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0 R INGS WITH SPECIAL AUTOMO TI.PHISMS , TI.ESP. 
DERIVATIONS 

VESELIN PERIC 

ABSTRACT. We give here a survey or >10me recent re ult.s concerning t.hc rings 
WIth •P •cia! aut.omorphisms, resp. de rivat.1ons. 

1. DERIVATION d W!Tll cl(x) ZERO OR I NVERTIBLE 

Jefrey Bergen, I. N. Herstein and Charl es Lanski considered in [4] lhe following 
prob lem: 

Lel R be a ring with idenlily 1, and cL a derivalion on R such lhat, for every 
1: E R, d(x) is zero or inverlible. Does R have a specia l slruclure? 

T hey answered lhis question in lhe following manner : 

T h eorem 1. 1. Let R be a ring with identity 1, and d a nonzero derivation on R 
sttch that, for att x E R , d(x) is zero or invertible. Then R is 

1. a division ring D or 
2. the ring Mat(D , 2) of att matrices of order 2 over a division ring D or 
3. the ring D[x]/(x2 ), where D is a division ring of characterist ic charD = 2, 

d(D) = 0 and d(x) = 1 +ax for some a E Z, the center of D . 
Moreover, ~f 2R :/= 0, then the case R = Mat(D, 2) is possible if and only if D 

contains all quadratic extensions of Z, i.e. ~( at least one element of Z is not a 
square in D . 

Prom the proof of this theorem it follows that, in the case R = Mat(D, 2), 
derivation d is an inner if 2R =!= 0, but d need not to be i~mer if 2R = 0. Moreover , 
one see that d cannot be inner in the case R = D[xJI (x 2 ) . We recall that a derivation 
don R is an inner , if, for some a E R , d(x) = [a, x] = ax- xa for all x E R. 

The authors consider also the case where d(x) is zero or invertible not for all 
x E R, but for all x from a suitable subset of R. In this way they prove 

Theorem 1.2. Let R be a ring with identity 1, and d a derivation on R such that 
d( L ) :/= { 0} for some left ideal L of R , and for every x E L, d(x ) is zero or invertible. 
Then, for som e division ring D, R = D or R = Mat(D , 2) or R = D[x]/(x 2

) , where 
2R = {0}. 

The authors remark that, for R = D[x] j(x2
), the assumption about d on L, 

cannot imply any property of d on R. In the case R = Mat(D, 2) they prove than 
there must not exist a nonzero derivation lion R such that o(x) is zero or invertible 
for every x E R. 

2000 Math ematics Subject Classifi cation. Primary: 15W220, 16W25. Secondary: 16N60. 
K ey words and phrases. Prime rings, centr a lizing derivation, ce ntralizing a utomorphism , nilpo­

tent derivation, commutativity. 
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2. AUTOMORPHISM </J WITH </J(x) ZERO OR INVERTIBLE 

If !/; is a.n automorphism of a ring R with identity 1, then the mapping b of R 
wit h b(x) = x- <P(x) for all x E R need not to be a derivation on R, but b is a 
special pseudo-derivation on R . We recall that an additive mapping f : R -t R is 
a. pseudo-derivation on R if there exists a. function g : R -t R such t hat 

(1) .f(xy) = .f(x)g(y) + xf(y) = f(x)y + g(x)f(y) (x, y E R); 
(2) .f(g(x)) = g(f(x)) (x E R). 
It is easy to see, tha t (1) and (2) are satisfied for f = band g = id R, the icl entily 

mapping of R. 
If <P is proper, i. e. <P =f. id n, t hen b =f. 0. 
J efrey Bergen and I. N. Herstein [3] invesliga.te Lhe structure of a ring R wilh 

the identity l a nd a a utomorphism <P =f. iclR such Lhat x- ¢>(~;) is zero or inve rt ibl e 
for all x E R, a.ncl they prove: 

Theor em 2.1. Let R be a ring with identity l , and <P =f. id n an cwt.omorphism. of 
R such that, .for aLl x E R, x- <P(x) is zero or invertible. Then 

1. R = D or 
2. R = D EB D or 
3. R = Ma.L(D, 2) 

for some d·ivision ring D. 
Moreover, ih.e case R = 1\!Ja.L(D , 2) is possible, faT a non-inneT autom.o7'phism. 

</J, if and onty i.f D has a non-inner automorphism 1/J, such that 1jJ2(3;) = u - 13;n 

.fo1· aLl x E 0 , whcTC 1/J (u) = n and t t =f. y1p(y) .fo·r aLly E D, or, .for an inner 
atttom.oryJhism ¢, i.f and only if D does not contain al.t squa·rc extensions of il.s own 
center Z. 

The aulho rs remark Lhal , in Lhe case char R i 2, D does noL conLain all sq ua re 
extensio ns of i.Ls own cenLer Z, if and on ly if sorrH' Cl' E Z is nol a square in D . ln t.hi s 
case, fo r Lhe auLomorp hism 1/J id o s urely 1/;2 (.1') 1: C\' 1xCI and C\' f y'l/.•(y) for 
a lly E D. Hence, in Lhis case , Lhere is no differcnc<' I clwe nan inner a uLomo rplris m 
1/• a ud a n auLomo rJ hi s m rj; whi ch is no n- inner . 'l' lre rcfon', for char Hi 2, the above 
I heor0m beco mE's: 

ff char R f 2, 11nd R has an nutomorph.?.sm 4> / rd H suclr Ural 1'- </J(J') 1s u ro 
or 17/!Hliblr j'o1· uti ~ · E R, then R D or H [) EB D 01' R Mal (JJ. 2) for some 
dwtswu 1mg D ; mon:oue1·, tlu casr R. 1\[aL(D, 2) IR possiblr l/ and only if {) lras 
an a1tlomoryJhism l/J fo1· wlttrh r/' 2 (~·) u 1xu. 1/1(11) 1L and 11 f 111/'(Y) for all 
!I E /J . 

/u; in ]ti] for a no nze ro de riva ti on d, th a ulho rs in ]3] co nsid er Lhe pro blem with 
J' - d>(J') rs Zc> ro or 111verlible not for all 1· E R. IJ11t for all J' E ] ,, a le ft id c•a l o f 
/? / Is in l!H· forego rng lheorE'm , Llwy prove> th ai R nor H J\lat(!J. 2) or 
H ]) •• lJ for sorn<' rii VJSJOil nng JJ. but. fo r lhrs problem. I he) do not pron· lhr 
a hm·r <'O ild 1t ro ns on /) 

.l ' J>N' J H'\1 IZl l\'G DblllVATION S Ai\'J) ·\l'TO. JO HI'JIJSJ\IS 11\ I' IU ~ I HJ:'-Ir; s 

J·:d\\'a rd ( Pos1wr ]10] considers drrrvatron 011 pr11ne rrrrgs and prov<'s tir e· fol ­
]owllrg lll'o llrrorems 

Tlt •o r m 3. 1. /,t/ R br a pmnc 11119 ll'lih rharl? / 2. and lil d 1 . d2 hr de T'?lllllWTIS 

rm I? for u•huh lhr pmdur-1 d, o d2 IB also r1 rlr T?l'alwn. '/lur1 onr of dr nr•u/um.' 
r/1, r/2 1s r q1wl to zr rn 
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hcorem 3 . 2. Let R be a prtmt rmq wtth r·en l ral tzmg clcnvation d. Then d 0 
01 /{ t.~ comrn utatwr;. 

\V(' rPcull th a t. a nng R IS a !JrimP nng, 1f for a ll a, IJ E R, afib {0} unpiles 
11 0 or b 0 T hus, a nng fi is a pnmP ring, 1f for any nght 1deal . \ and uny IPfl 
Hl (•a l R of R, AB {0} 1mpli s A = {0} orB = {0}. 

Fo r a ftJnclion J : R ~ R wv say to he a c nt r, lizlllg fun clton, 1f fo r any 1· E R. 
[J·, f(:r )] 1·j (x) - f (J') J· E Z, the center of R. 

The firs t theo rem is only used in th proof of the second for the case cha r R i= 2, 
a nd gJv('s no Inform ation about R. 

Josef II. Mayne [9] inside of a centra lizing deri valion d cons iders a centra lizing 
a ut.omorph is m 1/J of a pri me ring R and proves an ana logous result: 

T h eor em 3 .3 . lf R is a prim ring with a proper ce ntralizing uut01n.orphism rp, 
ihen H is a commtLI.ative domain. 

t[ . DERIVAT IONS Wl T II SO ME CO MMUTI C PRO PBRT II::S 

I. N. 1 fers tcin [6] and Amos Kovacs [7] in ves tigat() the r<' laLi on between a prim e 
ring R a nd t he subset d(R) = {cl(J;) : x E R}, where d is a deri va t ion on R. 

[n t he cited paper Hers tein proves the following t heor m: 

T h eor em 4 .1 . If for some derivation d i= 0 on a prime ring R, [d(x),d(y) ] = 0 
fo r aU x, y E R. , then R. is commutative or R. is a order in a simple a/.gebra of 
r·h.ar-arterist i. r 2, which has the dimension 4. as a. vcdor space over ihe cen/.er· of /.he 
algebm. 

i\11 orcovcr , Hers tein as ks the questi on: 
I r cl. I 0 a nd if [or l he s tand ard identity sk [ ~tj' X2, ... 'Xk j, sk[d (xl). d(x2)' . .. ' d (~t ,, )] = 

0 fo r a ll :r; 1 , x 2, ... , Xk E R , do we then conclude th at R. is of some spec ial struc ture, 
or d es R perhaps satisfy the identity Sk? 

In Lhe cited paper , Kovacs answers thi s question by giving examples which shows: 
(a) For any prime number p , there is a prime ring R. of the cha racterist ic p 

with a. d er ivation d i- 0 satis fying s,1p+J [d (x1), cl(x2), . .. , d(J;4 p+ l ) ] = 0 for a ll 
1:1, x2, ... , x ,1p+ l E R. , such t ha t R satis fi es no polynomia l identity. 

(b ) There is a prim e ring R. of the characterist ic 0 with a derivation cl i- 0 satisfy­
ing [cl (x1)cl(J;2), d(x3) cl (x4)]d(~;s) [d(x6) cl (x7 ), d(xa)d(J;g)] = 0 for aiJ Xt, .1:2, ... , Xg E 
F?. , such that R satisfies no polynomial identity. 

ln cmmection with these examples, Jefry Bergen [2] considers the following ques­
tion: 

Let a prime ring R with a. derivation cl i- 0 be an algebra over a. commutative 
ring A, such that d(R) is contained in a finitely generated submodul of R. Does R. 
satisfy a polynomial identity? 

T he positive answer to the question is a corollary to the following theorem of 
Bergen : 

Theorem 4.2 . Let R be a prime ring with a psettdo-derivation f. Suppose that R 
is an algebra over- a commutative ring A, such that, for- a. positive integer- n, d"(R ) 
is contained in a finitely generated submodul of R. If f 2" - 1 i- 0, then R is an order 
in a. simple algebra which is finite dimensional over the center of the algebra. 

Namely, the answer to the above question we get from the foregoing theorem if 
we take f = cl (a derivation) and n = 1. 
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Bergen shows that the condition f 2" - 1 =I 0 cannot be substituted by f 2" - 2 =I 0. 
Moreover, Bergen remarks , that in the foregoing theorem (for n = 1) the constrain 
on f(R) can be substituted by the constrain on f(I) for any ideal I =I {0} of R . 

If !/J is a homomorphism of R, then f = cjJ- idR is a pseudo-derivation, and thus 
(for n = 1) the last theorem can be modified for the case of an automorphism !/J =I 0 
of a prime ring R . 

5. PRIME RINGS WITH A PROPER AUTOMORPHISM OR A NONZERO DERIVATION f 
SATISFYIN G f([:I;, y])- [x, yj IS ZERO OR INVERTIBLE FOR ALL X , y E R.. 

V. De Filipps [5] considers prime rings R with a nonzero derivation or a proper 
automorphism f satisfying 

(1) f([x,y])- [x,y] is zero or invertible for a ll x,y E R. 
The main results of this somewhat longer and very nontrivial paper are contained 

in the foUowing two theorems: 

Theorem 5 .1. Let R be a noncommutalive przme ring, I a nonze ro ideal of R, 
and .f a proper automorphism of R or a nonzero derivation on R satisfying 

f( [x, y])- [x, y] is zero or invert.ible for all x, y E I. 

Then R = D or R = Mat(D , 2) fo r some division ring D. 

Theorem 5 . 2 . Let R be a noncommutative semiprime ring, and .f a nonzero 
derivation on R w-ith the properly (1). Then R = D orR = Mat(D , 2) for some 
division ring D. 

We recall Lha.t a ring R is said to be sem iprime, if R has no nonzero nilpo tent 
ideals. 

G. N ILPOTENT DERIVATIONS AND CO MMUTATIVITY 

!, C' and Lee [8] proved the fo ll owing interesLing result: 

Theorem G .1. Let R be a prime r'ing with center Z. tell be a nonzero ideaL of R, 
and tel n be a positive integer. lf d is a derivation on R. such lhal d"(I) ~ Z, then 
cilhrr d" 0 or· R is commutative. 

At ab utthc same Lime, 1'rzcpizur [11], as <1 part of a more general s tud y, proved 
a re latc•cl the01·cm: 

Th or em G.2. Lrt n b a nonnegative integer, l t R bra prime ring with char R 0 
or· ha rR > n 1 1, and Let Z be the renter of R . If d i8 a drnvatwn on R and 
.C.,' o sulmnr; of 17 S1Lrh that d(S) ~ S and cl"(S) ~ :l, then ritltcr d"(S) {0} or 
s ~ z. 

!1 Pccntl y, 8 . Bell , A . A Klein and J. LucJcr [1] conlmued simila r investigat ion . 
lcirst, for lh case of special subrings, they prove thr foll owmg Lh or ms· 

Thcor m G.3. L I R br mfimte, and S b a .~ubring of finite tndP..r. if d i.~ a 
dcnmlwn on R and d" ( ) ~ Z fo r some pos1twc mt .rJC1 n, th en R ts comm1Ltallvr 
or d" 0 

h co rc m G.4 . Lrln br a posttwc mtcqcr. Lrt d bra drnvalwn on R , lrl /{ br thr 
submrq of If. !Jinc.ratrd by d(R). and SlLJ)J)()SC that d"(I\) ~ Z. SUJ11)()SC also that 
on1 of thr followmq holrk· {t} n 2: 3: (11) n = l and char R i 2; (iit} n 2. and 
rl ( /:) I { 0}. T/11 11 1 rt/11 r R ts cmnrnulalwr: or d" 0. 
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Th •orem 6.5. Lrl II be a r·omrnulatwc s11brmg of H. lf d i.~ a dtrwalwn on li 
tmd d" (I f) ~ Z for some postttvf. m tegl'r n, then R is comrrw tatwe or d" 0. 

T hcorr m () :~ . follows by Theorem 6 J . since, by a known lamma (Lemma G 1.) 
S c<J nla rns an ideal I of finite index, hence I f- {0}, R. being infintL . 

Le mma 6.1. Let R be an arbitranJ ring and S a subrmg of R of fim tP m dcx m R. 
Thcrt S ron tams an tdcal of R which is of fini te index in R . 

In t lw 1 roof of T heorem 6.4, T h or<' m G. l. has been a lso used togl·thcr with thP 
k 110\1' 11 

L •mrna 6 .2. Ld R br arbttrary rmg. If d lS a dcrivatwn on H. such that. d' i 0, 
ihr n lh l sub rin g genr:rated by d (R ) contains a nonzero ideal of R . 

F'o r t.lt casr n --= 2 in Theorem 6.4. . Lhe possibiliLy cl2 = 0 canneL occ ur , hence 
H must b · commuLa live. Moreover, Lhe hypothesis that cl(Z ) f- {0} canno t. be 
clil aLed , as we sec by letting R be Lhe ring Mal (F , 2) over a fi eld F of characLerisLic 
different. from 2 and cl be inner deriva Lion induced by Lhe maLrix e12. 

Theorem 6 .. 5. foll ows also by Theo rem 6.1. using Lhc known 

Lemma 6.3. Let R be noncomm11tative. Then the com mutator s11bring JJ contains 
a n on zero ideal of R. 

Some next. rcsuiLs concern prime rings wiLh restric ted characlerisLic. 

Theorem 6.6. Let S be a subring of R. ff the-re exists a derivation d on .R such 
Llwl {0} f- cl(S) ~ Z, then Sis comm1tlative. Moreover, if charR f- 2, then S ~ Z. 

The auLhors remar k that if char.R = 2, then d(S) ~ Z does noL im ply S ~ Z. 
Indeed, leL R be lhe ring Mat(G'F(2),2), let S = {O,e2d and let d be Lhe inner 
de ri vat ion deLermined by en Then d(S') = {0, 1} = Z, but S' ~ Z . Among those 
rl's ult.s t.he main rcs uJL is 

Theorem 6. 7. Let. n be a positive integer, and Let. char R = 0 OT char R > n. If d 
1.s a derivation on R and S is a S1t b·ring of R such that d( S) ~ S and cl" ( S) ~ Z, 
then eilhe·r S is comm1ttative or d" ( S) = { 0}. Mo-reove-r, if d" ( S') f- { 0} and 
ch ar}~ > n + J. , then S' ~ Z . 

Some results were proved for prime rings of arbitrary characteristi c. 
For a prime ring R with center Z f- {0} , localizing at Z- {0} yields a prime 

ring R with center Z equal to the quotient field of Z. R is call ed small, res p. big, 
if R is Gnite, resp. infinite dimensional as a vector space over Z . 

T he authors next prove 

Theorem 6.8. A nonzero left ideal of a big ring R is big. 

T he major result on big subrin gs is the following 

Theorem 6. 9. Let R be a big ring with center Z f- { 0}, and let S' be a big s1tbring 
of R. If the-re exists a derivation d on R s11ch that cl(S) ~ S and d"(S) ~ Z for· 
some positive intege-r n, then either dn(S) = {0} o-r S is commutative. 

T he inductive argument used in the proof of the above theorem gives 

Corollary 6 .1. Let R be a big ·ring with char f- 2 and cent e-r Z f- { 0}, and let S 
be a big sub·ring of R. ff there exists a derivation d on R such t.hat cl(S) ~ S and 
d"(S) ~ Z for some positive intege-r n, then cln(S) = {0}. 
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(2) p = q =? xy = yx, 
(3) p = q =? xyy* = x x*yy*, 
(4) p = q {:} xyy* = yy*x, 
(5) p = q {:} x x* yy* = yy*xx* . 

R B* 

NB* 

Figure 7. i\11 subva1ieti es of NB" 

[xx*yy* = yy*xx* ] 

[x yy* = yy*x] 

So, no identity of type ( I) defines a proper subvariety of NB*, and hence, such 
identities are of no importance. If a variety sati sfies an identity of type (2), it 
must be a subvariety of S£*, when Theorem 1.7.3 applies. On the other hand, 
from the results of [24] it fo llows that the identity xyy* = xx*yy* defines the 
variety NB• v NB0 within NB*; thus, if the equational theory of the considered 
variety contains an identity of type (3), it is a subvariety of NB' V NB0, which 
is a case taken care of by Theorem 1.7.8. Hence, outsideS£* and NB* v NB0, 

there are at most two proper subvarieties of NB*: those defined by xyy* = yy*x 
and xx•yy yy• xx , respectively. It is effectively shown in [20] that these two 
varieties are clifferent, and so we obtain 

Theorem 1. 7.10. The lattice of all varieties ofnormal bands with involution has 
the Inclusion diagram given in Figure 7. 

Finally, we are going to determine all subvarieties of .]4 , thereby answering 
a que tion from the beginning of this subsection. To do that, we must employ 
some more notation and define further notions. The material presented below is 
published for the first time. 

n (involution) semi group with zero 0 is said to be null (or constant) if for 
all a, b E ' e have ab 0. The variety Nid of all null semigroups with trivial 
involution is a minimal one, i.e. it is on the Fajtlowicz's list. It is easy to prove 
that it is generated by 2, the two element null in olution semigroup with a trivial 
involution. Further, let • denote the variety of all null involution semigroups 
while 3 is the three-element nul l in olution semigroup in which the involution 
fixe one of its elements and permute the other two. 
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The notion of an inflation is fami liar in semigroup theory for a long time. ame­
ly, a semi group V is an inflation of its subsemigroup if there is a homomorphism 
p : V -+ S such that cp ls is the identity mapping on Sand for all Vt, v2 E V we 
have 

VtV2 - cp(v1)cp(v2). 
In part icu lar, this means that every product of elements from V lies in 5'. An infla­
tion of a semigroup S' is just a retractive ideal extension of S' by the null semi group 
(J ~ VIS (see Petrich [85]). 

The function cp if often referred to as the t"!ljlation ji.IIICtion . 
Now we say that an involution semigroup V is a *-inflation of its involution 

subsemigroup S if the semigroup reduct ofV is an inflation of the semigroup reduct 
of S, and the corresponding inflation function cp agrees with the star: cp(a*) = 
cp(a)* for all a E 5'. Just as in the implication (ii i):::}( iv) of Theorem I from Pastijn 
[79], it is not difficult to prove 

Lemma 1.7.11. Any *-inflation of an invohtlion semigroup S is a subdirect 
product of S and a null invo!ulion semigroup N. 

Now we describe the structure of involution semigroups belonging to the join 
V v N*, where V is an arbitrary involution semigroup variety. 

Lemma 1.7.12. Let V be an involution semigroup variety. Then Vv N * consists 
precisely of all * -inflations of members ofV. 

Proo.f Clear! y, both V and N * are contained in the class of all *-inflations of mem­
bers of V. On the other hand, by the previous lemma, all involution semigroups 
from the latter class are contained in V v N*. Therefore, the proposition will be 
proved as soon as we show that * -inflations of members of V constitute a variety. 

First of all , for each i E I (where I is an index set) let V; be a *- inflation of 
S;, with cp; being the corresponding* -inflation function . Then the * -free reduct of 
rriEl V; iS an inflation Of rriEJ 5';, the inflation function <p being the target tupling 
ofcp;'s, that is, cp((vi: i E I )) = (cpi(v;) : i E I ). But 

cp((vi: i E I )*) = cp((vi: i E I )) = (cp;(vi): i E I ) -

= (cpi(vi)*: i E I) = (cp;(v; ): i E I)*, 

thu s *-inflations are closed for direct products. 
Further, Jet V be a *-inflation of S' (with cp as the *-inflation function), and let 

T be an involution subsemigroup of V . Then T n Sis an involuti on subsemigroup 
of S' (it is easy to see that it cannot be empty), and, moreover, the *-free reduct of 
T is an inflation of the *-free reduct ofT n S respect to cp lr. Yet, cp agrees with *, 
and so does cp lr. So, T is a *-inflation ofT n S E V. 

Finally, with the same setting as above, Jet P be a homomorphic image of V 
under homomorphism a. Then the *-free reduct of P = a(V) is an inflation 
of the *-free reduct ofT = a(S' ), and the corresponding inflation fu nction is cp' 
defined by cp' (p) = t if and only if there are s E S, v E V, such that a( s) = 
t, a(v) = p and cp(v) = s (one easily shows that such a definition is logically 
correct). However, a is a *-homomorphism, sot* = a(s*) andp* = a(v*) . Since 
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cp(v*) = cp(v)* = s*, we have cp'(p*) = t* = cp'(p)*, whence we conclude that cp' 
agrees with * 0 

Since it is easy to calculate that N2 and N3 are the only subdirectly irreducibles 
inN* (thus N3, or any other null involution semigroup with a nonidentical involu­
tion, generates N*), it follows that the list of subdirectly irreducibles of a variety 
of the form V v N* exhausts with the subdirectly irreducibles of V, N2 and N3. 
Therefore, any subvariety of V V N* is either of the form W V N id, or of the form 
Wv N*, where W ~ V. So, to determine the structure of the lattice of subvarieties 
of V V N*, it remains to establish which of the above joins are mutually different. 
To tlli s end the following auxiliary resu lt will be helpful. 

Lemma 1.7.13. lfW is an involution semigi'Oup variety which does not satisjj; 
x = x*, then W v Nid = W V N* . 

Proof Let S E W be an involution semigroup in which x = x* fails. Denote 
the elements of N2 by 0 and I, and consider the direct product T = S x N2. Let 
P = S x { 0} and consider the equivalence I) = 6.T\P U ( P x P) ofT (it co li apses 
all pairs whose second coordinate is 0). Obviously, 0 is a *-congruence ofT, and 
N = T /0 is null. AsS has elements which are not fixed by*, so has N (because if 
a i- a* for some a E S, then (a , 1)* = (a*, 1) i- (a, 1)). Thus, N generates N *, 
implying that N* ~ W v Nid The lemma now easily fo llows. 0 

Our general result (which is related to the main results ofGraczyi1ska [46] and 
Mel'nik [75]) is now as follows. 

Theorem 1.7.14. Let V be an involution semigi'Oup variety which does not con­
tain nontrivial 11.ull involution semi groups. Let U be the greatest subvariety of V 
satisfying x = x*. Then the /at/ice of subvarieties ofV v N* has the structure as 
depicted in Figure 8, where the interval [Nid ,U v Nid] is isomo,phic to the lallice 
of subvarieties ofU, while the interval [N*, V v N*] is isomo1phic to the /a/lice of 
subvarieties o_(V. 

Figure 8. ·n1e la tti ce of subvanellcs of V V N " 

Proof If W ~ U, then W v Nid satisfies x = x*, and thus it differs from any 
variety of the form V' V N•, where V' ~ V. Moreover, from the previous remarks 
it follows that WI v Nid = w2 v Nid implies WI = w 2 for all WI) w2 ~ U. On 
the ot her hand, if W <6 U, then by Lemma 1.7 .1 3 we have W v N 1d = W v N*. 

Now if W ~ V is arbitrary, then by li sting the subdirectly irreducible members 
of W V , we obtain th at the co rrespondence W f-1 W v N• (as well as W' f-1 
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W' U Nid for W' ~ U) is a bijective one. Thus, to prove the theorem, we need to 
show that these two correspondences are lattice homomorphisms. 

It is immediate to see that these mappi ngs agree with V, the varietal jo in opera­
tion. For the intersect ion, i.e. for the equalities 

and 

where W1, W2 ~ U and 2 1, Z2 ~ V, it suffi ces to inspect once more the li st of 
subdirectl y irreducibles in corresponcting varieties, just as above. The theorem is 
proved . 0 

The vari ety to which we intend to apply the above theorem is 

J4 RB* v S ,eict v S .C0 v N ict 

NB'eg v S£0 v Nict = 
(NB'eg V N B0 ) V Nid = 

(NBreg V NB0 ) V N *, 

as N Breg v NB0 does not s~ti sfy x = x* . On the other hand, s.cict is the only non­
trivial subvariety of NBreg V NB0 equipped with an identical involution, and since 
Nsreg v NB0 has 10 subvarieties (as proved by Theorem 1.7.8), it fo llows from 
the above theorem that :14 has exactly 22 subvarieties. The subvarieties missing 
from Figure 3 are NB0 , s.cict v NB0 and the joins of these two with N *. 

1.8. Subdirectly Irreducible Involution Bands. Subdirectly irreducible algebras 
are very important builcting blocks of a variety, determining a great deal its struc­
ture and relationships to other varieties Uust as it was experienced in the previous 
considerations). As long as semigroups are concerned, probably the first paper 
dealing with subctirect decompositions was the one of Thierrin [11 0]. The main 
contribution to the topic in the sixties was given by Schein [1 04], while Gerhard 
[41] described subdirectly irreducible bands. The characterizations presented in the 
sequel are just in the style of those given in [41], and they are all due to Dolinka 
[25]. 

The first task is certainly to describe subdirectly irreducible involution semilat­
tices. We already met two distinguished semilattices with involution: these are 
E2 (the two-element semilattice with the identical involution) and Es (the 0-ctirect 
union of a trivial semigroup with its copy). By E4 we denote the involution semi­
lattice obtained from Es by adjoining an identity element (which is , of course, 
fixed by the involution). E4 is depicted in the following figure. 
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.A· .. 
Y.. 

Figure 9. The involution semilattice E4 

Theorem 1.8.1. There are exactly three (nontrivial) subdirectly irreducible in­
volution semilattices: E2, E3 and E4. 

As in the case of bands, it is necessary to distinguish between those involution 
bands which do or do not contain a zero element. Also similarly to bands, it is much 
easier to obtain the characterization for involution bands without zero. Recall that if 
B is an involution band and a, bE B, then O(a, b) is a customary notation designed 
for the principal congruence generated by (a, b), that is, for the least congruence 
co ntaining the indicated pair. 

Theorem 1.8.2. An involution band B without zero is subdirectly irreducible 
if and only i/ B is an ideal extension of a rectangular involution band [{ such 
that there exist distinct a, b E [{for which 0( a, b) ~ 0( c, d) holds for all distinct 
c, d E K. and for all p, q E B, the condition pk = qk and kp = kq for all k E [{ 

implies p = q. 

Of course, as one might expect, every subdirectly irreducible involution band 
has a core - the least non-null *-ideal. So, the above theorem guarantees that in 
a subdirectly irreducible involution band without zero, its core K is a rectangular 
band with involution. However, unlike ordinary bands, the case when a zero is 
present splits into two essentially different cases. Namely, it turns out that the core 
of a subdirectly irreducible can be either a rectangular involution band with zero 
adjoined (i.e. with structure involution semilattice E2), or of the form J0(A ) for 
some rectangular band A (i.e. with structure involution semi lattice E3 ). The first 
of these two possibilities is handled easily, whi le the other is much more involved. 

Theorem 1.8.3. Let B be an involution band with zero. Then it is subdirectly 
irreducible and has a rectangular involution band with adjoined ze/'0 as the core~~ 
and only if B = (B1 )

0 for some subdirectly irreducible involution band B 1 without 
ze/'0 . 

Theorem 1.8.4. An involution band B with zero which is not an involution semi­
/a/lice. whose core has the structure based on L3. is subdirectly irreducible !land 
only if B is an ideal extension of an involution band of the .form .T0(L) for some 
left zero band L, such that there exist distinct a b E L for which 0( a, b) ~ 0( c, cl ) 
holds for all distinct c, cl E L, and for all p, q E B. the condition pf. = qf. and 
C' p 1!.' q for all 1'. E L implies p - q. 

An interesting special case of the above theorem describes the subdirectly irre­
ducibles in B0 
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Thcor m 1.8.5. An involution band B E 8 ° is subdireclfy irreducible if and 
only 1/ if i of the form !0 (T). where T is eith er a subdirectly irreducible band 
wit how zero, or the trivial semigroup. 

