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PREFACE

The Fourth Yugoslav Algebraic Conference "Algebra
and Logic" organized by the Faculty of Science, Zagreb,
was held in Zagreb, June 7-9, 1984. This book contains
most of the papers presented during the Conference.

The next Yugoslav Algebraic Conference is scheduled
to be organized by the Faculty of Science, Sarajevo, in
1986.

Editor
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PROCEEDINGS OF THE CONFERENCE 1
»ALGEBRA AND LOGIC", ZAGREB 1984

SOME CONGRUENCES ON GENERALIZED INVERSE SEMIGROUP
Branka P, Alimpié

Abstract. A regular semigroup S is called gemeralized
inverse if the set E(S) of all idempotents of S forms a nor-
mal band [6%. A band B is normal if efgh = egfh, for every
e,f,g,h of B.In this paper inverse and & -unipotent con-
gruences on S are characterized, analogous to the caracteri-
zation of congruences on inverse semigroups given by M.Petrich
(4]. We mention that for & -unipotent semigroups a similar
characterization has been given by Sh.Shimokawa [5]. Finally,
if ¢ is a congruence on S, the smallest £ -unipotent and the
smallest inverse congruence on S containing ¢ are described.

Firstly we give some definitions and results. We adopt
the notation and terminology of J.M.Howie f2] B o Z is a class
of semigroups, then a congruence ¢ ona semigroup S is a C -
congruence if S/fe 8 . A regular semigroup S is z—unipotent
(inverse) if the set E(S) forms a right regular band (semila-
ttice). A band B is right regular if ef=fef, for any e,f of B,
and right normal if efg=feg, for any e,f,g of B. Obviously, a
normal band is right regular if and only if it is right normal.

RESULT 1 [6]. Let S be a generalized inverse semigroup. Then
(1) xefy = xfey,
(2) xa’y = xa"y,

for every x,y,a € S, a’,a"¢V(a), e,fec E(8).

RESULT 2 [ 5]/. Let S be an £ -unipotent semigroup. Then
(1) a*a = a"a,
(2) a’ea = a'"ea,
(3) aa’ea = ea,

for every a &S, a',a"€ V(a)‘, e cE(S).




Let S be a generalized inverse semigroup. A congruence T
on the set E(8) is called normal if

etf = (Wse8)(vs’c V(s))s'’esT 8'fs.

A regular subsemigroup K of S is called normal if it is full
(E(8) ¢ 8) and selfconjugate ((vs e S)(vs’eV(s))s’Ks cK).

For a congruence 7 on E(S) we introduce the following
relations:

(1) eT,t el r e (Wse S)(v¥s?€ V(s))s'esTs’fs

(2) eTyf £25 (¥he E(S))he Thf.

. LEMMA 1. If T is a normal congruence on E(S), then the rela-
tions T’o and 'L'rare normal congruences on E(S8). To is the
smallest semilattice congruence on E(S) containing T, ’C'r is
the smallest right regular band congruence on B(S) containing

T, and T,sT,.
Proof. Obviously, the relations T  and T
For any g€ E(S) we have
o T f =» (¥seS)fs'eV(s))s'gegs T s’ gfes (Since s’ge V(gs))

=3 (VseS)(Vs’eV(s))(s’ges‘l.'s’gra A 8'egsTe'fgs)
' (By Result 1)

r &re equivalences.

=> ge T gf A eg T T8,
e T I => (¥heE(3))(hge T hgt A heg Thfg) (Since hgeE(S))
= ge T.ef o eg C fa.
Hence, €, and fr are congruences.
Since T is normal in S, we have TS'CO, and since C is
a congruence, we have T & 'Cr.
Let s€3, 8'€V(s), then we have
e 'Cof¢=$ (YteS)WteV(t))t’et Tt It
= (¥t€S) Wt V(t))t*s’est Tt's'fst (Since t's'e« V(st))

= 8'es "C‘os"fs #

& 'Crf = 88'eTss'fl (8ince ss8'€E(S))
= 8'esUs’fs (Since T is normal)
=3 8'es ’Crs’fs (Since 'ng:r).

F and 8 al in S
Hence, T  and 'Cr are normal i .

For -Co we have

ef Zoef 4= (VseS)Wa’eV(s))s’efsT s’efs
&> (vees)(ve'eV(s))s’efsTs’fes (By Result 1)
& ef 'Cofe,



which yields that 'to is a gsemilattice congruence.
Similarly, for (Er we have

ef ‘Cr ef & (Y h€E(S))hef T hef
&> (¥ h€ E(S) )hef C hfef (By definition of S)
& ef T, fef

which yields that fZI_ is a right regular band congruence.
Let © be any semilattice congruence on E(S) containing
C. Then we obtain
e Go f = e G efeafefGT (For s=s’=e, and g=g’=f)
= e 6 f (Since efe ¢ fef)
which implies 6'0 <€ 6, and

Te6 =T, < 6, = <Cs6.

Hence, CEO is the smallest semilattice congruence on E(S) con-
taining T.
Similarly, if 6 is a right regular band congruence on
E(S) containing T , we obtain
e Grf = eG ef A fe 6 f (For h=e and h=f)
=2>e0f (Since ef wfef, fef 6f)
which implies that 6 €6, and T_< S .

Hence, % . is the smallest right regular band congruence
r o~
on E(S) containing T.
Finally, since every semilattice congruence is a right
(vog
C

regular band congruence, it follows that ‘Crg
Now we deseribe x-unipotent congruences on S.

LEMMA 2. Let “C be a normal congruence on E(S) and let K b

a
normal subgsemigroup of S such that
(i) aeeKneTa’a = ack,
(ii) aeXK = a’eaTea’a
for every a€ S, a’<€ V(a) and e€E(S), then
(1) aebeKAreTa’a = abek,
(2) abeK = aebeK,
(3) ab’e K Aa’aTh’b = a’ea Th’eb,
(4) ef Tfef (Tis a right regular band congruence)
for every a,beS, a’€V(a), b’ecV(b) and e,feE(S).

Proof. (1) By Result 1, ab(b’eb)=aeb €K. Since ¢ is normal,
from e{¢a’a we obtain that b’eb Tb’a’ab. Since b’a’e V(ab),
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it follows from (2) that ab€K.
(2) Since K is normal, ab& K = aeb=ab(b’eb)€ K.
(3) Assume that ab’€ K and a’a Tb’b. Then

a’ea = a’aa’eaa’a T b’ba’eab’d (Since a’a Tb’b)
T b’eba’ab’b (By (ii), since ba’¢V(ab?))
Thb’eb (Since a’a €b’b).

(4) Since K ig full, from (ii) we obtain that fef ¢ ef.

DEFINITION 1. Let K be a normal subsemigroup of S, and let ©
be a normal congruence on E(S). The pair (K, <) is an & -uni-
potent congruence pair for S if K and T satisfy the conditi-
ons (i) and (ii) of Lemma 2.

DEFINITION 2 [4] . Let ¢ be a congruence on S. Then
ker¢ ={xeS |(JeekE(S)) xge%

trg = ¢lg(s):
LEMMA 3. Let Q be an ;C-unipotent congruence on S. Then, for
a,be s,
ag¢b ¢ (Ha’eV(a)) (¥ b?cV(b))(a’a tro b’baab’ e ker ¢ )

Proof. Let ag¢b, a’cV(a), b’eV(b). Then

a’apa’bb’b (Since a¢b and b=bb’b)
¢a’ab’b (Since bga)
¢b’ba’ab’b (since ¢ is & -unipotent)
¢b’ab’b (Since bg a and aa’a=a)
¢b'b (since agb),

so a’a trf b’be. From ab’fbb' it follows that ab’¢ kerg) .
Conversely, let a'atrgb’b and ab’¢g kerg for some a’eV(a)
and b%s V(b). Then

a fab’bb’b (Since a’a §b’b)
bb'ab’b (Since ¢ is & -unipotent)
§bb’bb’ab’b (Since bb’€ E(S))
fba’ab’ab’b (Since b’b ga’a)
Pba’ab’b (Since ab’gkery )
eb (Since a’a pb’b).

THEOREM 1. ﬁ‘ (K,T ) be an f—unipotent congruence pair for a
generalized inverse semigroup S, and let ?(K,T) be a relation
on S defined by

*) a QK,T)6&S, (Fa'ev(a)) (@b’ ev(b))(a’aTh'baab’ €K)
Then f(K, T) is the unique & -unipotent congruence on S for




w

which ker‘f(}(,f)ﬂ( and tr f(K,T )=T.
Conversely, if ¢ 1is an &, -unipotent congruence on S,

then (kerg ,trg) is gof -unipotent congruence pair for S and

g=f(kerf,tr§>).
Remark 1. By Results 1 and 2 we have
agK,T)be> (Wa'cV(a)) Wb’eV(b))(a’aThb'b A ab’€ K).

Proof. Since K is normal, the relation ¢(K,T ) is reflexive
and symmetric, and by Remark 1 it is transitive.

Let ag(K,T)b, and ceS, c’e¢V(c). Then a’a Tb’b and ab’¢ K
for gsome a’cV(a) and b’¢V(b). Since € is normal, we have
a’aTb’b= c’a’acTc’b’bc, and by (2) of Lemma 2 we have
ab’cK = acc’b’ cK. Since c’a’¢V(ac) and c’b’gV(bc), if follows
that acf(K,‘C)bc,

Purther, from ab’¢K and a’a<b’b we have a’(c’c)aTb’(c’c)db
by (3) of Lemma 2 and ab’e K = cab’c’& K, since K is self-

conjugate. From a’c’c V(ca) and b’c’e< V(ch) it follows that
ca 9(K,‘t)cb.

Therefore ¢(K,T) is a congruence on S.

If a€ker ¢(K,T), then a’aTe and ae &K for some a’€ V(a) and
gsome ee& E(S), which by (i) of Lemma 2 yields a& K. Conversely,
if a¢K, then a(a’a) €K, a’a¢a’aa’a, for any a’¢V(a), hence
a ¢(K,T)a’a. Consequently, K=kerg(K,’c\), and obviously

tr Q(K,T)=T .

The uniqueness of f(k"f)follows from Lemma 3. Observe that it
follows also from (1], Theorem 5.1.

Conversely, let f be an %—unipotent congruence on S.
Then tr§ =§,E(S) is a normal congruence on E(S), and by ortho-
doxy of 5 kerg is a full and selfconjugate subsemigroup of
S. Let ackerg, a’€ V(a). Then az’g a, and a’=a’aa’ ¢ (a’a)(aa’)
€E(S), so a’€ ker ¢, and kerg is a regular subsemigroup. Hence,
it is a normal subsemigroup of S.

From ae eker§> and a’age it follows a=aa’a§aeeker §> »
so (i) of Lemma 2 holds.

Let ac kerg , a’¢c V(a), then a¢ f and a’ ¢ g for some f,g
€ E(S), and so a’ea ¢ gef ¢egf ¢ea’a, since ¢ is X -unipotent
on S, and the condition (ii) of Lemma 2 holds.

Hence, (ker g,tr)”) is an a‘f-unipotent congruence pair for

S. By the first part of this theorem, g:_f(ker9 ,trSD ). The
theorem is proved.



THEOREM 2, If § is a congruence on a generalized inverse semi-
group S, then (ker ¢, (tr g )r) is an &L -unipotent congruence
pair for S, and ?(kerf ,(tr})r) is the smallest & -unipotent
congruence on S containing e

- Proof. Let [ be a congruence on S. By Theorem 1 kerg¢ is a
normal subsemigroup of S, and by Lemma 1 (trg )r is a normal
congruence on E(S), and it is the smallest right regular band
congruence on E(S) containing trg .

Let aeckerf and a’a(trf)re. Then a’ae ga’a (for h=a’a),
so a=aa’a ¢paa’ae = aecker o .

If acker¢ and a’€V(a), then a ¢ f and a’¢ g for some
f,gc E(S), and by Lemma 1, we have

a’ea tre gef(tr ¢ )r egf trg ea’a.

Hence, (kerg¢ ,(tr ¢ )r) is an & -unipotent congruence pair. Sin-
ce trgc(trg) , it follows that g< Q(kerg,(trg) ).

Let G be an &’-unipotent congruence on S containing P .
Then ker ¢cker 6, and by Lemma 1 (trg)rg tr ¢, so /g(kersp,(trf)r)
< ¢(ker @,tr6)=0.

Hence g(kerg,(trf)r) is the smallest &-unipotent congruence
on S containing ¢ . The theorem is proved.

It is possible to establish analogous results for inverse
congruence on S. Firstly we have the following statement.

LEMMA 4. Let ¢ be a congruence on E(S) and let K be a normal
subsemigroup of S guch that

(ii)* a¢K =»>a’ataa’, for every acS, a’gV(a).
Then € is a semilattice congruence on E(S), and

(ii) aeK =>a’ea<Tea’a, for every aeS,a’ €V(a), eeE(S).

Proof. Since K is full, and ef eV(fe), from (ii)’' we obtain
efe = ef.feU fe.ef = fef, and so fe<T fef Tef.
If a€ K, then a’eecK, so by (ii)’ we have

a’ea = a’e ea Teaa’e Teaa’ Tea’a,

—

DEFINITION 3. Let K be a normal subsemigroup of S, and T a

normal congruence on E(S). We say that (K,T) is an inverse

congruence pair for S if the conditions (i) of Lemma 2 and (ii)®

of Lemma 4 are satisfied.
NNow we can formulate theorems which are analogous to Theo-

rems 1 and 2.



THEOREM 3. Let (K,T ) be an inverse congruence pair for a ge-

neralized inverse semigroup S, and let Q(K,i') be a relation

on S defined by (®). Then ¢(K,T) is the unique inverse con-
gruence on S for which ker g(K,‘C):K, tr (X, T =T .
Conversely, if f is an inverse congruence on S, then

(ker{ ytr P ) is an inverse congruence pair for S and

2 =g(ker§,trf ).

Remark 3. This theorem is a special case of Theorem 1 (3].

THEOREM 4. If ? is a congruence on a generalized inverse.sgemi-
group S, then (ker f,(trg)o) is an inverse congruence pair for
S and @ (ker ¢,(trg) ) is the smallest inverse congruence on §
containing e.

From Theorems 2 and 4 we have the following consequence.

COROLLARY 1. If & is the equality relation on E(S), then
Q(E(S), € )
?(E(S), to)

the smallest Jﬁ-unipotent congruence on S, and

=
0]

('

the smallest inverse congruence on S.
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SEMIGROUPS OF GALBIATI-VERONESI

Stojan Bogdanovié

ABSTRACT. In this paper we consider semigroups which are semilattices
of nil-extensions of rectangular groups.Also,we consider semigroups which
are chains of nil-extensions of completely simple semigroups.

INTRODUCTION AND PRELIMINARIES

In [6] J.L.Galbiati and M.L.Veronesi studied JiZregular semigroups
in which every regular element is completely regular (semigruppi forte-
mente regolari).These semigroups are completely described by M.L. Veronesi
in [19] . Semigroups which are semilattices of nil-extensions of recta-
ngular groups are considered in the special case by M.S.Putcha, [15] . In
this paper we consider the general case.

Throughout this paper, Z+ will denote the set of all positive
integers.

A semigroup S is -ﬁ:regular if for every ag€s there exists
m€Z+ such that a"e a"sa" . A semigroup S is completely J-regular

if for every aé€sS there exist X €S and mé Z+ such that

m m m m m : ik
a = a xa and a"x = xa© . S is called a semigroup of Galbiati-

Veronesi (GV-semigroup) if S is J-regular and every regular element

of S is completely regular, f6] . We will say that a semigroup S
is JZinverse if S is Ji-regular and every regular element of S
possesses a unique inverse, [5] . s is GV-inverse if S is GV-semi-

group and every regular element of S possesses a unique inverse, [6].

S is a strongly J-inverse semigroup if S 1is Jl-regular and
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idempotent elements commute, [2). A semigroup S with zero O is a
nil-semigroup if for every a€S$ there exists né€ Z+ such that

a® =0 . By nil-extension we mean an ideal extension by a nil-semigroup.
If S=BxG , where B is a rectangular band and G 1is a group,
then S is a rectangular group; S is a right group if B is a
right zero semigroup.A semigroup S is archimedean (left archimedean,

right archimedean) if for every a,b€S there exists ne Z+ such

that an.é sbs  ( a"e Sb 5 a"e bs ).A semigroup S is t-archimedean
if it is both left and right archimedean.A semigroup S is left (right)
weakly commutative if for every a,bg€Ss there exists neZ+ such
that (ab)"€ bs ( (ab)"e Sa ) , I8]. A semigroup S is weakly
commutative if for every a,b€S there exists nEZ+ such that
(gb)ne bSa , Q0] (see also [12]).A subsemigroup N of a semigroup
S is filter of S , if for all X,y&S , xyeN implies x,yeN .

For any x&S , N(x) denotes the intersection of all filters
containing x . Then  N(x) is the least filter containing x . Let
S be a semigroup and a,b€S . Following ﬂ.S] we introduce the
following notations:

albé> be Slns1

a ‘rb“ beasl
a|bed beSla
{ £
albed al b and a|b
t r ]

By E(S) we denote the set of all idempotents of a semigroup S .
For undefinied notions and notations we refer to ﬁZ]

The following proposition is a generalization of results of Il, 5 3

10,12 , 14).

PROPOSITION 1.1. The following conditions are equivalent on a
semigroup S :

(i) S is left weakly commutative;

(i) 8 is a semilattice of right archimedean semigroup;
(111) (Va,pes) a|b = (Fiez")( a\rbi )

(iv)  N(x) ={y6.S : n52+) xne yS} , for every xg€S .
Proof. (ii)& (iii). This is Theorem 3.(1) [i6].

(1) =p (1ii). Let S be a left weakly commutative semigroup.

Assume that alb , i.e. there exist x,y eSl such that b = xay.



Then there exist u€&S and i€ z' such that b = (xay)L = (ay)u .
Hence, al b1
r
(ii)=> (i). Let S be a semilattice Y of right archimedean
semigroups S“ (e € Y) . :hen for ti(-S.< " be% we have t:x.at
ab,ba €S and so (ab) = bax for some XES and n€&€Z . Hence,
S is left weakly commutative.

(i) =>» (iv). For x€8 , let

T={yes : (3Inez") x"e ys}.

Let y,z€T , then X = ya , x" = zb for some a,b€Ss and mez+.
Fromthis it follows that
(1) yxm = yza = yzb .

Since S is a semilattice Y of right archimedean semigroups S_( (e Y)
(since (i)&=» (ii)) we have

x" = ya€s, S S, . =5, and y°a €5, 5. S Sy, =Sy
So by (1) we have x,yzb €S, . Since S, is a right archimedean
semigroup we have that there exist k ez+ and ues such that

xk = yzbue yzS
Hence, yz&T . Assume now that yzgT . Then there exist wugS and
ré€ Z+ such that x' = yzu €yS , so y€T . From x = yzu , by
left weak commutativity,we have xrk = (yzu)k = zuv€zS for some
k € Z+ and VES and thus z&T . Therefore, T is a filter of S .
Let y€&T , then X" = yaeN(x) and so ye&N(x) . Hence,

T & N(x) and by minimality of N(x) we have that T = N(x)

(iv) => (i). Let x,y&S , then yxeN(xy) , 80
(xy)™ = yxS € y8
for some né& Z+ . Hence, S is left weakly commutative.[]

COROLLARY 1.1. The following conditions are equivalent on a semi-

group S :
(i) S is weakly commutative;

(ii) S is a semilattice of t-archimedean semigroups;

o .+ g
(iii) (Va,bes)( alb=> (diez") a\tb )

(iv)  N(x) ={yG.S : (3nezh xneySy} , for every x€S .0
REMARK. (i)& (iv).This is Theorem 6.5. (I1}. (ii)&> (iii). This is
Theorem 3.3. [__i6] (i)& (ii). This is Theorem 1. [1] ,also Proposition

4.2.[5].
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2. SEMIGROUPS OF GALBIATI-VERONESI

In our investigations the following result is fundamental (see [-19] §
Theorem 13.1.).
THEOREM (Veronesi). S is a semilattice of nil-extensions of

completely simple semigroups if and only if S is a GV-semigroup.nl

This theorem will be referred to as '"Veronesi's theorem".

THEOREM 2.1. The following conditions are equivalent on a semigroup S:

(i) S is a semilattice of nil-extensions of rectangular groups;

(ii) S is a GV-semigroup and for every e,f€ E(S) there exists
+
n€z such that
2) (eH)™ = (en)™
(iii) s - is -’F—regular and a = axa implies a = aaxza2 %
Proof. (i)==> (ii). Let S be a semilattice Y of nil-
extensions of rectangular groups Sy (¢ & Y) . Then by Veronesi's theorem

S is a semigroup of Galbiati-Veronesi.Assume that eé€S, and fESn

are idempotents,then ef,fe & S_(ﬁ , so  (ef)",(fe) e K.", for some
‘neZ+ , where K-‘/B is a rectangular group which is the kernel of S
Now, there exist g,h&E(S)N K.m such that (ef)"e Gg ¥ (fe)ne.ch .
where Gg’Gh are subgroups of K.“ . Since E(S) N K"(’ is a
rectangular band we have g = ghg . Furthermore,

(ef)™ = (ef)"g , (£fe)" = (fe)™h
and there exist x€G and yeGh such that

(ef)"x = g (fe)y = h .

From this we have that

(ef)" = (ef)"g = (ef)"(ef)™x = (ef)"e(ef)"x = (efe)"(ef)"x = (efe)y
= e(fe)"g = e(fe)™hg = (efe)™((fe)y)g = (efe)nef(fe)nyg
= (ef)™(fe) g = (ef)™ lhg = (ef)(ef)"g-hg = (ef)"Hg
= (ef)

Hence, for every e,f€E(S) there exists neZ+ such that (2) holds.

n+l

(ii)=p (i). Let S be a semigroup of Galbiati-Veronesi with (2).
Then
(3) (efe)” = (ef)"e = (ef)n+1e = (efe)

Hence, (efe)n is an idempotent.Since S is a semilattice Y of

n+l

nil-extensions of completely simple semigroups S, (e« & Y) (Theorem

e
Veronesi) for e,f€E(S)N S« we have that e,feK_  , where K
is the completely simple kernel of S -« It is clear that (efe)” is

an idempotent in Kal , 8O
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(efe)" = e(efe)e

and therefore e and (efe)” are in the same subgroup HLA of K*.
Hence,
(4) e = (efe)"”
Now by (3) we have

e(fe) = (efe)"(fe) = (ef)™ e = (efe)™! = (efe)”
From this and (4) it follows that e = efe . Hence, K“ is a recta-
ngular group, i.e. S is a ni-extension of a rectangular group.

=

(i) =p (iii). Let S8 be a semilattice Y of nil-extensions of
rectangular groups Sc( (ol € Y) . Let a = axa . Then ax,xa € Sd ’
so ax = ax(xa)ax , since  E(g,) is a rectangular band.Hence,

a = ax-a = (ax.xa)axa = ax?'a2

(iii)=» (i). Let (iii) holds.Then S is a GV-semigroup,so by
Veronesi's theorem we have that S is a semilattice Y of nil-extensi-
ons of completely simple semigroups S, (X & Y) . Since S« (« € Y)
is a nil-extension of a completely simple semigroup K and a = axa

o
implies a= axza2 we have by Proposition IV.3.7. ﬁZ] that Ko( is
a rectangular group.Hence, § is a semilattice of nil-extensions of
rectangular groups.O)

COROLLARY 2.1. The following conditions are equivalent on a semi-

group S :
(i) S is a GV-semigroup and E(S) is a subsemigroup of S ;
(11) S is fr-regglar , a = axa implies 2= .axza2 and RegS
is a subsemigroup of S ;
(1ii) s is a semilattice of nil-extensions of rectangular groups

and E(S) is a subsemigroup of S .
Proof. (i)&= (iii). This equivalence follows immediately by Theorem

(i) =» (ii). Since E(S) is a subsemigroup of S we have by
Proposition IV.3.1.[12] that a,b&RegS implies abg RegS .

(ii) =» (i). It is clear that S is a GV-semigroup.Let for
a g RegS be a = axa . Then a = a(xax)a and xax €RegS . Hence,
RegS is a regular semigroup.Now by the hypothesis and by Proposition
IN:.3: 7. ﬁZ] we have that E(S) is a subsemigroup of S .a

COROLLARY 2.2. S is a nil-extension of a rectangular group if

and only if S is an archimedean GV-semigroup and E(S) is a sub-

semigroup of S .Q
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THEOREM 2.2. The following conditions are equivalent on a semigroup

(i) S is a semilattice of nil-extensions of right groups;

(id) S is J-regular and left weakly commutative;

(iii) S8 is a GV-semigroup and for every e,f€ E(S)  there exists
nezt  such that (eB)" = (fef)" ;

(iv) 8 is Z-regular and a = axa implies ax = xa’x

Proof. (i)&=> (ii). This equivalence follows by Proposition 1.1. and
by Lemma 3.1. [15] .

(i) = (iii). Let e€sS fe 3, be idempotents.Then ef,fefe Sem
so by Theorem 2.1. we have that (ef)™ = (ef)n+1 for some neg zt  and

(fef)™  are idempotents in Sup » SO
(ef)"(fef)™ = (fef)"

(ef)™ = (fef)"

(iii) =>» (i). By Theorem 2.1. we have that S is a semilattice Y
of nil-extensions of completely simple semigroups S (X € Y) . hence,for
every «€ Y , S, has the kernel K, = RegS$, =‘41,(G“;Id,.ld;l",‘) . Now we
have that

Ly ={ (a;1,1): teL, yuetyl . e,
is a left group.Thus for any two idempotents e,f from Lj we have
ef = e and since

e=¢e" = (ef)" = (fef)™ = f(ef)” = fe

for some nGZ+ we have that e = ef = fe , 80 e =f , since
idempotents in K, are primitive.Hence, \Ell = 1 . Thus Kd is a
right group.Therefore S is a semilattice of nil-extensions of right
groups.

(i)==3 (iv). For a = axa we have that ax,xae¢ %1 , SO0
xa =(ax)(xa) = axza since E(S, ) is aright zero band.

(iv)=» (i). If a = axa . then
2 2
a = (a¥a = xa x'a = Xxa.axa = xaa = xa

SO
2 22
a = ax-a = ax-xa = ax a
which by Theorem 2.1. implies that S is a semilattice of nil-extensions

of rectangular groups S, (&€& Y) . Since in the kernel K, of Sy

(€ Y) the following implication holds: a = axa = ax = xazx , we have by

the dual of Theorem IV.3.10. ﬁ2] that K.( is a right group,so S.(

(X € Y) is a nil-extension of a right group.O



COROLLARY 2.3. S is a semilattice of nil-extensions of right

groups and E(S) is a subsemigroup of 8 if and only if S is a
GV-semigroup and ef = fef for every e,f €E(S) .0

COROLLARY 2.4. The following conditions are equivalent on a

semigroup 8
(i) S is a GV-semigroup and for every e, feE(S) , ef=fe ;

(ii) S is a semilattice of nil-extensions of groups and ef =fe

for every e,f€ E(S) ;
(iii) s is f—regular and RegS is a Cliffordian subsemigroup
of S .

Proof. (i) =2 (ii). Follows immediately by Corollary 2.3.
(ii)€> (iii). This is one part of Theorem 2.3. 013,
(iii) = (i). By Theorem 2.3.0 >

3. JU-INVERSE SEMIGROUPS

THEOREM 3.1. The following conditions are equivalent on a semi-

rou Bz
(i) s is J-inverse;
(ii) S is i -regular and for every e,f EE(S) there exists

neZ+ such that (ef)" = (fe)

(iii) s is f:regular and

(5) a = axa = aya =P Xax = yay ;
(iv) For every ags there exists mE-Z+ such that Slam
and a‘“sl contain a unique idempotent generator.

Proof. (i)&=p (ii). This is Theorem 4.6. BGl.

(i) & (iv). By Theorem 4.1. [].

(i) = (iii). Let S be J-inverse.Then S is J-regular.
Let a = axa = aya . Then a = a(xax)a , xax = (xax)a(xax) , a = a(yay)a,
yay = (yay)a(yay) and therefore xax = yay .

(iii) =>(i). Let S be J-regular with (5) . Assume that
a=axa , x=3%xax , a=aya , y = yay . Then by (5) we have that

X = xax = yay = ¥y .

Hence, S is f—inverse.u

THEOREM 3.2. The following conditions are equivalent on a semigroup

§ .- (1) S is GV-inverse;
(ii) S ds f:regular and a = axa implies ax = xa ;
(iii) S is a semilattice of nil-extensions of groups;
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(iv) S8 is a GV-semigroup and for every e,f€E(S) there exists
n€z"  such that (ef)™ = (fe)® ;

(v) s is Y -regular and weakly commutative.

Proof. (i) =» (ii) Let S be GV-inverse and a = axa . Element a
is in a subgroup G of S and so it has an inverse y& G such that
ay = ya . Since xax 1is also an inverse of a we have that y = xax ,
since S is % inverse.Hence, a(xax) = (xax)a , i.e. ax = xa .

(ii) =» (i). Let S be H%-regular and a= axa implies ax = xa.
Then S is a GV-semigroup.Assume that a = axa = aya , X = Xax , y = yay.
Then ax = xa , ay = ya . Now we have that

X = xXax = x a = xzaya = xaxya = Xya
S0 ax = axay = ay . Therefore,
X = xax = xay = yay = y .
Hence, S 1is GV-inverse.

(iii) =» (iv). Let S be a semilattice Y of nil-extensions of
groups S, (X€ Y) . Then S is a GU-semigroup.Assume two idempotents
eéS\‘< and f(—S(b , then ef,fe € S-(p and there exists neZ+
such that (ef)” and (fe)" are idempotents in S'( and thus
(ef)™ = (fe)" . e

(iv) =% (iii). Let S be a GV-semigroup and for every e,fgE(S)
there exists ne€Z' such that (ef)™ = (fe)" . Then S is a semi-
lattice Y of nil-extensions of completely simple semigroups S

ol
(Theorem Veronesi).Assume e,f€ E(S) N S¢ - Then e and f are in

the completely simple kernel K’( of So( . Now we have that e,efe€ Ge
and f,fef € Gf , where Ge and Gf are maximal subgroups of K.( "
Thus
(ef) = (fe)" , flef)™ = f(fe)"
80
(efe)” = (fe)" = (fef)"
i.e. Geﬂ Ge #6 , so e=f . Hence, S, has only one idempotent

and it is a nil-extension of a group.
(i1)&® (iii) &> (v). This is Theorem 2.2.[5) .0
THEOREM 3.3. The following conditions are equivalent on a semigroup S:

(i) S is strongly Z-inverse;

(i) S8 is X-regular and RegS is inverse subsemigroup of § ;

s
(iii) S is T-inverse and the product of any two idempotents of §
is an idempotent.
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&> (iii). This is Theorem 4.2.[2].

(i) = (ii). Let S be strongly Z-inverse.Then for a,b€ Reg$

we have a = axa

, b =Dbyb , so

ab = (axa)(aya) = a(xa)(by)b = a(by)(xa)b = ab(yx)ab .

Hence, RegS

is

a = axa , then

group since

ef

a subsemigroup of S and it is regular (since if
a = a(xax)a , Xxax €RegS ). RegS is an inverse semi-

= fe for every e, f€ E(S)

(ii)=» (i). This implication follows immediately.n

4, UNION OF NIL-SEMIGROUPS

LEMMA 4.1. f3] S is a nil-semigroup if and only if for every
a,b€S there exists rez’  such that af = br+1 .0

LEMMA 4.2,

a€s there exists reZ+ such that a = a

Proof.

Let

S is a union of nil-semigroups if and only if for every
r r+l

S be a union Y of nil-semigroups S e Y ).

ol
Then ae€s is in a S.‘ and since S.( is a nil-semigrou we have
by Lemma 4.1. that there exists 1."&2+ such that a’ = ar+l

The converse follows immediately.p

The following conditions are equivalent o

a semigroup S:

S 1is a nil-extension of a right zero band;

LEMMA 4.3,

(i)

(11 s 4
band;

(iii) (Ya

(iv)

s a union of nil-semigroups and E(S) is a right zero

bes)Imezh) (™ = ba™ ;

S is a right archimedean union of nil-semigroups.

Proof. (i)¢& (iii). This is Corollary 7. [4].
(ii)= (i). Follows by Theorem 3. [4].
(i) = (ii). Follows immediately.

(iv) = (ii). For e,f €E(S) there exist x,y€S such that

e=fx , f=ey

zero band.

, so ef =e(ey) = ey =f . Hence, E(S) 1is a right

(iii) =» (iv). Follows immediately.Q

THEOREM 4.1. S 1is a semilattice of nil-extensions of right zero bands

if and only if

commutative,

Proof.

zero bands

Let

S

S is a union of nil-semigroups and s is left weakly

S be a semilattice Y of nil-extensions of right

@ € Y) . Then by Lemma 4.2. and Theorem 2.2. we have that

S is left weakly commutative.
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Conversely,let S be a left weakly commutative union of nil-
semigroups.Then by Theorem 2.2. we have that § is a semilattice Y
of nil-extensions of right groups §, («{ € Y) . Since Sy is a
nil-extension of right group and So( is union of nil-semigroups we
have by Lemma 4.3. that Sd is a nil-extension of right zero band.p

Theorem 4.1. is a generalization of arezult from [9] .
5. CHAIN OF NIL-EXTENSIONS OF COMPLETELY SIMPLE SEMIGROUPS

THEOREM 5.1. S 1is a chain of nil-extensions of completely simple

semigroups if and only if S is a GV-semigroup and for any e,f €E(S)
either egef§ or fefeS

Proof. Let S be a chain Y of nil-extensions of completely
simple semigroups 4 (deY) . Assume e,f& E(S) ,» then eeS, ,
fes, . Suppose that o 43 (ordering of the semilattice Y ); the

case A <ol is treted analogously.Then efeeS°< , and we have eeHn 5

n e
£ f Z H, i
(efe) ¢ Hj,u or some  né& , where iA Hj/( are maximal subgroups
of the kernel I(“< of S¢ - Complete simplicity of K, yields
n _ n
(efe) e(efe) e g H],AH#‘HMQ LI
Letting u be the inverse of (efe) in H, , we obtain

i in
e = (efe) ug efS
Conversely,b'y Veronesi's theorem it suffices to show that Y is
linearly ordered.For any classes Su and S/5 (X ,peY) , let eeS_‘ ;
fe S/‘J be idempotents.Then e gefS implies d‘-‘/} and Fe feS
implies A<« .0

THEOREM 5.2. S 1is a chain of nil-extensions of rectangular groups

if and only if S is a GV-semigroup and for every e,fe€E(S) there
exists neZ+ such that e = (efe)” or o= (fef)"
Proof. Let S be a chain Y of nil-extensions of rectangular

groups S¢ (€€ Y).Then by Theorem 2.1. for e€S§, , f&Sp there

exists neZ“ such that (ef)” = (ef)nJrl . From this it follows

+ +
that (ef)"e = (ef)" le , L.e, (efe)” = (efe)” A . Hence, (efe)”
is an idempotent.Suppose that « £ . Then (efe)e Sy , SO

(efe)” = e(efe)”e = e
(since E(S,) is a rectangular band).
The converse follows immediately.D
The following theorems follows easily from the results already

proved.
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THEOREM 5.3. S 1is a chain of nil-extensions of right groups if and

only if S is a GV-semigroup and for every e, f€E(S) there exists
néZ+ such that (ef)" = f or (fe)" = e 8

THEOREM 5.4. S 1is a chain of nil-extensions of groups if and only if

S is a GV-semigroup and E(S) is achain.
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A NOTE ON INVARIANT n-SUBGROUPS OF n-GROUPS

Naum Celakoski, Sne¥ana Ilié

Invariant n-subgroups of n-groups are considered here,
and the so called "indirect method" for proving theorems
on polyadic groups is used.

0. PRELIMINARIES

Invariant n-subgroups of n-groups are considered in Rusakov
[3], [4] and some properties are investigated there by "direct
technics" (which are used in most papers on n-groups). An "indi-
rect method" which uses binary groups for proving theorems on

polyadic groups is proposed in Cupona, Celakoski [2].

We use this method here to give an analogy of the well
known result of the binary case that all normal subgroups of a
group are exhausted by the kernels of homomorphisms, giving fir-
stly some characterizations of normal n-subgroups of an n-group
by the universal covering group.

We will use some definitions and notations as in [1] - [4].

An algebra Q = (Q,[ ]) with the carrier Q and an n-ary ass-
ociative operation on Q, [ J:(x ,...,x ) [x1...xn] (n being
addition, all the equations [a ...a _;x] = b, [ya1...an_1] =b
on X and y are solvable in Q. The semigroup Q" = (Q",-) gene-
rated by the set Q with the set of defining relations:

a =a,...a for every equality a = [a1...an] in Q, f.e.

Q" = <Q; {a =a,...a | a = [a1...an] in Q1>
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0* = U™, where Q" = {a . .ay | a, €Q} can be written

1
in the form ([1; p.25], [2; p.136]):

Q" = QUO?U ... U™}, where olnol =g if ipy.

An n-semigroup Q can be considered as an n-subsemigroup of its
universal covering semigroup Q". If Q is an n-group, then Q" is
a group and vice versa.

1. INVARIANT n-SUBGROUPS AND THE UNIVERSAL COVERING GROUP

)

Let Q be an n-group. An n-subgroup H of g1 is said to be

(vx€Q) (Vi €(2,...,n}) [xH =1

n-l] <H

= [H b (1.1)

This is equivalent to the statement ([4; p.104])

(0%, s 2erX _ €Q) (VA€ (2,...,n-1)) [0 HH] = [k 'Y (1.2)
i=-1
1

(Here, for example, [H'"!xH™ 1] is the set {[h xh?-l]lhvé H},

where hﬁ stands for hkhk+1"'hm if k <m, or for the empty symbol
if k >m.)

