classical logic is obtained by adding the

reductio ad absurdum rule
~p

i
—— (RAA).
e ey

Provability is decidable both in classical and intuitionistic propositional logic (for
more details see Prawitz, 1965, and van Dalen, 1983).

=

Peirce’s law is provable in classical logic. The following derivation shows that
(RAA) is the key point in the derivation of Peirce’s law.

o [ol’
Ll o, 5)
e
(= p)—af asp
[~af’ o
Lo(ran)
a 3—1) .

((a—)ﬂ)—»a)—»a

(L)
1(— 1)

(= E)

(— E)

T

A proof is in normal form if there is no application of an introduction rule before
any application of an elimination rule, i.e. elimination rules are to be applied first,
before the introduction rules. If a formula is provable, then it has a proof in a normal
form as well.

Peirce’s law is intuitionistially not provable, since there is no proof in normal
form. If we try to reconstruct a normal proof from bottom up we shall always end
with some noncancelled premise, e.g.

[(a—=pB)—a] a—p
((a = p) = a) =« (= 1)

(— E)

where a — f is not cancelled.

There is an obvious connection between the logical rules of arrow elimination and
introduction and the corresponding rules in A — in the sense that the lambda term
construction is following (coding) the derivation in logic. This connection is called
the Curry-Howard isomorphism or the interpretation formulae-as-types terms-as-
proofs. It is given by the following statement.
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Theorem 3. (Howard (1969), 1980)
Let p € T be given.

There ezists a inhabitant M of ¢, i.e. - M : ¢, if and only if ¢ is provable in
the implicational fragment of Heyting’s propositional logic.

Since inhabitation in A — and provability in intuitionistic logic are equivalent the
decidability of provability gives an immediate answer to the question of inhabitation
in A —.

Inhabitation in A — and Peirce’s law

The following statement is characterizing the lambda terms that are inhabitants
of certain types.

Proposition 1. Letc =03 — ... 2 0p > @ € T and let '+ M : 0. Then there is
a lambda-term M’ of the form

AZy...2p.xNy ... Ny such that
'M':0 and T 2y :01,...,2p : Oq F 2Ny,... Ny @ .

Proof. By induction on the derivation of ' M : o in A —.

1. If the last step in the derivation is

:o)€eT

ot il EoTIEL

(start rule) Troio

then applying (— ) n-times, by Subject reduction property (Theorem 1), we

obtain
T 21 ¢ Olyensyln i 0n F TT1 ... 24 5 0,

Thus: M’ = X2y « s« s BLI « or0:Dige
1 1

2. If the last step in the derivation is

Iy:owbFN:og— ..o 0, >

(=1

F'FM.N:og—o0p—...30, 2«

then by the induction hypothesis there is a lambda-term N’ of the form
A2y ...Tp.xM; ... M, such that

I,y:o b Azg...znzMy.. . Mpiog— ... 2 0p 2

and
[,y:01,Z2:02,...,Cn:Og M. . My

Hence,
TFAyzg...TpaMy.. . Mpi0y = ... 20 20

and (\y.N) is Ayzz ... cp.cMy ... M.
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If the last step in the derivation is

'FN:p—> (01— ...250,—a) TFP:p
I'FNP:oy—...20,>«

(= E)

b

then by the induction hypothesis there is a lambda-term N’ of the form
Ayzy...zn.xM; ... M, such that

I'kFAyzy...zpzMy... Mp:p 01— ... = 05 > @

and
T,y:0,2y:01y.cyZTpion b zMy ... M, : a.

Now we have to distinguish two cases:

(a) z#y

(b) 2 =1y
(a) If z # y, then by (— I) and of Subject reduction we have the following
derivation
[yzy:01,...,Tn i AyaMy... My, :p—a THN:p (1
Iyzy:01,...,%n t 00 E 2M[N/y]... Mu[N/y] : @ (— 1)
I'FAzy...¢zn.aMy[NJy]...Mu[N[y]:00 = ... > 0, = « :
hence, (NP)' = Az ...zq.aMy[N/y]... Mu[N/y).
(b) If z =y, then from
Lyz:p,31:01y..,2q o FzMy ... M, :
by Generation lemma (Theorem 2) it follows that ¢ = ¢, — ... —

¢m — a, nence by the induction hypothesis, since I' - P : ¢ there is a
lambda-term P’ of the form Ay; ... ym.2P; ... P such that
I'FP:p
and
Lyph 00150 ey ¥m : @ F 2Py, .. Py : 0.
We can suppose that z; # y; for all 1 <i < n,1 < j < m without lost of
generality. Let IV =T, y; : @1,...,Ym : ¥m, then

I 21 :01y0002n 200 F 2P ... Pt
MEAzy...2p2zPy ... Prioyp = ... > 0, @

(= I);
hence, if we take I'" instead of I', and we can do that easily,

(NI)), = AI] e .In.ZPI . .Pk. qu
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By using this property it is easy to check whether a type with a type variable at
rightmost place is inhabited.

The fact that Peirce’s law is intuitionistically not provable in terms of lambda
calculus means that Peirce’s law is not inhabited.

This is a consequence of Theorem 3, but it can be shown by application of
Proposition 1 as well, for Peirce’s law is of the requiered type shape.

Corollary 2. Peirce’s law is not inhabited in simply typed lambda calculus.
Proof. Suppose that there is an inhabitant M of Peirce’s law, i.e.
FM:((a—f) > a)—

Then by Proposition 1 there is a term M’ of the form M’ = A\z,.a M, ... M,, such
that

FM:((a—pf)—a) > aand z,: (> f) sabzMy... M, : a.
Thus z; = z since I' = (). Then
z:(a—pf)—> «a

and m = 1. Thus from
z:(a—=f)oatzM:«a

by Generation lemma,
z:(a—=f)oabk M :a—»p
and Fv(M,;) C {z}.

Then again by Proposition 1 there is a term N’ of the form Ay,.yV; ... Ny such
that z: (¢ = f) > al* N': o — f and

z:(a—> f)—a, ypr:abyN;...Ny: 8.
Fv(N') C {z}, so there are two possibilities y = y; or y = .

If y = y1, then y : @, so y Ny ... Ny cannot be of type f. It can be typed only in
the case of k = 0, but still it cannot by typed by .

Ify ==z, then y: (@ — f) — . Thus k =1 and yV; can be only of type «, but
certainly not of type . q.e.d.
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JEOYKTHEHLM NOAXOA K ABTOMATHHECKOMY
MOPOXAEHHIO KOMEMHATOPHbNX PACIOJIOXEHHWA

MNeTap XoToMcku
Texinyku daxyntet "M. Tynun"
Ix. IOxaxkobuda 6.6. 23000 3peHaHHH

PE3IOME

B cTaTbe paccMapHpBaeTcs AelyKTHBHOE TMOPOXAeHHE KOMGUHATOPHDIX

pacroNIoKeHH:A, OGOCHOBAHOE Ha MeToAe  PedoJInlHU. Ana  osanavm
pacrnopaXeHHs YpOKOB TMPUBOAHTCA HacTb AKCHOMATHHECKOM Gasbl H
onucblBaeTCcs Mpouenypa T[OPOXAEHHS OCAHOINO W3 BapHAHTOB HCKOMOro
pacriopaXeHU s . NlaeTcs OnUH Nnpoc Ton npuMep, HIIOC TPHPY OUHA

NpeaoXeHHY 0 TMpouenypy .

KJIOHEBBIE CJIOBA: KoMEuHaTOpHas CTpYKTYpa / MeToJ pesosiouuH
pacrnopsa)eHHe ypoKoB

i
1

BBEAEHHE

HececaenoBanu s rno aBTOMATHYEC KOMY AoKasaTeJbe TBY TEeopeM
OCYWEC TBJIANTCS B ABYX HAlNpaBJEHHAX:

-  paspaoTka % COBEepuWeHC TBOBaHWE  MeTOAOB " noaxXon0B K
aBTOMATHYECKOMY BbIBOLY ,

— oTblcKkaHHe TIPHJIOKEHHV CYyuecTBYOUWHX pedyJsbTaToB.

K nepsoMmy HarnpasJIeHuo  OTHOCATCA UccaenaoBaHHa W pesyJabTaTbl

noayyeHHvble B paMkax pasBUTHS  3KCIIEPTHOR  CcHC TEMOI "Graph'" 71/

PeayabTaTbl KoTopble oOoSOCHOBAHHLI HA MeTone pes3oqiinunh /&7 K  Ha

ecTec TBEHHOM BblBOAE MONPOGHO OMUCHHII B MOHOrpadue 3.7

HacToswas cTaTbsa TMpUHALJIEXHT K BTOPOMY W3 TpHBEIEeHHLIX
HanpasBJIeHWA, T. €. aaech paccMa TpuBaeTCH MpHAOKEHHE MeTona
PESOIOLHH K ABTOMS THHEC KOMY TMOPOXAEHHK KOMOGHHATOPHLIX CTPYKTYP.

MoHs THe "' KOMEHUHA TOPHOM cTpy KTy pbl” Hcrnonbayem B ayxe
caenyouwero onpedeJieHH 5 .

MycTtb X KOHEYHYHOE AHCKPETHOE MHOKSCTBO H A=[ati] MaTpHLla nxm.
PacrnonoxeHue 3JeMeHTOB MHOXEeCTBa £ Mo a4erikam Mafpumm A  GyneMm
paccMaTpHBaTb KakK oOTOGpakeHHEe MHOXe! TBa S={Ci,j)| i=£T;_;J=IT;'}
B MHOoxecTBo X. [lpu >ToM, MOJYyYeHHE MyCTOM ayeriki, JaHGo cTHpaHHe
conepXaHH s a~Lj B auerike (i,]), oOcyuscTBJASETCH BKIAMHEHHEM 0COGOro

3JIeMeHTa e B MHOXeCc TBO X. 35
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Mycto & = { £ | £: S5X } u U MHOXeCTBO yCJOBHA, TpeSyeMoX Ha
MHOXecTBe F. Myctb K S F MHOXeCTBO TeX H TOJLKO TeX >3JIeMeHToB &
AN XOTopbbd BLINOJHEHO Kaxzoe ycuaobue Hs U . MHoxecTBo K BnosHe

onpeneseHHo MHoxecTBamMu S, X,F,U. TNostomy ckaxem uto C S,X,F,U D

onpegenaseT oOAHY KOMGHHATOPHYO CTPYyKTypy Ha MHOXecTBe S 10

OTHOWEHHI K MHOXecTBaM X W U . DaemMeHTH MHOxXecTBa U OGynewm
NOHHUMATL KakKk akKCcHOMbl KOMGHHATOPHOM cTpykTypbl X . OSosHauum HCF)
MHOXECTBO AaKcHoM. Tenepb, cTpykTypy X MOXHO OMNpeaesiiTb Kakx

a)(cmomal'rw-lecKvuaT oSbexT. _

OnpegeneHne 1. KomGuHaTOpHas cTpykTypa X Ha MHOXecTBe S 1o
OTHOUWEHHK K MHoOXecTBy X, atTo (S, X, ¥, #(F) >, rad

F MHOoxXec TBO oTobGpaxeHHn f: S—X , H(FD) MHOXESCTBO aKCHOM.

Tax xax HACFD CODEPKAT MHOKECTBO YCAOBHMA U, KOTOpble MOryT
6SbiTb TMPOTHBOPEYHBLIMH, TO TNpH OPOPMJIIEHHH CTPYKTypbl K Heornxoaumo
npeaBapuTeJIbHO oSecriedyu Th BLINOJIHUMOC Tb MHOXeC TBa HCFD.
HepbinosaHumoc T MHOXecTBa HC(F), xorna axkcHoOMbl BblpaxeHHbl Ha asblke

HCHHCJIEHHU A npeinkaTos, MOXHO YCTAHOBHUTD npu MOMOWH MeTOna

i
pesonouunu. Ha npaxTHKe, TakUM CrNocoBGoM MOXHO TpeaycMoTpeTb H
YCTPAHHTD YCJNOBHS KOTOpble TMpPpHBOART K HEeBLINOJHHUMOCTH MHOXeC TBa
ACFD). 1o ocoGeHHO ynoGHO Xorza MHOXecTBO U, KpoMe HeOormXoAHMbIX
YCJIOBHRA, COAEpPXHT H HexoTopble xenaemble ycaopua. Koraa U sBxao4aeTt
TOJILKO HEOMXOJAHMbIE YCJIOBHS, MOXHO chopMyJHpoBaTb TeopeMy o6
Cyuwec TBOBAHHH OTOGPAXEHHS fe& No OTHOWEHHI K axcHoMam ACFD. ’
JoxasaTenbcTBo cywecTBOBaHUa f BOSMOXHO, XOTS B TMpPHHUHMNNE,

OCYyWECTBUTD Takke TIpd TMNMOMOWH MEeTOoAa PpesoJioUMH HexXonas oT ACF) U

OTPHUAHHA TeopeMbl cyuwec TBOBAHHS.

HHHOM noaxon cCcocTOMT B HCMNOJAL3IOBaHHH MeTona pPesoJiolUHM  E i
npouecce TIOPOXAEHHR CaMol cTpykTypbl. KoHkpeTHsHpyeM 3Ty oSuyK
KOHUETILHIO Ha sanave KOMGHHA TOPHOI O PaCTIONOKEHH R , KoTOpas

MOTHUBHPOBAHHA PAaClOPSXEeHHEM YPOKOoB.

1. AEAYKTHUBHOE TMNOPOXIEHHUE KOMEHMHATOPHOI'O PACTIIOJIOXKEHUA
PaccMOTpHM 2sanavdy pacriopS¥XeHHs ypoxKoB. |
JneMeHTbl MHOXecTBa X onpezeseHHbl clenyouHMi AaHHDIMU:

HMS& nperiofaBaTesia, MpeaMeT, KJacc, HHIAeXK: ypoka
HHaexc ypoka aAaeT BO3SMOKHOCTL passudaTb 3JeMeHThl MHoxecTBa X
xoraga npernogasBaTeJb B TOMXKe kJacce MperiogaeT TOoTKe TMNpeaMeT Ha

Heckonbkux ypoxax. HuHaexcom O onpenenseTca 3JeMeHdT e Nnpenapasoudd

Y
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aycTyn SHenxy. B MaTpHue S kaxnas cCTpoOKa TMpPHHALJIEXHT OLHOMY
ppernoaasaTesio, a xaxaoh cTonGeun ofSosHavdaeT TepMuH ypoxa. TepMmuH
ypoxa ornpenenseTca ABYMA lNapaMeTpami: AeHb, OYepedHLIA HOMep ypoka
Ha npuMmepb, sauvenka Ca,b) oTBevaeT a ToMy nNpenoiabBaTesin B TEPMUHE
b, nNpH 4Yem b onucuBaeTca napon (d,t)

OtolpaxeHne f: S—X onpenenseTcs OCHOBHDLIM TPEeinKaTOoM

pCn,p.q,1,d,LD - npenonasaTtesnb n ASPKHT YPOK C© HWHAeXcoM 1 no

npeiaMeTy p B KJacce ¢, AHa d ¢ ovHepenHLbiM HOMepoMm b

TaxuMm OSpPas3OM, sanoJiHeHne a4Yerlku (a,b) CcoCTOUT B OrpeaesIeHHH
v

npeaMeTa p M KJsacca q B XOTOPOM TperofaBaTesb a AepkUT Yypok B
TepMHHEe b.
MHoxec TBO L(F) conepxHT:
- ofuHe axKcHoMbl (MpHCyuHe B KaXAOM pPacTIOPRXeHUH) .
- Heorxoaumble ycnobua (TpeGyemble B KOHKPETHOM cllyHdae),
- xXeJsaTenbHble ycnobua (He obasaTenibHbl AN BLINOJHEHWA) ,

- JAaHHLle.

OSume aKcHOMbI
lNMpueoAHM KOHUET Ty aJbHY b MozEb KOTOpAas He BKJIOYAET
paszaesieHHe KJlacca Ha rpynnol, oSbeAHHEHHS KJAaccoB H  GJOKH YpPOKOB.
Ana HaoCcTpauHH MeTona TIPHBOAMM TOJIbKO HEeKOTopble Ho OSuHX aKCHOM:
1. AxcHoMdbl OOHOBPEMEHHOC TH
o x » > 2 & y LD
s 1. P,*P, * C DCn P,»d, il,d,t) =2 —D(n pz,qz,iz,d 1 %5 s
MpenonaeBaTtesnb N He NEepXUT ABa pPasHLIX TMNpeaMeTa OLHOBPEMEeHHO
. 2. > > > » 2 (n, >
1.2 q1 q2 = C DCn,pi qa, 11 d,td) = -D(n pz,qz.iz,d YD
[lpenopaBaTenb N HE ASPXHT YPOK B PasHLIX KJaccax OAHOBPEMEHHO

1.3 ntxnz =» C D(nl.pi,q,il,d,t) - ﬁDan.pz,q,iz.d.LD )

PasanyHole npenogapaTaJiM He AepXaT YPOK B TOMXe KJacce OAHOBpPEeM.

2. AXCcHOMYDlI IuC TaHUWH
o L * - S . Xn, N )
2.1 t‘ tz =» C DCn,p,q L d t1) 2 —D(n p,q,iz,d tz D,
lMpenogapaTenab N HEe NEPKAT TOTKE TlpeiMeT B TOMKE KJacce nBa

pasa B Te4dYeHHH IOHA.

AKXCHOMDl BOIpaAXaOUHE HEeONMXONHUMbIEe YCJIOBHS, & ToKXe W aKCcHOoMbI
Bblpaxkaouwue XeJaTeJibHble  ycJuoBua, BLhipaxal Tc s Takke  PopMyJiaMu

HCHUHCJIEHH A TpeaHKaTOB, 33aBUHCSWHMH OT KOHKPETHOM CHTYAalHWH.

Jannvle
JaHHble paspenswTcs Ha OGWHE W KolKpeTHLlE.
O6unHe naHHble OMpesesanT YHCJAO AHEeR H YyPOKOB B TeYdYeHHH IHS,

T € onpegeJian T YHHCJO CTONGUOB B M3 TpHUe. Huc no CTPOK  SIBJASXETCSH
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i
TOXe oBuuM LAaHHOM, HO npeanoJsaraeTcs He MeHbwe qucn?
npenoaapaTesen. !

!
KoHxpeTHble xnaHHble osanucbliBawTcs B BHAe ¢opmys POn.p,q,r)
‘ J

oSosHAYABWHX HTO npenogasaTedsib n Mo npeiaMeTy p B XJlacce g HMee)

BCEro I ypoKOB.

MeTonom pe3oJiourH MOXHO rnoabsoBaTCR Ha PasyTH4HbLIX 3Tarnaj

OPOPMIAEHHA PACTIOPAXEeHHA:

1> oPopMJIEHHE MHOXECTBa YCJOBHH,

2D npenbaéﬂeHue cywec TBOBaHU A TpeGyeMoro paclopaXeHHS ,

3) Henocpeac TBEHHOE MOpPOXAEHHE TpeSyeMoro pacriopaSXeHHS.
MonpoSHee oanepXuMcs Ha 3). JleayKTUBHObIA noaxon oGOCHYeM  H
CJIefy BUHX TIOJIOKEHH aX.

Pasau4anTc? M ¢ X © I H O € MHOXEeCTBO H MHOXECTBO I & H H bl X |
HexonHoe MHOXECTBO COASPXUT oOGWHE aAKCHOMLI H YCJOBHS, a MHOXeC TBl
AaHHODC COCTOUT uoa 3J1IeMEeHTOB BUOA DCn, pyqsd »dst) KOTOPO%
OPOPMAABTC R HCXoAs Ha naHHoro Fln,p,q,r). i
C CcCHOBH O €& MHOKECTBO COCTOUT  H3 3/IEMEHTOB  MCXOLHOT|
MHOXecTBa ; H H3 TeX 3JeMeHTOB MHOKecTBa, AaHHbX, KoTopble mnpl
PUKCHPOBaHHOX SHa4dYeHHax d,t He npoTHBOpEe4aT 3JIeMEeHTal
CyumecTBYOyuero OCHOBHOIO MHOXecTBa. B Haudasne, oOCHOBHOe MHO*GCT4

)1

COBMazlaeT C HCXONHLIM MHOXEC TBOM.
\

Ha kaxaoM ware asropuT™ma, anas npeauxkaTta DOn,p,q,1i,d,tD
KOTOPOM BCE apryMmMeHTol PuKcHUpoBaHHLI, Me TOAOM peoonnuﬁ
HCcleayeTC s TMPOTHBOPEYUT JIM OH 3JIeMeHTaM OCHOBHOIro MHoxecTsBa. H
rMpaxTHKEe OKasblBaeTCR HTO HHUCJO BOIMOKHLIX PE3ONILBEHT MOXHO CAesaT
KOHEeYHbLIM H TMO3TOMYy NPpouenypa paspeuuma.

