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PREFACE 

This special issue of Zbornik Radova intends to make several new topics accessible 
to professional mathematicians and doctoral students. It also points out and helps 
readers to understand the corresponding research challenges and future research 
directions in some applications of mathematical logic, which can be seen as the 
calculus of computation, to foundations of theoretical computer science. 

Since the sixties, when systematic work in mathematical logic started in Bel­
grade, our researchers have been working and publishing important papers in many 
standard areas of logic: model theory, proof theory, set theory, recursion theory, 
non-standard analysis, non-classical logics etc. That work attracted a significant 
number of collaborators from all universities in Serbia, and former Yugoslavia. To­
day, it might be said that theoretical achievements of what we can informally call 
"Belgrade school in mathematical logic" have been widely recognized. 

On the other hand, during the last twenty years, as the usefulness of mathe­
maticallogic in computer science and artificial intelligence became more and more 
obvious, our logicians, organized in several scientific projects supported by Ser­
bian Ministry of Science, have been establishing intensive interactions with those 
fields. Currently, along this line of research two five years projects "Representa­
tions of logical structures and their application in computer science" and "Mod­
els, Languages, Types, and Processes in Computing" are under realization (see 
http://www.mi.sanu.ac.yu/projects/projects.htmformoreinformation).This is­
sue collects four articles of members of those projects. 

The paper by K. Dosen and Z. Petric is a survey of results about coherence for 
categories with finite products and coproducts. The investigated categories for­
malize equality of proofs in classical and intuitionistic conjunctive-disjunctive logic 
without distribution of conjunction over disjunction. Z. Ognjanovic, M. RaSkovic 
and Z. Markovic present probabilistic logics as a formalism for representing and 
reasoning with uncertain knowledge. The paper contains the axiomatizations of 
a number of logics, proofs of the completeness theorems, and discusses their de­
cidability. The paper by M. Mosurovic, T. Stojanovic, and A. Kaplarevic-Malisic 
gives an overview of basic description logics as well as some related original results 
concerning temporal extensions of Description Logics. S. Ghilezan and S. Likavec 
summarise their work in the field of computational interpretation of intuitionistic 
and classical logic in lambda calculus and its extensions. 

I, as a guest editor, am grateful to many people who helped me, in particular 
to the members of the editorial board, referees, and of course the authors of the 
papers. However, I would especially like to mention professor Slavisa B. Presi6 
(1933-2008) who is widely credited as one of the most important Serbian logician, 
the founder of the Seminar for Mathematical Logic in Mathematical Institute of the 
Serbian Academy of Sciences and Arts, supervisor of many PhD and MSc theses, as 
a pioneer of applications of theoretical results from mathematical logic in computer 
science, etc. As a member of the ~ditorial board, he strongly influenced work on 
writing this special issue, and I would like to thank him for that. 

Zoran Ognjanovic 
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Kosta Do~en and Zoran Petric 

BICARTESIAN COHERENCE REVISITED 

Abstract. A survey is given of results about coherence for categories 
with finite products and coproducts. For these results, which were 
published previously by the authors in several places, some formula­
tions and proofs are here corrected, and matters are updated. The 
categories investigated in this paper formalize equality of proofs in 
classical and intuitionistic conjunctive-disjunctive logic without dis­
tribution of conjunction over disjunction. 

Mathematics Subject Classification (2000): 18A30, 18A15, 03G30, 
03GlO, 03F05, 03F07, 03B20 

Keywords: bicartesian categories, categories with finite products 
and coproducts, coherence, categorial proof theory, decidability of 
equality of arrows, conjunction and disjunction, decidability of equal­
ity of deductions, Post completeness 
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Categorists call coherence what logicians would probably call completeness. This 
is, roughly speaking, the question whether we have assumed for a particular brand of 
categories all the equations between arrows we should have assumed. Completeness 
need not be understood here as completeness with respect to models. We may have 
also a syntactical notion of completeness-something like the Post completeness 
of the classical propositional calculus-but often some sort of model-theoretical 
completeness is implicit in coherence questions. Matters are made more complicated 

. by the fact that categorists do not like to talk about syntax, and do not perceive 
the problem as being one of finding a match between syntax and semantics. They 
do not talk of formal systems, axioms and models. 

Moreover, questions that logicians would consider to be questions of decidability, 
which is of course not the same as completeness, are involved in what categorists 
call coherence. A coherence problem often involves the question of deciding whether 
two terms designate the same arrow, i.e. whether a diagram of arrows commutes. 
Coherence is understood mostly as solving this problem, which we call the com­
muting problem, in [22] (see p. 117, which mentions [20] and [21] as the origin of 
this understanding). The commuting problem seems to be involved also in the 
understanding of coherence of [17, Section 10]. 

Completeness and decidability, though distinct, are not foreign to each other. A 
completeness proof with respect to a manageable model may provide, more or less 
immediately, tools to solve decision problems. For example, the completeness proof 

6 
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for the classical propositional calculus with respect to the two-element Boolean 
algebra provides immediately a decision procedure for theoremhood. 

The simplest coherence questions are those where it is intended that all arrows of 
the same type should be equal, i.e. where the category envisaged is a preorder. The 
oldest coherence problem is of that kind. This problem has to do with monoidal 
categories, and was solved by Mac Lane in [23]. The monoidal category freely 
generated by a set of objects is a preorder. So Mac Lane could claim that showing 
coherence is showing that "all diagrams commute" . 

In cases where coherence amounts to showing preorder, i.e. showing that from 
a given set of equations, assumed as axioms, we can derive all equations (provided 
the equated terms are of the same type), from a logical point of view we have to 
do with axiomatizability. We want to show that a decidable set of axioms (and 
we wish this set to be as simple as possible, preferably given by a finite number 
of axiom schemata) delivers all the intended equations. If preorder is intended, 
then all equations are intended. Axiomatizability is in general connected with 
logical questions of completeness, and a standard logical notion of completeness is 
completeness of a set of axioms. Where all diagrams should commute, coherence 
does not seem to be a question of model-theoretical completeness, but even in such 
cases it may be conceived that the model involved is a discrete category. 

Categorists are interested in axiomatizations that permit extensions. These ex­
tensions are in a new language, with new axioms, and such extensions of the axioms 
of monoidal categories need not yield preorders any more. Categorists are also in­
terested, when they look for axiomatizations, in finding the combinatorial building 
blocks of the matter. The axioms are such building blocks, as in knot theory the 
Reidemeister moves are the combinatorial building blocks of knot and link equiva­
lence (see [3, Chapter 1], or any other textbook in knot theory). 

In Mac Lane's second coherence result of [23], which has to do with symmetric 
monoidal categories, it is not intended that all equations between arrows of the 
same type should hold. What Mac Lane does can be described in logical terms 
in the following manner. On the one hand, he has an axiomatization, and, on 
the other hand, he has a model category where arrows are permutations; then he 
shows that his axiomatization is complete with respect to this model. It is no 
wonder that his coherence problem reduces to the completeness problem for the 
usual axiomatization of symmetric groups. 

Algebraists do not speak ofaxiomatizations, but of presentations by generators 
and relations . . The axiomatizations we envisage are purely equational axiomatiza­
tions, as in algebraic varieties. Such were the axiomatizations of [23]. Categories 
are algebras with partial operations, and we are interested in the equational theories 
of these algebras. 

In Mac Lane's coherence results for monoidal and symmetric monoidal categories 
one has to deal only with natural isomorphisms. However, in the coherence result 
for symmetric monoidal closed categories of [19] th~re are already natural and 
dinatural transformations that are not isomorphisms. 

A natural transformation is tied to a relation between the argument-places of 
the functor in the source and the argument-places of the functor in the target. This 
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relation corresponds to a relation between occurrences of letters in formulae, and 
in composing natural transformations we compose these relations. With dinatural 
transformations the matter is more complicated, and composition poses particular 
problems (see [24]). In this paper we deal with natural transformations. Our general 
notion of coherence does not, however, presuppose naturality and dinaturality. 

Our notion of a coherence result is one that covers Mac Lane's and Kelly's 
coherence results mentioned above, but it is more general. We call coherence a 
result that tells us that there is a faithful functor G from a category S freely 
generated in a certain class of categories to a "manageable" category M. This calls 
for some explanation. 

It is desirable, though perhaps not absolutely necessary, that the functor G 
be structure-preserving, which means that it preserves structure at least up to 
isomorphism. In all coherence results we will consider here, the functor G will 
preserve structure strictly, Le. "on the nose". The categories S and M will be in 
the same class of categories, and G will be obtained by extending in a unique way 
a map. from the generators of S into M. 

The category M is manageable when equations of arrows, i.e. commuting dia­
grams of arrows, are easier to consider in it than in S. The best is if the commuting 
problem is obviously decidable in M, while it was not obvious that it is such in S. 

With our approach to coherence we are oriented towards solving the commuting. 
problem. This should be stressed because other authors may give a more prominent 
place to other problems. We have used on purpose the not very precise term 
"manageable" for the category M to leave room for modifications of our notion 
of coherence, which would be oriented towards solving another problem than the 
commuting problem. 

In this paper, the manageable category M will be the category Rel with arrows 
being relations between occurrences of letters in formulae. In.[14] and elsewhere we 
have taken Rel to be the category of relations between finite ordinals, which is not 
essentially different from what we do in this paper. The previous category Rel is the 
skeleton of the new one. We have mentioned above the connection between Rel and 
natural transformations. The commuting problem in Rel is obviously decidable. 

The freely generated category S will be the bicartesian category, i.e. category 
with all finite products and coproducts, freely generated by a set of objects, or 
a related category of that kind. The generating set of objects may be conceived 
as a discrete category. In our understanding of coherence, replacing this discrete 
generating category by an arbitrary category would prevent us to solve coherence­
simply because the commuting problem in the arbitrary generating category may 
be undecidable. Far from having more general, stronger, results if the generating 
category is arbitrary, we may end up by having no result at all. 

The categories S in this paper are built ultimately out of syntactic material, as 
logical systems are built. Categorists are not inclined to formulate their coherence 
results in the way we do-in particular, they do not deal often with syntactically 
built categories. If, however, more involved and more abstract formulations of 
coherence that may be found in the literature (for early references on this matter 

: i! 
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see [18]) have practical consequences for solving the commuting problem, our way 
of formulating coherence has these consequences as well. 

That there is a faithful structure-preserving functor G from the syntactical cate­
gory S to the manageable category M means that for all arrows I and 9 of S with 
the same source and the same target we have 

f = gin S iff GI = Gg in M. 

The direction from left to right in this equivalence is contained in the functoriality 
of G, while the direction from right to left is faithfulness proper. 

If S is conceived as a syntactical system, while M is a model, the faithfulness 
equivalence we have just stated is like a completeness result in logic. The left-to­
right direction, i.e. functoriality, is soundness, while the right-to-Ieft direction, i.e. 
faithfulness, is completeness proper. 

If G happens to be one-one on objects, then we obtain that S is isomorphic to a 
sub category of M-namely, its image under G in M. We will have such a situation 
in this paper, where G will be identity on objects. 

In this paper we will separate coherence results involving terminal objects and 
initial objects from those not involving them. These objects cause difficulties, and 
the statements and proofs of the coherence results gain by having these difficulties 
kept apart. 

2. Coherence and proof theory . 
If one envisages a deductive system as a graph whose nodes are formulae: 

1 1 
-------T 1.------- CA(C-+A) 

I ~ll 
-AAA 

1 
:D 

and whose arrows are derivations from the sources understood as premises to the 
targets understood as conclusions, then equality of derivations usually transforms 
this deductive system into a category of a particular brand. This category has a 
structure induced by the connectives of the deductive system. Although equality 
of derivation is dictated by logical concerns, usually the categories we end up with 
are of a kind that categorists have already introduced for their own reasons. The 
prime example here is given by the deductive system for the conjunction-implication 
fragment of intuitionistic propositional logic. After derivations in this deductive 
system are equated according to ideas about normalization of derivations that stem 
from Gentzen, one obtains the cartesian closed category K; freely generated by a 
set of propositionalletters (see [22] for the notion of cartesian closed category). 
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Equality of proofs in intuitionistic logic has not led up to now to a coherence 
result-a coherence theorem is not forthcoming for cartesian closed categories. If 
we take that the model category M is a category whose arrows are graphs like the 
graphs of [19], then we do not have a faithful functor G from the free cartesian 
closed category JC to M. We will now explain why G is not even a functor. 

If f/p,q is the canonical arrow from q to p -t (p 1\ q), where A -t B and A 1\ B 
stand for BA and A x B respectively, while WA is the diagonal arrow from A to 
A 1\ A, then G(wp-t(pl\q) 0 f/p,q): 

which is obtained from 

is different from G«f/p,q 1\ f/p,q) 0 wq): 

which is obtained from 

q 

/~ GWq 

~ /q 1\ ~ 
( ., ( " "'" G (f/p,q 1\ f/p,q) 

(p-t(pl\q))I\(p-t(pl\q)) 

So, if W is a natural transformation, then G is not a functor. The naturality of 
W, and other arrows of that kind, tied to structural rules (w is tied to contraction, 
and k1 below to thinning), is desirable because it corresponds to the permuting of 
these rules in a cut-elimination or normalization procedure. 
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Dually, if ep,q is the canonical arrow from p 1\ (p -+ q) to q, and k~,B is the first 

projection from A 1\ B to A, then G(k:,q 0 (Ir 1\ ep,q)): \t3->q) ) 
r 

which is obtained from 

r 1\ ( P 1\ ( p -+q ) ) 

"" ~ / r 1\ q 

"" r is different from Gk~'PI\{p-+q): 

~(P-+q)) 

r 

So, if 1.1 is a natural transformation, then G is not a functor. The faithfulness of G 
fails because of a counterexample in [27], involving a natural number object in Set 
and the successor function. This does not exclude that with a more sophisticated 
model category M we might still be able to obtain coherence for cartesian closed 
categories (for an attempt along these lines see [25]). 

Equality of proofs in classical logic may, however, lead to coherence with respect 
to model categories that catch up to a point the idea of generality of proofs. Such 
is in particular the category ReI mentioned in the preceding section, whose arrows 
are relations between occurrences of propositionalletters in the premises arid con­
clusions. The idea that generality of proofs may Serve as a criterion for identity of 
proofs stems from Lambek's pioneering papers in categorial proof theory Qf the late 
1960s (see [22] for references). This criterion says, roughly, that two derivations 
represent the same proof when their generalizations with respect to diversification 
of variables (without changing the rules of inference) produce derivations with the 
same source and target, up to a renaming of variables. 

Although coherence with respect to ReI is related to generality, it is not exactly 
that. The question is should Gwp be the relation in the left one or in the right one 
of the following two diagrams: 
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p p 

/\ lA 
pAp PAP 

The second option, induced by dealing with equivalence relations, or by connecting 
all letters that must remain the same in generalizmg proofs (see [12] and [13]), would 
lead to abolishing the naturality of w. For example, in the following instance of 
the naturality equation for w: 

wpokp = (kp A kp)owl. 

for kp being the unique arrow from the initial object .L to P, we do not have that 
G(wp 0 kp) is equal to G«kp A kp) 0 Wl.): 

.L .L 

p 

lA Gwp 

pAp 

We obtain similarly that It cannot be natural. 

.L A .L 

PAp 

GWl. 

It is shown in [14] that coherence with respect to the model category ReI could 
justify plausibly equality of derivations in various systems of propositional logic, 
including classical propositional logic. The goal of that book was to explore the 
limits of coherence with respect to the model category ReL This does not exclude 
that other coherence results may involve other model categories, and, in particular, 
with a model category different from Re~ classical propositionallogic may induce a 
different notion of Boolean category than the one introduced in Chapter 14 of [14J. 
That notion of Boolean category was not motivated a priori, but was dictated by 
coherence with respect to Rel. The definition of that notion was however not given 
via coherence, but via an equational axiomatization. We take such definitions as 
being proper axiomatic definitions. 

We could easily define nonaxiomatically a notion of Boolean category with re­
spect to graphs of the Kelly-Mac Lane kind (see [19]). Equality of graphs would 
dictate what arrows are equal. In this notion, conjunction would not be a product, 
because the diagonal arrows and the projections would not make natural transfor- . 
mations (see above), and, analogously, disjunction would not be a coproduct (cf. [14, 
Section 14.3]) The resulting notion of Boolean category would not be trivial-the 
freely generated categories of that kind would not be preorders-, but its non­
axiomatic definition would be trivial. There might exist· a nontrivial equational 
axiomatic definition of this notion. Finding such a definition is an open problem. 

We are looking for nontrivial axiomatic definitions because such definitions give 
information about the combinatorial building blocks of our notions, as Reidemeister 
moves give information about the combinatorial building blocks of knot equivalence. 
Our axiomatic equational definition of Boolean category in [14] is of the nontrivial,. 
combinatorially informative, kind. Coherence of these Boolean categories with 
respect to Rel is a theorem, whose proof in [14] requires considerable effort. 
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Another analogous example is provided by the notion of monoidal category.;. 
which was introduced in a not entirely axiomatic way, via coherence, by Benabou 
in [2], and in the axiomatic way, such as we favour, by Mac Lane in [23]. For 
Benabou, coherence is built into the definition, and for Mac Lane it is a theorem. 
One could analogously define the theorems of classical propositionallogic as being 
the tautologies (this is done, for example, in [4, Sections 1.2-3]), in which case 
completeness would not be a theorem, but would be built into the definition. 

In this paper we prove coherence for categories that formalize equality of proofs 
in classical and intuitionistic conjunctive-disjunctive logic without distribution of 
conjunction over disjunction. This fragment of logic also covers the additive con­
nectives of linear and other substructurallogics (where distribution anyway should 
not be assumed). When to this fragment we add the true and absurd proposi­
tional constants matters become more complicated, and we do not how to prove 
unrestricted coherence in all cases. 

3. lattice categories 

In the remaining sections of this paper we deal with coherence with respect 
to Rel for categories with a double cartesian structure, i.e. with finite products 
and finite coproducts. We take this as a categorification of the notion of lattice. 
As before, we distinguish cases with and without special objects, which are here 
the empty product and the empty coproduct, i.e. the terminal and initial objects. 
Categories with all finite products and coproducts, including the empty ones, are 
usually called bicartesian categories (see [22]). Categories with all nonempty finite 
products and coproducts are called lattice categories in [14J. The results presented 
here are adapted from [9], [11], the revised version of [10] and [14, Chapter 9]. 

We pay particular attention to questions of maximality, i.e. to the impossibility 
of extending our axioms without collapse into preorder, and hence triviality. This 
maximality is a kind of syntactical completeness. (The sections on maximality 
improve upon results reported in [9], [11J and [10], and are taken over from [14, 
Chapter 9].) 

Our techniques are partly based on a composition elimination for conjunctive 
logic, related to normalization in natural deduction, and on a simple composition 
elimination for conjunctive-disjunctive logic, implicit in Gentzen's cut elimination. 

We define now the category L built out of syntactic material. The objects of the 
category L are the formulae of the propositionallanguage C, generated out of a set 
of infinitely many propositionalletters, for which we use p, q, r, ... , sometimes with 
indices, with the binary connectives A and V, for which we use {. For formulae we 
use A, B, C, ... , sometimes with indices. 

To define the arrows of L, we define first inductively a set of expressions called 
the arrow terms of L. Every arrow term will have a type, which is an ordered pair 
of formulae of CA' We write f: A f- B when the arrow term f is of type (A, B). 
Here A is the source, and B the target of f. For arrow terms we use f, g, h, ... , 
sometimes with indices. Intuitively, the arrow term f is the code of a derivation 
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of the conclusion B from the premise A (which explains why we write f- instead of 
-t). 

For all formulae A, B and C of C the following primitive arrow terms: 

lA: A f- A, 

k~1,A2: At /\ A2 f- Ai, kA1 ,A2: Ai f- At V A2, for i E {1,2}, 

are arrow terms. (Intuitively, these are the axioms of our logic with the codes of 
their trivial derivations.) 

Next we have the following inductive clauses: 

if f: A f- B and 9: B f- C are arrow terms, 
then (!l 0 f): A f- C is an arrow term; 
if It : At 1-' Bl and 12 : A2 f- B2 are arrow terms, 
then (f1 { h) : A1 { A2 f- B1 { B2 is an arrow term. 

(Intuitively, the operations on arrow terms 0 and ~ are codes of the rules of inference 
of our logic.) This defines the arrow terms of L. As we do usually with formulae, 
we will omit the outermost parentheses of arrow terms. 

We stipulate first that all the instances of I = I and of the following equations 
are equations of L: 

categorial equations: 

(cat 1) 

(cat 2) 

Io lA = lB 0 I = I: A f- B, 

h Q (9 Q I) = (h 0 9) Q I, 
biIunctorial equations: 

({ 1) lA { lB = lA(B 

(~ 2) (91 0 Id ~ (92 0 h) = (91 e 92) 0 (It ~ h), 

naturality equations: for I: A f- B and Ii: Ai f- Bi , where i E {1,2}, 

(w nat) (f /\ J) °WA = WB 0 I, 

(w nat) IOWA = WB 0 (f V J), 

(ki nat) Ii 0 k~1,A2 = klh ,B2 0 (It /\ h), 
(ki nat) (It V h) 0 k~1,A2 = k11oB2 0 h 

triangular equations: for i E {1,2}, 

(wk) 
(wk) 

(wkk) 

k~,A °WA = lA, 

WA 0 k~,A = lA, 
~1 ~2 ~ 

(kA,B 1\ kA,B) °WA/l.B = lA/l.B, 
v VI v 2 WAYB 0 (kA,B V kA,B) = lAYB. 

This concludes the list of axiomatic equations stipulated for L. To define all the 
equations of L it remains only to say that the set of these equations is closed under 
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symmetry and transitivity of equality and under the rules 

(0 cong) 
1=1' g=g' 

gol=g'of' 
({ cong) 

It = I~ h = I~ 
It {h = I~ {/~ 

On the arrow terms of L we impose the equations of L. This means that an 
arrow of L is an equivalence class of arrow terms of L defined with respect to the 
smallest equivalence relation such that the equations of L are satisfied (see [14, 
Section 2.3], for details). 

The kind of category for which L is the one freely generated out of the set of 
propositionalletters (which may be understood as a discrete category) we call lattice 
category (see [14, Section 9.4], for a precise definition). Usually, such categories 
would be called categories with finite nonempty products and. coproducts. The 
objects of a lattice category that is a partial order make a lattice. 

4. The functor G 

The objects of the category ReI are the objects of L, Le. the formulae of C. An 
arrow R: A f- B of Rei is a set of ordered pairs (x, y) such that x is an occurrence 
of a propositional letter in the formula A and y is an occurrence of a propositional 
letter in the formula Bj in other words, arrows are binary relations between the 
sets of occurrences of propositionalletters in formulae. We write either (x, y) E R 
or xRy, as usual. In this category, lA: A f- A is the identity relation, i.e. identity 
function, that assigns to every occurrence of a propositional letter in A that same 
occurrence. In C there are no formulae in which no propositional letter occurs, 
but where we have such formulae (as in the language CT,.L considered later in this 
paper), the empty set of ordered pairs corresponds to lA: A f- A if no propositional 
letter occurs in A. The empty relation is the identity relation on the empty set. 

For RI : A f- Band R2 : B f- C, the set of ordered pairs of the composition 
R2 oRl : A f- C is ((x,y) 13z(xRlz and ZR2Y)}' Let xj(A) be the j-th occurrence 
of a propositionalletter in A counting from the left, and let IAI be the number of 
occurrences of propositionalletters in A (so 1 ~ j ~ IAI). For Ri: Ai f- Bi, with 
i E {I, 2}, the set of ordered pairs of RI { R2: Al { A2 f- Bl { B 2, for { E {A, V}, is 
the disjoint union of the following two sets: 

{(Xj(Al {A2),Xk(Bl {B2» I (xj(Al),Xk(Bl » E Rd, 

{(Xi+IAll(A l {A2), XH/Bd(Bl {B2» I (xj(A2), xk(B2» E R 2 }. 

With the operation on objects that corresponds to the binary connective {, this 
operation { on arrows gives a biendofunctor in Rei. 

In Rei we have the. ~elations. GWA : A f- A A A, GWA : A V A f- A, Gk~l>A2 : 
Al. A A2 f- Ai, and Gk~1,A2 : Ai f- Al V A2 , for i E {1,2}, whose sets of ordered 
paIrs are defined as follows: 

(Xj(A),Xk(A A A» E GWA iff (xk(A V A),xj(A» E GWA iff j == k (mod lAD; 

(xj(Al A A2),Xk(Ad) E Gk~1,A2 iff (xk(Ad,Xj(Al V A 2» E Gkt,A2 iff j = k; 
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A2 -
(Xj(A1 /\A2),Xk(A2 )) E GkA1 ,A2 if! (xk(A2 ),xj(A1 v A2 )) E Gk~l.A2 if! 

. j = k+IAll· 
It is not difficult to check that all these arrows of Rel give rise to natural trans­

formations. This is clear from the graphical r~presentation of relations in Rel. Here 
are a few examples of such graphical representations, with sources written at the 
top and targets at the bottom: 

(p /\ q) V P P V P 

«(p /\ q) V p)/\«(P /\ q) V p) 

(p V q)/\«q /\ p) /\ r) 

. . . 
«q V r)/\ p)V(P /\ (q V p)) 

For R: A I- B, the naturality equation 

(R/\R)oGwA = GWBoR, 

which corresponds to the equation (tii nat) of the preceding ~eo.tion, and which we 
take as an example, is justified in the following manner via' graphs: 

A A 

B 

We can now define a functor G from the category L to the category Rel. On 
objects we have that G A is A. We have defined G above on the primitive arrow 
terms of L, and we have . 

G(f~g)=GI~Gg, 

G(go 1) = Ggo Gf. 

To ascertain that this defines a functor from L to Rel, it remains to check that if 
I = 9 in L, then G I = Gg in ReI, which we do by induction on the length of the 
derivation of I = 9 in L. 

It is easy to check by induction that if for I: A I- B we have (xj(A), xk(B)) E GI, 
then Xj (A) and Xk (B) are occurrences of the same propositionalletter. 
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Our first task in this paper is to show that the functor G from L to Rel is faithful. 
We call this result Lattice Coherence, and we say that L is coherent. Since G is 
identity on objects, this means that L is isomorphic to a sub category of Rel. 

It is clear that if L is coherent in the sense just specified, then it is decidable 
whether arrow terms of L are equal in L. In logical terms, one would say that the 
coherence of L implies the decidability of the equational system used to define L. 
This is because equality of arrows is clearly decidable in Rel. So coherence here 
implies a solution to the commuting problem. 

5. Coherence for lattice categories 
We define by induction a set of terms for the arrows of L that we call Gentzen 

terms. The identity arrow terms lA are Gentzen terms, and we assume that 
Gentzen terms are closed under the following operations on arrow terms, besides 
the operation 0, where =dn is read "denotes": 

k~3_ii =dn k~t.A2 0 fi: C ~ Al V A2 

It is easy to verify that the following equations hold for Gentzen terms (these 
equations can serve for an alternative formulation of L): 

(Kl) goK~/ = K~(go 1), (kl) k~go f = k~(go 1), 

(K2) K~go(h,h} =goh, (k2) [gl,g2]ok~f =g;.°f, 

(K3) (gl,g2}0/=(gl o/,g2 0 /), (k3) go[h,/2] = [go/l,go/2]' 

(K4) 

(K5) 

(Kk) Ki ki h - k i Ki h CD - DC' 

with appropriate types assigned to /, g, /i and 9i .. 

~ 1 v 2 
IAVB = [KBIA,KAIB], 

kh[91,92] = [k1g11K1g2], 

It is very easy to show that for every arrow term of L there is a Gentzen term 
denoting the same arrow. We can prove the following theorem for L. . 

Composition Elimination. For every arrow term h there is a composition-free 
Gentzen term h' such that h = h' . 
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Proof. We find first a Gentzen term denoting the same arrow as h. Take a subterm 
go f of this Gentzen term such that both f and 9 are composition-free. We call 
such a subterm a topmost cut. We show that go f is equal either to a composition­
free Gentzen term or to a Gentzen term all of whose compositions occur in topmost 
cuts of strictly smaller length than the length of 9 0 f. The possibility of eliminating 
composition in topmost cuts, and hence every composition, follows by induction on 
the length of topmost cuts. 

The cases where for 9 are lA are taken care of by (cat 1); the cases where f is· 
K~ f' are taken care of by (K 1); and the case where 9 is (gl, g2) is taken care of 
by (K3). 

We have next cases dual to the last two, where 9 is K~g', which is taken care of 
by (Kl), and where f is [ft, h], which is taken care of by (K3). In the remaining 
cases, if f is (ft, 12), then 9 is either of a form already covered by cases above, or 
9 is K~g', and we apply (K2). Finally, if f is K~1', then 9 is either of a form 
already covered by cases above, or 9 is [gl,g2J, and we apply (K2). -I 

Note that we use only the equations (Kl)-(K3) and (Kl)-(K3) in this proof 
(which is taken over from [11], Section 3). We can then prove the following lemma 
for L. 

Invertibility Lemma for /\. Let 1: Al /\ A2 \- B be a Gentzen term. If for every 
(x,y) E Gf we have that x is in AI, then f is equal to a Gentzen term of the form 
K1J', and if for every (x,y) E Gf we have that x is in A2 , then f is equal to a 

Gentzen term of the form K~l l' . 
Proof. By Composition Elimination for L, we can assume that f is composition­
free, and then we proceed by induction on the length of the target B (or on the 
length of 1). IT B is a letter, then f must be equal in L to an arrow term of the 
form K~3_J'. The condition on Gf dictates whether i here is 1 or 2. 

If B is Bl 1\ B2 and f is not of the form K~3_i 1', then f must be of the form 
(h, h) (the condition on G f precludes that f be an identity arrow term). We 
apply the induction hypothesis to it: Al /\ A2 \- Bl and h: Al /\ A2 \- B2, and use 
the equation (K5). 

IT B is Bl V B2 and f is not of the form K~3-i 1', then 1 must be of the form 

K1
3
_;g, for j E {1,2}. We apply the induction hypothesis to g: Al/\ A2 \- B i , and 

use the following instance of the equation (KK): 
Ki Ki g' = Ki Ki '. -I 

B3_; A3-i A3-i B3-; 9 

We have a dual Invertibility Lemma for V. We can then prove the following 
result of [11, Section 4]. 

Lattice Coherence. The functor G from L to Rel is faithful. 

Proof. Suppose f, g: A \- B are arrow terms of L and G f = Gg. We proceed by 
induction on the sum of the lengths of A and B to show that f = 9 in L. IT A 
and B are both letters, then we conclude by Composition Elimination for L that 



BICARTESIAN COHERENCE REVISITED 19 

an arrow term of L of the type A f- B exists iff A and B are the same letter p, and 
we must have f = 9 = Ip in L. Note that we do not need here the assumption 
Gf=Gg. 

If B is Bl A B2, then for i E {1,2} we have that k}h,B2 0 f and kk1,B2 09 are of 
type A f- Bi. We also have 

whence, by the induction hypothesis, we have kk
1

,B2 0 f = kk
1

,B2 0 9 in L. Then 
we infer 

from which f = 9 follows with the help of the equations (K3) and (K4). We 
proceed analogously if A is Al V A2. 

Suppose now that A is Al A A2 or a letter, and B is BI V B2 or a letter, but A 
and B are not both letters. Then by Composition Elimination for L we have that 
f is equal in L to an arrow term of L that is either of the form l' 0 kAi A or of 

1, 2 

the form kk
1
,B2 0 1'. Suppose f = l' 0 kt ,A2. Then for every (x, Y) E G f we have 

x E GAl. 
By the Invertibility Lemma for A, it follows that 9 is equal in L to an arrow 

term of the form 9' 0 kt ,A2. From G f = Gg we can infer easily that G f' = Gg', 
and so by the induction hypothesis l' = 9', and hence f = 9. 

We reason analogously when f = l' 0 k~l ,A2· If f = kk1,B2 0 1', then again we 
reason analogously, applying the Invertibility Lemma for V. -/ 

This proof of Lattice Coherence is SIinpler than a proof given in [11]. In the course 
of that previous proof one has also coherence results for two auxiliary categories 
related to L. We will need these categories later, but we do not need these coherence' 
results. For the sake of completeness, however, we record them here too. 

Let Lv be the category defined as L with the difference that the primitive arrow 
terms wand ki are excluded, as well as the equations involving them. The Gentzen 
formulation of Lv is obtained by taking the operation V on arrow terms instead of 
the operations [, ] andki. 

The category LA is isomorphic to L~. In LA, the A and V of Lv are inter­
changed. 

One can easily prove Composition Elimination for Lv (and hence also for LA) 
by abbreviating the proof of Composition Elimination for L above. For Lv we do 
not have the cases where f is [it, fa] or k~f', but f can be it V fa· Then, if 9 is 
not of a form already covered by the proof above, it must be 91 V 92, and we apply 
the bifunctorial equation (V 2). 

A composition-free arrow term of Lv may be reduced to a unique normal form, 
which can then be used to demonstrate coherence for Lv, i.e. the fact that the 
functor G from Lv to Rei is faithful (see [11, Section 4]). 
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6. Coherence for sesquicartesian categories 

We define now the category LT ,ol, whose definition extends the definition of L 
with the terminal object T and the initial object'.1, i.e. nullary product and coprod­
uct, The objects of this category are the formulae of the propositional language 
LT ,ol, generated out of a set of infinitely many propositionalletters with the binary 
connectives A and V, and the nullary connectives, i.e. propositional constants, T 
and .L. 

The arrow terms of LT ,ol are defined as the arrow terms of L save that for every 
object A we have the additional primitive arrow terms 

and for all arrow terms /: A I- T and g: .1 I- A we have the additional axiomatic 
equations 

(k) kA=/, (k) kA=g, 
A Al A2 - -1 -2 

. (k1.) kol,l. = kl.,ol' (kT) kT,T = kT,T' 
It is easy to see that with the help of the last two equations we obtain that the 

pairs 

ki,ol = kl,ol : .1 A .1 1-.1 and kl.AJ. = Wol : .1 I- .1 A 1., 

kt,T=k~,T:TI-TVT and kTVT=WT;TVTI-T 

are inverses of each other, This shows that every letterless formula of LT,ol is 
isom.orphic in LT,ol either to T or to .1. 

The kind of category for which LT,ol is the one freely ,generated out of the set 
of propositional letters we call dicartesian category. The objects of a dicartesian 
category that is a partial order make a lattice with top and bottom. 

By omitting the equations (k.1) and (kT)'in the definition of LT,ol we would 
obtain the bicartesian category freely generated by the set of propositional let­
ters (cf. [22, Section 1.8]). Dicartesian categories were considered under the name 
coherent bicartesian categories in the printed version of [10]. 

We previously believed wrongiy that we have proved coherence for dicartesian, 
alias coherent bicartesian, categories. Lemma 5.1 of the printed version of [10] is 
however not correct. We prove here only a restricted coherence result for dicartesian 
categories. A study of equality of arrows in bicartesian categories may be found in 
[5]. 

Suppose that in the definition of LT,l. we omit one of T and 1. from the lan­
guage, and we omit all the arrow terms and equations involving the omitted nullary 
connective. When we omit T, we obtain the category Lol, and when we omit .1, 
we obtain the category LT· It is clear that Lol is isomorphic to Lf'. In the printed 
version of [10] the categories for which Lol is the one freely generated by the set of 
propositionalletters were called coherent sesquicartesian categories. We call them 
now just sesquicartesian categories. 

The category Set, whose objects are sets and whose arrows are functions, with 
cartesian product x as A, disjoint union + as V, a singleton set {*} as T and the 
empty set 0 as 1., is a bicartesian category, but not a dicartesian category. It is, 
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however, a sesquicartesian category in the L.1 sense, but not in the LT sense. This 
is because in Set we have that 0 x 0 is equal to 0, but {*} + {*} is not isomorphic 
to {*}. 

To define the functor G from LT,.1 to ReI we assume that the objects of Rei are 
the formulae of .c T,1.' Everything else in the definition of Rel remains unchanged; 
in particular, the arrows are sets of ordered pairs of occurrences of propositional 
letters (no propositional constant is involved). In the definition of the functor G 
we stipulate that for GkA and GkA we have the empty set of ordered pairs. This 
serves also for the definition of the functors G from L1. and LT to Rei. 

We can establish unrestricted coherence for sesquicartesian categories, with a 
proof taken over from the revised version of [1O}, which we will present below. 
(This proof differs from the proof in the printed version of [10], which relied also 
on Lemma 5.1, and is not correct.) It is obtained by enlarging the proof of Lattice 
Coherence. 

The Gentzen formulation of LT,ol. is obtained like that of L save that we have 
in addition the primitive Gentzen terms kA : A I- T and kA : .1. I- A. For Gentzen 
terms we have as additional equations, besides (k) and (k), the following equations: 

A A 1 A 2 
(K.1.) Kol.1.1=K1.1ol., 

(KT) 

which amount to (k.1.) and (kT). 
We can prove Composition Elimination for LT,1. by enlarging the proof for L. 

We have as new cases first those where f is kA or 9 is kA, which are taken care of 
by the equations (k) and (k). The following case remains. If f is kA, then 9 is of a 
form covered by cases already dealt with. Note that we do not need the equations 
(1<.1.) and (KT) for this proof (so that we have also Composition Elimination for 
the free bicartesian category). 

Let the category LV,T,1. be defined like the category Lv save that it involves 
also k and the equations (k) and (k.1.), and let the category L",T.ol. be defined 
like the category L" save that it involves also k and the equations (k) and (kT). 
Composition Elimination is provable for LV,T,ol. and L",T,ol. by abbreviating the 
proof of Composition Elimination for LT,.1, in the same way as we abbreviated the 
proof of Composition Elimination for L in order to obtain Composition Elimination 
for Lv. . 

An arrow term of LT,ol. is in standard form when it is of the form go f for f 
an arrow term LV.T,ol. and g. an arrow term of L",T,ol.' We can then prove the 
following. 

Standard-Form Lemma. Every a1TOW term ofLT,.1 is equal in LT,1. to an arrow 
term in standard form. 

Proof. By categorial and bifunctorial equations, we may assume that we deal with 
a factorized arrow term f none of whose factors is a complex identity (i.e., f is a big 
composition of composition-free arrow terms none of which is equal to an identity 
arrow; see [14, Sections 2.6-7], for precise definitions of these notions) and every 
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factor of f is either an arrow term of LV,T,l., and then we call it a I\-factor, or an 
arrow term of L",T,l., when we call it a V-factor. 

Suppose f : B I- C is a I\-factor and 9 : A I- B is a V-factor. We show by 
induction on the length of fog that in LT ,l. 

( * ) fog = g' 0 l' or fog = l' or fog = g' 

for l' a I\-factor and g' a v-factor. 
We will consider various cases for f. In all such cases, if 9 is W B, then we use 

(w nat). If f is WB, then we use (w nat). If f is kb,E and 9 is g1 1\ g2, then we 

use (ki nat). If f is ft 1\ 12 and 9 is g1 1\ g2, then we use bifunctorial and categorial 
equations and the induction hypothesis. 

If f is ft V 12, then we have the following cases. If 9 is kkl ,B2' then we use 
(k i nat). If 9 is g1 V g2, then we use bifunctorial and categorial equations and the 
induction hypothesis. 

Finally, cases where f is K.B or 9 is K.B are taken care of by the equations (K.) and 
(K.). This proves (*), and it is clear that (*) is sufficient to prove the lemma. -l 

We can also prove Composition Elimination and an analogue· of the Standard­
Form Lemma for Ll.' Next we have the following lemmata for LT,l. and Ll.. 

Lemma 1. If for f, g: A I- B either A or B is isomorphic to T or .L, then f = g. 

Proof. If A is isomorphic to .L or B is isomorphic to T, then the matter is trivial. 
Suppose i: B I- .L is an isomorphism. Then from 

kl,l. 0 (i 0 f, i 0 g) = kl.,l. 0 (i 0 f, i 0 g) 

we obtain i 0 f = i 0 g, which yields f = g. We proceed analogously if A is isomorphic 
to T. -l 

Lemma 2. If for f,g: AI- B we have Of = Gg = 0, then f = g. 

Proof. This proof depends on the Standard-Form Lemma above. We write down 
f in the standard form !2 0 It for It : A \-- C and 9 in the standard form 92 0 91 
for 91 : A I- D. Since ki and K. do not occur in It, for every occurrence z of a 
propositionalletter in C we have an occurrence x of that propositionalletter in A 
such that (x, z) E G ft, and since ki and K. do not occur in 12, for every occurrence 
z of a propositionalletter in C we have an occurrence y of that propositionalletter 
in B such that (z, y) E G h So if C were not letterless, then G f would not be 
empty. We conclude analogously that D, as well as C, is a letterless formula. 

If both C and D are isomorphic to T or .L, then we have an isomorphism i : 
C \-- D, and f = 12 oi-1 oi o ft. By Lemma 1, we have io It = 91 and 12 oi-1 = g2, 
from which f = 9 follows. If i: C I- .L and j: T \-- D are isomorphisms, then by 
Lemma 1 we have 

12 0 ft = 920 j 0 K.l. 0 i 0 ft = 92 0 91, 

and so f = 9. (Note that K.l. = K.T.) 
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We can then prove the following. 

Sesquicartesian Coherence. The functor G from L.1 to ReI is faithful. 

Proof. We have Lemma 2 for the case when Gf = Gg = 0. When Gf = Gg =10, we 
proceed as in the proof of Lattice Coherence, appealing if need there is to Lemma 2, 
until we reach the case when A is Al /I. A2 or a letter, and B is BI V B2 or a letter, 
but A and B are not both letters. In that case, by Composition Elimination, the 
arrow term f is equal in L.1 either to an arrow term of the form f' okt,A2' or to 

an arrow term of the form kBi B 0 l' . Suppose f = f' 0 kAI A. Then for every 
1, 2 1, 2 

(x,y) E Gf we have that x is in Al. (We reason analogously when J = l' ok~1,A2.) 
By Composition Elimination too, 9 is equal in L.1 either to an arrow term of 

the form g' 0 kAi A' or to an arrow term of the form kBi Bog'. In the first case 
1, 2 1, 2 

we must have 9 = g' 0 k~l ,A2' because Gg = G(J' 0 k~1 ,A2) =10, and then we apply 
the induction hypothesis to derive J' = g' from G1' = Gg'. Hence f = gin L.1. 

Suppose 9 = kBI Bog'. (We reason analogously when 9 = kB2 Bog'.) Let 
112 It2 

1" : Al I- BI V B2' be the substitution instance of 1': Al I- BI V B2 obtained by re-
placing every occurrence of propositionalletter in B2 by .1... There is an isomorphism 
i: B 2" 1-.1.., and 1" exists because in Gf, which is equal to G(k1 Bog'), there is 

1, 2 

no pair (x,y) with y inB2 • So we have an arrow fill: All- B I , which we define as 
[lBll kB1J ,,(lBl V i) of". It is easy to verify that G(k11,B2 01''') = G 1', and that 
G(f'" 0 kl ) = Gg'. By the induction hypothesis we obtain kl 0 fill = f' A I>A2 'BI,B2 
and fill 0 kAl A = g', from which we derive f = g. We reason analogously when 

1, 2 

f = kBi B 0 f'. ~ 
I> 2 

From Sesquicartesian Coherence we infer coherence for LT, which is isomorphic 
to Li. 

7. Restricted coherence for dicartesian categories 

For dicartesian categories we can prove easily a simple restricted coherence result, 
which was sufficient for the needs of [14J. A more general, but still restricted, 
coherence result with respect to Rei, falling short of full coherence, may be found 
in the revised version of [10, Section 7J. We present first the simple restricted 
coherence result, and will deal with the more general restricted coherence result 
later on. 

We define inductively formulae of £T,.1 in disjunctive normal/orm (dnf): every 
V-free formula is in dn/, and if A and B are both in dnf, then A V B is in dn/. 
We define dually formulae of £ T ,.1 in conjunctive normal form (cnf): every /I.-free 
formula is in cn/, and if A and B are both in cn/, then A /I. B is in cnf. 

v 
Restricted Dicartesian Coherence. Let f,g: A I- B be arrow terms of LT,.1 
such that A is in dnf and B in cnf. IfGf = Gg, then / = gin LT,.1. 

Proof. If GJ = Gg = 0, then we apply Lemma 2. If Gf = Gg =10, then we proceed 
as in the proof of Lattice Coherence, by induction on the sum of the lengths of A 
and B, appealing if need there is to Lemma 2, until we reach the case when A is 
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Al J\ A2 or a letter, and B is BI V B2 or a letter, but A and B are not both letters. 
In that case there is no occurrence of V in A and no occurrence of J\ in B. We 
then rely on the composition-free form of I and 9 in LT,.L and on the equation 
(Kk). -1 

To improve upon this result we need the-following lemma for LT,.L, and the 
definitions that follow. This lemma is analogous up to a point to the Invertibility 
Lemma for V. 

Lemma 3. Let I : A I- BI V B2 be a Gentzen term such that G I f.: 0 and V does 
not occur in A. Illor every (x,y) E GI we have that y is in B I , then there is a 
Gentzen term g: A I- BI such that GI = Gk12g. 

Prool. We proceed by induction on the length of A. Suppose I is a composition­
free Gentzen term. If A is a propositionalletter, then by the assumption on G I we 
have that I is of the form 1<12 f', and we can take that 9 is f'. 

If A is not a propositionalletter and I is not of the form k12 f' (by the assump­
tion on G/, the Gentzen term I cannot be of the form klJ/), then, since V does 

not occur in A, we have that I is of the form Kill f' for f' : A' I- BI V B2. Note 
that G f' f.: 0 and V does not occur in A'. Since for every (x, y) in G f' we have that 
y is in BI , we may apply the induction hypothesis to f' and obtain g' : A' I- BI 
such that Gf' = Gk12g'. By relying on the equation (Kk), we can take that 9 is 

• - I 

KA"g. -1 

A formula e of LT,.L is called a contradiction when there is in LT,.L an arrow of 
the type e I- 1.. For every formula that is not a contradiction there is a substitution 
instance isomorphic to T. Suppose e is not a contradiction, and let eT be obtained 
from e by substituting T for every propositionalletter. If eT were not isomorphic 
to T, then since every letterless formula of LT,.L is isomorphic in LT,.L either to 
T or to ..i, we would have an isomorphism i : eT I- 1.. Since there is obviously an 
arrow u : e I- eT formed by using ;;'p, we would have i 0 u : e I- ..i, and e would be 
a contradiction. . 

A formula e of LT,.L is called a tautology when there is in LT,.L an arrow of 
the type T I- e. For every formula that is not a tautology there is a substitution 
instance isomorphic to 1.. (This is shown analogously to what we had in the 
preceding paragraph.) 

A formula of LT,.L is called ..i-normal when for every subformula D J\ e or e J\ D 
of it with e a contradiction, there is no occurrence of V in D. A formula of LT,.L is 
called T -normal when for every subformula Dv e or Cv D of it with e a tautology, 
there is no occurrence of J\ in D. 

We can now formulate our second partial coherence result for dicartesian cate­
gories. 

Restricted Dicartesian Coherence H. If f, 9 : A I- B are terms of LT,.L such 
that G f = Gg and either A is 1.-normal or B is T -normal, then f = 9 in LT,.L. 
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Proof. Suppose A is 1.-normal. Lemma 2 covers the case when Gf = Gg = 0. So 
we assume G f = Gg =f. 0, and proceed as in the proof of Sesquicartesian Coherence 
by induction on the sum of the lengths of A and B. The basis of this induction and 
the cases when A is of the form Al V A2 or B is of the form BII\ B2 are settled as 
in the proof of Sesquicartesian Coherence. 

Suppose A is Al 1\ A2 or a propositional letter and B is BI V B2 or a proposi­
tionalletter, but A and B are not both propositionalletters. (The cases when A 
or B is a constant object are excluded by the assumption that G f = Gg =f. 0.) We 
proceed then as in the proof of Sesquicartesian Coherence until we reach the case 
when f = f' ok l and 9 = kI og'. AbA2 B1,B2 

Suppose A2 is not a contradiction. Then there is an instance Al of A2 and an 
isomorphism i : T I- AI. (To obtain Al we substitute T for every letter in A2.) 
Let g" : Al 1\ Al I- BI be the substitution instance of g' : Al 1\ A2 I- BI obtained 
by replacing every occurrence of propositionalletter in A2 by T. Such a term exists 
because in Gg, which is equal to G(J' okt,A2)' there is no pair (x,y) with x in A2 • 

So we have an arrow g'" = g"0(IA1I\i)0(IApltA1}: Al I- B I. It is easy to 
verify that G(k11,B2 0 g"') = Gf' and that G(g'" 0 kt,A2) = Gg'. By the induction 
hypothesis we obtain kBI Bog'" = f' and g'" 0 kAI A = g', from which we derive 

}, 2 1, 2 

f =g. 
Suppose A2 is a contradiction. Then by the assumption that A is 1.-normal we 

have that V does not occur in Al. We may apply Lemma 3 to f' : Al I- BI V B2 
to obtain f'" : Al I- BI such that G f' = G(k11,B2 0 JI"). It is easy to verify that 

then Gg' = GCP" 0 kt ,A)' and we may proceed as in the proof of Sesquicartesian 
Coherence. 

We proceed analogously when B is T -normal, relying on a lemma dual to 
Lemma 3. -l 

Consider the following definitions: 

Then for r being 

and gn being 

Ai = A 1\ 1., Al+1 = (Al V T) 1\ 1., 

JY = f 1\ Iol, f'l+l = (J'l. V IT) 1\ Iol, 

A~=A VT, 

f~=fVIT, 

A~+!= (AT 1\ 1.) V T, 

Pr+! = (n 1\ lol) V IT· 

(k- l 1\ 1 )n k
A 

1 . An+l I- An+l 
A,T ol TO (AAol)T,ol·ol T 

k- l (kAI Vl)n. An+1 I- An+1 
(AVT)l,T o A,ol Tol·ol T 

we have Gfn = Ggn, but we suppose that fn = gn does not hold in LT,ol. The 
equation f O = gO is 

-1 Al -1 Al 
«k A,T 1\ lol) V IT) 0 k(AAol)VT,ol = k(AVT)Aol, TO (k A,ol V IT) 1\ Iol : 

«A 1\ 1.) V T) 1\ 1.1- «A V T) 1\ 1.) V T. 
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Note that Al.+! is not J...-normal, and A~+! is not T-normal. 
We don't know whether it is sufficient'to add to LT,l.. the equations r = gn for 

every n ~ 0 in order to obtain full coherence for the resulting category. 
As a corollary of Restricted Dicartesian Coherence Il, we obtain that if j, 9 : A I- B 

are terms of LT,l.. such that G j = Gg, while A and B are isomorphic either to for­
mulae of I:- (Le. to formulae in which T and 1.. do not occur) or to letterless formulae, 
then j = 9 in LT,l... This corollary is analogous to the restricted coherence result 
for symmetric monoidal closed categories of Kelly and Mac Lane in [19) (see [15, 
Section 3.1]). 

8. Maximality 
A syntactically built category such as L and LT,l.. is called maximal when adding 

any new axiomatic equation between arrow terms of this category yields a category 
that is a preorder. The new axiomatic equation is supposed to be closed under 
substitution for propositionalletters, as the equations of L and LT,l.. were. (This 
notion of maximality for syntactical categories is defined more precisely in [14, 
Section 9.3].) Maximality is an interesting property when the initial category, like 
L and LT,l.. here, is not itself a preorder. We will deal in subsequent sections with 
maximality for Land LT,l... 

The maximality property above is analogous to the property of usual formu­
lations of the classical propositional calculus called Post completeness. That this 
calculus is Post complete means that if we add to it any new axiom-schema in 
the language of the calculus, then we can prove every formula. An analogue of 
B6hm's Theorem in the typed lambda calculus implies, similarly, that the typed 
lambda calculus cannot be extended without falling into triviality, i.e. without ev­
ery equation (between terms of the same type) becoming derivable (see [26), [8] 
and references therein; see [1, Section 10.4], for B6hm's Theorem in the untyped 
lambda calculus). 

Let us now consider several examples of common algebraic structures with anal­
ogous maximality properties. First, we have that semilattices are maximal in the 
following sense. 

Let a and b be terms made exclusively of variables and of a binary operation ., 
which we interpret as meet or join. That the equation a = b holds in a semilattice 
S means that every instance of a = b obtained by substituting names of elements 
of S for variables holds in S. Suppose a = b does not hold in a free semilattice 
SF (so it is not the case that a = b holds in every semilattice). Hence there must 
be an instance of a = b obtained by substituting names of elements of SF for 
variables such that this instance does not hold in SF. It is easy to conclude that 
in a = b there must be at least two variables, and that SF must have at least two 
free generators. Then every semilattice in which a = b holds is trivial-namely, it 
has a single element. 

Here is a short proof of that. If a = b does not hold in SF, then there must 
be a variable x in one of a and b that is not in the other. Then from a = b, by 
substituting y for every variable in a and b different from x, and by applying the 
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semilattice equations, we infer either x = y or x . y = y. If we have x = y, we are 
done, and, if we have x . y = y, then we have also y . x = x, and hence x = y. 

SemiIattices with unit, distributive lattices, distributive lattices with top and 
bottom, and Boolean algebras are maximal in the same sense. The equations a = b 
in question are equations between terms made exclusively of variables and the 
operations of the kind of algebra we envisage: semilattices with unit, distributive 
lattices, etc. That such an equation holds in a particular structure means, as above, 
that every substitution instance of it holds. However, the number of variables in 
a = b and the number of generators of the free structure mentioned need not always 
be at least two. 

If we deal with semilattices with unit 1, then a = b must have at least one 
variable, and the free semilattice with unit must have at least one free generator. 
We substitute 1 for every variable in a and b,different from x in order to obtain 
x = 1, and hence triviality. So semilattices with unit are maximal in the same 
sense. 

The same sort of maximality can be proven for distributive lattices, whose oper­
ations are 1\ and V, which we call conjunction and disjunction, respectively. Then 
every term made of 1\, V and variables is equal to a term in disjunctive normal 
form (i.e. a multiple disjunction of multiple conjunctions of variables; see the pre­
ceding section for a precise definition), and to a term in conjunctive normal form 
(i.e. a multiple conjunction of multiple disjunctions of variables; see -the preceding 
section). These normal forms are not unique. If a = b, in which we must have at 
least two variables, does not hold in a free distributive lattice D F with at least two 
free generators, then either a ~ b or b ~ a does not hold in DF. Suppose a ~ b 
does not hold in D F. Let a' be a disjunctive normal form of a, and let b' be a 
conjunctive normal form of b. So a' ~ b' does not hold iii- DF. From that we infer 
that for a disjunct a" of a' and for a conjunct b" of b' we do not have a" ~ b" in 
DF. This means that there is no variable in common in a" and b"; otherwise, the 
conjunction of variables a" would be lesser than or equal in D F to the disjunction 
of variables b". If in a distributive lattice a = b holds, then a" ~ b" holds too, and 
hence, by substitution, we obtain x ~ y. So x = y. 

For distributive lattices with top T and bottom 1., we proceed analogously via 
disjunctive and conjunctive normal form. Here a = b may be even without variables, 
and the free structure may have even an empty set of free generators. The additional 
cases to consider are when in a" ~ b" we have that a" is T and b" is 1.. In any 
case, we obtain T ~ 1., and hence our structure is trivial. 

The same sort of maximality can be proven for Boolean algebras, i.e. comple­
mented distributive lattices. Boolean algebras must have top and bottom. In a 
disjunctive normal form now the'disjuncts are conjunctions of variables x or terms 
X, where - is complementation, or the disjunctive normal form is just T or 1.j 
analogously for conjunctive normal forms. Then we proceed as for distributive lat­
tices with an equation a = b that may be even without variables, until we reach 
that a" ~ b", which does not hold in a free Boolean algebra B F, whose set of free 
generators may be even empty, holds in our Boolean algebra. If x is a conjunct of 
a", then in b" we cannot have a disjunct Xj but we may have a disjunct x. The same 
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holds for the conjuncts x of a". It is exclud,ed that both x and x are conjuncts 
of a", or disjuncts of 11'; otherwise, a" ~ b" would hold in BF. Then for every 
conjunct x in a" and every disjunct fi in b" we substitute T for x and y, and for 
every other variable we substitute .L. In any case, we obtain T ~ 1.., and hence our 
Boolean algebra is trivial. This is essentially the proof of Post completeness for the 
classical propositional calculus, due to Bernays and Hilbert (see [28, Section 2.4], 
and [16, Section 1.13]), from which we can infer the ordinary completeness of this 
calculus with respect to valuations in the two-element Boolean algebra-namely, 
with respect to truth tables--and also completeness with respect to any nontrivial 
model. 

As examples of common algebraic structures that are not maximal in the sense 
above, we have semigroups, commutative semigroups, lattices, and many others. 
What is maximal for semilattices and is not maximal for lattices is the equational 
theory of the structures in question. The equational theory of semilattices cannot 
be extended without falling into triviality, while the equational theory of lattices 
can be extended with the distributive law, for example. 

The notions of maximality envisaged in this section were extreme (or should 
we say "maximal"), in the sense that we envisaged collapsing only into preorder. 
For semilattices, distributive lattices, etc., this is also preorder for a one-object 
category. We may, however, envisage relativizing our notion of maximality by 
replacing preorder with a weaker property, such that structures possessing it are 
trivial, but not so trivial (cf. [7, Section 4.11]). We will encounter maximality in 
such a relative sense in the last section. 

As an example of relative maximality in a common algebraic structure we can 
take symmetric groups. Consider the standard axioms for the symmetric group 
Sn, where n ~ 2, with the generators Si, for i E {1, ... ,n-1}, corresponding to 
transpositions of immediate neighbours (see [6, Section 6.2]). If to Sn for n ~ 5 
we add an equation a = 1 where a is built exclusively of the generators Si of Sn 
with composition, and a = 1 does not hold in Sn, then we can derive Si = Sj. This 
does not mean that the resulting structure will be a one-element structure, i.e. the 
trivial one-element group. It will be such if a is an odd permutation, and if a is an 
even permutation, then we will obtain a two-element structure, which is S2. This 
can be inferred from facts about the normal subgroups of Sn. Simple groups are 
maximal in the nonrelative sense, envisaged above for semilattices. 

9. Maximality of lattice categories 

We will show in this section that L is maximal in the sense specified at the 
beginning of the preceding section; namely, in the interesting way. (We take over 
this result from (11, Section 5], and [14, Section 9.5].) 

Suppose A and B are formulae of C in which only p occurs as a letter. If for 
some arrow terms ft, h: A I- B of L we have Gft I Gh, then for some x in A 
and some y in B we have (x,y) E Gft and (x,y) f/. Gh, or vice versa. Suppose 
(x,y) E Gft and (x,y) f/. Gh· 
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For every subformula C of A and every formula Diet AZ be the formula obtained 
from A by replacing the particular occurrence of the formula C in A by D. It can be 
shown that for every subformula Al V A2 of A we have an arrow term h: A 1~ VA2 f- A 

. . , 
ofL, built by using ~1,A2' such that there is an x' in A1;vA

2 for which (x', x) E Gh. 
Hence, for such an h, we have (x', y) E GUI 0 h) and (x', y) f/. G(h 0 h). 

We compose h repeatedly with such arrow terms until we obtain the arrow terms . 
If : p A ... A P f- B of L such that parentheses are somehow associated in p A ... A P 
and for some z in (PA ... Ap) we have (z,y) E GI{ and (z,y) f/. G/~. The formula 
p A ... A P may also be only p. We may further compose fi with other arrow terms 
of L in order to obtain the arrow terms II' of type p A A' f- B or p f- B such that 
A' is of the form p A ... A P with parentheses somehow associated. Let us use 0 to 
denote the first occurrence of a propositionalletter in a formula, counting from the 
left. So we have (O,y) E Gf{' but (O,y) f/. G/~/. 

By working dually on B we obtain the arrow terms It' of L of type pAA' f- pV B' , 
for A' of the form p A ... A P and B' of the form p V ... V p, or of type p A A' f- p, 
or of type p f- p V B' , such that (0,0) E G It and (0,0) f/. G I~". (We cannot obtain 
that It and I~" are of type p f- p, since, otherwise, by Composition Elimination 
for L, i~" would not exist.) 

There is an arrow term hA: p f- p A •.. A P of L defined by using w such that for 
every'x E G(PA ... Ap) we have (0, x) E GhA • We define analogously with the help 
of W an arrow term h v : p V ... V P f- p of L such that for every x in p V ... V P we 
have (x,O) E Gh v. The arrow terms hA and h v may be lp: p f- p. 

If if" is of type p A A' f- p V B' , let /1 : pAp f- p V P be defined by 

/1 =d.f (lp V h V) 0 If" 0 (lp V hA). 

By Composition Elimination for L, we have that G /1 must be a singleton. Let us 
use 1 to denote the second occurrence of a propositionalletter in a formula, counting 
from the left. If (1,0) or (1,1) belongs to GiJ, then for it: pAp f- p defined as 
wpoll we have (0,0) E Gli and (0,0) f/. G/2' If (0,1) or (1,1) belongs to GIJ, 
then for it: p f- P V P defined as i1 0 wp we have (0,0) E G ii and (0,0) f/. G 12 . 

If It' is of type p A A' f- p, then for it : pAp f- p defined as If" 0 (lp V hA) we 
have (0,0) E Gii and (0,0) f/. Gli· 

If it' is of type p f- pV B' , then for it : p f- pV P defined as (lp V h V) 0 it" we have 
(0,0) E Gli and (0,0) f/. Gi;' In all that we have by Composition Elimination for 
L that G it must be a singleton. 

In cases where It is of type pAp f- p, by Composition Elimination for L, by 
the conditions on G li and G 12' and by the functoriality of G, we obtain in L the 
equation It = k~,p. (This follows from Lattice Coherence too.) So in L extended 
with It = h we can derive the equation 

, "1 '2 
(kk) kp,p = kp,p' 

In cases where it is of type p f- p V p, we conclude analogously that we have in 
L the equation it = k~,p, and so in L extended with It = h we can derive 
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If either of (1.1.) and (H) holds in a lattice category A, then A is a preorder. 
It remains to remark that if for some arrow terms 91 and 92 of L of the same 

type we have that 91 = 92 does not hold for L, then by Lattice Coherence we have 
G91 '" Gg2 • If we take the substitution instances 9~ of 91 and 92 of 92 obtained 
by replacing every letter by a single letter p, then we obtain again Gg~ '" G9i. If 
91 = 92 holds in a lattice category A, then g~ = 92 holds too, and A is a preorder, as 
we have shown above. This concludes the proof of maximality for L. (In the original 
presentation of this proof in [11, Section 5], there are some slight inaccuracies in 
the definition of It.) 

