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ON RINGS WITH SPECIAL AUTOMORPHISMS, RESP.
DERIVATIONS °

VESELIN PERIC

ABSTRACT. We give here a survey of some recent results concerning the rings
with special automorphisms, resp. derivations.

I. DERIVATION d WITH d(z) ZERO OR INVERTIBLE

Jefrey Bergen, I. N. Herstein and Charles Lanski considered in [4] the following
problem:

Let R be a ring with identity 1, and d a derivation on R such that, for every
» € R, d(z) is zero or invertible. Does R have a special structure?

They answered this question in the following manner:

Theorem 1.1. Let R be a ring with identity 1, and d a nonzero derivation on R
such that, for all z € R, d(z) is zero or invertible. Then R is

1. a division ring D or

2. the ring Mat(D,2) of all matrices of order 2 over a division ring D or

3. the ring D[z|/(x?), where D is a division ring of characteristic char D = 2,
d(D) =0 and d(x) = 1+ ax for some a € Z, the center of D.

Moreover, if 2R # 0, then the case R = Mat(D,2) is possible if and only if D
contains all quadratic extensions of 7, i.e. if at least one element of 7 is not a
square in D.

From the proof of this theorem it follows that, in the case R = Mat(D,2),
derivation d is an inner if 2R # 0, but d need not to be inner if 2R = 0. Moreover,
one see that d cannot be inner in the case R = D[z]/(2?). We recall that a derivation
d on R is an inner, if, for some a € R, d(z) = [a,2] = az — za for all z € R.

The authors consider also the case where d(z) is zero or invertible not for all
2z € R, but for all 2 from a suitable subset of R. In this way they prove

Theorem 1.2. Let R be a ring with identity 1, and d a derivation on R such that
d(L) # {0} for some left ideal L of R, and for every z € L, d(z) is zero or invertible.
Then, for some division ring D, R = D or R = Mat(D,?2) or R = D[z]/(z?), where
2R = {0}.

The authors remark that, for R = D[z]/(2?), the assumption about d on L,
cannot imply any property of d on R. In the case R = Mat(D,2) they prove than
there must not exist a nonzero derivation § on R such that §(z) is zero or invertible
for every = € R.

2000 Mathematics Subject Classification. Primary: 15W220, 16W25. Secondary: 16N60.
Key words and phrases. Prime rings, centralizing derivation, centralizing automorphism, nilpo-
tent derivation, commutativity.
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2. AUTOMORPHISM ¢ WITH ¢(z) ZERO OR INVERTIBLE

If ¢ is an automorphism of a ring R with identity 1, then the mapping § of R
with d(z) = 2 — ¢(z) for all z € R need not to be a derivation on R, but ¢ is a
special pseudo-derivation on R. We recall that an additive mapping f : R — R is
a pseudo-derivation on R if there exists a function g : R — R such that

(1) 7(9) = 1(@)g() +25(v) = F()y + 9(x)/(¥) (z,y € R);

(2) 1{o(=)) = 9(7(2)) (= € R).

It is easy to see, that (1) and (2) are satisfied for f = ¢ and g = idpg, the identity
mapping of R.

[f ¢ is proper, i. e. ¢ # idg, then § # 0.

Jefrey Bergen and 1. N. Herstein [3] investigate the structure of a ring R with
the identity 1 and a automorphism ¢ # id p such that = — ¢(2) is zero or invertible
for all 2 € R, and they prove:

Theorem 2.1, Let R be a ring with identity 1, and ¢ # idr an automorphism of
R such that, for all @ € R, 22 — ¢(2) is zero or invertible. Then

1. R=D or

2 R=D®D or

3. R = Mat(D,2)
Jor some division ring .

Moreover, the case R = Mat(D,2) is possible, for a non-inner automorphism
&, if and only if D has a non-inner automorphism v, such that *(2) = v tau
Jor all x € D, where (u) = u and w # yp(y) for all y € D, or, for an inner
automorphism ¢, if and only if D does not contain all square extensions of its own
center 7.

The authors remark that, in the case char R # 2, D does not contain all square
extensions of its own center Z, if and only if some o € Z is not a square in 1. In this
case, for the automorphism 1 = idp surely ¥?(2) = 2 = o 'za and o # i (y) for
all y € D. Hence, in this case, there is no difference between an inner automorphism
i and an automorphism 1 which is non-inner. Therefore, for char R # 2, the above
theorem becomes:

If char R # 2, and R has an automorphism ¢ # idp such that x — o(z) is zero
or mmvertible for all 2 € R, then R=D or R=D® D or R = Mat(D,2) for some
diwvision ring D; moreover, the case R = Mat(D,2) is possible if and only if D has
an automorphism 1 for which ¢*(z) = u'zu, ¥(u) = u and u # yi(y) for all
yeD.

As in [4] for a nonzero derivation d, the authors in [3] consider the problem with
r — @(x) is zero or invertible not for all 2 € R, but for all z € L, a left ideal of
R. As in the foregoing theorem, they prove that R D or R Mat(D,2) or
R = D & D for some division ring D, but, for this problem, they do not prove the
above conditions on D

9

3. CENTRALIZING DERIVATIONS AND AUTOMORPHISMS IN PRIM RINGS

lidward C. Posner [10] considers derivation on prime rings and proves the fol-
lowing two theorems:

Theorem 3.1. Let R be a prime ring with char R # 2, and let d,.dy be derivations
on R for which the product dy o dy is also a derivation. Then one of derivations
dy.dy 15 equal to zero,
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Theorem 3.2. Let R be a prime ring with centralizing derwation d. Then d = 0
or i is commulative,

We recall that a ring R is a prime ring, if for all a,b € R, aRb = {0} implies
a = 0orb=0 Thus, aring R is a prime ring, if for any right ideal A and any left
ideal B of R, AB = {0} implies A = {0} or B = {0}.

For a function f : R — R we say to be a centralizing function, if for any 22 € R,
[z, f(z)] = 2f(z) — f(z)z € Z, the center of R.

The first theorem is only used in the proof of the second for the case char iR # 2,
and gives no information about R.

Josef H. Mayne [9] inside of a centralizing derivation d considers a centralizing
automorphism ¢ of a prime ring R and proves an analogous result:

Theorem 3.3. If R is a prime ring with a proper centralizing automorphism ¢,
then R is a commutative domain.

4. DERIVATIONS WITH SOME COMMUTING PROPERTIES

[. N. Herstein [6] and Amos Kovacs [7] investigate the relation between a prime
ring R and the subset d(R) = {d(z) : € R}, where d is a derivation on R.
[n the cited paper Herstein proves the following theorem:

Theorem 4.1. If for some derivation d # 0 on a prime ring R, [d(z),d(y)] = 0
for all 2,y € R, then R is commutative or R is a order in a simple algebra of
characteristic 2, which has the dimension 4 as a vector space over the center of the
algebra.

Moreover, Herstein asks the question:

[['d # 0 and if for the standard identity sg|21, 29, ..., 2k], sk[d(@1), d(z2),. .., d(2zk)] =
0 for all 2, 29,...,2, € R, do we then conclude that R is of some special structure,
or does I perhaps satisfy the identity s;?

In the cited paper, Kovacs answers this question by giving examples which shows:

(a) For any prime number p, there is a prime ring R of the characteristic p
with a derivation d # 0 satisfying sspq1[d(z1),d(22),...,d(z4p41)] = 0 for all
Ty, 29, ..., 24pp1 € R, such that R satisfies no polynomial identity.

(b) There is a prime ring R of the characteristic 0 with a derivation d # 0 satisfy-
ing [d(x1)d(za), d(23)d(z4)]d(2s)[d(26)d(27), d(2s)d(z9)] = 0 for all 21, z9,...,20 €
R, such that R satisfies no polynomial identity.

In connection with these examples, Jefry Bergen [2] considers the following ques-
tion:

Let a prime ring R with a derivation d # 0 be an algebra over a commutative
ring A, such that d(R) is contained in a finitely generated submodul of R. Does R
satisfy a polynomial identity?

The positive answer to the question is a corollary to the following theorem of
Bergen:

Theorem 4.2. Let R be a prime ring with a pseudo-derivation f. Suppose that R
is an algebra over a commutative ring A, such that, for a positive integer n, d™(R)
is contained in a finitely generated submodul of R. If f>*~1 #0, then R is an order
in a simple algebra which is finite dimensional over the center of the algebra.

Namely, the answer to the above question we get from the foregoing theorem if
we take f = d (a derivation) and n = 1.
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Bergen shows that the condition f2"~1 # 0 cannot be substituted by £2%~2 # 0.
Moreover, Bergen remarks, that in the foregoing theorem (for n = 1) the constrain
on f(R) can be substituted by the constrain on f(I) for any ideal I # {0} of R.

If ¢ is a homomorphism of R, then f = ¢ —idp is a pseudo-derivation, and thus
(for n = 1) the last theorem can be modified for the case of an automorphism ¢ # 0
of a prime ring R.

5. PRIME RINGS WITH A PROPER AUTOMORPHISM OR A NONZERO DERIVATION [
SATISFYING f([2,y]) — [2,y] IS ZERO OR INVERTIBLE FOR ALL z,y € R.

V. De Filipps [5] considers prime rings R with a nonzero derivation or a proper
automorphism f satisfying

(1) f([z,y]) — [z, y] is zero or invertible for all z,y € R.

The main results of this somewhat longer and very nontrivial paper are contained
in the following two theorems:

Theorem 5.1. Let R be a noncommutative prime ring, I a nonzero ideal of R,
and [ a proper automorphism of R or a nonzero derivation on R salisfying

[z, y]) — [2,y] is zero or invertible for all z,y € I.
Then R =D or R = Mat(D,2) for some division ring D.

Theorem 5.2, Let R be a noncommutalive semiprime ring, and f a nonzero
derivation on R with the property (1). Then R = D or R = Mat(D,2) for some
diwision ring D.

We recall that a ring R is said to be semiprime, if R has no nonzero nilpotent
ideals.

6. NILPOTENT DERIVATIONS AND COMMUTATIVITY
l.ee and Lee (8] proved the following interesting result:

Theorem 6.1. Let R be a prime ring with center 7, let I be a nonzero ideal of R,
and let n be a positive integer. If d is a derivation on R such that d™(I) C Z, then
either d" = 0 or R is commutative.

At about the same time, Trzepizur [11], as a part of a more general study, proved
a related theorem:

Theorem 6.2. Let n be a nonnegative integer, let R be a prime ring with char R = 0
or charR > n + 1, and let Z be the center of R. If d is a deriwation on R and
S a subring of R such that d(S) C S and d™(S) C Z, then either d™(S) = {0} or
SCZ.

Recently, E. Bell, A. A. Klein and J. Lucier 1] continued similar investigation
First, for the case of special subrings, they prove three following theorems

Theorem 6.3. Let R be infinite, and S be a subring of finite index. If d is a
derivation on R and d"(S) C Z for some positive integer n, then R is commutative
ord" 0.

Theorem 6.4. Let n be a positive integer. Let d be a derivation on R, let K be the
subring of R generated by d(R), and suppose that d"(K) C Z. Suppose also that
one of the following holds: (i) n > 3; (it) n 1 and char R # 2; (iii) n = 2, and
d(Z) # {0}. Then either R is commutative or d™ = 0
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Theorem 6.5. Let H be a commutative subring of R. If d is a derivation on R
and d"(H) C Z for some positive integer n, then R is commutative or d™ = 0.

['heorem 6.3. follows by Theorem 6.1. since, by a known lamma (Lemma 6.1.)
S contains an ideal I of finite index, hence I # {0}, R being infinite.

Lemma 6.1. Let R be an arbitrary ring and S a subring of R of finite index in R.
Then S contains an ideal of R which is of finite index in R.

In the proof of Theorem 6.4, Theorem 6.1. has been also used together with the
known

Lemma 6.2, Let R be arbitrary ring. If d is a derivation on R such that d* # 0,
then the subring generated by d(R) contains a nonzero ideal of R.

[or the case n = 2 in Theorem 6.4. the possibility d*> = 0 cannot occur, hence
R must be commutative. Moreover, the hypothesis that d(Z) # {0} cannot be
dilated, as we see by letting R be the ring Mat(F, 2) over a field I of characteristic
different from 2 and d be inner derivation induced by the matrix e;s.

Theorem 6.5. follows also by Theorem 6.1. using the known

Lemma 6.3. Let R be noncommnutative. Then the commutator subring H contains
a nonzero ideal of R.

Some next results concern prime rings with restricted characteristic.

Theorem 6.6. Let S be a subring of R. If there exists a derivation d on R such
that {0} # d(S) C Z, then S is commutative. Moreover, if char R +# 2, then S C Z.

The authors remark that if char R = 2, then d(S) € Z does not imply S C Z.
Indeed, let /2 be the ring Mat(G'F'(2),2), let S = {0,e2;} and let d be the inner
derivation determined by eyy. Then d(S) = {0,1} = Z, but § € Z. Among those
results the main result is

Theorem 6.7. Let n be a positive integer, and let char R = 0 or char R > n. If d
is a derivation on R and S is a subring of R such that d(S) € S and d"(S) C Z,
then ecither S is commutative or d™(S) = {0}. Morcover, if d"*(S) # {0} and
charR > n+1, then S C Z.

Some results were proved for prime rings of arbitrary characteristic.

For a prime ring R with center Z # {0}, localizing at Z — {0} yields a prime
ring R with center Z equal to the quotient field of Z. R is called small, resp. big,
if R is finite, resp. infinite dimensional as a vector space over 2.

The authors next prove

Theorem 6.8. A nonzero left ideal of a big ring R is big.
The major result on big subrings is the following

Theorem 6.9. Let R be a big ring with center Z # {0}, and let S be a big subring
of R. If there exists a derivation d on R such that d(S) € S and d*(S) C Z for
some positive integer n, then either d™(S) = {0} or S is commutative.

The inductive argument used in the proof of the above theorem gives

Corollary 6.1. Let R be a big ring with char # 2 and center Z # {0}, and let S
be a big subring of R. If there exists a derivation d on R such that d(S) C S and
d™(S) C Z for some positive integer n, then d™(S) = {0}.
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(2)p=q = zy =yz,
(3) p=gq = zyy* = zz*yy*,

4) p=q & zyy" =yy'z,
(5) p=gq & zz*yy* = yy'zz™.

[zz*yy* = yy*zz*]

[eyy* = yy*z]

Figure 7. All subvarieties of N B*

So, no identity of type (1) defines a proper subvariety of N’B*, and hence, such
identities are of no importance. If a variety satisfies an identity of type (2), it
must be a subvariety of SL*, when Theorem 1.7.3 applies. On the other hand,
from the results of [24] it follows that the identity zyy* = zz*yy* defines the
variety NB* v N'BY within N'B*; thus, if the equational theory of the considered
variety contains an identity of type (3), it is a subvariety of NB* v N'BY, which
is a case taken care of by Theorem 1.7.8. Hence, outside S£* and N'B* v N B,
there are at most two proper subvarieties of N'B*: those defined by zyy* = yy*x
and zz*yy* = yy*za®, respectively. It is effectively shown in [20] that these two
varieties are different, and so we obtain

Theorem 1.7.10. The lattice of all varieties of normal bands with involution has
the inclusion diagram given in Figure 7.

Finally, we are going to determine all subvarieties of 74, thereby answering
a question from the beginning of this subsection. To do that, we must employ
some more notation and define further notions. The material presented below is
published for the first time.

An (involution) semigroup S with zero 0 is said to be null (or constant) if for
all a,b € S we have ab = 0. The variety A9 of all null semigroups with trivial
involution is a minimal one, i.e. it is on the Fajtlowicz’s list. It is easy to prove
that it is generated by Ny, the two element null involution semigroup with a trivial
involution. Further, let N* denote the variety of all null involution semigroups,
while N3 is the three-element null involution semigroup in which the involution
fixes one of its elements and permutes the other two.
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The notion of an inflation is familiar in semigroup theory for a long time. Name-
ly, a semigroup V' is an inflation of its subsemigroup S if there is a homomorphism
p V. — S such that ¢|g is the identity mapping on S and for all vj,vy € V we
have

v1v2 = (1 )p(va).
[n particular, this means that every product of elements from V' lies in S. An infla-
tion of a semigroup S is just a retractive ideal extension of S by the null semigroup
@ = V/S (see Petrich [85]).

The function ¢ if often referred to as the inflation function.

Now we say that an involution semigroup V' is a *-inflation of its involution
subsemigroup S’ if the semigroup reduct of V' is an inflation of the semigroup reduct
of S, and the corresponding inflation function ¢ agrees with the star: ¢(a*) =
p(a)* forall @ € S. Just as in the implication (iii)=-(iv) of Theorem 1 from Pastijn
(79], it is not difficult to prove

Lemma 1.7.11. Any *-inflation of an involution semigroup S is a subdirect
product of S and a null involution semigroup N.

Now we describe the structure of involution semigroups belonging to the join
V'V N*, where V is an arbitrary involution semigroup variety.

Lemma 1.7.12. Let V be an involution semigroup variety. Then VN N™* consists
precisely of all *-inflations of members of V.

Proof. Clearly, both V and N'* are contained in the class of all *-inflations of mem-
bers of V. On the other hand, by the previous lemma, all involution semigroups
from the latter class are contained in V V A'*. Therefore, the proposition will be
proved as soon as we show that *-inflations of members of V' constitute a variety.

First of all, for each 7 € I (where I is an index set) let V; be a *-inflation of
S;, with ; being the corresponding *-inflation function. Then the *-free reduct of
[Iie; Vi is an inflation of [],; S;, the inflation function ¢ being the target tupling
of @;’s, that is, p((v; : 1 € I)) = (pi(v;) : ¢ € I). But

el i€D*) = @(j:iel) = (pi(o}): i€l) =
= {pi(w)*: i€l) = (pi(wi): i €)Y,
thus *-inflations are closed for direct products.

Further, let V' be a *-inflation of S (with ¢ as the *-inflation function), and let
7" be an involution subsemigroup of V. Then 7'N S is an involution subsemigroup
of S (it is easy to see that it cannot be empty), and, moreover, the *-free reduct of
T is an inflation of the *-free reduct of 7' N S respect to ¢|p. Yet, ¢ agrees with *,
and so does ¢|7. So, T'is a *-inflation of TN .S € V.

Finally, with the same setting as above, let P be a homomorphic image of V/
under homomorphism «. Then the *-free reduct of P = «(V) is an inflation
of the *-free reduct of 7' = «(S), and the corresponding inflation function is ¢’
defined by ¢'(p) = ¢ if and only if there are s € S, v € V, such that a(s) =
t, a(v) = p and ¢(v) = s (one easily shows that such a definition is logically
correct). However, « is a *-homomorphism, so t* = a(s*) and p* = a(v*). Since
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*

p(v*) = p(v)* = s*, we have ¢/ (p*) = t* = ¢'(p)*, whence we conclude that ¢’
agrees with *. ' a

Since it is easy to calculate that /No and N3 are the only subdirectly irreducibles
in V/* (thus N3, or any other null involution semigroup with a nonidentical involu-
tion, generates A/*), it follows that the list of subdirectly irreducibles of a variety
of the form V V N* exhausts with the subdirectly irreducibles of V, Ny and Ns.
Therefore, any subvariety of V V N'* is either of the form WV A9, or of the form
WV N* where W C V. So, to determine the structure of the lattice of subvarieties
of V'V N*, it remains to establish which of the above joins are mutually different.
To this end the following auxiliary result will be helpful.

Lemma 1.7.13. Ij‘jW is an involution semigroup variety which does not satisfy
x=z* then WV N9 =W v N*,

Proof. Let S € VYW be an involution semigroup in which x = 2* fails. Denote
the elements of Ny by 0 and 1, and consider the direct product 7" = S x Nj. Let
P = S x {0} and consider the equivalence 0 = A\ pU (P x P) of T (it collapses
all pairs whose second coordinate is 0). Obviously, ¢ is a *-congruence of I, and
N = T'/0is null. As S has elements which are not fixed by *, so has NV (because if
a # a* for some a € S, then (a,1)* = (a*,1) # (a,1)). Thus, N generates N'*,
implying that N* € W v N, The lemma now easily follows. O

Our general result (which is related to the main results of Graczynska [46] and
Mel’ nik [75]) is now as follows.

Theorem 1.7.14. Let V be an involution semigroup variety which does not con-
tain nontrivial null involution semigroups. Let U be the greatest subvariety of V
satisfying x = z*. Then the lattice of subvarieties of V NV N* has the structure as
depicted in Figure 8, where the interval [N19,U v N'Y| is isomorphic to the lattice
of subvarieties of U, while the interval [N,V NV N™*| is isomorphic to the lattice of
subvarieties of V.

V

U
./

N*
[~ Nid

Figure 8. The lattice of subvarieties of V V N'*

Proof. If W C U, then W v N9 satisfies = —= z*, and thus it differs from any
variety of the form V' vV N*, where V' C V. Moreover, from the previous remarks
it follows that Wy v N4 = Wy v N4 implies W, = W for all Wy, W, C U. On
the other hand, if W Z U, then by Lemma 1.7.13 we have WV N4 = W v N*,

Now if W C V is arbitrary, then by listing the subdirectly irreducible members
of W v N'*, we obtain that the correspondence W +— W Vv N* (as well as W' —
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W' U N9 for W' C U) is a bijective one. Thus, to prove the theorem, we need to
show that these two correspondences are lattice homomorphisms.

[t is immediate to see that these mappings agree with V, the varietal join opera-
tion. For the intersection, i.e. for the equalities

(W1 VNN Wy VN = (W nWy) v NI,

and
(ZLVN* )N (Z9VN*) = (21N Z9) VN,

where Wi, Wy C U and 21, Z9 C V), it suffices to inspect once more the list of
subdirectly irreducibles in corresponding varieties, just as above. The theorem is
proved. g

The variety to which we intend to apply the above theorem is

Ja = RB*vSLdvsOlv e =
NBeey S0y Nid =
- (NBreg \/NB()) VNid .
= (NB"*8vNB% VAN,

as N'B"¢ v N'BY does not satisfy « = «*. On the other hand, S£4 is the only non-
trivial subvariety of N'B'°8 v N'BY equipped with an identical involution, and since
NB'8 v NBY has 10 subvarieties (as proved by Theorem 1.7.8), it follows from
the above theorem that 74 has exactly 22 subvarieties. The subvarieties missing
from Figure 3 are NBY, SL£4 v N'BY and the joins of these two with A*.

1.8. Subdirectly Irreducible Involution Bands. Subdirectly irreducible algebras
are very important building blocks of a variety, determining a great deal its struc-
ture and relationships to other varieties (just as it was experienced in the previous
considerations). As long as semigroups are concerned, probably the first paper
dealing with subdirect decompositions was the one of Thierrin [110]. The main
contribution to the topic in the sixties was given by Schein [104], while Gerhard
[41] described subdirectly irreducible bands. The characterizations presented in the
sequel are just in the style of those given in [41], and they are all due to Dolinka
[25].

The first task is certainly to describe subdirectly irreducible involution semilat-
tices. We already met two distinguished semilattices with involution: these are
2 (the two-element semilattice with the identical involution) and Y3 (the O-direct
union of a trivial semigroup with its copy). By Yy we denote the involution semi-
lattice obtained from X3 by adjoining an identity element (which is, of course,
fixed by the involution). Yy is depicted in the following figure.
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1= 1%
a a*
0=0*

Figure 9. The involution semilattice Yy

Theorem 1.8.1. There are exactly three (nontrivial) subdirectly irreducible in-
volution semilattices: s, 23 and Y.

As in the case of bands, it is necessary to distinguish between those involution
bands which do or do not contain a zero element. Also similarly to bands, it is much
easier to obtain the characterization for involution bands without zero. Recall that if
B is an involution band and a, b € B, then (a, b) is a customary notation designed
for the principal congruence generated by (a, b), that is, for the least congruence
containing the indicated pair.

Theorem 1.8.2. An involution band B without zero is subdirectly irreducible
if"and only if' B is an ideal extension of a rectangular involution band K such
that there exist distinct a,b € K for which 0(a,b) C 0(c,d) holds for all distinct
c,d € K, and for all p,q € B, the condition pk = qk and kp = kq for allk € K
implies p = q.

Of course, as one might expect, every subdirectly irreducible involution band
has a core — the least non-null *-ideal. So, the above theorem guarantees that in
a subdirectly irreducible involution band without zero, its core K is a rectangular
band with involution. However, unlike ordinary bands, the case when a zero is
present splits into two essentially different cases. Namely, it turns out that the core
of a subdirectly irreducible can be either a rectangular involution band with zero
adjoined (i.e. with structure involution semilattice Xy), or of the form /j(A) for
some rectangular band A (i.e. with structure involution semilattice 23). The first
of these two possibilities is handled easily, while the other is much more involved.

Theorem 1.8.3. Let B be an involution band with zero. Then it is subdirectly
irreducible and has a rectangular involution band with adjoined zero as the core if
and only if B = (By ) for some subdirectly irreducible involution band By without
zero.

Theorem 1.8.4. An involution band B with zero which is not an involution semi-
lattice, whose core has the structure based on 33, is subdirectly irreducible if and
only if B is an ideal extension of an involution band of the form I (L) for some
left zero band L, such that there exist distinct a,b € L for which 0(a,b) C 6(c,d)
holds for all distinct ¢,d € L, and for all p,q € B, the condition pl = qf and
C'p = Cqforall t € Limplies p = q.

An interesting special case of the above theorem describes the subdirectly irre-
ducibles in B°.
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Theorem 1.8.5. An involution band B € B is subdirectly irreducible if and
only if it is of the form I;(T'), where T is either a subdirectly irreducible band
without zero, or the trivial semigroup.

In light of Theorem 1.7.8, it follows that all the subdirectly irreducibles of B4V
BY belong either to B¢, or to BY.

For regular *-normal bands (i.e. for the variety A'/B"#) we can explicitly point
out the subdirectly irreducibles. Namely, by Theorem 2.2 of Scheiblich [101], ev-
ery normal *-regular involution band B can be represented as a spined product of a
left normal band L and its anti-isomorphic copy (that is, its dual) 2, which is a right
normal band, while the involution simply reverses pairs. (Recently, this assertion
was generalized to arbitrary involution bands in [26]: if ¢ denotes the congruence
opening of an equivalence p, then every involution band B can be represented as
a spined product of the band B/R” and its dual over B/D’, where D' = L’ o R”,
so that the involution is again the reversal of pairs.) It is not difficult to prove that
such a band B is subdirectly irreducible as an involution band if and only if L is
subdirectly irreducible as a band. But 11.2 of [41] lists all left normal subdirectly
irreducible bands: these are the trivial semigroup, the two element semilattice, the
two element left zero band, and the latter band with adjoined zero. Thus the non-
trivial subdirectly irreducible members of N'B'¢ are: Y, the 2 x 2 rectangular
involution band RBg (which is the only nontrivial subdirectly irreducible rectan-
gular involution band) and RB:? . On the other hand, the above theorem implies that
the only (nontrivial) subdirectly irreducibles in A’B” are Y3 and I5(Ly), where Ly
denotes the two-element left zero band. In [25], it was proved that the list of all
subdirectly irreducible normal bands with involution is completed by Y4 and two
more normal involution bands, one containing six, and another containing nine
elements. This in passing shows that the variety A/B* is residually < 10.