Ecau npoTuBopedne HalaeHo, ToO bBbiGHpaeTcs ApyroW anemeﬁ
MHOXeC TBa JAaHHbX, B MNpOTHBHOM naHHoe DOn,p,q,i,d,tD BXJ/OYASTCA |
OCHOBHOE& MHOXEeCTBO, a JHAYeHHS pP,d JalUcbiBARTCa B SHERKYy  CTpox
n 1 crtosatua (d,t) maTtpuubl S. Ecsau HenpoTHUBOpeuYuBbLIX AaHHLIX HeT
TO S4HeMKa JAroOJIHAETCR 3INEMEHTOM €, T.e. oOcTaeTcs IycTor. }

Mpumep.

anBeAeHm’e AKCHOMDI orpen=n{uT caenyovuee MHOXEC TBO IH3DOHK TOB:

= ) i ; 25 « i )
d.1. P,"P, ¥ ﬂD(n.r‘.q‘.ll.d,,) v ﬁD(n,pz.qz.xz.d,t)
1.2 q,=q, v ﬂD(n.pi,q‘.i‘.d.t) ~ ﬂD(n.pZ.qz,iz,d.t)
- : L) o« i_,d,
1.3, n =n, v ﬂD(H‘.pl.q.il,d..) ﬂD(nz.pz,q.l2 d,tD
2.1. t =t_ + -DCn,p,q,d,i ,t ) « =DCn,p.q.i_,d,t D
1 2 1 i 2 2
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Nlannoe DCN .M.I‘,l,l,l) nopoxnaeT cJlelyourde pesosibBeHTbI:
1

p‘;M v ﬂD(N‘,p‘,q‘.i‘.l,13 c 1.1. no TpeTben auTepe

M:pz v ﬂD(N‘.pz,qz.iz.l,lb c 1.1. no sTOpoR JAuTepe,

xoTopole apanbue c D(N1.H,I‘,1,1.1) NnopoxaanT pesoJibBeHTy M=M,
Apyrux pesonbseHT ¢ 1.1. HeT, rMo3TOMy AAaHHOe He TMpPOTHBOPEYHT
axcuome 1.1. AHaNOrU4yHO, ANaHHOE D(Nl,M,I‘,l.i,lb He npOTgaopequ
oCcTAJIDHOM AaXCHOMaM, Tak Kak [oJyHaonTCcs pesoJbBeHTbl: 11:11; N1=Nﬁ
1=1, pecnextusHo. I[lo3ToMy naHHoe DCNi.M.It,l,l,l) BKJIOHaeTCs B

OCHOBHOE MHOXEecC TBO.
Jlanbwe, AaHHOE DCNZ.S.I‘.l,i.lb ¢ 1.1. nopoxpmaet S=S, c¢ 1.2.
nopoxnaeT Ii=Il, HO ¢ 1.3. cHavdana NnopoxXnaeT Pes3oJIDBEeHTY
n=N + -D(n ,p ,I ,1 ,1,1) xoTopas naanbwe ¢ DCN ,M,I ,1,1,1D

1 2 1 1771771 1 1
nopoxzaeT MpoTHBOpeYHe N1=N2 . Nostomy, D(NZ.S.I‘.l.i,i) Henboa s

BXJOHHTD B OCHOBHOE&E MHOXEC TBO.

OpopMIEHHE PaCTIOPRXKEHHSA OJAaKOHYEHO YCMNexXoMm, €eCJiH OJS KaxXAoro
naHHoro onpepeJsieHHo (d,t) Tax 4YTO HET MNPOTHUBOPEYHA C OCHOBHLM
MHOXEC TBOM.

3aMeTHM YTO Takasa npoueaypa He ofecrniedupaeT o6asaTeJNbHO
OMNTHMAJIDHDIA  BapHaHT paclopaXeHH . BEonee Toro, or o4epenHoro
BUIGOpa AAaHHLIX JaBUCHT KOMIIAKTHOCTL pPAClOpPSXeHHS, AaXe W ero
cyuec TBOBaHUHE.

Ouepenb naHHLIX BO3IMOXHO OMNpefesIiTb 1o pasHoMy. Ornuuem ozaHy

H3 BOBMOXHbLIX Npouenyp.

2. TNPOUEAYFA 3ATIOJIHEHHA 1O CTOJIELAM
pouenypa HcneabosyeT caengyouHe MOAYJIH:

BXOIHON MOIYIIb (B): nocaenoBaTesIbHOCTH aKCHOM &
NnocAenoBaATENLHOC TH AAaHHLX P yropaaoHeHbX 1o
npenofaBaTessM, Tak HTO O4YepeIHO CAeAyOT BCe
YPOKH OLHOIO TMpenozabBaTess 5a APYIrHM;
napaMe Tpu: Lmox 12 dmax; MaTpuua S (nycTas).

MOIV7Ib ®UKCHFOBAHHMYA (dD: ocyuecTBaseT dUKCHpoBaHHe NapaMeTpob d,t

B MOCJef0BATEJIDHOCTH AaHHDLBX.
MOJZYJlb TIPEMNOAABATENG dID: HaxXxoauT cJaeaypowee nfaHHoe B
MoCJ/IEACBATEJIDHOCTH OAHOTO MNPErnoaaBaTef.
MOZYJb PE3OJMOUHMH (R): rnopoxzaeT MHOXECTBO pEe3oJbBEeHT BLISpaHOro
AAHHOTO © OCHOBHLIM MHOXEC TBOM.
(Ro):oqumaeT HeHyXHble pesoJbBEHTLI.

MOy b MAPKHMPOBAHHA (M): COCTOHT H3 caenybuHX MMoUMony Jemr

M;»MapxupyeT NaHHOEe B MOCA=A0OBATEJIDHOCTH IaHHLIX U
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BXJIOHAET MApPKHPOBAHOE HAAaHHOE B OCHOBHOE MHOXEC TBO.
Mz— CHHMaeT MapKUpOBAaHHE C 3SJIEMEHTOB OCHOBHOIO MHOXECTBa H
yAaJsaeT MapKHpoBaHble AaHHLIE HS3 MOCASNOBATEJDHOCTH AaHHbN.;
Ms_ yAanseT MapKHpOBaHble 3MeMeHTOhl US OCHOBHOIGO MHOXeCTBa H
CHHUMaeT MapKHpPOBaHHE C 3JISMEHTOB MOCAEeNOBATENDHOCTH AaHHLIX.
MOZYJIb TIEPEXOJA (H): nepexon Ha naHHole cieayowero rnpernoaabBaTeds.
KOHTPOJIbHBIA  MOAYJIb  C(KD: npoeepseT cywecTByeT JMH Yy [epBoro
npenoaaBaTess N1 AAaHHOE  KOTOpoe He  [PpOTHBOPEYHT
OCHOBHOMY MHOXECTBY.
MOIYJlb 3ATMMCH (é): sanoJiHReT cTosbel SHeeK MAaTPHLN
BbXOJHON MOﬂyﬂb (5): nedaTaeT BApPHAHT PACMOPRXEeHHS. :

CxemMa aJyropHTMa npHeegeHHa Ha Puc. 1.

nycras
ayverka

M ]

P
<
He

]
tmax> i

dmax> i
:

b T = TH & T

L___[d=d+1; t=1]«°¢d
[

< oc TaJUCb  paHHble >-—————{E§2§§§Eﬂ :

He S ,

1

O T 66 O T O O B 1" T =

0O B O < w

X O & 1
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MaprposaHHe AaHHDLD C,GYCJIOBJIGHO TéeM HTO BOODMOXKHO B @ CTpoOkKe

L Le13%g npeno;xaaa're.na HeT AaHHLX XoTopble He npoTHuBoOpe4aT OCHOBHOMY

34 W MHOXecC TBY. B Taxom cJyHae cCcoOoTBeTCTBeHHaf suaerika ocTasacb 6bl

b, nycTOA, XOTH BO3IMOXHO MOrJa 6bl GblTb sanoJsHeHa, ecad Gbl Gblau

pofSpaHbl  ApYyrue aaHHble ans 3Toro crosntua. [losToMy aHyJHpyeTcs

Bore oanoJHeHHe aveex crTontua, HO npeaBapH TEeNbHO npoBepseTcs

ey cymeCTByGT JH Yy nepBoro ro o4Yepenn rnpernogaBaTedisa AdaHHOe KOoTopoe

> | Obume manHble: d =2 ; t =4 ; n =3,

He T[POTHBOPEHUT OCHOBHOMY MHOXECTBY. Ecam Taxoe pgaHHoe He
cywecTByeT, TO S4erlka ocTaeTCs MNycTOA H TpPOACIKAETCS 3aroJIHEHHe
cTonBlUua € COXpaHEeHHEeM yXe TMOpoXAeHHLIX 3JeMeHToB. Ecuu gaHHoe, He
npoTHBOpeHauwee OCHOBHOMY MHOXECTBY, CyWecTByeT Yy TMepBoro ro
ovepelHn TperionaBaTens, To CToJGel SaloJHAeTCs 3aHOBO. '

Tonbxo xorza sanoJHeHHEe cToJGUa BIOJHE 3aKOHYEeHO, CHUMaoTCH
pce MAapPKHPOBaHHS B OCHOBHOM MHOXECTBE M BCe MapkKHpoBaHHble aaHHvle
yAaNn[0TCH Ho NnocaeaoBaTeNbHOC TH AAaHHbLDL . dax THHECKH,
ocyuec TBASETCH TepeHoc "yaauHoix!" naHHLIX HB  MNocJAenoBaTeJIbHOCTH
AaHHLIX B OCHOBHOE MHOXECTBO. 3aTeM T[epexXoiHTca K  SarioJHEHHD |

cnenyovuero crtoaGua.

3. TMFUMEFP JAEAYKTHBHOI'O TIOPOKAEHHUA PACIOPAXEHWUA
[poHJoC TPHPpYEM ONMHCAaHHY TMpouenypy Ha OAHOM COBCEeM T[poc TOM
npumepe. IlycTb #(FD conepkuT Tosabko akcvomol 1.1, 1.8, 1.3, 2.1 B
PopMe OUILIOHK TOB.
max max l'll'J.X_ |
KoHxpeTHble naHHbLle: P(Nl,M,It,a). PCNi,M.Iz,a), P(N‘,R,Ili,a).
PEN_ 8T _ 12 FCN_ S, Y 105 PCN 4811 . 2280,
2 1 2 2 2 1
PCN. s F,I &3, PCN_F:I_.8ds PCN _,T,II ,2).
3 1 3 2 3 i

lpuBEeseHHas Tpouenypa T[MOpOXIAET PpacropaxeHne Trpenc TaBleHoe

Ha Fuc. &.
1. eHb 2. HEeHb
npenogapaTeab X
1 2 3 4 1 2 3 4
m R M m M
N 1 II I I I1 I
1 1 1 2 1 1 2
s s s s
N I 1 II II
2 2 1 1 1
F F F F F F
N Iz 1 I I 1 11
3 1 2 1 2 1 1
Puc.. 2.

3aMeTUM 4HTO KJacc I2 BTOpPOrc AHS HEe HMEeeT BTOporo ypoka. 3To
MOXHO TMOMNpaBUHTL MPOCTOM MNEpec TAHOBKOM MepBOoro M BTOporo croatua,

NpHyeM "nycTor ypok'" BblABUraeTch Ha MAapPryHy.
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4. 3AKIMOYEHHE
Mol yxasasqu TpH HCXOAHLIE BOIMOXKHOCTH A8 HCNOJNLIOBAHHS MEeTOAA

pesonouHd B TIIpoluecce KpeHpoBaHUa KOMOHHATOPHLIX pPACTIONGKEHUA.

Kaxnasa H3 HX NoAJIEXHU T AanbHeruemy HccJe4OBaHHD H
cOpepueHC TBOBAaHHIO. B Hnrore MOXHO OXHOATL co3naHHe CHC TEMY|
AJ18 ocpopwmenua KOMﬁHHaTOprM pacrioJIOXeHHM Ha TIOJIOXEeHH aX

HCKYCCTBEHHOI'oO HHTEeJIJIEK Ta.

7
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TOWARDS SYSTEMATIZATION OF INFORMATION (RE)PRESENTATION SOFTWARE

Mirjana Ivanovié, Dura Paunié
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Institute of Mathematics, Trg D. Obradovica 4
21000 Novi Sad
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ABSTRACT: The paper describes the result of an analysis of different systems for representation and
presentation of information of the types HyperText, Authoring Systems, Intelligent Tutoring Systems
and Intelligent User Interfaces. Some of their important advantages and disadvantages as well as their
characteristics are shown. Based on this description, a main characteristics of the whole software class
is drawn out and can be used for further systematization.

KEY-WORDS: HyperText, Interface, Multimedia, Presentation
1. INTRODUCTION

The development and wide application of different systems for representation and presentation
of information and knowledge offers an opportunity to recognize their advantages and disadvantages,
thus influencing their further enlargements and improvements together with the development of new
systems.

Different profiles of the users of these systems require the presentation of information to be
clear and to include different media realizations.

The development of methods and techniques in different fields of computer science influences

the emergence of integrated systems which include the representation and presentation of information
and knowledge. However, one of major problems which needs to be solved is whether to choose
highly specialized data structures for these systems and then adopt them as much as possible to a
particular field, or to aim for a general and widely applicable structure.

Most research today is undertaken with a view to developing systems which would possess
the following components:

- Universal formalism for the representation of different existing forms of information and
knowledge (text, picture, sound, ...).

- Universal method of presentation of accessible information and knowledge. Such methods
should single out, from the existing formalized representation, a meaningful unit of information and
present it in an adequate way, depending on the user profile.

- General applicability - the possibility of application in different fields.

Research in this field resulted in ready-made software systems with different concepts of
representation and presentation, but they can all be generally described as systems characterized by
the following elements - units (Figure 1.):

1. Basic information and knowledge - a collection of information and knowledge to be
represented. It needs to be classified and divided into smaller semantic units.

2. Additional information - a collection of information and previous knowledge which can

help the user of the system to understand basic concepts more easily. Generally speaking, this kind
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of information is not directly related to basic information and since it is not necessary for all users
of the system, it is stored separately.

3. Formalism of representation is a formalism by means of which basic and additional
information are represented in an appropriate way in a computer, forming a data base.

4. Mechanisms of presentation are mechanisms which, on the basis of represented
knowledge and information, perform an adequate presentation.

5. Feedback mechanism is a mechanism which should receive feedback information from

the user, turn them into adequate actions and then forward to the system. The system of forwarded
information processes and determines the behavior and further course of presentation.

Basic Additional :
&‘vanmon

The Formalism of Representation of
Knowledge and Information

The existing systems and environments
are usually applied in the following fields:

- The processes of learning and
teaching, i.e. educational processes at all levels.

- Presentations in the strict sense of the
term, i.e. presentations of software products,

projects, ideas, etc. |Know1¢dgchi]_¢—

- Intelligent user interfaces should
enable a sophisticated and natural way of man- Presentation Mechanism
machine communication, with or without Feedback

The complexity of information and
knowledge which should be represented and Eeedbtckmd its crrccts}—-
presented requires different methods of their J
media presentations: through text, picture,
simulation, sound etc. The inclusion of different
aspects of representation and presentation of
information and knowledge characterizes these systems as multimedia systems. Methods of artificial
intelligence should play an important part in these systems. Since artificial intelligence cannot satisf
high criteria which are set in most systems for representation and presentation of information and
knowledge, it is undeveloped. However, most research strives to make use of different artificia
intelligence methods in order to obtain systems for representation and presentation of informatio
which are of high quality and easy to use.

Figure 1 General Appearance of (Re)presentation System

2. MULTIMEDIA SYSTEMS

Multimedia systems integrate textual information with sound, video, animation and graphics,
in order to obtain high-quality computer-aided presentation and representation which will be al
inclusive and clear.

When we speak of multimedia features of a software product, we mean the software produc
which integrates designing simple animation, moving of graphics on the screen, recording an
reproducing digitalized speech and music, memorizing of the whole section of work in order to b
used subsequently for different purposes. If a software product is to support these differen
possibilities of expressing information, it has to support different peripherals: monitors, videos, C
players etc. ‘

From the point of view of using peripherals, there are two ways of presenting information:
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sers . 2

- Multiperipheral (dispersed) presentation - the process of presentation includes and uses

several different peripherals.
ional L
- Monoperipheral presentation - the process of presentation includes only a computer
monitor on which various types of information can be shown simultancously.
:nted
From the point of view of coordination of information, there are two types of presentations:
from - Coordination of media - integral information are obtained as a union of non-redundant
wded individual forms of information. This type of presentation is difficult to carry out, because it requires
the system to make intelligent decisions concerning the division of information and mode of presenting
particular elements.

- Non-coordination of media - some information can be multiplied, i.e. expressed
simultaneously through different already existing forms. This type of presentation is easier to carry
out because it doesn’t require a deep and intelligent analysis and a precise classification of information
according to a particular media.

3. CLASSIFICATION OF SYSTEMS FOR INFORMATION (RE)PRESENTATION
Systems for representing and presenting information and knowledge can be classified
according to several criteria.
1. According to the criterion of applicability, there are:
a) specialized systems - intended for highly specialized fields,
b) general purpose systems applicable in various fields.
2. According to the criterion of intelligence, there are:
a) intelligent systems - which make use of different methods of artificial intelligence,
b) non-intelligent systems which do not use methods of artificial intelligence.
tificial . el . .
satisfy 3. According to the criterion of interaction, there are:
n and . .
ificial a) systems with feedback which expect feedback response from the user,
natiof b) systems without feedback which expect no feedback from the user.

As a rule, the more specialized the system, the greater the possibility of employing methods
of artificial intelligence, and vice versa, if a system is of general nature, it is more difficult to make
it intelligent. The ultimate aim of most research are highly intelligent systems of general nature.

phics, The existing systems for representation and presentation information can be classified into

be al several basic groups. The most interesting systems for wide use are HyperText systems, Authoring
systems, Intelligent tutoring systems and Intelligent user interfaces.

roduc

\g and 3.1. HYPERTEXT

c to b . ) . .

fferen In a strict sense, HyperText can be considered a data structure, i.e. a formalism for

)s. CI representing information which includes a collection of tools for handling structures and presenting
the represented information.

ation: In a broader sense, HyperText is a software tool for collecting, storing, searching and
presenting information with references. HyperText simulates the ability of the brain to store and
search for information with references quickly and intuitively.
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Basically, it is a data base management system which makes possible the linking of .

information on the screen and in the base by the use of references.
HyperText systems find their application in learning processes, presentations in the strict sense

of the term, and user interfaces.
According to the classification from chapter 3, they can be classified as non-intelligent general

purpose systems without feedback.
3.1.1. Characteristics of HyperText
The following elements form the essence of HyperText:

a) Database and a method of recording and accessing information in it.

b) Scheme of the links among elements (nodes) in the
database, i.e. a semantic network. At least one link towards other
nodes in the base has its source in each node of the base (Figure
2).

c) Interface which. enables a visual presentation of
information from the elements of the base as well as a simple
method of moving from one element to other elements linked with
it.

Figure 2 A Part of a Semantic Network

There are several ways of linking elements - nodes of the
database. The most frequently used ones are: linear (Figure 3) and hierarchic (Figure 4).

HyperText database usually consists of
nodes, the working space of which is the size of
a screen. Nodes can be loaded with textual,
graphic, audio and video information. In a
considerable degree, HyperText functions serve  Figure 3 Lincar Links of HyperText Nodes
the purpose of multimedia presentation.

A typical HyperText includes the following auxiliary tools: text editor, graphic editor, tool
for three-dimensional representation of pictures, mouses,windows, icons, and pull-down menus. In
addition it has a number of index possibilities: inverted word files, hierarchic indexes. In HyperText
it is possible to connect the system with an external executing program.

Recently there is a noticeable tendency
to combine the techniques of HyperText with
artificial  intelligence techniques in the /
implementation of intelligent systems. Apart

from basic elements of HyperText, such systems
have some new elements:

d) Scheme of gathering knowledge
which enables automatic addition of information
and relations among them into the existing S
structure of HyperText.

e) Observing the activity in the system
and making suggestions about the changing of
information in the nodes and links among them.

Figure 4 Hierarchic Links of HyperText Nodes
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3.1.2. Utilization of HyperText

When HyperText is used to create some (usually) multimedia product it is necessary to divide
available information, which is to be represented, into simple semantic units with a simple concept
or idea which can be represented on a screen.

Individual nodes are connected into compositions - a network which is supposed to make
possible quick movement from one to another. Nodes can be:

- Qualified (named) - with an associative name which reflects the content of the node.

- Unqualified (unnamed) - nodes are unnamed parts of the network. Usually in HyperText
it is possible to assign names both to nodes and links.

When using HyperText system, a user can forget, if the database is large, how and why he
has reached the point in which he is located at the moment. If this is the case, in many systems it is
possible to give a graphic representation - a structural diagram of a node network. Such a diagram
can enable the shift into any of the network nodes.

Some HyperTexts allow the assigning of a default course through the database which guides
and directs the user through an ordered list of nodes.

Depending on users and fields of application there are considerable variations among
HyperText systems. Basically, there are four types:

- systems for problem solving (practicing),
- systems for on-line searching,

- lirary systems,

- multipurpose (general) systems.

HyperText systems are not basically intelligent, and therefore in the process of their
application, a man is the main supervisor of the whole process. He decides which information are
included in the database, how to organize and form the nodes and which links are formed among
them.

3.1.3. Problems with HyperText

HyperText represents a new technology with a number of problems still unsolved, and without
established standards. | ¢

1. The main problem is how create a convenient models which is relatively easy to manage. Large
amounts of information which are to be stored can result in a system which is too large and bulky and
the movement through which is slow and difficult.

2. HyperText user is self-guided and he can move through nodes of the network according to his own
needs. However, there is a significant danger of choosing a wrong course and getting lost in the
network. Such a system with no real determinism in choosing a course through nodes and without
actual feedback is too open and often non-effective. Sometimes it is difficult to split up the existing
collection of information into nodes and later the classification may turn out to be wrong and in need
of correcting. In such cases, most HyperText systems have problems.

