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Preface

A course in Numerical Methods in Computational Engineering, oriented to engineering
education, originates at first from the course in numerical analysis for graduate students of
Faculty of Civil Engineering and Architecture of Nis (GAF), and then from course Numer-
ical Methods held in English language at Faculty of Civil Engineering in Belgrade in the
frame of project DYNET (Dynamical Network) in common of Faculty of Civil Engineering
of University of Bochum, Faculty of Civil Engineering and Architecture of University of
Nis, Faculty of Civil Engineering of University Belgrade, and IZIIS (Institute for Earth-
quake Engineering and Seismology) of University Skopje. The subject Numerical Analysis
was held in the first semester of postgraduate studies at GAF by Prof. G.V. Milovanovié
for years. In continuation, following Bologna process, the new structured subject entitled
Numerical Analysis is to be introduced to PhD students at GAF. In addition, having in
mind that course in numerical analysis become accepted as an important ingredient in the
undergraduate education in engineering and technology, it was with its main topics involved
in undergraduate subject Informatics IT at GAF Nis (As a collateral case, in Appendix A .4.
— in electronic form — are given numerical methods in Informatics, what could be interesting
for students of this orientation).

The backbone of this script are famous books of G.V. Milovanovié, Numerical Anal-
ysis, Part I, II, and III, Nauc¢na knjiga, Beograd, 1988 (Serbian). In addition, the book
Programming Numerical Methods in Fortran, by G.V. Milovanovié and Dj. R. Djordjevié, -
University of Nis, 1981 (Serbian), with its engineering-oriented text and codes, was rather
used.

As previously noted, this textbook is supporting undergraduate studies, master and
doctoral study at GAF, and international master study in the frame of DYNET project.
Presentation on GAF site would enable distance learning technique and on-line consulta-
tions with lecturer. By up-to-day engineering oriented applications the supporting of life
long education of civil engineers will be enabled. ‘

This script will be available on the site of GAF (http://www.gaf .ni.ac.yu) under In-
ternational Projects and can be reached by chapters using address
http://www.gaf.ni.ac.yu/cdp/subject_syllabus.htm. Each chapter concludes with a ba-
sic bibliography and suggested further reading. Tutorial exercises in form of selected as-
signments are also presented on the site of GAF. Some hints for solutions are given in the
same files. ‘

Devoted primarily to students of Civil Engineering (undergraduate and graduate -
master & PhD), this textbook is dedicated also to industry and research purposes.

Authors

ix - -
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COMPUTATIONAL ENGINEERING

LECTURES
LESSON I

1. Mathematics and Computer Science

1.1 Calculus

The principal topics in calculus are the real and complex number systems, the
concept of limits and convergence, and the properties of functions.

Convergence of a sequence of numbers z; is defined as follows:

The sequence z; converges to the limit «* if, given any tolerance € > 0,
there is an index N = N(¢) so that for all i > N we have |z; —x*| <e. The
notation for this is

lim z; = z*.

2= 00
Convergence is also a principal topics of numerical computation, but with a different
emphagis. In calculus one studies limits and convergence with analytic tools; one tries
to obtain the limit or to show that convergence takes place. In computations, one has
the same problem but little or no theoretical knowledge about the sequence. One is
frequently reduced to using empirical intuitive tests for convergence; often the principal
task is to actually estimate the value of the tolerance for a given x.

The study of functions in calculus revolves about continuity, derivatives, and inte-

grals. A function f(x) is continuous if o -
lim f(z;) = f(z")
=i
holds for all #* and all ways for the z; to converge to z*. We list six theorems from
calculus which are useful for estimating values that appear in numerical computation.
Theorem 1 (Mean value theorem for continuous functions). Let f(z) be con-

tinuous on the interval [a,b]. Consider points XHI and XLOW in [a,]] and a value y so
that f(XLOW) <y < f(XHI).Then there is a point p in [a,b] so that

| flp) =y
Theorem 2 (Mean value theorem for sums). Let f(x) be continuous on the inter-
wval [a,D], let x1, z2, ..., %, be points in [a, b] and let wy, ws, - .., wy be positive numbers.

Then there is a point p in [a,b] so that

i) n

wi(w) f () = f(p) D wi-

1=1

re=1

Theorem 3 (Mean' value theorem for integrals). Let f(x) be continuous on the
interval [a;b] and let w(z) be a nonnegative function [w(z) = 0] on [a,b]. Then there is
a point p in'[a, b] so that ' ' :
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Theorems 2 and 3 show the analogy that exists bctween sums and integrals. ThlS
fact derives from the definition of the integral as

b

f(a )(]r = lim Z Jlr ) (@ip1 —x4), -

Ja lll:lxll,+[—l |—>0

where the p()illtb xp with @y < @41 are a partition of [n,,b] This analog,y shows up
for many numerical methods where one variation applies to sums and another applies
to integrals. Theorem 2 is proved from Theorein 1, and then Theorem 3 is proved
by a similar method. The assumption that ‘w(x) > 0 (w; > 0) may be replaced by
w(z) <0 (w; < 0) inthese theorews; it is essential that w(zx) be on one sign shown by
the example w(x) = f(x) = x and [0.b] = [-1,1]. o '

Theorem 4 (Continuous functlons assume max/min values). Let f(1) be cou-
tinuous ou the interval [a.b] with bl < 0. Then there are points XHI and XLOW
in [a,b] so that for all x in [a,b]

FIXHI) < f(x) < F(XLOW).

The derivative of f(x) is defined by

4 = f'(x) = lim flo+ ) = HI)

da h—0 I

AH an illustration of the difference between theory and practice, the quantity [f (2 +
h) — f(2)]/ can be replaced by fl( + ) — f(x — W)]/(2h) with no change in the
theory but with dramatic iimprovement in the rate of convergence; that is, much more

accurate estimates of f'(x) are obtained for a given value of ]1. The k—th deriva-
tive is the derivative of the (k — 1)th derivative: they arce denoted by d,""f/ du®

Fr), [ (), FO@). [P, .

Theorem 5 (Mean value theorem for derivatives). Let f(x) he continuous and
differentiable iu [a, b], with |a|. |b| < co. Then there is a point p in [a, D] so that

fla) = fle)+ f(p)x — )

The special case of Theorem 5 with f(u,) = f(b) = 0is known as Rolle’s theorem. It
states that if f(a) = f(b) = 0, then there is a polut p between a and b o that f'(p) = (J
This is derived fromn Theorewr b by multiplying through by b — a. venaming a. b as . ¢
and then applying the first form to the smaller interval {2, ¢] ov [(:7::], depending on thu
velation hetween @ aud c.

A very huportant tool in munerical analysis is the extension of the sec ond part of
Theoremt 5 to use higher derivatives. :

!
Theorem 6 (Tailor series with remainder). Let f(x) have n + 1 continnons
derivatives in [a. b].

Given points @ and ¢ iu [, b] we Lave
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where Ry, 41 has cither one of the following forms (p is a point between = and )

e An+1
R'n ) = (n+1) ('l' — C_) —
.+1(1) ]L (/)) (” + 1)|
1 * n g(n+1)
R, i1(x) = ] (. —=)" TN (t)dt

If a function f depends on several variables, one can differentiate it with respect to one
variable, say x, while keeping all the rest fixed. This is a partial derivative of f and it
15 denoted by 0 f /0w or f,. Higher order and mixed derivatives are defined by successive
differentiation. Taylor’s series for functions of several variables is a direct extension of
the formula in Theorem 6, although the nunber of terms in it grows rapidly. For two
variables it is '

flr,y) = fle,d) + folm =)+ fuly —d) + %[ﬁ,,.:,;(![: -0+ 2fuy( —c)(y —d)

+ (v — (]')2] +oe,
where all the partial derivatives are evaluated at the point (¢, d).

Theorem 7 (Chain rule for derivatives). Let f(z,y,...,z) have continnous first
partial derivatives with respect to all its variables. Let x = x(t),y = y(t),...,z = z(t)
be continuous differentiable functions of t. Then

g(t) = fla(t),y(t),. .., 2())

1s continuously differentiable and

g'(t) = fur' () + Ly (1) + -+ f22 (1),

Finally, we state

Theorem 8 (Fundamental theorem of algebra). Let p(z) be a polynomial of
degree n > 1, that is, ’ :

‘ 2 n
p(x) = ap+arx 4+ ase® + -+ ayz”,

where the a; are real or complex numbers and a,, # 0. Then, there is a complex number
p so that p(p) = 0. - :

1.2. Number representation

Numbers are represented in nunber systems. Any number of bases can be employed
as the base of a number system, for example, the base 10 (decimal), 8 (octal), 12
(duodecimal), 16 (hexadecimal), or the base 2, (binary) system. The base 10, i.e.
decimal system is the most common system used in human communication. In spite
of not being optimal (optimal would be theoretical system with base e, base of natural
logarithm, or technical system with base 3, trinary system), digital computers use, due
to electronic technology, system with base 2, or binary system. In a digital computer,
a binary number consists of a number of binary bits. The number of binary bits in
a binary number determines the precision with which the binary number represents a
decimal number. The inost common size of binary number is a 32-bit number (we say,
the machine word is 32 bits long, what defines the ”32-bits word computer”), what
can represent approximately 7 digits of a decimal number. Some computer have 64
bits binary numbers, i.e. 64 bits machine word length, which can represent 13 to 14
decimal digits. For many engineering and scientific’ calculations, 32 bit arithmetic is
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good enough. But, for many other applications, 64 bit arithmetic is required. Higher
precision (i.e. 64 bit, or even 128 bit) can be reached by software means, using Double
precision or Quad precision, respectively. Of course, such software enhancement must
be payed by even 10 times execution times of single precision calculation.

As already told, computers store numbers not with infinite precision but rather in
some approximation that can be packed into a fixed number of bits (binary digits) or
bytes (groups of 8 bits). Almost all computers allow the programmer a choice among
several different such representations or data types. Data types can differ in the number
of bits utilized (the word-length), but also in the more fundamental respect of whether
the stored number is represented in fixed-point (also called integer) or floating-point
(also called real) format. A number in integer representation is exact. .Arithmetic
between numbers in integer representation is also exact, with the provisos that
(a) the answer is not oufside the range of (usually signed) integers that can be repre-

sented, and : '

(b) division1 Is interpreted as producing an integer result, throwing away any integer

remainder. : .

&b - o
& & &
Q,o*\ o .-b& K
> & v e o
& o RS g
& % Ve o

A r A

Y2=0 10000000 10000000000000000000000 (a)
3=0 10000010 11000000000000000000000 (b)
=0 01111111 1000006000000000000600000 (c)
10 0 61101001 %9.1_0110101111111001010(d)
=0 10000010 00000000000000000000000) (e)
10000010 11000000000000000000000 (f)

3+10°7

: Figure 1.2.1.
In Fie. 1.2.1. are given Hoating point representations of numbers in a typical 32-bit
h X & N ! - s .
(4-byte) format. with the following examples:
The numnber 1/2 (note the bias in the exponent):
Y

()

(b) the munber 3

(¢) the munber 1/4;

(d) the number 1077, represented to machine accuracy;

(e) the same munber 1077, but shifted so as to have the same exponent as the number
3: with this shifting. " significance is lost and 10~7 becomes zero; shifting to a
conunon expounent mi. oceur before two numbers can be added, '

(f) sum of the nmmbers 3 + 1077, which equals 3 to machine accuracy. Even though
1077 can be represented accurately by itself, it cannot accurately be added to a
much larger number.

In floating-point representation. a number is represented internally by a sigu bit
s (interpreted as plus or minus), an exact integer exponent e, and an exact positive
mteger mantissa M. Taken together these represent the number

(1.2.1) sx M x B7E

where B is the base of the representation (nsually B = 2, but sometimes B = 16),
and F i3 the bias of the exponent. a fixed integer constant for any given machine and
representation. : .

Several Hoating-poinl bit patterns can represent the same munber. If B = 2.
for example, a mantissa with leading (high-order) zero bits can be left-shifted, i.c..
multiplied by a power of 2. if the exponent is decreased by a compensating amownt.
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Bit patterns that are "as left-shifted as they can be? are termed nornalized. Most
computers always produce normalized results. since these do not waste auy bits of the
mantissa and thus allow a greater accuracy of the representation. Since the high-order
bit of a properly normalized mantissa (when B = 2) is always one, some computers
do not store this bit at all. giving one extra bit of significance. Arithmetic ALLONY,
uwbers in floating-point representation is not exact, even if the operands happen to
be exactly represeuted (i.ce.. liave exact values in the form of equation (1.2.1). For
example, two foating nmunbers are added by first right- .shlftlng ((11v1(hng_, by two) the
mantissa of the smaller (i magnitude) one, simultaneously increasing its expouent,
until the two operands have the same exponent. Low-order (least significant) bits of
the smaller operand are lost by this hhlfflllg If the two operands differ too great ly iu
magnitude, then the simaller operand is effectively replaced by zero, since it is right-
shifted to oblivion. .The smallest (in magnitude) floating- point munber which. when
added to the floating-point munber 1.0, produces a floating-point result different fron
1.0 1s termed the machine accuracy m. A typical computer with B = 2 and a 32-hit
word-length has m around 3 x 1078, Generally speaking, the machine accwracy m is
the fractional accuracy to which floating-point numbers are represented, corresponding
to a change of one iu the least significant bit of the mantissa.

1.3. Error, accuracy, and stability

Except for integers and some fractions, all binary represcutations of decimal numn-
bers are approximations, owing to the finite word length of binary nmumbers. Thus, some
loss of precision in the binary representation of deciial number is unavoidable. Result of
arithinetic operation among binary nmunbers is typically a longer hinary number which
cannot be represented with the munber of available bits of the digital computer. Thus,
the results are rounded off in the last available binary bit. This rounding-off is called
round-off ervor. Well, pretty much any arithinetic operation among floating muubers
should be thought of as introducing an additional fractional error of at least g,,, called
roundoff error. It is important to understand that g, is not the smallest floating-point
number that can be represented on a machine. That number depends on how many
bits there are in the expouent. while g, d(*ponds on how many bits there are in thc
mauntissa. Roundoft errors accmmulate with increasing amounts of calenlation. If, 1
the comrse of obtaining a calculated value, one performs n such arithmetic (,)1,)(—‘,1'a1',ions.,
Le might be satisfied with a total roundoff crror on the order of \/ne,,, if the roundoff
errors come in randomly up or down. (The square root comes from a random-walk.)
However, this estimate can be very badly off the mark for two reasons:

(1) It V(‘,ly frequently happeus that the regularities of calculation, or the peculiarities of
computer, cause the ronudoff errors to accumulate preferentially in one direction.
In this case the total will be of order ne,,.

(ii) Sowme especially mnfavorable ocarrences caw vastly increase the roundoff error of
single operations. Generally these can be traced to the subtraction of two very
11(‘(111y cqual numbers. giving a vesult whose only significant bits are thos(\ (h‘w)
low-order ones in which the operands differed. You might think that such a 7 coinci-
dental” subtraction is uuhk(‘ly to ocenr, what is not always true. Some mathemat-
ical expressions maguity its 1)1<>l>(Ll)111ty of occrrence tremendously. For example,
in the familiar formula for the solution of a quadratic equation,:

b+ VD 4(1,

2a

s b=

when ac << b? the addition hecowes critical and round-off could ruin the calenla-

tion (see section 1.6.).

‘Roundoff error is a characteristic ()f c 01111)ut(‘1 hardware. There is another, diffevent,
kind of error that is a characteristic of the program or algorithm used, 111(1(*1)011(1011f of
111(‘ Lardware on which the program is executed. Many numerical (115301 ithms compute

"discrete” approximations to some desired ”continuous” quantity. For example, an
mtegral is (\leuat(d nmnerically by computing a function at a discrete set of points,
‘ 1<Lth(‘1 than at "every” point. Or, a fun(tlon may be evaluated by summing a finite
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number of leading terims in its infinite series, rather than all infinity terms. In cases like
this, there is an adjustable parameter, e.g., the number of points or of terms, such that
the 7true” answer is obtained only: when that parameter goes to infinity. Any practical
calculation is done with a finite, but sufficiently large, choice of that parameter.

The discrepancy between ‘rho true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error:would persist even on a
hypothetical, " perfect” computer that had an infinitely accurate representation and no
ronndoff exrror. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily.
Truncation ervor, on the other hand, is entirely under the programiers control. In fact,
it is only a shg_,ht exaggeration to say that clever minimization of tluncatlon error is
practically the entire content of the field of numerical analysis.

Most of the time; truncation ervor and roundoff error do not strongly 1ntemct with
one another. A calculation can be nnagined as having, fivst, the truncation error that it
would have if run on an infinite-precision computer, and in addition, the roundoff error
associated with the munber of operations performed.

Some computations are very sensitive to round-off and others are 110‘( In some
problems sensitivity to round-off can be eliminated by changing the formula or method.
This is always possible; there are many problems which are inherently sensitive to
round-off and any other mucertainties. Thus we must distinguish I)Ltween sensitivity of
methods and sensitivity inherent in problems

The word stability appears during numerical computations and refers to continu-
ous dependence of a solution on the data of the problem or method. If one says that
a method is numerically unstable, one means that the round-off effects are grossly
magnified by the method. Stability also has precise technical meaning (not always the
same) in different arcas as well as in this general one.

Solving differential equations nsually leads to difference equations, like

Tiyo = —(13/6):1:i+1 + (5/2)x;.

Here, the sequence a7, 4. ... I8 defined, and for given initial conditions x; and x5 of
differential equation, we get the initial conditions for difference equation. For example,
= 30, 29 = 25. Computing in succession for 4,8,16,32,64 decimal digits gives

the results that can be compared with the exact one, x; = 36/(5/6)%. (Compute in
Mathematica, using N[zl + 2], k]. where k = 4,8, 16, 32, 64 { number of decinal digits).

1 4 3 16 True value
1 30.00 30.00 30.00 30.00

2 25.00 25.00 25.00 25.00

3 20.83 20.8333 20.8333 20.8333
4 17.36 17.3611 17.3611 17.3611
5 14.46 14.46G76 14.4676 144676
6 12.07 12.0563 12.0563 12.0563
7 10.00 10.0470 10.0469 10.0469
s 8.518 8.3724 8.3724 8.3724
9 G.541 6.9773 6.9770 6.9770
10 7.121 5.8133 5.8142 5.81492
11 925 4.8478 4.8452 4.8452
12 15.790 4.0296 4.0376 4.0376
13 ~31.920 3.3888 3.3647 3.3647
14 108.700 2.7318 2.8039 2.8039
16 954.600 1.2978 1.9472 1.9472
18 8576.000 —4.4918 1.3522 1.3522
20) 77170.000 —51.6565 .9390 L9390

292 6.9 x 10° —472.7080 6521 6521
25 —1.8 x 107 12781.1000 3776 3774
28 5.0 x 108 —345079.0000 .2134 2184

30 4.5 x 109 —3.1 x 10° 1071 1517
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35 ~1.1x10'2  75x 108 10.8822 0609
40 —1.1x 10" —1.8x 101  —2629.5300  .0245
50 1.5 x 1019 -1.0x10%  —1.5x 108 .0039
75 1.3 x 1031 9.2 x 1027 1.3 x 1029 .00

This difference equation is unstable and one can see that the computation quickly
“blows up”. One nice thing about nustable computation is that they usually produce
huge, nousense wnmbers that one is not tempted to accept as correct. However, lmagine
that one wanted ounly 30 terins of the x; and was using the computer with 16 decimal
digits. How would one know that the last term is in error by 50 percent ?

The word condition is used to describe the sensitivity of problems to nncertainty.
Imagine the solution of a problem being obtained by evaluation a function f(z). Then,
if & is changed a little to @ 4+ du, the value f(x) also changes. The relative condition
number of this change is

[f G + 62) = f()] ), 6=
|f () /|

— b
s

or

flo+on) = flo)  w
du * fla)’

and, for dx very small, condition number ¢ is

of' ()

Cr~ ——

F()

This number estimates how much an uncertainty in the data 2 of a problem is mag-
nified in its solution f(w). If this number is large, then the problem is said to be
wl-conditioned or poorly conditioned.

The given formula is for the simplest case of a function of a single variable; it is not
easy to obtain such formulas for more complex problems that depend on many variables
of different types. We can see three different ways that a problem can have a large
condition number: \

1. f(x) may be large while « and f(x) are not;

If we evaluate 1+ /|x — 1| for  very close to 1, then = and f(x) are nearly 1, but,

() is large and the computed value is highly sensitive to change in .
2. f(x) may be small while a: and f'(x) are not;

The Taylor’s series for sina near w or e~® with 2 large exhibit this form of ill
conditioning. :

3. @ may be large while f'(x) and f(x) are not;

The evaluation of sina for x near 10000007 is poorly conditioned.

Omne can also say that computation is ill-conditioned and this is the same as saying
it is numerically mnstable. . The condition munber gives more information than just
saying something is numerically mustable. It is rarely possible to obtain accurate values
for condition numbers but one rarely needs much accuracy; an order of magnitude 1s
often enough to know. i ‘

Note that is almost impossible for a method to be numerically stable for an ill-
conditioned problem. . : ,

Example 1.3.1. Au ill-conditioned line intersection problem consists in
computing the point of intersection P of two nearly parallel lines. It is clear that a
minor change in one line changes the point of intersection to (P + 6P) which is far
from P. A mathematical model of this problem is obtained by introducing a coordinate
system and writing equations : T

]

y = a1z + b1
Y = agx + by
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what leads to solving a system of equations

a1xr —y = —by
(1,2 r—1Yy = —b2

with the a; and as 11(‘(L11y equdl since the lines are nearly par allel This numerical
probleny is uns‘rablo or ill-conditioned, as it reflects the ill-¢ ouchhomng of the original
problem.

A mathematical model is obtained by 111‘(10(111( ing a coordlnate system. Any ‘rwo '
vectors will do for a basis. and if we chose to use the unusual basis

b1 = (0.5703958095, 0.8213701274)
bz = (0.5703955766.0.8213701274)

then every vector x can be expressced as
x = by + ybo
so that the equations of the two lines in this coordinate system are

y = —0.0000000513 + 0.9999998843x
y = —0.0000045753 + 1.000001596z:

with the point of intersection P with coordinates
(—0.8903429339,0.8903427796). Note that mathematical model is very ill-conditioned;
a change of 0.0000017117 in the data makes the two lines parallel, with no solution.
The poor choice of a basis in the given example made the problem poorly condi-
tioned. In more complex problems it is not so easy to see that a poor choice has been
made. Tn fact, a poor choice is sometines the most natural thing to do. For example, in
problems involving the polynomials, one naturally takes vectors based on 1, x, 2.2, ..., 2"
as a basis, but these are terribly ill-conditioned even for n moderate in size.
Example 1.3.2. Systewm of equations (input information)

2@ 4 6y = 8
22+ 6.0001y = 8.0001

have a solutions (output information) = = 1, y = 1. If the coefficients of sccond equation
slightly change, 1.e. if one takes the equation

2@+ 5.99999y = 8.00002,

the solutions arve 2 = 10, y = —2. This is typical round-off error.
Errors in methods oconr nsually because in numerical mathematics the problem to
be solved is replaced by another one, closed to original, which is easier to solve.
Do, . .
Example 1.3.3. Integral [ f(«)da can be approximately calculated, for example,
by replacing the function f by some polynomial P on segment [a,b], which is in some
sense close to given function. H()W(‘V(‘ for approximative calculation it is possible to

use the swn '
70

5 Fe)as
i=1

In both cases the method error occurs.

I sowe sensce. the romnd-off error are also method errors. Swn of all ervors makes
the total crvor.

Sometimes, however, an otherwise attractive method can be unstable. This means
that any roundoft error that becomes "mixed into” the calculation at an early stage 1s
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suceessively magnified until it comes to swamp the true answer. An unstable method
would be useful on a hypothetical, perfect computer; but in this imperfect world it is
necessary for us to require that algorithms be stable or if unstable that we use thein
with great caution. Here is a simple, if somewhat artificial, example of an unstable
algorithm (see [4], p.20).

Example 1.3.4. Suppose that it is desired to calculate all integer powers of the
so-called " Golden Mean,” the number given by

o 5—1
(1.3.2) ¢ = é{)— ~ 0.61803398

Powers of ®" satisfy simple recirrence relation
(1.3.3) R A L

Well, knowing the first two values ®° = 1 and ®* = 0.61803398, we can apply (1.3.3)
by subtraction, rather than a slower multiplication by ®, at each stage. Unfortunately,
the recurrence (1.3.3) also has another solution, namely the value —%(\/3 +1). Since
the recurrence is linear, and since this undesired solution has magnitude greater than
unity, any small admixture of it introduced by roundoff errors will grow exponentially.
On a typical machine with 32-bit word-length, (1.3.3) starts to give completely wrong
answers by about n = 16, at which point @™ is down to only 10™%. Thus, the recurrence
(1.3.3) is unstable, and cannot be used for the purpose stated.

On the end of this section, it remains the question: How to estimate errors and
uncertainty

One almost newer knows the error in a computed result unless one already knows
the true solution, and so one must settle for estimates of the error. There are three
basic approaches to error estimates. The first is forward error analysis, when one
uses the theory of the numerical method plus information about the uncertainty in the
problem and attempts to predict the error in the computed result. The information one
might use includes

- the size of round-off,

- the measurement errors in problem data, .

- the truncation errors in obtaining the numerical model from the mathematical
model, Lo

- the differences between the mathematical model and the original physical model.

The second approach is backward error analysis, where one takes a computed
solution and sees how close it comes to solving the original problem. The backward error
is often called the the residual in equations. This approach requires that the problems
involve satisfying some conditions (such as an equation) which can be tested with a
trial solution. This prevents it from being applicable to-all numerical computations,
e.g. numerically estimating the value of m or the value of an integral.

~ The third approach is experimental error analysts, where one experiments
with changing the computations, the method, or the data to see the effect they have on
the results. If one truly wants certainty about the accuracy of a computed value, then
one should give the problem to two (or even more) different groups and ask to solve
it. The groups are not allowed to talk together, preventing a wrong idea from being
passing around. _ ' :
The relationship between these three approaches could be illustrated graphically,
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as given in the following figure.

P <_/ >e X _ Forward

COrr,- . +
—ZPUtey : / _Error

Backward .
/—1,/—?
Error 5
! +
O : Y
R
Q .
Exact
P = true problem and data x = exact result for true problem
Q = perturbed problem and data = computed result for true problem

exast result for perturbed problem
+ = computed results using other -
~methods, programs, etc.

v

Figure 1.3.1
1.4. Programming

There are several areas of knowledge about programming that are needed for sci-
‘entific computation. These include knowledge about:

The programming language (]“ORTRAN Pascal, C ]avcx Mathematica (MatCAD,
1\4(“1&1))

The computer system in which ‘rhe language runs

Program debugging and verifying the correctness of results

- Computation organization and expressing them clearly.

Debugging prograins is an art as well as a science, and it must be learned through
practice. There are several effective tactics to use. like:
- Intermediate output
- Consultations about program with experienced user
- Use compiler and debugging tools.

Some abilities of compilers:
- Cross-reference tables
- Tracing
- Subscript checking
- Language standards checking.

Sowme hints:
- Use lots of connnents
- Use meaningful names for variables
- Make the types of variables obvious
- Use simple logical coutrol structures
- Use program packages and systems (Mathematica, Matlab) wherever possible
- Use structured progranning
- Use (if possible) OOP techuics for technical problems.

1.5. Numerical software

There are several journals that publish individual computer programs:

- ACM Transactions on Mathematical S()ffW(Ll(‘ (IMSL, International Mathematical
Scientific Library) .

i
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Applied Statistics

- BIT

The Computer Journal
Numerische Mathematik

The ACM Algorithins series contains more than thousand items and is available as
the Collected Algorithms of the Association for Computing Machinery.

Three general libraries of programs for numerical computations are widely available:

IMSL Iuternational Mathematical Scientific Library
NAG Numerical Algorithms Group, Oxford University
SSP  Scientific Subroutine Package, IBM Corporation

There are a substantial munber of important, specialized software packages. Most
of the packages listed below are available from IMSL, Inc.

MP Multiple Precision Arithmetic Package
BLAS Basic Linear Algebra Subroutines
DEPACK Differential Equation Package

DSS Differential Systein Simulator

EISPACK Matrix Eigensystems Routines
FISHPACK  Routines for the Helmholtz Problem in Two or Three Dimensions
FUNPACK Special Function Subroutines

ITPACK Iterative Methods
LINPACK Linear Algebra Package
PPPACK Piecewise Polynomial and Spline Routines

ROSEPACK Robust Statistics Package
ELLPACK Elliptic Partial Differential Equations
SPSS Statistical Package for the Social Sciences.

User interface to the IMSL library: '
PROTRAN  John R. Rice, Purdue University

1.6. Case study: Errors, round-off, and stability

Example 1.6.1. Solve quadratic formula
ar? +br+c=0

with 5,10,15 b, 100 decimal digits nsing FORTRAN and Mathematica code. Take a =
1, c= 2,] 2123(10)105.2123. Use the following two codes:

DIS=SQRT(B*B-4.* A*C) DIS=SQRT(B*B-4.*A*C)
X1=(-B+DIS)/(2*A)  IF(B.LT-0) THEN
X2=(-B-DIS)/(2¥A)" . X1=(-B+DIS)/(2*A)
: \ ELSE
X1=(-B-DIS)/(2*A)
ENDIF
. X2=C/X1
Compare the obtained results.
‘There are two important lessons to be learned from example 1.6.1.:
1. Round-off error can completely ruin a short, simple computation.
2. A simple change in the method might eliminate adverse round-off
~effects. '

Example 1.6.2. Calc ulcmon of 7.

Using five following algorithms, calculate 7 in or del to illustrate the various effects
of round-off on somewhat (hffment (ompu‘ra‘rlom
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Algorithm 1.6.2.1. Infinite alternate series

=4(1—1/3+1/5-1/T+1/9—-)

Algorithm 1.6.2.2. Taylor’s series of arcsin(1/2) = /6

7w = 06(0.5+

(0.5)% +1X3m®4+1x3xM0@6 )
2x3 2x4 x5 2x4x6xT7

Algorithm 1.6.2.3. Archimedes’ method. Place 4,8,16,...,2" tri‘angles inside a
circle. The area od cach triangle is 1/2 5111(0). The values of sin(f) are computed by

the half angle formula
sin(f) = \/[1 — c0s(26)]/2

and
(:Os(ﬁ) =V 1—sin?6.

The calculation is initialized by sin(r/4) = cos(n/4) = 1/v/2. As the number of triangles
grows, they fill up the circle and their total area approaches m. (Archimed carried a
similar procedure by hand with 96 triangles and obtained

1137 1335

31409, =320
8060 = <°G53a7

= 3.1428 .. )

Algorithm 1.6.2.4. Iustead of inscribing triangles in a circle, we inscribe trape-
zoids in a quarter circle. As a number of trapezoids increases, the sum of their areas
approaches /4.

Algorithm 1.6.2.5. Monte C;ulo integration. .

. . 2
Monte Carlo integration for /0 F dx is proceeded by choosing a pan (z,y) at

random with z,y in [0,2], and comparing y with 2/(1 + ). If y < 2/(1 + z) then the
point (z, y) is under the cwrve y = 2/(1+ 2) and variable SUM is increased by 1. After
M pairs, the integral is estimated by the fraction SUM/M of points that are under the
curve. Use this algorithm to estimate the area of the quarter circle.
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2. Linear Systems of Algebraic
Equations: Direct Methods

2.1. ELEMENTS OF MATRIX CALCULUS
2.1.1. LR factorization of quadratic matrix
During solution of systems of linear equation there is often case to present a

quadratic matrix in a form of product of two triangular matrices. This section is devoted
to this problem.

Theorem 2.1.1.1. If all determinants of form

aix - 01k
A= - (k=1,...,n—-1)

Akl s Ok
are different from zero, the matrix A = [a;;]nxn can be written in form
(2.1.1.1) A = LR,

where L lower, and R upper triangular matrix.

Triangular matrices L and R of order n are of following forms:

(2.1.1.2) L= [lijluxn  (lij =0 =4 <j),
(2113) R = [fv’.j]wﬁxn, (7'71;1' = 0<=1> j)

Decomposition (2.1.1.1), known as LR factorization (decomposition), is not unique,
having in mind the equality ‘

LR = (CL)‘(%R) (Ve #£0).

Nevertheless, if diagonal elements of matrix R (or L) take fixed values, not one being
equal to zero, the decomiposition is unique. In regards to (2.1.1.2) and (2.1.1.3), and
having in mind o ’ '
' : max(i,j) .

(L'i.jﬁ = Z l_ikrkj (I,,J = 1, RN ,n)

k=1

15
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the elements of matrices I and R can be easy determined by recursive procedure, giving
in advance the values for elements r;;(# 0) or I;;(# 0) (1 =1,...,n). For example, if
given numbers r;;(# 0) (i =1,...,n), it holds

‘ ail
==
v 11
e J— (]I]_'L
I'ii = Too
11 L )
i (i=2,...,n);
lin = -+
11

( N\

i1
1 | .
Tij = f((llij — g Likriy) (1=2,...,n).
k=1

Y

1 i—1
l71 — ——(a,lll'q; — E ljk:7'k:i)
k=1 7

W\ i

‘ In similar way can be defined recursive procedure for determination of matrix ele-
ments of matrices L and R, if the numbers [,;( 0) (i = 1,...,n) are given in advance.
In practical applications one usually takes r;; =1 (i=1,...,n)or l;; =1(i =1,...,n).

Very frequent case in application is of multi-diagonal matrices, i.e. matrices
with elements different from zero-on the main diagonal and around the main diag-
onal. For example, if a;; # 0 for |i — j] < 1 and a;; = 0 for |¢— 5| > 1, the
matrix is tri-diagonal. The elements of such a matrix are usually written as vectors
(CLQ, e 7(Iu,,,), (bll, Dy bn), ((11, cay (1,,,,_1), Le. )

(b1 ¢ 0 ... 0 07

9 [)2 Co 0 0

(2.1.1.4) A=|0 a3 b 0 0
L0 0 0 an  bp

If aij #0 (Ji — 4] £ 2) anud az; = 0 (Ji — j| > 2), we have a case of five-diagonal matrix.
Let us now suppose that tri-diagonal matrix (2.1.1.4) fulfills the conditions of Theorein
2.1.1.1. For decomposition of such a matrix it is enough to suppose that

rfB1 0 o ... 0 07
ay Py 0 0 0 ,
L=|0 o /B 0 0| (Bifs...0, #0)
Lo 0 0 P
and
M1 Y1 0 0 07
0 1 7 0 0
R=10 0 1 0 0
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By comparing corresponding elements of matrix A and matrix

B ,Hl ,{51’71 0 e 0 0
azy avi+ B2 Baye 0 0
LR=| O 3 azy2 + B3 0 0 :
L O 0 0 Qp  QpYp-1+ ;Bn

we get the following recursive formulas for determination of elements v, 8;, vi:

Cy
,Bl - bla Y1 =5,
by
o = ay, B = b, — cyryi_q, Vi = BL (t=2,...,n—1),
i

Qy, = Gy, /jn = b'n, — pYn-1-

2.1.2. Matrix eigenvectors and eigenvalues

Definition 2.1.2.1. Let A complex quadratic matrix of order n. Every vector £ € C”,
different from zero-vector is named eigenvector of matrix A if there exists scalar \ € C
such that

Scalar A is then naned the corresponding eigenvalue.

Considering that (2.1.2.1) can be written in form
(A — AI)Z = 0,

one can conclude that equation (2.1.2.1) has non-trivial solutions (in ) if and only if
det(A — AI) = 0.

2.2. DIRECT METHODS IN LINEAR ALGEBRA

2.2.1. Introduction

Numerical problems in linear algebra can be classified in several groups:
1. Solution of system of linear algebraic equations

Az =0,
where A regular matrix, caleulation of determinant of matrix A and matrix A
inversion;
2. Solution of arbitrary system of linear equations using least- square method:;
3. Determination of eigenvalues and eigenvectors of given quadratic matrix;
4. Solution of problems in linear programming.
For solution of these problems, a number of methods is developed. They can be
separated in two classes; as follows.

. The first class contams so-called direct methods known sometimes as exact meth-
ods. The basic characteristic of those methods is that after final number of transfor-
mations (steps) one gets the result. Presuming all operations being performed exact,
the gained result would be absolutely exact. Of course, because the performed compu-
tations are pufoxmgd with rounding mteunedlate Iesults the ﬁnal result is of limited
exactness.
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The second class is made of iter atlve methods, obtammg the result after 1nf1n1te
number of steps. As initial values for iterative methods are usually used the results
obtained by some direct method.

Note that at solution of systems with big number of equatlon ubed for solution of
partial differential equations, the iterative methods are usually used..
2. 2.2. Gauss ehmlnatlon with plvotlng

Counsider the system of linear algebraic equations

1171 + 12%2 + -t a1, = by

(2171 + 20T + - - - + G2,Ty, = by
(2.2.2.1) ’

ap1Ty + dnoTo + -+ Opndn = bna

or, in matrix form

(2.2.2.2) AT =1,
where
a1 13 ... G1p by T
(21 022 ... d9pn - ])2 : . )
A = . s ) — 3 T —
Unl (In2 S Ayyn b'n, ;'II:'n.

Suppose that system of equation (2.2.2.2) has an unique solutlon It is very known that
solutions of system (2.2.2.1), i.e. (2.2.2.2), can be expressed using Craminer’s rules

det A;
T =— (1=1,2---m
S A G L2,

where matrix A; is obtained from matrix A by replacing 4-th column by vector b.
Nevertheless, these formulas are inappropriate for practical calculations because for

calculation of n + 1 determinants one needs a big number of calculations. Namely, if
we would like to calculate the value of determinant of n-th degree by developing of
determinant through rows or columns, it would be necessary to proceed S, = n! — 1
additions and M, = nl(e — 1) multiplications (n > 4), what gives the total number of
“calculations P, = M,, +S,, = nle. Supposing that one operation demands 100us (what
is the case with fast computers), the total time for calculation of value of determinant
of order thirty (n = 30) would take approximately 2.3 - 102? years. Generally speaking,
such one procedure is practically unusable for determinants of order n > 5. One of the
most suitable direct methods for solution of system of linear equations is Gauss method
of elimination. This method is based on Ie(lu(hon of system (2.2.2.2), using equivalent
transformations, to the triangular system

2l

(2.2.2.3) Rr=¢
where
in iz ... T C1
22 ... Ton C3
R = N C =

T TLTY (‘TI:
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Systein (2.2.2.3) i solved successively starting from the last equation. Naimely,

(hh
Ly = ——
7"”r7’. .
1 K .
Ty = I——((, - Z racn) (=0 —1,...,1).
KX

h=i+1

Note that coeflicients r;; # 0, because of assmnption that system (2.2.2.2), 1.e. (2.2.2.3)
has an unique solution.

We will show now how system (2.2.2.1) can be reduced to equivalent system with
triangular matrix.

Supposing a11 # 0, let us compute first the factors

i1

miy = (i=2,...,n),

a1

and then, by multiplication first equation in system (2.2.2.1) by m and subtracting from
i-th equation, one gets the system of n — 1 equations

(l/éé)![fg +...+ (LSB:I;,,, = 1752)
(2.2.2.4)
(1,,5,?2) To 4+ ..+ af,?,,%:z:,, = 1)5,?)
where @) _ @) . ‘
a;; = Gij — Mi1aj, b, =bi—mpby (4,5 =2,...,n).

Assuming ags # 0, and applying the same procedure to (2.2.2.4), with

Ai2 L g
mp = — (i=3,...,n),
929

one gets the system of n — 2 equations

(Ié?-’(?:; +...+ ”fgzi.)"[:” = bgg)

(1,,,(,%):1;3 + .+ aBg, = b3

where

@), @)

3 2 2 _ L v
al® = a,§j> — M2y, , b, ;= gy (4,7 =3,...,1m).

hij
Continuing this procedure, after n — 1 steps,; one gets the equation
o™z, = bﬁ,’ Y.

nn

From the obtained systems, taking the first equations, one gets the system of equations

'a,gl‘l?:z;l + a,g):lzz +»a%)m3 +oF aﬁ,’)xn = bgl)
(1,522):1’:2 -+ (1,%):173 et (Lgl)l'n = bg2)

ot t o, = o)

gy = pln)
Qpyi Ln = b'n, ?
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where we put (J,(l) = @, lf ) =

The pr esentod triangular 10(111( t1011 or as often called Gauss elimination, is dctudlly
determination of coefficients

= b;.

) k
(1,,,(,,,)
Mg = W’
AL
k+1 ki L
1,( i ) = _(I,,Ej) — 'rn,,,;k,aé:j),
(k+1) _ () K ..
b, =0, - 'm,',;;ﬁ.,b,(i,' ) (h,j=k+1,....,n)

for k =1,2,...,n— 1. Note that the elements of matrix R and vector & are given as

po o — (1) ( - i
rij = ”’:,v“% b, ). G=1.m7=1%...,n).
In order the presented reduction to exists, it is necessary to obtain the condition

k
(LM # 0. Elements (II(A) are known as main clements (pivotal elements or pivot). As-

suming matrix A of system (2.2.2.2) being regular, the. conditions (LH) # 0 are ‘r() be
ol)tfuned by permutation of ((111(Lt1(>ns in system.

Moreover, from the point of view of accuracy of results, it is necessary to use so
known strateg y of choice of pivotal elements. Modification of Gauss elimination method

in this sense is called Gauss method with choice of pivotal element. In accordance to

(

this method, for pivotal element in k-th elimination s’rep one takes the element o A> for

which holds

|((’~,‘/.;; | = e, gy

with permutation of k-th and r-th row.
If one obtains in addition to permutation of equations the permutation of unknowns,
it is the best way to take for pivotal element in the k-th elimination step the ele ment

( )

a,,’ . for which it holds

I = max \(1, ; ]
E<i,j<n

with permutation of A-th and r-th row (equations) and k-th and s-th colummn (un-
kunowns). Suchi method is called the method with total choice of pivotal element.

Oune can show (see [1], pp. 233-234) that total number of calculations by applying
Gauss method is

1 . ‘
N(n) = 6(471,3 +9n? — 7n).

For o big enough, one gets N(n) =2 203 /3. It was long time opinion that Gauss method
is optimal regarding number of computations. Nowadays, V. Strassen, by involving
iterative algoritlnn for multiplying and inverse of matrices, gave a new wethod for
solution of system of linear equations. by which the number of computations is of order
21827 Srassen method is thus hetter than Gauss method logy 7 < 3.

Triangular reduction obtaius simple computation of system deterininant. Namely.
it holds

det A = (1,(111)(1.(2.32) . (l,f,”).
When used Gauss method with choice of pivotal element. one should take care about
wuuber of permutations of rows (and columus by using method of total choice of pivotal
element). what influences the sign of determinant. This way of deferminaut calenlation
is high efficient. For exawmple. for calculation of determinant of order n = 30. one needs
0.18s. presuming that one arithimetic operation takes 1070s.
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2.2.3. Matrix inversion using Gauss method

Let A = [aij]nxn De regular matrix and let

r11 €212 e I

€Ty 199 e Tog . . B
X = : =[T1 2o ... iy,
LTyl Tn2 . T

be its inverse matrix. Vectors @y, o, ..., 7, are first, second,..., n-th colmnn of matrix
X. Let us now define vectors ¢, ¢, ... €, as

G=[10...07 @&=[010...07 ,.,&=1[00..17
Regarding to equality
AX = [Afl A.’T,"z . A.’EJ =1= [(?1 52 c 6—‘”],

the problem of determination of inverse matrix can reduce to solving of n systems of
linear equations

(2.2.3.1) A, =¢&, (i=1,...,n).

For solving of system (2.2.3.1) it is convenient to use Gauss method, taking in account
that matrix A appears as a matrix of all systems, so that its triangular reduction shell
be done once only. By this procedure all the transformations necessary for triangular
reduction of matrix A should be applied to the unit matrix I = [€1€5...€,] too. In
this way matrix A transforms to triangular matrix R, and matrix I to matrix C =
(A ... &) Finally, triangular systems of form

R, =¢ (i=1,...,n)
should be solved.