Theorem 1.8.6. Aside from those contained in NB"¢VN B and SL*, there are
exactly two more subdirectly irreducible members of N'B*, both with core I§(Ly):
one extended by Yy (this one having 6 elements), and one extended by RBY (thus,
having 9 elements), denoted by Ng and Ny, respectively.

RBq

Q@ ° 3

LQ ; LQ 3

0 0

Figure 10. Normal involution ba,nds Ng and Ny
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Since Ng has noncommuting projections, it must generate the whole AV/3*, bear-
ing in mind Theorem 1.7.10. On the other hand, Ng belongs to the subvariety of
NB* determined by zz*yy* = yy*za* (since 0o = 0 = 0), but does not belong
to the subvariety given by zaz*y = yxa*, as by = €1 # €y = loly = «by, where
Ly = {#,¢y}. Hence, Ng generates the former subvariety, whence all members
of the latter one turn out to be subdirect products of involution semilattices and
normal involution bands from A/BY.

1.9. Varieties of Regular *-Semigroups with the Amalgamation Property. Let
{Ay : « € I} be a family of universal algebras, sharing a common subalgebra
U such that for each o, 8 € I, o« # (3, we have A, N Ag = U. Such a family
(which is in fact a partial algebra) is called an amalgam. 1t is said to be weakly em-
bedable into an algebra B if there exist injective homomorphisms ¢, : A, — B,
a € I, agreeing on U (pa|lv = @plu for all a,3 € U). If, in addition, we
have @, (Aq) N p(Apg) = o (U) for all different o, 3 € I, then the consid-
ered amalgam is strongly embedded into B. A variety of algebras V' has the weak
(strong) amalgamation property if any amalgam of algebras from V can be weakly
(strongly) embedded into an algebra from V.

As known, semigroup amalgams and amalgamation properties in semigroup va-
rieties constitute a well developed and established part of semigroup theory. Yet,
there is a major obstacle in completing a number of characterization results which
concern amalgams, namely the group varieties. It is still an open question whether
there exists a proper nonabelian variety of groups with the weak (strong) amalga-
mation property (for the strong variant, this is just Problem 6 from [77]). Therefore,
it is quite expectable that in considering amalgamation problems for various invo-
lution semigroup varieties, groups, and in fact completely simple *-semigroups will
remain out of range, so that we obtain descriptions modulo these classes.

For inverse semigroups (recall that they can be considered as regular *-semi-
groups with the identity zz*z*2 = z*zax®), the following theorem is a result of
combined efforts of Hall [47] and Biro, Kiss and Pélfy [6] (see also [48, 57]).

Theorem 1.9.1. Aside from the hypothetical proper nonabelian weakly (strong-
ly) amalgamable group varieties, precisely the following inverse semigroup vari-
eties have the weak (strong) amalgamation property:

(1) the variety of all inverse semigroups,

(2) the variety of all groups,

(3) all varieties of commutative inverse semigroups (these are the varieties of
semilattices of Abelian groups).

Later, the focus moved onto generalized inverse semigroups — orthodox *-
semigroups in which idempotents form a regular *-normal band (of course, inverse
semigroups are characterized by the condition that idempotents form a semilattice
from S£“). The investigation along this line was initiated by Imaoka in [58], and
the contribution of Hall and Imaoka [50] should be also singled out.
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The second author of this survey noted that the results from the last section of
[50], when put together with some techniques applied earlier to existence vari-
eties of regular semigroups [49], give a sufficient basis for describing regular *-
semigroup varieties with the weak (strong) amalgamation property. In that sense,
the paper [28] (where the following result appears) is a continuation of [50]. Note
that all varieties listed below are either generalized inverse, or completely simple.

Theorem 1.9.2. A4 regular *-semigroup variety V has the weak (strong) amal-
gamation property if and only if one of the following conditions is satisfied:

(1) V is an inverse semigroup variety with the weak (strong) amalgamation
property,

(2) V = UV RB*, where U is an inverse semigroup variety with the weak
(strong) amalgamation property,

(3) Vis a completely simple *-semigroup variety with the weak (strong) amal-
gamation property.

It is worth mentioning one more ingredient used in obtaining the above result.
First of all, note that the Brandt semigroup Bs can be considered as an inverse
semigroup (then it is generated as a regular *-semigroup by a single generator a,
subject to the relation a® = 0). It was proved by Schein [105] (and reproved in
[47]) that an inverse semigroup variety consists entirely of semilattices of groups
if and only if it omits By. This was extended to regular *-semigroup varieties in
[28], so that for such a variety V, By ¢ V is equivalent to the fact that V' consists
entirely of completely regular *-semigroups, and further, to the fact that V satisfies
an identity of the form = = ua?, where u = w(z) is an involution semigroup word.

However, quite recently it turned out that even the above indicator characteriza-
tion is just a part of a more general setting. We finish by quoting the main result of
[29].

Theorem 1.9.3. Let V be an involution semigroup variety. Then the following
conditions are equivalent:

(1) any member of V can be decomposed into an involution semilattice of
Archimedean semigroups,
(2) V does not contain By and I§(By).

Analogous descriptions for varieties consisting of semilattices of Archimedean
semigroups (without involution) were obtained earlier by Sapir and Sukhanov [100]
for periodic case, and for the general case by Ciri¢ and Bogdanovic [9].

2. VARIETIES OF INVOLUTION SEMIRINGS

2.1. The Role of Involution Semirings in Theoretical Computer Science. First
of all, we recall that by our definition, a semiring is an algebra with two binary
operations, (5, +,), the first of which is commutative. On the other hand, there
are several authors which, while referring to semirings, do not assume the com-
mutativity of +, see e.g. [80, 81, 82]. Also, one may often encounter definitions
in which (5, +) is required to be 2 monoid, and its neutral element O is then con-
sidered as a fundamental constant. However, the latter difference will not cause
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any major problems: we shall use the semirings with a zero in the present subsec-
tion (conforming to the practice in theoretical computer science), and then pass in
the subsequent two subsections to the (more general) approach in which the zero
is dropped, but the results are always easily transformed from the one variant to
another.

Also, in this subsection we shall use another symbol for semiring involutions,
namely ¥ instead of the star. There are fairly good reasons for the change of no-
tation. Namely, if ) is an alphabet, then it is a quite wide-spread notational con-
vention to denote the free monoid on 2 by X*, which consist of all words (finite
sequences) over 2/, and free monoids will be important for us in the sequel. Indeed,
we may define a semiring with unit

Ly = (’P(Z*)) +, '7wv {)‘})7

where + (for traditional reasons) denotes the set-theoretical union, A is the empty
word, and for A, B C X* we have

A-B={uww: ue A, ve B}.

The subsets of 2" are usually called languages (over ), and AB is called the
concatenation of languages A and B. Therefore, we obtain the language semiring
over 2. Actually, it is not difficult to see that we can obtain a semiring (with unit)
form an arbitrary semigroup (monoid) S, by defining analogous operations of the
power set of .S, ‘

[)S — ((P(S),"f",',V))

(in case S is a monoid, the unit {1} is added to the above system). According to
the above notation, L is in fact the same thing as Py-.
Now, one can define a unary operation A — A* in Pg (provided S is a monoid)

by
A=) A

n>0

(the sum operator denoting the union), where A™*! = A . A™ and by conven-
tion, A = {1}. If we consider the language semiring Ly, the above definition
introduces the Kleene star operation, which is well-known in theoretical computer
science, especially in automata theory. By equipping Ly with *, we obtain the
language algebra LY,. Note that * is here by no means an involution; actually, it
satisfies the fixed-point identity z** = z*.

* On the other hand, there is an obvious way to define an involution on L.
Namely, if w'® denotes the reverse of the word w, just as in the previous section,
for L C J* we may define

LV = {wf: we L}

It is pretty easy to see that ¥ gives L the structure of a involution semiring with
unit, which we denote by LY.. If both ¥ and * are considered, we obtain the invo-
lution language algebra LYY .
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Another important examples of involution semirings come from binary relations.
If A is an arbitrary set, we define the algebra

Rel(A) = (P(A x A),U,0,0,A4),

where o is the relational composition and A 4 is the diagonal (identity) relation.
Rel(A) also turns out to be a semiring with unit, and it can be made into an invo-
lution semiring Rel”(A) by considering the operation of the converse of relations:

V= {(b,a): (a,b) € o}.

Similarly as above, we can iterate the relational composition, thus obtaining a
unary operation
=] | &

n>0

where o"t! = po o™ and 0" = A,. The relation o* is actually the reflexive-

transitive closure of p. By adding * to (involution) semirings of relations Rel(A)
and Rel”(A), we obtain Kleene relation algebras (with involution) Rel*(A) and
Rel*V(A), respectively, cf. [59, 70, 22, 23].

Language and relation semirings are just special cases of complete semirings,
which are of at most importance in the mathematical foundations of computer sci-
ence, cf. [4, 8, 34, 63, 65, 67]. These are semirings in which an infinite summation
operator ) .. is defined, such that if {a; : ¢ € I} is any family of elements of the
considered semiring, we have:

Z a; = ap+---+ap,

1<i<n
> - (Ta) ($n),
(i,9)elxJ i€l J€J
da = DD a
i€l ©jediel;

where I is the disjoint union of the sets I,;, 7 € J. Of course, the summation is
commutative, associative and completely distributive. Further, a complete semir-
ing is completely additively idempotent if )", _; a = a holds for any index set [
(clearly, each completely additively idempotent semiring is additively idempotent).
Note that all the above examples are such. Finally, in any complete semiring one
can define the iteration operation * by

oo
= Z a®
n=0
Now we have the following observation.

Lemma 2.1.1. Every language algebra can be embedded into a Kleene relation
algebra. Consequently, every language semiring is isomorphic to a semiring of
binary relations.
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Proof. (sketch) Consider the mapping £ : P(X*) — P(X* x X*) defined for every
AC X by

£(A) = {(w,wz) : we X", ve A}
It is a routine matter to show that £ is, in fact, an embedding of the algebra L3, into
Rel*(5*). O

Hence, if we denote by L the variety generated by all language algebras, while
KCA denotes the variety of Kleene algebras, generated by all Kleene relation al-
gebras, we have £L C KA, and in particular, all language algebras are Kleene
algebras. However, the above inclusion is in fact an equality, £ = KA, because by
the Kozen-Németi Theorem (cf. [64, 70]), the free Kleene algebra on )/ is just the
subalgebra of L%, formed by the regular subsets of the free monoid 2*. Using this,
and knowing the explicit equational axiomatization of Kleene algebras (which is
necessarily infinite, cf. [10, 66, 13]), one can easily derive the following result.

Theorem 2.1.2. Both language semirings and relation semirings generate the
variety of idempotent semirings with unit.

But what is the situation if the involution is present? The above Lemma 2.1.1
is no longer true for the involution case: in fact no involution semiring of the form
LY, can be embedded in an involution semiring of relations. In other words, if £
denotes the variety generated by involution language algebras, while XA is the
variety of Kleene algebras with involution generated by all algebras Rel*V(A), one
can prove that LAY C £V, but this inclusion is proper. It is just the involution that
distinguishes between them, even if we drop the iteration operations and work with
involution semirings only. Consider the following identity:

z+ zzVz = zzVx.
It is a routine to see that the above identity is true in binary relations. However, it
suffices to consider the one-element alphabet 2) = {a} and substitute the language
{a} for z to see that the above identity fails in all involution semirings of languages.
In fact, we have a more accurate information concerning this matter.

Theorem 2.1.3. (Bloom, Esik and Stefanescu, [8]) The variety LV is defined by
the identities of Kleene algebras, axioms of semiring involution (including 0¥ = 0)
and

(2")Y = (2V)*

Theorem 2.1.4. (Esik and Bernitsky, [35]) The variety K.AY is defined as a

subvariety of L by the identity
z+ 22z = azVz.

. From these results it is not difficult to obtain

Corollary 2.1.5. The involution semirings of languages generate the variety of
idempotent involution semirings with unit, while the relational involution semirings
generate its subvariety determined by x + xx¥zx = zzVzx.
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Let us also mention some related results obtained by the authors of this survey
and Z.Esik.

Theorem 2.1.6. (Crvenkovi¢, Dolinka and Esik, (13, 14]) Varieties L and
K.AY are both not finitely based. Also, if we drop the union (addition) operation
Jfrom Kleene relation algebras with involution (resp. involution language algebras),
the equational theories of the so obtained varieties consist precisely of those iden-
tities of KA (resp. L) which do not contain occurrences of +, and these theories
are too nonfinitely based.

The simplest explanation for the second part of the above result is that the inter-
action between the concatenation and * is from the equational point of view ‘too
complicated’, and exactly this interaction is the origin of all nonfinite axiomatiz-
ability results of the above type which concern algebras of formal languages.

It is interesting to remark that there is a ‘technical’ connection between the first
part of the above theorem and Theorem 1.5.2. Namely, there are two ways to
prove that £Y and X.AY are not finitely based, knowing that the same holds for
L and KA, respectively, and knowing, of course, Theorems 2.1.3 and 2.1.4. One
of these proofs — more syntactical in nature — relies on the same proposition on
involutorial identities (proved in [13]), which allowed us to obtain in [15] the result
of Theorem 1.5.2. Probably there are some further links between the identities
of general algebraic systems with involution and of their involution-free reducts
respectively, which are yet to be discovered and explored.

2.2. Minimal Varieties of Involution Semirings. Minimal varieties of involution
semirings were described by the second author of this survey in [21]. Towards that
goal, an important help was the already known list of minimal varieties of ordinary
semirings, determined by Polin [92], cf. also [109]. To recall Polin’s result and to
formulate the main result of [21], we define some binary and unary operations on
finite sets 2 = {0,1}, 3 = {0, 1,2} and 4 = {0, 1, 2, 3}.

v]|o 1 A0 1 o]0 1 % |0 1 %[0 1
0fo 1 00 0 0[0 0 010 0 0101
I 0 1 00 1(1 1 1]0 1
As |0 12 030 1 2 0lo 1 23 Ojo 1 2 3
0j0 1 2 3 0[0 1 0 1
01000 010 0 0
1{1 133 1101 01
11010 11000 ;
210 0 2 5o 0B 212 3 2 3 2|2 32 38
3|3 3 3838 3|2 32 3
0 1 2 0 1 .28
021 0213

Theorem 2.2.1. (Polin, [92]) 4 variety of semirings is minimal zf and only if it
is generated by one of the following semirings:
(1) (Zye:0). (2,0,0), (2,V, V), (2,V:A); (2,V;0); (2, M, 0)
(2) (2,V,%0), (2,V,*;),
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(3) Zp = ({0,1,...,p = 1}, +p, p), where p is a prime number, and +, and
-p are respectively the addition and the multiplication modulo p (i.e. Z is
the finite field with p elements),

(4) Np = ({0,1,...,p—1},+p,0p), where p is a prime number, and oy, is the
zero multiplication of the set {0,1,...,p — 1}.

Note that all varieties of involution semirings having a trivial involution (z* =
x) are exhausted by varieties of commutative semirings augmented with the iden-
tity mapping, and this conclusion applies to minimal varieties as well. Clearly, (1),
(3) and (4) of the above theorem provide all such varieties.

Theorem 2.2.2. (Dolinka, [21]) 4 variety of semirings with nontrivial involution
is minimal if and only if it is generated by one of:
(1) (3’ /\37 /\3’-—)' (3a A3, 037_)r (3a 03, /\3a_)'
2) (4,0,0,7).
(3) ({0,1,...,p — 1}, +4p,0p, —p), Where —, is the operation of additive in-
verse modulo a prime number p > 3.

It is more or less in the universal algebraic folklore that all of the algebras above
generate minimal (equationally complete) varieties. The proof of the other im-
plication, on the other hand, resembles somewhat to the way in which Fajtlowicz
obtained the minimal varieties of involution semigroups, because it consists of con-
sidering cases according to the properties of Hermitian elements (involution fixed
points).

Firstly, one can prove that if an involution semiring which generates a minimal
variety V contains a Hermitian element a which is either not additively idempotent
(a+ a # a), or not multiplicatively idempotent (a® # @), then V consists of com-
mutative involution semirings with a trivial involution, and in that case Theorem
2.2.1 settles the problem. Otherwise, it can be assumed that all Hermitian elements
a under consideration satisfy a + a = a® = a. Now, in any involution semiring S
which is not additively idempotent and which belongs to a minimal variety, there
is a unique Hermitian element which is:

(1) the multiplicative zero of S,
(2) either the additive zero, or the additive unit of S.

In the latter of the two cases given in (2) above, S must be a ring, a¥ = —a,
and, moreover, there is a monogenic subring S” of S and a prime p such that N,
augmented by the additive inverse modulo p, is @ homomorphic image of S”. On
the other hand, in the former of the two described cases, S generates the same
variety as (3,03, Ag,”) does.

So, it remains to consider minimal varieties generated by additively idempo-
tent involution semirings. If such a variety contains a nontrivial involution semir-
ing with a unique Hermitian element, then it has to contain one of (3, A3, A3, ),
(3,A3,03,7). Finally, if an involution semiring contains at least two Herimitian el-
ements and generates a minimal variety (even without the condition of the additive
idempotency), then it contains an involution subsemiring isomorphic to (4,0, 0,7),
whence our theorem is established.
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2.3. Idempotent Distributive Involution Semirings. A semiring is distributive
if it satisfies the dual distributive identity

z+yz=(z+y)(z+ 2)

(of course, the above identity and commutativity of + together imply zy + 2z =
(x + z)(y + z)). A semiring is idempotent if both of its operations are such (we
already referred to additive and multiplicative idempotency in semirings). Note
that if a semiring S Is (additively) idempotent, then (S, +) is a semilattice. If
both of the binary reducts (S, +) and (.5, -) of S are idempotent and commutative,
then S is called a bisemilattice. A bisemilattice in which the two operations coin-
cide (i.e. which satisfy = 4+ y = xy) is called a mono-bisemilattice. Of course, it
causes no confusion if we identify (in the notational sense) semilattices and mono-
bisemilattices.

Idempotent and distributive semirings are called ID-semirings for short. The
study of ID-semirings started in the late sixties and continued in the seventies, see

g. [61, 73, 88], with investigations on distributive bisemilattices. However, the
topic gained attention in the early eighties, mainly with contributions of Pastijn
and Romanowska [80, 82, 95, 96]. In particular, the lattice of all varieties of 1D-
semirings (with 4 commutative) is given in [96]: it is the four-dimensional cube.
Recently, Kufil and Poldk [68] found a way to determine all varieties of idempotent
semirings (without the requirement of distributivity of + over -). On the other
hand, Pastijn and Guo [81] described the lattice of all ID-semirings without -+
being commutative. It is a countably infinite distributive lattice.

Motivated by the result of Romanowska [96], the second author of this survey
obtained the lattice of all varieties of ID-semirings with involution. The corre-
sponding result is as follows.

Theorem 2.3.1. (Dolinka, [27]) There are exactly 64 varieties of ID-semirings
with involution, and their lattice coincides with the one depicted in Figure 11.

As semilattices and mono-bisemilattices can be identified, so can involution
semilattices and mono-bisemilattices with involution. Therefore, Xy, 23 and 4
will also denote involution semirings in which both operations define the corre-
sponding semilattice with involution. It is easy to see that all of the above algebras
are in fact ID-semirings.

It was proved in Theorem 2.1 of [82] that the multiplicative reduct of an [D-
semiring must be a normal band. Further, by Theorem 1.6 of the same paper,
each ID-semiring is a Ptonka sum of a semilattice ordered system of ID-semirings
satisfying

T 4 TYT =T

The latter semirings are, in turn, obtained by a special kind of a composition of
a distributive lattice ordered system of ID-semirings in which the multiplicative
reduct is a rectangular band.
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Figure 11. The lattice of all varieties of ID-semirings with involution

All these results can be extended for ID-semirings with involution as well. First
of all, one must replace the well-known general algebraic construction of a Ptonka
sum by the involutorial Plonka sum of algebras, introduced in [31]. Here we give
the basic definition, restricted to the case of semirings.

Let Y be an involution semilattice. A family of semirings {.S; : i € Y}, together
with a system of homomorphisms {¢;; : i,7 € Y, ¢ > j} and a bijection * on
UiG y Si, is called an Y-ordered system of semirings if the following conditions are
satisfied:

(1) foreachi € Y, ¢; ; is the identity mapping on S,
(2) foreachi,j, k € Y suchthati > 7 > k we have

$ij© ik = Dik,

(3) foreachi e Y,*:S; — S;- is a semiring anti-isomorphism,
(4) ¢i= j=(x) = (¢ij(z*))*, forall 4,7 € Y suchthati > jand all z € Si-.
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The involutorial Plonka sum of such a system is a semiring with involution S,
where S = | J,.y Si, with the operations given by

a+b = ¢iii(a)+ ¢;i;(b),
ab = ¢;ii(a)p;i;i(b),

where a € S;and b € S,

Theorem 2.3.2. (Dolinka and Vinci¢, [31]) Each ID-semiring with involution
can be represented as an involutorial Plonka sum of an involution semilattice-
ordered system of ID-semirings satisfying the identity x + zyx = x. Conversely,
the involutorial Ptonka sum of every such system is an ID-semiring with involution.

As we mentioned above, in [95] Romanowska proved that each ID-semiring
satisfying = + zyx = z is the sum of a distributive lattice-ordered m-system of
rectangular [D-semirings (i.e. with rectangular multiplicative reduct). This means
that we have given a system of disjoint semirings S; indexed by a distributive lattice
(D,V,N) (so that © € D), and for each 7,7 € D such that 7 > j an embedding
i ;0 S; — S such that

(i) i, is the identity map on S; foralli € D,
(ii) i j ok = g foralld, 5,k € Dsuchthati > 5 > k,

(iii) '([},,',,,;/\]'(Si) -+ 7l)j,i/\j(5j) C 'l/)i\/j'i/\j(sivj) foralli,7 € D.

The sum of this system is defined in such a way that the operations in the resulting
semiring (S, +,-) (where S = | J; p Si) are given by
aibj = hiing(ai)bsing(b;),
a;+b = 7/).5—\/13‘1'5/\]'(7/’12,1'/\]'(“71) + ¥5,in5(05)),
where a; € S; and b; € S.

Now, we are going to call an m™*-system of semirings a family of semirings S;
indexed by a distributive lattice with involution (D, V,A," ), endowed with semir-
ing embeddings +/; ; for each pair ¢ > j and a bijection * on [ J;. , S; such that the
conditions (i)-(iii) above are satisfied, as well as the following conditions:

(iv) * 1 S; — S;+ is a semiring anti-isomorphism forall i € D,

(v) i j(x) = (b («*))*, forall i, 5 € D such thati > j and all z € S;»,
which express the compatibility of * with the m-system structure and, respectively,
the ‘symmetry’ of the m-system with respect to the involution.

Theorem 2.3.3. (Dolinka, [27]) An algebra (S,+,-,* ) is an ID-semiring with
involution satisfying « + xyx = x if and only if it is the sum of an m*-system of
rectangular ID-semirings.

Finally, it remains to provide some information about rectangular ID-semirings
with involution. We recall here a construction which is well-known in universal
algebra, called the matrix power. Namely, for a universal algebra (A, F) (where F
is a family of finitary operations on A) and n € N, the n-th matrix power is defined
onthe set A" = A x --- x A such that all fundamental operations from the original
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algebra are inherited by applying them coordinatewise in A™, while two operations
are added: the n-ary diagonal operation d given by
d(xl, 5 s ,Xn) = <fE11,fI)22,. " 7$nn>,
where x; = (@;1,...,z) forall 1 <4 < n, and a unary operation p determined
by
p({Z1, %8, . . .y TpY) =424, . . . Ty T

It is known that for a variety of algebras V and a given positive integer n, all isomor-
phic copies of all n-th matrix powers of members of )V also form a variety, denoted
by V1"l Also, it is known that this construction preserves equational completeness,
see [71]. For more information about matrix powers and their application in uni-

versal algebra, we refer to [53] and [71]. Now we obtain the following theorem,
which does not have its non-involutorial analogue.

Theorem 2.3.4. (Dolinka, [27]) Every rectangular ID-semiring with involution
is the matrix square of some semilattice and conversely, every matrix square of a
semilattice is a rectangular ID-semiring with involution. In other words, the variety
of rectangular ID-semirings is just SL2 and thus it has no proper subvarieties (cf.

[21]).

Another nice and in this setting important feature of the paper [31] is that it ad-
mits a direct calculation of those involutorial Ptonka sums which are subdirectly
irreducible, provided that the subdirectly irreducibles are known in the class of
(involution) algebras from which the components of the sum are taken. So, the re-
sults in [31] generalize the corresponding results on subdirectly irreducible Ptonka
sums, given in [69]. With a little amount of technical work, one can find the ex-
plicit list of subdirectly irreducible ID-semirings, and thereby show that the variety
of ID-semirings is — similarly to the variety of normal bands with involution —
residually < 10 (in fact, the results presented in the last subsection of the section
on involution semigroups can be also derived from the general theorems of [31]).
In particular, if an involutorial Pfonka sum is subdirectly irreducible, then its struc-
ture involution semilattice must be trivial, or it is subdirectly irreducible itself, that
is, one of Yy, X3 and Yy (by our Theorem 1.8.1).

But first, let Ly denote the (unique) two-element ID-semirings whose multiplica-
tive reduct is a left zero band. Dually, we have the semiring I?9. These semirings,
as well as their direct product Ly x [y, are examples of a rectangular ID-semirings.
By defining the exchange involution (the reversing of pairs) on the latter one, one
obtain a four-element involution semiring, which is isomorphic to the matrix square
of the two-element semilattice. This one we denote by R.S7.

The two-element and the four-element distributive lattice we denote by Dy and
Dy, respectively. Of course, we can equip the first one by the identity mapping as
the involution, thus obtaining the involution lattice [)3. In turn, D4 can be enriched
to the involution lattice D} by defining an involution which fixes the top and the
bottom element, and exchanges the other two.