10. Relative maximality of dicartesian categories 

The category LT,.L is not maximal in the sense in which L is. This is shown by 
the following counterexample. 

Let Set. be the category whose objects are sets with a distinguished element *, 
and whose arrows are *-preserving functions! between these setsj namely, !(*) = *. 
This category is isomorphic to the category of sets with partial functions. The 
following definitions serve to show that Set. is a category in which we can interpret 
the objects and arrow terms of LT,.L: 

I={*}, a'={(x,*)!xEa-I}, b"={(*,y)!yEb-I}, 

a ® b = ((a - I) A (b - I)) U I, 
al8lb = (a®b)Ua'Ub", 
a EI3 b = a' U b" U 1. 

Note that a 181 b is isomorphic in Set· to the cartesian product a x bj the element 
* of a 181 b corresponds to the element (*, *) ofax b. 

The functions k~1,a2 : a1 181 a2 -+ ai, for i E {I, 2}, are defined by 

for Ii: c -+ ai, the function (h, h): c -+ a1 181 a2 is defined by 

(h,h)(z) = {(h(Z),h(Z)) ~f h(z) '" * or h(z) '" * 
* If h(z) = h(z) = *j 

and the function K,a : a -+ I is defined by K,a(x) = *. Having in mind the isomor­
phism between a 181 b and a x b mentioned above, the functions k!1,a2 : al 181 a2 -+ ai 
correspond to the projection functions, while (_, _) corresponds to the usual pairing 
operation on functions. 

The functions k~l ,a2 : ai -+ ~1 EE a2 are defined by 

k~1,a2(x) = (x,*), . k~1,a2(X) = (*,x), for x =I- *, 
ki (*) = *. Qt,a2 ' 
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for 9i; ai ~ c, the function [g1, 92]; a1 83 a2 ~ c is defined by 

[g1, 92](X1, X2) = 9i(xd, for Xi f: *, 

[91,92](*) = *j 

finally, the function ka ; I ~ a is defined by k a( *) = *. 

31 

If we take that 1\ is 181 and V is H;I then it can be checked in a straightforward 
manner that Set. and Set.. without I are lattice categories, and if in Set.. we take 
further that both T and 1. are I, then Set. is a dicartesian category. 

Consider now the category Se~, which is obtained by adding to Set.. the empty 
set 0 as a new object, and the empty functions 0a ; 0 ~ a as new arrows. The 
identity arrow 10 is 00' For Se~, we enlarge the definitions above by 

0181 a = a 1810 = 0, 
o 83 a = a 83 0 = a, 

k!l,a2 = 0ap for a1 = 0 or a2 = 0, 
(0a1 ,0a2 ) = 0al l8l a2' 

"'0 = 01, 
k!l,a2 = 0a1 EB a2' for ai = 0, 

[h,0 c] = h, [0c ,12] = 12, 
and define now the function ka ; 0 ~ a by ka = 0a. Then it can be checked that 
Set! where 1\ is 181 and V is III as before, while T is I and 1. is 0, is a dicartesian 
category too. 

In LT,.L the equation k;,.L = kp 0 k;,.L does not hold; because Gk;,.L f: 0 and 

G(kp 0 k;~.L) = 0, but in Sel'!. this equation holds, because both sides are equal to 

00' Since Set! is not a preorder, we can conclude that LT,.L is not maximal. 
Although this maximality fails, the category LT,.L may be shown maximal in a 

relative sense. This relative maximality result, which we are going to demonstrate 
now, says that every dicartesian category that satisfies an equation f = 9 between 
arrow terms of LT,.L such that Gf f: G9 (which implies that f = 9 is not in LT,.L) 
satisfies also some particular equations. These equations do not give preorder in 
"general, but a kind of "contextual" preorder. Moreover, when LT,.L is extended 
with some of these equations we obtain a maximal category. " 

If for some arrow terms h, 12 : A f- B of LT ,.L we have G h f: G 12, then for 
some X in A and some y in B we have (x,y) E Gh and (x,y) rf. Gh, or vice versa. 
Suppose (x,y) E Gh and (x,y) rf. G12 .. Suppose x is an occurrence ofp, so that y 
must be an occurrence of p too. 

Let A' be the formula obtained from the formula A by replacing x by p A 1., 
and every other occurrence of letter or T by 1.. Dually, let B' be the formula 
obtained from B by replacing y by p V T, and every other occurrence of letter or 
1. by T. Let us use 0, as in the preceding section, to denote the first occurrence of 
a propositional letter in a formula, counting from the left. Then it can be shown 
that there is an arrow term hA: A' f- A of LT,.L such that GhA = {(O,x)}, and 
an arrow term hB; B f- B' of LT,.L such that GhB = {(y,O)}. We build hA with 
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k~,J.. : p 1\ 1.. l- P and instances of r.c : 1.. l- C, with the help of the operations 1\ and 
V on arrow terms. Analogously, hB is built with k~,T : p l- p V T and instances of 
KC : Cl- T. It can also be shown that there are arrow terms jA: p 1\ 1.. l- AI and 
jB: El l- pV T of LT,J.. such that GjA = GjB = {(O,O)}. These arrow terms stand 
for isomorphisms of LT,J... 

Then it is clear that for fi being 

jB 0 hB 0 Ii 0 hA 0 jA: p 1\ 1.. l- p V T, 

with i E {1,2}, we have Gf{ = {(O,O)}, while G/~ = 0. Hence, by Composition 
Elimination for LT,J.. and by the functoriality of G, we obtain in LT,J.. the equations 

I 1 - k·1 0 k-1 
1 - p,T p,J..' 

i l • k-2 k·2 -
2 = K-pvT 0 p,J.. = p, T 0 K-pI\J... 

(This follows from Restricted Dicartesian Coherence too.) If we write OJ..,T for kJ.., 

which is equal to r.T in LT,J.., then in LT,J.. we have 
1·2 -2 12 = kp,T 0 OJ..,T 0 kp,J... 

So in LT,J.. extended with It = h we can derive 

The equation 
-. -1 ·-2 

(kK-) kp,J.. = K-p 0 kp,J..' 

which holds in Set~, and which we have used above for showing the nonmaximality 
of LT,J.., clearly yields (kk), which hence holds in See, and which hence we could 
have also used for showing this nonmaximality. 

If we refine the procedure above by building AI and BI out of A and B more 
carefully, then in some cases we could derive (kr.) or its dual 

·_·1 ·2, 
(kK-) kp,T = kp,T 0 K-p 

instead of (kk )., We do not replace x by p 1\ 1.. in building AI, and we can proceed 
more selectively with other occurrences of letters and T in A, in order to obtain an 
AI isomorphic to p if possible. We can proceed analogously when we build BI out 
of B to obtain a El isomorphic to p if possible. 

Note that we have the following: 
• '2 • -2 K-pl\J.. 0 kp,J.. = (K-p, 1.1.) 0 kp,J.. 

'1 '2 .' • = (kp,J..' kp,J..) , WIth (kK-), 
= 1 p"J... 

In the other direction, it is clear that the equation derived yields (kr.). So with 
(kr.) we have that C 1\ 1.. and 1.. are isomorphic, and, analogously, with (kk) we 
have that C V T and T are isomorphic. It can be shown that the natural logical 
category defined as LT,J.. save that we assume in addition both (kr.) and (kk) is 
maximal. (This is achieved by eliminating letterless subformulae from C and D in 
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gl, g2 : C I- D such that Cg1 ::j Cg2, and falling upon the argument used for the 
maximality of L in the preceding section.) 

IT j: a I- b is any arrow of a dicartesian category A and (kk) holds in A, then 
we have in A 

~I ~I ~I ~I 

kb,T ° j ° ka,.1.. = kb,T ° kb,.1.. ° (J A 1.1..) 
~2· ~2 

= kb,ToO.1..,Toka,.1..' 
and hence for j, g; a I- b we have in A 

~ ~ ~I ~I ~I ~I-

(kkjg) kb,Tojoka,.1.. = kb,Togoka,.1..' 

So, although LT,.1.. is not maximal, it is maximal in the relative sense that every 
dicartesian category that satisfies an equation j = 9 between arrow terms of LT,.1.. 

such that Cj ::j Cg satisfies also (ick) and (ickjg). Some of these dicartesian 
categories may satisfy more than just (ick) and (ickjg). They may satisfy (kit) or 
(kk), which yields 

~ 1 ~ 1 
j ° ka,.1.. = go ka,.1.. or 

and some may be preorders. 
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1. Introduction 

The problem of reasoning with uncertain knowledge is an ancient problem dat­
ing, at least, from Leibnitz and Boole. However, in the last decades there is a 
growing interest in the field connected with applications to computer science and 
artificial intelligence. Researchers from those areas have studied uncertain reason­
ing using different tools. Some of the proposed formalisms for representing, and 
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reasoning with, uncertain knowledge are based on probabilistic logics. That ap­
proach extends the classical (propositional or first order) calculus with expressions 
that speak about probability, while formulas remain true or false. Thus, one is able 
to make statements of the form (in our notation) P~sa with the intended meaning 
"the probability of a is at least s" . 

The probability operators behave like modal operators and the corresponding se­
mantics consists in special types of Kripke models (possible worlds) with addition 
of probability measures defined over the worlds. One of the main proof-theoretical 
problems with that approach is providing an axiom system which would be strongly 
complete ("every consistent set of formulas has a model", in contrast to the weak 
completeness "every consistent formula has a model"). This results from the in­
herent non-compactness of such systems. Namely, in such languages it is possible 
to define an inconsistent infinite set of formulas, every finite subset of which is 
consistent (e.g., {.,P=oa} U {P<l/na : nis a positive integer}). As it was pointed 
in [85, 125J, there is an unpleasant consequence of finitary axiomatization in that 
case: there exist unsatisfiable sets of formulas that are consistent with respect to 
the assumed finite axiomatic system (since all finite subsets are consistent and de­
ductions are finite sequences). Another important theoretical problem is related to 
the decidability issue. 

In this paper we present a number of probabiIistic logic. The main differences 
between the logics are: 

• some of the logics are infinitaryl, while the others are finitary, 
• the corresponding languages contain different kinds of probabilistic opera­

tors, both for unconditional and conditional probability, 
• some of the logics are propositional, while the others are based on the 

first-order logic, 
• for most of the logics we start from classical logic, but in some cases the 

basic logic can be intuitionistic or temporal, 
• in some of the logics iterations of probabilistic operators are not allowed, 
• for some of the logics restrictions of the following kinds are used: only 

probability measures with fixed finite range are allowed in models, only 
one probability measure on sets of possible worlds is allowed in a model, 
the measures are allowed to be finitely additive. 

For all these logics we give the corresponding axiomatizations, prove completeness, 
and discuss their decidability. More precisely, we consider the following logics (the 
notation was taken from the corresponding papers): 

• LP PI (L for logic, the first P for propositional, and the second P for proba­
bility), probability logic which starts from classical propositionallogic, with 
iterations of the probability operators and real-valued probability functions 
[83, 85J, 

IIn this paper the terms finitary and infinitary concern meta language only. Object languages 
are countable, formulas are finite (except where it is explicitly said), while only proofs are allowed 
to be infinite. 
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• LPPir(n) and LPP1s that are similar to LPPI, but with probability func­
tions restricted to have ranges {O, l/n, ... , (n-1)/n, I} and S, respectively 
[81, 83, 85], 

• Lpp;,wl,Fin, probability logic similar to LPPir(n), but with probability 
functions restricted to have arbitrary finite ranges [26], 

• LP PILTL, probability logic similar to LP PI, but the basic logic is discrete 
linear-time logic LT L [82, 83, 91], 

• LP P2 , LP pir(n), LP P2
A

,wl,Fin and LP pf, probability logics similar to the 
above logics, but without iterations of the probability operators [83, 85, 
106], 

• LPP2,p,Q,O, probability logic which extends LPP2 by having a new kind 
of probabilistic operators of the form Q F, with the intended meaning "the 
probability belongs to the set F" [84], 

• LP P2,~ and LP p:,~n), probability logics similar to LP P2 and LP pir(n), 
but allowing reasoning about qualitative probabilities [93], 

• LPP.}, probability logics similar to LPP2, but the basic logic is proposi­
tional intuitionistic logic [74, 75, 76], 

• LFOP1, LFOpir(n), LFOP;,wl,Fin, LFOP1s and LFOP2 , first-order coun­
terparts of the above logics [85, 110], 

• LPC p2
S ,R!., propositional Kolmogorov's style-conditional probability logiC, 

without iterations of the probability operators, with probability functions 
restricted to have the range S and probability operators that can express 
approximate probabilities [88, 92, 112, 113, 114], and 

• LPcpi}hr, propositional conditional probability logic, which corresponds 
to de Finetti's view on coherent conditional probabilities [50, 90]. 

The rest of the paper is organized in the following way. In section 2 we give a 
short overview of studies relating logic and probability until the mid 1980's, and 
the work of H.J. Keisler and N. Nilsson [41, 42, 78, 116, 122]. Syntax and se­
mantics, an infinitary axiomatization, the corresponding extended completeness, 
decidability and complexity of LP P2 are presented in Section 3.1. As a seman­
tics we introduce a class of models that combine properties of Kripke models and 
probabilities defined on sets of possible worlds. We consider the class of so called 
measurable models (which means that all sets of possible worlds definable by clas­
sical formulas are measurable) and some of its subclasses: in the first case all 
subsets of worlds are measurable, then probabilities are required to be a-additive, 
while models in the last subclass satisfy that only empty set has the zero prob­
ability. The proposed axiomatization is infinitary, i.e., there is an inference rule 
with countably many premisses and one conclusion. That rule corresponds to the 
following property of real numbers: if the probability is arbitrary close to s, it is 
at least s. Thus, proofs with countably many formulas are allowed. The proof of 
extended completeness follows Henkin procedure: starting from a consistent set we 
construct its maximal consistent extension and the corresponding canonical model 
which satisfies the considered set of formulas. Decidability of LP P2 is proved by 
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reducing the satisfiability problem to linear programming problem. Since the re­
lated linear systems can be of exponential sizes, in the same section we describe 
some heuristical approaches (genetic algorithms and variable neighborhood search) 
to the probabilistic satisfiability problem [51,86,87,89]. Some variants of LPP2 
(LP Jf"( n) , LP p;,Wl ,Fin and LP pf obtained by putting some restrictions on ranges 
of probability functions) and the logic LPP1 are considered in the sections 4 and 
5, respectively. In Section 6 we consider some extensions of the basic probability 
language. The first extension, LP P2,P,Q,O, contains probability operators of the 
form Q F with the intended meaning "the probability belongs to the set F". It turns 
out that in a general case neither P~-operators are definable from Q p-operators, 
nor are Q F-operators operators definable from P~-operators. Then, we -discuss 
two logics that allow expressing qualitative probabilities: LPP2,~ and LPp:,~n). 
It is proved elsewhere that the set of probability first-order valid formulas is not 
recursively enumerable and that no recursive complete axiomatization is possible. 
In Section 7 we extend our approach for the propositional case and give a complete 
infinitary first order axiomatization. That section also contains a discussion on the 
(dis)similarities between probability and modal logics. Intuitionistic and temporal 
probability logics are presented in Section 8. Two logics with conditional proba­
bilities (LPCP2S,~ and LPCpfhr), and their applications are described in Section 
9. One of the infinitary inference rules for LPCP:'~ enables us to syntactically 
define the range of probability functions. In the case of LPCP:'~, that range is 
the unit interval of a recursive non-archimedean field which makes it possible to 
express statements about approximate probabilities: CP~8(a,{3) which means "the 
conditional probability of a given {3 is approximately s". Furthermore, formulas of 
the form C.P~l(a,{3) can be used to model defaults, i.e., expressions of the form 
"if {3, then generally a". It relates LPCP:'~ with the well known system P which 
forms a core of default reasoning. It is proved that if we restrict attention only to 
formulas of the form CP~l(a,{3), the resulting system coincides with P when we 
work only with finite sets of assumptions. If we allow inferences from infinite sets of 
such "defaults", our system is somewhat stronger. The main advantage, however, 
is ability to use LPCP:'~ to combine uncertain knowledge and defaults. Finally, 
Section 10 discusses some of the more recent related papers. 

2. History 

Gottfried Wilhelm Leibnitz (1646-1716) investigated universal basis for all sci­
ences and tried to establish logic as a generalized mathematical calculus. He con­
sidered probabilistic logic as a tool for the uncertainty estimation, and defined 
probability as a measure of knowledge. In some of his essays [67, 68, 69] Leibnitz 
suggested that tools developed for analyzing games of chance should be applied in 
developing a new kind of logic treating degrees of probability which, in turn, could 
be used to make rational decisions on conflicting claims. He distinguished two 
calculi. The first one, forward calculus, was concerned with estimating the proba­
bility of an event if the probabilities of its conditions are known. In the second one, 
called reverse calculus, estimations of probabilities of causes, when the probability 
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of their consequence is known, were considered. Leibnitz's logical works were for 
the most part published long after his death (by L. Couturat in the early 1900s). 
However, Leibnitz had some successors, the most important of whom, when the 
probabilistic logic is in question, were the brothers Jacobus (1654-1705) and Jo­
hann (1667-1748) Bernoulli, Thomas Bayes (1702-1761)' Johann Heinrich Lambert 
(1728-1777), Pierre Simon de Laplace (1749-1827), Bernard Bolzano (1781-1848), 
Augustus De Morgan (1806-1871), George Boole (1815-1864),. John Venn (1834-
1923), Hugh MacColl (1837-1909), Charles S. Peirce (1839-1887), Platon Sereye­
vich Poretskiy (1846-1907), etc. We shall briefly mention some of their results. 

Jacobus Bernoulli in his unfinished work [7, Part IV, Chapter Ill], was the first 
who made advance along the Leibnitz's ideas. Using Huygen's notion of expec­
tation, Le., the value of a gamble in games of chance, he offered a procedure for 
determining numerical degrees of certainty of conjectures produced by arguments. 
The word argument was used to represent statements as well as the implication 
relation between premises and conclusions. He divided arguments into categories 
according to whether the premises, and the argumentation from premises to conclu­
sions are contingent or necessary. For example, if an argument exist contingently 
(Le., it is true in b > '0 cases, while it is not in c > 0 cases) and implies a conclusion 
necessarily, then such an argument establishes b!c as the certainty of the conclu­
sion. Bernoulli also discussed the question of computing the degree of certainty 
when there were more then one argument for the same conclusion. . 

J. H. Lamber in [65], analyzed syllogistic inference of the form "if three quarters 
of the A's are B's, and C is A, then with probability ~, C is B". In [5], writ­
ten by T. Bayes, there was the first occurrence of a result involving conditional 
probability. In modern notation, he considered the problem of finding the condi­
tional probability P(AIB) where A is the proposition "P(E) E [a, b]", while B is 
the proposition "an event E happened p and failed q times in p + q independent 
trials". For B. Bolzano [11] logic was a theory of science, while probability was 
a part of logic. Using contemporary language it can be said that he understood 
validity of a proposition A(x) as a measure of the set {c : t= A(c)}, Le., as the 
ratio I{x:x~~~~urt(x)}/. Relative validity was a relation between propositions and 
had the same properties as what we call conditional probability. Bolzano derived 
a number of theorems regarding relative validity. A. De Morgan devoted a chapter 
of [21), to probability inference offering a defense for the numerical probabilistic 
approach as a part of logic. Instead of giving a systematic treatment of the field, 
he rather described some problems and tried to apply logical concepts to them. It 
is interesting that De Morgan made some mistakes, mainly due to his ignoring of 
(in)dependence of events. 

The calculus inaugurated by G. Boole in [12, 13] initiated rapid development of 
mathematical logic. Boole sought to make his system the basis of a logical calcu­
lus as well as a more general method for the application in the probability theory. 
He wrote "... Every system of interpretation which does not affect the truth of 
the relations supposed is equally admissible, and it is thus that the same process 
may under one scheme of interpretation represent the solution of a question on the 
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properties of numbers, under another that of a geometrical problems, and under 
the third that of a problem of dynamics or optics ... " Since 1854 Boole concentrated 
on unification of various elements of truth. He hoped to continue the advance­
ment toward probable indications concerning the nature and structure of human 
thought. The most general problem (originally called "general problem in the the­
ory of probability") Boole claimed that he could solve, concerned an arbitrary set 
of logical functions {!I(X1, ... ,Xm), ... , fk(X1, ... ,Xm), F(X1, ... ,Xm)} and the 
corresponding probabilities PI = P(!I(X1, ... ,xm», ... , Pk = P(fk(X1,·.· ,xm», 
and asked for P(F(X1, ... ,xm» in terms of Pl> ... ,Pk. He explained the relation 
between the logic of classical connectives and the formal probability properties of 
compound events using the following assumptions. He restricted disjunctions to the 
exclusive ones, and believed that any compound proposition can be expressed in 
terms of, maybe ideal, simple and independent components. Thus, the probability 
of an or-compound is equal to the sum of the components, while the probability 
of an and-compound is equal to the product of the components. In such a way, it 
was possible to convert logical functions of events into a system of algebraic func­
tions of the corresponding probabilities. Boole tried to solve such systems using 
a procedure equivalent to Fourier-Motzkin elimination. His procedure, although 
not entirely successful, provided a basis for probabilistic inferences. In [40, 41] a 
rationale and a correction for the Boole's procedure were given using the linear 
progranlming approach. It was noted that analytical expressions of the lower and 
upper bounds of the probabilities could be obtained. 

The successors of Boole tried to improve the form of Boole's ideas. One of 
them was P. S. Poretskiy [96]. C. S. Pierce in [95] and H. MacColl in [71] clarified 
the notion of conditional probability, as the chance that a statement is true on 
the assumption that another statement is true, and introduced the corresponding 
symbol Xa (P(xla), in the contemporary formal language). 

McColl also developed, contemporaneously with Frege, propositional logic as a 
branch of logic independent of the class calculus or term logic of the traditional 
syllogisms. He was the first author who made an attempt, in [72], to augment the 
two-valued logical formalism with a third truth value. It was a system of proposi­
tionallogic with certain, impossible, and variable propositions. The propositions of 
the former two types are either necessary true or necessary false, while the propo­
sitions of the last type are sometimes true and sometimes false. MacColl's idea of 
proceeding along the probabilistic lines in the development of many-valued logic is 
of particular interest because he applied the calculus of variable propositions to the 
calculus of probabilities. His truth-values, like probabilities, cannot be combined 
in a truth-functional way. For example, if P is a variable proposition, so are pAp 
and -'P, while pA -,p is impossible rather than variable. Later systems, for eXanlple 
the ones of Lukasiewicz, were deficient in this respect. 

In the 1870's J. Venn developed the idea of extending the frequency of occurrence 
concept of probability to logic. Venn thought that probability logic is the logic of 
sequence of statements. A single element sequence of this type attributes to the 
given proposition one oftwo values 0 or 1, while an infinite sequence attributes any 
real number which lies in the interval [0,1]. Some of the traditional logicians were 
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dissatisfied with the inclusion of the induction in the definition of the concept of 
probability, but the others continued to work in that direction. 

During the first half of XX century there were at least three directions in the 
development of theory of probability. The researchers that belonged to the first one, 
Richard von Miss (1883-1953) and Hans Reichenbach (1891-1953)' for example, 
regarded probability as a relative frequency and derived rules of the theory from 
that interpretation. The second approach was characterized by the development 
of formal calculus of probability. Some of the corresponding authors were Georg 
Bohlmann (1869-1928) [10j, Sergei Natanovich Bernstein (1880-1968) [8J, andEmil 
Borel (1871-1956) [14, 15]. These investigations culminated in A. N. Kolmogorov's 
(1903-1987) axiomatization of probability [60]. Finally, some of the researcher, like 
John M. Keynes (1883-1946) [59], Hans Reichenbach [115,116], and Rudolf Carnap 
(1891-1970) [18, 19] continued Boole's approach connecting probability and logic. 

In work of J. Keynes probability was seen as an undefined primitive concept. He 
presented an axiomatic analysis of a relation between propositions which behaved 
like conditional probability. That axiomatic system is not acceptable, at least from 
the point of the recent logical standards. For example, no specification of syntax 
was given, there were no inference rules, etc. 

R. Carnap's work on logical foundations of probability was an attempt to develop 
a pure logical concept of probability. Carnap connected the concepts of inductive 
reasoning, probability and confirmation. He was among the first researchers who 
clearly acknowledged that there are two distinct concepts of probability. The con­
cept of probability as the relative frequency (in the long run) which is used in 
statistical investigations is empirical in nature and, therefore, unsuitable for the 
development of inductive logic. For the development of inductive logic, which in 
his view is the same as probability logic, he needed the logical concept of probabil­
ity as a degree of confirmation of some hypothesis on the basis of some evidence, 
i.e., a logical relation between two propositions, denoted by e(h, e). Carnap fixed 
an unary first order language to express hand e, and studied properties of c. Even 
though Carnap's work was not completely successful, it stimulated a line of research 
on probabilistic first-order logics [33, 34, 120, 123J. In [33J there was a generaliza­
tion of the notion of a model for a first-order language in which probability values 
replaced truth-values, and some kind of completeness theorem was proven. Sim­
ilarly, in [34] a first order language L of arithmetic and a set of its models were 
considered. To every sentence the set of models in which it is true was associated, 
and the probability was defined on such definable sets. Then, they studied random 
sequences and some other notions from the theory of probability defined over L. In 
[120] the ideas from [33] were extended to infinitary languages. Boolean algebras 
with attached probability measures were considered as suitable models for reason­
ing about probability. Let I and m denote an interpretation and a probability 
defined on a Boolean algebra, respectively. A probability assertion A is a tuple 
(a, Si, ... , Sn), where a is a formula of the language of real closed fields with n free 
variables, while Si'S are sentences of an: infinitary first order language. A speaks 
about probabilities such that it holds in a model if a(m(I(sr), ... , m(I(sn))) is 
true in the reals. Then, a probability assertion A is a consequence of a set T of 
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assertions if A holds in every model of T. In [120] a number of results about such 
a consequence relation were proved. 

H. Reichenbach investigated the logical structure of probability statements from 
the philosophical and technical points of view. He introduced a fundamental 
probability relation between classes and real numbers using formulas of the form 
peA, B) = p which could be read as "for every i, if Xi belongs to the class 
A, then Yi belongs to the class B with probability p". Reichenbach gave a fre­
quency interpretation for the probability relation, and the corresponding axioms 
((A -+ B) -+ (P(A,B) = 1), for example). If Xi E A for every i, he used P(B) = P 
instead of peA, B) = p, and constructed truth tables for the classical connectives 
with a continuous scale of truth (if peA) = p, P(B) = q, and peA, B) = u, then 
peA V B) = p + q - pu, for example). However, as can be seen, t.he value of 
peA V B) = p + q - pu depends on three values, Le., on peA), P(B), and peA, B), 
and not on peA) and P(B) only, as it is the case in the classical two-valued logic. 

Aleksandar Kron (1938-2000), Belgrade's logician and philosopher, studied re­
lationship between multi-valued logics and probability theory [64]. He considered a 
unary operation generating a Boolean algebra of sets of formulas, and a probability 
function defined on that algebra, and gave some statement connecting notions from 
probability theory (conditional probability, independence) and logic (implication, 
proof). 

In spite of the mentioned works of Reichenbach, Carnap and their followers, the 
mainstreams of development of logic and probability theory were almost separated 
during second half of XX century. Namely, in the last quarter of XIX century, 
independently of the algebraic approach, there was a development of mathematical 
logic inspired by the need of giving axiomatic foundations of mathematics. The 
main representative of that effort was Gottlob Frege (1848-1925). He tried to 
explain the fundamental logical relationships between the concepts and propositions 
of mathematics. Truth-values, as special kinds of abstract values, were described by 
Frege according to whom every proposition is a name for truth or falsity. It is clear 
that, according to Frege, the truth values had a special status that had nothing to 
do with probabilities: That approach culminated with Kurt Godel's (1904-1977) 
proof of the completeness for the first order logic [37]. Since those works, the first 
order logic played the central role in the logical community for many years, and 
only in the late 70's a wider interest in probability logics reappeared. 

The most important advancement in probability logic, after work of Leibnitz 
and Boole, was made by H. Jerome Keisler. The purpose of his famous paper [54] 
was to give model-theoretic approach to probability theory. Also it is important 
to emphasize that in this paper he makes use of nonstandard analysis as an useful 
method. 

Keisler introduced several probability quantifiers, as for example Px > r. The 
formula (Px > r)</J(x) means that the set {x : </J(x)} has probability greater than 
r. A recursive axiomatization for that kind of logics (the main one denoted by 
LAP) was given by D. Hoover [46}. He used admissible and countable fragments of 
infinitary predicate logic (but without ordinary quantifiers V and 3). In the follow­
ing years Keisler and Hoover made very important contributions in the field. They 
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proved Completeness theorem for various kinds of models (probability, graded, 
analytic, hyperfinite etc.) and many other model-theoretical theorems. The de­
velopment of probability model theory has engendered the need for the study of 
logics with greater expressive power than that of the logic LAP. The logic LA/, 

introduced in [55] as an equivalent of the logic LAP, allows us to express many prop­
erties of random variables in an easier way. In this logic the quantifiers J ... dx are 
incorporated instead of the quantifiers Px > r. The completeness proof for LAJ 
used the Loeb construction of the Daniell integral (see also [22, 23, 24, 25]). 

The logic LAJ is not rich enough to express probabilistic notions involving condi­
tional expectations of random variables with respect to a-algebras, such as martin­
gale, Markov process, Brownian motion, stopping time, optional stochastic process, 
etc. These properties can be naturally expressed in a language with both integral 
quantifiers and conditional expectation operators. The logics LAE and Lad intro­
duced by Keisler in [55], are appropriate for the study of random variables and 
stochastic processes. The model theory of these logics has been developed further 
by Hoover in [47], Keisler in [57, 58], Rodenhausen in [118] and Fajardo in [29]. 

In [97] Raskovic introduced new LAM logic which, instead of probability measure, 
has a-finite one and give the method how to transfer results from LAP to LAM. In a 
series of papers [98, 99, 101, 104, 108J, he also gave answers to a number of problems 
proposed by Keisler in [55]. In [98, 99] a new method of using Barwise compactness 
theorem [4] in proving completeness theorems was presented. It is difficult to 
mix ordinary and probability quantifiers because of the fact that projection of a 
measurable set can be nonmeasurable. As a consequence of that it· is hard (if 
not impossible) to expect adequate logic in its full strength. But some effort in 
that direction has been made in [100, 102, 103, 105]. The notion of a cylindric 
probability algebra can be considered as a common algebraic abstraction from a 
geometry associated with basic set-theoretic notions on the one hand and the theory 
of deductive systems of probability logic on the other. These two sources are 
connected because models of deductive systems of probability logic give rise in 
natural way to probability structures within set-theoretical algebras. As is well 
known, the theory of Boolean algebras· is related to the sentential calculus, and 
theory of cylindric algebras to the first-order predicate logic. The theory of cylindric 
probability algebras, designed to provide an apparatus for an algebraic study of 
probability logics, is presented in [49, 109, 111] analogously to Boolean algebras 
and cylindric algebras. The model theory for probability logic with undetermined 
finite range is given in [104]. Continuous time probability logic L~p, developed in 
[107], is a logic appropriate for the study of a space with a family of continuous 
time probability measures. The set of universal conjunctive formulas of L~p is the 
least set containing all quantifier-free formulas and closed under arbitrary /I., finite 
V, and quantifiers (Px > r), r E Q n [0,1]. The completeness theorem and finite 
compactness theorem (for universal conjunctive formulas) were proven. 

Since the middle of 1980's the interest in probabilistic logics started growing 
because of development of many fields of application of reasoning about uncer­
tain knowledge: in economics, artificial intelligence, computer science, philosophy 
etc. Researchers attempt to combine probability-based and logic-based approaches 
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to knowledge representation. In the logical framework for modelling uncertainty, 
probabilities express degrees of belief. For example, one can say that "probability 
that Homer wrote Diad is at most a half" expressing one's disbelief that Homer is 
the real author of Diad. The first of those papers is [79] (see also: [80)) which re­
sulted from the work on developing an expert system in medicine, where N. Nilsson 
tried to give a logic with probabilistic operators as a well-founded framework for 
uncertain reasoning. Sentences of the logic spoke about probabilities. He was able 
to express a probabilistic generalization of modus ponens as "if a holds with the 
probability s, and /3 follows from Q with the probability t, then the probability of 
/3 is r". 

3. logic LPP2 

In this section we present the logic LPP2 • We describe its syntax and some 
classes of models, give an infinitary axiomatization and prove that it is sound and 
complete with respect to the mentioned classes of models. 

3.1. Syntax. Let S be the set of all rational numbers from [0,1]. The language 
of LP P2 consists of the denumerable set <p = {p, q, r, ... } of primitive propositions, 
classical propositional connectives ..." and /\, and a list of probability operators p.~s 
for every s E S. The set Fore of all classical propositional formulas over the set <p 
is defined as usual. The formulas from the set Fore will be denoted by a, /3,. " If 
a E Fore and s E S, then ~sa is a basic probability formula. The set Forp of all 
probability formulas is the smallest set 

• containing all basic probability formulas, and 
• closed under formation rules: if A,B E Forp, then ...,A, A/\B E Forp. 

The formulas from the set Forp will be denoted by A, B, ... Let ForLPP2 = 
ForeUForp. The formulas from the set ForLP~ will be denoted by q;, Ill, ... 

We use the usual abbreviations for the other classical connectives, and also 
denote: 

• ...,P~sa by P <sa, 
• P.~l-s""a by P~sa, 
• ""P~sa by P>sa, 
• P.~sa /\ P~8a by P=sa, and 
• both a /\ ...,a and A /\ ...,A by .1, letting the context determine the meaning. 

As it can be seen, neither mixing of pure propositional formulas and probabil­
ity formulas, nor nested probability operators are allowed. Thus, a /\ P~8/3 and 
P~8P~ra do not. belong to the set ForLPP2' 

Let PI, ... , Pn be a list of all primitive propositions from q; E ForLP~. An atom 
a of q; is a formula of the form ±PI /\ ... /\ ±pn, where ±Pi is either Pi, or ""Pi' 

3.2. Semantics. The semantics for ForLP~ will be based on the possible-world 
approach. 

Definition 1. An LPP2 -model is a structure M = (W,H,J.t,v) where: 

• W is a nonempty set of objects called worlds, 
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• H is an algebra of subsets of W, and 
• M is a finitely additive measure, M : H ---+ [0,1], 
• v : W x 4> ---+ {true, false} provides for each world w E W a two-valued 

evaluation of the primitive proposition, that is v(w,p) E {true,false}, for 
each primitive proposition p E 4> and each world w E W; a truth-evaluation 
v(w,·) is extended to classical propositional formulas as usual. 

If M is an LPP2-model and a E Fore, the set {w : v(w, a) = true} is denoted 
by [a]M. We will omit the subscript M from [aJM and write [aJ if M is clear 
from the context. An LPP2-model M = (W,H,M,V) is measurable if [aJM E H 
for every formula a E Fore. In this section we focus on the class of all measurable 
LPP2-models (denoted by LPP2,Meas). 

Definition 2. The satisfiability relation l=~ LPP2,Meas X ForLPP2 fulfills the fol­
lowing conditions for every LP P2,Meas-model M = (W, H, M, v): 

• if a E Fore, M l= a iff for every w E W, v(w, a) = true, 
• if M l= P~8a iff M([a]) ~ s, 
• if A E Forp, M l= -,A iff M,Jz! A, 
• if A, B E For p, M l= A 1\ B iff M l= A and M l= B. o 

Definition 3. A formula q, E For LP P2 is satisfiable if there is an LP P2, Meas-mo del 
M such that M l= q,j q, is valid if for every LP P2,Meas-model M, M l= q,; a set of 
T formulas is satisfiable if there is an LP P2,Meas-model M such that M l= q, for 
every q, E T. 

Example 4. Consider the set T = {-'P=oa} U {P<I/na: n is a positive integer}. 
Although every finite subset of T is LP P2,Meas-satisfiable, the set T itself is not. 
So, the compactness theorem "If every finite subset of T is satisfiable, then T is 
satisfiable" does not hold for LPP2• 0 

Example 5. Note that the classical formulas do not behave in the usual way: 
for some a and {3 E Fore and an LP P2,Meas-model M it can be M l= a V {3, but 
that neither M l= a, nor M l= {3. Similarly, it can be simultaneously M Jz! a and 
M.Ii -,a. Nevertheless, the set of all classical formulas that are valid with respect 
to the above given semantics and the set of all classical valid formulas coincide, 
because every world from an arbitrary LP P2,Meas-model can be seen as a classical 
proposi tional interpretation. 

In the sequel we will also consider the following classes of LP P2-models: 

LP P2,Meas,Alb LP P2,Meas,0" and LP P2,Meas,Neat. 

A model M = (W, H, p., v) belongs to the first class if H is the power set of W, i.e., 
if every subset of W is M-measurable. A model M belongs to the second class if it 
is a a-additive measurable model, i.e., if M is a a-additive probability measure. A 
model M belongs to the second class ifit is a measurable model such that M(HI ) = 0 
iff HI = 0, i.e., if only the empty set has the zero probability. 
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3.3. Complete Axiomatization. The set of all valid formulas can be characterized 
by the following set of axiom schemata: 

(1) all instances of the classical propositional tautologies 
(2) P~oo. 
(3) P~ro. -t P<so., s > r 
(4) P<so. -t P~so. 
(5) (P~ro. 1\ P~s(31\ P~l(-.(o. 1\ (3))) -t P~min(1.r+8)(o. V (3) 
(6) (P~ro. 1\ P<s(3) -t P<r+s(o. V (3), r + s ~ 1 

and inference rules: 
(1) From ~ and ~ -t 'l1 infer 'l1. 
(2) From a infer P~lo.. 
(3) From A -t P~8-to., for every integer k ~ ~, and s > 0 infer A -t ~~8o.. 

We denote this axiomatic system by AXLPP:z. 

Definition 6. A formula ~ is deducible from a set T of formulas (denoted by 
T r- ~) if there is an at most denumerable sequence offormulas ~o, ~l' •.• '~' such 
that every ~i is an axiom or a formula from the set T, or it is derived from the 
preceding formulas by an inference rule. A proof for ~ from T is the corresponding 
sequence of formulas. A formula ~ is a theorem (denoted by r- ~) if it is deducible 
from the empty set. 0 

Definition 7. A set T of formulas is consistent if there are at least a formula from 
Fore, and at least a formula from Forp that are not deducible from T, otherwise 
T is inconsistent. A consistent set T of formulas is said to be maximal consistent 
if the following holds: 

• for every a E Fore, if T r- a, then a E T and P~lo. E T, and 
• for every A E Forp, either A E T or...,A E T. 

A set T of formulas is deductively closed if for every ~ E ForLPP2' if T r- ~, then 
~ ET. 

Alternatively, we can say that T is inconsistent iff T r- 1.. Also, note that 
classical and probability formulas are handled in different ways in Definition 7: 
it is not required that for every classical formula a, either a or ""0. belongs to a 
maximal consistent set, as it is done for formulas from Forp. 

Let us now discuss the above axioms and rules. First note that, by Axiom 1, 
the classical propositional logic is a sublogic of LP P2. It is also easy to see that 
every LPP2-proof consists of two parts (one of them may be empty). In the·first 
one only classical formulas are involved, while the second one uses formulas from 
Forp. Two parts are separated by some applications of Rule 2. There is no inverse 
rule, so we can pass from the classical to the probability level, but we cannot 
come back. It follows that LP P2-logic is a conservative extension of the classical 
propositional logic. The axioms 2- 6 concern the probabilistic aspect of LP P2 • 

Axiom 2 announces that every formula is satisfied by a set of worlds of the measure 
at least O. By substituting ""0. for a in the axiom, the formula P~o...,o. is obtained. 
According to our definition of the operator P ~l, we have the following instance of 
Axiom 2: 



. " 

48 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC 

21. P~la (= P;n-s-.a, for s = 1). 

It forces that every form,ula is satisfied by a set of time instants of the measure 
at most 1, and gives the upper bound for probabilities of formulas in LP P2,Meas­

models. In a similar waY,the axioms 3 and 4 are equivalent to 

3'. p.~ta -+ P>sa, t > s 
4'. P>sa -+ P~sa 

respectively. The axioms 5 and 6 correspond to the additivity of measures. For 
example, in Axiom 5, if sets of worlds that satisfy a and {3 are diSjoint, then the 
measure of the set of worlds that satisfy a V (3 is the sum of the measures of the 
former two sets. Rule 1 is classical Modus Ponens. Rule 2 can be considered as the 
rule of necessitation in modal logics, but it can be applied on the classical proposi­
tional formulas only. Rule 3 is the only infinitary inference rule in the system, i.e., 
it has a countable set of assumptions and one conclusion. It corresponds to the 
Archimedean axiom for real numbers and intuitively says that if the probability is 
arbitrary close to s, then it is at least s. 

3.4. Soundness and completeness. 

3.4.1. Soundness. Soundness of our system follows from the soundness of classi­
cal propositionallogic, as well as from the properties of probabilistic measures, so 
we give only a sketch of a straightforward but tedious proof. 

Theorem 8 (Soundness). The axiomatic system AxLPP2 is sound with respect to 
the class of LP P2,Meas-models. 

Proof. We can show that every instance of an axiom schemata holds in every model, 
while the inference rules preserve the validity. For example, let us consider Axiom 5. 
Suppose that P~ra, P~s{3, and P~l-.(a V (3) hold in a model M = (W, H, JL, v). It 
means that JL([a]) ~ r, JL([{3]) ~ s, and that [a] and [{3] are disjoint sets. By the 
definition of finitely additive measures, the measure of [a] U [{3] (which is [a V (3]) 
is J.L((a]) + J.L((f3]). Hence, M l= P~min(1,r+8)(a V (3), and Axiom 5 holds in M. ·The 
other axioms can be proved to be valid in a similar way. 

Rule 1 is validity-preserving for the same reason as in classical logic. Consider 
Rule 2 and suppose that a formula a E Fore is valid. Then, for every model 
M = (W, H, J.L, v), (a] = W, and J.L([a]) = 1. Hence, P~la is valid too. Rule 3 
preserves validity because of the properties of the set of real numbers. 0 

3.4.2. Completeness. In the proof of the completeness theorem the following 
strategy is applied. We start with a form of Deduction theorem (Theorem 9) and 
some other auxiliary statements (the lemmas 10, 11, 12). Then, we show how to 
extend a consistent set T of formulas to a maximal consistent set T* (Theorem 
13). Finally, the canonical model MT is constructed using the set T* (Theorem 
14) such that MT l= 'P iff 'P E T* (Theorem 15). 

Theorem 9 (Deduction theorem). If T is a set of formulas and 'P, 'lj; E Fore or 
'P,'lj; E Forp, then 

Tu {'P} I- 'lj; iJJ T I- 'P -+ 'lj; . 
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Proof The implication from right to left can prove exactly in the same way as 
in the classical propositional case. For the other direction we use the transfinite 
induction on the length of the proof of t/J from Tu {cp}. The cases when either f- t/J 
or cp = t/J or .,p is obtained by application of Modus Ponens (Rule 1) are standard. 

Thus, let us consider the case where .,p = P~l 0: is obtained from Tu {cp} by an 
application of Rule 2, and cp E For~. In that case: 

T, cp f- 0: 

T, cp f- P~l 0: by Rule 2 

However, since 0: E Fore, and cp € For~, cp does not affect the proof of 0: from 
Tu {cp}, and we have: 

(1) T f- 0: 

(2) T f- P~lO: by Rule 2 
(3) T f- P~lO: -t (cp -t P~lO:) 
(4) T f- cp -t ~10: by Rule l. 

Next, let us consider the case where t/J = A -t P~80: is obtained from TU {cp} by 
an application of Rule 3, and cp E Forp. Then: 

(1) T, cp f- A -t P~8-tO:, for every integer k ~ ~ 
(2) T f- cp -t (A -t P~8-tO:), for k ~ ~, by the induction hypothesis 

(3) T f- (cp 1\ A) -t P~s-tO:, for k ~ ~ 
(4) T f- (cp 1\ A) -t ~80:, from (3) by Rule 3 
(5) T f- cp -t t/J. 0 

Lemma 10. 
(1) f- P~l(O: -t (3) -t (P~sO: -t P~sfJ)' 
(2) if f- 0: f-)- fJ, then f- P~sO: f-)- P~8f3, 
(3) f- ~80: -t P~rO:, 8 ~ r, 
(4) f- P~rO: -t P~sO:, 8 ~ r. 

Proof. (1) First note that using Rule 2, from f- -'0: V -,J., we obtain 

(1) f- ~1(-'0: V -,J.), 

and similarly, from f- (-'0: 1\ -,J.) V -'-'0: we have 

(2) f- P~l«-'O: 1\ -,J.) V -'-'0:). 

By Axiom 5, we have f- (~80: 1\ P~oJ. 1\ P~l(-'O: V -,J.» -t P~8(0: V J.). Since 
f- ~oJ. by Axiom 2, from (1) it follows that 

(3) f- P~80: -t ~8(0: V J.). 

The expression P~8(0: V J.) denotes P~8-'(-'0: 1\ -,J.), P~l-(l-s)-'(-'O: 1\ -,J.), and 
P~l-s(-'O: 1\ -,1.). Similarly, -,P~s-'-'O: denotes P<s-'-'O:. By Axiom 6, we have 

f- (P~l-s(-'O: 1\ -,J.) 1\ P<s-'-'O:) -t P<l «-'0: 1\ -,J.) V -'-'0:). 

Since P~l«-,o:l\ -,J.) V -'-'0:) denotes -,P<l«-'O: 1\ -,J.) V -;-'0:), from (2) we obtain 

f- (P~l-s(-'O: 1\ -,J.) 1\ P<s-'-'O:) -t 

(P<l«-'O: 1\ -,J.) V -'-'0:) 1\ -,P<l«-'O: 1\ -,J.) V -'-'0:». 
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It follows that r P~l-s(..,a A ..,1-) -t "'P<s..,..,a, Le., 

(4) r P~s(a V 1-) -t P~s..,..,a. 

From (3) and (4) we obtain r P~sa -t P~s..,..,a. The negation of the formula 
P~l (a -t (3) -t (p~sa -t P~s(3) is equivalent to P~l (..,aV (3) AP~sa AP<sf3. Since 
r P~8a -t P~8..,..,a, this formula implies P~l(..,aV (3) AP~8..,..,a AP<sf3 which can 
be rewritten as P~l (..,a V (3) A P~1-8..,a A P<sf3. From: 

• Axiom 6, P~l-S..,a A P<sf3 -t P<l(..,a V (3), and 
• P<la = "'P~la, 

we have 

r ",(P~l (a -t (3) -t (p~8a -t P~s(3)) -t P~l(..,a V (3) A "'P~l (..,a V (3), 

a contradiction. It follows that 

r P~l (a -t (3) -t (P~sa -t P~s(3). 

(2) It is an easy consequence of Lemma 10(1). 
(3) This formula expresses monotonicity of probabilities. From Axiom 3' P~sa -t 

P>ra, s > r, and Axiom 4' P>ra -t P~ra, we obtain r P~sa -t P~ra for s > r. 
If s = r, the formula is trivially a theorem of the form r <p -t <po 

(4) Similarly as (3). 0 

Lemma 11. Let T be a consistent set of formulas. 

(1) For any formula A E For p, either T U {A} is consistent or T U {..,A} is 
consistent. 

(2) If ..,(a -t P~s(3) E T, then there is some n > ~ such that Tu {a -t 
..,P~s-~f3} is consistent. 

r n 

Proof. (1) The proofis standard: if Tu {A} r1-, and Tu {..,A} r 1-, by Deduction 
Theorem we have T r 1-. 

(2) Suppose that for every n > ~: 
T, a -t ..,P~s-l.f3 r 1-. 

r n 

By Deduction Theorem, and manipulation at the propositionallevel, we have 

T r a -t P~s-1.f3, 
r n 

for every n > ~. By application of Rule 3 we obtain T r a -t P~sf3, a contradiction 
with the fact that ..,(a -t P~s(3) ET. 0 

Lemma 12. Let T be a maximal consistent set of formulas. Then, 

(1) for any formula A E For p, exactly one member of {A, ..,A} is in T, 
(2) for all formulas A,B E Forp, A vB ET iJJ A E T or BET, 
(3) for all formulas <p, 'IjJ, where either <p, 'IjJ E Fore or cp, 'IjJ E Forp, cp A 'IjJ E T 

iJJ {<p,'IjJ} c T, 
(4) for every <p E ForLPP21 ifT r <p, then <p E T, . 
(5) for all formulas <p, 'IjJ, where either <p, 'IjJ E Fore or <p, 'IjJ E Forp, if {<p, <p -t 

1/J} eT, then 1/J ET, 
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(6) for all formulas <p,'IjJ, where either <p,'IjJ E Fore or <p,'IjJ E Forp, if <P E T 
and f- <P -7 'IjJ, then'IjJ ET, 

(7) for any formula Q, if t = sUPs {P.~sQ E T}, and t E S, then P~tQ ET. 

Proof. Proofs (1)-(6) are standard. 

(7) Let t = sUPs{P~sQ E T} E S. By the monotonicity of the measure (Lemma 
10(12)), for every sE S, s < t, T f- P~sQ. Using Rule 3 we have T f- P~tQ. Since 
T is a maximal consistent set, it follows from Lemma 12(4) that P~tQ E T. 0 

Theorem 13. Every consistent set can be extended to a maximal consistent set. 

Proof. Let T be a consistent set, Cnc(T) the set of all classical formulas that are 
consequences of T, and Ao, AI, ... an enumeration of all formulas from Forp. We 
define a sequence of sets Ti, i = 0, 1, 2, ... such that: 

(1) To = TU Cnc(T) U {P~lQ : Q E Cne(T)} 
(2) for every i ~ 0, 

(a) if Ti U {Ai} is consistent, then TH1 = Ti U {Ai}, otherwise 
(b) if Ai is of the form {J -7 P~8'Y, then Ti+l = TiU{..,Ai,{J -7 ..,P>-;_~ 'Y}, 

for some positive integer n, so that Ti+l is consistent, otherwise n 

(c) Ti+1 = Ti U {..,A i }. 

(3) T = U:'o Ti • 

The set To is consistent since it is contains consequences of an consistent set, and 
similarly for the other members of the family of sets, by Lemma 12 each Ti, i > 0, 
is consistent. 

It remains to show that T is maximal and consistent. The steps 1 and 2 of the 
above construction fulfill all requirements from Definition 7 which guarantees that 
T is maximal. We continue by showing that T is a deductively closed set which 
does not contain all formulas, and, as a consequence, that T is consistent. 

First of all, T does not contain all formulas. If Q E Fore, by the construction of 
To, Q and "'Q cannot be simultaneously in To. For a formula A E For p the set T 
does not contain both A = Ai and ..,A = Aj, because Tmax(i,j)+l is consistent. 

I remains to show that T is deductively closed. If a formula Q E Fore and 
T f- Q, then by the construction of To, Q E T and P~lQ E T. Let A E Forp. It 
can be proved by the induction on the length of the inference that if T f- A, then 
A E T. Note that if A = Aj and Ti f- A, it must be A E T because Tmax(i,j)+l is 
consistent. Suppose that the sequence <PI, <P2, . .. , A forms the proof of A from T. 
If the sequence is finite, there must be a set Ti such that Ti f- A, and A E T. Thus, 
suppose that the sequence is countably infinite. We can show that for "every i, if 
<Pi is obtained by an application of an inference rule, and all the premises belong 
to T, then it must be <Pi E T. If the rule is a finitary one, then there must be a set 
Tj which contains all the premises and Tj f- <Pi. Reasoning as above, we conclude 
<Pi E T. Next, we consider the only infinitary rule 3. Let <Pi = B -7 P~sQ be 
obtained from the set of premises {<p~ = B -7 p~s. 'Y : Sk E S}. By the induction 
hypothesis, <p~ E T for every k. If <Pi ~ T, by the step 2b of the construction, there 
are some land j such that ..,(B -7 .P~8Q),B -7 "'P~8-t'Y E Tj . It means that for 
some j' ~ j: 
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• B 1\ -,P~sa E Tj', 
• BE Ti" 
• -'P~s-+,y, P~s- fY E Ti" . 

which is in contradiction with consistency of Ti' ~ o 
The set I is used to define a tuple MT = (W, H, p" v), where: 

• W = {w 1= Cne (T)} contains all classical propositional interpretations that 
satisfy the set Cne(T) of all classical consequences of the set T, 

• [a] = {w E W: w 1= a} and H = {[a]: a E Fore}, 
• p,: H ~ [0,1] such that p,([a]) = sUPS{P~Ba E I}, and 
• for every world w and every primitive proposition p E </J, v( w, p) = true if! 

w 1= p. 

The next theorem states that MT is an LPP2,Meas-model. 

Theorem 14. Let MT = (W, H, p" v) be defined as above and a, f3 E Fore. Then, 
the following hold: 

(1) H is an algebra of subsets of W, 
(2) If [a] = [f3]' then p,([a]) = p,([f3]), 
(3) p,([a]) ~ o. 
(4) p,(W) = 1 and p,(0) = O. 
(5) p,([a]) = 1 - p,([-,a]). 
(6) p,([a] U [f3]) = p,([a]) + p,([f3]), for all disjoint [a] and [(3]. 

Proof. (1) Let a, aI, a2, . .. an be formulas from Fore. It is not hard to see that 
the following hold: 

• W = [a V -,a], and WE H, 
• if [a1 E H, then its complement [-,a] belongs to H, and 
• if [al], ... , [an] E H, then the union [ad U ... U [an] E H because [al] U 

... U [an] = [al V ... Van]. 
Thus, H is an algebra of subsets of W. 

(2) It is enough to prove that [a1 C [f31 implies p,([a]) ~ p,([f3]). By the com­
pleteness of the propositionallogic, [a] C [(3] means that a ~ f3 E Cne(T) and 
P~l(a -t (3) Er. By Lemma 10(1) we have that for every s E S, P~sa ~ P~sf3 E 
r. Thus, p,([a]) ~ p,([f3]). 

(3) Since P~oa is an axiom, p,([a]) ~ 0. 

(4) Since p V -,p E Cne(T) and P~l(P V -,p) E I for every p E </J, we have 
W = [p V -,p1 and p,(W) = 1. On the other hand, obviously, p,(0) ~ O. Since 
P~l(PV-'P) = P~l-O(PV-'P) = P~o-'(PV-,p) = P~o(pl\-'p) = -'P>o(pl\-,p), by 
Axiom 3', SUP8{P~8(P 1\ -,p) El} = 0, and p,(0) = O. 

(5) Let r = p,([a]) = sUP8{P~Sa E I}. Suppose that r = 1. By Lemma 12(7), 
P~la) E r. Thus, -'P>o-,a(= P~o-,a = P~la) belongs to r. If for some s > 0, 
P~s-'a E I, by Axiom 3' it must be P>o-,a E w, a contradiction. It follows 
that p,([-,a]) = 1. Next, suppose that r < 1. Then, for every rational number 
rt E (r, 1], -'P~rla = P<r,a, and P<r,a E I. By Axiom 4, P~rla and P~l-r,-,a 
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belong to T. On the other hand, if there is a rational number r" E [0, r) such that 
P~l-r"-'O: E T, then -'P>r"O: E T, a contradiction. Hence, sUPs{P~s(-'O:) ET} = 
1 - SUP8{P~80:E T}, Le., Jl([O:]) = 1 - Jl([-'O:]). 
(6) Let [o:]n[,8] = 0, Jl([O:]) = r and Jl([,8]) = 8. Since [,8] C [-'0:], by the above steps 
(2) and (5), we have r + 8 ~ r + (1 - r) = 1. Suppose that r > 0, and 8 > O. By 
the well known properties of the supremum, for every rational number rl E [0, r), 
and every rational number 8

1 E [0,8), we have P~rIO:, ~81{3 E T. It follows by the 
axiom 5 that P~rl+81(0: V (3) E T. Hence, r + 8 ~ to = suptiP~t(O: V (3) ET}. If 
r+8 = 1, then the statement trivially holds. Suppose r+8 < 1. Ifr+8 < to, then 
for every rational number tl E (r + 8, to) we have P~tl(O: V (3) ET. We can choose 
rational numbers r" > r and 8" > 8 such that: 

By Axiom 4, P~r"O: E T. Using Axiom 6 we have 

P <r" +8" (0: V (3) E T, -'P~r" +8" (0: V (3) E T and -,P~tl (0: V (3) E T, 

a contradiction. Hence, r+8 = to and Jl([o:]U[,BJ) = Jl([o:J) + Jl([{3J). Finally suppose 
that r = 0 or 8 = O. Then we can reason as above, with the only exception that 
rl = 0 or 81 = O. 0 

Theorem 15 (Extended completeness theorem for LP P2,Meas). A set T of formu­
las is Ax LP 1'2 -consistent iff it is LP P2 ,Meas -satisfiable. 

Proof. The ( {:: )-direction follows from the soundness of the above axiomatic system. 
In order to prove the (=> )-direction we can construct the LP P2,Meas-model MT, 
and show that for every cp E ForLPP2, MT 1= cp iff cp E T. 

To begin the induction, let cp = 0: E Fore. If 0: E Cnc{T), then by the defi­
nition of MT, MT 1= 0:. Conversely, if MT 1= 0:, by the completeness of classical 
propositionallogic, 0: E Cnc{T). 

Next, let cp = P~sO:. If P~sO: E T, then sUPr{P~r(O:) E T} = Jl([O:]) ~ s, 
and MT 1= P~80:. For the other direction, suppose that MT 1= P~80:, i.e., that 
sUPr{P~r(O:) E T} ~ s. If Jl([o:J) > 8, then, by the well known property of 
supremum and monotonicity of Jl, P~sa E T. If Jl([o:J) = 8, then by Lemma 12(7), 
P~80: E T. 

Let cp = -.A E Forp. Then MT 1= -.A iff MT ~ A iff A ~ Tiff (by Lema 12(1» 
-.A ET. 

Finally, let cp = A 1\ B E Forp. MT 1= A 1\ B iff MT 1= A and MT 1= B iff A, 
BET iff (by Lema 12(3» A 1\ BET. 0 

In the last part of this section the canonical model MT from Theorem 15 will 
be used as a weak model, i.e., as a tool in proving completeness with respect to the 
classes: LP P2,Meas,AII, LP P2,Meas,u and LP P2,Meas,Neat. 

Theorem 16 (Extended completeness theorem for LPP2,Meas,AU). A set T of 
formulas is AXLPP2 -consistent iff it is LP P2 ,Meas,Au-satisfiable. 
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Proof. The proof can be obtained by applying the extension theorem for additive 
measure2

• on the measure J.L from the weak canonical model MT. Thus, there is a 
finitely additive measure Ji defined on the power set of W that is an extension of 
the measure J.L. 0 

Theorem 17 (Extended completeness theorem for LPP2,Meas,u)' A set T of for­
mulas is Ax LP P2 -consistent if! it is LP P2,Meas,u -satisfiable. 

Proof. By the Loeb process and a bounded elementary embedding [46] we can 
transform the weak canonical model MT into a a-additive probability model *MT 
such that for every formula cl>, MT F cl> iff *MT F cl>. 0 

Theorem 18 (Extended completeness theorem for LPP2,Meas,Neat). A set T of 
formulas is AXLPP2-consistent iff it is LPP2,Meas,Neat-satisfiable. 

Proof. In this proof we use a slightly changed construction of the set 7 from The­
orem 13. Using the same notation as above, the sequence of sets Ti , i = 0, 1,2, ... 
is now defined in the following way: 

(1) To = Tu Cnc(T) U {P~la: a E Cne(T)} 
(2) for every i ~ 0, 

(a) if Ti U {Ad is consistent, then TH1 = Ti U {Ad, otherwise 
(b) if Ai is of the form f3 --+ P>.s'Y, then Ti+l = Ti U {-,Ai , f3 --+ ""P>.s-l. 'Y}, 

r r n 

for some positive integer n, so that Ti+l is consistent, otherwise 
(c) Ti+l = Ti U {...,Ad. 
(d) if Ti is enlarged by a formula of the form P=oa, add ...,a to TH1 as 

well. 
(3) 7 = U:'o Ti . 

As it can be seen, the only new step is 2d. We can show that it produces consistent 
sets, too. So, suppose that for some a E Fore, (Ti U {P=oa}) U {...,a} 1-.1.. By 
Deduction theorem, we have that Ti U {P=oa} I- a. Since a E Fore, a belongs 
to Cne(T), and by the construction, we have that P~la E To which leads to 
inconsistency of Ti U {P =0 a} since: 

(1) Ti,P=oa I- P~la, since P~la E Ti , 
(2) Ti,P=oa I- P~oa, by the definition of P=o, 
(3) T i , P =oCX I- P <1 a, by Axiom 3 

and P <1 cx = ""P~l a. The rest of the completeness proof is the same as in Theo­
rem 17. 0 

The situation that the axiomatic system AXLPP2 is sound and complete with 
respect to three different classes of models is similar to the one from the modal 
framework where, for example, the system K is characterized by the class of all 

2T heorem 3.2.10 from [9]. Let C be an algebra of subsets' of a set n and p.(w) a positive 
bounded charge-a finitely additive measure-on C. Let F be an algebra on n containing C. Then 
there exists a positive bounded charge p.(w) on F such that p.(w) is an extension of p.(w) from C 
to F and that the range of p.(w) is a subset of the closure of the range of p.(w) on C 



PROBABILITY LOGICS 55 

models, but also by the class of all irrefiexive models. In other words, LP P2-
formulas cannot express the differences between the mentioned classes of probability 
models. 

3.5. Oecidability and Complexity. In this subsection we will consider the prob­
lem of satisfiability of ForLP~ formulas. Since there is a procedure for deciding 
satisfiability and validity for classical propositional formulas, we will consider Forp­
formulas only. 

So, let A E Forp. Recall that an atom a of A is a formula of the form ±pI/\' .. /\ 
±pn, where ±Pi is either Pi, or -'Pi, and PI,"" Pn are all primitive propositions 
appearing in A. Note that for different atoms ai and aj we have I-- ai -t -.aj. Thus, 
in every LP P2,Meas-model J.L( ai V aj) = J.L( ai) + J.L( aj). It is easy, using propositional 
reasoning and Lemma 10(2), to show that A is equivalent to a formula .' 

m k. 

