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PREFACE

The third conference on Numerical Methods and Approximation Theory was held in Ni§
at the Faculty of Electronic Engineering, University of Ni§, August 18—21, 1987. It was
attended by 140 participants from 20 countries. There were 85 papers presented in three
sections.

Previous conferences were held in Ni§ (1984) and Novi Sad (1985) with 55 and 68
participants, respectively.

Two types of selected and refereed papers appear in this Proceedings: four leng survey
papers, based on 45—minute invited lectures, and 31 shorter research papers, presented at
the thirty— and fifteen—minute talks. The papers were submitted in the prescribed form
ready for copying. In both parts, Invited papers and Contributed papers, they are publi-
shed in the alphabetic order of the surnames of the first authors.

I wish to thank the members of the Organizing Committee and all the referees for their
voluntary work.

G. V. Milovanovié¢






CONTENTS

LIST OF AUTHORS IX
INVITED PAPERS

P.L. BUTZER and R.L. STENS
Linear prediction in terms of samples from the past; An overview f 1

L. GATTESCHI
Some new inequalities for the zeros of Laguerre polynomials 23

W. GAUTSCHI
Gauss-Kronrod quadrature - A survey 139

W. SCHEMPP
The holographic transform 167

CONTRIBUTED PAPERS

M. ALIC and R. MANGER
The moving grid method for BLN problem 193

A.H. ARAKELIAN and M.R. VOSKANIAN

The spline transform and its application in the problems of signals'
digital treatment j 105

M.D. ASIC and V.V. KOVACEVIC-VUICIC
An implementation of a semi-definite programming method to Chebyshev
approximation problems I 111

M. BIDKHAM and K.K. DEWAN
On the zeros of a polynomial 1121

Z. BOHTE :
A posteriori bounds for eigensystems of matrices 1129

G. CRISCUOLO and G. MASTROIANNI
On the uniform convergence of modified gaussian rules for the numerical
evaluation of derivatives of principal value integrals 1139

M.R. DA SILVA
Approximate expansions of differentiable functions in polynomial series 1149

B. DELLA VECCHIA
On monotonicity of some linear positive operators 1 165

F.-J. DELVOS .
Optimal periodic interpolation in the mean 1 179

S.K. DEY and C. DEY
Accurate explicit finite difference solution of the shock tube problem ! 191



FISCHER
wume aspects of automatic differentiation 199

P. GHELARDONI. G. GHERI and P. MARZULLI

On two sided approximation for some second order boundary value
problems 209

A. GUESSAB

On the approximate calculation of integrals on a polygon in R2 §225

D. HERCEG and LJ. CVETKOVIC
A combination of relaxation methods and method of averaging functional

corrections 241

J. HERZBERGER ‘
On the efficiency of iterative methods for bounding the inverse matrix 1251

LJ. M. KOCIC and B. DANKOVIC
Process identification using B-splines 1257

J. KOZAK and M. LOKAR
On calculating quadratic B-splines in two variables §265

J. KOZAK and M. LOKAR
On bounded tension interpolation 1277

P.A. MARKOWICH, C. SCHMEISER and S. SELBERHERR
Numerical methods in semiconductor device simulation §287

S. MIJALKOVIC and N. STOJADINOVIC
Solution of the diffusion equation in VLSI process modeling by a nonlinear
multigrid algorithm 1301

G.V. MILOVANOVIC
Construction of s-orthogonal polynomials and Turén quadrature formulae 1311

M.S. PETKOVIC and L.V. STEFANOVIC
On some parallel higher-order methods of Halley's type for finding multiple
polynomial zeros j 329

1
T.K. POGANY
Padé—approximation and band-limited processes 339

TH. M. RASSIAS
An application of variational calculus in mechanics and some properties of

the eigenvalues of the Laplacian §353

M.S. STANKOVIC, D.M. PETKOVIC and M.V. DJURIC

Closed form expressions for some series involving Bessel functions of the
first kind 1379

V.N. SAVIC

Asymptotic behaviour of the oscillation of the sequences of the linear
transformations of the Fourier series 1§391

K. SURLA
Uniformly convergent spline collocation method for a differential equation
with a small parametar (399

VI



DJ. TAKACI

The measure of approximation for the particular solution 1407
Z, UZELAC and K. SURLA

Exponentially fitted quadratic spline difference schemes 1| 413
R. VULANOVIC

On a numerical solution of a power layer problem
S. ZHOU

A problem on simultaneous approximation and a conjecture of Hasson 1433

1423






LIsT OF AUTHORS

ALIC, MLADEN
Dept. of Mathematics, Univ. of Zagreb, p.o.box 173, 41001 Zagreb

ASIC, MIROSLAV D.

Dept. of Mathematics, Faculty of Natural Sciences and Mathematic
Studentski Trg 16, 11000 Belgrade, YU

ARAKELIAN, ARAM H.
Academy of Sciences of Aramenian SSR, P.Sevaka 1, 375044Yerevan,

BIDKHAM , MOHAMHKAD
Dept. of Mathematics, Faculty of Natural Science and Technology,
mia Millia Islamia, 110025 New Delhi, INDIA

BOHTE, ZVOHNIMIR
Institute of Mathematics, Physics and Mechanics, Jadranska 19,
61000 Lijubljana, YU

BUTZER, PAUL L.
Lehrstuhl A fur Mathematik, R.W.T.H., Templergraben 55, 5100 Aac
FRG

CRISCUOLO, GIULIANA
Istituto per Applicazioni della Matematica - C.N.R., via P. Cas*
1lino 111, 80131 Napoli, ITALY

CVETKOVIC, LJILJANA
Institute of Mathematics, dr Ilije Djuri¢ic¢a 4, 21000 Novi Ssad,

DANKOVIC, BRATISLAV

Dept. of Automatics, Faculty of Electronic Engineering, p.o.box
18000 Ni&, YU

DA SILVA, MANUEL

Grupo de Matemdtica Aplicada, Faculdade de Ciéncias, Universida
do Porto, 4000 Porto, PORTUGAL

DELLA VECCHIA, BIANCAMARIA
Istituto per Applicazioni della Matematica - C.N.R., via P. Cas
1lino 111, 80131 Napoli, ITALY

DELVOS, FRANZ-JURGEN
Lehrstuhl filir Mathematik I, Univ. of Siegen, HOlderlin Str. 3,
5900 Siegen, FRG

DEWAN, KUM KUM
Dept. of Mathematics, Faculty of Natural Science and Technology
mia Millia Islamia, 110025 New Delhi, INDIA

DEY, CHARLIE
Charleston High School, Charleston, IL 61920, USA

X



, SUHRIT KUMMAR - ]
t. of Mathematics, Eastern Illinois Univ.,Charleston,IL 61920,USA

DJURIC, MIRJANA
Takultet zaStite na radu, Carnojevidéeva 10a, 18000 Nis, YU

FISCHER, HERBERT
Institut flir Angewandte Mathematik und Statistik, Technische Univer-
sitat Munchen, Arcisstrasse 21, 8000 Miunchen 2, FRG

GATTESCHI, LUIGI :
Dipartimento di Matematica dell'Univesitd,Via Carlo Alberto 10,10122
Torino, ITALY

GAUTSCHI, WALTER
Dept. of Computer Sci.,Purdue .Univ.,West Lafayette,IN 47907, USA

GHELARDONI, PAQOLO
Istituto di Matematiche Applicate "U. Dini", Facolta di Ingegneria,
Universitad di Pisa, Via Bonanno 25B, 56100 Pisa, ITALY

GHERI, GIOVANNI
Istituto di Matematiche Applicate "U, DINI", Facolta di Ingegneria,
Universita di Pisa, Via Bonanno 25B, 56100 Pisa, ITALY

GUESSAB, ALLAL
Département de Mathématiques,Ave. de 1l'Université,64000 Pau, FRANCE

HERCEG, DRAGOSLAV
Institute of Mathematics, dr Ilije Djuric¢ida 4, 21000 Novi Sad, YU

HERZBERGER, JURGEN
Fachbereich Mathematik, Universitat Oldenburg, 2900 Oldenburg, FRG

KOCIC, LJUBISA
Dept. of Mathematics, Faculty of Elactronic Engineering, p.o.box 7:
18000 Ni&, YU

KOVACEVIC-VUJCIC, VERA V.
Faculty of Organizational Sciences, Jove Iliéa 154,11040 Belgrade,?

KOZAK, JERNEJ
Dept. of Mathematics and Mechanics, E.X. University of Ljubljana,Je
ranska 19, 61111 Ljubljana, YU

LOKAR, MATIJA
Dept. of Mathematics and Mechanics, E.K. University of Ljubljana,Je¢
ranska 19, 61111 Ljubljana, YU

MANGER, ROBERT
Rade Kondar Institute, BasStijanova bb, 41000 Zagreb, YU

MARKOWICH, P. A.
Institut flir Angewandte und Numerische Mathematik, Wiedner Hauptstr
8~10/115, 1040 Wien, AUSTRIA

MARZULLI, PIETRO
Istituto di Matematiche Applicate "U., DINI", Facoltd di Ingegneria,
Universita di Pisa, Via Bonanno 25B, 56100 Pisa, ITALY



MASTROIANNI, GIUSEPPE
Universitd degli Studi della Basilicata, Via N.Sauro, Potenza, ITA

MIJALEKGVIC, SLOBODAN
Dept. of Microelectronics, Faculty of Electronic Engineering, p.o
pox 73, 18000 Ni¥, YU

MILOVANOVIC, GRADIMIR
Dept. of Mathematics, Faculty of Electronic Engineering, p.o.box
18000 Nis, YU

PETKOVIC, DEJAN
Fakultet zaStite na radu, Carnojevidéeva 10a, 18000 Nij, YU

PETKOVIC, MIODRAG
Dept. of Mathematics, Faculty of Electronic Engineering, p.o.box
18000 Ni%, YU

POGANY, TIBOR
Tehnié¢ki fakultet Bor, JNA 12, 19210 Bor, YU

RASSIAS, THEMISTOCLES
Dept. of Mathematics, Univ. of LaVerne, p.o.box 51105, Kifissia,
Athens, GRECE 145 10

SAVIC, VLADIMIR
PMF Kragujevac, R. Domanovida 12, 34000 Kragujevac, YU

SCHEMERP, WALTER
Lehrstuhl fur Mathematik 1, Univ. of Siegen, 5900 Siegen, FRG

SCHMEISER, CHRISTIAN
Institut flir Angewandte und Numerische Mathematik, Wiedner Haupt
8-~10/115, 1040 Wien, AUSTRIA

SELBERHERR, S.
Institut flir allgemeine Elektrotechnik, TU Wien, AUSTRIA

STANKOVIC, MIOMIR
Fakultet zaStite na radu, Carnojevideva 10a, 18000 Ni§, YU

STEFANOVIC, LIDIJA )
Dept. of Mathematics, Faculty of Electronic Engineering, p.o.bo:
18000 Ni%, YU ‘ '

STENS, R. L.
Lehrs. A fur Mathematik, R.W.T.H.,Templergraben 55, 5100 Aachen

STOJADINOVIC, NINOSLAV
Dept. of Microelectronics, Faculty of Electronic Engineering, p
box 73, 18000 Nis, YU

SURLA, KATARINA
Institute of Mathematics, dr Ilije Djuric¢icda 4, 21000 Novi sad,

TAKACI, DJURDJICA
Institute of Mathematics, dr Ilije Djuricdida 4, 21000 Novi Sad,

X1



resent instant. Therefore the question: is it possible to re-
:onstruct a bandlimited function (to begin with) from its
samples taken exclusively from the past, i.e., taking into

iccount only those f(t) for which t <t.?

One answer to this question is the following: can one find

:oefficients 2yn €IR such that f can be reconstructed from its
samples taken at the points to-T/W, tO—ZT/W, to—3T/W, ... from

-he past, in terms of

) kT
a f(to —V\T)

1.2) f(to) = lim :

noe k kn

i ~13

‘or each to €IR? This would determine the value of £ at the
resent time instance t =to. It is the question of predicting

" from its past samples.

There are two problems in this respect: (i) the role of
T, naturally T € (0,1] - the closer T is to 1 the wider apart
can the sampling points to—kT/W, k €EIN be - and whether for each
T € (0,1} the existence of the predictor coefficients is guar-
anteed, (ii) the evaluation of these coefficients, i.e., the
construction of prediction formulae (1.2) in dependence on T -
the closer T is to 1 the nearer is the sampling rate to that of

the classical sampling theorem, namely the Nyquist rate 1/W.

Regarding the first problem, by applying a general result
due to G. Szegd (1920) or a more general one due to N. Levinson
(1940) one can show that for each T with O <T <1 there exist
predictor coefficients apn such that (1.2) holds uniformly in

tOEIR.

Regarding the second, Wainstein and Zubakow [25] (1962)

showed that (1.2) is valid with a, :=(-1)"""(?) providea
0<T<1/3; J.L. Brown Jr. [2] (1972) extended T to T <1/2 for

the coefficient choice ayn :=(—1)k+1(i)(cos nT)k. This result

was extended even further by W. Splettstoesser [22,23] (1981/82)

who showed that (1.2) holds uniformly in tOEIR for

B 1= DO TR gien 0 <1 <a7T are cos (-871)~0.5399.

Thus a sampling rate (even) larger than half the Nygquist rate



.s possible in predicting bandlimited functions with coeffi-

cients akn that are even independent of T. Generally, the closer
T is to 1, the more complicated will the coefficients 2y (de-

pendent on T) be.

The coefficients that are best, in the sense that the
mean square error is minimized, are the solutions of the lin-

ear system

A

(1.3) a, , si(r(k-3)TW) = si(njTW) (1 <3 <n)

fe~13

k=1

where si(x) =sin x/X. Since these are difficult to determine, and
because they depend on n, the foregoing sub-optimal coefficients

are more efficient.

Now it is known that a function being bandlimited is a
rather restrictive condition. Such a function cannot be simul-
taneously duration limited, and it is the latter class of Ifunc-
tions which actually occurs in practice. Further, beginning
with bandlimited functions f €L2(IR),then f can be extended to
the complex plane as an entire function (so one that is ex-
tremely smooth) that is of exponential type 7W. The next ques-
tion therefore is whether prediction can be carried out for
functions that are not necessarily bandlimited. In this respect

W. Splettstoesser [24] showed that if the (r+1)th derivative

f(r+1) €EC(IR) ( =space of all uniformly continuous and bounded
functions on IR), then
n
sap [£(8) = ] =1 (cos wm)* £(x —%)I
(1.4) tE€IR k=1
= 0[(1 +cos 7T)" wrl oy (sin =T)"VW] (n,W +w)

for each O <T <1/2. Since both terms on the right of (1.4)
contain a factor tending to zero and one to infinity for

n,Ww +«=, one has to choose n in dependence on W (or vice versa)
such that both terms still tend to zero. It turns out that all
the sample instants accumulate at t for n,W +«, The details are

to be found in [24].



The disadvantages in the prediction procedure described
so far are (i) the sampliag rates are just T/W with O <T << 1
instead of the Nyquist rate 1/W; (ii) the sample points in (1.2)
depend on t, thus all the sample values have to be computed or
measured anew when the series . are to be evaluated. for another t;
(iii) in the case of prediction of not necessarily pandlimited
functions generally the number of samples plus the distance be-
tween the sample points has to be regulated appropriately (re-
call (1.4)); (iv) to improve the approximation of f by the se-
ries in (1.2) or (1.4) the number n of samples has to be in-
creased; (v) the sampling series (1.2) does not have the (clas-
sical) convolution structure for sums as given by the Shannon

series (1.1).

To avoid these disadvantages, let us try to reconstruct

functions from its past samples by the convolution series

© _ T k _k
(1.5) (Spf) (£) == kz{_ £() @it -5))

o

for W +=, where the kernel ¢ will be assumed to be continuous
and have compact support contained in [To’T1] for some

0 <TO <Ty. This means that ¢@(Wt~k)#0 only for those k €Z for
which k/W € (t —T1/w,t —TO/W), so that only a finite number of
samples taken from the past will be needed to evaluate (1.5),
and this number will be fixed for all £, W and t. Increasing

W in the series (1.5) will only mean that the distance between
the sample points will decrease. Further, f need not neces-
sarily be bandlimited. Of course, the coefficients ¢(Wt -k)
depend on t, but the evaluation of ¢ should be simpler than

that of the signal £ to be sought.

It will be seen that our results enable one to predict

or extrapolate the value of a signal even arbitrarily far ahead

of the sample values,

The aim of this paper is to present a well-motivated over-
view of recent results obtained at Aachen in the matter. Most

of the details, including the proofs of results stated, are to be



found in [ 7]. See also Chapter 5 of [ 6] which deals with
prediction theory. Regarding the specific examples of Sections
2.3 and 4, they are treated here for the first time in actual

detail.

For a continuation of the above approach of Splett-

stoesser in the matter, see especially [231, [181, [19].

Connections of the present study with the basic work of
A.N. Kolmogorov [12] (1941), N. Wiener [26] (1949) as well as
of M.G. Krein [14] (1954) in the subject will be sketched in

Section 6.

Concerning possible applications, one of the main ones
is to speech processing, see e.g. [17], including differen-
tial pulse-code modulation [10]. Further applications are to
economic prediction and forecasting, see e.g. [1], to geo-

physics and medicine, see e.g. [16].

2. PREDICTION OF DETERMINISTIC SIGNALS

2.1, GENERAL RESULTS

Let us now study sampling series of the form(S&f)(t),
defined in (1.5), where the si -function has been replaced

IR) ( =those f €C(IR) that have compact

©
W
operators from C(IR) into itself, with the operator norm

by a kernel ¢ ECOA

support). Firstly, S f defiﬁes'a family of bounded, linear

m_ () (w>0),

P =
”SW”[C,C] = m,

mr(@) denoting the absolute (sum) moment of ¢ of order

r EINO, namely

S

m_(p) := sup ] [e=k| ¥ o (t-k) |
tEIR k==-eo

Denote the Fourier transform of g EL1(IR) by



ghv) =(1//21)f g(t) e TVtat (v €IR).
Proposition 1. Let ¢ EC%AIR). The following three assertions
are equivalent: )
(1) lim (SP£) (t) = £(t)

W w

for each f €C(IR) and each t €1R;

o

(ii) J @(t-k) =1 ' (each t €IR);

1/V2n , k =0
(ii1) o™ (2kw) =
o , k€rm\ {0}

Proposition 2. Let ¢ ECCéIR), r €N, If, in addition to the

properties (i), (ii) or (iii) of Proposition 1, there holds

(1i)* I (t-k)3 o(t-k) = 0 (§ =1,2,...,0-1; t €IR)
k==

or,equivalently,
(1ingx "3 km = o (§=1,2,...,0-1; K€ %)

(for r=1 only one condition of Prop. 1 need hold), then there
hold the estimates

m_ ()
)y T (g €CT(IR); W >0)

® r
(2.1) HSWg —gHC < -7 g c

llS%f ~fl, < Ko (W ;£;C(IR)) (f EC(IR); W >0),

the constant K depending only on ¢. In particular, if
£ €Lip(a;C(IR)), O <a <1, then

-r+1-a

A - = oo
HSwf fHC = 0w Y oo W

Above, mr(é;f;C(IR)) stands for the rth modulus of con-
tinuity of £ €C(IR), and Lip(o;C(IR)) for the Lipschitz

class of order a. Regarding the foregoing propositions, see



e.g. Ries and Stens {21], [ 5]. Conditions of the type (ii)*,
(iii)* were already used in connection with finite element

approximation in Fix and Strang [9].

2.2, CONSTRUCTION OF KERNELS

Fejér's kernel F, defined by

5

) 2
._ 1 ]sin t/2 A _ 1
F(t) =eT [-W*—] , Fl(v) = >

satisfies property (ii)* for r=1. Likewise does de la Vallée
Poussin's kernel. However, these kernels have unbounded sup-
port. The best examples of ¢ having compact support are the
so-called central B-splines of order r >2, defined by

B 1 T k ,r r r-1
Mo (8) = T Z_ -k)

where tf =max(tr,o), their Fourier transforms being simply

_ sin v/2,r
Mr V) = ‘/5_; (—-‘V—/‘T——) (V EIR).

The Mr are piecewise polynomials of degree r-1 having support
[-xr/2,r/2]. It is compact, but not contained in (0,«), as re-

quired.

Let us now construct Kernels without the latter defi-
ciency for which Proposition 2 holds by taking appropriate

linear combinations of translations of the Mr'

Proposition 3. For €s €IR and r €W, ¥ =2, let a

14

Tha
p=0,1,...,r-1 be the unique solutions of the linear system
st ] (5)
(2.2) pzo a y (Cilegtu))” = (1//2x u2) M0 (0)  (5=0,1,...,r-1)

where i =v-1. Then



e () = ] a M (t-e_-u) (t €1IR)
u=0
is a polynomial spline of order r satisfying conditions (ii)
and (ii)*, having support contained in [TO,T1] with
To =€, -r/2, T1 =€, +3r/2 -1.

Since Mg is even, the right side of (2.2) vanishes for

j odd. So the solutions aur are all real.

Corollary. In regard to @r(t) there holds for

£ enip(aic(R)), O <a <1,
0] _ _
(2.3) Is, £ -fl, = 0w T

For a proof of Proposition 3 see Butzer and Stens [7].
In order to solve equation (2.2), one needs to know the de-
rivatives (T/Mg)(J)(O), at least for small, values of r. This

can be achieved with the aid of the expansion

2 .\r . 2k
(/2T } b, v (|v] <2m),
sin v/2 k=0 kr
. 2k
b e (e ZeEEIE T )1 x T(2k41,1)
kx -~ r! 120 r+l1 (2k-k) ! (2k+1) 1’

where T(k,1l) are the central factorial numbers of the second

kind.

These derivatives can be taken from the following table

which could readily be enlarged.

Table 1: (1//2?»4;)(3)(0): r=12,3,4,5; j=0,1,2,3,4.

NJ| o 1 2 3 4
2 T o - - -
3 1 o 1/4 - -
4 1 o 1/3 o -
5 1 o 5/12 0 9/16




2.3, SPECIFIC EXAMPLES

1. Take r=2, e_=2, so that €6 >r/2 and [To’T1] =[1,4]. The

system (2.2) then reads, noting Table 1, 459 +a12 =1,

aOZ(_Zl) +a12(~31) =0 for which agy =3, Ao =-2. Hence

(t-2) - 2M_ (t-3) ;

wz(t) = 3M 5

2
the associated sampling series (1.5) involves only those
samples at k €Z for which k/W € (t -4/W,t -1/W). For example,
if t would lie in the interval (1/W,2/W), the series consists
of three terms only, namely for k =0,-1,-2 for which

k/W <t -1/W <t. If £' €Lip(a;C(IR)), then by (2.3),

() = ) £4
k=00

) o, (wemxdl, = 0w %),

enabling one to predict at least 1/W units ahead with error
0w 'T%). If £" €C(IR) with [£"l, <M, so that a=1, then, ac-
cording to (2.1), the large-0 constant in (2.3) is Mxnz(w2)/2!,
which is bounded by 15M (a fact which cannot bhe derived theo-

retically but by employing a computer).

If one would take r=2 as above, but €5 >r/2 arbitrary,

then [T_,T,] =[eo—1,eo+2], and
wz (t) = (1+Ed) Mz(t—eo) - EOMZ(t—EO—1)

Here the samples are taken'at k €z:

k/W e(t—(ao+2)/w,t—(eo—1)/w). In particular, if so=8 and

t € (2/W,3/W), the series consists of three terms at k =-5,-6,
-7, for which k/W <t-7/W <t. Whereas this is at least 7/W
units to the left of t, the prediction instant, it was only
1/W units in the case of the kernel @, . Thus the kernel w2,€
allows one to predict much. further ahead with the same number

of sampled values (the constant m will, however, be

(0 )
2'72,e4
much larger than 2:15). In fact, this procedure even enables

one to predict or extrapolate a signal arbitrarily far ahead.



2. Now take r=3, eO=2, so that [To’T1] =[1/z, 11/2]. The

system (2.2) now reads

agy t 333 tazy =1
-21 a5z ~ Bia13 - 41 a3 = 0
4 agy *+ 9313 + 16 a,4 = 1/4
which has as solutions a3 =47/8,'a13 =-62/8, a5 =23/8.
Whence
_1 . _ - -
(2.4) o5 (t) = g [47M, (£=2) 62M, (£=3) + 23M, (t 4)1 ,

the sampling series now consisting of those k €Z for which
k/WeE(t-11/2W,t -1/2W), thus of five terms for which
kK/W <t ~1/2W < t.

In particular, if I£'"ll, <M, then I —S;3fllc <M-54W 3,
noting that m3(w3)/3! <54.

3. Let us finally take r=4, e _=3, so that [To’TT] =[1,8].
By solving a system of four equations in four unknowns one

can readily show that

_ 1 - _ _ _
w4(t) =z [115M4(t 3) 256M4(t 4) + 203M4(t 5)
- 56M4(t—6)]
This time the series consists of seven terms (at most), namely

those k €% for which t -10/W <k/W <t -1/W <t. In particular,
if Hf(4)HC < M, then the corresponding rate of approximation
can, in comparison with Example 1, be improved to 970-M W_4.
By enlarging the eo( >4) one could again -achieve that, in-
stead of being able to predict just (at least) 1/W units
ahead (from k/W ( <t ~-1/W) to t), one could even predict

(50—2)/W units ahead. Then of course the kernel ¢, (t) would

4
take on a different form.

In case r=5, e0=3 so that [TO,T1] =[4/3,19/2]1, then



1

<o5(t) = 7753 {36767M

(t-3) - 108188M_ (t-4)

5 5

+ 127914M5(t-5) + 14927M5(t—6)} .

Here seven samples will be needed, the order of approximation

(5))

being O(W—S) provided | £ C”<M. The constant in the order

ig however large; in fact ms(ws)/S! <3400.

More generally, if f(r) €EC(IR) with Hf(r)ﬂc <M, it is
possible to constructa kernel wr(t) such that the number of
samples needed in the convolution sum is just 2r-1 and the
associated order is O(Wnr). However, the constant will be
correspondingly large. By this method one cannot increase the
approximation order by taking more samples without increasing

the order r of wr(t).

Observe that it is an open question whether there exists

ur’ W=0,1,...,x=1 of (2.2).

So far the construction can be used in actual practice only

a closed form of the solutions a

for smaller values of r. However, as already the simplest
Example 1 shows, even the case r=2 gives the pretty good rate

15 MW 2, W +w, if £, <.

3. TIME-JITTER AND AMPLITUDE ERRORS

It is especially easy to treat time-jitter errors in
this frame. These arise when the sample instants are not
correctly met but might differ from the exact k/W by Gk, sO
that the sampled values are now f (k/W +6k). Here one is in-
terested in estimating the error occurring when £(t) is ap-
proximated by the series ledf(t) :=2mk=_wf(% +6k)®(Wt—k).

This error can be split up as

|£(t) ~s?

w, s E O] < [£(e) ~sPEe) | + (3 6) (),

_ s k k _
(Ief)(e) =] 1 LR ~fG+e)] elie-k |

being the so-called total time-jitter error. It can be esti-



mated in terms of the modulus of continuity, assuming
1sk| <¢§, k €%, by

o

| (7,£) ()] < {supll £(-) —f (480, {sup Vo Je(e-k) |}
kez tEIRk=-x
< mo(w)'m1(6;f;C(IR)) (t €TIR) .

As a consequence we have

Proposition 4. There hold

a) [EXED) —k:Z_m flm e )om-k)l,
< -g¥ . L f €C(IR)) .
Il £ swfllC + mo(q)) mT(s,f,c(IR)) (f (IR))
b) If f €Lip(a;C(IR)), O <a <1, then, provided § <1/W, W=1,

the order in part a) is given by O(W_a).

Note that this order cannot be improved even if f pos-
sesses derivatives of arbitrary order. On the other hand, if

W_1 <§, then the order in part a) is 0(8%y.

Thus the prediction series S&f(t) exemplifies stability
with respect to the sample points, a small error in each of
the sample points produces a correspondingly small error in

the prediction series.

There is also the amplitude error (Aef)(t), arising if
the exact sample values f(k/W) are not at one's disposal but
only falsified values f(k/W), differing by €k :=f(k/W)-T (k/W)
with | €k|
due to rounding-off, guantization or noise. The total ampli-

<e, k €%Z, for some € >0. This falsification may be
tude error

. (] _ %
| (A £) (£} [ == [ (S5F) (t) - (s

so that the error occurringwhen f(t) is approximated by

Sﬁf(t) can be estimated by



proposition 5. There holad

a) T T el -l

< S‘Lf -f +e m [0}
k=—c ” \ ”C O( )

by If f €Lip(a3C(IR)), O <o <1, then the .order. in part a) is
oW ¢) provided e <w"1, W>1.

Thus the prediction series also illustrates stability
with respect to the function values, a uniformly small change
in the function values at all of the sample points produces

a correspondingly small change in the prediction series.

li, PREDICTION OF DERIVATIVES £ () By %AMPLES OF £

(s)

Let us now consider the prediction of derivatives £
of a signal £ by samples of f only, in terms of derivatives

of Sv(sf, i.e., of

©, (s) _,d.s .0 _ .5 v ky . (s) -
(8) TIE(E) = (3p) (Spf) () =W kj.x £ o~ (We=k)
(s EINO)
Proposition 6. Let ¢ ECéi)(IR) satisfy (ii), (ii)* for some

r >s+1 with s €IN_, r €IN. Then(S%)(S% defines a family of
bounded, linear operators mapping C(S)(IR) into C(IR), with
norm
(s)
¢ (s) me (@)
sy e ts) o — (W >0)
Further,
(s)
oy (s)  _ (s)y, M) ey rs
H(Sw) g -g ”C 1 g ”C
(g ecT) (my; w0,



1 e _e ) c ke Ve o (my)

W C r—s
(£ ec'®) (mR); wso0).
In particular, one has for £ EC(S)(IR),
, a.s _,4,s
Lim (G5)° (5,5) (8) = (D) £ (%)
W
uniformly in t €1R; if £ 571 €Lip(a;C(IR)), then
s Sk o e () —o ™Yy e,

These results would enable one to.predict the speed or

acceleration of flying objects.

Let us consider an example. For this purpose we begin
with example 2 of Section 2.3 where r=3, 50:2,
[TO’T1] =[1/2,51/2]1 and w3(t) is given by (2.4). Let us
apply Proposition 6 to w3(t) in the case s=1. Noting that

MIGE) = M__ (€ +1/2) - M__ (£ -1/2) (t €IR),

1 .
—§[47 Mz(t— 3/2) - 1O9M2(t -5/2) +85 Mz(t— 7/2)

£
w-
o+

It

- 23M2(t -9/2) 1.
Here wé €GdIR) . In particular, if f(2) €Lip(a;C(IR)),

O <o <1, then

[+

tw f(%)wé(Wt—k) - £ (e, = 0w 1Y)

This result enables one to predict the derivative f£'(t) in

terms of a series which involves just five samples of f

which all lie to the left of t -1/2W <t. If Hf(3)HC <M, then

the large -0 constant is given by M m3(m§)/3!.



5, PREDICTION OF RANDOM SIGNALS

Signal functions are often of random character, random
signals play an important role in signal processing and sam-
pling prediction. For this purpose one often uses stochastic
processes which are stationary in the weak sense as a model.
Given a probability space (Q,A,P), a real-valued stochastic
(random) process, namely an A-measurable function
X =X(t) =X(t,w) of w €9 for each t €IR, is said to be weak

sense stationary (w.s.s.), if its autocorrelation function
Ry (£, t+1) 1= [ X(t,w)X(t+1,0)dP (u)
Q

is independent of t €IR, i.e., Rx(t,t+T) =RX(T). Here X is
assumed to belong to L2(Q), i.e., the norm
1/2

(5.1) IX(t, ), == {flx(t,m)|2d9<m)} := (B[ |X(t) |
Q

2]}1/2
is finite for all t €IR. Note that RX(T) is even in T,
HRXHC =RX(O), and the norm (5.1) is independent of t,

. 1/2
equalling HRXHC .

For the prediction of such a process X €L2(Q) let us

consider the prediction series

(59%) (t,u) := kzzm X(%,m)w(Wt—k) (t €R).

It defines a family of bounded, linear operators from LZ(Q)

into itself, with

. 1/2

© _ k-u
ISeX (e, i, = {k ué_w Ry (S577) @ (We-k) @ (We-u) )
< Ry (0) /2 m_ (@) = m_ (@)X,

Proposition 7. Let ¢ €C (IR) satisfy (ii), (ii)* with r-1
oo
replaced by 2(r-1) for some r €IN. If X is a w.s.s. process

with x‘T) €12(q), then



(m (@) +3)m, (9)Y1/2
(Bl |sx -x| 2112 <<{ 0 2x }

2r!

(r);2,,1/2
(B X, 1} (t €IR; W >0).
r
W
There exists a constant K >0 such that for any w.s.s. pro-
cess X ELZ(Q), continuous in the mean,

/2 < Kwr(W_1;X;L2(Q)) (t €ETR; W >0).

2

{E[lswx x|“1}

Regarding proofs in the case of random processes, one
reduces the matter to the deterministic case, namely from
assertions dealing with the random process X to those con-

cerned with the deterministic function RX’ by the following

basic connections:

i) the rth derivative (in mean) X(r) exists at to €IR if

(2r) .
RX €C (IR) ;
i1) w (8:%:L5 () = fu,_(8:R;0(1R)) /2
ii1) B89 -x|2] =R.(0) - 2 T Ru(X-t).@(Wt-k) +
w X ot Txlw
+ 51? N RX(—%J—)Lp(Wt-k)' @ (Wt-u)
k,p=-w
< (m_(©)+3) sup [(85t R,) (t) - (1 _R,) (t)
[¢} WETR l W uX Tutx

where (Tuf)(t) =f(t-u).

The following table gives the best possible order of
approximation according to Proposition 7 for the kernels P,

of Section 2.3.



Table 2

Kernels wz w3 w4 !

Orders 0(w

6. THE APPROACHES OF WIENER AND KREIN IN COMPARISON

Let us finélly roughly compare the present approach with

the work of Wiener [26] and M.G. Krein [14] (1954) in the
matter. For this purpose let us express our convolution sum
(1.5), thinking of the commutativity of convolution products,

as

£(t -£y0(x)

(6-1) I f@emit-£)= X

"
Although the two sums are generally not equal (except under
special conditions, see [ 6]), it is nevertheless also pos-
sible to set up our approach to prediction for the right
hand one (using parallel arguments, see [ 7]). If ¢ has com-
pact support in [TO’T1]’ then the right sum only runs over
all k with TO <k <T1 so that one can see from it right off
where the prediction points lie, namely to the left of t at

t -k/W, ..., t -1/W.

Now Wiener's aim was to predict the future at time t
from the whole past f(u): -« <u <t—eo, €6 >0 prescribed, in
a non-discrete setting (where our sum is replaced by an in-
tegral). In fact, his aim was to minimize as a function of
the kernel ¢ the mean-square error
T
. 1 2
lim == [ |£(t) - [ f£(t-e_-u)e(u)du|at
2T o}

T-ro0 -T

O— 8

He showed that his problem amounts to solving the integral

equation



R(t-¢ -u)é(u)du ‘ (t=2e ),

(6.2) R(t) = o . o

O— 8

where R is the auto-correlation function,

T
R(t) := lim E% [ f£(t+u)f(u)du
Teo -T

Now it is to be emphasized that the equation (6.2) only holds
for t >eo, and not for all t €IR. So it is not solvable by
routine Fourier methods. The so-called Wiener~Hopf technique
(of 1931) has to be employed. In this respect Wiener notes
[26; p.65] that there are "limitations and precautions which
must be observed" in solving (6.2)'and illustrated his meth-
od by several examples. In fact, Dym and McKean add [8 ,
p.92] "it is not clear how to proceed much further in the
present direction save by examples". In any case, for a for-
mal derivation as well as exellent coverage of the matter

see the treatment in [ 8] pp. ix, 2-5, 82-96. For good in-
formation concerning effective computation see Lee [15],

pp. 354-439, Kailath [11]1, also Noble [20]. For further lit-
erature see the extensive reference lists in the commentaries
on the work of Wiener by P. Masani, H. Salehi, T. Kailath,
P.S. Muhly and G. Kallianpur in [27].

Now the problem treated in this paper is actually that
of predicting the future from only a part f(u) :-T <u <t—eo
of the past, in the case of discrete u. Especially in the
non-discrete case was this problem solved by Krein [14]; it
required even much heavier machinery than that of the
(Kolmogorov)-Wiener problem, namely a so-called "method of
strings" in the context of operator theory, complex function
theory and Hardy functions, wave and spectral functions,all
combined with the theory of spaces of entire functions (in
the sense of de Branges {3]). This theory was carried out in
expert fashion by Dym-McKean [8] pp. 146-278, applied to the
actual prediction problem on pp. 279-91; there is an over-—
view on pp. 5-9. However, as these authors write (p. X): "it
is hoped that electrical engineers and other people dealing

with the practical aspects of prediction will find in it



[our volume] something to interest them too, though it has to
pe confessed that the computations to which the theory leads
are usually difficult to perform and that their statistical
content is often obscure; in fact, much remains to be done to

clarify the statistical content of the whole subject."

The methods needed to prove the results of this over-
view, presented in [7] are, in comparison, elementary indeed.
Thus Proposition 1 is based upon a simple application of the
Poisson summation formula of Fourier analysis, Proposition 2
upon Taylor's formula and elementary approximation theory,
while Proposition 3 uses elementary results on B-splines (to-
gether with some new results on central factorial numbers).
Proposition 7 shows that the treatment of random prediction
theory can essentially be reduced to that of the determi-

nistic situation so that no separate approach is necessary.

Most of the results discussed in this overview érose
from guestions posed by electrical and communication engi-
neers in the course of some seven years of cooperative work.
It is to be expected that they can also follow the proofs.
The fact that the matter is indeed easy to apply has been

demonstrated with the various examples.
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SOME NEW INEQUALITIES FOR THE ZEROS OF LAGUERRE POLYNOMIALS*
LUIGI GATTESCHI

ABSTRACT: It is shown that certain approximations for the zeros Ar(flz of the
Laguerre polynomials Lfl“) (x), o > -1, are upper or lower bounds. These
bounds involve the zeros of the Bessel function J, (x) or the zeros of the
Airy function Al (x) and are obtained by using the Sturm comparison theorem.

1. INTRODUCTION

In a recent paper [3] we have obtained some inequalities for the zeros of
Jacobi polynomials. In this paper we will apply the same technique to derive
bounds for the zeros Xéf‘ﬁ, k=1, 2, ..., n, of the Laguerre polynomials
L (x), a > -1.

To this purpose we need the well-known Sturm comparison theorem in the
following form given by Szegd [5, p. 19].

THEOREM 1.1 (Sturm's comparison theorem). Let f(x) and F(x) be functions
continuous in x, < x < X, with f(x) < F(x);Let the functions y(x) and

Y(x), both not identically zero, satisfy the differential equations
(1.1) y”+f(x) y=0 ,Y" +F(x)Y=0,

respectively. Let x"andx”, x’ < x”, be two consecutive zeros of y(x). Then
the function Y(x) has at least one zero in the interval x’ < x < x” provided
f(x) # F(x) in [x7, x”"].

The statement also holds for x’ = x, [y (x,+0) = 0] if the additional con-

dition

* This work was supported by the Consiglio Nazionale delle Ricerche of Italy and by the
Ministero della Pubblica Istruzione of Italy.
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(1.2)  lm [y'(x) Y(x) -y(x) Y'(x)] =0

X X0

is satisfied (similarly for x” =X,).

The differential equations that we shall use as comparison equations are
the ones used by Erdélyi [2] in deriving uniform asymptotic approximations
for the Laguerre polynomials. Such equations can also be obtained by apply-
ing Olver's theory [4] to the asymptotic study of the Laguerre differential
equation near the singularity x = 0 and near the turning point x = 4n + 20 + 2.

Let us recall the following ineq{lalities and asymptotic results.

THEOREM 1.2 (see Szegd [5], p. 127). Let o > 1 and et MY k=1, 2,

.., n, be the zeros of L\*) (x) in increasing order. Then

22
Ja,k

(1.3)  AlY > ,V=4n+20+2,

fork =1, 2, ..., n and where j,_, 15 the k-th positive zero of the Bessel
functions JH(X). Furthermore, we have for a fixed k, as n = w,

22
(1.4)  A@) = Jex o p2)
! v
Tricomi [7] gave an improvement of (1.4), but its validity remains still
restricted to the case of a fixed k.
THEOREM 1.3 (see Szegd [5], p. 131). Let a,, k=1, 2, ..., be the geros in

decreasing order 0 > a, > a, ..., of the Airy function Ai (x).

If lal > 1/4, a > -1, then
(1.5) AY < v+ va T,

fork=1,2, ..., n and where v has the same meaning as in (1.3). Further-

more, we have for fixed n-k, as n = «,
(1.6) A = [vi2 4295y (a +6)T,

where 1lim g = 0.
N

Here the notations for the Airy function Ai(x) and for the zeros a, are

different from the ones used by Szegd; he uses i, = -3 a, instead of a,.
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A simplified form of a formula due to Tricomi [8] is given by the following:
THEOREM 1.4. Let o >-1 and let x%) be the root of the equation

4n - 4k + 3
—_—7

(1.7) x-sinx-=
v

Then we have

(1.8) ALY =vcos® (x{% s2) +0 (n),

for the zeros which belong to the interval (av, bv), where a and b, 0 < a
< b < 1, are fixed positive constants.

Recently, Temme [6] has obtained an interesting asymptotic representa-
tion of A{%) which involves the zeros of the Hermite polynomial H,(x). This
representation gives good numerical results expecially for large values of

the parameter o.

2. AN UPPER BOUND FOR THE ZEROS OF L{% (x)

We shall refer throughout this paper to the differential equation

a % 1 1-a?
(2.1) y+[—<———l>+-——-—]y=0,
dt? 4 t 442
V=4n+20+2, 00> -1,
which is satisfied by
(2.2)  y(t) = €7 (vt)r@d (@ (yg),
Now we observe that the function
172
(2.3)  2(8) = (—) T, [r (2]
satisfies the differential equation
2
(2.4) +F(t) z=0,
where
1 f./// 3 f// 2 1 10/ 2 ,
(2.5) F(t) = — = - + <-——a2> < > + 72,
2 £ 4 r 4



The equation (2.4) can be used, by assuming

v
(2.6) £(t) =— [(t~t?)¥? + arcsin t¥?], 0 < t < 1,

2
as a comparison equation to derive, by means of Sturm's method, inequalities
for the zeros A%,k =1, 2, ..., n, of Lg") (x).

n,k?

This requires the study of the function

(2.7) G (t,a) = F(t) - |

~ls

_ 2
(o))

for 0 < ¢ € 1, or, more simply, of the function .

tG(t,a)

(2.8)  6¥ (t,a) =
' 1-1

which 1s analytic at t = 0. Indeed, it is easily seen that

1/4 - of , 384 (1-02) (1-t)?

(2.9) o (t,a)
[(t-t2)* + arcsin 272 16t (1-t)°

i

and that

2 _ 2 _
(2.10) ¢6* (t,a) ¢ 1+13a 37

t+0 (7).
. 6 60 ()

LEMMA 2.1. Let 0® = 1. Then G¥ (¢, + 1) < O for 0 < t < 1. The equality
sign holds if and only if t = 0.

We have

- 3t . 3-8t
[(t=t?)¥? + arcsin t7)? 4(1-1¢)

(2.11) 4t 6* (t, £ 1) =

First we prove that the property G¥ (t, £ 1) < 0, which is trivial for
3/8 £ t < 1, holds in the interval 1/16 < t < 1. Indeed, by observing that

the function

t
u(t) =
[(t-t2)¥? + arcsin tV272

increases in 0 < t < 1 and that the function
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3-8t

R PN YE

decreases in 1/16 < t < 1, we obtain for 1/16 < t < 1,

4tG*(t,:b1)<—j’u< 1 > 1

1
—1? +7v <?> < 0.

For the remaining interval 0 < ¢t < 1/16 we use the inequality

12) ! s> 1t> 0<t<1
2. (14—
( [(t-t2)*? + arcsin t72)? 4t < 3/’ ’
and we set
(2.13) —— =1+3t+a(t) ¥
. ——— =1+3t+a

(1-1t) ’

where
1
a(t)= |————1-3¢
(1-t)° } £2

is an increasing function in 0 < ¢t < 1. Then from (2.11) we obtain

40% (t, + 1) <i—j~< 1+i> + <%—2 ) [1+3t+a(t)t?]

a(t)
4

:3[ —2]t—2a(t)t2,

4G%(t,:f:1)<}{a(4t)—2 2
which, beinga(t) < a (1/16) =6.689...if 0 < t < 1/16, completes the pro-
of of the lemma.

LEMMA 2.2. Let G (t, a) be the function defined by (2.7). In the interval
0 <t <1, G(t, @) has at least one zero if @® > 1 and is negative if
a? < 1.

For the proof we use the function G* (t, a), defined by (2.8), which is

continuous on 0 < t < 1. From (2.9) and (2.10) we obtain, if a® > 1,

1im G¥ (t, @) = - =
t—1-0 .



and 2

1im G¥ (t, a) =——— > 0,
t = 040 6

respectively. Therefore, the first part of the lemma is proved.
We now observe that G* (t, a) increases with respect to the parameter 2.

Indeed from (2.8) we have

aGx -1 1

3 (a2)  [(t-t2)Y7 + arcsin t¥2]? T (1-t)

and setting t* = sin ¢ we find

e -1 1
= +
a (a?) [sin & cos & + JJ? 4 sin® & cos® I
-1 1
) 1 1 20 .7 =0
sin?2d | — +— gin® 2
2 2 sin 24

for 0 < ¢ < w/2. Hence, by using Lemma 2.1,
G¥ (t,a) < G*(t, 1) <0,0< t <1,

when o < 1.

The property G (t, @) < 0, if 0 < t < Lland -1 < o £ 1, established by
Lemma 2.2, enables us to compare the zeros of the solution y (t) of the equa-
tion (2.1) with the positive zeros of the function z (t) defined by (2.3)
and (2.6).

We notice that

1/2

(;) = (21) ( 1+%t+...>,0<t<1.

Therefore, by means of the series representation of J, (z), we obtain
(2.14) z(t) =@ (g, +a, t+...), 0 < t < 1,

with a, # 0.
Now, let -1 < @ € landlett,, = 7{%, k=1, 2, ..., be the zeros of z(t)

in0 € t < 1. We have
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v
(2.15) 1,,=0, - [(r,, - 72 )% + arcsin Tod = Juw

This follows by observing that £(t) is a positive increasing function in
0 € t € 1varying from 0 to vi/4 and that (see Watson [9], p. 497) the number
of the positive zercs of x%J (x) between 0 and n 7 + /2 + M/4 is exactly n.
The condition (1.2), which is required when we apply Theorem 1.1 to the
interval [0, 7,,], is satisfied if o > -1 since, from (2.2),
y (t) =t (b +bt+...)
and consequently, by using (2.14), we find that
y(t) s’ (t) -~z (t) y’ (t) =0 (ts),  t= 0.

We may conclude that each interval

Tn’k_1<t<Tn‘k,k=l, 2, vu., D0,
s (a) = (a)
contains exactly one zero t\% , k=1, 2, ..., n, of Li* (vt).
Or, in other words: for the zeros Xéf‘g ,k=1,2, ..., n, of Lff‘) (x),

if -1 < o £ 1, we have
(2.16) A4 <vtl,k=1,2,...,n.

This is the main result of -this section. It can be stated in the following form.

THEOREM 2.1. Let -1 < a £ 1. Let Xr(‘“lf be the root of the equation

4 4 .
(2.17) x-sinx =7 - -—‘]ﬂ , V=4n+ 20+ 2,
v

where J, , 1s the k-th positive .zero of Jq(x). Then the k-th zero Xé“‘ﬁ of
L% (x) satisfies the ineqizality
(2.18) A4 < vcos? (x(%/2), k=1,2, ..., n.

Indeed, by setting t¥2 = cos &, the equation £(t) = j, , becomes

4 Ja

1

2P -sin2d=m-

Thus, for the zeros r]g‘_‘k), k=1,2, ..., n, defined by (2.15), we have

szﬁ = cos” (’(,(('}/2)



3. INEQUALITIES INVOLVING THE ZEROS OF THE AIRY FUNCTION

We shall use in this section, as comparison equation, the differential

equation

d?u

(3.1)

+H{(t)u=0,

with

nh’ 4

1 h” n” 2
(3.2)  H(t)=— ’ (
2

which 1s satisfied by

(3.3)  u (%) = [0'(t)]%2 AL [n(t)],

where Ai(x) is the Airy function of first kind.
It will be useful to recall some properties of Ai (x) and their zeros.
The function Ai (x) has no positive zero and infinitely many negative zeros,
1t is positive for x > 0 and A1’ (x) = 0 as x = . More precisely, we have
a8 X = + .
Al (x) ~ —;— 712 x4 exp <—i x3/2>,

(3.4)
. 1 2
ALY (x) ~ = vz - X
p x exp < X- >-
LEMMA 3.1, Let a, k=1, 2,
Ai (x). Then

(3.5) - [%<4k~ %) 7tr/j< a, < - [% (4 k-1) m ]2;/}

.., be the zeros in decreasing order of

k=1,2, ...,

For the proof we first consider the cylinder function

Cu(x) =7, (x) Cos @ - Y, (x) sin @,

with 0
S@ <_ Tt and where Y, (x) is the Bessel function of second kind. The
positive ger _

C8 Cupr k=1, 2, ..., of C, (x) satisfy, when -1/2 < o < 1/2,

the inequalities of Schafheitlin [9, p. 490]



1
—— <a< —, k=1,2, ... .
2 2

Next, by using the representation of Airy's function in terms of Bessel

functions

1
AL (=x) :—3—" \/—;[Jl/:? (&) + J—l/j (&)1, & :,g X2,

and the formula
J,, (8) =J,,(2) cosn/3-7,, (z) sin n/3,
we obtain
Al (=x)= / [J,,; (§) cos /6 - Y, (£) sin n/6], & = 2 X2,
3
Then, (3.6) with ¢ = n/6 yields

4 k-1 2 24 k-5
y 72'<—3“ (“ak)}/2<T7f) k=1,2, ...,

that is the inequalities (3.5).
In order to compare the equation (3.1) with the Laguerre equation (2.1),

we agsume in (3.2)

3 2/3
—y2/3 [7 [arccos t12 — (t—t2)2] ] ,0< t< 1,
(3.7)  n(t)=
3 : 2/3
vz [7 [(t?~t)¥2 - arccosh t1/2]] Lt > 1.
We find
5 1-t 3-8t V2 (1-t)
(3.8) H(t) =— + + ,t >0
36 tw(t) 16 t? (1-t)? 4t
where
[arccosti? — (t-t2)1212, 0 < t < 1,
(3.9) w(t) =

? - [(t*~t)¥? — arccosh t¥2]2, t > 1.

The following lemma holds.



LEMMA 3.2. In the interval 0 < t < + », the function

(3.10)  Q(t, a)=H(t)—[—:i<*i“l)+“17—‘£i} ’

with H (t) defined by (3.8) and (3.9), is negative if 0z < 1/4, is positive
if @* > 4/9 and has exactly-one zero if 1/4 < o2 < 4/9.
For the proof we write @ (t, a) in the form

1 1
Q(t, a)= —27;2—[(1 (t)+q2“ 7 ’

where
~ 5 t (1-t) t (2+3t)

e R RTIE

with ¥ (t) given by (3.9). Then it is easily seen that the function g (t) is

negative and decreasing for 0 < t < «. Further, we have

-7
q(0) =0, tlirz q(t) = %

vhence the lemma readily follows.
We can now derive this final result.

THEOREM 3.1. Let x% be the root of the equation
8
(3.11) x-sinx =— (-a,,, )%, Vv =4n+20+2,
3v

where a, is the j-th gero of the Airy function Ai (x). Then, for the k-th zero

/'Ln(flf of L{® (x) we have

1 1
(3.12) ALY > vcos? (x{%/2), if - - o< P

(3.13) k,ﬁf,ﬁ < V cog? (ng’lf/Z), ir-1<acg —% or o = —j— »
where k =1, 2, ..., n.

We give only the essential steps of the proof.

In the case -1/2 < o < 1/2 the function u(t), defined by (3.3) and (3.7),
has exactly n real zeros. Moreover, these zeros belong to the interval (0,1)

and can be obtained by solving the equations
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4
(3.14) arccos t? - (t—t2)12 =3—V (-a,)??, v = 4n+20+2,

form=1,2, ..., n, wvithrespect to t. Indeed, the inequalities (3.5) show

that
4 (- a,)” 4n-5/6 m b3 1 1
0 < z < / —<— ,—<a<—,
3v 4n+ 200 +2 2 2 2 2
form=1, 2, ..., n, while
4 (—a )i> T
_g)%>__’
3v 2

form > n. Slnce the function h (t) is negative and decreasing, the state-
ment easily follows.

Now, let
W > uf > L >

be the zeros, in decreasing order, of u{t) and let ué“g = + «. According to
Lemma 3.2, Q (t, o) is negative for0 < t < « if ~1/2 < o £ 1/2. Therefore,
we can apply Theorem 1.1 to the interval (0, «). By using (3.4) we see that

the condition (1.2) is satisfied at t = » and we conclude that each interval

(a) (a) -
ut s <t <wy , k=1,2, ...n,
contains exactly one zero t{%), m = 1, 2, ..., n. More precisely, we have

B > ul L, k=1,2, ..., 0.

n,n
By setting t1? = cos (x/2) in (3.14) withm = n — k + 1 we derive (3.11) and
(3.12).
For the proof of (3.13) we use the same interval (0, ). Since Q (¢, a) is

positive if -1 < a € - 2/3ora 2 2/3, we find that each interval

)
t,(fﬁ <t< tr(zc,liwll k=1,2, ..., n,

where t' = + o, contains at least one zero ulﬂ“n?, m=1, 2, ... That is, ve

h,n+l
have
(o i _
< W k=1,2, ..., n.

iy

Whence (3.13) follows.



4. NUMERICAL RESULTS AND CONCLUDING REMARKS

The inequalities given in Theorem 2.1 and in Theorem 3.1 furnish very sharp
results, which are generally better than those we can obtain by using

previously known inequalities.

TABLE 1 - Bounds for some zeros ng?}{.

Lower bound : Upper bound
k
(1.3) Exact Valu? (2.18)
0.070527 0.070540 0.070547
2 0.371601 0.372127 0.372164
10 11.444867 12.038803 12.040338
20 46.951357 66.524416 66.642245

The Table 1, which refers to some few values of k in the case o = 0 and n = 20,
shows, in the first column, the lower bounds given by the old inequality (1.3)
and, in the third column, the upper bounds furnished by applying the new in-

equality (2.18).

The case -1/2 € a < 1/2 is particularly interesting. Indeed, in this case,
Theorem 2.1 and Theorem 3.1 give upper and lower bounds for Xé“ﬁ respectively

and the following corollary holds.

COROLLARY 4.1, Let -1/2 < o < 1/2 and let X (y) be the function that we

obtain upon inverting

(4.1) y=-sinx - x.

Then
1 8 1 47
(4.2)  veos? [—x (— (—an_m)wﬂ < AW <y cosz[-x(n-—u)],
2 3v ’ 2 %
for k=1, 2, ..., n and where v,a_ and jn)S have the previous meaning.

The lower and upper bounds in Theorem 4.1 furnish very sharp results when
they are used as approximations, say 114, of A\%), k=1, 2, ..., n. This is
shown in Figure 1 where the number of exact significant digits in the ap-

proximation of (%), i.e. the digits of accuracy represented by the function
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rn,k (0’) == lOglo

A% - 18
A0
n,

ig plotted for o = 1/2 and n = 20.

The curves I', and I', refer to the approximations
1,§42) = 83 cos? ! X 8 2
20% = 875 cos [? <*24—9(—32H) >] , (lower bound)

and

1 4J
lzg:ll/(z) = 83 cog? [?X < 7?—'_8‘?2-‘](_>:| s (upper bound)
respectively.

In the same figure we have plotted (see the dashed curves Y, and yz) the

digits of accuracy corresponding to the approximations

1
125%2):g J% 000 (lower bound)

1,54%= [(83)2 + 2% (83) a,,J°, (upper bound)

obtained by using the old bounds (1.3) and (1.5) respectively.
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FIG. 1 - ry, (1/2) versus k = 1(1)20.



The inequalities (4.2) can be used to derive uppef and lower bounds for
the zeros of the Hermite polynomials H, (x). Indeed, by taking into account

that

H, (x) = (-1) 22" m! L2 (x?); H,., (x) = (=1)m 221 g} x L2 (x2),

and that

. » 7[
Jipx =k, J oy, = (2k=1) Pk k=1,2, ...,
we obtain the following result:

COROLLARY 4.2. Let h o, k=1,2,..., [n/2], be the positive zeros in in-

ereasing order of the Hermite polynomial H, (x). Then

1 2n—4k+3
h 12n+l cos —X (7 ] ifni
k< n+l co [ 5 < el > , 1f n is even,

(4.3)

1 2n—4k+3
h, < |20+l cos [—x <~———-—ﬂ>},if’n is odd,
’ 2 2n+1

Furthermore, we have

8

(4.4) b, > "2n+l cos léx(m

(—a [11/2]Ak+1)1/2 >]

Here X (y) has the same meaning as in Corollary 4.1.

We remark that the Tricomi asymptotic formula (1.8) can be written, as

n = w,

A8 yeos? [éX <4__4~n___4_1£t3__”>] )

n,k v

for all the zeros Xé‘flz, belonging to the interval (av, bv) with a and b fixed

positive constants, 0 < a < b < 1.

Now, by using the asymptotic expansions (see Abramowitz and Stegun [1],

p. 371 and p. 450)



. a 1
Jas = < S+?‘7>ﬂ [l+0($“2)], 5 = o

P

3 T 2/3
—a, = [?(4 s-1) | [120 (s%)], s>

oy

it is easily seen that

45 4n—4k+3
- T n, for k = «,
v v
8 4n—4k+3
—A(-a,,,,)P~————"— 1, for n-k = w.

3v

Hence, the bounds for kéf‘g that we have considered in this paper are in fact
approximations which coincide with the Tricomi approximation as n = «,
uniformly for all values of k = [pn], [pn]+1,..., [qn], wherep, q € (0,1),
p < g. More preclsely, taking into account the results of Erdélyi [2] on

the asymptotics for Laguerre polynomials, we have

1 4 jak
A‘Igak) ~ V cos’ ‘ —X ( ﬂ“"i‘—”>} s N 7w,
’ 2 1%

k=1,2, ... [qn],

and

1 8
/’ng(.(k% ~ v cos” \ ;X (7‘(_‘3;;—}.'»1)1\‘)’ . 7w,

k = [pn], [pn] +1, ..., n-1, n.
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longer assumed to be supported on R, and v have constant sign. Mlat, for example, would hap-
pen if one took a typical oscillatory measure, like ds (1) = P, (t)dt on [-1,1], where P, is the
Legendre polynomial of degree n?

In a letter to Hermile, dated November 8, 1894 (in fact, his last letter in the life-long
correspondence with Hermite; see Baillaud and Bourget [1905, v.2, pp. 439—441]), Stieltjes

indeed looks at (what is now called) Legendre’s function of the second kind

Py (t)‘
z—t

1 .
0, =] dt, (1.2)

expands it into descending powers of z (beginning with z=""*1) by orthogonality of P,) and then

has the fortunate idea of expanding the reciprocal of 0, ,

1 n+l n) (n),—1 n)
=z |+ 2T ), # 0. 1.3
0.(2) (g i ) ud (1.3)

This led him naturally to consider the polynomial part in (1.3),

Epaz) = 2" + pfdz7 e o 4 p iz, (14)

a polynomial of exact degree n + 1, now appropriately called Stieltjes’ polynomial, and to inves-

tigate its properties. By a residue calculation, he first observes that

Eq(t) = (1.5)

1 z
"z?cT‘f @=)0, ()’

where C is a sufficiently large contour, and then goes on to multiply (1.5) by t*P,(t)dt,

k=0,1,. .., n,and to integrate, obtaining
X 1 “p, (t)
[ EnaPa )t = w b, (Z) L
1

JI Zk _ (Zk _ lk)

i P, (t)dr

Tl ¥ 0,0)



k P -
:*1_.4}2(12.[ n()dt
2 L Qn(z) -1zt
R S S
= o z¥ dz =0,

c
where orthogonality of P, is used in the third equality. Thus,

1
[ Ean@p P, (0)dt =0, all p € Py, (1.6)

that is, Stieltjes’ polynomial E, .y is orthogonal to all lower-degree polynomials relative to the
(sign-variable) measure ds(t) = P, (t)dt.

At this point, Sticltjes conjectures (1) that £, has n + 1 real simple zeros, all contained in
(-1,1) and (2) that they separate those of P,. He presents a numerical example with n = 4, He
furthermore believes (strongly so in the case of reality and simplicity of the roots, less so for the

scparation property) that this is a special case of ‘‘a much more general theorem’’,

In his reply (of November 10, 1894), Hermitc expressed his delight in the polynomials E,,
and ‘‘the beautiful properties’” conjectured for it and encouraged Sticltjes to look for a differen-
tial equation as a possible key to these propertics. Stieltjes may have already been too ill to
respond. Neither he, nor anybody else after him was able to give an affirmative answer to
Hermite’s suggestion. (It has been found, nevertheless, that the Stieltjes polynomials, at least in
the realm of Jacobi measures d 6‘%P(r) = (1-)%(1+6)B dr, do not satisfy a three-term recurrence
relation unless |o| = |B| = Y, in which case they do, and in fact also satisfy a differential equa-
tion; cf. Moncgato {1982].)

Sticltjes’ ideas scem to have gone unnoticed for 1-11any years. Geronimus in 1930, however,
developed similar ideas, considering in place of (1.3) the expansion of [Q, (z)\/z—r:]‘l, where
Q,(z)= '[_11 1, (¢ swdDw (¢)de/(z~t) and w,(;wdt) is the nth degree orthogonal polynomial
associated with the weight function w () = (1-1)*(1+6)® 2 (¢), h being continuous and positive
on |-1,1] (Geronimus {1930]). Although this approach docs not Icad to a perfect orthogonality
result, like the one in (1.6), it ncvertheless has relevance to the subjcct at hand; see the beginning

of Subscclion 3.5 below.
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The first who has taken up Stieltjes’ challenge in earnest was Szegb in 1935, He expresses
(Szegd [1935]) Stieltjes’ polynomial on the circle as a cosine polynomial,

E, +1(c0os0) = A§M cos(n+1)8 + Af® cos(n—1)0 + -+, an

and relates an extended (infinite) sequence A, = M") to an explicitly known sequence f = f \ﬁ")

via a reciprocity identity for the respective power series, From this he proves Ag > 0 and the

negativity of all A,, v 21, as well as 3, A, =0. It follows from this that the polynomial
v=0

hoz" ™ + Az" 1+ -+ has all its'zeros in |z | < 1, which implies, via the argument principle,
that (1.7) vanishes at least 2n + 2 times. This proves Stieltjes’ first conjecture. Szegé also
proves the second conjecture, but this requires a deeper analysis involving, in particular, Legen-

dre functions on the cut.

Szegd’s analysis is not peculiar to Legendre polynomials. Indeed, he himself extends it to
Gegenbaver polynomials P,®, orthogonal on [-1,1] with respect to (he measure
do(t) = (1=2%de, A > — 14, IfEX) denotes the corresponding Stieltjes polynomial,

j_ll ES (p )P IOA—Hdr =0, all p e Py, (1.8)
which (up to a multiplicative constant) is uniquely defined, then Szegd shows that both conjec-
tures of Stieltjes continue to hold for 0 < A £ 2. When A=0, two zeros of E,‘O;)l move into the
endpoints + 1; they move outside of [-1,1] for A<0, as is shown by the example n=2. The qucs-
tion of whether the same can happen for A>2 is left unanswered by Szegd. (The answer is still
unknown today, but, according to Table 3.1 below, is probably “‘no’’, at least as long as the inter-
lacing property holds.)

Szegl concludes by considering the Gaussian quadrature formula for the (sign-variable)

measure ds (¢) = P, (¢)dt and shows that its weights altcrnate in sign.

This brings us naturally-to the work of Kronrod in 1964, which is also concerned with qua-

drature. Motivated by a desire to econoniically estimate the error in the classical Gaussian qua-

drawure formula



1 n
[ fwde =3y f @), (1.9)

v=1

where T, = T are the zeros of the Legendre polynomial P, and v, = ¥ the corresponding
Christoffel numbers, Kronrod [1964a,b] proposcs to extend the n-point formula (1.9) to a

(2n + 1)-point formula

1 n n+l
I, f@wae = T ovf@+ 3 S f (0D + Ry (), (1.10)
V= p‘:

in which the 7, are the samc as in (1.9), but new nodes t; and new weights oy, 6,1 have been
introduced and chosen to increase the degree of exactness from 2n — 1 (for (1.9)) to 3n + 1 (for
(1.10p), 1.e.,
R,(f)=0, all f e Py,,,. (1.11)
It turns out that the nodes ’C; must be precisely the zeros of Stieltjes’ polynomial E, . With all
nodes T, 'c:[ at hand, it is then easy to determine the weights o, CS; by interpolation.
In the same manner, one can try Lo extend the Gauss-Gegenbauer quadrature formula to a

formula of the type

1 . n nsl .
L f @O dr = L oS+ 5 ou [+ Ry(f) h>=t (112)
V= P;l

and, more generally, to do the same for an integral with arbitrary (positive) measure d G,

1 n n+l
j_l f®dot)y= 3, o, f)+ % op £ ) + Ry (f), Ry(Papyp) =0. (1.13)
p=1 .

v=1

(The dependence of the nodes and weights on n and d¢ will from now on be suppressed in our
notation.) The new nodes T;, similarly as before, are then the zeros of the (unique, monic) poly-

nomial T, 41() = Toys1( 3 dG) salisfying the orthogonality property
[ Trn(®p OO, ()do@) =0, all p e Py, (1.14)

where 7, (") = 1, (; d0) is the orthogonal polynomial of degree # associated with the measure
do. To be useful in practice, the formulae (1.12), (1.13) should have nodes 1:;[ which are all con-
tained in the support interval of d o and are different from the Ty, and they should have weights

Cys G; which, if at all possible, are all positive. By Szegd’s theory, we know that the former is
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true for (1.12), if 0 < A €2, while the latter has been provcn‘ true by Monegato [1978a] if
0<A<1, hence, in particular, for the original Gauss-Kronrod formula (1.10) (which
corresponds (0 A = 14).

Soon after Kronrod’s work, it has occurred to a number of people (probably first to Patter-
son [1968a]) that other quadrature rules can be similarly extended, for cxample, the Gauss-
Lobatto rule. In addition, it is not unrcasonable 1o also consider the interpolatory quadrature rule
based solely on the nodes TJ in (1.13). In the case of (1.10), numerical results suggest that these
quadrature rules also have all weights positive and cnjoy :Im interlacing property of their own: the
zeros of E,,; alternate with those of E,,; cf. Monegato [1‘982]. Indecd, having three quadrature
rules at disposal — the one just mentioned, the Gauss rule (1.9), and (1.10) — with degrees of

exactness roughly equal to n, 2 and 3#n, respectively, might well be an attractive feature that

could be useful in automatic integration schemes (Kahaner [1987]).

Orthogonality with respect to sign-variable measurcs and rclated quadrature rules have
independently been studied by Struble [1963], who develops a general theory. It might be
interesting to explore this theory in the framework of more general indefinite inner product spaces
(cf., e.g., Bognar [1974]).

The merit of discovering the connection between Kronrod’s work and the earlier work of
Stieltjes and Szeg6 is due to Mysovskih [1964], although it has been noted, independently, in the
Western literature, by Barrucand [1970]. The relevance of Geronimus’ work to Gauss-Kronrod
quadrature is pointed out by Monegato [1982] and Monegato and Palamara Orsi [1985].

Brief accounts of the Kronrod and Patterson methods can be found in Davis and Rabinowitz

(1984, pp. 106-109, 426] and Atkinson [1978, pp. 243-248].

2. Extended quadrature formulae. Wec now give a more systematic treatment of the prob-
lem of extending quadrature rules. We begin with a general theorem, which has become part of
““folklore”” in numerical quadrature and is difficult to attribute to any one in particular. In its key

ingredients, it goes back to Jacobi {1826].



Let 4G be a nonnegative measure on the real line R, with bounded or unbounded support
and with infinitely many points of increase. Assume that all its moments [, = '[R t*d o(r) exist

and are (inite. We consider quadrature rules of the form

N
o fOdo@) = 3, oy F(T) + Ry (F), 2.1)
v=1

where Ty, Oy are real and N = 1 an integer. We say that (2.1) has degree of exactness d if
Ry(f) =0 forevery f e Py, the class of polynomials of degree < d. We associate with (2.1)

the polynomial .

@) = Vljl (t -1 2.2)

and call it the node polynomial. The theorem in question then reads as follows.

Theorem. The quadrature rule (2.1) has degree of exactnessd =N — 1+ k, k 20, ifand
only if both of the following conditions are satisfied:

1)  (2.1) is interpolatory (i.c.,d = N-1);
(i) fR ot)pt)do(t) =0forallp € Py

We remark that polynomial degree of exactness N—1 (the case k=0 of the theorem) can
always be achieved, simply by interpolating at the nodes t,; this is condition (i) of the theorem.
To get higher degrec of cxaclness (k >0), the node polynomial, according to (ii), has to be orthog-
onal (relative to the measure d 6) to sufficiently many polynomials. 1f we have complete freedom
in the choice of 1, and o, we can take k as large as k=N, in which case (ii) identifies ©(") with
the (monic) orthogonal polynomial my (- do) of degree N associated with the measure d o, and
the nodces T, in (2.1) wilh its zeros. This, of course, is the well-known Gauss-Christoffel quadra-
ture rule (cf., c.g., Gautschi [1981]).

The situation we are going Lo consider here is somewhat different: We shall assume that
some of the nodes are prescribed and the rest variable. Let

N =N°+N", 2.3)

and supposc the prescribed (distinet) nodes arc Ty, T, , . .., Tye; we denote the remaining ones by
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T =Ty R=1,2,..., N ' (2.4)

Correspondingly, we let GS = Opoyy and write (2.1) in the form

N°© N'
Jo fOdc@) = T ovS@+ 3 o £ (1) + Ry (). @5)
V= H=
We may interpret (2.5) as an ‘‘extension’” of some quadrature rule

e
[ f@do) = F % f @), 2.6)
v=1

The degree of exactness of (2.6) is quite irrelevant for what follows, as the weights vy, are being
discarded.

Putting Ne

-
() = I G = w), () = I~ i @7

the theorem above, since 6)(t) = Ty (¢ )Ty« (), becomes:

Corollary. The quadrature formula (2.5) has degree of exactness d =N —1+k, k 20,

with N given by (2.3), if and only if it is interpolatory and the polynomial nﬁ* satisfies

o T (Op (Dnge(0)d @) =0, all p e Py, (2.8))

One expects the maximum degree of exactmess to be realized for k& = N* (there are N + N*

degrees of freedom!), in which case (Z.Sk) becomes
[ v (Op Omye(8)do(t) = 0, all p e Pysy. @8y

We call (2.5) an optimal extension of (2.6) if k = N*, i.c., if (Z'SN*) holds, and a nonoptimal
[interpolatory] extension if (2.8/() holds with 0 < &k < N* [k=0]. (We assume p =0in (2.8k) if
k=0.) Thus, (2.5) is an optimal cxtension of (2.6} if and only if wa« is orthogonal to all lower-
degree polynomials with respect to the (sign-variable) measure do' (t) = n,t,n(t)dcs(t). Here is

how sign-variable measures enter into the process of extending quadrature rulcs.

We now discuss a number of specific cxamples.



Example 2.1: Gauss-Kronrod formulac.
This is the case N° =n, Tne() = Tu(;dG), N¥ =n+1,s0that N =2n + 1, d =3n + 1,
and (2‘8N*) takes the form
J'R TP Tt do)do(t) =0, all p e P,. 2.9)
(We must necessarily have N* > n + 1 in this case; cf. Monegato [1980].) In other words, the
classical #-point Gauss-Christoffel formula is oplimally extended to a (21 + 1)-point fornwla of
the form
[ f o) = il o f (1) +"ﬁi on £ (@) + Ry(F). (2.10)
v= s
The measure involved in the orthogonality relation (2.9) is do* (¢) = =, (¢ ; do)d ©(t), which for
do(t) = dt is precisely the one considered by Stieltjes. We call Ty, in (2.9) the Stieltjes polyno-
mial associated with do and denote it by T, () = e (1 do). It is easily seen that 7,
(assumed monic of degree n-+1) is uniquely determined by (2.9).

For the weights in (2.10) one finds (see, e.g., Monegato [1976])

RE AN
Gv=“{v+'r*1—-f—c—“, =1,2,..., n
15,,.”(’17\,) T (Tv)
.10
. ERRF
= *n*lo*_’ “lezv , n+i,
Ty (Tp) nn+1(Tp)
where y, = v(")(d o) are the Christoffel numbers, and | || |45 the L,-norm for the measure do.

For symmetric measures, i.e., do(=t) =do(t) and the support of do symmetric with
respect to the origin, it follows easily from uniqueness that

Ty~ ;do) = (=1)" m,(t;d0), wa(~t;do) = (1" m(t;d0)

(d o symmetric), (2.12)

so that (2.9) holds trivially for even polynomials p and is therefore valid forallp € P, if n is
odd. Thus, d =3n + 1if n iseven, and d = 3n + 2 if n is odd. (In special cases, the degree of

exactness can be even higher; see Subsections 3.3 and 3.5 for examples.)
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Example 2.2: Kronrod extension of Gauss-Radau formulaé.

For definiteness we consider only the Radau formula with fixed node 1y at —1. The case
Tg = 1 is trealed similarly.

We assume that do is supported on [—1,1] and that the measure (1+£)do(t) allows
(21 + 1)-point Kronrod extension, i.e., the Stieltjes polynomial mt,.,;( ; (1+¢)d 6) has distinct real
zeros, all in (—1,1) and all different from the zeros of 1, (-3 (1+£)d 6). Then there exists a unique

optimal extension of the Gauss-Radau formula for the measure do. It has the form

1 n : n+l

J_l f@Wdo@)=co f(=)+ 3, oy f (1) + 3, op F(T) + R, (f) (2.13)
v=1 . p=1

and corresponds to the case N° = n+1, nyo(t) = (14+)7, (¢ ; (1+1)dG), N* = n+1, hence has

degree of exactness (at least) d = 3n + 2. The orthogonality condition (Z.SN*) assumes the form

j‘l} (P (O, (¢ (+)do)(14)do(t) =0, all p e P,. 2.14)

Thus, as far as the nodes ’L': are concerned, we can obtain them exactly as if we were to extend the
Gauss formula for the measure (1+¢)do(r). Also, the quantities (1 + 1,)c, and (1 + ’C;)O"I can be
obtained by expressions which are identical to the ones on the right-hand sides of (2.11), where

the Christoffel numbers and norm refer to the measure (142 )d (). The weight G, then follows

n n+i
fromop+ ¥ Oy + 3 Oy =Ho Mo = '[R do(t).
v=1 p=1

Example 2.3: Kronrod extension of Gauss-Lobatto formulae.
We assume, similarly as in Example 2.2, that the measure (1 — t2)do(t), supported on
[—1,1], allows Kronrod extension. Then the unique optimal extension of the (n+2)-point Gauss-

Lobatto formula for the measure d ¢ is given by

1 n n+l
[ fdo@) =oof D +0,f D+ T 0uf @)+ 3 Gpf O + R, () (2.15)
v=1 p=1
and is the case N° = n+2, myo(t) = (1-13) m, (t ; (1-2d 6), N* = n+1 of (2.5), with the degree
of exacmess now being (at least) d = 3n + 3. The orthogonality condition (2.8N*)‘bccomes

1
[ T ®p O, (5 A~d o) (1+Ddo(t) =0, all p e P,, (2.16)



and is the same as for Kronrod extension of the n-point Gauss formula for the measure
(1—-thdo(t). Again, the quantities (1 — 2o, and (1 — 'c; 2)(5; have representations identical to
those on the right of (2.11), the measure being (1-tHdo(¢) throughout. The remaining weights
Gg» On+1 are most easily obtained by solving the system of two linear equations expressing exact-
ness of @215) forf(t)=1land f(t) =t.

We remark that in the special case of Jacobi measures d 6®P)(t) = (1-)%(1+£)Pdt, o0 > -1,

B> -1, we have

1
(1=t By = o g
T, (5 (1~5)d 6\ ") oo (5 do™), 217

as follows readily from the identity (@/dt)P 4P (1) = 2 (n + o+ B + 2) P, B+ for Jacobi

polynomials.

Example 2.4: ‘Kronrod-heavy’’ exiension of Gauss formulae.

The *‘Kronrod nodes’’ ’cﬁ and ‘‘Gauss nodes’’ 1, in the Gauss-Kronrod formula (2.10) are
nicely balanced, in that exactly one Kronrod node fits into the space between two consecutive
Gauss nodes and between the extreme Gauss nodes and the respective endpoints (possibly =+ o)
of the support interval of do. There are, however, occasions (for example, in cases of nonex-
istence; cf. Subscction 3.4) where it might be necessary to forgo this balance in favor of more
Kronrod nodes; we call such extensions Kronrod-heavy. These also fit into the general scheme
(2.5), where N® =n, nj\’,n(-) =1,(;do), N¥ =n+q with ¢>1, and give rise toythc orthogonality
condition .

. JR Topsq (P (O, (¢35 d0)dS() =0, all p € Py (2.18)
In contrast to Gauss-Kronrod f01mulaé, the unique existence of n,‘ﬁrq, let alone the fcality of its
zeros, is no longer assured. Startiﬁg with he unique 7,1 ; d o) = n:ﬂ_,,(»), howeyver, there is an
infinite sequence {4, 1ot OF uﬁiquely determined polynomials T, = Taiq, s OF exact
degice n + ¢q,,, 1 = ¢4 <qga<q3< o, such tﬁat (2.18) holds with ¢ = ¢,,, and such that no
polynomial n,:wm of degree < n + q,, exists for which (2.18) holds with ¢ = g,, (Monegato

[1980]).
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One can try, of course, to extend in this manner other quadrature formulae, e.g., the Gauss-

Radau or Gauss-Lobatto formulae.
Example 2.5: Repeated Kronrod extension of Gauss formulae.

Given an n -point Gauss formula, one can try to extend it optimally to a (2n + 1)-point for-
mula as in Example 2.1, then extend this formula once again to a (4a + 3)-point formula (by
optimally adding 2n + 2 new nodes), and so on. The likelihood of such repeated extensions to
all exist (i.e., have real distinct nodes) is i)robably quite small. Remarkably, however, for n=3
and do(¢) = dt on [-1,1], such extensions, even with all weights positive, have been successtully

computed by Patterson [1968a], [1973] ﬁp to the 255-point formula.