In light of Theorem 1.7.8, it follows that all the subdirectly irreducibles of 8rcgv 
8 ° belong either to 8 reg, or to 8 ° 

For regular •-nom1al bands (i.e. for the variety N8rcg) we can explicitly point 
out the subdirectly irreducibles. Namely, by Theorem 2.2 of Scheiblich [I 0 I] , ev­
ery normal *-regular involution band B can be represented as a spined product of a 
left normal band Land its anti-isomorphic copy (that is, its dual ) R, which is a right 
normal band, while the involution simply reverses pairs. (Recently, this assertion 
was generali zed to arbitrary involution bands in [26]: if 1l denotes the congruence 
opening of an equivalence e, then every involution band B can be represented as 
a sp ined product of the band B jR~ and its dual over B / D' , where 'D' = L~ o R!, 
so that the involution is again the reversal of pairs.) It is not difficult to prove that 
such a band B is subdirectly irreducible as an involution band if and only if L is 
subdirectly irreducible as a band. But II.2 of [41] lists all left normal subdirectly 
irreducible bands: these are the trivial semigroup, the two element semi lattice, the 
two element left zero band, and the latter band with adjoined zero. Thus the non­
trivial subdirectly irreducible members of Nweg are: E2, the 2 x 2 rectangular 
involuti on band RB2 (which is the only nontrivial subdirectly irreducible rectan­
gul ar involution band) and RB~. On the other hand, the above theorem implies that 
the only (nontrivial) subdirectly irreducibles inN8° are E3 and J0(L2), where L2 
denotes the two-element left zero band. In [25], it was proved that the list of all 
subdirectly irreducible normal bands with involution is completed by E4 and two 
more normal involution bands, one containing six, and another containing nine 
elements. This in passing shows that the variety N8* is residually < 10. 

Theorem 1.8.6. Aside from those contained in N8regv N8° and SL*, there are 
exactly two more subdirectly irreducible members of N8*, both with core I0(L 2): 

one extended by E2 (this one having 6 elements), and one extended by RB~ (thus. 
having 9 elements), denoted by Ns and N9, respectively. 

• • 

• • 

0 

Figure 10. Normal involution bqnds N6 and Ng 
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Since N9 has noncommuting projections, it must generate the whole NB*, bear­
ing in mind Theon:\m 1.7.10. On the other hand, N6 belongs to the subvariety of 
NB* determined by x.7:*yy* = yy*xx* (since Oa = aO = 0), but does not belong 
to the subvariety given by xx*y = yxx*, as el a = el =!= e2 = e2el = ael , where 
L2 = { £1, e2 }. Hence, N6 generates the former subvariety, whence all members 
of the latter one turn out to be subdirect products of involution semilattices and 
normal involution bands from NB0 

1.9. Varieties of Regular *-Semigroups with the Amalgamation Property. Let 
{A, : a E I} be a family of universal algebras, sharing a common subalgebra 
U such that for each a,/3 E J, a =/= {3, we have Aa n A,e = U. Such a family 
(which is in fact a partial algebra) is called an amalgam. It is said to be weakly em­
bedable into an algebra B if there exist inj ective homomorphisms 'Pa : Aa ___. B, 
a E J, agreeing on U ('Pa lu = 'P,e lu for all a,/3 E U). If, in addition, we 
have 'Pa (Aa) n c.p,e(A,e ) = 'Pa(U) for all different a , f3 E J, then the consid­
ered amalgam is strongly embedded into B. A variety of algebras V has the weak 
(strong) amalgamation property if any amalgam of algebras from V can be weakly 
(strongly) embedded into an algebra from V. 

As known, semigroup amalgams and amalgamation properties in semigroup va­
rieties constitute a well developed and established part of semigroup theory. Yet, 
there is a major obstacle in completing a number of characterization results which 
concern amal gams, namely the group varieties. It is stil l an open question whether 
there exists a proper nonabelian variety of groups with the weak (strong) amalga­
mation property (for the strong variant, thi s is just Problem 6 from [77]). Therefore, 
it is quite expectable that in considering amalgamation problems for various invo­
lution semi group varieties, groups, and in fact completely simple * -semigroups will 
remain out of range, so that we obtain descriptions modulo these classes. 

For inverse semigroups (recall that they can be considered as regular *-semi­
groups with the identity xx*x*x = x*xxx .. ), the foll owing theorem is a result of 
combined effo rts of Hall [47] and Bir6, Ki ss and Palfy [6] (see also [48, 57]). 

Theorem 1.9.1. Asideflvm the hypothetical proper nonabelian weakly (s!rong­
ly) amalgamable group varieties, precisely the fo llowing inverse semigroup vari­
eties have the weak (strong) amalgamation property: 

(I) the variety of a// inverse semigroups, 
(2) !he variety of a// groups, 
(3) all varieties ofcommutative inverse semigroups (these are the varielies of 

semilaltices of Abelian groups). 

Later, the focus moved onto generalized inverse semi groups - orthodox *­
semi groups in which idempotents fom1 a regular • -normal band (of course, inverse 
semigroups are characteri zed by the condition that idempotents fo rm a semi latti ce 
from S.C ict). The investigation along this line was initi ated by Imaoka in [58], and 
the contribution of Hall and Imaoka [50] should be also singled out. 
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The second author of this survey noted that the results from the last sect ion of 
[50], when put together with some techniques applied earlier to existence vari­
eties of regul ar semi groups [49], give a sufficient basis for describing regular *­
semigroup varieties with the weak (strong) amalgamation property. Tn that sense, 
the paper [28] (w here the following result appears) is a continuation of [50]. Note 
that all varieties li sted below are either generalized inverse, or completely simple. 

Theorem 1.9.2. A regular • -semigmup variety V has tlte weak (s trong) amal­
gamation property if and only (lone of the fo llowing conditions is satisfied: 

( I ) V is an inverse semigroup variety willt tlte weak (strong) amalgamation 
property, 

(2) V = U v RB*, where U is an inverse semigroup variety with the weak 
(strong) amalgamation property, 

(3) Vis a completely simple *-semigmup variety with the weak (strong) amal­
gamation property. 

lt is worth mentioning one more ingredient used in obtaining the above result. 
First of all, note that the Brandt semigroup B2 can be considered as an inverse 
semi group (then it is generated as a regular * -semigroup by a single generator a, 
subject to the relation a? = 0). It was proved by Schein [1 05] (and reproved in 
[47]) that an inverse semigroup variety consists entirely of semi lattices of groups 
if and only if it omits B2. This was extended to regular *-semigroup varieties in 
[28], so that for such a variety V, B 2 fl. Vis equivalent to the fact that V consists 
entirely of completely regu lar * -semi groups, and further, to the fact that V satisfies 
an identity of the form x = ux2, where u = u(x) is an involution semigroup word. 

However, quite recently it turned out that even the above indicator characteriza­
tion is just a part of a more general setting. We finish by quoting the main result of 
[29]. 

Theorem 1.9.3. Let V be an involulio_n semigroup variety. Then the following 
conditions are equivalent: 

(1) any member of V can be decomposed into an involution semilattice of 
Arch irnedean semigroups, 

(2) V does not contain B2 and I0(B2). 

Analogous descriptions for varieties consisting of semilattices of Archimedean 
semigroups (without involution) were obtained earlier by Sapir and Sukhanov [1 00] 
for periodic case, and for the general case by Ciric and Bogdanovic [9]. 

2. VARIETIES OF INVOLUTION SEMIRINGS 

2.1. The Role of Involution Semirings in Theoretical Computer Science. First 
of all, we recall that by our definition, a semiring is an algebra with two binary 
operations, (S, +,·),the first of which is commutative. On the other hand, there 
are several authors which, while referring to semirings, do not assume the com­
mutativity of+, see e.g. [80, 81, 82]. Also, one may often encounter definitions 
in which (S, +) is required to be a monoid; and its neutral eletnent 0 is then con­
sidered as a fundamental constant. However, the latter difference will not cause 
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any major problems: we shall use the semirings with a zero in the present subsec­
tion (conforming to the practice in theoretical computer science), and then pass in 
the subsequent two subsections to the (more general) approach in which the zero 
is dropped, but the results are always easily transformed from the one variant to 
another. 

Also, in this subsection we shall use another symbol for semiring involutions, 
namely v instead of the star. There are fairly good reasons for the change of no­
tation. Namely, if E is an alphabet, then it is a quite wide-spread notational con­
vention to denote the free monoid on E by E*, which consist of all words (finite 
sequences) over E, and free monoids will be important for us in the sequel. Indeed, 
we may define a semi ring with unit 

L E = (P( E*), -t- , ·,0, {.\}) , 

where + (for traditional reasons) denotes the set-theoretical union, .A is the empty 
word, and for A, B ~ E* we have 

A · B = {1tv: ·u E A, v E B}. 

The subsets of E* are usually called languages (over E), and AB is called the 
concatenation of languages A and B . Therefore, we obtain the language se111iring 
over E. Actually, it is not difficult to see that we can obtain a semiring (with uni t) 
form an arbitrary semigroup (monoid) S, by defining analogous operations of the 
power set of S, 

Ps = (P(S), +,·, 0) 

(in caseS is a monoid, the unit {1} is added to the above system). According to 
the above notation, LEis in fact the same thing as PE-. 
· Now, one can define a unary operation A f-.+ A* in Ps (provided S is a monoid) 
by 

A* = LAn 
n~O 

(the sum operator denoting the union), where An+l = A · An and by conven­
tion, A0 = {l}. If we consider the language semiring LE, the above definition 
introduces the Kleene star operation, which is well-known in theoretical computer 
science, especially in automata theory. By equipping Lx; with \ we obtain the 
language algebra L'):; . Note that * is here by no means an involution; actually, it 
sat isfies the fixed-point identity x * x* . 
· On the other hand, there is an obvious way to define an involution on LE. 

Namely, if wR denotes the reverse of the word w, just as in the previous section, 
for L £;:; );* we may define 

It is pretty easy to see that v gives LE .the struct ure of a involution semi ring with 
unit , which we denote by L 'f. If both v and* are considered, we obtain the invo­
lwion language algebra L [;v 
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Another important examples of involution semi rings come from binary relations. 
If A is an arbitrary set, we define the algebra 

Rel(A) = (P(A X A) ,U,o,0, 6.A), 

where o is the relational composition and 6.A is the diagonal (identity) relation. 
Rel(A) also turns out to be a semiring with unit, and it can be made into an invo­
lution semi ring Relv (A) by considering the operation of the converse of relations: 

r/ = {(b, a): (a, b) E e}. 

Similarly as above, we can iterate the relational composition, thus obtaining a 
unary operation 

e* = u en, 
n~O 

where en-! 1 = {} 0 en and e0 = 6. A. The relation e* is actually the reflexive­
transitive closure of e. By addi ng* to (involution) semiri ngs of relations Rel(A) 
and Relv (A), we obtain Kleene relation algebras (with involution) Ret*(A) and 
R lw(A), respectively, cf. [59, 70, 22, 23]. 

Language and relation semirings are just special cases of complete semi rings, 
which are of at most importance in the mathematical foundations of computer sci­
ence, cf. [4 , 8, 34, 63, 65, 67]. These are semirings in which an infinite summation 
operator LiEf is defined, such that if {a; : i E I} is any family of elements of the 
considered semiring, we have: 

L a;b.i 
(i,j) EJ xJ 

iEJ jE J iEi j 

where I is the disjoint union of the sets Ij, j E J. Of course, the swnmation is 
commutative, associative and completely distributive. Further, a complete sem.ir­
ing is completely additively idempotent if LiEI a = a holds for any index set I 
(clearly, each completely additively idempotent semiring is additively idempotent). 
Note that all the above example~ are such. Finally, in any complete semiring one 
can define the iteration operation * by 

00 

a* = I.:: an. 
n =O 

Now we have the following observation. 

Lemma Z.l.l. Every language algebra can be embedded into a Kleene relation 
algebra. Consequently, every language semiring is isomorphic to a semiring of 
binary relations. 
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Proof (.~ketclU Consider the mapping~ : P( E*) ____. P( E* x E*) defined for every 
A<;;; E* by 

~(A) = {(w,wx): wEE*, x E A} . 

It is a routine matter to show that~ is, in fact, an embedding of the algebra Lj; into 
Rel*(E*). 0 

Hence, if we denote by L the variety generated by all language algebras, while 
JCA denotes the variety of Kleene algebras, generated by all Kleene relation al­
gebras, we have L <;;; JCA, and in particular, all language algebras are Kleene 
algebras. However, the above inclusion is in fact an equality, L = JCA, because by 
the Kozen-Nemeti Theorem (cf. [64, 70]), the free Kleene algebra on E is just the 
subalgebra of Lj; formed by the regular subsets of the free monoid E*. Usi11g this, 
and knowing the explicit equational axiomatization of Kleene algebras (which is 
necessarily infinite, cf. [10, 66, 13]), one can easily derive the following result. 

Theorem 2.1.2. Both language semirings and relation semirings generate the 
variety of idempotent semirings with unit. 

But what is the situation if the involution is present? The above Lemma 2.1.1 
is no longer true for the involution case: in fact no involution semiring of the form 
L'f can be embedded in an involution semiring of relations. In other words, if Lv 
denotes the variety generated by involution language algebras, while JCAv is the 
variety of Kleene algebras with involution generated by all algebras Relw (A), one 
can prove that JCA v <;;; Lv, but tllis inclusion is pl'vper. It is just the involution that 
distinguishes between them, even if we drop the iteration operations and work with 
involution semirings only. Consider the following identity: 

x+xxvx = xxvx . 

lt is a routine to see that the above identity is true in binary relations. However, it 
suffices to consider the one-element alphabet E = {a} and substitute the language 
{a} for x to see that the above identity fails in all involution semi rings of languages. 
In fact, we have a more accurate information concenling this matter. 

Theorem 2.1.3. (B loom, Esik and Stefanescu, [8]) The variety Lv is defined by 
the identities ofKleene algebras. axioms q(semiring in vo l11tion (including ov = 0) 
and 

(x•y = (xv)*. 

Theorem 2.1.4. (Esik and Bernatsky, [35]) The variety JCAv is defined as a 
subvariety of Lv by the identity 

X-\ XXVX - XXVX. 

(,From these results it is not difficult to obtain 

orollary 2.1.5. The involution semi rings of languages generate the variety of 
idempotent involution semirings with unit, while the relational involution semi rings 
generate its subvariety delermined by x + xxvx xxvx. 
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Let ~Is also mention some related resu lts obtained by the authors of this survey 
and Z.Esik. 

Theorem 2.1.6. (C rvenkovic, Dolinka and Esik, [13 , 14]) Varieties Lv and 
KAv are both not finitely based. Also. ({we drop the w1ion (addition) operation 
.fi'om Kleene relation algebras with iiii'Oiution (resp. involution language alp,ebras). 
the equational theories of the so obtained varielies con is! precisely of those iden­
tities ojKAv (resp. Lv) which do not contain occurrences o.f +.and these theories 
are too nonflnitely based. 

The simplest expl anation for the second part of the above result is that the inter­
action between the concatenation and • is from the equational point of view 'too 
complicated', and exactly this interaction is the origin of aJ I nonfinite axiomatiz­
ab ility results of the above type which concern algebras of formal languages. 

It is interesting to remark that there is a 'technical' connection between the first 
part of the above theorem and Theorem 1.5.2. Namely, there are two ways to 
prove that Lv and KAv are not finitely based, knowing that the same holds fo r 
L and KA, respectively, and knowing, of course, Theorems 2. 1.3 and 2. 1.4. One 
of these proofs- more syntactical in nature- relies on the same proposition on 
involutori al identities (proved in [1 3]), which all owed us to obtain in [I 5] the resu lt 
of Theorem 1.5.2 . Probably there are some further links between the identities 
of general algebraic systems with involution and of their involution-free reducts 
respectively, which are yet to be di scovered and explored. 

2.2. Minimal Varieties oflnvolution Semirings. Minimal varieties of involution 
semirings were described by the second author of this survey in [21] . Towards that 
goal, an important help was the already known list of minimal varieties of orcti nary 
semirings, determined by Polin [92], cf. also [ I 09]. To recall Polin 's result and to 
formulate the main result of [21 ], we define some binary and unary operations on 
finite sets 2 = {0, 1}, 3 = {0, 1, 2} and4 = {0, 1, 2, 3}. 

V 0 1 1\ 0 1 o 0 1 *e 0 1 *·r 0 1 
001 000 000 000 001 
111 101 1 00 111 101 

0 1 2 0 1 2 0 0 1 2 3 0 0 1 2 3 
/\3 03 

0 0 1 2 3 0 0 1 0 1 
0 0 0 0 0 0 0 0 

1 1 1 3 3 1 0 1 0 1 
1 0 1 0 1 0 0 0 

2 2 3 2 3 2 2 3 2 3 
2 0 0 2 2 0 0 0 

3 3 3 3 3 3 2 3 2 3 

ala 1 2 aiO 1 2 3 
a 0 2 1 a o 2 1 3 

Theorem 2.2.1. (Polin, [92]) A variety of semirings is minimal if and on~y if it 
is generated by one of the following semirings: 

( I) (2,o,/\ ), (2,o,o), (2 ,V ,V), (2,V ,/\ ), (2,V ,o), (2,/\,o) , . 
(2) (2, v, *e). (2, v, *,. ), 
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(3) Zp = ( {0, 1, ... ,p- 1 }, +p, ·p), where pis a prime number, and +p and 
·p are respectively the addition and the multiplication modulo p (i. e. Zp is 
the finite field with p elements), 

(4) Np = ( {0, 1, ... ,p -1} , +p, op), where pis a prime nwnbet; and oP is the 
zero multiplication ofthe set {0, 1, .. . ,p - 1}. 

Note that all varieties of involution semi rings having a trivial involution (x* = 
x) are exhausted by varieties of commutative semirings augmented with the iden­
tity mapping, and this conclusion applies to minimal varieties as well. Clearly, (1 ), 
(3) and ( 4) of the above theorem provide all such varieties. 

Theorem 2.2.2. (Dolinka, [21]) A variety of semirings with nontrivial involution 
is minimal if and only if it is generated by one of 

(1) (3,A3 , A3,-), (3,A3,o3,-), (3 ,o3,A3,-), 
(2) (4,0, 0 ,-). 
(3) ({0 , 1, ... , ]J -1},+p,op,-p), where-P is the operation of additive in­

verse modulo a prime number p 2 3. 

It is more or less in the universal algebraic folklore that all of the algebras above 
generate minimal (equationally complete) varieties. The proof of the other im­
plication, on the other hand, resembles somewhat to the way in which Fajtlowicz 
obtained the minimal varieties of involution semigroups, because it consists of con­
sidering cases according to the properties of Hermitian elements (invo lution fixed 
points). 

Firstly, one can prove that if an involution semiring which generates a minimal 
variety V contains a Hermitian element a which is either not additively idempotent 
(a+ a =f a), or not multiplicatively idempotent (a2 =f a), then V consists of com­
mutative involution semirings with a trivial involution, and in that case Theorem 
2.2. 1 settles the problem. Otherwise, it can be assumed that all Hermitian elements 
a under consideration satisfy a+ a = a2 = a. Now, in any involution semiring S' 
which is not additively idempotent and which belongs to a minimal variety, there 
is a unique Hermitian element which is: 

(1) the multiplicative zero of S', 
(2) either the additive zero, or the additive unit of S'. 

In the latter of the two cases given in (2) above, S' must be a ring, a v = - a, 
and, moreover, there is a monogenic subring S'' of S' and a prime p such that Np . 
augmented by the additive inverse modulo p, is a homomorphic image of S''. On 
the other hand, in the former of the two described cases, S' generates the same 
variety as (3 , o3, A3, - ) does. 

So, it remains to consider minimal varieties generated by additively idempo­
tent involution semirings. If such a variety contains a nontrivial involution semi r­
ing with a unique Hermitian element, then it has to contain one of (3 ,A3 ,A3, ), 
(3, A3, o3 , -) . Finally, if an involution semi ring contains at least two Herimitian el­
ements and generates a minimal variety (even without the condition of the additive 
idem potency), then it contains an involution subsemiring isomorphic to ( 4 , 0, D, -), 
whence our theorem is established. 
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2.3 . Idempotent Distributive Involuti on cm iring ·. semiring is distributive 
if it satisfies the dual distributive identity 

x I yz = (x I y)(x I z) 

(of course, the above identity and commutativity of + together imply xy + z = 
(:c 1 z)(y z)). A semiring is idempotelll if both of its operations are such (we 
already referred to add itive and multipli cative idempotency in semirings). Note 
that if a semiring S is (additively) idempotent, then (S, +) is a sem il atti ce. If 
both of the binary reducts ( ', -1 ) and (S, ·) of S are idempotent and commutative, 
then S is call ed a bisemilallice. A bisemilaltice in which the two operations coin­
cide (i.e. whi ch sati sfy x + y = xy) is call ed a mono-bisemilallice. Of course, it 
causes no confusion if we identify (in the notational sense) semi lattices and mono­
bisemilattices. 

Idempotent and distributive semirings are called JD-semirings for short. The 
study of ID-semirings started in the late sixties and continued in the seventies, see 
e.g. [61, 73, 88], with investigations on distributive bisemilattices. However, the 
top ic gained at tenti on in the early eighties, mainly with contributi ons of Pastijn 
and Romanowska [80, 82, 95, 96]. In particular, the lattice of all varieties of ID­
semirings (with + commutative) is given in [96]: it is the four-dimensional cube. 
Recently, Kufil and Polak [68] found a way to determine all varieties of idempotent 
semirings (without the requirement of di stributivity of+ over ·). On the other 
hand, Pastij n and Guo [81] described the latti ce of all ID-semirings without + 
being commutative. It is a countably infinite distributive lattice. 

Motivated by the result of Romanowska [96], the second author of this survey 
obtained the lattice of all varieties of ID-semirings with involution. The corre­
sponcling resul t is as follows. 

Theorem 2.3.1. (Dolinka, [27]) There are exactly 64 varieties of ID-semirings 
with involution, and their lattice coincides with the one depicted in Figure 11. 

As semilattices and mono-bisemilattices can be identified, so can involution 
semilattices and mono-bisemilattices with involution. Therefore, E2, E3 and E4 
wi ll also denote involution semirings in which both operations define the corre­
sponding semi lattice with involution. It is easy to see that all of the above algebras 
are in fact ID-semirings. 

It was proved in Theorem 2.1 of [82] that the multiplicative reduct of an ID­
semiring must be a normal band. Further, by Theorem 1.6 of the san1e paper, 
each ID-semiring is a Plonka sum of a semilattice ordered system of ID-semirings 
satisfying 

x + xyx = x. 

The latter semirings are, in turn, obtained by a special kind of a composition of 
a distributive lattice ordered system of ID-semirings in which the multiplicative 
reduct is a rectangular band. 
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Figure I f . The lattice of all varieties of ID-scmirings with involution 

All these results can be extended for ID-semirings with involution as well. First 
of all, one must replace the well-known general algebraic construction of a P.fonka 
sum by the involutorial Plonka swn of algebras, introduced in [31]. Here we give 
the basic definition, restricted to the case of semirings. 

Let Y be an involution semilattice. A family ofsemirings {Si: i E Y}, together 
with a system of homomorphisms { <Pi,j : i j E Y i 2: j} and a bijection ~ on 
U ;EY S;, is called anY-ordered system ofsemirings if the following conditions are 
satisfied: 

( I) for each i E Y, <Pi,, is the identity mapping on S,, 
(2) for each i,j, k E Y such that i 2: j 2: k we have 

<Pi,j 0 </lj,k = <Pi ,k, 

(3) for each i E Y, • : S,--+ i " is a semiring anti-isomorphism, 
(4 ¢,· ,j·(x) = (</l; ,j(x•)) for all i,j E Y such that i 2: j and all xES,-. 
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The involutorial Plonka sum of such a system is a semi ring with involution , 
where 5' = u iE Y S;, with the operations given by 

a+ b ¢,,ij(a) + ¢1,;j(b), 

ab = ¢i,ij(a)¢j, 1j(b), 

where a E 5'; and b E S'j. 

Theorem 2.3.2. (Dolinka and Vincic, [31]) Each ID-semiring with involution 
can be represented as an involutorial Ptonka sum of an involution semilattice­
ordered system of ID-semirings satisfying the identity x + xy x = x. Conversely, 
the involutorial Plonka sum of every such system is an ID-semiring with involution. 

As we mentioned above, in [95] Romanowska proved that each ID-semiring 
satisfying x + xyx = x is the sum of a distributive lattice-ordered m-sy tern of 
rectangular ID-semirings (i.e. with rectangular multiplicative reduct). This means 
that we have given a system of disjoint semi rings S'; indexed by a distributive lattice 
(D , V,/\) (so that i ED), and for each i,j E D such that i :2: jan embedding 
1/;;,j : S; --+ Sj such that 

(i) 1P·i ,i is the identity map on S; for all i E D, 
(ii) 1/;;, j o 1Pj,k = 1Pi,k for all i,j, k E D such that i :2: j :2: k, 

(iii) '1/Ji,i/\j( Si) + 1Pj,il\ j(Si) ~ '1/Jivj,i/\j(S;vj) for all i , j ED. 

The sum of this system is defined in such a way that the operations in the resu lting 
semiring (S, -/- , .)(where s = u iED S;) are given by 

a;bj 'I/Ji,iAj(a;)1Pj,iAj( bj), 

a;+ bj = 'I/J::V~,il\j(1/J; ,il\j (a;) + 1/Jj,-iAj(bj)) , 

where a; E S'; and bj E Sj. 
Now, we are going to call an m* -system of semirings a family of semi rings S'; 

indexed by a distributive lattice with involution (D, v, /\,*),endowed with semir­
ing embedclings 1/Ji,j for each pair i :2: j and a bijection * on u iED S; such that the 
conditions (i)-(iii) above are satisfied, as well as the following conditions: 

(iv) * : S; --+ S;· is a semiring anti-isomorphism for all i E D, 
(v) '1/J;• ,j • ( x) = ( '1/Ji,j ( x*)) *, for all i, j E D such that i :2: j and all x E S';·, 

which express the compatibility of * with them-system stmcture and, respectively, 
the 'symmetry' of them-system with respect to the involution. 

Theorem 2.3.3. (Dolinka, [27]) An algebra (S, +, ·,*) is an ID-semiring with 
involution satisfying x + xyx = x if and only if it is the sum of an m,* -system of 
rectangular ID-semirings. 

Finally, it remains to provide some information about rectangular ID-semirings 
with involution. We recall here a construction which is well-known in universal 
algebra, called the matrix power. Namely, for a universal algebra (A, :F) (where :F 
is a family of finitary operations on A) and n E N, the n-th matrix power is defined 
on the set An = A x · · · x A such that all fundamental operations from the original 
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algebra are inherited by applying them coordinatewise in An, while two operations 
are added: the n-ary diagonal operation d given by 

d(x1, . .. ,Xn) = (xu , X22, ... ,Xnn) , 

where x .i = (xil, ... , Xin) for all 1 :=; i :::; n, and a unary operation p determined 
by 

p ((x1, x2, ... ,xn)) = (x2 , ... ,Xn,Xl). 
It is known that for a variety of algebras V and a given positive integer n, all isomor­
phic copies of all n-th matrix powers of members of V also form a variety, denoted 
by v [nJ. Also, it is known that this construction preserves equational completeness, 
see [71]. For more information about matrix powers and their application in uni­
versal algebra, we refer to [53] and [71]. Now we obtain the following theorem, 
which does not have its non-involutorial analogue. 

Theorem 2.3.4. (Dolinka, [27]) Every rectangular ID-semiring with involution 
is the matrix square of some semilattice and conversely, evety matrix square of a 
semilattice is a rectangular ID-semiring with involution. In other words, the variety 
of rectangular ID-semirings is just S.C[21 and thus it has no proper subvarieties (cf 
[2 1]). 

Another nice and in this setting important feature of the paper [31] is that it ad­
mits a clirect calculation of those involutorial Plonka sums whi ch are subdirect ly 
irreducible, provided that the subcli rectly irreducibles are known in the class of 
(involution) algebras from which the components of the sum are taken. So, the re­
su lts in [3 1] generalize the corresponcling results on subclirectly irreducible Plonka 
sums, given in [69]. With a little amount of technical work, one can find the ex­
plicit list of subdirectly irreducible ID-semirings, and thereby show that the variety 
of lD-semirings is - similarly to the variety of normal bands with involution -
residually < 10 (in fact, the results presented in the last subsection of the section 
on involution semi groups can be also derived from the general theorems of [31 ]). 
~n particular, if an involutorial Ptonk:a sum is subclirectly irreducible, then its stnlc­
ture involution semilattice must be trivial , or it is subdirectly irreducible itself, that 
is, one of E2, E3 and E4 (by our Theorem 1.8 .1 ). 

But first, let L2 denote the (unique) two-element ID-semirings whose multiplica­
tive reduct is a left zero band. Dually, we have the semi ring R2. These semi rings, 
as well as their direct product L2 x R2, are examples of a rectangular ID-semirings. 
By defining the exchange involution (the reversing of pairs) on the latter one, one 
obtain a four-element involution semi ring, which is isomorphic to the matrix square 
of the two-element semi lattice. This one we denote by RS2 . 

The two-element and the four-element distributive lattice we denote by D2 and 
D4 , respectively. Of course, we can equip the first one by the identity mapping as 
the involution, thus obtaining the involution lattice D2. In tum, D4 can be enriched 
to the involution lattice D4 by defining an involution which fixes the top and the 
bottom element, and exchanges the other two. 

Similarly to semigroups, one can adjoin an absorbing element to a semiring 
(with involution). This is the same as to compose into an involutorial Pionka sum 
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a E2-ordered system consisting of a trivial involution semiring and an arbitrary 
involu tion semiring S, and such a construction yields an algebra denoted by '0 

Also, one can perform 0-~rect unions by taking a semi ring (without involution), 
tts anti-isomorphic copy S, and a trivial involution semiring (which, considered to­
gether, form a 17:3-ordered system of semi rings) and constructing their involutorial 
Ptonka sum. Such a sum is denoted by J0(S). 

Finally, assume we are concerned with a E4-ordered system of semi rings, where 
the (i nvolution) semiring assigned to the index 0 is trivial. Further, we have the 
anti-isomorphic semirings S = Sa and S = Sa-, and the involution semi ring 
5'1, with the structure semiring homomorphism ¢> = ¢1,a satisfying the required 
conditions . The resulting sum we denote by ()0(5', S1 , ¢>) . We omit¢> if it is (up 
to an isomorphi sm of the resulting sum) uniquely detennined by the components. 
Moreover, if 5'1 is trivial , then it will be omitted too. The desired key result on 
subdirectly irreducible ID-semirings is now the following. 

Theorem 2.3.5. (Dolinka, [27]) A nontrivial ID-semiring with involution is sub­
directly irreducible ((and only !fit is isomorphic to one of the following 17 semir­
ings wilh involution: 

( I) RS?_, D?_, D;j, 
(2) E2. (RS?_) 0, (D?_)o, (D;j) 0, 

(3) E3, Ia(L2), Ia(D2), 
(4) E4, Oo(L2), 00(D2,¢o), 00(D2,¢1). 00(L2,RS'?_), 00(D2,D?_), and 

Oo(D2, D;j), 

where ¢o maps the only element of the trivial semiring into the lower element of 
D2, while ¢1 maps into the upper element of D2. 