DNF(A) = V 1\ Xi,j(PI,'" ,Pn) 
i=lj=1 

called a disjunctive normal form of A , where: 

• XiJ is a probability operator from the set {P.~S •. i' P <Si.i}' and 
• Xi,j (PI, ... ,Pn) denotes that the propositional formula which is in the scope 

of the probability operator xi,j is in the complete disjunctive normal form, 
i.e., the propositional formula is a disjunction of the atoms of A. 

Theorem 19 (Decidability theorem). The logic LPP2 is decidable. 

Proof. As it is noted above, a Forp-formula A is equivalent to 

m ki 

DNF(A) = V 1\ Xi,j(PI,'" ,Pn)' 
i=lj=l 

A is satisfiable iff at least one disjunct from DN F(A) is satisfiable. Let the 
measure of the atom ai be denoted by Yi. We use an expression of the form 
at E X (PI , ... ,Pn) to denote that the atom at appears in the propositional part of 
X(pr, ... ,Pn)' A disjunct D = I\~=l x j (PI , '" ,Pn) from DN F(A) is satisfiable iff 
the following system of linear equalities and inequalities is satisfiable: 

(5) 

2ft 

LYi= 1 
i=l 

Yi ~ 0 for i = 1, ... , 2n 

if Xl = P~Sl 
if Xl = P<Sl 

if X k = P~Sk 
if Xk = P<Sk 
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Since the problem of LP P2,Meas-satisfiability of A is reduced to the linear systems 
solving problem, the satisfiability problem for LP P2-logic is decidable. Finally, 
since A is LP P2,Meas-valid if! -,A is not LP P2,Meas-satisfiable, the validity problem 
is also decidable. 0 

We can show that the LP P2,Meas-satisfiability problem is NP-complete. 

Theorem 20. The LPP2,Meas-satisfiability problem is NP-complete. 

Proof. The lower bound follows from the complexity of the same problem for clas­
sical propositionallogic. The upper bound is a consequence of the NP-complexity 
of the satisfiability problem for weight formulas from [27, Theorem 2.9]3. 0 

3.6. A heuristical approach to the LP P2,Meas-satisfiability problem. Since the 
LP P2,Meas-satisfiability problem is NP-complete, it is natural to try to solve its 
instances using heuristics. In this section we describe such an approach which is 
based on genetic algorithms. 

Genetic algorithms (GA) use populations of individuals. Each individual (also 
called chromosome) is seen as a possible solution in the search space for the par­
ticular problem. Thus, a GA can be seen as a searching procedure for the global 
optima of the corresponding problem. Individuals are represented by genetic code 
over a finite alphabet. An evaluation function assigning fitness values to individuals 
has to be defined. Fitness values indicate quality of the corresponding individu­
als, while average fitness of entire populations may be good measures of obtained 
quality of the procedures. GA's consist of applications of the genetic operators to 
populations that must ensure that average fitness values are continually improved 
from each generation to subsequent. Basic genetic operators are selection, crossover 
and mutation, but some additional operators such as inversion, local search, etc., 
may be used. 

Selection mechanism favourizes highly fitted individuals (as well as parts of ge­
netic code of individuals, i.e., genes) to have better chances for reproduction into 

3Statements about complexity of the satisfiability problem for weight formulas from [27]. IAI 
and \IAII denote the length of A (the number of symbols required to write A), and the length of 
the longest coefficient appearing in A, when written in binary, respectively. The size of a rational 
number a/b, where a and b are relatively prime, is defined to be the sum of lengths of a and b, 
when written in binary. 
Theorem 2.6 Suppose A is a weight formula that is satisfied in some measurable probability 
structure. Then A is satisfied in a structure (S, H, /1-, v) with at most IAI states where every set of 
states is measurable, and where the probability assigned to each state is a rational number with 
size O(\AIIIAII + IAllog(\A\)). 
Lemma 2.7 If a system of r linear equalities and/or inequalities with integer coefficients each of 
length at most I has a nonnegative solution, then it has a nonnegative solution with at most r 
entries positive, and where the size of each member of the solution is O(rl + r log(r)). 
Lemma 2.8 Let A be a weight formula. Let M = (S, H, /1-, v) and Mo = (S, H, /1-, Vi) be probability 
structures with the same underlying probability space (S, H,/1-). Assume that v(w,p) = v'(w,p) 
for every state wand every primitive proposition p that appears in A. Then M F A iff Mo F A. 
Theorem 2.9 The problem of deciding whether a weight formula is satisfiable in a measurable 
probability structure is NPcomplete. 
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InputDataO; 
PopulationInitO; 
while(not FinishedGAO){ 

} 

for (i = 0 ; i < Npop ; i + +) Pi = ObjectiveFunctionO; 
HeuristicImprovementO; 
ComputeFitnessesO; 
SelectionO; 
CrossoverO; 
MutationO; 

OutputResultsO; 

FIGURE 1. A general description of GA's 
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next generations. On the other hand, chances for reproduction for less fitted mem­
bers are reduced, and they are gradually wiped out from populations. Crossover 
operator partitions a population into a set of pairs of individuals named parents. 
For each pair a recombination of their genetic material is performed with some 
probability. In that way nondeterministic exchange of genetic material in popula­
tions is obtained. Multiple usage of selection and crossover operators may produce 
that the variety of genetic materials is lost. It means that some areas of search· 
spaces become not reachable. This usually causes the convergence in local opti­
mums far from the global optimal values. Mutation operator can help to avoid this 
shortcoming. Parts of individuals (genes) can be changed with some small proba­
bility to increase diversibility of genetic material. An initial population is usually 
generated by random, although sometimes it may be fully or partially produced by 
an initial heuristic. A general description of GA's is given in Figure 1, where Npop 

and Pi denote the number of individuals and their objective values, respectively. 
The objective value of an individual corresponds to the value which the individ­
ual owns in the case of the considered problem. The for-loop is repeated until a 
finishing criterion (the global optima is found, the maximal number of iterations 
is reached, ... ) is satisfied. Since the procedure is not complete, if the maximal 
number of iterations is reached, we do not know whether the considered problem is 
solvable. HeuristicImprovementO can be optionally included to improve efficiency 
of GA and/or to help the procedure to escape from local optima. 

In this section, we slightly change syntax of probabilistic formulas. Namely, as 
we will mention below in Section 10, sometimes is suitable to consider boolean 
combinations of basic weight formulas of the form: al w( al) + ... + an w( an) ~ c, 
where ai's and c are rational numbers, and ai's are classical propositional formulas 
containing primitive propositions from rP. The intended meaning of w(a) is "the 
probability of a". Note that w(a) ~ 8 can be written as ~8a in our notation. A 
weight literal is an expression of the form I:i aiw( ai) ~ c or I:i aiw( ai) < c. The 
logic that allows such kind of formulas is still NP-complete-which can be proved as 
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above, i.e., by reducing the LP P2,Meas-satisfiability problem to linear programming 
problem - so by using this logic we just add some expressiveness to our language. 

Since Forp-formulas can be equivalently translated into their disjunctive normal 
forms, and a disjunction is satisfiable if at least one disjunct is satisfiable, in the 
sequel we will only consider formulas of the following form: 

k 

1\ aiw(CDNF(o:i» + ... + a~; w(CDNF(~;»rhoj d, 
j:::1 

where Pi E {~, <}, ai's and d are rational numbers, and CDNF(o:) denotes the 
complete disjurictive normal form of 0:. We say that such a formula is in the weight 
conjunctive form (wfc-form). Also, we will use at E CDNF(o:) to denote that the 
atom at appears in CDNF(o:). 

Example 21. The formula w(p -+ q) + w(P) ~ 1.71\ w(q) ~ 0.6 is satisfiable since 
the same ho~ds for the linear system 

p,(p 1\ q) + p,(p 1\ .q) + p.(.p 1\ q) + p.(.p 1\ .q) = 1 
p.(pl\q) ~ 0 
p.(pl\ .q) ~ 0 
p.(.p/\q)~O 
p,(.p/\ .q) ~ 0 
p.(p 1\ .q) + p.(-.p /\ q) + p.(-.p 1\ -.q) + 2p.(p 1\ q) ~ 1.7 
p.(p /\ q) + p.( -'P /\ q) ~ 0.6. 0 

The input for the LP P2,Meas-satisfiability checker based on genetic algorithms 
is a weight formula J in the wfc-form with L weight literals. Without loss of 
generality, we demand that classical formulas appearing in weight terms are in 
disjunctive normal form. Let <l>U) = {P1,"" PN} denote the set of all primitive 
propositions from J, and I<I>U) I = N. 

An individual M consists of L pairs of the form (atom, probability) that describe 
a probabilistic model. The first coordinate is given as a bit string of length N, where 
1 at the position i denotes -'Pi, while 0 denotes Pi. Probabilities are represented 
by floating point numbers. 

For an individual M = (at1,p.(at1», ... ,(atN,p.(atN»), the linear system is 

equivalent to: Vf:::1 0:7=1 aiip.(atj»Pici)' Note that it is possible that some 
aij = 0, though [aij] matrix is usually not sparse. 

The individuals are evaluated using function d(M), which measures a degree 
of unsatisfiability of an individual M. Function d(M) is defined as the distance 
between left and right hand side values of the weight literals not satisfied in the 
model described by M: 

d(M) = 2: [a1 2: p.(at) + .. , + a~i 2: p.(at) - Ci] 2. 

M~ti Pi Ci atECDNF(ai) atECDNF(a~J 

If d(M) = 0, all the inequalities in the linear system are satisfied, hence the indi­
vidual M is a solution. 
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Some features of GA have been set for all tests: 

• the population consists of 10 individuals, 
• one set of tests has been performed with a population of 20 individuals, 
• selection is performed using the rank-based roulette operator (with the rank 

from 2.5 for the best individual to 1.6 for the worst individual-the step is 
0.1), 

• The crossover operator is one-point, with the probability 0.85 
• the elitist strategy with one elite individual is used in the generation re­

placement scheme, 
• multiple occurrences of an individual are removed from the.population. 

Two problem-specific two-parts mutation operator were used. The first operator 
(TP 1) features two different probabilities of mutation for the two parts (atoms, 
probabilities) of an individual; after mutation, the real numbers in probabilities 
part of an individual have to be scaled since their sum must equal 1. The second 
operator (TP2) is a combination of ordinary mutation on atoms part, and a special 
mutation on probabilities part of an individual. Instead of performing mutation 
on two bits in the representation of probabilities part, two members Pil,Pi2 of 
probabilities part are chosen randomly and then replaced with random pi" pi

2 
' 

such that Ph + Pi2 = p~, + P~2 and 0 ~ p~, ,P~2 ~ 1. The sum of probabilities does 
not change and no scaling is needed. 

We have experimented with the following choices in the local search procedure: 
LSI (LS denotes "local search"): For an individual M all the weight literals 

are divided into two sets: the first set (B) contains all satisfied literals, while the 
second one (W) contains all the remaining literals. The literal tB PB CB E B 
(called the best one) with the biggest difference IJL(tB) - CBI between the left and 
the right side, and the literal tw PW Cw E W(the worst one) with the biggest 
difference IJL(tw) - cwl are found. Two sets of atoms are determined: the first 
set B At(f) contains all the atoms from M satisfying at least one classical formula 
af from tB = afw(af) + ... +afBw(afB), while the second one WAt(J) contains 
all the atoms from M satisfying at least one classical formula ar from tw = 
ar wear) + ... +arw w(arw)· The probabilities of a randomly selected atom from 
B At(f) " W At(f) and a randomly selected atom from W At(J) " B At(J) are changed 
so that tB PB CB remains satisfied, while the distance IJL(tw) - cwl is decreased or 
tw Pw Cw is satisfied. 

LS2: For na individual M, the worst weight literal tw PW Cw from W (the 
set of unsatisfied literals) with the biggest difference IJL(tw) - cwl is found. The 
literal can be represented as 2:7=1 aWjJL(atj)pwcw. We try to change the vector of 

probabilities [JL(atj)], so that the linear equation 2:7=1 aWjJL(atj) = Cw is satisfied. 

The equation 1:7=1 aWjJL(atj ) = Cw represents a hyper-plane in Rn while [awj] 
denotes a vector normal to the hyper-plane. The projection of [JL(atj)] to the 
hyper-plane, which satisfies the equation, is lJL'(atj)] = [JL(atj)] + kw[awj]. The 
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calculation of k and the projection vector is simple and straightforward, and gives 

k _ Cw - aw 0 [JI.(atj)] _ Cw - r:~=1 JI.(atj)awj 
- \ \2 - L aw '"'. aw· 2 

L.,J=I J 

We set the new vector of probabilities to be 

[JI." (atj)] = fax{JI.' (atj), O}] 
L:k=l max{JI.'(atk), O} 

(negative coordinates are replaced with 0, and the vector is scaled so that the sum 
of its coordinates r:f=l JI."(atj) equals 1). 

L83 is similar to L82, with the difference being made when choosing the weight 
literal tw Pw Cw from W (the set of unsatisfied literals). The chosen literal is the 
one with the smallest difference \JI.(tw) - Cw \; it is the best bad literaL 

L84 is similar to L82 and L83. Instead of calculating the projection [JI.'(atj)] = 
[JI.(atj)] + kw[awj] for one chosen weight literal tw PW Cw from W, we calculate 
kw.[awd] for each literal two pw. cw. from W (the set of unsatisfied literals) 
and calculate the intermediate vector [JI.' (atj)], by adding the linear combination 
to the original vector: IJL' (atj)] = IJL(atj)] + Lw. kw.[awd]' The new vector of 
probabilities [JI."(atj)] is then calculated in same fashion as in L82. 

In our methodology, introduced in [86], the performance of the system is eval­
uated on a set of PSAT-instances, i.e., on a set of randomly generated formulas 
in the wfc-form (with classical formulas in disjunctive normal form). The advan­
tage of this approach is that a formula can be randomly generated according to 
the following parameters: N-the number of propositionalletters, L-the number of 
weight literals, S-the maximal number of summands in weight terms, and D-the 
maximal number of disjuncts in DNF's of classical formulas. The considered set of 
test problems contains 27 satisfiable formulas. Three PS AT-instances were gener­
ated for each of 9 pairs of (N, L), where N E {50, 100, 200}, and L E {N, 2N, 5N}. 
For every instance S = D = 5. Having the above parameters, L atoms and their 
probabilities (with the constraint that the sum of probabilities must be equal to 
1) are chosen. Next, a formula f containing L basic weight formulas is generated. 
It contains primitive propositions from the set {PI, ... , PN} only. Every weight 
literal contains at most S summands in its weight term. Every classical formula 
is in disjunctive normal form with at most D disjuncts, while every disjunct is a 
conjunction of at most N literals. For every weight term t coefficients are chosen, 
and the value of t is computed. Next, the sum sp(t) of positive coefficients and the 
sum sn(t) of negative coefficients are computed. Finally, the right side value of the 
weight literals between sp(t) and sn(t), and the relation sign are chosen such that 
f is satisfiable. 

We prefer to test more problem instances of different sizes (even very large scale 
instances) rather than making more trials on a smaller set of instances (of smaller 
or average size). Since the tests are of large sizes, the necessity to perform them in 
a reasonable time imposed to set the maximal number of generations to be: 10000 
for N = 50,7000 for N = 100 and 5000 for N = 200. 
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L, N, 
inst. no. 
50,50, 1 
50,50,2 
50,50,3 
50, 100, 1 
50, 100,2 
50,100,3 
50,250, 1 
50,250,2 
50,250,3 
lOO, lOO, 1 
lOO, 100,2 
lOO, 100, 3 
100,200, 1 
lOO, 200, 2 
100,200,3 
100, 500, 1 
lOO, 500,2 
100,500,3 
200,200,1 
200,200,2 
200,200,3 
200,400,1 
200,400,2 
200,400,3 
200, 1000,1 
200, 1000,2 
200,1000,3 

Table 1 
TP2(12,4: 

to md. _20.nd. 

No LS 

0 1 
0 1 
0 1 
1 1 
1 2 
3 3 
16 20 
51 56 
18 20 
0 1 
0 1 
0 1 
8 12 
2 3 
1 3 

187 236 
295 309 
484 575 
58 91 
S- 6 
2 3 
12 11 

238 286 
205 230 
1593 2173 
N/A N/A 
1489 1861 

Table 2 
TP2(12,4) 

10 mdlVlduala 
L:l:" applied In 
each generation 

t.:;: L:;:' 1..:;3 t."4 
0 u 0 0 
0 0 0 0 
0 1 1 0 
1 0 0 2 
1 1 2 2 
1 2 7 10 

28 16 16 39 
24 38 34 97 
18 9 17 25 
0 0 0 0 
0 0 0 0 
0 0 0 1 
10 3 8 : 1 3 2 
4 1 2 26 

170 130 149 384 
242 241 298 333 
326 509 416 775 
71 108 56 134 
11 7 7 14 
4 1 2 2 
4 6 5 25 

N/A 195 163 484 
N/A 174 205 247 
3064 888 1347 29:2 
N/A N/A N/A N/A 
3298 1364 792 3548 

Table 3 
:P2(L2,4, 

10 mdlvlduala 
LS:S applied In eacb 

thjrd generation' 
L:l, t.:;2 1..:;3 [,::>4 

0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 1 
1 1 1 2 
1 2 3 4 

22 14 11 21 
26 35 30 50 
10 8 13 14 
0 0 0 0 
0 0 0 0 
1 0 0 0 
6 3 8 7 
1 3 1 4 
2 1 1 2 

94 145 244 228 
169 306 151 228 
296 390 355 461 
34 78 66 3471 
11 7 10 9 
4 1 1 4 
6 7 5 14 

N/A 171 161 296 
N/A 153 201 208 
2307 811 1271 1865 
N/A N/A N/A N/A 
2456 1135 1080 2023 

:P2l12,4) 

0 
0 
0 
1 
2 
1 

40 
68 
15 
0 
0 
1 
5 
4 
2 

269 
236 

1Q19 
146 
13 
4 
8 

479 
419 
2363 
N/A 
2818 

Table 5 
TP2(24,B; _'l't'2 l4S,15 : 
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~?mb.nat.on 0 
LS's applied in 
each generation 

0 0 
0 0 
0 0 
0 1 
2 3 
3 3 

35 42 
70 132 
16 19 
0 0 
0 0 
1 1 
5 7 
1 2 
2 2 

294 271 
260 480 
777 671 
270 202 
11 9 
2 3 

11 7 
686 1128 
334 374 

2087 2032 
19582 19977 
2770 2778 
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As an illustration of the corresponding results we give Table 1 which contains 
the average running time of successful tests as measured on our test computer (a 
Pentium P4 2.4GHz, 512MB-based Linux station). The table shows running times 
only for selected tests. Columns 2 and 3 show times for tests without LS's, with 
different population size (10 individuals vs 20 individuals). Increased population 
size does result in smaller number of iterations needed to find the solution, but the 
computational cost for each iteration is increased and the overall computational 
cost is greater than with smaller population size. In columns 4-7 and 8-11 we 
can compare the efficiency of various L8's. It is clear that L82 and L83 are more 
efficient than L81 and L84 when used for large problem instances, however it is 
not clear which of them is the most efficient. The running times in columns 8-
11 (L8's applied in each third generation) are on average smaller than times in 
columns 4-7 (L8's applied in each generation). However, this does not mean that 
the principle of reducing application of L8's to each third generation is always more 
efficient. Finally, columns 12-14 show execution times for tests using combination 
of L8's. Combined usage of L8's is not justified in terms of time efficiency, but it 
is justified in terms of increased success rate. Higher mutation rate in this setup 
leads to better time efficiency and higher success rate, except for a few less complex 
problem instances. 

4. Some variants of the logic LP P2 

The lack of compactness in the presence of a finitary axiomatization might cause 
a logical problem: there are consistent sets of formulas that have no model. Exam­
ple 4 contains such a set for LP P2 • One way to avoid consistency of unsatisfiable 
sets is to employ infinitary logic as we do above. On the other hand, the lack of com­
pactness motivates also investigations of models in which probabilities have a fixed 
finite range in which case a finitary axiomatization does not imply the above prob­
lem any more. In this section we present three logics inspired by the idea of restrict­
ing the range of probability measures. In the first logic (denoted LP pir(n)} we give 
a finitary sound and complete axiomatization with respect to a class of models with 
measures which have a fixed finite range of the form {O, 1/n, 2In, .. . , n - 1/n, I}. 
Then we introduce another logic (denoted LPP2

A
,w1 ,Fin) in which the assumption 

about the range of the measure is relaxed, and we consider the class of all probabilis­
tic models whose measures have arbitrary finite ranges (without the requirement 
that the range is fixed in advance). Finally, we analyze the logic LP pr It involves 
a rule that enables us to syntactically define the range of the probability function 
which will appear in the interpretation. 

4.1. logic LPpi'(n). Let n be a fixed positive integer, and Range = {O, 1/n, ... , 
(n -l}ln, I}. If sE [0,1), then s+ denotes min{r E Range: s < r}. If sE (0,1]' 
s- = max{r E Range: s > r}. The most of the notions defined in Section 3 are 
also used for the logic LP pir(n). The main, but important, differences are: 

• in Definition I-the finitely additive measure J.I. maps the algebra H to Range 
and 
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• in Definition 6-proofs are finite sequences of formulas. 

Note that LP p:r(n) -models are given relatively to n, and that different choices of n 
produce different logics. The axiomatic system Ax LP p,Fr(n) contains all the axioms 

2 

from the system AXLPP2' and the inference rules 1 and 2 (but note Rule 3), as well 
as the following new axiom: 

(7) P>sa -t P~s+a 

Since the only infinitary inference rule from AXLPP:! (Rule 3) is not included in 
Ax LPp,Fr(n) , it is a finitary axiomatic system. Nevertheless, many statements from 

2 

the previous section still hold. The next lemma states that Axiom 7 implies that 
the range of measures must be the set Range. 

Lemma 22. Let a be a sentence. Then: 

(1) I- P<ra -t P~r-a, 
(2) I- P>ra ++ P~r+a, 
(3) I- P~r- a ++ P <ra, 
(4) I- V:ERange P=sa, 
(5) I- ~sERangeP=sa, where ~ denotes the exclusive disjunction. 

Proof. (1) The considered formula is equivalent to Axiom 7 because P>ra = 
"'P~ra = "'P~l-r..,a = P<l-r..,a, and P~r+a = P~l-(l-r+)a = P~l-r+..,a = 
P ~(l-r)- ..,a. 

(2) The formula is obtained from the axioms 7 and 3'. 
(3) The formula is obtained from Axiom 3, and Lemma 22(1). 

(4) From Axiom 2' P~la (= "'P>la), we have I- (P~laV"'P~la)/\"'P>la. Thus, 

I- (P~la /\ "'P>la) V ("'P~l /\ "'P>la). 

From ~la/\"'P>la = P=la, and I- P<la -t P~la, we have I- P=laV P<la. From 
I- P<la ++ «P~l-a V "'P~l-a) /\ P<la), I- (P~sa -t P~s-a) ++ (P<s-a -t P<sa), 
we have 

I- P<la ++ «P~l- a/\ ",P>l-a) V (P<l- a/\P<la)), and I- P=laV P=l- aV P<l- a. 

In such a way we obtain I- (VsERangeP=sa) V P<oa. Since I- "'P<oa, we finally 

have I- VSERange P=sa. 

(5) From P=ra = P~ra /\ "'P>ra, and the axiom 3, we have I- P=ra -t "'P=sa, 
for s > r. Similarly, by the axiom 3', we have I- P=ra -t "'P=sa, for s < r. It 
follows that I- P=ra -t "'P=sa, for r f. s, and I- YsERangeP=Sa. 0 

The completeness proofs for the classes: 

LPp'Fr(n) LPp'Fr(n) LPp'Fr(n) d LPp'Fr(n) 
2,Meas' 2,Meas,AII' 2,Meas,u an 2,Meas,Neat 

are similar to the corresponding proofs from the previous section. In the sequel we 
sketch this proof and emphasize some modified steps. 

We begin as in the statements 8, 9 and 10. In the counterpart of Theorem 13 we 
do not use the step 2b of the construction of a maximal consistent set, but otherwise 
follow the corresponding proof. Then, the statements 12(1)-12(6) obviously hold, 
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while Lemma 12(7) needs some explanation. By Lemam 22(5), the supremum s 
of the set {r : P~ra. E T} must be in the set Range. Also, for that s, it must be 
P~sa. ET, where T is the considered maximal consistent set. Thus, Lemma 12(7) 
holds. A canonical model MT = (W, H, JL, v) is introduced as above. Note that in 
the counterpart of Theorem 14 for every formula a. E Fore, sup{r : P~ra. E T} 
is the same as max{ r : P~ra. E T; r E Range}, because the set Range is finite. 
Theorems 15- 18 can be now proved similarly as it is done above. 

Theorem 23 announces a property that does not hold for the systems considered 
in the previous section. Another difference between logics from this and the previous 
sections is illustrated in Example 24. 

Theorem 23 (Compactness theorem for LPPiR(n»). Let L be any class of models 
considered in this section and T be a set of formulas. If every finite subset of T is 
L-satisfiable, then T is L-satisfiabl~. 

Proof. If T is not L-satisfiable, then it is not Ax LpP!R( .. )-consistent. It follows that 
2 

T f-.1. Since the axiomatic system AxLPpFR( .. ) is finitary dne, there must be a 
2 

finite set T' C T such that T' f- .1.. It is a contradiction because every finite subset 
of T is both L-satisfiable and Ax LPpFR( .. )-consistent. 0 

2 

Example 24. For every positive integer n and Range defined as above, it is easy 
to construct an LP P2,Meas-model M = (W, H, JL, v) which does not satisfy that 
Axiom 7. For example, let n = 3, and P E <jJ: 

• W = {Wl,W2}, 
• H is the power set of W 
• JL(wt} = 1/2, JL(W2) = 1/2 and 
• V(Wl,P) = true, V(W2,p) = false. 

Since JL([P]M) = 1/2, obviously M F P>1/3P, and M jC P~2/3P, so the instance 
P>1/3P ~ P~2/3P of Axiom 7 does not hold in M. 0 

Finally, decidability of the satisfiability problem for the classes of models con­
sidered in this section can be proved similarly as Theorem 19. Only, note that the 
measures of atoms must be in the set Range. Since that set is always finite, there 
are only finitely many possibilities for such distributions, and decidability easily 
follows. 

4.2. Logic LPPt,wl,Fin. In Section 4.1 the considered measures have a fixed fi­
nite range. Using ideas from [98], that assumption is relaxed, and we prove the 
completeness theorem with respect to the class of all probabilistic models whose 
measures have arbitrary finite ranges (without the requirement that the range is 
fixed in advance). In the sequel some notions from [4] are used. 

Let A be a countable admissible set and w E A. We use LP pt,wl ,Fin to denote 
our logic. The language of LPPt,wl,Fin is a subset of A. It is the classical propo­
sitionallanguage (-', /\, V) augmented by a list of unary probabilistic operators of 
the form p.~s, for every sE [0, l]nA. An important characteristic of LP pt,wl>Fin is 
that the conjunction symbol and the disjunction symbol may be applied to finite or 



PROBABILITY LOGICS 65 

countable sets of probability formulas. It means that if G E A is a set of formulas of 
LP Pt-,wI,Fin, then: /\BEG cP and V BEG cP and are also LP P2

A ,wI,Fin -formulas (but 

note that all formulas from the set G must be from Forp). For an LPPt',wI,Fin_ 
formula CP, the formula cP, is obtained by moving a negation inside the formula 
cP over the classical connectives. For example, (/\<PEG cp), denotes V <PEG ,CP, and 
similarly for the other classical connectives. 

Here we consider a particular subclass of the class LP P2,Meas of all measurable 
probabilistic models. We denote it LP p~:~~in ,and it contains all measurable 
models whose measures have finite ranges. The satisfaction relation F generalizes 
the corresponding relation from Definition 2. The new cases are related to infinitary 
formulas: 

• if G is a finite or countable set of For p-formulas, M 1= 1\ G iff for every 
BEG,MFB,and 

• if G is a finite or countable set of Forp-formulas, M F VG iff there is some 
bEG so that M F B. 

The axiomatic system AXLPp'A,"'I.Fin contains all the axioms and rules from the 
2 

system AXLPP2, and also the following new axioms: 
(7) (,cp) B (cp,) 
(8) (I\BEG B) -t C, C E G, G E A, G is a set of probability formulas 
(9) V c>O AJ,EG(P>OOt -t P>cOt) , G E A, G is a set of classical propositional 

formulas 

and the rule 

(4) From B -t C, for all C E G, infer B -t I\CEG C, G is a set of probability 
formulas 

introduced in [53]. In the completeness proof a result4 from [9] and the weak-strong 
model construction from (98] will be used. A weak model is an LP p~:~::in -model 
defined above. 

Theorem 25. An LPP2
A ,wI,Fin -formula cP is consistent iD it is satisfiable in a weak 

model in which every Lppt',wl,Fin_theorem is true. 

Proof. The simpler direction follows from the soundness of the axiomatic system. 
For the other direction, let AI, A2 , ••• be an enumeration of all LPPt',wl,Fin_Forp_ 
formulas. We modify the construction from Theorem 13: 

(1) To = {cp} U Cnc(cp) U {P~IOt: Ot E Cnc(CP)} 
(2) for every i ~ 0, 

(a) if Ai = V BEGB and Ti U {Ai} is consistent, then for some BEG, 
Ti+l = Ti U {Ai} U {B} such that Ti+l is consistent, otherwise 

(b) if Ti U {Ai} is consistent, then Ti+l = Ti U {Ai}, otherwise 
(c) if Ai is of the form /3 -t P~s'Y, and Ti U {Ai} is not consistent, then 

Ti+l = Ti U {,Ai,/3 -t 'P>.s-l. 'Y}, for some positive integer n, so that 
Ti+l is consistent, otherwise n 

4Theorem 3.2.10 from [9] If I-' is a finitely additive measure and there is a real number 
c E (0,1) such that 1-'(8) > c, whenever 1-'(8) "# 0, then I-' has a finite range.O 
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(d) THl = Ti U {-,Ad. 
(3) T = U~O Ti . 

We can show that every Ti obtained by the new step in the construction (the 
step 2a) is also consistent. To prove that, suppose that Ti U {Ai} is consistent, 
where A = V BeG B, but that for every BEG, the set THl = Ti U {Ai} U {B} is 
not consistent. It means that 

• Ti U {Ai} U {B} f- 1., for every BEG 
• Ti U {Ad f- -,B, for every BEG 
• Ti U {Ai} f- "BeG -,B, by Rule 4 
• Ti U {Ad f- -, V BeG B, by Axiom 7 

which contradicts consistency of Ti U {Ai}. Then, we can follow the completeness 
prof for LP P2,Meas, and construct the canonical model M~. The axioms guarantee 
that M~ is a weak model in which every LPP2

A ,wl,Fin_theorem is true, and that 
M~ 1= cp iff cp E r. 0 

Note that, although in a weak model (since Axiom 9 holds) for every Forc­
formula 0: the following condition is fulfilled: 

(6) if M 1= P>oo: then M 1= P>co:. 

it may be the case that there is no single c > 0 such that the condition (6) holds 
for all formulas. Thus, we will now construct the corresponding strong model, i.e., 
a weak model M which satisfies that there is a c > 0 such that for every Forc­
formula 0: the condition (6) holds. By Theorem 3.2.10 from [9] (see Footnote 4), 
measures from a strong model have finite ranges, and the model belongs to the 
LP p'A,wl,Fin -class 

2,Meas . 

Theorem 26. An LP p[',wl,Fin -formula 4? is consistent iJJ it is satisfiable in a 
strong model in which every LP p[',wl,Fin -theorem is true. 

Proof. Again, the simpler direction follows from the soundness of the axiomatic 
system. To prove another part of the statement we consider a language LA con­
taining: 

• the following three kinds of variables: 
- variables for sets (X, Y, Z, ... ), 
- variables for elements (x, y, z, .. . ), 
- variables for reals from [0,1] (r, s, ... ), and 
- variables for positive reals greater than 1 (u,v, ... ) 

• the predicates: ~ for reals, V(u,u), E(x,X) and p,(X,r), 
• a set constant symbol WO! for every Lpp[',Wl,Fin-Forc_formula 0:, 

• a constant symbol rl for every real number r E [0,1] n A, and 
• two function symbols for additions and multiplications for reals. 

The intended meaning of E(x, X) is x E X, V(u, u) means that a formula 4? 
with the Godel-number u (denoted gb(4?) = u) holds in the model, while p,(X,r) 
can be understood as "r is the measure of X". We use p,(X) ~ r to denote 
(3s)(s ~ r t\p,(X,s», and V(cI» to denote V(gb(4?),gb(4?». 
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We define a theory T of Lw1w n A which contains the following formulas: 

(1) (VX)(W)«Vx)(E(x,X) B E(x, Y}) B X = Y} / 
(2) (Vx)(E(x, WaAP ) B (E(x, Wa)" E(x, Wp») for every a" /3 E Fore 
(3) (Vx) (E(x, W-,a) B --.E(x, Wa», for every a E Fore 
(4) (Vx) (E(x, Wpv-,p) 
(5) V(a) B Wa = Wpv-,p, for every a E Fore 
(6) V(P~sa} B JL(Wa) > s, for every a E Fore 
(7) V(ABEG B) B ABEG V(B), for every set of pr,obability formulas G E A 
(8) V(--.B) B --.V(B), for every LPP2

A,wl,Fin_Forp_formula B 
(9) (VX)(3 l r)JL(X,r) 

(10) (VX)(W)«JL(X, r) "JL(Y, s) " --.(3y) (E(y, X) "E(y, Y))) -7 

-7 (3Z)«\fy)«E(y,X) V E(y,Y» B E(y,Z» " JL(Z,r + sm . 
(11) (VX)«Vy)E(y,X) -7 JL(X, 1» 
(12) (3r> O)(VX)(JL(X) > 0 -7 JL(X) > r) 
(13) Axioms for Archimedian fields for real numbers 
(14) (Vx)E(x, W'l1) where W is an axiom of Lppt,wl,Fin 
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(15) (3x)E(x, W~) where ~ is the formula from the formulation of the statement. 

Let a standard model for LA be (W,H,F, V,E,JL, +,*,~, Wa,r}aEForc,rEF, where 
H C 2w , F = F' n [0, 1], F' eRa field, VcR x R, E c W x H, JL : H -7 F, 
+,*: F2 -7 F, ~c F2, and Wa EH. 

Let M = (W,H,JL,v) be a weak model for Lppt,wl,Fin. IT we define Wa = 
UWEW[a]W, and H = {Wa : a E Fore}, it easy to show that M can be transformed 
to a standard model. On the other hand, if W is a consistent LPP2

A,wl,Fin_formula, 
then there is a weak model in which it is satisfied, and consequently there is a 
standard model in which V(W) holds. 

Let To C T, To E A. Since Axiom 9 holds in the weak model M it follows 
that every To has a model. Hence, by the Barwise compactness theorem, T has a 
model M' = (W,H,F, V,E,JL, +,*,~, Wa,r}aEForc,rEF. We define a strong model 
M" = (W, H, JL, v) such that the following holds: 

• for every W E W, v(w,p) = true iff w E Wp for every primitive proposi­
tion p, 

• H = {Wa : a E Fore}, 
• JL(X) = r iff JL(X, r) holds in M'. 

Since (15) holds in M', M" F ~. o 
Completeness also holds for El definable theories, but we it is possible to show 

that it cannot be generalized to arbitrary theories. 

4.3. logic LP pr Another generalization of the logic LP pt,wloFin contains an 
infinitary rule which enables us to syntactically define the range S of the probability 
function which appears in the interpretation: 

• From A -7 P¥sa, for every sE S, infer A -7 1.. 

However, we will skip all technical details here and discuss another logic which 
extends LP p2

S in Subsection 9.1. 
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5. logic LP PI 

In this section we will present the logic LP PI which extends LP P2 so that 
iterations of the probabilistic operators are allowed. For example, a /\ P~sP~r(3 
is a formula of LP PI. In that way we can express statements about higher order 
probabilities and mix classical and probabilistic formulas. More formally, the set 
ForLPP1 of formulas is the smallest set containing primitive propositions, and closed 
under formation rules: if a and (3 are formulas, then P~sa, ...,a and a /\ (3 are 
formulas. The formulas from the set ForLPP1 will be denoted by a, (3, ... 

The corresponding semantics can be given as follows: 

Definition 27. An LP PI -model is a structure M = (W, Prob, v) where: 

• W is a nonempty set of objects called worlds, 
• Prob is a probability assignment which assigns to every W E W a probability 

space, such that Prob(w) = (W(w), H(w), JL(w)}, where: 
- W(w) is a non empty subset of W, 
- H(w) is an algebra of subsets of W(w) and 
- JL(w) : H(w) -+ [0,1] is a finitely additive probability measure. 

• v assigns to every w E W a two-valued evaluation of the primitive propo­
sitions, Le., for every w E W, v (w) : 4J -+ {true, false}. 

Note that, in contrast to Definition 1, there are as many probability spaces (in a 
model M = (W, Prob, v}) as the worlds (in the set W), i.e., for every world w there 
is a particular (W(w), Prob(w), JL(w)}. As a consequence, the satisfiability relation 
is now defined between worlds and formulas: . 

Definition 28. The satisfiability relation 1= fulfills the following conditions for 
every LPPI-model M = (W, Prob, v} and every world wE W: 

• if pE 4J is a primitive proposition, M, w 1= a iff v(w)(P) = true, 
• M, w 1= ...,a iff M, w .JC a, 
• M,w 1= a /\ (3 iff M,w 1= a and M,w 1= (3, and 
• M,w 1= P~sO: iff JL(W)([O:]M,w) ~ s, 

where [O:]M,w denotes the set {u E W(w) : M,u 1= a}. We will omit M from 
M, w 1= a and write w 1= a if M is clear from the context. Similarly, we will write 
[O:]w instead of [a]M,w. 

Similarly as above, we consider measurable models only. An LP PI-model M = 
(W, Prob, v) is measurable iffor every w E W the set H(w) = {[a]w : a E ForLPpJ. 
LP PI,Meas denotes the class of all measurable LP PI-models. 

Definition 29. A formula a E ForLPP1 is satisfiable if there is a world w in an 
LP PI,Meas-model M such that w 1= a; a is valid if it is satisfied in each world in 
each LP PI,Meas-model. A set T of formulas is satisfiable if there is a world w in an 
LPPI,Meas-model M such that w 1= a for every a ET. 

5.0.1. Axiomatization, completeness, decidability. It is interesting that a 
sound and complete axiomatization with respect to the mention class LP PI,Meas can 
be given by the axiomatic system AXLPP2 from Section 3. Of course, instances of 
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axiom schemata must obey the syntactical rules that hold in this section. However, 
the notions of deducibility and consistency introduced in the definitions 6 and 7 
must be changed. 

Definition 30. A formula a is deducible from a set T of formulas (T ~ a) if there 
is an at most denumerable sequence offormulas ao, al, ... , a, such that everyai is 
an axiom or a formula from the set T, or it is derived from the preceding formulas 
by an inference rule, with the exception that Rule 2 can be applied to the theorems 
only. If 0 ~ a, we say that a is a theorem (~ a). 

Definition 31. A set T of formulas is inconsistent if T ~ a, for every formula a, 
otherwise it is consistent. Equivalently, T is inconsistent iff T ~.L A set T of 
formulas is maximal if for every formula a either a E T or -,a ET. 

Now, the restriction from Definition 30 that Rule 2 can be applied to the the­
orems only guarantees that Deduction theorem for LP PI holds. Also, the coun­
terparts of the statements 10-13 can be proved in the same way as above. The 
canonical model M = (W, Prob, v) can be defined such that: 

• W = {w : w is a maximal consistent set of formulas}, 
• for every primitive proposition pE</>, and every w E W, v(w)(P) = T iff 

pEw, and 
• for every wE W, Prob(w) = (W(w), H(w),J.L(w») is defined as follows: 

- W(w) =W, 
- H(w) = {{u: u E W,a E u}: a E ForLPPt}, and 
- J.L(w)({u: U E W,a E u}) = sup{s: P.~8a E w}. 

Similarly as above, we can prove that for every formula a and every world w, a E w 
iff w 1= a. It follows that: 

• for all a and w, [a]w = {u: U E W,a E u}, 
• for all w, Prob(w) = (W(w), H(w),J.L(w),) is a probability space, 
• the canonical model M is an LPPI,Meas-model, and 
• every consistent set of formulas is satisfiable in some world from M, 

i.e., we obtain the extended completeness theorem for the class LPPI,Meas. Fur­
thermore, reasoning as in the sections 3.4 and 4, we can prove completeness for 
the following classes of models LP H,Meas,All, LP PI,Meas,tr and LP PI,Meas,Neat, and 
logics LPPir(n), Lppt,wl,Fin and LPPt 

Decidability and complexity of the satisfiability problem for the class LP PI,Meas 
are analyzed in the sequel of this section. 

Theorem 32. If a formula a is satisfiable, then it is satisfiable in an LP PI,Meas­
model with a finite number of worlds. The number of worlds in that model is at 
most 2k, where k denotes the number of subformulas of a. 

Proof. Suppose that a holds in a world of an LP PI,Meas-model M = (W, Prob, v). 
Let Subf(a) denote the set of all subformulas of a, and k = /Subf(a)/. Let ~ denote 
the equivalence relation over W2, such that w ~ u iff for every {3 E Subf(a), w 1= {3 
iff U 1= {3. The quotient set W/Rj is finite. From every class Ci we choose an element 
and denote it Wi. We consider the model M* = (W*,Prob*,v*), where: 
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• W· = {Wi}, 
• Prob* is defined as follows: 

- W*(Wi) = {Wj E W* : (3u E CwJu E W(Wi)} 
- H*(Wi) is the powerset of W*(Wi)' 
- J,t*(Wi)(Wj) = J,t(Wi)(CWj ), and for any D C H*(Wi)' J,t*(wi)(D) = 

L:WjED J,t*(Wi)(Wj), 
• V*{Wi)(P) = V(Wi)(P), for every primitive proposition p E 41. 

It is easy to show that M* is an LP PI,Meas-model. For example, for every Wi, 
J,t*(Wi) is a finitely additive probability measure, since 

We can now show that for every f3 E Subf(o:), f3 is satisfiable in M iff it is 
satisfiable in M*. If f3 E 41, M, W l= f3 iff for Wi E Cw, M, Wi l= f3 iff M*, Wi l= f3. 
The cases related to 1\ and -, can be proved as usual. Finally, let f3 = P.~8'Y. Then, 
M, W 1= p.~s'Y iff for Wi E Cw , M, Wi l= P~s'Y iff 

C,,:M,UF"Y 

iff M*, Wi l= p.~s'Y. 
Finally, it is clear that the number of different classes in W/1O:j is at most 2k, and 

the same holds for the number of worlds in M*. 0 

Theorem 33 (Decidability theorem). The logic LP PI is decidable. 

Proof. As it is noted above, a formula 0: is LP Pi,Meas-satisfiable iff it is satisfiable 
in an LP Pl,Meas-model with at most 2k worlds, where k denotes the number of 
subformulas of 0:. Observe that it does not necessary imply decidability of the 
satisfiability problem for the class LP Pi ,Mea:; because there are infinitely many 
such models. Nevertheless, the next procedure decides the satisfiability problem. 
The procedure is applied for every such 1 ~ 2k. 

Let Subf(o:) = {f3IJ ..• ,f3n,'Yl" .. ,'Ym}, and k = n+m. In every world W from 
M exactly one of the formulas of the form 

/Sw = f31 1\ ... 1\ f3n 1\ -''Y1 1\ ... 1\ -''Ym 

holds. For every 1 ~ 2k we will consider 1 formulas of the above form. The chosen 
formulas are not necessarily different, but at least one of the formulas must contain 
the examined formula 0:. Using probabilistic constraints (Le., formulas of the form 
P~sf3, -'P~sf3) from the formulas we shall examine whether there is an LP P1,Meas­
model M with 1 worlds such that for some world W from the model W 1= 0:. We do 
not try to determine probabilities precisely. Rather, we just check whether there are 
probabilities such that probabilistic constraints are satisfied in the corresponding 
world. To do that, for every world Wi, i < 1, we consider a system of linear equalities 
and inequalities of the form (we write f3 E 8w to denote that f3 occurs positively in 
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the top conjunction of 6w , i.e., if 6w can be seen as Ai 6i , then for some i, f3 = 6i ): 

(7) 

I 

LJt(Wi)(Wj) = 1 
j==1 

Jt(Wi)(Wj) ~ 0, for every world Wj 

L Jt(wd(wj) ~ 8, for every P~8f3 E 6w• 
Wj:{3E6"'j 

L Jt(Wi)(Wj) < 8, for every ""P~8f3 E 6w• 
Wj:{3E6"'j 

The first two rows correspond to the general constraints: the probability of the 
set of all worlds must be 1, while the probability of every measurable set of worlds 
must be nonnegative. The last two rows correspond to the probabilistic constraints, 
because 

L Jt(Wi)(Wj) = Jt(Wi)([f3]w.). 
Wj:{3E6"'j 

Such a system is solvable iff there is a probability f.J.( Wi) satisfying all probabilistic 
constraints that appear in 6w •• Note that there are finitely many such systems that 
can be solved in a finite number of steps. 

IT the above test is positively solved there is an LP Pl,Meas-model in which every 
world Wi 1= 6w•• Since a belongs to at least one of the formulas 6w., we have that a 
is satisfiable. If the test fails, and there is another possibility of choosing l and/ot 
the set of l formulas 6w , we continue with the procedure, otherwise we conclude 
that a is not satisfiable. 

It is easy to see that the procedure terminates in a finite number of steps. Thus, 
the satisfiability problem for the class LPP1 ,Meas is decidable. Since 1= a iff...,a is 
not satisfiable, the LP P1,Meas-validity problem is also decidable. 0 

The satisfiability problem for the class LPP1,Meas is in PSPACE, while NP is 
the lower bound of the complexity. The former statement is a consequence of 
the PSPACE-completeness of a more expressive logic from [28], while the later 
statement follows from the fact that the logic LP P2 can be seen as a sublogic of 
LPP1 • . 

6. Some extensions of the probabilistic language 
In this section we will analyze some possible extensions of the considered prob­

abilistic language. The first extension contains probabilistic operators of the form 
Q F with the intended meaning "the probability belongs to the set F". The next 
extension allows reasoning about qualitative probabilities. Finally, we mention a 
logic introduces in [27] in which linear combinations of probabilities can be ex­
pressed. All extensions will be considered in the framework of the logic LPP2 , but 
analogue analysis can be performed for the other above presented logics. 
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6.1. Probability operators of the form QF. We will use LPP2,p,Q,O to denote 
a probability logic which depends on a recursive family 0 of recursive subsets of S 
in a manner which will be explained below, while P and Q in the index means that 
two kinds of probabilistic operators will be used. More precisely, the language of 
LP P2,P,Q,O extends the LP P2-language with a list of unary probabilistic operators 
of the form QF, where F E O. For example, the set ForLPP2 .p.Q.o of formulas 
contains QFo. ~ -,P~8f3. Note that every particular choice of the family 0 of sets 
produces a different probability language, a different set of probability formulas 
and a distinct LP P2,p,Q,o-logic. 

To give semantics to formulas, we use the class LP P2,Meas of measurable LP P2-
models, and the corresponding satisfiability relation (from Definition 2) with addi­
tional requirement that: 

• M F QFo. iff JL([o.]) E F, for every F E 0 
which covers the case of the new operators. Note that -.QFo. is not equivalent to 
Q[O,l]-..Fo. because [0,1] ...... F ~ 0, and the later is not a well formed formula. 

It is obvious, using the semantics of P~8 and Q F-operators, that for a set F = 
{h, h, .. ·} E 0, QFo. H- V fiEF P=f, a.. But, if the set F is not finite, the right 
side of this equality is an infinitary disjunction which does not belong to the set 
ForLPP2,p,Q,O of formulas. Similarly for the formula P~so. H- Q[8,1]o., where s is a 
rational number from [0,1), the formula Q[s,ljo. ~ ForLPP2.P.Q,o' More formally: 

Definition 34. Let q" W E ForLPp2,P,Q,o' The set Mod(q,) = {M E LPP2,Meas : 
M F q,} consists of all LP P2,Meas-models of the q,. q, is definable from W if 
Mod(q,) = Mod(\I1). 

The above discussion suggests that in a general case neither the P~. -operators 
are definable from the Q.-operators (Le., some formulas on the language {-., /\, P~.} 
are not definable from the formulas on the language {-',/\,Q.}), nor are the Q.­
operators definable from the p~. -operators. The next theorems formalize these 
conclusions. 

Theorem 35. Let 0 be a recursive family of recursive rational subsets of [0,1]' 
F E 0 an infinite set, and LP P2,P,Q,O the corresponding logic. For an arbitrary 
primitive proposition p E rp, there is no probabilistic formula A on the sublanguage 
{-', /\, P~.} such that Q FP is definable from' a.. 

Proof. Suppose that there is a formula A on the language {-., /\, p~.} such that 
Mod(QFP) = {(W,H,p.,v) : p.([P]) E F} = Mod(A). Recall that A is satisfiable iff 
at least a system from the set of all linear systems that correspond to DNF(A) 
is satisfiable. Let at's be the atoms of A and Yt'S be the corresponding measures. 
The solutions of any of those systems must satisfy 2-a.EDNF(p) Yt E F. But, the 
solutions of the systems are of the following form: Yt E (r, s), Yt E [r, s), Yt E (r, s], 
and Yt E [r, sl· Such sets of solutions cannot produce the infinite, but denumerable 
set F as it is required. Hence, Q FP is not definable over A. 0 

Theorem 36. Let 0 be a recursive family of recursive rational subsets of [0,1], 
LPP2,p,Q,O the corresponding logic, and s E S ...... {I}. For an arbitrary primitive 
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proposition pE <p, there is no probabilistic formula A on the sublanguage {..." 1\, Q-l 
such that P~8P is definable from A. 

Proof. Suppose that there is a formula A on the language {..." 1\, Q.} such that 
Mod(P~8P) = Mod(A). The models of A are exactly those that satisfy JL[P] ~ s. 
But, similarly as above, the set of values for JL[P] produced by Mod(A) can be either 
denumerable, or its complement is denumerable. Hence, P~sP cannot be definable 
over A. 0 

Example 37. Formulas with the new probabilistic operators are suitable for rea­
soning about discrete sample spaces. For example, consider an experiment which 
consists of tossing a fair coin an arbitrary, but finite number of times. Then, Q Fa. 

holds in this model, where a. means that only heads (Le., no tails) is observed in 
the experiment, and F denotes the set H, b,~, .. . }. Since QF is not definable 
over the probability language {..." 1\, ~-l, this sentence cannot be described in the 
probability logics used so far. 

6.1.1. Expressiveness of LP P2,p,Q,o-logics. As it is noted above, every par­
ticular choice of the family of sets 0 produces a different LP P2 ,p,Q,o-logic. In 
this section we describe a relation of "being more expressive" between these logics. 
The fact that the corresponding hierarchy has no upper bounds, is a good reason 
for introducing many probabilistic logics with new type of probability operators, 
since no single probabilistic logic covers all contexts. The choice of particular logic 
depends on the particular situation that we wish to formalize. 

Definition 38. Let F be a rational subset of [0, 1]. The quasi complement of F is 
a set 1 - F = {1 - f : f E F}. 

Example 39. If F = {~ : i = 1,2, ... }, then, following Definition 38, 1 - F = 
{ 2i-1 . 1 2 } 2'":t= , , .... 

It is easy to see that the quasi complement has the following properties: 

• 1 - (F n G) = (1 - F) n (1 - G), 
.1-(FUG)=(1-F)U(1-G), 
• 1 - (F '- G) = (1 - F) '- (1 - G) and 
• 1 - (1 - F) = F. 

These properties, as well as the properties of U, nand '-, guarantee that an arbitrary 
expression on the language {U, n, '-, 1-} can be rewritten in a normal form as a 
finite union of finite intersections of differences between sets and quasi complements 
of sets. 

Definition 40. Let 0 1 and O2 be recursive families of recursive rational subsets 
of (0,1]. Let F1 E 0 1, F1 is representable in O2 if it is equal to a finite union of 
finite intersections of sets, differences between sets and quasi complements of sets 
from O2 and sets [r,s], [r,s), (r,s]'and (r,s), where rand s are rational numbers 
from (0,11. The family of sets 0 1 is representable in O2 if each set F1 . E 0 1 is 
representable in 02. 

Example 41. Let us consider a positive integer k > 0, the sets 
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F1 = {to : i = k, k + I, ... } U {3
i

3-;-1 : i = k, k + 1, ... }, 

F2 = {t.: i = 1,2, ... }, 
F3 = {t- : i = 1,2, ... }, 

and the family O2 = {F2' F3}. By Definition 40, F1 is representable in O2 because 

F1 = (F2 n [0, 1/2k]) U (1- F3 ) n [(3k -1)/3\ 1]). 

On the other hand, the set F4 = {1/22i : i = 1,2, ... } is not representable in O2. 

Theorem 42. Let 0 1 and O2 be recursive families of recursive rational subsets of 
[0,1]. Let F1 E 0 1 be representable in O2. For an arbitrary formula a E Fore, 
there is a formula </J E ForLPP2,p,Q,02 such that Mod(QF1a) = Mod(</J), i.e., QF1a 
and </J have the same models. 

Proof. Suppose that F1 = U:1 n7~1 Fi,j (for the meaning of Fi,j see below). It is 
easy to see that for an arbitrary formula a E Fore we have (in the LP P2,P,Q,olU02): 

where 

m ki 

f- QF1a ++ V 1\ RFi,ja 
i=l j=l 

P~sa" P~ra, 

P~sa" P<ra, 
P>sa" P~ra, 

P>sa " P <ra, 
QFi,ja, 

if Fi,j = [s, r] 
if Fi,j = [s, r) 
if Fi,j = (s, r] 
if Fi,j = (s, r) 
if Fi,j E O2 

RFi,j a = Q Fi,j --.a, if Fi,j = 1 - FI,j' FI,j E O2 

QF! ,a" --.QF!' a, if Fi ], = F! , "P'" F! "F!', E O2 ".' 1,3 ,1.,3 '&,3 ',1 'lt3 

QFi,ja" --.(P~sa" P~ra), if Fi,j = Ft,j ,,[s, r], ..f[,j E O2 

QFLa" --'(P~sa" P<ra), if Fi,j = Ft,j " [s, r), Ft,j E O2 

QFi,ja" --'(P>sa" P~ra), if Fi,j = FI,j " (s, r], Ft.j E O2 

QF! ,a" --'(P>sa" P<ra), if Fi ], = F[], " (s, r), F[3' E O2 
\d ' 1 , 

Formula V'::l ";~1 RFi,j a belongs to LP P2,P,Q,02' and 

m k' 

Mod(QF1a) = MOd(~j6 RFi,ja). 0 

Definition 43. Let 0 1 and O2 be recursive families of recursive rational subsets 
of [0,1], and L1 and L2 be the corresponding LPP2,p,Q,o-logics. The logic L2 is 
more expressive than the logic L1 (L1 ~ L2) if for every formula </J E FOrLPl'2,p,Q,Ol 
there is a formula 'ljJ E ForLPP2,p,Q,02 such that Mod(</J) = Mod('ljJ), 

Theorem 44. Let 0 1 and O2 be recursive families of recursive rational subsets 
of [0, 1], and L1 and L2 be the corresponding LPP2,p,Q,o-logics. The family 0 1 is 
representable in the family O2 ifJ L1 ~ L2, 
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Proof. (=» Let A E ForLPP2,p,Q,OI' A is equivalent to 

m ki 

DNF(A) = V 1\ X i ,j(Pl,'" ,Pn), 
i=l j=1 

where every xi,j can be from the set {P~Si,;, P <Si,;' Q Fi,;' -.Q Fi.J. Furthermore, 
Mod(A) = U:'1 n;::1 Mod(Xi,j (PI, ... ,Pn))' Let us consider the case where Xi,j = 
Q Fi,r By the hypothesis the set Fi,j is representable in Oz. Using the theorem 
42 there is a formula Bi,j E ForLPP2,p,Q,02 such that Mod(X i ,j(P1,'" ,Pn)) = 
Mod(Bi J')' and similarly for Xi,j = -.QF· ., whilst the cases where Xi,j = p.>-s· ., 

, '., ;;.0" '.' 

or xi,j = P <Si,; are both expressible in the logics L1 and L2 • Hence, there is a 
formula B E ForLPp2,P,Q,02 such that Mod(A) = Mod(B). 

( <=) To avoid repetition of similar arguments, in the sequel of this proof we will 
use Q{!} instead of P=J' By the hypothesis, for every primitive proposition pE <p, 
and every F1 E 0 1 there is a formula ~ E ForLPP2,p,Q,02 so that Mod(QFIP) = 
Mod(~). If Fl is an empty set, or a finite set, the formula QF1P tt V JEFl Q{!}P 
is a theorem (an empty disjunction is a contradiction), and Fl = U/EFJf,/l is 
representable in O2 • 

Wp- can show that, if Fl = {h, /Z, ... } is an infinite set of rational numbers from 
[0, IJ, the formula ~ cannot be propositional. Suppose that BEFore. Then, the 
following cases must be distinguished: 

• if ~ -t -'P and ~ -t P are not theorems, consider the model M = ({ Wl , wz}, 
2{W1 ,W2},J.t,v} such that J.t({wt}) = q, J.t({W2}) = 1- q, where q is an irrational 
number, V(W1)(P) = V(Wl)(,B) = T, and V(W2)(-'p) = V(W2)(,B) = T; since J.t([P]) = 
q, it follows that M E Mod(~) and M fj. Mod(QpIP), a contradiction, 
• if ~ -t -'P is not a theorem, whilst ~ -t P is a theorem, consider an 8 E 
Fl " {O}, and the model M. = ({wl,wz},2{Wl,W2},IL,v} such that 1L({Wt}) = 8, 

1L({W2}) = 1- 8, v(wt)(P) = V(Wl)(-'~) = T, and V(W2)(-'P) = V(W2)(-'~) = T; 
since J.t([P]) = 8, it follows that M fj. Mod(~) and ME Mod(QF1P), a contradiction, 
and 
• if ~ -t -'P is a theorem, consider an 8 E Fl " {O}, and the model M = 
({Wl,W2},2{W1 ,W2 },J.t,v) such that J.t({wt}) = 8, J.t({W2}) = 1 - 8, V(Wl)(P) = 
v(wd(-'~) = T, and V(W2)(-'p) = V(W2)(~) = T; since J.t([P]) = s, it follows that 
M fj. Mod(~) and ME Mod(QFIP), a contradiction. 

Hence, ~ E ForLPP2,p,Q,02 "Fore. Let the disjunctive normal form of ~ be 

DNF(~) = V:'l A~::l Xi,j(P1,'" ,Pn) such that all A~::l Xi,j(Pl,'" ,Pn) are con­
sistent. Since q> tt (q> /\ P~op) is a valid formula, we can suppose that the primitive 
proposition P appears in q>. Let p be PI, and al,. .. , az" be the list of all atoms 
of ~ ordered such that ai = P /\ ... , for i = 1, ... , 2n - 1 , and ai = -'P /\ ... , 
for i = 2n- 1 + 1, ... , 2n. Let Yl,"" yzn denote the atoms' measures. All the 
LP P2,Meas-models can be seen as points (81, 8Z, ... , 82") in the 2n-dimensional 
space E, such that ith coordinate corresponds to Yi, for all i = 1, ... , 2n. Since 
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Mod(QFIPd = Mod(4)), we have for every yE [0,1]: 

(y, 0, ... ,0,1- y, 0, ... ,0) E Mod(QFIP1) iff (y, 0, ... ,0,1- y, 0, ... ,0) E Mod(4)), 

where the entry 1 - y is in the 2n - 1 + l'st position. Thus, 
m ki 

yE F1 iffy E U n {y I (y,O, ... ,O,l-y,O, ... ,O) E M(XiJ (P1, ... ,Pn))}, 
i=1 j=1 

and by straightforward inspection of equalities, inequalities and constraints that 
can appear in the systems corresponding to the disjuncts from DNF(4)), the set 

F1 = {y I (y,O, ... ,O,l-y,O, ... ,O) E Mod(X i ,j(Pl, ... ,Pn))}, 

is representable in the family O2 • 

Since every F1 E 0 1 is representable in the family O2 , the family 0 1 is repre-
sentable in O2 • 0 

Theorem 44 correlates the relations of "being more expressive" between the 
LP P2,p,Q,o-logics, and "being representable in" between the corresponding families 
of sets. In the sequel we investigate the later relation having in mind the former 
one. The relation "being more expressive" describes the hierarchy of expressiveness 
of the LP P2,p,Q,o-logics. 

Definition 45. Let 0 be a recursive family of rational subsets of [0, 1]. The family 
of all rational subsets of [0, 1] that are representable in 0 is denoted by o. 

It is easy to see, using Definition 40, that a family 0 is closed under finite 
union, finite intersection, quasi complement and difference of sets. Each family 
o contains all finite rational subsets of [0,1]. Since the operations of union and 
intersection satisfy the commutative, associative, absorption and distributive laws, 
every family 0 with the standard set operations is a distributive lattice. Note that, 
if complement of a set F. is understood as [0,1] ....... F, 0 is not a Boolean algebra 
since [0,1] ....... F et. S. On the other hand, if SE 0, and complement is understood 
as S ....... F, 0 becomes a Boolean algebra. 

Definition 46. Let 0 1 and 02 be recursive families of rational subsets of (0,11. 
The binary relation ~ is defined such that 0 1 ~ O2 iff 0 1 = O2 • 

The relation ~ is an equivalence relation on the set () of all recursive families 
ofrational subsets of [0,1]. We use ()/~ to denote the corresponding quotient set. 
Each equivalence class 0 E ()/~ contains a unique maximal family 0 0 such that 
0 0 = O. For such an equivalence class 0 and the corresponding family 0 0 we say 
that 0 0 represents o. Let the set {Oo : 0 0 represents 0 E ()/~} be denoted by ()*. 

Clearly, 0* is countable. 