Similarly to semigroups, one can adjoin an absorbing element to a semiring
(with involution). This is the same as to compose into an involutorial Ptonka sum
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a Xy-ordered system consisting of a trivial involution semiring and an arbitrary
involution semiring S, and such a construction yields an algebra denoted by S".
Also, one can perform O-direct unions by taking a semiring S (without involution),
its anti-isomorphic copy S, and a trivial involution semiring (which, considered to-
gether, form a Y3-ordered system of semirings) and constructing their involutorial
Ptonka sum. Such a sum is denoted by Ij(.5).

Finally, assume we are concerned with a 2/s-ordered system of semirings, where
the (involution) semiring assigned to the index 0 is trivial. Further, we have the
anti-isomorphic semirings S = S, and S = S,-, and the involution semiring
Sy, with the structure semiring homomorphism ¢ = ¢; , satisfying the required
conditions. The resulting sum we denote by (S, S1,¢). We omit ¢ if it is (up
to an isomorphism of the resulting sum) uniquely determined by the components.
Moreover, if Sy is trivial, then it will be omitted too. The desired key result on
subdirectly irreducible ID-semirings is now the following.

Theorem 2.3.5. (Dolinka, [27]) 4 nontrivial ID-semiring with involution is sub-
directly irreducible if and only if it is isomorphic to one of the following 17 semir-
ings with involution:

(1) RS3, D3, Dy,

(2) Z, (RS3)°, (D3)°, (D5)°,

(3) X5, I5(La), I5(Ds),

(4) X, Of(La), O§(Da, o), O5(Da, 1), Ob(La, RS3), O8(Da, D), and
08( D'.Z) DZ)'

where ¢o maps the only element of the trivial semiring into the lower element of
Do, while ¢y maps into the upper element of Ds.

The above theorem, together with the other structural results presented in this
section, are the main ingredients in a lengthy and involved argument, with a number
of subtle details, which leads to the result of Theorem 2.3.1. In Figure 11, there
are three clearly distinguished intervals of the lattice. The lattice is, of course,
intentionally drawn in such a way, because the corresponding proof splits into three
separate parts, each producing one of those intervals, starting from the bottom and
proceeding to the top.

2.4. Some Varieties of Involution Rings. Let (R,,-,—,0) be a ring and assume
that * is its semiring involution. Then it is very easy to deduce from the ring axioms
that forall » € R we have (—r)* = —r* and 0* = 0, so that * agrees with the whole
ring structure of R. In the way just described, we obtain a ring with involution (or
a *-ring).

Involution rings are probably the most important and best studied algebraic
structures with involution in mathematics in general. It would take too much space
to attempt to give even a shortest account on the results concerning involution rings
and their applications. This topic originates back to von Neumann, who considered
the adjoint (as an involution) in the algebra of bounded linear operators on a Hilbert
space (such an involution algebra is widely used in theoretical physics, especially
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in quantum mechanics). Classical books on involution rings are e.g. Berberian [3]
and Herstein [52].

However, the point of view of considering an involutorial antiautomorphism
of a ring as a fundamental operation (and thus, of considering related universal
algebraic questions) is somewhat more recent and much easier to review. Such an
approach has been taken, for example, in Rowen [97] and in the survey article of
Wiegandt [115].

One of the (historically) most important classes of involution rings is the one of
regular *-rings. Originally, it were regular rings which were considered by von
Neumann in his fundamental treatise [114] (see also [108]), and which turned out
to be the starting point (and the main motivation) for the whole theory of regu-
lar semigroups. Regular rings and regular *-rings are in a quite fascinating way
strongly related to (orthocomplementded) modular lattices, and thus, in particular,
to projective geometries. This link is described by the well-known von Neumann’s
Full Coordinatization Theorem (which generalizes the classical coordintaization
theorems of projective spaces).

Theorem 2.4.1. (von Neumann, [114], Roddy, [94]) Let M be a (orthocomple-
mented) modular lattice. Then there is a regular ring (with involution) R whose
principal right ideals form a lattice, which is isomorphic to M. Moreover, I? can
be obtained as a ring of matrices (of a certain finite dimension) over a ring D
such that D C M and the ring operations of D are expressed as polynomials of
the lattice M. In the case of ortholattices, the orthocomplementation is uniquely
determined by the involution on R.

It is easy to prove that the condition of a regularity of a *-ring is equivalent
to the condition that every principal right ideal is generated by a projection, an
idempotent fixed by the involution. Therefore, in the orthocomplemented version
of the above theorem, one can replace the lattice of principal right ideals of R by
the lattice of projections of R with respect to the partial order defined by e < f
is and only if ef = e. Hence, every modular ortholattice can be represented by
projections of some regular *-ring.

Further, one can show that the regularity of a *-ring R is equivalent to the impli-
cation

=0 = r=0,

for all » € R. This form of regularity provides an obvious way to equationally
define a special ring involution which guarantees the regularity of the underlying
ring. Following Yamada [117], we call a special regular *-ring an involution ring
which satisfies the identity

T T &Z.

Using some results from Nambooripad and Pasijn [76], Yamada first proved that
the multiplicative reduct of any special regular *-ring is a semilattice of groups,
and moreover, we have 2z = (2z)(2z)*(2z) = 8zz*z = 8z, so 6z = 0. In light
of this, the following result is not so surprising.
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Theorem 2.4.2. (Yamada, [117]) Any special regular *-ring R can be decom-
posed into a direct sum R = Ry Ra, such that Ry and Rs are the *-ideals
(ideals closed for *) of R consisting of all the elements of R of order 2 and 3,
respectively. Moreover, Ry satisfies z* = x, while Rj satisfies => = x, so that
R satisfies ' = x. Consequently (by Jacobson's Theorem), every special regular
"-ring is commutative.

Going in more detail, Yamada in [117] described the subdirectly irreducible
special regular *-rings.

Theorem 2.4.3. (Yamada, [117]) The only subdirectly irreducible special regu-
lar *-rings are the finite fields with 2,3 and 4 elements, with the inverse operation
as the involution (xz* =z~ for all z # 0 and 0* = 0).

Of course, it is well-known that a ring which satisfies the identity ! = x for
some n € N is subdirectly irreducible if and only if it is a field (satisfying the same
identity). This fact, and the above theorems of Yamada serve as good inspiration to
investigate in general the subdirect decomposition of involution rings obeying an
identity of the form z"*! = z.

Given a ring R, denote by R°PP its opposite ring, i.e. its anti-isomorphic copy.
Clearly, the direct sum R R°PP is isomorphic to their direct product, and one
can define the exchange involution on this sum. The resulting involution ring we
denote by Fxz(R). Of course, to each ideal I of R it corresponds a *-ideal of
Fx(R) obtained as the direct sum of I and /™. Also, if R is a ring with involution
and / is an ideal of the ring reduct of 1 such that R = I ) I'*, then it follows that
R = Ea(I).

It is not difficult to analyze all the possible involutions on a finite field G F'(p").
The required involution defines an involutorial automorphism of that field, and it is
well-known that every automorphism of the specified finite field is of the form

:L' ey :L‘pﬂl

for some integer 0 < m < k — 1. Thus, we have

z=(z*)" = (aP )* ==zP
As the multiplicative group of our field must be cyclic of order p*—1, we obtain that
(p* —1) | (p¥™ — 1), that is, k | 2m. Since 2m < 2k, this yields two possibilities:
m = 0, whence the involution is just the identity mapping, and m = g, provided
k is even (otherwise, this case is impossible). The resulting field with involution
we denote by G/F(p*) in the former case (abusing slightly the notation), and by

GF*(p*) in the latter case. Now we have prepared the way for stating our next
result.

2m.

Theorem 2.4.4. (Crvenkovic, Dolinka and Vincic¢, [16]) 4 ring with involution
R is subdirectly irreducible and obeys the identity 2™ = x if and only if there
is a prime number p and an integer k > 1 satisfying (p* — 1) | n, such that R is
isomorphic to one of the following:

(1) GF*),
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(2) ik is even, GF*(pk),
(3) Ex(GF(p¥)).

The key lemma in the course of proving the above theorem is that if R is a
ring with involution satisfying the given conditions, then 2 has an identity element
(which is, clearly, fixed by the involution) and R is actually *-simple (meaning that
R has no nontrivial *-ideals). The other main ingredient for the proof comes from
the paper of Birkenmeier, Groenewald and Heatherly [5] in which the relationships
between the ideal and the *-ideal structure of an involution ring were studied. In
particular, the result we need is that if R is *-simple, then it is either simple as a
ring, or R =2 Fa(K), where K and K* are the only nontrivial proper ideals of R
and R? # 0. From these facts it is possible to derive the previous theorem.

One of the principal applications of the above result is that it helps a lot in
determining the lattice L(™ of all subvarieties of the (involution) ring variety yin)
defined by z™*! = z for a given value of n. Towards this aim, the following
observation is very useful. Let V;") denote the subvariety of V(™) determined by
pa = 0 (formed by all members of the latter variety of characteristic p), and let Lg(,")

be its lattice of subvarieties. Clearly, V,(,”) is nontrivial if and only if (p — 1) | n.
Now if {py,...,px} is the set of all prime numbers with this property, then it can

be easily shown that the varieties V,(,?), 1 <1 < k, are independent, which means
that there is a term ¢(21,. .., @) such that the identity ¢(z1,...,x)) = ; holds in

V,(,Zl). If a variety is equal to the join of some of its independent subvarieties, it is
usual in universal algebra to say that the variety under consideration decomposes
into a varietal product of these subvarieties (cf. [74]). In our case, we write yin) =
V,(,T) ®: - ® V,(,:‘). It is well-known that varietal product decompositions induce
direct decompositions of the lattice of subvarieties, thus we have

L™ > LM x ... x L.

Hence, the task of finding the lattice of varieties of rings (with involution) satis-
fying z"*! = x reduces to the same task in a fixed prime characteristic p, where
(p — 1) | n. This is just where Theorem 2.4.4 can be used, for it supplies the
corresponding subdirectly irreducibles. It remains then to study their mutual rela-
tionships in order to obtain the exact list of varieties they generate.

This is just what have been done in the recent note [30]. Namely, let F, denote
the set of all finite fields of characteristic p, while 7 denotes the set of all (subdi-
rectly irreducible) involution rings from the above theorem which are of character-
istic p. Furthermore, write 2 — S if I embeds into S. This relation turns 7, and
F, into partially ordered sets. Clearly, (¥, ) is isomorphic to the divisibility
order of natural numbers (as G F(p*) embeds into G F'(p®) if and only if k | £), but
it was shown in [30] that (¥, <) can be effectively described as well.

Now let F,(n) (F;(n)) denote the set of those GF(p*) (and GF*(p*) and
Ez(GF(p*)) in the involutorial case) for which (p* — 1) | n. The main result of
[30] is as follows.



VARIETIES OF INVOLUTION SEMIGROUPS AND INVOLUTION SEMIRINGS 43

Theorem 2.4.5. Let n > 1 be an integer and p a prime such that (p — 1) | n.

Then L.;,' s isomorphic to the lattice of all ideals of the ordered set (F,(n),—)
(resp. (Fp(n), =)

By the previous remarks, the finite partial orders from the above theorem turn
out to be computable, which establishes an effective algorithm for constructing
L3, as required.

Bearing in mind Theorem 2.4.2, let us finish this survey by discussing the case
n = 6 as an example, so that (p — 1) | n (where p is a prime) if and only if
pe{2,3,7}.

When we consider ordinary rings, the situation is clear: for p = 2 we have two
subdirectly irreducibles, GF'(2) and G I'(4), where GF'(2) embeds into GG F'(4);
for p = 3 we have G'F'(3), and for p = 7 we have G F'(7). Thus, it is easy (using
the above theorem) to conclude that there are 12 ring varieties satisfying 2" = =,
and that the lattice formed by them is the product of a three-element chain and the
square of a two-element chain.

In the case of involution ring varieties, for each of p = 3,7 we have two sub-
directly irreducibles, so that GF'(3) — Fz(GF(3)) and GF(7) — FEx(GE(T)),
and both Lg’) and LE,G) are three-element chains. For p = 2, a routine calculation

shows that L.(f) is isomorphic to the lattice given in the following figure.

Figure 12. The lattice of all involution ring varieties satisfying 27 = z and 2 = 0

Hence, we obtain exactly 90 varieties of involution rings satisfying 2 = .
Only six of them have a special involution, cf. Theorem 2.4.3.
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1 Introduction

Finite difference schemes (FDSs) are often used for approximation of boundary
value problems (BVPs) with generalized solutions. In such cases it is preferable
to have the convergence result for the minimal smoothness of input data. This
leads to several problems as: the right hand side of the equation and the solu-
tion may be discontinuous functions; small smoothness of the solution requires
the convergence rate estimate in the weak norm; coefficients of equation does
not belong to standard Sobolev spaces etc. In the case of difference schemes on
nonuniform meshes the order of local approximation is usually reduced. The
accuracy of the method can be increased by using the approximation of the
considered differential equation in some non-mesh points and special averag-
ing operators. In the case of problems with singular coefficients the solution
does not belongs to the standard Sobolev spaces. Also there arise nonstandard
conjugation conditions.

In this paper we give a survey of techniques for overcoming these problems.
Special attention is paid to deriving convergence rate estimates consistent with
the smoothness of input data.

2 Poisson Equation

As a model problem we consider the Dirichlet BVP for the Poisson equation in
the square Q = (0, 1)%

—Au= f(z), z=(zy,29) €N; u(z) =0, zel =00. (1)
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We assume that the solution of BVP (1) is sufficiently smooth, that is, the
function f(z) satisfies all the necessery conditions for that.

Let @y, be the uniform mesh in Q with the step size h, wp = Wy N and
= wy N1 We define finite differences in the usual way [31]:

Vg = (‘““ o 'U)/Il ) Vg, = (U -V ")/hs

where v¥(2) = v(z % hry), and r; denotes the unit vector of the z; axis. With

||"||?,,(u,.) = h? Z ‘UQ( )

TEWH

we denote discrete Lo—norm in wy. We also introduce discrete Sobolev norms

”vl"”lV‘;‘(wh) (I‘ =1, 2y )
We approxsimate (1) with the standard five-point FDS:

—Ah'l}:f, ﬂfeu)h; ’U:07 xE'YIw (2)
The error z = u — v satisfies the conditions:

—Apz=19, T E€w; z2=0, =€, (3)

where ¢ = Au—Apu= (g—q uz,;,) + (%—7 um,i,) =) +Pa.
2C

From inequality (see [32]) [|An || 1y (wn) Yo || ||W2(w,. immediatelly fol-

lows a priori estimate
Izllwzn) < C 1%l Lagon) - (4)

Here C' denotes a positive generic constant independent of v and the mesh step-
size. In different formulas C' may take different values. In such a way, to prove
the convergence of FDS (2) we must estimate 1. From Taylor’s formula follows:

Yi(z) = ’1‘—; %(4@), where 2 is some midpoint. From here one immediatelly
obtains: '
Illwzn) < C B lullcay -

More precise estimate may be obtained using integral representation of resid-
ual. We have

il z1+h  pxoth |a:' _mll |:I:’ —$2|
we =g [ ( i ) (1 _ = ) x
1( ) h2 iEl—h xz—h h h
2y o4 " T2 94
(/ / ! 0%u .’111 ’ 3:2 ///d / / 0 U(mgsz lzldllll) d.'):’g d:l:ll

and an analogous formula for 1. Therefrom follows

[b(@)] < Chllullwace where  e= (21— h, 21 +h) x (22 — h, 22+ h).
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Summing over the mesh wj one obtains ||9]|1,(w,) < C h? [|u||W4(Q) , where-
from follows

elwzn) < € lullwsca (5)
The estimate (5) can be obtained also by application of the Bramble-Hilbert
lemma (see (1], [3]). Moreover, as the value of % in the node z € w is a bounded

linear functional of u € W;(e), for s > 3, which vanishes on polynomials of
third degree, applying the Dupont-Scott lemma [3] we obtain

@) < Ch 3 fulws,  3<s<d.
From here, after summation ofer the mesh wy, we obtain more general result:

2l w2y < Che? [ulwg @) » (6)

for 3 <s< 4.

For s < 3 the right hand side of (1) and (2) may be discontinuous function,
and consequently, I'DS (2) is not well defined. To obtain a well-defined DS
we average f(2) using Steklov averaging operators:

1/2

Tif(z) =T; f(z+0.5hr) =T, f(x —0.5hr;) = / fla+hyr)dy.

~1/2

These operators commute and satisfy the following relations

P _of ﬁf *f
T Ty = T2 =f., T =1 L
P Tgy =t Tigp=fus Tigg=lem

For s < 2, the convergence of FDS (2) does not follow from (6). Conse-
quently, the weaker norms must be used to prove the convergence. The following
assertion is valid (see [32], [4]).

Lemma 1: Ifin (3) 1 =1m 2, + 12 5, then

lzllw ) < C (Imlzagon) + Im2llLagon)) - (7)
If ¥ =025 +62, 22 and ;=0 for ;=0 then
20l Lawn) < C (ISt Laon) + 1C2llza(n)) - (8)

Let us consider FDS with averaged right hand side [4]:
~Apv=TIT3f, z€uwp; v=0, TE€W. (9)

The error z = u — v satisfies the conditions (3), where: ¥ = 1y + 1o, i =
Giozzey, G=T¢ ;u—u, i=1,2.Bylemma 1 one obtains a priori estimates

(4), (8) and

La(wh) t ”CQ,T')lIIJ(u,,))-

l2llwpwn) < c(li¢
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Using Dupont-Scott lemma, analogously as in the previous case, one obtains
the following convergence rate estimates: (6) for 2 < s <4,

Izllwpwny € C R lullwzay , 1<s<3, (10)

and
20l Lagwny < Ch* [Jullwg(ay 1<s<2. (11)
In the case 0 < s < 1 the solution of (1) may be non-continuous function.
Let us consider FDS

—A/,u:T?Tst, T Ew; v=0, €

and define the error in the following manner: z = 71Ty u — v. Similarly as in
the previous cases one obtains estimate (11) for 0 < s <2 [4].

Analogous results hold for the FDSs on non—uniform meshes. For example,
in [17] for a family of nine-points difference schemes approximating BVP (1) on
an arbitrary non—uniform rectangular mesh @, are obtained convergence rate
estimates

||2||W,1(ah> < Ch’?'naa: flwll w2 (Q)
and
Izl 2ag@n) < € himaz lullwzcay -

Convergence rate estimates of the form
Izl Wty < CR T lullwgy, 82k,

are called consistent with the smoothness of the solution of BVP (1) (see [26]).
Ior a broad class of FDS such estimates are obtained in [36], [25], [4] etc. A
review of results on the convergence of FDSs is given in [12]. An extensive
bibliography can be find in [9].

3 Estimates In W'; Norms

Let us consider again the BVP (1) assuming that its solution belongs to Sobolev
space W5 (Q2), 1 < p < oo. Asin previous case, we approximate (1) with the FDS
(9). The error z = u—v satisfies the conditions (3), where: ¥ = )y +y, ; =
Ci,a:i:i‘,' ) Ci = Tiiz—iu_u) 1= 17 2.

With [|]| L) = (h* X sewn |v(:z:)[”)1/'7 we denote discrete L,~norm in wy.
We also define discrete Sobolev norms [[vflwk(w,y (K =1,2, ...).

The following analog of lemma 1 can be proved using theory of discrete
Fourier multipliers [30].

Lemma 2: FDS (3) satisfies a priori estimate

Izllwz(wn) < C 1PNz pwn) -
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]f d} =M, z =+ 7, 29 » then
120w eny < C (lmllzpgn) + 172l gon)) -
If "/) = Cl,zm_:l s C2,2321_12 and CZ =0 fO’f‘ x4 = 0 then

N2l zon) < € (N6l on) + 12l Lpan)) -

Estimating ¢ .z, Gi,z; and ¢ by Dupont-Scott lemma one obtains the
following convergence rate estimates (33], [2]:

Il < CH 2 lulwyy, 2<s<4,

lzlwin) < Ch* " ulwyy, — max{1,2/p} <s <3,

and
lelzpn < OB ullwyy,  2/p<s<2.

In the case when 0 < s < 2/p the solution of BVP (1) may be non-
continuous function. In this case we may define the error as z = T\Thu — v
and consider the FDS with stronger averaged right hand side.

4 Technique Based on Interpolation of Hilbert
Spaces

As we have been seen, for integer values of smoothness parameter s convergence
rate estimates can be constructed "elementary”, without the Bramble-Hilbert
lemma. Using such estimates and the interpolation theory of Hilbert spaces [27]
one easily obtains corresponding estimates for non-integer s.

Let X and Y be two Hilbert spaces and let X be continuously imbeded in
Y. Let 0 <@ <1 and let [X, Y] denotes the intermediate space obtained by
interpolation [27]. Then X C [X, Y]y C Y and for every u € X the inequality

[

¥ (12)

X

(x,v]o < Co ||ul

holds.

Let W3(Q) be Sobolev spaces in €. Let us introduce also the spaces
W3 ((0, T, W3(Q)) and anisotrophic Sobolev spaces in @@ = Q x (0, T):
WT(Q) = w2((0, T); W3 (Q)) nWj((0, T); WP ()).

Lemma 3: Let 51, 89, 71,70 >0 and 0 < 0 < 1. Then

(W3 (Q), W32 (Q)]g = Wit~ 0t00 )



and

[W2 ((0,7); W3*(Q)), W3 ((0,T); W3* ()],
= u1.2(1——0 $1+0 59 ((O,T)l H/'z\l~0)1x (»01';(0)) )

Lemma 4 [27]: Let A be a bounded linear operator from X; into Y; (i =0, 1).
Then A 1s also bounded linear operator from [Xo, X1]o into Yo, Yi]e and the
following relation holds

1400, x110—1%, vilo < Coll Al x, A%y, -

Let us consider again FDS (9). Similarly as in the chapter 2, one easily
shows that

lzllwzun) < C R llullway — and  Jlzllwzgen < Clullwz@)

wherefrom, using lemma 4, one immediately obtains estimate (6) for 2 < s < 4.
[n an analogous manner one obtains convergence rate estimates in other discrete
norms (see [10], [11]).

5 Equations with Variable Coefficients

Let us now consider elliptic equation with variable coefficients:
2
1o} ou
Lu=-— ( y ) = f(2), Q 3
u izzl axi i 617 f(fl:) T € (1 )

with homogeneous Dirichlet boundary condition. We assume that u € W3 ()
and f € W;”Q(Q).

Let V and W be two function spaces in the same domaln The space of multi-
pliers M (V, W) is defined by: M(V,W) = {a(z) : v(z) € W, Yu(z) € V},
M(V) = M(V,V) (see [29]). It is easy to see that coeﬁments ai; of equation
(13) belong to the space of multipliers M (W5 ~1(Q)).

The following relations are valid [9]:

wihe) = Mws@),  Js—1]> 1,
Wy e @) c MW Q) e>0,  0<[s—1]<1,
Loo() = M(La()) = M(W57H(Q)), s=1.
Let us consider FDS

2
1
Lrv= -3 Z [ (aij vzJ + (as; vi:‘)xi] =TT2f, z€wh (14)

1, j=1
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with the previous boundary condition. The error z = u — v satisfies conditions

2
[‘hz:Znij,iiv T E Wwp; Z:O, TE YV
i,J=1
where ni; = TN T3, (aij aa_zu,) — 3 (@i us,; + a’:}i u;;fji) . The following a priori
estimates hold

2
Izl wzn < C Z 1745, 2 | £ wn) (15)
i,5=1
and
2
2wy < € Z 1745 1| L) - (16)
2, j=1

Using bilinear version of the Bramble-Hilbert lemma or interpolatory prop-
erties of bounded bilinear operators from (15) and (16) one obtains convergence
rate estimates in the form (see [9], [11], [15])

Izl wzuny < C R max [laz; | ws-1(q) [ulws@,  2<s<d,
2w oy < Cht ax ||aij”w;—1(n) lellwsg @) 2<s8<3,
and
lellwgony < R max fayllys e @ lullws@),  1<s<2.

Analogous results for the third boundary value problem are obtained in [20].

In multidimensional case (n > 2) there arise additional problems caused by
the discontinuity of right hand side of equation (f € W5 ~2(Q) ¢ C(Q) for s <
2+n/2) or its solution (u € W3(Q) ¢ C(Q) for s < n/2). These problems may
be resolved by convenient averaging. Note also that M (W;~1(Q)) # W5 1(Q)
for s <1+n/2.

6 Equations with Singular Coefficients

Interface problems occur in many physical applications. Such problems can be
modeled by partial differential equations with singular coefficients. For example,
as a model problem let us consider the Dirichlet problem

—Au+c(z)ds(z)u= f(z), z€Q; u=0, z€l, (17)

where S is a continuous curve (for example closed curve), S C 2 and dg(z)
is Dirac’s delta distribution [35] concentrated on S. We suppose that c¢(z) €
Loo(S) and 0 < Cpy < ¢(z) < C) almost everywhere on S.
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We assume for simplicity that the curve S separates () into two regions:
=0, UQy, QO NQy = 0. Then, at some assumptions for smoothness, the
BVP (17) can be rewritten as follows:

7]
-Au=f(z), z€O U Qy; [ulg=0, [6—2]

=c(2)u,
s

where du/dv — is the normal derivative.
We approximate the BVP (17) on the mesh @, with the following FDS (see
[16])

—-Ah'u+a'U:T,2T22f in wy; v=0 on 7,

where

11'2/ k(z, 2') e(a’) d Sy, 2 € Sh,
S(z) 7
0, 2 € wp \ Sk,

afz) = TETE (e ds) =

h
h) x (za — h, 29 + h) is the cell attached to the internal node 2 € wy, and
Sh={z €wy : S(z) # 0}

The error z = u — v satisfies the FDS

K(z, 2') = (1 — li,l—,j—“—') (1 = l—I—lL_—m—Ql) , 8(z) = Sne(z), e(z) = (z1—h, 21+

—~Apzt+az=—1 g8 — Vo, 55, +X I wh; z=0 on

where
Yi=u—TF u, i=1,2,
XY =au—h"? k(z, 2')e(2)u(a’)dSy, 2z € Sk
S(2)
x=0, z€wp\Sh.

The a priori estimate
X2 1/2
lehwtions < © [Wnmliston + Fn sl + (2 X 5) ] 19
z€Sh

is satisfied. Estimating the terms in the right-hand side of (18) using the
Bramble-Hilbert lemma, we obtain the following inequalities

||z”W21(wh) & O h*1 ||u||w2s(g) 3 1 <8 8/2
and

lollwion < €0 (lullwgan + lullwgan + lully-aggy) 3/2< s <2.
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In the case when S is a segment parallel to one of the coordinate axes an
improved convergence rate estimate holds. Let, for example, S is given by the
equation zo = joh (jo — integer). Then

y o3u
2
lzllwi n) < Ch <”a am’

La2(R) H Oz 69:2 La(f1)

oy HIelz00 Tl )

H Oxq 6x2

7 Parabolic Problems

In parabolic case analogous results hold. Let us consider the folowing initial-
boundary value problem (IBVP)

ou g
5;+£qu(7:,15) in Q=0x(0,T);
u(z, 0) = uo(z); u(z,t)=0 on I'x(0,7).

