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Preface 

The first Conference of the Seminar for Logic and Computer Science was held in 
Novi Sad in 1987 and up to now it has been regularly held though there were no proceedings 
of the conferences. 

The VI Conference of the Seminar for Logic and Computer Science LllH ~.l took place 
at the Institute of Mathematics in Novi Sad, on 29th, 30"', and 31ot of October 1992. The 
Conference was well attended. There were 33 communications, 44 participants, 18 papers 
and 15 abstracts in spite of all difficulties which have befallen Yugoslavia at that time. 

This volume contains all accepted papers and abstracts of the Conference. All 
presented papers were reviewed by at least two members of the Programme Committee 
and/or by other competent specialists. 

We use this opportunity to express our thanks to all members of the Programme 
Committee for their effort and participation in the organization of the Conference. 

Special thanks goes to the sponsors of the Conference: 

- University of Novi Sad, and its rector Dr D. Herceg, 
- Institute of Mathematics in Novi Sad, and its director Dr A. Takaci, 
-City of Novi Sad, and its major Dr V. Divjakovic, 
- EPS JP Elektrovojvodina, Novi Sad, and Miss M. Zmic, 
-Elite Computers, Novi Sad, and Mr Z. Nadlacki, 
- Sojaprotein, Becej, and Mr B. Bjekic, 
- S Panonija Komerc, Novi Sad, and Mr M. Milicevic, 
- Efekt, Sremska Kamenica, and Mr Z. Slavik. 

Novi Sad, April 1993. Dura Paunic, Ratko To§ic, editors 
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PROCEEDINGS OF TilE VI CONFERENCI 11N 

L OGIC AND COhiPUTER SCIENCE LIRt/ V.l 
oVI SAD, OCTOilER 29-31, 1992 .. PI' . I • g 

SOME COMMENTS ON PROG J\MMING IN PROLOG 

Draga n M. A ·kc la and Sncia na Mal i '-I< c kic 

Inst itute of. [;,L h rn<1ti s, 21000 Novi Sad , 
Trg Dosil ejil Obradov ib I , Yug sla.via 

Abstract 

A number of hints conc<' rnin g; writing progran1s in PROLO :is poiuleu to an d 
illust rated by examples. f:n,pliasis is put on th r (global) stack problciiiS r btl d L 

programs of a combin atorial natu re. 

Key words and phrases: t r<~n s lation to PTI ULO G, stack O\' rflow, ba ·klracking 

1 Intr oduction 

It is well-known that PROLOG is a d clan1f i\· programmiug laugnngc based on 
backtracking search . Motivated hy our program1uiug experience, w · nrc making some 
comments concerning the following related. questions: 

• translation from a procedural programming h1 nguage (say, I AS CAL) to PROLOG 

o advantages of declarat ive npproach with problems of a combiunt.orial nature 

• stack limitations and way ~ of overcoming stack problems 

o possibili t ies of an immedin tc control over t.II c backtracking process 

T he presented examples were tested on ARITY PROLOG, versioll 4 .0. 

We usc the well-known PTIOLOG predicates: member, append, r everse, d e c, inc, 

minimum, s um (members of a li st.) . (see , e.g. [2,3 ,.J ,5]) . 

2 Some hints concer ning translat ion to PROLOG 

2.1 Output files 

The following (non-st andard) possibility may lJc used for writing iu to output files: 
The command create(Out, 'outfile. ') creates an output file called "outfile". 

Commands of the form wri te (Out , ... ) are fmthcr used for writing iuto "outfile" . 
It is required that the variable Out is always unified. (directly or indirec tly, by using 
Out as an additional predicate argnment) with Out in the call of create . 
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2.2 For~loop 

We sketch two possibilities for simulating PAS CAL for-loop of the form: 
for i := min to max do action( i ); 

a) ( [7], nrev.ari action :- for( Min, Max, I), action(!), fail. , 
where the predicate for is defined by: 
for( Max, Max, Max) ! . for( Min, Max, Min) . 
for( Min, Max, I) :- inc( Min, Minl ), for( Minl, Max, I ). 

b) The call for( Min, Max, I) can be substi t uted by producing a list, from which 
the indices of for-loop will be chosen: int erval( Min, Max, Interval ), 
choose ( I, Interval) , where Interval = [ Min, Min+1, . . . , Max ] . 

The predicate interval can be found in [3], pp.l20, while the predicate choose 
is very similar to member , without cut in member (X, [X IT]) . ! . 

2.3 Some applications related to the predicate fail 

It is well-known that the predicate fail may force producing all the answers to a 
question. Each of these answers may correspond to a combinatorial object from a class 
of objects which is being generated. We proceed with some other related hints. 

2.3.1 Counting passes through a fail-base d loop 

The total number of objects generated by applying fail can be determined by 
applying an outer counter with in the working memory. Let one clause of the form "c." 
be added for each generated new object. The value of the counter Number can be 
determined in the following manner: 

generate 
generate 
count(N) 

generate_and_write_down_new_object, assert( c ) , fail . 
count( Number), write( Number). 
ret ract ( c), ! , dec( N,Nl ), count(N1) . count( 0 ) . 

If the required combinatorial objects are obtained from a broader class of objects 
(candidates) , then it might be in terest ing to count the number of unsuccessful attempts, 
i. e. the number of tested candidates before one goo d candidate is found. In this case 
the first clause of generate can be replaced by t !Je following one: 

generate generat e_candidate( Candidate), assert( c), 
good_candidate( Cand idate), count( Number), write(Number), fail . 

We used this method to cou11t the number of att mpts with the PTIOLOG program 
for solving the "5 houses" problem by Lewis Baxter ([4] (Problem 85., pp. 151), [7], 
zebra.ari ). Inst ad of t sting the total of (5! )5 = 24.883.200.000 1 ossi bili t ies for 
colours, drinks, nationalities, cigarettes and pets , \\"hich ar correspomling to each one 
of the five houses, it turn d ou t that t he program tested only 11() candidates, each one 
of which satisfied a set of fourteen constraiuts. 011ly one of thes candidates was good 
iu the sense that it pH.Ss d the p Tmu tations' test (no overlaps and duplicat s). 
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2.3.2 Assignment to a "global" var ia ble 

A brute simulation of the PASCAL assignmcnllo a global variabl can b p 
by using the bui lt-in predicat s retract and assert , with possib l us 

rform d 
f fail 

in the first case. 
Thus the assignment a [i, j] : = x 

clean( I, J ), assert( a( 
clean ( I, J ) :- retract ( 

to a global matrix a 
I, J, X) ) , whcr : 
a(I , J, Y) ), fail . 

cnn be r placed by 

clean ( _, _ ) . 
The second clause of the predicat clean may be omitted, provided lhat one of 

the following two situations occurs: 

a) thecal! clean( I, J) is replacedby no t clean( I, J) (lhename "clean " 
would be also r asonablc to be replaced by "non_c lean" in that case) 

b ) the calls of clean and assert are separated into two consecut ive clauses with 
the same head 

Ifwearesurethatmultiple formercallsofthe form assert( a( I, J, _)) 
were not possible, then fail need not be used and the call of clean can b e completely 
substituted by the call of ret ract . 

2.3.3 "Nesting" fail-based predicates 

The following example (ou tput of an m x n matrix) demonstrates a possibility 
of using nested predi cates which use fail (" nwM" and "nwR" arc abbrevia tions for 
"non_ wri te_rnatrix" and " non_ wri te_row" respectively): 

nwM(M,N) :- for(l,M,I), not nwR(I,N ), nl, fail. 
nwR(I,N) : - for(l,N,J), a(I,J,AIJ ), write(AIJ), fail. 

A shorter way to write down the same thing would be: 
nwM(M, N) :- for(l,M,I), nl, for(l,N,J), a(I,J,AIJ), write(AIJ), fail. 

3 Three approaches to translating to PROLOG 

Each loop in PROLOG is activated either by recursion or by use of the predicate 
fail. On the other hand, PASCAL is a procedural language, which supports recursive 
programming. There are a lot of problems in which the use of PASCAL recursion 
is arbitrary: it can be used , but need not 1 . Suppose that we have both iter at ive 
and recursive PASCAL program for a problem. There are three choices for writing a 
PROLOG program for the same problem: 

1. to simulate an iterative PASCAL program; the main PASCAL loop is replaced by 
a PROLOG recursion 

1 our experience says that in most situations the iterat ive versions are more effective. For example, 
when generating random latin squares with an iterative PAS CAL program (see also Section 5.), the stack 
overflow error has appeared at size 23, while this error was present already a t size 13 with a recursive 
program, based on the same algorithm. 
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2. to simulate a recursive PASCAL program; the PASCAL recursion is directly re­
placed by a PROLOG recursion 

3. to write a PROLOG program independently of the PASCAL programs; advantages 
of declarative programming are used 

We illustra te these approaches on the example of generating partitions of nat ural 
numbers. 

3 .1 Simulating iterative partitions 

An iteration for genera ting partitions is explained by the following example: 
Let be given N = 16 and Partition= [5,4,1,1,1,1,1,1,1] of N . The lexi­

cographically next partition Next = [5,3,3,3,2] is obtained by joining lists 
First_part = [5, 3] and Second_part = [3, 3, 2] . First_part is obtained by 
deleting all the 1's from Partition and by decreasing by 1 its las t element greater than 
1 (i.e., 4) to the value Last = 3. Sum of members of First_part is determined 
(tllis sum is equal to 8) . Second_part is obtained by adding summands equal to 
Last until N is reached (only the last summand of Second_part may be smaller 
than Last) . 

We give the "shell" of a PROLO G predicate next_partition, which performs this 
main step: 

next_partition( N, Partition , Next ) :­
make_first_part( Partit ion, First_part, Last ), 
sum( Fi rs t_par t , Sum) , 
make_second_part( N, Sum , Last, Second _part ), · 
append( First_part, Second_part, Next ) . 

The main loop for generating all the partitions of N is simulated by calling p (N ) : 

p ( N ) :- p ( N, [N] ) . 
p( N, [l iT] ) :- write( [liT] ) , ! . fail. 
p( N, Part ition ) :- write( Partition), nl, 

next _partition( N, Partition, Next ), p ( N, Next ) . 

3.2 Simulating recursive PASCAL partitions 

The following recursive PASCAL procedure p ([6], pp.116, sec. 6.1.6), called by 
p ( N, 1, 1 ) generates all the parLi tions of N 

procedure p( N, Min, K: integer); 
var I: integer; 
begin for I:= Min to (N div 2) do 

begin Partition[K] : = I; p( N-I, I, K+l end; 
Partition[K]: = N; write_down( Partition ) 

end; 
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Th corresonding PROLOG program for g n raling partitions f N has lh f llow­
ing utlook: 

p ( N ) : - p ( N, 1 , [) ) , fail . 
p( N, Min, Temp) 

Max is N I I 2, 

N_I is N - I, 
p( N, _ , Temp ) 

interval( Min, Max,Int ), choose( I, Int ), 
p( N_I, I, [ I I Temp ) ) . 

reverse( [ N I Temp), Partition), vrite( Partition), nl. 

The second and the third row of the second claus correspond to the for-loop and to 
the action( I ) respectively 

Note that the recursive call of p is almost dir ctly simulated from the PASCAL 
version. The main difference b tween the PASCAL and PROLOG versions is the way 
of writing chosen summands ( I ) into partitions. In the first cas arc for that purpose 
used array indices (third arguments of p ), whil in the second case new summand is 
written as the head of a list (this implies ncccesity for reversing) . 

3.3 A direct construction of partitions in PROLOG 

The following PROLOG program generates partitions of N as lists of non-increasing 
summands. Each partition is generated by iterative addition of a new summand, which 
is not greater then the last chosen summand 2 (Min) and the compl m nt (Rest) of the 
current partial sum. The added summand (I) becomes the head of the list with the 
current unknown tail T (advancing along the partition corresponds to decrease of the 
tail). 

p(N) 
p(N, 
p(N, 

p(N, N, 0, Partition), vrite(Partition), nl, fail. 
N' [)) : - ! . 

Min, Sum, [IIT) ) :-
Rest is N- Sum, minimum( Min, Rest , Current_max), 
interval(!, Current_max, Int), choo se(I, Int), 
Suml is Sum + I, p(N, I, Suml , T) . 

4 Some experiences with stack limitations 

In this section will be described a number of tests with simple PROLOG programs. 
The purpose of these tests was to determine the (global) stack limitations and the 
influence of small alterations of the programs (such as, e.g., adding or reordering some 
conditions and clauses) to these limitations. 

The main predicates of these programs have only one natural number ( N ) as an 
argument . Each test should determine the maximum value M = max( N ) of N, for 
which a program works (gives the answer "yes") . If this value is increased by 1, then 

2 to preserve the non-increasing ordering 
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the execution of the program is aborted, due to the stack overflow. The maximum value 
of N is effectively determined by using the halviug technique. 1: 

Two main predicates: g ("good") and b ("bad") were used for tests : 
g(N) :- g(N,O). g(N,N) :- ! . g(N,K) : - K1 is K+1, g(N,K1) . 
b(N) :- b(N,O) . b(N,K) :- N > K, K1 is K+1, b(N,K1). b(N,N). 

Both of these predicates are devoted to execution of the same task: to make the 
required number N of passes through a loop. T he cut condit ion, respectively the 
condition N > K, are used for breaking the recursive calls. 

"Good" and "bad" version differ in the position of the recursive clause. The corre­
sponding maximal values lvf were found to be equal to 59377 and 524 respectively 3

. 

It is interesting that lvf increased to 580 with the predicate b , when the condition 
K1 is K + 1 was replaced by the more effective built-in predicate inc(K,K1) . It 
turned out that the value of Jvf with the predicate g is disk-space-dependent 4

. 

Thevaluesof M withcomposedcalls "ct(N) :- b (N),b(N).", 
" c2 (N) :- g (N) , b (N) . " and "c3 (N) :- b (N) , g (N) . " have an interest ing behaviour: 

M with c1 is equal to 261, which is almost exactly half of 524 = lvf with b ; 
M with c2 is also equal to 524 (it took~ 10 sec both for success with N = 524 and for 
failure with N = 525). lvf with c3 is equal to 523; however, it took approximately 2 sec, 
30 sec, 1 min, G min for success with N equal to 250, 500, 512 and 523 respectively, and 
only 10 sec for fai lure with N = 524. Explanation: the first call of "bad" b occupies a 
large part of global stack, and leaves li ttle room for the work of g . 

The following two predicates, g3 and g2 5 , arc obtained from g by introducing a 
list argument: 

g3(N) :- g3(N,O,L), write(L). g3(N,N,L) :- !. 

g3( N, K, T ) :- K1 is K + 1, g3( N, K1, [ "H" I T] ) . 

g2(N) : - g2(N,L), write(L). g2(0,[]) : - ! . 

g2( K, [ "H" I T] ) K1 is K - 1, g2( K1, T ) . 
Two more predicates, b3 and b2 , are introduced so that the relationship between 

the predicates, b3 and g3 , (also b2 and g2 ), is the same as the relationship 
between the predicates, b and g. 

The following table contains the values of M obtained with 20 tests, which included 
lists. "Good" and "bad" pr dicates are denoted by g and b. Columns are indexed 
by tri1les VWH, where "V" from {2, 3} denotes whether the "3" or "2" version of 
the predicate is used, "W" from { w, n} denotes whether or not the c<1 l! of write is 
activated , "H" from { 1, K, N} denotes the variable which replaces " H " in predicates: 

3w1 
g 4064 
b 451 

3wK 
3251 

451 

3wN 
3251 
451 

3nl 
4065 

451 

3nK 
3252 

451 

3nN 
3252 

451 

2w1 
5418 
5-112 

2wK 
4064 
4059 

2n1 or 2nK 

32767 
32767 

3 The discussion concerning Lhe ancestor predicate in [2], sec. 2.6.2. and [:!], sec. 3A., says LhaL 
Lhe order of conditions within a r cur. ive clause mny have a IIIlich hi gher influ en ce Lo Lhe slack overfl ow 
Lharr Lh e ord er of claus s Lh 111 lv . II ow v r, Lhis example shows Ll1 aL Lhis second ord er may also have 
a high influ ence. 

4 we give Lire following exp lnnaLion: if N > 32767, tlr n the predicate is operates wiLir real 
numb ers. Th e t sLs s how th at Arity l'rolog lnterprrter us !< di~k when manipu lat irr g these nu111 bers . 

5 numbers "3" and "2" arc eq rral lo the m;uimal numb r of arguments 
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T h lastcolumnisexplain •dbyen Lering reaJ ;uit hmeti ·aL 215
• "2"v rs ionss ml 

be mor ffi i nt than th co rn•rsponcling "3" versions, sp cially will1 b pr di al s 
r wh n th writing is x ·luI d. Ther is no Hil l h diff r n b tw ' ' Il b and g 

pr dicates of " 2" versions. It is int resting thal "g3K" and "g3N' v rsions gave lh 
am r sui ts, which differ d from the valu s for "g31" v rsions (simil arly li ke "2w 1 ' 

and "2wK"). Also note sim.il nr res ults for "2wK", " 3wl" and " 3n l " v ·rsi ns of g . 
A "good-good" composed call of the v rs ion ''3w N" makes a very small r d uction of 

M in comparision with th single call (3249 v rsus 3251 ). 

5 A way for overcoming sta ck problems 

T he m ain "shell" of a backt racking procedure has the following oull ok : 

REPEAT 
IF forward_ condition THEN BEGIN 

Step_forwards ; 
IF output_condition THEN 

BEGIN Output( New_object ); St ep_backwards END END 
ELSE Step_backwards 

UNTIL end_condition 

When implement ing a backtracking procedure, the bui lt-in backtmrki ng gives the 
PROLOG user two important advantages: 

• he need not write down the details of St ep_forwards and Step_backwards 

• moreover, he avoids IF-THEN-ELSE branching on forward_condition, which 
enables overcoming the stack problems like those in the foll owing test with only 6 

M = 722 : g(N) : - g( N,O) . , where: g(N,N) : - ! . 

g(N,K) : - K1 is K+1, K mod 2 = := 0 , ! , g(N,K1). 
g(N,K) :- K1 is K+1, K mod 2 =:= 1, ! , g(N,K1). 

This leads to a space optimal implementation 7 • 

Let some combinatorial objects be general d by backtracking and let PROLOG 
be the used programming language. We are going to describe in more detail how to 
replace IF-THEN-ELSE branching, which leads to a contrail d backtracking, by the 
built-in PROLOG backtracking. 

The objects should be represented by lists, which are gradually beeing extended. 
Each new member H is added (as a new head) to the former sub li st T , provided that 
forward_condition is satisfied. Thus we obtain tl1e following PROLOG "shell": 

objects : - new_object ( [], L ), output( L ) , fail. 
new_object( L, L) :- output_condition( L ), ! . 

new_object( T, L ) :-
forward_condition( H, T ), new _object( [HIT], L). 

6 compare with M > 50000 with the predicate g in Section 4. 
7 the point with such an implementation is the possibility of the program cxccut.ion, disregarding the 

necessary time 
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5.1 Generating latin squares 

We illustrate above ideas on the example of generating latin squares, N X N 
matrices with elements in the set S(N) = {1, .. . , N ), such that no two clements appear 
in the same row or column. 

Each latin square A may be generated by a backtracking procedure, an elementary 
step of which is an attempt to fill in a field of the square. The field (i,j) may be 
fi lled in only if all the fields ( i', j') have already been filled in, where i ' < i or 
((i' = i) and (j' < j)). 

Each element A(i,j), 1 :::; i,j:::; N, is chosen from the set 
S( i , j) = W (i , j)- C(i,j), where: ' 

W( i , j ) = S(N) - ( U ~-;;,~ A(i, k) U U ~~\ A(k,j) ) , 
while the set C( i , j) is determined as follows: 
- each Step_forwards acti vated on the positiou (i,j) adds the new chosen element 
A(i,j) to the set C(i, j ), while each St ep_backwards makes C(i,j) equal to the 
empty set . 

T he f or ward_ c ondit ion on the position (i,j) is that S(i,j) is non-empty. 
Doth iterat ive and recursive PASCAL implemeutations of this procedure were de­

scribed in [1] . 

The PROLOG implernentRtion based on the ;1hove "shell" uses: 
output _c ondit i on ( L) length of L is equal to N 2 

forward_condition( H , T ) : H E W(i, j), where 
1 :::; j :::; N and the length of the sublist T is equal to (i- 1) · N + j - 1. 

A consequence of using the built-in backtracking is the replacemcut of the se t S( i , j ) 
by the simpler set W(i,j) with forward_cond ition in the PROLOG version. Each 
choice of H corresponds to a. new node of the PROLOG search tree, and the set 
C( i, j) is not neccessary. 
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Abstract. \iVe propose a revision of th sys t ma.tizati n f math -
n atit:al know! clgc, haviug iu mind some rel ·vant logi c 1rincipl s. The 
bas ic r quir m •nt of snch au approach, wbi :b an be ·all d relativi.mt, 
is to rela tivize each mathcmaticcd stat<'m<'nt to the minimal math mat­
i al, logi al and lingu isti c context iu whicl1 the considered stat mrnt 
·an b proved. The m ethodology of the inves tigation of form , 1 math­
matical and logical sys tems , their complexity, relatioships tc, · w ll 

as the difFerent kinds of indep<'dcm<~ results, will be of th pa.rti ·nbr 
interes t for the realizat ion of such <1 program. 

; 

' 

In order to present our standpoint picturesqu ly, let us nsid ·r 
an imaginary example. Suppose we h av<-~ collected tllC whol ! cxi.·ting 
mathematical tex ts in one place. The mathemati cal s tatcnwuts, to­
gether with their proofs, are tbe most impor tant compou<·uts of th().'e 
texts. Thi s is the reason why we have to di s tinguisb the proofs and 
the statements as the notions of particular in terest. So, by th effective 
mathematical kno ·w lerlg e we mean the collection of all the writtf'n math-
matical statements wi th their proofs. Imagine that on should make 

a li bn u:y (or a data basis) of the effecti v math m ati al lm w le lg , i. 
e. to make a selec tion, classification and sys tem8 tization of the given 
writings, respecting the followinp; natmal daim: to capture as li tt le 
as possible of the library span· , lm t, Jwvcrthelcss, to lll <Lk the whole 
knowledge accessible. Let us put ourselves in the role of the manager 
making such a library a.ncl ll aving <t suffic ient. umnber of experts at his 

1 1991 Math ematic8 S·u.bject C'la.ssifi.co.i'l:o n: 03A05, OOA30 
2
This work was supported in part by Science Fund of Serbia, grari.t 

number 0401A. 

9 
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di spos;d. Our fir:-;t problem will lw wh icl1 instructions to give to our 
cooperntors witl1 t l1 e aim to realit.:<' the following two goals: do not lose 
anythin ,~ of onr d fec tive knowledge <t ud th row oft" everyt lti 11g snperfiu­
ous. Next, the obtained set of :-;tatcwc11t :-; ;md proof:-; :-;lwuld be order ed , 
classified and systematized so to provide a.n adclequate presenting of the 
effective mathematical knowledge and it :-; accessibility to the h olders. 

By all m ea.ns, the following instructions sh ould not be doubtful: 
(i) if we have a munber of the same statem ents with the sam e proofs, 
th en we keep only one s tatemen t wi th its proof; (ii) if we h ave two 
. tat m ents of the following form: If A nnrl fl , then C. , and If A , th en 
C. , with the sam e proofs, the11 we will keep only th second one with 
its proof. 

Note that the first of the a bove imtructions is closely connected 
to th contmction r-ule, while the secoud one results hom our need to 
r spect one of the b asic relevant logir. 'Jl'f"inciples by wl1ich we drop the 
irr l vant hypotheses of each statement. After u:-; i11g such a procedu re 
w' do not xpect to use the logir.al mks of coniTaction and weakening 
any mor __ It could be an indi cator that th<~ kernel of logical princip les 

w us , will present fundamental priucipl<·s of the lineaT logic. 

Our c ntral ta:-;k is the s:t;.d.r:m.o.f.i zo.tion of the effective mathemat­

i ·al knowl lg . The goal of syst<'Jll<dit.:<tt.iou is to present explicitly a 
narrow or, if possibl , th minim;J uw.thc:-mnt.ico.l, logical anrl ling<tis­
tic cont xt in which the considered :-;tat<'nwut is provC'cl. This means 
to 1uot a h relevant mathemntico.l !Jypot.lwsi:-;, as well as the whole 
logi al o.n 1 linguistic ihstrumcuts usNl iu formulation and proof of the 
giv n stat<"m nt. Such a kind of infornwtion can be obtained by an 
ana.ly. is of th v ry statC'ment ;md its pmof. For instance, the for ­

mal syst ms containing any part of t ll<· matlH'll1<1 tical 'lxioms of th 
Z nn lo- Fre~ nk I set tlwory, P<' illl<> aritl11nd.ic, some <dg hraic stru -

tur s tc, may b us<'d as possil>l<' s ~<ti shctory fr<lll1< ' works of th ma.th-
mati ·cd ·ont xt. Tl1c lop;ind ius tlll1l<'JJts <ll <' c];J ssificd ;dreacly ac; fonnal 

syst m s of cliff r nt varinnts of <·onstm<'li\·<·. rl'l< 'Y<lJlt de logics, as wdl, 
wbil in conn c ion with tlw liup,uis ic ins tl llJIH'llts it \\'ould be valua.bl 

o know he minimnl complexity of tlw S<'lll <'li<'<>S forlllnla<:' app<"<lring 
in th stat ' 111 nt U11cln c msid<•mtiou , its p1 oof aud tlw concsponding 

matllemati ·a! and logical rout<·xt. In snd1 <l "'"Y \\' <' JJ1<1ke th<" n< rcs­
sar; m.nth mati rd logicol onrl li n_r;ui.~ ti r ·rdnl tnizotion of tlw C'ou :-; id<'red 
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mat hematic a! s t<.t tnllC'I lt . 

Such a kin d of sys t< 'Ill< t! iz; tt.ioi t will ll s<· till' Il.l't ltodology dev ·lop 
in thf' theory of form;tl Illit! II< ' lll<t! i< ·<~l :tlld lo!!,if ·<t l sys ms, th fCI ts 
on th ir ·omplexity, rc·lationsltips d e. 'ollsl'qll <' lltl y, th . att m p t to 
rca li z th 1 ropos d syst(•mati z;d ion wottld s tim 11 la t fu r th r work 111 

thcs fi .lcls. 

A s tan lardizat iou of denotat ion <llld <l<'n ui tions of th m a th m ati­
cnl and logical .·ystems etll(l tllC' ot lll'r Lit s ic uot ions woul l ontribu t to 
;m asier reali zation of this sys t lllit ti za tiou . h is sys t m atization may 
·ause som modifi ·ation of tlw rnrr<·nt nutt.lwma.t i .al s ul ject lassifi a­
tion . 

It would not be difficul t to id<'utify thr iuflu uces of som tra li­
t ional or contemporary rhilosophi c<tl ;nu l fo uncb tional s tandpoints to 
our approach, e. _g ., form ali sm or rcv<'rsc math P.m a ti cs. 

And finally, le t us say how we inwgi1w a possi bl p arti al r ali zation 
of our program. It would ll<' <'lloup;h to h<'p;in with tl1 claim that t>a h 
n w mathemati cal result lwvr to lJ<' pr<'scutcd in a form ontaining a t 
least three emphasized terms of n>fncuct. which rclativi ze 1 r is ly the 
truth of the obtained result to tbe corresponding math -mati al, logi a l 
and linguis ti c contex t. Note tlmt snd1 a coudition cannot I . s ti .·fi .d 
easily due to the fact that the dd<-Tmiuation of su h a ont x t, in 
itself, often presents a very complex awl valuable math m·tti al r esult. 
Moreover, every m athonatical prohlc·lll Cil.ll be formula.t l as a 1 roblem 
of finding the minimal matlwmatical cout<'x t iu which th orr spending 
assertions are provable. 

R e f e r enc es 

R . Carnap, Th e logicist f oun.da&nns of m.nt.hemntics, in P. Benac­
erraf and H. Putnam, eels., Phil osophy of Mathematics, Cambridge 
Univ. PTcss, Cambridge, 1964, pp. 41 ·-52. 

H. B. Curry, Remarks on th e rl e_fi:-n.d1:on and nntm·e of mathematics, 
Dialectica 8 (1954) , pp. 228- 233. 

S. Fefennan, Working fov:n.do.hons, Synthes e 62 (1985), pp. 
229-254. 

J.- Y. Girard, Proof Theory and Logica l Complexity, Bib-

11 



12 Borucrc, R. B. 

liopofL, , Naples, 1087. 
G. I\ reisel, Pro of th eory: some penmw.l r-cco ll er:tions, in G. Take­

uti , Proof T heory, (S econd erlihon), No rth- Holl an d, Amsterdam , 
1987, pp. 305- 405 . 

.J . von Neumann, Th e forrrw.li.d fmt:ndo.tio'ft. of m.rd.hew.ati cs, ill P. 
Benacerra.f and H. Putnam, eels., 1064, pp . 61- 65. 

W. V. Qune, Truth by convention, in P. Benacen af and H. Putnam , 
> 

eels ., 1964, pp. 329- 354. 
S. G. Simpson , R everse math ematics, iu A. Nerocle and R. Shore, 

ds., Proceedings of the R ec ursion Theory Summer School, 
Proc. Syrnp . Pure Math. , Amer. Math. Soc., 42 (1985) , pp. 461- 471. 



PROCCilD INGS OF TIIB VI CONFilRCN EON 

LOGIC AND COMPUTER SCIENCE L!Rif ~.l 
NOV I SAD, OCTOBER 29-J I , 1992 ., PP . IJ- 18 

Regular Grammar· Representation of the Genetic Code 

Dragan Bosnacki 

Faculty of Mathematics and Natural Sciences, 
University "Kiril i Metodij"- Skopje, 

Arhi1nedova 5, 9 I 000 Skopje, Macedonia 

Abstract: The ge nelic code has a key role in the process of protein synthesis- the very first part of 
the complex pa thway of infonnation now during the gene expression. A formal description of this 
process is given by mea ns of formal language theory. An unconventional , more dynamic 
representation of genetic code is al so given, based on the regular grammar. The regular grammar 
representation is compared wi lh ;II ready existing represenlations and several new aspects of such a 
representa tion are considered. 

Keywords: Formal language theory, contex t-free gr;unmar, regular grammar, genetic code, DNA, 
RNA, protein synthesis 

1. Introduction 

The pr.otein synthesis represents the first part of an extremely omplex 
pathway of information tlow - from the gene to the gene's final effect on the organism 
as a whole. According to the centrnl dogmn of molecular genetics we have the well 
known scheme of informat ion transfer 

DNA-> RNA-> protein 
which means that, in fact , two processes are involved : transcription - the transfer of 
information stored in DNA to RNA, and translation - further transfer of genetic 
information from RNA to protein. The process of translation is governed by the 
genetic code, which is of main interest in the present article . 

The most common representations of genetic code are genetic code table [3, 8] 
and genetic code circle [8]. A more dynamic representations by means of language 
recognizer are given in [I]. Continuing in this dynamic manner, a new representation 
using simple language generative device is proposed here. 

The relationship between forma l language theory and the phenomena related 
with informational macromolecules is quite straightforward, particularly with 
processes of transcription and translation, because of their intrinsic linguistic nature. 

In Section 2 the formal description of these two processes is introduced, rn 
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what we follow [I]. In Section 3 we give the representation of genet ic code as a 
context-free grammar that can be reduced to a regular grammar and we discuss several 
characteristics of representation. 

As general references for formal language theory we use [ 6, 7) and as general 
references for molecular genetics [3]. 

2. A formal description o.fprotein syntftesis process 

Let D = {T, C, A, G} be the DNA alphabet. Then a DNA language D* is the 
set of all strings of symbols in D having finite length. Similarly, let R * be a RNA 
language over the RNA alphabet R = {U, C, A, G}. We denote elements of the sets 
D and R as bases. Transcription is a function 

t : D -> R 
given by its graph 

graph(t) = {(T,U), (C,C), (A, A), (G,G)} 
The biochemical mechanism of transcription, in particular the process of base-pairing, 
suggests representati on of t as a composition oft wo functions 

t = t2 * t 1 

given by their graphs 
graph(t 1) = { (T,A) ,(C,G), (A,T), (G,C) } 

graph(t2) = { (T,A) ,(C,G), (A, U), (G,C)} 

Functi on t has a (unique) natural extension to a fu ncti on 
t : D*- · R* 

over the strings of the DNA language. For each string x=N 1N2 ... Nk in D*, where Ni is 

the symbol in D, we define (with understanding that the image of empty string is aga in 
empty st ring) 

t(x) = t(N 1 )t(N2) ... t(Nk) 

i.e. the image of x is a conca tenation of images of its component s - bases. In an 
analogous manner the ex tensions oft 1 and t2 may be defined. (For a slightly different 

ap proach to the formal definition of the DNA alphabet and DNA language see [4, 5]). 
Let the pro te in language P* be a set of all strings over the protein alphabet 
P = {Ala, Arg, Asp, 1\spN, Cys, GluN, Glu, Gly, His, li eu, Leu, Lys, Met, Phe, 

Pro, Ser, Thr, Tryp, Tyr, Val} 
clements of which we shall ca ll amino acids. 

with 

T ranslatio n is a pa 1t ia l function 
g: T -'· p 

dom(g) = T- { i\A, i\ , UGA} 
where T=R is a set of all triplet s, strings with length 3 over R. We also denote the 
elemen ts of the set T as co dons. The set { liAA, UAG, UG/\} is denoted as 
punctuati onma1k set lf\\e allow the image of' each codon in this set to be an empty 
string, then, analogou sly a. for the tran lation func ti on, there is an obviou ex tension 
of fu nction g over the strings in T* 

g* : T*- · P* 
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and the elements of the punctuation mark set · pecift amino acid chain termination 

during the translation performed over a string ofT•. 

J. Th e genetic code represented as a regular grnmmnr 

The most common tex tbook representation of the genetic code - the genetic 
code tab le - is, in fact, eq ui va len t to the above-defined surjective mapping g: T -> P. 
We present here a constructi ve model whi ch express more faithfu lly the dynamics of 
the translation process by means of regular grammar. 

Namely, let G = (YN, VT, P, S) be a grammar, where 
VN = {S, a, Ala, Arg, Asp, AspN, Cys, CluN, Clu, C ly, His, lieu, Leu, Lys, 

Me t, ?he, Pro, Ser, Thr, Tryp, 7'yr, Val, Stop, Y, Y', U', ', A', C', R} 
is a set of va riables (nonterminal symbols) with distinguished start symbol S, 

YT = R = { U, C, A, G} 
is a set of terminal symbols and finally, P is a set of productions which consists of 

(I) S -> Y'UGa 
(2) a-> Ala I Arg I A.\p I A.1pN I Cys I CluN I Clu I Cly I His I !leu I Leu I Lys I Met 

I Phe I Pro I Ser I Thr I T1yp I 7'yr I Val\ Stop 

(3) Met-> AUGa 
(4) T1yp -> UGGa 
(5) !leu-> AUG'a 

(6) Pro-> CCRa 
(7) Thr -> ACRa 
(8) Ala -> GCRa 
(9) Val-> GURa 

(10) Cly -> GGRa 

(II) Phe -> UUYa 
(12) T'yr -> UAYa 
(13) Cys -> UGYa 
(14) His-> CAY a 
(15)A.spN -> AAYa 
(16) A.sp -> GAYa 

(17) CluN -> CAY'a 
(18)Lys-> AAY'a 
(19) Clu -> GAY'a 

(20) Ser -> AGYa I UG/?a 
(21) Leu -> UU Y'a I CUR a 
(22) Arg -> AGY'a I GURa 
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(23) Stop-> UAY' I UGA 

(24) Y -> u I c 
(25) Y' -> A I G 
(26) U' -> c I A I G 
(27) C' -> u I A I G 
(28) A , -> u I c I G 
(29) G' -> u I c I A 
(30) R -> u I cIA I G 

Because of their more clear biochemical interpretation we use as a 
nonterminals symbols consisting of more then one letter and also of a letter with ""' , 
rather then conventiona lly used capital letters only. 

The above-presented context-fi·ee grammar can be easily reduced, using the 
niles (2) and (24)-(30) to eliminate the nonterminals Y, Y', U', A', C', G',R and a, to 
the following regular grammar: 

G = (VN, VT, P, S) - grammar 

VN = {S, a}- set of vari ables with start symbol S 

VT =R = { U, C, A, G} -set of terminal symbols 

P - set of producti ons 

S - A UGa I UGa 

a- . {Met} AUGa I 
{Tryp} UGGal 

{ l ieu} AUUa I AUCa I AUAa 

{Pro} Ua I CCCa I CCAa ICCGa I 
{Thr} A Ua I ACCa I ACAa I ACGa I 
{Ala} G Ua I CCa I ACAa I ACGa I 
(Val } GUUa I GUCa I GUAa I GUGa I 
{Giy} G Ual GCa I GGAa I GGGa I 

{Phe} UUUal UUCal 
{Tyr} UAUa I UACa I 
{ ys} UGlla I UGCa I 
{I lis} A a I CACa I 
{AspN} AA a I AACa I 
{Asp} GA al ACa I 

{ luN} A a I 'AGa I 
{Lys} AAAa I AAGa I 
{ lu} AAa I G Ga I 
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{Ser} A Ua I AGCa I UGUa I UGCa I UGAa I GGa I 

{ eu} 
{Arg} 

{Stop} 

Aa I Ga I UUa I 
A Aa I AGGa I GUUa I 

UAAIUAGIUGA 

UCa I CUAa I G Ga I 
UCaiGUAa i GU al 
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But we rather keep the previous contex t-free form as a more compact and convenient 
one for di scussing some features of such a kind of representat ion. 

Rules (I) and (25) imply that the well-formed trip let strings always begin with 
AUG or GUG. Rules (23) and (25) define punctuation mark set, i.e. the fa ct that all 
wel l-formed trip let strings end with UAA, UAG or UGA. Between the initiation and 
termination codons, tripl ets coding for correspond ing amino acid can be concatenated 
acco rding to the production rules (3)-(22) and (24)-(30). 

The clas ic table representation operates with the notion of degeneracy of 
genetic code - the occurrence of more then one codon per amino acid . Although we 
have somehow reversed the direction representing the genetic code wi th regular 
grammar starting with prot eins (amino acid strings) and obtaining RNA (codons- base 
triplets), the degeneracy is refl ected in the number of possible deri vations start ing with 
a certain amino acid . 

From the rul es (3) - (22) one can see that codons for the same ami no acid 
differ only in the th ird base. This is called wobble at this site. Only tlte initiation codon 
is an exception of thi s rul e, since the wobble appears at the first positi n, which is 
reflected in ru le ( I) 

The rules (26) - (28) are included only for the reasons of symmetry, they are 
never 1..1sed and, of course, might be omi tted without any effect on the clerivati ns. 

It is worth to noti ce that amino acid whi ch have simi lar chemica l properti e , 
also have similar deri vations, which, on the other hand, means that degeneracy and the 
codon scheduling in the genetic code is not at random, but thi s is beyond the scope of 
the mticl e. 