3.2. AUTHORING SYSTEMS

Authoring systems are software tools which link into a functional unity a computer and
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different peripherals, such as CD ROM-s, laser videodiscs etc. These systems are usually called CA
i and they find their application in the field of teaching and presentations in the strict sense of the term,
They can be divided according to their purpose, and in most cases they are specialized in particul
i fields. According to the classification from Chapter 3, they can be grouped as non-intelligent syste
4 with feedback.

A numerous group of people, such as teachers, managers, authors of different teaching
processes uses authoring systems to create their own interactive multimedia programs (systems).

The first authoring systems were independently developed software products with no abilit
to control external devices. However, the current trend is to develop such authoring systems whi
would be able to control and synchronize a large number of external devices, they are becoming mori
powerful and more extensively used in the field of interactive multimedia systems.

Knowledge and information which are to be represented in a system are divided into small
sections - topics, which are linked to make a semantic unit. Topics and links among them form
graph. In the process of presenting information stored in a graph, there is a movement along differer
parts and nodes in the graph of the system.

3.2.1. Features of authoring system

bl By analyzing different authoring systems available in the market certain features can
determined and criteria set which a system should meet in the process of its creation as well as in i
operation. :

- Authoring systems, using different convenient tools enable the user to design and create h
own multimedia application without using and being familiar with a procedural language. However
the existence of a programming language as an option can be very useful, so that an authoring syste
can have its own procedural language or offer a direct access to some such language.

- An authoring system should enable simple integration of outputs from some other progra
i.e. it should make possible the use of textual data files already existing, as well as including graphi
created by some independent graphical applications outside the system.,

- An authoring system must offer an appropriate method to create text and graphics by
i - having its own text (graph) editor and/or .

‘ - supporting some already existing text (graph) editors.

- It should make possible the control of the process of presentation and moving from one paq
of the system into another.

- It should enable simple "switching” of multimedia aspects.

- It should have simple singular interface, which will enable unified use of all tools availab
on a computer. Each time a new multimedia element is created (or a new device added) the existi
interface should support it. .

- It should allow full integration of text, graphics, animation, sound, video. The access
these elements should be built into a standard interface. The system should comprise two bas
functions:

- branching moving to a designated topic, from where it is possible to return
previous state or to move along some other path in the graph system,
- activation of some other programs and automatic return from the activated progr
into the authoring system.
- An authoring system should offer context sensitive help system.

3.2.2. Application of authoring systems in learning processes

Authoring systems can be used in teaching processes preparing lessons and courses etc.
such cases a system should have certain mechanisms of testing the acquired knowledge. Aulhorirﬂl
system in educational processes should advance the possibility of handling questions/ answers of tht
following type:
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1. true-false,
2. multiple-choice questions,
3. open questions.

In order to obtain information about the quality of teaching and the results of the evaluation
of acquired knowledge within an authoring system, it is suitable to create separate units for each
participant in the process. Such units would store the following types of information:

- the length of the teaching process,
- the number of correct answers,
- the number of individual topics (i.e. nodes in the graph) covered.

It would be preferable for this data to be recorded in the format which could be forwarded
to specialized programs for obtaining graphic presentations and proving statistical data about the
effectiveness of teaching.

Authoring systems support considerable number of tools necessary to create sophisticated and
powerful interactive multimedia applications, but their quality depends on the creativeness and
imagination of their author.

Mechanisms of an authoring system for testing the acquired knowledge by means of feedback
allow clearer and easier movement through system graph. Paths through the system are determined
by students’ answers to questions and tasks and there is no possibility of students’ getting lost in the
graph and knowing how to continue.

The existence of a feedback which determines the progress of movement through the graph
is a considerable improvement in these systems in comparison with HyperText systems.

3.3. INTELLIGENT TUTORING SYSTEMS

Intelligent tutoring systems are exclusively intended for learning processes. They represent
a combination of different fields: education, psychology, artificial intelligence, cognitive sciences etc.
These are usually highly specialized systems which is the reason why they successfully employ the
methods of artificial intelligence. Since they are basically intended for learning processes, ITS systems
are systems with feedback. Their architecture and structure varies, but usually four types can be
recognized: :

1. Expert (teaching) module is a data base which stores information from the field in which
ITS is used

2. Students’ module - is intended for modelling individual student’s knowledge in the field
where ITS is used. The content of the module constantly changes during the process of learning.

3. Tutoring module specifies the method of presenting the material in the field in which ITS
is used, the manner and rhythm of presentation.

4. Diagnostic module - which constantly modifies the students module in accordance with
answers that students give to the questions asked. This module is also linked to the expert module.

Efforts that are made concerning further development of these systems have as their aim the
communication between students and computer in natural language. However, taking into account
current state of affairs in research in natural language interfaces, nowadays the communication is
performed either in meta-language which is close to a natural language or in some subset of a natural
language.

The communication is established by translating a natural language into a computer code at
the input of the system, while at the output machine cone is translated into a "natural’ language The
communication is mainly textual or has some rudimentary graphic capabilities.
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3.4. INTELLIGENT MULTIMEDIA INTERFACES

An intelligent interface should accept formally represented information from an application
program and present them independently in the form of graphic, animation, sound or a natural
language, and if possible, through coordinated media. In addition it should allow accepting
information from the user, in natural language, by demonstration, by choosing from the menu etc.,
and transform them into a formalism and a code which is understandable for the application.

If an intelligent interface is to realize such communication, it should have additional

information about:

1. application,
2. the user and his previous knowledge of application,
3. the aim which is supposed to be achieved by the presentation.

These requirements are not simple. In
favor of this, there the fact that today there are
. . Presentation Parameters sbout
only a few projects which come close to these Knowledge the veer
goals but have not reached them yet.
Unfortunately, these projects are highly
specialized and applicable to a very small group Fisees 5
of problems. Formally, general structure of an )
intelligent interface can be determined as
follows (Figure 5): Feedback

- Presentation planner - takes
formalized knowledge and (if possible,
coordinativelly)  generates text, picture,
animation, sound etc. The presentation formed
in this way later sent to presentation coordinator
for processing.

Figure 5 General Appearance of Intelligent Interface

- Presentation coordinator - it integrates in the meaningful way in the memory elemen
obtained by presentation in the media which are available. Failing that, it gives back these elemen
to the planner requesting a correction. When presentation planner and coordinator are coordinated
presentation is sent for further processing to the feedback.

- Presentation feedbitck simulates the man. Its task is to see whether a set goal is achievel
by given presentation. Unless the comprehensibility and mode of presentation is satisfying thé
feedback returns all given elements to presentation coordinator asking for corrections. The momer
feedback is satisfied with the presentation it forwards it to the ultimate man. Since the whole proc
should occur in real time, the communication between individual elements of the interface should
reduced to reasonable duration.
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INTRODUCTION

Abstract

DYNAMIC DETERMINATION OF WEIGHT

IN THE IMPLEMENTATION OF FET
ON FINITE ABELIAN GROUPS

In this paper we consider the implementation of fast Fourier transform (FFT)
on finite Abelian groups. The rules for generation of FFT flow-graphs are given. A

method for the dynamic determination of weight coefficients in the flow-graph of FFT

Fourier transform, fast Fourier transform, finite Abelian groups,

The main problem in the application of discrete transforms is the efficiency of their

achiev calculation.

The use of defining expressions is, in general case, not efficient, which

fying U caused the fast algorithms to be developed. The obvious example is given in table 1 [1].
- mome Calculation times Ty for discrete Fourier transform (DFT) obtained by the application
er“ of defining expressions are compared to calculation times for FFT (Ty) for the same

should |

-78.
. of X!

-Orienlt

digital image processing task. M is the number of points in the image.

[ M | T T, ]
64 x 64 8 minutes | 3 seconds
256 x 256 30 hours 1 minute
512x512 20 days 5 minutes
1024 x 1024 1 year 20 minutes

Table 1: Calculation times for DFT
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In this paper we consider the problem of an efficient implementation of Fourier trans-
form on finite Abelian groups. In practical realizations of FFT one of basical problems
is the determination of weight coefficients. An approach usualy applied in practical
realizations of FFT consists of an a priori determination of all weighting coefficients
in flow-graph of FFT on a given group, which are stored for later use. This approach
implies a strong limitation on the choice of the group on which FFT could be imple-:‘
mented. Actually, it is efficient in situations where repeated calculations of FFT on
a given group are required. Another disadvantage of this approach is relatively high
memory requirements, or specific hardware structure (for real-time).

The method proposed in this paper tends to overcome these disadvantages. The
method is based upon the caracteristic structure of Fourier transformation matrix on a

|

some subsets ol representative weighting coefficients. The other weighting coeflicients,
are determinated during the implementation of FFT algorithm by application of rules

derived in this paper.
In such a manner memory requirements are greatly reduced and calculation of FFT

on groups of arbitrary orders is provided.

2 NOTATION AND DEFINITIONS

Let G be a finite Abelian group of order N. Let us suppose that G is representable 2
a direct product of cyclic subgroups G; of orders g;, ¢ =1,...,k, respectively, i.e.

k
G=X5,Gi, N=[Jo, a1<a<...<q
=1
Denote by C(G) the space of all complex functions on G. Recall that the characters §
G are defined as the homomorphisms of G into the unit cicle, i.e. they are given by:

x(wez) = x((wiy...w),(z1,...2x))

k
o Wi
= exp27rx§ —,

i=1 L

where :
z = Qfs'ne,
w = ONj'wie;, e - identity of G;.

Using the characters of group G, the direct and inverse Fourier transforms on C(

are defined respectively by:
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rang s
> [(z) = 3_ Sy(w)x(w,z) ,
ctica w=0

zienf or in matrix form:

. e
roag (f]=N"xNf]
meg 171 = I,
[o
* hig )
where x° is the complex conjugate of x |[2].

Fourier transformation matrix can be represented as the Kronecker product of Fourier

Th
k on transformation matrices on the coresponding subgroups (G;), i.e.
caley k
natic [x°] = ®|X:] ,
tiony i=1

;";i’; where is [x;]- character matrix of subgroup G; [3].
The flow-graph of FF'T on a given group G is derived from the factorization of Fourier
i PR transformation matrix into the product of sparse matrices. The factorization of [x*] is
not uniquely defined, and therefore, different FFT algorithms exist in the literature, see
' [4,5].
In this paper we will use Good-Thomas factorization for the derivation of FFT on
finite Abelian, groups. In this approach the factorization method is given as:

ébled [x'] = [C(l)] . [C(Z)] [C(")] ,
N where

[cW]= il @ L, ®@ I,
@)= 1, ® (i) @8 I,
ters : : : :
L by: [C(k)] = I, ® I, ®® [X;g] :

~with I, is the identity matrix of order g;.

EXAMPLE:
" A given finite Abelian group G of order 6 can be conveniently identified with the direct

product of two cyclic groups G; = ({0,1},®) and G; = ({0, 1,2},®) where ® and ®
are the addition modulo 2 and 3, respectively. In this case the Fourier transformation

. Cd matrix on G is given by:

: 1 R T |
el =telobal = [} _t]e| 1 e .
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i2
where is e; = exp 2% 3 , €2 =exp2%T.

Using the Good-Thomas factorlzatlon this matrix can be represented as

el = [c] [¢®]

where _ 5
: 1 0 0 1 0 O
01 0 0 1 ©
100
) O | 0o 01 0 0 1
[C(l)]=[’<=]®13:[1 —1]8’ QLU =y g =1 # B)°®
901 01 0 0 -1 0
(0 0 1 0 0 —1]
1 11 0 0 0]
ol BT Uy 2 E G o e
i~(2)] — L _ 2 1
[C()]“h@l’“]“[o 1]® i il B R I U R
’ . 0 O 0 1 €1 €2
l.0 0 0 1 €2 €1

3 IMPLEMENTATION

The flow-graph of FFT on a given group G can be derived from the factorization frg
section 2. The procedure is explained on an example. The flow-graph of FFT on gro

G from example from section 2, is given on Figure 1.

Note that, each matrix [C( )] describes uniquely one step of the fast Fourier transfo
The weight coefficients in flow-graph are determined by non-zero elements of i,

From the analyses of factorizations of Fourier transform and flow-graphs on differ
groups the rules for the generation of FFT flow-graphs on an arbitrary group can
derived. In this way the generation of FFT on finite Abelians is almost comple
formalized and can be given directly without factorization of the transformation mat

In the case that the number of group equals 1 (k = 1, i.e., transform is DFT)
rules are:

e The number of steps of the FFT flow-graph n, is equal to the number of factors
group order (N = f,f;... f,) where [; is i-th factor of N.

o The number of inputs as well as outputs of i-th step is V.
e The output of m-th step is input for (m + 1)-th step.

o In j-th step ”—— identical nodesets can be distinguished.

Let us divide each set of nodes, in step 7, into subsets consisting of n{;; fi nodes, fo =

tl
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» Nodes with identical relative positions in the nodesubsets are connected.
« Each node, at j-th step, is connected to f; different rnodes.
» Weights coefficients of branches sinking in the first node in nodeset are equal to 1.
o Each branch that starts from a node in the first subsets has weight coefficient equal

to 1.
« The first branch sinking in the node has weight 1.

o Weight coefficient of i-th branch (2 < i < f;) sinking in the node with relative

position in nodeset r,, at j-th step, is W,
where | = (Brgr(y — 1)(rp—1)) mod N,
Brgr - the number of identical nodesets at j-th step.

Note that input data are in bit-reverse ordering.
In the case that the number of groups is greater than 1 (i.e. Chrestenson transform)
the rules are similar to the rules for DFT.

« The number of steps k, equals to the number of subgroups (G = G;0Gzo0... Gy).

e In j-th flow-graph step ﬂ{;; gi, go = 1, identical nodesets can be distinguished,

where ; g; — order of subgroup Gj,

on fri N - order of group G, N =g102...Gk-
n gr . . -

g 4 e Each node, at j-th step, is connected to g; different nodes.
1??f°ﬁ Let us divide each set of nodes, in step 7, into nodesubsets consisting of
v, k+1 -
fiffer 12541 965 G =1.
) can e Nodes with identical relative position in nodesubset are connected.
mplet
;:atj e The first branch sinking in the node has weight coefficient 1.
FT)' o The nodes of the same nodesubset are sinks for branches with identical weight

coefficients.

actol Weight coefficients of branches, in step j, in the nodes of j-th nodesubset are equal
to the elements of j-th column of character matrix of subgroup Gj.

The rules derived for DFT, i.e. for the derivation of FFT on the cyclic groups, enable
the generation of the same procedure, for any finite Abelian group. Note that besides
cyclic groups the derivation of FFT in literature, is mainly restricted to some particular
finite Abelian groups most frequently used in some practical applications, for example
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the finite dyadic or p-adic groups. See, for example, [6,7].

X(0) o X(0)
x(1) S X(1)
X(2) X(2)
X(3) X(3)
X(4) >0 X(4)
x(5) X(5)

with welght coefficients ——— 1

—————— 1

—©

1

—_————e

. 2

Figure 1. FFT flow-graph for N=6.

By means of derived rules, the i

mplementation of FFT on finite Abelian group of

arbitrary order N is straightforward, as well as the generation of the flow-graph.

factorization of Fourier transformation ma

trix is not needed any more. Derived r

are sufficient for generation of the flow-graph.

It is necessary to calculate and store representative

G; (i.e. characters of subgroups G;), and

weight coefficients on subgro
to apply the derived rules. This could

noted as an advantage in respect to required memory, compared to majority of exis
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pmclif-'ll realizations of FIF'T on some particular finite groups where the storage of all

| weighting coefficients is common requirement.

l The procedure Fast for calculation of DFT on groups of on arbitrary order N is

esented as an illustrative example in the appendix.

The proposed method is implemented in the programming package ” Fourier” at the
Faculty of Electronics, University of Ni§, capable of calculating DFT, Walsh transform

' for different orderings and Chrestenson transform as some particular examples of Fourier

transform on finite Abelian groups [8]. The FFT on groups obtained by the proposed

method is further used for calculation of the convolution, correlation, autocorrelation,

power and frequency spectrum of functions on finite Abelian groups.

L pr

4 CONCLUSION

The implementation of Fourier transform on finite Abelian groups is considered. We
propose the method for dynamic determination of weight coefficients of FFT flow-graph
on arbitrary finite Abelian groups. We believe that the implementation of Fourier
transform by means of derived rules, is very convenient for hardware-inferior systems.
" The method enables the considerable savings of the memory storage usually required
for the implementation of FFT on a group.
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APPENDIX: The algorithm for procedure 'Fast’

Fast (Data, TwiddleData, GroupOrd, SubgroupNumber
SGOrd, DFTor IDFT)

Twiddle(TwiddleData, Data)

Weight (W, DFTor IdFT)

GroupSize=1

Maxgr=Groupord

~

step=1, SubgroupNumber

i Newgr=GroupSlze

GroupSize=Groupsize®*SGOrd(step)
Maxgr=Maxgr div SGOrd(step)

v

Group=1, Maxgr

Ule;it=Group'GroupSlze—l
DownLimit=(Group-1)*GroupSize
Place=DownLimit

SinglSumm=TwiddleData(Place)

fathers=2,SGOrd(step)

Place=Place+Newgr

12 3 4




| element=DownLimit+1l,UpLimit
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3 4

l

SinglSumm=SinglSumm+TwiddleData

—

HelpData(DownLimit)=SinglSumm
t=0

l

t=t+Maxgr

Place=DownLimit+element mod Newgr
SinglSumm=TwiddleData(Place)

Pointer=0

y| fathers=2,SGOrd(step)

Pointer=(Pointer+t) mod GroupOrd
Place=Place+Newgr

SinglSumm=SinglSumm+TwiddleData(Place)*W(Pointer)

2

HelpData(element)=SinglSumm

——>| j=0,GroupOrd-1

TwiddleData(j)=HelpData(j)

kraj
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ABSTRACT

A formal system of describing a semantics of programming languages, based
on the denotational approach is presented. That approach is modified with some
operational view for formal description, combined with the object oriented methods
of programming.

The method is used for characterizing a semantics of a machine language of
an abstract machine, used in the implementation of a purely functional program-
ming language A_LispKit Lisp [Je92a, Je92b]. This machine (called A_SECD machi-
ne), is a natural extension of the SECD machine [La64, St83a, St83b], which has
been used in the implementation of various versions of functional programming
Janguages [Sto84, St84, He80, Bulv89, Bulv90a, BulvOO0b].

1. INTRODUCTION

The formal description of the meaning of some valid syntax constructions of
any formal language is very interesting field of work for mathematicians. There are
a lot of methods for describing a semantics [Me90]: Attribute grammars, Transla-
tional semantics, Operational semantics, W-grammars, Axiomatic semantics, Deno-
tational semantics, and so on.

In the formal definition of a language and realization of A_SECD machine
[Je92a, Je92b], we used the denotational semantics technique, combined with the
operational method and with some kind of object-oriented definitions.

2. OPERATIONAL AND DENOTATIONAL SEMANTICS

As we use a func¢tion as a main object for describing the semantics
[meaning) of some language constructions, it can be considered either as an
algorithm which will produce a value given an argument, or as a set of ordered
argument-value pairs. The first view is dynamic, or operational. A semantic function
Is defined as a sequence of operations in time. The second idea is static or
denotational, in which the function is regarded as a fixed set of associations
between the arguments and corresponding values.

As we said, the operational semantics approach, is a kind of implementation
)f an algorithm of meaning of a construction, i.e. that approach is similar to an
nterpreter. The idea is to express the semantics of a language by giving a
nechanism that makes possible to determine the effect of any valid language
‘onstruction. Such a mechanism is an interpreting automation, a formal device

'This research was supported by Science Fund of Serbia
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capable of formally executing a program in that language, by giving the machine
transitions from state to state.

The operational approach presents some definite advantages. It gives a
concrete, intuitive description of a programming language, it appeais io the
programmers because the descriptions given are so close to real programs. Also,
it is fairly easy to devise an interpreter to execute such description on example
programs, which makes operational semantics approach attractive as a tool for
testing new languages or languages features, long before any compiler has been
written. The very qualities of the operational method, however, speak aiso of its
limitations. Striving to be executable, operational descriptions lose one sssential
quality of specification-independence from implementation.

On the other.hand, the denotational semantics approach, may be viewed as
a variant of translational semantics. Using this method, we will express the
semantics of a programming language by a translation schema that associates a_
meaning (denotation) with each valid language construction. The difference is in
result of translation. In translation semantics, the meaning of a construction is a
program, while in denotational semantics it is a mathematical object. i

The denotational description of a programming language is given by a set of
meaning functions M associated with the construction of its grammar. Each of
these functions is of the form: M; : T - Dy, where T is a language construction,
Such functions will consistently have names of the form M (for meaning),
subscripted by the name of a construction. The set D; of denotations may be
different for various constructions T, and they are called semantic domains. In
contrast, constructions are called syntactic domains. ’

The denotational method is exclusively focused on the programs. it excludes:
the state and other data elements, enables to reach a level of abstraction whic:l

g

cannot be obtained in the operational approach, whatever abstract interpreting
automata were chosen. More generally, denotational specifications provide a
elegant mechanism to define the semantics of the programs in terms of classical
mathematical notations such as functions.