The above theorem, together with the other structural results presented in this 
section, are the main ingredients in a lengthy and involved argument, with a number 
of subtle details, which leads to the result of Theorem 2.3 .1. In Figure 11 , there 
are three clearly distinguished intervals of the lattice. The lattice is, of course, 
intentionally drawn in such a way, because the corresponding proof splits into three 
separate parts, each producing one of those intervals, starting from the bottom and 
proceeding to the top. 

2.4. Some Varieties of Involution Rings. Let (R, +, ·, -, 0) be a ring and assume 
that* is its semiring involution. Then it is very easy to deduce from the ring axioms 
that for all r E R we have ( -r )* = -r* and 0* = 0, so that * agrees with the whole 
ring structure of R. In the way just described, we obtain a ring with involution (or 
a* -ring) . 

Involution rings are probably the most important and best studied algebraic 
structures with involution in mathematics in general. It would take too much space 
to attempt to give even a shortest account on the results concerning involution rings 
and their applications. This topic originates back to von Neumann, who considered 
the adjoint (as an invblution) in the algebra of bounded linear operators on a Hilbert 
space (such an involution algebra is widely used in theoretical physics, especially 
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in quantum mechanics). Classical books on involution rings are e.g. Berberian [3] 
and Herstein [52]. 

However, the point of view of considering an involutorial antiautomorphism 
of a ring as a fundamental operation (and thus, of considering related universal 
algebraic questions) is somewhat more recent and much easier to review. Such an 
approach has been taken, for example, in Rowen [97] and in the survey article of 
Wiegandt [115]. 

One of the (historically) most important classes of involution rings is the one of 
regular *-rings. Originally, it were regular rings which were considered by von 
Neumann in his fundamental treatise [114] (see also [108]), and which turned out 
to be the starting point (and the main motivation) for the whole theory of regu­
lar semigroups. Regular rings and regular *-rings are in a quite fascinating way 
strongly related to (orthocomplementded) modular lattices, and thus, in particular, 
to projective geometries. This link is described by the well-known von Neumatm's 
Full Coordinatization Theorem (which generalizes the classical coordintaization 
theorems of projective spaces). 

Theorem 2.4.1. (von Newnann, [114], Roddy, [94]) Let M be a (orthocomple­
mented) modular lattice. Then there is a regular ring (with involution) R whose 
principal right ideals form a lattice, which is isomorphic to M. Moreover, R can 
be obtained as a ring of matrices (of a certain finite dimension) over a ring D 
such that D ~ M and the ring operations of D are expressed as polynomials of 
the lattice M. In the case of ortholattices, the orthocomplementation is uniquely 
determined by the involution on R. 

lt is easy to prove that the condition of a regularity of a *-ring is equivalent 
to the condition that every principal right ideal is generated by a projection, an 
idempotent fixed by the involution. Therefore, in the orthocomplementecl version 
of the above theorem, one can replace the lattice of principal right ideals of R by 
the lattice of projections of R with respect to the partial order defined by e ~ f 
is and only if ef = e. Hence, every modular ortholattice can be represented by 
projections of some regular * -ring. 

Further, one can show that the regu larity of a *-ring R is equivalent to the impli­
cation 

rr = 0 => 1· - 0 , 

for al l r E R. This fonn of regularity provides an obvious way to equational ly 
define a special ring involution which guarantees the regularity of the underlying 
ring. Following Yamada [ 117], we call a special regular • -ring an involution ring 
which satisfies the identity 

xx~~c - x. 

Using some results from Nambooripad and Pasijn [76], Yamada first proved that 
the multipli cative reduct of any special regular *-ring is a semilattice of groups, 
and moreover, we have 2x - (2x)(2x) (2x) xx•x x, so 6x - 0. ln light 
of this, the following result is not so surprising. 
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Theorem 2.4 .2 . (Yamada, [ 117]) Any special regular '-ring R can be decom­
posed into a direct sum R R2 E9 fh such that /12 and R3 are the '-ideals 
(ideals closed for *) of R consisting of all the elements of R of order 2 and 3. 
respeclivezv. Moreove1; R2 satisfies x4 x, while R3 satisfies x3 :c . so that 
I? satisfies :~J - x. Consequently (by Jacobson 's Theorem), eve1y pecial regular 
'-ring is C0 /1111/Utalive. 

Going in more detail, Yamada in [117] described the subdirectly irreducible 
special regular *-rings. 

Theorem 2.4.3. (Yamada, [I 17]) The only subdirectly irreducible special regu­
lar • -rings are the fin ile fields with 2, 3 and 4 elements. with the inverse operation 
as the involution (x .. = x 1 for all x :f. 0 and 0* = 0). 

Of course, it is well-known that a ring which sati sfies the identity xn+l = x for 
some n E N is subdirectly irreducible if and only if it is a field (satisfying the same 
identity). This fact, and the above theorems of Yamada serve as good inspiration to 
investigate in general the subdirect decomposition of involution rings obeying an 
identity Of the form xn+l = X . 

Given a ring R, denote by R opp its opposite ring, i.e. its anti-isomorphic copy. 
Clearly, the direct sum R E9 Ropp is isomorphi c to their direct product, and one 
can define the exchange involution on this sum. The resulting involution ring we 
denote by Ex(R). Of course, to each ideal I of R it corresponds a *-ideal of 
Ex(R) obtained as the direct sum of I and J*. Also, if R is a ring with involution 
and I is an ideal of the ring reduct of R such that R = I E9 I*, then it follows that 
R ~ Ex(I) . 

It is not difficult to analyze all the possible involutions on a fini te fie ld GF(pk). 
The required invo lution defines an involutorial automorphism ofthat fie ld, and it is 
well-known that every automorphism of the specified fin ite field is of the form 

for some integer 0 ::; m ::; k - 1. Thus, we have 

( *)* ( Pm)* p2m X = X =X = X. 

As the multiplicative group of our field must be cyclic of order pk-1, we obtain that 
(pk -1) I (p2

m- 1), that is, k I 2m. Since 2m< 2k, this yields two possibilities: 
m = 0, whence the involution is just the identity mapping, and m = ~, provided 
k is even (otherwise, this case is impossib le). The resulting field with involution 
we denote by GF(pk) in the former case (abusing slightly the notation), and by 
GF* (pk) in the latter case. Now we have prepared the way for stating our next 
result. 

Theorem 2.4.4. (Crvenkovic, Dolinka and Vincic, [1 6]) A ring with involution 
R is subdirectly irreducible and obeys the identity xn+l = x if and only if there 
is a prime number p and an integer k 2: 1 satisfying (pk - 1) I n, such that R is 
isomorphic to one ofthe.following: 

(1) GF(p1
'), 
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(2) ifk is even, GF*(p"'), 
(3) Ex(GF(p"')). 

The key lemma in the course of proving the above theorem is that if R is a 
ring with involution satisfying the given conditions, then R has an identity element 
(which is, clearly, fixed by the involution) and R is actually* -simple (meaning that 
R has no nontrivial *-ideals). The other main ingredient for the proof comes from 
the paper ofBirkenmeier, Groenewald and Heatherly [5] in which the relationships 
between the ideal ~md the *-ideal structure of an involution ring were studied. In 
particular, the result we need is that if R is *-simple, then it is either simple as a 
ring, orR ~ Ex(K) , where K and K* are the only nontrivial proper ideals of R 
and R 2 i- 0. From these facts it is possible to derive the previous theorem. 

One of the principal applications of the above result is that it helps a lot in 
determining the lattice £(n) of all subvarieties of the (involution) ring variety v (n) 

defined by xn+l = x for a given value of n. Towards this aim, the following 
observation is very useful. Let V~n) denote the subvariety of V (n) determined by 

px = 0 (formed by all members of the latter variety of characteristic p ), and let L~n) 
be its lattice of subvarieties. Clearly, V~n) is nontrivial if and only if (p - 1) I n . 
Now if {p1, ... ,p~o } is the set of all prime numbers with this property, then it can 

be easily shown that the varieties V~7), 1 ~ i ~ k, are independent, which means 
that there is a term t(x 1 , .. . , x~o) such that the identity t(x 1 , .. . , x~o) = Xi holds in 

V~~). If a variety is equal to the join of some of its independent subvarieties, it is 
usual in universal algebra to say that the variety under consid~ration decomposes 
into a varietal product of these subvarieties (cf. [74]). In our case, we wri te V(n) = 
V~7) ® · · · ® V~~). It is well-known that varietal product decompositions induce 
direct decompositions of the lattice of subvarieties, thus we have 

£(n) ~ L~~) X · · · X £~~) 

Hence, the task of finding the lattice of varieties of rings (with involution) satis­
fying xn+l x reduces to the same task in a fixed prime characteristic p, where 
(p - 1) I n . This is just where Theorem 2.4.4 can be used, for it supplies the 
corresponding subdirectly irreducibles. It remains then to study their mutual rela­
tionships in order to obtain the exact list of varieties they generate. 

This is just what have been done in the recent note [30]. Namely, let Fr denote 
the set of all finite fields of characteristic p, while F; denotes the set of all (subdi­
rectly irreducible) involution rings from the above theorem which are of character­
istic p. Furthermore, writeR ~ S if R embeds into S . This relation turns Fr and 
F; into partially ordered sets. !early, (Fp, ~) is isomorphic to the divisibility 
order of natural numbers (as G F(pk) embeds into G F(pe) if and only if k I e) , but 
it was shown in [30] that (:F; ~) can be effectively described as well. 

Now let Fp(n) (:F;(n)) denote the set of those C F(p"') (and CF•(pk) and 
Ex(GF(pk)) in the involutorial case) for which (pk- 1) I n. The main result of 
[30] is as fol lows. 
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Theorem 2.4.5. Let n 2: 1 be an illleger and p a prime such that (p - 1) I n. 

1'l1e11 L~n) is isomorphic to the lallice of all ideals o.f I he ordered set (.1"1,( n ), ....... ) 
(resp. (F; (n ), ....... )) . 

By the previous remarks, the finite partial orders from the above theorem turn 
out to be computable, which establishes an effeclive algorithm for constructing 
I (11) . d 
u p , as requtre . 

Bearing in mind Theorem 2.4.2, let us finish this survey by discussing the case 
n - 6 as an example, so that (p - I) I n (where p is a prime) if and only if 
p E {2 , 3, 7}. 

When we consider ordinary rings, the situation is clear: for p = 2 we have two 
subdirectly irreducibles, GF(2) and GF(4 ), where GF(2) embeds into CF(4); 
fo r p :1 we have GF(3), and for p 7 we have GF(7). Thus, it is easy (us ing 
the above theorem) to conclude that there are 12 ring varieties satisfying :c1 x, 
and that the lattice formed by them is the product of a three-element chain and the 
square of a two-element chain. 

In the case of involution ring varieties, for each of p = 3, 7 we have two sub­
directly irreducibles, so that GF(3) ....... Ex(GF(3)) and GF(7) ....... Ex(GF(7)), 

and both L~6) and L~6) are three-element chains. For p = 2, a routine calculation 

shows that L~6) is isomorphic to the lattice given in the fo ll owing figure. 

Figure 12. The lattice of all involution ting vatieties sati sfying x 7 = x and 2x = 0 

Hence, we obtain exactly 90 varieties of involution rings satisfying x7 x . 
Only six of them have a special involution, cf. Theorem 2.4.3. 
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1 Introduction 

Finite difference schemes (FDSs) are often used for approximation of boundary 
value problems (BVPs) with genera li zed solutions. In such cases it is preferable 
to have the convergence result for the mi nimal smoothness of in put data. T his 
leads to several problems as: the right hand side of the equation and the so lu­
tion may be discontinuous functions; small smoothness of the so lu tion req uires 
the conv rgence rate estimate in the weak norm; coeffici ents of equation does 
not belong to s tandard Sobolev spaces etc. In the case of difference schemes on 
nonuniform meshes the order of local approximation is us ually reduced. The 
accuracy of the method can be increased by using the approximation of the 
considered diflcrential equation in some non mesh points and special averag­
ing operators. In the case of problems with singular coeffi cients the solution 
does not. belongs to the standard Sobolev spaces. Also there arise nonstand ard 
conjugation conditions. 

In this paper we give a survey of techniques for overcoming these problems. 
Sp cia! attention is paid to deriving converge nce rate estimates consistent with 
the smooth ness of in put data. 

2 Poisson Equation 

As a mod I problem we consider the Oirich l 
the square n (0, 1)2 : 

-6u f(x), x (x1, x2) E 0 ; 

t BVP for the Poisson equation Ill 

u(x) == O, xEI' 80. (1) 



WP assume th at t he solution of BVP (1) IS sufHciently smooth , th, I is, the 
func tio n f(x) sa tisfi es a ll the necesscry conditions for th a t 

Let Wit be the uniform mesh in TI With the s tep size h, Wit = Wh n n and 
11. w1, n 1'. We define fimte difl'erenccs in the us ual way [3 1[ : 

Vz, - (v '-v)/h , vx, (v-v ')/ h , 

where v±'(1·) =- v(x ± hr,), and r, denotes the unit vector of the x, ax is. With 

w<· cl <· no te disc rete LT norm in w11 . We also introduce disc rete So bolev norms 
JJu[[ IV;(w,,) (k = J , 2, .. . ). 

W<• a pproxsim ate (J ) with the sta ndard five point FDS : 

- 6.it v · f , :r E Wit ; v = 0 I X E "(h. (2) 

T he error z = u - v satisfi es t he conditions: 

-6.it z = 'lj;' X E Wh ; z- 0 I X E "fh I (3) 

where 'l/;= 6.u - 6.htt = (~ -Ux 1 x ,) (~ -Ux 2 :r 2 ) ='1/;1 I '1/;2 . 

l~·o rn inequali ty (sec [32]) [[6.,. z[[L2 (w, ) ~ Co [[ z [fwi (w~o) immcdi atcll y fol­
lows a p ri ori estimate 

[[ z[[Wi(w1, ) ~ C [[ -rJ;[[£ 2 (w~o) · (t1 ) 

Here C lenotes a positive generic constant independent of u aJ1Cl the mesh step 
size. In different formulas C may ta ke different values. ln such a way, to prove 
the convergence of FDS (2) we must estima te 'lj;. Prom Tay lor's formul a foll ows: 

'1/;;(x ) = ~ 8~Wi:) , where x is some midpoint . From here one immedi a tc lly 

obta ins: 

[[ z [[wi(w~o) ~ C h2 [[u [[c.(i"i). 

More precise estimate may be obtained using integral representation o f resid­
ual. We have 

and an analogous formula for '1/;2. Therefrom follows 

['1/; (x) [ ~ C h [[u[[w~ (e) where e = (x1 - h, x1 +h) x (x2- h, x2 +h). 
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Summing over the mesh wh one obtains 111f'IIL2(wh) ~ C h2 ll ullw.;'(n), where-
from follows -

(5) 

The estimate (5) can be obtained also by application of the Bramble- Hilbert 
lemma (see [1], [3)). Moreover, as the value of 1f1 in the node x E w is a bounded 
linear functional of u E Wi(e) , for s > 3, which vanishes on polynomials of 
third degree, applying the Dupont- Scott lemma [3] we obtain 

l?f(x) l ~ C hs-31ulw: (e) ' 3 < s~4. 

From here, after summation ofer the mesh wh we obtain more general result: 

(6) 

for 3 < s ~ 4. 
For s ~ 3 the right hand side of (1) and (2) may be discontinuous function, 

and consequently, FDS (2) is not well defined. To obtain a well- defined FDS 
we average .f (x) using Steklov averaging operators: 

Td(x) = T;- .f(x + 0.5 h r;) = T/ .f(x- 0. 5 hri) = 1112 

.f(x + h y r·;) dy. 
- 1/2 

Th se operators commute and satisfy the following rela tions 

_of 
T; -;--- = fx , , 

u x; 

Fo r s < 2, the convergence of FDS (2) does not follow from (6). Conse­
qu nlly, the weaker norms mus t be used to prove the convergence. T he following 
ass rtion is valid (see [32], [4]). 

L mma 1: If in {3) 1/; = "11, :~: 1 + 'f/2, x2 , then 

(7) 

(8) 

L t us onsider FD with avcrag d right hand side [4] : 

v = o, x E rh. (9) 

T h rror z = u- v saLisfi cs the conditions (3), where: 7f1 = 7f 1 1 ?f2 , ?f; = 
(,, .,,..,, 1 (; - Tt-; u- u 1 i = 11 2. By lemma I one obtains a priori estimates 
(4) 1 ( ) and 

so 



t s111g Dupont-Scotl lemma, analogously as in the previous case, one obtai ns 
the followmg convergence rate esl.lmales. (6) for 2 ~ s ~ 4, 

(10) 

HllO 

(ll) 

In the case 0 < s ~ 1 the solution of (1) may be non-continuous function. 
Let 11s consider FDS 

-6.,. tL = T{Ti f I X E w,.; v 0 I X E '" 

and defi ne the error in the foil wing manner: z T1 T2 u- v. Similarly as in 
t h previous cases one obtains stimatc (1 J) for 0 < s ~ 2 [4] . 

Analogous results hold for the FDSs on non- uniform mesh s. For exam tle, 
in [17J for a family of nine--points difference schemes approximating BVP (1) on 
an arbitrary non- uniform rectangular mesh w,. ar obtained convergence rate 
estimates 

and 
li z[[ L0 (w 11 ) ~ C h;,ax [ju[j Wi(!1) · 

Convergence rate estimates of the form 

S?. k I 

arc called consistent with the smoothness of the solution of BVP (1) (see [26]) . 
For a broad class of FDS such estimates are obtained in [36], [25], [4] etc. A 
review of resul ts on the convergence of FDSs is given in [12]. An extensive 
bib liography can be find in [9] 

3 Estimates in w; N orms 

Let us consider again the BVP (1 ) assuming that its solution belongs to Sobolev 
space w;(D), 1 < p < oo. As in previous case, we approximate (1) with the FDS 
(9). The error z = u-v satisfi es the conditions (3), where: '1/J = 'lj;1 +'I/J2, '1/Ji = 
(;,Xi Xi o (; = Tl-i U - U I i = 1, 2, 

With llviiL.(wh) = (h2 l:xEw, [ v(x)IP ) 11 ~' we denote discrete Lp- norm in w,.. 
We also define discrete Sobolev norms llvll w;(wh) (k = 1, 2, .. . ). 

The following analog of lemma 1 can be proved using theory of discrete 
Fourier multipliers [30]. 

Lemma 2: FDS {3) satisfi es a priori estimate 
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If 1/; = 'T/1, x1 + 'T/2, ;;2 , then 

If 1/; = ( I, x 1 x1 + (2, x 2 x2 and (i = 0 for xi = 0 then 

Estimating (i, x; x ; , (i, x ; and (i by Dupont- Scott lemma one obtains the 
following convergence rate estimates (33], (2]: 

max{1, 2/p} < s :<::; 3 , 
and 

2/ p <s:<::; 2 . 

In Lhe case when 0 < s :<::; 2/p the solution of BVP (1) may be non­
continuous function. In this case we may define the error as z = T

1
T

2 
·u - v 

and consider the FDS with stronger averaged right hand side. 

4 Technique Based on Interpolation of Hilbert 
Spaces 

As we have been seen , for integer values of smootlmess parameter s convergence 
rate estimales can be constr ucted " lemenlary", without the Bramble-Hilbert 
lemma. Using such estimates and the in terpolalion theory of Hil bert spaces (27] 
on easily obta ins correspond ing estima tes for non- integer s. 

Let X and Y b two Hil bert spaces and let X be conlinuously imbecled in 
Y . Let 0 < 0 < 1 and let (X, Y] o denotes the intermediate space obtained by 
interpolalion [27] . T hen XC [X, Y]o C Y and for every u EX Lhe inequality 

(12) 

holds. 

Let W1(0) b So bol v spaces in 0. Let us inlrodu e also Lhe spaces 
IV1 ((0, T) ; W2(0)) and aniso lrophic Sobolev spaces in Q = n x (0, T) : 
ll'{ 'r(Q) W~((O , T) ; W1(0)) n W:f((O, T ); W2°(0)) . 

Lemma 3: Let s 1 , s2, r 1, r2 ~ 0 and 0 < 0 < 1 . Then 
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and 
[w;• ((o, T); w;•(o)) , w;• ((o, T); w;•(n))]

0 

= IVJI 0)• 1+0••((0,T); w JI-O)r 1 +0r2 (0)). 

Lemma 4 [27\ : Let A be a bounded linear operator from X, into Y. {i = 0, l ). 
Then A ts also botmded linear operator from [X0 , X 1lo into [Yo, YI]o and the 
following relation holds 

llAll rxo,Xdo~[Yo, Ydo $ C'o liAii:'(/.x, iiAii~o-->)'1 · 

Let us co nsid er again FDS (9). Similarly as in the chapter 2, one easily 
shows that 

and 

wherefrom, using lemma 4, one immediately obtains estimate (6) for 2::; s ::; 4. 
In an analogous manner one obtains convergence rate estimates in other discrete 
norms (see [ 10], [11]). 

5 Equations with Variable Coefficients 

Let us now consider elliptic equation with vari able coeffi cients: 

2 a au 
£u =- ~ -(a;·-) = f(x), x E 0 ~ ax · J ax . 

i,j= l t J 

(13) 

with homogeneous Dirichlet boundary condition . We assume that u E W1(0) 
and f E w;-2 (0) . 

Let V and Hi be two function spaces in the same domain. The space of multi­
pliers M(V, W) is defined by: M(V, W) = { a(x) : a(x) v(x) E W, Vv(x) E V}, 
M(V) = M(V, V) (see [29]). It is easy to see that coeficients a;j of equation 
(13) belong to the space of multipliers M (w;- 1 (0)). 

T he following relations are valid [9]: 

is -1i > 1, 

wJ;~~~1£(0) c M(w;- 1(0)), E: > o, o <is -1i < 1 , 

Loo(O) = M(L2 (0)) = M(w~- 1 (0)) , s = 1. 

Let us consider FDS 

2 

Lhv=-~ L [(a;jvx;);:,+(a;jVx;tJ = T{Tif , xEwh (14) 
i,j=1 
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with the previous boundary condition. The error z = u - v satisfies conditions 

2 

Lh z = L T/ij , Xi , X E Wh ; z = 0, X E /h 

i,j=1 

l - T+T 2 ( au) 1 ( +i +i ) Th f ll . . . w 1ere T/ij - i 3_; a;j ax; - 2 a·ij Ux; + ai.i 'tLx; . e o owmg a pn on 
estimates hold 

2 

llzll w{(wh) :S C L II%, dL2(w,.) (15) 
i ,j= l 

and 
2 

ll zll w2
1(wh) :S C L II 'Tiij iiL2(w") · (16) 

i,j= 1 

Using bilinear version of the Bramble- Hilbert lemma or interpolatory prop­
erties of bounded bilinear operators from (15) and (16) one obtains convergence 
rate estimates in the form (see (9), (11), (15]) 

2 < s::; 3, 

and 

1 < s::; 2. 

Analogous results for the third boundary value problem are obtained in (20]. 
In multidimensional case (n > 2) there arise additional problems caused by 

lhe discontinuity of right hand side of equation (f E w~-2 (0) rt C(O) for s::; 
2+n/2) or its solution (u E W1(0) rt C(O) for s :=:; n/2). These problems may 
be resolved by convenient averaging. Nole also that M(w;- 1 (0)) =!= w;-1 (0) 
for s ::; 1 + n/2. 

6 Equations with Singular Coefficients 

Inlerface problems occur in many physical app lications. Such problems can be 
modeled by parwal differential equations wilh singular coefficients. For example, 
as a model problem let us consider lhe Dirichlet problem 

-.6.u+c(x)os(x)u=f(x), xEO; u=O, xEr, (17) 

where S is a conlinuous curve (for exampl closed curve), S C 0 and os(x) 
is Dirac's delta distribution (35] cone nlraLed on S. We suppos Lhal c(x) E 
L00 (S) and 0 <Co:=:; c(x) :=:; C1 almost everywh re on S. 
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We assume for simplicity LhaL Lhe curve S separal n in lo two regions: 
0 = fl 1 U fl2, 0 1 n 02 = 0. Then, al some assumptions for smooLhness, the 
B VP (J 7) can be rewriLten as follows: 

-6. u = f(x) I X E nl u n2 ; [uJs = 0 I - - c(x)u, [8tt] 
8v s 

where auj811 - is the normal derivaLiv . 
We a1 proximate the BVP (17) on the mesh w" with Lhe following FDS (see 

[16]) 
v = 0 on 'rho 

where 

{ 

h- 2 f n;(x, x') c(x') dSx', 
o·(x) = T?T:](c6s) = Js(x) 

0, 

X E Sh, 

x E w" \ s", 

n;(J;, x') = (1- lx', ~x · i ) (1- lx2~x 2 1), S(x) = Sn e(x), e(x) = (x1- h, X1-l 

h) x (x2 - h, x2 +h) is the cell atlached to the internal node x E Wh, and 
S, = {x E wh · S(x) =T 0}. 

The error z = u - v satisfies the FDS 

z = 0 on 'Yh 

where 
1f; i = u- Ti-iu, i = 1, 2, 

X= 0! u- h- 2 r 1\,(X, x') c(x') u(x') dSx' I X E s, 
Js(x) 

X = 0, x E wh \ S'h . 

The a priori estimate 

is satisfied . Estimating the terms in the right-hand side of (18) using the 
Bramble-Hilbert lemma, we obtain the following inequalities 

1 < s < 3/2 

and 
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In the case when S is a segment parallel to one of the coordinate axes an 
improved convergence rate estimate holds. Let, for example, S is given by the 
equation x2 = j 0h (jo - integer). Then 

ll zllw2'(wh) ~ C h
2 (l l a~

3

;x2 t 2(0) + ll a~
3

;x~ IIL2(nl) 

+1 1 ax~
3

;x~ t 2(n2) + llc ll wi(O,l) llull wi(S)) · 

7 Parabolic Problems 

In parabolic case analogous results hold . Let us consider the folowing initial­
boundary value problem (IBVP) 

~~ + £ u = f(x, t) 

u(x, 0) = uo(x); 

in Q = D x (0, T) ; 

u(x , t) = 0 on r x (0, T) . 
(19) 

Let us introduce the mesh QitT = wit x wT, where wT is uniform mesh with 
the step size T in (0, T). We also define discrete £2- norm 

llvli l,(Q,r) = h2
T L v2(x, t), 

(:r,t)EQhr 

and th discrete Sobolev norms llvllw;·"/2(Q,rl" 
We consid er implicit FDS 

vr + £it v = T{TiTt- ! , 

wi lh the corresponding boundary and initial conditions, where Tt- is the Steklov 
av raging operator on t: 

rt- f(x, t) = ~ t f(x, t') dt'. 
T l t-T 

The error z = u- v satisfies the equation 

2 

Zt +Lit z = <pt 1- L T/ij, ;;, 

i,j=l 

and homogen ous boundary and initial conditions . Here 

<p - 1t - T(T]u , 
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The following a priori esLimaLes are valid 

and 

h [ ]2 _ h2 '\' 2 '\' l'l'(x, t) -'I'~X,t')l 1 Ft h · · w ere r.p l /2 - L-xEwh T L-t,t'Ew" tt.t ' It td . om ere, m a Sim-
il a r manner as in Lhc elliptic case, for T ::::: h2 , one obtains convergence rate 
esLim aLes (see [5], [6]) 

llzllw;· '(QhT)::::; C h'-2 
( 1TJ,~x lla;i llw;-'(n) + 1) llullw;· •I'(Q)' 

for 2 < s ::::; 4 , and 

li z II w;· •t•(QhT) ::::; C h'- 1 
( rr;,~x lla;i II w;- '(n) + )ln (1/h)) llull w;· •I'(Q) , 

for 2 < s ::::; 3. For 1 ::::; s ::::; 2 t he so lution of IBVP (19) may be discontinuous . 
In LhaL case Lhe error may be defined as: z = T1T2u- v. 

Problem with coefficients depending on t is consi lered in [13]. Similar r<)Su[Ls 
arc obtained for FDS on non- uniform meshes (see [18], [1 9]). 

8 Heat Equation with Concentrated Capacity 

Let us consider the IBVP for the heat eq uation with the presence of concenLraLed 
capacity aL in terior point x = ~ [28]: 

(x, t) E Q, 

u(O, t ) = 0, u(1, t ) = 0, 0 < t < T (20) 

u(x , 0) = uo(x ), x E (0, 1), 

where Q = (0, 1) x (0 , T) , J( > 0, 0 < c1 ::::; a(x) ::::; c2, 0 < c3::::; c(x) ::::; c4 

and o(x) is the Dirac's distribution. The solution of the IBVP (20) satisfies the 
equation 

fJu a ( au ) c(x) fJt- ox a(x) ox = f (x,t), 

for (x , t ) E Ql = (0, ~) x (0 , T ) and (x, t ) E Q2 = (~, 1) x (0, T), while for 
x = ~ the conjugation conditions 

[1t]x=e = u (~ + 0, t) - u(~ - 0, t ) = 0, [
a ou] = J{ ou(~, t) 

OX x=~ fJt 

57 



are fulfi lled. 
We introduce the space .l2(0, 1) = W~(O, 1) of functions w(x) E L2(0, 1) 

equiped with inner product and norm 

(u,w)z
2
(0,l ) = 11 

u(x)w(1;)dx+u(0w(~), ll wJJ - = (u w)':.f2 . 
L2(0,l) ' L 2 (0,1) 

Further we set W}(O, 1) =Wi (0, 1) and W:!'(O, 1) =W2
1 (0, 1) n W:!'(O,~) n 

k - -k~2 -k W2 (~, .L ), k = 2, 3, ... . We also define spaces W2' (Q) = L2(0, T; W2·(0, 1))n 
W:!'(O, T; L2(0, 1)), k = 0, 1, 2, 

Let wh be an uniform mesh in (0, 1) with the step- size h. For simplicity we 
assume th at~ E wh. We approximate the IBVP (20) on the mesh Qhr = wh Xwr 
by Lhe implicit FDS with averaged right hand side (see [22], [23]) 

(c + K oh) Vf- (a Vx)x = r;rt-/, (x, t) E Qhr, 

v(O, t) = 0, v(1, t ) = 0, t E Wr, 

v(x, O) = uo(x), 

where a(x) = [a(x-O)+a(x- h+0)] /2, oh = oh(x-~) = { ~fh, ~: ~" \ {0 

is the mesh Dirac's function and Tx is the Steklov averaging operator on variable 
x. 