Definition 47. Let 0 1 and O2 be different families from ()*. Then 0 1 < O2 iff 
0 1 is representable in O2 • 

Theorem 48. Let 0 1 and O2 be different families from ()*. Then 0 1 < O2 iff 
0 1 C O2 • 
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Proof. The statement is an immediate consequence of the corresponding definitions. 
o 

Theorem 49. The structure (0* , <) is a lattice. 

Proof. Since C is a partial ordering, by Theorem 48, the relation < defined on 
0* is a partial ordering, too. Moreover, any two elements of (0*, <) posses both 
the least upper bound, and the greatest lower bound. Suppose 0 1 , O2 E 0*. Let 
0 3 = 0 1 U O2 • Obviously, 01 < 0 3 , and O2 < 0 3 • Suppose that there is an 
0 4 E 0*, such that 0 1 < 0 4 and O2 < 0 4 . Butthen, by Theorem 48,01 C 0 4 , 

O2 C 0 4 , and 0 1 U 02 C 0 4 • It follows that 0 3 < 0 4 • Hence, 0 1 U O2 is the 
least upper bound of {01,02}. Similarly, the greatest lower bound of {01,02} is 
0 1 n O2 • Since (0·, <) is a partially ordered set such that any two elements posses 
both a least upper bound, and a greatest lower bound, it is a lattice. 0 

The meet (-) and join (+) operations can be aefined as usual: 

0 1 . O2 = 0 1 n O2, and 0 1 + O2 = 0 1 U 02. 

Since every set that is representable both in 0 1 and in O2 , is representable in 
0 1 n O2, we have 0 1 n O2 = 0 1 n 02, and 0 1 . O2 = 0 1 n O2. On the other hand, 
note that the join operation and the set union do not coincide, because for some 
01, O2 E 0* , it can be 0 1 U O2 i:- 0 1 U O2 • 

Theorem 50. The lattice (0*, <) is not a modular. 

Proof. We can find a counter example for the modularity law: if 02 < 0 1 , then 
(01 . (02 + 0 3» = (02 + (01 .03». Let Prim = {k1, k2' ... } denote the set of all 
prime numbers. Then, consider the sets: F1 = {~ : i = 1,2, ... }, F2 = {~ : i = 
1,2, ... }, and F3 = F1 " {2'2~-1 : i = 1,2, ... }, and the families 0 1,02,03 E 0*, 

such that 0 1 = {F1,F2 }, O2 = {F2}, and O2 = {F3}. Obviously, O2 CO l , 

and 02 < 0 1. Since F1 = F2 U F3, H is representable in O2 + 0 3, and also in 
0 1 • (02 + 0 3). On the other hand, F1 is neither representable in O2 nor in 0 3. 
Thus, F1 is not representable in O2 + (01 .03), and the modularity law does not 
h~. 0 

Theorem 51. 0 is the small~t element of (0· , <) . 

Proof. 0 contains all the finite rational subsets of [0,1] only. Since an arbitrary 
o E 0* contains these sets, 0 cO and 0 < O. 0 

Let F1 = {ro, rI, ... } be a rational subset of [0, 1 J with only one accumulation 
point.' Let 0 1 = {Fd, 02 EO·, and 02 < 0 1. Note that a set F2 E O2 can 
be either a finite set, or an infinite set such that symmetric difference of either 
F1 and F2, (F1 "F2) U (F2 "F1), or 1 - H and F2 is finite. If all the sets from 
O2 are finite, then O2 = O. Suppose that there is an infinite set F2 E O2 that 
is representable in 0 1 • F2 differs from F1 (or 1 - Fd in finitely many elements. 
It follows that F1 is representable in O2, 0 1 < O2, and 0 1 = 02. Hence, 0 1 is 
an atom of (0·, <). Suppose that a family 0 E 0* contains a set F with finitely 
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many accumulation points. For every F1 C F with only one accumulation point, 
and 0 1 = {Fd holds 0 1 < O. Finally, let us consider a family which contains a 
set with infinitely many accumulation points. Suppose that a set Fo is dense in 
(ao, bo) C [O,IJ, and 0 0 = {Fo}. We can obtain two sequences ao < a1 < a2 < ... 
and bo > b1 > b2 > .. , such that ai < bj for every i and j, a sentence of sets 
Fo :) F1 :) F2 :) ... that are dense in (aI, b1) C [O,IJ, (a2'~) C [0, IJ,"" 
respectively, and an infinite sentence of families 0 1 == {Fd, O2 = {F2 }, ... , such 
that 0 < .. , < O2 < 0 1 < 0 0 • Obviously, there is no atom in this sequence. 

In particular, we have the following theorems: 

Theorem 52. A necessary and sufficient condition that an 0 E 0* be an atom 
is that 0 = {F}, where F is a set with only one accumulation point. The lattice 
(0*, <) is non-atomic. 

Theorem 53. There is no greatest element in (0*, <). Consequently, the lattice 
0* is a-incomplete. 

Proof. Since the family of all recursive subsets of S is not recursive, for each recur­
sive family 0 of recursive subsets of S there is a recursive F ~ S non-representable 
by O. Hence, there is no greatest element in 0*. Furthermore, a-incompleteness 
is an immediate consequence of the fact that 0* is a countable ordering without 
upper bounds. 0 

Thus, we can define a hierarchy of the LPP2 ,p,Q,o-10gics, so that a logic L1 is 
less expressive that a logic L2 (L1 < L2) iff the corresponding families 0 1 and O2 

of rational subsets of [0, IJ satisfy a similar requirement (01 < O2 ). The hierarchy 
of the probability logics is isomorphic to (0*, <). Thus, the probability logic LP P2 

is on the lowest level in the hierarchy of the LP P2,p,Q,o-10gics and corresponds to 
the O-element of (0* , <). 

6.1.2. Complete axiomatization. Let us consider a fixed recursive family 0 
of recursive subsets of S and the corresponding LP P2,p,Q,o-10gic. The axiomatic 
system AXLPP2•P,Q.o extends the system AXLPP2 with the following axiom: 

(7) P=so. -t QFo., where FE 0 and sE F 

and the inference rule: 

(4) From P=so.:::} </J, for all s E F, infer QFo.:::} cP. 
As an illustration we give a list of useful theorems of AxLPP2.P,Q,O : 

Theorem 54. If all the mentioned formulas belong to the set ForLPP2,p,Q,O' the 
following holds in the corresponding LPP2,p,Q,o-logic: 

(1) r QFo. -t QGo., for Fe G 
(2) r (QFo." QGo) t-t QFnGo. 
(3) r (QFo. V QGo.) t-t QFuao. 
(4) r (QFo." P~so.) t-t Q[s,11nFo., and similar for P?.o., P~so., P~so. 
(5) r QFO t-t Q1-F"o., where 1 - F = {1- f ; f E F} 
(6) r (QFo." "QGo.) t-t QF ..... Go. 
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Proof. Let us consider the case (1). If F,G EO: 

f- P=sO! -+ QoO! for every s E F c G, by Axiom 7 
f- Q FO! -+ QoO!, by Rule 4. 

The other statements follow similarly. 

79 

o 

The completeness proof for AXLPP2 ,p,Q,O follows the ideas from the correspond­
ing proof from Section 3.4. 

6.1.3. Decidability. In Section 3.5 we proved decidability of the LPP2 logic 
which can be seen as an LPP2,p,Q,o-logic with the empty family O. The proof 
involves a reduction of a formula to a system of linear (in)equalities. A look on 
this method indicates that the similar procedure might be applied for an arbitrary 
LPP2,p,Q,o-logic. However, since there are also the operators of the form QF, 
instead of the system (5), we have to consider linear systems of the following form: 

i=l 

(8) 

An obvious statement holds: 

Yi ~ 0, for i = 1, ... ,2n 

if Xl = P.~SI 
if Xl = P<SI 

if Xl = QFl 
if Xl = -.QF1 

if X k = P.~8k 
if Xk = P<Sk 

if Xl = QFk 
if Xl = -.QFk 

Theorem 55. An LP P2,p,Q,o-logic is decidable iff for every probabilistic formula 
A E ForLPPJ,p,Q,O "Fore there is at least one disjunct from DN F(A) such that the 
corresponding system (8) is solvable. 

The requirement from Theorem 55 is very strong. For example, consider the 
system 

YI + Y2 = 1 
Yi ~ 0, for i = 1,2 

YI ~ s 

YI E F 

obtained from the formula P~8P 1\ Q FP. The system is solvable only if F n [s, 1] =I- 0 
is decidable, and this depends on the set F. If F is a co domain of a suitable 
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rational-valued function, the system can be solved, but, in the general case, decid­
ability of the set F does not imply that either the system is solvable or that the 
LP P2 ,p,Q,o-logic is decidable. However, there are recursive families 0 such that 
the corresponding probabilistic logics are decidable. A trivial example of this kind 
is any recursive 0 ~ [S)<w, where [S]<w is the family of all finite subsets of S. A 
nontrivial example of a decidable logics concerns the logic which is characterized 
by the family 0 such that each F E 0 is definable (with rational parameters) in 
the language of ordered groups. 

6.2. Qualitative probabilities. Reasoning about qualitative probabilities is one of 
the most common cases of qualitative reasoning. Here we offer the first strongly 
complete formalization of the notion of qualitative probability within the framework 
of probabilistic logic. We obtain the language of the corresponding logic (denoted 
LP P2 ~) by extending the LP P2-language with an additional binary operator j, 
such that for some Fore-formulas 0: and (3, 0: j (3 means "(3 is at least proba­
ble as a". Similarly as in Section 6.1, we use the class LP P2,Meas of measurable 
LP P2-models, and the corresponding satisfiability relation (from Definition 2) with 
another additional requirement that: 

• If 0:, (3 E Fore, M F 0: j (3 if! 1-'([0:]) ~ 1-'([(3]), 

The axiomatic system AXLPP2d extends the system AXLPP2 with the following 
axioms: 

(7) (P~sO: /\ P~s(3) ~ 0: :j (3 
(8) (o::j (3 /\ P~sO:) ~ P~s(3, 

and the inference rule: 

(4) From A ~ (P~sO: ~ P~s(3) for every s E S, infer A ~ 0: :j (3. 

The next theorem gives us some useful properties of the probability operator :j: 

Theorem 56. Suppose that T is a set of formulas and that 0:, (3, "/ E Fore. Then 
the following holds: 

(1) T f- a:j (3 if and only ifT f- P~s(O:) ~ P~s«(3) for all s E Sj 
(2) f- 0: :j (3 V (3 :j aj 

(3) f- (0: :j (3/\ (3 :j ,,/) ~ ~ :j ,,/j 
(4) f- 0: :j O:j 

(5) 1fT f- P~l(O: ~ (3) then T f- 0: :j (3j 
(6) 1fT f- 0: ~ (3 then T f- 0: :j (3. 

Proof. Since (5) directly follows from (1), (4) from (2), and (6) is a consequence of 
(5) and Rule 2, we will prove only the first three statements. 

(1) Suppose that T f- 0: :j (3. By the axioms 1 and 8 we have that 

T f- 0: :j (3 ~ (P~s(O:) ~ P~s«(3)). 

Now applying Rule 1 we obtain that T f- P~s(O:) ~ P~s«(3). Conversely, suppose 
that T f- P~s(O:) ~ P~s«(3) for each sE S. Then by Axiom 1 

T f- P~o(o:) ~ (P~s(O:) ~ P~s«(3)) 

i I 
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for each s E S. Applying Rule 4 we deduce that T I- ~o(o:) -+ 0: j [3. Finally, 
since T I- P~o(o:) (Axiom 2), by Rule 1 we conclude that T I- 0: j [3. 

(2) First let us observe that Axiom 7 is equivalent to 

"'(0: j (3) -+ (P~8([3) -+ P>s(o:». 

Since I- P>8(0:) -+ P~8(0:), we have that I- "'(0: j (3) -+ (P~8([3) -+ P~8(0:» for 
every S E S, so by Rule 4 we obtain I- "'(0: j (3) -+ [3 j 0:, which is equivalent to 
I- 0: j [3 V [3 j 0:. 

(3) According to Deduction theorem, it is sufficient to prove that 

0: j [3,[3 j "I I- 0: j "I. 

Since 0: j [31- P~8(0:) -+ P~8([3) and [3 j "I I- P~8([3) -+ P~8("I), we have that 

0: j [3,[3 j"l I- P~8(0:) -+ P~s("I). 
This holds for all sE S, so applying the statement (1) from this theorem, we obtain 
that 0: j [3,[3 j "I I- 0: j "I. 0 

The corresponding completeness proof follows the same steps as above for LP P2 • 

Also, decidability can be proved in the same way as in Section 3.5 since the only 
new type of formulas (0: j (3) can be reduced to an inequality of the form: 

a"ECDNF(a) a"ECDNF(t3) 

It is also interesting that, if we add the qualitative probability operator to the 
logic LP pir{ n), due to the fact that the set Range (which denotes the range of the 
considered probability functions) is finite, 0: j [3 can be seen as an abbreviation of 
the formula /\8ERange(P~80: -+ P~8(3). Thus, the notion of the qualitative proba-

bility is definable in LP pIr( n) , and the logics LP PJ'{ n) and LP PJ'~ n) coincide (in 
the sense that the later one is a conservative extension ofthe for~er logic). 

7. First order probability logics 

This section is devoted to a probabilistic extension of first order classical logic. 
In this case interleaving of the probabilistic operators and the classical quantifiers 
is important, especially when we compare first order probability logics to first order 
modal logics. Thus, to avoid repetition and contrary to Section 3, we will start here 
with the logic LFO PI, the first order counterpart of the propositional probability 
logic LPP1 • 

7.1. 5 yntax. The language of the LFO PI -logic is an extension of the classical first 
order language. It is a countable set which contains for each non negative integer 
k, k-ary relation symbols pok, P1

k, ... , and k-ary function symbols Fok, Fl, ... , and 
the logical symbols A, and .." quantifier 'if, a list of unary probability operators P~8 
for every rational number s E [0,1], variables x, y, z, ... , and parentheses. 

The notions of existential quantifier, arity of a functional or a relational symbol, 
term, atomic formula, bound and free variables, sentence, and a term free for a 
variable in a formula can be defined as usual, while the set ForLFoPl of formulas 
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is the smallest set containing atomic formulas and closed under formation rules: if 
a and [3 are formulas, then -.a, P~sa, a A. [3 and (V'x)a are formulas. 

Example 57. An example of a formula is: 

P~s (V'x)pl (x) -t pi(y, Fg) A. P~rP~tPl (F'f). 

a(xl, .. . , xm) indicates that free variables of the formula a form a subset of 
{Xl' ... ' Xm}. If t is a term free for x in a, then aCt/x) denotes the result of 
substituting in a the term t for all free occurrences of x. We will also use the 
shorter form a(t) to denote the same substitution. 

7.2. Semantics. The models we will use are similar to LPPl,Meas-models with 
an important difference that worlds of models are now classical first order models. 
More formally: 

Definition 58. An LFOPl -model is a structure M = (W, H, p" v) where: 

• W is a non empty set of objects called worlds, 
• D associates a non empty domain D (w) with every world w E W, 
• I associates an interpretation I(w) with every world wE W such that: 

- I(w)(Fi
k) is a function from D(w)k to D(w), for all i, and k, 

- I(w)(Pf) is a relation over D(w)k, for all i, and k. 
• Prob is a probability assignment which assigns to every w E W a probability 

space, such that Probe w) = (W (w), H (w), p,( w)), where: 
- W(w) is a non empty subset of W, 
- H(w) is an algebra of subsets of W(w) and 
- p,(w) : H(w) -t [0,1] is a finitely additive probability measure. 

The next definitions reflect the mentioned fact that worlds in LFOPl-models 
are classical first order models. 

Definition 59. Let M = (W, D, I, Prob) be an LFOPl-model. Avariable valuation 
v assigns some element of the corresponding domain to every world wand every 
variable x, Le., v(w)(x) E D(w). If w E W, dE D(w), and v is a valuation, then 
vw[d/x] is a valuation like v except that vw[d/x](w)(x) = d. 

Definition 60. For an LFOP1-model M = (W,D,I,Prob) and a valuation v 
the value of a term t (denoted by I(w)(t)v) is: 

• if t is a variable x, then I(w)(x)v = v(w)(x), and 
• if t = Fim(t1, ... , tm ), then 

I(w)(t)v = I(w)(Fi)(I(w)(tdv, ... , I(w)(tm)v). 

Definition 61. The truth value of a formula a in a world w E W for a given 
LFOP1-model M = (W,D,I,Prob), and a valuation v (denoted by I(w)(a)v) is: 

• if a = Pi(h, ... , tm), then I(w)(a)v = T if (I(w)(tl)v, ... , I(w)(tm)v) E 
I(w)(Pi), otherwise I(w)(a)v = .L, 

• if a = -.[3, then I(w)(a)v = T if I(w) ([3)v =.L, otherwise I(w)(a)v = .L, 
• if a = P~s[3, then I(w)(a)v = T if p,(w){u E W(w) : I(u)([3)v = T} ~ s, 

otherwise I(w)(a)v = .L, 
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• if a = {3 1\ ,,(, then I(w)(a)v = T if I(w)({3)v = T, and I(w)("()v = T, 
otherwise I(w)(a)v = 1., and 

• if a = (Vx){3, then I(w)(a)v = T if for every d E D, I(w)({3)vw[d/zJ = T, 
otherwise I(w)(a)v = 1.. 

Definition 62. A formula holds in a world w from an LFOP1-model M = (W,D, 
I,Prob) (denoted by (M,w) 1= a) if for every valuation v, I(w)(a)v = T. If 
d E D(w), we will use (M,w) 1= a(d) to denote that for every valuation v, 
I(w)(a(x))vw[d/zJ = T. 

A sentence a is satisfiable if there is a world w in an LFOP1-model M such 
that (M,w) 1= a. A set T of sentences is satisfiable if there is a world w in an 
LFOPrmodel M such that for every a E T, (M,w) 1= a. 

A sentence a is valid if for every LFOPl-model M = (W,D,I,Prob) and every 
world w E W, (M,w) 1= a. 

In the sequel we will consider a class of all LFOP1-models that satisfy: 

• all the worlds from a model have the same domain, i.e., for all v, w E W, 
D(v) = D(w), 

• for every sentence a, and every world w from a model M the set {u E 
W(w) : I(u){a)v = T} ofall worlds from W(w) that satisfy a is measurable, 
and 

• the terms are rigid, i.e., for every model their meanings are the same in all 
worlds. 

We use LFOPt,Meas to denote that class of all fixed domain measurable models 
with rigid terms. 

Example 63. Let us consider the formula P~sPl(x), and suppose that for an 
LFOPl,Meas-model M = (W,D,I,Prob), w E W, (M,w) 1= P~sPl(x). By Defi­
nition 62, this holds iff for every valuation v, I(w)(P~sPl(x))v = Tiff (M,w) 1= 
(Vx )P~sPl(x). 

On the other hand, as we will show in Example 64, the satisfiability of the formula 
p~sPl(x) does not imply the satisfiability of P~s(Vx)Pl(x). The example assures 
an already existing impression that, although probability and modal logics are 
closely related, modal necessity (denoted by D) is a stronger notion than probability 
necessity (probability one, P~l). 

Example 64. Let us consider, the well known Barcan formula of the first order 
modal logic: 

BF (Vx)Da(x) -t D(Vx)a(x) 

It is proved that BF holds in the class of all first order fixed domain modal models, 
and that it is independent from the other first order modal axioms. However, the 
behavior of the reminiscence of this formula: 

BF(s) (Vx)P~sa(x) -t P~s(Vx)a(x) 

is quite different. 
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If s = 0, BF(O) is valid, because P~o(Vx)a(x) always holds since probability 
functions are nonnegative. So, suppose that s > O. Let us consider the LFOPl,Meas­
model M such that: 

• W = {Wl,W2,W3,W4} 
• D = {dl , d2 }, 

• (M,W2) 1= PI (dl ), (M,W2) ~ PI (d2 ), (M,W3) 1= PI (dl ), (M,W3) 1= Pl(d2), 
(M,W4)~ PI (dd, (M,W4) 1= Pl(~), 

• J.L(Wd(W2) = ~, J.L(Wd(W3) = s - ~ J.L(Wl)(W4) = ~ 
It is easy to see that (M,Wl) 1= (Vx)P~sPl(x), because 

J.L(wd({w: W 1= Pl(dt)}) = J.L(Wl)({W2,W3}) = s, 

J.L(Wl)({W: W 1= P{(d2)}) = JL(Wl)({W3,W4}) = s". 

On the other hand, (M, wt) ~ (Vx) PI (x), (M, W2) ~ (Vx)Pl(x), and (M, W4) ~ 
(Vx)P{(x), whilst (M,W3) 1= (Vx)Pl(x). Since J.L(Wt)({W3}) = s -~, (M,wd ~ 
P~s(Vx)Pl(x), and for s > 0, (M,Wl) ~ BF(s). 

7.3. A sound and complete axiomatic system. The axiomatic system AXLFOP1 

is a combination of a classical first order axiomatization and the probabilistic axioms 
introduced in Section 3. It involves the following axiom schemas: 

(1) all the axioms of the classical propositionallogic 
(2) (Vx)(a ~ (3) ~ (a ~ (Vx)(3), where x is not free in a 
(3) (Vx)a(x) ~ a(t/x), where aCt/x) is obtained by substituting all free oc-

currences of x in a(x) by the term t which is free for x in a(x) 
(4) P~oa 
(5) P~ra ~ P<sa, s > r 
(6) P<sa ~ P~sa 
(7) (P~ra /\ P~s(3 /\ P~l(-'a V -,(3)) ~ P~min(l,r+s)(a V (3) 
(8) (P~ra /\ P<s(3) ~ P<r+s(a V (3), r + s ~ 1 

and inference rules: 
(1) From a and a ~ (3 infer {3. 
(2) From a infer (Vx)a 
(3) From a infer P~la. 
(4) From {3 ~ P~s-ta, for every integer k ~ ~, infer {3 ~ P~sa. 

We use the notions of deducibility and consistency introduced in the definitions 30 
and 31 from Section 5. The theorems 65 and 66 show that AXLFOP1 characterizes 
the set of all LFOH,Meas-valid sentences. 

Theorem 65 (Soundness theorem). The axiomatic system AXLFOP1 is sound with 
respect to the LFOP1,Meas class of models. 

Proof. Let a' be an instance of a classical propositional axiom a obtained by sub­
stituting propositionalletters by formulas. Suppose that the formula a' is not valid, 
Le., that for some world W from a model M, and a valuation v, I(w)(a')v = i.. It 
follows that we can find a classical propositional valuation p such that pea) = i., a 
contradiction. Let M = (W,D,I,Prob) and wE W such that (M,w) 1= (Vx)a(x). 

'i -1 

Jl 
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It means that I(w)«Vx)a(x))v = T for every valuation v. Among these valua­
tions there must be one (denoted VI) which assigns to x the value d = I(w)(t)v. 
For this valuation I(w)(a(x))v 1 = T. Since I(w) (a(x))v 1 = I(w) (a(t/x)) v , we 
have I(w)(a(t/x))v = T for every valuation. Thus, every instance of Axiom 3 
is valid. Note that the assumptions about fixed domains and rigidness of terms 
are crucial. If it is not the case, and aCt/x) is of the form P.~8f3(t/X), the term 
t refers to objects in other worlds (different from w). It can have a consequence 
that I(w)(a(t/x))v = L The axioms 4- 8 concern the properties of measures from 

. LFOPl,Meas-models and obviously hold in every model. The inference rules 1 and 2 
are validity-preserving for the same reason as in the classical first order logic. Con­
sider Rule 3 and suppose that a formula a is valid. It must hold in every world from 
every LFOPl,Meas-model. Thus, for every model M = (W, D, I, Prob) , and w E W, 
the sets {u E W(w) : (M, u) 1= a} and W{w) coincide. Since Jl(w)(W(w)) = 1, it 
follows that (M, w) 1= P.~la. Rule 4 preserves validity because of the properties of 
the set of rational numbers. 0 

Theorem 66 (Extended completeness theorem for LFOPl,Meas). The axiomatic 
system AXLFOP1 is sound with respect to the LFOPl,Meas class of models. 

Proof. The completeness proof follows the same ideas as above, for example as in 
Section 5. The main new step is that, since we work with first-order formulas, we 
have a special kind of maximal consistent sets called saturated sets. A set T of 
formulas is saturated if it is maximal consistent and satisfies: 

• if -,(Vx)a(x) ET, then for some term t, -,a(t) ET. 

We can prove a counterpart of Theorem 13, where the new step: 

• if the set Ti+1 is obtained by adding a formula of the form -,(Vx)f3(x) to 
the set Ti , then for some c E C, -,f3(c) is also added to Ti+1' so that n+1 
is consistent, 

guarantees that every consistent set of sentences can be extended to a saturated 
set (C is a countably infinite set of new constant symbols). Then, the canonical 
model M = (W,D,I,Prob) can be defined in the following way: 

• W is the set of all saturated sets, 
• D is the set of all variable-free terms, 
• for every wE W, I(w) is an interpretation such that: 

- for every function symbol Ft, I (w)( Ft) is a function from Dm to D 
such that for all variable-free terms tl, ... , tm in C, Fr : (tl' ... ,tm) -t 
Fim(tl , ... , tm), and 

- for every relation symbol pr, I ( w ) (pr) = {( t l, ... , tm ) for all variable­
free terms tl, ... ,tm El: Pt(tl,'" ,tm) E w}. 

• for every wE W, Prob(w) = (W(w),H(w),Jl(w» such that: 
- W(w) =W, 
- H(w) is a class of sets [a] = {w E W: a E w}, for every sentence a, 

and . 

- for every set A E H(w), Jl(w)(A) = SUP8{P~8a E w}. 
and the rest of the proof is standard. 0 
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The same arguments as in Section 3.4 can be used to prove completeness of 
AXLFOP1 with respect to the classes: LPFOP1,Meas,AII. LFOP1,Meas,Neat and 
LFOP1,Meas,(f, while the modifications similar to the ones from the previous sec­
tions will be appropriate for logics LFOpt(n), LFOP1A,wl,Fin, LFOP1s, and the 
logic LFOPz (the first order probability logic without iterations) and its variants. 

7.4. Decidability. The logic LFOP1 and its variants contain classical first order 
logic. Thus, they are undecidable. The monadic fragments of the considered sys­
tems are undecidable, too. To show that, we can use the procedure due to Saul 
Kripke [48, 62J and consider a translation of classical first order formulas that 
contain only one binary relation symbol pZ to monadic probability formulas such 
that a classical first order formula is valid if and only if its translation is a valid 
probability formula. The original translation replaces every expression of the form 
p2(tl,t2) in a classical formula by O(P{(tl) 1\ Pi(t2», and instead of the modal 
formula we can use its probabilistic counterpart P~O(Pl(tl) 1\ Pi{t2». Since the 
fragment of the classical first order logic with a single binary relation symbol is not 
decidable, the same holds for the monadic fragments of the first order probability 
logics with iterations of probability operators. However, it is interesting that the 
monadic fragment of LFOP2 is decidable. 

8. Probabilistic logics with the non-classical base 

Let us use the term the basic logic for a logic from which we start building a 
probability logic. So far, we have used only classical (propositional or first order) 
logic as the basic logic, and it might be usefull to provide some motivation for other 
possible choices. The most important reason to change the basic logic, from our 
point of view, might be the very nature of classical logic. Namely, it is basically 
the logic of mathematics conceived as pertaining to some outside (Platonic) reality. 
On this conception, statements are either true or false and forever so (truth is 
independent of time and place), there is no room for modality (maybe, possibly, ... ) 
or value judgment. It is not surprising that the resulting logic will have some· 
consequences which seem rather odd in real-life situations and this issue has been 
debated throughout the last century, often under the heading "paradoxes of the 
material implication". In this section we will address those issues, and consider 
two logics: in the first one we will use intuitionistic logic as the basic logic, while 
in the second we will start from a temporal base. However, we do not argue that 
either "classical" or any of "non-classical" probabilistic logics is the unique logic 
for modelling probabilistic reasoning. Our view is more pragmatic: we believe that 
there are real-life situations in which the former approach could be appropriate, 
but the same holds for the later one. 

8.1. An intuitionistic probability logic. Intuitionistic logic arises quite naturally 
from a conception of mathematics as a human endeavor not pertaining to some out­
side reality. Since the statements of mathematics are not about something which 
exists out there, they cannot be true or false but only proved or disproved. This 
leaves another category of statements, those which are as yet undetermined. Thus 
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intuitionistic logic may be viewed as the logic of the growth of human knowledge 
(as opposed to the classical logic which we may regard as the logic of the static 
Platonic universe of mathematical objects). Thanks to this, intuitionistic logic has 
less consequences which would seem rather unintuitive in a real-life situation (e.g., 
(p -+ q) V (q -+ p) and (p -+ (q V r)) -+ (P -+ q) V (p -+ r)) are not intuitionistic 
theorems, i.e., there are models in which they are false). In reality, there is the fact 
that the intuitionistic logic might be the least popular non-classical logic among the 
practitioners of artificial intelligence and computer science in general. However, for 
those comfortable with the ubiquitous S4-modallogic and uncomfortable with intu­
itionism, we should emphasize that these two logics are practically the same: their 
models are the same, while the Godel translation enables us to interpret syntax. 
Furthermore, as we shall show in the Remark at the end of this section, intuition­
istic logic arises naturally whenever we deal with possible worlds semantics. In 
any case, starting with intuitionistic logic, we naturally have, besides proved state­
ments (probability is 1) and disproved statements (probability is 0), undetermined 
statements whose probability should range between 0 and 1. This is more obvious 
if we consider a Kripke model in which we can assign a probability to a formula on 
the basis of the number of possible worlds in which it is true. In our approach the 
probabilistic operators have the classical treatment. As a justification, we may say 
that once we determine the probability of an uncertain proposition a, it should be 
either greater or equal to some s E [0, 1] or not, so it is not unreasonable to assume 
P.~sa V -'~8a (even if we reject a V -,a). 

We use LP pI to denote the corresponding intuitionistic probability logic. At 
the propositional level, the language contains the connectives -', 1\, V and --+, 
while on the probabilistic level we have two lists of unary probabilistic operators 
(P;':s)sES, and (P~s)sES, and the connectives -, and 1\. Note that, since we have 
the intuitionistic base: 

• at the propositionallevel, the propositional connectives are independent, and 
• at the probabilistic level, the probabilistic operators P;,:., and P~. are indepen­
dent, but V and -+ can be defined from -, and 1\. 

Similarly as for the logic LP P2 , we do not allow iterations of probabilistic operators, 
and define the sets ForI of propositional formulas, Forp of probabilisticformulas, 
and ForLPp/ of all formulas, as in Section 3.1. 

2 

8.1.1. Semantics. Corresponding to the structure of the set ForLPpI, there are 
2 

two levels in the definition of models. At the first level there is the notion of 
intuitionistic Kripke models [63], while probability comes in the picture at the 
second level. 

Definition 67. An intuitionistic Kripke model for the language ForI is a structure 
(W, ~,v) where: 

• (W,~) is a partially ordered set of possible worlds which is a tree, and 
• v is a valuation function, i.e., v maps the set W into the powerset P(ifJ), 

which satisfies the condition: for all w, w' E W, w ~ w'implies v(w) ~ 
v(w'). 



88 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC 

The last requirement from Definition 67 allows that v does not determine the 
status of some primitive propositions from fjJ in some worlds. In each Kripke model 
we define the forcing relation U-c W x For] by the following definition: 

Definition 68. Let (W, ~,v) be an intuitionistic Kripke model. The forcing rela­
tion If- is defined by the following conditions for every w E W, a, /3 E For]: 

• if a E fjJ, w If- a iff a E v(w), 
• w If- a 1\ /3 iff w If- a and w If- /3, 
• w If- a V /3 iff w If- a or w If- /3, 
• w If- a -+ /3 iff for every w' E W if w ~ w' then w' W a or w' If- /3, and 
• w If- -,a iff for every w' E W if w ~ w' then w' W a. 

We read w If- a as "w forces a" or "a is true in the world w". Validity in the 
intuitionistic Kripke model (W,~, v) is defined by (W,~, v) 1= a iff ('t/w E W)w If- a. 
A formula a is valid (1= a) if it is valid in every intuitionistic Kripke model. 

Let M] = (W,~, v) be an intuitionistic Kripke model. We use [a]Ml (or shortly 
[a] if M] is clear from the context) to denote {w E W: w If- a} for every a E For]. 
The family H] = {[alMl : a E For]} is a Heyting algebra with operations: 

[a]U[/3] = [aV/3], [a]n[/3] = [al\/3], [a]::} [/3] = [a -+ /3], and '" [a] = [-,a]. 

Thus, H] is a lattice on W, but it may be not closed under complementation. 

Definition 69. Ameasurable probabilistic model is a structure M = (W,~, v, H, JL) 
where: 

• M] = (W,~, v) is an intuitionistic Kripke model, 
• H is an algebra on W containing H] = {[a]Mr : a E For]}, 
• JL: H -+ [0,1] is a finitely additive probability. 

Note that H contains all sets of the form W '- [a]Mp even if for some a E For] 
it may be that W '- [a]Ml i- [-,a)Ml. The fact that [-,a) does not have to contain 
the complement of [a] is the reason why we need both P~s and P~8 operators since 
P~sa will not imply P~l-s-,a. 

"'We use LP Pl,Meas to denote the class of all measurable probabilistic models. 

Definition 70. The satisfiability relation 1= is defined by the following conditions 
for every LP Pl,Meas-model M = (W,~, v, H, JL): 

• if a E For], M 1= a if ('t/w E W)w If- a, 
• M 1= P~sa if JL([a)) ~ s, 
• M 1= P~8a if JL([a)) ~ s, 
• if A E Forp, M 1= -,A if M 1= A does not hold, and 
• if A, BE Forp, M 1= A 1\ B if M 1= A, and M 1= B. 

Definition 71. A formula <P E ForLPPJ is satisfiable if there is a LPPl,Meas-model 
M such that M 1= <Pj <P is valid if for every LP pi Meas-model M, M 1= <Pj a set of 
formulas is satisfiable if there is an LP pi Meas-model M such that for every formula 
<P from the set, M 1= <P. ' 
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V(W2) = {q} Jl.( {W2}) = 1/3 

v(wd = {p} Jl.({wd) = 1/3 

v(wo) =0 Jl.({wo}) =1/3 

FIGURE 2. A tree-like probabilistic model 

89 

8.1.2. Examples. In this section we consider some consequences of probabilistic 
reasoning which is based on classical logic and which can be avoided using proba­
bilistic logic based on intuitionistic logic. 

Example 72. It is well known that -o(p 1\ q) -7 (op V -,q) is a classical tautology, 
called De Morgan's law which is not an intuitionistic tautology. Still, even if we 
believe that it is impossible to have your cake and eat it, we do not believe that it 
is impossible to have your cake and we also do not believe that it is impossible to 
eat your cake. More formally, we would like to have P~l-'(P A q), but also P~fop 
and P ~f -'q for come small 10, which is impossible with classical logic. 

Example 73. Consider the classical tautology (p -7 q) V (q -7 p) and probabil­
ity logic based on classical logic. Since tautologies have probability equal to 1, 
P~l ((P -7 q) V (q -7 p)) is valid. Let us now take a real-life situation, where p and q 
mean "it rains" and "the sprinkler is on" , respectively. It is clear that the sprinkler 
should not be on when it rains, i.e., that p -7 q should have low probability, say 
less than 10 (P~f(P -7 q)). Since probability is additive, the measure of the union 
of two sets is less or equal than the sum of the measures of those sets. Thus, the 
probability of q -7 P has to be high. In other words, we get that it is very probable 
that it will rain whenever the sprinkler is on (P~l-f(q -7 p)). If we were designing 
a controller for the sprinkler, this certainly would not be a desirable consequence. 

On the other hand, (P -7 q) V (q -7 p) is not an intuitionistic tautology. Consider 
the model from Figure 2. Recall that p -7 q being false in a Kripke model means 
that there is at least one possible world in which it is raining but the sprinkler is 
off. It is easy to see that wIll- q -7 p, Wl W P -7 q W2 11- P -7 q, W2 W q -7 p, 
Wo ~ (P -7 q) V (q -7 p), Jl.([(P -7 q) V (q -7 p)]M) = 2/3, and M }C P~l((P -7 

q) V (q -7 p)). Thus, the above consequence, that with high probability sprinkler 
causes raining, does not follow any more. 

Note also that we can construct a model in which both p -7 q and q -7 P will 
have very low probability, say less than l/n, by simply adding n-3linearly ordered 
new worlds below Wo in M, and having J.1.(w) = l/n, W E W. In the same model we 
have P~l-'(P A q), P~l/n -,p and P~l/n -'q, demonstrating the point of the previous 
example. 

Example 74. Consider the classical (but not intuitionistic) tautology (P -7 (q V 
r)) -7 ((P -7 q) V (P -7 r)). Starting with classical logic makes P~l((P -7 (qVr)) -7 

((P -7 q) V (P -7 r))) valid in probabilistic logic. If we take now p to be a description 
of our knowledge, q to be the P=NP-hypothesis, and r its negation, we obtain that 
P~l((P -7 (q V r)) since qV r is qV -'q. It follows that P~l((P -7 q) V (P -7 r)), 



90 ZORAN OGNJANOVIC, MIODRAG RASKOVIC AND ZORAN MARKOVIC 

which either means that our knowledge is inconsistent or that there is a considerable 
probability of at least one of the sentences "The P=NP-hypothesis follows from our 
current knowledge", "The negation of P=NP-hypothesis follows from our current 
knowledge", which is not very much likely. Again, since the above propositional 
formula is not intuitionisticaly valid, there is no such conclusion in the "intitionistic" 
probability logic. 

8.1.3. Axiomatization, completeness, decidability. An axiomatization that 
characterizes the set of all LP P{Meas-valid formulas can be obtain by combining: 

• any propositional intuitionistic axiomatization for For/, 
• any classical propositional axiomatization for Forp and 
• probabilistic axioms and rules from Section 3.3 

with the proviso that in this framework the probabilistic operators P~., and p~. 
are independent, so for example, Axiom 3 from the system Ax LP P2 should be 
rewritten in the form: P;<:l-r-,a -7 -,P;<:sa for s > T. We skip the corresponding 
completeness proof, but the proof of decidability for LP pI contains more new 
details and we give it in the next theorems. Let A E Forp and SubfI(A) = {a E 

ForI: ais a subformula of A}. Let IAI and ISubfI(A)1 denote the length of A, and 
the number of formulas in ISubfI{A)I, respectively. Obviously, ISubfI(A)1 ~ IAI· 

Theorem 75. A probabilistic formula A E Forp is satisfiable if! it is satisfiable in 
a finite probabilistic model containing at most 21AI2 worlds. 

Proof. Let M = (W,~,v,H,J.L), and M 1= A. For every wE W, we use SubfI(W) 
to denote the set of all formulas from SubfI(A) forced in w, i.e., SUbfI(W) = {a E 
SubfI(A) : W 11- a}. 

In the sequel we will follow the idea from [121, Theorem 5.3.4], and select some 
of the worlds from W to construct a finite model M* satisfying A. 

Let Wo be the least element from W. We define the worlds of M* (indexed by 
finite sequence) in the following way: 

• U() = Wo, where () denotes the empty sequence, 
• given UO' let UO'*(l), ... ,UO'*(k) be the maximal set of worlds W(l), ... ,w(k) 

from W such that for every i, j E {I, ... , k}: 
- UO' ~ W(i), 
- SubfI{uO') :j:. SubfI{W(i»), 
- if UO' ~ w ~ W(i), then either Subfr(uO') = Subfr{w) or Subfr{w) = 

Subfr(w(i»), and 
- if i :j:. j, then Subfr{w(i») :j:. Subfr{wU»). 

Let W* = {O" : UO' is defined}, ~ * be the usual ordering of finite sequences, and for 
all 0" E W*, and a E Var, 0: E v*{O") iff a E v{uO'). 

Using the induction on complexity of formulas we can prove that for every a E 

Subfr{A) and every 0" E W*, 0" 11- a in (W*, ~*, v*) iff UO' 11- 0: in (W,~, v). If 
a E Var, the statement holds by the definition of v*. Let a = (J -7 "(. Suppose that 
0" W (J -7 "(. Then there is some p E W* such that 0" ~* p, p 11- (J and p W "(. By the 
induction hypothesis, up 11- (J and up W "(, UO' ~ up, and UO' W (J -7 "(. On the other 
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hand, suppose that u". W (3 -7 "(. Then, there are two possibilities. First, if u". 11- (3 
it must be u". W ,,(, and by the induction hypothesis (T 11- (3 and (T W ,,(, which means 
that (T W (3 -7 "(. In the second case there is some wE W such that u". ~ W, w 11- (3, 
and w W "(. Since u". W (3, obviously Subfl(U".) f. SUbfl(W). According to the 
above construction, there must be some U(J E W such that u". ~ U(J ~ W, (T ~* 0, 
U(J 11- (3, and U(J W "(. By the induction hypothesis, 0 11- (3, 0 W ,,(, and (T W (3 -7 "(. 

The other cases follow similarly. 
Let J.L' be the finitely additive probability defined on {{WE W* : W 11- a} : 

a E Subfl(A)} such that J.L'( {w E W* : w 11- a}) = J.L([a] M ). Since for every 
a E Subfl(A), [a]M f. 0 iff {w E W* : w 11- a} f. 0, is easy to see that J.L' is 
correctly defined. Let M* = (W*, ~*, v*, H*, J.L*) be the probabilistic model such 
that H* is the smallest algebra on W* containing family {[a]M> : a EForJ}, while 
J.L* is a finitely additive probability on H* which is an extension of J.L'. Note that 
it follows from Theorem 2 that such an extension always exists. Since probabilities 
of For rsubformulas of A remain the same, M* 1= A. 

Finally, note that the set W* is finite because every world has at most 2Isubfl(A)1 
immediate successors and every branch contains at most ISubfl(A)1 worlds. Thus 
IW*I ~ (2IsubfI(A)/)lsubfI(A)1 ~ 21A12. 0 

Theorem 76. The satisfiability problem for probabilistic formulas is decidable. 

Proof. It follows from Theorem 75 that A is satisfiable iff it is satisfiable in a prob­
abiIistic model with at most kA = 21AI2 worlds. Thus, we can check satisfiability 
following ideas from Theorem 33: for every 1, 1 ~ 1 ~ kA, there is only finitely many 
intuitionistic models with different valuations with respect to the set of proposi­
tionalletters that occur in A. For every such intuitionistic model MI = (tV,~, v) 
we can find the algebra H generated by the set ([a]MI : a E Subfl(A)}, and 
consider a linear system similar to the system (7). As there is a finite number of 
models and linear systems we have to check, and since linear programming problem 
is decidable, the same holds for the considered satisfiability problem. 0 

8.1.4. Remark. We will show here that even if we start with classical logic, 
possible-worlds semantics naturally produces intuitionistic logic. It turns out that 
intuitionistic implication will coincide with conditional probability when probability 
is equal to 1. 

Let us start with a standard possible-world model M = (W, H, J.L, v). We may 
define a pre-order (reflexive and transitive relation) R on W by: uRw iff for every 
primitive proposition p, v(u,p) = true implies v(w,p) = true. From this we may 
obtain a partial order in the usual way. First we introduce an equivalence relation '" 
defined by: U '" w iff uRw and wRu, and then we split W into equivalence classes: 
Cu = {w : U '" w}. Now we may pick a selection W' c W of representatives of 
equivalence- classes (one for each class). So we have (Vu E W)(3w E W')(u '" w). 
Obviously, R iriduces a partial order ~ on W' such that U ~ w iff uRw. Now we 
have a Kripke model with a partial ordering relation on worlds (W', ~,v) which 
makes it 'a model for intuitionistic logic. Namely, we may define (semantically) 
a new propositional connective -7 by: w 1= a -7 (3 iff (Vw' ~ w)(w' 1= a implies 



92 ZORAN OGNJANOVI6, MIODRAG RASKOVI6 AND ZORAN MARKOVI6 

w' F (3). We may also define a new, intuitionistic, negation by: -a = a -t 1-. 
Therefore, even if we start with classical logic, when we come to models, we have 
an intuitionistic implication built in. 

The interest in intuitionistic implication, besides the arguments proposed at the 
start of this section, comes from the fact that conditional probability, which is often 
used as the proper form of entailment in the context of probability logic, coincides 
in a sense with the intuitionistic implication, as can be seen from the following 
theorem. 

. J1.(al\{3) 
Theorem 77. J1.(a -t {3} = 1 iJJ J1.(a) = l. 

However, this symmetry holds only in the case when probability is equal to 1. 
It is possible to construct models in which conditional probability is high while 
the probability of (intuitionistic) implication is low and vice versa. The reason is 
that, despite the fact that both operators are define globally (and not locally, in 
each world) the definitions are quite different. Conditional probability considers 
(i.e., counts) only worlds in which a is true, while intuitionistic implication takes 
into account also their predecessors. We may say, in a sense, that conditional 
probability disregards the development of events and regards only the final stages 
(with regard to the validity of a), i.e., the analysis starts with the worlds in which 
a is true and disregards the previous stages in which a may be "not yet true". 
Existence of long time-lines which end with worlds in which a is not true adds to 
the probability of a -t {3, while it is irrelevant for the conditional probability. On 
the other hand, a long sequence which has an ending in which a is true and {3 is 
not, reduces considerably the probability of a -t {3, while it may, in the presence 
of a relevant number of worlds in which both a and {3 are true, be insignificant for 
conditional probability. 

8.2. A discrete linear-time probabilistic logic. In this section we describe a way 
in which probabilistic reasoning can be enriched with some temporal features. The 
temporal part of the logics is a standard discrete linear-time logic LT L [119], where 
the flow of time is isomorphic to natural numbers, i.e., each moment of time has a 
unique possible future, while the corresponding language contains the "next" oper­
ator (0) and the reflexive strong "until" operator (U), (the operators "sometime" 
F and "always" G are definable: (Fa = TUa and Ga = -,F-,a). Similarly as in 
Section 7, nesting of the probabilistic and temporal operators is important and we 
will start from the logic LPP1• In our logic, denoted LPP1

LTL , the probabilistic 
operators quantify events along a single time line. It allows us to express sentences 
such as "(according to the current set of information) the probability that, some­
time in the future, a is true is at least s". And, as the knowledge can evolve during 
the time, the probability of a might change too. Note that, since the operators 
"sometime" and "always" can be seen as the existential and universal quantifiers 
over time instants, the probabilistic operators give more refined quantitative char­
acterization of sets of time instants definable by formulas. We may try to motivate 
the proposed semantics in the following way. 
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Example 78. A suitable representation of all possible outcomes of an infinite 
sequence of probabilistic experiments (let us say that experiments A and B are 
permanently repeated resulting in a or ,a, and b or ,b, respectively) could be 
an inifinite tree, where every branch corresponds to a possible realization of the 
sequence of the experiments, and every time instant is described in the form ±a, ±b 
depending on obtaining (or not obtaining) a and b in the corresponding experiment. 
We might be interested in probabilistic properties that hold for all branches. In 
that case we can reason about an arbitrary branch and need ability to express 
probabilities of events along it, for example that the probability of the event a is 
at least s, or some more complicated conditions, like that in every time instant, if 
the probability of a is less than r, then b must hold forever. 

The set ForLPpLTL of formulas is defined inductively as the smallest set con-
1 

taining primitive propositions and closed under formation rules: if a and (3 are 
formulas, then ,a, Oa, P~sa, for every s E S, a A (3, and aU(3 are formulas. We 
will use the following notational definition: OOa = a, and O H1 a = 0 Oi a for 
i ~ O. If T = {aI, a2, ... } is a set offormulas, then OT denotes {Oa1, Oa2, ... }. 

Example 79. An example of a formula is (OP~rP A FP<s(P -t q)) -t GP=tq 
which can be read as "if the probability of P in the next moment is at least r and 
sometime in the future q follows from p with the probability less than s, then the 
probability of q will always be equal to t." 

8.2.1. Semantics. The semantics for LP ppTL is a Kripke-style one using se­
quences of natural numbers as frames. 

Definition 80. An LP ppTL -model is a structure M = (W, Prob, v) where: 

• W = {wo, W1, ... } is a sequence of time instants, 
• Prob is a probability assignment which assigns to every W E W a probability 

space, such that Prob{w) = (W(w), H{w), /-L{w)), where: 
- W(w) = {Wj:j ~ i}, 
- H(w) is an algebra of subsets of W(w) and 
- /-L(w) : H(w) -t [0,1] is a finitely additive probability measure. 

• v assigns to every w E W a two-valued evaluation of the primitive propo­
sitions, i.e., for every w E W, v( w) : fjJ -t {true, false}. 

Definition 81. Let M = (W, Prob, v) be a LP PpTL-model, i E wand a be a 
formula. The satisfiability relation F is inductively defined as follows: 

• if pE fjJ is a primitive proposition, Wi Fp if V(Wi)(P) = true, 
• Wi F ,a if Wi Jz! a, 
• Wi F P~sa if /-L{Wi)({WHj,j ~ 0: Wi+j F a}) ~ s, 
• Wi F Oa if Wi+1 F a, 
• Wi F a A (3 if Wi F a and Wi F (3. 
• Wi F aU(3 if there is an integer j ~ 0 such that WHj F (3, and for every k 

such that 0 ~ k < j, Wi+k F a. 
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We concern a reflexive, strong version of the until operator, i.e., if aU{3 holds in 
a time instant, {3 must eventually hold. In the above definition the future includes 
the present, so that: 

• Wi 1= Fa if there is j;::: 0 such that wi+j 1= a, and 
• Wi 1= Ga if for every j ;::: 0, wi+j 1= a. 

Also, the present time instant is included when the probability of formulas are 
considered. All the presented results then can be proved with essentially no change 
if we use the temporal and probabilistic operators referring to the strict future that 
does not concern the present. 

Again, we will consider measurable models only, i.e., the class LP pf[A~as of all 
LPPfTL-models such that for every Wi E W the set H(Wi)) = {[alwi : a E 
ForLPpLTL}, where [alwi = {Wi+i: j;::: O,Wi+i 1= a}. 

1 

The notions of satisfiable and valid formulas and satisfiable sets of formulas are 
defined as in Section 5. 

8.2.2. Axiomatization. An axiomatization AXLPpLTL that characterizes the set 
1 

of all LP Pf~~as-valid formulas extends the system AXLPP2 (having in mind that in-
stances of the axiom schemas and rules must obey the syntactical rules for LP P1LT L) 

with the following axiom schemas: 

(7) O(a -t {3) -t (Oa -t 0{3) 
(8) -, 0 a H O-,a 
(9) aU{3 H {3 V (a 1\ O(aU{3)) 

(10) aU{3 -t F{3 
(11) Ga -t P~la 

while the inference rules should be rewritten in the following form: 

(1) from a and a -t {3 infer {3 
(2) from a infer Oa 
(3) from {3 -t Oia for all i ~ 0, infer {3 -t Ga 
(4) from {3 -t omp~s_ta, for any m ;::: 0, and for every k ~ ~, infer {3 -t 

omp~sa. 

The main novelty in AXLPpLTL concerns axioms about temporal reasoning (the 
1 

axioms 7 and 8 are the usual axioms for the next operator 0, as well as the axioms 
9 and 10 for the until operator) and mixing of probabilistic and temporal reasoning 
(Axiom 11). There are two infinitary inference rules: 3 and 4. The former one 
characterizes the always operator. 

In this framework we can use the definitions 30 and 31 of deduction and consis­
tency. 

Note that, similarly to the probabilistic logics, compactness does not hold for 
LT L. For example, every finite subset of the set {Fnp : nis a positive integer} U 
{FG-,p} is satisfiable, while the set itself is not. So, the temporal part ofAx LP PlT L 

offers possibility to prove extended completeness which cannot be proved using 
finitary means. 
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Modifications of AxLPpLTL according to ideas presented in the previous sections 
1 

could produce the corresponding axiomatic systems for a first order logic for reason-
ing about discrete linear time and probability, a temporal probabilistic logic with 
probabilistic functions with a fixed finite range, etc. Also, we can specify additional 
relationships between the flow of time and the probability measures by adding new 
axioms: 

Example 82. The formula -,a --t (P~sa --t OP~sa), considered as an additional 
axiom scheme, characterizes models with the property that if a formula does not 
hold in a time instant, then in the next time instant its probability will be not 
decreased. 

8.2.3. Completeness and decidability. The proof of extended completeness 
again follows the ideas given in the previous sections, so we only outline the main 
new. details. 

Theorem 83 (Extended completeness theorem for LP Pf[[~as). A set T of formu­

las is AXLPPfTL-consistent ifJ it is LPPfl:t~as-satisfiable. 

Proof We start with Deduction theorem. For example, assume that T, a I- (3 --t 
G(3' is obtained by Rule 3. Then: 

(1) T,a I- (3 --t Oi(3', for i ~ 0, 
(2) T I- a --t «(3 --t Oi(3'), for i ~ 0, by the induction hypothesis, 
(3) T I- (a A (3) --t Oi(3', for i ~ 0, 
(4) T I- (a A (3) --t G(3', by Rule 3, 
(5) T I- a --t «(3 --t Gf3'). 

The axioms and rules imply some auxiliary statements (T denotes a consistent set 
of formulas): 

(1) I- Ga B a A OGa, 
(2) I- G 0 a B OGa, 
(3) I- (Oa --t 0(3) --t O(a --t (3), 
(4) I- O(a A (3) B (Oa A 0(3), 
(5) I- O(a V (3) B (Oa V 0(3), 
(6) Ga I- Oia for every i ~ 0, 
(7) if I- a, then I- Ga, 
(8) if T I- a, where T is a set of formulas, then OT I- Oa. 
(9) for j ~ 0, Oi (3, OOa, .. . ,Oi- l a I- aU(3, 

(10) For any formula a, either TU {a} is consistent or TU { -,a} is consistent. 
(11) If -,(a --t G(3) ET, then there is jo ~ ° such that TU {a --t -, Oio (3} is 

consistent. 
(12) If -,(a --t omp~s(3) E T, then there is io > ~ such that TU {a --t 

-, om P>-s-+.(3} is consistent. 
".. '0 

For example, the statement (9) follows in the folloy.ring way. Assume I- a. By 
application of Rule 2, we get I- Oka , for every k E w. We obtain I- Ga by Rule 3. 
From Axiom 11 and by application of Modus Ponens, we have I- P~la. 
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Then we can show that every consistent set T of formulas can be extended to 
a maximal consistent set. Let ao, 01,'" be an enumeration of all formulas. A 
maximal consistent extension T of T can be obtained as follows: 

(1) To = T. 
(2) For every i ~ ° if Ti U {Oi} is consistent, then TH1 = Ti U {Oi}. Otherwise, 

if 0i is of the form 'Y -+ G(3, then Ti+1 = Ti U {-'Oi, 'Y -+ -, (jo (3} for 
some jo ~ ° such that Ti+1 is consistent. Otherwise, 0i is of the form 
'Y -t om P~8(3, then TH1 = Ti U {-'Oi, 'Y -t -, om P~8-..,L(3} for some 

~ 10 

jo > ° such that Ti+1 is consistent. Otherwise, TH 1 = Ti U {-,ai}. 
Uoo . 

(3) T = i=O Ti • 

For a maximal consistent extension T of a consistent set T of formulas we define 
the canonical model MT = (W, Prob, v) such that: 

• W = WO,W1,.·., Wo = T, and for i > 0, Wi = {o: Oa E wi-d, 
• for i ~ 0, Prob(wi) = (W(wi),H(Wi),tL(Wi)) is defined as follows: 

- W(Wi) = {WHj : j ~ O}, 
- H(Wi) = {{WHj: j ~ 0,0 E WHj}}, 
- for tL(Wi)({WHj : j ~ 0,0 E WHj}) = SUP8{P~80 E Wi}, 

• for every primitive proposition p E </J, and every Wi E W, V(Wi)(P) = T iff 
pE Wi· 

First of all, we can prove that for every i ~ 0, Wi is a maximal consistent set. By 
hypothesis, Wo is maximal and consistent. Suppose that Wi+1 is not maximal. There 
is a formula 0 such that {o, -,o} n Wi+1 = 0. Consequently, {Oa, O-,o} n Wi = 0. 
We obtain that {Oa, -'OO}nWi = 0 which is in contradiction with the maximality 
of Wi. Suppose that wH1 is not consistent, i.e., that WH1 I-- 0" -,a. Then, 
Wi I-- 0(0" -'0), and Wi I-- 00" -, 0 a which is in contradiction with consistency 
of Wi. 

Then, similarly as in the previous sections, we can show that MT is an LP pffA.~as­
model such that for all Wi and a, 0 E Wi ill Wi 1= o. For example, if 0 = 0(3, we 
have Wi 1= 0 iff WHl 1= (3 iff (3 E WHl iff 0 E Wi (by the construction of Wi+1)' 0 

For the previously presented logics as the first step in the proofs of their decid­
ability we have used some kind of the filtration technique which helps as to show 
that every formula is satisfiable iff it is satisfiable in a finite model. The problem 
is that the filtration cannot be used here since the LPPt~~as-models are (by their 
definition) infinite. However, we can show (following the ideas presented in [119]) 
that a formula is satisfiable if and only if it is satisfiable in an model such that the 
sequence of time instants of the model has a finite initial sequence of time instants 
followed by another finite sequence of time instants which permanently repeats and 
in that way forms the rest of the whole time-line. The lengths of both sequences 
are bounded by functions of the size of the considered formula. The full proof of 
decidability and complexity of the LP pt~~as-satisfiability problem can be found 
in [91]. As it is rather long, we give only the corresponding main statements: 

Theorem 84. Every LP Pt~~as-satisfiable formula 0 is satisfiable in a model with 
the starting sequence of time instants, followed by the sequence of time instants 
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which permanently repeats. The length of the former sequence is ~ 221 0<1 + 1, and 
the length of the later sequence is ~ (210<1 + 1) x 21CtI, where lal denotes the length 
of a. 

Theorem 85 (Decidability and complexity for LPP1LTL). The LPPfTL is decid­
able. The LPpf{;.~as-satisfiability problem is PSPACE-hard and in non-determin­
istic exponential time. 

9. logics with conditional probability 

An important reason to consider conditional probability logics is given in [80]. 
It is argued there that conditional probability offers a more natural generalization 
of the rule "if a, then (3" than probability of implication. Namely, if a has a low 
non-negative probability and -,a 1\ (3 is very likely to happen, then "the probability 
of a -t (3" could be very high (since a -t (3 holds whenever a is false) and does not 
properly reflect the meaning of the rule, while on the other hand, "the conditional 
probability of (3 given a" is more appropriate. 

Also, it turns out that a specific kind of conditional probability (with a nonar­
chimedean range) is useful in modelling default reasoning. We start this section 
by presenting a logic (denoted LPCP;,Rj) which formalizes such conditional prob­
ability and represents approximate probabilistic knowledge, but in a similar way 
axiomatizations could be given to ordinary [0, 1]-real-valued conditional probability. 
LPCP;,Rj can be seen as a generalization of the logic LPpl from Section 4.3. 

In the second part of the section we introduce another logic LPC p~hr which 
axiomatizes so-called de Finetti's view of conditional probability [20]. In that ap­
proach conditional probability is seen as more primitive concept than unconditional 
probability, in contrast· to Kolmogorov's definition where conditional probability is 
defined via unconditional probability. Conditional probability in the sense of de 
Finetti can be defined using a structure (W, H, /l), where W is a non empty set, 
H is an algebra of subsets of W, and /l : H x HO -t [0,1], HO = H " {0}, is a 
(coherent) conditional probability satisfying: 

• /leA, A) = 1, for every A E HO, 
• /l(', A) is a finitely additive probability on H for any given A E HO, 
• /l(CnB,A) = /l(B,A) '/l(C,BnA), for all C E H and A, B, AnB E HO. 

Note that /leA, B) has a meaning with the only condition that B is different from 
the impossible event. 

9.1. A logic with approximate conditional probabilities. In this subsection, we 
use notions defined in Section 3, and only emphasize the main novelties. Let S be 
the unit interval of the Hardy field Q[e]. Q[e] is a recursive nonarchimedean field 
which contains all rational functions of a fixed positive infinitesimal e which belongs 
to a nonstandard elementary extension * R of the standard real numbers (56, 117]. 
An element e of * R is an infinitesimal if lel < ~ for every natural number n. Q[e] 
contains, all rational numbers. Let Q[O, 1] denote the set of rational numbers from 
[0,1]. 
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The language of LPC pi'~, beside the set 4J of primitive propositions and Boolean 
connectives..., and /I., contains binary probabilistic operators: 

(CP::;'s)sES, (CP~s)sES, and (CP~r)rEQ[O,ll. 

If a,{3 E Fore and s E S, r E Q[O, 1] then CP~s(a,{3), CP::;'s(a,{3) and 
C P ~r (a, (3) are basic probability formulas with the intended meaning "the con­
ditional probability of a given {3 is at least (at most) s and, approximately r". The 
set Forp of probabilistic propositional formulas is the smallest set containing all 
basic probability formulas and closed under Boolean formation rules (so, there are 
no iterations of the probabilistic operators). The set of formulas ForLPep's.", is 

2 

Fore U Forp. Also: 

• CP<s(a,{3) denotes -,C~s(a,{3) for a,{3 E Fore, sE S, 
• CP>s(a,{3) denotes ...,CP::;'s(a,{3) for a,{3 E Fore, sE S, 
• CP=s(a,{3) denotes CP~s(a,{3) /I. CP::;'s(a,{3) for a,{3 E Fore, s E Sand 
• Ppsa denotes CPps(a, T) for a E Fore and p E {~,~,>,<,=,~}. 

It should be noted that C P~ and C P::;. are not interdefinable since the appropriate 
equivalence breaks down when the probability of the condition is O. 

9.1.1. Semantics. We consider the class LPcpifteas Neat of all measurable neat 

LPCP2s'~-models, which can be defined in the sam~ wa; as the class LPP2 ,Meas,Neat 

from Section 3.2, with the important difference that: 

• p. is an S-valued finitely additive measure, i.e., p. : H -+ S. 

The neatness condition is used to make our models a subclass of * R-probabilistic 
models of [61, 66]. This facilitates the explanation of a possible application of 
LPC P2S,~ to default reasoning. All the results can be also proved for the class of 
measurable (but not necessarily neat) LPCPi'~-models. 