3. SEMANTIC DEFINITION OF A_SECD MACHINE
A_SECD machine can be defined as a general function Exec [He80] whlchl
takes a compnled version of a function Fun, denoted with Fun®, and the S- exprej
ssion representation of the arguments Args. Thus, it produces an S-expressioll
representation of the result of applying Fun to Args. The formal definition ol
A_SECD machine, the function Exec, given in terms of denotational semantic
approach is: ,
Exec : F, secp X 3+ 3, and
Eval [ Exec(Fun’, Args) ] p = Eval, ¢ [ Fun®(Args) ] » = Res,

where Fun® € %, gco, Args € 3 and Res € 3. The set Frepresents a set of al
programs-functions of A_LispKit Lisp language, 3 is a set of all S-expressions, ané
the set .7, ¢cp is @ set of all possible, executable, programs in the machine languagé
of A_SECD machine. The general denotational function Eval is defined by Eval : ¢
-+ ¢, where &'is a set of all expressions, and € is a set of all values of a language.
The denotational function Eval, ¢, describes a semantics of the A_SECD machine,
and it is given with Evaly, gecp : Fi seco = 3, where % A seco 1S @ set of all valid
functions written in the machine languages of A_SECD machine.
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from the point of view of operation semantics, formal definition of A_SECD
machine, given by the function Exec is:

Exec(Fun’, Args) = Apply(Fun, Args),
Compile(Fun) = Fun’,

ol f where the function Compile translates a source code of a program function Fun into
bf e machine language of A SECD machine. That is, in some way the A_SECD
of

machine, given the S-expression representations of the compiled function (a
machine language program) and its arguments, executes the machine language
ram to compute the result of applying that function to these arguments.

The function Exec(Fun’,Args) is implemented in such a way that it operates
a stack for the evaluation of function calls, much as the process described. Since
the program Fun® is an S-expression and since the data with which it operates are
§-gxpressions, the natural notation for expressing the state of this stack machine
is the S-expression notation. Thus, if we wish to dencte the stack in such a way
that its top item is an S-expression of X we will write (X.s8), where 8 represents the
remaining items.

Strictly speaking, a pure stack is a data structure which has only two
operations, the pushing of a new element onto the stack, and conversely, the
operation of popping an element from the stack. It is said to be used in
last-in-first-out discipline. The denotational semantics of a stack is:

ns
, Stack : € - €,
:qu Stack,,, : € = G,
whi Stackp,,, : € x € > G,
reti Eval [ Stackp,, ((X.s)) ] p = Eval [ X ] p,

Eval [ Stackp,,, (X, (Y.s)) ] p = Eval [ (X.(Y.s)) ] o,
or(VXEG),(VYEG)and (Vs €E §).

. THE OPERATIONAL SEMANTICS OF A_SECD MACHINE

The A_SECD machine consists of five registers and each of them holds an
-expression. These registers derives their names from the purpose they have in
ealing with S-expressions:

the stack, used to hold the intermediate results during computation. At the
end of the program execution, the top of the stack S contains the final

i result,
Res, E the environment, holds the values which are bound to variables during
evaluation,
of a¢ the control list, used to hold the machine-language program which is
s, an currently executed. In each moment of the evaluation process, the first
guag element of the control list is the command which will be processed next,

val :D the dump, which saves the values of all other registers S, E, and C during a

juage new function call.

chind the resident library

| vali manager, the stack which contains the resident libraries, i.e. the programs

‘ in an executable code written in the machine language of A_SECD machine,
which are consulted during the evaluation of a program.
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The machine language of the A_SECD machine consists of a certain numbg
of commands. The execution of a command forces the machine to change its state,
i.e. the contents of its registers. We call this a machine transition, and it can bg
denoted, from the point of operational semantics, in the following way:

S E c D L = S’ E’ c’ D’ L5

where S, E, C, D and L are the contexts of the registers before the next commang
execution, and S’, E’, C°, D’, and L’ denote the new contexts of the all registers
after that. For example, a machine transition of arithmetic operations of A_SECD
machine is:

Y

{a b.S) E  (OpA.C) D L=(bSiAa.S) E C D L,

where OpA € { ADD, SUB, MUL, DIV ... } and SIA € { &, ©, ®, @, ... }. Fa
another example, a machine transition of relation between the data of A_SECD
machine is:

(a b.S) E (ReA.C) D L = (b RiA a.S) E C D L

where ReA € { GT, GE, LE, NE ... } and SiA € { >, =, =<, #, ... }.

As all registers of A_SECD machine, according to the rules of machin
transition, perform some operations on S-expressions, the simulator of A_SECI
machine is naturally implemented by mapping these rules in some procedures of t
implementation language.

On the other hand, the meaning of the instructions of A_SECD machine, i
a mathematical sense is not clear. A much better way to describing the meanin|
of A_SECD machine, i.e. of its semantics, is to used denotational semantic
approach.

5. THE MEANING FUNCTIONS OF A_SECD MACHINE SEMANTICS
A_SECD machine, from operational semantics standpoint, has been define
by an Exec function. Now, the modified denotational semantics of A_SECI
machine will be presented. The meaning function of A_SECD machine in the ter
of denotation is Eval, gp+: € = €, where € is a set of all S-expressions.
Firstly, we must define the semantics of the abstract data type, which
used in the implementation of S-expression, and A_SECD machine operation
denoted with LispCell. The denotational semantics of some operations which al
defined under that data type, is given by a semantic function: Sem, : $— &, whet
Fis a set of all operations and functions of A_SECD machine and/or operatio
defined under data type LispCell. The set &is a set of standard types of impleme
tation language like Real, Boolean, integer and so on, together with data typ
LispCell, & = {Real, Boolean, Integer, String, LispCell}.
With &. C & we denoted a set of all possible values of the type LispCe
Let us define all of the subsets of the set &.: &, (the set of real values), & ;.4
(the set of integer values), &, (the set of all pairs), &, (the set of all lists),
& coymbat (the set of all symbolic atoms), & cpocies (& costes = {T: F}), and & (&g
= {NIL}).
Also, with & C & we denoted the set of all values of types of t
implementation language. This set has the following subsets: & ., (the set of &



A MODIFIED DENOTATIONAL APPROACH ... 65

m real values), 7.0 (the set of all integer values), &,,,.. (the set of all logical \
atg values), and 7., (the set of all string values).
n by Forv f € & we will define: f: £ x ... x £ —» & where the set ¥ is defined

by ¢ = {°, LispCell, Integer, Real, String}, where the ® represents that some

operations or functions of A_SECD machine have no arguments.

. SEMANTICS OF A FUNCTION DEFINED UNDER LispCell DATA TYPE
marg The method of denotations is modified in the following sense. Firstly, we
istey want to preserve all the advantages of a very reach level of abstraction, and the
SECI glegant mechanism to define the semantics of programs in terms of classical
mathematical notations such as functions, provided by the denotational semantics
method. But, we also want to putinto them some kind of “operational’ view, which
L, is more suitable for implementations.
For these reasons we introduce some modifications of denotational
}- R semantics, putting into this approach some terms from object oriented style of
SEQ programming. The semantics of some valid constructions of a language, can be
defined using the definition of semantic class.
In this section we will give some examples of the denotational semantics
L gefinitions using the object-oriented modifications for some operations defined
under the S-expressions.

achin Converting Functions. These functions convert data between some subtypes of
SECl LispCell data type, which are used in the implementation of S-expressions. The
of th converting functions are: ValueRealLC, ValuelntegerLC, CostintegerLC, ConstRea-
ILC, ConstStringLC, ValueStringLC, etc. Their semantic definitions are:

ine, |
2anin Class ConvFun
antic Mapping ConstReallLC : & ., > &crom

ValueReallLC : & ou = &tron

ConstintegerLC : &, i0or > & cintoger

ValuelntegerLC : & ciroger > Blintoger

efine L

SECRules ConstReallLC(r : & ,..) : &crom =

tern Eval, ¢ecp [ ConstRealLClr) ] p = e
ValueRealLCH ¢ : &cron) © Buon =

hich Eval, gecp [ ValueReallClre) 1 p =1;

ation ConstintegerLCli : & regor) © Hcintogor =

ch a Eval, ¢ecp [ ConstintegerLC(i) ] o = ics

whe ValueintegerLClic : &cintogor) © Hbintoger =

-atiol Eval, secp [ ValuelntegerLClic) 1 o = i;

eme. ... - '

a tyfEnd; (* ConvFun *), .
where p is an arbitrary context in which all bindings of variable to their values are
spCePerformed.

2 Cintel Now, we could easily proved the following statements:
ts),
2 (&dheorem 6.1. (Vv x € &,,4)(ValueRealLC(ConstRealLC(x)) = x),
~ Theorem 6.2. (VY € &) ConstRealLC(ValueRealLC(y)) = vy),
of tllheorem 6.3. (Vi € & eper)(ValuelntegerLC(ConstintegerLC(i)) = i),
t of fheorem 6.4. ( V ] € &cinegor)(ConstintegerLC(ValuelntegerLC(j)) = j), etc.
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Logical Functions. The semantic class for some logical operations are:

Ciass LogFun
Mapping ANdLC : &cpootesn X & cBoolesn > & CBoolosn

RUIes AndLC(I1 &Csoolam' |2 Z.CBoolun) : %Cﬂoolun =
Evaly seco [ AndLClly,1,) 1 o
{Evaly seco [L1eA EvaIA seco [ 12 10} € & pontonr
Evaly seco [h]e q_w.w
EV3'A seco L 12 ] € uontoon
Semic [ 1 ] € &coootonnr

Sem [ 1] € &cvootoonr
StateTrans((i, 1,.S), E, (AND.C), D, L);

End; (* LogFun *).

Arithmetic Functions. Before we define the class of arithmetic functions, let us
introduced some new notations:

g.nunvod = a.hloou v gLrodl

d Cit U Creal’ i

qCﬂmﬂ = QCpu U & ciioer

for the subsets of numeric data for the implementation language and the data typ
LispCell. Then, the semantic definitions of the arithmetic functions are:

Class ArithFun
Mapping  AddLC : & umpod X & crumpod > & Crumpod
Rules AddLClly : & cpumpodr 12 * &cnumpod) © B cnumpod =

Evaly seco [ AddLcCil,,l,) ]p =
{EvalA sccol b 1o ® Evaly, seco [1,10) € - J——
Eval, seco []€ . ———
Evalygeco [ 1, ] € L ——
Semc [ 1, 1 € &ctumporr
Semc[1,] € & Crumpods

ConstRealLC(ValueRealLC(l,) @ ValueRealLC(l,)) € &, u
if |ll '2 € qCud |
(( AddLC(l,,1,) = { ) V
ConstintegerLC(ValuelntegerLC(l,) ® ValuelntegerLC(l,)) €
& cintegerr If X, ¥ € cipoger
ConstRealLC(ValueRealLC(l,) @ ValuelntegerLC(i,})) € &, .
ity € erou A 13 € Einnope .

ConstRaelLC(ValuelntegerLC(l,) @ ValueRealLC(l,)) € &,...
if |2 € qc:.d A '1 € qc&nw

( AddLC(l,,1,)

StateTrans((l, 1,.5), E, (ADD.C), D, L);

End; (* ArithFun *).
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7. SEMANTICS OF A_SECD MACHINE LANGUAGE
In this section we wili give some examples of the denotational semantics
definitions using the object-ciiented modifications for some valid language

gonstruction of A_SECD machiie language.
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g_qp;;r_ugli_'lq_QD,e@liO_ns. Constructing operations form some structure object (lists
or pairs), using the top stack items. We define, for example, a semantic class for
the A_SECD machine operation CONS, which forms a pair of two top stack items,

with:

l Class ConstructOper
Mapping ConslLC : Zx &+ & .,

\ Rules ConsLC(l, : & 1,: & : & . =
Evals sico [ ConsLClly,l) 1o =

' {{C OFEval,geo [ 11 1 0 © " O Evalygeep [ 1, 10 O )} € &cpuier

et u Eval, seco [L1eg B

Evaly, secp (1,1 Z
Sem:[1, ] €
Semc[1,] €
StateTrans((l, 1,.S), E, (CONS.C), D, L);

€
Z
g

:
End; (* ConstructOper *), where O is operation of concatenation of characters or
) typ strings, and the class of StateTrans is defined by:

Object StateTrans _

Mapping StateTrans : X EX EX EX E> & X EX X &EX &

Rules StateTrans(l, : & 1,: & 1,: & 1,: & 15: 8 : T Xx Ex Ex Fx &=

| Case HeadlLC(l,) Of

| ADD: '(" O Stackp,,,(Stackp,,(l;) @ Stackp,(l,), ;) © *,” O
I, © 7, O Stackp,(l,) O1,0 ", Ol O ')

CONS: (" O Stackp,,,("(" © Stackp,,(l,) © ".” © Stackp,(l;) © ‘), 1,) © ", ©

I, ©7," O Stackp,ll;) O1, 0, Ol O )

erations. The class of selecting operations of A_SECD machine, in
erms of denotational semantics, in the object-orientad approach is defined with:

¥ Class SelectOper
) Mapping HeadlC: &-» &
el e
Rules HeadLCll, : & : &= Evalyseco [ x 1 0 € &
= ifl=(x.yl A x €&
Lo 8val,s seep [ HeadLCll,) 1 p = { ’
‘ Error, otherwise
Y Croalt Evalageecn [ 11 ] € &
SernLC H '1 B € 8i
" StateTrans((l, 1,.S), E, (CAR.C), D, L);
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In all above definitons, the variables S, E, C, D and L are global, and
Evalp geco [ 1 ] € Ewhere | € {S, E, C, D, L}.

8. CONCLUSION
A completely new approach to the definition of denotational semantics,

combined with operational semantics and based on object-oriented methods, is
introduced. This method has an advantage in strict mathematical combination of
denotational and operational view of defining semantics of any programming

language.

This approach is very suitable for the application in axiomatic definitions of
a programming language, because it is easy to construct and prove a lot of
theorems, which held in that programming language.
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' INTRODUCTION
Rew,

Program LEIBNIZ is a prover for any finitely axiomatized formal theory and specially
pute edicate and propositional calculus. It is written in Prolog (Arity Prolog V5.1) and its size is about
k. It consists of preparing and working part.

Preparing part (only for predicate and propositional formulae):

ages - negate the formula,
- translate to "and-then’ form to quantifiers for minimizing arity of Skolem functions,
.g M, - push the negation to atomic formulae,
ion ol _ rename variables,
tiona - translate to prenex normal form,
383. - skolemize (replace existential variables with Skolem functions),
5 M, - replace universal variables with prolog variables,
bian), - translate into 'and-then’ form and delete conjunctions which are surplus (propositional),
983. - add contrapositions,
t Lisp - delete surplus specific for predicate case,
tmen - transform into formal theory (productional system),
- find predicates which can lead to contradiction.
grnen

SECL Working part (MPPM_EIE - Modus Ponens Prolog MACHINA with Eqality and InEquality)

1 duces the proof or, in the predicate and propositional case, produces the contradiction from the
+ PPl theory.
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1. PROBLE RIPTION

Suppose we have a formal theory T with finite number of axioms and finite number of
inference rules. Any rule is of the form F1, ..., Fn-> G, where Fl, ..., Fn, G are formulae of the
theory T. Our basic problem is to decide whether some given formula F is a theorem of the theory.
We will use the following definition of proof, which differs a little from the standard one:

Proof is a finite sequence Al, ..., Ak, Fl, ..., Fm of formulae of theory T, satisfying the |

conditions:
- Al, ..., Ak are all axioms of the theory T
- formulae Fi are deduced by an application an inference rule to some preceding formulae

from the sequence !
- an instance of'a formula from the sequence can not be placed after that formula. z
Theorems are last members of proofs. Subsequence F1, ..., Fm is termed the shortened proof. :
The axioms are excluded from it. It is clear that any usual proof can be transformed into a proof
satisfying this definition.
a
If
2.SEAR R A SOLUTION
Suppose we have a finite formal theory T and its formula F. The question if F is a theorem F
of the theory T could be discussed as follows:
1) First, we check if F is an axiom. If it is, the process is finished with the answer YES.
Else, we go to the step 2. Pl
2) We look for the first rule whose conclusion G can be unified with F. Then, if there is no
such a rule, the process is finished with the answer NO. Else, let such a rule be Fl, ..., Fk-> G.
For further discussion of provability of the formula F, now we will discuss provability of formulae by
F1, ..., Fk (we assume that some variables have been instantiated because of unification). Then, if
all formulae F1, ..., Fk are proved, the process is finished with the answer YES. Else, for proving de
the formula F, we go to the step 2, but we are looking now for the next rule whose conclusion can Jes
be unified with the formula F.
It is clear that this process (with some more details) is indeed the standard prolog mechanism. len
Thus, it has some well known prolog "insufficiencies’. Here are some examples. for
d
EXAMPLE 1: i
Suppose that, in proof of C, we need a proof of a formula B, and a rule Bl, ..., Bn -> B EX
is used for it. Suppose also, for a proof of a premise Bi, a proof of the formula B is needed again.
It is clear that in this case, proving of C will never be finished. For eliminating this insufficiency, if is |
our program we draw up a record of the formulae which we have to prove. If we need a proof of & coy
) wil

already recorded formula F, then we will try to prove F in some other way.
\

EXAMPLE 2:

E

Suppose we have to use the rule f(g(X)) -> f(X). It is clear that consecutive application of
this rule might never finish. To deal with such cases, we limit DEPTH OF PROOF. It means that wé
leave a rule which has not lead to a proof up to the given depth, and we try with the next rule whosé
conclusion can be unified with the given formula.

Fi5E
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DleTl()N:
o8 If the formula F is an axiom or if it is already proved (it is placed in the part of the proof
.the pailt 50 far), then we consider it proved with any depth = 0.
. if the formula F is proved by a rule of the form Fl1, ..., Fm -> F, then we consider F

P"’wd with the depth N > 0 if formulae FI, ..., Fm are proved with the depth N-1.

lLLUSTRI\TIONi

Suppose we have the formal theory T = { a, b <- (¢, d), ¢ <-a, d <-c }. It is possible
o prove b with the depth 2. Indeed: To prove the formula b with the depth 2, by the rule b <-
(e, d), we need a proof of the formulae ¢ and d with the depth 1. To prove ¢ with the depth 1,
by the rule ¢ <-a, we'need a proof of a with the depth 0, which we have because a is an axiom.

To prove d with the depth 1, by the rule d <-c, we need a proof of ¢ with the depth 0, which
we have because ¢ is placed in the part {a, c} of the proof which we already have.

ulae

oof,
roof
With limited depth of proof, the process of proving will be finished, because the number of

.~ gxioms and rules is finite. If this process ends with the answer YES, then the formula is a theorem.

If it ends with the answer NO, then we only know that the formula has no proof of the given depth.

LEMMA:

prem.
- For any theorem F, there exists a number N such that F can be proved with the depth N.

' PROOF OF LEMMA:
is no
> G, Suppose we have a theorem F of a theory with k axioms. We are going to prove the lemma
nula‘o"‘ by general induction with respect to the length of the proof of F.
eny ‘f1 If the length of the proof is k, then F is an axiom. Thus, it is proved, for example, with the
OVIDE depth 0. Let n>k be given, and suppose the lemma holds for all theorems whose length of proof is
M CAL |egs then n.

Ny If the length of the proof for F is n, then F is deduced by some rule F1, ..., Fm -> F. The

nisM. |engths of proofs of formulae F1, ..., Fm are less than n. Thus, by the induction hypothesis, the

formulae are proved with depths dl, ..., dm respectively. Then the formula F is proved with the
depth, for example, max { dl, ..., dm } + 1.

.

-> B EXAMPLE 3:
again, Suppose, during the process of proving, we had proved an instance F’ of some formula F (F’
cy, il is F with variables replaced by terms). But, suppose also that it turned out it was impossible to
oof °ficomplete the proof using F’. Then, we find another instance F" of F. If F" is an instance of F’, we

will not even try to use it, because we have already had more general case and we did not succeed.

It is allowed to bind the depth of the proof for any particular premise of a rule.

ion 013, FORMULAE WITH EQUALITY

hat wt

whos! For theories with equality, we could use the usual axioms and ruies of reflexivity, transitivity
and agreement with operations and relations of the language. But, it turns out that the number of
different possibilities for proving in that case is too large. Thus generation of even simple proofs is
‘very complicated. That’s the reason why equality is implanted in the process of proving. In that way,
‘the number of deduction tries of a given equality formula is decreased. :
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Let there be given a theory with equality, without axioms and rules of inference of equality
logic (because they are implanted in the process of proving). Suppose we are trying to prove a
formula in the theory, we have built a part F1, ..., Fk of the proof, and now we have to prove an

equality U = V with the depth n.
If U and V can be unified, we consider the equality proved with any depth (reflexivity).

If the equality U = V or V = U can be unified with Fi, for some i, we consider it proved
with any depth (symmetry).

So, we consider reflexivity and symmetry obvious, and they don’t appear explicitly in a proof,
But we consider transitivity and agreement rules as built in the system. For easier control, we
introduce depth of application of agreement rules which is independent of depth of proof. We have
depth of agreement of equality with operations and with relations separately. From now on, depth will
be denoted by (n, no, nr) where n is the depth of proof as defined above, and no and nr are
depths of agreement with operations and relations. We can not apply agreement rule if the
corresponding depth is 0.

U = V is proved by transitivity rule to the depth (n, no, nr) if U = Z is proved with the“
depth (n-1, no, nr) but not by transitivity rule, and Z = V with the depth (n-1, no, nr).