(19)

Let us introduce the mesh @), = wy X w, , where w, is uniform mesh with
the step size 7 in (0, T"). We also define discrete Lo—norm

”U| 2L'_)_(Qh1) - h?T Z Uz(m7 t),
(2,t)EQhr

and the discrete Sobolev norms “1)”Wk>k/2(Qh )
2 T

We consider implicit FDS
B 22—
vi+ Lyv =T7T5T, f,

with the corresponding boundary and initial conditions, where T} is the Steklov
averaging operator on ¢:

t
o f(z, t) :% /, )

The error z = u — v satisfies the equation

2

w s =gt T nos

i, j=1

and homogeneous boundary and initial conditions. Here

- r P du 1 oy m
¢ =u-—TiT3u, ng =TFTo T, (a,_, I) - = (aij uz, + a;; uz .
j
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The following a priori estimates are valid

2

4wz an < € (Woilia@ur + 3 rsnliacann

i,j=1
and

2
lzllw g,y < C([%’]l/'z + 3 II”"]'”Lz(th)) ,

i, j=1

e (2 32 2 e(z,t)—p(z,t)|? 5 3 -
where (]}, = h Yo T Dot " J—(—L—i-;—n—ll_t,l . From here, in a sim

2 one obtains convergence rate

1

ilar manner as in the elliptic case, for 7 = h
estimates (see [5], [6])

“z”W;'l(an) SCh? (‘T}'ajx ||“ij||w;>‘(n) +1) ||u||w;-‘/’(Q)’
for 2<s<4, and
l|2||W21'1/2(Qh1) < c h’s-_l (n'lagx “a"ij“vv;"l(ﬂ) o ln(l/h)) |Iu|IW,;"/2(Q)’

for 2 < s<3. For 1 <s <2 the solution of IBVP (19) may be discontinuous.
In that case the error may be defined as: z = T Tyu — v.

Problem with coefficients depending on ¢ is considered in [13]. Similar results
are obtained for FDS on non-uniform meshes (see [18], [19]).

8 Heat Equation with Concentrated Capacity

Let us consider the IBVP for the heat equation with the presence of concentrated

capacity at interior point z = & [28]:

ou 0 ou

& - % (a(:c) a) = f(.’l:,t), (:L’,t) € Q,

uw(0,t) =0, wu(l,t)=0, 0<t<T (20)
u(z, 0) = uo(2), #€ (0, 1),

where @ = (0,1) x (0,T), K >0, 0<c¢; <a(z) <cgy 0<e3 <efz) <y
and d(z) is the Dirac’s distribution. The solution of the IBVP (20) satisfies the
equation

[e(e) + K 8( — &)

e(z) %;f - %(a(x) %) = f(=,1),

for (z,t) € Q1 = (0,¢) x (0, T) and (z,t) € Q2 = (¢, 1) x (0, T'), while for
2z = ¢ the conjugation conditions

[W]p=e = u(€ +0,t) —u(¢ — 0,¢) = 0,
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are fulfilled.

We introduce the space Eg(O,l) WO(O 1) of functions w(z) € Ly(0,1)
equiped with inner product and norm

(1) = | W) 0@ dz + U0l Tl o5 = ()}

L2(0,1)

Further we set W(0,1) =W2 (0,1) and W}(0,1) = 21 (0,1) N W2 (0,6) N
WE(€,1),k=2,3, ... Wealsodefine spaces Wy"*/*(Q) = Lo (0, T; W(0,1))n
WE©,T; Ly(0,1)), k=0,1,2,....

Let wy, be an uniform mesh in (0, 1) with the step-size h. For simplicity we
assume that £ € wy,. We approximate the IBVP (20) on the mesh Qpr = wp Xw,
by the implicit FDS with averaged right hand side (see [22], [23])

(C—}'K(Sh,)'uf_ (&’UE)I :TETt_fy (l,t) EQ’IT:
v(0,¢) =0, wv(1,t)=0, t € wr,
v(z,0) = ug(2), 2z € Op,
whisze &a) = [alo—Opro{E—hi0)] /2, dx = fulo—8) = { (1)/h ek Ve
is the mesh Dirac’s function and T}, is the Steklov averaging operator on variable
Let (v,w), be the discrete Ly-inner product in wy. Let us set Bpw =

(1 + ) w and define the energy norms ||w|| s, = (Bhw, w),ll/2 and ||w||341 =
(B, w, w) . We introduce the mesh Sobolev norms with weight operator By,:
ol ., = ot = Rl t? @, ol = losl, ool
[ = el + Rl Tl g =7 3 R 01, -
tEwr
(-, 8) = w(-, )13,
lolfgaim g,y =7 20 0G0t 20 22 t_ I
tEwr tewr t'Edy, t'#t )
||11,||%;,,(Qhr) = TLCZ I Ol + T; llwe( -, )11, -
EWr Wy

The error z = u — v satisfies the following conditions
(c+ K 6p) zg — (azz)z = @, (z,t) € wp x Wi,

z(0,t) =0, =z(1,t)=0, t € wt,
z(z,0) =0, T E W,



where ¢ = Y5 — Xz, ¥ = cu—T2(cu) and x = auz — T, T, (a g'—‘) . The

following a priori estimates hold:

1/2
407330y <€ (7 e Dl ) (21)

tEwr

” ”‘vl 1/2 (Qnr)

(- 8) =% (-, )%
l: Z Z |t—'t’|2 . +

tED, tED,, L

1/2 (22)
1 1 :
59> (z n m) IV O 7 32 I t)nf,] ~

Using integral representations of ¢ and x and the form of corresponding norms,
from (21) and (22) we obtain the following convergence rate estimates

”3”‘?2 any S € (h* + 1) (“a“W;(o,s) + llallwg e,y + "C"W;(o,n)) IIUHW;J(Q)~
el gy < € (B VIRTT7+7) (lallwaoe + lallwz ey

Hlellwzo) Iellgs.om gy

Similar estimate can be obtained in the norm Ly(Qp-) using appropriate ap-
proximation of initial condition. FDSs on nonuniform meshes are considered in
(22].

9 Hyperbolic Problems

Convergence rate estimates for hyperbolic IBVPs, contrary to the case of elliptic
and parabolic problems, usually are nonconsistent with the smoothness of data.
Let us consider the following IBVP

2
%g b Lu=flg, ) i Q=0x(0,T)=(0,1)x (0;T);

u(z, 0) = up(2), % =uy(z); wu(z; t)=0o0nTx(0,T).

(23)

We introduce the mesh in the same manner as in the Section 7 and define the

norm
g 1/2
@il La(wh)

1
vei + 7 Ln (vt +2v+v7) =NDTLf, (24)

v4+v
Folle, 3oy = max [nvtnwhwzﬂ( )

Consider FDS
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where v* = v(z, t£7), with the corresponding initial and boundary conditions.
For 7 < h the following convergence rate estimate is valid (see [7], [14])

2l o, (Wi )y < C h*? (Hf;x ||“ij||W;—1(n) +1) [ullwg @) (25)

for 2<e<4,

In some cases by interpolation technique one can obtains estimates which
garantee faster convergence on weaker solutions (see [37]). Let us consider the
following model problem

u 0%u )
W:@ m Q—(O,].)X(O,T),
Ou(z, 0)

u(z, 0) = uo(z), o 0; wu(z,t)=0 on {0, 1} x (0, T)

and approximate it by a FDS of the form (24). Using integral representation of
the residual, one easily obtains the estimates '

||Z]|c,(w;(w,.)) <C(h+7)? ||U0||W;(o, 1)

and
Izllc. (wiwny < € lluollwio, 1y -

From these estimate by interpolation one obtains [8]:
lzle, @y < C(h+7)8 D ugllwgo,y, 1<s<4.  (26)

Contrary to (25), estimate (26) guaranties convergence even for 1 < s < 2.

10 String Equation with Concentrated Mass

Let us consider the first IBVP for the equation of vibrating string with concen-
trated mass at the interior point = ¢ [34]:

9%u 6(()@

[e(z) + K 6(z—¢€)] 22~ 55 \al@ 61‘) = f(z,t), (z,t) € Q= (0,1)x(0,T),
u(0,t) =0, wu(l,t)=0, 0<t<T (27)
u(z, 0) = uo(z), (')uS;,O) = uy(z), z € (0, 1),

where a(z), ¢(z) and K are the same as in the Section 8. Keeping denotations
from the Section 8 we approximate IBVP (27) by symetric weighted difference
scheme with arveraged right-hand side (see [21], [24])

(c+ K 6p) vz — (4vs”), = T?TPf, (z,t) € Qur,
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v(0,t) =0, v(1,t)=0, t€w@,; w(z,0) =up(z), z€wn,

(c+ K 8p) ve(z, 0) = T2(cuy)+ K dpuy + —) T [T;f(]f,ﬂ) F(aup(z))'|, z€wn,

where v(?) = ovt + (1 = 20)v +0ov™, 0 > 1/4 and

T ’

'[?f(x,O) = é/o (l - t;)f(a:,l')dt'.

The error z = u — v satisfies a priori estimate

2 ' 2 2 2 g Y
1902, oy < © D7 Il b7 3 e O 47 3 -, O

tEwyr tEwr
where 5
e=T,T¢ (CL 5—2) - du(l-.a) . n=cu-Tcu),
T ~,0u  dug
gl -
=g YOr dr =y
and

Iz

r@aguny = 22X [(z +27)/2l3, )

|

Estimating the terms x, ¢ and 7 similarly as in previous cases we obtain the

following convergence rate estimate

e, Eaguny < € 42 +7) (lellwzoe + lalwzceny + lellwzon ) uls gy

Here the space ng(Q) (k=0,1,2,...) is defined as the closure of subset of

functions w € Lo(Q) such that

w(0,t) = w(l,t) =0,

%—Z:JGLz(O,T;Eg(O,l)), i=0,1,..., k

Ot ‘
Oz i1 €L(Q), i=1,2,...,k

Otw ‘ g
WELz(Ql)ﬂLg(Qg),. 2<ji<k, i=j3, ...,k

in the norm

2 O'w

ot

= ([12we, )
bty 3 (|5

2
) T
L2(Q)

L2(0,T)
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2
La(Q1) Haﬂ oti- ,‘ LQ(Q2)>'

k k
+Z ”61:6#" ;(Q) +J§; (H&LJ otr—J

Similar result in the norm

1/2
oo, onn = 13 1 )20+l )

is obtained in [21] and [24].
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SCHLICHT DISCS, BLOCH-BERS SPACE AND HARMONIC
MAPS

MIODRAG MATELJEVIC

Dedicated to Professor Veselin Perié¢ on the occasion of his 70th birthday

In [3], we characterize Bers space by means of maximal ¢-disks:
Theorem 1. A holomorphic quadratic differential pdz* on the unit disc is bounded

with respect to the Poincaré metric (i.e. it belongs to Bers Space) if and only if the
radii of its mazimal p-discs are uniformly bounded.

As an application we show that the Hopf differential of a quasiregular harmonic
map with respect to strongly negatively curved metric belongs to Bers space. Also
we give further sufficient or necessary conditions for a holomorphic function to
belong to Bers space.

After writing our paper [3] we realized that Theorem 1 has its roots in known
characterizations of Bloch functions.

In this paper we will present the content of our paper (see [3]) and explain links
between mentioned Theorem 1 and known characterizations of Bloch functions. For
further results related to the subject of this paper we refer the interested reader to
author’s review papers [29] and [31] ( see also [13],[14] and [30] ) . In this paper (in
section 4 ) , only a short review of [13] is given .

In section 0 we prove Koebe and Bloch Theorem. The following result is an imme-
diate corollary of Bloch Theorem and Schwarz Lemma.

Theorem SW (Seidel and Walsh). An analytic function on the unit disc A is
Bloch function iff schlicht discs in the image surface are uniformly bounded.

[t is clear that Theorem 1 is a generalization of Theorem SW. The proofs of these
results are similar except we have some additional difficulties caused by possible
zeros of corresponding quadratic differential. Lemma 1.1 (see below) enables us to
overcome those difficulties.

0. BLocH’'s AND KOEBE'S THEOREM

We will use the following notation.
If # > 0 and a is a complex number

Bla;r)={z€C:|z—a| <1}
is the open circular disc with center at a and radius r. Also we use notation A, =
B(0,r) and A = A,. First, we introduce a particulary interesting class of conformal
mappings of the disc, the class S. We denote by S the class of holomorphic functions
f in A which are injective and satisfy normalization conditions f(0) 0 and

£(0) =1
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Proposition 1. If f € S there exists a g € S such that
(1) 9°(z) = f(z%), z e A.

Proof. Since f belongs to S we can write f

in the form f(z) = z¢(z), where ¢ is holomorphic in

A, p(0) = 1 and ¢ has no zeros in A. Hence there exists an analytic function h
on A with h(0) = 1, h%(z) = ¢(z). Define g by

9(z) = zh(2?), z € A.

Then g?(z) = 22h?(2?) = 22¢p(2?) = f(2?).

The following result is well known as the Area Theorem (see for example [1] and
15]).

Theorem A (Area Theorem). If I' is holomorphic in A\ {0}, I is one-to-one
in A, and

1 -
(2) F(z) = Z+chz , ZE A,

then
o0
D klexl? < 1.
k=1

Corollary 1. Under the same hypothesis, |c1| < 1.

Proposition 2. If f € S and ay = L;@Z is the Taylor coefficient of f then
Iagl < 2
Proof. By Proposition 1 there exists a g € S so that g?(z) = f(2?). If = —;— then
Theorem A applies to ®, and this will give |ay| < 2. Since
ft2?) = 221 +ag2® +...),

we have

1
g(z) = z(1 + éazgz2 +...),

and hence
1 ag
-—— —=2z+..

1 1

The Corollary 1 shows now that |aq| < 2.

Theorem K (Koebe’s One-Quarter Theorem). If f € S then f(A) D Ayys.

Proof. Suppose that wo & f(A).
Define the auxiliary function
Wow

A(w) = =

and F'= Ao f.

—w
‘Then F' € S and Ay = F”(0)/2= A"(0)/2 + f"(0)/2 =as+ 1711'6
Hence, applying Proposition 2 to the function ' we obtain

1
lag + —| < 2
wWo

and since |as| < 2, we finally obtain |1/wo| < 4. So
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[wo| > 1/4 for every wo & f(A). Thus f(A) > Ay

Lemma 1. If f is analytic on B = B(a;r) and Re f' > 0 on B, then f is
one-to-one on B.
Proof. Suppose z; and z, are points in B, 21 # 23, 4(t) = 2z + t(zg — z1) and
I= [ f/(y(t))dt. Then

fe) =)= [ e = (m -

[21,22]
iFrom the hypothesis Re I > 0 and therefore | # 050 that f(z,) # f(2,) and f
is one-to-one on B.

Lemma 2. Let f be an analytic nonconstant function on B — B(a: R) and

suppose there exists g € (0, 1] such that
df () <f'(a)], z € B.

Then f is univalent on By = B(a; R1), where Ry = ¢R.
A proof of this lemma can be based on the subordination principle.
Theorem B (Bloch’s Theorem). Let f be an analytic function on A and f'(0) # 0.
Then there ezists a disc B C A such that f is univalent on B and f(B) contains a
disc of radius greater or equal %lf’(())f. Proof. Let My = max {1 =|2]): z €
A}. It is easy to see that there is a point zg € A such that My = | f"(z)|(1 — |20]).
If 2 € By = B(20; po), where py = %(] — |20]), then

M,
1/'()] £ = = 2|f'(0)|-
po
Hence, by Lemma 2, [ is univalent on By = B(z0;p1), where p; = £, HAe-

cording to Koebe’s Theorem, this implies that f(Bj) contains a disc of radius
R = 311 (z0)lp1 = F1f'(20)](1 = |0]).

Since [|f"(20)|(1 = |zo[) > |£/(0)| this gives the result.
We will use notation W, = f(A). A schlicht disc in Wy is adisc B € Wy such that
there exists a domain () such that fla : @ — Bis 1-1 and onto.

For z € A let dy(z) = sup {r : B(f(2);r) is a schlicht disc in Wi}, Set rg
sup, . dr(z)

Definition 1. A Bloch function is an analytic map f: A — C such that

I/llz = sup.ea (1 = |2%)| /()] < +oo.

It follows from the proof of Bloch's Theorem that if 77 is finite then f is a Bloch
function. On the other hand if [ is an analytic function on A then, by Schwarz
Lemma,

ds(z) < (1= |2’)|f'(2)], z € A.
Hence, if f is a Bloch function then s is finite.
Thus, we have proved the following result of Seidel and Walsh.
Theorem SW. For an analytic function on
A the following conditions are equivalent:
(a) f is Bloch function
(b) ry < 0o

The following result gives further characterizations of Bloch function.
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Theorem SWPo. For an analytic function on A the following conditions are
equivalent:
a) [ 1s Bloch function
(b) ry < o0
(¢) The family {foT — foT(0): T € Aut(A)} is normal
(d) There exists o > 0, and a univalent function g on A such that f = alng’.

Recall that Seidel and Walsh (see Theorem SW above) proved (a) <= (b). The
equivalence of (a), (¢) and (d) was proved by Pommerenke (see [16]).

In [3] we proved a generalization of Theorem SW concerning holomorphic quadratic
differentials.

Theorem 1. A holomorphic quadratic differential pdz? on the unit disc is
bounded with respect to the Poincaré metric (i.e. it belongs to Bers Space) if and
only if the radii of its maximal p-discs are uniformly bounded.

Since f is a Bloch function iff holomorphic quadratic differential @dz?, defined by
© = (f")?, belongs to Bers space, then Theorem SW can be consider as a special
case of Theorem 1.

After writing the paper [3] we realized that this result has its roots in known
characterizations of Bloch functions in terms of their image Riemann surface. As
we mentioned Seidel and Walsh and Pommerenke [16] proved that a function f
belongs to Bloch space if and only if its image surface W, contains no large schlicht
discs. For relevant definitions related to this result and some generalizations we
refer the interested reader to Pommerenke [16], Stegenga and Stephenson [21].

Holomorphic quadratic differentials on a Riemann surface arise in several distinct
areas of geometry, for instance in Teichmiiller theory and in the theory of harmonic
maps (see, for example, Ahlfors [2], Earle and Eells [6], Wolf [27], Jost [10]).

Pirst we give a short review of our results as well as some related ones (see [3]).

In §1, we use a special parameter (natural parameter) in terms of which the
differential has a particularly simple representation, along with the theorems of
Bloch and Koebe to prove Theorem 1 (just stated above).

Recall that when we work with a natural parameter, we have some additional
difficulties caused by possible zeroes of the corresponding quadratic differential.
Lemma 1.1 (see below) enables us to overcome those difficulties.

We will mention some recent results, which motivated us.

Wan [26] proved that a harmonic diffeomorphism of the hyperbolic plane H?
is quasiconformal if and only if its Hopf differential is uniformly bounded with
respect to the Poincaré metric. This has also been generalized to hyperbolic Cartan-
Hadamard surfaces by Li, Tam and Wang [25].

See Tam and Wan (23], [24] and Han [8] for a general discussion of this area,
where this and other questions were discussed.

As an application of Theorem 1 we show that the Hopf differential of a quasireg-
ular harmonic map with respect to a strongly negatively curved metric belongs to
Bers space (see below, theorem 2 and 3, §2).

Thus, roughly speaking, we can extend one direction of the above-mentioned
characterizations ([26],[25]) of harmonic quasiconformal mappings to harmonic quasireg-
ular mappings.

For a precise definition of quasiregular mapping see §2,



70 MIODRAG MATELJEVIC

A4. Here we note only that the notion of quasiregular mapping is a natural
generalization of the notion of a quasiconformal mapping since one does not require
that quasiregular mappings be homeomorphisms.

Our proofs of theorems 2 and 3 are based on the fact that the Bochner formula
(see [19], [20], [10]) has a simple form with respect to the natural parameter. This
allows us to define a metric by means of the dilatation of the mapping, whose
Gaussian curvature is bounded from above by —1, and we use the classical Ahlfors-
Schwarz lemma.

In §3 we give further sufficient and necessary conditions for a holomorphic func-
tion to belong to Bers space, and show that every quasiregular harmonic mapping
is decomposable as a quasiconformal harmonic mapping followed by an analytic
function.

For further results and the literature in this growing area we refer the interested
reader to (8, 9, 12, 15, 19, 23, 24, 25, 26, 27, 28].

We close our paper with a short discussion concerning some further results and
open problems.

Now, we present the complete content of our paper.

1. MAXIMAL ¢-DISKS AND BERS SPACE @

Let ¢ be an analytic function on the unit disk A. Then ¢ belongs to Bers space
Q= Q(A)if
esssupw(2)?|p(2)| < +o0 ,

where w(z) = 1 —|z|%

In this section we will give a characterization of Bers space by means of maximal
¢-disks (see below theorem 1). First we define maximal ¢-disks.

Maximal ¢-disk. Let ¢ be an analytic function on the unit disk A and let z
be a regular point of ¢, i.e. ¢(z0) # 0. Let &g be a single valued branch of

w=®(z) = / Vo(z) dz

near zg, $(zg) = 0. There is a neighborhood U of zy which is mapped one-to-one
conformally onto an open set V in the w-plane. We can assume, by restriction,
that V is a disk around w = 0. The inverse &7 is a conformal homeomorphism of
V into A and evidently there is a largest open disk V around w = 0 such that the
analytic continuation of (b(}l (which is still denoted by ®5') is homeomorphic, and
that ®;'(Vo) € A. The image Uy = d)J](VO) is called the mazimal @-disk around
zo; its w-radius (injectivity radius) rg = R., is the Euclidean radius of V4.

Note that if f is a holomorphic function on A and ¢ = (f")?, by notation in
section 1, R, = dy(z), z € A.

For the definition of ¢-disks and a discussion of their important role in the theory
of holomorphic quadratic differentials we refer the interested reader to Strebel’s
hook [22]

Bloch’s and Koebe’s theorem. The two following theorems play an impor-

tant role in the proof of Theorem 1. It is easy to derive from Theorem K and
Theorem B (section 0) the following versions of Bloch’s and Koebe's theorems
Theorem B1 (Bloch). Let w = f(z) be an analytic function on the disk B

B(zo,r) ={z : |z— 20| < v}, 7> 0, and let f'(zq) # 0. Then there is an open disk
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U together with an open set V C B such that f restriced to V' defines a one-to-one
mapmng of V onto U and the radius R of U satisfies

R> ('UI(Z())lr,
where C' s an absolute constant.
Theorem K1 (Koebe). Let V be a domain in C and let f be an analytic and

unwalent mapping which maps V' onto the disk I/ = {w : |w — wo| < R} and let

29 = [~ (wo). Then
dist(z0,0V)|f'(20)| 2 &

The following lemma enables us to use Bloch’s theorem. In the proof of this
lemma we will use the hyperbolic metric on a disk.

Hyperbolic distance. Let B be the disk with center at 2o and radius 7. Using
the conformal automorphisms ¢, (z) = =, a € b, of A, one can define pseudo-
hyperbolic distance on A by

d(a,b) = |¢a(b)], a,b € A.

Next, using the conformal map A(Q) ﬁ—rﬂ from B onto A, one can define
pseudo-hyperbolic distance on B by

dp(z,w) = §(A(2), A(w))
and the hyperbolic metric on B by
. 1 - (5[3(2’,11))
p(z,w) = log l_—:573TZ,_W)_
for z,w € B.
The following result is well known.

Theorem H. Let F' be an analytic function from a disk B to an,oth'er di:sk
U. Then F does not increase the corresponding hyperbolic (pseudo-hyperbolic) dis-
tances.

Lemma 1.1. Let ¢ be a bounded analytic function on the disk B = B(zro,rg) and
let My = sup{|e(z)| : z € B}. Suppose that p(z0) # 0 and let 1 = -|¢(20)|.
Then ¢ has no zeroes in the disk B(zo,71).

Proof. Let ¢(z) = 0 for some z € B. Using the hyperbolic (or pseudo-hyperbolic)

distances on B and B(0, Mp), an application of Theorem H to the analytic function
o and the points z and zq yields

|2 = 20| _ le(z0)l
—_— 2 .
To - MO

O

Let ¢ be an analytic function on the unit disk A. Let 0 < 7 < 1 and ¢,(2) =
@(rz)r?, (2) = |pp(2)|2 and w(z) = 1 —|2|%. Assume that the function h(z) =
w(2)¥(z) has the maximum on A at the point zg € A. Next let ro = l—_%z—°l and let
Mo = max{|¢,(2)| : z € B(zo,70)}. Since

h(z0) > h(z)
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and

2w(z) > w(z) for z € B(zo,70)
then
) Mo < (20|

An application of lemma 1.1 to the disk B(zg,70) shows that ¢, does not have
zeroes in the disk B(z0,71), where r1 = g2-|¢r(20)|. Next, by (1)

& 0
™M 2 ——="0re.:
4

Since ¢, does not have zeroes in B(zo,72) = B, there is a regular branch of the
function /@, in B, and therefore a regular branch ® of [ /i, in B. Since |#(20)| =
V|r(20)], then, by Bloch’s theorem, there is a disk V of radius

R = R(z9) > Ct(z0) - 72 ,

where C' is an absolute constant, such that ®~! is univalent on V. Let Ry =
sup{R, : z € A}, where R, is the radius of the maximal ¢-disk around z. Suppose
that Ry is finite. Then

t

c C
Roo 2 5(20)(1 = |20]) 2 759 (20)w(20)
When r» — 1_, one can obtain that
C'\2
(2) RL 2 (35) el llell = supw?()le(2)]
16 zEA

Lemma 1.2, Suppose that ¢ € Q. Then Ry is
finite.

Proof. Let A. be the maximal ¢-disk around z € A and R. the euclidean radius
of the disk ®(A.), where ® is the natural parameter. By Koebe's Theorem

dist(z,0A,)

" R.
'(2)| > 'y

Since 1 — |z| > dist(z,0A;) and |9'(z)| = /|¢(2)| then
R?

3 2 =22

) ol > 2

O

Note that one can use Schwarz Lemma as in the proof of Theorem SW to prove
Lemma 1.2
The following result is an immediate corollary of (2) and Lemma 1.2

Theorem 1. Let ¢ be an analytic function on A. Then ¢ € Q iff Ry is finite.
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2. HARMONIC MAPS AND BERS SPACE @

Harmonic maps play an important role in the parametrization of Teichmiiller
spaces (see Earle and Eells [6] and Wolf [27]), so it is interesting to understand
the relation between universal Teichmuller space and quasiconformal harmonic dif-
feomorphisms. For further results see Wan [26], Tam and Wan [23], Reich and
Strebel [17]). In this direction we have the following result (the terminology will
be explained, and the proof given, later in this section).