Definition 86. The satisfiability relation I=~ LPC Pi,fteas,Neat x For LPe pi.'" fulfills 

the following conditions for every LPCPi,k7eas,Neat-model M = (W, H, p., v): 

(1) if a E Fore, M 1= a if ('Vw E W)v(w)(a) = true, 
(2) M 1= CP::;'s(a,{3) if either P.([{3]M) = 0 and s = 1 or P.([{3]M) > 0 and 

1'([aAi3]M) ~ S 
1'([i3]M) -.., , 

(3) M 1= CP~8(a, (3) if either P.([{3]M) = 0 or P.([{3]M) > 0 and 1'~([Sf~) ~ s, 
(4) M 1= CP~r(a,{3) if either P.([{3]M) = 0 and r = 1 or P.([{3]M) > 0 and for 

every positive integer n, I'~(&f~» E [max{O,r -l/n},min{l,r + 1/n}]. 
(5) if A E For~, M 1= ...,A if M jt A, 
(6) if A, B E For~, M 1= A /I. B if M 1= A and M 1= B. 

Condition 3 is formulated on the useful assumption that the conditional proba­
bility is by default 1, whenever the condition has the probability o. Also, note that 
the condition 4 is equivalent to saying that the conditional probability equals r - fi 

(or r + fi) for some infinitesimal fi E S. It is easy to see that the defined operators 
will behave as expected, e.g., M 1= P<sa iff p.([a]M) < s. 
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9.1.2. Axiomatization and completeness. The axiomatic system AxLPOpS . ., 
2 

which characterizes the set of all LPCP:'~ea.s,NeaCvalid formulas contains the fol­
lowing set of axiom schemata: 

(1) all Foro-instances of classical propositional tautologies 
(2) all Forp-instances of classical propositional tautologies 
(3) CP~o(a,{3) 
(4) CP~s(a,{3) -t CP<t(a,{3), t> s 
(5) CP<s(a,{3) -t CP~s(a,{3) 
(6) P~l(a +-t {3) -t (P=sa -t P=s(3) 
(7) P~sa +-t P~l-8-,a 
(8) (P=sa /\ P=t{3/\ P~l-,(a /\ {3» -t P=min(l,s+t)(a V {3) 
(9) P=o{3 -t CP=l(a,{3) 

(10) (P=t{3/\ P=s(a /\ (3» -t CP=s/t(a,{3), t i- ° 
(11) CPp;r(a, {3) -t CP~rl (a, {3), for every rational rt E [0, r) 
(12) CPp;r(a, {3) -t CP~rl (a, {3), for every rational rl E (r,l] 

and inference rules: 

(1) From <p and <p -t t/J infer t/J. 
(2) If a E Foro, from a infer P~la. 
(3) From A -t Pf:.sa, for every s E S, infer A -t .1.. 
(4) For every rE Q[O, 1], from A -t CP~r-l/n(a,{3), for every integer n ~ l/r, 

and A -t CP~r+l/n(a,{3) for every integer n ~ 1/(1 - r), infer A -t 
CPp;r(a, {3). 

It is easy to see (just put T instead of {3) that the axioms 3-5 generalize the cor­
responding axioms from the system AXLPP2 • Axiom 9 conforms with the useful 
practice of assuming conditional probability to be 1, whenever the condition has the 
probability 0. Axiom 10 expresses the standard definition of conditional probability, 
while the axioms 11 and 12 and Rule 4 describe the relationship between the stan­
dard conditional probability and the conditional probability infinitesimally close to 
some rational r E Q[O, 1]. The rules 3 and 4 are infinitary. Rule 3 guarantees that 
the probability of a formula belongs to the set S. 

A useful, but straightforward theorem is: 

Theorem 87. Let a, {3 E Foro. Then: 

(1) ~ CP~t(a,{3) -t CP~s(a,{3), t > s 
(2) ~ CP~t(a,{3) -t CP~s(a,{3), t < s 
(3) ~ CP=t(a,{3) -t -,CP=s(a,{3), t i- s 
(4) ~ CP=t(a,{3) -t -,CP~s(a,{3), t < s 
(5) ~ CP=t(a,{3) -t -'CP~s(a,{3), t> s 
(6) ~ CP=r(a,{3) -t CPp;r(a,{3), rE Q[O, 1]. 
(7) ~ CPp;rl (a,{3) -t -,CPp;r2(a,{3), for rl,r2 E Q[O, 1], rl i- r2· 
(8) ~ P=o{3 -t -,CP~s(a,{3), for s < 1. 
(9) ~ P~la. 

Note that, by restricting {3 to T, we obtain analogous statements for uncondi­
tional probabilities. 
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The main novelty in the completeness proof follows concerns the construction 
of a maximal consistent extensions of a consistent set. Following notations from 
Theorem 13, now the construction is: 

(1) To = Tu Cne(T) U {P~lO:: 0: E Cnc(T)} 
(2) for every i ~ 0, 

(a) if T2i U {~} is consistent, then T2i+1 = T2i U {~}; 
(b) otherwise, if T2i u {~} is not consistent, we have: 

(i) if ~ is of the form A -t CPRSr (o:,{3), then T2i+1 = T2i U 
{-.Ai,A -t -'CP~r-l/n(o:,{3)}, or T2i+1 = T2i U{-.Ai,A-t 
-,CP~r+1/n(O:, (3)}, for some integer n, where n is chosen such 
that T2i+l is consistent (we prove that this is possible below); 

(ii) otherwise, T2i+1 = T2i U {-,~}, 
(3) for every i ~ 0, T2i+2 = T2i+1 U {P=sO:i}, where s is chosen to be an 

arbitrary element of S such that T2i+2 is consistent (we prove that this is 
possible below), 

(4) for every i ~ 0, if Ti is enlarged by a formula of the form P=oO:, add -'0: to 
Ti U {P =oo:} as well. 

UCXl 
. 

(5) r = i=O Ti .. 

Let us consider the step (3) of the construction, and suppose that for every s E S, 
T2i+1 U {P=sO:i} is not consistent. Let T2i+1 = To u1t+1' where Tt+1 denotes the 
set of all formulas B E Forp that were added to To in the previous steps of the 
construction. Then the following contradicts consistency of T2i+ 1: 

(1) To, Tt+1' P=sO:i I- .L, for every s E S, by the hypothesis 
(2) To,7t+1 I- -,P=sO:i, for every s E S, by Deduction theorem 
(3) To I- (I\Be'Tt.+l B) -t -,P=sO:i, for every s E S, by Deduction theorem 

(4) To I- (I\Be'Tt.+l B) -t .L, by Rule 3 
(5) T2i+1 I- .L, 

The set r satisfies: 

(1) There is exactly one s E S such that P=sO: E r. 
(2) There is exactly one s E S such that CP=s(o:,{3) Er. 
(3) IT CP~s(o:,{3) Er, there is rES such that r ~s and CP=r(o:,{3) Er. 
(4) IT CP~s(o:,{3) Er, there is rES such that r ~ sand CP=r(o:,{3) ET 
(5) IT CPRSr1 (0:,{3) Er and r2 E Q[O,l] '- {rl}, then CPRSr2 (0:,{3) ~ r 

As an example, let us consider the statement (1). According to Theorem 87 (3), if 
P=sO: E r, then for every t I- s, P=tO: ~ r. On the other hand, if for every s E S, 
-'P=sO: E r, then r I- -'P=sO: for every s E S. By Rule 3, r I- .L which contradicts 
consistency of r. Thus, for every 0: E Fore, there is exactly one s E S such that 
P=sO: E r. Finally, the corresponding canonical model MT can be defined as in 
Section 3.4, and we have: 

Theorem 88 (Extended completeness theor~m for LPCPi.~eas,Neat)' A set T of 

formulas is Ax LPe pi'''' -consistent if! it is LPC P:'~eas,Neat -satisfiable. 
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9.1.3. Decidability. The proof of decidability of LPCP2
S,r>:! [114] is rather long, 

and, similarly as in Section 8.2, we will omit it here. The proof contains a reduc­
tion of the the LPC P~~eas,Neat -satisfiability to linear programming problem, as 
in Section 3.5. However, note that Section 3.5 deals with the standard real-valued 
probabilities, while in LPC p2

S ,r>:! the range of probabilities is recursive and contains 
non-standard values, and there are operators of the form CPr>:!r that do not appear 
above. Thus, in the reduction we have to eliminate the CPr>:!.-operators and to 
try to solve linear systems in an extension of Q[E]. The next example contains an 
illustration of the technique from [114]. 

Example 89. Let us consider the forrilUla A = CA ((DV B) --+ (D AB», where B, 
C and D denote CPr>:!o(q, T), CPr>:!l (-,pA -'q, -,q) and CPr>:!o.4(PAq, q), respectively. 
The set of atoms, At(A), contains al = P A q, a2 = P A -'q, a3 = -,p A q and 
a4 = -,p A -'q. Let Xi denote the measure of atom ai. The formula A is equivalent 
to (B A C A D) V (-,B A CA -,D). We start with the first conjunct BA CAD and 
suppose that the measures of q and -'q are greater than zero, i.e., that Xl + X3 > 0, 
and X2 + X4 > O. BA CAD is satisfiable iff the same holds for the following system: 

Xl + X2 + X3 + X4 = 1, Xi;;:: 0 for i = 1,4 

Xl + X3 > 0 X2 + X4 > 0 

which is equivalent to 

Xl + X3 ~ 0 

X2/(X2 + X4) ~ 1 

Xd(Xl + X3) ~ 0.4 

Xl + X2 + X3 + X4 = 1, Xi;;:: 0 for i = 1,4 

Xl + X3 > 0 X2 + X4 > 0 

o < Xl + X3 < nl E 

X4/(X2 + X4) < 1/n2 

0.4 - n3E < Xd(Xl + X3) < 0.4 + n3E 

for some nI, n2, n3 EN. If we replace nI, n2, n3 by their maximum denoted by 
n, we obtain an equivalent system, Since ~ does not appear in the last system, 
Fourier-Motzkin elimination can be performed in the standard way. The procedure 
finishes with the true condition (1 - nE)/n < 1 which means that the considered 
formula is satisfiable. 

9.1.4. Modelling default reasoning. The central notion in the field of default 
reasoning is the notion of default rules. A default rule, which can be seen as a 
sentence of the form "if a, then generally {3", can be written as5 a >-+ {3. A default 
base 6. is a set of default rules. Default reasoning is described in terms of the 
corresponding consequence relation r-, i.e., we are interested in determining the set 

5Note that the other authors use different symbols (-+, h for example) to denote the "default 
implication". In the present setting those symbols may cause confusion, so we prefer to introduce 
a new symbol here. 
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of defaults that are the consequences of a default base. Then, if 0: is a description 
of our knowledge and 6.1'" 0: >--+ (3, we (plausibly) conclude that (3 is the case. 
There are a number of papers which describe f-- in terms of classes of models and 
the corresponding satisfiability relations F such that 6.f-- 0: >--+ (3 if for every model 
M satisfying 6., M F 0: >--+ (3. In [61, 66] a set of properties which form a core of 
default reasoning, called the system P, and the corresponding deduction relation 
f- p were proposed. The system P is based on the following axiom and rules (F 
denotes classical validity): 

• 0: >--+ 0: (Reflexivity) 
• from l= 0: tt 0:' and 0: >--+ (3, infer 0:' >--+ (3 (Left logical equivalence) 
• from 0: >--+ (3 and 0: >--+ 7, infer 0: >--+ (3 /I. 7 (And) 
• from et >--+ 7 and (3 >--+ 7, infer et V (3 >--+ 7 (Or) 
• from 0: >--+ (3 and 0: >--+ 7, infer 0: /I. (3 >--+ 7 (Cautious monotonicity). 

Then, for a default base 6., 6. f-p 0: >--+ (3 if 0: >--+ (3 is deducible from 6. using the 
above axiom and rules. Default consequence relation was also described in terms 
of preferential models, and it was proved that the system P is sound and complete 
with respect to the class of all such models: 

Theorem 90. [61, Theorem 5.18] 6.1'" 0: >--+ (3 with respect to the class of all 
preferential models if and only if 6. f-p 0: >--+ (3. 

The same holds for a special proper subclass of the class of preferential mod­
els, the so-called rational models, also considered in [66]. These two classes are 
not distinguishable using the language of defaults. It turns out that many other 
approaches to default reasoning are characterized by P. For example, in [66] a fam­
ily of nonstandard (* R) probabilistic models characterizing f- p was proposed. An 
* R-probabilistic model can be defined in a similar way as LPGPt17eas,Nest-models, 
with the exception that J.L : H ~ R*. A default et >--+ (3 holds in an * R-probabilistic 
model if either the probability of 0: is ° or the conditional probability of (3 given et 

is infinitesimally close to l. 
We can use GP~1 «(3,0:) to syntactically represent the default 0: >--+ (3. In the 

sequel, we will use 0: >--+ (3 both in the original context of the system P and to 
denote the corresponding translation GP!';!1 «(3, et). In the case of a finite default 
base our approach produces the same result as the other mentioned approaches, 
namely it is equivalent to P. 

Theorem 91. For every finite default base 6. and for every default et >--+ (3 

6. f-p 0: >--+ (3 ifJ 6. f-Ax 5 _ 0: >--+ (3. 
LPCP2 .-

Theorem 91 cannot be generalized to an arbitrary default base 6., as it is illus­
trated by the following example. 

Example 92. It is proved in [66, Lemma 2.7] that the infinite set of defaults T = 
{Pi >--+ Pi+! ,PH1 >--+ -'Pi}, where Pi's are propositionalletters for every integer i ~ 0, 
has only non well-founded preferential models (a preferential model containing an 
infinite descending chain of states) in which Po >/-+ .1, i.e., Po is consistent. It 

i 

I 
I 

J 

-- -~- ---~~~--~ 
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means that T ¥ P Po >--+ -1. On the other hand, T f- Ax s _ Po >--+ -1 since the 
LPCP2 .-

following holds. Let an LPCP~r..7eas,Neat-model M = (W, H,J.l, v) satisfy the set T. 
If J.l([Pd) = 0, for some i > 0, then it must be J.l(lPoJ) = 0, and M 1= Po >--+ -1. Thus, 
suppose that J.l([PiJ) :f:. 0, for every i > 0. Then, for every i ~ 0: J.£ /:'i) 1 ) ~ 1 

and J.£ ~Pil\Pi 1 ~ 1 i.e. J.£([PiI\PifD = 1 _ E and J.£ ~Pil\Pi 1 = 1 - E for 
J.£( Pi+l "J.£([p;] 1 J.£ Pi+l) 2, 

some infinitesimals El and E2. A simple calculation shows that which means that 
J.l([PiJ) ~ EoJ.l([Pi+1]) for some infinitesimal EO. Since, for some C and k, EO ~ CEk, 
it follows that for every i > 0, 0 ~ J.l([Po]) ~ Ei. Since J.l(lPo]) E S and there is no 
positive element of S with such property, it follows that J.l([Po]) = 0, [Pol = 0 and 

M 1= Po >--+ L Since M is an arbitrary LPCP2~r..7eas,Neacmodel, T f-LPcpi'" Po >-+ 

-1. 

Note that the above proof of J.l(lPo]) = 0, does not hold in the case when the range 
of the probability is the unit interval of * R because * R is Wl-sat urated (which means 
that the intersection of any countable decreasing sequence of nonempty internal 
sets must be nonempty). As a consequence, thanks to the restricted ranges of 
probabilities that are allowed in LPCP~r:.eas,Neat-class of models, our system goes 
beyond the system P, when we consider infinite default bases. 

LPC P2S,~ is rich enough not only to express formulas that represents defaults but 
also to describe more: probabilities of formulas, negations of defaults, combinations 
of defaults with the other (probabilistic) formulas etc. Let us now consider some 
situations where these possibilities allow us to obtain more conclusions than in the 
framework of the language of defaults. 

Example 93. The translation ofrational monotonicity, ((a >-+ (3)/\.(a >-+ ''Y» -+ 
((a /\ 'Y) >-+ (3), is LPCPtr:.eas,Neat-valid since rational monotonicity is satisfied in 

every * R-probabilistic model, and LPCP2~r..7eas,Neat is a subclass of that class of 
models. The same holds for the formula .(true >-+ false) corresponding to another 
property called normality in [31). 

Note that in this example we use negated defaults that are not expressible in P. 

Example 94. Let the default base consist of the following two defaults 8 >-+ b and 
8 >-+ t, where 8, b and t means Swedes, blond and tall, respectively [6]. Because 
of the inheritance blocking problem, in some systems (for example in P) it is not 
possible to conclude that Swedes who are not tall are blond ((8/\ .t) >-+ b). Since 
our system and P coincide if the default base is finite, the same holds in our 
framework. In fact, there are some LPCP;'{teas Neat-models in which the previous 
formula is not satisfied. Avoiding a discussi~n of ' intuitive acceptability of the above 
conclusion, we point out that by adding some additional assumptions (CP=l-e(t, 8) 
and CP=1-e2 (b, 8» to the default base we can entail that conclusion too. First, note 
that the assumptions are compatible with defaults 8 >-+ t and 8 >-+ b. Then, an easy 
calculation shows that p~~)t) = P(s);;Ts}SI\t) = P(S)-J;,'tJ,+P(s)e = E, and similarly 
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P~(S)b) = €2. Finally, we can estimate the conditional probability of b given s" ...,t: 
P(s"...,t" b) P(s 1\ ...,t) - P(s I\...,t 1\ ...,b) €P(s) - €2 P(s) 
-"......,.....--...,.."";" = ~ = 1 - €. 

P(sl\...,t) P(sl\...,t) €P(s) 

It follows that (s "...,t) ~ b. 

9.2. A logic with coherent conditional probabilities. In this subsection S again 
denotes the unit interval of rational numbers. The set For p contains basic probability 
formulas of the form C P~s (a, {3) and their boolean combinations. 

Definition 95. An LPCpfhr-model is a structure M = (W,H,J.',v) where: 

• W is a nonempty set, 
• H is an algebra of subsets of W, HO = H" {0} 
• 1': H x HO --+ [0,1], is a conditional probability satisfying 
• J.'(A, A) = 1, for every A E HO, 

- 1'(., A) is a finitely additive probability on H for any given A E HO, 
and 

- J.'(CnB,A) = J.'(B,A)·J.'(C,BnA), for all C EH and A,B,AnB E HO. 
• v : W x 4> -7 {true, false} provides for each world w E W a two-valued 

evaluation of the primitive proposition. 
Let LPCPi;Neas denote the class of all measurable LPCpfhr-models. 

The axiomatic system AXLPcp~hr which characterizes the set of all LPCPi;kieas-
valid formulas contains the following axiom schemata: 

(1) all instances of the classical propositional tautologies, 
(2) CP~o(a,{3), 
(3) CP~r(a,{3) -7 CP<s(a.,{3), s > r, 
(4) CP<s(a,{3) -7 CP~s(a,{3), 
(5) (CP~r(a;'Y) 1\ CP~s{/3,'Y) 1\ CP~l(...,aV""A'Y))--+CP~min{l,r+s}(avA'Y), 
(6) (CP~r(a,'Y) 1\ CP<s({3,'Y)) -7 CP<r+s(a V {3,'Y), r + s < 1, 
(7) CP~s(a, 'Y) 1\ CP~r({3, a 1\ 'Y) -+ CP~s.r(a 1\ {3, 'Y), 
(8) CP~l ({3, 'Y) " CP~s(a 1\ {3, 'Y) -+ CP~s(a, {3 1\ 'Y), 

and inference rules: 
(1) from a and a -7 {3 infer {3, 
(2) from a -7 {3 infer CP~l({3,a), 
(3) from A --+ (CP~t({3,'Y) --+ CP~s.t(a 1\ {3,'Y)), for every rational number t 

from (0,1), infer A -7 CP~s(a,'Y 1\ {3). 
Note that Rule 3 is the only infinitary rule in AxLPCPChr. It corresponds to the 

2 

last part in the definition of conditional probability. The pro~f of 

Theorem 96 (Extended completeness theorem for LPCpi;Neas). A set T of for­
mulas is Ax LPC p~hr -consistent ifJ it is LPC Pi;Neas -satisfiable. 

follows the main steps from the previous sections, while by reducing the LPC Pi;Neas 
satisfiability problem to the problem of checking coherence of conditional probabil­
ity assessments which is decidable [20], we have that 
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Theorem 97. The logic LPcpfhr is decidable. 

The next example contains two formulas that illustrate some peculiarities of 
LPcpfhr. 

Example 98. The formula A = CP=o(a,f3) -+ CP>o«(3, T) is not LPcpfhr-valid. 
Let us consider the following LPCPfNeas-model M: 

• W = {Wl,W2}, 
• H =2

w
, 

• JL({wI}, W) = 0, JL({W2}, W) = 1, JL({wI}, {wI}) = 1, JL({W2}, {wI}) = 0, 
JL( {wI}, {W2}) = 0, JL( {W2}, {W2}) = 1, 

• V(Wl'p) = V(W2,p) = V(Wl,q) = true, V(W2,q) = false. 
In this model p([v] , [q]) = JL( {Wl' W2}, {wI}) = 1, JL([-'P], [q]) = JL(0, {wd) = 0, and 
JL([q], [T)) = JL({wd, W) = 0. It means that M F CP=o(-'p,q) A CP=o(q, T), and 
A is not LPCPfNeas-valid. 

The formula B = CP=o«(3, T) A CP>..l (a,(3) -+ CP~ 1 (-,a,f3) is LPcpfhr-valid 
:;;;.0'2 -..::~ 

since JL([']' [,B]) is finitely additive probability measure. 

Note that both formulas from Example 98 have the opposite behavior when 
we use the Kolmogorov's approach to conditional probability (with the very often 
and useful assumption that the conditional probability of a given (3 is 1, if the 
probability of (3 is 0), i.e., A is valid, while B is not. 

10. Related work 

As we mentioned in Section 2, a lot of recent interest in probability logic was 
initiated by [79] in which Nillson gave a procedure for probabilistic entailment 
which, given probabilities of premises, could calculate bounds on probabilities of 
the derived sentences. The Nillson's approach was semantic and stimulated some 
authors to provide axiomatizations and decision procedures for the logic. In the 
same year Gaifman published a paper [35] which studied higher order probabilities 
and connections with modal logics. 

In [27] Fagin, Halpern and Megiddo presented a propositional logic with real­
valued probabilities in which higher level probabilities were not allowed (the logic 
was similar to LP P2). The language of that logic allowed basic probabilistic for­
mulas of the form alw(ad + .;. + anw(an) ~ s, where ai's and s are rational 
numbers, ai's classical propositional formulas, and w(ai)'s denote probabilities of 
ai's. Probabilistic formulas are boolean combinations of basic probabilistic for­
mulas. The corresponding class of models was LP P2,Meas' A finitary axiomatic 
system for the logic was given. Since the compactness theorem does not hold for 
their logic, the authors were able to prove only the simple completeness. As we 
mentioned above, the paper contains a proof of decidability and complexity of the 
logic. Models that are not measurable were also considered there. Dropping the 
measurability requirement made things more complicated. In that case inner and 
outer measures should be used since the finite additivity does not hold for the 
considered models. Finally, conditional probabilities were also discussed. To ob­
tain a complete axiomatization, the authors used the machinery of the theory of 
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real closed fields. We note that our syntax can be extended in a straightforward 
manner, such that the set of well formed formulas and the related results from [27] 
can be exactly obtained. The papers [28, 44] of the same authors introduced a 
probabilistic extension of the modal logic of knowledge which is similar to LP P1• 

The papers [30, 125] presented logics with probability functions that have a fixed 
finite range, similar to the logic LP pir(n). 

Frisch and Haddawy presented in [32] an incomplete iteration procedure which 
computes increasingly narrow probability intervals. The procedure can be stopped 
at any time yielding partial information about the probability of sentences, and 
allowing one to make a tradeoff between precision and computational time. Com­
putational aspects of probabilistic logics were also discussed in [36]. The paper [52] 
showed that it is possible to apply a very efficient numerical method of column 
generation to solve the LP P2,Meas-satisfiability problem. 

First order probability logics were discussed in [1, 43]. It was shown that the 
set of valid formulas of the considered logic (which was similar to LFO Pl ) is not 
recursively enumerable. Thus, no finitary axiomatization is possible. 

In [38] a propositionallogic which can be used for reasoning about probabilistic 
processes was presented. Besides all differences between our logic and that one, in 
[38] an idea to prove completeness using an infinitary rule was used similarly as in 
our approach. 

A rule similar to Rule 3 from the axiomatic system Ax LPGPS." was given in [3] 
2 

by Alechina. The main difference is that her rule was restricted to rationals only. 
A sound first order axiomatization (which is not complete) for a logic which 

formalized probabilistic temporal reasoning was given in [39]. This system differs 
from our LP pfTL since time intervals and a branching structure of time were 
considered there. 

In [16, 17] BoriCic and RaSkovic extended Heyting propositional logic by prob­
abilistic operators. Since predicates "at lest r" and "at most r" are not mutually 
expressible in that context, both types of operators P~r and P ~r were present in 
the corresponding language. Marchioni and Godo presented in [73] a modal fuzzy 
logic approach to model probabilistic reasoning in the sense of De Finetti. Also, in 
that logic, Lukasiewicz implication can be used to express comparative statements. 
Conditional probabilities were combined with default reasoning in- a semantically 
based approach in [2, 70]. 

Uncertain reasoning is also interesting in the framework of economy. For ex­
ample, an axiomatization for so-called type spaces (a notion that plays the role of 
probabilistic models in our paper) within the framework of probabilistic logic was 
given in [45]. The proposed axiomatization was simply complete with respect to 
the introduced semantics. A strongly complete infinitary axiomatization for type 
spaces is given in [77]. The main difference between that system and our approach 
is that infinitary formulas are allowed in [77]. As a consequence, that logic is 
undecidable, due to the cardinality argument. 

Finally, for more comprehensive list of the papers on probability logics the reader 
could consult [94]. 
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Description logics (DL) are a family of knowledge representation languages which 
can be used to represent the terminological knowledge of an application domain in a 
structured and formal way [StaStu04]. Besides representation enabling, they have 
the task to provide tools for reasoning about the knowledge described by them. 
They lie on the tracks of the research in the field of knowledge representation. 

DL were established with a motivation of providing a formal foundation on 
. network-based knowledge representation systems. In the 1970's research in the field 

of knowledge representation was very intensive. It gave a wide spectrum of ideas 
and solutions which were more or less usable or GENERAL. Roughly speaking, 
there were two types of knowledge representation approaches [Baa et al. 02]: logic­
based formalisms as more general and formal and non-logic-based representations, 
as specialized and, often, ad hoc approaches. 

Among these specialized non-logic-based representations there were semantic 
networks and frames, broadly used in practice. Although they were significantly 
different, they could both be regarded as network structures, where the structure 
of the network aims at representing domain knowledge as a set of individuals and 
their relationships [Baa et al. 02]. Hence, they were often referred to as network­
based structures (see [Leh92]). Owing to their more human-centered origins, the 
network-based systems were often considered as more usable in practice than the 
logical systems. On the other hand, their less precise semantic characterization 

114 

, 
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[Baa et al. 02), i.e., concepts as general classes and individ\.!-als as instances of con­
cepts were mixed in one vocabulary, which resulted in the absence of general rea­
soning functionalities. 

Attempt on making the system better was representing basic elements of network­
based systems by relaying on the first-order logic. It turned out that some con­
straints were not describable. Moreover, in many cases first-order theorem provers 
were a too big machinery. However, using only fragments of the first-order logic, 
depending on features of representation language, was good enough. These conclu­
sions were made in big part owing to development of KL-ONE system [BraSch85), 
the first realized system of the so-called "structured inheritance networks" [Bran, 
Bra78, SchSmo91J. KL-ONE family of languages are considered as DL ancestors. 

The following three ideas, induced by work on KL-ONE systems, have largely 
shaped the subsequent development of DLs [Baa et al. 02]: 

• The basic syntactic building blocks are atomic concepts (unary predicates), 
atomic roles (binary predicates), and individuals (constants). 

• The expressive power of the language is restricted in using a rather small set 
of (epistemologically adequate) constructors for building complex concepts 
and roles. 

• Implicit knowledge about concepts and individuals can be inferred auto­
matically with help of inference procedures. In particular, subsumptiQn 
relationships between concepts and instance relationships between individ­
uals and concepts play an, important role: unlike IS-A links in Semantic 
Networks, which are explicitly introduced by the user, subsumption rela­
tionships and instance relationships are inferred from the definition of the 
concepts and the properties of the individuals. 

Having above in mind it is clear why the research in the area of Description Logics 
began under the label of terminological systems. "Later, the emphasis was on the 
set of concept-forming constructs admitted in the language, giving rise to the name 
concept languages. In more recent years, after attention was further moved towards 
the properties of the underlying logical systems, the term Description Logics became 
popular" [Baa et al. 02]. 

Major characteristics of description logics are: 

• emphasis on reasoning; 
• formal logic-based semantics; 
• inference patterns; 
• subsumption relations between concepts of a terminology; 
• hierarchy of concepts derived from subsumption relations. 

Reasoning procedures in DL must be decidable and their complexity depends on 
expressiveness. 

All improvements that were brought by DL were the consequences of the fact that 
they were, in most cases, developed with formal background and with a concrete 
area of application in mind. Today, there are various implemented systems based 
on Description Logics which are used in various application domains. Depend­
ing on domains and system requirements necessary description formalisms differ 
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by 'expressive power and, consequently, by formal and computational properties of 
reasoning. With the same motivation different extensions of DL were investigated, 
too. Although semantics of extensions could be interesting for studying, most of 
the researches associated with language extensions are focused on finding reasoning 
procedures for the extended languages. Within these, extensions depending on ap­
plication domain constructs for non-monotonic, epistemic, and temporal reasoning, 
and constructs for representing belief and uncertain and vague knowledge could be 
interesting. 

The conventional description logics were designed to represent knowledge only 
about static application domains. To capture various dynamic features, for in­
stance, intensional knowledge (in multi-agent systems), dependence on time or 
actions (in distributed systems), description logics .are combined with suitable 
"modal" (propositional) logics, say epistemic, temporal, or dynamic. Again, there is 
a variety of possible combinations (see e.g. [Sch93, Laux94, BaaLau95, BaaOhl93]). 
Some of them are rather simple and do not increase substantially the complex­
ity of the combined logics (for example, the temporal description logic of Schild 
[Sch93] is ExpTIME-COmplete)j others are too expressive and undecidable (e.g. the 
multi-dimensional description logic of Baader and Ohlbach [BaaOhI93)). 

An optimal compromise between the expressive power and decidability was found 
in the series of papers [WolZakh98, WolZakh99c, WolZakh99b, MosZakh99], where 
various expressive and yet decidable description logics with epistemic, temporal, 
and dynamic operators were constructed. 

This paper gives an overview of basic description logics as well as original re­
sults, which concern the temporal extensions of Description Logics. The paper is 
organized as follows. Section 2 is based on [Baa et al. 02] and gives an introduction 
to description logics as a formal language for representing knowledge and reasoning 
based on that knowledge. It gives bases of syntax and semantics, and the typical 
reasoning tasks are described. At the end of the section some extensions of basic 
language are given. Section 3 mainly refers to ~odal extensions of description log­
ics with emphasiS on temporal extensions of description logics, precisely venus 
as temporal extension of non-temporal description logic Den, It also gives an 
example of how the presented logics can be applied in temporal databases. 

2. Basic description logics 

Description logic (DL) is a common namel for a family of knowledge represen­
tation formalisms applied on a domain (the "world") by defining relevant domain 
terminology. They are based on a common family of languages, called description 
languages, which provide a set of constructors to build class (concept) and prop­
erties (role) descriptions. Such description can be used in axioms and assertions 
of DL knowledge bases and can be reasoned about with respect to DL knowledge 
bases by DL systems; 

1 Previously used names where terminological knowledge representation languages, concept lan­
guages, term subsumption languages, KL-ONE-based knowledge representation languages 
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2.1. Definition of the basic formalism. Knowledge base generated from a knowl­
edge representation system based on DL has two components:. TBox and ABox. 
TBox introduces terminology, i.e., vocabulary of an application domain, while ABox 
gives assertions about named individuals of concepts from introduced terminology. 

The terminology consists of concepts and roles. Concepts denote sets of individ­
uals, while roles denote binary relations between individuals. Complex descriptions 
of concepts and roles can be built by users in all DL systems. Description language 
for building these descriptions has model-theoretic semantics. Statements in the 
TBox and the ABox can be translated into first-order logic or an extension of it. 

DL system also offers to reason about terminologies, individuals and assertions. 
Typical tasks for reasoning on a TBox level are 

• determining satisfiability of terminology and 
• subsumption relations of concepts. 

Important reasoning problems an a ABox level are: 

• determining consistency of sets of assertions (i.e., if ABox has a model) and 
• whether a set of assertions entails that an individual is an instance of a 

given concept. 

These checks can help to determine whether a knowledge base is meaningful or to 
organize concepts into a hierarchy according to their generality. 

Knowledge representation (KR) system is integrated into a wider environment 
of an application. Other components interact with KR system by querying and 
modifying the knowledge base by adding and retracting concepts, roles and asser­
tions. Rules present unlimited mechanism for adding assertions. They represent 
an extension of a logic core of formalism that can be logically interpreted. 

KB 

Application Rules 
Programs 

FIGURE 1. Architecture of KR system based on DL 

2.1.1. The basic description language AC. Elementary descriptions are atomic 
concepts and atomic roles. Complex descriptions can be built from them induc­
tively with concept constructors. In abstract notation, we use the letter A for 



118 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC 

atomic concepts, the letter R for atomic roles, and the letters C and D for concept 
descriptions. We shall discuss various languages from the family of A£-languages2• 

Concept descriptions in A£ are formed according to the following syntax rule: 

C, D ~ A I (atomic concept) 
T I (universal concept) 
.1. I (bottom concept) 
...,A I (atomic negation) 
CnD I (intersection) 
VR.C I (value restriction) 
3R.T (limited existential quantification) 

In A£ only the T is allowed in the scope in an existential quantification over a 
role and negation can only be applied to atomic concept. The sublanguage of 
AC obtained by disallowing atomic negation is ;: C-. The sublanguage of ;: C­
obtained by disallowing limited existential quantification is ;:Co. 

Example 1. Let Person and Female be atomic concepts. Then Person n Female 
and Person n ...,Female are M-concepts describing those persons that are female 
and those that are not. If hasChild is an atomic role, then the concept Person n 
3hasChild.T denotes those persons that have a child, and the concept Person n 
VhasChild.Female denotes those persons all of whose children are female. Using 
the bottom concept we describe persons without a child by the concept Person n 
VhasChild . .1.. 

In order to define a formal semantics of AC-concepts, we introduce interpreta­
tions I that consist of a non-empty set tJ,.z (the domain of the interpretation) and 
an interpretation function, which assigns to every atomic concept A a set AZ: ~ 6.z 
and to every atomic role R a binary relation RZ ~ 6.z x 6.z. The interpretation 
function is extended to concept descriptions by the following inductive definitions: 

T Z = tJ,.z 

.1.z = 0 
(...,A)z = tJ,.z" AZ 

(Cn Dl = CZ nDz 

('rfR.C)z = {a E tJ,.z I (Vb) (a, b) E RZ ~ b E Cz} 

(3R.Tl = {a E 6.z I (3b) (a, b) E RZ} 

Two concepts C and D are equivalent (C == D) if CZ = DZ for all interpretation I. 
For example, it is easy to verify that concepts 'rfhasChild.FemalenVhasChild.5tudent 
and VhasChild.(Female n Student) are equivalent. 

2.1.2. The family of AC-Ianguages. More expressive languages are obtained 
by adding further constructors to AC. 

2The language AC=(attributive language) has been introduced in [SchSmo91j as a minimal 
language that is of practical interest. 

J 
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The union of concepts (indicated by the letter U) is written as CUD, and 
interpreted as {C U D)I = CI U DI. 'i" 

Full existential quantification (indicated by the letter E) is'written by 3R.C, and 
interpreted as {3R.C)I = {a E b,I I (3b){a,b) E RI /\ bE CI}. Note that 3R.C 
differs from 3R. T in that arbitrary concepts are allowed to occur in the scope of 
the existential quantifier. 

N umber restrictions (indicated by the letter N) are written as ~ nR{ at-least 
restriction) and as ~ nR (at-most restriction), where n represents a nonnegative 
integer. They are interpreted as 

{~nR)I = {a E t::.I II{b I (a,b) E RI}I ~ n}, 

{~nR)I = {a E I:::,.I Il{b I (a,b) E RI}I ~ n} 

respectively, where "I ,1" denotes the cardinality of a set. 
The negation of arbitrary concepts (indicated by the letter e, for "complement") 

is written by -,C, and interpreted as {-,C)I = b, I " CI . 
With the additional constructors concept: 

Person n (~ IhasChild U (~ 3hasChild n 3hasChild.Female» 

describes those persons that have either not more than one child or at least three 
children, one of which is female. 

By extension by A.c any subset of the above constructors generates a particular 
A.c-Ianguage. Each A.c-Ianguage is named by a string of the form A.c[U][E][N][C], 
where each letter represents the corresponding constructor. 

From the semantic point of view, not all of these languages are distinct. The 
semantics enforces the equivalences (C U D) == -,(-,C n -,D) and 3R.C == -,VR.-'C 
(union and full existential quantification can be expressed using negation). We 
assume that union and full existential quantification are available in -every language 
that contains negation and vice versa (A.ce is used instead of AmE and A.cCN 
instead of AmEN). 

2.1.3. Description languages as fragments of predicate logic. Since an in­
terpretation I assigns to every atomic concept (role) a unary (binary) relation over 
I:::,.I, we can view atomic concepts (roles) as unary (binary) predicates. Then: 

• any concept C can be translated into a predicate logic formula <pc(x) with 
one free variable x such that for every interpretation I the set of elements 
of I:::,. I satisfying <Pc( x) is exactly CI 

• an atomic concept A is translated into the formula A(x) 
• the constructors intersection, union, and negation are translated into logical 

conjunction, disjunction, and negation, respectively 
• if C is already translated into <pc(x) and R is an atomic role, then value 

restriction and existential quantification are captured by the formulae 

<i>vR.c(Y) = (Vx){R(y,x) -t <Pc (x» 

<P3R.C(Y) = (3x){R(y, x) /\ <Pc (x») 

where y is a new variable 
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• number restrictions are expressed by the formulae 

<P~nR(X) = (3Yl,'" , Yn)R(x,Yl) A ... A R(x, Yn) A /\ Yi -:/:- Yj 
i<j 

<P~nR(X) = (VY1, ... ,Yn+l)R(x, yt} A ... A R(x, Yn+1) -t V Yi = Yj 
i<j 

2.1.4. Terminologies. In the sequel, we will introduce: 

• terminological axioms, which make statements about relations between con­
cepts or roles, 

• definitions as specific axioms and 
• terminologies as sets of definitions by which we introduce atomic concepts 

as abbreviations or names for complex concepts. 
Terminological axioms. In the most general case, terminological axioms have the 
form 

C r; D (R r; S) or C == D (R == S) 
where C, D are concepts (and R, S are roles). Axioms of the first kind are called 
inclusions, while axioms of the second kind are called equalities. 

An interpretation I satisfies an inclusion C r; D if CX ~ DI, and it satisfies 
an equality C == D if CX = DI. If T is a set of axioms, then I satisfies T iff I 
satisfies each element of T. If I satisfies an axiom (resp. a set of axioms), then it 
is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms 
are equivalent if they have the same models. 
Definitions. An equality whose left-hand side is an atomic concept is a definition. 
Definitions are used to introduce symbolic names for complex descriptions. 

A set of definitions should be unequivocal. A finite set of definitions T is a 
terminology or TBox if no symbolic name is defined more than once, that is, if for 
every atomic concept A there is at most one axiom'in T whose left-hand side is A. 

Example 2. A terminology (TBox) with concepts about family relationships can 
be introduced as follows: 

Woman == Person n Female 

Man == Person n ..,Woman 

Mother == Woman n 3hasChild.Person 

Father == Man n 3hasChild.Person 

Parent == Father U Mother 

Grandmother == Mother n 3hasChild.Parent 

MotherWithManyChildren == Mothern ~ 3hasChild 

MotherWithoutDaughter == Mother n VhasChild . ..,Woman 

Wife == Woman n 3hasHusband.Man 0 

Suppose, that T is a terminology. We divide the atomic concepts occurring in T 
into two sets, the name symbols N'r (defined concepts) that occur on the left-hand 
side of some axiom and the base symbols Br (primitive concepts) that occur only 
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on the right-hand side of axioms. Based on this, terminologies define name symbols 
using base symbols. 

A base interpretation for T is an interpretation that interprets only the base 
symbols. Let J be a base interpretation. An interpretation I that interprets 
also the name symbols is an extension of J if it has the same domain as J, i.e., 
f::"I = f::::,J, and if it agrees with J for the base symbols. We say that T is definitorial 
if every base interpretation has exactly one extension that is a model of T. In 
other words, if we know what the base symbols stand for, and T is definitorial, 
then the meaning of the name symbols is completely determined. If a terminology 
is definitorial, then every equivalent terminology is also definitorial. 

The question whether a terminology is definitorial or not is related to the ques­
tion whether or not its definitions are cyclic. 

(1) Human' == Animal n hasParent.Human' 

Let A, B be atomic concepts occurring in T. We say that A directly uses B in T 
if B appears on the right-hand side of the definition of A. The transitive closure 
of the relation "directly uses" is called "uses". Then T contains a cycle iff there 
exists an atomic concept in T that uses itself. Otherwise, T is called acyclic. 

If a terminology T is acyclic, then it is definitorial. Definitions in terminology 
T can be expanded by replacing each occurrence of a name on the right-hand side 
of a definition with the concepts that it represents. If T is a acyclic this process 
eventually stops giving a terminology T' containing solely definitions of the form 
A == C', where C' contains only base symbols and no name symbols. T' is the 
expansion of T. Size of the expansion can be exponential in the size of the original 
terminology. 

Example 3. The expansion of the Family TBox previously introduced is: 

Woman == Person n Female 

Man == Person n ..,(Person n Female) 

Mother == (Person n Female) n 3hasChild.Person 

Father == (Person n ..,(Person n Female») n 3hasChild.Person 

Parent == ((Person n ..,(Person n Female» n 3hasChild.Person) 

U ((Person n Female) n 3hasChild.Person) 

Grandmother == ((Person n Female) n 3hasChild.Person) 

n 3hasChild. (( (Person n ..,(Person n Female» 

n 3hasChild.Person) 

U ((Person n Female) n 3hasChild.Person») 

MotherWithManyChildren == ((Person n Female) n 3hasChild.Person)n ~ 3hasChild 

MotherWithoutDaughter == ((Person n Female) n 3hasChild.Person) 

n VhasChild.(..,(Person n Female» 

Wife == (Person n Female) 

n 3hasHusband.(Person n ..,(Person n Female» 
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Lemma 1. Let 7 be an acyclic terminology and T' be its expansion. Then 

(1) 7 and T' have the same name and base symbols; 
(2) 7 and T' are equivalent; 
(3) 7 and T' are definitorial. 

Proof. Let Tt be a terminology. Suppose A == C and B == D are definitions in Tt 
such that B occurs in C. ,Let C' be the concept obtained from C by replacing each 
occurrence of B in C with D, and let 12 be the terminology obtained from Tt by 
replacing the definition A == C with A == C'. Then both terminologies have the 
same name and base symbols. Moreover, since 12 has been obtained from Tt by 
replacing equals by equals, both terminologies have the same models. Since 7' is 
obtained from 7 by a sequence of replacement steps like the ones above, this proves 
statements (1) and (2). 

Suppose now that .J is an interpretation of the base symbols. We extend it to 
an interpretation I that covers also the name symbols by setting AI = C'.:!, if 
A == C' is the definition of A in T'. Clearly, I is a model of T', and it is the only 
extension of .J that is a model of T'. This shows that T' is definitorial. Moreover, 
7 is definitorial as well, since it is equivalent to T'. 0 

Of course, there are also terminologies with cycles that are definitorial, but: 

Theorem 1. Every definitorial ACe -terminology is equivalent to an acyclic ter­
minology. 

The theorem is a reformulation of Beths Definability Theorem [Gab72] for the 
modal propositionallogic Kn. 

2.1.5. Terminologies with inclusion axioms. In the case of concepts that can­
not be defined completely necessary conditions for concept membership are still 
stated using an inclusion. Inclusion whose left-hand side is atomic is a specializa­
tio.n. 

For example, concept "Women" from TBox in Example 2 can be described in 
less detail with the specialization 

(2) Woman k Person 

If specialization is allowed in a terminology, then the terminology looses its defin­
itorial impact, even if it is acyclic. A set of axioms 7 is a generalized terminology if 
the left-hand side of each axiom is an atomic concept and for every atomic concept 
there is at most one axiom where it occurs on the left-hand side. 

Generalized terminology 7 can be transformed into a regular terminology r, 
containing definitions only, such that r is equivalent to 7 in a sense specified below. 
7 is obtained from 7 by choosing a new base symbol A for every specialization 
A k C in 7 and by replacing the specialization A!; C with the definition A=: Anc. 
The terminology r is the normalization of r. 

If a TBox contains the specialization (2), then the normalization contains the 
definition Woman == Woman n Person. The additional base symbol Woman stands 
for the qualities that distinguish a woman among persons. 
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Lemma 2. Let T be a generalized terminology and T its normalization. Then 

(1) Every model of T is a model of T 

123 

(2) For every model I of T there is a model t of T that has the same domain 
as I and agrees with I on the atomic concepts and roles in T. 

Proof. The first statement holds because a model t of T satisfies AI = (A n C)I = 
Ai n Ci , which implies AI ~ Ci . Conversely, if I is a model of T, then the 
extension t of I, defined by Ai = AI, is a model of T, because AI ~ C I implies 
AI = AI n CI = AI n CI, and therefore t satisfies A == An c. 0 

In theory, inclusion axioms do not extend the expressivity of terminologies, while, 
in practice, they are a convenient means to introduce terms into a terminology that 
cannot be defined completely. 

2.1.6. World Descriptions. The second component of a knowledge base, in ad­
dition to the terminology or TBox, is the world description or ABox. 
Assertions about individuals. In the ABox, individuals are introduced, by giving 
them names, and properties of these individuals are asserted. We denote individual 
names by a, b, c. Using concepts C and roles R, one can make assertions of the 
following two kinds in an ABox: C(a), and R(b, c). The first kind are concept 
assertions, and they state that a belongs to (the interpretation of) C. The second 
kind are role assertions, and they state that c is a filler of the role R for b. An 
ABox, denoted as A, is a finite set of such assertions. 

Example 4. If JOHN, PAUL, and MARY are individual names, then Father(JOHN) 
means that John is a father, and hasChild(MARY, PAUL) means that Paul is a child 
of Mary. An example of an ABox for TBox from Example 2: 

MotherWithoutDaughter(MARY) Father(JOHN) 

hasChild(MARY,JOHN) hasChild(JOHN, HARRY) 

hasChild(MARY, PAUL) 

In a simplified view, an ABox can be seen as an instance of a relational database 
with only unary and binary relations. Contrary to the "closed-world semantics" of 
classical databases, the semantics of ABoxes is an "open-world semantics", since 
normally knowledge representation systems can be applied in situations where it 
cannot be assumed that the knowledge in the KB is complete. The TBox also 
imposes semantic relations between the concepts and roles in the ABox that do not 
have counterparts in database semantics. 

ABoxes are given semantics by extending interpretations to individual names. 
From this point on, an interpretation I = (/:).I, .I) not only maps atomic concepts 
and roles to sets and relations, but also maps each individual name a to an element 
aI E /:).I. This mapping is constructed with respect to the unique name assumption 
(UNA), that is, if a, b are distinct names, then aI ::f.~. The interpretation I 
satisfies the concept assertion C(a) if aI E CI, and it satisfies the role assertion 
R( a, b) if (aI,~) E RI. An interpretation satisfies the ABox A if it satisfies each 
assertion in A. In this case we say that I is a model of the assertion or of the 
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ABox. Finally, I satisfies an assertion a or an ABox A with respect to a TBox T 
if in addition to being a model of a or of A, it is a model of T. Thus, a model of A 
and T is an abstraction of a concrete world where the concepts are interpreted as 
subsets of the domain as required by the TBox and where the membership of the 
individuals to concepts and their relationships with one another in terms of roles 
respect the assertions in the ABox. 
Individual names in the description language. Sometimes, it is convenient to allow 
individual names (also called norninals) not only in the ABox, but in the description 
language as well. The most basic constructor employing individual is the "set" (or 
one-of), written by {al, ... ,an }, where al, ... ,an are individual names. As one 
could expect, such a set concept is interpreted as 

(3) {al, ... ,an}x = {af, ... ,a~} 

With sets in the description language one can, for instance, define the concept of 
permanent members of the UN security council as {CHINA, FRANCE, RUSSIA, UK, US}. 

Another constructor involving individual names is the "fills" constructor R : a 
for a role R. The semantics of this constructor is: 

(4) 

that is, R : a stands for the set of those objects that have a as a filler of the role R. 

2.2. Inferences. A knowledge representation system can perform specific types of 
reasoning. Knowledge base, containing TBox and ABox has semantics that makes 
it equivalent to a set of axioms in first-order predicate logic. Like any other set of 
axioms, it contains implicit knowledge that can be made explicit through inferences. 

Further discussion shows that the main problem with inference is consistency 
check for ABox, to which all other inferences can be reduced. 

2.2.1. Reasoning tasks for concepts. During the modeling of a domain termi­
nology T is constructed by defining new concepts. It is important to check if new 
concepts are contradictory or not. A concept is meaningful if there is an interpre­
tation that satisfies the axioms of T, such that the concept denotes a nonempty set 
in that interpretation. Such a concept is satisfiable with respect to T, otherwise it 
is unsatisfiable. 

To check whether a domain model is contradictory or not, or to optimize queries 
that are formulated as concepts, it might be needed to know whether a concept 
is more general than another one (the subsumption problem). A concept e is 
subsumed by a concept D if in every model of T the set denoted by e is a subset 
of the set denoted by D. The algorithms that check the subsumption may also be 
used for organizing concepts of a TBox in a taxonomy according to their generality. 

Two more relationships between concepts are equivalence and disjointness. These 
properties are formally defined as follows. Let T be a TBox. 

Satisfiability: A concept e is satisfiable with respect to T if there exists a 
model I of T such that eX is nonempty - I is a model of e. 

Subsumption: A concept e is subsumed by a concept D with respect to T 
if eX ~ DX for every model I of T - e ~T D or T 1= e ~ D. 
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Equivalence: Two concepts C and D are equivalent with respect to T if 
CI = DI for every model I of T - C =7 D or T 1= C = D. 

Disjointness: Two concepts C and D are disjoint with respect to T if CX n 
DX = 0 for every model I of T. 

If the TBox is empty, we simply write 1= C !;;; D if C is subsumed by D, and 
1= C = D if C and D are equivalent. 

Lemma 3 (Reduction to Subsumption). For concepts C, D we have 

(1) C is unsatisfiable {::} C is subsumed by 1.; 
(2) C and D are equivalent {::} C is subsumed by D and D is subsumed by C; 
(3) C and D are disjoint {::} CnD is subsumed by .i. 

The statements also hold with respect to a TBox. 

Most DL systems that can check subsumption can perform all four inferences 
defined above, because almost all of description languages implemented in actual 
DL systems contain an unsatisfiable concept and all of them include the intersection 
operator "n". 

Subsumption, equivalence, and disjointness of concepts can be reduced to the 
satisfiability problem if in addition to intersection, a system allows forming of the 
negation of a description [Smo88J. 

Lemma 4 (Reduction to Unsatisfiability). For concepts C, D we have 

(1) C is subsumed by D {::} C n -,D is unsatisfiable; 
(2) C and D are equivalent {::} both (C n -,D) and (-,C n IJ) are unsatisfiable; 
(3) C and D are disjoint {::} CnD is unsatisfiable. 

The statements also hold with respect to a TBox. 

Since, for sets M, N we have M ~ N iff M " N = 0, then the reduction of sub­
sumption becomes apparent and easy to understand. The reduction of equivalence 
is correct because C and D are equivalent, if and only if C is subsumed by D and 
D is subsumed by C. Finally, the reduction of disjointness is just a rephrasing of 
the definition. 

In an AC-Ianguage without full negation, subsumption and equivalence cannot 
be reduced to unsatisfiability in the way shown in Lemma 4. The complexity of 
such inferences is somewhat different. 

As seen in Lemma 3, from the viewpoint of worst-case complexity, subsumption 
is the most general inference for any AC-Ianguage. Lemma 5 shows that unsatisfi­
ability is a special case of each of the other problems. Lemma 3 and 5 show that, 
in order to obtain complexity bounds for inferences on concepts in AC-Ianguages 
(more precisely, for the complexity of the unsatisfiability, the equivalence, and the 
disjointness problem), it suffices to assess lower bounds for unsatisfiability and up­
per bounds for subsumption. 

Lemma 5 (Reducing Unsatisfiability). Let C be a concept. Then the following 
statements are equivalent: 

(1) C is unsatisfiable; (3) C and 1. are equivalent; 
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(2) C is subsumed by .1; (4) C and T are disjoint. 

The statements also hold with respect to a TBox. 

2.2.2. Eliminating the TBox. This section shows that, if 7 is an acyclic TBox, 
it is always possible to reduce reasoning problems with respect to 7 to problems 
with respect to the empty TBox. As seen in Lemma 1, 7 is equivalent to its 
expansion 1'. Recall that in the expansion every definition is of the form A = D 
such that D contains only base symbols, but no name symbols. For each concept C 
we define the expansion of C with respect to 7 as the concept C' that is obtained 
from C by replacing each occurrence of a name symbol A in C by the concept D, 
where A = D is the definition of A in 7 ' , the expansion of 7. 

Since the expansion C' is derived from C by replacing names with descriptions 
in such a way that both are interpreted in the same way in any model of 7 ' , it 
follows that 

• C =rC' . 
Thus, C is satisfiable with respect to 7 iff C' is satisfiable with respect to 7. 

However, C' contains no defined names, and thus C' is satisfiable with respect to 
7 iff it is satisfiable. This yields that 

• C is satisfiable with respect to 7 iff C' is satisfiable. 

If D is another concept, then D =r D' , and this yields that C !:;;;r D iff C' !:;;;r D' 
and C =r D iff C' =r D'. Since C' and D' contain only base symbols, this implies 

• 7 'r= C !:;;; D iff 'r= C' !:;;; D' 
• 7 'r= C = D iff 'r= C' = D'. 

With similar arguments we can show that 

• C and D are disjoint with respect to 7 iff C' and D' are disjOint. 

Expanding concepts with respect to an acyclic TBox allows removing the TBox 
from reasoning problems. 

Expanding concepts may substantially increase computational complexity, since 
in the worst case the size of 7 ' is exponential in the size of r. A complexity analysis 
of the difficulty of reasoning with respect to TBoxes shows that the expansion of 
definitions is a source of complexity that cannot always be avoided. 

2.2.3. Reasoning tasks for ABoxes. After designed a terminology and using 
the reasoning services of DL system to check that all concepts are satisfiable and 
that the expected subsumption relations hold, the ABox can be filled with assertions 
about individuals. An ABox contains two types of assertions: concept assertions 
of the form C(a) and role assertions of the form R(a, b). It is understandable that 
the representation of such knowledge has to be consistent. 

An ABox A is consistent with respect to a TBox 7, if there is an interpretation 
that is a model of both A and r. It is simply said that A is consistent if it is 
consistent with respect to the empty TBox. 

For example, the set of assertions {Mother(MERY), Father(MERY)} is consistent 
with respect to the empty TBox, however, the assertions are not consistent with 
respect to the Family TBox. 
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Similarly as for concepts, checking the consistency of an ABox with respect to 
an acyclic TBox can be reduced to checking an expanded ABox. The expansion of 
A with respect to T is defined as the ABox A' that is obtained from A by replacing 
each concept assertion C(a) in A with the assertion C'(a), where C' is the expansion 
of C with respect to T. In every model of T, a concept C and its expansion C' are 
interpreted in the same way. Therefore, A' is consistent with respect to T iff A is 
consistent with respect to T. However, since A' does not contain a name symbol 
defined in T it is consistent with respect to T iff it is consistent. The conclusion is: 

• A is consistent with respect to T iff its expansion A' is consistent. 

Other inferences that are going to be introduced can also be defined with respect 
to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for 
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded 
ABoxes. 

Over an ABox A, queries can be posed about the relationships between concepts, 
roles and individuals. The prototypical ABox inference on which such queries are 
based is the instance check, or the check whether an assertion is entailed by an 
ABox. An assertion Cl! is entailed by A and we write A F Cl! if every interpretation 
that satisfies A, that is, every model of A, also satisfies Cl!. If Cl! is a role assertion, 
the instance check is easy, since description language does not contain constructors 
to form complex roles. If Cl! is of the form C(a), the instance check can be reduced 
to the consistency problem for ABoxes because there is the following connection: 

• A F C(a) iff A U {-,C(a)} is inconsistent. 

Reasoning about concepts can also be reduced to consistency checking. We 
have seen in Lemma 4 that the important reasoning problems for concepts can 
be reduced to the one to decide whether a concept is satisfiable or not. Similarly, 
concept satisfiability can be reduced to ABox consistency because for every concept 
C it holds: 

• C is satisfiable iff {C(a)} is consistent, 

where a is an arbitrarily chosen individual name. 
Conversely, in [Sch94] it has been shown that ABox consistency can be reduced 

to the concept satisfiability in languages with the "set" and the "fills" constructors. 
If knowledge bases are considered as means to store information about individu­

als, it may be needed to know all individuals that are instances of a given concept 
description C, that is, the description language is used to formulate queries. Given 
an ABox A and a concept C, the retrieval problem is to find all individuals a such 
that A F C(a). A non-optimized algorithm for a retrieval query can be realized by 
testing whether each individual occurring in the ABox is an instance of the query 
concept C. 

The dual inference to retrieval is the realization problem: given an individual 
a and a set of concepts, find the most specific concepts C from the set such that 
A F C(a). Here, the most specific concepts are those that are minimal with respect 
to the subsumption ordering ~. 
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2.3. Reasoning algorithms. As it was shown in the previous section, if conjunc­
tion and negation are allowed in certain DL, then all relevant inference problems 
can be reduced to consistency problem for ABoxes. IT negation is not allowed, 
then subsumption of concepts can be computed by so-called structural subsump­
tion algorithms, i.e., algorithms that compare the syntactic structure of (possibly 
normalized) concept descriptions. Such algorithms are, usually, very efficient, but 
they are only complete for rather simple languages with little expressivity. In par­
ticular, DLs with (full) negation and disjunction cannot be handled by structural 
subsumption algorithms. For such languages, tableau-based algorithms are often 
used. 

Designing new algorithms for reasoning in DLs can be unnecessary in many 
cases. Trying to reduce the problem to a known inference problem in logics is a 
good way. For example, decidability of the inference problems for ACe and many 
other DLs can be obtained as a consequence of the known decidability result for the 
two variable fragment of the first-order predicate logic. The language C2 consists 
of all formulae of the first-order predicate logic that can be built with the help of 
predicate symbols (including equality) and constant symbols (but without function 
symbols) using only the variables x, y [Mor75]. By appropriately reusing variable 
names, any concept description of the language ACe can be translated into an £2_ 
formula with one free variable [Bor96]. This connection between ACe and C2 shows 
that any extension of A£C by constructors that can be expressed with the help of 
only two variables yields a decidable DL. Number restrictions and composition of 
roles are examples of constructors that cannot be expressed within £2, but number 
restrictions can be expressed in e2, the extension of C2 by counting quantifiers, 
which has recently been shown to be decidable (Gra et al. 97, Pac97]. However, the 
complexity of the decision procedures obtained in this way is usually higher than 
necessary: for example, the satisfiability problem for £2 is NExpTIME-COmplete, 
whereas satisfiability of Ace-concept descriptions is "only" PSPAcE-complete. 

Lower complexity decision procedures can be obtained by using the connection 
between DLs and propositional modal logics. Ace is a syntactic variant of the 
propositional multi-modal logic K [Sch91] and the extension of A£C by transitive 
closure of roles corresponds to Propositional Dynamic Logic (PDL) [Baa91J. Some 
of the algorithms used in propositional modal logics for deciding satisfiability are 
very similar to the tableau-based algorithms newly developed for DLs. Instead of 
using tableau-based algorithms, decidability of certain propositional modal logics 
(and thus of the corresponding DLs), can also be shown by establishing the fi­
nite model property [Fit93] of the logic (i.e., showing that a formula/concept is 
satisfiable iff it is satisfiable in a finite interpretation) or by using tree automata 
(VarWoI86J. 

2.3.1. Structural subsumption algorithms. These algorithms usually proceed 
in two phases. First, the descriptions to be tested for subsumption are normalized, 
and t~en the syntactic structure of the normal forms is compared. Ideas underlying 
this approach will be shown for the language ;:co, which allows for conjunction (Cn 
D) and value restrictions (\fR.C). Then the bottom concept (1.), atomic negation 
(..,A) and number restrictions (~ nR and ~ nR) handling will be presented. 
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An F .co-concept description is in a normal form iff it is of the form 

Al n ... n Am n VRI.CI n ... n VRn.Cn 

where AI, ... , Am are distinct concept names, RI, .. . , Rn are distinct role names, 
and Cl, ... , Cn are F .co-concept descriptions in normal form. Using associativity, 
commutativity and idempotence of n, and the fact that the descriptions VR.(CnD) 
and (VR.C) n (VR.D) are equivalent, it is easy to see that any description can be 
transformed into an equivalent one in the normal form. 

Lemma 6. Let Al n ... n Am n VRI.CI n ... n VRn.Cn be the normal form of the 
F.co-concept description C, and BIn ... nBknVSI.Dln .. . nVSI.DI the normal form 

I 

of the F £0 -concept description D. Then C !; D iff the following two conditions 
hold: 

(1) for all i, 1 ~ i ~ k there exists j, 1 ~ j ~ m such that Bi = Aj 
(2) for all i, 1 ~ i ~ I there exists j, 1 ~ j ~ n such that Si = Rj and Ci !; Dj 

Having this lemma in mind, it is easy to construct recursive algorithm for com­
puting subsumption. That algorithm has a polynomial time complexity [LevBra87]. 

If F.co is extended by language constructors that can express unsatisfiable con­
cepts, then the definition of the normal form must be changed. On the other hand, 
the structural comparison of the normal forms must take into account that an 
unsatisfiable concept is subsumed by every concept. The simplest DL where this 
occurs is F.cl. the extension of F.co by the bottom concept l.. 