Transitivity defined in this way is correct, because if there is a transitive linking U with V
then there exists Z which is directly linked with U, and transitively with V.

f(X) = f(Y) is proved by the rule of agreement with the operation to the depth (n, no, nr)
if X =Y is proyed to the depth (n, no-1, nr).

p(X) is proved by the rule of agreement with the relation to the depth (n, no, nr) if X = Y
and p(Y) are proved to the depth (n, no, nr-1).
i

If there exists a proof for U = V in equality logic, then there exists a proof in this systemi
too, to some depth (n, no, nr), because the depths of agreement are depths of applications of
agreement rules. The statement obviously follows from Lemma. Also, if we proved something in thi
system, the same proof is a proof in equality logic. This means that proving of an equality in this way
is equivalent to proving in equality logic.

In this way, the number of possibilities for proving is greatly decreased, specially fof
transitivity, and because of agreement depth, work with long terms is limited too. )

4, EXTENSION TO THE PREDICATE AND PROPOSITIONAL CALCUL PROBLEM OF
NEGATION [

It is possible to use this prover (MPPM_EIE) for proving formulae of the predicate and
propositional calculus. Proving is indirect - we try to deduce contradiction from the negated formula

Thus, we negate the formula, and we eliminate the quantifiers by prenexing, skolemizing and
replacing variables by prolog variables. The formula transformed in that way is then translated 10
"and-then’ form.
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ity I’ﬂ:-ml'rl()l"l:

'S 2 " ; ;
A formula is in "and-then’ form if it is a conjunction and all its conjuncts are either literals

e atomic formulae or negation of atomic formulae) or implications whose consequents are literals
ﬂ antecedents are conjunctions of literals.

Any formula can be reduced to an 'and-then’ form. *And-then’ form is not unique.

Dved
‘ From the "and-then’ form we delete tautologies since they are of no use in proving. These are:
roof (1) ...and P and ... then P,
! w;‘ (2) ...and A and...and not A and ... then B.
b v
,:vi;‘ Also, we arrange brackets to make the association to the right and replace conjuncts of the
t ap form A and A by Ato avoid repetition.
f the

Formulae can contain negation, but it is not the usual negation, because the connection
petween implication and negation is missing (contraposition). This is the only incompleteness of
th the negation because the only axiom which regulates this connection is the contraposition. Consequently,
we add contrapositions, and with negation we will work like with any other predicate.

In the case of predicate calculus, together with the formulae of the form (1) and (2), we also
" delete formulae of the form:

0, 1 (2’) ...and A and ... and not C and ... then B,
where A and C ¢an be unified, but not formulae of the analogous form (1’), because this would
& Y«ldecrease the possibility of proving in the formal theory which we are going to describe.

Then, we consider implications as inference rules, and literals as axioms. We will try to

i ntradiction in this formal theory.
systeudeme co 0 y

ons 0l
in
1is

; There is a problem when working with equality, because agreement and transitivity are not
prlications, but built-in rules, and contraposition does not work for them, so we add contrapositions
of agreement and transitivity.
As these rules are of general character (for example: not (X = Y) <- not (f(X) = f(Y)),
Iy fol here f is any function), it is necessary to say in advance which operations and relations can be used,
ﬁ{c‘ it is necessary to declare operations and relations which could be in an inequality. With this, work
with negation is completed.

In particular, when we translate a formula of propositional calculus to ’and-then’ form and
e delete all tautologies from it, if there is not any conjunct left, then the given formula is a
utology, otherwise it is not. All true conjuncts of an *and-then’ form must be of the form (1) or (2).

at follows what validity of a formula of propositional calculus could be checked in that way too.

‘M

yrmul

fng THE QUESTION OF COMPLETENESS OF THE PROCES

lated | The possibility of proving a theorem of given formal theory is equivalent to the possibility
if proving with LEIBNIZ. Direction < = is obvious. Direction => follows from Lemma.

Specially, in case of formulae of propositional or predicate calculus, the procedure used in

:EIBNIZ is not complete.




74 : KRsTI¢, V. AND RADNOVIE, M.

If *and-then’ form of a formula is consistent, then the formal theory derived from it is
consistent too. It follows that we can not deduce contradiction from the negation of a non-valid
formula. Thus, if we deduce contradiction, the formula is valid indeed.

If the "and-then’ form is inconsistent (this will aiways happen when the formula is valid), the
derived formal theory doesn’t have to be inconsistent (for example, if it has no axioms, or the axioms
have no connection with the inference rules).

If A <=> B it still may happen that the theory derived from A differs from the theory
derived from B.

EXAMPLE:

If we apply thé preparing part of the prover to formula p then p, theory { not p, p } will be
derived, and it is possible to prove contradiction from it.
If we apply the preparing part of the prover to formula p iff p, theory { notp <-p,p <-
not p } will be derived, but it is not possible to prove anything from it, because it has no axioms,
But, (p iff p) <=> (p then p).

It is desirable, when proving an equivalence, to prove separately the two implications, because
that way we remove partly incompleteness, as in example 2 of next paragraph.

Sl Pul G 'GuS it Do SO didh o D S8 B B R

6. EXAMPLES

LEIBNIZ is a prover of axiomatic - productional type. That’s why proving of some formulae
(especially with equality) is not so simple as it seems. Between intuitively close problems could exist
great combinato'ry difference (for example between PA |- 1+1=2 and PA |-2+2=4).

LEIBNIZ can prove theorems in formal theories with low degree of combinatory complexity
(on the average, it processes 5000 - 15000 formulae per hour - AT 16 MHz).

If we have a predicate formula of few lines in length, such that it does not describe any
problem of a formal theory type, then it is almost always possible to prove the formula, generally for
few minutes at most. Classical (bookish) examples of valid formulae are proved almost immediately,

PAl-2+2=14

We will take from Peano arithmetic only what we estimate is enough for proving the equality.
If we take axiom schema X + 0 = X, then it is practically impossibie 0 produce a proof becaus
of the huge world of formulae which the axiom generates. The equality 1 + | = 2 is proved aft
148 processed formulae only, because the proof needs lower depth, and thus the world of accessibl
formulae is a lot smaller. But, when proving 2 + 2 = 4, this world becomes enormous. This equali
can be deduced elegantly, because we only need 2 + 0 = 2 :

Axioms :

one :: 0 prim = |
two :: | prim = 2
thr :: 2 prim = 3
fou :: 3 prim = 4
+ _p: X1 + X2 prim = (X1 + X2) prim
240::2+0=2

F F BE2EE 5B PppEppeEpe

Proved : 2 + 2 = 4 td [6,2,0] <- 15
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pumber of formulae passed through MPPM_EIE is 39.
ime used [0,0,23]. ((h,m,s] on AT 16 MHz)

ened proof :

+2=2+1 pnm < - agree to (ref , sym(two))
+ 1 =2 + 0 prim <- agree to (ref , sym(one))
4+ 1= (2 +0)prim <-transto (2, +_p)

+ )pnm = (2 + 0) prim prim <- agree to 3
« (2 + 0) prim prim = (2 + 0 prim) prim <- agree to sym(+_p)
« (2 + 0) prim = 2 prim <- agree to 2+0

«2 + 0 prim = 2 prim <-trans to (+_p, 6)

will beg (2 + 0 prim) prim = 2 prim prim <- agree to 7
« 2 prim prim = 3 prim <- agree to thr

«+ 2 prim prim = 4 <-trans to (9 , fou)

xiomy §| :: (2 + O prim) prim = 4 <-transto (8, 10)

« (2 + 0) prim prim = 4 <-transto (5, 11)

@ (2 + 1) prim = 4 <-trans to (4, 12)

+2 + 1l prim = 4 <-trans to (+_p , 13)
#2+2=4<-transto (1, 14)

Q EQUIVALENCE CLASSES INTERSECT THEN THEY ARE EQUAL

I x : p(x,x) and

I (x, y) : (p(x,y) then p(y,x)) and

I(x, ¥, 2) : (p(x,y) and p(y,z) then p(x,2))

en

I (k, n) : (ex a: (p(k,a) and p(n,a)) then all x : (p(k,x) then p(n,x)))

Here is proved only: the class k is a subset of the class n. Converse can be proved similarly.
diatelyhfter the preparing part, we have a formal theory from which we will prove a contradiction of the

m ( not p(X,Y), p(X,Y) ).

1 :: not p(g2,g3)
2 :: p(gl,g3)

3 :: p(g2,84)
4:: p(gl,g4)

5 p(X1,X1)

Inference rules :

:: not p(X1,X2) <- not p(X2,X1)
P(Xl X2) <- (p(X1,X3) , p(X3,X2))
: p(X1,X2) <-p(X2,X1)

ible contradictory predicates : p /2

ved : not p(g2,g3) td 0 <-ax_l
p(g2,g3)td 3 <-3
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The number of formulae passed through MPPM_EIE is 8.
The time used [0,0,2].
Shortened proof :

1:: p(g4,81) <-pi 3toax 4
2 :: p(g4,83) <-pi 2to (1, ax 2)
3 ::p(g2,g3) <-pi 2to(ax_3,2)

7. CONCLUSION

The formal theory derived from a formula of predicate or propositional calculus is very
"natural”, i.e. relative positions of subformulae which have sense for us, are mostly preserved. Thus
the proof can be easily understood (it is relevant for the formula).

If it is possible to prove a formula of propositional or predicate calculus by both LEIBNIZ
and semantic tableau method, then our prover is almost always more efficient.

Arrangement of axioms and inference rules, and estimated depth of proof have great influence
on efficiency of proving.

The question of completeness for predicate and propositional calculus is open.
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Abstract

The conception of pure functional (or application) programming languages prohibits side effects,
including the agsignment of values to variables. For this reason the program cycle statement .
doesn’t exist in application languages. The lack of this statement doesn’t affect program execution.
But, using the programming cycle statement and variables assignments combined with printing are
very useful for debugging.This paper presents an original program:implementation of PROG
mechanism - the statement of the programming cycle .in pure functional programming language
Lispkit Lisp. The manner of implementation provides preserving the structure of Lispkit Lisp as a -
pure functional programming language. The program implementation is d-1e by an extension of
the the SECD m.achine simulator and a modification of the Lispkit Lisp language compiler in*o the
machine langyuage of SECD machine.

1. Introduction

Along with the recent advances in VLSI technology and new computer
architectures, a significant development of various new programming meth-
odologies hi s taken place. They had to provide more efficient using of new
hardware. .J. Backus gave a significant contribution in developing the
methodolosy called functional programming with his paper [1]. This style of
programming, also known as applicative programming, is characterized as
programming without the assignment statement". Functional languages in
which assignment statements don't exist are called pure functional languages.
Total absence of assignment statements and side effects (which are results
of it) eliminate needs for variables in programs. Programs in functional
programming are functions that map objects in objects. These functions are
not depending on "outer" data (like global variables in non-functional pro-
gramming). The programs become simpler and easier for understanding.
‘ Another advantage of functional programming languages is the existance of
‘lhe simple mechanism for modification and combination of existing programs.
This mechanism is enabled by using high-order functins which increase the
vael of abstraction in programming.

77
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2. SECD machine and Lispkit Lisp language

SECD machine [3,4] represent one of the first models of computers on
which some ideas of functional programming can be applied. The name SECD
comes from the names of four main machine registers:

= 5 - the stack. It is used to hold intermediate results when computing the
values of expressions.

= e - the environment. It is used to hold the values bound to variables during
evaluation.

= ¢ - the control. It is used to hold the machine-language program being
executed.

= d - the dump. It is used as a stack to save values of other machine reg-
isters on calling a new function.

Each of the registers can be considered as a stack or a list (S-expression).
When the simulator of the SECD machine is used for evaluation of pure
functional language Lispkit Lisp [3], input and output data for the SECD
machine are well-formed expressions as described in [3].

The implementation of the simulator of the SECD machine and Lispkit Lisp
compiler was made, with some extensions, according [3], on PL/I language
in an MVS/ESA TSO environment (on IBM 3090-17T).

3. PROG mechanism in Lispkit Lisp language

Loop statement, assignment statement (which implicitly introduce vari-
ables), goto, return and label statements introduce side effects in a pure
functional programming language (and it isn't a pure functional language any
more). On the other side, there is a rule that introducing any new in
struction in Lispkit Lisp must preserve pure functionality. This condition
can be satisfied if every PROG function is considered as a user defined el*
ementary function. In this case, the programs contains only PROG funct.ons.
Assignment statement, variables used in assignment statements, goto, returs
and label statements are defined only inside the body of PROG function;
every using of these statements outside of the body of PROG function i§
marked as a syntax errdr. The implementation contains:

1. PROG(ram) function. This is a base function and elements of PROG
mechanisii can be used only inside its body. Characteristics of J'ROG
functions are:

* PROG is n-ary function (n22).

= The first argument of a PROG function is a list of variables. The lis
of PROG variables can be empty (NIL). All variables are initially set to0
NIL.

* The other arguments of PROG function are evaluated, beginning with the
second, according to the following rules:

s : 1 . s
a. If the argument is an atom it must be a label and its value isn't
evaluated, Labels can be numerical or symbolic atoms.

)
b. If the argument of a function is GO, RETURN or SETQ its value l’[
evaluated according to rules 2-4. P
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¢. Otherwise, the rules of evaluation Lispkit Lisp function are applied.

The value of PROG function is the value of the RETURN function, if it
is evaluated. Otherwise, the value of PROG function is equal to the value
of its the last argument.

PROG function can be nested in another PROG function. In this case you
can jump only within the PROG function that consists this GO statement.

RETURN function. RETURN is an unary function whose argument is a
.well-formed expression. The value of the function is the value of the ar-
gument. Evaluating of RETURN results in assigning its value to the PROG
function (and finishing the evaluation of the PROG function).

GO function. GO is an unary function whose argument is a well-formed
.xprcsslon. The value of the function is the value of the argument. The
offect of evaluating the GO function is a jump to the statement below the
label which is equal to the value of the GO function (or error if such a
label doesn't exist).

4. SETQ(uote) function. SETQ is a binary function. The first argunent is
an atom (the name of the variable). The second argument is a well-formed
expression. The value of SETQ function is the value of the second argu-
ment. The side effect is changing the value of the first argument which
is set to the value of the second one.

4. Prog mechanism - program implementation

4.1 Compilirig into machine language

Functions of PROG mechanism are compiling into machine instructions .

which must produce side effects. These machine instructions need additional

program support which is not initially included in the simulator of a SECD .

machine. For these reasons, translation of PROG mecharism functions will

be described in two ways: by formal description using transactions like in
[3] and by description of side effects of each machine instruction.

The translation to machine language has to satisfy following conditions:

* Translation of any PROG mechanism function or a label has to contain new
machine instruction(s) (because the PROG mechanism function can't be
expressed neither using existing SECD machine instructions nor using ex-
isting Lispkit Lisp functions).

* Translation of the PROG function has' to contain information about the be-
ginning and end of the PROG function (because of the possibility of .the
existance of nested PROG functions and identical labels within them).

* Translation to machine language must contain information about the number
of arguments of translated PROG function.

According to this, the translation of expression (PROG arg exp; expp
expp) is

(PROG arg exp; expp ... expn)¥n = (bprog)larg*nlexpl*nl v Iexpnl(eprog)

where | is a symbol for concatenation, and exp*n is the translation of the
expression exp with namelist n. The previous expression has the net-effect
property. If PROG function has no argument, the instruction bprog (begin
PROG) is evaluated in the following way:
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s e (bprog 0.c) d save - s e ¢ d ((s e c.d).save)

If Prog function has more than zero arguments brpog is evaluated as

s e (bprog cy.c) d save — s (cj.e) ¢ d ((s e c.d).save)

In both cases there is an additional side-effect, which is not obvious in the
formal description of the transaction. Separate field is used for storing

= value of s register
® value of e register
= value of d register

= return addressyfrom PROG function (which implicitly depends on register

c).

= ]ist of each labels with addresses existing in the PROG expression (ex:
cluding labels from nested PROG expressions).

This field is generated for every PROG expression and stands for a base o
the mechanism which allows using identical label names in nested PROG ex
pressions. Using an additional register save eliminates possible errors durin
garbage collection. Register save can be modified only by brpog and epro
instructions.

Instruction eprog (end PROG) is evaluated in the following way:
(sy.s) e (eprog.c) d (savej.save) — (sy.s') e' c d' save

The side effect of oprog instruction is reflected in taking values of the save
registers (s', d') from the field where they were stored during evaluatio
of bprog lnstructlon After that, the field related to the finished PROG ex
pression is released. The net- effect property is provided by restoring gen
eral registers (from the field filled by bprog instruction) -and saving th
current value at the top of the register s.

Translation of an atom that denotes label is label * n = (1bl) | labet Nh
the effect of executing an instruction Ibl is s e (1bl 1.c) d - s e c d

Instruction Ibl is used only in preprocessing PROG function because of fixin
the label address. Instruction 1bl is skipped during execution. Preprocessin|
is needed because a value of a label must be evaluated before code execution

Translation of the expression (RETURN e) is (RETURN e) * n = e * n | (ret)
while the e'l‘oct of executing instruction ret is (s;.s) e (ret.c) d — (3;.5
e (eprog.c') d

where ¢' is the code that is the continuation of a program code after the co
of a PROG function. The side effect of ret instruction is reflected in takin
the return address (of PROG expression) from the field in which it is stored

Translation of the expression (GO e) is (G0 e) * n = e * n | (go), while t
effect of executing instruction go is (sy.s) e (go.c) d —+ s e c¢' d

where s; is a label, and ¢' is the code that is the continuation of a progr
code after the label whose value is s;. The side effect is reflected in takin
address from where the execution continues.

Translation of the expression (SETQ e; ep) is (SETQ ej ep) * n = ep * n
(setq) | loc

where loc = Jocate (ey; n). The effect of executing instruction setq is
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(sy.s) e (setq cy.c) d — (s;.s) e' cd
i "i ‘ .
where S1 is the value of the second argument of SETQ function, e' is a
¢,"vmunn(-nt with the substituted value at the place which relates to variable
I'his is the side effect of this instruction,
he e
APP‘"““"‘ A contains the statements that extend the translator. Instructions
solq, bprog, eprog, go, ret, Ibl have codes 32,40,41,42,43,44.
4.2 Modifications of simulator of the SECD machine
A basic idea: when code 40 is found during the execution of the pro-
ter gram, searching for a code 41 is started. All instructions between codes 40
and 41 are analyzed. Names and addresses of found labels are saved in dy-
) pamic variables (PL/I allocation variables). Analysis takes care about the
BX~ jevel of nesting PROG functions. Every code 40 must have its pair, code 41
Every pair (40, 41) determinates a set of labels used in instructions between
them. It is possible to jump to a label only from the instruction whichk is In
+ of the same PROG function, and doesn't belong to any nested PROG function,
ex- Code 41 denotes the address of the exit from PROG function. In the next
‘ing step the values of registers s,e,c,d are saved in order to provide the net-
TOg ' gffect property (restoring at the end of PROG function). It is done by using
pL/I stack (not the stack of the SECD machine). Rules for program execution
are: ’
* The code of instruction lbl and value that follows it in register ¢ are ig-
nored.
::,iid » When the instruction go is found the corresponding value of label (the value
exl} at the top of the stack s) is taken and the list LABEL is searched for
sens address from which the execution will be continued.
the. . When the instruction ret is found the corresponding return address (of
corresponding code 41) is taken.
vhile. » When the instruction eprog is found the registers s, e, ¢, d would be
\ restored, wvalid variables released and all changes on the save register
eliminated, which provide net-effect property.
xing ‘
;singl Modifications in the SECD machine program simulator are given in appendix
tion." B. . :
fet)s; References
37 .8)
123 [1] Backus, John - Can Programming Be Liberated from the von Neuwnann
w Style? A Functional Style and Its Algebra of Programs, CACM 21/8,
‘ August 1978, p. 613-641
code .
king [2] Darlington, J., Hendreson, P., Turner, D. A. - Functional program-
ored. ming and its applications, Cambridge University Press, Cambridge, 1982
o the [3] Henderson, Peter - Functional Programming: application and imple-
: mentation, Prentice-Hall International, inc., London, 1980.
[4] Landin P.J. - The mechanical evaluation of expression, Computer
gran Journal, Vol. 6, pp 308-320 (1964)
aking

' [5] Landin P.J. - The Next 700 Programming Languages, Comm of the ACM,
‘ Vol. 9, No. 3, March 1966 [

*n | [6] OS PL/I Version 2 Programming Guide, SC26-4307-2, IBM

[7] OS PL/I Version 2 Language Reference, SC26-4308-2, IBM

|




i
82 Mimié, N.