Let (v, w)h be the discrete L 2-inner product in wh. Let us set Bh w = 
(1 + o,)w and define the energy norms JJwJJ e, = (Bhw, w);,12 

and Jlwll 8 i;-' = 
(Bt; 1w, w)~/2 We inLrocluce the mesh Sobolev norms with weight operator Bh: 

JJwll~v•( ) = JJw;;x JI ~- ' + JJ wiJ~,( ) ; 
Y 2 Wh II 2 Wit 

The error z = u- v saLisfies Lh foll owing condiLions 

(c + I< oh) zr- (a z:~:)x = <p, (x, I) E Wh X w:, 
z(O, t) 0, z( l , t) :::: 0, I E w:, 

z(x, 0) 0, X E w,, 
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where tp 1/Jr- x%, 1/.1 = C1L- r;(cu) and X au:;:- T,T, (a~) . The 
following a priori estimates hold : 

[ 

111/.1(.' t) -1/J(.' t')ll~ - 1 
ll zllcv.' ·''.<Q,,) ~ c T2 L L it - t'12 " + 

, T .E u + T ~ ,)·;:( ·· ~:;~;~.~: + T .P· ( . t}lll r (") 
Using integral representations of ·tj; and x an l the form of corresponding norms, 
from (2 1) and (22) we obtain Lhe following convergence rate estimates 

ll zllw;· '(Q,,) ~ C (h
2 + T) (llallwt(o.~) + llallwt(~.l) + llcllw~ (o,l) ) llullw;·•(Q) · 

ll zllw;· •t•(Q,,T) ~ C ( h
2 

J tn 1/T + T) (llallw~(o.~) + llallw~(~.l ) 

+ll cllwi(D,l)) llullw;·•I•(Q) · 
Similar estimate can be obtained in Lhe norm L2 (Q,..,.) using appropriate ap­
proximation of initi al condition . FDSs on nonuniform meshes are considered in 
[22]. 

9 Hyperbolic Problems 

Convergence rate estimates for hyperbolic IBVPs, contrary to the case of elliptic 
and par abolic problems, usually are nonconsistent with the smoothness of data. 
Let us consider the following IBVP 

021! 
at2 + £u = .f(x, t) m Q = 0 X (O,T) = (0, 1)2 

X (O;T); 

au(x, 0) 
u(x, 0) = tto(x)' at = 1LI(x); u(x, t) = 0 on r X (0, T). 

(23) 

We introduce the mesh in the same manner as in the Section 7 and define the 
norm 

[ 

2 + - 2 ] 1/2 

llv ll cT (W,i(w,)) = ~~ ll vt ii L(w~o) +{; II (T) x, II L.(w,) 

Consider FDS 

(24) 
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where v± = v(x, t±T), with the corresponding initial and boundary conditions. 
For T ::=:: h the following convergence rate estimate is valid (see [7), [14]) 

for 2 < s::::; 4 . 
In some cases by interpolation technique one can obtains estimates which 

garantee faster convergence on weaker solutions (see [37]). Let us consider the 
following model problem 

fJ2u fJ2u 
fJt2 fJx2 in Q = (0, 1) X (0, T); 

8u(x, 0) 
u(x, 0) = uo(x), ot = 0; u(x, t) = 0 on {0, 1} x (0, T) 

and approximate it by a FDS of the form (24). Using integral representation of 
the residual, one easily obtains the estimates 

and 

JJ zll cr(Wi(w,.)) ::::; C JJ uoJiw,t(o, 1) · 

From Lhese estimate by interpolation one obtains [8]: 

Contrary to (25), estimate (26) guaranties convergence even for 1 < s ::::; 2. 

10 String Equation with Concentrated Mass 

(26) 

Lei us consider the first IBVP for Lhe equation of vibrating string with concen­
trated mass aL Lhe interior point x = € [34]: 

(x,t) E Q = (0, 1) x (0, T), 

u(O, t) = 0, u(1, t) = 0, 0 < t < T (27) 

u(x, 0) = uo(x), ou~~,O) = tt1(x), x E (0, 1), 

wh re a(x), c(x) and J( are Lhe same as in th Section 8. Keeping denotations 
from Lhe Section we approximaL IBVP (27) by symeLric weighted difference 
schem with arveraged right- hand side (sec [21], [24]) 

(c + J{ 6,)vLL- (iiv~u)):t == r;r? f, (x , t) E Q,.,., 
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v(0 1 t)=0 1 u( 11 t) 0, lEwT, t'(Y,O} u0(1:), XEWh 1 

(c I- f ( bh) Vt(3' 1 0) = T;(cut) I-f( bhUL I ~ 'J~ ['f1
2 f(x 0) I- (a u~(x))'] , X E Wh 1 

whcrcv(cr)- uv++(l -2u;v I uv- 1 u~ 1/4 and 

2 r t' 
T? J(x,O) =-:; Jo (1- ;)f(:r:,t')clt'. 

T he error z = u - v salisfi es a priori cstim tr 

llzll ~·,(f:,(wn)) ~ c[11xll~+ 72 llxxll~;;-· 1-T L ll <fJ(. I t)ll~, IT L ll77t( . I t ) ll ~,. ·] 
tEwr tEwr 

where 
- - 2 ( Ott) - (cr) rp - T, T, a ax - a tL;: I CU- r;(c1t) 1 

= =r-[ (i'2 au _duo)] I X 2 :r a tn d· 1 

uX X t O 

and 

llzll c (-L ( )) = max II (z I z )/211-L ( ) 1 
T 2 Wh tEW r 'l Wla 

Estimating the terms X 1 rp and 77 similarly as in previous cases we obtain the 
following convergence rate estimate 

Here the space W{(Q) (k = 01 1, 21 ••• ) is defined as Lhe closure of subset of 
fun ctions wE L2(Q) such that 

w(0 1 t) = w(1, t) = 0 1 

in the norm 

61 



Similar result in the norm 

is obtained in [21) and [24). 
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SCHLICHT DISCS, BLOCH-BERS SPACE AND HARMONIC 
MAPS 

MIODRAG MATELJEVIC 

Dedicated to Professor Veselin Peric on the occasion of his 70th birthday 

In [3], we characterize Bers space by means of maximal rp-disks: 
Theorem 1. A holomorphic quadratic differential cpdz2 on the unit disc is bounded 

with respect to the Poincare metric (i .e. it belongs to Bers Space) if and only ~f the 
mdii of its maximal <p-discs are uniformly bounded. 

As an application we show that the I-Iopf differential of a quasiregular harmonic 
map with resp ct to strongly negatively curved metric belongs to Bers space. Also 
we give further sufficient or necessary conditions for a holomorpruc hmction to 
belong to Bers space. 
After writing OUl' paper [3] we realized that Theorem 1 has its roots in known 
characterizations of Bloch hmctions. 
In this paper we will present the content of ow· paper (see [3]) and explain links 
between menLioned Theorem 1 and known charac terizations of Bloch functions. For 
fw-ther results related to the subject of this paper we refer the interes ted reader to 
author's review 1 apers [29] and [31] ( see also [1 3],[14] and [30] ) . In Lhis pa] er (in 
section 4 ) , only a short review of [13] is given . 
In section 0 we prove Koebe and Bloch Theorem. The following result is an imme­
diate corollary of Bloch Theorem and Schwarz Lemma. 

Theorem SW (Seidel and Walsh). An analytic .f1mction on the unil disc 6. is 
Bloch j1mction iff schlicht discs in the image surface a1e uniformly bounded. 

lL is clear that Theorem 1 is a generali zation of Theorem SW. The proofs of these 
resulLs ar similar excepl we have some additional difficulties caused by possible 
zeros of corresponding quadratic differential. Lemma 1.1 (see below) enables us to 
overcome those difficulties. 

0. BLO C II 'S AND K OEBE'S TIIEOHEM 

We will use h following notation . 
lf r > 0 and a is a complex number 

B(a; r) = {z E C : iz- al < r} 
IS th open c1r ular disc with c nler at a and radius r. Also we use nolalion .6.r = 
B(O, r) and 6. 6.1 First, we mlroduc a parltculary interesting class of conformal 
mappings of t he disc. lh class S \ £' d nol by S' lh class of holomorph1c functIons 
f 111 ~ wh1ch ar mj cltve and sat1sf normalizatiOn conditions f(O) 0 and 
/'(0) I 

6( 
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P rupos it ion 1 . iff E S th rc P:ctsts agES surh that 

(I) !?(z)- /(:: 2
), zE D. . 

Proof. Since f belongs Lo S we can wn l f 
in Lh e form f(z) - zcp(z), where cp is holomorphic in 
6. , cp(O) = 1 , nd cp has no ze ros in 6. . lienee Lher ex isls an analy lic function h 

on 6. wiLh h(O) = l , h2 (z) = cp(z). Defin e g by 

g(z) - zh(z 2 ) , z E 6. . 

T hen g2(z)- z2h2(z2) = z2cp(z2) = f (z2). 

T he following res ulL is well known as Lhe Area T h orem (sec for example [1] and 
[181) . 

Theorem A (Area Theorem ). IfF is holomorphic in 6. \ {0}, F is one- to-one 
in 6. , and 

(2) 

Lhen 
00 

2::':k!ckl 2
::; 1. 

k= l 

Corollary 1. Under the same hypothesis, jc1 1 ::; 1. 

Proposition 2 . Iff E S and a2 = f"JOl is the Taylor coeffici ent off then 
la2l ::; 2. 
Proof. By Proposition 1 there exists agES so that g2 (z) = f (z2 ). If <P = ~ then 
Theorem A applies to <1?, and this will give ja2l::; 2. Since 

f (z2) = z2(1 + a2z2 + ... ), 
we have 

. 1 2 
g(z) = z( l + 2a2z + ... ), 

and hence 
1 1 2 1 a2 

il?(z)= -(1--
2

a2z + ... ) =- --z + ... 
z z 2 

T he Corollary 1 shows now that ja2l ::; 2. 

Theor em K (Koebe's One-Quarter Theorem). I! f E S then f(6.) :::> 6.1; 4 . 

Proof. Suppose that wo (j_ f(6.). 
Define the auxiliary function 

A(w) = wow and F = A o f. 
Wo-W 

Then FE Sand A2 = F"(0)/2 = A"(0)/2 + f"(0)/2 = a2 + ,;o . 
Hence, applying Proposition 2 to the function F we obtain 

1 
ja2 + -1 ::; 2 

wo 

and since ja2l ::; 2, we finally obtain 11 /wo l ::; 4. So 
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/w0 J ~ 1/ 4 for every wo rf. f(!::,.). Thus f(!::,. ) :::> /::,. 1; 4 . 

Lemma 1. Iff is analytic on B = B (a; r ) and Re .f' > 0 on B, then f is 
one-to-one on B. 

Proof. Suppose z1 and z2 are points in B , z1 f= z2 , 1(t) = z1 + t(z
2 

- z
1

) and 
I = J; f'('y(t ))dt. Then 

J(z2)- J (z1) = j f 'd( :;= (z2 - z1)I. 
[z1,z2J 

t.Ft·om the hypothesis Rei > 0 and therefore I f= 0 so that f( z1 ) f= J (z2) and .f 
is one-to-one on B. 

Lemma 2. Let f be an analytic nonconstant .function on B = B(a : R ) and 
suppose there exists q E (0, 1] such that 

q/.f'(z )/ .S /! '(a)/ , z E B . 

Then f is univalent on B1 = B(a; R1 ) , where R1 = qR. 

A proof of this lemma can be based on the subordination principle. 
Theorem B (Bloch's T heorem). Let f be an analytic function on K and f'(O ) f= 0. 

Then there exists a disc B C!::,. such that f is ·univalent on B and f(B) contains a 
elise of radius greater or equal fg /!'(0)/. Proof. Let Mo = max {/.f'(z)/(1-/z/): z E 

K} . lL is easy to see that there is a po int zo E !::,. such that Mo = /I' (zo) / (1 - /zo /). 
ff z E Bo = B(zo; Po) , where Po = Hl -/zo /), then 

/f'( z )/ .S Mo = 2/.f'(zo)/. 
Po 

Hence, by Lemma 2, f is univalent on B1 = B (zo; p1), where p
1 

= ~. Ac­
cord ing L Koebe's T heorem , Lb is implies that f(B1) conta ins a disc of radius 
R = ~ /J' (zo) /PJ = ts /.f'(zo)/(1-/ zo /) . 

Since /.f'(zo) /(1 -/zo/) ~ /!'(0)/ this gives the result . 

We will use notation WI = f(!::,.). A schlicht disc in WI is a disc B C WI su h t hat 
there exists a domain 0 such that f/ n : 0-> B is 1-1 and onto. 

For z E !::,. let d1(z) = Slip {r : B(f (z); r) is a schlicht disc in W1 }. Set r1 
sup,f 6 ct1(z) 

D finition 1. A Bloch function is an analytic map f : !::,. -> C such that 

1/f// a = SUPzeD. (1- /z/2)/J'(z) / < +oo. 

lL follows from Lh proof of Bloch's Theorem that if r1 is finite then f is a Bloch 
fun Lion . On the oth r hand if f is an analy tic fun ction on !::,. then, by Schwarz 
L mma, 

d1(z) .S (J - /z/ 2 )/f'(z)/, z E /::,.. 
li enee>, 1f f 1s a Bloch function Lh n r1 IS finite. 

Thus, w have proved th followlllg r suit of S id I and Walsh. 

h or m . For an anatyltc functwn on 
tl thr foltowmg rondtltons arr equivalent: 

(a) f ts Btorh /tmctwn 
{b) Tl < 00 

The follow1ng result gives further characterizat ions of Bloch function. 
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Theorem SWPo. Par an anaLyttc function on ~ the fotlowmg conditions are 
UfUWCLLent: 
a) f is BLoch function 

(b)rJ<oo 
(c) The famiLy {f oT- f oT(O): T E AuL(~)} is normaL 
(d) There exists a> 0, and a univaLent function g on~ such that f = a In g'. 

Recal l LhaL Seidel and Walsh (see T heorem SW above) proved (a) <===> (b). T he 
equivalence of (a) , (c) and (d) was proved by Pommerenke (se (16]). 

In [3] we pwved a generali zation of Theorem SW concerning holomorphic quadralic 
clifferenlials. 

Theorem 1 . A holomorphic quadratic d~fferentiaL cpdz2 on the unit disc is 
bounded with respect to the Poincare metric {i.e. it belongs to Bers Space) if and 
only if the radii of its maximaL cp-discs are uniformly bounded. 

Since f is a Bloch function iff bolomorphic quadratic differential cpdz2 , defined by 
cp = (!') 2

, belongs to Bers space, then 'Theorem SW can b c nsid r as a special 
case of Theorem l. 
After writing the paper [3] we realized that this result has its roots in known 
charac teri zations of Bloch functions in terms of their image J iemann surface. As 
we mentioned Seidel and Walsh and Pommerenke (16] proved th at a function f 
belongs to Bloch space if and only if its image surface W1 contains no large schlicht 
d iscs . For relevant definitions related to this result and so me generalizations we 
refer the interes ted reader to Pommerenke (16], Stegenga and Stephenson [21] . 

Holomorphic quadratic differentials on a Riemann smface a rise in s vera] di s tinct 
areas of geometry, for instance in TeichmLi ller theory and in th theory of harmonic 
maps (see, for example, Ahlfors (2], Earle and Eells (6], Wolf (27], Jost (J.O]). 

First we give a. short review of our results as well as some rela led ones (see (3]). 
In §1, we use a special parameter (natural parameter) in terms of which the 

differential has a. particularly simple representation, along with the theorems of 
Bloch and Koebe to prove Theorem 1 (just s tated above). 

Recall that when we work with a natural parameter , we have some additional 
difficulties caused by possible zeroes of the corresponding quadratic differential. 
Lemma 1.1 (see below) enables us to overcome those difficulties. 

'We will mention some recent results , which motivated us. 
Wan [26] proved that a. harmonic diffeomorphism of the hyperbolic plane JH[2 

is quasiconforma.l if and only if its Hopf differential is uniformly bounded with 
respec t to the Poincare metric. This has also been generalized to hyperbolic Ca.rtan­
Hadamard surfaces by Li, Tam and Wang (25]. 

See Tam and Wan [23], (24] and Han [8] for a general discussion of this area, 
where this and other questions were discussed. 

As an application of Theorem 1 we show that the Hopf differential of a quasireg­
ular harmonic map with respect to a strongly negatively curved metric belongs to 
Bers space (see below, theorem 2 and 3, §2). 

Thus, roughly speaking, we can extend one direction of the above-mentioned 
characterizations ((26],(25]) of harmonic quasi conformal mappings to harmonic quasireg­
ular mappings . 

For a precise definition of qua.siregular mapping see §2, 
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A4. Here we note only that the notion of quasiregular mapping is a. natural 
generalization of the notion of a quasiconformal mapping since one does not require 
that quasiregular mappings be homeomorphisms. 

Our proofs of theorems 2 and 3 are based on the fact that the Bochner formula 
(see [19], [20], [10]) has a simple form with respect to the natural parameter. This 
allows us to define a metric by means of the dilatation of the mapping, whose 
Gaussian curvature is bounded from above by - 1, and we use the classical Ahlfors­
Schwarz lemma. 

In §3 we give further sufficient and necessary conditions for a holomorphic fw1c­
tion to belong to Bers space, and show that every quasiregular harmonic mapping 
is decomposable as a quasiconformal harmonic mapping followed by an analytic 
fnnction . 

For further results and the literature in this growing area we refer the interested 
reader to [8, 9, 12, 15, 19, 23, 24, 25 26, 27, 28]. 

'Ne close our paper with a short discussion concerning some further results and 
open problems. 

Now, we present the complete content of our paper. 

1. MAXIMAL <p-DISI<S AND BERS SPACE Q 

Let <p be an analytic fw1 ction on the uni t d isk fl. Then <p belongs to Bers space 

Q = Q(fl) if 

esssupw(z) 2 Jcp(z) J < +oo , 

where w(z) = 1-Jz]2 

In this section we will give a characterization of Bers space by means of maximal 
cp-disks (see below theorem 1) . First we defin e maximal cp-disks. 

Maximal cp-disk. Let <p be an analytic function on the unit disk fl and let z0 

be a regular point of <p, i.e . cp(zo) :/:= 0. Let <I>0 be a single valued branch of 

w = <I>(z) = J J<PNdz 

near z0 , \T?(zo) = 0. There is a neighborhood U of z0 which is mapped one-to-one 
conformally onto an open s t V in the w-plane. We can assume, by restriction, 
that V is a disk around w = 0. The mverse <J>0

1 is a conform al hom a morphism f 
V into fl a nd evid ntly there is a largest op n disk Vo aroun I w = 0 such that the 
analytic contmuation of <1.>0

1 (w hich is still denoted by <1? 01
) is homeomorphic, and 

that <JJ 0 
1(\fo) C fl. The imag Uo = <1>01(Vo) is ca.lled the maximal <p- disk around 

=o; Its cp- radllls (mJeclivity radius) ro--= R ,0 is the Euclidean radius of Va 
Not that if f is a holomorphic function on fl and <p = (!') 2

, by notation 111 

section 1, R, d1(z), z E fl . 
tOr the d finition of cp-d isks and a diSCUSSIOll of their Important role in the theory 

of holomorphl(. quadra.tic cliff rentials w refer the mteresled read er to Strebel's 
book [22] 

Bloch s and Koeb 's theorem. Th lwo followmg theorems play a11 unpor­
lant rol 111 the proof of Theorem 1 It 1s easy to denv from Theor m K and 
I hr~>rc>m B (section 0) the> foll owmg v •rswus of Bloch's and Ko be's theorf'm;, 

Th •or m Bl (Bloch) Ltl 11' f( • bt an anolyttc functwn on thr· cl Hh /J 
IJ(zo.r) {z J~ -zoJ r}, 1' > 0, and Ill f'(;;,J 1 f: 0. Thrn thr.rr rs an OJXI' ch.sk 
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f' toqrth1 r· UJtlh an opten set V C B such that f tn 11 to V dr.jiru .. q a om-t0-0111' 
rrwppmg of V onto U and tht mdws R of lJ .atuj1 

R ~ C.'IJ'(zo)lr, 

whcr·r (' ts an absolute constant. 

Theorem Kl (Koebc). Let V be a dornam tn ( ' und let f lx an analytic and 
nmvalent rnappmg whtch maps \/ onto tlu. d k { w : lw - wol < R} and l t 
zo f 1 (wo). Then 

dtst (zo, {JV)IJ'(:o)j _ ~. 

T he following lemma enables us Lo ww Blo h::; th o rcm. In Lh proof of lhis 
lemm a we will usc lhe hyperbolic melric on •l disk . 

H y p er boli c distan ce. Lel B be Lhc disk w11 h ccnlc r al zo and rad ius r . Using 
Lhe conforma l a ulomorphisms <Pcc(z) 

1 
,:~. a ~. of 6. , one Cc n define pst'udo-

hype rbo li c dislance on 6. by 

c5(a, b) I<Pc.(b)l , "·bE 6. · 

Nexl, using Lhe conformal map A(() 
pseudo-hyperbolic d istance on 8 by 

~·2 from B onto 6., on ca n d fine 
r 

c5a(z, w) c5(11(:), A(w)) 

and th hyperbolic metric on B by 

p(z, w) I 
I 1 t5e(z,·w) 

og 
1-oa(z ,w) 

for z, wEB. 
T he fo llowing result is well known . 

Theor em H. Let F be an analytic fun ction from a disk 8 to another disk 
U. Then F does not increase the corresponding hyperbolic (pse1tdo-hyperbolic) dis­
tances. 

Lemma 1.1. Let cp be a bounded analytic ftmction on the disk B = B(zo , ro) and 
let Mo = sup{l cp(z) l : z E B} . Sttppose that cp(zo) ::/: 0 and let r1 = {fo- lcp(zo) l. 
Then cp has no zeroes in the disk B(zo , 7'1 ) . 

Proof. Let cp(z ) = 0 for some z E B. Using th hyperbolic (or ps udo- hyperbolic) 
dis tances on Band B(O, M0 ), an application of T heorem H to Lhe analytic function 
cp and the points z and z0 yields 

!z-zo! lcp(zo) l - -- >--. 
r0 - Mo 

D 

Let cp be an analytic function on the milt disk 6. . Let 0 < r < 1 and CfJr (z) = 
cp(rz )r2 , 'lj; (z) = ICfJr(z )li and w(z) = 1 - lz l2 Asswne tha t the fnnc tion h(z) = 
w(z )'!j; (z) has the maximum on 6. at the point z0 E 6.. Next let ro = l -~zol and let 
Mo = max{lcpr(z) l: z E B(zo , ro)}. Since 

h(zo ) ~ h(z ) 
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and 

2w(z) ~ w(zo) for z E B(zo , ro) 

then 

(1) Mo :S 4Jcpr(zo) l 

An application of lemma 1.1 to the disk B(zo, ro) shows that ipr does not have 
zeroes in the disk B(zo, r 1), where r1 = ~J cpr(zo) J . Next, by (1) 

Since ipr does not have zeroes in B(zo, r2) = B, there is a regular branch of the 
function .j<p; in B, and therefore a regular branch <I:> of J .,;cp; in B. Since J<I:>'(zo) l = 

J Jcpr (zo )l, then, by Bloch 's theorem, there is a disk V of r adius 

where C is an absolute cons tant , such tha t w- 1 is univalent on V. Let R oo = 
sup{R z: z E t.}, where Rz is the radius of the maximal cp-disk around z. Suppose 
that R oo is finite. T hen 

c c 
R oo ~ 81P(zo)(1 - lzo l) ~ 

16
1P(zo)w(zo) 

When r --+ J _, one can obtain that 

(2) 

Lemma 1.2 . Suppose that cp E Q. Then Roo is 
finite. 

Proof. Let t.z be the maximal cp-disk aro und z E t. and R, the euclidean radius 
of the disk <P(t.z), where <I:> is th natural parameter. By Koei.Je's Theorem 

dist(z,8t.z)i<I''(z)i ~ ~z 

Si nce 1 -lzJ ~ dist(z, 8t.z) and J!l?'(z)l ~then 

(3) 
R2 

llcpll ~ IS 
0 

ole that one can use Schwarz Lemma as in the proof of Theorem SW to prov( 
Lemma 1 2 

Tlw following result is an immediate corollary of (2) and Lemma 1.2 

Th orcm 1. Let cp lx an analyttr funr:twn on ~. Then cp E Q tff Roo zs finzt r 
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2. IIARMONIC ~ l APS ,\ND 8ERS SPACE Q 

!l.trntOIII<' maps play an Important rolr m the parum tnzatton of let\hmuller 
pan:; (sf'<' l·:arlc• and Ee lls [6[ and Wolf [271), so tl IS mtcresting to unclPrsland 

lllf' n•lalton bl'lween universal Tetdmlllllcr space and quasicon formal harmonic cli f­
f 'Omorp lusms. Por further resu lts sec vV, n [26J, Tam and \Van [23J, H •tch , nd 
St rPbl'l [ 171) In this di rection wr havp I he fo llowmg resu lt (th t rm111ology will 
])I' cxplamcd, and th proof given, lat r 111 this s ction). 

fh or •m 2. Let p be the metric with Gaussian curvature [( ~ -a for some 
rmtBlant o > 0. and let f be a harmonic quasiregular map from 6. into ttself wtlh 
11 .-peel top. Then the Hopf differential <p off belongs to Q. 

llworem 2 is a n im med iate o roll ry of T heo rem 1 a n I L mma 2. 1. ' e below 
I<H t IH' proof o f t hi s lemm a a nd for the dc nn tl ion o f a q uasi!· g ular function. 

l"l'l /l HIH.l S' be two s urfaces. Let cr(z)[dz [2 and p(w)[dw[2 be t he m t ries with 
n spc·r·t to lh(' isothermal coord inate cha rts on R a nd S' respe l ive ly, and lrt f b 
a ('2 map from R to S. 

I tis convenient to use notat ion in local coord inates df - p dz 1 q dz, where p = fz 
and q J,. Also we introduce the com plex (Beltra mi) di latat ion 

f.LJ- Bell[!] = ~ 
p 

wl!rrc• it is cl r nnecl . 
T he energy integra l of f is 

E (f, p) = j~ p o j([p[2 + [q[2 ) dxcly . 

A critical point of the en ergy functional is called a harmonic m appin g . T he 
l ~ u l e r- Lagrange equation for the ene rgy funct ion al is 

T(.f) = f zz + (Jog p),u o f pq = 0. 

T hus, we say tha t a C2- map f fr om R to S is harmonic if f sat isfies the above 
rq uation. f or basic properties of h armonic m a ps and for fur Lher informa tion on 
t he literatu re we refer to J ost (10] and Schoen- Yau (19] . 

T he following facts and no ta tion are impor tant in o m approach : 
Al lf .f is a h armonic mapping then 

<pdz 2 = p of pq clz 2 

lS a q uadratic differential on R , and we say tha t <p is the Hop.f different ial of f and 
we write <p = I-Iopf(f). 

A2 T he Gaussian curvature on S is given by 

K s = -~ 6.log p . 
2 p 

A3 We will use the following not a tion f.L = Belt(!] = ~ and T = log 1!1 and 

Bochner formula (see (19]) 

6.T = -Ks[<p [ sinh T . 

A 4 D efinition of quasiregular function. Let R 
and S be two Riemann surfaces and f : R -> S be a C 2-mapping. If P is a 

point on R, P = f(P) E S, ¢>a local parameter on R defined near P and 'lj; a local 



74 MIODRAG MATELJEVIC 

parameter on S defined near P, then the map w = h( z) defined by h = 'lj; of o <P - l[ v 
(V is a sufficiently small neighborhood of P) is called a local representer of .f at 
P. The map f is called k-quasiregular if there is a constant k E (0, 1) such tha t for 
every representer h, at every point of R , [ h:r[ :::; k[ hz [. 

Lemma 2.1. Let p be the m etric on t::. with Gaussian ctwuature K uniformly bonded 
from above on t::. by the negative constant -a , and let f be a harmonic k-quasiregular 
m ap from t::. into itself with respect to the m etric p. I! R = R. is the radius of the 
m aximal <p-disk arotmd z, where <p = Hopf(.f), then R is bounded from above by the 
constant C which depends only on k and a. 

Proof. Let R = Rz be the r adius of the maximal <p-disk U = Uz around z E 6. . 
Since f i:> k-qusiregular then T 2: m, where m = log f · m > 0. Let ( = iJ? (z) be the 
nat ural parameter in U and ii?(U) = V = B(O,R) With respec t to the parameter ( 
the Bodmer formula takes the simi le form 

t::.T = - K sinh T . 

Since J( :::; -a and T 2: m , we conclude that 

(4) 

where 0 = a s inhm Lel ds = .A(") [d" [ where .A(") = 2 R is the hy t)e rboli c metric e"' . '> '> ' . . '> R2-f ( l2 . 
- 1 

on 1/ and lel .A(( ) = ( ~er <O ) " . From(tl) we have for Lhe Gaussian curva t ure of Lhe 

melri ds = 5.(() [cl( [ on V Lhal K :::; - 1 and Lh en we can use Lhe J\hlfors-Schwarz 
Lemma (sec [l j) Lo obtain 

(5) 

Selling ( 

(6) 

2ok :::; ):.2(():::; >-2(( ). 

0 in (5) one obtains 

R2 8k <­- 0 . 

D 

Let <p be a quadratic d iffer nlial on a hype rbolic Riemann surfaceR with Poincare 
metric ds2 - p(z) [dz [2 . Let pE R and let z be a local parameter ncar p. We will 
d fin 

[[<fJ[[(p) p- 1(z(p))[<p(z(p))[. 

\Vc say that <p belongs to t he Bers spare of R (notat ion Q(R )) if [[<p[[ is a un iformly 
bound •d runct10n on R. 

Theorem 3 . Let R and S be hype1·bolir surfac s with metric densit1r.s a and p 
rrsprcln•ely and let the Gaussian curvature of the mf'lnc ci,q2 - p(111)[dw[ 2 lx um­
formly bounded from abov on S by thr ne.gattvc con.~tant -a 

lf f !S a harmomc k-quastrcgular map from R znlo S vlith l!opf diffcn 11lwl ..p. 
thc11 cp E Q(H). 

Pmof L<~t j be the hrt111g off which maps~ Into Itsclr and let lw tlw hft111g 
of 1lw quudrallC <hffcrcntiUl cp. Let p be the hftlllg or til<' dcnsit' p. SIIIC'C' j I~ 
harmonic w1th respect to th' mctnc ri(w)[clu-•[ 2 on u and 1.--quasiregular then. b) 
Tlu•ore1n 2, <p E Q(6) lienee cp E Q(H) D 
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3 Fu rtn I r~n Rf·:st' LTS 

lu l' hcorcm •I we will g tve a charac iPnza lton of a qu•• tr gular harmo11tt' ma p 

Theorem 4. Let f be a k-quastregular harmonic map from .:l into 1tsdf with 1'tSpcct 
to smnt mf'lnc cls2 = p(w)[dw[ 2 . 