An F.cl. -concept description is of the normal form iff it is .1 or of the form 

Al n ... n Am n VRI.Cl n ... n VRn.Cn 

where AI' ... ' Am are distinct concept names different from .1, RI' ... ' Rn are 
distinct role names, and Cl, ... , Cn and F.cl. -concept descriptions in the normal 
form. Such a normal form can easily be computed. In principle, one just computes 
the F.co-normal form of the description (where.1 is treated as an ordinary concept 
name): Bl n ... n Bk nVRl.DI n ... n VRn.Dn. If one of the BiS is .1 then replace 
the whole description by.1. Otherwise, apply the same procedure recursively to 
the Djs. The structural subsumption algorithm for F.cl. works just like the one 
for F.co with the only difference that .1 is subsumed by any description. 

Extension of F.cl. by atomic negation can be treated similarly. During the 
computation of the normal form, negated concept names are treated like concept 
names. If a name and its negation occur on the same level of the normal form, 
then .1 is added, which can then be treated as described above. The structural 
comparison of the normal forms treats negated concept names just like concept 
names. 

Finally, if we consider the language A.cN, the additional presence of number 
restrictions leads to a new type of conflict. On one hand, as in the case of atomic 
negation, number restrictions may be conflicting with each other (e.g. ~ 2R and 
~ 1R). On the other hand, at-least restrictions ~ nR for n ~ 1 are in conflict with 
value restrictions V R.l.. When computing the normal form, number restrictions 
can be treated like concept names. The next step is taking care of the new types of 
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conflicts by introducing 1- and using it for normalization as described above. Dur­
ing the structural comparison of normal forms, inherent subsumption relationships 
between number restrictions (e.g. ;:: nR ~;:: mR if! n ;:: m) must also be taken into 
account [BorPat94]. 

Structural subsumption algorithms, like described above, usually fail to be com­
plete for larger DLs. In particular, they cannot treat disjunction, full negation, and 
full e~stential restriction 3R.C. These constructors can be more efficiently treated 
in subsumption algorithms that are constructed in a tableau-based style. 

2.3.2. Tableau algorithms. Tableau algorithms use another idea to examine 
subsumption of concept descriptions. Precisely, as it was shown in Subsection 2.2, 
they use negation to reduce subsumption to (un)satisfiability of concept descriptions 
using: C ~ D iff C n -,D is unsatisfiable. 

Before describing a tableau-based satisfiability algorithm for ACCN in more 
detail, we illustrate the underlying ideas using a few basic rules: 

• For any existential restriction the algorithm introduces a new individual as 
role filler, and this individual must satisfy the constraints expressed by the 
restriction. 

• The algorithm uses value restrictions in interaction with already defined 
role relations to impose new constraints on individuals. 

• For disjunctive constraints, the algorithm tries both possibilities in succes­
sive attempts. It must backtrack if it reaches an obvious contradiction, i.e., 
if the same individual must satisfy constraints that are obviously conflict­
ing. 

• If an at-most number restriction is violated, then the algorithm must iden­
tify different role fillers. 

2.3.3. A tableau-based satisfiability algorithm for MeN. Describing the 
algorithm needs introducing an appropriate data structure which will be used for 
representing constraints like" a belongs to (the interpretation of) C" and "b is an R­
filler of a". Although many papers on tableau algorithms for DLs introduce the new 
notion of a constraint system for this purpose, considering the types of constraints 
that must be expressed, ABox assertions can be used for their representations. 
Since the presence of at-most number restrictions may lead to the identification of 
different individual names, the unique name assumption (UNA) will not be imposed 
on the ABoxes considered by the algorithm. Instead, explicit inequality assertions 
of the form x .,. y for individual names x, y, with the obvious semantics that an 
interpretation I satisfies x .,. y if! xI i= yI will be allowed. These assertions are 
assumed to be symmetric, i.e., saying that x .,. y belongs to an ABox A is the same 
as saying that y .,. x belongs to A. 

Let Co be an ACCN-concept. In order to test satisfiability of Co, the algo­
rithm starts with the ABox Aa = {Co (xo)}, and applies consistency preserving 
transformation rules (see Figure 2) to do ABox until no more rules apply. If the 
"complete" ABox obtained in this way does not contain an obvious contradiction 
(called clash), then Aa is consistent (and thus Co is satisfiable), and inconsistent 

j 
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(unsatisfiable) otherwise. The transformation rules that handle disjunction and 
at-most restrictions are non-deterministic in the sense that a given ABox is trans­
formed into finitely many new ABoxes such that the original ABox is consistent iff 
one of the new ABoxes is so. For this reason instead of single ABoxes finite sets of 
ABoxes S = {AI' ... , Ak} are considered. Such a set is consistent iff there is some 
i, 1 ~ i ~ k such that Ai is consistent. A rule in Figure 2 is applied to a given 
finite set of ABoxes S as follows: it takes an element A of S and replaces it by one 
ABox A', by two ABoxes A' and A", or by finitely many ABoxes Ai,j' 

The -tn-rule 
Condition: A contains (Cl n C2 )(x), but it does not contain both Cl (x) and 
C2 (x) 
Action: A' = Au {C1(X),C2(X)}. 

The -tu-rule 
Condition: A contains (Cl U C2 )(x), but neither Cl (x) nor C2 (x) 
Action: A' = A u {C1(x)}, A" = A U {C2(x)}. 

The -t3-rule 
Condition: A contains (3R.C) (x) , but there is no individual name Z such that 
C(z) and R(x, z) are in A 
Action: A' = Au {C(y),R(x,y)} where y is an individual name not occurring 
in A. 

The -tv-rule 
Condition: A contains (VR.C)(x) and R(x,y), but it does not contain C(y) 
Action: A' = A u {C(y)}. 

The -t~-rule 
Condition: A contains (~ nR)(x) and there are no individual names Z1,' .• ,Zn 

such that R(x, Zi) (1 ~ i ~ n) and Zi :f:. Zj (1 ~ i < j ~ n) are contained in A 
Action: A' = A u {R(x, Yi) I 1 ~ i ~ n} U {Yi :f:. Yi I 1 ~ i < j ~ n} where 
Y1 ... ,Yn are distinct individual names not occurring in A. 

The -t~-rule 
Condition: A contains distinct individual names Y1, ... , Yn+l such that 
(~ nR)(x) and R(x, yr), . .. ,R(x, Yn+r) are in A and Yi :f:. Yj is not in A for 
some i =f. j 
Action: For each pair Yi, Yj such that i > j and Yi :f:. Yj is not in A, the ABox 
Ai,j = [yifYjJA is obtained from A by replacing each occurrence of Yi by Yj· 

FIGURE 2. Transformation rules of the satisfiability algorithm. 

Consequent to the definition of the transformation rules the following lemma is 
valid: 

Lemma 7 (Soundness). Assume that $I is obtained from the finite set of ABoxes 
S by application of a transformation rule. Then S is consistent iJJ $I is consistent. 
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The second important property of the set of transformation rules is that the 
transformation process always terminates: 

Lemma 8 (Termination [BaaSat99, Don et al. 97]). Let Co be an ACCN -concept 
description. There cannot be an infinite sequence of rule applications 

{{Co(xo)}} ~ Sl ~ S2 ~ ... 

Lemma 9. Let A be an ABox contained in Si for some i ~ 1. Then: 

• For every individual x 'f:. Xo occurring in A, there is a unique sequence 
R1, .. ·, RI (l ~ 1) of role names and a unique sequence xl,··., XI-1 of 
individual names such that {R1(xo, xt), R2(X1, X2), ... , R/(XI-1, x)} ~ A. 
In this case, we say that x occurs on levell in A. 

• If C(x) E A for an individual name x on levell, then the maximal role 
depth of C (i.e., the maximal nesting of constructors involving roles) is 
bounded by the maximal role depth of Co minus l. Consequently, the level 
of any individual in A is bounded by the maximal role depth of Co. 

• If C(x) E A, then C is a subdescription of Co. Consequently, the number 
of different concept assertions on x is bounded by the size of Co. 

• The number of different role successors of X in A (i.e., individuals y such 
that R(x, y) E A for a role name R) is bounded by the sum of the num­
bers occurring in at-least restrictions in Co plus the number of different 
existential restrictions in Co. 

Starting with {{ Co (xo)} }, we thus obtain after a finite number of rule appli­
cations a set of ABoxes S, to which no more rules apply. An ABox A is called 
complete iff none of the transformation rules applies to it. Consistency of a set of 
complete ABoxes can be determined by looking for clashes. The ABox A contains 
a clash iff one of the following three situations occurs: 

(i) {.l(x)} ~ A for some individual name Xi 
(ii) {A(x), -,A(x)} ~ A for some individual name x and some concept name Ai 

(iii) {(~ nR)(x)}U{R(x'Yi) 11 ~ i ~ n+1}l:J{Yi'" Yj 11 ~ i < j ~ n+1} ~ A 
for individual names x, Y1, ... ,Yn+!, a nonnegative integer n, and a role 
name R. 

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all 
the ABoxes in S contain a clash, then S is inconsistent, and thus by the soundness 
lemma {Co (xo)} is inconsistent as well. Consequently, Co is unsatisfiable. If, 
however, one of the complete ABoxes in S is clash-free, then S is consistent. By 
soundness of the rules, this implies consistency of {Co(xo)}, and thus satisfiability 
of Co. 

Lemma 10 (Completeness). Any complete and clash-free ABox A has a model. 

This lemma can be proved by defining the canonical interpretation LA induced 
by A: 

(i) the domain /:::,.LA of LA consists of all the individual names occurring in Ai 
(ii) for all atomic concepts A we define ALA = {x I A(x) E A}i 
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(iii) for all atomic roles R we define RIA = {(x,y) I R(x,y) EA}. 
IA satisfies all the role assertions in A, by definition, and, by induction on the 

structure of concept descriptions, it is easy to show that it satisfies the concept 
assertions as well. The inequality assertions are satisfied since x #= yEA only if x, 
y are different individual names. 

The facts stated in Lemma 9 imply that the canonical interpretation has the 
shape of a finite tree whose depth is linearly bounded by the size of Co and whose 
branching factor is bounded by the sum of the numbers occurring in at-least restric­
tions in Co plus the number of different existential restrictions in Co. Consequently, 
ACeN has the finite tree model property, i.e., any satisfiable concept Co is satisfi­
able in a finite interpretation I that has the shape of a tree whose root belongs to 
Co· 

Theorem 2. It is decidable whether or not an ACeN -concept is satisfiable. 

Theorem 3. Satisfiability of AceN -concept descriptions is PSPAcE-complete. 

2.3.4. Extension to the consistency problem for ABoxes. Algorithm that 
decides consistency of A.cCN-ABoxes can be constructed as an extension of de­
scribed tableau-based satisfiability algorithm. Let A be an ACCN-ABox. To test 
A for consistency, we first add inequality assertions a #= b for every pair of distinct 
individual names a, b occurring in A. Let Aa be the ABox obtained in this way. 
The consistency algorithm applies the rules of Figure 2 to the singleton set {Aa}. 
Soundness and completeness of the rule set can be shown as before. 

Termination can be enabled by requiring that generating rules -+3 and -+~ may 
only be applied if none of the other rules are applicable. 

Following a similar idea, the consistency problem for ACCN-ABoxes can be re­
duced to satisfiability of ACCN-concept descriptions [HoI96]. Roughly speaking, 
this reduction works as follows: In a preprocessing step, one applies the transfor­
mation rules only to old individuals (i.e., individuals present in the original ABox). 
Subsequently, one can forget about the role assertions, i.e., for each individual name 
in the preprocessed ABox, the satisfiability algorithm is applied to the conjunction 
of its concept assertions. 

Theorem 4. Consistency of ACeN-ABoxes is PSPACE-complete. 

2.3.5. Extension to general inclusion axioms. In the above subsections, we 
have considered the satisfiability problem for concept descriptions and the consis­
tency problem for ABoxes without an underlying TBox. In fact, for acyclic TBoxes 
one can simply expand the definitions. Expansion is, however, no longer possible 
if general inclusion axioms of the form C !; D, where C and D may be com­
plex descriptions, are allowed. Instead of considering finitely many such axioms 
Cl !; D l , ... ,Cn !; Dn , it is sufficient to consider the single axiom T !; C, where 

C = (""Cl U D l ) n··· n (""Cn U Dn). 

The axiom T !; C simply claims that any individual must belong to the concept C. 
The tableau algorithm introduced above can easily be modified in such a manner 
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that it takes the following axiom into account: all individuals (both the original 
individuals and the ones newly generated by the 43~ and 4~-rule) are simply 
asserted to belong to C. However, this may produce nontermin;ting algorithm. 

Termination can be regained by detecting cyclic computations, and then blocking 
the application of generating rules: the application of the rules 43 to an individual 
x is blocked by an individual y in an ABox A iff {D I D(x) EA} ~ {D' I D'(y) EA}. 
The main idea underlying blocking is that the blocked individual x can use the role 
successors of y instead of generating new ones. 

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration 
of all individual names, and define that an individual x may only be blocked by 
individuals y that occur before x in this enumeration. This notion of blocking, 
together with some other technical assumptions, enables soundness, completeness 
as well as termination of algorithm [Buc et al. 93, Baa96]. Thus, consistency of 
ACCN-ABoxes with respect to general inclusion axioms is decidable. Since an 
algorithm may generate role paths of exponential length before blocking, it is no 
longer in PSPACE. In fact, even for the language ACC, satisfiability with respect 
to a single general inclusion axiom is known to be ExpTIME [DonMasOOJ. The 
tableau-based algorithm sketched above is a NExpTIME algorithm. However, us­
ing the translation technique mentioned at the beginning of this section, it can 
be shown [DeG95] that ACCN-ABoxes and general inclusion axioms can be trans­
lated into PDL(Propositional Dynamic Logic), which satisfiability can be decided 
in exponential time. 

Theorem 5. Consistency of ACCN -ABoxes with respect to general inclusion ax­
ioms is ExpTIME-complete. 

2.3.6. Extension to other language constructors. The tableau-based algo­
rithms for checking concept satisfiability and ABox consistency can also be em­
ployed for languages with other concept and/or role constructors. Each new con­
structor requires a new rule, and this rule can usually be obtained by simply con­
sidering the semantics of the constructor. Soundness of such a rule is often very 
easy to show. Completeness and termination are more difficult to control, since 
they must also take into account interactions between different rules. As it was 
shown above, termination can sometimes only be obtained if the application of 
rules is restricted by an appropriate strategy. Of course, one may only impose such 
a strategy if one can show that it does not perturb completeness. 

2.3.7. Reasoning with respect to terminologies. As it was said before, ter­
minologies (TBoxes) are sets of concept definitions (Le., equalities of the form 
A == C where A is atomic) such that every atomic concept occurs at most once as 
a left-hand side. 
Acyclic terminologies. As shown in Section 2.2, reasoning with respect to acyclic 
terminologies can be reduced to reasoning without terminologies by expanding the 
TBox, followed by replacing name symbols by their definitions in the terminology. 
Unfortunately, this increases the complexity ofreasoning, since the expanded TBox 
may be exponentially larger than the original one [Neb90]. 
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For more expressive languages, the presence of acyclic TBoxes does not necessar­
ily increase the complexity of the subsumption problem. For example, subsumption 
of concept descriptions in the language ACC is PSPAcE-complete, and so is sub­
sumption with respect to acyclic terminologies. Of course, in order to obtain a 
PSPAcE-algorithm for subsumption in ACC with respect to acyclic TBoxes, one 
cannot first expand the TBox completely since this might need exponential space. 
The main idea is that one uses a tableau-based algorithm like the one described, 
with the difference that it receives concept descriptions containing name symbols 
as input. Expansion is then done by the following rule: if the tableau-based algo­
rithm encounters an assertion of the form A(x), where A is a name occurring on the 
left-hand side of a definition A == C in the TBox, then it adds the assertion C(x). 
However, it does not further expand C at this stage. It is not difficult to show that 
this yields a PSPAcE-algorithm for satisfiability (and thus also for subsumption) of 
concepts with respect to acyclic TBoxes in ACC [Lut99]. 

There are, however, extensions of ACC for which this technique is not proper. 
One such example is the language ACCF, i.e., ACe extended by functional roles as 
well as agreements and disagreements on chains of functional roles (see Section 2.4 
below). Satisfiability of concepts is PSPAcE-complete for this language [HoINut90], 
. but satisfiability of concepts with respect to acyclic terminologies is NExpTIME­
complete [Lut99]. 
Cyclic terminologies. For cyclic terminologies, expansion would not terminate. If 
we use descriptive semantics, then cyclic terminologies are a special case of ter­
minologies with general inclusion axioms. Thus, the tableau-based algorithm for 
handling general inclusion axioms previously introduced can also be used for cyclic 
ACCN-TBoxes with descriptive semantics. 

For less expressive DLs, more efficient algorithms can, however, be obtained with 
the help of techniques based on finite automata. 

2.4. language extensions. In Section 2.1 we have introduced the language ACCN 
as a Description Logic prototype. For many applications, the expressive power of 
ACCN is not sufficient. For this reason, various other language constructors have 
been introduced in the literature and are employed by systems. In [Baa et al. 02] 
these language extensions were roughly classified into two categories, "classical" 
and "nonclassical" extensions. Intuitively, a classical extension is one whose se­
mantics can easily be defined within the model-theoretic framework introduced in 
Section 2.1, whereas defining the semantics of a nonclassical constructor is more 
problematic and requires an extension of the model-theoretic framework. Here­
after, the most important classical extensions of Description Logics will be briefly 
introduced. 

2.4.1. Role constructors. Since roles are interpreted as binary relations, it is 
quite natural to employ the usual operations on binary relations (such as Boolean 
operators, composition, inverse, and transitive closure) as role forming constructors. 

Definition 1 (Role constructors). Every role name is a role description (atomic 
role), and if R, S are role descriptions, then RnS (intersection), RuS (union), oR 
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(complement), R 0 S (composition), R+ (transitive closure), R- (inverse), id(G) 
(role identity) are also role descriptions. 

. . 
Given an interpretation I is extended to (complex) role descriptions as follows: 

(i) (R n S)z = RZ n SZ, (R u S)Z = RZ U SZ, (-,R)Z = b:.Z x b:.Z ....... RZ; 
(ii) (R 0 S)Z = {(a, c) E /::;.Z x b:.Z I (3b) (a, b) E RZ 1\ (b, c) E SZ}; 

(iii) (R+)Z = Ui)!l (RZ)i, i.e., (R+)Z is the transitive closure of (RZ); 
(iv) (R .... y = {(b, a) E b:.z x /::;.z I (a, b) E RZ} 
(v) id(Gf = {(a,a) E /::;.Z x b:.z I a E GZ}, i.e., each instance of concept to 

itself. 

For example, the union of the roles hasSon and hasDaughter can be used to 
define the role hasChild, and the transitive closure of hasChild expresses the role 
hasOffspring. The inverse of hasChild yields the role hasParent. 

Example 5. The following ACCIreg TBox "ile models a file-system constituted 
by file-system elements: . 

FSelem !;;; 3name.String 

FSelem == Directory U File 

Directory !;;; -,File 

Directory !;;; Vchild.FSelem 

File!;;; Vchild.1. 

Root!;;; Directory 

Root!;;; Vchild- .1. 

The axioms in "ile imply that in a model every object connected by a chain of 
role child to an instance of Root is an instance of FSelem. Formally, 

!tile 1= 3( child-)+ . Root !;;; FSelem 

It is shown that the complexity of satisfiability and subsumption of concepts 
in the language ACCNn (also called ACCNn in the literature and which extends 
ACeN by intersection of roles) are still PSPAcE-complete [Don et al. 97, TobOl]. 
Decidability of the extension of ACCN by the three Boolean operators and the 
inverse operator is a direct consequence of the fact that concepts of the extended 
language can be expressed in C2, i.e., first-order predicate logic with two vari­
ables and counting quantifiers, which is known to be decidable in NExpTIME 
[Gra et al. 97, Pac97]. It is also shown [LutSatOO] that ACC extended by role com­
plement is ExpTIME-COmplete, whereas ACC extended by role intersection and 
atomic role complement is NExpTIME-complete. 

For A£Ctrans (which extends ACC by transitive-closure, composition, and union 
of roles) subsumption and satisflability problem have been shown to be decid­
able [Baa91) and ExpTIME-Complete [FisLad79, Pra79, Pra80). The extension 
of ACCtrans by the inverse constructor corresponds to converse PDL [FisLad79]' 
which can also be shown to be decidable in deterministic exponential time [Var85). 
ACCtrans extended by inverse and number restrictions does not have the finite 
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model property. Nevertheless, this DL still has an ExpTIME-complete subsump­
tion and satisfiability problem. 

2.4.2. Expressive number restrictions. First, we will consider the so-called 
qualified number restrictions,. where the number restrictions are concerned with 
role-fillers belonging to a certain concept. 

Example 6. Given the role hasChild, the simple number restrictions introduced 
above can only state that the number of all children is within certain limits, such 
as in the concept ~ 2hasChildn ~ 5hasChild. Qualified number restrictions can also 
express that there are at least 2 sons and at most 5 daughters: 

~ 2hasChild.Malen ~ 5hasChild.Female 

Adding qualified number restrictions to ACe leaves the important inference prob­
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes) 
decidable: the worst-case complexity is still PSPAcE-complete. The language is 
decidable if general sets of inclusion axioms are allowed [Buc et al. 93]. 

The second group of extensions are those which allow for complex role expressions 
inside number restrictions. The extension of ACeN by number restrictions involv­
ing composition has a decidable satisfiability and subsumption problem. On the 
other hand, if any number restrictions involving composition, union and inverse, or 
number restrictions involving composition and intersection are added, then satisfi­
ability and subsumption become undecidable [BaaSat96, BaaSat99]. For ACCtrans 
the extension by number restrictions involving compositionis already undecidable 
[BaaSat99] . 

Third, if the explicit numbers n in number restrictions are replaced by variables Q 

that stand for arbitrary nonnegative integers, the expressive power of language can 
further be increased by introducing explicit quantification of the numeric variables. 

It is shown that ACCN extended by such symbolic number restrictions with 
universal and existential quantification of numerical variables has an undecidable 
satisfiability and subsumption problem. If one restricts this language to existen­
tial quantification of numerical variables and negation on atomic concepts, then 
satisfiability becomes decidable, but subsumption remains undecidable. 

2.4.3. Role-value-maps. Role-value-maps are a family of very expressive con­
cept constructors, which were, however, available in the original KL-One-system. 

Definition 2 (Role-value-maps). A role chain is a composition RIo", oRn of role 
names. If R, S are role chains, then R ~ Sand R = S are concepts. 

A given interpretation I is extended to role-value-maps as
A 
follows: 

(i) (R ~ S)I = {a E b,I I (Vb) «a, b) E RI --+ (a, b) E SI)} 

(ii) (R = sf = {a E b,I I (Vb)«a,b) E W B (a, b) E SI)} 

Example 7. The concept 

Person n (hasChild 0 hasFriend ~ knows) 
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describes the persons knowing all friends of their children, and 

Person n (marriedTo 0 likesToEat = likesToEat) 

describes persons having the same favorite foods as their spouse. 

Unfortunately, in the presence of role-value-maps, the subsumption problem is 
undecidable, even if the language allows only for conjunction and value restriction 
as additional constructors. 

Solution to this problem is restricting the attention to role chains of functional 
roles, also called attributes or features in the literature. An interpretation I inter­
prets the role R as a functional role if! {(a, b), (a, cn ~ RI implies b = c. In the 
following, it will be assumed that the set of role names is partitioned into the set 
of functional roles and the set of ordinary roles. Any interpretation must interpret 
the functional roles as such. Functional roles will be denoted with small letters f, 
g, possibly with index. 

Definition 3 (Agreements). If f, 9 are role chains of functional roles, then f == g 
and f -:F g are concepts (agreement and disagreement). 

A given interpretation I is extended to agreements and disagreements as follows: 

(i) (f == g)I = {a E b,I I (3b) «a, b) E P 1\ (a, b) E gI)} 

(ii) (f -:F gf = {a E b,I I (3b1, ~)(b1 i- ~ 1\ (a, bt) E P 1\ (a, b2) E gI)} 

In the literature, the agreement constructor is sometimes also called the "same­
as" constructor. Since f, 9 are the role chains between the functional roles, there 
can be at most one role filler for a with respect to the respective role chain. The 
semantics of agreements and disagreements requires these role fillers to exist (and 
be equal or distinct) for a to belong to the concept. 

Example 8. Roles such as has Mother, hasFather and hasLastName with their usual 
interpretation are functional roles, whereas hasParent and hasChild are not. The 
concept 

Person n (hasLastName == has Mother 0 hasLastName) 

n (hasLastName -:F has Father 0 hasLastName) 

describes persons whose last name coincides with the last name of their mother, 
but not with the last name of their father. 

The restriction to functional roles makes reasoning in A.Ce extended by agree­
ments and disagreements decidable [HolNut90J. However, if general inclusion ax­
ioms (or transitive closure of functional roles or cyclic definitions) are allowed, 
then agreements and disagreements between chains of functional roles again cause 
subsumption to become undecidable. 

2.4.4. Functional restrictions (F). Functional restrictions are the simplest form 
of number restrictions considered in deSCription logics, and allow for specifying local 
functionality of roles, Le., that instances of certain concepts have unique role-fillers 
for a given role. By adding functional restrictions on atomic roles and their inverse 
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to A.cCIreg we obtain the description logic A.cCFIreg . Functional restrictions has 
a form::;; IQ, where Q is a basic role, i.e., either an atomic role or the inverse of 
an atomic role. Such a functional restriction is interpreted as follows: 

(::;; IQ)I = {a E t:,I II{b E t:,I I (a,b) E QI}I::;; I} 

Reasoning in A.cCFIreg is ExpTIME-COmplete. Also, A.cCFIreg has the tree 
model property, which states that if a A.cCFIreg-concept C is satisfiable then it 
is satisfied in an interpretation which has the structure of a (possibly infinite) tree 
with bounded branching degree. This makes the space for using of techniques based 
on automata on infinite trees. 

2.4.5. Qualified number restrictions (Q). Qualified number restrictions is the 
most general form of number restrictions, and allow for specifying arbitrary car­
dinality constraints on roles with role-fillers belonging to a certain concept. In 
particular we will consider qualified number restrictions on basic roles, i.e., atomic 
roles and their inverse. By adding such constructs to A.cCIreg we obtain the de­
scription logic A.cC QIreg. 

Qualified number restrictions has a form::;; nQ.C and ~ nQ.C, where n is 
a nonnegative integer, Q is a basic role, and C is an A.cCQIreg-concept. Such 
constructs are interpreted as follows: . 

(::;; nQ.C)I = {a E t:,I I lib E t:,I I (a,b) E QII\ b E CI}I ::;; n} 

(~ nQ.Cl = {a E t:,I /I{b E t:,I I (a, b) E QI 1\ b E CI}I ~ n} 

Reasoning in A.cC QIreg is still ExpTIME-complete. 

2.4.6. Relations of arbitrary arity. A limitation of traditional description log­
ics is that only binary relationships between instances of concepts can be repre­
sented, which is a quite limitation in a process of modeling relationships among 
more than two objects in some real world situations. Such relationships can be 
described by making use of relations of arbitrary arity instead of (binary) roles. 

Let us consider the description logic VCR, which represents a natural generaliza­
tion of traditional description logics towards n-ary relations. The basic elements of 
VCR are atomic relations and atomic concepts, denoted by P and A, respectively. 
Arbitrary relations, of given arity between 2 and nmax , and arbitrary concepts are 
formed according to the following syntax 

R -t T niP I (i/n: C) I .,R I RI n R2 

C -t T 1 I A I .,C I Cl n C2 I 3[i]R I ::;; k[i]R 

where i denotes a component of a relation, i.e., an integer between I and nmax , n 
denotes the arity of a relation, i.e., an integer between 2 and nmax , and k denotes 
a nonnegative integer. 

For v.cn interpretation I = (t:,I, .I) is introduced as follows: 

T~ ~ (.6)n 
pI C TI _ n 
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(..,R)I = T~" RI 

(R1 n R2)I = R~ n R; 

(ijn: C)I = {(d1, ... , dn) E T; I di E CI} 

Tf = fj.I 

AI ~ fj.I 

(..,C)I = fj. I " CI 

(Cl n C2 )I = cf n C~ 
(3[i]R)I = {d E IJ.I I (3(d1 , •.• ,dn ) E RI)di = d} 

(~ k[i]R)I = {d E IJ.I II{(d1, •.. ,dn ) E Rf I di = d}1 ~ k} 

Theorem 6. Logical implication in VCR is ExpTIME-complete. 

VCR can be extended to include regular expressions built over projections of 
relations on two of their components, thus obtaining V C'Rreg (decidability is also 
ExpTIME-COmplete ). 

V cn and V cnreg are generalizations of ACC QI and ACC QIreg, and they can 
be extended by Boolean constructs on roles and role inclusion axioms. Obtained 
languages have ExpTIME-COmplete logical implication. 

Reasoning in SllIQ, which is ACCQI extended with roles that are transitive, 
and with role inclusion axioms on arbitrary roles (direct, inverse, and transitive), 
is still ExpTIME-COmplete. 

3. Description logics with modal operators 

3.1. Preliminaries. We begin by defining the modal concept description language 
ACCM and its semantics. 
The primitive symbols of ACC M are: 

• concept names Co, Cl, ... , 
• role names Ro, Rb ... , and 
• object names £10, a1,· .. . 

Starting from these we can form compound concepts and formulas using the follow­
ing constructs. Suppose R is a role name and C, D are concepts (for the basis of 
our inductive definition we assume concept names to be atomic concepts). Then T, 
CnD, ..,C, 3R.C, and OC (or CUD, CSD for a strict linear order) are concepts. 

Atomic formulas are expressions of the form T; C = D, a: C, and aRb, where 
a, b are object names. If cp and tf; are formulas then so are cp /I. tf;, "'cp, and Ocp (or 
tf;Ucp, tf;Scp for a strict linear order). 

The pure description part of this language is ACC. By adding the constructs for 
the formation of the union R uS, composition R 0 S, transitive reflexive closure 
R* and test C?, we can extend it to C, and to Cl (CIQ) by adding still inversion 
R- (inversion R- and number restrictions 3~n B.C, where B is a role name or its 
converse). The corresponding modal description language is denoted then by CM, 
CIM and CIQM. 

J 
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A model of ACCM based on a frame ~ = (W, <I) is a pair v.n = (~,I) in which 
J is a function associating with each w E W a structure 

J() / A l,w J;ll,w Cl,w l,w ) 
W = \L.l ', .. "0 , ••• , 0 , ••• ,ao , ... , 

where ~l,w is a nonempty set of objects, the domain of w, R{'w are binary relations 
on ~l,w C!,w subsets of ~l,w and a~'w are obJ'ects in ~l,w such that a~'w = a~'v , , " , " 
for any v,w E W. 

One can distinguish between three types of models: those with constant, expand­
ing, and varying domains. In models with constant domains ~l,v = ~l,w, for all 
v, wE W. In models with expanding domains ~l,v ~ ~l,w whenever v <I w. And 
models with varying domains are just arbitrary models. 

Given a model v.n and a world w in it, we define the value Cl,w of a concept C 
in wand the truth-relation (9Jl, w) 1= 'P (or simply w 1= 'P, if v.n is understood) by 
taking: 

TI,w =~, and Cl,w = cf'w, for C = C i ; 

(C n D)l,w = Cl,w n DI,w; (-,C/'w = ~"Cl,w; 
x E (OC)I,w iff 3v t> w x E Cl,v; 

x E (3R.cl'w iff 3y E Cl,w xRI,wy; 

wI=C=D iff Cl,w = DI,w; 

wl=a:C iff al,w E Cl,w; 

w 1= aRb iff al,w RI,wbl,w; 

w 1= O'P iff 3v t> w v 1= 'P; 

wl='PA'I/J iff w 1= 'P and w 1= 'I/J; 

w 1= -''P iff w~ 'P. 

If ~ = (W, <) is a strict linear order with modal operators U and S, than we have 
x E (CU D/'w iff there is u > w such that x E DI,u and x E Cl,v for all v E (w, u); 
x E (C S D)l,w iff there is u < w such that x E DI,u and x E Cl,v for all v E (u, w); 

w 1= 'l/JU X iff there is u > w such that u 1= X and v 1= 'I/J for all v E (w, u); and 
w 1= 'I/J S X iff there is u < w such that u 1= X and v 1= 'I/J for all v E (u, w). 

A formula 'P is satisfiable in a class of models M if there is a model 9Jl E M and 
a world w in 9Jl such that w 1= 'P. We will use special names for certain classes of 
models with one accessibility relation. Namely, 

K the class of all models; 
S5 the class of models based on frames with the universal relations, 

i.e., u <I v for all u and v; 
KV45 the class of transitive, serial (Yu3v u <J v) and Euclidean 

(u <I v A u <I w -t v <I w) models; 
S4 the class of all quasi-ordered models; 
K4 the class of transitive models; 
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QC the class of transitive Noetherian models 
(i.e., containing no infinite ascending chains); and 

N the class of models based on (N, <). 

We are in a position now to present known decidability and complexity results 
concerning formula-satisfiability problems [MosZakh99, Mos2000j. , 

Theorem 7. (1) The formula-satisfiability problem, when we adopt expanding do­
main assumption, for the language ACCM in each of the classes IC, N, QC, S4, 
and IC4 is NExpTIME-hard. 

(2) The formula-satisfiability problem for the language ACCM and CIM in the 
classe IC is NExpTIME-complete (no matter whether the models have constant or 
expanding domains). 

(3) The formula-satisfiability problem for the language ALCM and CIQM in the 
classe S5 is NExpTIME-complete. 

(4) The formula-satisfiability problem for the language ACCM and CIQM in the 
class N is EXPSPACi:-Complete. 

For these logics, tableau algorithms were developed [Lutz et al. 01, Lutz et al. 02j. 
Further on, we will continue with presenting of one temporal extension of descrip­
tion logics [Art a et al. 01, Arta et al. 02J, as a special case of modal extension of 
description logics. 

3.2. The Temporal Description logic. Here, we adopt the snapshot represen­
tation of abstract temporal databases (and temporal conceptual models); see for 
example [ChoSaa98j. The flow of time 7 = (lp, <), where Ip is a set of time points 
(or chronons) and < a binary precedence relation on lp, is assumed to be isomor­
phic to (Z, <). Thus, a temporal database can be regarded as a map from time 
points in ,. to standard (relational) databases with the same domain of attributes 
and the same interpretation of constants. 

As a language of temporal database conceptual schemas we use a natural com­
bination of the propositional linear temporal logic with Since and Until [SisC185, 
Gab' et al. 94] and the (non-temporal) description logic VCR [Cal et al. 98]. The 
resulting temporal description logic will be denoted by VCRus. 

The basic syntactical types of VC'Ru.s are entities (i.e., unary predicates, also 
known as concepts) and nary relations of arity ;;:: 2. Starting from a set EN of 
atomic entities and a set RN of atomic relations we define inductively (complex) 
entity and relation expressions as is shown in the upper part of Fig. 3, where the 
binary constructs (n, u, U, S) are applied to relations of the same arity, i, j, k, n are 
natural numbers, i ~ n, and j does not exceed the arity of R. 

A temporal conceptual database schema (or a knowledge base) is a finite set E of 
V Cnus-formulas. Atomic formulas are formulas of the form El !; ~ and Rl !; R2, 
with Rl and R2 being relations of the same arity. If tp and 'IjJ are VC'Ru.sformulas, 
then so are -,tp, tp /\ 'IjJ, tpU'IjJ, tpS'IjJ. El == E2 is used as an abbreviation for 
(El !; E2) /\ (E2 !; El), for both entities and relations. Temporal conceptual 
database schemas will serve as constraints' for temporal databases. 
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R -7 T nIRNI-,RIR1 n R21Rl U R2li/n : El 
0+ RIO-RIO+ RIO-RI EB RI e RIR1UR21R1SR2 

E -7 TIENI-,EIE1 n E21El U ~13~k(j]RI 
O+EIO-EIO+EIO-EI EBEI eEIE1UE21EISE2 

(T n)l(t) C (,:ll)n 
RNl(t) C (T n)l(t) 
( -,R)l(t) = (T n)I(t) " Rl(t) 

(RI n R2)I(t) = Ri(t) n ~(t) 
(i/n : E)l(t) = {(d1 , ... , dn) E (T n)l(t) I di E El(t)} 
(RIUR2)l(t) = {(d1 , ... , dn) E (T n)l(t) I 3v > t.( (dl , ... , dn) E ~(v) 

A't/w E (t,v).(d1, ... ,dn) E Ri(w»)} 
(RISR2)l(t) = {(d1 , ... , dn) E (T n)l(t) I 3v < t.( (dl , ... , dn) E R~(v) 

A't/w E (v,y).(d1, ... ,dn) E Ri(w»)} 
(0+ R)l(t) = {(dl , ... ,dn) E (T n)l(t) 13v > t.{d1, ... ,dn} E Rl(v)} 
(EBR)l(t) = {{d1 , ... , dn} E (T n)l(t) I {d1, .. . , dn} E Rl(t+l)} 
(0-R)l(t) = {{d!, ... , dn} E (T n)l(t) I 3v < t.{d1, ... , dn} E Rl(v)} 
(eR)l(t) = {(d1, . .. , dn) E (T n)l(t) I {d1 , ... , dn} E Rl(t-l)} 
Tl(t) = ,:ll 
ENl(t) C Tl(t) 
(-,E)l(t) = Tl(t) " El(t) 

(El n E2)l(t) = g(t) n El(t) 
1 2 

(3~k [j]R)l(t) = {d E TI(t) I H(d1, ... ,dn} E Rl(t)ldj = d} ~ k} 
(E1UE2)l(t) = {d E Tl(t) 13v > t.(d E E~(v) A't/w E (t, v).d E E{(w)n 
(EISE2)l(t) = {d E Tl(t) 13v < t.(d E E;(v) A't/w E (v, t).d E E{(w)n 

FIGURE 3. Syntax and semantics of veRus. 

The language of venus is interpreted in temporal models over T, which are 
triples of the form I == (T,,:ll,.l(t»), where,:ll is nonempty set of objects (the 
domain of I) and .l(t) an interpretation function such that, for every t ET, every 
entity E, and every n-ary relation R, we have El(t) ~ ,:ll and Rl(t) ~ (,:ll)n. The 
semantics of entity and relation expressions is defined in the lower part of Fig. 3, 
where (u,v) = {w E T I u < w < v} and the operators 0+ (always in the future) 
and 0- (always in the past) are the duals of 0+ {some time in the future) and 0-
(some time in the past), respectively, i.e., 0+ E == -'O+-,E and 0-E == -,O--,E, for 
both entities and relations. For entities, the temporal operators 0+, EB (at the next 
moment), and their past counterparts can be defined via U and S: 0+ E == TUE, 
EBE == l.UE, etc. However, this is not possible for relations of arity > 1, since 
T n-the top nary relation-can be interpreted by different subsets of the n-ary 
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cross product T x ... x T at different time points.3 The operators 0* (at some 
moment) and its dual 0* (at all moments) can be defined for both entities and 
relations as 0* E == E U 0+ E u 0-E and 0* E == E U 0+ E U 0-E, respectively. 

The nontemporal fragment of venus coincides with ven. For both entity 
and relation expressions all the Boolean constructs are available. The selection 
expression i In : E denotes an nary relation whose i-th argument (i ~ n) is of type 
Ej if it is clear from the context, we omit n and write (i : E). The projection 
expression 3~k[i]R is a generalization with cardinalities of the projection operator 
over the ith argument of the relation R (which coincides with 3;::1[i]R). It is also 
possible to use the named attribute version of the model by replacing argument 
position numbers with role names. 

Given a formula l{J, an interpretation I, and a time point t E 7, the truthrelation 
I, t 1= l{J (l{J holds in I at moment t) is defined inductively as follows: 

I, t 1= El _C E2 iff E1(t) C E1(t) 1 _ 2 

I, t 1= RI ~ R2 iff R[(t) ~ n;(t) 

I, t 1= l{J 1\ 1jJ iff I, t 1= l{J and I, t 1= 1jJ 

I, t 1= ""l{J 

I, t 1= <pU1jJ 

I, t 1= l{JS1jJ 

iff I,t'pt.l{J 

iff 3v > t.(l, v 1= 1jJ 1\ 'VW E (t, v).I, W 1= <p) 

iff 3v < t.(l, v 1= 1jJ 1\ 'Vw E (t, v).I, W 1= <p) 

A formula <p is called satisfiable if there is a temporal model I such that I, t 1= <p, 
for some time point t. A conceptual schema I:: is satisfiable if the conjunction A I:: 
of all formulas in I:: is satisfiable (we write I, t 1= I:: instead of I, t 1= /\ I::)j in this 
case I is called a model of I::. We say that I:: is globally satisfiable if there is I 
such that I, t 1= I:: for every t (l, t 1= I::, in symbols). An entity E (or relation R) is 
satisfiable if there is I such that EI(t) # 0 (respectively, RI(t) # 0), for some time 
point t. Finally, we say that I:: (globally) implies l{J and write I:: 1= <p if we have 
I 1= <p whenever I 1= I::. 

Note that an entity E is satisfiable iff ...,(E ~ 1.)" is satisfiable. An n-ary relation 
R is satisfiable iff ...,(3;::1 [i]R ~ 1.) is satisfiable for some i ~ n. A conceptual schema 
I:: is globally satisfiable iff 0* (A I::) is satisfiable. And I:: 1= <p iff 0* (A I::) I\...,<p is not 
satisfiable. Thus,. all reasoning tasks connected with the notions introduced above 
reduce to satisfiability of formulas. 

The logic venus can be regarded as a rather expressive fragment of the first 
-order temporal logic L{since,until}j cf. [ChoSaa98, Hod et al. 2000]. 

3.3. Temporal queries. One more important reasoning task is known as the prob­
lem of query containment (see, e.g., [ChoSaa98, Cho94, Abi et al. 96] for a survey 
and a discussion about temporal queries). A non-recursive Datalog query (Le., a 
disjunction of conjunctive queries or SPJqueries) over a venus schema I:: is an 

3For instance, we may have (dl,d2) E (O+R)I(t) because (dl,d2) E (O+R)I(t+2), but 
(dl,d2) rt. (T2)I(t+1). 
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expression of the form 

QCt ) : - V Qjct, yj, cj), 
j 

where each Q j is a conjunction of atoms 

QiCt,yj,cj) == I\PJ{~,~,~), 
i 

. -t-t -t 

145 

PJ are V CRus entity or relation expressions, xj, yj, and cj are sequences of dis-
tinguished variables, existential variables, and constants, respectively, the number 
of which is in agreement with the arity of PJ. The variables :t in the head are 
the union of all the distinguished variables in each Qj; the existential variables are 
used to make coreferences in the query, and constants are fixed values. The arity 
of Q is the number of variables in :t. 

It is to be noted that we allow entities and relations in the query to occur in 
the conceptual schema :E. This approach is similar to that of [Cal et al. 98], where 
atoms in a query can be constrained by means of schema formulas. 

The semantics of queries is defined as follows. Let I be a temporal model and 
t a time point in T such that I satisfies :E at t, i.e., I, t I=:E. The snapshot 
interpretation 

l{t) = (AI, {EI(t) lEE EN}, {RI(t) IRE RN}) 

can be regarded as a usual first order structure (i.e., a snapshot nontemporal data­
base at time t conforming in a sense to the conceptual schema), and so the whole 
I as a first-order temporal model (with constant domain AI in which some values 
of the query constants are specified). The evaluation of a query Q of arity n under 
the constraints :E in the model I at moment t is the set 

ans{Q,I{t» = {et E (AI)n I l,tl= V3yj.Qj{et,yj,cj)} 
j 

Given two queries (of the same arity) Q1 and Q2 over :E, we say that Q1 is contained 
in Q2 under the constraints :E and write :E 1= Q1 ~ Q2 if, for every temporal model 
I and every time point t, we have ans{Q1,I(t» ~ ans{Q2,I{t» whenever l,t 1= :E. 
Note that the query satisfiability problem-given a query Q over a schema :E, to 
determine whether there are I and t such that I, t 1= :E and ans{ Q, I (t» =f. 0-is 
reducible to query containment: Q is satisfiable iff :E jC Q{:t) ~ P(7) A ..,P{:t), 
where P is a VC'Rusrelation of the same arity as Q. 

3.4. Conceptual Schema and Query Examples. As an example, let us consider 
the following conceptual schema :E, where we introduce a shortcut for global atomic 
formulas El ~* E2 == D*{E1 ~ ~), for both entities and relations: 

Works-for (;* emp/2 : Employee n act/2 : Project 

Manages (;* man/2 : TopManager n prj/2 : Project 

Employee ~* 3=l[fromjPaySlipNumber 

n 3=1 [from](PaySlipN umber n to/2 : Integer) 
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n 3=1[fromlSalary n 3=1[from](Salary n to/2 : Integer) 

T !;* 3~1[to](PaySlipNumber n from/2 : Employee) 

Managerv !;* Employee n (Area Manager U Top Manager) 

AreaManager !;* Manager n -, TopManager 

TopManager !;* Manager n 3=1[manlManages 

Project !;* 3;J:1[actlWorks-for n 3=1 [prj] Manages 

Employee n -,(3;J:1[emplWorks-for) !;* Manager 

Managerv !;* -,(3;J:1[emp]Works-for) n (Qualified S (Employee n -,Manager)) 

The theory introduces Works-for as a binary relation between Projects and employ­
ees, and Manages as a binary relation between managers and projects. Employees 
have exactly one pay slip number and one salary each, which are represented as 
binary relations (with from and to roles) with an integer domain; moreover, a pay 
slip number uniquely identifies an employee (it acts as a key). It is stated that 
managers are employees, and are partitioned into area managers and top man­
agers. Top Managers participate exactly once in the relation Manages, i.e., every 
top manager manages exactly one project. Projects participate at least once to the 
relation Works-for and exactly once in the relation Manages. Finally, employees not 
working for a project are exactly the managers, and managers should be qualified, 
i.e., should have passed a period of being employees. The meaning of the above 
conceptual schema (with the exception of the last two formulas) is illustrated by 
the left-hand part of the diagram in Fig. 4. 

FIGURE 4. The example EER diagram. 

The conceptual schema E globally logically implies that, for every project, there 
is at least one employee who is not a manager, and that a top manager worked in 
a project before managing some (possibly different) project: 

E \= Project !;* 3;J:1[act] (Works-for n emp : -,Manage) 

E \= TopManager !;* 0-3;J:1[empJ(Works-for n act: Project) 
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Note also that if we add to E the formula 

Employee .~* 3~1 [em p] Works-for 

saying that every employee should work for at least one project, then all the entities 
and the relations mentioned in the conceptual schema are interpreted as the empty 
set in every model of ~, i.e., they are not satisfiable relative to ~. 

The expressivity of the query language can be understood with the following 
examples: 

"Find all people who have worked for only one project" 

Q(x) : - (3=1[emp](O*Works-for))(x) 

"Find all managers whose terminal project has code prj342" 

Q(x) : - Manager(x) A Manages(x, prj342) A (0+ ...,M a nages) (x, y) 

"Find all projecthoppers-people who never spent more than two consecutive 
years in a project" 

Q(x) : - (0*...,3~1[emp](Works-for n E9Works-for n E9 E9 Worksfor)}(x) 

"Find all people who did not work between two projects" 

Q(x): - (O-3~1[emp]Works-for)(x) A (: 3~1[emp]Works-for)(x) 

A (O+3~1[emp]Works-for)(x) 

We now consider the problem of query containment under constraints, where 
the constraints are expressed by the above exemplified schema E. Consider the 
following queries 

...,AreaManager(x) A Manages(x,z) A Project(z)A 
Resp-for(y, z) A Department(y) 

(O-3~l[l]Works-for)(x) A Manages(x,z)A 
Resp-for(y, z) A ...,1 nterestGroup(y) 

It is not difficult to see that these two queries are equivalent under the constraints 
in E, i.e., ~ F Q1 ~ Q2 and ~ F Q2 ~ Q1. 

3.5. Decidability and complexity. In this section we only summarise the com­
putational behaviour of VCR-us and its fragments over the flow of time (Z, <). 
Unfortunately, full VCRus, even restricted to atomic formulas, turns out to be 
undecidable. 

Theorem 8. The global satisfiability problem for VCR-us conceptual schemas con­
taining only atomic formulas is undecidable. 

Proof. The proof is by reduction of the well-known undecidable tiling problem 
[Rob71]: given a finite set of square tiles of fixed orientation and with coloured 
edges, decide whether it can tile the grid Z x N. Suppose T = {Tt, ... , Tk} is a 
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set of tiles with colours le/t(Ti ), right(Ti), Up(Ti) , and down(Ti)' Consider the 
following schema 1::, where Db' .. ,Dk are concepts and R is a binary relation: 

R==O+R, 
Di!; ...,Dj , 

D·e. . -
R== O+R, T == 3R.T, 
T == D1 U ... U D k , for i f. j, 
U 

right(T.)=le/t(Tj ) 

Di !; U ffiDj, for i ~ k. 
up(T. )=down(Tj) 

(Here 3R.C = 3;;:1[1](Rn2/2: C), 'VR.C = ...,3R . ...,C.) It is readily checked that 
1:: is globally satisfiable if! T tiles Z x N. 0 

The main technical reason for undecidability is the possibility of temporalising 
binary relations. The proof uses a very small fragment of venus: even ACe with 
0+ or one global role is enough to get undecidability. This gives us some grounds to 
conjecture that already the basic temporal EER model with just snapshot relations 
is undecidable. 

The fragment venus, in which the temporal operators can be applied only to 
entities and formulas, exhibits a much better computational behaviour. In this case 
we have the following hierarchy: 

Theorem 9. Let the flow of time be (Z, <). Then 
(1) the problem of logical implication in venus involving only atomic formulas 

is ExpTIME-completej 
(2) the formula satisfiability problem (and so the problem of logical implication) 

in venus is EXPSPAcE-complete; . 
(3) the querycontainment problem for nonrecursive Datalog queries under 

Venus-constraints is decidable in 2ExpTIME and is EXPSPACEhard. 

In the remainder of the section we sketch a proof of this theorem. To make 
it more transparent, we confine ourselves to considering 'Only the future fragment 
venu of venus. (From now on 0 stands for 0+ and 0 for ffi.) The main 
technical tool in the proof is the method of quasimodels developed in [WoIZakh98, 
WolZakh99bJ. The idea behind the notion of a quasimodel is to represent the state 
of the (in general, infinite) domain of a temporal model at a each moment of time 
by finitely many types of the domain objects at this moment (modulo a given finite 
set of formulas); the evolution of types in time is described by special functions 
called runs. 

Suppose that f consists of a finite set J(r) of Venu-formulas and a finite set 
c(f) of concepts, /(f) is closed under sub-formulas; c(r) under subconcepts, both 
are closed under (single) negation, and each concept occurring in f(r) belongs c(f). 
A concept type for f is a subset t of c(f) such that 

CnD E t if! C, D E t, for all CnD E c(f); 

...,C E t if! C ~ t, for all C E c(r). 
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A formula type for r is a subset 41 of f(r) such that 

t/; /I. X E 41 iff t/;, X E 41, for all t/; /I. X E f(r); 

-'t/; E 41 iff t/; f/. 41, for all 'lj; E f (r) . 
A pair (T, 41), where T is a set of concept types and 41 a formula type for r, is called 
a quasistate candidate for r. We say that the quasistate candidate It = (T, 41) is a 
quasistate for r if the following (non-temporal) VCRAormula al!: 

( U c(t) == T) /1./\ -,(c(t) == 1-) /1./\ 41 
tET tET 

is satisfiable. Here c(t) denotes the conjunction of all concepts in t, concepts of the 
form CUD are regarded as atomic concepts ACUD' and formulas of the form <pUt/; 

• in 41 are regarded as atomic formulas AcpU1/> = T. 
Consider now a sequence of quasistates Q = (Q(n) : n E Z), where Q(n) = 

(Tn,q;n)' A run in Q is a sequence r = (r(n) : nE Z) such that 
1. r(n) E Tn for every n E Z; 
2. for every CUD E c(f) and every n E Z, we have CUD E r(n) iff there is 

1 > n such that D E r(l) and C E r(k) for all k E (n, l). 
Finally, Q is called a quasimodel for f if the following conditions hold: 

3. for every n E Z and every t E Tn there is a run r in Q such that r(n) = t; 
4. for every t/;UX E f(r) and every n E Z, we have t/;UX E q;n iff there is 1 > n 

such that X E 41, and t/; E q;k for all k E (n,l). 
Given a VCRu-formula <p, we denote by cl(<p) the closure under (single) negation 
of the set of subformulas and subconcepts of <po 

Theorem 10. VCRu-formula <p is satisfiable ifJ there is a quasimodel for cl(<p) 
such that <p E 410 . 

Proof. Suppose <p is satisfied in a model I with domain .6.. For every n E Z, define 
Q(n) = (Tn,q;n) by taking Tn = {tn(x) : x E .6.}, q;n = {tf; E cl(<p) : I,n ~ t/;}, 
where tn(x) = {C E cl(<p) : x E cI(n)}. It is easy to see that (Q(n) : n E Z) is a 
quasimodel for <po (Note that the sequence (tn(x) : n E Z) is a run through tn(x), 
for every n E Z and every x E .6.). To show the converse we require the following 
lemma. 

Lemma, 11. For any cardinal K, ~ No and any quasistate It for <p, the formula al!: 
is satisfied in a (non-temporal) VCR-model J in which l[xVI = K, for all x in the 
domain.6. of J, where [xV = {y E .6. : VC E cl(<p)(x E C J {:} Y E CJ)}. 

Proof. As VCR is a fragment of first-order logic, we have a countable VCR-model 
I satisfying al!:. Define J as the disjoint union of K, copies of I; more precisely, let 

.6.J = {(x,~) : x E .6.I,~ < K,}, 

p/ = {«xo,~), ... ,(xn'~»: (xo, ... ,xn) E pl,~ < K,}, 

(T n)J = {«xo,~), ... , (xn'~» : (xo, ... ,xn) E (T n)I,~ < K,}. 

It is easy to see that J is as required. o 



150 MILENKO MOSUROVIC, TATJANA STOJANOVIC, ANA KAPLAREVIC-MALISIC 

Suppose now that ep E <Po, for a quasimodel Q. Let K. be a cardinal exceeding the 
cardinality ofthe set n of all runs in Q and No, and let A = {(r,,) : rE n" < K.}. 

Note that \{ (r, ') EA: r{n) = t}\ = K., for every n E Z and every t E Tn. By 
~mma 11, for every n E Z there is a Ven-model J{n) with domain A satisfying 
oQ{n) and such that {C E cl(ep) : (r,,) E cJ(n)} = r(n), for all rE nand, < K.. 

It is easy to see that the temporal Ven-model 1 = (Z, A, .I(n») defined by taking 
l(n) = J(n), for every n E Z, satisfies ep at moment O. 0 

Thus, the satisfiability problem for Venu-formulas reduces to checking satisfi­
ability in quasimodels. Consider now a Venu-schema ~ and two queries 

QiCi) : - V QKt,yt,wi}), i = 1,2. 
j 

Denote by cl(~, Ql, Q2) the closure under (single) negation of the set of all 
formulas and concepts occurring in ~, Q1 and Q2. Given a formula or a concept 
x, denote by X the result of replacing all subformulas (subconcepts) in X of the 
form X1UX2 with AX1UX2 = T (respectively, AX1UX2)' Thus, X is a ven formula 
or concept, and the Qi are non-temporal Ven-queries. 

Theorem 11. Ql is not contained in Q2 relative to ~ ifJ there is a quasimodel Q 
for cl(~, Q1, Q2) such that Q1 is not contained in Q2 relative to ~ U {aQ(O)}' 

Proof. (=» Without loss of generality we may assume that we have a model 1 such 
that 1{0) F ~ and ans(Ql,l(O)) ~ ans(Q2,1(0)). Construct a quasimodel Q for 
cl(~, Ql, Q2) as in the proof of Theorem 10. To show that Ql is not contained in 
Q2 relative to ~ U {aQ(O)}, it is enough to extend the (non-temporal) model 1(0) to 
the new surrogate atoms of the form AC1UC2 and A X1 uX2 in accordance with their 
behaviour in 1 at time point 0: 

A1(0) = (C1UC2 )/(0) and A1(0) = {T' if 1(0) F X1 U X2 
C1UC2 . X1UX2.1, otherwise. 

( -<=) is also proved similarly to Theorem 10. The only difference is that now we 
select J(O) such that J(O) F ~ 1\ {aQ(O)} and ans(Q1, J(O)) % ans(Q2, J(O)). 0 

So, the query-containment problem for V enV. reduces to satisfiability in quasi­
models and the query-containment problem for (non-temporal) ven. The latter 
problem was shown to be decidable in 2ExpTIME time in [Cal et al. 98J. But 
how to check satisfiability in quasimodels? First of all, we need a procedure de­
ciding whether a quasistate candidate is a quasistate for a given set of formulas 
and concepts. The following proposition can be proved using the reduction in 
[Cal et al. 98J. 

Proposition 1. (i) Given a venu -formula ep, it is decidable in NExpTIME 
whether a quasistate candidate for cl(ep) is a quasistate. 

(ii) Given a venu -schema ~ and queries Q1, Q2, it is decidable in 2ExpTIME 
whether Ql is contained in Q2 relative to ~ U {ad for a quasistate candidate ~ for 
cl(~, Q1, Q2)' 
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Now, given a set r as defined above, we have at most O(22Irj
) distinct quasistates 

for r. The problem then is whether they can be properly arranged to form a 
quasimodel for r. As we have no past temporal operators, it is enough to consider 
the flow of time (N, <) and quasimodels of the form Q = (Q(n) : n EN) .. 

Let Q be a sequence of quasistates Q(i) = (Ti' <Pi), i E N, and r a sequence of 
elements from Ti such that rei) E Ti. Say that r realises CUD E r(n) in m steps 
if there is 1 ~ m such that D E r(n + 1) and C E r(n + k) for all k E (0,1). A 
formula 'lj;Ux E <Pn is realised in m steps if there is 1 ~ m such that X E <Pn+l and 
'Ij; E <PnH for all k E (0, l). We also say that a pair t, t' of concept types is suitable 
iffor every CUD E r, CUD E t iff either D E t' or C E t' and CUD Et'. 

Suppose Ql and Q2 are finite sequences of quasistates for r of length 11 and 
l2' respectively, and let Q = Ql * Q2 (i.e., Q = Ql * Q2 * Q2 * Q2 * . :.) with 
Q(n) = (Tn, <pn). One can check that Q is a quasimodel for r if the following 
conditions hold: 

(a) for every i ~ 11 + l2 and every t' E Ti+!' there is t E Ti such that the pair 
t, t' is suitable; 

(b) for every i ~ II + 1 and every ti E T i , all concepts of the form CUD E ti 

are realised in II + l2 - i steps in some sequence ti, ti+!' ... ,tit +12 in which 
ti+i f Ti+i and every pair of adjacent elements is suitable; 

(c) for every i ~ lr + 12 , and every 'lj;Ux E r, 'lj;Ux E <Pi iff either X E <Pi+! or 
'Ij; E <PHI and 'lj;Ux E <PHI; 

(d) for every i ~ II + 1, all formulas of the form 'lj;Ux E <Pi are realised in 
II + l2 - i steps. 

Moreover, given a quasimodel for r, one can always extract from it a subquasi­
model Q = Ql * Q2 which satisfies (a)-(d) above, all quasistates in Ql are distinct 
and /Q2/ = O(221I'1). 

Using this observation together with Proposition lone can construct an Ex­
PSPACE formula-satisfiability checking algorithm and a 2ExpTIME query-contain­
ment checking algorithm. 

A proof of EXPSPACE-hardness of the formula-satisfiabiIity problem we show for 
a much weaker logic A£Cu . 

The primitive symbols of A£Cu are: concept names Co, Cl, . .. and role names 
Ra, RI, . . .. Starting from these we can form compound concepts and formulas 
using the following constructs. Suppose R is a role name and C, D are concepts 
(for the basis of our inductive definition we assume concept names to be atomic 
concepts). Then T, CnD, -,c, 3R.C, and CUD are concepts. Atomic formulas 
are expressions of the form T, and C = D. IT cp and 'Ij; are formulas then so are 
cp "'Ij;, ,cp, and 'lj;Ucp.4 

Lemma 12. Let the flow of time be N = (N, <)5. Then the formula satisfiability 
problem in A£Cu is EXPSPAcE-hard. 

4Language A.cCu is a fragment of V.cnu since 3R.C is abbreviation for 3~1[11(Rn 2/2: C). 
5The class of models based on (N, <) 
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In the proof we will use abbreviations (having in mind that we do not use S) 
o*t/J = t/J A ot/J, O*t/J == t/J V Ot/J for formula t/J, and for a concept C abbreviations 
o*C = C n ~C, O*C = C u OCj 'VR.C = -.3R.-.C. 

Proof. We will show here the lower bound for the satisfaction problem in N by 
reducing to it the n-CORIDOR tiling problem, n given in binary, which is known 
to be EXPSPACE-Complete [Boas96]. Namely, for a set '( = {t1, ... ,ts } of tiles 
and n < w, we construct an ACCu-formula <p of length O(n2 + 8 2) such that <p is 
satisfied if! '( tiles 2n x m rectangle, for some m < W in such a way that sides of 
this rectangle are, say, white. 

To encode the 2n column, we define 2n concepts B j , ° ~ j < 2n, using n concept 
names Co, ... , Cn- 1 and a role name R. Let t/Jl be the conjunction of the following 
formulas: 

3R.T = T, -.«-.Co n··· n -.Cn - 1 ) = .L), 

:6 (g Cj -+ (C; -+ VR.~C;) n (-.G; -+ VR.C;) = T). 
n-1 (i-1 ) 6 Jd -'Cj -t (Ci -t 'VR.Ci) n (-'Ci -t 'VR.-.Ci ) = T . 

For any j E {O, ... , 2n - I} written in binary as (dn-l! ... , do), we put Bj = 
cgo n ... n C~:'11, where Cd is C if d = 1 and -.C otherwise. IT t/Jl is satisfied in 
an ALC-model, then the sets Bj in this model are nonempty, pairwise disjoint and 
cover the domain of the model. 