4. Conclusion 

The regular grammar representation of the genetic code is a onstruct ive 
approach dealing with dynamic aspects of the code and in some way it para llels the 
resul ts given in [I]. The results present ed in thi s article are only very modest forma l 
achievements and they represent only rough approximation of the processes of 
info rmation flow during protein biosynthesis. It is almost certain that the answers to 
many open questions, for example the preprocession of RNA before the translation, 
will require more powerfu l language generative devices than context-free grammar, let 
alone regular grammar. However, it is hoped that our geneti c code model wi ll provide 
the basis for future softwa re development and computer experimentation related with 
the processes over the in fo rmational macromolecules. 
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Abstract 

A model that learns Present Tense inflexions ccording to the 
person and the number of the subject is presented in paralle l with a 
model that learns to recognize the inflected forms. Activation 
patterns generated in both patterns are inconve ient for correct 
training. The amount of uncertainties of the output patterns is 
observed for different classes of Pattern Associators withm training 
series of different leng th . 

keywords:; Artificial intelligence, Natural language processing, Neural networks 

1. Introduction 

Slavonic languages have complex morphologica l structure and are highly 
inflectional. Unlike the nouns which are morphologica lly simplified, Macedonian 
verbs appear in a diversity of forms which rep resent the syntactica l connection 
of the verb in the sentence (Koneski ( 1987)) . Therefore, the recognition of verb 
inflexions is crucial moment for the parsing of Macedonian sentence . . 

Macedonian verb inflexions depend on : 
- the person of the subject (first, second, third); 
-the number of the subject (singular, plural); 
- the final vowels of the third person f orm in singu lar and 

- the Tense. 

These changes can be represen ted by the network diagrams proposed by 
Gross and applied for the French language in Silberzte in (1 989). In Present 
Tense all inf lected forms are generated by nine common elemen ts: a, 11, e, j, aM, 
w, Me, m and ar (Fig . 1.). The first three of them are both externa l and internal, 

the fourth is embedded, while the last f ive are only external. 

19 
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Although the rules for inflexion generation are simple and very strict, it is 
interesting to observe their acquisition. The most conveni ent model capable of 
learning is t he Pattern Associator. It takes as input a pattern of activation on its 
inputs and produces a pattern of outputs based on the modifiable connections 

linking the input and the output units. 

r-aM 
/ ; w 

11M- a 

t~: L ar 

r--aM 
/ ;w 

on\\:~: 
LaT 

~j--aM 

I rw 
nl1l--e~Me 

LTe 
j- aT 

;-aM 

/ ; w 
KI1H--- e 

~:~ 
r j-aM 

rw 
6po·l-·C~: 

J-- aT 

. _Figure 1. Macedonian verb inflexions in Present Tense 

2. Definition of the models 

The person and the number of the subject determine six personal 
pronouns: jas (1), ti (you as singular), toj (he), nie (we), vie (you as plural) and 
tie (they) represented by five binary input units: three for the person, t wo for 
the number. Target patterns consist of nine binary units which indicate the 
presence of the generated inflexion to the correspond ing personal pronoun. 

Here is the pattern file: 

jas 1 0 0 1 0 000110000 

ti 0 1 0 1 0 1001000 

toj 0 0 1 1 0 1000000 

nie 1 0 0 0 1 1000100 

vie 0 1 0 0 1 11000010 

tie 0 0 1 0 1 00100001 

Such defi nition of the input and targ t: t patterns may cause troubles within 
the process of learning because the inpu t 5-tuples are linearly depende nt and 
the target patterns differ sli ghtly (toj vs. ti, nie or vie). 

:. 
I 
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The inflexions themselves are described by seven binary input un1t . The 

first six are in fac t the vecto r columns in the first pattern fil . Th y indtcatc the 
possibility of connec ting th e appropriate inflexion to the word k rncl d(•fined 1n 
Cundev (1991 ). The seventh bit is added to point out the difference etween 
the second input pattern i and the third, e. Target patterns are personal 
pronouns. The pattern file (Fig . 2 .) consists of two smaller groups. In the first 
one three linenrly independen t 7-tup les generate same target va lu • while the 
second consists of six ind ependent 7- tuples and t<Jrge ts with total sum of 
square differences (further on, t ss) not smaller than 2. M acedonian Cyrillic letter 
w is t rans literated into sand represented as ( according to the standard. 

a 0 1 11 110 0 0 1 1 0 
01 1 1 1 0 1 0 0 1 1 0 

e 0 1 1 1 1 0 0 0 0 1 1 0 
j 100001 0 1 1 0 1 1 
am 1000000 1 0 0 1 0 
( 0 1 00 000 0 1 0 1 0 
me 0001000 1 0 0 0 1 
te 0000100 0 1 0 0 1 
at 0000 0 1 0 0 0 1 0 1 

Figure 2. Pattern fi le for inflexion determination 

' ~ 

The activation rules determine the output value from the unit according to 
t he value of the net input which comes to it. The Pattern A ssociator can use: 

- linear activation when the activation value is same as the net input; 

- linear threshold 

otherwise 

- continuous sigmoid activation according to the func t ion 

O· I 

where T is the temperature, usually set t o 1 and 

- stochastic activation with a probability p that the output is 1: 

1 
p(o· = 1) = ----'---

1 1 +e-netj(f 

( 1) 

(2) 

(3) 
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The learning rules are used to modify the patterns of connectivity. In the 
very beginning all connections are set to 0, but, after several exposures of the 
pattern, by obtained experience, they converge to values with minimal tss. The 
weights wij specifying the st ren gths of the connections from input unit ij to 

output unit oi in the Pattern Associa tor are adjusted by the Hebbian algorithm 

(4) 

or by the error-correcting delta rule 

(5) 

Both network models, the model for inflexion recognition and the other 
which recognizes personal pronouns according to the inflexions are inconvenient 
for effective learning by the Pa ttern Associator. Therefore, it was interesting to 
compare the results when different activation functions were used with both 
learning rules. The curriculum patterns were presented in series of different 
length. The first pattern was exposed 100, 200 and 1000 times, while the 
second pattern became stabile after 200 learning trials, so the results were 
obtained from series with 50, 100 and 200 exposures. 

3. Comparative analyses of the models 

The use of the Hebbian rule in all cases produced weight matrices with 
strictly positive values . When linear, linear threshold and stochastic activation 
functions were used all matrix series, independently on the learning rates and 
on the duration of the learning diverged. For any input value, the output value 
for the inflexion recognition was 111111111 . Similarly, in the second mode l the 
output values . were always 11111 . 

Continuous sigmoid activation generated convergent matrix series, but 
the output values were constant: 000000000 for the inflex ion recognition and 
00000 for the pronoun recognition . 

The delta rule was convenient for all activation functions except for the 
continuous sigmoid . In this case, the output va lues were constantly zeroes. 

3.1. Linear activation function 

The mod el w as tested w ith different learning rates. Th rate is a parameter 
responsib le for tt1e changes made to the weights. Its optimal v (llu e for the 
inflexion recogni tion mode l with 6 input uni ts is 0.167, but to accelerate the 
learning the values 0 .25, 0.5 and 1 were also used . The last value 1 generated 
a divergent weig ltt matrix series . In all other cases after 25 exposures weight 
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the matrices got stabilized. Both third person pronouns produc <.J cor rect output 
the values. The other two person pronouns generated inco rrect output values: 
rhe 011000000 for both singu lar and 000000000 for both plura l prono uns . 

to 

4) 

5) 

The second mod el was inca pab le of generating correct output values 
except for th e inflex ion am. After 50 exposures of the pattern , with lea rning 
rates sma ll er than 0 .25 the output values for j, {, me and te were 00000, the 
first three infl ex ions a, e and e produced an output 00100 and the last one at 
genera ted the value 00001 . When th e learn ing rate was augmen ted, the output 
value fo ri become 00200, the outputs for me and te become 0000 1, w hile the 
output for at was set to its initia l valu e 00000. 

her 3.2. Linear threshold 
ent 

to After 7 training epoche s independentl y on the learning rates, the weight 
oth matrices became stabile. Their elements w ere varying between -2 and 2 . The 
ent range was greater for the rates higher than 0.25. The output values for both 
the first person pronouns were different from their target values, whi le the other 
ere four were correct. It is worth noting that the ou tput value for jas, 011010000 is 

closer to the target valu e for toj, whil e the ou tput 1 00100100 obtained for nie 
suits better for tie . Slightl y better recogni tion was obtained when stochastic 
sigmoid activation was combined tog ether with the linea r thresho ld output. In 
this case the output for j as remained the sa111e 011010000, but the output for 
nie became correct. 

lith 
ion The second model for pronoun rec og11 it ion got stabil e a fter 7 training 
lnd epoches and all output valu es were exact. 

lue 
the 

3.3. Stochastic activation 

but This is the activat ion used for morphology acquisition and sentence 
lnd analysis (Rumelhart & McClell and (1 988)). The logistic function depends on a 

denominator T which sca les the net input . In each further iteration previously 
calculated value x is divid ed by T. When the divided value exceeds 11.5129, 

the the output value is set to 0.9999, for input va lue smaller than -11.5129 it is set 
to 0.0001, otherwise it is ca lculated accordi ng to the equation (3) . 

'ter 
the 
the 
ted 
ght 

The default value for the denominator T is 15. This va lue produced 
matrices with big coefficients. Therefore, trai nin g was performed with T = 1. 

On the other hand, the capability of e fficient recognition with a linear 
thresho ld activation suggested that the resul ts obtained during the learning with 
stochastic activation m ight differ when the linear threshold is suppressed or it is 
used for correction of the obtained values . 
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First two tables (Table 1. and 2.) contain the means and the deviations of 
squared sum differences between the ·target and the output value for each 
pronoun with default denominator. local minima for three training series are 
marked with * .· The means marked with * * correspond to the minima in all 
series without and with linear threshold output. First pronoun jas, similarly to 
previously used activations generated incorrect outputs. The recognition was 
getting better when the pattern was exposed more frequentiy. After 1000 
iterations with linear threshold output in average 1.4 bits were wrong and the 
output was matched in less than 50% of the tests. Unexpected was the 
behaviour of the pronouns toj, nie and tie. Their best recognition was in smaller 
series rather than after 1000 exposures. The only pronoun with a tendency of 
complete generation was vie. Although the learning of verb inflexions is a 
morphology problem, it is obvious that this model does not solve it properly. 

100 exposures 200 exposures 1000 exposures 
pronouns mean deviation mean deviation mean deviation 
jas 2.667 1.192570 2.333 1.349897 1.400"* 0.711805 
ti 0 .933 0 .442217 0.800 0.748332 0 .200* 0.400000 
toj 1.733 1.181336 1.467* 0.805536 1.667 0.78881 1 
nie 2.133 0 .805536 1.333 .. 1.01 1051 1.867 0.7 18022 
vie 1.200 0.748332 0 .333 0.471404 o.ooo•• 0.000000 
tie 2.333 0.869227 2.000 0.966092 1.933* 1.062492 

Table 1. Stochastic behaviour with linear threshold output and T = 15 

100 exposures 200 exposures 1000 exposures 
!)ronouns mean deviation mean devia tion mean deviation 
jas 2.600 0 .952191 2.133 0 .884433 1.867* 0.805536 
ti 0 .533 0.805536 0 .600 0 .611 010 0.133** 0.339935 
toj 1.2sr· 0 .997775 2.167 1.067187 1.333 0 .942809 
nie 1.867 1.024153 2.600 0.879394 1.400* 0 .711805 
V/8 0 .867 0 .884433 0.467 0 .618241 0.'133* 0 .339935 
tte 2.200 1.1661 90 1.067** 0 .679869 1.333 0.869227 

Table 2 . Stochastic behaviour with suppressed linear threshold and T = 15 

The second pair of tables (Table 3. and 4.) correspond to the model when 
T was set to 1. The results were better, part icularly for the second person 
pronouns ti and vie, and the third person pronoun tie, but the other three were 
gen rat1ng wrong outputs in more than 50% of the tests. Simi larly to previous 
case, the best recognition for toj and nie was afte r 200 iterat ions . 

The recogni t io n was perfect when the ambiguous pronoun toj was 
excluded from the pattern. In less than 100 iterations the mode l got stabile and 
all output units were equal to the ir targets . Then, the obtained model was 
trained with the excluded pronoun. The mod I needed 25 iterat ions to become 
stabile again. Unfortunate ly, the pronou ns toj and tie could not be recognized 
even when the whole pattern was exposed. 
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100 exposures 200 exposure s 1000 exposures 
oronouns mean deviation mean devia tion mean deviation 

filS 2.353 0 .680932 2.059 0.8721\94 2.ooo· 0 .970 143 
ti o.ooo· • 0 .000000 0.000 0.000000 0 .000 0 .000000 
toi 1.353 0.588235 1.47 1 0. 775936 1.176• 0 .669464 
me 2.353 0 .680932 2.294 0.823530 2.235· 0 .644379 
vie o .ooo· 0 .000000 0 .000 0.000000 0 .000 0 .000000 
tie 0 .5 29 0 .696010 0:529. 0.605625 0 .824 0 .922611 

Tab le 3 .Stochas tic behaviour with linea r threshold output and T = 1 

100 exposures 200 exposures 1000 exposures 

pronouns mean ' devia ti on mean deviation mean deviation 

ias 1.824 •• 0.616946 2.176 0 .6 16946 1.942 0 .725 225 
ti 0 .118 0.322189 o .ooo· 0 .000000 0 .000 0 .000000 
toi 1.647 0 .836039 0.941 •• 0 .9 37493 1.942 0 .802 246 
nie 1.824 0 .616946 1.353 •• 0 .680932 2.529 0 .775936 
vie o .ooo· 0 .000000 0.000 0 .000000 0 .000 0 .000000 
tie 0 .941 0 .539127 0.824 0. 705882 o.os9• • 2.35294 

Tab le 4. Stochastic behaviour w ith suppressed linear threshold and T = 1 

Similarly to the prev ious case, the pronoun toj was excluded from the 
pattern file and trained separately after the stabilization of ~he model. Finally, 
the whole pattern was exposed. The recognition remained· incorrect for both 
third person pronouns toj and tie . 

The opposite model which recognizes the pronouns by the inflexions did 
not need more than 200 training epoches. The first combination with T = 15 
and pure stochastic activation (Table 5.) produced right outputs in more than 
65% of the tests except for the inflexions e (37%). j (47%) and at (34%) . 
When the denominator was set to 1, the matrices got stabile after 50 epoches 
and the matching was correct in more than 85% of the tests. The exclusion of 
the inflexion j from the pattern resulted with correct production of the output 
units after 10 iterations. 

50 exposures 100 exposures 200 exposures 
inflexions mean deviation mean deviation mean deviation 

a 0.235 0.424183 0.235 0.424183 o.ooo· 0 .000000 
i 0 .059 0.235294 0.353 0.588235 o .ooo· 0 .000000 
e 0.294 0.570315 0.176. 0 .381220 0 .636 0.481046 
i 1.000 0. 766965 1.059 0 .725225 0 .636* 0 .642824 
am 1.118 0.831890 0 .824 0.984306 o.ooo· 0 .000000 
7 0.883 0 .7578 88 0 .883 0.831891 0 .273 * 0 .445362 
me 1.059 0.9374 93 0.824 0.605883 0.455* 0 .655555 
te 1 . 11 8 1.022244 1.000 0.907485 0 .546. 0 .655555 
at 1.353 1.233893 0 .647* 0.680932 0.727 0 .616576 

Table 5. Stochastic activation function in pronoun recognition problem 
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4. Conclusion 

Macedonian verb inflexion acquis ition cannot be well performed in th 
pronoun to inflexion direction. Fortunately, t he inflexion to pronoun direction i 
very convenient for fast training, particularly when the iinear threshold functio 
is used together with the error-correcting delta rule. This fact arid th 
bidirectionality of the Pattern Associator imply that the second neural netwo 
will be used for the both tasks : the recognition of the verb inflexions during tH 
sentence parsing and for their generation during the sentence synthesis. In th 
comparative analysis of all Pattern Associator definitions unexpected was th1 
incapability of the Hebbian rule in producing correct results with any activatio1 
and output funftion. 

' 

The extension of the problem from Present Tense to all Macedonia1 
tenses and clauses invo lves more than 25 different inflexions which generat1 
more than 200 synthetic and analytic forms (Simov et al. ( 1990)). Most of then 
appear in different tenses and the amount of intersections is big. The number o 
input units has to be augmented from 7 to more than 15 or even 20, while th1 
number of output units has to remain the same, 5. The disproportion betwee 
the length cif the units can be solved only by division of the network int 
several smaller, correspond ing to :Particular tense or clause. Another networ 
will be a connection between these networks and it will point to any of them 
The input units of this connecti ve network will be the verbs themselve 
described . by their final vowels and by the corresponding inflexion in the thirl 
person si~gular form. The outputs will point to the tense or the clause. 

References: 

Cundeva, K. (1991) "Neural Networks Enable Computers to Translate Natura 
Languages", in Proceedings of the 13th International Conference on lnformatio 
Technology Interface, Cavtat 1991, ed. by V. Ceric, V. Luzar, R. Paul, Universit 
Computing Centre, Zagreb, pp. 1 79-18 6. 

Koneski, B. (19&-7! "Gramatika na makedonskiot literaturen jazik - del I II" 
Kultura, Skopje 

Rumelhart, D. E., McClelland J. L. (1988) "Explorations in the Microstructure o 
Cognition", Volume 2: Foundations, MIT Press 

Silberztein, M. ( 1989) "The Lexical Analysis of French" in Electronic Dictionarie 
and Automata in Computational Linguistics, ed . by M. Gross and D. Perrin, Berlin 
Springer Verlag, pp . 93- 100. 

Simov, K .. Ange lova. G., Paskaleva, E. (1990) "MORPHO-ASSISTANT: Th( 
Proper Treatment of Morphological Knowledge" in Proceedings of COLING '90 , Helsinki 
pp . 455 -457. 



1 tt 
ion 
1ctio 

I th 
:wo, 
g th 
n t 
s th 
ratio 

onia 
1era t 
the: 
>er 1 

le th 
wee 
: int 
twor 
therr 
te lve 
thir 

Ia t un 
natio 

PROCfEDINGS OF TilE Vl CONFERENCE ON 

LO<JIC AND COMPUTER SCIENCB L/Rtf P.l 
OVI SAD, 0CfOBER 29-3 l, !992., PP. 27 • 34 

Peirce's law and la!llbda calculus 
Silvia Ghilezan 1 

Abstract 

The Curry-Howard isomorphism is an explicit connection between simply 
typed lambda calculus and Heyting's ioluitionistic propositional logic. All 
types in.,habited in the simply typed are exactly all intuitionistically provable 
formulae. It is known that Peirce's law is intuitionistically not valid. Dy the 
Curry-Howard isomorphism this corresponds to the fact that Peirce's law is 
not inhabited in simply typed lambda calculus . We present a direct proof, 
within the simply typed lambda calculus that Peirce's law is not inhabited. 
First, we give some structural properties of lambda terms that are inhabitants 
of certain types. Then according to these proper~ies we show that it is not 
possible to construct a lambda term that is an inhabitant of Peirce's law. 

Kew words: inhabitation, lambda calculus, Peirce's law, provability. 

Introduction 
Lambda calculus and combinatory logic introduced in the 30's by Schonfinkel, 

Curry and Church were originally meant to form a more rigorous basis for the 
foundation of logic and mathematics. Later on these investiga tions became rather 
involved, but still systems obtained in this way present a different approach to 
logic. Although the first systems were type free, they are in accordance with type 
introduction and this is nowadays one of the joint fields of investiga tions both in 
logic and theoretical computer science. 

rersit By changing the notion of the type on the one hand and by changing the notion 

II' 

of the lambda term on the other, it is possible to obtain a whole variety of typed 
lambda calculi . These systems form the Barendregt 's cube, see Barendregt, 1992. 

The Curry-Howard isomorphism given in Howard (1969) , 1980, is an explicit con-
nection between simply typed lambda calculus and Heyting's intuitionistic propo-

ure o sitionallogic. It can be expanded to other cons tructive logics versus various typed 
lambda calculi, e.g. second order propositional logic and polymorphic lambda cal­
culus. Also, it can be restricted to substructural logics and restricted typed lambda 

nari~ calculi, e.g. relevant logic and Al-typed calcu lus . It is a powerful connection since 
3erlin by proving facts in logic one proves the corresponding facts in lambda calculus and 

VIce versa . 

: Th 
I sink 

Some problems of interest in the systems of typed lambda calculi are: 

1Faculty of Engineerin g, University of Novi Sad, Ttg D. Obradov ib 5, 21000 Novi Sad, 
Yugoslavia 
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- Type-checking- is it decidable whether a given term has a given type? 

- Typability - is there a type that can be assigned to a given term? 

- Inhabitation- is there a term of a given type? 

All three problems are decidable in simply typed lambda calculus; for other typed 
lambda calculi some of these questions are still open, see Barendregt, 1992. In the 
sence of the Curry-Howard isomorphism the problem of inhabitation in simply typed 
lambda calculus is equivalent to the problem of provability in Heyting's propositional 
logic, which is~known to be decidable. There are direct methods in lambda calculus 
to prove the decidability of inhabitations, as well. 

It is known that Peirce's law is intuitionistically not valid. By the Curry-Howard 
isomorphism this corresponds to the fact that Peirce's law is not inhabited in the 
simply typed lambda calculus. We present a direct proof, within simply typed 
lambda calculus that Peirce's law is not inhabited. First, we give some structural 
properties of lambda terms that are inhabitants of certain types. Then according to 
these properties we show that it is not possible to construct a lambda term that is 
an inhabitant of Peirce's law. 

Simply typed lambda calculus and logic 
First, let us recall some basic notions and notations of simply typed lambda 

calculus, A -+ (for more details see Barendregt, 1992). 

The set of types T of A -+ is defined in the following way: 

Definition 1. 

(i) V = {a,,B,-y,a1, . .. } C T, Vis a denumerable set of type variables. 

(ii} If t:T, rET, then tJ-+ rET. 

Let a, ,B,-y, at, ... beschematiclet ters for type variables and let t:T, r,p,r.p, t/J, t:T1 , ••• 

be schematic letters for types. 

Let A be the set of untyped (type-free} lambda terms defined in the following 
way: 

Definition 2. 

(i) V ~ A, Vis a denum erable set of va1-iables. 

(ii) If M,N E A, then M N EA. 

(iii) If ME A and x E V, then >.x.M E 1\ . 
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Let x ,y , z , x1 , ... be schematic letters fort rm variables and A1,N, P, Q,Mh · ·. 
schematic let ters for lambdi\ terms. The usui\l no tion of ,8-reduction on A is given 
by the following contract ion rule 

(>.x .M)N -+p M[N/ x]. 

The express ion M : a , called state m ent, where }.1 E A, a E T links the terms 
of A and the types of T . The term M is the subject and a is Lh e predicate of the 
sta tement M : a. If x E V, then x : r is a basic statement. A basis is a set of basic 

statements. 

f,!J. , f 1 , .. . are used as schematic letters for bases. Intuitively, M a means 

that the term M is of type a. 

Definition 3 . The Curry version of the simply typed lambda calculus). -+ is defin ed 

by the f ollowing rules 
(x: a) E f 

(start rufe) f f- X : a 

(-+E) r f- M: a __, r r f- N: a (-+ I) r ,x: a f- M : r 
r f- M N : T r f- >.x .M : a -+ r . 

Some properties of >. -+ that we need later are the Subject reduction property 

and the Oeneration lemma. 

Theorem 1. (Subject reduction} Let r f- M : a and M -+p N , th en r f- N : a . 

Theorem 2. (Generation lemma) Let r f- M N: r, then there is a type a such that 
r 1-M: a-+ T and r f- N : a. 

Further we shall consider provability in classical and intuition is ti c propositional 
logic, so let us recall their natural deduction formulation. It is known that intuilion­
istic connectives are independent. We shall deal with implication only. In class ical 
logic connectives can be expressed by each other, e.g. -+ and -, can generate all 
other connectives. The natural deduction formulation of intuitionislic logic with -+ 
and .l is given by the following elimination and introduction rules 

<p -+ 1/J cp (-+ E) 
1/J 

.l 
( .l ). 

<p 

[<p] 
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Negation is defined by •<p = <p -+ l... Classical logic is obtained by adding the 
reductio ad absurdum rule 

j_ 

cp 
(JU1A). 

Provability is decidable both in classical and intuitionistic propositional logic (for 
more details see Prawitz, 1965, and van Dalen, 1983). 

Peirce's law is provable in classical logic. The following derivation shows that 
(RAA) is the key point in the derivation of Peirce's law. 

[•a]2 [a]l (---+ E) 
j_ (_1_) 

[(a -+ a) -+ a]3 _ (J -a 1 (-+ I) 
------~ .. ______ a_-+~~---------(-+ E) 
--~[-·a~J~2~-------a----(-+E) 

.:!:_z(RAA) 
a 3(-+ I) 

((a -+ (J) -+ a)-+ a 

A proof is in normal form if there is no app lication of an introduction rule before 
any application of an elimination rule, i.e. elimination rules are to be applied first, 
before the introduction rules. If a formula is provable, then it has a proof in a normal 
form as well. 

Peirce's law is intuitionistially not provable, since there is no proof in normal 
form. If we try to reconstruct a normal proof from bottom up we shall always end 
with some noncancelled premise, e.g. 

where a -+ (J is not cancelled. 

There is an obvious connection between the logical rules of arrow eli mination and 
introduction and the corresponding rules in ). -+ in the sense that the lambda term 
construction is following (codi ng) the derivation in logic. This connection is called 
the Curry-Howard isomorphism or the interpretation formul ae-as-types terms-as­
proofs. It is given by the following statement. 
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PIERCE'S LAW AND LAMBDA CALCULUS 

Theorem 3. (Howa1·d (1969), 1980) 

Let cp E T be given. 

31 

There exists a inhabitant M of cp, i.e. 1- M : cp, if and only if cp is provable in 
the implicational fragment of IJeyting's propositional logic. 

Since inhabitation in >. -+ and provability in intuitionistic logic are equivalent the 
decidability of provability gives an immediate answer to the question of inhabitation 

in.>.-+. · 

Inhabitation in .X ---+ and Peirce's law 
The following statement is characterizing the lambda terms that are inhabitants 

of certain types. 

Proposition 1. Let (J = (Jl -t .•. -tUn -t a E T and le t r 1-M: cr . Then there is 
a lambda-term M' of the form 

.>.x1 . . . Xn.xN1 ... Nm such that 

r 1-M': (J and r, Xl : crl, .. . 'Xn: Un 1- xN~, .. . Nm :a. 

Proof. By induction on the derivation of r 1- M : cr in >. -+. 

1. If the last step in the derivation is 

(start rule) 
(x:cr)E r 
rl-x:cr 

then applying (-+E) n-times, by Subject reduction property (Theorem 1), we 

obtain 

2. If the last step in the derivation is 

r, y: (Jl 1- N: (J2 -t •• . -tUn -t a 

r 1- >.y.N: (Jl -t (J2 -t ••• -tUn -t a (-+I) 

then by the induction hypothesis there is a lambda-term N' of the form 
AX2 •.• Xn.x.M1 ••. Mm such that 

and 

Hence, 
r 1- >.yx2 ... Xn.xMl ... Mm : (Jl -t ••. -tUn -t a, 

and (.>.y.N)' is .Ayx2 ... xn .xM1 ... Mm. 
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3. · :U the last step in the derivation is 
I' 

(---+ E) 
r f- N: r.p---+ (ul---+ ••• ---+ Un---+ a) r f- p: r.p 

r f- N p : (Tl ---+ ••• ---+ Un ---+ a 

then by the induction hypothesis there is a lambda-term N' of the form 
,\yxl ... Xn.XMt ... Mm such that 

and 
r, y : r.p, Xt : (Tl> ••• , Xn : Un f- xMl ... Mm : a. 

Now we have to distinguish two cases: 

(a) x 'f; y 

(b) X= y. 

(a) If x 'f; y, then by ( ---t I) and of Subject reduction we have the following 
derivation 

hence, (N P)' = AXt ... Xn.xMI[N/y] ... Mm[N/y]. 

{b) If x = y, then from 

by Generation lemma (Theorem 2) it follows that r.p = r.p1 ---+ •.. ---+ 

'Pm ---+ a, nence by the induction hypothesis, since r f- p : r.p there is a 
lambda-term P' of the form >.y1 ... Ym ·zP1 ••• Pk such that 

r 1- P': r.p 

and 
f, Yt : 'Pt, .. . , Ym : 'Pm f- zP1 ... Pk: a. 

We can suppose that x; 'f; Yi for all l ~ i ~ n, 1 ~ j ~ m without lost of 
generality. Let f' = f, Yt : 'Pt, . .. , Ym : 'Pm, then 

hence, if we take r' instead of r, and we can do that easily, 
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PI ERCE'S LAW AND LAMOD A CALCULUS 

By using this prop rty it is easy to check whether a type with a typ varia. 1 al 
rightmost place is inhabited. 

The fact that Peirce's law is intuilionisli ally not provable in terms of lambda. 
calculus means that Peirce's law is not inhabit ed. 

This is a consequence of Theorem 3, but it can be shown by application of 
Proposition 1 as well, for Peirce's law is of lhc reqwered type shape. 

Corollary 2. feirce 's law is not inhabited in simply typed lambda calculus. 

Proof. Suppose that there is an inhabitant M of Peirce's law, i.e. 

f- M: ((a--+ {3) --+ a ) -t a. 

Then by Proposition 1 there is a term M' of the form M' = >.x 1 .xM1 ... Mm such 
that 

f- M': ((a-t {3) -t a) -t a and x1 : (a--+ {3)--+ a f- xM1 •.• Mm :a. 

Thus XJ = X since r = 0. Then 

x : (a --+ {3) --+ a 

and m = 1. Thus from 
x : (a -t {3) --+ a f- xM1 : a 

by Generation lemma, 

x : (a --+ {3) --+ a f- M 1 : a--~' {3 

and Fv(Mt) ~ {x} . 

Then again by Proposition 1 there is a term N' of the form >.y1 .yN1 ..• Nk such 
that x : (a -t {3) --+ a f" N' : a --+ {3 and 

x : (a-+ {3) -t a, y1 : a f- yN1 ... Nk: {3. 

st of Fv(N') ~ { x}, so there are two possibilities y = y1 or y = x. 

If y = y11 then y : a, soy N1 ..• Nk cannot be of type {3. It can be typed only in 
the case of k = 0, but still it cannot by typed by {3. 

If y = x, then y: (a-+ {3 )--+ a. Thus k = 1 and yN1 can be only of type a, but 
certainly not of type (J. q.e. d. 
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J!E.LLYKTJI[; flbl~ nO.li.XOJ! K AGTOMAT YI I ECK0~1Y 

nOPO}I(,l!EII~IIO KOM6 1111ATOPIIb iX PACnOJJO}I(EIIHiil 

n Tap X o T O M C K H 

Tex i!H'-IK~I <l>aK y JJTeT "M . nynHH" 

~- ~~ K BH'-Ia 6 . 6 . 2 3000 3peH ~ HHH 

PE310ME 

B cTaTbe paccMapHeaeTc~ )l.e.LJ.yKTHBHoe nopOlK.D.e HHe KOM6 HHaTopHbiX 

pacnOJ!OlKeHHJ-1, OOOC HOBaHoe H a MeTO)l.e pe30JIIOUIIH . }!n~ a)l.a'-IH 

pacnOpSilKeHHSI ypoKOB npHBO)l.HTC~ '-ICICTb aKCHOMaTH'-Ie KOJ-1 6a3bl H 

onHCbleaeTCSI npo u e.D.ypa nopOlK)l.eHHSI O.D.HOrO H O BapHaHTOB II CKOMOrO 

pac nopSilKeHH~. J!ae TC~ O)l.HH npOC TO~ npHMep , HJ110CTpHpy 10WH~ 

npe.LJ.JlOlKeHHYIO n poue.D.ypy . 

JCJDOLJEBbiE CJJOBA: KoM6~1HaTopHa~ cTpyKTy pa / M eTo.n pe on10U~IH / 

pacnop~~eHHe ypoK OB 

B B E Jl E ll H E 

Ylccne.D.oBaHHSI n o aBTOMaTH'-IeCKOMY )l.OK aoaTeJlbCTBY T eopeM 

ocyweCTBJ!~IOTC~ B .LJ.BYX 1 - J anpaBJleHH~X : 

paopa6oTKa H C08epwe H C TBOBaHH 8 MeTG)l.OB n•:J)l.XO.D.OB K 

aB TOMaTH'--IeCKC>MY BblBO.LW , 

OT~CKa~He npHJJO~eHH~ cy w ec TBYIOWHX peoyJlbTaTOB . 

K nepeoMy Hanpaen:H~I IO OTHOC~TC~ HCCJle)l.OBaHH ~ 

nonyYeHHble B paMKd.X pa~•BHTH~ 3KC rl epTHO~ CI-I C TeMl>l " Gr·aph" / 1 / . 

P eoynbTaTbl KOTor.>Die OOOC HOBaHHI:!I H rt MeTO)l.e pe::)o.m·•UH~I / 2./ H Ha 

ecTeCTBeHHOM BbiBO)l.e n C•_i\pOO H O OnHCHI-11.•1 B MOHOrpa ¢H e 

HacTo~waSI CTaTb<;< K BTOpOMY 1-1 3 npH B e )l.e HHbiX 

HanpaeneHH~, T. e. p aceM a T):•H eaeTC Sl npH .no~eHHe 

peooniOUHH K aBToM a THYec ~-.c:-..~v~y n o pOlK.LJ.t. l n110 KOM6HHa TOpHuiX c TPY K TYP· 

noHSITHe "KOM6HHa. TOpHO~ CTpVK Typbl" B 

cne.D.yiOwero onpe.D.eneHHS~. 

nycTb X 

PacnonolKeHHe 

KOHe'-IHOe )l.H C KpeTHOe MH•: •:.t:eC TBO H A=( "-' . _) MaTpHUa nxm. 
t. .I . 

::;neMeHTOB MHolKeCTBa X no Sl'--le~KaM M a TpHu.bl A 6y.D.eM 

paceM a TpHBa Tb Ka K oTo6pa)l(eHHe MHOlKP.'- TBa S=~ ( i , j) I i =1 , n ; j =1 , m · ~ 

B MHOlKeCTBO X. npH 3TC>M, nonyYeHH<O- nycTO~ Sl'--le~KH, J!H60 CTHpaHHe 

CO)l.eplKaHHSI 

3JleMeHTa 

a .. B 51'--le~Ke (i,j), 
CJ 

e B MHO)I(E>C. TBCJ X. 

ocylllE-C TBJ!SleTcSI BKJl>"> LJeHI-JeM oco6oro 
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ny c Tb :f' = { f f: S--4X f H ?.1 MHOll<eC T BO YCJJOBHI'l, Tpe6yeMt>IX Ha 

M H Oll<eCTBe Y . ny c Tt> K S Y MHOll<eC T B O T e X H TOJibKO T e X 3 Jie M e HTOB $ 

.ll.JISI K OTOpbiX BblnO JJHeHO K a ll<.ll.Oe YCJJOB He H 3 ?.1 MHo ll<ec Teo K enonHe 

onpe .n.ene HHO MHOll<eCTBaMH S,X, $ , ?.1. n o 3 T OMY C Kall<eM ~TO ( S , X,$ , ?.1) 

onpe .n.en51eT o.n.Hy KOM6HHaTOpHylO C T P Y KTYPY H a MHOll<eCTBe s no 

OTHOWeHH~ K MHO ll<e CTBaM X H ?.1 ) JJeMeHTbl M HOll<eC TBa ?.1 6y.n.eM 

n OHHMaTb KaK a KC HOMbl K OM6HHaTOpHO J'l CTpyK T ypbl <JC . 06o3Ha~HM .511(:-f') 

MHOll<eCTBO aKCHOM . Tene p b , 

aKCHOMaTH~eCKHJ'l o6 b eK T . 
. l 

c T pyK T YPY <JC M OlKH O o npe.n.e nHTb 

Onpe .n.eneHHe 1 . H a M HOll<ec T ee S no 

O THOWe H HIO K MHOll<eC TBY X, 3 TO C S , X , .3", .511( $) ) , r .n.e 

Y M H Oll<eC T BO OTo6pall<eHH~ f : S -4X , .JII( Y) MHOll<eC TBO aKCHOM . 

TaK KaK .JII(,J:) c o.n.e pll<HT MHOll<eC TBO yC JIOBH I'l ?.1, KOT Opble M O r y T 

6b1Tb npOTHeope~HBbiMH, TO npH o¢o pMJi e HHH cTpy KTy pbt <JC H eonxo.n.HMO 

npe.n.ea pHTenbHo o6ecne~HTt> Bbln O JJHHMOC Tb M H OlKeCTBa .511(.3") . 

HeBblnOJIHHMOC T b MHOll<eC T Ba .511($), KOr.n.a a K C HOMbl Bblp all<eHH b l Ha 51 3b1K e 

HC~HC JieHHSI I npe .n.H Ka T OB , M OlK H O yc T a H O BHTb n p1-1 n O M O WH 

pe30JI~UHH. H a npaKTH K e , T aK HM C n o c o60M MOlKH O n pe.n.ycM OTpeTb H 

ycTpaHHTt) YCJIO BHSI KO T O pble npHBO.ll.SIT K HeBblnO JIHHM OC T H M HOll<eC T B a 

Jtl($) . 3 TO O Co6eHHO y .n.o6 H O KOr.n.a MHOll<eC TBO ?.1, K p OMe HeOnXOJl.HMbiX 

y c n o eHA, co.n.epll<H T H H e K o T opble ll<en aeMb le ycnoeHSI . Kor.n.a U. eKn10~ae1 

T O JibKO HeO nxO.ll.HMb le y c n OB H SI , MOlKH O c ¢ o pMynHpOBa Tb Teope My o6 

CyWeC TBO BaHHH O T o6pall<e iiH 5I n o O T HOW e HHIO K aKCH O M a M .511( :-f') . 

JlOKa3a T e JibCTB O c yweCTBOBaHH51 f B 03M O)I(H 0 , XOTSI B n p H HUHnne, 

O C yWeC TBHTb T aK)I(e n p l:! n O M O WH M e T O .ll.a p e30JIIOUHH H C X O .ll.SI O T .511(:-f') H 

OTpHUaHHSI TeOpe M b l C y We C TBOB a HH SI . 

VfHHOJ'l n O.ll.XO.ll. COC T O H T B H C n OJTb 3 0BaHHH M e T O .ll.a pe30JTIO UHH E 

npouecce n o p olK.n.e HHSI c aMo~ cTpyK T y J:A.) t. K O HKpeTH 3 1-1 pyeM 3 TY o6wy 

KOHuenuH~ H a 3a.n.a Y e K O M6 HHaTOpHO rO pacnon oll<eHH 5I, KOTOpa ~ 

MOTH BH pOBaHHa pac n Op51ll<e HH P.M ypOKOB . 

1. .llEWKTHBH OE n OPO)I(JlEHHE KOM 6 H IIATOPHOrO P A C n O JJO )I(EHVISI 

PaccM oTpHM 3a.n.a~y p a c n o p51ll<eH H 51 y·poKoB . 

3 n e MeHTbl MHO ll<eC TB a X o npe.n.eJTeHHtll C Jie.ll.yiOWHMH .ll. HHb iMH : 

HM SI n pen o.n.aea TeJT SI, npe .n.M T, K JJacc , H H .n.e c ypoKa 

VIH.n.eK c ypoKa .n.aeT eo M OlK H OC Tt> p a3JT HYaTt> 3JJ e M e H Tbl MHOll<ec T ea X 

KOr .n.a n pen o .n.aea T e nb e T O MlKe K JT a c c P npe n o .n.a eT TOTlKe n pe.n.MeT H a 

H e C K O JibK H X ypoKaX . VfH.ll. K CnM 0 o npe Jl.P JT 51 e T C 51 3JT MP. H T e np .ll.51B JT 5110WH~ 
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H T O)tH y 

n r -e n o _n a ea TeJl iO , a K 8ll<)tb l~ C TOJ16 e u Te MH H 

y o Ka o n p e .neJl SieTC SI .ney1-.1Sl n a paM Tpa MII .ne H t:> , 0'-u? r•"'.n HIJ il.'l H OM p ypo a 

Jla n p HM e p t:> , Sl Y e i'I K a C a , h ) o TeeY a T c. n ·•M Y n p e n o .nao •• reJll':> e T p MHH 

npH '-! e M b onH c~eaeTC SI n a p o l'l ( d , LJ . 