For the second extension, for example, the node polynomial 1), ,, must be orthogonal to all

lower-degree polynomials with respect to the measure 6™ (t) = 1, (¢ 1 d ) T (¢ ; dG)AOE) .
Example 2.6: Extension by contraction.

As contradictory as this may sound, the point here is that one starts with a ‘‘base formula”’
containing a sufficiently large number of nodes, then successively removes subsets of nodes to
generate a sequence of quadrature rules having fewer and fewer nodes. Looking at this sequence

in the opposite direction then turns it into a sequence of (finitely often) extended quadrature rules.

More specifically, following Patterson [1968b], one takes as base formula any (2" + 1)-
point formula and then defines r subsets of points by successively deleting alternate points from
the preceding subset (keeping the first and the last). For example, if r=3, the successive three
subsets of the original points with index set {1,2,3,4,5,6,7,8,9} contain the points with indices
{1,3,5,7,9}, {1,5,9} and {1,9}, respectively. A scquence of »+1 quadrature formulae can now be
defined by taking the interpolatory formulae for the original node set and all » subsets of nodes.
(A slightly different procedure is proposed by Rabinowitz, Kautsky and Elhay; see Rabinowitz,

Kautsky, Elhay and Butcher [1987, Appendix A, p.125].)

The reality of the nodes is thereby trivially guaranteed, but not necessarily the positivity of

the weights. Patterson [1968b], nevertheless, finds by computation that all weights remain posi-



if one starts with the 33-point, or 65-point Gauss-Legendre formula (r=5 and r=6, respec-
A

tive
tively), or with the 65-poirit Lobatto formula (r=6) as base formulae.
Another example of a suitable base formula, which in fact (Imhof {1963], Brass [1977, Satz

T =0

77]) has positivity of all weights built in, is the Clenshaw-Curtis formula (Clenshaw and Curtis
[1960]) based on the initial point set T, = cos(vr/2"),v=0,12,..., 2",

If one is willing to delete successively one point at a time, then the following result of Rabi-
nowitz, Kautsky, Elhay and Butcher [1987] is of interest: Given any interpolatory quadrature rule
with all weights positive, it is possible to delete one of its points such that the interpolatolry. ruie

based on the reduced point set has all weights nonnegative.

IRE SN P

All sequences of extended quadrature rules in Example 2.6 are examples of nonoptimal; in

fact interpolatory, extensions. Other examples of nonoptimal, even subinterpolatory, extensions
»

are those of product rules given by Dagnino [1983] (see also Dagnino [1986]). The severe
sacrifice in polynomial degree of exactness is justified in this reference in terms of a simplified

convergence and stability theory.

We restricted our discussion here to quadratﬁre rules of the simplest type (2.1). There is lit-

9
tle work in the literature on the extension of quadrature rules &nvolving derivatives. Bellen and
7

Guerra [1982], however, extend Turdn-type formulae, but work them out only in very simple s;;e—

cial cases. §

3. Existence, nonexistence and remainder term. We consider here mainly the Gauss-

;

Kronrod formula as defined in Example 2.1, that is,

n+l

[ /o) = 3 0 f@) + T, 0h fAD+ () R =0, ()
v=] =1

We say that the nodes ., ’cﬁ in (3.1) interlace if they are all real and, when arranged decreas-

,

ingly, satisfy

oo K Tpy KTy Ty € 0 KTy KT < T < on, (3.2)
q

For any given n 2 1, the following properties are of interest:
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() The nodes T,, T, interlace.
4 4
B

(b) All nodes T, 'c;, in addition to interlacing, are contained in the interior of the smallest
¥
interval containing the support of d G.
A

t

(c) The nodes inteﬂace and ‘each-weight o, is positive. - (It is known, ef. Monegato
[1976], that the interlacing I‘)roperty is equivalent to (5[: ; 0, all p.) “de
(d) All nodes, without necessarily satisfying (a) and/or (b), are real.
Little has been proved with regard to these propeﬁiés; any neW piece of information, from what-
e\‘lzer source — computational or otheerisg — should therefore be greeted with appreciation. In this
section, we give an account of what is khown, or what can be conjectured, for some classical and

nonclassical measures.

3.1 Gegenbauer measures do™(t) = (1-t2 %4 on [-1,1], A > — V2. Properties (a) and
(b), as already mentioned in Section 1, have been pioved for all n 2 1 by Szegd [1935], when
0 < A <2, and property (c) by Monegato [1978a], when 0 < A < 1. Properties (;) and (b) also
hold for the extension of Lobatto formulae, if — %2 < A < I (cf. Example 2.3), but nothing as yet
has been proved concerning property (c). This, then, is the extent of what is known rigorously,

for arbitrary #, at this time.

A good deal more, however, can be uncovered for specific values of 7, if we let the parame-
ter A move continuously away from the above intervals and observe the resulting motion of tl}e
nodes 1y, 'c; and the movement of the weights o, 0;. Given », property (a) will cease to hold at
the very moment a node T, collides (for the first time) with a nodé ’C; . This event is coincident
with the vanishing of the resultant of , (- ; d6™) and 7} ,,(-; d6™). When A has moved beyond
this critical value, the nodes 1, and "C;: involved in the collision have likely crossed each other, so
that two Kronrod nodes now lie between consecutive Gauss nodes. Only now is it possible that

two Kronrod nodes may collide and split into a pair of complex nodes, an event that is signaled

by the vanishing of the discriminant of (- ;dc®). By using purely algebraic methods, it is

thus possible to delineate parameter intervals in which properties (a) and (d) are valid. The

-



subintervals of the first of these, in which properties (b) and (c) hold, can be determined rather

more easily, in an obvious manner.
This V[a/s been carried out computationally in Gautschi and Notaris [submitted] for values of
n up to 40. Based on these results it is conjectured (and proved for n < 4) that property (p ) holds

for AP < A < Af, where the bounds AL and Af forp = a, b, ¢, d are as shown in Table 2.1.

no | M AT AR AT A AL AT
I | =% e | =% o |-} o % e /
2 -5 =3 0 oo —15 o0 - co
3 - 16 0 16 -1 6.552.. — 1 16
4 ) oo 0 oo - 5178.. | =W oo
25| -% AF|] 0 AZ| -4 A | = Af
/

Table 3.1. Property (p) for Gegenbauer measures

Here, A%, AS, A are certain constants satisfying 1 < A7 < o, 1 < Af < A and Af 2 A with

equality precisely whenn =4r —1,r =1,2,3, ... . Numerical values of these constants, to

+
10 decimal places, are provided in the cited reference for n = 5(1)20(4)40.

N

The fact that Kronrod extension (satisfying properties (c) and (d)) cannot exist forall n > 1

when A is sufficiently large, not even if the degree of exactness is lowered to [2rn + [}, r>1,[ an
A

integer, is claimed by Monegato [1979]. (The proof given is erroneous, but can be repaired;

Monegato [1987].) 4

3.2 Jacobi measures dc(“-ﬁ)(t);(1—[)“(1+t)ﬁdt’on [~1,1]. Since interchanging the

’

parameters o, and f has the effect of changing the signs of the nodes T, and ’C;, hence, if the order

(3.2) is maintained, of renumbering them in reverse order, and the same renumﬁen‘ng’ applies to
the weights o, and cs;, the validity of property (), p =a, b, ¢, d, is unaffected by such an

interchange. We will assume, therefore, that -1 < o < f3.

Except for the cases || = |B| = Y2 (considered in Subsection 3.3) and the transformations
.
to Gegenbauer measures noted below, the only known proven result is that property (b) is false
foro=~—'%,— % < B < ¥ when n is even, and for o = > Y, % < B < 3/2 when a.is odd (Rabi-
I
. t o
nowitz {1983, p.75] ).
b . . 0 : PN .
(") Thike is a misprint on p.75 of this Teference: The superseript lL + %2 should be replaced by L=1
twice in Eq. (68), and twice in the discussion immediately following Eq. (69).

53



Monegato [1982] notes that 7. & (22 — 1) = 2"+ ¢ ) &®(t) — d,, where d, is an
explicitly given constant, and similarly, 7, & (2:% — 1) = 2" n}@9(). In the latter case,
there are also simple relationships between the weights o, GJ of the respective Gauss-Kronrod
formulae (3.1); cf. Gautschi and Notaris [submitted, Thm. 5.1]. The cases ¢. > —1, f =+ ¥4 can
thus be reduced to the Gegenbauer case, and appeal can be made to the empirical results of Sub-
section 3.1, at least when B = %2. A similar reduction is possible in the case o0 > -1, B=o0o+ 1
(Monegato [1982, Eq. (36)]), which is of interest in conn;:ction with Kronrod extension of

Gauss-Radau formulae for Gegenbauer measures (cf, Eiample 2.2). «

The algebraic methods described in Subsection 3.1 have also been applied to general Jacobi
measures (Gautschi and Notaris [submitted]) and the results for 2 £ n < 10 displayed by means
of graphs. There are marked qualitative differences for # even and s odd, as is shown in Figure
3.1 for the cases n=6 and n=7. The region of validity for property (p) is consistently below the

curve labeled “‘p *’, except for p=b and n even, when it is above and to the right of the curve.

bera

beta
L
v
k-0
-1
T T T T T
-l w075 05 025 0 p R ‘ ' '
alpha : ! ’
v D ) alpha
, Figure 3.1. Property (p),p =a, b, c for the Jacobi

megsure P when n=6 and n=7



3,3 Chebyshev measures of 1st, 2nd and 3rd kind. These are the cases |o| = |B| = Yaof
the Jacobi measure d o), They are the only known cases in which both the Gauss formulae
and their Kronrod extensions can be written down explicitly (in terms of trigonometric functions).
If o= ==Y, the (optimal) extension of the »-point Gauss-Chebyshev formula of the first
kind, when n = 2, is simply the (2n + 1)-point Lobatto formula for the same weight function.
(For n=1, it is the 3-point Gauss-Chebyshev rule.) To get the Kronrod extension of the » -point
Gauss-Chebyshev formula of the second kind (o = f = 1), it suffices to replace n by 2n + 1 in
the same formula. Finally, for o=~ 1, B = %, the Kronrod extension is the Radau formula
(with fixed node at 1) for the same weight function. All these extended formulae have elevated
degrees of exactmess, namely 4n — 1, 4n + 1 and 4n, respectively, and enjoy property (p) for all
p=a,b,c (hence also d). These elegant relationships have been noted as early as 1964 by
Mysovskih [1964]; see also Monegato [1982, p.147]. For the first two cases, Monegato [1976]
points out that the formulae can be extended infinitely ofien in an explicit manner.

3.4 Laguerre and Hermite measures. Here is another instance in which a nonexistence
result is known (Kahaner and Monegato [1978]): For the generalized Laguerre measure
do™@(@) = t% ' dt on [0,0°], ~1 < 0. < 1, the Kronrod extension of the n-point Gauss-Laguerre
formula, with real nodes and positive weights, does not exist when # 2 23, and if =0 not even
for n>1. Asa corollary, n-point Gauss-Hermite formulae cannot be so extended, unless n =1, 2
or 4, confirming earlier empirical results of Ramskii [1974]. These negative results led Kahaner,
Waldvogel and Fullerton [1982], [1984] to explore the feasibility of Kronrod-heavy extensions
for the Laguerre measure. Computational expérience is reported for n = 1(1)10 and ¢=8 (11 for
n=1 and 9 for n=2), where ¢ is defined as in Examplc 2.4.

3.5 Other measures. At the heart of Geronimus’ theory (Geronimus [1930]) is the measure
doy(t) = (1—t3%dr /(1 — pr?) on [-1,1], —e= < p < 1. The corresponding polynomials T, (;d 6,)
and 7, ( ;doy) turn out to be linear combinations of Chebyshev polynomials U,, U, ., and
Ty41s Ty, respectively, This allows explicit construction of the associated Gauss-Kronrod exten-

sion and verification of all properties (a) — (¢); ¢f. Gautschi and Rivlin [submitted]. In addition,
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the degree of exactness is exceptionally high (Monegato [1982; p.146]). Similar expressions for
T, and Ty 4y Tesult if the denominator of d o, is replaced by a positive, not necessarily even, poly-

nomijal of degree 2 (Monegato and Palamara Orsi [1985]).

Gautschi and Notaris [submitted, Thm. 5.%2] nbserve that the problem of Kronrod extension
for the measure ¥4 o®(r) = [+ ¥ (1=tH%r on [-1,1], o0 > =1,y > ;l, can be reduced, when s is
o0dd, to the analogous problem for the Jacobi measure d o(%01/2),

Very little is known for measurcs unrelated to classical measures. One that is likely to
admit satisfactory Kronrod extension for every n ‘2 1 (judging from numerical results of Cali0,
Gautschi and Marchetti [1986]) is the _logarithmic measure do(t) = In(1/t)dr on [0,1] for which
properties (a), (b) and (c) appear to be all true. The same is conjecturcd for measures
do(t) = t% In(l/t)dt, oo = £ Y4, except for oo = =% and n odd, in which case property (b), though

not (d), fails, the polynomial (- ; d 5) having exactly one negative zero.

3.6 Remainder t;zrm. The Gauss-Kronrod formula (3.1) can be characterized in the manner
of Markov [1885] as the unique quadrature formula (if it exists) obtained by integrating the inter-
polation polynomial p3,.1(f ; Ty, T4, Ty s-) (with simple knots T, and double knots T,) of degree
< 3n + 1 and by requiring (if possible) that the coefficients of all derivative terms in the resulting
quadrature sum be zero. The elementary Heqnile interpolation polynomials gy, /1y, ,, associated
with this interpolation process can be easily expressed in terms of the fundamental Lagrange
polynomials [, and l; for the nodes T, 15, ... T, and T}, T3 , ..., Toots respectively (see,

e.g., Calio, Gautschi and Marchetti [1986, Eq. (3.13)]). The coefficients c; ! required to be zero

are then
o = [ kpdo), p=1,2, .., n+l, (3.3)
where
ky@) = ﬂ((% UpOP¢ =10, () =m,(5d0). (3.4)
n (T

Thus we must have

Tt (60 fo T (OUL@OPC = 1)d00) = [o Tra (DL (Om, (Dd o) = 0,

L=1,2,..., n+l, 35



which, by the linear independence of the / :L, is equivalent to the orthogonality condition (2.9).
From interpolation theory there follows that

R,(f)= T (12 F CP (e, (1)d o (t), (3.6)

1
Bn +2)! J.R [

provided f € C 3+ on an interval containing supp(dc). For Gegenbauer measures
do(t) = 1A—tH* =" on [-1,1], with 0 < A < 1, Monegato [1978D], relying heavily on Szegd’s
theory, shows that ITC:+1([ ;do)| < 27" on [—1,1], which in combination with known bounds for
|7, (;d0)] yields an explicit upper bound for R, (f)| in terms of ||f®"*?}|,. Rabinowitz
[1980] improves this bound slightly and extends it to the case 1 < A < 2, as well as to Kronrod
extensions of Gauss-Lobatto rules for — %2 < A <1, A # 0, He also proves that for 0 <A £ 2,
A # 1 the degrees d = 3n+1 and d = 3n+2 for n cven and odd, respectively, are indeed the exact
degrees of precision. (When A = 1, one has exact degree 4n + 1, and when A = 0 exact degree
4n — 1.) Analogous statements are proved for the Kronrod extension of the Gauss-Lobatto rule.
Szegd’s work, again, proves invaluable for this analysis, as it does, in combination with a result
of Akrivis and Forster [1984, Proposition 1], to show that the remainder term R, (f ) is indefinite
if 0 <X <1and n 22 (Rabinowitz [1986b]). For A > 1, the question of definiteness is still
open; it is also open for Kronrod extensions of Gauss-Lobatto rules for any Kv(with the obvious
exceptions).

Error constants in Davis-Rabinowitz type estimates of the remainder (Davis and Rabinowitz
[1954]) for functions analytic on ciliptic d'onmins arc given by Patterson [1968a] for his repeated
extensions of the 3-point Gauss formula. They are compared with the corresponding constants

for the Gauss and Clenshaw-Curtis formulae having the same number of points.

4. Computational methods, numerical tables, computer programs and applications.

4.1 Computational methods. Kronrod originally compuled the Stieltjes polynomial
n:ﬂ(' ;dt) in power form, requiring it to be orthogonal (in the sense of (1.14)) to all monomials

of degree < n. The zeros of ., are then obtained by a rootfinding procedure, and the weights
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Oy, G; from a system of linear equations expressing exactness of (1.10) for the first 2n+1 mono-
mials. (Symmetry, of course, was used throughout.) As he himself observes, the procedure is
subject to considerable loss of accuracy and therefore requires elevated precision. Patterson
[1968a] achieves better stability by expanding =,,; in Legendre polynomials and computing the
coefficients recursively. He does so not only for the Kronrod extension of the Gauss formula, but
likewise for the extension of the Lobatto formula. Further improvements and simplifications
result from expansion in Chebyshev polynomials; cf. Piessens and Branders [1974]. Their pro-
cedure, even somewhat simplified and generalized to Gegenbauer measures, actually can be
extracted from the work of Szeg6 [1935], as is pointed out by Monegato [1978b]; see also Mone-
gato [1979], [1982]. For Gegenbauer measures, then, this seems to be the method of choice.

Once the nodes have been computed, the weights can be obtained, e.g., by the formulae in (2.11).

Expansion of m,,,(;d6) in orthogonal polynomials 1, (-;do), k =0, 1,..., n+l, how-
ever, is possible for arbitrary measures do. Replacing p () in (2.9) successively by m;('; d o),
i=0,1,..., n,indeed yields a triangular system of equations which can be readily solved. Its
coefficients can be computed, e.g., by Gauss-Christoffel quadrature relative to the measure d o,
using [(3n + 3)/2] points; cf. Calio, Gautschi and Marchetti [1986, Sec. 4]. (For another method,

see Cali0, Marchetti and Pizzi [1984] and Calid and Marchetti [1987].)

A rather different approach, resembling (in fact, generalizing) the well-known Golub-
Welsch procedure (Golub and Welsch [1969]) for computing Gauss-Christoffel quadrature for-
mulae is developed by Kautsky and Elhay [1984] and Elhay and Kautsky [1984] and relies on
eigenvalues of suitably constructed matrices. For the weights, these authors use their own
methods and software for generating interpolatory quadrature rules (Kautsky and Elhay [1982],

Elhay and Kautsky [1985]).
Instead of computing, as above, the Gauss-Kronrod formula piecemeal — first the Stieltjes

polynomial, then its zeros, and finally the weights — it might be preferable to compute these com-

ponents all atr once, for example by applying Newton’s method to the system of 3n + 2 (non-



linear) equations expressing exactness of the quadrature rule (2.10) for some set of basis func-
tions in P3,.41. The feasibility of this idca is demonstrated in Calio, Gautschi and Marchetti
[1986], where the numerical condition of the underlying problem, hence the stability of the pro-
cedure, is aiso analyzed. It appears, though, that this method runs into severe ill-conditioning

when one attempts to use it for repeated Kronrod extension (Gautschi and Notaris [in prepara-

tion]).

4.2, Numerical tables. There are a number of places where Kronrod extensions of # -point
Gauss formulae can be found tabulated: Kronrod himself (Kronrod [1964b]) has them
(transformed to the interval [0,1]) for n = 1(1)40 to 16 decimals (also in binary form!). In addi-
tion, he tabulates errors incurred when the formulae are applied to monomials. Patterson [1968a]
(on microfiche) gives 20 S values for n = 65, and Piesscns [1973] 16 S values for n = 10. The
most accurate are the 33-decimal tables for n = 7, 10(5)30 in Piessens et al. [1983, pp. 19-23].
Extensions of (n+2)-point Lobatto formulae, n = 1(1)7 and n = 63, can be found to 20 decimals
in Patterson [1968a] (on microfiche), and extensions of the (n+1)-point Radau formula,

n = 2(2)16 (but incomplete), to 15 decimals in Baratella [1979].

Repeated Gauss-Kronrod extensions of the 3-point Gauss formula, as far up as the 127-
point formﬁla, are given to 20 significant digits in Patterson [1968a] (on microfiche), and the
255-point formula to the same accuracy in Patterson [1973] (in a Fortran data statement). The
repeatedly extended 10-point formula, through the one with 87 points, is given to 33 decimals in

Piessens et al. [1983, pp. 19, 26-27]. Exlensions in the sense of Example 2.6 are tabulated to 20

decimals in Patterson [1968b] (on microfiche), using the 33-point and 65-point Gauss formula, as

well as the 65-point Lobatto formula as ‘‘base formulae’’.

For measures other than the constant weight measure, there are 25 S tables of (2n+1)-point
Gauss-Kronrod formulae for do(t) = t* In(1/t)dt on [0,1], o = 0, ¥4, where a = 5(5)25 for
o =0, ¥, and n = 4(4)24 for 0. = —% (Calio, Gautschi and Marchetti [1986, Suppl. S57-S63]).
15 S tables for the same weight funélions, but withn =4and 12 fora =0, ¥, and n = 6 and 12

for o = =%, are given in Calid and Marchetti {1987]. Kahaner, Waldvogel and Fullerton [1984]
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provide 15-18 S tables of Kronrod-heavy extensions of the Gauss-Laguerre  formula
(do(t) =e'dron[0,e Hwithn =1,g =3(1)6 and n = 10, ¢ = 18 (in the notation of Example

2.4).
We finally mention the 16 § tables of Piessens [1969] of the complex Gauss-Kronrod for-

mulae, with n = 2(1)12, for the Bromwich integral, and the 15 S table of the interpolatory
(n+1)-point formula based solely on the Kronrod nodes, given by Monegato [1982] for
do(t) = dt and n = 2(1)9.

4.3. Computer programs. Fortran p}ograxns' for.Kronrod extension of the a -point Gauss
formula are provided in Squire [1970, p. 279] for n = 20, and in Piessens and Branders [1974] for
arbitrary #. Dagnino and Fiorentino [1984] describe a Fortran program (listed in Dagnino and
Fiorentino [1983]) generating Gauss-Kronrod formulae  for Gegenbauer measures
do(t) = (1-t»*~“dt on [-1,1], 0SA 52, A # 1, using the recursive algorithm of Szegd as
resurrected by Monegato, (cf. Subsection 4.1). Programs for more general measures are described

and listed in Calio and Marchetti [1987], [1985], respectively.

A number of routines employiﬁg Gauss-Kronrod quadrature in the context of automatic
integration are discussed and listed in Picssens et al. [1983]. |

4.4. Applications. The original motivation came from a desire to estimate the error of
Gaussian, or other quadrature formulae (taking the more accurate Kronrod extension as a substi-
tute for the exact answer). The need for such error estimates has recently been highlighted in
connection with the development of automatic integration schences; see, e.g., Cranley and Patter-
son [1971], Patterson [1973], Piessens [1973] and Piessens et al. [1983]. For an interesting
interpretation of the Kronrod scheme of error estimation, see Laurie [1985]. A rather different

estimation procedure is proposed in Berntsen and Espelid [1984].

Patterson’s repeated extensions of the 3-point Gauss-Legendre rule (cf. Example 2.5) has
been used with some success in certain methods to compute improper integrals arising in weakly
singular integral equations. One method employs the € — algorithm to accelerate a sequence of
approximants (Evans, Hyslop and Morgan [1983]), another suitable transformations of variables

to atternuate the singularity (Evans, Forbes and Hyslop [1983}).



Kronrod’s idea has been applied to other types of integrals, for example, as already men-
tioned, to the Bromwich integral for the inversion of Laplace transforms (Piessens [1969]), and to
Cauchy type singular integrals involving Gegenbauer measures (Rabinowitz [1983]). These
applications, especially the latter, are not entirely straightforward, as the occurrence of ,numeljcal
cancellation, or derivative values, may present difficulties. They can be surmounted, to some
e;étcnt, by more stable implementations (Rabinowitz [1986a]), using, in part, Kronrod-heavy
extensions (with g = 2; see Example 2.4). For an application of Kronrod’s idea to cubature for-

mulae, see Malik [1980], Genz and Malik [1980], [1983], Laurie [1982], Neumann [1982], Cools

and Hacgemans [1986], [1987] and Berntsen and Espelid [1987].

An interesting application, first noted by Barrucand [1970], is the use of Gauss-Kronrod for-
mulae for computing Fourier coefficients in orthogonal expansions,

)= 11T, 13 o 1 (Of ()o@, n=0,12,..., @.1)
where #t, () = 7, (;do) is the nth degree orthogonal polynomial associated with the measure
do. The (2n+1)-point Gauss-Kronrod formula (for the coefficient ¢, ), in this case, reduces to an
(n+1)-point formula,

n+l
()= Im, | |a& gﬁm@v@HKMJ), 4.2)
Z

but still has degree of exactness (at least) 27 + 1. The new weights, o, T, (Ty), however, even if
all O‘; are positive, alternate in sign, which somewhat detracts from the usefulness of these formu-
lae. For Gegenbauer measures d o™ = (1—t2* =% % 2 0,1, Rabinowilz [1980] shows that the
degree of exactness 2n + 1 2n +2'if n is od‘d) is beét possible. (4.2) is exact for polynomials of
degree 3n — 1, when A = 0, and of degree 3n + 1, when A = 1, both of which is again best possi-
ble. The highest precision is thus obtained for Fourier-Chebyshev coefficients of the second

kind.
Finite element and projection methods frequently rely on numerical integration but so far,

Gauss-Kronrod formulae, unlike the Gauss formulae, have been shunned. An exception is Bellen

[1980], who uses them in his "extended collocation-least squares™ method.

Acknowledgment, The author is indebted to Professor P, Rabinowitz for providing addi-
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THE HOLOGRAPHIC TRANSFORM

WALTER SCHEMPP

ABSTRACT: The basic idea of holography is to record analog
signals as complex-valued functions on the (complexified)
time-frequency plane. The holographic transform is a ses-
quilinear integral transformation which performs a planar
encoding of the time and the frequency domains of signals
simultaneously by means of interference patterns in the holo-
graphic plane. The 'frozen' interference patterns are re-
corded in the holographic plane by the hologram. The phase
differences between the reference wave and the signal waves
may be decoded by the coherent light of a laser beam in order
to reconstruct the three-dimensional object from the planar
hologram. - The present paper establishes an analog of the
Paley-Wiener theorem for the holographic transform. More-
over, the holographic transform of the Hermite (or oscillator
wave) functions is calculated explicitly in terms of Laguerre
and Poisson-Charlier polynomials, and a series of holographic
identities for digital signals are established. As a result,
new identities for theta-null values are popping up. The
energy preserving invariants of the holographic identities
are classified by the ornamental groups (= dihedral groups D
under the crystallographic restriction m Efl 2,3,4,6 p via
the elliptic Mdbius transforms of the holographlc plane C.

The orbits of the plane crystallographic groups D nle{Z 3,

4 6}) in the holographic plane C admit far—reaching appli-
catlons to computerized holography, information theory,
and neuromathematics. .
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1. THE PERFECT LOW-PASS FILTER SINC

Recall the Paley-Wiener theorem which is at the basis of

the classical sampling theorem.

Theorem 1 (Paley-Wiener). Let ¢ denote an entire holomorphic

function such that

j |¢(x)|2dx < + o0
R ' .

and the estimate

10(z)] < ¢ e?mAlZI (zeC)

holds for positive constants A and C. Then there exists

a function Ve L2(—A,+A) such that

+A
0(z) :f w(t)e ™2ty (z €C)
A

("finite Fourier cotransform" of W).

Proof. 1In order to establish that W= 9%¢ vanishes almost
everywhere outside the compact interval [—A,+A] of the real

line R, it will be sufficient by Cauchy's theorem to prove

lim I, = O (t] > A)

T—+ o0 t

where the compact path PT of the complex contour integral

I, - Jﬁ $(z)e 2TtZy, (T > 0)
Pr

is defined in the following way:



Im
+ T PT
t < - A
Re
-1 +T
Im
-T +T Re
t > + A
P
_T T

The Phragmén-Lindeldof principle (a far-reaching generali-

zation of the maximum modulus principle) implies that an

entire holomorphic function of exponential type that is

bounded on a line must be bounded on every parallel 1line

in €. It follows

W (x+iT)| < Me2TAT

(x € R)

where M > 0 is an appropriate constant. Without loss of

generality, suppose t < -A. Then this estimate shows that

the part of the complex contour integral It that belongs

to the horizontal line of P vanishes as T—+ oo .

T
integrals belonging to the vertical parts of P

T

The line

can be
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handled in a similar way. Indeed, consider fhe right vertical

line of the path P Then the corresponding line integral

T
admits in absolute value an estimate by

T T T
2nty . 2nty . 2nty .
e Ip(T+iy)idy = [ e I (T+iy)i dy + e fg(T+iy)l dy
0 0 T

where T'EA]O,T[. Another Phragmén-Lindeldf argument shows
that

lim§(T+iy) = O

T—+

holds uniformly in y € [O,T']. Consequently, we have

T— + o0

-l;l
lim J e?™Y |y (Teiy)|dy = 0O (T > 0).
0

Again by appealing to the Phragmén-Lindeldf principle, we

conclude the estimate

T T

[ .
]'eznty’¢(T+iy)|dy <y J Q2 yy, 2nTt+A) (2T T_ 2n(teA) T
T‘ T‘

Since t < -A, the last terms approach zeroc as T' — +o

and T—+o00 , -

The preceding proof can be traced back to lectures given
by G.H. Hardy. For details of the simplified version, see

the monograph by Boas [1].



The complex vector space Pw(C) of all entire holomorphic
functions of exponential type at most (A < %) that are
square integrable along the real axis R forms a complex

Hilbert space under the standard scalar product

<bié> :f $(x)d(x)dx.
R

Let T denote the compact circle group. Then the Fourier

transform 9}

space 2% (C) onto the complex Hilbert space LZ(T). By taking
the Fourier cotransforml@h of the modes e2"tHE (LEZ) it

follows that the sequence of functions

is an isometric isomorphism of the Paley-Wiener

sinm(z-{)

m(z-H)

(z + 1)

sinc(z-uy) =

1 (z = 1)

forms a Hilbert basis of % (C). Accordingly each function
ye Pw(C) admits a unique expansion of the form

¥(z) = Z 4 sinc(z-y) (z€C)

uez

with 41> = Z lc 1. It follows c_ = ¢(u) for all pe Z
yez H M

and therefore we established the so-called sampling theorem.

Theorem 2 (Whittaker~Nyquist¥Shannon-Kotel'nikov). A func-
tion $CPW(C) can be recaptured from its values at the

integers by the cardinal series:
$(z) = Z\P(.U) sinc (z-p) (z€C).
wez

The cardinal series is uniformly convergent in each hori-

zontal strip in C.



In terms of electrical engineering, a band-limited function ¢
can be recovered from its equidistant samples by passing the
data samples (¢(p))“ c7 through a perfect low-pass filter.
Since voice and videp form band-limited signals, the sampling
theorem is at the basis of digital signal processing. The

scaled sinc-function serves as a perfect low-pass filter.

Example: CD-ROM (=Compact Disc Read Only Memory) for linear
sequential digital signal processing. The encoding process
is normally based on CIRC (= Cross-Interleaved Reed-Solomon

Code) .

Corollary 1. For all functions ¢ énd ¢ in 2%(C) the sesqui-

linear quadrature formula

holds.

Corollary 2. The complex Hilbert space P ¥ (C) admits the

reproducing kernel
(z,w) ~> sinc (z-w).

For all functions ¢ &€ P¥(C) the integral representation

b(z) :-[ ¢(t) sinc (t-z) dt
R

ie valid for all ze€C.

For a survey of the Whittaker-Nyquist-Shannon-Kotel'nikov
sampling theorem, the reader is referred to the articles by
Butzer [3], and Higgins [7]. Higgins also reviews some of
the mathematics connected with the cardinal series and
traces the origins of the result to before Whittaker. Also
see the paper [21] for a proof of the sampling theorem via

harmonic analysis on the compact Heisenberg nilmanifold.
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As a final application of the Paley-Wiener theorem, we

establish the following result due to S.N. Bernstein (1923).
IﬁEEESﬂfﬁ (Bernstein's inequality). Let Y€ P¥(C) - then
e IRl < wlwiRI_
Proof. Apply Theorem 1 to the entire holomorphic function
¢E: z~=\{{(z)sinc ez (e > 0)

and observe that 1lim ¢, (x) = ¢(x) holds for all x €R.-
e— 0+

Thus the derivative of a band-limited function on the real
line R cannot get too large compared with the value of the
function. This constraint is a fundamental one which has

strong impact to vision. See Marr [12].

2. HOLOGRAPHY

The reasoning of the preceding section depends upon the

duality of the complex Hilbert spaces

L2(R) and L°(R)

or
P 2
PH(C) and L°(T)
performed by the (lineary Fourier transform
——F
b =T
fFrom the physical point of view, however, the separation of
the time and the frequency domains of (band-limited) signals

is artificial. Moreover, it leads to serial algorithms which

are not very efficient ways of signal processing.



The holography or wave front reconstrucfion (cf. Gabor [5])
is based on the following main idea: Consider for parallel
signal processing the wave functions Q)ELZ(H) and their

Fourier transformed versions 5%¢ € LZ(R) simultaneously.

From the mathematical point of view, the simultaneous en-
coding of time and frequency in the holographic plane can
be performed by introducing the quadratic Fourier transform
H(y;.,.) of y € LZ(R) according to the prescription

2wiyt

H(g;x,y) :f b(t+x)P(t)e dt

R

with (x,y)€R @ R. If ¢ €L2(R), the sesquilinear analog

reads as follows:

H(g,dix,y) =f V(o) B (t) e’ ™Y Pat
R

Definition. The cross-correlator

2 2 .

LY(R) x L7(R) 3 (¢,¢) —=H(d,$;.,.)
is called the sesquilinear holographic transform. Its re-
striction to the diagonal, i.e., the corresponding auto-

correlator, is called the guadratic holographic transform.

Key observation: Let A(R) denote the three-dimensional real

Heisenberg two-step nilpotent Lie group with one-dimensional
center Z [23]. The projection A(R)/Z of A(R) along Z induces
a symplectic structure on the plane R 8 R and a twisted con-
volution product on L2(R ® R). The infinite dimensional,
topologically irreducible, unitary, linear representations
of A(R) are square integrable mod Z. The sesquilinear holo-
graphic transform H(Y,¢;.,.) coincides with the projection

of the matrix coefficient of the linear Schrddinger re-
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presentation U1 of A(R) defined bylpeLZ(R) and ¢eL2(R) along

7 to the holographic plane [24],[25],[26]. The coadjoint
orbit associated with U1 under the Kirillov correspondence
carries the symplectic form (X,X')~=det(X,X') and is iso-

morphic to the holographic plane by the exponential mapping.

Obviously the quadratic holographic transform satisfies the

"peak property"
. 2
H(;0,0) = |} 41"

By virtue of the Cauchy-Schwarz-Bunjakovsky inequality, the

sesquilinear holographic transform satisfies the estimate

H(; dsx,y) < 19 e I ((x,y)€R 8 R)
for all ¥, ¢ € LZ(R). More important is the following result:

Theorem 4. For all functions ¥',¢' and ¥, ¢ in L2(R) the

orthogonality relations

H(y', ¢ 5 x,y)A(¥, é;x,y)dxdy = <y'[g><d]o'>
R 8 R

are valid.

As a consequence the following analog of the classical

Paley-Wiener theorem (Theorem 1 supra) obtains.
Corollary. The sesquilinear holographic transform

PR = H{Y,¢;.,.)

extends to an isometry of L2(R) @2 LZ(R) to the complex

Hilbert space of Hilbert-Schmidt operators K on LZ(R)

realized as kernel operators



Ky (x) f K(x,y)¥(y)dy (v €LZ(R))
R
with kernels k €L°(R @ R).

It is known (see Segal [27]) that the kernel k takes the form

keOy) = GTRE) (x-y,y)  ((x,y) €ER 8 R)

5 _
where f€ L°(R ® R) and 25% denotes the partial Fourier co-
transform with respect to the second variable of the holo-
graphic plane. The bijective linear mapping

2 2

L"(R @ R)23f~w»kf €L (R 8 R)
is the Weyl transform. It gives rise to the natural Hilbert-
Schmidt extension of the sesquilinear holographic transform

and hence to the following result:

Theorem 5. A hologram generated on the holographic plane

R ® R by the Weyl transform

fw-:»kf

acts by the Hilbert-Schmidt extension of the holographic
transform as a linear spatial filter in a coherent optical

system.

In Section 6 infra the preceding result will be used to point
out an algorithm for generating sampled Fourier transform

holograms.
3. RADIALITY
The property of the quadratic holographic transform H(y;.,.)

to form a radial function on the holographic plane R 8 R

implies a serious restriction on the wave function ¢ CLZ(R).
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2
Theorem 6. Let y &L (R) be given and suppose that its qua-
Theoreén ©.
dratic holographic transform H(y;.,.) is a radial function on

the holographic plane R @ R. Then

where EnE:C is a constant and Hn is the Hermite function of

degree n > 0.

4. SOME ORTHOGONAL POLYNOMIALS

a) Recall the definition of the Hermite functions
2
H o(x) = e h o (x) (x €R)

where hn denotes the Hermite polynomial of degree n > O
satisfying the orthogonality relation

hn(x)hm(x)e dx = 8
R

b) Let Léa) denote the Laguerre function, i.e.,

1
-5X
(x) = & ° 1§“)(x) (x C€R)

(@)
n
where léa) denotes the lLaguerre polynomial of degree n > O

and order a>-1 satisfying thevorthogonality relations

= 1
-5X
f 1£“)(x)1é“)(x)x“ e % dx = CH

0

c¢) Finally, the Charlier-Poisson polynomials cn(.;a) on N
of degree n > 0 and parameter value a > 0 are needed. The
polynomials cn(.;a) satisfy the discrete orthogonality

relations



x

E a a_n
. . - ]
cn(x,a)cm(x,a)X! e a n.&n

x € N m
where a > 0.

Using the preceding orthogonality relations, we get the

following result:

Theorem 7. The holographic. transform of the Hermite func-
tions reads in terms of lLaguerre functions and Charlier-

Poisson polynomials as follows:

HOHHL 0 y) =4 B Wty )™ 7L ™ (n(xay®))

n

(-1)" _m-n _ 2n "%'2'2 2
= z 1z e cn(m;IZI)

Vmin!

where m > n > 0 and z =4/m(x+iy) € C.

5. THE HOLOGRAPHIC IDENTITIES

In the preceding theorem we identified the holographic plane
R ® R with the complex plane C. If we restrict the holo-
graphic transform H(y,¢;.,.) to the quadratic lattice Z @ Z
in R @ R, i.e., to the lattice Z[i] of Gaussian integers

in € we get

Theorem 8. Let ¥ and ¢ be elements of L2(R) then the holo-
graphic identity

H(giu,v) A p,v) = E H(g,dip,v)1°
(H,v) € Z8Z (p,v) €202

is valid.
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on the left hand side the signal terms occur whereas the
right hand side encompass the interference terms. This
explains the name. It can be established that the holographic
identity implies the classical sampling theorem as a special

case. However, it implies more.

In view of Theorem 7 we get by choosing for ¢ and ¢ the

Hermite functions:

Theorem 9. Let m,n be integers such that m > n > 0 - then
the identity

D O ) L0 (2
(u,v) € 282

%%nm—n ZE: (“2+V2)m—n(L£m—n)(n(“2+v2)))2
(b,v) €202

holds.

The theta function is defined by means of the Fourier series

2 .
9z, 1) = e~ TH 182n1pz

peEZ

which is normally convergent in the domain f(z,r)EﬁCZf Re v > O;.
It was C.G.J. Jacobi (1804-1851) who invented the theta-
function in the 1820s. Since then it has been used in many
investigations by generations of number theorists. It is
involved in many fascinating identities of number-theoretical
and combinatorial import, and it provides one of the most
effective ways to construct automorphic forms. According to
D. Newman (lLecture in honour of A. Sharma, Edmonton 1986)

the theta-function actually belongs to theology, and not to
mathematics. In the early 1960s André Weil, inspired espec-

ially by the work of C.L. Siegel, provided a representation-



theoretic foundation for the theory of theta-function. See
the classical paper by Weil [30]. He found that the theta-
function is intimately connected with the metaplectic (or
oscillator) representation, which forms a most singular
projective wnitary linear representation of the symplectic
group. This representation arises by virtue of the existence
of an action by automorphisms of the symplectic group on the
Heisenberg two-step nilpotent Lie group A(R) mentioned in
Section 2 supra. Moreover, André Weil showed the intimate
relationship to the law of quadratic reciprocity (cf.[22]).
The preceding theorem implies the following identities for
the odd powers of W which can be considered as identities
for the classical theta—function ("theta-null value")

d(r)y = ¢(0,7) = (Ret > 0)

at the point r = 1 of the right half-plane.

See Advanced Problem # 6491, Amer. Math. Monthly 92 (1985),
217.
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See Amer. Math. Monthly 83 (1986), 822-823 and Proc. Amer.

Math. Soc. 92 (1884), 103-110.

6. HOLOGRAPHIC ENCODING
A mapping of the holographic plane
c: R8 R — RBR

is said to be an invariant of the quadratic holographic

transform H(y;.,.), if the identity

H{yix,y) = H(yg 0(x,y))

holds for all pairs (x,y) €R 8 R and all functions ¢ €L°(R)

:\
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in such a way that the assignment ¢y —=y, defines a unitary

operator in LZ(R).

Theorem 10.- A mapping of the holographic plane
c: R® R—R 8 R

is an invariant of H, if and only 1if

ra b ) ‘
0:[ ], detc =1
c d '

with real coefficients a,b,c,d, i.e., oe€SL(2,R).

In the case when o preserves the lattice Z[i] and the radi-

ality of H, the choices of ¢ are drastically reduced.

Theorem 11. Let 6 be an invariant of the holographic iden-

tity displayed in Theorem 8 supra. Then

cos 2nk sin onk
Mm m
o = (0<|kj<m-1)

-sin ZWE cos 2nE
m m

and m satisfies the cristallographic restriction
mef{1,2,3,4,6}.

Proof. Since o preserves the lattice Z[i], the coefficients

a,b,c,d are integers. If

o #{-idpop, idpepl

preserves the radiality of H, the mapping

az+b

Z e
cz+d
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defines an elliptic Mobius transformation of the upper complex

half-plane preserving R. It follows
ltr o] < 2

and since tr o € Z obviously
troe{.—1,0,+1}.

Therefore o is a turn through +w/3, +m/2 or +27/3, and no

other turn is allowed. -

It follows that the holographic identities have the dihedral
groups Dm (m 621,2,3,4,6}) as their groups of invariants.
Nothing like a turn through +w/5 is possible. Only the
classical planar crystal symmetries (or ornamental groups)
and none of the forbidden fivefold symmetries, well-known
from the theory of quasi-crystals, are allowed. For similar
patterns arising in long crested wave models, see the paper

by Schachter [20].

Tt should be observed that the dihedral groups Dm have order
2m and not the order m of the cyclic groups Z/mZ. Actually
this fact reflects that a hologram generates two images, a
real pseudoscopic image and a virtual orthoscopic image. It
can be shown that the generation of orthoscopic and pseudo-
copic images is at the basis of non-linear laser optics and

in particular of non-linear optical phase-conjugation [24].

The figures on the next page show two superpositions of
patterns formed by squares (m = 4).
7. COMPUTERIZED HOLOGRAPHY

The periodic tilings of the holographic plane R 8 R enable to

implement numerically various discretizations of the kernel
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function kf, the image of fE:LZ(H ® R) under the Weyl
transform. In this way an algorithm arises by Theorem 5

supra to generate computer holograms. One way to do this is
to compute in a first step by the FFT algorithm the Fourier
transform f = 9} o R 9 of the "two-dimensional image" g

on the lattice with group D_ (m€{2,3,4,6}) of invariants

and then the second step 1is to compute the kernel kf on the
grid. In the case m = 4 we get Lee's encoding scheme of
generating sampled Fourier transform holograms by decomposing
the complex~-valued functions to be synthesized into four
companents [10], [11]. Four times more samples are used along
one direction than the other are required by this encoding

technique.

In the case m = 6 we get Burckhardt's encoding scheme of
generating sampled Fourier transform holograms by decomposing
the complex valued functions to be synthesized into three

components [2]. Also see Yaroslavskii [29].

For processing hexagonally sampled two-dimensional signals,
the reader should consult Mersereau [13]. A similar procedure

is possible in the cases m = 3 and m = 2,



3. THE NEURAL HOLOGRAPHIC MODEL

A growing number of theorists in the field of neurophysiology
have invoked the principles of hologréphy to explain certain
aspects of brain function. One of the best established facts
about brain mechanisms and ﬁemory is that large destructions
within a neural system do not seriously impair its function.
Indeed, the pioneering experiments by Lashley [9] showed that
80% or more of the visual cortex of a rat could be damaged
without loss of the abil<ty to correctly respond to patterns.
Moreover, Robert Galambos (see Galambbs, Norton, and From-
mer [6]) has surgically removed as much as 98% of the optic
tracts of cats with little effect on visual recognition be-
haviour. These and similar tests on monkeys and even men
{performed during neurosurgery) have been interpreted to in-
dicate that the neural elemeﬁts necessary to the recognition
and recall processes must be distributed throughout the brain
systems involved. The problem that then confronts neuro-
physiologists is essential this: how can the relationships
between neural activity become distributed and stored (tempo-
rarily or permanently) by a neural network. The neural holo-
graphic model developed by P.R. Westlake, K.H. Pribram and
co-workers (Pribram [15], [16], [17]; also see Pribram,
Nuwer, and Baron [18], Ferguson [4]) explains the property of
distributed storage. Indeed, what makes the hologram unigue
as a storage device is that every element of the original
image is distributed by the holographic transform and the
Weyl transform (cf. Theorem 5 supra) over the entire holo-
graphic plane. Aside from this property, holographic memories
show large capacities, parallel processing, and content
addressability for rapid recognition, associative storage

for perceptual completion, and for associative recall. The
holographic hypothesis is in agreement with the experimental
results of Rodieck [19] who found circularly symmetric exci-
tability profiles of visual receptive fields which are

conformal to Theorems 6 and 7 supra and also with the



_thematical results by Marr [12]. See the figure on the
following page and also Kronauer and Zeevi [8]. Moreover,
Theorem 11 supra is in agreement with the results by Welt,
pschoff, Kameda, and Brooks [28] who found that "sensory
convergence into the motor (sensory) bortex is superimposed
on topographically uniform output organization in radial
arrays, the diameter of which is estimated to be 0.1 to
0.4 mm. Thus, neurons with fixed local receptive fields
provide a radially oriented framework (a reference system)
for common peripheral inputs..." More precisely, Nicolis [14]
concludes from his model of thalamocortical pacemaker that
"specifically cognition is manifested at the cortex as a
result of a matching process between pairs of spatial-
temporal patterns, each containing a great number of elemen-
tal units (neurons). In each pair, one pattern (the same for
all pairs) is the unknown information; it is embodied in in-
coming triggers, coded either in sequences of pulses from the
peripheral nervous system, or, if it comes from other areas
of the central nervous system, encoded in strings of macro-
molecular (neuTro-transmitter/hormonal) releases from pre-
synaptic endings. The other pattern of the pair is one of the
pattern/attractors created by the processor; it constitutes
a prestored spatial-temporal "mosaic" embodied in a set of
partly synchronized post-synaptic membrane potentials or a
spatial-temporal pattern of post-synaptic membrane receptors.
The coupling or cross-correlation between the above two
patterns of each pair takes place dynamically via energy
exchanges between equal or neighbouring frequency pairs
shared by both spectré... The result of the cross-correlation
in phase and amplitude determines the "degree of cognition"
between the'incoming and the‘presét or the unknown and the

expected patterns..."

It follows that the holographic transform provides a rigorous
basis of neuromathematics. It includes the transference of

phase informations to bijective linear transformations of the

87



holographic plane by the metaplectic representation of the
symplectic group which explains the neufal'encoding of signal
pulses emphasized by D.H. Hubel and T.N. Wiesel as well as
the parallel processing of information emphasized by F.W.

Campbell and D.A. Pollen.

Finally, let us quote P, Greguss (Lecture presented at the
International Conference on Holography Applications, Beijing
1986): "I would like to express my belief that the holo-
graphic concept of Gabor is as fundamentad as the general
Telativity theorem of Einstein, and it has to be explored
further for a better understanding of nature in which we

live."
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Numerical Methods and Approximation Theory IIl (Ni$, August 18-21, 1987)

THE MOVING GRID METHOD FOR BLN PROBLEM

M. ALIC and R. MANGER

ABSTRACT. We consdidern Godunov method for the Bardos, Leraux
and Nedelec Lnitiaf-boundary probtem Lin the case of nonuni—
form ghids. Computern code and resulits arne abso inctuded.

Let f e C2(R), ay, a, ¢ R and let Qp=10,LLx10,TL,
&T = [0,L1xJ0,T[ for T >0 , L >0. For u e BY(Q.), ¢ R

and ¢ eCé(éT) we introduce the notation

5}
¢}

©

LT
E{u,e,c) = - J S{]u-cl
0 0

+ sign(u-c)Lf(u)-Flc)] %g} dx dt+

or

T
+ J sign (C—ao)[f(TOu)—f(o)J@(O,t)dt -
0

3

- J sign(ec-a ) [f(TLu) - f{e)] o(L,t)dt ,
0 - . -

where (Tou)(t) = lim u(x,t) in L1(O,T) and (TLu)(t) =
x=0+ . :
= 1im u(x,t) in L'(0,T).
x=1-

For a given Uy e BV(70,L[) we consider Bardos, Leroux

and Nedelec problem

au 3 . _ .

(1) %‘Fb—if(U) = 0 in QT

(2) u(x,0) = uy(x) in 10,1t

(3) min sign (aO—TOu(t))[f(Tou(t))=f(c)] = 0

CEJ[TOu(t),aOT

’

(4) min sigﬁ(TLU(t)—aL)[f(TIu(t))—f‘(c)] -0
- ceJ[TLu(t),aL]



for t €l0,Tl where
q[u,B] = Imin {e,R}, max {o,B}).

DEFINITION. A function u e BV(QT) is a solution of
the problem (1)-(&;‘ if it satisfies' the initial condition
(2) almost evefywhere’in 10,TL and if
(5) - - . E(u,wvc)_i-qn
for all ¢ e R and all non negétive ¢ eCé(&T).

Bardos, Leroux apd Nedelec have .proven in {1] the existen-
ce and uniqueness theorem for the above problem.

The following lemma is a fundamental one for our consi-

deration:

LEMMA. Let e BVU(JO,L[) be a step function. If

Yo
u e BV(Qp) is the solution of (1)-(4) and if weBV(Rx10,T'[)

is the solution of the Cauchy problem

ow 9 . - . !
(6) 3 * 3% f(w) = 0 in Rx]O0,TI[
ag s x<0
(7) w(x,0) = uo(x) , x €]0,LI[
ar x>L
then " v
QT'

for a short time T'I>O.

The proof of this lemma follows from the fact that if
w 1s short time solution of Cauchy problem (with short time
T given by some Courant condition, see [6]) then w satisfies
boundary conditions (3) and (4) as a solution of a Riemann
problem (see [2])

For 6 ¢ ]O,éo[ we consider a set of grids {Gé} in

Qp where Gy = {(xg,tj)] and where



0 = to < t < < tn = T
0 = XJ < X‘j< < X‘j = L
-0 m.
J
We suppose that there exist positive constants CO’C1’kO’k
such that
. Joo_,d . J
(8) kg6 = xj q=xy = Axj < ko
ated gd*Tgd
(9) €y <= <,
AXY Axg
i i
where
(10) c, = —1/__
2 max|f(u)l
nel
o .
I = Lmln{ao,aL, inf uo(x)}, max {ao,aL, sup uo(x)}
(this is Courant condition!).
It follows from (8) and (9) that
(1) ne < C,
where C. = v—zr— . We define a regular set of grids as a
2 COKO

set of grids with properties (8), (9) and (10).
For the formulation of Godunov method we use the so-

lution operator S(t) for . BLN problem (1)-(4) and the

averaging operator Aj’ j:O,.;u,nn?. The operator Aj is
defined for u e LT(O,T) by the formula
xJ
. i+1
(A u)(x) = - . ul(gldg
J ax) xJ
i 71

j

j , . &
for x e LX?, Xi+1 [. We define an approximation v by

vé(x,t) = vj(x,t) s
for (x,t) e ]O,LLthj,tJ+1f and J=0,...,n-1, where

0 .
v ({x,0) = Aouo(x)

95
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vI(x,t9) = AjvJ'1(x,tJ), 3=1,...,n0-1,
and

vI(x,t) = s(t-tHvi(x,t))
for t e [t9,69%1] and j=0,...,n-1.

THEOREM. If u e BV(QT) is the solution of the problem

(1)-(4) and {Gb} a regular set of grids in QT then

u o= 1lim v® in L%(0,T:L (0,L)).
60 _

Proof. Let wY be the solution of Cauchy problem

(12) W2 rw =0, in Rxltd, eI
ag s x <0
(13) wix,t9) = v(x,td), x e 10,LI
a; x> L
For wY and t e [tJ,tJ+1] we have fundamental Kruzkov esti-

mates:

(14) inf wJ(x,tJ) < wJ(x,t) < sup wJ(x,tJ) ,
X X

(15)  varlw(+,t);R] < Var [wd(-,t3);R]
and

(16) ij(°’t+T>’Wj(°,t)Hﬂ < |- L'Var[wj(-tj) i R ]

(R)

for t+1 e [tJ,tJ+1] where L is the Lipschitz constant

of f on I . We define the function v° by the formula
n-1 .
=6 _ J. X .
R SR T A
Jj=0
such that
& =6
v o= v |

By using the results of Lemma 3.1. and Lemma 3.2. from [5]
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we obtain that for some positive constant C1,C2 and C3
—6
(1) vl <Gy
L (R2)
(18) varl v%(-,t); R < C,
and
—6 —6
(19) IV e -TOCe,0) ] < Co(]tl+s).
L®(Re)~ 3

Estimates (17), (18) and (19) imply that every sequence
(VG) with 6 tending to zero has a subsequence converging
to a limit in Lm(O,T;L (0,L)). This limit is also in BV(QT),

by some integral criterium (see [7]1,C.IV.§3). By the inequality
& &

(17) there exists a subsequence (v "y such that v V—-v in

6

6
Lj(QT), f(TOV ™y - p and f(TLv 'y - q weak star in Lm(O,T).

Similarly as in (5] it follows that p = f(TOv) and q :f(TLv)
&

if  lim t(v r,¢,C) < 0. TIndeed, from inequalities E(vj,¢,C)§ 0
o
for
¢ e Cy(l0,T] 189,637
¢ > 0 , j=0, ,n-1, C € R

we obtain the inequality

5 n11 L . . .
B(v®, 0,0) < ¥ S |vIx,td-clolx,t))dx}-
j=0 O
(20)

B .
- flvj(x,t3+1)— clw(x,t3+1)dx} ,
O .

for o aco<6T) , 9 >0 . The ihequélity (20) implies, as in
[6]1 the inequality
E(v6,¢,0)5 K6
for a positive K and we fihally have
E(v,9,c) <0
which, because of uniqueness theorem, completes the proof

of Theorem.



y

i,xJ L . Using the

Define vJ = vﬁ(x,tj) for x e [x S oL
i A+
fact that vé\ is the exact solution on the strip
]O,L[x]tj,tj+1[> and the divergence theorem on the trapezium
A . o1 . . L o
with vertices (tJ% ,xii]), (t3+1,x§+1), (tJ,xﬁ), (tJ,xi) we

obtain the Godunov sheme

X R 1-1
] - L L .
(21) I axd - Jaxd - atedryd -yJ
Vi X3 Lovphxp - aTeRlYy L o-ve o0
r=k
where
min . [E(u)-xd ul, if v < v
J K,i b K-1 K
: uelv_q, vy ’
vy
k,1 .
max , . [f(u)—Xj .u ] if vj < Vj
J K,i ' k k-1 !
uelvie vi ’ -
and where j
. AX Y
X = 1
k,1i A+t3

The index k (or 1) is chosen such that the line segment
. e L . . L
(xg Y ),(xﬁ,tJ) (or (xgi},t3+1),(xi,t3)) nowhere
transversaly crosses any Riemann fan.
In order to test the method numerically, we have made

a computer program which solves the BLN problem. Our program

is only one of many possible implementations of the method.

A grid of points (xi,tj), j=0,...,n, i:O,...,mj is auto-
matically constructed:
T
The grid covers
the domain of s °
e domain o ] : N
Xo xh X3 X{ ) xymL
our problem, i.e.
0_ J
Xj—O,ij-—L t‘ . - -
* Ko NS b XA -
0 n 4 2 w= L
t7=0,t7 > T t°_J o )
_y® © o ] 0
I O T R S
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The parameters n,mj (j=1,...,n), tJ(j=1,...,n) are

chosen by the program during the computation. On one time

layer (for fixed j) the grid is uniform, i.e.:

N R B B o wd _d _ - .
x1~xo = X5 x1 = ... = ij ij"T = L/mj = .hj

Yet, the whole grid is still nonuniform, since mj and

Atj = t:j‘”—t‘j depend on j. There is even stronger regula-
rity among the numbers mj: mj+1 can be either equal to vmj
or two times greater than mj or two times less than mj
For given tj, the solution u(x,tj) of the BLN problem

is approximated by a step function:

Vg N

N Ny
v

\im; -4

4

3
Vs

¢ .

w==] i

TRt SN S Xin,

wooxd

The set of all computed step functions is stored in random-
access files. Additional modules of the program use these
files to produce printed or plotted reports containing ap-
proximate versions of the functions u(x,tj) (for some user-
specified values tj).
Now, we will describe essential features of the algorithm
used in our program:
- The computation is adVanciﬁg time layer by time layer.
The grid is being constructed in the course of com-
putation
- In order to construct the next time layer, the program

selects one of three possible patterns:



[e]

17 the grid has equal i S i*A
X; RAIY f(n. t:m
number //
of x-intervals on j-th j////
and on (j+1)-th time layer - ¢
SO Kien xi,
‘: XL e
2° the grid is two times X oy
sparser on (j+1)-th
time layer o
¥ Xilta g Kiian
i 4 it1
3% the grid is two times % K ina Xiva oy

denser on (j+1)-th

time layer

3 &
e Kifpra

X

- The decision which pattern to choose is based on the
following simple heuristics:
"If the function u(x,tj) is oscillating very much and/or
has big discontinuities, then it should be computed more
precisely (i.e. with denser grid)"

To measure oscillations and discontinuities of the fun-

ction u(x,tj) , the following variational norm is introduced:
. m, . . .
J_vd (3,3 2 Jo_ Jo_.
dv =} (vi-vy_4)%, where vl ,=agy, vy =a,

Jj=0 J
r qJ (computed using the grid resulting from pattern 19)

is significantly greater than dj, then pattern 30 , 1s rat-
her used. Else if dj+1 is significantly less than dj ,
then pattern 2° is rather used.
- Time step Atj is chosen so as to keep the quotient
Atj/hj constant through the whole computation. Initial va-
lue Ato/ho is determined as to satisfy the Courant condi-

tion.
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- To compute the next step-function (on j+l1-th time layer)
the program uses formulae for v£+1 which are derived
from more general formula (21). The trapesium (used in
formula (21)) is substituted by a rectangle (pattern
1O,pattern 20) or by one of the triangles (pattern 30).
On figures illustrating the patterns, rectangles and
triangles used are shaded.

~ Since the quotient Atj/hj is kept constant, the
"Godunov function" (used in formula (21)) can be re-

placed by three simpler functions:

<|

min f(u) , for v <
gO(V,V): uelv,vl]
max_  f(u) , for v > v
uefv,v]
1 -
min (f(u)- w) , for v <V
_ UE[V,—\;] 2Ato -
g_1(v,v):
n° -
max (f(u)- u) , for v >V
uelv,v] 2at®
h° -
min (flu)+ u) , for v < v
B uelv,v] 2at® -
g1(v,v)=
: 10 3
max (f(u)+ u) , for v > v
uelv,v] 2at®

- Each evaluation of any of the functions 8g18_1184
involves a constrained optimization problem. In order
to solve these optimization problems efficiently, our

program initially finds all local extrema of functions

o)

o
h S U flu) + 5
2At 2at

The table of local extrema i1s used whenever one of

f(u) , f(u) - u

the functions. go,g_1,g1 is being evaluated.



The program was tested on a number of examples involving

three different

f~-functions.

The results were compared with

known exact solutions (or numerical solutions obtained by a

different method) as given in papers

[371,

[ul.

There is a

good accordance between the computed and expected values.

On the following page a plotted report generated by our

program is reproduced. All data describing the corresponding

BLN problem are quoted. Approximate yersions of the functions
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u(x,tj) for six different values of tj are plotted.
since the value t° is equal to 0, the initial condition
is also visible.

REMARKS. The work described in this paper was carried
out as a part of authors’ collaboration with INA Naftaplin
petroleum Industry from Zagreb, Yugoslavia. The considered
BLN problem has an interpretation which arises in the study
of one-dimensional flow of two immiscible fluids (i.e. oil
and water) through a porous medium. By solving a series of
BLN problems and comparing the solutions with experimental
results, one can estimate parameters describing physical
properties of a given porous material. This is an important
step leading to a reliable petroleum reservoir simulation.
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THE SPLINE TRANSFORM AND ITS APPLIC;ATION IN THE PROBLEMS

OF SIGNALS' DIGITAL TREATMENT

A.H. ARAKELIAN and M.R. VOSKANIAN

ABSTRACT$ In this work the calculating formulas for compu~
ting the spectral characteristics are brought, obtained by
the application of wide class of splines. The programmes of
computing the spectral characteristics were used for inves-
tigating the medical-biological curves.

The practical application of splines shows, that for ob-
taining a considerable degree of closeness of a gpline to
the interpolating function, it is sufficient that the degree
of splines be limited by four,

INTRODUCT ION

A great number of papers is devoted to the treatment
and prophylaxis of postcholecystectomy syndrome, Bubt the num-
ber of research works on usage of differentiated health re-
sort treatment complexes depending upon clinical variations
of postcholecystectomy syndrome course is as far-extremely
insufficient. In a number of papers the significance of sana-
toria and health resort treatment using mineral waters at
early period after choledystectomy is especially emphasized
as a prophylactic method of serious complications after cho-
lecystectomy, ' '

Relative to the problem we have supposed that it would
be timely to make clear the possibility and expedience of
the usage at early periods after operation on bilare tract
the health resort factors in particular, mineral water
"Jermuk" of complex chemical composition, with the purpose
of prophylaxis of postcholecystectomy syndrome and most ra-
pid restoration of working capacity. There are no informa-
tion concerning effect of Armenian mineral waters both under
health resort and under common conditions on patient rehabi-
litation at early periods after cholecystectomy.,
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The paper presented is devoted to the invesbtigation
of the effect of complex treatment method developed for the

patients after cholecystectomy operation, on the disease
course. The investigation was conducted by means of rheopa~

tography namely, utilization of registration of hepatic
blood supply regularities by means of rheohepatograms (RHG)
Fig.l presents a typical RHG-registration.

-Fig. 1.

1, THiE AIM OF INVESTIGATIONS

The basic aim of investigations conducted consista in
the development of effective methods of patients early reha-
bilitation after cholecystectomy by physical factors depen—
ding upon the character of pathologic process in hepatobil-
iary system, in the estimation of efficiency, and in the
recommendations for these methods usage.

The pecularities of clinical course of the pabtients
condition after cholecystectomy, the effect of mineral wa-
ter "Jermuk" combined with pine bath, massage of portal fis-
sure zone muscles, remedial gymnastics on the patient condi-
tion after cholecystectomy, laboratbory indices characteri-
zing the hepatobiliary system condition, the alteration of
liver hemodynamics according to rheohepatography data and
modification dynamics of RGH-curve spectral characteristics

were investigated.

2, METHODS OF SPECTRAL ANALYSIS
75 patients were observed. 50 of them have been trans-—

ferred from surgical clinic to gastroenterological depart-
ment in 2-3 weeks after cholecystectomy 25 patients had a
period from 6 months to 6 years after operation. Almost all
the patients investigated had a pain in the right hypochon=
drium, discomfort in epigastric region after eating, and abt
times nausea, heartburn, bitter taste and xerostomia. Often
the patients have mentioned disorders of intestine emptying

function,
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In the first group of patients the phenomen of asthe-
nic syndrome has been observed., The patients from both
groups have received the same treatment complex during 24-
26 days of hospital treatment, The analysis of data received
has shown that for 95,8% patients in first group and 76,5%
patienbs in second group the pain in the right hypochondrium
has disappeared and for the others the pain intensity has
essentlially decreased. An analogous effect was observed for
the pain in epigastric region. But, unlike the pain a num=
ber of patients have continued to complain of gastric dys-
pepsia effects in particular, heartburn, eructations al-
though with decreased frequency of their appearance. For alk
most all the patients bitter taste, gastric flatulence, as-
thenic effects (weakness, erethism) have disappeared, defe-
cation has normalized. For the registration of hepatic blood
supply character the active electrode was placed across the
medioclavicular line to the right, in the reglon of its in=-
tersection with the costal arch, and the passive one across
the medioscapular line to the right, in the center between
the angle of the scapulae and the crest of the iliac bonse.

For calculation of integral Fourier transformation a
method based on the approximate representation of integrand
function by means of Hermite spline was used[I,BJJPhe spec=
tral processing of the signals was conducted on a computer
in real-time.

Special attention was drawn to functional condition
of liver affected mostiy by cholelithiasis, The liver condi-
tion was invesbtigated by meéns of rheohepatography. Analy-
sis of used treatment complex results was conducted by means
of RHG-curve registration received by 4RGLA apparatus.

The interesting RHG characteristics are splash values
m=0,058 Hz before and n=0,07 Hz after treatment., Fig.2 gives
the typical shape of RHG spectrum before and after treatment
with distinguished peaks. The typical frequency values are
about 0,056~0,04 Hz for m and about 0,067=0,071 Hz for n.



3, ALGORITHM OF RHG SPECTRAL ANALYSIS

In the investigations conducted a calculation proce-
dure based on RHG-curve Fourier transform represented by Her-
mite spline 1s used. The method permits in contrast with
the visual one not only to reduce the investigation time
but also to free the investigator from elements of subjec-
tively peculiar to the visual method[2,33.

The calculation procedure of amplitude-frequency cha-
racteristic determination proceeds as follows:

Let }(x) € Cm[a,glfunction' be analysed where C [a,b]
is a space of real functions continuous on [a,b] interval
and has continuous derivatives of m-degree,

Let

D P QKo < X(<Kp< oo < Xp2b, nel
is a net given on a finite interval [a,b].

Let us denote (x—:u)fm = max[0; (X-:!;)]m.

Definition {1]. S (x) =.5, (x4, m=1{ function is
called Hermite interpolation spline for a function

{(x) € Cmfa_)g], m e it
a) SZM(X;j) = C”"[a,b] ana

2 (¢) ()
ayg s A 309 21 2Am
() = - X Lamet .
Sqm (x;f) = Z, 5 (0o¥0)"+ TEES (09,
for SVery  xe lug, %03, ¢2 04, ..., 7 -4,
035, (x) = {*xe),
/{:O;!,.--)’";' ‘.:0/1,... 4.

s

£ {tx)e C”1la,bl, then 1,47 spline transform of
Fourier for Hermite spline representation of )((X) function

)

. . -4 Hlog
is equal to A/(jw) =;§..Z S2m (x; §) =

n-1 ?Zm o< K o i, Kooy ‘Lax/ ]
4 —= 5 @i ‘ e X
3F[Z‘,,§=o S!x{(x-xé) e jx +£(x-:1¢) € .

If we denote * Aoy

) X Sje K ‘ am - jux
Q (s,w) = /(4)(:".:)"&J C/X,' L (2m,w):y[(”‘jc) € a/x,

Xe o, (i
then it is possible to construct the following iteration
proq?dures for their definition © o

(¢ WK ITAY. % () _ . . - v+ S
O (o‘g) = (e ! - e ! ”)/J‘(,J : a (1’w):[0(0,u)) (7(‘,4»‘ x.)e l.ﬂ),

(«! i,
Q (5)‘«\)):[SO(S“I)(J)"(K:{,L-XC)SG') “l/w

( - ’~qu;,4 IS TRYA (& . ) ‘ AT
and L (O, W)= (C - e )/J(A);Ll ¢ (1,\«7)1[L{U(O,‘*’/"\I%H-jc)' 3 H]/ju);

<
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L(U(Knu):[J(G(K-1¢J)~(xi+‘-ycy‘e‘“waqj/jcd
espectively,
If we denote the Fourier transform of jbd functlon by
/—/(ju) then/; (J(,) H(Ju)_zl//(}(x)_ Zm(x ;))e o/x/_{
£ (2,”A+1)4£&uﬁ31£1££ifiﬁ29_;{2
2T 22”7(2”7)/ ) o .
there /A n/= MCLX(X\“ ), w(f‘“)//ﬂ W) =rmasx ma/x/f(,,) (j) '

9SSt Sy, Kevdd

t, RHG SIGNAL SPECTRAL ANALYSIS

It is known that RHG represents an electrical signal
renerated by an non-stationary source, the liver. Fig.2 and
5 represent the results of RHG-curve spectral analysis for
she first and second groups of patients, respectively.

) -[Og/aé/(jw)/ ) g {uj//‘/(jw)

Ha Ha

g Y S " ¥

The results of invesﬁigations conducted have shown
that the increase speed of frequency value at which the
spectrum peak 1s observed, is conditioned by intensity in~
crease of hepatic blood flow at the expense of both arter-
iagl inflow and venous outflow, Besides, the first group of
patients has larger values of spectral characteristics than
second one.,

Thus, the observations have shown that the used treat-
ment complex including inner dose of carbonate-=hydrocarbo-
nate=-sulphate~chlorine-natrium-calcium-magnesium mineral

water "Jermuk" permits to improve essentially the liver



hemodynamics for both groups of patients. At the same time
information obtained testifies more evidently expressed de-
crease of liver hypozia, for the first group of patients

for which the rehabilitating treatment began at earlier per—
iod after operation.

5. CONCLUSIONS

1. The rehabilitating treatment involving the balneo-
"logiérfactors and conducted at éarly périod after cholecys-
tectomy promotes the favourable dynamics of post~operation-
al syndromes, the normalization of lives functional condi-
tion, circulation of the blood in liver, the most rapid res-
toration of working capacity. ‘

2. The use of signal digital processing methods and
algorithms and their realizing programs stipulates for pds—
sibility of objective quantitative estimation of RHG-curve.
The problem of determining when and under what conditions
RHG-curve changes was so far not solved. The RHG spectral
processing method used in the paper permits to receive the
quantitative information about violations of hepatic blood
supply character.
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AN IMPLEMENTATION OF A SEMI-DEFINITE PROGRAMMING METHOD

TO CHEBYSHEV APPROXIMATION PROBLEMS
M.D. ASIC and V.V. KOVACEVIC-VUJICIC

ABSTRACT: A discretization method for solving linear semi-infi-
nite programming problems arising from Chebyshev approximation
is presented. The method is based on selective refinement of
the initial coarse grid, which enables an efficient treatment
of multidimensional problems. Numerical examples from Chebyshev
approximation are also presented.

1. INTRODUCTION

This paper 1s a natural extension of a sequence of papers
on semi-infinite programming methods ( [2], [3), (4], (5], [6]). We

consider here the following Chebyshev approximation problem:

Let C:[p1,q1]x...x[pr,qr] and let g :C»R, i=1,...,m and
f:C+R be given functions. Find XqyeeaXy such that
(1) max |f(t)-x,g,(t)=...-x_g ()]
tec =1 mem

is minimized.
It is easy to see that this problem can be reformulated as

the linear semi-infinite programming problem:

min x
m+1
(2) .
xm+1>|f(t)—x1g1(t>—...5xmgm(t)l for all teC.
For brevity, let x:(x1r}..,xm+1),

01(x,t):x1g1(t)+...+xmgm(t)—xm+1
Cz(x,t):—x1g1(t)—...-xmgm(t)-xm+1.
Then (2) becomes
min X
m+1

(3) '
xeX, X={xe’™ le, (x,£)€r(t), o (x,t)€-£(t) For all teC).

In the sequel we shall use the following:

Assumption 1. (i) There exists an eX such that the set
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hemodynamics for both groups of patiehts. At the same time
information obtained testifies more evidently expressed de-
crease of liver hypozia, for the first group of patients

for which the rehabilitating treatment began at earlier per-
iod after operation.

5. CONCLUSIONS

1. The rehabilitating treatment involving the balneo-
"logic factors and conducted at éarly period after cholecys-—
tectomy promotes the favourable dynamics of post-operation-
al syndromes, the normalization of lives functional condi-
tion, circulation of the blood in liver, the most rapid res-
toration of working capacity. ‘

2, The use of signal digital processing methods and
algorithms and their realizing programs stipulates for pdsm
sibility of objective quantitative estimation of RHG-curve.
The problem of determining when and under what conditions
RHG-curve changes was so far not solved. The RHG spectral
processing method used in the paper permits o receive the
quantitative information about violations of hepatic blood
supply character,
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AN IMPLEMENTATION OF A SEMI-DEFINITE PROGRAMMING METHOD

TO CHEBYSHEV APPROXIMATION PROBLEMS
M.D. ASIC and V.V. KOVACEVIC-VUJCIC

ABSTRACT: A discretization method for solving linear semi-infi-
nite programming problems arising from Chebyshev approximation
is presented. The method is based on selective refinement of
the initial coarse grid, which enables an efficient treatment
of multidimensional problems. Numerical examples from Chebyshev
approximation are also presented.

1. INTRODUCTION

This paper is a natural extension of a sequence of papers
on semi-infinite programming methods ([2], [3]}, [4], [5), [6]). We

consider here the following Chebyshev approximation problem:

Let C:[p1,q1]x...x[pp,qr] and let g;:C-R, i=1,...,m and
f:C+R be given functions. Find Xqyee Xy such that
(1) max |[f(t)-x.,g,(t)=...-x_g (&)]
tec 121 m-m

is minimized.
It is easy to see that this problem can be reformulated as

the linear semi-infinite programming problem:

‘min x
m+ 1
(2) R :
xm+1/|f(t)—x1g1(t)—..T—Xmgm(t)l for all teC.
For brevity, let x:(x1é,..,xm+1),

Cw(x,t)=x1g1(t)+...+Xmgm(t)—xm+1
Cg(x,t):~x1g1(t)~...—xmgm(t)—xm+1.
Then (2) becomes
min X1

(3) m+ 1 :
xeX, X={xeR |c1(x,t)éf(t), cy(x,t)€-f(t) for all teC}.

In the sequel we shall use the following:

Assumption 1. (i) There exists an xeX such that the set

m



T=X N (xeR™ |

is bounded.
(ii) The functions Bqs--eaBy and f satisfy the Lipschitz

condition.

It is clear that Assumption 1 implies the existence of a
uniform Lipschitz constant L for functions 01(X,t), 02(x,t)
and f(t), i.e.

lo; (x,87)=cy (x,8")] ¢ LIE -t , xeX, i=1,2
(e )-f(eml < Lite? -t .

The main idea of the ﬁethdd Which will be described in
Section 2 is to use selective discretization of the index set C
in order to replace semi-infinite programming problem (3) by a
sequence of linear programming problems. The method starts with
a uniform grid which depends on the Lipschitz constant L and suc
cessive refinements are made in such a way to ensure linear grow
of the number of grid points, while retaining the usual converge

ce properties.
2. THE METHOD

In order to describe the algorithm of the method we need th
following notation:
Let (Mj) denote the sequence of uniform discretizations of

the set C defined by
M= {(p1+k1h$,...,pp+kphg)l kKEO,1,...,29m}, i=1,...,r)

where hi:(qi—pi)/(iji), and m; are appropriately chosen posit
ve integers. Furthermore, for given yeRm+1, teC, h1>O,...,hF>O
let a, and a5 be the functions defined by
r r
a,(s)= ¢ (y, )-rlt)+ i)—jﬁﬂ(si-ti) + §§i1lsi—ti|
() r r
qz(s): cz(y,t)+f(t)+ %;%Kiz(si—ti) + %;%Ei2|si_til ,

where Ai1’Ai2’Bi1’Bi2 are such that
q.(s) > c,ly,s)-f(s), a,(8) 2 c,(y,s)+1(s)
for all s satisfying Isi—tﬂékHj i=1,...,r. It is obvious that

and ay depend also on y,t,h1,...,hp and that they are actually

piecewise linear majorants of 01—f and 02+f, respectively.
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lgorithm 1. Input parameters: ﬂo>0, Lipschitz constant L, in-

zgers My, ...,Mm, satisfying

my>(qy-py)LVE/(24), i=1,...,r.

tep O Set Xb:QD/L, CO:MO, k=0.
cep 1 Solve the linear programming problem:
min X
1 .
XeY, , Yk:{xeRm" [ eq(x,0)4f(t)-4,, cy(x,t)&-F(t)-A4,, teck}

1d let y Dbe a solution. Set j=0, EO:CO.
sep 2. If j=k go to Step 4. Otherwise, for each teEj find
mctions a9, 95 such that

a,(s) 2 c (y,8)-(s), ay(s)>e,(y,s)+f(s),

r all s satisfying [si—tilé hi , i=1,...,r.
Let E3+T be the set of points teEj for which either dq or 4,

s greater than or equal to —ﬁk at some ektreme point of the set
J Jy .- J J
([ty-hy,tq+hylx ... x[tp—hr,tr+hp1 YNc.
et Ej+1 be the set of points in Mj+1 whose distance from the set

7
j+1 does not exceed Xﬁ. Replace j by j+1.

tep 3. If for all tEEj
01(Y7t)éf(t)_ﬂ1<; CZ(Y,t)S-f(t)—/JK,
o to Step 2. Otherwise, let
T= {téEJI 01(y,t)>f(t)-/3k or Cz(Yyt)>—f(t)‘ﬂk}$

eplace Ck by C

k
k+1 !
tep 4. Set x<*'=y, Cy1=Cys ﬁk+1:6k/2, Yk+1=YL/2, replace k by

UT and.go to Step 1.

+1 and go to Step 1.

It is easy to see that Algorithm 1 belongs to the class of
ethods defined in [4] . The result in [y] implies that the Al-
orithm is well defined and that each cluster point of the sequ-
nce (xk) generated by the Algorithm is a solution to (3). Moreover,

x¥ex  for all k=0,1,...

The efficiency of the Algorithm depends on the cardinalities

of the sets Ej and on the number of inner cycles of the type
Step 1 + Step 2 » Step 3 + Step 1 at the k-th iteration, which de-

termines the cardinality of the set C For further analysis we

K
need the following:



Assumption 2. (i) ¥ is the unique solution to (3).

(ii) (01()(",t)-f(t))(cZ(X*,t)+f(t) )=0 for finitely many t’:
Let T* be a complete list.

(iii) Functions f,g1,...,gm are twice continuously differen
tiable on C.