The following Lemma gives a characterization of invariant

n-subgroups in terms of the universal covering group.

1.1. LEMMA. An n-subgroup H of an n-group Q is invariant in

Q iff
(vx€Q) xH = Hx in Q~.
Proof. If H is invariant in Q and x €Q, then by (1.2)
[xn_lﬂ] = [xn—sz], which becomes x™ 'H = x" 2Hx in Q* and thus

n-2

(by cancelling x in the group Q") xH Hx.

Conversely, let xH = Hx in Q" for every x €Q. Then
(xe""1) = ™! = a2 =, = g hat ™ = (L)
for every i€(2,...,n}. Thus, H is invariant in Q. []

If H is an n-subgroup of an n-group Q, then H* is a sub-
n-1

group of Q* ([1; 3.2, 3.9]) and H* = HUH*U...UH Therefo-
re, by using Lemma 1.1, we have the following
¥ Throughout the paper Q will denote an n-group and H

an n-subgroup of Q.
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1.2. THEOREM. An n-subgroup H of

an n-group Q is invariant

in Q iff the subgroup H® is invariant in Q°.

Proof. Let H be invariant in Q. Then, for every x€Q,
xH = Hx in Q" and

x(HUH?U...UH"™})

HXUH?xU... UH" 1x

xH" 1

I
l}
[}

xHUXH?*U ... UxH""

(HUH?U ... U™ 1) x = H°x.

If a€Q”, i.e. a = @y...dyy a €Q, then

& e 2 =Ly -1)
aH” = a,...ai(HuH Uero UET ) = a,...ai_l(aiHU...UaiHn

- a,...ai_l(Haiu ...an_lai) = A,y (Hu...an-l)a

i

cee= (Ifi\.)---ul*fn—l)a,...ai = H"a.

Thus, H" is invariant in Q~.

Conversely, let H" be invariant in Q. Then
(¢x €Q) xH” = H'x, i.e.

n=1 1

XxHUXH? U ... UXH = HxUH®*xU...UH" 'x;

this is equivalent to the following sequence of equalities in Q":
xH = Hx, xH? = H2x,...,xi"" 1 = g% 1x;
by Lemma 1.1, H is invariant in Q. []

every n-subgroup of Q is invariant in Q.
1.3. PROPOSITION. If Q is an n-group and Q" is a Dedekind
group, then Q is a Dedekind n-group.
Proof. Let H be any n-subgroup of Q. Since Q" is a Dedekind

group, it follows that H" is invariant in Q" and by Th. 1.2, H
is invariant in Q. Thus Q is a Dedekind n—group.ﬂ
The question for the converse of Prop. 1.3:
P.1. Is Q" a Dedekind group when Q is a Dedekind n-group?
remains here without an answer.
The set of all elements x of Q such that

n—l]

[xH [ 1xm®™%] a11 i€(2,...,n } (1.3)

([3; p.111]) and it is denoted by No(H) or shortly N(H).
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Clearly, N(H) # @ since HCN(H). If x1,...,xneN(H), then

[%peex JH=x 0o H=x..x Ht =..=H..X = H[x,...x ]

=1
in Q*, by which follows that [x,...x ] EN(H). It is easy to ve-
rify that any equation [a1...an_lx] = a  on x and [ya1...an_1] =
=a, ony in N(H) is solvable in N(H) and thus N(H) is an n-sub-
group of Q. By the definition of N(H), H is invariant in N (H)

and there is no element x € Q\N(H) which satisfies the condition

(1:3): Thuss

1.4. PROPOSITION. The normalizer N(H) of an n-subgroup H of

Q is the largest n-subgroup of Q such that H is inva-
riant in N(H). ]

We note that the universal covering group (N(H))" of N(H)
is contained in

N(H) = {X,...X;€ Q" [ x ...x;H" = H'x;...x,;},
i.e.

(N(H)) " C N(H"). (1.4)

Namely, if x, ... xiG(N(H))“, where vaN(H), then by 1.4 and 1.1

Xqeo X H” = x1...xi(HuH2U...UHn—l) = x1...xi_l(xiHU...uxil-ln-l)=
= n-1 = =
= Xy..eX, (HX, U...UH X)) =
= Hx,...xiu...an—lx1...xi =
n-1

(H s oo WH )x1...xi =H‘x1...xi,

that is x,...x; €N(H"). Thus (1.5).

P.2. Does (or under what conditions) equality hold in (1.4)7?

The indirect method can be used in obtaining shorter proofs

of other results as well as of the following three:

1) If H and K are n-subgroups of an n-group Q such that
M = HNK # @#, and H is invariant in Q, then M is invariant in K
[4; p.107] and M~ = H"NK".

2) If X and H are invariant n-subgroups of an n-group Q
such that [XHn_l] = [Hn-lx], then the n-subgroup B = [Xlln_l] is
invariant in Q ([4; p.107]) and B* = X"H".

3) The center of Q, i.e. the set
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2(Q) = (z€Q | (¥Yx€EQ) [xzn—l] = [zi_lxzn-i], fim2 jisise g0}

is a commutative invariant n-subgroup of Q if it is not empty;
in that case (2(Q)) " = Z(Q").

(We note that the condition of "non-emptiness" above is
omited in [4; p.106], which is a mistake. For example, Z(Q) of
the 3-group Q = {o|o is an odd permutation of {1,2,3}} with
[xyz] = XoYoz, is empty and thus it is not an n-subgroup of Q.)

2. HOMOMORPHISMS AND INVARIANT n-SUBGROUPS

The notion of homomorphisms of n-groups one defines in a
usual way. The well known properties of the surjective homomor-
phisms (i.e. epimorphisms) of groups that the homomorphic image

of a normal subgroup is a normal subgroup one proves easily for

the n-ary case directly or indirectly. But the fact that an n-
group might have more than one identities or no identity element

a homomorphism one can not translate in a usual way.

Therefore we will consider the case when ¢:0 - Q7 is a
surjective homomorphism of n-groups, where Q” is an n-group with
at least one identity. In this case, for every identity e”’€ Q~
there exists a kernel

Ker_.¢ = {x€Q | ¢(x) = e"}. (2.1)

An analogous relation between the invariant n-subgroups of
an n-group and kernels of homomorphisms (of n-groups) can be
stated as in the binary case. We note that every homomorphism
$:Q » Q7 of n-groups induces a homomorphism ¢":Q" » Q°" between
their universal covering groups, defined by ([1; p.26])

07 (X, eeexy) = 4(x,)nb(xy), 1<is<n-1, x € Q. (2.2)

If ¢ is an epimorphism (monomorphism) of n-groups, then ¢" is
an epimorphism (a monomorphism) too ([l; 2.2,2.3]). We will pro-
ve first the following

2.1. TEHOREM. If ¢:Q +~ Q” is an epimorphism of n-groups and
H” is an invariant n-subgroup of Q”, then the complete

inverse image of H”,
H=¢ "(H) = (h€Q | ¢(h)EH"}

is an invariant n-subgroup of Q.
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Proof. Clearly, H=¢_1(H’) is an n-subgroup of Q (as a com-
plete inverse image of the n-subgroup H” of Q7).

Since H” is invariant n-subgroup of Q°, it follows by Th.
1.2 that the group H’" is invariant in Q°"; thus H* = ¢" ' (H"")
is invariant in Q" which again by Th. 1.2 implies that H is

invariant in Q.[}

Now we consider the epimorphisms and invariant n-subgroups

of an n-group.

Let ¢:Q + Q7 be an epimorphism from an n-group Q onto an
n-group Q° with at least one identity e” and let

Ker .¢ = {a€Q | (a) = e} = K.

Clearly, K is an n-subgroup of Q. Since {e”} is an inva-
riant n-subgroup of Q°, it follows by Th. 2.1 that K = ¢ ({e”})

is an invariant n-subgroup of Q.

Now let H be an invariant n-subgroup of an n-group Q. Defi-
ne an n-ary operation / / on the set.

Q/H = {[an-l] leQ}
by
/[x,Hn-l]...[ann—l]/ = [[x1...xn]Hn—l]. (2.3)

Then Q/H = (Q/H;/ /) is an n-group (called the factor group of Q
by H) with an identity H. The n-subgroup {H} of Q is the kernel
of the natural homomorphism ¢:Q + Q/H, ¢(x) = [an-l], since

H = ¢ '(H}.
So, we have the following theorem:

2.2. THEOREM. An n-subgroup H of an n-group Q is invariant

$:Q + Q°, where Q7 is an n-group with at least one

identity element.[]

Invariant n-subgroups of an n-group can be characterized
also as kernels of homomorphisms of the n-group into (binary)
groups. Namely, if Q is an n-group and G a group, then a mapping
$:Q - G is a homomorphism iff

(v XyreoerX) ¢([x1...xn]) = ¢(x,).on0(x). (2.4)



Suppose that Q7 = (@°,[ 1) is an n-group with an identity
e” and $:0 + Q° a surjective homomorphism. Putting

,.mn=2

(¥x",y €Q”) x"-y” = [x7y € “] (2.5)
we obtain a group (Q07,-) with the identity e”. Moreover, o 1
XypeoosX €0Q and x7 = ¢ (x), then

@([x,...xn]) = X eeaer xg

and thus ¢ is a homomorphism of the n-group (Q,[ ]) onto the
group (Q7,+). Also Ker_.¢ = {xe0Q | ¢(x) = e’} is an invariant
n-subgroup in Q. Therefore the following broperty is true:

2.3. THEOREM. An n-subgroup H of an n-group Q is invariant
in Q iff H is a kernel of a homomorphism from Q onto a

(binary) group. ]
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ON A CLASS OF VECTOR VALUED GROUPS

Gorgi Cupona, Dondo Dimovski

Abstract. Vector valued groups are defined in [1],
and some existence conditions of a kind of finite vector va-
lued groups are given in [2]. Here we consider (2m,m) -groups
and show that there is an analogy between the theory of

(2m,m) -groups and the theory of binary groups.

0. In [1], (m + k,m)-groups are defined. Let m 21
and G#@. (G,L ] is a (2m,m)-group iff:

i) € 1: (xim) —r Yxim] is an associative map from
o smse 6% tee. [REEATRE 1 1] ~[B WL
for each i € {1,2,...,m} 3
and

i) (Va,p €6™(Ix,y €™ [ax]1=b=[z2].

In i), (xim stands for (Xj,Xpy...,Xpy) and
[x%m] stands for [xyXp...X%5 ] .

If we define a binary operation "o" on g” by
(1) xey =[x7]
then i) and ii) imply that (Gm,O) is a group.

It is clear that a (2,1)-group is the same as
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a group, so, usually we assume that m = 2,

1. Let e =(eI{1) be the identity element in a given

(2m,m)-group (G,C 3) i.e. in (G™,0) . Then the equalities
(eg,e o(eg,e ) = (eg,eﬂg = [eré1 ey e',_r; el—]
"[[e2 e1 ey em] {e [el 1€ l]e i
=[ep ey o] ) = (eZseq)
imply that (eg,el) :(er{), il.€. es,=e = e =€y 1% ... ‘—'—e3=e.
Hence, the components of e are equal, i.=.

e =(e,...,e) =(e") .
vs/\—/
m

Moreover, [xi'l e™ x?]=[[xi"1 e xﬂem]

= [xf{—]'[em xg_l em'l:]el] = [xi'l xr_z em] :(xrln) ,
j.e. for each i €{1,2,...,m}, [xi—l e™ x;“]:(\"{) %

For each i €{1,2,...,m} we define ‘Pi:Gm e (G
by P (7) =™ %) et]. Then

T -1 ni m-1 i
(PY™ (D)= o] ™ = (M e(]) e (M = (o)
So, (‘Pi)m = id (identity), and hence \Pi is a permutation
on G™ whose order is a divisor of m .

If for some i 6{1 ...,m—l} ‘f’i::id, then for

each x€G, (:'.m"i,ei) = [e" X" M- o3 = [em'i et 31 g1
= \Pi (ei,xm—i) = (ei,xm—i), and so0 x = e ., Thus for each
i € {1,2,...,m-1§ \Pi + id provided |G| % 1, i.e. G has

more than one element,

2. Let (G,*) be a group. It is easy to check
that (G,03) with € 2: 6" —» G" defined by (2) is a
(2m,m)-group.
() [/ 7.', (/'1 719%07 ) ....,:r.mym\

Moreover, in this case, (G‘,O) is the product



("u')‘(r-,-)x,__ x((;’.)

~—
We call such (En m) -groups trivial (?m,m)—rrouns &
If (G,[ 3) is a trivial (2m,m)-grouv, then for
. m m-i _m i
each i € {l,...,m-l} ¥E(xl):;[e x7 e’ ]
_am=i i m i) _ m L
= (e *"1>°(xi+1*e ) "("14-1’*1)'
For example, if m= 4, the order of ‘f% is 2 and the
order of \PB is 4., In reneral, the order of Y. is

i
m/g.c.d.(m,i)

3, 1f (6,L1) is a (2m,m)-group and if we set
2 2 2r
(3) [X "1] (f 2m31,[’(1"\];9°-~1(} WJ )
then we get an algebra (G', L ]1,..., C jm) with m
2m-ary operations. This algebra satisfies the following
conditions:
(i) For each pefl, 2,...,m}] and each (x;m) € go"
2m+p 2m + P]
[ rn+1-]1"‘[p+1 2m+p+1—]
2
_.['[v ]1...[x m] X2m+1—-] 3 and

(1) (¥a. =M ec™) (Fx,z € ¢™) (Vi €1,...,n%)
(2 x); = b3 _[',za_j .
And converselly, if an algebra (G, L] P )
with m 2m-ary operations satisfies the conditions (i) and
(ii), then (G,C 1) is a (2m,m)-group with C ] defined by

(3],

In the case of a trivial (2m,m)-group (G,C ) P
2m _
E

essentially binary and are gotten from the operation of the

Fpai o Lee all of the operations [ ".li are
group (G, ) .
PROTOSITION 1. Let (G,C1) be a (2m,m)-group,

such that for ie{l,..,m§ [xim]i = X5 ¥y , where

i *mei
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*i:G‘2 — G is a binary operation. Then (G,[ 1) is a

trivial (2m,m)-group.
Proof. It is easy to show that for each 1 6{1,..,m}
(G,* D) is a group with identity element e . Next,

[x [xg"” 1Jx2m +24 = “_x%m]xg: +1_] implies that for each
i e{l,...,m—l}
(Fi 41 % Fmyie1)% 01 %ons 141

= (%01 ¥541 Tneie1) ¥is1 Toneiel o

Using this and the fact that (G, *i) is a group for each

i €{l,...,m} it follows that ¥ = ¥, = ...= % ;= % .
Hence, (G,C ZI) is a trivial (2m,m)-group. M

. m _m m m _m
REMARK. Since [x] "] = (x7) = [e" x7] , it
follows that in every (2m,m)-group , [ximji depends on

X3 and Xppi 0

for each i é‘fl,...,m} .

Suppose that (G,[ 1) is a trivial (2m,m) -group.
Then (G,[ 1) satisfies the following conditions for each
iedi,...,m} :

(a) [ei"l x o1 y em"i_:]‘_j — e for Jj+#1i; and

m-i _m _i

(b) [e x; e 1= (xzu—l’xl

PROPOSITION 2. If (G,C[1) is 2 (2m,m)-group
satisfying the conditions (a) and '(b) , then (G, L J) is a

trivial (2m,m)-group.
Proof. Let x%y = [x e™ y em'ljl . Let (xrln)eGm
and (yi) € Gi for some i é{l,...,m} . Then

[0 gt o™1] = [ x,(x®, | vi1 5,) e™1]
= [—xi"l "i[em-l Yy x?+1 i ] m—l]

- [x%'l[xi em—], . m—l_]e 71*1 an. h em—i+ 1_-1
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= [xi-l (xi * yi) eM-1 8 x;‘ .5 yi-l eM-1+ 1]
i-1 m i-1 m-i+1
=07 (kg xyg) Ky e ]

implies that
m _m m-1 m-1
b 71] =0 (xp=vy) 7y e]
-2 -2 2
=[x (%py ¥ ym—l\ (xm *ym\ ytf e
2 400 :[(xlxyl) (x2xy2‘) (xmxym\ e™ ]
:(xlaeyl, Xo%Tps eve s Xp ¥ )
This shows that (G,E 3) is a trivial (2m,m)—group. |
4, Let (G,03) and (K,L1) be (2m,m)-groups.
A map £:G6 —» K is called (2m,m)-homomorphism if

f(m)([xim]) = [f(xl) £(%X5) oee f(x2m)] "

where f(m) :G" — K is the xnth product of f, i.e.
f(m)(yr{) =(f(yl), f(yz),..., f(ym)). It is clear that f
is a (2m,m)-homomorphism iff f m, (c", o) — (k™) is

a group homomorphism. .

Let £:(G%,C3) —» (k™,£3) be a (2m,m)-homomorphism,
(e™) the identity in (G,C3), (k) the identity in (K,[ 3)
and H = ker(f)={x|xeG, f(x) =k} =17 (k). Tet us
examine some properties of H. First of all, " is a
normal subgroup of (Gm,o) . Moreover, H satisfies the

following conditions for each i 6{1,2,...,m}:
(4) [x]l—l A" x?] = [xri1 B'] ; and
(5) [ 8] =[5} B )= )" ") = [(v)" gl .
Above, fxi—l H" x?_] stands for the set
i-1
{pa 2D ] ef) e 75
For m=1, the condition (5) is trivial, and the

condition (4) is equivalent to H being a normal subgroup,
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provided that H is a subgroup.
Let us show (4). DBecause e € H, it follows that
[e* 5™ 2] = ;" for each i €{0,1,+..,m}. Since = H"
is normal in (G™,°) it follows that [Xrln ] = [a® xri]_] é
i-l,m m\_ [ i-1 m _m . ~l.m/m _i-1 -i+
Now, fxl H xi]—[xl o xy em] = [x’{ Hm(:ci et )em i 1]
i-1l .m di-1 ,m m-i+ 1) _ f.m .m
::[xl x; e H" e ]_[xlll].
This shows that (4) follows only from the fact that H"
is a normal subgroup of (Gm,o) »
The condition (5) is a consequence of the
following equivalences:
m. my _r.m.m\ ___ (m/my _ (m/.m
[ 8] =[5} Bl <= e () = 2'(57)
<=y f(xi§ = f(yi) for each i G{l,...,m;

<= f(m)((xi)m) = f(m)((b'j)m) for each i 6{1,..,m]7
<= [(xi\m el :[(yi\m Hm] for each i E{l,...,m?.
We say that a subset H of a given (2m,m)-group
(G,C ]) is a (2m,m)-sub5roup if H™ is a subgroup of (Gm,o).
A (2m,m)-subgroup H of (G,L1) is called normal (2m,m)-
subgroup if it satisfies the condition (5) and " is
a normal subgroup of (Gm,O) .
Hence ker(f) is a normal (2m,m)-subgroup of a
given (2m,m)-group (G,C 1) for any (2m,m)-homomorphism
t from (G,[1) to some (2m,m)-group (X,( 1).

5. Let (8,L J) be a normal (2m,m)-subgroup of
(G,01). We define a relation ~ on G by
(6) a~b <> [a® 87] =[" "] .
It is easy to check that ~ 1is an equivalence on G.
We denote the fuctor set G/~ by G/H, and its element:

by aH . Next we define ( ] on G/H by:



(7) [(48) (o) o o« (o] = ((xE™], 1, ..., [x2"] ) .
PROPOSITION 3. (i) (G/H,L1) is a (2m,m)-group.
(ii) The natural map T :G —» G/H defined by fi(x) =
is a (2m,m)-homomorphism.
(iii) ker(fi) = H .
Proof. (i) Supposé that xjH = yjH for each
i e{1,2,...,2n}, i.e. (™ 8] =[@)" H"] . Then
(5) implies that [xl]l_1 il :[‘yl:{l H"] and
§m+l "] = fym+1 H ] . Now, {[_xlm] ] = [_xT[xm+l Hm])

= [m m 2m = 2m m m
=[5, 1] = B4 = 025, ] = [0 w5 ] =[B3)e].
This, and (5) imply that for each i €{1,...,m}
[_xfm]iﬂ = fy%m]iﬂ y i.e. [ 1 is well defined.

The associativity and the condition 0. ii) for
C 1:(c/H) em __, (G/E)™ follow directly from the associati-
vity and the condition 0. ii) for ( 1 1o e g,

(ii) ﬁ(m)([xim]) = T,'(m)([ximjl P ,[—ximl m)

=([E™),8, o J[EEP]H) = [xgHeeons xppH]
= [0 0x) T @) enn T(xpp) ]
(1ii) ker (1) = {x |F(x) = eH§ = {x | xH = eH}
={x|xeH} =H. B
The (2m,m)-group (G/H,C 1) 4is called
(2n,m)-factor group of G by H .
PROPOSITION 4, Let (H,C 3) be a normal (2m,m)-

subgroup of a given (2m,m)-group (G,C 1). Then (Gm/Hm,O)

is isomorphic to the group ((G/H)m,o) via an isomorphism
g defined by g((xm)Hm) = (xH ,...,x H) = 7 (m)((x ¥«
Proof. g is well defined because [xl m):[yl Hm]

implies that g™ ((x’f)) = ﬁ(m)((yrf)). since 1™ is an




36

epimorphism it follows that g is an epimorphism . If
g((xT)Hm) = (eH)™ , then gi(m)((xrf)) = (e)™ , which implies

that f(xg_l)Hm] = H" , Hence, g is a monomorphism. W

6. Suppose that (G,[3) is a trivial (2m,m)-group
gotten from a group (G,*) . Let H be a normal subgroup of
(G,*) . Then E® is a normal subgroup of (G",e) . To
show that H satisfies (5), let (xr{), (y?) € G" . Then
[x? H" ] ==['yr._'L1 H'] <=> x;H =y;H for each i €{l,...,m}

<> [-(xiﬁm )= [(yi)m H®] for each i é-{l,...,m}.

Hence, (H,C 1) is a normal (2m,m)-subgroup of (6, 7).
Converselly, suppose that H is a normal (2m,m)—

subgroup of a trivial (2m,m)-group (G,C P € b, ,h, € H,
then [hy o1 h, a4y =(hlh2,em'l) € B, and
(hl,em'l)'l = (hl'l,em—l) € H™ . Hence, H is a subgroup
of (G,') . Because H® is a normal subgroup of (Gm,") s
it follows that (x,em"l) N = g(x,e™?1) i.e. xH = Hx
for each x € G. Hence, H is a normal subgroup of (G,*).
' The above discussion shows that the notion of
normal (2m,m) -subgroups makes sense only for "pure"
(2m,m)-groups, i.e. for (2m,m)-groups that are not trivial
(2m,m) -groups. Otherwise, it is the same as the notion of

normal subgroups.

7. A (2m,m) -group can be thought of as an
algebra (G’e:’{(]i’r\]i’ [/]i}i=l,...,m) where
€l L\]i, {/]:.L are 2m-ary operations , e is a constant,
and the following identities are satisfied for each

i €{Yyssembs

PP+ 2m P +2m Zm =
[ApE Ty - DT g +—2m4—lj i
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2m 2m m
:[hljl"'[ﬁ_%’%m+ﬂi ’
mv1 o0 Xom~%1 - x); = %5,
(%) eor X/ Xy oo Xond; = %3 » and
[e™ Ny = x5 = [x’i1 em]i.

Hence, the class of (2m,m) -groups is a variety of
algebras. So, for better understanding of the (2m,m)-groups
it is needed to obtain canonical forms for the elements in
free (2m,m)—groups.

Wwe note that free (2m,m)- groups are not trivial

(2m,m) -groups.
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SOME PROPERTIES OF A-ENDOMORPHISM NEAR-RINGS

Vucic Dasi¢

Abstract. The purpose of this note is to investigate some properties
of a “A-endomorphism near-ring EA(G) which depend upon the structure of the
group (G,+). In this sence the properties which are attribute for a normal
subgroup A of G act on the properties of the A -endomorphism near-ring EA(G).

By NO(G) we shall denote the set of all zero preserving mappings of
a group (G,+) into itself.If A is a normal subgroup of G, then fEMo(G) is

an A-endomorphism of G if and only if (A)fcA and for all x,y,eG there
exists deA such that

(x+y)f=(x)f+(y)f+d.

The near-ring generated additively by the set End 5 (G) of all A-endo-
morphisms of a group (G,+), will be called a A -endomorphism near-ring and
will be denoted by Ep(G). We consider a near-ring of these A-endomorphisms

for which is invariant every fully invariant subgroup of the group G. We re-
call that these subgroups are Ep-invariant.

A normal subgroup & of the group (EA(G),+) generated by the set
{8 /8 =-(ht+ft)+(h+f)t, h,f Ea(G),t € Endy(G)}

is called a defct of distributivity of EA(G). It is clear that

D <(6,8),

where (G,A)o is the set of all zero preserving mappings f:G>A. Note that the

defect &b of EA(G) depends upon the choice of the normal subgroup A. For details
see [2].
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Let (R,S) (or brieflly R) be a subnear-ring of E,(G) generated by
ScEndy (G). We consider the group G as an (R,S)-group and suppose Inn(G)& S¢
¢End, (G). Also, EA -invariant subgroups become (R,S)-subgroups of G.

The following theorem gives some information about the structure of
the A-endomorphism near-ring (R,S).

THEOREM 1. If H is a nonzero (R, S)-subgroup of G such that AnH=(0),

rph1sm near-mng whose restrictions on H are the endomorpmsms g_f_ (Hs+).

Proof.If A=(0), then a A-endomorphism is just an endomorphism of
(G,+). Assume that A # (0) and AnH=(0). For all teScEnd,(G) and all a;,a,eH
there exists dedA such that

(a +a2)t t+(a2)t+d

Since, by assumption, H is a (R,S)-subgroup, we have (a1+a2)teH,
(a1)t€H and (az)teH. Therefore deH. But ARH=(0) and hence d=o0. Thus the re-
striction t|H is an endomorphism of (H,+).

The following theorem characterises the defect & of the A-endomorp-
hism near-ring (R,S).
THEOREM 2. Let H be a (R,S)-subgroup of G and let Pbe the defect of

(R,S). If for all teS the restriction t[H is an endomorphism of (H,+),then
(H)&0=(0) and R/Ann(H) is a distributively generated (d.g.) near-ring.

Proof. For all sc®we have § = I (r.+0;-r;), where rieR and
8; =-(x;t; + Yty )+ gty )t (x4 g& t; eS) Thus, for aH aeH

(3)01='(3)y1t1"(a)x1‘ti+((a)xi+(a)yi)t1‘=0’

because, by assumption, the restrictions t, lH are the endomorphisms of (H,+).
Hence, for all a €H and 68, (a) 6=0, i.e. (H)-h =(0). Thus,4'c Ann(H) and
from Corollary of Theorem 2.6 of [1], R/Ann(H) is a d.g. near-ring.

Applying theorems 1 and 2, we obtain the following.

COROLLARY. If H is a nonzero (R,S)-subgroup of G such that AnH=(0),
then (H)&=(0), where & is a defect of (R,S). Further R/Ann(H) is a d.g.
near-ring.

Like in [3J we shall supose the existence of minimal (R,S)-subgroups
of G. In this sence the following theorem generalizes the Theorem 1.4 in [3}
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THEOREM 3. Let G be a (R,S)-group such that AaH=(0) for every(R,S)-
subgroup H of G. Then G and all its (R,S) images have minimal (R,S)-subgroups,
either

10 if G satisfies the minimum condition on (R,S)-subgroups or

2° if R satisfies the descending chain condition on right ideals.

Proof. 1° The first case is obvious.

2% Let R satisfies the descending chain condition on right
ideals of R and let

G=HODH,.I)....DH1‘DH]-+1D (1)

be a decreasing sequence of (R,S)-subgroups. By using Theorem 1, we have
that the relative defect of the set B, ={r€R/(Hi)r€:Hi) with respect to R is
contained in Bi.i.e.

{- bs-xs+(x+b)s/beB;, xeR,seS}sB,

Thus, by Proposition 3.1 of [2], By is a right ideal of R. Consequently,the
chain (1) induces the chain of right ideals

R=B 2 B;>...2B;>B; ;D ... (2).

Assume that the chain (1) does not stabilize after finitely many steps,i.e.there
js an integer n such that Hi7H1.+1 for all i>n.We seek a contradiction to this
assumption. According to Proposition 3.2 in [2] B; is a nonzero right ideal

of R, where BI:DB“1 for all i>n. This contradicts to the fact that the chain

(2) terminates after finitely many steps.

THEOREM 4. Let &P be a defect of a near-ring (R,S) and let H be a
minimal (R,S)-subgroup of G. For all teS the restriction t|H is an endomo-
rphism of (H,+) if, and only if,(H)@ =(0).

Proof. If for all teS the restriction t|H is an endomorphism of (H,+),
then the result follows from Theorem 2.

Converse]y,let(H)ﬁ)=(0). Since H is a minimal (R,S)-subgroup, it
follows that for all a, a1,azeH there exist x,yeR such that (a)x=a, and
(a)y=a2 (Prop.2.3,[2]) By definition of therelative defect &L, for all teS
and x,yeR there exists &5& such that &=-yt-xt+(x+y)t. By assumption,

(a) 6=0 for all a eH and all ¢ €D, Thus,
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0
0

- (a)yt-(a)xt+((a)x+(a)y)t,i.e.
- (a1)t-(a2)t+(a1+a2)t.

Hence, for all ay,3, eH and all teS, (a1+a2)t=(a1)t+(a2)t and this finishes
the proof.

Let H be a subgroup of G and denote the derived subgroup of H by H*.
We remember that H is perfect if, and only if, H’=H. As a generalization of
the result (Th. 1.9, [3] we obtain the following.

THEOREM 5. Let H be a perfect minimal (R,S)-subgroup of G such that
ANH=(0). Then R/Ann(H) is a d.g. near-ring which is isomorphic to a dense

subnear-ring of M (H).(Density means that for all meM (H) and given any finite
set of distinct nonzero elements h,,...,h H, there is an reR/Ann(H) such that
(hg)r=((hy)m, i=1,...n).
Proof. Since AnH=(0), then by Theorem 1 it follows that for each

A-endomorphism, the restriction on H is an endomorphism of (H,+). Thus H is
an (R,S)-subgroup of type 2. On the other hand,by Corollary,it follows (HED=

= (0). Consequent]yﬁ)s.-Ann(H), where §)Y is a defect of (R,S). By using the
Corollary of Therorem 2.6. of [1], we have that R/Ann(H) is a d.g. near-ring
and result follows from Theorem 1.9 of [3].
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ON PSEUDOAUTUMORFHIGMS AND NUCLEl OF RD=-GROUXOIDS
Ivo Durovié

Abstract. In this work the pseudoautomorphisms of the regular
Toupoids with division are investigated.Some properties of
the pseudoautomorphisms and relations between pseudoautomor-
nhisms and nuclei of such groupoids have been described.
According to [l] and [2] we can give these definitions:
DEFINITION 1. A groupoid with division (& ,-) is a regular
sroupoid with division (briefly RD-groupoid) if and only if

it satisfies the conditions:

(3z€G)zx=2z.y = (Vz€G6) z-x

(3z€G) xz=Y2Z = (Vz€G) x 2
DEFINITICN 2. The left /right/ trenslation of the groupoid
(G,-) by a €G is a mapping Aq : G — G , Agx =@-X
/Pa:i GG ,Pax=x-a/.
DEFINITION 3. A bijection 7:6->G is a right /left/ pseudo-
automorphism of the groupoid (&,:) if and only if there
exists ¢ € G iu_c_lgﬂlgﬁ (AT, T, AcT) /(”'/fc/r,fc”)/ is an
autotopy of the groupoid (G,-), i.e. (Vx,y EG) AT (xy)=
=AcTx Ty /(VxyEG) P (X-¥) =Tx:PTy/ nolds.

¢ is called the companion of the right /left/pseudoautomor-
phism. If 7 is the left pseudoautomorphism and the right

il
"

Y
Y&,

nseudoautomorphism we call it twosided pseudoautomorphism.
DEFINITION 4, The left /right/ nucleus of the groupoid [G-,-)

is the set Ne:{X€G(V)’,Z€G) X‘(7-2)=(x.y).z}
/N~r= {ZGG-'(Vx,y€G)x-(y.z):(x.y),zj 7

Let ns first prove two lemmas:
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ot

LEMMA 1. The groupoid with division (&,-) has at least one
right /left/ pseudoautomorphism if and only if it has at

-
<t

least one left /right/ identity element.
Proof. 1° Let T be the right pseudoautomorpfism of the gro-
upoid with division (G,) and 1let ¢ € G be one of its compa-
nions.Let € € G be a right local identity element of ¢ , i.e.
c.e=C ,which by Definition 2. we can write in the form

Ac € =C .Then we have

(Vx,y€GIAT (x-Y)=AcTx Ty (by Definition 3 )
(VYEG)AT (T e -y)=A T e Ty (by the substitution
i x with 7% )
(VyGG))\c"-(" e‘y)":xce STy (since I~ is
identity mapping)
(Vy€G)acm(re-y)=c-my fsised Jie me 3
(Vy€EG)Acm(me-y) =Acly (by Definition 2 )
‘(VyEG) ”'1e~y=y (since A is

bijection ),
which means that 7 € is the left identity element of (G,-).
2% Let € be a left identity element of the groupoid
with division (&,~) and let ¢ be identity mavping of the
set G .Then we have

(Vx,y €EG)e-(x-y)=(ex)-y (since € is the left
identity element)

(VXIV €G)e.l(x.y):(e.1x).ly mince 1 1is the
identity mapping)

(Vx,y €G)rel (x-Y)=Xe1x 1Y (by Definition 2 ),

hence identity mapping is a right pseudoautomorphism with
companion @ of the groupoid (G,-).

Remark. The proof for the left pseudosutomorphism and the
right identity element is completely analogous to the given
proof for the right pseudoautomorphism and left identity
element,and such we omit it. We shall omit furthermore the
nroof for the left pseudoautomorphism, right identity element
sand right nucleus whenever it is analogous with the proof

for the right pseudoasutomorrhism, left identity element and
left nucleus.
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LuliA 2. The R2-groupoid (&,-) hee 2 non-empty left /right/
nucleus if and only if it has at least one left /right/
identity element.
Proof. 1° Let € be a left identity element of (G—,-) . Then
(e . x) - y=x-y= € -(x-Y) for each x,¥y €& . Therefore
e € Np and accordingly Ng # ¢

29 TLek Ng#¢, i.e. there exists a €ENp , and let
LEG be a right local identity element of @ , i.e. @a-b=aQ,
Then

(Vx€G) (a-b) x =a-(b-x) (since @ € Ng )
(VxEG)a-x:a-(b-x) (since a-b=a )
(Vx€G)(Vz€G) z-x=2-(b-x) (by Definition 1 )

Interchanzing z by & it follows that (Vx€G) b.-x = b.(b-x)
and by interchanging b-X by Yy we get (Vyg@) Y=b-v , 1.0
b is the left identity element of (&,.).

From the Lemma 1. and Lemma 2. immediately follows

THEOREM 1. For each RD-groupoid (G-,-) these conditions are
equivalent:

(i) (&,.) has at least one right /left/ pseudoauto-

morphism,

(ii) (&,.) has at least one left /right/ identity

element,

(iii) (') has non-empty left /right/ nucleus.
COROLLARY 1. If RD-groupoid (&,-) has at least one twosided
pseudoautomorphism then (G,-) is a loop.

Proof. By Theorem 1. (G,-) is a RD-groupoid with twosided
identity element. Let @ be a left identity element of (&,-).
'hen

a-Xx=ay = (VZEG)Z-X=Z~y (by Definition 1 )
=> €.x= e.y (by the substitution
of =z with e )
= X=Y (since € is the left

identity element),
i.e. the RD-groupoid (&,-) satisfies the left-cancellation
law.
DMHECREM 2. Bvery element of the left nucleus A /right nu-
cleus Aly / of the 3D-groupoid (G,-) is the companion of at
least one right /left/ p§gggpautomorphiém of that groupoid.
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Proof. From the fact that (&, ) is a groupoid with division
and proof of Corollary 1. immediately follows that for each
a € G the mapping \q is bijective. Let @ € Mg and let ¢ be
identity mapping of the set & . Then

(Vx,y €G) a-(x-¥)= (a-x)-y (by Definition 4 )
(Vx,yeG) Aa (X-Y)=Xgx -y (by Definition 2 )
(VX,yEG))\aZ (x-y):,\alx v 2N (since 1 is the

which by Definition 3. means that the identity mapping 2 is

identity mapping ),

a right pseudoautomorphism with companion @ of the RD-grou-
poid (G, s ) .

THEOREM 3. Let JI be a right /left/ pseudoautomorphism with
the companion ¢ of the RD-groupoid (G&,*).

T is the automorphism of the RD-groupoid (G,-) if and only

Proof. 1° Let I be an automorphism of the RD-groupoid (G,),
ice. (Vx,y €EG) W(x-Y)=TIx-Ty holds. Then

(VX.YE G) AcT (x-Y)=AcTTx - My (by supposition of
Theorem 3)

(VxﬁéG)Ac (Tx-Twy)=Xelrx -My (since M(X-y)=Tx-Ty )

(Vx,yeé) Ac (X-Y)=AeXx - Y (by the substitution

of X ,y with %, 7™y
respectively )

(Vx,y €G) c-(x¥)=(C-x)Y (by Definition 2 ),
which by Definition 4. gives that € is the element of the
left nucleus Ng of the RD-groupoid (&,-).