0TOO p all<e H H e f : S--.X o np )t J1 Sl t2 T C. Sl OC H O BHOIM n p e )l l l )( - TOM 

D( n , p , q , i,d , t ) npe n o .naea T e Jl t:> n .n o=- pli< H T ypo IIH.zteKCOM i n o 

npe.nM e T y p B K J13 C Ce ~ • .AHSI d C 0 '-1 p /1.Hb iM H O M e p OM t 

TaK HM o6pa30M , oa n O JIH@HH e Sl'-le~ K H (a , b) COCTO H T B o np _ne Jle HH H 

' 
n pe.n.Me Ta p H K Jlacc a q e KO T o p o M n r_, .:.no.naeaTeJl t:> a .n pli< H T ypoK e 

T e pM H H e b . 

MHolKec Teo Jlf(fl:) c o;\epli< ~IT : 

00111H e aKCH O Mb l ( n p H C Y l•tH e B K8ll<)t0M p ac. nopSI )I(eHHH). 

H e OriXO)tHMOie Y C JlOBHSI ( T p e6yeMt:> le B K O H KpeTHOM C JIY'-1 8 ) , 

liCeJia TeJi t:>Ht:>le y c JIOB H Sl C H e OOSI3a TeJlt:>Hb l .ztJI SI et:>lno JlHeHH Sl) , 

.naHHt:>le. 

06111He aKCHOMb l 

M O)tE'Jlb KO T Opa SI H e BK JIIO '-IaeT 

pa3 .D,e JieHHe KJiaCC a Ha r p y nnbl, o6t:> e.D,HHe HHSI KJiaC COB H 6 JlOK H y p o K O B. 

.llJISI HJIIOCTpaUHH M e T O.D.a n p H BO)tHM TOJIO I< O HeKOTOpble H O 001111-!X aKCHOM : 

1. AKCHOMOI O.D.HOBpe M e HHOC TH 

1.1. p1~p2 ~ C DCn , p
1

,q
1
,i

1
, d,t ) ~ ~oc n.p2 ,q 2 ,i 2 ,d ,t) ) 

npeno.D,aBaTeJlb n H e _ne pA<HT .D.Ba r-•«~•Ht:>tx npe.n,MeTa •:>.D.HOBp e M e HHO 

1 . 2 . q 1 ~q2 o+ C DCn, p
1

, q
1

, i t , d,t ) -+ ~Dc n,p2 , q 2 ,i 2 ,d ,t. )) 

npeno.n,aBaTeJib n H E' .n,e p lKHT ypoK B pa3Hbtx KJ18C C.3X O.D.HOBpeMe HHO 

1.3. n 1 ~n2 -+ C DC n 1 ~p 1 ,q, i 1 ,d,t)-+ ~oc r. 2 ,p2 ,q,i 2 ,d, t)) 

Pa3 JIH'-1Ht:>le npeno.na ea T e JlH H e .ne plKa T y poK B TOMll<e ~-: .n ac. ce o .n,Ho epe M . 

2. AKCHOMOI .D.HCTaHUHH 

2 . 1 . t 
1 
~t 

2 
-+ ( DC n , p, q , .i. 

1 
, d , t 

1
) -+ ~[)( n , p, q , i 

2 
, d , t 

2
) ) 

npeno.n,aea TeJib n He .ne p li< H T TOTll<e npe.D,MeT B T O M)I(e 

pa3a B Te'-leHHH )tHSI. 

KJJac c e .nea 

AKCHOMOI Bblpa)l(a i0111H -=· H eOn XO)tHMbiE> )I C JIOBHSI, a T <J,K :.K e H aKC H OMb l 

Bt:>lpaJ~o:a i0111He )l(eJJa TeJlbHble Y C JIOB:1Sl, 

HC'-IH C JieHHSI npe.D,HKaTOB, .::, a BH C SllilHMH OT 1-: 0:)HKpeTHOJ'i CHTY8UHH . 

.llaHHble 

.llaHHble pao.D,eJISIIOTCSI H a <J6111H e H K• .•HKpeTHble. 

CJ6111He. _naHHt:>le onpe)lE' JI>l~:> T '-IHCJlO .ll. H e~ H ypO K OB B T e '-leHHH /1.HSI, 

T. e. O npe_neJlSIIOT '-IH C JlO C TOJH5 UOB B M ."' TpHUe . LJH C JIO ··: TpOK 
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TOlKe OOWHM )l.aHHOIM, HO npe.n.n onar ae Tcs:t He MeHt>we '-IHCJJ( 

npeno.n.asa TeJJeH. 

KoH~peTHble .n.aHHt:Jie ::;anHcbiBaiOTC5l e BH)I.e <j>opMyJl PCn . p,q,r 

a6o3Ha'-!a10WHX '-ITO npe n o.n.aea Te nt> n n o npe.n.MeTy p e KJJacc e q HMee: 

ecero r ypoKOB. 

MeTO)I.OM p e::;oniOUHH MOlK HO nont> ::;oeaTcs:t Ha p a3JJHYHbtx 

~opMneHHs:t pacnops:tlKeHH5l : 

3Tana> 

1) o<!>opMJJeHH e MHOlKeC TBa ycJJOBHH , 
' ! 

2) npe.n.t>s:tene HH e cywecTeoeaHH 5l Tpe6yeMoro p ac n o p5llKeHH5l, 

3) Henocpe.n.cTeeHHoe nopolK.n.eHHe Tpe6yeMoro p ac nops:tlKeHHs:t . 

Ha 3). .ll.e.n.yKTHBHbiH no.n.xo.n. o6ocHy e M HI 

H C X 0 .ll. H 0 e MHO)I(eC TBO H MHOlKeC TBO )1. a H H b l X . 

VfcXO)l.HOe MHOlKeC TBO CO)I.eplKHT a6WHe aKC HOMbl H ycJJOBH51, a MHOlKeC TB 

)l.aHHt>IX COCTO HT H3 3 Jle Me HTOB BH)J.a DCn,p,q,i , d,t.) KOTOpbl 

o<!>opMJ15110TC51 HCXO)J.5l H3 .n.aHHOrO P(n,p,q,r). 

0 C H 0 B H 0 e MHOlKeC TBO COCTOHT H3 3 JJe Me HTOB HCXO)l.HOrt 

MHOlKeCTBa ; H H3 TeX 3 JJeMeHTOB MHOlKeC TBa. )l.aH HOIX, KOTOpble np 

cpHKCHpOBaHHbiX d,t. He npOTHBOpe'-!aT 3 JJe MeHTa 

cyweCTBYIOYWero OC HOBHOrO MHOlKeCTBa. B Ha'-!aJJe, OC HOBHOe MHOlKeCTB 

COBna.n.aeT C HCXO)J.HOIM MHOlKeC TBOM . 

Ha l<all<)l.OM 11.1 a re a nropHTMa, .n.ns:t npe.n.HKaTa DCn,p,q,i ,d,t.) 

KOTOpOM see apryMMeHTt>l <j>HKCHpOBaHHbl, MeTO)J.OM pe30J110UH 

HCCJJe.n.yeTC51 npOTHBOpe '-IHT JJH OH 3 JJeMeHTaM OC HOBHOrO MHOlKeCTBa . H 

npaKTHKe OKa3biBaeTC51 '-ITO '-IHCJJO B03MOlKHOIX pe30JJbBeHT MOlKHO C)l.ena1 

KOHe'-!HbiM H n0 3TOMY npo ue.n.ypa pa::;peWHMa. 

EcnH npoTHBopeYH e Ha~.n.eHo, TO Bb~HpaeTC51 .n.pyro~ 3 JJ eMeH 

MHOlKeCTBa )l.aHHbtx, e npoTHBHOM .n.aHH o e DCn,p,q,i,cl,l) BKJJIOYaeTc5t 

OCHOBHOe MHOlKeCTBO, a 3HaYeHH51 p, q 3<\nHCbiBaiOTCSl B 51'-le~Ky CTpO 

n H c Ton6ua Cd, t.) Ma TPHUbl S. EcJJH HenpoTHBOpeYHBbiX .n.aHHbtx Hei 

JJeMeHTOM e, T . e. OCTaeTC51 nyCTOH. 

DpHMe p. 

npH B )l.aHHt>le aK C HOMOI onpe)l.e JJSHOT CJJe.TWIOWee MHOlK E'C. TBO )J.H3tliOHKTOB: 
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,q
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,d,l) 

1. a. qi =q2 -.DC r. , p 
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, q 
1 

, i 
1 

, d • t ) -.D(n, p
2

.q
2
,i

2
,d,l ) 

1. 3. n = n -.DC n 
1 

, p 
1 

, q , i 
1 

, d , ) -.D(n 2'p2,q,i2 ,d,l) 
i 2 

2. 1. t. = l -,0( I I , p , Cj , d , i , l ) v -.D(n,p,q,i
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,d,l ) 

i 2 i 1 2 
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oTopt>le .nanowe c DC N 
1 

,1•1, I 
1 

.1 ,1 ,1 ) 

,D.pyrHX pe30Jl bBeHT C 1 . 1 . HeT , n o TOMY .naHHOe He npOTHBOpe YHT 

CHOMe 1 . 1 . AH a JlOrHYHO, .na HHOe DCN ,M,I ,1,1,1) He 
t 1 

n pOTHBOpeY HT , 
oc TaJlbHbiM aKCHOMaM, TaK KaK nonyya~TC S1 pe:::.on oeeHTtll: I =I ; N =N ; 

1 1 1 1 

1 =1. pecn eK TI-l BHO. no 3 TOMY .naHHoe DC N • M, I ,1 ,1 , 1) 
1 1 

BKJliCl'-laeTCSI B 

OC HOBHOe MHO~eC TBO . 

.D. nowe, .naHHoe DCN2 , :::; ,I
1

,1 ,1.1 ) c 1 . 1. nopo*.nae T S=S, c 1.2. 

nopo~aeT I
1

=I
1

, HOc 1 .3. c HaYana n o p o *.llae T pe:::.on oe HTY 

n =N v -,D(n .p ,I ,i , 1,1) KoTopaS1 .nanowe c DC N
1

, M,I
1

. 1 , 1,1) 
1 2 1 1 1 1 

nopo~aeT n po TH BOpeYHe N 1 =N2 n o3TOMY. DC N2. s. I 1 ,1 ,1 ,1) HeJlb:)Sl 

BKJl~'-IHTb B OCHOBHOe MHO*eC TBO. 

O<t>opMneHHe p ac n opS1*eH HS1 :::.aKOHYeHo ycnexoM, ec n H .nnS~ K~oro 

.naHHOrO onpe .neneHHO (d, t) TaK '-ITO He T n pOTHBOpe'-IHSI C OCHOBHt>IM 

MHO*eCTBOM . 

3aM~THM '-ITO TaKaS1 n pou e .nypa He o6ec n eYHeaeT o6S~:>a TenbHo 

e a pH a HT pac n op S1*eHH SI. E>on e e To r o, o T OYepe.nHo r o 

eb~Opa .llaHHb~ :>aBH CHT KOMnaK THOCTb pacnOpSI~eHH SI, 

cywe cTeoeaHHe . 

0'-lepe.nb .naHHb~ e03MO~Ho o npe .ne nH Tb no pa3 HOMY . OnHwe M o .nHy 

1-1 3 B03MO*Hb~ npoue .nyp. 

2 . nPOUE.ll.Y PA 3AnOJJHEHJ.1~ no CTOJJE>UAM 

npoue.nypa H C n~Jlb3yeT cne.ny~WHe MO.llYJlH : 

BXO.D.HOH MO,D.YJJb (B) : n ocn e .noea Te nbH OC Tb aKCHOM ~ ; 

noc ne.noeaTenbHOC Tb .naHHb~ P ynopS~.llO'-IeHb~ n o 

npeno.naeaTeJ1S1M, TaK '-ITO O'-lepe.nHo cne.ny~T ace 

ypoKH o.nHoro npe no.naeaTeJ1S1 3 a .npyrHM; 

n a paMeTpH: t H d ; MaTpHua S CnycTaS1) . 
max max 

MO,D.YJJb ~J.1KCJ.1POBAHJ.-l5l (<l>): ocywe cTBJ1S1eT ¢HKCHpoeaHH e napaMeTpo e d, t 

e n oc ne.noea TeJlbHOCTH .naHHb~. 

nPEnO.llABATEJJ~ em: cne.ny~wee .naHHoe e 

MO,D.YJib .PE30JIIOUHH (R): 

nocne .noeaTenbHOCTH o.nHoro npeno.naeaTeJ1S1. 

nopoJK.naeT MHOJKecTeo pe3onbeeHT ebll5pa·Horo 

.naHHoro C OCHOBHb~ MHOlKeCTBOM. 

CR
0

): OYHwaeT HeHylKHble pe3onbeeHTbl. 

MO,D.Y])b MAPKJ.1POBAHH~ (M) : cocTOHT H3 cne.ny~WHX no).l.MO.llyne~ 

M
1

- MapKHpyeT .naHHOe e nocne .noeaTeJlbHOCTH .naHHb~ H 
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BKn~YaeT MapKHpOBaHOe ~aHHOe B OCHOBHOe MHO~eCTBO. 

M
2

- CHHMaeT MapKHpOBaHHe C 3JleMeHTOB OCHOBHOro MHO~eCTBa H 

y~aJ151eT MapKHpOBaHble ~aHHble HO nocne~OBaTE-JlbHOCTH ~aHHbtx. 

M
9

- y~an>leT MapKHposaHble 3neMeHTbl H3 OCHOBHOro MHO~eCTBa H 

ni= 

CHHMaeT MapKHpOBaHHe C 3neMeHTOB noc~e~OBaTenbHOCTH ~aHHbtx. ny 

MO.D.YJlb nEPEXO.li.A CH): nepexo~ Ha ~aHHble cne~y~wero npeno~aeaTen>~. Btl 

KOHTPOJlbHb~ MO.D.Y Jib C K): 

npeno~aeaTeJ151 

npoeep>~eT 

N 
1 

~aHHOe 

OC~OBHOMY MHO~eCTBy . 

KoTopoe 

MO.D.YJlb 3AT1HCH (3): :3anonH>~eT c ToJJ6eu s.YeeK MaTpHUI-L 

Bb~O~HO~ MO.D.YJib (S): neYaTaeT eapHaHT pacnop>~~eHH>I . 

CxeMa anropHTMa npHee~eHHa Ha PHc . 1. 

Ha YaJJO 

I 
I B I 

I 
1 t =t ;d =t 1 
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Ma pKHpOBaHHe .D.aHHb tx o6yCJJOBJJ e HO TeM YTO B O MO)I(HO B C TpOKe 

.rotxo n n o .n.aea TeJJ S~ ,D.a HHbtx KOTOpble He npOTHBOp e '-l a T OCHOBHOMY 

~ a 11 ~HoJ«eC TBY 0 8 TaKOM CJJy'-lae COOTBeTC TBeHHaSl Sl'-lS~ ei;)Ka OC TaJJaC b 601 

-101)(
0 

nyc T OA, 

n 0 p a Ht>l 

XOTSl BO::>MO)I(HO 

.n.pyrHe .n.aHHble 

MOrJJa 6o1 

.D.JJS~ 3Toro 

6 o1To ::>anOJJHe Ha , eCJJH 601 6biJJH 

c Toroua o n o3TOMY aHyJJHpyeTCSl 

eorc 

::> 
J 

n o JJHeHHe CTOJJ6ua, HO npe..neapHTeJJ b HO npoeepS~eTCSl 

JJH y nepeoro no oYepe.D.H npeno)J.aeaTeJJS~ )J.aHHoe KOTopoe 

H npOTHBOpeYHT OCH OBHOMY MHO)I(eC TBYo EcJJH T a Koe )J.aHHOe He 

c ywec TeyeT, TO S~Yei;)Ka o c TaeTCSl ny c T o l;) H npo.D.OJJ)I(ae TCSl ::>anoJJHeHHe 

cToJJ6ua c coxpaHeHHeM y)l(e nopo)I(,D.eHHb tx 3JJeMeHTOBo EcJJH .D.aHHoe, He 

npOTHBOpeYaiJ.(ee OCHOBHOMY MHO)I(eCTBy, cywecTeyeT y nepeoro no 

o'-lepe.D.H npeno.n.aeaTeJJSl, TO CToJJ6eu ::> anoJJHS~eTCSl o ::>aHoeoo 

TOJJbKO KOr)J.a ::>anOJJHeHHe CTOJJ6Ua BnOJJHe ::>aK OI-IYeHO, CHHMaiOTCSl 

a c e MapKHpOBaHHSl B OCHOBHOM MHO)I(eCTBe H BCe MapKHpOBaHHble )J.aHHt>le 

y.D.aJ!SliOTCSl noc JJe)J.OBaTeJJbHOC TH )J.aHHbiXo <l>aKTHYeCKH, 

ocywecTBJJSleTcS~ n epeHoc "y .D.aYHt>tx" .n.aHHt>tx H::> n oc JJe.n.oea TeJJbHoc TH 

.n.aHHbiX B OCHOBI-!Oe MHO)I(eCTBOo 

c JJe.D.YIOWero c T oJJ6uao 

3aTe M nepeXO)J.HTC Sl K ::>anOJJHeHHIO 

3o nPVIMEP .llE.llYKTYlBHOrO n OPOW.llEHVISl PAC n OPSI)I(EHV!Sl 

npoHJJIOCTpHpyeM OnHCaHHYIO npoue.D.y py Ha O,D.HOM COBCeM npOCTOM 

nploiMepeo nycTb A(:J") C O,D.ep)I(HT T OJlb KO aKCHOMbl 101 , 102, 10 3 , 201 B 

¢opMe )J.H::>OIOHKTOBo 

06wloie )J.aHHble : d = 2 ; tmux = 4 ; nrnux = 30 
max 

KoHKpeTHble .D.aHHble: PCN ,M,I ,2), 
i i 

PCN ,M, I ,2), PCN ,R, II , 2), 
i 2 i i 

PCN , S ,I ,1), 
2 i 

PCN ,S,I , 1 ), PCN ,S,II ,2), 
2 2 2 i 

PCN
3

,F,I
1
,2), PC N , F , I , 2) , PC N , f , II , 2) 0 

3 2 3 i 

npHBe)J.eHHa5l npoue .D.ypa nopO)I()J.ae T pacnopSl)l(eH~I e n pe)J.cTaeJJe Hoe 

Ha PHco 20 

io )J.eHo 2o .n.eHb 
npeno)J.aeaTeJJb 

i 2 9 4 i 2 9 4 

ll1 R M m R M 
N I I I I I II I 

i i i 2 i i 2 
s s s s 

N I 1 II II 
2 2 i i i 

F F F F F F 
N II I I I 1 11 

9 i 2 1 2 1 i 

PHC. 2 0 

3aMeTHM YTO KJJaCC 1
2 

BTOporo )J.H5l He HMeeT BTOporo ypoKao )TO 

MO)I(Ho nonpaBHTb npocTol;) nepecTaHoeKo~ nepeoro 1-1 BToporo c ToJJ6ua, 

npHYeM "nyCTOA ypoK" BOI,D.BHraeTCSl Ha MaprHHy . 
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4 . 3AKJJ10'-IEH~ l E 

Mbl yKa3aJUI TpH HCXO.D.Hble B03 MOlKHOC TH .D.JJSI HC n OJJI)30BaHHSI MeTO.D.a 

pe30JJIOUHH 

KaJK.n.aS~ 

B npouecce Kpel-!poeaHHSI 

H3 HX n o .n.ne)I{HT 

COBepweHCTBOBaHHIO . B HTOr e 

ocpopMJJeHHSI KOMO HHa TOpHbiX 

HCKYCCTBeHHO&O HHTe JJJie KTa. 

" 1 

liY!TEPATYPA 

KOM6HHaTOpHbiX pac noJJoJKeHHI?I. 

HC.CJJe.D.OBaHHIO 

C03.ll.a HHe C HC T e Mbl 

pac n o JJo)l{eHHI?i Ha nonoJKeHHSIX 

1. UeeTKOBH'i ..U. XoTOMCJ-:1-1 n. H .D.p. • .lJ.eCSITb JJe T pa3 BHTHSI H 

HCnOJJb30BaHHSI 3KCnepTHO~ CHCTeMbl " Gt' a ph", (cepOCK Hiil) , C6opHHK 

CHMn03HSI "OcyweCTBJJeHHSI H npHJJO)I{eH~I SI HCKYCCTBe HHO& O HHTeJJJJeKTa" 

.lJ.y6pOBHHK 1989, CTp.25- 4 6. 

2. Robinson J . A, A machine or·iented logic based o n resolution 

principle, J. ACM. V o l . 12, 1965, pp. 23 - 41. 
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ABSTRACT: The paper describes the result of an analysis of different systems for representation and 
presentation of information of the types HyperText, Authoring Systems, Intelligent Tutoring Systems 
and Intelligent User Interfaces . Some of their important advantages and disadvantages as well as their 
characteristics are shown. Based on this description, a main characteristics of the whole software class 
is drawn out and can be used for furth er systematization. 

KEY-WORDS: HyperText, Interface, Multimedia, Presentation 

I. INTRODUCTION 

The development and wide application of different systems for representation and presentation 
of information and knowledge offers an opportunity to recognize their advantages and disadvantages, 
thus influencing their further enlargements and improvements together with the development of new 
systems. 

Different profiles of the users of these systems require the presentation of information to be 
clear and to include different media realizations. 

The development of methods and techniques in different fields of computer science influences 
U1e emergence of integrated systems which include U1e representation and presentation of information 
and knowledge. However, one of major problems which needs to be solved is whether to choose 
highly specialized data structures for these systems and then adopt them as much as possible to a 
particular field, or to aim for a general and widely applicable structure. 

Most research today is undertaken with a view to developing systems which would possess 
the following components: · 

-Universal formalism for the representation of different existing forms of information and 
knowledge (text, picture, sound, ... ). 

-Universal method of presentation of accessible information and knowledge. Such methods 
should single out, from the existing formalized representation, a meaningful unit of information and 
present it in an adequate way, depending on U1e user profile. 

-General applicability- the possibility of application in different fi elds. 

Research in this field resulted in ready-made software systems wiU1 different concepts of 
representation and presentation, but they can all be generally described as systems characterized by 
the following elements - units (Figure 1 .): 

l. Busic information and knowledge - a collection of information and knowledge to be 
represented. It needs to be classified and divided into smaller semantic units. 

2. Additional information - a collection of information and previous knowledge which can 
help the user of the system to understand basic concepts more easily. Generally speaking, this kind 

43 
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of information is not directly related to basic information and since it is not necessary for all users 
of the system, it is stored separate! y. 

3. Formalism or representation is a formalism by means of which basic and additional 
information are represented in an appropriate way in a computer, forming a data base. 

4. Mechanisms or presentation are mechanisms which, on the basis of represented 
knowledge and information, perform an adequate presentation. 

5. Feedback mechanism is a mechanism which should receive feedback information from 
the user, turn them into adequate actions and then forward to the system. The system of forwarded 
information processes and determines the behavior and further course of presentation. 

The ex isting systems and environments 
are usually applied in the fo llowing fields: 

- The processes of lea rning and 
teaching, i.e. educational processes at all levels. 

-Presentations in the stri ct sense of the 
term, i.e. presentations of software products, 
projects, ideas, etc. 

- Intel! igcnt user interfaces should 
enable a sophisticated and natural way of man­
machine communication. 

The c mplexity of information and 
knowledge which should be represented and 
presented requires different methods of their 
media presentations: through text, picture, 
• I · figure I General Appearance of (Rc)prcscnuuion System stmu at10n, sound etc. The inclusion of different 

aspects of representation and presentation of 
information and knowledge characterizes these systems as multimedia systems. Methods of artificial 
intelligence should play an important part in these systems. Since artificial intelligence cannot satisfy 
high criteria which are set in most systems for representation and presentation of information and 
kn wledge, it is undeveloped . However, most research strives to make use of different artificial 
intelligence methods in order to obtain systems for representation and presentation of informatio 
which are of high quality anc.l easy to use. 

2. MULTIMEDIA SYSTEI\IS 

Multimedia systems integrate textual information with sound, video, ani mation and graph ics, 
in order to obtain high-quality computer-a ided presentation and representation which wi ll be all 
inclusive and clear. 

When we speak of multimedia features of a software product, we mean the software producl 
which integrates designing simple animation, moving of graphics on the screen, recording and 
reproducing digitalized speech and music, memorizing of the whole section of work in order to be 
used subsequen tly fo r different purposes. If a software product is to support tJ1 ese different 
possibilities of expressing information, it has to support different peripherals : monitors, videos, CD 
players etc. 

From the point of view of using periplr crals, there are two ways of presenting informat ion: 
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- 1\ Iul! ipcriphcrul (dispersed) pr entation - the process of presentation includes and uses 
several different peripherals . 

- I\ Ionupc1 iphcra l presentation - th e process of presentation includes on ly a computer 
monitor on whk h various types of information can be shown simultanw usly. 

from th e point of view of coordination of information, th ere are two types of presentations: 

from - Coordination or media - integral information are obtained as a union of non-redundant 
lrded individual forms of information. This type of presentation is diffi cul t to carry out, because it requires 

the sys tem to make intell igent decisions concerning the div ision of information and mode of presenting 

tificial 
satisfy 
Jn and 
tificial 
matior 

3phics, 
be al 

lroduc 
ng am 
.r to b1 
ifferen 
OS, CJ: 

nation: 

particular elemen,ts . 

- Non-coor di nation or media - some information can be mult ipli ed, i.e. expressed 
si mul!aneously Uuough different already existing forms . This type of presentation is easier to carry 
out because it doesn't require a deep and intelligent analysis and a precise class ification of information 
according to a particular med ia. 

3 . CLASSIFICATION OF SYSTEMS FOR INFORMATION (RE)PRESENTATION 

Systems for representing and presenting information and knowledge can be classified 
according to several criteria. 

I. According to the cri terion of npplicnbility, there are: 

a) ,specialized systems- intended for highly specialized fields, 
b) 'general purpose systems applicable in various fi elds. 

2. According to the criterion of intelligence, there are: 

a) intelligent systems - which make use of different methods of art ificial intelligence, 
b) non-intelligent systems which do not use methods of arti fi cial intelligence. 

3. According to the criterion of interaction, there are: 

a) systems with feedback which expect feedback response from the user, 
b) systems without feedback which expect no feedback from the user. 

As a rule, the more specialized the system, the greater the possibility of employing methods 
of artificial intelligence, and vice versa, if a system is of general nature, it is more difficult to make 
it intelligent. The ultimate aim of most research are highly intelligent systems of general nature. 

The existing systems for representation and presentation information can be classified into 
several basic groups. The most interesting systems for wide use are HyperText systems, Authoring 
systems, Intelligent tutoring systems and Intelligent user interfaces. 

3.1. HYPERTEXT 

In a strict sense, HyperText can be considered a data structure, i.e. a formalism for 
representing information which includes a collection of tools for handling structures and presenting 
the represented information. · 

In a broader sense, HyperText is a software tool for collecting, storing, searching and 
presenting information with references. HyperText simulates the ability of the brain to sto.re and 
search for information with references quickly and intuitively. 
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Basically, it is a data base management system which makes possible the linking of . 
information on the screen and in the base by the use of references. 

HyperText systems find their application in learning processes, presentations in the strict sense 
of the term, and user interfaces. 

According to the classification from chapter 3, they can be classified as non-intelligent general 
purpose systems without feedback. 

3.1.1. Characteristics of HyperText 

The following elements form the essence of HyperText: 

a) Database and a method of recording and accessing information in it. 
b) Scheme of lhe links among elements (nodes) in the .-------------, 

database, i.e. a semantic network. At least one link towards other 
nodes in the base has its source in each node of the base (Figure 
2). 

c) Interface which . enables a visual presentation of 
information from the elements of the base as well as a simple 
method of moving from one element to other elements linked with 
it. 

There are several ways of linking elements - nodes of the 
Fagure 2 A Part of a Semantic Networlc 

database. The most frequently used ones are: linear (Figure 3) and hierarchic (Figure 4). 

HyperText database usually consists of I I 
nodes, the worki.ng ·space of which is the size of I H I· .. -D 
a screen. Nod~ can be loaded with textual, 
graphic, audio and video information. In a 
considerable degree, HyperText functions serve figure 3 Linear Uno of HyperText Node• 

the purpose of multimedia presentation. 
A typical HyperText includes the following auxiliary tools: text editor, graphic editor, tool 

for three-dimensional representation of pictures, mouses, windows, icons, and pull-down menus. In 
addition it has a number of index possibilities: inverted word files, hierarchic indexes. In HyperText 
it is possible to connect the system with an external executing program. 

Recenlly there is a noticeable tendency 
to combine the techniques of llyperText with 
artificial intelligence techniques in the 
implementation of intelligent systems. Apart 
fro m basic elements of HyperText, such systems 
have some new elements: 

d) Scheme of ga thering knowledge 
which enables automatic addition of information 
and relations among them into the existing 
structure of HyperText. 

e) Observing the activi ty in the system 
and making suggestions about the changing of 
information in the nodes and links among them. 
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3.1.2. Utilh.ntion or HyperText 

~nse 

When HyperText is used to create some (usual ly) mu ltimedia product it i necessary to divide 

1eral avai lable information, which is to be represented, into simple semantic units with a simple concept 
or idea which can be rep resented on a screen. 

IOrk 

J 
, tool 
JS . In 
:rText 

Individual nodes are connected into compositions - a network which is supposed to make 
poss ible quick movement from one to another. Nodes can be: 

- Qualified (named) - with an associative name which reflects the content of the node. 

-Unqualified (unnamed)- nodes are unnamed parts of the network. Usually in HyperText 
it is possible to as~ign names both to nodes and links. 

' 
When using HyperText system, a user can forget , if the database is large, how and why he 

has reached the point in which he is located at the moment. If this is the case, in many systems it is 
poss ible to give a graphic representation - a structural diagram of a node network. Such a diagram 
can enable the shift into any of the network nodes. 

Some HyperTexts allow the assigning of a default course through the database wh ich guides 
and directs the user through an ordered list of nodes. 

Depending on users and fields of application there are considerable variations among 
HyperText systems. Basically, there are four types: 

- systems for problem solving (practicing), 
- systems for on-line searching, 
- li~rary systems, 
- multipurpose (general) systems. 

HyperText systems are not basically intell igent, and therefore in the process of their 
application, a man is the main supervisor of the whole process. He decides which information are 
included in the database, how to organize and form the nodes and which links are formed among 
them. 

3.1.3. Problems with HyperText 

HyperText represents a new technology with a number of problems still unsolved, and without 
established standards. , ~ 

I. The main problem is how create a convenient models which is relatively easy to manage. Large 
amounts of information which are to be stored can result in a system which is too large and bulky and 
the movement through which is slow and difficul t. 

2. HyperText user is self-guided and he can move through nodes of the network according to his own 
needs. However, there is a significant danger of choosing a wrong course and getting lost in the 
network. Such a system with no real determinism in choosing a course through nodes and without 
actual feedback is too open and often non-effective. Sometimes it is difficult to split up the existing 
coll ection of information into nodes and later the classification may turn out to be wrong and in need 
of correcting. In such cases, most HyperText systems have problems. 

3.2. AUTHORING SYSTEMS 

Authoring systems are software tools which link into a functional unity a computer and 
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different peripherals, such as CD ROM-s, laser videodiscs etc. These systems are usually called CAl 
and they find their application in the field of teaching and presentations in the strict sense of the term. 
They can be divided according to their purpose, and in most cases they are specialized in particulaJ 

. fields. According to the cl assification from Chapter 3, they can be grouped as non-intelligent systeilll 
with feedback. 

A numerous group of people, such as teachers, managers, authors of different teaching 
processes uses authoring systems to create their own interactive multimedia programs (systems). 

The first authoring systems were independently developed software products with no ability 
to control external devices. However, the current trend is to develop such authoring systems whid 
would be able to control and synchronize a large number of external devices, they are becoming more 
powerful and more extensively used in the field of interactive multimedia systems. 

Knowledge and information which are to be represented in a system are divided into smalle~ 

sections - topics, wh1ch are linked to make a semantic unit. Topics and links among them form a 

graph. In the process of presenting information stored in a graph , there is a movement along different 
parts and nodes in the graph of the system. 

3.2.1. Features or ·authoring system 

By analyzing different authoring systems available in the market certain features can be 
determined and criteria set which a system should meet in the process of its creation as well as in iu 
operation. 

- Authoring systems, using different convenient tools enable the user to design and create hu 
own multimedia application without using and being familiar with a procedural language. However, 
the existence of a programming language as an option can be very useful, so that an authoring systen 
can have its own procedural language or offer a direct access to some such language. 

- An av thoring system should enable simple integration of outputs frpm some other program, 
i.e. it should rrlake poss ible the use of textual data files already existing, as well as including graphi 
created by some independent graphical applications outside the sys tem. 

- An authoring system must offer an appropriate method to create text and graphics by 
- hav ing its own text (graph) ed itor and/or 
- supporting some already existing text (graph) editors. 

-It should make possible the control of the process of presentation and moving from one pal 
of the system into another. 

- It should enable simple "switching" of multimedia aspects. 
- It should have simple singular interface, which will enable unified use of all tools availabl 

on a computer. Each time a new multimedia element is created (or a new device added) the existi!lf 
interface should support it. 

- It should allow full integration of text, graphics, animation, sound, video. The access 
these elements shoul d be built into a standard interface. The system should comprise two bas' 
fu nctions: 

- branching moving to a designated topic, from where it is possible to return 
previous state or to move along some other path in the graph system, 

- activation of some other programs and automatic return from the activated progra 
into the authoring system. 

- An aut110ring system should offer context sensi tive help system. 

3.2.2. Application or nuthorlng systems in learning processes 

Authoring systems can be used in teaching processes preparing lessons and courses etc . 11 
such cases a system should have certain mechanisms of testing the acquired knowledge. Authori 
system in educational processes should advance the poss ibili ty of handling questions/ answers of t1f 
fo llowing type: 
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!d C 1. true-fal se, 
e tcrr 2. multipl e-choice questions, 
rti cul; 3. open questions. 
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In order t obtai n information abou t the quality of teaching and th e results of the evaluation 
!achir f acquired knowledge within an authoring system, it is suitable to create separate units for each 
ns). part icipant in the process. Such units wou ld store th e following types of information: 
abili 

; whi - th e length of the teaching process, 
g 11101 - the number of correct answers, 
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- th e number of individual topics (i.e. nodes in the graph) covered. 

It wou ld b~ preferable for this data to be recorded in the format which cou ld be forwarded 
to specialized programs for obtaining graphic presentations and proving statistical data about the 
effectiveness of teaching. 

Authoring systems support considerable number oftool5 necessary to create sophisticated and 
powerful interactive mult imedia applications, but their qu al ity depends on the creativeness and 
imagination of their author. 

Mechanisms of an authoring system for testing the acquired knowledge by means of feedback 
allow clearer and easier movement through system graph. Paths through the system are determined 
by students' answers to questions and tasks and there is no possibility of students' getting lost in the 
graph and knowing how to continue. 

The ex istence of a feedback which determines the progress of movement through the graph 
is a considerable improvement in these systems in comparison with HyperText systems. 

3.3. INTE~LIGENT TUTORING SYSTEMS 

Intelligent tutoring systems are exclusively intended for learning processes. They represent 
a combination of differe nt fie lds: education, psychology, artificial intell igence, cognitive sciences etc. 
1l1ese are usually highly specialized systems which is the reason why they successfully employ the 
methods of artificial intelligence. Since they are bas ically intended for learning processes , ITS systems 
are systems with feedback. Their architecture and structure varies, but usually four types can be 
recognized: 

I. Exper t (teaching) module is a data base which stores information from the field in which 
ITS is used 

2. Students ' module - is intended for modelling individual student's knowledge in the fi eld 
where ITS is used. The content of the module constantly changes during the process of learning. 

3. Tutoring module specifies the method of presenting the material in the field in which ITS 
is used , the manner and rhythm of presentation. 

4. Diagnostic module - which constantly modifies the students module in accordance with 
answers that students give to the questions asked. Th is module is also linked to the expert module. 

Efforts that are made concerning further development of these systems have as their aim the , 
communication between students and computer in natural language. However, taking into account 
current state of affairs in research in natural language interfaces, nowadays the communication is 
performed either in meta-language which is close to a natural language or in some subset of a natural 
language. 

The communication is established by translating a natural language into a computer code at 
the input of the system, while at tl1e output machine cone is translated into a 'natural' language. The 
communication is mainly textual or has some rudimentary graphic capabilities. 
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3.4. INTELLIGENT MULTIMEDIA INTERFACES 

An intelligent interface should accept formally represented information from an application 
program and present them independently in the form of graphic, animation, sound or a natural 
language, and if possible, through coordinared media. In addition it should allow accepting 
information from the user, in natural language, by demonstration, by choosing from the menu etc., 
and transform them into a formalism and a code which is understandable for the application. 

If an intelligent interface is to realize such communication, it should have additional 
. information about: 

1. application, 
2. the user a~d his previous knowledge of application, 
3. the aim wTtich is supposed to be achieved by the presentation. 

These requirements are not simple. In 
favor of this, there the fact that today there are 
only a few projects which come close to these 
goals but have not reached them yet. 
Unfortunately, these projects are highly 
specialized and applicable to a very small group 
of problems. Formally, general structure of an 
intelligent interface can be determined as 
follows (Figure 5): 

- Presentation planner - takes 
formalized k,nowledge and (if possible, 
coordinativelly) generates text, picture, 
animation, sound etc. The presentation formed Flgure 5 General Appearance of lntclligcnl Interface 

in this way later sent to presentation coordinator 
for processing. 

- Presentation coordinator - it integrates in the meaningful way in the memory elemenU 
obtained by presentation in the media which are available. Failing that, it gives back these elemenb 
to the planner requesting a correction . When presentation planner and coordinator are coordinated ili 
presentation is sent for further processing to the feedback. 

-Presentation fcedb!tck simulates the man. Its task is to see whether a set goal is achieveli 
by given presentation . Unless the comprehensibility and mode of presentation is satisfying tllt 
feedback: returns all given elements to presentation coordinator aslcing for corrections. The momeli 
feedback is satisfied with the presentation it forwards it to the ultimate man. Since the whole proce.ll 
should occur in real time, the communication between individual elements of the interface should bl 
reduced to reasonable duration. 
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Abstract 

In this paper we consider the implementation of fast Fourier transform (FFT) 
on finite Abelian groups. The rules for generation of FFT flow-graphs are given. A 
met hod \or t he dy namic determ inati on of weight coefficients in the flow-graph of FFT 
is presented . 

Key words: f ourier transform, fast Fourier trans form, finite Abe lian groups, 
we ighting coeffic ients. 

elemen 
elemen 
inated tl 1 INTRODUCTION 

The main problem in the application of discrete t ransforms is the efficiency of their 
achievr calculation. The use of pefining expressions is, in general case, not efficient, which 

fying tl caused the fast algorithms to be developed . T he obvious examp le is given in table 1 11] . 
: mome Calculation times Td for discrete Fourier transform (DFT) obtained by the application 
e procl of defining expressions are compared to calculation times for FFT (T1) for the same 
5hould 1 d" ·t 1 • · k M · h b f · · h · tgr a Image processmg tas . IS t e num er o pomts m t e tmage. 