2.2.4. Factorization methods

Factorization methods for solving of system of linear equations are based on fac-
torization of matrix of systemn to product of two mnatrices in such form that enables
reduction of system to two systems of equations which can be simple successive solved.
In this section we will show up at the methods based on LR matrix factorization (see
Section 2.1.1.). : ‘

Given the system of equations

(2.2.41)  A@=}

with quadmh( matrix A, which all main diagonal minors are zero different. Then,
based on Theovem 2.1.1.1, it exists factorization matrix A = LR, where L lower and
R upper triangular matrix. The factorization is unique defined, 1f, for exainple, one
adopts unit diagonal of matrix L. In this case, system (2.2.4.1), i.e. system LRZ = b
can be presented in equivalent form

(2.2.4.2) . Lj=b, Ri=7.

Based on previous, for solving of sy%tem of equations (2.2.4.1), the following method

can be formulated:
L Putly =1 (i=1,....n);
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(S}

-Determine other elements of matrix L' = [l;;]nxn and matrix R = [r;j]xn (see
- Section 2.1.1); ' ' ‘ C
3. Solve first system of equations in (2 2.4.2);
4. Solve second system of equations in (2.2.4.2).
Steps 3. and 4. are simple to be performed. Namely, let

5: [bl [)2 v bn]Ta :(7; [ylvy2 s yh]Ta T = [ml 0] .l‘an
Then |

yr=bi, g =bi - ZIM (i=2,...,n)

and
Iel

U 1 | -
Ly = : i , Ly = ———-(’y, - Z 7,;"Ik) (’L =T — 1, ey 1)
T'nin "'ii k=it1
The method presented is known in bibliography as method of Chole'sky In the case
when matrix A is normal, i.e. symmetric and positive definite, the Cholesky method can
be simplified. Namely, in this case one can take that L = RT. . Thus, the factorization

of matrix A in form A = RTR should be performed. Babed on formulas from Section
2.1.1 for elements of matrix R it holds:

11 = a1l
a4 .
T = ﬁ (/ = 27 Ceey ’I‘I,),

Tii —
(i=2,...,n).
i—1 :
Tig = — II,I Z’I]‘,'I[‘] (j:’[,—*—ll,n)
T =1

In this case the systews (2.2.4.2) become
T/——l — T —.‘ . —
R y=0b, RI=y.
Remark 2.2.4.1. The determinant of normal matrix can be calculated by method of
square root as A
o - 2
det A = (711 To92 ... ’nn)

Factorization methods are specially convenient for solving of systems of linear equa-
tions where matrix of systems does not change, but only free vector b. Such systems
are very frequent in engineering.

Now it will be shown that Gauss method of elimination can be interpreted as LR

factorization of matrix A. Take matrix A such that during the elinunation process
permutation of rows and colunms should not be performed. Denote the starting system

as AOF = )M, Gauss elimination procedure gives n — 1 equivalent systems ARy =
b2 A =)0 where matrix A®) is of form

(1) (1) (1 (1) 1
(14 (1%22) e (1,%A3 e a,%;)
2
22 Aoy oy,
(k) _
AT = L) (8
g3 "k
-I.: k
_ NN
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Let us analyze modification of elements a,;(= all )) during the process of triangular
reduction. Because, for k=1,2,...,n—1,

,,,(-,_.,A-’H) = u,,,(;;;) - 771.',:;\:0'%/;') (h,j=k+1,...,n),
and
(],Ei:+l) = f.])‘—i—l) =.,..= (Ll(:+1) =0 (1, =k + 1,... ,”)’

by summation we get

Uiy = (1,(}1) = ufj) + Z'm,,,;ka,,(‘s) (1 <)
and

apj = (15_71.) =0+ Z 'm,,,;k,a,,(‘f;) (1> 7).
k=1

By defining mi; =1 (¢ = 1,...,n), the last two equalities can be given in form

p
(2.2.4.3) aig = mial) (i,j=1,...,n),

where p = min(4, j). Equality (2.2.4.3) is pointing out that Gauss elimination procedure
gives LR factorization of matrix A, where

1 i1z T2 ... Tip
Moy 1 . ) 22 ... T2p

= 5 R =
My My ... 1 Tnn

and rp; = (1,£ ) During program realization of Gauss method in order to obtain LR

factorization o{ matrix A , it is not necessary to use new memory space for matrix
L, but it is convenient to load factors m;, in the place of matrix A coeflicients which
are annulled in process of triangular reduction. In this way, after completed triangular
reduction, in the memory space of 111@‘(11)( A will be memorized matrices L and R,

ac 001(1111g to following scheme:
A= LR

Consider that diagonal elemients of matrix L, all equal to unit, should not be
memorized. ,

Cholesky method, based on LR factorization, is used when matrix A fulfils condi-
tions of Theorem 2.1.1.1. Nevertheless, usability of this method can be broaden to other
systems with regular matrix, taking in account permutation of equations in system. For
factorization is used Gauss elimination method with pivoting. There will be LR = A/,
where matrix A’ is obtained from matrix A by finite number of row interchange. This
means that in elimination process set of indices. of pivot elements I = (p1,...,0n—1),
where pj is number of row from which the main element is taken in k-th elimination

step, should be memorized. By solving of system A = b after accomphshmg a pro-
“cess of factorization, according to set of 1nd1ceb 1, coordinates of vector b should be

permuted. In this way the transformed vector b s obtained, so that solving of given
bystem reduces to successive solving of tuangulal systems

\1
KL

(2.2.4.4) R Lj=¥%, Ri=
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2.2.5. Program realization

This section is devoted to software realization of methods previously exposed in this
chapter. For successful following of material in this subchapter it is necessary knowledge
exposed in all previous subchapters of this chapter.. In presented subprograms the
matrices are treated as vectors. ' ‘ ‘

Program 2.2.5.1. Subprogram for matrix transpose MTRN is of form:

SUBROUTINE MTRN (A, B, N, M)
c
C TRANSPONTOVANJE MATRICE A
C : .

DIMENSION A(1), B(1)

IC=0 :

DO 5 I=1, N

I1J=I-N

DO 5 J=1, M

IJ=IJ+N

IC=IC+1

5 B(IC)=A(1IJ)
RETURN
END '

Parameters in the list of subprogram parameters have the following meaning:

A - input matrix of type N x M, treated as vector of length NM (taken in form
column by column); ,

B - output matrix of type M x N (B = AT). Matrix is treated in the same way as
matrix A. :

Program 2.2.5.2. Subprogram for multiplication of matrices A (of dimension
N x M) and B (of dimension M x L) is of form

SUBROUTINE MMAT (A, B, C, N, M, L)
C
C MATRICA A TIPA N*M
C MATRICA B TIPA MxL
C MATRICA C TIPA NxL
C MNOZENJE MATRICA C=A*B
C
DIMENSION A(1), B (1), C (1)
IC=0
I2=-M .
DO 5 J=1,L
I2=TI2+M
DO 5 I=1, N
IC=IC+1
IA=I-N
IB=12
C(IC)=0.
DO 5 K=1, M
TA=TA+N
IB=IB+1
5 C(IC)=C(IC) + A(IA)=*B(IB)
RETURN
END
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[

Output matrix C (C = A x B) is of dimension N x L.

Program 2.2.5.3. Let us write a program for computing matrix BT A by using
previously given subprograms, for given matrices A and B. Let matrix A be of type
N x M, and matrix B of type N x K (with maximal number of matrix elements for
both matrices 100).

This prograni has the following form:

DIMENSION A(100), B(100), C(100)
OPEN(8,FILE="MTMM.IN’)
OPEN(5,FILE=’MTMM.QUT’)
READ (8,10) N,M,K
10 FORMAT (3I2)
NM=N*M
NK=K*M
KM=K*M
READ (8,20) (A(I), I=1, NM), (B(I), I=1, NK)
20 FORMAT (16F5.0)
CALL MTRN( B, C, N, K)
CALL MMAT (C, A, B, K, N, M)
WRITE (5,30) ((B(J), J=I, KM, K), I=1, K)
30 FORMAT (5X, ’MATRIX C=B(TR)* A’// (2X,4F6.1))
CLOSE(8)
CLOSE(5)
STOP
END

Test of program, being proceeded with matrices

1 3 0 2 1 -3 0
1 4 1 5 o 4 —6
A=y 1 g o mdB=},
2 3 1 3 -1 5 1

gave the following result:

MATRIX C=B(TR)* A

1.0 2.0 -5.0 -1.0
-3.0 21.0 11.0 29.0
-8.0 -19.0 =-9.0 -27.0

Program 2.2.5.4. Method of Cholesky for solving of system of linear equations
(see subchapter 2.2.4) can be realized in the following way:

OPEN(8,FILE=’CHOLESKY.IN’)
- OPEN(5,FILE=’CHOLESKY.QUT’)
33 READ(8,100)N
100 FORMAT(I2)
v IF(N)11,22,11
- 11 READ(8,101) (B(I),I=1,N)
101 FORMAT (8F10.4)
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~C READ IN THE UPPER MATRIX TRIANGLE OF A
READ(8,101) ((A(I,J),J=1,N),I=1,N)
WRITE(5,102)N :
102 FORMAT (/ 65X, ’MATRIX DIMENSION =’,I3//

1 5X, 'MATRICA A,

2 <(N 1)*12+3>X, )VEKTOR B’ /)

WRITE(5, 103)((A(I J),J=1,N),B(1),I=1, N)
103 FDRMAT(lX <N>F12.7, F13. 7)

C ~ FACTORIZATION OF MATRIX A TO THE FORM A=L*R

DO 10 I=2,N
10 A(1,I) A(l I)/A(l 1)
DO 25 I=2 N
I1=I-1
S=A(I,I)
DO 20 K=1,I1
20 S=S-A(I,K)*A(K;I)‘
A(I,I)=
IF(I. EQ. N) GO TO 40
1J=I+1
DO 25 J=IJ,N
S=A(I,J)
T=A(J,I)
DO 30 K=1,I1
S=S-A(I,K)*A(K,J)
- 30 T=T-A(J,K)*A(K,I)
A(I,J)=S/A(I,I)
25 A(J,I)=T
40 WRITE(5,107)
107 FORMAT(//5X, ’MATRIX L’/)
DO 111 I=1,N
111 WRITE(5,103) (A(I,J),J=1,1I)
WRITE(5,108)
108 FORMAT (//5X,’MATRIX R’/)
N1=N-1
DO 222 I=1,Nt
II=I+1
M=N-1I _
222 WRITE(5,99) (A(I,J),J=II,N)
WRITE(5,99)
99 FORMAT (<12*I-8>X,’1.0000000’ ,<M>F12.7)

C OBTAINING THE VECTOR OF SOLUTIONS

B(1)=B(1)/A(1,1)
DO 55 I=2,N
I1=I-1
DO 45 K=1,TI1
45 B(I)=B(I)-A(I,K)*B(X)
55 B(I)=B(I)/A(I,I)
DO 50 J=1,Nt
I=N-J
I1=I+1
DO 50 K=I1,N
50 B(I)=B(I)-A(I,K)*B(K)
WRITE(5,109)
109 FORMAT(//13X,’VEKTOR OF SOLUTIONS’/)
WRITE(5,104) (B(I),I=1,N)
104 FORMAT (12X,F12.7)
GO TO 33
22 CLOSE(5)
CLOSE(8)
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STOP
END

For factorization of matrix A(= LR) we take in upper triangular matrix R unit
diagonal, i.e. 75 =1 (i = 1,...,n). Program is organized in this way so that matrix
A transforms to matrix A, which lower triangle (including main diagonal) is equal to
matrix L, and strict upper triangle to matrix R. Note that diagonal elements in matrix
R are not memorized, but only formally printed, using statement FORMAT. Note also
that in Section 2.2.4. the unit diagonal has been adopted into matrix L.

By applying this program to the applicable system of equations, the following
results are obtained: ‘

MATRIX DIMENSION = 4

MATRICA A VEKTOR B
1.0000000 4.0000000 1.0000000 3.0000000 9.0000000
.0000000 -1.0000000 2.0000000 -1.0000000 .0000000
3.0000000 14.0000000 4.0000000 1.0000000 22.0000000
1.0000000 2.0000000 2.0000000  9.0000000 14.0000000
MATRIX L
1.0000000
.0000000 -1.0000000
3.0000000 2.0000000 5.0000000
1.0000000 -2.0000000 -3.0000000 2.0000000
MATRIX R
1.0000000  4.0000000 1.0000000 3.0000000

1.0000000 -2.0000000 1.0000000

1.0000000 -2.0000000
1.0000000
VEKTOR OF SOLUTIONS

1.0000000

1.0000000

1.0000000

1.0000000

Program 2.2.5.5. In similar way can be realized square root method for solution
of system of linear equations with symmetric, positive definite matrix. In this case it is
enough to read in only main diagonal elements of matrix A; and, for example, elements
from upper triangle. ~ ' ,

The program and output listing for given system of equations are given in the
following text. Note that from the point of view of memory usage it is convenient to
treat matrix A as a vector. Nevertheless, due to easier understanding, we did not follow
this convenience on this place. e

Program is organized in this way so that, in addition to solution of system of
equation, the determinant of system is also obtained. In output listing the lower triangle
of symmetric matrix is omitted.

$DEBUG

C SOLUTION OF SYSTEM OF LINEAR EQUATIONS
C BY SQARE ROOT METHOD

DIMENSION A(10,10),B(10)
OPEN(8,FILE=’SQR.IN’)
OPEN(5,FILE="SQR.0UT’)
3 READ(8,100)N
100 FORMAT (I2).
IF(N) 1,2,1
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C READ IN VECTOR B ‘

1 READ(8,101) (B(I),I= 1 ,1D
101 FDRMAT(8F10 4) '

C READ IN UPPER TRIANGULAR PART OF MATRIX A
READ(8,101) ((A(I,J),J=I,N),I=1,N)
WRITE(S 102)

102 FDRMAT(////SX 'MATRIX OF SYSTEM’/)
WRITE(5,99)((A(I,J),J=I;N),I=1,N)
99 FORMAT(<12%I-11>X,<N-I+1>F12.7)
WRITE(5,105)
105 FORMAT(//SX JVECTOR OF FREE MEMBERS’ /)
WRITE(5, 133)(3(1) I=1,N)
133 FORMAT(lX 10F12.7)

C OBTAINING OF ELEMENTS OF UPPER TRIANGULAR MATRIX
A(1,1)=SQRT(A(1,1))

DO 11 J=2,N
11 A(1,J) A(l J)/A(1, 1)
DO 12 I=2,N ‘
S=0.
IM1=I-1
DO 13 K=1,IM1
13 S=S+A(K,I)*A(K,I)
A(I,I)=SQRT(A(I,I)-S)
IF(I-N) 29,12,29
29 IP1=I+1
DO 14 J=IP1,N
S=0.
DO 15 K=1,IM1
15 S=S+A(K,I)*A(K,J)
14 A(I,J3)=(A(1,J)-S)/A(I,I)
12 CONTINUE
C CALCULATION OF DETERMINANT
DET=1.
DO 60 I=1,N
60 DET=DET*A(I,I)
DET=DET*DET
SOLUTION OF SYSTEM Lx*Y=B
B(1)=B(1)/A(1,1)
DO 7 I=2,N
IM1=I-1
S=0.
DO 8 K=1,IM1
8 S=S+A(K,I)*B(K)
P=1./A(I,I)
7 B(I)=P*(B(I)-S)

2

C
C SOLUTION OF SYSTEM Rx*X=Y
C MEMORIZING OF RESULTS INTO VECTOR B
C .
B(N)=B(N)/A(N,N)
NM1=N-1
DO 30 II=1,NM1
JJ=N-II
S=0.
JIP1=JJ+1

DO 50 K=JJP1,N
50 S=S+A(JJ,K)*B(K)
30 B(JJ)=(B(JJ)-S)/A(JJ,]]) ‘
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C PRINTING ‘OF RESULTS
C
WRITE (5,201)
201 FORMAT(//5X,’MATRIX R’/)
Pause 1
C DO 222 I=1,N
222 WRITE(5,199) ((A(I,J),J=I,N),I=1,N)
199 FORMAT(<12*I-11>X,<N-I+1>F12.7)
WRITE(5,208) DET
208 FORMAT(//SX 'SYSTEM DETERMINANT D=’ ,F11.7/)
WRITE(S, 109)
109 FDRMAT(//SX 'SYSTEM SOLUTION /)
WRITE(5,133)(B(I),I=1,N)
GO TO 3
2 CLOSE(5)
CLOSE(8)
STOP
END

MATRIX OF SYSTEM

w

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

N

VECTOR OF FREE MEMBERS
4.0000000  3.0000000  3.0000000
MATRIX R
| 1.7320510
.0000000
.5773503
1.4142140
.7071068
| .4082483
SYSTEM DETERMINANT D= 1.0000000
SYSTEM SOLUTION
.9999999 .9999998  1.0000000

Program 2.2.5.6. Mcthod of factorization for solution of systems of linear equa-
tions based on Gauss climination with choice of pivotal element (see Sections 2.2.2 and
2.2.4) can be programmable realized using the following subprograms:

SUBROUTINE LRFAK(A,N,IP,DET,KB)
DIMENSION A(1),IP(1)
- KB=0
N1=N-1
INV=0
DO 45 K=1,N1
IGE=(K—1)*N+K

FINDING THE PIVOTAL ELEMENT IN K-TH
ELIMINATION STEP

aaaa

GE=A(IGE)
I1=IGE+1
I2=KxN



30

Numerical Methods in Computational Engineering

IMAX=IGE
DO 20 I=I1,I2
- IF(ABS(A(I))-ABS(GE)) 20,20,10
10 GE=A(I) o
IMAX=I ’
20  CONTINUE
IF(GE)25,15,25
15 - KB=1
C
C MATRIX OF SYSTEM IS SINGULAR

- C

RETURN
25  IP(K)=IMAX-N*(K-1)
IF(IP(X)-K) 30,40,30
30 I=K
IK=IP (K)
C .
C ROW PERMUTATION
C
DO 35 J=1,N
S=A(I)
A(I)=A(IK)
A(IK)=S
I=I+N
35  IK=IK+N
INV=INV+1

C

C K-TH ELIMINATION STEP
C S
40 DO 45 I=I1,I2
A(I)=A(I)/GE
TA=I
IC=IGE
K1=K+1
DO 45 J=K1i,N
IA=TA+N
IC=IC+N
45  A(IA)=A(IA)-A(I)*A(IC)
C
C CALCULATION OF DETERMINANT
C
DET=1.
DO 50 I=1,N
IND=I+(I-1)*N
50 DET=DET*A(IND)
IF(INV-INV/2%2) 55,55,60
60 DET=-DET
55  RETURN
END

aQQa

SUBROUTINE RSTS(A,N,IP,B)
DIMENSION A(1),IP(1),B(1)

SUCCESSIVE SOLUTION OF TRIANGULAR SYSTEMS
N1=N-1

VECTOR B PERMUTATION
DO 10 I=1,N1 ;

Q aaQa
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I11=IP(I)
IF(I1-I) 5,10,5
5 S=B(I)
B(I)=B(I1)
B(I1)=S
10  CONTINUE
C SOLUTION OF LOWER TRIANGULAR SYSTEM
DO 15 K=2,N
IA=-N+K
K1=K-1
DO 15 I=1,K1
IA=TA+N
15  B(K)=B(K)-A(IA)*B(I)
C SOLUTION OF UPPER TRIANGULAR SYSTEM
NN=N*N
B(N)=B(N)/A(NN)
DO 25 KK=1,N1
K=N-KK
IA=NN-KK
I=N+1
DO 20 J=1,KK
I=1-1
B(K)=B(K)-A(IA)*B(I)
20  IA=IA-N
25  B(X)=B(K)/A(IA)
RETURN
END

Param(—:ters in subprogram list of LRFAK are of following meaning:

- Input matrix of order N stored columnwise (column by column). After N-1
ehmmatwn steps matrix A transforms to matrix WIll(,h contains triangular matrices L
and R (see section 2.2.4);

N - order of matrix A;

IP - vector of length N- 1, which is formed during elimination procedure and con-
tains indices of pivot ele ments. (see section 2.2.4);

DET - output variable containing determinant of matrix of system A, as product of
elements on diagonal of matrix R, with accuracy up to sign. This value are corrected
by sign on the end of procedure, having in mind number of row permutations during
elimination process;

KB - control mumber with value KB=0 if factorization is correctly performed, and
KB=1 if matrix of system is singular. In the last case, LR factorization does not exist.

Subroutine RSTS solves successively systems of equatlons (2.2.4.4). Parameters in
list of subroutine parameters are of following meaning: :

A - matrix obtained in subroutine LRFAK

N - order of matrix A;- \

IP - vector obtained in subroutine LRFAK;

B’- vector of free members in system to bt solved. This vector transforms to vector
of system solutions.

Main prograim is written in such way that, at first, glven matrix A is factorized by

means of subroutine LRFAK, and then is possible to solve system of equations AT = b

for arbitrary number of vectors b by C&Hlllg subroutine RSTS.
Mam pr ()glfun and output hstlngj are of form:

DIMENSION A(100),B(10), IP(9)
OPEN(8,FILE= )FACTOR. IN’ )
OPEN (5,FILE=’FACTOR.QUT’)
READ(S 5)N
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'5 FORMAT(I2)
NN=N*N
READ(8,10) (A(I),I=1,NN)

10 FORMAT(16F5 0)
WRITE(5,34)

34 FDRMAT(iHl 5X, ’MATRICA A’/)
DO 12 I=1 N

12 WRITE(S, 15)(A(J) J=I,NN,N).

15 FORMAT (10F10. 5)
CALL LRFAK(A,N,IP,DET KB)
IF(XB) 20,25, 20

20 WRITE(S, 30)

30 FDRMAT(lHO,’MATRICA JE SINGULARNA’//)
GO TO 70 \

25 WRITE(S,35)

35 FDRMAT(lHO 5X, "FAKTORIZOVANA MATRICA’/)
DO 55 I=1,N |

55 WRITE(S, 15)(A(J) J=I,NN, N)
WRITE(5,75)DET \

75 FDRMAT(/BX ’DETERMINANTA MATRICE A=’F10.6/)

50 READ(8,10,END=70) (B(I),I=1,N)
WRITE(S 40)(B(I) I=1,N)

40 FORMAT(/5X 'VEKTOR B’ //(1OF10 5))
CALL RSTS(A N,IP,B)

: WRITE(5,45) (B(I) I=1,N)

45 FDRMAT(/SX,’RESENJE’//(iOFlO.S))
GO TO 50

70 CLOSE(5)
CLOSE(8)
STOP
END

1 MATRICA A
3.00000 1.00000 6.00000
2.00000 1.00000  3.00000
1.00000 1.00000 1.00000

0 FAKTORIZOVANA MATRICA

3.00000 1.00000 6.00000
.33333 .66667 -1.00000
.66667 .50000 -.50000
DETERMINANTA MATRICE A= 1.000000
VEKTOR B

2.00000 7.00000 4.00000
RESENJE

18.99999 -7.00000 -8.00000
VEKTOR B

1.00000 1.00000 1.00000
RESENJE
.00000 1.00000 .00000

Program 2.2.5.7. Using subroutine LRFAK and RSTS. having in mind section
2.2.3, it is easy to write program for matrix inversion. The corresponding program and
output result (for matrix from previous example) have the following forms:

C INVERZIJA MATRICE
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DIMENSION A(100), B(10), IP(9),AINV(100)
open(8,file=’invert.in’)
open(5,file=’invert.out’)
READ(8,5) N
5 FORMAT(I2)
NN=N=*N
READ(8,10) (A(I),I=1,NN)
10 FORMAT(lGFS.O)
WRITE(5,34)
34 FORMAT(1H1, 5X, ’MATRICA A’/)
DO 12 I=1,N :
12 WRITE(5,15) (A(J),J=I,NN,N)
15 FORMAT(10F10.5)
CALL LRFAK(A,N,IP,DET,KB)
IF(KB) 20,25,20
20 WRITE(5,30)
30 FORMAT(1HO, ’MATRICA A JE SINGULARNA’//)
GO TO 70
25 DO 45 I=1,N
DO 40 J=1,N
40 B(J)=0.
B(I)=1.
CALL RSTS(A,N,IP,B)
IN=(I-1)*N
DO 45 J=1,N
IND=IN+J
45 AINV(IND)=B(J)
WRITE(5,50)
50 FORMAT (1HO,5X, ’INVERZNA MATRICA’/)
DO 55 I=1,N
55 WRITE(5, 15)(AINV(J) J=I,NN,N)
70 CLOSE(5)
CLOSE(8)
STOP
END

1 MATRICA A :

.00000 1.00000 6.00000
.00000 1.00000 3.00000
.00000 1.00000 1.00000
0 INVERZNA MATRICA

.00000 5.00000 '-3.00000
.00000 -3.00000 3.00000
.00000 -2.00000 1.00000

_ N W

N
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3. Linear Systems of Algebraic
Equations: Iterative Methods

3.1. Introduction

Consider system of linear equations

aney +apry+ -+ 01pTn = bl

' a91L1 + G22%y + -+ + GonTy = b2
(3.1.1)

Up121 + Gp2To + v + Gpntn = bn7

which can be written in matrix form

(3.1.2) ' AL =b,
where
air @12 ... Qin T1 b1
ao1 929 e aon, . To = b2
A = } . , T = , b=1.
an1 (n2 N ¢ ) L, b'n,

In this chapter we always suppose that system (3.1.1), i.e. (3.1.2) has an unique solution.
Iterative methods for solving systems (3.1.2) have as goal determination of solution

# with accuracy given in advance. Namely,starting with arbitrary vector #0) (=
287 . 2{V]7) by iterative methods one defines the series 70 (= 28 Ll )T} such
that '

lim %) = 7.
k—+oo

 3.2. Simple iteration method

Oné of the most simplest methods for solving system of linear equations is method
of simple iteration. For application of this method it is necessary to transform previously
system (3.1.2) to the following equivalent form :

(3.2.1) : i=BZ+f8

35
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Then, the method of simple iteration is given as
(3.2.2) g™ =B&hY 4§ (k= 1,2, =),

St(utmg from arbitrary vector #(*) and using (3.2.2) one generates series {T(l‘)} Whlch
under some conditions converges to solution of gwen system ’

It
[)11 bi2 ... by b1
[)21 ])22 e 1)2,,,1 a ,82 .
B= : ,and B=1| . |,
b'n,l b'rl,‘l s b'n,'n, v /371,

iterative method (3.2.2) can be written in scalar form

:1;@ = 1)11:1:9"‘1) + ..+ bl,,:r Y 4 B,
:1:5":) :-()21:1:?“'_1) + bz,,'l -4 Ba,

.'I.T,S:‘:) - b'n,l"[’.(lk_l) + ...+ bnn ( 1) + /6”?

where k =1,2,.. .. .

One can prove (see [1]) that iterative process (3.2.2) converges if all eigenvalues
of matrix B are by modulus less than one. Taking in account that determination
of eigenvalues of matrix is rather complicated, in practical applications of method of
simple iteration only sufficient convergence conditions are examined. Namely, for matrix
B several norms can be defined, as for example,

1Bl = Y bi)?,
, ij
(3.2.3) | Bl = max D [bi;],
"

T
IBllz = Inyaxz |bij1-
’ =1

It is not difficult to prove that iterative process (3.2.2) converges if || B|| < 1, for arbitrary
initial vector (0.

3.3. Gauss-Seidel method

Gauss-Seidel method is constructed by modification of simple iterative method. As

. . . .. k .
we have seen, at simple iteration method, the value of +-th commponent .’L‘E ) of vector
(kY . . . k-1 k-1 .
7*) is obtained from values :1:5 ), . ,.'n,(,, ) , L.e.

= Z 1).,-,..,-:1:.5-]“_1) +p (i=1...,m k=12.. ).
j=1 o
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This method can be modified in this way so that for computation of L( ) are used

k e k—
all previously computed values .rg ), cey ,( )1, .'175 l), ceey uv,(lk Y and the rest will be part

of vector, obtained in previous iteratlon le

(3.3.1) (’") Zb,, +Zb,J (k= 1)+5, (i=1,....n; k=1,2,...).

Noted modification of simple iterative method is known as Gauss-Seidel method.
The iterative process (3.3.1) can be written in matrix form too. Namely, let

B =B, + B,,

where

0 0 PN 0 0 bll })12 Ce bll,,,

[)21 0 0 0 0 1)22 [)2”

1= | . , By=1 .

bﬂ, 1 b n2 b n,n—1 0 0 0 b T
Then (3.3.1) becomes
(3.3.2) #¥) = Byi® 4 By -V 4§ (k=1,2,..).

Theorem 3.3.1. For arbitrary vector #%, iterative process (3.3.2) converges then and
only then if all roots of equation

bi1 — A b2 ... bin

: ba1 A bas — A b n
det[By — (I-B)N = | . 7 =0
bnl)‘ b'n,2)\ [)'n,'n, —A

are by modulus less than one.

3.4. Program realization

Program 3.4.1. Let’s write a program for solving a system of linear equations of
form ¥ = BZ+4, by simple iteration method. Because this method converges when norm
of matrix B is less than one, for examination of this condition we will write a subroutine
NORMA, in which, depen(hng on k, are computed norms (k = 1,2, 3).in accordance with
formula (3.2.3). Parameters in list of parameters are of followmg meaning:

A - matrix stored as vector, which norm is to be calculated;

N - order of matrix;

" K - number which defines norm (K=1 ,2,3);

ANOR - corresponding norm of matrix A.

SUBROUTINE NORMA(A,N,K,ANOR)
DIMENSION A(1)
 NU=N=*N
ANOR=0
GO TO (10, 20,40),K
10 DD 15 I=1, NU ‘
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15 ANOR=ANOR+A(I)*%2
ANOR=SQRT (ANOR)
RETURN

20 DO 25 I=1,N
L=-N
S=0.

DO 30 J=1,N
L=L+N
IA=1L+T

30 S=S+ABS(A(IA))

IF (ANOR-S) 35,25,25

35 ANOR=S

25 CONTINUE
RETURN

40 L=-N
DO 50 J=1,N
S=0.

L=L+N
DO 45 I=1,N
LI=L+I

45 S=S+ABS(A(LI))

IF (ANOR-S) 55,50,50

55 ANOR=S

50 CONTINUE
RETURN
END

Main program is organized in this way that before iteration process beg,uh the
convergence is examined. Nawely, if at least one norm satisfies |Bljx < 1 (k= 1,2,3),
iterative process proceeds, ad if not, the message that convergence conditions are not
fulfilled is printed and program ferminates.

For multiplying matrix B by vector Z*+1) we use subroutine MMAT, which is

given in 2.2.5.2. As initial vector we take #(9).
As criteria for termination of iterative process we adopted

‘:1;,,(,]"') — :1:,51':—1” <eg

(i=1,...,n).

On output we print the last iteration which fulfills above given criteria.

DIMENSION B(100), BETA(10), X(10), X1(10)
OPEN(8,FILE="ITER.IN’)
OPEN(5,FILE="ITER.QUT’)
READ(8,5) N, EPS
5 FORMAT(I2,E5.0)
NN=N*N
READ(8,10) (B(I),I=1,NN), (BETA(I),I=1,N)
10 FORMAT (16F5.1)
WRITE(5,13)
13 FORMAT (1H1,5X,’MATRICA B’, 24X,’VEKTOR BETA’)
DO 15 I=1,N
15 WRITE(5,20) (B(J),J=I,NN,N),BETA(I)
20 FORMAT(/2X,4F8.1,5X,F8.1)
DO 30 K=1,3
CALL NORMA(B,N,K,ANOR)
IF(ANOR-1.) 25,30,30
30 CONTINUE
WRITE(5,35)
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35 FORMAT(5X,’USLOVI ZA KONVERGENCIJU’
1’ NISU ZADOVOLJENI’)
GO TO 75
25 ITER=0
DO 40 I=1,N
40 X(I)=BETA(I)
62 ITER=ITER+1
CALL MMAT(B,X,X1,N,N,1)
DO 45 I=1,N
45 X1(I)=X1(I)+BETA(I)
DO 55 I=1,N .
IF (ABS(X1(I)-X(I))-EPS)55,55,60
55 CONTINUE
WRITE(5,42) ITER
42 FORMAT(/3X,I3,’.ITERACIJA’/)
WRITE(5,50) (I,X1(I),I=1,N)
50 FORMAT(3X,4(1X,’X(’,I2,7)=",F9.5))
GO TO 75
60 DO 65 I=1,N
65 X(I)=X1(I)
GO TO 62
75 CLOSE(8)
CLOSE(5)
STOP
END

. _r . . . .
Taking accuracy € = 1072, for one concrete system of equation of fourth degree
(see output listing) we get the solution in fourteenth iteration.

MATRICA B , VEKTOR BETA
-.1 .4 .1 .1 T
.4 -.1 1 .1 e
.1 .1 -.2 .2 1.2
1 1 .2 -.2 -1.6

14  ITERACIJA
X( 1)= 1.00000 X( 2)= 1.00000 X( 3)= 1.00000
X( &)= -1.00000

Program 3.4.2. Write a code for obtaining a matrix S = e® where A is given
square matrix of order n, by using formula

o .
1
. A Ak
(3.4.2.1) - oh =Y AR
. k=0

Let Si be k-th partial suin of series (3.4.2.1), and Uy, its general member. Then the
equalities

(3422) . U],; == E(_/‘]ﬁﬁlA, S]‘; == S/‘;_l + Uk‘, (]1 - 1, 2, .. )

hold, whereby Uy = Sy = I (unity matrix of order n). By using equality (3.4.2.2) one
can write a programn for sununation of series (3.4.2.1), where we usually take as criteria
for termination of smmmation the case when normm of matrix is lesser than in advance
given small positive number €. In our case we will take norm ||.||2 (see formula (3.2.3))

and € = 1075,
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By using sulnoutmo MMAT for nm‘ru(es mulhphcatlon and subloutme NORMA for
calculation of m(mmx normn, we have written the following program for obtaining the

matrix e

DIMENSION A(100), s<1oo), U(100), P(100)
OPEN(8,FILE="EXPA.IN’) ‘
OPEN(5,FILE="EXPA.QUT’)
READ(8,10) N,EPS
10 FORMAT(I2,E5.0)
NN=N*N
READ(8,15) (A(I),I=1,NN)
15 FORMAT (16F5.0)
C FORMIRANJE JEDINICNE MATRICE
DO 20 I=1,NN
S(1)=0.
20 U(I)=0.
N1=N+1
DO 25 I=1,NN,N1
S(I)=1.
25 U(I)=1.
C SUMIRANJE MATRICNOG REDA
K=0
30 K=K+1
CALL MMAT(U,A,P, N N N)
B=1./K
DO 35 I=1,NN
U(I)=B*P(I)
35 S(I)=S(I)+U(I)
C ISPITIVANJE USLOVA ZA PREKID SUMIRANJA
CALL NORMA(U,N,?2,ANOR)
IF (ANOR.GT.EPS)GO TO 30
WRITE(5,40) ((A(I),I=J,NN,N),J=1,N)
40 FORMAT (2X,<5*N-9>X,’M A TR I C A A’
1 //(<N>F10.5))
WRITE(5,45) ((S(I),I=J,NN,N),J=1,N)
45 FORMAT(//<5%n-9>X,’M A TR I C A EXP(A)’
1 //(<N>F10.5))
CLOSE(8)
CLOSE(5)
END

This programm has been tested on the example

4 3 -3
A=412 3 =21,
4 4 =3

for which can be obtained analytically

3e—2 3e—-3 —-3e+3
(3.4.2.3) A=12c-2 2c0-1 =-2e+2
de—4 4e—-4 —-de+D

Output listing is of form
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MA‘TRICA A
4.00000
3.00000
-3.00000
2.00000
3.00000
-2.00000
4.00000
4.00000
-3.00000
MATRTICA EXP(A)
16.73060
14.01232
-14.01232
9.34155
12.05983
-9.34155
18.68310
18.68310
-15.96482

By using (3.4.2.3) it is not hard to prove that all figures in obtained results are
exact.

It is suggested to readers to write a code for previous problem using program
Mathematica.

3.5. Packages for systems of linear algebraic equations

For many computer-early years ago (late sixties and early seventies of previous
century) the most popular prograimn (at least at Ni§ University), linear equations solver,
was SIMQ from SSP (Scientific Subroutine Package) by IBM corporation.

Nowadays, in many cases you will have no alternative but to use sophisticated black-
box program packages. Several good ones are available. LINPACK was developed at
Argonne National Laboratories and deserves particular mention because it is published,
documented, and available for free use. A successor to LINPACK, LAPACK, is becoming
available. Packageb available commercially include those in the IMSL and NAG librar les.
One should keep in mind that the sophisticated packages are demgned with very large
linear systems in mind. They therefore go to great effort to minimize not only the
number of operations, but also the required storage. Routines for the various tasks are
usually provided in several versions, corresponding to several possible simplifications in
thefolmoftheinputcoefﬁcientmatrix:synnnetric',triangulzu',banded,positivedeﬁnite7
etc. If one has a large matrix in one of these forms, he should certainly take advantage
of the increased efficiency provided by these different routines, and not just use the
form provided for general matrices. There is also a great watershed dividing routines
that are direct (i.e., execute in a predictable number of operations) from routines that
are iterative (i.e., a’r‘rempt to converge to the desired answer in however many steps
are necessary). Iterative methods become preferable when the battle against loss of
significance is in danger of being lost, either due to large n or because the problem is
close to singular. Very interesting techniques are those the borderline between direct,
and iterative methods, namely the iterative improvement of a solution that has bcen
Obtained_by'dile(t1nft1uxls

Many commercial software packages contain solvers for systems of linear algebraic
equations. Some of the more prominent packages are Matlab and Mathcad. The
spreadsheet Excel can also be used to solve systems of equations. More sophisticated
packages, ﬂuh_dsMathematlca Macsyma, and Maple Msoconunnlnwaxequdhons
solvers.

The book Numerical Recipes [4] contains several subroutines for solving systems
of linear algebraic equations. Some algorithms, from which some are codded, are given

in book Numerical Methods for Engineers and Scientists [3] (see Chapter 1).
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Some genel al g g,tudellnes for selecting a method for solvmg> systems of lmeax algebralc '

equations are given as follows.
e Direct elimination methods are preferred for small systems (n < 50 to 100) and

systems with few zeros (nonsparse systems) Gauss elimination is the method of
choice. ' ‘

For tridiagonal systems, the Thomas algorithm is the method of chmce ([3], Cha‘pter .

1).

LU factorization methods are the 111ethods of choice when more than one vectors b
must be considered.

f‘m large systems tlmt are not diagonally d()lIllnd,Ilt the round-off errors can be
arge. :

Tterative methods are preferred for large, sparse matrices that are dlagondlly domi-
nant. The SOR (Successive-Over-Relaxation) method is recommended. Numerical
experimentation to find the optimum over-relaxation factor w is usually worthwhile

if the system of equations is to be-solved for many vectors b.
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4. Eigenvalue Problems

4.1. Introduction

An nxn matrix A is said to have an eigenvector X and corresponding eigenvalue
Aif '

(4.1.1) A% =%

Obviously any multiple of an eigenvector X will also be an eigenvector, but we won't
consider such multiples as being distinct eigenvectors. (The zero vector is not considered
to be an eigenvector at all). Evidently (4.1.1) can hold only if

(4.1.2) det |A — AT =0,

which, if expanded out, is an nth degree polynomial in A whose roots are the eigenval-
ues. This proves that there are always n (not necessarily distinct) eigenvalues. Equal

eigenvalues coming from multiple roots are called degenerate. Root searching in the
characteristic equation (4.1.2) is usually a very poor computational method for finding
eigenvalues (see [2], pp. 449-453). ,

The above two equations also prove that every one of the n eigenvalues has a (not
necessarily distinct) corresponding eigenvector: If X is set to an eigenvalue, then the
matrix A — A is singular, and we know that every singular matrix has at least one
nonzero vector in its null-space (consider singular value decomposition).

If you add 74 to both sides of (4.1.1), you will easily see that the eigenvalues
of any matrix can be changed or shifted by an additive constant 7 by adding to the
matrix that constant times the identity matrix. The eigenvectors are unchanged by this
shift. Shifting, as we will see, is an inportant part of many algorithms for computing
eigenvalues. We see also that there is no special significance to a zero eigenvalue. Any
eigenvalue can be shifted to zero, or any zero eigenvalue can be shifted away from zero.

Definitions
A matrix is called symmetric if it is equal to its transpose,
. o B .
(413) . . A=A or Q5 = Gjg-

It is called Hei'mitian or self-adjoint if it equals to the complex-conjugate of its
transpose (its Hermitian conjugate, denoted by ”1”)

A=A" or aij =a;

(4.1.4) .

45
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Tt is termed orthogonal if its transpose equals its inverse
(4.1.5) ' AT A=A-AT =]

and unitary if lth Hermitian conjugate equals its inverse. Finally, a matnx is called -
“normal if it commutes with its Hermitian conjugate,

(4.1.6) . A-AT=aAl A

For real matrices, Hermitian means the same as syminetric, unitary means the sane as
orthogonal, and both of these distinct classes are normal.

The reason that ”Hermitian” is an important concept has to do with GlgellthlG
The eigenvalues of a Hermitian matrix are all real.’ In particular, the eigenvalues of a
real syminetric matrix are all real. Contrariwise, the e1genvahws of a real nonsymmetric
matrix may include real values, but nmy also include puirs of conjugate values; and the
eigenvalues of a complex matrix that is not Hermitian will in general be complex.

The reason that "normal” is an important concept has to do with the eigenvectors.
The eigenvectors of a normal matrix with non-degenerate (i.e., distinct) eigenvalues
are complete and orthogonal, spanning the n-dimensional vector space. For a normal
matrix with degenerate cigenvalues, we have the additional freedom of replacing the
eigenvectors corresponding to a degenerate eigenvalue by linear combinations of them-
selves. Using this freedon, we can always perforin Gramm-Schinidt orthogonalization
and find a set of cigenvec tors that are complete and orthogonal, just as in the non-
degenerate case. The matrix whose columns are an orthonorinal .set of eigenvectors is
evidently unitary. A special case Is that the matrix of eigenvectors of a real syminetric
matrix is orthogonal, since the eigenvectors of that matrix are all real.

Wlhen a matrix is not normal, as typified by any random, nousymmetric, real
matrix, then in general we cannot find any orthonormal set of eigenvectors, nor even
any pairs of eigenvectors that are orthogonal (except perhaps by rare chance). While
the n non-orthonormal eigenvectors will "usually” span the n-dimensional vector space,
they do not-always do so; that is, the eigenvectors are not always complete. Such a
matrix is said to be defective.

Left and Right Eigenvectors

While the cigenvectors of a non-normal matrix are not particularly orthogonal
among themselves, they do have an orthogonality relation with a different set of vectors,
which we must now define. Up to now our cigenvectors have been colwmnn vectors that
are multiplied to the right of a matrix A, as in (4.1.1). These, more explicitly. are
termed right eigenvectors. We could also however, try to find row vectors, which
multiply A to the left and satisty

(4.1.7) i A = AT

These are called left GLQGTLUGCILOTS By taking the transpose of (4.1.7), one cau
see that every left cigenvector is the franspose of a right eigenvector of the transpose of

A. Now by comparing to (4.1.2), and using the fact that the determinant of a matrix
equals the determinant of its transpose, we also see that the left and right eigenvalues
of A are identical.

If the matrix A is synnetric, then the left and right cigenvectors ave just trausposes
of each other. that is, have the same munerical values as components. Likewise, if the
matrix is self-adjoint. the left and right elgenvectors are Hermitlan conjugates of each
other. For the general non-uormal case. however, we have the following calculation: Let
X g be the watrix formed by colunms from the right eigenvectors, and Xy, be the matrix
formed by rows from the left cigenvectors., Then (4.1.1) and (4.1.7) canl be rewritten as

(4.1.8) A-Xp=Xp diag(Ar...A,): XA =diag(h ... A,) - XL.
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Multiplying the first of these equations on the left by Xy, the second on the right by
X g, and subtracting the two, gives

(4.1.9) (Xp - Xg) - diag(Ay ... An) = diag(Ar... An) - (XL - Xg).