2° Let ¢ be an element of the left nucleus Np of
the RD-groupoid (G,:) . Then

(Vxiy €EG) AT (x-y) = AeTrx Ty (by Xhe suppesd bion
(Vx,y €G)e-mrix-v)= (c-mx)-my by Definition 2 )
(VxYEG)c-mix-y)=c-(Tx-1y) ‘since ¢ ENp ).

Since by Theorem 1. RD-groupoid (G,-) has at least one left
identity element and by the proof of Corollary 1. RD-groupoidc
with left identity element satisfies the left-cancellation
law,it follows that (Vx,y € G)IM(x.-y)=Tx .y yi.e. T is
the automorphism of that groupoid.

/left,/ nmeny ~rytie-

be the set of all right
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corpiicns of the wo-groupoid (G,-) with the left /right/
“ldentity element @ . The set $° with the composition of map-
ings as binary operation is a group. ‘

roof. By Theorem 1. P is a non-empty set. Let We¢, T2 € .73,
¢4 companion of 7; and € companion of 7, ,i.e. let

()\'C1 m,, Fq'Aa”f) and (}\QT)}_, ”hlc;”z) be autotopies of the
roupoid (&,:) . Then ()\‘.47[, >‘Cz75., Ty, AeTla Aczﬂ}) is an
rutotopy of (G, .), and since

AC1”:1 ACL”‘ X =AC4”4 (/\Clex )

=X, T (C2- Ty x ) (by Definition 2)
=AW 2 T x (since (A, 71, Ae, M)
€71 72 " Te T2 is the a1ut2>top};)
= (¢, Me, ) M My x (by Definition 2)
=N, ey Mally X (by Definition 2),
it follows that (7\(;4.7r,,c2 T e ) 7, 7’5., Rc,.mcz 74 m ) is an

autotopy of the given groupoid, i.e. WMy is a right pseudo-
automorphism with the companion €4-WT,C; of the groupoid
(G,-). It holds as well (by the part 2° of the proof of
Theorem 1) that the identity mapping ¢ is a right pseudo-
automorphism with the companion € of the given groupoid and
the composition of mappings is associative, so P is a semi-
group with identity element.

TLet T be a right pseudoautomorphism with the companion ¢

of the groupoid (@,-) .Then by Definition 3.there exists

the mapping T~ and (AT, T, AJ)is an autotopy of (&,-).
It follows that ((AcT)™", T, (A 7)) = (™), w™'0i)is an
sutotopy of the given groupoid, and since '

RN (since eis the left
T7xe x =T "X (€-x) identity element)
= 7}‘-4)(: e -m'x (since (13,77 I )

P is the autotopy)

= A”qx; & T {hv Definition 2),

it follows that (An.-axze“]r'; IT"' A”«X:eﬂ"’) is an autotopy,
i.e. that T 9, which completes the proof.

{ECRTM 5. The set B of all risht /left/ pseudoautomor—
isms with companion ¢ is the left /right/coset in the

angomnorition of the grour P of all richt /left/ nsendo-
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sutomorphisms of the RD-groupoid (&,-) with the left /right/
jdentity element with respect to the subgroup A of the auto-
norphisms of that groupoid,i.e. if TER then =T £ /R=RT/.
rroof., 1° Tet TE R and « €A . Then (AW T, A ) and (4,0 ,9)
cre aftotopies of the groupoid (G,-) and thus (AT, TA A TA)
is an autotopy of that groupoid as well, consequently ﬂz(éﬂg,
which gives THA & 2.

2° Let W ER and let ¥ be any element of the set R,
i.e. let (A, Ty AeM) end (Ae¥, ¥ Aey ) be autotopies
of the groupoid (G,-). Then (Xl T, AT ) T (AeY ) ¥ AcVW)=
(T XAy Ty, TN Aew ) = (T, Ty, TV, d.e.
T 'w is an automorpuisi of (G,-) .1t follows that =TTy E
ETA, i.e. £ Ccrf, which completes the proof.
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THE ELATION SEMI-BIPLANE WITH 22 POINTS ON A LINE

Kseni ja Horvatié-Baldasar

Abstract. In this article we give the proof of the existence of the
elation semi-biplane with k=22 points on a line.

As it is already known there exists the elation semi-biplane with k=6
and k=10 points on a line respectively Ll}. The elation semi-biplane with
k=14 points on a line is determined and constructed as well [2].

The following member of this series, if does it exist, would be the
elation semi-biplane with k=22 points on a line. The series, as one can see,
consists of the elation semi-biplanes with k=2p, p =2 prime number.

It is of interest to observe that for k=6,14 and 22 there doesn’t exist
the projective plane of the same order, and for k=10 the corresponding projec-
tive plane of order 10 is still in doubt.

All necessary facts about semi-biplanes can be found in [l] and [3}.

Applying the well known relations:

T (g) 1) and Kt<v 2)

we get for k=22:

v==t+23 and t<1l.

Taking for t=1,2,...,11 in turn, we can see that the only possibilities
for a divisible semi-biplane are for t=1,3,7 and 11l.

For t=1 a biplane doesn’t exist (according to the Bruck-Ryser-Chowla the-
orem). According to another necessary condition, i.e. Bose-0’Conner theorem LA]
for divisible semi-biplanes, in the cases t=3,7 and 11 the semi-biplanes could
exist.

In this paper we shall investigate only the case t=11 and v=242. This is .
actually an elation semi-biplane as k=22 is even and t =%: i i

So let the 242 points of that semi-biplane be denoted with:

1i,2i,...,2zi 120,11, s 510
and let us suppose the automorphism g which acts on these points as follows:
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. S

(a) i, forall A€ {1,2,...,22} and for all indices

ie{o,l,...,loj. The indices i are to be considered as integers mod 4 g
The automorphism g acts transitevely on every "parallel class" of lines
and on every "system" of points.

For the first line Py we can take without loss of generality:

by = {11251 301%150601 7o 8019611011 L071261 1301101156116

170,180,190,200,210,220}.

Then the whole first "parallel class" will be obtained with <g> from Py~
So we have still to construct 21 "parallel classes", but it will -be suf-
ficient to construct only the first line from each class as the automorphism
¢ will produce the remaining.
Let these lines be denoted with: p2,p3,... 1Pooe We shall find them with
the help of another automorphism G of order 11 which commutes with ¢ and

respects the compatibility conditions for the lines of semi-biplanes:
k

m
Ipfr\p§l= 2 forall k, m=0,1,...,10 1i#] 1,5 €Ly - .22}

The action of G~ on the points of this semi-biplane is given as follows:

6 =( 15)C 10( 150( 1,0 1,)C 15)C 16)C 15)C 1g)C 193¢ 110)

( 2U9 21’ 22’ 257 Qq_’ 25$ 269 2"/’ 289 2.)" 210)

( 50v 32’ 54’ 56’ 53: 510! 51& 55’ 55’ 57a 99 )

g Bze g g A1y g Mo far t5e s )
(50r Su» Szv 510 S50 Sgr Sar %61 Jur 30 %7
( 6y 6gs G1or 641 6oy 650 Ggr Gzr Bpr C1v O )
(790 70 v Tpr Tas Far Tyr Pgr Tas Proe 7))
(8 By B3 Bigr Bgr Bav Bgr 85 Bpv B 8, )
(% 9 %50 %20 9100 9 % 10 990 For 95

(lOO, 109, 105, 105, 10 101, 1010’108’ 106’ 10, 102
(llo, 1110,119, 118, 117, 116’ 115, 114, llj, 112, lll
(120, 1519 1”4, 159’ 16 17)’ 139y 135’ 209) 4

(124, 155, 145, 15111661 17, 18, 13, 201,221 22,

n
'—J
n
N
—
N N~ N~ N N

(1259 155, L4gy L5gs 159 175y 1855 100 200 21, 224
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(125, 1345 Ly, 151, 165, 176 1855 1igs 201, 215, 22,
(12, 135, lhg, 15,4 165y 175y 195, ligy 205, 21g, 22
(125, 156, L4gs. 1550 1610117, 135 12101205, 21gs 22
(12gy 135y 14115, 165 17, 18g, 195, 204, 2110422,
(129, 135, 4G 135, 161, 1710181051915 205, 21gs 22g
(12g, 134y 14y, 155, 16, 17, 13, 195, 20g, 21y, 229 )
(12, 1310245y 159 1o, 173, 181, 195, 205, 215, 225)
(1200130 145, 155, 164, 175, 185, 194, 20g, 214, 225 ),

o G [
where: Py =Pys p3=p2 yee+1 Py =P1oe
Actually, we have found the first half of the elation semi-biplane as
the automorphism € will produce all remaining parallel lines.
The next line we have to determine is p,.,. Considering the elation se-
mi-biplanes with k=10 and k=14 from [11 and 1:2], P1o is determined (without
the help of a computor) to be:

P :{10, 2. 391 Y 530 6ys Tys 83, 91, 10g, i,
12,, 13,, 14g, 15,, 16,, 175, 185, 19), 20,, 2, 222}
Acting again with the automorphism G~ we find:
( ' G
Py = Pygy Py = Pyg rewwsByy = Py+
The complete second half of the lines of the elation semi-biplane will

be obtained with< §> .
We have proved:

THEOREM. There exist at least one elation semi-biplane with 22 points

on every line with the group G =<¢, ¢> of automorphisms where
g1 and ¢G =09,

Open problem: Does there exist the series of the elation semi-biplanes
for every k=2p, p>2 prime number?

Acknowledgement. The author is grateful to Professor Z.Janko for the
useful suggestions.
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C/CTEMA ABTOMATUYECKOI'O LOKASATEJILCTBA TEOPEM
C PE30JIOLMEA, VHOYKUMEA U CUMMETPUEN

llerap XoToMcknu

Peswme. [IpUBONATCH CBeNEHBA O BIOJHE ABTOMATU3UPOBAHOW Mporpam
MHOW CUCTeMe NpelHa3HAUYeHO# A NoKasaTenbCTBAa TEOPEM Ha fA3HKe
VcuMcleHMs npenumkaToB I nopsika. LOkasaTenbcTBO B JopMe onposep
%eHUss OGOCHOBAHHO Ha CJeLylWuX NpaBMIIAX BHBOLA: YNOPALOYEHAN
NVHelHas Pe3ONLUMA C MAPKUPOBAHHHMM JNUTEpaMu, MNPaBuUIIO OCUHADHONR
MHIYKUMM UM NPaBuyio cuMMeTpum. CucTema palGoTaeT B COCTABE CUCTeE
mu "I'pad" paspaGoraHoit Ha JnekTpoTexHuueckoMm dakynrere Benrpag
CKOTO yHuBepcuTeTa. [[pUBONUTCH MpPUMep NOKa3aTelnbCTBa Ha MalluHe
PDP 11/34 ¢ ucnonb3oBaHMEM NPaBUNl PE3ONWUUM M CUMMETDUM .
BxonHuMu naHHBMM cucTemn "T'pad" /cM. B [4],[5],(6],[7]/

ABJNANTCHA NpPeNJOXeHUs AaHTNIUACKOTO sA3bKa, JUM60 GOPMYJH KWCUUCIIEHUSA
npemuMkaToB I nopanka. OTAenbHbe NPOTPAMMHHE MOLYAM [ePeBOLAT
NpeiyloOXeHUA aHTIUACKOTO A3HKAa B (OPMYJb MCUMCIIEHUA NPENUKATOB,
a 3aTeM KaxOylw U3 HUX [epeBOLAT B MHOKECTBO LMUBBLIOHKTOB, NpU
ueM 9JIMMUHUDYOTCH KBAHTOPH U BBOLATCA (yHKUMM CKONeMa. BXOIHHMU
JIaHHHMM BIIOJIHE ABTOMATU3NPOBAHON cUCTEeMH LOKa3aTeNnbCcTBa ABIA
0TCA DU3BOHKTH [OPOXJEHHHEe U3 OTPULAHUA NpelJIOKeHUs MNomjexale
IO NOKAa3aTenbCTBY, & TaKXe ¥ AU3BIOHKTH MOPOXIEeHHHEe U3 aKCUOM
Teopuu I mopsuka, nNM60 U3 paHee MNOKA3AHHHX TeOpeM, JIeMM WUiIu U3
onpeneneHuii. LU3BIOHKTH NPOUCXOLAWLNE U3 CXOMH=-aKCUOM MaTemaTuue
CKOW MHAOYKLMM NNGO CUMMETPUM He BKJINUAKTCA B MCXOINHOE MHOXECT
BO, TaKk Kak 3TW CXeMbh 3aMelieHHH NpaBuiaMu CUHADHOR MHLYKUUU U
CUMMETDUM o

YnopanoueHas NUHeiHas DPEeSONFUA C MapKUPOBAHHEMU JUTepa
wu /cm. B [1]) / mcnonesoBanna B cucTeme 6raromaps CleiyOLUM Xa
paxkrepucTukam: 1 B pesomouuio nocTynaeT TOEBKO MOCHENHAA JNUTepa
mmawukTa Dy, Hasweaemoro "uenrpansumm" u k-Tas /x2l / nurepa
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OVI3BIOHKTA D2 HaswnBaemoro "GokoBsM". II OHa BKIKWUAET CTPATETUN
MHOXeCTBa MNONIEePXKM M yCTpaHeHmsa TaBTonoruite III Bnaromaps sa
IEepXVBAHUI MApKUPOBAHHHX JIMTEPh B MOPOXIEHHHX pPEe30JbBEHTax IO
CTATOYHO 3alOMWHATH TOJBKO IOUIBIOHKTH IMOPOKIEHHHE Ha IPOMEXYTO
UHHX=-COCENHUX YPOBHAX [OUCKA. Crlemyouuit npuMep WIOCTPUPYET PO
LleCC OTHCKAaHUA YINOPANOUEHOW NMHEeWHOW PEe30NBBEHTH IeHTPallbHOTO
IU3BIOHKTA Dl 1 GOKOBOTO NU3LIHKTA Dy

Mpmwep.  Dy: P(x)/Q(x)/R(GT(X)  Dy: RGP,

1° nepeuMeHOBaHME TEpPEMEHHHX : D, cTaHOBUTCA TR(F)VI (y)P(y)

2° orhckanne HaiiGonee oGuero yuuprnraropa HOY mna T(x) ¥ K-Toi#t
(k=1,2,8) nurtepn B Dp : ona k=2 HOY cyuwecTByeT u uMeeT BUI
o={y/x} .

3° ogopunenue pesomssenti: P(y)/Q(y)/R(y)/I(y)VR(y)E(y)

4° cxarue PesONIbBEHTH - CTUPaHUMEe HEeMapKUPOBAHHHX JIMUTEph COBIA
Jauux ¢ IpeluecTBYOWAMKA C JieBa JUTepaMu M UCJIellOBaHWE Ha
rasronormo: P(y)/Q(y)/R(y)/T(y)IR(y)

5° COKpalleHMe pe30NbBEeHTH — CTUpPAHVWEe MApKUPOBAHHHX JIMTEphL 3a
KOTOPMMM HET HeMapKMpOBAHHLX: TAKUX IIOKa B HAlleM NpuMepe HeT

6° CTUpaHue IOCHEeNHNX MUTEPh KOMIJIEeMeHTAapHHX /MO0 OTHOWEHMH K OT
punanui/ K HEKOTOpPO# npelmecTByblUield MApPKUPOBAHHOW JUTEpe Mo
yHupukaTopy A : mna A =@ nonyuaerca P(y)/Q(y)/R(y)/T(y)

7°ita-npmmepy NONy4YeHHOMY B 6° NPUMEHAKNTCHA Waru 50 n 6° noka mo
CNelHAA NUTepa He oxaxeTcn”ﬁameponaHHoﬁ 6o pe3onbBeHTA He
OKaxeTCcs NYCTHM NU3BWHKTOM. B Hawem ppuMepe yrnopajoueHas nu
HeliHam pesonbBeHTa uMeeT okoHuaTenbHii Bum: P(y) .

B cucrTeme MCHONB3OBAHHO Clenywliee NPaBuno GUHAPHONW MHAYKLUM
/nonpo6ree cu. B [2] u [3] /:

I3 ueHTpPanbHOro AM3BIOHKTA Dl 379181 CIV A n GOKOBOTO UMIBLWHKTA
D2 Buga 1B V Cgrne A n B nurepn, C1 n C2 IM3BIOHKTH, He couep
Xaumx o6uuX TNEepeMeHHHX M TaKkux 4YTO CyWlecTBYeT MOLCTAHOBKA €
nawuas €-npumepn Buna Ag= L (0) u Bo= L (t) (6o Ag= L (t)
u Bg= Lx(O)), npyu uewm Lx(t) nuTepa nonyuena ua L(X) samveuweHuem
Kaxloro BxoxleHus nepewmeHnol x Ha Tepm t «koTopuit csoGonen mns

x B L(X) , BHBOOATCH OM3BIOHKTH:

CigV CpogV Lx(r/zl,..,zs)) 3 CreV CpogV WLX(Sr(zl,..,zs))

26

MeXNy NnuTepaKu onycxae
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rine g HoBas (Qynkuua Ckonema g @pryMMEHTOB; Zj,..ey2g BCE paa
NUUHHE MepeMeHHHe B NUuTepe Lx(o) 3 8 cykueccop. [lepBuif U3 Hux
3aroMMHaeTCA B KauecTBe LEHTPalbHOTO AM3BIHKTA INA Cclelywuero
YPOBHA, a APYrOil 3anucHBAETCH B MCXONHOE MHOXECTBO GOKOBHX IM3b
I0OHKTOB. [IpaBuno OGuMHaApHOW MHAYKUMM TPUMEHAETCHA TOJNBKO €Cnu [paBu
J1I0 YNOpANOYEHOR NMHeWHOW pel3onwuuM K NOUIBIOHKTaM D1 uD2 He Ipu
MEHUMO +
[IpuMep . D, s P(x)Q(0,h(y)) Dy: 1Q(f (y),2)R(z)
1° nepeuMeHHOBaHUE MepeMeHHHX: Dp CTaHOBUTCH 1Q(f(yl),z)R(z)
2° onpeneneHue TMOJCTaHOBKM 1) 6 = {h(y)/z}
3° onpenenenne @-npuMepOB: Digt P(x)Q(0,h(y))

Dyg: QL (y1),h(¥)IR(B(F))
4° nopoxneHve MHIYUMPOBAHHHX NM3bBOHKTOB :

PGRG(F)IQ@E(y),h(y)) ;3 PEIRMG(FINQEGs(GF)I,h(y))

[[paBuUNO CUMMETPUN

Ecnu K MCXOIHOMYy MHOXECTBY MNPUHANNEXUT INUSBIOHKT Bhpaxaouui
akcuomy cummerpun: VR(x,y) V R(y4X) , TO OH NPMBOIUT K NOPOXIEHMI
JNVIUHNX OU3BIOHKTOB KOTOpHe "sarpasHawT'" npocTpaHCcTBO noucka. Hoarto

My B CUCTEeMe MCMOJIb30OBAHHO clleAykliee MNpouelypajlbHOe NpPaBUIIO CUMME

TPUN :

K uneHTpanbHOMY Ou3blHKTY Bupma C V R(tl’tz) , The tl’t2 Tep

mMu, C IOU3BWHKT, MNPUMEHANTCH clenywlue TpaHcHopMmauuu :
1° nepemeueHve TepMoB t1 n t2 : c Vv R(t2,tl)

2° NpyYMeHeHue Wwaros 40-70 NpUMEeHSEeMEX NMpPpU OTHCKAHUI JIMHENHOW YIO

PANLOUYEHON pPEe30JIbBEHTH

Ilpumep. Dy: P(x)/MR(£(x),5)/Q(2)R(0,2)

1°nepememenne TepmoB: P(x)/IR(£(x),y)/Q(z)R(z,0)
2%xarue He npumenumo § 3° cokpameHue He MDPUMEHUMO
8° crupanne nocnenHeit MUTepH KOMINEMEHTapPHO# MAapKMPOBAHHOM:
nnﬂ.za{f(x)/z,O/y} nonyuaercsa P(x)/WR(£(x),0)/Q(£(x))
5° cokpamenme: P (x)
llanuefimee cTUpaHMe He NPUMEHUMO, MOITOMY NUBLIOHKT MODPOXIEH IO
NpaBUILYy CUMMETPMU UMEET OKOHuaTenbHw# Bum: P(X)

1) HOY mns Q(0,h(¥)) u Q(£(y1),2) He cymecTByer. [loncTaHOBKa
onpefienseTcsa Mo Occo6omy anroputmy onucanHHomy B [3] .
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Ecnu cumTaTh 4TO R aABnAeTcs n0GHM GUHAPHHM MNPENWKATHHM CUMBOJIOM,
TO NpaBUIO CUMMETPUM 3aMEHAET CXeMy-aKCuOoM cuMMmMeTpuu.Kpome TOTO,
B CHUCTEMe MNpenyCcMOTpeHa BO3MOXHOCTHL MPUMEHSATH MNPABUJIO CUMMETPUU
TONBKO K TeM OUHaDHHM [peluKaTaM KOTOphHe 3afUKCUPOBAHHH B Kauec
TBe CHUMMETDUUECKUX, & He K KaxOOMy OUHAPHOMY MPEIUKATY.

lonp30BaTEeNb CUCTEMU MOXET BHODPATH OIMH M3 CIEeNyoUMX pexu
MOB paGOTH: TONBKO DE30NWINA, PE30JNOLUUA U CUMMETPHUS, DE30NBLUUA U
MHIOYKUUS, DPE3ONOUUA,MHOYKUAA U CUMMETPUS.

B pexume c pesoswuueil, MHOYKUMER U cuMMeTpueil IJs onpenene

HOTO LEHTPalNbHOTO ¥ GOKOBOTO NM3BLIOHKTA MOPOXNAWTCH IOU3BIHKTH I10
MpaBuUiy JNMHEWHOW YNOPANOUEeHOW pe3onouuyu nu60 GUHAPHON MHIOYKLUU,
a 3aTeM K LEeHTPaJbHOMY IOMU3BIOHKTY IPUMEHAETCH NPaBUIO CHUMMETDPUH .
Ecnu npaBuno ‘cUMMeTpUM NPUMEHUMO, TO NOPOXIEHHHZ OU3BHHKT CTaHO
BATCH HOBHM L@HTPaJBbHHM NMU3BIOHKTOM [JiA [PUMEHEHWUS MPaBuJl pe3O0ilio
UM nM60 MHOYKUMM Ha clelyolleM YpPOBHE NOMCKa. Bce NM3BIOHKTH IOPO
XOEeHHHEe Ha ONHOM YPOBHE 10 yKas3aHHM MpaBuiiaMm 3alOMUHAKWTCHA OO cle
Oyouero ypoBHA H& KOTOpPOM MCIIONB3YWTCH IIO OYepenu B KauyeCTBe HO
BHX LEHTPaNbHHX IOU3bIOHKTOB.Ha KaxnoM ypoBHe GOKOBHMU HOM3BOHKTA
MM 10 Ouepely ABIANTCH IOUIBOHKTH MCXOIHOTO MHOXECTBA.
HavyanbHH LEHTpanbHH OM3BIOHKT GepeTcd M3 MHOXECTBAa AU3bHHKTOB
NMPOUCXONAUMUX M3 OTPULIAHMA NPEIJIOKEeHMs MOoJJiexauero NoKasaTelbCT
BY. OTO HOCTATOUHO IJIA HAXOXIEHUs ONMpPOBEpPKeHUH eCcyiu OHO CYyLecT
ByeT, B NPOTMBHOM MOMCK B ofleM cinyuae NpeBpalaeTcsd B GecKOoHeu
HYW Mpouenypy ¥ MNepepuMBaeTCs B MOMEHTe MCUeplaHus NpelHa3HAUeH
HX pecypcoB namsaTH MauuHs. OnpoBepxeHMe HAWIEeHO ecyiu Ha HEeKOTO
POM YPOBHE MOPOXIEH MYCTOW NU3BKHKT.

Ha BHxOne nonyuaeTcsa INOKas3aTeNsCTBO B (OpMe OTMNEYaTaHOro
ONMpPOBEpXEeHUA, NpPU YeM MevYaTalwTCsd TONbKO HM3BOHKTH MNpUHAIIexauue
ONpoOBepXeHuw, NmM6o coolleHne O HEeBO3MOXHOCTHU ONPOBEPKEHUA B npen
Ha3HAYeHHHX pasMepax 3aroMMHanINero yYCTpoicTBa. [IpelycMOTpeHHa
TaKXe BO3MOXHOCTB HAJIOXKMTH OTIpaHUUYEeHUHA Ha IJIMHY JNUTeph, LIVUHY
IM3BIOHKTOB M KOJMYECTBO NM3BWHKTOB MOPOXIAEMHX Ha KaXIOM YpOB
He. [M3BbWHKTH MPEBOCXONAUME ITU OTPAHUUYEHUS HE MOPOXINAKNTCH.
lcnone3oBaHHbE OTpaHMYeHNsg MOXHO CUMUTATh YHNOBNETBOPUTENbHBIMU
TaK KaK cucTema BKJKYeHa B MHTEPAKTUBHYW cCUCTeMy NOoKasaTenbCcTBa
KOTOpasn O060OCHOBAHHA HAa MlIefAYX eCTeCTBEeHHOTrO BHBOIA U paaGuelﬁ
3allauy Ha MeHee CJIOXHHe non3ajlauu.



[lonHse CBeNeHbA O TOM Kak paGoTaeT cucrema "T'pad"

MOXHO TMOJIYYUTH
M3[8]. Crnech OTMETWMM TOJILKO YCJIOBMUA repexona u3 VMHTEePAaKTUBHOM

K BrONHE aBTOMATU3UPOBAHOR cCuCTEeMe [OoKasaTenbCTBa B paMkax cucTe=
mu "TI'pad". YnoMsHYTHIt nepexojl NpenyCMOTpeH B TOM M TONBKO B TOM
cnyuae Korpa ¢opMmyna McCUMCIEeHUsi NMPelMKaToB npuselleHHa K UMNIUKa-
tTuBHO#i dopme A =F, , Npu uem BCe NpeluKaTHHE 6yKBH NpUHALIExa-
uMe npaBoOii uacTu 4 CYWECTBYWT U B neBoO#t uacTu f,' .

KoHeuHo, KOTHa BIOJHE ABTOMATM3MpPOBaHAsA CUCTeMa NoKasaTesnbCcTBa
MCIONBE3yeTCHA CAMOCTOATENBHO M HE3aBUCHMO OT CHUCTEMHU "T'pad", TO

3TN NpeurnoyoxeHnA He 06f3aHh.

1)

[pumep oTnanku Ha IBM

Akcuomsi: 1. Vx\ly(R(x,y)#R(y,x))

2. V-va(R(x,y)AR(y,z):R(x,z))

3 A¥x¥yR(x,7)
Yreepxnenne: ¥x¥y (R(x,y)=»3z(OR(x, 2)ANVR(y,2)))
CkONneMusupoBaHOe OTpULlaHME YTBEPXAeHU:A: R(a,b)A (R(a,z)VR(b, z))
a ,b - koHcraHts Ckonema.

MNexonHoe MHOXeCTBO HOU3BIOHKTOB:

1. R(a,b)
2. R(a,z)VR(b,z)
3, WR(m,yn) n3 akcuomsl 3 j m,n — KOHCTAHTH Ckonema

4, MR(y,2)VIR(X,y)VR(x,2) n3 aKCUOMH 2.

IM3bIOHKT TPOMCXONAUMNA U3 aKCUOMH CHMMETPMU HE HyXeH.

Hauanbuni nu3bHKT: R(a,z)VR(b,2)

Pexum paGoTH: yNnopanoueHas NMHeHHas pe3onouus C MpaBUiIoM cuMMe
Tpun, 6e3 MHIAYKLUAU.

lMonyueHHO clelyloliee OMPOBEPXeHNMEe MCXONHOTO MHOXECTEa IM3BOHKTOB

B BUNe MMHE#HOTO BHBOJA MYCTOTO IM3BOHKTA /NPUBOAMM €TO B nepe

BOle ¢ aHTnuiickoro sA3hka/:

ILIOKASATEJILCTBO HAMIEHO

OITPOBEPYEHVE COCTOUT U3 CIENYOWEN TIOCTELOBATEIBHOCTH :

[EHTPANLHHI JVSBHHKT:  R(a,z)R(b,2z)

BOKOBO JIVIBBIOHI{T:'\R(y,zl)'lR(x,y)R(x,zl) 4, B UCXONHOM MHOXe

HOY : b/y,z/z

LEHTPAJIBHHIA IlMSbiOHKT‘ R(a, z)/R(b, z R (x, b)R(x, z)

BOKOBO! LM3BIOHKT : TR(m,n) 3. B UCXOIHOM MHOX.

HOY: m/x,n/z

4) Npumep nonckasan Jli. [BeTKOBUY
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LUEHTPAJIBHHI IU3BWHKT: R(a,n)/R(b,n)IR(m,b)
nmelicTBOBana omnepauus COKpalleHusd
R(a’n)/R(bsn)"R(b’m)
neflcTBOBANO NPABUIIO CUMMETDPUU
EOKOBO IV3BWHKT: R(a,z)R€b,z) 2. B MCXOLHOM MHOXe
HOY: m/z
UEHTPAJIBHEI JII3BIOHKT : R(a,n)/R(b,yn)/IR(b,m)R(a,m)
BOKOBOI IM3BIHKT : VR(y,2)TR(x,y)R(x,2) 4., B MCXOIHOM MHOX.
HOY: a/y,m/z

LEHTPANIBHNA IM3BIHKT: R(a,n)/R(byn)/ R(b,m)/R(a,m)IR(b,a)
IelicTBOBana oONepauus CKaTUA ,A =a/x
R(a,n)/R(byn)/AR(b,m)/R(a,m)R(a,b)
neficTBOBANO MPABUIIO CUMMETDPUU
BOKOBOII IV3BIHKT: R(a,b) l. B UCXOAHOM MHOXECTBE
HOY @ nycras IoICTaHOBKAa
UEHTPAJIBHNI UM3BIHKT: R(a,n) neiicTBOBasa onepauus COKpalleHus
BOKOBOI IM3BIHKT: VR(y,2)IR(x,y)R(x,2) 4. B MCXOLHOM MHOX.
HOY: @&/y,n/z
UEHTPAJIBHHIA IU3BOHKT: /R(a,n)IR(x,a)R(x,n)
BOKOBO [M3BIHKT: <YR(m,n) 3. B MCXOIHOM MHOX.
HOY: m/x
LEHTPAJIbHbI IVSHIOHKT: /R (a,n)VR(m,a)
neiicTBoBana onepauus COKpalleHUs

/R(a,n)\R(a,m)
\ neficTBOBANO NPaBMIO CUMMETDPUM
BOKOBOW LV3BWHKT: R(a,z)R(b,z) 2. B MCXOJIHOM MHOX.

HOY: m/z

LUEHTPAJIBHHA IM3BHHKT: /R(a,n)/MR(a,m)R(b,m)

BOKOBOM UM3BWHKT:TR(y,z)WR(x,y)R(x,2) 4. B MCXOILHOM MHOX.

HOY: b/y,m/z

UEHTPAJIBHHIA IM3BIHKT: /R(a,n)/AR(a,m)/R(b,m)M1R(a,b)
IneiicTBOBana onepauusa CXaTUA , A =a/X

BOKOBOIi NU3BIOHKT : R(a,b) 1.B MCXOJIHOM MHOX.

HOY: nycras noncTaHOBKa

LUEHTPAJIbHH/ NIN3BIHKT: MYCTOW INM3BWHKT neitcTB.Onep.cokpaleHus

NOKASATEJBECTBO OTIIEYATAHO

INOKABAHA HEBHIIOMHUMOCTE MCXOILHOI'O MHOAECTBA
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[lpumeuanue: B npouecce ONpoBepPKeHUs CHUMBOJN NUIbOHKUMM HE MULETCH.
Kaxnbii HeHTpanbHH# OM3BWHKT, KPpOME HAYalbHOrO, ABINAETCH YNOPANO

YeHOU NuUHeHOW Pe30NILBEHTON NpewecTBYWIEro LUeHTPalbHOTO U GOKO

BOTO IM3BKWHKTA, nu6o BHBEIEH M3 NnpeluecTByWWero LHeHTPaJlbHOrO OU3b

HKTa no npaBuny cummerpuu. Cumson "/" nepen nurepoit mapkupyer
CTOAUYI 3@ HUM JIUTEPY.
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SOME CONNECTIONS BETWEEN FINITE SEPARABILITY
PROPERTIES OF AN n-SEMIGROUP AND ITS UNIVERSAL
COVERING

Biljana Janeva

Abstract. It is known that for any n-semigroup there
exists a universal covering semigroup, and there is a con-
nection between some properties of an n-semigroup and its
universal covering. In this paper such a connection for fi-
nite separability properties is studied. It is proved that:

1. If a covering semigroup g' of an n-semigroup
is residually finite, then Q is residually finite as well.

2. If a cancellative n-semigroup Q is residually
finite, then the cancellative universal covering semigroup
Q™ is residually finite as well.

3. 1f the universal covering group Q" of an n-group
Q has the finite separability property , so does Q.

As a consequence of these results, the results given
in [3] , some known results for n-semigroups, and the fact
that finite separability properties imply solvability of al-
gorithmic problems, some n-semigroup classes with solvable
algorithmic problems are obtained.

l. Preliminary definitions

An n-semigroup is an algebra (Q,[ ] ) with an associ-
ative n-ary operation []:(xl,xz,...,xn)rv [xlxz...xn]. Then
the semigroup Q" given by the following presentation (in the
class of all semigroups)

£Q; Ya=a,a,...a | a@pj85...a] in g} 2> (1)
is called the universal covering semigroup of §. It can be
assumed that Q € Q°, moreover, Q is a generating subset of
Q" and any element ueQ” has a form u=a,85...3;, where
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l¢i<n, a,€Q, and i=|ul is uniquely determined by u. If P is
an n-subsemigroup of Q then there is a (unique) homomorphism

A :P"—>Q" such that A(p)=p, for any peP. P is said to be com-
patible in Q if ) is injective, and then we can assume P"to be
a subsemigroup of Q" ([1)).

A cancellative n-semigroup is an n-semigroup which satisfy
the cancellative laws. Then the semigroup Q~ given by the pre-
sentation (1) (in the class of cancellative semigroups) is called
the universal cancellative coveripg semigroup og Qe We note that
aj8s5...85=bybseauby in Q iff[an'lal...aﬁ = [a 'lbl...bi] in Q,
for each a€Q.

An n-semigroup (Q, [ ]) is called an n-group if
(Va-l"" W3, € QD(Ix,yeQ) {xal"’ n_l] =an {alooan_IY]"&n,
or equivalently, if Q" is a group. An n-group Q is a cancella-
tive n-semigroup and Q% =Q7

We note that every n-subgroup P of an n-semigroup Q
is compatible in Q ([1]).

2. bome connections between finite separability

properties of an n-semigroup and its universal covering

Let j(be a class of n-semigroups and g&fkj.

DEFINITION 1. Q is said to be residually finite in 'K if
for each x,ye Q,x#y, there is a surjective homomorphism ‘f from
Q to a finite n-semigroup of K such that Y(x)#P(y).

DEFINITION 2. Q is said to have the finite separability
property in }fii for each xe¢Q, and n-subsemigroup P of Q, x¢P,
there is a surjective homouworphism ¢ from Q to a finite n-semi-

group of ') ,such that ((x)¢ ¢ (B).

Replaceing the words "n-semigroup","n-subsemigroup" by

"pegroup", '"n-subgroup" respectively, we obtain the correspon-
ding classes of n-sroups.

Remark In the propositions below by a residually finite
n-semigroup we will always mean a residually finite n-sewigroup
in a class of n-semigroups. The cinsidered class of n-sewmigroups
will be clearly understood by the context.

}'ROPO3ITION 2,1, If a covering semigroup §°

]

migroup 7 is residually finite, then | is resicnally fin‘te a

1) (0’ is a covering sesigroup of an n-seLizroup is 18 a
— s - . Y — N B= &
generating subset of and  XqeeeX  =XyeeeX for any x-, ¢ .
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Proof: Let a,b be two distinct elements of Q. Then
a¢b in Q“, and, by the assumtion, there is a surjective
homomorphism ¥ :9°—» 8, such that S is a finite semigroup
and ‘P(a)# ‘P(b). If we put W= \PQ and T= Y(Q), then (T,[])
is a finite n-semigroup where [xl...xn] = Xy...X,, and, thus,
W :Q » I is a surjective homomorphism such that ‘Y (a) £ W(b).,

It is not known whether the residual finitness of an
n-semigroup Q induces the corresponding property for its uni-
versal covering. We will show, now, that we have the positive
answer if we consider the class of cancellative n-semigroups
and its cancellative universal covering semigroup.

FROFOSITION 2.2. If a cancellative n-gemigroup Q is

residually finite, then the cancellative universal covering

semigroup Q is residually finite as well.

Proof: Let a¢b, a=al“'ai’b=bl"'bj € Q™ , ay,by&Q,
l<i<Jcmn. If i#j then ||:c+> (c| i8 a surjective homo-
morphism from Q™ to (Z_,+) such that lal #1bl . Assume, now,

"1b1...bi] =b’, and,

thus, there is a surjective homomorphism ¥ from Q into a

- . - n
that i=j. Then a’= [ag ay...a5] # [al

finite cancellative n-semigroup S, such that W(a’)# W (b").

Then Y induces a surjective homomorphism W¥:Q%-—> S8~ , where

S” is a finite cancellative semigroup. Moreover, we have

Y (a)# Y(b), for if W7 (a)= Y"(b), then ¥ (a’ )-‘V(a1 ajece8) )=

W(a™ W(ay.eeay)= Y (@)™ Wb b)) W (D).

As a consequence of these two properties we obtain:
COROLLARY 2.%. The universal covering group Q of an
n—group Q is residually finite iff Q is residually finite.

As for the finite separability properties we have the
following results.