M 

64 x 64 8 minutes 3 seconds 

5-78. 256 x 256 30 hours 1 minute 
512 x 512 20 days 5 minutes 

c. ofX 1024 X 1024 1 year 20 minutes 

-Orienli Table 1: Calculation times for DFT 
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In this paper we cons ide r the problem of an efficient implementation of Fourier trans­
form on finite Ab elian groups. In practical realizations of FFT one of basical problems 
is the determination of weight coefficients. An approach usualy applied in practical 

realizations of FFT consists of an a priori determination of all weighting coeffi cients 

in flow-graph of FFT on a given group, which are stored for later use. This approach 

implies a strong limita tion on the choice of the group on which FFT could be imple­

mented. Actually, it is efficient in situations where repeated calculations of FFT on 

a given group are required . Another disadvantage of this approach is relatively high 
memory requirements, or specific hardware structure (for real-time) . 

The method proposed in thi s paper tends to overcome these disadvantages. The 
method is based upon the carac.teristic structure of Fourier transformation matrix on a 

given group and cons ists of the d etermination of the weight coe ffici ents needed for calcu­
lation of FFT on the corresponding subgroups. In this way the probl em of determination 

of th e set of weighting coefficients on a group is reduced to an a priori determination of 
some subsets of representative weighting coeffici ents . T he other weighting coeffi cients 
are determin a ted during the impl ementation of FFT algorithm by applica tion of rules 

derived in this paper. 

In such a manner m emory requirements are greatly reduced and calcul a tion of FFT 
on groups of arbitrary ord ers is provided . 

2 NOTATION AND DEFINITIONS 

Let G be a fi n ite Abelian group of order N . Let us suppose th a t G is representa ble cr 

a direc t p roduct of cyclic subgroups G; of orders g; , i = 1, .. . , k, respec tively, i.e. 

k 

G = X~=t G;, N = I1 g;, Yt :S Y2 :S -· - :S Yk· 
i = l 

Denote by C( G) th e space of a ll comp lex functions on G. Recall that the characters 
G are defined as th e homomorphisms of G into the unit cicle, i.e. they are given by: 

x(w;·-x ) 

where: 

X((wi , · -· Wk) , (zt, -.. Xk )) 
• k W; X; 

= exp 21f t L --, 
i = l g; 

X = oN- I X • i= O i '--i , 

W = o N - I W • i = O i '--i, e; - ide nt ity of G;. 

Us ing the characters of group G, the direc t a nd inverse Fouri er trans forms on C(G 
a rc d cfin rl resp c tiv ly by: · 

N - 1 

S1(w ) = N - 1 L f(x)x' (w, x) , 
z=O 
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N - l 

f( x) = L SJ (w) x (w,x) , 
w=O 

: ien or in matrix fo rm: 
[i) = N - 1[x')[J) , 

[f ) = [x][iJ, 

roac. 
mpl, 

'T o 
' hig 

~h rex is the compl ex conjugate of x [2). 

Tf Fourier transforrqation matrix can be represented as the Kronecker product of Fourier 

K on lransformation matr ices on the coresponding s ubgroups (G;), i.e. 

calc 

natic 
lion 

k 

[x') = ®lx;) , 
i= l 

icien • . 
f rul where is [X;)- character matnx of subgroup G; [3) . 

T he flow-graph of FFT on a given group G is derived from the factorization of Fourier 

,f FF lransformation matrix into the product of sparse matrices. The factorization of [x'] is 
not uniquely defined, and therefore, different FFT algorithms exist in the literature, see 

able ; 

i.e. 

: ters 
lby: 

[4,5). 
In this paper we wi ll use Good-Thomas factor ization for the derivation of FFT on 

finit e Abelian ;groups. In this approac h the factorization method is given as: 

[x' ] = [c(IJ] . [c(2J] ... .. [c(tJ] , 

where 
[c(IJ] = [xi] ® lg, ®···® 191, 
[c(2J] = lg, ® [x; ] ®· ·· ® lg,, 

L 

with 19; is the identity matr ix of order g; . 

EXAMPLE: 
A given finite Abelian group G of order 6 can be conveniently identified with the direct 

product of two cyclic groups G1 = {{O,l},EB) and G2 = ({0,1,2},0) where Ell and 0 
are the addition modulo 2 and 3, respectively. In this case the Fourier tr ansformation 

m C ( matrix on G is given by: 
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I . i2.r 2i2.r w 1ere 1s e 1 = exp 3• e 2 = exp 3· 
Using the Good-Thomas factorization this matrix can be repn:sented as 

where 

3 IMPLEMENTATION 

1 0 0 1 0 0 

0 1 
0 0 
1 0 
0 1 

0 0 

0 0 1 0 
1 0 0 1 
0 -1 0 0 
0 0 -1 0 

1 0 0 -1 

1 1 1 
1 e1 ez 

1 e2 e1 
0 0 0 

0 0 0 

0 0 0 

0 

0 
0 
1 ... 
1 
1 

0 

0 

0 
1 ... 

The flow-graph of FFT on a given group G can be derived from the factorization fr 
section 2. The procedure is exp lained on an example. The flow-graph of FFT on gro1 

G from example from section 2, is given on Figure 1. 
Note that, each matrix [C(ilJ describes uniquely one step of the fast Fourier transfor L 

The weight coefficients in flow-graph are determined by non-zero elements of C(il. 
From the ana lyses of factorizations of Fourier transform and flow-graphs on differ 

groups the rules for the generation of FFT flow-graphs on an arbitrary group can 
derived. In this way the generation of FFT on finite Abelians is almost complet 
formalized and can be given directly without factorization of the transformation matr. 

In the case that the number of group equals 1 (k = 1, i.e., transform is DFT) 

rules are: 

• The nwnber of steps of the FFT flow-graph n, is equal to the number of factors 
group order (N = /1/ 2 ••• fn) where/; is i-th factor of N. 

• The number of inputs as well as outputs of i-th step is N. 

• The output of m-th step is input for (m + 1)-th step. 

• In j-th step n::, !. identical nodesets can be distinguished. 

Let us divide each set of nodes, in step j, into subsets consisting of n{~~ /;nodes, / 0 ::: 

ll 

fi 
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odes with identical rel a tiv po· it1ons in the nodesubsets are connected. 

• Each node, at j-lh step, is conrl!'clcd lo / 1 difT rent r.odes. 

• V eights coefficients of branches <; Inking in the first node in nod set are equal to 1. 

• • ach branch that sta rts from a node in the first s ubsets has weight coefficient equal 

to 1. 

• The first branch sinking in the node has weight 1. 

' • Weight coefficient of i-th branch (2 ~ i ~ fi) sinking in the node with relative 

position in nod eset rP, at j-th step, is W1 

where l = (Brgr(j - l)(rp - 1)) mod N, 
B rgr - the number of identical nodesets at ; '- th s tep. 

Note that input data are in bit-reverse ordering . 
In the case that the number of groups is greater than 1 (i.e. Chrestenson transform) 

the rules are similar to the rules for DFT. 

• The number of steps k, equals to the number of subgroups (G = G1 o G2 o ... Gk) · 

• In ; '- th flow-graph step D{~~ g;, g0 = 1, ident ical nodesets can be distinguished, 

where g; - order of subgroup G;, 
N - order of group G , N = 9192 . .. 9k· 

• Each node, at J·-th step, is connected to 9i difT~rent nodes. 

:tnsfOI Let us divide each set of nodes, in step j, into nodesubsets consisting of 
;(iJ. nk+l 1 

i=i+l g;, Yk+l = · 
differ 
J can 
mplet 
1 mall 

FT) 

acton 

i, fo = 

• Nodes with identical relative position in nodesubset are connected. 

• The first branch sinking in the node has weight coefficient 1. 

• The nodes of the same nodesubset are sinks for branches with identical weight 

coefficients. 

• Weight coefficients of branches, in step j, in the nodes of j-th nodesubset are equal 

to the elements of ;'-th column of character matrix of subgroup Gj. 

The rules derived for DFT, i.e . for the derivation of FFT on the cyclic groups, enable 
the generation of the same procedure, for any finite Abelian group. Note that besides 
cyclic groups the derivation of FFT in literature, is mainly restricted to some particular 
finite Abelian groups most frequent ly used in some practical applications, for example 
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the finite dyadic or p-adic groups. See, for example, [6,7] . 
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Figure 1. FFT flow- graph for N=6. 

By means of derived rules, the implementation of FFT on finite Abelian group of 

arbitrary order N is straightforward, as well as the generation of the flow-graph. 'I' 
factorization of Fourier transformation matrix is not needed any more. Derived ru 

are sufficient for generation of the now-graph . 
It is necessary to calculate and sto re representative weight coefficients on subgro 

G; (i .e. characters of subgroups G,), and to apply the deri ved rules . This could· 
noted as an advantage in respect to required memory , compared to majority of exist' 
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pr c ical realizations of FFT on so me particular finite groups where the storage of all 
ighting coe fri icnts is common requir menl. 
Thr pro edurr l'ast for calcul at ion of DFT on groups of on arbitrary ord r is 

nt d as an illustrative examp le in the appendix. r 
The proposed rnrlhocl is implemented in the programming package n Fouri r" at the 

f.lculty of El ctronics, Univ rsity of Ni~. capable of calculating DFT, Walsh tr ansform 
for different orderings and Chrestenson transform as some parLicular examples of Fourier 
transfo rm on finite Abelian groups [8]. The FFT on groups obtain ed by the proposed 
m thod is further used for calculation of the convolution, correlation, autocorre lation, 
pow r and frequency spectrum of functions on finite Abelian groups . 

CONCLUSION 

he implementation of Fourier transform on finite Abelian groups is cons idered. We 
propose the method for dynamic determination of weight coefficients of FFT flow-graph 
on arbitrary finite Abeli an groups. We believe that the implementation of Fourier 

transform by means of derived rules, is very convenient for hardware-inferior systems. 
The method enab les the cons iderab le savings of the memory storage usually required 
for the implementation of FFT on a group. 
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12 

APPENDIX: The algorithm for procedure 'Fast'. 

Fast(Data, Twi ddleData,GroupOrd,SubgroupNumber 

SGOrd, DFToriDFT) 

3 

Twiddle(Twiddl eData,Data) 

GroupSize=l 

Haxgr=Groupord 

step=l,SubgroupNumber 

Newgr=GroupSlze 

GroupSlze=Groupslze"SGOrd(step) 

Maxgr=Haxgr dlv SGOrd(step) 

UpLimit=Group"GroupSize-1 

DownLlmit=(Group- l)"GroupSize 

P lace=DownLiml t 

SlnglSumm=Twiddl eData(Place) 

fathers=Z,SGOrd(step ) 
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12 3 4 

I 
SinglSumm=SinglSumm+TwiddleData 

~ 
HelpDala (DownLimit )=Sing lSumm 

t=O 

I 
·I elemenl=DownLimit+l,UpLi mit I 

I 
t=t+Maxgr 

Place=DownLimit+element mod Newgr 

SinglSumm=TwiddleData(Pl ace) 

Pointer=O 

I 
·I fathers=2 ,SG0rd (s t ep ) I 

I 
Po int e r =(Po int e r+t) mod GroupOrd 

Place=Place+Newgr 

SinglSumm=Si ng l Summ+Twiddl eData( Place)•W(Pointer) 

~ 
I HelpData (el ement)=Sing lS umm I 

* ·I j=O,GroupOrd-1 I 

I -

I Twiddl eData(j)=He lpDald( j) l 

~ 
kraj 
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A formal system of describing a semantics of programming languages, based 
on the denotational approach is presented. That approach is modified with some 
operational view for formal description, combined with the object oriented methods 
of programming. 

The method is used for characterizing a semantics of a machine language of 
an abstract machine, used in the implementation of a purely functional program­
ming language A_LispKit Lisp (Je92a, Je92b] . This machine (called A_SECD machi­
ne), Is a natural extension of the SECD machine [La64, St83a, St83b], which has 
been used in the implementation of various versions of functional programming 
languages [Sto84, St84, He80, Bulv89, Bulv90a, Bulv90b]. 

1. INTRODUCTION 
The formal description of the meaning of some valid syntax constructions of 

any formal language is very interesting field of work for mathematicians. There are 
a lot of methods for describing a semantics [Me90]: Attribute grammars, Transla­
tional semantics, Operational semantics, W-grammars, Axiomatic semantics, Deno­
tational semantics, and so on. 

In the formal definition of a language and realization of A_SECD machine 
[Je92a, Je92b], we used the denotational semantics technique, combined with the 
operational method and with some kind of object-oriented definitions. 

2. OPERATIONAL AND DENOTATIONAL SEMANTICS 
As we use a funCtion as a main object for describing the semantics 

(meaning) of some language constructions, it can be considered either as an 
algorithm which will produce a value given an argument, or as a set of ordered 
argument-value pairs. The first view is dynamic, or operational. A semantic function 
Is defined as a sequence of operations in time. The second idea is static or 
denotational, in which the function is regarded as a fixed set of associations 
~etween the arguments and corresponding values. 

As we said, the operational semantics approach, is a kind of implementation 
lf an algorithm of meaning of a construction, i.e. that approach is similar to an 
nterpreter. The idea is to express the semantics of a language by giving a 
Tlechanism that makes possible to determine the effect of any valid language · 
:onstruction. Such a mechanism is an interpreting automation, a formal device 

'This research was supported by Science Fund of Serbia 
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capable of formally executing a program in that language, by giving the machine 
transitions from state to state. 

The operational approach presents some definite advantages. It gives a 
concrete, intuitive description of a programming language, it appeals to the 
programmers because the descriptions given are so close to real programs . Also, 
it is fairly easy to devise an interpreter to execute such description on example 
programs, which makes operational semantics approach attractive as a tool for 
testing new languages or languages features, long before any compiler has been 
written. The very qualities of the operational method, however, speak also of its 
limitations. Striving to be executable, operational descriptions lose one essential 
quality of specification-independence from implementation. 

On the other,hand, the denotational semantics approach, may be viewed as 
a variant of translational semantics . Using this method, we will express the 
semantics of a programming language by a translation schema that associates a 
meaning (denotation) with each valid language construction. The difference is in 
result of translation. In translation semantics, the meaning of a construction is a 
program, while in denotational semantics it is a mathematical object. 

The denotational description of a programming language is given by a set of 
meaning functions M associated with the construction of its grammar. Each of 
these functions is of the form: Mr : T ..... Op where T is a language construction. 
Such functions will consistent!':! have names of the form M (for meaning), 
subscripted by the name of a construction. The set Dr of denotations may be 
different for various constructions T, and they are called sema11tic domains. In 
contrast, constructions are called syntactic domains. 

mac 

whe 
the 
mac 
mac 
prog 

a st; 
the 1 
S-e.>< 
Is th 
that 
rem< 
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oper 
last-1 

The der.~otational method is exclusively focused on the programs. It excludes 
the state and other data elements, enables to reach a level of abstraction which 
cannot be obtained in the operational approach, whatever abstract interpreting 
automata were chosen. More generally, denotational specifications provide an 
elegant mechanism to define the semantics of the programs in terms of classical 
mathematical notations such as functions. for ( 

3. SEMANTIC DEFINITION OF A SECD MACHINE 4. TJ 
A_ SECD machine can be defined as a general function Exec [He80] which 

takes a compiled version of a function Fun, denoted with Fun", and the S-expre· S ex1 
ssion representation of the arguments Args. Thus, it produces an S-expression doali' 
representation of the result of applying Fun to Args. The formal definition ol 
A_SECD machine, the function Exec, given in terms of denotational semantic! S 
approach, is: 

Exec : ~ seco x .B - ,8, and 
Eva I [ Eiec(Fun ·, Args) J p = EvaiA_seco [ Fun· (Args) ] p = Res, E 

where Fun" E ~ seco• Args E .Band Res E ,8. The set S'"represents a set of a C 
programs-functions of A_lispKit Lisp language, .B is a set of all S-expressions, and 
the set~ seco Is a set of all possible, executable, programs in the machine language 
of A_SECb machine. The general denotational function Eval is defined by Eval: D 
-+ ~. where g'is a set of all expressions, and ~ is a set of all va lues of a language 
The denotational function Eval" seco describes a semantics of the A SECD machine, L 
and it is given with Eva I" seco- : ~ seco - ,8, where ~ seco is a- set of all valid 
functions written in the machine languages of A_SECD machine. 
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rom the point of view of operation semantics, formal definition of A_SECD 
, given by the function Exec is: 

Exec(Fun·, Args) = Apply(Fun, Argsl. 
Compile(Fun) = Fun· , 

the function Compi le translates a source code of a program function Fun into 

1
, chi e language of A_SECD mach ine . That is , in some way the A_SECD 

hJn , given the S-expression representa t ions of the compiled function (a 
hlnO language program) and its arguments, executes the machine language 
r m to compute the result of applying that function to these arguments . 

he function Exec( Fun· .Args) is implemented in such a way that it operates 

1, ck for the evaluation of fu nction calls , much as the process described . Since 
rogram Fun· is an S-ex pression and since the data with which it operates are 

xpresslons, the natural notat ion for expressing the state of this stack machine 
h S-expression notation . Thus, if we wish to den0te the stack in such a way 

1 ItS top item is an S-expression of X we wi ll write (X.s), where s represents the 
, inlng Items. 

Strictly speaking, a pure stack is a data structure which has only two 
rat ions, the pushing of a new element onto the stc.:c !<, and conversely, the 
ration of popping an element from the stack. It is saic to be used in 

t In-first-out discipline. The denotational semantics of a stack is : 

Stack : Q: ... Q: , 

StackPop : Q: ... Q:, 

StackPuoh : !I X ~-+ ~. 
Eval [ StackPop ((X .s)) 1 p = Eval [ X ] p , 
Eva I [ StackPuoh (X, (Y .s)) ] p = Eval [ (X.(Y .s)) ] p, 

for ( v X E 13: "), ( v Y E !I) and ( v s E Q: ) . 

4 . THE OPERATIONAL SEMANTICS OF A SECD MACHINE 
whicl The A_SECD machine consists of fi'Ve registers and each of them holds an 
expre S-expression. These registers derives their names from the purpose they have in 
essio dealing with S-expressions:: 
ion o 
1antics 

Res, E 

t of ac 
IS, ant 
tguag 
:val :D 
guagE 
achiml 
II vali 

the stack, used to hold the intermediate results during computation . At t he 
end of the program execution, the top of the stack S contains the final 
result, 
the environment, holds the values which are bound to variables during 
evaluat ion, 
the cont rol list, used to hold the machine-language program which is 
curren t ly executed. In each moment of the evaluation process, the first 
element of the control list is the command which will be processed next, 
the dump, which saves the values of all other registers S, E, and C during a 
new function call. 
the resident library 
manager, the stack which contains the resident libraries, i.e. the programs 
in an executable code written in the machine language of A_SECD machine, 
which are consulted during the evaluation of a program. 
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The machine language of the A_SECD machine consists of a certain number 
of commands . The execution of a command forces the machine to change its state, 
i.e. the contents of its registers. We call this a machine transition, and it can be 
denoted, from the point of operational semantics, in the following way: 

s E c D L S' E' C' D' L' , 

where S, E, C, D and L are the contexts of the registers before the next command 
execution, and S', E', C' , D' , and L' denote the new contexts of the all registe rs 
after that. For example, a machine transition of arithmetic operations of A_SECD 
machine is: 

(a b.S) E (OpA.C) D L ~ (b SiA a.S) E c D L, 

re 
va 

bv 
op 

6. 

W( 

ele 
m< 
mE 
is 1 

where OpA E {ADD, SUB, MUL, DIV ... } and SiA E { $ , 8, ® , 0, .. . }. For ser 
another example, a machine transition of relation between the data of A_SECO pre 
machine is: del 

(a b.S) E (ReA. C) D L ~ (b RiA a.S) E c 

where ReA E { GT, GE, LE, NE ... } and SiA E { >, ~. 5, -;t, ... }. 

D L del 
un( 

As all registers of A_SECD machine, according to the rules of machine ~ 
transition, perform some operations on S-expressions, the simulator of A_SECD Lis1 
machine Is naturally implemented by mapping these rules in some procedures of th1 cor 
Implementation language. ILC 

On the other hand, the meaning of the instructions of A_SECD machine, lr 
a mathematical sense is not clear. A much better way to describing the meaninl Cla1 
of A_SECD machine, i.e. of its semantics, is to used denotational semantiC! Ma1 
approach. 

5 . THE MEANING FUNCTIONS OF A SECD MACHINE SEMANTICS 
A_SECD machine, from operational semantics standpoint, has been define( 

by an Exec function. Now, the modified denotational semantics of A SEC[ RulE 
machine will be presented. The meaning function of A SECD machine in the-term 
of denotation is EvaiA sEco·= Q: .... Q:, where ~ is a set of all S-expressions. 

Firstly, we must define the semantics of the abstract data type, which ' 
used in the implementation of S-expression, and A_SECD machine operation! 
denoted with LispCell. The denotational semantics of some operations which an 
defined under that data type, is given by a semantic function: SemLc : _,_... g; when 
-"is a set of all operations and functions of A_SECD machine and/or operatio~ 
defined under data type LispCell. The set Z'is a set of standard types of implemell 
tation language like Real, Boolean, Integer and so on, together with data typl nd; 
LlspCell, ~ = {Real, Boolean, Integer, String, LispCell}. wher 

With ~c C g: we denoted a set of all possible values of the type UspCe P rfc 
Let us define all of the subsets of the set ~c: ~c .... (the set of real values), ~c;,1 
(the set of integer values), ~cp.w (the set of all pairs), ~croo1 (the set of all lists), 
ltcoymbol (the set of all symbolic atoms), ~cBoolean (~cBoolean = {T, F}), and ~cnil (~()I Thoo 
= {NIL}) . hoo 

Also , with g;_ c g; we denoted the set of all values of types of t~ Th o 
implementation language. This set has the following subsets: g;'L,..,. (the set of ar heor 
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mb 1 values) . ~; .. ,.., ... (the set of all integer values). ~ ..... (the se t of all logical 
1 at r lu s). and ~L .. •ino (the set of all string values). 
m For v f E .:;, we will define: f : :£ x ... x :£ _. Z: where the set:.£ is defined 

b !:f. = { • , LlspCell, Integer, Real, String} , where the • represents that some 
operations or fun ctions of A_SECD machine have no argumen ts. 

6 SEMANTICS OF A FUNCTION DEFINED UNDER lispCell DATA TYPE 
ma The me thod of denotations is modified in the following sense. Firstly, we 
iste, nt to preserve all the advantages of a very reach level of abstraction, and the 
SEC legan t mechanism to define the semantics of programs in terms of classical 

mathematica l notations such as functions, provided by the denotational semantics 
method. But , we also want to put into them some kind of 'operationa l' view, which 

L, 15 more suitab le for implementations . 
For these reasons we introduce some modi ncations of denotational 

}. Ft eman tics, putting into this approach some terms f rom object oriented style of 
SEC' programming. The semantics of some valid constructions of a language, can be 

d fined using the definition of semantic class. 
In this section we will give some examples of the denotational semantics 

L de finitions using the object-oriented modifications for some operations defined 
under the $-expressions. 

3chin _converting Functions. These functions convert data between some subtypes of 
:SEC UspCell data type, which are used in the implementation of $-expressions. The 
of th converting functions are: ValueReallC, ValuelntegerlC, CostlntegerlC, ConstRea-

ILC, ConstStr.inglC, ValueStringlC, etc. Their semantic definitions are: 
ine, 1 
~anin Class ConvFun 
1anti1 Mapping 

lefim 
SEC Rules -
tern 

hich 
at ion 
ich a 
whe 

ratio! 
leme1 

ConstReaiLC : g;'Lroal _. ~Crool 
ValueReaiLC : ~Crool -+ g;Lrool 
ConstlntegerlC : g;Untogor -+ ~Cintoo•r 
ValuelntegerLC : ~Cintogor -+ g;Lintogor 

ConstReaiLC(r : g;Lrooll : ~creel = 
EvaiA sEeD [ ConstReaiLC(r) ] p = rL6 

ValueReaiLC~Lc: ~Crool) : g;Lrool = · 
EvaiA sEco [ ValueReaiLC(rLcl ] p = r; 

ConstlntegerlC(i : g;Untogorl : ~cintogor = 
EvaiA sEco [ ConstlntegerLC(i) ] p = iLc; 

Valuelntege-rlC(iLc : ~Cintogorl : g;Untogor = 
EvaiA_sEcD [ ValuelntegerLC(ILcl ] p = i; 

a tvJEnd; (* ConvFun *), 
where p is an arbitrary context in which all bindings of variable to their values are 

spCQ>erformed. 
~cint~ Now, we could easily proved the following statements: 
;ts), 
"~ (~fheorem 6. 1. 

rheorem 6.2. 
of t~heorem 6.3. 
t of fheorem 6.4. 

( V x E ZI'Lrooi)(ValueReaiLC(ConstReaiLC(x)) = x), 
( V Y E l\.c, •• 1)(ConstReallC(VafueReaflC(y)) = y), 
( V i E g;'Lintoo••)(ValuelntegerLC(ConstlntegerlC(i)) = i), 
( V j E ltcintooor)(ConstfntegerLC(VafuelntegerLC(j)) = j), etc. 
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Logical Functions. The semantic class for some logical operations are: 

Class LogFun 
Mapping AndLC : g;:CBooleen X ~CBooleen _. ~CBooleen 

Rules AndLC(I,: ~CBooleen• 12 : ~CBooleonl : ~CBooleen :!!i! 

EvaiA seco [ AndLC(I 1 , 12) ] p = 
- {EvaiA SECD [ I, J p " EvaiA SECD [ 12 ] p} E g;'LRnnl • ..,r 

EvaiA sEeD [ I~ D E ~booleen• -
EvaiA-seco [ 12 ] E ~ooleen• 
Seml~ [ I, ] E ~Cbooleon• 
Semlc [ 12 · J E ~cbooleon• 
StateTrans((l1 12 .S), E, (AND.C), D, L); 

End; ( * Log Fun *). 

Arithmetic Functions. Before we define the class of arithmetic functions, let us 
introduced some new notations: 

g;_n~od 9 g;_integer U g;Lreal' 

ltcntliTf>OCI = ltcinteg..- U ltcre.!• i 
~Cotruct !!! l\:cper U ltctiot' 

for the subsets of numeric data for the implementation language and the data type 
LispCell. Theh, the semantic definitions of the arithmetic functions are: 

Class ArithFun 
Mapping AddlC : ltcnumpod X ltcnumpod -ltcnumpod 

Rules AddlC(I, : ltcnumpod• 12 : ltcnumpod) : ltcnumpod = 
EvaiA sEco [ AddLC(I 1 ,12) ) p = 

- {Eva lA SECD [ I, J p E9 Eva lA SECD [ 12 ] p} E g;'lnumpod• 
EvaiA seco [ I~ ] E ~. -
Eva lA-seco [ 12 ] E ~nu,..,oo• 
SemL~ ( 11 ] E ltc~umpod• 
Semlc [ 12 ] E ltcnumpod• 

{ 

ConstReaiLC(ValueReaiLC(I1) E9 Valu eReaiLC(I 2 )) E ltc, • .,, 
if 11 , 12 E ltcro.! 

ConstlntegerLC(ValuelntegerLC(I 1) E9 ValuelntegerLC(I2 )) E 
ltcintogor• if X, Y E ltciotog..­

ConstReallC(ValueReaiLC(I 1) E9 Valuelnte gerLC(I 2 )) E ~er·•· 

if 11 E ltc,.81 II 12 E ltciotegor 

v 

{ )) I 

ConstRaeiLC(ValuelntegerLC(I,) E9 ValueReaiLC(I 2 )) E ltc, • .,, 
if 12 E ltcu• II 11 E ltcintog« 

StateTrans((l 1 12 .S), E, (ADD .C), D, L); 

End; ( * ArithFun *). 
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] . 5 MA NTICS OF A_SECO M A r.HIN E LANGUAGE 
In this sec ti on we will give some ex amples of the denotatlonal semantics 

d !lnitio ns using the object -u• ;en ted modifications for some va lid language 
construc tion of A_ SECD mac 1111 ,e lan guage. 

QPs!rUJ;ting Ope r a tion~ . Co l .s tr uct;ng opera t ions form so me structure objec t (li sts 
J( pairs ). using the t op st ack items. We de fine, for example, a semantic c lass for 
th A_SECD machine operation CONS, wh ich forms a pair of two to p stack items, 

lth : 

Class Construc tOper 
Mapping ConsLC : l: x W-+ ~cp,.;, 

Rules ConsLC(I 1 : g; 12 : &1 : ~cp,.;, ... 
Eval ... scco [ ConsLC (I 1 ,12 ) ) p = 

- {'I' 0 EvaiA sEco [ 11 ] p 0 '.' 0 EvaiA seco [ 12 ] p 0 T} E ~Cpeir• 
et u• Eval" sEco [ I, ] E- g; -

Eva iA-sEco [ 12 ] E g; 
SemL~ [ 11 ] E g; 
SemLc ( 12 D E g; 
StateTrans((l 1 12 .S) , E, (CONS.C), D, L); 

End; ( • Construe tOper * ), where 0 is operation of concatenation of characters or 
3 typ strings, and the class of State Trans is defined by: 

... , 

Object State Trans . 
Mapping StateTrans: Wx Wx W x &'x W-+Wx g'x ·w x Wx g' 

Rules StateTrans(l 1 : g; 12 : g; 13 : g; 14 : g; 15 : g) : g' x g x g x &' x &' = 
Case HeadLC(I3 ) Of 
ADD: '(' 0 Stackp,.h(StackPop(l 1) ffi Stackpop(l1), 11 ) 0 ',' 0 

12 0 ',' 0 StackPop(l3 ) 0 14 0 '.' 0 15 0 ')' 
CONS: ' (' 0 StackPu•h('(' 0 StackPop(l 1 ) 0 '.' 0 StackPop(l 1 ) 0 ')', 11 ) 0 ', ' 0 

12 0 ',' 0 StackPop(l3 ) 0 14 0 ',' 0 15 0 ')' 

End;( * StateTrans *) . 

.Selecting Operations . The class of selecting operations of A SECD machine, in 
t erms of denotational semantics, in the object-orient-3d approa-ch is defined with: 
Class SelectOper 

l fJiapping HeadLC : W-+ g 

)E 
Rules 

.. 
\.Creal'- [ 

:vaiA_sEco HeadLC(I 1 ) ] p = { 

II 

"' 'I. Creal• 
EvaiA sEco [ I, ] E g; 
SemL~ [ 11 ] E g; 

HeadLC(I, : Z'J : &' = EvaiA sEco [ x ] P E g 
if 1 1 ~(x.y) 1\ x E g 

ff:.ril!, otherwise 

StateTrans((l 1 12 .S), E, (CAR.CI, D, L); 

:nd; (* Se/ectOper *) . 
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In all above definitons, the variables S, E, C, D and L are global, and 
EvaiA_sEco ( I ] E g'where I E {S, E, C, D, L}. 

8. CONCLUSION 
A completely new approach to the definition of denotational semantics, 

combined with operational semantics and based on object-oriented methods, is 
introduced. This method has an advantage in str ict mathematical combination of 
denotational and operational view of defining semantics of any programming 
language. 

This approach is very suitable for the applicat ion in axiomatic definitions of 
a programming language, because it is easy to construct and prove a lot of 
theorems, which h~ld in that programming language. 

REFERENCES 
[Bulv89] Budimac Z., lvanovi~ M., "New Da ta Type in Pascal", Proc. of the 

DECUS Europe Symposium, The Hague, Holland, pp. 192-199., 1989. 
[Bulv90a] Budimac Z., lvanovi~ M ., "An Implementation of Functional Language 

Using $-Expressions" , 14th In formation Technologies Conference 
'Sarajevo-Jahorina 1990', Sarajevo, pp . 111-1-111 -8, 1990. 

[Bulv90b] Budimac Z., Ivanov!~ M ., " A Useful Pure Functional Interpreter", 
Proceedings of 12. Internat ional symposium "Computer at the 
University", Cavtat, 3.17.1-3.17 .6, 1990 . 

[He80] Henderson P., Funct ional Programming; Prentice Hall, New York, 
1980. 

[Je92a] 

[Je92b] 

[La64] 

lMe90J 

lSt83a) 

[St83b] 

[St84) 

[Sto84] 

Jerini ~ Lj ., "A_LispKit Lisp-Description and Implementation ", Informa­
t ica, (in print) , 1992. 
Jerinic Lj., "Func t ional Programming Language A_LispKit Lisp" , Aew. 
of Res. Ser. Mat . (in print). 1992. 
Landin P. J., "The mechanical eva luation of expressions", Computer 
Journal, Vol. 6, pp. 308-320, 1964. 
Meyer B., Introduction to the Theory of Programming Languages, 
Prentice Hall , New York, 1990. 
Stojkovic V., Stojmenovic 1., Jerini~ Lj., Mlrtevski J., Kula~ M., 
"Dynamic Memory Management For the Usage and Implementation of 
Programming .languages" (in serbian ), Proceedings of 5. International 
symposium "Compute r at the Univers ity", Cavta t, 135-142, 1983. 
Stojkovic V., Stojmenovic 1., Jerinic Lj. , M irtevski J ., Kula~ M ., 
" Implementation of the Simulator of the SECD Machine" (i n serbian ), 
Proceedings of 27. Conf. or ETAN, Struga, Vol. IV, 337-344, 1983. 
Stoj kovi c V., M irtevski J., Jerin ic Lj., Stojmenovic 1., "UspKit Lisp 
language-vers ion ARL" (in serbian ). Bulletin or the Reg ion Department 
of lnformat ic Novi Sad, pp. 55-61, 1984. 
Stojmenovic 1., Stojkovic V., Jerinic Lj., Mirt evski J., "On impiemen· 
tati0n of a translator from LispKit Lisp language into the SECD 
machine language in FOAl RAN" (in serbian). Informatica, Vol. 1, pp. 
57-64, 1984. 

p 
2 



INOS OF T il E VI CONFEREN 6 ON 

C IJ'IT) COM PUTER SCIENCE LIR~ ~J 
, 11 SAD, OCToBER 29 -J I , I 992 . , PP. 69 • 76 

:ics, 
;, is 
n of 
ning 

IS Of 

•t of 

Prover LEIBNIZ 

Vladan Krstic & Milena Radnovic 

Lepjinova 18, 26000 Pancevo, YU, 013/45-195 
T .Koscuska 66 , 11000 Beograd, YU, 011/180-601 

uage 
ence Program LEIBNIZ is a prover for any finitely axiomatized formal theory and specially 

r icate and propositional calculus. The proof of a predicate or propositional formula we derive 
• Kli rectly - the negation of the formula is translated into a formal theory and we deduce contradiction 

Iter ' · E 1· · I · I ded 
h 

(r m II. qua 1ty IS a SO InC U • 
t e 

vork, 

)II IIa-

Y WORDS: formal theory, proof, shortened proof, depth of proof, equality, inequality, 
depth of agreements, 'and-then' form 

~ !NIRODUCTION 
Rew. 

Program LEIBNIZ is a prover for any finitely axiomatized formal theory and specially 
pute1rcdicate and propositional calculus . It is written in Prolog (Arity Prolog V5.1) and its size is about 

Bk. It consists of preparing and working part. 

~ M., 
ion ol 
tiona! 
383. 
~ M., 
bian), 
983. 
t Lisr 
trnenl 

Preparing part (only for predicate and propositional formulae): 
- negate the formula, 
- translate to 'and-then' form to quantifiers for minimizing arity of Skolem functions, 
- push the negation to atomic formulae, 
- rename variables, 
- translate to prenex normal form, 
- skolemize (replace existential variables with Skolem functions), 
- replace universal variables with prolog variables, 
-translate into 'and-then' form and delete conjunctions which are surplus (propositional), 
- add contrapositions, 
- delete surplus specific for predicate case, 
- transform into formal theory (productional system), 
- find predicates which can lead to contradiction. 

ern en 
SEC[ Working part {MPPM_EIE- Modus Ponens Prolog MACHINA with Eqality and InEquality) 

1 
pduces the proof or, in the predicate and propositional case, produces the contradiction from the 

• P mal theory. 
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1, PROBLEM DESCRIPTION 

Suppose we have a formal theory T with finite number of axioms and finite number of 
inference rules. Any rule is of the form Fl, ... , Fn -> G, where Fl, .. . , Fn, G are formulae of the 
theory T. Our basic problem is to decide whether some given formula F is a theorem of the theory. 
We will use the following definition of proof, which differs a little from the standard one: 

Proof is a finite sequence Al, .. . , Ak, Fl, .. . , Fm of formulae of theory T, satisfying the 
conditions: 

- Al, ... , Ak are all axioms of the theory T 
- formulae Fi are deduced by an application an inference rule to some preceding formulae 

from the sequence 
-an instance <i't!a formula from the sequence can not be placed after that formula. 

Theorems are last members of proofs . Subsequence F I, ... , Fm is termed the shortened proof. 
The axioms are excluded from it. It is clear that any usual proof can be transformed into a proof 
satisfying this definition. 

2.SEARCH FOR A SOLUTION 

SuppOse we have a finite formal theory T and its formula F. The question if F is a theorem 
of the theory T could be discussed as follows: 

1) First, we check ifF is an axiom. If it is, the process is finished with the answer YES. 
Else, we go to the step 2. 

2) We look for the first rule whose conclusion G can be unified with F. Then, if there is no 
such a rule, the brocess is finished with the answer NO. Else, let such a rule be Fl, ... , Fk -> G. 
For further discussion of provability of the formula F, now we will discuss provability of formulae 
Fl, ... , Fk (we assume that some variables have been instantiated because of unification). Then, if 
all formulae Fl, .. . , Fk are proved, the process is finished with the answer YES.. Else, for proving 
the formula F, we go to the step 2, but we are looking now for the next rule whose conclusion can 
be unified with the formula F. 

It is clear that this process (with some more details) is indeed the standard prolog mechanism. 
Thus, it has some well known prolog 'insufficienc ies'. Here are some examples. 

EXAMPLE 1: 
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Suppose that, in proof of C, we need a proof of a formula B, and a rule Bl, .. . , Bn -> B 1 .~ 
is used for it. Suppose also, for a proof of a premise Bi, a proof of the formula B is needed again. 
It is clear that in this case, proving of C will never be finished . For eliminating this insufficiency, in 
our program we draw up a record of the formu lae which we have to prove. If we need a proof of co~ 
already recorded formula F, then we will try to prove F in some other way. u: 

EXAMPLE2: 

Suppose we have to use the rule f(g(X)) -> f(X). It is clear that consecutive application of 
this rule might never finish . To deal with such cases , we limit DEPTH OF PROOF. It means that we 
leave a rule which bas not lead to a proof up to the given depth, and we try with the next rule wbost 
conclusion can be unified with the given formula . 
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JTION : 

If the formu la F is an ax iom or if it is already proved (it is placed in the part of the proof 

111 ~ far), then we cons ider it proved with any depth ~ 0. 
If th e for mul a F is proved by a ru le of the form F1, ... , Fm - > F, th en we c nsider F 

:d with the depth N > 0 if formu lae Fl , ... , Fm are proved with th e depth N- 1. 

RAT ION: 

Suppose we have the formal theory T = { a, b < - (c, d), c < - a, d <- c }. It is possible 
prove b with the depth 2. Indeed : To prove the formula b with the depth 2, by the rule b < ­

( d), we need a proof of the formulae c and d with the depth 1. To prove c with the depth I, 
)'the rul e c <- a , we!need a proof of a with the depth 0, which we have because a is an axiom. 

10 prove d wi th the depth 1, by the rul e d <- c, we need a proof of c with the depth 0, wh ich 
c h ve because c is placed in the part {a, c} of the proof which we already have. 

With limited depth of proof, the process of proving will be finished , because the number of 
i ms and rules is fi nite. If this process ends with the answer YES , then th e formula is a theorem. 

If it ends with the answer NO, then we onl y know that the formula has no proof of the given depth. 

LEMMA: 

For any theorem F, there exists a number N such that F can be proved with the depth N. 