This says that the matrix of dot products of the left and right eigenvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrix of distinct elements are themselves diagonal. Thus, if the eigenvalues
are non-degenerate, each left eigenvector is orthogonal to all right eigenvectors except
its corresponding one, and vice versa. By choice of normalization, the dot products of
corresponding left and right eigenvectors can always be made unity for any matrix with
non-degenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvectors
corresponding to a degenerate eigenvalue must be linearly combined among themselves
to achieve orthogonality with the right or left ones, respectively. This can always be
done by a procedure akin to Gram-Schmidt orthogonalization. The normalization can
then be adjusted to give unity for the nonzero dot products between corresponding left
and right eigenvectors. If the dot product of corresponding left and right eigenvectors
is zero at this stage, then you have a case where the eigenvectors are incomplete. Note
that incomplete eigenvectors can occur only where there are degenerate eigenvalues,
but do not always occur in such cases (in fact, never occur for the class of "normal”
matrices).

In both the degenerate and non-degenerate cases, the final normalization to unity
of all nonzero dot products produces the result: The matrix whose rows are left eigen-
vectors is the inverse matrix of the matrix whose columns are right eigenvectors, if the
INVErse exists. ~

Diagonalization of a Matrix

Multiplying the first equation in (4.1.8) by Xy, and using the fact that X and
Xk are matrix inverses, we get : :

(4.1.10) X' A Xp =diag(Ar... ).
This is a particular case of a similarity transform of the matrix A,

(4.1.11) A—Z 1 A Z
for some transformation matrix Z. Similarity transformations play a crucial role in the
computation of eigenvalues, because they leave the eigenvalues of a matrix unchanged.
This is easily seen from :
det|Z71- A Z — M| =det|Z71 (A~ M) - Z|
(4.1.12) . - - =det|Z| det]A — AI| det|Z™'
' : = det]A — AI| ‘

Equation (4.1.10) shows that any matiix with complete eigenvectors (Which includes
all normal matrices and ”most” random non-normal ones) can be diagonalized by a
similarity transformation, that the colummns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse are the
left eigenvectors. : ' , : )

~ For real, symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

(4.1.13) S A-ZT-AZ
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While real nonsymmetnc matrices can be dlagonahzed in their usual case of complete .
eigenvectors, the transformation matrix 1s not necessarily real.. It turns out, however,
that a real similarity transformation can ”almost” do the job. It can reduce the matrix
down to a form with little two-by-two blocks along the diagonal, all other elements zero.
Each two-by-two block conespondb to a complex-conjugate pair. of complex eigenvalues.

The ”grand strategy” of virtually all modern eigensystem routines is to nudge the -
“matrix A towards diagonal form by a sequence of similarity tr ansformations,

APy -A-P1—>P—1-P L.A-P,- P,

(4.1.14) Lo |
- P3 -Py -P_ ‘AP, Py Py - etc.

If we get all the way to diagonal fonn then the eigenvectors are the columns of the
accumulated transformation

(4.1.15) Xp=P1-Py-Ps-

Sometimes we do not want to go all the way to ‘diagonal form. For example, if we
are interested only in eigenvalues, not eigenvectors, it is enough to transform the matrix
A to be triangular, with all elements below (or above) the diagonal zero. In this case
the diagonal elements are already the eigenvalues, as you can see by mentally evaluating
(4.1.2) using expansion by minors.

There are two rather different sets of techniques for implementing the strategy
, (4.1.14). Tt turns out that they work rather well in combination, so most modern
eigensystem routines use both. The first set of techniques constructs individual P;’s
as explicit "atomic” transformations designed to perform specific tasks, for example
zeroing a particular off-diagonal element (Jacobi transformation), or a whole particular
row or column (Householder transformation, elimination method). In general, a finite
sequence of these simple transformations cannot completely diagonalize a matrix. There
are then two choices: either use the finite sequence of transformations to go most of the
- way (e.g., to some special form like tridiagonal or Hessenberg) and follow up with
the second set of techniques about to be mentioned; or else iterate the finite sequence of
simple transformations over and over until the deviation of the matrix from diagonal is
negligibly small. This latter approach is conceptually simplest. However, for n greater
than ~ 10, it is computationally inefficient by a roughly constant factor ~ 5.

The second set of techniques, called factorization methods, is more subtle.
Suppose that the matrix A can be factored into a left factor Fy, and a right factor Fp.
Then

(4.1.16) A =F - -Fgr or equivalently FZI A =Fpg

If we now multiply back together the factors in the reverse order, and use the second
equation in (4.1.16) we get

(4.1.17) Fr-Fp=F[ ' A Fg

which we recognize as havmg) effected a similarity transformation on A with the trans-
formation matrix being Fy. The QR method which exploits this idea will be explained
later.

Factorization methods also do not converge exactly in a finite number of transfor-
mations. But the better ones do converge rapidly and reliably, and, when following an
appropriate initial reduction by simple similarity transformations, they are the methods
of choice. The presented cousiderations are very important for those dealing with dy-
namics of construction and seismic engineering, especial in the phase of modelling and
dynamic response computation.

Definitions and theorems regarding eigenvalue problem

For further considerations we need some theorems and deﬁnltlons as follows (see
(1], pp. 211-213). ;
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Definition 4.1.1. Lot A = [a;;] he complex square matrix of order n. Every vector f €
C", which is different from zero-vector, is called cigenvector of matrix A if exists scalar
A € C such that Lolds (4.1.1). Scalar \ in (4.1.1) is called corresponding eigeuvalue,
Having in mind that (4.1.1) can be presented in the form

(A - A7 =0,

we conclude that equation (4.1.1) Las non-trivial solutions (in @) then and only then if
holds (4.1.2).

Definition 4.1.2. If A is square matrix, theu polynomial A — P(\) = det(A — M) is
called characteristic polynomial, and corresponding equation P(A\) = 0 its (]muu wum(
equation.

Let A = [ai;]nxn. The characteristic polynomial can be expressed in the form

ary — A (119 NN Aip
(o1 92 — A don
P()\) : n
(hy) 1 (hn2 oy, — A
or v
P()\) — (_1)71,(/\71, o ])1>\7:,—1 _'_])2)\77.——2 — (_1>'n,—1])"_1)\ + (_1)7)‘1)”))

where pj, is sum of all principal minors of order k of determinant of matrix A, i.e.
N (LRI S?
P = E (lct(A,lh ,A)
LS’I <I_> <<’IA SH
Note that

Th '
P = Z aj; = tr A and p, = det(A).

i=1
Often, in place of‘(:hai'a(:tm-isti(: polynomial P is used so known normed characteristic
polynomial H, defined by

HO) = (=D"PA) = A" = pr A" oA 72 — o (= 1)"p,,.
Eigenvalues of matrix A (i.c. zeros of polynomial P) A\;(1 = 1,...,n) will be

denoted as A;(A). :

Definition 4.1.3. The set of all eigenvalues of square matrix A is called spectrum of
that matrix and denoted with Sp (A )

Definition 4.1.4. S])(n(,f?l‘dl radius p(A) of square matrix A is munber
P(A) = max |\ (A)].

Theorem 4.1.1. Every matrix is, I matrix sense, null of its characteristic polynomial.
This theorem is known as Cayley-Hamilton theorem.
Theorem-4.1.2. Let A\i....,\, be eigenvalues of matrix A = lai;] of order n and
1 — Q(x) scalar polynomial of degree m. Then
| 62()\1)7(2(/\!))
are eigenvalues of matrix Q(A). .
Theorem 4.1.3. Let )\1 -, An_be elgenvalues of regular matrix A of order n. Then
| | A;l,...,A,,;l
are eigenvalues of matrix AL,
Theorem 4.1.4. Eigenvalues of triangular matrix are equal to diagonal elements.

4 The following theorein gives recursive procedure for ob’rdmmg Ch(n acteristic poly-
: 1101111&1 of tr 1(11&;,011(11 matrix.
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»Theorem 4.1.5. Let .

bl C1 0 ... 0
' ~lag by Co 0 ‘ _ = o
Ap=| . | and  Hg(\) = (—1)* det(Ay, — AI).
0 0 0 b | | |

Normed characteristic polynolmal A= H(A\) (= Hn(A)) of matrix A(= A,) is to be
obtained by recursive procedure g

Hi(A) = (A = b)) Hi—1(A) — ax_1cx-1Hioa(\) (K =2,...,n),

where Ho(A) =1 and Hy(A) = X\ —by._
Definition 4.1.5. For matrix B one says to be similar to matrix A if there exists at
least one regular matrix C such that

B=CAC.

Theorem 4.1.6. Similar matrices have identical charactensmc polynomials, and there-
with identical eigenvalues.

4.2. Localization of Eigenvalues

A lot of problems reduce to eigenvalue problem. Here we will give some results
regarding localization of eigenvalues in complex space (see [1], pp. 290-292).

Theorem 4.2.1. (Gershgorin). Let A = [ai;]nxn Square matrix of order n and C; (i =
' n
1,...n) discs in complex space with centers in a;; and radiuses r; = Y |a,jl, ILe.

J_
e
C, = {z | \z - (1,,,;.,;| < 7'7;} (7, =1,... ,n).

" If we denote with C union of these discs, then all eigenvalues of matrix A are in C.

Remark 4.2.1. Regarding fact that matrix AT has same eigenvalues as matrix A, on
the basis of previous theorem one can conclude that all eigenvalues of matrix A are
located in the union of D discs

" Dj={z|lz—aj|<s;} (G=1,...,n), |
n
where s; = > |aijl.
~
i%]

Based on previous one concludes that all eigenvalues of matrix A lie in the cut of
sets C and D.

Theorem 4.2.2. If'm discs from Theorem 4.2.1. form connected area which is isolated
from other discs, then exact m eigenvalues of matrix A are located in this area.

The proof of this theorem could be found in extraordinary monograph of Wilkinson

[7].
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Example 4.2.1.

Take matrix

1 0.1 -0.1
A= 0 2 0.4
-02 0 3

Based on theorem 4.2.1 eigenvalues are located in discs
Cr={z]z-1]<02}, Co={z]||z—-2]<04}, C3={z]|]z-3|<0.2}.

Note that, based on remark 4.2.1., it follows that discs D;, Dy, D3 have radiuses
0.2,0.1, 0.5, respectively. By the way, the exact values of eigenvalues, given with seven
figures, are A\; = 0.9861505, Ay = 2.0078436, A3 = 3.0060058, and normed characteristic
polynomial is '

H(\) = A3 — 6A% +10.98) — 5.952.

Theorem on localization of eigenvalues has theoretical and practical importance (for
example, for determining initial values at iterative methods, for analysis at perturbation
problems, etc). ‘

For determining eigenvalues there are a lot of methods, whereby some of them
enable finding of all eigenvalues, and others only some of them, for example, dominating
ones, i.e. with maximum modulus. Some of methods perform only determination of
coefficients of characteristic polynomial, so that some of methods for solution of algebraic
equations have to be used (see Chapter 5). Such approach is not recommended, being in
most cases numerically unstable, i.e. ill-conditioned. Namely, because the coefficients
of characteristic polynomials are, in general, subjects to round-off error, due to ill-
conditioning of characteristic polynomials, the big errors in eigenvalues occur.

4.3. Methods for dominant eigenvalues

Very often, in many applications (i.e. in dynamic of constructions), one needs only
maximal (by module) eigenvalue and corresponding eigenvector.

Let Ai,..., A, be eigenvalues and #1,..., T, corresponding eigenvectors of matrix
A = [(J'ij]'n.(xn' If . ) :
!)\1’ = ... = |)\,| > ‘A7.+1‘ Z ce e Z |)\"‘

we say that Aq,..., A, are dominant eigenvalues of matrix A. In this section we will
consider a method for determination of dominant eigenvalue and corresponding eigen-
vector, as well as some modifications of this method. We suppose that eigenvectors are
linearly independent, forming a basis in R™. Therefore, the arbitrary non-zero vector
Up can be expressed as ’ ~

. n ‘
431 L= o,
' i=1

where «; some scalars. Define now the iterative process
T = ATy_1  (k=1,2,...).
Then
. . n
i v'—; . 2[—; v . . k;’—a _ Ak;—p
U = AUp_1 = A%Up_o = ... = A%y = a; AT,

=1

or, regarding to ‘(4.3.‘1) and assertion Qf Theorem 4.1.2,

(4.3.2) U= ) AT
N ' o B i=1
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- The special interesting case here is when one dominant eigenvalue Ay (r = 1) exists.
Assuming oy # 0 on the b(ms of (4.3.2) we have

(yl . A;/d -
Ay = (Y1)\ (1 + Z ) = a1 A\{ (T + &),
vy /\1 . ) ‘

where €, — 0, when & — 4o00.
Introduce now notation (%), for i-th coordinate of some vector 7. Then i-th coor-

dinate of vector oy, is :
(ﬂ) = ar Xy ((F1)i + (&k)i)-
Because of
Tyt = an \VTH(E + Eh+1),

based on previous, for every 4 (1 <14 < n) we have

(Vk+1)i (T1)i + (E'i;:+1)¢ S
= A1 k — .
(0 )i G NG A (k= foo)

Based on this fact, the method for determination of dominant eigenvalue Ay, known
as power method, can be formulated. Vector @}, is thereby an approximation of non-
normed eigenvector which corresponds to dominant eigenvalue*. By practical realization
of this method the norming of eigenvector is perforined, i.e. of vector v}, after every
iteration step. Norm-setting is performed by dividing vector 4, by its coordinate with
maximal module. So, power method can be expressed by

Zy = Alk—1, Uk = Zi/ ks

where -y, is coordinate of vector Z; with maximal module, i.e., v, = (Z); and |(Zx)i] =
i
|2k |l. Note that vx — Ay and 7y — W when k£ — +o0.
L1 oo .
Speed of convergence of this method depends on ratio |A;/Az]. Namely, it holds

(4.3.3) AL — ] = (lﬁl‘)

Note that by deriving of this inethod we suppose that a # 0, meaning that method
converges if A1 is dominant eigenvalue and if initial vector ¥y has a component with same
direction as eigenvector #7. On behavior of this method without those assumptions
one can find in the monograph of Wilkinson [7, p. 570] and Parlett and Poole [11].
Practically, due to round-off errors in iterative process, the condition oy # 0 will be
satisfied after few steps, although starting assumption for vector vy not being fulfilled.

Example 4.3.1.
Let
—261 209 —49
A= |-530 422 -98 |,
—-800 631 —144

with eigenvalues A\; = 10, Ay = 4, A3 = 3.
By taking for initial vector @y = [0 0 ~— 1]7, by power method we get the results
given in Table 4.3.1.

*If 7 eigenvector, then ¢ (¢ # 0) is also eigenvector corresponding to the same
elgenvalue. ‘ .
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Table 4.5.1 - o
k Vi (Uk)1 (T)2 (k)3
1 144.0000 0.340278 | 0.680556 1.
2 13.2083 0.334911 0.669821 1.
3 10.7287 0.333774 | 0.667549 1.
4 10.2038 0.333463 | 0.666926 1.
5 10.0599 0.333372 0.666744 1.
6 10.0179 0.333345 0.666690 1.
7 10.0054 0.333337 | 0.666674 1.
8 10.0016 0.333334 | 0.666669 1.
9 10.0005 0.333334 0.666667 1.
10 10.0001 0.333333 | 0.666667 1.
11 10.0000 0.333333 | 0.666667 1.

Because of linear convergence of the power method, for convergence acceleration
the Aitken §%2 method can be used. A simple method for convergence acceleration is
given in [1], pp. 303-305.

4.4. Methods for subdominant eigenvalues

Suppose that eigenvalues of matrix A are ordered in a way
A1l > [Ag| >0 > A

In this section the methods for determination of subdominant eigenvalues, i.e.
A2, Az, ..oy A (< n) will be considered. The three methods will be explained
1. Method of 01‘rhogonahzat10n Suppose, at first, that matrix A is bymmetuc
and that eigenvector #; which corresponds to dominant elgenvalue A (JA] > [, o=
2,...,n) has been determined by, for example, power method. Starting with arbitrary
vector Z, let us form vector ¥ which is orthogonal to vector Z;. So we have (see
Gram-Schmidt’s method of orthogonalization)

L. (B
4.4.1 - S — <
ey e

)_\

Because of (7, #1) = 0, from theoretical point of view, the series 7, = At (k =
1,2,...) in the power method could be used for ‘determination of Ay and corresponding
elgenve( tor Zo. Nevertheless, regardless of fact that 7y does not have the component
in direction of eigenvector iy, power method would, because of round-off errors, after
some number of iterations, converge toward 01genvect01 Z1. This fact was mentioned in
the previous section.
It is possible to ehmmate this influence of round-off errors using so known periodical
"purification” of vector uo from component in dllectlon of # Ty. That means that, after,
say, r steps, we compute Uy using ¥, in place of Zin (4.4.1), i.e. by means

— — (Il_”l') fl) —
Vy = Uy — ('f /Fl) xLy.
. ;1’ s

In this way, if the period of " purification” is small enough so that it cannot happen sig-
nificant acc umulatlon of round-off error, by power method can be determined elgenvalue
A2 and eigenvector 7.

By contmuahon of thls p10( edure we can further determine Az and Ts.
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Generally, if we determine Aq, ... )\,, and corresponding vectors Iy, ..., &, (v < m)
it 1s possible to determine Ap+1 and T, 1 using power method by forming vector ¥
orthogonal to &, ..., Z,. So, starting from axbltmw vector Z, we have

14 — = T

. ' ‘ L 27
(4.4.2) Uy =7 — E —(-(_A—,(;%))-.’II,,;,
b

=1
meaning that vector ¥y has components only in direction of residual eigenvectors, i.¢.
Vo = V141 + ...+ ayT,.

Power method applied to 9y gives 41 and X,11 in absence of round-off errors. Being
not the case, it is necessary frequent ”purification” of vector vy from components in
direction 71, .. ’1,,, In other WOlds, aftel 1 steps, one should determine again 7 using
(4.4.2), by uslng ¥, in place of Z.

Also, in the case when matrix A is not symme’rU( but has complete system of
eigenvectoxb the given orthogonalizing procedure can be applied.

2. Inverse iteration method. This method is applied to general matrix A and is

based on solution of system of equations

(4.4.3) , (A - pD)vy, = Tp—1,

where p is constant, and vy arbitrary vector. System (4.4.3) is usually to be solved by
Gauss method of elimination or Cholesky method by factorization of matrix B = A —pl.
Note that the method of inverse iteration is equivalent to the power mcthod applied
to B. Therefore, by applying nrethod of inverse iteration the dominant /eigenvalue of
matrix B is obtam(‘,d, ie. p, = 1/(A, — p) for which it holds

min[A; —p| = [A, —pl.
3 ‘

Eigenvalue A, is closest eigenvalue of matrix A to the number p. Eigenvector obtained
thereby is the same one for matrices B and A.

By convenient. choice of parameter p all eigenvalues of matrix A can be, in principle,
obtained.

Similar to power method, here is also suitable to perform norming of vector @, so
that we have

(444) ) BEA - (l_)'/.:—l-, IUI.: = gk:/fyk.?

where v, 1s coordinate of vector 2z, with greatest module.
Example 4.4.1.

Using method of inverse iteration for matrix

A=)1 10 1],
4 1 10

we will determine cigenvalue closest to munber p = 9, as well as corresponding eigen-
vector.
Using factorization by Gauss method w1th pivoting for matrix B = A — 91, we get,

LR = PB,
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where
1 0 0 -5 1 4
L=|-4/5 1 0|, R=1]0 9/5 21/5
-1/5 2/3 1 0 0 -1

and permutation matrix P defined by index sevies I = (1, 3).
The method of inverse iteration (4.4.4) can now bhe expressed in the form

L:l/l.: = V-1, RZk: = ',’7/":3 'l_;k; - Zk:/’)//'.:)

by which application the results given in Table 4.4.1 are obtained.

Table 4.4.1
k ('JL;) 1 (ﬁk:)'z (/Uk:)B /Bli:
1 0. 1 -1. 6.
2 —0.2 1 -0.5 9.3
3 —0.17241 1. —0.48276 9.34483
4 —0.17200 1. —0.48000 9.34800
) —0.17185 1 —0.47980 9.34835
6 —0.17184 1 —0.47977 9.34838

For initial vector we took 0y = (1 0 0]7. In the last column of table is given the
quantity B, = p+ 1/, which gives approximation for corresponding eigenvalue A. One
can see that this eigenvalue has approximate value 9.34838.

3. Deflation methods. The methods of this kind are composed from construction
of sequence of ma‘rll( es A, (= A), A, _1,..., Ay, which order is equal to index and

thereby : ,
Sp(A,) DSp(A,_1) DD Sp(Ay),

where Sp (Ag) denotes spectrun of matrix Ay,

We will describe now a special and important case of deflation inethod, when matrix
A is Hermitian. _

Let @ = [11 29...2,]7 be eigenvector of matrix A corresponding to eigenvalue A
and normed ’

(#,7) = 7 = |l =1

with first coordinate w1 being nonneg,atw(,
Have a look over matrix

(4.4.5) - P =1- 20,

where the vector @ = [wy wy ...w,]7" is defined by first vector & = [10 ... 0]7 from
natural basis of space R™ in the following way:

(4.4.6) S i = |7 % — ., w, >0,

=l

(4.4.7) ' - Pe =
The matrix P is of form
T1—2wiw, —2wiws ... — 21 W,

=2wewy 1= 2wos —2wWotly,

—2w, Wy - —2wpths 1 — 2w, Wy,
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Note that P* = P. what means that wmatrix P is Hermitian, too. Moreover,
regarding to (4.4.6), by direct multiplication we sce that

] 2
P'P=P° =1,
and conclude that matrix P is unitary. , ,
Based on (4.4.7) we fiud coordinates of vector w. So, from 1 — 2w, = x1 and

—2wyvy =xp, (k=2,...,n) it follows

Ly

1—a
— and wp = — (k=2,...,n).

2 2uny

w1 =

Note that w1 = wy > 0.

Now, based on (4.4.7) and A% = AT we find that AP& = Peéy, wherefrom we
conclude that P*APa; = Aéy; e €18 eigenvector of matrix B = P*AP = PAP.
Note, also, that first column in matrix B is just vector Aep, l.e.

A b /)1.3 b

0 bas o3 Doy, -
B=|0 bz b33 ban | = [4)‘ bru } _

. 071.——1 A‘II.—l /

0 b 12 b n3 h T8,

where with A,,_; we denoted matrix of order 1 — 1 which matches with enclosed block.

0,1 is zero-vector of order n — 1, and, finally, bT | = [byg big -~ b1,) T
Regarding the fact that matrix B is similar (we say also unitary similar) to matrix
A, we conclude that

Sp(An—1) = Sp(A)\(A) (A, = A).

In order to get matrix A, _s we arc proceeding in a similar way. In place of matrix P
we use matrix

b1 0L
O'H,——l Q /

where matrix Q is of order . — 1 and of form (4.4.5), satisfying the conditions (4.4.6)
. . . . . . oy —1
and (4.4.7) regarding cigenvector 7 and eigenvalue v of matrix A,,_;. Because of P} =
¥ =Py we conclude that matrix Py 1s unitary, too.
Now matrix C = P1BP; = P{PAPP; Las a form

M A ‘ (12 €13 ° Clp | [ A C12 (13 s Ciy |
() /i 23 Gy, 0 Ji 93 Co,
C = 0 0 33 3y, — |0 0 7
A'n.—2
LO 0 ¢ comd L0 0 ]

where matrix A,,_s is of order » — 2. By continuing this procedure we get upper
triangnular matrix which is wnitary similar to initial matrix A. Having in mind that
matrix A is Heritian, we conclude that it is unitary similar to diagonal matrix.

The presented procedure demands. before of every step, determination of one eigen-
value and corresponding cigenvector, what can he done by some of previously presented
methods. Thus, before the fivst step. one has to detenniue eigenvalue A and eigenvector
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T of matrix A, before the second step eigenvalue p and eigenvector i of matrix A
and so on.

[t is clear that eigenvalues of matrix A are diagonal elements of obtained triangular
matrix, L.e. Ay = A, Ay = pu, ete. It remains the question what is with eigenvectors of
matrix A7 It is clear that 7y = #. We will show how, based on obtained results, the
second eigenvector of matrix A can be found.

If the coordinates of eigenvector if are yq, . . ., y,, in order to find, at first, eigenvector
' of matrix B, put ¥/ = [y1 y2 ...yn]T and try to determine y;.

Because of
B'IT) — [_')‘ bvr{—l- } _ [l‘/l} _ [)\‘,01 + E,,T_ljlj}
’ 07:.—1 An—-l Y An——lﬁ ’

n—1,

l.e.

B'{7, — )\7/1 + I)’IT— 117
: py ’

it follows -
Y1+ bp 10 =y1.
It A # p, by virtue of previous equality we get
1

1 = ———-6T ’r:
Y1 X — n—1Y A— 1

([)1221/2 + -+ blnyn)-

Now simply find the eigeuvector @z of matrix A, corresponding to eigenvalue Ay # p.
Indeed, because of PAPY' = ug’, i.e. A(Py') = u(Py’) we conclude that Z; = Py’.
In a similar way the other eigenvectors can be determined. :
4.5. Eigenvalue problem for symmetric tridiagonal matrices

Let A be real syminetric tridiagonal matrix of order n which non-zero elements

will be denoted as ‘
iy — [)1; (’L = 1, e ,’I'L),

Qi1 =01 =0 (1=2,...,n).

With pr(A) denote main minor of-order & of matrix A — AL, ie.

])1 — A Co
Co l)g - A C3 O
pk()\) =
0 CCk—r D1 — A ok
o Ok bk: - A

and define po(A) = 1. Note that py(A) = by — A.
-~ By developing of determinant pj(A) up to elements of last row we get

Pi(A) = (b = N)pr-1(A) ~ c2pr_a(N).

~ The value of characteristic polynomial of matrix A can be simple evaluated, based on

previous, using three-term recurrence relation

(4.5.1) e\ = (b = Npe—1(A) = cEpp_a(A) (k=2,...,n),
_ : poA) =1, pr(A)=0b1— A :

A simple method for determination of eigenvalues of symmetric tridiagonal matri-
- ces is based on usage of recurrent relation (4.5.1), method of interval bisection, and
statement of the following theorem, which is simple to prove: -
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Theorem 4.5.1. (Givens) Let all e]ementq cp 0 of symmefnc t11d1ag011a1 matrix A
of order n. Then it holds:

(1) Zeros of every polynomial py (k = 2,...,n) are real, different, and Separated Dby
zeros of polynomial py_1;

(2) If pn(A) # 0, number of eigenvalues of matrix A less than )\ is equal to number of
sign change 5()\) in the series :

(4.5.2) S g pi(A),'---,pn(A).

If some py(A) = 0, then on this place in series (4.5.2) can be taken arbitrary sign,

regarding to py 1()\)[44_1()\) < 0. :

Remark that in theorem there exists condition ¢, # 0 for every k = 2,. L I
for example, for some k = m, ¢, = 0, then problem simplifies, because it sphts in two
problems of lower order (m and n — m) Namely, matrix A becomes

A" o
== O A// 9

where A’ and A" are tridiagonal syminetric matn( es of order m and n—m, respectively,
and in this case is

det(A — AI) = det(A’ — AT) det(A” — AI).

Using multiple values for A it is possible by systematic application of Theorem 4.5.1
to determine disjunct mtelvals in which he eigenvalues of matrix A. Thus, if we find
that

s(Ad1) =351 and  s(A2) =sa=s14+1 (A1 < Ag),

based on Theorem 4.5.1 we have that in interval (A1, A2) lies one only eigenvalue of
matrix A. Then for its determination the simple method of halving of interval (bisection
method) can be used, by contraction of this starting interval up to desired exactness.

For determination of intervals in which lie eigenvalues it can be used also theorem
of Gershgorin, so that those intervals are

[])1 — \(,‘2‘, l)l + ‘CQH,

[0; — |cil = |civ1ls bi + lei] +civr]], ((=2,...,n—1),

(D = enl, b+ |cnl]-
Unfortunately, these intervals are not disjunct, and in general case contain not only one
eigenvalue of matrix A.

Example 4.5.1.

For given matrix.

—
DN o

W Ut o
~ w

we have

po(A) =1, pr(A) =1 =X, pa(A) = (3= A)p1(A) = po(N),
p3(A) = (5 = Np2(A) = 4dp1(A), pa(X) = (7 = N)ps(A) = 9Ip2(N).

Let A = 0. Then we have po(0) = 1, p1(0) = 1, pa(0) = 2, p3(0) = 6, p4(0) = 24.
Thus, in the series (4.5.2) are ++ + + 4, what means that there | is no sign change, i.c.
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$(0) = 0. According to Theorem 4.5.1, matrix A does not have negative eigenvalues,
i.e. it is positive-definite.

Taking in sequence for A values 1,2,4,5,7,9,10 we get the results given in Table
4.5.1.

Table 4.5.1
X o) | m) | ) | ps) | ped) | sO)
1 1 0 -1 —4 —15 1
2 1 -1 -2 | =2 8 2
4 1 -3 2 14 24 2
) 1 —4 7 16 —31 3
7 1 -6 23 —22 —207 3
9 1 -8 47 —156 —-111 3
10 1 -9 62 —274 264 4

Based on values of s()\) we conclude that in each interval (0,1),(1,2), (4, 5), (9, 10)
is located one eigenvalue of matrix A. These eigenvalues with six figures are »

A1 =20.322548, A =2 1.745761, Ay = 4.536620, A; = 9.395071.
Note that these are zeroes of Laguerre polynomial Ly.

4.6. LR and QR algorithms

This section is devoted to so known factorization methods. First such method for so-
lution of problem of eigenvalues for arbitrary matrix A was described by H. Rutishauser
([14]) in the year 1958, which called it LR transformation. Method consists in construc-
tion of series of matrices { Ay }ren, starting from A; = A, in the following way: Matrix
A factorizes to lower triangular matrix L with unit dlagonal and upper triangulayr
matrix Ry, i.e.

(4.6.1) | Ay =L,Ry,

and then the following member is ; determined by multiplication of obtained factors in

opposite sequence, 1.e.

Note that matrices Ay and Ay are smnlcu because they are connected with trans-
formation of similarity

(4.6.2) o A = LA Ly

Factorization of (4.6.1) can be performed by Gauss method of elimination.
If we put o
| L® =L;...L; and R®=Ry...Ry,

based on (462) we have :
- L") Agyr = ALK,

wherefrom it follows .
LOORE) — L1 A, RFD = ALG-DRAD,
By iterating the last equality, we get

LORE = A2LE-2RE-D = | = AF,
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what means that L&RK) is factorization of matrix A*. Using this facts, Rutishauser
(see, also [7]) showed that under certain conditions series of matrices {Ay} converges
towards some upper triangular matrix, which elements on the main diagonal give eigen-
values of matrix A. Usually, LR miethod is applied to matrices previously reduced to
upper Hessenberg form (a;; = 0 for ¢« > j +2). If, by means of some method, general
matrix reduced to lower Hessenberg form we apply LR method to transposed matrix,
which has the same eigenvalues. All matrices in series {Aj} have Hessenberg form.
Acceleration of convergence of series {Ay} can be done by convenient shifting py, so
that, in place of Ay we factorize By, = Ay —prl = LRy, whereby Axi1 = ppl+ Ry Ly.

Unfortunately, LR algorithm has several disadvantages (see monograph of Wilkin-
son [7]). For example, factorization does not exist for every matrix. One better factor-
ization method was developed by J.G.F. Francis ([15]) and V.N. Kublanovskaya ([16]),
{;Vhere matrix L is replaced with unitary matrix Q. So one gets QR algorithm defined

v | .

(463) Ay = QrRy, Ak:—}-_ﬂl/ : chQk (k =12.. ')a
starting from A; = A. Note that Ay = QrALQk.

If we put ‘ o
(4.6.4) Q® =Q;...Q, and RW® =R, ...Ry,

similar as LR method, we find
(4.6.5) Q™AL =AQW and QWRM = Ak

Theorem 4.6.1. If matrix A regular, then exists decomposition A = QR, where Q
is unitary, and R upper triangular matrix. Moreover, if diagonal elements of matrix R
are positive, decomposition is unique.

QR factorization (4.6.3) can be performed by using unitary matrices of form I —

—

2ww*. So, in order to transform Ay to Ry, i.e. reduction of columns to Ay, we have
(4.6.6) ' (I - 2@, 1w _1) ... (I —2w107) Ay = Ry

The matrix Qy is then |

(4.6.7) Q= I -2wy@7) ... (X — 2w, 1wy _y).

QR algorithin is efficient if initial matrix has (upper) Hessenberg form. Then, pre-
viously mentioned unitary matrices reduce to two-dimensional rotations. All matrices
A, are of Hessenberg form. Thus, eigenvalue problem for general matrix is most con-
venient to be solved 1n two steps. At first, reduce matrix to Hessenberg form, and then
apply the QR algorithm.

In special case, when initial matrix is tridiagonal, matrices Ay in QR algorithin
are also tridiagonal. In that case, using conveniently chosen shift py, QR algorithm
becomes very efficient for solving eigenvalue problem of tridiagonal matrices.

Similar to QR algorithm, it is developed QL algorithm ([18]), where L is lower
triangular matrix, and Q unitary matrix. Also, it has been developed so known implicit

QL algorithm ([19]).

4.7. Software eigenpackages

Some general guidelines for solving eigenproblems are summarized helow [22].

e When only the largest and (or) the smallest eigenvalue of a matrix is required, the
power method can be employed.

e Although it is rather inefficient, the power method can be used to solve for inter-
mediate eigenvalues. .
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e The direct method is not a good method for solving linear eigenproblems. However,
it can be used for solving nonlinear eigenproblems.

e For serious eigenproblems, the QR method is recommended.

e Digenvectors corresponding to a known eigenvalue can be determined by one ap-
plication of the shifted inverse power method.

Almost all software routines in use nowadays trace their ancestry back to routines
published in Wilkinson and Reinsch’s boock Handbook for Automatic Compu-
tation, Vol. II, Linear Algebra [13]. A public-domain implementation of the
Handbook routines in FORTRAN is the EISPACK set of programs [3]. The routines pre-
sented in majority of most frequently used software packages are translations of either
the Handbook or EISPACK routines, so understanding these will take a lot of the way
towards understanding those canonical packages.

IMSL [4] and NAG [5] each provide proprietary implementations in FORTRAN of what
are essentially the Handbook routines.

Many commercial software packages contain eigenproblem solvers. Some of the
more prominent packages are Matlab and Mathcad. More sophisticated packages, such
as Mathematica, Macsyma, and Maple also contain eigenproblem solvers. The book
Numerical Recepies [2] contains subroutines and advice for solving eigenproblems.

A good "eigenpackage” will provide separate routines, or separate paths through
sequences of routines, for the following desired calculations

e all eigenvalues and no eigenvectors
e all eigenvalues and some corresponding eigenvectors
e all eigenvalues and all correspouding eigenvectors.

The purpose of these distinctions is to save compute time and storage; it is wasteful
to calculate eigenvectors that you don’t need. Often one is interested only in the eigen-
vectors corresponding to the largest few eigenvalues, or largest few in the magnitude,
or few that are negative. The method usually used to calculate "some” eigenvectors is
typically more efficient than calculating all eigenvectors if you desire fewer than about
a quarter of the eigenvectors.

A good eigenpackage also provides separate paths for each of the above calculations
for each of the following special forms of the matrix:

e real, symmetric, tridiagonal
real, symmetric, banded (only a small number of sub- and super-diagonals are
nonzero) '
real, syminetric
real, nonsymmetric
complex, Hermitian
complex, non-Hermitian.
Again, the purpose of these distinctions is to save time and storage by using the
least general routine that will serve in any particular application.
Good routines for the following paths are available:
all eigenvalues and eigenvectors of a real, syminetric, tridiagonal matrix
all eigenvalues and eigenvectors of a real, symmetric, matrix
all eigenvalues and eigenvectors of a complex, Hermitian matrix
all eigenvalues and no eigenvectors of a real, nonsymmetric matrix.

4.8. Generalized and nonlinear eigenvalue problems

Many eigenpackages also deal with the so-called generalized eigenproblem [6],
(4.81) | A-%=AB %

where. A" and B are both matri¢es. Most such problems, where B is-nonsingular, can
be handled by the equivalent ‘

(4.8.2) o (B™1.A)-F=\F
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Often A and B are symmetrig aud B is positive (1(=f1n1to The matrix B~ . A in
(4.8.2) is not symmetric, but we can recover a symmetric eigenvalue problem by using

the Cholesky decomposition B = L- LT, Multiplying equation (4.8.1) by L1 we get

(4.8.3) | CC (LT 7)) = MLT - 3)
where
(4.8.4) S C=L"t A LY

The matrix C is symietric and its eigenvalues are the same ag those of the original
problem (4.8.1); its eigenfunctions are LT . 2. The efficient way to form C is first to
solve the equation ' .

(4.8.5) YL =aA
for the lower triangle of the matrix Y. Then solve
(4.8.6) L-C=Y

for the lower triangle of the symmetric matrix C.
Another generalization of the standard eigenvalue problem is to problems nonlinear
in the eigenvalue A, for example,

(4.8.7) (AN +BA+C)- =0

This can be turned into a hn(‘(u problem by introducing an additional unknown
eigenvector i and solving the 2n x 2n eigensystein,

0 I Tl A T
—ATh.C —ATHB] |y o T al

This technique generalizes to higher-order polynomials in A. A polynomial of degree
m produces a linear mn X man elgensystem, as given in 7).
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LESSON V

5. Nonlinear Equations and Systems

5.1. Nonlinear Equations

5.1.0. Introduction

We consider that most basic of tasks, solving equations numerically. While most
equations are born with both a right-hand side and a left-hand side, one traditionally
moves all terms to the left, leaving

(5.1.0.1) flz)=0

whose solution or solutions are desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function. Figure
5.1.0.1 illustrates the problemn graphically.

f(x)1

u,\ ay x
. fop=0 flag)=0

Figure 5.1.0.1

With more than one independent variable, more than one equation can be satisfied
~ simultaneously. You likely once learned the implicit function theorem which (in this
context) gives us the hope of satisfying n equations in n unknowns simultaneously.
'Note that we have only hope, not certainty. A nonlinear set of equations may have no
(real) solutions at all. Contrariwise, it may have more than one solution. The implicit
function theorem tells us that generically the solutions will be distinct, pointlike, and
“separated from each other. But, because of nongeneric, i.e., degenerate, case, one can
get 3 continuous family of solutions. In vector notation, we want to find one or more
n-dimensional solution vectors i such that

(5.1.0.2) - | fl@) =0

where f is the n-dimensional vector-valued function whose components are the individ-
ual equations to be satisfied simultaneously. -Simultaneous solution of equations in n
dimensions is much more difficult than finding roots in the one-dimensional case. The
principal difference betweén one and many dimensions is that, in one dimension, it is

65
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possible to bracket or ”tr ap” aroot be’rween bxacketlng values and then find it out d1—
rectly. In multidimensions, you can never be sure that the 1oot is there at all until you
have found it. Except in linear ploblems root finding invariably proceeds by iteration,
and this is equally true in one or in many dimensions. Starting from some appr OXlIIldt(—‘
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satistied. For smoothly varying functions, good algorithms will
always converge, provided that the initial guess is good enough. Indeed one can .even
determine in advance the rate of convergence of most algorithins. It cannot be overem-
phasized, however, how crucially success depends on having a good first guess for the
solution, espeually for multidimensional problems. This crucial beginning usually de-
pends on analysis rather than numerics. Carefully crafted initial estimates reward you
not only with reduced computational effort, but also with understanding and increased
self-esteem. Hamnnngs motto, "the purpose of computing is insight, not numbers,”
is particularly apt in the area of finding roots. One should repeat this motto aloud
whenever program converges, with ten-digit accuracy, to the wrong root of a problem,.
or whenever it fails to converge because there is actually no root, or because there is
a root but initial estimate wag not sufficiently close:to it. For one-dimensional root
finding, it is possible to give some straightforward answers: You should try to get some
idea of what your function looks like before trying to find its roots. If you need to
mass-produce roots for many different functions, then you should at least know what
some typical members of the ensemble look like. Next, you should always bracket a root,
that is, know that the function changes sign in an identified interval, before trying to
converge to the roots value. Finally, one should never let iteration method get outside
of the best bracketing bounds obtained at any stage. We can'see that some pedagogi-
cally important algorithins, such as secant method or Newton-Raphson, can violate this
last constraint, and are thus not recominended unless certain fixups are hmplemented.
Multiple roots, or very close roots, are a real problem, especially if the multiplicity is
an even nunber. In that case, there may be no readily apparent sign change in the
function, so the notion of bracketing a root and maintaining the bracket becomes diffi-
cult. We nevertheless insist on bracketing a root, even if it takes the minimumn-searching
techniques to determine whether a tantalizing dip in the function really does cross zero
or not. As usual, we want to discourage the reader from using routines as black boxes
without undms’randmg them.

v / ' f(M
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Figwre 5.1.0.2

Nonlinear equations can behave in various ways in the vicinity of a root. Algebraic
and transcendental equations may have distinct (i.e. simple) real roots, repeated (i.c.



Lesson V - Nonlinear Equations and Systems 67

multiple) real roots, or complex roots. Polynomials may have real or complex roots.
If the polynomial coefficients are all real, complex roots occur in conjugate pairs. If
the polynomial coefficients are complex, single complex roots can occur. Figure 5.1.0.2
illustrates several distinct types of behavior of nonlinear equations in the vicinity of a
root. (a) illustrates the case of a single real root, called simple root. (b) illustrates a
case where no real roots exist. Complex roots may exist in such a case. Two and three
simple roots are showed on (c¢) and (d), respectively. Two and three multiple roots are
illustrated on (e) and (f), respectively. A case with one simple root and two multiple
roots is given in (g), and in (h) is illustrated the general case with any number of simple
and multiple roots.
There are two distinct phases in finding the roots of nonlinear equation (see [2],

pp. 130-135):
Elg Bounding the solution, and

2) Refining the solution. :

f In general, nonlinear equations can behave in many different ways in the vicinity
of a root.

(1) Bounding the solution

Bounding the solution involves finding a rough estimate of the solution that can
be used as the initial approximation, or the starting point, in a systematic procedure
that refines the solution to a specified tolerance in an efficient manner. If possible, it
is desirable to bracket the root between two points at which the value of the nonlinear
function has opposite signs. The bounding procedures can be:

1. Drafting the function,

2. Incremental search,

3. Previous experience or similar problem,

4. Solution of a simplified approximate model.

Drafting the function involves plotting the nonlinear function over the range of
interest. Spreadsheets generally have graphing capabilities, as does Mathematica,
Matlab and Mathcad. The resolution of the plots is generally not precise enough for
accurate result. However, they are accurate enough to bound the solution. The plot
of the nonlinear function displays the behavior of nonlinear equation and gives view of
scope of problem. :

An incremental search is conducted by starting at one end of the region of interest
and evaluating the nonlinear function with small increments across the region. When
the value of the fimction changes the sign, it is assumed that a root lies in that interval.
Two end points of the interval confaining the root can be used as initial guesses for a
refining method (second phase of solution). If multiple roots are suspected, one has to
check for sigh changes in'the derivative of the function between the ends of the interval.

(2) Reﬁning the solution

Refining the solution involves determining the solution to a specified tolerance by

an efficient procedure. The basic methods for refining the solution are:
2.1 Trial and error, ‘
2.2 Closed domain methods (bracketing method),
2.3 Open domain methods. :

Trial and error methods simply presume (guess) the root, z = «, evaluate f(a),
and compare to zero. If f(«) is close enough to zero, quit, if not guess another o and
continue until f(«) is close enough to zero. , .