Theorem 2. Let p be the metric with Gaussian curvature K < —a for some
constant a > 0, and let f be a harmonic quasiregular map from A into itself with
respect to p. Then the Hopf differential @ of f belongs to Q.

Theorem 2 is an immediate corollary of Theorem 1 and Lemma 2.1. See below
for the proof of this lemma and for the (l(‘[]lllll()n of a quasiregular function.

Let 12 and S be two surfaces. Let o(z)|dz|* and p(w)|dw|? be the metrics with
respect to the isothermal coordinate clmrls on R and S respectively, and let f be
a C“-map from R to S.

[t is convenient to use notation in local coordinates df = pdz+qdz, wherep = f,
and ¢ = f5. Also we introduce the complex (Beltrami) dilatation

uy = Belt[f] = £

where it is defined.
The energy integral of f is

E(f,p):/R/)Of(IPI2 +|gI?) dedy .

A critical point of the energy functional is called a harmonic mapping. The
[Suler-Lagrange equation for the energy functional is

7(f) = faz + (log p)w o f pg = 0.
Thus, we say that a C%-map f from R to S is harmonic if f satisfies the above
equation. For basic properties of harmonic maps and for further information on
the literature we refer to Jost [10] and Schoen-Yau [19].

The following facts and notation are important in our approach:
A1l If [ is a harmonic mapping then

@dz® = pofpgds®
15 a quadratic differential on R, and we say that ¢ is the Hopf differential of f and
we write ¢ =Hopf(f).
A2 The Gaussian curvature on S is given by

- 1 Alog p '
2 p
A3  We will use the following notation i = Belt[f] = g and 7 = log i[ and
Bochner formula (see [19])

AT = —Kg|p|sinhT.

A4  Definition of quasiregular function. Let R
and S be two Riemann surfaces and f : R — S be a C?- mappmg IfPisa
point on R, P = f (P) € S, ¢ alocal parameter on R defined near P and 1 a local
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parameter on S defined near P, then the map w = h(z) defined by h = 1o fod™ |y
(V' is a sufficiently small neighborhood of P) is called a local representer of f at
P. The map f is called k-quasiregular if there is a constant k € (0, 1) such that for
every representer h, at every point of R, |hz| < k|h,|.

Lemma 2.1. Let p be the metric on A with Gaussian curvature K uniformly bonded
from above on A by the negative constant —a,and let f be a harmonic k-quasiregular
map from A into itself with respect to the metric p. If R = R is the radius of the
mazimal @-disk around z, where @ =Hopf(f), then R is bounded from above by the
constant C' which depends only on k and a.

Proof. Let R = R, be the radius of the maximal ¢-disk U = U, around z € A.
Since [ is k-qusiregular then 7 > m, where m = log % m > 0. Let ¢ = ®(z) be the
natural parameter in U and ®(U) =V = B(0, R) With respect to the parameter ¢
the Bochner formula takes the simple form

AT = —KsinhT.
Since K < —a and 7 > m, we conclude that
(4) AT > de" on V
where § = % Let ds = A(¢)|d¢|, where A(¢) = m%’r(lg is the hyperbolic metric

~ 1
on V and let A(¢) = ($¢7(©)*. From(4) we have for the Gaussian curvature of the

metric d§ = 5\(()|dC| on V that K < —1 and then we can use the Ahlfors-Schwarz
Lemma (see [1]) to obtain

) -
(5) 5 S X3y < 2.
Setting ¢ = 0 in (5) one obtains
s _ Sk
9 2 et
(6) R* £ 5

O

[et ¢ be a quadratic differential on a hyperbolic Riemann surface i with Poincaré
metric ds? = p(z)|dz|?. Let p € R and let z be a local parameter near p. We will
define

lell(p) = p~" (2(p))lep(=(p))]-
We say that ¢ belongs to the Bers space of R (notation Q(R)) if ||¢| is a uniformly
bounded function on A.

Theorem 3. Let R and S be hyperbolic surfaces with metric densities o and p
respectively and let the Gaussian curvature of the metric ds? = p(w)|dw|* be uni-
formly bounded from above on S by the negative constant —a.

If f is a harmonic k-quasireqular map from R into S with Hopf differential ¢,
then ¢ € Q(R).

Proof. Let [ be the lifting of f which maps A into itself and let ¢ be the lifting
of the quadratic differential . Let p be the lifting of the density p. Since f is
harmonic with respect to the metric j()|dw|* on A and k-quasiregular then, by

Theorem 2, @ € Q(A). Hence ¢ € Q(R). O
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3. FURTHER RESULTS
In Theorem 4 we will give a characterization of a quasiregular harmonic map.

Theorem 4. Let f be a k-quasiregular harmonic map from A into itself with respect
to some metric ds* = p(w)|dw|?.

Then f = I'o g, where I is an analytic function from A into itself and g is
a k-quasiconformal mapping from A onto itself, which is harmonic with respect to
the metric d3? = p(¢)|d¢|?, where p = po F|F'|?

Proof. Since f is harmonic on A then ¢ = po fp{q is an analytic function on A.

Therefore p has isolated zeroes or p is identically 0 on A. If p = 0 on A then
q=0and f = const on A and our theorem is trivial. If p has isolated zeroes on A
then we can define p = £ a.e. on A.

[t is known that there is a quasiconformal mapping ¢ from A onto itself such
that ¢ is a solution of Beltrami equation
gz = Hg:
(see [2], [11]).
Let ' = fog~'. Then we have for Belt[F| (see [2], [11]) that
g Lf — fbg
ppog=2=. LIk g
95 1-psm,
and we conclude that F'is analytic function.
Since [ is harmonic with respect to p then

¢(2) = p(f(2)) P7
is an analytic function in A, where p = [, and ¢ = fz. Since p(z) = I/(¢)A(z) and
q(z) = F'({)B(z), where A = g,, B = gz and ¢ = g(z), one can obtain that
olz) = Q) AT
Since g is quasiconformal |A| # |B] a.e. and ¢z = 0 on A, one can show that

7(g) = 0 (for computation of @5 see, for example, Jost [10] and Tam-Wan [24]). O

Let D be a hyperbolic domain in C, z € D and ds = p(z)|dz| the corresponding
hyperbolic metric on D. Then it is known that (theorem 1.11 [1])

(7) oD < 7

where 7(z) = dist(z,0D) and we call 7(z) the distance function (see [1]).
For an analytic function ¢ on a domain D C C we say that ¢ € Q if

»ZED’

esssup dist®(z,0D)|p(z)] < oo

Since the distance function is geometrically simpler than the hyperbolic density,
it is reasonable to study the space Q.

We say that a domain D C C is strongly hyperbolic if it is hyperbolic and di-
ameters of boundary components are uniformly bounded from below by a positive
constant.

Theorem 5. Let D be a strongly hyperbolic and bounded domain in C. Then ¢ € Q
iff ¢ € Q.
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Proof. Because of (7) we have that Q C Q. Let the diameters of boundary compo-
nents of D be bounded from below by d > 0, and let the diameter of D be equal
to M. Now let z € D. We can find a component [ of &D for which r(2) = |z — z,
where 20 € I. Let D =T \{ and let p and 5 be the corresponding hyperbolic linear
densities of D and D respectively. Since D C D then p(z) < p(z) for z € D (see
[1])-

Let 7:( )= dist(z dD), and let ¢ € I such that |20 — c| = $. The function
P(¢) = ﬁ maps D conformaly onto the domain G' C C. Since G is conformally
equivalent to the unit disk, by the Koebe Theorem

i
o
(8) a(w) - 4Iw s wOI )

where w = v(z), wo = ¥(20) and o is the linear density of hyperbolic metric on G.
JFrom (8) we can conclude that
5 |20 — €] 1

22—

A5 R Py i e

and hence

(9) p(2)

v

sre (0 = ——d
where C' = TSR

Since 7(2)

( ) we finally obtain that

)

(2)

Hence Q C Q. |

p(z) >

<

T'he next example shows that if the boundary of a domain D has a point as a
component then the spaces @@ and @ are different,.

Example 1. Let D be A\ {0}, and ¢(z) = % It is obvious that ¢ € Q. The
linear density of the hyperbolic metric on D is
1
0(2) = ———.
p(z) |z| log I%)
Then
1
P2 (2)le(2)| = log 1

which is not bounded in D, hence ¢ ¢ Q.
In fact, any function

where 1) is an analytic function in A with 1(0) # 0, is not in Q.

Example 2. Let D be C\ [~1,1]. Then ¢(w) = §(w+ L) is a conformal mapping
from A\ {(l} onto D. Let ¢ be an analytic func !10n on D. It is clear that ¢ € Q(D)
iff o1 € Q(A\ {0}), \l.‘hm'(.-
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Let o(z) :";. It is obvious that ¢ € Q(D). Since

rw? — 142
(«u"'l } 1)

then, by Example 1 we conclude that ¢; ¢ Q(A '\ {0}), hence ¢ ¢ Q(D)

X l
pr(w) = —
: w?

D

Using Koebe's Theorem as in Lemma 1.2 one can prove the following result

Proposition 3.1. Let D be a hyperbolic domain in the complex plane C. If
p € Q(D) then the radii of the maximal ¢-disks are uniformly bounded on D.

As we mentioned in the introduction we close with a short discussion of some
further results in this area.

Wolf [28] and Minsky [15] have shown that estimates on the dilatation of a
harmonic map depend to a great extent on the geometry of the Hopf differential ¢
(in particular, on the placement of the zeroes of ¢ and the injectivity radius in the
p-metric).

Han (8] and Han, Tam, Treibergs and Wan [9] have used the Wolf-Minsky type
estimates mentioned above to study among other things the images of harmonic
diffeomorphisms of C into the hyperbolic plane H.

We believe that our results can be of use in understanding some parts of this
interesting area, as well as being of interest in their own right.

4. A VERSION OF BLOCH THEOREM

Also recall Jfor further results related to the subject of this paper we refer the
interested reader to author’s review papers [29] and [31] ( see also [13],[14] and [30]
).

For example , in [13] ,using a version of Bloch theorem (see Lemma 1 below) we
give a short proof of a Dyakonov’s theorem [5]. Also we show that Lemma 1 holds
for quasiregular harmonic functions ( see Theorem 6 below).

Let U denote the unit disc in the complex plane. If z and w are complex numbers
by A(z,w) we denote the half-line A(z,w) = {z+ p(w — 2) : p = 0} and A(w) =
A0, w).

Lemma 1. Suppose that f is an analytic function on the unit disc U, f(0) =0
and |f'(0)] > 1. Then there is an absolute constant s such that for every 6 € R
there exists a point w on the half-line Ag(0,e’) = {pei® : p > 0}, which belongs to
f(U), such that |w| > 2s.

Theorem 6. Suppose that f is a K-quasireqular harmonic mapping on the unit
disc U, f(0) = 0 and |grad f(0)] > 1. Then, there emists an absolute constant o
such that for every 6 € R there exists a point w on the half-line Ag = A(0,e¥) =
{pe® : p > 0}, which belongs to f(U), such that |w| > 2a.

Acknowledgement . I wish to thank Professor M. Janjié for inviting me to give
lecture at the meeting devoted to academician V. Perié .
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An essay about geometric combinatorics

Rade T. Zivaljevié

Dedicated to Professor Veselin Peri¢ on the occasion of his 70th birthday

1 What is geometric combinatorics?

e | believe that we lack another analysis properly geometric or linear which expresses
location directly as algebra expresses magnitude.

G.W. Leibniz (letter to C. Huygens, 1679)

e Poincaré was the first who introduced the idea of computing with topological objects,
not only with numbers. He did this, ..., by defining the concepts of homology and
fundamental group.

J. Dieudonné (History of Algebraic and
Differential Topology, 1900-1960)

e Homology theory discovered by Poincaré is perhaps the most profound and far reach-
ing creation in all topology.

S. Lefschetz

It is believed by many mathematicians that homology theory, discovered by Henry
Poincaré, provides a direct “analysis” of geometric objects, referred to in the letter ol
Leibniz to Huygens. One century after its discovery, the homology theory, as an analysis
and combinatorics of topological /geometric objects, remains, together with other related
constructions in algebraic geometry and topology, one of central tools for discovering and
expressing laws about geometric forms.

Geometric combinatorics is one of the areas of mathematics where the “direct calculus”
with geometric objects is one of central themes. It is not an easy task to determine all
the themes and driving forces of this field, so the selection in this paper reflects in part
the research interest of the Belgrade G-T-A seminar'. Formally the article consists of
four mathematical études, each composed for a different area of contemporary geometric
combinatorics. Since the area of geometric combinatorics is a mixture of fields including
combinatorial topology, combinatorial geometry, combinatorics, computational and discreté

"The seminar for Geometry, Topology and Algebra (GTA) was founded more than 15 ycars ago. Perhaps
its name should be rightly changed to CGTA to include Combinatorics.
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geometry ete. we leave it to the reader to decide what area of mathematics is the most
patural environment for a given ¢tude.

Each of the études begins with a short partiture. Here, a partiture is a short sequence of
formulas or statements, most of them related, all of them tied to a given theme or motive.
The rest of the étude consists of variations on the main theme. The idea is to follow the
pzutitur(', formula after formula, or statement after statement and offer variations, reminis-
cences, comments, historical details and anything that comes to mind, as in a mathematical
jam session,

2 Legacy of Ludwig Schlafli

()0(1\‘[) = [)()(Rn \ UA) - (%") n <7;L> + ...+ <',""II‘> (l)
(L. Schlifli, 1901)

bo = Z])ELAU"(O,PN (2)
(T. Zaslavsky, 1975)
P(M)=(1+t)(1+2t):-- (14 (m—1)t) (3)
M = {z € C™ | z; = z; for i = j}
(V.I. Arnold, 1969)
P,(M) = (1 +myt)(14+mat) - (14 myt) (4)

M = V¢ \ Ac, A is a reflection arrangement in Vi

(E. Brieskorn, 1971)

H*(R"\ UA; Z) = @per. Hyk—dim(p)-2(A(L)) (5)
(M. Goresky — R. MacPherson, 1988)

(WA =~ \/ A(Lgp) * S4mP) (6)
p<i
R™ \ UA = S" \ (UA)+ =g \/ Dn—-dim(p)—-l(A(L<P)) (7)
p<i ,

(G. Ziegler — R. Zivaljevié, 1993)

The first formula is taken from the great posthumous work Theorie der vielfachen
Kontinuitat of the famous Swiss geometer Ludwig Schlifli, published as the volume 38
of Denkschriften der Schwiezerischen naturforschenden Gesellschaft in 1901. The formula
appears on page 39 as the answer to the question about the largest possible number of
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connected components in the complement of m hyperplanes in a n-dimensional affine space
R™.

Schlafli made his reputation as one of the leading geometers of his time by numerous
contributions to what today would often be appropriately classified as the field of geometric
combinatorics. Perhaps it is not sufficiently widely known that it is Schlafli who completed
the classification of all regular polytopes in all dimensions, thus completing the list started
in antiquity with the discovery of the five Platonic solids. Around 1852 Schlafli proved that
in dimension n > 4, aside from the obvious examples, n-dimensional regular cube, regular
n-simplex and the dual of the cube, the regular, n-dimensional cross polytope (hyperoc-
tahedron), there exist precisely three more regular polytopes, all of them in dimension 4.
It is a remarkable fact that facets of these polytopes are respectively 24 octahedra, 120
dodecahedra and 600 tetrahedra.

e As a tribute to Einstein and Schlifli, on the inner wall of central library of the Institute for physics
and mathematics in Bern, there is a seutence “Three quarks for Einstein and Schlafti”! The rcader
remembers that Einstein was in Bern for a relatively short period of time on the beginning of his

career, where he moved with his wife Mileva Mari¢-Einstein from Ziirich.

The formula (1) is possibly one of the first results in the area of arrangements of subspaces,
see [20] for a comprehensive account. The formula has been rediscovered in the meantime by
other authors and sometimes in different forms. For example, The American Mathematical
Monthly published in the issue 50 (1943), p.59 the following problem:

e Show that n cuts can divide a cheese into as many as {aiiiinz -6l pieces (problem
E 554).

n+1)(n?—n+6
6

The formula (1) opened several lines of research. First of all, one can ask about the num-
ber of connected components in the complement of an arbitrary hyperplane arrangement.
The answer was obtained by an elegant formula of Thomas Zaslavsky, [40], reproduced here
as the formula (2). Of course, one needs some additional information about the arrange-
ment A = {H,,...,Hy,} of hyperplanes. Such an information is provided by the Mobius
function of the associated intersection partially ordered set L = L 4. Recall that L4 is an
abstract poset which has an element p for each intersection of the form H; N...NH;,_ while
< records the containment relation between these subspaces. August Ferdinand Mobius
introduced his well known arithmetic function p(n) in 1832. The extension to general posets
was given by Gian-Carlo Rota [24], however see [30] for a more complete historical account.
The formula of Philip Hall, identifying the Mdbius function as the Euler characteristic of
the associated order complex A(P) is reproduced here as the formula (15) in Section 5.

Returning to the main theme, recall that for a given hyperplane arrangement A, the
number of components in the complement is equal to the rank of the cohomology group
HO(R*\UA; Q). So, in the case of a general, real or complex (K = R, C) subspace arrange-
ment B it is natural to ask the question:

Q: Determine interesting topological invariants of the complement K™\ UB of the general
subspace arrangement B.



Our next example is the celebrated formula (3) of Vladimir Igorevi¢ Arnold. This
jormula provides an explicit computation of the Poincaré polynomial of the famous braid
arrangement. Recall that P,(X) = by + byt + ... + bet* + ... is the polynomial which has
the Betti numbers by, i.e. the ranks of the associated (co)homologu groups HY(X;Q), as
the coefficients. The braid arrangement Br, in C" is described as the collection of all
pyperplanes H;; = {z € C" | z; = z;} for 1 <4 < j < n. Arnold’s motivation for studying
the complement of the braid arrangement came actually from another direction. Already
as a student at Moscow State University, V. Arnold made a decisive contribution, under
guidance of his professor Andrei Kolmogorov, to the solution of the 13 Hilbert problem. A
variant of this problem asks if an algebraic function can be expressed as a superposition of
algebraic functions depending on a fewer number of variables than the original function.
Arnold originally proved (see [32]), relying on the results of Dmitrii Fuks on the Z/2-
cohomology of M(Bry,), that such superpositions are not always possible.

The braid arrangement is an object ubiquitous in today’s mathematics. We refer the
reader to [32] for an interesting account from the point of view of discriminants and singular
spaces. Perhaps the main reason for its importance is coming from the fact that M (Br,)
is a K (G, 1)-space where G is the colored braid group. There is however yet another, very
important reason why the braid arrangement is so popular among mathematicians. Here in
the focus are the so called Knizhnik-Zamolodchikov equations which arise as the conditions
for certain natural connections over M (Br,) to be flat, i.e. to have the zero curvature, see
[29], Chapter 12. The fact that the connection is flat, i.e. the absence of holonomy, implies
the existence of a monodromy representation of the group G = m (M (Br,)). Vladimir
Drinfel'd was able to give a detailed analysis, or a categorical description, of this represen-
tation. This was the starting point of his celebrated work about Hopf algebras or quantum
groups, for which he was awarded a Fields medal.

Egbert Brieskorn was able to extend Arnold’s formula to other Coxeter arrangements.
He explained the appearance of numbers 1,2,..., (n—1) in Arnold’s formula, by identifying
them as the coexponents of the associated Coxeter arrangement (group), formula (4). All
these results still deal with hyperplane, albeit complex, arrangements. A lot of work has
been directed towards the understanding the homology of complements of general subspace
arrangements, see [20]. This work culminated in the formula (5) of Mark Goresky and
Robert MacPherson. This formula appeared at the end of their book on stratified Morse
theory, [16], and served as a test example for the powerful general theory they developed.
This settled the question of homology invariants of arbitrary subspace arrangements. As in
the case of Zaslavsky’s formula (2), the homology is expressed in terms of the intersection
poset P = L4 of the arrangement A but with a new ingredient, the dimension function
d: Ly — N, defined by d(H) = dim(H).

This formula was refined in another direction by Giinter Ziegler and Rade Zivaljevic’.
The formula (6) which appeared in [41], gave a precise homotopy decomposition for the one
point compactification (UA)* := (U A)U{+oo} of an arbitrary affine, spherical or even more
general arrangement. As a consequence, via the so called S-duality, this formula describes
the stable homotopy type of the complement M (A). The last result was independently and
by different methods obtained also by Victor Anatol’evich Vassiliev as a part of his general
theory of geometric resolutions of discriminants and the topology of their complements.
Let us remark that (6), via Alexander duality, provides a new proof of the Goresky and
MacPherson formula (5).
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This is not the end of the story. The references [13], [15], [27],(37], [32], [38], [39] and
others deal with different aspect of the problem of the topology of the complement and the
union of the arrangements of subspaces.

3 The story of 3 houses and 3 wells

(K33 — R?) = (2 — point) (8)
(K333 — R?) = (3 — point) 9)
(K555 — R®) = (3 — point). (10)

(K — R?) = linking (11)
(K44 — R?) = (4 — line) (12)
(K6 — R®) = (4 — line) (13)

The well known Kuratowski nonplanarity criterion implies that the graph K33 is not
embedable in R, Recall that K33 is a complete bipartite graph obtained if three vertices
(three “houses”) are connected with three other vertices (three “wells”) so that each of the
houses is connected by a path (an edge in the graph) with each of the wells. Another popular
description of K33 talks about three houses connected with a source of electricity, gas and
water. For this reason K3 3 is sometimes called the “houses and utilities gr aph”. The graph
K5 is by definition the complete graph on 5 vertices. The statement (8) is one way of
expressing the nonplanarity of K3 3. It says that for each continuous map f: K33 — R,
there exist 2 points @ and b, which belong to 2 disjoint edges in K3 3, such that f(a) = f(b)
(i.e. 2 — point).

An elementary proof that K33 is not planar is based on the well known Euler relation
fo— fi+ fo = 2. An embedding of K33 in R? automatically yields an embedding in
the sphere S? = R2 U {oo}. Since there are no cycles of length 3 in the graph K33
each face must be bounded by at least 4 edges. Hence, 4fy < 2f; = 20, and thereforé,
fo—fi+ fo <6-9+6 =1, a contradiction with the Euler relation. A similar proof applies
to the graph Ks. There exist however some subtle points that the 1(‘(\(101’ can ‘“ignore i
the first reading”. Here is a comment on this proof by Allen Hatcher?

Allen Hatcher: There are a couple points in the proof of nonplanarity of the graphs K and K3, 3) that
deserve further comment.
(1) It suffices to consider only polygonal embeddings since a topological embedding of a finite graph in
the plane can be approximated by a polygonal embedding. This is shown in Bollobas’ book “Moderth
Graph Theory” by a very simple argument.

2D. Davis Algebraic Topology discussion group, http://hopf.math.purdue.edu.
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(2) In order to apply Euler's formula fo — fi + f2 = 2, one might think that it is necessary to know that
a polygonal embedding of the graph definds a CW structure on the 2-sphere. This is equivalent to
knowing the Schoenflies theorem for polygonal simple closed curves in the plane, that such a curve
bounds an embedded disk, which is not a trivial theorem. But in fact one can get away with less, just
the Jordan curve theorem that such a curve has two complementary components, which is casy to show
for polygonal curves. Then interpret the fz in Euler’s formula to be the number of complementary
components of the embedded graph, and Bollobas gives a simple proof that fo — fi + fo = 2.

So much about the formula (8). A natural problem is to find generalizations, analogs
and relatives of this statement? Note that a consequence of (8) is that for any collection
of 3 red and 3 blue points in the plane, there exist two intersecting vertex disjoint line
segments with end points of different color. The statement (9) (due to Imre Bardny) claims
that from any collection of 3 blue, 3 white and 3 red points in the plane R?, one can always
select three vertex-disjoint, “rainbow” triangles which have a nonempty intersection. A
“rainbow” triangle is a triangle having all vertices of different color. Something similar is
possible in the 3-space R®. This time we need at least 5 points of each color in order to
guarantee existence of three vertex disjoint, “rainbow” triangles, which have a nonempty
intersection. This is a consequence of the statement (10). More formally (10) says that
for every continuous map [ : K555 — R®, where K555 1= [5] * [5] * [5] is the 2-complex
obtained as the join of three copies of [5] = {1,2,3,4,5}, there exist three points in three
vertex-disjoint triangles which are mapped to the same point in R*. The statement (9) is
similar except that f : K333 — R? is assumed to be a simplicial map and it is not known
if it holds in the case of an arbitrary continuous map f : K333 — R?!

Formulas (8) and (10) are special cases of general statements about configurations of
“colored” points in RY, see [34], [42], [43], [48]. A different generalization to the 3-space is
provided by the theory of linkless, windless etc. embeddings of graphs, [11], [26], [28]. An
example from this circle of results is the statement (11) which says that for every embedding
of the graph Kg in R3, there exist two disjoint circuits C, Cy of Kg which are linked with
a nonzero linking number, [11], [26].

It is shown in [45] that the results listed above can be extended in a systematic way to
include higher dimensional statements where the existence of a common point (common 0-
dimensional transversal) is replaced by the existence of a common k-dimensional transversal.
Recall that a k-dimensional transversal of a family F = {F)} 2y of subsets in R? is an affine
k-dimensional space L C R? such that LNF; = { for all j. For example a simple consequence
of the “ham sandwich theorem” is the statement (12) which implies that for any collection
of four black and four white points in the plane R? there exists a line intersecting four
vertex disjoint line segments with end points of different color. Much less trivial is the
statement (13) which, in the affine case, says that for every collection of 6 red and 6 blue
points in R3 there exist 4 line segments with end points of different color having a common
line transversal. This result can be viewed as a relative of the nonplanarity of K3g3. Of
course there are higher dimensional complexes which exhibit similar behavior as shown by
the following example

(o5 = R®) = (4 — line)

where o] is the 2-skeleton of a 7-dimensional simplex 7. These results are deduced in [45]
as corollaries of general statements which could be interpreted as results belonging to the
combinatorial geometry on vector bundles.
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We end this section with an open problem. It is known that aside from planar graphs
there exist other topologically defined classes of graphs which admit a combinatorial charac-
terization in terms of “forbidden minors”. According to Robertson, Seymour and Thomas,
graphs which admit a linkless (windless) embeddings can be characterized as graphs which
have no minors in the Petersen family, [28].