PROOF OF LEMMA: 

Suppose ~e have a theorem F of a th eory with k ax ioms. We are going to prove the lemma 
by general induction with respect to the length of the proof of F. 

If the length of the proof is k, then F is an axiom. Thus, it is proved, for example, with the 
d pth 0. Let n> k be given, and suppose the lemma holds for all theorems whose length of proof is 
less then n. 

If the length of the proof for F is n, then F is deduced by some rule F 1, .. . , Fm -> F. The 
lengths of proofs of formulae F l , ... , Fm are less than n. Thus, by the induction hypothesis , the 
formulae are proved with depths d I , ... , dm respecti,vely. Then the formula F is proved with the 
depth, for example, max { d 1, .. . , dm } + 1. 

-> B EXAMPLE 3: 
again. Suppose, during the process of proving, we had proved an instance F' of some formula F (F' 
tcy, io is F with variables replaced by terms). But, suppose also that it turned out it was impossible to 
·oof ol complete the proof using F'. Then, we find another instance F" of F. If F " is an instance ofF' , we 

will not even try to use it, because we have al ready had more general case and we did not succeed. 

It is allowed to bind the depth of the proof for any particular premise of a rule. 

,tion oiJ, FORMULAE WITH EQUALITY 
that WI 

: whoSI For theories with equality, we could use the usual axioms and ruies of reflexivity, transitivity 
and agreement with operations and relations of the language. But, it turns out that the number of 
di fferent possibilities for proving in that case is too large. Thus generation of even simple proofs is 
very complicated. That's the reason why equality is implanted in the process of proving. In that way. 
the number of deduction tries of a given equality formula is decreased. 
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Let there be given a theory with equality, without axioms and rules of inference of equality 
logic (because they are implanted in the process of proving). Suppose we are trying to prove a 
formula in the theory, we have built a part F 1, ... , Fk of the proof, and now we have to prove an 
equality U = V with the depth n. 

If U and V can be unified , we consider the equality proved with any depth (reflexivity). 

If the equality U = V or V = U can be unified with Fi, for some i, we consider it proved 
with any depth (symmetry). 

So, we consider reflexivity and symmetry obvious, and they don't appear explicitly in a proof. 
But we consider transitivity and agreement rules as built in the system. For easier control, we 
introduce depth of application of agreement rules which is independent of depth of proof. We have 
depth of agreement of equality with operations and with relations separately. From now on, depth will 
be denoted by (n, no, nr) where n is the depth of proof as defined above, and no and nr are 
depths of agreement with operations and relations . We can not apply agreement rule if the 
corresponding depth is 0. 

U = V is proved by transitivity rule to the depth (n, no, nr) if U = Z is proved with the 
depth (n-1 , no, nr) but not by transitivity rule, and Z = V with the depth (n-1, no, nr). 

Transitivity defined in this way is correct, because if there is a transitive linking U with V, 
then there exists Z which is directly linked with U, and transitively with V. 

f(X) = f(Y) is proved by the rule of agreement with the operation to the depth (n, no, nr) 
if X = Y is pro red to the depth (n, no-1, nr) . 

p(X) is proved by the rul e of agreement with the relation to the depth (n, no, nr) if X = Y 
and p(Y) are proved to the depth (n, no, nr-1). 

If there exists a proof for U = V in equali ty log ic, then there exists a proof in this system 
too, to some depth (n, no, nr), because the depths of agreement are depths of applications of 
agreement rules . The statement obviously follows fro m Lemma. Also, if we proved something in this 
system, the same proof is a proof in equality logic. This means that proving of an equality in this way 
is equivalent to proving in equality logic. 

In this way, the numb.er of possibilities for proving is greatly decreased, specially for 
transitivity, and because of agreement depth, work with long terrns is limited too. 

4. EXTENSION TO THE PREDICATE AND PROPOSillONAL CALCULUS. PROBLEM Of 
NEGATION 

It is possible to use th is prover (MPPM_EIE) for proving formulae of the predicate and 
propositional calculus. Proving is indirect - we try to deduce contradiction from the negated formula. 

Thus, we negate the formula, and we eliminate the quantifiers by prenexing, skolemizing and 
replacing variables by prolog variables . The formula transformed in that way is then translated to 
' and-then' form . 
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1lity ;l l f) ITION: 
re ~ 
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DVed 

roof. 

A formula is in 'and-th en' form if it is a conj unction and all its conjuncts arc either literals 
t . at mic formulae or negation of atomic formulae) or implications whose consequents arc literals 

a.11 tecedents are conjunctions of li terals. 

Any formu la can be reduced to an 'and-then' form . 'And-then' form is not uniqu e. 

From th e 'and-then' form we delete tautologies since they are of no use in proving . These are: 

(I) .. . and P and .. . then P, 
(2) ... and A and ... and not A and ... then B. , We 

have 
1 will Al so, we arrange brackets to make the association to the right and replace conjuncts of the 
r are 1 rm A and A by A to avoid repetition. 

f the 
Formulae can contain negation, but it is not the usual negation, because the connection 

tween implication and negation is missing (contraposition). This is the only incompleteness of 
th th neg tion because the only axiom which regulates this connection is the contraposition. Consequently, 

t we dd contrapositions, and with negation we will work like with any other predicate. 

ith V In the case of predicate calculus, together with the formulae of the form (I) and (2), we also 
' delete formulae of the form: 

10, ru (2') ... and A and ... and not C and ... then B, 

where A and C can be unified , but not formulae of the analogous form (1 '), because this would 
{ = ) decrease the possibility of proving in the formal theory which we are going to describe. 

Then, we consider implications as inference rules, and literals as axioms. We will try to 

t 
derive contradiction in this formal theory. 

sys en 
,ons ol 
. th' There is a problem when working with equality, because agreement and transitivity are not 

: ~n ~Implications, but built-in rules, and contrapositiun does not work for th em, so we add contrapositions 
11s waJ f d ... o agreement an transittvlly. 

As these rules are of general character (for example: not (X = Y) <- not (f(X) = f(Y)), 
lll ~ :wh ere f is any function), it is necessary to say in advance which operations and relations can be used, 

Y 0i.c. it is necessary to declare operations and relations which could be in an inequality. With this, work 
with negation is completed. 

J:."M ()I In particular, when we translate a formula of propositional calculus to 'and-then' form and 
~e delete all tautologies from it, if there is not any conjunct left, then the given formula is a 

lautology, otherwise it is not. All true conjuncts of an 'and-then' form must be of the form (l) or (2). 
It follows what validity of a formula of propositional calculus could be checked in that way too. 

;ate an . 
'ormuh 

. L THE QUESTION OF COMPLETENESS OF THE PROCESS 
zmg an 
slated I The possibility of proving a theorem of given formal theory is equivalent to the possibility 

If proving with LEIBNIZ. Direction < = is obvious. Direction = > follows from Lemma. 
Specially, in case of formulae of propositional or predicate calculus, the procedure used in 

.ElBNIZ is not complete. 
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If 'and-then' form of a formula is consistent, then the formal theory derived from it is 1 
consistent too. It follows that we can not deduce contradiction from the negation of a non-valid 1 
formula. Thus, if we deduce contradiction, the formula is valid indeed. 

If the 'and-then' form is inconsistent (this will always happen when the formula is valid), the 
derived formal theory doesn ' t have to be inconsistent (for example, if it has no axioms, or the axioms 
have no connection with the inference rules). 

If A < = > B it still may happen that the theory derived from A differs from the theory 
derived from B. 

EXAMPLE: . 

s 

7 
If we apply tht1 preparing part of the prover to formula p then p, theory { not p, p } will be 8 

derived, and it is possible to prove contradiction from it. 9 
If we apply the preparing part of the prover to formula p iff p, theory { not p <- p , p <-

not p } will be derived, but it is not possible to prove anything from it, because it has no axioms. 
But, (p iff p) < = > (p then p). 

It is desirable, when proving an equivalence, to prove separately the two implications, because 
that way we remove partly incompleteness, as in example 2 of next paragraph. li 

6. EXAMPLES 

LEIBNJZ is a prover of axiomatic -productional type. That's why proving of some formulae al 
(especially with equality) is not so simple as it seems. Between intuitively close problems could exist ~ 
great combinatoty difference (for example between PA 1- 1 + 1 =2 and PA 1- 2+2=4 ). ~ 

LEIBNIZ can prove theorems in formal theories with low degree of combinatory complexity tlJ 
(on the average, it processes 5000- 15000 formulae per hour- AT 16 MHz) . a! 

If we have a predicate formula of few lines in length, such that it does not describe any 
problem of a formal theory type, then it is almost always possible to prove the formula, generally for 
few minutes at most. Classical (bookish) examples of valid formulae are proved almost immediately. 

p l-2+2=4 

We will take from Peano arithmet ic only what we estimate is enough for proving the equality. 
If we take axiom schema X +. 0 = X, then it is practically impossib::: to product: a proof because 
of the huge world of formulae which the axiom generates. The equality 1 + 1 = 2 is proved after 
148 processed formulae only, because the proof needs lower depth, and thus the world of accessible 
formulae is a lot small er. But, when proving 2 + 2 = 4, this world becomes enormous. This equality 
can be deduced elegantly, because we only need 2 + 0 = 2 : 

Axioms: 

one:: 0 prim = 
two :: I prim = 2 
thr :: 2 prim = 3 
fou :: 3 prim = 4 
+ _p :: X1 + X2 prim = (XI + X2) prim 
2+0 :: 2 + 0 = 2 

Proved : 2 + 2 = 4 td [6 ,2,0] <- 15 
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n it · number of formulae passed through MPPM_EIE is 39. 
n-valid time used [0,0,23] . (lh,m,s) on AT 16 MHz) 

rtened proof : 
d) , the 
axio1111 . 2 + 2 = 2 + 1 prim <- agree to (ref , sym(two)) 

: 2 + 1 = 2 + 0 prim <- agree to (ref , sym(one)) 
theol) ~ ; 2 + 1 = (2 + 0) prim <- trans to (2 , + _p) 

: (2 + 1) prim = (2 + 0) prim prim < - agree to 3 
: (2 + 0) prim prim = (2 + 0 prim) prim <- agree to sym( + _p) 
: (2 + 0) prim = 2 prim <-agree to 2+0 

• : 2 + 0 prim = 2 prim <- trans to ( + _p , 6) 
will bt :: (2 + 0 prim) prim ~ 2 prim prim <- agree to 7 

.. 2 prim prim = 3 prim <- agree to thr 
, p <·tO:: 2 prim prim = 4 <- trans to (9 , fou) 

lX ioms 11:: (2 + 0 prim) prim= 4 <-trans to (8, 10) 
12 :: (2 + 0) prim prim = 4 <-trans to (5 , 11) 
p :: (2 + 1) prim = 4 <-trans to (4, 12) 

becallS! 14 :: 2 + 1 prim = 4 <- trans to ( + _p , 13) 
IS:: 2 + 2 = 4 <-trans to (1, 14) 

LE.JWO EOUIV ALENCE CLASSES INTERSECT TIIEN TilEY ARE EQUAL 

Jrmula! II x : p(x,x) and 
1ld ex' I (x, y) : (p(x,y) then p(y ,x)) and 

111 (x, y, z) : (p(x ,y) ;md p(y ,z) th en p(x ,z)) 

nplexitJthcn · 
II (k, n) : (ex a : (p(k,a) and p(n ,a)) th en all x : (p(k,x) then p(n,x))) 

75 

·ibe an1 
rally~ Here is proved only: th e class k is a subset of the class n. Converse can be provw simi lar ly. 
uliatelyAfier the prepari ng part, we have a formal theory from wh ich we will prove a co ntradiction of the 

form (not p(X,Y), p(X,Y) ). 

Axioms: 

~qualitJ 
becamax_l ::not p(g2,g3) 
red afteU_2 :: p(gl,g3) 
:cessiblax_3 :: p(g2,g4) 
equali~-4 :: p(gl,g4) 

u_s :: p(Xl,Xl) 

Inference rules : 

pi_1 ::not p(X1,X2) <-not p(X2,X1) 
pi_2 :: p(Xl,X2) <- (p(Xl,X3), p(X3,X2)) 
pi_3 :: p(Xl,X2) <- p(X2,X1) 

Possible contradictory predicates : p I 2 

Proved : not p(g2,g3) td 0 <- ax _1 
p(g2,g3) td 3 <- 3 
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The number of formulae passed through MPPM_EIE is 8. 
The time used [0,0,2]. 
Shortened proof : 

1 :: p(g4,gl) <- pi_3 to ax_4 
2 :: p(g4,g3) <- pi_2 to (1 , ax_2) 
3 :: p(g2,g3) <-pi_ 2 to (ax _3 , 2) 

7; CONCLUSION 

The formal theory derived from a formula of predicate or propositional calculus is very 
"natural" , i.e. relative positions of subformulae which have sense for us, are mostly preserved. Thus 
the proof can be easily understood (it is relevant for the formula). 

If it is possible to prove a formula of propositional or predicate calculus by both LEIBNIZ 
and semantic tableau method , then our prover is almost always more efficient. 

Arrangement of axioms and inference rules, and estimated depth of proof have great influence 
on efficiency of proving. 

The question of completeness for predicate and propositional calculus is open. 
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Abstract 

The conce ption of pure function a l (or application) programming languages prohibits side e ffects, 
Including th e a~ s i gnme nt of valu es to variabl es. For this reason th e program cycle s tate me nt 
doesn ' t ex ist in app li cation langu ages . Th e lack of this statement does n't a ffect program execution . 
But. using the programming cycle statement and variabl es assignments combined with printing are 
very use ful for debugging .Thi s pa per prese nt s an original program · impleme ntation of PROG 
mechanism · the sta te ment of the programming cycle .in pure functional programm'ing langu.age 
Lisp kit Lisp. The manner of implementation provides preserving the structure of Lispkit Li sp as a 
pure functional programming language . The program implementation is d- ,e by an extension of 
lh c the SECD rr.achine simulator and a modification of the Lis pkit Lisp language compiler in'o the 
machin e language of SECD machine. 

1. Introduction 

Along with the recent advances in VLSI technology and new computer 
architectures, a significant development of various new programming meth­
odo logies ho. ;; taken place. They had to provide more efficient using ol new 
h rdware. ./. Backus gave a significant con tribu.tion in developing the 
mcthodolo1y called functional programming with his paper [ 1]. This style of 
programming, also known as applicative programming, is characterJzed as 
"programming without the assignment statement". Functional languages in 
which assignment statements don't exist are called pure functional languages . 
Total absence of assignment statements and side effects (which are results 
of it) eliminate needs for variables in programs . Programs in functional 
Pl'ogramming are functions that map objects in objects. These functions are 
not depending on "outer" data (like global variables in non-functional pro­
gramming). The programs become simpler and easier for understanding. 
Ano ther advantage of functiomil programming languages is the existance of 

· the simple mechanism for modification and combination of existing programs .. 
T his mechanism is enabled by using high-order functi:l'1S which increase the 
I vel of abstraction in prograrruriing. 

77 
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2. SECD machine and Lispkit Lisp language 

SECD machine [3,4] represent one of the first models of computers on 
which some ideas of functional programming can be applied. The name SECD 
comes from the names of four main machine registers: 

• s - the stack. It is used to hold intermedia te results when computing the 
values of expressions. 

• e - the environment. It is used to hold the values bound to variables during 
evaluation. 

• c - the control. It is used to hold the machine-language program being 
executed. 

• d - the dump. It is used as a slack to save values of other machine reg­
isters on calling a new function. 

Each of the registers can be considered as a stack or a list (S-expression). 
When the simulator of the SECD machine is used for evaluation of pure 
functional language Lispkit Lisp [ 3], input and output data for the SECD 
machine are well-formed expressions as described in [ 3]. 

The implementation of the simulator of the SECD machine and Lispkit Lisp 
compiler was made, with some extensions, according [3], on PL/1 language 
in an MVS/ESA TSO environment (on IBM 3090-17T). 

3. PROG me~hanism in Lispkit Lisp language 

Loop statement, assignment s tatement (which implicitly introduce vari· 
abies)' go to' return and label statements introduce side effects in a pure 
functional programming language (and it isn't a pure functional language a ny 
more). On the other s ide, there is a rule that introdudng any new in· 
struction in Lispkit Lisp must preserve pure functionality. This condition 
can be satisfied lf every PROG function is considered as a user defined el· 
ementary function. In this case, the programs contains only PROG funct.ons . 
Assignment s tatement, variables used in assignment statements, goto, return 
and label s tatement s are defined only ins ide the body of PROG function; 
every using of th ese statements outside of the body of PROG function is 
marked as a sy ntax error. The Jmplemcntalion con tains: 

1. PROG ( ram ) function. This is a base function and e lements of PROG 
mechanism can be u sed only inside its body. Characteristics of :rn.OG 
functions are: 

• PROG Is n -ary function (n~ 2 ) . 

• The first argument of a PROG function is a lis t of variables. The list 
of PROG variables can be empty (NIL) . All varia bles are initia lly set to 
NIL. 

• T h e other argum nts of PROG function are evaluated, beginning with th 
second, according lo lh following rul s: 

a. If th e argument ic; nn atom it must be a label and its value is n't 
evalua ted. Lab Is can bo nu m rica! or symboli c atoms. 

b. Ir thP argum nl of a fun c tion is GO, RETURN or SETQ ils value l 
evalu ated according lo rules 2-4. 
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c. Olh rwlse, the r ul s o ( rvnlunlion Lisp k it Lisp fun c tion are appll d . 

• 'l'h va lue of PROG fun ction is the vatu of the RETURN function, if it 
I 'I valuated . Otherwise, the value of J>ROG function Is eq ual to the value 
of its the las t argument. 

• pRO function can be ne s te d in another PH.OG ;unction. In this case you 
cnn Jump on ly within the PH.OG function tha t Cl>ns i t s this GO s tatement. 

RE'I'URN function . RETURN is nn unnry fun c tion whos e nrgument Is a 
· " 11 - ( rmed expr ss ion . Th e va lu e o f the functi on is the value of th ar ­
.:umrnt. Eva luatin g of RETUR N r esult s i'1 ass ig ning it s vn lue to the PR G 
run lion (nnd finishing the va lu ation o f the PROG fun c tion). 

function. GO is a n unnry fun ction whose ar~ument Js a well - form e d 
xpr ss lon . Tbe value of th function is the value of the argument. The 
ff c t of eva luating th e GO fun c tion is a jump to the s tateme nt b e low the 

1 b 1 which Is equal to the va lue of the GO function (or error if s u c h ~ 

Jab I doesn't exist ) . 

£TQ(uo te ) fu nction . SETQ Is a binary function . The firs t argun·ent is 
0 ntom ( the name of th e var·iable) . The second argume nt is a we ll - forme d 
xpr sslon . The val ue of SETQ function is tho value of the second argu­

nt . The side effect is changing the value of the first argument whic h 
:;o l to the value of the second one. 

4. Prog mechanism - program implementation 

4.1 Compilirig into machine language 

varl· F u nc tions of PROG mech a nis m are compiling into machine instruc tions 
pu wltl ·h must produce s ide e ffec ts . These machine in s tructions need additional 

e an) program suppor t which is not initially included in the simula tor of a SECD . 
w in mn hine . For the s e r easons, tra nslation of PROG mechari s m functions will 
ditiot b describe j in two wa y s : by for mal d e scr iption using transactions J..Lce in 
!<l el r 3 J and by d escription o f s ide e ffe cts of each machine instruction. 
Lons 
·e tur T ho t ransla tio n to machine la nguage has to s atisfy following conditions : 
etlan 
ion I 

PROI 
rROI 

he lis 
· ~e t I 

• Trans la tion of any P ROG mech a nism function or a label h a s to contain n e w 
machine in s truction (s') (because the · PROG me cha nis m function can't b e 
ex pressed n e ither u s in g ex ist ing SECD machine instructions nor using e x ­
is ting Lispkit Lisp functions) . 

• Translation of the PROG function has ' to contain information about thl! be­
ginning and end of the PROG function (because of the possibility of the 
existance of nested PROG functions and identical labels within ther.1). 

• Tra nsla tion to machine langua ge must contain information about the number 
of a rguments of translated PROG function . 

According to this, the transla tion of exp.·e.ssion ( PROG arg expl expz ... 
ith th expn) is 

e i sn 

alue 

(PROG a rg expl expz .. . expnVn = (bprog) I arg*n I expl *n I· . . I expn I ( eprog) 

wher e I is a symbol for concate nation, and exp':'n is the translation of the 
expression exp with namelist n. The previous expression has the n e t-effect 
property. If PROG function has no argument, the instruction bprog (begin 
PROG) is evaluated in the following way: 
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s e (bprog O.c) d save -> sec d ((s e c.d).save) 

If Prog function has more than zero arguments brpog is evaluated as 

s e (bprog c 1 .c) d save -> s (c1.e) c d ((s e c.d).save) 

In both cases there is an additional side-effect, which is not obvious iri the 
formal description of the transaction. Separate field is used for storing 

• value of s register 

• value of e register 

• value of d register 

• return address !from PROG function (which implicitly depends on r egister 
c). 

• list of each labels with addresses existing in the PROG exp-ression (e x· 
eluding labels from nested PROG expressions) . 

This field Is generated for every PROG expression and stands for a base of 
the mechanism which allows using identical label names in nested PROG ex· 
presslons. Using an additional register save eliminates possible errors during 
garbage collection. Register save can be modified only by brpog and eprog 
instructions. 

Instruction eprog (end PROG ) is evaluated in the following way: 

(s1.s) e ( eprog.c) d (save1.save) -> (s1.s') e' c d' save 

Th side eff7ct of cprog in struction is reflected in taking values of the sav~d 
r glstcrs (s', c', d ') from the fie ld where they were stored during evaluation 
of bprog Instruction. After that, the field related to the finished PROG ex· 
pression is rei ased. The net-effec t property is provided by restorin g gen· 
oral registers (from the field filled by bprog instruction) ·and saving t ho 
curr nt value at the top of the register s. 

Translation of an atom that denotes label is -label * n = ( lbl) lllb1rl Hhile 
th ff ct of xec uting an instruction lbl is s e ( lbl 1. c) d -> s e c d 

In tru tion lbl is used only in preprocessing PROG function because of fixing 
th lab 1 address. Instruction lbl is skipped during execution. Preprocessing 

d d because a val\Xl of a label must be evaluated before code execution. 

Trnn latlon of the xpression (RETURN e) is (RETURN e) * n = e * n I (ret), 
whll the If ct of executing Instruction ret ls (s 1 .s) e (ret.c) d-> (; 1 .s) 

( prog . c') d 

wh r c' is the code that is the continuation of a program code after the code 
of a PH. G function . The side effect of ret instruction is reflected In taking 
th return address (of PROG expression) from the field in which it is stored 

Translation of the xpression (GO e) Is (GO ) * n = e * n I (go), while the 
eff ct of executing in true lion go is (s 1 . s) e (go. c) d -> s e c' d 

wh r s 1 is a Jab l , a nd c' is the code that Is the continuation of a prograiT 
code after the labe l who value is s 1 . The side effect is reflected in lak in 
address from wh r the executio n continues. 

Trnn Ia lion of th 
(setq) I loc 

whcr loc = local ( 1 n) . Th eff cl of ex c uting instruction se lq is 
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(setq c1 . c ) d 
I I • ~ 

Cs 1 .s) e ' c d 
I 
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.tH'r s 1 is th e value of the second argument of SETQ functi o n, e ' is n 
, vn·onment w ith the substituted value at the plar.e which rel nt e s to variable 

l'his is the s ide effect of this instruc tion. 

1 
pprndix 1\ conta ins the statements that ex tend the tra nslator . Instructions 
l'tq, bprog, eprog, go, ret, lbl have codes 32,'10,'11,42,'13,'1'1. 

1 2 Modifications of sim ulato r of the SECD machine 

1\ basic idea: when code 40 is found during the execution of the pro-
ler ~trnm, sea rching for a code 41 is started. AU in s truction s between cod '10 

nd '11 are analyzed. Names and addresses of found labels are saved in dy -
11 m!c variables (PL/ I allocation variables). /\nalysis takes care about th 

ex- 1 v 1 of nesting PROG functions. Every code '10 must have its pair, cod 41. 
Ev ry pair (40, 11) determinates a se t of labels used in ins truction b tw n 
th m. It i!" possible to jump to a label only from the instruction which_ 1 In 

! or the same PROG function, and doesn't belong to any nested PROG fun c tion . 
ex- Code 41 d e notes the address of the exit from PROG function . In the n x t 
·ing t p the values of registers s, e, c , d are saved in order to provide th n t 
trag rffcct property (restoring at the end of PROG function) . It is done by u Jng 

PL/1 stack (not the stack of the SECD machine) . Rules for program execution 
nr : 

IVed 
1tion 
ex· 

gen­
the 

• The code of instruction lbl and value that follows it in register c ar ig -
nored . · 

When the i~1s truction go is found the corresponding value of label (tho vnluo 
at the top of the stack s ) is taken and the Jist LABEL is searched Cor 
address from which the execution will be continued. 

• When the instru ction re t is found t he correspondin g re turn address (of 
correspondin g cod e 41) i s taken. 

#hile • \oJhe n th e in stru c tion eprog is foun d t he reg isters s , e, c, d wo•Jl·J b 
restored, va lid variab les released and all c h a n ges on th e save ro g ist r 
eliminate d, which p r ovide ne t -effec t p r operty .-

ixing 
>s ing 
tion . 

Modifications in the SECD ma chine program simula tor a r e given in appendix 
ll. 
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Appendix A: The s ta te me nts for extending the translator 

(IF (Eci ( CAR E) (QUOTE SETQ)) 
(COMP (CAR (COR (COR E))) N (CONS . (QUOTE 32) . 

( CON S (LOCATION (CAR (COR E)) N) C))) 
(iF (EQ (CAR E) (QUOTE GO)) . 

(COMP (CAR (COR E)) N 
(CO NS (QUOTE 42) C)) 

( IF ( EQ (CAR E) (Q UOT E RET URN)) 
(COMP (CAR (COR E)l N 

(CONS (QUOTE 43) C)) 
(IF ( EQ (CAR E) ( QUOTE PROG)) 

(L ETREC (I F (ATOM (CAR (COR E))) 
(I F ( EQ (CAR (COR E)) (QUOTE NIL)) 

(CO NS (QUOTE 40) 
(CONS (QUOTE D) 

(PROGNIL (COR (COR E)) N) 

) 
(QUOTE ERROR1) 

) 
(CO NS (QUOTE. ItO) 

(CONS (PRAZNO (CAR (CDR . E))) 
(PROGNIL (COR (COR E)) (CONS (CAR (COR E)) )) 

) 
( PR AZ NO LAMBOA (X) 

( IF ( EQ X (QUOTE NIL)) 
(QUOTE NIL) 
(CONS (QUOTE NIL) 

( PRAZNO (CDR X) ) ) ) ) 
(PROGNIL LAMBOA( E N) 

( IF ( EQ E NI L) 
(QUOTE ERRORPROG) 
(IF ( EQ (CDR E) (QUOTE NIL)) 

(I F (ATOM (CAR E) ) 
(QUOTE ERROR10) 
(COMP (CAR E) N 

(CO NS (QUOTE 2 ) 
(CONS (QUOTE NI L) 

(CONS (QU OTE ~ 1) C) 

) 
(IF (ATOM (~AR E) ) 

( CONS (QUOTE 44) 
(CONS (CAR E) (PROGNIL (CDR E) N) ) 

) 

) 
) 

(COMP (CAR E) N (PROGNIL (CDR E) N) ) 

Appe ndix D : Modification In SECD machine program s imulator 

• In main p r ogram regis te r SAVE is d eclare d a s 

declare save bina ry fixed(31,0) ; 

• In p r ocedure MARK the r egister SAVE is marked. 

• Modifica tions in procedure EXEC are : 

exec pr oc (fn ,args ) r e t ur n s ( bin f l xe d(31)); 

dec l are I prog ct l , 
2 s l bin rixcd ( 3 1) , 
2 c l bin rixcd ( 3 1) , 
2 dl bin flxcd(3 1) , 
2 r l bin f i xed(3 1) , 
2 return bin fixcd ( 31), 
2 l nbela ptr; 

I* con ro I promen 1 j Iva proq jc osnovn I s tek. svaka gone r ac I ja prog promen I j i 
prldru na jC' jrdnoj prog runk"IJI (b l lo da se lzvrSava ta prog runkc l ja Ill ncko prO 
runkclja ugnjcldcna u njoj. ona sadr I adrcsc tck utlh vrednost l reglstara s , c, d k 
I ndrcsu povratka iz lC prog funk c i .Jc return . l abe l a Je pokazlv aC na niz labcla kO 
su pr i dr •Z nc t kuc!o 1 prog funkc I j i . • I 
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leb~l ba5 u(sadn), 
2 nome char( 15) var , 
2 adross b in f lxe d( 3 1) , 
2 n ..c t ptr ; 

1 Jo I em nt I I ste koja sadr21 I me I adresu 1 abe le 
( d ,prvl ,preth) ptr; 
null bui l tin; 

"I 

rrp l char (t1 2 ) 
lni t ( 'SETQ used out side PROG. CommanrJ t•·rminated ') ; 

char ( 40) i n It ( ' GO 115 d outside PROG. Command terminated'); 
char ( 15 ) in It ( ' Unde f ined labe l '); 

rrp2 
rrpl 

•rrpli 
rrp5 

llar (1 9 ) l n i t(' . Comma nd terminated'); 
ch r ( 1111) 

I n i t ( ' RET URN used outside PROG. Comm.nd ter minated ') ; 

ul l ; 

un 11 ( 1 v l uc (ca r ( c ) ) =2 1 ) ; 
1 cl ( l v lue (cor ( c ))) ; 

wi' n(:\ 2 ) do; 
1 ur prog- O 

th e n do ; 

I" S TQ *I 

put fl le( sys pr I nt) cdi t( c rrp 1) 
s top; 

end; 
1• odr oduj e s e me s to prome nljlve u ll s tl 
w o; 
do I 1 to lva lue(car (car (c dr ( c )) )); 

w-cdr (~o{j; 
nd; 

"' ca r(w) ; 
do 1= 1 to lva l ue (cdr (car (cdr (c) )) ); 

w-cdr (w); 
nd; 

c ar ( w~ =car ( s ) ; 
c cdr (cdr (c )); 

nd; 

( sklp ( 2 ) ,a ); 

lmena *I 

who n(40) begin; I" BPROG *I 
d c l a r e he lp bin fl xe d(31) ; 

i nit(' 1 'b) ; 

I* Cuva adr es u od koje t r eba 
poCe tl pr e tr a2 1va nje *I 

d c l ar e kraj bit(1) 
d c l a r e br_ prog bin 
pr vl =nul I; 
o II oc prog; 

fi xe d(15) ; I* kol lko je nadeno kodova 40 *I 
I* pok az ivac na poCe tak 1 iste 1 •'Je la *I 
I* aloc ira se el ement kojl Cuva 

informacij e o tekuCoj prog funkcljl *I 
prog .s l =s; · I* Cuvanje opSteg reglstra s *I 
pre g .e l =:; I* Cuvanje opSteg reglstra e *I 
prog.dl =d ; I* Cuvanje opSteg regl s tr a d *I 
save=c on s (cons (s , cons (e,cons (c,d))),save ); 

I" o llmini sanje moguCnosti gr eS ke pri radu garbage collector-a *I 
If ~ l s numb(c ar( cdr( c ))) 

t he n e=cons (cartcdr( c )), e ) ; 
I* ako ima a rgumenata u prog funkcijl njlhove 

poCe tne Yr e dno s ti (tj. ni 1-ovi) s e dod a ju okolini *I 
he lp=c dr( c ); 
c =c d• (cdr(c)); 
br_ prJg=l; 
do wtllle(kraj); 

I* odakle se nastavlja l zvrSavanje *I 
I* inicijali zacija broja proCitanih kodova 40 *I 

he lp=cdr (help); 
If I s number (car (he I p)) 

then s elect(iva lue (car (he lp))); 
I* tra 2enje instrukcija go , ret 

whe n(40) br_ prog=br_prog+1; 
wh en(41) do· 

'br_prog=br_prog-1; 
if br _prog=O. 

the n do; 
kraj = 'O'b; 
r e turn=help ; 

lbl *I 

I* ako j e r e t od t ekuC e g a ne od unutr aS njeg 
prog-a po s t avlja se adr es a povratka *I 

end; 
e nd · 

whe n(44) do;' 
if br_ prog=l 

then do; I* postavljanje labele *I 
a ll oc label; 
ifprvi=null 

then prvi =sada; 
e lse preth- >nex t =s ada; 

83 
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preth=sa.da; 
next=nu I I; 

, , if lsnunlber(c ar(cd r (help))) 
then ·name=tostring( 

I* dodeljivanje lmena label~ *I · ! ~ 
I* name je oblika char(15} va~ i zato . ~/ 
I* se broj pretvara u char pomo~u toosering *I ivalue(car( cdr(help) ))); 

else name=stringstore ( 
ivalue(car ( cdr ( help )))) ; 

adre s s=cdr(cdr (he lp) ) ; 
end· · 

help=cdr(heip); 
end; 

other; 
end; I* select *I 

end; I* do ~hi le(kraj) *I 
I* postavljanje pokazivaea na llstu labe l s za teku~ i prog *I 

If prvl =nul I then labela=nul I ; 
else labela=prvi; 

end; I* begin kod when 40 *I 
when(41) begin; I* eprog *I 

I* restauracija opStih registara sa efektom Ci stog rezultata *I 
~=cons(car(s) , prog .s l) ; 

end· 
~he~(43) 

e=prog.el; 
d=prog.dl; 
fre e prog; 
save=cdr(s ave ); 
c=cdr(c); 

be gIn ; _ I* go *I 
declare povratak char(15) var; 

I* ime labele na koju se prenosl lzvrsavanje *I 
declare kr aj bit(l) init('l'b); 
If br_ prog=O 

then do; 
put flle(sysprlnt) edlt (errp2 )(skip(2),a); 
stop; 

end· 
i f lsnumber(car(s)) . 

then povratak=tostr ing(iva lue ( car ( s ))) ; 
else povr atak=st ringstore (iva lue (car( s ))); 

s=cdr(s); 
If I abe I a=nu I I 

t hen do; 
put f I I e ( syspr I nt) edIt ( errp3, povratak, 

errp4) ( skl p(2) ,a,a,a ) ; 
stop; 

end; 
else sada =labela; 

do whlle (kraj); 
If name=povratak 

then do; 
I* ako je l abels nadena izvrSavanje se prenostl o • tu 

nar edbu pomo~u dodeljivanja njene adrese c registru *I 
c =adress· 
kraj= 'O'b; 

begin; 

end· 
else if ~ext=nul 1 

then do; 

end; 

put fl le(sysprlnt) edlt(errp3, 
povratak,errp4)(sklp (2),a,a,a); 

stop ; 
e nd · 

else sad~=next; 

I* ret *I 
If br_prog=O 

then do ; 
put fl l e ( sysprlnt ) 
stop; 

edl t(errp5) ( sk ip( 2 ) ,a); 

end; 
c=return; /* izvr Sava nje se pr enosi na 

adr esu naredbe sa ko dom 41 *I 
end· 
whe~ (llll) /* lbl */ 

c =cdr (cdr(c)); /* lgnoriSe se kod za lahelu I sama lab e la. 
abela je vazna samo u predproceslranju prevoda PROG f-je *I 

end; /* do unti I *I 
rcturn(car(s )) ; 

e nd; I* exec */ 
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BSfRACT: A transformation of SASL equations into their non-equational equivalent is described . 
Equations of the source language are transformed only into usual operators of a target (functional) 
language, and not into special constructs . This transformation scheme is therefore more useful, 
beCause it can be applied on a broader range of target languages. 
Key-words: Implementation of Functional Languages, SASL, Pattern Matching 

1 INTRODUCTION 

The research in the field of functional (or applicative) programming has been of growing 
Interest to computer scientists since its origin in the 1950's. Functional (or applicative) programming 
languages, especially pure ones, are of great importance for the future of computing, because they 
could solve the so-called "software crisis." Functional programs are short, concise, easy to maintain, 
and their (in)corr~ctness is easily proved formally. They also offer a natural approach to parallelism 
and parallel programming languages. 

Purely functional languages lack everything that is essential to procedural (or imperative) 
languages: statements, explicit sequencing and side effects. Purely functional languages are 
referentially transparent, insensitive to evaluation order, have strong mathematical basis and a small 
set of built-in features. Therefore, they are easy to learn and follow. Furthermore, all program 
identifiers are lexically scoped (i.e. bound at compile-time and not at run-time) and all functions are 
first-class objects (i .e. have the same rights like other data types). Finally, most purely functional 
languages have non-strict semantics (i.e. expressions are evaluated only when necessary), which gives 
those languages the potential of dealing with infinite data structures. For more details and an overview 
of functional programming languages and style see for example [1]. 

The key issue in functioriai programming research ,-.:...___;:......:.. __________ ..., 

is the definition of purely functional languages and 
implementation of their processors. Recent functional 
languages have many syntactic enhancements such as 

app nil s "' s 
app (x:s) t X : (app B t) 

conditional expressions (or "guards"), list comprehension Fig. 1 An example of an equational functional 

(or ZF-expressions) or pattern matching, which all lead program 

to more readable programs. Since its introduction in 
functional languages SASL and NPL, pattern matching became almost standard feature of most 
modern functional languages . Intuitively, pattern matching means that functional program consists of 
a set of equations, where certain equation is applied if its left-hand side is matched against the current 
state of function evaluation. Usually only the pattern of the left-hand sides is identified (hence the 
name pattern matching) . In Fig. 1 is displayed a typical example of a function definition written in 
equational fonn. Function app appends two lists. 

• This work is supported by Science Fund of Serbia 
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Since the set of equations is not a "natural form" of a functional program, it has to be 
transformed into some intermediate code based on lambda-calculus or into some existing functional 
language to be (effi ciently) executed. In most cases known from the literature (for example [2 ,4]) 
equations are transformed into special constructs or operators, developed exclusively for pattern 
matching compilation . However, we show, in this paper, that equations of a functional language can 
be successfully transformed into a set of "classic" operators found in all functional languages, if the 
source language ha~ only built-in data types. The paper deals with a compilation of pattern matching 
of SASL language, into a corresponding Scheme or Lisp Kit LISP expression with the same semantics. 

The rest of the paper describes a compilation of pattern matching of SASL language into a 
subset of some standard (functional). language. Section 2 defines the patterns, pattern matching and 
its semantics, section 3 shortly introduces SASL language and section 4 describes our implementation 
of SASL pattern matching with respect to the set of standard (or "common") operators, found in all 
functional languages. Section 5 concludes the paper. 

2 PATIERNS AND PATfERN MATCIDNG 

The concept of data constructor is closely related to the definition and concept of patterns and 
pattern matching. We proceed with a short introduction to data constructors. 

2.1 Data Constructors 

Data Constructors can be observed as a special functions that assist "to construct or bind 
together data" [2]. The only difference between data constructors and "ordinary" functions is that 
constructor functions don' t possess associated rules (for transformation or reasoning about them). Data 
constructors can be built-in (in which case they can take the form of constructor operators) or 
introduced by the user in the form of algebraic data types (user-defined data types). For example, a 
data constructor; that can be found in all functional languages in the form o( explicit constructor or 
constructor operator is the pair of constructors CONS and NIL, which together serve to build lisU 
of data. For example, the following call: CONS(1, CONS(2, CONS(3, NIL))) builds a list of data 
containing numbers 1, 2 and 3. If more than one data constructor is used for building a single data 
type, it is often called sum-constructor, otherwise it is called product-constructor. 

2.2 Patterns 

Pattern is in functional languages defined as: 

o a variable or 
o a constant or 
o an infix constructor operator pattern of the form p1 o p2 , where PI and p 2 are patterns and o 

is binary constructor operator. 
o a constructor pattern of the form c p1 p2 •• • p., where c is constructor of arity n and PI• p,. 