Closed domain (bracketing methods) are methods that start with two values of x
which bracket the root, 7 = «, and systematically reduce the interval, keeping root
inside of brackets (inside of interval). Two most popular methods of that kind are:

2.2.1 Interval halving (bisection), - :

2.2.2. False position (Regula Falsi). v

‘Bracketing methods are robust and reliable, since root is always inside of closed
interval, but can be slow to convergence. _ :

Open domain methods do not restrict the root to remain trapped in a closed in-
terval. Therefore, there are not as robust as bracketing methods and can diverge. But,
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they use information about ’rhc uonhnecu function 1tbelf to come ClObeI with estlmatlon
~of the root. Thus, they are much more efficient than blacketmg methods.

Some general 'hints for' root finding

Nonlinear equations can behave in-various ways in the vicinity of a root. Algcbleuc
and transcendental equations may have simple real roots, multiple real roots, or complex
roots. Polynomials may have real or complex roots. If the polynomial ¢ oefficients are all
real, complex root occur in conjugate pairs. If the polynomial coefficients are (omplox
smgle complex roots can occur.

There are numerous methods for finding the roots of a nonlinear equation. Some
general philosophy of root finding is given below.

Bounding method should bracket, a root, if possible.

Good initial approximations are extremely important.

Closed domain methods are more robust than open domain methods because they
keep the root in a closed interval.

4. Open domain methods, when- ~converge, in ’rhe general case converge faster than
closed dowmain methods.

5. For smoothly varylug functions, most algou’rhms will always conver ge if the initial
approximation is close enough. The rate of conver gence of most algorithms can be’
determined in advance.

6. Many problems in engineering and science are well behaved and straightforward.
In such cases, a straightforward open domain method, such as Newton’s method,
or the secant method, can be applied without worrying about special cases and
strange behavior. If problems arise during the solution, then the peculiarities of
the nonlinear equation and the choice of solution method can be reevaluated.

7. When a problem is to be solved only once or a few times, then the efficiency of
method is not of major concern. However, when a pr oblem is to be solved many
times, efficiency is of major concern.

8. Polynonualb can be solved by any of the methods for solving nonlinear equations.
However, the special techniques applicable to polynomials should be considered.

9. If a nonlinear equation has complex roots, that has to be anticipated when choosing
a method. ‘

10. Time for problem analysis versus computer time has to be considered during
method selection.
11. Generalizations about root-finding methods are generally not possible.

The root-finding algorithms should contain the following features:

An upper lmit on the nmmber of iterations.

If the method uses the derivative f'(x), it should be monitored to ensure that it

does not approach zero.

3. A convergence test for the change in the magnitude of the solution, |z, — 24|, or
the magnitude of the nonlinear function, |41/, has to be included.

4. When convergence is indicated, the final root estimate should be inserted into the
nonlinear function f(x) to gu(udutec that f(x) = 0 within the desired tolerance.

Lo Do =

[Nl

5.1.1. Newton’s method

Newton’s or often called Newton-Raphson method is basic method for determina-
tion of isolated zeros of nonlinear equations.

Let isolated nuique simple root 22 = a of equation (5.1.0.1) exist on segment, (v, A
and let f € Clc, 5] Then, using Taylor development, we get

(5.1.1.1) flay = f(ag) + F'(ro)(a — a0) + O(((l, - .7:())2),

where € = 29+ (e —24) (0 < < 1). Having in mind that f(a) = 0, by neglecting
(last member on the right-hand side of (5.1.1.1), we get

(i)

=1y — —.
0 f/(-'lf(]) »
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If we denote left-hand side of last approximative equation with z;, we get
f(.’l,'())_
.f’(-’lft))

Here x; represents the abscissa of intersection of tangent on the curve y = f(x) in the
point (g, f(xg)) with z:—axis (see Figure 5.1.1.1).

(65.1.1.2) Ty = To —

y Ly
>
Figure 5.1.1.1 Figure 5.1.1.2
The equality (5.1.1.2) suggests the construction of iterative formula
| f(z)
51.1.3 V1] = Lp — k=0,1,...).
( ) . + f’(mk) ( )

known as Newton’s method or tangent method.
We can examine the convergence of iterative process (5.1.1.3) by introducing the

additional assumption for function f, namely, assume that f € C?[a, B]. Because the
iterative function ¢ is at Newton’s method given as

by differentiation we get

: I i R €0 Vi Ca R A COT M
(5.1.1.4) ( - /5()*1 : Pl = ()2 X

Note that ¢(a) = a and ¢’ (a) = 0. Being, based on accepted assumptions for f,
function ¢’ continuous on- [, 8], and ¢'(a) = 0, there exists a neighborhood of point
z = a, denoted as U(a) where it holds ‘

(5.1.1.5) - \(/)’(:1:5|:~%

<gq <1

Theorem 5.1.1.1. If 2o € U(a), series {zy} generated using (5.1.1.3) converges to
- point ¥ = a, whereby = : v :

. » ) T4+l — @ f/,(a>
(5.1 1 6) | ko> oo (zx —a)*  2f'(a)

(See [1], pp. 340-341).
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Example 5.1.1.1.
Find the solution of equation
fx) =2 —cose =0
on segment [0, /2] using Newton’s method

Ty — COSTEL TSNz +cosxy
‘ = - (k=0,1,...)
Sei).

Trt1 — T — : = :
1+ s8inxy 1+ sin xy

Note that f'(z) = 1 +sinz > 0(Vx € [0, 7r/2]). Starting with 9 =1, we get’kthe results
given in Table 5.1.1. - .

Table 5.1.1

k k T ‘
0 1.000000
1 0.750364
2 0.739133
3 | 0.739085
4 0.739085

The last two iterations give solution of equation in consideration with six exact
figures.

Example 5.1.1.2.

By applying the Newton’s method on solution of equation f(z) =z" —a =0 (a >
0,n > 1) we obtain the iterative formula for determination of n-th root of positive
number a -

ot —q 1

: a
:Ek;+1::1:k,—iil—: {(rz—l)zg—i-q,,_} (k=0,1,...).

ay o Th
g n 'k

A special case of this formula, for n = 2 gives as a result square root.

At application of Newton method it is often problem how to chose initial value of
1z in order series {xy}ren to be monotonous. One answer to this question was given
by Fourier. Namely, if f” does not change a sign on [a, #] and if 2 is chosen in such
a way that f(xo)f" 8:1:0) > 0, the series {z;}ren will be monotonous. This staternent
follows from (5.1.1.4

Based on Theorem 5.1.1.1 we conclude that Newton’s method applied to deterni-
nation of simple root z = a has square convergence it f"(a) # 0. In this case factor of
convergence (cL\Vllll)f()fl( constant of error) is

f"(a) |
2f'(a)"

The case f'(a) is specially to be analyzed. Namely, if we suppose that f € C3[«, 8] one
can prove that

Cy=|

. Tyl — G .fﬂl(a’)
lim = 37 :
k— 400 (.’l,';i; — (I,)3 3]‘/((]’)

Example 5.1.1.3.

Consider the equation

fla)=a% =322+ 4z —2=0.



Lesson V - Noulinear Equations and Systeis 71

Because of f(0) = =2 aud f(1.5) = 0.625 we conclude that on segment [0.1.5] this
equation has a root. Oun the other hand, f/(x) = 322 - 6244 = 3(x —1)2+1 > 0, what
means that the root is simple, enabling application of Newton’s method. Starting with
o = 1.5, we get the results in Table 5.1.2.

Table 5.1.2

k €y,

0 1.5000000
1 - 1.1428571
2 1.0054944
3 1.0000003

The exact value for root is a = 1, because f(x) = (z — 1)? + (v — 1).

In order to reduce munber of calculations, it is often used the following modification
of Newton method
fxn)
( (k=

Lyt = Tl — (o) =0,1,...).

Geometrically, 2,41 represents abscissa of intersection of z-axes and straight line passing
through point (:1:;‘2, f(:z:;‘,))_ and being parallel to tangent of curve y = f(x) in the point
(o, f(xo)) (see Figure 5.1.1.2).

Iterative function of such modified Newton’s method is

by(x) = —

f'(a)
(o)’

we conclude that method has order of

Because of ¢1(a) = a and ¢f(a) = 1 —

convergence one, i.e. it holds

1! ‘
RS e (e (1 - i (@) )(:1:;.; —a) (k— +o00),

f’(flfo)

whereby the condition
()
f'(ro)
is analogous to condition (5.1.1.5) v

By approximation of first derivative f’ (x3) in Newton’s method with divided dif-
flog) = flag-1)

T — Xp—1.

<g<l1,-

ference one gets secant method

Ly — Tp-1-

Lol = T — = —
Sians ' f(-’ﬂ:) —f (-”?k—l)

(5.1.1.7) fla)  (k=1,2,...),

which belongs to open domains methods (two steps method). For starting of iterative
process (5.1.1.7) two initial values zg and 2, are needed. Geometrical interpretation of
secant method 1s given in Figure 5.1.3.1.
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Figure 5.1.3.1 Figure 5.1.3.2

The secant method can be modified in such a way that

Tk — Lo “f . ’ [ —
flaw) = flxo) flow)  (k=1,2,..).

This method is often called regula falsi or false position method. Differently from
secant method, where is enough to take z; # x4, at this method one needs to take
71 and o on different sides of root x-= a. Geometric interpretation of false position
method is given in Figure 5.1.3.2.

(5.1.1.8) Tpp1 = Tg; —

5.1.2. Bisection method

Let on segment «v, f exist isolated simple root z = a of equation
(5.1.2.1) f(z) =0,

where f € Cla, B]. Method of interval bisection for solution of equation (5.1.2.1) cousists
in construction of series’ of intervals {(xy, yx) }ren such that

. 1 .
Yk+1l — Tryl = §(i‘lk: —ay), (k=12,..)

having thereby lim 2, = liin g, = a. The noted process of construction of intervals
k— 400 k—+o00

is interrupted when, for example, interval length becomes lesser than in advance given
small positive nuinber €. This method can be described with four steps:

L k:=0, 21=q, y1 =p:

II. ki=k+1,z,:= %(:r:,‘, + yi);

IIL. If ‘ ‘ »
f(zk)f (-771.:) < 0 take LTyl = Ty Yyl = 2h;,

> 0 take wpyq = 2k, Yre1 = Uk,

=0take a:=2z,; end of calculation
V. If

[Yns1 — Crg1] > € go to I,
1
<e¢ Zh41 = 5(-’1?1\-,+1 + fl/l.:+1)

end of calculation.
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Note that error estimation for approximation of zj4, is

1
Izl\¢+1 - (I" S 9}‘:_*_] (ﬂ - (Y)'

5.1.3. Program realization

In this section we present some simple programs for solution of noulinear equa-
tions. It is recommended to reader to write a short code for the same programns in
Mathematica, and, if having pleasure, in Pascal, i.e. Delphi.

Example 5.1.3.1.

Write a program for solving equation
flay=~1-2""4+1-2)""=0 (a=0.5(0.1) 2.8),

using Newton’s method, with accuracy € = 107>, For initial approximation take xq =
0.5. On output print value of parameter a, root x and corresponding value of f(x).
Criterion for interrupting iterative process is accuracy €. Namely, we consider the root
to be found with accuracy € if f(x) changes the sign in interval (z,, — e, x, +¢). The
program and output list are of form:

C SOLVING EQUATION
C 1 - Xkx(-A) + (1-X)**(-A) =
C BY NEWTON’S METHOD

FUNK(X,A)= 1 - Xsx(-A) + (1-X)*x(-A)
PRIZ(X,A)= AxX*x(-A-1) + Ax(1-X)**(-A-1)
OPEN(6,File="NEWT1i.o0ut’)
WRITE(G 10)

10 FORMAT(lOX,’A?, 10X, ’X’, 12X, ’F(X)’/)
EPS=1.E-5
DO 11 I=5,28
A=1%0.1
X0=0.5 ,

6 X=X0-FUNK(XO0,A)/PRIZ(X0,A)
IF(FUNK(X+EPS A)*FUNK(X EPS, A) LT.0.) GO TO 7
X0=X

- GO TO 6

7 Y=FUNK (X, 4) )
WRITE(6,20)A,X,Y - .

20 FORMAT (9%, F3.1, 5X, F9.6, 5X, F9.6)

11 CONTINUE ‘

STOP
END
and tho output list of re sults is
A X F(X)
.5 .219949 -.000014
.6 .267609 .000000
T .305916 ©~ ~  -.000026
.8 .336722 -.000003
.9 .361641 .000000
1.0 .381966 .000000 -
1.1 .398689 .000000
1.2 .412563 .000000 -
1.3 424159 - -.000084
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1.4 - .433933 -.000044
1.5 442217 -.000024
1.6 .449281 .—.000013
1.7 .455337 -.000007
1.8 .460554 - —.000005
1.9 .465068 -.000002
2.0 .468990 -.000001
2.1 .472410 - -.000001
2.2 .475402 .000000
2.3 .478029 -.000001
2.4 .480340 .000000
2.5 .482380 -.000001
2.6 .484184 .000000
2.7 .485784 -.000001
2.8

. 487205 .000000

Example 5.1.3.2.

If the equation f(x) =0 has a oot 2 = a in interval a, 8, where f(a) f(5) < 0,
write a program for finding a root = = a with accuracy ¢, using bisection. [ke(bubk
precision arithmetic. For program testing use the following example:

fln) =e" = 2(x — 1), (af,[f) = (-0.5,1.0), e = 10712

The program code is

C SOLVING NONLINEAR EQUATION
C BY BISECTION

DOUBLE PRECISION X,Y,Z,F,FZ,EPS
"F(X)=DEXP(X)-2.x(X-1.)*%*2
OPEN(8,File=’Bisect.in’)
OPEN(6,File=’Bisect.out’)
C PRINTING OF TABLE HEADING
WRITE(6,9)
9 FORMAT (2X,°’K’>, 2X,’(’,8%X,’X(K)’,8%,’,’,8X,’Y(X)’,
18X,7) 7’ ,5X,’F(Z(K))’/ )
C READ IN THE INITIAL INTERVAL (ALPHA, BETA)
READ(8,10)ALFA, BETA
10  FORMAT(2F5.0)
EPS=1.D-12
K=-1
X=ALFA
Y=BETA
5 K=K+1
Z=0.5% (X+Y)
FZ=F(Z)
IF(K/5*%5-K.LT.0)G0 TO 25
WRITE(6,20)K,X,Y,FZ

20  FORMAT(1X,I2,2X,’(’, D20.13,’,7,D20.13,’)’,2X,D12.5)
25 IF(FZ*F(X))1,2,3
1 Y=Z
GO TO 4
2 IF(K/5*%5-K.EQ.0) GO TO 6
GO TO 7

3 X=Z
4 IF (DABS(Y-X) .GE.EPS)- GO TO 5
Z=0.5% (X+Y)
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K=K+1

FZ=F(Z)
7  WRITE(6,20) K,X,Y,FZ
6 WRITE(6,30) Z,EPS

30  FORMAT(/5X,’A = ’, D20.13,’ (WITH EXACTNESS EPS = ’,
1 D7.1,7)°)
STOP
END
and the output list of results is
K ( X (K) . Y (K) ) F(Z (X))
0 ( -.5000000000000D+00, .1000000000000D+01) .15903D+00
5 (  .2031250000000D+00, .2500000000000D+00) .567870D-01
10 (  .2119140625000D+00, .2133789062500D+00)  -.29038D-02
15 (  .2132873535156D+00, .2133331298828D+00) .70475D-05
20 (  .2133073806763D+00, .2133088111877D+00) -.23607D-05
256 ( .2133086323738D+00, .2133086770773D+00) .89352D-07
30 ( .2133086337708D+00, .2133086351678D+00) .53733D-09
35 ( .2133086343383D+00, .2133086343820D+00) .58801D-10
40 ( .2133086343465D+00, .2133086343479D+00) .19761D-11
41 ( .2133086343465D+00, .2133086343472D+00) .48077D-12
A= .2133086343468D+00 (WITH EXACTNESS EPS = .1D-11)

Example 5.1.3.3.

Write a programn for solving nonlinear equation f(x) = 0 by regula-falsi method

wof(wiiy) — mimy f(xo)

€Ty = flri_y — flao)

Iterative process intei'rupt when the condition f(x; —¢)f(z; +¢€) < 0 is fulfilled. For
program testing use the following example:

(1=2,3,...).

flz)=e" —2(x—1)2, xg=—0.5,2; = 1.0, ¢ = 1077,

The program code and output list are of form:

C SOLVING NONLINEAR EQUATION
C EXP(X) - 2+ (X-1)**2 = 0
C BY REGULA-FALSI METHOD

F(X)=EXP(X)-2.%x(X-1.)%%x2
‘OPEN(6,File=’Reg-Fal.out’)"
WRITE(6,10). ‘

10 .~ FORMAT(9X,’I’, 10X,’°Xi’,14X,’F(Xi)’ /)

. X0= -0.5 _
X1=1

L I=2 .

3 X=(X0*F(X1)-X1*F(X0))/(F(X1)-F(X0))

Y=F(X) - =
, WRITE(6,20)I,X,Y |

20 .~ FORMAT(8X,I2,5X,E14.7,2X, E14.7)

IF(F(X-1.E-5)*F(X+1.E-5)) 1,1,2

2 X1=X
I=I+1

| GO TO 3

1 STOP

END
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and the output list of results is

I Xi , F(Xi)

2 .3833067E+00 .T065066E+00
3 .24T76403E+00 .1489089E+00
4 .2200995E+00 ~ .2971124E-01
5 .2146460E+00 .5861370E-02
6 .2135718E+00 .1153714E-02
7 .2133604E+00 .2269801E-03

8 .2133188E+00 .4465835E-04
9 .2133106E+00 .8795895E-05

Example 5.1.3.4.

For polynomial of formn P(x) = a12® + 432> + azz + as (a1 # 0) write a program

for determination of zeros using following algorithm:

lO
20

30

On(‘ root. find using Newton’s method (see previous <=xamp1(,b) with accuracy
1077 (|wpgr — 2] < 1077); \

With, in this way obtained 7(‘10 71 evaluate coefficients of polynomial Q(z) =
P(2)/(z = 21);

Solve the square equation Q(z) = 0 by standard formula.

For calculation of polynomial value use subroutine of type FUNCTION. Algorithm

steps 1V and 29 realize in subprogram of type SUBROUTINE. The program should solve

arbitrary number of equations.

On output print coefficients of polynomials P and ()

and roots of equation P(z) = 0.

P(z) = 23 — 522 —

For program testing use the following polynomials. P(z) = 323 —~72% + 8z — 2 and

—z+5.
For calculation of polynomial V(Lhw subprograin of type FUNCTION, named PL using

Horner’s scheme, is written. Ar gunle‘n‘rs in parameter list have the followmg meaning:

Z - value of z’u‘gument;

A - polynomial coefficients;

N - degree of polynomial.

This subprogram obtains polynomials P(z) aud P'(%).

FUNCTION PL(Z,A,N)
DIMENSION A(1)

PL=A(1)
DO 10 I=1,N
10  PL=PL*Z+A(I+1)
RETURN
END
C
C

SUBROUTINE KJ(A,B,C,X1,Y1,X2,Y2)
D=B*B-4*A*C
IF(D) 25,10,20

10 X1=-B/2./A
X2=X1

15  Y1i=0.
Y2=0.
RETURN

20  X1=(-B+SQRT(D))/2./A
X2=(-B-SQRT(D))/2./A
GO TO 15

25 X1=-B/2./A
X2=X1
Y1=SQRT(-D)/2./A
Y2=-Y1
RETURN
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END

SUBROUTINE NEWT(A,B,N,Z1)
DIMENSION A(1), B(1)
C EVALUATION OF COEFFICIENTS P’(Z)
DO 5 I=1,3
5 B(I)=A(I)*(4-I)
C EVALUATION OF REAL ROOT Z(1)
Z20=0.
10  Z1=70-PL(Z0,A,N)/PL(Z0,B,N-1)
IF (ABS(Z1-Z20)-1.E-7) 20,15,15
15 Z0=Z1-
GO TO 10
C EVALUATION OF COEFFICIENTS Q(Z)
20 B(1)= A(D)
DO 25 I=2,3
25  B(I)=A(I)+B(I-1)*Z1
RETURN
END
For solving of square equation Q(z) = az® + bz +c = 0 we formed subprog1 am KJ

Arguments in parameter list of subprogram are of following meaning:

A, B, C - coeflicients of equation;

Xl , Yl - real and imaginary part of the first root of equation;

X2, Y2 - real and imaginary part of the second root of equation.

For algorithin steps 19 and 2° the subroutine NEWT is written, with following argu-

ments:

15

20
25

- 30

35

A - coefficients of polynomial P;

B - coefficients of polynomial P’ and Q;

N - degree of polynomial P (N = 3);

Z1 - real root of equation P(z) = 0 obtained by Newton’s method.
Main program and output list of results are of following form:

SOLVING NONLINEAR ‘EQUATION
OF DEGREE THREE

DIMENSION A(4), B(3), ZR(3), ZI(3)
OPEN(6,File="P0OL.0QUT’)

OPEN(8,File=’"POL.IN")

READ(8,10,END=99) (A(I),I=1,4)

FORMAT (4F10.0)

IF(A(1)) 15,99,15 .

CALL NEWT(A,B,3,Z1)"

ZR(1)=71

ZI(1)=0.

"WRITE(6,20) (I, A(I) I=1,4)

FORMAT(/ 22X, 3 COEFFICIENTS OF POLYNOMIAL P(Z)’// 5%,
*4( AC I, ’)—’ F8.5,3X)//)

WRITE(6 25) (1, B(I) I1=1,3)

FORMAT(/23X ) COEFFICIENTS OF POLYNOMIAL Q(Z) //5%,
*3("B(’,I1 ,)_, F8.5,3X)// )

WRITE(6 30)

FORMAT(/23X > ZEROS OF POLYNOMIAL P(Z)’//27X,
*REAL’ ,8X, IMAG’/ )

CALL KJ(B(l) B(2),B(3), ZR(2) ZI(2),ZR(3), 71(3))
WRITE(6,35) (I ZR(I) ZI(I) I=1,3)

FORMAT (/18X, ’Z(’ I1, ’)=’, 2F12.7)

GO TO 5 : '
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99 STOP
END

COEFFICIENTS OF POLYNOMIAL P(Z)
A(1)= 3.00000 A(2)=-7.00000 = A(3)= 8.00000  A(4)=-2.00000-
COEFFICIENTS OF POLYNOMIAL Q(Z)
B(1)= 3.00000 B(2)=-6.00000  B(3)= 6.00000
ZEROS OF POLYNOMIAL P(Z)
REAL - IMAG
.3333333 .0000000
1.0000000 1.0000000
1.0000000 -1.0000000
COEFFICIENTS OF POLYNOMIAL P(2Z) ‘
A(1)= 1.00000 A(2)=-5.00000 A(3)=-1.00000 A(4)= 5.00000
. COEFFICIENTS OF POLYNOMIAL Q(Z)
B(1)= 1.00000 B(2)=  .00000 B(3)=-1.00000
"~ ZEROS OF POLYNOMIAL P(Z)

Z(1)
Z(2)
Z(3)

REAL IMAG
Z(1)= 5.0000000 .0000000
2(2)= 1.0000000 .0000000
Z(3)=

-1.0000000 .0000000

Example 5.1.3.5.

Write a proegram for evaluation of coefficients of polynomial of form
[ ]. .
L\ — " =1 - — 1
Plz)=Chp1 2" +Cp2" 7+ ...+ Co2+Cy (Crgr =1)

it all zeros z,, = @y, +iyr (h=1,:..,n) are known.

Let,

k
l: H Z = z;) (vl)lv +(v(k =1y ..—l—(:gk)z—FC%k).

Then for polynomial P(z) it holds P(z) = P,(z), i.e. C;, = c™ (b=1,....n+1).
Because of

P(z) = (z = z1,) Pr—1(2)

the following recurrcnce relations hold

o = o)
CT':C;f VoY i=2,000k),

Y v(lﬁ*l)
C/ +1 (/I\: :

starting with C( ('

Based on previous, th( snln(mhn(‘ VIETE is written, with following arguments:

Z - vector of zeros of length N;

N - degree of polynomial;

C - polynomial coefficicnts;

KB- flag (KB = O for correctly given polynomial, KB = 1 for polynomial with de-
gree less than one). ‘

Program routines arc realized in complex arithimetic. Main prograui, subroutine,
and output list with results are given as follows.

C EVALUATION OF POLYNOMIAL COEFFICIENTS



Lesson V- Noulinear Equations and Systeins

FROM GIVEN POLYNOMIAL ROOTS

COMPLEX Z(10), C(11)
OPEN(6,File="VIETE.QUT’)
OPEN(8,File="VIETE.IN’)

C READ-IN POLYNOMIAL ZEROS

2
10

READ(8,10,END=99) N, (Z(I),I=1,N)

FORMAT(I2/(10F8.2))

C SUBPROGRAM VIETE

20

C PRINTING ZEROS AND COEFFICIENTS OF POLYNOMIAL

1
25

30

99

20

10
15

CALL VIETE(Z,N,C,KB)
IF(KB.EQ.0) GO TO 1
WRITE(6,20)

FORMAT (/5X, 'DATA ERROR:’

*’ POLYNOMIAL DEGREE LESS THAN 1°//)

GO TO 2

WRITE(6,25) (1,Z(I), I=1,N)

FORMAT (/16X , ’POLYNOMIAL ZEROS’//23X,’REAL’,5X,
*>IMAG’//(10X,°2(’,12,’)=",4X,F10.7,1X,F10.7) )

N=N+1
WRITE(6,30) (I,C(I), I=1,N)

FORMAT (/16X ,’POLYNOMIAL COEFFICIENTS’//23X,’REAL’,5X,
*?IMAG’//(10X,’C(’,I2,°)=",4X,F10.7,1X,F10.7) )

GO TO 2
STOP
END

SUBROUTINE VIETE(Z,N,C,KB)
COMPLEX Z(1),C(1),A,B
IF(N.GE.1) GO TO 5

KB=1 ‘

RETURN

KB=0

C(1)=-Z2(1)

Cc(2)=1.

IF(N.GE.2) GO TO 20
RETURN

DO 15 K=2,N

A=C(1)

C(1)=-Z(K)*C(1)

DO 10 I=2,K

B=C(I)

C(I)=A-Z(K)*B

A=B

C(K+1)=A

RETURN
- END

POLYNOMIAL ZEROS
REAL IMAG

1)= - 1.0000000 1.0000000
Z( 2)= 1.0000000 1.0000000
3)=

Z(. - 1.0000000 -1.0000000
POLYNOMIAL COEFFICIENTS
. _ REAL IMAG
C( 1)= -2.0000000 -2.0000000
c( 2)= - 4.0000000 2.0000000
c( 3)= -3.0000000 -1.0000000
4)=

1.0000000 .06000000
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Example 5.1.3.6.

Write a program for (vahmtlou of complex 100t of tr cmscendental LqudflOIl f( )=20
using Newton’s 1110‘(110(1

(F(z) £ 0),

where z, = &, +iyn (n=0,1,...). Iterative process is to be interrupted when the
conditions ‘
‘Tn-}-l Iin| < €, |Un+L Ur1| <eg,

where € 1s in advan(( given accuracy, are contempor ary fulfilled.
Program is organized in the following way:
1% Functions Re(f( 1. Im(f(2)), Re(f'(2), in(f'(2))) are given in subroutine of type
FUNCTION ‘
29 In subplogmm of type SUBROUTINE is calc ulat(‘d one iterative step of Newton’s
method; .
3% Main prograin reads in initial values g, 1/0, g, calls subroutine for iteration, checks
the termination coundition and p1 ints result. A
The example taken is f(z) = e¢® =022+ 1,20 = 1+ 7wi,e = 10 0. Two separate
programs are written, i real and in (omplox allfhmetlcs
By separation of real and imaginary part in Newton’s formula, one gets

Tyl = Ly — —i—(R,(é(,j’(z,h))Re(f’(z,,,,)) + Im(f (z0))Im(f'(2,)))

1 oy ,
Ypn+1 = Yn — K(Illl(f(?’,,))Rf(f (Z.,,,)) - RG(}L (Z'n.))hn(f{(Z'n,)))7
where A = | f'(z)1* = [Re(f'(zu))? + [Im(f"(z4))]?. i
Being, in our case, f(z) = ¢* — 0.2z 4+ 1 and f'(z) = e* — 0.2, we have Re(f(z)) =
e?cosy — 022 + 1, Im(f( )) = e siny — 0.2y, Re(f'(z ) “eosy — 0.2, Im(f/(2) =

e® siny), what is given by function subroutine EF.
Program routines are realized in real and complex arithmetic. Main program,
subroutine, and output list with results arve given as follows.

C
C EVALUATION OF COMPLEX ROOT OF TRANSCENDENT
C EQUATION F(Z)=0 BY NEWTON’S METHOD
- C USING REAL ARITHMETIC

C

OPEN (6,File=’NEWT-TRR.QUT’)
OPEN(8,File=’NEWT-TRR.IN’)
READ(8,5) X0, YO, EPS

5  FORMAT(2F10.0,E5.0)
WRITE(6,10)

10  FORMAT(//10X, ’NEWTON’’S METHOD FOR SOLVING TRANSCEN’
*’DENT EQUATION’//18X,’F(Z)=EXP(Z) - 0.2%Z + 1 = O’
x//5X,’ ITER.No.’ ,4x, REAL(Z)’,5X, > IMAG(Z) ’ , 4X,

% ’REAL(F(Z))’,2X,  IMAG(F(Z))’/)

ITER=0

KBR=1
15  A=EF(X0,Y0,1)

B=EF (X0, Y0, 2)

WRITE(6,20) ITER,X0,YO,A,B
20  FORMAT(5X,I4,2X,2F13.7,2F12.6)

GO TO (22,50),KBR
22  ITER=ITER + 1



25
30

35
40
45

50
55

10
20
30
40

XS5=X0
YS=YO
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CALL TRANS(X0,Y0,A,B, R)

IF(R) 25,
WRITE (6,

FORMAT(//SX,’FIRST DERIVATIVE OF FUNCTION =

GO TO 50

25 35
30)

IF (ABS (X0-XS)-EPS) 40,40,15
IF (ABS(YS-Y0)-EPS) 45,45,15

KBR=2
GO TO 15

WRITE(6,55)EPS
FORMAT(/SX ’SPECIFIED ACCURACY OF CALCULATIDN >

*’EPSYLON

STOP
END

FUNCTION EF(X,Y,I)

= ’,E7.1)

GO T0(10,20,30,40),I
EF=EXP (X) *C0S(Y)-0.2*X+1

RETURN

EF=EXP (X)*SIN(Y)-0.2*Y

- RETURN

EF=EXP (X)*C0S(Y)-0.2

RETURN

EF=EXP (X)*SIN(Y)

RETURN
END

SUBROUTINE TRANS(XO,Y0,A,B,R)
C=EF (X0,Y0,3)
D=EF(X0,Y0,4)

. 1066747

R=C*C+D+D
| IF(R) 5,10,5
5  X0=XO-(A*xC-B*D)/R
YO=YO- (B*C-A*D) /R
10 RETURN
END
NEWTON’S METHOD FOR SOLVING
F(Z)=EXP(Z) - 0.2%Z
ITER.No. ~ REAL(Z) IMAG(Z)
0 1.0000000  3.1415920
1 .3426673  2.9262880
2 .0372190  2.7002840
3 0497327 - 2.6425620
4 .0911207  2.6459620
5 .1015006  2.6458960
6 .1049549  2.6459040
T .1060995  2.6459040
8 .1064820  2.6459040
9 .1066103  2.6459040
10 .1066533  2.6459040
11 1066677  2.6459040
12 .1066726  2.6459040
13 1066742  2.6459040
14 | 2.6459040

0’)

TRANSCENDENT EQUATION

+ 1

- REAL(F(Z))

=0

-1.918282

-.444708
.054076
.067235
.018186
.006090
.002026
.000678
.000227
.000076
.000026
.000009

©.000003
000001
.000000

IMAG(F(Z))
-.628317
. 284296
.096737
.025535
.008234
.002721
.000909
.000304
.000102
.000034
000011
.000004
.000001
.000000
.000000
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'SPECIFIED ACCURACY OF CALCULATION EPSYLON = .1E- 05
ThogwmsﬂmumhmhamhnmnmogdmcmMWIMhmsmmb realized in complex
arithmetic, what is, with results, ;.,1v<‘11 in continuation. :

T T T P ——

C
C EVALUATION OF COMPLEX ROOT OF TRANSCENDENT
C  EQUATION F(Z)=0 BY NEWTON’S METHOD

C USING COMPLEX ARITHMETIC

C

COMPLEX Z,Z0,F,Y,A
OPEN (6,File=’NEWT-TRC.OUT’)
OPEN(8,File=’NEWT-TRC.IN’)

READ(8,10) ZO0
10  FORMAT(2E14.7)
EPS=1.E-6
WRITE(6,20) ST | L
20  FORMAT(//10X, ’NEWTON’’S METHOD FOR SOLVING TRANSCEN’
+’DENT EQUATION’//18X,’F(Z)=EXP(Z) - 0.2%Z + 1 = 0’
x//5X,’ITER.No.’ ,4x, REAL(Z)’,5X, *IMAG(Z) ’ ,4X,
* REAL (F(Z))’,2X, ' IMAG(F(2)) /)
ITER=0
Y=F(Z0,1)
13 WRITE(6,30)ITER,Z0,Y
30  FORMAT(5X,I4,2X,2F13.7,2F12.6)
~ Y=F(Z0,2)
B=CABS (Y)
IF(B.EQ.0.) GO TO 99
CALL NEW(Z,ZO)
ITER=ITER+1
Y=F(Z,1)
A=Z-Z0
IF (ABS(REAL(A)) .GT.EPS) GO TO 95
IF (ABS (AIMAG(A)) .LE.EPS) GO TO 98

95  Z0=Z
GO TO 13

99  WRITE(6,40)

40  FORMAT(//5X,’FIRST DERIVATIVE OF FUNCTION = 0’)

GO TO 97

98  WRITE(6,30) ITER,Z,Y

97  WRITE(6,55) EPS

55  FORMAT(/5X,’SPECIFIED ACCURACY OF CALCULATION °

* EPSYLON = ’,E7.1)
STOP
END

COMPLEX FUNCTION F(Z,I)
COMPLEX Z

GO TO(1,2)I

F=CEXP(Z) - 0.2*Z + 1
RETURN

F=CEXP(Z) - 0.2

RETURN

END

N =

SUBROUTINE NEW(Z,Z0)
COMPLEX Z,Z0,F
Z=70 - F(20,1)/F(20,2)
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RETURN
END

NEWTON’S METHOD FOR SOLVING TRANSCENDENT EQUATION
F(Z)=EXP(Z) - 0.2¢Z + 1 = 0

ITER.No. REAL (Z) IMAG(2Z) REAL(F(Z)) 1IMAG(F(Z))
0 1.0000000 3.1415920 -1.918282 -.628317
1 . 3426675 2.9262880 -.444709 -.284296
2 .1036775 2.7002840 -.023705 -.066273
3 .1054019 2.6458710 .001517 -.000634
4 .1066756 2.6459040 -.000001 .000000
5 .1066750 2.6459040 .000000 .000000

SPECIFIED ACCURACY OF CALCULATION EPSYLON = .1E-05
5.‘2. Systems of nonlinear equations

5.2.1. Newton-Kantorowitch (Raphson) method

Consider system of nonlinear equations
(5.2.1.1) filxr,...;z,) =0 (i=1,...,n).
By taking % = [z1...2,]T, 6 =[0...0]T, where 6 is null-vector, we can write

fl(-'I“lv . ',xvl)
7)) = : = 9.
f‘n,(-ll;la e 7-11;71,)

(5.2.1.2) it

Basic iterative method for solving equations (5.2.1.2) is method of Newton-Kan-
torowich, which gener alizes classical Newton’s method. Fundamental results regarding
ex;stence and uniqueness of solutions of eq. (5:2.1.2) and convergence of the method
are given by L.V. Kantorowich (see [22]).

Let @ = [a; ...a,]T be exact solution of this system. Using Taylor development
for functions which appear in (5.2.1.1), we get

“n

. : " 3 a ' v
.f’i((]'17~"7(1"rlr> - f((k) 1(L))+ di ((11 "I’.Y‘))_’_
Tl

+ 7 f' ((1,, —:;:,S,{")) +7‘,§") (i1=1,...,n),

o,

where partial derivatives on the right-hand side of given equations are calculated In

point Z ). ,( ) represents corresponding remainder term in Taylor’s formula.
Because of f; ((11, coan) =00 =1,...,n), plev1ou's system of equations can be
represented in matrix form

—

0= fE®) +wE®)@- @)+ 7,

e on . of
Oz oz,

W(E) = : ) ' R
8]’” . afﬂ

8.’1; 1. . axn
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CIO)

where 77 (k) = [rq ry )T I Jacobian matrix for f is regular; then we have

—_

Ca=aW WY @R fla®y - w (@ h)r ),

By neglecting the very last member on the 11g,ht hand size, in pla( e of of vector d we
get its new approximation, denoted with #®+1. In this way, oue g,cts

—

(5.2.1.3) 41 ) =1z 0 )ﬂ?”).w:OJrq,

where (%) = [:z,'gk) ool )] This method is often called Newton-Raphson method.
Method (5.2.1.3) can be modified in the sense that inverse matrix of W (#) is not

evaluated at every step, but only at first. Thus,

—

(5.2.1.4) FOD — 0 W EO) AE0) (b =0.1,..).

In [1, pp. 384-386] the Newton-Kantorowich method is illustrated with system of
nonlinear equation in two unknowuns. It is suggested to 1(\&(191 to write a program code
in Mathematica and Fortran.

Example 5.2.1.1. Solve the system of nonlinear equation

filan, xe) = 92y 12—|—41)—3()—0
folay. wg) = 1():1:2 — :1:1 +22+1=0,

which has a solution in first quadrant (i, 29 > 0).

Using graphic presentation of huplicit functions f; and fo in first quadrant. one
can see that solution @ is located in the neighborhood of point (2,1), so that we take

for initial vector 7 = [2 1]7, i.c. :1:(1(]): 2 and 2 = 1.

By partial derivation of f1 and fy one gets th(* Jacobian

W) = 181119 912 + 8y
— 43 7 3219 + 1

and its inverse

W/'—l(:zg) — 1 32,’(,'2 ;{— 1 _(9',1:% + 8.’1,‘2) |
A() Ay 184125

where s o

A(F) = 18112:2(3222 + 1) + 4o (927 + 8u:2).
By putting f',,-‘(]":) = f.,;(:r:(lk). :1:.(21':)) and Ay, = A(zP) (i =1,2; k=.0,1...) in the scalar
form of Newtou-Kantorowich formula (5.2.1.3). we get the iteration formula

4] : 1 ; : :)° 4 (A
:1:(1"'“) = :::Y") A—{(QS‘Z:I:‘(JI") + ].)fl("') — (9:1:(1"') + 8:1752] ))fé, )}:
1

AR+ (k)
1 5 =

P R P A P P G Al

Ay

The appropriate Fortran code for solving given nonlinear equation is

Double precision x1,x2,x10,x11,x20,x21,f1,£2,Delta,EPS
F1(x1,x2)=0%x1**2%x2 + 4*x2*%2-36
F2(x1,x2)=16*x2**%2 - x1**4 + x2 + 1
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Delta(x1,x2)=18*x1*x2* (32%x2+1) +4*x1#*3% (Okx1**2+8%x2)
Open(1l, File=’Newt-Kant.out’)
x10=2.d0
x20=1.d0
EPS=1.4-6
Iter=0
write(1,5) ,
format(th ,// 3x, ’i’,7x,’x1(i)’,9%,’x2(i)’,
* Ox,’f1(i)’, 9x,’£f2(i)’/)
write(1,10)Iter, x10,x20,F1(x10,x20) ,F2(x10,x20)
x11=x10-((32*x20+1) *f1(x10,x20) - (9*x10**2+8%x20) *
* £2(x10,x20)) /Delta(x10,x20)
x21=x20- (4*x10**3*f1(x10,x20)+18*x10*x20*f2(x10,x20))
* /Delta(x10,x20) '
Iter=Iter+1
write(1,10)Iter, x11,x21,F1(x11,x21) ,F2(x11,x21)

Format(1x,i3, 4D14.8,2x)

If (Dabs(x10-x11) .1t .EPS.and.Dabs(x20-x21) .1t .EPS) stop

If (Iter.gt.100)Stop

x10=x11

x20=x21

go to 1

End .

and the output list of results is

i x1(1) C o x2(4) - f1(d) £2(4)

0 .20000000D+01 .10000000D+01 .40000000D+01 .20000000D+01
1 .19830508D+01 .92295840D+00 .73136345D-01 .88110835D-01
2 .19837071D+01 .92074322D+00-.28694053D-04 .68348441D-04
3 .19837087D+01 .92074264D+00-.10324186D-10-.56994853D-10
4 .19837087D+01 .92074264D+00 .00000000D+00-.15543122D-14

Example 5.2.1.2. Write program for approximative solving a System of equations
Fla,y) = 0,
G(x,y) =0,
where F' and G are continuous differentiable functions, using Newton-Raphson method
Tpt1 = Tp — Axy,
(n=0,1,2,...)
YUn+1 = Yn. — A:’/'rza

starting with some approximate values of g and yo, where

IF: ("1;7"7 :l/w,) FI// (:’;71.7 Un)
#0.

.](-7;71,: :l/”) =

;ll <:1:7l:7 ?/'n,) GIU (.’II”7 yn)

F, (-'1-77:,7 :’/71,) : F,; (-'I:na ?/'n.)

Ax,, = _]_(__—) ’
S Y G(.’I:.,,,, y") ; G:/,/v(-'lﬁ,,,, yn)
1 Fi(n,yn)  F(2n, ‘:1/.,,,)
Ay, = ](—11—) 7 , . '
R In qu (*’E L] ?/n) G(.’E”, "l/-,,,")
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Partial deuv(mws are to be obtained IHllIl(“ll(cl]]V The iterations 111t91111pf Wheu the
. conditions :
"/"‘71,—1-1 _'-'1"7'1.| <eg, and ‘:U’IL—FI = l/nl <e,

~are fulfilled. ¢ is accuracy given in advance. For test example take
Flo,y)=22%—9y*-1=0 ;
Gla,y)=ay>—y—4=0,

with initial values xg = 1.2, yo = 1.7 and ¢ = 10710,

For obtaining partial derivatives of function f(z,y) we use following expressions

Of _ flathy) — fle—hy)
du 2h - ’
_()_/ ~ fly4h) = fle,y—h)
oy -2 ’
where /i is small enough increment (here is taken h = 107°). Fuuctions F and G

are given in subprogram of type FUNCTION. Prograin is realized in d()nbl( precision
arithmetic. Pl()glam code is of following form:

C SOLVING OF SYSTEM OF NONLINEAR EQUATIONS
C BY NEWTON-RAPHSON METHOD

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION R(2)
OPEN (6,File=’NEWT-RAPH.QUT’)
OPEN(8,File=’NEWT-RAPH.IN’)
READ(8,15) XP,YP,EPS,H
15  FORMAT(4D10.0)
WRITE(6, 16)

16 FORMAT(/10X,’NEWTON-RAPHSON’’S METHOD FOR SYSTEMS OF’
%> EQUATIONS’///30X,’2.%X*%*3-Y**2-1.=0."//
*30X, > X*Y**3-Y-4.=0.’///1X,’ITER.’,6X, X’ ,15X,’Y’,12X,
* F(X,Y)’,10X,’G(X,Y)’/)

ITER=0
20  ITER=ITER+1
CALL NEWT(XP,YP,XX,YK,FD,H,4A,B)
IF(FD) 5,6,5
6 WRITE(6,17)
17  FORMAT(/1X,’JACOBI MATRIX SINGULAR’)
GO TO 90
5 DO 8 I=1,2
8  R(I)=EEFF(I,XK,YK)
WRITE(6,18) ITER,XK,YK,(R(J),J=1,2)
18  FORMAT(1X,I3,4F15.10)
IF (DABS(A)-EPS) 30,30,40
30 IF(DABS(B)-EPS) 90,90,40

40  XP=XK
YP=YK
GO TO 20
90 STOP
END
C
C

SUBROUTINE NEWT(XP,YP,XX,YK,FD,H,A,B)
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IMPLICIT REAL*8 (A-H,0-Z2)
DIMENSION R(2),DX(2),DY(2)
X=XP
Y=YP
DO 4 I=1,2
R(I)=EEFF(I,X,Y)
DX(I)=0.5D0/H* (EEFF (I,X+H,Y)-EEFF(I,X-H,Y
4 DY(I)=0.5DO/H*(EEFF(I,X,Y+H)-EEFF(I,X,Y-H
FD=DX (1) *DY (2) -DY (1) *DX (2)
IF(FD) 5,6,5
5 A=(R(1)*DY(2)-R(2)*DY(1))/FD
B=(R(2)*DX(1)-R(1)*DX(2))/FD

S N
N N

XK=X-A
YK=Y-B
6 RETURN
END
C
C

FUNCTION EEFF(J,X,Y)
IMPLICIT REAL*8 (A-H,0-Z)
GO TO (50,60),J

50  EEFF=2.D0*X**3-Y*Y-1.DO
RETURN

60  EEFF=X*Y**3-Y-4.DO
RETURN
END

and the output list of results is

NEWTON RAPHSON’S METHOD FOR SYSTEMS OF EQUATIONS
2. xX*x3-Y*x2-1.=0.
XxY**x3-Y-4.=0.