Problem: Find a combinatorial characterization in terms of forbidden minors of all graphs
K for which the statement (13) is not true. That us characterize all graphs which can be
mapped to the 3-space R? such that no 4 vertex disjoint edges admit a line transversal.

4 Partitions of masses

M : Let py, pa, ..., py be a collection of mass distributions in R™. Then there exists a
hyperplane H such that for alle=1,...,n

pi(H*) > 1/2 p3(R™) and - pi(H™) > 1/2 p3(R™)
where HT and H~ are the closed halfspaces associated to the hyperplane H.

My : Let p be a mass distribution in R™. Then there exists a point € R™ so that for
every closed halfspace P C R%, if z € P then
/L(IRTI,
n+1"

~—

wWPNA) >

My : Let po, g1y ik, 0 < k < n— 1, be a collection of mass distributions in R™
Then there exists a k-dimensional affine subspace D C R™ such that for every closed
halfspace H(v,a) := {z € R? | (z,v) < a} and each 1,

D C H(v,a) = pi(H(v,)) > “—J‘—ﬂ i (R™).

A(2,2) =3 A(1,3)=3 4<A(1,4)<5 A(5,2)<9 A(3,3)<9.

All the results M; — My are combinatorial facts about “mass distributions” in R™. It is
perhaps appropriate, before we begin a discussion, to say a few words what is meant by this
term. Recall, [7], that a Borel measure u, defined on a locally compact space X, is a weak
limit of a sequence of measures i, if for each bounded continuous function f: X — R,

lim / _f(l;z,,:/ fdp.
n—oo [y Jx

As a consequence, if p is a weak limit of (), then

liminf j,, (F) < p(F) < p(O) < limsup p,(0) (14)

"=0o0 1—00

for any sets F' C O, where F closed and O open in X.
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By a mass distribution on R we mean a measure g which is a weak limit of a sequence
of measures [i,, absolutely continuous with respect to the Lebesgue measure m. In other
words, p is a weak limit of a sequence (y,,) such that du, = f, dm where f,, : R™ — R is an
integrable function. Most of interesting measures that appear in combinatorial problems
pelong to this class. For example all counting measures of finite sets, i.e. measures pg
defined by ps(A) := |ANS| are weak limits of measures absolutely integrable with respect
to the Lebesgue measure. The inequalities (14), often permit us to prove a statement
for a smaller class of measures, typically measures of the form dv = gdm, where g is
everywhere positive, Lebesgue integrable function, and then obtain the result for a general
mass distribution by a passage to the limit.

The reader will not have difficulties to recognize in M; the well known “Ham sandwich
theorem”. Indeed, if A,..., A, are measurable sets in R", then the hyperplane H is
a halving hyperplane for all A;. In the special case, when A;, Ay and Az respectively
represent the ham, bread and cheese in R*, the result says that a ham sandwich can always
he divided in two equal pieces by a single straight cut of a knife. The result My is also
known as the “center point theorem” and it also has a gastronomic reformulation. Namely,
suppose you want to split an irregularly shaped pizza with a hungry friend who chooses
first and who is supposed to divide the pizza in two pieces by a straight cut of a knife. You
are allowed to mark your piece in advance, say by claiming the piece which will contain a
particular marking object (say an olive). Then, if you are very careful about marking your
piece, you can count on at least one third of the pizza. Note that the pizza is not assumed
to be either connected or convex nor homogeneous. So “one third of the pizza” means that
there is some measure, made precise in advance, which evaluates the “quality” of different,
slices of the pizza. Note that if the pizza is convex and homogeneous, a result of Branko
Griinbaum, [17], guarantees that the constant 1/3 can be improved to 4/9.

Both the “ham sandwich” and the “center point” theorem have a very interesting history
and numerous applications, see [14], [21], [42] for references. The author remembers a
conversation with Vredica Sinisa in late 1987, in front of the blackboard in his office, at
Mathematics faculty in Belgrade. By accident, two of us mentioned, for different reasons,
theorems M; and Ms. We instantly observed that M; is a statement about n measures
in R™ while My is a statement about a single measure and asked ourselves whether there
exists a general statement about k& measures, 1 < k < n, which reduces to M; and M,
respectively in the boundary cases k¥ = n and k& = 1. This is how the statement Mj
was born. It took us a little time to detect the correct topological principle which stands
behind the proof of this theorem, namely the fact that the cohomology class (wk)”"c is
nonzero where wy € H¥(Gy(R"); Zy) is the k' Stiefel-Whitney characteristic cohomology
class of the canonical k-dimensional vector bundle over the Grassmann manifold G (R™)
of all linear, k-dimensional subspaces of R™. Nevertheless, we both agree that this is an
instance of a result which was more difficult to “invent” or contemplate then to find its
proof.

The ham sandwich theorem is a special case of M3 but this is not the only generalization
of this result. In this category is the general problem of studying equipartitions of masses
by hyperplanes which was formulated by Branko Griinbaum in [17].

Suppose that

M= {/'l'la,UZ;-"nuj}
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is a collection of continuous mass distributions defined in R?. If H = {H;}%_, is a collection
of k hyperplanes in R? in general position, the connected components of the complement
R4\ U H are called (open) k-orthants. A collection H is an equipartition, or more precisely
a k-equipartition for M if

pi(0) = i (0) = iui(Rd)

ok
for each of the measures p; € M and for each k-orthant O associated to H. A triple
(d,7,k) of integers is referred to as admissible if for any collection M = {u;}!_; of j

continuous measures in R%, there exists a collection of k hyperplanes H = {Hi}f: | forming
an equipartition for all measures in M.

The general problem is to characterize the set A of all admissible triples. If the emphasis
is put on the ambient Euclidean space RY, the equivalent problem is to determine the
smallest dimension d := A(j, k) such that the triple (d, 7, k) is admissible. Hugo Hadwiger
proved that A(2,2) = 3 which also implies A(1,3) = 3. The case k = 1 is answered by the
“ham sandwich theorem” which in the new notation says that A(d, 1) = d. Edgar Ramos,
(23], considerably advanced our knowledge about the function d = A(j, k). He showed for
example that A(1,4) <5, A(5,2) <9, A(3,3) < 9. Perhaps one of the most interesting
open problems in the area is the question of the exact value of A(1,4).

P: Is it true that A(1,4) = 4. More explicitly, is it true that for any continuous mass
distribution g on R4, there exist 4 hyperplanes Hy, Ho, Hy, Hy, which divide R* into
16 orthants {O;}1%,, such that for each i = 1,...,16

=1

H(O0) = Fou(RY)

5 Order complexes and Vassilev geometric resolutions

1(P) = x(A(P)) (15)

A(I,) ~ \”/z(/_\(n;, ) (16)

A(Gn(R)) =~ S":/\ S(A(Gn-1(R))) (17)

A(GH(R) = (5" v 8™ AZ(A(GH- (R))) (18)

Alexp,(SY) ~ S" ' A A(B,) ~ §¥! (19)

We have already met the Mobius function in Section 2. Let us recall that the .\lnlm'w
function p = pp : P x P — Z is an important invariant of a finite poset P which

recursively defined by

iw(p,q) = - Z uw(p,2) and p(p,p) =1

pszp
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for p < q and p(p, q) = 0 in the opposite case. It follows from the definition that if Q C Pis
a “convex” subposet of P then pg, the Mobius function of @ is the restriction on @ x @ of
the Mobius function yp. If P=PuU {0, 1} is the poset obtained with a formal addition of
the maximal and minimal elements 1 and 0, then /1,-,((‘). 1) is the so called Mébius number
of P, denoted by u(P).

The order complex A(P) of a finite poset P is an abstract simplicial complex (or its
geometric realization) where A C P is a simplex in A(P) if and only if A is a chain in P.
The geometric meaning of A(P) is perhaps best understood if one takes a convex polytope
K (alternatively a simplical or regular cell complex) and chooses P = P to be the face
poset of K. Then it is not difficult to observe that A(Pp) is a simplicial complex isomorphic
to the first barycentric subdivision of K.

The relation (15) which identifies the Mobius number of P as the Euler characteristic
of the associated order complex A(P) is due to Philip Hall. This equation is not difficult
to prove, however it is very appealing and points in the direction of a fantastic possibility
that combinatorics and topology (geometry) are possibly just different ways of expressing
the same reality!

There are several classes of finite posets which make their appearance throughout math-
ematics. Among them are

(a) the power set P([n]), or the poset of all subspaces of [n] := {1,2,...,n},

b) the multi set poset of monomials z% = z{'z5? . “* which is alternatively described
1 %2 4

as the poset D(n) of all divisors of a given 1nteger n,

(c) the poset L(V) of all linear subspaces of a finite dimensional vector space V' over a
finite field,

(d) the poset II,, of all partitions of an n-element set.

These are some of the central examples and, following Gian-Carlo Rota, these are test
examples for general statements about finite posets.

The homotopy complementation formula of A. Bjérner and J.W. Walker, (8], is a very
elegant tool for ”computing” the homotopy type of the order complex A(F) such that
P = PuU{0,1} is a lattice and for some ¢y € P, the set of all complements C(co) of co
in P is an antichain. In the special case of the partition lattice II,,, the application of the
homotopy complementation formula yields an elegant homotopy recurrence relation (16).
From here it is easily deduced by induction that the homotopy type of the lattice IL,,, that
is the homotopy type of the order complex A( »), where II,, := II,, \ {0,1}, is the wedge
of (n — 1)! copies of the sphere S™~3.

Most of examples (a) — (d) can be meaningfully extended to the case of general, finite or
infinite, topological posets. For example an analog of (c) is the Grassmann poset G, (R) of
all linear subspaces in R™. If G (R") is the usual Grassmann manifold of all k£-dimensional,
linear subspaces in R™, then G, (R) = [[i-, Gi(R"), Gn(R) := G,(R) \ {0,1} and A(Ga(R))
is defined as the subspace of the join

G1(R™) * Go(R™) ... * Gp—1(R™)

where a simplex 11 #lgk...xlpy C A(gn(R)) ifand only if Iy Cly C ... C lp—1, Le. if and
only if I1,lg,...,ln_1 is a cham




It turns out that the homotopy complementation formula of Bjérner and Walker admits
an extension to (infinite) topological posets, see [46]. An application of this general result
to the Grassmann poset yields the recurrence formula (17). As a consequence, one obtains
that A(G,(R)) has the homotopy type of the sphere of dimension (3) +n —2, and being a
PL-manifold, it is actually homeomorphic o this sphere. This fact was obtained by Vassiliev
in [31]. However, it is not a surprise that this mathematical gem or its special cases were
found earlier by other mathematicians. Among the predecessors are Borel and Serre [6],
N. Kuiper, W. Massey, M.Z. Shapiro, see [32] Section 7.1.5 and [33] for more information.
The formulas (18) and (19) are also obtained by applications of the generalized homotopy
complementation formulas. Here, G (R) is the Grassmann poset of all oriented, proper
subspaces in R™, while exp,,(X) is the poset of all (nonempty) k-element subsets of X, for
k < mn, topologized by the Vietoris topology or (where applicable) by the Hausdorff metric.

Topological order complexes, just like the finite order complexes are basic structures
interesting in itself. Among their most remarkable applications are Vassiliev constructions
of geomeltric resolutions of singular spaces. Let us quote give the word to Victor Anatol’evich
himself ([33]):

e “If elements of a partially ordered set run over a topological space, then the corre-
sponding order complex admits a natural topology, providing that similar interior
points of simplices with close vertices are close to one another. Such topological order
complexes appear naturally in the conical resolutions of many singular algebraic vari-
eties, especially of discriminant varieties, i.e. the spaces of singular geometric objects.
(...) Using these order complexes we study the cohomology rings of many spaces of
nonsingular geometric objects, including the spaces of nondegenerate linear operators
in R, CorH, or homogeneous functions R? — R without roots of high multiplicity in
RF', of nonsingular hypersurfaces of fixed degree in CF™, of Hermitian matrices with
simple spectra etc.” (...).

A general idea behind the geometric resolution of a singular variety X is the following.
Different points in X are distinguished by different “degrees of singularity”. The degrees of
singularity form a (topological) partially ordered set (P, <). The degree map D : X — P
is assumed to be lower semi-continuous, i.e. the D-inverse images of the lower cones P<,
are closed sets in X. A geometric resolution I'(X) of X, or more precisely a geometric
resolution relative to the function D, is defined by

I'(X) =Tp = Uzex {2} x A(P<ppy) C X x A(P).
Here are two examples, the space P, of real monic polynomials with multiple (real) roots,
and the space £, of singular n x n-matrices with real coefficients. The degree maps D :
Pn — exp(R) and D, : £,, — G(R™) are respectively defined by

Dy(p):={z € R|p(z) =0} and Dy(A) := Ker(A).
In favorable cases, the projection map 7 : I'(X) — X, from the geometric resolution to the
original singular space, is a homotopy equivalence. On the other hand, the topological poset

P of “degrees” often comes with a filtration P, € P, C ... C P which induces filtrations
both on the order complex A(P) and on the geometric resolution I'(X). For example both

exp(R) and G(R") have rank functions 7 : exp(R) — N and 7o : G(R") — N defined by
r1(p) = |D1(p)] and 7r(A) =dim(Dy(A)).
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[hese rank functions induce filtrations Py := {p € P | rank(p) < k} on the posets which
induce filtrations on the associated geometric resolutions I'(P,) and I'(L,,). In both cases
the resolutions have the same homotopy type as the original singular spaces. The filtra-
tions induce spectral sequences which can often be used for efficient calculations of the
(co)homology of the geometric resolutions and the original singular spaces. For the details
and a comprehensive exposition of the general theory, the reader is referred to the book
[33].
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CONNECTION, METRIC AND CORRESPONDING GEODESIC
BALLS AND SPHERES ON ANALYTIC MANIFOLDS

NEDA BOKAN AND MIRJANA DJORIC

Dedicated to Professor Veselin Perié on the occasion of his 70th birthday

ABSTRACT. In this survey paper we recall the definitions of geodesic balls on man-
ifolds with different structures. Using the coeflicients of power series expansions of
their volume, which are locally computable invariants of the structure, the geometric
information is obtained and characterizations of some spaces are derived.

60 INTRODUCTION

There are two basic notions which one can use to develop geometry on a smooth ma
nifold: a metric and a connection. In a very special case, starting from a Riemannial
metric, one can construct a uniquely determined connection, called the Levi Civitd
connection, such that its metric is parallel with respect to this connection and il§
torsion vanishes. In all other cases, these two basic notions may either be connectel
with one of the two previously mentioned relations or be without any mutual relation
with them. Consequently, one can study the geometry determined either by a metri
or by a connection, or by both of them together. A geodesic ball is one interestink
object connected with these notions. The main topic of this survey article is #
present the development of an idea of a small geodesic ball, its volume function ané
the corresponding power series expansion and geometry as determined by propertié
of its coefficients for manifolds with different structures.
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The first section deals with geodesic balls of a Riemannian manifold. Geodesic
palls for a connection with torsion are considered in the second section, and geodesic
palls for torsion-free connections are studied in the third section. We refer to [9], [12],
21], (27| for further details, as well as their references.

Acknowledgements. The authors are grateful to O. Kowalski, V. Miquel, U.
Simon, L. Vanhecke and L. Vrancken for valuable discussions concerning this topic.

§1 GEODESIC BALLS AND SPHERES ON RIEMANNIAN MANIFOLDS

Let (M, g) be an n-dimensional analytic Riemannian manifold. More generally, if
M is a C'°° manifold, all considered power series expansions would be defined, but they
might not converge. Denote by V its Levi Civita connection and by K the associated
Riemannian curvature tensor with components R;;xi, where 4, j, k,[ are part of an
orthonormal basis of the tangent space M,, for some m € M. Further, denote by p
its Ricci tensor, i.e. pi; = > p_, Rikjk, by 7 its scalar curvature, i.e. T = Z:’) s Heiis
and by A the Laplacian. We will always suppose that r is sufficiently small in order
to have a diffeomorphic exponential map exp,,, at m € M.

In order to compute the Taylor expansion of the volume function, the general power
series expansion of tensor fields in normal coordinates is discussed. Such expansions
have been used on several occasions, for example, in the theory of harmonic spaces and
in determining the asymptotic expansion for 3" et where \; are the eigenvalues of
the Laplacian of a compact Riemannian manifold.

Let m € M and let (z1,...,2,) be a normal coordinate system defined in a neigh-
borhood of m with z1(m) = -+ = x,(m) = 0. In terms of the exponential map, any

normal coordinate system of the above type is given by
n
25 | expy, Ztiei = 14 (1.1)
g=1
where {eq,...,e,} is an orthonormal basis of M,, ([1], [16]).

If s and o are the functions defined on neighborhoods of 0 € M,, and m € M by

s(z) = the Euclidean distance from 0 tox,
o(p) = the distance in M from mtop,

then
o =soexpy. (1.2)
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Let Bo(r) be the metric ball of radius r in M,,, i.e.
Bo(r) = {& € Mp||lz]| <7} (1.3)
The geodesic ball of center m and radius 7 is the set
Gm(r)={peUlo(p) <7}
Moreover, by (1.2), we have

G (r) = expy, (Bo(7)) -

Analogously, the geodesic sphere is the set {p € Ulo(p) = 1} = {exp,, (@) €
My, ||lz|| = r}. Further, let Sp,(r) denote the (n — 1)-dimensional volume of the
geodesic sphere (area) and Vi, (r) the n-dimensional volume of the corresponding ge-
odesic ball. Since *ds is the volume element of any sphere in M,, and, by the Gauss
lemma, *do is the volume element of any small geodesic sphere in M with center m,
it can be proved that

Spm(r) = r* ! / wi..n(exp,, Tu)du,
sn-1(1)

: . 0 7]
where w is the standard volume formon M, w1 =w | 57+ » 3. and (xy,...,5
ox o™
is the system of normal coordinates on M at m. Moreover, we have V,,(r) =
]0' S, (t)dt. For the proof and more details we refer to [12] and [13]. Then V(1)
can be expanded in a power series in 7 by using a normal coordinate system (115
[13] or with the use of Jacobi vector fields [1], [27]. The coefficients of rtE vanigh
provided k is odd and the coefficients of 7" * for even k are given by formulas in the

invariants of the curvature operator:
7 . ) p n /‘2 | ~,.6 Lk
Via(r) = —r" {1+ Ar* + Br* + Cr° + -+ - + O(r") } m,
1\" . /n\-! _
where a,, = 2I" 5 [ (—)—) is the volume of a unit sphere S™ in Euclidean n-spacé

The history of power series expansions of volume functions begins in the midd
of the 19th century when Bertrand, Diguet and Puiseux [2] computed the first tW

1l
p
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gon-zero terms in the power series expansion for the volume of a geodesic ball at a
point 1M in a surface in R*:

K , 4
127 FO>(r) }m,

\",“(7') 7”'2{] &

where K is the Gauss curvature of this surface. Their motivation was to give a
gew proof of the famous theorema egregium of Gauss, i.e. to prove that the Gauss
airvature of a surface in R* does not depend on the embedding. The generalization
of this formula to Riemannian manifolds was first given in 1917 in a paper by H.
vermeil [26] and then in 1939 in a paper by H. Hotelling [17], and the next term was
omputed in 1973 by A. Gray [11]:

B Y —3||R|1* + 8||p||* + 57% — 18AT) . 1.4
360(n + 2)(n + 4) (=312l el ) (14)
A. Gray derived several consequences of this expansion. For example, he used it

in [11] to obtain a local comparison theorem. Namely, for an analytic Riemannian

manifold M and m € M, its Ricci scalar curvature is positive if and only if

and its Ricci scalar curvature is negative if and only if
Qp
VeulT) > 7"7"”,

for sufficiently small » > 0. Note that for Euclidean space R™

Oy, n
Vaalr) = i
It is interesting that this result is neither stronger nor weaker than the Bishop-Giinther
inequalities. On one hand, A. Gray’s result holds only for sufficiently small r > 0,
while the Bishop-Giinther inequalities are valid for 7 up to the first conjugate point.
On the other hand, the condition that the scalar curvature be positive at m is weaker
than positivity at m of either the sectional curvature or Ricci curvature. See (3] and
[4, p. 256] for more details.
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The coefficient of »™t4 in the expansion of V,,(r) is especially interesting since it is
a quadratic invariant of O(n). In the same paper A. Gray compared it with other qua-
dratic invariants which arise from geometrical considerations. Notable among them
are the conformal and spectral quadratic invariants and the 4-dimensional Gauss-
Bonnet integrand. He also discussed the linear independence among them and the
quadratic invariant derived from V,,(r), described above.

A. Gray and L. Vanhecke [13] computed the fourth non-zero term in the expansion
of Viu(r):

i 5 8 64 64 2
G s L 2 R 2 S . ,R
720(n + 2)(n + 4)(n + 6) ( 9" 37||p|| IR + 530 (p®p B)

63" 21
22, .. 110, 200 45 5 A5 o

+ = (0, B) — = R = == B+ V7l + 77l
45 45 48

+ —olp) = T IVRI* +67AT + —(Ap, )
54 : , 45

+7(\727, ol = ?(AR, R) — —73A27> .

Since the coefficients of r™4 and ™6 in the expansion of V,,(r) are respective
linear combinations of the orders 4 and 6 invariants of the curvature operator, it may
be possible to consider various problems related to the volume of geodesic spheres and
balls of a Riemannian manifold and its various geometrical and topological properties

The main purpose of [13] was to study to what extent the functions V,,(r) deter
mine the Riemannian geometry of the ambient space. In particular, the authors wer
concerned with the following

Conjecture. Let M be an n-dimensional Riemannian manifold such that for al
m € M and all sufficiently small r > 0 we have

'

n

V(1)

r
n

i.e. Viu(r) coincides with the volume of a geodesic ball with radius r in Fuclideat
space. Then M s locally flat.

[n this paper the authors compared the volume of a small geodesic ball with centé
m and radius 7 in an arbitrary n-dimensional Riemannian analytic manifold witl
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ihe volume of a ball of radius r in Euclidean space, using the power series expansion
jor V(). One may formulate similar conjectures for other two-point homogeneous
spaces. This conjecture is true in dimensions 2 and 3 and in some special cases, but is
¢ill unresolved in higher dimensions and in general case. We list several more special
wses when this Conjecture is true and we refer to [13] for further details:
(1) M has non-positive or non-negative Ricci curvature (in particular if M is
Finstein);

(2) M is conformally flat;

(3) M is Bochner flat Kahler manifold;

(4) M is a product of surfaces;

(5) M is a 4- or 5-dimensional manifold with parallel Ricci tensor;

(6) M is compact and the Laplacian of M has the same spectrum on functions as

that of a compact flat manifold;
(7) M is a compact, oriented f()m'-(‘linr')l(,:nsi()nul manifold whose FKuler characteristic
and signature satisfy X(M) > —§|T(M)|;
(8) M is the product of symmetric spaces of classical type.
Although the foregoing conjecture is still unresolved in higher dimensions, there is
s series of results obtained from studying the problem to what extent the expression

lor the volume of the geodesic ball under certain conditions is characteristic for the
manifold. We illustrate these studies with some more results.

Theorem. [5] Let M be a compact Kdhler manifold with complex dimension n, and
suppose. that for all m € M and all sufficiently small v > 0, V,,(r) is the same as
that of an n-dimensional compact Kdhler manifold M (u) with constant holomorphic
sectional curvature p. Let w and w,, denote the fundamental classes of M and M ().
If their generalized Chern numbers satisfy the conditions

W' le (M) = Wiy (M (1)),
W' (M) > w2 (M (),

then. M has constant holomorphic sectional curvature .

Let us introduce model spaces to be the flat space E™ and the rank one symmetric
spaces. The volume functions S,,(r) and V,,(r) for these spaces can be computed
completely by using Jacobi vector fields. See, for example [1], [11], [27], for more
letails.

FFurther, another interesting problem is to construct a manifold for which the vol-
ime of a geodesic ball at each point approximates the volume of a geodesic ball in
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a model space. For example, A. Gray and L. Vanhecke [13] constructed interesting
examples of non-flat manifolds for which

Vi (1) = 9‘77”7«“{1 +0(r%)},

for all m € M and sufficiently small » > 0. One of these examples is a 4-dimensional
positive definite metric which is a generalization of the Schwarzschild metric. Another
one is a homogeneous 5-dimensional metric. Moreover, they used a different technique
to find a manifold of dimension 734 with

Vi (r) = %r”{l +O(r®)).

O. Kowalski [18] developed a method for the construction of homogeneous Rie-
mannian spaces with the property

Vin(r) = 20 {14 O(r™)}
and he constructed a direct product of homogeneous spaces with the property
An 16
Vn(r) = —=r" {1+ O(r)}.

C. Ueda [25] constructed other examples using Kowalski’s results [18].

M. Djori¢ and L. Vanhecke [10] obtained other new characterizations of two-point
homogeneous spaces considering the volumes of geodesic spheres, balls and circum:
scribing tubes. Namely, let ¢ : [a,b] — (M, g) be a smooth embedded geodesit
through m and denote by U, (r) the tubular neighborhood of radius r about o, i.e.

Uqs(r) = {p € M |there exists a geodesic v of M through p
cutting o orthogonally and with length L(v) < r},

where the radius r is smaller than the distance from o to its nearest focal poink
If 0 : [-r,7] — (M,g) is a unit speed geodesic such that o(0) = m, then the
set of points of U, (r) at distance r from ¢ is called the circumscribing tube of the
geodesic sphere with center m, axial curve ¢ and radius r. Such a circumscribing tub
generalizes the notion of a circumscribing cylinder of a sphere in Euclidean 3-spac®
Let V£(r) and S5(r) denote the n-dimensional and (n — 1)-dimensional volume of the

—
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drecumscribing tube of the geodesic sphere with o as axial curve. The power series
wpansions for these volumes were computed in [14], [15], [12] and [27] by using Fermi
wordinates, Fermi vector fields and Jacobi vector fields.

[n [10] the authors generalized the old result of Archimedes who proved that the
atio of the area and volume of a sphere and a circumscribing cylinder is constant in
(hree-dimensional Euclidean space. The authors considered several relations between
wlumes of geodesic spheres, geodesic balls, circumscribing tubes and geodesic disks

' \nd derived new local characterizations of two-point homogeneous spaces. Several
"l Jf these relations are either direct generalizations of classical results in Euclidean

geometry or related to some isoparametric inequalities. For example, if one of the
‘/'(' \(

. a a
matlos — or —
Vm S?’?I

suficiently small 7, then the manifold is locally flat. Hence, the property of Archimedes
is characteristic for locally Euclidean geometry. More generally, using the explicit
expressions for these ratios for two-point homogeneous spaces, the authors proved
that such expressions determine these spaces up to local isometry.

is constant, for all m € M, all geodesics o through m and all

§2 GEODESIC BALLS AND SPHERES ON MANIFOLDS
WITH METRIC CONNECTION WITH TORSION

Let (M™, g) be an analytic manifold with a Riemannian metric g and a metric con-
nection D with non-vanishing torsion tensor 7. There exist various problems, arising
naturally in physics and other areas, which can be studied by using this connection.
Let us remark that although the Levi Civita connection for a given metric is uniquely
determined, a metric connection with torsion is not unique, for a given metric. How-
ever, for a given almost Hermitian manifold (M, g, J), there exists the unique metric
connection D called the characteristic conection, which satisfies

DJ =0, T(X,Y)+T(JX,JY)=0.