Thf'n f P o g, where F' ts an analytic functwn fmm .:l into 1tsdj cmcl g ts 
n J..:-qltasiconfomw.L mappmg fmm ~ onto tlsclf, whtch 1.s hCirmonic wllh r spect to 
Llu lfu iru· d.~ 2 t3(( )[d([ 2 . where ii po I·' IF''I2 

fJmof. St~H ·c· f is harrno 11i c on~ then r.p po fpq is lut u11 nly ttc func tion on 6. . 
Therefore! Jl has iso lated ze roes or p ts td c> ntic, lly 0 011 6 lf p = 0 0 11 6 th n 

q = 0 and f = canst o n 6. a nd our theo rem is trivial. If p has tso la t d zeroes on 6. 
then we> can d fine f.L = ~ a .e. on 6.. 

It is known t hat there is a quas ico nfo mtnl mapping g from .:l onto its If such 
that. g is a so lution of Beltrami equation 

(see [2], [11]) . 
Let P f og t Then we have for Bcii[PJ ( · ·[2], [J 1]) that 

9z flJ - JLq 
fJ.P og = =- · ....:. 0 

{/0 l - f.LJfLg 

a nd we co nc lu de that P is analyt ic function. 
Si nee .f is harmonic with respect to p t hen 

r.p(z) = p(f(z)) pq 

is a n ana ly t. ic ru nctio n in 6., where p = .fz and q = f-.. Sin p(z) P'(()A( z) a nd 
q(z) = P'(()B(z), where A = [/z, B = g-. a nd ( = g(z), o ne can obtain that 

r.p(z) = p( ()AB . 

Since g is quasiconiormal [AI ::/= IBI a.e. and r.pz = 0 on 6. , one can show that 
r(g) = 0 (fo r computation of r.p-. see, for example, Jost [10] an l Tam-Wan [24]). 0 

Let D be a hyperbolic domain inC, zE D and ds = p(z) [dz [ tbe corresponding 
hype rbo lic metric on D . T hen it is known that (theorem 1.11 [1]) 

2 
(7) p(z) :<::: -( ) , z ED, 

T Z 

where r(z) = dist(z, aD) and we call r (z) the distance funct·ion (see [1]) . 
For an an alytic function <.p on a domain D c C we say that r.p E Q if 

esssupdist2 (z,8D) [r.p(z) [ < oo 

Since the distance function is geometrically simpler than the hyperbolic density, 
it is reason able to study the space Q. 

We say that a domain D c C is strongly hyperbolic if it is hyperbolic and di­
ameters of boundary components are uniformly bounded from below by a positive 
cons t ant . 

Theorem 5. Let D be a strongly hyperbolic and bounded domain inC . Then r.p E Q 
ifj' r.p E Q. 
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Proof. Because of (7) we have that Q C Q. Let the diameters of boundary compo­
nents of D be bounded from below by d > 0, and let the diameter of D be equal 
toM. Now let z ED. We can find a component l of aD for which r(z ) = lz- z0 1, 
where zoE l. Let iJ = C \ l and let p and p be the corresponding hyperbolic linear 
densities of D and iJ respectively. Since D C iJ then p(z ) ~ p(z ) for z ED (see 
[1)). 

Let f(z ) = dist(z, 8D), and let c E l such that lzo- cl = ~· The function 

1/J(() = (~ c maps D conformaly onto the domain G c C. Since G is conformally 
equivalent to the unit disk, by the Koebe Theorem 

(8) 1 
u(w) 2 I I ' 4w-wo 

where w = 1/; (z), w0 = 1/;(zo) and u is the linear density of hyperbolic metric on G. 
t.From (8) we can conclude that 

-( ) lzo- cl 1 p z > --- ·---
- lz - cl lz- zol 

and hence 

(9) p(z ) 2 ffz) ' 
where C = d+~M . 

Since ·r(z) = r(z ) we finally obtain that 

11 n ' Qc Q. 

c 
p(z) 2 r(z) . 

0 

T h<' next xampJe shows tha t if t he bound ary of a domain D has a point as a 
ompon nt t hen the spaces Q and Q are cl i!Tcrent . 

Exampl 1. Let D b 6. \ {0}, and cp(z) ~· It is obvious thaL cp E Q T he 
lmcar d nsity of th hyperbolic metr ic on D is 

T hen 

1 
p(z) = I ll I . z g jZj 

1 
logr;T 

wh1ch IS not bounded in D, h nc cp ~ Q, 
In fact, any function 

1 
cp(z)- 7.1/J(z), 

z 
wh rc 1/1 1s an analytic function in 6. with 1/J(O) I 0, is not in Q. 

Exam p le 2 . LetD bcC\[-1,1] Then'f/J(w) - !{w+ ~) i s a conformal mapping 
from 6.\ {0} onto D . L t cp be an analytic function on D . It 1s clear thal cp E Q(D) 
1fl Yl E Q(Cl \ {0}), where 
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Let .p(.:) }r. It IS obVIOUS that {J E c)( D) SmcP 

1 I (w2- I )2 
<PI(w) = w2 ~ ~ 

then. bv l•:xa1nple I Wt" con ·ludt" that .,o 1 ¢ QP {0}), hence o.p ¢ Q(/J) 

Us1ng 1\ocbc's T hPorem as m Lemma I 2 one can prove th • fo llow 1ng n•:;ult 
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P r op os iti on 3.1. Let D bf' a hype rbo l1c doma1n 111 the cornpl x plane C. If 
<P E Q(D) then the radii of the max ima l cp-cl isks a r · uniformly bounded on D 

As we mentioned in the introduction we close with a short discussion o f some 
fur t her resul ts in this a rea. 

Wolf [28] and Minsky [15] have shown tha t estima tes on the di la tation of a 
harm oni c ma p depend to a great extent on the g ometry of the llopf d irt r nti a l cp 
(in pa rti cula r, on the pl acement of the zeroes of cp and the injec livity radius in the 
cp- metric). 

Han [8] and Ha n, Tam , 'J'reibergs and Wa n [9] have used the Wolf-Mins ky type 
estim ates ment1oned above to study among other things the images of harmonic 
dlffeomorphisms of tC into the hyperbolic plane lHI. 

We beli eve t hat our results can be of use in unders tanding some parts o f this 
interesting area, as weU as being of inter st in their own r ight . 

<1. A V8RSION OF BLO CH THEOREM 

Also recall ,for further results related to the subject of th is pap r we refer the 
interested reader to author's review papers [29] and (31] (see also [13],[J 4] and (30] 
) . 
For example , in (13] ,using a. version of Bloch theorem (see Lemma 1 below) we 
give a short proof of a Dyakonov's theorem (5]. Also we show that Lemma 1 holds 
for quasiregu lar harmonic functions ( see T heorem 6 below). 

Let U denote the unit elise in the complex plane. If z and w are complex numbers 
by A(z,w) we denote the half-line A(z,w) = {z + p(w- z): p 2 0} and A(w) = 
A(O, w). 

Lemma 1. Suppose that f is an analytic f1mction on the unit dis c U, f(O) = 0 
and If' ( 0) I 2 1. Then there is an absolute constant s such that for every e E lR 
there exists a point w on the half-line i\.0(0, ei11 ) = {p eiO : p 2 0}, which belongs to 
f(U) , such that lwl 2: 2s . 

Theorem 6. Suppose that f is a J{ -quasi regular harmonic mapping on the unit 
disc U, f(O) = 0 and lgradf(O)I 2 1. Th en, there exists an absolute constant a 
such that for every e E lR there exists a point w on the half-line i\.11 = A(O, ei11 ) = 
{pei11 • p 2 0}, which belongs to f ( U), such that lwl 2 2a. 

Acknowledgement . I wish to thank Professor M. Janjic for inviting me to give 
lecture at the meeting devoted to academician V. Peric . 
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An essay about geometric combinatorics 

Rade T. Zivaljevic 

Dedicated to Professor Veselin Peric on the occasion of his 70th birthday 

1 What is geometric combinatorics? 

• I believe that we lack another analysis properly geometric or linear which expresses 
location directly as algebra. expresses magnitude. 

G.W. Leibniz (letter to C. 1-Iuygens, 1679) 

• Poincare was the first who introduced the idea of computing wiLh topolog·ical objecls, 
not only with numbers. I-1 did this, ... , by defining the concepts ot homology and 
fundamental group . 

J. Dieudonne (History of Algebraic and 

Dif-ferential Topology, 1900- 1960) 

• Homology th ory liscovered by Poincare is perhaps the mos t profouud and far reach­
ing creaLion in all topology. 

S. LeLc;chetz 

lL is beli 'v cl by many mathemaLicians Llmt homology Lheory, discovered by Henry 
Poin ar ', provides a direct "analysis" of geom tric objects, referred to in the leUer ol 
Lei! niz to Iluyg ns. One century after its discovery, the homology theory, as an analys1 
and combin(L/01ics of topol gical/geometric objects, remains, together with oth 'r related 
onstru lions in alg braic geom try and topology, one of central tools for discovering and 
xpressing laws ab ut g om tric forms. 

rometric ombinatorics is one of the ar as of mathematics where the "clirccL calculu~ .. 
with geom tric obje ts is OlP of c •ntral themes. IL is not an easy task to cl •lcrmitw al 
th th mes and driving fore s of thi. fi lei, so the sekction in this pap r rcficcls in pal 

the r s ar h inl r st of l h B !grade G-T -A seminru.· 1 . Formally thP article consists o 
foUl mathemali ·a! 'tud s. ca h composed for a different ar a of contemporary g 'Olnctric 
combinatorics. inc th ru.·ea of geometric comhinalorics is n mix! 111'<' of fip]cJs includin 
combinatorial topology, combinatorial geometry, combinat aries. compulat ion a! and discrct 

1Thc 5elllll11lf for GC'OJIIC•lry. Topology nml Alp;ehra ( ,'!,\) wn.~ fouJHIC'd IIIOrC' tl11111 ~;-, y<"ats aJ.;<J. l'<•rh.tJ 
it name should he tightly changed lo 'GTA to includt• Colllbtu<lloncs. 

0 



1~rnPI rv ct c. we lt'a v<' it I o Llw rcadPr lo dPridC' what area of mallwmat ics is the most 

0 1t ural C'llV ironnwnt lor a givPn {•I ud<'. 

EaC'h ol the r;tudr's begins with a short pm·lllurc. llere, a pa1'11tm·e i!; a shorl sequence of 
formulas or stal menls, most of them related , al l of them Li d Lo a giv n theme or rnolwc. 
!Ill' rest of I h ~ t ucle consists of variatwns on Lh main theme. Th idea is lo follow Lhc 
p·1rtilure, formula aflcr formula, or slat mcnl afl r slal m nl and offN variations, reminis-

11n-s. comments, historical del ails and anything thal comes lo mind, as in a malh malicnl 
jlllll S('SSiOII . 

2 Legacy of Ludwig SchUifli 

bo(!II) = bo(IRn \ UA) = (~)) + c~·) + ... + C~) 
(1. Sdrlafli , 1901) 

(T. Zaslavsky, 1975) 

P1(!Vf) = (1 + 1.)(1 + 21.) · · · (1 + (m- 1)1.) 

l\11 := {z E IC'"' I z; = z1 for ·i = .i} 
(V.I. Arnold, 1969) 

/\If: = Vc \ Ac, A is a refl cclion arrangement in V!R 

(E. Brieskorn, 1971) 

J{k(IR.n \ UA;Z) ~ fJJpELJ{n-k-dim(p) - 2(6.(L)) 

(M. Goresky - R. MacPherson, 1988) 

(uA)+ -:::= v 6.(L<p) * sct im(p) 

p<i 

IR.n \ UA = sn \ (uA)+ ~s V Dn-ci im(p)-1 (6.(L<p)) 
p<i 

(G. Ziegler - R. Zivaljevic, 1993) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The firs t formula is taken from the great posthumous work Theorie der vieljachen 
Kontinuitiit of the famous Swiss geometer Ludwig Schlafli, published as t he volume 38 
of Denkschriften der Schwiezerischen naturforschenden Gesellschaft in 1901. The formula 
appears on page 39 as the answer to the question about the largest possible number of 
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connected comp onents in the complement of m hyperplanes in a n-dimensional affine space 
JR!t . 

Schlafli made his reputation as one of the leading geometers of his time by numerous 
contributions t o what today would often be appropriately classified as the field of geometric 
combinatorics . Perhaps it is not sufficiently widely known that it is Schlafli who completed 
the classification of all regular polytopes in all dimensions, thus completing the lis t started 
in antiquity with the discovery of the five Platonic solids. Around 1852 Schlafli proved that 
in dimension n 2: 4, aside from the obvious examples, n-dimensional regular cube, regular 
n-simplex and the dual of the cube, the regular , n-dimensional cross polytope (hyp eroc­
t ahedron) , there exist precisely three more regular polytopes, all of them in dimension 4. 
It is a remarkable fact that facets of these polytopes are respectively 24 octahedra, 120 
dodecahedra and 600 tetrahedra. 

• As a t ri buLe to E inste in and Schl ii.fi i, on t he inner wall of cent ra l li b ra ry of t he Inst itute for physics 

and mat lt ernaLics iu Bern , Lit ere is a senLence "ThTee qua1'ks faT Einstein and S'chliifii" ! T he reader 

reme1n bers LltaL E iusLein was in Bern for a relative ly short period of t ime on t he begimiiag of !tis 

career, where he moved wiLh his wife Mileva Maric-EinsLe ia frou1 Zurich . 

T he formula (1) is possibly one of the first results in the area of arrangements of s'llbspaces, 
see [20] for a comprehensive accounL. T he formula has been rediscovered in the meantime by 
other authors and som times in different fo rms. For example, T he American Mathematical 
Monthly published in Lh issue 50 (1943), p.59 Lhe following problem: 

• Show LhaL n cuts can divide a cheese into as many as (n+L)('~
2

-n+G) pieces (problem 

E 554). 

The formula (1) op ned s verallines of research. First of all, one can ask about Lhe num­
ber of conne Led ompon 11Ls in Lhe complement of an arbitrary hyperplane arrangemenL. 
The answer was obtain cl by an •leganL formula of Thomas Zaslavsky, [10], reprodn eel here 
<1S Lhe formula (2). f ·ourse, ou ne cis some aclcl iLional information about Lh arrange­
ment A = {11 1, ... , lim} of hyperplanes. Su h an information is provicl •d by the Mobms 
function of th' as ·ociaL •d int rsection partially ordered ::;eL L = LA. Recall LlmL LA is an 
abstract pos t which has an I m nt p for each inLerse Lion f Lhe form If; 1 n ... n II,,. while 
$ re ords Lh containmC'nL relation beLw en Lh subspaces. Augusl Ferdinand i\Iobius 
inLrocluc d his wdl known ariLhmcLi fun LionJt(n) inl 32. The ex tension to general pos ts 
was giv n by 'ian- 'arlo H.oLa [2'1], however sec [30] for a more complete historical account. 
The form1tla of Philip Hall identifying lhe i\Iobius fun Lion as the Eul r charact risti · of 
the associat d ord r compl x tl(P) is r •producrd here as the formnla (15) in Section 5. 

R Luming to Lh main Lh Ill' recall that for a given hyperpla11e arrangenH'nt A , the 
numb r of compon nls in Lh ompl m nt is qual lo th ra11k of lhc cohomology group 
JJ 0(IR11 

\ UA- Q). So, in th a::; of a g n ral r al or complex (IK = IR, IC) sub!;pace arrange­
Ill nl B ii is natural L ask th qu 'Lion: 

Q: D L rmin inl r siing Lopological invariants of the compl 111 •nl llC" \ UB of Lh general 
subspac arrang ment B. 
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ur next exampl is th c lebrat d formula (3) of Vladimir Igor vi · Arn ld . This 
forrnula prov id s an explicit computation of th Poin are polynomial f th famous brotd 
arrangement. Recall that Pt(X) = bo +btl + ... + bktk + ... is th polynomial whi h has 
th B tLi numb rs bk. i . . the ranks of th asso iat d (co)homologu groups Jl k(X;Q), 
h coeffici nts. Th braid arrangem nt Ern in en is d crib d as th coil Lion of all 

h ·p rplanes H ,J = { z E en I Zi = ZJ } for 1 ~ i ~ j ~ n. Arnold 's motivation for studying 
th c mplement of th braid arrang m nt a m actually from anoLh r dir lion. Air ady 
~,:;a student at Moscow Stat niv r ity, V. Arnold mad a d isiv ontr ibuLion , unci r 
uidan f his prof ss r Anlr i I<olmogorov, to the solution of Lh 13 Ililb rt probl m. A 

vnmlllL of Lhis problem ask if an algebraic function can b expr ss d ac; a up rpo, iti n of 

1\lg braic func tions depending on a fewer number of variables than Lh original fun tio1 . 
rn ld originally prov d (s [32]) , r lying on the results of Dmitrii FUks on th 'l/2-

r homology of M (Brn) , that such superpositions ar not always possibl . 
Th braid arrangement is an obj ct ubiquitous in Loday 's mathemaLi s. \ r C r Lh 

1r d r to [32] for an interesting account from the point f vi w of discriminants and smgul nr 
~p<tr s. Perhaps th main reason for its importan e is coming from th fact that /IJ(Br,t) 
1. u K(G, 1)-spa e where G is th colored braid group. There is howev r y tan Lh r, v ry 
uuportanL r ason why Lh braid arrangement is so popular among mathemati inns. llcr in 
lh focus are the so called Knizhnik-Zamolodchikov equations whi h aris as th . ondiLions 
for erLain natural connections over M(Brn) to be fl at, i. e. to hav th z ro curva.L ur , see 
[29], Chapter 12. The fact that th connection is flat, i.e. the absenc of h lonomy, implies 
th existence of a monodromy representation of the group G = 7l'J (M(B1·,.)) . Vl adimir 
Orinfel'd was able Lo give a detailed analysis, or a categorical d scripti n , f this r pr sen­
tation. T his was the starting point of his celebrated work about Hopf alg bras r quantum 
gr ups, for which he was awarded a F ields medal. 

Egbert Brieskorn was able to extend Arnold 's formula to other x t r arr·:tngements. 
lfe explained the appearance of numbers 1, 2, .. . , ( n - 1) in Arnold 's C rmula, by identifying 
them as the coexponents of the associated Coxeter arrangement (gT up) , formula (4). All 
these results still deal with ·hyperplane, albeit complex, arrang ments. A loL of work has 
b en directed towards the understanding the homology of compl menLs of n ral subspace 
arrangements, see [20]. This work culminated in the formula (5) f Mark oresky and 
Robert MacPherson. This formula appeared at the end of their book on stratified Morse 
th ory, [16], and served as a test example for the powerful general Lh ry Lh y developed. 
This settled the question of homology invariants of arbitrary subspa ·e arrangements. As in 
Lh case of Zaslavsky's formula (2), the homology is expressed in terms f th iuLersection 
poset P = LA of the arrangement A but with a new ingredient, Lh dimension function 
d: LA -+ N, defined by d(H ) = dim(H) . 

This formula was refined in another direction by Gunter Ziegler and Rade Zivaljevic. 
The formula (6) which appeared in [41], gave a precise homotopy d composiLion for the one 
point compactification (UA)+ := (U A)u{ + oo} of an arbitrary affine, pherical or even more 
general arrangement. As a consequence, via the so called S-dualiLy, Lhis formula describes 
the stable homotopy type of the complement M(A). The last result was independently and 
by different methods obtained also by Victor Anatol'evich Vassiliev as a part of his general 
theory of geometric resolutions of discriminants and the topology of their complements. 
Let us remark that (6), via Alexander duality, provides a new proof of Lhe Goresky and 
MacPherson formula (5) . 
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This is not the end of the story. The references [13], [15], [27], · [37], · [32], [38], [39] and 
others deal with different aspect of the problem of the topology of the complement and the 
union of the arrangements of subspaces. 

3 The story of 3 houses and 3 wells 

(K3,3 -+ JR2
) =* (2 -+ point) (8) 

(1(3,3,3 _.:.. lR2
) =* (3 -+point) (9) 

(K s,s,s -+JR3) =* (3-+ point). (10) 

(K 6 <-+ JR3) :=;. linking (11) 

(K 4,4 -+ JR2
) =* (4 -+ line) (12) 

(1(6,6-+ JR3) :=;. (4 -+ line) (13) 

T he well known Kuratowski nonplanarity criterion implies tha t the graph K 3,3 is noL 
mb dab! in JR2 . Recall LllaL ](3 ,3 is a complete bipartite graph ob tained if Lhree vertices 

(Lhrcc "h uses") arc conn Led with Lhree oLher verLi es (Lhrce "wells") so LhaL each of tl1(' 
11ous sis onnecLed by a paLh (an edge in Lhe graph) wiLh each of the wells. Another popular 
cl s TipLion of K3,3 Lalks a.bouL Lhr e hou es connected wiLh a source f elecLriciLy, gas and 
waL r. B r this r ason K3,3 i som Limes ailed Lhe "houses and u tili Lies graph". The graph 
Ks is I y cl finition th c mplet grc ph on 5 vert ices. The statement (8) is one way of 
xpr ssing the nonplanarity of K 3,3· lL says thaL for each continuous map f : K 3,3 -+ IR

2
. 

Ll1er xist 2 points c~ and b, whi h belong Lo 2 disjoinl edges in K 3,3, such LhaL f(a) = .f(b) 
(i .. 2 -+ poinL). 

An I m ntary proof U1· t K 3,3 is not planar is based on the well known Euler relation 
fo - !1 + h = 2. An embedding of K3 ,3 in IR2 automatically yields au mb dcl ing in 
lhc sphcr S2 = JR2 U { } . Sin Lher ar no cycles of lengLh 3 iu th gmpb K l,3· 

ea h fa · must b bound c\ by aL leas t 1 edges. 11 nc , 'lfo ~ 2f1 = 20. aucl Lherefor . 
fo- f 1 + h ~ 6-9 + 6 = 1, a contradiction with tb Euler relation. A similar proof applic 
Lo th graph 1 5 . Th r xisL h w v r som subLI points Lhat the read r ·an "ignore in 
th first r acling". H r is a c mm nt on this proof by All n Hatch r2

. 

Allen Ha t h r: Th r a t a couple pomls in th pr of of nonplnmu ity of the graphs 1\r, and l<c:3, 3) that 

cl s!'rv furth r cotnm nt. 

(1) It suffic to onsicl r only pol~·gonal mb ddings sii1C' a topological cmheddtng of a finitl' graph i 
th plane ran b approxnnatC'd by a polygonal !'nib dding 11tis is shown 111 13nllo1Ja....,· hook "I\ Ioder 

Gruph Tit 01y" by 11 very sintplc ilrgunll'nl. 

ussion group, http:f / hopf.ntalh .purdnc.eclu. 
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(2J In orcl r to apply Euler's formula fo - fr + h = 2, one might tlunk that rt is necessary to know that 
a polygonal embecldmg of the graph drfinls a '\V structure on the 2-:;pherc Tlus ts cqurvalcnt to 
knowing the Schoen flies theorem for polygonal stmplc clos cl cut ves iu th plane, that such a curve 
bound:; an C't nbedded disk , which tl; not a I nvtal theorem . Out 111 fact one Cl\11 get !twny with less, JUSt 
the .Jordan ru 1 ve theorem thal surh a ru1 v hu.s two co1 nplern utary compoucnts, wluch IS easy to show 
for polygonal curves. Then rnt e1 prct the h 111 Euler's formula to b the uu1nbcr of cot nplen1e11tary 
co1 npou nts oft he embedded gmph, aliCI 13ollobas g1vcs a snnplc proof that fo - /1 + h = 2. 

'o mu ·h about th for111ula ( ) . A natmal probl m is lo find g 11 ralizations, analogl; 
,Lncl relaLiv s of Lhis statement? oL that a con equ n of ( ) is tha l for any coli ction 
of 3 r d and 3 blue points in th plan , Lher exi l Lwo int r. cLing vert x disjoint lin 
· .gmcnls with nd points of different color. Th statem nt (9) (du to Inu Barany) laims 
thaL from any collection f 3 blue, 3 whiLe and 3 r d points in the pl, n IR2 , OtiC an always 
s !ee l thr e v rtex-disjoinL, "rainbow" triangl s which have a n n mpty int rs eLi n. A 
"rainbow" t.ric ngle is a t.riangl having a ll v rti s of differ nL l r. Som thing sim ilar is 
possible iu the 3-space IRa This Lime we ne d at l asL 5 points of each color in ord r to 
guaranL e existence of three vertex disjoint , "rainbow" Lriangl s, which hav a non mpLy 
intersection. This is a ons quen of th statement (10). More formally (10) say that 
for every continuous map f : Ks,5,5 ---+ IR3, where Ks,5,5 := [5] * [5] * [5] is Lhe 2- ompl x 
obtained as the join of three copies of [5] = {1, 2, 3, 4, 5} , Lh re exist Lhrc points in Lhr 'e 
v rtex-disjoinL triangles which arc mapped to the same point in JR 3 . Th sLatem nL (9) is 
similar exc 'Pt that f : K3,3,3 ---+ IR2 is assumed Lo be a simplicial map and it is not known 
if it holds in the case of an arbitraq continuous map f : K 3,3,3 ---+ IR2 ! 

Formulas (8) and (10) arc special cases of genera.! statements about configura~ions of 
"colored" poinLs in JRd, see [34], [42], [43], [48]. A different generalization to the 3-spa.ce is 
provided by the theory of linkless, w·indless etc. embed dings of graphs, [11], [26], [28]. Au 
example from this circle ofresu!Ls is the sLa.Lem nt (11) which says that for every embed ling 
of the graph }(6 in IR3 , there exist two disjoint circuits C1 , C2 of ](6 which are linked with 
a nonzero linking number, [11], [26]. 

It is shown in [45] that the results listed above can be extended in a. systematic way to 
include higher dimensional statements where the existence of a common point (common 0-
dimcnsional transversal) is replaced by the existence of a common k-dimensional transversal. 
1 ecall that a. k-dimensiona.l transversal of a. family ;: = { Fj} j~1 of subsets in !Rd is an affine 

k-dimensiona.l space L c JRd such that LnFj = 0 for all j. For example a. simple consequence 
of the "ham sandwich theorem" is the statement (12) which implies that for any collection 
of four black and four white points in the plane IR2 there exists a. line intersecting four 
vertex disjoint line segments with end points of different color. Much less trivia.! is the 
statement (13) which, in the affine case, says that for every collection of 6 red and 6 blue 
points in JR3 there exist 4 line segments with end points of different color having a. common 
line transversa.!. This resul t can be viewed as a. relative of the nonplana.rity of K3,3 . Of 
course there are h igher dimensional complexes which exhibit similar behavior as shown by 
the following example 

( CJ ~ ---+ IR 3) =;. ( 4 ,---+ line) 

where CJ~ is the 2-skeleton of a. 7-dimensional simplex CJ 
7 . These results are deduced in [45] 

as corollaries of general statements which could be interpreted as results belonging to the 
combinatorial geometry on vector bzmdles. 
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We end this section with an open problem. It is known that. aside from planar graphs 
there exist other topologically defined classes of graphs which admit a combinatorial charac­
terization in terms of "forbidden minors" . According to Robertson, Seymour and Thomas, 
graphs which admit a linkless (windless) embeddings can be characterized as graphs which 
have no minors in the Petersen family, [28] . 

Problem: Find a combinatorial characterization in terms of forbidden minors of all graphs 
K for which the statement (13) is not true. That us characterize all graphs which can be 
mapped to the 3-space JR3 such that no 4 vertex disjoint edges admit a line transversal. 

4 Partitions of masses 

M1 : Let f.Lt,P,2 , .. . , f.Ln be a collection of mass distributions in IR11
. Then there exists a 

hyperplane H such that for all i = 1, ... , n 

wher IJ+ and H - are the closed halfspaces associated to the hyperplane H. 

M2 : Let f.L be a mass distribuLion in !Rn . Then there exisLs a point x E IR11 so that for 
every closed halfspace P c JRd, if x E P then 

(JR1l) 
(P n A) > _f.L _. 

f.L - n + 1 

M3 : Lei J.l,o, f.Ll , ... , f.Lk, 0 :S k :S n - 1, be a collection of mass disLributions in !Rn. 
Th n there exisLs a k-dimensional affine subspace D ~ JRn such Lhat for every closed 
halfspace II (v,o.) := {x E JRd I (x,v) :So.} and each ·i, 

D ~ II (v,o.) ===} tti( II (v,a)) 2: nJ+1 f.Li(IR"). 

6 (2 2) = 3 6 (1, 3) = 3 tl :S 6 (1,tl) :S 5 6(5, 2) :S!) 6(3, 3) :S 9. 

All Lh r sulLs M1 - M4 ar mbinaL rial fa Ls about "mas di t ribuLions" in IR". lL is 
perhaps appropriaL , b for web gin a discus-ion, to say a few words whaL is meant by this 
Lcrm. R all , [7], LhaL a B r I mea~ urc p,, de fin I on a locally compact . pace X, is a weal. 
limit of a qu •n f m asures 1111 iff r •a ·h bounded continuous fun Lion f : X ----. IR, 

As a cons qu nc •, if 11 is a weak !inti! of (/Ln), Lh n 

lim in( fln(F) :S 11(F) :S 11(0) :Slim ·up fL11 (0) 
n- n-

for any s •ls F C 0, wh r F do:,;ecl and 0 op n in X. 
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By a mass distribution on IR" w mean a 111 •asur 11 which is a weak limi l of a s quencc 
of measures f L11 , absolutely continuous with r specl Lo Lh L b sgue m asur m. In other 
words, fL is a w ak limit of a sequence ( {t11 ) such that d11n = fn dm where J,. : IR 71 

-t IR is an 
intt•gmblc function. Most of inLcr sLing m asur s Lhat appear in combinatorial problems 
twlong to this class. For example all count ing measures of finit s ts , i .. measur s flS 

dPflnrd by l' s(A) := lA n Sl are weak limiLs of m asur s absolutely int grab! with r specl 
to th!• L •besgue measure. Th in qualiLies (11), oft n p rmiL us Lo prov a sLatem nt 
fur n slllaller las· of measures, Lypically measures of Lhe form dv = g dm , where g is 
pwr ·where posiLive, Lebesgue integrabl funcLion, and Lhen obtain Lhe r su iL for a g n0ral 
uHISS disLribuLion by a passage Lo lhe limiL. 

'l'h read r will not have diffi ult.ics Lo r cognize in M1 th well known "Ham sandwich 
tht•orem". Ind ed , if A 1, . .. , An ar measurabl seL in IR", Lhen th hyperplane 11 is 
a halving hyperplane for a ll A,. In Lhe SJ cia! cac;e, when A 1, A2 and A3 resp Lively 
n·presenL Lhe ham , bread and cheese in IR3 , Lh resu ll says Lha L a ham sandwi h an always 
lw divided in two eq ual pieces by a single straighL uL of a knif . The r sult M2 is also 
known as the "cenLer point theorem" and it also has a gas tronomic reformula t ion. Nam ly, 
~uppos you want to split an irregularly shaped pizza with a hungry fri nd who choo cs 
first and who is supposed to divide the pizza in two pieces by a straight cut of a knife. You 
nrc allowed to mark yom piece in advance, ay by claiming the piece which will contain a 
parLicula.r marking object (say an olive). Then , if you are very careful about marking your 
pi(•ce, you an counl on at least one Lhird of the pizza. Note that the p izza is noL as urn d 
to b eiLher connected or convex nor homogeneous. So "one third of the pizza" means Lh al 
t h •re is some measure, made precise in advance, which evaluates the "quali ty" of clifl"er nt. 
sli · s of the pizza. Note that if Lhe pizza is convex and homogeneous, a resulL of Branko 
Gri.inbaum, [17] , guarantees that the consLant 1/3 can be improved to 4/9. 