PROPOSITION 2.4. If the universal covering group Q°
of an n-group Q has the finite separability property, then
Q also has the finite separability property.

Proof: Let P be an n-subgroup of Q and x € Q \P. Then
P" is a subgroup of Q" and x ¢ P". Therefore, if Q" has the
finite separability property then there is a finite group G
and a surjective homomorphism “f :Q"— G such that W(x) ¢ Y(2").




66

The restriction \PQ=‘Y of Pon Q is a surjective homomor-
phism from Q into a finite n-group W(Q)=G" and W(x) € Y(2)
S M (B ).y
PROPOSITION 2.5. If each n-subsemigroup of an n-semi-
~group Q is compatible in Q, and the universal covering semi-
group Q" has the finite separability property, then Q also
has the finite separability property.

‘Proof: The proof is the same as the proof of 2.4.4

3. Some n-semigroup classes with solvable
algorithmic problems

Certain connections between the finite separability
properties and solvability of algorithmic problems are gi-
ven in [3] .To be able to state them for n-semigroup classes,
let me note that if Pis a property for n-semigroups, then
a class K of n-semigroups is a P-class if each finitely
presented member of X has the property F . Now, if a class
K ot n-gemigroups is residually finite (has the finite se-
parability property), then XK has a solvable word problem
(has a solvable generalized word problem).

Also, a table of some varieties and classes with
solvable algorithmie problems and with some finite separa-
bility properties is given in [3] . Among others, the follo-
wing results are given:

(i) The variety of commutative groups (commutative
semigroups) is residually finite.

(ii) The class of free groups ( free semigroups, free
commutative semigroups) has the finite separability property.

Using these results, the results given in 2., as well
as known results for n-semigroups and n-groups, some corolla-
ries are obtained.

COROLLARY 3.l. The variety of commutative n-groups
is residually finite.ﬂ

COROLLARY 3.2. The variety of commutative n-semigroups
is residually finite.

Proof: Let Q be a finitely presented n-semigroup.
The semigroup Q° given by the presentation (1)(in the class of
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commutative semigroups) is the universal commutative covering
semigroup of Q ([71). Q" is finitely generated commutative
semigroup, so ([5],Th 9.28, pg.172, II) it is finitely pre-
sented and is residually finite. Now, by 2.1, Q is residually
finite as well.U

COROLLARY 3.3. The class of free n-groups has the
finite separability p;operty.a

Using the connections between finite separability
properties and solvability of algorithmic problems, it follows
immediately that:

1) The variety of commutative n-groups (commutative
n-semigroups) has a solvable word problem.

2) The class of free n-groups has a solvable genera-
lized word problem.

Remark: The result 1) could be obtained as a direct
consequence of the results in {2) for connections between
solvability of the word problem in n-semigroups (n-groups)
and their universal covering. It could be proved that:
if Q" is the universal covering group of an n-group Q with
solvable generalized word problem, them Q has a solvable
generalized word problem as well.The proof of this last pro-
perty essentially uses the fact that each n-subgroup of Q
is compatible in Q, so this result could be proved for n-se-
migroups in which each n-subsemigroup is compatible.
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ON SOME CONGRUENCES ON FACTORIZABLE SEMIGROUPS
Vesna Kilibarda

Abstract. The purpose of this note is to describe some
congruences on a factorizable semigroup S. A necessary and su-
fficient condition for ( X,7T ), with K= Ku~, to be a congru-
ence pair for S is given (Theorem 1). Similary, a necessary
and sufficient condition for any (K,T ) to be & congruence
pair for a Clifford uniquely factorizable semigroup is given
(Theorem 2).

First, we give some results about factorizable semi-

)

S is called a factorizable inverse semigroup if there exist

groups studied by Chen and Hsieh [1].1 An inverse semigroup

a subgroup G of S and a subset E of the set E!5 of idempo~-
tents of S such that S« GE. Any factorizable semigroup has
an identity, and if an inverse semigroup S is factorizable as

S=GE, then S=EG, G is the unit group of S, and EsEs.

1) All undefined terminology can be found in [2] .



70

RESULT 1. [1] Let S be 2 semigroup. Up to isomorphism,
the following statements are equivalent:

(i) S is the direct product GXE of a group G and a

semilattice E with the greatest element.

(ii) s is a Clifford semigroup :f(Y;G&,“F,L,,o) such that

every fups is an isomorphism and Y is a semilattice with the

greatest element.

(iii) S is factorizable as GES for some subgroup G of S,

such that every ece ES is uniguely represented in the form le,
where 1 is the identity of G, and ge-eg, for all ee E_ and
g€ G.

If S is semigroup described in Result 1, every s &S is
uniquely represented in the form ge, with g€ G and esEs.
Such a semigroup is called a Clifford uniquely factorizable
semigroup.

Next we mention congruence pair and a characterization
theorem for congruences on an inverse semigroup due to
Petrich [3].

Let 5 be an inverse semigroup. For & congruence ¢ on S
the kernel and the trace of 9 is defined by

kerg = {2 €S| (Bec-Es) age}

trg=gl| E_
respectively. This associates to each congruence 9 on S the
ordered pair (kerg , trgQ ).

An inverse semigroup K of S is normal if it is full
(E,SK) and selfconjugate ( g'CsSK, for all s€ 5). A con-
gruence T on the set E  is normal if for any e,fe ES and s€ 3,

s
etf implies s ests 'fs.

DEFINITIOIl 1. he neir (iZ,T ) is a congruence pair for
S if K is a normal subsemigroup of 5,T is & normtl coagru-

ence on E‘_ and these two sctis

S

]
e«
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(i) aee K, et a’'a =m»aek,

(ii) aeKk=a'aTaa™' (aes, ee E_).

Using these concepts, we have the mentioned characteri-
zation theorem of congruences on an inverse semigroup.

RESULT 2.[3] Let S be an inverse gemigroup. If (K,7)

is a congruence pair for 3, then the relation Sk ) 28 S de-
’

fined by
2 Q) Pe=> a'aTb'p, ab €k

is the unique congruence @ oxn 5 for wlich kerg = K and

tr =7 . Conversely, if @ is a congruence on 5, then
(kerg y tro ) is a congruence peir for S and Q(h/zg,ug) =9,

Now we describe congruence pairs on a Clifford semigroup.

RESULT 3.[3] Let S=¥(Y; G,,%,a) be a Clifford semigroup.

The pair (K,7T ) is a congruence pair for S if and only if
K=¥(Y; K,Ys), where

(i) K, is 2 normal subgroup of G, , L EY
o =8 & Norma. Supgroup O Mg,

(i1) e >e, 2K ¥ ,Kp

(111 )W, a= YuulK

(iv) T is & congruence on I_ such that

6,% €, 1€, T €, =-'7K,5‘P°,"_LSK,,_ .

If I is an arbitrary subset of an inverse semigroup S,
the closure Hwyof H is defined by Ihos{_xesl(aeeES)xeeH} [2].

In the next theorem we give a description of congruence
pair (I‘{,’C‘ Jwith K=Kwfor a factorizable semigroup.

THEOREM 1. Let S= GE be a factorizable semigroup, K

a subset of S such that K=K, and Ta congruence on ES.

Then (K, T ) is a congruence pair for S if and only if there

exists 2 normal subgroup H of G such that K= HES, and

(1) et f=glegr g'fg, for all get, e, few,
(2) n'enTe, for all heH, ee E_.
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Proof. Let K=HES, and the conditions (1) and (2) are
satisfied. If x, y€ K, then there are h,,h,eH, e,,e,_éES
such that x =h,e,, ¥y= h,ez. S0

xy=h,e,h,e,= h,1 e, h,e, = hh,(hy'e,h,) e, € HE
and

x'= e n; =h](h,e,n,)€ HE .

Hence, K is an inverse subsemigroup of S.

From E = lE = HES it follows that X is full.

Let se S a.nd ke K. Then s = ge and k ~hf for some ge G,
heH,e, feB . S0 ghrr-h e H, gfg-f cI‘ , and
s'ks=eg hfbe= e(g'hg) (g “'fg)e =eh,f,e =N, (h.,eh,)f e&HE .
Thus, K is a normal subsemigroup of S.

Suppose that e,fe Es, seS and e f. Then s =ge,, for
some g€ G and e, & Es.and

s'es=e,(gegle,T e, (g'fg)e, = g fs,
by the condition (1). Hence,T is a normal congruencé on Es‘

Now we prove that conditions (i) and (ii) of Definition 1
are setisfied.

1f ae€ K, then ae Kw=K, so the condition (i) holds. Let
ae K. Then a=hf, for some h&H, fe Es’ and we have

g« hEfH' = hfn TF = f1f = fH hf - €@
by (2), so the condition (ii) holis.

Thus, (K,%T ) is @ congruence pair for S.

Conversely, let (K, 7 ) be a congruence peir for S such
that = Kw. e define the subset H of G by

HelgeGl( BeGES)gec—l{} .

From (3 oe'jg)gee K it follows ge Kw=K, so we have

= { geGlgek}=GNESK,

which yields ':ZL:SC}C}”G K, since B_<K, end K € K. Since

o

KelZ_ Dby definition of H, it follows K=HE .

5] 161
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From H= GNK we conclude that H is a subgroup of G.

Let ge G and he H. Then there is e€ E_ such that heek,
and g'(he)g = (g'hg)(g'eg)€c K, since K isuself-conjugate in
S.. Hence g'hge H, by definition of H.

The conditions (1) and (2) follow immediately from the
normality of T and the condition (ii) of Definition 1, respec-
tively. The theorem is proved.

The next theorem gives a simple characterization of a
congruence pair for a Clifford uniquely factorizable semigroup.

THEOREM 2. Let S = G»Es be a Clifford uniquely factorizable
semigroup, K a subset of S and?7 a congruence on E . Ihe pair
(K,T) is a congruence pair for S if and only if there exists

a normal subgroup H of S such that K= IIES.
Proof.From Result l. it follows that S=X(Y; Guy¥n),

Gy = Gey, € Gl=G, where 1 is the greatest idempoternt of §,
g ‘/’4’.‘- gew 5 for every g€ G, e, € Es.

If K-:HES, it follows that X=¥(Y; K,, VQ',,)' such that
K,= He, “Hl=H, so the conditions (i) - (iv) of Result 3. are
satisfied and (K,7T ) is a congruence pair.

Conversely, if (K,7 )' is a congruence pair for S, then
K=¥(Y; Kyy Yus) and the condition (i) - (iv) of Result 3. are
satisfied. Hence, \V.L,n ;are isomorphisms and so K,=He, for some

normal supgroup H' of G and K= HES. The theorem is proved.
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INVERSE CONGRUENCES ON ORTHODOX SEMIGROUPS
Dragica N. Krgovié

Abgtract. The purpose of this paper is to consider inverse
congruences on an arbitrary orthodox semigroup S. Necessary and
gufficient conditions on a pair (K,T), for the existence of an
inverse congruence § on S such that K is the kernel and € is
the trace of , are established. The main result is the chara-
cterization of inverse congruences on an orthodox semigroup
(Theorem 1). Petrich’s characterization [9] of congruences on an
inverse semigroup and Feigenbaum’s characterization [3] of group
congruences on an orthodox gemigroup are derived as particular
cases of Theorem 1. Also, the characterization of sgemillatice
congruences on an orthodox semigroup is obtained (Corollary 2).
We give also a new description of the minimum inverse congruence
Y on an orthodox semigroup, as a consequence of the Theorem 1.

Let S be a regular gemigroup, E its set of idempotents.
For any element a in S, V(a) will denote the set of inverses
of a. Recall that a subsemigroup H of S is gelf-conjugate if
x’Hx<H for all x in S and all x’ in V(x), and H is called full
if E<H. A subsemigroup H of S is inverse-cloged if V(x)<H for

all x in H [5].
It is easy to prove the next useful lemmas.

LEMMA 1. Let § be an inverse congruence on a regular gemigroup S.
Then

(Va,bes)(agb =»(+va’€V(a))(vb’eV(b))a’gb’).
LEMMA 2. For a congruence g on an orthodox semigroup S, the fo-
llowing conditions are egquivalent.

(i) g is inverse.

(ii) (ta,bes)(agb =¥ (Wa’eV(a)) (¥b’eV(b))a’gb’).
) (VaeS)(VeeE)(age = (va’e V(a))a’ge).

(iv) (¥e,feE) (e §f =p (e’eV(e)) WL’ € V(f))e’g £°).
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(v) (xe€E)(ve’eV(ielle’g e.
(vi) (¥ aesS)(wa’,a"eV(a))a’e a".

For any congruence ¢ on 3, let trg = ?IE and kerg =
= {xeSlxg e for some eeE}. This associates to each congru-
~ence Qg on S the ordered pair (kerg , trg ). We will intro-
duce a pair (K,T ) which is an abstraction of the properties
of (ker? T tr?) for some inverse congruence S.

DEFINITION 1., Let S be an orthodox semigroup. A full, self-
-conjugate inverge-closed subsemigroup of S is a normal sub-

gemigroup of S. A congruence ¢ on E is normal if for any
e,f¢E and xeS, x’eV(x), eTf implies x’exTx’fx. The pair

(K,T ) is an inverse congruence pair for S if K is a normal
subgemigroup of S, ¢ ig a normal congruence on E and these
two gatisfy:
i) (ae €K, eTa’a) =5 ae€k (aeS, eecE, a’eV(a))
ii) aa'® a’a for every a€K, @eV(a).

Using these concepts and notations we will obtain the
characterization of inverse congruences on orthodox semigro-
ups. We start with a lemma.

LEMMA 3. Let (K,% ) be an inverse congruence pair for an ort-
hodox semigroup S. Then
i) (aebekK 7 eTa’a) = abek,
ii) (ab’eK, a’a Tbh’b) = a’eaTh’eb,
iii) e’T e,
for every a,beS, e€E, a’e V(a), b’€V(b), e’e V(e).

Proof. Note first that b’a’e V(ab) for every a,besS, a’eV(a),
b’e V(b).

Let a,beS, e €E, a’e V(a), b’e Vib) and e’e V(e).

i) Let aeb& K and e®€a’a. Then
(ab)(b’ea’aeb)=(abb’ea’)(aeb) € K (since E€K, K°<K),
b’a’ab?® b’eb=b’eeebT b’ea’aeb (since b’e &€V(eb) and T
is normal), which implies abeK by Def 1. i).

2

ii) Let ab’e K and a'aTh’b. Then

a'ea = a’aa’eaa’a T b’ba’eab’b (since a’a T b’b),
T b’eab’ba’eb (using Def 1.ii) on eablek),
Tb’eba’ab’eb (using Def 1.ii) on ab’¢kK),
Th'’edb (since a’aTb’b).
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iii) According to Def.l.ii), ee’fT e’e. Hence e®Te’e and

e'T e’e since e’€ E. Therefore, e’T e.

THEOREM 1. Let S be an orthodox gemigroup. If (K,Z) is an in-

verge congruence pair for S, then the relation 9(1( T) defined
’

on S by

a 9(K,'C‘)b<d—£—§ (ga*eV(a))@b’V(b))(a’aTb’b,ab’&K)
is the unique inverse congruence on S for which kerq = K and
tr@ =T .

then

Conversely, if 9 is an inverse congruence on S
(kerg, trQ) is n

o

’
n inverse congruence pair for S and

?(ker? ytre )~ ? ¢
Proof. Let (K,T ) be an inverse congruence pair for S, and
let § = ?(K,’C‘)‘ Then Q ig reflexive since K is full, and it is
gymmetric since T is symmetric and K is an inverse-closed
semigroup. Let agb and bQc, so that a’a€b’b, b"bTc’c and
ab’,bc’e K for a’e V(a), b',b"e V(b) and c¢’e V(c). Hence
a(b’b)c’=(ab?)(bc’) € K which together with b’b%a’a by Lemma 3
i) yields ac’e K. According to Lemma 3 iii), b’bZb"b since
b"beV(b’b), so that a’a €c’c. Thus ag@c and § is transitive.
Next let agb and ceS, so that a’aTb’b and ab’€ K for
gome a’'e V(a), b’e V(b). If c’e V(c), then c'a’e V(ac),
c’b? € V(be) and b’bee’a’e V(acc’b’b). Thus c’a’ac Tc’b’be
(since a’a€hb’b). Further,
(acc’b’b) (a’bee’a’acc’b’a)b’=(ace’b’bha’ ) (bec’a’acc’b?)(ab?) €K
(since E <K and K2_<_- K),
a’bec’a’acc’b’a®b’bec’a’acc’b’b (using Lemma 3 ii) on
bce’a’acc’b’ € E), which implies (acc’b’b)b’e K by Lemma 3 i).
Thus acc’b’e€ K. It follows that acgbc. According to Lemma 3

ii), a’c’caTh’c’cb. Since ab’e€ K and K is self-conjugate we
have cab’c’e K. Therefore ca?cb and 9 is a congruence on S.

Let age for e€B, so that a’aTe’e, ae’e K for a’eV(a),
e’e V(e). Then a(e’e)=(ae’)e €K which implies a€K by Def 1 i).
Convergely, assume that a€ K. Then a=a(a’a)¢K and a’a=(a’a)(a’a)
for a’eV(a), which implies that aga’a. Consequently, ker @ =K.

If e,feE and e%eV(e), f'eV(f), then by Lemma 3 iii),
ete’e and fTT°f gsince eeV(e’e) and feV(f’f). It follows
that
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egf{ﬁ)(ae’eV(e))(5f’eV(f))e’e’tf’f¢>e’L’f,

for any e,f & E. Therefore trg:fC'.

The congruence § is inverse by Lemma 2 and Lemma 3. 444
since trg =T.

Now let ¥ be an inverse congruence on S such that
ker¥ =K and tr§ = T. Assume first that a¥b. If a’eV(a) and
b’¢V(b), then by Lemma 2, a’& b’ so that a’a ¥b’b; also
ab’ g bb?. This shows that a’aThbh’b and ab’€ K, which implies
that a @b. Conversely, assume that a Qb. Then a’a Cb’b and
ab’ € K for some a’eV(a) and b’eV(b), which implies that
a’a ¥b’b and ab’y e for gome e € E. Then by Lemma 2, ba’&e
gince ba’e V(ab’). Hence ab’g ba’ g ba’ba’ which together with
a’a¥b’b yields

a-aa’a¥ ab’b ¥Yba’bb’b ¥ ba’ba’a ¥ha’a Ybb’b = b.

Consequently, Q = & which proves uniqueness.1

Conversely, let 9 be an inverse congruence on S. A sim-
ple verification shows that ker@ 1is a gelf-conjugate subse-
migroup of S. According to Lemma 2.3[7] kerg is inverse-closed.
Consequently, kerg is a normal subsemigroup of S. Let a &S
and eeE . If ae e kerg and ega’a for some a’eV(a), then
fg aegaa’a = a for some fe E. Thus aékerg P

Let aeS and a’e V(a). If a €kerq, then agQe for some
e € E. Hence a’g e by Lemma 1. It follows that aa’g e and a’age
which implies aa’Q a’a. Thus aa’ga’a for every a ekerg and
a'e V(a). Thgrefore (ker? , trg ) is an inverse congruence
pair for S. That ker 9(ker9,trg)=ker9 3 tr?(kerg,trg):trg
follows from above. Now the uniqueness just proved implies
that ?(kerg,trgf g .

If S is an inverse semigroup, then Theorem 1 reduces to
Theorem 4.4[9].

Since a group congruence on an orthodox semigroup is al-

80 inversey we have

1) The uniqueness also follows from Theorem 5.1[2] .



79

COROLLARY 1. Let K be a normal subsemigroup of an orthodox ge-
migroup S and let ae eK=ya €K, for every ae€S, e €E. Then the
relation Qg defined on S by

aQyb 5 (3b’eV(b))ab’€K

is a group congruence on S.

Conversely, if Q 1s a group congruence on S, then kerg@
is a normal subsemigroup of S with, ae ekerg = aekerqg, for

every a€S, eeE, and ?=9ker9 g

Let K be a subget of a semiégroup S. For any HeS define
the left K-closure of H to be HaJK={xeS\(9keK)kx eH}, the right
K-closure of H to be Haf={xeS |(3keK)xk € H} . If HwZ =Huf, then
it will be called the K-closgsure of H and we write HuJK. H will
be called left K-closed [right K-closed] if wa{ - H [Hey = H).
If H is both left and rightkclosed, H will be called K-closed
(Hay=H).

If K=H then left H-closure of H will be called left clo-
sure of H and similarly in other cases.

Let S be a regular semigroup. Notice that H€HE nEH for
any HeS. According to the proof of Lemma 2, Proposition 1 and
Lemma 3[6] it is easy to see that the following Lemma holds.

LEMMA 4. Let H be a subsemigroup of a regular semigroup S.
If HE-EH=H we have
i) If H is regular, then Ha% = Hwe,
ii) If H is self-conjugate, then Hu¥=HuF,
iii) H is regular if and only if H is inverse-closed.

Therefore, if H is a self-conjugate subsemigroup of S
such that HE=EH=H, then H is left-closed if and only if H is
closed. Also, if H is a self-conjugate regular (that is inver-
se-closed), subsemigroup of S such that HE=EH=H, then Hwy =
= Haf = Hed = Hw'fE. In such a cage,

(1) H is left-closed & H is left BE-closed
& H is E-closed
& H is closeds

T,etif{' ={K <S|K is a full, inverse-closed, self-conjugate
subsemigroup of S and ae€K =3 a €K for any a €S, e GE} and
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let f:{CESIC ig a full, closed, self-conjugate subsemigroup
of S}. We have just proved that 0{: f Therefore, for ortho-
dox semigroups the following theorem reduces to the Corrola-
vy Ls

THEOREM 2. (Feigenbaum,[3]). Let S be a regular semigroup. The
map C —» (C) ={(a,b)e3xs_|ab’ec for some b’e V(b)} is a 1-1
order preserving map of € onto the set of group congruences

on S.

Remark. For an orthodox semigroup S we have

LEMMA 5. If H is a subsemigroup of an orthodox semigroup S
such that HE=EH=H, then Ho-Ha%.

Proof. We prove HweEf-:-Ha%.

aéHweE'=% eae H for some e €E,

=> aa’eaeH for a’e V(a) (since EH=H),

= aeHw'?E (since a’ea €E).
The proof of the converse is similar.
Therefore, if H is a subsemigroup of S such that HE=EH = H,
then H isg left E-closed if and only if H is E-closed. Accor-
ding to Lemma 4 and Lemma 5, if H is a regular (i.e inverse-
-closed) subsemigroup of S such that HE=EH=H, then HJ:Hwe-, =
= Hu}E = Ha®, It follows that for any regular subsemigroup H
of an orthodox gemigroup S such that H;‘:EH:H, (1) holds.

Since a semillatice congruence on an orthodox semigroup
is also inverse, we get the following corcllary of Theorem 1.

COROLLARY 2. Let S be an orthodox gemigroup. Let € be a normal

congruence on E and aa’Ta’a for every a €S and a’e V(a). Then
the relation % defined on S by

a Qb éié‘_-’; (3a’eV(a))(3b’eV(b))a’a T b’d

ig a semillatice congruence on S.

Conversely, if 9 is a gemillatice congruence on S, then

trQ is & normal comyruence on E, aa’(trgQ )a'a for everv aes,

a’e V(a) and 9 = ?tr? .

iimum inverse congruence on an orthodox semigroup 8

The mir
is given by

aYh i€ and only i€ 7(n) J(b).
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It is known that Y is an idempotent pure congruence on S.
According to Theorem 1 we have

aYb &> (7a'eV(a))(3b’eV(b))(V(a’a)=V(b’b), ah’e k).
Therefore
aYbe> (3a’eV(a))(3b’eV(b))(a’a=a’ab’ba’a, b’b=b’bha’ab’b,ab’cE).

Let S be a semigroup, a,beS and a’eV(a), b’eV(b). It is
evident that

a’a=a’ab’ba’a ¢ a = ab’bha’a & aa’ = ab’bha’,

an’=ah’ba’ == (ah’aa’=aa’ <= ab’eR),

If S is orthodox then

a’aYb’b<&>» a = ab’ha’a, b = ba’ab’b

& aa’' = ab’ba’, bb’ = ba’ab’.

We have therefore egtablished the following result:

COROLLARY 3. If a,b are elements of an orthodox gemigroup S
then the following gtatements are equivalent.
(i) a Y b.
(ii) (3a’eV(a))(3b’eV(b))(V(a’a)=V(b’b) , ab’€ E)
(iii) (2a’eV(a))(3Ib’eV(b))(aa’=ab’ba’=ab’aa’, bb’=ba’ab’).
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SEMILATTICES OF SIMPLE n-SEMIGROUPS

P. Krzovski

The purpose of this paper is to show that the well known characteri-
stic of semilattices of simple semigroups ({11,{2]) could be generalized for
the class of n-semigroups for n>2.

1. SOME DEFINITIONS AND RESULTS

Let S be on n-semigroup, i.e. an algebra with an associattive n-ary op-
eration (x],xz,...,xn) = XqKgee X An n-semigroup S is called a semilattice
if S is commutative, idempotent and satissies the sollowing identity

fz i Ji 5 j
1,2 k . Jh.<2 k
X] Xp ee X = Xy KXo e Xy
where 1']+1'2+...+1k=j]+j2+...jk=n, i, jv >0.
A congruence on an n-semigroup S is called a semilattice congruence

T S/Ex is a n-semilattice.

acs, xies imply Xyee X5 axi...anA for every i=1,2,...,n.

An ideal J of S is said to be completely prime iff x;X,...X, €J

An ideal A of an n-semigroup S is completely semiprime if for any NES s

x"e A implies x&A.

An characterisation of all semilattice decompositions of an n-semigroup
S in terms of completely prime ideals is given in [3]. The Teast semilattice
congruence is denated by 7. The minimal filtre in S which contains Xx is deno-
ted by N(x), i.e. N(x) is the filtre generated by x. The classes of the congru-
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ence 7 are called N-classes. If x&€S, then the N-class which contains x is
denated by Nx‘ The class NX is the largest n-subsemigroup of S containing x
and containing no proper completely prime ideals.

1.2 Every n-semigroup is a semilattice of 7 - simple n-semigroups.

The principal left, right two sided ideals and ideal of a semigroup S

generated by an element x €S have the following form:

L(x) = XlJSn-]X, R(x) = xthSn-],

sn-] n-1 n-1xsn-1

I(x) = xU xXuUxS 'US

IHx) = xus" xus" s u... uxs" Tu g e,

An n-semigroup S is left (right) simple if S is its only left (right)

wv un

n=T 5
S is simple iff S=( U, " Tas" ) us"las™! for al1 aes.
1:

We note also the following results.

is partial ordered set.

2. A SEMIGROUP AND ITS N-CLASSES

Now we shalt establish some equivalent statements on the N-classes, when
they are left simple, and certain properties of S in terms of either elements
of S or some tipes of ideals of S. ([2], I1.4.9 for the binary case).
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i) Every n-class is a left simple n-semigroup.
i1) Every left ideal of S is completely semiprime and ideal
iii) For every x€S, x2s"1xn and xs"! ¢ "

““y]xes""x {

vi) Every left ideal is a union of n-classes.

Proof. i) = ii) Let L be a left ideal. If xe L, then anLnNX; hence
LN Nx is a left ideal of Nx and we must have LN NX=NX. But then x&L and thus
L is completely semiprime. If x&L and Y ’yZ""’yn-]ES’ then y1y2...yn_]x€

G LNN x. Hence LNN x is a left ideal of N and
VYo - +¥na Yi¥2r+Yn Yi¥2+ - ¥pX

we have that LnN =N e
Y1¥or+-¥na Iy'ly2"'yi—1Xy1'"'yn~~] for every i=1,2,...,n-1.
But then y]yZ'“yi-]xyi"‘yn-lENy1y2...yn_]x for every i=1,2,...,a-1. This

implies y]...yi_]xyi..yn_]EL, which means that L is an ideal of S.

ii) = 1iii) For any x Sn_]xn is a left ideal of S and thus it is comple-
1 |

tely semiprime. Since x n x", we have x €51y = s" 1y, The set "1y
n-1

is a left ideal and thus an ideal of S and contains x, so that xSn-] c J(x)gS Ris

35
egh

iii) = 1dv) First we will prove that Lx c Nx' By the hypothesis, xGSn_]xn

€ s"1y. Then L(x) = s" 1y for every x€S. If yeL,, then L(x) = L(y) and thus

X=a,ap...3,_1Y> y=b]b2...bn_1x for some a;,3p,...,3, 1> b1,b2,...,bn_]€ S. Therefo-
=N =N, n-1 =N, n-1=N =N_ and thus yE€N_, that
X Taja..aa gy Xy yX b1b2""bn-1x y X

fs-L, S Ny»

re N

Now we will prove that the relatation £, defined by xdy & L(x)=L(y)
is a semilattice congruence. Since 7 is the Teast semilattice congruence we
have that NXS Lx'

By the hypothesis we have that u€ Sn']un=L(un). Thus L(u)‘—:L(un), L(u™M)=
sP-1h g =Ty = L(u), i.e. Lu)=L(u").
We show next that for any x],xz,...,xne S

L(x]xz...xn) = L(x1) nL(xz)n LN L(xn) (1)

. Sn-] c Sn-lx

n
) o1 X% X0 e o+

Since (X]XZ"'Xn ERSTOTRRS ST EER

n-1 _
XqXpee Xy S8 XpXyXpee Xy g = L(XnXIXZ"'Xn-1)’ we have that X;X,....
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x & L(x x

. pXe e Xpag) Beee LIxgXoeeax X)) = Llx xg.x

n n-1’°

Similarly

L(xnx]....xn_].) = L(x _2) and so

n=1%n%1++ X
<
LlxqXpeeaxp) = LIX Xqeeoxp ) C o - LxyXp...x, ). Thus

LxyXp.eox) € Lixq) OL(xy) N ﬁL(xn).
Let z€ L(xl)nL(xz) n...nL(xn), then z=ajja 5.0 8y, 1Xqs Z53578p0. - -
A XpseeresZTA g8 5uen@ o (X for some a; ES where 9=14250 00505 J=1 22 50 o
n-1 and consequently

n 1 E
Z eL(a”aw...am_]x]....an]anz...ann_]xn -

€ L(x 1321302 - Apn 1Xp e 8 1n-1%n-1) € -+ € L(x]xz...xn)

From the equality (1) follows that

L o, ,oLi e e drde ke
X Xe sssXa Ko Ko wie s X5 Xy X 00w aX Xa "X & Breilk
i-1 in LS PP In 2 k 172 k

m
(1,2,...,n) and [P N P P S Ul

where (1'],1'2,....,1' e (jl’jZ""’jm) are some permutation of the numbres

iy) = v) Let x be any element of S. Since xne Nx’ then xn'E Lx' But

L yES |L(x)=L(y)}. So, we obtain L(x)=L(x"). From this it follows that

x & L(xM=x"u s"" U x=x", then x=x"G s e sh 1y 1 xas™ ]xn, we have

that x€S" 'x. Thus L(x)=S"']. Then we can write
N, =L, =ly€S|LOO=Ly)} < vz sly&s" Tk, xes™ Ty,
v) = v) If L is a left ideal of S, x an element of L, and y an element
of N, then y&S"Ix c L, that is vi) holds
n-1

vi) = i) It suffices to show that N - N
Zn ])

y for all yGNX. For y,z&€ Nx’

Zn-l):y2n-1 n-]yZn-]

the hypothesis implies NXC_ L(y uSs

. Since zEN_ <L(y

B 2n-1 R = - N
we have that z-al....an_]y for some a],az,....,an_] =S. Hence Nx'Nz =
' : " 2n-1
N 2n-1= N and a,...a__,y € N which implies z=a,....a__,¥
ag..-3, 4 Y a135. .48 4 1 n-1 X 1 n-1
z a]....an_]yyzn-3y c Nn ]y, and this proves that N € N ‘y.

A similar proposition holds for right simple N-classes.
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By a simple modification of the proof of ¢.1, one can prove the following
theorem:

3. Ye [S LINEARLY ORDERED

In this section we perform an analysis simplar to that of section two.
Here we suppose that YS is linearly ordered, where YS=S/n is the set of 7 -clas-
ses of S which constitutes the greatest semilattice decomposition of S.

i) Every n-class is left simple and Y, is linearly ordered.

i1) Every left ideal of S is completely prime and ideal.

iii) For every X]sXpaeeen X €S, {x],xz,....,xn} ns' X(Xpe oo Xy # 9 and

xs""1 C4Sn'1x.
Proof. i) = ii) Let L be a left ideal of S. Since every N-class is
left simple, by 2.1, L is a union of N-classes. If x1x2....an L, then

NX g S L. By hypothesis YS is linearly ordered, which means that
%0+

=

N <N, & iy <N , where (i,,i,,...,,1_) is some permutation of the numbers
Xi] in X5 122 n
n

(1,2,....,n). We have that

N, =N n-1 =N n-1 n-1 =eooNon-1 n- n-1 =N n-1n-1
S X X X X ata X6 X .4 X%
LPTA P PRRRS B PR i, %9, iy in ity
= N n-1 n-1 =] =N 3
Lo n-1x" X XN x X: X X
L T I B O Wiz Ty

anu tous L is completely prme.



88

Let x],xz,...,xn_1€S and yZ L, then X Xge o XY ENX]XZ"'Xn-l C L.

Since N » We have that X;X,...x;_q¥Xj...

=N
XqXpe e Xy 1Y XqXge oo Xg (Y% e Xy
an L and thus L is ideal of S.
1) = 111) For any x Xy .. ,%, €S, "X Xpe..x 1S a Teft ideal of S
and completely prime ideal. Since (x]xz...xn)nesn']x XoeeX s WE have that

1
y n-1 =ch-1
XqXge+oX, and thus either x, €57 'x x,...x 0r X, S5 X X)e
X, OF «c. OF xnesn—]x]xz...xn. From 2.1 it foollows that xs"! € "y

n-1
..nS

iii) = 1) Let x,y€S and suppose that x€Sn—1xyn-]; the case yesn_]xyn_]

. oy n-1 i
is treated similarly. Then X=aq35. .3, XY for some a;,a,,...,3, €S, and

thus N_=N n-1 =N n-2, =N n-2 n =
S P PRRRE M L W ay8,...3, (XY Y

Na]az...an_lxyn']yn"] = nyn—l, that is Nx< Ny and therefore Y_ is linearly

ordered. Left simplicity of each Nx follows immediately form 2.1 since x€ Sn-]xn

for all x€ES.

A proof of the next theorem can be given by a modificaticn of the proof of
3.1.

i1) Every ideal of S is completely prime and ideal
n-1 n-1
S

iii) For every x],xz,...,xn‘;S, ix],xz,...,xn; ns XyXpe e+ Xy

£ 0.
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ON IRREDUCIBILITY OF WEIERSTRASS POLYNOMIALS OF LOW DEGREE
IN THE RING KC[x,yll

Aleksandar Lipkovski

Abstract. The notion of unibranched singularities of alge-
braic curves on surfaces is closely related to the notion
of irreducible element in the ring KCCx,3411 of the formal
power series. In this article some explicit criteria for
irreducibility of Weierstrass polynomials of low degree (&7)
in the ring KICx.411 are described, thus giving us a possi-
bility to recognize unibranched singularities of low multi-
plicities by their local equations.

Let S be a smooth algebraic surface over algebraically
closed field K of characteristic 0, Cc S a curve with a
singular point P€C | % and 4 local parameters of the sur-
face S in P and Jup a local equation of C in S. Then
“~ = N
Ops = KICx411 | (OPC'--(’)PS/({) where A denotes the completi-
on of the local ring A with respect to its maximal ideal.
The singular point P is called unibranched, if Gp. is a
domain, in other words if # is irreducible in KCCx411,

For a formal power series {»:(%)a;_‘. x"yf let 5“PP(H=
={(f,;)\a¢3#0 , &,4eM°} . Consider the boundary of the convex
hull of the set S“PPG)-O-!R: . Its compact part, a polygona_l
line, is called the Newton polygon of f and denoted N(!) .

The following simple lemma will be used in the sequel.

LEMMA 1. The Newton polygon of the product 49 is composed
of the Newton polygons of the factors 4,3 by attaching the
segments of both diagrams one to another, ordered by decrea-
sing slope (see [11p.639).
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Iet 4 be as above. Write it in the form F=durfuert .
where 4#,6(xy)" is homogeneous of degree n ., The number M€ N
is the multiplicity of the singular point P . According to
the Weierstrass preparation theorem, there exists 1nvert1b1e
uly)eKitx 331 and 4%, ..., a0 e KIEXI1 such that wmalta’s i and
fony) = utxy) (4 +a"’mg"'+ +a“’oq) . Introduce the para-
meter y= man {mutlta a1 ixt,.,uy . Obviously, ve@ ,V>1 . The
pumber -1/¥ is the slope of the steepest segment of N(f).
By means of the Tschirnhausen transformation Yy &> - a0 /p
we may consider d%) =0 . Therefore we may restrict oursel-
ves to the case

(1) =yl aPm e a®ioo ,
In the following we will always presume that N() is a
straight line segment. This is a necessary condition for f
to be irreducible (see [Rllemma 3.2).

IEMMA 2. (a) If 4 is irreducible, then Av€ NI
(b) If pveNl with p,pv relatively prime, then # is irre-
ducible.

Proof. (a) Obviously, if MY¢MN|, then N(f) cannot be a segment.
(b) Under these conditions N(#) cannot contain the points
with integer coordinates other than its two ends, and by the
lemma 1 4 is irreducible.

The usual method of exploring singularities is the pro-
cess of blowing-up, locally described by coordinate changes
of the type Xx=u,y=uv , Let W:S*—S be the blowing-up of
8 centered at P ,C* be the strict transform of C, T be
the number of points laying above P and let the asterisk de-
note the parameters of these points.