(iv) For each t¢T* the following property holds: If tg is
an endpoint of [p,,q;] and, say, 01(x*,t*)—f(t*):0 then
6(01(X*,t*)—f(t*))/&ti# 0. Moreover, the Hessian matrix with res
pect to the remaining ti’s is negative definite at t*. Similar
property holds if cz(x*,ﬁ*)+f(t*):0.

The following result on the cardinalities of the sets Ej he

Theorem 1. Let Assumptions 1 and 2 be satisfied and let q, @
d, have the form (4). Moreover, assume that Ei14 0, Eize 0 as

h14 O,...,hra 0 for all i=t1,...,r. Then the cardinalities of the
sets Ej generated by Algorithm 1 are bounded above by a constant

independent on j and k.

The proof is similar to that of Theorem 3.1 in [5] and is t
omitted. Let us only point out that under Assumption 2 functions
17 0, Ei2* 0 as h1+ 0, ..
hp+ 0, i=1,...,r can be obtained using the first order Taylor ¢

9, and g, of the type (4) satisfying Bi

pansion of 01-f and 02+f and rounding up the remainder term.
It remains to analyze the number of inner cycles at the k-

iteration, which is done by the following theorem:

Theorem 2. Assume that the functions Y - satisfy the
condition on the set C and f ¢ span{g1,...,gm}. Suppose furth
more that Assumptions 1 and 2 hold. Then the number of cycles ¢
the type Step1 »Step2 +»Step3 +Step1 in Algorithm1 is boundec

a constant independent on k.
The proof follows directly from the following three Lemmas

Lemma 1. Suppose that the assumptions of Theorem 2 are sati
fied. Let y be one of the points generated in Step 1 of Algori
during the (k+1)-th iteration. Then there is a positive constar

independent on k such that

- 2 - k- k _k
Yne1¢ Ymet1 $ Vet DBk+1 » Where y:(x1,... %

m Xme 1 Bk
The proof of Lemma 1 is similar to that of Lemma 3.1 in [6
and is omitted.

?
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Lemma 2. Suppose that the assumptions of Theorem 2 are satisfied
Let y be one of the points generated in Step 1 of Algorithm1 during
the iteration k+1. Then there is a positive constant E independent
on k such that

- 2 -_,.k k _k
ly-yl & EB, 4, where y_(x1,...,xm,xm+1—6k+1).
Proof : Note first that y is a solution to the problem
k min x
m+ 1

01(x,t)éf(t)—ﬂk , 02(x,t)$-f(t)ﬂ6k , LEC, .
By duality theorem there are nonpositive numbers d1(t), d2(t), tecC
such that

]

d,(t)g, (t)- Z: d,(t)g;(t) = 0, i=1,...,m

tec, tec,
Y_od(E)e ) dy(8) = -1,
tec, tec,

By Caratheodory’s theorem we may assume that

m’ . . m" . .
Y d . (tdg.(e9) = > a (edeg (vd) = 0, i=1,...,m
: 1 i N — 2 i
J=1 j=m’+1
(5) m’ . m" .
Jd e+ 3 (el = -1,
J=1 J=m’+1
where d1(tJ)<0, J=1,0.,m, dy(89)<0, JEmi+1,...,m" and mUsmet.

It easily follows that for k large enough each tJ is in the neigh

borhood of some point in ™ . Without loss of generality we may as
i} m? M

ot e e™" and that the

corresponding neighborhoods are disjoint. It is clear that m"¢m"g

sume that these points are t%

We will show that m"=m+1.
Assume the contrary and ‘let

ol ol "
g1(t”> ceeg (1) —g1(€m Ty ... ~g (£7)

F =

* «m’ 7+ *m"
gLt ) ... gt ) -g (¢ ) .. =g (£ )

1 N 1 1 v 1

Due to the Haar condition, the system

Flu = [1 ... 117

u -1

m+1”



has a solution 61 ...,ﬁm,ﬁ Moreover, for k large enough,

m+1°
J s oo

g1(t )u +. ..+gm(t')um+um+1>0 ,

>0

N e .n
—g1(t )u .—gm(t )um+um+1

Multiplying the equalities (5) by ﬁi’s and adding we obtain:

m’ . . .
0> j;d1(tJ)(g1(tJ)u1+...+gm(t3>um+um+1) "
m" .
E : J J o Lo __o _
J m’ +1d (0 (g (8- (BTl ) =mup =

which is a contradiction. .
Hence, m"=m+1 and (5) holds with m"=m+1. It is easy to see
now that d1(tJ) and d2(t3)»in (5) are‘bounded above by a negative

constant G. Multiplying the equalities (5) by §1,...,§m,—ym+1,

respectively, and adding, we obtain

m’ . . m+1
k J BN J
X Bt dod e (3,8 o ) as(ehie, (5, e
j=1 J=m?+1
which implies
k J J J
(6) X1 Beq® Zd (ehye(ed) - iz }m +1d D) + 48 .

Let y be an arbitrary point generated at Step 1 during the itera-
tion k+1. Then

Jy _ J . ,
7 e (y,tY) = £(t)- ﬁk 1+ 5 j=1,...,m
e (y,tJ) =-f(tY )-/3k HV 5 dEmi et me
where Vjéo, J=1,...,m+1. Multiplying the equalities (5) by Yqrenes
Yo' Va1 respectively, and adding, we obtain

Zd (t9)e, (y,t0) « Z d,(t9)e, (y,t9),

Ymet™

J=m’+1
which by (7) implies
m+1
Vae1* Zd (e (e(ed)-B, ov ) 4 ngjod () (-£(e9)-B, 4v ).

Now using (6) we obtain

S J N 2
= X g
y e e d (t )v + E — d2(t )v o A&+1+D6k+1

where the inequality follows from Lemma 1. Hence,

m’ ;
) a4 (e e E d (th DA
j=1

J=m’+1
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so that
2
P
(8) 0» v >DB /G
Note that y and y can be thought of as solutions to system of 1i-
near equations (7) and the corresponding system when vi’s are re-

placed by 0. By Cramer’s rule we obtain
Wy=yi &DyClvyl+oaariv 1),
where D1 does not depend on k. Finally, (8) yields
Iy-5us EA, -

Lemma 3. Suppose that the assumptions of Theorem 2 are fulfille
k _k -

] m a1 )y W (8)=eq (T, 0)-00)4B o, wp(t)=
02(y,t)+f(t)+6k+1. Let t be any point added to Ck during the ite~

ration k+1. Then for k large enough either w1(t) or wz(t) has a lo-

and let §=(xf,...,x

cal maximum £ such that H%-EHS:EQK+1, where F does not depend on !

The proof of Lemma 3 and Theorem 2 is analogous to the proof
of Lemma 3.3 and Theorem 3.2 in [6].
Let us note that an immediate consequence of Theorem 2 is that

the cardinality of the sets C,_ generated by Algorithm 1 grows at

most linearly with k. Theoremg 1 and 2 also imply that the total

number of points generated by the algorithm at the k-th iteration
is bounded above by a function 1linear in k, while at the same

time the cardinality of the uniform grid Mk depends exponentially
on k. Numerical experience seems to indicate that this linear behs
viour is retained also when Haar’s condition is omitted. It shoulc
be pointed out that the existing discretization methods (see e.g.
[9), see also [8]) have an exponential upper bound on the number ¢

points generated at the k-th step.

3. NUMERICAL EXPERIENCE

The method described in Section 2 was tested on a number of
test problems, mostly taken from [1] and [7] . The obtained result
agree very well with the data in the literature. Here we give the
details for three examples. In the corresponding tables N(Ck) and

N(Ej) stand for the cardinality of C, and the average cardinality

k
of Ej at the k-th iteration, respectively.

Example 1.(1]. Approximate (t1)2t2 by v
2

2
121, Vo=t v3:(t1) )

)E e (b)%< 1.

2
VM:tE’ V5:(t2) , v6:t1ﬁ2 on (t1



Following the authors in [1] the problem is reduced to the
approximation problem on [0,1} x [0,2%] . Input parameters are
Bo:’-l.u, L=10.5, m1:2, m2:11.

k ' 0 1 2 3 b 5 6 7 8 9 10 11 12 13

N(Ck) 36 42 46 50 54 58 62 66 70 T4 78 82 86 90
N(Ej) 86 64 61 60 53 Ly U7 U7 L1 45 46 41 L2 41

x13=(0.0000,0.0000,0.0000,0.2500,0.0000,0.0000).
Exact solution x*=(0,0,0,1/4,0,0).

Example 2.[7] . Approximate exp(—(t1)2—t ) by functions v,=1,
- - - 2 - -

Ye_t1, v3-t2, Vu—Z(t1) —1,.v5_t1t2, V= 2(t2) -1 on the set

LO,11 X [0,1].

Input parameters are: 60:2.5, L=24.2, m,=m,=7.

k | 0 1 2 3 u 5 6 7 8 9 10 11 12 13

N(C, )| 64 70 76 79 83 85 88 93 97 100 103 106 108 111
N(Ej) 0 46 44 4o 40 u0 k2 39 36 37 35 36 34 36

x132(0.9858,-0.3480,-0.9027,-0.1446,0.4246,0.1129) .
Solution in [71 : (0.9858,-0.3480,-0.9027,-0.1446,0.4246,0.1129).

Example 3. [1] . Approximate t2 by functions V1:t, v2:exp(t)
on the interval [0,2].
Input parameters are: ﬁ%:Z, L=13, m1=8.
k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13

N(Ck) 9 11 12 13 14 15 16 17 18 19 20 21 22 23
N(Ej) 0 7 7 6 6 6 6 6 6 6 6 6

x132(0.1842,0.4186).
Solution in {1] : (0.1842,0.4186).
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ON THE ZEROS OF A POLYNOMIAL

M. BIDKHAM and K.K. DEWAN

ABSTRACT: In this paper we have considered the problem of finding the
maximum number of zeros in a prescribed region.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result is due to Mohammad [ 4]

n
THEOREM A. Let p(z) = z akzk be a polynomial of degree n
k=0
such that
a >a

then the number of zeros of p(z) in |z] f_%‘ does not exceed

1 %u
1+ =
log 2 Log ag
As a generalization of Theorem A, Dewan [1] proved
n
THEOREM B, Let p(z) = Z akzk be a polynomial of degree n
k=0
with complex coefficients such that
|mg%—8|iuiﬂﬂ,k=0,L.“,n
for some real B , and
ol 2 lay 1l > oo > fagl > lagl

then the number of zeros of p(z) in !zl 5A%» does not exceed
n-1
la |(Cos o + Sin o + 1) + 2 Sin o ) Ja, |
n L k
1 k=0
log
log 2 la

O ]

THEOREM C, Let p(z) =

il o133

alzk be a polynomial of degree n
k=0 °

with complex coefficients. If Re a Ima = B

Kk = dk 5 " % for
121




k=0, 1, ..., n and

o > Zoc0>0,

> e >0
n Z Z

n-1 1

then the number of zeros of p(z) }ﬂ |z| i%— does not exceed

.

TN
o+ B
1 1 noyZo K
og ——————————
log 2 |aO|

1+

1n this paper, we generalize Theorems A, B and C for different
classes of polynomials which in turn also refine upon them. More

precisely, we prove the following.

n .
THEOREM 1. Let p(z) = ) aizl be a polynomial of degree n
i o
with complex coefficients. If for some real § , |arg a; - Bl <a<m/2,

0<i<n and for some 0 < t <1

k
lagh < elaji < ovn < e%a | > ¢ a1 200 2

then the number of zeros of p(z) in iz| < 5 does not exceed.

ntl |a |

K+ o
2c° ]ak|(}osoc+2tSinoc ) tliail—(COSOL+Sin(X—l) t
i=0

n

log
1 2
og tlaol

REMARK 1. For t =1 and k = n the above theorem reduces to
Theorem B, If in addition to t= 1 and k= n, a = B =0 then it

reduces to Theorem A.

n

THEOREM 2. Let p(z) = Z aizl be a polynomial of degree n
i=o

with compex coefficients. If Re a, = o, , Ima, = B, , for
— i i i i’ ==

i= 20,1, ..., n and for some 0<t<1l

k k+1 n
< < < ... < > > ..
0 Og £ toy < ftoo >t O pq 2 2 to,

then the number of zeros of p(z) in |z] i%— does not exceed
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n
+ 4
o+ 7|8, et
1 k4= 1
1+ log { }
1 2
og tluol
REMARK 2. For k=mn and t = 1, Theorem 2 reduces to Theorem C

nd for k=mn, t =1 and Bi =0, 0<1i<n, it reduces to Theorem A.

The proof of next theorem follows on combining Theorem B and Lemma 2.

n

THEOREM 3. Let

be a polynomial of degree =n

i
p(z) = Z aiz
i=0
jith complex coefficients such that

|arg a; - B] <o <w/2,1i=0,1,

for some real B -, and

la|

Axda _h 2 2|

then the number of zeros of < |z|

p(z) in R,

la_|(Cos o + sin o +1)

|v

A o

lao!’

f_%— does not exceed
n
+ 2 83 '
2 Sin o ‘ 2 [ail
i=0

log
log 2 |30|

where R2 is the same as defined in Lemma 2,

The above Thoerem

if o= B = 0, then it

is a refinement of Theorem B.

In particular,

givesa refinement of Theorem A.

n ,
THEOREM 4. let p(z) = ) 4.z .- If Rea, = q,, Ima, = B, ,
— j=¢ 1 - i i i i
for 1 =0, 1, ..., n, and
>
A N AR 0y 2 g > 0, o 0,
then the number of zeros of p(z) in R4 < lz‘ < %» does not exceed
n
o, + 1 g,
1 i=0
1+ log
*log 2
: |



where R is the same as defined in Lemma 3 .

4
Theorem 4, follows from Theorem C and Lemma 3. If Bi = 0 for

i=0,1, ..., n then it gives a refinement of Theorem A otherwise it

is a refinement of Theorem C.

2. LEMMAS
5 i
LEMMA 1. Let p(z) = | a;z" be a polynomial of degree n such
i=0. _ '
that |arg a; - BI <o < w2 for 1=0,1, ..., n and for some real
8 , then for some t > O
Itai - ai—l! h [tlai| - |ai_lHCos a + (t|ai| + |ai_l[)Sin a .

The proof of the above lemma is omitted as it follows immediately

from the Lemma in [3] .

LEMMA 2. Let p(z) be the same as defined in Theorem B. Then

p(z) has all its zeros in the ring shaped region given by

RzilinRl M

Here 1
2

R =S Ly e Sy

L2° Jag M 4 anl M a,

and
- 1
2

_ 1 2 _ 2.3 . Ay 2 2
R, 22[ R b ], Iaol)+{4|aOlRlM2+Rl]b] o, - lagh ]

n-1
L lan[(Cos o+ 8in o) + 2 Sin o Z

=
]

ol

M, = |a & (£ 5D 2 SinanillalJfR(l "2 1) (cos o + sin )]
- 0s in
2 n'1 \an\ k=0 k 1 Ian >
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LEMMA 3. Let p(z) be defined as in Theorem C . Then p(z) has

all its zeros in the ring shaped region given by

R, < [z] <R

4 = 3 0
Here
L
2 2 M, 2
c, 1 1 [ 1 1 3
= (= =2 ) 4+ > (= - = + =2
Ry= 5t M){A(u ) oc}
n 3 n 3 n
and
1
1 2 2.3, 4, 2 2,2
= .= _[- - + + -
R, 5 Ralbl(M4 Iaol) {4|aOIR3M4 R3|bl o, ]aol) }1,
2M
A
where

My= o R,
1 n-1
R= 1+a—I2_Z IBk|+|Bn|],
n k=0
M, = Ry LGy, * 1B DRy + oy k- (g + (B DT,
c = ]an - an-—ll ,
b = a; - ag .

Lemmas 2 and 3 are due to Govil and Jain {2] .

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Consider




For Iz|it§

|F(z)] <

A

= 2

| A

F(z) = (t - z)p(z)

1t

n
(t—z)(ao+az+...+anz )

1
n+1 e i
= _az +ta, + ) (ta, —a, )z
n 0 i=1 * i-1
1,
n+1 2 i
t |anl +t|a-0[ +i£l |t|ai| - |ai_l||t Cos o

n .
+ 7 (t]ai[ + fai_ll) ti Sin o , (by Lemma 1)
i=1

k
e [ 4elagi + [ elag] - la et cos @
1=1
) | et
+ ) (Ja, _ - t]a,|)t” Cos o
i=k+1 i-1 i

s i
+ ) (tlag ]+ lai_ll)t Sin a
i=1

n .
Iak| Cos o + 2t Sin a i——Zo et ]ail

+
tk 1

nt+1l

—tlaof(CosOL+Sinoc-l)-t ]anl(Cosa+Sin0L—l)

2tk+l|ak] Cos o + 2t Sin o

I o~
o

I
=

i=0

-t lan|(COS o+ Sin a - 1).

Now it is known (see [5], p. 171) that 1f P(z) is regular, P(0) # 0 and

|F(z)] <M 1in
does not exceed

we get that the

| z] < 1 then the number of zeros of P(z) in |z] i%-

L
log 2

number of zeros of T(z) in |z[ i%— does not exceed

M ,
{1og W}. Applying this result to F(z) ,
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n .
2tk+l|akICosoc+2t Sina ) tl[ail—(Cosoc Sinot-=-l)|an|tn+l
1 i=0 .
—1——7{ log }
o8 t]a0|

As the number of zeros of p(z) in [z[ _<_%— does not exceed the number
of zeros of F(z) in |z] f_% , the theorem follows.

Proof of Theorem 2., Consider

F(z) = (t - z) p(z)

n
_ n+1 i
-a z + tao + _z (tai - ai_l)z

i=1

For lz|it_<_l,

+1 u i
[F(2)] < - ]an| + t|a0| + z 'tai - ai—lltl

n+1 o i
st lanl +t]aol +i:§:l|tui—ai—llt
i 1
syl +ele De
i=1
L |t elagl + ) .
<t ]an t a0| . l(toti - ai_l)t
2 i, B i
+ ) (o ~ta )t  + 7 (B, | +t|B. e
1=K+ -1 i 1=1 i-1 i
n+l | kt1 nt1l
<t |an|+t|a0[ + 2t o, -t -t an+tlBOI
+ n .
S lIBHI +2c ) t1|Bi’
i=1
< kt1

2(t

vod
k+t4_Z t lBi[)
i=0

and following on the lines of the proof of Theorem 1, the proof of

Theorem 2 can be completed..
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A POSTERIORI ERROR BOUNDS FOR EIGENSYSTEMS OF MATRICES

Z. BOHTE

ABSTRACT: In this paper an a posteriori error bound for approximate
eigenvectors corresponding to simple eigenvalues of non-defective
matrices is obtained. Under some additional assumptions the computable
bound for the condition number is derived. Some illustrative numerical
examples are given.

1. INTRODUCTION

A  posteriori error bounds for computed eigenvalues of
non-defective matrices and for computed eigenvectors of normal matrices
are well-known (see [41).

Let us summarize some of these known results.

Throughout this paper let A be a non-defective square complex

matrix of order n and denote its eigenpairs by (Ai,xi), so that

(1) Ax, = Ax i=1, .. ,n

it
Denote by X the matrix of eigenvectors
Xo= [xy, oa., x, ]

which is by assumptibn non-singular.

Let (Xx,x) be an approximate eigenpair, usually computed by some
numerical method, and let

(2) r = AX - Ax

be the corresponding residual vector. Then there exists an eigenvalue
of the matrix A such that

(3) min |x, - Al < k() JIell /x|
i<i<n 1
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where

(%) k(a) = ()l x

The bound (3) holds for any of the norms 1, 2 or <. The number
k(4) is called the condition number of the matrix A with respect to
the eigenvalue problem. For normal matrices kZ(A) = 1 and (3) gives
the most satisfactory and easily computable a posteriori bound.

For normal matrices Wilkinson (4] gives the corresponding a
posteriori error bound for the approximate eigenvector x. Let X be an

approximation to A;, let x, and x be normalized so that

(5) eyl =l = 1

and suppose that X4 is multiplied by such a complex factor of modulus
1 that in

(6) X 2 axy + ... +ax
the coefficient ay is non-negative:
(7) a,;20

Further, let

(8) d= min |x, = x| £ 0
2<i<n *
then
(9) e =y, < Cera) 1+ (er)®)'?
where
(10) c = frll,

To use (9) in practice we need some information about other
eigenvalues so that we can estimate the distance: d from ‘bel * ‘“nless

¢ is significantly less then d, (9) provides no useful boun. .

Let us now consider a general non-defective matrix.
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2. ERROR BOUND FOR APPROXTMATE EIGENVECTOR

Under the same conditions as above we shall prove that for the
general non-defective matrix the bound for the error in the approximate

eigenvector x is

() [ =%l < 2k, (A)erd

From (1), (2) and (6) it follows

- Aa_x

r = (A1 - X)a1x1 o+ (ln X

If we define

. 1
D = diag(0, (A, = X)"", ..., (xn - A7)
we have
(12) XDX—1r T AgX, + ...+ A X U
and
Clearly,

D,
where d is defined by (8). Using the notation (4) and (10) we can
write the bound (13) in the form

1/d

(14) ||u||2 gAk2(A)c/d

Further, under the assumptions (5) - (7) we have

(15) ’|a1X1|!2 = a_l

Since
X=Xy = (31 - 1)x1 + U
where u is defined by (12), we have

(16) x -l <

a1 - 1| + |hﬂ|2
On the other hand
@qXq = X - u

and using (15) and (5) we have



1= fully < ay 2 1+ Il

From this two-sided inequality it follows
(17) lag = 1] < lull,
The bound (11) follows directly from (16), (17) and (14).

For normal matrices the bound (11) is slightly weaker then the
bound (9) where the orthogonality of eigenvectors has been taken into
account.

In order to be able to uée the bound (11) in practice we need
also approximations to 11l other eigenveétors. The practical difficulty
is that we must calculate an upper bound for‘k2(A) and a lower bound

for d from an approximate eigensystem.

3. THE COMPUTABLE UPPER BOUND FOR THE CONDITION NUMBER

Let us denote by k the spectral condition number

- _ -1
ko= ky0a) = Ixl, 1577,
In order to be able to compute a reliable upper bound for k we shall
make a number of additional assumptions.
First, suppose that all the eigenvalues Ai are simple and that we

have calculated an approximate eigensystem (ui,yi), i=1, ..., n.

Let all eigenvectors x; and their approximations y, be normalized
gl =yl =1, i=1, ...,

and similarly to (6) and (7) we suppose that X; are such that in

+ agi)x. +

(i)
X
i i es + an

Y
Yi—a1 X1+ N

all
(i)
a;7’ 20
Denote the matrix of approximate eigenvectors by
1= rY1, ces yn]

Then, clearly an approximation to k is the number

(18)  a =izl = Rzl



but it may not be an upper bound for it. This may happen because Y is
only an approximation to X and it may be ill-conditioned and Z may be

a poor approximation to Y'1.

We shall have to calculate all the residual vectors

ry = Ayi - WYy i=1, ... ,n

Denote

r

max ”p.”
1<ien 107
and

m = min |p, - u,|
iy +
Now, let us make the main assumption, that all the circles

Ci:(ui,r’k), i:1, sea 4 NN

with the centres g and radii rk in the complex plane are disjoint.
This means that in every one of them lies exactly one eigenvalue of
the matrix A. We call A, the eigenvalue of A lying in C; and from (3)
we have the bounds

(19) Dy =wlsrk, i=1,...,n

i

To obtain the bounds for the errors in y; we need a lower bound for

d. =min e, =A,] , 1i=1, ... , n
ooga b

and clearly it follows from (19) that

(20) dzm-rk=e, i=1,.1.,0

From the assumption that all C; are disjoint it is obvious that
e>0

Therefore it follows from (11)

”Xi'yi”2$2”f“i“2k/e sy i=1, ..., n

These inequalities may be written in the form
1 X - Ylig < 2lrllg kre
where R is the residual matrix

R=1lr,, ..., rn]
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° Because

(22) k< X Il
and
(23) Ixllg = ¥

we need only a bound for ”X"1HE,
Let us denote
F=Y2-1

Then,

(24) E=zXZ-I=F+ (X-Y)Z
and using (21) we have the bound

(25) 1Elg < IIFllg + 2 IRlIg 2]l k/e = &

Suppose that
(26) g <1

This means that the matrix A should not be too ill-conditioned with
respect to other terms in the right-hand side of (25). From (24) -

(26) it follows directly
-1
@) X g < Hzligra - &)
and we have the final inequality from (22), (23), (27), and (20)
(28) k< llzllg/¢ - IIFllg - 2lRlig IZllg k/(m = rk))
Under the assumptions (20) and (26) both denominators on the
right-hand side of (28) are positive.
' Denoting

b= 1 IFlly, o= 2RIzl
and recalling (18) we can.write (28) in the .form

k <a/(b - ck/(m = rk)) = a(m - rk)/(bm - (e + br)k)
leading to the quadratic inequality

(29) (c + br)k? - (ar + bm)k + am >0

For the exact eigensystem r = ¢ = 0 and we obtain from (29) an



obvious bound
k <a/b

where the only errors are made in the computation of the inverse of

the matrix of eigenvectors.
From (29) we obtain the bound
(30) k< (p- (0% - hamg)'/?)/(2q) = K
where
p=ar +bm q-=c¢+br

This bound can be computed directly from approximate eigensystems. It
can be shown that for sufficiently small r the numbe; K is greater
then 1 and gives therefore a useful bound for the cohdition number
kZ(A)' It may happen, of course, that the number K is complex and then

we have no bound for k.

The bound (30) can be used in the bounds (3) and (9) for individual

eigenpairs. For the errors in eigenvalues we have from (3)
GOy -l sklngl,
and for the errors in eigenvectors we have from (9)
(32) ”Xi - yi”Z L 2K HPiHE/gi
where

g: = min (Ju, - u,| - Kllr.l)

* J#i l J Jre
We must remember that thesg bounds hold provided all the above

assumptions are fulfilled.

4, NUMERICAL EXAMPLES

Let us illustrate the obtained bounds by some simple examples of
matrices of order n = 3.

(i) The matrix

3 5 -6
A=]6 12 -36
2 5 =15
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has eigenvalues

X1l: 1, X2

and the spectral condition number

= 2, X3 = —3

kz(A) = 32”“4...
If we take
M= 14107, uy =24+ 2,107, My =3 - 3.10™

and for eigenvectors the correct eigenvectors rounded to 5 decimal
places and also the correct inverse to 5 places, we obtain the bound

K = 52°u4, ..
By the way, the number
a = 33°45...

is a very good approximation to kg(A). The bounds (31) and (32) are

severe overestimates in this case. For instance,

Ny - gl = 107>

but

Klleyll, = 910,107
and

ey =y, = 0°52.1072
but

-5
2K |lrgll, /g, = 1836.10

(ii) The matrix

9 7 -2
A= 110 16 =2
4 -8 19

has eigenvalues

X1 = 9, l2 = 18, l3 = 27

and

ky(R) = 1 + 2 = 27U1...



If we take .

5 5 5

wy =9+ 3.1077, uy = 18 + 5.10 7, My = 27 + 6.10‘

and similarly round the eigenvectors and the inverse matrix} we obtain
the bounds for the condition number

K = 3°87...
for the error in the third eigenvalue

[ =
Kllr - -2
fI 3H2 = 24,10

and for the error in the third eigenvector

2K ||r’3||2/g3 - 5.107°

which is very satisfactory. The approximace condition number a is almost
the same 3°87.

(iii) The upper triangular mstrix

1100 0
A = 2 0 ”
100

with eigenvalues
X1 =1, kz = 2, X3 = 100
is very ill-conditioned, namely

kz(A) = 200°05...

With

5

T I O T - e

, Wy = 100 + 1073

and rounded eigenvectors we get a complex number K and cannot use any

of the bounds for the.errors. The approximate condition number a is

equal to 245.
%

5. CONCLUSIONS
&
It is rarely Jjustified to use expensive a posteriori bounds which
are usually too pessimistic. But compared to a posteriori bounds for
the solution of the system of linear algebraic equations where the

bound is approximately 6 times more expensive as the solution by the
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Gauss elimination, here, even with the most economic methods (e.g. the

3

QR method), the additional number of arithmetic operations 6n- is not
worrying. Of course, for practical use, some sort of iterative

improvement of the approximate eigensystem is more desirable (see [31).

Recently Chu [2] generalized the Bauer-Fike theorem {[1] to
defective matrices. Along these lines it would be worthwhile to attempt
finding a posteriori bounds foribthe computed eigenvalues and
eigenvectors using the Schur form.

®
Acknowledgement. I wish to express my sincere thanks to I. Vidav who

proved the bound (11).
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ON THE UNIFORM CONVERGENCE OF MODIFIED GAUSSIAN RULES FOR THE

IUMERICAL EVALUATION OF DERIVATIVES OF PRINCIPAL VALUE INTEGRALS

G. CRISCUOLO and G. MASTROIANNI

ABSTRACT: The authons prove some convergence theorems of a modified
gaussian rule fon the evaluation of the derivatives of Cauchy prin-
cipal value Aintegnals.

1. INTRODUCTION
Let o(wint) denote the integral in the Cauchy principal value
sense of the function f, associated with the weight w and defined by

o

1
f
(1) @ (uwizt)= £(x) w(x)dx=1im (x) w(x)dx , -1<t<1.
x~t esot x-t
-1 |X—t|£e>

In order to approximate the integral (1) we may consider the gaussian

rule

-f(t
w(x) - f(xm,l) (t) '
dx + = A ,— , t#x_ ., i=1,2,...,m ,
X-t m,1 x .-t m,1

i=1 m,i

¢m(wf;t)=f(x)

-1

where Xm,i’ i=1,2,...mt are the zeros of the m-th orthogonal polynomial
associated with the fuﬂction w and Am,i’ i=1,2,...m, are the Christoffel
constants.

If the function f is "sufficiently smooth", then the sequence

{@m(wf;t)}converges to ®(wf;t). Furthermore, it is easy to prove that

the inequality
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|¢(wf;t)-®m(wf;t)|§const m_k w(f(k);m—l)logm , feCk(I), k21,

hold on every closed interval Ac(-1,1). <

Unfortunately, in the general rule, if f is an Holder continuous
function, then {@m(wf;t)} doeé not converge to ¢#(wf;t) almost everywhere
in (-1,1), (see[4]).

in order to avoid this problem, the authors iitroduced in [1] a new

formula @;(wf;t); this is defined by &

1
m filx_ .)-f(t)
(2) e (wf;t)=f(t) w0 dx + 5 Ap 4 — , me N
x-t i=1 4 ‘xm’i-t ’
-1 i ) 1#C -4

W

where c denotes the index corresponding to the 'closest knot' Xo(m)™m, ¢

to the singularity t, defi;éd by |t-xm’c|=min{t—xm’d,xm,d+1-t},xm’d§t§xm’d+l

for some de{0,1,...,m} with Xm,o=_1’ xm,m+l=l‘

The "modified gaussian rule" Qz(wf;t) has degree of exactness 0;

. nevertheless the hypothesis xm’i¢t, i=1,2,...,m becomes unnecessary.

l Notice that the derivative %t ¢(wf;t) appears in some integrodiffe-

rential equations concerning several branches of physics and engineering.
Further, the analytic solution of the integral equations with loga-

rithmic singularities in the kernel may be represented by the derivati-

ves of Cauchy principal value integrals.

In this paper we study the uniform convergence of the sequence

5 ar_ ¢;(wf;t)) to QB— #(wf;t) on (-1,1) for p20.
U aep § aP
This is of interest in solving singular integral equations with a
collocation method too. Indeed, uniform convergence results éf a qua-
drature rule on the whole interval (-1,1) are necessary to study the
convergence of the method when, for example, the collocation points are
zeros of orthogonal polynomials in {-1,17. ’

The convergence theorems are stated in the Section 2; they generalize
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previous results [2] and are proved in the Section 3.

2. CONVERGENCE THEOREMS AND ESTIMATES OF THE REMAINDER
We start with some notation. Throughout this paper DT denotes the
space of the continuous functions in I:=[-1,1] satisfying a "Dini type"

condition, and LipM A the space of the H6lder continuous functions; i.e.:

1
DT:={£eC(I)/ j 871 w(£38)ds < )
(o]

LipA:={£eC(T)/ w(f38) s M&" , M0, 0<As1}

where w(f;6)=Tax | |f(x)-f(y)|,‘x,yele §20, is the modulus of continuity
x-y|<8§

of the function £. We ought to remark that DTDLipMA.

In the computation of the integral &(wf;t) defined by (1) we suppose
that the weight function w can be written in the form w(x)=y(x) ua’ﬁ(x),
xeI, with ua’B(x)=(l-x)a(l+x)B, a,B>-1 and O<yeDT.

Let {Pm(w)} be the sequence of the orthonormal polynomials on I as-

sociated with the weight function w; we denote the zeros of
= . m
Pm(x)~Pm(w,x)=amx + lower degree terms , am>0,

by xm,i=xm’i(w)=cos Om,i’ 1=1,2{...,m, so that

Ozem,m+l<em,m<'"<Qm;2<em,l<om,o= e

Furthermore, the numbers A .=A .(w), i=1,2,...m, are the Christoffel
m,i “m,i -1

. - 2 -1
constants defined by Am’i(w)=xm(w;xm’i) where Am(w;x)={?gi Pk(w;x)]
is the m-th Christoffel function.

Denoting by Ei(wf)=®(wf)-¢;(wf) the remainder term of the formula

®;(wf) defined by (2), we can state the following



THEOREM 1. ‘
If w=¢uu’3, >0, w(P)sDT, a,p20, then for any function f such that
P
(p) dP K (F i 1y to & ¢(uf;t
£'P/¢DT the sequence s ¢m(wf,t) converges uniformly to 4P (wfst)
on the whole open interval (-1,1) p20.

Moreover, if f(p)ELipMX, 0<Agl, it is also

P,
& gF(ufstr)

< const m_)\ logm, -1<t<1, p20
dtp m

THEOREM 2.

If w=¢ua B, y>0, w(P)eDT, ~1<a, B<O, thén for any function f such
that f(P)eLipMA, O<ASl, it results

(3)

P
qop Em(wf;t)

< const m-)\uou+>\/2,ﬂ+k/2(t) log /_"‘T , -1<e<l, pz20
1-t ‘

In particular, if o+A/2,B+A/220 then by Theorem 2 it follows

Corollary 3. If w=¢ua’8, y>0, w(p)EDT, -4<a,p<0, then for any function

f such that f(p)sLipM)\, -2 min(a,B)<ASl, the Sequenceggg_ ¥ (ut3t) }
1P "

P
converges uniformly to a4

¢(wf;t) on the whole open interval (-1,1),
dtP

p20.

Moreover, taking into account (3), it seems that the sequence
4P

deP

Nevertheless, a favourable case of interest in the applications comes

¢$(wf;t) can not converge uniformly on (-1,1) for a«,ps-3, generally.

true when tEAm:=[-l+const muz, l-const m_z]. In fact, by Theorem 2 we de-

duce also

Corollary 4. If w=¢ua’ﬁ, P>0, w(p)s DT, -1<a,R<0, then for any function f
X : . p "
such that f(p)eLlpMA, -2min(a,R)SAS 1, the sequence { %Eﬁ ¢;(wf;t)} con-
. dP ‘
verges uniformly to IcP ¢(wf;t) on A, P20,

Moreover, it results

QE_ %
deP Em(Wf;t)

< const m™A ua+A/2’B+A/2(t) logm, tehy, p20.
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orollary 5. If w=bu®PB, y>0, y(P)eDT, -1<a,B<0, then for any function f

dp ¥
uch that f(P)ELipMk, -min(o,B8)=Y<A<-2 min(a,B), the sequence§ g—§¢m(wf;t)}

aP
onverges uniformly to P ¢(wf;t) on 8,, p20.

loreover, it results

dP
\@Em(wf;t)

logm
< const ;2%}?;7 s tebdp, p20.

3. PROOF SKETCH OF THE MAIN RESULTS

For the convenience of the reader, we collect some properties of
the orthonormal polynomials Pm(w) with w(x)=w(x)ua’8(x), -1gx4l,

WP 0)=(1-x)*(14+x)®, «,8>-1, O<peDT, which will be used in the following.

The equivalence

(4)

-1 .
Om,k - em,k+lwm , uniformly for Osksm, meN,

(5) Am k,\lm'l uu+l/2,B+l/2(x

m,k)’ uniformly for 1<ksm, meN

holds for the zeros of Pm(w) and for the Christoffel constants respectively.

One can find the relations (4) and (5) in [3].

Furthermore, it follows from (4) that

() P v P )

<
m,k = Xm,k+1’

for k=2,3,...,m~1 (see[3,p.48j).
To derive the proofs of the theorems stated in the previous section,
the following lemmas are needed.

Lemma 1. If feCT(I), r20, then for each meN there exists a polynomial t_

of degree at most mw24(r+l) such that



|f<k)<x)-t§}‘)(x)

-] ~———o1I1r-k -
§const[m L% ] w(f(r);m 1\/»1—x2),05k§r, -18x£1,

"tép)(x) éconst“[Am(X)]r—Pm(f(r); Am(x)), poT, -1s5x21,

where Am(x)=m_lw/1-x2 +m_2.
Lemma 2. If w=wuu’B, 0<$eDT, a,p>-1 then for any function feC(I) the ine-
quality '

tm(xm,c)_tm(t)

™, Xy,e b
£

’ - 0297 — )28
éconst{?l—t 4m~ ] [/1+t +m } m(f;Am(t)),

holds uniformly for te(-1,1), where tm is the polynomial of Lemma 1, LI
’

is the closest knot to the point t, and Am(t)=m_l\/l—t2 +m 2,
., % m A s
Setting o (t)= = Ml | we can state
?‘1 |x -t
itc m,i

Lemma 3. If w=pu™®, O<YeDT, then the inequalities

cg(t)éconst logm , if «,B20,

o;(t)éconst ua’B(t) logm , if -1<a,B< O,

hold uniformly for te(-1,1).

Lemma 4., If w=wua’B, 0<yeDT, then the inequalities

e ) ] w(t;m_l)logm, if o,B20, £eC(I)
Tm Xm,i “Tn t

'Xm,i_t!’

A, i <const m-xua+k/2,B+A/2(t)lOgm,

0 Ms

i=1
e if  -1<a,g<0, felipyA, OKASL,
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hold uniformly for te(-1,1), where r =f-t , being t the polynomial of

Lemma 1.

Lemma 5. If w=¢ua’8, 0<ypeDT, then the inequalities

m(f;m_l)logm , if a,p20, feC(I),
rm(x)—rm(t)

w(x)dxSconst S B
-t n )\ua+)\/2,8+)\/2(t)log m

-1 v1-t
if -1<a,B<0, fELipMX, O<Asl,

hold uniformly for te(-1,1), where r =f-t  being t; the polynomial of Lemma 1.

Lemma 1 can be found in [5]; instead, the other previous lemmas are

proved in [2].

Lemma 6. Let veLl[-l,I], i.e.jl |v(x)|dx<m, possibly having singularities
1

at ViV and assume that v is continuous on each closed interval en-

closed in I—{vl,...,vl}. If g is a function such that g(p)EDT, pzl, then the

1 gp -
integral J — [ §£§2—§£El v(x)dx exists and the identity
-1 dtp X~t
1 1
p -g(t P -
dP (x)-g(t) v(x)dx = | & [ (x) (t)]v(x)dx,
aP Xt datP x-t
-1 - -1
holds whenever t is in a closed set enclosed in I—{Vl,...,vs} and p21.

The proof of Lemma 6 is based on known results of classical analysis

and elementary inequalities for the modulus of continuity.

Lemma 7. If w=¢ua’B, P>0, ¢(p)EDT, a,f>-1, then for any function £eCP(1)
the inequality



t ( )=t (1) R 2 128
d® Imimelm tC §const[/l—t+m—l] [{1+t+m—1} w(f(p); Am(t)),

M ClqeP Xy, et

holds uniformly for te(-1,1), p20, where tm is the polynomial of Lemma 1,

)

X is the closest knot to the point t, and Am(t)=m-1/1-t2+m—2.

The proof of this lemma can be deduced by Lemmas 1,2,6 and applying
the inequality (6).

Lemma 8. If w=Wua’B, ¥>0, w(p)eDT, then the inequalities

'm(f(p);m_l)logm, if a,B20, feCP(I)

m P rp(xp ) -rp(t)
——
ZAm i X -t
j=1 U ldtP m, i (t)logm, if -I<a,p<O,

Sconst
mAGeHA/ 2, 8+A/2
i#c

£P)eLipg, oasi,

hold uniformly for t (-1,1),bng, vhere r =f-t , being t, the polynomial of

Lemma 1.

Lemma 8 follows from Lemmas 1,3,4,6 and taking into account the relation

(6).

Lemma 9. If w=¢ua’6, ¥>0, w(p)eDT, then the inequalities

1 w(f(P);m‘l)logm,if o, 820, £=CP(1)
dP rm(X)‘I‘m(t)
Sconst

P x -t wlx)dx =X a+A/2,8+A/2 m
dtP . m A2, (t)log 7757,
if -1<a,8<0, £PeLip, o,

hold uniformly for te(-1,1), p20, where r =f-t_ being t,,the polynomial of Lemms
Applying again the inequality (6), the proof of Lemma 9 follows from
the results of Lemma 1,5,6. : »

Now, since rule (2) has degree of exactness O, we have
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P tn(xy ) tp(t)| m dP Tn(¥p, i) Tn(t)
N E“(Wf5t)té)\ — it .Z Am i s X -t *
gp m,c Xy 7t i=1 MotgtP ¥ 4
i#c

' (x)-r (t)

P r.(x)-r (t
+ & | w(x)dx| ,

dtP -

-1

where 1 =f-tm, being tm the polynomial of Lemma 1. Thus, Theorem 1 and
m

Theorem. 2.follow from Lemmas 7,8 and 9.
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APPROXIMATE EXPANSIONS OF DIFFERENTIABLE FUNCTIONS

IN POLYNOMIAL SERIES

M.R. DA SILVA

ABSTRACT : One of the most important tools in applied analysis is the
expansion of a given function y = y(x) in a series of polynomials. If
these are orthogonal, then there are explicit, well-known formulas for

the expansion coefficients, but they involve quadratures which are
generally difficult to perform. To avoid the evaluation of those integrals,
we use a simple approximation principle which leads naturally to good
polynomial approximants of y in the sense of the t- method and is much
more amenable to computer programming than Lanczos' original perturbation
idea.

I. INTRODUCTION

It is well-known how important it is in applied analysis to be able
to develop a given function in a series of algebraic polynomials. If these
are orthogonal, then there are explicit, well-known formulas for the
expansion coefficients, but they are often unsuitable for numerical
evaluation, as they involve quadratures which are generally difficult to
perform. For some important particular orthogonal polynomial systems we
may approximate the correspondiﬁg expansion coefficients recursively, with

and without numerical quadratures.

A ‘ :
1.1. A RECURSIVE’%@THOD FOR THE EXPANSION COEFFICIENTS OF DIFFERENTIABLE
FUNCTIONS IN SERIES OF JACOBI POLYNOMIALS IN [0, 1].

%
Let Pk(x) = Pk(a’s)(Zx-—l) s, k=0, 1...., 0<x<1 ,aB >-1,
be the standard shifted Jacobi orthogonal polynomials and assume,

formally, that

(1.1) v yeO = I a BSG.



| . %
Multiplying both sides of (1.1) by (1—‘x)a XB Pn (x) and

integrating from 0 to 1 , we get

1
(1.2) a = YL f (l—x)u xB P:(x) y(x) dx
n 0
n =20, 1,
1
_ _oa B F 2
Yn-(f) (L-x)" x" (P (x))" dx

It is well-known that the fact that we can calculate a
n
n=20, 1,..., does not guarantee that the series in (l.l) converges, or,
if the series converges, that its sum is y(x).

. 3 *
Using Rodrigues' formula for P (x),

_1y0 n _ oyotn _B4n
P*(x)=(1) D {(1-x) X }, p=d
n n! (1-x)" <P dx
we obtain n 1
(1.3) a = £ Joot{( - x)OH-n xB+n} y(x) dx
0

]
Y0

and after integrating (1.3) by parts n times,

n 1
- + +
(1.4) a = ED o gt B )y gy
t

Y, 0

Instead of the integral transforms (1.2)- (1.4) we can solve a
linear lower triangular system and obtain the coefficients a
n=20, 1,... , recursively.

*
Inserting Rodrigues' formula for Pk (x) in (1.1) gives

(1.5) 1-0% % yeo = kggo —(Lkl)f % D {(1 -2 KBy,
Defining
L g() = ég... ég g(£) di = {)E (L';’VQE g(x) dx
then £ n
ae  ™a- P ye) - / (—5—‘!}1)— 1-0% = y() ax.

Alsc, from (1.5),
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n k
-t Py - p ER kel g etk By
k=0 k! <
° enk k-n-1 atk Bk
+ I ——— a D {(1-¢ £ }
kentl k!
n _ k 3 _ n-k
(1.7) -y LD a / Eom) (oo Bhodx
k=0 k! 0 (n-k)!

Taking £ = 1 and comparing (1.6) with (1.7) we get the following
seemingly new formulas for the coefficients of y(x) in series of Jacobi

polynomials

o+n

(—l)k (12) T(a+n+1) TB+k+1) a
k=0 Mo+ p+n+k+2)

(1.8) = -0 Py ax

[ =]

n =20, 1,.

In particular, for the shifted Legendre polynomials, o =8 =0 and (1.8)

leads to

n
(k) 1

k a = (n+ 1) f (1-—x)n y(x) dx , n=20, 1,...
0

073

-1 n+k+ 1)

k=0 ( Kk

1.2. POLYNOMIAL SERIES DEVELOPMENTS AND BASIC IDEA OF THE LANCZ0S'S
T — METHOD

To avoid the evaluation of the integrals in (1.2), Lanczos [7,8,9J
conceived the following perturbétion technique, which has long been known
as the 1~ method.

Given an equation of the form
(1.9) Dy(x) = f(x) , asx<b, Jal,|p] <= ,

where f(x) 1is an Nth degree algebraic polynomial and D a vth order

linear differential operator with polynomial coefficients,

r
Pr(x) JL_ >

(1.10)
0 dx®

)
1]
1 M<

T



cogether with v supplementary (initial, boundary or mixed) conditions
through linear combinations of functicon and derivative values of y

which we may write as

(1.11) gj(y)=0 ,  i=1Wv o,

i
where the gj's are given linear functionals, the basic idea of the
Lanczos' 1 - method for the construction of a polynomial approximation Y
to the solution y of the problem in (1.9)- (1.11) in a form suitable
for numerical evaluation is to perturb the given equation (1.9) through
the addition to its r.h.s. of an algebraic polynomial Hn , usually
chosen to be a linear combination of Chebyshev or Legendre polynomials
with free coefficienfs, called the +t- parameters, which are to be
determined so that Y is the unique polynomial solution of the pertur-

bed problem

(1.12) Dy (x) F)+H (x) , ac<

A
e

A
o

1(1)v ,

a. ’ j

(1.13) gj (yn) i

to be called the T~ problem in the sequel.

The choice of Hn is essentially made on the basis of

i) The given supplementary conditions, so Hn is to contain v
T - parameters to be determined to ensure satisfaction of conditions
(1.13);

ii) Intrinsic properties of D , namely its range RD , which is
not, in general, the whole space P of algebraic polynomials, and its

height h , h = sup {B(Dxn)-n} , where NO is the set of
nelN
nonnegative integers, and 9 stands for "degree of", so Hn is to have

degree < n+h and to be in RD. To be more precise, there generally
exists for D an s-dimensional residual subspace Rg complementary to
R,

(1.14) P =Ry & Ry , RyNRe={0} ,

span {xk: kest, s={k € W, : - ¢ RD} R

0
I

and so Hn is also to contain s 1- parameters to be determined to
ensure compatibility of the - problem, i.e., that no component of H

lies in Rg [22];
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iii) Approximation properties that Yo is required to possess.
Clearly, the quality of y, as an approximation of y depends on Hn ,

as follows from the fact that the 1- error function e, =YY, is such

that

(1.15) Dan(x) = - Hn(x) , a<x<h
gi(e)) = 0 , i=1y

hence b

(L.16) En(x) = -/ G6(x, t) Hn(t> e,

a

where G(x, t) 1is the corresponding Green's function, so H should be

small, e.g., in the sense of the uniform norm, || Hn I = max | Hn(x) |
a<x<b
In the hope that the smallness of Hn will imply that of €, »one

usually chooses

r
H(x) = T(n? v .,(x), r=v+s~-1, m=n+h ,
n . m-i ‘m-i
i=0
wvhere the T}n)'s are the - parameters to be determined and the vj's

are Chebyshev or Legendre polynomials according as yn(x) is required
to be a good (nearly uniform) global or endpoint approximation of y(n) ,
respectively on a < x <b or at x =b (see [10] and [16,17] for
details and applications).

The existence, uniqueness, and convergence questions for the Lanczos'
T~ approximation problem are reduced to the corresponding questions for
the t1- parameters. These are uniquely determined by the supplementary and
compatibility conditions referred to above and tend exponentially to zero
as n > « [2,3].

As for the questions of existence, uniqueness, and characterization
of perturbations leading to T—-appfoximahts endowed with prescribed
properties, they are still open, as far as we are aware, and we conclude
that, in general, the choice of a suitable perturbation is not a simple

matter.
1.3. AN ALTERNATIVE PRINCIPLE FOR t-METHOD APPROXIMATION

As an alternative to the Lanczos' original perturbation idea, the
following approximation principle [23,24] has evolved.

Choose a basis v = {v 1" for P_={P € P:3(P) < n} ,
k k=0 n



preferably orthogonal for rapid convergence, exbress Yo in it,

and determine the ak's by making Yo satisfy the supplementary
conditions in (1.13) and Dy =~ agree with Dy as far as possible or
desired,

This alternative principle, which emerges from [6] and [18], is
shown in [23] to lead naturally to an approximation of the solution vy
of the problem in (1.9)- (1.11)  in the sense of the T~ method, to be
much more amenable to computer programming than Lanczos' original idea,
and to be applicable to any kind of equation involving a linear (algebraic,
differential, or integral) operator mapping P into itself, such as D
in (1.10) or its integrated forms. There are, however, important
differences to be considered between this approximation principle and
Lanczos' original idea. For instance, in the Lanczos' T - method the

perturbation Hn is chosen in advance, whereas here it is not.
1.4, NUMERICAL SOLUTION OF THE 1~ APPROXIMATION PROBLEM

There are essentially two approaches to the numerical solution of
the 1 -problem (1.12)- (1.13), one in terms of the matrix operator
representation of D acting on v [23], to be described next for
completeness and the other in terms of the sequence Q = {Qk(x)]k € W,
of canonical polynomials associated with D and v , which are given by

the functional equation
(1.17) DQk(x) = vk(x) , k=0, 1,... ,

(cf. [8,9]) obviously inconsistent for k € S , or by the Ortiz' [14,15]

redefining equation

]

(1.18) DQ () = v (D +r (), 1 €Rg, k&S ,

i

rk(x) —vk(x) , kes ,

based on the fact in (1.14) that every element of P is uniquely

decomposed into the sum of an element in Ry with another in Rg.
Canonical polynomials are, in fact, equivalence classes modulo

KD ={P &€ P:DP = 0} , the set of exact polynomial solutions of the given
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equation, but this is a technical point, the details of which are to be
found in [14J .
Needless to say, the above definitions (1.17) - (1.18) extend

immediately to any linear operator L mapping P into itself.
2, POLYNOMIAL t - METHOD APPROXIMATION IN MATRIX OPERATIONAI TERMS

To show that the polynomial Y, in (1.12) - (1.13) is a T- appro-
ximant of the solution y of the problem in (1.9)- (1.11), we review and
extend some basic definitions and notation relative to the principle of
using matrix operations in the Lanczos' t1- method, which has been
developed in [13], [21], and [19,20].

By furnishing zero components, if need be, all vectors in the sequel
are infinite - dimensional. Columnvectors are underlined once and row-
vectors twice.

Let v and Dv stand for the vectors with components Vi and

ka respectively, k > 0 , then

Dv=1_ v ,

IIV being the matrix operator representation of D acting on [P when
we take for P the basis v. HV may be obtained directly whenever the
laws of differentiation and multiplication in v are simple enough,

otherwise we may work in the basis {xk}k 0.1 to get
FUg Lo

v
Dx = Il X I = I nr Pr(U) ’
n= [_6_11, 29_2) 3_9_'3, -"] sy B = [9_’ Eog El, "'] ’
being the vector with 1 in the kth position and O elsevhere,

k
and switch to the basis v to get Hv =V Hx Vu1 , V being such that

e

v = Vx. We refer to [18] and [21] for computational details and for
structural properties of HX and Hv. Hx is a band matrix operator and
its band width is < v+h+1., n is no longer banded from below, but is
still banded from above.

If we let y =gv be the formal v- series expansion of the
solution of the problem in (1.9)- (1.11), express f(x) 1in the basis
v , £(x) = Fv , introduce the vector g = (cl,..., EN 0, 0,...) and the

matrix



to express the supplementary conditions in (1.11) in the form

@B <9 ,
and define the matrix
r =B +1_ p
v v v
and the vector .
B-grLv

(postmultiplication of HV and E by uv shifts their column entries
v places to the right), then ¢« satisfies the infinite system of linear

algebraic equations

1
—

kil
1>

whose truncation to its first n+1 equations, n > N+v ,

(2.1) oV =8,
leads to the coefficient vector g(n) = (uén),..., uin), 0, 0,...) of
v, = q(n) v , which is a polynomial approximation of y in the sense of
the 1- method. Indeed, with g(n) given by
() - (n) - f o -
o BV = E y g Hv Ej Fj s ] 0(1) n—v ,

the first v equations representing the supplementary conditions in

(1.13), then

- ()
Dy (x) = ¢ n, v
n-v n+h
= I (ghﬂ I e.)v,+ I (g(m mlgj)v.
j=0 T V713 jenovnl ]
v+h (n)
= f(x)4_.z (% Hv-gn—v+i) Va-v+i
i=1
agrees with Dy(x) as far as possible, i.e., up to v , and we have

n-v



solved the 7-problem in (1.12)- (1.13) with the perturbation

v+h

- (n) (n) _  (n) .
(2.2) Hn 121 LR ANFEPE =q HV*SH—V+i , i=1(1)v+h .
For rapid convergence, the components of g(n) should tend to zero

fast, To achieve this, a convenient orthogonal basis has to be chosen.
Lanczos would have taken a perturbation like that in (2.2), with
Vi = Tﬁ(x) , k=0, 1,..., the Chebyshev polynomials shifted to
a <x <b , to get a good global polynomial approximation v, of y .
There are, however, important differences to be considered between the
above approximation principle and Lanczos' original perturbation idea.
For instance, in the Lanczos' t-method, the perturbation is chosen in
advance, whereas here it is not. On the other hand, the evaluation of the
Lanczos' 7=~ parameters is not generally amenable to computer programming,
whereas (2.2) gives them immediately, the moment g(n) is obtained.
While error analysis for the general polynomial T - method appro-
ximation is undoubtedly difficult, an upper bound for || En” may be
easily obtained from (1.16). Also, from (1.15), an efficient estimation
of €, may be obtained as follows (see [23] and references given there
for details, applications, and numerical examples).
Let e m o M, be an mth order polynomial approximation of

€ , then € satisfies the perturbed ODE
n n,m

D en,m(x) = - Hn(x)4-Hm(x) R a<x<b ,

is such that

S O MO MO

and thus, every time two T-:approximants yn(x) and ym(x) are
computed, an estimation of sn(x) is obtained.

Clearly, all we have said about the differential operator D
extends immediately to any linear operator L mapping P into itself.
As pointed out in [6], the only embarrassment of the method is the
accidental singularity of the system (2.1), If this happens, we merely
change n to n+1 and keep doing this until we find a nonsingular
system. This must ultimately exist if the solution of the given problem

has a convergent v~ series expansion.
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3. RECURSIVE CONSTRUCTION OF POLYNOMIAL t ~ APPROXIMANTS IN TERMS OF
CANONICAL POLYNOMIALS

The canonical and residual polynomials associated with a given
linear operator L : P > @ and a given basis v may be computed

recursively [15] .

Writing n
L vy = L Hn. v, m=n+h |,
j=0 J 1
wl
=Hnmv ‘20 Hnj(LQj rJ) s
m—1 m-1
L(v.~ ¢ I.Q.)=1I v - L II.r, ,
n 3=0 nj *j nm m 3=0 nj j

assuming that Hnm # 0 and that Qj and i j = 0(1) m—1 , have

already been computed, then

m-1
Q = - I ,Q)/I
m 5=0 nj °j nm
n=20, 1,...
m-1
r o= - r n.r)/n
m (j=0 nj j nm

Once the first M = max {m, N} canonical and residual polynomials

are known, the 1~ solution Yy of the equation

m
Ly =f+H , H = I h v ,
n " 'n n oo kK
M
= Zy s Iy T togve s g = Feth o,
k=0
is immediately at hand;
M
L N
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as well as the corresponding compatibility conditions,

which are easily seen to be equivalent to the formal use of the undefined
zanonical polynomials (see (1.17)) and the subsequent cancellation of
their coefficients.

In addition to satisfying a self-starting recurrence relation and
seing an efficient basis for the representation of 1t- solutions,
:anonical polynomials have a number of other useful properties, namely,
-hey are

i) Permanent, and so, if we need Yo+l after y, has been
ronstructed, namely to improve the approximation accuracy, only Qm+1 has
:0 be computed ;

ii) Independent of the given supplementary conditions, hence
initial and boundary value problems are treated alike ;

iii) 1Independent of the approximation interval, and so piecewise
polynomial and rational Tt - approximants are easily constructed (see, e.g.,
[1],[2],[4,5], [11,12], and [16,17] , where they choose a convenient
perturbation in advance, and [24], where we just accept the perturbation

the given problem leads to).

4, THE LINK BETWEEN THE TWO FOREGOING APPROACHES TO THE NUMERICAL SOLUTION
OF THE T~ APPROXIMATION PROBLEM

Let T be the matrix operator representation of a given linear

operator L: P » P when we take for P the basis v , i.e.,

let = {qQ. } and r = {r } be the sequences of canonical
@ k kel -s Kkeny-s d

and residual polynomials associated with L and v , and assume, with no

loss of generality, that § = {0, 1,..., s- 1}, Following [20}, we define

the VECtorF‘,g = (rs, rs+1,...) and Q =‘(QS, Qs+1,...) and the ma;rices

[R;0] and €' such that ‘ ‘ :

r = [R;OJ v o, 9'= cCv

then Ortiz' funcional equatfons (1.18) may be written as



The calculation of the canonical polynomials Q. > k¢ s ,is, therefore,
equivalent to the inversion of the matrix Hv stripped of its columns of

order k € S,
5. EXAMPLES OF APPROXIMATE EXPANSIONS IN SERIES OF ORTHOGONAL POLYNOMIALS

1) To comstruct approxiinate expansions of the function

v = (-0 /M2 “lexc<l o,
in the Legendre basi = {p ,
in the Legendre basis v {n(X)}n=0,1,...
© P (x)
(5.1) v(x) =gz=-—2—P0(x)~2 P 5
a 3 n=1 (2n-1)(2n +3)

we choose a definition of y(x) in terms of a linear operator L: P - P,
e.g., , =
Ly(x) & (1-x) yx)+= J y(t) dt =2 ,
2 -1

integrated form of the IVP
Dy(x) = 2(1-x) y'(®)+y(x) =0 , y(-1)=1,
and construct the matrix operator Hv such that Lv = Hv-\l s Loes,

5 1
LP, ==P +—P
0 5, 0 o1

LP =.___ZE_+__3_1? +P_ﬁ.:_l__p , n=1,2,..,

n 2¢m+1) LM gonery M

Thanks to the structure of Hv , the polynemial approximation

Yo T %(n)l of y 1is such that
(5.2) Lyn=2+ur(ln) P oo n=20, 1,...
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(n)

and its coefficient vector g may be obtained either by solving the

following system of linear algebraic equations

g(n)uij =0, j=1Un ,

or by using the canonical and residual polynomials associated with L and

Vo
Qy =0, rg=-l; Q =2P;, 1, =5;
. — 1 -
0 - R+ D@ -0+ s o ]
2n-1 . ’
1
ft T R D) r - Gne ) x ) , n=1, 2,

From (5.2) and (1.18) we obtain

_ ()
In T % Qn+1 ’

'u(n) =2 0, 1,..

n r * ne
n+l

successive approximations of the corresponding partial sums of the

Legendre series in (5.1). In particular, the coefficients of Y,

v, - L (7525 p

45045

- 4452 Pl- 985 P, - 378 P,- 135 PA) s

0 2 3

approximate the corresponding coefficients of y with absolute error

< 1.4 x 102

2) To construct approximate expansions of

[N
B

1A
=

y(x) =e ., 0

in the Hermite basis v = {H;(x)} ,

n=0,1...

1/4 n

~

-1)
0 2™ n!

oo 8

y(x) =gv =e H:fx) s

n
let us define y(x) in terms of the following linear operator
X

Ly(x) = y(x) + f y(t) de = 1.
0



Réézall ling that

X

FoE(ey ae = —1 " oey-nt (0)]
= x) - ,
0 n 2(n +1) n+l n+l
* _ 1 2 (2n)! * _ _ .
Hzn(o) = ( 1) _:;—“ H H2n+1(0) =0 ’ n = O, 13-.. [
we get
. % 1 * * k.
LH (x) = ——— [H (x)+2(n+1) H (x) ~H  _(0) s
n 2(n+ 1) n+l n n+l ] 7
hence 7 :
QO =0 , rg = -1 i . -
= 2n(u_ " * 2
Qn = 2n( n—l-Qn-l) s T = -2n ro1” Hn ) , n = 1, 2,...
The polynomial approximation Y, = g(n)XA of .y =g v satisfies
the perturbed equation
n *
Lyn = 1+ ai ) Hn+1 s n=20, 1, ,
and i1s such . that
Q
n+l
y, = , n=0,1,..
n+l
In particular, the coefficients Otk(n) , =0(lYy5, k=0(1)n,
of the first six yn's ,
Vo = Hy
2 * *
v, = 5(2H, -H)
1 * ,—— % S %
¥2 B(BHO 4H1 +AH2)
*, *LLAR
¥y = (48H0 - 24}11“ # 6H- 7 H o
* % +48 * H* +Hf<)
v, = gty - Lo, A8y =8yt Hy O
N * 48' o '[8(7)}1‘*" 1o ¥ - n)) ‘
Vg = 2990(3840H0 1920}11 + OH2 3 + 4 5 s
Sivege sroid gndwen i Do wdde to wiad ol Cayy wniish an vl

approximate the corresponding coefflclents oy of y w1th the errors
o= {0 «

Vi d

given below
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1 -4.93 % 1077 2,47 x 10
2 <493 x 1072 2,47 x 1072 -6.16 x 10> o
3403 x 107 -2.00x 1070 5,03 x10¢ -8.39 x 107 o
4 403 %107 -2.00 x 107 5.03 % 1070 -8.39 x 1070 1,05 x 1070
4 - 53 "7 6160 x 168

5 -2.56'x 10 1.28 x 10 ' -3.,19 x 10 5.32 % 10°° -6.67 x 10
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ON MONOTONICITY OF SOME LINEAR POSITIVE OPERATORS

B. DELLA VECCHIA

ABSTRACT: In this paper we study the monotonicity of the se-
guences of some linear positive operators, to which we apply
the iterated Norlund operator. As particular cases, we find
the results established by D.D. Stancu for the sequence

(m)

{(an) (x)}n and by the author for the seguences

{(M f)(m)(x)} and {(P f)(m)(x)} where M and P are the
n n n n n n

Favard-Szasz-Mirakyan and Baskakov operator respectively.

1. INTRODUCTION

It is well known that the Bernstein Polynomials corre-
sponding to functions convex in [0,1] verify the following

monotonicity relationship [1,18,28]):

(1) (B f)(x) = B f(x)anf(x), D=x=s1l

n+l n+1l

This property has been extended to other linear positive o-
perators (3,8,9,10,11,12,19] . '

Later Stancu in [24] studied the derivatives of the sequence
of Bernstein polynomials and obtained interesting monotoni-
city properties for this sequence.

Then Horova in [7] established a relation of type (1) for
the first derivatives of Favard-Szasz-Mirakyan operator
[5,15,16].

Recently in [4] we have proved monotonicity properties for
the derivatives of order s, s >1, of the sequence of Favard-
Szasz-Mirakyan operator and for the derivatives of order

s, szl1, of the séquence of Baskakov operator {2,6,27}.
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On..the other hénd some authors introduced separately aigéfe-
te type operators generalizing Bernstein, Favard-Szasz-Mira-
kyan and Baskakov operators.

The main purpose of this paper is to extend the procedure
given in [24] to the sequence of these operators, to which
we apply the iterated Norlund difference operator, inétéad

of the differentiation operator.

As a particular case, we find the results established in [4].

2. PRELIMINARY RESULTS

Let f be a function defined on an interval I of the
real axis. As usual, we denote by [to,tl,...,tn;f] the divi-
ded difference of order n, of the function f, with respect

to the distinct nodes t_,t ,...,tn e€I.

0" 1 .
We recall also that f is called convex, non-concave, polyno-
mial, non-convex respectively concave of n-order on-an in-
terval I=[a,b], if all its divided differences'of order n+l,
on n+2 qistinct nodes from I; are >O; =0, =0, =0, resp,Afo.

We use in the sequel also the formula

m , .
m m 1 . m-1
(2.1) Da[f(x)g(x)] = gg% (i) Daf(x+(m—1)a)Da g(x)
with meN, f and g defined on I, xX€1I, oc€R+ and
-1 m m-1 0
D g(x) = [g(x+a)-g(x)]a 7, D, = D, (B, "), D, g(x) = gix).

o
Then let r and n be two integers, with 0s=r=n, and consider

the following points of the interval I:'ai=a+ih, i=O,l}...,n
and b_=a+i%, 3=1,2,...,n, where 0<hs2=2, o<g<272,

J (v) " "
k

defined recursively as follows

Now we denote by T , 0=k=n, 1<vsr+i, the linear functionals

(2) = . e <y e
Tk f [ak'ak+l'bk+l'f]' 0sk=n-1
(2.2) .
T}iv+l)f = T}irif - T}i\)) £, 1<vEr, Osksn-r



shere £ is. a function defined on [a,b].
"his functional has been introduced in [24] by Stancu, who

yroved there. that

f convex (non-concave) of order r+l1 =>
. +2 +2
2.3) Tér e >0 (T}ir " 20), O0sk=n-r

Jle consider now the class of linear and positive operators

'g defined by

= Kk "
o o
= -1)"D o &
2.4) V£ = ) (-1)De% (x) T £(D)
; : k=0 .
'here: o is a non-negative parameter that can depend only on
k,-o
(€ N; x< ! ?;x(x+a)...(x+(k—l)a); the. functions ¢i (neN)

re defined on R and verify the following conditions:

) 60(0) = 15
" k_ k o
i1) Vke N and VxeRrR(-1) Da¢?(x)z 0;
) (k,—OL
e k k, o X .
B 2;% (1D, () k! = 1

* *
‘eC , where C denotes the set of functions defined on [0,+aﬂ

ind such that (2.4) has meaning.

Chis operator. has been introduced and ‘studied in [11,12,23].

setting L

i1 G

(-1) D4a¢n(0) a

s, Y =1
n,i -1 n,0

n°
it is known [11] that
‘heorem 2.1. If
im * =1, i=0,1,2 N B
cim Yn,r+i =1, i=0, ( , Tre

7ith 0<o=a(n)-=0, when n»o, then we have

im I‘f(r)— DrVQf“ = o0,
‘ o n
(r)_=° =° . .
VE €C , where C denotes the set of functions defined on
[0,+e[, there bounded and uniformly continuous, and VreNn.

We notice that, by choosing suitably ¢i funétionqﬁ,vi beco-



mes well-known lineér positive operators, studied separately
by some authors in [13,14,17,19,20-22,25].
Here we want to consider the following three particular cases.

1) 1f L
(l_x)(n,—a)

03
$% (x) = -
l(n/ a)

, 0=x=s1
n .

V:’coincides with the Stancu operator Si defined by

(nfk,—u) (k,-0)

n
o, _ n\ (1-x) k Osx=l
(2.5) snL(x) = 2;% (k) l(n,—cw' X £02) fec([0,1]).

Stancu introduced in {19] this operator, which later has
been studied in [11,13,14,20,22,23].

a
We notice that, for o=0, Sn becomes equal to Bernstein

operator B .
P n

2) If
o ~x/ 0
¢ (x) = (l+na) ' xz0, 0=na=s1l
Vg coincides with the Mg operator defined by
) (k,-a)
o -x/0 1,.-
(2.6) M_f(x) = (l+na) x/ 2: (@ +=) kx f(£)
n n k! n
k=0
fEE8 B where EB p denotes the set of functions defined
r ’
on [0,+x[, continuous in [0,B], (B>0) and such that
f(X)=0(26X) (x»00), with 8 a positive fixed number.

This operator was proposed by different approaches in

[12,17,23,25]). We notice that, for a=0, (2.6) becomes

(2.7) M_£(x) =e ¥ f:gﬁﬁifﬁ
-7 nt ¥ T € o k! n)

where M is Favard-Szasz-Mirakyan operator [3,5,7,9,15,19,26

3) If

(nl—a)
_ (-n,~0a) _(n,-0) _ 1 xz0
¢n(x) = (1+x) 1 = ——~—e?;7:57 0=0<1/2
(1+x)

o S . a .
Vn coincides with Baskakov-Stancu operator Pn defined by

*

X(k,_u)

(1+x)(n+k’_a)

f(&), feC
n

a _ .(n,~%) & /ntk-1
(2.8) PY £(x) =1 );%( " )
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This operator was introduced by Stancu in [21,23] and lat-
er studied by Mastroianni in [ll]. As a particular case,
for a=0, PS becomes equal to Baskakov operator [2,6,9,27]
o) k
nt+tk-1 X k
2.0 B 00 = ) (M) ) £(5)

+
k=0 (14x) VK

ON THE MONOTONICITY OF THE SEQUENCE {DESS £(x) )

Let ng be the Stancu operator defined by (2.5). It is
ell known [19] that two consecutive terms of the sequence
ng(x) }n verify the following relationship:

x(1-x) .
n(n+l) (l+(n-1)0) (1l+na)

a a _
ner) 2002 fec([0,1])
(3.1) v (v, —a) v

n-1 (-1) Da¢n_l(x—u)(x+a) [v vil vil ] xef0,1]

n‘n+l’ n '

V=0

v!

If we choose the following points

V41 Vv .
a. ., = — b = — v=0,1,...,n-1 i=0,1
Vi n+i n ' e ' ! '

using the functional T&z) defined by (2.2), (3.1) becomes

a0 - x(1-x
(54175, £(x) n(n+l) (1+(n-1)a) (1+no)
(3.2)
n-1
Z (-1)"p 4" (x-a) (xray VT W (2D
=0 o'n-1 v

Now we introduce, VreN and VfeC({[0,1]),the linear positive

o, Y
operator S
n
vtr-1 ,
n-r D r ¢a (x—u)(x+ra)(v o)
Sa,rf( ) = E: (_l)v+r—1 a n-1 f(g)
n ® B 0 vl n
\):

From (3.2) it follows that



X(1-x) a1 (2) ey

a _gQ e = - .
(3.3) (S 1780 £60) n(n+1) (1+(n-1)0) (1+na) °n
Now, in order to study the monotonicity of the sequence
m_o
{Dusn f(x)}n, we prove
Theorem 3.1. The following relationship holds:
Mmoo o0 _ 1 .
o(Spp1 78, ) £60 = n(n+1)(1+(n-1)0) (1+na)
: + ’
(3.4) °[(x+ma)(l—x—ma)sg’m+l‘1‘r\[} Zf(x) +
+ . —
+ m(l—2x—(2m—l)d)sg'mi‘im 1)f(x)—m(m—l)Sg’m lﬂ?im)f(x)]

with m=n and az0

Proof.

In fact, using (2.1) in (3.3), with

_ x(1-x) a1 (2)
f(x) = h(n+ 1) (1+(n=1)9) (14no) and g(x) = Sn Tv f(x),
we have

m o _ch _ 1
DoaSpe1 S EX) = - T T (no1) o) (1ong)
. {(x+ma)(1—x—ma)DI§sOC ”1Ti2)f(x)+
n
+ mDi[(x+(m~l)a)(l—x—(m—l)a)]Dz_lsg ’lTiZ)f(x) +
(3.5)
-1) 2 - ,1 (2

+§LEE~1DG[(X+(m—2)a)(1—x—(m-2)a)]n§ 2 s: TL )f(x)} -

- 1 {(
n(n+l) (X+(n~-1)a) (1+na)

x+ma)(l-x—mu)DmSa '1T(2)f(x) +
o n v

-1 a,l 2 - 2
m-loa, T( )f(X)-m(m—l)Dm Zsa ,1T(
[+ n v o n Y

+in{1-2x-(2m-1)o)D )f(x”

On the other hand, one can easily verify by induction that

ma® ;1 . (2) _ o0 ,m+l _ (m+2)
DS T, f(x) = S ' T, f(x)

n



and making use of this last relation in (3.5), the theorem

follows.

From Theorem 3.1, by (2.3), we obtain
Corollary 3.2. The sequence

m O
(3.6){D0LSn f(x)}n, 0=ma =1, m=n

verifies the following monotonicity properties:
i) for m=1

. l-o )
a) If on the interval [O’_E_] the function f is convex

(concave) of first and second order, then the sequence

(3.6) is decreasing (increasing) on [0,l§g];

~-Q
b) If on the interval [——~,l—a} the function f is concave

2

(convex) of first order and convex (concave) of second

order, then the sequence (3.6) is decreasing (increas-

ing) on the interval [lég,l—a];
c) If on the interval [1-0,1] the function f is concave
(convex) of first and second order, then the sequence
(3.6) is decreasing (increasing) on [l-a,1].
ii) for mz2

a) If on the interval [0,£:igg:llg] the function f is

concave (convex) of order m-l1 and convex (concave)

of order m and m+l, then-the sequence (3.6) is decre-

. . , 1-(2m-1)a
asing (increasing) on 0,————5——_ H
1-(2m-1)a

b) If on the interval[ ,l—mq] the function f is

2

concave (convex)of order m-1 and m and convex (conca-

ve) of order m+l, ‘then the éequence (3.6) is decreas-

. . . 1-(2m~1)a
ing (increasing) on ————E————,l-m ;

¢) If on the interval [l-ma,1] the function f is concave

(convex) of order m-1, m and m+l, then the sequence
(3.6) is decreasing (increasing) on [l—maJJ.

We notice that, for o=0, Corollary 3.2 gives us a monotoni-

city result for the derivatives of the sequence of Bernstein

polynomials, obtained by Stancu in [24].
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..
4. ON THE MONOTONICITY OF THE SEQUENCE {DaMg £ (x) }n

Let M*f be the operator introduced in (2.6).
n
It is known [12] that the following relationship holds for

two consecutive terms of the sequence {Mi f(x)}n:

a a X
(Mn+1_Mn)f(x) EETETSE) ces
(4.1) (s —a) 8,B
X:(a—i)k+le+l¢a(x) (x+a) ' [k k+1 k+1 ] xz0
'k=0 n a 'n ) k! n'n+l’ n '

. - 0,T .
We introduce now, VreN and VfeE , the operator Mn' defin-

g,B

ed as follows

o0
o,r 1 k+r k+r
M f = = - a e -
n (x) n 2: (-1) Da ¢n(x) k! f(n)
k=0 .
One can easily verify that this operator is linear and posi-
tive.

Letting then

k+i k .
ak+i_m and bk =5 k =0,1,..., i=290,1
. 2) .
and recalling the definition of the functional T; ) introdu-
ced in (2.2), (4.1) becomes
a a X a,1l (2)
4.2 M - £ = -~ —— T f (x
( y nel Mn) (%) h(nt1) Mn X (x)

Now, in order to study the monotonicity of the sequence

a
{DI;Mn £(x) }n, we prove

Theorem 4.1. The following relationship holds

m,. O o X+mo. o ,m+l (m+2)
-M = e m—
Da{Mn+l n] £(x) n(n+l) n Tk fx) +
(4.3)
_ m o ,m_(m+l) -
n(n+l) Mn Tk f{x), meN and O0=na=1
Proof.

Indeed, by applying (2.1) to (4.2), with
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£(x) = - an_fl—) and  g(x) = Mna"lT}iz)f(x),

we have
Dm[M(x —M(ﬁ f(x) = - ii( ) [x+(m=-1i)a].
o ntl T n+1 FEALS

I

- )
(4.4) -D M Tk f (x)

N S moao,1l _(2) m-10a,1 (2)
= n(n+l)[(x+mu)DaMn ’l‘k f(x)+mDa Mrl Tk f(Xﬂ

Moreover, one can easily prove by induction that

DmM“ 1T}(( V't (%) = MO‘ m+lT}im+2)f(x)

and, by using this last relationship in (4.4), the theorem
follows.

From Theorem 4.1, by (2.3), we have

Corollary 4.2. For the sequence

(4.5) {DmMOC f(x)} , meEN O=no=1
o n n

the following monotonicity property holds:

if on the interval [0,+o{ the function f is convex (concave)

of order m and m+l, then the sequence (4.5) is decreasing

(increasing) on [0,+o][.