ITER. X Y F(X,Y) G(X,Y)
1 1.2348762633 1.6609796808 .0073200054 -.0022831784
2 1.2342746753 © 1.6615262759 .0000023823 -.0000008838
3 1.2342744841 1.6615264668 .0000000000 - .0000000000
4

1.2342744841 1.6615264668 .0000000000 .0000000000

5.2.2. Gradient method

: : ‘ . ' ~1
Because Newton-Kantorowich method demands obfaining inverse operator F'(,.

what can be very complicated, aid even impossible, it have been developed a whole
class of quasi-Newton e ‘rh()(ls which use some approximations of noted operator (see
[21], [22], [23]. [24]). One of this methods is gradient method.

Consider system of nonlinear equations (5.2.1.1), with matrix form

(5.2.21) ' J(@) =0.

The gradient method for s()lvmg A glven systeim of equations is based on minimization
~of 1u11(hon<x1

U(f) = Z fila, oo, :1.:,,,,)2 = (}‘(:) f(2)).

It is easy to show that the cquivalence U(7) =0 <= f(z) = 0 holds.
Suppose that equation (5.2.2.1) hag unique solution 7 = @, for which functional
- U riches minimmm value.  Let £ be initial approximation of this solution. Let us
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construct series {F 1 such that U(F( )) > U(x (1)) > U(“(2)) -+, In a same way as
at linear equations, we take ‘ ~

(5.2.2.2) o #W = g o\ vU(F “>) (k=0,1,...),

| oU - OU
where VU (7)) = grad

‘ (%) = prad(7) = {011 oy, | |
condition that scalar function S, defined with S(t) = U(F® — VU (% (’”))) has a min-
imum value in point ¢ = Ag. Hdvmg in mind that equation S'(t) = 0 is non-linear,
proceed its linearization arownd 1‘ = 0. In this case we have .

} .. Parameter )\;;; is to be determined from -

L = i@ W v E®)) = e By =V i(ED), VU “>>>

so that linearized equation is
T

ZL z)th(l ZL(A)(VIL 0, VU2 W) = 0,

=1

wherefrony we obtaln

~~
[53]
[N\l
!.\D
o
p—_
>

=

I
~

l |

where we put H; = (Vfi(£™), vU(#™)) (i =1,...,n). Because of

we have
(5.2.2.4) VU (%) = 2WT () f(%),

where W (%) is Jacobian matrix.
According to previous, (5.2.2.3) reduces to

(F &), W, WT fk)

A = A .
| (W WT f 0, W, W f ()

ro |-

where f("’) = fq(:F: ()Y and W), = W (). Finally, gradient method can be represented
in the form

(5.2.2.5) g0 = g B _ox WIf(z®)y  (k=0,1,...).

As we see, in place of matrix W=1(#®)) which appears in Newton-Kantorowich
method, we have now matrix ZA;,,W;{. '
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39

Example 5.2.2.1.. Sy.s‘tmu of nonlincar equations given in example 5.2.1.1 will he solved

nsing gradient method, starting with the same initial vector (0 = [2 1]T

following list of results

xé(i)

i x1(1) 2lam_k

0 .2000000000D+01 .1000000000D+01 .305787395D-03
1 .1975537008D+01 .9259994504D+00 .538747689D-03
2 .1983210179D+01 .9201871306D+00 .339553623D-03
3 .1983643559D+01 .9207840032D+00 .535596539D-03
4 ,1983705230D+01 .9207387845D+00 .339328604D-03
5 .1983708270D+01 .9207429317D+00 .535573354D-03
6 .1983708709D+01 .9207426096D+00 .339332516D-03
7 .1983708731D+01 .9207426391D+00 .535990624D-03
8 .1983708234D+01 .9207426368D+00 .337793301D-03
9 .1983708734D+01 .9207426370D+00

. giving the

Note that the couvergence hiere is much slower than at Newton-Kantorowich
method, due to fact that gradient method is of first order.

Gradient method is suceesstully used in many optimization problems of noulincar
programmning, with large munber of methods, especially of gradient type, which are
basis for nmmber of progrannning packages for solving nonlinear programiing probleins
(see monograph [6] for symbolic implementation of nonlinear optimization).

The methods of wnconstrained optimization, based on derivatives of goal function
can be roughly separated i two classes. To the first group belong methods which use
only first derivative of goal function and they are called gradient methods of first
order. The most kunown gradient method of first order is Cauchy method of steepest
descent. This method has linear couvergence and characteristic of good progress to
optimum point from "distant” initial approximations, but slow convergence in vicinity
of optimum point. - To the second class belong methods which use first and second
derivative of goal function (or some approximation of them) which are called gradient
methods Of second order. The most kunown method of second order is Newtown's
method. It 15 characterized by square convergence, what means that, when converges,
is faster than Cauchy’s method. But, it is less reliable than Cau(hy s method. Best
characteristics of hoth methods belong to so known Quasi-Newton (Variable metric)
methods. These methods have at least linear order of convergence, with quadratic
asymptotic error.

Some basic terms, necessary for unde rstanding of gradient methods of optimization
arve given below.

Vector-gradient V() in /1—(11111(\11&1011(& space has 1 components, equal to partial
derivatives in every governing parameter in point 1,,, ie.

dQ(“U}
i=1 i

5.2.2.6
(5.2.2.6) D,

,,,,,,

vQ M)y = luux*“)’{

where Q(7) = Q(u), wa. .. 1,,) Due to simplicity, we will denote (2(" = Q") so

that 01<L(11(‘11’r in point #*) Wlll be
oy [0V 00
| dey dx,,
(k)

Gradient vector VQ(#) is in every point %) = (fligk)) .y ) normal to the
plane with constant valne Q(Z) and goes throngh given poit. Tln.s vector hag 1 every
_point Z*) orientation of fastest grow of Q(F) from this point. Algorithm of gradient
© optimization methods consists in procedure that, starting from given or computed point
#*) one goes to the next point FRHY with step AZ®) in divection of gradient, during
calculation of maximun

(5.2.2.8) L e

(5.2.2.7)

VQEH)) = grad Q(#

— ) ¢ Az ':\:Z"(I"")’ + ﬁ("")VQ(:F“’)),
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or in opposite direction of gradient, when calculating minimum

(5229) 1) k) _ /z“)vcg(*(k))

“When given parameter of step hk) = (l (k)) t=1;...,n, move in direction of gradient
is realized by formulas . '

, (k) o
(5.2.2.10) P = ) 4 h”‘) dgT (i=1,...,n),
during finding a maximum, and
5 ) (k) - :
(5.2.2.11) £ = 2B (k) dg (i=1,...,n),
St 7

during finding minimum of function Q{(z). In formulas (5.2.2.10) and (5.2.2.11) the

move is in direction of gr adient only if all h( ) ,(t=1,...,n) are same. Nevertheless, in
some methods are steps chosen arbitrary, or by some criteria.

At gradient methods the formulas with coordinates of normalized gradient vector
can be uses.

:I:q(:la:+1) _ .’l?,,(-/k) + ])/Ek:)

(5.2.2.12)

In formula (5.2.2.12) normed gradient-vector shows up to the direction of fastest
change of goal function, but does not define the velocity of moving through extremum.
This is given by steps, h( ), (1 =1,...,n). Normalization of gradient improves method
stability.

Theoretically, the procedure of gradient search terminates in point in which all
coordinates of gradient are equal to zero, i.e. in which is Euclid’s norm of gradient
equal to zero:

(5.2.2.13)

(5.2.2.14)

where € is given small number. For the same criterion can be used also Chebyshev
gradient norm

The exposed formulas enable writing a code in procedural and symbolic languages
for gracdient methods, what is suggested to readers.
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5.2.3. Globally convergent methods

We have seen that Newtons method and Newton-like methods (quasi-Newton meth-
ods) for solving noulinear equations has an unfortunate tendency not to converge if the
initial guess is not sufficiently close to the root. A global method is one that converges
to a solution from almost any starting point. Therefore, it is our goal to develop au
algorithi that combines the rapid local convergeuce of Newtons method with a glob-
ally convergent strategy that will guarantee some progress towards the solution at each
iteration. The algorithi is closely related to the quasi-Newton method of minimization
(see [5], p. 376).

From (5.2.1.3), Newton-Raphson method, we have so known Newton step in itera-
tion formula

(5.2.3.1) gD 09 — gz ~W Yz fE®EY, (k=0,1,...)

where W is Jacobian matrix. The question is bow one should decide to accept the
Newton step dx? If we denote F = ]"(:17(’")), a reasonable strategy for step acceptance
is that |F|? = F - F decreases, what is the same requirement one would impose if trying
to minimize

; 1
(5.2.3.2) f= 5]_:‘ .F.

Every solution of (5.2.1.1) minimizes (5.2.3.2), but there may be some local minima
of (5.2.3.2) that are not solution of (5.2.1.1). Thus, simply applying some mininnun
finding algorithins can be wrong.

To develop a better strategy, note that Newton step (5.2.3.1) is a descent direction
for f:

(5.2.3.3) Vi dd=(F W) (-W1.F)=_-F.F<0.

Thus, the strategy is quite simple. Oune should first try the full Newton step. hecause
once we are close enough to the solution, we will get quadratic convergence. Ilowever,
we should check at each iteration that the proposed step reduces f. If not, we go
back (backtrack) along the Newton direction until we get acceptable step. Because the
Newton direction is descent direction for f, we .fill find for sure an acceptable step by
backtracking. :

It is to mention that this strategy essentially minimizes f by taking Newton steps
determined in such a way that bring Vf to zero. In spite of fact that this method can
occasionally lead to local minimum of f, this is rather rare in practice. In such a case,
one should try a new starting point.

Line Searches and Backtracking

When we are not close enough to the minimum of f, taking the full Newton step ' =
57 need not decrease the function; we may move too far for the quadratic approximation
to be valid. All we are guaranteed is that initially f decreases as we move in the Newton
direction. So the goal i$ to move to a new point ., along the direction of the Newton
~step P, but not necessarily all the way (see [5], pp. 377-378):

(5234) . _'v-';;'u,("m .: fﬁnld 7|’ )\]7 (0 <.)‘ < 1)

~ The aim is to find A so that f(Zea+AP) has decreased sufficiently. Until the early 1970s,.
standard practice was to choose A 80 that 7., exactly minimizes f in the direction g
However, we now kuow that it is extremely wasteful of function evaluations to do so. A
better strategy is as follows: Since p'is always the Newton direction in our algorithms,
we first try A = 1, the full Newton step. This will lead to quadratic convergence
-when ' is sufficiently close to the solution: However, if f(#,.,) does not meet owr
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acceptance criteria, we backtrack along the Newton direction, trying a smaller value
of A, until we find a suitable point. Since the Newton direction is a descent direction,
we are guaranteed to decrease -f for sufficiently small A. What should the criterion for
accepting a step be? It is not sufficient to require merely that f(xnew) < f(a’old) This
criterion can fail to converge to a minimum of f in one of two ways. First, it is possible
to construct a sequence.of steps satisfying this criterion with f decreasmg too slowly
relative to the step lengths. Second, one can have a sequence where the step lengths
are too small relative to the initial rate of decrease of f. A simple way to fix the first
problem is to require the average rate of decrease of f to be at least some fraction « of
the 1n1t1a1 rate of decrease Vf - p

(0230) f(l n.e w) < f( O/(]) + OlVf (fne'w - fOld)'

Here the parameter « satisfies 0 < o < 1. We can get away with quite small values
of a; & = 107% is a good choice. The second problem can be fixed by requiring the
rate of decrease of f at Fyew to be greater than some fraction 3 of the rate of decrease
of f at Zyg. In practice, we will not need to impose this second constraint because
our backtracking algorithm will have a built-in cutoff to avoid taking steps that are too
small.

Here is the strategy for a practical backtracking routine. Define

(5.2.3.6) 9 = [(Fota+ ND)
- so that |
(5.2.3.7) 9N =Vfp

If we need to backtrack, then we model g with the most current information we have
and choose A to minimize the model. We start with g(0) and ¢'(0) available. The first
step is always the Newton step, A = 1. If this step is not acceptable, we have available
g(1) as well. We can therefore model g(\) as a quadratic:

(5.2.3.8) g(X) = [g(1) = g(0) — g'(0)]A* + g(0).
By first derivative of this function we find the minimum condition
/
0
(5.2.3.9) A=— g'(0)

2[g(1) — g(0) — g'(0)]

Since the Newton step failed, we can show that A S 1 for small a. We need to guard

against too small a value of /\ however. We set )\7,,,7, =0.1.
On second and subsequen‘r backtracks, we model g as a cubic in A, using the previous
value g(A1) and the second most recent value g(A2).

(5.2.3.10) g(A) = aX® + DA% + g’ (0)A + g(0)

Requiring this expression to give the correct values of g at A; and Ay gives two
equations that can be solved for the coefficients ¢ and b.

H - [ 1/32 —1/A%]_[gul)—g'mm—g(m

2.3.11 = 1T
(5.2.3.11) b L= Ao | =A2/A2 A /A% g(X2) = g'(0)A2 — ¢(0)

The minimum of the cubic (5.2.3.10) is at

—b+ /02— 3ag'(0
(5.2.3.12) r= 2F ’3( ag'(0)
1
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One should enforce that A lic between Apu. = 0.5A1 and A,,;, = 0.1)\;. The corre-
sponding code in FORTRAN is given in [5], pp. 378-381. It it suggested to reader to
write the corresponding code in Mathematica.

Multidimensional Secant Methods: Broyden’s Method

Newton’s method as used previously is rather efficient, but it still has several dis-
advantages. Oue of the most hmportant is that it needs Jacobian matrix. In many
problems the Jacobian matrix is not available, i.e. there do not exist analytic deriva-
tives. If the function evaluation is complicated, the finite-difference determination of
Jacobian can be prohibitive. There are quasi-Newton methods which provide cheap
approximation to the Jacobian for the purpose of zero finding. The methods are often

called secant methods, because ‘rh(\y reduce in one dimension to the secant method.
One of the best of those methods is Broyden’s method (see [21]).

If one denotes approximate Jacobian by B, then the i-th quasi-Newton step 07, is

the solution of '

where 02; = #i11 — 7. Quasi-Newton or secant condition is that By satisfy

where 0F; = F;; — F;. This is gencralization of the one-dimensional secant approxi-
mation to the derivative, 6 F /2. However, equation (5.2.3.14) does not determine Bj 4
uniquely in more than one dimension. M(my different auxiliary conditions to determine
B,11 have been examined, but the best one results from the Broyden’s formula. This
formula is based on idea of getting B, 1 by making a least change to B; in accordance
to the secant equation (5.2.3.14). Broyden gave the formula

0T - OF;

(5.2.3.15) Biii =B +

One can check that By satisfies (5.2.3.14).
Early implementations of Broyden’s method used the Sherman-Morrison f()lllllﬂ()
to invert equation analytically,

: v - - 1
. (-1 ((S.’IL,; -B - (SF,) ® (5.’1,'/,3 ' B/,
(5.2.3.16) B, =BV + / .

Thus, instead of solving (‘qmm()n (5.2.3.1) by, for example, LU decomposition, one
dotel mined o

(5.2.3.17) | o7 = BT F,

by nmtnx multiplication in ()('n } operations. The disadvantage of this method is that
it cannot be easily embedded m a globally convergent str ategy, for which the gradient
- of equation (5.2.3. 9) (‘(11111(\% B, not B!

. ’ / ' 1 .
(5.2.3.18) o V(;F-F) ~BT.F

AécordinQ;ly, one should implomoht the update formula in the form (5 .3.15).- However,
we can still preserve the O(n?) solution of (5.2.3.1) by using QR decomposition of B;1;

in O(n?) operations. All needed is initial approximation By to start process. It is often
: a(((‘ptod to ’rdke 1(1(311hfy matrix. and then (Lu()W O(n) updates to produce a reasonable
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approximation to the Jacobiaw. In [5], p. 382-383, the first n function evaluations
Lare spent on a finite-difference approximation in or der to init ialize B. Since B-is not
“exact Jacobian, it is not guarantecd that 47 is descent direction for f = IF - F (see eq.

(5.2.3.3)). That has a consequence that the line search algorithm can faﬂ to return the
suitable step if B is far from the true Jacobian. In this case we simply reinitialize B.

Like the secant method in one dimmension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it-is almost as
robust as Newton’s method, and often needs far fewer function evaluations to determine
a zero. Note that the final value of B is not ‘always close to the true Jacobian at the
root, in spite of fact that method converges.

The progranune code ([5], pp. 383-385) of Broyden’s method differs ﬁom Newto-
nian methods in using QR decomposition instead of LU, and determination of Jacobian
by finite-difference approximation instead of direct PV&hldflOll

More Advanced Implementations

One of the principal ways that the methods described above can fail s if matrix W
(Newton-Kantorowich) or B (Broyden’s method) becomes singular or nearly singular,
so that Az cannot be determined. This situation will not occur very often in practice.
Methods developed so far to deal with this problem involve the monitoring of condition
number of W and perturbing W if singularity or near singularity is detected. This
feature 1s most easily implemented if QR decomposition instead of LU decomposition
in Newton (or quasi-Newton) method is applied. However, in spite of fact that this
method can solve problems when W is exactly singular and Newton’s and Newton-like
methods fail, it is occasionally less robust on other problems where LU decomposition
succeeds. Impl( mentation details, like roundoff, underflow, etc. are to be considered
and taken in account.

In [5], considering effectiveness of str ategies for minimization and zero finding, the
global strategies have been based on line searches. Other global algou’rhms like hook
step and dogleg step methods, are based on the model-trust region approach,
which is related to the Levenberg-Marquardt algorithin for nonlinear least-squares. In
spite being more complicated than line searches, these methods have a reputation for
robustness even when starting far from desired zero or minimum.

Nunerous libraries and software packages are available for solving nonlinear equa-
tions. Many workstations and mainframe computers have such libraries attached to
operating systems. Many commercial software packages confain nonlinear equation
solvers. Very popular among engineers are Matlab and Matcad. More sophisticated
packages like Mathematica, IMSL, Macsyma, and Maple confain programs for nonlin-
ear equation solving. The book N umerical Tecvpes [5] contains numerous programs
for solving nonlinear equation.

For symbolic implementation of nonlinear optimization, see [6], containing not only
very useful code but also corresponding theoretical Dackgrowd.
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LECTURES

LESSON VI

6. Approximation and Interpolation

6.1. Introduction

This lesson is devoted to one of the most important areas of theory of approxima-
tion - interpolation of functions. In addition to theoretical importance in construction
of numerical methods for solving a lot of problems like numerical differentiation, numer--
ical integration and similar, it has practical application to many engineering problems,
including FEM problems. '

Theory of approximation deals with replacing of function f defined on some set X
by another function ®. Let function ® depend on n + 1 parameter ag, a1, . .., Gy, 1.€.

O(x) = (200,01, .., Un)-
Problem of approximation of function f by function ® reduces to determination of pa-
rameters a;, ¢ = 1,...,n according to some criterion. Depending on chosen criterion, we
differ several sorts of approximations. Generally, depending on form of approximation
function, they can be divided to linear and nonlinear approximation functions. The
general form of linear approximation function is

(6.1.1) O(x) = apPo(z) +ar1P1(x) + ... +an,®, (),

whereby system of functions {®y} fulfills some given conditions. Linearity of function
P means linearity regarding parameters a; (i = 0,1,...,n). When ¢} = zh (b =
0,1,...,n), Le.

O(r) = ag + ayx + ..o+ apz”,
we have approximation by algebraic polynomials. In the case when {®} = {1,cosx,
sinz, cos 2¢,sin 2z, ...} we have approximation by frigonometric polynomnials, 1Le.
trigonometric approximation. For the case o

' . _ v —ap)™ (> wy),
Oy, (x) = (v — i)y = { ( 0 g E.’I,' < .‘L'}; '

where m is fixed natural number, we have spline approximation.
"~ We will meiition two of nonlinear approximations:
1. Exponential approximation
: ‘ - box . Lbex
D (2:) = O(w5 0, bos - -5 Gy by) = coe® + .+ e,

where n 4+ 1 = 2(r + 1), i.e. n=2r+1.

97
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- Rational approximation

bo+bix+ ...+ b.x"
co+c1x+ ...+ sz’

P(z) = ®(z; 00, .-y byy Coy e, Cs) =

7

where n =7+ s+ 1. ' ' ' ,

Let function f be given on segment [a, b] by set of pairs (:r;\,f,\) (k=0,1,...,n),
where fi, = f(xx). If for approximation of function f by function ® the criterion for -
choice of parameters ag, a1, ..., a, 1S given by system of equations

(612) i (:[)(fEk-; ap, A1, ... (Iu,,) - fk' (k = O 1 . n),

we have problem of function interpolation. Function & is called in this case mtelpoldtlon
function and points x5 (k= 0,1,...,n) interpolation nodes.

Problem of interpolation Could be- more complicated then noted. More general case
appears when, in addition to function values in interpolation nodes, the derivatives of
function ‘are also included. ‘

6.2. Chebyshev systems

Let function f be given by its values fy = f(zg) in points zx (z) € [a,b])(k =

0,1,...,n). If we have linear interpolation problem, i.e. interpolation by function
( 1. ) bybtun of equation (6.1.2) reduces to system of linear equations in parameters
a; (1= 1),
G'O(I)O(-,Ek') -+ (llq)l(:l:k:) +...+ a'n(]:)n (-T;k:> - fk (k - 07 17 teey n)a

le.

Oo(xo) P1(zo) ... Pnlzo) ag fo

Oo(z1) Pr(x1) ... (?.,,,(:1:1) lay fi
(6.2.1) . =1

(I)O(-'l7 'n,) (I)l (-/I;'n,> cet (I)'n,(m'n,) an f .'n,

In order above given interpolation problem to have unique solution it is necessary that
matrix of system (6.2.1) be regular.

To the system of functions (®y) should be intruded such conditions under which
there not exists linear combination '

apPo(z) + a1P1(x) + ... + an P, ()

which has n + 1 different zeros on [a,b]. System of functions with such characteristic
are called Chebyshev (Tchebyshev) systems, or T-systems. Thele exists extraordinary
monograph regarding T-systems [6].

Theorem 6.2.1. If the functions @y : [a,0] = R (k = 0,1,...,n) are n + 1 times
differentiable and if for every k = 0,1,...,n the Wronsky determinant W), is different
from zero, i.e.

Oo(r)  Dy(x) ... DPu(x)
D! (u; O (x oo @O (x

W = 0.( ) 1() (1) 20,
(I)(()I':)(:r:) (I)(lk) () ... (I)Ef:)(.’li)

system of functions {®;} is Chebyshev (T) system.
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6.3. Lagrange-interpolation
Let function f be given by its values fi = f(x) in points (@ € [u, D)) (k =
0,1,...,n). Without decreasing the generality, assume

(6.3.1) : a<axy<ap <...<my, <.

If we take points u for interpolation knots and put ®p(z) = 2* (k = 0,1,..., 1) we
have a problem of niterpolation of function f by algebxalc polynonudl Deuote this

polynomial with P, i.c.
P,(x) = ¥(x) =ag+ a1x + ... + a,x™.

Then we have the interpolating polynomial

(6.3.2) CPu) = 3 Flan) L),
k=0

where
(v — o) .. (x—wp_1) (v — Tpy1) .- (z — zy,)

(e —x0) o (2p — Tho1) (T — Tpa1) - - (T — 24,)
w(x)

(x — @)W (a)’

w(r) = (& —wxo)(r —x1) ... (€ — ),

w(ag) = (v — o) - (g — 2p_1) (T — Thgr) - - (T — 1,).

The formula (6.3.2) is called Lagrange interpolation formula, and polynomial P, La-
grange interpolation polynomial. When programming, it is Suggested to use the follow-

Ly(z) =

ing form of Lagrange formula. ‘
[ T .

- : T — X

P,(x) = g flz) H —

k=0 ' iso L — Xy

itk

Having in mind that determinant of system (6.2.1) is Vandermonde determinant, i.e.

1 xy ... xzf

J R A I

) = H(:l:,,; —2),
. l i>j

1 @, ... oy

and the assumptioil (6.3.1), it follows that the Lagrange polynomial (6.3.2) is unique.
Example 6.3.1. For 1‘1111( tion values given in tabular form find the Lagrange interpo-
lation polynomial.

Ty i f(rl\)

-1 -1.
0. 2.
2 10.

wo
oo
[ea
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| (= 0)(x — 2)(z — 3) 49 (x+ 1) (x - 2)(z — 3)
(-1=0)(-1=2)(=1-3)  “(0+1)(0-2)(0-3)
(z+1)(x—0)(z—3) 95 (z+1)(z - 0){z—2)

P3(x) = (-1)

410

| ErDE-0@-3) " ErNE-0E-2)
Py(x) = g:z::3 — %:1:2 + 2.

Example 6.3.2. Determine approximately zero of function given in example 6.3.1.

Lagrange interpolation polynomial for function y — f~*(y) is

(,/—9)(11—10)({/—50) = (y+ 1)y — 10)(y — 35)
(—1=2)(-1-10)(=1-35) . (2+1)(2~10)(2—35)
(+Dw-2)y—=35  , (y+Hly—2)(y-10)

(10 + 1)(10 — 2)(10 — 35) = "~ (35 + 1)(35 — 2)(35 — 10)’
wherefrom, for y = 0 we get zero of a function f :
i 2 P3(0) = —0.6508

P3(y) = (—1)

+2

6.4. Newton interpolation with divided differences

For function f given by its values fi, = f(x}) in points ), (k= 0,1,...,n), define
first, divided differences. The ratio :

f(-”fl) — flxo)
&1 — Ty
is called divided difference of first order (of function f in points xg and x1) and denoted

as [wy, w13 f]. . . _
Divided difference of order r are defined recursively by

w1, fl = (w0, - oy @1 f]

Xy — Uy

(041) [wo, a1, ..y fl =

where [x; f] = f(2).

Relation (6.4.1) enables coustruction of table of divided differences

kx| Afp A2 fy, A® fy,
0 @0 fo
[wo. 211 f]
1 a1 i [-’11'()-,-"51:_-%'21, 1]
[y, wa: 1] (0. 21, X0, w3 f]
2 w9 fy (1.9, 235 f]
[-’lf'z-, €3l f]
3 oam f3

One can show that divided difference of order » has characteristic of linearity. 1L.c.

[0, a0 .o+ cog) = crfwn, . omg fl1+ ealro. oo me gl
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where ¢; and ¢y arearbitrary constants. Because of, based on (6.4.1),

f () 4 fa)

)
Tro — Iy [ O i M

[ln HIS f]

oune can prove by mathematical induction

T o
['Il:()v"l:lv"'a"I'lT';f] = f/( I)
Z w'(x

where w(x) = (r — o) (v — x1) ... (2 — 1,.).
Let f € C™[a,b] and the (()11(11hon (6.3.1) holds. Then, for every r < n, the formula

1 f] :—l

[To,®1, ... 40 f] // / )‘( 10—}-21—7, 1)t:)dty dty .. dt,
0

holds. This can be proved by mathematical induction.
Applying theorem on integral mean value, from last expression follows

1ty tr—1

[To, T1s ..o f] = f("')({-') / / e / dtydty ... dt,
00 0

— %f(’)({) (a <& <D).

Taking 2; — 2o (i =1,...,r) in last equality, we get

. : 1.
(6.4.2) (2o, 1, SRREC% f1— T—'f(')(.'lzo).

Let us express now value of function f(x,) (r < n) by means of divided differences

[zo,. . @i f] (0=0,1,...,7)
For r = 1, based on definition (6.4.1), we have

flry) = f(xo) + (21 — z0)[xo, 213 f].
In similar way, for r = 2,

( ) (1) + (22 — x1)[w1, 22; f) ’ » -
' fxo) + (w1 — wd)wo, z1; f]) + (w2 — 21) ([0, 15 f]
(@ |

o — o) [0, X1, T2; ),

f
(

+
1.e.

fla2) = f(zo) —1—"(‘:1:2 — o) [0, x1; f] + (w2 — o) (T2 — £1)[w0, T1, T2; f].
In general case, it holds

) ]L(’I ) = f(l()) —+ ( . — 1())[’1)(),.’[71; f'] + (.’L‘T — 3110)(.7}7- - il','l)[.’l,'o, X1,T9; f]
' + ot (e —mo) (T = 1) (T — Ep1)[To, T1, - T S
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Using divided differences for set of data (uy, f(zs)) (k = 0,...,n) the interpolation
polynomial of the following form can be constructed. ‘

P,(x) = fla) + (v - :1':(,)[:1:(-,, w1y ]+ (v = wo) (@ — x1)[mq, 1, 25 f]
+ oot (=@ — xq) - :1;,,.,,_1)[:1;(-), L1y T [

This polynomial is called Newton's 111t01p01(tt1011 polynomial.

Having in mind uniqueness of algebraic interpolation polynomial, we conclude that
Newton’s interpolation polynomial is equivalent to Lagrange polynomml Note that
construction of Newton’s interpolation polynomial demands previous forming of table
of divided differences, what was not the case with Lagrange polynomial. On tlie other
hand, involving a new interpolation node in order to reduce interpolation error, is more
convenient with Newton’s polynomial, because do not demand repeating of whole cal-
culation. Namely, at Newton's interpolation we have

Poi1(a) = Po(2) + (x —xo) (e — 1) . - ( — X))oy T1s - s Tpars f1

If we put 2; — 2 in Newtow’ 5 Interpolation polynonual P, based on (6.4.2) it
reduces to Taylor polynomial.

Example 6.4.1. Based on table of values of function x — cha form table of divided
differences and write Newtown's interpolation polynomial.

k 0 ‘ 1 : 2 3

X, 0.0 0.2 0.5 1.0
fa) 1.0000000 1.0200668 1.1276260 1.5430806

k| [ vt ]| [0, Tt wraas ] 200, Cht1s Traas Crast f]
0
0.1003338
1 0.5163938
(}.3585307 0.0740795
2 0.5904733
0.830909.3
3

Newton’s interpolation polynomial is then
Py(x) = 1. 4+ 0.10033382 + 0.51639382:(x: — 0.2) + 0.07407952:(«x — 0.2) (= — 0.5).
For exawple. for 2 = 0.3, ¢l 0.3 = P3(0.3) = 1.0451474.

6.5. Newton’s interpolation formulas

By mcans of finite diffevence calculus the several interpolation formulas in equidis-
tant nodes can be evaluated. The oldest one is Newton’s interpolation formula.

Let function f be glwn ou [, b] 1)y pairs of values 2y, fi.. where f, = f(x)) and
ap =ag+ kb (B=0,1..... n). For given set of data the table of finite differences can
be formed. In the following t.n,bl(r is used operator A defined by Af(x) = fla+ ) —
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f() (h=const. > 0).

o fo
Afo
w1 J1 ézﬂ
Af A3 fy
Ty fo A%fy Aty
Afy A3f
r3  f3 Af,
Afs
vty Ja
Let x =xo+ph (0<p<n)ie p= .'1; _h o Because of
E'=(1+AP =Y (i’) Ak,

k=0
where E is shift operator (Ef(x:) = f(x: + 1)), we have

o= 3 (1) st =3 (1) s+ s

k=0 k=0

l.e.
n

. : ' P k¢ .
(651) f ("I;() + ])]l.) = E (’ﬁ A f() + Rn(fa '1;)'
k=0 '
The remainder term R,,, having in mind the uniqueness of interpolation polynomial, is
equal to remainder of Lagrange interpolation formmula

]l,'n,—l—l
Bulfin) =~ g — 1. (p— ) f+D)
t (f5 ) o +1)!’)(‘) ). (p—n) (),
where ¢ is point in interval (xg, 2,,).

The polynomial

Th

(6.5.2) P, (x) = Z <i) AFfo (ph =z — x0)

k=0

obtained in a given way, is called first Newton’s interpolation polynomial. This polyno-
mial can be defined recursively as’

. " 7 ) ‘
Pk('ll-‘.) :_Pllz—l(:'I") + <é> Ak’fo (k = 1a SRR 'Il),

starting with Py(x ) = fo. The developed form of polynomial is

' pp—1)...(p=n+1) .
Pa() = fot+ pAfo+ " ( )AZZ‘ +. +p(p ) wsp )A'fo;
ie . ‘
- Py(r) = hf()(l — ) + 2'_];}([ — o) (x — :1;1) +...
Ay » o
71,!/;,7':? (. —2o)(x—x1) ... (18— Tp_1).

First Newton'’s interpolation polynomial is used for interpolation on begin of un-
terval, i.e. in neighborhood of interval star ‘rlng point zg. In‘relpolatlon of function for
r < Zp 18 (alled ex‘rmpolahon _ :
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Remark The reader is en(oruaged to write a (’ode in Mathematica for program
realization of first Newton’s interpolation formula, using all four previously given forms.

For bigger tables of finite differences, usually by applying finite element method,
1t is very important knowing propagation of accidental error of function value in some
interpolation nodes. Let us have the value f; + € in place of fx, where € is error. Then
we have the following table ob’ramed using operator A.

T fi CAf; A?f; A3fy At
Theda  fr—a :

‘ Afy_
Tg-3  fi—s A%fy 4
, Afy-3 A3 fr_y |
Tp—2  [r—2 A?fy_g 1 - A*fr_a+e
Afr_o A3fp_s+e o
Tp—1  Jr—1 Afj_o+e A*fr_3 — de
Afj_1+e Ao — 3¢
T fk: +€ A2.fk:—1 — 2e A4.}(.]\':—2 + 6¢
A.fk — £ : ABfk:—l + 3¢
2yt fem A’fy+e At fi_1 —de
Afrty A —€
T2 a2 A2 friq A*fy +e
Afiya A% fri
Tts  fies SVAN
A frys

Titd  frra

The erroneous differences in table are underlined. We see the progressive propagation

. op — . . m
of error, so that error in difference A™ f, s (i =0,1,...,m)is { . J(=1)¢.
i

6.6. Spline functions and interpolation by splines

Physical device named spline consists of a long strip fixed in position at a number
of points that relaxes to form a smooth curve passing through those points. Before
computers were used for creating engineering designs, drafting tools were employed by
designers drawing by hand. To draw curves, especially for shipbuilding, draftsinen often
used long, thin, flexible strips of wood, plastic, or metal called a spline (or a lath, not to
be confused with lathe). The splines were held in place with lead weights (called ducks
because of their duck like shape). The elasticity of the spline material combined with
the constraint of the control points, or knots, would cause the strip to take the shape
which minimizes the energy required for b(‘ndmg, it between the fixed points, and thus
adopt the smoothest possible shape. One can recreate a draftsinan’s spline device with
weights and a length of thin stiff plastic or rubber tubing. The weights are attached
to the tube (by gluing or pinning). The tubing is then placed over drawing paper.
Crosses are marked on the paper to designate the knots or control points. The tube is
then adjusted so that it passes over the control points. Supposing uniform elasticity of
spline, one can say that its potential energy, when bent, is proportional to the integral
along it (curvilinear integral along curve) of quadrate of convolution K. Thus, if spline
lies along plane curve y = S(x), a < 22 < b, its potential energy is pl()p()lfl()ndl to the
integral '

b

(6.6.1) ’L/.K(.’II)Z(IZH:'/' - 5" (x)” —

(14 S§'(x)?)5/2

o 7
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and stabilized shape it takes is such that minimizes (6.6.1) under given limitations.
In the similar way is defined mathematical spline, by discarding S’(:¢)? in nominator

of (6.6.1), what is close to previous case, when S’(x) << 1. Thus, now is to minimize
the integral

b

(6.6.2) / S ()2 da:.

7]

Mathematical spline can be wore generally defined by using higher derivative then two
in (6.6.2).

First results regarding spline functions appeared in papers of Quade and Collaty
([11], 1938) and Courant([12]. In 1946 mathematicians started studying the spline
shape, and derived the piecewise polynomial formula known as the spline curve or
function (Schoeuberg [13]). This has led to the widespread use of such functions in
computer-aided design, especially i the surface designs of vehicles. Schoenberg gave
the spline function its name after its resemblance to the mechanical spline ubed by
draftsmen. The origins of the spline in wood-working may show in the conjectured
etymology which connects the word spline to the word splinter. Later craftsinen have
made splines out of rubber, steel, and other elastomeric materials. Spline devices help
bend the wood for pianos, violins, violas, etc. The Wright brothers used one to shape
the wings of their aircraft.

The extensive development of spline functions and usage of their approximation
properties begun in sixties last century. The splines are greatly applied to numerical
mathematics, in particular to interpolation, numerical differentiation, numerical inte-
gration, differential equations, etc. The extremal and approximative at‘mbutes of so
known natural cubic spline are given in [1], pp. 81-86.

Let on segment [a, b] given network of nodes

(6.6.3) o A, a=x9<x1<.:. <1, =0

Denote with P, sct of algebraic polynomials of order not greater than m.

Definition 6.6.1. Function
S'm.(-'l;) = Sm,l.;(-”:a An)

is called polynomial spline of degree m and defect k (1 < k < m) with nodes (6.6.3), if
satisfies the conditions

1° S, € P 011 every subsegment [x;_1,2;] (i=1,...,n),
205, € C"ka, b]. ‘

Points z; are called nodes of thll(’ -

We will further consider polynomial sphnes of defect 1 and for S (1“) = Sp,1(x) say
to be a spline of degree m. Very important kind of splines, 111‘(911)01&1 ion cubic spline,
with m = 3 are most frequently used and applied in engineering design. Therefore we
join to the network nodes A,, real numbers fo, f1,..., fo-

Definition 6.6.2. Function Ss(x) = Ss(x; f) is called interpolation cubic spline for
function f on the network A, (n > 2) if the following conditions are fulfilled:

1° 53(1, P ePsifwefmi_y,m) (i=1...,n),
90 Ss(z; f) € C?a, V], 5

0 Sy(wis ) = fo=flwi) (i=0,...,n). |

We see that condition 3% does not appear in Deﬁmtlon 6.6.1. The spline deﬁn@d
in this way is called simple cubic splirie. It interpolates function f in network nodes

(condition 3°), it is continuous on [a,b] together with its derivatives S3(x) and Sg (z)
(condition 2°) and defined on every subsegment between neighbor nodes with polynomial



106 Numerical Metheds in Computational Engineering

of degree not gleatex than 3. So, the thnd derivative of cublc sphne 18 dlscontlnuous
being, part by part of constant value.

Cubic spline has two free parameters, deter mined usually by some additional bound—
ary conditions. The typical ones are:

(6.6.4)  Sila) = Si0), Sile) = Sy

(6.6.5) (@) = an,  Sh(b) = by

(6.6.6) (@)= An  S() = Bui.

(6.6.7) Sy (xy —0) = S5 (z; + O), | S3 (17,; —0) =S5 (zp_1 +0),

where a,,, b, Ay, B,, are given real munbels

Conditions (6.6.4) define so known periodic spline. These ¢ ondmons are used when,
for example, 1n‘re1polat1ng function f is periodic with period b — a.

If function f is-differentiable and we know values of derivatives in boundary points
a, and b, then the additional conditions (6.6.5), a, = f’(a) and b, = f'(b), or (6.6.6),

A, = f"(a) and B,, = f”(b) are to be used, what is often case at mechanical models.
The corresponding spline is called natural cubic spline.

The conditions (6.6.7) are most complicated, but they obtain continuity of third
derivatives of spline in points x =21 and © = Tp—1.

The most interesting spline approximation is cubic spline 1nte1polat10n The algo-
rithm for construction of cubic spline is given in ([1], pp. 73-81). To interested reader
is suggested to write a code for construction of spline (taking care of Hermite inter-
polation) and, if possible, include graphical interface. For some programming details,
see Fortran subroutines Spline and Splint in ([5], pp. 109-110). For obtaining a
higher order of smoothness in two-dimensional interpolation (applicable in many areas
of engineering, and specially in computer graphics), one can use bicubic spline and code
given in ([5], pp. 120-121.)

6.7. Prony’s interpolation

Dating from 1795, Prouy’s interpolation ([14]) is often known as Prony’s exponen-
tial approximation, and until nowadays not applied as it by its sophisticated nature
deserves. It is suggested to students and readers to apply the following formulas in de-
veloping algorithins for programming of Prony’s method. Some benchmarking research
for comparison of application of this method, cubic spline, and, for example, least square
method to some physical problems is also strongly encouraged.

If we have interpolation function of form

/‘(.’]:) /':v (:1(:(),1,']2 + (120“’2”: + - + C”eﬂ,nfﬂ
L
= 1] + cofty + .o+ Cupi,

where jip, = e® . If function f is given on set of equidistant points {(zk, fx) tk=01.. 20-1,
and xy —zp—1 = h = const (k=1,2,...,2n—1), by replacing x = z¢+kh data set can
be replaced by {(k, fi) k=01 2n-1. whele x=20,1,...,2n—1. By setting interpolation
problem

(6.7.1) Ok)=f. (k=0,1,...,2n—1), -



Lesson VI - Approximation and Interpolation 107
we get the system of‘equations

¢citcer+...4+c, = fo
Cifiy + Coliy + oo+ Cpfln, = f1
(6.7.2) (-51//'% + (:2,11,% + ...+ Cnﬂ',z,, — f2

_N-1, , . N-1 N-1
Crpy Tt Cly CF ey, T = ot

It p’s are known (or preassigned) and N = n, system (6.7.2) is to be solved exactly as
system of linear equations, and if N > n approximately by least squares method (see
next chapter). ' '

If pu’s are to be determined, we need at least 2n equations, but we have system of
nonlinear equation, which, as we know, in general case could be unsolvable. Therefore,
we can assume that p’s are the roots of algebraic polynomial of form

I R Tk R B o1 fb + v, =0,
(6.7.3) ie
(/l' - /l,,,,,)(/.l, - ,U“n,-—l) cee (/1: - ,Url) = 0.

By multiplying all equations in (6.7.21) by v, ¢p—1, ..., 1,1, we get the system

f()(-y'n. + flcyw,—l + f2(¥'n,—2 + - .f'n,—l‘al = —.f‘n,

) fl(k‘n, + fZan——l + f3(}{71,—2 + -+ fnal = _f'n,-i-l
(6.7.4)

’ fN——'n,—l(]{'u. + .]L‘N—'n,(y'n,—l + .f'N—'r).+1(¥7:,-;2 + -+ fN—2(Y1 = _.fN—l-

If determinant

f() . fl T f'n,—l
f '1 f ‘2 T f "n,
| fN—n—l fN—n T .fN—-2

the solution of system (6.7.4) is unique. If N = 2n we get system of linear equations,
and if N > 2n we solve this system by least squares method.