Both Lhe "ham sandwich" and the "center point" theorem have a very inter esLing hisLory 
an I numerous applications, see [14], [21], [42] for references. The author remembers a 
conversation wi th VreCica Sinisa in late 1987, in h·ont of the blackboard in his offic , at. 

fllaLhematics faculty in Belgrade. By accident , two of us mentioned , for different reasons, 
Lh orems M1 and M2. We instantly observed that M1 is a statement about n measures 
in !Rn while M 2 is a statement about a single measure and asked ourselves whether Liter 
cxisLs a general st atement about k measures, 1 ::; k ::; n, which reduces to M1 and M2 
r ::;pectively in the boundary cases k = n and k = 1. This is how t he s tatemenL M3 
was born. It took us a little time to detec t the correct t opological principle which st ands 
behind the proof of this theorem, namely the fact that the cohomology class (wk)n - k is 
nonzero where wk E Hk(Gk(IRn) ; Z2) is the kth Stiefel-Whitney characteristic cohomology 
class of t he canonical k-dimensional vector bundle over the Grassmann manifold Gk(IRn) 
of all linear , k-dimensional subspaces of lRn. Nevertheless, we both agTee that this is an 
instance of a result which was more difficult to "invent" or contemplate then to find its 
proof. 

T he ham sandwich theorem is a special case of M3 but this is not the only generalization 
of Lhis res ult. In this category is the general problem of studying equipartitions of masses 
by hyperplanes which was formulated by Branko Griinbaum in [17]. 

Suppose that 
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is a collection of continuous mass distributions defined in JR.d. If H = { Hi}f=l is a collectiou 
of k hyperplanes in JR.d in general position, the connected components of the complement 
JR.d \ U Hare called (open) k-orthants. A collection His an equipartition, or more precisely 
a k-equipartition for M if 

- 1 d 
J.Li(O) = J.Li(O) = 2~cJ.Li(IR. ) 

for each of the measures J.Li E M and for each k-orthant 0 associated to H. A triple 
( d, j, k) of integers is referred to as admissible if for any collection M = {J.Li}I=l of j 
continuous measures in JR.d , there exists a collection of k hyperplanes H = { Hi}~= l forming 
an equipartit ion for all measures in M. 

The general problem is to characterize the set A of all admissible triples. If the emphasis 
is put on the ambient Euclidean space JR.d , the equivalent problem is to determine the 
smallesL dimension d := 6.(j, k) such that the triple (d,j , k) is admissible. Hugo Hadwiger 
proved that 6.(2, 2) = 3 which also implies 6.(1 , 3) = 3. The case k = 1 is answered by the 
"ham sandwich theorem" which in the new notation says that 6.(d, 1) =d. Edgar Ramos, 
[23], considerably advanced our knowledge about the function d = 6.(j, k) . He showed for 
example that 6.(1 , 4) ::=; 5, 6.(5 , 2) :::; 9, 6.(3 , 3) ::=; 9. Perhaps one of the most interes ling 
open problems in the ar a is Lhe question of the exacL value of 6.(1 , 4) . 

P: Is it true that 6.(1 , 4.) = 4. . More explicitly, is iL true Lhat for any continuous mass 
disLribution J.L on IR.4 , there exisL 4 hyperplanes Fh, H.2 , Jl3, H4 , which clivi le JR.~ iuLo 
16 orthants {Oi}f~ 1 , such LhaL for each i = 1, . . . ,16 

1 
J.L (Oi) = 16~t (IR.4 ). 

5 Order complexes and Vassilev geometric resolutions 

f.L(P) = x(6.(P)) (15) 

n 

6.(lln) := V I:(6.(ll~t-d) (16) 
t=2 

6.(Q,~ (R)) := (S"- 1 V sn 1
) A I:(6.(Q,;_ 1 (R))) 

(19) 

\Vt> hav • alr<'ad.v nwt th<' i\lohius function in 'cction 2. LPI us r('callthal th(' i\ lol>iu 
function fL = fJp : P x J> -+ Z is an important inva1 iant of a. fin it· pos<'l J> which i 
r ·ursivPly d(•fin d by 

fL(p q) = 11(p , z) and fL(p, p) = 1 



~ r p < q a nd JL (p, q) = 0 in the oppos it e case. It follows !rom th<' d finition th , t if Q Pis 
"conv<'x" s11bpos l of P Lhen /J.Q, he ~ lobius funclion of Q is Lh r slr iction on Q x Q o[ 

th · ~lob ius funclion JLp. H P = P U {6 l} is th posct obLain d with a formal add it ion f 
th ·maximal and minimal cl mcnls i an l 6, th n JJ.p(6 i) is th ' s .a ll d l"biu · numb r 
of P, d not d by JJ.(P). 

Th ord r ompl x 6(1 ) fa finit poset P is an al stra t simplicial c mpl x (or its 
g •om tric realization) where A C P is a simp! x in 6 (P ) if and only if A i a chain in P. 
J h geometric m aning of 6 (P) is p rhap best unci rstood if on tak a convex polyt p 
J\ (alternatively a simplical or r gular c II complex) and cho s s P = l1< to be th fac 
p s t of /( . Th nit is not. lifficult to obscrv hal 6 (PI< ) is a impli ial compl xi ·amorphi 
to thP fi rst b, ryccntric subdivision of f . 

T h . r lation (15) which idcntifi s the 1Iobius number of P as Lh Euler hara l rislic 
of the associat d ord r compl x 6(P) is due to Philip Hall. This quati n is not diffi cult 
to pr ve , however iL is very app aling and points in the clir cLion f fantastic possibility 
that com! inatori s and topology (geometry) arc poss ibly just cliO' r>nt ways of xpr ss ing 
the same reality! 

T her arc several classes of fin ite posets which make their appearanc throughout math­
<•matics. Among them are 

(a) the power set P([n]) , or the poet of all subspaces of [n] := {1 ,2, ... , n}, 

(b) the multi set poset of monomials xn = xf 1 x~2 
... x~•· which is alternatively descr ibed 

as the pose t D (n) of all divisors of a given integer n, 

(c) t he poset L (V) of all linear subspaces of a fi1 ite dimensional v ctor spa e V ov r a 
finite field , 

(d) the poset lln of all partitions of an n-element set. 

T hese are some of the central exampl s and , following Gian-Carl Rota, these are test 
examples for general sta tements about finite posets. 

T he homotopy complem entation jormula of A. Bjorn r and J .W . Walker , [8], is a very 
Jegant tool for "computing" the homotopy type of the order complex 6 (P ) such tha t 

P = P U {0, i} is a lattice and for some co E P , the set of all complements C (co) of co 
in P is an antichain. In the special case of the partition lat tice ll71 , th application of the 
homotopy complementation formula yields an elegant homotopy recurrence relation (16). 
From here it is easily deduced by induction that the homotopy ty1 e of the la ttice IT,, tha t 
is the homotopy type of the order complex 6(IT11 ), where fin := lln \ {0 , i }, is the wedge 
of (n- 1) ! copies of the sphere sn-3_ 

Most of examples (a) - (d) can be meaningfully extended to the case of general, finite or 
infinite, topological posets. For example an analog of (c) is the Grassmann poset 9n (JR) of 
all linear subspaces in !R71

• If Gk(JR11
) is the usual Grassmann manifold of all k-climensional , 

linear subspaces in IR71
, then 9n(1R) = U~o G;(IR11

) , Q11 (1R) := 9n(1R) \ {6, i} and 6(Qn(1R)) 
is defined as the subspace of the join 

G1(lR71
) * Gz(lR11

) * ... * Gn-1(1R11
) 

where a simplex l1 * lz * ... * ln-1 C 6 (Q71 (1R)) if and only if h C lz C ... C ln-1, i. e. if and 
only if h ,l2, .. . , ln-1 is a chain. 
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It t urns out that the homotopy complementation formula of Bjorner and Walker admits 
an extension to (infinite) topological posets , see [46]. An application of this general result 
to the Grassmann poset yields the recurrence formula (17). As a consequence, one obtains 
that ~(Qn(IR)) has the homotopy type of the sphere of dimension G) + n- 2, and being a. 
PL-manifold, it is actually homeomorphic o this sphere. This fact was obtained by Vassiliev 
in [31]. However , it is not a surprise that this mathematical gem or its special cases were 
found earlier by other mathematicians. Among the predecessors are Borel and Serre [6], 
N. Kuiper , W. Massey, M.Z. Shapiro, see [32] Section 7.1.5 and [33] for more information. 
The formulas (18) and (19) are also obtained by applications of the generalized homotopy 
complementation formulas. Here, 9;;- (R) is the Grassmann poset of all oriented, proper 
subspaces in !Rn, while expn(X) is the poset of all (nonempty) k-element subsets of X, for 
k :::; n, topologized by the Vietoris topology or (where applicable) by the Hausdorff metric. 

Topological order complexes, just like the finite order complexes are basic structures 
interesting in itself. Among their most remarkable applications are Vassiliev constructions 
of geometric r-esolutions of singular spaces. Let us quote give the word to Victor Ana to! 'evich 
himself ([33]): 

• "If elements of a partially ordered set run over a topological space, then the corre­
sponding order complex admits a natural topology, providing that similar interior 
points f simplices with close ver tices are close to one another. Such topological or-der 
comple:ces appear naturally in the conical Tesolutions of many singular algol raic vari­
eties, especially of discriminant var-ieties, i. e. the spaces of singular geometric objects. 
( ... ) Using these order complexes we study the cohomology rings of many spaces of 
nonsingular geometric objects, including the spaces of nondegencrate linear operators 
in IR, Cor-lHl, or homogeneous functions JR2 --+ IR without roots of high multiplicity in 
R.F 1, of nonsingular hypersurfaces of fixed d gree in C.F'\ of Hermitian matrices with 
simp! spe tra etc." ( ... ). 

A g neral idea b hind th geometr-ic r- solution of a singular variety X is th following. 
Different points in X ar listinguish l by cli!Ter nt "dcgre s of singu larity" . The degrees of 
singularity form a (topological) partially or lered set (P, :::;). The clegr e map D : X --+ P 
is assum d to I lower s mi- ontinuous, i.e. the D-iuverse imag s of the lower cones P~p 
<u·e clo eel · ts in X. A g ometric r solution r(X) of X or more precisely a. geometric 
r soluLion r>lative to the function D, is defin d by 

r(X) = ro := UxEX {x} X ~(P~D(p)) c X X ~(P). 

Her ar two xampl s, th spac Pn of real monic polynomials with multiple (real) ro ls, 
and th spa Ln of singular n x n-111c tric . with real coeffici nt s. The degree maps Dt : 
Pn--+ xp(IR) and D 2 : L11 _.. Q(JRn) arC' respcctiv ly clefinc•d b' 

D1 (p) := {x E lR lp(x) = 0} and D2(A) := K r(A). 

ln favorabl cas s. th proj ction map 1r: f(X)--+ X, from th g om tri resolution to th 
original singular spa is a homotopy quival nee. nth oth r hand the topological pos t 
P of 'd gr ' oft n 0111 s with a filtrc !ion P1 C 12 C . . . C P which indu filtration. 
both on th ord r mpl x ~(P) and on the g 0111 tri rc elution f(X). For xample both 
xp(IR) and Q(IRn) hav rank fun Lions r- 1 : exp(IR)--+ ~and r2: Q(IR")--+ Pl defined by 
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lht>S(' rank functions induce filt rations Pk := {p E P I nmk(p) $ k} 011 lite poscls whi ·h 

111d11n' filtr ations 0 11 the associat d g<'Oill<'lric resolutions f(Pn) and f( .Cn)· In both cas s 
the n•solutions have the same homotopy type as lh original singular spac s. Th filtra­
tions induce spectral s •quen cs whi h can oft n b used for ffici cnl cal ula lion of th 
(co)homology of th geom lri resolutions and the original singular spa ·es. ·•or Lh d taib 

nd a compreh nsive exposition of the g •n ral theory, th r •ad r is r J rr l lo tit book 

33]. 
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CONNECTION, METRIC AND CORRESPONDING GEODESIC 

BALLS AND SPHERES ON ANALYTIC MANIFOLDS 

NEDA BOKAN AND MlRJANA DJORIC 

Dedicated to Projesso1· VeseLin Pe1·ic on the occasion of his 10th birthday 

ABSTRACT. In this s urvey paper we recall the definitions of geodesic balls on man­
ifo lds wi Lh d i ITe rcn t str uctures. Using the coe fficients of power seri es expansions of 
their volume, wh ich are locall y computable invari ants of the structure, the geom etric 
information is obtained and ch aracteri zations of some spaces are derived. 

§0 INTRODU T ION 

There ar Lwo basic noLions which one ·an usc Lo develop geometry on a smooLb mn 
nif II : a rn Lric and a. ·on necLion. ln a very special case, starLin g from a Riemannia1 
meLric, one can ·on.trucL a uniquely d Lermined connecLion , called the l~cv i Civil 
connccLion, such LhaL iL meLri is parallel wiLh resp ct to Lbis connect ion and i 
torsion vani. il cs. In all otb r ases, Lhese two basic notions may either b connect' 
wiL h one of Lhc two prev iously mention d relations or be witbouL any mutual relaLio1 
with tlwm. C'on, qu ntly, on an study Lh g orneLry deL rmined eithe r by am tr 
or b' a conn •cLion, or by boLh vf tb m together. A geodesic ball is one inter •sti1 
obj •ct. conn cL cl wiLh th noLion . Th main topic of this surv y RrLicl i 
prc~sc•nt lhr cl v loprn •nt of an idea of a small g ocl ·i ' ball, its volume function a1 
t hr co rTc•sponcl i ng p wcr s ries xpRnsion and g om Lry as d term in cl by propcrli 
of its co<'fTi ·ic•nL. f r rn< nifolds with dirt r nt struct.m e . 

H -~ arch partially support d by Mini!ilry of Scicncc of Sc1 bia, project M 1 I 6·JG. 
2000 Mnlhf'maiu· .~ Subjcrt Classtjir:atwn. 53f305 , 531\15 , !)3 1\0. 

T.vpe~ t b.v A1VfS-'l 
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Conn.,clion, rn~tl ic and corresponding geodesic balls and spher · on analytic' rnanifolcb . 5 

'I ]H' first :cction deal· with g ocl •s ic ball of a Riemannian rnani[ II. 
b 11. for a conn ction wiLh torsion ar ·on id r d in th cond s ction, and g d i 
b lis for torsion-free conn ction ar ·tucli ,din th third cLion. r C r Lo [ I [L2 j, 
:!I J. [:27J for fmther cl Lails, as w II as Lb ir r C r nc . 

knowledg m nts. he author ar grat ful to 
imon. L. Vanh eke and L. Vran k n for valuabl li ·cu 

ki, . ~liqu I, l . 
rning Lhi pic. 

S 1 C EODESI ' BALLS AND SPllERES 0 ] lEMAN IAN MA IF LD 

!Jet. (M, g) be an n-dimensional analyt i . ieman nian manifoll. Mor . g .n rally, if 
\[is a c= manifo ld, all consider d powers ri s expansions woull b , define I, but Llwy 
·night not converge. Denote by V its Levi Civ i ta conne Lion and by I? Uw a soc·wtcd 
Hi ·mann ian curvaLur Lensor wiLh components Rijkl, wh r i, j, k, I , rc• part of an 
orthonorm al basis of the tangent. spac Mm for some m E M. Furth r d nol by p 
Is Ric i tensor , i. e. Pi1 = ~~= L R ikjk, by T its scalar curvaLur , i. . T ~:~J 1 R,JiJ 

Htd by 6. Lhe Laplacian. We will always suppose LhaL r is uffi ·i nLiy small in or 1 r 
to have a diffeomorphic exponential map expm at mE M. 

In ord er Lo compute th e Tay lor expans ion of the volume fun Lion, Lh' g neral p wer 
s ri es ex pansion of tensor fields i n norm al oordinaLes is li. uss d. , urh expansions 
have been used on several occasions, for example, in the Lh ory of harmoni C' spa an I 
in leLcrmin ing Lhe asymptot ic expansion for ~e->-;t, wh r ' Ai nr . Lh • cig nvnlues of 
Lh Lap lacian o f a compact R iemannian mani fold. 

Let m E M and let (x1 , ... , Xn) be a normal coord inaL ysL 
borhood of m wi th x 1(m) = · · · = Xn(m) = 0. In terms of Lh 
normal coordinate system of the above type is given by 

where { e1 , .. . , en } i s an orthonormal basis of Mm ([J J, Ji ]) . 

rn cl nn lin an igb­
xp n nLial map, any 

(1.1) 

If s and IJ a re the funct ions defined on neighborhoods f 0 E Mm and m E M by 

Lben 

s(x) = t he E uclidean distance from 0 Lo x, 

!J(p) = the distance in M from m Lop, 

-1 () = s 0 expm . (1. 2) 
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Let Bo(r) be the metric ball of radius r in Mm, i.e. 

Bo(r) = {x E Mmlllxll :S r}. 
nc 

( 1.3) pc 

T he geodesic ball of center m and radius r is the set 

Gm(r) = {p E U[O"(p ) :S r}. 

Moreover , by (1.2), we have 

Gm(r) = expm (Bo(r)). 

IV 

11( 

Cl 

of 
VI 

Analogous ly, the geodesic sphere is the set {p E U[O"(p) = r} = {expm(x)lx E ·( 

Mm, llxll =- r }. Further, let Sm(r) denote the (n- 1)-dimensional volume of the 
geocl ,sic sp here (area) and Vm(r) then-d imens ional volume of the corresponding g­
oclesi · ball. Sine *ds is Lhe vo lume element of any sphere in Mm and, by the Ga.us. 
lemma, *dO" is Lhe volu me element of any small geodesic sphere in M wiLh center m 
i L can be prov d LhaL 

whcr w is Lll , standard volu rn f rrn on M, W i ... ll - w (a~ l ' ... ' a~n) and (:r; l , .. . ,.r 

is Lbc system of n rmal oordinaL s on M aL m. Moreover, we have Vm (r) 
.f~ · Sm(i,)dl. l•'or th pro f and mor cl Lails w refer to [12] and [13]. Then V.n(r 
C<Hl be' expand d in a pow r · rie, in r by using a normal coord inate syst m Ill 
I J :~1 or with Lhc us' of Ja ·obi v ctor fi Ids II), [27]. The coefficients of r" 1 

k vani~1 
provided k is odd and th c ffi. i nts of rn 1 k for ev n k are given by formulas in Ll 
invariants of th . rurvat.m op raLor: 

V,, (r) 

wilerc'c, 21' (~)
11

1 (i)-l i. thcvolum ofaunitsph r S" in Jc;urlidca.nn-spac 

Th history of pow r s ri , expansion of volum funrLiom; b gins in th midd 
of Lbr 19Lh century wh n B rlrand, Oigu t and l)ui. eux 12] computrcl lhr fi r:L (I 

n 



( " ""''' ' llflll , 11\PIJI( <lnd corre ·ponding g1~odPs J c halls and sphc r · o n analyiH' manifolds 1 7 

, 11 .;,1'1'0 tc:rrn s in Lhc power ri _. 'xpan ion for Lh volum of a gcod :sic ball at a 
int 111 in a . urfacc in IR3

: 

V: (r) - 7rT2 {l - !_r2 O(r 1)} m 12 Ill> 

h n· f( is tile C:au:s curvaLur of th i · . urfa · . Th ir motivation wa Lo giv a 
.,, proof of the famous th ore rna gr gi urn of Gau , i. . to prov that th a us. 
ur\'almc of a su rf'ac in JRa doe not d pend on th mb >dding. h g n ra li zation 
f this formula to l{icmann ian man ifo lds was first giv n in 19 17 in a pap r by 11. 

~~ rnwii[:.WJ and then in 1939 in a pap r by II. Tlotcll ing [17], ancl th n xt t rm wa · 
omputcd in 1973 by A. ray [ ll j: 

T 

6(n -1 2) ' 

B 1 ( 2 2 2 ) 

360(n -1 2)(n 
1 4

) - 3IJRII -1 8IIPII I 5T - L86.T . (1 .tt) 

A. Cr<w cl erivccl several consequence: of this expansion. •o r example, h u: cl it 
n [I l l to obtain a local comparison theo rem. Namely, for an ana lyLi Ri man ni an 

111etni fo lcl M an I mE M , its Ricci scalar curvature is positive if a nd only if 

ii ll cl i Ls Ri cci scalar curvature is negative if and on ly if 

fo r suffi ciently small r > 0. Note that for Euclidean space JR.n 

l T ( ) _ i)n n vm r - r . 
n 

II. is interesting that this result is neither stronger nor weaker than the l3 i hop-Gunther 
inequali ties . On one hand, A. Gray 's result holds only for suffi icntly small r > 0, 
whil e the Bishop-Gi.inther inequalities are valid for r up to the first conjugate poin t. 
On the other hand, the condition that the scalar curvature be positive at m is weaker 
than positivity at m of either the sectional curvature or Ricci curvature. See [3] and 
[4, p. 256] for more details. 
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The coefficient of rn+4 in the expansion of V,n ( r) is especially interesting since it is 
a quadratic invariant of O(n) . In the same paper A. Gray compared it with other qua­
dratic invariants which arise from geometrical considerations. Notable among them 
are the conformal and spectral quadratic invariants and the 4-dimensiona.l Gauss­
Bonnet integrand. He also discussed the linear independence among them and the 
quadratic invariant derived from Vm(r), described above. 

A. Gray and L. Vanhecke [13] computed the fourth non-zero term in the expansion 
of V,n(r): 

1 ( 5 3 8 2 2 64 - . 64 -
C = 720(n+2)(n -!- 4)(n+6) -9T - 3T II PII +T IIRII + 63p- 21 (p®p,R) 

22 . llO - 200 "" 45 2 45 2 
+ -(p R)- -R- -R+ - IIVTII + -IIPI I 

7 ) 63 63 7 14 
45 . 45 48 

+ -a(p) - - IIV Rll 2 + 6T.6.T + -
7 

(.6.p, p) 
7 14 

54 2 30 45 2 ) 
+7 (V T , p)- 7 (.6.R, R) - 7.6. T . 

Since the oefficieots of rn+4 and rn+6 in the expansion of Vm(r) are respective 
linear ombin ations of the rders 4 and 6 invariants of the curvature op rato r, it rna) 
b po sib \ to consider various problems related to the vo lume of geodesic spheres and 
balls of a Ri mannian manifold and its various geometrical and topological properti(>. 

The main purpos of [13] was to study to what extent the fun ction s V,n(r) d t r 
min the J i mannian g ometry of the ambi nt space. In patti ·ul ar, Lhe authors wc1 
cone rn cl with th following 

onje tur . Let /11 be an n-dim.ensional R·iemannian manifold such that. for 
m E M and aU ujJiciently small r > 0 we have 

1 1' ( ) n n 
Vm T = -T , 

71 

1. r·. Vrn ( r) comcidcs with /.he volume of a geode ic ball with mrlius r in Euclidca 
space. Tlwn 1 i, locally flat. 

In Lhi paprr Lhe a.uLhor. com par d Lh volume of a small geod sic hall with crnt1 

111 and radiu. T in an arbitrar n-clim nsional J i mannian analyt ic manifoll WI 



( 'omu" lro1r, 1111'11 ic and con f!5ponding grodesic balls and sphere:, on nalyt.ic 1nanifolds !) 

1 ml11rrw of a ball of rcclius r in Euclid an pac , u ing th. pow r · ri · xpan:ion 
r I ·,.(r). Orw may formulate. imilar conj ·ctu r for oth r two-poinl homog n u: 
nrcs. T his c·onjccture i: tru in dimcn. ions 2 and 3 · nd in ome sp ·ial ca s, but i 
illtrnrr.so lvccl in higher dimensions and in gen ral ca c. \ li. t scv .raJ mor p cial 

<'S wiH•n this Conjecture is trtH! and we) r Jer to [13] for furth r detail : 

(I) A/ has non-po. iLiv or non-ncgativ • I icci curvature (in particul r if M is 
l ~i n:L<!i n); 

(2) Ill i: conformally flat; 
(:3) II I is 13och n r flat fGih I r rn ani fold; 
(•1) J\1 is a product of surfac s; 
(G) M is a IJ- or 5-d imcnsional manifold with parall I] icc i L nsor; 
(Ci) M is com pact. and the Lap la ·ian of M has t he -arn . sp ·trum on fun Lion. as 

t.haL of a compa ' L fl at manifold ; 
(7) !\!i s a compact, oriented four-dimensional manifoll who Euler rhara terist ic 

and signature sat isfy ~(M) 2:. -~[T(M)[; 
(8) J\1! is t he product of symm tric spaces of las ical type. 

i\lthough t he foregoing conjectur is st ill unresolved in higher dimension , Llwn i. 
r se ries of' re. ult.s obtained from sL 1cly ing the probl m Lo what extent th . xprc·ssiotJ 
ror the vo lum e of Lhe g ocl sic ball und r ce rtain conditions is characL ri st i<' for tiH• 

~ nmn if'old. We illusLr·atc th ese studies wi th ·ome more results. 
)· 
d Theorem. [5[ LeL M be a compact Kahler manifold with complex dimen ·ion 11, nntl 

1nppose Lhal foT all m E M and all sufficiently small r > 0, Vm (r) is lhc sa.m1· ns 
thal of ann-dimensional compact Kahler manifold M(J-1.) w'ith const.ant. holonwrphu· 

r· sectional cuTvatuTe J-1.. Let w and w~-' denote the fundamental classes of A I a1/(/ 1\ I (It). 
re If /.heir genemlizcd Chern numbers satisfy the conditions 

wn- lc1 CM) = w;-1c l (Jvf(!t)) , 

wn- 2ci(M) 2:_ w;- 2 ci(M({t)) , 

then !VI has constant holomorphic sectional C'urvature J-1. . 

Let us introduce model spaces to be the flat space En and Lh mn k n , sym m Lri 
spaces . The volume functions Sm(r) and Vm(r) for Lhese spac' can be c rnpuL d 

lfi !'Om p leLely by using Jacobi vector fi elds. See, for example [1], II l ], [27], for more 
dcLai Is. 

er Further, another interesting problem is to construct a manifold ~ r which the vol­
;b ume of a. geodesic ball at each point approximates the volume [ a geodesic ball in 
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a model space. For example, A. Gray and L. Vanhecke [13] constructed interest ing ci 
examples of non-flat manifolds for which CJ 

f ( 

tl 
for ali m E M and sufficiently small r > 0. One of these examples is a 4-climensional 

VI 
positive definite metric which is a generalization of the Schwarzschilcl metric. Another a 
one is a homogeneous 5-dimensional metric. Moreover, they used a different technique 

0 
to find a manifold of dimension 734 with 

Sl 

0. Kowalski [18] developed a method for the construction of homogeneous Ri - i~ 
mannian spaces with t he property 

and he constructed a direct product of homogeneous spaces with the property 

C. Ueda [25] constructed other examples using Kowalski's results [18]. 

M. Djori' and L. Vanh k [10] obtained other new characterizations of two-poinl 
homogeneous spaces considering the volumes of geodesic spheres, balls and circum 
scribing tubes. Nam ly I L CJ : [a, b] ----+ (M, g) be a smooth embedded geode 11 

thr ugh m and d note by Uu(r) the tubular neighborhood of radius r about CJ, i.e. 

Uu(r) = {p EM lth re exists a geodesic 1 of M through p 

cuLLing CJ orth gonally and with I ngLh L('Y) ::; r} , 

whcr Lh r diu r i small r than Lh eli tan e from CJ to its n arest fo al poiut 
If CJ : 1-r, r] ___. (M,g) is a unit p ed g od sic su h that CJ(O) = m, th n tl 

L of points of Uu(r) at eli tan e r from CJ is call d th circumscribing tube of h 
g oct ic ph r with cnL r m, axial curve CJ and radius r. Such a ircumscribing tul 
g n rn.liz , Lh notion f a ir um cribing cy lind r of a ph r in Euclidean 3-spac 
Lc~t v;(r) an l ·~(r) d noL Lh n-dim n i na[ and (n - 1)-dimen ional v lume of tl 

t' 
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rcurnscr i bing Lube of the geodes ic sphcr wi Lh a a axial curv . h pow r . ri s 
pnnsions for Lh se volumes were compu L din [l tlJ, [1 J, [12] and [27] by u ing G rmi 

rd i naLes, fo'erm i v Lor fi Ids and .Jacobi v cL r fi I d . . 
In [I 0] Lh authors generaliz cl Lh old rc uiL of r him I who pr v d LhaL Lh 

1tio of Lh area an I volum of a ph r nd ircum cribing cylinder i on La nL in 
hr•c-<l imcnsional Euclidean spac . Th auLh rs ·onsid red sev ra l r laLion b Lw n 
alum s of g ocl sic spheres, geodesic ba ll s, ircum · ribing Lub s and g od i el i k 
nd derived new local characteri zaLions of Lw -point homog n ous pa e . ev ral 
r tlws relat ions are ith r dir cL g n ra lizations f cl sical r suit in • u li dcan 
,•ornc Lry or rclaLccl Lo som i oparametr ic in qualiL i . •or xampl , if on of Lh 

\fC sc 
,1Lios

1
/ or S a- is ·onstanL, for a ll m E M, all g od si s a t hrough m and a ll 

m. m 
nfi cicnt ly small r , t hen th manifo ll is locally nat. llenc , t h prop rLy f Arch im d 

charac terist ic for locally Euclidean geom Lry. More gcn ra ll y, using the xpliciL 
xprcssions for Lh c ratios for two-poinL homog neou spaces, the authors proved 
haL suc h expressions deLermin Lhese spaces up to local isometry. 

§2 G EODES! BALLS AND SPf lERES ON MANIPOLDS 

W l T H METRI C CONNE T !ON W fT II TORSlON 

Let (Jvf n, g) be an analY,tic manifold with a Riemannian met ri g and a metric con­
ncr Lion D with non-vanishing torsion Lensor T. Th re exisL vari ous problems, ari sing 
natura ll y in physics and ot her areas, whi b can be studied by using this connection . 
Let us remark th at a lthough t he Levi CiviLa connection for a given metric is uniquely 
determined , a met ric connection with torsion is not unique, for a given metric. How­
ever, for a given almost Hermitian manifold (M, g, J) , there exist s the unique metric 
connection D called the characteristic conection, which satisfies 

DJ = 0, T(X, Y) + T(JX, JY) = 0. 