LEMMA 3. (a) If Y=41 then *>¢ and all prap
(b) If V>{ then =1 and M<m or M:m but Y=v-1 ,
(c) In the case X=4 we have M'=p &> V32 .

Proof. For a proof of (a) and (b) see [31p.226. (c) follows
from the fact that the local equation of the strict transform

Q) a'ug
c* is § )= v Py a;lJ v e L(—J and muﬂ(

) M- -20+ mu bt qm

Note that if 4 is irreducxble, so is f4 . According to



91

the lemma 3, after a finite sequence of blowing-ups we get
¥v€(4,2) , From the lemma 2 it now follows that for irreduci-
ble 4 of degree M the only admissible values of Y are
%}!, 'i,‘:; LIRS 3{;—' . Since there is a finite number of them
for a given M » we may try to find conditions for irreduci-
bility of all § with a given M, starting with p=2. As an
evident corollary to the preceding lemmas we have:

PROPOSITION 1. For the following combinations of M ,Y all
Weierstrass polynomials of the type (1) are analytically ir-
reducible:

M =2 and every admissible V (=3/2);

p =3 and every admissible v (=4/3,5/3);

p =4 and v =5/4,7/4;

M =5 and every admisgible V (=k/5,k=6,..,9);

p =6 and v=7/6,11/6;

4 =7 and every admissible V(=k/7,k=8,..,13).

The only nontrivial cases are of course the cases with M HY
not relatively prime. For small M< 8 these are only M =4,
v=3%/2 and p=6, V=4/3,3/2 and 5/3. For the first case the
complete answer is found. Notice that, since the point (pv,0)
belongs to N(§), mu"a’taq‘L,w and with a coordinate change we

can have a"“’<ﬁ)= x MV .

THEOREM 1. Every Weierstrass polynomial of the type (1) with
M=k, ¥Y=3/2 can be written in the form
yhe aty xPyt 4 b0o x5y + x©
after a suitable coordinate transformation. e have:
4 is irreducible &% alo)=+2 and mult(@-a@) >mult 6

Proof. The first part is obvious since wwita“sivz3c¢ (i=2,3).
After one blowing-up and the coordinate change g»g-x" we get
a singularity with a local equation

gz'f' .l% a; (‘;-x‘)“'x" A+ éo 6;(3-%2)“2 x
and the result follows after considering its Newtons diagram
and the case M =2,

THEOREM 2. Let & be of the type (1) with M=6.
(a) If v=4/3, % can be written in the form
5"+ a0 x>y + b xly3 4 <) x"gz-o- doy x’; +x8
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If § is irreducible, then #(c):t2, Let a=mult & A=min{multc,
rult (a-d) , mult (6-6)) } .
4 is irreducible in the case A<6atd ,AFOmod2 ,
{ is reducible in the following three cases:
1) A>64+8 ; 2) A<6a+d and A=0 wed 2 ;
3) A=6&+3, ag #4c, (Y=multc=24),
(b) If v=5/3, 4 can be written in the form
Yo+ ax) X'y + 609 xTy3+ o) xTy+ den) X%y + x*©
The other conditions are the same as in (a) (except Y=24+1),
(¢) If v=3/2, # can be written in the form
Y2+ a00 g + 600 XY+ cod xPy?+ dog By + X3
If §# is irreducible, then al)=3g, <. :3¢e* (€*=1), Let
o= mult (a-aco)) , p=mult [ 2 AE mi.n{mqﬁ:(ﬁ—i), mult (a-0g) ~ctc@)) ¥ .
4 is irreducible in the following two cases:
1) A#0mod3d ; 2) A=Omod3 and A<34+6 and A<L6p+3 |
4 is reducible in the following two cases:
1) A=O med3 , A>34+6 Or A>6p+9I ;
2) A=Omod3 , A=3«46 and A<6ptd  or A<34+6 and X=6p+I

Proof. The first statement of the three parts is obvious sin-

ce multd® yiv  (i=2,3,4,5).

(a) The blowing-up and the change YH Y- -x? leads to the series
‘32*‘%% (3"‘3)"“7(”*%6: (3—X’)‘“x3+ ?;;Ci(}"“)"ﬂ z+z_c{ (3 x‘a)uz

and the result follows from the analysis of the Newton diag-

ram and the case p =2,

(b) The proof is almost the same as for (a), except that two

blowing-ups are required instead of one.

(¢) The blowing-up and the change Y+ 4~ x* leads to the series
Y3+ Z- a; (y-x)™*' x4 +Z 6y Ry & £ (=) " x4 ZAI ((y=x2)H3 x

and the result follows from the analysis of the Newton diag-

ram and the case M =3,

Remark. The remaining alternatives ( A=6«+2 in (a) and (b)
and A=3d+b<6p+9 in (¢)) can be treated further in the
same way.

From the theorem of Mather ([1]p.478 or [4]p.89) it is
easily seen that the described process will finish after a
finite number of steps for every /u(-NI , since the singula-
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rity (1) is formally isomorfic to the one obtained by cut-
ting the "tails" of the series a“x) at the sufficiently
high order. However, as we see from the theorem 2, with in-
creasing of the parameter M the explicit conditions of ir-
reducibility become very involved. This leads to the conclu-
sion that the classifying parameter M is not likely to be
the natural one. The most of the work in the classification
of irreducible elements in the ring K[(x4l]l still remains
to be done.
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SENMIGROUPS WHOSE SUBSENIGROUPS ARE PARTIALLY SINPLE

Todor Malinovié

Abstract. In this paper we describe semigroups in which
every proper two-sided i1deal is partially_simple and in this
way a generalization of some results of[?]is given.Partially
simple semigroups are studied by the author of [7].loreover,
in this paper semigroups (regular semigroups) in which every
subsemigroup (right ideal) is partially right simple are con-
sidered.In this case we give some new characterizations of
semigroups in which every subsemigroup has a left identity.
Also, we describe semigroups in which every proper right ide-
al has a left identity. Semigroups in which every subsemi-
group (right ideal) has a left identity are studied by M.
Petrich in [3]. At the end we describe semigroups which
contain unique maximal right ideal.

Let S be a semigroup. An element a€ S is a universal
left (interior) divisor of S if aS=S(faS=S). A semigroup S
is a partial (right) simple if it contains nonempty subset
of universal interior (left) divisors.

For nondefinied notions we refer to [l] .

LEMMA 1. Let S5 be a semigroup in which every proper two-
-sided ideal is partially simple. Then

(i) Every proper two-sided ideal of S is a principal
ideal and for any proper principal ideal J(a) of S, J(a)=SaS.

— T, Ml S e

Proof. (i) Let J be a proper two-sided ideal of S. Then
( 3Ja€J)(J=Jad < Sas < J(a)).
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loreover J(a) & J and so J=Jd(a).

Let M be a union of all proper two-sided ideals of 3
and let acli be an arbitrary element. Then a € SaS. Suppose
that a*.SaS and A=aS v Sa U 5aS. From this and by the hypo-
thesis we have that a ¢ aS and a ¢ Sa. Consequently A is a
proper two-sided ideal of J(a) and J(a)~ A= ia}. Thus A is
a unigue maximal two-sided ideal of J(a) which inmplies
J(a)=J(a)ad(a) < SasS (see Theorem 2.1. [’7]) and so a ¢ SaS
which is not possible . Hence

( Va€ M)(a g Sas)
and thus J(a)=SaS.
(ii) Let A be a proper two-sided ideal of $, and let
B be a two-sided ideal of A. Then ABA is an ideal of S and
ABA <B. 'e prove that ABA=B. Really, if ABA < B, then

(Jb € B~ABA).

It follows from this and from (i) that J(b)=SbS. By the hypo-
thesis we have J(b):J(b)a. lloreover, Sbi 5bS 5b5 &Sb3 b Sbs,
from this we have J(b)5<.J(b) b J(b) and so J(b) <= ABA.

Thus b € ABA, which is not possible. Hence, B is a two-
-sided ideal of 3.

THEOREM 1. Every proper two-sided ideal of S is par-
tially simple if and only if one of the following conditions

holds:
(i) s is semisimple and its every proper two-sided

ideal is a principal ideal.

(ii) 5 contains a unique maximal two-sided ideal which
is semisimple and its every two-sided ideal is 2 principal
ideal.

Proof. Let every proper two-sided ideel of S be par-
tially simple and let I1 be a union of all proper ideals,
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If =S, then J(a) is a proper two-sided ideal of S for
every a €S and the principal factor J(a) / I(a) of S is
O-simple or simple (Theorem 2.2. [7]) and so 5 is semi-
simple. lloreover, every proper two-sided ideal of S is a
principal ideal (Lemma 1 ,).

If 1 # 8, then M is a unique maximal two-sided ideal
of 5 and by Theorem 2.1. [7], S~ M={a€S|Sas=8jor 5-M={a},
a2e M. In the case S~N-ta€&S|SaS=S} we have that S is
partially simple and so by Theorem 2.3. [7]we have (i).

Let S~I= {a}, a2€ M. Then, by Lemma 1. and by the
hypothesis every two-sided ideal of I is partially simple
and I is a semisimple semigroup whose two-sided ideals are
principal ideals (Theorem 2.3. Eﬂ).

The converse follows by Theorem 2.3.[7]and by Lemma 1,

DEFINITION, [1)A partially ordered set T is downward
well ordered if every non-empty subset of T has a greatest
element.,

THEOREM 2. The following conditions on a semigroup S
are equivalent:

(i) Every subsemigroup of S is partially right simplej

(ii) Every subsemigroup of S has a left identity;

(iii) S is a downward well ordered set of periodic

right proups.

Proof. (i) =)(ii). Let A be a subsemigroup of S.
Then A is a partially right simple semigroup, which implies
that

( Ja € A)(ar=4p),

From this we have that A2=A.’Thus every subsemigroups of S
is globally idempotent. Consequently, every subsemigroup
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of S is regular (Theorem 2.1. [9] Yo If a € A, then

( Ix € A)(a=axa),

and thus

aA=axal=axA=A,

Since ax=e is an idempotent of A, we have that e is the
left identity of A.

(ii) =» (i). It follows immediately.

(ii)¢=> (iii) By Theorem 6. [ﬁ].

THEOREM 3. The following conditions on S are equiva-
lent:
(i) S is regular and every right ideal of & is par-

tially right simple;
(ii) Every right ideal of S has a left identity;

well ordered set of right zero semigroups.

Proof. (i) =>(ii). Let 3 be regular and every right
ideal R of S5 is partially right simple. Then

(3a€R)( Ix€S)(aR=RA a=axa).

Consequently, R=aR=axaR=axR. From this we have that ax=e is
a left identity of R since e is an idempotent.

(ii) =»(i) If (ii) holds and e is a left identity of
R(a), then e=xa=(ex)a for some x¢ S. Thus a=a(ex)a.Hence,
5 is regular. Let R be an arbitrary right ideal of S and
e be a left identity of R. Then eR=R which implies that R
is partially right simple,

(ii)<=y(iii). By Theorenm 12. [ﬁ].

THEOREl 4., Every proper right ideal of 5 has a left

identity if and only if one of the following conditions
holds:
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(i) S is regular and its every proper right ideal is
partially right simple;

(ii) S contains a unique maximal right ideal which is
regular and its every right ideal is partially right simple;

(iii) Every right ideal of S has a left identity.

Proof. Let 5 be a semigroup whose every proper right
ideal has a left identity and let R(S) denote the union of
all proper right ideals of S. Then we have that every proper
right ideal of S is partially right simple. Let R(S)=S and
let a be an arbitrary element of S. Then R(a) has a left
identity e which implies e=ax and a=ea. Consequently a=axa.
Hence, S is a regular semigroup corresponding to case (i).

If R(S) # S, then M=R(S) is the unique maximal right
ideal of 5. Let R be an arbitrary right ideal of [i. Then

a€R = a=axa € RSR € R°,

which implies R2=R. Consequently
RS=R2S=RRS € RMS € RM < R,

Hence, every right ideal of I1 is a proper right ideal of S
and thus every right ideal of I has a left identity. lioreo-
ver, by Lemma 1l.l. [7] we have S~ M= {a} , aae_M or S~ M=
-{ac5|as=s}. If 5~1={a} , a’¢ I, then by Theorem 2.
we have that (ii) holds.

Now, we consider the case S~M={a € S iaS=S}. Let a
be an arbitrary element of S~ M. Then a=axa and so

aS=axaS=ax5=5,

Since ax=e is an idempotent of 5, we have that e is the
left identity of S. Thus in this case we have that every
right ideal of S has a left -identity corresponding to case
(ifi).

Since the converse is obvious, the theorem is proved.
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THEOREM 5. Let M be a proper ripht ideal of S. Then I
is a unique maximal right ideal of S if and only if one of

the following conditions holds:

(i) 8S~M={a}, a"e I

(ii) S~H=T) uT,, where T,=faeS~l | ar=11} is a
right simple semigroup of S and T,={a€S~1 | alM=S}is a
two-sided ideal of semipgroup 8 ~M.

Proof. Let M be a unique maximal right ideal of 3.
Then S\M={a}, a2eM or S~ M= {_aes \aS=S} (Lemma 1.1.
[7]). If S~MN= {a €S |as=8}, then T=S<1 is a sub-
semigroup of S. Let a € 3~M. Then we have alS<all and
so aM is an right ideal of S. Consequently, alleli or ali=3.
If aM <1, then

aS=S =a(MuT)=MuT=> aM y al=My T.

From this we have ali=lY since aT < T and Mn T=¢. Hence,

(VaeT)(ali=M v ali=S).

If 1= {a € 5~1| ali=i} and T,={a€S~1|ar=5} , then

(1) S~HM=TqU Tp

Let a,b &€ Tl then

(aM=M A bl=li) = abli=akM=[i,

From this we have that ab € Tl. Consequently, 'T‘1 is a sub-
semigroup of 5. If a,b € T,, then

(aM=S A blF=5) = abli=aS=5,

and so ab € T,. Thus, T, is a subsemigroup of O.
For a € '1‘1 and be_T2 we have that abM=gS=5 and bali=
=bli=5. Consequently ab, ba & T, and we have
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(2) BT € Ty A BT ST,
From (1) and (2), it follows that
T,(8~ M)=T,(Ty U T,) =T, U T, T,
(8~M)Ton(Ty y TL)To=D Ty U Th2 € Toe

Hence, 'I‘2 is a two-sided ideal of S~1i.
If aG_'I‘l, then aS=5 and so

a(Mu T)=M U Twpali v al=M U T.
It follows from this that aT=T, since alM=M and M A T=@.
Consequently we have that
(3) a(Ty v T5)=1; U T, =aly v aly=T; u T,.

l'oreover Ty N ’I‘2=¢ and from (2) and (3) we have that
'i'-l c a‘I‘;_,. However, 'I‘1 is subsemigroup and so aT1=T1. Hence,
T, is a right simple subsemigroup of S.

Conversely, in the case (i) the assertion follows ime-
diately. iSuppose now that (ii) holds. Then, M #¥ S and so
31 # ¢, Consequently, at least one of the sets Tl and ‘1‘2
is noneupty. If Tl and ’1‘2 are nonempty subsets of S, then

(a € Tl/\ b & T2) i>(ab[1=a$ N\ abI'l=S),

since ab € '1’2 and from this as=S. If ag T2, then ali=S which
implies aS=3. Let T1=¢, then

a € ‘1‘2 =y al=5 = aS=S5,
Assume that 'l‘2=¢. Then
ae Tl =y ad=a(ll v T1)=a[1 valy=Nu T1=.<.‘;.

Hence, in every of the preceding cases we have that

(vaegd~l)(as=5).



i.e. S~N={aes |as=8}, since for a e M, aS S MSSM # S.
Tt follows from this that I is a maximal right ideal of S
(Lemma 1.1, [7] De

IEMMA 2. Let I be a unique maximal right ideal of 5.
Then Il is a two-sided ideal if and only if T,= fa €5~ I|all=
=s} =7,

Proof. Let I be a unique maximal right ideal of 5.
which is two-sided. Then SM & M#S, which implies T2=¢.

Conversely, let T =@ and let h be a unique maximal
right ideal of . Then ux.M={§}, a°g I or aii=l for any
a g S~V (Theoren 5.)s If S~li=}a}, a“€ i, then ali & M.
Really, if we suppose that aEi£Llholds, we have that al=5,
which is not possible. Let agii, then aM & M, which together
with the case al=l! for any a & 3~V dimplies SM &I and thus

1M is a two-sided ideal of 5.

COLCRALLARY 1. Let O be a partially right simple semi-
group and I be unique maximal right ideal of S. Then Il is
a two-sided ideal if and only if S~I. is a right simple

subsemigroup of S.

Proof. TFollows immediately from the Theorem 5. and

Lemma 2.
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ON € -BOUNDED ULTRAPRODUCTS
Zarko Mijajlovié

Ultraproducts of models are one of the most important
constructions in model theory by which new or nonstandard
models of a first order theory are obtained. Such construc-
tions first appeared in (6], where T.Skolem proved the exi-
stence of nonstandard models of arithmetic. The definition
of ultraproducts of models given by J.Lo& and his fundamen-
tal theorem [2] are the main contribution to this subject,
but today several modifications of this construction are
known. One such recent construction is the bounded ultrapo-
wer of the structure of natural numbers [3], which Kochen
and Kripke used to give a new proof of the famous result of
Paris and Harrington [5], that a form of Ramsey theorem is
not provable in formal arithmetic P. In this note we shall
unify some of those constructions.

Let 4T&, iel, be a nonempty family of models of a
first-order language L. Further, let B be a Boolean subal-
gebra of the field of subsets of I, and let D be an ultrafil-
ter over B. Finally, let Tgl;l Mi be a nonempty set of
functions. Other model-theoretic notions and symbols we adopt
as they appear in [1].

Assume €€L is a binary relation symbol. Instead of
€xy we shall write xgy. A formula ¥ of L is £-bounded if €
is built up by use of symbols of L, logical connectives and
bounded quantifiers (3xgy), (Vxe¢y), where

(3xey) Y stands for Ix(xeya ¥ ), and
Wxey)Y stands for Vx(xey—o¢).

If we want to construct an ultraproduct over F , some
hypothesis on ¥ should be made. Such assumptions on F are
stated in the following definition.
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DEFINITION 1.  Let F<[JIM . Then
1° ¥ is &-convex if for all fel';l M;, feg and ge F
implies feF.

20 F is closed if T is closed under operaions in [;\ mi,,

Thus we see that if f; is closed then ¥ is a submo-
del of l:l mi, therefore T is a model of the language L.
We remind that symbols g, ng denote usual proof-theoreti-
cal hierarchis. By XO(T) we denote the set of all X¢1I
such that for some ¥  -formula ¥ and flreeest € ¥,

X= {1: mil"-' ‘P[fl(i),...,fm(i)]} . Now we introduce a rela-

tion ~ in F induced by the ultrafilter D, as in the case
of the standard ultraproduct construction:

f~g iff {i: £(i)= g(i)} e D.

As usual, if f~g we shall say that f=g a.e. (almost
everywhere). Also, we have an "a.e." refinement of the no-
tion of € -convexity: in Definition 1, the term feg is re-
placed by f€g a.e., where fgg stands for

{1€1: r(i)eg(i)} €D.

T ¥ is olosed set abl Zg(?’) € B, then the rela-
tion ~ is a relation of congruence of the structure 9-', 50
as In the case of standard ultraproduct construction we can
define the quotient structure which we denote by F/D. If
we keep the former meanings of the symbols, we have the fol-
lowing Los~type theorem:

THEOREM 2. Suppose
o Zg(?’) < B, 2° ¥ is closed and an a.e. E-convex set
Then for any € -bounded formula "f(xl,...,xn) and
fl,....,fn(?" we have

F/IDE PCtipeeest pl iff

{1e1: M E Pre(0),..., 201} € D,
Proof The most of the steps of the proof are similar to
the proof of classical Lo8 theorem, thus we shall consider

only the bounded quantifier induction step, i.e. when
‘f(y,xl....,xn) is of the form (3xcy)‘f'(x,xl,....xn).
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(=) Assume FT/DE ce[gl)'fll)""’an] i.e.

F/vE IxegpY(Xsfypseeesfnpl-

Then for some he€ F we have heg a.e. and
F/p E ‘P(hD,f
thesis

frer: M= Y n(1),£,(4),...,£ (1)1} €D and

(1¢I: n(i)eg(i)} €D as well, so

fieT:M E n(1)eg(i) A Y[n(1),£,(1),..., 2, (1]} €D.
Therefore,

{iGI:'mikz (3x£g(i)) v’[(h(i)ofl(i)v---ofn(i)]} € D’ i.e.
{1e1:’mil= ‘f[g(i),fl(i),....fn(i)]} €D.

'LD""'an]' Therefore, by the induction hypo-

(<) Assume {iGI:’rIIiL‘-‘ ‘f’[g(i),fl(i),...,fn(i)]} €D. So
x= {1e1: M F (Ixee(i))Y [x,£,(1),...,£,(1)]} belongs to D.

For i€ X we can choose a eg(i) such that
my B Yo, f5(1),..008, (3. Tet h &l bea function de-

fined by h(i)= a; for i€X, and h(i) be an arbitrary element
if igX. Then h¢g a.e., thus neF since ¥ is € -convex.
Using the induction hypothesis we have

Tk hpggy A Y(hpfips...,f 51, therefore

¥ E Plepsfypre+e+fnple

A structure F/D which satisfies the conditions of
Theorem 2, we shall call an £ -bounded ultraproduct of models
«ni, i €I. Using this theorem we can derive a number of vari-
ants of ultraproduct constructions and corresponding Los-type
theorems.

12 Let T: ﬂ M , and assume that € 1is interpreted

in each M as a full relation, i.e. £ = Mi in M Then
the bounded quantifiers (Ixey), (Vxey) become the stan—
dard quantifiers, and B= Zo(?—) is the field of all sub-
sets of I. Thus, we obtain then the classical ultraproduct.

2° Let M= V,, (R) be the superstructure over the field of
real numbers, $73M the set of bounded functions, and

€ be the set-theoretical membership relation €. Then
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7/D is a nonstandard model of analyzis, and in this case
Theorem 2. gives the Leibniz transfer principle.

30 Let M be the structure of natural numbers, and £ be

the standard ordering < in that model. Then the ultrapo-
wer construction in [3] is a special case of our construc-
tion, and Theorem 1 in [3] corresponds to our Theorem 2.

Some theorems about standard ultraproducts have natu-
ral transforms to £-bounded ultraproducts. Such one concerns
the saturation of models. A set of formulas Z(x) is €-bounded
if every formula in 2 (x) is €-bounded, and Z (x) contains
a formula of the form xgc, where ¢ is a constant symbol.

PHEOREM 3, (cf [1], Theorem 6.1.) Let ¥/D be an £-boun-
ded ultraproduct, and assume there is a sequence of sets
B=J 2J,2... in B such that fn\ J,= #. Then F/D is @

f-saturated, i.e. T/D realizes every countable £€-bounded
type with countably many parameters in %F/D.

Proof It is easy to see that for every simple expansion

(T/D,le,fZD,...) there is a model F° such that

F/D= (T/D,le,fZD,...). Thus it suffices to realize

¢ -bounded types without parameters. So let Z(x)= {Ql(x),
?z(x),...} be a set of £ ~bounded formulas such that every
finite subset of 2(x) is finitely satisfieble in 3’/D.Define

X= {i€7 : M Ix(P()A...AP (x}}, n>0, new.
Then Q ]Ln= #, and )% is a decreasing sequence of sets in D,

thus for each 1€l there is the greatest ny such that 1éxn
Let g¢ F be the interpretation of the constant symbol e,
where x¢c belongs to Z(x). Then we can choose a function
£ € [1m, such that

if n;>0 then My F (f1A ... AF )[£(D)].

Thus if 1€X then mi F‘fn[f(i)] . Therefore we have

q°

- f&T since fgg a.e.
2° F/D k‘fnffn] by Theorem 2.

Hence, f; realizes the type Z(x) in F’/D.
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There are other variants of ultraproduct construction.

Keeping the meaning of the introduced symbols, a such one
construction is described in the following proposition.

THEOREM 4. Let the index set I be the domain of a stru-
cture M , and assume

o )
1”7 (F) ¢ B,
. 2° F eM' is closed under Skolem functions for Z?]

formulas.

Then for each Zg formula ¢ and f fneT we have

IERERE

Fin k Py seeslyp] S22 A6T: MeLLL1 (L) 4000ty (1)1) €D,

The proof of this assertion is straightforward so
we omit it. This theorem cover many applications of special
ultrapower constructions, particularly in formal arithmetic
and set theory, cf (4]. We mention the following:

1° Let F be the set of arithmetical F ) definable
functions in formal arithmetic P (n >1), and assume B

is the Boolean algebra of zg definable sets in P. Then
F /D is a model for P/]Z(:l but not for P (what improves

Mostowski’s theorem that P does not have a Z; axiomati-
zation).

29 Particular ultrapowers give end extensions of models
of theories close to P or ZF set theory (for the review

see e.g. [4]).
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LOGIC OF GUARANTY

Virgilio Muskardin
Abstract. If ps *p range over propositions which are guaran-
teed, merely hinted at,respectively, by an ethical and ma-
ture spcaker, we argue that an information of the form
pv (pAq) is richer than just p /which should be equi-
valent according to the classical logic/. We give a seman-
tic construction of a logic, termed the logic of guaranty,
in which pv(p/\q) is equivalent to pAe«q /" p is gu-
aranteed, but, besides, q is hinted at"/. It is a 3-valued
logic in which A /and/ is a straightforward extension of
its classical counterpart, but VvV /or/ receives a new in-
terpretation. /Consequently pVv q is logically equivalent
to (pA:q)v (-p/\q) ./ Some characteristic features of
the logic of guaranty are discussed, with some valid logi-
cal implications and equivalences exhibited. This logic is
free from the deontic paradox /for P # pvq / and does not
commit the basic relevance paradoxes /since P/mplfq ,
o] #.qV'1q /. A list of problems, concerning possible exten-

sions and improvements, ends the paper.

Motivation

On an earlier occasion I have pointed out that /clas-
sical/ logic, although originated by abstraction from situ-
ations of human communication /and individual thinking/,

treats /factual/ propositions stated by a certain speaker

as being objectively true or false /fifty-fifty!/. And yet,

a meaningful and purposeful human communication is based

on the assumption that the speaker, at least in prirciple,



112

states true propositions, in spite of the possibility that

he might bte mistaken or even deliberately cheating us.

We start with a presupposition that the speaker sta-
ting propositions is an ethical and mature pearson i.e. he
does not lie on purpose and does not make statements on
something he cannot judge about. But even then, he does not
utter each proposition with the same guaranty: for some of

them he guarantees as surely true while others he merely

"hints at as only likely true. We use propositional variab-

les, e.g. p,for the former, and propositional veriables
prefixed by the s-operator, e.g. *q , for the latter.

Consider now a motivating example: Either of

/1/ pACpvq) % pv(pagq)

is classically considered equivalent to

72/ p -

/Read "A " as "and", "V" as "or"./ But do we not find an

information of the form /1/ richer then the corresponding
information of the form /2/% Should /1/ not be more adequ-
ately understood as

/3/ pAre.q 7

/%/ is interpreted as "p is guaranteed, but, besides, q

is hinted at".

In order to get a better grasp of the logic we are
about to develop, think, but not as an essential restric-
tion, of propositional variables as ranging over a set of
action-describing propositicns. Then p corresponds to
actions the speaker has decided to perform while .q cor-

respords to actions he has only given a thought tut has

not yet decided about. Concernirng the latter actions, he

may make up his minéd leter on or may give ur thinking about

altogether.
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Cf course, Ip /read "7 " as "not"/ corresponds to

actions he has decided against /i.e., not to be performed/.

Semantics
To elucidate the idea it suffices to construct only

the propositional semantics. The basic semantic definition,

in the table-form, springs from the following analysis.
According to the proposed approach, in decision mak-
ing on a certain action one can adopt one of the 3 attitudes:
T = be agreeable to,
| = be reserved about,
d = be contrary to;
depending on which one of the action-describing propositions
A, A , 7A resp. holds. Thus our semantics will be 3-
valued, the values being denoted ty T, | , 1 .« Of cour-
se, there is apparently the 4th attitude, namely not even
to consider that action, but then it is beyond one’s dispute.
Thus, each entry in the value-table will be one of
T, ! ,L depending on one’s mutually consistent attitu-
des towards the corresponding propositions.

Obviously, the <-table should read:

-
T| L
N
417 .

The .-table brings in a desired asymmetry / ¢p and
*3p are not equivalent!/:
L]

Ty

| |

L]

Justification: if one is agreeable to p being guaranteed,
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he should also be agreeatle to p being hinted at; if one
is reserved about p being guaranteed /N.B. at a later sta-
ge he might make up his mind!/ he cannot but be reserved
about p being hinted at; but if one is contrary to p
being guaranteed he need not be contrary to p being hin-
ted at, thus he may nevertheless be reserved fn-this case.
The A-table is a straightforward extension of the
classical truth-table for A :
Al T v &
T T 1 X
I

| |
9 4 1 L

But v receives a new interpretation, hence the v-
table requires some more consideration. When we know only
that somebody guarantees pvgq , all we know is that he gu-
arantees p or q oOr both, but we do not know which is
the case. In spite of such "imprecise” information, we shall
certainly be agreeable to PVvq if we are agreeable to both

p and q ; and we shall certainly be contrary to pvq if
we esre contrary to both p and q - In all other cases we
should be reserved, for in neither of those cases are we
certain that what is actually the situation when PVvq is
guarsnteed /i.e. which of the three possibilities applies/
coincides with our attitude towards p and q Hence the

table:
-k

v T
L4 T |
| |

|

|
i A
I 8 .

/The "weakness" of the v-table reflects the "poverty" of

the information form pvVvq ./ Observe that in classical
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logic Twvl=T, but under our interpretation, being agree-
able to p and contrary to q does not entitles us to be-
ing esgreeable to pvq , for the situation might be such
that pvq may be guaranteed via the guaranty of q only.

There is one more operation usually defined in a pro-

positional logic viz. the operation /-=/ of implication;

not to mention the operation /«e/ of equivalence which is
just the two-way implication. #e argue that it cannot be
defined in terms of the operstions defined so far, if it is
really going to be a formalization of implication - one
which does not commit implicational paradoxes of any sort,
/In classical logic, for example, d&—=M@ is just an abbre-
vietion for axvp , but then we have paradoxical tautolo-
gies like oo— (p—> o) , where no contextual relevance of [}
to & is required./ Indeed, p—+q is of an essentially
different nature than pAq or pvq . Let A,B be two
arbitrary action-describing propositions. Then AAB and
Av B can also be conceived as /somewhat more complex/
action-describing propositioné, but it does not seem that
A—=D could be conceived as such; it simply says that the
action in B is implied by the action in A . Thus, if

A—D is to be meaningful, some sort of subordination should

hold between A and B , while AAB and Av DB could be
meaningful even if A and B are entirely independent.
Furthermore, the values of AAB and AvB depends on our
attitude towards A and B , while A—p is to be accept-
ed or rejected on some internal merits viz. its propositio-
nal form if — formalizes the /purely/ logical implication,
e.g. we accept A— A irrespective of our attitude towards

A ., Because of these distinct features, we shall not attempt
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to characterize <»-operator here, but shall leave it as a
central theme of an subsequent paper.

Nevertheless, since one cannot do logic without impli-

cation, we define the relation k of logical implication by:

oakpn if and only if ot s {3' for all valuations T;
where of ,p*e{T,1, L} and L <I<T . Thus, the rela-

tion H of logical equivalence is defined by:

omp if and only if o = pt for all valuations T,
i.e. okKp if and only if &« kp and DNrA .

Obviously, these definitions are in conformity with their
classical counterparts.

Notice that no formula takes the value T under all
valuations. /No action is a priori supported!/ Indeed, if
all propositional variables in a formula take value | ,
so does the formula. But, in view of the proposed definition,
this is not an obstacle to characterizing valid logical im-

plications.

Peculiarities

Operators = and s« are the only unary ones. Adop-
ting the term accustomed in modal logic, each consecutive
sequence of unary operators will be called a modality. The

following table shows that there are exactly 7 distinct mo-

dalities in the displayed logic of guaranty.

ol p| Pfep[ P P[P 0P 1ap | rap] v pl

TATILIT LT 4 6] &0 0 | O | |
ifejugoeg vy rpEpeqg v ® @ v 1 3

1T L] &L TN | 4 | |

Cnly 2, [:ﬂ and ['ﬂ, of the 9 variations, when |'s are

fixed in the middle row, cannot be obtained via =+ and AN
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alone; the former appertain to " (paap) , the latter to

pAIp- /hese modslities form an implicational diagram:

/Implication goes along a solid line upwards; dotted lines
indicate negation./

From the table we can pick up the reduction rules for

modalities:
/i/ of two consecutive +’s delete one,
/ii/ of two consecutive ='s delete both,
/So far we are left only with alternating sequences of va-
rious lengths, e.g. +3+7¢ oOr 7+:7°7 for length 5./
/iii/ replace an alternating sequence of length
greater than 73 by the sequence =+ .

In particular we have:

e M ek,
77 % el > ,
eI B el L L e R »
for any formula ® .
Observe that
/4/ ooy b e

for any pair of formulae & and P . A reflection on the
intuitive meaning of e7s reveals that this equivalence is
not as odd as it might appear at first insighte.
From the implicational diagram for modalities we see
in particular that
o =X and eA IO o

Moreover,
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akp if and only if AApEIA

holds for any o, .
By inspection of the corresponding tables we find out
757 RkEp  if and only if oKApHE® .
but the replacement of A by VvV in /5/ would not yield a
valid conclusion.
It is worth of noticing, though trivial, that
ARAed HX and o Ve Kot 3
while
A = 1e1™ and kv eIoh B eTe 8 .
Furthermore we have, in accordance with our motiva-
tional paradigm,
AA(AVNA) H AAP H &V (RAP) i
Thus the absorbtivity laws of Boolean algetra /BA/ are not
valid here. Nor are De Morgan laws; their invalidity being
Jjustifiable in view of our understaending of the operator v
/see def./. The valid equivalence
AVL M (RAB) YV (cdAR) vV (RAP)
) (a/\-{s)v(-okl\pﬁ
also complies with our intuition. Concerning other BA-laws
we find that idempotency, commutativity, associativity and

distributivity are all valid, but

/6/ AATX B pPAIp
Still
/T/ AVIK = pvIN

holds for any &, » . Indeed

AVIN E e

\
/cf. /4/ /. Thie seems right, for by guzranteeing OV X
one does not reslly guarantee anything. /He only says a

triviality./ Contrasting /6/ and /7/ we may comment that
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although it is not the same giving a contredictory infor-
mation atout o or about A , it is quite the same giving
no information about ™ or about A . Bearing this in mind
it is not surprising that

Avich m (avid)
The operation ¢ is distributive over each of the ope-
rations A and v ;
(UAp) ™ A Ap
c(avp) m o cx Vep .

Even a stronger connection,

/8/ (AAPY | «(xvp)

holds, which nicely confirms our definition of the e«-ope-
ration.

N.B. CAD K s (AAB) M s AP .

As an instance of /8/ we have
(AATR) H s (rvas)
and each of these is logically equivalent to aAvada ,
/ just poor informations!/.
In the logic of guaranty
AP RN
but
dEAVEH .

The latter fact resolves the so-called deontic paradox /cf.

L3, p.21] , where a convincing example,of course using
"ought to" instead of "guarantee",reads: "If I ought to mail
a letter, I also ought to mail or burn it."/. Naturally

XApEAVAE
This logic also, to a certain significant degree,

avoids some relevance paradoxes /cf. | 2, p.lll] /4 for

AATREM and ¥ AVIP ;
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but not entirely, for
dAlTd B AVIN B (AT n) .
In order to resolve these, 2 distinct contexts should be
taken into account, as proved in [2) . Hence the task to extend

the logic in this direction.

Problenmns

We end the paper with a list of pertinent problems.

1. Find an adequate formslization of implicational
propositions; i.e. define semantically the operation of
logical implication.

2. Build in a contextual approach to the logic of
guaranty, i.e. one which will also respect different
contents of propositions.

7. Consider distinctions between factual and logical
truths.

4, Investigate systematically other peculiarities of
the logic of guarsnty, besides those exhibited.

5. Study an appropriate class of algebras s.t. it
contsins the corresponding Lindenbaum algebra.

6. Find a sound and complete axiomstization for the
logic of guaranty /Hilbert, Gentzen or Smullyan type/.

7. Extend the logic to the first, and perhaps higher,
order level; and examine the consequences for set and
number theories.

8. Pursue similar constructions sterting from diffe-
rent backgrounds, e.g. intuitionistic / AncH & i

9. Lonsider possible contritutions of the logic of

guaranty to the prcblem of formelizing naturel lengusges.
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LOCALIZATION IN (m,n)-RINGS

D. Paunié

Abstract. A universal algebra (R,f,g) is called an
(myn)-ring iff (i) (R,f) is commutative m-group, (ii)
(R,g) is an n-semigroup, (iii) for every a1,...,an,b4,...
...,bmé-R

- -1 =
g(a% 1’f(bT),ag+1) = f(g(a% ,bq,a§+1),...,g(a% 1,bm,32+1))

holds. (m,n)-ring is commutative iff (R,g) is commutative
n-gsemigroup. In this paper only commutative (m,n)-rings will
be considered.

If S is an n-subsemigroup of (R,g), then on Rxg™™"
an equivalence relation ~ is defined by (r?)'*-'(srql) 1ff

there is trzlé S such that

g(g(r,,85),t3) = g(g(s,,r5),t5).
If RxS™ "'/~ is denoted by S™"R then in S 'R operations
¥, and § are defined so that (s~ 'R,F,g) is an (m,n)-ring,
such that there is a homomorphism CITS: R—> S—qR so that
Jig(8) 1is contained in n-group (SMS,E), and (m,n)-ring
is cancellative with respect to the elements of S"\S. It is
proved that (5™ 'R,F,Z) is universal with respect to these
properties, and some related results.