After the o’s are determined, the n p’s are found as the roots of (6.7.3). The
equation (6.7.2) then become linear in the n ¢’s, with known coefficients. Thus the
nonlinearity of the system is concentrated in the single algebraic equation (6.7.3).

6.8. Packages for interpolation of functions

Many libraries and software packages are available for interpolation and extrapo-
lation of functions. Many workstations and mainframe computers have such libraries
attached to their operating systems. .

Many commercial software packages contain algorithms and programs for inter-
polation. Some of more prominent packages are Matlab and Mathcad. Some more
sophisticated packages, such as IMSL, MATHEMATICA, MACSYMA, and MAPLE, also con-.
taln routines for polynomial interpolation and approximation of functions. The book
Numerical Recipes [5] contains a routines for interpolation (See chap. 3, Interpo-
lation and Extrapolation), and the book Numerical Methods for Engineers and
Scientists ([2]) program code for difference formulas and numerical differentiation.
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For demands on inter pola‘rlon In two or more dunensmns hlgher order for accur acy, ar
higher O)Idel of smoothness (bicubic interpolation, bicubic spline) see code in ([5], p
118-122 ' ; '
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7. Best Approximation of Functions

7.1. Introduction

This chapter is devoted to approximations of functions most applied in different,
arcas of sciences and engineering.

Let function [ : [a. 0] — R given by set of value pairs (5. ;) (7 = 0,1,....m)
where S
fi = f(x;). Consider the problem of approximation of function f by linear approxima-
t,i(_K)u function

Th

O(x) = P(w;ag, ...y ay) = Z aidi(x).

=0

where 1 > n (for m = n we have interpolation). Proceeding like at interpolation. we
get so known overdefined systemn of equations

T

(7.1.1) DY mdilm) = (G=0,1,...,m),

=)

which in general case does not have solution, i.e. all equations of system (7.1.1) can not
be contemporary satisfied. If we define d,, by

T,

(7.1.2) ('5,,(, (x) = fa)— Z a;di (),

=0

it is possible to search for “solution” of system (7.1.1) so that

(7.1.3) 165l = i {18l
where » - |
- e 1/ .
10,1l = O 18n ()" (r>1).
. =0

The equality (7.1.3) gives the criteria for determination of parameters ag; dy. . ...ty i
approximation function ®. The quantity |}67|],.; which exists always, is called the value
of best approximation in {". Optimal values of parameters a; = a, (i=10,1,...,n) in
sense of (7.1.3) give the best I approximation function

T

P* (2) = Z (_1, oy (1) :

=0

109
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Most frequently is taken

1. r=1, [|6all1 = 2 16, (;)] (best {1 approximation),
= ‘ v

2. =2 ||6a]]z = (Z On (25)? )12 (best 12 approximation), -

3. r=+oc0, ||5,,Hoo = max 10n ()] (Tchebyshev min-max approximation).
<<

In a similar way can be considered problem of best appr ‘oximation of function f in
space L"(a,b). Here we have

y 1/r ’
o.ll = ([ 1naras) << a0

and

[19nlleo = max |0, (z)]

By introducing weight function p : (a,b) — R the more general case of mean-square
approximations can be considered, where the conespondmg norms for discrete and
continuous case are given as (see [1] pp. 90-91)

. ‘ m 1/2
(714> H(SN,HZ = ||(5nH2,p - <Zp 77 T_] )

and ‘
b 1/2
(7.1.5) IRIPES H(S,,Hop = (/P > )

respectively.

Example 7.1.1. Function © — f(x) = x1/3 is to approximate with function © —

é(x) = ag + a1z in space
1Y L*0,1), 20 L2(0,1), 30 L*=(0,1).

Here we have 0,(z) = 23 —ag — a1z (0 <z < 1). (see [1], pp. 91-93).

19 We get the best L1(0,1) approximation by minimization of norm

161]}1 = / |21/% — ap — ayz|dz.

06 ) . .
Having ?—1— = —1, and 1= —1x, the optimal values of parameters ag and a, are
oag (11
to be determined from the system of equations
1.
/ sgndp (z) dz =0,
(7.1.6)

0

1-
/ zsgn dy(x) dr = 0.
0 '
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Having in wind that d; changes sign on segment [0, 1] in points 21 and @y (sce fig.
7.1.1). systewm of equations (7.1.6) reduces to system

2
1

| =

2
3 .1/2 —

?

o =

Ay — iy =

wherefrom it follows @y = zl; and @y = %
Thus, determining the best L(0.1) approximation reduces to interpolation. i.c.

determining of interpolation polynomial ®* which satisfies the conditions

P*(1/4) = [(1/4) = ﬁ ¥(3/4) = [(3/4) = \E

l.e.
2
QP (1) = — \/3—1 &+ = 3- 3
(#) = (VA= Dt == )
=~ ().55720x + 0.49066.
| Y ' | y=o* (x)
=p*
1 il //
. _ y=£(x)
y=~f(x Y
¥s
IO Xl xz 1 X 0 1 ;
Figure 7.1.1 ' ‘ Figure 7.1.2
20 Let
N : 1. ‘
I{ay, a1) = H(Sﬂi% = /‘(.'1:1/3 — ap — aq2:)%d.
‘ 0 :
Fromn the conditions
i 14
ﬂ— = —2 /(:[;1/3 — ag — aya)de = 0,
()(l,() , o .
0
L
()—I = -2 / :i:(:I;l/?’ = ag — arx)dr =0,
' ()(1,1 . .
0

it follows
: 1 3 1 N 1 .
, o= —. =a —] = -, -
(10‘+ 2(11 1 540 301 =5
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lLe. ag = % = %, a1 = a = 19—4, so that the best mean-square approximation 15
given with ' ’
. 3 9 _ , _
O*(z) = - + ET & 0.42‘8571: + 0.64286z.

3% For determining min-max approximation we will use the following siriple geolnet
rical procedure. Through the end-points of curve y = flx) = /3 (0 <z < 1) we

will draw the secant, and then tangent on the curve which is parallel to this secant -

(see Fig. 7.1.2). The corr esponding equations for those straight lines are

. | N’
Y = Ysee = & and y—qun_‘r-l_ 9

so that the best min-max approximation is

~ 2+ 0.19245,

O* () = =(Ysee + Ytan) = T +

olg

O —

NG

whereby the the value of best approximation is ||07 |loo = %

7.2. Best L? approximation

Here, we will consider the problem of best L2appr oxnnatlon of function f : [a,b] —
R using linear approximation fun( tion

n

O(x) = Z a; ®; (),

4=0

where {®;} is system of linear independent functions from the space L?*(a,b), with scalar
product introduced by

b

(f.9) = / p()f(@)g(w)dz (f,g € L*(a, D)),

where p : (a,0) = RT is given weight function.

From the previous section we can conclude that for the best mean-square approx-
imation for f it is necessary to minimize the norm (7.1.5) by parameters a; (i =
0,1,...,1n). '

If we put I(ag, a1, ... an) = ||0,]|% = (5., 0,). then from

b ™

2'/ p() () — 3 asa()) (— @3 (2))dz = 0 (5 =0,1,...,n)

=0

oI
daj

[¢2

it follows system of equations for determination of approximation parameters

Th

(7.2.1) S (@080 = (£,8;) (G=0,1,...,n).

=0



Lesson VII - Best Approximation of Functions 113

This system can be represented in matrix form as

(@, o) (D1, P0) ... (B, D) ag (f, @o)
(Qy, @1)  (Dq, Py) (@, @1) a1 (f, @1)
((I)(la (I)’u,) ((1)17 (I)’IL) ((I)'n.a (I)H) Gy, (f) (I)n)

Matrix of this system is known as Gram’s matrix. It can be shown that this matrix is
regular if system of functions {®;} is linearly independent, having unique solution of
given approximation problem.

System of equations (7.2.1) can be simple solved if the system of functions {P}
is orthogonal. Namely, then all off-diagonal elements of matrix of system are equal to
zero, l.e. matrix is diagonal one, having as solutions

—_ ()‘7 (I),I-) )
2. = O = ———— 4 = AR
(7.2.2) a;, = a; (D)) (¢=0,1,...,n)
It can be shown that by taking in the given way chosen parameters a; (i =
0,1,...,n) the function I reaches its minimal value. Namely, because
%I

T = 2(Dy, By) = 2| D] *6ks
8(1,,7-0(1,,\,; ( k> J) H I\|| kg

where dy; is Cronecker delta, we Lave
k1)
d?I =2 " ||@])dai > 0.
i=0 ' :

Thus, the best L? approximation of function f in subspace X,, = L(®g, Pq,...,P,),
where {®;} is orthogonal system of functions, is given as

.< ) kel (f (I))
7.2.3 O* (1) = — D,;(x).
. 1=0

A very important class of mean-square approximations is approximation by alge-
braic polynomials. In this case, the orthogonal basis of subspace X, is constructed by
Gramm-Schmidt orthogonalization procedure, starting, for example, from natural basis
{1,z,2%,..., 2"}, or general methods for orthogonalization.
Example 7.2.1. For function © — f(z) = |z| on segment [—1,1] determine in the
set of polynomials not greater degree than three, best L? approximation, with weight
function  — p(z) = (1 — x2)3/2. ’

‘Let us compute integral

. 1 : ‘
N; = / #2*(1 - 2232 de (ke Np)
S |

- needed for further considerations (see [4], pp. 92-93). By partial integration over the
integral : ‘ , :

| +1 -
Ni—1—= Ny = / D1 - 2?2 de (ke N),
- ) ,
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5 . 2k - B \ |
> Ny, (keN) so that, with Np = 31

we et Np._{—N, . 1.e. Ny
BV k1= Wk = o Yk T ok + 4 T

we have N]‘ = Bﬂm

(k € N). Starting hom natural basis {1, z, z? } using
Gramm-Schmidt orthogonalisation, we get subsequently ' ‘
Qp(z) =1 .
Qy(x) =u — (&, %0) Do) Oy(zr) = x |
T (R0, ®o) 7
Py(r) =2® — NyNy ' = 2% - _é,
P3(x) = NzN r=a%— gr,

and corresponding norms

: 37 | ﬁ ‘ 1 5% ST
I0ll = /5 1l = ST, fall = /5 el = S

Because of

; 2 . , 1 .
(,fu(]}(]) = 37 (fa(I)l) = 07 (fa(I)Q) = ﬁa (f7(1)3) =0,
using (7.2.2) we get
16 . 0 128 0
ap = , a1 = 9 = —, a3 = 0,
05 5 BT D 2T g 370

having, finally approximation in the form

16 128
o (z) = 6 + 8 (.'1:2 — 1

157 = 357 6

) 22 0.14551309 + 1.1641047x>.

This function is, in addition, best approximation in the set of polynomials of degree not
greater than two.
Some further very valuable considerations can be found in [1], pp. 96-99.

7.3. Best |2 approximation

In previous sections we counsidered problem of best approximation of function
in space L%(a,b). Now we will consider a particular case, mentioned in introduc-
tory section. Namely, let function f : [a,0] — R be given on set of pairs of values
{(%), f; )}, =0.1,...m, where f; = f(x;). We will consider the problein of best approxima-
tion of given function by linear appmxnna‘rl()n function

T

(7.3.1) O(x) = Z(L,,;(I),,;(n:) (n < m)

=0

in sense of minimization of norm (7.1.4), where p : [a,b] = Ry is given weight function
and 9,, defined by (7.1.2). By involving the matrix notation

Oo(xrg)  Cy(wg) ... Dp(x0) fo g

Og(xy)  Py(xy) ... Dp(E) . f1 aq
X = . ; f = . ) a= : ?

Bo(wy,) Pi(w,) ... Bpx) fod - (Ly,
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P = diag(p(=o), p(r1), .. ., ple,,)), 7= f?— X,

square of norm, defined by (7.1.4), can be represented as

(7.3.2) F = 1,0 = 15,1 = 0055160 (25)? = 57 P

J=0

For determination of best discrete mean-square approximation (7.3. 1) it is necessary
to minimize F', given by (7.3.2). Thus, based on

5 00y (x5) .
dal_z;)p ,)W_o (i=0,1,...,n)

we get normal system of equations

T,

(7.3.3) Zp )0 (2)@i(z;) =0 (i=0,1,...,n)

for determination of parameters a; (¢ = 0,1,...,n). The last system of equations can
be given in matrix form
XTPi =0,
Le.
(7.3.4) XTpXi=X"Pf.

Note that normal system of equations (7.3.3), ie (7:3.4) is obtained from overdefined
system of equations (7.1.1), given in matrix form as

—

Xd=f,

by simple multiplication by matrix X TP from the left side.

Diagonal matrix P, which is called weight matrix, is of meaning so that larger
weights p; = p(z j) are amlgn(‘(l to the values of function f ; with greater accuracy. This
is of 1111p01fa11(,e when approximating experimental data, which are obtained during
measures by different accuracy. For example, for measur ements realized with different
dispersions, which relations are known, the weights p; are chosen as inverse of disper-
sions, i.e; such that .

5

| R R
PoiPLi iD=y g e
‘ Op. 07 Om

When the measurements are realized with same accuracy, but with different numbers
of measurements, i.e. for every value of argument z,; are proceeded my; measurements,
and for f; taken arithmetic means of obtained 1esufts in series of measurements, then

for weights are taken numbers of measurements in series, i.e. p; =m; (7 =0,1,...,m).
Nevertheless, usually are the weights equal, 1.e. P-is unit matrix of order m+ 1. Tn this
case, (7.3.4) reduces to

(7.35) SR XTXa=X"f.
Vector of coefficients @ is determined from (7.3.4) or (7.3.5). From (7.3.5) it follows

i=(XTX)"'XTf
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In case when the svstem of basic functions is chosen so that P, ( ) =o' (1=
0,1,...,n) we hcwo : o

o me . Tl
1 =z J,(Z) . i

i T
Iz =f ik

X = '

. Vo2 )

1 L, " Xy L,

The method considered is often called least- -squares method. Interesting case is when

n =11 when the approximation function is of form <I>( Y = ag + arr., Then the
system (7 3. 4) becomes .
S11 S12 ap | bo
S91 S99 a1 ‘bl k
where :
Va2 m.
S11 = g Py, 812 = S21— E Pﬂ;, S22 = E Py
J=0 j=0
™ ) m
bo = E pifis b1 —E Pix; [

7=0
The asked approximatiou parammeters are
1

1 :
oy = 5(5’221)0 — 51201), a1 = 5(51151 — 821bo),

. ~ e 2
where D = s11802 — 575,

Example 7.3.1. Find paraineters ag and aq in appr oximation function ®(x) = ag+ayw
using least-squares method. for function given in tabular form, as a set of values pairs

{(1.1,2.5), (1.9,3.2), (4.2,4.5), (6.1,6.0)}.

For weight matrix P we can take unit matrix. The previously given formulas can
be directly applied, but we can start from overdefined system of equations

1 1.1 2.5
1 1.9 ap| | 3.2
1 42" [UJ T |45
1 6.1 6.0

1%1 1%9 4%2 6}1] from thej left. side, we get the

By multiplying with matrix X7 = [

normal systemn of equations
4 1337 fao] _ [ 162
13.3  59.67 ar | | 6433’
wherefrom it follows
apl 1 59.67  —13.31 | 16.2 | _ 1.7974591
a1 6179 | -13.3 4. 64.33 | ~ | 0.6774559 |’

Thus, we have ®(x) = 1.7974591 + 0.6774559z:.
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In many areas 6f scieuce and technology, dealing with experimental data. we have
often problem of parameter determination in so known empirical formulas whicl express
functional relation between two or more variables. For example, let functional relation
be given as :
Y= flx; ag. ay, ..., a,),

where a; (i=0.1,.... 1) are paraineters which are to be deternuined using the following

tabulated data obtained Dy measurement.

'/', 0 1 e m
Xy €Ty K e Typ,
i Yo Y1 e Y.

The measured data coutain accidental errors of measureiuents, i.e. “noise” i ex-
periment. Determination of parameters a; (v = 0,1,...,n) is, fromn the point of theory
of approximation, possible only if 1 > n. In case of i = n, we have interpolation, which
is, in general case nonlinear, what depends on function shape. In order to eliminate
"noise” in data, and obtain greater accuracy and reliability, the nunber of measurements
should be large enough. Then, the most used method for determination of parameters
is least-square method, i.e. minimization of variable F' defined by

T
(7.3.6) = Z(;z/j — flxjrap,aq, ..., {1,”))2,
=0
or using
T
= ZP./ (yj — flwjiag.aq,. .., an))?,
J=0

where are included weights p;. If functional relation between several variables is given
as
z = fa,y; 00,01, ..., a0n)

for determination of approximation parameters we have to minimize

m.
: 2
= g pi (27 — flej. g5 00,01, .05 00))"
=0 «
If f is linear approximation function (in parameters ag, ay, . .. . ay), Le. of form (7.3.1).

the problem is to be solved in previously explained way. Nevertheless, if £ is nonlinear
approximation function, then the corresponding normal systein of equation

oF
(‘)(1,,,',

(7.3.7) - 0 (i=0,1,...,n)

v

is nonlinear. For solving of this system can be used some method for solution of systein
~of nonlinear equations, like Newton-Kantorovich method, whereby this procedure is
rather complicated. In order to solve problem in casier way, there are some stiplified
methods of transformation of such problems to linear approximation method. Nanely,
by introducing some substitutions, like- '

(7.3.8) ‘ X =g(r), Y=y

- nonlinear problem reduces to linear one.
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For example let y = f(z o, 1) = aoe”” Then, by logaritmization-and substitu-
tion ) ' -

X=u, Y=logy, by=1logag, b1 = aq,

the problem 1edu( es to linear one, b(‘( ause now Y = bo + 01 X. T hub by nnnunuatlon
of

m,

(7.3.9) G = G(bo,b1) = Y (¥; = bo = b1 X;)%
where X; = u; (Lll(l Yy =logy;, (j=0,1,...,n), we determine the parameters by and

b1, and thon

by

ap=¢e" and ay = by.

Nevertheless, this procedure does not give the same result like the minimization of

function
T,

F= F((Ir()a(]f()) ———vZ(U, — age™t®s )2_

4=0

Moreover, the obtained results can hlgnﬁ( autly deviate, because the problem we are

solving is different fr o stated one, having in mind tr ansformation we have done (Y =

logy). But, for many practical (‘]lglll(‘@llllg’ pmblems the parameters obtained in this

way are satlst(u tory. ,
We will specify some typical functional dependencies with possible transformation

of variables

19 y=aex™, X = 10g i, Y =logy, by =logag, by = ay;

20 y=agaf, X =, Y =logy, by =logagy, by = logar;

a1 1 ' :
3 y=ap+—, X = o Y =vy, bg =ag, by = ay;

(1,
49 4 = ag + ot X=u Y =uy, by=a1, b1 =ap;

0 1 N 1

5y = , X =uw, Y =— by=uay, by =uaq;
ag + arr Y

. € 1 1

60 y=—"—— X==,Y== b= a1, by = agp;
ap + ax a 1Y

€T €z

0 = —— X =2, Y =5, by=ag, 1 =a1;

: gy + ay 1Y

. 1 w1

8() y= T T X == .’}7 Y = ! [)0 = g, ])1 = 13
ag + ape”" 1

9O y=ag+alogx, X =logux. Y =y, by = ay. by = a.

Example 7.3.2. Result of measurements of values  and y are given in following
tabular form.

I 0 1 2 3 4 o

Ty 4.48 4.98 5.60 6.11 6.62 7.42
Yi 4.15 1.95 1.31 1.03 0.74 0.63

If y = ———— reduce to linear problem and approximate using least-square
ay + ayx :
method. _
By involving X = 2. Y = 1/y and using least-square method we get approximation

function @(X) = 0.468X — 1.843. wherefrom it follows y &

0.468% — 1.843
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From the previous one can conclude that. (1(‘])('11(1111‘sJ on f the couvenient replace-
ments (7.3.8) should be chosen so that they enable reducing of

y = f(x;a0,01,...,a,)

to linear form of, for example. polynomial type
(7310) Y =by+ hWX+.. .+ b, X™.

It is clear that functions g and I must have their inverse functions, so that (7.3.10) is

in fact, equivalent to
YY) = fo™HX) a0, an, . .., an),

whereby parameters b; depend on parameters a; in rather simple way.

7.4. Packages for approximation of functions

Procedures for developing polynomials for discrete data are very important in engi-
neering practice. The dirvect fit polynomials, the Lagrange polynomial, and the divided
difference polynomial work well for nonequally spaced data. For equally spaced data,
polynomials based on differcnces are recommended.

Procedures for developing least squares approximations for discrete data are also
valuable in engineering practice. Least squares approximations are useful for laree sets of
data and sets of rough data. Least square polynomial approximation is straightforward.
for both one independent variable and more than one variable. The least squares normal
equations corresponding to polynomial approximating functions are linear, which leads
to very efficient solving procedures. For nonlinear approximating functions, the least
squares normal equations are nonlinear, which leads to complicated solution procedures.
As previously mentioned, convenient mapping of nonlinear approximating function to
linear one (i.e. linear 1/(Lt10n) can solve this problem usually good enough. Least squares
polynomial approximation is a straightforward, siinple, and accurate procedure for ob-
taining approximating functions for large sets of data or sets of rough experimental
data. ‘

Numerous libraries and software packages are available for approximation of func-
tions, especially for polynomial approximation.

Many commercial software packages contain routines for fitting approximating poly-
nomials. Some of the more prominent packages are Matlab and Mathcad. More so-
phisticated packages, such as IMSL, Mathematica, and Macsyma contain also routines
for fitting approximating polynomials. The book Numerical Recipes ([6]) contains
numerous subroutines for fitting approximating polynomials (see Chapter 15, Modelling
of Data), and the book Numerical Methods for Engineers and Scientists ([2])
program code for fitting approximating p()lynonnals (se(‘ Chapter 4, Polynomial Ap-
ploxunatlon and Interpolation).
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LESSON VIII

8. Numerical Differeritiation and Integration

8.1. Numerical Differentiation

In this section the nuerical differentiation of real functions defined ou o, ! il
be considered.

8.1.1. Introduction

The need for munerical differentiation appears in following cases:
a. When values of function are known only on discrete set of points on [a,b], i.e.
function f is given in tabular form;
b. When analytical expression for function f is rather complicated.
Numerical differentiation is chiefly based on approximation of function f by func-
tion ® on [a,D], and then differentiating @ desirable times. Thus, based on f(x) ~
®(z) (o <z <D)), we have

W)~ 3N ) (a<a<b; B=1,2,..0).

For function ® are mostly taken algebraic interpolation polynomials, because being
simple differentiating. Let @ be interpolating polynomial of n—th degree, 1.e.

C@(x) = P, (x).
- If known error R, (f;x) of approximation polynomial
(8.1.1.1) f(x) = P,(x) + Ru(f;2) (a<z< b)

it is possible to estimate ervor in formula for differentiation, i.e. from (8.1.1.1) it follows

P9 @) = PO) + RO (fi2) (a <z <b)

It is meaningful to take for order of derivative only k < n.

It is obvious that numerical differentiation has smaller accuracy than interpolation.
So, for example, for interpolation is error in nodes equal to zero, what is not in case of
differentiation. '

8.1.2. Formulas for numerical differentiation

If known values of function f on set of equidistant points {zo, 71, - T } C [a, D],

with step h, let _ o v
Fo=fle) = flzo+k-h) (k=0,1,...,m).

121
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Constmqt over set {Ty, Tig1,...,Zitn} (0 < 4 < m — n) first Newton interpola‘tion' |
‘polynomial (see. Chapter 6) o

Pu(z) = fi+pAfi + MA% Ayt ~ - 2)A3fz~ T

(8.1.2.1) 2t : 3o
Cplp-1)...(p=n+1)
-1 m(p ntDang
' 1 dPn " »
where p = (x — z;)/h. Because P! (z) = 7 d' (T), by differentiation (8.1.2.1) we get
S D i .
1 2p—1 2 — \
(8.1.2.2) Pilw) = ¢ (M4 ot TP gy

By further differentiation of (8.1.2.2) we get, in turn:t\P,': ;P and so on. For example,

(8.1.2.3) P (z) = ]_)15 (A2fi 4 (p— 1)A%S; +...).

For z = z;, i.e. p =0, formulas (8.1.2.2) and (8.1.2.3) reduce to

(_1)77,—1

1 1 1 '
Pl) = ~(Afi— A% 4+ 1a35
P () (A A it A fi— AT f),
" 1 ) ) 11 )
P, (z;) = _2(A2f1: ~ A3+ =AY~ -
I : _ 12
Some useful formulas for the first derivative are
. 1 . . ]l: i .
fz;) = ]—L(fq: — fiz1) + 5]‘ (m), (wi—1<m <),
! 1 . . . h,z S
fi(z;) = ﬁ(?’f"" —4fi1+ fi2) + -3—f (n2),  (Ti—g < Mo < ),
. 1 ) o . , h3
fi(zi) = bTh-(llfy: —18fic1 +9fic2 = 2fi_3) + ZfIV(TB) (Ti_3 < M3 < 1), .

Previous formulas for first derivative in node x; are obviously asymmetric and are usually
applied on the interval [a, )] boundaries. Typical application of these formulas is at
approximation of differentiable boundary conditions in contour problems of differential
equations.

For nodes inside of segment [a, b] is better to use symmetric differentiation formulas.

1 1 e

(1%) Dfi = 'ﬁ(.fﬁﬂ — fi—1) — ghzf (€1)  (im1 <& < @ia);
(29) Df; = %(—fﬂz + 8fir1 — 8fi—1 + fi—2) +r2(f),

where

1
ro(f) = %"'4.7"‘/(52) (Tice < &2 < Tit2).

The most used and simplest, formula for approximation of second derivative is

D*f, = l%(fm —2fi+ fic1) +7(f),
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where, under condition f € C4[a,b], the remainder term is

. 12
r(f) = — Eflv(f)-

8.2. Numerical integration - Quadrature formulas

8.2.1. Introduction

Numerical integration of functions is dealing with approximative calculation of
definite integrals on. the basis of the sets of values of function to be integrated, by
following some formuila. :

Formulas for calculation of single integrals are called quadrature formulas. In
similar way, formulas for double integrals (and multi-dimensional integrals, too) are
called cubature formulas.

In our considerations, we will deal mainly with quadrature formulas.

The need for numerical integration appears in many cases. Namely, Newton-
Leibnitz formula,

(8.2.1.1) / F(@)dz = F(b) — Fla),

where F is primitive function of function f, cannot always be applied. Note some of
these cases: v
1. Function F cannot be represented by finite number of elementary functions (for

example, when f(z) =e™®

2. Application of formula (8.2.1.1) leads often to very complicated expression, even at
calculation of integral of rather simple functions, e.g.

aV/3

de) d'L‘ .:; 1 ! 2‘ 1
/O m:log, Ia—l—l\—glog(a —a+1)‘+ﬁarct92_a.

3. Integration of functions with values known on discrete set of points (obtained, for
example, by experiments), is not possible by applying formula (8.2.1.1).
Large number of quadrature formulas are of form

b no.
(8.2.1.2) f@)dz =) Agfr,
: va k=0
where fi = f(zx) (a <39 <...<wmp <b). If 19 = a and z,,/= b, formula (8.1.1.2) is
of closed kind, and in other cases is of open kind.

For integration of differentiable functions are used also formulas which have, in
addition to function values, values of-its derivatives. The formulas for calculation of

- integrals of form

/.l’ p,(mjf(fﬂ)da;,

Ja

where z — p(z) is given weight function, are also of concern.

‘One simple way for construction of quadrature formulas is founded on application
of interpolation. Formulas obtained in this way are called interpolating quadrature
~ formulas. ] o o
Let the values of function f in given points zg,z1, ..., Zn(€ [a,b]) be fo, f1,- -, fu

respectively, i.e. o
, fr Ej(mk,) (k=0,1,...,n).
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On the basis of these data, we can construct Lagrange interpolation polynomial

w(z) .
Z f]' (2 — @y, w/(u)

k=0

where w(z) = (v — @) (# —a1) - (2 = 2,).

Then " . o _'
/H pe) f(a)dr = /H p(x)Pp(n)d iz + Ry (f),
ie. | |
' b n :
(8.2.1.3) ’ /” ])({1:),]"(:1:)7({:1: = Z A fr + R,,,,}l(f),

k=0

where we put

By |
A = / p('l')w(f') de  (k=0,1,...,n).
Jo (= @)W (1)

In formula (8.2.1.3), R,,41(f) is called remainder term, residue (vest, residuum) of
quadrature folmula and represents error done by replacing of integral by finite sum.
Index n+1 in remainder term denotes that integral is approximate calculated based on
values of function to be integrated in n + 1 points.

Denote with m,, set of all polynomials of degree not greater than n.

Because f(x) =% (k=0,1....,n), f(x) = P,(z), we have R,11(z*) =0 (k=
0,1,...,n), wherefrom we conc Iud(‘ fhdf formula (8.2.1.3) is exact for every f € m,,
regardless of choice of interpolation nodes x4, (k= 0,1,...,n) and in this case we say
that (8.2.1.3) has algebraic degree of accuracy n.

8.2.2. Newton-Cotes formulas

In this section we will develop quadrature formulas od closed type in which the
interpolation nodes @y, = o + kI (k= 0,1,...,n) are taken equidistantly with a step

I — h— a
n
If we introduce substitution 2 — xg = ph, we have
(8.2.2.1) w(z) = (x —wo)(w —21) ... (6 —x,) =" plp—1) ... (p—n)
and

W' () = (g — wo) (e —a1) oo (0 — wp—1) (@ — Tpgr) - (0 — 20,)

8.2.2.2
( ) = " (=1)" " R (0 — k)

By introducing notation for generalized degree ) = z(x —1) ... (x—s+1), based
on (8.2.2.1), (8.2.2.2) and results from previous section, we get

(=1t
Al = 1 k:O)l""’l"
B} / (1,_/,;)1;:'(1—” y O ( , 1)

0

i.e.

A, =0—a)H, (k=0,1,....n),
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where we put

-1 n—=k n . (n+1)
(8.2.2.3) H@EHMM:L—L—«ﬁ>A P @ (k=0,1,...,n)

nin p—k

125

Coefficients Hj, are known in literature as Newton-Cotes coeflicients, and corresponding
formulas

(8.2.2.4) / fz)dx =

T, =b

.b—a

) (keN)
k=0

To=a

as Newton-Cotes formulas.
Further on we will give survey of Newton-Cotes formulas for n < 8. Here we use

denotations h =
1.

b—a ,
— fie = flzy) (k=0,1,...,n).
n =1 (Trapezoid rule )

/ Flo)dz = 2o+ 1) = (6o
n = 2 (Simpson’s rule )

/f o+4f1+f2)——fIV(5 );

.n=3 (Simpson s rule 2)

/‘ f(z)dr = %(fo +3f1+3fa+ f3) — (_53);
n = 4 (Boole’s rule)

7
/f z 2h 7f0+32f1+12f2+32f3+7f4) §Z5f‘/](f)

.mn=935

TR 50 f + 503 + 75 19fj 275h7
,/f(;c)dfv—288(19fo+7ofl+ fa +50f5 + 75f4 + 19fs ~5556

o

n==6
.’L'Ej'

o
/ f(z)de = 1;(} (41fo + 216f1 +27f + 272f3 +27f4

o
9h°
1400

42165+ 41 fg) — 8 (&6);

FO(&s);
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h |
/ fla)de —17280 (751fo + 35TTf1 + 1323, + 29805 + 20895

To

8. n=28

/f Ydx =

8183h°
"18,400

+ 1323,)"5 1 3577 fe + 751 f7) — f(8 (67)

= 141’7 (989 fo + 5888 f1 — 928 + 10496 f3 — 4540 f4
+ 10496 f5 — 9285 + 5888 f7 4+ 989 fg) — 2—?@h—llf‘“o)(f );
1o EEE " ' 467775 5

where & € (zo,z) (k=1,...,8). .
In general case, the residue R, 41(f) is of form

Rn—%—l (f) =

Coh™ Fm=1(e) (20 < & < ),

where m = 2[%] + 3. Given cquality has a meaning if function f € C™ *[a,b].

8.2.3. Generalized quadrature formulas

In order to compute value of integrals more accurate it is necessary to divide seg-
ment [a, b] to the set of subsegments, and then to apply to each of them some quadrature
formula. In this way we get generalized or composite formulas. In this section we will
consider generalized formulas obtained on the basis of tlapeamd or Simpson’s formula.

Divide the segment [a,b] on set of subsegments [x;_1,x;] so that x; = a+ il and
h=(b—a)/n (see Fig. 8.2.3.1)). :

|

v

y= f(x)

T

X =b x
n

Figure 8.2.3.1

By applying the trapezoid formula on every subsegment, we get

i.e.

I3

- — (&),

12

+fi) -

| fla)dx = Z( (fi-1+

=1
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where .
i 1, . : 1,
TII. = TH(]L /]) = ]l'(;f() + ./1 + - -+ ,]L'n,—l + 5](11)

and

i1 < &G <mp (1=1,2,...,n).
Theorem 8.2.3.1. If f € C*a,b] the equality

b 5
‘ (b—a)*
/ flx)de =T, = —uf/'(f) (a < £ <D)
, 1212
holds.
Quadrature formula
I). b
/ f)de =2 T,(f;h) (h=— (L)
: n

1s called generalized trapezoid formula.

h—a ' :

Suppose now that h = — (l, Le. x;=a+1ih (i=0,1,...,2n) (See Fig. 8.2.3.2),
201

and then apply Simpson’s rule to subsegments

[:I;()v :172]7 SR [51:271,—27 -7:27‘:,]-

In this way we get generalized Simpson’s formula

b—a

b
/ ,/’(:1:)(15'1: =S.(f;h) (h= 5 )

where

S'n, = S’n.(f; h) - g{f() + 4(f1 + .+ f2n—15 + 2(f2 +...+ .f2'n.—2) + f2n}-

y

- X, ., X, =b x
X2 X 2n-2 2n

Figure 8.2.3.2
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Theorem 8.2.3.2. If f.€ C*a,b] the equé]ity

b

. ' ) " h— ‘ 2 - -
- / f(z)dz— S, = —%go%)zfv(lv)(f-) (a<¢ < b) .

a

holds.

8.2.4. Romberg integration

For calculation of definite integrals in practice is most frequently used genel alized
trapezoid formula in a. specml form, known as Romberg integration.
(b—a)

Denote with Tk(: ) trapezoid approximation T, (f;h) (n = 2%), ie. h = 5 ).

Romberg integration consists of construction of two-dimensional set Tk(_m) (m =
0,1,...,k k=0,1,...) using

v (m—1) m—1
4mT, Y

8.2.4.1 ™ = Tkl
( ) k: 4m — 1

Using (8.2.4.1) one can construct so known T table

7 — M 5 L r®

Tl(o) — Tl(lj — Tl(z) —
/
T2(O) — Tz(l) —
Téo) —
by taking k£ = 0,1,... and m = 1,2,.... In first column of this table are in turn

approximate values of integral I obtained by means of trapezoid formula with hy =

b—a)/2% (k=0,1,...). Second column is obtained based on the first, using formula

8.2.4.1), third from second, and so on.

- Iterative process, defined by (8.2.4.1) is the standard Romberg method for numer-
ical integration. One can prove that series { Tk(;m)}k:e N, and {Tk(;ml)}m,ENo (by columns
and rows in T-table) converge to I. At practical application of Romberg integration,
iterative process (8.2.4.1) is usually interrupted when |T0(m) — T(sm—l)\ < g, where ¢ is

. . m
in advance allowed errvor, and then as result is taken I = Té )

8.2.5. Program realization

In this section we give program realization of Simpson’s and Romberg integration.

Program 8.2.5.1.

For integration using generalized Simpson’s formula the subroutine INTEG is writ-
ten. Parameters in parameter list are of meaning explained in C- comuments of subpro-
gram source code. Function to be integrated is given in subroutine FUN, and depends
on one parameter Z. By integer parameter J is provided simultaneous speuiymg more
functions to integrate.
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Subroutine INTEG is organized in this way that initial number of subsegments
can be improved (by reduction of step I to h/2) up to MAX=1000. In case when
relative difference in integrals values, obtained by steps h and /2, is less than 1075, the
calculation interrupts and value of integral calculated with the smallest step is taken
as definitive value of integral. If this criterion cannot be fulfilled with less than MAX
subsegments, the message KBR=1 is printed (and in opposite case KBR=0).

As a test examples for this subroutine, the following integrals are taken:

1
/—f;;ﬂm (z = 1.0(0.1)1.5),

w2 4 72
0

1/2
/ msin(rzx)dr (2 = 1.0(0.2)1.4)
0

ND

A

/ log(7 + 2) sin r dr  (z=0.0(0.1)0.5).
1

224+ e*

Subroutines, main program, and output listing are of formn:

C COMPUTATION OF DEFINITE INTEGRAL OF FUNCTION F(X,Z,J)
C BY SIMPSON’S RULE
C::::::::=================::=============================
SUBROUTINE INTEG(A, B, S, F, J, KBR, Z)
C A - LOWER LIMIT OF INTEGRAL
C B - UPPER LIMIT OF INTEGRAL
C S - VALUE OF INTEGRAL WITH ACCURACY EPS=1.E-5
C KBR - CONTROL NUMBER |
'C KBR=0 INTEGRAL CORRECTLY COMPUTED
C KBR=1 INTEGRAL NOT COMPUTED WITH SPECIFIED ACCURACY
C Z - PARAMETAR OF INTEGRATED FUNCTION
C INITIAL NUMBER OF SEGMENTS IS 2*MP MAXIMAL IS MAX=1000
MP=15
MAX=1000
KBR=0.
N=2.*MP .
S0=0. o
SAB=F(A,Z,I)+F(B,Z,J
H=(B-A) /FLOAT(XN)
- X=A '
S1=0. _ |
N2=N-2 '
DO 5 I=2, N2, 2
: - X=X+2.%H
5 . S1=S1+F(X,Z,J)
10 S2=0.
X=A-H
N1=N-1
DO 15 I=1, Ni, 2
o X=X+2.xH v
15 82=S2+F(X,Z,J) .

- S=H/3.*(SAB+2.%S51+4.*52)

REL=(S-S0) /S E
; IF (ABS(REL)-1.E-5) 35,35,20
20 IF (N-MAX) 25,25,30
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25 N=2%N .
H=0.5%H
C NUMBER OF INTERVALS IS DOUBLED AND
C - NEW VALUE FOR S1 IS COMPUTED -
S1=51+S2
S50=S
GO TO 10
30 KBR=1
35 RETURN
END
FUNCTION FUN(X,Z,J)
GO TO (10,20,30),J
10 FUN=EXP (Z*X) / (X*X+Z*Z)
RETURN
20 PI=3.1415926535
FUN=PI*SIN(PI*X*Z) -
RETURN - oA
30 FUN=ALOG (X+Z) / (Z*Z+EXP (X) )*SIN (X)/X
RETURN
END
EXTERNAL FUN
OPEN(8,File=’Simpson.IN’)
OPEN(6,File=’Simpson.out’)
WRITE(6,5) ’
5 FORMAT (1H1,2X, ’IZRACUNAVANJE VREDNOSTI INTEGRALA’,
’ PRIMENOM SIMPSONOVE FORMULE °’ //14X,
"TACNOST IZRACUNAVANJA EPS=1.E-5’ '
///11X,7 3 ,4X,’DONJA’ ,5X, ’GORNJA’ ,3X, ’PARAMETAR’,
3X,’ VREDNOST’/ 16X, °GRANICA’, 3X,’GRANICA’,
5X,’Z2’ ,7X, > INTEGRALA’//)
DO 40 J=1,3
READ (8,15) DG, GG, ZP, DZ, ZK
15 FORMAT (5F5.1)
Z=7P-DZ
18 2=7+DZ
IF (Z.GT.ZK+0.000001) GO TO 40
CALL INTEG (DG,GG,S,FUN,J,KBR,Z)
IF(KBR) 20,25,20

[ WY NV N Nl

20 WRITE (6,30)

30 FORMAT (/11X, ’INTEGRAL NIJE KOREKTNO IZRACUNAT’/)
GO TO 18 '

25 WRITE (6,35) J,DG,GG,Z,S

35 FORMAT (11X,I1,F8.1,2F10.1,F15.6/)
GO TO 18

40 CONTINUE
STOP
END

0.,1.,1.,0.1,1.5

0.,0.5,1.,0.2,1.4

1.,2.,0.,0.1,0.5

IZRACUNAVANJE VREDNOSTI INTEGRALA PRIMENOM SIMPSONOVE FORMULE
TACNOST IZRACUNAVANJA EPS=1.E-5
J DONJA GORNJA  PARAMETAR VREDNOST
GRANICA  GRANICA Z INTEGRALA
1 .0 1.0 ' 1.0 1.270724
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1.153890
1.059770
.983069
.920013
.867848
.000000
.090848
.134133
. 048047
.059595
.069940
.079052
.086920
.093558

WWWWWWNNNNRP,rP PR P

eloleoNolooNololeooNoleoloNe)

[l el o SN SN

QOO0 OOCUNUITNOOOOO

e el

PN, ORNOODR WN -
-

R =
NN

Program 8.2.5.2.

Now we give program realization of Romberg integration in double arithmetic com-
puter precision DOUBLE PRECISION. List in subroutine is of following meaning:

DG - lower limit of integral,

GG - upper limit of integral;

FUN - name of function subroutine which defines function to be integrated,

EPS - demanded accuracy of computation;

VINT - value of integral for given accuracy EPS, if KB=0;

KB - control number (KB=0 - integral correctly computed KB=1 - accuracy of com-
puting not reached after 15 proposed steps, i.e. with numbers of subsegments 21°). For
testing of this subroutine is taken tabulating of function '

F(x) = / et dt (z=0.1(0.1)1.0),

0

with accuracy 107°. Routines codes and output listings are of form:

DOUBLE PRECISION GG, FUN, VINT
EXTERNAL FUN
open(6,file="romberg.out’)
EPS=1.E-8
WRITE (6,11)
11 FORMAT(lHO 5X,°X?, 7x ’INTEGRAL(O x) /)
DO 10 I=1, 10
GG=0.1%I
CALL ROMBI(0.DO,GG, FUN,EPS,VINT,KB)
IF (KB) 5,15,5
5  WRITE (6, 20) GG
20 FORMAT (5x F3.1,4X,’TACNOST NE ZADOVOLJAVA’ //)
GO TO 10 |
15 WRITE(6,25)GG,VINT
25 FORMAT(SX F3.1,4X,F14. 9)
10 ~ CONTINUE :
. STOP
END |
SUBROUTINE ROMBI (DG,GG, FUN EPS,VINT,KB)
DOUBLE PRECISION FUN, VINT, T(15) DG, GG H,A,POM,B,X
"KB=0 ‘
H=GG-DG :
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A= (FUN(DG)+FUN(GG))/2

POM=Hx*A
DO 50 K=1, 15
o X=DG+H/2. |
10 . A=A+FUN (X)
o X=X+H
- IF (X.LT.GG) GO TO 10
. T(K)=H/2.%A
S B=1,
o IF (K.EQ.1) GO TO 20
o K1=K-10
.+ DO 15 M=1, K1
S I=K-M
©o0 ) B=4.%B
156 T(D)=(B*T(I+1)-T(1))/(B-1.)