Us ing this special connection, V. Miquel studied in [19] the volumes of certain small 
geodesic balls on almost Hermitian manifolds and expressed the first non-trivial coef­
ficient in the power series expansion of this volume as an almost Hermitian invariant 

e of order two. He proved that , in a certain sense, this coefficient determines some 
e classes (and only these) of almost Hermitian manifolds. Moreover, he obtained a bet­
e ter characterization for the nearly Kahler manifolds. Namely, he proved that if this 

coefficient is the same as the corresponding one for the Levi Civita connection, then 
e M is a nearly Kahler manifold. Using the Levi Civita connection, the information 
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about the almost complex structure cannot be obtained, since the coefficients in thi. 
case are metric invariants. Further, he proved that this coefficient and the spectrum 1 

of the complex Laplacian, together, determine the class in which a compact Hermitian 
manifold lies. 

Therefore, let us recall the notion of geodesic ball in a manifold with metric con­
nection with torsion [21] . First, let expm : U ~ U be the exponential map associated 
to a metric connection D which is a diffeomorphism on 71. For any p E U there exist 
a unique D-geodesic arc joining m and p. Then , if o0 (m ,p) is the length of this . 
geodesic arc, 

(2.1) 

since the velocity vector of a geodesic, for a metric connection, has constant length. · 
Using (2.1) it foll ows 

(2.2) 

where B;? (m) = {p E U[o0 (m, p) ::; r} is the so called D-geodesic ball of center m 
and radius r and B0(1·) is defined by (1.3) . Further, since the Gauss lemma fa ils 
Cor general metric conne tion, V. Miquel used polar coordinates in [20] to obtain an 
i nLegral formula for t he volume V.,.,~ (r) of D-geoclesic ball. To obtain t he power seri 
expansion for V,f;(r), he used the normal coorcl inaLes (x 1, . .. ,xn ) defined by (1.1 ) for 
Lhe exponent ial map associated to metric connection D . For an ori entable manifold 

8 8 
M, choosing norm al coordinaL s such t.h aL { ~1 , ... , ~} is a positively orienL d 

u X u xn 

local frame, t here is a unique volume form w such Lhat w ( f;l8
1

, ... , f;l8 ) = 1 and 
uX uxn 

JJw 0. sing Lhe general power expansions of Lensor fie lds in normal coord i nate~ 

<Lncl Lh integral formu la for v,;;(r) , V. Miquel in [20] and [21] derived, fo ll owin 
Lhe mr.Lhod giv n in [11], Lhe fir L non-Lrivial Lerm in Lh power series expansion for 
~[.)(r): 

wh r r0 i. Lh alar urvalur of D at m an I T is Lh one fo rm d fined by 
'/~'< - ~~l- t TxE,E

1 
for any orthonormal fram {E1, . . . , En} · Jl proved in [20] Lhll 

tlw m Lric c nn ction D and Lh L vi iviLa conn cLion \1 hav Lh sam god sir 
if and nl if A A 0 for any mE A!. 

~lorc~over, . P-liqu I in [22] ompuL d Lh first n n-Lrivi<Ll L rm in Lh powers ri 
xpan. ion for Lh ar a of a g od . i ph re as o iaL d Lo a m Lric connection wit 
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r. ion (S'//.(r)). Since Lhe 'auss L ,rnma fail: for JJ-g od . ic .-pherc\. o ov<'rcomc· 
tw 1 difficulLi<!S, he us d generalized Jacobi fi Ids (1 -Jacobi fi ·Ids) for conn ,cLion· 
ilh torsion and cl riv d Lh following formula: 

s,?,(r) Ct:nr"- L {1 - ~ (TD I 2EJf I ~[[T 1 1[ 2 
n1 6 

_ 11 I n [[T2[[2 _ ~[[T3[[2) r2 I 0(7,3)}. 
12(n -1- 2) I:... 

\ . .Yiiqucl noticed Lhat although a:J(m) C Gm(r) wh r 'm(r) is d fin d in ·Li n 
1 for the· I" vi Ci vi La ·onnection V, thcr is no a priori rJaLi m b ·twe n m ( r) 
ncl .S'!,; ( r). The con eq u nc of th fo r going formul a i thaL, for r mall en ugh, 
,,(r) ::; S/!,(r). 

~;~ C t•: OES I ' BALLS ON MANTP LD W!Tll TORS I - I• REE NNE T l N 

In th is sect ion we cons ider an analyLi Lru Lur (M,D,g) where Dis a Lor ion-fr e 
1nd Ri ci-symmeLric (LhaL means its Ri ci tensor is symmetri ) connection, whi h i. 
not n<~ccssa ril y Lh Levi CiviLa conn .cL ion of the metric g. The assumption that L i ci 

1 1r:nsor R'ic0 is sym metri c is equivalent to the existence of D-parall I volum f rm w, 
J.<!. Ow 0. 

This struct ure appears in several situations, for example, stati sti cal man if li s, C'o­
dazzi transCormaLions for PDEs, Weyl structures , conjugate tripl sand byp r urfac:cs 
in affine space and in space form s, which motivat a study of a strucLur (M, I , g). 
In [7], [8], [9] the authors modified inve tigations of A. Gray an l oLh r author. 0 11 

small geodesic bal ls and spheres and considered generalized balls using this structun·. 
Let us introduce the following notations for t he structure (M, D, g): (g) wi ll 

r denote the Levi Civita connection of g, w(g) its oriented Riemannian volume for111 , 
and w an oriented volume form parallel with respect t D, that m an. Dw 0. w 
is unique modulo a constant non-zero factor. Assume Lhat w(g) an I w indue ' the 
same orientation; then there exists a positive function ~L such that w(g) f LW. Til 
Lorsion-free connections D and V(g) define a (1, 2)-tensor fi eld D - V(g); w 

denote its trace by nT( X) := tr{Y ~ C(X, Y)}. Using sLraighLforwarcl omputations 
we ob tain elementary relations ([9], Lemm a 1.1) betw n Lh sLru Lur s of 0 an 1 g; 

~~ for exam pie: 

nT =-dig~. 

Dw(g) = -nT ®w(g). 
th 
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These relations and the introduction of the difference tensor C allow us to reduce 
the covariant differentiation to an algebraic computation in terms of the tensor prod­
uct. Let us remark that these computations fail for a connection which is not Ricci­
symmetric. Moreover, from the definition of C and the foregoing formulas we can give 
geometric interpretations of C and T: C measures the deviation of the connections 
D and \l(g) , while Tis a measure for the deviation of the volume forms. 

Further, let us recall the notion of a geodesic ball on a manifold with torsion-free 
connection D [8]. For v E Mm, let D~v denote the unique D-geodesic in M with 
D~v(O) = m and D~~(O) = v. We write Dexpm(v) = D~v(l), provided that D~v(t) 
can be defined for t = 1. The map D expm may be defined only on a neighborhood 
of 0 E Mm, where it is a diffeomorphism. In case that D is .not the Levi Civita 
connection o·f g , it follows that the length JJDexp;;;_1 (p)JJ is not necessarily constant if 
p varies along aD-geodesic CJ through m E M. Thus define a geodesic ball as follows: 
LeL r be small enough so that the map Dexpm is defined on a ball of radius r in the 
tangent space Mm. Now, let 

G;?,(r) = Dexpm (Bo(r)), 

wh r Bo(r) is defined by (1.3). We call G~(r) a D-geodesic g-ball with center m and 
rad ius r. Let V~(r) denote the volume of G~(r) with respect to the met ric g. Then 

wll ' I" u vari son Lhe unit sphere sn-1(1) in Mm. o compute Lhe Taylor expansion of 
this v lum in t rm of local invariants of the geometry of (D, g), in particular in term· 
of th invariants C and T and curvatur invariants of D, we modify a method de crib I 
in [ll], [12] and [J ], and extend th noLi n of "normal coord inates" to the stru tun 
(J\1!, D g). L t {e1 , . . . en} b a g-orthonormal basis of Mm. We define a real-valu d 
function 'jon an ighborhood of m by Xj (Dexpm Cz:=tiei)) = tj· hen (x1, ... , :rnl 
is call d t h sy t m f D-normal coordinates c rr spondi ng to { 1 , ... , en }. Con. id· 
ring th I al au ba is 81, ... , On a ociat d to a D-normal coordinate sysL !11 

(x 1, ... Xn), aD-normal coordinate vector field at m is a local vector fi ld X of Lh 
form X = 2::::: ai Oi wher Lh ai's ar onstanLs. For many purposes iL t urns out 
Lo b far a i r Lo w rk with D-normal coordinaL v cL r fi Id s inst ad of D-normal 
co rclinaL . •or xampl , Lh notion of aD-normal oordinate v ctor fi ld at m do' 
noL d p nd n Lh of Lh D-n rmal ·o rdin aL syst m aL m. •o llowing [11 
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' l .. irnon and h authors of this article in [ ] xpand d w(g)(D xpm(ru)) in a pow r 
ric in rand deriv d the formula for V~(r) with th fir L thr non-z r L rm : 

V,~ ( r)- Cln1~:~ {1 I 2 (n~l 2) ( t.lgJ.L I 2llgradlgJ.LII
2

- ~Lr9 RicD ) r2 
I 

24
(n 

1 2
)(n+ 4) [300( lgJ.L) 1 12g(grad lgJ.L,gradO igJ.L) 

I 6g(!JessD lgJJ., ff essD lgJ.L) 1 3(0 lgJJ.) 2 

1- J2IIessD( IgJJ.)(grad lgJ.L,gral lgJJ.) 

-1 60 lg J.L!igrad lg ~tl! 2 + 3llgrad lg J.LI! 4 

- 4RicD(grad lgJ.L,grad lgJJ.)- 4g(dlvRicD,grad lgJJ.) 

I 8 ~ Rh.ii.iDi lgJJ.Dh lgJJ. + 2 ~ D.iRhi.iiDh lgJ.L 
i,j,h i,j,h 

i,j,h 

- 2(0 lg J.L + l! grad lg JJ.!i 2 )tr9 RicD - 2g(gradtr9 RicD, gracllg JJ.) 

3 ( . . D) 1 ( . . D)2 6 ~ 211 · Dll2 - - 0 tr R~c + - tr R~c - - D ·D·R- · + Rw 5 g 3 9 5 J t tJ 3 
i,j 

- :
5 

. ~ (R'\si R 5 .ih.i -I- Rh i.i sR 8 jih-1- Rh i.is R
5

i.ih) l r
4

} + 0 (r n+6 ). 
'L,J ,s,h m 

Here we use the following notation: For a differentiable function f , its Hessian 
T1 essD (f) is given by 

H essD(f)(X, Y) : = XY(f)- df(Dx Y) 

n and we int roduce a Laplace type operator by 
e 
.L 

:s its metric Hessian is denoted by H ess9 (f) and its Laplacian by 
J, 
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After straightforward computation, it follows that for D = V(g) the foregoing 
formula specializes to (1.4). 

Another important special case of our computations is that of a Blaschke struc­
t ure, see e.g. [24], chapters 4 and 6. In case of our structure (M, D, g) we have the 
equivalence: T = 0 {:::::> w(g) = w and therefore Dw(g) = 0. Extending the termi­
nology from affine hypersurface theory to the structure (M, D , g), we call (M, D , g) a 
Blaschke structure if T = 0. 

If (M, D,g) is a Blaschke structure, for aD-geodesic g-ball, and for r > 0 suffi­
ciently small , it is possible to compare its volume with that of a Euclidean sphere 
S11 (r): 

(i) if Dis flat then V~(r) = V(S11 (r)) + O(r11+6 ); 

(ii) if D satisfi es tr9 Ric = 0 then V~(r) = V(S11 (r)) + O(rn+4); 

(iii) regarding the expansion up to the order (n+ 2) , the sign of tr9 Ric determines 
whether t he map Dexp has a decreasing or increasing effec t for the vo lume 
fu n tions onsiclered. 

I Lis interesting to com par the foregoing result with the corresponding ones in secLi n 
1, for Levi ivi La onnection. 

Furhter, consider an (n + 1)-dimensional affine space A n+l with associated vector 
space V, and a lete rminant form Det fi xing an ori nte l volume. Let x : Mn ___. 
An+ l b an analyti c, locally strongly convex, embedded hypersurface with so-call d 
Bla ch k- str 1 Lure inclu d by the unimodular affin e norm al. The convexity condi tion 
implies that the Bla chk metric g on M is Ri mannian. The metric g, together with 
the onn Lion D, indu d from the affin normal, and the onormal connection D', 
defin a onjugate tr iple. For Blaschke hyp r urfaces, the variational prob lem for 
the area functional leads to the ' ul r-Lagrang eq uation H = 0. Foll owing Calab' 
Bias ·hk, hyp rsurfaces with II = 0 ar call cl affine ma.'Eimal. Th power scril 
cxpan i n f r V,~(r) implies: 

(i) for affine maximal hyp r urfa s w hav V,~· (r) - V(S 11 (r)) I 
V~(r) V(S't(r)) 1 O(rnl ~); 

(ii) for improp r af6n sph r w hav v~· (r) V(S 11 (r)) 1 O(rn 16) and V!/,(r) 
V( 71 (r)) I O(r11+B). 

F'urth r in [. ] tb authors consid r cl th stru "Lur ( J\1 , D g) by studying th pm· 
,icctiv chang :of D and proj ctiv flatn s of D and the influ n of Lh g n raliz< 
g ·ocl i ball xpan ion in u h g om Lri siLuaLi n . . E p ially, sin e it is inL r Li1 
Lo tudy Lh probl .m of uniqu n s of proj cLiv ly flaL onn ction , Lh y prov d th 

··~ 
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g is a rn .Lric and D and D# ar proj ·Lively flaL ·onn Lion su h LhaL 

(i) J\I i dirT amorphi Lo Lhe ph r n; 

(ii) Lhe g neraliz d g od ic ball xpan ions f r (D, g) and (Dif g) coincid up Lo 
ord r 71 I ~; 

(iii) w(D) w(Dil); 

(iv) Lhc pairs (D, g) and (Dif-, g) saLi fy dazzi quaLion ; 

•Jell b Lh onn Lions oin icl : D = Dlf-. 
In Lh for 'going r . ults Lwo sLrucLurc on a giv n hyp rsurfa ar com par d. lTow­

v r, numerous app li cations can be obtain d in dirT r nL r laLiv norrnalizaLi n by 
,rnparing Lwo hyp r urfaces. For exampl , 

(i) If ::.r, xlf are a!Tine l laschkc hypersph r and the gen raliz cl g ocl sic ball x­
pansions for V,~· (r) and vf{# (r) coincide up Lo order n 1 2, both hyp r ph r s 
arc of Lh same type (elliptic, parabolic, hyperbolic) . 

(ii) If x, x:fl- are a!Tine 2-spheres wiLh the same metric and the g n r, liz d g odesic 
ball xpansions for V~ .. (r) and V,~· 'lf. (r) coincide up to ordu 11 1 2, th n x, 
x# are un imo lularly congruent. 

(i ii) Let x, xit b complete Blaschke hyperspheres such that th gcn raliz d geo­
desic ball expansions for v~· (r) and v~·# (r) of order n 1 2 coin .ide. If x is 
an elli ptic paraboloid , then x# is an lli ptic paraboloid. 

LeL x, x# :!VI ----t .An+l be relative hyperovaloids. Assum th t 

(i) the relative metrics coincide: h = h#; 

(ii ) for Lhe conormal connections D* and D *#, the g n r li z d geodesic ball ex­
pansions for V(D*, h; m, r) and V(D*#, h#; m, r) coincid np to order n-/- 2; 

(iii) w* = w*#. 
I 

d Then x, x# are affi.nely equivalent , which means that ther exists an affine transfor-
mat ion T : .An-t- 1 

----t .An-t-1 such t hat x# = Tx. Moreover, if Blaschke hyperovaloids 
x,x# satisfy the conditions (i), (ii) from the previous th orem, then x, x# are uni­

~ modularl y equivalent. 
Let us remark that that the foregoing assertions hold true if one considers the 

l- induced connections D , fl# instead of the conormal conn cLions. 
d Further, onsider a non-degenerate hypers urface x : }/[ ----t JRn+l such that its 
g position vector is transversal. Then y( c) := -x is called the centroaffine noTmal. 
1.t Following Nomizu, we call such a hypersurface together with its centroaffi.ne normal-

ization a centroaffine hypersurface. The associated geometry is invariant under the 
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group GL(n + l ,JR). Then if x : M ___, JRn+l is a hyperovaloid wit h centroaffine 
normalization and t he generalized geodesic ball expansions for V~(r) and v~· (T) 
coincide up to order n + 2, then x is a hyperellipsoid. 

For fur ther applications, details and references we refer to [9]. 
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Introduction 
T he aim of this surv y article is to explain a general concept of general­

ized function algebras (P ar t I) and to illustrate the analysis of equa tions with 
singularities within these algebras (Par t II) . While P art I is simply acceptable, 
Part II gives just fr agm nts of our approach . We refer to the literature for more 
in forma tion abo ut any of q uoted classes of equations. 

Colombeau had construct d his well-known algebras by p urely algebraic 
methods. Since then, a lgebras of Colombeau generalized numbers and func­
tions became a very useful fr amework for linear problems wit h s ingulari t ies and 
sp e ia lly for non linear pr blems [1, 2, 5, 24] . 

Many lin ar an l nonlinear problems with irregular da ta or ir regular oef~ 

ficienLs, have b n su ssfu lly analyzed by the mean of appropriate approx­
imat ions through neLs of 00 functions which fits into Co l mbeau algebra 9 
of g n raliz d fun cLi ns. VY, xten l the references in order to mark a part of 
large liL-raLure r laL d Lo linear and nonlin -ar equaLions in the fr a mework of 
g nera liz cl fun ·Lion a lgebras. 

In Part I , w pr s nL a very genera l construction of g neralized function 
olombeau Lyp a lg bra through a purely topological description of Colombeau 

typ alg bras. \¥ will bow LhaL such algebras fit very well in the gen ral 
th ory f thew ll known s qu nc spaces forming appropriate algebras [11]. All 
Lh s classes of alg bras ar simply I t rmin d by th (local ly convex) space 
E, and a s<'qu nc of w ight s ,. : N __, IR+ (or sequence of s qu nces) which 
s rvcs to c nstruct Hll ultram tric on t hr sequ nc space EN. The sequcll('(' 
r - (r 11 )

11 
is assum •d Lo b lecreas ing to zero. This implies th at seqtH'n<·e 

spa -cs unci r onsid ration ( C EN) nLa in as a subspace E ,....., d iag E1 ~ a nd 
that they indu lh dis 'l' l topology on E. Th i is w ll-kn wn for th sharp 
lopologv for olomb a u l 'P a lg bras. But our ana lysis implies tha if one 
has a olomb au 'P · lg bra containing h Dirac d Ita distril ulion o as an 
mb del d olomb au g n rali zcd fun lion, then thr topology inclucC'd on the 

basic space must b eli cn•t . Thi · is an analogous r suit to the dtwart z 's 
"impos:ibi lit y result" cone rning th<' product of clistributions.construction of 

olomb au typ' alg bra ·. 

In Part II w pr · .nt ou1 m thod in solving various classes of quations with 
strong singulariti in h fram w01k of g n raliz d fun lion alg bras. 

onslruction · of a lg bras giv n in Part I ar used 

• irst w pr ·cnt a quasilinca1 Plliptic qual ion with Dirich!Pt 's hounclaJ ,. 
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concliltons, ([34]) second, wav SC'tllllinear ([22]) and, third, h0al s0milin ~a t ([23]) 

l'quation!j wtt h 'auchv data. 

W0 consicl r a quasilincar Dirichl t probl m for uruformly dlipttc equal wns 
whose co "{!icients have lack r0gulant v assumption· c ncl with singular bound ry 
c·on litions. In our setting of a probl m w rep la an quation d1uA(Du) = 
0 with a n l of •qu·1tions with 1 ·gular co fficien s and a s ingttlar boundary 
l'Ondilion with an appropriate regularizc•d net of boundary conditions. 

As a se ·ond illustration w con:;idC'r a ·emilin r wav qu<tltons in space 
dim nsion n $ 9 with singulfu data and various typ s of nonlincaritt s. In 
gen ral, a nonlin ar t rm is regulariz d wi h r sp ct to a small par, m l r E: 

such that it becomes g lobally Lipschi z for achE:. An t of solutions t a net 
of auc:hy problems obtain cl in this way d t rmin s an I em .nt in r;h2, th 
gen raliz cl so lution. F r ce rtain gr wth conditions on c nonlinear term the 
equation is unique ly so lve I in 9,_2 wit hout r gu larizc tion. Note, in certain cases. 
a so lution to the regularized quation is also a solution L th non-regulariz 'd 

one. 

\1\Te have studi d a lso the heat equation with singularities, xt nding th us 
of s migroups to some classes of PDE's with singular coeffici nts. Tb g neral 
idea is simple: it lies in the core of a constr uction of g nerc lized fun ·tions. 
Regularized PDE, in fact a net of quations, is solved with an appropriate n t of 
semigroups. The solution obtain d in this way represents a gen ralized function. 
The concrete results for the h -at equation will not b pr sen ted in this pap r 

(cf [23]). 
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Part I 

1 Colombeau type algebras 

In this section, we will present traditional approach to Colombeau type algebras 
and then in the next sections a more abstract and general realization of such 
algebras. 

First , we recall t he usual Colombeau type extension of Q(E) ([35]), where 
E is a vector space on <C with an increasing sequence of seminorms JJ-n , n E N. 
The space of moderate nets of EM(E), respectively, of null nets of N(E) , is 
constit uted by nets (re)eE(O,l] E E(O,l] with the properties 

(Vn EN) (::Ia E IR)(JJ-n(r.,) = O(t:a)), (1.1) 

respectively, (Vn EN) (Vb E IR)(JJ-n(r.,) = O(t:b)). 

(0 is the Landau symbol.) The quotient space Q(E) = EM(E)/N(E) with 
elements[(!,).,], [(g.,).,], ... , ( quivalence classes are denoted by [·]) is called the 
Colombeau extension of E. P utting v71 (r.,) = sup{a; JJ-n(r,) = O(t:a)} and 
en((r,)t:, (s.,)t:) = exp( -v71 (7·.,-s.,)), n EN, we obtain that (en)n is a sequence of 
ultra-pseudometrics defining the ultra-metricmetric topology (sharp topology) 
on Q(E). 

If E = <C (orE= IR) and th seminorms are qual to the ab. olute value, then 
the orr spending spa e ar Eo, No; Eo is an alg bra and No is an ideal and, 
as a quotient, ne bLains olombeau algebra of generalized complex numbers 
t = Eo/No (or i). If as t n is p n in IRn and E = C00 (r2) is endowed with 
the usual s qu n e of seminorms (this is Schwartz space E(D)), then the above 
cl finition giv s lombe u implified algebra Q(D) = EM(D) /N(D) ([5], [24]). 
Its el ment ar all d g n raliz d functions and we keeJ this name for elements 
of any spa or alg bra · onstruct d as xt nsions of some fun ctional space E. 

Th n tl~> mb dcling of compact ly supported Schwartz distributions (<'1-
'lll'nts of E'(D)) is mccle through th convolution with a net of mollifi<'rs 
he = t:-"h (-/ t:) ·onstruct cl I y a rapidly cl Teasing fun tion h E S(IR") with 
lh prop rti s J h(t)dt - 1, J t"'h(t.)clt = 0, m E f\1 71

• Th embedding is given 
by 

f ~ [(! * heln)e]· 

By the sh af propPrti s of'D'( ) a nd Q(D), this rnb dding is xtendecl to D'( ). 

in appli a ions 

L t b a b undcd open s t in IR" and o E (0, 1). Recall ([15]. p. 94). 
n domain and i s boundary ar of ck,a- lass 0 < 0 < 1, if at aC'h pomt 
.r0 C · nth rc is a ball Br., and a bij Lion 111 : B --+ D such Lhal ~~(Bnll) IR~. 
~p(B n D ) c DIR+ and 4J E Ck,a(B), 1/;- 1 E Ck·n(D). A d main has a 
b undary por ion T E: on of Ck,a- lass if at each point :ro E: T th rc i. a ball 
Bx, in which th • abov ondilions ar satisfi d and B n Dll CT. 

\\ ' will onsid r th o lomb au xtcnsions m cas s E •k,n(fl.).k E: IJ and 
E \\ 'c will usc th<' norm:; 
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lfik.o,n = lfik.n [fko.n, kENo, 

wh re, for¢ E C'00 (f2), k E Ia, 

{ 
lf(Pl(x) _ JCPl(y)i } 

l!ko,n = up lx- Ylo ; (x,y) E n , X :f. y, IPI- k . 

T he complet ion f C (f2 ) with resp ct to the norm I · ko,n d fin E~ = 
C'k·"'(f2), k E N. R call , if k +a< k' + o', th nth imb ddi ng of •k,o(n) inLo 
Ck' ,o' (f2) is a compact li n ar p raLor. 

Note Lhat Lh sequences of no rms II· l!k,o, kEN and II· ilk. k E N d •fin t he 
sam uni fo rm structure on ' (f2) , s th usual one. 

In cas E = C'00 (f2), we n ed on mor construction. L t (g~)~ b a net in 
C'0•

0 (f2) such t hat 
g~ E C'k·"'( f2 ), c < ck, k EN, 

wh re (ck)k E (0, l )N str ict ly de reases to zero ((ck)k! 0). 

T wo such nets are in rela tion, (g~)~ rv (T~)~. if 

g~ = T~,c <co, for some co E (0, l ). 

T his is an equ ivalence relation and with the corresponding classes, lemenl.s 
in C'0•

0 (f2 )/ rv, we defin spaces £M[E ], N [E] as in (l.l ). Then we define the 
corresponding Colombeau type space 9[£] = £M[E] / N[E]. 

2 A lgebras of weighted sequence spaces 

Now we will give another approach to generalized function algebras which is 
actually t he topological descrip tion of s uch algebras . 

Consider a semi-normed algebra (E,p) such thatp(a b) ~ p(a)p(b) , a, b E E 
and a sequence 1· E JR~ decreasing to zero. 

Defin for f E EN 

Ill f lllp ,r := lim supp(fnt" . 
n ->oo 

T his is well defined for any f E E N, with values in JR+ := JR+ U { oo}. With this 
definit ion, let 

Fp,r = {f E EN: Ill f l[lp,r < oo } 

Kp,r = {f E EN : Ill f l[lp,r = 0} 
T hen the following holds: 

P roposition 1 

1. The function 

dp ,r : F p,r X Fp ,r ---+ JR+ , 

(f , g) ,_..., Ill f - g lllp ,r 

is an ultrapseudometric on F p,r . 
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2. Fp,1· is a subalgebra of EN , and Kp,r is an ideal of Fp,r ; thus 

3. 

is an algebra. 

' . 

dp,1· : 9p,r X 9p,r --> JR+ , 

(F,G) ....-. dp,r(f,g) 

is an ultrametric on 9p ,1'1 where f E F , g E G are any representatives of 
the classes F = f + Kp,1' resp. G = g + Kp,r · 

4. 9p,r = Fp,r I Kp,1· is a topological algebra, the quotient topology being the 
same than the topology induced by the ·ultramet1·ic dp,1'. 

V.lc give the onstruction of generalized constants. For th is, E will be the 
un I rly ing field lR or C, and JJ = I · I the absolute value. As a lready expla ined in 
Lhe introduction, for 7· = 11 log, we get th r ing of Colombeau 's numbers C. Let 
Tn = 10! n , n 2: 2. Colombeau 's a lgebras of generalized constants represented by 
s •quences w ith polynomial growth modulo sequences of more than polynomial 
decrease, becaus 

lim sup lx,,l 1/ logn < <==:> ::JC : lim s up lxnll / logn = C 

<=:> 3B, 3no, Vn > no: lxnl::; B 10g" = n 1og 13 

<==:> 31 : lxnl = o(n") . 

If w puL, lim s up = 0 (for Lh icl a!) t hen Lh corresponding C a bove equals 
zero a nd thus VB> 0 r sp. V1 we have lxnl = o(n"). 

onsider now Hold r Lyp spares E = Ck,o(f2) (cf. [15]) , a E (0, l] a nd 
k E No . With I · ik,n norm It. is a Banach space and we can apply Lh same 
construction with Jl II · Ike>· 

The ·on<'SJ onding o lombeau type a lgebra is defined by 9c• " := F I!\_ 
when' 

F:= {'u E ( k,u(f)) 1 '~ l lim sup llunll~ < } , 

K := { u E (Ck,o (H))1 I lim sup llunll~ = 0} . 

This a lg bra IS already d , crib din, ection 1; it will be used for the ana lysis of 
llipt 1c equation in Part II. 

n tr rc ti ns with I ·all onv x v t r pa s 

C'onsHI r no\\' lUI algebra D winch is a localh rom•p.· \"Pc ·t 01 SJHIC'c o11 tr · 

cqtupp<'d \\'II h an arbitral\ :-.PI of s mntonns p ( P dpt PI n1tni11 .£l. its loc ,t!h 
couvc•x s! ruct lilt'. Assunw that 

Vp ~ P . :J p E:. P . C c IR1 : V.r y •= 1~: p(.ry ) < Cp(.r ) JI(y). 
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Lel 
Fp,r = { J E EN I \fp E P : I J p,r } 

and 
KP,r = { J E EN I _Vp E P : J l p,r = 0} · 

Th n the following holds: 

Propo iti n 2 1. For every 7J E P . 

dp,r: E 
N -

X E -. lR+ 1 

(!,g) ,..... ~If - g mp.r 

is an ultrapse·udometric on FP ,r· 

2. Fp,,. is a (S'ub-)algebra of E 11 • and KP,r is an ideal of FP,r· 

3. YP ,r := FP,r/KP,r is an algebra. 

4. For every pEP, 

dp,r : YP,r X YP ,r-> iii+ 1 

(F, G) ,..... dp,r(f 1 g) 

·is an ultrametric on Qp ,r , where j , g are any representatives of thr drts.~r ·s 

F = f + KP,r resp. G =g+KP,r · 

5. YP.r := FP ,r/KP ,r is a topological algebra, the quotient topoloqy lwllllf tJw 

same than the topology induced by the family of ·ultrarnetru·s {r1,,, } . 
I' p 

Let E = C00 (S1), P = {PvLEl\1 with 

PvU) := sup lf(<.>)(x) l , 
[<.>[ ~ v, [x[ ~ v 

and T = -1
1 

. T hen, Qp r = Fp r/Kp r with og , , , 

Fp,,. = { Un)n E c =(n)l\1 I VuE N: li;,n _ _,s~PPv(J,.) 1 f 1oKH < } ' 

KP,r = {un)n E c=(n)l\1 I VI/EN: limSUPPvUn)l/IOJS il n--+00 0} . 
we obtain the simplified Colombeau algebra Ys· 

So called full Colombeau algebra Q is r elated to a m r dclic< t' pr ced ure 
and it is omitted. We only note that the embedding of ('hwart~ distributions 
and of smooth functions into Q is well-known. Also it is w 11-lmuwn that the 
multiplication of smooth function embedded into Q is Lhe usual multiplication. 