We recall that, for a=0, Mi operator coincides with Mn ope-

rator defined by (2.7); so,'quollary 4.2 represents an ex-

tension of a result previously established in (4] for the
(m)

sequence {(Mnf) (X)}n'

5. ON THE MONOTONICITY OF THE SEQUENCE {D"P% f(x) b
a'n
Let ng be the Baskakov-Stancu operator defined by (2.8).
It is well-known [ll] that the difference between two conse-
cutive terms of the sequence {Pif(x) } can be expressed as
. n

follows:



l(nl_o(‘)x

O = = e— e
(ﬁi+1 Pn)f(“) . n(n+1)
(5.1) o
© (k41 ... (n42) (xra) Tk kel k4l
Z: T —— K1 [n+l "hr1’ n ’f]’ x=0
k=0 (1+x ’
Letting then
k _k _
ak‘_’h+l and‘ bk = o k = 0'1'7'-

taking (2.2) into account, we have

1<n’_a)x
a _po = ==,
(P =P ) £(x) n(n+l)
(5.2) i (ntk+1)...(n+2) (e F Y p(2)¢
. ] : (n+k+1,-a) "k

(1+x)

: . s o, r
We introduce now, VreN, the linear positive operator Pn'

Pa,r £(x) = = (n+k+l)...(n+2)(x+ra)(k'*a) f(K)
n =0 (l+X)(n+k+r,—a)k! n
So (5.2) can be written as follows
tnl—a)
o o _ 1 X 0,1 ,.(2)
(5.3) (Pr1+l Pn)f(x) = o (A1) Pn Tk f {x)

Now, in order to study the monotonicity of the sequence

m_ o
{DQPH f(x)}n, we prove

Theofem 5.1. The following relationship holds

ma‘ a ) l(n/‘a)
Da[Pn+l-Pn] f(¥) = n(n+i7— s {(x+ma)-
o , mtl/ntk+tm (m+2) o,m+1l / n+k+m (m+1)
B I R G EL R

'}+[§u’m (n+k+m~l) T;m+l)f(x)'+ lem <n+;j§_l) é+if(x)} l
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-oof.
; using (2.1) in (5.3), with

l(n'_a)x

_ oz % oo, 1 _(2)
f(x) = D (nel) and g(x) —Pn T f{x)
> obtain
m, o o l(n’_q)
Da[Pn+1_Pn]f(X) = T amin) g
= m)_ 1 , m-1i 0,1 (2)
. (,)D (x+{(m-1)a)D P T f(x) =
b N1/ O a n k
i=0
(n,-o)
_ 1 m_o,1 (2) ; m-1_o,1_ (2)_
= __;T;:IT Bx+mu)DaPn T‘k f(k)+mDOC Pn T K f(xq

n the other hand, we can easily verify by induction that

o, m+lm+k+m\ (m+1)
£ (x) +8 (‘m_‘l )T £x)

k+1

b " £(x) = m.'l:Pot,m+l(n+k+m>T(m+2)

n m k

nd, by taking this last relation ihfo account in (5.5), the
heorem follows. . ‘

rom Theorem S.l,yby (2.3), we have
orollary 5.2. The sequence

m_a
. ‘ D N. =0 <
5.6) (D P f(x)}_ , meEN, 0 >

erifies the following monotonicity properties
) for m=1 -
if on the interval‘[0;+dﬂ thé function f is convex (con-
cave) of first and second order, then the sequence (5.6)
is decreasing (increasing) on [0,+oo[;
i) for m=2 ‘
if on the interval [O,+mﬂ the funqtion f is convex. {(con-
cave) of order m-1, m and m+1l, theq the §gquence‘ﬁ5.6) is
decreasing (increasing) on.[0,+w[.
We notice that for os0, Pg operator hecomes equal to Pﬁ ope- .

rator defined by (2.9);‘50, Corollary 5.2 generalizes a re-



(

sult established in [4] for the sequenée {(Pnf) m)(x)}n.
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OPTIMAL PERIODIC INTERPOLATION IN THE MEAN

F.-J. DELVOS

ABSTRACT: The concept of periodic Hilbert spaces was introduced by

Babuska in connection with universally optimal quadrature formulas. It

was shown by Prager, Locher, Knauff - Kress, and the author that

periodic Hilbert spacesform an appropriate tool for constructing

periodic interpolation splines and some of its extensions such as

rational trigonometric interpolation. It was pointed out by Subbotin

that it is natural to approximate functions from L wvia interpolation

in the mean splines. In this paper we will develop the method of
optimal interpolation in the mean in periodic Hilbert spaces.

Applications to periodic splines are presented. .

1. TRIGONOMETRIC INTERPOLATION IN THE MEAN

We denote by Ton_1 the n-dimensional = space 6f 'trigonometric

polynomials spanned by the functions

ek(t) = explikt) (0=k <n)
Recall that TO 1 is the appropriate . space for discussing the
discrete Fourier transform method. Assume that: there are n real
numbers to,...,tn_1 and a positive real number h satisfying
0=t <t <t X <t < 2n
0 1 2 n-1
and
0O<h=1/n, h=t =t. {(0=j<n)
jxr HEE
with t = 2n . The interpolation in the mean functionals are given by
n
t.+h
J -
Lo(f) = ljf(t)dt (0=j<n)
ih h
Tt
J

Note that the interpolation functionals:
L(f) = flt) (0=j<n)
j

are obtained formally by setting h =0 .
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Proposition 1.1

" For any f e L;n there is a unique trigonometric polynomial

H(f) € T, o1 satisfying the interpolation conditions
n e

L (H(f)) = L (f) (0=3j<n)
Ihh n

Proof. It is sufficient to show that

,A = (aj,k) 1= (Lj'h(ek))osj,k<n

is a regular matrix. It is easily seen -that

i

1 (0=3j<n) ,
exp(iktj)(—1+exp(ikh))/(ikh) ( 0=j<n , 0<k<n )

Lj,h(eo)
Lj'h(ek)

]

This implies A = VD with

Y = (exp()ktj))osj'k<n
and
D = d1ag(do,.‘.,,dn_1) ,
d0 =1 , dk = (exp(ikh) - 1)/(ikh) (0<k <n)

V is a Vandermonde matrix and D 1is a regular diagonal matrixin view

of exp(ikh) # 1 . This completes the proof of Proposition 1.1

2. PERIODIC HILBERT SPACES

In this section we recall the properties of periodic Hilbert
spaces as described in Prager [10] . Let
d, (kez )
be a biinfinite sequence of real numbers from ]1 satisfying
= > =
(2.1) dk d‘k 0 (kez) , d0 1

Then there exists a unique function ¥ from the Wiener algebra

satisfying
21

E%A-J Ylt) exp(-ikt) dt (keZ)

I

dk = (w,ek)

o

It is obvious that Y is real-valued and even :

A

n
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o«
wit) = 1+2 de cos(kt)
k=1
The periodic Hilbert space Hd related to d = (dk), respectively ¢,
is defined by
H = {fel, p) (f,ek)(ek,f)/dk < o}
K=-00
The inner product of Hd is given by
«
(f.g)y, = Z (felle,gl/d
k=—c0
Obviously, Hd contains the algebra T of trigonometric polynomials.

Moreover, Prager showed that

In

(2.2) Hd Azn

It is easily seen that for f e Hd and a € R we have
f(.-a) e Hd ,

i. e., Hd is closed with respect to translation. Moreover, we have

(2.3) (f(.—a),g(.—a))d = (f,g)d

for all functions f,g € Hd

Proposition 2.2

Let f € Hd and x € R . Then we have

f(x) = (f»¢(-—X))d

Thus, Hd is a reproducing kernel Hilbert space of periodic functions

with kernel Kly,x) = ¢{y-x)

The function y(.-x) is the representer of the Dirac measure 8 which
X

is a bounded linear functional on Hd . Let L be a bounded linear

functional on H, and u € Hd be its representer. Then we have

(2.4) L(f) = (f,u)d

for all functions f € Hd . It was shown by Prager [10] that the

Fourier series of u is given by the formula



e
(2.5) u(t) = d, L(ek) ek(t)

k=-0

As an example we -consider .the .construction of the periodic Sobolev

space W;n with r e N . The defining sequence d is given by

-2r

d0 = 1 , dk =k (k=0)

_ r . r . .
and we have Hd = Wzn The reproducing kernel of \r121I satisfies
the relation
(2.8) K (y,x) = 1+ (—1)r82r(y—><) = yly-x)

B(x) = ¥ (ik)%e (x)
a k%0

Bq(x) is the periodic Bernoulli function of order q which is defined

uniquely by the relations

(2.7) B(x) = wx, , B (x) = B(x), (B ,e) = 0
1 q+1 q g1’ 0

(0 <x <2 )

3. OPTIMAL INTERPOLATION IN THE MEAN
In this section we will study interpolation in the mean as a

minimum norm interpolation problem in the reproducing kernel Hilbert

space Hd [8].

Proposition 3.1
The linear functionals Lo, L are bounded and

linearly independent over Hd

Proof. It follows from Proposition 2.2 that the following estimate
(3.1) e s Vy(0) Hfﬂd

holds for all functions f & Hd . Thus, the interpolation in the mean
functionals L , 0= j<n, are bounded. Since the trigonometric

ih
polynomials are contained in Hd it follows from Proposition 1.1 that

L o,..... L Th are linearly independent over Hd
n-1,



we will determine the representers u, of L. h for j. .=
} N
.,n=1 . For this construction we need the periodic integral;.¥% of

Recall that ¥ is the unique function from C;n such that.; ..
3.2) ¥ (t) = yt) - (w,eo) ) (W,eo) = 0
he Fourier series of ¥ is given by

[se]
3.3) w(t) = $d (ik)*ek(t) = 2dsin(kt)/k
k£0 k=1 k

roposition 3.2 . .

The representer uj of Lj W is given by the formula

3.4) U (t) = 1 (Ut-t) - W(t-tj‘—'h))/h

ith 0= j <n

roof. Recall that
Lj'h(eo) = 1, Lj,h(ek) = ek(tj)(ek(h)—1)/(1kh) (k =0).
Jsing relation (2.5) and relation (3.3) we can conclude
uj(t) = Lj’h(eo) + kijo dk Lj’h(ek) ek(t)

i
—_
|

e (d /(ikh)) e (-t -h) e (t)
k%0 k ) k

+ % (d/(ikh)) ek(—t_) ek(t)
K0 . :

i

- (wlt-t) - ¥(t-t -h))/h

This completes the proof of Proposition 3.2 .

et Un be the linear span of the representers Ugresorl and let

3 be the orthogonal projector in Hd with
n

= = < RN >
fR(Sn) Un Uy Yy

The following result is a consequence of the method of minimum norm

interpolation in Hilbert spaces ( Prager [10] ).
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Proposition 3.3
Let f € Hd be given. Then Sn(f) € Un is the unique function in
Hd having the characteristic properties
t. +h t_+h
i i
(1) 1—js(f)(t)dt= 1—J'f(t)dt (0sj<n)
h n h

t t

j ) J

(ii) Ws(f)u. = Hgh ~if L. (g) =L (f) (O0=j<n)
n d d j

As an example we determine the periodic interpolation in the mean

’ [2,6,8,11] . It
21

follows from Proposition 3.2 and relations (2.6) and (2,7) that the

splines which are obtained by choosing Hd = W

representers u , U are given by

0" Tn

- _ r _ _ _ - < 3
(3.5) uj(t) = 1+ (-1) (BZrH(t tj) BZrM(t tj h))sh (0= j<n )

The properties of the Bernoulli functions imply that uj is a periodic
spline of degree 2r with spline knots tj+2nk, tj+h+2nk ( k € Z )
As a consequence Un is an n-dimensional space of periodic splines of

degree 2r with splines knots

tj + 2nk tj + h + 2unk (0=j<n , keZ)
Let us consider the case of a uniform mesh, i. e. ,
t. = 2nj/n ( jezZ) . o

j
Then the space of interpolation in the mean splines is generated by

translation from the generating function

(3.6) ult) = 1+ (BZrM(t) - Bzrn(t_h))/h ,
i. e.,l we have
(3.7) U = <ul(.-t),...,ul.-t )> =: V (u)

n 0 n-1 n

It should be noted that for the special case h = t1 the space Vn(u)
is Jjust the space of periodic splines of degree 2r with knots tj

This follows from the fact that

1= (u(t—to) + u(t—t1) + 0+ u(t-t 4))/n

n

Let v & Un = Vn(u) be the unique function satisfying
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L (v) = & (0=j<n)
since Un is translation invariant with respect to t1 it follows from

he relation

f(t+tj) dt = Lom(f('+tﬁ)

w

0

-

“

i

T —
© — T

(o0=3j<n)
-hat the interpolation in the mean spline Sn(f) is given by the

“ormula

n

(3.10) S (f)(t) = Lo (f) v(t-t)
n h J

-1
i=0 Iy

( Interpolation in the mean by translation ).

4. THE CONSTRUCTION OF THE FUNDAMENTAL FUNCTION

For the case of a uniform mesh we will apply the method of the

discrete Fourier transform to derive an explicit formula for

interpolation in the mean fundamental function v . Recall that

(4.1)  u(t) = 1+ (¥(t) - ¥(t-h)I/h
ut)y = ult-t) (0=k<n)
Furthermore, let ¢ be the periodic intégra] of ¥, i. e.,
(4.2) o' (t) = w(t) , (¢,eo) = 0
Since ¥(-t) = -¥(t) it follows
(4.3) ¢(-t) = ¢(t)

Then we can conclude

t_ +h t_+h
J ]

p— .2 p— p— - -
- 1+ R J\y(gtk)dt J\Il(ttkh)dt)
t. t.
} J

-2
= 1 e Rl ) gt h) -2t D)



i, e., we have

= ‘2 - - v ) ] -
(4.4) L () = 1+ REGIE et =26t )] =r w(jwk)

(0= j,k <n)

It follows from the definition of uk that the matrix

0=j,k<n

(4.5) T = (Lj,h(uk))

is a circulant Toeplitz matrix which is also positive definite. The
interpolation in the mean fundamental function v is given by

n-1

(4.6) v(t) = b °, u(t—tk)
k=0
with
n-t .
(4.7) ki) wij-k) e = 60,k (0=j<n)

Using discrete Fourier transform methods [3] we obtain the following

explicit formulas

n-1

(4.8) c = - gel(t)/a, (0 =k <n) ,

Kk . k'] j

j=0
n-1
a. = Z wlk) e (-t) (0= j<n)
J - j k
k=0
For the practically important case n = 2m these formulas
reduce to
m-1
(4.9) a, = w(0) + w(m) cos{nj) + 2 & w(k) cos(jtk) . el
k=1 '
1, -1 -1 ot -1
¢ = —{a + cos(mukla + 2 ¥ cos(kt )a ') (0= j,k<n)

k n 0 m =1 J j

5. EXAMPLES
In this section we determine for two special choices of Y the

related functions ¥ and ¢ . The first example is concerned with the
function
(5.1)  w(t) = 1+ (—1)r82r(t) , reN.,

The related periodic Hilbert space Hd is the periodic Sobolev space



on Using the properties of the Bernoulli functions we obtain the

following formulas:

/ = (117 = (="
(5.17) w(t) = (-1) BZrH(t) , (L) (-1) Bzﬁe(t)

The space of optimal periodic interpolants in the mean RX(S ) consists
n

of periodic splines of even degree.

The second example is characterized by the function
(5.2) y(t) = 1 - (cosh(b) - 1)/(cosh(b) - cos(t))? , b > 0.
In this case Hd is a space of periodic functions having holomorphic

extensions in the strip |[Im(z)}| < b :

Hy = (Fell kfol(f.ek)|2xk|“exp<b|k|) <o)

[t is easily seen -that the following relations hold :

(5.2") ¥(t) = -sin(t)/(cosh(b) - cos(t)) ,
¢(t) = -in(cosh(b) - cos(t))
A
In this case K(Sn) is a linear space of rational trigonometric

functions.

Fig. 1 Fundamental interpolation in the mean function v for
glt) = 1 - Bz(t) with n=4 and h = t1,t1/2 ,t1/128
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Fig. 2 Fundamental interpolation in the mean function v for
wit) = 1—(<:os;h(1)—1)(cosh(1)—cos(t))-2 , n =4 and
h=¢t, t/2, t /128 .
1 1 1
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ACCURATE EXPLICIT FINITE DIFFERENCE SOLUTION

OF THE SHOCK TUBE PROBLEM

S.K. DEY and CHARLIE DEY

Abstract

A simple predictor-corrector algorithm has been developed in [1]
for numerical solution of initial-value problems. In this article we

will discuss computer experimentation of this method for solution of the

shock tube problem.

Introduction

One dimensional motion of compressible flow is described by:
U +F =0 (1)
where
U= (p, pu, )7
F = (a, b, c)T
a=pu b= (y-De+ ((3-y)/2) pu?

(2)
yeu - ((y-1)2) pu3~

(]
]

p = density, u = velocity, p = pressure, e = total energy per unit
. 2
volume, given by e = pe + u“/2, € = internal energy per unit mass. For
a perfect gas pressure p is defined by
= .y
p=(y-1)(e - pu™/2), vy = 1.4
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subject to various initial/boundary conditions, this set of equations

will describe various compressible flow models.

Now let us consider the shock tube problem. Let two gases sepa-
rated by a diaphragm be in equilibrium in a tube. Let the densities of
them be unequal. If the diaphragm is suddenly broken, the gas molecules
start mixing. This mixing phenomenon is often referred to as.the shock

tube problem. Here we will use the following initial conditions:

At t =0, p=1, u=0, e =1/(y-1) for 0 < x < 1.9 and p = 0.1,
u=0,e=0.1/(y-1) for 1.9 < x < 5.

As the gas molecules start mixing, sharp changes of density,
pressure, velocity and energy take place at several points along the
x-axis, To describe this phenomenon appropriately by a numerical
algorithm is often a challenge for researchers in computational fluid

dynamics.

This challenge has been undertaken by many researchers in the past
[2, 3, 4], and in some cases excellent results have been found. In this
work an explicit finite difference scheme, whose algorithm is much
simpler than all the above methods, has been successfully applied to
obtain quite accurate numerical solutions of the shock tube problem.
The algorithm has been developed by the second author and applied exten-
sively by him to solve several linear and nonlinear models in Engi-
neering and Applied Mathematics [1]. Let us briefly describe the

algorithm and some of its properties.

The Algorithm

Let us consider an initial-value problem

du/dt = £(u, t), u(to) =u (3)

A predictor-corrector algorithm to solve (3) may be expressed as:
0= Un + At f(Un’ tn) predictor (4a)

Un+l = (1-y) U+ v {Un + at £(0, tn+l)} corrector (4b)



where Un = U(tn)’ At = step size, 0 is the predicted value of U at tn
U

+17

is the corrected value of U at tn

n+l’ +1°

Y is called a filtering parameter, and it is assumed that
0 <y < 1. The predictor is Euler's forward difference approximation.
If vy = 0.5, then (4a) and (4b) are reduced to a second-order Runge-Kutta
scheme. It is expected that the corrector should filter most errors
generated by the predictor. But one must choose a value of y before the
algorithm may be used. Such a choice for the value of y may be obtained

if we do the stability analysis of this numerical method [1].

Linearized Stability Analysis

If we linearize (3), write du/dt = Au and use (4a) and (4b), we get
the combined form of (4a) and (4b) as,

Un+1 = g Un’ where o = l+z+Yzz, z = AAt.
For stability, |o| < 1. Let us consider the following example to look
into an interesting property of this method. du/dt = -80u, u(0) = 1.
The analytical solution is u(t) = e—BOt. Here o = 1-80h + 6400Yh2.
With y = 0.1, 4f h = 0.01, |o| < 1 (stable), if h = 0.07, |o| > 1
(unstable) and if h = 0.1, |o| < 1 (stable). When the algorithm is
stable, it gives quite accurate steady-state solutions. But often time
accurate solutions given by this scheme are not up to expectations.

This is true for one equation or a system of equations.

Since A may be complex, z may be taken to be a complex variable,
and hence o(z) is a complex function. Lomax tS] developed a computer
code such that for a given vy, o(z) may be plotted in a complex plane and
the region of stability may be found. Some of these contours have been

described in [1].

Difference Approximation of (1)

The equation (1) may be approximated as follows:

U™l S u? oy s (r,
3 i-

J

n n
L Fj+1 )/ (24x) (5)

or
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Mg e o, M- BN ax (6)
h J j-1 J

where U." = U(xj, tn). To stabilize the numerical process, an artifi-
cial viscosity term was introduced. This second-order derivative was

approximated by central differences. Using (5), the predictor-corrector

algorithm is:

n

n n
U, = U, + (At/2A F, - F
5= Ut 20, )

j+1

n+l

ntl ~ n A
, = (1- U, + v {U, 4+ (At/2A F, -
(1-y) PR { 3 (at/24x)( 3-1

J

U )} N

Fin
Since there are three components of U, for each component a unique value

of y may be chosen.
Discussions

Figures 1, 2, and 3 which describe distributions of density,
pressure and velocity were obtained by using the predictor-corrector
with (5) as predictor. TFigures 4, 5, and 6 describe distributions of
the same and were obtained using the same algorithm with (6) as predic-
tor. If the filtering parameters are not selected properly the results

may not be reasonably correct. This often poses a problem, since (1) is

a nonlinear model. For nonlinear Burgers' equation the model was
linearized and y was computed using the contours of stability [1]. This
has not yet been done for the Euler's equation (1). We hope that such a

stability analysis may resolve the problem in the future.
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Numerical Methods and Approximation Theory III (Ni§, August 18-21, 1987)

SOME ASPECTS OF AUTOMATIC DIFFERENTIATION

HERBERT FISCHER

Abstract: Gradient and Hessian matrix of an explicitely given function
can be computed automatically and straightforward by way of "automatic
differentiation”. This method is applicable to a broad class of
functions. No quotients of differences are used. And no symbolic
manipulation of symbols is involved. Complexity considerations show

that "automatic differentiation” is competitive and efficient.

1. INTRODUCTION

Gradient and Hessian matrix of a real function of several variables play
an important role in many numerical methods, especially in Nonlinear
Optimization. But little effort has been devoted to the computation of
these entities so far. "The Hessian matrix is not available.” This state—
ment used to be an axiom in the optimization folklore for decades. It led
to the construction of well-known algorithms for nonlinear optimization
problems, where the Hessian matrix respectively its inverse is approxi-
mated. Nevertheless, we will show how to obtain gradient and Hessian
matrix "automatically”™ in an easy and straightforward manner. No manipu-—
lation of symbols is involved, we deal with numbers, not with formulas.
This complies with the fact that, within the implementation of a relevant

numerical method, gradient and Hessian matrix themselves are of interest

rather than formulas for them.

Let us revisit the Hessian situation. Assume f is a twice differentiable
function of several variables and x is a point in the domain of f. Assume
further, we need the Hessian matrix H(x) of f at x. There are various

approaches to compute H(x), for instance
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(1) derive a formula for H(x) and evaluate this formula for the
specific X,
(2) approximate H(x) by a matrix of quotients of differences, using the

gradient of f or an approximation thereof,

(3) "update” somehow a previously obtained approximation to H(Yy),

where y is "near" x,

(4) use Automatic Differentiation.

The approach (1) is cumbersome, time consuming and prone to error, even
if an outside computer-program for manipulation of symbols is used.

The numerical differentiation mentioned in (2) inevitably leads into the
well-known predicament: a large stepsize yields iqaccurate valués and a
small stepsize makes the computational process instable.

The way (3) may be considered an emergency measuré.

The approach (4) seems to be the easiest one. It is astonishing that for
a long time the idea of Automatic Differentiation has been overseen or
ignored, despite quite a number of publications in this direction. We
should mention that most of the protagonists' papers were too inter-—
mingled with programming languages or had to establish their own
differentiation programming system. This may have hindered general
recognition and delayed use. The breakthrough in Automatic Differentia-
tion came with the work of L.B. Rall.

The automatic generation of gradie'.t and Hessian matrix for a broad class
of functions R” - R may well restrict the above "axiom" to very expensive
functions and to functions which are defined implicitely.

2. THE IDEA ‘

In this section we sketch the basic idea of Automatic Differentiation as
far as gradient and Hessian matrix are concerned.

Assume we have a rational function
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r: DCR =R
in explicit form. This means, for r(x) we have a formula which only
contains the components Xl’x2""’xn of x, some real numbers, the four
arithmetic operations addition, subtraction, multiplication and division,
and parentheses at proper places.
Let rG(x) denote the gradient of r at x € D and

let TH(X) denote the Hessian matrix of r at x € D.

case! r is primitive

r(x) = % = i-th component of x, for some i € {1,2,...,n}.

For any x € D we have rG(x) = i-th unit-vector, rH(x) = zero-matrix.

case! r is constant

r(x) = const = ¢, for some ¢ € R.

For any x € D we have rG(x) = zero-vector , rH(x) = zero-matrix.

case! r is neither primitive nor constant

We employ Cesar's rule divide et impera, which of course in our situation

reads

split and differentiate!

In splitting the formula for r(x). we obtain one of the four cases

(A)  r(x) =a(x) + b(x)

(S) r(x) = a(x) - b(x)

M) r(x) =a(x) - b(x)

(D) r(x) =a(x) / b(x)
where a and b are rational functions D C R® - R. Furthermore, the
functions a and b are available in explicit form and the formulas for

a(x) and b(x) are shorter' than the formula for r(x).



To follow the rule, we differentiate the function r. This yields

(A r.=a,+b

G~ G G
(s") T =85 " bG
(M')  rg=bras + asb,
(D) ro=(ag- r*bG) /b

where aq = gradient of the function a and bG = gradient of the function
b.

From the formulas A, S, M, D and A", S',.M', D' we conclude

For any x € D, the pair r(x),rG(x) can be computed

from the pairs a(x),ac(x) and b(x),bG(x).

Notice that for a given x € D, the pair r(x),rG(x) is not a pair of

. . . . . . 11
formulas, nor is it a pair of functions, it is an element of RxR".

We differentiate the function rGZ DC R® - mn. This yields
(A ) I‘H = aH + bH
(S ) I‘H = a_H - bH
" e e © t ° © t
M) Ty = beay + boras +a bH +a bG
" - — ° t — ° — ° t
(D) ry = ( 8y = bgorg ~ reby - ore bG) /b

where ay = Hessian of the function a and bH = Hessian of the function b.

Now we already know what to conclude

For any x € D, the triple r(x),rG(x),rH(x) can be computed

from the triples a(x),aG(x).aH(x) and b(x),bG(x),bH(x).
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3. EXAMPLE
We consider the rational function
£f: DC RS - R with £(x) = X T XXy F xl/(x2°x3°x3).
First we split the formula for f(x)., then we split the parts, and so on.
We obtain the tree shown in figure 1. Now we identify equivalent parts of

the tree and get the graph shown in figure 2. This graph is a guide-line

to compute f(x).

code-list for f({x)

£,(x) = x; = given f5(x) = £,(x) " £5(x)
f5(x) = x5 = given fg(x) = £ (x) - £4(x)
f4(x) = x5 = given fr(x) = £,(x) 7 £ (x)
£.(0) = £5(x) - £5(x) fx) = f5(x) + £,(x)

For convenience we define

-
—~
x
~—
1

(fi(x)'fiG(X)’fiH(x)) for i =1,2,....7

(£, £(x). Fy() -

o
~
]
~—
1

Now we know from section 2, that we can compute

T,x) from T,(x) and Fy(x)
fo(x) from T,(x) and T,(x)
To(x) from T)(x) and T,(x)
F,(x) from T (x) and Fg(x)

f(x) from fé(x) and ?%(x)

This information allows to draw a graph to compute f(x), see figure 3.
Notice that there is little difference between the graph to compute f(x)

and the graph to compute f(x).

The computational activities to get the value f(x), the gradient fG(x)
i
and the Hessian fH(x) for some x € D are obvious: .-



(xl»xz-xj) + (xl/(’zqa-xj))

SICPRSY e SUCERSY

Figure 1: Tree for f(x) = Xy -

Figure 3: Graph to compute T(x) = (((A),fG(x),(H(x))
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Set f&(x), fé(x), ?é(x) to their known values.
Then compute ?&(x), ?5(x), ?é(x), f%(x), f(x) in this order.

The final triple f(x) provides the desired entities.

4. COMPLEXITY
Assume that f: D CR" - R is an explicitely given rational function. This
means, we can evaluate f(x) using only addition, subtraction,
multiplication and division of real numbers. Hence, we can set up a

L f

characterizing sequence f ,fs of functions fi: D - R such that

1ofgrens
(1) for i € {1,2,...,n})

fi(x) =X, = i—th component of x
(2) for 1 € {n+t1,n+2,...,n+d} with some d € {0,1,...}

fi(x) =c; = real constant
(3) for i € {ntd+1,n+d+2,...,s}

fi(x) = ai(x)%bi(x) with * € {+,-,-,/}, and ai'bi € {fl,f2,....fi_1}
(4) £,(x) = £(x)
In order to avoid superfluous operations, we assume that for i €
{nt+d+1,...,s-1} the function firshows up as operand in at least one of
the subsequent functions fi+1""’fs'

Prior to complexity investigations we have to specify the methods
considered. Let us indicate gradient and Hessian matrix of a function by

the subscript G resp. H.

Gradient-Method

(0) choose an x € D

(1) for i = 1,....,n set fi(x)'fiG(X) to their values
(2) for i = n+l,...,n+d set fi(x)’fiG(X) to their values
(3) for 1 = ntd+l,...,s compute fi(x).fiG(x) according to section 2

(4) then fs(x) = f(x). fSG(x) = fG(x)



Hessian-Method

(0) choose an x € D

(1) for i =1,...,n set fi(x)’fiG(X)’fiH(x) to their values
(2) for i = n+l,...,nHd set fi(x),fic(x),fiH(x) to their values
(3) for i = n+d+l,...,s compute fi(x)’fiG(x)'fiH(X)

according to section 2

(4) then fs(x) = f(x), st(x) = fG(x). sz(x) = fH(x)

What does it cost to compute the gradient fG(x) and the Hessian fH(X) of
f at some x € D? We answer this question in terms of arithmetic

operations. Let us define

#(f) := number of arithmetic operations to compute f{(x)
using the characterizing sequence fl,fz,,..,fs
#(f.fG) := number of arithmetic operations to compute f(x) and fG(x)

#(f,fG,fH) := number of arithmetic operations to compute f(x), fG(x)

and fH(x)
Of course, #(f,fG) and #(f,fG,fH) depend on the method used.
For the Gradient-Method we obtain
#(f,fG) < (Bn + 1)-#(f) .

and for the Hessian-Method we get

72 13
#(f,fG,fH) < (in + 50+ 1) -#(f) .

These bounds show that Automatic Differentiation is competitive if
compared with numerical methods which approximate components of gradient
and Hessian matrix by quotients of differences. Furthermore, it should be
mentioned that, by some sophisticated organization, we are able to

establish Automatic Differentiation methods with

H(E £5) < 4#(f) and H(E,fq.f,) < (12048) -#(f) .
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5. REMARKS

a)} In section 2 we used a rational function r to point out the basic idea
of Automatic Differentiation as far as gradient and Hessian matrix are
soncerned. But the formulas A', S8', M', D' and A", 8", M", D" mentioned
there are not restricted to rational functions. The crucial point is the
~ational composition of r, rather than the rational character of the
sarts of r.

5) In section 4 we assumed that f is a rational function. This
restriction was set only for didactic reasons. In the more general case
vhere the formula for f(x) also involves some library functions like sin,

ios. ..., the key is: Assume that the functions
a:DCR'>R and X ECR-R

are twice differentiable. Under the provision a(D) C E define the

function
r* DCR* >R with r(x) = Aa(x)) .

Then r is twice differentiable and

1l

ro(x) = N (a(x)) ag(x)

A (a(x)) ag(x) ag(x) + N (a(x)) ay(x)

ryy ()

These formulas reveal the following fact:

For any x € D, the triple r(x),rG(x),rH(x) can be computed

from the triple a(x),aG(x),aH(x) using A, A', A".

c) An efficient implementation of the Gradient- and the Hessian-Method
has to take care of system-zeros {zeros in gradient and Hessian of

primitive and constant functions).
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ON TWO SIDED APPROXIMATION FOR

SOME SECOND ORDER VALUE BOUNDARY PROBLEMS*

P. GHELARDONI, G. GHERI and P. MARZULLI

ABSTRACT - This paper is concerned with boundary value problems
for second order systems of the form y'' = f(x,y). From a
theorem proving under suitable conditions the existence of
a solution, using Picard's iterations, a numerical procedure
is derived to find actually two sided approximations of the
solution. To this purpose a class of linear two-step methods
is shown to be efficient, when two formulas of the class,
with error constants of opposite sign, are alternatively
used.

As a numerical application three test problems are developped.

1. INTRODUCTION.

Let the two point boundary value problem
(1) y'' = £(x,y), y(0) =a, y(1) = B,

be given with £, y, o, B E'Rm, X € Ib,T:] of R1 and let a

function y1(x) be chosen so that y1(0) = a, y1(1) = B; it is
well known that under suitable hypotheses, Picard's iterations
defined by '

yl"l' = f(len_1)/ _Yn(O) = Uy _Yn(1) = Bl n>1l

can generate monotone sequences converging to a solution of (1).

In a different way monotone sequences bounding the solution of

(1) work supported by the Italian Ministero della Pubblica

Istruzione.
209
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(1) can be obtained by quasi—linearizatibn ([:8:}, ch. 5). Both
those methods require to solve a linear problem at each step,bbu
the numerical solutions of these linear problems can bound the
solution of (1) in the séme fashion as the theoretical solution
only if certain additional assumptions are verified ([izi],;u
p. 98-100 and corresponding references). Abiding by this frame,
this paper we present a numerical method based on Picard's iter
which give a theoretical two sided ;pproximation to the solutic
(1) . The numerical method is éuitable to solve the linear probl

arising at each step, under assumptions sufficient to preserve

property of a two sided approximation.

2. A PICARD'S SOLUTION OF THE PROBLEM.

Among several theorems assuring the existence of a solutio
the problem (1), we are interested in the following formulation

in I:B:], concerned with a more general problem than (1). Such

formulation, which is given for a scalar eyuation, is a particu

case of that reported in It1:] (theor. 3.3., p. 34).
THEOREM 1. Given the boundary value problem
('Y y'' = f(x,y,y"), y(0) = a, y(1) = B,

£f, v, o, B e R, let f(x,y,y') be continous on

{x,y,y) ] xe [ 0,11, lyl<e, |y'|<=}

and satisfy the Lipschitz conditions

A

£y, y ) -Ex,y* v | s L ly-y*],

AN

|f(leiy.)_f(lely'*)‘ L2|Y"‘Y'*|-
Then if

L1 + 4L2 < 8



there exists at least one solution of the problem (1').

The proof is given by constructing the sequence {Fn(x)},
X € [j0,1:],

F,o(x) = (B-a)x + a,

1
FlU(x) = £0¢,F (0 ,F!_(x)), n>1,
0) = F = R
Fn( ) o, 1'1(1) B/
this sequence is shown to converge uniformly on [j0,1:} to a

solution y(x) of the problem {(1').

This theorem can be extended with some slight modification to the

problem (1) .
We denote, for simplicity, yB(x) = (B-a)x + o the linear function
satisfying the boundary conditions and
O_ p—
S ={z(x)| z(x) eCc | 0,1 ], 2(0) =a, z(1) = B},
where the vector norm | * || is given by
m
z(x)]} = © max [zi(x)l.
i=1 0sxs<1

Then the following result holds.

THEOREM 2. Consider the problem (1) where y{(x) & S. Assuming
that

0 =~ .- , :
(2) £ (xy) e C (0,1 fx8), i =1,2,...,m,

and, for any y, v*¥ € §,

m
(3) £ (x,v)-F, (x,y%)]| €L, I
1 1 _

(4) L, < 8/m, i = 1,2,...,m,

then the Picard's iterations of S




F1(x) = yB(X),

(5) Fo(x) = f(x,Fn_1(x)), n>1,

F {(0) = a, F_(1) = B8,
n n

converge uniformly on Iﬁ0,1:] to a solution of (1).

PROOF., The main feature of the proof is to prove that the sum

F_(x) + (F_(X)-F_(x)) + ... + (F (x)-F (x)) for n—»e converges
1 2 1 n n-1

uniformly to a function which is shown to be a solution of (1).

Since F_(x) is a solution of (5) we .can write ([ 2| p. 42-43,

'] .
(5") F (%) = y_(x) + ( g(x,t)f(t,Fn_1(t)) dt ,

(x,t) = (t(x—1) for tsx
gix 1x(t-1) for tix

is the Grezn's function. Thus we have

1

f
IF_ . (x)-F_.(x)] | lg(x,t)||E, (£, y ()] at , 1 = 1,2,...
) 1 B

21 1i

A

o

Now we observe that, for i=1,2,...,m, it results ai§yBi(x)§B or
aiZyBi(x)zBi on L_O,T_J, so that the functions fi(x,yB) are
defined on a closed and bounded domain D. Thus, from (2), we can

set li = maxlfi(x,yB)] and it results, for any x ¢ L O,1_|,

b 1
- < - i =

|F21(X) F1i(x)| < 8li, i 1,2,...,m. .
Then it follows | F2—F1H $1/8, where 1= I 1.
Analogously, by (3), we obtain 1=

1
F - < = - i =
IF_, (x) Fn~1,i(x)| < 8LiH FoF ool i=12,000m

for any x ¢ I:O,T:]. Adding all these inequalities and denoting
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m
1
= , h - < <L F _-F , , b
L 'Z Li we have H Fn Fn—1” 8 H . n—2“ or v
i=1
recurrence
1, L., n-2
-F < =1(= .
” Fn n—1” 8 (8)
Owing to {4) the uniform convergence of {Fn(x)} on I:O,1:| is
proved.
Let F(x) = lim Fn(x) and
: n--o (‘]
s(x) = F(x) - J g(x,t) £, F(£)) at - y (x).

0
To prove that F(x) is a solution of (1) it is sufficient to verify
that s(x) = 0 identically.
In fact from (5') we have

¢
s(x) = F(x) - F_(x) - J gx,t) (£(t,F(£))-£(t,F__ (£))) dt,

n
0
and from (3) we can write, for any X € It0,1:|,

£ (%, F(x))-£ (x,F (x)}] s L. | F-F }] , i=1,2,...,m.
1 1 n 1 n

Then, because of lim || F—FnH = 0, it can be seen that for any

n-co

arbitrary positive § we can choose n so large that |si(x){ < 8,
i=1,2,...,m, for any x ¢ 1:0,1:]. Then s(x) = 0 identically,
which completes the proof.

We introduce now a partial orderihg in Rm defining that vzw
means vizwi for i = 1,2,..,,m; so we can prove the following
theorem giving sufficient conditions for the two sided approximat:

to the solution y(x) of (1) by means of the sequence {Fn(x)}.

THEOREM 3. Let the problem (1) satisfy the hypotheses of the

theorem 2 and let the inequalities




v

0,
9f/3dy 2z 0,

(6) f{x,y(x))
(7) J(x,y(x})

hold in.[:0,1] X S; then the Picard's sequence {Fn(x)}, as defined

in (5) and converging to y(x), satisfies , for n21, the inequaliti

(8) F, (x) £ y(x) £F (x)

This statement is also true if inequalities (6), (7) and (8) are

reversed.
PROOF'. Since the limit vector F(x) = y(x) is a solution of (1)
we have
(1
(9) yix) = yg(x) + J| g(x,t)£(t,y(t)) dat .

0
As previously observed, we can write

1

f

(x) + | g(x,t)£(t,F_(t)) dt
) n

(10) F (x) =y

n+1 B

Writing (9) in the equivalent form

X 1
y(x) - yB(x) = (x—1)J tf(t,y(t)) dt + x} (t-1)f(t,y(t)) 4
0 X

we have

(11) yi(x) = yB(X) F1(X).

Subtracting (10) from (9) and using the mean value theorem we

obtain
IR

(x=1) | tI(y(£)-F_(t)) dt +
Jo n

I
L2s]
[

"

(12) v (x)

(1 2
x} (t=1) Ty (£)-F () at
x

o»

where J and are two suitable evaluations of the jaccbian matri
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From (7) and (12) it follows that

Fn+1(X) ’

VIEA

v (X) % Fn(x) implies y(x)

and taking into account (11), the inequalities (8) are proved.

3., METHODS FOR TWO SIDED APPROXIMATION.

Consider the well known class of linear g-step methods of the

form

g q
2 b ;. g22

By, 50 1Fkeim
i=0
(see [: 6 | p. 27-28 and |: 5:] p. 252-256) and limit our attention

to the family of methods

(13} wy g = 29y % ¥y g = Ry By B v )

Moreover we consider for YO’ 71, Y2 only non negative values
guaranteeing among other things to avoid operations where exact
significant figures may be lost.

It is easy to verify that: if Y, + Y1 + y2 = 1, from (13) we have
a class of first order formulas at least; if in addition we impose
YT + 2Y2 = 1 we have a class of second order formulas; by adding
the further condition Y4 + 4Y2 = 7/6 we obtain a unique fourth
order formula; finally in the family of formulas (13) with non
negative Yi there are two sub;classes of formulas having error
constants of opposite sign:

Denoting M1 and M2 a couple of formulas with non negative Yi and
error constants of opposite sign, we can set respectively for the

truncation errors

T = C1h y (),

P,72 (py)

T = _czh y (T]) L4



where p1, p2 2 3, ¢ and n are suitable.values on (0,1) even
depending on Xk, C1 and C2 are positive constants.

We want to apply M1 and M2 to the problem (5). Discretizing the

interval [: 0,1:] with the mesh points xk = kh, k = 0,1,...,K+1,
h = 1/(RK+1}), and using M1 or M2 to approximate the solution of t
problem (5), we have to solve at each step an algebrailc linear s
(n)
k

solution at the current step and at the point x

In fact, denoting by g the m-vector giving the approximate di

K’ supposing to u

an exact arithmetic, from (13) we have

(n) (n) (n)
Ieo1 T 29 F Gy

2 (n-1) : (n-1) (n-1)

oy E gy g9y Iy B gy VHY Ry T )

Collecting all these equations for k varying from 1 to K we have

(1)
Hgn = C (gn_1) ;o= 2,3, r
where = is the mK-vector whose components are (g}in))j ((3=1,2,.
k=1,2,...,K); (i) means we have used the method Mi (i=1,2); c(l)

is a non decreasing mK-vector function of its argument z ¢ R a
consequence of the condition (7) and of the non-negativity of t
selected YO’ Y1, Y2 in (13); H is an mK-order T-matrix ([:9:L c

of the tridiagonal block form

21 1
I
H:
I

I -21I

where I is the m-order identity matrix. Moreover we observe that
is a M~matrix (Eﬁ:j, p. 42-45) and consequently a monotone matr:
for which -Hu £ -Hv implies u £ v or Hu 2 Hv implies u £ v as we

being u, v, real mK~-vectors.
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{(n)
k
solution F_ (x) of the current problem (5) at the mesh-point x  and

k
let Gén) be the m-vector approximating Yin) and formed with the

Now let Y be the m-vector formed with the exact values of the

corresponding values obtained using M1 or M2 in presence of round-of

errors.

(n)

If pk and T(n)

k
round-off error and the local truncation error, we'have, by definiti

denote the m-vectors giving respectively the local

for each Xk, k=1,2,...,K,
(n) (n) (n) _
(14) Gk—1 .2Gk + Gk+1 =
2 (n=1) (n-1) (n-1) (n)
oy £z 406G ")y Elx .6 VY, E0 Gy D) ey
(n) (n) {n)
' - =
(141") Yk—1 2Yk + Yk+1
2 (n-1) {n-1) (n-1) 2
A A IR TL PR RS PEAS A Vvl Yy ) v T
Subtracting (14') from (14) and setting eén) = Gén) - Yén), we obta:
(n) (n) {n) _ .2 (n-1) {n-1) (n--
B L I
(n) 2_(n)
+ pk h Tk r
where Jk—T' Jk, Jk+1 are sultable determinations of the jacobian
matrix of the function f.
Defining now the mK-vectors Gn' Yn’ en’ pn, Tn having the componen
. ) (n) {n) (n) (n) (n
respectively given by (Gk Xj, (Yk )j, (ek )j, (pk )j' (Tk ) 3
({j=1,2,...,m), k=1,2,...,K), the last equation can be written as
(15) -He = -Qe + h"t - o
n n-1 n. n
where Q is a mK-order non-negative matrix. Note that e, = 0 becaus:

1

we assume G1 = YT'

Denoting with |v| the vector whose components are the absolute val

of the corresponding components of v, the following theorem holds.



THEOREM 4. Let the solution of the problem (5) have both p1—th

and pz—th derivatives 2 0 and let the methods M1 and M2 be appliec

to (5) with

2

(16) [pnl < h lrnl.
Then the method M, gives G > Y if G £Y and the method M.

1 n n — n-1 n-1 Z
gives G < Y if G 2 Y . This statement is also true if all
“~—— n n — n-1 n-1
inequalities, but (16), are reversed.
PROOF. Since ~H is an M-matrix, (--VH)—1 is a non-negative matxri

so that from (15) and (16) and téking into account the present ¢

of T the proof is obtained.

Theorems 3 and 4 enable to carry out a procedure for a two sided
approximation of the solution of a problem of the type (1) satisf
the condition (2), (3), (4), (6), (7) of the section 2 and having
solution y(x) with non~-negative p1—th and pz—th derivatives (the
with reversed inequalities is analogously obtained).

Denoting with Y the mK-vector whose components are the exact valn
of the solution y(x) of the problem (1) at the mesh-points X
S r X the procedure can be described as follows.

From (8) we have

Y < <Y 2 1;
2n ¥ on-1 " " Vi

on the other hand, according to theorem 4, starting with G1 = Y1
applying the method M2 to the problem (5), with n = 2, we obtain

Gé < Y2 and this implies that the further application of the met

M1 with n = 3 will give G3 > Y3. The entire process can be repea

using alternatively M2 and M1 to obtain, in general

G
2n < Y2n ¥ Y2n—1 < G2n—1

[N
A

We observe that this result can be also obtained using the monot

(1)

of -H and because c (z) is a not decreasing function.
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Because of the convergence of the seqguence {Yn} to Y, it can

be expected the couples G give, for suitable n, good

2n’ C2n-1
two sided approximations to Y, according to the accuracy of the
methods M1 and MZ'

4. NUMERICAL TESTS.

We have considered the following formulas of the kind

(13) and the corresponding truncation errors:

2
o) Va1 T Ay Y Yy T B
1 (1 _ 1 .2 (4)
T —12hy (E)/
21 1
- = —F -
o) Vieeq T 2y T Yy T RGE L gE )
2 (2) _ 1,20
R Y ’
2,1 5 1
oy k1T Wit Vg = BIRE L Eh Y Rt
2" T(2') _ 1 h4 (6)()
T T240 MY n-
As the results are concerned with three test problems, we
have gquoted in the tables 1, 2, 3, the m-vectors eén)= e(n)(xk)

with n=8 and n=9.

Coupling the preceding formulas in the two fashions (M1,M2)

and (M ,), an application has been made, in the test 1 and 2,

1772
to a class of linear problems like (1) considered in LA J:

(17 y'' = Ax)y(x),
. - mxm . . .
where the matrix A(x)ZA ¢ R is given by
1t 1 2 2 1 2
A=W''W + (W) + 2W'DW + WDW' + (W'W) + WDWW'W + WD W,

mxm 2 . . .
W=W(x) € R ™ is such that W =I, and D=d1ag(ki) is a diagonal



natrix of order m with Ai, i=1,2,...,m, real parameters not

depending on x. For this problem we have the exact solution

v(x) = W(x)z(x), where
ALK A% A X
2 m T
z(x) = (e , € S e , e )
Test 1. We have selected for W the constant binomial matrix

of order m

1 0 0 0 0 .....
1 -1 0 0 0 .....
-2 0 .....
W o= 1 1 0 )
1 -3 3 -1 0 .....
17 -4 6 -4 T oo
ib/2 | .
and chosen Ai = a , 1 =1,2,...,m, with a>0 and b real numbers
2

Then we have A = WD W whose elements are given by

. ‘b b i-s
@ .. = THatPr-a I, gz,

ij J-=1
Choosing a and b so that O§ab§1 it is not difficult to verify

that the following properties hold:

[\

i) A 0;

b
= a , so that the condition (4) of the theorem (2)

A

s, IIal,
. . b
is equivalent to m28/a;

1

111) vy Pl x) 2 0 if m £ 1+1/a° PP,

Then the test problem is

y'' = Ay,
T
y(0) = a = (1, 0, , 0) 7,
i-1 A
_ _ i-1,, ok ko
yl(1) *‘Bi = E ( K Y(=1)"7e ", 1 =1,2, , T
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ssuming m=4, b=2, a=0.5, the conditions of the theorems 2 and 3
re satisfied and we have y(4)(x)20, y(6)( 20, X € Lp 1 J
rat  the theorem 4, related to the couples (M1,M2) ?g? (M1,M2,
>lds. In the table 1 we have listed the values of e (x) and
(9)

)

(x) corresponding to the odd mesh-points with a.step-lenght .

=0.1
Table 1
(M1 Mz) (M1;M2,)
8 9 -5 8
e( )(X) e( )(X) (x10 7) e( )(x) e<9)(x)
1 -0.63 0.69 -0.13 0.17
-0.58 0.67 -0.11 0.16
-0.57 0.66 -0.11 0.15
-0.55 0.63 ‘ -0.10 0.14
.3 ~1.04 1.17 -0.21 0.24
-0.96 1.09 -0.20 0.23
-0.87 0.99 -0.19 0.21
-0.81 0.92 ~0.18 0.20
.5 ~-1.22 1.45 -0.32 0.35
-1.18 1.33 -0.30 0.33
-1.05 1.20 -0.26 0.31
-0.98 1.11 -0.24 0.27
7 -1.18 1.35 -0.30 0.35
-1.11 1.27 -0.27 0.33
-1.03 1.17 -0.26 0.30
-0.98 1.11 -0.24 0.27
9 -0.74 0.84 =0.15 0.20
~-0.96 0.79 . -0.13 0.19
~-0.66 0.75 ~0.12 0.17
~0.63 0.72 ' -0.11 0.15
gt 2. We consider again the problem (17) with m=2 and
a12x+b12
3325y |
where a,,, b, I 121,322 are real numbers chosen according to the
i ]
2

condition W I.



. 5 . ‘
It is easy to verify that (W') = 0, W'W=-WW' and, obviously,
2
W''= 0; so we have A = 2W'DW+WD W.
Furthermore the class of the matrices like W for which W'#0 is

defined by the following conditions

a2 + a,.a =0
11 12721 !
aygPoq * Pygdyy F2a4byy = 0
2 R
bry # BygPyy ==
Selecting, for example, a,,= a,= b1é: a,,= 0, b11— 1 and
b21= b22 = -1, we obtain the test problemn
v o= (2W'DW+WD2W)y , \ N
T ’ 1 2.7
y(0) = (1,-2)7, y(1) = (e ,-e )

If 0<A2§A £2 and 0§A1—X2§1, the conditions of the theorems 2 and

3 hold, and y(S)(x)zo for s22 so that the theorem 4 is applicable

as well.
9
In the table 2 are displayed the values of e(8)(x) and e( )(x)

relatively to the odd mesh points with step-lenght h=0.1 and

=2, A=t
Table 2
(M1,M2) (M1,M2,)
8 9 -4 8

x c® i) P x107h By e )
0.1 -0.74 1.05 ~0.39 0.59

-0.96 1.03 -0.38 0.58
0.3 -1.56 2:21 -0.82 1.24

-1.07 1.51 -0.56 0.87
0.5 -3.31 4.80 -1.80 2.73

-1.57 2.20 -0.80  1.22
0.7 -7.76 10.92 -4.15 6,28

~-2.15 3.03 -1.19 1.70
0.9 -6.49 9.10 -3.37 5.12

~1.40  1.94 -0.74  1.13
Test 3. As a case different from the type (17) , we consider the

nonlinear problem
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vy :
—1i+1
yi"(X):eml , 1= 1,2,...,m.
n this equation the conditions (6) and (7) are verified, and

(4)(x)>0.

urthermore, choosing suitably the boundary values of y(x) such
hat 020>8, we find y(x)<0 and y'(x)£0 on (0,1 ]

hen even the conditions y(6)(x)>0 and ][Bf/8y||w§1 hold: thus it

s possible to apply the two sided approximation process for

AN

8.
(8)

1 the table 3 results for e (x) and e

{9)

(x) at some odd mesh
>ints with h=0.1 are displayed for a problem with m=4 and boundary

>nditions given by

Y(O) = 0!
y1(1) = -0.4, ‘ y3(1) = -0.8,
y,(1) = ~0.6, Yy (1) = -1.0.
Table 3
(M, /M) (M, M, )
¢ e(8)(x) e<9)(x) (X1O_4) e(8)(x) e(9)(x)
). 1 -2.49  3.41 ~0.35  0.57
-1.85  2.57 -0.28  0.41
-1.25  1.71 -0.21  0.30
-0.83 1.13 , ~ -0.12 0.18
). 3 -4.44  6.05 ~0.76  1.13
-3.66 4.98 - -0.56  0.82
-2.58  3.50 ' . -0.30  0.45
-1.72  2.33 -0.24  0.34
1.5 -4.39  6.00 -0.68  1.00
-3.57  4.91 -0.56  0.87
-2.92  3.99 -0.37  0.55
-1.78  2.44 -0.27  0.39
.7 -3.20 4.35 - -0.49  0.71
-2.66  3.61 -0.37  0.54
-1.93  2.62 -0.29 0.43
-1.28 1.75 -0.20  0.29
0.9 -1.16  1.61 ~0.17  0.25
-0.97 1.33 -0.14  0.21
-0.80 1.10 . -0.09 0.16
-0.52 0 0.12

.70 - . -0.07




All calculations have been performed on the IBM 370 at the CNUCE

of Pisa using a double precision arithmetic (8bytes).
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1.

ON THE APPROXIMATE CALCULATION

OF INTEGRALS ON A POLYGON IN R2

ALLAL GUESSAB

Abstract : We will consider the problem of approximating a double integral
. 2 . . . . .

on a polygon in R as a linear combination of integrals on the real line.

Cubature formulas are obtained in such a way as to minimize the exact error

bounds of the formulas for a given class of functions.

INTRODUCTION : NOTATIONS AND DEFINITIONS

The theory of numeric cubature formulas for functions of one variable is
well developed. We refer to Davis-Rabinowitz [11, Stroud-Secrest [23] and

Krylov [111 .

In this work, we will consider the problem of approximating a double integral

on a polygon K in R? as a linear combination of integrals on the real 1ir

Let us first fix a few notations. For o = (al,az) in Nz, we denote by x*

the monomial defined by

% % ’ % %
For k = (k;,k,) in N N ,and m= (m ,m,) in N .M (such that k, <m

1° M
and k, < mz) . We have the following definitions : ’
(1.1) L= Ja= (a0 ,0.) € N2 o, <k i=1,2
: k 1°%2 ’ F R ’ ’

— o
(1.2) Ry = gR_ UZET a X", a €R s

€L,

_ ok o
(1.3) v, = {R =X+ ) a, X ,a €R

o €L
(k;~1,k,-1)

Finally, let ¢ be a real number, which is assumed to be fixed. Let us
introduce the following notation :

225



Mg K(c) is the set of all functioms f(x,y) which have piecewise continuous
b

derivatives

8i+j
(1.4) — f(x,y) » 1= 0,1,...,k1 HE O,l,...,k2
IxX ByJ

on K and satisfy the conditions

Bk1+k2
(1.5) f < ¢
axklaykz 0,K
where
k+e, 7 k) +He, ) 1/2
3 ‘ 3
<l-§) “ R £ = & J <}_—E:———EE— f(x,y) > dXdy\)
ax Loy 2 o,k N K Vex Tay ‘ J

Let K be a polygon in R? and g, an arbitrary polynomial in Vk .

Consequently the following equality is true

k1+k2

1 3
() = J £(x,y)dxdy = J E(y) — g (xey)dxdy
K 12 K 1, 72
9x "3y

Then if f € Mg K(c), applying Green's formula to the right-hand side,

we obtain the following cubature formula :

(1.7) IK(f) = QK(f’gk) + EK(f’gk) s
where
. S k-l ; 3 akl—l—3+k2
%(Foe) =T | LD J 3 POy oo s
1772 \ j=0 ' 9x 1 2
< 9x dy
kz—l k1+j { ak1+j akz—l-j ‘ 
+ z (-1) JF —k‘l—— f(x,y) —kz—_l-—? gk(x,y) @2(:10) 5
J % Byj dy

where Si , is the 1i-th component of the outer normal vector along K , and

o+, K+
1.8 G0 I
(1.8) Ep(fsgy) I 1, |

2
9
J gk(x,y) TR f(x,y)dxdy .
K 1 2
9x 0y
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APPROACH TO THE PROBLEM

Our goal in this work is to derive optimal cubature formulas of the type

(1.7) in the space Mg,K
(c), if the polynomial 8y is chosen so that the quantity

(¢). The formula (1.7) will be optimal in the

k
space MO,K

k
EM. (e)) = sup E(f,g, )] -
0,K X k
fEMO’K(c)
has the minimal value.
. PRELTMINARY RESULTS
Remark 2.1. It is clear that the cubature formula (1.7) is exact on F , i.e.

EK(f,gk) =0, for f din F ,

where I is the vector space generated by the family of monomials x* s

o =(ul,u2) € A , with

A= ({0,1,2,...,k1—1} .MU . {O,l,2,...,k2—1} )

Remark 2.2, Assuming f € Mg K(c). By HBlder's inequality, we obtain from
(1.8) that

(2.1) sup ‘EK(f’gk)| S # Hgkno ¢
k 1°72° ’
fEMO K(c)

Proposition 2.1. Assume QK(f,gk) is a formula of type (1.7). Then :

. ‘ : c
(2.2) sup |EK(f:gk)| et Hgk”O,K
e (e) 12
0,K
Proof : For the function
( 1)k1+k2 R x v kl—l kz-l
R(x,y) = - ; { J (x -u) (y -v) gk(u,v)(
(k1 1).(k2—l). ‘| ' 0

ngO,K

belonging to Mg K(c), it follows from (1.8) that
>

- E g .
fEK(R,gk)l g ” kHO,K



Then we have from (2.1) the equality (2.2).

In the sequel, we will use the following terminology
K 1is a polygon in Rz . We establish a triangulation r%((cf. Fig.2.1))

over K, i.e. K 1is expressed as a finite union

n
(2.3) K= .U S
i=1
of triangles Kh ; in such a way that these triangles are non-overlapping,

and are all interior to K .

Fig.2.,1 Subdivision of K dinto triangles.

APPROACH TO THE PROBLEM IF K IS A TRIANGLE.

Let K be a triangle with vertices (a,b), (a+h,b) and (a,b+h'), where
%
h, h' € R; . We denote by Pi , 1=1,2,3 the three sides of K , and

3
(3.1) r= ur,,

‘where Fl (resp. Fz) is a piece of a line parallel to the y-axis (resp.

X-axis)

=
it

{Guy) €K, A(xy) =x-a=0}

—
I

_{(X;Y)EK, dz(X’Y)=Y‘b=O}
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pefinition 3.1. type (1.7) cubature formula QK(f,gk) is said to be

X %
optimal with respect to K of order r = (rl,rz) €EN N such that rl—ls kl

and r,-1 <k, , if and only 1if the following properties hold

2 2
i) g, lies in V(l) where V(l) is the set of polynomials in V
i Kk’ k peLy Py K
such that
% F drz *
P TP gdy 4y o Py €Vs
ii) E*(f g, ) = sup |E (f,g )| = inf sup !E (f )|
ORI N KBk 0 " K P
fEMO,K(C) pkEVk fGMO’K(c)

Theorem 3.1. Let K be a triangle of the type (3.1). Then, there exists
an optimal cubature formula of the type (1.7) with respect to K , of order

T = (rl,rz), such that

x  T1 %o
e
%*
where By 1s‘1n Vk—; , and is orthogonal to R(k —r.-1,k -rz—l)(K) ,

when considering the : inner product associated to Integration on K

2r1 2r2
and weight function dl d2
Proof : TFrom proposition 2.1, we have
C .
sup B e | = iy el > for all py €V
e (o) 12
0,K
Then
B (f = inf £ == inf
g(fg) = in sup [E(Ep) | = 1oy 1o delok
eV(l) feMk () p, €V
Pe¥y 0,K N
So
1/2
E(f,g) = —S it |1 (dzrld2r2 2)]'
K 8 k! g Y9 92 P4 :



It is shown in ([121 that this problem has one and ohly one solution

*
g, ~ €V ~ , also characterized by
k-1 k-r

I /’d2rld2r2 *x)oo, vReR e
K\l ‘2 Bk-r ’ (k-1 -1, ky=7,-1)

Example 3.1. K={(x,y)e]R2,x+ySl,xZO,yZO}, kl=k2

and : =T, = 2 . In this case : dl(x,y) =x , dz(x,y) =y , and

2.2

8(3’3) (Xsy) =Xy (Xy - 25

132 ) "

We then get :

1.4 10 "¢ .

* _c . ’
E(og0g,5y) = 35 I8(3,3y 1ok

Finally, the optimal cubature formula reads as

1 1
=L - - 29 -
QK(f’g(3,3)) = 3% <36 Joxf(x,l x)dx 18 JOX . f(x,1-x)dx
1 2 1 3
+ 6 J f(x 1-x)dx - —é—g J x2 8—3 f(x,0)dx
0 0 9x
1 3
(3.2) - J x2 (6x(1-x) - 22 ) 3—3 £ (x, 1-x) dx
0 9x
1 4
+ J x (1—x) (3x(1-x) - 25y 8 f(x,l-x)dx
66 3.
0 3%~ oy
1 25 a5
- J X (l X) (x(l x) - ) ——— f(x,l—x)dx> .
132 3. 2
¢} 90X~ 0y .

which is exact on F , where F 1is the vector space generated by the

family of monomials ¥, o= (Otl,cxz) € A, with
(3.3) A= ({0,1,2} . W) u.@ {0,1,2} ).

Example 3.2. K={(x,y)ERz,x—t-ySl,xZO,yZO},k1=k2=

and : r, =1, = 4 , In this case : dl(x,y) = X, dz(x,y) =y , and

_ A4 .81
g(s’s)(x,y) =xy (xy - 35,)

5

s
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We then get :

* . _c e 1077
Ee(E28(5,5)) = srsy lgg s)lo,x =10 ¢

Finally, the optimal cubature formula reads as

1 1
R S - - 29 _
QK(f’g(S,S)) = 14400 <}4400 Joxf(x,l x)dx~7200 JOX oy f(x,1l-x)dx

L g2 Ly a?
+ 2400 J x7 —= f(x,1-x)dx - GOOJ x — f(x,l-x)dx
2

0 Ix 0 K

1 4 1 5
+ 120 J XS é—z f(x,l-x)dx - 486 J x4 é—g f(x,0)dx

0 9x 5 0 9x
1 5
- J X (120x(1—x) - 486) é-—-~f(*< 1-x)dx
5
0 X
1 6
(3.4) + | (1m0 (60x(1-x) - 288 0 p(x,1-x)dx
95 5
9x” 9y
243 3’
- J x (1- x) (20x(1-x) - 95 s 5 f(x,1-x)dx
0 9X 93y
1 8
+ x —X)3(5x(l—x) - §l) 9 f(x,1-x)dx
95 5.3
0 9x” 9y
1 9
81 3
- J X (1 X) (x(l X) - 380) —~§~;Z f(x,1-x)dx >

[0] 3x” 3

which is exact on F , where F 1is the vector space generated by the family

of monomials X% , a (ul,az) € A s with

A= (10,1,2,3,4} . N U(N. {0,1,2,3,4} )

e
Example 3.3 : K = {(x,y) E‘Rz ,Xx+y=<1, x20, y=z0}, kl € N’ s

*
k2 €N and r, = kl_l’ r, = k2~l. In this case : dl(x,y)=x, dz(x,y)=y,

Xkl—lykz—l

and g(kl’kz)(X,Y) = (xy - ck) , where

(2K =1) (2k,-1)
kv (2kl+2k2—1)(2k1+2k2) ,

C
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We then get :

# c
B (f,g ) = S s -
K (kl’kZ) kl'kz‘ ” (kl’kz)“O,K
, 1 1 1! 1! ~2)1 N
1 ( (Zkl).(2k2). o (2kl l).(2k2 1! CZ (2k1 2).(2k2 VARI
Tk ! ] ]
kl'kZ' . (2k1+2k2+2). k (2k1+2k2)! k (2k1+2k2 2)1
Finally, the optimal cubature formula reads as
k-1 ‘
1+ .. 1, i
Q. (f.8) = E_}_k—' < NGO Ay j PR a_ f(x,1-x)dx
17%2° 3=0 3% g ax
. . k
) k2 ' xkl ' 9 ! f(x,0)dx
+ (-1) B k, ’
0 9x
k-1 Kt (Lkg-l . (SRR
+ ) D J x (-0l k X(1-x)-D, ) 2 £(x, 1-x)
§= 0 I ik kl
9x ayJ
where
/j+l\
= 1 ~3=1)1 .
Ay Kt (g m3-Di (k /
1
= ~1)!
B = (=D ICy
j+l >
= —i-1)!
Cj,k (kz i=1)! .
9
1
D, = (k,~j-1)! / C
jsk (23)\k_l>k
2
T . . . ,
Remark 3.1. If K is a triangle with vertices (e,f), (e+h1,f), (e,f+h2)
. , X-e y-f
then using the change of variables u = 5 VT3 s we are led back tc
“ 1 2
the situation D = {(x,y) € R2 s, x20, y20,x+y=<1}, with
1 1
. k1+ E k2+ E .
Ek(f’gk) = h]. h2 Eﬁ (fJPk)' s

where
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r,r
P = XY P
and Py EVk—; and is orthogonal to R(k —r.-1,k.-r _1)(D) R
171 2 72
with respect to D and the weight function x°T1 y2r2

Remark 3.2. If K is a triangle with vertices (Xl’yl)’ (xz,y2), (X3’y3) s

then, using the change of variables

u(x,y) = (xz—xl)x + (x3~x1)y + %

viGy) = oy X + Y47y Dy F oy

we have
(3.5) J £(u,v)dudv = |J| JA flu(x,y), v(x,y))dxdy
K D
where
D={(x,y) €R*, x20, yz20,x+y<1} ,
and
J = 12 13 - Kl 34 5
with

Ly = x4y = w0y > Ly =y3y o 4y =3y

From (3.2) and (3.5), we have the cubature formula :

(3.6)

lal 7 Jl

QK(f;g(3’3)) = 33—*K36 . xf (& el (1-x) , Loxtl, (1-x)+y, ) dx

1
- 18(L,+L) J xS (0 b, (1-%) Rkl (1) +y ) dx

0



1 2 ' .
9
+ 6(£1+K3)2 JO > — f(ﬂlx+ﬂz(1—x),£3x+24(1~x)+y1)dx

Ix
25 3 (1o23?
+ (£1+,€) J X" = f(ﬂlx+xl , £3x+yl)dx
0 9x . R
3 L 2 25 33
—(ﬂl+ﬂ3) [0 x (6x(1-x) - e ;;3 f(ﬂlx+£2(l—x),£3x+ﬂ4(l-x)+yl)dx
1 BA

+(£1+4£33(£2+£4) J x2<1-x)(§x(1-x)- %%)

~——§——~f(»@lx+1’_2(l—x),Zax+£_4(1—x)+yl
0 oy

1 24 35
—) ———f (,@le’,2 (1=x) ﬂ3x+i7,4( I=x)+y l)

- (£1+£3)3(£2+z4)2 J x2(1—x)2(x(1—x)—,132) —
: 93X~ 3y

0

GENERAL PROBLEM

Let K be a polygon in Rz‘, from (2.3) we can write
n
(4.1) L) = izl Ii,h(f) )

vhere
Ii,h(f) = IK f(x,y)dxdy ,
i,h
where Ki L > are defined in (2.3

For each K ; » Ve assume that the boundary of Ki
3

h, h
3
r. .., = ur .,
h,1,j j=1 Moisd
where Fh,i,j , o =1,2 are defined by
Thyi,1 = (00w €xy s dy g Goy) = xmey = 0
Fh,i,Z = {(x,y) Ek’h,i s dh,i,Z(X’y) = y_fh,i =0}
with eh,i, €ER , fh,i €ER
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Hence, we obtain the following equality ,

k.+k
1 g g !
L(£) = +—+ I, (f—-—————'g )
K kl'kZ' i=1 i,h kl k2 k,1
9x "3y
for each gk,i in Vk(Kh,i)
Now, we may apply (1.7) for each I(h i and it follows

(4.2) L(f) =

[ Ingtl=]

n
@,y (Fogpe )+ LB O

= Q(E) + B () .

Assuming f € M (K) , from (4.2), we have

n
sup iE (6| = — r s .
K T | &y Btlok o

k
feMy k(o)

If gk,i is of the form

r
(1) 2
Br,i ~ En, 1,dh i1 %,1,2

with gl((l)lév ~ , where ¥ o= (rl,r

k-1 2)

By Holder's inequality we obtain from (4.2) that

. i *
(4.3) sup |E (D] < |1 Lol ilo,x
FerS (o) ' = St
0,K
= D E
(1) ( k i o, Kh i s
Bi, 1
where

v r T

. E % 1 2 )

i1 = Bn,i Yn,1,1 dn,1,2



* .
with gh,i € Vk—;(Kh,i)’ and orthogonal to R(kl_ k- rz_l) (Kh,i)
2r

2rl . 9 :
h,i,1 h,i,27"

T 2

when considering the weight function d We summarize the
results of this section by :

2
Let K be a polygon of R".

Theorem 4.1. Then, there exists an optimal

cubature formula of the type (4.2), where

x T Ty

8,1~ 8h,i%h,1,1%,1,2 °

and

%* R .
gh,i € Vk_;(Kh’i) , and orthogonal to R(kl—rl-l,kz—r2—1)(Kh,i)
2rl 2r2
when considering the weight function dh,i,ldh,i,Z

And the remainding term satisfies the relation (4.3).

NUMERICAL EXAMPLES.

In this section we present some numerical examples in order to

demonstrate the performance of the optimal formula (3.6) for various choices

of K.

We compare the evaluation of the integral

- |
K

by the optimal formula (3.6). For each of the simple integrals of formula

1

btxty dx dy

(3.6), we use an 5-point Gauss formula.

1
Example 5.1 If K= [-1.11 [-1.11 , and f(x,y) = e
< AN 7
N ., [N 4
S ’ N /
g A
2. §
4 i
/‘ A P | \\
e . N \(/ { “
. | \
N 1 RN i i
Ny \ s
Sl N I/
ANY4 — ____\l
/’\’" PR
. S AN
v AN . N
B « N
Subdividion of K into triangles.



In this case, we have

Number of triangles

Approximate value of

I(£)

16
64
256
1024
4096

Exacte value

.04659549549661
.04649884004569 .
.04649633382633
.04649628828193
.04649628754098
.0464962 8752910

[ = =

Example 5.2 ¢ If K 1s the Lozenge

Subdivision of K

In this case, we have

(£1,0), (0,21), and f(x,y)

into triangles.

_ 1
bty

Number of triangles

Approximate value of TI(f)

16
64
256
1024
4096

Exact value

0.509837941482940
0.510825848299233
0.510825627424528
0.510825623823773
0.510825623762376
0.510825623765991

significant digits)

on the

IBM PC AT.

The above calculation were carried out in turbo-pascal (about sixteen
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A COMBINATION OF RELAXATION METHODS AND

METHOD OF AVERAGING FUNCTIONAL CORRECTIONS

DRAGOSLAV HERCEG and LJILJANA CVETKOVIC

\BSTRACT: We consider a combination of the Accelerated Overrelaxation method for
wolving linear systems (basic method), introduced by A. Hadjidimos, with the
nethod of Averaging Functional Corrections in order to form the composite method,
which is in some cases faster than the basic method. Sufficient conditions for the
convergence of this method are obtained. Several numerical examples demonstrate the

efficiency of our method.

1. INTRODUCTTON
If we want to solve a system of linear equations
(1) x = Mx +d, M=[mleR™ d=[dy, . d 1" € R,
instead of the basic iterative methqd
x4 = Mk + 4 k=01 ...

in order to accelerate the convergence, we can use AFC (method of averaging
functional corrections). This method was introduced by Sirenko [51], where it

was given in the following form:

Algorithm:

. n n
Step 0: Calculate m=> > m,;
F171

241



Step 1: If n < m stop, otherwise go to step 2;
Step 2: Choose . xOE Rr";

1 n
Step 3: Calculate = om Z

Xk+1

Step 4: Calculate =M 488 +d, 500, 17 e R,

X . 1
Step 5: Calculate Sk+i = A

n'M:

1
Z (k+1 l;_sk);

Step 6: Take k= k +1 and return to step 4.

Numerical examples show that, very often, AFC method converges
faster than the basic method. Because of that, it was the subject of our
investigations, [2] the results of which we shall give in section 2

In this paper, as the basic iterative method, we shall use AOR
(Accelerated Overrelaxation) method introduced by A. Hadjidimos [4]. It

means that we consider a system of linear equations
(2) Ax=b, A=[a;]e€ R™", beR,
which we solve by using AOR method

_ k -

X —Mc,mx +d, k =0,1,
ang, after that, by AFC method. Here we denote by Msm =(D - GT)_‘l (1 - w)D
+{w-6)T+wS),d=wD - 6T) 'b, where A =D - T - S is the standard splitting
of the matrix A into diagonal (D), strictly lower (T) and strictly upper (S) trian-

gular parts, 6 and w are real parameters, w # O.

2. CONVERGENCE OF THE AFC METHOD

In [2] we proved that the AFC method for solving system (1) can be

written in the following form
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vhere

B=(E+—2-MP)M(E-LP), d=(E+

s LmP)a ,

n

n n
A =[my j] € R™" is the iterative matrix of the basic method, m = Zl Z1mij'
+, l: ]:
> is the nxn matrix all entries of which are equal to 1 and E is identity

natrix. Also, we showed that

_ o1 . s
4) (B)i]. =my, ——-n_mmi(l m].) , 1,ji=1,2,..,n,
vhere
n . n
mlzzml], mirzlm]l, i=1, 2, ...,n
= =

Now, it is easy to see that AFC method converges if p(B) ¢« 1.

3. AOR + AFC METHOD

AOR + AFC method has the matrix form (3), where M = MG @' Some
sufficient conditions for the convergence of this method we can obtain by

analysing the condition p(B) < 1. So, we obtain the following theorem.

THEOREM 1. Let M 2 0, Ly = ID7'TI , ID7HT + 9l < 1, Uy = D7,

’)<L1<1,L}+Ulf)1,
w{l - L, - Uy,) wll + L, -Uy)
D¢ ws 1, *‘——’"—1—‘—'—“1‘565——~—1‘—1— or
2L1 2L1
5)
2 ~2+ ol + L, +U,) 2-wl-L,+U)
1 sws— , 1 1365 1 1,
1 il
lfl_‘«LU1 “Ll 2L1

and



(6.1) 0c¢cws1, —min—-————i————i—sss min i1
1<isn 211 1<i<n 211
or
2 w(1+li+ui)—2 o
6.2) 1 c¢w o v T max <6 <0,
1+ 1ns1iaxsxn(l. + ui) 1<i<n 21
&y -1 S|
where 1 = le(D Dyl oy :le ®7s) |, =12,
= : =

Then AOR + AFC method converges for any start vector.

Proof. If we are choosen as in (6), then M, ~llo < 1, (see [3]).

From (5) we shall prove that ”Mc,w Il1 < 1. Obviously,
Mg oy < 1D - eD7H I - 0D + @ - T + WS,
Mg ol < IE = s 7ML 10 - WIE + (0 - L+ wU | -
If |6|L1 <1, we have

Mg ol < Tf—l%lf{ (11 -0l + o - slLy + lwlUl).

If ¢ and @ are choosen as in (5), then it can be verified that the two

following conditions

lslL, <1 and Tﬁ%!L'l (11 - ol ¢ lo - 6lLy + lwlU) < 1

are satisfied. Hence IIMG le < 1. Because of that, since M = 0, we have m; <1,

m*.l‘ <1,1=1,2 .. m. Now, for the AOR + AFC matrix B it holds:

n n

- _ 1 -y L B <
;Zil(B)is N (B)]‘5| N 21 Mis ™ ni-m mi(l ms) m]‘s i n-m mj ( '{“s) -
= S:
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= Z‘mis~mjsl+‘mi—mj| < mi+mj+lmiAmj| =

= 2 max (mi, mj) < 2.

Matrix B has constant row sums equal to 0. Now, we construct the matrix C =

[ci].] € RM" as follows:

Cij:( ij ~ “j,min L,j=12 ..n,
where
b, . = L.
j,min 1”2112“(8)1,]
It follows that C 2 O and
n n
(RDICHIEEDIFNELE
=1 i1

It holds v > O, except in the trivial case B = 0. Now, the matrix J‘\;C is a

stochastic matrix, for which (see [6]) we know that h .

n
p(%c) < %maxézgl%lcis— stl'

Now, it follows

1]

n n
1 _ by _ -
el0) < 2?3)(;1‘(:15 C]s‘ 2";33( Z1|(_B)is bs,min (B)js * bs,min

n
o(© 5 5 max > [(B);; - (B <1,
1) s=1

It remains to show that p{(B) < p(C). Let A denote an eigenvalue of the

matrix BT, A # 0, and let y be a corresponding eigenvector. For 1 = 1, 2, ...,n,



we have
T n
(B'y), = Zl(B)].iy]. =y
J:

and
n n

n
leyi =2, ¥; 2, (Bl = 0.
=1t | iR

=1 °i

n :
Since A # O, we obtain Zyi = 0. Using this, we have for i =1, 2, ..., n,
i=1

= Ty,

M.

. 1((8)]'1 - bi,min)yj

T

n n n
T, - ) ) S
B'y), = ;1(B)jiy]. = Zlua)].iy]. b; min Zly], -

So, A is an eigenvalue of the matrix CT, too, Since B and BT, as well as C
and CT have the same eigenvalues, we can conclude that all eigenvalues of
the matrix B (except, might be, A = 0) are eigenvalues of the matrix C. Hence,

p(B) < p(C) ¢ 1, which completes the proof. []

Some of the conditions from Theorem 1 are very restrictive. For
example, the absoluteand maximum norm of the Jacobi matrix (MO.l) have to
be less than 1. The condition Mc,w 2 0 is satisfied, for example, when A is
an L-matrix and 0 s 6 < w < 1, while intervals for ¢ and w, given by (5) and
(6) are always nonempty (always it is possible to choose 6 = 0, w = 1). The
convergence intervals given in this theorem are always wider than the ones
from [1].

From the above discussion we can not conclude when the combined
AOR+AFC method converges faster than the basic AOR method. But, numerical
examples show that in some cases the AOR+AFC method has better convergence
than the AOR method. So, for the simple example 3 the graphs of Figure 2 give
the behaviour of the actual error as a function of the iteration k for both AOR

and AOR+AFC methods.



247

4. NUMERICAL EXAMPLES

Example 1. We consider a system of linear equations with the matrix

[ -0.875 0.05 0.0125 0.0125 0.0625 0.0624 |
0.024 -0.75 0.0125 0.125 0.00624  0.01325
0.12 00125  -0.875 0.0625 0.5 0.0625
A7 o128 0.12 00125  -0.5 00625  0.0624
0.00625 0 0.0025 00625  -0.9375 0.0049
| 000327 0 0.024 0.0124 0025  -0.837 |

The convergence area for the parameters of AOR + AFC method is given in the

figure 1.

Example 2.In the Table 1 we can see that AOR + AFC method converges even
if the basic method diverges, as well as the convergence is very fast, where

the matrix of linear system is:

[ -0.875 05 0.125 0.125 0.0625 00624 |
0.24 -0.75 0.125 0.125 0.0624 0.1325
0.12 0.125 -0.875 0.0625 0.5 0.0625
AT o125 012 0.125 -0.5 0.0625 0.0624
0.625 0 0.25 00625  -0.9375 0.49
| 0.327 -0.001 0.24 00124 0.25 -0.837
Table 1.
(6,w) p(MG'w) o(B)
©,1) 1.070 0.531
(1,0 1.128 0.650

(0.255,0.882) 1.070 0.252



1.793

[63]
o™ 1 /1205
-0.793
Figure 1.
Example 3. Let

-0.8 0.22 0.26 0.24 | 0.42
1 -1.02 -0.06 -0.04 -0.22
A=l os 0.4 -1.03 -0.02 b= 11420
0.5 -0.5 1 -0.98 0.40

In the following Figure 2 we present the value -logE as a function of iteration
k, where

E:=dx = xkqm

xlleo

and x =[11 ,2,2]T is the exact solution of the system Ax = b, and xk is the k-th
iteration obrtained by AOR or AOR + AFC method with %9 = [100,0,0,-1001.