First, some basic definitions and notations will be

given. General references are [1] and [3] .

n
The sequence X ,X . .s...,X, i8 denoted by {x;}j o

or x;ll If m>n then Jgg is considered empty, and if

1



124
P 2
X4 =X for a%ll iG]Nn={"....,n} then x is denoted by x.
For n<0 x will be considered empty.
" An element ee Q of an n-groupoid (Q,f) is called
n
idempotent iff f(e) = e.
An element ee€Q of an n-groupoid (Q,f) is an
i-n n-i
identity element in (Q,f) iff f( e ,x, e ) = x, for every
xeQ, and every 1ice ]‘Nn.
An n-groupoid (Q,f) is commutative iff the following

identity holds

£(x") = f(xig?;),

for every permutation o of the set INn.

A mapping ¢9: Q =S of an n-groupoid (Q,f) into

an n-groupoid (S,g) is a homomorphism iff the identity
P(£(x})) = g( { Px;)},2 )
holds.

An n-groupoid (Q,f) is an n-semigroup iff

HC T IC N e I CC PRI ST il
holds for every x21n"1c-Q, and every 1i,je {O,...,n-ﬂ é

An n-semigroup is i-cancellative, ic¢ ]Nn y with re-
gspect to McQ iff

f(a%'q,x,agﬂ) = f(a%'q,y,agﬂ) implies x =y ,
whenever al,?eM. If an n-semigroup (Q,f) is i-cancellative
with M = Q, for every 1ic¢ INn, then it is called cancella-
tive.

An n-groupoid (Q,f) 1is an n-quasigroup iff the equa-
tion f(aj;-«,x,ari)M) = b has a unique solution x for
every a:,beQ, and every 1ice¢ ]Nn.

An n-group (Q,f) is an n-semigroup which is also an
n-quasigroup.

In a commutative n-group (Q,f) an element e 1is

idempotent iff e is identity element.
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For every a€Q in an n-group (Q,f) there is unique
n-1
x€Q such that f( a ,x) = a. That x is denoted by a
and is called the querelement of a. For every a,xc¢Q, and
every ic¢l2,...,n}, we have
i-2 _ n-i i-2 _ n-i
f(x, a ,a, a ) = f( a ,a, a ,x) = x.
It can be proved easily that «w(a) = ¥(a) for every

n-group homomorphism <, and every acQ, and that if n-group

is commutative then f£(x%) = £(X4) holds.

An algebra (R,f,g) is called an (m,n)-ring iff

(1) (R,f) is a commutative m-group,

(1i) (R,g) 4is an n-semigroup,

(iii) the following distributive laws hold for every ie N,
and every aﬂl,bTGR

g(ay™",2(01),a] ) = £({g(a} ™" \py,0], ) ] s

Since this notation is rather complicated it will be
gimplyfied to f(aT) = 8,485+ . .48, and g(b?) = b4b2...bn
which is much more suggestive but much more imprecize. Bytees
ceetay makes sense only if k=1 mod(m-1), b,\...b1 makes
sense only if 1=1 mod(n-1) and such words are called
admissible. Admissible word b,...b; where bi=b for
isg lll is denoted by (b)l. (b)1 is considered empty for
1<50.

The commutative m-group (R,f) of the (m,n)-ring
(R,f,g) will be called the additive m-group of (m,n)-ring,
and n-semigroup (R,g) will be called the multiplicative
n-semigroup of the (m,n)-ring R.

The (m,n)-ring is commutative iff its multiplicative
n-semigroup is commutative.

If the multiplicative n-semigroup of an (m,n)-ring
(Ry,f,g) has an n-subsemigroup (S,g), which is an n-group,

then the querelement of an element ae S, with respect to
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the operation g is denoted by a.

An element O (or Og when necessary) in an (m,n)-

n
i+

aﬂt&R, and every i€ IN . An (myn)-ring may have at most one

-ring R is zero of R iff g(a%-q,o,a ) = 0 for every
zero. A zero of R is clearly additive and multiplicative
idempotent in R but converse does not necessarily hold.

By R* will be denoted the set of non-zero elements
in the (m,n)-ring R.

An (m,n)-ring (R,f,g) is caﬁcellative with respect
to S<R, iff the multiplicative n-semigroup of R is
cancellative with respect to S. If S = R¥ then R is
called cancellative. A commutative cancellative (m,n)-ring
is called an integral (m,n)-domain.

An (m,n)-subring I of the (m,n)-ring R is an ideal
of R iff

(1) (I,f) is an n-subgroup of the additive n-group of R.

n
i+4

every i< I n*

(ii) g(r}-q,a,r =I for every r,cR, every acI, and
Let I,,...,I, be ideals of (m,n)-ring R where
k =1 mod(m=-1), J = (x<R|x = Byte.otay, a;¢ Iy, ic INk}
is an ideal of R which ie denoted by TI,+...+I,, and called
sum of ideals Ii' ic nwk.
Let I,,...,I; be ideals of (m,n)-ring R where

1

n

44

1 mod(n-1), and J =4 xX€R |x = a cerByqte tBL el

a usz, ieNy, , Je X, k 21 mod(m-1) . If R is

ij
commutative (m,n)-ring then J is an ideal which is denoted
by L,...I1 and called the product of ideals 11""'11‘

In this paper all (m,n)-rings are commutative.
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DEFINITION 1. Let' S be an n-gsubsemigroup of the

multiplicative n-gemigroup of a commutative (m,n)-ring R.
n-1

On RXS define relation A~ by

(r?) m»(s?) iff there are t?'ﬂés such that

rqs2...snt4...tn_1 = sﬂrz...rnt1...t

n-1
THEOREM 1. The relation ~ defined in the definition

is an equivalence relation on RxS" ',

Proof. The proof of reflexivity and symmetry is
immediate, and the proof of transitivity will be given for
(m,3)-rings since the notation in general case becomes to
complicated.

(1) (r1,r2,r3) N/(sﬁ,sz,SB) iff r45293t1t2 = s4r2r3t1t2,
(2)  (8458p,85) ~ (uy,up,uy)  Aff s uuav, v, = U B,8,4V, 7y,
for some tq,tz,vq,vzc;s, go we have from (1)

r1u2u3(s2t4v1)(53t2v2) = s,‘r2r3t,\t2u2u3v1v2 5
and from (2)

sﬂu2u3v1v2t1t2r2r3= u1r2r3(52t1v4)(53t2v2) 5
so we have finally

(ry,75,75) ~ (y,u5,uq).

Remark. When the n-subsemigroup S is cancellative
then the relation ~ is equivalent to the relation intro-
duced in [2] . \

DEFINITION 2. The equivalence class (s™), with
— 1 ——

(=

respect to ~, will be denoted by [s%] . TSR then

the set of [s?] y where s,¢T, and sge S 1is denoted Dby

s,

THEOREM 2. Let in the set S™'R, of the equivalen-

ce classes of ~ define operations in the following way:
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tet [a%], [6%], [c%],...,[a%], (%] be m elements oz s7'R,
define
(1) (a1 + [o%] + [B] + ... + [8%) + [h] =
= [(aqbg...bn...e2...en+b1a2...an02...cn...e2...en+...
“'+e182"'an"’d2"'dn)x12"‘x4n"‘xk2"‘xkn’

,a2b2...d2e2x42...xkz,...,anbn...dnenan...xknj] .

where k is a number such that the words

aibi"'dieixﬂi"'xki become admisgsible for multiplicative

n-gemigroup, and xijC—. 8, 1& ]Nk, ,jL—]Nn.
Let [a?],[p?},...,Le?] be n elements of S'1R, define
' nif.n n
(14) [34]Lb1j Slwsg [e1] = Ea1b1...eq,...,anbn...en] i
Then (S™'R,+,*) is an (m,n)-ring.
Proof. Direct verification.

DEFINITION 3. The (m,n)-ring defined in theorem 2.

is called the localization of R at S.

COROLLARY 1. For every af% &R, and every bgc- S
[aﬂ’b2""’bn] Fouodt [am.bz,...,bgl=
= La4+...+am,b2,...,bn] .

Proof.

[§4,b2,....bn]+...+ [am,b2,...,bn] =

I m-4 m-
=‘$aq(b2...bn) +...+am(b2...bn) }x12...an...xk2...xkn,

[a4+...+an,b2,...,bn]

m m 1 _
,(b2) x12...xk2....,(bn) Xyn**+Xen) =

since we have
m
(a1+...+am)(b2)m...(bn> XyperoXppeooX, eesXy, =

m= 1 m-
- (a1(b2...bn) +...+am(b2...bn) bx12...xﬂn...xk2...

"'xkan"'bn .

COROLLARY 2. f I is an ideal of an (m,n)-ring R

=1

then S™'I is an ideal in 5™ 'R.
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Proof. It follows immediately from the definition
of an ideal and theorem 2.
COROLLARY 3. If I,,...,I, are ideals of an (m,n)-

ring R, where k =1 mod(m-1), then

8—1(I4+ cee + 1)) = S-114 + oees + S-"Ik >
Proof. It follows from theorem 2 and corollary 1.
COROLLARY 4. If I,J are ideals of an (m,n)-ring R
then S~ '(InJ) = s 'tns™'yg.
COROLLARY 5. If J,,...,J; are ideals of an (m,n)-
-ring R, where 1 =1mod(n-1) then
-1 e =
8" (Jyeee Jl) = (8 Jq)...(S Jl) 2
Proof. It follows from theorem 2, and corollary 1 if
g = dgeeedy s By = Jieeedy s 04 = Kgeeiky yeeey
d1 = PyeeePp s €4 = Qoo where 11,31,k1,...,p1,q1e Jy
caey il,jl,kl,...,pl,qle J1 .
THEOREM 3. S7'S is a multiplicative n-group.

Proof. One checks directly that
x = [a452...sn...tz...tn,a291...t1,33,...,an]
is a solution of the equation
n e n
(3) 1[81]...\_1:1] = [51] .
Since R is commutative (m,n)-ring it follows that
s™'s 1is an n-group ([4}. p.217).

THEOREM 4. (m,n)-ring S™'R is cancellative with

respect to the elements of g™,
Proof. Since R is commutative (m,n)-ring it is

sufficient to prove 1-cancellativity. Let

[<)[3] -+ (o] = [s3)(a] - (3] -
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Then for some tge S we have
(X800 4y2a2...02...ynan...cn)tg...tn =

= (y'\a’\"'01x282'°‘c2"'xnan'"cn)t2'°'tn 3
or

(quz...yn)a,‘...c,]...an...cntz...tn =

= (y,‘xz...xn)aq...c,\...an...cntz...tn "
Since a4...c1...an...cnt2...t
n n

EARNEZINE

THEOREM 5. The mapping 'JTS : R—> S™'R defined by

n = Upeeely it follows that

Mg : a > [392...sn,52,...,sn] s s’ges, is well-defined
homomorphism of (m,n)-rings.

Proof. Let tges. One checks easily that

[atz...tn,tz,...,tn_l= [as2...sn,82,...,sn]
80 ‘Tis is well-defined.

From corollary 1 it follows that

Tgla,+ ...+ a) = Tglay) + ooe + Jglap)

'JYs(a )...'JTS(an) = [a152...sn,82,...,sn]...
...[ansz...sn,sz,...,en] = [a,,...an(sz)n...(en)n,(sz)n,...
...,(sn)n] = {81...an62...sn,s2,...,sn] = Tg(a ...a) .

THEOREM 6. When (R,*) is cancellative n-gemigroup

with respect to S, then the homomorphism Jig, defined in
theorem 5, is a monomorphism.

i _
Proof. If (@8p.e08 ,855000y8, ) = ~_b52...sn,52....,sn]

then 852"'8n82"'9nt2"'tn = bsg...snsz...sntz...tn , Tor
tge S, and since R 1is cacellative with respect to S it
follows that a = b.

THEOREM 7. When S5 1is an n-group then the homomor-
phism 'JTS, defined in theorem 5, is an isomorphism.

Proof. Let Lt,ug,...,un] be arbitrary element of S 'R.
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If gy 1is onto then there should exist an Lseg...an,sz....

\:t,uQ,... 'U“n]

or equivalently 552...snu2...unx2...xn = ts2...snx2...xn

.,en] such that r:ssz...131,1,132,...,91,1]

for some xge S . Since S 1is an n-group then it guffices
that there is an se&R such that 832”'8nu2"'% =

= t85..08, If 8 = t(uz)ndk...(uh)n'3b then, because
in an n-group (ui)n-2uiy = y holds for every yes, it
follows that 885...8, Use..ly = teye..8) holds and so T."s
is surjective. By theorem 6 it is injective.

THEOREM 8. Let S be an n-gubsemigroup of the multi-

plicative n-gemigroup of an (m,n)-ring R, and let T be

another (m,n)-ring. If ®: R —T 1is an (myn)-ring homo-
morphism such that <« (S) is an n-group in the multiplica-

tive n-semigroup (T%,+) then there is unique homomorphism

$: S 'R—>T such that @Ig =% .
Proof. Let us define & : sT'R— T by
G ([rvpseer8y]) = Pr) (P82 2 Rlay)e e s (P87 P (8).

Using the fact that @P(x4...X,) = P(xy)ees P(x,) from the
definitions of addition and multiplicat_i-on easi:_L; follows
that <@ is well-defined homomorphism of rings such that
Mg =P -

Let W be an another homomorphism such that '\l’fﬂ's =9,
Then for every se&S, ( 'v‘TS(s)) has multiplicative quer-
element in T 80 W(:ﬂ's(s)) = VY (T4(s)) .

X = Y_'r,s ,...,8] is the solution of the equation
x‘_s2t2...tn,t2,....t11...[snt2...tn.t2,...,tn_l=
= [rtz...tn,tz,...,tn]
which is checked directly. Let us denote [sitz...tn,tz,...,tn]

by u o =2, 0w s EE uy are elements of an n-group then
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¥ = [T e bpotpseen sty 1)  Pupe o ()7 20y

is a solution too so

[Fs8pseeessy] = [rtz...tn,tz,...,tn'](uz)n'Bu_2....(un)n‘3ﬁ .
It follows that
N([Tsspseeess )= Y([rtoeeet sto,eee,ty '_|(u2)"1 = 2"‘(un)n_ "h)"
"V([rtz...t tz,...,tn])(w(uz))n' «y(uz)__,(\u(uh))n B‘P(Un>
Using that u; = ZT('S(Bi), i=24vsesny and 7y J(S =% we have
N([Ty8pseees8)) = PP WP P uy) e (P ()P Pl )=
tF([r.Bz,...,sA];_—__— -

and so VY ='9Q .

THEOREM 9. Let S<T be n-subsemigroups of the multi-

plicative n-gemigroup of a commutative (m,n)-ring R. Then

(1) There is & unique homomorphism ¢: S™'R —> 77'R  such
that qqp = 9 Tg .

(11) s”'r is an n-subsemigroup of the multiplicative n-
-gemigroup of the (m,n)-ring s™'R.

(111) (m,n)-rings T 'R snd (TTg(T))™'(87'R) are
isomorphic.

il el S
(iv)  (m,n)-rings (Tg(m) '(s™'R) and (s7'm7 ' (s7'R)

are isomorphic.
Proof. To prove (i), let tgeT, sge S, and since

S ST then as in proof of theorem 5 it follows that 'JTT(B) =

- Jp—

[et preeesty] = 8850008, 485500058, ]€87'S 80 by
theorem 3 ’JTT(S) is an n-group. By theorem 8 it follows
that there is unique homomorphism <  such that TWT = <P'JTS.

The proof of (ii) is immediate.
The proof of (iii) follows from the fact that
(ﬂTS(T))-1(S'4R) is obtained as composition of

T,
a0y T (T)
R —55 7R - S5 (T () '(s7n),
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so ( ﬁé(T))—q(S'1R) also has the universal property from
the theorem 8. Since universal objects are unique up to
isomorphism it follows that T 'R and (JTS(T))'“(S‘1R)
are isomorphic.

The proof of (iv) 4is obtained similarly as that of
(114)s
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INDUCTIVE DEFINITIONS IN MLO

Dean Rosenzweig

Abstract. Sets and predicates defined by ordinary induction are, in a very
strong sense, definable in the first layer of Martin-L&f’s theory of types
without universes or wellorderings, with or without function-types.

INTRODUCTION

Sets and predicates defined by induction can be conveniently construct-
ed in Martin-L&f’s theory of types (Martin-L&f (1978), (1984) are general
references) using the machinery of "wellorderings", or, far less generally
and somewhat less conveniently, using universes, i.e. treating names of ty-
pes as objects. Both approaches, however, involve considerable strengthen-
ing of the basic arithmetical theory MLO, which is precisely the theory of
types without either wellorderings or universes. MLO has probably not been
intended to stand alone, but it can certainly be viewed as a formalization
of a definite body of mathematics; it might even be argued that it is a more
suitable (in sense of Beeson (1981)) formalization of the same body of mathe-
matics as, say, HAY (in some variants).

It encompasses a significant fragment of constructive mathematics in-
cluding elementary analysis, as well as (or rather undistinguishable from,
as argued by Martin-Lof (1978)) a significant part of computing science.
This fragment would naturally include a definite class of inductively defi-
ned sets and predicates, namely those specified by "ordinary" as opposed to
ngeneralized" induction in sense of Martin-Lof (1971); yet the means for
their explicit construction are entirely lacking in MLO, save for the set of
natural numbers.

In this paper we show that they are definable in MLO in a very strong
sense (as well as in the subsystem of MLO without function-types, named SA
for "Skolem-arithmetics" by Jervell (1978)). In view of standard facts about
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HA, together with results and techniques of Beeson (1982) (see also section
3) the sets and predicates of that class should be somehow definable; if MLo
is to be a suitable formalization of anything, they should be definable in
as strong a sense as can be, so the results are anything but unexpected.

In section 1. we redescribe sets and predicates defined by ordinary in-
duction so as to fit together with MLO. In section 2. we explain what it
means for them to be definable and what it means for an extension to be con-
servative, as MLO is not an ordinary first-order theory, and show how iso-
morphism in a category introduced by J.Cartmell (1978) relates to de-
finability. In section 3. we display isomorphs, in MLO or in SA, of sets
and predicates of section 1.

1. SETS AND PREDICATES DEFINED BY ORDINARY INDUCTION

In the theory of types sets exist as types, and predicates as type-

. =-valued functions, in view of interpretability of types as propositions. All
types of MLo are defined by means of rules, namely: rules of formation,
which specify the conditions for something to be a type, rules of introduc-
tion, which specify how objects of a type are to be constructed, as well as
what it means for two objects to be equal, rules of elimination, which spe-
cify the conditions for introducing functions over a type, and rules of
conversion, which define functions introduced by elimination. Inductively
defined types shall then be specified by rules of the following general form
(we shall suppress their obvious equality-counterparts):

1.1. V - formation

be B,
i

Vi(b) type ie [l,...,nl.

1.2. V - introduction

aeA, ... a__eA

i rs € frr Cps € vr(trs(ars))"'

e, .(a, ...a__,cC

ij - i )e.vi(tij(a))

rs*°

provided tij(x)e B, (xe Ai)’

i€ {1,...,n!, j s{l,...,mik, r eRij é&l,...,n&, Se Sijr{;ﬂl,...,mrs.



1.3. V - elimination

b eBi c hVi(b) minor premisses

rec(c, "'dkm"' ) eCi(b,c)
provided Ci(x,y) type (xeB,, y tVi(x)),

where i,kefl,...,n}, me {l,...,mkg, and for any pair k,m there is a

minor premiss of form

(xk ‘Ak == Yps eAr'zr . Vr(trs ))’ wrse Cr(trs(yrs)’zrs)"' )

4 (xk’ -+ +Ypg1Zpg’ Ypg® e & ck(tkm(xk) ckm(xk' <+ YpgtZpge )

with P‘ka’ S‘Skmr'

1.4. V - conversion

A o eh V. (& _(a minor i
a e a,g €hCpng € s( rs( r,S)) inor premisses

)

am® *

rec(cij(a, cee8,61Crge ev)y wead

= dij(a’ ceeBg1Crgs yrec(e o N P Moara )

3 Ci(ij(a)’cij a, «eeB,51Cpgee ))

where ranges of 1i,j,r,s are as in V-introduction, and minor premisses and

ranges of k,m are as in V-elimination.

1.5. The rules are graphically complicated, and will be, in section 3, re-
duced to equivalent rules that are simpler to write down in general form;
the present form of rules is, however, very easy to recognize in special

cases.

1.6. Examples

1.6.1. The set of symbolic expressions over a set Atom is specified by the

following rules:

1.6.1.1. Sexp-formation
Sexp type
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1.6.1.2. Sexp-introduction

a e Atom a e Sexp b € Sexp

at(a) € Sexp cons(a,b) € Sexp

1.6.1.3. Sexp-elimination

(x & Atom) (xeSexp yeC(x) zeSexp weC(z))
ce Sexp d(x) e C(at(x)) e(x,y,z,w) € C(cons(x,z))

Sexprec(c,d,e) e C(c)

1.6.1.4. Sexp-conversion

a € Atom minor premisses

Sexprec(at(a),d,e) = d(a) € C(at(a))

aeSexp beSexp minor premisses

Sexprec(cons(a,b),d,e)
= e(a,Sexprec(a,d,e),b,Sexprec(b,d,e)) € C(cons(a,b)).

1.6.2. The predicates of being a list and of being an element of a list are

specified by the following rules:

1.6.2.1. Formation

a ¢ Sexp a € Sexp

Listelement(a) type List(a) type

1.6.2.2. Introduction

a ¢ Atom aeSexp belist(a)

cl(a) & Listelement (at(a)) cz(a,b) € Listelement(a)

ey ¢ List(at(nil))

aeSexp b elistelement(a) c eSexp delist(e)

cu(a,b,c,d) ¢ List(cons(a,c))
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1.6.2.3. Elimination

aeSexp c elistelement(a) minor premisses

rec(c,e,f,g,h) € C(a,c)

aeSexp celist(a) minor premisses

rec(c,e,f,g,h) € D(a,c)
provided
C(x,y) type (x €Sexp, y €Listelement(x))

D(x,y) type (xe Sexp, ye List(x)),

where the minor premisses are:

(x € Atom) (x eSexp, y eList(x), z eD(x,y))
e(x) GC(at(x),cl(x)) f(x,y,2) e C(x,c5(x,y))

geD(at(nil),c3)

(x e Sexp yelistelement(x) ze C(x,y) wueSexp velist(u) weD(u,v))
h(x,y,z,u,v,w) e D(cons(x,u),cu(x,y,u,v)

1.6.2.4. Conversion

a & Atom minor premisses

rec(cl(a),e,f‘,g,h) = e(a) ¢-C(at(a),cl(a))

aeSexp belist(a) minor premisses

rec(cZ(a,b),e,f‘,g,h) = f(a,b,rec(b,e,f,g,h) eC(a,cz(a,b))
r‘ec(c3,e,f,g,h) =g eD(at(nil),c3)

aeSexp belistelement(a) ¢ eSexp deList(ec) minor premisses

r‘ec(cu(a,b,c,d),e,f,g,h) = h(a,b,rec(b,e,f,g,h),c,d,rec(d,e,f,g,h))
3 D(cons(a,c),cu(a,b,c,d)).

1.6.3. The predicate Eval(x,y,z), meaning "a LISP-evaluator, given the
Sexp x with the environment (cf. Allen (1978)) y, terminates yielding value
z", can be specified with not many more then twenty introduction-rules, pro-

vided the type of environments has already been defined.
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1.6.4. Given Eval as above, we can, by standard methods, specify a univer-
sal predicate for all one-place recursively enumerable predicates over the
type Sexp, with symbolic expressions as r.e. indices.

-

1.7. The semantics of cannonical objects (Martin-Lof (1978), (1984)) can
be straightforwardly extended to rules of form 1.1-1.4.

1.8. Sets specified by rules of form 1.1-1.4. are holomorph (Ger. zahlen-
artig aufgebaut) in sense of Péter (1967).

1.9. The rules of elimination and conversion can be produced mechanically,
as soon as the rules of formation and introduction are given.

In presenge of rules for identity-types, they entail the
following statement:

For any system of functions dkm which validate the minor premisses of'
1.3. there is a unique system of functions

fi(z) e Ci(y,Z)(y eBi,' zZe Vi(y))

which satisfy the recursion-equations

f(z )eer )

f‘i(cij(x, RS 4 PS’ZI‘S’ r “rs

o B+ )) = dij(x’ s

eh ,z

€ Ci(tij(X)’ciJ(x’ eedy, rs € r'“rs

pg?Zpgee V(X €A, L.y

eVr'(t'r‘s(yr's)))'

ief1,...,n], Jelt,...,m}.

1.1o. The rules 1.6.1. and 1.6.2. may be seen as proof-theoretic unwinding
of "domain equations"

Sexp = Atom + Sexp Sexp,

Listelement (x) = Isatom(x) + List(x) (x € Sexp)

List(x) = Isnil(x) + ( 3u ¢ Sexp+*Sexp)((x = cons(p(u),q(u)))
Listelement (p(u))*List(q(u))) (x € Sexp),

with the obvious predicates Isatom, Isnil, while (a =b) is shorthand for
I(A,a,b), to be used when no ambiguity as to type can arise. The rules are
indeed determined by the equations in a sense which will be made precise in

the next section.
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2. DEFINABILITY AND CONSERVATIVITY

2.1. T will in the sequel denote a subsystem of MLO containing all of

its rules except perhaps those for function-types (in that case possibly
some of their instances), and perhaps some rules of form 1.1-1.4. We shall
say that a system of unary type-valued functions “'Vi"' g 1 G{l,...,n},
validates the rules 1.1-1.4. in T if types "'Ai’Bi"" functions
"'tij'cij"‘ and a functional rec can be defined so that the rules
1.1.-1.4. are derived rules of T. We shall also say that predicates spe-
cified by those rules are definable in T if there are type-valued fun-

ctions which validate them in T.

2.1.1. Weaker notions, such as existence of logically equivalent type-
_valued functions (predicates), would be grossly inadequate for the theory
of types; extending T by rules for a predicate which is only definable in-
such a weak sense can be very nonconservative (see 2.5.).

In view of the formulae-as-types interpretation of proof-theory, this
suggests a notion of deductive definability of predicates and connectives
in a system of natural deduction which is stronger then the usual notion
of logical definability. Deductive definability would preserve some proof-
—theoretic results, such as normal-form theorems. Disjunction is for ins-
tance definable deductively in intuitionistic arithmetic, while only logi-
cally in classical logic. The Shaeffer-operation, introduced by K. DoSen
in this volume, defines all operations of intuitionistic propositional
logic only logically, its rules do not suffice to define the rules of in-
troduction and elimination of other propositional constants so as to vali-
date the inversion principle in form of standard rules of reduction.

2.l.2, If "‘Vi"' validate the rules 1.1.-1.4. we can, assuming yé Bi
and using 1.9. with appropriate choices of dkm’ define functions which
extract the following information form a z & Vi(y):

a) indl(z)e Nn’ so that indl(z) = ieNn

b) ind2(z)eNm , so that for some j ind2(z) = ,jt':Nm

i i
c) a(z)e A;, so that y = tij(a(z)) €B;
d) . oo

ars(z) €A, r ‘Rij’ s ‘Sijr
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e)

cr,s(z) 3 Vr(trs(ars(z)))’ r GRiJ., se Sijr'

SO that
£ m= oij(a(z), ...aps(z),crs(z)... ) evi(tij(a(z)))

is derivable in T.

Equalities c¢),f) are proved by 1.3. or 1.9. using appropriate identi-
ty-types for Ci (and a function t(i,j,x) defined by rules for finite types

so as to take the same values as tij(y)).

2.2. The fact that each object of a Vi(y) is completely determined by in-
formation 2.1.2. invites category-theoretic formulation.

Objects of the category CT will be contexts, i.e. sequences of
assumptions

ﬁeﬁ’ﬁ‘%wﬂ““%f%gr“”%d)
such that the judgements

Al type
An(xl,...xn_l) type (xle AppeeerX 1€ An—l(xl""’xn—Z))

are all derivable in T; if

= xe Al""’xn eAn(xl,...,xn_l)

|>>

E E YI‘ Bl""’yme Bm(YlI""ym_l)

are contexts, morphisms form A to B will be realizations of B in A, i.e.
sequences of n-ary functions fl""’fm such that the judgements

fl(xl,...,xn) =N (A)

AR D% 1 N NN, FROORY N NURORES ) B
are all derivable in T; objects and morphisms will be equal in CT if the
appropriate judgements of equality are derivable in T.

With the obvious composition and identities, CT is a contextual ca-
tegory of Cartmell (1978), essentially a subcategory of the initial
"strong Martin-LSf structure".

We shall say that an isomorphism fl"“'rn of two contexts of equal
length is structure-preserving if fi is a function of X yeeenXy only, and
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the inverses B1reeBy have the same property. It namely preserves the
tree-structure of contexts (cf. Cartmell (1978)).

We shall say that a morphism of two contexts with the common initial
segment Q is above Q if its first length(Q) components are the projec-
tions. To morphisms of Q, ye-A(xl,...,xn) to Q, z eA'(xl,...,xn) above Q

we shall simultaneously refer as morphisms from A to A’ above Q.

2.3. The information contained in 2.1.2. can now be expressed by a "do-

main-equation"

v, = (y) o..+(3x eAi)((yztij(x))ﬁ Vij)+...
ie {1,...,nf, Je {l,...,mi},
where
Vij ... #(dx eArS)Vr(trS(x))‘ vee, IE6 Rij' s ‘Sijr’
Z means isomorphism above ye¢ Bi’ and the finite sums and products are
obvious iterates of binary sums and products as type-constructors of T.

2,3:1= By 1.9. "'Vi"' is a minimal solution of equations 2.3., i.e. for

any other system of type-valued functions ...Vi... over."Bfu which solve
the equations, there is a unique system of monomorphisms from Vi to Vi
above yé Bi which commute with the equations.

The domain-equations namely suggest recursion-equations for functions

’ .
hi(y,z)e Vi(y)(ys B,z evi(y)). from "'hr(yrs’zrs
map to V{(y) by inverse-isomorphism and equate to hi(y,z); by 1.9. such

)... reconstruct the r.h.s.,
“hi"’ exist and are unique, by the equations they are monomorphisms.

2.4. THEOREM. If ...Vi,Vi... are unary type-valued functions over "'Bi"'

in T, and ...Vi... validate the rules 1.1-1.4. in T, the following state-

ments are equivalent for ...Vi... in T:

a) they are isomorphic to ...V;... above ...B;...
b) they form a minimal solution to equations 2.3.

c) they validate the rules 1.1-1.4.

2.4.1. Proof. We have already checked that ¢) implies b). Given b), the com-
position of monomorphisms from Vi to Vi and back will commute with the
equations, so, being unique, it must be the identity; hence a).

To prove that a) implies c), we must, given the isomorphism wfiu,

construct cij and rec’.

The information contained in introduction-rules and 1.9. is
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"category-theoretic" above Bi’ what is claimed is existence of morphisms
and a universal property, so 1.2. and 1.9. will hold for ...Vi... if a)
holds. This entails the choice

-1
i (x, “eVpgrZpgeee ) = fl(tlJ(x) o (x, seo¥pg il (trs

(yrs),z ), i

rs
where fi is the isomorphism of Vi and Vi above ye Bi' What remains to
be proved is precisely what 1.3. and 1.4. say more compared to 1.9., and
that is a linguistic statement: there is a functional which solves the re-
cursion-equations uniformly in "‘dkm"' . Given the minor premisses

(Xk éAk "'yrs‘ Ar Z;s eVr"(t’rs s))’w ‘ C}(trs(yrs)’zés)"' )

oe JEEX(E gl 1Bhg) o e

e ! e 2! .
dkm(x’ Yps?Zps¥ps r rs ’“ys ?

we can define
C.(y,z) = C!(y,f.(y,z))

H d&m(x, y..,f (t (yrs)’zrs)’w suiw g

km(x’ *+YpgrZpg Wpgt e ) rs’’ r'’rs rs

ike {l,...,n}, me{l,...,mk?,.

Given be Bi’ c eVi(b), by 1.3.

rec(f (b e), ) e c (bye) = C (b, f (b e)).

km"‘

As "’dkm"' can be defined uniformly in "'dim"" and 1i,b can be, by
2.1.2. (which holds by 1.9., so holds for ...Vi...) extracted uniformly
from c, we can define the functional

rec’(z”, ...d! ) = rec(h(z’), ...d

Ym® * * Yn®
where

h(z’) = g(ind 1(z’),t(ind 1(z’),ind 2(z’),z'))

and g(i,y,z’) is defined so as to take the same values as f;l(y,z') for
’ ’
i GNn, y ‘Bi' z'e Vi(y).

2.4.2. The same kind of theorem (stating the equivalence of a) and c),
since in most other cases it does not make sense to claim anything like b))
holds for all (instances of) type-constructors of MLO, by the same kind of

proof'.

2.5. Extending T by rules for a type-valued function which is definable
in T, i.e. by rules which are already present in T in disguise, should
be as conservative as possible. Although such a theorem is entirely trivial

in case of first-order logic, for the theory of types it requires some care.
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New types assume there the role not only of new formulae, but of new sorts
as well, over which yet new predicates may be defined, which will themselves
produce yet new sorts etc. The very notion of conservativity requires re-
formulation, as Martin-L&f’s notion of judgement, and that is what we deri-
ve in the theory of typés, is relative not only to language but to deduc-
tive apparatus as well. A derivation of a judgement in a context must con-
tain derivations of all judgements which are meeded to establish the con-
text and some more, if it for instance derives a=be€A, it must contain
derivations of A type, ae¢A, bée A, these are the things we must know be-
fore we can meaningfully assert that a=be A. If T is extended to T we
can in that sense, among the judgements derivable in T+, distinguish those
for which it is meaningful to ask whether they are derivable in T already,
namely those that presuppose only judgements which are derivable in T. We
are thus compelled to an inductive definition.

2.5.1. We shall say that

- a judgement of form A type (Q), derivable in T+, isof T if
all judgements required to establish Q as a context are T-derivable; it is
T-derivable if for some A’ T'+ A=A’ (Q) and T+ A’ type (Q);

- a judgement of form A=B (Q), derivable in T+, is of T if the
Jjudgements A type (Q), B type (Q) are both T-derivable; it is T-derivable
if it isof T and T FA’ =B’ (Q);

- a judgement of form ae¢A (Q), derivable in T+, is of T if the
judgement A type (Q) is T-derivable; it is T-derivable if it is of T and
for some a’ T'+~ aza’eA (Q) and Twa’ehd (d);

- a judgement of form a=beA (Q), derivable in T+, isof T if
the judgements A type (Q), ae¢A (Q), beA (Q) are all T-derivable; it is
T-derivable if it is of T and T+ a’=b’eA’ (Q).

2.5:2. If MLO is extended by the rules for the type of Brouwer’s ordinals,

W(N3,(x)(I(N3,x,l)+I(N3,x,?): N)), or if SA is extended by the rules for

N — N, it is easy to concoct judgements of form f(x)e N (xeN) or

f(x) =g(x) ¢ N (xe N), which are derivable in T', of T but not T-derivable.
T-derivability of all judgements, derivable in T+, which are of T,

will be our notion of conservativity. Use of new types, if it is to be con-

servative, may not create new objects at old types, at most new names for

old objects. Theorem 2.6. will verify that it relates to definability as it

should. If the formulae-as-types interpretation of proof-theory is to
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make sense, this should be a way towards "more delicate proof-theoretic
cosure conditions involving the deductions themselves" for systems of na-
tural deduction, hinted at by Troelstra (1973, p.90); the conditions might
require conservation not only of the class of (hypothetical) theorems
under logical equivalence, but of classes (types or type-valued functions)
of their proofs under type-theoretic isomorphism as well.

2.6. THEOREM. If 138 is T extended by rules for a system of type-

-valued functions ceeVyenn which are definable in T, any judgement, de-
rivable in T, which is of T 1is also T-derivable.

2.6.1. Proof. A precise description of the self-suggesting transformation
of derivations ("choose an inference by a V-rule such that above it there
are no inferences by V-rules and which is not an assumption to be cancel-
led by V-elimination or V-conversion; replace it with an inference by a de-
rived V’-rule; propagate the effect by substituting defined V’-constants
for all occurences of V-constants originating from that inference through-
out the rest of the derivation (essentially by Cartmell’s pullback-mecha-
nism, (1978)); do some other things, or more of the same, to ensure that
you still have a derivation; continue") and a verification of its effects
require induction over derivations. As is often the case, it seems that we
have to prove a stronger statement in order to prove the induction-step.

In terms of contextual categories, derivations of the four forms of
Jjudgements establish contexts, equality of contexts, morphisms and equality
of morphisms. Let Con(el ) and Hom(A ) be the classes of all contexts and
morphisms which are established by (subderivations of) & .Closing Con(d )
and Hom(d ) under application of general rules of equality and substitution
(hence under Cartmell’s pullbacks) and imposing equalities as inherited

from C.+, we obtain well-behaved compositions and identities, thus a (con-

T

textual) subcategory C, of CT+ . An induction-hypothesis which goes

through is then the following statement about a derivation « :

Stat(dd ) There is a contextual functor (Cartmell (1978)) F:C,—C

T
such that
3 - A
a) for any object A = X €hyeenx e A (xl, 3% l) of C,
there is a structure-preserving isomorphism f, :A—F(A) of Cp+» and
F(A) is of form B
V¢ F(Al),...,yné F(An)(yl""’yn—l) so that

+ P | -1
T ¢ F(Ai)(yl""’yi—l) ‘F(“i(r] (yl),...,fi_l(yl,...,yi_l))
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where f ,fn are the components of f

1reee A;

b) for any morphism h : A »B of C, F(h) = fB-h-F;l

in CT+;
c) whenever the subderivation of & establishing A is a derivati-
on in T, F(A) = A and ﬁﬁ = idA in Cp+.