.+ 20  B=4.*B
~ . VINT=(B*T(1)-POM)/(B-1.)
IF (DABS (VINT-POM) .LE. EPS) RETURN
. POM=VINT
50 H=H/2.
KB=1
RETURN
END
FUNCTION FUN(X)
'DOUBLE PRECISION FUN,X
FUN=DEXP (-X*X)
RETURN
END

INTEGRAL (0. ,X)
.099667666
.197365034
.291237887
.379652845
.461281012
.535153533
.600685674
.657669863
. 706241521
. 746824138

o
-

QOO WN -

Y

8.2.6. On numerical computation of one class of double integrals

In this section we will point out to one way for approximate calculation of double
integrals of form

(8.2.6.1) //)‘(r, y) dxdy,
e

where area of integration is unit circle, i.e. G = {(z,y) |1: + y? < 1}. Namely, for
numerical computation of the integral (8 2.6. 1) in literature is known formula

0) + Z (M

ool A
T~
™o

(8.2.6.2) | / '/.f(-'li-, y) drdy =
G
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where O is origin, i.¢. 0 = (0,0), and points M; have polar coordinates

2

4

=N (I>.,::§(":—1) (i=1,2,...,6).

According to formula (8.2.6.2) we will realize program for computation of double
integrals, with unit circle as area of integration. Program organization will be such that
by function subroutine EF can be defined several different functions f to he integrated.
Parameters in list of paramcters are of following neaning:

X - value of argument 2:;

Y - value of argument ;

K - integer that defines different functions to be integrated.

Formula (8.2.6.2) is realized by subroutine DVINT, which parameters in list ave of
following meaning:

EF - name of function subroutine;

K - integer with sane meaning like in subroutine EF;

VRINT - computed value of integral, obtained by using formula (8.2.6.2).

- SUBROUTINE DVINT(EF, K,VRINT)
PI=3.1415926535 '
RO=SQRT(2./3)
PI3=PI/3
FI=-PI3
VRINT=2.*EF(0.,0.,K)
DO 10 I=1,6
FI=FI+PI3
X=RO*COS (FI)
Y=RO*SIN(FI) ‘

10 VRINT=VRINT+EF (X,Y,K)
VRINT=PI/8.*VRINT

RETURN

END
Main program is of form:
C:::::::::::::::::::====:::===:::::::::::::::::::::::
C IZRACUNAVANJE DVOSTRUKOG INTEGRALA
C::::::::============================================

EXTERNAL EF

OPEN(6,FILE="DVINT.OUT’)

WRITE (6,5) '
5 FORMAT (1H1//10X,’IZRACUNAVANJE DVOSTRUKOG’,

1’ INTEGRALA’//) ; \

DO 10 K=1,3

- CALL DVINT(EF, K, VRINT)
10 WRITE (6,15)K,VRINT o
15 FORMAT (15X,I1,’ PRIMER’// 10X,
1 ’VREDNOST INTEGRALA =’,F12.6//)
- STOP
, END _ : o L
By using this program we calculated approximately values of the following integrals:

[ 16x%y?
. Y / / — " dxdy;
) Tre 2 Y

‘ G o ‘
Y // V14 (1+2)%+y? dady;
-Gv‘

o 24a2
‘ 30 // ————I dzdy.
. e T
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Function subroutine EF and output listing are of formi:

FUNCTION EF(X,Y,K)

GO TO (10,20,30),K

10 EF=(16. *X*X*Y*Y)/(l +X*X+Y*Y)

: RETURN

20 EF=SQRT(1.+Y*Y+(1. +X)**2)
RETURN

30 EF—(24.*X*X)/SQRT(2.—X*X—Y*Y)
RETURN
END

1

IZRACUNAVANJE DVOSTRUKOG INTEGRALA
1 PRIMER

VREDNOST INTEGRALA = 1.256637
2 PRIMER

VREDNOST INTEGRALA = 4.858376
3 PRIMER

VREDNOST INTEGRALA = 16.324200

8.2.7. Packages for Numerical Integration

Numerical integration of both discrete data and known functions are needed in
engineering practice. The procedires for first case are based on fitting approximating
polynomials to the data and integrating the approximating polynomials. The direct
fit polynomial method works well for both equally spaced data and non-equally spaced
data. Least squares fit polynomials can be used for large sets of data or sets of rough
data. The Newton-Cotes formulas, which are based on Newton forward-difference poly-
noinials, give simple integration formulas for equally spaced data. Romberg integration,
which is extrapolation of the trapezoid rule is of important practical use. An example
of multiple integration is presented as illustrative case.

Of presented simple methods it is likely that Romberg integration is most efficient.
Simpson’s rules are clegant, but the first extrapolation of Romberg integration gives
‘comparable results. Subsequent extrapolation of Romberg integration increase the order
at a very satisfactory rate. Simpson’s rules could be developed into an extrapolation
procedure, but with no advantage over Romberg integration.

Many conunercial software packages contain solvers for numerical integration. Some
of the more prominent systeins arc Matlab and Mathcad. More sophisticated systems,
such as Mathematica, Macsyma (VAX UNIX MACSYMA, Reference Manual. Symbol-
ics Inc., Cambridge, MA), and Maple (MAPLE V Library Reference Manual, Springer,
NY, 1‘)91) also contain nuinerical integration solvers.

Some organizations have own packages - collection of high- quah‘ry routines, like
ACM (Collected algorithins). IMSL (Houston, TX), NAG (Nwmerical Algorithms Growp.
Downers Grove, IL), and some famous individual packages are QUADPACK  (R. Piessens,
et all.), QUADPACK, A Subroutine Package for Automatic Integration.
Spnngor, Berlin, 1983). CUBTRI (Cubature Formulae Over Triangle). SSP (IBM Nu-
merical Software).

The book Numerical Recipes ([4], Chap. 4) contains several subroutines for
integration of functions. Some algoritluns. from which some are codded, are given in

book Numerical Methods for Engineers and Scientists ([3], Chap. 6).

Ou the end. in order to give some hints for software own development or usage of
software packages, we will give standard test examples for testing or benchimarking.
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Standard test examples (Indefinite integrals):

o [ . ) ‘ oo o [ = " log
1 /5111:1:(1,:1:; 2! /\/tzmrl:(l:l:; 30 / 3 1(1.’1:; 4° / —— d; 50 / 2

re = Sic o+ 1

6V / i da: 7" /.(1_”""’2 o 89 / * ;90 sz
J Vi+x+/1—u2 : o . log?’:z:”’g J  a? e,

' 1
10° / —_—
J 24 cosux '

Standard test examples (Definite integrals):

-4 I 00 g 2, —x
10 1 L o0 s1n1 .30 ] rie™!
—du; 2 —( T —du;
Jo 2+ cosuz J_ Jo Jo 1—e2

) o0 2 9 “e0 '['2 1 1

( —i” o

o / e log® x da; 6" / e a3 l()g @ da; 7° / 5 d; 80 / — d;
Jo J1 Jo 1+x Jo1x

gee]
90 / e~ W tl/3 dr;
J1
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LESSON IX

9. Ordinary Differential Equations

9.1. Introduction

Problems involving ordinary differential equations (ODEs) can always be reduced
to the set of first-order differential equations. For example the second order equation
d2y

da:?

(9.1.1) + q())(hj r(z)

da

can be rewritten as two first-order equations

dy
(9.1.2) dr ~#)
dz
— =r(z) — q(z)z(x),

dx

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives if each other, and, of
course, of original variable. Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable, for the
purpose of the mitigating singular behavior that could result in overflows or increased
roundoff error. Thus, involving new variables should be carefully chosen. The possibility
of a formal reduction-of a differential equation system to an equivalent set of first-order
equations means that computer programs for the solution of differential equation sets
can be directed toward the general form -

. Ty, (a o o
(913) ' ('[/'(1) :.fi<:l:7:l/17"'7y1).) (7’: 17‘--771’)7

drx

where the f; functions are known and y1,y2, ..., ¥y, are dependent variables.

A problem involving ODEs is not completely specified by its equations. Even more
crucial in determining how to start solving problem numerically is the nature of the
. problem’s boundary conditions. Boundary conditions are algebraic conditions on the
values of the functions y; in (9.1.3). Gener ally, they can be satisfied at discrete specified
- points, but do not hold between those points, i.e. are not preserved automdtlcally by the
differential equations. Boundary conditions can be as simple as requiring that certain
variables have certain numerical values, or as complicated as a set of nonlinear algebraic
-~ equations among the variables. Usually, it is the nature of the boundary conditions that

‘determines which numerical methods will be applied. Boundary conditions divide into
two br Od,d categones

137
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e Initial value problems, where all the y; are given at some starting value z,, and
it is desired to find the the y;’s at some final point z¢, or at some discrete list of
points (for example, to generate a table of results).

e Two-point boundary value problems, where the boundary conditions are spec-
ified at more than one z. Usually some conditions are specified at =, and the
remainder at x;. :
In considering methods f01 numerical solution of Cauchy problem for d1fferent1a1

equations of first order, we will note two gener al classes of those methods:
a) Linear multi-step methods
b) Runge-Kutta methods. ‘

The first class of methods has a property of hneanty, in contrary to Runge- Kutta
methods, where the increasing of methiod order is realized by involving nonlinearity.
The common ”predecessor” of both classes is Euler’s method, which belongs to both
classes. ‘ ‘

In newer times there appeared a whole series of methods, so known hybrid methods,
which use good characteristics of mentioned basic classes of methods. .

9.2. Euler’s method » .
Euler’s method is the simplest numerical method for solving Cauchy’s problem
(9.2.1) y' = flz,y),  y(To) =0

and is based on approximative equality

y(z) = y(wo) + (z — z0)y' (o),
Le.
(9.2.2) y(z) = y(z0) + (= — m0) f (20, Yo),

in regard to (9.2.1). If we denote with y; the approximate value for y(z1), based on
(9.2.2) we have ‘
y1 = Yo + (v1 — 70) f (0, Yo)-

In general case, for arbitrary set of points xp < z1 < 23 < ..., the approximate values
for y(z,,), denoted as y,, can be determined using

(9.2.3) Yntl = Un + (Tnt1— Zn) [(@nyn) (n=0,1,...).

The last formula defines Euler’s method, which geometric interpretation is given in the
Fig. 9.2.1.

y 4

Figure 9.2.1
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Polygonal line (9, yo) — (21, y1) — (22, y2) — ... is known as Euler’s polygon.
The points Ly, ALC usually (hoson equidistantly, i.e. ;411 — @, = I = const.(>
0) (n=0,1,...) in which case (9.2.3) reduces to

Yn+1 = Un + h‘f(-'l"'n.y :1/'n,> (7" = Oa 15 - )

9.3. General linear multi-step method

In this and following sections a general method for solving Cauchy problem
(9.3.1) Yy =f(ry). ylwo) =yo (w0 < w <D)

will be considered. If we divide the segment [12¢,b] to N subsegments of length /, =
b— g
N 7

we get a string of points x,, determined with

Ty = +nh (n=0,1,...,N).

Let v, denote sequence of approximate values of solutions of problem (9.3.1) in
points z,, and let f, = f(#.,,y,). It is our task to determine a set 1,,. In order to
solve this problem a number of methods have been developed. One of them is Euler’s
method, which has been cousidered in previous section. At Euler’s method series ,, is
computed recursively using

(9.3.2) Yt1l — Yn =hfn  (n=0,1,...),

whereby the linear relatiown among y,,, y,+1 and f,, exists. In general case, for evaluation
of series more complicated recurrence relations than (9.3.2) can be used. Among the
methods originated from these relations, important role have the methods with linear
relation between v, 14, futi (1 =10,1,... k:) and they form the class of linear multi-step
methods.

General linear multi-step method can be represented in form

k k

(9.3.3) Z a1 =1 Z s, f,,+, (n=0,1,...),

=0 ) “a=0

where o and 8 are constant coefficients determined by accuracy up to multiplicative
constant. In order to obtain their uniqueness we will take oy = 1.

If B = 0, we say that method (9.3.3) is of open type or that is explicit; in coun-
terpart we say that it is of closed type or implicit.

In general case (9.3.3) represents nonlinear difference equation, because of fy4; =

]L('Lﬂ—i—/a Jn—l—l)
For determination of series ., 11‘311153 method (9.3.3) it is necessary to know initial
values y; (¢ =0,1,...,k —1). Knowing in advance only value y, a particular problem

in application of 1ulti- step methods (9.3.3) is determination of other initial values. A
special section will be devoted to this problem. o
Supposing that initial values y; (1 = 0,1,...,k —1) are known, at explicit methods

are directly computed yi, yr+1,.--, YN using
k-1 k—1 } ’
Ynt+k =1 Z Bi fryi — Z QiYnei (M =0,1,...,N—k).
i=0 =0 -

Nevertheless, at implicit methods for determination of values yy, 41 the equation

(934) | N 7 Yn+k v:‘hﬁf(-ll"'n,%{i:a yn—l—k:) + P,
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where ‘
» . k—1 k-1
O =7 E ﬁifn—l—i - E CiYnti,
izo : =0 o

shell be solved. When (z,y) — f(z,y) is nonlinear function which satisfies bLipschitz,
condition in y with constant L, the equation (9.3.4) can be solved by iterative process

(9.3.5) yo Y = BB f (T, 0L + @,

starting from arbitrary value Y,

h‘ﬁk;lL <1

The condition given by this inequality énsures convergence of iterative process (9.3.5).
Let us for method (9.3.3) define difference operator Ly, : Ct[zg, b] — C[xo, b] by

k ' .
(9.3.6) Lyl =Y loay(z + ih) — hfgy' (= + ih)).

=0

Let function g € C*[x0, b]. Then Ly[g] can be presented in form

(9.3.7) Lylg} = Cog(x) + Cihg' (z) + Cohg" (z) + - -,

where C; ( = 0,1,...) are constants not depending on h and qg.

Definition 9.3.1. Linear multi-step method (9.3.3) is of order p if in development
(9.3.7)
C():Cl:...:Cp:O a,nde+17é0.

Let z — y(z) be exact solution of problem (9.3.1) and vy, series of approximate
values of this solution in points z,, = xo +nh (n = 0,1,..., N) obtained by method
(9.3.3), with initial values y;, = s;(h) (1 =0,1,...,k —1). '
 Definition 9.3.2. For linear multi-step method (9.3.3) one says to be convergent if for

every € [zo, D]
: lim  y, = y(z)
©—0

r—wg=nh

and for initial values hold

lim s;(h)=yo (1=0,1,...,k—1).

=0

Linear multi-step method (9.3.3) can be characterized by first and second charac-
teristic polynomials given by

k
p€) =) ' and o(§) =) B,

i=0 1=0

respectively.
Two important classes of convergent multi-step methods, which are met in practice
are:
1. Methods at which p(€£) = &% — ¢+
2. Methods at which p(¢£) = ¢ — ¢k—2.
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Explicit methods of first class are called Adam-Bashforth methods, and the im-
plicit. Adam-Moulton methods. Similarly, explicit methods of second class are called
Nystrom’s methods and corresponding implicit methods Milne-Simpson’s.

Of course, there are methods that do not belong to neither of these classes.

9.4. Choice of initial values

As earlier mentioned, at application of linear multi-step methods on solving problein
(9.3.1), it is necessary knowledge on initial values y; = s;(h), such that

lim s;(h) =yo (i=1,...,k—1).

h—=0

Certainly, this problem is stated when & > 1.
If method (9.3.3) is of order p, then initial values s;(h) are obviously to be chosen

such that
si(h) —y(xi) = O(WPTY) (i=1,...,k—1),

where x — y(r) is exact solution of problem (9.3.1).

In this section we will show one class of methods for determination of necessary .
initial values.

Suppose that function f in differential equation (9.3.1) is enough times differen-
tiable. Than, based on Tailor’s method we have

h? h? ,
y(zo + h) = y(xo) + hy'(xo) + %y”((yo) 44 _]_ZTy(P)(mO) + O(hPHYy,

Last equation points out that it can be taken

, 7}2 hP )
si(h) = y(zo) + hy'(wo) + g!f”(fﬂ'o) Tt Fy(”)(xo),

because of s;(h) — y(z1) = O(hPT1) (1 = ¢ + h). The same procedure can be applied
to determination of other initial values. Namely, in general case, we have

‘ h? hP . .
si(h) = y(zi—1) + hy'(zi-1) + ay”(.r.,;_l) + - +p—y(")($.,;~1) (i1=1,...,k—1),

whereby for y(x,;_1) we take s;_1(h).

9.5. Predictor-corrector methods

As mentioned in section 9.3., application of implicit methods is in connection with
solution of equation (9.3.4) in every integration step, whereby for this solution is used
iterative process (9.3.5). Regardless to this difficulty in implicit method, they are of-
ten used for solving Cauchy problem, because they have a number of advantages over

explicit methods (higher order, better numerical stability). The initial value yy[?_]l_k; 1s

determined in practice using some explicit method, which.is then called predictor. Im-
plicit method (9.3.4) is then called corrector. Method obtained by such combination is
called predictor-corrector method. , ' : ‘

For determination y;,4x, the iterative procedure (9.3.5) should be applied until
fulfilment of the condition ‘ ‘ , '

[s+1] [5]
’yn—i-k: T y77.+k:| < 6?

where e tolerable error, usually of order of local round-off error. Then for y, 1 can be
[s+1 . . - . .

taken y, "
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Nevertheless, this method is usually not-applied in practice, due to demanding large
number of function f evaluations by step of calculation and, in addition, this number
is varying from step to step. In order to reduce this number of calculations, number of
iterations in (9.3.5) is fixed. Thus, one takes ouly s =0,1,...,m — 1.

9.6. Program realization of multi-step methods

In this section we will give program realization of exphu’r as well as implicit meth-
ods. The presented programs are tested on the example (with h = 0.1).

y =2t +y, y()=1 (1<z<2).
The exact solution of this pxoblem is y(x) = 6e” " — z% — 2z — 2.

9.6.1. Euler’s method ‘
Euler’s method is given by expression

Yn+1 = Yn = hfn ('Il =0,1,.. ')7
of order p = 1, and Adams-Bashforth method of third order

h

73 (2fus2 = 16fupa +55)  (n=0,1,...),

:I/'n,—}— 3 — UYn42 =

are realized by subroutines EULER i ADAMS, respectively.

SUBROUTINE EULER (XP,XK,H,Y,FUN)
DIMENSION Y(1)
N=(XK-XP+0.00001) /H
X=XP
DO 11 I=1,N
Y(I+1)=Y(I)+H*FUN(X,Y(I))

11 X=X+H
RETURN
END

FUNCTION FUN (X,Y)
FUN=X*X+Y

RETURN

END

SUBROUTINE ADAMS (XP, XK, H, Y, FUN)
DIMENSION Y(1)
N=(XK-XP+0.00001) /H
X=XP
FO=FUN (X,Y(1))
F1=FUN (X+H,Y(2))
N2=N-2
DO 11 I=1,N2
F2=FUN (X+2.*H,Y(I+2))
Y(I+3)=Y(I+2)+H*(23.*%F2-16.*%F1+5.*F0)/12.
FO=F1
F1=F2
11 X=X+H
RETURN
END
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Parameters in list of subroutine parameters are of following meaning:

XP and XK - start and end point of integration interval;

H - step of integration;

Y - vector of approximate values of solution obtained by multi-step method, where
at BEuler’s method Y (1) represents given initial value, and at Adam’s method initial
values are given by Y(1), Y(2) and Y(3);

FUN - name of function subroutine which defines right hand size of differential
equation f(z,y). Initial values for Adam’s method we determine by using Taylor’s
method for p = 3 (see section 9.3.4). Namely, beiug

y(1)=1, ¢(1)=2, y"(1)=4, 3y"(1)=6, h=01,

we get Y(1)=1., Y(2)=1.221, Y(3)=1.48836.
Main program and output listing are of form:

C
C==================================================
C RESAVANJE DIFERENCIJALNIH JEDNACINA

C EKSPLICITNIM METODIMA
C==================================================

EXTERNAL FUN
DIMENSION Y(100),Z(100)
F(X)=6.*EXP(X-1.)-X*X-2.%X-2.
OPEN(5,FILE="EULER.QOUT’)
WRITE (5,10)

10 FORMAT (3X, ’RESAVANJE DIFERENCIJAL.JED.’,
1’EKSPLICITNIM METODIMA’//8X,’XN’,8X,’YN(I)’,
15X, >GRESKA (%)’ ,3X,’YN(II)’,4X,’GRESKA (%)’/)

XP=1.

XK=2.

H=0.1

Y(1)=1.

CALL EULER (XP,XX,H,Y, FUN)
Z(1)=Y(1)

7(2)=1.221

Z(3)=1.48836 -

CALL ADAMS (XP,XK,H,Z, FUN)
N=(XK-XP+0. 00001) /H

NN=N+1

X=XP

DO 22 I=1,NN

G1=ABS ((Y(I)-F(X))/F(X))*100.
G2=ABS((Z(I)-F(X))/F(X))*100.
WRITE (5,20)X,Y(I),G1,Z(I),G2

22 X=X+H
20 FORMAT (8X,F3.1,2(4X,F9.5,4X,F5.2))
CLOSE(5)
. STOP
END
RESAVANJE DIFERENCIJAL JED.EKSPLICITNIM METODIMA
XN . YN(I) ©  GRESKA(%) - YN(II) GRESKA %)
1.0 1.00000 .00 1.00000 .00
1.1 1.20000 1.72 1.22100 .00
1.2 1.44100 3.19 1.48836 .00
1.3 1.72910 4. .42 1.80883 .02
1.4 2.07101 5.47 2.19028 .03
1.5 2 6.37 - 2.64126 .04

.47411
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1.6 2.94652 7.13 3.17116 =~ .05
1.7 3.49717 7.79  3.79040 .06
1.8 4.13589 8.36 4.51045 .06
1.9 4.87348 8.87 5.34403 - .07
2.0

5.72183 9.32 . 6.30518 .07

9.6'.2. Taking Euler’s method as predictor and trapezoid rule (p = 2) ;

I .
Yn+1 — Yy, = 9 (}Ln + ]L,,_|_1) ('I’L = 0, 1, .. .),

as corrector (with number of iterations m = 2) the subroutine PREKOR is written. Main
prograni, subprogram, and output results are of form:

EXTERNAL FUN

DIMENSION Y(100)
F(X)=6.*EXP(X-1.)-X*X-2.%X-2.
OPEN(5,FILE="PREKOR.QOUT’)
OPEN(8,FILE="PREKOR.TXT’)
WRITE(S 10)

10 FORMAL(BX 'RESAVANJE DIF. JED. METODOM’,
1’ PREDIKTOR-KOREKTOR’//15X,’XN’,13X, YN
2,10X, *GRESKA (%) /) '

READ(8 5)XP,XK,YP,H

5 FORMAT (4F6 . 1)
CALL PREKOR(XP,XK,YP,H,Y,FUN)
N=(XK-XP+0.00001) /H
NN=N+1
X=XP
DO 11 I=1,NN
G=ABS((Y(I)-F(X))/F(X))*100.
WRITE(5,15)X,Y(I),G

15 FORMAT(15X,F3.1,8X,F9.5,8X,F5.2)

11 X=X+H
STOP
END
C
C

SUBROUTINE PREKOR(XP,XX,YP,H,Y,FUN)
DIMENSION Y(100)
N=(XK-XP+0.00001) /H
X=Xp
Y(1)=YP
DO 10 I=1,N

C PROGNOZIRANJE VREDNOSTI
FXY=FUN(X,Y(I))
YP=Y (I)+H*FXY

C KOREKCIJA VREDNOSTI

DO 20 M=1,2
20 YP=Y(I)+H/2.*(FXY+FUN(X+H,YP))
Y(I+1)=YP
10 X=X+H
RETURN
END
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C .
FUNCTION FUN(X,Y)
FUN=X*X+Y
RETURN
END
RESAVANJE DIF. JED. METODOM PREDIKTOR-KOREKTOR
XN YN GRESKA (%)
1.0 1.00000 .00
1.1 1.22152 .04
1.2 1.48952 , .07
1.3 1.81097 .10
1.4 2.19363 .12
1.5 2.64602 .14
1.6 3.17760 .15
1.7 3.79881 .17
1.8 4.52118 .18
1.9 5.35747 .18
2.0 6.32177 .19

9.7. Runge-Kutta methods

In previous sections are considered linear multi-step methods for solving Cauchy
problem (9.3.1). The order of these methods can be enlarged by increasing number
of steps. N(‘V(‘l’rhol(‘ss by sacrifice of linearity these methods posses, it is possible to
construct single-step methods of arbitrary order.

For solving Cauchy problem of form (9.3.1) with enough times differentiable func-
tion f, it is possible to construct ~single-step methods of higher order (e.g. Taylor’s
method).

Consider general explicit single-step method

(971) V . Un+1 — Yn = ]l,(I)(.’IJ},,, Yns h’)

Definition 9.7.1. Method (9.7.1) is of order p if p is greatest integer for which holds
y(w+ D) = y(z) = h@(z, y(z),h) = O(R'*),

- where  — y(x) is exact solution of problem (9.3.1).
Definition 9.7.2. Method (9.7.1) is consistent if ®(xz,y,0) = f(z,y).

Note that Taylor’s method is special case of method (9.7.1). Namely, at Taylor’s
method of order p we have

' p—1 o .

- h 0 d .,

7. O(x,y, h) = Op(e,y,h) =Y ——(—+f=—)"flz,y).

(972) ‘ I(I’.[/a 7) . T(Ivyv ’) Z(i—l)!(aili+'fdjl/)'f( ./)

=0

In spec ial case, at Eulerov’s method is O(z,y,h) = flr,y).

In this section we will consider a special class of methods of form (9.7.1), which
was proposed in 1895. year by C. Runge. Later on, this class of methods was developed
by W. Kutta i K. Heun. -

As we will see later, all these methods contain free parameters. COllbldellllg time in
which these methods appeared, the free parameters have been chosen in such a way to
obtain as simple as possible for mulas for practical calculation. Nevertheless, such values
of parameters do not ensure optimal characteristics of observed methods. In further text
these methods will be called classical. General explicit Runge-Kutta method is of folm

4 (973) o ‘ ' Yn+1— Yn = ’]7'(1)(-7:7‘“ :1/71,7 ]’)
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where

O(z,y, h) = Zc ki,

k= f(z,y), _ ‘
k,,;:f(r—}—a,y%—bh) (i=2,...,m).

i—1 i—1
(9.7.4) 7 a; = Zaija by = Zaijkj-
‘ j=1 j=1

Note that from the condition of consistence of method (9.7.3) it follows

Unknown coefficients which appear in this method are to be determined from the con-
dition that method has a maximal order. Here, we use the following fact: If ®(z,y, h),
developed by degrees of i, can be presented in form

O(xz,y, h) = @ (z,y, h) = O(AP),
where ®7 is defined by (9.7.2), then method (9.7.3) is of order-p.

Find previously development ®7(x,y, h) by degrees of h. Using Monge’s notations
for partial derivative, we have

0 g .. ) v -
(81; + ij)f - f.’l; + ffy =F
and ’
0 J s . 0 %,
(%‘F ’0—[‘) f—(%-Ffé‘-)F G+ [y F,

where we put G = fuu + 2ffuy + [2fyy. Then from (9.7.2) it follows
' .1 1., , 3
(9.7.5) Or(z,y,h) = f+ —2—11,F + ah (G + fyF) 4+ O(h”).

Consider now only Runge-Kutta methods of order p < 3. One shows that for obtaining
method of third order it is enough to take m = 3. In this case, formulas (9.7.3) reduce
to :

O(x,y, h) = c1ky + coka + c3ks
by = f(o9)
ko = f(x 4+ agh,y + bah),
k3 = f(x + azh,y + bgh)
and ’
az = a1, by = aniky,
a3 = a3y + a3z, b3 = aziky + azks.
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By developing of fuiction ky in Taylor’s series in neighborhood of point (:, y), we get

ko = f 4 asFh + —u 2Gh2 + O(hd).
Because of
, . 1
bs = az1ky + uzoka = a1 f + agza(f + asFh + E(L%Ghz) + O(h3)
we have
by = asf + agcuza Fl + O(h,z)
and
b3 = alf? 4+ 0O(h).
By developing of function k3 in neighborhood of point (z,y) and by using last equalities
we have )
ks = f+asFh + ;(2(1,3032}7']"1,, + (13G)l + O(h?).
Finally, by substituting the obtained expressions for kq, ko, k3 in expression for ®(x,y, h)
we get
O(x,y,h) =(cy + o+ e3) f + (eqag + czaz)Fh
+ (203G + 2c3az0032F f, + 63(13G) + O(h%).
Last equality enables construction of methods for m = 1,2, 3.
Case m=1. B(‘1110 co = ¢3 = 0, we have
O(x,y,h) = (:1f + O(h?).

By comparison with (9.7.5) we get.
v .1 ,
Br(x,y,h) —P(x,y,h) = (1 —c1)f +§/1,2(G + £, F) + O(1®),

wherefrom we conclude that for ¢; = 1 the method

[-:U'n.—{—l — Yn = ,,]_I{f'n,;

of order p = 1 is obtained. Considering that it is Euler’s method, we see that it belongs
to the (l(lhb of Runge-Kutta methods too.

Case m=2. Here is ¢3 = 0 and
] .
Or(z,y, h) = (c1 + c2) f + coaaFh + 5(:2(1,3(;112 + O(h?).
Because of
v ' 1
+ C2 — 1)f -+ (Cg@z - E)Fh,
[(3(209 ~1)G - f,F]h* + O(h®),

Oz, y, /z)r — Oy, y, h) =

(1
1
6
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we conclude that under condition .
. 1
(9.7.6) 7 ci+c=1 and ¢y = 5

one obtains method of second order with one free parameter. Nainely, from system of
equations (9.7.6) it follows '

205 -1
N 2(],2

1 .
Cy = —— and C1
2(1,2

where ag(# 0) is free parameter. Thus, with m = 2 we have single-parametric family of
methods : . :
: I
Yn+1 — Yn = ’—((2()/2 - 1)]‘51 + l\rZ)a
2(1,2 ‘
k= f(m'm y'n,)) v

ko = f(@n + ash, y, + agkih).

In special case, for as = . we get Euler-Gauchy method
) 2 - ' .

. 1 1,
n+l — Yn = "f (-/I"'n, + ;)—/l,, Yn + '{)_h'f(m'l:,y :’/'n,))-

Similarly, for as = 1, we get so known iinproved Euler-Cauchy method

L

Yn+l — UYn = T;[.f(f""n.; ?/'n,) + f(-'lf'n. + ]"7 Yn + ]Lf(m'nn y'n,)]-

On geometric interpretation of obtalned methods see, e.g. 16 .
7

Case m=3. According to

. ) 1
O(w,y,h) — Pr(a,y,h) = (1 + 2+ 3 = 1) f + (caag + cza3 — S)Fh

1 1. .h? l
+ [((:gng + (:3(1,_% — ;)G + (2¢3090032 — E)Ff”]—‘?_ + O(g),

we conclude that for obtaining of methods of third order the satistactory conditions are

1+ ¢o + 3 =1,

_ 1

(209 + €303 = 5,

(9.7.7) ‘ 1
(:2(1.5 + (:30,% = ;j—,

1
C3(o(¥39 = —.

0

Having four equations with six unknowns, it follows that, in case m = 3. we have two-
parametric family of Runge-Kutta methods. One can show that among methods of this
family does not exists not. single wethod with order greater than. three.
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In bpecml case, when ay = 3 and ag =2, from (9.7.7) it follows ¢; = $e2=0,c3 =
% 3o = %=. Thus, we obtained the method

h
Yn+1 — Yn = 4 (]\1 —+ 3" )

kl = f(mna :U'n.)a

, h h
1‘112 = f (-’I"'n, + Ea Un. + gkl)a
. 2N 2h
]“"'3 = f (.’1}'” + ?a Yn, + ?k:Z)a

which is known in bibliography as Heun’s method.

For ay = %, a3 =1(=¢ =c3 = %,(:2 = %, «vgp = 2) we get the method

h
fl/'n,-l-l —Yn = ())(]‘ + 4]‘2 + k )
h

kl = f(m'n,y yn)y
' ‘ h
ko = f ("I:'n, + 57 Yn + é—k:l)’

Ii?g = f(.’l,'n + llr, Yn — ]l]i?l + 2hk,’2),

which is most popular among the methods of third order from the point of view of hand
calculations.

In case when m = 4, we get two-parameter family of methods of fourth order.
Namely, here, dnalogoubly to system (9.7.7), appears system of 11 equations in 13
unknowns.

Now we quote, without proof, Runge-Kutta method of fourth order.

h
Ynitl — Yn = E(kl + 2ka + 2ks + kq),
kl = f(mn; :‘/'n,)a'
. \ h /
(9.7.8) AQ:f@n+$w“+éhL
‘ ) I I
vk3 :f (-'I:n + 57 UYn + 5[{:2),
kg = f(xn + b, yn + hks),

which is traditionally most used in applications.
From methods of fourth order it is often used so known Gill's variant, which can
be expressed as the following recursive proc edule

ni=0, Qp:=0
(*) Yo := yn,
= b o), Y= Yo b 5 (k—2Q0),
Q1= Qo+ 5 (b~ 2Q0) - ki
A:Z,:: ZL,f(r,, + 21 Y1), Yo =1 +(1— \/1/_2)(7412 — Q)
Q2= Q1+ 31— V/1/2) (ks — Q1)(1 = V1/2)ks,
ko i= 0f (o + 5. 72), Y3 = Yok (14 V/I2) (ks — Q)

'523—622-1-31’*-\/ 7~3—- 1+\/ k’37

-
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kg = ]If(’[‘n +.h, Yg) Y4 = Y3 + 5 (]14 - 2Q3)

Qo := Qa + - (k4 —2Q3) — —k4,

Yn+1 = Y4a
n:=mn-++1
skip to ().

_ In contrary to linear multi-step methods, Runge- Kutta methods do not demand
knowledge of initial values (except y(zo) = yo, what, by the way, defines Cauchy prob-
lem), but for practical application are more <0111p11cated because they demand m cal-
culations of fun(tlon f values in every step.

9.8. Program realization of Runge-Kutta methods

In this section we present program realization of Euler-Cauchy method, improved
Eueler-Cauchy method, as well as method of fourth order (9.7.8) and Gill’s variant of
Runge-Kutta method. The obtained software will be tested on the example from section
9.3.6.

Program 9.8.1.

By subroutine EULCAU are realized Euler-Cauchy and improved Iuler-Cauchy
method. Parameters in parameter list have the following meaning:

XP - start point of integration mterval;

H - integration step;

N - integer, such that N 4 1 is lenght of vector Y;

M - integer which defines way of construction of vector Y. Namely in vector Y is
stored in turn every M-th value of solution obtained during integration process.

Y - vector containing solutions of length N+1, whereby Y (1) is given initial condition
Yo, Y(2) is value of solution obtained by integration in point XP + Mx*H, etc.

FUN - name of function subroutine, which defines right-hand side of differential
equation f(x,y);

K - integer with values K=1 and K=2, which governs integration according to Euler-
Cauchy and improved Euler-Caucly method, respectively.

Subroutine EULCAU is of form:

SUBROUTINE EULCAU(XP,H,N,M,Y,FUN,K)
DIMENSION Y(1)
X=XP
Y1=Y(1)
NN=N+1
DO 10 I=2,NN
DO 20 J=1,M
Y0=Y1
Y1=FUN (X, YO)
GO TO (1,2),K
1 Y1=YO+H*FUN (X+0.5%H,Y0+0.5*H*Y1)

GO TO 20
2 Y1=YO+H* (Y1+FUN (X+H,YO+H*Y1)) /2.
20 X=X+H
10 Y(I)=Y1
RETURN
END

FUNCTION FUN(X,Y)



Main program and output listing are given in further text. As input parameters for
integration we have taken H=0.1, N=10, M=1, and in second case H=0.05, N=10,
M=2. Columns Y1N and Y2N in output listing give values for solution of given Cauchy
problem, according to regular and improved Euler-Cauchy inethod, respectively. In
addition to those colmnns, in output listing are given columns with corresponding errors

Lesson IX - Ordinary Differential Equations

FUN=X*X+Y
RETURN
END

(as relation to exact solution, expressed in %)

C RESAVANJE DIF. JED. EULER-CAUCHYEVIM

C

10
20

30

15
11
99

I POBOLJSANIM METODOM

EXTERNAL FUN

DIMENSION Y(100), Z(100)
F(X)=6.*EXP(X-1.)-X*X-2. %X-2.
OPEN(5,FILE=’EULCAU.QUT’)
OPEN(8,FILE="EULCAU.IN’)

WRITE(5,10)

FORMAT (10X, ’RESAVANJE DIF.JED.EULER-CAUCHYEVIM’
1 > I POBOLJSANIM METODOM’)
READ(8,25,END=99)XP,Y (1) ,H,N,M

FORMAT (3F6.1,21I3)

CALL EULCAU(XP,H,N,M,Y,FUN,1)

Z(1)=Y(1)

CALL EULCAU(XP,H,N,M,Z,FUN,2)

WRITE(5,30)H -

FORMAT (1HO,30X,’ (H=",F6.4,’)’//15X, XN’ ,8X,
1°YIN’ ,4X, GRESKA (%)’ ,5X, Y2N’,4X, ’GRESKA (%) */)
NN=N+1

X=XP

DO 11 I=1,NN |

G1=ABS ((Y(I)-F(X))/F(X))*100.

G2=ABS ((Z(I)-F(X))/F(X))*100.
WRITE(5,15)X,Y(I),G1,2(I),G2
FORMAT(15X,F3.1,3X,F9.6,2X,F7.5,3X,F9.6,2X,
1 F7.5) '

X=X+H*M

GO TO 20

CLOSE(5)

CLOSE(8)

STOP

END

RESAVANJE DIF . JED.EULER-CAUCHYEVIM IVPOBOLJSANIM METODOM

XN

NS N e el o S o

COWONOUIDWN RO

(H= .1000) .

Y1N GRESKA (%) YON -~ GRESKA(%) -
.000000 .00000 .000000 .00000
.220250  .06352 .220500  .04304
486676  .11693 .487203  .08157
.806227 «  .16173 .807059  .11576
.186581  .19934 .187750  .14599
.636222  .23109 637764  .17274
.164526  .25808 166479  .19650
.781851 . .28125 784260 .21773
.499645 .30138 .502557  .23685
.330558 - .31907 .334026. .25422
.288567  .33483 .292649  .27013

O WWNNN R, R
DR WWNONR, R,
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(H= .05005

N YiN ~ GRESKA (%) Y2N GRESKA (%)
1.0 1.000000  .00000 1.000000  .00000
1.1 1.220824  .01655 1.220888  .01130
1.2 1.487963  .03046 1.488098  .02140
1.3 1.808391 .04213  1.808604 .03034
1.4 2.189811  .05192 ~ 2.190111  .03824
1.5 2.640738  .06019 2.641133  .04523
1.6 3.170581  .06721 3.171082  .05143
1.7 3.789740  .07324 3.790357  .05696
1.8 4.509705 . .07848 4.510451  .06195
1.9 5.343177  .08309 5.344066  .06647
2.0 6.304192 ~ .08719 6.305238  .07061

Program 9.8.2.

According to formulas (9.7.8) for standard Runge-Kutta method of fourth degree,
the following subroutine RK4 is written:

SUBROUTINE RK4(X0,YO,H,M,N,YVEK,F)

DIMENSION YVEK(1)
T=H/2.
X=X0
Y=YO0
DO 20 I=1,N
po 10 J=1,M
A=F(X,Y)
B=F (X+T,Y+T*A)
C=F (X+T,Y+T*B)
D=F (X+H, Y+Hx*C)
X=X+H
10 Y=Y+H/6.* (A+2.*B+2.*%C+D)
20 YVEK(I)=Y
RETURN
END

Parameters in list of subroutine parameters are of following meaning:

X0, Y0 - define given initial condition (YO=y(X0));

H - step of ntegration;

M, N - integers with meanings similar to ones in subroutine EULCAU;

YVEK - vector of length N which 1s obtained as result of numerical integration,
whereby Y (1) is value obtained in point X0+M=*H, Y (2) value in point X0+2M*H, ctc.
F - name of function subroutine which defines right-hand side of differential equation
flx,y). '

Main progra is of fornu:

C RESAVANJE DIF.JED. METODOM RUGE-KUTTA

EXTERNAL FUN

DIMENSION Y (100)
F(X)=6.*EXP(X-1.)-X*X-2.%X-2.
OPEN(5,FILE="RK4.0UT’)



10
20

5

25

11
15

99
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[Ga ]
[

OPEN(8,FILE="RK4.IN’)

WRITE(S,10)

FORMAT (14X, ’RESAVANJE DIF.JED. METODOM’,
1 ’ RUNGE-KUTTA’) ,

READ (8,5,END=99)X0,Y0,H,N,M

FORMAT (3F6.1,2I3)

CALL RK4(X0,YO,H,M,N,Y,FUN)

G=0.

WRITE (5,25) H,X0,Y0,G

FORMAT( 28X,’(H=’,F6.4,’)’//15X, XN’,13X,’YN’,
110X, >GRESKA(%)’//15X,F3.1,8%,F9.6,7X,F7.5)
X=X0

DO 11 I=1,N

X=X+H*M

G=ABS ((Y(I)-F(X))/F(X))*100.

WRITE (5,15)X,Y(I),G

FORMAT (15X,F3.1,8X,F9.6,7X,F7.5)

GO TO 20

CLOSE(5)

CLOSE(8)

STOP

END

FUNCTION FUN(X,Y)
FUN=X*X+Y

RETURN

END

Taking H=0.1, N=10. M=1 the following results are obtained:

RESAVANJE DIF.JED. METODOM RUNG—KUTTA‘

XN

N2 2 R

QOO ~NOUIPWN O

(H= .1000)

YN GRESKA (%)
1.000000 .00000
1.221025 .00002
1.488416 .00005
1.809152 .00007
2.190946 .00009

2.642325 .00011
3.172709 .00012
3.792512 .00014
4.513240 .00015
5.347611 .00017
6

.309682 .00018

Pro}gram 9.8.3.

The Gill's variant of Runge-Kutta method is realized in double precision. Param-
eters in parameter list of subroutine GILL, X0, H, N, M, Y, FUN have the same
- meaning as the parameters HP, H, N, M, Y, FUN in subroutine EULCAU, respec-
tively. Note that this subroutine is realized in such a way that the optimization of
number of variables has been performed. '

Input parameters ave taken like in program 9.8.1.

RESAVANJE DIF.JED. METODOM RUNGE-KUTTA

(VGILLOVA VARIJANTA)
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EXTERNAL . FUN ,
REAL*8 Y(100),F,FUN,X0,X,H,G
F(X)=6.*DEXP(X-1.)-X*X-2.*%X-2.
OPEN(8,FILE="GILL.IN’)
OPEN(5,FILE="GILL.0UT’)
WRITE(S 10) ' v
10 FORMAT(8X 'RESAVANJE DIF.JED. METODOM’
1’ RUNGE-KUTTA (GILLOVA VARIJANTA)’ )
20 READ(8,25,END=99)X,Y(1) ,H,N,M
25 FORMAT (3F6. 1,21I3)
X0=X ‘
CALL GILL(XO,H,N;M,Y,FUN)
WRITE(5,30)H
30 FORMAT(/28X '(H=",F6.4,7)" //15x PXN’, 13X, YN,
1 10X, ’GRESKA(/) /)
NN=N+1
DO 11 I=1,NN
G= DABS((Y(I) F(X))/F(X))*loo
WRITE(5,15)X,Y(I),G
15 FORMAT(lSX F3.1, 8X F9.6, 6X D10.3)
11 X=X+H*M
GO TO 20
99 CLOSE(5)
CLOSE(8)
STOP
END

SUBROUTINE GILL(XO,H,N,M,Y,FUN)
REAL*8 Y(1),H,FUN,X0,Y0,Q,K,A,B
B=DSQRT(0.5D0)
Q=0.D0
YO=Y (1)
NN=N+1
DO 10 I=2,NN
DO 20 J=1,M
K=H*FUN (X0, Y0)
A=0.5%x(K-2.%Q)
YO=YO+A
Q=0+3.*A~-0.5%K
K=H*xFUN (X0+H/2.,Y0)
A=(1.-B)*(K-Q)
YO=YO+A
Q=Q+3.*A-(1.-B)*K
K=H*xFUN (X0+H/2,Y0)
A=(1.4B)*(K-Q)
YO=YO+A
Q=Q+3.*A-(1.+B)*K
K=H*FUN (X0+H, Y0)
A=(K-2.*Q) /6.
YO=YO+A
Q=Q+3.*A-K/2.