Appendix A: The statements for extending the translator

(IF (EQ (CAR E) (QUOTE SETQ))
(COMP (CAR (CDR (CDR E))) N (CONS (QUOTE 32)
- (CONS (LOCATION (CAR (CDR E)) N) C)))
(IF (EQ (CAR E) (QUOTE GO))
(COMP (CAR (CDR E)) N
(CONS (QUOTE 42) C))
(IF (EQ (CAR E) (QUOTE RETURN))
(COMP (CAR (CDR E)) N
(CONS (QUOTE 43) C))
(IF (EQ (CAR E) (QUOTE PROG))
(LETREC (IF (ATOM (CAR (CDR E)))
(IF (EQ (CAR (CDR E)) (QUOTE NIL))
(CONS (QUOTE 40)
(CONS (QUOTE 0)
(PROGNIL (CDR (CDR E)) N)
)

; zQUOTE ERROR1)
zCONS (QUOTE 140)
(CONS (PRAZNO (CAR (CDR.E)))
(PROGNIL (CDR (CDR E)) (CONS (CAR (CDR E)) ))
) ]

)

)
(PRAZNO LAMBDA(X)
(IF (EQ X (QUOTE NIL))
(QUOTE NIL)
(CONS (QUOTE NIL)
(PRAZNO (CDR X) ) ) ) )
(PROGNIL LAMBDA(E N)
(IF (EQ E NIL)
(QUOTE ERRORPROG)
(IF (EQ (CDR E) (QUOTE NIL))
(IF (ATOM (CAR E) )
(QUOTE ERROR10)
(COMP (CAR E) N
(CONS (QUOTE 2)
) (CONS (QUOTE NIL)
; : (CONS (QUOTE 41) C)

)
)

)
(IF (ATOM (CAR E) )
(CONS (QUOTE Ulj)
(CONS (CAR E) (PROGNIL (CDR E) N) )

)
(COMP (CAR E) N (PROGNIL (CDR E) N))

Appendix B: Modification in SECD machine program simulator

= In main program register SAVE is declared as

declare save binary fixed(31,0);
= In procedure MARK the register SAVE is marked.
= Modifications in procedure EXEC are:

exec : proc(fn,args) returns( bin fixed(31));

declare 1 prog ctl,

s1 bin fixed(31
el bin fixed(31
d1 bin fixed(31
r1 bin fixed(31
return bin fixe
2 labela ptr;

NN

/* control promenl jiva proa je osnovni stek. svaka generacija prog promenl ji
pridruZena je jednoj prog funkeiji (bilo da se izvrSava ta prog funkcija ili neka pr
funkci ja ugnje2dena u njoj. ona sadr2i adrese tekuc¢ih vrednosti registara s, e, d K
i adresu povratka iz te prog funkci je return, labela je pokaziva¢ na niz labela Ko
su pridruzene 1ckucoj prog funkciji. */

S L
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' jabe! based(sada),
“'lf. ! 2 name char(15) var,
2 adress bin fixed(31),
2 next ptr;

Jabel Je element liste koja sadr2i ime i adresu labele »/
jare ‘,,da,prvi,prcth) ptr; |
‘”’. null builtl:nz;) 1‘
char (4
geciare geen’ ¢ igit('SETQ used outside PROG, Command tvrminated'); ‘
grrp2 char(40) !"!t(:CO used outside PROG. Command terminated');
re errp3d char(19) fn!L('Undanncd label ");
errph char(19) init('. Command terminated');
errp5 char (Lh)
init('RETURN used outside PROG. Command terminated');
w-nl';

ti1(ivalue(car(c))=21);
- :::cc{(lvaluu(cnr(c)));

when(32) do; /* SETQ %/
if br_prog=0
then do;
put file(sysprint) edit(errpl) (skip(2),a);
stop; «
end;

/* odreduje se mesto promenljive u listi imena */

w=e;

do =1 to Ivalue(car(car(cdr(c))));
w=cdr(w) ;

end;

w=car(w);

do =1 to ivalue(cdr(car(cdr(c))));
w=cdr(w) ;

end;

car (w)=car(s);

c=cdr{cdr(c));

end;
when(40) begin; /* BPROG %/
declare help bin fixed(31); /* tuva adresu od ko je treba
poceti pretraZivanje *®/
declare kraj bit(1) init("1'b);
declare br_prog bin fixed(15); /* koliko je nadeno kodova 40 */

prvi=null; /* pokaziva¢ na pocetak liste |ibela */
alloc prog; /* alocira se element koji tuva
informaci je o tekucoj prog funkciji */
prog.si=s; /* Cuvanje opiteg registra s */
prog.el=z; /* tuvanje opiteg registra e */
prog.di=d; /* tuvan je op3teg registra d */

save=cons(cons(s,cons(e,cons(c,d))),save);
/" eliminisanje mogu¢nosti greike pri radu garbage collector-a */

if Tisnumb(car(cdr(c)))
then e=cons(cartcdr(c)),e);
/* ako ima argumenata u prog funkci ji njihove
pocetne vrednosti (tj. nil-ovi) se dodaju okolini */
help=cdr(c);
e=cd! (cdr(c)); /* odakle se nastavl ja izvr3avanje */
br_prog=1; /* inicijalizacija broja pro¢itanih kodova 40 */
do while(kraj);
help=cdr(help);
if isnumber(car(help))
then select(ivalue(car(help)));
/* traZenje instrukcigja go, ret i Ibl */
when(40) br_prog=br_prog+1;
when(41) do;
br_prog=br_prog-1;
if br_prog=0
then do;
kraj="0'b;
return=help;
/* ako je ret od tekuceg a ne od unutradnjeg
prog-a postavl ja se adresa povratka */
end;
end;
when(4l) do;
if br_prog=1
then do; /* postavl janje labele #/
alloc label;
if prvi=null
then prvi=sada;
else preth->next=sada;
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preth=sada;
g . o next=null;
/* dodel jivanje imena labele #7130 i if ispumber(car(cdr(help)))
/* name je oblika char(15) var i zato #/ ' . then name=tostring(

/* se broj pretvara u char pomocu toostring */ ivalue(car(cdr(heip))));
else name=stringstore(

ivalue(car(cdr(help))));
adress=cdr(cdr(heip));
end; :
help=cdr(help);
end;
other;
end; /% select */
end; /* do while(kraj) */ :
/* postavl janje pokazivata na listu labela za tekuci prog */
if prvi=null then labela=null;
else labela=prvi;
end; /* begin kod when 40 */
when(41) begin; /* eprog */
/* restauraci ja opStih registara sa efektom &istog rezultata */
g=cons(car(s),prog.sl);
e=prog.el;
d=prog.di;
free prog;
save=cdr (save);

c=cdr(c);
end;
when(42) begin; o /% go ¥/
declare povratak char(15) var;
* ime labele na koju se prenosi izvrsavanje */
declare kraj bit(1) init('1'b);
if br_prog=0
then do;
put file(sysprint) edit(errp2)(skip(2),a);
stop; .
end;
if isnumber(car(s)) )
then povratak=tostring(ivalue(car(s)));
else povratak=stringstore(ivalue(car(s)));
s=cdr(s);
if labela=null
5 then do;
Y put file(sysprint) edit(errp3,povratak,
errpl)(skip(2),a,a,a);
stop;
end;
else sada=labela;
do while(kraj);
if name=povratak
then do;
/* ako je labela nadena izvr3avanje se prenosti 1 tu
naredbu pomocu dodel jivanja njene adrese c registru */
c=adress;
kraj='0'b;
end;
else if next=null
then do;
put file(sysprint) edit(errp3,
& povratak ,errpl)(skip(2),a,a,a);
stop;
end;
else sada=next;
end;
end;
when(43y begin; /* ret %/
if br_prog=0
then do;
put file(sysprint) edit(errp5)(skip(2),a);
stop;
end;
c=return; /* izvrsavanje se prenosi na
adresu naredbe sa kodom 41 */
end;
when(ul) /* bl %/
c=cdr(cdr(c)); /* ignori%e se kod za labelu i sama labela.

Labela je vaZna samo u predprocesiranju prevoda PROG f-je */

end; /% do until */
return(car(s));
end; /* exec */
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ABSTRACT: A transformation of SASL equations into their non-equational equivalent is described.
Equations of the source language are transformed only into usual operators of a target (functional)
language, and not into special constructs. This transformation scheme is therefore more useful,
pecause it can be applied on a broader range of target languages.

Key-words: Implementation of Functional Languages, SASL, Pattern Matching

1 INTRODUCTION

The research in the field of functional (or applicative) programming has been of growing
interest to computer scientists since its origin in the 1950’s. Functional (or applicative) programming
languages, especially pure ones, are of great importance for the future of computing, because they
could solve the so-called "software crisis.” Functional programs are short, concise, easy to maintain,
and their (in)corréctness is easily proved formally. They also offer a natural approach to parallelism
and parallel programming languages.

Purely functional languages lack everything that is essential to procedural (or imperative)
languages: statements, explicit sequencing and side effects. Purely functional languages are
referentially transparent, insensitive to evaluation order, have strong mathematical basis and a small
set of built-in features. Therefore, they are easy to learn and follow. Furthermore, all program
identifiers are lexically scoped (i.e. bound at compile-time and not at run-time) and all functions are ‘
first-class objects (i.e. have the same rights like other data types). Finally, most purely functional
languages have non-strict semantics (i.e. expressions are evaluated only when necessary), which gives
those languages the potential of dealing with infinite data structures. For more details and an overview
of functional programming languages and style see for example [1].

The key issue in functional programming research
is the definition of purely functional languages and | 2pp nil s = ‘
implementation of their processors. Recent functional | *PP AR £ }
languages have many syntactic enhancements such as
conditional expressions (or "guards"), list comprehension Fig. 1 An ple of an equational functional
(or ZF-expressions) or pattern matching, which all lead program
to more readable programs. Since its introduction in ‘
functional languages SASL and NPL, pattern matching became almost siandard feature of most ‘
modern functional languages. Intuitively, pattern matching means that functional program consists of
aset of equations, where certain equation is applied if its left-hand side is matched against the current
state of function evaluation. Usually only the pattern of the left-hand sides is identified (hence the
name pattern matching). In Fig. 1 is displayed a typical example of a function definition written in
equational form. Function app appends two lists.

* This work is supported by Science Fund of Serbia
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Since the set of equations is not a "natural form" of a functional program, it has to be
transformed into some intermediate code based on lambda-calculus or into some existing functional
language to be (efficiently) executed. In most cases known from the literature (for example [2,4])
equations are transformed into special constructs or operators, developed exclusively for pattern
matching compilation. However, we show, in this paper, that equations of a functional language can
be successfully transformed into a set of "classic” operators found in all functional languages, if the
source language has only built-in data types. The paper deals with a compilation of pattern matching
of SASL language, into a corresponding Scheme or LispKit LISP expression with the same semantics,

The rest of the paper describes a compilation of pattern matching of SASL language into a
subset of some standard (functional) language. Section 2 defines the patierns, paiiera maiching and
its semantics, section 3 shortly introduces SASL language and section 4 describes our implementation
of SASL pattern matching with respect to the set of standard (or "common") operators, found in all {
functional languages. Section 5 concludes the paper.

2 PATTERNS AND PATTERN MATCHING L
i 3

The concept of data constructor is closely related to the definition and concept of patterns and
pattern matching. We proceed with a short introduction to data constructors.

2.1 Data Constructors

Data constructors can be observed as a special functions that assist "to construct or bind
together data” [2]. The only difference between data constructors and "ordinary" functions is that
constructor functions don’t possess associated rules (for transformation or reasoning about them). Data
constructors can be built-in (in which case they can take the form of constructor operators) of
introduced by the user in the form of algebraic data types (user-defined data types). For example, 4
data constructor‘that can be found in all functional languages in the form of explicit constructor or
. constructor operator is the pair of constructors CONS and NIL, which together serve to build lists

of data. For example, the following call: CONS(1, CONS(2, CONS(3, NIL))) builds a list of data
containing numbers 1, 2 and 3. If more than one data constructor is used for building a single dat

type, it is often called sum-constructor, otherwise it is called product-constructor.

2.2 Patterns
Pattern is in functional languages defined as:

o a variable or K

o a constant or

o an infix constructor operator pattern of the form p, o p,, where p, and p, are patterns and 0
is binary constructor operator.

o a constructor pattern of the form ¢ p, p; ... p,, where c is constructor of arity n and p,, Pa"

...y P, are patterns.

2.3 Pattern Matching

Patterns can be used in the place of every argument on the left-hand sides of equations th&
constitute a function definition. Patterns are used in case analysis during function evaluation in the
following way: when actual arguments are matched against patterns on the left-hand side of
equation, corresponding right-hand side is selected for evaluation. In implementation of patter®
matching, there are several issues to be concerned of:

o overlapping patterns, which means that in function definition exists at least one pattern thi
can be applied in more than one case. In case of overlapping patterns the order of equatiof

s 2 ek s s o
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in function definition is significant.
pon-exhaustive sets of equations, which means that equations not necessary define all possible
cases that can appear in actual arguments.

repeated variables, which means that if in equation are allowed same variable names, then
they denote the same values of actual arguments.

14 Transformation rules

Function definitions involving patterns can be transformed into lambda-calculus that is
od with appropriate reduction rules or special built-in functions. To define formally semantics
orn matching, we'll transform the set of equations into lambda-calculus enhanced with lambda
jons depending on patterns (and not only on variables) and with built-in constant called FAIL.
we'll assume that there is already transformation function T, which transforms the constructs of a
source language into the lambda-calculus with constants (and built-in functions). For possible
definitions of function T see [2,3,4].

Function definition which consists of multiple equations is transformed in the following way:

Tl fp' 0 . P = E,
fp'pl.--p" = E
fP-| [.)-2 pmII . Em l = f= XX|M2...XXI, (

(ATIp'INT[p,?).. AT[p,"). TIE, D) x, x, ... x)
o (ATIp' INTIp)..ATI[p," ). TIE]) x, x; ... x)

O (ATIpa' INTIp.2).. ATIp. 1. TIE.]) x, X, ... X))

where p,' are patterns, x; are new variable |T[fx=2* ] = f= ) Ax.*2x
names which does not occur free in arbitrary |T[ fac 0 = 1

expressions E;, for i=1,...,n and j=1,...,m. fac n = n*fac(n-1) ] = fac =
For example, Fig. 2 displays the effect of Ax.( ((\0.1)x)
described transformation scheme on two simple O ((\n.* n (fac (- n 1)) %))
SASL functions.

2.5 Semantics of lambda-calculus Fig. 2 Transformation by function T
enhancements

[y

Semantics of the enhancements to the lambda-calculus will be described by giving the values
of applications of lambda abstractions to arguments. The following is the definition of the constant
- lambda abstraction, for any constant ¢ and arbitrary expressions E and a:

- Val[Xc.E] a = Val[E], a = Val[c]
Val[X\c.E] a = FAIL, a # Val[c]

! Intuitively, the value of the Ac.E applied to a is in fact the value of E, if a evaluates to

_ constant ¢. Otherwise, the value of the constant lambda abstraction is FAIL. For example, (\3.+ 4

"~ 5) (+ 1 2) evaluates to 9, because (+ 1 2) evaluates to 3, while (A\3.+ 4 5) 2 evaluates to FAIL,
" because 2 does not evaluate to 3.

The semantics of patterns involving data constructors is defined in the following way, for
_ every constructor ¢ and patterns p,, i=1,...,n:
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Val[A\p,Ap,...Ap,.E] 3, a,...a,
FAIL, ¢ # k

VallAcp,ps-.- P)-E]l (c2,3,... a)
Val[Ac p;p;--- P)-El (ka2 2, ... )

Intuitively, if constructors match then individual lambda abstractions will be applied to data
components. If constructors do not match, then the value of application of such lambda abstraction
is FAIL.

For example, the following are two possible evaluations:

(\(CONS x y).+ x y) (CONS 2 3) —> (AxA\y.+ xy) 23 —> ()\y+2y)3—-> +23-—->5
(AMCONS x y).+ x y) NIL —> FAIL

Lambda abstractions depending on constructor operators have the same semantics like data
constructors -the only difference between the two is syntactical one. The semantics of variable lambda
abstractions on variables is the usual semantics of lambda abstraction (see for example [2, 4]).

Operator O [7] is defined as follows:

xO0y=x
FAILOx =x

Intuitively, operator O forces the evaluation of its first argument. If it evaluates to FAIL, then
the evaluation of the second argument is forced.

2.6 Possibilities for Implementation

Semantics described in previous section can be implemented either directly like described, or
by further transformations of enhanced lambda calculus into the "ordinary” one containing special
built-in functions: It is usually the case that above semantics is implemented by its transformation into
the family of CASE operators, which inspect the structure of its argument and "jumps" to the
appropriate branch.

3 SASL AND PATTERNS IN SASL

Functional programming language SASL (short for: Saint Andrews Static Language) was the
first one whose programs has taken the form of the set of equations and employed pattern matching.
Furthermore, SASL was also the first functional language which was with non-strict semantics and
implemented by graph reduction. By standards of best known functional language representatives of
today, SASL is regarded as untyped language with non-strict semantics, without possibilities to
introduce new data types except*built-in ones. For more details about SASL and its impiementation
see [5,6].

Since in SASL there is no
introduction of new data types, patterns in
SASL are simpler than patterns in general.
Pattern in SASL can be:

length () = 0
length (a:x) = 1 + length x

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

o a variable or
o a constant or
o an infix constructor operator pattern Fig. 3 Two function definitions in SASL \

of the form p, : p,, where p, and p,
are patterns and : is binary constructor operator; a nullary constructor operator (). Operatof
: is an infix shorthand for CONS, while () is a shorthand for NIL.

In Fig. 3 are displayed definitions for a function length which returns the length of a list and
function fib which returns nth fibonacci number.
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From the implementation point of view:

patterns in SASL can be overlapping, so that the order of equation is significant (equations
are in SASL tried top to bottom).

set of equations can be non-exhaustive, which means that the implementator have to take care
of all uncovered cases in user’s program during the compilation of equations.

repeated variables are not allowed and will be considered as semantic error in user’s program.

0

2
‘TRANSFORMATION OF SASL EQUATIONS

The goal of our SASL implementation is to translate the program in source (SASL) language
o s0Me existing language whose language processors are already available. LispKit LISP, Scheme
o any other purely functional subset of LISP has been chosen as an target language for translation
of SASL source, because of the broad availability of those processors. Since they don’t implement
qemantics described in 2.5 nor does not possess special built-in functions, implementation had to be
Jone using only common operators.

41 Semantics of a "Common" Primitive Operations

For translation of SASL equations into already existing language, only several "common”
ors of the target language are needed: cond, &, =, list, head and tail. In this section, a
gemantics of those operators will be defined:

for every by, ..., b, of logical type, c,, ..., c,, k,, ..., k, of character type, x, x,, X,, ..., X,, y, ¥; of
wmy type, where true and false are logical constants, and nil and : (list) are data constructors, the
following holds:

Val[ if true thenxelsey ] = Val[ x ]

Val[ if false then x elsey ] = Val[ y ]

Vall cond (b, x,) (b, x) ... (b, x) ] =
, Val|[ if b, then x, else (if b, then x, else (...(f b, then x, else error)...)) ]

Val[ b, and b, ] = Val[ b, and b, ]
Val| false and b, ] = false
Val[ true and b, ] = Val[ b, ]

Val[ b, & b, & ... & b, ] = Val[ (b, and (b, and (... and (b, and true)))) ]

Val[ true = true ] = true

Val[ false = false ] = true

Val[ "¢,c5...¢," = "kK;...k,," ] = true, if n=m and ¢;=k;, i=1,...,n
Val[ nil = nil ] = true

Val[ (ex) = (zyy) 1 = Vall x=y) & (x,=y)) 1

al[ x =y ] = false, otherwise

Val[ tist (c:x,) 1 = true
Val[ list x ] = false, otherwise

Val[ head (xx,) 1 = Val[ x ]
Val[ tail (:x;) 1 = Vall x, ]

Note that in most functional languages there are equivalents of above operations with exactly
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the same semantics as described.

4.2 Transformation Rules

The following are the rules for transformation of SASL equations into the set of common
operators of any functional language:

TIfp'p?...??=E] = f=AM5. 5B

T fp'p ... p" = E,
fp'p’...p’ =E
f = Ax,AX,...Ax,.(cond (condition, T[E’,])
(condition, T[E’, ])

-
=
'—
=
LI
~
a-
I
—
Il

(condition, T[E’, 1))

where p), pj are patterns, x; are identifier names which do not occur free in expressions E, E,, while
condition; and E’, E’;, are built by consecutive applying of following rules, for i=1,...,m and
j=1,...,n:

1. E’ and E’;, i=1,...,m are obtained from E and E; respectively such that every variable pattern
p, kE{1,...,n} is replaced with appropriate x,. In standard notation of lambda-calculus, E’;
= [x/pXJE; for every kE€{l,...,n} for which p} is a variable. .

2 condition;, i=1,...,m are built as (x,=p")& ... &(x,=p;), for every constant pattern p* ...
ph k,...,1€{1,...,n}.

33 condition;, i=1,...,m are built as (x,=nil)& ... &(x,=nil), for every p* ... p}, k,...,] €
{1,...,n} which is equal to ().

4. condition;, i=1,...,m are built as (list x)& ... &(list x), for every p* ... p/, k,...,] €
{1,...,n} which are of the form x:y. E’, E’; are obtained from E, E; by replacing all
occurrences of x by head x, and y by tail x,, for every k for which p¥ is of the form x:y. In
standard notation of lambda-calculus, E’; = [tail x,/y]([head x,/x]E) for every k for which
p* is of the form x:y.

- 18 condition,, (m>1) is built as true if all p,* k€ {1,...,n} are variables (in correct programs
equation with all variable patterns have to be the last one).

It can be easily formally proved this scheme exactly implements semantics of pattern matching
lambda abstractions given in 2.5.