Let B, Qo, ... , Qn-l be (n + 1) new concept names. We use them to encode 
2n sets U] of worlds containing all Wj for which Wj 1= Qgo n ... n Q!:ll = T and 
(dn- 1 , ... , do) is binary representations of j. B will coincide with B j in the all 
worlds from Uj. This is ensured by the formula 'iP2: 

A\O*Ci = o*Ci) A (B = IT (Ci n Qi) u (-,Ci n -.Qi))) A 0*(0* B = T) 
i=O i=O 

A 0* (:6 (Qi = T) V (Qi = .L))) A (Z = T) A o*(Z = -.Qo n··· n -.Qn-d· 

Let wg < wA < ... be the ordering of worlds in [0]. Worlds W E Uj such that 
w~ < W < w~+1 will be denoted by w}. For example, we may have: 

wg <wg <w~ <w~ <w~ <w~ <w~ <w~ <wi <w5 <w~ <w~ <wg <w~< ... 
To encode the 2n x m grid, we will use new concept names D, F, FU, A, AUto 
construct the conjunction t/J3 of the formulas 

0* (-.(D =.L) A (D n OD = .L)) 

o*(F = O(Z n 0* D) n -.O(Z n O(Z n 0* D))) 

0* (FU = O(Z n 0* F) n -.O(Z n O(Z n 0* F))) 
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o*(A = B n F) 1\ (AU = B n FU) 1\ -,(A = 1.)) 

o*(Z n F ~ 0* A) 1\ (Z n F U ~ 0* AU)). 

"'. - FI{w:) _ r,- _ u 
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Then (Fu)l{w;) = Fi+l, AI{w;) = Aij and (Aul{w;) = Ai+l,j. H tPl 1\ tP21\ tP3 is 
satisfied in a modelN, then for every wEN, there is a unique pair (i,j), i E N, 
j < 2n such that w = w}. Conversely, for any such pair (i,j), there is awE N such 
that w = w}. 

Let tP4 be the conjunction of the following formulas 

o*«P = T) V (P = 1.)) 1\ O(Z n P = T) 1\ o*«P = T) ~ o(P = 1.)), 

0*(8 = OP) 1\ (O(Z n OP) = 1.), 

o*«K = T) V (K = 1.)) 1\ O(Z n K = T) 1\ o*«K = T) ~ o(K = 1.)), 

o*(E = O(Z n K) n -'O(Z n O(Z n K)), O*(W = OK n -,E). 

For each tile ti E T we take a concept name Ti . Its intended meaning is as 
follows: we say that tk covers an element (i,j) in the grid iff Aij ~ Tk. We are now 
in position to guarantee that every element of the grid is covered by precisely one 
tile and that the colours on adjacent edge of adjacent tiles match. 

tP5 = 6(0*Ti = o*Ti) 1\ (QTi = T) 1\ ~(TinTj = 1.) 

8 

1\0* 1\ (AnTi = 1.) v (AnTi = A)), 
i=1 

tP6 = 0* z: ( (-,Qk n g Qj) = T ~ A r = F n g ",Ci n Ck 

n IT (Ci n Qi) u (-,Ci n -,Qi))), 
i=k+l 

(H A = Aij in some world, then A r = Ai,j+l in this world.) 

tP7 = 0* ( Z n A ~ U Tt ) 1\ 0* ( ( IT Qi) n A ~ U T} 
. left(l)=white i=O right(l}=white 

tP8 = 0* ( 8 n A ~ U Tl) 1\ 0* ( E n A ~ U Tl), 
down{l)=white up(l)=white 

tP9 b 0* ( -, ( (IT Qi) = T) ~ A (w n A ~ Tj ~ W n A r ~ U Tl) ), 
i=O j=1 right(j)=left{l) 
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1/JI0 = 0* ( A (W n A ~ Ti -+ W n A U ~ U T/) ). 
3==1 up(j)==down(/) 

One can show that <p = 1/Jl /I. •.. /l.1/JI0 is as required. o 
It follows, in particular, that the query-containment problem is EXPSPACE-hard 

as well. It is an open problem, however, whether there exists an EXPSPACE algo­
rithm deciding this problem. 

Finally, we show ExpTIME-COmpleteness of the logical implication for atomic 
formulas in V.cnu by means of a polynomial reduction of V.cnu to the logic 
v.cnreg of [Cal et al. 98]. For our purposes, it is enough to know that v.cnreg 
allows one to form the transitive closure R* of every binary relation R, and that 
the satisfiability problem in v.cnreg is in ExpTIME. To simplify the presentation, 
we reduce here the fragment v.cnOO of V.cnu with the temporal operators 0 
and Q only (the reader should not have problems to extend this reduction to the 
language with U). 

Fix a binary relation R and define a translation * from V.cnoO to V.c'Rreg as 
follows: P* = P for every atom P ofV.cn, (QC)* = VR.C* and (OC)* = VR* .C*j 
* commutes with the remaining constructs, and (PI ~ P2 )* = Pi ~ Pi. 

Lemma 13. Suppose that r U {<p} is a set of atomic V.cnoo-formulas and that 
R does not occur in r U {<p}. Then r 1= <p iJJ <p* is a logical consequence of the 
following set 3 ofV.cnreg-formulas 

r*, 3==IR.T == T, 3==IR-.T == T, 

where 3==1 R- .C = 3==1 [2] (R n 1/2 : C). 

Proof. Suppose r ji <po Then there is a model I such that 1,0 ji <p, but I, n 1= r for 
all n E Z .. Define a V.cn-model J = (A', pt, ... , RJ) by taking A' = AI X Z, 

((Xl, nl), ... , (x/, n/)} E p/ iff ni = ni, for i, j ~ l, a~d (Xl, ... , Xn) E p/(n1
) 

((Xl, nl), (X2, n2» E RJ iff Xl = X2 and n2 = nl + 1. 

. It is readily checked that J 1= 3 and J ji <p*. 
Conversely, suppose that J = (A, Pt, ... , RJ) is a model such that J 1= 3 but 

J ji <p*. Let ~ = U{cl(X): X E r,u {<p}} and, for every X E A, 

t(x) = {C E c(~) : X E (C*)J}. 

Then the pair (T, ~), where T = {t(x) : X E A} and ~ = {X E f(~) : J 1= X*}, 
is a quasistate for ~. Define a map Q by taking Q(n) = (T,~) for all n E Z. It 
is easy to see that Q is a quasimodel. Hence, by Theorem 10, we have ?- model I 
such that 11= r but 1,0 ji <po 0 

4. Conclusion 

DLs are a family of knowledge representation languages constructed for a wide 
area of application domains. This paper presents one type of expressive descrip­
tion logic VCR-us, which has been modeled with an aim to overcome problems 
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of reasoning over conceptual schemas and queries in temporal databases. It is a 
special type of description logic extended with modal operators. VCnus is a VCR 
description logic with a temporal dimension. 

VCR have been used in the area of non-temporal databases to characterize in 
a uniform way both conceptual modeling and queries [LevRous98, Cal et al. 98]. 
Some of interesting properties of VCR logic are [ArtaFraOl]: 

• allows the logical reconstruction and the extension of data and knowledge 
representational tools, 

• has an ability to completely define entities and relations as VCR views over 
other entities and relation over conceptual schemas 

• can express a large class of integrity constraints 
• enables a view-based query answering. 

Its combination with the propositional temporal logic, enabled with operators Since 
and Until [SisCI85, Gab et al. 94] resulted in a VCRus. VCnus allowed using 
temporal operators to all syntactical terms of VCR: entities, relations and schemas. 

In this paper we presented the syntax and the semantics of VCnus as well as 
the solution of the query containment task problem. An example of conceptual 
schema and query is given. At the end we summarize the computational behavior 
of VCRus and its fragments over the flow of time. 
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Silvia Ghilezan and Silvia Likavec 

COMPUTATIONAL INTERPRETATIONS OF LOGICS 

Abstract. The fundamental connection between logic and compu­
tation, known as the Curry-Howard correspondence or formulae-as­
types and proofs-as-programs paradigm, relates logical and computa­
tional systems. We present an overview of computational interpreta­
tions of intuitionistic and classical logic: 

• intuitionistic natural deduction - A-calculus 
• intuitionistic sequent calculus - A Gtz-calculus 
• classical natural deduction - AJ.L-calculus 
• classical sequent calculus - XJ.Lj:L-calculus. 
In this work we summarise the authors' contributions in this field. 
Fundamental properties of these calculi, such as confluence, normali­
sation properties, reduction strategies call-by-value and call-by-name, 
separability, reducibility method, A-models are in focus. These fun­
damental properties and their counterparts in logics, via the Curry­
Howard correspondence, are discussed. 
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Gentzen's natural deduction is a well established formalism for expressing proofs. 
The simply typed A-calculus of Church is a core formalism for writing programs. Ac­
cording to Curry-Roward correspondence, first formulated in 1969 by Roward [101], 
simply typed A-calculus represents a computational interpretation of intuitionistic 
logic in natural deduction style and simplifying a proof corresponds to executing a 
program. 

Griffin extended the Curry-Roward correspondence to classical logic in his sem­
inal 1990 paper [94], by observing that classical tautologies suggest typings for 
certain control operators. The AJ.t-calculus of Parigot [121] expresses the content 
of classical natural deduction and has been the basis of a number of investiga­
tions into the relationship between classical logic and theories of control in pro­
gramming languages [122, 40, 120, 19, 3]. At the same time proof-term calculi 
expressing a computational interpretation of classical logic serve as tools for ex­
tracting the constructive content of classical proofs [118, 6]. The recent interest 
in the Curry-Roward correspondence for sequent calculus [96, 12, 60, 56] made it 
clear that the computational content of sequent derivations and cut-elimination can 
be expressed through various extensions of the A-calculus. There are several term 
calculi based on sequent calculus, in which reduction corresponds to cut elimina­
tion [97, 147,34,151,107]. In contrast to natural deduction proof systems, sequent 
calculi exhibit inherent symmetries in proof structures which create technical diffi­
culties in analyzing the reduction properties of these calculi. 

In this work we summarise the authors' contributions in this field. 

• Part 1 - Background gives a brief account on different formulations 
of intuitionistic and classical propositional logic as well as on A-calculus 
and other proof-term calculi which express computational interpretations 
of logics. 

- Section 1 presents natural deduction and sequent calculus formulations 
of intuitionistic and classical propositional logic; 

- Section 2-5 present different term calculi that embody proofs in logics: 
the well-known A-calculus of Church, AJ.t-calculus of Parigot [121], -X-
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calculus of Herbelin [96], A Gtz-calculus of Espfrito Santo [56] and XJ1.Ji,­
calculus of Curien and Herbelin [34]; 

- Section 6 presents the fundamental relation between logic and compu­
tation, the Curry-Howard correspondence, which links formulae with 
types and proofs with terms and programs. 

• Part 2 - Contributions has five sections and is the main part of this 
work, concentrating on the authors' contributions in each of the following 
fields: 

- Section 7 - Intuitionistic natural deduction and A-calculus: summarises 
the results of Barendregt and Ghilezan [12], Ghilezan [73, 75, 74, 76, 
78, 77, 79, 80, 81]' Dezani, Ghilezan and Venneri [45], Ghilezan and 
Likavec [88, 89]' Ghilezan and Kuncak [84, 85]' Ghilezan, Kuncak 
and Likavec [86], Likavec [109], Dezani and Ghilezan [41, 43, 42], and 
Dezani, Ghilezan and Likavec [44]; 

- Section 8 - Intuitionistic sequent calculus and AGtz-calculus: sum­
marises the results of Espfrito Santo, Ghilezan and Ivetic [57], and 
Ghilezan and Ivetic [83]; 

- Section 9 - Classical natural deduction and AJ1.-calculus: summarises 
the results of Herbelin and Ghilezan [98]; 

- Section 10 - Classical sequent calculus and XJ1.Ji,-calculus: summarises 
the results of Dougherty, Ghilezan and Lescanne [48, 49, 50, 51], 
Dougherty, Ghilezan, Lescanne and Likavec [52], and Likavec and Les­
canne [Ill]; 

- Section 11 - Application to functional and object-oriented program­
ming languages: summarises the results of Herbelin and Ghilezan [98], 
Likavec [110], and Bettini, Bono and Likavec [13, 14, 15, 16, 17, 18] . 

• Part 3 - Related work gives some pointers to the related work in the 
literature. 

Part 1 - Background 

1. Natural deduction and sequent calculus 

In 1879 Gottlob Frege wrote his Begriffsschrift [681 paving a path for modern 
logic. Frege wanted to show that logic gave birth to mathematics. He invented 
axiomatic predicate logic, including quantified variables, adding iterations to the 
previous world or'the logical constants and, or, if... then ... , not, some and alL 
With Frege's "conceptual notation" inferences involving very complex mathemati­
cal statements could be represented. He formalised the rule of modus ponens using 
two kinds of judgements: premises and conclusions. Over time, Frege's pictorial 
notation (see [151] for an example of the original notation) evolved into the nota­
tion similar to the one we use today, namely A -> B meaning "A implies Bn and 
I- A asserting "A is true". Here is the modus ponens rule using this notation 

I-A->B I-A 

I- B 
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Axiomatic systems in the Hilbert tradition consist of axioms, modus ponens, and 
a few other inference rules. Another perspective to capture mathematical reasoning 
was to describe deduction through inference rules which explain the meaning of the 
logical connectives and quantifiers. 

This giant step in formalizing logic was Gerhard Gentzen's Unterschungen iiber 
das logische Schliessen [71] written in 1935. In this work, Gentzen introduced the 
systems of natural deduction and sequent calculus for propositional and predicate 
logic, in both intuitionistic and classical variants. These two systems have the 
same set of derivable statements. In his work, Gentzen introduced assumptions, so 
his judgement had the following form: 

AI, ... ,An f- B 

meaning "Under the assumption that AI, ... , An are true we can conclude that B 
is true". Using this notation, the modus ponens rule is written as follows 

ff-A---+B ~f-A 

r,~ f- B 

where r and ~ denote sequences of formulae. 

1.1. Natural deduction: intuitionistic logic NJ and classical logic NK. We now 
present the two systems of Gentzen: natural deduction for intuitionistic logic, de­
noted by NJ, and classical logic, denoted by NK, as well as sequent calculus for 
intuitionistic logic, denoted by LJ, and classical logic, denoted by LK. For compre­
hensive account of the subject we refer the reader to [128]. 

The set of formulae of propositional logic is given by the following abstract 
syntax: 

A, B = X I A ---+ B I A 11 B I A V B I ....,A 

where X denotes an atomic formula and capital Latin letters A, B, C, ... denote 
formulae or single propositions. We will mostly deal with implicational formulae 
only and sometimes comment on other connectives. Hence, a formula can be one 
of the following: atomic formula X or implication A ---+ B. Capital Greek letters 
r, ~, ... are used to denote sequences of formulae called antecedents and succedents. 
r, A stands for r U {A}. 

AEr 
-~ (axiom) 
r f- A 

rf-A---+B rf-A 
------- (---+ elim) 

rf-B 

r, A f- B 
----- (---+ intro) 
rf-A---+B 

FIGURE 1. NJ: intuitionistic natural deduction 

The rules of Gentzen's natural deduction intuitionistic logic NJ and classical 
logic NK are given in Figures 1 and 2, respectively. Gentzen's system consists of 
structural and logical rules. The only structural rule is the axiom, whereas each of 
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---- (axiom) 
r,A I- A,b. 

r I- A -+ B, b. r I- A, b. 
---------- (-+ elim) 

r I- B,b. 

r, A I- B, b. 
------ (-+ intro) 
r I- A -+ B, b. 

FIGURE 2. NK: classical natural deduction 

the connectives has introduction and elimination logical rules. Each introduction 
rule has the connective in the conclusion but not in the premises, whereas each 
elimination rule has the connective in the premises but not in the conclusion. 

The following formulae are provable in classical logic, but not in intuitionistic: 

• Pierce's law: (A -+ B) -+ A -+ A 
• Excluded middle: A V --,A 
• Double negation: --,--,A -+ A. 

The connection between logical connectives in classical logic and their depen­
dencies is well known. As opposed to classical logic, connectives in intuitionistic 
logic are independent. 

1.2. Sequent calculus: intuitionistic logic LJ and classical logic LK. Gentzen 
introduced the sequent calculus primarily as a tool to prove the consistency of 
predicate logic. In sequent calculus, a sequent has the form 

Al , .. . , An I- B l , ... , Bm or shorter r I- b. 

which corresponds to the formula 

A~ 1\ ... 1\ An -+ Bl V· ... V Bm. 

For each connective, there are left and right logical rules, depending on whether the 
connective is introduced in antecedent or succedent. The rules of Gentzen's sequent 
calculus intuitionistic logic LJ and classical logic LK are given in Figures 3 and 4, 
respectively. Right rules in sequent calculus correspond to introduction rules in 
natural deduction, whereas left rules correspond to elimination rules. Both natural 
deduction and sequent calculus can be extended to incorporate other connectives, 
as well as quantifiers. 

The cut rule simplifies and shortens deductions, but at the same time makes 
it impossible to reconstruct the proofs, since we cannot know which formula was 
eliminated using the cut rule. Therefore, it is of uttermost importance to know 
that it is possible to leave out the cut rule and still obtain the system with the 
same set of derivable statements. This is exactly what Gentzen's Cut elimination 
property (Hauptsatz) proves. 

Gentzen also formulated the subformula property: given a judgement r I- A, 
its proof can be simplified in such a way that only the propositions appearing in r 
and A and their sub formulae appear in the proof of r I- A. 
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Aer 
--(axiom) 
rI-A 

r I- A r,B I- C 
------ (-+ left) 

r,A-+BI-C 

r,A I- B 
---- (-+ right) 
rl-A-+B 

r I- A r, A I- B 
------(cut) 

r I- B 

FIGURE 3. LJ: intuitionistic sequent calculus 

---- (axiom) 
r,A I- A,A 

r I- A, A r, B I- A 
------- (-+ left) 

r,A-+BI-A 

r,A I- B,A 
----- (-+ right) 
rl-A-+B,A 

r I- A,A r,A I- A 
------- (cut) 

rI-A 

FIGURE 4. lK: classical sequent calculus 

Theorem (Equivalence). 
A formula is derivable in NJ if and only if it is derivable in LJ. 
A formula is derivable in NK if and only if it is derivable in LK. 

2. A-calculus 

165 

2.1. Untyped A-calculus. The A-calculus was originally formalised by Alonzo 
Church in 1932 [27] as a part of a general theory of functions and logic, in or­
der to establish the limits of what was computable. Later on, it was shown that 
the full system was inconsistent. But the subsystem dealing with functions only 
proved to be a successful model for the computable functions and is called the 
A-calculus. 

The A-calculus is a formal system that is meant to deal with functions and 
constructions of new functions. Expressions in this theory are called A-terms and 
each such expression denotes a function. We denote the set of A-terms by A. 

Church developed a formalism for defining computable functions using three 
basic constructions: variables, A-abstraction, and application, with one reduction 
rule. The formal syntax of A-calculus is given by the following: 

t ::= x I Ax.t I tt 
where x is a variable, Ax.t is a A-abstraction (which represents a mapping x f-+ t), 
and tt is the application (which represents application of a function to its argument). 
For comprehensive account of the subject we refer the reader to [10]. 
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The set Fv(t) of free variables of a A-term t is defined inductively. 

1. Fv(x) = {x} 2. FV(t1t2) = FV(t1) U FV(t2) 3. FV(AX.t) = Fv(t)\{x}. 

The set A ° of closed lambda terms is the set of lambda terms with no free variables 

AO = {t E A I Fv(t) = 0}. 

The following reduction rule is called the a-reduction 

AX.t -+ Ay.t[X := y], 

where all the free occurrences of the variable x in t are replaced with a fresh variable 
y not occurring in t. The substitution t1 [x := t2J is not part of the syntax and it 
is defined so that all the free occurrences of the variable x in t1 are replaced by t2, 
taking into account that the free variables in t2 remain free in the term obtained. 

The main reduction rule of the A-calculus is the (3-reduction 

(.>..x.t1 )t2 -+~ tdx := t2J. 

A A-term of the form (.>..x.t1)t2 is called a redex. The transitive reflexive con­
textual closure of -+~ is denoted by -*f3. The (3-equality =(~) (,B-conversion) is the 
symmetric transitive closure of -*~. 

The T/-reduction is given by 

.>..x.tx -+1J t, x ~ Fv(t), 

where AX.tX is called an T/-redex, provided that x ~ Fv(t). The transitive reflexive 
closure of -+1J is denoted by -fj" The ry-equality =(1J) is the symmetric transitive 
closure of -1J. The reductions (3 and T/ together generate a reduction denoted by -. 

This simple syntax equipped with simple reduction rules gives rise to a powerful 
formal system which is Thring complete. The functions representable in A-calculus 
coincide with Turing computable functions and recursive functions. 

We give now some of the basic notions that we will use later . 

• If t == AX1 ... Xn.(AX.tO)t1 ... tm , n ~ 0, m ~ 1, then (AX.tO)t1 is called the 
head-redex of t (Barendregt [10, p. 173]). We write t -+h t' if t' is obtained 
from t by reducing the head redex of t (head reduction). We write t -+i t' if 
t' is obtained from t by reducing a redex other than the head redex (internal 
reduction). We also use the transitive closures of these relations, notation 
-*h and -*i, respectively. 

• A term is a normal form if it does not contain any redex. A term is 
normalising (has a normal form) if it reduces to a normal form. The set 
of all A-terms that have a normal form will be denoted by N. All normal 
forms are of the form: 

AY1 ... Yn· zt1 ... tk, 

where t i , 1 ~ i ~ k, 0 ~ k, are again normal forms, and z can be one of 
Yj, 1 ~ j ~ n, 0 ~ n. 
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• A term is strongly normalising if all its reduction paths end in a normal 
form (are finite). SN will denote the set of strongly normalising terms, Le., 

SN = {t E A I ...,(3h, t2,··· E A) t -+f3 tl -+f3 t2 -+f3 ... }. 

• A head normal form is a term of the form 

AXl ... Xn .ytl ... tl, 

where y can be one of Xi, 1 ~ i ~ n, 0 ~ nand tj E A, 1 ~ j ~ l, 0 ~ l. 
• A term t is solvable (has a head normal form) if there exists t' E A such 

that t -+ t' and t' is a head normal form. The set of all solvable A-terms is 
denoted by ?iN. A term is unsolvable if it is not solvable. 

• A term is a weak head normal form if it starts with an abstraction, or with 
a variable. A term is weakly head normalising (has a weak head normal 
form) if it reduces to a weak head normal form. The set of all A-terms that 
have a weak head normal form ~ill be denoted by WN. 

WN = {t E A I (3t',tl, ... ,tn EA) t-+'>{3 AX.t' or t-+'>{3 Xtl·· .tn}. 

• Church-Rosser theorem (Confluence): If tl-t-t2, then there exists a A­
term t3 E A such that tl-t3-t2. 

2.2. Typed A-calculus. In 1940 Church formulated typed A-calculus [28J as a way 
to avoid the paradoxes existing in other logics. Types are syntactical objects as­
signed to A-terms in order to specify the properties of these A-terms. 

The basic type assignment system is the simply typed A-calculus A -+, or Curry's 
type inference system. The types in this system are formed using only the arrow 
operator -+. The application of A-terms yields the arrow elimination on types, 
while the abstraction yields the arrow introduction. 

The set Type of types is defined as follows. 

A, B ::= X I A -+ B 

where X ranges over a denumerable set TVar of type atoms. 
The following notions will be used in our work: 

• A type assignment is an expression of the form t : A, where tEA and 
A E Type. 

• A context (basis) r is a set {Xl: AI, ... ,Xn: An} of type assignments with 
different term variables, Domr = {XI, ... ,xn} and r '- x = {AI, ... ,An}. 
We use capital Greek letters r,b.,rl' ... to denote contexts. 

• A context extension r,x: A denotes the set ru {x: A}, where X rt Domr. 
The type assignment t : B is derivable from the context r in the type system 

A -+, notation r f- t : B, if r f- t : B can be generated by the axiom and rules given 
in Figure 5. 

We list some of the most important properties of A -+. The property of preser­
vation of types under reduction is referred to as Subject reduction. 

Theorem (Subject reduction). If r f- t : A and t-u, then r f- u : A. 
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-----(ax) 
r,x: A r x: A 

r r t1 : A -+ B r rh: A 
rrh~:B (-+E) 

r,x:Art:B 
-----(-+1) r r Ax.t : A -+ B 

FIGURE 5. A -+: simply typed A-calculus 

An important property, which might be a reason for introducing types in A­
calculus, is the strong normalisation of all typeable terms. 

Theorem (Strong normalisation). If a term is typeable in A -+, then it is strongly 
normalising. 

The correspondence between formulae of intuitionistic logic N J and types of A -+, 

together with the correspondence of proofs in NJ and terms of A -+, was given by 
Howard [101] based on earlier work of Curry. It is nowadays referred to as the 
Curry-Howard corn;spondence between logic and computation. 

Theorem (Curry-Howard correspondence). r r t : A if and only if r ...... x r A is 
derivable in NJ. 

There are many known extensions of A -+. Extensions with polymorphic types 
and dependent types fit perfectly in the so called Barendregt's cube. For compre­
hensive account of the subject we refer the reader to [9]. 

2.3. Intersection types for A-calculus. The extension of A -+ which charac­
terises exactly the strongly normalising terms is with intersection types, which 
are also suitable for analysing A models. and various normalisation properties of A­
terms. The intersection type assignment systems· are originated by Coppo and 
Dezani [29, 30]' Barendregt et al. [11], Copo et al. [31], Pottinger [127], and 
Salle [134]. In this system, the new type-forming operator is introduced, the inter­
section n, whose properties are in accordance with its interpretation as intersection 
of types. Consequently, it is possible to assign two types A and B to a certain A­
term at the same time. Another outstanding feature of this system is the universal 
type n which can be assigned to all A-terms. Therefore the question of typability 
is trivial in these systems. 

We focus on the intersection type assignment system Ann with the type n. The 
set Type of types in Ann is defined as follows 

A, B ::= X I n I A -+ B I An B 

where X ranges over a denumerable set TVar of type atoms. A type assignment, 
a context, and a context extension are defined as usual. 

The preorder on Type is defined in the following way: 

(i) The relation ~ is defined on Type by the following axioms and rules: 

1. A ~ A 5. A ~ B, A ~ C =*' A ~ B n C 
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-----(ax) 
r,x:Al--x:A 

r I-- t1 : A ....... B r I-- t2 : A 
-------( ....... E) 

r I-- t1t2 : B 
rl--t:A rl--t:B 
-----(nl) 

rl--t:AnB 

r I-- t: 0 (0) 

r,x:Al--t:B 
----( ....... 1) 
r I-- ).x.t : A ....... B 
rl--t: A, A ~B 

rl--t:B (~) 

FIGURE 6. ).nn: intersection type assignment system 

2. A ~ B, B ~ C ::} A ~ C 6. A ~ A', B ~ B' ::} An B ~ A' nB' 
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3. An B ~ A, An B ~ B 7. A ~ A', B ~ B' ::} A' ....... B ~ A ....... B' 

4. (A ....... B) n (A -> C) ~ A ....... B n C 8. A ~ 0 

9. A ....... 0 ~ 0 ....... O. 

(ii) The induced equivalence relation is defined by: 
A""' B {:} A ~ B & B ~ A. 

The usual axiom of the preorder on intersection types is 0 ~ 0 -+ 0 (Barendregt 
et al. [11]). Having this axiom one can distinguish head normalising terms from un­
solvable terms by their typeability, but cannot distinguish weakly head normalising 
terms from unsolvable terms. Instead we adopt the axiom A ....... 0 ~ 0 ....... 0, which 
allows us to distinguish weakly head normalising from unsolvable terms (Dezani et 
al. [47]). 

The type assignment t : B is derivable from the context r in the type system 
).nn, notation r I-- t : B, if r I- t : B can be generated by the axioms and rules 
given in Figure 6. 

The following rule is derivable from the rules given in Figure 6: 

rl--t:AnB 
----(nE). 
r I- t : A (B) 

Some of the type assignment systems that can be obtained by combining the 
rules above and can be regarded as restrictions of ).nn are given by the following 
axioms and rules: 

• An: (ax) , ( ....... E), ( ....... I), (nE), (n!), and (~). 
• D: (ax), ( ....... E), ( ....... I), (nE), and (nI). 
• DO: (ax), ( ....... E), ( ....... I), (nE), (nI), and (0). 

All the eight typed calculi of Barendregt's cube satisfy the strong normalisation 
property, meaning that typeability in the system implies strong normalisation. A 
unique property of the two intersection type systems without 0, namely ).n and 
D, is the inverse of strong normalisation property. In these systems all strongly 
normalising terms are typeable. Thus terms typeable in these systems coincide 
with strongly normalising terms. This outstanding property of intersection type 
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systems has merited a lot of attention and has been proven by different authors 
and different means in [127, 31, 149, 75, 1], the list is not complete. 

Theorem (Strong normalisation). The calculi An and V satisfy the following 

t is typable {:} t is strongly normalising. 

There are many known extensions of the A-calculus with intersection types: 
Lengrand's et al. calculus with explicit substitutions [108], Matthes's calculus with 
generalised applications [113], Dougherty's et al. calculus for classical logic [51], 
Carlier and Wells's and Kfoury and Wells's calculi with expansion variables for 
type inference [26, 103], Dunfield and Pfenning's calculus with intersection, union, 
indexed, and universal and existential dependent types [54]' to name just a few. 

3. A Gtz-calculus 

3.1. Syntax and reduction rules. There were several attempts, over the years, to 
design a term calculus which would embody the Curry-Howard correspondence for 
intuitionistic sequent calculus. The first calculus accomplishing this task is Herbe­
lin's ~-calculus given in [96]. Recent interest in the Curry-Howard correspondence 
for sequent calculus [96, 12, 60, 56] made it clear that the computational content of 
sequent derivations and cut-elimination can be expressed through an extension of 
the A-calculus. The A Gtz-calculus was proposed by Espfrito Santo [56] as a modifi­
cation of Herbelin's ~-calculus. Its simply typed version corresponds to the sequent 
calculus for implicational fragment of intuitionistic logic. 

The abstract syntax of A Gtz is given by: 

(Terms) t, u, v ::= x I AX.t I tk 
(Contexts) k ::= x.t I u :: k. 

Terms are either variables, abstractions or cuts tk. A context is either a selection 
or a context cons (tructor). According to the form of k, a cut may be an explicit 
substitution t(x.v) or a multiary generalised application t(U1 :: " . Urn :: x .. v), 
m ~ 1. In the last case, if m = 1, we get a generalised application t(u :: x.v); if 
v = x, we get a multiary application t[U1,'" ,urn] (x.x can be seen as the empty 
list of arguments). 

In AX.t and x.t, t is the scope of the binders .>.x and X, respectively. The scope 
. of binders extends to the right as much as possible. 

Reduction rules of AGtz are the following: 

({3) (AX.t)(U:: k) -+ u(x.tk) 
(7r) (tk)k' -+ t(k@k') 
(0") tx.v -+ v[x:= t] 
(IL) x.xk -+ k, if x f/ k 

where v[x := t] denotes meta-substitution defined as usual, and k@k' is defined by 

(1,£:: k)@k' = u:: (k@k') (x.t)@k' = x.tk'. 

The rules /3, 7r, and 0" reduce cuts to the trivial form Y(U1 :: ···urn :: x.v), for 
some m ~ 1, which represents a sequence of left introductions. Rule /3 generates 
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a substitution, and rule (j executes a substitution on the meta-Ievel. Rule 11' gen­
eralises the permutative conversion of the A-calculus with generalised applications. 
Rule J.L has a structural character, and it either performs a trivial substitution in 
the reduction t(x.xk) -> tk, or it minimises the use of the generality feature in the 
reduction t(U1 ... Urn :: x.xk) -> t(Ul'" Urn :: k). 

3.2. Simply typed AGtz-calculus. The set Type of types, ranged over by A, B, C, 
'" ,AI"'" is defined inductively: 

A, B ::= X I A -> B 

where X ranges over a denumerable set TVar of type atoms. 
There are two kinds of type assignment: 

- r f- t : A for typing terms; 
- rj B f- k : A for typing contexts. , 

The special place between the symbols ; and f- is called the stoup and was 
proposed by Girard (93J. Stoup contains a selected formula, the one with which we 
continue computation. 

The type assignment system AGtz -> is given in Figure 7. 

r, x: A f- x: A (Ax) 

r, x : A f- t : B ( -> R) 
r f- AX.t : A -> B 

r f- t : A r; B f- k : C (->d 
r; A -> B f- t :: k : C 

r f- t : A r; A f- k : B (C ) 
r f- tk: B ut 

r,x: A~ t: B (Sel) 
r;A f- x.t: B 

FIGURE 7. A Gtz ->: simply typed A Gtz-calculus 

4. AJ.L-calculus 

4.1. Syntax and reduction rules. The original version of the typed AJ.L-calculus 
was formulated by Parigot (121J as the extension of A-calculus with certain sequen­
tial operators and wasJneant to provide a proof term assignment for classical logic 
in natural deduction style. Ai; said in (19], "AJ.L-calculus is a typed A-calculus which 
is able to save and restore the runtime environment." 

The AJ.L-calculus was introduced as a call-by-name language, but it received a 
call-by-value interpretation by Ong and Stewart in (120]. 

The syntax of the AJ.L-calculus is given by the following: 

unnamed terms: t ::= x I AX.t I tu I J.L{3.c 
named terms: c ::= (aJt. 

We distinguish two kinds of variables: A-variables (x, y, ... Xl,' .. ) and J.L-variables 
(a, (3, ... al," .). We also distinguish two kinds of terms: named and unnamed 
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terms. Named terms enable us to name arbitrary subterms by IL-variables and 
refer to them later. 

The reduction rules of the AIL-calculus are: 

(Ax.u)t -+ u[x:= tj 
(1L{3·C)t -+ 1L{3·C[[(3jW:= [(3](wt)j 

[a] (1L{3.C) -+ c[{3:= a]. 

In the second rule, every subterm of c of the form [{3jw is replaced by a term [(3](wt). 

4.2. Simply typed AIL-calculus. The original version of the AIL-calculus is typed. 
A type assignment t : A is derivable from the contexts rand D.. in the system 

AIL, notation 
r f- t: A, D.. 

if r f- t : A, D.. can be generated by the following axiom and rules given in Figure 8. 

------ (axiom) 
r,y:Af-y:A,D.. 

r f- u : A -+ B, D.. r f- t : A, D.. 
----------- (-+ elim) r f- ut : B, D.. 

r,y:Af-u:B,D.. 
------- (-+ intro) 
r f- Ay.U: A -+ B,D.. 

r f- u : A, D.., {3 : A, a : B 
---------'-<- (IL) 
r f- lLa.[{3ju : B, D.., (3 : A 

FIGURE 8. Simply typed AIL-calculus 

The typed calculus is both, strongly normalising and confluent and the types 
are preserved by the reduction. < • 

5. :X-lLit-calculus 

5.1. Syntax and reduction rules. The :X-lLit-calculus was introduced by Curien 
and Herbelin in [34). 

The untyped version of the calculus can be seen as the foundation of a functional 
programming language with explicit notion of control and was further studied by 
Dougherty, Ghilezan, and Lescanne in [87,48, 49, 51]. 

The syntax of:X-lL"ii is given by the following, where v ranges over the set Term of 
terms, e ranges over the set Coterm of coterms and c ranges over the set Command 
of commands: 

t ::= x I AX.t IlLa.c e ::= a It. e I ji.x. c C ::= (t 11 e). 

There are two kinds of variables in the calculus: the set Varv of variables (de­
noted by Latin letters x,y, ... ) and the set Vare of co variables (denoted by Greek 
letters a, (3, ... ). The variables can be bound by A-abstraction or by "ii-abstraction, 
whereas the covariables can be bound by IL-abstraction. The sets of free variables 
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and covariables, FVt and Fve , are defined as usual, respecting Barendregt's con­
vention [10] that no variable can be both, bound and free, in the expression. 

Terms yield values, while coterms consume values. A command is a cut of a 
term against a coterm. Commands are the place where terms and coterms interact. 
The components can be nested and more processes can be active at the same time. 

There are only three rules that characterise the reduction in ).flo/i: 

(-.') (AX. h 11 t2 e e) -+ (t2 11 /ix. (tl 11 e)} 
(flo) (floCl. c 11 e) -+ c[a:= e] 
(/i) (t 11 /ix. c) -+ c[x:= t]. 

The above substitutions are defined as to avoid variable capture [10]. 
As a rewriting calcuius ).flo/i has a critical pair (floa ,Cl 11 /ix. C2) where both, (flo) 

and (/i) rule can be applied non-deterministically, producing two different results. 
For example, 

(floa.(y 11 (3) 11 i1x.{z Ill)} -+,. (y 11 (3) and (floa.(y 11 (3) 11 i1x.(z Ill)} -+jl (z Ill)' 

where Cl and (3 denote syntactically different covariables. 
Hence, the calculus is not confluent. But if the priority is given either to (flo) 

or to (i1) rule, we obtain two confluent subcalculi ).floi1T and ).flo/iQ' There are 
two possible reduction strategies in the calculus that depend on the orientation 
of the critical pair. If the priority is given to (flo) redexes, call-by-value reduction 
is obtained ().floi1Q-calculus), whereas giving the priority to (i1) redexes, simulates 
call-by-name reduction ().floi1T-calculus). 

This is more than simply a reflection of the well-known fact that the equational 
theories of call-by-name and call-by-value differ. It is a reflection of the great ex­
pressive power of the language: a single expression containing several commands 
can encompass several complete computational processes, and the flo and i1 reduc­
tions allow free transfer of control between them. 

We first·give the syntactic constructs of ).floi1T and ).flo/iQ, respectively: 

).floi1T ).floi1Q 
c"-.. - (t 11 e) c"-.. - (t 11 e) 
t ::= x I AX. tl floa. c V::= x I AX.t 
E"-.. - CllteE. t "- floa.cl V 
e "-.. - i1x.c lE e"-.. - a I j1x. c I V • e. 

In ).floi1T the new syntactic subcategory E of coterms, called applicative contexts, is 
introduced, in order to model call-by-name reduction. In ).floi1Q, notice the presence 
of the new syntactic construct V that models the values. 
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The reduction rules for )./-lj),T and )./-lj),Q are the following: 

)./-£j),T 
(-+) 
(/-£) 
(j),) 

(AX. h 11 t2 • E) -+ (tl[X +- t2JII E) 
(lJ.Cx. ell E) -+ c(a:= EJ 
{t 11 "ji,x. e} -+ e[x:= t] 

(>.x. tl 11 V2 • e) -+ (V2 11 j),X.(tI 11 e}) 
(/-£a. c 11 e) -+ e[a;= eJ 
(V 11 j),x. c) -+ c[x:= VJ. 

Notice that in [34] only the rule (-+') is considered for both subcalculi. In [87, 
48, 49, 51] only the rule (-+) is used. In [111, 110] (-+) reduction is used rather 
than (-+') reduction in the case of )./-£j),T, since the application of the (-+') rule 
will always be immediately followed by the application of the (j),) rule and that is 
exactly the rule (-+). This choice makes explicit the priorities of the rules in each 
subcalculus. 

In their original work on the )'/-£"ji,-calculus [34], Curien and Herbelin defined 
a call-by-name and a call-by-value cps-translations of the complete typed )./-£j),­
calculus into simply typed A-calculus. The important point to notice is that they 
also interpret the types of the form A - B, which are dual to the arrow types A -+ B. 
The translations validate call-by-name and call-by-value discipline, respectively. 

In addition, as described in [34], the sequent calculus basis for )./-£ji supports 
the interpretation of the reduction rules of the system as operations of an abstract 
machine. In particular, the right- and left-hand sides of a sequent directly represent 
the code and environment components of the machine. This perspective is elabo­
rated more fully in [32]. See [33] for a discussion of the importance of symmetries 
in computation. 

5.2. Simply typed )./-£j),-calculus. The set Type of types for the )./-£"ji,-calculus is 
obtained by closing a set of base types X under implication 

A, B ::= X I A -+ B. 

Type bases have two components, the antecedent a set of bindings of the form 
f = Xl ; AI,." ,xn : An, and the s'Uccedent of the form fl. = al : B l ,·.·, ak : Bb 
where Xi, aj are distinct for all i = 1, ... , nand j = 1, ... ,k. The judgements of 
the type system are given by the following: 

ff-r:AIfl. fle:Af-fl. c : (f f- fl.) 

where f is the antecedent and fl. is the succedent. The first judgement is a typing 
for a term, the second one is a typing for a coterm and the third one is a typing for 
a command. The box denotes a distinguished output or input, i.e., a place where 
the computation will continue or where it happened before. The type assignment 
system for the Xj.LIL-calculus, introduced by Curien and Herbelin in [34], is given in 
Figure 9. 
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------ (axR) 
r,x:Af-x:AI~ 

------- (axL) 
r IQ: A f- Q: A,~ 
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rf-r:AI~ rle:Bf-~ 
---------(~ L) 

r I r.e:A~B f- ~ 

r,x:Af-r:BI~ 
-------(~ R) 
r f- >'x.r: A ~ B I ~ 

c : (r f- Q: A, ~) 
-----(p,) 
r f- P,Q.C: A I ~ 

c:(r,x:Af-~) 

r I jlx.c: A f- ~ (jl) 

rf-r:AI~ rle:Af-~ 
----------- (cut) 

(r 11 e) : (r f- ~) 

FIGURE 9. Simply typed Xp,jl-calculus 

6. Curry-Howard correspondence 

The fundamental connection between logic and computation is given by Curry­
Howard correspondence or formulae-as-types, proofs-as-terms, proofs-as-programs 
interpretation. It relates many computational and logical systems and can be ap­
plied to intuitionistic and classical logic, to sequent calculus and natural deduction. 

Under the traditional Curry-Howard correspondence formulae provable in in­
tuitionistic natural deduction coincide with types inhabited in simply typed >.­
calculus. This was observed already by Curry, first formulated by Howard in 
1969 [101], used extensively by de Bruijin in the Automath project and by Lambek 
in category theory. This correspondence extends to all eight calculi of Barendregt's 
cube and corresponding logical systems. We refer the reader to [139] for an exten­
sive account of this topic. 

Only in 1990 Griffin [94] showed that this correspondence can be extended to 
classical logic, pointing out that classical tautologies suggest typings for certain 
control operators: the Pierce's Law corresponds to the type of call-cc operator in 
Scheme (introduced by Sussman and Steele [143]) and the Law of Double Negation 
corresponds to the typ~ of C operator (introduced by Felleisen et al. [63, 64]). 

Extensive research in both natural deduction and sequent calculus formulations 
of classical logic followed. One of the cornerstones is the >.p,-calculus of Parigot [121] 
which corresponds to classical natural deduction. It was followed by term calculi 
designed to incorporate classical sequent calculus: the Symmetric Lambda Calculus 
of Barabanera and Berardi [6], the Xp,jl-calculus of Curien and Herbelin [34], and 
the Dual calculus of Wadler [151, 152]. 

Part 2 - Contributions 

In this part we give an overview of the work done by the authors in the field 
of computational interpretations of logics. In Section 7 we focus on intuitionistic 
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natural deduction and the >.-calculus. In Section 8 we deal with intuitionistic 
sequent calculus 1!-nd the >.Gtz-calculus of [56). In Sections 9 and 10 we concentrate 
on classical logic: the >'J.L-calculus [121], proof term assignment for classical natural 
deduction; and three proof term calculi for classical sequent calculus: the ).J.L'ji­
calculus [34], the dual calculus [151, 152J and the Symmetric Lambda Calculus [6). 
Finally, in Section 11 we turn to application to programming language theory. 

7. Intuitionistic natural deduction and >.-calculus 

7 .1. Terms for natural deduction and sequent calculus intuitionistic logic. 
The correspondence between sequent calculus derivations and natural deduction 
derivations is not a one-to-one map: several cut-free derivations correspond to 
one normal derivation. In Barendregt and Ghilezan [12] this is explained by two 
extensionally equivalent type assignment systems for untyped A-terms, namely >'N 
and AL, one corresponding to intuitionistic natural deduction NJ and the other to 
intuitionistic sequent calculus LJ. These two systems constitute different grammars 
for generating the same (type assignment relation for untyped) >.-terms. Moreover, 
the second type assignment system has a 'cut-free' fragment (ALcf) which generates 
exactly the typeable A-terms in normal form. The cut elimination theorem becomes 
a simple consequence of the fact that typed A-terms posses a normal form. 

There are three type systems that assign types to untyped A-terms: 

• AN is the simply typed >.-calculus, A -., given in Figure 5; 
• >'L given in Figure 10; 
• >'£Cf , the cut-free fragment of >'L (rules of Figure 10 without the (cut) 

rule). 

The last two systems have been described by Gallier [70], Barbanera et a1. [8J, 
and Mints [114J. The three systems >"N, >'L, and >"Lcf correspond exactly to the 
intuitionistic natural deduction NJ (Figure 1), the intuitionistic sequent calculus 
LJ (Figure 3), and the cut-free fragment of LJ. We" denote NJ, LJ, and cut-free LJ 
by N, Land Lef respectively. 

(x: A) Er 
---- (axiom) 
fl-x:A 

r I- s: A r, x: B I- t: C 
--------- (-. left) 
f, y : A -. B I- t[x := ys] : C 

f,x:Al-t:B 
------ (-. right) r I- AX.t : A -. B 

f,l-s:A r,x:Al-t:B 
-------- (cut) 

r I- t[x := sJ : B 

FIGURE 10. >.L-calculus 

First we show .the known relation between derivation in Nand L: for all rand 
A the following holds 
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The following result was observed for N and AN by Curry, Howard, de Bruijn 
and Lambek. It is referred to as the Curry-Howard, formulae-as-types, proofs-as­
terms and proofs-as-programs correspondence (interpretation, paradigm). 

Theorem (Curry-Howard correspondence). Let S be one of the logical systems N, 
L or L cl and let AS be the corresponding type assignment system. Then 

r,xl-sA ~ 3tEAO(x) rI-Ast:A. 

where AO(x) = {t E A I Fv(t) ~ x}. 

The proof of the equivalence between systems Nand L can be 'lifted' to that of 
AN and AL, i.e., 

r I-AL t: A ~ rI-AN t: A. 

Finally, using the cut-free system we get as bonus the Hauptsatz of [71] for 
minimal implicational sequent calculus, i.e., 

r I-L A ~ rI-Le! A. 

The main contribution of this work is expository, since it deals with well known 
results. In this work, the emphasis is on A-terms rather than on derivations, since 
A-terms are easier to reason about than two dimensional derivations. 

7.2. logical interpretation of intersection types. In Ghilezan [72] we consider 
the inhabitation in intersection and union type assignment system versus prov­
ability in intuitionistic (Heyting's) natural deduction propositional logic NJ with 
conjunction and disjunction (as given in Section 1.1, where the language of NJ 
contains also the constant T). 

r,x:Al-t1 :C r,X:Bl-t1:C rl-t2 :AUB 
-----------------------------(UE) 

r I- tdx := t2J : C 

rl-t:A 

rl-t:AUB 

rl-t:B 

r I- t : A U B (uI) 

FIGURE 11. An U: intersection and union type assignment system 

The intersection and union type assignment system AnU is obtained by extending 
the system Ann with the rules given in Figure 11 where a pre-order ~ on .>. n U is 
the extension of the pre-order ~ on Ann obtained by adding the following rules: 
(i) A ~ A U B, B ~ A U B, (ii) Au A ~ A, (iii) A ~ C, B ~ C '* A U B ~ C, and 
(iv) An (B U C) ~ (A n B) U (A n C). . 

The Curry-Howard correspondence between types inhabited in the intersection 
and union type assignment system and formulae provable in intuitionistic propo­
sitional logic with implication, conjunction, disjunction, and truth does not hold. 
Inhabitation implies provability, but there are provable formulae which are not in­
habited. This is shown in Hindley [99J in a syntactical way. We give a semantical 
proof of this fact by giving the appropriate type interpretations in P(D), starting 
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from any lambda model M = (D,·, []) (see [11]) and by mapping the set of inter­
section and union types into the set of propositional formulae that replaces each 
occurrence of n, U, and n in a type by 1\, V, and T respectively. 

The fact that types inhabited in Ann do not correspond to the provable formulae 
in intuitionistic propositional logic with -+ and 1\, was shown in Hindley [99] by 
showing that the type 

(A ---+ A) n «A ---+ B ---+ C) ---+ (A ---+ B) ---+ A ---+ C) 

is not inhabited in Ann although it is provable in intuitionistic logic. 
To show that some provable formulae are not inhabited we construct a model of 

Ann which is not a model of some provable formula, Le., its interpretation in this 
model is empty. 

In order to obtain the Curry-Howard correspondence for intuitionistic proposi­
tional logic LJ with conjunction and disjunction, we consider the extension of the 
simply typed lambda calculus with conjunction and disjunction types and the cor­
responding elimination and introduction rules, given in Figure 12. For this purpose, 
the set Type of types is given by the following 

A, B = X I A -+ B I A 1\ B I A V B 

and the set of lambda terms Ac is obtained by expanding the set A with new 
constants c, Cl, and C2 for conjunction and d, dl , and d2 for disjunction. A-;: denotes 
the type assignment system obtained from A -+ by adding the rules considering 
conjunction and Ac denotes the type assignment system obtained from A -> by 
adding the rules considering conjunction and disjunction. 

ff-t:AI\B 

f f- clt : A 

ff-t:AI\B 
----(I\E) 

f f- C2t: B 

f f- tl : A f f- t2 : B 
------ (1\1) 

ff-ct l t2:AI\B 

f,x:Af-tl:C f,x:Bf-t2:C ff- t3: AUB 
----------------(VE) 

f f- dxt l t2 ta : C 

ff-t:A 

f f- dlt: A vB 

ff-t:B 
----(vI) 
f f- d2t: A vB 

FIGURE 12. Ac: type assignment system with conjunction and disjunction 

We link the inhabitation in the intersection and union type assignment system 
with the inhabitation in this extension of the simply typed lambda calculus. We 
prove that inhabitation is decidable in A-;: and Ac by linking them to the question 
of decidability of provability in logics. 

The difference between the special conjunction n (called intersection) and the 
arbitrary propositional conjunction 1\ is in the rule (nI). In order to show that 
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the term t has the intersection type it is necessary to show that t has both types 
in the same basis. t is the same in the conclusion as in both premises of the rule 
(n!). The same holds for the rule (nE). Thus in these two steps t remains the same 
although the deduction grows and the A-terms do not correspond to the deductions. 
With the usual propositional conjunction /\ the lambda terms correspond to the 
deductions since it is possible to obtain a term of conjunction type from two terms 
with different types. Something similar happens with the special disjunction U 
(called union). 

In Dezani, Ghilezan and Venneri [45J we consider intersection and union types 
in Combinatory logic, which is a formal system equivalent to A-calculus. In [45J we 
investigate the Curry-Howard correspondence between Hilbert (axiomatic) style 
intuitionistic logic and Combinatory logic. We propose a typed version of Combi­
natory logic with intersection and union types. This was a novelty, since all the 
existing systems with intersection types up to 1990s were type assignment systems. 
For the difference between typed systems (typeability a la Church) and type as­
signment systems (typeability a la Curry) we refer the reader to Barendregt [9J. 
Different typed lambda calculi with intersection types were further proposed by 
Liquori and Ronchi Della Rocca [23J and Bono et al. [112]. 

7.3. Intersection types and topologies in A-calculus. In Ghilezan [80J typeabil­
ity of terms in the full intersection type assignment system Ann is used to introduce 
topologies on the set of lambda terms A. We consider sets of lambda terms that 
can be typeable by a given type in a given environment: 

Vr,A = {t E A I r f- t: A}. 

For a fixed r the family of sets {Vr,A} AEType forms the basis of a topology on A, 
called the r -fit topology. Open sets in the r -fit topology are unions of basic open 
sets. 

These topologies lead to simple proofs of some fundamental results of the lambda 
calculus such as the continuity theorem and the genericity lemma. We show that 
application is continuous, unsolvable terms are bottoms, and ,B1]-normal forms are 
isolated points with respect to these topologies. 

The restriction of these topologies to the set of closed lambda terms A 0 , called 
the fit topology, appears to be unique. It is defined by considering the set of all 
closed lambda terms that can be typed by a given type: 

VA={tEA°f-t:A}. 

The family {V A} AEType forms a basis for a topology on A 0 • 

We compare the fit topology and the filter topology [I1J and show that: (i) they 
coincide on the set A ° of closed A-terms, (ii) for every r-fit topology on the set A 
there is a coincident topology on A and vic~ versa. 

The fit topology is a simpler description of the filter topology since the main 
difference between these topologies is that the former is a topology introduced on 
the set of types and then traced on terms by the inverse map, whereas the latter is 
introduced directly on the set of terms. 
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7.4. Reducibility method. The reducibility method is a well known framework for 
proving reduction properties of A-terms typeable in different type systems. It was 
introduced by Tait [144] for proving the strong normalisation property of simply 
typed A-calculus. Later it was used to prove strong normalisation properly of 
various type systems in [145,92, 105, 75], the Church-Rosser property (confluence) 
of .B1J-reduction in [104, 141, 115, 116] and to characterise some special classes of 
A-terms such as strongly normalising terms, normalising terms, head normalising 
terms, and weak head normalising terms by their typeability in various intersection 
type systems in [69, 47, 41]. 

In Ghilezan and Likavec [88J we develop a general reducibiJity method for proving 
reduction properties of A-terms typeable in intersection type systems with and 
without the universal type n, whereas in [891 we focus only on the intersection type 
assignment system Ann with the type n. Sufficient conditions for its application 
are derived. This method leads to uniform proofs of confluence, standardization, 
and weak head normalisation of terms typeable in tne system with the type n. In 
this system the reducibility method can be extended to a proof method suitable to 
prove reduction properties of untyped A-terms with certain invariance . 

. The general idea of the reducibility method is to provide a link between terms 
typeable in a type system and terms satisfying certain reduction properties (e.g., 
strong normalisation, confluence). For that reason types are interpreted by suitable 
sets of A-terms: saturated and stable sets in Tait [144J and Krivine [105J and 
admissible relations in Mitchell [1151 and [116J. These interpretations are based 
on the sets of terms considered (e.g., strong normalisation, confluence). Then the 
soundness of type assignment with respect to these interpretations is obtained. A 
consequence of soundness is that every term typeable in the type system belongs 
to the interpretation of its type. This is an intermediate step between the terms 
typeable in a type system and terms satisfying the reduction property considered. 

Necessary notions for the reducibility method are (as presented in [89]): 1. type 
interpretationj 2. term valuatioDSj 3. closure conditionsj 4. soundness of the type 
assignment. 

1. Type interpretation. We c~nsider the set of all A-terms A as the applicative 
structure whose domain are A-terms and where the application is the application 
of terms. If 'P 5; A is a fixed set, the type interpretation [-) : Type -+ 2A is defined 
by: 

(Il) [X~ = 'P, X is an atomj 
(12) [A n BB = (AB n [B); 
(13) [A -+ Bl = (lA] =9[BJ) n'P = {t E'P I Vs E [A) ts E [BH; 
(/4) [0] = A. 

An important property of the type interpretation is that [A) 5; 'P for all types 
AfO, 

2. Term valuations. Let p : var -+ A be a valuation of term variables in A, 
Then [-Jp : A -+ A is defined as follows 

[t]p = t[XI := P(XI)", " Xn:= P(Xn)J, where Fv(t) = {Xl,.' ., Xn}, 



COMPUTATIONAL INTERPRETATIONS OF LOGICS 181 

The semantic satisfiability relation 1= connects the type interpretation with the 
term valuation. 

(i) p 1= t : A iff [t]p E lA]; 
(ii) p 1= r iff ('V(x: A) E r) p(x) E lA]; 

(iii) r 1= t : A iff ('v' p 1= r) p 1= t : A. 

3. Closure conditions. Let us impose some conditions on P <;;; A. 

- X <;;; A satisfies the P-variable property, notation V AR(P, X), if 

('Vx E var) ('Vn ~ 0) ('Vtl, ... , tn E P) xt1 ... tn EX. 

- X <;;; A is P-saturated, notation SAT(P, X), if 

('Vt, sEA) ('Vn ~ 0) ('Vtl, ... ,tn E P) 

t[X:=SJt1 .... tn E X ~ (AX.t)st1 ... tn EX. 

- X <;;; A is P-closed, notation CLO(P,X), if t E X ~ AX.t E P. 

The preorder on types is interpreted as the set theoretic inclusion. We prove the 
following realizability property, which is referred to as the soundness property or 
the adequacy property. 

Theorem (Soundness of the type assignment). If V AR(P, P), SAT(P, P), and 
C LO(P, P) are satisfied, then r f- t : A ~ r 1= t : A. 

An immediate consequence of soundness is the following statement. 

Theorem (Reducibility method). If V AR(P, P), SAT(P, P), and CLO(P, P), 
then for all types A f n and A f n -> B, where B f n 

r f- t : A ~ t E P. 

Proof method for A. To establish a proof method for untyped A-terms it is neces­
sary that a set P <;;; A is invariant under abstraction, i.e., 

t E P {::> AX.t E P. o 
If P is invariant under abstraction and satisfies .V AR(P, P) and SAT(P, P), 

then P = A. This method is applicable when: 
- P = C = {t E A I ,B-reduction is confluent on t}; 
- P = S = {t I every reduction of t can be done in a standard way}; 
- P = W N = {t I t is weakly head normalising}. 

In [88J we distinguish the following two different kinds of type interpretation 
with respect to a given set P <;;; A. 

(i) The type interpretation [-I : Type -> 2A is defined by: 
(Il) [X] = P, X is an atom; 
(I2) lA n B] = [A] n [B]; 
(13) [A -> BJ = [A] ~[B] = {t E A I 'Vs E [AJ ts E [B]}. 

(ii) The n-type interpretation [_]0 : TypeO -> 2A is defined by 
(m) [X]O = P, X is an atom; 
(m) [A n B]O = [A]O n [B]O; 
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(03) lA -+ B]O = [A) ° =*0 [B]O = ([A]O =*[B]O) n P = 
= {t E WN I Vs E [A]O . ts E [B]O}; 

(04) (0)° = A. 

Also, we distinguish two different closure conditions which a given set P ~ A 
has to satisfy. By combining different type interpretations with appropriate closure 
conditions on P ~ A we prove the soundness of the type assignment in both cases. 
In this way a method for proving properties of 'x-terms typeable with intersection 
types is obtained. 

Preliminary version of the work presented in [89, 88] is [86]. 

The problem of typability in a type system is whether there exists a type for a 
given term. The typability in the full intersection type assignment system 'xno is 
trivial since there exists a universal type 0 which can be assigned to every term in 
this system. 

But without the rule (0), the situation changes. In Likavec [109] we focus on 
typability of terms in the intersection type assignment systems without the type 
O. We show that all the strongly normalising terms are typable in these systems. 
They are the only terms typable in these systems. We also present detailed proofs 
for [88, 89]. 

7.5. Behavioural inverse limit models. In Dezani et al. [44] we construct two 
inverse limit ,X-models which completely characterise sets of terms with similar 
computational behaviours: 

Normalisation properties 

(1) A term t has a normal form, tEN, if t reduces to a normal form. 
(2) A term t has a head normal form, t E 1t.N, if t reduces to a term of the 

form >.X.yt (where possibly y appears in x). 
(3) A term t has a weak head normal form, t E W N, if t reduces to an abstrac­

tion or to a term starting with a free variable. 

Persistent normalisation properties 

(1) A term t is persistently normalising, t E P N, if tU E N for all u E N. 
(2) A term t is persistently head normalising, t E P1t.N, if tU E 1t.N for all 

uE A. 
(3) A term t is persistently weak head normalising, t E PWN, if tU E wN for 

all u EA. 

Closability properties 

(1) A term t is closable, t E C, if t reduces to a closed term. 
(2) A term t is closable normalising, t E CN, if t reduces to a closed normal 

'form. 
(3) A term t is closable head normalising, t E C1t.N, if t reduces to a closed 

head normal form. 

We build two inverse limit ,X-models Doo and Coo, according to Scott [136], which 
completely characterise each of the mentioned sets of terms. For that we need to dis­
cuss the functional behaviours of the terms belonging to these classes with respect 
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to the step functions. Given compact elements a and b in the Scott domains A and 
B respectively, the step function a => b is defined by ~c. if a !:;;; c then b else ..L 

Definition of models 

(1) Let Doo be the inverse limit >.-model obtained by taking as Do the lattice 
in Figure 13, as D1 the lattice [Do -+ DoJ.L' and by defining the embedding rr : Do -+ [Do -+ Dol.L as follows: 

if(n) = (..L => h) U (n => n), if(n) = (h => h) U (n => n), 
if(h) = ..L => h, if(h) = h => h, if(..L) = ..L. 

(2) Let Coo be the inverse limit >.-model obtained by taking as Co the cpo 
in Figure 13, as Cl the cpo [co -+ co], and by defining the embedding 
i~ : Co -+ [co -+ col as follows: 

i~(n) = (..L => h) U (n => n), 
i~(h) =..L => h, 
i~(c) = c => c, 

i&(n) = (h => h) U (n => n), 
i~(h) = h => h, 
i~ (..L) = ..L => ..L. 

(3) We will denote the partial orders on Doo and Coo by !:;;;1) and !:;;;[, respec­
tively. 

hUn 
./ ~ 

h n 
\t ./ 

h 
-J.. 
..L 

hUn nUc 
./ ":>t'/.J. 

h n h Uc 
\t{/J. 

h c 
\t -/ 

..L 

FIGURE 13. The lattice Do and the cpo Co 

More precisely, for each of these sets of terms there is a corresponding element in 
at least one of the two models such that a term belongs to the set if and only if its 
interpretation (in a suitable environment) is greater than or equal to that element. 
This is the result of the following theorem. 

Theorem (Main Theorem, Version I). Let Doo and Coo be the inverse limit >.­
models defined above and pfi the environment defined by pfi(X) = n for all x E var 
(since each variable is in PN). Then: 

(1) t E PN ifJ [t]~oo ~1) n ifJ [tB~;", ~[ nj 
(2) tEN ifJ [t]~oo ~1) n ifJ [t]~:, ~[ n; 

(3) t E P1tN ifJ [tB~oc ~1) h ifJ [t]~;'" ~[ h; 
(4) t E 1tN ifJ [tJ~oo ~1) h ifJ [tB~;", ~[ h; 
(5) t E PWN iff [tB~oo ~1) UnENl..L => '.:,.' => ..L, => ..L); 

n 
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(6) t E WN iff [t]~oo ;Jv 1- =} 1-; 

(7) tEeN iff [t)~~ ;Je c U n; 
(8) t E eW! iff [t]~~ ;Je c U h; 
(9) tEe iff (t)~~ ;Je c. 