... , P. are patterns . 

2.3 Pa ttern Matching 

Patterns can be used in the place of every argument on the left-hand sides of equations tb­
const itute a fu nction definit ion. Patterns are used in case analys is during fu nction evaluation in tbe 
fo llowing way: when actual argu ments are matched against pattern on the left-hand side of tbt 
equation, corresponding right-hand side is selected for evaluation . In implementation of pattert 
match ing, there are several issues to be concerned of: 

o overlapping patterns, which means th at in function definition ex ists at least one pattern th­
can be applied in more than one case. In case of overlapp ing patterns the order of equati<JI 
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in fun ction definition is significant. 
n-exhaustive sets of equations, whi ~h means that equations not necessary define all possible 

c ~ es that can appear in actual argu ments. 

rep ted variab les, which means that if in equation are allowed same variable names, then 
they denote the same values of actual arguments. 

4 1, 1 formution rules 

unction definitions involving patterns can be transformed into lambda-calculus that is 
n ttl with appropriate reduction rules or special built-in functions. To define formally semantics 
ucrn matching, we'll transform the set of equations into lambda-calculus enhanced with lambda 

r tl ns depending on patterns (and not only on variables) and with built-in constant called FAlL. 
~ume that there is already transformation function T, which transforms the constructs of a 

r 1 nguage into the lambda-calculus with constants (and built-in functions). For possible 
llnilions of function T see [2,3,4]. 

·unction definition which consists of multiple equations is transformed in the following way: 

II p,'p,l ... p,· = E, 
f Pl1 P12 

.. . P2" = ~ 

f = >-x,>-x, ... Ax,. . ( 
((AT[pt')AT[p1

2) ... AT[pt).T[E1 )) x1 x, ... x.) 
o ((AT[p1

1 )AT[p/] ... ).T[p1") .T[~)) x1 x2 ... x.) 

0 ((AT[ Pm1 J AT [ p,/ J ... AT [ Pm" I .T[ Em)) x, x2 ... x.)) 

where p/ are patterns, X; are new variable 
n mcs which does not occur free in arbitrary 
expressions ~. for i = I, ... ,n and j = I, ... ,m. 
r:or example, Fig. 2 displays the effect of 
d ·scribed transformation scheme on two simple 

ASL functions. 

T( f X = 2*x ) = f = Ax.• 2 X 

T( fac 0 = I 
fac n = n*fac(n-1) ) = rae = 

Xx.( ((XO.l)x) 
o ((All. • n (fac (- n 1))) x) ) 

2.5 Semantics or lambda-calculus Fig. l Transformation by function T 

tnhancements 

and 
1 

Semantics of the enhancements to the lambda-calculus will be described by giving ·the values 
of applications of lambda abstractions to arguments. The following is the definition of the constant 
lambda abstraction, for any constant c and arbitrary expressions E and a: 

"1• p, 
VaJ[>.c.E) a= Val[ E), a= Val[c) 
Val[Xc.E) a= FAIL, a -;t. Val[c) 

Intuitively, the value of the Xc.E applied to a is in fact the value of E, if a evaluates to 
constant c. Otherwise, the value of the constant lambda abstraction is FAIL. For example, (>.3.+ 4 
5) (+ 1 2) evaluates to 9, because(+ 1 2) evaluates to 3, while (A3.+ 4 5) 2 evaluates to FAIL, 
because 2 does not evaluate to 3. . 

The semantics of patterns involving data constructors is defined in the following way, for 
m th• every constructor c and patterns p1, i= l, ... ,n: 

1uatioJ 
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ValV..(c P1 P2 ... p.) .E) (c al al . .. a.) 
Val( >..(c p1 P2 ... p.) .E) (k al ~ . .. a.) 

Val(Ap1Ap2 ... >..p •. E) a1 a2 . . . a. 
FAIL, c -;t. k 

Intuitively, if constructors match then individual lambda abstractions will be applied to data 
components. If constructors do not match, then the value of application of such lambda abstraction 
is FAIL. 

For example, the foll owing are two possible evaluations: 

(>..(CONS X y).+ X y) (CONS 2 3) - -> (Ax>..y.+ X y) 2 3 -> (Ay.+ 2 y) 3 -> + 2 3 -> 5 
(>..(CONS x y).+ x y) NIL -> FAIL 

Lambda abstractions depending on constructor operators have the same semantics like data 
constructors -the only difference between the two is syntactical one. The semantics of variable lambda 
abstractions on variableS is the usual semantics of lambda abstraction (see for example [2, 4J). 

Operator o [7] is defined as follows: 

xoy=x 
FAIL 0 X = X 

Intuitively, operator o forces the evaluation of its first argument. If it evaluates to FAIL, then 
the evaluation of the second argument is forced . 

2.6 Possibilities ror Implementation 

Semantics described in previous section can be implemented either directly lilce described, or 
by fu rther transformations of enhanced lambda calculus into the "ordinary" one containing special 
built-in function~ It is usually the case that above semantics is implemented by its transformation into 
the family of CASE operators, which inspect the structure of its argument and "jumps" to the 
appropriate branch. · 

3 SASL AND PATTERNS IN SASL 

Functional programming language SASL (short for: Saint Andrews Static Language) was the 
first one whose programs has taken the form of the set of equations and employed pattern matching. 
Furthermore, SASL was also the first functional language which was with non-strict semantics and 
implemented by graph reduction. By standards of best Icnown functional language representatives of 
today, SASL is regarded as untyped language with non-strict semantics, without possibilities to 
introduce new data types except "buil t-in ones. For more details about SASL and its implementation 
see [5,6]. 

Since in SASL there is no 
introduction of new data types, patterns in 
SASL are simpler than patterns in general . 
Pattern in SASL can be: 

0 

0 
a variable or 
a constant or 

length () = 0 
length (a:x) • 1 + length x 

fib 0 = 1 
fib 1 - 1 
fib n = fib (n-1 ) + fib (n-2) 

0 an infix constructor operator pattern flw. J Two function deftnitiona in SASL 

of the form p 1 : p1, where p 1 and p2 

are patterns and : is binary constructor operator; a null ary constructor operator ( ). Operator 
: is an infix shorthand for CONS, while () is a shorthand for NlL. 

In Fig. 3 are displayed definitions for a function length wh ich returns the length of a list and 
function lib which returns nth fibonacc i number. 
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From the implementation point of view: 

11 ~ patterns in SASL can be overl~pping, so that the order of equation is significant (equatjoru 
on are in SASL tried top to bottom). 

5 

set of equations can be non-exhaustive, which means that the implementator have to take care 
of all uncovered cases in user's program during the compilation of equati ons. 
repeated variables are not al lowed and will be considered as semantic error in user's program. 

IIR FORMATION OF SASL EQUATIONS 

Ill The goal of our SASL implementation is to translate the program in source (SASL) language 
Ida me existing language whose language processors are already available. Lisp Kit LISP, Scheme 

len 

or 
:ial 
nto 
the 

the 
ng. 
and 
1 of 
1 to 
ion 

llOC 

and 

allY other purely fu nclional subset of LISP has been chosen as an target language for tran lation 
, SASL source, because of the broad availability of those processors. Since they don't implement 

l'!nantics described in 2.5 nor does not possess special bui lt-in functions, implementation had to be 
ne using only common operators. 

tl mnntics of a "Common" Primitive Operations 

For translation of SASL equations into already existing language, only several "common" 
rerators of the target language are needed: cond, &, =, list, head and tail. In this section, a 
ltlllantics of those operators will be defined: 

For every b1 , • •• , b. of logical type, C1, • •• , c., k1 , ... , k. of character type, x, x1, x2, ••• , x., y, y1 of 
wy type, where true and false are logical constants, and nil and : (list) are data constructors, the 
following holds: ; 

Val ( If true then x else y ] = Val I x ] 
Val ( If false then x else y ] = Val I y ] 

Val f cond (b1 X1) (b2 xJ ... (b. x.) ] = 
Val( if b1 then x1 else (if b2 then x2 else ( ... (ir b. then x. else e"or) ... )) ] 

Val ( b1 and b2 ) = Val I b2 and b1 ] 

Val ( false and b1 ) = false 
Val ( true and b1 ] = Val I b1 1 

Val ( b1 & b2 & ... & b. 1 = V~l( (b1 and (b2 and ( ... and (b. and true)))) 1 

Val ( true = true ] = true 
Val [ false = false ] = true 
Val [ "c1~ ••• c; = "k1k1 .. . k,." ] = true, if n=m and c.=k;, i= l , ... ,n 
Val [ nil = nil 1 = true 
Val [ (x:x1) = (y:y1) ] = Val I (x=y) & (x1=y1) ] 

Val [ x = y ) = false, otherwise 

Val [ list (x:x1) 1 = true 
Val ( list x ] = false, otherwise 

Val [ head (x:x1) ) ,;, Val I x ) 
Val [ tail (x:x1) ) = Val I X1 ) 

Note that in most functional languages there are equivalents of above operations with exactly 
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the same semantics as described. 

4.2 Transformation Rules 

The following are the rules for transformation of SASL equations into the set of common 
operators of any functional language: 

T [ f p1 p2 
••• p• = E ) 

T[ f p .. p/ ... p1" = E1 

f P21 Pl ··• Pt = ~ 

f = Ax 1Ax2 ... Xx,.(cond (condition1 T[E'1 )) 

(conditio~ T [ E'2 )) 

(condition,. T [ E' m I) ) 

where pl, p! are patterns, xl are identifier names which do not occur free in expressions E, ~. while 
conditio~ and E', E\, are built by consecutive applying of following rules, for i= l, ... ,m and 
j=l, .. . ,n: 

l. E' and E'1, i= l, ... ,m are obtained from E and E, respectively such that every variable pattern 
p1k, kE {1 , ... ,n} is replaced with appropriate xk. In standard notation of lambda-calculus, E'1 
= [xJp1k]E1 for every kE{l, ... ,n} for which p1k is a variable . . 

2. condition;, i= l, ... ,m are built as (xk=p1k)& ... &(x1=p/), for every ·constant pattern p-1k ... 
P1

1
, k, ... ,I"E {l, ... ,n}. 

3. conditio~, i= l, .. . ,m are built as (xk=nil)& ... &(x1=nil), for every p1k ... pi, k, ... ,l E 
{l, ... ,n} which is equal to ( ). 

4. conditio11;, i=l, ... ,m are built as (list xJ& ... &(lisJ xJ, for every p1k ... Pl1, k, ... ,l E 
{l, ... ,n} which are of the form x:y. E', E'1 are obtained from E, E, by replacing all 
occurrences of x by head Xa andy by tail x., for every k for which p1k is of the form x:y. In 
standard notation of lambda-calculus, E'1 = [tail x/y]([head x,tl'x]EJ for every k for which 
p1k is of the form x:y. 

5. condition,., (m > 1) is buiit as true if all p,.k IcE { 1 , ... ,n} are variables (in correct programs 
equation with all variable patterns have to be the last one). 

It can be easily formally proved this scheme exactly implements semantics of pattern matching 
lambda abstractions given in 2.5. 

4.3 Nolices on Implementation 

The implementation of transformation rules described in previous section is done using 
attribute grammars and compiler generator, in which the transformation of SASL equations is the 
!TlQSt important part. SASL equations are made of nameli t (left-hand side) and corresponding 
ex pres ion (right-hand side), and both of them have associated attribute. The internal structure of the 
function definition with respect to namelist and expr is of the following form (written in Modula-2-
lilce syntax) : 

GroupOfEquationo • RECORD /* function definition */ 
Name: ARRAY OF CHAR; /* function name */ 
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NoOfEqus: CARDINAL; 
NoOfParms : CARD I NAL; 

NoOfConds: CARDINAL ; 
Tr ueCond: BOOLEAN; 
LHS: ARRAY OF Namel i st; 
RHS: ARRAY OF Expr; 

/ * numbe r o f equations * / 
/ * n umber of parameters */ 

/ * numb er of conditions */ 
j • t ru e condition built? */ 
/ * left hand sides * / 
/ * r ight hand sides * / 

END; 
li s t • RECORD / * structure of t he left ha nd side */ 

Parma: ARRAY OF ARRAY OF CHAR; / * parameters * / 

c•t • 

Lit • 

NoOf Conets: CARDI NAL; / * number of constants * / 
Consts : ARRAY OF Cat; / * structure of con stants */ 
NoOfListe: CARDINAL; / * number of lists * / 
Lists : ARRAY OF Let; / * structure of lists */ 

END; 
RECORD 

P l a ce: cARJ3 INAL ; 

Value : ARRAY OF CHAR 
RECORD 

Place: CARDI NAL ; 

NoOfMemb s: CARD INAL; 
Membs: ARRAY OF ARRAY OF 

ENDJ 
RECORD 

/ * position of parameter in the 
equation that c ont a ins constant */ 
/ * actual value of the constant */ 

/ * position o f parameter in the 
d efinitio n that c ontains list * / 
/ * numbe r o f members o f t h e l ist */ 

CHAR; / * members the mselves */ 

conditions: Internal Structure of Expressionst 
Right-hand: I n ternal Structure of Expressionst 

ENDJ 

After all equations are examined and all attributes "filled in" , next step is to determine the 
groups of the equations with the same name. Then, every group is processed by the following 
procedure: 

WITH Gr oupOfEquations DO 

END; 

FOR i: • l TO NoOfEqus DO 
Determine new identifiers which do no t occur free in f uncti on 
definition 

END 

FOR j:=l TO NoOfParms DO 
Search RHS[j].Right-hand for LHS[i) . Parms{j) and 
replace i t with new identifiers, according to rule 1 
(of section 4 . 2) 

END; 
FOR j:=l TO LHS(i].NoOfConsts DO 

Build or update RHS[ i) . condition ·according to rule 2. 
and 3. (of section 4.2) , and update NoOfConds 

END; 
FOR j:=l TO LbS[i] . NoOfLists DO 

Build or update RHS[i).Condition according to rule 4 
(of section 4.2), and update NoOfConst 
FOR k:=l TO LHS[i].NoOfMembs DO 

Search RHS{i].Right-hand for 
LHS[i].Lists{j).Hembs[k) and replace it 
by calls of appropriate funcions, 
according to rule 4 (of section 4.2) 

END; 
IF ( RHS[i].NoOfConst=O AND RHS(i].NoOfLists=O AND 

END 

i=NoOfEqus ) THEN 
Build RHS[i].Condition as •true• 
accoording to rule _5 (of section 4.2), 
Tr ueCond 

condition, 
and update 

IF NoOfConds <> 0 THEN 
IF NOT TrueCo nd THEN 

Build •true• c ondition, indic ating an error ·· 
END; 
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•surround" conditions by cond operator 
END; 
Write transformed expression 

The wealcest point in described implementation is a choice of "strange enough" parameter 
names - if function definition contains free variable of the same name, semantics of resulting function 
definition will bi significantly changed. However, "occurs check:" could be to expensive to perfonn 
during transformation. 

4.4 Examples 

Examples displayed in Fig. 3 are by 
rules described in 12revious two sections 
transformed into two Lisp Kit LISP functions 
displayed in Fig. 4 (equivalents in other 
similar languages would look: almost the 
same). In both examples, prefix operator eq 
is equivalent with (in section 4.1) defined 
infix =, not atom with list, car with head, 
cdr with tail, and ('NIL) with nil. 

5 CONCLUSION 

The transformation scheme given in 
this paper is different from those found in 
literature, because it translates equations into 
a set of opera~ors which can be found in 
every functiomil language. Since no special 

(length lambda (newvarl) 
(cond 

) ) 

( (eq newvarl ('NIL)) ( '0)) 
((not (atom newvarl)) 

(add ('1 ) 
(length (cdr newvarl))) 

) 
( ( 'T) ( •error)) 

(fib lambda (newvarl) 
(cond 

)) 

((eq newvarl ('0)) ('1)) 
((eq newvarl ('1)) ('1)) 
(('T) (add (fib (sub newvarl ('1))) 

(fib (sub newvarl ( '2)))) 

operators are needed for transformation, fl&. 4 LilpK.it LISP equiva~ert of two eumplea 

languages involving pattern matching can be 
implemented by translation into some other language, which is broadly available or efficiently 
implemented. However, this scheme can only be used to translate untyped languages, i.e. languages 
which does not allow introduction of new data types. 

Current implementation of the described transformation can be improved in many ways. For 
example, the more efficient execution of transformed program can be achieved by grouping and 
nesting of cond operators such that the number of needed tests is kept minimal . 

Rererences 

l. Budimac, Z., lvanovi~. M., Putnik:, Z. and To~i~, D., LISP by Examples, Institute of 
Mathematics, Novi Sad, 1991. (in Serbian). 

2. Field, A.J. and Harrison, P.G., Functional Programming, Addison Wesley, 1988. 
3. Ivanovi~, M. and Budimac, Z., A Definition of an /SWIM-like Language via Schemt, 

SIGPLAN Notices, to appear. 
4. Peyton Jones, S.L., The Implemenrarion of Functional Programming Languages, Prentice 

Hall, New York, 1987. 
5. Turner, D.A., The SASL Language Manual, University of St. Andrews, 1976. 
6. Turner, D.A., A New Tmplementation Technique for .Applicative Languages, Softw. Pracl 

Exper. 9(1979), 31-49. 
1. Turner, D .A., Aspects of the Tmplemenrarion of Programming Languages, Ph.D. Thesis. 

University of Oxford, 198 1. 



aoc:t:£DINGS OF "JII £i VI C nN IT I' Efll r ,, ,~ 

I AN D COMPUTER SCi r ,.. c r 1/.('A ~.l 

VI St-0, OCl'ODER 29-J I , 1992., PP. 9) - 98 

Modification o f th e Prol g-contro l 1n a Smalltalk 
environment 

Rut.livoj Pw1ic DuJan ToJic 

/lfa lematicki Jaku ltet 
Studentski trg 16 
11000 Beograd 

Yugoslavia 

Abstract. T he p roble m o f e ffi cient wri ti ng the Prolog programs in the Small talk environment is considered. 
tnning with the famous Kowa lski's equation: 

A(lgo ri thm) = L(ogic) + C(ontro l) 
tl component C is analyzed and accon.li ng to that analysis some new predicates are proposed to built into 
p Jog/V. These predicates might be useful in any Prolog language where the component Control is significant 

111 solving some type of problems. 

Keywords: Prolog, Smalltalk, Control, Built-in predicates, Environment 

1. Introduction 

In this paper we suggest how to improve the efficiency of Prolog programs 
incorporated into a Object Oriented environment. The problem is bow to amalgamate 
successfully two different programming paradigms: Logic and Object Oriented. The 
similar problems are studied in [5], but instead of Small talk, C++ is considered. In [1] 
and [2] the problem integration of imperative and logic paradigms is studied. So, the 
problem of integrating two different paradigms is very actual. The good starting point 
is Smalltalk/V environment that includes a Prolog interpreter (Prolog!V). We can 
conclude that a kind of integration of Object-Oriented and Logic paradigm is realised 
in this environment. Moreoyer, Prolog!V-interpreter is a simple interpreter written in 
Smalltalk/V which power is based on the using of Smalltalk-expressions. In a Jot of 
applications it is suitable to have better control-mechanisms in Prolog itself. The 
connection between Prolog and Smalltalk gives opportunity to solve previous problem 
iu the efficient way. 

2. How to enhance the control in Prolog 

In foreword of [3] Robinson writes: "Today Logic programming is a standard . 
paradigm in the methodology of computing. Its attractions are immediate. Kowalski's 
apothegmatic equation: 

A(lgorith m) = L(ogic) + C(ontrol) 
sums up the most striking of them: the clean separation of the knowledge required to 
solve a problem from the way this knowledge is to be deployed to solve it." According 
to [4] it is central to the idea of logic programming, and Prolog in particular, that we 
be prepared to alter the declarative comp.onent L to obtain desired problem-solving 

93 
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behaviour A. The component C is usually fixed in Prolog. Moreover, in same article, it 
is admitted the possibility "of changing A by changing only C" with the conclusion 
"Logic programming is concerned with the possibility of changing both L and C." 

In an Object-Oriented environment, with Prolog available for the changing, it is 
very interesting to modify C-component in Kowalski's equation. Because of that we 
analyze this component in more details. The main elements of the control in Prolog are: 

- Backtracking 
- Unification and 
- Built-in predicates. 

The interpreter of Prolog,'V is written in SmalltalkN and we could change all of 
these elements of the control. Moreover, our attention is on built-in predicates. We 
propose some new logical predicates enhancing the control in Prolog!V. These 
predicates may be added to any Prolog working environment. 

3. Prolog-classes in Smalltalk/V 

To explain how to enhance Prolog!V, it is necessary to inspect the place of 
Prolog!V in Smalltalk environment. Prolog!V interpreter is highly integrated into 
Smalltalk/V hierarchy. The structure of classes related to Prolog!V is: 

Object < -- Top of hierarchy 

Logic 
Prolog 

<-- Key control mechanism 
< -- Basic predicates 
<-- Application classes 
(with predicates 
written in Prolog!V) 

All methods in classes Logic and Prolog are written in SmaiitalkN and could be 
changed. If we intend to add new predicates, their methods should be written into the 
class Prolog. 

4. New control-predicates In Prolog!V 

In this article our attention is concentrated to the generalization and creation of 
logical predicates. These predicates may be useful in changing of the control of Prolog 
programs. 

The initial idea for the building new control-predicates was born after 
modification of the predicate or. Namely, the existing definition of the predicate or in 
Prolog!V is (see l6J) : 

or: assoc 
"Disjunction predicate." 
assoc key size = 2 ifFalse: ["'self] . 
self doGoal: (self first: assoc) continue: assoc value. 
self doGoal: (self second: assoc) continue: assoc va lu e 
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thr is stand ard definition of or-predica te. In Prolog notation it is: 
or(x, y) :- x. 
or(x, y) :- y. 

0 111 
ti mes it is useful to make th e following modification of previou s definition: 

or(x, y) :- x, !. 
or(x, y) :- y. 

In Small ta lk/V code it is enough to change the line: 
self doGoal : (self first: assoc) continue: assoc value. 

1nto the lin e: 
self doGoal: (self first: assoc) continue: [ "" assoc va lue]. 

95 

A generalisat ion of the modified or-predicate (we call it gor) in Prolog description could 

be: 

This is clumsy construction and may be changed by a built-in predicate: 

by the following Smalltalk code: 

gor: assoc 
"General disjunction predicate." 
I m n aList i I 

(m := assoc key size ) < = 2 iiTrue: [""self). 
aList : = assoc key. 
n := aList head. 
aList :a= aList tail. 
i := 0. 
n < 1 iiTrue: [""self] . 
[ aList isEmpty ] 

whileFalse: [ 
i := j + 1. 
i = n 

iiTrue: [ 
self doGoal: (aList head) continue: ["" assoc value] 

] 
ifFalse: [ 

self doGoal: (aList head) continue: assoc value 
]. 

a List : = a List tail 
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Sometimes we put the cut-predicate in several positions of clauses as in the 
following example: 

gorl(p,,pz,PJ•P4•Ps) :- p,. 
gorl(p,,pz,PJ•P4•Ps) :- Pz,!. 
gorl(PJ>Pz•PJ•P4•Ps) :- PJ· 
gorl(p,,pz,PJ•P4•Ps) :- P4•!. 
gorl(p,,pz,PJ•P4•Ps) :- Ps· 

Practically, we need a generalized gar-predicate, that could be called gorl. In this 
case we should know a list of positions of the cut predicates. For the previous example 
we could write it in the following way: 

The general form for the gorl-predicate is: 

gorl(List,p1,p2, •• • ,pm)· 

where List contains positions of the cut-predicates. 
The gorl-predicate is implemented in Smalltalk by slightly changing of the 

Smalltalk code for the gar-predicate as follows: 

gorl: assoc 
"General disjunction predicate with List." 
I m n aList i tmpList I 

(m := assoc key size)<= 2 iiTrue: ["' self]. 
aList := assoc key. 
tmpList := aList head. 
( tmpList isK.indOf: List ) ifFalse: [ self error: ' not a list ! ' ]. 
aList := aList tail. 
f := 0. 
[ aList isEmpty ) 

whileFalse: [ 
i.;= i + 1. 
(tmpList hasObject i ) 

iffrue: [ 
self doGoal: (aList head) continue: ["' assoc value] 

] 
ifFalse: [ 

self doGoal: (aList head) continue: assoc value 
]. 

aList := aList tail 

In the following example we present a part of the Prolog program with the god­
predicate: 
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form(Lis t) , 

go rl ( List, featu re _ l(X), fea ture_ 2(X), ... ,feature _ m(X)), 
chcckProfit(X), 

97 

\n interpretation of this part of Prolog code might be th e foll owing one. List contains 
the positions of very important features of some material. If a material with at least one 

1 
ry important fea ture is not profitable, the searching for the rest materials with other 

rcatures is stopped. 

In the similar way we may generalize and-predicate. In Prolog!Y, and-predicate 

1
. realised by th e following Smalltalk method ([6]) : 

and: assoc 
"Try to satisfy a list of goals." 

I aList I 
aList : = assoc key. 
[aList isEmpty] whileFa lse: [ 

(self doOneGoal: aList head) 
ifTrue: [aList := aList tail] 
ifFalse: [A self]]. 

A assoc value 

The corresponding Prolog notation of the and-predicate is: 

and(p,, pz, ... ,pm) :- p,, Pz, ... ,pm, !. 

We suggest more general and-predicate by the following Prolog (pseudo)definition: 

where is: 
1 ~ k ~ n ~ m. 

We call this predicate from-a Prolog program by: 

gand(k, n, p1, ... Pm)· 

It is clear that for k=l and n=m we have and-predicate. 
This generalized and-predicate is realised by the following Smalltalk-method: 

gand: assoc 
"Try to satisfy a list of goals from position m to n " 
I m n aList i I 
a List : = assoc key. 
m := aList head. 
a List : = a List tail. 
n : = aList head. 
aList := aList tail. 
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m < = n ifFalse: [ "'self ]. 
i := 1. . 
[ aList isEmpty not and: [ i < m ]] 

whileTrue: [ i := i+ 1. 
aList : = aList tail 

]. 
(aList isEmpty ) 

ifFalse: [ 

] 

[ aList isEmpty not and: [ i < = n ]] 
whileTrue: [ 

(self doOneGoal: aList head) 
ifTrue: [ a List : = aList titil. 

i := i+1] 
ifFalse: ["'self]]. 

iffrue: [ "'self ]. 
"' assoc value 

5. Conclusion 

This paper has touched upon a number new predicates related to the control in 
Prolog. It is unproductive to create these predicates in a Prolog application. An 
acceptable solution is the implementation of these predicates in Smalltalk. The specific 
organisation of Smalltalk provides the inheritance of those predicates from the others 
Prolog applications. The usefulness of integration of two programming paradigms (Logic 
and Object-Oriented) is evident. 
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BS'fRACT: A possible solution of a dependency analysis problem is given by this paper. It can be 
used as a useful part of most optimization schemes used in implementation of functional programming 
languages . Implementation is given in ISWJM - an untyped functional programming language, using 
higher-order functions, leading to a short and abstract solution. It can be used as a description of a 
dependency analysis algorithm and as a prototype to a more efficient implementation. 
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I INTRODUCTION 

Functional programming represents one of the most important programming paradigms, next 
ro procedural, \object-oriented, logic etc. Together with logic programming style, functional 
programming is considered as declarative, by which the problem is described (i.e. what is to be 

solved), and not the. recipe for its solution (i.e. how the problem is to be solved). 
It is usually estimated that functional programming will have the most important role in the 

future of computing and solving of the so-called "software crisis." This claim is based on the 
following three characteristics of functional programs: 

o Functional programs are short, concise, and easier to read and maintain than their 
counterparts in any other programming paradigm (including logic). 

o Features and (in)correctness of functional programs can be formally proved. 
o Functional programs can be naturally and easily implemented on parallel architectures, 

without introduction of any additional language constructions and concepts. 

Functional paradigm has the mentioned three characteristics because of its powerful 
fundamentals in mathematics Qambda-calculus). Because of that, functional programs do not have 
statements (especially assignment statements), side-effects and explicit sequencing. Functional 
programs are characterized also by static binding of identifiers and treatment of functions as "first 
class citizens." Besides that, some functional programming languages have a possibility of the 

so-called lazy evaluation, which enables a dealing with infinite data structures. 

Currently there are many research directions in the field of functional programming. Among 
the most interesting and the most proliferable is the application of functional prograrJl!Ding style in 
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different fields of "every-day" programming. An aim of this direction is to prove practically the 
usefulness of functional programming paradigm and its advantages. For example, the small part of 
investigations and implemented software systems based on functional programming paradigm is: 
general remarks about tools and "procedures" applicable in many areas [5, 6, 9], purely functional 
operating systems [7, 12], implementation of other programming paradigms [4], implementation of 
some mathematical algorithms [ 11, 18, 19], classical software engineering tools and methods [15, 16] 

etc. 
This paper presents a solution of a dependency analysis that is a useful part of most 

optimization schemes used in implementation of functional programming languages . The analysis is 
implemented in JSWIM - an untyped functional programming language, using higher-order functions, 
which directly lead to a short and abstract solution, (mostly) independent of concrete data structures . 
Described itnplementatjon can be used as a description of a dependency analysis, as well as an 
executable specification of an algorithm. If the implementation of JSWIM is not efficient enough, then 
the presented solution at least can be used as a prototype for more efficient implementations. 

The rest of the paper is organized as follows: section 2 contains a short introduction to a 
functional programming language !SWIM, while section 3 contains a description of importance and a 
verbal description of a common algorithm for dependency analysis. Section 4 in full details descr ibes 
JSWIM implementation of an analysis. Section 5 concludes the paper. 

2 SHORT COMMENTS ON !SWIM 

JSWIM (short for: If you S.ee What I Mean) was intended to be a set of purely functional 
languages with common basis. It was introduced in [13] and represented an important step ·in the 
development of functional languages. Perhaps the two most important improvements were: the strong 
influence of lambda-calculus to the design and features of the language and the implementation 
technique via (virtual) SECD machine (14) . It can be said that JSWIM was the first declarative 

language and a predecessor of the so-called modern functional languages whose best known 
representatives today are Miranda (trademark of Research Software Ltd.) and Haskell (8) . 

From the point of view of LISP dialects (the only language with similar characteristics at the 
time), JSWIM introduced infix operators, parentheses-free syntax, and local definitions in the form of 
let or where blocks . 

JSWIM is a functional language that satisfies all major criteria for a functional language [2,8]: 
it lacks statements, explicit sequencing and side effects, treats functions as first-class citizens and il 
lexical ly scoped (i.e. statically binds its identifiers). Moreover, JSWIM is: 

• 

• 

• 

. 
th e language with strict 
semantics, which means that it is 
incapable for lazy evaluation 
(although that can be easily 
changed). 

the untyped language, which 
means th at it has not a notion of 
type, type checking nor the 
introduct ion of user-defined types 

// i nsertion sort o f l i st 1 
{ sort 

where rec 
sort ( l ) = l•nil - > n i l7 

i nser t (hd 1, sort (tl 1) ) 
and insert (a, l) = l=nil - > [ a ] 7 

a<=hd 1 -> a : l; 
hd l :insert (a,tl 1 ) 

in any way . flg . I An example of ISWIM program 

the language in which the 
fu nctions return ing fu nctions are defin ed by "anonymous" fu nctions or explici t definitions of 
curried functions. 

..... ,..... 

( 

2 
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• the language that does not posses the SO'-call ed special syntax enhancements such as guards, 
Jist comprehension and pattern-matching. In !SWIM all e.>; press ions must be defined e.>;plici tly, 
using primitive operators of the language. 

11 
displays an illustrative example of !SWIM pr gramming - an insertion sort of list l. An 

. Jended version of an ISWTM language is implemented at th e Institute of Mathematics in Novi Sad 
I , 10] . This version conforms to the major ideas of Landin 's original language. The main feature 
,1 JSWIM that will be ex plored in this paper is its lack of typing, i.e. impossibility to introduce new 
d 1 types. Instead of data types, higher order functions , in some cases, wi ll be used . 

J DEPENDENCY ANALYSIS 

The dependency analysis takes place when a set of identifiers is bound by a set of (potentially) 
mutually recursive expressions in functional programs. Such constructions are often large and can be 
rearranged in smaller and nested sets such reflecting the dependency among defined identifiers. 
Moreover, there are often definitions that are non-recursive and need not be defined in the same set 
with mutually recursive ones. The purpose of dependency analysis is to rearrange the set of definitions 

3uch that: i) the set of mutually recursive definitions is minimal and as nested as possible and ii) to 
separate the sets of mutually recursive definitions from non-recursive ones. 

If dependency analysis is not performed, functional program is inefficiently executed and in 
some cases impossible to type check (if functional language is strongly typed). 

3.1 LETREC Blocks 

The set of definitions in many functional languages and intermediate 
forms is introduced by the so-called let or letrec blocks. Both blocks are of the 
same (syntactic) form and can be represented as in Fig. 2. Let(rec) blocks 
replace expressions de!. by the identifiers X;, i= 1, .. . ,n in the expression exp. 
The only difference between let and letrec blocks is in the scope of introduced 
identifiers: in letrec blocks identifiers X; can occur in exp as well as in def., 
while in the case of let expressions identifiers X; can occur only in exp. 

let(rec) 
x 1 • def1 
x 2 = def2 

x. = def. 
in exp 

According to mentioned rules, letrec block is a suitable mechanism for Fig. 2 Lct[rccJ block 

defining (mutually) recursive definitions, while let block is appropriate for 
"ordinary" definitions. Let blocks can be (a much) more efficiently implemented. Let and letrec 
blocks (or their equivalents) art common for most functional languages and represent the way of 
expressing recursion and/or term sharing. 

3.2 An Algorithm ror Dependency Analysis 

A starting point for dependency analysis is the set of definitions defined in a letrec block. 
Generally, analysis proceeds as follows (for more details see, for example [17]): 

l. For each letrec block construct a directed graph (called dependency graph) where the nOdes 
are identifiers bound in letrec block. Node x is connected to nodi! y if y occurs free in the 
definition of x. Identifiers x and y (i.e. their definitions) are mutually recursive if there is a 
two-way path between corresponding nodes in the graph (all nodes with such feature belong 
to the so-called strongly connected component of a graph, later on: SeC). 

2. Find all sees of the dependency graph [1]. 
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3. Sort sees of the dependency graph into dependency order. This can be achieved in step 2 
by choosing appropriate algorithm for finding sees or by cOalescing all sees into single 
nodes and then by performing topological sort of such coalesced graph. 

4. Produce a new arrangement of definitions, based on sorted coalesced graph. All singleton 
components of a graph not pointing to themselves can be embod ied into let blocks, while all 
the other nodes can be transformed into letrec blocks. The order of let and ietrec blocks 

depends on sorted coalesced graph. 

3.3 An Example 

The work of dependency analysis will be illustrated on the 
following (although very simple) example. Let the four identifiers 

(multi, Tl, x and T2) are bound by the following letrec block (in 

which all definitions are written as they would be in ISWIM). Note 
that function arguments are local to the particular definitions and 
are not considered during analysis: 

letrec multi(n) = x*n 
Tl(n) = n>lOOO ->true; T2(multi(n)) 
X = 10 
T2(n) = n>lOOO -> false; Tl(n+l) in Tl(80) 

The dependency graph of the block is displayed in Fig. 3 .a 
and t pologically sorted coalesced graph is displayed in ,Fig. 3.b. 
Based on the latter graph, the following rearrangement of original 
definitions is produced: 

let x • 10 in 
let multi(n) • x*n in 
letrec Tl(n) • n>lOOO ->true; T2(multi(n)) 

T2(n) • n>lOOO -> false; Tl(n+l) in Tl(80) 

a) 

b) 

Ftg. 3 Dependency and coaie.c:cd graph 

Resulting definitions can be (considerably more) efficiently executed and are appropriate for 
some type checking alg rithms. They are also much easier to read. 

4 AN IMPLEMENTATION IN ISWIM 

In the following sections an implementation of dependency 
analysis in ISWJM is described . The only feature of ISWJM essential to 
implementation is that it is untyped language. Only untyped languages can 

accept general lists as their arguments, and they usually "force" the 

programmer to use higher-order functions instead of introduction of new 
data types. 

4.1 Graph Representation 

letrec exp 
(x1 def1 ) 

(x2 def2 ) 

(x. def.) 

Flg. 4 Repreeentation of 
ld(~c) block 

Let and letrec blocks will be represented as list as displayed in Fig . 4, where exp is also a 

I ist and def,, i = l, ... ,n consist of sequences of elements which can also be lists . List is most suitable 

data structure for letrec blocks, because in practice in many languages and intermediate forrns let and 

letrec blocks are already represented as lists (various dialects of Lisp, Scheme, etc ... ). That way, no 
special preparation for lct(rec) blocks is needed prior to analysis . The language which could recognize 
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eneral lists as iL~ data structure has to be untyped , because any strongly typed language cou ldn' t cope 
1 

ith lists contdining numbers, strings and other lists in the same time. 
Graph wil l he represented simply by function g(x,y) , returning true if there is an arc from 

t t y (later on : x -- > y) and false otherwise. List of lists could also have been chosen, but so lution 
li e this would he clu msy and not in the spirit of functional programm ing style. 

Fig . 5 displays three functions for dealing 
ith l'nph< r une illn empty represents a graph with 
arcs hecause for every two nodes it retu rns false . 

function link "puts" arc I -> J in graph (function) g, 
such that it returns a new graph (function) of two 
arguments x and y which to the old function g adds a 
new case which is to be tested . 

Similarly, function unlink removes the arc I 

empty(x,y) = false 
link (i, j , g) (x, y) = 

(i=x )&(j =y ) -> true1 
unlink(i,j,g) (x,y) • 

(i=x)&(j =y) -> falee1 

Fig. 5 Functioruo dealing with graph• 

g(x,y ) 

g(x,y) 

-> j from graph g. Note that functions link and unlink are higher-order functions which take 
(unction g as their argument and return function as their result. Functions returning functions are in 
this case defined as curried functions which is in ISWIM done by writing two sets of arguments ((i,j,g) 
and (x,y)) next to the function identifier. 

Using these three functions any oriented graph can be constructed. For example the following 

1swiM definition of function gr designates the function (graph) which contains arcs 1 - > 2 and 2 - > 
3: gr(x, y) = link( 1, 2, link(2, 3, init)) (x, y). Note also that in some implementations of 
functional languages (especially lazy ones) arguments (x,y) need not to be quoted on either side of 
such a definition. 

One of possible 
versions of a function which 
would constiuct graph 
~(x,y), from a letrec block 
Is given in Fig. 6. The 
function is called with the 
following parameters: 

g(block, names, copy, graph) • 
block=nil -> graph(x, Y)1 
names=nil -> g(tl block, copy, copy, graph) (x, y) 1 
memball(hd name, tl hd block) -> 

g(block, tl name, copy, 
link(hd hd block, hd name, graph))(x, Y)1 

g(block, tl name, copy, graph)(x, y) 

program (in the form of a Fig. 6 Function for creating a graph 

list and containing letrec 
block), list of names (identifiers) defined in letrec block, same list again (for more convenient 
function definition) and the function empty (i.e. empty graph). The result of a function is constructed · 
graph. 