The following example is also of interest. Take E = Dr,,.(S1), p > 1, P = 
{Pv} vEN with 

Pv(J) := sup lif(<.>)IILP , 
[<.>[ ~v 
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and T = l;g . Then, 9LP = F'P,r/K'P,r with 

FP,r = { (Jn)n E DLP(n/' I 'VI/EN: li~~;:,PPv(Jn)l/ logn < CXl} , 

K'P,r = { (Jn)n E D v ,(S1)r; I 'Vv E N: li~:_.s;:,PPvUn)l / logn = 0} . 

is Colombeau type algebra used for the investigations of wave and heat equation. 

We will consider later Q£2(Rn). 

Projective and inductive limits 

Projective limit Let (Efj, p~) f.L,vEN be a family of semi-normed algebras 
over C, such that 

where <--t means continuously embedded. This implies that there exist constants 
Cfj , Cfj E IR+ such that 

'V!J-, v E N : p~ ::::; C~ p~+l , p~ ::::; C~ p~+l , 

but without loss of generality one can take Cfj' , Cfj = 1, 'V ~J- , v E N. 

Then let 

<- <-
E := proj lim E~-' = proj lim proj limE~ = proj limE~ . 

~.J. --+00 V --+00 ll --+00 

D fin 
<- { ._ ,~ . } 
Fp,1· = 1 E E I v,.,l/ E N: Ill f l llp~ , r < CXl ' 
<- { <-r; } Kp ,1· = f EE I 'Vf-L ,I/ EN : III JIII p~,r = 0 · 

(II r JJ = ((p~)v)l-' stands (on the l.h.s.) for the whole family of serninorms.) 
T h n P roposit ion 2 holds, with t h slight chang s of notations introd uced above. 

Inductive limit Consi ler now a family (Et, p~) f.L,vEI~ of semi-norrned spaces 
v r C, su h that 

T his impli s thai there xist constants Cfj', Ct E IR+ such that 

ll p'" p'" < Gil p'"+ I 
Ulll 11-VV l 

bu t again on can a. sum Cf:, Cf: = 1, 'rif t, I/ E N. low let 

-+ 
'Vf1 E N : E 1

L = ind limE:: . 
l/--+00 

Assum that fo r v ry J.L, 1/, v11 E Pl t h r xi. t v E N and C > 0 such that 

\\ 'c havc> 
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!\ow let _, 
E : proj lim £ 1' proj lim ind lim Et , ,. v-

and define 

:F p,r : { J E E 1 I 'v'J.L EN, 3 11 EN: J E (Et) 1\ I J Upt:,r < } ' 

p,r . { f E £N I 'v'J.L E N, 3v E N: f E (Et)N 1\ If lp~,r = 0} 

Prop ition 3 

(i) l Vntmg +-:-+ for both, t-:- or--:-', we have that F p,r ts an algebra c.LHd K "·' 

(ii} 

(iii} 

(iv) 

(-:-' (-:-' (-:-' 

is an ideal of :F p,,.; thus, 9 p,r := :F p,,.; K p,r is an algebra. 

For every J.L, v E N, dP~ : (Ef:)N x (E/:) 111 
--> iR+ defined by dP~ {!1 g) = 

Ill f - g lllp~,,. is an ultrapseudometric on (E/:) 111
• Moreover (dPd~-'•" in-

~ 

duces a topological algebra structure on :F p,r (since dp:: (0 1 f · g) 5. 
dp:; (0 1 J)dp~ (0, g)) sttch that the intersection of neighborhoods of ze1·o 

eq·uals K p, r . 

~ f- +-
From (ii), 9 p,r = :F p,,.; Kp,r becomes a topological algebm winch topology 
can be defined by the family of ultrametrics (clp~ )~-'•" wher· clp:; ([f], [g]) = 
dP~ (!,g) , [h] standing for the class of h. 

If T 1" denotes the inductive limit topology on :Fb,r = U vEN ( (Ef:)N 1 d1,,v) , 
--> 

J.L E N 1 then :F p,r is a topological algebra for the pTojective l·imil topology 
of the family (:Ft,r·1 T1")'"' 

((Et:}N 1 consists of elements f E (Et;)N with finite dl-',,1 {!) .) 

Without assuming completeness of E 1 it holds: 

Proposition 4 

f-

(i} :F p,r is complete. 

--> 
(ii) If for all J.L E N, a subset of :F~,r is bounded iff it ·is a bounded subset of 

(Ef:)N for some v E N, then F p,,. is sequentially complete. 

Comments on the Schwartz' impossibility result 
--> f-

In the definition of sequence spaces :F p,,. resp. :F p,r, we assumed rn '\, 0 as 
n --> oo. Clearly, one could consider sequence spaces of the same type with rn 

(-:-' 

only bounded , or even rn--> oo . In the former case (rn bounded) , the space :F p ,r 

(where ~ stands for t-:- or __,) contains diag EN topology, via the embedding 

E 3 f f-) (f)n E £r<. In the second case (when rn-+ oo), this embedding is 
not possible. 
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<---> 
In the case we consider (rn ____, 0) , the induced topology on E is a dis-

crete topology. But this is necessarily so, since we want to include "divergent" 
<---> 

sequences in F p,r· 

In order to have an appropriate topological algebra containing "o", we must 
have that our generalized topological a lgebra induces a discrete topology on the 

<---> 
original a lgebra E . 

This conclusion is in analogy to Schwartz' impossibility statement for mu ltipli­
cation of distributions. 

General remarks on embedding of duals 
t--+ 

Under mi ld assumptions on E , we can show that our algebras of (classes 
t--+ 

of) sequences contains elements of the strong dual space E '. 

Let C0 (JR5
) be the space of continuous functions with projective topology 

given by sup norms on the balls of r ad ius I/ E N*, p11 (f) =sup {[.f(x)[; [x[ :::; I/}. 

vVe shall ass ume in the sequel that E isa dense subspace of C0 (JR 5 ) and the 
t--+ 

inclusion mapping E ____, C0 (JR8
) is continuous. 

Then, we have the fo llowing 

Proposition 5 (i) 
<----> 

a: E ____, c , a(¢) := ¢(0) 
t--+ 

is an element of E ' . 
t--+ t--+ 

ii) Let E be eq·uentially weakly dense ·in E l Then. a sequence ( o,) 
11 

E En ( C0 )' 

with the pmpe?'ty 3'T) , 0 > 0 : 't:/n E 1'\1 : s up [on(x)[ < '17 : converging ·weakly too. 
<---+ lxi>O cannot be bounded in E . 

Thus, the appropr iate choice of th sequencer appeared to be important. to 
have at least o mb deled into h orrespond ing a lgebra. It can be chosen such 
LhaL: 

+-
In E ca.se, for v ry /t, I/ E 1'\1 

lim upp~ (o,.r" =A~ and :3J.Lo, vo: A~~~~~ =!= o. 
n--+ 

In E as , for v ry /L E 1'\1 x ists I/ E 1'\1 su ·h Lhat Lh ftbov limit holds. 

3 A 

T h no ion of a w ak limiL r of a w ak solutions is Lransfcrr d t gen .rali z •d 
function alg bras Lo various notions of associations. Thus Lhcir import a nee is 
und rlin d through th applications to nonlinear equal ions or lm ar on(• with 
singu larit i s. 

n raJ c 11 • p : :1 X , s iati nTh' :J- X association of cl 'IIJ('nt s 

F G E" g F/K is dcfin din tcnns of an additiv subgroup :J ofF contair11ng 
the ideal A... and a s l · of g ncr alizt'd numl>cr s. by 

F ~ G <==} V.r - X : J. · (F- G) E :J / K . 
:J,X 
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As :J is not an id al, the association is not compatibl' with the multiplic-ation 
in F (not v n by generalized numb rs, only by •I m •nts of E) . llowc·v<'l. 111 

th' case of liff rentia l alg bras, :J is usually ·hosen such that ;:::: is slabl<' und<·r 
!iff rcntiation. J 

If Lhc s l X contains only number l, h n w simply wri 

F- G E :J /K. 
J 

For example, cons id r N = { x E en ll irn x,. = 0}, th s t of null s qucn ·c . 
Th is gives usua l association of g neralized numbers, 

[x] "' [y] <=> [x] ;:::: [y] <=> Xn - )Jn 0 
N 

which is we ll defined because a ll el menl of th id al L nd Lo z ro. 

Strong s-a ssociation is d fined for s E JR+ by F ~ G <=> F ;:::: G wit. h 

:J~s~ = {f E F I Vp E P : Ill f lllp,r < e-s} · J~'~ 
Fm: s = 0, we wr ite F c:::: G and s imply call t h m strongly associaL d. 

O n t he oth r ha nd, F ~ G for a ll s ~ 0 imp lies F = G. 

Weak associations . The following types of asso iat ions are defin d in te rms 
+--> 

of a duali ty product1 (-, ·) : E x D -) C, and 

where Jvf is some add itive subgrollp of C1~ . 
s 

s - D' - association is defined by F ;:::: G <=> 
{ [( esfr, )J} for s E JR. 

F ;:::: G wil11 Xs 
.:JN,x. 

Example 6 In the case of Colombemt 's algebr-a this has already been cons·ider- d 
(with D = D): For- s = 0 we get the so-called weak association [!] ;:::: [g] <=> 
fn - 9n -) 0 in Dl For s =/= 0, [.f] ~ [g] <=> n 8 (f71 - gn) -) 0 in D' . in !.he. case 
of ultmdistr·ibutions, we take D = v (m) and esfr,. = xp[s n d-T] for· flead·ing 
case, and analogo·us defi:n:itions in the Roum·ieu case. Weak s-as ociation ·is 

defined by F ~ G <=> F ;:::: G wheTe I = Ji.J ,r, s foT any s E JR. 
sw JJ 

For s = 0, we wTite F ;:::: G and call F and G strong- weak associated. 

1 D stands for a test function space such that E <--+ D'. 
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Part II 

4 Quasilinear elliptic equation 

Let ( Qe: )" be a net of elliptic nonlinear operators of divergent type of t he form 

(4.2) 

where a~·l(p) = Dp,A~ (p) , or, in case n = 2, let (Qe:)e: b e a net of ellipt ic 
nonlinear operators of the form 

(4.3) 

W assume that a~·j, c E (0 , 1) are smooth functions on Sl. If Ae: and A" denote 
r SJ e tively the minimum and maximum eigenvalues, then we have 

0 < /\"(x, t , p)l~l 2 ::; a~·i(x,t,p)~i~j ::; Ae:(x ,t ,p)l~l 2 , (4.4) 

p E lR" , ~ E JR" \ {0}, X E Sl, t E lR, c < co. 

Assum additionally: 

(Vd E N0' )(:3 lc~ E lR)(:lac~ E JR) (4.5) 

{ 
l8~a~·1 (x,t , p)l. . r, "} _ /n( l") 

sup ( I I I I) , x E H, t E JR,p E lR _ v c . 1 + t + }J CL,J 

(:JC > O)(:JJ.L > O)( :Jb E JR) (4.6) 

cM C 
C (1 + It I + IPI)b ::; >- e: (x, t,p)) ::; A"(x, t , p) ::; cM (1 +It I + IPI)b, 

p E JR", X E s1, t E JR, c < co. 

In th case when the net (Q")" is f th form (4.3) then n = 2, and if it is of the 
divergent form ( 4.2), then w exclu le vari ables x and t in the ·o nditions given 
abov . 

To t t hat ·ondition (4.6) implies 

(4.7) 

With t h giv n prop r t i s (Q~)~ is call d the net of uniformly elliptic mod­
ra , ont inuous opera tors. 

xampl 

onsid r in JR3 t h , op rat r 

3 

Q(:r, u, Du) - (l + L 8(D,)) u (8 is the d Ita d istribution). 
t=l 

\ iVit h he r gularizat ion of 8, we hav 
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( ~y• is n ('Oinpact lv supportPd sllloot h function with th int •gral Pqtmls 1.) 

TlH'll, /\c- 1 and,\ (~v(~) t- t41(~Hlf1(7) + 1). 

This ope rat or is of th form (.1.2) for which al l th assumptions givPn ctbovc 
hold. We need a "slope condit ion" adapted to the setting of 'oloml>cau t hcon 

D finilion 7 Let E- k,<>({1) for some k E fl (cf. 1.1 and CJc• .. ). (cp )t I= 
:F = Ec• .. and r c = { (x, z~), .r E: un, z. = ¢£ (x) }. Then ( ¢c )c and the boundary 
uO. sattsfies a moderate slope condttion 1f for any P£ E r c there xi ·t hyperplane · 
rr7P. and rr;,P, defined by Zc rrc,P (x) and z£ = rr;,P. (x) such that 

and such that for some J( > 0 and some m E IR, 

W ith all the defini t ion giv n abov and by the us a g neraliz d v rsion 
of th Leray-S ·hauder fixed point Lhcor m we are able lo solve a quasi lincar 
cquationt, 

Proposition 8 Let ( Q" )c be a net of uniformly elliptic op rators of the form 
(4.2} 01' (4.3) with a~·J E Ck+ 1 (D) {k E N)satisfying (4.5) with d < k 1- l and 
{4 .6). Let E = Ck+2•0 (D) (¢e)e E Ec<+2.o where 80. is of Ck+2

·" da sand tl. 
satisfi es a moderate slope condition w'ith ( ¢e )e . Then, there exists ( u£ )c ( Ec• '2 ... 
s·uch that 

(4.8) 

T his theorem implies the solvability in CJck.o . 

Remark that the process of regularization of equation d·ivA(Du.) 0, 1i]Dl1 = 
¢ with singular coefficients and singular data leads to the approximat d net of 
solutions by the mean of previous theorem. 

5 Semilinear wave equation 

In this setting we connect two areas: th L 2-theory for the nonlin ar wave equa-
tion 

8zu - 6u + g(u) = 0, g(O) = 0, ti = u(x, t) , x E Rr", t 2: 0, (5 .9) 

u(x , 0) = a(x),; 1it(X, ) = b(x),; x E Rn , 

involving energy estimates and the theory of generalized functions where non­
linear operations makes sense for a large collection of singular objects . 

Concerning g, if it is not globally Lipshitz, then it is substituted by a net 
of globally Lipschitz functions 9c(u) . Then the obtained net of equations, called 
regularized equation, is solved for each fixed c:. 

In some cases g is not regularized and the growth conditions on g are involved 
for the existence and unicity of a solution similarly as in the classical theory. 
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We use here the algebra 9p([O,T) x Rn) (cf. Example 5 with simple modi­
fications). Also we use the notation :F = ££2( [0 ,T) x Rn) . 

Consider a family of equations in ££2 ([0 , T ) x Rn) 

(5.10) 

where Ae;, Be: E ££2 (Rn) and g : R n -4 R is smooth, polynomially bounded 
together with all its derivatives and g(O) = 0. 

Equation (5 .10), with the regularization 9e: instead of g is called the regular­
ized equation for (5.9) . 

Proposition 9 a) Let n :::; 5. Then there exists a reg·ularized net 9e: such that 
for every T > 0 there e:r;ists a unique solv.tion to 5.1 0 in 9£2 ( [0, T) x R n). 

b) Let n = 6 and let IIAe:IIH3,2 and IIBe:IIH2,2 be bounded by (log( log(C 1)W, as 
c -) 0, where s < 1. Then there exists a regularized net ge: such that fo r ever·y 
T > 0 there e:r;ists a unique solution to 5.10 in 9£2([0, T) x Rn'). 

Remark 10 Let n = 7. In order to obtain the existence of a 7Lnique solution 
with the moderate growth of all its derivatives, we need that H 3•2 -norms of in·itial 
data aTe bounded by log( log .. . (log qC 1 ) . . . ) 8 wdh respect to c for some s and 
~ 

q. This follows fTOm (27}, Theorem 4.8. Cases n = 8, 9 can be handled out using 
the procedure and Lemmas 2. 1-2.20 in the same paper as well as a composition 
of the logarithmic function s·ufficiently many times. 

The proof of quol d theorem for n = 3 implies the next corollary. 

Corollary 11 Let n = 3, g(y) be globally Lipschitz and its fi,Tst derivative be 
polynomially bounded. Then for every T > 0 ther-e exists a sol·ution to ( 5.10) in 
9L.2([0, T) x R"). 

R mark 12 If g(y) t. globally L-tpschitz, fo r· n = 4, 5, 6, we need to assume 
appropriate condilwns for- the first and second derivatives of g. If 11 = 7, 8, 9, 
then the assumptions of corollary aTe more complicated. 

sp ia lly, we hav 

r p sit ion 13 Equatwn 

wh 1·c A, B E: 9£2(R~). ha.~ a U112quc solutwn in 9 [.2 ([0, T) x R 3 ) f01· eve171 T .> U 
if th re xi. l TepT s nialtvcs of mztzal da~a such that 

li('V2 A, 'VB,)II£2 = o((logc- 1) 112 ). 
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Some new results in theory of operators 
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Studentski Trg 16, 11000 Belgrade, Yugoslavia 

In this short exposition will be stated some new results concerning spectral 
properties of certain important singular linear operators that are often met in 
Analysis . 

Namely, we shall consider operators acting on the space 
L2 (D) (n c C - simple connected domain in C ) that are defined in the 

following way: 

Cf(z) = _.!.! f (~) dA(~) 
1f ~- z 

n 
(Cauchy's operator) 

Lf(z) = - 2~ J ln lz- ~IdA(~) 
n 

(Operator of the logarithmic potential type ) 

_ a-1 f(l - ~) J f(O ,.-
Rf(z)- 7f f(f!) ~~ _ zl 2-adA(~), (0 .... a< 2) 

2 n 
(Riesz' type operator). 

For z =X+ iy w denote by dA(z) = dxdy the Lebesqu meas ure on n. 
It is well-known fact that C, £ and Rare compact operators on L2 (0). It is 

also known that R , in th cas 0 < a < 2, is positiv . It follows imm diately 
by applying th Fouri r's transformation. 

H.Widam [ ] has shown tha for the eig nvalues of R (denote I 1 y >-,(R)) 
holds 

lim n~>-n(R)=1f'iiDI~. 
n-

(1) 

wh r( IDI i. the measure (ar .a) of n. Thcr fore. lh spectfum 0 the OJWrator 
R d termines g om trical prop •rt) (ar a) of the domain n. 
Sonw r latcd qu st10ns concerning the operators C and £ arc also interesting 
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Th operator L is s If-adjoint and it is proved in [7]that for its eigPnvalu ·s 
holds 

lim nAn(L) (2) 
n •OO 

The op ralor C is not self-adjoint sow • shall investigate< symptoltc bdnwior 
of its singular valu s sn(C), that is, h ig nvalu s of the posit tv • op rat or 
(C. C)~. 

It is show n in [5] t hat he lls 

. 1 ~n1 hm n2 sn(C) = -. 
n-oo 7T 

(3) 

From (1), (2) and (3) w concl ude that all t he op ra ters C, L and 1?.. hav • 
th property tha t their sp cl ra l characterisli s cl tee t t h ar a of tl doma in n 
on which th s op raters act . 

P aper [2] is devo ted to th investigation of th sp ctrum of th op rator 
C'C in t he c when n = D is t he uni t elise. In tha t case singular valu s ar 
compl tely described as w ll as the v ctors which are included in th singular 
expansion in terms of the Bessel's funct i ns. 
Specially, we have 

JICII =~, 
Jo 

where j 0 is the smallest positive root of the Bessel's function 

It is conjectured that for an arbitrary domain n c c holds 

2 
JJCJJ = ~, (4) 

where >.1 is the smallest eigenvalue of the Dirichlet boundary-value probl m 

-6.u =AU, 
ulan= 0, · 

(5) 

It is proved in [5] that this hypothesis is true. The proof is bas d on the 
following lemma which is also interesting itself. 

Lemma 1 ([5]) Given f E L2 (n) , n being a bounded domain in C. 

Take }(x) = 2~ l e-iux 1 -ivx2 f(u, v)dudv. Then for all 0 <a: :::; ~ holds 

where >.1 is the smallest eigenvalue of the boundary-value problem (5) and 
x = (x1,x2), JxJ =)xi+ x§, dx = dx1dx2. 
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By applying lemma 1 and the Cauchy-Green 's formula it is possible to obta in 

Theorem 1 ([4]) Let G and D be simple connected doma·ins in JR2 with piece­
wise smooth boundar·ies and G C D. If u E C1 (D) and ul tw = 0 , then the 
following inequality holds 

(6) 

wher·e -\1 (D) and -\1 (G) are the smallest eigenvalues of the boundary-value prob­
lems 

- 6.u = -\u - 6.v = -\v 
and 

ul ,;w = 0 viae= 0, 

respectively. 

In the case G = D the inequality (6) becomes the well-known Friedrich 's in­
equality (or Poincare 's or Nirenberg's). 

Using the following Faber-Krahn's inequality from [3] 

w obtain in (6) a w aker but more useful inequality 

Den L by L~(Sl) th spac f analytic functions on S1 su h Lhat 

Th n L~(Sl) is a Hilb rt 's subspac of L2 (S1) and it is ·all d Bergmann's sub­
. pa e. xt denot by P h orthogonal proj ctor from L 2 (S1) onto L~(Sl) which 
is call d B rgmann 's proje Lion. It is estimat d in [1] the order of th growth 

f lh singular vc lu s forth operators CP and CP. It is shown that 

(7) 

hold . 
The au hors 1 marked t hal l hey have no cxplanat ion fot a dou bl<' ,\C·c·dPt .t­

tion of th deer as of th singular valu · fot lh' op 1ators C and C lllUlttpltc•d 
by P. Il is also r main d op n question of lh exact valu s for the constants in 
the asymptotic formula (7). 

In tlw papPrs I ] and [ ] t lwsP prohlcllls arc invPst igat C'd. Til(' following 
t!H·on'lll ,uP provl'd. 
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Th r m 2 Let be a bounded .. mnpl connected dommn m C vnllt an ana-
lyfu:al boundartJ. Then for thr operator C and L holds 

Ia I 
lim 11 • S11 (PC) = --, 

n- 27f 

Th r m 3 Let n be a bounded, simple connected domain in C with an ana­
lyUcal bov,ncla7~1J· Then we hcL7 >e 

lim nCt · s
11

(RP) = (ICJDI)o c( )sin a
2
1r · )f(l t 2cv) · d(a), 

ll-00 27f 

where 
x'f-ly'f- 1(1 +x)~(1 +y)'f 
---=----'----'--_:__..::....:__ dxdy. 

(1 +X+ y)l+2o 

Here we denote by 18DI the length of the boundary of the domn:in n . 

. To te that mu ltip licat ion of Lhe op rators C, L and R by t lw Bt•rgnlcllill ." 
projection implies a double acceleration of Lh decreas of Lhc singular vnluc·s 
Spectral characteristics of these products detects th length f Lh bounclnry of 

the domain . 
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1111nutativi y f Ring· 
Fin it 

lilm Janji'· 

h 

D dicatcd to Professor Y, s lin P ric on th occasion of his 70th birthday 

Abstra t 

In this paper w prove three commutativity results for rings which xtcnds SOI!l(' 

known results about ommuting powers. 
For a ring R we will consider the following conditions 

(I) 

where x, y E Rand k ~ 1, s ~ 0 arc integers. 
For each x, y E R there exists a regular element T = T(x, y) such thaL 

[T,X] = [T,y] = 0. (2) 

We shall prove the following commutativity results. 

Theorem 1 Let R be a ring which sat·isfies (2) and let joT each jimte S7tbs t 
F of R theTe exists a set M = M(F) of positive integeTS S7LCh that Uwr·e is no 
a prime numbeT which divides each element of M and let (l) holds for each 
x, y E F , each k E M and some integer- s = s(f) > 0. If o., b N, then 
[a, b] = 0. Additionally, if R is a pr-ime ring ·with no non-zcTo ml ?deals. then R 

is commutative. 

Theorem 2 Let R be a ring with unit element and let jo1· each finit e s·ubset 
F of R theTe exists a subset M = M(F) of positive int g rs S7tch that ther-e is 
no a pTime numbeT which d·ivides each element of M. If fu1'lhe7 · ther-e ex·ists an 
integer-s = s(F) ~ 0 such that (1) holds joT each x, y E F, each k E M, then R 

is commutative. 

Theorem 3 Let R be a Ting with unit element and let joT each subset F of R, 
consisting of four- elements, theTe exist r-elatively prime integeTs m = m(F) ~ 1, 
n = n(F) ~ 1 and an integeT s = s(F) ~ 0 such that (1) holds joT each x, y E F , 
k = m, k = n, then R is commtttative. 

First we shall prove a lemma which is a slight improvement of some well known 

results . 
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Lemma 1 1 o Let R be a ring and for x E R there exists a regular element 
r E R such that [r, x] = 0. If for y E R there is an integer n ~ 1 such that 

then y = 0. 

2° Let R be a ring and a , x E R with [x, a] = 0. If for b E R there exists an 
integer k ~ 0 such that xk [a, [a, b]] = 0 then 

x k[an,b] =nxkan- 1 [a,b]. 

Proof of the Lemma. 1°. Expanding (x + r)n we get 

0 = (x + rty = xn + (nxn- l r + · · · + rn)y = (nxn- lr + · · · + nxrn- 1 )y + rny. 

If we denote - (nxn- 2r + · · · + nrn- l) by a we obtain rny = ax y. This implies 

i.e. y = 0 since T is regular. 
Proof of 2° follows asily by induction on n. 
Proof of Theorem 1. If a E R is niloptent , t its index of nilpotency, t hen 

which implies that r·- ra and soT+ mare regular. 
For a, bEN take the set F = {r+ra, r+m2 , ... , r+rb, r+rb2 , .. . } which is 

obviously fin ite. L t M(F) and s = s(F) be as in T heorem 1. Since all elements 
of F are regular we have 

[xk, yk] = 0, for all x, y E F and for all k E M(F). (3) 

L t k E M(F) and y E F b arbitrary. Since a is n ilpotent there exists an 
inL g r p ~ 1 such thaL 

k[ai, yk] = 0, 

holds for v ry i ~ p . Suppose Po is minimal with this prop rLy. If Po > l by 
(3) we have 

k[aPo-l, yk] = 0 = [(r + mPo-1 )k, yk], 

whi h is a on radiction to h choice of Po· Thus p0 must b equal 1 and we 
hav 

k[a, yk] = 0, y E F, k E .M(F). 

in e b i nil pot nL in th Sc me way from (4) we get 

k2 [a,b] = 0, k E !IJ(F) 

and by h prop rty of llf (F) we conclude that [a, b] = 0. 
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. 'uppose now that R is a prime ring with non-zero nil id a ls. L t a E r and 
.r E' R be a rbitrary and tak the S<'! F = {r + m, r + ra2

, ... ,a.r,xa} which is 
finite. L<'t s = s(F) a nd M(F) be as in Th or m 1. In th sam way as abov 
we prov that k[a, (ax)k] = 0, for a ll k E llf (F) . This impli ·s 

ka'(a.rf (x(ax)k- l) •- l = k(ax)'k, 

for a ll int gers i 2: 1. Sp cially, if pis the ind x of nilpotency of a, w g t 

k(ax)(p- t)k = 0, 

for a ll k E llf(F). By t he property of M(F) from this we asily <'On lu lc that 
(ax)N = 0 , for som integer N 2: 1 which means that ax is nilpotent. In 
Lh same way we get that xa is nilpotent. This, with the fact that nilp t<>nt 
el ments mutually commute, means that N is a nil ideal of Ran I soN must l.J . 
equal {0}. Since R is prime and has no non-zero nilpotent el m nt it , lso has 
no non-trivial zero divisors. The cond ition (1) is now reduced to th condition 
[xk, yk] = 0 and R is commutativ , by a result of Herst in [2]. 

Proof of Theorem 2. Since R has unit elem nt 1 w may tak 7' = 1 in 
(2) so t hat R satisfies the condition of Theor m 1. From this th orem w have 

C(R) c N, N 2 c Z(R). (5) 

Now we will prove that N C Z(R). For a E N and x E R tak F = {1 + 
a, x, x +a, x + xa}. Let m, nand s be a.s in our Theorem. From [(1 +a)"', :~;m] = 

[(1 + a)",x"] = 0 and (5) we easily conclude that 

Conditions 
x 5 [xk, (x + a)k] = x 5 [xk, (x + xa)k] = 0, 

for k = m and k = n and ( 5) implies 

x5 [xm, [xm,a]] = X 5 [x", [x",a]] = 0. 

By Lemma 2° we get 

(6) 

Using (6) we obtain x5 [xm
2

, a] = x5 [x"
2

, a] = 0 and since m 2 and n 2 are 
relatively prime we easily obtain xN[x, a] = 0, for some N 2: 1. If we take 
F = {1 +a, y, y +a, y + ya} where y = x + 1 then repeating the same argument 
as above to get (x + 1)M [x, a] = 0, for some 1VI 2: 1. Now by Lemma 1 o we 
conclude that [x, a] = 0, which proves that N C Z(R). 

Let x, y E R be arbitrary. Take F = { x, y} and m, n and s as in Theorem 2. 
By the fact that N c Z(R) we may use Lemma 2° to obtain 

0 = xs[xm, ym] = m2xs+m-lym-l[x, y], 
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and 
0 = xs [xn,yn] = n2xs+n-lyn-l[x,y]. 

Since m 2 and n 2 are relatively prime we get 

for some integer t 2: 0. Repeating the same argument for x + 1 instead of x and 
·later for y + 1 instead of y using Lemma 1° we get [x, y] = 0 which completes 
the proof of Theorem 2. 

Proof of Theorem 3. An inspection of the proof of preceding theorems 
shows that only for the proof of (5) we have used finite subsets with eventually 
more then four elements. We must show that this part of the proof may be 
derive using only sets with four elements. 

Invertible elements of R forms a multiplicative group which is commutative 
by a result in [1] . If a E R is nilpotent then 1 +a is invertible. This implies that 
nilpot nt elements of R mutually commute. To show that nilpotent elements 
form an commutative ideal of R it is sufficient to prove that R is commutative, 
und r the add itional condition that R is a prime ring without non-zero nil 
ideals. If u E R is invertible and x E R arbitrary then there exist relatively 
prime integers m 2:1, n 2: 1 such tha t [um ,xm] = [un,xn] = 0 holds. It follows 
that there exist integers N 2: 1 and k 2: 1 such that 

holds. From that we easily conclude that [u, xk] = 0, which means that u lies in 
th hypercenter of R . Herstein's hypercenter theorem shows that ·u belongs to 
the center of R. We thus obtain that N C Z(R). It follows that N = {0} and 
th ondition (1) again becomes [xk, yk] = 0 and R is commutative as above. 
From this we conclude that (5) holds. 
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