Using this special connection, V. Miquel studied in [19] the volumes of certain small
geodesic balls on almost Hermitian manifolds and expressed the first non-trivial coef-
ficient in the power series expansion of this volume as an almost Hermitian invariant
of order two. He proved that, in a certain sense, this coefficient determines some
classes (and only these) of almost Hermitian manifolds. Moreover, he obtained a bet-
ter characterization for the nearly Kéhler manifolds. Namely, he proved that if this
coefficient is the same as the corresponding one for the Levi Civita connection, then
M is a nearly Kéhler manifold. Using the Levi Civita connection, the information




[ R e . .

N. Bokan, M. Djorié 102

about the almost complex structure cannot be obtained, since the coefficients in this
case are metric invariants. Further, he proved that this coefficient and the spectrum
of the complex Laplacian, together, determine the class in which a compact Hermitian
manifold lies.

Therefore, let us recall the notion of geodesic ball in a manifold with metric con-
nection with torsion [21]. First, let exp,, : i/ — U be the exponential map associated
to a metric connection D which is a diffeomorphism on . For any p € U there exists
a unique D-geodesic arc joining m and p. Then, if §°(m,p) is the length of this
geodesic arc,

67 (m, p) = | exp™ ()|, (2.1)

since the velocity vector of a geodesic, for a metric connection, has constant length,
Using (2.1) it follows
BP(m) = exp,,(Bo(r)) (2.2)

where BP(m) = {p € U|6P(m,p) < r} is the so called D-geodesic ball of center m
and radius 7 and By(r) is defined by (1.3). Further, since the Gauss lemma fails
for general metric connection, V. Miquel used polar coordinates in [20] to obtain an
integral formula for the volume V.2 (r) of D-geodesic ball. To obtain the power series
expansion for V.2(r), he used the normal coordinates (21, ..., x,) defined by (1.1) for
the exponential map associated to metric connection D. For an orientable manifold

. g s . . .
M, choosing normal coordinates such that {ﬁ’ o ,)—n} is a positively oriented
o oz _
X . 0 0
local frame, there is a unique volume form w such that w e SRSl e 1 and
ox ox

Dw = 0. Using the general power expansions of tensor fields in normal coordinates
and the integral formula for V,2(r), V. Miquel in [20] and [21] derived, following

m
the method given in [11], the first non-trivial term in the power series expansion for ||
V.D(p): |

m

n

l 1 1 n B [ - N 1
nt2 | 8@ T3 Z Di(T)ij5 + 21 Z]ijklikj ts

i,7=1 1,7,k

72 | 1

Ap =

where 7p is the scalar curvature of D at m and T is the one form defined by
Tx = Z’,’ 1 Tx g, g, for any orthonormal frame {Fy, ..., E,}. He proved in [20] that
the metric connection D and the Levi Civita connection V have the same geodesic®
if and only if A = A" for any m € M.

Moreover, V. Miquel in [22] computed the first non-trivial term in the power serief
expansion for the area of a geodesic sphere associated to a metric connection with
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. D Ns N . w 3 .
wrsion (SP(r)). Since the Gauss Lemma fails for D-geodesic spheres, to overcome

these difficulties; he used generalized Jacobi fields (D-Jacobi fields) for connections
with torsion and derived the following formula:

T?

' I
Balr) = tgr™= {1 - — (T“ + 287 4 6

6n

i

114+ n 2112 3n+1 32 2 o
k _12(71—4—2)“ I e IT2)1% ) r* + O(r®) ¢ .
IE

V. Miquel noticed that although B,’.)(m) C G(r), where G, (r) is defined in section
1. for the Levi Civita connection V, there is no a priori relation between S,,(r) |
and SZ(r). The consequence of the foregoing formula is that, for r small enough, |
b .\ o~ aDi..

bmk’) -/l ‘Sm(’ )

83 GEODESIC BALLS ON MANIFOLDS WITH TORSION-FREE CONNECTION

F

[n this section we consider an analytic structure (M, D, g) where D is a torsion-free
‘m and Ricci-symmetric (that means its Ricci tensor is symmetric) connection, which is
«| not necessarily the Levi Civita connection of the metric g. The assumption that Ricci
il tensor Ric” is symmetric is equivalent to the existence of D-parallel volume form w,
dl ie. Dw = 0.

This structure appears in several situations, for example, statistical manifolds, Co-
dazzi transformations for PDEs, Weyl structures, conjugate triples and hypersurfaces
¢| In affine space and in space forms, which motivate a study of a structure (M, D,g).
In [7], 8], [9] the authors modified investigations of A. Gray and other authors on
3| small geodesic balls and spheres and considered generalized balls using this structure.
Bl Let us introduce the following notations for the structure (M, D,g): V(g) will
I denote the Levi Civita connection of g, w(g) its oriented Riemannian volume form,
and w an oriented volume form parallel with respect to D, that means Dw = 0. w
is unique modulo a constant non-zero factor. Assume that w(g) and w induce the
same orientation; then there exists a positive function u such that w(g) = pw. The
torsion-free connections D and V(g) define a (1,2)-tensor field C' := D — V(g); we
denote its trace by nT'(X) := tr{Y — C(X,Y)}. Using straightforward computations
we obtain elementary relations ([9], Lemma 1.1) between the structures of D and g;
it for example:

nl = —dlg ,
s Duw(g) = —nT Rw(g).

% .
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These relations and the introduction of the difference tensor C' allow us to reduce
the covariant differentiation to an algebraic computation in terms of the tensor prod-
uct. Let us remark that these computations fail for a connection which is not Ricci-
symmetric. Moreover, from the definition of C' and the foregoing formulas we can give
geometric interpretations of C' and T C' measures the deviation of the connections
D and V(g), while T" is a measure for the deviation of the volume forms.

- Further, let us recall the notion of a geodesic ball on a manifold with torsion-free
connection D [8]. For v € M,,, let P¢, denote the unique D-geodesic in M with
De,(0) = m and P¢/(0) = v. We write Pexp,,(v) = P&, (1), provided that P&,(t)
can be defined for ¢t = 1. The map Pexp,, may be defined only on a neighborhood
of 0 € M,,, where it is a diffeomorphism. In case that D is not the Levi Civita
connection of g, it follows that the length ||Pexp;.!(p)|| is not necessarily constant if
p varies along a D-geodesic o through m € M. Thus define a geodesic ball as follows:
Let r be small enough so that the map Pexp,, is defined on a ball of radius r in the
tangent space M,,. Now, let

GP (r) = Pexp,, (Bo(r)),

where Bo(r) is defined by (1.3). We call G2 (r) a D-geodesic g-ball with center m and
radius r. Let V2 (r) denote the volume of G2 (r) with respect to the metric g. Then

Vi (7) =/ " </ w(g)(DOXpm(tU))du) dt,
0 Jsn-1(1)

where u varies on the unit sphere S*~!(1) in M,,,. To compute the Taylor expansion of
this volume in terms of local invariants of the geometry of (D, g), in particular in terms
of the invariants C' and 7 and curvature invariants of D, we modify a method described
in [11], [12] and [13], and extend the notion of “normal coordinates” to the structure
(M, D,g). Let {e1,...,e,} be a g-orthonormal basis of M,,. We define a real-valued
function z; on a neighborhood of m by z; (Pexp,, (3 tie;)) = t;. Then (zy,...,xn)
is called the system of D-normal coordinates corresponding to {ey,...,e,}. Consid-

ering the local Gauss basis dy,...,0d, associated to a D-normal coordinate system
(z1,...,2,), a D-normal coordinate vector field at m is a local vector field X of the

form X = Y a;0;, where the a;’s are constants. For many purposes it turns oul
to be far easier to work with D-normal coordinate vector fields instead of D-normal
coordinates. For example, the notion of a D-normal coordinate vector field at m does
not depend on the choice of the D-normal coordinate system at m. Following (11}
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1. Simon and the authors of this article in [9] expanded w(g)(Pexp,,(ru)) in a power
series in 7 and derived the formula for V2 (r) with the first three non-zero terms:

T 1 l 7
D(p) = ap— {1+ ———— [ Algp+2||grad lg p|? — -tryRicP ) r?
Vi (1) = { 2 19) < g+ 2llgradlg | — gtrg Ric

1
}
24(n + 2)(n + 4
+ (Sg(l~less” lg u, Hess® 1g ) + 3(0lg 1)?

) [300(1g p) + 12g(grad Ig p, gradOl g p)

+12Hess” (Ig 1) (grad Ig p, grad Ig )
+ 60 1g pl|grad Ig p)|® + 3||grad lg p||*
— 4RicP (grad lg p, grad 1g u1) — 4g(divRic?  gradlg p)

+8> " R'iiDilguDplgp+2)  DjR"iDylgpn

i3,k i,7,h
+2° R"5iD; Dy lg o — 4R D; Di(1g 1)
1,9,h

—2(0lg p + ||grad g p||?)try Ric” — 2g(gradtr, Ric”, grad lg )
3 . 1 , 6 2= e

- 5D(trngD) + g(tngZCD)z ~ ZZJ:DjDiRij + éHR’LcDH'z
2
15

'I,,j,S,h

(R*isiR%jnj + R" iR jin + RP 5o R i) | 4 5 +O(r"*0).

m

Here we use the following notation: For a differentiable function f, its Hessian
HessD(f) is given by

Hess”(f)(X,Y) := XY (f) — df (DxY)
and we introduce a Laplace type operator by
0f = try(Hess™(f)),
its metric Hessian is denoted by Hess,(f) and its Laplacian by

Af =, Hessg( f)
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After straightforward computation, it follows that for D = V(g) the foregoing
formula specializes to (1.4).

Another important special case of our computations is that of a Blaschke struc-
ture, see e.g. [24], chapters 4 and 6. In case of our structure (M, D, g) we have the
equivalence: T'=0 <= w(g) = w and therefore Dw(g) = 0. Extending the termi-
nology from affine hypersurface theory to the structure (M, D, g), we call (M, D, g) a
Blaschke structure if 7' = 0.

If (M, D,g) is a Blaschke structure, for a D-geodesic g-ball, and for » > 0 suffi-
ciently small, it is possible to compare its volume with that of a Euclidean sphere
S™(r):

(i) if D is flat then VP (r) = V(S™(r)) + O(r"*6);
(11) if D satisfies tI’gRic = 0 then V,,]'Z(T) — V(Sn(,')) + O(?"n+4);

(iii) regarding the expansion up to the order (n+2), the sign of tr, Ric determines
whether the map Pexp has a decreasing or increasing effect for the volume
functions considered.

It is interesting to compare the foregoing result with the corresponding ones in section
I, for Levi Civita connection.

Furhter, consider an (n + 1)-dimensional affine space A™*! with associated vector
space V, and a determinant form Det fixing an oriented volume. Let x : M™ —
A" be an analytic, locally strongly convex, embedded hypersurface with so-called
Blaschke structure induced by the unimodular affine normal. The convexity condition
implies that the Blaschke metric g on M is Riemannian. The metric g, together with
the connection D, induced from the affine normal, and the conormal connection D
define a conjugate triple. For Blaschke hypersurfaces, the variational problem for
the area functional leads to the Euler-Lagrange equation H = 0. Following Calabl
Blaschke hypersurfaces with H = 0 are called affine maximal. The power series
expansion for VY (r) implies:

m

(i) for affine maximal hypersurfaces we have V2™ (r) = V(S™(r)) + O(r™*1) and
Vi (r) = V(8"(r)) + O(r"+1);
(ii) for improper affine spheres we have V2" (r) = V(S™(r))+O(r"+6) and V2 () =
V(S™(r)) + O(r™+9).
Further, in [9] the authors considered the structure (M, D, g) by studying the pre-
jective ¢ han;,( s of D and projective flatness of D and the influence of the gene ralized

geodesic ball expansion in such geometric situations. Especially, since it is interesting
to study the problem of uniqueness of projectively flat connections, they proved thal
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fg is a metric and D and D#* are projectively flat connections such that

(i) M is diffeomorphic to the sphere S™;

(ii) the generalized geodesic ball expansions for (D, g) and (D#, g) coincide up to
order n + 2;

(iii) w(D) = w(D#);

(iv) the pairs (D, g) and (D#,g) satisfy Codazzi equations;

then both connections coincide: D = D#,

In the foregoing results two structures on a given hypersurface are compared. How-
wer, numerous applications can be obtained in different relative normalizations by
womparing two hypersurfaces. For example,

(i) If 2,2 are affine Blaschke hyperspheres and the generalized geodesic ball ex-
pansions for V" (r) and V,’,T#(T) coincide up to order n+2, both hyperspheres
are of the same type (elliptic, parabolic, hyperbolic).

(ii) If z, 2% are affine 2-spheres with the same metric and the generalized geodesic
ball expansions for V2* (r) and V2'” (r) coincide up to order n + 2, then z,
x# are unimodularly congruent.

(iii) Let x,2% be complete Blaschke hyperspheres such that the generalized geo-
desic ball expansions for V2 (r) and V2™ (r) of order n + 2 coincide. If z is
an elliptic paraboloid, then 2% is an elliptic paraboloid.

Let ,z# : M — A"t be relative hyperovaloids. Assume that

(i) the relative metrics coincide: h = h#;

(ii) for the conormal connections D* and D*#, the generalized geodesic ball ex-
pansions for V(D*, h;m,r) and V(D*# h#;m,r) coincide up to order n + 2;

(iii) w* = w**.

Then z, 27 are affinely equivalent, which means that there exists an affine transfor-
mation 7 : A"t — A"*! such that 2# = Ta. Moreover, if Blaschke hyperovaloids
r,x7 satisfy the conditions (i), (ii) from the previous theorem, then z, 2% are uni-
modularly equivalent.

Let us remark that that the foregoing assertions hold true if one considers the
induced connections D, D# instead of the conormal connections. ,

Further, onsider a non-degenerate hypersurface @ : M — R™*! such that its
position vector is transversal. Then y(c) := —x is called the centroaffine normal.
Following Nomizu, we call such a hypersurface together with its centroaffine normal-
ization a centroaffine hypersurface. The associated geometry is invariant under the
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group GL(n + 1,R). Then if x : M — R™*! is a hyperovaloid with centroaffine
normalization and the generalized geodesic ball expansions for VP (r) and VI ()
coincide up to order n + 2, then z is a hyperellipsoid.

For further applications, details and references we refer to [9].
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Introduction

The aim of this survey article is to explain a general concept of general-
ized function algebras (Part I) and to illustrate the analysis of equations with
singularities within these algebras (Part IT). While Part I is simply acceptable,
Part IT gives just fragments of our approach. We refer to the literature for more
information about any of quoted classes of equations.

Colombeau had constructed his well-known algebras by purely algebraic
methods. Since then, algebras of Colombeau generalized numbers and func-
tions became a very useful framework for linear problems with singularities and
specially for non linear problems [1, 2, 5, 24].

Many linear and nonlinear problems with irregular data or irregular coef-
ficients, have been successfully analyzed by the mean of appropriate approx-
imations through nets of C'°° functions which fits into Colombeau algebra G
of generalized functions. We extend the references in order to mark a part of
large literature related to linear and nonlinear equations in the framework of
generalized function algebras.

In Part I, we present a very general construction of generalized function
Colombeau type algebras through a purely topological description of Colombeau
type algebras. We will show that such algebras fit very well in the general
theory of the well known sequence spaces forming appropriate algebras [11]. All
these classes of algebras are simply determined by the (locally convex) space
E, and a sequence of weights r : N — R, (or sequence of sequences) which
serves to construct an ultrametric on the sequence space E™. The sequence
r = (rn), is assumed to be decreasing to zero. This implies that sequence
spaces under consideration (C EM) contain as a subspace E ~ diag E" and
that they induce the discrete topology on E. This is well-known for the sharp
topology for Colombeau type algebras. But our analysis implies that if one
has a Colombeau type algebra containing the Dirac delta distribution ¢ as an
embedded Colombeau generalized function, then the topology induced on the
basic space must be discrete. This is an analogous result to the Schwartz's
“impossibility result” concerning the product of distributions.construction of
Colombeau type algebras.

In Part IT we present our method in solving various classes of equations with
strong singularities in the framework of generalized function algebras.

Constructions of algebras given in Part I are used

First, we present a quasilinear elliptic equation with Dirichlet’s boundary
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conditions, ([34]) second, wave semilinear ([22]) and, third, heat semilinear ([23])
equations with Cauchy data.

We consider a quasilinear Dirichlet problem for uniformly elliptic equations
whose coefficients have lack regularity assumptions and with singular boundary
conditions. In our setting of a problem we replace an equation divA(Du) =
0 with a net of equations with regular coefficients and a singular boundary
condition with an appropriate regularized net of boundary conditions.

As a second illustration we consider a semilinear wave equations in space
dimension n < 9 with singular data and various types of nonlinearities. In
general, a nonlinear term is regularized with respect to a small parameter &
such that it becomes globally Lipschitz for each £. A net of solutions to a net
of Cauchy problems obtained in this way determines an element in G2, the
generalized solution. For certain growth conditions on a nonlinear term the
equation is uniquely solved in G2 without regularization. Note, in certain cases,
a solution to the regularized equation is also a solution to the non-regularized
one.

We have studied also the heat equation with singularities, extending the use
of semigroups to some classes of PDE’s with singular coefficients. The general
idea is simple: it lies in the core of a construction of generalized functions.
Regularized PDE, in fact a net of equations, is solved with an appropriate net of
semigroups. The solution obtained in this way represents a generalized function.
The concrete results for the heat equation will not be presented in this paper

(cf [23]).
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Part 1

1 Colombeau type algebras

In this section, we will present traditional approach to Colombeau type algebras
and then in the next sections a more abstract and general realization of such
algebras.

First, we recall the usual Colombeau type extension of G(E) ([35]), where
E is a vector space on C with an increasing sequence of seminorms ,, n € N.
The space of moderate nets of £y, (F), respectively, of null nets of N (E), is
constituted by nets (7¢)ee(0,1] € EO1 with the properties

(Vn € N) (3a € R)(un(re) = O(?)), (1.1)

respectively, (Vn € N) (Vb € R)(un(re) = O(e?)).

(O is the Landau symbol.) The quotient space G(E) = En(E)/N(E) with
elements [(f:)el, [(ge)e], -, (equivalence classes are denoted by [-]) is called the
Colombeau extension of E. Putting v,(re) = sup{a; pn(re) = O(e*)} and
en((re)e, (se)e) = exp(—vn(re—se)), n € N, we obtain that (e,,), is a sequence of
ultra-pseudometrics defining the ultra-metricmetric topology (sharp topology)

on G(E).

If £ =C (or £ = R) and the seminorms are equal to the absolute value, then
the corresponding spaces are &, Ng; & is an algebra and Aj is an ideal and,
as a quotient, one obtains Colombeau algebra of generalized complex numbers
C = & /Ny (or R). If a set 2 is open in R™ and E = C*®(Q) is endowed with
the usual sequence of seminorms (this is Schwartz space £(£2)), then the above
definition gives Colombeau simplified algebra G(€) = En(2)/N(2) (5], [24]).
Its elements are called generalized functions and we keep this name for elements
of any spaces or algebras constructed as extensions of some functional space .

Then the embedding of compactly supported Schwartz distributions (el-
ements of £'(€2)) is made through the convolution with a net of mollifiers
he = € "h(-/e) constructed by a rapidly decreasing function h € S(R™) with
the properties [h(t)dt =1, [t™h(t)dt = 0,m € N". The embedding is given
by

[ [(f * hela)el-
By the sheaf properties of D'(2) and G(Q2), this embedding is extended to D'(Q).

Construction needed in applications

Let © be a bounded open set in R™ and a € (0,1). Recall ([15], p. 94),
a domain © and its boundary are of C*— class 0 < a < 1, if at each point
zo € JS) there is a ball B;, and a bijection 1 : B — D such that ¢¥(BN§2) C R,
Y(BN oY) C OR%, and ¢ € cke(B), ¥v~!' € CF*(D). A domain Q has a
boundary portion T' € 952 of Cka— class if at each point xg € T there is a ball
B, in which the above conditions are satisfied and BN oQ C T.

We will consider the Colombeau extensions in cases [2 = C*2(Q), k € N and
E = C*(Q)). We will use the norms

|plk.0 = sup{|fP(z);|p| < k,z € Q},
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[flka = flk.a + [flka.n, k € No,
where, for ¢ € C(Q), k € Ny,

@) () — fP)
) = PPN, e, 5y, ol = k.
|z -y

[flkaq = sup {

The completion of C*(Q) with respect to the norm |- [ .0 deﬁnes_ Ei =
C”"“(Qz, k € N. Recall, if k + a < k' + o, then the imbedding of cka(Q) into

n ’ . .
C*e'(Q) is a compact linear operator.

Note that the sequences of norms || - [|x,a, k € N and || - [lk, k € N define the

same uniform structure on C'* () as the usual one.

In case E' = C*°(f2), we need one more construction. Let (ge)e be a net in
C%%(Q) such that
ge € C""‘(Q),s < ek, k€eN,
where (ex) € (0,1)" strictly decreases to zero ((ex)k 1 0).

Two such nets are in relation, (ge)e ~ (7e)e, if
ge = Te,€ < €, for some ¢ € (0,1).

This is an equivalence relation and with the corresponding classes, elements
in C%*(Q)/ ~, we define spaces E[E], N[E] as in (1.1). Then we define the
corresponding Colombeau type space G[E] = £y [E]/N[E).

2 Algebras of weighted sequence spaces

Now we will give another approach to generalized function algebras which is
actually the topological description of such algebras.

Consider a semi-normed algebra (£, p) such that p(ab) < p(a)p(b), a,b e E
and a sequence r € R’i decreasing to zero.
Define for f € EN
I/ lp,r = limsup p(f)™ .

n—0o0

This is well defined for any f € EN, with values in R, := R4 U{cc}. With this
definition, let

Fpr ={f € BV : || f Ipr < co0}

Kpr={f€EN: || flpr = 0} .
Then the following holds:

Proposition 1

1. The function

dpr i Fpr X Fpr — Ry,
(£,9) =N f =gllpr

is an ultrapseudometric on Fp, .
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2. Fpr is a subalgebra of BN, and Kp,r is an ideal of Fp,, ; thus
Gpr = Fpr/Kpr

18 an algebra.

a’p,r‘ : gp,r X gp,r -7 R-{— b
(F,G) = dyr(£,)
is an ultrametric on Gy, ., where f é'F, g € G are any representatives of
the classes F' = f + Kpr resp. G = g+ Kp.r.

4o Gpr = Fpr/Kpr is a topological algebra, the quotient topology being the
same than the topology induced by the ultrametric d,, .

We give the construction of generalized constants. For this, £ will be the
underlying field R or C, and p = | - | the absolute value. As already explained in
the introduction, for » = 1/ log, we get the ring of Colombeau’s numbers C. Let
P = @, n = 2. Colombeau’s algebras of generalized constants represented by
sequences with polynomial growth modulo sequences of more than polynomial
decrease, because

limsup |2,/ 16" < 0o <= 3C : limsup |z | 08" = ¢
<= dB,3np,Vn > ng : |z,| < Blogn _ plog B
< Iy |za| = 0o(n) .

If we put, limsup = 0 (for the ideal) then the corresponding €' above equals
zero and thus VB > 0 resp. Vy we have |z,| = o(n?).

Consider now Hoélder type spaces E = C*(Q) (cf. [15]) , a € (0, 1] and
k € No. With |- | a-norm It is a Banach space and we can apply the same
construction with p = || + [|x.q4-

The corresponding Colombeau type algebra is defined by Gora = FIK
where

5,00 '

F = {'u € (Che ()N | limsup ||'u,,||',"_'l‘7 < oc}

K o {u € (CR ()N | limsup [|un|| 7 = o} .

This algebra is already described in Section 1; it will be used for the analysis of
elliptic equation in Part II.

Constructions with locally convex vector spaces

Consider now an algebra E which is a locally convex vector space on €
equipped with an arbitrary set of seminorms p € P determining its locally
convex structure, Assume that

VpeP,IpeP, CeRy:Va,ye E:p(xy) < Cplz)ply) .
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Let
Fpr={fe€EN|VpeP || fllpr <0}

and
Kpr={f€EY|VpeP:|fllpr=0}.

Then the following holds:

Proposition 2 1. For every p € P,
dpr: ENx EN SR,
(£,9) = Uf = gllpr
is an ultrapseudometric on Fp ;.
2. Fp, is a (sub-)algebra of EV, and Kp . is an ideal of Fp ;.
3. Gpr = Fp,/Kp, is an algebra.

4. For every p € P,

Jp,r : Gpr X g‘P,r F=¥ @.y y
(F,G) = dpr(f,9)

is an ultrametric on Gp ., where f, g are any representatives of the classes
F=f+Kp,resp. G=9g+Kp,.

Gp.r = Fp,/Kp.r is a topological algebra, the quotient topology being the

=

same than the topology induced by the family of ultrametrics {(l:,,l, } ~
PeEP

Let E =C®(Q), P = {pv},cn With

p(f) = sup |fO(z),

la| <, |z|<v

and r = ﬁ. Then, Gp » = Fp/Kp, with

n—00

Fpr= {(fn)n & & 0" ‘ Vv € N : limsup py(fn)Y 6™ < oo} ,

Kpr= {(fn)n ec®()V |vweN: lim sup py (fn)/ 198" = 0} .

n—oo

we obtain the simplified Colombeau algebra Gs.

So called full Colombeau algebra G is related to a more delicate procedure
and it is omitted. We only note that the embedding of Schwartz distributions
and of smooth functions into G is well-known. Also it is well-known that the
multiplication of smooth function embedded into G is the usnal multiplication.

The following example is also of interest. Take E = Drp(2),p > 1, P =

{pV}uEN with
pu(f) := sup ||FlLe

|a<v
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and r = TOIE' Then, Gr» = Fp/Kp,» with

Fpr = {(fn)n € Dpr(QN | Vv € Nt limsupp, (fn)"/ %™ < OO} ;

n—oo

Kpr= {(fn)n € DL;J(Q)N Vv € N : limsupp, (fn)Y/ 18" = O} ;
n—oo

is Colombeau type algebra used for the investigations of wave and heat equation.