The graphs are denoted as follows:
- Jacobi method;
- Gauss-Seidel method;
- AOR method with o = 09875 and w = 1.27;
- AOR method with 6= 0972 and w = 0.965;
- Jacobi + AFC method;
(6] - Gauss-Seidel + AFC method;
- AOR + AFC method with &= 0.9875 and w = 1.27;
- AOR + AFC method with ¢ = 0972 and = 0.965.
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ON THE EFFICIENCY OF ITERATIVE METHODS

FOR BOUNDING THE INVERSE MATRIX

J. HERZBERGER

ABSTRACT: In this note we are considering the higher-onden interval
Schulz methods fon improving bounds gorn the invernse matrnix. Fiwt we give
a different computation scheme for the .iteration formula which £s more
efficient especially for the higher-ondern formubas. Next, we derive a mod-
ifleation of the methods which has the same properties as the original
ones but compares favourably forn the highern-onden cases. For both vernsions
presented here some efficiency indices are Listed and compared with those
of the crhiginal formulas.

0. INTRODUCTION

Let A be an mxm nonsingular real matrix and X(O) be an mxm

interval matrix with Aml € X(O). In [1], Chapter 18 there are
described iteration methods which improve X(O) iteratively.

These formulas are the following ones:

r .
(1) X(n+1) _ m(X(n)) ) (T(n))1+_x(n)(T(n))r+l ,
i=0 :
T .
(2) x (n+l) {m(x(n)) y (T(n))}+x(n)(T(n))r+l} n xm
Ci=0
where

™) C 1 amx(™)
and

m{ X)

il

1
m(([xi.

2 N 1 2

(rz0).

In Theorem 1 and Theorem 2 of Chapter 18 in [1] it is shown
that for the methods: (1) and (2)
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AT e x ] ke

holds true. Furthermore, for the R-order of convergence (see

[1]) we have the estimations

v

oR((l),A"l) 2r+2 and 0_((2),A™h) 2 r+2
Since the convergence criterion of (1) is weaker than that of
(2), we usually start with (1) and after some contracting it-
erations switch to method (2) as soon as its convergence cri-
terion is fulfilled. Then method (2) produces a nested se-
quence of inclusions for A_l and thus allows to establish a
quite natural stopping rule. For more details see [1], Chapter
18. Formulas (1) and (2) are computed by means of the Horner
scheme and require r + 2 matrix multiplications each of themn.
Now, the efficiency index (see [4] Appendix C) EH can be esti-
mated by

1
E. > (r+2)Ft?

1. MODIFIED SCHEMES

We consider the iteration formulas

k=1 T . 3 k
(3) x(ntl) _ m(x(n)) T(7) (T(n))l(r+l) )+X(n)(T(n))(r+1)
j=0 i=0
and
k-1 ¢ . 3
(4) X(n+1) - {m(X(n)) T Z (T(n))l(r+l) ) +
j=0 1i=0

k
; x() (T(n)) (r+1) 7y x(n)

(k21, r20). Setting k=1 in (3) and (4) we formally get the
methods (1) and (2) as special cases. On the other hand, by

virtue of the equality for real matrices ¢

(r+1) -1

k=1 «r . j .
AL N ¢t

I
§=0 i=0 i=0
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which can be proved by complete induction using a proper re-
arrangement of the summation terms, we get formulas equivalent
to (3) and (4) by

k_

(r+1) -1 . k
(3)1 X(n+l) = m(X(n)) Z (T(n))l+x(n) (T(n))(r+l) ,
i=0
k
(r+1) ~1 ,
@ xO o)y Ty (7t
i=0
k
+ X(n) (T(n)) (r+l) } n X(n)

This shows that (3) and (4) are also just methods of the kind
of (1) and (2) and therefore all have the same properties. In

particular the R-order of convergence is

v

x+15+1  and o ((4), AN z w+nFsa

Again we measure the amount of work by the necessary matrix
multiplications which count exactly k(r + (1 —Slk)@(r-+l)) + 2
when using the Horner scheme for the occuring matrix polyno-
mial factors. Here ¢{(u) denotes the number of multiplications
required for computing the u-th power. So, we get for the
efficiency index E

M the estimation

1
6lk)

k(xr+{1- @ (r+l))+2

E, 2 ((r+1) 5+1)

In comparison to this the efficiency index for the original

formulas (1) and (2) of the corresponding order was

1
ko (r+1) K41
By 2 ((r+1)"+1) T

The following tables show for some selected values of the

parameters r and k bounds for the efficiency indices.

r=1 k=1 2 3 4 5 6

EH 1.442 1.379 1.277 1.181 1.112 1.066

EM 1.442 1.308 1.316 1.328 1.338 1.347



E 1.414 1.259 1.126

EM 1.414 1.259 1.269

Remarks: As the tables show, the modifications (3) and (4) are

considerably more efficient for greater values of parameters
or -~ with other words -~ for higher orders.

The bounds for the efficiency indices EH and Ey achieve its
maximum %ﬁyfor the formulag of order three as an easy analy-

sis shows.

2. MODIFIED METHODS

Now, we consider the iteration methods

r-1 3
y (L 00— ) T (e A )y 3
320
+X(n)(¥-6m(X(n)))r ’
) r-1 ;
(5) y(n+l,1+l) _ m(X(n)) ¥ (Z—Aln(X(n)))j +
j=0
+X(n+l,l)(¥_ém(x(n)))r ;
x(+l) _ y(ntl,s) 0<i<s ,
and
r—-1 :
y L0 o ) T A x )y T
3=0
XM (oA @)y )
. r-1 ]
(6) vy LI ) T (s k()T
j=0

+-X(n+1’i)(1-—Am(X(n)))r} n y(n+l,i)

X(n+l) - y(n+1ls) . 0<1ic<s

r ’



there ¥ 21 and s20. (In case s=0 the second statements of
‘he iteration formulas are to be empty.) Setting s=0 we

gain get the methods (1) and (2) as special cases.

, simple backward substitution of the guantities V(n’i) in (5)

eads to the equivalent formula

(s+1)r-1

syt xSy Ty (1 - Am(x™ )ty
i=0
e (X (T Am )Ty 1 —amx )y
‘hich is again a method like (1). Such a transformation is,

owever, not possible for (6).

rom the equality

r-1 .

m(X™) V1 s amx M)yt oy
i=0

together with the inclusion monotonicity of the interval opera-

A g - Amx ) E

tions we get for (5) and (6) by complete induction the prop-
arty

AT e xntD) oyt ) i cs), nzo.
jimilarly like in [1] Chapter 18 we can prove by a straight
forward analysis the same convergence criteria for (5) and (6)
is for (1) and (2). As for the R-order of convergence, we im-
nediately get from the representation (5)' of (5)

Ly (s+1)r+1

0L ((5) 4

3y a similar analysis for the sequences {d(X(n))}, where d is

che width operator, we get in addition to this estimation

0L ((6),A7) = (s+1)r+1

The amount of work in terms of matrix multiplications is in
case of (5) or (6) r+s+ (1 —60 S)@(r)-+l. Thus we get for the
7

efficiency index E the estimation

MM

1
r+s+(l—60’5)@(r)+l

EMM 2z ((sAkl)?—Fl) = o(r,s)




in contrast to the corresponding efficiency index EH

1

B, 2 ((s+1)r+1) (s+1)r+l = B(r,s)

Tt is easy to seé that the inequality

B(r,s) < olr,s!}
holds true. This means that the unmodified methods are not so
efficient as the modified methods.
The following tables give the bounds for Eym and Ey for some
selected values of parameters r. and s.

r=2 s=1 2 3 4 5
Ey, 1.380  1.320 1.277 1.244  1.218
Eym 1.380  1.383  1.367 1.350  1.330
r=3 s=1 2 3 4 5
By 1,320 1.259 1.218 1.189  1.168
Eypy 1.320 1.344  1.330 1.320 1.307

Remarks: The bounds for the efficiency index EMM achieve its
maximum :%7 for s =0, r=2 or r=s=1 with methods of order three.
A direct comparison between the given bounds for EM and EMM

is not possible because the orders of convergence of the pro-
duced methods for different values of parameters do not co-
incide.
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PROCESS IDENTIFICATION USING B-SPLINES

LJ. M. KOCIC and B. DANKOVIC

Abstract : An application of B-splines in computation of Lapla-
ce transform of the unit step response (and then the transfer
function) of a given system of automatic control is considered.
The algorithm suggested is based upon de Boor-Cox algorithm
for numerically stable calculation of B-splines. Error estima-
tion is given, and a numerical experiment is performed.

1. INTRODUCTION
Suppose that we are given the system (process) of automatic

control in a "black box" form (Fig. 1). To identify this process

means to find its transfer function

x(t) y(t) W(s)=Y(s)/X(s), where s »X(s) (s> Y(s))
W(s) TR

is the Laplace transform of input (out~

put) signal as function of time:

Fig. 1. tex(t) (tw»y(t)). Namely, we shall

write  X(s)=L {x(t)) =£we-stx(t)dt, where we supposed x, y

e LZEO, ®) , and x(t)=y(t)=0 for t<0 , which is satisfied in
a great number of practical situations. Whén x{t) 1is the unit
step function, we have W(s)= sY(s) = sk (y(t)), where y(t)
will be regarded as the unit step response of the "black box",
and we can gather the information on y(t) only by measuring
it in some discrete set of points 1= {1,, 14, ...,TN}(Ti<'&+l,
i=0, ...,N-1). As the result, we should get the set of data
d={ yi:y(ti)}§=l' Based on Tt and d we can calculate the fun-

ction y*(t) which approximate y(t) on [TO,'rN] so that

Py — y*i < EN R where EN is the prescribed error of appro—'

257
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ximation and H~M is one of the gsual:norms, taken over the in-
terval [Tolﬂ;N] . Now, we can find Y*(s)=L (y*(t)) énd then
W*(s)=sY*(s). But, we must pay attention to an important deta-
il. The unit step response y(t), always (for real systems) ap-
proaches to a fixed value, say, vy° , after a long enough inter
val of time. It is convenient to suppose that y*(t) approxima-
tes y(t) on [10,1N ] and y*(t)=0 outside, so with y*(t)+
y ® we have the approximation'to y(t) completed. Then, we can
put Y*(s)= L[y*(t) + y* 1= LLy* ()] + s_lyoo , and therefore
W*(s)= sY¥*(s)= s L[y*(t)] + y». -Since W(s) has the similar
form, namely W(s)= sL[ y(t)l+ y® ', the error (see section 3)

o

will not contain vy

So, the problem is toc find the approximation y* for the
unit step response y which has to be "good" in the following

sense:

jy* - y § > min ; “_Q_y* - —Q-y o> min‘.
. dt dt

This two requests arises in natural way in the theory of adap-

tive processes (see. for example, [101]).

In this paper we investigate the most convenient way to use
polynomial splines in order to compute L [y*(t)] and to esti-
mate the error IW(s) = w*(s)l

Let be the space of polynomial splines of order k ,

k¢
with the knot sequence ¢ 5{51, %,...,gn+f» (which is strictly
increasing one). Then, if, for example, y*€ SK,E' we have rep:

sentation via truncated power basis

k-1 . n -1
- - J- _ -1
y*(t) - ‘Z aj(t El) + .Z bl(t El)+ 14
=0 i=2
where : - -
yre,+0) ) DE~hy* (£, +0) - DR TIyx (£, -0)
aj = -, bj =

T gt ' (k=131
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This representation is very convenient for applying L-transform,
pbut, unfortunately, very unstable for numerical calculations
(see [ 11). 8o, we will turn to B-splines which provide very

stable numerical process.

Some of known methods {for example the Aizerman's method)
use plecewise constant approximation of y . In terms of spli~
nes, this means that y*ésl,g.(se? £71). In [31]1, the function
y 1s approximated by parabolic segments performed to fit the
set of data d. Of course, such interpolant, y* sufferes from

low smootheness.

2. B-SPLINE AND ITS L - TRANSFORM

As it is already known, the space Sk £ has so called B-spli-
. 17

n . .
ne base { Bi,k }i=1’ where Bi,k is defined for the set of
knots t= {tl, ey tn+k } whicﬁ can be derived from ¢ by
adding ' 2k new knots t1= “en =tk= £, and tn+1=°"=tn+k=
£n41 @and so that E; = ti (i=k+1,...,n). Then, the i-th B-spli-
ne of order k is given by

- k~1
(1) Bi,k(t) = (ti+]< - ti)[ til--ol ti+k:|(' - t)+ ’
for i =1, ..., n. Now, for vy*e s we have
k,t
n
* =

(2) y*(t) .Z C-Bi’k(t).

i=1 ]

Computation of the coefficients ci‘ depands on approximation”
scheme we, want to use. For example, we can interpolate the da-
ta d in the nodes 1 . If we have the freedom of choosing the

nodes T it is advisable to take

1. = —— (t

1
i 7y (Bierteeet

tivk-1) -

We also can calculate cy in order tb smooth the data d.

According to [ 1 1 we can do that by minimizing the quantity



N
p I

vy = y*¥(r,) \2 Lo
(—l————~l—— ) + (1-p) 5 N d™yx(£)) 2 at
T

where 6yi is an estimate of the variance in Yir and pelo,1]
ig a given parameter. The ‘role of " p 1is ‘to emphasize the clo-
seness to data (when p~+1_ ) or smootheness of y* (when p~> 0,).
'In this way, we get so calléd Whittaker spline, and the corre-
sponding package SMOOTH is given in [ 1 1. By the another”
procedure from { 1 ] , named LZAPPR,‘we can calculate cy
from (2), and the spline y* is then the approximation of data
in the sense of least squares.

Another interesting procedures for smoothong data via spli-

nes from §; . can be found in [41 ana [5 1.
1

Suppose that we have all ci (i=1,...,n) calculated, so we
have y* completely defined. Now, if we apply the L operator

on both sides of (2), we shall get
n n
(3) Ly*(t)) = © ¢y L(B; () = I ¢, L,

So, we must calculate L, (s) = L (B. (t)) (i=1,...,n), and
i,k i,k
we have to do that in the most efficient way. For example, we

do not recommend using the explicit formula

itk (tj—t)ﬁ'l i+k
Bi,k(t):(ti+k_ti),zl :;—fTQfT R ﬂk,i(t)=.ﬂ‘(t-tj)
=1 'k,i'7j j=1i

from the reason of its low accuracy. Instead of that,we shall
start from de Boor=-Cox algorithm for stable calculation of B-

splines ( [1] ,[2] )z

1, .52+t < t,
1 i+l
(4) Bi,l(t):
0 , otherwise
(5) B, ,(t)= T h B Civk T
ik £, € B, k-1 8 T T T By 1 (B



261

Can we find the similar reccurence formula for (s) 2

L,
i,k
The answer is affirmative. Namely, from (4) we can compute di-

rectly
1 ~t; _y .
(6) L, 1 (s) == (e 1% o 7Fi+1% y, i=1,...,n.
’

Now, we can use the definition relation (1). Owing to the ob-

vious identity

k-1 -1 -
(-0 s -0ty nFx - i,
+ +
and the fact that [t t‘ 1 (¢ - -)k_1 =0 have
preenr i ) = 0, we a
k k-1
B,  (t) = (- - e - .
(7) 1,k( ) (-1) (tl+k ti)[ ti' ’ti+k] (t )+

The point, named "placeholder",states instead of the variable
which the divided difference is applying on. If we apply the
L —operator on both sides of (7), we get

_ .k _ k-1
(8) L, , (s) (=1) (ti ti) [ti,,..,ti+k]{jL(t )+ }

i,k +k

_ o (k-1)1 k -s(-)
K (1) (e pm 800 a0
The authors of [ 8] have derived the same formula beginning

from Schoenberg's identity.

Now, due to the recurrence relation for divided differences

we have
(k-1)! k
Li x(s) = K (FL(E e~ e X
-s{*) —-s(-)
§ [ti+1""'t£ e - [ti,...,ti+k_1]e
t1+k - tl
k-1 1 (k=2) ! k ~-s(-)
Y -t ko1 B TEIEE e By g e
i+k-1
1 (k~2) ! k-1 -s{
B A TR LU PR AT L



" and thus

L, (s)
k-1 [ Pijpe-1 () Civl k-1t
(9) ', () ===1¢ s T Y -t i=l,...,n, k22
! it+k-1 i i+k i+1
where we have taken into account (8). So, the set {Li k(s)}ril_l is
, =

completely defined by (6) and (9).This commpletes the procedure of
finding Y*(s) (see (3)) and then W*(s) as well.

We must underline that Fhe computation of (9) can also become
unstable for small |s| , and theh we recommand technique given in

[61. For further study of L-transform of B-splines, see [ 9]

3. ERROR ESTIMATION
The distance between W(s) and W¥*(s) in the complex plane

=o0+ju 1is given by

. . )
[wis) - weis)] =]s] [v(s1-vr(s)] = ]| (y(e)-y*(e)re Fac
N -0t ' N -ot
< sl s7 [y -yr(e)] e Tat g |s| By S e Tdr
0 T,
SO we have
1/2 _ -
[1+(%)2] (0% e OTN)EN, gz 0,
W(s) - W¥(s)| < 1/2
[o? + WP %y - o) "By , 0=0

The case c=0 1is of especially importance in analysis of sta-
bility of automatic control systems.The EN is the (C-noru error
of spline approximatcion. For example, if y* is a cubic spline

interpolant for the data d , we have

E

5
RS ITI4 max y(4)(t) , 11 1=max At,

385 [ o] o
0’ N

and so on.

4., EXAMPLE

For a test-example we can take an ideal system with the unit

’ }step response y(t)= 1 - e_t (Fig.2). The graph of its tran-
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;fer function, in the case ¢ =0 1s a half-circle. It is repre-
sented in (P, Q)-plane, where P+ jQ=W(jw) (Fig. 3). The cu-
>ic spline function y*(t) that interpolates y(t) in the no-
jes (0., 2., 4., 6.) is constructed and its graph is shown in
*ig. 4. The equidistant set of nodes we used is the worst choi-
e we can made. This results in oscilations of y*. However,
the resulting graph of W*(jm) = P*{w) + jOo*(w), shown in Fig.4,

1as very satisfied form.

y(t)

2.

b,
- - {

6. 2. 4. &

Fig. 2. Ideal system step Fig. 3. Cubic spline y*(t)

response y(t), 0.<t<6.; with the nodes 0.,2.,4.,6.;
Q Q*
1. P 1. P¥
1 L I I [}
=Ly .25 w= 2
2 5 2 5
1. 1.
o -5 4 -.5

Fig. .4. Transfer function Fig. 5. Approximation of
W(jw) for the ideal system;the transfer functiom based
on spline approximation y*.

The authors are grateful to the referees and professor G.V.
Milovanovié¢ for a number of valuable suggestions which led to im~
provement of this paper. ’
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ON CALCULATING QUADRATIC B-SPLINES IN TWO VARIABLES*

J. KOZAK and M. LOKAR

ABSTRACT: One of the encountered problems tin practical use
of multivariate splines is a stable and efficient evaluation
of a spline given as a linear combination of B-splines. No
generalizgation has been found for the well-known univariate
recursion scheme. Thus the only way to compute the value of
a spline is to compute the values of all B-splines incident
at a given point. In the paper we propose a special scheme
for caleculating all quadratic B-splines (in two dimensions)
incident at a point in a certain subregion of the original
domain. Our discusion can be viewed as a refinement of the
work done by Meyling ([7,87). We show that our schenme

requires mintmal constant B-splines evaluations.

1. Introduction
!

Multivariate (simplex) splines have attracted quite a
lot of attention in the. past ten years. However, the
theoretical work was not so widely followed by practical
applications as one might Expect for such a powerfull and
flexible tool. There are several reasons for this fact.
Perhaps one of the main obstacles 1is algorithmic and
computational complexity of the computer procedures. The
purpose of this paper is to tackle one practical aspect in
dealing with bivariate quadratic splines, i.e. an
evaluation of a spline. Though this is the simplest
nontrivial case, several computational problems will be

revealed.

*Supported by Research Council of Slovenija.
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In order to construct a bivariate spline we recall its
basis function first. There are several ways to define a
B-spline. Perhaps the most apparent is the geometric one
(C11). & bivariate B-spline of degree n-2 is given by

e o] ny L vol, ,({ve o:vlge = zb)
ZIZ HX yeeenX r" vol (o) ’

independently of o, where 0 := [X y V. ,...,ln] is n-simplex

in R" such that
i) voln(o) > 0,

i) v¥l 2 = 2%, for i o= 0,1,...,n.

In other words, the set {EO,£1,U..,§"} contains the
orthogonal projections of the vertices gi onto JRZ. ‘
Quite clearly M is a piecewise polynomial function of total
degree n=-2, If fi are in general position (no triple lies

on a line) then
mzlz, 5, .,z e " 3@,

Consider now a given domatin 0 C ﬂg. Let A be 1its
triangulation, T = |A|l and V := {50,§1,,..,£N} the set of
knots. A spline space is derived by the following procedure
(Lul,[6]1): Each knot gj e V is pulled apart in

gdsn=2,

PRI

2ls® io gl gd!

Further, for any triangle

pi iz [2J0,5J1’£J2] e 8, Jy <3y <dp

a set Cp. of (SJ B-splines supports K is constructed.
If we asS%ciate with every point éJm’q Jn element (m,q) of
the lattice (0,1,2) % (0,1,...,n), then the knot sets Kj N
can be tdentified with nondescending paths along grid lines

from (0,0) to (2,n-2).



I

I

In the quadratic case this would read

c, = {Kj,r’ ro= 1,2, ., 6}
J
where
KJ, . {ﬁJO’OJ xj1,0, ijgyo) xj2,1, _)EJZ’E})
Kio = (29000, xI0 0wt ydat ) pien 2y
Kj,3 - {EJ.O’O, £J1JO, _&J.]y1’ £J1)2’ iJZ’Z})
Kooy = {7050, }_Jloﬂ) EJ'1,1, lj2r1, EJZ,Z},
K . = {xjo’o J:'jo’1 xj1’1 xj1’2 xJ2’2}
J 5 o ER y A ERS y N 3
Ki g = {270+, xJo 1, 2d0s2) 3122 42,2}
R z X z X z
T : ‘
Let C 1= U Cp . The B-splines
j=1 J '
M(glkj ple JoT 2,000, v o= L2000, (3

are the basis functions of the spline space

S(C) 1= spaniM(xzix. O}
LK

3

over C with

dim 5(¢) = (Z)r

267



"Thus any s & S(C) can be erpressed as

s(z) = § ¢
- KeC k

Hlzlk).

2. Evaluation of a spline

There is no Kknown analog of the univariate algorithm

that computes a value of a spline by repeatedly forming

convex combinations of its B-spline coefficients. Thus the
value
s(x) =} ¢ M(xIK).
kec K

can be computed only by computing all nonzero B-splines
M(5|§O,§1,...,5n) incident at a given x. A far reaching
application of Stokes theorem reveals that ([4]1,[9])

0 1 n 0 0 1 - 1
S R ST [€:3E F APRRRYE s (PR 1
ms

, . ; . i
where x is expressed as any affine combination of x~,

n n
X A Xm = 5, Z A = 1.
m=0 = ms=

Put

1
- - B
volz(fito, zb1, xta2D) . . .
x € int[ztO,£1’1,mL2],

|
M(§I§t0,£i1,ii2) = A
I

and general degree B-spline can be computed by the previous

0 x ¢[£LO, x*1, zv2]

recurrence relation, at least for the points that do not lie



on any of the mesh lines. A constant B-spline on its
poundary must be defined on a slightly different way. A
simple remedy is as follows: 1let ¥ be a direction that is
not parallel to any of mesh lines. A constant B-spline at a

boundary point x is defined by
Mixlx"0,2%1,x"2) 1= wpro(¥)1¥0,x%1,2"2)

where O<l> is a small perturbation in the direction y. 1In a

special case when all the mesh points lie 1in general

269

position, one can avoid this difficulty by stopping

recurrence when n=3 since linear B-splines are in this case

continuous ([8]).

Quite clear, Ai have to be nonnegative in order to
assure numerical stability. Further, °~ computational
complexity implies that as many Xi as possible should be
Zero. Thus in practice the recurrence step for a B-spline
with support [K] reads

n
M(xIK) = (n - 2) )

Km<£f§i0,gi1,5i2>M(£lK\{£im})
m .

0
where Am are nonnegative barycentric coordinates of x in a

triangle [x%0,2%1,x%2] ¢ k.  The choice of iy, i ,i, is in
general not unique since Xx may belong to several triangle

parts of [KIJ.

3. The quadratic case

Let us start by defining subregions of the region

supported by Cp of a parﬁicular interest ([s1,07]), i.e.
J

Bp L= M [r‘jO’QO,_{‘j‘l’th‘jZ’qZJ
J (qO;‘-I‘l_'QZ)EQ

and

Q := {<qo,q,,q2)€.2+sioiqoéq1§q2§k}’



Here k denotes degree of a B-splineé. One can show that
only [k52] B-splines M(xI|K), K €& C are incident at a point
x € Bpj’ all j. Here Bpj

is a subregion of e, a and all of these (kEZJ
B-splines are constructed over e .. On the other hand, at
points x ¢ B, , all j, the number of B-splines Ix(C)

incident at %‘ can be quite large ([71). This 1§ a
consequence of the fact that B—splinqs from adjecent knot
set econfigurations wmay overlap the- triangle: p .. Ix(C)
depends on the original triangulation as well as on the
pulling-apart procedure. For k = 2 (and general knot

position) the following statement can be proved

I (C) = [2+2J = 6, X € B for some j,
I(C) i= mazr (¢) > 6,
Ess‘z =

There is very little hope that a general strategy which
minimizes the computational complexity can be found when
x ¢ B
2 o .
the cafe X € Bp

s all j. We shall therefore restrict ourselves to

e
J

for some j. Ir x ¢ Bp s all j, we shall assume that
the recurrence 1is applied ih a straightforward way, and no
attempt is made to reduce the number of operations. If the

steps in pulling-appart procedure are small, then

C\ u Bp
J

is small compared to

W) Bp
J
and care for evaluation in Bp justified.
.
Let o, = (xJ0,291,x72], with  j, < j, < j,, be a
triangle in A. For calculating all 6 quadratic B-splines

incident in Bp R we propose the recursion scheme, which

involves common’ lower order B-splines. A complete recursion
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forest is shown in Fig.2.

o
o

0.

[« .

Fig. 2

As already pointed out there is no need to evaluate all
of the tree. Even for general k there is enough to compute

three tree knots at each tree level (except the root one).

Each quadratic spline is calculated from at most three
linear splines that are chosen among five. Also at
calculating linear splines we have four possible selections
of three constant splines. Thus we have (Lg) M3)6 possible

evaluation schemes,.

In order to count  necessary constant B-spline
evaluations let us define a reduced knot set. Let K € Cp.
for some j, and denote by K" the reduced knot set as any gr
its subsets of cardinality 5 - r. Quite clear, the supports
of lower order B-splines in figure 2 are obtained as reduced
sets of the root ones. Note also that the reduced set may

belong to different tree knots at the same level.

All linear B-splines involved when evaluating the value
. . 1.
of a quadratic spline are of type M(§|K1), where K is a

reduced knot set consisting of four points. Further, all



constant splines that appear in the' scheme are of type
M(EIKZ) with K2 a reduced knot set of cardinality 3. A
straightforward calculation reveals that there are 24
different reduced sets of cardinality 4 and 37 of
cardinality 3. As the full evaluation forest involves 30
sets with 4 points and 120 with 3 points, some reduced knot
sets have to appear several times. In fact, an exact upper
bound for necessary constant B-spline evaluations can be
stated.

Theorem In order to evaluate all (k;ZJ B-splines of degree k
at the point x e Bp_ it is necessary to compute at most

J kel o 2

k) = 2

9 (k) ——3-(5k + Tk + 3)

@

constant B-splines.

The proof is based upon carefull counting of the number of

reduced knot sets of order 3. Note that

(P(O) = 1, ‘9(1) = 10, (P(Z) = 37, 9(3) = 92,

ete.

’ Number of appearence of sets with three points varies
from 2 to 8. It is not obvious which reduced knot sets are
to be choosen to minimise in general the ovepall scheme. A

heuristic approach that wuses more frequently appearing
reduced sets can reduce the computational effort
significiantly. However, by posing additional requirement
on the pulling-apart procedure an optimal algorithm'can be
found.

If the knots ii,q’ q = 1,2 are chosen in the polygon Ri
(the convex polygon which contains §L and is bounded, but
not intersected, by the lines passing through the midpoints
of any edges belonging to the same triangle with vertex ii)
9 linear B-splines vanish in B Using this fact, in (8]
an algorithm was presented thag computes all 6 C1 quadratic
B-splines by evaluating 6 linear B-splines. The following

scheme improves the result to five 1linear [BE-splines



evaluations,

constant B-splines.

and all of

these

five can be computed from

counted from the left.

M(xIK. L) = gx,a(ilfo’o,ih’0,532’O>M(5IK115)
A . ‘ :
mixlk, 5) = 2 O xixd00 %3100 I Hucxk 17)
, xIx X x x
MOx Ky 5) = 2ag (el xdo0 0,30z Zyuex ik )
)
MixIK; ) = 2 [Ao(xixJO’1,xj1’1,x32’1)M(x|K117)
, xix X X X
. . . :
oo et ) Huxk ')
. . ' . . 1
M(§§KJ ) = 2 [ko(i[iJT’1,131’2,532’2)M(5|K 6)
. . . !
oo xd0 xde fuixik' ) ]
. . . .
M(xIK () gxo(xixJo’Z,x31’2,x32’2)M(x|K 6)
, xIx X X X
Further, linear splines are computed as
Mixlk' ) = 3 Dgxlxdor T, xd102 2 Suix k)
; - - 2
+ }‘1(£|£JO’1,1‘J1’2,1J2’2)M(£|K 5)
. . : s
e o a8 ) i k)
: , . .
M(xIK ) = 3 [xo(iliJw’1,530’1,§JO’O)M(5|K25>
+ )\1(—{!£J1;1,5J0,1,£J010)M(£|K215)
j ; ~ 2
w3 T dor T do Ox kS, ]
: . ‘ .
Mixlk' ) = 3 Dy Gdxder T xdn T ko Ouexl«?, )
. . . 5
+ X1(1|532’1,591’1,590’O)M(5|K 19)
- ; ; 2
+ k2(5l5J2’1,§q1’1,£JO’O)M(£|K 36) ]

10

Let §Pdenotes Jj-th reduced set at level

r of tne evaluation forest,
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A ' j 2
MxIk' ) = 3 Dxlxd e T o mexik?|
g xlxdr % e T o Huxde® )
: . . )
o axdxdr 0 xda T o e ikt ) )
1 i i j 2
M(x Ko = 3 Di(xlxd T, xd102 xJ2ruxlk®, )
. . ‘ 5
ool x 102 ) de Sy kS o)
] ) i 2
+ X2(£|§JJ’1,5?1’2,532’2)M(51K 13) ]
For simplicty let us abreviate iJi’q_ by ig. The sets K,

then read as follows
K'5={00,01,11,22} K‘6:{00,01,12,22} K]15:{OO,1O,21,22}

k', ¢={00,11,12,22) k', ,={00,11,21,22)

and
k%. = {00,01,12} k2. = {00,01,22} K% _ = {00,10,22}
3_ ) 1 5"‘ b ) 12— * b
k2. . = {00,11,12} K2 . = {00,11,22} k2 , = {00,12,22}
13— ’ b 15“ ? ¥ 16" ’ y
K219 = {00,21,22) k%,, = {01,11,22} K23Ll = {10,21,22}
K236 = {11,21,22}
Observe that the B-spline evaluation is numericaly
stable, since at each point x in B ) all barycentric

coordinates Am(ilzJquoJ£J1:q1,iJz’q2>, ho=0,1,2;
0 £qy £4qy; £q, £2 are nonnegative.

We now proceed by showing that this evaluation scheme
is the best as far as constant B-spline evaluations are

concerned.

Theorem Evaluation of all 6 gquadratic B-splines,

, requires at least 10 constant B-spline

incident at x e Bp
J

evaluations.
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roof.

Supose that only 9 constant B-spline evaluations are

eeded.
In the Fig. 3 linear splines that vanish are denoted
y O

7

Fig.3

Thus with our § constant splines we have to determine
che value of at least one linear B-spline in the first,
chird and fif'th tree and at least two in the other trees.
Jith a straightforward computer program we can check all
rombinations. It shows up that no combination satisfies

~equirement presented.H®

Since evaluation of all linear B-splines incident at
{ € bp requires four constant B-spline evaluations we are

:empteé to conjucture

lk+3

1s the lower bound in general case.
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ON BOUNDED TENSION INTERPOLATION *

J. KOZAK and M. LOKAR

1. Introduction

The spline in tension goes back to (9], and it was
followed by [31, [10], [417, [6], and many others. It was
introduced as a (single additional parameter) tool in the
shape preserving interpolation, i.e. interpolation that
preserves convexity of data. However, it was applied also
in other problems ( singular perturbation differential
equation problems ete.). Thus splines in tension have
attracted quite a lot of attention, but they are not very
popular in practical computations. Two main reasons for

this fact are:

(1) Their use is more time consuming compared to the

use of polynomial or rational splines.

(2) The choice od tension parameters is not always

apparent.

We shall not bother about (1) since computational

complexity for all these spline c;asses is quite clearly of

ABSTRACT: Splines in tension are not very popular 1in
practical computations. One of the reasons is obviously the
choice of tension parameters that 18 not always apparent.
In this talk, we tackle this problem and we consider the
spline 1in tenston as a tool 1in several approximation
problems. - In particular, we  describe a complete
interpolatory tension spline that can be bounded
“ndependently of the partition. |
*SUPPorted by Research Counci? af =

: £ Slovenija.
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.the same order, but we shall discuss a remedy for (2): in
some applications of splines in tension a natural (and
simply computable) choice of tension parameters can be
found. However, we shall keep in mind that this talk is
far from teing meant to show that splines 1in tension are
more wuseful than for example polynomial ones. They can

compete with them only in special circumstances.

Let us recall the definition of a spline in tension.

Let « := (Ti) be a strictly increasing partition of [0,1],
0 =: T < 1:2 < ose < In+1 tz 1.

A spline in tension, with tension -parameters p = (pi),

p; 2 0, and breakpoint sequence =t 1is a function that

belongs to

~(2)
S”:_T_:E C (0,1) & N(L)
where L ::= Lp (and its tension part M := Mp ) is piecewise
defined by
, gt pzdz_dz(dz pz)_
=T . = 2 - (A -) -
b dx b1y dx dx® dx T
., d? a2
= ZZ?(M_E) B z’t—é(M), on [Ti’T1:+1)°

Quite clearly the choice p = (0) reproduces the cubic spline

space SM as well as p = (=) the piecewise linear functions

3
32 .+ 1t 1s a special case of exponential (and hyperbolic)
>

spline, or more generally L-spline. Some of the ideas

|~

presented here could be carried over to more general case.
Let us now turn to the examples of practical applications of
splines in tension.

2. Shape preserving interpolation

Suppose that a given function g is known at points T.
Assume that the partition is extended by



1°? T72+1 = TTl+2

in order to simplify the discussion. A shape preserving

interpolant -is a function that agrees with ¢ at 1 and
(locally) preserves convexity of the function. However,
since g is known only at certain points, an approximation of

the second derivative

dj g [Tj_1,rj,rj+1]g,
takes over the role. Thus 1if didi+1 < 0 the second
derivative of the 1interpolant should not change sign in

[Ti’Ti+1]'

A complete interpolatory spline in tension was the
first tool to deal with this (generally nonlinear) problem
([9]7). Tt is easy to see a complete tension interpolatory

spline Iu,pg, with interpolatory projector IN p defined by

3

Ly , ¢ €0,1) —= S,

3 st P

£ — Iu,pf = (Iu’Bfll = fIT)’

is uniquely defined for any tension parameters p. Thus
these additional rparameters can be used for smoothing out
extraneous inflection points of the interpolant. Quite
clearly, a choice p = (=) would smooth out all inflection
points, but produce at most second order approximation.
Thus a natural choice ([6]) suggests to choose tension
parameters as small as possible in order to preserve the
approximation power of the cubic polynomial spline. As it
turns out, on each of the subintervals [ri_1,ri7 it 1is

enough to consider approximate modified derivatives

A,
. 2
S0 = g grres (b vgde = Degrg g 1e),
i
Aty
81 iz Ly 15,039 = [rg,14,419).

ATi+DT S

If they are of the opposite sign, data indicate that there
is no 1inflexion point, and the interpolant should preserve
convexity on the given interval. In this case a quantity
w = 81/(81—30) is studied. A short analysis shows that a

spline in tension will not have an inflection point if w 1is
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trapped in a certain interval. This . leads to a simple

nonlinear equation for Db

3. Tension spline collocation

To start more generaly, consider m=-th order linear (to
make the discussion simpler) ordinary differential equation
for unknown u,

Au = f, on [0,1]

with boundary or initial conditions

Byu = e L= 1,2, 0a0,M.
Here
m
7
A = z a’L[) N am % 0.
’1»,:0

We shall assume that the equation has a unique solution u

for any f, i.e. there exists a unique Green's function G.

In a simple outfit a collocation approximation to w 1is
constructed as follows:
1) The interval [0,1] is partitioned by a strictly

increasing breakpoint sequence =t.

2) An approximate solution ., is looked for as

w e ¢y 0 B"(Pk DR

where Pk r denotes as usually the space of piecewise
k]

polynomial functions of order k, and B playes the role of an

approximation of A. It is usually taken as

B - p", N
i.e. the leading part of A. . has to satisfy
differential equation at collocation pdfnts
E’ij 3 [Ti)ti_n), J = 1,2,00a,k; 1 = 1,2,0..1,

E.. < &

1J T,g+1° all g



and additional conditions

BiuT = ci,

1 =2 1,2,00a,M

Error andalysis reveals pointwise error e as

1
e(x) 1= ula) - uT(x) = gg(;r,.)(f - Aul)

where the Green's function satisifies zero additional

conditions,
BiG(.’y) = 0, 1 = 1,2,000,M

The factor r := f - AuT vanishes at the collocation points
Eij in [Ti,Ti+1). As a consequence, this contributes a
factor

|l'k f= max At

i 1
(k)

to the L_ error bound if r can be properly bounded. The
choice of collocation points, based upon orthogonality
relations, can further raise the order of approximation up

to

G ll' k+m),

and at the breakpoints T, even up to
8L 2k,

For a smooth f, behaviour of r depends on AuT, thus more
or less on the quality of approximation of A by B. Improper
choice of B could introduce a large error by the method of
solution (the choice of collocation functions), regardless
of the nature of ¢ that is inherent to the problem, and
cannot be avoided. In such a case we can conclude that the

nullspaces

N(AY, N(b)
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differ significantly. The usuall choice B = o™ quite
clearly fails if the behaviour of solution depends heavily
on all of A, not only on 1its leading term. Consider an
example, a second order singular perturbation problem of the

form

A:—EDZ+aOZ,O<e<<1,aO%O.

A solution depends heavily on the sign of ) and an

approximation B has to take this into account. The best

choice would be b = A, ;since then AuT reduces to a
polynomial. However, such a B cannot be always practically
computed. Assume now a, > 0. A piecewise constant (el )
approximation
2 T?:+T7:+1
B = -el® 4 ay(——5—), on [Ti,Ti+1),

depends on the sign of a, too. Further, k¥ = 2 brings us

back to the splines in tension as collocation functions,

with natural choice of tension parameters

1 1+ 5 all 7.
Wt €

4. Bounded tension interpolation

It is customary to study approximation power of linear
interpolation problems by analysing its bound, expressed as
a product of two factors. The first depends on the
interpolation scheme, the second on the best approximation
of the given function in the space concerned. For a
familiar complete spline projector 1 this 1inequality,

y
called Lebesgue, would read

I, 0 - 70 <1+ ”Zu” )dist(f,sujl).

°

Here |

i= || *|l,, and dist defined correspondingly. A
properly bounded IM would quite clearly produce an optimal
order approximation. On the other hand, the interpolation
error can be bounded also from below by [[I,f [ -

Hell. This shows that interpolation error for some



functions f has to be large if f[lull is large though
| £Jl = 1. But then one could expect that large norm of
interpolation projector would significantly amplify errors
in the measured, not accurate data. Thus we can conclude
that the bounding of an interpolatory projector has its

theoretical as well as practical importance.

It is well known that the projector 14 can not be
bounded independently of 1 ([2]), and various restrictions
have been imposed on Tt in order to produce a bounded
projector. One of the approaches (which 1is also of
practical importance for partitions that are <c¢lose to the

geometric one) is to bound Tu by considering local mesh

ratio
ATi
m. =
1 AT$_1
and its bound
AT-
m,
[1’ JF1 AT.

The result that was quite a while looked for can be found
in [1]: the complete cubic spline interpolation is bounded

(independently of n) if

n o< ml s i—%ii (m* constant).

m 4

A

A

If the partition t is too nonuniform one can shift to
splines in tension ([7]). The idea 1s to choose large
tension parameters p; where the partition 1s changing too
rapidly, but ¢to stickAto p; = 0-if it is locally uniform.
To be precise, a natural choice of p is as follows: Iu
should be as close 'to» Iu as possible, but bounde d

independently of n by a given constant.

The tension parameters are obtained by looking at

tension nullsplines. A nullspline s ¢ SH T, D satisfies
’_J_

S(Ti) = 0, all <.
A tension nullspline is described on each of the intervals

by two values which are continuously carried over the

interval boundary. A short computation yields,
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S . = = .
—1+1 2

where

. ._-pch(p) - sh(p)
o s P s T T

3

2
. .- sh(p)
B := 8(p) ' ship) - p°

and

The choice of p has to guarantee that a nullspline increases
exponentially in at least one direction. An argument in [5]

reduces this to the inequalities (by elements)

,A(%Z’pA)‘ < |AGmg,p) 2 JAGmy, 20

-1

lin

a0l < 1A om0 jA'T(;—;,pA)I.

Here, Py is chosen in advance in such a way that the largest

eigenvalue AZ of the matrix 4,



)\1 ::A(m:P) <AL = A _(myp) <0
1 2 2

satisfies

w = [xz(mA,pA)[ < 1.

This assures that the fundamental splines decay by at
least a factor w, and as consequence produces a bounded
interpolation. The matrix inequalities are further by a
somewhat tedious argument reduced to a single nonlinear

equation that determines Py

Let us conclude with a brief mention on the
approximation power of splines in tension, with the emphasis
on its dependence on tension parameters. A general result,
with tension parameters hidden in a constant, can be found
in [8]. Let us state a refined conclusion ([7]:

Let £ e ¢ " (0,1). Then )

At X
dist; (5,5, o o) < I = Ty oflly s~ el

with
c(p) 1= o o ).
p2 ch(p/2)
Here | E denotes the sup norm on [Ti’1i+1]’ and disti is
defined correspondingly.  Note that p; = 0, all %, reduces

the bound to

At .
4
— e L

as well as p; — =, all i to

ATi s
.

(2

This is (up to the constant) expected.

285



10.

5. References

C. de BOOR: On cubic spline functions which
vanish at all knots. Advances 1in Mathematics
2001976), 1-17.

C. de BOOR: A Practical Guide to Splines.
Springer Verlag, New York, 1978.

A7~ ELINE: - Scalar-“and planar-valued curve ffitting

in one and two dimensional spaces using splines
under tension. Comm. ACM 17(1974), 218-223.

J. E. FLAHERTY, W. A MATHON: Collocation with
polynomial and tension splines for
singularly-perturbed boundary value problems. SIAM
J. Seci. Stat. Comp. 1(1980), 260-289.

S. FRIEDLAND, C.A. MICCHELLTI: Bounds of the
solutions of difference equations and spline
interpolation at knots. . Lin. Alg. and its Appl.,
20(1978), 219-251.

J. KOZAK: Shape preserving approximation.
Computers in Industry 7 (1986), 435-440.

Y.Y.FENG, J. KOZAK: An approach to the
interpolation of nonuniformly spaced data. to
appear.

L.L. SCHUMAKER: Spline Functions: Basic Theory.
John Wiley & Sons, New York, 1981.

D.G. SCHWEIKERT: An interpolaeting curve using a
spline in tension. J.Math. Physics 45 (1966),
312-317.

H. SPATH: Spline-Algorithmen zur Konstruktion
glatter Kurven und Fldchen. R. Oldenbourg Verlag,
Minchen, 1973.



Numerical Methods and ApproXimation Theory 111 (Nis, August 18-21, 1987)

NUMERICAL METHODS IN SEMICONDUCTOR DEVICE SIMULATION

P.A. MARKOWICH, C. SCHMEISER* and S. SELBERHERR

Abstract: The simulation of the electrical behavior of semicon-
ductor devices involves the solution of initial-boundary value
problems for a nonlinear elliptic-parabolic system. Two major
difficulties in the numerical solution of these problems are

discussed:

a) The construction of discretisations is not obvious as the
equations are singularly perturbed.
b) The discretised problems are very large systems of nonlinear

algebraic equations which have to be solved iteratively.

1. INTRODUCTION

The electrical behavior of a semiconductor device is determined
by the flow of two types of free charge carriers, the electrons
in the conduction band (density n{x,t)) and the defect elec-
trons or holes in the valence band (density p(x,t)). Well
accepted models for the flow of electrons and holes are the

3oltzmann transport equations, but their complexity is prohibi-

tive for the numerical simulation of complicated devices. Per-

turbation arguments lead to the simplified drift-diffusion ap-

oroximation of the current densities:

J_ = u_(n+nE) .,
(1.1a) n n

J_ =-u_(Vp-pE

p up( p-pE)

(A1l the appearing variables and parameters are already in

scaled dimensionless form.)

*The work of the second author was supported by "Osterreichischer

Fonds zur Forderung deﬁ wissenschaftlichen Forschung".
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In (1.1a) the parameters Un,up denote mobilities and E is the

electric field which is related to the electrostatic potential
¥ by
(1.1b) E = ~-Vy

.Commog-modelsnfor the mobilities depend on n,p,E and the po-

sition x.

Maxwell’'s equations imply theé continuity equations

divJ_ - n_ = R ;
(1.1¢) n €

div Jp + P =~R

and Poisson’s equation

(1.14) A0 = n - p ~Clx) ,

where the source term R, called the recombination-generation

rate, is the number of electron-hole pairs which are generated
(R<0) or disappear (R>0) per unit time. It is usually modelle
as a given function of n,p,E and position. The function C(x},

the so called doping profile, denotes the concentration of impu-

rity ions. The dimensionless parameter A is the scaled minimal
Debye length and takes small values for realistic semiconductor
devices.

The unscaled equations (1.1) are due to Van Roosbroeck [21].
For:a derivation from Maxwell'’'s eguations and the Boltzmann
transport equation see Selberherr [18]. The scaling which

leads to {1.1) can be found in Markowich [8].

Mathematically a semiconductor device is given by the doping
profile C(x) defined in a bounded domain S?gim3 which re-
pfésents the semiconductor part of the device. For the purpose
of simulation it often makes sense to reduce the dimension of
. Thus, we take Qcimk, k = 1,2 or 3. The boundary 930 spli
into the union of contact segments BQD where Dirichlet bound-

ary conditions for n,p and Y are given

(1.2a) n = n 14 P n =P ! Y A = ¢ '
|BQD D IauLD D |ah;D D
and the insulating part BQN where the homogeneous Neumann COBR
ditions
(1.2b) (J_,v) = (T V) |a, = (E,V) =0
n IBQN p oQN |BQ

hold. In (1.2b) v denotes the outward normal vector of 20Q.
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substituting (1.1a) into (1.1c) shows that (1.1) is a system of
rwo parabolic equations for n and p coupled to an elliptic equa-
tion for Y. In order to complete the formulation of an initial-

soundary value problem initial conditions for the densities
(1.3) n(x,0) = nI(X) v plx,0) = pI(X) ¢ XEQ

jave to be prescribed. The potential at t = 0 can be deter-
nined by solving Poisson'’s equation. Several existence and unique-
ness results for (1.1)-(1.3) can be found in the literature (see
2.g. Mock [12]). Existence results for the corresponding station-

ary problem are contained in [8] and [12]. Uniqueness cannot be

expected in general (see Steinriick [193).

For the construction and analysis of numerical methods some a
priori knowledge of the solution structure is extremely impor-

tant. This can be gained from a singular perturbation analysis

by exploiting the smallness of the parameter %2 in (1.14). In
the stationary case such an analysis shows that the solution can
be approximated by setting X = 0 except in thin layer regions
where it varies rapidly (see [8]). For the time dependent problem
additionally an initial layer appears (see Ringhofer [14], Szmolyar
[20], Markowich [9]). In this paper we will be concerned with the
stationary problem. Its analysis is facilitated by the transforma-
tion
(1.4) n = ewu ¢ P = e_wv
which takes the stationary differential equations to the form
kzﬁw = ewu —‘e-wv_- C(x)

|
(1.5) div(y e” Vu) = R

Yo )

div e_ v
(Up v

it

R

The continuity equations are in self-adjoint form now. Besides

u and v are so called slow variables which means that they do
not exhibit layer behavior. As opposed to (1.1d) the potential
can be determined from the reduced (A=0) Poisson’s equation.
Subject to the appropriate boundary conditions each of the equa-
tions in (1.5) represents a well posed problem for the variable
which appears with the highest differential order, when the other

two variables are considered as known.



These properties make it much easier to design numerical methods
which are well suited for (1.5) than for the original system.
Unfortunately the potential becomes rather large in many appli-
cations such that u and v are so out of range that they are im-
possible to compute with (for different choices of variables anc
related conditioning questions see Bank et al. [31, Schmeiser el
al. [171, Ascher et al. E1]). These facts led to the following
approach: Methods are designed and analysed for (1.5). In com-
putations the transformation (1.4) is applied on the discrete
level to be able to compute with the original variables ¢,n

and p.

2.DISCRETISATIONS

In this section we shall present discretisations for the steady
state semiconductor equations which take into- account the singu-
lar perturbation nature of the problem. The properties of systernr
(1.5) allow for a decoupled approach, where each equation is

treated separately.

2.1. Poisson’'s equation is a semilinear elliptic equation for

the potential when u and v are considered to be known. The solu
tion is approximated by a solution of the reduced equation ex-
cept close to regions of rapid variation of the doping profile
and possibly close to the boundaries where the solution varies
rapidly. When trying to solve the problem numerically one woulc
expect to be forced to use grids which are fine enough in the
regions of rapid variation to resolve the solution structure.
For the simulation of complex devices the cost of using such a
grid is prohibitive. In order to get around this difficulty, di
cretisations are used which mimic the above described propertie
of the continuous problem by the use of lumping for the evalua-
tion of the right hand side. A finite element of finite differe
discretisation at node X5 then takes the form

(2.1) XZ(Ahwh)i = ewiui - e lbivi - Cixy)

where Ah is a discretised version of the Laplace-operator
(see Markowich [8], Selberherr [18]). The effect of lumping is

that the reduced equations in the continuous and the discrete
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case are the same. For any discretisation which inherits the
stability properties of the continuous operator (maximum prin-
ciple) the solution structure is similar for the discrete and
continuous problems even if acoarse mesh is used. The main dif-
ference is that layers in the discrete case may be wider (0O(h))
than in the continuous case (0O(X)). This fact will be demon-
strated in the following section. It has two effects of major
importance. First, even when starting on a very coarse grid
adantive grid refinement will be able to detect the correct
solution structure. Second, as the solution is approximated

well away from the thin layer regions the approximation error
will be small if measured in integral norms although large point-
wise errors may occur. The importance of this effect will also be

demonstrated in section 3.

2.2. The continuity equations. We shall only deal with the elec-

tron continuity equation as the necessary modifications for the
hole continuity equation are obvious. Let us first consider the
one-~dimensional situation. As the variables u and Jn are slow
variables ~ in the language of singular perturbation theory -
in this case, the discretisation of

(2.2) Jé = R , Jn = unewu’

is not very critical. For simplicity we assume an equidistant

grid and replace the first equation at the gridpoint Xy by

(2.3a) J = h R,
1

n,i+1/2 ~ In,i-1/2
where R.l denotes an approximation of the recombination-genera-
tion rate at X, The second equation is approximated between
gridpoints by )

i u u

(2.30) T T s (€ g,
X, +X,
where the approximation Un,i+1/2 for Mo at —L—Eiil depends
on the model which is used. For the approximation (ew)iﬂ/2
two obvious choices are
1, ¥ Vi Y1tV

)

2(e Tve *T }, expl =



A third possibility is obtained by replacing Hh and I by
constants and ¥ by a linear function in Exi,xi+1] and solving
the second equation in (2.2) explicitely. This results in the
approximation

Vi T
i+1/2 e‘-wi _ e=—w

(2.3c) (e’
i+1

This procedure could have also been applied to the eguation
(1.1a) in the original variable n. The so obtained discretisa-
tion which is equivalent to (2.3). is an example of an exponen-
tially fitted method (see Doolan et -al. [5]) and bears the
names of the engineers Scharfetter and Gummel [16] in the semi-

conductor device simulation literature.

The difference between the above mentioned discretisations is an
unsettled issue from the theoretical point of view, but in prac-
tically all of the existing device simulation software the

Scharfetter-Gummel scheme is used.

Extensions to finite difference methods in the two- and three-
dimensional cases are straightforward (see Selberherrr [18]).
Finite element methods which are generalisations of the Scharfett
Gummel method to the two-dimensional situation can be found in
Buturla and Cottrell [4] and Markowich and Zlamal [10]. It can
be shown that the errors only depend on the variation of the
current density J (see [10], Mock [13]). The drawback in the
multidimensional situation is that Jrl is not a slow variable
in general (see Markowich [81]) which makes it necessary to use
fine grids in regions of rapid variation of Jn' However, in
most practical situations Jn varies much less than y,n and

p and the computational effort remains reasonable.

The above error considerations dealt with each equation separa-
tely. In order to prove convergence results for the full systém
one has to assume wellposedness of the problem. Then the error

estimates for the single equations can be combined (see [81).
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3.A UNIFORM CONVERGENCE RESULT

When talking about numerical methods for singular perturbation
problems uniform convergence means roughly that errors can be
estimated independently of the singular perturbation para-=
meter. In particular, errors are even small if the grid ignores
layers. Results of this kind can be proven for pointwise errors
when using exponentially fitted methods (see Doolan et al. [5]).
Such a result cannot be expected for the discretisations of the
semiconductor device equations discussed in the preceding sec-
tion, but this is of minor importance when the goals of device
modeling are considered. These goals are basically twofold. One
aim is to reveal the solution structure inside the device, the
second is to obtain the relation between applied voltages -
which enter the Dirichlet boundary conditions - and outflow
currents - which are computed by integrals of the current den-
sities along contact segments. Only for the latter part the ac-
curacy of the method is of decisive importance. In this section
we prove for a model problem that both aims can be met with

reasonable computational effort.

We consider a one-dimensional problem with constant mobilities

and vanishing recombination-generation rate. System (1.5) reads

Azw”= ewu - e-wv - C(x) ,

!
(3.1) (e"uy’ =0,
(e'll/'vr), -
in this case. The simulation domain is @ = (0,1). System (3.1)
is subject to Dirichlet boundary conditions at x = 0 and
x = 1, We consider an equidistant grid on U[0,1]. Poisson's

equation is discretised by using the common three point formula
for the approximation of ¥'". The approximate solution b, is

obtained by linear interpolation between the gridpoints.

The Scharfetter-Gummel method amounts to replacing ¥ by wh in
the continuity equations and solving them explicitely because of
the assump#ions on un,up and R. Problem (3.1) can be written

as a fixed point problem by denoting the solutions of the conti-

nuity equations for given v



A S
u(x) = u(0) + (u(1)-u()) fe "/ [e ",
0
(3.2) . X
v(x) = v(0) + (vin-v(o)) [ ¥ / [ e
0 0
by u(y),v(y) and the solution of
Ao = efuqy) - et - cix)
plus boundary conditions by ¢ = T(¥). A fixed point of the
operator T corresponds to a solution.
The discretised problem can be written as
2 v -y,
A - 1 - i -
3 g m20ithi ) = e Tuy m e Ty = Ol
(3.3)
u

po=ulb) v = V()
Our convergence analysis will be based on the

Lemma 3.1: Let the Frechet derivative of the operator (I-T)

at wh 1be inverti?le and the inverse be bounded as operator
from L (R) to L (Q) independently of A and h.

Let || wh—T(wh)H1 be sufficiently small, where H.llp denotes
the LP-Norm on (0,1).

Then (3.1) has a locally unique solution y* and
Ko -
Hwe=u, 1y s &yl =T o) 1L

with K1 independent of X and h holds.

The proof is a straightforward application of the implicit func-

tion theorem (For similar results see [81,012]1).

Because of Lemma 3.1 we only have to estimate the L1—Norm of
the error in solving Poisson’s equation. This is contained in

Lemma 3.2: Let C(x) have a finite number of jump discontinuities
in [0,1]1 and Lipschitz-continuous first derivatives between
those points, Let u(0),u(1),v(0),v(1) > 0 hold, Then

[[q)h —T(lph) [[1 < Kz()\Jch)

holds with K, independent of A and h,
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outline of a proof:A priori estimates (see [81,[12]) show that

e "u, + e v, K >0

holds for the derivative with respect to wi of the right hand
gide of (3.3). Thus the discrete operator in (3.3) is of inverse
monotone type (see Meis-Markowitz [11]). This allows the use of
comparison functions for estimates of the solution. Comparison
functions can be constructed which are roughly the sum of a so-
lution of the reduced equation and of terms which decay exponen-
tially away from the boundaries and the discontinuities of the
doping profile. The L1—Norm of the decaying terms can be com-
puted and shown to be of the order O(A+h). The argument that
the layer terms in the continuous solution are O(X) with res-

pect to the L1-Norm completes the proof,

A combination of the above lemmata yields the main result of

this section

Theorem 3.3: Let the assumptions of the Lemmata 3.1 and 3.2
hold. If the total current density is denoted by J = I, * Jp ’
the estimate

lorgplly + Hureuyll, + llvrvpll, + 13=9, 1 € K ()

holds with K independent of X and h.

3
Proof: The estimate for the error in the potential follows direct!
from the preceding lemmata. Considering the representation (3.2)
for u and v and

- 1

g = w-u)) /[ eV, g = (v-v(1) /[ e
0 P 0

for the current densitiés the proof of the remaining estimates

is also immediate.

Supposedly the above result can be extended to one-dimensional
problems with less stringent assumptions one the mobilities and
the recombination-generation rate. In the multidimensional situa-
tion a similar result cannot be expected to hold because layers
in the current densities have to be resolved which requires grid-

spacings of the order O(X).
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4 .NONLINEAR ITERATION METHODS

By discretising (1.5) we obtain a large system of nonlinear

algebraic eqguations. Their solution requires the use of apprc
priate iteration methods. Although these methods are applied
to the discrete problem we discuss them for the continuous eqg
tions for notational convenience. Assuming again constant mob

lities and vanishing recombination-generation we have to solv

AzAw - ewu + e_wv + C(x) = b1 =0 ,
(4.1) dgiv(e? vu) = b, = 0,
aiv(e Vvv) = by =0

Newton’'s method for (4.1) reads

A2Adw - (ewu+e'wv)dw - e¥au + e Vav = - by .
(4.2) div(J ay + eVvau) = b, |,
. Y _
le(dep-re vdv) = b3

Its application requires the solution of a large linear syste
in each iteration step. The computational cost can be reduce
by "freezing" the Frechet-derivative for several iteration s
For efficient strategies of this kind and their analysis see

and Rose [2]. Their concept of approximate Newton methods al

for perturbations in the Frechet-derivative. A worthwhile go
to find perturbations which decouple the linear system (4.2)
certain extent. One method of this kind relies on the assump
that the current densities are comparatively small. Obviousl:
(4.2). is decoupled if Jn and Jp are replaced by zero. Th:
resulting method amounts to solving the continuity equations
given y and then the linearized Poisson’'s equation with the

dated u and v in each step. This method was first proposed b
Gummel [6]. An alternative which also carries his name is to
solve the nonlinear Poisson’s equation in each step which car
also be seen as the Picard iteration for the fixed point prot
Y = T(y) formulated in the preceding section. Convergence an:
ses of Gummel’s method for small current densities are conte

in Markowich [8] and Kerkhoven [73.
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When the current densities take values of significant size the
convergence of Gummel’s method often deteriorates. In view of
this situation a different kind of decoupling by approximating
the Frechet derivative was introduced in Ringhofer and Schmeiser
[15]. Here the singular perturbation character of the linearised
problem (4.2) is used. As du and dv are slow variables they
are approximated well by the solution of the reduced problem.

Thus, we substitute

di = (—ewga + e_w55 + b1)(ewu + emwv)ﬂ1
into the linearized continuity equations
J
div(———l%qr (—ewaﬁ+e w§§+b1) + ewvaﬁ) = = by
(4.3a) e e v
- ) — - J—
aiv(5—Ro— (-e"F+re 'q4b) + eTVVEV) = - by
e'ute v

As dU 1is a fast variable, dy is a good approximation only
away from layers. In order to improve on that the full linearised
Poisson’s equation has to be solved:

(4.3b) XzAéﬁ - (ewu+e_wv)a@ - ewaﬁ + e'WEG = - b1

Instead of the Newton corrections dy,du,dv we now use éﬁ,gﬁ,EG
In the perturbed problem (4.3) Poisson’s equation is decoupled
from the continuity equations which are coupled to each other
by the terms multiplied by I, and Jp°
Some of the most important semiconductor devices (e.g.MOSFETs)

are so called unipolar devices. Theyvare characterised by the

property that only one type of charge carriers (i.e. electrons
or holes) contributes significantly to the current flow. This
means that one current density (for example Jp) is very small
compared to the other. This motivates a further decoupling by
replacing Jp by zero in (4.3). The resulting method was proven

to converge linearly in [15] with a convergence rate of the form
(4.4) const(c(M |1, IT+113, 1D

if the problem is well-posed. In (4.4) c¢c(X) tends to zero as

A»~0 and ||.]| denotes a suitable norm. The value of (4.4) is so



"small in many applications that the convergence behavior is
dominated by the quadratic terms throughout the computations

which suggests the use of the term "almost quadratic conver-

gence". The performance of this method was examined in [15]

by numerical tests which showed that - compared to Gummel'’s

method = a significant improvement can be achieved.
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SOLUTION OF THE DIFFUSION EQUATION IN VLSI PROCESS

MODELING BY A NONLINEAR MULTIGRID.ALGORITHM

S. MIJALKOVIC and N. STOJADINOVIC

ABSTRACT: an application of the nonlinear multigrid method with Full
\pproximation Scheme (FAS) algorithm for solution of the diffusion equ-
ition in VLSI process modeling has been investigated. It is demonstrated
-hat this approach shows high efficiency, which is essentialy independent
»f physical and numerical parameters of the problem.

I. INTRODUCTION

For the present underlying physical models of processes used in VLSI
process simulation programs, solution of the two-dimensional diffusion
equation places heavy demands on computer resources. Moreover, further
improvements in kinetic models of point defects, because of their important
rofe in coupling oxidation and diffusion processes, will require at Teast
a tenfold increase in computational throughput for the next generation of
VLST process simulation programs [8]. Therefore, it is clear that more
emphasis should be put on numerical approaches that are more efficient
than those currently used for diffusion process simulation.

In this view, multigrid methods, well known as the fastest solvers
of discretized partial differential equations, seem to be a good choice
for this application. Besides their computational efficiency, multigrid
methods are fully parallelizable on multiprocessor computers. However,
it should be noted that highly efficient and extendable multigrid solvers
for more complex problems could be obtained only with a proper choice of
a multigrid algorithm and various additional multigrid components [1].

In this paper an application of a nonlinear multigrid method with
Full Approximation Scheme (FAS) algorithm for solution of the diffusion
equation in VLSI process modeling has been investigated. In the following
section mathematical description of diffusion equation and discretization
procedure are briefly outlined. The third section describes multigrid
algorithm and related multigrid components used. Finally, the two last
sections contain analysis of the empirical solution efficiency obtained
and some practical examples.of actual simulation.
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. 2. PROBLEM DEFINITION

Simulation of the redistribution of impurities in semiconductors
under practical processing conditions involves solution of the nonlinear
diffusion equation in a domain where one of the boundaries (the silicon-
~oxide interface) is continually and nonuniformly moving in space as a
function of time.

By ignoring diffusion in the oxide (which is justified in many cases),
one can consider the diffusion equation [5]

aC 3,n3C 3,~9C
(M 5t " 5w Pax) " am(Pyy) = 0

as two-dimensional initial boundary-va]uelprob1em in the bounded domain @
with C being the impurity concentration and D=D(C) the concentration dep-
endent diffusion coefficient.

The boundary conditions are

1) deep in the silicon substrate i.e. at the top of simulated

region (n=n;+ml): C=C =1013 an”3,

min
2) along the Tines of symmetry {x=0 and x=x]): 3C/3n=0 and
3) on the silicon-oxide interface i.e. at the bottom of simulated
region (n=ml):

(2) D3~ (k-m).U-Con = 0

where X and n determine the domain extent, U=U(x,t) is the local oxide
thickness, k is the segregation coefficient, m is the ratio of silicon
thickness consumed to oxide thickness produced and n is the unit vector
normal to each boundary.

Since numerical treatment of the probiem has been the main goal of
the paper, electric field induced flux of impurities as well as coupled
impurity diffusion have been excluded for simplicity. Most of physical
parameters in (1) and (2) have been modeled according to the program
SUPREM [2].

To avoid the problems with discretization at the moving silicon-
-oxide interface n=B(x,t)=m-U(x,t), coordinate transformation [5]

y = n = B(x,t)

which transforms physical domain into the time independent rectangular
domain has been used. This yields the following transformed diffusion
equation:
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aC
3y)

aC 3 aC .2 ]
5€-5§(D3_X - (1+B )-a-y(D -

..y oC . 9 aC ] 3C _
- (B-D-B ) 3_y + B { g;(D W) + —BV(D —37(-)} =0

e boundary condition {2) is converted into
2y 3C _ L. 3C _ _
D{(1+8°%) By B 'Ei} - (k-m)+B:C =0

1ile the other boundary conditions remain unchanged for symmetry
1asons.

The multigrid solution of the diffusion equation (1) could be also
arformed in physical domain without coordinate transformation [3]. This
sproach, because of need for special boundary discretization control
t the moving oxide-silicon interface and additional modifications in
ATtigrid components used still requires advanced multigrid techniques
5 the local coordinate transformation [1] near the moving boundary.

. The time discretization of the diffusion equation (3) is performed
y the implicit backward Euler scheme. An automatic time step selection
yased on Milne’s device [8] has been used. That implies three integration
iteps in each time step: a crude step and two finer steps with integra-
:ion time half that of the crude step.

The spatial derivatives of (3) are discretized by 9-point central
lifferences for the second order terms and by upwind differences for the
*irst order convection terms., For discretization of the Neuman boundary
sonditions so-called "mirror imaging" [7] has been used. This is the same
liscretization as inside the domain substitutuing the missing quantities
utside the domain using Neuman boundary conditions and linear interpo-
lation. ’ -

Two-dimensional jon-implanted concentration profiles based on LSS
theory [7] have been used as initial solution for the first time step,
vhile the following time steps use the results of previous ones as their

initial solution,
3. MULTIGRID APPROACH

The discretization of the diffusion equation leads to a nonlinear
algebraic system of equations. To solve this system we use a nonlinear
multigrid method with Full Approximation Scheme (FAS) algorithm. This
approach is in many respects advantageous to linear multigrid method with



Correction Scheme already used for this application [6]. Inherently non-
linear, FAS algorithm does not require global linearization of equations.
Hence, no extra storage for coefficients of linearized equations is needed
and the programing is very convenient. FAS algorithm also gives a natural
way to estimate a local truncation error which could be useful for making
an efficient stopping criterion for iteration. Finally, in future develo-
pments one can benefit from various advanced multigrid techniques as Tocal
refinements for grid adaption and Tocal coordinate transformation at the
silicon-oxide interface.

The FAS algorithm used employs sequence {Gk’Hk}1sksM of uniform, non-
-staggered, rectangulars grids with corresponding meshsizes (Hk—1=2Hk>
where k is the grid Tevel. Regarding the discretized diffusion equation
as a discrete eliptic problem LMCM=FM on the finest grid (GM), it can be
solved for the unknown grid function CM starting with k=M the following

recursive procedure

procedure FAS (k,v1,v2: integer; Ck,Fk: array)s
var j: integer; Tyt 2O Fyaq ATTAY

begin
if kel then C,:=L” (F,) else
begin
f_(_)_)’: Ji=1 119_ \)1 _C_|_9 Ck::Sk(Ck’Fk);
Ck_1:=R(Ck);

Tt 7= (Cpoq )-RIL L) s
Fk_1:=R(Fk)+Tk_1;
FAS (k-1 2Vy ’\)Z’Ck—1 ’Fk—1);
€=\ #P(C,_(=R(C} )5
for ji=1 to v, do €, =5, (C;sF,)s

end;

if (kM) and (][F, =L (C)| 1>+l (11} then
FAS(k,\)1,\)2,Ck,Fk);
end;

For the purpose of smoothing (Sk), succesive-displacement Gauss-Siedel
relaxation with lexicographical (LEX) and red-black (RB) ordering of points
were tested. RB ordering of points is in some way advantageous because it
could readily be fully parallelized. The only Tinearization required in FAS
algorithm is that in smoothing process local to the corresponding grid point
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For the purpose of this linearization, so-called "principal linearization"
[1], which confines the original form of differential operator has been
used.

Normal full weighting (9-point symmetric) formula [1] has been used
as the restriction operator (R) which is natural for highly varying grid
functions like impurity doping concentration. The prolongation (P) has
been performed with a bilinear interpolation. The use of cubic rather
than bilinear interpolation has not significantly ameliorated the situ-
ation.

On the coarsest grid (G,), the solution (L_1) is obtained with 5
iterations of S1 type. The fine-to-coarse defect correction (Tk) is used
to estimate the local truncation error as TM_1/(2p'1) [1] where p is the
focal approximation order of djfferential operator. This feature gives an
efficient stopping criterion for terminating FAS algorithm.

4, SOLUTION EFFICIENCY

Very important question when the application of a multigrid algorithm
is considered is the efficiency of the obtained soiution. As a measure of
solution efficiency we have considered an average residual error reduction
per work unit (WU) i.e. per work equivalent to one relaxation over the
finest grid level, which is onwards referred to as convergence rate (pwU).

Regarding the generallity and robustness of the algorithm as one of
its most significant attributes, our main concerns were the empirical
prediction of behaviour of the convergence rate over a wide range of pro-
blem parameters and choice of smoothing technique. As a reference for compa-
ration of the FAS algorithm convergence rate, equivalent single-grid (SG)
iteration solver on the finest grid level has been used. One time step
simulation of highly nonlinear neutral diffusion process from initially
implanted arsenic layer has beeﬁ chosen as an exemplary problem of nume-
rical testing of convergence rates. '

The behaviour of residual error L2 norm for various time steps
(Ts1-Ts4) and the different finest grid levels (M; and M,) during solution
procedure is shown in Figs.1 and 2, respectively. The dashed lines repre-
sent lTevels of estimated local truncation error norms for the given finest
grid level. Relaxation has been performed with RB ordering of points.
Table I gives calculated convergence rates for corresponding time steps
and grid levels from Figs.1 and 2 with comparation of RB and LEX ordering
of points in relaxation.
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Ts4=15 s

In residual error

0 5 10 15 20 25 30

Fig.1 Single-grid and FAS residual restriction for different
time step sizes

o Ts1=120 s

residual error

Tn
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WU
Fig.2 Single-grid and FAS residua]_restriction for the
different finest grid levels

Pyy)
. M1 ‘ Ts1
TS Tss | o1s3 | Tsg | M My

TABLE I Empirical convergence fates (

SG-RB 10,9019 | 0.8547{0.7711 | 0.6512{0.9019 | 0.6840

s5-LEX [0.9009 {0.8574[0.7753 {0.662310.9009 |0.7185

FAS-RB  {0.4364 10.4188]0.3987 10,3615 |0.4364 ip,.3768
FAS-LEX ”0,4827 0.4554 10,4204 10.3930 {0.4827 10.43727
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As an empirical observation, it is obvious that FAS algorithm solves
a problem to the Tevel of truncation error level in just a few work units
which is commonly regarded as "normal" multigrid efficiency [4]. More
important fact is that the FAS algorithm convergence rate is almost inde~
pendent of time step size and choice of the finest grid level which means
that for all practical simulation examples the computational cost of FAS
algorithm is essentialy problem independent.

5. SAMPLE SIMULATION

Two diffusion process steps typical for fabrication of VLSI NMOS
transistor structure are considered as practical examples of simulation.
The first process step is the diffusion of boron channel-stop implant
during local oxidation (LOCOS). The second process is a high-temperature
anneal following arsenic implant for the source/drain region-formation.

The boron channel-stop implant through a predefined field-oxide
region, with the dose 5.10'2 cm™? at 100 keV is followed by the 240 min
field oxidation at 1000°C in H20° On the other hand, arsenic was implanted
with the dose 10'® cm2
ambient at 1000%c.

The contour plots of the impurity concentrations at various stages

at 150 keV and driven-in for 15 min in neutral

of processing are shown in Figs.3 through 6, The boron channel-stop implant
and source/drain arsenic implant distributions after the completion of the
ion-implantation process step are shown in Figs.3 and 5, respectively.

The silicon-nitride mask for boron channel-stop implantation extends from
x=0 to x=1um and for arsenic implantation from x=0 to x=0.25um. Fig.4

shows the final boron profile after the Tocal oxidation step. Initial

oxide thickness for this pkocesé step was 0.05um. Fig.5 shows the final
arsenic distribution after the high-temperature anneal.

6. CONCLUSION

The main objective of the next generation VLSI process simulation
programs is to reduce the design duration while simultaneously increasing
the efficiency in achieving well-designed processes. Special attention
should be paid on simulation of diffusion processes which are the most
crucial and time cbnsuming simulation steps.

In this paper we have presented an application of a nonlinear multi-
grid method with Full Approximation Scheme (FAS) algorithm for solution
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.of diffusion equation in VLSI process modeling, It has been demonstrated
that nonlinear FAS algorithm shows high computational efficiency of solu-
tion which is almost independent of problem parameters in most practical
applications,

Having in mind these features and possible extensions of FAS algori-
thm for more complex problems this numerical approach could be very effe-
ctive for the next generation of process simulation programs.
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CONSTRUCTION OF s - ORTHOGONAL POLYNOMIALS

AND TURAN QUADRATURE FORMULAE

GRADIMIR V. MILOVANOVIC

ABSTRACT: A connection between Turdn quadratures and s-orthogonal polyno-
ntals with respect to a nonnegative measure on the real line IR is given.
Using a discretized Stieltjes procedure and the Newton-Kantorowié method,
an iterative method with quadratic conmvergence for the construction of s-
orthogonal polynomials is formulated. Some wnumerical examples are included.
Finally, some considerations about Turdn quadrature formulae with Chebyshev
measure are given.

1. INTRODUCTION

In 1950 P. Turdn investigated numerical quadratures of the

type
1 n k-1 (i)
(1.1) [floyac= ] ] A, f t (1) + R_ (),
-1 v=1 i=0 nok
~vhere
l .
By, = _fl £,y (eat “=1,...,n; i=0,1,...,k=1)

and Qv i(t) are the fundamental functions of Hermite interpo-
14

lation. The Ai , are Cotes numbers of higher order. The formu-~
17

la (1.1) is exact if f is a polynomial of degree at most kn-1

ind the points -1 =1 <7_ < ... <1 =1 are arbitrary.
1 2 n

For k=1 the formula (1.1), i.e.,

1 n
[f(t)at = ZAO,Vf(TV) + R (£),
-1 v=1



12

. can be exact for all polynomials of degree < 2n-1 if the nod-

es 1, are the zeros of the Legendre polynomial Pn' That is the

well-known Gauss-Legendre quadrature.

Because of the theorem of Gauss it is natural to ask whe-
ther knots T, can be chosen so that the gquadrature formula (1.1)
will be exact for polynomials of degree not exceeding (k+1l)n-1.
P. Turadn [17] showed that the answer is negative for k=2, and
for k=3 it is positive. He proved that the knots T, should be
chosen as the zeros of the monic,polynomial W;(t)=1¥l+.,.
which minimizes the following integral

1

4
[ owo (e)"at,
-1 11

where 7 (t) = tn-ka t + ... +ta t+a_.
n n-1 1 0

More generally, the answer 1is negative for even, and po-

sitive for odd k, and then T, are the zeros of the polynomial

minimizing
1
+1
(1.2) N
-1 n

For k=1, T is the monic Legendre polynomial Pn'

Because of the above, we put k=2s+l. Instead of (1.1), it
is, alsc interesting to investigate the analogous formula with

a weight function t s p(t),

1 2s n (i)
JfE)p(t)de = .Z ) Ai,vf (t,) + R(£),
-1 i=0 v=1

or more generally, with some nonnegativé measure di(t) on the
real line R,

2s n (i)
(1.3) [ £le)are) = [ L oA, £ 7(r) + R(£).
R i=0 v=1 7V
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This paper is organized as follows. In Section 2 we give
a connection between Turdn guadratures and s-orthogonal polynomi-
als, which were studied extensively by several Italian mathemati-
cians [12]1,0713,[13],[14]. Also, in this section we mention a re-
cent method of Vincenti [20] for the computation of the coefficients
of s-orthogonal polynomials with respect to an even function. In
Section 3 we develop a new method for the numerical construction of
s-orthogonal polynomials with respect to an arbitrary weight fun-
ction. Numerical examples are given in Section 4. Section 5 deals

with Turdn quadratures with Chebyshev measure.

2. TURAN QUADRATURES AND s-ORTHOGONAL POLYNOMIALS

We consider the Turdn quadrature formula (1.3), where di(t) is

a nonnegative measure on the real line R, with cowmpact or infi-

I

nite support, for which all moments Wy = IR tid)l(t) , k=0,1,...,

1
exist and are finite, and UO > 0. The formula (1.3) must be exact
for all polynomials of degree at most 2(s+1)n-1. The role of

the integral (1.2) is taken over by

2842
F= fow(¢) STEanty,
R
- X
where FzF(a ,...,a ), m ()= ) a t’, a =1. In order to mi-
0 n-1 n ¥ n
k=0
nimize F we must have
2s+1 k
(2.1) J o (t) Tetant) = 0,  k=0,1,...,n-1.
R
Usually, instead of TTn(t) we write P ; (t).
s,n

The case di(t) =p(t)dt on [a,b] has been considered by the Ita-
lian mathematicians A.Ossicini [121, A.Ghizzettli and A.Ossicini

[7], S.Guerra[81,[97]. It is known that there exists a unique



! n : .
PS n(t) = I (t—Tv), whose zeros T, are real, distinct and lo-
! v=1

cated in the interior of the interval [a,bl. These polynomials
are known as s~orthogonal (or s-self associated) polynomials in

the interval [a,b] with respect to the weight function p.