L 

According to a dependency analysis algorithm, a function for construction of a reversed graph 
is needed. As a reversed 
graph of graph g, we 
consider the graph in which 
x -> y, if y --> x in graph 
g. In JSWIM, that function 
can be for example one 
given in a Fig. 7 _ Basically, 
this function uses two copies 
of an original graph, tests 
whether two nodes were 
originally linked, and if they 
were, in a second graph 

revg(naml, nam2, nam3, graph, revgraph) • 
naml = nil -> revgraph; 
nam2 = nil -> 

revg(tl naml, nam3, nam3, graph, revgraph)1 
graph(hd name, hd nam2) -> 

revg(naml, tl nam2, nam3, graph, 
link(hd nam2, hd name, 

unlink(hd name, hd nam2, revgraph))); 
revg(naml, tl nam2, nam3, graph, revgraph) 

FIJ. 7 Function for creating a revenoed graph 

unlinks first link and then links reversed one. Parameters of the function revg are list of names (three 
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times) and graph (two times). Third copy of a list of names is needed to initialize recursive call oi 
revg when nam2 becomes nil. 

4.2 Steps of Algorithm 

dfs(name, graph) = 
inssort(count(find(name, graph, name))) 

1/ Finds all paths from nodes given in name 
and find(name, graph, copy) = 

name = nil -> nil; 
reverse(remove(search(hd name, copy, 

nil, graph))) : 
find(tl name, graph, copy) 

II Finds a path for a single node 
and search(vertex, names, path, graph) 

names = nil -> vertex 1 path; 
graph(vertex, hd names) -> 

search(hd names, names, 
vertex : path, graph) ++ 

search(vertex, tl names, path, graph); 
s earch(vertex , tl names, path, graph) 

Function dfs (Fig . 8) 
performs depth-first search on a 
graph finding all paths between 
graph nodes and create sets of 
connected components. Dfs then 
finds the "order of importance" of 
those sets (for more details see 
[!]). Function is called with two 
parameters, list of all defined 
names and higher-order function 
graph. After counting number of 
connected components for each 
node and sorting them in 
descending order, as a result we 
gain a sorted, associative, list of Fig. 8 Function for performing dcpth-flnt search 

all nodes with "number of 
importance" assigned to it. 

Function sec (Fig. 9) reverse the original graph and performs depth-first search of reversed 
graph according to sorted sets from previous step. Only parameter used is Ietrec block, but "middle" 
functions use ' li~t of names and graph (created from letrec block). As a result, list of sets of sees 
is gained. 

Function move 

rearranges original letrec block 

according to sees found in 
previous step of algorithm. 
Function changes letrec block 
into let blocks (when allowed) 

and changes an order of letrec 
blocks according to sets of 
Sees. Together with this· 

function, functions for finding a 
definition which is to be 
rearranged and function for 
removing that definition from a 
rest of a letrec block: are used . 

scc(block) = 
midl(names(tl tl block), block, 

g(tl tl block, names(tl tl block), 
names(tl tl block), empty)) 

II Finds sets of sec's 
and midl(name, block, graph) z 

mid(sort(name, dfs(name, graph), nil, nil), 
block, graph) 

II Finds path for nodes of a reversed graph 
and mid(name, prog, graph) = 

remove(find(name, 
revgr(name, name, name, graph, graph), 

name)) 

Fig. 9 Function for fmding SCC'o 

That part of a program is given in Fig. 10. Function move is cal led with the following parameters: 

letrec block, set of sees, expression of a letrec block and constant true or false. Last parameter is 
needed for deciding when to put that expression into resulting block:. 

4.3 The Program and Additional Functions 

The functions defined above are organized in a function depan, which is called in the 
following way: 

jl 

1: 
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depan (bloc k) move(tl t l block, scc(block), 

In the who l e 

rrogram several additional 
!unctions are used . There 
.Jn be e ily implcrnented 
aJl(l we only enumerate their 
names and mean ing : 
func tion names(bloc.k) for a 
given letrec block r~tu rns 

the list of all defined 
Identifiers in that block; 
function memball(x,l) 
returns true if x is element 
of I and all its sublists , 
otherwise returns false; 
function reverse(!) returns 
reversed list I; function 
tnssort(l) sorts a list I into 
an ascending order; function 
remove(l) removes multiple 
occurrences of elements of a 
list I; functi~n count(l) 
counts number of elements 
for each list in a list of lists 

[hd block, hd tl bloc k], true) 

mov e (block, sec, exp, needed) • 
S C C c ni l -> nil ; 
l(hd sec ) = 1 -> 

["l e t", 
move(remdef ( hd s ec , blo ck, n i l), 

tl sec , exp, needed), 
(hd hd finddef(hd sec, block, nil) t 

41(hd finddef(hd sec, block, nil)])]; 
needed -> exp ++ 

finddef(hd sec, block, nil) ++ 
move(remde f (hd sec, bloc k, nil), 
tl sec, title, false); 

finddef(hd sec, block, nil) ++ 
move(remdef(hd sec, block, nil), 

tl sec, exp, needed) 
II Finds a definition in a letrec block 
and finddef(def, block, res) a 

bloc k = nil -> res; 
hd hd block in def -> 

finddef(def, tl block, hd block : res); 
finddef(def, tl block, res) 

II Removes a definition from a letrec block 
and remdef(def, block, res) = 
block = nil - > res; 
hd hd block in def -> 

remdef(def, tl block, res); 
remfun(def, tl block, hd block : . res) 

F1g. 10 Function for rcarranging lctn:c blockl 
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I; function sort(name, count(l), aux, newl) which, using list of names and count(l), creates newl -
sorted list of sees. 

5 CONCLUSION 

Higher..order functions, proved to be an "elegant" and abstract way of solving some of the 
problems which may arose during dependency analysis. However, in this analysis some data structures 
could not be replaced by highe£-{)rder functions. For example, smite intermediate results in finding 
sees of a graph cannot be (simply) represented via functions. 

Program written in JSWIM (and described here) will be used as an prototype for an 
implementation in procedural language. It will constitute the part of a compiler of functional 
languages currently developing at the Institute of Mathematics. It will also be used for improving an 
algorithm of dependency analysis given in this paper. 
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coNSTRUCTION OF THE TRANSLATOR FROM ROBOTIC PROGRAMMING 

LANGUAGES 
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Keywords:Robotlc programming language, translator, complier-complier. 

Abstract:A new robotic language comprising some basic structures of the robotic 
language Pasro and some commands of the modified robotic language of the robot 
ROBED-01 Is described. Construction and methodology of Implementation of a 
translator from this new language Into the modified robotic language of the ROBED-01 
are discussed. 

1. INTRODUCTION 

One of attractive research fields in robotics Is the robot programming. A number 

of compilers for robot-oriented programming languages have been constructed, viz. 

SAL, PASRO, AL, AML, VAL, etc. [ 11 . The methodology of complier construction used 

for general-purpose programming languages can also be applied for these languages. 

In [ 2-4 1, construction and the Implementation methodology of a translator for 

robotic languages with the aid of the compiler-compiler Coco-2 [ s 1 have been 

described. This translator has been intended for translating the basic structure of the 

robotic programming language Pasro [ 6 1 Into the robotic language of the ROBED-01 

robot. This paper Is concerned with a new robotic language (NRL), composed of basic 

commands of the programming language Pasro and of some commands of the 

modified robotic language of the robot ROBED-01, invented in Institute Mihajlo Pupin 

In Belgrade (RLMP). Basic methodology of construction and implementation of a 

translator from NRL into RLMP Is discussed. 

2. NEW ROBOTIC LANGUAGE 

In NRL are adopted some basic components of the robotic programming 

language Pasro. The syntax structure of NRL Is similar to thet of Pasro and the basic 

commands of strctured programming (while, if then else, ... ) are adopted. Also it is 

adopted the concept for the robot operation (motion commands, frame concept, ... ). 

1Thls paper Is supported with Serbian Fondatlon of Science 
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However, because of the limitation of the RLMP, the complete structure of Pasro has 

not beefi adopted. 

·. In ~rder the new language would have all the advantages of RLMP, some 

,commands from RLMP which aie not supported In Pa!:lro language were also built-In 

·in NRL. Ttle syntax of these commands has been adapted to the syntax of the NRL 
I :I . . 

language. · 

A detailed description of the NRl structure via EBNF recording, which is. a part 

. of the lnpu,t file for Coco-2, will be given In Section 3. 

3. CONSTRUCTION OF THE TRANS LA TOR 

In Fig. 1 Is presented a part of the Input file for Coco-2, describing the syntax 

structure of the NRL, as well as the semantic actions which translate the NRL 

strUctures Into the corresponding structures of RLMP (after the official word SEM). 

These actions are realized by the procedures writte~ In programming language 

Modula-2 [ 4 J . 

RULES 
Prog LOCAL <<VAR spix:INTEGER;>> SEM <<InitDat;>> 

"program" ident <<spix>> ";" Block "·" SEM <<CloseDat;>>. 
Block = LOCAL <<VAR val,spix,lab:INTEGER;>> 

( "var" SEM << Initvar;>> Variables { Variables } ] 
{ "procedure" ident <<spix>> 11 ;" SEM <<NewProc (spix, lab);» 

"begin" Statement { ";"Statement } . "end" ";" 
SEM <<CloseProc(lab);>>} 

"begin" Statement { 11 ; 11 Statement } 11 end 11 • 

Variables =LOCAL <<VAR spix,ind,tyval,val,val1:INTEGER; 
VAR defvar:ARRAY [1 •. 100] OF INTEGER;>> 

ident <<spix>> SEM <<ind:=1; 
NewVar(spix,defvar,ind); 
val:=o; 
val1:=0 ;>> 

{"," ident <<spix>> SEM <<ind:=ind+1; 
NewVar(spix,defvar,ind);>>} 

":" Type <<tyval,val,val1>> 
SEM <<SetType(defvar,ind,tyval,val,val1);>> ";"· 

Statement= LOCAL <<VAR ind,spix,val,hlab,hlab1,stval:INTEGERi 
VAR markvar,markvar1,inval,zero,tyval1:INTEGER; 
VAR reval:REAL; 
VAR indic : BOOLEAN; 
VAR arrspi,arrpar,arr icon,arrval,arrtyval:ARRAY 

(1 .. 10] OF INTEGER; 
VAR arrcon:ARRAY [1 .• 10] OF REAL; 
VAR tx:ARRhY [0 . . 100) OF CHAR;>> 

[ Variable <<spix>> SEM <<val:~o; indic:=FALSE;>> 
[ "(" Unsig edinteger << al> > "]" SEM <<CheckArr (spix,val )i 

iudic: =TRUE;>> ) 
":~" Expression <<tyval,inval>> SEM <<Checkindic(indic,spix): 

SetValJ(spix,tyval,inval,val )i ~ 
i Robotvar << tyval1>> "(" Unsigned!nteger <<val>> "J" 
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sEM <<Ch eckVal (val ) ;>> ":="Expression <<tyval , inval>> 
SEM <<SetValJoint (tyval,i nval,val,tyvall ) ;>> 

"speedfactor" " :=" Un signedNumber <<tyval,inval,reval>> 
SEM <<SpeedCheck (tyval,reval ); 

SpeedTrans (reval ); >> 
procedureidentifier <<tyval , spix>> SEM <<ind:=O; 

indic:=FALSE;>> 
[ ActualParameterList 

<<arrspi,arrpar , arricon , arrtyval , arrcon ,ind>> 
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SEM <<indic : =TRUE;>> ] SEM <<IF tyval <> 0 THEN 
CheckParam (tyval,ind , arrspi,arrpar ) ; 
TransPro c ( tyval , ind,arrspi,arrpar,arricon,arrtyval,arrcon) 

ELSE · 
CheckParProc ( indic,tyval ) ; 
CallProc (spix) 

END;>> 
"write" "(" SEM <<FOR ind := 0 TO 100 DO 

tx [ i nd] := 1 1 

END;>> 
string <<tx>> SEM <<TextTrans ( tx ) ;>> I SEM <<ind:=O;>> 
WriteList <<ind,arrspi,arrpar,arrval>> 
SEM <<WriteTrans(ind,arrspi,arrpar,arrval);>>) ")" 

"acq" "(" ListGraf <<ind,arrtyval,arrval,arricon>> 
SEM <<CheckAcq(ind,arricon); FOR inval := 0 TO 100 DO 

tx[inval]: .=' 1 

END;>> 
namedat <<tx>> "," Unsignedinteger <<val>> ")" 

SEM <<AcqTrans(ind,val,arrtyval,arrval,arricon,tx);>> 
"beg in " Statement { " ; " Sta t e me n t } "end" 
"if" Boo l Expr ess i on <<tyva l,sp ix ,markvar>> " then " 

SEM <<IfStat(tyva l ,spix, markvar); 
Label( hlab ); >> Stat e ment 

[ SEM <<Label1( h lab ); >> "else" Statement 
SEM <<Label2(hlab); >> 

"wHile" BoolExpress i on <<tyval,spix , mar k var>> "do" 
SEM <<Label4(hlab); 

IfStat(tyval,spix,mar kvar); 
Label(hlabl); >> Statement SEM <<Jmpstat(hlab) ; 

Label2(hlab1);>> 
"repeat" SEM <<Label4(hlab);>> Statement {";"Statement} 
"until" BoolExpression <<tyval,spix,markvar>> 

SEM -<<IfStat(tyval,spix,markvar); 
Label3(hlab) ; » 

" for" Variable <<spix>> ":=" SEM <<zero:=O; 
CheckVar(spix,zero);>> 

. Expression <<tyval,inval>> SEM <<CheckExpr(tyval,zero); 
val:=o; 

setVal3(spix,tyval,inval,val); 
Putstack(spix);>> 

St~p <<stval>> Expression <<tyval1,inval>> "do" 
SEM <<CheckExpr(tyval1,zero); 

Sublnd(markvar,stval); 
Label4(hlab); 
IfStatl; 
Mark(markvar); 
Jmpstatl(hlab1);>> 

Statement SEM<<IncDec(stval,spix,markvar); 
Jmpstat(hlab); 

. :-• 
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Label5(hlabl);>> ]. 
Step <<VAR stval:INTEGER>> = "to11 SEM <<stval:=l;>> 

1 "downtou• SEM <<stval: =2; >>. 
Type <<VAR tyval,val,vall:INTEGER>> = ( OrdinalType <<tyval>> 

I "array" "[" Unsignedinteger <<val>>"··" 
Unsignedlnteger <<vall>>"]" SEM <<Checkind(val,vall);>> 
"of" ordinalType <<tyval>> ). 

OrdinalType <<VAR tyval:INTEGER>> ="integer" SEM <<tyval:=O;>> 
1 1•real" SEM <<tyval: =1 ;>> I "boolean" SEM <<tyval: =2; >> 
I 11 frame 1' SEM <<tyval:=3;>> I "theta!O' SEM <<tyval:=4;>> 
I "rotation" SEM <<tyval: =5 i >> I "rotmatrix11 SEM <<tyval: =6 ;>> 
I "vector" SEM <<tyval:=7;>>. 

ListG~af <<VAR ind:INTEGER; 
· VAR arrtyval,arrval,arricon:ARRAY OF INTEGER>> = 

LOCAL <<VAR tyval ,val,vall:INTEGER;>> 
VarGraf <<tyval,val,vall>> 

· SEM <<ind:=l; arrtyval[ind):=tyval; 
. arrval[ind):=val; arricon[ind]:=vall;>> 

{ VarGraf <<tyval,val,vall>> 
pEM <<ind:=ind+l; arrtyval[ind):=tyval; 

arrval[ind]:=val; arricon[ind):=vall;>> }. 
ActualParameterList 

<<VAR arrspi,arrpar,arricon,arrtyval:~.t OF INTEGER; 
VAR arrcon:ARRAY OF REAL; 
VAR ind:INTEGER>> = 
LOCAL <<VAR spix,tyval,tyvall,inval,val:INTEGER; 

VAR reval:REAL;>> SEM <<arrpar[ind+l):=O;>> 
"(" ( Variable <<spi~>> SEM <<arrpar[ind+l]:=l;>> 

I RobotVar <<tyvall>> 18 [" Unsignedi.nteger <<val>> 11 J '0 

SEM <<arrpar[ind+l]:=2; 
CheckVal(val);>> 

signedNumber <<tyval,inval,reval>> ) SEM <<ind:=ind+l; 
IF arrpar(ind] = 1 THEN 

arrspi[ind]:=spix 

{ "," 
( Variable 
I RobotVar 

ELSIF arrpar[ind] = 2·THEN 
arrtyval[ind]:=tyvall; 
arrspi[ind]:=val 

ELSIF tyval=l THEN 
arrcon[ind]:=reyal 

ELSE 
arricon[ind]:=inval 

END;>> 
SEM <<arrpar[ind+l):=O;>> 
<<spix>> SEM <<arrpar[ind+l):=l;>> 
<<tyvall>> "[" Unsignedinteger <<val>> ")" 

SEM <<arrpar[ind+1):=2; 
CheckVal(val);>> 

SignedNumber <<tyval,inval,reval>> ) SEM <<ind:=ind+li 
IF arrpar[ind) = 1 THEN 

arrspi[ind):=spix 
ELSIF arrpar[ind] = 2 THEN 

arrtyval[ind):=tyvall; 
arrspi[ind):=val 

ELSIF tyval=l THEN 
arrcon[ind):=reval 

ELSE 
arricon[ind]:=inval 

END;>> } ")" • 
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writeList <<VAR ind:INTEGER; 
VAR arrspi,arrpar,arrval:ARRAY OF INTEGER>> a 

LOCAL <<VAR spix,vall,val,tyval:INTEGF.R;>> 
SEM <<arrpar [ind+l): =O; >> 

variable <<spix>> SEM <<arrpar [ ind+l ): =l ;>> 

lll 

"[" Unsignedinteger <<val>>")" SEM <<arrpar [ ind+1):=2;>> 
RobotVar <<tyval>> "[" Unsignedinteger <<vall>> ")" 
SEM <<CheckVal(vall) ; >> ) SEM <<ind:=ind+l; 

IF arrpar(ind ] = 0 THEN 
arrspi[ind):=vall; 
arrval [ind): =tyval 

ELSE 
arrspi(ind]:=spix; 

IF arrpar(ind)=2 THEN 
arrval(ind):=val 

END 
END;>> 

{ "," SEM <<arrpar(ind+l]:=O; >> 
(Variable <<spix>> SEM <<arrpar (ind+l ]: =l;>> 
[ 11 ( 11 Unsignedinteger <<val>>" ]" SEM <<arrpar[ind+l]:=2;>> 
1 RobotVar <<tyval>> "[" Unsignedinteger <<vall>> ")" 
SEM <<CheckVal(vall);>>) SEM <<ind:=ind+l; 

IF arrpar(ind] = o THEN 
arrspi[ind]:=vall; 
arrval[ind):=tyval 

ELSE 
arrspi[ind):=spix; 
IF arrpar(ind)=2 THEN 

arrval[ind):=val 
END 

END;» } • 
Expression <<VAR tyval,inval:INTEGER>> 

LOCAL <<VAR tyvall,tyval2,opval:INTEGER;>> 
Term <<tyvall,inval>> SEM <<tyval:=tyvall;>> 
{ AddOp <<opval>> Term <<tyval2,inval>> 

SEM <<AddExpr(tyval,tyvall,tyval2,opval);>> }. 
AddOp <<VAR opval:INTEGER>>= 11 + 11 SEM <<opval:=l;>> 

I 11 - 11 SEM <<opval:=2;>> I "or" SEM <<opval:=J;>>. 
Term <<VAR tyval,inval:INTEGER>> = 

LOCAL <<VAR tyvall,tyval2,opval:INTEGER;>> 
Factor <<tyvall,inval>> SEM <<tyval:=tyvall;>> 
{ Mulop <<opval>> Factor <<tyval2,inval>> 

SEM <<Mu1Expr(tyval,tyvall,tyval2,opval);>> }. 
MulOp <<VAR opval:INTEGER>> = "*" SEM <<opval:=l;>> 

I "/" SEM <<opval:=2;>> I "div" SEM <<opval:=l;>> 
I "mod" SEM <<opval:=4;>> I "and" SEM <<opval:=5;>>. 

Factor <<VAR tyval,inval:INTEGER>> = 
LOCAL <<VAR spix,val,tyvall:INTEGER; 

VAR indic:BOOLEAN; 
VAR reval:REAL;>> 

SignedNumber <<tyval,inval,reval>> 
SEM <<SetVall(tyval,inval,reval);>> 

I Variable <<spix>> SEM <<val:=O; indic:=FALSE;>> 
( h[" Unsignedinteger <<val>> SEM <<CheckArr(spix,val); 

indic:=TRUE;>> 
"J" SEM <<Checkindic(indic,spix); 

setVal2(spix,tyval,val);>> 
RobotVar <<tyvall>> 11 ( 11 Unsignedinteger <<val>> ")" 
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SEM <<CheckVal(val); 
SetValJ(tyval,val,tyvall) ;>> 

"(" Expression <<tyval,inval>>")" 
"sqr" "(" Expression <<tyval,inval>>")" 
SEM <<SqrTrans(tyval);>> 
"sqrt" "(" Expression <<tyval,inval>>")" 

SEM <<SqrtTrans(tyval);>> . 
"sin" "(" Expression <<tyval,inval>>")" 

SEM <<SinTrans(tyval);>> 
"cos" "(" Expression <<tyval,inval>>")" 

SEM <<CosTrans(tyval);>> 
"arctan" "(" Expression <<tyval,inval>>")" 

SEM <<ArTanTrans(tyval);>> 
"succ" "(" Expression <<tyval,inval>>")" 

SEM <<SUccTrans(tyval);>> 
"pred" "(" Expression <<tyval,inval>>")" 

SEM <<PredTrans(tyval);>> 
"not" Factor <<tyval,inval>> 
"true" SEM <<tyval:=2; inval:=l;>> 

I "false" SEM <<tyval:=2; inval:=O;>>. 
VarGraf <<VAR tyval,val,vall:INTEGER>> = 

RobotVar <<tyval>> "[" unsignedinteger <<val>> "1" 
SEM <<CheckVal(val);>> 

"," Unsignedinteger <<vall>> "," SEM <<CheckVall (vall);>>. 
RobotVar <<VAR tyval:INTEGER>> = 

"robotjoints" SEM <<tyval:=O;>> I 11 robotnom" SEM <<tyval:=l;» 
I "robotcont" SEM <<tyval : =2j>> . 

Variable <<VAR spix:INTEGER>> ~ ident <<spix>>o 
Procedureidentifier <<VAR tyval,spix:INTEGER>> 
"call" ident <<spix>> SEM <<tyval:=O;>> 
I "makevector" SEM <<tyval:=l;>> I "vabs" SEM <<tyval:=2>> 

I 
I 
I 

"anout" SEM <<tyva1:=32;>> 
"time" SEM <<tyval:=34;>> 
"awtch" SEM <<tyval: =3 6; >> 

"anin" SEM <<tyval:=33;>> 
"swtch" SEM <<tyval:=35;>> 
"smask" SEM <<tyval:=37 ;>> 

I "amask" SEM <<tyval: =3 8;>>. 
SignedNumber <<VAR tyval,inval:INTEGER; 

VAR reval:REAL>> = LOCAL <<VAR s ian:INTEGER;>> 
SEM <<~ign:=l;>> [ "+" I "- 11 SEM <<sign:=-li>> 1 
UnslgnedNumber <<tyval,lnval,reval>> SEM <<IF tyval=O THEN 

i nval :=sign*inval 
ELSE 
reval:=REAL(sign)*reval 

END;>>. 
Uns l gnedNumber <<VAR tyval,inval:INTEGER; 

VAR reval:REAL>> LOCAL <<VAR invall:INTEGER;>> 
Unsignedinteger <<inval>> SEM <<tyval:=O ;>> 

"·" Unsignedinteger <<invall>> SEM <<tyval:=l; 
RealNum(inval , invall,reval)i 
inval:=O;>> ] . 

BoolExpression <<VAR tyval,spix,markvar:INTEGER>> o 

LOCAL <<VAR inva : I NTEGER; 
VAR indic:BOOLEAN; 
VAR reval:REAL;>> 

Variable <<spix>> SEM <<indic:=FALSE;>> 
[ " ~ " SignedNumber << tyval,inval,reval>> 

SEM <<IntType(tyval,spix,inva ,markvar)i 
indic:=TRUE;>> 
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SEM <<IF NOT indic THEN 
BoolType(spix); 
tyval:=2 

END;>>. 
Fig. 1 
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The methodology of the translator Implementation Is Identical to that described 

pc'evlosly ( 2-4 J . Basic charaterlstics of this translator are that It functions as a one­

pass translator (each command of NRL when scanned Is translated Immediately Into 

1119 correspondig RLMP command), Immediately when the variables In NRL are 

declared, the names of the corresponding variables In RLMP are reserved (as this 

language has the built-In variables, It has no declarations). 

4. EXAMPLE 

An Illustrative exmple of the program translating from NRL Into RLMP Is given 

below. 

program in NRL 

program example; 
var 

tet:thetai; 
i:integer; 
ok,ok1:boolean; 

procedure next; 
begin 

ok:=true; 
end; 
begin 

okl:=true; 
swtch(248,1,next); 
tet [ 0] : =1. 1; 
tet[1]:=0.5; 
tet[2]:=0.7; 
tet[J] :=1.0; 

program in RLMP 

new 
jmp 20 
lab 10 
sflg 0 1 
ret 
lab 20 
sflg 1 1 
wtch s 248 1 10 
push 1.1 
pop ro 
push 0.5 

while ok1 do 
begin 
if ok then 

begin 

lab 40 
if f 0 
jmp 60 
jmp 70 
lab 60 

end 
end. 

sflg o 0 
put tacka 0 
put kretanje 0 

ok:=false; 
jdrive(tet); 
gripopen; 
nullpos; 
gripclose; 
tet[OJ:=tet[OJ+0.1; 
tet[1]:=tet[1]+0.1; 
tet(2]:=tet(2]+0.1; 
tet[J]:=tet[J]+0.1; 
time(0,1000) 

end 

push r1 
push 0.1 
sum 
pop r1 
push r2 
push 0.1 
sum 

move ro r1 r2 r3 r4 r5 
out s 2 1 

pop r2 
push rJ 
push 0.1 
sum out s 1 1 
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pop rl 
push 0.7 

. pop r2 
push 1. 0 
pop r3 
lab 30 
H if 1 
jmp 4~ 

. jmp 59 

. 5. CONCLUSION 
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put tacka 0 
put kretanje 0 
move 0 0 0 0 0 0 
out s 2 1 
out s 1 0 
push ro 
push 0.1 
sum 
pop ro 

pop r3 
time 0 1000 
lab 70 
jmp 30 
lab 50 
end 

Thet construction of the new robotic language, NRL, and a iransiator from this 

language Into the RLMP enables the programming of the ROBED-01 robot at the level 

of a higher programming language. One of important properties of this translator is that 

the sourc~ language NRL can be, In a simple way, modified and expanded by new 

structures. This is achieved by adding the syntax structure and the corresponding 

semantic actions to the input file. 
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ABSTRACT 

Reusability of products, processes and other knowledge is one of the key aspects to achieve 
rising productivity and quality in sofiware production. Software life cycle enables entire reuse 
f software's objects on different abstraction levels. One of the crucial problems is selection 

and creation of reuse candidates and also the way of their adaptation to the new environment. 
In this paper, a model for selection and creation of reuse candidate by means of suitable 
process is described. The relevant attributes that characterize such objects are defmed. Also, 
tho methods of transformation from candidate to suitable object are mentioned and it's 
characteristics are pointed out. Moreover, the expirience base and reuse repositrory which 
contain the reuse object are described. 

J. INTRODUCTION 

Requirements conceming software production, which are nowadays appreciated, are 
mainly related to the enhance of software quality and also to the time-saving production of 
software. The use of software development methodology that deals with reuse approach can 
make significant contribution to the higher quality and productivity. The reuse approach 
implies reuse of existing solutions during development of new software systems. In general, 
existing solutions are called reusable objects. They can present: 
- software experience 
- tested products 
- tested processes 
-models for evaluation of software quality and productivity. 

Generally speaking, the reuse of existing experience is basic process in any discipline. If we 
defme this new reuse methodology as systematic and disciplined approach to the software 
development, implementation aud maintenance in which reuse i~ basic concept, than it means 
that the methodology covers the whole software life cycle. Reuse objects in this methodology 
are objects on different abstraction levels and are related to every phase .of software life cycle. 
We need a inodel for selection and creation of reuse objects in order to apply this . 
methodology for software development process. 

1. ASSUMPTION ON REUSE OBJECJ'S APPLICATION 

Reuse~oriented software development assumes that, given the information requirement 
X' for object X, we consider reusing an already existing object Xk instead creating X from the 
beginning. The reuse process is realized through the following steps: 

115 
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' i 
step 1. 

Set of' reuse candidate Xl,X2 ... Xn is identified from an experience base which is 
sitnply called ~epository of teuse objects. 

step2. 
Evaluation of identified candidates for satisfying requirements Jr and selection of the 

best suitable candidate Xk. 

step 3. 
Modification of selected candidate Xk into required object X. 

A knowledge about, the objects which have the characteristic of reuse object is 
gtowing with each new project. This is the way of establishing a better criterion for selection 
of reusable objects which are to be added to the experience base. Any kind of software 
experience, starting with any product belonging to any phase of software life 

speciHcatlon of X' lden lllcallon of ___. evaluation and ~ modification of X 
object 

__::_. 
object selection object 

\ I 
existing experience integration 

new experience 
experience base & concepts 

Picture 1. Model of software procces 

c cle, ru1d ending with the expert knowledge related to whole cycle is stored in the experience 
c. 

Model of software development process that is based on described assumptions above 
illustrated 11 pi lure 1. 

Reusable metJ10d logy u es certain as umptions that are falling: 
a) Instead of traditional view ab ut using only concrete reuse object (e.g. part of source code 
or program design), we con ider reuse object as all types of software experience and 
knowledge about software process. The product can be concrete document, created during 
software process or product model describing class of concrete documents or objects with 
common cbaracteris ics. 
b) Software reuse mainly requires modification of reuse bject which was chosen as the most 
convenient candidate into the required object X. The required object is integrated into the new 
software systetn. Re tse object modified in experience base remains there because o its 
suitable characteristics. 
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c) 1 be questi~n of applying reuse methodology requires detailed analysis. Decision whether 
e J ting expenence Js good or not can be brought only after the expected results have been 
aJ.Uilyz.ed. 
d) Reuse methodology should be integrated in a specific software development model. If we 

011 ider waterfall model as development one. it is nc.cessary than to check alJ steps in 
deSi gning phase. Documents needed in th1s phase have to be stated for input and output. 
Re uJts of reusable methodology application cannot be immediately identified and their 
valuation is very difficult. 

J. MODEL FOR SELEC170N AND CREA170N OF REUSE OBJECTS 
I 

Due to complexity of reuse objects application, within reuse methodology, it is 
necessary to define a suitable model of reuse objects. Such model demands criterion and 
attributes (or reuse candidates, for reuse process of transfomll.ng candidate in suitable object. 
Such models should satisfy some basic requirements: 

OBJECT ACTIVITY OBJECT 

INTERFACE INTERFACE SYSTEM 

OBJECT CONTEXT ACTIVITY CONTEXT SYSTEM CONTEXT 

REUSE CANDIDATES REUSE PROCESS REQUIRED OBJECTS 

Piclllre 2. Reuse process 

• application of all types of reuse objects; 
• reuse candidate modeling should satisfy new envirorunent's requirements 
• modeling ~euse process so that it can be applied to the selection of appropriate reuse 
candidates. 

The above mentioned model (pic. 2.) was designed to satisfy assumptions defined in 
section 2. Transformation of reuse model is realized .through set of activities based on reuse 
approach and is called reuse process. Integration of such activates into complete software 
development process is also part of reuse model . 

Reuse process consist of four basic activates: identification, evaluation, modification 
and integration of reuse objects. Attributes of reuse candidates are given by following sheme: 
-name (e.g. prog.c, expen.pascal, input.prg} ... 
-function or purpose (e.g. input-array, sort, expen-estimate) 
-kind of usage (product, process, knowledge) 
- type (source code, design, document, requirements document, tools and 
techniques) 

·· ·...--,- I 
.! ... ... . .. . ·l 
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- granularity (system level, component-package, program, functioh} 
- representati~n (language, schemised template, set of information about 
process) 

Interface between required objects and experience base contains input/output 
, parameters of the product that are needed for completing defmition of object. Furthermore, 

the Information about required object have to contain the historical picture about previous 
application, previous language and previous methods (e.g. waterfall life cycle). Basic distinct 
between reuse candidate and required object is in characteristics and the stated reuse 
requiremepts. Reuse candidate is potential object for reuse, while required object already has 
characteristics of the software system in which it will be integrated. The most important 
activity within transfotmation process is modification of reuse candidate into required object. 
Modification method can bll deposed into four categories: 
a) Object without modification 

· The type of object is black-box because it do not require any modification for building 
into new sonware system as required object. 
b) Manual modification 

Certain parts of objects need manual adaptation towards satisfying the new system 
requirements (white box). Insufficiency of methods can probably inputting of errors. 
c) Modification by fulfilling frame or template 

Frame or template contains constant parts that present their functionality. It also 
contains changeable parts which fimctionality is defmed and that can be modified in 
accordance to the actual requirements. This method is simplicr and safer than manual 
modification although the possibility inputting of errors still exist. Thi!i method is aetual 
combination of black box and white box technique. · 
d) Modification by parametrisation of objects 

Constants, variables or expressions as the elements of reuse objectS may distinguish 
from contents and during process modification they are substituted with actual values that 
respond the parameter. 

Experience base (pic. I) that contains reuse object is described by suitable formal model 
that is called metasheme. Metasheme should contain all the attributes that identifYing object 
specified as reuse candidate and that are described in tWs section. The most important 
problem about repository of reuse objects is the problem of their classification and 
systematization because with growth of attributes number their classification becomes more 
complex. Tite idea is to define such classification sheme that will provide quick insight, as 
well as selective approach to large amount of object. So far there are no satisfying and general 
solutions, except the partial mechanism for reuse candidate approach. The well-known 
procedure is infonnation retrieval system and expert system approach. Neither of these 
procedures is intensively applied in software production supported by reuse methodology. 

CONCLUSION 

This paper describes software development model that is based on reuse approach thai 
enables each object to be used in software process. The model is general and it allows usage 
of the wide range of reuse objects such as software experience, products, processes and 
models for software quality and productivity evaluation. The application of this model can be 
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a)iz.cd through classical approaches to the soflware development process: waterfall model, 
1 

1 typing, object oriented approach. TI1e selection of the most suitable candidate from the 
~ sit ry of reusable objects is one of the crucial tasks. The chosen object should respond to 
the required object specification, in order to be integrated into new system. The defined 
,1\1!1lcteristics of reusable objects are the necessary background for specifying the repository 
or re able objects. All of defined modification methods imply certain advantages and 
dJ dvantages. The practical testing of tlus method will be realized through building of reuse 
object repository in programming language C and that is the base for creation of new software 
pt'oducts in accordance to the described principals and structures. 
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Abstract 

The algo ri thm ic stru ture for solvi ng optimal control problem wit h constraint on 
control is given. The back- propagation ru le is appli ed and penalty function method 
is used . The al gorith m is illustra ted by a numerical example. 

Key words: neural network, back- propagation ru le, optimal control. 

1 . Introdu ction 

Neural network are suitable methods for solving op timization problems, including the 
optimal control problem. The methods for pract ical on- line and off- line learning of the 
mapping of inverse kinematics and dynamics of a robotic arm using back- propagation 
method has been proposed [1]. The application of stati c and dynamic back- propagation 
method for identifi cation and cont rol of dynamical sys tem has been described [6] . 'In paper 
[2], the optimal control problem is converted to the two- point- boundary- value problem 
and then transformed into the problem of minimi zation of an error function. This problem 
is solved using Hopfteld- Tank neural network. The modified Hopfield type network based 
on the conjugate gradient method has also been developed. A new nonlinear regulator 
design method that integrates linear optimal control techniques and nonlinear neural 
network learning methods has been presented [3]. 

Numerical methods of optimal control applied for the synthesis of nominal dynamics of 
robotic manipulators are given in [11], [4], [5]. These methods are based on classical theory 
of optimal control and complete dyna.mic model of robotic manipu lators. Modification 
of these methods for solving optimal control problem using neural networks has been 
presented [8]. Input units were components of the state vector and output was the control 
vector. Weights were corrected on the basis of minimization of the Hamiltonian function 
using back- propagation rule. 

In the present paper, the algorithms given in [8] and [9] are modified for solving the 
optimal control problem with constraint on control. This problem is solved using penalty 
function of equality and nonequality type. 

1This research was partially supported by Science Fund of Serbia, grant number 0403, through 
Matematicki lnstitut 

2This research was partially supported by Science Fund of Serbia 
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2. Optlmal control problem 

2.L Pontryagin's principle 

Consider the following dynamic system: 

x(t) = f(t,x(t), u(t)), x(O) = Xo (1) 

where x(t) E Rn is the state vector, u(t) E n c Rm is the control vector and f : 
R+ x Rn x Rm -t Rn is a continuous function. 

The optimal control problem is to find the control u which minirn.izes the optimality 
criterion 

J(u) = K(x(T)) +loT L(t, x, u)dt, (2) 

where T is given. 
By Pontryagin's minimum principle, optimal control satisfies the following set of 

equations: 

with the boundary conditions 

and 

where 

. 8H(t,x,u,p) 
X= 

8p 

. 8H(t,x,u,p) 
p=- ax 

x(O) = Xo 

p(T) = 8K(x(T)) 
ax 

minH(t,x, u, p) 
uEO 

H(t, x, u, p) = L(t, x, u)+ < p, f(t, x, u) > 
is the Hamiltonian function. 

2.2. Statement of the problem 

(3) 

(4) 

(5) 

(6) 

(7) 

The problem is to find optimal control u , such that system (1) with constraint on u, 
lui! ~ /i, i = 1, ... , m is transferred from the initial state x(O) = x0 into terminal state 
x(T) = {J and minimizes the optimality criterion 

J(u) =loT L(t,x, u)dt, (8) 

where T is given and {J, 1 are constant vectors. 
Tlus problem with constraints can be converted into the problem without con­

straints, putting 

J((x(T)) = 2_ il (x(T) - fJ)II 
2t: 

(9) 
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by minimizing the penalty function 

b n ! -+ 0, and II · II is the Eu li dian norm. 
For discretization of syst m (3)- ( 4) we use the following notation: 

t; = i h 
x; =x(t;) 
u ; = u(t;) 
Pi = p(t;) 

h = T/q 

H ; = H(t;, x;,u;,p;) 
s; = s( u;) 

3 . Learning method 

i = 0, .. . ,q. 

123 

(10) 

We first describe the multilayered feedforward neural network used here. The following 
notation is introduced: 

o; - output of the ith unit 
w;; - weight of the connection from the jth to the ith unit 
b; - bias of the ith unit 

The output o; of each unit is a function of its net input net;: 

The activation function f is 

o; = f(n et; ) 

1 
f(x)=l+e-x 

in the hidden layer and the identity for output units 

f(x) = x 

Activations of the input units are set to values determined by the state vector X; 

and the obtained values of out.put units are the values of control vector u;. Weights Wij 

a.nd biases b; are initially set to random values between 0 and 1. Formally, 

u; = cf>(W,x;, b), (11) 

where W is the weight matrix, and b is the vector of biases. 

The back-propagation algorithm is one of the most popular method for supervised 
learning [3] . It is based on the gradient descent method of square error measure between 
the target value and the obtained value for a given set of patterns. The object is to 
find a set of weights which minimizes this function. We adapted this method for solving 
the problem described in 2.2. Since we want to minimize functions H(7) and s(lO), we 

-<1'." .::.,·· 
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use function H + s instead of the error function. Weights are modified according to the 
following rule: 

Llw;j = -"1 t 8(~1 + s,)' 
1=0 W;j 

where 17 > 0 is the learning rate. 
8(H1 + s1)/8w;j is computed as in standard back- propagation rule: 

8(H1 + s1) 8(H1 + s,) 8net.; · 8(H1 + s,) = = Olj 

Therefore, 

where 

For the output units : 

OW;j 8net.; OW;j 8netli 

Ll W;j = 17 L 6,;o,j , 
I 

= 

8(H1 + s1) 

8netli 
8(H1 + s, ) 8oli 

8o,; onetli 

8(H1 + s1)J'( ) 
n net1; uo1; 

6li = ( ~~~ + ~(max(O, u; -7;) + max(O, -u; -7;))) f'(netli) 

and for hidden units: 
6/i = J'(net,;) L61kwk; 

k 

So, the nth correction of the weights is described as 

q 

Llwij(n) = IJ L 6,;olj + allw;j(n- 1), 
1=0 

where a> 0 is a momentum term which accelerate the learning. 