20 X0=X0+H

10 Y(I)=YO
RETURN
END

FUNCTION FUN(X,Y)
REAL*8 FUN,X,Y
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FUN=X*X+Y
RETURN
END

RESAVANJE DIF.JED.METODOM RUNGE-KUTTA (GILLOVA VARIJANTA)

(H= .1000)
XN YN GRESKA (%)
1.0 1.000000 .000D+00
1.1 1.221025 .246D-04
1.2 1.488416 . .460D-04
1.3 1.809152 .647D-04
1.4 - 2.190946 .808D-04
1.5 2.642325 .949D-04
1.6 3.172709 .107D-03
1.7 3.792512 .118D-03
1.8 4.513240 .128D-03
1.9 5.347611 .136D-03
2.0 6.309682 - .144D-03
(H= .0500)
XN YN GRESKA (%)
1.0 1.000000 .000D+00
1.1 1.221025 .162D-05
1.2 1.488417 .303D-05
1.3 1.809153 .425D-05
1.4 2.190948 .531D-05
1.5 2.642327 .623D-05
1.6 3.172713 .704D-05
1.7 3.792516 .775D-05
1.8 4.513245 .838D-05
1.9 . 5.347618 .894D-05
2.0 6.309690 .946D-05

9.9. Solution of system of equations and equations of higher order

Methods considered in previous sections can be generalized in that sense to be
applicable in solution of Cauchy problem for system of p equations of first order

(9.9.1) yi= filwsyn, . Up), wilwo) =wio (i=1,...,p).

In this case, system of equations (9.9.1) shell be represented in vector form

-

(9.9.2) | = [ ), gze) = o,
where
wl [ Fi(5 9, vp)
. Ya B Y20 T .
j= , o= , Sfley) =1
- ' p Ty Y1yl
LYpd Ypod fp( i Jp)

It is. of our interest the solution of Cauchy problem for differential equations of higher
order. Note, nevertheless, that this problem can be reduced to previous one. Namely,
let be given the differential equation of order p

(9.93) S Y = flay,y oy

il
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with initial condit_ions _

Then, by substitution

21 =, zz_—_y',.. 2z = -1,

equation (9.9.3) with conditions (9.9.4), reduces to system

Z2 = Z3
) I — -
Zp—l - Zm

Z;) = f(:L‘;Zl,Zz, .. .,zp),

with conditions z;(zo) = zio = 0 (1 =1,...,p).
Linear multi-step methods considered up to now, can be formally generalized to

vector form
Z ilnyi = h Z Bifrni,
=0 =0

where fn+, = f( Tovis Unti), and then as such can be applied to solution of Cauchy

‘_,,problem (9.9.2).
: Also, the Runge-Kutta methods for solution of Cauchy problem (9.9.2) are of form

Un+1 — Un = " (2, U, h),

where

a; = E Qjy by = a;ik; (1=2,...,m)
j=1 7=1

All analysis given in previous sections can formally be translated to noted vector
methods.

As an example, realize standard Runge-Kutta method of forth order (9.7.8) for
solving of system of two differential equations

:Ul = .fl ("1"7 Y, Z)a Z/ = fZ(II‘)U) Z),

k3
N

with conditions y(xg) = yo and 7(10) = zp.
The (011ebpondlng subroutine 1s of forn:

SUBROUTINE RKS(XP,XKRAJ,YP,ZP,H,N,YY,ZZ)
REAL KY1,KY2,KY3,KY4,KZ1,KZ2,KZ3,KZ4
DIMENSION YY(1),ZZ(1)
K=(XKRAJ-XP) / (H*¥FLOAT(N))
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N1=N+1"
X=XP
Y=YP ,
Z=ZP '
T=H/2.
YY(1)=Y
ZZ(1)=2Z
DO 6 I=2,N1
DO 7 J= 1,K
KY1=FUN(1,X,Y,Z)
KZ1=FUN(2,X, Y Z)
KY2=FUN(1,X+T,Y+T*KY1,Z+T*K21)
KZ2=FUN(2,X+T, Y+T*KY1,Z+T*KZ1)
KY3=FUN(1,X+T,Y+T*KY2,Z+T*KZ2)
KZ3=FUN(2,X+T,Y+T*KY2,Z+T*KZ2)
KY4=FUN(1,X+H, Y+H*KY3,Z+H*KZ3)
KZ4=FUN(2,X+H, Y+H*KY3,Z+H*KZ3)
Y=Y+H* (KY1+2.* (KY2+KY3)+KY4) /6.
Z=Z+H* (KZ1+2.* (KZ2+KZ3)+KZ4) /6.
7 X=X+H
YY(I)=Y
6 ZZ(1)=2Z
RETURN
END

Using this subroutine we solved system of equations

/ / '
Yy =uwxyz, z =xy/z,

under conditions y(1) = 1/3 and z(1) = 1 on segment [1, 2.5] taking for integration step
h = 0.01, and printing on exit = with step 0.1 and corresponding values of y, yr, z, 27,
where yr and zp are exact solutions of this system, given with

————72 d =z 6
Yy = an = .
T (7 —x2)3 H

The corresponding program and output listing are of form:

C

15

DIMENSION YT(16),ZT(16), YY(16) ZZ(16) ,X(16)
YEG(P)=72./(7. P*P)**S
 ZEG(P)=6./(7.-P*P)
OPEN(8,FILE="RKS.IN?)
OPEN(5,FILE="RKS.0UT’) .
"READ(8,15)N, XP,YP, ZP XKRAJ
FDRMAT(12 4F3. 1)
YP=YP/3.:
H=0.1
Ni=N+1
- DO 5 I=1,N1
X(I) XP+H*FLOAT(I 1)
YT(I)=YEG(X(I))

5 ZT(I)=ZEG(X(I))

WRITE(S, 22)
H O 01 '
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18

22

50
60
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CALL RKS(XP,XKRAJ,YP,ZP,H,N,YY,ZZ)

1WR1TE(§ 18)H)(X(I) LYY (T), YT(I) ZZ(1),ZT(I),
1,N1 ,

FORMAT(//7X,’KORAK INTEGRACIJE H=’,F6.3//7X,
1°X7,11X,°Y’ , 10X, *TACNO?, 11x ’Z’,10X, ZTACNO’ //
2(F10. 2, 4F14 ‘7))

FORMAT(lHl 9X, ’RESAVANJE SISTEMA SIMULTANIH’
1’ DIFERENCIJALNTH JEDNACINA’//33X, ’Y”-XYZ //
1 33X, ’Z7'=XY/Z’) :

CLOSE (5)

CLOSE(8)

STOP

END

FUNCTION FUN(J,X,Y,2Z)
GO TO (50,60),3 =
FUN=X*Y*Z .
RETURN

FUN=X*Y/Z

RETURN

END

RESAVANJE SISTEMA SIMULTANIHDIFERENCIJALNIH JEDNACINA

KORAK
X
.00
.10
.20
.30
.40
.50
.60
.70
.80
.90
.00
.10
.20
.30
.40
.50

NNONNNNDNE P P e

Y =XYZ
Z’=XY/Z
INTEGRACIJE H= .010 - \

Y TACNO Z ZTACNO
.3333333 - .3333333 1.0000000 1.0000000
.3709342 .3709342 1.0362690 1.0362690
.4188979 .4188979 1.0791370 1.0791370
.4808936 .4808935 1.1299430 1.1299430
.5623943 .5623943 1.1904760 1.1904760
.6718181 .6718181 1.2631580 1.2631580
.8225902 . 8225904 1.3513510 1.3513510

1.0370670 1.0370680 1.4598540 1.4598540
1.3544680 1.3544680 1.5957440 1.5957450
1.8481330 1.8481340 1.7699110 1.7699110
2.6666650 2.6666670 2.0000000 2.0000000
4.1441250 4.1441260 2.3166020 2.3166020
7.1444800 7.1444920 2.7777760 2.7777780
14 .3993600 14.3993900 3.5087690 3.5087710
37.7628900 37.7631300 4.8387000 4.8387110
170.6632000 170.6667000 7.9999230 8.0000000

9.10. Boundary problems

In this section we will point out to difference method for solution boundary problem

(9.10.1)

"+ p()y' +ala)y = fx); yla) = A, y(b) =B,

where functions p, ¢, f are continuous on [a, b].

Let us

b—ua

divide segment [a,b] to N + 1 subsegments of length h =

S0 that

N+1’

Tn = a+mnh (n=20,1,..,N+1). In pomts I, (n = 1,.... N) we approximate the

dlﬂ’(‘l ential

(9.10.2)

equation from (9 10.1) with

'.l/n-}—l - 21’/7:, + Yn—1 Yn+1 — Yn-1
3 Pn .
I 20

+ qniyn = fu ) ('II' =1,..., ]\f)1
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where p,, ;1)(:1:.,,,) G = q(n). fo = flx,).

If we involve subs‘rltuh()us

B . I
y, =1-— 5 Pn by =02, — 2, ¢, =1+ 5P
(9.10.2) can be represented in form
(9.10.3) U1 + Do + Cotpngr = W2 f0 (n=1,... ,IN).

In regards to boundary conditions yg = A and Yy41 = B, we have the problem of
solving system of linear equations T4 = d, where

N hz,f] - A(),1 [)1 1 0 ... 0
Y2 - n? f2 ag by o 0

¥ = , d= : , T=
YN /),ZfN - BCN ‘ 0 0 0 Ce. [)N

System matrix is tri-diagonal. For solving of this system it is convenient to perform
decomposition of matrix T as T=LR (see Chapter 2), whereby the problem is reduced
to successive solution of two triangular systems of linear equations. This procedure for
solution boundary problem (9.10.1), is known as matrix factorization.

The following prograin is written in accordance to explained procedure.

DIMENSION A(100),B(100),C(100) ,D(100)

C
C MATRICNA FAKTORIZACIJA ZA RESAVANJE
C KONTURNIH PROBLEMA KOD LINEARNIH
C DIFERENCIJALNIH JEDNACINA II REDA
C Y ’+ P(X)Y’+ Q)Y = F(X)

C Y(DG) = YA, Y(GG) =

C

OPEN(8,FILE="KONTUR.IN’)
OPEN(7,FILE="KONTUR.QUT’)
READ(8,5) DG,YA,GG,YB
5  FORMAT(4F10.5)
C UCITAVANJE BROJA MEDJUTACAKA
10  WRITE(x*,14)
14 FORMAT(iX "UNETL BRDJ MEDJUTACAKA’
1> U FORMATU I2°/ 5X,’(ZA N o => KRAJ) )
READ(5,15) N ‘
15 FORMAT(IQ)
N1=N+1
IF(N.EQ.0) GO TO 60
‘H=(GG-DG) /FLOAT(N1)
- HH=H=*H
X=DG
DO 20 I=1,N
X=X+H '
Y=H/2. *PQF(X 1)
A(I)=1.-Y
C(I)=1.+Y
© B(I)=HH*PQF(X,2)-2.
20 = D(I)=HHx*PQF(X,3)
N D(1)=D(1)-YAxA(1)
D(N)=D(N)-YB*C(N).
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C(1) C(1)/B(1)

DO 25 I=2,N '

B(I)=B(I)~A(I)}*C(I-1)
25 C(I)=C(I)/B(I)

D(1)=D(1)/B(1)

, DO 30 I=2,N -

30 D(I)=(D(I)-A(I)*D(I- 1))/B(I)
NM=N-1
DO 35 I=1,NM
J=NM-I+1 .

35 D(J)=D(J)-C(J)*D(J+1)
WRITE(7,40)N, (I,I=1,N1)

40  FORMAT(///5X,’BR0OJ MEDJUTACAKA N=’

1 ,13///5X,’1’,6X,’0’,9110)
DO 45 I=1,N
. C(I)=DG+H*FLOAT(I)

45 B(I)=PQF(C(I),4)
WRITE(7,50)DG, (C(I),I=1,N), GG
WRITE(?,SS)YA,(D(I),I ,N),YB

; WRITE(7,65)YA, (B(I),I=1,N),YB

50  FORMAT(/5X,’X(I)’,10(F6. 2,4X))

55  FORMAT(/5X,’Y(I)’,10F10.6)

65  FORMAT(/5X,’YEGZ’,10F10.6)

GO TO 10
60  CLOSE(7)
CLOSE(8)
STOP
END _ ,

Note that this program is so realized that number of inner points N is read on
input. In case when N = 0 program ends. Also, in program is foreseen tabulating
of exact solution in observing points, as control. Tt is clear that last has meaning for
scholastic examples when solution is known. So, for example, for boundary problem

y"' = 2xy' — 2y = —4z; y(0) =1, y(1) =1+ e = 3.7182818,

the exact solution is y = 2 + exp(z?)
For this contour problem function subroutine for defining functions p, q, f, as for as
for exact solution, is named PQF. In case N=4, we got the results given in continuation.

FUNCTION PQF(X,M)
GO TO (10,20,30,40),M
10  PQF=-2.xX
RETURN
20 PQF=-2.
RETURN
30 PQF=-4.%X
RETURN
40  PQF=X+EXP (X*X)
RETURN
END

BROJ MEDJUTACAKA N= 4

I 0 1 2 3 4 5
X(I) .00 .20 .40 .60 .80 1.00
Y(I) 1.000000 1.243014 1.576530 2.035572 2.695769 3.711828
YEGZ 1.000000 1.240811 1.573511 2.033329 2.696481 3.711828
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9.11. Packages for ODEs

Numerous libraries and software packages are available for integrating initial-value
ordinary differential equations. Many work stations and main frame computers have
such libraries attached to their operating systems.

Many comunercial software packages contain routines for integrating initial-value
ODEs. One of the oldest and very known among senior scientist is SSP (Scientific
Subroutine Package) of IBM. For ODEs it has subroutines RK1 (integral of first-order
differential equation by Runge-Kutta method), RK2 (1nteg1dl of first-order differential
equation by Runge-Kutta method in tabulated form) using in both subroutines fourth
order Runge-Kutta method, and RKGS (solution of system of first-order differential equa-
tions with given initial values by the Runge-Kutta method) using evaluation by means
of fourth order Runge-Kutta formulae in the modification due to Gill. Some of the more
prominent packages are Matlab and Mathcad. More sophisticated packages, such as
IMSL, Mathematica, and Macsyma coutain also algorithims for integrating initial-value
ODEs. The book Numerzcal Recipes([12]) contains numerous subroutines for inte-
grating initial-value ordinary differential equations and the book Numerical Meth-
ods for Engineers and Scientists([3]) program code for solving single first-ovder
ODEs, higher order ODEs, and systems of first-order ODEs, by using single-point meth-
ods, extrapolation methods, and multi-point methods (see Chapter 7, One-Dimensional
Initial-Value Ordinary Differential Equations).
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10. Partial Differential Equations - PDE

10.1. Introduction

Partial differential equations (PDEs) arise in all fields of engineering and science.
Most real physical processes are governed by partial differential equations. In many
cascs, simplifying approximations arve made to reduce the governing PDEs to ordinary
differential equations (ODEs) or even algebraic equations. However, because of the ever
increasing requirements for more accurate modelling of physical processes, engineers and
scientists are nore and more required to solve the actual PDEs that govern the physical
problem being investigated. Physical problems are governed by many different PDEs. A
few problems are governed by a single first-order PDE. Numerous problems are governed
by a system of first order PDEs. Some problems are governed by a single second-order
PDE, and numnerous problems are governed by a system of second-order PDEs. A few
problems are governed by fourth order PDEs. The two most frequent types of physical
problems described by PDEs are ecuilibrium and propagation problems.

The clagsification of PDEs is most easily explained for a single second order linear
PDE of formn

0%u B 0%u n C(’)2'u, DO"U,_FEOU

10.1.1 A—F - —
( ) Ou? Oy Oy? + ox Oy

+ Fu=G,

where A, B.C,D,E.F.G are given functions which are continuous in area S of plane
2QOy. The area S is usually defined as inside part of some curve I'. Of course, the area
S can be as finite as well as infinite. Typical problem is finding two times continu-
ous differentiable solution (2:,y) — w(z,y) which satisfies equation (10.1.1) and some
conditions on curve (contour) L. .

Linear PDEs of second order can be classified as eliptic, parabolic and hyperbolic,

depending on the sign of the discriminant B? — 4AC in given area S, as follows:
19 B2 —4AC <0 Elliptic ‘
20 B2 —4AC =0 Parabolic
30 B? —4AC < 0 Hyperbolic :

The terminology elliptic, parabolic, and hyperbolic chosen to classify PDEs reflects
the analogy between the form of the discriminant, B? — 4AC, for PDEs and the formn
of the discriminant, B2 — 4AC, which classifies conic sections, described by the general
second-order algebraic equation ' : ’

Az 4 Bay + Cy2 +Dx+Ey+F =0,

where we for negative, zero, and positive value of discriminant have ellipse, parabola,
and hyperbola, respectively. Tt is easy to check that the Laplace equation '

' 0%2u  O%u
10.1.2 . — 4+ — =0,
( ) ox2 + 8:{/2, ;
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is of elliptic type, heat conduction equatioh :
(10.1.3) | 28l g

is of parabolic type, and wave equation

0%u k2 02
; C —
0t? 02

(10.1.4) : ~0

of hyperbolic type. In this chapter we will show one way for numerical solutlon of PDEs,
for Laplace and wave equation by grid method. In the blInll(LI way can be solve heat
conduction equation, what we leave to the reader.

10.2. Grid method

Grid method or difference method, or finite- (hffel ence grid method, is basic method
for solution of equations of nmthematl(al physics (partial equations which appear in
physics and science) -

Let be given linear PDE

(10.2.1) | Lu=f

and let in area D, which is bounded by curve T'(D = int T), look for such its solution
on curve I' that satisfies given boundary condition

(10.2.2) Ku=0 ((z,y)cT).

In application of grid method, at first, one should chose discrete set of points D),,
which belongs to area D(= D UT), called grid. Most frequently, in applications is for
grid taken family of parallel straight lines z; = 2:o+ih, y; = yo+71 (4,7 =0, +1,£2,...).
Intersection points of these families are called nodes o{ grid, and h and [ are steps of
grid. Two nodes of grid are called neighbored if the distance between them along 2 and
y axes is one step only. If all four neighbor nodes of some node belong to area D, then
this node is called interior or inner; in counterpart node of grid Dy, is called boundary
node. In addition to rectangular grids, in practice are also used other grid %hape%

Grid method consists of approximation of equations (10.2.1) and (10.2.2) nusing cor-
responding difference equations. Namely, we can approximate operator L by difference
operator very simple, by substituting derivative with corresponding differences in inner
nodes of grid. Thereby are used the following formulas

Qumi, Yj) o Wig1,5 — Wi

o I

(‘)’ll,(fl},,j, ',U_'j) ~ Witl,j = Wim1,j
Jy 20

O*ulwi, ;) o Mig1,i — 205 + i1 ote
o2 h?2 ' '

Formulas for partial derivatives in variable y are absolutely synnhetric. Approxi-
mation of boundary conditions can be in some cases very complicated problem, what
depends on form of operator K and contour I'. At so known boundary conditions of first
kind, where Ku = u, one practical way for dppl()‘(lnldhon was proposed by L. Collatz
and comprises of th(‘ following:
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Let the closest point from contour T to boundary node A be point B and let their
distance be § (see Fig. 10.2.1).

4

Figure 10.2.1

Based on function values in points B and C, we get by linear interpolation

¥ (B) + du(C)
L+ 6 '

1%

u(A)

Approximation of boundary condition (10.2.2) in this case comprises of defining equa-
tions of above form for every boundary node.

The equations obtained by approximation of equation (10.2.1) and boundary condi-
tion (10.2.2) form system of linear equations, by which solution are obtained numerical
solutions of given problemn.

In further consideration we will give two bam(: examples.

10.3. Laplace equation

Let it be needfully to find solution of Laplace equation

D2 9%
D %Y 0 ((w,y) € D),

A =
o2 0y

which on the contour of squawre D = {(z,9)]0 < z <1, 0 < y < 1} fulfills given condition
u(z,y) = ¥(z,y) ((z,y) € I'). Let’s chose the grid in Dj, at which is I = h = N1 %
that grid nods are points (i, v;) = ((i — 1)k, (G — 1)) (i,7 =1,...,N). The standard
differ ence appr oximation scheme for solving Laplace equation is of f011n

ﬁ“”if-‘rl,j + Ug—1,4 + Ui j—1 — 4’(1,,,;,__7' = 07

or ‘
1 .
g = Z('Uw:,jﬂ + i1 i1+ i)

Takmg? 7=2,.. N 1 in last equality we get the system of (N — ‘7) linear equations.

For solvmg3 this sys‘rem usually is used method of simple iterations, or, even wiore

simpler, Gauss-Seidel method. . '
The (onespon(hng, program for .solvmg pr oblem in COIlbld(—‘ldthIl is of form
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DIMENSION U(25,25) :
OPEN<(8,FILE="LAPLACE.IN")
OPEN(5,FILE=’LAPLACE. 0UT” )
READ(8,4)N
4 FORMAT (I2)
M=N-1 ‘ ' '
READ(8,1) (U(1,J),J=1 N) (v, 1, J=1, N) .
1(U(I1, 1) I=2,M), (U(I,N),I=2,M) -
1 FORMAT (8F10.0)
DO 10 I=2,M
DO 10 J=2,M
10  U(1,J)=0.
IMAX=0
20  WRITE(*,5)
5  FORMAT (5X, UNETI MAKSIMALNT BROJ ITERACIJA’ /
110X, ’(ZA MAX=0 => KRAJ)’)
READ (%, 4) MAX
IF (MAX.EQ.0) GOTO 100
DO 30 ITER=1,MAX
DO 30 I=2,M
DO 30 J=2,M
30 U(T,J)=(U(I,J+1)+U(I,J- 1)+U(I 1, J)+U(I+1 N)/4.
IMAX=IMAX+MAX
WRITE(5,65) IMAX, (J,J=1,N)
65 FDRMAT(//QGX ’BRDJ ITERACIJA JE*,13//17X,
14 (5%, J=" L12))
DO 60 I=1,N
60 WRITE(5,66) I,(U(I,J),J=1,N)
66  FORMAT(13X,’I =’,I2,6F10.4)

GO TO 20
100 CLOSE(8)
CLOSE(5)
STOP
END
For solving system of lincar equations we used Gauss-Seidel method with initial
conditions u; j =0 (1,7 = 2,..., N — 1), whereby one can control number of iterations

on input. For N=4 and bonndary conditions

Wy — 0, 19 = 50, 13 = ()0, 1,4 = 90,
gy = 180, ey 2 = 12(), a3 — ()07 e 4 = 0,
gy = 60, ug g = 120, ugq = 60, uz 4 = 30,

the following results are obtained:

BROJ ITERACIJA JE 2

J=1 J= 2 J=3 J= 4
I=1 .0000 30.0000 60.0000 90.0000
I =2 60.0000 47.8125 53.9063 60.0000
I =3 120.0000 83.9063 56.9531 30.0000
I =4 180.0000 120.0000 60.0000 .0000
BROJ ITERACIJA JE 7
J=1 J= 2 J=3 J= 4

I =1 .0000 30.0000 60.0000 90.0000 .
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I =2 60.0000 59.9881 59.9940 60.0000
I =3 120.0000 89.9940 59.9970 30.0000
I =4 180.0000 120.0000 60.0000 .0000
BROJ ITERACIJA JE 9
J=1 J= 2 J= 3 J=4
I =1 - .0000 30.0000 60.0000 90.0000
I =2 60.0000 59.9993 59.9996 60.0000
I =3 120.0000 89.9996 59.9998 30.0000
I =4 180.0000 120.0000 60.0000 .0000
BROJ ITERACIJA JE 10
J=1 J= 2 J=3 J=4
I =1 .0000 30.0000 60.0000 90.0000
I =2 60.0000 59.9998 59.9999 60.0000
I =3 120.0000 89.9999 60.0000 30.0000 -
I =4 180.0000 120.0000 60.0000 .0000
BROJ ITERACIJA JE 21
J=1 J= 2 J= 3 J=4
I=1 .0000 30.0000 60.0000  90.0000
I =2 60.0000 60.0000 60.0000 60.0000
I =3 120.0000 90.0000 60.0000 30.0000
I =4 180.0000 120.0000 60.0000 .0000

10.4. Wave equation

Consider wave equation

(10.4.1) ?2'“‘ — i.(f)z",”
dx?  a? Ju?
with initial (’:()nditibﬁs » |
(10.4.2) w(w, 0) = f(x), ui(x,0) = g(x) (0<w<h)
and boundary conditions
(104.3) W(0.8) = (1), w(b,t) = () (t>0).

Using finite differences, the equation (11.4.1) can be approximated by
. 4 1 ‘ E
(1044) Uil — .2'11,,,;7_.}' + i1 = ﬁ(ll""i.,j—*-l - 2’(1,,,',}]' -+ ‘””"'7,'1'*1)7

‘where r = (1,,1 (h and 1 are steps along = and ¢ axes respectively), and w; ; = (i, ).

3

Based on first equality in (10.4.2) we have
(1045) . ’ Ui = f(-'”i) = f;.

By introducing fictive layer j = =1, second initial condition n (10.4.2) can simple be
approximated using ‘

i1 — g, —1

20

12

(10.4.6) ‘ (w4, 0). = g(x;) = g
Tf we put in (10.4.4) g =0 we get

fixr —2fi+ fic1 — /,—.2*(“7:11'— 2fi +ui_1)=0;
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wherefrom, in regard to (10.4.6) it follows "

Fe]

PR P A
win = lgi + fi + ;’1'2(.f7:+-1 —2fi + fic1),

l.e.

(10.4.7) wiy = lgi + (1 - )f: —’ (f12+1’+f¢—':1)-7

_/

Ou the other hand, from (10.4.4) it follows

‘ 1 1
(1048) R —2(11,,,3_*_1‘.,1' + '(I,,,',_Lj)'— ’ll,,,;,',]'_l -+ 2(7*2 - 1)11,,,;’.7'.

T

If we put h = b/N and @, = (i — 1)k (1 = 1,2,...,N + 1), due to boundary
conditions (10.4.3) we have ' '

(1049) 11,5 = (I).’I"‘\ UN41,5 = \I’(T) = \I/.'

where j =0,1,. For determining of solution inside of rectangle P = {(z,1)[0 < x <
h,0 < t < T,,,(,,} nmxnnal value of index 7 is 111t(g3e1 part of Tyua/l 1€ Jumaw = M =
[Tma €I /l]

Based on equalities (10.4.5), (10.4.7), (10.4.8), (10.4.9) the approximate solutions
of given problem in grid nodes of rec fangl( P, arce simple to obtain. This algorithm is
(()(1( d in the following program.

DIMENSION U(3,9) ,
OPEN(8,FILE="TALAS.IN?)
OPEN(5,FILE="TALAS.QUT’)
READ (8,5)N,A,B,R,TMAX
5 FORMAT (I2,4F5.2)
N1=N+1
WRITE (5,10) (I,I=1,N1)
10  FORMAT (10X, 1HJ,<N+1>(4X,°UC ,I1,’,1D)")/)
H=B/FLOAT (N)
EL=R*H/A
M=TMAX/EL
T=0.
DO 15 X=1,2
U(K,1)=FF(T,B,3)
U(K,N1)=FF(T,B,4)
15  T=T+EL
X=0.
R2=Rx*R
DO 20 I=2,N
X=X+H
U(1,I)=FF(X,B, 1)
20 U(2,I)=EL*FF(X,B,2)+(1.-R)*U(1,I)

DO 25 I=2,N
26 U(2,1)=U(2,I1)+R2/2.*(U(1,I+1)+U(1,I-1))
J=0

30 WRITE(5,35)J, (U(1,1I),I=1,N1)
35 FORMAT (7X,1I5,<N1>F10.4)



IF(J.EQ.M)GO TO 50
J=J+1
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U(3,1)=FF(T,B,3)
U(3,N1)=FF(T,B,4)
DO 40 I=2,N
40 U(3,I)= (U(2 I+1)+U(2,1-1))/R2-U(1,I)-2.

1x(1./R2-1. )*U(2 I)

T=T+EL
DO 45 I=1,N1

U(1,I)=U(2,I)
45  U(2,1)=U(3,I)
GO TO 30
50 CLOSE(5)
CLOSE(5)
STOP

END

Note that the values of solution in three successive layers j —
in first, second, and thivd row of matrix U, vespectively. .

1G9

1,7,7 + 1, are stored

Fun( tions ]‘ g. @, ¥ are defined by function subloutme FF for I=1,2,3,4, respec-

6. f(z) = x(4—x),
U(t)=0,N=4,andr =1, subroutine FF anc (ouespoudmg output listing with re sult
have the foll()wmg, form:

tively.

In considered case for a = 2, b =4, Tyow =

FUNCTION FF(X,B,I)

GO T0(10,20,30 40) I
10  FF=X*(B- X)

.0000

RETURN
20  FF=0.
RETURN -
30 - FF=0.
RETURN
40  FF=0.
RETURN
END
JU,D) U@,
0 .0000 3.0000
1 .0000  2.0000
2. .0000 .0000
3 .0000  -2.0000
4 .0000  -3.0000
5 .0000  -2.0000
6 .0000 .0000
7 .0000  2.0000
8 .0000  3.0000
9 .0000  2.0000
10 .0000 .0000
11 .0000  -2.0000
12 -3,

0000

U(3,J3)

4.
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
- -3.
-4,

- 10.5. Packages for PDEs

Elliptic PDEs govern equilibrium 1)101)19111 which have no preferred paths of infor-
mation propagation. The domain of dependence and range of influence of every point is
the entire closed solution domain. Such problems are solved numerically by relaxation
methods. Finite difference methods, as typified by five-point method, yield a system
of finite difference equations, called the system equations, which have 't0 be solved by

0000

0000
0000

U(4,3)
3.0000
2.0000

.0000

-2.0000

-3.0000
~2.0000 -

.0000
2.0000
3.0000
2.0000

.0000

-2.0000 -

-3.0000

U5,
.0000
.0000
.0000

~.0000
.0000
.0000
.0000
.0000
.0000

g(z) =0, D(1) = 0,

.0000 -

.0000
.0000
.0000
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relaxation methods. The successive- over- _relaxation method (SOR)method is genelally’ '
method of choice. The multigrid method (Brandt, 1977) shows the best potential for
rapid convergence. Nonlinear PDEs yield nonlinear finite difference equations (FDE).
System of nonlinear FDEs can be very difficult to solve. The multigrid method can be
applied directly to nonlinear PDEs. Three-dimensional PDEs are approximated simply
by including the finite difference approximations of the spatial derivatives in the third
direction. The relaxation techniques used to solve two-dimensional problems gener-
ally can be used to solve three-dimensional problems, at the expense of a (on51d(‘1 able
increase of computational time.

Parabolic PDEs govern propagation probleins which have an 111ﬁn1te physical infor-
mation propagation speed. They are usually solved numerically by marching method.
Explicit finite difference methods, like FTCS (Forward-Time Centered-Space method, -
see [3], pp. 633-635) are conditionally stable and require relatively small step size in
the marching direction to satisty the stability criteria. Implicit methods, like BTCS
(Backward-Time Centered-Space method, see [3], pp. 635-637) are unconditionally sta-
ble. The marching step size 1s restricted by accuracy requirements, not stability require-
ments. For accurate solution of transient problems, the mcuchmg step-size for implicit
methods cannot be very much larger than the stable step size for explicit methods.
Comnsequently, explicit methods are generally preferred for obtaining accurate transient
solutions. Asymptotic steady state solutions can be obtained very efficiently by BTCS
method with a large marching step size. Nonlinear PDEs can be solved directly by
explicit methods. When solved by implicit methods, system of nonlinear FDEs must be
solved. Multidimensional problems can be solved dir ectly by explicit methods. When
solved by implicit methods, large banded systems of FDEs result.

Hyperbolic PDEs govern propagation problems, which have a finite physical infor-
mation propagation speed. They are solved numerically by marching method. Explicit
finite difference methods are conditionally stable and require a relatively small step size
in marching direction to satisfy the stability criteria. Implicit methods, as typified by
the BTCS method, are unconditionally stable. The marching step size 1s restricted by
accuracy requirements, not stability requirements. For accurate solution of transient
- problems, explicit methods are recommended. When steady state solutions are to be
obtained as the asymptotic solution in time of an appropriate unsteady pxopag(mon
problem, BTCS with a large step size is recommended.

Nonhn(‘al PDEs can be solved directly by explicit methods. When solved by im-
plicit methods, system of nonlinear FDEs must be solved. Multidimensional problems
can be solved directly by explicit methods. When solved by implicit methods, large
banded systems of FDEs result.

Numerous libraries and software packages are available for integrating the Laplace
and Poisson equations, diffusion type (i.e. parabolic) and couvection type (i.e. hy-
perbolic) PDEs. Many work stations and main frame computers have such libraries
attached to their operating systems.

Many commercial software packages contain routines for integrating Laplace and
Poisson equations. Due to the wide variety of elliptic, parabolic, and hyperbolic PDEs
governing physical problems, many PDE solvers (prograns) have been developed.

The book Numerical Re("lpes ([7]) contains a lot of algorithins for integrating
PDEs. For some of them is given progranuing code in Fortran (available also in C).
Survey of methods for solving different classes of PDEs accompanied with algoritlnns.
from which sowe are codded, is given in book Numerical Methods for Engineers

and Scientists ([3], Chapter 9, 10 and 11).
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LECTURES

LESSON XI
11. Integral Equations

11.1. Introduction

In spite the fact that integral equations are alinost never treated in numerical anal-
ysis textbooks, there is a large and growing literature on their munerical solution. One
reason for the sheer volume of this activity is that there are many different kinds of
equations, each with many different possible pitfalls. Often many different algorithms
have been proposed to deal with a single case. There is a close correspondence between
linear integral equations, which specify linear, integral relations among functions in aw
infinite-dimensional function space, and plain old linear equations, which specify analo-
gous relations among vectors in a finite-dimensional vector space. This correspondence
lies at the heart of most computational algorithms, as we will see in prograin realization
of their nmnerical solution.

The equation

b

(11.1.1) | | y(2) = fla)+ A / K (x, t)y(t) dt,

[$2

where f i K are known functions, y unknown function, and A numerical parameter; 1s
called a Fredholm integral equation of second kind. Fredholm equations involve definite
integrals with fixed upper and lower limits.

The function in two variables K is called kernel of integral equation (11.1.1). In
our considerations we will always suppose that kernel is defined and continuous on
D= {(z,t)]a <x<b a<t<Dh} ‘

If f(z) # 0, the equation (11.1.1) is called inhomogeneous, and in case when f(x) =
0, equation is homogenous.

Integral equation of form

b

flx) + A / Kz, t)yy(t)dt =0

1

is called Fredholm integral equation of first kind. This equation can be written 1n
analogous formi, as matrix equation ‘

which solution is
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“and K1 is matrix inverse. Both equation are solvable when function f and ‘fﬁ are
nonzero, respectively (the homogeneous case with f=0 is almost never useful), and
K(K) is invertible. : o ’
The analogous matrix form of Fredholm equation of second kind (11.1.1) is

L
(K- 51 j=-

yl\l

Again, if f or f is zero, then the equation is said to be homogeneous. If the kernel K (z, t)
is bounded, then, like in matrix form, the equation (11.1.1) has the property that its
homogeneous form hag solutions for at most a denumerably infinite set A = X, n =
1,2..., the eigenvalues. The corresponding solutions y,(x) are the eigenfunctions. The
eigenvalues are real if the kernel is symmetric. In the inhomogeneous case of nonzero f

or f, both equations are solvable except when A or 1/X is an eigenvalue - because the
integral operator (or matrix) is singular then. In integral equations this dichotomy is
called the Fredholm alternative. o ‘

Fredholm equations of the first kind are often extremely ill-conditioned. Applying -
the kernel to a function is generally a smoothing operation, so the solution, which
requires inverting the operator, will be extremely sensitive to small changes or errors in
the input. Smoothing often actually loses information, and there is no way to get it back
in an inverse operation. Specialized methods have been developed for such equations,
which are often called inverse problems. The idea is that method must augment the
information given with some prior knowledge of the nature of the solution. This prior
knowledge is then used, in some way, to restore lost information.

Volterra integral equations of first and second kind are of forms

flz) + A / Kz, t)y(t)dt =0

and

) =Fa) + ) [ Ko, ule)dt,

respectively. Volterra equations are a special case of Fredholm equations with K (x,1) =
0 for ¢ > z. Chopping off the unnecessary part of the integration, Volterra equations are
written in a form where the upper limit of integration is the independent variable ©:. The
analogous matrix form of Volterra equation of first kind (written out in components) is

k
Z I{A/ Yy = flm
J=1

wherefrom we see that Volterra equation corresponds to a matrix XK that is lower (left)
triangular. As we already know, such matrix equations are trivially soluble by forward
substitution. Techniques for solving Volterra equations are similarly straightforward.
When experimental measurement noise does not dominate, Volterra equations of the
first kind tend not to be ill-conditioned. The upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel. The matrix
analog of Volterra equation of the second kind is

(K-1)-7=f,

with K lower triangular matrix. The reason there is no A in these equations is that
inhomogeneous case (nouzero f) it can be absorbed into K or K, while in the homoge-
neous case (f = 0). there is a theorem that Volterra equations of the second kind with
bounded kernels have no eigenvalues with square-integrable eigenfunctions.
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We have cousidered only the case of linear integral equations. The integrand in
a nonlinear version of given equations of first kind (Fredholm and Volterra) would
be K (x,t,y(t)) instead of K(x,t)y(t), and a nonlinear versions of equations of second
kind woul(l have an integrand K (x,t,y(z),y(t)). Nonlinear Fredholm equations are
considerably miore (0111p11(’4fed than then linear counterparts. Fortunately, they do
not occur as frequently in practice. By contrast, solving nonlinear Volterra equations
usually involves only a slight modification of the algorithm for linear equations. Almost
all methods for solving integral equations numerically make use of quadrature rules,
frequently Gaussian quadratures.

11.2. Method of successive approximations

For solving Fredholm equation (11.1.1) it is often used method of successive ap-
proximations based on equality :

b

(11.2.1) yn(z) = f2) + A / K(z,t)y,-1(t)dt (n=1,2,...),

whereby is taken yo = f(2). Namely, if we define sequence of functions {7, } by using

To(z) = yo(z) = f(z), 7y( / Kz, )g,_,(t)dt (k=1,2...),
then (11.2.1) can be presented in the form
(11.2.2) (s Z)\ T.(z) (n=1,2,...).

One can show that sequence 1, converges to exact solution of equation (11.1.1) if fulfilled

1
the condition [A| < M=) where

M = max |K(z,t)]
x,t€fa,b] »

11.3. Application of quadrature formulas

In order to solve Fredholm equation (11.1.1) let’s take quadrature formula

b

(11.3.1')# S . /F( )dz = ZA I TJ)+R,,(F)

a g=1

where abscissas £1,..., T, are from [a, b] Aj; are weight coefficients not dependmg on

F, and R, (F) conespondmg remainder teun
1If we put in (11.1.1) successively z = ; (i=1,. .,m), we obtain

- b
g(rq):}‘( —}—A/KT?‘U()(]t (1=1,...,n),

a
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wherefrom by using quédrature formula (11.3.1) it follows ‘

(11.3.2) ylz) = f(x +)\ZA K(z;,x )y(rj)—l—R,,(F) (t=1,...,n),
—~ k=1 S '

where Fi(t) = K(z;, f) y(t) (i = -1,..;,1-7,). By discarding members R,,,‘(F.,;) (i =
L,...,n), based on (11.3.2) we get system of linear equations: ,

1! )
(11.3.3) yi = A AiKyp=fi (i=1,...,n),
. P
where we put y; = y(z;), fi = f(x), K;j = K(z;, ;). System (11.3.3) can also be
given in matrix form : S

1- MKy —AKy, ... —MA.Ki, Y1 f1

ALKy 1= XMAgKy ... =AA, Koy, Y2 | . fa
—/\Al I{'n.l ‘—/\AZK”Z s 1 - AA?),K'n,n‘ Un fn

By solving the obtdlned system of linear equahon% in y1,. .., Yn, the approximative
solution of equation (11.1.1) can be presented in the form

(11.3.4) | j(2) = f(a +AZA K (2, 4)

j=1

11.4. Program realization

Method explained in previous section will be realized by using generalized Simpson
quadrature formula, at which we have

h—a
h=- ”, n=2m+1, ,=a+{~-1Dh (i=1....n),
2m.
h 4h
AI_A7IH+1_‘ 5 A?“A4_ _AZm ‘_?7
2h
A3 =A;=...= A2m—1 = —g_

For solving system of linear cquations (11.3.3) we will use subroutines LRFAK and RSTS
The code of subroutines and description of subroutines parameters are given in Chapter
2. :
In subroutine FRED is formed system of equations (11.3.3). Parameters in subron-
tine parameter list are of following meaning:

X - vector of abscigsas of quadrature formula;

A - vector of weight cocfficients of quadrature formula;

FK - name of function subroutine with function f and kernel K;

PL - paramecter A:

C - matrix of system (11.3.3). stored as vector in colmunwise way (columm by
columu);

F - vector of free members in system of equation (11.3.3).

Subroutine code is of form:
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SUBROUTINE FRED(X,A,N,FK,PL,C,F)
DIMENSION X(1), A(1),C(1),F(1)
IND=-N
DO 15 J=1,N
IND=IND+N
DO 10 I=1,N
IJ=IND+I
C(1J)=-PL*A(J)*FK(X(I),X(J),2)
IF(I-J)10,5,10

5 C(1J)=1+C(1J)

10 CONTINUE

15 F(I)=FK(X(J),X(I),1)
RETURN
END

Function subroutine FK has a following parameters in the parameter list:

X and T - values of arguments x and ¢ respectively.

M - integer which governs calculation of function f (M=1) and kernel K (M=2) for
given values of arguments. Subroutine code is of form:

FUNCTION FK(X,T,M)
GO TO (10,20), M
10 FK=EXP (X)
' RETURN
20  FK=X*EXP (X*T)
RETURN
END

Main program is organized in such a way that at first in FRED is formed system of
equation, and then is matrix of system factorized by subroutine LRFAK, what enables
solving of system of equations by subroutine RSTS

Taking as an example equation

and M=1,2 (N=3,5), the corresponding results are obtained and presented below main
program code. Note that exact solution of given equation is y(z) = 1.

EXTERNAL FK ‘ -
DIMENSION X(10), A(10), C(100),B(10),IP(9)
OPEN(8,FILE="FRED.IN’)
OPEN(5,FILE=’"FRED.QUT’)
. READ(8,5)PL,DG,GG
5  FORMAT (3F5.0)
10 - READ(8,15,END=60) M
15 FORMAT (I2)
N=2%M+1
H=(GG- DG)/(2 *FLOAT(M))
X(1)=DG
' DO 20 I=2,N
.20 X(I)=X(I-1)+H
Q=H/3.
A(1)=Q
A(N)=Q
DO 25 I=1,M
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25 A(2xI)=4.%Q
' DO 30 I=2,M
30 A(2%I-1)=2.%Q : :
CALL FRED(X,A,N,FK,PL,C,B)
CALL LRFAK(C,N,IP,DET,KB)
) IF(KB) 35,40.35
35 WRITE(5,45) - : -
45  FORMAT(1HO, MATRICA SISTEMA SINGULARNA’//)
GO TO 60 , : :
40 CALL RSTS(C,N,IP,B)
WRITE(5,50) (B(I),I=1,N)
50  FORMAT(/5X, ’RESENJE’//(10F10.5))
GO TO 10
60 CLOSE(5)
CLOSE(8)
STOP
END

RESENJE ‘
1.00000 0.94328 0.79472
RESENJE
1.00000 =~ 1.00000 1.00000 1.00000 0.99998
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