For s=0 we have the standard case of orthogonal polynomials.
The case when s>0 is very difficult. It requires the use of a met-

hod with special numerical treatment.

Recently G.Vincenti [20] has considered an iterative pro-
cess to compute the coefficients Of s-orthogonal polynomials in
a special case when the interval [a,b] is symmetric with res-
pect to origin, say, [-b,bl, and the weight function p is an ev-
en function p(-t)=p(t). Then P (=t) = (=1)UP (t) . He con-

S, n s,n
sidered two cases: when n is even and when n is odd.

m .
In the first case n=2m, PS n(t) = 7 a_tzm_Zl, aorzl. From
! i=0
(2.1) Vincenti obtained a nonlinear system of equations of the
form »
m
'Z Chrei®i = Cowr (r=0,1,...,m-1),
1i=0
where
b . m
0 2 h -1
C; = Teneas, C; - ijﬁzlm?—p—qapa '
0 P, g=0 4

s
and C; )E Cj. Then he has solved this system by some iterative
method like Newton's method. For n=2m+l, a similar system of eg-

uations was obtained.

Vincenti applied his process to the Legendre case. When n and
s increase, the process becomes ill-conditioned. So, the author
gave numerical results in the following cases: n=2,3, 1l c<s
£10; n=4,5, 1ss=<5; n=6,7, 1 ss<3; n=8,9, 1<s=2; n=10,11,

s=1. The results were obtained with 18 correct decimal digits,
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put using an arithmetic with 36 decimal digits.

From (2.1) we can see that this procedure needs the first

2(s+1l)n moments of the weight function: u u oy U

(0) 0" "1’ 2(s+1)n-1"
We see that Cj = uzj/Z. Of course, in this special case, the
moments of odd order are zero. Here, we have a nonlinear
2(s+l)n n . T
'R >

map Vn,s R, given by [”0’“1’ 'U2(5+l)n-1]

T . . .
[ao,al,...,an_l] . The problem itself is highly sensitive to

small perturbations in the moments, so that any algorithm which
theoretically solves the problem using the moments will be sub-
ject to severe growth of errors when executed in an arithmetic
of finite precision ([ 4] ,[57J). It would be useful to find a
numerical condition number of the map Vn o’ but that will not

14
be our aim here.

3. CONSTRUCTION OF s-ORTHOGONAL POLYNOMIALS

In this section we will give a stable procedure for the nume-
rical construction of s-orthogonal polynomials with respect to
dA(t) on R. Namely, we will reduce our problem to the standard

theory of orthogonal polynomials, and then we will use the Stielt-

jes procedure ([{31,[51). The main idea is an interpretation
of the "orthogonality conditions" (2.1), i.e.,
k 2
[ (et wn(t)-sdx(t) =0, k=0,1,...,n-1.
]R .
, s,n .28
For given n and s, we put dp(t) =dyu (t) = (nn(t)) dx(t). The-

se conditions can be interpreted as

s,n V)
fﬂk’ ()t dp(t) = o, v=0,1,...,k-1,
R

s,n, . ; ,
where (7 ') is a sequence of monic orthogonal polynomials with

k
s, 1
respect to the new measure du(t). Of course, P_ n(.)= ﬂh, (.).
=N



. s,n ' . L
As we can see, the polynomlals,ﬂk' ; k=0,1(..., are implicitly
defined, because the measure du(t) depends of ﬂi’n(t). The ge-

neral class of such polynomials was introduced by H.Engels (see
L2, pp. 214-2261).

We will write only 7. (.) instead of 757 (). These polyno-

k k
mials satisfy a three-term recurrence relation

(3.1) m = (t-o )m

kil (t) =0, TTO(t)=ll

where, because of orthogonality,

<tw. 7> / tﬂi(t)du(t)

k R
o, =0, (s,n) = = ,
k k <TTkl"lTk> f 2( ) du (£)
kil t)du
R k
(3.2)
/ ﬂz(t)du(t)
MM R k
B, =B, (s,n) = = ’
k k <ﬂk—l'ﬂk—l> 2
%Rﬂk_l(t)du(t)
and, for example, BO== %de(t).

The coefficients uk and Bk are the fundamental guantities
in the constructive theory of orthogonal polynomials. They pro-
vide a compact way of representing orthogonal polynomials, re-
quiring only a linear array of parameters. The coefficients of
orthogonal polynomials, or their zeros, in contrast need two-

dimensional arrays.

Finding the coefficients uk, Bk (k=0,1,...,n-1) gives us

access to the first n+l orthogonal polynomials Tyr Myreeer T e Of

course, for a given n, we are interested only in the last of them
s,n .
ﬂn(Ewn' ). So, for n=0,1,..., the diagonal (boxed) elements



. . S,n
n the following table are our s-orthogonal polynomials ﬂn,

TABLE 3.1

o au® " (e) Orthogonal Polynomials

0 (v(s)’o(t))zsdx(t) W;,,o

1 (ﬂi’l(t))zsdx(t) ﬂg’rl ﬂi‘ul

3 (ﬂ§'3(t))2sd>\(t) n§'3 ﬂiﬂ‘ “5,3 ,ﬂ§,3

A stable procedure for finding the coefficients ak,Bkisthe
discretized Stieltjes procedure, especially for infinite inter-
vals of orthogonality (see Gautschi [5], and Gautschi, Milovano-
vié¢ [61). Unfortunately, in our case this procedure cannot be

used directly, because the measure du(t) involves an unknown po-

lynomial ni'n Consequently, we consider the system of nonlinear
equations

- 2s Voo

£, =8 = fwn (t)da(t) = 0,
R
(3.3) f = [ (o, -t) 2(t) ZS(t)dx(t) =0, k=0,1 n-1
N k4l - X ﬂk TTn ’ 1,00y, ;
R
_ 2 2 2s _ _
£ © lj)\(eknk_l(t) m (€))n T(E)ar(t) =0, k=1,...,n-1,

which follows from {(3.2).



Let x be a (2n)-dimensional column vector with components
uo,eo,...,an_l,sn_l and f(x) a (2n)-dimensional vector with com-

ponents f o £ given by (3.3). If W=W(x) is the cor-

O’fl"' 2n-1'
responding Jacobi matrix of f(x), then we can apply Newton-Kan-

torovic's method

[v+1] Lv] -1, [v] [v]
X = x

(3.4) - W (x ) f{x ), v=0,1,...,

for determining the coefficients'of‘the recurrence relation (3.1)
fol

Starting with a reasonahle good approximation x , the conver-

gence of the method (3.4) is guadratic.

It is interesting that the elements of Jacobi matrix can be

easily computed in the following way:

First, we have to determine the partial derivatives a
aT am
and b =

3o, i .
al k,i 881

k,i

Differentiating the recurrence relation

(3.1) with respect to oy and Bi we obtain

fpr,i - Bmeday T By
and
Prar,s = (EmodPy v = Bby g,
where
ak,i = 0, bk,i-: 0, k=1,
fi41,5 0 "M By T oo (0)

These relations are the same as . those for T but with

other initial values. The elements of the Jacobi matrix are

Af
2k+1 2s-1 : 1
”__"aai = 2 fwn (t)[(uk—t)pk’i(t) + 56

R

2

kink(t)nn(t)]dut),

\
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of

2k+1 2s-1
38 =2 ™ (t)(uk~t)qk,i(t)dk(t),
1
R
3f
2k 2s-1
3.5) g = 2 ST ) (Bypy i (8) - py  (E))AM(ED,
1
R
9 25-1 1 2
58, - 2 I (OB, a4 ()= ay (D) 36, M (e)m (B (),
here pk,i(t):=ﬂk(t)(ak,inn(t) +sanhiwk(t)) and qk,i(t)
K(t)(bk,iﬂn(t) + sbn,iﬂk(t)), and 6ki is Kronecker’s delta.

All of the above integrals in (3.3) and (3.5) can be found
xactly, except for rounding errors, by using a Gauss-Christoffel

aadrature formula with respect to the measure di(t),

N
3.6) [ g(tyarx(e) = ¥ A gty
IR =

aking N=(s+1)n knots. This formula is exact for all polynomials

f degree at most 2N-1 =2(s+1)n-1=2(n-1) + 2ns + 1.

Thus, for all calculations we use only the fundamental three-
:erm recurrence relation and the Gauss-Christoffel quadrature

agﬂ =ugﬂ f] =B£O](S/n) we ta-

e the values obtained for n-1, i.e. uﬁoJ: uk(s,n—T), Bgﬂ==8ﬂs,n4L

3.6). As initial values (s,n) and R

£n-2. For o and Bn—‘ we use the corresponding extrapolated

-1 1

alues.
In the case n=1 we solve the equation

2s+1

@(uo) = @(ao(sr1)) = (t—uo) ax(t) = 0,
R
and then determine
By = Byls, 1) = f(t‘aO)ZSdA(t).

R



4. NUMERICAL EXAMPLES

We will consider two exXamples, involving Laguerre and Le-
gendre measures.

Example 4.1. dx(t)=,e—tdt on (0,x).

Using the presented method, we determined the recursion

coefficients ak(s,n) and Bk(s,n), k=0,1,...,n-1, for s=1(1})5
and n=1(1)10. These coefficients and zeros of ni'n, Tk(s,n),
k=1,...,n, for some selected Valﬁes of s and n, are given in

Table 4.1. Numbers in parentheses denote decimal exponents.The
zeros Tt (s,n), k=1,...,n, were obtained as eigenvalues of the

(symmetric tridiagonal) Jacobi matrix

i S ]
Olo(sln) Bl(S,n) O
/8, (syn) oy (s,n) 78, (s,n)
J = 7
n
’Bn_l (Srn)

using the QR algorithm.

Example 4.2. di(t) =dt on (-1,1). In this (Legendre) cas
the coefficients ak(s,n) are equal to zero, so the computatio

can be simplified. The system of equations (3.3) becomes

1
2s
go = f0 = BO - fnn (t)ydt = 0,
-1
1 2 2 2s
gk = ka = f(Bkwk_l(t)-—vk(t))nn (tydt=0, k=1,...,n

-1
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TABLE 4.1
s,n)| k ak(s,n) B, (s./m) Tk+1(s,n)

(1,5) 0 1.53297437454020(0) 1.95429735674308(6) 3.8619211523014(1)
1 5.58879530809235(0) 3.09769990936949(0) 2.5326808971664(0)

2 9.67825960904726(0) 1.44873867444755(1) 6.8055964648137(0)

3 1.38195768909663(1) 3.44094720328124(1) 1.3770543148954(1)

4 1.79144743230187(1) 6.31554867162230(1) 2.5039067879500(1)

‘1,100 © 1.51947559720794(0) 1.15245141095965(18) | 1.9845989648554(-1)
1 5.54285984605682(0) 3.04910058102535(0) 1.2852724641604(0)

2 9.57433648078956(0) 1.42156585447179(1) 3.3633782573586(0)

3 1.36134600304330(1) 3.35373242373804(1) 6.4866460030154(0)

4 1.76626196755034(1) 6.10680235778704(1) 1.0743607524688(1)

5 2.17262963633088(1) 9.68925818155147(1) 1.6274303555431(1)

6 2.58125737578751(1) 1.41154607302825(2) 2.3303521691882(1)

7 2.99352863173826(1) 1.94114444641607(2) 3.2216061440735(1)

8 3.40937486293287(1) 2.56171126328495(2) 4.3764898673766(1)

9 3.80755964787433(1) 3.26547484073315(2) 5.9920103669108(1)

(2,5) 0 3.06241261660323(0) 1.11900724691562(16) | 5.1108081782716(-1)
1 8.17357215072018(0) 6.27220780166492(0) 3.6504048515689(0)

s 1.43542025111386(1) 3.14187808183856(1) 1.0011553444478(1)

3 2.06411614818251(1) 7.61775799352481(1) 2.0452776123775(1)

4 2.68361238086797(1) 1.41467716850165(2) 3.7441657331318(1)

(3,5)] O 2.58905931144849(0) 5.71776101144993(27) | 6.3593164870754(-1)
1 1.07564139072170(1) 1.05185172722828(1) 4.7669589415140(0)

2 1.90289971948242(1) 5.47855138833478(1) 1.3215882166030(1)

3 2.74628973371076(1) 1.34292199752058(2) 2.7133552841620(1)

4 3.57594914086306(1) 2.50922121763235(2) 4,9844533561357(1)

(4,5)| 0 | 3.11368201971988(0) 6.65045548992180(40) | 7.6048752765420(-1)
1 1.33381242208130(1) 1.58333974393260(1) 5.8827138815968(0)

2 2.37031258589862(1) | 8.45825858503624(1) 1.6419218171525(1)

3 3.42845650702239(1) 2.08746777684076(2) 3.3813401673707(1)

4 4.46834996793661(1) 3.91510787488863(2) 6.2247175594627(1)

(5,5)1 0 3.63680292296229(0) | 8.46508537128994 (54) | 8.8474548516636 (-1)
1 1.59190911806156(1) 2.22147113900203(1) 6.9978980073417(0)

2 2.83768214565758(1) 1.20806800183997(2) 1.9621882995226(1)

3 4.11061379266411(1) 2.99537220959448(2) 4.0492610101210(1)

4 5.36078046528124(1) 5.63228814211952(2) 7.4649521550663(1)

Table 4.2 shows the numerical results for s=1,3,5 and

n=3,5,10. The corresponding zeros rv(s,n), k=1,...,n, are given

in Table 4.3.



TABLE 4.2

v Bv(l,n) Bv(3,n) B\)(S,n)

0 0.483864899809040(-1) 0.999799077102820(-4) | 0.284169237312933(-6)

1] 0.396390615424778 0.438361519822241 0.455125737914133

2| 0.266920571579793 0.262372968797798 0.259637334393080

0] 0.313354730979678(-2)] 0.264465724288258(-7) | 0.301618113315945(-13)

1] 0.397514379556632 0.440125755974452 0.456936553362545

210.266421480435867 0.261489083023563 0.258693332791772

3] 0.256509353896241 0.254475851257394 0.253414689828449

41 0.253674592138278 0.252629769731300 0.252061944536419

0] 0.314536690060498(-5) | 0.261903853328827(-16) | 0.290667534992279(-27)

110.398771414276302 0.442152192689833 ‘ 0.459032427879297

21 0.266409589288295 0.261261065487811 0.258382986818575

3:1:0.256307280251967 0.254101849534999 0.253013674028616

4.10.253361155621508 0.252167886595534 0.251600165348871

51 0.252110174900276 ‘0.251373736923891 0.251025244228691

61 0.251467087710631 0.250973891152692 0.250737300372080

71 0.251096334167793 0.250747641830448 0.250575234680807

81 0.250866757894766 0.250611009696396 0.250478257846294

91 0,250718964459874 0.250526857803099 0.250419693077896

TABLE 4.3
T (1,n) T {(3,n) T (5,n)
v v v
+0.81443918557776 +0.83709885235857 +0.84543661637477
0. 0. 0.
+0.92711786960989 +0,93810619284349 +0.94197468869998
+0.56086741916164 +0.57330378590709 £0.57774579736053
0. 0. 0.

+0.98066259593659 +0.98398991804138 +0.98512298236202
+0.87750022098482 +0.88396182054293 +0.88618806147381
+0.69262442514005 +(0.69957700233546 +0.70197668437523
+0.44320099195064 +0.44838741280314 +0.45017897460267
+0.15247058767942 +(0,15437687188524 +0.15503560566469
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5. TURAN QUADRATURES WITH CHEBYSHEV WEIGHT

Now, we will consider again the quadrature formula of Tu-

rdn (1.3). If we define wv, by

+
(1) 2s+1
n
wv(t) =\t , v=l,...,n,
Y
s,n .
where Trn(t) =T (t) and = T\)(s,n) , then the coefficients
Ai in Turdn guadrature (1.3) can be expressed in the form [16]
r
2s+1 2s+1
. (0T (1)
1 2g-1 1 n n
BT Tres-or | P (t) e '
Y 1 (2s ! © R % - £ £= 1

v

where D is the standard differentiation operator. Especially,

for i=2s, we have

2s+1
1 7 {x)
A = di(x),
25,v 2s+1 f t -7
2g) t{x! v
(2s) t{n" (1)) R
i.e.,
5 (%)
(5.1) A = g v=l,...,n,
25,0 eyt ST
n v
where B\fs) are the Christoffel numbers of the following quad-

) : 2
rature (with respect to the measure du(t) =nns(t)d>\(t))

- (s)
:1Bv g(x\)) +Rn(g), Rn(IP ) =0,

(5.2) ué;g%t)du(t) - .

vV

So we have A > 0.
2s,v

The expressions for the other coefficients (i<2s) become

very complicated.

For the numerical calculation we can use a triangular Sys-—

tem of linear equations obtained from the formula (1.3) by replacing f



with the Newton polynomials: 1, t-rl, v, (E=1)) ,

2s+1 2s+1 2s8+1 2
(£- 1)) (E=t))yeee, (E-71)) (t -t s,

Particularly interesting is the case of the Chebyshev weight

p(t) = (1-£2)" 12,

1- C e
In 1930, S. Bernstein [1] showed that 2 nTn(t) minimizes

all integrals of the form

I+l
1w (e) ]

—— at kz 0.
-1 vy 1-t2 '

So the Turdn-Chebyshev formula

1 2s n .
2 ~-1/2
(5.3) [ (1-t%) /f(t)dt= >, Ai\)f(l)(Tv) + R(f),
-1 i=0 v=1 !
-1 .
with L cosiggg—ll , v=1,...,n, is exact for polynomials of

degree not exceeding 2(s+l)n-1. Turan has stated a problem of
explicit determination of Ai and its asymptotic behavior as
I

n+o (Problem XXVI in [18]). In this regard, Micchelli and Rivlin

([11]) have proved the following characterization: If f€®R

2(stl)n-1
then
1 n s
£(t 27 j
i ()zdtzng%Zf(T\)) + Za,f'[rlj,...,TZJJ},
21 Yl-t v=1 j=1 7 n
where
-1/2
;0 059
o = (-1) —L—— 4212
_1 r 7 ’
J 2j4(n )]
and g[yi,...,y;] designate the devided difference of the fun-

ction g, where each yj is repeated r times.
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For s=1, the solution of the Turdn problem XXVI is given

2).
Y

™
o BT 1w an® ' 2,v 4pn3

In 1975 R.D. Riess [15],and in 1984 A.K. Varmal[l9], using very

different methods, obtained the explicit solution of the Turdn

problem for s=2:

T 2
A == ¢ A = - . (20n2—1), A = [3-+(20n -7)( 1—1@],
o, v M 1, 64n°> 2,v g4n’
GWT
A = - L (1-12), A, = T (1-12) 2,
3,v 64n v 4,v 64n v

Notice that (5.1), for the Chebyshev weight, reduces to

i S
= e (1= 12 =1,...,n.
Bos,v 4sn25+1(sl)2( ) vsl,e..yn

One simple answer to Turdn question was given by 0. Kis
[10]. His result can be stated in the following form: If g

is an even trigonometric polynomial of degree at most 2(s+l)n-1,

then
T S n
3 2]) 2v=1
g(e)as )
of " n(sn)? ; 49n?3 g 2n
where S 53 (i=0,1,...,8) dénotes the symmetric elementary poly-
nomials with respect to the numbers 12 22, ...,sz, i.e.,
2 2 2 2 .2 2
Ss=l, Ss_l:I +2 + ... +85 , ...,80:1°2 e s,
Consequently,
1 S n
2. -1/2 3 3
(1-t%) T 2E () ae = [ cose)] 2v-1
4 o o n o= 2ty



Using the expansion

2k . :
i
e (coss) = 3 a (M (b)), coss=t, k0,
. k,1
- i=1
where the functions a, jE ai j(t) are given recursively by
i r
a —(1—t2)a" - ta!
k+1,1 k,1 k,1°'
a = (l—tz)a" - ta! + 2(1—t2)a' - ta
k+1,2 k,2 k!2 Sk, 1 k,1'7
a =(l—t2)a" - ta' +2(l-t2)a' - ta +(1w8)a ,
k+1,1i k,1 k,1 k,i~1 k,i~1 k,i~2
(k =3, ., 2k},
a —*2(1—t2)a' - ta + (l—tz)a '
I+, 2k+1 k, 2k k, 2k k,2k-1"
2
Bl oke - TR DA oy
. 2 .
with a; 1= -t and a, 2:=1—t , we obtain the formula (5.3). For
14 ¥

example, when s=3, we have

mT

T v 4 2
A =~ A = —Y— (784n" +56n“~1),
O,v 7 T1,v 7 5304p’ (
2
A, = ——{(784n"~392n%431) (1-2) + 168n°-15] ,
2,v 2304n v
TrT\) ¢ 2 g
A = - —— $(336n°-89) (1-12) + 15
3,v 2304n’ ! v '
2
A, = —— 1(56n7-65) (1-12) % + 45(1-2)},
4,v 2304n v v
Ty % 2 % kil 3
A = ———= 1674 (1~12)" - 240(1-12) A = ————s (1-12)7.
5,v  2304n’ v v 76,0 2304n’ v

To conclude, we mention the corresponding formula (5.2) for the

Chebyshev weight,

~2s
. Tn (t) m 2s -
5.4 =
(5.4) :{ glt) m==at = 5o () v§:1;g<Tv) + R (9),



where

equal,

Oty
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T = cos(Z\)—l)ZLn , v=1,...,n. Note that all weights are
Y

that is, the formula (5.4) is one of Chebyshev type.

The last formula can be reduced to a "cosinus" formula

n
2s L
£ (cos x)coszs(nx)dx = Trs ) Zf(cos(2v-l)2n) + Rn(f) '
né el |
where Rn(f) =0 if fEJPZ(S'}'l)n"l‘
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Numerical Methods and Approximation Theory IIl (Ni§, August 18-21, 1987)

ON SOME PARALLEL HIGHER-ORDER METHODS OF HALLEY'S

TYPE FOR FINDING MULTIPLE POLYNOMIAL ZEROS

M.S. PETKOVIC and L.V. STEFANOVIC

ABSTRACT: Using Newton’s and Halley’s corrections, some modifications of
the iterative method for the simultaneous finding multiple complex zeros
of a polynomial, based on the Halley-like algorithm, are obtained. The con~
vergence order of the proposed methods is five and six, respectively. Fur-
ther improvements of these methods are performed by applying the Gauss— Se—
idel approach. The lower bounds of the R-order of convergence for the acc—
elerated (single-step) methods ave also given. Faster convergence s atta -
ined without additional calculations which makes the proposed methods be
very efficient. The considerved iterative procedures are i1llustrated numeri-
cally in the example of an algebraic equation.

1. ITERATION SCHEMES

Consider a monic polynomial of degre n 2 3

v uy
P(z) = 1T (z-=r,)
. i
i=1
with real or complex zeros Tyre-orly having the order of multi-
plicity uy,...,uy respectively, where y, tesedt o, =n (v >1).
Let z e C and v '
(k)
P (z) _
fk(z) P (z) ‘<k“112) v
. £,(2) (4 i) _ fz(z)
g(z) = 2 2 fl(z) !
i-1 v 2
-1 =1
Sl(a,b) =L Z u-(z-aj) + Z n (z—bj) 1
Yilg=r ) j=I+1
i-1 -2 v -2
+ Y u.(z-b) 4 3 uy (z7by) '
j=1 7 J j=i+1 J
T db= (b b )T ectors
where a = (al,.,.,av)‘ an = preserby are some Vv .

In particular, according to the above, we have, for example,

329



Vil §=1

1 \Y -1 2' v -2
Si(a,a) = —*[ E My (z—aj> J + j§1 My (z-aj)
j#1 j#i

Using the Bell’s polynomials, X. Wang and S. Zheng have derived
in [ld] the following relations

=1
- o - - 1 -
(1) ry =2 [g(z) W Si(r,r)] (i=1,...,v) ,
where r = (r r )T and w=up
17> 7"y i
Assume that reasonably good approximations Zyrese12y of
the zeros LyreossI, were found. Letting Z=zi and ryi=zy in (1),

where z, is the new approximation of the zero Ty and taking
certain approximations of rj in 5; on the right-hand side of
the relation (1), we obtain some iterative methods for simul-

taneous finding all zeros of the polynomial P.

We shall first define

N(z) = u/fl(z) (the Newton’s correction) ,
£, (z) 1 -1
H(Z) = l/g(Z) = 2 [T(Z)- = (l+ E)fl(Z)J

(the Halley'’s correction)

and introduce the vectors

z = (zl,...,zv) (the former approximations) ,
zZ. = (z b4 )T z. ., = z,-N(z,)
N N,1""°"°""°N,v ! N,i i i
(the Newton's approximations),
= )T = g,-H(z,)
Zg T g1 %y, v %g,i T % i
(the Halley's approximations),
Y A ~ T i .
z = (z cyZ ) (the new approximations)



331

N, i and ZH,i’ as well in

all formulas where the function g(z) appears, one has to

In calculating the approximations z
take H=Hy

(TS) For r,:=zj (j#i) we obtain the total-step itera-

=1

A 1 .
(2) Z., = Zi —l:g(Zi)_E—fT(—Zi—)Si(Z,Z)] (l—l,,,,,\)).

This method has been discussed in [lO] (see, also [11]) as a
special case obtained from the family of iterative methods.

The formula (2) can be rewritten in the form

FS H(Zi) -1
z; = Zi - H(Zi) [l - W Si(z,z)jl R

wherefrom we observe the similarity of the iterative method
(2) (which has the convergence order equal to four) with the

Halley's method (with cubic convergence)

for improvement of multiple zero ry (see [2])v Thus, the
correction term in the form of summs provides (i) the incre-
ase of convergence order and (ii) the determination of all
zeros of a polynomial. Furthermore, we note that the formula
(2) is more complicated to the square root iteration (which
also has the convergence order equal to four, see, e.d. Eﬂ),
but (2) does not require the extraction of a root and the
selection of appropriate value (of two values) of the square

root.

(SS) Let rj:=zj (J <i) and rj::zj (j >1i) ( the Gauss-Seidel
approach),then we obtain from (1) the single-step iteration

(88)

-1
1 n .
(3) Zi = Zi - [g(zl)— W Si(Z,Z)] (l—l,.u.,\)).



z.—N(zj) (j#i) .in (1), one

(TSN) Letting rj:=ZN j= 5
¥
obtains the total-step method with Newton’'s correction (TSN)
4 2 L o
( ) Zi = Zi - [g(zi)— EEITE;T Si(ZN,ZN)} (lzl,...,V)u

a

(SSN) Substituting rj:=zj (3 <1i), rj:=zN’j=zj—N(zj) (3>1)

in (1), we obtain the single-step method with Newton'’s correc-

tion (SSN)
o - N N -1
(5) Zi = Zi - Lg(zi)— E?ITE;T Si(Z,ZN)] (1=l,...,v)u
(TSH) Putting r.:=z_ .=z.-H(z.) (j#i) in (1), similar

J H,7 3 J
as for TSN method, we obtain the total-step method with Halley's

correction (TSH)
1 -1
(6) zZ, = Zi - [g(zi)— —2—1-5721—)— Si(ZH,ZH)] (i=1,...,v).
(SSH) TSH method can be accelerated using the Gauss-Sei-
del approach: setting rj:=z. (J <i), r.:=2 .=z.—H(zj) (3 »1)

J J H,3 73
in (1), we get the single-step method with Halley’'s correction

-1
~ 1 A .
(7) z, =z - [g(Zi)- 'z—fz—('z—l—) Si(Z’zH):l (i=1l,...,v).

2. CONVERGENCE ORDER

In this section we shall consider the convergence order
of the iterative schemes (2)-(7). For the single-step methods,
where the new approximations are used immediately they become
available, we shall apply the definition of the R-order of
convergence (see [4]). The R-order of convergence of the ite-
rative process IP with the limit point r = (rl,...,rV)T, where

r (T, are the polynomial zeros, will be denoted by OR(IP,r)°

prece

Let uém) be a multiple of |z£m)

m=0,1,... ig the iteration index. Using the technique applied
in [1], [6] or that presented in [7], it can be shown that the
iterative methods (2)-(7) belong to a class of iterative simul-

-ril (i=1,...,v) , where
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taneous methods for which the following relations can be deri-

ved under suitable initial conditions

P g
+ +
(8) u.(m oo 1 u.(m) (cx Z u.(m 1) + Z u{m) >

i v-1 "1 Rl A=,

J<1 Jj>1
(i=1,...,v; p,9eN,.a e{0,11}).

As in [5], we introduce the order triplet U(IP) = (p,a,q) as
a characteristic of the relations (8) for the iterative pro=-
cess IP. The integers p and g are the exponents of uim), while

a = 0 for a TS method and o« = 1 in the case of an SS method.

In order to determine the convergence order of the algo-

rithms (2)-(7), we shall use the following assertion proved
(0) , (0)
RN
.,rv so that

in [5]. Assume that the starting approximations =z

atre chosen sufficiently close to the zeros r

1ree
uéo)< 1 (i=1,...,v). Then, for the iterative process IP with
U(IP) = (p,o,q) we have

OR(IP,r) =p + g if o = 0 (total-step method),
(9) '

OR(IP,r) =pt+t if o = 1 (single-step method),

where tv is the unique positive root of the equation

(10) £V - tq""h - pg¥7t =0

Using the results presented in [5] and [}] we can find
the following bounds for £,

pg 2p
A4t Ty 2 9 ;
1+ Vi+ 75

An extensive but elementary analysis, similar as in [£
or [5]-[7], shows that the iterative schemes (2)-(7) have the

following characteristics:

U (TS) (2,0,2) , U(TSN)

1t
{l
il

(3,0,2) , U(TSH) (3,0,3) ,

U (S8)

1l

(3,1,1) , U(SSN) (3,1,2) , U(sSsH) (3,1,3)

il
1



According to this and (9) we have the assertions:

THEOREM 1, The convergence order of the total-step methods
TS(2), TSN(4) and TSH(6) is four, five and six, respectively.

THEOREM 2, The R-order of convergence of the single-step
methods 88(8), SSN(5) and SSH(7) is given by

0p(88,2) 2 8 + =

v 3
0R(880,2) 2 8 + &
and
OR(SSHJP) > 3 + y,

where Ty & and y, are the unique positive roots of the

equations

V-t -3 =0

A ML B
and

yv_ y_gv—l A ,

respectively.

The values of the lower bounds of the R-order of conver-
gence in the case of the single-step methods can be easily 0Ob-
tained solving the algebraic equation (10) starting from the
interval given by (11). These values are displyed in Table 1
and coincide with that concerning the corresponding modificati-
ons of square~root iterations (the single-step versions, without

or with the Newton’s and Halley’s corrections) (see [7]).

method\’ 2 3 4 5 6 7 8 9 10

SS(3) | 5.303 4.672 4.453 4.341 4,274 4,229 4.196 4.172 4.153
SSN(5)| 6.646 5.862 5.585 5.443 5,357 5.299 5.257 5.225 5.200
SSH(7)| 7.854 6.974 6.662 6.502 6.404 6.338 6.291 6.255 6.227

Table 1
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3. NUMERICAL RESULTS

In orxder to test the presented iterative schemes, a
FORTRAN routine was realised on a HONEYWELL 66 system in
double~precision arithmetic (about 18 significant decimal
digits). In realising the TSN, SSN, TSH and SSH methods with
Newton’s and Hal%ey’? corrections, before calculating new

m+1

approximations z] , the values fk(zim)) (k=1,2 3 m=0,1,...)

were calculated. The same values are used for calculating the

function
(m)
£.o(z. ")
(m), _ 1 1 (m), _ 1 271
glai") =g (v £ - 3
171
the Newton’s correction
(m) Hi
N(z ) =
1 (m)
fl(z. )
and Halley’s correction
(m)
£f.(z., ") -1
(m), _ 1 _ 2% _ 1 (m)
H(zi ) = o - 2 [ ) (1+ Ef) fl(zl q
g(zi ) fl(zi ) i

Thus, the proposed iterative methods with Newton’s and
Halley's correction terms reguire slightly more numerical opp-
erations in relation to the basic methods (algerithms (2) and
(3)). Taking into account the signifiéantly increased order of
convergence, it is obvious that the proposed methods have a

greater efficiency.

In order to illustrate numerically the efficiency of
the modified methods, the algorithms TS(2), SS(3), TSN (4),
SSN(5), TSH(6) and SSH(7) were applied for the improvement of

zeros of the polynomial

P(z) = 2% - 72% + 2027 -282% -182° + 1102 - 9223 - 442% + 3452 + 225 .
The exact zeros of this polynomial are r, = 1+ 21, r, = 1- 21,
ry = -1 and r, = 3, with multiplicities u, =2, u, = 2, ugy < 3

and Hy = 2. As initialfapproximations to these zeros the



following complex numbers were taken:

Z (0) = 1.7 +2.71, 22(0)

1
23(0) -0.3-0.7i, z4(o)=2.4—0.6i.

In spite of crude initial approximations ( min |zi

=1.7-2.71i,

(0)

—ri[ )

; 1 \
the modified methods demonstrate very fast convergence. Numeri-
cal results, obtained in the second iteration, are given in Ta-
ble 2.

method i Re {252)} ’ » Im {ziZ)}

11 0.999999703872727 1.999999577023530
15(2) 2| 1.000004966234449  -1.999858354626263

3| -1.000001724263487 1.28 x10°°8

41 3.000175153200852 4.58 x 10" °

11 0.999999603833368 2.000000538829041
ss (3) 2| 0.999997513035036 -2.000168291520113

3| -1.000001434643141 8.31 x 10”7

41 3.000000000400398 4.03 x10"°

1| 1.000005463270708 1.999990357789566
Ten(4y | 2| 1-000000009930465 —2.0000009%5656453

3| -0.999999370541218  -2.44 x 10

41 2.999980969476169 5.24 x 107 ° |

11 0.999998904155992 1.999998927299469

2 -
ss1 (5) 0.999999988521851 1.999999?22758255

3| -1.000000001576391 5.07 x 10

4| 3.000000000001254 -3.26 x 10”2

1 1.000000002444691 2.000000000565806

21 1.000000002639924  -2.000000001014728
TSH(6) 1

3] -0.999999999964674  -2.81 x 10

4| 3.000000003876174 -3.25 x 10" '°

11 1.000000000020514 2.000000000101261
ssu(7) |2| 1.000000000012086 -1.999999999988034

3| -1,000000000000157 -2.86 x10™"°

4| 3.000000000000029 -2.88 x10" "

Table 2
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PADé—APPROXIMATION AND BAND-LIMITED PROCESSES

TIBOR K. POGANY

ABSTRACT: In the paper we apply the Padé-approximation me-
thod to the approximation of spectral densities which are
analytical at the origin.The observed densities are positi-
ve on a finite interval I = [-w,w] ¢ IR and vanish otherwise.
Some results are given on the lower and upper bound of Padé-
approximants on I and the convergence for some approximant
sequences of the observed density was investigated.Related
convergence results are given for the sequences of Padé-pro-
cesses,

1. INTRODUCTICN

The estimation theory of wide-sense stationary stochas-
tic processes use the so called VWiener-Hopf equation,which
Yaglom has solved explicitly for the class of processes with
rational spectral densities.The Wiener-Hopf equation can be
solved only in this class.

The concept of a band-1imited process is an important
one in practice.lany proceéses in.applied sciences have a spec-
trum f(u) which is concetrated on a finite interval I.Practi-
cally these processes are band-limited: The harmonic oscilla-
tions f(u)eiu‘t with frequencies u outside I have very small
energy.,

Because some Tadé-approximants of the spectral density
of a band—limited process have identical properties as the

spectral densities,with the help of the convergence results

for approximant sequences and "ndé-process sequences,we may

339



ﬁap the rational approximation problem into a stochastic pro-
cess class,
The final step is: solving the estimative problems for

a rational,Padé-~density class.

2, FYRELIMINARIES AND SOME DEFINITIONS

Let f{u) be a real function analytic at the origin.The
Padé-approximant (in further PA) of order (L,M) of the func-
tion f(wu) is the rational expression_(L/M)f(u) = PL(u)/QM(u),
QM(O) = 1,which has I+M-order contact with f£(u) at the origin.

We can write:
(1) Qu(udf(u) = B (u) = o(uM**y

or equivalently

(2) QW) = Pr(u) = uPHHE

#

ERILY

where hy M(o) # 0,The coefficients of the polynomials PL(u) =
L ? “

=y pkuk ,QM(u) = 3 qkuk can be computed from (1),see for
=) [+]

example [l]ﬂ

The formal power series of f(u) is

(3) £u) = ) s = Y £2000) K
k=0 '

koo k!

9

where the series on the right side of (3) converges uniformly

on the interval (mrgr),r—l = 1lim sup Ifkll/k Mhen 1T = +00,
k- oo

f(u) is an entire functionjfor r = o +the power series conver-

ges only at the origin and the power series (%) is formal,

The real funetion f(u) is analytic on the interval I =



341

= [a,b] if in some neighborhood uom8<:u < ug+ § of all points

u, € I +there exigts the expansion
0o

() £w) = 236, Cu - u )k
k=0

where the coefficients fk are real,

Let f(u) be a real function,analytic on I , and }(z) an
analytic function on some region D which contains I,and f(u)=
= %(u) on I.Then %(z) said be the analytical continuation of
f(u) from T into the region D.

The series
0

(5) 2 £z - u )k

k=0
we obtain from (4) with a complex value 2 = u + iv.It con=-
verges on the disk |z - uol<3 and i%s sum is %(z).Of course
the sums (4) and (5) are identical on I.Finally, £(u) can be
analytical continued from I to some region D,which is symmet-
ric with respect to the real axis: this fact follows from the
Riemann=-Schwartz principle of symmetry.

The function hy M(z) has an integral representation:
9

© ]_éfwmmw

oy oLy gy
l-!u

where I' ig a positively oriented contour in ¢ which satis-
fies the following conditions:
(i) +the origin and the point t=z are inside I,

(ii) f(u) is analytic on and within ' .



Naturally we choose in the integral représentation (6) the
analytical continuation of the functions f(u),QM(u) to the
whole complex region G ( 9G=I" ).We shall lightly recognisze,
based on the context,the nature of the investigated functions.

A A A

Instead of f£,h,Qy and P, we shall write f,h,Qy and Pp .

The existence of PAs was discussed for example in [1] .

A wide-sense stationary stochastic process has the

spectral representation in the form:

X(t) ='S e az (u),
R
where ZX(u) is the so called spectral process of X(t).The

connection between the process and its spectral density f(uw)
is given with the correlation function KX(t) and the so called

Bochner-Khintchine’s theorem:

EX(t)X(0) = Ky(t) = 5 eI (wau .
R

From KX(t) = BX(t)X(0) = E X(0)X(%F) = KX(—t) and from

£(u) = -3 S e PR (t) at
R
it follows that a spectral density is nonnegative,selfconju-
gate and Ll(ﬂz) - integrable.The quantity KX(o) = E]X(t)|2
is the variance of the process X(t),we note KX(O) = DX(%t).

A wide-sense stationary stochastic process is said to
be band-limited if there exists a positive real number w,such
that w

K(t) = S eTr(u) au

=W
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Tn other words,the spectral density vanishes outside of T =

= [~w,w] o

In our investigations we consider only the centered

processes,i.e. BX(t) = 0.
%o PADﬁwAPBROXIMATION OF SPECTRAL DENSITIES
Tet f(u) be a real function,analytic at the origin and

>0 ue [-w,vw)
(7) £(u)

=0 otherwise o

Because f(u) is a real function,the poles of £(u) are comp-
lex when f(u) is bounded or Limintegrable,All functions which
satisfy the condition (7),form the class IF ,IF is a subclass

of the basic function class.

Theorem 1l: Let f€ IF ,If PL(u)>»o on T = [mw,w],it
follows that (L/M)f(u) € Ll(EQ)e
Proof: From relation (2) follows

L LMl £(£)Qu(¥)
297 "tL+M+1(‘b=-Z)

(8) Quz)2(2) = P(2) =
r\
where [ is a closed,positively oriented contour which conta-~

ins I.We can now evaluate the quantity lbL M(z){ through
?

Qut) ’

oy w(2)| € max|eCo)l| 5 § gy a6
. t (t-2z)

L+M+1 1 Ak ] B
< + .
£ (Y \5§74% = dt| + | §qu§ o at| ) = H,
k=1
.



where f£7 = maxlf(z)l , and
G

=
[
o]
=
}
it}

k
mz_k_l Z qdzj
. =0
TaM-ksl = ,
-~ qu(a) Kk = M,L+M

A

1]

Bs -4q = QM(Z)/ZL+M+1 .From the Cauchy’s integral formula it
follows that ‘

~
e e*Clay) +1BD) = 28t/ 121 W1,
Finally
(9) by, (2 |€ 2871 Q(2)] /)1 Bt
Now,from (2),(9) and |[lal = |b|| € |a - b| follows

(2Dl 1 £(2) = [PL(2)]| § | Quz)£(z) = PL(2) | § 25*[qy(2)]

for all 2z € G,Further,we choose the restrictions of the inves-

tigated functions to the real axis.The last evaluation gives

(1o) | Qu(w)| 2[R (w)|/ 38 .
Let Py = min|PL(u)l .From the positivity of P[ and (lo) we
T
have
P.(u
(11) o<Pr/aet S| Il g .
L 2 | (@) p(u) |

The upper bound of (L/M).(u) thereexists: (lo) guarantees that
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fL/M)f(u) has no poles on I.50 (L/M)f(u) is a bounded,posi-
;ive function on I.The positivity of (L/M)f(u) is a simple
consequence of (L/M)f(o) = f(o)> o .

The proof is complete. [

Consequence: Let f IF .Then (o/2m)f(u) satisfies the
.nequality

. - £t
12) o <(gp)7h £ | (o/2m) (W] € ;10)

/here Q& is the restriction to I of max|QM(z)la
G

Proof: Based on the maximum modulus principle for the
;losed region G is IQM(Z)| € max|Qu(z)| = Qﬁ JFp = £(0) and
G

from (lo) and (11) follows the statement of the comsequence.{d

Remark: From foregoing considerations it is clear that
we observe the function (L/M)f(u) only on I.Exactly,we think
that (L/M)f(u) vanishes outside of I.

A special type of Padé-approximants,the (o,2m) order

PAs have a very interesting property: it can be written as
(13) (o/2m) g(u) = £(0)/|A (w)|?

for some complex coefficient polynomial Am(u) retaining the
properties given in (12),if f(u) is an even function.
From (1) we have

k S k e
(14) b qukmj = Dy (k = 0,1); 3] qukﬁj = 0 (k = L+1,M+L),
(o] (o]

If f(u) is an even function the formal power series (3) con-

th

tains only the even order elements: f kelN,

ok-1 = 9 s



For the (o,2m) order PA L = o,M = 2m and the system (14)

reduces to

k
(15) G =15 Dafy=o (k=1,m)
foo 0

and Q) =dz=ceo=Qpp_q= 0 .The matrix form of (15) is

r _ - -lﬁ
1 o 0 e e o o q, |

s £(o) o o e e o as o
£y £, £(0) B ) a Q _ e
(fon fom-z fopen o o o £CO)| | apy Lo ]

The solution of the previous system is unique and nontrivial:

s o) « o . o

_ gml)J . . .
q2j - f(O) o °

L) e f(‘))

fo5 Tojup + o - £,

where J = o,m .
The connection between the coefficients of Qem(u) and

Am(u) must be from (13):

(16) UG = D) 2%y :
i+j=k
i,j€{0y000,m}
m
= k
where Am(u) ) a,u

38 €C.We can now solve (16) with
o
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~espect to ay ,but this solution is not unigue.For example:

o
(ii) Tet us take aj=rje1W3, i=T,m

(1) Jal? =1 .. a, =eifo |

k
— — S . . 1
a,dy + aja = 2Re(aoa1) = 0 give us al=aor11(m1)
for some integer kl and arbitrary rl>-oa
PP e J— [— 2
(iii) a,a, + lall2 +aja, = 2Re(aoa2) + Ty o= —f2/f(o),
i.€, rgcos(W2=Wb) = - 1/2(r§ + f2/f(o))0The last

equation has a solution but it is not unique etc.

In this way we prove the existence of the coefficients 80
Hence,the relation (13) is valid,and (o/2m)f(u) is positive

on I ;therefore the function

£(o)/1A (@IZ  wel =[-w,u]
(o/2m) o(1) =

o] elgsewhere

is the rational spectral density of a band-limited procesgs
(o/2m)x(t) if the band-limited process X(t) has the spectral
density f£(u).
4, CONVERGENCE OF PA SEGUENCES

We consider & Sequence {(o/2m)f(u)} of PAs of a band-
limited density f(u).The uniform convergence of such sequen-
ces was investigated by Many authors: De Montessus,Beardon,
Pommerenke etc. in the following cases: n/m—=00; neam, a e (0,1)

etc, .Now,we investigate the pointwise convergence on the pose

sible largest interval on (-r,r).We prove first a result for



the sequence of (L/M)f(u) PAs.,

Theorem %: The truncation error for PA approximation

of felf is
|£0) = (@M) (] = o(CBHIHHLY on 1A (or,r).

Proof: From (2) follows

- LM+l £(£)Qu (%)
_ g lZ\ M o
|20 - o] € B 1587 TG ) at |

We choose a new integration contour Cr g-{rels:o§s$2ﬁ},that

containsg the point 2z It follows
297
| D41 S]f(rels)QM(relsn

£ - (LM <
\ (Z> ( )f(Z)l 2‘5T‘QM(2)I T"+M‘re l

ds o

From the maximum modulus principle \QM(rels)\ hag its maximum
on the integration contour Cr ,this value is Q& r «Theorem 1
- )

give us the estimates

29
L M+1 P as
| £2) - (@M (z)] ¢ —%-r—-—ﬂ—m 3, (55 s

(@)

IZ‘ L+M+1 5Lf+)2
I‘L+M(I‘—IZ| )P:E M,I‘

Naturally,we retain the solution on the positivity of PL(u)B

Finally,we get the inequality:

2
| £(2) - (L/M)f(z)l S 30 .. Sé;gm (Izl/r)L+M+1(l_|%5»1
? PL
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ioosing the restrictions of the functions in the last in-
juality to I =[-w,w]N(-r,r) it is not hard to show that its

ral-valued variant is equivalent to the assertion of the

reorenm, [

As a consequence of the previous theorem we can formu-

1ite the

Theorem 4: The sequence of rational spectral densities
fo/2m)f(u)} tends to0 an even band-limited density f(u) point=-

ise on IN(-r,r),when p tends to infinity.d

The elements of the sequence {(O/Em)f(u)} are spectral
engities.We can so approximate politwise the even spectral
.ensity of a band-limited process with rational spectral den-

iities.This result has very interesting consequences,

ye PADE-PRUCLESSES

The PA of the spectral density of a band-limited process
.8 a spectral density when a) f(u) is an even function, b)
ihe PA is of the order (o0,2m).The first condition is a sim-
yle consequence of the reality of X(t).The connected process
»f the density (o/2m)f(u) we note (o/2m)X(t) and it is the
50 called Padé-process.What can be said asbout the mean square
ronvergence of the sequence (o/2m)X(t) to X(t) if m tends to
.nfinity?Before we give an answer to this quegtion,we discuss

che connection between w and r.

1, w £ r,The interval of the convergence of (o/2m)f(u)

to f(u) is (-r,r).Viewing in the light of the m.s.



convergence this case is interésﬁing : we cannot
lose any information on the nature of f(u) and
(o/2m)f(u),moreover on the processes X(t) and
(o/Qm)X(t) t00,

2. w»r.Outside (-r,r) we cannot consider the point-
wise convergence of (o/2m)f(u),therefore the conver-—

gence in the mean of (o/2m)x(t) is senseless,

For example the class of the baéic functions Da)(which are
infinitely differentiable and vanish outside of a finite in-
terval) of L.Schwartz safisfy the property 1.
Thus in the following comsiderations we suppose that wSr,
The linear transformation (or filter) of the process
X(%) is a transformation A:X(t)—>Y(t) where:

(17) Y(t) = %3 gltu hy(u) dZg(u) .

ZX(u) ig the spectral process of X(t) (section 2.) and the
Lz(fx(u)du)uintegrable function hY(t} is the spectral charac-
teristic function of the filter A.Some classical examples are:
the differential operator ID with the spectral characteristic
hiD(u) = iu,the integration operator II with hI[(u) = 1/iu .
Let now ﬂY(s) be the inverse Fourier-transform of hY(u)eAno—

ther representation of Y(t) is (equivalently to (17)):

(18) 1(6) = [ hy(s)X(t - ) as .
R
Consequently Y(4) is the response of the process X(t) on the

input A,
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A Rozanov theorem gives us the connection:
£ () |1y ()] 2 = £(w)
X Y Ty ?

rhere fX(u) and fY(u) are the spectral densities of X(&) and
'(t).In our case we consider the process (o/2m)y(t) as the
sesponse on the input (o/2m)(ﬁ) to the band-limited process
{(t).It has a spectral density like f(u) in formula (7).The

sharacteristic function is

£ (0)1/2
x\© f}-{1/2(11)

:19) h(o/gm)(u) =
A (u)

from Rozanov’s theorem,where f§/2 is the positive root of

. . 1/2y2 ; - -
the equation (fX Ve = fXaNaturally,h(o/gm)(u} is L,-integ

rable on the measure fX(u)du:

j lh(o/gm)(u)lg fX(u) du = 5 (o/2m)f(u) du =
R R

= E|(o/2m)4(£)|? = D(o/2m)¢(t) <o ,
and the process (o/?m)X(t) has bounded second moment.

Theorem 5: |h(o/2m)(u)|2m~»1 pointwise on the inter-

val (-r,r) when m tends to infinity.

Proof: the statement follows from Theorem 4 and (19).0

The cross=correlation function K (t) of the process

X, P
X(t) and (o/2m)X(t) was defined with
Ky p(8) = EX(£)(o/2m)y (o) - g Jitu

R

XgP(u) du



2

where fy P(u) is the so called cross=gpectral density.Another

9 P
result by Rozanov states that fX,P(u) = fX(u) h<o/2m)(u),for
fX(u) eIF,It is clear that

(20)  E[X(8) = (o/am)g(8)]2 = J11 = heg sopy (0] 2oy (w)du.
R

It is not hard to show that there exists a positive real num-~
ber C° and a positive integer m, for which is
: . 2
[1 - h(o/2m>(u)]2 $c(L- lh(o/gm><u)|2)
if m)> momBased on theorem 5 we give
Theorem 6:  E|X(t) - (o/2m>x(t)12 —> o0 .U
m—>Co

Of course,we can state that the theorems 5 and 6 are valid on
the whole of IR .Naturally,we choose only the positive-r densi-
ties from IF for which w ¢ ».The formal spectral densities ha-
ve no practical importance,
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AN APPLICATION OF VARIATIONAL CALCULUS IN MECHANICS AND

1

SOME PROPERTIES OF THE EIGENVALUES OF THE LAPLACIAN
THEMISTOCLES M. RASSIAS

\BSTRACT. In this survey papeF'we present:

[. The stability and oscillations or small motions of a soap film
suspended between parallel coaxial rings. The solution to the pro-
ylem relates the radius of the film r to the displacement z along

he axis of éymmetry by the equation of

z-b
r=acosh -5

The constants a and b are to be determined by requiring that r be
equal to the fixed radii of the rings for z=0 and h, where h is the
separation of the rings.

We study this equilibrium pro%1em using eigenfunction methods and
prove that the dynamical stability of the film is determined by

the sign of the lowest eigenvalue A of an associated Sturm-Liou-
ville problem, with the film stable for A1>0 and unstable for A1<O.
This follows Durand [6]}.

I11. Some of the most important properties of the eigenvalues of the
Laplacian with some remarks-on the smoothness of eigenfunctions
and a generalization of Courant's nodal domain theorem (see ri9y,[e

I. An Application of Variational Calculus in Mechanics

In this section we consider the stability and oscillations
or small motions of a soap film suspended between parallel coaxial
rings, as this has been analyzed in Durand [6].It is a standard
problem used to introduce variational calculus in mechanics to de-
termine the equilibrium shape of a soap film suspended between
two parallel coaxial circular rings. The solution to the probiem re-
lates the radius of the film r to the displacement z along the
axis of symmetry by the equation of the catenary

(1) r=a cés h Eég .
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‘The constants a and b are to be determined by requiring that r be

equal to the fixed radii of the rings for z=0 and h, where h is
the separation of the rings. If the rings are of equal radius Yo
the surface is symmetrical about z=% » b is equal to % ,and a,the

minimum radius of the film, is to be found by solving the equation

- h_
(2) L rgme cosh B
There are two solutions for 7%—< 0.66274...,0only one of which is
stable,and no solutions at all for %< 0.66274... In the second
0

case, the tubular configuration of the soap film is uns%able.From
thesvexperimental cpoint of view this can be demostrated as follows
(sed’[6]):We 'start-with-a stable tubular film with 10— < 0.66274.
and gradually increasing the separation between the r1%gs until

?%— approaches and then ‘exceeds the critical value. For ?2—

0 0
greater than the critical value, the film collapses in the center
and splits into two p1ahar fi]ms,’one on each ring. As fgﬁ appro-

aches the critical value, any perturbat1on resu1ts in a characte=
ristic low-frequency oscillation of the fiim.

We shall give a mathematical analysis of this equilibrium
problem (following [6]) using eigenfunction methods, and show tha
the dynamical stability of the film is determined by the. sign of
the lowest eigenvalue A of an associated, Sturm-Liouville problem.
with the film stable for A,>0 and unstable for a;<0.

The energy of an ideal static:soap film with surface area
S and surface tension o is given, .neglecting gravity, by

(3) V[s]=2sS.

Lt

The possible equilibrium shapes of . the f11m are determinet
by finding those surfaces for which. V[S] has 2 local minimum.We
require that the Film be attached toltwo,plaﬁe‘paha11e1 coaxial
rings with radii fl'and ro separated by a distqncg.h,and,haVe no
other boundaries.The equilibrium surfaces are axialjy,symmetric}
with a surface energy given by ., . . L e

(4) V[SF20 fds=4m.f r/dre¥dz2

1f V[S] is to be an extremal for a surface S, there must
be no first-order change in V[S] when S .is varied slighttly subject
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to the fixed boundary conditions, i.e. 6V[S]=O. We wi]] specify
the shape of the surface by giving its radius r as a function of
z. Thus we get that V[S]vanishes if r(z) satisfies the Euler
equation

) - /1+r§ =0, r 2= %7 r(z),

or equivalently, if

—
(&3]
~—
‘H
Io.
—
-~
~
i
o

'z dz /1+r§

Equation (6) 1is Eatisfied if ejther

(7) L =a,
/1+r§

where a is a positive constant, or r, is infinite. Solving (7) we
obtain the equation of a hollow tube,

(8) r(z)=a cosh (Eig),

where b is a constant of integration. In the second case, Zr:%_
z

vanishes, thus z does not vary with r, and the surface S consists
for our boundary conditions of two disconnected plane disks which
fi11 the rings. Any variation of the disks about the plane confi-
guration cliearly increases their surface area. As a result V[S]

has at least a lTocal minimum, and the double soap fitm is stable
against small perturbations. From the topological point of view
the double soap film is distinct from thehollow tube. The constant:
of integration a and b in (8) must be specified in such a way that
r(0)=r1 and r(h)=r2. We will consider the case of rings of equal

radius rg- Similar methods can be applied for the asymmetrical case

We obtain b=% 5

I =

)

;(9)‘i'r(z)=a c6§h (2.5

™o

and the boundary va]ue prob]em reduces to that of determ1n1ng a
from the equation

(10)1 ro a cosh §%_, a>0,

wh1ch agdin c¢an be rewr1ten as



2ro S _h
(11) —Fg-=g%-cosh %5 =Up o cosh ugsugag

The function u™! cosh u s positive, diverges for u-0
and u+~ (as a»»,0), and has a finite minimum value 1.5089...for
utanhu=1, u=uc=1.1997...It follows that there exist two solutions

2r
to the boundary value problem for hO < 1.509, a $ingle solution
2r
for “Fg =1.509, and no solutions at all for 3% <1.509 (22 >
>0.66274...). . ’ : 0

We can solve the boundary value problem (11) by iteration
starting with a=rg, and find that

r 2
(12) a=——9 (1= D4 )
cosh h_ ° 8a2
2a
2
h h
Bro (1- + ) <<1,
0 SYS 2r0

The shape of the film is given in the -same approximation

—17 2(h-2)+...),
Zro

and is cylindrical up to terms of order

(13) r=r0(1-

<< 1,

=
~nN O

|

S
-5
O N

The area of the film is

sinh )2 (rp(/727a%) +ha)

2( h

(14) S=ra

For the nearly cylindrical film (12),

(15) S=2rrgh [1+0 ( gg,‘)],
G

~

where the correction terms are negative. It follows that this co
figuration is stable, therefore that S has at least a local min

mum. The second limiting solution for closely spaced rings
2r h
o >>1 is that for which Ty is large, and a is small,a<<h<<

In fact, if we rewrite (11) as

r. 2r r
0.0 _ -1
(16) —“a ——'ﬁ- (,OSh




We get

Ay 4y -1
, 0
(17)  a= & 11n [—h—(ln TO(...))]} b

For very closely spaced rings the extremal surface consists
of two nearly planar surfaces connected by a narrow neck with ra-
dius a<<h<<r0.

The area of the surface is then

2 h2
(18) 2arl 140 ( )|, <<,
0 2 r
4r0 0

The correction terms are positive. The nearby configura-
tion of two separate plane disks has a smaller area ané,and can
be approached arbitrarily closely by letting ?%— -+0 (%— +0).

0 0
We get that the narrow-necked surface is probablyunstable, there-
fore that S probably has a local maximum for this configuration.
Continuity arguments imply that the entire branch of the solution
curve with %E~>1.2 is unstable, while that with %§< 1.2 is stable.

Stability of the soap Film. Suppose r{(z)=f(z) describe an
initial surface SO (not necessarily an extremal surface) and
consider a perturbed surface described the equation

(19) r{z)=Ff(z)+g(z),

where g(z) is an infinitesimal twice~differentiable function with
g(0)=g(h)=0. Assume also that g, is. infinitesimal for 05z%h.Then

V[S] <can be written as a power series in 9,9, as follows:

L
(20) V[S]=4no { /THre rdz
v h ff_g
~4ro [ (f VIFFS +g/TFT, +—2%
9 /T+F
) z
2 2
(z1) gngz fgz 3
+ + +0(z%)) dz
— 3/2
/1+fZ 2(1+fz)
h ff
—2 d z
.=vEsoj+4m£ g(/IFF, - & > ) dz
V1+f

Z



2) dz
(1+f2)3/2

h
+270 j'(fgg - f,.9 +0(z
0

(23) =V[sy] +sV [Sgl+sPVISylH. .

For S, an extremal surface, f(z) satisfies the Euler equa-
tion (5) and &V[S,]=

Let us consider now the case of symmetrical rings.

We obtain
= Z_ 1 = =z _h_
(24) f=a cosh (a Y=acosh u, u 3 53
and
2 h 2 1 2 -2,z h
(25) 8 V[50]=2Trca j (gz - ;——2— g“)cosh (—a— - _a) dz
O

2 d h
=270 f \9 -g —u2 N UO:)*a‘.
-Ug cosh®u -

It is known from the work of Legendre, Jacobi, and Weier-
strass that an extremal curve will give a minimum of V[S] if (1)
the second derivative of the integrand in (20) with respect to
r, is positive for all z and r in a neighborhood of the curve and
all finite rz;and (ii) there is no point conjugate to z=0 on the
interval 05z3h. It is easy to see that both these conditions are
satisfied in our case.

Another way to be used in order to verify the conditions
for minimum is to convert the weak stability problem into one
of the determining the sign of the lowest eigénvalue of an appro-
priate Sturm-Liouville operator. The weak form of condition (i)
will enter when we define the Sturm-Liouville operator. The conju-
gate points are just the nodes of the Towest eigenfunction of
this problem, and the condition (ii) is replaced by the requi-
rement that the lowest eigenvalue be positive. We will change at
this point from the radial displacements g{z) used above to equi-
valent infinitesimal displacements g£(z) perpedicular to the ini-
tial surface of the film. The £'s are the natural coordinates for
the study of the oscillations. The vector displacement of a point
r=(r,z) associated with a perpedicular displacement £(z) is
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(27) . 7'-t=i(z)=n(z)£(z),

-

where n(z) is the normal to the surface at {(r,z)=(f(z),z),

A - ~y sl
(28) n —(r—fz z)/l+fZ
Therefore
(29) ri(z')=r+e, flz) + E(Z%
Vi+f
z
(30) i )
30 '=z+g_=z- —— &{z
z /TFFL

1f we substitute for z' in r'(z') and expand, we obtain
' _ — 2 2
(31) r'(z)=f+g J1+F, +0(g")

(32) =f+ecosh u +0(&°

)
thus g(z), the first order change in r at fixed z, is given by
(33) g=gcosh u.

After some standard computation we derive

u
0
(34) GZVESO]=2WORI‘ (8- 2 &%) au
-y cosh™u
0
Uy )
(35) =2wo=ja g(-g = —5— &) du.
uu 2
cosh™u
_uo

The problem now of whether or not the extremal configura-
tion of a socap film spécified by a given value of u0=gg-1s stabie

can be restated at this point in terms of the operator

2
(36) L-- 4 - 2
du cosh™u
We have
(37) s2V[s,]=2n0 (£.le),

where the inner product is defined by the integral in (35). If L
is a positive operator, that is, if (g,Lg) is positive for any &,
then 62V is positive for any variation of the extremal configura-
tion, and the soap film is stable. Now L is a positive operator
if and only if its lowest eigenvalue is positive. Consider the



- Sturm-Liouville eigenvalue problem defined by the differential
equation

(38) Lwn=xnw(u)wn
with the boundary conditions Wn(uo) =Wn(-u0)=0. The weight functi
w(u) must be strictly positive, but arbitrary.

Set w(u)=cosh2u. The equation (38) becomes
d%y (u) )
(39) ————— +(x_coshu +
duc n :

———fo J¥, (u)=0.
cosh®u

The eigenfunctions ¥, can be chosen to be real,and we will
assume also that they have been normalized. The orthogonality re-
lation for the v's is then

u
0
2 -
(40) Wn(u)wm(u)cosh udu—dnm.

_uo

The eigenvalues An’ n=1,2,... are real and discrete,and
will be assumed to be

k1<>\2<)\3<. .

We expand £(u) 1n/(é5) as a series in the complete set o
eigenfunctions Yis

(41) g(u)=

uo~ 8

cnwn(u), {c,} real,

n=1

and we find that
(42) s2V[Sg)=2me © A c’
n=1

We now see that a given extremal configuration of the so:
film is stable (resp. unstable) if the lowest eigenvalue A is
positive (resp. n?gative). If M is positive, all the eigenvalues
are positive,and 52V is positive for any choice of the cn.Thus
the area of the film increases for any variation £(u) which sa-
tisfies the boundary conditions. This is the condition for stabi-
Tity. If Aq is negative, the choice clfo, cn=0 for n>1 gives a ve

riation ¢ which decreases the area of the film, 62V<0, and the

configuration is unstable., If zl=0, the configuration is in neuty

equilibrium since an infinitesimal displacement
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E(u)=c ¥, (u)

gives
sV=52V=0.
It can be shown that Al is exactly zero for the critical
value of uO,u0=uc=1.20, E%# =O.6L3. It can also be shown that the
0

soap film is stable for Up<u, and unstabie for Ug>u. .

II. Eigenvalues of the Laplacian

I1.1 Let DCR",m22 be a domain with a smooth boundary.We con-
sider solutions of
Au+au=0 in D
(1) {
u=0 on 5D

where D is a region (and 3D is the boundary of D) such that the
spectrum is discrete. For m=2,Au +xu=0 in D is also known as the
Helmholta equation [10]. Someone reduces to it from separating
the time variable out of the wave equation. The eigenvalue problem
(1) for m=2 may represent the vibration of a fized membrame,with
the eigenvalue A=k2, where k is proportienal to a principal fre-
quency of vibration, and the eigenfunction u represents the shape
of a mode of vibration. These are also the frequencies and modes
of the simply supported plate of the same plate (see [12]).

Suppose that the spectrum i.e., those values of A for
which a non-trivial solution exists, is discrete. We order the

eigenvalues
<

SIA
nA

<
0<x1<A2‘x3~.m. A=
and we normalize the corresponding eigenfunctigns Upsligseeeslys...
such that
(2) ~/'uiujas].j, i,3=1,2,...
D ‘

Theorem 1 ([9])). Let o be the unique solution on (kn,w)

of the equation

n .
i o_mn
(3) il. q—?\. a



<
(4) Ap+179
To prove Theorem 1, Hile and Protter have first established the

following proposition,

Proposition 2. I. For each integer 1 with 151%n, the

following inequality holds:

5) A LS l(x A, )+ 2_ g +
(5 n+1” 2 "2 i=1 o
n 1 1/2
2 mn 2
*ﬁﬁ{[”@f(“n'ﬁ)*iii*ij -mn(ap-2q) R

II. The first (n+l) eigenvalues of the Laplacian satisfy
the inequality

AT. >

(6)

mn

N~ S
ES

i=1 Mne17h
Remark. Inequality (6) is of interest only when An+1 is
strictly greater than Ao

Proof of Theorem 1 E9J). Consider the n trial functions

n
(7) $i=Xquy- B agyuy, i=1,2, N,
j=1
such that
(8) ajj=t£>XﬁHuj,'MJ=1,2,“.,H.
It follows that each 95 is orthogonal to UpslgseewsUy anc

because of the fact ¢i=0 on 9D, we obtain

ni1s % , i=1,2,..
1

It follows easily that

2 2 .
(10) An+1/(¢1.§}\1.f¢1--2 /ui’xl $551=1,2,...,n

Thus
n n n
2< 2
(11) et 4520 [eke Elf“i,xl by

Because of the fact aij are symmetric,

(9) A ..n

n n n
-2 I jﬁ. $p.==2 j; U,u., +2 T
. Toxy 7 i=1 179 T,x4 i,i=1
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n 2
i fusting 5 S

Therefore (11) becomes
n n n
2< 2
(12) A ) Aij¢.—2(1+3) I jﬁL $:-NB
n+l 'i=1f1 i=1 1 i i=1 i,xg T

where the real pavameter g will be chosen later

Let T{aTgsssessTy be positive constants and apply Cauchy's
inequality, then (12) reduces to

n n n
2< 2 2 -1 2
(13) a z_{¢.= b (A.+T.)uf ¢ +(1+8) T T, us -ng
n+l j=1 1 42 1 i j=1 T,%q
Set Ty =T and choose the T1,1=1,2,...,n-1 so that
TETEA = Ay i=1,2,...,n-1
Define

n
2
S;= & J¢.
L i
Then (13) can be written as follows

n
: 2 -1 2
(14) Ml Sl—(xn+T)Sl+(1+B) 21 4 u/~ui,X1_n5 ,

In place of the trial functions (7) we may choose the
functions

n
(15) PRSP jil ainuj,1=1,2,...,n:k=1,2,...,m
Peforming an aha]yéis as above for k=2,3,...,m and,denotin

n é
S,= & jE. , k=1;2,...,m,
k i=1 ik

we obtain the m inequalities

n
< . 2 -1 2 -
(16) Kn+15k—(xn+r)5k+(1+s) 151T1 af ui’xk -ng,k=1,2,...,n
Setting mn _
S= 3 Sk, we obtain

k=1

A

A ASS(A +r)S+(1+ )2 g -1 |v l2
N+l ptr)S+(1l+g :1ri us|"-mng,



or

2

(17) A, S5(x +r)S+(1+6)

n+l

The selection of T such that

n -1 < )
(18) I ATy ={(1+g)° mng
i=1

implies an inequality for the T; as a function of B.
Therefore the condition on t becomes
n

-1 Sm
2 Apleerg-ag) 7 27
We note that n Ai
fle)= 3§ — 1
i=1 TPApTH

is a decreasing function of t on (o0,») and 1im f{t)=+=,7im f(1)=0.
70 T

Thus setting o=T+h, we observe that there is & unique solution of
(3) on (xn,w) and (17),¢18) imply (4).

The equation (3) can be written also in the form

(19) 1 (o-2.)- & 3 T
19 T {o=Ay)= — T A, il o=x;)=0.
i=1 i mnogo T 5= i
J#i
We denote
n n
P(o)= 1 (o-a;)=o"+ 1 (-1)%a o"7K,
i=1 k=1

where a, is the i-th elementary symmetric function of Al,xz,...
and also denote

n n n
R(o)= = a; 1 (o-3.)= 2(-1)K"1 ka oK
i=1 ' =1 k=1
J#i
v Then (19) reduces to the following form

n
n k 4ky n-k
\ (20) o r 20k (15

Hence (4) 1is given by the unique root of (20) on the interval
(Ag.=).
Q.E.D.
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Remark. The above result of Hile-Protter generalizes the
one given by Payne, Polya and Weinberger [14], which states that:
For domains in Rz,the inequality
9 n

<
= += . =
n+1l Xn n 121 A]’ n=l,2,...

holds if the spectrum is discrete.

A

In the following we outline a new method of Hile-Protter
[9] which can be used to improve the upper bound estimates for

Ao For this, let u denote the first normalized eigenfunction .for
Au+A1u=0 in D,

u=0 on 3D,

{
and let f be any C! function in DUaD,

Theorem 3 [9]. Let

n-1
21) Lo 1y .
( RSN (2n+1)°2

and suprose N 1 Then for any domain D in RZ contained in the

unit disk,
<
(22) Az—kxl,

with

(o (5-2¢)+/(5-26)°%8
T

The proof of Theorem 3 has been based upon the following
series of Lemmas [9]

Lemma 1. Suppose

_f fu2=0
D
Then
(23) a5+ r lvs
2 "1 ff2u2
Let
20,
Su
(24)  Ala)s—"—rr—s
(Iua+1)2

Lemma 2. The‘following inequality holds:



1 1 < (a+1)2

>
(25) + = =t A{a), a=1
fxzuz fy2u2 20-1 "1
A
Lemma 3. Define v=K§; then the inequality
1
(26) A(u)§ (2(1"].)(\)"].)
(ZOL-].)\)"OCZ

_— i

holds for 1§a<v+/§2—v

Lemma 4.The following inequalities hold:

+
(27) e i = 3vv1

and choose coordinate axes so that Bl=fxu2=0.

2
Let [(2n+1)B, =21 (v-1)B, ]
J 2

I

(2n+1)“B,B

2 4n
with n a positive integer. Then
Syl
(28) AZ—A1+BZ J
Lemma 6.For nle, the following' inequality holds:

-1
(29) Ji( _l_)n . 1

23y (2n+1)2

Remark. Applying Theorem 3, Hile and Protter were able to
derive the following inequality of.J.J.A.M. Brands [4]

< 5+/33
(30) )\2- Y )\1,
which is essentially the inequality (22) for c=0. The inequality

of Brands dor R™ becomes
(31) t2 < m+3+/m FI0mT9
Al 2m '

I1.2. Smoothness of eigenfunctions. The eigenfunttﬁoﬁé’are chara-
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)
cterized with the unique continuation property, that is, a function

cannot satisfy Au+xu=0 in D and vanish on an open subset of D
4ithout vanishing identically in D. Each eigenfunction Up is in-
finitely differentiable (i.e. unG Cm) at the interior points of
D(cf. [3]). At a straight line segment of the boundary,un can be
reflected as an odd function accross the boundary. The resulting
function satisfies Au+xu=0 in D in a whole neighborhood of that
portion of the boundary and- thus. is.C . accross.the boundary. on
straight Tine segments.

11.3. Nodal lines. The set of points in D where un=0‘is the nodal

set of Up - Apb]ying the unique continuation property, the nodal
set consists of curves that are C” in the interior of D. It is

a very interesting property to be noted that where nodal Tlines
cross, they form equal angles (cf [5]).

Courant's nodal line theovem [5] states that the nodal lines of
the nth eigenfunction divide D into no more than (n-1) subregions
which are called nodal domains.We note that uy has no interior no-
des and thus Alisaneigenva1ue of muitiplicity one. In the special
case where D is a convex region, then Uy has convex level curves
(a fact which is not hard to be seen geometrically). Pleijel [l6]
has given an elegant proof of the nodal line theorem by applying
the minimax property and unique continuation. It is an interesting
fact to be noted that equality cannot hold for more than a finite
number of n. This follows from the Faber-Krahn inequality ([73,
[11]) for each nodal domain and Weyl's Zaw,which is the asympto-
tic relation for the nth eigenvalue.

/ (32) An~4gn as Now

wheve A is the area of D.

It /is a standard fact that the nth eigenvalue X of D is the first
ei/genvalue for each of its nodal domains and a higher eigenvalue
for a union of nodal domains. '

A generalization of Courant's nodal domaén Theorem. .

In the following we outline J.Peetre's approach [15] for
an extension of A.Pleijel's nodal/-domain .theorem [16] to Rieman-
nian manifolds. i

Assume M is ‘a 2-dimensional Riemannian manifold. The

Beltrami-Laplace opera%dﬁfin,M is '



(33) 2= -g - —= (9" 9" —¢
aX

k

where gkj and gJ are the covariant and contravariant components

of the metric tensor in a local coordinate system and g=detgjk.

Assume. npow. that. D is. a relatively compact connected do-

"main in M. Consider the eigenvalue problem.
Au-Au=0 1in D
(34) - )
u=0 on aD(bqundary of D)

Our program is to compute the number of nodal domains N
of the n-th eigenfunction of (34). We suppose that M is homeomor
,phic to a disk in the Euclidean plane.

Theorem 4.([15]).Let Dy be the least simply connected
domain containing D. Suppose that
(35) VO sup K+§w,
D
0

where K is the Caussian curvature,

+
K =max(K,0), and VO is the area of DO .

Then

(36) s?zaqy (1- 3 fl; ktdv),
where S is the length of 3D and V the area of D.Equality holds
tf and only if K=0 and 9 is a circle

Proof ([15]). If D is simply connected (D=D,) then (36)
is a theorem of A.Huber (1954). If D is multiply connected then
applying Huber's theorem to D0 we obtain

f K dv),

DO

where SO measures the length of aDO.

2 >
(37) So Z4mV, (1-

1\)[;——-

™

Suppose now that ¢ is the interior of DO-D and set U=V0—V. Then

we get
v, %: K dv=y ~['K+dv+v JFK+dV+U .}P k*dv
D T
0

Dy

Sy .I.K+dv+2UV sup k'
D 0 D,
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Therefore

(38) V(za- ) K'dv) SV (2n- J K dv) .
D © D
0
Now (36) follows as a result of (37),(38) and SZSO‘ If equality
holds in (36), then D must be simply connected and the last asser-
tion of the theorem follows from Huber's theorem.
Q.E.D.
Theorem 5. ([15]).Let (36) be satisfied and let A
the first eigenvalue of (34).

1 be

’ -

Then
(39) A V2 nil(1- f KTdv),
27 D
where J 1s the first positive sero of the Bessel function Jo'

Equality holds 1if and only <if K=0 and D is a eirecle.

Proof ([15]). Following the method of Faber [7] and
Krahn [11] we can write:lLet u=u; be the first eigenfunction.
Set

D(p)={x]u(x)>p}, O<p<max u

a(p)= J- |grad ul%dv,

D{p)
V(p)= j\ dv,
S(p)= J‘ ds,

Then : _
|8t (o)l =-2"(p)= .r lgrad u} dS
30(p)
and
[V (o)l =- v'(p)= Jﬁ |grad ul'1 ds.
80 (p)

From Schwarz's ineguality
(S(p)) 218" (p) | 1V (p)ls
and from Theorem 4 ’

(41) 4n('1-j;—“~ fDK+dV) TV!?(%)W fa' (o) |

172N



If we apply a symmetrization process we get

(42) 4 (1- 3= ,g k*av) TV¥%E%I S1at (o) |
P

Here we have replaced the domains D(p) by concentric cir-
cles 5(p) with the same areas in the Euclidean plane, and the fun-
ction u by a function & which equals p on 3D(p).

It is true that V(p)=V(p) and V' (p)=V'(p). We also get

ar o) o) s
[V (e) | ‘
for (5(e))?=[Z" () |17 (p) | and 4xi(p)=[5(o)|°.

Therefore

( 1- %ﬂ,f K'dv) | 8 (o) |5]a" (o) |

Integrating over the interval O<p<max u we obtain

f K dv) A%a
i D

|n—a

(1-

™

Also Q(p)=H(p) and H=H. It follows from Rayleigh's ine-~
quality that

A

A =

1 > A

| o

L]

1

Iinz

and therefore (39) follows. If equality holds in (39), then the
last assertion of the theorem follows from Theorem 4.

Q.E.D.
Theorem 6 ([15]).There is a number a<l. such that
(43) Tim sup N £,
n
N-roo

Proof ([15]). Suppose now An is the n-th eigenvalue and

Up is the n-th eigenfunction. Suppose also that Dl’DZ""’DN are
the nodal domains of u,. For each D1(1=1,2,...,N) the value -

is the lowest eigenvalue. If we apply Theorem 5 to each Dl’ we get

> .2 1 . +
(44) AnV]— 3" (1= s %: SKodV)
1 SRR
If we take the sum of all inequalities (43) for 151,2,...,N we

obtain

A VE mi (- = .f Kt dv)
. 2N



But Tim n'1 AnV=4w, therefore
Nre
(45) Tim sup ¥ S 221,
N n J

Q.E.D.
Remark. It is easy to see that (43) remains true if (34)
is replaced by an eigenvalue problem of the form
auta(x)u=xu,

where a{x) is a smooth bounded function.

Applying a similar arqument, as in Theorem 5, we get [15]

k"

(46) (ap-infal(x)) VZ nif(1- 3= I «any,
"D

and therefore (45) still follows.
It is now not difficult to extend the previous resulfts to the
case of a k-dimensibnal Riemannian manifold of constant curvature.

I11.4. An orthogonal projection theorem for mappings and the Ray-
leigh quotient.
The Rayleigh quotient for the Jacobi operator L]_—f:] is de-

fined by
R[] = <L]fl,f>

<f,f>

where L is defined in a Hilbert space H, with discrete point
spectrum tending to infinity.

The eigenvalue M of L, according to the classical prin-.
ciples of the Calculus .of Variations (see for example [5]) of
R.Courant and E.Fischer, cén be written in te following form.