4. Algorithm 

(12) 

On the basis of plant response x, control u is determined from the neural network (11). 
For the integration of systems (3-4), the E er method is applied. 

The algorithm for determining optimal control problem described in 2.2 is of the 
following form: 

input : W, Xo, (J, /, f, 6, k, H' (IIH'// - large value) 
done=false; 
repeat 

uo = <I>(W,xo, b) 
for i=l to q do 

begin 
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Xi= Xi - 1 + hf(ti- 11 Xi - 11 Ui- 1); 

u; = ~(W,x1,b) 
end; 

p 9 = (x9 - (3)/f; 
for i=q-1 downto 0 do 

P + h?J:!..;. . 
Pi = i+1 ax, ' 

for i=O to q do 
H; = H(t;,x;, u; , p;); 

if (JIHII - JJ H' II < k) then 
if ( JJx9 - f3 11 < 6) then 

else 

done=true 
else 

E = E/2; 

change of weigths according to (12); 
H'=H 

until done; 

5. Numerical Example 

Consider the system: 

x1(t) = x 2(t), 
x2(t) = u(t) 

with constraint on u(t), JuJ ~ 1. 
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Fig. 1 Numerical and analytical solution 
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The initial state is xi(O) = -0.41,x2(0) = 0.88, terminal state x1(1) = O.O,x2(1) = · 
0.0 and the optimality criterion 

111 J(u) = - u2(t)dt 
2 0 

Numerical results are illustrated in Fig 1. Analytical solutions of xl, x 2 and u are 
represented by solid lines and numerical values are represented by dashed lines. Number 
of discrete points is q = 50, '1 = 10-6

, a = 0.95, k = 10- 3
, 8 = 10-2

• Three-layered 
neural network having 10 units in the hidden layer is used. 

6 . Conclusion 

There are several numerical methods for solving optimal control problem based on 
classical optimal control theory. These methods can be modified for solving optimal 
cont rol problem using neural networks. One possibility is to set the output state vector 
as input to the neural network and control vector as output. For modification of weights 
of connections in neural network, several rules can be applied. In this paper, simulation 
results of determination of optimal control using back-propagation rule are presented. 
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Abstract. In this paper we consider the problem of using the objects from Smalltalk within the Prolog 
programs. The Prolog va riables now can have va lues in a set of objects defined in Small talk. The main arising 
problem is the unifica tion when the domain of va lues of variables is spread on this way. The problem of 
unificat ion is a cent ra l one in Prolog. By integra tion Prolog and Smalltalk we deduce this problem on the 
problem of equality two objects. As a work ing environment, Smalltalk/V (including Prolog!V) is used. 

Keywords: Prolog, Small talk, Unification, Objects. 

1. Introduction 

The programming language Prolog is used in various problem solving areas, but 
some of its limitations are evident from the very beginning. There are a lot of papers 
with the proposals how to overcome those limitations. For example, in [3] an extension 
of Logic Programming is introduced, aimed at replacing the pattern matching 
mechanism of unification, as used in Prolog, by a more general operation called 
constraint satisfaction. In [4] Colmerauer describes the Prolog III programming 
language extends Prolog by redefining the fundamental process at its heart: unification. 
The article [1] is devoted to the generalisation of Pro log by universa!ising Horn clauses 
and by changing the process of unification. This direction to improvement of 
programming language Prolog is characterised by introducing a divers set of domains 
including: reals, booleans, trees, lists, etc. and by changing the process of unification. So, 
the main problem related to new-introduced domains is the unification problem. This 
problem is the subject of exploration for itself in many works. An abstract unification 
with an abstract domain is studied in [5]. 

An other direction in enlarging the productivity of Prolog is its integration into 
diverse programming environments. For example, in [8] the programming language 
LogiC+ + is defined by mixing Prolog clauses and methods from C++. In [2] an 
integration of Prolog and 'C' is proposed. Also, the efforts of making an object oriented 
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Prolog are significant ( see: [7]), especially parallel versions of Prolog. 
We experiment with Prolog!V into Smalltalk/V environment ( see: [9]). In this 

environment a kind of integration of Prolog and Smalltalk is realised. The power of 
Prolog is enlarged by the possibility of using of Smalltalk expressions. Meanwhile, it 
seems that the problem of using Smalltalk objects in Prolog programs is not solved in 
straight way. For a successful using of Smalltalk objects in Prolog, we recognize the 
unification problem as the central one. A conception of solution based on the 
redefinition of equality of objects is offered in this paper. 

2. The Smalltalk objects and unification in Prolog 

A Prolog unification algorithm is based on equation of two terms ( see [10]). If 
the domain of Prolog would be spread by Small talk objects, the power of Prolog could 
be increased meaningfully. It is possible to use the Smalltalk objects in Prolog!V, but 
if the objects are not standard Prolog structures, the obtain results from Proiog program 
are not always correct. Our aim is to spread the domain of Pro]og/V without changing 
the backtracking mechanism and unification algorithm. We can do that with non­
standard Prolog structures (Fig. 1.), i.e. with the objects from aU classes no t included 
in Prolog!V. 

atom 

I 
I 

atomics 

I 

I 
I 

numbers 

Prolog structures 

I 

terms 

Fig. 1. 

I 
I 

non-standard 
Prolog structures 

(objects) 

In this art icle we propose a way how to introduce these non-standard structures 
in Prolog!V, using some object-oriented features of Smalltalk. 

3. The comparing of objects In Smalltalk 

T he unificat ion algori thm implemented into Prolog!V interpreter is based on the 
method ' = ' import d from Smalltalk. The equality of two structures is based on that 
method and the arising problem is its im lementation. Namely, two messages are used 
in Smailtalk for the comparing of two objects (see: [6] and [9]) . 

The message: 
= = <object> 
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turns ' true' when the receiver and <object> are identical i.e. when two objects are 
~~~ same object. T he message: 

= <object> 

t turns 'true' when the receiver and <object> are equal. A common realisation of this 

01 tJ1 od is checki ng of equality the values for aU corresponding components. Those 
messages are implemented for all objects and the default implementation of'=' is the 

me as that of '=='. If redefinition of the message '=' is not made ( by default it is the 
a me as the message '= = '), we can not expect satisfactory results from Prolog program. 
·or example, if we use the objects from the class Bag in a Prolog!V program, the 

unification of objects (7,8) and (8,7) can not be successful. Meanwhile, it is normal to 
xpect the success of unifica tion in this case. The same problem appears if we introduce 

110y new class without redefying the message'= '. In fact, the definition of message'=' 
in the class Indexed Collections is enough to support the process of standard unification 
in Prolog!V. In many classes the redefinition of the message '=' is required. 

4. The unincation based on the redefinition of message '=' 

The possibility of using objects in Prolog!V is based on the consistent 
implementation of the method '=',according to the semantics of classes. It means that 
we should modify this method in a Jot of classes. Its modification in SmaJJtalk implies 
a modification of the unification algorithm in Prolog!V. We call this process: 
"Modification of the unification algorithm from outside". 

How to modify the method '=' in Smalltalk ? The answer of that question 
depends on the nature of classes in Smalltalk. In other words, the solution is related to 
intrinsic features of objects from different classes. 

In some classes the solution is ve1y simple. For example, in the class 
FixedCollection the message '=' may be accepted without changing ( as it introduced 
by default). Meanwhile, for many other classes, the modifications are necessary. The 
modification could be realised by writing a new method'=' for the each SmaJJtalk class. 

Let us consider an example. In the class Bag the message: 
( 7, 8) = (8 ' 7) 

should return the value 'true'. So, the equality of two objects in this class does not 
depend on the ordering of the components in these objects. We reimplemented the 
method 1'= 11 for the class Bag according to the previous conclusion: 

= aBag 
11 Equality of Bags 11 

(aBag class= (self class)) ifFalse: [A false]. 
self do: [ :i I 

((aBag occurrencesOf: i) = (self occurrencesOf: i)) 
ifFalse: [A false] 

]. 
A true 

T11e similar problem is appearing in the class Set. The method suggested for the 
class Bag could be used in this case too. Moreover, we implemented a new efficient 
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code for this class: 

= aSet 
" Equality of Sets " 

(aSetBag class= (self class)) ifFalse: [Afalse]. 
self do: [ :i I (a Bag includes: i) ifFalse: ["'false]]. 
"'true 

In general case the problem is quite complex because it is not clear how to make 
the modification of the method ' ' for the other classes, especially for the new­
introduced classes. 

5. The unification of objects depending on semantics 

The method '=' might be defined in different ways at a class. Lei us consider a 
simple example. 

way: 
The application class Man with two instance variables is defined on the following 

Object subclass: Man 
instanceVariableNames: 'age profession ' 

Two variables, Peter and Fred, of the class Man could be instanced in a Prolog 
program as follows: 

Peter: 
age: 35 
profession: 'teacher' 

Fred: 
.age: 35 
profession: 'policeman' 

Two men could be treated as equal if they are same age. In that case the 
unification in our example would success. This way is not convenient because it could 
not be applied generally. 

Meanwhile, usually is required the equality of all instance variables. We suggest 
this way because it might be generalised for the new-introduced classes. In this case is 
possible to create a general algorithm for the method'='. It is necessary for all instance 
variables: 

1. the possibility of getting the values outside of object and 
2. the method '=' should be defined on adequate way. 

The corresponding Smalltalk methods for the case 1. are: 

instl 
" valu e of instance variable instl" 
"'i nstl 

inst2 
" va lu e of instance variable inst2" 
"'i nsl2 
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instm 
" va lue of instance variable inst.m" 
"'instm 

and for the case 2. the method is: 

= aNewClass 
"Check equality of objects for a class NewCJass " 

(((self instl class) = (aNewClass instl class)) 
and: [(self instl) = (aNewClass instl)]) 

ifFalse: ["'false]. 
(((self inst2 class) = (aNewClass inst2 class)) 

and: [(self inst2) = (aNewCiass inst2)]) 
ifFa lse: l"' fa lse]. 

(((self instm class) = (aNewCJass instm class)) 
and: [(self instm) = (aNewCJass instm)]) 

ifFalse: ["'false]. 
"'true 

133 

We have modified the method'=' for a few classes in SmalltalkN. By modifying 
the method '=' in all classes of SmalltalkN, we expect to get a new environment for 
Prolog!V. 

6. Conclusion 

The redefinition of the method ' = ' and systematic development of the Smalltalk 
classes makes it possible to use the objects from whole hierarchy classes in Prolog 
programs. We consider here a concrete software product where two different 
programming paradigms are integrated. Moreover, the similar problems appear in any 
·programming environment where Prolog and Smalltalk are integrated. 
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EXT• DEO B TRA T 

The selec ti on of the most appropriate statisti ca l procedure which should be performed 
upon a set of data wit,h the aim of th ir analyse , require not nly the fami li arity of the 
researcher wi th the large number of different stati sti ca l procedures, but an empirical 
knowledge and heuristics that at w the researcher to choose the procedure that would 
acquire the max imum amount of relevant information and deri ve the accnrat concl usions. In 
1his anicle we have described the ex pert system (ES) prototype that we named SSDAP 
(abbreviation from Selec ti on of Stat ist ical Data Analy ing Procedures). SSDAP aids the 
selection of tho e stati sti cal data analys ing procedures which best fulfill the requests and 
aims of researcher, concearning the characteri ti cs of chosen statistical procedure. The 
fulfillment of the ai ms of undertaken research depends on the degree of suitab ility of 
performed stati sti ca l proced ure. This is the main reason why we consider the selection of 
the most appropriate SDA P an important proble111 , compl ex enough to require high level 
kn owledge, i.e. experti se. To make a succesfull selec tion among large number of s"tatistical 
tests, it is not enough to be qua lified and fami liar wi th all those procedures, but to have an 
experience in the, field , as well as heuristics. Only the person who has such a background 
will be succesfull in selecting the right statistical procedures that should be performed. The 
right procedure allow the researcher to acquire the maximum amotmt of relevant 
information. SSDAP solves the problem of correct selection by giving an advice which 
SDAP is optimal to use, if such a procedure exists, or by givin an advice which procedures 
could be used, with equal, sufficient degree of adequacy. 

The SSDAP prototype is implemented in expert system shell EXSYS Professional. 
We have used the production system teclmique to represent knowledge in the knowledge 
base. The inference mechanism is backward chaining. In order to enable the hmctionality of 
SSDAP, it was neccesary to determine tile conditions under which the specific output was 
possible. In other words, we. had to identify the conditions that impact the problem 
solution. In that purpose the relevant taxonomy was built and the decision tree drawn. The 
mles were written down directly from the branchings in decision tree. The ES prototype 
SSDAP consists of 55 rules and proposes the most suitable statistical procedure(s) from the 
initial set of 83 statistical data analysing procedures (SDAP). These procedures are the 
outputs of the system . 

The results presented in this paper have left open several questions and have initiate a 
possible directions of further research. First of all, the question of knowledge acquisition 
technique selection has been opened. The problem that might occur during knowledge 
acquisition is the disagreement among experts regarding the set of necessa1y and sufficient 
SOAPs concerning the actual problem. The nex t question is the selection of knowledge 
representation technique. The production rules showed to be the most natural way of 
representation. Howeve r, the overa ll analyse of hybrid knowledge representation 
1cclu1iques convenience might result with different ~anclu s ions. The subject of further 
in vestigation should be ES SSDAP prototype evaluation and eventually its further 
development into a complete softver product (most probably on a different hardware 
platform and within different software environment), as well as its long term evaluation. 
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THE APPLICATION OF THE MUSICAL COMPUfERS 
IN THE MATHEMATICAL TIIEORY OF MUSIC 

Milo~ Canak 
Faculty of Agriculture 
Nemanjina 6, Zemun 

The mathematical theory of music is a scientific discipline, which has been developing 
from the time of Pythagoras till nowadays. The special ascent it got during the last 20 years 
by development of tone geometry, scale geometry, local compositions etc. In practice it has 
been shown that further development of the theory is not possible without application of 
musical computers. It is pointed to the developing targets of these computers and logic basis 
of the musical programming. The basic problems of the mathematical theory of music have 
been considered, starting from the geometrical parameters of the tone to Lhe study of 
symmetry and structures of musical compositions and the logic of their solutions by 
application of the musical computers. 

Key-words: . Musical computers, mathematical theory of music 
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A Comment on Amalgamation Property 

Milan Grulovic 
Institute of Mathematics, University of Novi Sad 
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ABSTRACT. We present a proof that Peano arithmetic does not have amalgamation 
property, making, in addition, a few remarks concerning this result. 
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EDI - Opening the Borders of Software Packages 

Borislav Josanov 
ViSa skola za organizaciju rada 

Novi Sad 

Electronic Data Interchange ( EDI ) is the exchange of business documents in standard 
formats. 

Standardization is the key condition for the usage of EDI. Dominant standards for massage 
exchange are UN/EDIFACT, ANSI X.l2 and SWifT. 

The results of analyzing the EDI are so positive that EDI is promoted as the most important 
technology nowadays. 

Opening the boarders of information systems, influenced by EDI, makes the projecting of 
information systems much more complex. 

In this paper the influences of EDI on projecting the software packages are defined. They are 
categorized in five basic groups - application of EDI standards, initial massage controls, the 
reactions of software packages, interactions between business partners and actions in which 
have to be done before or alter the usage of software packages. 

Every single influence in each of this groups is explained in detail. 

Key-words: (EDI), (projecting) , (influence) 
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SOME EXPERJENCF.S WITH SK-REDUCTION MACIUNE- USER'S PERSPECTIVE 

Dragan Mat~, Zoran Budimac: 

University of Novl Sad, Faculty of Natural Sciences and Mathematics, 
Institute of Mathematics, Trg D. Obradovlia 4, 

21000 Novl Sad 

ABSTRACT. Functional languages are for the first time implemented by translation into the sequence 
of combinators (of combinatory logic (I]) in 1979 [3] . The resulting sequence of combinators is then 
represented in the form of a graph, which is then reduced according to appropriate rules for every 
combinator. The approach taken by SK reduction machine [3] (and many later improvements) soon 
became another standard approach in implementation of functional languages, besides previously 
established (1966) approach based on SECD machine and its variants [2] . The main difference 
between two machines (from the implementation point of view) is the way in which bound variables 
are handled. While in SECD machine based implementations, bindings of variables are stored in 
special data structure called environment, in combinator based implementations there is no variable 
bindings mechanism. This and other differences greatly affects program performances, but there is 
still no precise measurements or benchmarks which would rank two approaches with respect to time 
and space usage during program execution. 

Presentation proposed by this abstract 
will show some results of the benchmark tests 
executed on both SK reduction machine and 
(lazy) SECD machine. Results are meant to 
help to an ordinary user (programmer in 
functional language) to choose appropriate 
machine for his needs and to learn something 
more about (in)efficiency of machine he 
currently use. The results will not be 
accompanied with deep analysis of the causes 
of machine performances. 

The basis for benchmark tests is 
displayed in Figure. All three machines 
(SECD, lazy SECD and SK) are implemented 
using the same data structure and the same 
"building blocks" (garbage collector, symbol table etc.). The mentioned data structure is essentially 
binary tree with variable size nodes and is equally suitable for representation of all machine's internal 
structures: stacks in SECD machine and graph in SK machine. Both lazy SECD and SK machine 
support exactly the same primitive operators of the source functional language as well as the same 
(non-strict) semantics. Finally, implementations on which benchmarks are executed are the "classical" 
one and employ no optimization. Results obtained on just described basis therefore can be taken as 
accurate and reliable. 

Rererences 
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m~Lhtda/S - A Simple Parallel Linda Programming 
Language 

Dragan Ma8ulovic 
Institute of Mathematics, University of Novi Sad 
Trg D. Obradovica 4, 21000 Novi Sad, Yugoslavia 

Abstract 

meLinda/S is a simple programming language evolved from 
FORTH. FORTH background enforced slightly different 
syntactic attitude in comparison to conventional programming 
languages which led to simple solution to some basic problems 
arising within Linda model of parallel programming. 

meLinda/S programming package consists of meLinda/S 
p-code compiler and corresponding abstract parallel machine. 
Abstract machine is built upon multi-computer/single-tasking 
model wich met our needs perfectly because meLinda/S does 
not support dynamic allocation of processes. Static allocation 
has been provided via special sytax constructs. 

At this stage of developement meLinda/S does not support 
full Linda instruction set. Linda primitive eva} has not been 
implemented (as stated above, meLinda/S provides static 
allocation of processes only). 

Future work includes implementation of full Linda instruction 
set, along with switching to multi-computer/multi-tasking 
abstract machine model. 

Keywords: Linda parallel paradigm 
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Key Words: denotational ~emantic , functional programming language, interpreter con­
struction 

If a language has a comp lete denotational semantic (J.E.Stoy, Denotational S eman­
tics: the Scott-Strachey Approach to Programming Languages Theory, MIT Press, 
1977) an interpreter for that language can be construc ~_ed based on that semantic. 
Dcnotational semantic is given over semantic domains and semantic functions. All 
continu ations functions a rc curried (high order functions). Because of that, a pro­
gramming language with high order functions support was selected for interpreter 
construction. 

As a test of the practical value of dcnotational semantic for constructing a language 
processor I have implemented an interpreter for language SMALL (M. J.C. Gordon, 
The Denotational Description of Programming Language, Springer- Verlag, 1979). 
This implementation has been realized in functional programming language Lispkit 
Lisp (P. Henderson, Functional Programming: Application and Implementation, 
Prentice-Hall International, inc., London, 1980) on IBM 3090 in an MVS/ESA TSO 
environment. Semantic domains were implemented over base Lispkit Lisp domains. 
Semantic functions were implemented, directly from semantic clauses, as high order 
iunctions in Lispkit Lisp. 

The interpreter constructed this way can be simply extended by adding new functions 
into the Lispkit Lisp program. The interpreter consists of: 

• Program, realized on PL/1 language, which has two functions: 

syntax analysis of SMALL programs, and 

translation of SMALL programs into S-expressions by adding brackets. 

• Lisp~it Lisp program which interprets previously generated S-expressions. 

The syntax analysis of SMALL programs is based on syntactic clauses from the de­
notational description of the language. The Lispkit Lisp program was constructed by 
using semantic clauses from denotational semantic; 

From a user point of view, the interpreter can be called either in foreground TSO 
environmen t or in background MVS batch environment. Communication between 
users and programs can be done either interactively or through datasets. 

During the testing period, the performance of the constructed interpreter was very 
good, regardless the Lispkit Lisp is an interpreter itself. 
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A TABLEAUX RELATED METHOD FOR THE FULL FIRST ORDER LOGIC 

- extended abstract -
I: 
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Mathematical Institute Belgrade & Mathematical Faculty Belgrade (t) 

ket words: theorem proving, tableaux, resolution 

· 1. Introduction 

The dual tableaux method for the full first order classical logic is presented. It is based on dual 
tableaux for the classical logic (2) and procedure dual to the classical resolution [1). 

In the method described in [2) the use of the rule for the 3 could Introduce sets of the similar 
sets (dual clauses) of sentences. The clauses differ only in the constants they contain. We discuss here 
the changes of quantifires ru les that reduce the set to a single clause. As a consequence, we have to 
work with atomic formulas that contain variables, and we can not use the dual resolution procedure for 
the propositional logic as was done In (2]. Instead, we Introduce a procedure dual to the first order 
resolution (1). 

2. Formal system 

Suppose that the full classical logic is defined as usual (over the language:-., "· v, -4, V, 3, 
relation symbols, functional symbols, variables and auxiliary symbols ",","(" and")"). During the tableau 
construction we Introduce so called dummy variables (or dummies). We denote them by X, X1, ~ •••• 

Formulas that contain dummies we call basic formulas. 

A dual modal tableau is constructed by the following rules : 

<p 

I 

"' 
(1) 

3x q> (x) 

I 
<p (X) 

(4) 

<j>V'!f 

I \ 

<p "' 

( 2) 

Vx <p (x) 

I 
<p (f (Xu • • • I 

(5) 

~~ <p 

I 
<p 

(3) 

The rules apply as follows. For Instance, a branch with 3x<p(x) Is extended by adding cp(X), 
where X Is a new dummy. In the rule (5) I Is a symbo l of a new Skolem function . Formulas -.(cp v ) 

and -.(q> -4 'I') behave according to the rule (1), formulas -.(q>" 'I') and (q> -4 'I') behave according IO 
the rule (2), formula -.Vxcp(x) behaves according to the ru le (4) and formu la -.3x<p(x) behaves accordtng 
to the rule (5) . 
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For an Interpretation I, we define i'(cp) as a set of all terms over functiona l symbols of the 
examined formula cp and Introduced Skolem functiona l symbols from the formu la's tableau. If there are 
no constants In the formu la, we Introduce a new Initial constant symbol!.. such that i'(cp) contains!... We 
extend the usual definition of satisfaction under the Interpretation to cover new kinds of formu las 
containing dummies. Let w be a mapping from set of dummies to i'(cp) . We call It replacement. 

Let I be an Interpretation and w a replacement. Then : 
a) l(f(t,. ... ,t.J.) - l(f)( l(t1.), .. . ,1(t,.)), 
b) I(R(t1, ... ,tn).) • I(R)(I(tl.), ... ,l(t,.)), 
c) l(f(t,. ... , tnll = {l(f(t,. ... ,tnl.l : <.0 Is a replacement}. 
d) I(R(t,. ... , In)) = (I(R(t1, .. . ,tn).l : <.0 Is a replacement} . 

I satisfies a basic atomic formula R(t~" ... , In) If there Is a satisfied element In I(R(t,. ... , tn)). If 
cp and 'V are basic formulas, I satisfies (<pA'V) Iff there Is a replacement w such that l(cp.) • I('V.l - T . If 
cp Is a basic formula, I satisfies -,cp IH there Is a replacement <.0 such that l (cp.) a .L 

Lemma 1. Let T be a tableau whose root contains formula <I>. Formula <I> Is valid Iff for each 
Interpretation I exists at least one branch of the tableau whose conjunction of all basic atomic formulas 
Is satisfied under the Interpretation I. 

A dual clause is a conjunction of basic atomic formulas. To establish that a set of clauses Is 
valid, we use the dual resolution procedure. The dual resolution rule Is: 

If C1 and C2 are dual clauses, L1 c C~o and ~ c C2, and ~Is 
(DR) the most general unifier such that ~(L1 ) = -,~(L2) = {L}, where L Is an atomic formula 

R(C~oC2,L 1 ,Lz} = ~((C 1\L 1 ) U (C2\~)) 

Lemma 2. A set of dual clauses Is valid iff the empty dual clause could be inferred by the dual 
resolution ru le. 

Let T be a tableau for the formula <I>. Then Clause( 1) Is the set of all clauses corresponding 
to the tableau T. The tableau TIs the proof lor the formula <I> iff the empty clause belongs to the 
closure of the set Clause( 1) under the dual resolution rule. 

Completeness theorem. A formula <I> Is valid iff it has a proof in the system of dual tableaux. 
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Isomorphisams between w
1
-saturated models of complete theories 
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Hahn embedding 

It is well known that saturated models of a complete theory are 

isomorphic iff they have the same power. If we consider w -saturated 
1 

models, of a complete theory, of cardinality c we can not use this theorem 

unless we have CH . Could we avoid use of CH t r ying s ome other proofs. The 

answer is negative for a few well known theories. We present a theorem 

collecting some old and some new results . 

Theorem. The following are equivalent: 

l) CH 

ii) Every two Tli real closed fields of size c are isomorphic 

ill) Every two divisible 11
1 

linearly ordered Abelian groups of s ize c are 

o-isomorphlc. 

iv) Every two 11
1 

linearly ordered sets of size c are similar. 

v) Every two atomless w -saturated Boolean algebras of size c are 
1 

isomorphic. 
The equivalence i)#ii) answers a question of Erdos, Gillman and 

Henriksen. 
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We conside r Ga lois ex tensions of Boolean algebras, the concept 

previously considered by S.Kopelberg, D. Monk, .... We present a few results 

of ours: 

Theorem 1. Let C<B . B i s a Galois extension of C iff it is a relatively 

complete finite extension of C having independent set of generators . 

This theorem answers a question of D.Monk . 

Theorem 2 . Let B be a rc finite extension of C with the heigth sequence 

( n , , n ) . The followig statements are equvalent: 
1 - k 

1) B is a pseudo-galois extension of C 

11) There exists a group G which transit! vely embedes into permutat.lon 

groups Sn
1

, ..• , Snk. 

ill) There exist !reducible pollnomials of powers 

Galois group. 
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The aim of the talk is to introduce probability propositional log ic. Here we investigate 
the propositional calculus, extended by a new unary connectives P,l> ... ,P"' where {rl, ... 
rn} £;; [0, 1]. 

The following type of model is relevant for us. 
Def. A model is an ordered triple m = <w, {~-t.: x E W} , II -> where: 

1) W ~ 0 is the set of possible words x, y, z, .. . 

I 
2) Each JLx is finite additive probability measure on W 

3) (the forcing) is a relation between words and formulas. So, for example, m II -P, V' iff 
(Vx E W)(l!,{y E W:y 11 -v>} :2: r). 

Finally, we prove a completeness theorem for this logic. 
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INTERPRETER FOR APPLICATION OF MATHEMATICAL SPECTRA 
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Abs tract . In this paper was described a programming pa ckage implementing th e interpret er of program­
mong language whoch os an ertensoon of LISP for manipu lation of ma thematocal spectra . For this purpose 
seve ra l new data types and new kmd of fun ctions (called spectra l da ta types and spectral f unctions) are 
defin ed and implemen ted. 

K ywords . l nter·preter, interna l fonn, spectrum, spectral expressions, spectral f unctions, spectral 
constan ts . 

1. DATA TYPES 

Lisp da t a types : Lis t s, symbols, strings, in tegers, fixed-poin t n u mbers , rat ional numb ers, 
fi le-pointers, N IL, T, LISP-functions 

Sp ectr a l data types: Vectors, spectral constan ts, spectral functions, spectral expressions 

1.1 Spectra l cons t ants 

A sp ectral cons t a nt r epresents the not a tion of the sp ectrum with uniform rhythm. T his 
nota tion b egins and ends with symbol ' $'. The sign of the spectrum follow s first symbol'$ ' , 
and could be omitted . S trips are separated using character ' I '· 

1.2 Vectors 

vector is a sequence of numbers b e tween square brackets. 

2. SP E CTRAL F UNCTIONS 

The inte rp r e t e r e va lua t es a ll a r guments of the spect r al fun ctions. A r guments of these 
fun ctions could be sp ectra l expressions or LISP expressions whose values are numbers, 
vectors or spectra l constan ts. 

We can extra ct sever a l differ ent fun ctions types. 
A. Functions for the imple m enta tion of spectra l operations: 
spectr a l a ddition (S+) ; sp ectra l multiplica tion($"'); spectra l subtraction (S-); right 
lengthening ($rle n); left lengthening ($Hen); left condensation ($leon); conversion of 
a spectrum to the vector ($ eval); effective value of a strip ($efval); inverse spectrum 
($sinver); 
B. Forming n ew spectra: 
Spectral generation ($gensp ); gen eration of the spectrum whose strips are 1 ($1); gen­
eration of the sp ectrum whose strips are 0 ($0); 
C. Spectral r e lation functions: 
Equality of two spect r a ($= ); identity of two spectra ($ident); comparison of absolute 
values of two spect ra ($ >, $< ) 

2 .1 Functions $+ , $- and $"' 

Description . ($+ x y) ($- x y) ($"' x y). 
Both arguments a r e spect ral expressions. 

2 .2 Function Se va l 

Description. ( Se va l x ) 
x must be a sp ech'al expression. If the value of x is the spectral constant then the result is 
vector whose elemen ts are effective values of the spectral strips, otherwise, if the value is a 
vector, the r~sult is the same vector. 

2.3 Function Sgensp 

Description. (Sgensp x ) or ($gensp x y). 
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If one argument is taken, it must b e a spectral expression. The r esult is the spectral constant 
of the aiTay which is containe d in the given vector or the same svectral constant given as 
argument . 
If the function is called using two arguments then first argument is an expression whose 
va lue is inte ger n , and the second is an expt·ession whose value is nmnber b, The result is 
the spectral constant of n spectral s t l'ips whose nominal values at·e b. 

2.4 Functions $rlen i $lien 

Descrip tion. ($rlen x y) ($lien x y). 
First argument should e valua t e to a spectral const ant or a vectot· . The second argument 
is . an expression whose value is an integer n. The r esult is spechal eonstant equal to the 
previous constant, whose strips a r e lengthen ed on the right or on the left for n figm·es. 

2.5 Function $leon 

Description. ($leon x ) . 
x must be a spectral expression. If x evalua t e to a vector it is transformed into conesponding 

1 spectrum. The result is spectral constant equal to the previous constant, obtained after 
condensation on the left minimizing the number of figures . 

2.6 Function $sinve r 

Description. ($sinve t· x). 
x must b e a spech-al expt·ess ion. The result is spectral constant r epresenting inve rse spec­
trum of the spectl'lnn give n after e valuation of x. 

2. 7 Functions $1 i $0 

Description. ($1 x) ($0 x). 
The argument is an expression whose value is integer n. Values of these expressions are the 
spectral constants defined in this way: the rhyt hm is one, and conta ins n spectral strips 
whose nominal values are one (zero) . 

2.8 Function $efval 

Description. ($e fval x y). 
The first argum ent must be a spectral expression and the value of the second expression 
must be intege r n. The result is the n-th element of the vector or the e ffective value of the 
n-th ship of the given spectral constant. 

2.9 Functions $ideut, $=, $>, $ < 

Descr·iption. ($ideut x y) ($= x y) ($> x y) ($ < x y). 
Both at·guments must be spectral expressions. The vector given as value of any argument 
is convert d into eorresponding spectral constant. The r es ult is T if the spectral constants 
satisfy the given relation, otherwise NIL. 

3. SPECTRAL EXPRESSIONS 

Spectral xpr ss ious ou ld be dcdved in thr e groups: 
1. Sp ctral exp r essio ns whose vnl ues are spectra; 2. Sp ctral xpressious whose values 
are v c tors; 3. Sp ctral relntion xpr ssion. 

Tit first group contains f llowing expression s: spectra l con s tants, sym b ols bounded wit h 
sp tra, call s of t h sp ctra l functions $+, $-, $*, $rlen, $lien, $gensp, $1, $0. 

T he s cond g•·oup contains : v ctot·s, ntnnl crs as s ing! -el .mcnt vectors, symb ols bound d 
with v ctors, ·all · of the sp ctra l fun ctions $+, $-, $*, $ val, $pfval. 

E l m e nts of t h e> t hi1·d group vuluatP to the LISP ·onstants NIL (as fA lse ) or T (as tru ). 
This group of sp ctral expr ssio ns conta in s : NIL, T, any xpr ssion wh ose value is T r 
NIL, calls of t he sp ctral fun ·tions II = il >, il <, Sid nt. 
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r·, r· lit ag l a m>v i -

II i\ l .o>mtl t· i. c k i. l n s l i. t.u t. 

We di scuss l:. hr~ rr->lal:inns hir> bet ween thr~ hp ·i •Jhl". o-f the 

fu n dame n t.hal r::wdet- o+' i~ counLi1hl1?., stable? t:. h eol-y T wh ic h a dm its 

f' ·inite c:od i. nr;J and the mtmbt': l- nf its non :i.somor-phic cou n tab l e 

model s. 

Theorem 1 I (T ., N ) ?:N 
. (l (l 

Theorem 2 I-F ·r i!';; sup f;•r·"; l.:.r,,bl•"·' l.u c:.J. ll y rnDc:lul ,,,,r· and I..J (T)?:v}', 

I ( r ,, N
0

) ..... ::::No .. 

t hio! ll 

Theorem 3 I-F T i s trivial a nd ·r .. 1 .. "' ) < .. " .. :_.o Nn_ .. '· , "o then T i s w- stable • 
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Abstract 

Set-valued functions play an important role in the study of 
bio-circuits and of circuits based on frequency multiplexi ng . 

Let R = {0,1, ... ,r-1} be a finite set referred to as the set 
of fundamental values, and P(R) the set of subsets of R. The set 
P(R) is a Boolean algebra when equipped with the set-theoretical 
operations union, intersection and complementat i on. 

Set-valued functions F: P(R)~n --> P(R) can be regarded as 
functions over a logic with 2~n values which provides a rich 
collection of f unctions over logics with very high radix . Few of 
these functions are Boolean functions, that is functions that can 
be constructed from constants and variables, using unions, 
intersections and complementation. 

In the technology of bio-circuits every j, 0 <= j <= r-1, 
represents a pair substratum-enzyme (assuming that we deal with r 
distinct enzymes). Set-valued logic-networks can be used to attack 
the interconnection problem in highly parallel architecture. The 
basic concept here is "logic-value multiplexing" which means the 
simultaneous transmission of logic values represented by optical 
wavelengths through a waveguide. This concept enables us to 
realize simultaneous execution of several binary operations in a 
single module . 

We investigate some problems concerning set-valued functions 
and Boolean collections. A non-empty collection of sets C, where 
cis a subset of P(R ) ~n is a Boolean collection if there is a 
set-valued function f which is Boolean function and f(X) = 0 iff 
X is an element of c. 

It appears that the combinatorial classification of 
non-Boolean set-valued functions based on the maximal Boolean 
collections might present interest for implementations of hybrid 
circuitry (biological and digital, for example) . 
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Until now, many programming languages for robots programming are developed. 
Many of them are based on some high level general-purpose programming languages. 
P ASRO is one among these programming languages. P ASRO is the language which is very 
suitable for robots programming since based on Pascal keeps al l its nice characteristics. 
Besides, PASRO contains a set of default robot procedures and functions as well as a number 
of functions supporting the frame concept, which enab les to describe position and orientation 
of the gripper; in a very easy way. 

The software package contains two global modules: translator and interpreter. The 
translator reads the source code written in PASRO and translates it into intermediate code 
which is, then, executed by the interpreter. The source code, wri tten by user contains the 
description of the robot's task. When writing the source code, user is not expected to take 
care about the particular robot which is supposed to execute the task. That problem is 
resolved by the interpreter which will execute the code on the particular robotics system. 

The translator, also, contains the complete users interface (manu system, multi-text 
editor, help system) providing the user with an friendly environment for writing the programs 
and using the software package itself. 

The results achieved in this paper are evaluated on the PUMA configuration robot 
developed at the Robotics Department of the Institute "Mihajlo Pupin" Belgrade. 
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ELEKTROVOJVODINA 
PUBLIC COMPANY FOR ELECTRIC DISTIUBUTION 

NOVI SAD 

The Elektrovojvodina supplies high quality electrical power for 
citizens and companies in the whole territory of the Autonomous 
Province of Vojvodina. It also deals with design, construction and 
maintenance of the electrical power facilities and plants. 

It was founded on June 28, 1958, by integration of few electric 
distribution companies that at that time existed in Vojvodina. 

The Status of the Public Enterprize it was given by the Decision 
of the Assembly of the SAP Vojvodina in January, 1990, and from 
the beginning of 1992 it is within the united electric industry of the 
Republic - Public Corporation "Elektoprivreda Srbije". 

The Elektrovojvodina is now composed of 13 companies and the 
Administration. The headquarters of the electric distribution are in 
Sombor, Vrbas, Subotica, Senta, Kikinda, Zrenjanin, Pancevo, 
Ruma, Sremska Mitrovica and Novi Sad. 

In addition to regular distribution of electrical power, The 
Elektrovojvodina to its consumers provides service in balancing 
single-tariff and double-tariff counters, single-phase and three-phase 
meters. 

To the industrial consumers of the electrical energy in 
Vojvodina, it also maintains the electrical power facilities and plants. 

To the household consumers the Elektrovojvodina can give 
services in high quality maintenance of main receptacle power lines 
at very competitive prices. 

The teams of experts in the company for more than three 
decades also successfully perform specialized works in design, . 
development and maintenance of information systems for requirements 
of the Elektrovojvodina and interested partners. The computer experts 
of Elektrovojvodina actually initiated the acceptance of sponsorship 
for the LIRA '92 Conference. 

Telephone: + 3821 621-222 
Telefax: +3821 23-470 
Telex: YU elevoj 14188 



"Sojaprotein" is a significant and very modern soybean processor worldwide, 
regarding its production capacity, advanced technology, wide range and quality 
of the products. It is in possibility to provide necessary soy products for food 
industry, mass consumption and animal feeding. Annual processing capacity is 
200.000 t of soybeans. Factory was finished in 1983 and disposes with big store 
house capacities for soybean storing, as well as oil and protein processing 
complexes. 

The up-to-date equipment installed in the plant is constantly renewed and 
expanded, following the latest developments of the world's technology in this 
field. 

By soybean processing a numerous fullfat and defatted products are obtained, 
which have a wide range of application in the industriai food production: meat 
industry, bakery, pasta industry, dietetics and pharmaceutics, catering industry 
and households. Soja-Vita products are used in family consumption. 

By using soy products in animal feeding, better results are obtained in the 
production of meat, milk and eggs. 

Factory is located in the plain part of country, in agricultural region, thus 
providing the possibility to obtain the bigger necessity for raw material from it's 
surroundings. The rest part of row material is from impart. 