4.3 Notices on Implementation

The implementation of transformation rules described in previous section is done using
attribute grammars and compiler generator, in which the transformation of SASL equations is the
most important part. SASL equations are made of namelist (left-hand side) and corresponding
expression (right-hand side), and both of them have associated attribute. The internal structure of the
function definition with respect to namelist and expr is of the following form (written in Modula-2-
like syntax): '

GroupOfEquations = RECORD /* function definition */
Name: ARRAY OF CHAR; /* function name */
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NoOfEqus: CARDINAL; /* number of equations */
NoOfParms: CARDINAL; /* number of parameters */
NoOfConds: CARDINAL; /* number of conditions */
TrueCond: BOOLEAN; /* true condition built? */
LHS: ARRAY OF Namelist; /* left hand sides */
RHS: ARRAY OF Expr; /* right hand sides */
END;
1ist = RECORD /* structure of the left hand side */
gons Parms: ARRAY OF ARRAY OF CHAR; /* parameters */
NoOfConsts: CARDINALj; /* number of constants */
Consts: ARRAY OF Cstj /* structure of constants */
L NoOfLists: CARDINAL; /* number of lists */
Lists: ARRAY OF Lst; /* structure of lists */
END;
gst = RECORD i
Place: CARDINAL; /* position of parameter in the
equation that contains constant */
value: ARRAY OF CHAR /* actual value of the constant */
st = RECORD
Place: CARDINAL; /* position of parameter in the
| definition that contains list */
| NoOfMembs: CARDINAL; /* number of members of the list */
Membs: ARRAY OF ARRAY OF CHAR; /* members themselves */
| END;

Conditions: Internal Structure of Expressions;
| Right-hand: Internal Structure of Expressions;
END;

[ gxpr = RECORD

| After all equations are examined and all attributes "filled in", next step is to determine the
} groups of the equations with the same name. Then, every group is processed by the following
procedure: .

WITH GroupOfEquations DO
FOR i:=1 TO NoOfEqus DO

Determine new identifiers which do not occur free in function

definition

FOR j:=1 TO NoOfParms DO
Search RHS[j].Right-hand for LHS[i].Parms[j] and
replace it with new identifiers, according to rule 1
(of section 4.2)

END;
FOR j:=1 TO LHS[i].NoOfConsts DO
Build or update RHS[i] .Condition according to rule 2.
and 3. (of section 4.2), and update NoOfConds
END;
FOR j:=1 TO LHS[i].NoOfLists DO
Build or update RHS[i].Condition according to rule 4
(of section 4.2), and update NoOfConst
FOR k:=1 TO LHS[i].NoOfMembs DO
Search RHS[i] .Right-hand for
LHS[i].Lists[j].Membs[k] and replace it
by calls of appropriate funcions, ‘
according to rule 4 (of section 4.2)
END;
IF ( RHS[i].NoOfConst=0 AND RHS[i].NoOfLists=0 AND
i=NoOfEqus ) THEN
Build RHS[i].Condition as "true” condition,
accoording to rule 5 (of section 4.2), and update
TrueCond
" END
END
END;
IF NoOfConds <> O THEN
IF NOT TrueCond THEN
Build "true" condition, indicating an error -
END;
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"Surround” conditions by cond operator

END;
Write transformed expression

The weakest point in described implementation is a choice of "strange enough” parameter
names - if function definition contains free variable of the same name, semantics of resulting function
definition will bi significantly changed. However, "occurs check” could be to expensive to perform

during transformation. »
4.4 Examples

Examples displayed in Fig. 3 are by
rules described in previous two sections
transformed into two LispKit LISP functions
displayed in Fig. 4 (equivalents in other
similar languages would look almost the
same). In both examples, prefix operator eq
is equivalent with (in section 4.1) defined
infix =, not atom with list, car with head,
cdr with tail, and (‘NIL) with nil.

(length lambda (newvarl)
(cond
((eq newvarl ('NIL)) ('0))
((not (atom newvarl))
(add (‘1)
(length (cdr newvarl)))

)
(('T) (‘error))

) )
(fib lambda (newvarl)

(cond
((eq newvarl ('0)) (‘1))
((eq newvarl (‘1)) ('1))
The transformation scheme given in R gwes ((ffﬁ’) (( ::): n"em’rrll ( ( 2:)1; ; ;

this paper is different from those found in | ) ) =
literature, because it translates equations into
a set of operajors which can be found in
every functional language. Since no special
operators are needed for transformation,
languages involving pattern matching can be
implemented by translation into some other language, which is broadly available or efficiently
implemented. However, this scheme can only be used to translate untyped languages, i.e. languages
which does not allow introduction of new data types.

Current implementation of the described transformation can be improved in many ways. For
example, the more efficient execution of transformed program can be achieved by grouping and
nesting of cond operators such that the number of needed tests is kept minimal.

5 CONCLUSION

Fig. 4 LispKit LISP equivalent of two examples
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Abstract.The problem of efficient writing the Prolog programs in the Smalltalk environment is considered.
Starting with the famous Kowalski’s equation:

A(lgorithm) = L(ogic) + C(ontrol)
the component C is analyzed and according to that analysis some new predicates are proposed to built into
Prolog/V. These predicates might be useful in any Prolog language where the component Control is significant
in solving some type of problems.

Keywords: Prolog, Smalltalk, Control, Built-in predicates, Environment.

y 1. Introduction

| In this paper we suggest how to improve the efficiency of Prolog programs
| incorporated into a Object Oriented environment. The problem is how to amalgamate
successfully two different programming paradigms: Logic and Object Oriented. The
similar problems are studied in [5], but instead of Smalltalk, C+ + is considered. In [1]
and [2] the problem integration of imperative and logic paradigms is studied. So, the
problem of integrating two different paradigms is very actual. The good starting point
is Smalltalk/V environment that includes a Prolog interpreter (Prolog/V). We can
conclude that a kind of integration of Object-Oriented and Logic paradigm is realised
in this environment. Moreoyer, Prolog/V-interpreter is a simple interpreter written in
Smalltalk/V which power is based on the using of Smalltalk-expressions. In a lot of
applications it is suitable to have better control-mechanisms in Prolog itself. The
connection between Prolog and Smalltalk gives opportunity to solve previous problem
in the efficient way.

2. How to enhance the control in Prolog

In foreword of [3] Robinson writes: "Today Logic programming is a standard
paradigm in the methodology of computing. Its attractions are immediate. Kowalski’s
apothegmatic equation:

A(lgorithm) = L(ogic) + C(ontrol)
sums up the most striking of them: the clean separation of the knowledge required to
solve a problem from the way this knowledge is to be deployed to solve it." According
to [4] it is central to the idea of logic programming, and Prolog in particular, that we
be prepared to alter the declarative component L to obtain desired problem-solving
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behaviour A. The component C is usually fixed in Prolog. Moreover, in same article, it
is admitted the possibility "of changing A by changing only C" with the conclusion
"Logic programming is concerned with the possibility of changing both L and C."

In an Object-Oriented environment, with Prolog available for the changing, it is
very interesting to modify C-component in Kowalski’s equation. Because of that we
analyze this component in more details. The main elements of the control in Prolog are:

- Backtracking
- Unification and
- Built-in predicates.

The interpreter of Prolog/V is written in Smalltalk/V and we could change all of
these elements of the control. Moreover, our attention is on built-in predicates. We
propose some new logical predicates enhancing the control in Prolog/V. These
predicates may be added to any Prolog working environment.

3. Prolog-classes in Smalltalk/V
To explain how to enhance Prolog/V, it is necessary to inspect the place of

Prolog/V in Smalltalk environment. Prolog/V interpreter is highly integrated into
Smalltalk/V hierarchy. The structure of classes related to Prolog/V is:

Object <-- Top of hierarchy
Logic <-- Key control mechanism
Prolog <-- Basic predicates
<-- Application classes

(with predicates
written in Prolog/V)

All methods in classes Logic and Prolog are written in Smalltalk/V and could be
changed. If we intend to add new predicates, their methods should be written into the
class Prolog.

4. New control-predicates in Prolog/V

In this article our attention is concentrated to the generalization and creation of
logical predicates. These predicates may be useful in changing of the control of Prolog
programs.

The initial idea for the building new control-predicates was born after
modification of the predicate or. Namely, the existing definition of the predicate or in

Prolog/V is (see [6]):

or: assoc
"Disjunction predicate."
assoc key size = 2 ifFalse: [ self].
self doGoal: (self first: assoc) continue: assoc value.
self doGoal: (self second: assoc) continue: assoc value
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is is standard definition of or-predicate. In Prolog notation it is:
or(x, y) :- x.
or(x, y) -y

Th

sOmc(imcs it is useful to make the following modification ol previous dcfinition:
or(x, y) - x, L
or(x, y) * ¥

{n Smalltalk/V code it is enough to change the line:
self doGoal: (self first: assoc) continue: assoc value.

into the line: .
self doGoal: (self first: assoc) continue: [~ assoc value].

A generalisation of the modified or-predicate (we call it gor) in Prolog description could

be:
gor(p,, Pz,---,pk,...,pm) - Py

gor(Pn Pz:-n,Pk,'--,Pm) * Pm

This is clumsy construction and may be changed by a built-in predicate:

: gor(k, P1s Po-sPio-sPm)
by the following Smalltalk code:

gOT: assoc
"General disjunction predicate."
| mn aListi |
(m := assoc key size ) <= 2 ifTrue: [ " self].
aList := assoc key.
n := aList head.
aList := aList tail.
i:=0.
n < 1 ifTrue: [ " self].
[ aList isEmpty ]
whileFalse: |
ir=i+ 1l
i=n
ifTrue: |
self doGoal: (aList head) continue: [ " assoc value]

J
ifFalse: |
self doGoal: (aList head) continue: assoc value

aList := aList tail

]

- R R ek
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Sometimes we put the cut-predicate in several positions of clauses as in the

following example:
gorl(p;,P2,PxPaPs) - Pr-
gorl(p,,p2P3»PaPs) - P2l
gorl(py,P2P»PwPs) - Px
2or1(p,,P2P3PuPs) - Pu'-
gor!(py,p2PyPaPs) - Ps

Practically, we need a generalized gor-predicate, that could be called gorl. In this
case we should know a list of positions of the cut predicates. For the previous example
we could write it in the following way:

gorl([2,4],p1P2P3PsPs)-

The general form for the gorl-predicate is:

gorl(List,py,py--sPrm)-

where List contains positions of the cut-predicates.
The gorl-predicate is implemented in Smalltalk by slightly changing of the
Smalltalk code for the gor-predicate as follows:

gorl: assoc
; "General disjunction predicate with List."
| m n aList i tmpList |
(m := assoc key size ) <= 2 ifTrue: [ " self].
aList := assoc key.
tmpList := aList head.
( tmpList isKindOf: List ) ifFalse: [ self error: * not a list ! " ].
aList := aList tail.
i:=0.
[ aList isEmpty ]
whileFalse: [
is=i+ L
(tmpList hasObject: i )
ifTrue: |
self doGoal: (aList head) continue: [ ™ assoc value]

J
ifFalse: |
self doGoal: (aList head) continue: assoc value

aList := aList tail

J

In the following example we present a part of the Prolog program with the gorl-
predicate:
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gorl(List, feature_1(X), feature_2(X),...,feature_m(X)),
checkProfit(X),

pretation of this part of Prolog code might be the following one. List contains
ns of very important features of some material. If a material with at least one
ant feature is not profitable, the searching for the rest materials with other

An inter
the positio

yery import
features is stopped.

In the similar-way we may generalize and-predicate. In Prolog/V, and-predicate
s realised by the following Smalltalk method ([6]):

and: assoc

"Try to satisfy a list of goals."

| aList |

aList := assoc key.

[aList isEmpty] whileFalse: [

(self doOneGoal: aList head)

ifTrue: [aList := aList tail]
ifFalse: [~ self]].

~ assoc value

The corresponding Prolog notation of the and-predicate is:

and(py, Pp-+Pm) = Pis PaseeosPrw -

We suggest more general and-predicate by the following Prolog (pseudo)definition:

gand(k,n,p,,....Pp- s Pps--sPm) PiasssPasl
where is:
l1<ksn<m
We call this predicate from.a Prolog program by:

gand(k, n, p,... P)-

It is clear that for k=1 and n=m we have and-predicate.
This generalized and-predicate is realised by the following Smalltalk-method:

gand: assoc
"Try to satisfy a list of goals from position m ton "
| mnaListi |
aList := assoc key.
m := aList head.
aList := aList tail.
:= aList head.
aList := aList tail.




98 PROTIE, R. AND TO3I€, D.

m <= n ifFalse: [ " self ].
i:= 1. '
[ aList isEmpty not and: [ i < m ]]
whileTrue: [i:=i+1.
aList := aList tail

: J
(aList isEmpty )
ifFalse: [
[ aList isEmpty not and: [ i <= n |]
whileTrue: [

(self doOneGoal: aList head)
ifTrue: [ aList := aList tail.

i:=i+1]

ifFalse: [~ self]].

]
ifTrue: [ “self |.
~ assoc value

5. Conclusion

This paper has touched upon a number new predicates related to the control in
Prolog. It is unproductive to create these predicates in a Prolog application. An
acceptable solution is the implementation of these predicates in Smalltalk. The specific
organisation of Smalltalk provides the inheritance of those predicates from the others
Prolog applications. The usefulness of integration of two programming paradigms (Logic
and Object-Oriented) is evident.
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ABSTRACT: A possible solution of a dependency analysis problem is given by this paper. It can be
used as a useful part of most optimization schemes used in implementation of functional programming
Janguages. Implementation is given in 1SWIM - an untyped functional programming language, using
higher-order functions, leading to a short and abstract solution. It can be used as a description of a
dependency analysis algorithm and as a prototype to a more efficient implementation.

Key-words:  Functional Programming, Dependency Analysis, Higher-Order Functions, Strongly
Connected Components of Graph

1 INTRODUCTION

Functional programming represents one of the most important programming paradigms, next
to procedural, ‘object-oriented, logic etc. Together with logic programming style, functional
programming is considered as declarative, by which the problem is described (i.e. what is to be
solved), and not the recipe for its solution (i.e. how the problem is to be solved).

It is usually estimated that functional programming will have the most important role in the
future of computing and solving of the so-called "software crisis.” This claim is based on the
following three characteristics of functional programs:

0 Functional programs are short, concise, and easier to read and maintain than their
counterparts in any other programming paradigm (including logic).

0 Features and (in)correctness of functional programs can be formally proved.

0 Functional programs can be naturally and easily implemented on parallel architectures,

without introduction of any additional language constructions and concepts.

Functional paradigm has the mentioned three characteristics because of its powerful
fundamentals in mathematics (lambda-calculus). Because of that, functional programs do not have
statements (especially assignment statements), side-effects and explicit sequencing. Functional
programs are characterized also by static binding of identifiers and treatment of functions as "first
class citizens.” Besides that, some functional programming languages have a possibility of the
so-called lazy evaluation, which enables a dealing with infinite data structures. ‘

Currently there are many research directions in the field of functional programming. Among
the most interesting and the most proliferable is the application of functional programming style in

* This research is supported by Science Fund of Serbia
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different fields of "every-day" programming. An aim of this direction is to prove practically the
usefulness of functional programming paradigm and its advantages. For example, the small part of
investigations and implemented software systems based on functional programming paradigm is:
general remarks about tools and "procedures” applicable in many areas [5, 6, 9], purely functional
operating systems [7, 12], implementation of other programming paradigms [4], implementation of
some mathematical algorithms [11, 18, 19], classical software engineering tools and methods [15, 16]
etc.

This paper presents a solution of a dependency analysis that is a useful part of most
optimization schemes used in implementation of functional programming languages. The analysis is
implemented in ISWIM - an untyped functional programming language, using higher-order functions,
which directly lead to a short and abstract solution, (mostly) independent of concrete data structures.
Described implementatjon can be used as a description of a dependency analysis, as well as an
executable specification of an algorithm. If the implementation of 1swIM is not efficient enough, then
the presented solution at least can be used as a prototype for more efficient implementations.

The rest of the paper is organized as follows: section 2 contains a short introduction to a
functional programming language 1swiM, while section 3 contains a description of importance and a
verbal description of a common algorithm for dependency analysis. Section 4 in full details describes
1ISWIM implementation of an analysis. Section 5 concludes the paper.

2 SHORT COMMENTS ON iswiM

IsWIM (short for: If you See What I Mean) was intended to be a set of purely functional
languages with common basis. It was introduced in [13] and represented an important step ‘in the
development of functional languages. Perhaps the two most important improvements were: the strong
influence of lamibda-calculus to the design and features of the language and the implementation
technique via (virtual) SECD machine [14]. It can be said that 1swIM was the first declarative
language and a predecessor of the so-called modern functional languages whose best known
representatives today are Miranda (trademark of Research Software Ltd.) and Haskell [8].

From the point of view of LISP dialects (the only language with similar characteristics at the
time), 1swiM introduced infix operators, parentheses-free syntax, and local definitions in the form of
let or where blocks.

ISWIM is a functional language that satisfies all major criteria for a functional language [2,8]:
it lacks statements, explicit sequencing and side effects, treats functions as first-class citizens and is
lexically scoped (i.e. statically binds its identifiers). Moreover, ISWIM is:

L] the language with strict
semantics, which means thatitis | //insertion sort of list 1

: . { sort
incapable for lazy evaluation A fee

(although that can be easily sort(l) = 1l=nil -> nil;
insert(hd 1, sort(tl 1))
changed). X and insert(a,l) = l=nil -> [a];
° the untyped language, which a<=hd 1 -> a:l;

means that it has not a notion of hd 1l:insert(a,tl 1)

type, type checking nor the
introduction of user-defined types
in any way.

° the language in which the
functions returning functions are defined by "anonymous” functions or explicit definitions of
curried functions.

Fig. 1 An example of I1SWIM program
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the language that does not posses the sotcalled special syntax enhancements such as guards,
list comprehension and pattern-matching. In iswiM all expressions must be defined explicitly,
using primitive operators of the language.

Fig. | displays an illustrative example of 1SWIM programming - an insertion sort of list 1. An
exiended version of an 1swiM language is implemented at the Institute of Mathematics in Novi Sad
3, 10]. This version conforms to the major ideas of Landin’s original language. The main feature
of 1swiM that will be explored in this paper is its lack of typing, i.e. impossibility to introduce new |
data types. Instead of data types, higher order functions, in some cases, will be used.

3 DEPENDENCY ANALYSIS

The dependency analysis takes place when a set of identifiers is bound by a set of (potentially)
mutually recursive expressions in functional programs. Such constructions are often large and can be
rearranged in smaller and nested sets such reflecting the dependency among defined identifiers.
Moreover, there are often definitions that are non-recursive and need not be defined in the same set
with mutually recursive ones. The purpose of dependency analysis is to rearrange the set of definitions
such that: i) the set of mutually recursive definitions is minimal and as nested as possible and ii) to
separate the sets of mutually recursive definitions from non-recursive ones.

If dependency analysis is not performed, functional program is inefficiently executed and in
some cases impossible to type check (if functional language is strongly typed).

| 3.1 LETREC Blocks
The set of definitions in many functional languages and intermediate

forms is introduced by the so-called let or letrec blocks. Both blocks are of the | let[rec]
same (syntactic) form and can be represented as in Fig. 2. Let(rec) blocks X oat,

x, = def
replace expressions def; by the identifiers x;, i=1,...,n in the expression exp. Y i
The only difference between let and letrec blocks is in the scope of introduced x, = def,
3 5 s . . . 2 in exp
identifiers: in letrec blocks identifiers x; can occur in exp as well as in def,
while in the case of let expressions identifiers x; can occur only in exp.
Fig. 2 Let[rec] block

According to mentioned rules, letrec block is a suitable mechanism for
defining (mutually) recursive definitions, while let block is appropriate for
"ordinary” definitions. Let blocks can be (a much) more efficiently implemented. Let and letrec
blocks (or their equivalents) aré common for most functional languages and represent the way of
expressing recursion and/or term sharing.

3.2 An Algorithm for Dependency Analysis

A starting point for dependency analysis is the set of definitions defined in a letrec block.
Generally, analysis proceeds as follows (for more details see, for example [17]):

1, For each letrec block construct a directed graph (called dependency graph) where the nodes
are identifiers bound in letrec block. Node x is connected to node y if y occurs free in the
definition of x. Identifiers x and y (i.e. their definitions) are mutually recursive if there is a
two-way path between corresponding nodes in the graph (all nodes with such feature belong
to the so-called strongly connected component of a graph, later on: SCC).

2. Find all SCCs of the dependency graph [1].
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3 Sort SCCs of the dependency graph into dependency order. This can be achieved in step 2
by choosing appropriate algorithm for finding SCCs or by coalescing ali SCCs into single
nodes and then by performing topological sort of such coalesced graph. ‘

4. Produce a new arrangement of definitions, based on sorted coalesced graph. All singleton
components of a graph not pointing to themselves can be embodied into let blocks, while all
the other nodes can be transformed into letrec blocks. The order of let and letrec blocks
depends on sorted coalesced graph.

3.3 An Example

The work of dependency analysis will be illustrated on the mult
following (although very simple) example. Let the four identifiers
(multi, T1, x and T2) are bound by the following letrec block (in -
which all definitions are written as they would be in IswiM). Note
that function arguments are local to the particular definitions and \
are not considered during analysis: @ 12

a)

letrec multi(n) = x*n
T1(n) = n>1000 -> true; T2(multi(n)) ri72)
x = 10
T2(n) = n>1000 -> false; T1(n+l) in T1(80)

The dependency graph of the block is displayed in Fig. 3.a
and topologically sorted coalesced graph is displayed in Fig. 3.b.
Based on the latter graph, the following rearrangement of original
definitions is produced:

let x = 10 in
let multi(n) = x*n in
letrec Tl(n) = n>1000 -=> true; T2(multi(n))
T2(n) = n>1000 -> false; Tl(n+l) in T1(80)

Resulting definitions can be (considerably more) efficiently executed and are appropriate for
some type checking algorithms. They are also much easier to read.