A =max min R[f]=mih max R[f],
N FlW Vv fev
where W is any (k-1)-dimensional linear subspace of H and V is
any k-dimensional linear subspace of H.Consider Iy to be a set
(not a linear subspace), such that given any (k-1)-dimensional
subspace W of H, there is a non-zero element of e that is ortho-

gonal to W. The symbol k in this context is in ordér to know that
Ty corresponds to the eigenvalue Ay -

For any chosen g€y, such that giWw, it follows that



?13 R[{]§R[gj and R[g]Zmax R[f]. Then $1w R[f]=max R[f]

Iy fEZk
Then
A =max min R[f]Zsup R[f].
k -
Wooflu €1,
Therefore
<
A Ssup R{f]
fer

This upper bound for the kth eigenvalue ., namely sup R[f] may
: fex)

be a finite or infinite number and someone must be careful for a

suitable choise of I in order for this upper bound to be a fi-

nite real number, and even more an accurate approximation of Ak'

Proposition ([20]) Let H be a Hilbert space and f:R“sH «
continuous mapping, homogeneous of odd degree (i.e. Fax)=2"F(x)
for some odd positive integer m) and satisfying T(x)#0 for Xx#0.
Let W be a (k-1)-dimensional subspace of H. Then a vector x#0
exists such that f(x)]|W

Proof. Assume that this is not the case and thus the map-
ping f:R“sH has the property that for any W, a{k-1)-dimensional
subspace of H, there is no vector x#0 such that f(x)|W.Consider
the orthogonal projection mapping Prf,Prf:R“+W, of f:R*>H,onto W.

mf

k

Then Prf(x)#0 for any x#0, x€ R ,and the mapping

Prf

_ sok=1__x
Wf—| PR aS %

-2

is well defined, where

SK‘l

={x& R:|Ix!| =1} and
k=2 _ N -
2T = {weW lwl| =13},

Because of the fact f:R“+H is a continuous mapping,homegeneous of
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odd degree, i.e., F(Ax)=2A"F(x) for some odd positive integer
m,AER and x€R", it follows for a=-1 that f(-x)=-f(x) for xERS.
Therefore f is an odd mapping. However by the Borsuk-Ulam anti-
podal point theorem (see for example [21,p.266]) there is no
such a mapping f, and thus we have proved that there exists a
vector x#0 such that f(x)]|W.
Q.E.D.

Applications. Applying geometrical inequalities some
very nice estimates can be deduced . in function theory and in
mathematical physics [I7,[2].

We describe below a few results which are direct conse-
quences of inequalities on two dimensional surfaces.

Suppose D is a simply-connected domain in the complex
z- plane, zOGD an arbitrary point and
)2

f(z)=(z—zo)+a2(z—z0 ...

a complex one-to one function mapping D conformally onto the

circle {w: |w|<RZ 1. o

It follows from tRe Riemann mapping theorem that such a functiong

exists and that RZ is uniquely defined. RZ ig called the cownfor
0

mal radius of D with respect to Z, and

R=sup {RZO:ZOC D}
is called the maximal conformal radius of D.

Pélya and Szegd [18] have discovered a fundamental inequality
which relates the area A of D and the conformal radius:

ﬂ&ng

The equality sign being attained if and only if D is a circle.
Consider in D a Riemannian métric'd02=pd52 of bounded Gaussian
curvature KO and denote by AU the total area of D with respect
to this metric. Then the following inequality (cf.[20]) holds:
RE < M K A <4
plz)(4m-K A )
The above estimate holds for the maximal conformal radius if z
is the point such that RZ=R. Equality holds for the circle center
ed at the origin with the metric of constant Gaussian curvature K
that is ' ’



2__U(r;b,K

2 b )
= 5 ds"=e o’ ds

do® 2

Becatuse of the variational characterization of the eigen-
values upper bounds are ke]ative]y easier to construct and there
are several isoperimetric inequalities providing such bounds
(cf.[1],[2]). We would also Tike to mention the P4élya-Schiffers's
inequality [17j concerning the connection of the maximal conform-
al radius with the sum of the reciprocal first n eigenvalues. Thi
can be stated in the following way: ‘

Let Al,xz,...,Kn be the first n eigenvalues of the fixed membrane
equation in a simply connected domain D and let Al,kz,...,xn, be
the corresponding eigenvalues of the circle of radius 1.Then

([ e

Ay

i=1 i

where R denotes the maximal conformal radius of D.

This inequality has a natural extension to non-homogeneous membran

[1], which can be stated as follows:

Theorem 7. ([1]).Let D be a simply connected domain,z €D

an arbitrary point and p a mass density satisfying

alog p+2 Kop éO,and

K Jr pdx =27
° b

Set 2
B=p(z, )R, ., and
0
pul(r,8;3Ko) B
2
' BKor 2
(1+—

Note that B i1s a conformal invariant. If ii ig the 1th eigenvalu
of ’

~

ng +r eUlrsBsKe) =0 dn {x:]x|<1}

420 om {x:|x|=1}

then
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Some sharper versions of Polya and Schiffer's result for
symmetric regions and an extension to multiply connected domains
can be found in the very nice book of C.Bandle [1].

Very Tittle is known for the free membrane described
by the eigenvalue problem

T AYtvy=0 in DcR™,

L
o 0 on 3D,

where %ﬁ denotes the outer normal derijvative. By standard re-
sults there exists a countable number of eigenvalues 0=v1<v2§...
The following extremal property holds for a circle:
Among all domains of given area the circle yields the highest
second eigenvalue Vo

This result can take the form of an inequality in the
following way: 2

< T[p]_
\)2= —A— 5

where p1=1.841...zero of the Bessel function Jl.
This result can easily be extended to the problem

b utvg=0  in DR

Y
o 0 on 3D

Theorem 8 ([1]).Let D be a simply connected domain on S
whose Gaussian curvature is bounded from above by Ko.If the total

area Ac of D satisfies KOA&§2n, then the value of

1, 1

BoooH
A V3

takes 1ts minimum for a geodesic civcle on a surface of constant

curvature KO.

Nehari [13] considered membranes with mized boundary
conditions
C Ag+ué=0 in DcR?
$=0 on T

30

anAO on vy

where Tuy=5D and I'n y=¢.Nehari proved the following theorem



.2
mJ
Theorem. Let vy be a concave arc. Then plz fKQ (u1= the
lowest eigenvalue).Equality holds for semi-circles with T as

cireular crc and y as the straight segment.

Bandle [1] has generalized Nehari's theorem in various
ways. In fact the concavity of vy has been dropped and extensions
to inhomogeneous membranes have been considered. Then terms
involving the curvature of v enter into the inequalities.

From the topological and geometrical point of view the
spectrum of the Laplacian on a Riemannian manifold has been stu-
died, and some very useful éstimates'for the first non-trivial
eigenvalue Hy have been investigated. Lichnerowicz and Obata ha-
ve proved the interesting result that for compact 2-dimensional
manifolds of positive Gaussian curvature K(x)§K0>O the following
holds:

“12 2k
The equality holds only for surface isometric to the sphere of
radius 1 .

%o

Hersch [8] has obtained some upper bounds for Hy in the case of
a surface homeomorphic to the sphere. He has obtained among other
results that
1,1 ,1
H1oo M2 M3
where A denotes the area of the surface, with equality holding for
the sphere,

nv
lw

T 5

I
[ee]

In [20] we have investigated main topological and sta-
bility properties of some of the most important examples of
complete minimal surfaces 1in R3, by making use of the Morse-Smale
index theorem (see also [19]) which we have formulated in terms
of eigenvalues. This way we have completed a global analysis of

the index for the stability of a complete minimal surface in R3.
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CLOSED FORM EXPRESSIONS FOR SOME SERIES

INVOLVING BESSEL FUNCTIONS OF THE FIRST KIND

M.S. STANKOVIC, D.M. PETKOVIC and M.V. DJURIC

ABSTRACT: During a few last years a large number of papers have been
written on the swmation of series of Bessel functions. Most of these
works dealt with some particular cases of series (1) and (2). There are
only two notable exceptions to these; works by M.L. Glasser, [7 1 and B.
C. Berndt, [21, U 41, that serves as excellent background for the advan-
ced material discussed here. In this paper we evaluate and represent the
series (1), (2) as the series over Riemann zeta and related functions,
which degenerate in closed form formulas in certain cases.

1. INTRODUCTION
In mathematical physics, particularly in certain prob-

lems of telecommunication theory, electrostatics, etc., one
often iequires numerical values of sums involving Bessel func-
tions, (1) and product of Bessel functions, (2). So, it is use-

ful to have closed form expressions of as many of these as pos-

sible.
n-1 -
f ()" . Jv((an—b)m)
(1) s = s=1 or -1
Va2 (an-b)°
u,v,a € R
_1 o > 0
= (s)"7"J ((an-b)e)J ((an-b)z)
(2) S = - S
Hs Vot 2y (an-b)

Jv(m) are Bessel functions of the first kind and of order v.
Various special cases can be derived from the general
forms (1), (2) and have been treated in 33, C173, [191, [223,"

£2523 and [53, €63, [71, [211, [23) respectively. It seems unli-

379



kely that these series can be expressed in closed form when
the only restrictions are those which are essential to secure
the convergence.

Motivated by impossibility to obtain closed form formu-
las in the general cases, we find them, under some restricti-
ons, for the most frequently occuring class of series, i.e.
for a=1, b=0 and a=2, b=1, in terms of Riemann zeta functions
and other known sums of reciprocai powers.

Inspired by closed form expressions of trigonometric se-
ries, the general terms owahich are reciprocal powers of in-
tegral variable, [151, (203, [213, (221, we expanded an analy-

tical procedure in order to obtain the formulas of interest.

2. PRELIMINARIES

This section deals with some results connected with tri-

gonometric series (3),;, [201]

(3 ()" fllambla) _ , oI, y (—)iF(u—fvj—d) L2040
o 3 . 2
n=1  (an-b)" er () £(°5) 2 (2]
a €R
a>0

where f::{iégh § = {é}and where all relevant parameters are gi-
ven in the table I. z(a), n(a), A(a) and B(a) are Riemann zeta
functions and other sums of reciprocal powers, (11, (81,

Note that when f(z)=sinxz and o +2m or f(z)=cosx and
a+2m+l, mEN the limiting value of the right-hand side of (3)
should be taken into account, £1423, [201.

Another important occurence of (3) is when the right-
-hand side series truncate due to the vanishing of F functions,

s0 in the completely different way one can get closed form
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Table I: corresponding F and ¢ Table II: closed form cases
ai b s c 7 for F il o
1 1 ] 0 <a <27 sin 2m+l
110 Long A
-1 0 nl-m<x<mw cos 2m
1 ‘ sin 2m
1 5 Y] 0 <cx < B
211 - - cos 2m+1
-1 0 8 Ty <% <o

formulas as in €201, C2131. These cases, which are of great im-
portance for our further discussion, are pointed out in the ta-
ble II. Two formulas of that type are known from Cesaro’s work,
1936,, see e.g. (201 and, as always, some really particular ca-
ses can be found in C13, [1031, C181, C251. If the paper (151
is not the compilation, then the author rediscovered the resul-
ts from [201, [213.

It should be mentioned that when (3) has the closed
form, it is a simple matter to obtain the following recursion

formulas, [161:
Table ITI:

Corresponding ¢ and §

m+l 2m m 7+1 . 21
Flomts) = e (ééém)? + X (—é'é F(2m—-21+8)w L md, |Flc|n|rl|B
T4Z1 2%F%(2d+1-8)1 T
C 1 0 E 0
§ 0 0 0 1

Namely, z(2m), n(2m), x(2m) are in proportion to n2m and B (2m+1)

2m+1
m

to . This fact is very useful in all closed form formulas

we discuss here. In (111 one can find corresponding formula for

z(2m).



3. OUTLINE OF THE BASIC PROCEDURE

The procedure we shall use is based on undoubtedly well

known integral representation of Bessel functions:

v g
(g) 2 2v 1
(4) J (z) = § ————— [ sin® 6cos(zcos6)de, Rev >-= .
v 1 1 2
F(E)P(v+§) o

We shall substitute (4) in (1). It -also states that it is pos-—
sible to interchange the order of summation and integration.

When we use this fact, the series (1) can be presented as fol-

lows:
5
2(%) 2 i n-1
5 - 2 i singve z (s) cOS((an—b)mcose)dex a—vs0
V, 0. 1 1 her 0=V
F(E)T(v+§) o n=1 (an-b)

Obviously, the part of the integrand is the series of the type

(3). Further, we use (3) and this procedure leads to the inte-

gral the type of which is:

ool =

- - 1
| sin® Locos¥ 1y da = EB(%’% s Reu>0, Revs>0.

0

We shall not go into details and instead merely state
the final result (6). The condition a-v>0 restricts this result
to be of the most general character. That’s why we recall the

integral representation of Bessel functions, but of integral or-

der this time:

™
J (z) = Ea Jcos(zsine-ne)ds, neN_ .
n m o o

The same procedure as above leads to the integrals of the type
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r{u+1)
(“*“ Drt s

f sin'z flve)de = = £ (2L

sin
2" Flosts Bew>-l

2

and finally to the result (7).
The treatment of the series over product of Bessel fun-

ctions, (2), demands the different integral representation,

(241

I
2
f T, (220088)C0S (u=v)6dB, 1,V ER, utv>-1

ERRN

(5) J (z)Jd (z) =
u v

As it was done previosly, we insert the integral representation
into the series under consideration. Changing the order of sum-

mation and integration gives

o (s)n-lJ +v(2(an—b)xcose)

mva = fqmmkwengz T ae, a>0 .

oof

The series in the integrand is of the type (1) and for
a>utv> —%'has the sum (6) and for u+veNO has the sum (7). In
this way we easily obtain the final results (8) and (9), where
the integral of the type
1
2 o r(u+l)
fcosux cosvx dx = H

Reu > ~1
5 P (“*“+z)r( Veg) o

is tacitly used.

4. RESULTS AND DISCUSSION

We are now in position to give the sum of the series



T (= ) a— ® 27 +v
2 x (-) F(a ~y-27) ,x
(6) S g () + Z ( ) s
v, o ZF(a+v+1) 2 F= ZIT(v+i+1)
a,v ER, a>0,
a>v o1
2 3
m-§
2 a~1 hd 21+Hm
(7) Sm o ¢ a+;;; ;[m+1 o %J * Z (¢i(51257—21)(‘) >
? A (=T (=) f ()
a €R,
a >0,

where m:{ggil}, f= {Sln 1, 6:{é}, k eNa and where ¢ and F are

readable from the table I,

In the case a-v=2k+1 in (6) and m-a=2k+1 in (7), keNo,
one should work either with limiting values or with principal
values of gamma functions.

The chief disadvantage of the formula (6) is unvalidity
for v>a and therefore (7) is derived, but only for mENO, Even
in the case a=v=1 formula (6) holds true, although it does not
seem possible, and gives the same result as (7).

Based on Mellin transform, one can find in (171 sligh-
tly different and less general (a=l, b=0, s=1, a-v#2k+l,
max{l-a,-v} >§) result than (6).

In. spite of the simplicity of the applied procedure it
seems that (6) and (7) are the best published results and have
not been noticed until now, as far as the authors are informed.

Special, but very useful cases of (6) and (7), (171,
193, 0223, (251, we.get for o-v-§ even, where 8 is given in
the table III. Then the right-hand series terminate due to the
vanishing of F functions, as it is already pointed out. Parti-

cularly,, for s=~1 and m>a€N the sum (7) is equal to zero and
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it is very useful in accelerating the convergence of certain

class of Bessel series.

It is almost obvious that for v=k-+%, k EN_, (6) redu-
ces to:
- n-1. _ k— a+1 0l = ,
(s) Jk((an blax) . Yo I( )(—J 1+ z (=) Flak-27) m2i+k
T R T % AN =TS VNN ;
a €R
a >k

where jkMH are the spherical Bessel functions of the first kind.
Here we note in passing that the closed form expressi-
ons exist for the desired sums for a—-k-§ even.

Let us represent now the sum of series (2)

F(a)F(BiX:&ii) z o~1
(8) S - c (=) +
H, Vv, a aFu+v+l oa+pu—-v+1 a-u+v+1, 2
ar( 5 )T ( 5 Jr( 5 )
. i (-)1F(2i+p+v+1)F(a—u—v-2i) (5)21+u+v
P TIT(2+u+1)T(Z+v+1)T (Z+u+v+1) 2 *
o, 1, vER, a >0
a > PtV > - 1
U 7 3
p+v-3§
2 "
(9) 5  =e — ) " (o) (mf I
Hy Vv, Q aFu+v+ a—p-u+1 atu—v+1 +v+]1
AT T () p (SR p (R 2
(—)7'(27'+E+v)F(a—p—v—2i) 2Ldpty

+
ek

X
T e i T2 +vF) (5 ;

a,u,v ER, o > 0,

YEaY eNO’

2k+
where u+v={ kkl}, f= {Sln ’ 6={é}, keNO. F and ¢ are given in

the table I, where 2z should be taken in instead of =x.



Analogously to (6) and (7), limiting or principal valu-
es of gamma functions are necessary for o-u-v=2k+1 in (8) and
for u+v-a=2k+1 in (9), keNo

The shortcoming of (8), oa>u+v >—}y we due to the condi-
tion in (6). To overcome this, we additionaly give (9), but
only for u+v€No.

The reader will obserwve that the results just establi-
shed have more general character than those discovered in [61;
besides, one of them is wrong (y=1, v=0, a=1, s=1). This note
one can find in [233, which is partialy incorrect, too.

For a-p-v even and for s=1, a=l, b=0 we obtain results
from [73.

According to the concept of this paper, we wish to have
closed form expressions and we get them from (8) and (9) for
a-pu-v+l+§ even, where § is given in table III. In that way the
problem stated in [5] is more generaly solved. Some of these
results are also given in [211.

The strange opinion of some colleagues is that some
special cases of (6), (7) and (8), (9) should be pointed out.
Thus, from the rich variety of closed form formulas we
consider in particular (6) or (7) which for a=2, b=1, s=1 and

v=0, o0=2 degenerate in:

J ((2n-1)x)

o0 2
n=1 (2n-1) - -

The formula (7) for g=1, »=0, s=-1 and a=n gives:
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The both formulas are in full agreement with (8), page 634.
and (2), page 635. in [247].

Formulas (8) and (9) for a=1, b=0, s=1 lead to the known
results: (13) in £71 and (10) in [2317.

The fulfillments of the rest of whishes, as above, has

no practical sense at present.

5. CONCLUSION

The series over Bessel functions are extremely useful
for both analysis of Bessel functions and various applications.
One important class of problems is obtaining closed form formu-
las. Although most of these formulas have been known for a long
time, it seems that this important proBlem nevertheless has
not been solved entirely.

In this paper we give some closed form expressions for
two classes of series and we belive that these formulas might
be useful for reducing further series, the sums of which are
not known, to simpler cases or to the series the sums of which

are known now. Also, we belive that this paper does contain

some simple but fresh ideas.
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ASYMPTOTIC BEHAVIOUR OF THE OSCILLATION OF THE SEQUENCES

OF THE LINEAR TRANSFORMATIONS OF THE FOURIER SERIES

VLADIMIR N. SAVIC

ABSTRACT

In this paper we consider the asymptotic behaviour of

r_w
(I) Emn(W H; Un) = sug mHUm(f)—Un(f)Hc
feW H
(m, n, r=1, 2, ...; m>n)
where Un(f,x) is the sum of Feijér, Cesaro, Rogosinski, ... of

the Fourier series of the function faerw.

ASIMPTOTSKO PCNASANJE OSCILACIJE NIZA LINEARNIH TRANSFORMACIJA
FOURIER-OVOG REDA FUNKCIJE f£. U ovom radu razmatramo asimptotsko
ponadanije izraza (I), gde je Un(f,x) suma Fejér-a, Cesaro—a, Ro-

gosinskog, ... Fourier-oveog reda funkcije sewtu?,

If n is fixed, and m sufficiently large than €m is

aporoximatively equal the distance between Un and f for each
fewt B
R r, W , D .
Definition. Let W H (reN) be a set 2m-periodic continuous func-
w .
tions £, such that f(r)eH , Or equivalent

(Vxl,xzeR) |f<r)(x )—f(r)

1 (x5) | <wlfxy - x,])

where w is the modulus of continuity.

391



For few" and feW H" (0 <a < 1) we have (1] and [2] with
the corresponding results.
The fundamental results follow from the lemma 1 (see [5])

and the lemma 2 (see [L'-})

Lemma 1. Let l‘l)sL[a,b], and suppose that

X
(1) Yix) = [ p(p)at

a
(ii)  ¥4(4) on Ja,c{ (a<c<b), and

Y4 (+) on Jc,b{
(iii) ¥(b) = 0
Then b e
(1) sup Joere(erat) < fle(e) fu(p(t)-t)dt =
feHw[a,b] a a
° -1
= flve)fw(t-p "(t))at,

c

where the function p is defined with

vix) = ¥(p(x)) (a<sx<c<p(x) < b)

N

and p—l is the inverse function of the function p.

If w is a convex modulus of continuity, then, for the

function F(x) +C (CeR is arbitrary constant) we have = in the
formula (II), and
c
~fw'(p(t)—t)dt, agxgeca
X
F(x) =
% -1
Jw' (t=o " (t)]dt, cgxgb
c
Lemma 2. Let (’\nk> (n,keN) be a matrix of real numbers such that
’\nk:O for k >n, and the sequence
A - A
n+1,k nk (\\/HEN)
k2

k=1,+o
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is non - increasing. If
‘ 1 2T 1 n
U (£,x) = = é £{x+t) 3+k£lxnk cos ktldt

then,
and for all m, neN (m>n)
€ (Wer
m,n
'
&3
2 § M, 2kl T Mn, 2kl
T k=0 (2k + 1)
- ﬁ (1=
1 27
I / wr,K(t) r,A t)dt;
o
N
where T
. _ Fr,X(t)’ Ogtgm
A —Fi X(t)’ Tt 2w
14
4
t
o
- [ w (p(v)-t)at,
1 X
i =
Lr,A(t) .
-1
t[m'(t—p (t))de ,
o
to is a zero of the function
m A
by, (0= K
- k=1

for a convex modulus of continuity w,

for all reN (r > 3)

ﬂ'_
2
[ w(2t)sin(2k+1l)t dt ; r=21i-1

on [O,n}, and the function b is defined with

X p(x)
fxpr,/\(t)dt = | wr’K(t)dt
o) o

and p—l 1s the inverse function of

(0gxst, < T,

o <

X p (x)

the- function op.

Let, now, (dn(f,x)] be a sequence of the sums of Fejér of

the Fourier series of the function

£, i.e.



1 2m n X
on(f,x):=% / f(x+t)[—~+ E ( —Eiiﬂ cos kt|dt

o k=1

where
k
l—;l‘:i“, k<n
A =
nk 0 . k>n

Now, we prove

Theorem 1. For all m, neN (m>n)} and for a convex modulus of

continuity w we have the asymptotic equality

g _
m-1 1 _
1 T ey (B0@)) e
m-n 1 _
o ¢ oy 0 ) s =2
> (W'H; U) =4
mn n m-n 0 1 r=21i-1
Co Tl iy (17 (nr—1)“(‘)))'(i=2,3,...
1 m-n 1 1 r=21
g Cr 1) (o) (l+0(nr—lw (H)))' (i=2,3,...
where
r
2 T2
c, == [ [w@tsin(2k+l)tdt
k=0 o
1 o 1 27
c, =-= ] = [ F,  (t)cos ktdt
2 T w21 k 5 2, A
I
I S S
cC. == —— [ (2t)sin(2k+1)t dt
LT ogls (aken)ETE
@ 2m
1 1 1
co=-= 7 — [ F (t)cos kt dt
r T o2y KE 1 5 r,A

Proof. For r=2i-1 and r =21 from the theorem 1 (see [4]) we

have

m
(1) wrs®; u) _2 n-n OZO L fzw (2t)sin (2k+1)t dt -
Cnn ' “n’ T 7 (m+l)(n+1)k=o (2k+lf?4'o sin
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T
m-n T 1 2
) — [w(2t)sin(2k+1)t dt +
(m+1} (n+1) {n_lJ (2k+1)F 13
k= |5 +1
2
e
2 2 r = 2i-1
T ; M= 2K [y (2t)sin(2k+1)tdt |,
& k_{n—l}ﬂ (2k+1)" o (L1=2,3,...)
2
oW 1 m=n T 1 2m
(2) e JWHY; U)) == |- Ey (n+l)k21 kr_ljFr,)\(t)oosktdt+
= o
m-n Cf 1 2w
Foe — [ F (t)cos kt dt +
(m+1) (n+1) K=nt 1 5 1 5 r,A
m _ 2 = 2i
+ ko(mtl) (m”)r [ F_ , (t)cos ktdt =7%+7lev2,
k=n+1l (m+l)k™ o ! i=2,3,
Since we have
T
2 1 1
gw(Zt)51n(2k+l)tdt=O (sz7 v 7))
(k ++ =)
from (1), we obtain the theorem 1, for r=2i-1 (i=2,3,...).
Let, now, fl(t) = Fr,/\(t) ~Fr,>\(o)'
() T cos kt (r) If k
D (¢) = ] —=—==, D () = (1 -—=)cos kt ,
o k=n+1 kT l mn k=n+1 +1
then, by [3}, we get
2T
1, |1 (r) m-n 1
(3 (1M =% e, o0 (t)dt‘ =0 (224 (&)
o mn
2m
2y |1 () _ m-n 1
W 1= 13 [ e en wae - 0 ("2 )

From (3), (4) and (2) it follows the theorem 1 for r =21
(1=2,3,...).



If (6 (f; %) is a sequence of the conjugate sums of Fejér

of the Fourier series of the function £, then, we have, by the
theorem 2 from [4]

Theorem 2. For all m, neN (m>n) and for a convex modulus of con-

tinuity w we have the asymptotic equality

where

1.

20

e (wHY; §)
n

Il

mn
P
2 m-n = 1 r = 21
T (m+1) (n+l) gr+ Q(nr—l w (EJ) (1i=1,2,...)
1 m-n = 1 1 r = 2i+1
= ——vrv1 C+ w (=)) s
™ (m+1) (n+1) T af 1 n ) (i=1,2,...)
\
co E
- . 2
c_= 7 1
r ot — fw(2t)sin(2k+l)tdt
k=0 (2k+l)r L o
= 2 27
c_=-7 1
r k=1 kr—l £ F_ A(t)cos kt dt.
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UNIFORMLY CONVERGENT SPLINE COLLOCATION METHOD FOR A

DIFFERENTIAL EQUATION WITH A SMALL PARAMETAR

K. SURLA

ABSTRACT: For the problem: ey" +p(x)y’ =f(x), -oy{d) +y (0)=q_,
Y(1)=a1 , P(X)2p>0 | the cubic spline collocation method

is derived. The uniform convergence of the first order on lo-
cally bounded mesch is achived. The method has the second or-

der of the convergence for fixved €.

1. INTRODUCTION

Consider the singularly perturbed two-point boundary value
problem:

Ly =ey" +p(x)y =f(x), O0O<x<l, 0<g«t,

{
(1 { -

Y’(O)'@‘Y(O)ZO’JO; ‘\/(1):061‘; OtO’UAIEIR» CEZOs

where the functions p,f €C2[O,1], p(x)>p>0. Under these as-
sumptions problem (1) has a unique solution y =y(x), which
exibits a boundary layer at x =0 for small e, [21.

The ordinary cubic spline collocation methods when
applied to (1) have an inherent formal cell Reynolds number
Timitation, i.e. hjp(xj)/Zg must be less than or equal to 1,
[31. For "small" ¢ this leads to the spurious oscillations or
large inaccuracies in the approximate solution, (see [711,[21)

hj :Xj+1

" Xga J=0(1)n, X are the points of the grid A,

A: O =Xy <Xy < <X <Xpiq = 1.

In order to avoid these difficulties in case of Di-
riclet’s boundary conditions in [5] the exponential features
399



of the exact solution are ‘transfered to the spline coeffici-
ents by introducing the relaxation parameter affecting the
highest derivative. This parameter is determined in such a way
that the truncation error of the corresponding difference sche-
me for the boundary layer function in case p(x) =b =const, va-
nishes. This procedure is known as the exponential fitting

or the introduction of "artificial viscosity". The spline
difference schemes have the same order of accuracy on a uni-
form and non-uniform mesh [6]. It might be expected that the
exponentially fitted spline difference schemes preserve this
property. However, in the case of Dirichlet”s conditions the
uniform convergence in [51 is obtained by putting some special
conditions on the grid. The dependence of the exact solution
of € in the case of mixed boundary conditions of the type (1)
is smoller then in the case of Dirichlet”s one. Because of
that the first order of the uniform convergence can be obtai-
ned with properly bounded local mesh ration:hi/hii1_gM, M

is a constant independent of e and hi‘ Thus, in this case

the exponentially fitted spline difference scheme has the
same order of the accuracy on the equidistant grid and non-
equidistant one (as in [6]).

2. DERIVATION OF THE SCHEME

We seek the solution of the problem (1) in the
form of the cubic spline v(x) €C2[O,1] on the grid A. On
each interval [X5s X54q1s spline v(x) has the form:

(2) 3

] 0000 ey (M on 920 ) s

(2) v(x) —vj(x) =5 + (X xj)vj +(x Xj) > +~——g—m vj .
(k

The constants Vj ) are determined from the equations (see
[31):

(3) eéjvgz) +ij§1) = f., §=0(1)n+1,

G.=p.Cthp., .=h.py
o5 =psCthos, o hips / (2e),
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(k _ (K L Lo
(4) v )(xj)—vg_%(xj), k=0,1,2; 3=1(1)n,
'5) vg1) —avéo) =0 vég% = oy

The system (3)~(5) has 4n+4 unknowns and 4n+4 equ-
ations. The first equation presents the collocation relaxed
by introducing the parameter 51. (fitting factor). Equations
(4) are the consequence of the continuity conditions,

v(x) €c2l0,11. By eliminating the unknowns viK), k=1,2,3 ;
from the above equations we obtain the scheme:

Rpv.=Q,.f., J=0{1)n
h h
(6) J J
Ve %y where
C -
thJ rivViog +rjvJ +r Vj+1’ for j=0(1)n,
— - C LR
thj qu 1+quj +quj+1’ for j=1{(1)n and
C 3w 1) 3w, *Hy) _
"3 T Lt RN L r?"r BRIV
h. : AL
ERLER "t
AJ 3w Wj+1 +2ijj - 2w +1_H3’ W =Cthpj,
+‘ ‘_
Ho q(2w. ,=1) 2w,  +H
qg—J1 vl P A by for §=1(1)n
AL . .
Piti-1"; PR
Further,

hn b.p
1 00 11,
tho‘_(y TSyYq e Yy ho“- 30 —ho 60 a
hz 0 171
f p,R f h p.
s1=%(2£- 1a1+A), a, =1+ 13
0y 0131 Oy J Oj
. 4D , h £ f h
-1P5-1 o, 1
by=1-322 37 R = 2241y, K=, p.=0p(x),
J TO‘J_A] 1 2 O’O 01 J h\]"’}l J J
fJ~f<XJ)s OJ=€8J(>



3. THE PROOF OF THE UNIFORM CONVERGENCE

The proof is based on the comparison function me-
thod which requires the following lemmas, [1].

LEMMA 1. ([21). Let f,p €C2[0,1]. Then the solu-
tion of (1) satisfies the inequalities

+1

0T am v e exp(-2ex /ey, i =0(1)4.

M and & are constants independent of e.

LEMMA 2.  (maximum principle)

Let {vj} be a set of values at the grid points X
satisfying thj.io, j=0(1t)n. Then, Vj<i05 J=0(1)n.

Throughout the paper M denotes the different constants indepen-
dent of e and hj.

LEMMA 3. There exist constants M and g 1indepe-

ndent of h. and € such that for j=1{1)n.
! h2
: ] J
a) Rh¢j > Mmin( EZ,1),

-1, 3 3
b) Rhwj zMLU(B)hj m1n(hj /e, 1),

d) Rhwo<zMuo(B)h;1 min(ho/€;1);
¢J :'2+Xjﬂ w\] =-exp(~8tj), UJ(B) :EXP(’Btj)s
t. :Xj‘/e

Functions ¢(x) and y(x) are comparison functions and we use
them in order to determine how the operator R,n affects the
characteristic. parts of the solution y(x) (R is the smallest
of various positive constants appearing in the proof). From
Lemma 2 and Lemma 3 we can see that

(7) le‘Yj! ik11¢j] +kg‘¢j|
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if
k1(hj>€)_i0 and kz(hj,e) >0 are such functions that

(8) Rh(k1¢j +k2wj)_iRh(tzj) =iTj(y)

257 Vs Tj(y) is a truncation error of the scheme (6)

for the function y. For an arbitrary smooth function g,

Tj(g) is given by

Tj(g) :Rhgj 'Oh(l—g)j

LEMMA 4. The truncation error rj(y) can be writ-

ten in the form

ETRMACT Y

5,2 v5,0 g1 ley

nj :.yj<0j"€): Oj :EDjo7 wJal‘:me (gJ)s EJ 15 a
1-

fixed point belongs to [Xj~1’xj
For the proof see [3] or [D].
THEOREM 1. Let f,p e C[0,11, p(x)>P »0. Let v
be defined by (6) on ‘the-grid A, where‘hj/hji1_§M. Then
2
[ -y . - ; Y
(9) |y(xJ) VJ[ iMhJ /(g+hJ)
Proof. From Lemma 4 and Lemma 1 we have
2
h;
, i 2 -2 4 -4 .
j(Y)I iﬁlﬁng—hjs +exp(—5xj/g)hjg , ho<e, §=1(1)n.

From Taylor~ s development about X we also have

(10) |t



2

(1) frg(y)] <Mh’/(h +e) +hie “exp(-6x,/¢).

Further, for E.ihj’ after several Taylor s expansions we

obtain
_hiy , h? )
Tly) =y S (B g) ey Py e,y ) tapg by gyt (Egy)
~a tsh gy (g 5)-elagyograSy ragy )

X1 SRy B, Xy Sty Bag Sy
Since

k, k
|wj] <M, hj/hji1.iM’ h"/e exp(—@xj/s) iMexo(—dxj/Ze),

1 +c

+ -
we have|r31<ith ,|q3 [ <M and

(12) v ()] <mChyvexp(-ax;_4/€)), d=1(1)n.
In a similar way, we obtain, for j=0
(13) |To(y>l,iM(ho +exp(-sx /e)).

.2 2
If we take k (hj,e) —hj/(hj+e) and kz(hj,e) «hj/s for hjie )

1
from (10), (11) and Lemma 2 we can see that (8) holds.
This leads to the estimates (7) and (9).

If E.ihj we can take k1(hj,e) =1, kz(hj,e) =hj and

from (12),(13) and Lemma 3 we have that (8) holds, and so
does Theorem 1.

THEOREM 2. Let the conditions of Theorem 1 be
satisfied. Then
(14) ly(x)-v(x)i <MnZ/(e+h), h =max s
1

M is a constant independent of & and h.

Proof. Since z{x)=y(x)-v(x) €C4[xj,xj+1] we have
that:
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Cte

, and |2z ”iith/(hjﬂ:), 3=1(1)n.

1z§2); < [(nj—pJZ(1)/o Deme ThL/(ehl),
|z§f1)1 i(zgz)-zg?%-wjaz)/hj 1 <Mh31/(hj+g).

After replacing these estimates in (15) we obtain estimate
(14) for hjie-

In the case Cihj we can take the form

(16) Tzl = 12{0 )+ fex )z (e xe g

J j+1]3

X . < <X
J«‘EJ— J+1

From (3) and (4) we obtain

(17) aJv§.1> - ijgf{ . 3= 1(1)n,
sy wlE) - (F-pyvityo sy g = 0(1)ne,
(o) w8 = BB - o

Since }zé”i iMh(ZJ/(hO"'e) from Lemma 1 we have

1V(()1)]iM‘ From (17) and |aj[iM, 'bjiiM we have

[vj | <M, j=0(1)n. Because of that from (18) and (19) we
obtain }v§-2>|iM/hj, [v§3)}iM/h§. Since iy“)(x)[iM and
(1) (1) 2y M3
- J- 3 .
V] (x) =Vl +hj-1vj-1 + , ng% . 3=1(1)n, we have



|v§1)(x)i_iM and |z§1)(x)] <M.

Thus, according to (16), Theorem 2 holds.

[11]

(2]

[3]

[4]

[5]

[6]
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THE MEASURE OF APPROXIMATION FOR THE PARTICULAR SOLUTION

DJ. TAKACI

ABSTRACT. We observe the linear partial differential equa-
tion in the field of Mikusinski operators, F, with homogene-
ous conditions. For the approximate particular solution con-
structed in [4] we construet and estimate new measures of ap-
proximation both in a subspace T _of the field, F , as well as
in the space L of local-integrable functions.

1. INTRODUCTION

The nonhomogeneous differential equation with constant

coefficients

m n u+k 0.<A
(1) T 1 oo 2B s ey
=0 k=0 M- Aot -
with conditions
HES u=0,. m
(2) 2 xQ0) o g gor
aatat k=0,... n-1
M
ﬁ—iiglzl = 0 for u=0, m-2 and
(3) oA
m—i ‘I‘—TI
9 x(0,t) _ t for 1 >0
a)\m—i I'(r) )

(fl(k,t) is a continuous funiction) corresponds in the field F

to the equation’

m n
(1) b, S Moo =0
pE0 k=g Mo ,

where s is the differential operator, £ is the integral opera-
tor, s :2—1, and £(X) ={f1(A,t)} with the conditions

(5) x<u)(0) =0 for py=0,... m-2 and Doy = 0¥
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The particular solution of equation (4) can be writ-

ten in the form (see [11)

A
(6) x 0 =—— [ £Gadx, -0)de
p L a o
m
where
n
k
a_ = z o, S and
moyxZg MoK
m
xh(x) :jzo bjeXp(Auj), bj are operators, and
© ic.-B.
w. = ) e, & d 3, a.>0, B.<1.
720 1,3 , j 3

The approximate particular solution of equation (4)

can be treated in the form (see [H4])

A
1
(7) X = [ £lax (A-k)dk
p)n /era O hvn ’
m
where
it
(8) x, () = b.exp(Aw., ) and
h,n 'ZO 3 p J,n
]
n idj—Bj
(9) w. = c. .%
J,n J_ZU 1,37 >

The convergence in the space of locally integrable

functions L, is the convergence in all seminorms
T
(_10) IlfllT—é | F(t) |at
LO is the subspace of L consisting of all functions f, such

that IIfHT >0, for every T >0, and Fo is the algebra of all

operators of the form f/g where f €Ll and g ELO.
The convergence tvpe 17 in FO is equivalent to the con-

vergence defined by the functional A(-) (see [3])

(x)

(11) Alx) =
i

o B. .
E lji/l ,XEF ,
- (e}

7
0 giel” (T+B; 4,5 (X))
where

(12) BT,E(X) =inf{HfHT:X =f/g, HgHT‘<1, HQ~2gHT <e}
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was introduced by Burzyk ([11).

Also, we need the following definitions.

DETINITION 1 ([31). Operator x €F_ is the approxi-
mation of the operator x EFO, according to the functional A(x)

with the measure of approximation ¢ >0 if A(x-x) <§

DEFINITION 2 ([31). The function f from L is the ap-
proximation of the function f from L according to the functio-
nal

0 o
(13) F(F) = -
. S
SRR LN CRYE

with the measure of approximation &, >0 if F(F-) <6, .
Dp L L

2. THE ESTIMATIONS IN THE SPACE FO
Supposing that

I
S £ = {5, (A, gxh’n(x) and  gxy ()

2" a
m
for g EFO represent functions from L, then the operators
I A
] f(A)th)n(X—K)dK

/Q/I‘
1wy oz (n) = 2AmO
n

g

L
fl)gx, (A-k)dx
Q,Pa o h 7
(15) z(A) = — 1
g
belong to Fo'
Denoting by
I A
{J (A,t)} Fa Jf(K)g(Xh)n(k—K)—Xh()\—K))dK
& .= m o
g g

and using relation (12), we can write

BT)E(yn(X) —y(k)<sHJg1(A,t)HT
where gq = -k satisfy for,k >0, the inequalities

lg g <1, liz-2g0l, <x

A
I+k



Now, using paper [3] we obtain

m

M 1
Hagq (A, ), < MOy, T) - _2 K ()\,T,(y,j,Bj) Ty T

=1 =1 3 3

] P —+ 1)
where

T
(16) M(A,T) = max | [fz(K,t)ldt and

OiKiA e}

M .
kKA, T,0.,B8:.) = max k_ ((h-x),T,0.,B.)
g 71T peean B1 A

(the constants k ((X—K),T,djaﬁj) may beé obtained analogous

g
as in [3]) 1

So, we can prove easily
LEMMA 1. The function A(zn(A) -z()x)), where zn(A)

and z()) are given by relations (14) and (15), can be estima-

ted as:

(17) ACz_(V-2000) < § 1 P (h,0.,8.) = 0
n 321 (n+#l)o.-B.-1 g1 3
M(———J 3 41
where 2

. M .
AM(A,l)kgl(X,luj,Bj)

.2
1

P (a,0.,8.) >
le 173 121

ie
e

So, we have
THEOREM 1. The sequence of approximate solutions

9

(Xp rl()\))n converges to the exact solution xp(k) in the I~

type convergence.

On using definition 1. we can say that the measure of

approximation in Fo is given by (17).

3. THE ESTIMATION IN THE SPACE L

Let us suppose that the exact and the approximate par-
ticular solutions are the functions from L. Then analogously

as in paper [3] we can obtain the estimation:



b1

m
M 1
i x (M) =x_ O < AM,T) Y kK (A, T,0.58:) om0
p,0 p T 51 3 (n+1)o,-8,-1

Tl 4 1)
where M(X,T) is given by (16) and

kM(X,T,a.,B.) = max k(x-k,T,0.,R.) see [3]
3773 0 <k <A 3773

Now, we can prove

LEMMA 2, If xy n()\) and xp(x) are given by relations

>
(7) and (8) and represent functions from L, then we have:

m
1
(18) F(x_ _O-x_(A)) < 0Pn,0.,8.) = &
p,n p *jzi (n+l)a. -8, -1 773 L
T ( 2] J +1)

where

o MG, 0K (AL L0k, 8.)
P Ao.,B.0 > V- 11
) T

.2
. 1
ie
e
From previous Lemma follows
THEOREM 2. If . n(A) and xp(X) represent functions

from L, then the Sequence(xp n(Aﬂqconverges to x(A) in L,
9

On using definition 2 the measure of approximation in
Lis given by (18).
It can be remarked that the measures of approximation

obtained in this paper does not depend of the lenth of the in-

terval.
EXAMPLE.  The differential equation
2 xOut) | axOLe) | x(OL,t) + £ , 0<A<h , t50
Aot ot > > T =200 =
with conditions
x (A,0)

53 =0, x>0, x(0,t)=1, t>0
corresponds to the equation
(s=-DIx7(A) -x(XN) =£00)8 5 x(0) =1

in the field F



The exact particular solution is

i
x(0) = o (j) FleYexp (=) w)dx

where o
1+1
W = E ot
i=0

and the approximate one is

1
Xn(>\> —ST:L

O >

f(K)eXp«A—K)wRdK

where

i+l
Toiso
However Xn(k) and x(A) beleong to L we can find (for

A=1 and £()) =)

2

. 1 eQe

(SL ——_—‘—‘.e( -
r(%éw) ©

e
A )
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EXPONENTIALLY FITTED. QUADRATIC SPLINE DIFFERENCE .SCHEMES .. . .

Z. UZELAC and K. SURLA

ABSTRACT: For the problem (1.1) a family of difference schemes is de—
rived using quadratic splines v(m)6Ct[0,1]. The schemes are uniformly
convergent with first order accuracy. Numerical emamples are presented.

1. DERIVATION OF THE SCHEMES

We consider collocation spline difference schemes for singularly per-
turbed two point boundary value problems

Ly (x) = ey"(x) + p(x)y (%) = f(x), 0<x<t,
y(0) = a, y(1) =8,

where € is a small parameter in (0,1}, p(x) and f(x) are sufficiently

(1.1)

smooth functions and p(x) 2 p > 0. Under these assumptions (1.1) has a
unique solution y(x) which in general displays a boundary layer at x=0
for small e. The following lemma discribes some properties of the exact
solution y(x).

LEMMA 1.1 ([1]) Let p(z), flx) € C3|0,1]. Then the solution of (1.1) can

be written in the form y(x) = ulx) + H(x) where
(1.2)  ulw) = ey "(0) exp (-p(0)u/e)/p(0)
10 () 2 e oap =t /e)),  120,1,...,4,
ond M and § are constants independent of e.
Let us define the uniform mesh {xj}, J=0(1)n+1 by xj=jh where n is
an positive integer and the mesh length h=1/(n+1). We will find an appro-

ximation to the solution y(x) of (1.1) in the form of a quadratic spline
v(x) € C1[0,1] wich satisfies on the each interval Ij=[yj,xj+1], J=0(1)n:

vi(x) = V§O) + (x-xj)vgn + (X"xj)?';’§2)/2.

The approximation to yj = y(xj) is denoted by v§0) = Vj(xj)'
Let define the fitting "comparicon” problem associated with (1.1) by:

413



(1.3) N

where o(x,e), p(x) and %(x) are piecewise polynomial approximations to
a(x,e), p(x) and f{x) respectively (the fitting factor o(x,e) will be de-
termined). It is well-known that the solution y(x) of the "comparison"
problem (o(x,e)=e) is a good approximation to the solution y(x) of (1.1)
(see Berger et al. [1]).

The- unknown coefficients v§k), k=0,1,2, j=0(1)n are determined from
the conditions: '
- v(x) satisfies equation (1.3) at the points Xj+1/2§(xj+xj+1)/2’
J=0{1)n and the boundary conditions,
- v(x) € c1{0,1].

The above conditions give the system of 3n+3 unknowns with the same
number of eguations:

Ly, (x)._ = f(x) . 3=0(1)n,
VU g2 I T e
Vi(X), . = v (X)), . 3=0(1)n=1,
(ay 0 TR Iy
3 Wy TV W o 00T,
VO(O) = 0y Vn(1) = B.

When o(x,e), p(x) and %(x) are piecewise constant approximations of
o(x,e), p(x) and f(x) (ﬁj(x)=5j, XQIJ, etc.), the systeme (1.4) has the

following form on the interval Ij_1:

~ (2 ~ 1 h (2 pE

%31 Vj—% Py (V§-% "2 Vg-%) = Fie

0 (1 h2 (2y _ (0

(1.5) v§_% + h vj_% ¥ v§_% = v§ )
vgfg +h v§§% = v§1)

—
[ I
~—

By expessing v}

L]

following form:

(0) _ ¢
(1.6) vil= Vs

(1 _
(1.7) Vi =g



where
31 7 95 P OPy/2 s Sy s
YJ"'1 = h(1~h pJ_1/(ZSJ_1))a AJ“1
Similarly, we have that for x € Ij:
(0) _ ,(0) | = (1) L5 7
(1.8) Vil TVt vilH ijj
() 23 o e 2
(1.9) Vig = Aj v + hfj/sj.
From (1.6) we get:
(N _ ,0)_ 0 ¢ % "
Vi-r = T e S Ty g
and from (1.8):
(0 = l0) _ y0) S5y
v; (Vj+1 Vj SJfJ)/yJ
By substituing the above expression for vgj%

get a spline difference scheme which is a member

schemes:

i1

0
(1.10) Vi

We introduce

= A

IS

Then scheme

rv(0)
J

Ry(0)

her \
where 3

QfJ =

i-1 1 0), 1 (0 j
R

v Y - Y

-1 J J
the following notation:

N S PR
g1gen T W Ty ey
L B BT N
S B qj == 9
-1 -1 N

(1.10) has the

= ij

o= (0) , me (0) , ck(0)
VRS AL RN TS BN TR FS

af. . +dSF. +q7F. .

9% 5-1 quJ 957541
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h2/(2s 5 )

= (1_h 5J’1/§J‘1)

and v§1) into (1.7) we
of family of implicit

N A, S,

For (e il
it T T
-1 -1
~+
-
]
= 0.

The truncation error: for the boundary layer function u(x) (1.2) for



p(x)=p=const is equal to zero when

(1.11) ?3/?3? = exp(-ph/e).

If o(x,e)=0(e) when p(x)=p=const then condition (1.11) gives
a(e) = %; cth(hp/(2)). When p(x)#const we define
: hp i i
oj(x,e) = wgs X € Ij where wj = cth(hpj/(Ze)).

The coefficients of the family of the spline difference schemes defi-

ned by (1.10) have the following form

s (1170 P o P o=t

ry = (1 1/wj_1)/h, r; (1+1/wJ)/h, ' ryrys
(1.12)

Q5 = V(psqosq)s a5 = 1/(Po5)s  Gf =0

QJ = (pj-1wj—1 s Qj = pj“j 5 qj .

The choice of approximation to p(x) and f(x) determines the particu-

lar scheme.

D =p.=p.y f. .= f.=f.
Let Pj1 = P; %P5 fJ‘1 fJ J

0)

]

Qf. where

then the scheme (1.12) becomes Rv§ 3

-
1

(w;=1)p;/(2h), r; = (wj+1)pj/(2h), rg = —wjpj/h,

_> = C: =
a5 = a; =0, 45 oy cth(th./(Ze)).

This scheme is precisely the Allen-Southwell-1I1"in scheme for which
first order uniform convergence at the nodes was proved in |3| and [4].
So, the quadratic spline difference scheme has the same property.

+pj)/2’ f. = (fj-1+fj)/2’

Choosing Piq = (p. 5-1

-1

pj = (pj+pj+1)/2’ fj = (fj+fj+1)/2’

the corresponding implicit difference scheme has the coefficients:

- _ ~ += ~' _ C: + -

r. = (1 1/mj_1)/h, r (1+1/wJ)/h, rj rj + rj,
(1.13)

_ 5 o +: or C: - +

G5 = VA@pyqugg) a5 = ViBgug)s o ag =gy + a5

This scheme will be analysed in Section 2.
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2. PROOF OF THE UNIFORM CONVERGENCE

The proof is based on the comparison functions method developed by
Kellogg & Tsan [4] and Berger et al. [1] .

LEMMA 2.1 Let {Vj} be a set of values at the grid pointe {mj}, J=0(1)n+1
0 . L < y—
satisfying VOSO, Vn+1§0 and RVJ.ZO, Jg=1(2)n. Then VJ...O for j=0(1)n+1.
We use two comparison functions ¢J.=-23rxj and q;j:—exp(—sxj/s):—(u(s))J
where u(8)=exp(-8h/e), 8>0 will be chosen appropriately. Lemma 2.1 imp-
lies

LEMMA 2.2 If Kz(h,e)i 0 and Kg(h,e) > 0 are functions that satisfy:

ROK (hye)os + Ky(hye)y,) 2 RB(x25) = e (y)

where Z.=y.

(0)
; J vj s then

lzj{ < Kz(h,e)}cpjt * Kg(h,e)lel-

Throughout the paper 6,M,M1,... will be used to denote generic cons-
tants independent of x, h and ¢.

LEMMA 2.3  There are constants MZ and M2 such that for h = Ml’ 0<B<M2
and j=1(2)n the following holds:

(2.1) Rd)jZMh/e, h Zoe,

(2.2) Rp; 2, ‘ e S h

(2.3) Rnpj > ij(B)h/ez, h 2 e,

(2.4) Ry 2 m? (8)/n, e < h.

Proof. R¢j=1/;j+1/;j—1' Hence (2.1) and (2.2) holds. Now,

(2.5) Rig = wdTe) v] (mule)) () - ry/r).

Let hxCe where C is a constant independent of h and e, then erM/h,
r}/r} < exp(—ﬁjh/a)+Mh and p(B)—rB/r} Z Mu(8)h/e, 1-u{B)=phexp(-QBh/e)/e,
0<Q<1. .



From (2.5) and the above estimates we see that (2.3) holds for hiC..

Let e<C"'h for C sufficiently large. Then rJ*.zM/h, rs./r;fMexp(-f)ﬁh/e),
w(B)-r, /rJ>Mp(B) for appropriately chosen C and 8. Moreover (2.4) holds
for ¢<C-'h. Since (2.3) holds for hzCe we have Rq:szpJ(B)/a‘:MpJ(B)/h.

LEMMA 2.4 The following estimates for the truncation evror of the sche-
me (1.13) holds: ‘

2 .
(2.6) )] < e Ly hs e (=85,/e)), J=1(2)n, hse
(2.7) ITj(y)| =z M(h+exp(—6mj~1/e)), j:1(2)n, esh.

Proof. Let hse, then we take

T5y) = Ty Tyyg+ Toyy + Tayy' + rJ Ry(xgsxj-hsy) +

4

+ -
r. R3(x.,xj+h,y) - aj e R1(x

i 3% "Xj"h’y ) -

J

.+

= q pJ 1 Rz(x'ax-'hay’) - € Q.

0% j R1(x DX +h,y ) -

- qj pj+1 RZ(XJ‘,X,H},‘Y’)

where

b
R(a,b,9) =g () (b-a) (™) (menyr = f (0-5)"g (M (5)ds,  z6(asb).
a

Since TO=T1=O we will estimate T2, T3 and the remainder terms.

T, = hz(r3+r 1/2 +(p,

- +
? J_1h-25)qj - (pj+1h+25)qj

Since |hpw-2e| = Mh?/(e+h) (see [4] ) we have for

p(x) = p = const: ]T | S M FiE h

Let 051 pJ 1 h/(2e), rj=r (p }s

E r+—r () q3=q"(o‘

J ! J -1
+_,+
q5=1"(o;)
When p(x)#const we expand T2 at 051 and usirng the estimation for
h%
T2 we get |T2! S M"m

Consider now

= h3(piop h- 2 . 2 +
T3 h (rj rj) + (eh pj_1h /2)qj (pj+1h /2+eh)qj,



419

By Taylor’s expansion about 0.4 Ve get |T3|5Mh3/c.
The remainder terms are bounded by
Mh3(1 + exp (-26Xj/e)/a3).

Using Lemma 1.1 we have

3
(2.8) <5 (0] < m r—E-Emg(1+exp(-25xj/€)/e), for hle.

Since Tj(y)=Tj(U)+T.(W) it remains to estimate rj(u). Let us denote
by Ej(u) the truncation error for p(x)=p(Q)=p. As ;jso after some algebra
we get

STy 3 3 2
‘TZ TZ‘UJ- < M(h>/e+h Xj/ez)uj/e s

and
STy < 3 Y
1T, T3luj 5 Mhdxug /et
The remainder terms are bounded by Mh3exp(—6xj/a)/a3,thus
(2.9) jTj(u)| s Mh3xj exp(—éxj/e)/e3 for hle.

From (2.8) and (2.9) we get (2.6).

Let esh, then we consider the truncation ervor in the following form

c_ " - + .
rj(y) = szj + rjRZ(xj,xj_1,y) + rij(xj,xj+1,y)

-qg.eR Xjaxj_»ls.y ) - q R (Xj,Xj_1,y ) -

J o( -1
__+
9

e Ry(X5s%y,o¥") - g Piag RpOexg oy ).

As before, we estimaté rj(g) and Tj(W) separately:
(2.10) [ (W)| = M(h+exp(~6xj_1/s)),- esh,
(2.11) }rj(u)| < Mexp (-ij_1/€), esh,

From (2.10), (2.11) we get that (2.7) holds.

THEOREM 2.1 Tlet p(z), f(xz) € ¢3[0,1] 4n (1.1). Let{v§0)}, J=0(1)n+1

be the approximation to the solution y(x) of (1.1) obtained using (1.13).
Then, there ewxist constants M and § independent of h and € such that for
J=0(1)n+1 ,

| < el

2 <
< M(E—— + — exp (—(Sacj/t-:)), hZe,

(0)
(?.12) 11)(7 -y . p—yn

J



(2.13) IU;O)—yj[ =z M%(]+exp(~6xj_1/€)), esh,

Proof. From (2.8) and (2.9) we can see that the funcions K1(h,e)=
=h2/(h+¢) and Kz(h,s)=h2/a satisfy Lemma 2.2, and (2.12) hold. For ezh
we use Ky(h,e)=h and Ké(h,€)=hexp(h6/e). Using Lemma 2.2, (2.10) and
(2.11) we get (2.13). :

3. NUMERICAL RESULTS

We present the numerical results obtafned by the scheme (1.13). We
consider the following simple problems:

(3.1) ey" +y =%, y(0)=y(1)=0
which the solution 1is

y(x) = (e=1/2)(1-exp(-x/c) )/ (1-exp(-1/e))-ex+x*/2,
and

(3.2) YU (14x2)y 7 = - (e®x2),  y(0)=-1, y(1)=0.

For each problem the mesh length h=1/J was succesively halved star-
ting with j=16 and ending with J=1024. The maximum error et all the mesh
points Ex= max !yj—vgo)] is Tisted in Table 2. under E=. The numerical

J

rate of convergence is determined as in [2]:

rate = (luzZ, -1

Koo Mgy, e)/n2s

h/2K h/2K+1

where ZK,€= m§x Vj v, ,  K=0(1)4

h/ZK (0)
and Vs denots the value of Vj et the mesh point X; for the mesh
length h/ZK.

Table §: Numerical rate of convergence for (1.13) applied to (3.2)

€ 1/2 1/4 1/8 1/16  1/32  1/e4  1/128 1/156 1/512
K rate rate rate rate rate rate rate rate rate

0 2,00 1,98 1.98 1.92 1.81 1.58  1.20 .98 .95

1 2,00 2,00 2,00 1.98 1.95 1.8 1,59 1,23 1,00

2 2,00 2,00 2,00 2,00 1,99 1.9 1.85 1.59 1.23

3 2,00 2,00 2.00 2.00 2.00 1.99 1.96 1.86 1,60

4 2,00 2,00 2,060 2,00 2,00 2,00 1.99 1.96 1.86




Table 2: Numerical results for (1.13) applied to {(3.1)

€ 172 1/4 1/8 1/16 1/32 1/64 1/128 1/156 1/512
K J Ew rate Ew rate Ewrate Ewrate Ew rate FEo rate Lo rate Ewrate Ewrate

16 1.5 E-4 5,4 E-4 1.5 E-3 3,9 E-3 8,3 E-3 1.5 E-2 2,1 E-2 2.5 E-2 2.7 E-2
0 2,00 2.00 1.99 1.98 1.92 1.72 1.32 1.00 .95

32 3.8 E-5 1.3 E-4 3,9 E-4 9,8 E-4 2.1 E-3 4,4 E-3 7.9 E~3 1.1 E-2 1.3 E-2
1 2.00 2.00 2.00 1.99 1.97 1.92 1.72 1.34 1.03

64 9.6 E-6 3,3 E-5 1.0 E-4 2.4 E-4 5.5 E-4 1.1 E-3 2.3 E-3 4.0 E-3 5.7 E-3
2 2.00 2.00 2.00 2.00 1.99 1.98 1.9 1.71 1.34

128 2.4 E-6 8,4 E-6 2.5 E-5 6.2 E-5 1.3 E~4 2.9 E~4 6.1 E-4 1,1 E-3 2.0 E-3
3 2.00 2.00 2,00 2.00 2,00 1.99 1.98 1.92 1.72

256 6.0 E=7 2.1 E-6 6.2 E-6 1.5 E-5 3,5 E-5 7.4 E-5 1.5 E-4% 3.1 E-4 6.0 E-4
4 2,00 2.00 2.00 2.00 2.00 2.00 1.99 1.98 1.92

512 1.5 E-7 5.3 E~7 1.5 E-6 3.8 E-6 8.7 E-6 1.8 E~5 3.8 E-5 7.8 E~5 1.5 E-4

1024 3.7 E-8 1.3 E-7 3.9 E-7 9.7 E-7 2.1 E-6 4.6 E-6 9.7 E-6 1.9 E-5 3.9 E-5
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ON A NUMERICAL SOLUTION OF A POWER LAYER PROBLEM

RELJA VULANOVIC

ABSTRACT: A singularly perturbed boundary value problem, whose solution
has a power boundary layer, is considered. A first order numerical method,
uniform in the perturbation parameter, iz constructed.
1. INTRODUCTION

The following boundary value problem is considered :
(1a) Lu == ~(e+x)% u” + chu = f(x), x € I := [0, 1],
(ib) Bu := (uf0), uf1)) = Uy U,

where g is a perturbation parameter : O<e<1 ( usually e«c1). The functions c,

f and numbers Uo’ Ul are given. We assume that

(2a) o fecln),
(2b) “elx)20, x€1,

(2¢) - ¢l0)» 0.

Under these assumptions we shall show that the unique solution u to the

‘problem (1) has the form :

(3a) u(x) =svix)+ z(x),

where
SER, |s| <M, v(x)=(1+x/e)"F, r=(4/1+4c(0) -1)/2,

(3b) : y
12601 sMew)Th, i=1,2,3, x€ 1,

Here and troughout the paper M denotes any positive constant independent of
e. The function v is a power boundary layer.function.
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The asymptotic behaviour of the solutions to problems of the power
layer type was considered in many papers by S. A. Lomov, see [3]. The
numerical solution of power layer problems has not been investigated to the
same extent as exponential layer problems. A numerical method for another
power layer problem was given in [2].

Here we shall solve (1) numerically by using standard difference
schemes on a special non-equidistant mesh which is dense in the layer. The
mesh is generated by a suitable function. This approach has been applied
successfully to various problems of exponential layer type, cf. [4], [5], for

instance. Our main result is linear convergence uniform in e.

2. ANALYSIS OF THE CONTINUGUS PROBILERM

After giving some lemmas we shall prove (3). For the technique cf.

[11, [e].

LEMMA 1. Let (2) hold. Then there exists a unique solution ueC? o the
problem (1) and it satisfies

(4a) Iu(x)1ISM, X€T,

(4b) [u(0)<M/e, W} sM,

P r o o f : The operator (L,B) is inverse monotone and the
uniqueness is guaranteed. The existence and uniform boundedness follow
because there exist upper and lower soiutions to (1), which are bounded
uniformly in e. Indeed, let g(x)=M(2—x2), where M is a constant {independent
of €) such that

g(t) ZIUt( ,t=0,1,
and
Lg(x) = 2M(e+x)2 +Mc(x) (2-x3) > [f(x)].
Such an M exists since l
- Lglx) 2 YM(2-5% if Osx <3,
and
Lg(x) = 2M3% if § sx <1,



425

where 3 is a number from (0,1], such that
cfx)zv>0, x€[0,8],
(§ and y are independent of e). Then g{x) is the upper solution and -g(x) is the
lower solution to the problem (1). Thus, (4a) is proved.
To prove (4b) use
b ,
wib)=u'ta) + | (e+x) Alcu-N(x) dx
a
for some a,b€ 1. Now using (4a) and the choice b=0 and a€(0,¢), such that
u'{a) = {ule)-ul0) )/¢, we get the first inequality in (4b). Similarly, with b=1
and a€(1/2,1), such that u'(a)=2(u(l)-u(l/2)), the second inequality
follows.[]

We shall need estimates for the solution to the following auxiliary

problem :
(5a) Ly = -(en0?y’) + ey = f(x), x € T,
(5b) By = (U,, Ul),

LEMMA 2. Let (2) hold and let y€ CI) be the solution to the problem (5).
Then :

(6) Iyi(x)l < Mg L i=0,1,2, x€1.

Proof:The case i=0 can be easily proved analogously to the
proof of (4a). Furthermore, analogously to the proof of the first inequality in
(4b) we can get ly'(0)| <M /¢. Then we have:

pss

ly 60l = le¥(e+x) 2y (0) + (o) 2 [ (cy-Ditv) dt] <
¢

< MUelerx) 2 + xl(e+x) %) < M/(g+x),

hence (6) is proved for i=1. Then the estimate for i=2 follows directly from
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Now we can prove (3):

THEOREM 1. Let (2) hold. Then the unique solution to the problem 1)

satisfies (3).
Proof : Let s=u(0)/v(0)=-¢u(0)/r. Then because of (4} we have
|s{ <M and ‘
z'(0)=0, [zM}f< M,

L,z'(x) = F(x), JF(x)|sM, xeI.

Indeed, F=f'-cu-sLyv", and
IL v = e+ (e+2)-20r+ 1) -c(x) Merx) " (1ex/e) 1| =

= | rl 0 -c(x) )e+x) t+x/e) | < Mx(e+x)™ s M.
Thus, 2’ satisfies a problem of type (5) and from Lemma 2 it follows

129000 | < Meso ™! i=0,1,2. 0

3. THE DISCRETIZATION
The discretization mesh Ih has points:
i

- o RIS T
(7a) xi~)\(ti). t,=1ih, i=0,1, .., n, hf—»n, n €N,

where X\ is a mesh generating function, cf. [4], [5], of the form:

ae((q/lq-)P -1), te{0, o],
'l t-00) +wlo), te o, 11

1

it

w(t)
(7b) Alt) =
nit) :

Here o € (0,1) is given, q=u+s1/(p+l), p2l/r ( r is given in (3) ) and a i¢

determined from the condition m(1)=1. Hence, A€ cln

The properties of function X are:
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(8a) W0 1201, 2 tel,
(8b) M) < M, tel,

(8c) A = Me” P g
(8d) AMe 2 Men, t2q-Mh> 0.

In this Section constants M will be independent of h as well.

_ T n+i - s i S,
Let Wy = [wo, Wi wn] €ER be a mesh function on Ih‘ Then the

discrete problem corresponding to (1) reads:

C) Lw, = —(etx;_?Dpw; ¢ clepwy = flx ), 1512 w0,

where

Dh w = 2 hiﬂwi—l— (h1+hiﬂ)wi+ hiwi+1 Y/ ( hihi+1(hi+hi+1) ),

hi=xi—xi_1 ,i=1, 2, ..., n.

Note the shift EY¥ (instead of E+xi) which is introduced for technical

1
reasons, (see the proof of Theorem 2. below).

Rewrite (9) in the matrix form:

ApWn =dp,
where dy =[Ug, f(x), f(x), . £0x ), ul]Te R™! and A, €R™M s the
corresponding tridiagonal matrix. Let |- || denote the maximum norm both in

R and RO Then we have

(10) 1Al < ™,



provided that h is sufficiently small, but independént of €. Indeed, Ah is an
Lematrix  and for y, f[2-~xg, Z‘X?, 2~x§1]1 € R we have:

Ahyh : M,
since

h

LP2-x%) = 20eex ;0% + clx)2x5) 2 M

-1

if h is sufficiently small (compare with the proof of (4a) in Lemma 1). Thus

A; z 0 {to be understood componentwise) and the stability (10), uniform in e,

follows.

THEOREM 2. Let (2) hold and let u be the solution to the problem (1). Let wp
be the solution to the discrete problem (9) on the mesh (7) with sufficiently
small h independent of €. Then:

luy, - wyll s Mh,

where Uh:[”(xo)' u(xl), o ulx ) ]TE RO

P r oo f : Because of (10) it is sufficient to prove

(11a) IRi(v)l < Mh , i=1, 2, ..., n-1,
and

(11b) IRi(z)l < Mh,i=1,2, .., n-1,
where

Ry = LMglx)) - (Ledix;) = ~(evxy_)2Dy glx,) + (e+x;) %" (x,)
for any g€ CHI). Let

_pl 2
Ri(g) = Ri(g) + Ri(g) ,

Rife) = (le+x;)? - (erx; %) g (x)),

Ri@) = (erx; )% (g"(x;) - Dy glx ).



In the next steps of the proof we shall use the Taylor expansion of Rai ,

and (8).

First it is obvious that

1
- IBj (2) |.s Mh(x x5 +2¢)/(e+xy) £ Mh.
because (8b) implies hi $Mh. On the other hand

IR2(2)| < Mh(erx, )?  max  1z2P()] <Mh

1-1
x1—1s x Sxiﬂ

and (11b) is proved.
Let us now prove (11a).

1% Let ti-'t 2. By using (8a,b,c) we get for k=1, 2

lle (v}l <Mh (s+xi_1)‘l( e/ (e+x; ) 7 s Mhe! (r+1)s M b L ()7 (pH)

0 ‘. -
2" Let t; <o and ti.;$4-3h. Then t;  <q and q-ti+12(q-ti)/3. Now for k=1, 2:

i

RS (1 Mbatey, el en, ) s Mgty ) 7P estennie; ) s

1-1
< M (q-t, PO gy

3° The remaining case is: ¢-3h< Loy

it follows:
Vil s M( mxl DT s MhPT < Mh k=12,

Hence {11a) is proved and so is the theorem. ]

. NUMERICAL RESULTS

We shall consider the following test problem :

Cerdtut b w s, ul@ U w2 vle/eri)t, r=(/5 -1)/2.

(3b)

Mh .

<. Suppose that q-3h> 0. Then from (8d)
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Its solution is given by

ux)=(1+x/e) " ex.

Let E=llwy - u, I using the notation of Theorem 2. We have the following tables :

Table 1. p=1/r, «=038

E €
1.-3 1. -6 1.-9, 1.-12, 1. -8
n =20 119 149 | 153
n = 50 0480 .0606 . 0618

Table 2. p=2/r, u=08

E €
1. -3 1. -6 1. -9 112 1. -18

n =20 6.95-3  6.14-3 7.69-3 8.66-3 8.90-3
n =50 1.13-3 1.08-3 1.45-3 1.65-3 1.69-3

The usual notation 1.-3 = 107> etc. is used.

Table 1 contains the results of the method described above. The
linear convergence uniform in e is obvious. However, for all problems whose
solutions have form : u(x)=Mv(x) +b(x), where Ib(i)(x)l < M, 1=0,1,2,3, x€T1,
and hence for this test problem, we can prove quadratic convergence uniform

)2

in e if we take p22/r and (E+Xi)2 instead of (F.+Xi_1 in (9. This is

illustrated by the results in Table 2.
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A PROBLEM ON SIMULTANEOUS*APPROXIMATION AND-

A CONJUCTURE OF HASSON

S. ZHOU
Let C[§1, 1] be the class of functions, which have N con-
tinuous derivatives, Pn(f; x) be the polynomial of best approxi-
mation of degree ¢ n to fe C[—l, 1] and An(x)=(l~x2)1/2/n +1/
En(f)= tE - Pn(f) I = max lf(x) - Pn(f, X) |

-1¢x51

Both important and interesting question of approximation
theory is: Do the derivatives of polynomials of best approximatic
achieve the best approximation to derivatives of function? In p
riodic case, this problem had been solved long before. In algeb
ic case, a classical result is that, if f(x) € C[ﬁl, 177 then
there exists a P(x)eﬁrl for x€ (-1, 1) such that
k) Aﬂﬂk
for 05kSN, n2N, where w(f,s ) is the modulus of continuity of

(1) £ G - P o 1< cana¥ T we™ a0,

LI is the set of algebraic polynomials of degree &n, C(N) is

constant only depending upon N. -

Congidering the inequality (1), we notice that P(x) is nc
necessary to be the polynomial of best approximation to f(x). 1T
refore, it is natural to ask: What can one say about Pn(f' x)?
M.Hasson [1]1 and D.Leviatan [2] have studied this problem rece

tly. The result of Leviatan is that, if f(x)GC[Ij1 17 then
I

(k) (k) C(N) -
(2) £, x) - p M (£,x) |5 K (0,(0)) k En_k(f(k))
where x€(-1, 1), - 05k$N, n2N. The new question is: Can iheqt

lity (2) be improved? About this, M. Hasson [ 1] raised a conjec
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‘e as follows:
Let N2 1, then there exsists a function fO(X)GC[ET l]for

+1 Sk £ 2N such that

p g, 1) o £,(1), n —

In this paper, we shall give a positive result to this con-
ecture. This means, that the inequality (2) can not be improved.

Theorem. Let N2 1, then.there exists a function.fo(x)eCEN1 1]

—— . ) ]

or N+1 £k < 2N such that

Lin £ (1) - p e, Dl - > 0

n >

Ol

Proof. Let n be an odd number,

[7]
n -2 -
Tn(x) = cos(narccos x) = Ekij ay x" 2k , where ag= 2n/n .
1
k (n=k-1)1 nook 2N, (2N)  — 7 n-2k+1
= (- S e . = T2y —
a = (-1) k!(n—2k)!2 i Spyp (X)=xTTT S (V i-x y_kiobkki .
n+1
5N _n-1
here by = (-1) 2 2 (n+l)n ... (n-2N+2),
X X X on-1 oL
N ! ) _ 2 n+2N-2k+1
Hppaep (X) = Jaxg Jax, .. [0S, gy dxoy R :
n+1l N
- - +1 o - 2N + 2

here C.=C_(n)= (-1) 2 n-1_(ntl)n (n )

o © (nt2)(n+3) ...(n + 2N + 1)
bviously,

(2N) _
Hn+2N+1(X) - Sn+l(x)’

sing the known inequality of Bernstein type

(2N) [ =y, < 2N =2N — < -2N 2N
I Tn+l (v1 x), < MN n An (V1 :@)__MN X n ,

hence

(2N)
(3) " Hn+2N+l

| < cyona™

Notice that on n+2N+2 points tk= cos(kn/ (n+2N+1)) ,k=0,...,n+2N+1,



we have
T hron+ () =Dk | T peone1 ,
so that
() Hppone1 (¥ = Proog(Hioggqr X)) = 2_ZNmnco(n)Tn+21\1+1(X)’

In view of the extreme properties of Chebyshev polynomials ([11)

k 2
5) [Ty < e =supt e s fen, le] <17 = ¢, 0m?X.

Take {nj} to be a sequence of odd numbers with

2N+2 .
nj /nj+l — 0, B B T
= . 2N+1 .
for example, nj+1— (2]+1)nj , and define
Hn£+2N+1(X) -
—_—ZNT— = hl(x)l i h (x) = fj(x)r j=0117°
n £ =3

2
Let 1< 1i<N. Due to (3), f (x)e;q?N and for 0<k<2N from
0 -1,1]

(k) 2N

| Bt | € 1Spanls me®

we got
(6) 199 ¢ eIt o<k <o,
] 3 J
From (4) ve get
- _ ,=2N-nj ~2N-2
hj(x) Pnj+2N(hj’ x) 2 J Co(nj) nj Tnj+2N+1(X)

and i1f combine it’with (5) we obtain

, (N+1) _ o (N+i) N 2i-2
(7) hyt ) Pnj+2N(hj, D | 2 cmny
Further, from £q(x) = Pnj+2N(fO’x)>= fj(x) - Pn.+2N(fj’ X)

we can write
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PREFACE

The third conference on Numerical Methods and Approximation Theory was held in Ni§
at the Faculty of Electronic Engineering, University of Ni§, August 18—21, 1987. It was
attended by 140 participants from 20 countries. There were 85 papers presented in three
sections.

Previous conferences were held in Ni§ (1984) and Novi Sad (1985) with 55 and 68
participants, respectively.

Two types of selected and refereed papers appear in this Proceedings: four leng survey
papers, based on 45—minute invited lectures, and 31 shorter research papers, presented at
the thirty— and fifteen—minute talks. The papers were submitted in the prescribed form
ready for copying. In both parts, Invited papers and Contributed papers, they are publi-
shed in the alphabetic order of the surnames of the first authors.

I wish to thank the members of the Organizing Committee and all the referees for their
voluntary work.

G. V. Milovanovié¢
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resent instant. Therefore the question: is it possible to re-
:onstruct a bandlimited function (to begin with) from its
samples taken exclusively from the past, i.e., taking into

iccount only those f(t) for which t <t.?

One answer to this question is the following: can one find

:oefficients 2yn €IR such that f can be reconstructed from its
samples taken at the points to-T/W, tO—ZT/W, to—3T/W, ... from

-he past, in terms of

) kT
a f(to —V\T)

1.2) f(to) = lim :

noe k kn

i ~13

‘or each to €IR? This would determine the value of £ at the
resent time instance t =to. It is the question of predicting

" from its past samples.

There are two problems in this respect: (i) the role of
T, naturally T € (0,1] - the closer T is to 1 the wider apart
can the sampling points to—kT/W, k €EIN be - and whether for each
T € (0,1} the existence of the predictor coefficients is guar-
anteed, (ii) the evaluation of these coefficients, i.e., the
construction of prediction formulae (1.2) in dependence on T -
the closer T is to 1 the nearer is the sampling rate to that of

the classical sampling theorem, namely the Nyquist rate 1/W.

Regarding the first problem, by applying a general result
due to G. Szegd (1920) or a more general one due to N. Levinson
(1940) one can show that for each T with O <T <1 there exist
predictor coefficients apn such that (1.2) holds uniformly in

tOEIR.

Regarding the second, Wainstein and Zubakow [25] (1962)

showed that (1.2) is valid with a, :=(-1)"""(?) providea
0<T<1/3; J.L. Brown Jr. [2] (1972) extended T to T <1/2 for

the coefficient choice ayn :=(—1)k+1(i)(cos nT)k. This result

was extended even further by W. Splettstoesser [22,23] (1981/82)

who showed that (1.2) holds uniformly in tOEIR for

B 1= DO TR gien 0 <1 <a7T are cos (-871)~0.5399.

Thus a sampling rate (even) larger than half the Nygquist rate



.s possible in predicting bandlimited functions with coeffi-

cients akn that are even independent of T. Generally, the closer
T is to 1, the more complicated will the coefficients 2y (de-

pendent on T) be.

The coefficients that are best, in the sense that the
mean square error is minimized, are the solutions of the lin-

ear system

A

(1.3) a, , si(r(k-3)TW) = si(njTW) (1 <3 <n)

fe~13

k=1

where si(x) =sin x/X. Since these are difficult to determine, and
because they depend on n, the foregoing sub-optimal coefficients

are more efficient.

Now it is known that a function being bandlimited is a
rather restrictive condition. Such a function cannot be simul-
taneously duration limited, and it is the latter class of Ifunc-
tions which actually occurs in practice. Further, beginning
with bandlimited functions f €L2(IR),then f can be extended to
the complex plane as an entire function (so one that is ex-
tremely smooth) that is of exponential type 7W. The next ques-
tion therefore is whether prediction can be carried out for
functions that are not necessarily bandlimited. In this respect

W. Splettstoesser [24] showed that if the (r+1)th derivative

f(r+1) €EC(IR) ( =space of all uniformly continuous and bounded
functions on IR), then
n
sap [£(8) = ] =1 (cos wm)* £(x —%)I
(1.4) tE€IR k=1
= 0[(1 +cos 7T)" wrl oy (sin =T)"VW] (n,W +w)

for each O <T <1/2. Since both terms on the right of (1.4)
contain a factor tending to zero and one to infinity for

n,Ww +«=, one has to choose n in dependence on W (or vice versa)
such that both terms still tend to zero. It turns out that all
the sample instants accumulate at t for n,W +«, The details are

to be found in [24].



The disadvantages in the prediction procedure described
so far are (i) the sampliag rates are just T/W with O <T << 1
instead of the Nyquist rate 1/W; (ii) the sample points in (1.2)
depend on t, thus all the sample values have to be computed or
measured anew when the series . are to be evaluated. for another t;
(iii) in the case of prediction of not necessarily pandlimited
functions generally the number of samples plus the distance be-
tween the sample points has to be regulated appropriately (re-
call (1.4)); (iv) to improve the approximation of f by the se-
ries in (1.2) or (1.4) the number n of samples has to be in-
creased; (v) the sampling series (1.2) does not have the (clas-
sical) convolution structure for sums as given by the Shannon

series (1.1).