We will consider later Gr2(R™).

Projective and inductive limits

Projective limit Let (E,pl), ey be a family of semi-normed algebras
over C, such that

Vu,veN: E¥  — E¢, EV < EY,

where < means continuously embedded. This implies that there exist constants
ct, CF € Ry such that

v

VYu,veN:ph <Chpb.,, gl < 08 pit

but without loss of generality one can take C¥, C’,‘j =1,Vu,velN
Then let

— —
F = projlim E* = projlim projlim E* = projlim F}, .
.] “ -] 17 14
JL—00 L—00 V—00 V—+00

Define
P —=n .
}—p,r:{fe E ‘V:“"I’EN:‘”./L I"pl:.r<oo} )

— =
= 5 N . o
Kpw = {_/ e BV | Vu,v €N | flle.r = o} ‘
(Here p = ((p#),)" stands (on the Lh.s.) for the whole family of seminorms. )
Then Proposition 2 holds, with the slight changes of notations introduced above.
Inductive limit Consider now a family (E/‘,p{j)“‘,/&N of semi-normed spaces

)
over C, such that

VYu,v e N: EV — E! Eitl s BB

v41
This implies that there exist constants Cl, C' € Ry such that
) \J L & (W n o At
Vu,veN:p,., SCOpl, pbSCIp,"

but again one can assume C#, CF =1, Vu,v € N. Now let

VpeN: E* =indlim Ef .
e

o
Assume that for every u, 1/, v" € N there exist ¥ € N and C > 0 such that
Y
ph(fa) - ('/’:"e“f'll':lnU/l. f e /:' g € ]‘f,’,‘,, .

We have . 7.
VpeN: E#tl oy BH
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Now let

E := projlim £* = projlimind lim EY |
Ji—00 Jh— 00 y=>00

and define
Fpri= {f €EM|VueNweN: feENALflp, < x} ,

—

Kpri= {f €EY|VueNweN:fe (B AL fle,= o} .
Proposition 3

(i) Writing © for both, ™ or ', we have that F ,, is an algebra and K o

) ) — < — o )
is an ideal of F pq; thus, G pr = F pr/ K pr s an algebra.

(it) For every p,v € N, dpp : (E{,‘)N X (E,‘,‘)N — R, defined by dpe (f,9) =
If = gllye - is an ultrapseudometric on (E{f)N. Moreover (dpp)u,. in-
i
duces a topological algebra structure on F,, (since dyp(0,f - g) <
dpi (0, f)dye(0,9)) such that the intersection of neighborhoods of zero
—

equals K p .

(iti) From (ii), E,,,,. = ?,,‘,./E,,y,. becomes a topological algebra which topology
can be defined by the family of ultrametrics (dyp )., where dyp([f], [g]) =
dpi(f,9), [h] standing for the class of h.

(i) If 7, denotes the inductive limit topology on F*, = UueN((E,’f)N,d,,.,u),

P
s
€ N, then F . is a topological algebra for the projective limit topology

of the family (F ., 7u)u-

(BN, consists of elements f € (E#)N with finite d,, ,(f).)

Without assuming completeness of F, it holds:
Proposition 4

. = .
(i) Fpr is complete.

(i) If for all p € N, a subset of ?ﬁjr 1s bounded iff it is a bounded subset of

(E,’,‘)N for some v € N, then ?,,,T 1s sequentially complete.

Comments on the Schwartz’ impossibility result

In the definition of sequence spaces ?p,,. resp. 6.7?,”, we assumed 7, \, 0 as
n — oco. Clearly, one could consider sequence spaces of the same type with r,
only bounded, or even r,, — co. In the former case (r, bounded), the space ?p,T
(where 7" stands for ~ or ) contains diag EM topology, via the embedding
E > f—(f), € ‘EN. In the second case (when 7, — 00), this embedding is
not possible.
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In the case we consider (r, — 0), the induced topology on E is a dis-

crete topology. But this is necessarily so, since we want to include “divergent”
>

sequences in F o, ;.

In order to have an appropriate topological algebra containing “6”, we must
have that our generalized topological algebra induces a discrete topology on the

—>

original algebra F .
This conclusion is in analogy to Schwartz’ impossibility statement for multipli-
cation of distributions.

General remarks on embedding of duals

Under mild assumptions on <_E—), we can show that our algebras of (classes
of) sequences contains elements of the strong dual space B

Let CO(R®) be the space of continuous functions with projective topology
given by sup norms on the balls of radius v € N*, pu(f) = sup {|f(z)|; |z| < v}.

We shall assume in the sequel that E is a dense subspace of C°(R®) and the
inclusion mapping (E — CO(R*) is continuous.

Then, we have the following

Proposition 5 (i)
¢
§:E —C, §¢):=¢(0)
—
is an element of E'.

— “— ) ;
ii) Let E be sequentially weakly dense in E'. Then. a sequence (0,,),, € EN(C)
with the property In,0 > 0 :Vn € N : sup [6n ()] < 7. converging weakly to §,
. 9= |x|>0

cannot be bounded in E .

Thus, the appropriate choice of the sequence r appeared to be important to
have at least § embedded into the corresponding algebra. It can be chosen such
that:

—
In E case, for every u,v € N

limsup pl (6,)™ = A% and 3Jug, v : A £Q.

n—+00

—
In E case, for every pu € N exists v € N such that the above limit holds.

3 Association

The notion of a weak limit or of a weak solutions is transferred to generalized
function algebras to various notions of associations. Thus their importance is
underlined through the applications to nonlinear equations or linear one with
singularities.

General concept: J — X-association The 7 — X -association of elements
F.G € G = F/K is defined in terms of an additive subgroup 7 of F containing
the ideal K, and a set X of generalized numbers, by

" G = VzeX:z- (F-G)e J/K .
/;7,.\'( reX:z-(F-G)e J/K
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As J is not an ideal, the association is not compatible with the multiplication
in F (not even by generalized numbers, only by elements of £). However, in
the case of differential algebras, 7 is usually chosen such that = is stable under
differentiation. 4

If the set X contains only number 1, then we simply write F' = ¢ <<=
F-GeJ/K.

For example, consider N = {z € C"|limz, = 0}, the set of null sequences.
This gives usual association of generalized numbers,

[zl ~ W] <= (el %[y <= 20—y -0

which is well defined because all elements of the ideal tend to zero.

Strong s—association is defined for s € R, by F' ~ G = F = G with
—8 g
D ={feF|PEP:|flpr<e*} e
F01 s =0, we write F' ~ G and simply call them strongly associated.
On the other hand, F' 2 G for all s > 0 implies F = G.

Weak associations. The following types of associations are defined in terms
—
of a duality product! (-,-): E x D — C, and

J=Ju={feE" () € MY

where M is some additive subgroup of CN,

s — D'—association is defined by F X G < F =~ G with X, =
{[(e/™),]} for s € R. Invidts

Example 6 In the case of Colombeau’s algebra this has already been considered
(with D = D): For s = 0 we get the so-called weak association [f] =~ [g] <=
fan—gn — 0inD'. For s #0, [f] 2 lg9] <= n®(fn—gn) — 0in D'. In the case
of ultradistributions, we take D = D™ and e/™ = expls n_’l_'] for Beurling
case, and analogous definitions in the Roumieu case. Weak s—association is
defined by F' ~ G’4=> F G where I = J).| s for any s € R.

For s =0, we write F= G ‘ond call F and G strong—weak associated.

1D stands for a test function space such that E — D'.
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Part I1

4  Quasilinear elliptic equation

Let (Q¢)e be a net of elliptic nonlinear operators of divergent type of the form
Q. (u) = divA.(Du) = a»(Du)D; ju,e < 1, (4.2)

where al(p) = Dp,Al(p), or, in case n = 2, let (Q¢)c be a net of elliptic
nonlinear operators of the form

Q. (u) = a*? (z,u, Du)D; ju, u € C°(R). (4.3)

We assume that a2’ e € (0,1) are smooth functions on §. If A\c and A. denote
respectively the minimum and maximum eigenvalues, then we have

0 < Ae(@,t,p)|€]? < ald(z,t,p)&i&; < Ae(z,t,p)|€]%, (4.4)

peR™ £eR*"\ {0}, z€Q, teR, € <ep.

Assume additionally:

(Vd € NI)(Jlg € R)(Jaq € R) (4.5)

|0daii (z,t, p)| . j
up { 1 le T WP o ) g nl = o).
Bllp{(l+|t|+|],|)m,,7 celteR,peR } O(e™)

(3C > 0)(3p > 0)(3b € R) (4.6)

P
— (L4 [t] + [P)? < Ae(@,t,p)) < Aelz,t,p) <

- (1418 + )",

O
3 Q

peR™ ze N teR e < e.

[n the case when the net (Q¢ ). is of the form (4.3) then n = 2, and if it is of the
divergent form (4.2), then we exclude variables  and t in the conditions given
above.

Note that condition (4.6) implies

AefAe < C%/e? € < €. (4.7)
With the given properties (Q. ). is called the net of uniformly elliptic mod-
erate continuous operators.
Example

Consider in R?® the operator

3
Q(x,u,Du) = (1 + Z 6(D;))Au (§ is the delta distribution).

i=1

With the regularization of 4, we have

Qulavu, Du) = (F(22) + 2(Z2) 20(222) +1) A

\

120



(¢ is a compactly supported smooth function with the integral equals 1.)
Then, A, =1 and A, = (%:_'( BLy 4 Lyp(B2)Lly(B2) 4 1),

This operator is of the form (4.2) for which all the assumptions given above
hold. We need a "slope condition” adapted to the setting of Colombean theory.

Definition 7 Let F = ("" "(Si)) for some k € N (cf. 1.1 and Gera ), (Pe)e €
F =Ecka and Ty = {(z,2:),x € 0N, ze = ¢pe(x)}. Then (¢e)e and the boundary
OS2 satisfies a moderate .slop(. condition 1ff07" any P. € I'; there exist hyperplanes
ntp and w_ p defined by ze = 7} p (z) and ze = p (x) such that

T, p,(T) < ¢de(x) < mt p.(x),z € 0N e <€
and such that for some K > 0 and some m € R,

sup{|D7rE p,( z)|,|Dn; p (z)];z € N, P. €.} < Ke™ e < gp.

With all the definition given above and by the use a generalized version
of the Leray-Schauder fixed point theorem we are able to solve a quasilinear
equationy,

Proposition 8 Let (Q)e be a net of uniformly elliptic operators of the form
(4.2) or (4.3) with a2d € C**1(Q) (k € N)satisfying (4.5) with d < k + 1 and
(4.6). Let E = C’"”“( ) (¢e)e € Echiza where O is of C*2 class and it
satisfies a moderate slope condition with (¢e)e. Then, there exists (ue)e € Ecrizo
such that

Qc(ue) =0, ue " = ¢, me<l. (4.8)

This theorem implies the solvability in G .

Remark that the process of regularization of equation divA(Du) = 0, ujpq =
¢ with singular coefficients and singular data leads to the approximated net of
solutions by the mean of previous theorem.

5 Semilinear wave equation

In this setting we connect two areas: the L2-theory for the nonlinear wave equa-
tion :
Otu — Au+g(u) =0, g(0) =0, u=u(z,t), € R", t >0, (5.9)

u(m,O):a( )Hut( ,) = bz zlpie e RY,

involving energy estimates and the theory of generalized functions where non-
linear operations makes sense for a large collection of singular objects.

Concerning g, if it is not globally Lipshitz, then it is substituted by a net
of globally Lipschitz functions g.(u). Then the obtained net of equations, called
regularized equation, is solved for each fixed e.

In some cases g is not regularized and the growth conditions on g are involved
for the existence and unicity of a solution similarly as in the classical theory.
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We use here the algebra Gr2([0,7) x R™) (cf. Example 5 with simple modi-
fications). Also we use the notation F = £72([0,T") x R™).

Consider a family of equations in 72([0,T") x R™)
(02 — A)Ge = —g(Ge), Geli=o = A¢, 0:Gelt=0 = B, € € (0,1), (5.10)

where A., Be € £r2(R™) and ¢ : R™ — R is smooth, polynomially bounded
together with all its derivatives and g(0) = 0.

Equation (5.10), with the regularization g. instead of g is called the regular-
ized equation for (5.9).

Proposition 9 a) Let n < 5. Then there exists a reqularized net g. such that
for every T > 0 there exists a unique solution to 5.10 in Gr2([0,T) x R™).

b) Let n = 6 and let || Ae||gs.2 and || Be| 2.2 be bounded by (log(log(e~1)))*, as
e — 0, where s < 1. Then there exists a reqularized net ge such that for every
T > 0 there exists a unique solution to 5.10 in Gr2([0,T") x R™).

Remark 10 Let n = 7. In order to obtain the existence of a unique solution

with the moderate growth of all its derivatives, we need that H>?-norms of initial

data are bounded by log(log ... (logqe™1)...)* with respect to € for some s and
N’

q. This follows from [27], Theorem 4.8. Cases n = 8,9 can be handled out using
the procedure and Lemmas 2.1-2.20 in the same paper as well as a composition
of the logarithmic function sufficiently many times.

The proof of quoted theorem for n = 3 implies the next corollary.

Corollary 11 Let n = 3, g(y) be globally Lipschitz and its first derivative be
polynomially bounded. Then for every T' > 0 there exists a solution to (5.10) in
Gr2([0,T) x R™).

Remark 12 If g(y) is globally Lipschitz, for n = 4,5,6, we need to assume
appropriate conditions for the first and second derivatives of g. If n = 7,8,9,
then the assumptions of corollary are more complicated.

Especially, we have

Proposition 13 FEquation
(Uf . A)(" = -G°, Gli=o = A, UrG|:=u = B,

where A, B € Gpa(rs), has a unique solution in G12([0,T) x R?) for every T > 0
if there exist representatives of initial data such that

I(V2A., VB,)||2 = o((loge™1)'/?).
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Some new results in theory of operators

Milutin Dostanié¢

Dedicated to Professor Veselin Peri¢ on the occasion of his 70th birthday
University of Belgrade, Faculty of Mathematics,

Studentski Trg 16, 11000 Belgrade, Yugoslavia

In this short exposition will be stated some new results concerning spectral
properties of certain important singular linear operators that are often met in
Analysis.

Namely, we shall consider operators acting on the space

L2(Q2) (Q C C - simple connected domain in C ) that are defined in the
following way:

N1 [ L8 ae
Cftz) = ﬂzé_sz@)
(Cauchy’s operator)
£1(2) =~ [ Inlz - €1dA©)

Q
(Operator of the logarithmic potential type )
I'(l1-3) f(€)
Rf(z) = r>1 = / dA(£), 0<a<?2

(Riesz’ type operator).

For z = z + 1y we denote by dA(z) = dzdy the Lebesque measure on €.

It is well-known fact that C, £ and R are compact operators on L%((2). It is
also known that R, in the case 0 < a < 2, is positive. It follows immediately
by applying the Fourier’s transformation.

H.Widam [9] has shown that for the eigenvalues of R (denoted by A, (R))
holds

lim nTA,(R) =7%|Q%, (1)
n—00
where |(2| is the measure (area) of (). Therefore, the spectfum of the operator
R determines geometrical property (area) of the domain €.
Some related questions concerning the operators C and £ are also interesting.
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The operator L is self-adjoint and it is proved in 7] that for its eigenvalues
holds

X " |2 _

lim nA,(L) = —. (2)

n—oo .1‘)’.’

The operator C is not self-adjoint so we shall investigate asymptotic behavior
of its singular values s,(C), that is, the eigenvalues of the positive operator
(C*C)%.

[t is shown in (5] that holds

lim n"?.s,,(C) =4/ M (3)
n—oo m

From (1), (2) and (3) we conclude that all the operators C, £ and R have
the property that their spectral characteristics detect the area of the domain €
on which these operators act.

Paper [2] is devoted to the investigation of the spectrum of the operator
C*C in the case when Q = D is the unit disc. In that case singular values are
completely described as well as the vectors which are included in the singular
expansion in terms of the Bessel's functions.

Specially, we have
lell = =,
Jo
where 7o is the smallest positive root of the Bessel’s function

Jolee) = i ((_kll)): @)k

k=0

It is conjectured that for an arbitrary domain 2 C C holds
2
Cl| = —, (4)
Il n
where )\, is the smallest eigenvalue of the Dirichlet boundary-value problem
—Au = \u,
uloa =0,

(5)

It is proved in [5] that this hypothesis is true. The proof is based on the
following lemma which is also interesting itself.

Lemma 1 ([5]) Given f € L?(Q), Q being a bounded domain in C.
Take f(z) = L/ e~ o=z £y ))dudv. Then for all 0 < a < § holds

/ P 4 < A;“/ I (z)2de,
R D

4 |x|2a

where \; is the smallest eigenvalue of the boundary-value problem (5) and

5= (.’I)l,:vz), |IZJ| = \/iL‘% i+ CL‘%, dx = dzidzs.
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By applying lemma 1 and the Cauchy-Green’s formula it is possible to obtain

Theorem 1 ([4]) Let G and D be simple connected domains in R* with piece-
wise smooth boundaries and G C D. If u € CY(D) and ulap = 0, then the
following inequality holds

2 1 U 2
/c'“' D) /DW e, ©)

where A1 (D) and A\ (G) are the smallest eigenvalues of the boundary-value prob-
lems
—Au= Ay —Av = v
and :
ulop =0 vlog = 0,

respectively.

In the case G = D the inequality (6) becomes the well-known Friedrich’s in-
equality (or Poincaré’s or Nirenberg’s).
Using the following Faber-Krahn'’s inequality from [3]

:2 2

™70 U

> —— S5 e,
M(G) > Gl A (D) > D)’

we obtain in (6) a weaker but more useful inequality

5 \/ -|D ’
/ |u|*dA < % |Vu|2dA.
JG J0

JD

Denote by L2(Q2) the space of analytic functions on € such that

/ |f]?dA < .
JN

Then L%(Q) is a Hilbert’s subspace of L?(f2) and it is called Bergmann’s sub-
space. Next denote by P the orthogonal projector from L?(§2) onto L2(€2) which
is called Bergmann's projection. It is estimated in [1] the order of the growth
of the singular values for the operators CP and LP. It is shown that

.#,,(C'P)rvn_l. Sn(LP) ~n~2, (7)

hold.

The authors remarked that they have no explanation for a double accelera-
tion of the decrease of the singular values for the operators C and £ multiplied
by P. It is also remained open question of the exact values for the constants in
the asymptotic formulae (7).

In the papers [6] and [8] these problems are investigated. The following
theorems are proved.
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Theorem 2 Let § be a bounded. simple connected domain in C with an ana-
lytical boundary. Then for the operators C and L holds

x y |02

lim n-s,(PC) = —,

n—00 2

lim n-s,(PL) = il

n?—oo 1672

Theorem 3 Let Q be a bounded, simple connected domain in C with an ana-
lytical boundary. Then we have

) 2 (&4 .
lim n® - $,(RP) = (w> ¢(a) sin % /(1 + 2a) - d(a),

n—00 2m

where

0o poo . 2-1,%9-1 a @
T2 2 14 1- (3
d(a) = / / : y ( T): (,, ry) daxdy.
Jo Jo (14 3+ y)it2e

Here we denote by |0S2| the length of the boundary of the domain §1.

Note that multiplication of the operators C, £ and R by the Bergmann's
projection implies a double acceleration of the decrease of the singular values.
Spectral characteristics of these products detects the length of the boundary of
the domain.
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Commutativity of Rings With Constraints on
Finite Sets

Milan Janjic¢

Dedicated to Professor Veselin Perié on the occasion of his 70th birthday
Abstract
In this paper we prove three commutativity results for rings which extends some
known results about commuting powers.
For a ring R we will consider the following conditions

z°[z*,y*] = 0, (1)

where z,y € R and k£ > 1,5 > 0 are integers.
For each z,y € R there exists a regular element r = r(x,y) such that

[r. 2] = 3] =0.

—
3]
~

We shall prove the following commutativity results.

Theorem 1 Let R be a ring which satisfies (2) and let for each finite subset
F of R there exists a set M = M(F) of positive integers such that there is no
a prime number which divides each element of M and let (1) holds for each
z,y € F, each k € M and some integer s = s(f) = 0. If a,b € N, then
[a,b] = 0. Additionally, if R is a prime ring with no non-zero nil ideals, then R
18 commutative.

Theorem 2 Let R be a ring with unit element and let for each finite subset
F of R there exists a subset M = M (F') of positive integers such that there is
no a prime number which divides each element of M. If further there exists an
integer s = s(F) > 0 such that (1) holds for each z,y € F, each k € M, then R
18 commutative.

Theorem 3 Let R be a ring with unit element and let for each subset F' of R,
consisting of four elements, there exist relatively prime integers m = m(F) > 1,
n =n(F) > 1 and an integer s = s(F") 2 0 such that (1) holds for each z,y € F,
k =m, k =n, then R is commutative.

First we shall prove a lemma which is a slight improvement of some well known
results.
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Lemma 1  1° Let R be a ring and for x € R there exists a regular element
r € R such that [r,xz] = 0. If for y € R there is an integer n > 1 such that

g'y=(x+r)"y=0
then y = 0.

2° Let R be a ring and a,z € R with [z,a] = 0. If for b € R there exists an
integer k > 0 such that z¥|a, [a,b]] = 0 then

z*[a™, b] = nz*a"[a, b).

Proof of the Lemma. 1°. Expanding (z + r)™ we get

O=(z+r)"y=2"+ma" r+ - +rVy = (nz""r+- +nar" "y + ry.

If we denote —(nz"~2r + .- +nr"1) by a we obtain r"y = azy. This implies
r"zy =a"z"y=0

i.e. y = 0 since 7 is regular.
Proof of 2° follows easily by induction on 7.
Proof of Theorem 1. If a € R is niloptent, ¢ its index of nilpotency, then

(r—ra)-(r+ra+ra®+-.-4+ra"1) =r?

which implies that r — ra and so r + ra are regular.

For a,b € N take the set F' = {r+ra,r+ra?,...,r+rb,r+7b?, .. .} which is
obviously finite. Let M (F) and s = s(F) be as in Theorem 1. Since all elements
of F' are regular we have

[z*,y¥] = 0, for all z,y € F and for all k € M(F). (3)

Let k € M(F) and y € F be arbitrary. Since a is nilpotent there exists an
integer p > 1 such that
kla*,y*] = 0,

holds for every i > p. Suppose pg is minimal with this property. If py > 1 by
(3) we have
kla™~1,y¥] = 0 = [(r + ra™~ 1)k, ¥,

which is a contradiction to the choice of pg. Thus py must be equal 1 and we
have

kla,y¥] =0, y € F, k € M(F). (4)

Since b is nilpotent in the same way from (4) we get

/\‘2[0, b =0, ke M(F)

and by the property of M(F') we conclude that [a,b] = 0.
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Suppose now that R is a prime ring with non-zero nil ideals. Let a € N and
2 € R be arbitrary and take the set F' = {r +ra,r + ra®,...,ar,za} which is
finite. Let s = s(F) and M(F) be as in Theorem 1. In the same way as above
we prove that k[a, (az)¥] = 0, for all k € M(F). This implies

i-1

ka'(az)* (z(az)k~1)" = k(az)™,

for all integers i > 1. Specially, if p is the index of nilpotency of a, we get
k(az)®P~V* =0,

for all k € M(F). By the property of M(F) from this we easily conclude that
(az)N = 0, for some integer N > 1 which means that az is nilpotent. In
the same way we get that za is nilpotent. This, with the fact that nilpotent
elements mutually commute, means that N is a nil ideal of R and so N must be
equal {0}. Since R is prime and has no non-zero nilpotent element it also has
no non-trivial zero divisors. The condition (1) is now reduced to the condition
[z*,y*] = 0 and R is commutative, by a result of Herstein [2].

Proof of Theorem 2. Since R has unit element 1 we may take r = 1 in
(2) so that R satisfies the condition of Theorem 1. From this theorem we have

C(R) Cc N, N% C Z(R). (5)

Now we will prove that N C Z(R). For a € N and z € R take F' = {1 +
a,,2+a,z+xa}. Let m,n and s be as in our Theorem. From [(1+a)™,a™] =
[(1+a)* 2™ = 0 and (5) we easily conclude that

mla,z™] = nfa,z"] = 0. (6)
Conditions
z*[z¥, (& + a)¥] = 2°[z*, (2 + za)*] = 0,
for k =m and k = n and (5) implies
z*[z™, [z™, a]] = 2°[2", [z",a]] = 0.
By Lemma 2° we get

$S[Im2,a] _ mm.;—{-m(m—l)[mm, a]7 o [.'Enz, a] o n$3+n(n—1)[mn, a].

Using (6) we obtain z* [z™,a] = a° [z"*,a] = 0 and since m* and n® are
relatively prime we easily obtain zN[z,a] = 0, for some N > 1. If we take
F ={l+a,y,y+a,y+ya} where y = z+1 then repeating the same argument
as above to get (z + 1)M[z,a] = 0, for some M > 1. Now by Lemma 1° we
conclude that [z,a] = 0, which proves that N C Z(R).

Let z,y € R be arbitrary. Take F' = {z,y} and m,n and s as in Theorem 2.
By the fact that N C Z(R) we may use Lemma 2° to obtain

0= 8 [xm’ym] s m2m3+m—1ym—1[x,y]’
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and

0=2° [m'n,yn] - n2$s+n—1

¥

z,y).

Since m? and n? are relatively prime we get
atytle,y] =0,

for some integer t > 0. Repeating the same argument for 4 1 instead of z and
later for y 4 1 instead of y using Lemma 1° we get [z,y] = 0 which completes
the proof of Theorem 2.

Proof of Theorem 3. An inspection of the proof of preceding theorems
shows that only for the proof of (5) we have used finite subsets with eventually
more then four elements. We must show that this part of the proof may be
derive using only sets with four elements.

Invertible elements of R forms a multiplicative group which is commutative
by a result in [1]. If @ € R is nilpotent then 1+ a is invertible. This implies that
nilpotent elements of R mutually commute. To show that nilpotent elements
form an commutative ideal of R it is sufficient to prove that R is commutative,
under the additional condition that R is a prime ring without non-zero nil
ideals. If u € R is invertible and = € R arbitrary then there exist relatively
prime integers m > 1, n > 1 such that [u™, 2™ = [u™, 2] = 0 holds. It follows
that there exist integers N > 1 and k > 1 such that

[V, 2¥] = [uN 1+, 2% =0,

holds. From that we easily conclude that [u, z*] = 0, which means that u lies in
the hypercenter of R. Herstein’s hypercenter theorem shows that u belongs to
the center of R. We thus obtain that N C Z(R). It follows that N = {0} and
the condition (1) again becomes [2*,y*] = 0 and R is commutative as above.
From this we conclude that (5) holds.
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