Contextuality of a functor essentially means that it preserves the
tree-structure of contexts, substitution and the type-forming operations of
MLO. If Stat(s ) holds for arbitrary A , the functors generated by dif-
ferent derivations can be so chosen, by specifying F(Vi), i e(l,...,n},
as to agree on intersections of respective subcategories; we would thus
have a functor from CT+ to CT which is a left adjoint, even a reflection,
of the inclusion. Application of that functor would then produce the A’, B’,

a’,b’ as required by the theorem.

Proof of Stat(4). By induction over (. We shall adopt the usual convention

of suppressing all assamptions not explicitly shown in the rules of infe-

rence, what enforces the following definition:
F(4) 2 A, fA(x) Z x for A a finite type or N;

F( (A,B)) = Z(F(A),F(B));
£ oo p @ = (E(0(2),fp(p(2),a(2)));

F(TT(A,B)) = TW(F(A),F(B));
£ oo py @) T AEOEL (0, Bz, £ 0));

F(A+B) = F(A) + F(B);-
fh.p(z) = Dz, ()ilf,(x)), (V) I(FR(¥)));

F(I(A,a,b)) = I(F(R),F,(a),,(6));

fr(a,a,p)(?) = 13

BV, 24, fvi = the isomorphism of 2.U.a), ie (1,...,n§.
It remains to check the rules of inference.

In the case of general rules of equality and substitution, the in-
duction-step follows immediately.

In the case of rules specifying type-forming operations, the sub-
case of Y -rules will show all the essential points; the rest is then a
straightforward, though tedious, adaptation of that proof to remaining
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subcases.

Z —formation. If A is formed by inferring 2(A,B) type from subderiva-
tions of A type and of B(x) type (x&A) , by induction-hypothesis
we already know what F(A), fA’ F(B), f‘B are, as well as their properties
listed in Stat. If T A = A’ and T'+B(x) = B’(x) (x€A) for some A’,
B’ established in {, we know that TwF(A) = F(A’) and TwF(B)(x) =
F(B?)(x) (xe F(A)). Then Z -formation infers TwF(Z(A,B)) type, and
T+F(3.(A,B)) = F(Z(A’,B’)). As a judgement of form S(A,B) = €

can be derived in T by 3 -formation or by a general rule only, F is
functional on objects. If f‘A, f‘B are structure-preserving isomorphisms,
so is £ 7(A,B) by identity-rules, which completes verification of a). As
C, contains no new morphisms except for identity of T(A,B), b) holds;
¢) then holds by identity-rules.

T _introduction. If A is formed by inferring (a,b)e Z(A,B) from
subderivations of aé&A and beB(a) , it must contain a subderivation‘%
5 (A,B) type and, since the last judgement carm only be inferred by
Z -formation, subderivations of A type and B(x) type (xeA). We thus
already know what F(A), .f,, F(B), fg, £CY (AB))s f):(A p) are, as well as
’

their properties listed in Stat; in particular we know that for some a’,b’

Ty a’«F(R), v f,(a) = a’e F(A),

T +b’e F(B)(a’), T fpa,b) = b’ 6 F(B)(a’).
By the same rule we can then infer

T+ (a’,b’) e L(F(A),F(B)),
and by identity-rules

+ = ' B! - "

T - fi(A,B)((a’b)) = (a’,b’) ¢ Z(F(A),F(B));
since we can treat the corresponding judgements of equality in exactly the
same way, the functor F can be extended to new morphisms of C, so as to
satisfy a), b) and c).
2 —elimination. If A is formed by inferring E(c,d)e C(c) from subde-
rivations of ¢ e (A,B) and d(x,y) e C((x,y)) (xeh, yeB(x)), it must
contain a subderivation of C(z) type (z € Z(A,B)). We then already know
what F(A), £,, F(B), fg, F(Z(AB)),f 0y gy F(C), f. are, as well as
their properties listed in Stat; in particular we know that for some c’ ,d’

Trc'e Z(F(A),F(B)), T+ fz(A,B)(C) = ¢'e Z(F(A),F(B)),

Tt~ d’(x,y) € F(C)((x,y)) (xeF(A), yeF(B)(x)),
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T kfc((t‘A (x),r‘B (x,y)),d(t‘A (x),fy (x,y)) =d’(x,y) e F(C)((x,y))

(x €F(A), yeF(B)(x)).

By the same rule we can infer
T r+E(c’,d’) e F(C)(c’),
and we have to verify that

" £(c,E(e,d)) = E(c’,d’) €F(C)(c").

The function h(z) = fc(r‘g(A,B)(z),E(r’l(A'B)(z),d)) has the properties
T h(z) e F(C)(z) (z « E(F(A),F(B))
™ h((x,y)) = d’((x,y)) e F(C)((x,y)) (xe&F(A),ye F(B)(x)).

A statement analogous to 1.9. holds for disjoint unions as well, i.e. by
5 -elimination, ¥ -conversion and identity-rules we can derive that
(z)E(z,d’) is the unique function over £ (F(A),F(B)) with these proper-
ties, thus

T h(z) = E(z,d’)e F(C)(z) (z ¢ £(F(A),F(B)), but

™ h(e?) = £o(e,E(e,d)) ¢ F(C)(e).

Since we can treat the corresponding equality-judgements in exactly the
same way, the functor F can be extended to new morphisms of C 4 SO as to
satisfy a), b) and c).

T _conversion is now immediate by combining the above constructions, since

T £ <3 B)((a,b)) = (a’,b’) € £(F(A),F(B)) and

Tr E((a’,b’),d’) = d’(a’,b’) e F(C)((a’,b’)).
By previous remarks, this concludes the proof of Stat(« ) and of the theorem.
2.6.2. Since we have not really used the theory of categories here, cate-

gory-theoretic language was not necessary; as used above, it may be taken

for a system of convenient abbreviations.
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3. ARITHMETICAL DEFINITIONS OF INDUCTEVELY DEFINED PREDICATES

3.1. Predicates specified by rules of form 1.1-1.4. can be represented by
their "graphs", i.e. by sets of pairs (object of Ai, proof of
Vi(tij(object))). For the graphs, however, rules of particularly simple form

will suffice:

3.1.1. Formation.

wi type
provided Ai type, ie {l,...,m}.

3.1.2. Introduction.

ae%.”%¢w“.

ci(a, ceebpen. )ewi ,

where 1ie (l,...,ms and k ranges over a (multi)set Ki of values from
{l,...,m].

3.1.3. The rules of elimination and conversion stipulate the existence of a

functional which solves the recursion-equations
s fi(ci(x, ceeYpeen y) & di(x, ...yk,fk(yk)... )
6Ci(ci(x, ceeYpnn )) (x ehiy woaypel ... ) ssw

uniformly in "'di"" provided ...Ci(x) type Ocewi)... and the minor
premisses

&5% di(x, GV By ) eCi(ci(x, e VprZynnn ))
(x&Ai, ...yk(-.\'lk,zkr.ck(yk)...

3.1.4. The stipulation of 3.1.3. establishes ...wi... as a minimal solu-

tion of domain-equations

W= A oo, i&{l,...,m},

i.e. as a system of sets of nested sequences or lists of elements of Ai’s,
in an arrangement recursively prescribed by the choice of "'Ki"' (with a
natural ordering on Ki's that we shall assume fixed in the sequel). A type-
-constructor to that effect may (but will not) be introduced, parameterized
by the choice of m and "'Ki"'

We are going to prove that rules 1.1-1.4. are validated in T if
rules 3.1.1-3.1.3. are, and show how the latter can be validated in SA and

in ML_ for any ...A,...
o) |
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3.2, let Ny coilisis 5 ssoBigeoss 5 seeSyz.ess De as in 1.1=1.4. Define

k(i,j) - a bijective pairing function such that k(i,j)e {1,...,m S
for ie (l,...,ns, jegl....,mi};

KU U s

J PlRiJ
? 2
Mets,nn By
Let ...Ni... be a system of types specified by 3.1.1-3.1.3. with
Ai for Ai, m and "'Ki"' as above. Let

lab(v) = rec(v, ...(x, oYy IXeis Vg

Viy) = ...+(3vtwk(i’j)) (y:tij(lab(v))+... :

vali 2 ...+(2)p(Z)+... ,

cij(x, eYgprZgp e ) 2 ij((ck(i,j)(x’ "'Vals(zst)"' ),r))

where rec is the functional of 3.1.3., sum of functions over the summands
denotes the eliminatory function of mi—l times iterated binary sum, whose
inclusions are denoted by ...i.... . By +-rules, ...+(z)ij((p(z),r))+...
will be the identity-function of Vi(y), and "'Cij"' will validate the
introduction-rules 1.2. for ...Vi... . Given the recursion-equations of 1.9.,

we may define

B,

ek(i,j)(x’ "'yk(s,t)’wk(s,t)"' )

ci(tij(lab(y)),ij((y,r))

= d; 500 e dablyy g y) il (g £y )aMe(s gy eee )
1el1,...,n], Jefl,..., m}.
If "'di"" validate the minor premisses of 1.3. for "'Ci"" it is
straightforward to verify that "’ek(i,j)"‘ validate the minor premisses
of 3.1.3. for vos » Leb

"Dkl )7 "oBk(i, )
ey ’ £
cursion-equations 3.1.3. for "'ek(i,j)’Dk(i,j)'

be the solutions of re-
.., which may be obtained

uniformly by an application of rec; let
£ = ...+(z)gk(i,j)(vali(z))+... , ig {l,...,ng;
we may then derive the judgements
- ’
fi(z) = gk(i’j)(vali(z)) eDk(i,j)(vali(Z)) (x eAi,zzeVi(tij(x)).

‘=ing this equality, it is straightforward to vefify that "'fi“' solve
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the equations 1.9. The recursor for ...Vi... may then be obtained by en-

coding the above uniform construction from "'dij"' g

3.3. If restricted to SA, Beeson’s (1982) model-construction would go
through with primitive recursive functions instead of indices. Formalizing
the construction in SA instead of HA, we might use functional expressions
instead of pseudoterms, obtaining the following fact for T=SA:

3.3.1. For any context A = x €A;,...,x €A (x),...,x ;) established in
T, functions numAi(xl,...,xi), isAinum(yl,...,yi), ie{l,...,n}, may be
defined so that
a) the judgements
...numAi(xl,...,xi) eN (xl sAl,...,xie Ai(xl""’xi-l))"'
are all derivable in T;
b) the judgements
...ispnun(yy, ...,y ) €N (yp e N,y e N
are all derivable in SA;

¢) the functions ...(xl,...,xi)(numAi(xl,...,xi),r))... form a
structure-preserving isomorphism of A and
NA =z € NAl,...,zne-NAn(zl,...,zn_l)

in Cg, where NAi(zl,...,Zi_l) = Z(N,(z)(isAinum(zl,...,zi_l,z)=O));

d) N as defined in c¢) is a contextual functor from CT to CSA'

3.3.2. The functions ...numAi... are Godel-numberings, and "'NAi"'
may be seen as sets of appropriate Godel-numbers defined by their chara-

cteristic functions ...isAinum... .

3.3.3. If T is SA extended by (some) rules of form 3.1., the statement
3.3.1. is readily extended to T, using primitive recursive surjective co-
ding of finite sequences of numbers {...)» strictly increasing in all vari-
ables (cf. Troelstra (1973)). Let 1lth be the length-function, and (x)i the
i-th projection for i& 1lth(x); let eq(x,y) be the arithmetical characte-
ristic function of equality on N. By 3.1.3. we may define ...numwi... SO as

to satisfy the equations

num, (¢, (X, «ee¥peees )) = {iynumA (x), (...numk, (y,)...5) € N

(x cAi, oYy € Wk... )
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If ny is the size of Ki’ functions ...iswinum... should satisfy the

equations

iswinum(z) = eq(ith(z),3) 'eq(lth((z)3),ni) -eq((z)l,i)-
-isAinum((z)z) -...-iswknum(((z)3)k) *e.. &N (zeN).

Since z >(z)j for any je¢1lth(z), these equations are readily solved by
formalizing the appropriate functional of simultaneous course-of-values re-
cursion (cf. Péter (1967)) in SA. The introductory constants may then be de-
fined by

. O(X, coiYpees ) B {i,p(x), ooPdeedy ooy

and the recursor may be defined by simultaneous course-of-values recursion.
The types ...Nwi..., defined as in 3.3.1., validate the rules 3.1. with
=i sNB; a5 FoOP "'Ai"' and with the constants defined as above, so the

i
rest of 3.3.1. follows by (proof of) 2.6.

3.4. Our notion of definability implies type-theoretic isomorphism of the
definiendum and its definiens, so G&del-numberings will not suffice when
function-types are involved (because of well known metamathematical reasons).

A list of complicated objects of different sorts, and that is what
objects of wi's specified by 3.1. in general are, may be represented as a
pair of two objects: a list of same shape containing only place-holders,
which indicate the place and the sort of object to be put in its place, and
a system of function-tables, one for each sort, associating complicated ob-
jects to place-holders. Lists of same shape containing only simple place-
-holders may be readily defined in MLO by 3.3. Function-tables are simple to
construct as soon as we

a) know how to count the number of place-holders of the same sort;

b) specify a strategy for traversing the list, i.e. associate table-
-locations to list-locations in an unambiguous way (it may be already enco-
ded by a suitable choice of place-holders), uniformly for all lists and
tables of that kind.

Integers may serve as place-holders; given a) and b),
Z(N,(n)(n<sizei(z)))—-;Ai may represent the i-th function-table, where
sizei(z) is the number of atoms of i-th sort in the list z. The introductory
constants may then be defined by encoding the appropriate operations of up-
dating both the list and the function-tables; the recursor will recur over
the list and will use the tables to fetch atomic values when they are needed.

The preceding sentences are essentially to be understood only as what
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they sound like: as hints for an exercise in programming, which we leave for
the reader to complete.

3.5. The relation of the definiendum to its definiens is what is in compu-
ting science understood as the relation of an "abstract data-type" to its
-"implementation". Thus interpreted, the "implementation" of 3.3. turns out
to be terribly inefficient. If we, however, admit the type of symbolic ex-
pressions of 1.6.1. above a suitable type Atom as primitive, an "efficient"
implementation may be effected, paralelling that of 3.3. very closely, al-
though function-types will be needed to implement simultaneous course-of-
-values recursion. Definability of types specified by rules 3.1. in MLo
would nevertheless be preserved, meaning now "efficient implementability" as
well.

Corrigendum. The conclusion of the third rule of conversion in 1.6.2.4.

should stand under minor premisses.
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_ALGEBRA AND LOGIC", ZAGREB 1984

CONTRAINTUITIONIST LOGIC AND SYMMETRIC SKOLEM ALGEBRAS

Kajetan Seper

Abstract. Intuitionist logic, formulated e.g. by natural deduction, if
algebraically reformulated, leads to Heyting algebras (i.e. absolute impli-
cative lattices with zero element), and these, if algebraically dualized,
lead to Brouwer algebras (i.e. absolute subtractive lattices with the unit
element). For both kinds of these absolute Skolem algebras, implicative and
subtractive, their topological interpretation is well-known, and their uni-
fication resulting in absolute implicative-subtractive Skolem algebras was
studied by Rauszer under the name of semi-Boolean algebras.

We established a contraintuitionist system of logic, which is logical~
ly dual to the intuitionist one, where the dual | -connectives replace the
ordinary ones. Thus we obtained a logical interpretation of Brouwer alge-
bras. We wish to contrast it to Coodman’s interpretation. Also, as a result
of another kind of unification of the both asymmetric intuitionist systems,
we established a symmetric intuitionist system, which, if algebraically re-
formulated, leads to absolute symmetric Skolem algebras. We wish to contrast
them to Reuszer’s algebras.

Contents. 0. Strong truth and strong falsity. Symmetric logic. 1, In-
tuitionist logic, JL. 2. Heyting algebras, HA. 3. Contraintuitionist lo-
gic, LJL. 4. Brouwer algebras, BA. 5. Diseussion I. 6. Symmetric intui-
tionist logic, SJL. 7. Symmetric Skolem algebras, SA. 8. Discussion Lk

0. Strong truth and strong falsity. Symmetric logic

Under the classical viewpoint any statement is considered a priori
as being true or false bub not both. Under the constructive attitude the
truth and the falsity of a statement are of a posteriori character, each one
is to be established by constructive reasoning - the truth by a proof and
the falsity by a | -proof or refutation -, otherwise the statement is to be
considered as problematic. Such truth and falsity are called strong. S, con-
structive logic may be divided into the following kinds: T (truth)-oriented,
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if its main concern is the study of strong truth; | (falsity)-oriented, if
this holds for strong falsity instead; and 1’-]_- or S-oriented, or simply
symmetric, if both these species, that of strong truth and that of strong
falsity, are studied together with no priority of each to the other.

The most natural way to get a symmetric system of logie, e.g. from a
T -oriented one, is to unify the both asymmetric systems, the T -oriented
system and the corresponding | -oriented one, into a new complex system.
The both disconnected parts may be well mutually connected by several laws.
Now, the unification may proceed directly or by means of a new connective,
called strong negation, which is to express strong falsity. Then, another
new connective, called strong (or two-sided) implication, or simply bipli-
cation, may be considered in addition, or, moreover, may replace implication.
Consequently, symmetric constructive logic may be &ivided into the following
kinds: semi-symmetric, if the unification is realized directly; pre-symme-
tric, if the unification is realized solely by means of strong negation; and
(strongly) symmetric, if, in addition, biplication replaces implication.

1. Intuitionist logic, JL
Historically, the first constructive logic was developed and applied

by Brouwer in his intuitionist mathematics or intuitionism. This intuitio-
nist logic, JL, was formalized by Heyting in the form of a Hilbert-style ax-
iomatic system. JL is T -oriented. However, it contains also a specific no-
tion of falsity, called absurdity in intuitionist jargon. The falsity (or
absurdity) of a statement is established by deducing a contradiction (or ab-
surd), 1, from that statement as assumption. This kind of falsity may be
called not-truth or weak falsity, and is, as usually, reffered to by negation,
1. It is expressible by implication,>, and L : qvAg A L. Thus one may say
JL is weakly l-oriented. Then, for any stetement A, A>=aA holds, but not
conversely. Therefore =44 A, if asserted, may be understood as a new kind of
truth of A, weaker than the assertion of A. This kind of truth may be called
not-weak-falsity of quasi-truth. Thus one may say JL is quasi-T -oriented.
So, intuitionistically, one may distinguish four kinds of statements: strong-
ly true, weakly false, quasi-true, and problematic. (A quasi-true statement
may count, if one wishes, as problematic in the narrower sense.)

Gentzen formalized JL in the form of a natural deduction system., The
notion of proof in tree form is defined by the following natural rules:

AL N Gl

A S vy AR
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Here izl or 2, and the "multiple" "Em rule is considered to abbreviate
the ordinary "singular" +E one i.e. [
y faing a1 [&]
. ; AvD (1o c
"E‘m abbreviates +E e

(For a properly multiple formulation cf. 5 or T .) As mentioned above,

1 - A will abbreviate A>1.

The I(introduction) rules state conditions under which a compound sta-
tement may be infered from its components, and the E(elimination) rules
state conditions under which a statement may be infered from a compound one.
The ex falso quodlibet rule, efq, adds to the precision of intuitionist im-
plication and enables the 2 rules to be so simple as above; especially, it
enables the o E rule to be in the form of the modus ponens, mp. The rules
fix very clearly the meaning of each connective and so replace their textual
explanation.

Then, one easily defines the notion of deducibility of the conclusion B
from the assumptions Ai i.e. the (n+l)-ary deducibility relation
Al""’An" B, for each natural n. Obviously, AlA i.e. p=A>A holds, for any
A. So, if T abbreviates A DA, for a fixed Aj, then =T holds, and
hence Cbk T does, for any C, too.

From the natural deducticn formulation of JL one easily obtains its
Gentzen sequent calculus reformulation: a sequent Al""’An"B ,...,Bm is
interpreted as standing for the implication Ala A[\naBlv vBm i.e,
for a deduction of Blv g vBm from Ai‘ (For various sequent formulations
efs 5 or T .)

2. Heyting algebras, HA
If algebraically formulated, the system of JL leads to Heyting alge-
bras (or pseudo-Boolean algebras according to Rasiowa and Sikorski 1963, or
absclute implicative lattices with the zero element according to Curry 1963),
HA. The simplest way to formulate JL algebraically and so to obtain a system
for HA is to get it from the natural deduction system by means of the 2-ary
deducibility relation, AbB, which is to be considered as the sole basic
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relation in HA. Then, this basic relation, denoted agb, is a partial order.
Concerning the 2-ary operations A, v, and D, and the O-ary operation or
zero element 0O (which replaces L ) the relation satisfies the following

axioms and rules:

A c€a & c%b = cLaab alnageaj
a Lo v

v ai_-galva‘2 asc & b&c =pavb&a

0 0%b

- aanc<b = c£anb an(amb)b

Here the small letters are used to emphasize the algebraic character of the
system., The l-ary coperation =~ a may be defined by a3 0, and the O-ary ope-
ration or unit element 1 (which replaces T , and satisfies c£1) by a2 a,,
for a fixed a, -

Both systems for JL, that of natural deduction and that of partial order
relation, are equivalent:

ApyeensB B Aff AJA ... AA LB

ife 1:‘.!\1/\ ...AAHDB.

3. Contraintuitionist logic, J1JL

Prouwer’s intuitionism greatly influenced further investigations into
the mathematical and logical reasoning by constructive methods. Regardless of
the critique of and arguments against the intuitionist (weak) falsity and the
intuitionist implication as well, and of the further development in this di-
rection, several authors studied the constructive (strong) falsitv on a par
with constructive (strong) truth.

So, by means of a suitable modification of the Kleene realizability
notion, Nelson 1949, 1959 studied constructive falsity closely in parallel to
constructive truth, and established some symmetric constructive systems of
logic with strong connectives. Fitch 1952, 1963 also studied similar systems.
Independently, Markov 1950, 1970 did so by means of intuitive logical expla-
nations; especially, he introduced the notions of strong negation and strong
equivalence. This influenced further detailed investigations into the subject
by logical and algebraic methods. We mention but the following: Vorob’ jev's
1952, 1964 papers on a pre-symmetric system, the "constructive propositional
caleulus with strong negation", and ZaslavskiY's 1978 monograph on a (strong-
ly) symmetric system, the "symmetriec constructive legic™. IT algebraiecally
reformulated, the systems are studied under the name of "Nelson algebras".,

However, the semi-symmetric systems of logie were completely ignored.
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It seems that the main reacon for that resides in Lhe absence of a logical

interpretation of "Brouwer algebras" i.e, of a logie vroper that would cor-
respond to them as JL does to HA. (Cf. discussion in sec.5.) Another reason
seems to be the presence of "semi-Boolear, algebras" and the corresponding
"Heyting~Brouwer logic". (Cf. also discussion in sec.f.)

As a symmetric counterpart corresponding to the ordinary JL, we esta-
blished in M a contraintuitionist logic, LJL, where the new logically dual
] -connectives replace the ordinary ones. For formulae in 1JL that symmetry
suggests right-to-left reading. Especially, the 1 -contradiction (or }-ab-
surd), T, the § -implication or explication,d: , read as "is explied by"
if the ordinary left-to-right reading 1s applied, and the |-negation or af-
firmation, L, read asz "not false", replace the ordinary contradiction (ab-
surd), implication, and negation, reaspectively. The affirmation AL, denoted
also L A or A if the ordinary left-to-rignt reading is applied, is expressible
by ¢ and T : AL=Td A, Contraintuitionistically, we may distinguish four
kinds of statements: strongly false, not-false or weakly true, not-weakly-
~-true or quasi-false, and [ -problematic. (Quasi-falsity may count as 1-
-problematic in the narrower sense.) Also, we may say (.JL is 1 _~oriented,
weakly T -oriented, and quasi-~ | -oriented.

To get the natural deduction formulation for LJL the L -proof or re-
futation trees will be, for reasons of symmetry, treated as directed up-
wards, and so'as generated by the following natural, upwards applicable,

1 -rules:
AE in JL o

i
T

Alin JL Al

~F

vE = +1in JL vI‘:vEminJL v
.-?l-.evq (ex vero quodlibet) T
gﬁnw (or J.-mp) 54—;-54:1 <
ey
where
a aviabtes ._...__.._........—_.—-C
"Em abbreviates YY) aE
{B] (a1
(¥or a properly multiple formulation ¢f. & or 7 .) As menbioned above
At will abbreviate TdA. s

Then, the notion of | -deducibility, B+ Ajveveshy, OF the 1 ~conclusion
B from the l -assumpticons Ai is defined analogously. If | abbreviates
A,_c\.Ao, for a fixed A, then 1 holds, and hence 1 C does, for any C, too.
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The l-sequent formulation of 1JL is obtained from the natural deduc-

tion one by interpreting a J -sequent Bm’ ...,Ble— An,...,A as standing

i
for the explication Bm,\ - ABl4: An"' e vAl i.e. for a | -deduction of

Bm/\... I\Bl from Ai' (For various sequent formulations ef. 5 or 7 .)

i, Brouwer algebras, BA
If algebraically formulated, the system of }JL leads to Brouwer al-
gebras (i.e. absolute subtractive lattices with the unit element), BA, where
the operation of explication (i.e. subtraction or pseudo-difference) repla-
ces that of implication.
Now, to reformulate the natural deduction system for |1 JL algebraical-
ly so as to obtain a system for BA we proceed similarly as above for HA, L€

replace B4 A by b3 a, and cosider > as the sole basic relation in BA. Then
again > is a partial order relation that satisfies the following axioms and

rules:
c3bna & c>b & c>a azAal;ai N
a;>a,va, bvayc <%= bFc & avc v
b3>1 1
b>(bda)va bda>c= b>cva <t

The affirmation aw- , denoted also ta or -Jda, may be defined by 1d-a, and the
zero element O (which replaces L., and satisfies 0>c) by 304: a for a fixed
a_ .
o

The both systems for JL are equivalent:

'f’ - T
R ArenerA iff B>A v ...vA

1 1

iff B Ao v > 0.

5. Discussion I
The systems JL (logic) and HA (algebra) correspond each to other, and
the systems HA and BA are algebraically dual each to other. Now, two questi-
ons arise. Which system is logically dual to JL? Which system (logic) corres-
ponds to BA (algebra) as JL does to HA? By | JL we obtained the logical dual
to JL and (unintended) the logical interpretation of BA as well. The topolo-
gical interpretation of each absolute Skolem algebras, HA and BA, by open

'y

and, respectively, closed sets of a topological space, or more abstractly, of
a topological Boolean algebra, was well-known from the papers of Stone 1937
and of McKinsey and Tarski 1946.

With respect to lJL (and BA) a comparison with Goodman’s 1981 paper
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1 was suggested to the author. We wish to discuss this matter now. Goodman
tried to interprete BA logically, and so to establish the "logic of contra-
diction" or "anti-intuitionistic logic". However, this logic actually lacks
a proper logical interpretation. What is effected is but an equivalent se-
quentcalculus reformulation of BA. First, the connective "pseudo-differen-
ce", -, that corresponds to the equally named algebraic operation, sugge-
sted to be read as "but not", is in general not logically interpreted at all,
only its special instance, "negation", =~ A=T<A, suggested to be read as
"not", is introduced. Second, the suggested readings "and" and "or" for the
other connectives "conjunction", A, and "disjunction", v, respectively, se-
em to indicate their usual T-interpretation. Thus, by their suggested rea-
dings, the connectives seem to be T-connectives. So, on these "grounds"
AanA appears as a contradiction, but is in fact a L -tnd (tertium non da-
tur) AALA, and Av1A appears as a tnd, but is in fact a )\ -contradiction
Av <A, Such readings seem to us logically unsatifactory. Formally, if suita-
bly modelled by sequents, the system A.JL may lead exactly to Goodman's se-
quentcalculus, indeed. (However, for the same purpose we would prefer 1l -se-

quents. )

6. Symmetric intuitionist logic, SJL

When 1 JL was established, the idea of a direct unification of both
asymmetric logical systems, JL and JLJL, s0-as to form a new symmetric intui-
tionist logic, SJL, appeared clearly. For the preference of such unification
by means of the strong negation, the system SJL was but mentioned in 4 . It
was discussed to some extent in 6 .

We will give here only a simple fragment of SJL containing neither
= as a | -connective nor d- as a T=connective, or containing them but not in
full generality. The full system would require more technical details i.e.
the notion of S-deducibility involving T- as well L -assumptions symultanous-
ly.

To get the natural deduction formulation for SJL we define: (a) the
formulae - these are formed as usually from the atomic formulae by means of
the connectives a,Vv, =, and & ; the other connectives T,4, 4 A, and b 4
are considered as abbreviations for Ao‘:’ Ao' Aod;. Ao’ for a fixed Ao, Aal,
and Td A, respectively, as indicated above for JL and 1.JL; (b) the rules -
these are all JLy-rules and LJLT-rules; the other rules are given in (c);

(e) the deducibility relations - these are all T-deducibility relations ge-
nerated by the d-rules alone, i.e. by proofs in J-tree form, and all ]| -dedu-
cibility relations generated by the T~rules alone, i.e. by refutations in
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{-tree form, both kinds extended by the additional simple SL-rules as fol-

lows:
(. PA:@-\A(i.e.\-A—l),
- A«isyA\-(i.e.l--‘A).

The simple LD and Td rules may well be added:
1 FA&BAB,...,Bjey ADBA ;PR
T¢ Al,...,Anl-A&B44=;Al,...,An\- Ad: B.

The natural deduction formulation is easily reformulated to obtain the

corresponding S-sequent formulation.

7. Symmetric Skolem algebras, SA

If algebraically formulated, the system of SJL leads to a new alge-
braic system which we call simple absolute symmetric Skolem algebras, SA.
(Previously, in 6 , we called it hal f-Boolean algebras", the prefix "half™"
being the English translation of the Croatian “polu" to contrast it to Rau-
szer’s Creek "semi'.)

Now, to formulate SJL algebraically to obtain SA, we proceed as
above for HA and BA. Thus we obtain a system with two basic 2-ary relations
<& and 5 and four 2-ary operations A, v, 2, and & such that € ,A,v, 3
satisfy all the axioms and rules of HA, 5 ,A,V ,d satisfy all those of BA,
and £, > satisfy the following simple SA-rules in addition:

1¢a 3 1Fa (i.e.0a%0),

=

- a%0 =P ak0 (i.e. 1€ 1a),

12 14a & b?bl@ a:b>bl,

Td 1l£a&b;0¢,"a|$:a4‘.b,

where the operations 1, =a and 0,wa are defined as in HA and BA, respecti-
vely.

Both systems for SJL are obviously equivalent as above.
The algebraic formulations for JL,LJL, and SJL make it possible to
define the corresponding abstract (set-theoretic) algebraic systems immedia-

tely.

8. Discussion II
With respect to SJL (and SA) it was suggested to the author to
compare it with Rauszer’s 1974, 1980 papers 2 and 3 . A few remarks will

suffice here. Rauszer developed the theory of "semi-Boolean algebras" (i.e.
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absolute implicative-subtractive Skolem algebras or lattices, in fact com-
plete lattices) by algebraic and model-theoretic methods. Also, she establi-
shed and studied the corresponding "Heyting-Brouwer logic" by means of two
Hilbert-style axiomatic systems. However, it is hard to say for any of these
systems to be properly a logic at all. The reasons are the same as those in

sec.5.
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~ALGEBRA AND LOGIC“, ZAGREB 1984

PEACOCK’S PRINCIPLE AND EULER’S EQUATION
Zvonimir Sikié

Abstract. The exponentiation is never extended from the real to the
complex domain in accordance with Peacock’s principle of permanence, al-
though it is the best way of extending the other operations. But we show
that we are almost compelled to Euler’s equation by Peacock’s principle of
permanence and also the we are definitely compelled to it if we accept the
principle of permanence of differentiability.

C.B. Allendoerfer dedicated his rlj to those authors whose papers on
Euler’s equation had been rejected by American Mathematical Monthly. He empha-

sized that the expression elo)

has to be defined, in order to prove Euler’s
equation, but his criteria for accepting a definition of the expression as a
good one (rigor, simplicity and intuition) are quite vague. We can not be sati-
sfied with such a vague criteria because excellent criteria have existed for a
long time. Such is G.Peacock’s principle of permanence of equivalent forms an-
nounced already in 1833.

A definition of on operation should be extended from a restricted domain

to a wider one in such a way as to conserve the crucial algebraic properties of

the operation.
The crucial algebraic properties of addition multiplication and exponentia-

tion are as follows

a+bz=Db+a a*b = bea
Jf’ (a+b)+c = a+(b+c) (a-b).c = a:(b-c)
a-(b+c) = a*b + a-c
c s
ab+c s ab-ac (ab) - ab c (a-b)c _ ac_bc’

and the extensions of these operations (from the domain of natural numbers to
the domain of complex numbers) were uniquely determined by the principle, in all
cases except one. The one with which Euler’s equation is concerned.

Mus it be so? Are we compelled by Peacock’s principle to define eloo as

n
i s . 1 -n n
cos@+ 1 sinw (as we are compelled to define a /a as V a or a as 1l/a
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etc.)? We shall show, that we almost are.

We obtain complex numbers by adding the imaginary unit i to the reals
and by combining the old reals with the new unit i wusing the operations +
and - uniquely extended in accordance with Peacock’s principle. We immedia-
tely realize that any element of the new complex domain is of the form x+iy
for real x and y (because of the defining property of i: 12 =-1) and
that the totality of all new numbers forms a field. But what about exponentia-
tion in the new complex domain? Is it possible to define exponentiation of
complex numbers (determined by reals, i, + and -) in accordance with Peacock’s

1)

principle, so as to remain within the complex domain?”’ We shall show it is.

Notice first that -i has the same defining property as 1i: (—i)2 =-1.
So, any calculation with i which ends with the result

R(i) = x + iy
when performed on -i will end with the result

R(-i) = x - 1iy.
But we want to treat exponentiation as a calculation process in the complex do-
main, so if for real a and W

Rﬁ):fu:x+w then

R(-1) = a~ 1% - x - iy.

This is also a kind of permanence principle. But then

i i iw-iw
aw-aw =

= (retaining *tby Peacock’s principle2)) = a

za® 1= (x+iy) - (x-1iy) = x2-+y2 i.e.

aiwz cos¢ + i sin¢ .
It remains to find out how ¢ depends on a and ).
qﬂ(a,ou) has to be continuous in a and  if continuity of exponentiation
is to be preserved in the complex domain. Hence, the continuity will be pre-
supposed in the sequel. By Peacock’s principle we shall in the sequel under-
stand the principle of conservation of continuity and the crucial algebraic
properties*f .

LEMMA 1. The function (¢ (a,w) 1is linear in the second argument:
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¢ (a,k W) = k'¢(a,w).
Proof'.
i (0 +w2)

1

cos(f(a,(.,.)l +w2)+isin¢(a,wl+(dc,) = a = (Pp) =

i iw
=a Yt-a °s (cos¢(a,(.)1)+isin¢(a,w2))-

. (cos¢(a,(¢2)+isin¢(a,ug) z cos(¢(a,wl)+ (a,w2)) .
+ isin(¢(a,wl)+¢(a,wz)) i.e.

]
(1) (D (a,w)+,) = ¢ (a,w)) + ¢(a,w2).

Linearity follows from additivity (1) and continuity of ¢ .

LEMMA 2. The function ¢(a,w) is linear in the logarithm of the
first argument:

¢ = k- Praw).

Proof'.

cos¢(al-a2,w) +1 sin¢(al-a2,w) = (al-a2)1w= (Pp) = aiw . a;w:

= (cos¢(al,w) +1sin ¢(al ,W))- (cos¢(a2,w) +1 sin(P(ae,C.)) =

= cos(@h(a, ,w) +¢(a2,w)) +184n (yS(al,w) +¢(a2,cu)) i.e.

@ Play-ae) =Pa ) + Playw).

Linearity in logarithm follows from (2) and continuity of ?S g

If follows from LEMMA 1. that
3 $@w = k@ w
and from LEMMA 2. that

() d)(a,m) = lna - h(w).

From (3) and (4) we have
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k(a)*e) = 1lna - h(w)

that is

k(a) _ h(wW) '

e - o for any a and
that is

k(a) _ h(w) _ _

= R T ¢ = const.
Hence

¢(a,w) = c-W-lna.

So, the only possible definition of exponentiation in the complex domain,
which is in accordance with Peacock’s principle, is the following one

a W cos(c--lna) + isin(e-w-1na).
It is also easy to see that the crucial algebraic properties #ar‘e realy pre-
served by this definition (for any choice of c).

In particular, we are compelled by Peacock’s principle to define

0y cos(c+w) + isin(c-w),

i.e. we are almost compelled to Euler’s equation (up to the constant ¢, which
we can choose arbitrarily).

Are we compelled to choose c=1 if we want to define exponentiation of
complex base with complex exponent in accordance with Peacock’s principle? No,
we are not:

Let

zy r‘-(cos¢+isin¢)
and let
Z, = X + iy.