This is proved by using the finitary logical descriptions of the models Voo and 
£00' obtained by defining two intersection type assignment systems in the follow­
ing way. Starting from atomic types corresponding to the elements of Vo and £0, 
we construct the sets TV and...-e of types using the function type constructor -+ 
and the intersection type constructor n between compatible types, where two types 
are compatible if the corresponding elements have a join. Types are denoted by 
A, B, A1, .... An -+ B is short for A -+ ... -+ A -+ B (n ~ 0). The preorder be-

~ 
n 

tween types is induced by reversing the order in the initial cpo and by encoding the 
initial embedding, according to the correspondence: (i) function type constructor 
corresponds to step function and (ii) intersection type constructor corresponds to 
join. 

Then, we define the sets FV and Fe of filters on the sets TV and r, respectively. 
Both P and Fe, ordered by subset inclusion, are Scott domains. The compact 
elements are precisely the principal filters, and the bottom element is i n. P is 
an w-algebraic complete lattice, since it has the top element TV. 

We can show that F V and Voo are isomorphic as w-algebraic complete lattices, 
and that Fe and £00 are isomorphic as Scott domains. This isomorphism falls in 
the general framework of Stone dualities. The interest of the above isomorphism 
lies in the fact that the interpretations of A-terms in Voo and £00 are isomorphic to 
the filters of types one can derive in the corresponding type assignment systems. 
This gives the desired finitary logical descriptions of the models. 

Theorem (Finitary logical descriptions). 

(1) For any tEA and p: "liar I--> FP, [t]t' = {A ETv I 3!'. r c> p & r I-v t: A}j 
(2) For any tEA and p: "liar I--> FE, [t]r = {A Er 13r. r c> p & r I-e t: A}, 
where r c> p means that for (x : B) E r one has that B E p(x). 

Therefore, the primary complete characterisation can be stated equivalently as 
follows: a term belongs to one of the nine sets mentioned if and only if it has a 
certain type (in a suitable basis) in one of the obtained type assignment systems. 
This is the result of the following theorem. 

Theorem (Main Theorem, Version 11). 

(1) t E PN iffr" I-v t: 1) iffr" I-e t: 1); 

(2) tEN iffr" I-v t: 11 iffr" I-e t: 11; 

(3) t E P'H..N iffr" I-v t: {L iffr" I-e t: {L; 
(4) t E 'H..N iffr" I-v t: f../, iffr" I-e t: f../,; 

(5) t E PWN iffr" I-v t: nn -+ n for all nE N; 
(6) tEWNiffr"I-Vt:n-+n; 
(7) tEeN iffr" I-e t: 'Y n 11; 
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(8) t E c1tN ijJfj) I-E t: -yn 11-; 
(9) t E C ifffj) I-E t:-y. 
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The proofs of the (::}) parts are mainly straightforward inductions and case split, 
with the exception of the case of persistently normalising terms, which are treated 
using the notions of safe and unsafe suberms (see [21]). The proofs of the ({::) 
parts require the set-theoretic semantics of intersection types and saturated sets, 
which is referred to as the reducibility method. To that purpose we define the 
interpretations of types in If'P and in -rE as follows: 

Interpretation of types 

(1) The map (_]V :Tv -+ peA) is defined by: 
(i) [v]V =.Ai, [vjV = P.Ai, [11-]V = 1tN, [jl]V = P1tN, [nIV = Aj 

(ii) [A n B]V = [AjV n [BJv j 
(iii) [A -+ mv = (AJv..E... [B]V = {t E W.Ai I Vu E (AjV -tu E [BJV}. 

(2) The map [_JE:-rt -+ peA) is defined by: 
(i) [vJE =.Ai, [vJE = P.Ai, [11-]E = 1tN (jlJE = P1tN, hIE = C, 

[f2]E = Aj 
(ii) [A n B]E = [AjE n (BJE j 
(iii) [A -+ BjE = [A]E ...!..... [BJE = {t E A I Vu E [AJE tu E [BY}. 

The main contribution of the present paper is to show that only two models can 
characterise many different sets of terms. On the one hand it seems that we cannot 
find elements representing weak head normalisability and dosability in the same 
model, since the first property requires the lifting of the space of functions and this 
does not agree with the second one. On the other hand, there are properties which 
appear strongly connected, like each normalisation property with its persistent 
version. It is not clear if these properties can be characterised separately, i.e., if 
one can build models in which only one of these properties is characterised. 

A preliminary version of the present paper (dealing only with the first six sets 
of terms) is [41]. An extended abstract of the present paper is [43]. 

8. Intuitionistic sequent calculus and AGtz-calculus 

8.1. Intersection types for>. Gtz-calculus. In Espirito Santo et al. [57], we intro­
duce intersection types for the A Gtz-calculus. The set Type of types, ranged over by 
A, B, C, ... , AI, ... , is defined inductively: 

A,B j::= X I A-+B I AnB 

where X ranges over a denuinerable set TVaT of type atoms. 
The type assignment system A Gtzn is given in Figure 14. 
The following rules are admissible in A Gtzn: 

1. If f, x : Ai I- t : C then f, x : nAi I- t : C. 
2. If f,x: AijD I- k: C then f,x: nAi;D I- k: C. 

Basis expansion and bases intersection are defined in an obvious way. Standard 
form of generation lemma holds for A Gtz . 
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r, x: nAi f-- x : Ai· 1 ); 1 (Ax) t = , ... ,n, n 9' 

r,x:Af--t:B 
rf--Ax.t:A-+B (-+R) 

r f-- u : Ai Vi r; B I- k : C (-+ L) 
r; nAi -+ B f-- u :: k : C 

r f-- t : Ai, Vi r; nAi f-- k : B 
r f-- tk : B (Cut) 

r,x:A~t:B (Sel) 
r;A I- x.t: B 

FIGURE 14. >.Gtzn: type assignment system for >.Gtz-calculus 

Example: In >.-calculus with intersection types, the term >'x.xx has the type 
(A n (A -+ B» -+ B. The corresponding term in >.Gtz-calculus is >.x.x(x :: y.y). 
Although being a normal form this term is not typeable in the simply typed >. Gtz_ 
calculus. It is typeable in >.Gtzn in the following way: 

--------- (Ax) 
x: An (A ...... B), V : B I- v: B 

------- (Ax) (Sel) 
x: An (A ...... B) I- x: A x: An (A ...... B);B I- !I.v: B 

---------(Ax) ( ...... L) 
x: An (A ...... B) I- x: A ...... B x: An (A ...... B); A ...... B I- (x:: !I.v): B 

---------------------------------(Cut) 
x: An (A ...... B) I- x(x:: !I.v): B 

-----------(- R). 
I- AX.X(X:: !I.v): (An (A ...... B»-B 

In [58] we describe our quest for the intersection type assignment system >. Gtzn 
and offered a new, equivalent system >.Gtznl. Both systems >.Gtzn and >.Gtznl success­
fully characterize strongly normalizing terms of the>. Gtz-calculus. We also report 
on various alternative formulations of the system. Two of them are not successful 
and we explain why they fail and how they lead us to the system>. Gtzn. 

8.2. Subject reduction and strong normalisation. Basic properties of this sys­
. tern are analysed and the Subject reduction property is proved i.e., 

If r f-- t : A and t -+ t', then r f-- t' : A. 

The reduction JJ. is of different nature, since it reduces contexts instead of terms. 
A similar result for this reduction rule is given, i.e., 

If r; nBi f-- x.xk : A, then r; Bi I- k : A, for some i. 

In [83], a slightly modified type assignment system >.Gtzn with respect to the one 
given in 8.1 is considered. Subject reduction holds for this system as well. 

We use intersection types in [57] to give a characterisation of the strongly nor­
malising terms of an intuitionistic sequent calculus (where LJ easily embeds). The 
sequent term calculus presented in this paper integrates smoothly the >.-terms with 
generalised application or explicit substitution. 
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In order to prove that typeability in ..\ Gtzn implies strong normalisation for the 
..\ Gtzn, we connect it with the well-known system V for the ..\-calculus (given in Sec­
tion 2.2) via an appropriate mapping, and then use strong normalisation theorem 
for ..\-terms typeable in system V. 

Terms in V are ordinary ..\-terms equipped with the following two reduction 
relations, in addition to standard /3 reduction: 

(71'1) (..\x.M)NP --+ (..\x.MP)N (71'2) M«..\x.P)N) --+ (..\x.MP)N. 

We let 71' = 71'1 U 71'2. We use capital letters here to denote the terms in V to 
differentiate them from the terms in ..\Gtzn. 

We define a mapping F from ..\Gtz to..\. The idea is the following. If F(t) = 
M, F(Ui) = Ni and F(v) = P, then t(U1 :: U2 :: (x)v), say, is mapped to 
(..\x.P) (MN1N2). Formally, a mapping F : ..\GtzTerms --+ ..\Terms is defined si­
multaneously with an auxiliary mapping F' : ..\Terms x ..\GtzContexts --+ ..\Terms 
as follows: 

F(x) = x 
F(..\x.t) = ..\x.F(t) 
F(tk) = F'(F(t), k) 

We prove the following theorems: 

F'(N,x.t) = (..\x.F(t»N 
F'(N,u:: k) = F'(NF(u),k). 

• Soundness of F: If ..\Gtzn proves r f- t : A, then V proves r f- F(t) : A. 
• Reduction of SN: For all t E ..\Gtz, if F(t) is /371'-SN, then t is /371'uJ.L-SN. 

The main theorem is the following: 

Theorem (Typeability => SN). If a ..\Gtz_term t is typeable in >.Gtzn, then t is 
/371'uJ.L-SN. 

In order to prove that SN implies typeability we prove the following: 
• /371'u-normal forms and /371'uJ.L-normal forms of the ..\Gtz-calculus are typeable 

in the ..\ Gtzn system. 
• Subject expansion property: If t --+ t', t is the redex and t' is typeable 

in ..\ Gtzn, then t is typeable in ..\ Gtzn. 

The main theorem is the following: 

Theorem (SN => typeability). All strongly normalising (/3U7I'J.L - SN) terms are 
typeable in the ..\ Gtzn system. 

Finally, in order to deal with generalised applications and explicit substitutions, 
we consider two extensions of the ..\-calculus: the AJ-calculus, where application 
M(N, x.P) is generalised [102]; and the ..\x-calculus, where substitution M[x := N] 
is explicit [132]. Intersection types have been used to characterise the strongly 
normalising terms of both AJ-calculus [113] and ..\x-calculus [108]. But in both [113] 
and [108] the "natural" typing rules for generalised application or substitution 
had to be suplemented with extra rules in order to secure that every strongly 
normalising term is typeable. Hence, the "natural" rules failed to capture the 
strongly normalising terms. We prove that ..\ Gtz and ..\ Gtzn are useful for resolving 
these issues. 
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Let t be a AGtz-term. 

(1) t is a AJ-term if every cut occurring in t is of the form t(u:: x.v). 
(2) t is a Ax-term if every cut occurring in t has one of the forms t(u:: x.x) or 

t(x.v). 

We define appropriate type assignment systems AJn and Axn for these calculi 
and prove the following: 

(1) Let t be a AJ-term. t is /37rUJ.L - SN iff t is typeable in AJn. 
(2) Let t be a Ax-term. t is /37rUJ.L - SN iff t is typeable in AXn. 

The extended version of [57] can be found in [59]. 

9. Classical natural deduction and Ap,-calculus 

9.1. Terms for natural deduction and sequent calculus classical logic. In 
Ghilezan [82]' the work of Barendregt and Ghilezan [12] is further elaborated and 
its results are generalised for classical logic. Two extensionally equivalent type as­
signment systems for the AJ.L-calculus are considered. The type assignment system 
AJ.LN is actually the simply typed AJ.L-calculus, given in Figure 8. It corresponds 
to implicational fragment of classical natural deduction NK (given in Figure 2), 
whereas the type assignment system AJ.LL given in Figure 15 corresponds to impli­
cational fragment of classical sequent calculus LK (given in Figure 4). In addition, 
a cut free variant of AJ.LL, denoted by AJ.LLd, is introduced and used to give a short 
proof of Cut elimination theorem for classical logic. 

------ (axiom) 
r, y : A I- y : A, D. 

r I- u : A, D. r, x : B I- t : C, D. 
---------- (-+ left) 
r, y : A -+ B I- t[x := yu] : C, D. , 

r, y : A I- t : B, D. 
------- (-+ right) 
.r I- Ay.t: A -+ B,D. 

r I- t : A, D., /3 : A, 0: : B 
------(J.L) 
r I- J.Lo:.[/3]t : B, D., /3 : A 

r I- u : B, D. r, x: B I- t : A, D. 
---------- (cut) 

r I- t[x := u] : A, D. 

FIGURE 15. AJ.LL-calculus 

~ In Figure 15 a term context r = {Xl: Al"",Xn : An} is a set of variable 
declarations such that for every variable Xi there is at most one declaration Xi : Ai 
in r and a co-term context D. = {O:l : Bl , ••. ,O:k : Bd is a set of co-variable 
declarations such that for every co-variable 0:1 there is at most one declaration 
0:1: Bl in D.. In this setup r" x = {A l , .•• An} and D." 0: = {Bl , ... B k }. 
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It is shown that the statement A is derivable from assumptions in r in NK if 
and only if it is derivable from the same assumptions in lK, Le., for all r and A 

r I-N K A, Ll {=} r I-LK A, Ll. 

The following result was given by Parigot [121] as an extension of the well-known 
proposition-as-types interpretation of intuitionistic logic. 

Theorem (Curry-Howard correspondence for classical logic). If SK is one of the 
logical systems NK, LK or LJ<Cf and if AJ1.S is the corresponding type assignment 
system, then 

r" x I-SK A,Ll" a {::::::? 3t E AO(x) U A~(a) r I-Ap.8 t: A,Ll. 

where AO(x) = {t E A I Fv(t) ~ x}, A~(a) = {t E A I FVp.(t) ~ a} 

It is also proved that 

r I-Ap.L t: G,Ll {=} r I-Ap.N t: G,Ll. 

Finally, using the type assignment system AJ1.Lcf, Cut elimination theorem of 
Gentzen [71] for classical implicational sequent calculus is proved, i.e., 

r I-LK A {::::::? r I-LKcf A. 

The type assignment system AJ1.L is a novel system for encoding proofs in clas­
sical sequent logic. The main focus of this paper is on At-t-terms, rather than on 
derivations. 

9.2. Separability in At-t-calculus. In Herbelin and Ghilezan [98], we investigate the 
separability property of At-t-calculus. In the untyped A-calculus Bohm's theorem 
deals with the separability property of A-terms [20, 35, 10, 105J. For two different 
normal forms there is a context such that one of these terms converges in this 
context, whereas the other one diverges in the same context. A consequence of this 
theorem is that P'fJ equality is the maximal consistent equality between A-terms 
having normal forms. Hence, if t and u are two A-terms having different p'fJ normal 
forms, meaning that t = u cannot be proved in A-calculus, and if this calculus is 
extended with t = u, then according to B6hm's theorem every equality of A-terms 
can be proved in the extended calculus. In other words such an extended calculus 
is inconsistent. 

Two terms are observationally equivalent if, whenever put in the same context, 
either they both make it reducible to a normal form or they both make it diverge. 
More generally, two terms may be considered as equivalent if, when observed from 
outside, they exhibit the same behaviour. Therefore another important consequence 
of Bohm's separability in the A-calculus setting is that observational equivalence for 
normalisable terms coincides with ,B'fJ-equivalence. The proof of B6hm's theorem 
can be considered as a refutation procedure for observational equivalence. An 
overview of the relation between B6hm's theorem and observational equivalence is 
given by Dezani-Ciancaglini and Giovannetti [46J. 

Regarding computational interpretations of classical logic Bohm's separability 
property has been investigated in Parigot's AJ1.-calculus, so far. David and Py [38] 
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showed that Parigot's AJL-calculus does not satisfy Bohm's separability property. 
This means that the equality of Parigot's AJL-calculus is not the maximal consistent 
equality between AJL-terms having normal forms. 

Saurin [135] studied the B6hm's separability property in a syntactic modification 
of the AJL-calculus by de Groote [39] which is denoted here by AJL following Saurin. 
The syntax of the AJL-calculus is given by the following: 

t ::= x I Ax.t I tu I JL,6.tl [alto 

The reduction rules are the same as of the AJL-calculus (see Subsection 4). 
Saurin showed that the AJL-calculus is a strict extension of Parigot's AJL-calculus 

and that it enjoys B6hm's separability property. Therefore, the equality in AJL­
calculus is the maximal consistent equality of AJL-terms having normal forms. The 
two syntax were up to now considered as almost the same. Obviously this subtle 
move in the syntax has significant consequences. In [98] we restored B6hm separa­
bility in AJL by extending the syntax of AJL with a dynamically bound continuation 
variable tp and the reduction rules with two rules 

[iP]JLtP.c --t c 
JLiP. [tP]t --t t. 

In this way we obtained AJLtP, actually its call-by-name variant. It is possible to 
establish then a mutual embedding of AJL and AJLiP. Embedding of AJL into the 
extended AJL, actually II : AJL ---+ AJLtP is given by the following: 

II(x) ~ x 
II(k.t) ~ Ax.II(t) 
II(t s) ~ II(t) II(s) 
II(JLa.t) ~ JLa.[tP]II(t) 
II([a]t) ~ JLtp.[a]II(t). 

Embedding of the extended AJL into AJL, actually:E : AJLtP ---+ AJL is the following: 

:E(x) ~ x 
:E(Ax.t) ~ Ax.:E(t) 
:E( t s) ~ :E(t) :E(s) 
:E (JLa. [,6] t) ~ JLa.([,6]:E(t)) if ,6 and tp are distinct 
:E(JLa.[tP]t) ~ JLa. (:E( t)) 
:E (JLtP. [a] t) ~ [a]:E(t) if a and tP are distinct 
:E(JLiP. [iP]t) ~ :E(t). 

i.,From the desired properties: 

• t = u in AJL implies II(t) = II( u) in AJLtP, 
• t = u in AJLtP implies :E(t) = :E(u) in AJL, 

we conclude the separability of the extended AJL-calculus. 

Theorem (Separability). AJLtp, the extended AJL-calculus is observationally com­
plete for normal forms, i.e., for any two normal forms there exists an evaluation 
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X E TypeConstants 
A, B .. - X I AE -> B 

f .. - 0 I f, x : AE 
.D. .. - 0 I .D., a : A 

~, :::: .. - .1 I A . ~ 

--------------- Ax 
f,x: AE I-E x:A; Ll 

f,x:AEI-2t:B;Ll ( ) fI-2t:(AE->B);Ll fI-ES:A;Ll ) 
) 

->i (->e 
f 1-2 Ax.t:(AE -> B ;Ll f 1-2 ts:B;Ll 

fI-Ec:.Lj.D.,a:A fI-A.Ec:.L;Ll fI-Et:Aj.D.,a:A fI-Et:Aj.D. 

fI-EJLa.c:A;Ll fI-EJLiP.c:A;Ll fI-E[aJt:.L;Ll,a:A fl-A-E[iP)t:.L;Ll 

FIGURE 16. Simple typing of AJLtP-calculus 

191 

AJLtp-context CO, such that, in AJ.Ltp, C[tJ = x and C[s] = y for x and y being 
arbitrary fresh variables. 

Separability in simply typed AJ.L-calculus is an open question. It was shown 
in [140, 138, 53J that separability in simply typed A-calculus needs different treat­
ment from Bohm's method for the untyped A-calculus. There is ongoing research 
along the lines of the approach by Dosen and Petric [53]. 

9.3. Simple types for extended AJ.L-calculus. In Herbelin and Ghilezan (98J we 
propose a system of simple types for call-by-name AJ.LtP, the AJ.L-calculus extended 
by a dynamically bound continuation variable, which is introduced in the previous 
subsection. Like for typing AJ.L, we have two kinds of sequents, one for each category 
of expressions: 

f I-E t: Aj Ll (for terms) 
f I-E c:.L; Ll (for commands). 

Like for AJ.L, we have a context of hypotheses r that assigns types to term variables 
and a context of conclusions Ll that assigns types to continuation variables. But 
we have also to take care of the J.LtP dynamic binder. 

There is an extra data to type the dynamic effects. Each use of J.LtP pushes the 
current continuation on a stack of dynamically bound continuations. Each call to 
tP pops the top continuation from this stack. The extra information needed to type 
the dynamic binding is not a single formula but the ordered list ~ of the types of 
the continuations present in the stack. 

The type system, given in Figure 16 enjoys preservation of types under reduction. 

Theorem (Subject reduction). 

(i) If r I-E t: A; Ll and t -> s, then f I-E s: A; Ll. 
(ii) If f I-E c:.L; Ll and c -> c', then r I-E c/:.Lj Ll. 
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10. Classical sequent calculus and "XJ1.JL-calculus 
10.1. Confluence of call-by-name and call-by-value disciplines. In Likavec and 
Lescanne (111], we deal with untyped "XJ1./L-calculus and its semantics, with complete 
proofs given in (110]. 

This work investigates some properties of "XJ1./LT and "XJ1./LQ, the two sub calculi of 
untyped "XJ1./L-calculus of Curien and Herbelin (34], closed under the call-by-name 
and the call-by-value reduction, respectively. The syntax and reduction rules of 
"X/-L/L were given in Section 5. 

First of all, the proof of confluence for both versions of the "XJ1.JL-calculus is given, 
adopting the method of parallel reductions given by Takahashi [146]. This approach 
consists of simultaneously reducing all the redexes existing in a term. 

We present the proof for ).J1./LT, the proof for )./-L/LQ being a straightforward 
modification of the proof for "XJ1.JLT. The complete proofs can be found in (110]. We 
denote the reduction defined by the three reduction rules for ).J1./LT by -+n and its 
reflexive, transitive, and closure by congruence by -n' 

First, we define the notion of parallel reduction =?n for "XJ1.JLT. We prove that 
-»n is reflexive and transitive closure of =?n, so in order to prove the confluence of 
-n, it is enough to prove the diamond property for =?n. The diamond property 
for =?n, follows from the stronger "Star property" for =?n that we prove. 

The parallel reduction, denoted by =?n is defined inductively, as follows: 

V =?n v' ( 2 ) C =?n d 
(g3n) x =?n X (gIn) AX . t =?n Ax . t' 9 n /-La. . c =? n /-La. . c' 

V =?n v', E =?n E' 
(g5n) 

C =?n d 
(g6n) 

a. =?n a. (g4n) 
V • E =?n v' • E' /LX. c =?n /Lx . d 

I I 
V =?n V ,e =?n e (7) 

(v 11 e) =?n(v' 11 e/) 9 n 

VI =?n vt, VZ =?n v2' E =?n E' 
(Ax. tl 11 V2 • E) =?n (vt (x := v2]1I E') (g8n) 

c =?n d, E =?n E' () 
(/-La. . c 11 E) =?n c/[a. := E'] g9n 

I I 
V =?n v ,c =?n C ( 10 ) 

(v 11 jLx. c) =?n d[x := v'] 9 n 

It is easy to prove that for every term G: 

1. G =?n G; 

2. If G -+n G' then G =?n G' ; 
3. If G =?n G' then G-»n G' ; 
4. If G =?n G' and H =?n H', 

then G(x := H] =?n G/(x := H'] and G(a. := H] =?n G/[a. := H']. 

l.From 2. and 3. we conclude that-n is the reflexive and transitive closure of =?n. 

Next, we define the term G* which is obtained from G by simultaneously reducing 
all the existing redexes of the term G. 
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(*I n ) x*:=x (*2n ) (-Xx.t)*:=-Xx.t* (*3n ) (J.LQ.c)*:=J.LQ.c* 
(*4n ) Q*:= Q (*5n ) (V e E)* := v* e E* (*6n ) (jix. c)* := jix. c* 
(*7n ) «V 11 e»*:= (v* 11 e*) if (v 11 e) =f:. (-Xx.t l 11 V2 eE), 

(v 11 e) =f:. (J.LQ.c 11 E) and (v 11 e) =f:. (v 11 jix.c) 
(*8n ) «-Xx. tl 11 V2 e E»* := (vi[x := v2 J 11 E*) 
(*9n ) «J.LQ.c 11 E»*:= c*[Q:= E*j 
(*10n ) «vlljix.c»*:=c*[x:=v*J 

We prove that if C =>n C' then C' =>n C*. Then it is easy to deduce the diamond 
property for =>n: if Cl n-<= C =>n C2 then Cl =>n C' n-<= C2 for some C'. Finally, 
from the previous, it follows that )'J.LjiT is confluent, i.e., if Cl n-C-n C2 then 
C l - n C' n-C2 for some C'. 

As a step towards a better understanding of denotational semantics of XJ.Lji­
calculus, its untyped call-by-value ()'J.LjiQ) and call-by-name (),J.LjiT) versions are 
interpreted. Untyped )'J.Lji-calculus is Turing-complete, hence a naive set-theoretic 
approach would not be enough. Continuation semantics of )'J.LjiQ and )'J.LjiT is given 
using the category of negated domains of [142], and Moggi's Kleisli category over 
predomains for the continuation monad [117J. Soundness theorems are given for 
both, call-by-value and call-by-name subcalculi, thus relating operational and deno­
tational semantics. A detailed account on the literature on continuation semantics 
is also given. Lack of space forbids us to give a detailed account on the semantics 
here. 

10.2. Strong normalisation in unrestricted )'J.Lii-calculus. In Dougherty et al. [51], 
we develop a new intersection type system for the )'J.Lji-calculus of Curien and Her­
belin [34J. The system in this work improves on earlier type disciplines for )'J.Lji 
(including the current authors' [48, 49]): in addition to characterising the )'J.Lji 
expressions that are strongly normalising under free (unrestricted) reduction, the 
system enjoys the Subject reduction and the Subject expansion properties. 

The set Type of raw types is generated from an infinite set TVar of type-variables 
as follows 

A,B ::= TVar I A -+ B I AO I An B 

where AO is the dual type of type A. We consider raw types modulo the equality 
generated by saying that (i) intersection is associative and commutative and (ii) 
for all raw types A, AOO = A, 

A type is either a term-type or a coterm-type or the special constant .1. A raw 
type is a term-type if it is either a type variable, or of the form (AI -+ A2) or 
(AI n .,. n Ak), i ~ 2 for term-types Ai, or of the form DO for a coterm-type D. 
A raw type is a co term-type if it is either a coterm variable, or of the form AO for 
a term-type A or of the form (Dl n ., . n Dk), i ~ 2 for coterm-types Di. Note 
that every coterm-type is a type of the form A 0 , where A is a term-type, or an 
intersection of such types. 

Each type other than .1 is uniquely-up to the equivalences mentioned above-of 
one of the forms in the table below. Furthermore, for each type T there is a unique 
type which is TO. If T is a term-type [resp., coterm-typeJ then TO is a coterm-type 
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[resp., term-type]. 

for n ~ 2: 
for n ~ 2: 

term-types 
T 

(Al ---> A2) 
(Al n A2 n··· n An) 
(Ar n A2 n ... n A~)O 

coterm-types 
T 

(Al ---> A2)O 
(Al n A2 n··· n An)O 
(Ar n A2 n ... n A~). 

The characterisation of the two columns as being "term-types" or "coterm-types" 
holds under the convention that the Ai displayed are all term-types. 

We refer to types of the form (A ---> B) and (Al n· .. n Ak ) ---> B uniformly using 
the notation (n Ai ---> B), with the understanding that the n Ai might refer to a 
single non-intersection type. 

The type assignment system Mnis given by the typing rules in Figure 17, where 
v is any (co )variable. 

E, x: A I- r: B 
------ (---> r) 
E I- >'x.r : A ---> B 

E, a: AO I- c:.L 
-----(p,) 

E I- p,a.c: A 

E I- r: Ai i = 1, ... , k E I- e: BO 
------------- (---> e) 

E I- r. e : «Al n· .. n Ak ) ---> B)O 

E, x: A I- c:.L 
E I- - AO (ji.) p,x.c: 

El-r:A E I- e: AO 
-------- (cut) 

E I- (r 11 e) : 1. 

FIGURE 17. The typing system M n 

In the system presented here there is no unrestricted n-introduction rule which is 
significant for the treatments of Subject reduction and Type soundness. Intersection 
types can be generated for redexes by the (p,) or (ji.) rules only. The rationale 
behind the new type system is to accept the introduction of an intersection only 
at specific positions and specific times when typing an expression, namely when an 
arrow is introduced on the left; then a type intersection is only introduced at the 
parameter position. Still, the new system types exactly all the strongly normalising 
expressions. 

Example: The normal form 'lx.p,a.(x 11 X. a}, which corresponds to the normal 
form 'lx.xx in 'I-calculus, is not typable in >.p,ji. with simple types. It is typable in 
the currently introduced system M n by 'lx.p,a.(x 11 X. a} : A n (A ---> B) ---> B. 

Theorem (Subject expansion). Let t and s be arbitrary terms or coterm.s and let 
v be a variable or covariable. Suppose E I- t[v:= s] : T and suppose that s is 
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typable in context~. Then there is a type D = (Dl n·· . n Dk), k ~ 1, such that 

~ I- s: Di for each i and ~, v : D I- t: T. 

Theorem (Main result). A XJ.t/i term is strongly normalising if and only if it is 
typable in Mf). 

It is straightforward to prove that strong normalisation implies typeability using 
the fact that normal forms are typeable. 

To prove strong normalisation under free reduction for typable expressions is 
more challenging. The difficulty using a traditional reducibility (or "candidates") 
argument arises from the critical pairs (J.t'a.c 11 Jix.d). Since neither of the expres­
sions here can be identified as the preferred redex one cannot define candidates by 
induction on the structure of types. 

The "symmetric candidates" technique in [6, 125J uses a fixed-point technique 
to define the candidates and suffices to prove strong normalisation for simply-typed 
XJ.t/i, but the interaction between intersection types and symmetric candidates is 
technically problematic. 

In order to prove that typeable expressions are SN we first construct pairs (R, E) 
given by two non-empty sets T ~ Ar and C ~ Ae. The pair (R,E) is stable if for 
every rE R and every e E E, the command (r " e) is SN. A pair (R, E) is saturated 
if 

• whenever J.t'a.c satisfies "le E E, c[a := eJ is SN then J.t'a.c E R, and 
• whenever /ix.c satisfies Vr E R, c[x := rJ is SN then /ix.c E E. 

A pair (R, E) is simple if no term in R is of the form J.t'a.c and no coterm in E 
is of the form /ix.c. 

We show that if the original pair is stable and simple, then we may always 
construct the saturated, stable extension. To achieve this we define the maps: 
<Pr : 2A• --+ 2Ar and <Pe : 2Ar --+ 2A• by 

<pr(Y) = {r I r is of the form J.ta.c and "le E Y, c[a := eJ is SN} 

u {r I r is simple and "le E Y, (r 11 e) is SN} 

<pe(X) = {e I e is of the form /ix.c and Vr E X,c[x:= rJ is SN} 

u {e I e is simple and Vr E X, (r 11 e) is SN.} 

Since each of <Pe and <Pr is antimonotone, the maps (<Pr 0 <Pe) : Ar --> Ar and 
(<Pe 0 <Pr) : Ae --+ Ae are monotone, so each of these maps has a complete lattice of 
fixed points, ordered by set inclusion. 

We define different saturated pairs to interpret types depending on whether the 
type to be interpreted is (i) an arrow-type or its dual or (ii) an intersection or its 
dual. 

If R is a simple set of SN terms let Ri be the least fixed point of (<Pr 0 <Pe) with 
the property that R ~ Ri. Analogously, Ei is the least fixed point of (<Pe 0 <Pr) 
such that E ~ Ei. 
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For interpreting the types that are intersections or their duals, we use the fact 
that the collection of fixed points of (IPr 0 lPe) (and that of (4"?e 0 4"?r)) carries its 
own lattice structure under inclusion. We need the following definitions. 

• Let Fix(<I>ro<l>.) be the set of fixed points of the operator (4"?r 0 lPe). If 
R1, ... , Rk are fixed points of (4"?r 0 lPe), let (R1 ).. ... ).. Rk) denote the meet 
of these elements in the lattice Fix(<I>ro<l>.). 

• Let Fix(<I>.o<l>r) be the set of fixed points of the operator (4"?e o4"?r). Let 
(El).. ... ).. Ek) denote the meet of fixed points of (4"?e 0 IPr). 

Interpretation of types For each type T we define the set [Tj, maintaining 
the invariant that when T is a term-type then [T) is a fixed point of (4"?r 0 lPe) (set 
of terms) and when T is a coterm-type then [T) is a fixed point of (lPe 0 4"?r) (set 
of coterms). 

• When T is 1. then [T) is the set of SN commands. 
• When T is a type variable we set R to be the set of term variables, then 

construct the pair (RT, lPe(RT)). We then take [T) to be RT and [TO) to 
be lPe(RT). 

• Suppose T is (nA -> B). Set E to be {r. e I Vi,r E [Ail and e E [BOn 
then construct the pair (IPr(ET), ET). We then take [T) to be 4"?r(ET) and 
[roD to be (ET). 

• When T is (A1 nA2 •· ·nAn), n;;:: 2, we take [T] to be ([Ad)..···).. [An]) 
and then take [TO] to be lPe([TJ). 

• When T is (A1nA2·· ·nA~)O, n;;:: 2, we take [TO) to be ([All).. ... )..[A~n 
and then take [T] to be 4"?r([T°j). 

The following collects the information we need to prove Type soundness. 

(1) 
(2) For each type T, [T] is a set of SN (co )terms. [(n Ai -> B)°l "2 {r. e I 

Vi, r E [Ai] and e E [Bon. 
(3) (Ax.b) E [en Ai -> BH iffor all r such that Vi, r E [Ai] we have b[x := r] E 

[Bl 
(4) (j.L'a.c) E [AB if for all e E [AO] we have c['a := e] SN. Similarly, (ji.x.c) E 

[NB if for all r E [A] we have c[x := r] SN. 
(5) [(T1 n ... n TkH ~ ([Ti] n ... n [TkD. 

Theorem (Type soundness). If expression t is typable with type T then t is in [T]. 

Since each [T] consists of SN expressions Type soundness implies that all typable 
expressions are SN. 

General consideration of symmetry led us in [48, 49] to consider intersection and 
union types in symmetric A-calculi. These papers characterised strong normali­
sation for call-by-name and call-by-value restrictions of the "Xj.LiL-calculus, whereas 
the results in this work apply to unrestricted reduction. We might argue that if 
a term has type An B, meaning that it denotes values which inhabit both A and 
B, then it can interact with any continuation that can receive an A-value or a 
B-value: such a continuation will naturally be expected to have the type A U B. 
But any type that can be the type of a variable can be the type of a coterm (via 
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the /i-construction) and any type that can be the type of a covariable can be the 
type of a term (via the J.L-construction). This would suggest having intersections 
and unions for terms and continuations. It is well-known [123,7] that the presence 
of union types causes difficulties for the Subject reduction property; unfortunately 
our attempt to recover Subject reduction in [48] was in error, as was pointed out 
to us by Hugo Herbelin [95]. Hence, this work only takes into account intersection 
types. The use of an explicit involution operator allows us to record the relation­
ship between an intersection (A n B) and its dual type (A n B)0. The "classical" 
nature of the underlying logic is reflected in the "double-negation". 

10.3. Dual calculus. Wadler's Dual calculus was introduced in [151, 152] as a 
term calc~lus which corresponds to classical sequent logic. In Dougherty et al. [52], 
we investigate some syntactic properties of Wadler's Dual calculus and establish 
some of the key properties of the underlying reduction. 

We give now the syntax and reduction rules of Wadler's Dual calculus (although 
in our slightly altered notation). We distinguish three syntactic categories: terms, 
co terms , and statements. Terms yield values, while coterms consume values. A 
statement is a cut of a term against a coterm. 

If r, q range over the set Ar of terms, e, f range over the set Ae of coterms, 
and c ranges over statements, then the syntax of the Dual calculus is given by the 
following: 

Term: 
Coterm: 
Command: 

r,q 
e,f 

C 

x I (r, q) I (r)inll (r)inr I [e]not I J.LO'.. e 
0'. I le, fJ I fst[eJ I snd[eJ I not(r) I jtx. e 
q r • e D 

where x ranges over a set of term variables VarR, (r, q) is a pair, (r)inl «r)inr) is 
an injection on the left (right) of the sum, [eJnot is a complement of a coterm, and 
J.LO'.. e is a covariable abstraction. Next, 0'. ranges over a set of covariables VarL, 
le, fJ is a case, fst[eJ (snd[eJ) is a projection from the left (right) of a product, not(r) 
is a complement of a term, and /ix . e is a variable abstraction. Finally q r • e D 
is a cut. The term variables can be bound by J.L-abstraction, whereas the coterm 
variables can be bound by /i-abstraction. The sets of free term and coterm variables, 
FVR and FVL, are defined as usual, respecting Barendregt's convention [10] that no 
variable can be both, bound and free, in the expression. 

The reduction rules for an unrestricted calculus are given in Figure 18. 

(J3/i) qr. /ix.cD -+ e[x:= r] 
(J3J.L) qJ.LO'..c. eD -+ e[O'.:= e] 
(131\) q (r, q) • fst[eJ D -+ q r • e D 

(131\) q (r, q) • snd[e] D -+ q q • eD 
(J3V) q (r)inl • le, f] D -+ q r • eD 
(J3V) q (r)inr • le, f] D -+ q r • f D 

(13-,) q [e]not • not(r) D -+ q r • eD 

FIGURE 18. Reduction rules for the Dual calculus 
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The basic system is not confluent, inheriting the well-known anomaly of classical 
cut-elimination. Wadler recovers confluence by restricting to reduction strategies 
corresponding to (either of) the call-by-value or call-by-name disciplines. 

The two subcalculi DualR and DualL are obtained by giving the priority to (;;.) 
redexes or to (/-L) redexes, respectively. DualR is defined by refining the reduction 
rule «(3/-L) as follows 

~ /-La .e • f D -+ e[a := f] provided f is a coterm not of the form ;;'x.e' 

and DualL is defined similarly by refining the reduction rule «(3;;') as follows 

h • ;;'x. e D -+ e[x := 1:] provided 1: is a term not of the form /-L'a.e'. 

We show that once the "critical pair" in the reduction system is removed by 
giving priority to either the "left" or to the "right" reductions, confluence holds in 
both the typed and untyped versions of the term calculus. Although the critical 
pair can be disambiguated in two ways, the proof we give dualises to yield conflu­
ence results for each system. The proof is an application of Takahashi's parallel 
reductions technique [146]' analogous to the one used in [111] and with details of 
the proves given in [110]. 

A complementary perspective to that of considering the Dual calculus as term­
assignment to logic proofs is that of viewing sequent proofs as typing derivations 
for raw expressions. The set Type of types corresponds to the logical connectives; 
for the Dual calculus the set of types is given by closing a set of base types X under 
conjunction, disjunction, and negation 

A, B ::= X I A 1\ B I A V B I ...,A. 

Type bases have two components, the antecedent a set of bindings of the form 
f = Xl : AI, ... , xn : An, and the succedent of the form b.. = al : B l , ... , ak : Bk, 
where Xi, aj are distinct for all i = 1, ... ,n and j = 1, .... , k. The judgements of 
the type system are given by the following: 

f I- b..,~ le:A),fl-b.. e : (f I- b..) 

where f is the antecedent and b.. is the succedent. The first judgement is the typing 
for a term, the second is the typing for a coterm and the third one is the typing for 
a statement. The box denotes a distinguished output or input, i.e., a place where 
the computation will continue or where it happened before. The type assignment 
system for the Dual calculus, introduced by Wadler [151, 152], is given in Figure 
10.3. 

We prove strong normalisation (SN) for unrestricted reduction of typed terms, 
including expansion rules capturing extensionality. The proof is a variation on the 
"semantical" method of reducibility, where types are interpreted as pairs of sets of 
terms. Our proof technique uses a fixed-point construction similar to that in [6] 
but the technique is considerably simplified. 

The approach is similar to the one given for [51] so we just present the details that 
differ. The pairs are defined analogously, as well as the notion of stable, saturated, 
and simple pairs. 
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(not(r) : -,A ), r f- II 
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~, r f- II (cut) 
(r f- ll) 

FIGURE 19. Type system for the Dual calculus 
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We can always expand a pair to be saturated. Also if the original pair is stable 
and simple, then we may always construct the saturated, stable extension. 

We define the following constructions on pairs, where script letters denote pairs, 
and if P is a pair, PR and PL denote its component sets of terms and coterms. 

Let P and Q be pairs. 

• The pair (P .A. Q) is given by: 
- (P.A. Q)R = {(rl' r2) I rl E PR, r2 E QR} 
- (P.A. Q)L = {fst[e]I e E Pd U {snd[e]I e E Qd. 

• The pair (P Y Q) is given by: 
- (P Y Q)R = {{r)inll r E PR} U {{r}inr IrE QR} 
- (P Y Q)L = {[el, e2]1 el E PLo e2 E Qd· 

• The pair po is given by: 
- (PO)R = {[e]not leE Pd 
- (PO)L = {not(r} IrE PR}. 

Each of (P.A. Q), (P Y Q), and po is simple and we show that if P and Q are stable 
pairs, then (P.A. Q), (P Y Q), and po are each stable. 

The type-indexed family of pairs S = {ST I T E Type} is defined as follows, 
which is our notion of reducibility candidates for the Dual calculus: 

• When T is a base type, ST is any stable saturated extension of (VarR, VarL). 
• SAI\B is any stable saturated extension of (SA .A. SB). 
• SAVB is any stable saturated extension of (SA Y SB). 
• S~A is any stable saturated extension of (SA) 0. 

Next we prove that typeable terms and coterms lie in the candidates S, i.e., if 
term r is typeable with type A then r is in S: and if coterm e is typeable with 
type A then e is in st. Since S: and st consist of SN expressions, it follows that 
typeable terms and coterms are SN. If t = c is a typeable statement then it suffices 
to observe that, taking 'a to be any covariable not occurring in c, the term p.'a.c 
is typeable. This proves the strong normalisation of all typeable expressions of the 
calculus. 

10.4. Symmetric calculus. Another interesting calculus expressing a computa­
tional interpretation of classical logic is the Symmetric Lambda Calculus of Bar­
banera and Berardi [6], which was originally used to extract the constructive con­
tent of classical proofs. In Dougherty et al. [50] we explore the use of intersection 
types for symmetric proof calculi. More specifically we characterise termination in 
the (propositional version of) the Symmetric Lambda Calculus of Barbanera and 
Berardi [6]. 

The syntax of Asym expressions is given by the following: 

t := x I (tb t2) I 0"1 (t), I 0"2 (t), I AX.C I (h * t2). 

We depart from [6] in that we treat the operator * as syntactically commutative. 
The reduction rules of the calculus are 

(Ax.b * a) -- b[x := a] 

Ax.(b * x) -- b if x not free in b. 
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The set Type of raw types is generated from an infinite set TVar of type-variables 
as follows 

A, B ::= TVar I A 1\ B I A V B I A.L I An B. 

We consider raw types modulo the equations 

A type is either an equivalence class modulo these equations or the special type 
1.. Note that by orienting the equations above left-to-right each type has a normal 
form, in which the (-).1 operator is applied only to type variables or intersections. 
It is then easy to see that each type other than 1. is uniquely of one of the following 
forms (where T is a type variable): 

T T.1 (A! 1\ ... 1\ An) (A! V ... V An) (A! n ... n An) (A! n ... n An).1. 

The type assignment system B is given by the typing rules in Figure 20. 

------------------(~) 
E, x: (T! n ... n n) f- x: 11 

E, x: A f- c:1. 
-E--f--A-x-.c-:-A-.1'- (1.) 

E f- p: A E f- q: A.1 
--------------- (cut) 

E f- (p * q) :1. 

FIGURE 20. Typing rules of the system B 

The symmetry in classical calculi blocks a straightforward adaptation of the tra­
ditional reducibility technique which uses the fact that function types are "higher" 
in a natural sense than argument types, permitting semantic definitions to proceed 
by induction on types. In this paper we adapt the symmetric candidates technique 
to the intersection-types setting. As we can see, this technique applies generally to 
all of the symmetric proof-calculi we have investigated, including the XJ.L~-calculus 
of Gurien and Herbelin [34, 51], and the Dual calculus of Wadler [151, 152J. 

The key to the symmetric candidates technique is to interpret types in certain 
families of saturated sets which are closed under inverse J3-reduction. The problem 
in the intersection types setting arises since in standard semantics of intersection 
types, the interpretation of an intersection type (A n B) is the intersection of the 
interpretations of A and B and in general intersections of saturated sets are not 
saturated, 

A consequence of this fact is that the standard typing rule for intersection­
introduction is not sound. So our type system has an intersection-elimination rule 
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only. This is not a problem since intersection-introduction is not needed for char­
acterising termination. In the absence of intersection-introduction, terms receive a 
type which is an intersection by double-negation elimination. 

Theorem (Main result). A ).sym term is terminating if and only if it is typable 
in B. 

The direction "every terminating term is typable" follows the standard pattern 
from traditional ).-calculus where the standard intersection-introduction typing rule 
is not needed. ' 

The proof that every typable term is terminating is analogous to the one given 
for [51] and [52]. We only briefly account for the differences. 

We consider pairs {Xo, Xl} which are stable if for every rE Xo and every e E Xl> 
the command (r * e) is terminating. They are saturated if for each i, 

whenever ).x.c satisfies: "le E Xi, c[x := e] is terminating, then ).x.c E X i-i. 

An expression is simple if it is not a 'l-abstraction; a set X is simple if each term 
in X is simple. 

We define the map <P : 2A ..... 2A by 

<I?(X) = {e I e is of the form ).x.c and Vr E X, c[x := r] is terminating} 

U {e I e is simple and Vr EX, (r * e) is terminating}. 

If X "I 0 then <I?(X) is a set of terminating terms and if X ~ SN then all 
variables are in <I?(X). <I? is antimonotone, hence (<I?o<I?) = <I?2 is monotone and has 
a complete lattice of fixed points, ordered by set inclusion. 

If X is a simple set of terminating terms we denote by XT the least fixed point 
of <I?2 with the property that X ~ XT. Furthermore, let FixW2 be the set of fixed 
points of the operator <I?2. If Ri, ... ,Rk are fixed points of <I?2, let (Ri J.. ... J.. Rk) 
denote the meet of these elements in the lattice FixW2. 

Interpretation of types For each type T we define the set [TB as follows. 

(1) When T is .1 then [T) is the set of terminating terms. 
(2) When T is a type variable we set R to be the set of term variables, then 

construct the pair (RT, <I?(RT). We then take [T~ to be RT and [Tl.) to be 
<p(RT). 

(3) Suppose T is (Ai A A2). Set R to be {(tl, t2) I ti E [Ai], i = 1, 2}. We then 
take [TB to be (RT) and [Tl.] = [All. V A2l.) to be <I?(RT). 

(4) When T is (Ai nA2" ·nAn), n ~ 2, we take [T] to be ([Ai] J.. ... J.. [AnD 
and then take [Tl.] to be <I?([T)). 

Note that the interpretation [Ai V A21 of a disjunction-type is determined in part 3 
above since any type Bl V B2 is the Dual of Bll. A B2l.. 

We prove the following, which is the key for proving the Type soundnes. 

(1) [T] is a set of terminating terms. 
(2) [Ai A A2] 2 {(tl' t2) I ti E [~], i = 1,2}. 
(3) [Ai V A2] 2 {0"1(P) I pE [Ad} U {0"2(P) I pE [A2 ]}. 

(4) ().x.c) E [A] if for all e E [Al.) we have c[x := e] terminates. 
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(5) [(AI n ... n AkH ~ ([All n ... n [AkB)· 

Since each [T] consists of terminating expressions the following theorem implies 
that all typable expressions are terminating. 

Theorem (Type soundness). If expression t is typable with type T then t E [TB. 

11. Application in programming language theory 

11.1. Functional languages. A-calculus The basic concept of programming lan­
guages is the concept of a function, more precisely of intensional (or computational) 
function considered as a composition of computational steps, i.e., as algorithms (or 
methods). A universal model of computational functions is Church's A-calculus [27]. 
A-calculus as a simple language is very convenient to describe the semantics of pro­
gramming languages (it is even used as a core for the languages Lisp, Algol, Scheme, 
ML, Haskell, etc). 

The A-calculus exists in basically two main flavours: call-by-name (of which 
Haskell implements the call-by-need variant) and call-by-value (as in Scheme, ML, 
C, Java, etc). Call-by-name has been extensively studied (see e.g., Barendregt [10]' 
Krivine [105]) and call-by-value reasonably well too. 

Classical A-calculus. The AJ.t-calculus is an extension of A-calculus with an oper­
ator similar to the call-cc operator that can be found in Scheme and ML. It also 
models weaker operators, such as break and return in C and Java. 

The AJ.t-calculus is the prototypical formulation of a classical A-calculus. As A­
calculus, AJ.t-calculus exists in call-by-name and call-by-value variants, the latter 
being a rather intricate structure to study [62, 133J. 

The XJ.tji.-calculus [34J is an improvement over AJ.t-calculus. It is an elegant 
calculus that exhibits different forms of symmetries. One of them is a symmetry 
between call-by-name and call-by-value which allows to significantly reduce the 
syntactic complexity of the call-by-value calculus compared to AJ.t-calculus. 

CaIl-by-vaIue and caIl-by-name delimited continuation. Historically, delim­
ited control came with ad hoc operators for composing continuations: Felleisen [61J 
had a calculus that included a control operator control a delimiter prompt (de­
noted by :F and #, respectively); Danvy and Filinski [36J had an operator shift 
to compose continuations and an operator reset to delimit them (these were also 
written Sand < _ ». Control operators are connected to classical logic, as first 
investigated by Griffin [94J. 

From [66], it is known that shift and reset are equivalent to the combination 
of Scheme's call-cc, Felleisen's abort and reset, and hence equivalent to C and 
reset. From [25J, it is known that control and prompt are also equivalent to shift 
and reset, in spite that control is semantically more complex to study than C or 
shift. The simplicity of the semantics of shift together with its relevance for 
some programming applications contributed to set shift as a reference in delimited 
control. And this is so in spite (it seems that) it has never been studied until now 
as part of a dedicated A-calculus of delimited control. 
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As shown by Ariola et al. [4], a fine-grained AJ-Lfp-ca1culus of delimited control 
of the strength of shift and reset is obtained if one starts from A/L-calculus and 
extends it first by a notation tp for the "toplevel" continuation, then by a toplevel 
delimiter. A possible interpretation for this top level delimiter is as a dynamic 
binder of tp, what justifies to interpret the resulting call-by-value calculus, called 
as an extension of call-by-value AJ-L-calculus with a single dynamically bound con­
tinuation variable fp, where the hat on tp emphasises the dynamic treatment of the 
variable. A typical analogy for the dynamic continuation variable here is exception 
handling: each call to fp is dynamically bound to the closest surrounding fp binder, 
in exactly the same way as a raised exception is dynamically bound to the closest 
surrounding handler. The expressiveness of this calculus was shown by simulating 
the operational semantics of shift and reset and of most standard control op­
erators, such as E and A (abort) of Felleisen's, call/cc (the implementation of 
call-cc in Scheme). 

SM §. J-La.[fp](M Ax.J-Lfp.[a]x) 
<M> §. J-Lfp.[fp] M 
AM §. J-L-·[fplM 
C (Ak.M) §. /Lako[fp](M Ax.J-L_.[ak]x) 
callI cc (Ak.M) §. J-Lak.[ak](M Ax./L_.[aklx) 

Herbelin and Ghilezan [98] proposed an approach to call-by-name delimited control. 
They devised a call-by-name variant of AJ-Lfp, for Ariola et aI's call-by-value calculus 
of delimited control [4]. 

Continuation-passing-style semantics is given by a CPS transformation of the 
AJ-Lfp into A-calculus. 

x* §. x 
(Ax.Mr §. A(X, k).M* k 
(M Nr §. Ak.M* (N*, k) 
(J-La:cr §. Aka.c* 
([a]Mr §. M*ka 
(J-Ltp.c)* §. c* 
([fplM)* §. M* 

FIGURE 21. Call-by-name CPS translation of AJ-Lfp 

We present the behaviour of call-by-name A/Lfp on standard examples that uses 
delimited control. We consider the example of list traversal that is used to empha­
sise the differences between Felleisen's operator F and shift. We extend AJ-Ltp with 
a fixpoint operator, list constructors and a list destructor: 

M,N ... IlIx.M I 0 I M::N 
if M is x::y then M else M 
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and we extend call-by-name reduction with the rules 

vx.M ...... 
if 0 is x::y then M2 else M1 ...... 
if M::N is x::y then M2 else M1 ...... 
if J1.a.c is x::y then M2 else M1 ...... 

M[x := vx.M] 
M1 
M2[X := M][y := N] 

J1.a.c[a := [a] (if 0 is x::y then M2 else M 1)] 

In informal ML syntax, the example is the following 

let traverse 1 = let rec visit 1 = match 1 with 
[J -> [J 
a::l' -> visit (shift (fun k -> a :: k 1'» 

in reset (visit 1) in traverse [1;2;3] 

Translated into AJ1., it gives 

v (n1::n2::n3::0) 
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where v is v/.()..l.if l is a::l' then f (J1.a.a::[a]l') else 0). Translated into )..J1.tP, v 
is 

v/.()..l.if l is a::l' then f (J1.a.[tP]a::J1.tP.[a]l') else 0). 

Let € be an arbitrary continuation distinct from fP. We write li for ni::'" ::n3::0. 
We list the steps of the reduction of [f](V ld: 

[f]v l1 
...... [f]()..l.if l is a::l' then v (J1.a.a::[a]l') else 0) l1 
...... [f]if l1 is a::l' then v (J1.a.a::[a]l') else 0) 
...... [f]V (J1.a.n1::[a]l2) 
-* if (J1.a.n1::[a]l2) is a::l' then v (J1.a.a::[a]l') else 0 
...... [f]J1.a.n1 ::[a](if l2 is a::l' then v (J1.a.a::[a]l') else D) 
...... n1::[€](if l2 is a::l' then v (J1.a.a::[a]l') else 0) 
...... n1::[€](V (J1.a.n2::[a]l3» 
-* n1::[f](J1.a.n2::[a](v l3» 
-* n1::n2::[fJ(V l3) 
-* n1::n2::[EJ(J1.a.n3::[a](v 0» 
- n1::n2::n3::[€](v 0) 
- n1::n2::n3::[€]D 

Otherwise said, the list traversal program copies its argument and shifts its 
continuation to the tail of the list. 

11.2. Object-oriented languages. The aim of the following works was to give the 
basis for designing a calculus that combines class-based features with object-based 
ones. We propose two extensions of the "Core Calculus of Classes and Mixins" 
of [22], one with higher-order, composable mixins, the second one with incomplete 
objects. 

Mixins [24] are subclass definitions parameterised over a superclass and were 
introduced as an alternative to some forms of multiple inheritance. A mixin can 
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be seen as a function that, given one class as an argument, produces a subclass, by 
adding and/or overriding certain sets of methods. 

The calculus proposed in Bettini et al. [13, 14] extends the core calculus of classes 
and mixins of [22] with higher-order mixins. In this extension a moon can: (i) be 
applied to a class to create a fully-fledged subclass; (ii) be composed with another 
mixin to obtain yet another mixin with more functionalities. In what we believe is 
quite a general framework, we give directions for designing a programming language 
equipped with higher-order mixins, although our study is not based on any actual 
object-oriented language. 

In the calculus proposed in Bettini et al. [18, 17, 16, 15] we extend the core 
calculus of classes and mixins of [22] with incomplete objects. In addition to stan­
dard class instantiation, it is also possible to instantiate mixins thus obtaining 
incomplete objects. 

Incomplete objects can be completed in two ways: (i) via method addition, 
(ii) via object composition, that composes an incomplete object with a complete 

one that contains all the required methods. When a method is added, it becomes an 
effective component of the host object, meaning that the methods of the host object 
may invoke it, but also the new added method can use any of its sibling methods .. 
The type system ensures that all method additions and object compositions are 
type safe and that only "complete" methods are invoked on objects. This way the 
type information at the mixin level is fully exploited, obtaining a "tamed" and safe 
object-based calculus. 

The metatheory of both extensions is studied in Likavec [110]. In particular, the 
soundness property is proved, to guarantee the absence of run-time "message-not­
understood" errors. 

In addition, in [18] the calculus is endowed with width subtyping on complete ob­
jects, which provides enhanced flexibility while avoiding possible conflicts between 
method names. 

Part 3 - Related work 

Related work on computational interpretation of logic. The AJL-calculus of 
Parigot [121] embodies a Curry-Howard correspondence for classical natural deduc­
tion. It was introduced in call-by-name style, followed by a call-by-value variant, 
proposed by Ong and Stewart [120]. 

Herbelin [96] proposed the first "sequent" A-calculus, named );, for which bi­
jective correspondence between normal simply typed terms and cut-free proofs of 
the appropriate restriction of the Gentzen's LJ was obtained. He considered a 
A-calculus with an explicit operator of substitution and substitution propagation 
rules. Each cut-elimination step corresponds to .a-reduction, a substitution propa­
gation or concatenation. However, this bijection failed to extend to sequent calculus 
with cuts. 
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After that, intuicionistic sequent A-calculi were proposed by several authors, 
Barendregt and Ghilezan [12], Dyckhoff and Pinto [55], Espirito Santo and Pinto [60], 
among others. 

The XJL/L-calculus of Curien and Herbelin [34] provides a symmetric computa­
tional interpretation of classical sequent style logic. Expressions in XJL/L represent 
derivations in the sequent calculus proof system and reduction reflects the process 
of cut-elimination. This calculus provides an environment for a more fine-grained 
analysis of calculations within languages with control operators. Since its intro­
duction, Curien and Herbelin's calculus has had a strong influence on the further 
understanding between calculi with control operators and classical logic (see for 
example [3, 2, 151, 152]). 

In the calculus of Urban and Bierman [147, 148J derivations correspond exactly 
to cut elimination. 

This calculus inspired Lengrand's A~ in [107J and further led to the development 
of X calculus of van Bakel et al. [5J, and van Bakel and Lescanne [150J. In this work, 
a calculus which interprets directly the implicational sequent logic is proposed as a 
language in which many kinds of other calculi can be implemented, from A-calculus 
to XJL/L through a calculus of explicit substitution and AJL. 

Wadler's dual calculus [151, 152] corresponds to Gentzen's classical sequent cal­
culus. Conjunction, disjunction, and negation are primitive, whereas implication is 
defined in terms of the other connectives. 

One of the most recently proposed systems is A Gtz-calculus, developed by Espirito 
Santo [56], whose simply typed version corresponds to the sequent calculus for 
intuicionistic implicational logic. 

Prior to Curien and Herbelin's XJL/L [34J several term-assignment systems for 
sequent calculus were proposed as a tool for studying the process of cut-elimination 
[126, 12, 147J. In these systems-with the exception of the one in [147]--expressions 
do not unambiguously encode sequent derivations. 

The Symmetric Lambda Calculus of Barbanera and Berardi [6], although not 
based on sequent calculus, belongs in the tradition of exploiting the symmetries 
found in classical logic, in their case with the goal of extracting constructive content 
from classical proofs. 

Related work on strong normalisation. Barbanera and Berardi [6] proved SN for 
their calculus using a "symmetric candidates" technique; Urban and Bierman [147J 
adapted their technique to prove SN for their sequent-based system. Lengrand [107J 
shows how simply-typed XJL/L and the calculus of Urban and Bierman [147J are 
mutually interpretable, so that the strong normalisation proof of the latter calculus 
yields another proof of strong normalisation for simply-typed XjJ./L. Polonovski [125] 
presents a proof of SN for XjJ./L with explicit substitutions using the symmetric 
candidates idea of Barbanera and Berardi [6J. Pym and Ritter [129J identify two 
forms of disjunction for Parigot's AJL-calculus [121J; they prove strong normalisation 
for AjJ.II-calculus (AjJ.-calculus extended with such disjunction). David and Nour [37] 
give an arithmetical proof of strong normalisation for a symmetric AJL-calculus. 
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The larger context of related research includes a wealth of work in logic and 
programming languages. In the 1980's and early 1990's Reynolds explored the 
role that intersection types can play in a practical programming language (see for 
example the report [131] on the language Forsythe). 

Related work on continuation semantics. Continuation-passing-style (cps) trans­
lations were introduced by Fischer and Reynolds in [67] and [130] for the call-by­
value A-calculus, whereas a call-by-name variant was introduced by Plotkin in [124]. 
Moggi gave a semantic version of a call-by-value cps translation in his study of no­
tions of computation in [117]. Lafont [106] introduced a cps translation of the 
call-by-name AC-calculus [63, 64] to a fragment of A-calculus that corresponds to 
the ..." I\-fragment of the intuitionistic logic. Hence, continuation semantics can be 
seen as a generalization of the double negation rule from logic, in a sense that cps 
translation is a transformation on terms which, when observed on types, corre­
sponds to a double negation translation. 

As early as 1989 Filinsky [65] explored the notion that the reduction strategies 
call-by-value and call-by-name could be dual to each other in the presence of contin­
uations. Filinski defined a symmetric A-calculus in which values and continuations 
comprised distinct syntactic sorts and whose denotational semantics expressed the 
call-by-name vs call-by-value duality in a precise categorical sense. 

Categorical semantics for both, call-by-name and call-by-value versions of Par­
igot's AIL-calculus [121] with disjunction types was given by Selinger in [137]. In 
this work the notion of control category is formally introduced and formalised as 
an extension of cartesian closed category with premonoidal structure. It is showed 
that the call-by-name AIL-calculus forms an interna.llanguage for control categories, 
whereas the call-by-value AIL-calculus forms an internal language for co-control 
categories. The opposite of the call-by-name model is shown to be equivalent to 
the call-by-value model in the presence of product and disjunction types. Hofmann 
and Streicher presented categorical continuation models for the call-by-name AIL­
calculus in [100] and showed the completeness. 

Lengrand gave categorical semantics of the typed XILt:i-calculus and the A~­
calculus (implicational fragment of the classical sequent calculus LK) in [107]. 

Ong [119] defined a class of categorical models for the call-by-name AIL-calculus 
based on fibrations. This model was later extended for two forms of disjunction by 
Pym and Ritter in [129]. 
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