4 AN IMPLEMENTATION IN ISWIM

In the following sections an implementation of dependency let’(’zc ;:fp)
analysis in 1SWIM is described. The only feature of ISWIM essential to (x; de(;)
implementation is that it is untyped language. Only untyped languages can
accept general lists as their arguments, and they usually "force" the
programmer to use higher-order functions instead of introduction of new

data types.

(x, def,)

Fig. 4 Representation of
let(rec) block
4.1 Graph Representation

Let and letrec blocks will be represented as list as displayed in Fig. 4, where exp is also a
list and def,, i=1,...,n consist of sequences of elements which can also be lists. List is most suitable
data structure for letrec blocks, because in practice in many languages and intermediate forms let and
letrec blocks are already represented as lists (various dialects of Lisp, Scheme, etc...). That way, no
special preparation for let(rec) blocks is needed prior to analysis. The language which could recognize
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eral lists as its data structure has to be untyped, because any strongly typed language couldn’t cope
with lists containing numbers, strings and other lists in the same time.

Graph will be represented simply by function g(x,y), returning true if there is an arc from
gtoy (later on: x > y) and false otherwise. List of lists could also have been chosen, but solution
jike this would be clumsy and not in the spirit of functional programming style.

Fig. 5 displays three functions for dealing
graphs. Function empty represents a graph with

empty(x,y) = false
link(L,J,g)(x,y) =
(L=x)&(j=y) -> true; g(x,y)

with
g0 arcs because for every two nodes it returns false.
function link "puts” arc i —> J in graph (function) g,
qch that it returns a new graph (function) of two
arguments x and y which to the old function g adds a
pew case which is to be tested.

Similarly, function unlink removes the arc i
> j from graph g. Note that functions link and unlink are higher-order functions which take
function g as their argument and return function as their result. Functions returning functions are in
this case defined as curried functions which is in 1sWIM done by writing two sets of arguments ((i,j,g)
and (x,y)) next to the function identifier.

Using these three functions any oriented graph can be constructed. For example the following
1swiM definition of function gr designates the function (graph) which contains arcs 1 —> 2 and 2 —->
3: gr(x,y) = link(1,2,1ink(2,3,init))(x,y). Note also that in some implementations of
functional languages (especially lazy ones) arguments (x,y) need not to be quoted on either side of

unlink(i,j,q9)(x,y) =

(i=x)&(j=y) -> false; g(x,y)

Fig. 5 Functions dealing with graphs

such a definition.

One of possible
versions of a function which
would  construct graph
g(x,y), from a letrec block
is given in Fig. 6. The
function is called with the
following parameters:
program (in the form of a
list and containing letrec

g(block, names, copy, graph) =
block=nil -> graph(x, y);
names=nil -> g(tl block, copy, copy, graph)(x, y);
memball (hd name, tl1 hd block) ->
g(block, tl name, copy,
link(hd hd block, hd name, graph))(x, y);
g(block, tl name, copy, graph)(x, y)

Fig. 6 Function for creating a graph

block), list of names (identifiers) defined in letrec block, same list again (for more convenient
function definition) and the function empty (i.e. empty graph). The result of a function is constructed

graph.

According to a depende;icy analysis algorithm, a function for construction of a reversed graph

is needed. As a reversed
graph of graph g, we
consider the graph in which
x—->y, ify --> x in graph
g. In 1swiM, that function
can be for example one
given in a Fig. 7. Basically,
this function uses two copies
of an original graph, tests
whether two nodes were
originally linked, and if they
were, in a second graph

revg(naml, nam2, nam3, graph, revgraph) =
naml = nil -> revgraph;
nam2 = nil ->

revg(tl naml, nam3, nam3, graph, revgraph);
graph(hd name, hd nam2) ->
revg(naml, tl nam2, nam3, graph,
link(hd nam2, hd name,
unlink(hd name, hd nam2, revgraph)));
revg(naml, tl nam2, nam3, graph, revgraph)

Fig. 7 Function for creating a reversed graph

unlinks first link and then links reversed one. Parameters of the function revg are list of names (three

.
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times) and graph (two times). Third copy of a list of names is needed to initialize recursive cail of

revg when nam2 becomes nil.
4.2 Steps of Algorithm

Function dfs (Fig. 8)
performs depth-first search on a
graph finding all paths between
graph nodes and create sets of
connected components. Dfs then
finds the "order of importance” of
those sets (for more- details see
[1]). Function is called with two
parameters, list of all defined
names and higher-order function
graph. After counting number of
connected components for each
node and sorting them in
descending order, as a result we
gain a sorted, associative, list of
all nodes with "number of
importance” assigned to it.

dfs(name, graph) =
inssort(count (find(name, graph, name)))
// Finds all paths from nodes given in name
and find(name, graph, copy) =
name = nil -> nil;
reverse(remove(search(hd name, copy,
nil, graph))) :
find(tl name, graph, copy)
// Finds a path for a single node
and search(vertex, names, path, graph) =
names nil -> vertex : path;
graph(vertex, hd names) ->
search(hd names, names,
vertex : path, graph) ++
search(vertex, tl names, path, graph);
search(vertex, tl names, path, graph)

Fig. 8 Function for performing depth-first search

Function scc (Fig. 9) reverse the original graph and performs depth-first search of reversed
graph according to sorted sets from previous step. Only parameter used is letrec block, but "middle”
functions use list of names and graph (created from letrec block). As a result, list of sets of SCCs

is gained.

Function move
rearranges original letrec block
according to SCCs found in
previous step of algorithm.
Function changes letrec block
into let blocks (when allowed)
and changes an order of letrec
blocks according to sets of
SCCs. Together with this
function, functions for finding a
definition which is to be
rearranged and function for
removing that definition from a
rest of a letrec block are used.

scc(block) =
midl(names(tl tl block), block,
g(tl tl block, names(tl tl block),
names (tl tl block), empty))
// Finds sets of SCC's
and midl(name, block, graph) =
mid(sort (name, dfs(name, graph), nil, nil),
block, graph)
// Finds path for nodes of a reversed graph
and mid(name, prog, graph)
remove (find(name,
revgr (name, name, name, graph, graph),
name) )

Fig. 9 Function for finding SCC's

That part of a program is given in Fig. 10. Function move is called with the following parameiers:
letrec block, set of SCCs, expression of a letrec block and constant true or false. Last parameter is
needed for deciding when to put that expression into resulting block.

4.3 The Program and Additional

Functions

The functions defined above are organized in a function depan, which is called in the

following way:




depan(block) =

In the whole
program several additional
functions are used. There
can be easily implemented
and we only enumerate their
pames and meaning:
function names(block) for a
given letrec block returns
the list of all defined
jdentifiers in that block;
function memball(x,l)
returns true if x is element
of 1 and all its sublists,
otherwise returns [lalse;
function reverse(l) returns
reversed list 1; function
inssort(l) sorts a list 1 into
an ascending order; function
remove(l) removes multiple
occurrences of elements of a
list 1; functipn count(l)
counts number of elements
for each list in a list of lists

DEPENDANCY ANALYSIS IN AN UNTYPED ...
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scc(block),

[hd block, hd tl block), true)

move (block, scc, exp, needed) =
scc = nil -> nil;
#(hd scc) =1 ->
[("let",
move (remdef (hd scc, block, nil),
tl scc, exp, needed),
(hd hd finddef(hd scc, block, nil) 1
41(hd finddef(hd scc, block, nil)))]);
needed -> exp ++
finddef (hd scc, block, nil) ++
move (remdef (hd scc, block, nil),
tl scc, title, false);
finddef (hd scc, block, nil) ++
move (remdef (hd scc, block, nil),
tl scc, exp, needed)
// Finds a definition in a letrec block
and finddef(def, block, res) =
block = nil -> res;
hd hd block in def ->
finddef (def, tl block, hd block :
finddef (def, tl block, res)
// Removes a definition from a letrec block
and remdef (def, block, res) =
block = nil -> res;
hd hd block in def ->
remdef (def, tl block, res);
remfun(def, tl block, hd block :

res);

res)

Fig. 10 Function for rearranging letrec blocks

I; function sort(name, count(l), aux, newl) which, using list of names and count(l), creates newl -

sorted list of SCCs.

5 CONCLUSION

Higher-order functions, proved to be an "elegant” and abstract way of solving some of the
problems which may arose during dependency analysis. However, in this analysis some data structures
could not be replaced by highee-order functions. For example, some intermediate results in finding
SCCs of a graph cannot be (simply) represented via functions.

Program written in 1SWIM (and described here) will be used as an prototype for an
implementation in procedural language. It will constitute the part of a compiler of functional
languages currently developing at the Institute of Mathematics. It will also be used for improving an
algorithm of dependency analysis given in this paper.
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CONSTRUCTION OF THE TRANSLATOR FROM ROBOTIC PROGRAMMING
LANGUAGES

Milo§ Rackovié', Institute of matematics
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Keywords:Robotic programming language, translator, compiler-compiler.

Abstract:A new robotic language comprising some basic structures of the robotic
Janguage Pasro and some commands of the modified robotic language of the robot
ROBED-01 Is described. Construction and methodology of Implementation of a
ranslator from this new language Into the modified robotic language of the ROBED-01

are discussed.

1. INTRODUCTION

One of attractive research fields in robotics Is the robot programming. A number
of compilers for robot-oriented programming languages have been constructed, viz.
SRL, PASRO, AL, AML, VAL, etc. [1]. The methodology of compiler construction used
for general-purpose programming languages can also be applied for these languages.

In [2-4], construction and the implementation methodology of a translator for
robotic languages with the aid of the compiler-compiler Coco-2 [5] have been
described. This translator has been intended for translating the basic structure of the
robotic programming language Pasro [ 6] into the robotic language of the ROBED-01
robot. This paper is concerned with a new robotic language (NRL), composed of basic
commands of the programming language Pasro and of some commands of the
modified robotic language of the robot ROBED-01, invented in Institute Mihajlo Pupin
in Belgrade (RLMP). Basic methodology of construction and implementation of a
translator from NRL into RLMP is discussed.

2. NEW ROBOTIC LANGUAGE

In NRL are adopted some basic components of the robotic programming
language Pasro. The syntax structure of NRL is similar to thet of Pasro and the basic
commands of strctured programming (while, if then else,...) are adopted. Also it is
adopted the cbncept for the robot operation (motion commands, frame concept,...).

This paper Is supported with Serbian Fondation of Sclence
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However, because of the Iimitation of the RLMP, the complete structure of Pasro has
not beep adopted.

In order the new language would have all the advanteges of RLMP, some
~,commands from RLMP which are not supported in Pasro language were also built-in
:In NRL. The syntax of these commands has been adapted to the syntax of the NRL
language.

A detailed descrlption of the NRL structure via EBNF recording, which is a part
of the lnpu‘t file for Coco-2, will be given in Section 3.

3. CONSTRUCTION OF THE TRANSLATOR

In Fig. 1 Is presented a part of the input file for Coco-2, describing the syntax
structure of the NRL, as well as the semantic actions which transiate the NRL
structures into the corresponding structures of RLMP (after the official word SEM),
These actions are realized by the procedures written In programming language
Modula-2 [4].

RULES
Prog = LOCAL <<VAR spix:INTEGER;>> SEM <<InitDat;>>
"program" ident <<spix>> ";" Block "." SEM <<CloseDat;>>.
Block = LOCAL <<VAR val,spix,lab:INTEGER;>>
[ "var" SEM << InitVar;>> Variables { Variables } ]
{ "procedure" ident <<spix>> ";" SEM <<NewProc(spix, lab) ;>
"begin" Statement { ";" Statement }."end" ";"
SEM <<CloseProc(lab);>> } w
"begin" Statement { ";" Statement } "end".
Variables = LOCAL <<VAR spix,ind,tyval,val,vall:INTEGER;
VAR defvar:ARRAY [1..100] OF INTEGER;>>
ident <<spix>> SEM <<ind:=1;
NewVar (spix,defvar,ind) ;
val:=0;
vall:=0;>>
{"," ident <<spix>> SEM <<ind:=ind+1;
NewVar (spix,defvar,ind) ;>> }
":" Type <<tyval,val,vall>>
SEM <<SetType(defvar,ind,tyval,val,vall);>> ";"
Statement = LOCAL <<VAR ind,spix,val,hlab,hlabl,stval:INTEGER}
VAR markvar,markvarl, inval,zero,tyvall: INTEGER;
VAR reval:REAL;
VAR indic:BOOLEAN;
VAR arrspi,arrpar,arricen,arrval,arrtyval:ARRAY
(1..10] OF INTEGER;
VAR arrcon:ARRAY [1..10] OF REAL;
VAR tx:ARRAY [0..100] OF CHAR;>>
[ Variable <<spix>> SEM <<val:=0; indic:=FALSE;>>
[ "[" UnsignedInteger <<val>> "]" SEM <<CheckArr (spix,val)i
indic:=TRUE;>> ]
":=" Expression <<tyval,inval>> SEM <<CheckIndic(indic spix"
Setval3(spix,tyval,inval,val)i?
| RobotVar <<tyvali>> "[" Unsignedinteger <<val>> “]"
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SEM <<CheckVal(val);>> ":=" Expression <<tyval,inval>>
SEM <<SetValJdoint(tyval,inval,val,tyvall);>>
ngpeedfactor" ":=" UnsignedNumber <<tyval,inval,reval>>
SEM <<SpeedCheck(tyval,reval);
SpeedTrans (reval) ;>>
procedureldentifier <<tyval,spix>> SEM <<ind:=0;
indic:=FALSE;>>
[ ActualParameterList
<<arrspi,arrpar,arricon,arrtyval,arrcon, ind>>
SEM <<indic:=TRUE;>> ] SEM <<IF tyval <> 0 THEN
CheckParam(tyval,1nd,arrspi,arrpar);
TransProc(tyval,ind,arrspi,arrpar,arricon,arrtyval,arrcon)
ELSE
CheckParProc(indic,tyval);
CallProc(spix)

END; >>
"write" "(" SEM <<FOR ind := 0 TO 100 DO
tx(ind]:=" !
END;>>

( string <<tx>> SEM <<TextTrans(tx);>> | SEM <<ind:=0;>>
WriteList <<ind,arrspi,arrpar,arrval>>
SEM <<WriteTrans(ind,arrspi,arrpar,arrval);>> ) ")"
"acg" " (" ListGraf <<ind,arrtyval,arrval,arricon>>
SEM <<CheckAcq(ind,arricon); FOR inval := 0 TO 100 DO
tx[(inval]:="' !
END; >>
namedat <<tx>> " ," UnsignedInteger <<val>> ")"
SEM <<AcqTrans(ind,val,arrtyval,arrval,arricon,tx) ;>>
"begin" Statement { ";" Statement } "end"
"if" BoolExpression <<tyval,spix,markvar>> "then"
BEM <<Ifstat(tyval,spix,markvar);
Label (hlab) ;>> Statement
[ SEM <<Labe11(h1ab) >> "else" Statement ]
SEM <<Label2 (hlab) ;>>
"while" BoolExpression <<tyva1,spix,markvar>> fdo"
SEM <<Label4 (hlab);
Ifstat(tyval,spix,markvar);
Label (hlabl) ;>> Statement SEM <<JmpStat (hlab);
Label2 (hlab1l) ;>>
"repeat" SEM <<Label4 (hlab);>> Statement { ";" Statement }
"until" BoolExpression <<tyval,spix,markvar>>
SEM ‘<<IfStat(tyval,spix, markvar),
Label3 (hlab) ;>>
"for" Variable <<spix>> ":=" SEM <<zero:=0;
CheckVar (spix, zero) ;>>
Expression <<tyval,inval>> SEM <<CheckExpr (tyval,zero) ;
val:=0;
Setval3 (spix,tyval,inval,val);
PutStack (spix) ;>>
Step <<stval>> Expression <<tyvall,inval>> "do"
SEM <<CheckExpr (tyvall,zero);
SubInd (markvar,stval);
Label4 (hlab) ;
Ifstatl;
Mark (markvar) ;
JmpStatil(hlabl) ;>>
Statement SEM<<IncDec(stval,spix,markvar);
JmpStat (hlab) ;
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Label5 (hlabl) 3>> ].
Step <<VAR stval:INTEGER>> = "to" SEM <<stval:=1;>>
’ "downto" SEM <<stval:=2;>>,

Type <<VAR tyval,val,vall:INTEGER>> = ( OrdinalType <<tyval>>
! Warray" "[" UnsignedInteger <<val>> ".."
UnsignedInteger <<vall>> "]" SEM <<CheckInd(val,vall);>>
"of" OrdinalType <<tyval>> ).

ordinalType <<VAR tyval:INTEGER>> = "integer" SEM <<tyval:=0;>>

| "real" SEM <<tyval:=1;>> ! "boolean" SEM <<tyval:=2;>>
| "frame" SEM <<tyval:=3;>> | "thetai® SEM <<tyval:=4;>>
| "rotation" SEM <<tyval:=5;>> | "rotmatrix" SEM <<tyval:=6;>>
| "vector® SEM <<tyval:=7;>>.

ListGraf <<VAR ind:INTEGER;

VAR arrtyval,arrval,arricon:ARRAY OF INTEGER>> =
' LOCAL <<VAR tyval,val,vall:INTEGER;>>
vVarGraf <<tyval,val,vall>> :
i SEM <<ind:=1; arrtyval{ind]:=tyval;
: arrval[ind]:=val; arricon[ind]:=vali;>>
{ VarGraf <<tyval,val,vall>>
SEM <<ind:=ind+1; arrtyval[ind]:=tyval;
arrval[ind]:=val; arricon[ind]:=vall;>> }.
ActualParameterList
<<VAR arrspil,arrpar,arricon,arrtyval:ARRAY OF INTEGER;
VAR arrcon:ARRAY OF REAL;
VAR ind:INTEGER>> =
LOCAL <<VAR spix,tyval,tyvall,inval,val:INTEGER;
VAR reval:REAL;>> SEM <<arrpar[ind+1]:=0;>>
(" ( Variable <<spix>> SEM <<arrpar{ind+1ij:=1;>>
| RobotVar <<tyvall>> "[" Unsignedinteger <<val>> "]9"
‘ SEM <<arrpar{ind+1]:=2;
CheckVal(val) ;>>
| SignedNumber <<tyval,inval,reval>> ) SEM <<ind:=ind+1;
‘ IF arrpar([ind] = 1 THEN
arrspi[ind]:=spix
ELSIF arrpar[ind] = 2 ' THEN
arrtyval[ind]:=tyvall;
arrspi[ind]:=val
ELSIF tyval=1 THEN
arrcon[ind]:=reval

ELSE
arricon[ind]:=inval
END; >>
SEM <<arrpar([ind+1]:=0;>>
f Variable <<spix>> SEM <<arrpar([ind+1]:=1;>>

RobotVar <<tyvall>> "[" UnsignedInteger <<val>> "]"
SEM <<arrpar[ind+1]:=2;
CheckVal(val) ;>>
| SignedNumber <<tyval,inval,reval>> ) SEM <<ind:=ind+1}
IF arrpar{ind] = 1 THEN
arrspi(ind]:=spix
ELSIF arrpar[ind] = 2 THEN
arrtyval[ind]:=tyvall;
arrspif(ind]:=val
ELSIF tyval=1 THEN
arrcon(indj:=reval
ELSE
arricon{ind]:=inval
END;>> } ")"
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wWwriteList <<VAR ind:INTEGER;
VAR arrspl,arrpar,arrval:ARRAY OF INTEGER>> =

LOCAL <<VAR spix,vall,val,tyval:INTEGER;>>

SEM <<arrpar(ind+1]:=0;>>
variable <<spix>> SEM <<arrpar[ind+1]:=1;>>
n[(" UnsignedInteger <<val>> "]" SEM <<arrpar([ind+1]:=2;>> ]
RobotVar <<tyval>> "[" UnsignedInteger <<vall>> "]"
SEM <<CheckVal(vall);>> ) SEM <<ind:=ind+1;

IF arrpar[ind] = 0 THEN
arrspi[ind]:=vall;
arrval[ind]:=tyval

ELSE
arrspi[ind]:=spix;

IF arrpar[ind]=2 THEN
arrval[ind]:=val

—— g,

END
END;>>
" SEM <<arrpar[ind+1]:=0;>>
( variable <<spix>> SEM <<arrpar([ind+1]:=1;>>

[ "(" UnsignedInteger <<val>> "]" SEM <<arrpar([ind+1]):=2;>> ]
| RobotVar <<tyval>> "[" UnsignedInteger <<vall>> "]"
SEM <<CheckVal(vall);>> ) SEM <<ind:=ind+1;

IF arrpar(ind] = 0 THEN
arrspi[ind]:=vall;
arrval[ind]:=tyval

ELSE
arrspi[ind]:=spix;

IF arrpar[ind]=2 THEN
arrval[ind]:=val
END
END;>> } .
Expression <<VAR tyval,inval:INTEGER>> =
LOCAL <<VAR tyvall,tyval2,opval:INTEGER;>>
Term <<tyvall,inval>> SEM <<tyval:=tyvall;>>
{ AddOp <<opval>> Term <<tyval2,inval>>
SEM <<AddExpr (tyval,tyvall,tyval2,opval);>> }.
AddOp <<VAR opval:INTEGER>>= nyn SEM <<opval:=1;>>
| onen SEM <<opval:=2;>> | "or" SEM <<opval:=3;>>.
Term <<VAR tyval, inval:INTEGER>> =
LOCAL <<VAR tyvall,tyval2,opval:INTEGER;>>
Factor <<tyvall,inval>> SEM <<tyval:=tyvall;>>
{ MulOp <<opval>> Fac