Then

N
"

12 (r"(cos¢+isin¢))(x+iy) = (Pp) =

= r(x*iy)-(cos¢+i sin¢)(x+1y) = (Pp) =
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= p¥oplYe (cos¢+ i sin(#)x- (cos¢+ i sin¢ )1y =

r*.(cos(c.y-1nr) +1i sin(c-y-1n r))-(cos(x-¢) +1 sin(x-¢))-
-(cos¢+i sin¢):Ly = rx-(cos(x~¢+c-y1n e)+i sin(x-¢+c-y-ln r))-
.(cos(c-%- lne) +isin(c-%- lne))iy =

i¢/c)iy B

rx(cos(x-¢+c-y-1n r) +isin(x-¢+c-y-1n r))-(e
= (Pp) = rX. e-y'¢/c-(cos(x-¢+c-y-ln r)+i sin(x-¢+c-y~lnr)),

and it is easy to see that the crucial algebraic properties# are preserved
by the definition:

(r- (cos¢+ i sin¢ ))(x+iy) =rX.eY’ ¢/c-(co;=x(x.¢ +c+y-lnr) +1i sin(x-ﬁw-y-ln r))

for any choice of c.

So, Peacock’s principle does not compell us to choose (Buler’s) c=1.

If we add the principle of permanence of diferentiability we are com-
pelled to choose c=1. Namely the function f(z) -a” is diferentiable only
for c=1. We shall prove this:

The function

g X+1
u+iv = a¥Y -

a¥.cos(c-y-1na) + iaX. sin(c-y-lna)

is diferentiable only if

Qu_2ov du _ov
ox T3y M 3y TIx
i.e. only if

aX.1na - cos(c-y-1na) c-aX- lna-cos(c-y-1na)

i.e. only if
e =l
Conclusion. We are almost compelled to Fuler’s equation by Peacock’s

principle. We are definitely compelled to it if we also accept the principle
of permanence of diferentiability. So, Allendoerfer’s condition:

d/dw(elw) & ielw, or the Curtiss’ condition (cf. p.51): d/dz(e?) = &%
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are unnecesarily strong concerning the diferentiation. Besides, they do not
take into consideration the most fundamental principle of permanence -
Peacock’s principle - which has to remain our guide in extending all the

operations, as much as it can.

b Notice, that this is not possible for rational numbers. If we define 21/2

2
in accordance with Peacock’s principle as V 2 we do not remain within
rationals.

2) In what follows we shall write (for brevity) "Pp" instead of "retaining
4*=by Peacock’s principle".
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ON SOME PROPERTIES OF THE MARTIN-LOF’S MEASURES OF
RANDOMNESS OF FINITE BINARY WORDS

Branislav D.Vidakovié

Abstract. In this paper we shall discuss some basic
properties of measure of randomness of the binary word x,
of the function KB(x), connected with the tests of P.Martin-
-18f [1). Marks and definitions are similar to those in [2].

1. Marks and Definitions. We shall mark the set of
all the finite binary words with an X, and the words alone
with x,y,2z,u,v, etc. With 1(x) we shall mark the length of
the word x, and ycx will mean that y is the beginning piece
of the word x. We shall not differentiate the notions "nu-
mber" and "the finite binary word", because we join the nu-

mber x=21(¥)_1, ;§)x121(x)'1 to the word X=X X,eeeX,, X;€
€{0,1}. We shall mark the set of infinite words with an Q
and the words alone with o(,ﬂ, 3‘,? sW y0tcs The word w?® is
the beginning piece of the word (W which has the length of
an n, and the symbol (Un is the n-th symbol of the word W .
set [ is the set of all ® which begin with x, i.e. {w |
wl(x)-x}. We think that on the set £ constructive measure
P, (for example by using the sets Px and P( Px)=2_l(x)) has

been introduced. The partially recursive function (g:‘, which
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is defined on words , we shall call "a process" if ycx and
xeDom(F )= yeDom(F ) and g(y)CF(x). Let the function
922(1,x) be universal for the class of all one-dimensional
partially recursive functions. Let F(x)XG(x) be substitute
for the predicate (3C)(¥x)F(x)<G(x)+C, and let F(x)XG(x) be
supstitute for the predicate (IC)(Vx)F(x)=G(x)+C.

Let the set {2 be given and a constructive measure [P
on it. The Martin-L8f test (ML test) is a general recursi-
ve function F(x,yl,...,yk) with the property

PlwlweR,F(w ,yl,...,yk)>m}g2"m, (21D
where F(U),yl....,yk)zszp F(Lun,yl,...,yk).

The word weQ is random with respect to function F if F(wW,
,yl,...,yk) is finite. There is an universsl ML test,tuncti-
on U, with the property that U(x)»F(x) goes for any other
ML test F and every xeX.

In 1965. Kolmogorov [5] defined the measure of complexi-
ty of the word x with respect to partial recursive function

F as
min{1(p) | F(p)=x }

K?(x) = { P (1.2)

oo »(VpeX) F(p)px
There is an optimal function F° so that for any other functi-
on G and every x goes
Kpo(x XK, (x). (1.3)

The measure KFo(x)EK(x) is known as Kolmogorov's complexity
of the word x. Basic properties of this measure are given in
papers [2],(3) and [4] .

In his paper (1] Martin-L&f introduces the measure of
randomness of the word x with respect to the assigned ML
test F as
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KBF(xlyl,...,yk)- 1(x) - igi F(z.yl,...,yk). (1.4)

We introduce the measure KBF(x) as KBF(x|/\,...,A Ys

2. Bagic properties of the measure KB(x)

(1) There is en universal ML test U(x,yy,..«,¥,) 80
that for any other ML test F(x,y,,...,¥,) and every word
x € X goes
KBy (X |3y 00 ees7 )< KBF(x|yl,...,yk) (2.1)
The proof for this theorem is standard for this theory
and is similar to the proof of Theorem 4.1 in [ 2],page 112.
We shall mark the measure KBU(x|y1,...,yk) more simply as
KB(X|¥yyeees¥y)e

(ii) Let Gx(i,y) be to result of application of 1(x)
of alghoritm which calculates the function 62¢(i,y),

step
in that case

1(x) - max Gx(i,y)s;KB(x)< 1(x) (2.2)
i<1(x) yJCX

The proof follows directly from the construction of uni-
versal test U in the proof (2], which has already been me-

ntioned.
(iii) Function KB(x) is "smooth", a.e.
KB(xy)-KB(x)< 1(y) (2.3)

This property is a direct consequence of inequality

inf U(z)>inf U(z). But, lim KB(x) does not exist because
ZOXy Z>X X-> 00

n
(Vn)(Ix)(1(x)>n) KB(x)<0. For example (Vn) KB(00...0)=<0.(Pi~
cture 1.)

(iv) there is a general recursive function
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@(t,x,yl,...,yk) with the following properties:
@(t,x,yl,...,yk)é KB(X Jy9000s7y) (2.4)
*ijgib(t,x,yl,...,yk)-KB(x FqaeeesTy) (2.5)
The test U(x,yl,_...,yk) is a general recursive function.

For every neN we form the set In-{/\,0,1,00,01,10,11,000,...

ceeun} .

y=1(x) W y=KB(x)

Pict.l.

We define Y(t,x,yl,...,yk) as pzi]’: U(xp,yl,...,yk).

In that case @(t,x,yl,...,yk) = 1(x) = t(t.x,yl,...,yk).

(v) The function KB(x) is not effective, but a predi-
cate
TNx,a)= (KB(x)< a) (2.6)
is partially recursive, and get
{x | Qa)(KB(x)<a) (2.7)

is recursively enumerable,.

Recursivity of the predicate (2.6) is the result of
the recursivity of the the predicate Gt)(@(t,x)(u), and
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that, in turn, is a result of recursive enumerableness of

the set (2.7).

(vi) There are only "a few" words without random,

[N
.
o©
.

P{ Mg | KB(x)€1(x)-m}< s (2.8)

P { r‘xlxs(x)q(x)-m} =P{, |inf U(y)2m) <
yox

~-m

P { F‘xlU(x)>m) £ 2
So, KB(x) 1(x) goes for almost all words x,which justifies
the introduction of the measure KB as the measure of the ra-

ndomness of the word.

(vii) (2]
[KB(x) - K(x)I£ (2+€)1(1(x)) (2.9)

(viii) Let J(F(x))=1(x)-1(F(x)). In that case
KB(x)-KB(Z (x)) < d(F(x)) (2.10)
KBy, 5 (x)-KBy(F(x))= o/ (F(x)) (2.11)

(ix) If w is a recursive gsequence, in that case
(vn) KB(w™)x 0

The sequence & is characteristical for the set A-{nl,
n2,...} C N if n;-st,n,-nd,... figure in @ is "1" and ell
other figures are "O". With wA we shall mark that the se-
quence W is characteristical for the set A. If A is recu-
rsive, let’s form a function

F(A)=0 )
F(wn)=zn:l ind { |—§—l"A:l“"1 - -z— IZ% } i

1=
where ind S is the indicator of the set S, and wh( w') is the >
number of those ones in the word wi which are on the same

position as the ones in the sequence wA. FCw® ) is ML te-
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st , and critical set of the test contains only the word W,.
Soy
n n
O<KB( W )< KB (W,)=0.

(x) For every word xeX

KB(x|x)% 0 (2.13)

We form the function F‘?(z,x)a{l(x)’xcz
A ,otherwise

Function F° is ML test. P{w| F(w,x)>m} = lP{w|xcw,1(x)>m} =
= 2_m+ 2-m_1+.-0 - 2-m+1

KB(xlx)(KBF(x|x) =0,
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ON ONE DECOMPOSITION OF FUZZY SETS
AND RELATIONS

Vojvodié G., Sedelja B.

Abstract. It is known that a fuzzy set A on an unempty set

S, as a mapping from S to the comnlete lattice L, uniquely

determines the family {A,|p € L} of subsets of S, such that

A= |J prA_. In |4], it is proved that ({A_|p € L}, C) 1is
peL P P

a lattice isomorphic to the quotient relative to one closure

operation in L. _

_ Here we prove that A uniquely determines one family
{Ap|p € L} of fuzzy sets on S, and vice-versa, proving the
theorems of decomposition and synthesis. This decomposition
preserves the properties of fuzzy congruence relation (defined
in |2|) on algebras, and using this we prove some relations in
the class of factor algebras modulo fuzzy congruence relation,
defined in |3].

The main definitions and the notation are the same as
in |3| and |4].

1s Let S #¢ and let L = (L,A,V,0,1) be a complete
lattice. Let A : S - L be a fuzzy set on S, and for every

pPE€L, let Ap : S » L be a fuzzy set on S, such that for
every X € S

A(x), if A(x) > p
Bp (x) = (%)
0, otherwise.
PROPOSITION 1.1.
(1) Ap(x) € {0} U [p), for every x € S, where [p) is a
principal filter in L, generated by op.

(2) I1f s,t € L, and s < t, then:
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L4

(2.1) At(x) # 0 implies As(x) = At (x).

(2.2) If As(x) = t, then At (x)

te
Proof. Directly from (x) O

THEOREM 1.2. (DECOMPOSITION) If A : S » L is a
fuzzy set on S, then

A= U Bp .
pEL

(The union is a fuzzy one, see for example | 2]y

Proof. Let A(x) = g, x € S. Then
Proozl.

(UBp)(x) = V3Ap(x) = V3Bp(x) V VAp(x) = Vav 0=gq.
pEL peL P4 pP£q p<q

PROPOSITION 1+3. If A : S » L, is a fuzzy set on S,

then
(3) A = A0
(4) A= U 3Bp
p>0
Proof.
(3) Directly from (*) .
(4) Let A(x) = g, x € S. Then, if q # 0, the proof is

similar to the one of Proposition 2, and if g = 0 then it
follows from (%) that for every p # 0,Ap(x)

0. Then also

(U Bp)(x) =0 . o
p>0

PROPOSITION 1.4. Let A : S » L be a fuzzy set on S.

Then for every x € S:

{5) If s,t €L and s < t, then
is a fuzzy one |1]).

2
N

As (the inclusion

(6) If s,t €L then for x € S
As(x) # 0 and At(x) # 0 imply As(x) = At(x).



179

Proof. (5) Directly from (2.1).

s At <t, it follows that

(6) If xe€ s, from
s At <s imply A(sA t)(x) = Bs(x)

A(sA t) (x) = At(x), and
(all because of (2.1)).

Thus, At(x) = As(x), for every x € S. 0

Remark. (6) is equivalent with | Aq = BAp .
Qp
THEOREM 1.5. (SYNTHESIS) Let S # ¢§ and let
L=(,AN,V,0,1) be a complete lattice. Also let {Ap|p € L}
be a family of fuzzy sets on S (for p€ L, Ap : S + L)
satisfying the conditions (1) and (2) from Proposition 1.1.

— def _
Then, if A = A0, the following is satisfied.
(1) A=\ Bp .
p>0

(11) If x € S, then for every p € L

A(x), if A(x) > p

Ap(x) =
0, otherwise .

t € L. We shall consider two

Proof. (i) Let A(x)
cases:
T t = 0. Then, BO(x) = 0, and by (5), for every
p € L Ap(x) = 0, and hence
V Bp(x) =0 =+t .
p>0
IT t # 0. Then, because of (2.2), A0 = t implies
At(x) # 0. Now, since for every s € L, As(x) # 0 (by (2.1)).

it follows by (6) that As(x) = t.
(We may use (5) and (6) since those are the consequences

of (2.1})).
Thus, for every s > 0, s € L,

As(x) = A0(x) = At(x) = t ,
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and hence, again
V Bp(x) = t.
p>0

(ii) If A(x) = 0, for x € S, the equality is obvious.
Suppose now that A(x) = A0(x) = s # 0. Here, again, we have

two cases:

a) s > p, where BAp is given in (ii). By (2.2),
As (x) = s, and since p < s, by (2.1)
Ap(x) = BAs(x) = A0(x) = A(x),
b) s } p. Now, by (6), A0 = s implies
Ap(x) = 0 or Ap(x) = s .
Because of (1), Ap(x) # s, and hence Ap(x) = 0. N

PROPOSITION 1.6. Let A: S > L, and for p € L let
Bp : S + L, defined by (x). Then the following is satisfied:

£ € L d 0, th A = A
(a) If q an q # en pq bV q

(b) Apo = Ao = S.

Here we use the definition: If p € L, then Ap§; S such
that for x € S

x €A, iff A(x) > p (see [1]) .

Proof. (a The 11t A = A A d
(a) equality A, o b n g (prove
in |4]) imply:
€ A iff € A A
*€hvq e UL
1ff x € A and x € A_,
P q

iff A(x) > p and A(x) > q ,

iff A(x) = Ap(x) > q ,

iff e A .

x Py

(b) x € Ap iff Bp(x) >0 ,

iff A(x) >0 ,
iff x€e A_ = S. 0
O
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Thus we have proved that the usual decomposition of
the fuzzy set Ap, p € L, is the same as the one of A for
all q > p and is the restriction to pV g otherwise.

Apo is, for every p, equal S.

25 The definition (%), when applied on the fuzzy equi-
valence relations (defined in |1!), preserves their oroper-
ties. Moreover, if p is a fuzzy congruence relation on an
algebra A (see |3|), op is for every p € L a fuzzy congru-
ence relation on A, as well.

Let A= (A,F) be an algebra, L = (L,A,V,0,1) a
complete lattice, and p : 52 + L a fuzzy congruence relation on

A |2| (that is:

For all x,y € A P(x,x) 1,

o(y,x) ,

D(x,y)
P(x,y) > V (p(x,2) AD(z,y)), and
zZ€A
if B(Xi,yi) =p;,i=1,...,n, then for f € F

n
D(f(xll°'-rxn)lf(ylr---ryn)) Z i/=\1pi) .

If p is a fuzzy congruence relation on A, and p € L,
the definition (*) has the following form:

2

%p : A2 + L, and if (x,y) e a2

p(x,y) 1if Dp(x,y) > p
op(x,y) = s
0 otherwise .

PROPOSITION 2.1. If o : A2 + L is a fuzzy congruence

relation on A, then for every p € L op (defined in (*%)) is

a fuzzy congruence relation on A, as well.

Proof. pp is reflexive, since b(x,x) =1 for all
X € A, and thus pp(x,x) = 1.

op is obviousli symmetric.

To prove that pp 1is transitive, we shall consider

two cases.
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I If for x,y,z € A pp(x,2) =0 or oppl(z,y) =0,
then, clearly,

op(x,y) > op(x,2) A op(z,y) .

II Let pp(x,z) # 0 and opp(z,y) # 0, x,v,z € A.
Then,

op(x,2z) = p(x,2) > p, and

P(z,¥) > p .

]

op(z,y)
Hence,

p < Pp(x,2) A Pp(z,y) = 0(x,2) A D(z,y) < o(x,¥) .
Thus, pp(x,y) > p, and op(x,y) = 0(x,y), i.e.
op(x,y) > pp(x,2) A op(z,y) .

Since this inequality holds for every =z € A, it follows that
Pp is transitive.

Let now f be an n-ary oneration from F, and for
XyreeesX oY eees¥, €A, let Bp(xi,yi) = p; € L. Then
again we have two cases:

i) Py = 0, for some i € {1,...,n}. Then clearly

n

A P; =9, and
i=1

n
oP(f(XI,-Q-:xn).f(er---,Yn)) z 1&]'.)1 .

i1) Py # 0, for every i € {1,...,n}. Then,

p; = Ep(xi,yi) = E(xi,yi) S EE 1 T O

Hence

g

J B(Xi,yi) < B(f(xl,...,xn),f(yl,...,yn)).

n>s

n
5o oyy) = A
i=

1 1

Thus,
- == n
P (£(Xyseee X)) E(Y 0eun,y ))=p(£(X),... Xn) £ yreeei¥py))2 A py-

This proves that pp is a fuzzy congruence relation on A. D
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COROLLARY 2.2. If o : A* + 1 is a fuzzy congruence

relation on the algebra A, then

»= U op
p>0

Proof. By Proposition 1.3 and Proposition 2.1. D

COROLLARY 2.3. Let {Polp € L} be a family of fuzzy

congruence relations on algebra A = (A,F), where
L= (,A,V ,0,1) is a complete lattice.

Now, if {pp|p € L} satisfy the conditions of Propo-
sition 1.5, then

= U E
p>0

is a fuzzy congruence relation on A.

ol

Proof. By Proposition 1.5, since p = p0. O

The following definitions are from !3].
If p is a fuzzy congruence relation on A = (A,F),
then

— def '
5 92

A/ = {[x]s, x € A} , where

[x15 : A > L, such that ([xlz(a) ‘S B(x,a), a € A.
Now, if f € F, then
?“xlll—)""'[xn]a) dSfU (p-f([xllp reeeelx 1)), where
peL P °p
p= U P-o, is the usual decomposition of a fuzzy set p.

pPEL = .
Thus, A/o = (A/p,F). For p € L A/oD is the factor algebra

modulo pp, which is an ordinary conqrhence relation on A,

PROPOSITION 2.4. Let p be a fuzzy congruence rela-
o)

tion on A = (A,F). Then, for € L,
1° Afop = A/ .
o
2 A =
( /ppq)/(pq/ppq) A/pq , for every q € L.
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Proof. By the definition of A/p, and by Propositi-

on 1.6. O
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THE RELATIONS BETWEEN THE ASSOCIATOR, THE DISTRIBUTOR AND
THE COMMUTATOR AND A RADICAL PROFPERTY OF A NEAR-RING

Veljko Vukovié

Abstract. The concepts of (in general nonassociative and non-
distributive) near-ring 8, a left (a right) near-ring, a d.g.
near-ring, the associator, the distributor, an ideal of S, the
relative distributor (r.d.) of a subset T of 8, an S-subgroup
of (8,+), the normal associator (distributor) subgroup of (§+)
the associator (the distributor) ideal of 8 etc. are defined
in [1] . The radical J(S), the quasiradical Q(S) and the radi-
cal subgroup N(S) of a near-ring 8 and a small ideal of 8

are defined in [2].

In this paper we have examined the relations between the asso-
ciator, the distributor and the commutator of a near-ring, re-
spectively of a left (a right) near-ring and of a d.g. near-
-ring and the necessary and sufficient conditions that the
associator (the distributor) be an ideal (Th. L-7.), the su-
fficient conditions that the radical J(S) of a left unitary
near-ring S coincides with the quasiradical Q(8) and with the
radical subgroup N(S) of S (Th.g.)

THE CONDITIONS THAT THE ASSOCIATOR (THE DISTRIBUTOR) BE
AN IDEAL OF A NEAR-RING S

Let A(8) be the associator of a near-ring 8. Denote the set
{xia-x/x(S, a(A(S)?] by B, the set LDUdD =§/d1=s((5152)s5-
—81(9255))+s(sl(5283))-5((8182)85)/s.81,82,85(3}‘.'@2=§(ssl)82)83-
—(s(slsz))53+(s(sls?)-(ssl)52)83/5,51,52,83(8} by Dg and the
identity of (S,+) by o. The set Ii):{d=s(xia-x)-s(ia-x)—sx/ 8,
x€S, a(A(Sﬁ (%:{a':—(:ta-x)s-xs+(xia-x)s/x,s(S, ag A(S)}) is
called the left distributor (l.d.) (the right distributor (ndJ)
of the set B in § and DUYD the distributor (d.) of the set B
in 8.

THEOREM 1., The normal associator subgroup A(S) of a near-ring

S is an ideal of 8 if it is a right (or a left) S-subgroup,

contains its own r.d. Dr in S, the distributor of the set B in
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3
S and Dg . Conversely, if the normal associator subgroup X(s)
is an ideal of 8 and oes, s.0 €A(S), for all s¢S then it is an

S-subgroup, contains its own r.d. in S, the d. of the set B in

8 and -]_J,)+(P={—d1+d2/d1€ﬂ), d?_éd‘lﬁ « If A(8) contains P or D
¥
then it contains Dg.

Proof.Let A(S) be a right S-subgroup, let it contains its own
r.d. in S,LfD and Dg « Then, since 8€A(S) if and only if there
exist 31,32,3365 such that a=(sls2)s—sl(3253), xa=x((sls2)55—
'51(5233))=d1+x((9132)59"‘(51(8283))=d1+5+(x(8132))SB-X(51(5233»’
where dl’x((°182)53—81(3233))”:(81(5233))"(((5182)53) and a=
=x((9152)55)-(x(5152)s3 . Hence, x((.=1132)33).-.E+(x(s]_e;2))s3 .
Since (x(slse)-(xsl)s2)53 = a'sa(-I(S) respectively (x(slsz))sa-
—((xsl)sa)s3+d2=a'% (where d2=((xsl)se)s-ﬁ—(x(slsz))85+(x(5182)—
_(xsl)se)sj) and from here (x(slsg))s5=a'55-d2+((xsl)32)55) and
since ((xsl)s2)53—(:{51)(5233):3'(7\"(5) respectively ((xs1)52)53=
=T +(xsl)(szs}), then xa=d1+'5+a’s5-d2+f+(xsl)(8253)-x(sl(3233))=
=dl+'5+a'33-d2+§+a"GICS), for all x(8.

Since for arbitrary al,agéA(S) and s&S, there exist d,d" (-Dr such
that s(al+a2)=d'+sal+sa2€RS) and (a1+aa)s=als+a23+d"(-x(s), indue-
tively one can obtain that s}:i.tai(-I(S), for all aiéA(S), all
8¢S and ifN.

Since, by the definition of A(S8), a¢A(S) if and only if there
exist aiGA(S), xiGS and i¢N such that E-Iril:l(xiiai-xi) then
for arbitrary x¢S and afA(S) there exist '&'L, di(-Dr and d‘(-_I‘D
such that xa = HL+Zix(xiiai-xi)) - a'l'fzi(di*ﬂi*diixai'ni) €A(s)
(respectively Ex=(zi(xitai-xi))x=zi(xix:taf¢-xf(+§+&d)+2Id(I(s),

for all a¢k(8), all x€8, some a'd,EiEDr and some d:aédD).
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Since for any s,s,€S and for any a¢X() there exist dp,dy €D,
such that sl(s+§)—sls=dL+sla+sla—slséK(S) and (s+§)sl-ssl-
=ssl+§sl+dd-ssléx(s) then K(8) is an ideal of S.

If (S,+,+) is an associative near-ring with zero then LD-dD-o.

Conversely, let K(8) be an ideal of a near-ring S and o.s,
8+9¢AB). Then, A(8) is an S-subgroup, i.e. ax,xa¢k(8), for all
a¢ K(8) and all s€S by the definition. Also, x(s+a)-xs=dy +X8+
+xa-xs€A(8) @dLGI(S), for all x,s(8 and all a¢Xk(8). Simi-
larly, d4€A(8).

Likewise, from sE=s(xia-x)=d+sx+s(1’a—x)=d+sx+drisa-sx c¢K(8)

follows d€A(8) for (some erDr , some d¢ Ip and) all s,x€8 and
all a¢ A@). Similarly, from as = (xta-x)s:(x;ka)s-xuadﬁﬂs) fo-

llows a’dGI(S), for all x,s€S, all atA(S) and some a’d(-dD.

Since xa=dl+E+a'33-d2+§+a"€I(S), for all x¢8 and afA(S), where

E:x((3152)53)-(x(8152))s5 y @=x(sy8,)-(x8,)s, and dﬂda'i’ aha’

as above, then d1+§+a's5—d2(-1(s). Hence, -d1+(d1+E+a's5-d2)+d1

from K(S) and '5+8(53-d2+d161(8) eesese(+)e From (+) follows that

-d2+d1€I(S) ..0.....‘.'.-.00.......-.(_) L]

If T(S) contains 1D or D then from (-) follows that it con-
. S

tains DS o

COROLLARY., If the normal associator subgroup A(S) of a near-

contains its own r.d. in 8, the set - D + ;D = —d.1+d2/<11

d €D dgédD} and the distributor of the set B in Se

THEOREM 2, The normal associator subgroup A(8) of a right

(a2 left ) near-ring S is an ideal of S if it ig a right (a
left) S-subgroup, contains its own r.d. in S, the left d. (the
r.d.) of the set B in S and the distributoxr P %D). Conversely,
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if the normal associsator subgroup x(8) of a right (a left) nearm

-ring S is an ideal and se¢0€A(S) (o*s€A(S)) then it is an S-
—subgroup and contains its own r.d. in S, the distributor D
(dD) and the d. of the set B in S.

Proof. This theorem follows from Th., 1.

COROLIARY 1, The normal associator subgroup A(S) of a right (a

left) near~ring S with zero is an ideal if and only if it is

Sl e C————— ———— t—— i e—— S———

a right (a left) S—subgroup, contains its own r.d. in S, the

d. of the set B in S and the distributor P (4D).

COROLIARY 2. If the normal associator gubgroup A(S) of a
right near-ring S contains its owmn r.d. in S, the 1l.d. of the
set B in B, the distributor ;D and it is a right S-—subgroup

e S -

then S/A(S) is an associstive near-ring.

THEOREM %. Let S be a deg. right (or left) near-ring. Then,

the normal associator subgroup A(S) is an ideal of S if it is
a left (or a right) S-subgroup and g4 (or 825°) is additive-
ly commutative. ((8,+) is a subpgroupoid of the left (right)
distributive elements of S which additively generate S).
Proof. If the normel associator subgroup EK(S) of a right d.g.
near-ring 8 is a left B-subgroup then for each E:]:;._lﬂ(xixai-
—xi) of E(8) holds Ex::zg:l(xixiaix—xix). It remains to prove
that ax€A(S) for all afA(S) and all x€s. If s¥ is additively
commutatitive then, for any sl,sa,sﬁ,x(b‘, a=(slsg)55—sl(sgs§)
from A(S) and ax:((slse)si—sl(sesj))x:(b‘ince ((5152)85)}:"
-(8152)(53)():3' then ((5152)55)x=§+(r)’1s({)(six)')=’5+(slsa)(s:;x)-
_(s]y(sgs:x))x=(Since (SISL,)(s’jx)-slisff‘(r’jx)):? then (sls(_)(%;d:

o~ -~ P N P Pionis ,
:~:I’+sl(52(s§x)) ) = a+a+sl\s£(55x)}—(slks‘:,s .))% = (Since '"'lks.‘(sj’c)'

~
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'(5253)7‘)”5131 and since ‘c‘laf'ql(SE(SBX)'(8285)"):21'.151(82@5")'
—(sesj)x) = is;l(s;_,(s;._a'r)—(s?s:,-,)x)it .'e .isn(se(six)—(sgsﬁ)x) =
=*sl(52(s5x)):sl((s‘3s3))x): :sn(sg(s-jx))'isn((ses})x =
=(telt ... tsn)(s:,'ij))—(iﬂl.t ise isn)((3235)x)=31(32(s3x))-
=5, ((8,85)%), then s,(s,(8;%))=51a,+8,((8,85)x) ) = EEes o+
+sl((sas-§)x)—(sl(523§))x = '5+§+slal+a2 ¢ Z(8), where ay=
asl((ses-ﬁ)x)-(sl(s‘?sﬁ))x and s €8, i=l,eeeyne

Similarly, x(s+a)-xsaziixi(s+a)—):i.txis = txt(s+a)t.. .k
ixk(s+a)-(ixlsi it .ixks)=ixls.txla.t. . .kasi)cka:;:a(s: iis txls(A (©)
for all x,s€8 and a€A(S).

COROLLARY., If 8 is a right d.g. near-ring, the associator
normal subgroup K(s) of S is a left S-subgroup and
557 is additively commutative then S/A(S) is an associative
near-ringe

THEOREM 4. The normal agsociator subgroup A(S) of a right (a
left) d.g. near-ring S is an ideal of SIf and only if it is a
right (a left) S-subgroup and contains the distributor 0 (dD).

Proof. If A(8) is a right (a left) S-subgroup of (8,+) and
contains the distributor D (4D) then we conclude as in the
proof of Th.1l. that xa¢A(8), for all afA(S) and all x{S. But
since $ is a right d.g. near-ring we have xE:I___isiE =

=y (0" (ngisiaj—sixj) €A(8) for all x¢S and all afh(S). As
in the proof of Th. 3. we see now that A(S) is an ideal of S.

COROLLARY. If the normal associator subgroup A(S) of a right

d.g. near-ring contains the distributor D and it is a right

S—subgroup then S/A(S) ~i~S a right distributively generated

associative near-ring.
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THEOREM 5. If the left (the right) normal distributor sub-
group 5i (5&) of a near-ring S contains the associator A(S)
Proof. Next we prove that 5i (ﬁd) is a left (a right) S-sub-
group. Since, by the defi?ition ?f ﬁil(gp, EIﬁBL (EA(ﬁA) dif
and only if there exist diGDL (dé(Dd ) and xi(S such that
n 4 n i n

aif. i=1(xiidL—xi) ) then xﬁi=x i=1(xiidL—xi)=d+]:&=1§x§$
ix&irxxi), for some ?(ﬁi and some n(N ) (ddx=(j:£=l(xiidé-
-X3))x = ]:§=l(xixidéx -x;x)+d , for éome E%ﬁa, some n¢N and
all x¢(S. It remains to prove that xdi(ﬁL @éx€5A), for all
x¢S and all di(ﬁL (respec. dééﬁa P
By the definition of Dy ,dLéDL if, and only if there exist
8118,98¢S such that d;=s(s,+s,)-ss,-ss;. Then, for every xtS
de=x(s(sl+s2)-ss2-ssl)=di¢x(s(sl+sg))-x(ssz)-x(ssl)=(Since
x(s(sl+s2))-(xs)(sl+52)=-a then x(s(sl+52))=—a+(xs)(sl+52);
x(sse)-(xs)s2=-a1===;>x:(552)=-a1+(xs)s2 and x(ssl)-(xs)sl=-a§7
-=a-x(ssl)=-a2+(xs)sl)=di-a+(xs)(sl+52)—(xs)52+a1—(xs )sl+a2=
=di—a+(xs)(sl+32)—(xs)se-(xs)sl+q§a2=di-a+d£+él+a2€5 , becau~
se dif(xs)(sl+82)-(xs)52—(xs)sl, alr(xs)sls-(xs)sl+di and ,
from here, ai=(xs)sl+al—(xs)sléﬁi

a i} 11 5 3]
Also, x(s+dL)-xs=dL+xs+de—xs€ 1» for all x,s€S and all dif L’
(Similarly, ddxéﬁa and (s+dd)x-sx€ﬁd, for all ddéﬁd and all
x,8€8) o
THEOREM 6., The left (the right) normal distributor subgroup

Dy, (By) of a right (a left) associative near-ring S is an
ideal of S.

Proof. We prove that ﬁL (ﬁd) is a right (a left) S-subgroup.
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For any d¢D; and any s,8,(8 dpx=(8(s,+s,)-88,-88,)x = (s(sy+
+85))x = (885)x - (881)x = 8((8y+8,)x) - 8(8 %) - 8(s;x) =
=s(slx+32x)-s(s2x)-s(slx) €Dy ; HLx = (Ii(xiid%—xi))x =

=T, (x;xtdfx-x;x)¢Dp, for all T €Dy and all x¢s.

But D; (D;) is by Th.5. also a left (a right) ideal of 8.

THEOREM 7. et E be the get of all endomorphisms of a group
(G,+), E(G) the set of all maps of the group (G,+) w

additively generated by all elements of E ; X, C, Dy the

normal associator subgroup of the near-ring (E(G)xG,+,x), the

commutator subgroup of (G,+), the normal right distributor

subgroup of (E(G)xG,+,x) respectively, where +,x are point-

wise addition in E(G)xG and affine multiplication: (f,g)x(zl,gl)=
((ffl,fgl+g), (T,8) (fl,gl)GE(G)xG. Then, T'e {o}xc is an ideal

of E(G)xG , 2. K ={o}xC = D; and 3. E(G)xG/{o}xC is a ring.

Proof. 1. For every (f,@),(fy,8;)€E(G)xG and every géc
((f,S)'*'(o,E))(fl’gl)"(fs%)(flygl) = (£, 8+-S-)(f1'81)‘(f98xf1081)'
=(o,fgl+g+§—g—fgl) é{q}xC and

(flssl)((fvg)"‘(o’g)) = (fl.81)(f’8)=(f1.81)(f.8+§)-(f1f.ﬁs+sl)-
=(f1f,fl(8+§)+$1)—(flf, flG+81)= (0’ fl(g+'§)-flg) = (FOI‘ any
£1€E(Q) there exist £1€E; i=1,...,n; such that £=J%_ ¥f)=
(0, (T2ft)(e+E)-T;2t76) = (0,282 (g+B) & ... 2£7(g+B)TL"E"
:...Iflg = (o, © ii‘lgi’... £ " s A ';flg =(o,c)€{o}x0
and {ojxC is an ideal of E(G)xG .

2. The associator of E(G)xG is the set of all elements of the
form ((fag)(flsgl))(f2982) = (fag)((flogl)(faoge)) =

= o fflg2+fgl-f(f182+gl))’ (fog)’(flssl)’(f2982) € E(G)xG.

It follows that the normal associator subgroup A is contai-
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ned in {q}x C . Namely ffig,+fg -f(£i8,+87) = ]:&tfiflg2+
+]:&iflgl-z:&tfi(flg2+gl)GC, since the sumands of —]:&ift&g2+
+gl) are of the form :fl(flgg), ;flgl and we have X+y-X+2z =
=X=X+y+(~y+X+y-x)+z=y+z+c for all x,y,z€G and some c{C.
Conversely, if we take f=-e, f1=e, then from (o, fflg2+fgl-
-f(flge+gl))€A we have (o,—g2—gl+g2+gl)€K. Hence,éﬁkxOS;I.
So, K=JojxC.

Further, for every (f,g),(fl,gl){f2,g2)éE(G)xG the right di-
stributor: ((fl,gl)+(f2,32))(f,@>'(f2,82)(f’g)-(flogl)(f,g)=
=(o,flg+f2g+gl-f2g—gl—flg)G{b}xC ceeeess(++) and follows

D S{0}xC. If put that f,=e (identity of E(G)) and fy=o in
(++) then (o,g+g1-g—gl)€Dd. Thus, Dd=zﬂ

3, The moof is straightfarward and we omit it.

A near-ring (S,+,+) is said to be solvable if and only if
(®,+) has a solvable sequence of S-subgroups.

A right S-subgroup P of 8,+) is said to be a right small S-
subgroup if and only if S=B for each other right S-subgroup
B of S such that S=P+B.

THEOREM 8. Let 5 be a left unitary near-ring with the di-

stributor ideal D and the associator ideal A which are small

right ideals and (S,+,+) is solvable. Then, the radical J(S)

of S coincides with the guasiradical Q(S) and S/J(8) is a

ring. If J(S) is a small right S-subgroup, then it coinci-

des with the radical subgroup lI(S) also.

Proof. Since 4 and D are small right ideals of 5 they are
contained in every maximal right ideal M of S. Hence, for
every maximal right ideal I the near-ring S/ is an associa-
tive and distributive near-ring. We prove that §/ii is a ring

and that I is a modu-
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lar ideal of S.

Since (S,+,°) is solvable then there exists a solvable series
of S-subgroups: S-So Sl eee Sp= 0 . If M is a maximal

right ideal then 8 M o 1is a normal series of S-subgroups
since o0+8(D' M, for each s(8, and hence M ig a S-subgroup .
Namely, os=(0+0)s=0s+0e+d , i.e. 0s=d(D, for each s(S and for
some d(D. Now, ms=((o+m)s-os)+os ( M for all m(M and s(S. This
have equivalent refinements which are solvable (see (1.3 3 ).
If (S/M,+) isn’t commutative then there exists a solvable se-
ries of S-subgroups: S K +ee M .o 0. Since K M A(S) ,

K M D and K is a normal S-subgroup then K is right ideal.
Thig is ®contradiction. Hence, (S8/M,+) is a commutative group
and 8/M is a ring. From this fact it falows that M is a modu-
lar right ideal. Hence, J(S)=Q(S). But 8/J(8) = 8/ M is a
gubdirect sum of the rings S/M (M runing over all maximal
ideals). Hence 5/J(S) is also a ring,

Since N(8) is the intersection of all maximal right S-subgroups,
and J(8) is contained in every such S—subgroup we have also J(S)
=N(S). Namely, $/J(5) is a ring, and every S-subgroup G of S
containing J(S) is a right ideal of S
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