To avoid these disadvantages, let us try to reconstruct

functions from its past samples by the convolution series

© _ T k _k
(1.5) (Spf) (£) == kz{_ £() @it -5))

o

for W +=, where the kernel ¢ will be assumed to be continuous
and have compact support contained in [To’T1] for some

0 <TO <Ty. This means that ¢@(Wt~k)#0 only for those k €Z for
which k/W € (t —T1/w,t —TO/W), so that only a finite number of
samples taken from the past will be needed to evaluate (1.5),
and this number will be fixed for all £, W and t. Increasing

W in the series (1.5) will only mean that the distance between
the sample points will decrease. Further, f need not neces-
sarily be bandlimited. Of course, the coefficients ¢(Wt -k)
depend on t, but the evaluation of ¢ should be simpler than

that of the signal £ to be sought.

It will be seen that our results enable one to predict

or extrapolate the value of a signal even arbitrarily far ahead

of the sample values,

The aim of this paper is to present a well-motivated over-
view of recent results obtained at Aachen in the matter. Most

of the details, including the proofs of results stated, are to be



found in [ 7]. See also Chapter 5 of [ 6] which deals with
prediction theory. Regarding the specific examples of Sections
2.3 and 4, they are treated here for the first time in actual

detail.

For a continuation of the above approach of Splett-

stoesser in the matter, see especially [231, [181, [19].

Connections of the present study with the basic work of
A.N. Kolmogorov [12] (1941), N. Wiener [26] (1949) as well as
of M.G. Krein [14] (1954) in the subject will be sketched in

Section 6.

Concerning possible applications, one of the main ones
is to speech processing, see e.g. [17], including differen-
tial pulse-code modulation [10]. Further applications are to
economic prediction and forecasting, see e.g. [1], to geo-

physics and medicine, see e.g. [16].

2. PREDICTION OF DETERMINISTIC SIGNALS

2.1, GENERAL RESULTS

Let us now study sampling series of the form(S&f)(t),
defined in (1.5), where the si -function has been replaced

IR) ( =those f €C(IR) that have compact

©
W
operators from C(IR) into itself, with the operator norm

by a kernel ¢ ECOA

support). Firstly, S f defiﬁes'a family of bounded, linear

m_ () (w>0),

P =
”SW”[C,C] = m,

mr(@) denoting the absolute (sum) moment of ¢ of order

r EINO, namely

S

m_(p) := sup ] [e=k| ¥ o (t-k) |
tEIR k==-eo

Denote the Fourier transform of g EL1(IR) by



ghv) =(1//21)f g(t) e TVtat (v €IR).
Proposition 1. Let ¢ EC%AIR). The following three assertions
are equivalent: )
(1) lim (SP£) (t) = £(t)

W w

for each f €C(IR) and each t €1R;

o

(ii) J @(t-k) =1 ' (each t €IR);

1/V2n , k =0
(ii1) o™ (2kw) =
o , k€rm\ {0}

Proposition 2. Let ¢ ECCéIR), r €N, If, in addition to the

properties (i), (ii) or (iii) of Proposition 1, there holds

(1i)* I (t-k)3 o(t-k) = 0 (§ =1,2,...,0-1; t €IR)
k==

or,equivalently,
(1ingx "3 km = o (§=1,2,...,0-1; K€ %)

(for r=1 only one condition of Prop. 1 need hold), then there
hold the estimates

m_ ()
)y T (g €CT(IR); W >0)

® r
(2.1) HSWg —gHC < -7 g c

llS%f ~fl, < Ko (W ;£;C(IR)) (f EC(IR); W >0),

the constant K depending only on ¢. In particular, if
£ €Lip(a;C(IR)), O <a <1, then

-r+1-a

A - = oo
HSwf fHC = 0w Y oo W

Above, mr(é;f;C(IR)) stands for the rth modulus of con-
tinuity of £ €C(IR), and Lip(o;C(IR)) for the Lipschitz

class of order a. Regarding the foregoing propositions, see



e.g. Ries and Stens {21], [ 5]. Conditions of the type (ii)*,
(iii)* were already used in connection with finite element

approximation in Fix and Strang [9].

2.2, CONSTRUCTION OF KERNELS

Fejér's kernel F, defined by

5

) 2
._ 1 ]sin t/2 A _ 1
F(t) =eT [-W*—] , Fl(v) = >

satisfies property (ii)* for r=1. Likewise does de la Vallée
Poussin's kernel. However, these kernels have unbounded sup-
port. The best examples of ¢ having compact support are the
so-called central B-splines of order r >2, defined by

B 1 T k ,r r r-1
Mo (8) = T Z_ -k)

where tf =max(tr,o), their Fourier transforms being simply

_ sin v/2,r
Mr V) = ‘/5_; (—-‘V—/‘T——) (V EIR).

The Mr are piecewise polynomials of degree r-1 having support
[-xr/2,r/2]. It is compact, but not contained in (0,«), as re-

quired.

Let us now construct Kernels without the latter defi-
ciency for which Proposition 2 holds by taking appropriate

linear combinations of translations of the Mr'

Proposition 3. For €s €IR and r €W, ¥ =2, let a

14

Tha
p=0,1,...,r-1 be the unique solutions of the linear system
st ] (5)
(2.2) pzo a y (Cilegtu))” = (1//2x u2) M0 (0)  (5=0,1,...,r-1)

where i =v-1. Then



e () = ] a M (t-e_-u) (t €1IR)
u=0
is a polynomial spline of order r satisfying conditions (ii)
and (ii)*, having support contained in [TO,T1] with
To =€, -r/2, T1 =€, +3r/2 -1.

Since Mg is even, the right side of (2.2) vanishes for

j odd. So the solutions aur are all real.

Corollary. In regard to @r(t) there holds for

£ enip(aic(R)), O <a <1,
0] _ _
(2.3) Is, £ -fl, = 0w T

For a proof of Proposition 3 see Butzer and Stens [7].
In order to solve equation (2.2), one needs to know the de-
rivatives (T/Mg)(J)(O), at least for small, values of r. This

can be achieved with the aid of the expansion

2 .\r . 2k
(/2T } b, v (|v] <2m),
sin v/2 k=0 kr
. 2k
b e (e ZeEEIE T )1 x T(2k41,1)
kx -~ r! 120 r+l1 (2k-k) ! (2k+1) 1’

where T(k,1l) are the central factorial numbers of the second

kind.

These derivatives can be taken from the following table

which could readily be enlarged.

Table 1: (1//2?»4;)(3)(0): r=12,3,4,5; j=0,1,2,3,4.

NJ| o 1 2 3 4
2 T o - - -
3 1 o 1/4 - -
4 1 o 1/3 o -
5 1 o 5/12 0 9/16




2.3, SPECIFIC EXAMPLES

1. Take r=2, e_=2, so that €6 >r/2 and [To’T1] =[1,4]. The

system (2.2) then reads, noting Table 1, 459 +a12 =1,

aOZ(_Zl) +a12(~31) =0 for which agy =3, Ao =-2. Hence

(t-2) - 2M_ (t-3) ;

wz(t) = 3M 5

2
the associated sampling series (1.5) involves only those
samples at k €Z for which k/W € (t -4/W,t -1/W). For example,
if t would lie in the interval (1/W,2/W), the series consists
of three terms only, namely for k =0,-1,-2 for which

k/W <t -1/W <t. If £' €Lip(a;C(IR)), then by (2.3),

() = ) £4
k=00

) o, (wemxdl, = 0w %),

enabling one to predict at least 1/W units ahead with error
0w 'T%). If £" €C(IR) with [£"l, <M, so that a=1, then, ac-
cording to (2.1), the large-0 constant in (2.3) is Mxnz(w2)/2!,
which is bounded by 15M (a fact which cannot bhe derived theo-

retically but by employing a computer).

If one would take r=2 as above, but €5 >r/2 arbitrary,

then [T_,T,] =[eo—1,eo+2], and
wz (t) = (1+Ed) Mz(t—eo) - EOMZ(t—EO—1)

Here the samples are taken'at k €z:

k/W e(t—(ao+2)/w,t—(eo—1)/w). In particular, if so=8 and

t € (2/W,3/W), the series consists of three terms at k =-5,-6,
-7, for which k/W <t-7/W <t. Whereas this is at least 7/W
units to the left of t, the prediction instant, it was only
1/W units in the case of the kernel @, . Thus the kernel w2,€
allows one to predict much. further ahead with the same number

of sampled values (the constant m will, however, be

(0 )
2'72,e4
much larger than 2:15). In fact, this procedure even enables

one to predict or extrapolate a signal arbitrarily far ahead.



2. Now take r=3, eO=2, so that [To’T1] =[1/z, 11/2]. The

system (2.2) now reads

agy t 333 tazy =1
-21 a5z ~ Bia13 - 41 a3 = 0
4 agy *+ 9313 + 16 a,4 = 1/4
which has as solutions a3 =47/8,'a13 =-62/8, a5 =23/8.
Whence
_1 . _ - -
(2.4) o5 (t) = g [47M, (£=2) 62M, (£=3) + 23M, (t 4)1 ,

the sampling series now consisting of those k €Z for which
k/WeE(t-11/2W,t -1/2W), thus of five terms for which
kK/W <t ~1/2W < t.

In particular, if I£'"ll, <M, then I —S;3fllc <M-54W 3,
noting that m3(w3)/3! <54.

3. Let us finally take r=4, e _=3, so that [To’TT] =[1,8].
By solving a system of four equations in four unknowns one

can readily show that

_ 1 - _ _ _
w4(t) =z [115M4(t 3) 256M4(t 4) + 203M4(t 5)
- 56M4(t—6)]
This time the series consists of seven terms (at most), namely

those k €% for which t -10/W <k/W <t -1/W <t. In particular,
if Hf(4)HC < M, then the corresponding rate of approximation
can, in comparison with Example 1, be improved to 970-M W_4.
By enlarging the eo( >4) one could again -achieve that, in-
stead of being able to predict just (at least) 1/W units
ahead (from k/W ( <t ~-1/W) to t), one could even predict

(50—2)/W units ahead. Then of course the kernel ¢, (t) would

4
take on a different form.

In case r=5, e0=3 so that [TO,T1] =[4/3,19/2]1, then



1

<o5(t) = 7753 {36767M

(t-3) - 108188M_ (t-4)

5 5

+ 127914M5(t-5) + 14927M5(t—6)} .

Here seven samples will be needed, the order of approximation

(5))

being O(W—S) provided | £ C”<M. The constant in the order

ig however large; in fact ms(ws)/S! <3400.

More generally, if f(r) €EC(IR) with Hf(r)ﬂc <M, it is
possible to constructa kernel wr(t) such that the number of
samples needed in the convolution sum is just 2r-1 and the
associated order is O(Wnr). However, the constant will be
correspondingly large. By this method one cannot increase the
approximation order by taking more samples without increasing

the order r of wr(t).

Observe that it is an open question whether there exists

ur’ W=0,1,...,x=1 of (2.2).

So far the construction can be used in actual practice only

a closed form of the solutions a

for smaller values of r. However, as already the simplest
Example 1 shows, even the case r=2 gives the pretty good rate

15 MW 2, W +w, if £, <.

3. TIME-JITTER AND AMPLITUDE ERRORS

It is especially easy to treat time-jitter errors in
this frame. These arise when the sample instants are not
correctly met but might differ from the exact k/W by Gk, sO
that the sampled values are now f (k/W +6k). Here one is in-
terested in estimating the error occurring when £(t) is ap-
proximated by the series ledf(t) :=2mk=_wf(% +6k)®(Wt—k).

This error can be split up as

|£(t) ~s?

w, s E O] < [£(e) ~sPEe) | + (3 6) (),

_ s k k _
(Ief)(e) =] 1 LR ~fG+e)] elie-k |

being the so-called total time-jitter error. It can be esti-



mated in terms of the modulus of continuity, assuming
1sk| <¢§, k €%, by

o

| (7,£) ()] < {supll £(-) —f (480, {sup Vo Je(e-k) |}
kez tEIRk=-x
< mo(w)'m1(6;f;C(IR)) (t €TIR) .

As a consequence we have

Proposition 4. There hold

a) [EXED) —k:Z_m flm e )om-k)l,
< -g¥ . L f €C(IR)) .
Il £ swfllC + mo(q)) mT(s,f,c(IR)) (f (IR))
b) If f €Lip(a;C(IR)), O <a <1, then, provided § <1/W, W=1,

the order in part a) is given by O(W_a).

Note that this order cannot be improved even if f pos-
sesses derivatives of arbitrary order. On the other hand, if

W_1 <§, then the order in part a) is 0(8%y.

Thus the prediction series S&f(t) exemplifies stability
with respect to the sample points, a small error in each of
the sample points produces a correspondingly small error in

the prediction series.

There is also the amplitude error (Aef)(t), arising if
the exact sample values f(k/W) are not at one's disposal but
only falsified values f(k/W), differing by €k :=f(k/W)-T (k/W)
with | €k|
due to rounding-off, guantization or noise. The total ampli-

<e, k €%Z, for some € >0. This falsification may be
tude error

. (] _ %
| (A £) (£} [ == [ (S5F) (t) - (s

so that the error occurringwhen f(t) is approximated by

Sﬁf(t) can be estimated by



proposition 5. There holad

a) T T el -l

< S‘Lf -f +e m [0}
k=—c ” \ ”C O( )

by If f €Lip(a3C(IR)), O <o <1, then the .order. in part a) is
oW ¢) provided e <w"1, W>1.

Thus the prediction series also illustrates stability
with respect to the function values, a uniformly small change
in the function values at all of the sample points produces

a correspondingly small change in the prediction series.

li, PREDICTION OF DERIVATIVES £ () By %AMPLES OF £

(s)

Let us now consider the prediction of derivatives £
of a signal £ by samples of f only, in terms of derivatives

of Sv(sf, i.e., of

©, (s) _,d.s .0 _ .5 v ky . (s) -
(8) TIE(E) = (3p) (Spf) () =W kj.x £ o~ (We=k)
(s EINO)
Proposition 6. Let ¢ ECéi)(IR) satisfy (ii), (ii)* for some

r >s+1 with s €IN_, r €IN. Then(S%)(S% defines a family of
bounded, linear operators mapping C(S)(IR) into C(IR), with
norm
(s)
¢ (s) me (@)
sy e ts) o — (W >0)
Further,
(s)
oy (s)  _ (s)y, M) ey rs
H(Sw) g -g ”C 1 g ”C
(g ecT) (my; w0,



1 e _e ) c ke Ve o (my)

W C r—s
(£ ec'®) (mR); wso0).
In particular, one has for £ EC(S)(IR),
, a.s _,4,s
Lim (G5)° (5,5) (8) = (D) £ (%)
W
uniformly in t €1R; if £ 571 €Lip(a;C(IR)), then
s Sk o e () —o ™Yy e,

These results would enable one to.predict the speed or

acceleration of flying objects.

Let us consider an example. For this purpose we begin
with example 2 of Section 2.3 where r=3, 50:2,
[TO’T1] =[1/2,51/2]1 and w3(t) is given by (2.4). Let us
apply Proposition 6 to w3(t) in the case s=1. Noting that

MIGE) = M__ (€ +1/2) - M__ (£ -1/2) (t €IR),

1 .
—§[47 Mz(t— 3/2) - 1O9M2(t -5/2) +85 Mz(t— 7/2)

£
w-
o+

It

- 23M2(t -9/2) 1.
Here wé €GdIR) . In particular, if f(2) €Lip(a;C(IR)),

O <o <1, then

[+

tw f(%)wé(Wt—k) - £ (e, = 0w 1Y)

This result enables one to predict the derivative f£'(t) in

terms of a series which involves just five samples of f

which all lie to the left of t -1/2W <t. If Hf(3)HC <M, then

the large -0 constant is given by M m3(m§)/3!.



5, PREDICTION OF RANDOM SIGNALS

Signal functions are often of random character, random
signals play an important role in signal processing and sam-
pling prediction. For this purpose one often uses stochastic
processes which are stationary in the weak sense as a model.
Given a probability space (Q,A,P), a real-valued stochastic
(random) process, namely an A-measurable function
X =X(t) =X(t,w) of w €9 for each t €IR, is said to be weak

sense stationary (w.s.s.), if its autocorrelation function
Ry (£, t+1) 1= [ X(t,w)X(t+1,0)dP (u)
Q

is independent of t €IR, i.e., Rx(t,t+T) =RX(T). Here X is
assumed to belong to L2(Q), i.e., the norm
1/2

(5.1) IX(t, ), == {flx(t,m)|2d9<m)} := (B[ |X(t) |
Q

2]}1/2
is finite for all t €IR. Note that RX(T) is even in T,
HRXHC =RX(O), and the norm (5.1) is independent of t,

. 1/2
equalling HRXHC .

For the prediction of such a process X €L2(Q) let us

consider the prediction series

(59%) (t,u) := kzzm X(%,m)w(Wt—k) (t €R).

It defines a family of bounded, linear operators from LZ(Q)

into itself, with

. 1/2

© _ k-u
ISeX (e, i, = {k ué_w Ry (S577) @ (We-k) @ (We-u) )
< Ry (0) /2 m_ (@) = m_ (@)X,

Proposition 7. Let ¢ €C (IR) satisfy (ii), (ii)* with r-1
oo
replaced by 2(r-1) for some r €IN. If X is a w.s.s. process

with x‘T) €12(q), then



(m (@) +3)m, (9)Y1/2
(Bl |sx -x| 2112 <<{ 0 2x }

2r!

(r);2,,1/2
(B X, 1} (t €IR; W >0).
r
W
There exists a constant K >0 such that for any w.s.s. pro-
cess X ELZ(Q), continuous in the mean,

/2 < Kwr(W_1;X;L2(Q)) (t €ETR; W >0).

2

{E[lswx x|“1}

Regarding proofs in the case of random processes, one
reduces the matter to the deterministic case, namely from
assertions dealing with the random process X to those con-

cerned with the deterministic function RX’ by the following

basic connections:

i) the rth derivative (in mean) X(r) exists at to €IR if

(2r) .
RX €C (IR) ;
i1) w (8:%:L5 () = fu,_(8:R;0(1R)) /2
ii1) B89 -x|2] =R.(0) - 2 T Ru(X-t).@(Wt-k) +
w X ot Txlw
+ 51? N RX(—%J—)Lp(Wt-k)' @ (Wt-u)
k,p=-w
< (m_(©)+3) sup [(85t R,) (t) - (1 _R,) (t)
[¢} WETR l W uX Tutx

where (Tuf)(t) =f(t-u).

The following table gives the best possible order of
approximation according to Proposition 7 for the kernels P,

of Section 2.3.



Table 2

Kernels wz w3 w4 !

Orders 0(w

6. THE APPROACHES OF WIENER AND KREIN IN COMPARISON

Let us finélly roughly compare the present approach with

the work of Wiener [26] and M.G. Krein [14] (1954) in the
matter. For this purpose let us express our convolution sum
(1.5), thinking of the commutativity of convolution products,

as

£(t -£y0(x)

(6-1) I f@emit-£)= X

"
Although the two sums are generally not equal (except under
special conditions, see [ 6]), it is nevertheless also pos-
sible to set up our approach to prediction for the right
hand one (using parallel arguments, see [ 7]). If ¢ has com-
pact support in [TO’T1]’ then the right sum only runs over
all k with TO <k <T1 so that one can see from it right off
where the prediction points lie, namely to the left of t at

t -k/W, ..., t -1/W.

Now Wiener's aim was to predict the future at time t
from the whole past f(u): -« <u <t—eo, €6 >0 prescribed, in
a non-discrete setting (where our sum is replaced by an in-
tegral). In fact, his aim was to minimize as a function of
the kernel ¢ the mean-square error
T
. 1 2
lim == [ |£(t) - [ f£(t-e_-u)e(u)du|at
2T o}

T-ro0 -T

O— 8

He showed that his problem amounts to solving the integral

equation



R(t-¢ -u)é(u)du ‘ (t=2e ),

(6.2) R(t) = o . o

O— 8

where R is the auto-correlation function,

T
R(t) := lim E% [ f£(t+u)f(u)du
Teo -T

Now it is to be emphasized that the equation (6.2) only holds
for t >eo, and not for all t €IR. So it is not solvable by
routine Fourier methods. The so-called Wiener~Hopf technique
(of 1931) has to be employed. In this respect Wiener notes
[26; p.65] that there are "limitations and precautions which
must be observed" in solving (6.2)'and illustrated his meth-
od by several examples. In fact, Dym and McKean add [8 ,
p.92] "it is not clear how to proceed much further in the
present direction save by examples". In any case, for a for-
mal derivation as well as exellent coverage of the matter

see the treatment in [ 8] pp. ix, 2-5, 82-96. For good in-
formation concerning effective computation see Lee [15],

pp. 354-439, Kailath [11]1, also Noble [20]. For further lit-
erature see the extensive reference lists in the commentaries
on the work of Wiener by P. Masani, H. Salehi, T. Kailath,
P.S. Muhly and G. Kallianpur in [27].

Now the problem treated in this paper is actually that
of predicting the future from only a part f(u) :-T <u <t—eo
of the past, in the case of discrete u. Especially in the
non-discrete case was this problem solved by Krein [14]; it
required even much heavier machinery than that of the
(Kolmogorov)-Wiener problem, namely a so-called "method of
strings" in the context of operator theory, complex function
theory and Hardy functions, wave and spectral functions,all
combined with the theory of spaces of entire functions (in
the sense of de Branges {3]). This theory was carried out in
expert fashion by Dym-McKean [8] pp. 146-278, applied to the
actual prediction problem on pp. 279-91; there is an over-—
view on pp. 5-9. However, as these authors write (p. X): "it
is hoped that electrical engineers and other people dealing

with the practical aspects of prediction will find in it



[our volume] something to interest them too, though it has to
pe confessed that the computations to which the theory leads
are usually difficult to perform and that their statistical
content is often obscure; in fact, much remains to be done to

clarify the statistical content of the whole subject."

The methods needed to prove the results of this over-
view, presented in [7] are, in comparison, elementary indeed.
Thus Proposition 1 is based upon a simple application of the
Poisson summation formula of Fourier analysis, Proposition 2
upon Taylor's formula and elementary approximation theory,
while Proposition 3 uses elementary results on B-splines (to-
gether with some new results on central factorial numbers).
Proposition 7 shows that the treatment of random prediction
theory can essentially be reduced to that of the determi-

nistic situation so that no separate approach is necessary.

Most of the results discussed in this overview érose
from guestions posed by electrical and communication engi-
neers in the course of some seven years of cooperative work.
It is to be expected that they can also follow the proofs.
The fact that the matter is indeed easy to apply has been

demonstrated with the various examples.
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SOME NEW INEQUALITIES FOR THE ZEROS OF LAGUERRE POLYNOMIALS*
LUIGI GATTESCHI

ABSTRACT: It is shown that certain approximations for the zeros Ar(flz of the
Laguerre polynomials Lfl“) (x), o > -1, are upper or lower bounds. These
bounds involve the zeros of the Bessel function J, (x) or the zeros of the
Airy function Al (x) and are obtained by using the Sturm comparison theorem.

1. INTRODUCTION

In a recent paper [3] we have obtained some inequalities for the zeros of
Jacobi polynomials. In this paper we will apply the same technique to derive
bounds for the zeros Xéf‘ﬁ, k=1, 2, ..., n, of the Laguerre polynomials
L (x), a > -1.

To this purpose we need the well-known Sturm comparison theorem in the
following form given by Szegd [5, p. 19].

THEOREM 1.1 (Sturm's comparison theorem). Let f(x) and F(x) be functions
continuous in x, < x < X, with f(x) < F(x);Let the functions y(x) and

Y(x), both not identically zero, satisfy the differential equations
(1.1) y”+f(x) y=0 ,Y" +F(x)Y=0,

respectively. Let x"andx”, x’ < x”, be two consecutive zeros of y(x). Then
the function Y(x) has at least one zero in the interval x’ < x < x” provided
f(x) # F(x) in [x7, x”"].

The statement also holds for x’ = x, [y (x,+0) = 0] if the additional con-

dition

* This work was supported by the Consiglio Nazionale delle Ricerche of Italy and by the
Ministero della Pubblica Istruzione of Italy.
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(1.2)  lm [y'(x) Y(x) -y(x) Y'(x)] =0

X X0

is satisfied (similarly for x” =X,).

The differential equations that we shall use as comparison equations are
the ones used by Erdélyi [2] in deriving uniform asymptotic approximations
for the Laguerre polynomials. Such equations can also be obtained by apply-
ing Olver's theory [4] to the asymptotic study of the Laguerre differential
equation near the singularity x = 0 and near the turning point x = 4n + 20 + 2.

Let us recall the following ineq{lalities and asymptotic results.

THEOREM 1.2 (see Szegd [5], p. 127). Let o > 1 and et MY k=1, 2,

.., n, be the zeros of L\*) (x) in increasing order. Then

22
Ja,k

(1.3)  AlY > ,V=4n+20+2,

fork =1, 2, ..., n and where j,_, 15 the k-th positive zero of the Bessel
functions JH(X). Furthermore, we have for a fixed k, as n = w,

22
(1.4)  A@) = Jex o p2)
! v
Tricomi [7] gave an improvement of (1.4), but its validity remains still
restricted to the case of a fixed k.
THEOREM 1.3 (see Szegd [5], p. 131). Let a,, k=1, 2, ..., be the geros in

decreasing order 0 > a, > a, ..., of the Airy function Ai (x).

If lal > 1/4, a > -1, then
(1.5) AY < v+ va T,

fork=1,2, ..., n and where v has the same meaning as in (1.3). Further-

more, we have for fixed n-k, as n = «,
(1.6) A = [vi2 4295y (a +6)T,

where 1lim g = 0.
N

Here the notations for the Airy function Ai(x) and for the zeros a, are

different from the ones used by Szegd; he uses i, = -3 a, instead of a,.
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A simplified form of a formula due to Tricomi [8] is given by the following:
THEOREM 1.4. Let o >-1 and let x%) be the root of the equation

4n - 4k + 3
—_—7

(1.7) x-sinx-=
v

Then we have

(1.8) ALY =vcos® (x{% s2) +0 (n),

for the zeros which belong to the interval (av, bv), where a and b, 0 < a
< b < 1, are fixed positive constants.

Recently, Temme [6] has obtained an interesting asymptotic representa-
tion of A{%) which involves the zeros of the Hermite polynomial H,(x). This
representation gives good numerical results expecially for large values of

the parameter o.

2. AN UPPER BOUND FOR THE ZEROS OF L{% (x)

We shall refer throughout this paper to the differential equation

a % 1 1-a?
(2.1) y+[—<———l>+-——-—]y=0,
dt? 4 t 442
V=4n+20+2, 00> -1,
which is satisfied by
(2.2)  y(t) = €7 (vt)r@d (@ (yg),
Now we observe that the function
172
(2.3)  2(8) = (—) T, [r (2]
satisfies the differential equation
2
(2.4) +F(t) z=0,
where
1 f./// 3 f// 2 1 10/ 2 ,
(2.5) F(t) = — = - + <-——a2> < > + 72,
2 £ 4 r 4



The equation (2.4) can be used, by assuming

v
(2.6) £(t) =— [(t~t?)¥? + arcsin t¥?], 0 < t < 1,

2
as a comparison equation to derive, by means of Sturm's method, inequalities
for the zeros A%,k =1, 2, ..., n, of Lg") (x).

n,k?

This requires the study of the function

(2.7) G (t,a) = F(t) - |

~ls

_ 2
(o))

for 0 < ¢ € 1, or, more simply, of the function .

tG(t,a)

(2.8)  6¥ (t,a) =
' 1-1

which 1s analytic at t = 0. Indeed, it is easily seen that

1/4 - of , 384 (1-02) (1-t)?

(2.9) o (t,a)
[(t-t2)* + arcsin 272 16t (1-t)°

i

and that

2 _ 2 _
(2.10) ¢6* (t,a) ¢ 1+13a 37

t+0 (7).
. 6 60 ()

LEMMA 2.1. Let 0® = 1. Then G¥ (¢, + 1) < O for 0 < t < 1. The equality
sign holds if and only if t = 0.

We have

- 3t . 3-8t
[(t=t?)¥? + arcsin t7)? 4(1-1¢)

(2.11) 4t 6* (t, £ 1) =

First we prove that the property G¥ (t, £ 1) < 0, which is trivial for
3/8 £ t < 1, holds in the interval 1/16 < t < 1. Indeed, by observing that

the function

t
u(t) =
[(t-t2)¥? + arcsin tV272

increases in 0 < t < 1 and that the function
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3-8t

R PN YE

decreases in 1/16 < t < 1, we obtain for 1/16 < t < 1,

4tG*(t,:b1)<—j’u< 1 > 1

1
—1? +7v <?> < 0.

For the remaining interval 0 < ¢t < 1/16 we use the inequality

12) ! s> 1t> 0<t<1
2. (14—
( [(t-t2)*? + arcsin t72)? 4t < 3/’ ’
and we set
(2.13) —— =1+3t+a(t) ¥
. ——— =1+3t+a

(1-1t) ’

where
1
a(t)= |————1-3¢
(1-t)° } £2

is an increasing function in 0 < ¢t < 1. Then from (2.11) we obtain

40% (t, + 1) <i—j~< 1+i> + <%—2 ) [1+3t+a(t)t?]

a(t)
4

:3[ —2]t—2a(t)t2,

4G%(t,:f:1)<}{a(4t)—2 2
which, beinga(t) < a (1/16) =6.689...if 0 < t < 1/16, completes the pro-
of of the lemma.

LEMMA 2.2. Let G (t, a) be the function defined by (2.7). In the interval
0 <t <1, G(t, @) has at least one zero if @® > 1 and is negative if
a? < 1.

For the proof we use the function G* (t, a), defined by (2.8), which is

continuous on 0 < t < 1. From (2.9) and (2.10) we obtain, if a® > 1,

1im G¥ (t, @) = - =
t—1-0 .



and 2

1im G¥ (t, a) =——— > 0,
t = 040 6

respectively. Therefore, the first part of the lemma is proved.
We now observe that G* (t, a) increases with respect to the parameter 2.

Indeed from (2.8) we have

aGx -1 1

3 (a2)  [(t-t2)Y7 + arcsin t¥2]? T (1-t)

and setting t* = sin ¢ we find

e -1 1
= +
a (a?) [sin & cos & + JJ? 4 sin® & cos® I
-1 1
) 1 1 20 .7 =0
sin?2d | — +— gin® 2
2 2 sin 24

for 0 < ¢ < w/2. Hence, by using Lemma 2.1,
G¥ (t,a) < G*(t, 1) <0,0< t <1,

when o < 1.

The property G (t, @) < 0, if 0 < t < Lland -1 < o £ 1, established by
Lemma 2.2, enables us to compare the zeros of the solution y (t) of the equa-
tion (2.1) with the positive zeros of the function z (t) defined by (2.3)
and (2.6).

We notice that

1/2

(;) = (21) ( 1+%t+...>,0<t<1.

Therefore, by means of the series representation of J, (z), we obtain
(2.14) z(t) =@ (g, +a, t+...), 0 < t < 1,

with a, # 0.
Now, let -1 < @ € landlett,, = 7{%, k=1, 2, ..., be the zeros of z(t)

in0 € t < 1. We have
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v
(2.15) 1,,=0, - [(r,, - 72 )% + arcsin Tod = Juw

This follows by observing that £(t) is a positive increasing function in
0 € t € 1varying from 0 to vi/4 and that (see Watson [9], p. 497) the number
of the positive zercs of x%J (x) between 0 and n 7 + /2 + M/4 is exactly n.
The condition (1.2), which is required when we apply Theorem 1.1 to the
interval [0, 7,,], is satisfied if o > -1 since, from (2.2),
y (t) =t (b +bt+...)
and consequently, by using (2.14), we find that
y(t) s’ (t) -~z (t) y’ (t) =0 (ts),  t= 0.

We may conclude that each interval

Tn’k_1<t<Tn‘k,k=l, 2, vu., D0,
s (a) = (a)
contains exactly one zero t\% , k=1, 2, ..., n, of Li* (vt).
Or, in other words: for the zeros Xéf‘g ,k=1,2, ..., n, of Lff‘) (x),

if -1 < o £ 1, we have
(2.16) A4 <vtl,k=1,2,...,n.

This is the main result of -this section. It can be stated in the following form.

THEOREM 2.1. Let -1 < a £ 1. Let Xr(‘“lf be the root of the equation

4 4 .
(2.17) x-sinx =7 - -—‘]ﬂ , V=4n+ 20+ 2,
v

where J, , 1s the k-th positive .zero of Jq(x). Then the k-th zero Xé“‘ﬁ of
L% (x) satisfies the ineqizality
(2.18) A4 < vcos? (x(%/2), k=1,2, ..., n.

Indeed, by setting t¥2 = cos &, the equation £(t) = j, , becomes

4 Ja

1

2P -sin2d=m-

Thus, for the zeros r]g‘_‘k), k=1,2, ..., n, defined by (2.15), we have

szﬁ = cos” (’(,(('}/2)



3. INEQUALITIES INVOLVING THE ZEROS OF THE AIRY FUNCTION

We shall use in this section, as comparison equation, the differential

equation

d?u

(3.1)

+H{(t)u=0,

with

nh’ 4

1 h” n” 2
(3.2)  H(t)=— ’ (
2

which 1s satisfied by

(3.3)  u (%) = [0'(t)]%2 AL [n(t)],

where Ai(x) is the Airy function of first kind.
It will be useful to recall some properties of Ai (x) and their zeros.
The function Ai (x) has no positive zero and infinitely many negative zeros,
1t is positive for x > 0 and A1’ (x) = 0 as x = . More precisely, we have
a8 X = + .
Al (x) ~ —;— 712 x4 exp <—i x3/2>,

(3.4)
. 1 2
ALY (x) ~ = vz - X
p x exp < X- >-
LEMMA 3.1, Let a, k=1, 2,
Ai (x). Then

(3.5) - [%<4k~ %) 7tr/j< a, < - [% (4 k-1) m ]2;/}

.., be the zeros in decreasing order of

k=1,2, ...,

For the proof we first consider the cylinder function

Cu(x) =7, (x) Cos @ - Y, (x) sin @,

with 0
S@ <_ Tt and where Y, (x) is the Bessel function of second kind. The
positive ger _

C8 Cupr k=1, 2, ..., of C, (x) satisfy, when -1/2 < o < 1/2,

the inequalities of Schafheitlin [9, p. 490]



1
—— <a< —, k=1,2, ... .
2 2

Next, by using the representation of Airy's function in terms of Bessel

functions

1
AL (=x) :—3—" \/—;[Jl/:? (&) + J—l/j (&)1, & :,g X2,

and the formula
J,, (8) =J,,(2) cosn/3-7,, (z) sin n/3,
we obtain
Al (=x)= / [J,,; (§) cos /6 - Y, (£) sin n/6], & = 2 X2,
3
Then, (3.6) with ¢ = n/6 yields

4 k-1 2 24 k-5
y 72'<—3“ (“ak)}/2<T7f) k=1,2, ...,

that is the inequalities (3.5).
In order to compare the equation (3.1) with the Laguerre equation (2.1),

we agsume in (3.2)

3 2/3
—y2/3 [7 [arccos t12 — (t—t2)2] ] ,0< t< 1,
(3.7)  n(t)=
3 : 2/3
vz [7 [(t?~t)¥2 - arccosh t1/2]] Lt > 1.
We find
5 1-t 3-8t V2 (1-t)
(3.8) H(t) =— + + ,t >0
36 tw(t) 16 t? (1-t)? 4t
where
[arccosti? — (t-t2)1212, 0 < t < 1,
(3.9) w(t) =

? - [(t*~t)¥? — arccosh t¥2]2, t > 1.

The following lemma holds.



LEMMA 3.2. In the interval 0 < t < + », the function

(3.10)  Q(t, a)=H(t)—[—:i<*i“l)+“17—‘£i} ’

with H (t) defined by (3.8) and (3.9), is negative if 0z < 1/4, is positive
if @* > 4/9 and has exactly-one zero if 1/4 < o2 < 4/9.
For the proof we write @ (t, a) in the form

1 1
Q(t, a)= —27;2—[(1 (t)+q2“ 7 ’

where
~ 5 t (1-t) t (2+3t)

e R RTIE

with ¥ (t) given by (3.9). Then it is easily seen that the function g (t) is

negative and decreasing for 0 < t < «. Further, we have

-7
q(0) =0, tlirz q(t) = %

vhence the lemma readily follows.
We can now derive this final result.

THEOREM 3.1. Let x% be the root of the equation
8
(3.11) x-sinx =— (-a,,, )%, Vv =4n+20+2,
3v

where a, is the j-th gero of the Airy function Ai (x). Then, for the k-th zero

/'Ln(flf of L{® (x) we have

1 1
(3.12) ALY > vcos? (x{%/2), if - - o< P

(3.13) k,ﬁf,ﬁ < V cog? (ng’lf/Z), ir-1<acg —% or o = —j— »
where k =1, 2, ..., n.

We give only the essential steps of the proof.

In the case -1/2 < o < 1/2 the function u(t), defined by (3.3) and (3.7),
has exactly n real zeros. Moreover, these zeros belong to the interval (0,1)

and can be obtained by solving the equations
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4
(3.14) arccos t? - (t—t2)12 =3—V (-a,)??, v = 4n+20+2,

form=1,2, ..., n, wvithrespect to t. Indeed, the inequalities (3.5) show

that
4 (- a,)” 4n-5/6 m b3 1 1
0 < z < / —<— ,—<a<—,
3v 4n+ 200 +2 2 2 2 2
form=1, 2, ..., n, while
4 (—a )i> T
_g)%>__’
3v 2

form > n. Slnce the function h (t) is negative and decreasing, the state-
ment easily follows.

Now, let
W > uf > L >

be the zeros, in decreasing order, of u{t) and let ué“g = + «. According to
Lemma 3.2, Q (t, o) is negative for0 < t < « if ~1/2 < o £ 1/2. Therefore,
we can apply Theorem 1.1 to the interval (0, «). By using (3.4) we see that

the condition (1.2) is satisfied at t = » and we conclude that each interval

(a) (a) -
ut s <t <wy , k=1,2, ...n,
contains exactly one zero t{%), m = 1, 2, ..., n. More precisely, we have

B > ul L, k=1,2, ..., 0.

n,n
By setting t1? = cos (x/2) in (3.14) withm = n — k + 1 we derive (3.11) and
(3.12).
For the proof of (3.13) we use the same interval (0, ). Since Q (¢, a) is

positive if -1 < a € - 2/3ora 2 2/3, we find that each interval

)
t,(fﬁ <t< tr(zc,liwll k=1,2, ..., n,

where t' = + o, contains at least one zero ulﬂ“n?, m=1, 2, ... That is, ve

h,n+l
have
(o i _
< W k=1,2, ..., n.

iy

Whence (3.13) follows.



4. NUMERICAL RESULTS AND CONCLUDING REMARKS

The inequalities given in Theorem 2.1 and in Theorem 3.1 furnish very sharp
results, which are generally better than those we can obtain by using

previously known inequalities.

TABLE 1 - Bounds for some zeros ng?}{.

Lower bound : Upper bound
k
(1.3) Exact Valu? (2.18)
0.070527 0.070540 0.070547
2 0.371601 0.372127 0.372164
10 11.444867 12.038803 12.040338
20 46.951357 66.524416 66.642245

The Table 1, which refers to some few values of k in the case o = 0 and n = 20,
shows, in the first column, the lower bounds given by the old inequality (1.3)
and, in the third column, the upper bounds furnished by applying the new in-

equality (2.18).

The case -1/2 € a < 1/2 is particularly interesting. Indeed, in this case,
Theorem 2.1 and Theorem 3.1 give upper and lower bounds for Xé“ﬁ respectively

and the following corollary holds.

COROLLARY 4.1, Let -1/2 < o < 1/2 and let X (y) be the function that we

obtain upon inverting

(4.1) y=-sinx - x.

Then
1 8 1 47
(4.2)  veos? [—x (— (—an_m)wﬂ < AW <y cosz[-x(n-—u)],
2 3v ’ 2 %
for k=1, 2, ..., n and where v,a_ and jn)S have the previous meaning.

The lower and upper bounds in Theorem 4.1 furnish very sharp results when
they are used as approximations, say 114, of A\%), k=1, 2, ..., n. This is
shown in Figure 1 where the number of exact significant digits in the ap-

proximation of (%), i.e. the digits of accuracy represented by the function
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rn,k (0’) == lOglo

A% - 18
A0
n,

ig plotted for o = 1/2 and n = 20.

The curves I', and I', refer to the approximations
1,§42) = 83 cos? ! X 8 2
20% = 875 cos [? <*24—9(—32H) >] , (lower bound)

and

1 4J
lzg:ll/(z) = 83 cog? [?X < 7?—'_8‘?2-‘](_>:| s (upper bound)
respectively.

In the same figure we have plotted (see the dashed curves Y, and yz) the

digits of accuracy corresponding to the approximations

1
125%2):g J% 000 (lower bound)

1,54%= [(83)2 + 2% (83) a,,J°, (upper bound)

obtained by using the old bounds (1.3) and (1.5) respectively.
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FIG. 1 - ry, (1/2) versus k = 1(1)20.



The inequalities (4.2) can be used to derive uppef and lower bounds for
the zeros of the Hermite polynomials H, (x). Indeed, by taking into account

that

H, (x) = (-1) 22" m! L2 (x?); H,., (x) = (=1)m 221 g} x L2 (x2),

and that

. » 7[
Jipx =k, J oy, = (2k=1) Pk k=1,2, ...,
we obtain the following result:

COROLLARY 4.2. Let h o, k=1,2,..., [n/2], be the positive zeros in in-

ereasing order of the Hermite polynomial H, (x). Then

1 2n—4k+3
h 12n+l cos —X (7 ] ifni
k< n+l co [ 5 < el > , 1f n is even,

(4.3)

1 2n—4k+3
h, < |20+l cos [—x <~———-—ﬂ>},if’n is odd,
’ 2 2n+1

Furthermore, we have

8

(4.4) b, > "2n+l cos léx(m

(—a [11/2]Ak+1)1/2 >]

Here X (y) has the same meaning as in Corollary 4.1.

We remark that the Tricomi asymptotic formula (1.8) can be written, as

n = w,

A8 yeos? [éX <4__4~n___4_1£t3__”>] )

n,k v

for all the zeros Xé‘flz, belonging to the interval (av, bv) with a and b fixed

positive constants, 0 < a < b < 1.

Now, by using the asymptotic expansions (see Abramowitz and Stegun [1],

p. 371 and p. 450)



. a 1
Jas = < S+?‘7>ﬂ [l+0($“2)], 5 = o

P

3 T 2/3
—a, = [?(4 s-1) | [120 (s%)], s>

oy

it is easily seen that

45 4n—4k+3
- T n, for k = «,
v v
8 4n—4k+3
—A(-a,,,,)P~————"— 1, for n-k = w.

3v

Hence, the bounds for kéf‘g that we have considered in this paper are in fact
approximations which coincide with the Tricomi approximation as n = «,
uniformly for all values of k = [pn], [pn]+1,..., [qn], wherep, q € (0,1),
p < g. More preclsely, taking into account the results of Erdélyi [2] on

the asymptotics for Laguerre polynomials, we have

1 4 jak
A‘Igak) ~ V cos’ ‘ —X ( ﬂ“"i‘—”>} s N 7w,
’ 2 1%

k=1,2, ... [qn],

and

1 8
/’ng(.(k% ~ v cos” \ ;X (7‘(_‘3;;—}.'»1)1\‘)’ . 7w,

k = [pn], [pn] +1, ..., n-1, n.
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longer assumed to be supported on R, and v have constant sign. Mlat, for example, would hap-
pen if one took a typical oscillatory measure, like ds (1) = P, (t)dt on [-1,1], where P, is the
Legendre polynomial of degree n?

In a letter to Hermile, dated November 8, 1894 (in fact, his last letter in the life-long
correspondence with Hermite; see Baillaud and Bourget [1905, v.2, pp. 439—441]), Stieltjes

indeed looks at (what is now called) Legendre’s function of the second kind

Py (t)‘
z—t

1 .
0, =] dt, (1.2)

expands it into descending powers of z (beginning with z=""*1) by orthogonality of P,) and then

has the fortunate idea of expanding the reciprocal of 0, ,

1 n+l n) (n),—1 n)
=z |+ 2T ), # 0. 1.3
0.(2) (g i ) ud (1.3)

This led him naturally to consider the polynomial part in (1.3),

Epaz) = 2" + pfdz7 e o 4 p iz, (14)

a polynomial of exact degree n + 1, now appropriately called Stieltjes’ polynomial, and to inves-

tigate its properties. By a residue calculation, he first observes that

Eq(t) = (1.5)

1 z
"z?cT‘f @=)0, ()’

where C is a sufficiently large contour, and then goes on to multiply (1.5) by t*P,(t)dt,

k=0,1,. .., n,and to integrate, obtaining
X 1 “p, (t)
[ EnaPa )t = w b, (Z) L
1

JI Zk _ (Zk _ lk)

i P, (t)dr

Tl ¥ 0,0)



k P -
:*1_.4}2(12.[ n()dt
2 L Qn(z) -1zt
R S S
= o z¥ dz =0,

c
where orthogonality of P, is used in the third equality. Thus,

1
[ Ean@p P, (0)dt =0, all p € Py, (1.6)

that is, Stieltjes’ polynomial E, .y is orthogonal to all lower-degree polynomials relative to the
(sign-variable) measure ds(t) = P, (t)dt.

At this point, Sticltjes conjectures (1) that £, has n + 1 real simple zeros, all contained in
(-1,1) and (2) that they separate those of P,. He presents a numerical example with n = 4, He
furthermore believes (strongly so in the case of reality and simplicity of the roots, less so for the

scparation property) that this is a special case of ‘‘a much more general theorem’’,

In his reply (of November 10, 1894), Hermitc expressed his delight in the polynomials E,,
and ‘‘the beautiful properties’” conjectured for it and encouraged Sticltjes to look for a differen-
tial equation as a possible key to these propertics. Stieltjes may have already been too ill to
respond. Neither he, nor anybody else after him was able to give an affirmative answer to
Hermite’s suggestion. (It has been found, nevertheless, that the Stieltjes polynomials, at least in
the realm of Jacobi measures d 6‘%P(r) = (1-)%(1+6)B dr, do not satisfy a three-term recurrence
relation unless |o| = |B| = Y, in which case they do, and in fact also satisfy a differential equa-
tion; cf. Moncgato {1982].)

Sticltjes’ ideas scem to have gone unnoticed for 1-11any years. Geronimus in 1930, however,
developed similar ideas, considering in place of (1.3) the expansion of [Q, (z)\/z—r:]‘l, where
Q,(z)= '[_11 1, (¢ swdDw (¢)de/(z~t) and w,(;wdt) is the nth degree orthogonal polynomial
associated with the weight function w () = (1-1)*(1+6)® 2 (¢), h being continuous and positive
on |-1,1] (Geronimus {1930]). Although this approach docs not Icad to a perfect orthogonality
result, like the one in (1.6), it ncvertheless has relevance to the subjcct at hand; see the beginning

of Subscclion 3.5 below.
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The first who has taken up Stieltjes’ challenge in earnest was Szegb in 1935, He expresses
(Szegd [1935]) Stieltjes’ polynomial on the circle as a cosine polynomial,

E, +1(c0os0) = A§M cos(n+1)8 + Af® cos(n—1)0 + -+, an

and relates an extended (infinite) sequence A, = M") to an explicitly known sequence f = f \ﬁ")

via a reciprocity identity for the respective power series, From this he proves Ag > 0 and the

negativity of all A,, v 21, as well as 3, A, =0. It follows from this that the polynomial
v=0

hoz" ™ + Az" 1+ -+ has all its'zeros in |z | < 1, which implies, via the argument principle,
that (1.7) vanishes at least 2n + 2 times. This proves Stieltjes’ first conjecture. Szegé also
proves the second conjecture, but this requires a deeper analysis involving, in particular, Legen-

dre functions on the cut.

Szegd’s analysis is not peculiar to Legendre polynomials. Indeed, he himself extends it to
Gegenbaver polynomials P,®, orthogonal on [-1,1] with respect to (he measure
do(t) = (1=2%de, A > — 14, IfEX) denotes the corresponding Stieltjes polynomial,

j_ll ES (p )P IOA—Hdr =0, all p e Py, (1.8)
which (up to a multiplicative constant) is uniquely defined, then Szegd shows that both conjec-
tures of Stieltjes continue to hold for 0 < A £ 2. When A=0, two zeros of E,‘O;)l move into the
endpoints + 1; they move outside of [-1,1] for A<0, as is shown by the example n=2. The qucs-
tion of whether the same can happen for A>2 is left unanswered by Szegd. (The answer is still
unknown today, but, according to Table 3.1 below, is probably “‘no’’, at least as long as the inter-
lacing property holds.)

Szegl concludes by considering the Gaussian quadrature formula for the (sign-variable)

measure ds (¢) = P, (¢)dt and shows that its weights altcrnate in sign.

This brings us naturally-to the work of Kronrod in 1964, which is also concerned with qua-

drature. Motivated by a desire to econoniically estimate the error in the classical Gaussian qua-

drawure formula



1 n
[ fwde =3y f @), (1.9)

v=1

where T, = T are the zeros of the Legendre polynomial P, and v, = ¥ the corresponding
Christoffel numbers, Kronrod [1964a,b] proposcs to extend the n-point formula (1.9) to a

(2n + 1)-point formula

1 n n+l
I, f@wae = T ovf@+ 3 S f (0D + Ry (), (1.10)
V= p‘:

in which the 7, are the samc as in (1.9), but new nodes t; and new weights oy, 6,1 have been
introduced and chosen to increase the degree of exactness from 2n — 1 (for (1.9)) to 3n + 1 (for
(1.10p), 1.e.,
R,(f)=0, all f e Py,,,. (1.11)
It turns out that the nodes ’C; must be precisely the zeros of Stieltjes’ polynomial E, . With all
nodes T, 'c:[ at hand, it is then easy to determine the weights o, CS; by interpolation.
In the same manner, one can try Lo extend the Gauss-Gegenbauer quadrature formula to a

formula of the type

1 . n nsl .
L f @O dr = L oS+ 5 ou [+ Ry(f) h>=t (112)
V= P;l

and, more generally, to do the same for an integral with arbitrary (positive) measure d G,

1 n n+l
j_l f®dot)y= 3, o, f)+ % op £ ) + Ry (f), Ry(Papyp) =0. (1.13)
p=1 .

v=1

(The dependence of the nodes and weights on n and d¢ will from now on be suppressed in our
notation.) The new nodes T;, similarly as before, are then the zeros of the (unique, monic) poly-

nomial T, 41() = Toys1( 3 dG) salisfying the orthogonality property
[ Trn(®p OO, ()do@) =0, all p e Py, (1.14)

where 7, (") = 1, (; d0) is the orthogonal polynomial of degree # associated with the measure
do. To be useful in practice, the formulae (1.12), (1.13) should have nodes 1:;[ which are all con-
tained in the support interval of d o and are different from the Ty, and they should have weights

Cys G; which, if at all possible, are all positive. By Szegd’s theory, we know that the former is
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true for (1.12), if 0 < A €2, while the latter has been provcn‘ true by Monegato [1978a] if
0<A<1, hence, in particular, for the original Gauss-Kronrod formula (1.10) (which
corresponds (0 A = 14).

Soon after Kronrod’s work, it has occurred to a number of people (probably first to Patter-
son [1968a]) that other quadrature rules can be similarly extended, for cxample, the Gauss-
Lobatto rule. In addition, it is not unrcasonable 1o also consider the interpolatory quadrature rule
based solely on the nodes TJ in (1.13). In the case of (1.10), numerical results suggest that these
quadrature rules also have all weights positive and cnjoy :Im interlacing property of their own: the
zeros of E,,; alternate with those of E,,; cf. Monegato [1‘982]. Indecd, having three quadrature
rules at disposal — the one just mentioned, the Gauss rule (1.9), and (1.10) — with degrees of

exactness roughly equal to n, 2 and 3#n, respectively, might well be an attractive feature that

could be useful in automatic integration schemes (Kahaner [1987]).

Orthogonality with respect to sign-variable measurcs and rclated quadrature rules have
independently been studied by Struble [1963], who develops a general theory. It might be
interesting to explore this theory in the framework of more general indefinite inner product spaces
(cf., e.g., Bognar [1974]).

The merit of discovering the connection between Kronrod’s work and the earlier work of
Stieltjes and Szeg6 is due to Mysovskih [1964], although it has been noted, independently, in the
Western literature, by Barrucand [1970]. The relevance of Geronimus’ work to Gauss-Kronrod
quadrature is pointed out by Monegato [1982] and Monegato and Palamara Orsi [1985].

Brief accounts of the Kronrod and Patterson methods can be found in Davis and Rabinowitz

(1984, pp. 106-109, 426] and Atkinson [1978, pp. 243-248].

2. Extended quadrature formulae. Wec now give a more systematic treatment of the prob-
lem of extending quadrature rules. We begin with a general theorem, which has become part of
““folklore”” in numerical quadrature and is difficult to attribute to any one in particular. In its key

ingredients, it goes back to Jacobi {1826].



Let 4G be a nonnegative measure on the real line R, with bounded or unbounded support
and with infinitely many points of increase. Assume that all its moments [, = '[R t*d o(r) exist

and are (inite. We consider quadrature rules of the form

N
o fOdo@) = 3, oy F(T) + Ry (F), 2.1)
v=1

where Ty, Oy are real and N = 1 an integer. We say that (2.1) has degree of exactness d if
Ry(f) =0 forevery f e Py, the class of polynomials of degree < d. We associate with (2.1)

the polynomial .

@) = Vljl (t -1 2.2)

and call it the node polynomial. The theorem in question then reads as follows.

Theorem. The quadrature rule (2.1) has degree of exactnessd =N — 1+ k, k 20, ifand
only if both of the following conditions are satisfied:

1)  (2.1) is interpolatory (i.c.,d = N-1);
(i) fR ot)pt)do(t) =0forallp € Py

We remark that polynomial degree of exactness N—1 (the case k=0 of the theorem) can
always be achieved, simply by interpolating at the nodes t,; this is condition (i) of the theorem.
To get higher degrec of cxaclness (k >0), the node polynomial, according to (ii), has to be orthog-
onal (relative to the measure d 6) to sufficiently many polynomials. 1f we have complete freedom
in the choice of 1, and o, we can take k as large as k=N, in which case (ii) identifies ©(") with
the (monic) orthogonal polynomial my (- do) of degree N associated with the measure d o, and
the nodces T, in (2.1) wilh its zeros. This, of course, is the well-known Gauss-Christoffel quadra-
ture rule (cf., c.g., Gautschi [1981]).

The situation we are going Lo consider here is somewhat different: We shall assume that
some of the nodes are prescribed and the rest variable. Let

N =N°+N", 2.3)

and supposc the prescribed (distinet) nodes arc Ty, T, , . .., Tye; we denote the remaining ones by
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T =Ty R=1,2,..., N ' (2.4)

Correspondingly, we let GS = Opoyy and write (2.1) in the form

N°© N'
Jo fOdc@) = T ovS@+ 3 o £ (1) + Ry (). @5)
V= H=
We may interpret (2.5) as an ‘‘extension’” of some quadrature rule

e
[ f@do) = F % f @), 2.6)
v=1

The degree of exactness of (2.6) is quite irrelevant for what follows, as the weights vy, are being
discarded.

Putting Ne

-
() = I G = w), () = I~ i @7

the theorem above, since 6)(t) = Ty (¢ )Ty« (), becomes:

Corollary. The quadrature formula (2.5) has degree of exactness d =N —1+k, k 20,

with N given by (2.3), if and only if it is interpolatory and the polynomial nﬁ* satisfies

o T (Op (Dnge(0)d @) =0, all p e Py, (2.8))

One expects the maximum degree of exactmess to be realized for k& = N* (there are N + N*

degrees of freedom!), in which case (Z.Sk) becomes
[ v (Op Omye(8)do(t) = 0, all p e Pysy. @8y

We call (2.5) an optimal extension of (2.6) if k = N*, i.c., if (Z'SN*) holds, and a nonoptimal
[interpolatory] extension if (2.8/() holds with 0 < &k < N* [k=0]. (We assume p =0in (2.8k) if
k=0.) Thus, (2.5) is an optimal cxtension of (2.6} if and only if wa« is orthogonal to all lower-
degree polynomials with respect to the (sign-variable) measure do' (t) = n,t,n(t)dcs(t). Here is

how sign-variable measures enter into the process of extending quadrature rulcs.

We now discuss a number of specific cxamples.



Example 2.1: Gauss-Kronrod formulac.
This is the case N° =n, Tne() = Tu(;dG), N¥ =n+1,s0that N =2n + 1, d =3n + 1,
and (2‘8N*) takes the form
J'R TP Tt do)do(t) =0, all p e P,. 2.9)
(We must necessarily have N* > n + 1 in this case; cf. Monegato [1980].) In other words, the
classical #-point Gauss-Christoffel formula is oplimally extended to a (21 + 1)-point fornwla of
the form
[ f o) = il o f (1) +"ﬁi on £ (@) + Ry(F). (2.10)
v= s
The measure involved in the orthogonality relation (2.9) is do* (¢) = =, (¢ ; do)d ©(t), which for
do(t) = dt is precisely the one considered by Stieltjes. We call Ty, in (2.9) the Stieltjes polyno-
mial associated with do and denote it by T, () = e (1 do). It is easily seen that 7,
(assumed monic of degree n-+1) is uniquely determined by (2.9).

For the weights in (2.10) one finds (see, e.g., Monegato [1976])

RE AN
Gv=“{v+'r*1—-f—c—“, =1,2,..., n
15,,.”(’17\,) T (Tv)
.10
. ERRF
= *n*lo*_’ “lezv , n+i,
Ty (Tp) nn+1(Tp)
where y, = v(")(d o) are the Christoffel numbers, and | || |45 the L,-norm for the measure do.

For symmetric measures, i.e., do(=t) =do(t) and the support of do symmetric with
respect to the origin, it follows easily from uniqueness that

Ty~ ;do) = (=1)" m,(t;d0), wa(~t;do) = (1" m(t;d0)

(d o symmetric), (2.12)

so that (2.9) holds trivially for even polynomials p and is therefore valid forallp € P, if n is
odd. Thus, d =3n + 1if n iseven, and d = 3n + 2 if n is odd. (In special cases, the degree of

exactness can be even higher; see Subsections 3.3 and 3.5 for examples.)
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Example 2.2: Kronrod extension of Gauss-Radau formulaé.

For definiteness we consider only the Radau formula with fixed node 1y at —1. The case
Tg = 1 is trealed similarly.

We assume that do is supported on [—1,1] and that the measure (1+£)do(t) allows
(21 + 1)-point Kronrod extension, i.e., the Stieltjes polynomial mt,.,;( ; (1+¢)d 6) has distinct real
zeros, all in (—1,1) and all different from the zeros of 1, (-3 (1+£)d 6). Then there exists a unique

optimal extension of the Gauss-Radau formula for the measure do. It has the form

1 n : n+l

J_l f@Wdo@)=co f(=)+ 3, oy f (1) + 3, op F(T) + R, (f) (2.13)
v=1 . p=1

and corresponds to the case N° = n+1, nyo(t) = (14+)7, (¢ ; (1+1)dG), N* = n+1, hence has

degree of exactness (at least) d = 3n + 2. The orthogonality condition (Z.SN*) assumes the form

j‘l} (P (O, (¢ (+)do)(14)do(t) =0, all p e P,. 2.14)

Thus, as far as the nodes ’L': are concerned, we can obtain them exactly as if we were to extend the
Gauss formula for the measure (1+¢)do(r). Also, the quantities (1 + 1,)c, and (1 + ’C;)O"I can be
obtained by expressions which are identical to the ones on the right-hand sides of (2.11), where

the Christoffel numbers and norm refer to the measure (142 )d (). The weight G, then follows

n n+i
fromop+ ¥ Oy + 3 Oy =Ho Mo = '[R do(t).
v=1 p=1

Example 2.3: Kronrod extension of Gauss-Lobatto formulae.
We assume, similarly as in Example 2.2, that the measure (1 — t2)do(t), supported on
[—1,1], allows Kronrod extension. Then the unique optimal extension of the (n+2)-point Gauss-

Lobatto formula for the measure d ¢ is given by

1 n n+l
[ fdo@) =oof D +0,f D+ T 0uf @)+ 3 Gpf O + R, () (2.15)
v=1 p=1
and is the case N° = n+2, myo(t) = (1-13) m, (t ; (1-2d 6), N* = n+1 of (2.5), with the degree
of exacmess now being (at least) d = 3n + 3. The orthogonality condition (2.8N*)‘bccomes

1
[ T ®p O, (5 A~d o) (1+Ddo(t) =0, all p e P,, (2.16)



and is the same as for Kronrod extension of the n-point Gauss formula for the measure
(1—-thdo(t). Again, the quantities (1 — 2o, and (1 — 'c; 2)(5; have representations identical to
those on the right of (2.11), the measure being (1-tHdo(¢) throughout. The remaining weights
Gg» On+1 are most easily obtained by solving the system of two linear equations expressing exact-
ness of @215) forf(t)=1land f(t) =t.

We remark that in the special case of Jacobi measures d 6®P)(t) = (1-)%(1+£)Pdt, o0 > -1,

B> -1, we have

1
(1=t By = o g
T, (5 (1~5)d 6\ ") oo (5 do™), 217

as follows readily from the identity (@/dt)P 4P (1) = 2 (n + o+ B + 2) P, B+ for Jacobi

polynomials.

Example 2.4: ‘Kronrod-heavy’’ exiension of Gauss formulae.

The *‘Kronrod nodes’’ ’cﬁ and ‘‘Gauss nodes’’ 1, in the Gauss-Kronrod formula (2.10) are
nicely balanced, in that exactly one Kronrod node fits into the space between two consecutive
Gauss nodes and between the extreme Gauss nodes and the respective endpoints (possibly =+ o)
of the support interval of do. There are, however, occasions (for example, in cases of nonex-
istence; cf. Subscction 3.4) where it might be necessary to forgo this balance in favor of more
Kronrod nodes; we call such extensions Kronrod-heavy. These also fit into the general scheme
(2.5), where N® =n, nj\’,n(-) =1,(;do), N¥ =n+q with ¢>1, and give rise toythc orthogonality
condition .

. JR Topsq (P (O, (¢35 d0)dS() =0, all p € Py (2.18)
In contrast to Gauss-Kronrod f01mulaé, the unique existence of n,‘ﬁrq, let alone the fcality of its
zeros, is no longer assured. Startiﬁg with he unique 7,1 ; d o) = n:ﬂ_,,(»), howeyver, there is an
infinite sequence {4, 1ot OF uﬁiquely determined polynomials T, = Taiq, s OF exact
degice n + ¢q,,, 1 = ¢4 <qga<q3< o, such tﬁat (2.18) holds with ¢ = ¢,,, and such that no
polynomial n,:wm of degree < n + q,, exists for which (2.18) holds with ¢ = g,, (Monegato

[1980]).
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One can try, of course, to extend in this manner other quadrature formulae, e.g., the Gauss-

Radau or Gauss-Lobatto formulae.
Example 2.5: Repeated Kronrod extension of Gauss formulae.

Given an n -point Gauss formula, one can try to extend it optimally to a (2n + 1)-point for-
mula as in Example 2.1, then extend this formula once again to a (4a + 3)-point formula (by
optimally adding 2n + 2 new nodes), and so on. The likelihood of such repeated extensions to
all exist (i.e., have real distinct nodes) is i)robably quite small. Remarkably, however, for n=3
and do(¢) = dt on [-1,1], such extensions, even with all weights positive, have been successtully

computed by Patterson [1968a], [1973] ﬁp to the 255-point formula.

For the second extension, for example, the node polynomial 1), ,, must be orthogonal to all

lower-degree polynomials with respect to the measure 6™ (t) = 1, (¢ 1 d ) T (¢ ; dG)AOE) .
Example 2.6: Extension by contraction.

As contradictory as this may sound, the point here is that one starts with a ‘‘base formula”’
containing a sufficiently large number of nodes, then successively removes subsets of nodes to
generate a sequence of quadrature rules having fewer and fewer nodes. Looking at this sequence

in the opposite direction then turns it into a sequence of (finitely often) extended quadrature rules.

More specifically, following Patterson [1968b], one takes as base formula any (2" + 1)-
point formula and then defines r subsets of points by successively deleting alternate points from
the preceding subset (keeping the first and the last). For example, if r=3, the successive three
subsets of the original points with index set {1,2,3,4,5,6,7,8,9} contain the points with indices
{1,3,5,7,9}, {1,5,9} and {1,9}, respectively. A scquence of »+1 quadrature formulae can now be
defined by taking the interpolatory formulae for the original node set and all » subsets of nodes.
(A slightly different procedure is proposed by Rabinowitz, Kautsky and Elhay; see Rabinowitz,

Kautsky, Elhay and Butcher [1987, Appendix A, p.125].)

The reality of the nodes is thereby trivially guaranteed, but not necessarily the positivity of

the weights. Patterson [1968b], nevertheless, finds by computation that all weights remain posi-



if one starts with the 33-point, or 65-point Gauss-Legendre formula (r=5 and r=6, respec-
A

tive
tively), or with the 65-poirit Lobatto formula (r=6) as base formulae.
Another example of a suitable base formula, which in fact (Imhof {1963], Brass [1977, Satz

T =0

77]) has positivity of all weights built in, is the Clenshaw-Curtis formula (Clenshaw and Curtis
[1960]) based on the initial point set T, = cos(vr/2"),v=0,12,..., 2",

If one is willing to delete successively one point at a time, then the following result of Rabi-
nowitz, Kautsky, Elhay and Butcher [1987] is of interest: Given any interpolatory quadrature rule
with all weights positive, it is possible to delete one of its points such that the interpolatolry. ruie

based on the reduced point set has all weights nonnegative.

IRE SN P

All sequences of extended quadrature rules in Example 2.6 are examples of nonoptimal; in

fact interpolatory, extensions. Other examples of nonoptimal, even subinterpolatory, extensions
»

are those of product rules given by Dagnino [1983] (see also Dagnino [1986]). The severe
sacrifice in polynomial degree of exactness is justified in this reference in terms of a simplified

convergence and stability theory.

We restricted our discussion here to quadratﬁre rules of the simplest type (2.1). There is lit-

9
tle work in the literature on the extension of quadrature rules &nvolving derivatives. Bellen and
7

Guerra [1982], however, extend Turdn-type formulae, but work them out only in very simple s;;e—

cial cases. §

3. Existence, nonexistence and remainder term. We consider here mainly the Gauss-

;

Kronrod formula as defined in Example 2.1, that is,

n+l

[ /o) = 3 0 f@) + T, 0h fAD+ () R =0, ()
v=] =1

We say that the nodes ., ’cﬁ in (3.1) interlace if they are all real and, when arranged decreas-

,

ingly, satisfy

oo K Tpy KTy Ty € 0 KTy KT < T < on, (3.2)
q

For any given n 2 1, the following properties are of interest:
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() The nodes T,, T, interlace.
4 4
B

(b) All nodes T, 'c;, in addition to interlacing, are contained in the interior of the smallest
¥
interval containing the support of d G.
A

t

(c) The nodes inteﬂace and ‘each-weight o, is positive. - (It is known, ef. Monegato
[1976], that the interlacing I‘)roperty is equivalent to (5[: ; 0, all p.) “de
(d) All nodes, without necessarily satisfying (a) and/or (b), are real.
Little has been proved with regard to these propeﬁiés; any neW piece of information, from what-
e\‘lzer source — computational or otheerisg — should therefore be greeted with appreciation. In this
section, we give an account of what is khown, or what can be conjectured, for some classical and

nonclassical measures.

3.1 Gegenbauer measures do™(t) = (1-t2 %4 on [-1,1], A > — V2. Properties (a) and
(b), as already mentioned in Section 1, have been pioved for all n 2 1 by Szegd [1935], when
0 < A <2, and property (c) by Monegato [1978a], when 0 < A < 1. Properties (;) and (b) also
hold for the extension of Lobatto formulae, if — %2 < A < I (cf. Example 2.3), but nothing as yet
has been proved concerning property (c). This, then, is the extent of what is known rigorously,

for arbitrary #, at this time.

A good deal more, however, can be uncovered for specific values of 7, if we let the parame-
ter A move continuously away from the above intervals and observe the resulting motion of tl}e
nodes 1y, 'c; and the movement of the weights o, 0;. Given », property (a) will cease to hold at
the very moment a node T, collides (for the first time) with a nodé ’C; . This event is coincident
with the vanishing of the resultant of , (- ; d6™) and 7} ,,(-; d6™). When A has moved beyond
this critical value, the nodes 1, and "C;: involved in the collision have likely crossed each other, so
that two Kronrod nodes now lie between consecutive Gauss nodes. Only now is it possible that

two Kronrod nodes may collide and split into a pair of complex nodes, an event that is signaled

by the vanishing of the discriminant of (- ;dc®). By using purely algebraic methods, it is

thus possible to delineate parameter intervals in which properties (a) and (d) are valid. The

-



subintervals of the first of these, in which properties (b) and (c) hold, can be determined rather

more easily, in an obvious manner.
This V[a/s been carried out computationally in Gautschi and Notaris [submitted] for values of
n up to 40. Based on these results it is conjectured (and proved for n < 4) that property (p ) holds

for AP < A < Af, where the bounds AL and Af forp = a, b, ¢, d are as shown in Table 2.1.

no | M AT AR AT A AL AT
I | =% e | =% o |-} o % e /
2 -5 =3 0 oo —15 o0 - co
3 - 16 0 16 -1 6.552.. — 1 16
4 ) oo 0 oo - 5178.. | =W oo
25| -% AF|] 0 AZ| -4 A | = Af
/

Table 3.1. Property (p) for Gegenbauer measures

Here, A%, AS, A are certain constants satisfying 1 < A7 < o, 1 < Af < A and Af 2 A with

equality precisely whenn =4r —1,r =1,2,3, ... . Numerical values of these constants, to

+
10 decimal places, are provided in the cited reference for n = 5(1)20(4)40.

N

The fact that Kronrod extension (satisfying properties (c) and (d)) cannot exist forall n > 1

when A is sufficiently large, not even if the degree of exactness is lowered to [2rn + [}, r>1,[ an
A

integer, is claimed by Monegato [1979]. (The proof given is erroneous, but can be repaired;

Monegato [1987].) 4

3.2 Jacobi measures dc(“-ﬁ)(t);(1—[)“(1+t)ﬁdt’on [~1,1]. Since interchanging the

’

parameters o, and f has the effect of changing the signs of the nodes T, and ’C;, hence, if the order

(3.2) is maintained, of renumbering them in reverse order, and the same renumﬁen‘ng’ applies to
the weights o, and cs;, the validity of property (), p =a, b, ¢, d, is unaffected by such an

interchange. We will assume, therefore, that -1 < o < f3.

Except for the cases || = |B| = Y2 (considered in Subsection 3.3) and the transformations
.
to Gegenbauer measures noted below, the only known proven result is that property (b) is false
foro=~—'%,— % < B < ¥ when n is even, and for o = > Y, % < B < 3/2 when a.is odd (Rabi-
I
. t o
nowitz {1983, p.75] ).
b . . 0 : PN .
(") Thike is a misprint on p.75 of this Teference: The superseript lL + %2 should be replaced by L=1
twice in Eq. (68), and twice in the discussion immediately following Eq. (69).
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Monegato [1982] notes that 7. & (22 — 1) = 2"+ ¢ ) &®(t) — d,, where d, is an
explicitly given constant, and similarly, 7, & (2:% — 1) = 2" n}@9(). In the latter case,
there are also simple relationships between the weights o, GJ of the respective Gauss-Kronrod
formulae (3.1); cf. Gautschi and Notaris [submitted, Thm. 5.1]. The cases ¢. > —1, f =+ ¥4 can
thus be reduced to the Gegenbauer case, and appeal can be made to the empirical results of Sub-
section 3.1, at least when B = %2. A similar reduction is possible in the case o0 > -1, B=o0o+ 1
(Monegato [1982, Eq. (36)]), which is of interest in conn;:ction with Kronrod extension of

Gauss-Radau formulae for Gegenbauer measures (cf, Eiample 2.2). «

The algebraic methods described in Subsection 3.1 have also been applied to general Jacobi
measures (Gautschi and Notaris [submitted]) and the results for 2 £ n < 10 displayed by means
of graphs. There are marked qualitative differences for # even and s odd, as is shown in Figure
3.1 for the cases n=6 and n=7. The region of validity for property (p) is consistently below the

curve labeled “‘p *’, except for p=b and n even, when it is above and to the right of the curve.

bera

beta
L
v
k-0
-1
T T T T T
-l w075 05 025 0 p R ‘ ' '
alpha : ! ’
v D ) alpha
, Figure 3.1. Property (p),p =a, b, c for the Jacobi

megsure P when n=6 and n=7



3,3 Chebyshev measures of 1st, 2nd and 3rd kind. These are the cases |o| = |B| = Yaof
the Jacobi measure d o), They are the only known cases in which both the Gauss formulae
and their Kronrod extensions can be written down explicitly (in terms of trigonometric functions).
If o= ==Y, the (optimal) extension of the »-point Gauss-Chebyshev formula of the first
kind, when n = 2, is simply the (2n + 1)-point Lobatto formula for the same weight function.
(For n=1, it is the 3-point Gauss-Chebyshev rule.) To get the Kronrod extension of the » -point
Gauss-Chebyshev formula of the second kind (o = f = 1), it suffices to replace n by 2n + 1 in
the same formula. Finally, for o=~ 1, B = %, the Kronrod extension is the Radau formula
(with fixed node at 1) for the same weight function. All these extended formulae have elevated
degrees of exactmess, namely 4n — 1, 4n + 1 and 4n, respectively, and enjoy property (p) for all
p=a,b,c (hence also d). These elegant relationships have been noted as early as 1964 by
Mysovskih [1964]; see also Monegato [1982, p.147]. For the first two cases, Monegato [1976]
points out that the formulae can be extended infinitely ofien in an explicit manner.

3.4 Laguerre and Hermite measures. Here is another instance in which a nonexistence
result is known (Kahaner and Monegato [1978]): For the generalized Laguerre measure
do™@(@) = t% ' dt on [0,0°], ~1 < 0. < 1, the Kronrod extension of the n-point Gauss-Laguerre
formula, with real nodes and positive weights, does not exist when # 2 23, and if =0 not even
for n>1. Asa corollary, n-point Gauss-Hermite formulae cannot be so extended, unless n =1, 2
or 4, confirming earlier empirical results of Ramskii [1974]. These negative results led Kahaner,
Waldvogel and Fullerton [1982], [1984] to explore the feasibility of Kronrod-heavy extensions
for the Laguerre measure. Computational expérience is reported for n = 1(1)10 and ¢=8 (11 for
n=1 and 9 for n=2), where ¢ is defined as in Examplc 2.4.

3.5 Other measures. At the heart of Geronimus’ theory (Geronimus [1930]) is the measure
doy(t) = (1—t3%dr /(1 — pr?) on [-1,1], —e= < p < 1. The corresponding polynomials T, (;d 6,)
and 7, ( ;doy) turn out to be linear combinations of Chebyshev polynomials U,, U, ., and
Ty41s Ty, respectively, This allows explicit construction of the associated Gauss-Kronrod exten-

sion and verification of all properties (a) — (¢); ¢f. Gautschi and Rivlin [submitted]. In addition,
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the degree of exactness is exceptionally high (Monegato [1982; p.146]). Similar expressions for
T, and Ty 4y Tesult if the denominator of d o, is replaced by a positive, not necessarily even, poly-

nomijal of degree 2 (Monegato and Palamara Orsi [1985]).

Gautschi and Notaris [submitted, Thm. 5.%2] nbserve that the problem of Kronrod extension
for the measure ¥4 o®(r) = [+ ¥ (1=tH%r on [-1,1], o0 > =1,y > ;l, can be reduced, when s is
o0dd, to the analogous problem for the Jacobi measure d o(%01/2),

Very little is known for measurcs unrelated to classical measures. One that is likely to
admit satisfactory Kronrod extension for every n ‘2 1 (judging from numerical results of Cali0,
Gautschi and Marchetti [1986]) is the _logarithmic measure do(t) = In(1/t)dr on [0,1] for which
properties (a), (b) and (c) appear to be all true. The same is conjecturcd for measures
do(t) = t% In(l/t)dt, oo = £ Y4, except for oo = =% and n odd, in which case property (b), though

not (d), fails, the polynomial (- ; d 5) having exactly one negative zero.

3.6 Remainder t;zrm. The Gauss-Kronrod formula (3.1) can be characterized in the manner
of Markov [1885] as the unique quadrature formula (if it exists) obtained by integrating the inter-
polation polynomial p3,.1(f ; Ty, T4, Ty s-) (with simple knots T, and double knots T,) of degree
< 3n + 1 and by requiring (if possible) that the coefficients of all derivative terms in the resulting
quadrature sum be zero. The elementary Heqnile interpolation polynomials gy, /1y, ,, associated
with this interpolation process can be easily expressed in terms of the fundamental Lagrange
polynomials [, and l; for the nodes T, 15, ... T, and T}, T3 , ..., Toots respectively (see,

e.g., Calio, Gautschi and Marchetti [1986, Eq. (3.13)]). The coefficients c; ! required to be zero

are then
o = [ kpdo), p=1,2, .., n+l, (3.3)
where
ky@) = ﬂ((% UpOP¢ =10, () =m,(5d0). (3.4)
n (T

Thus we must have

Tt (60 fo T (OUL@OPC = 1)d00) = [o Tra (DL (Om, (Dd o) = 0,

L=1,2,..., n+l, 35



which, by the linear independence of the / :L, is equivalent to the orthogonality condition (2.9).
From interpolation theory there follows that

R,(f)= T (12 F CP (e, (1)d o (t), (3.6)

1
Bn +2)! J.R [

provided f € C 3+ on an interval containing supp(dc). For Gegenbauer measures
do(t) = 1A—tH* =" on [-1,1], with 0 < A < 1, Monegato [1978D], relying heavily on Szegd’s
theory, shows that ITC:+1([ ;do)| < 27" on [—1,1], which in combination with known bounds for
|7, (;d0)] yields an explicit upper bound for R, (f)| in terms of ||f®"*?}|,. Rabinowitz
[1980] improves this bound slightly and extends it to the case 1 < A < 2, as well as to Kronrod
extensions of Gauss-Lobatto rules for — %2 < A <1, A # 0, He also proves that for 0 <A £ 2,
A # 1 the degrees d = 3n+1 and d = 3n+2 for n cven and odd, respectively, are indeed the exact
degrees of precision. (When A = 1, one has exact degree 4n + 1, and when A = 0 exact degree
4n — 1.) Analogous statements are proved for the Kronrod extension of the Gauss-Lobatto rule.
Szegd’s work, again, proves invaluable for this analysis, as it does, in combination with a result
of Akrivis and Forster [1984, Proposition 1], to show that the remainder term R, (f ) is indefinite
if 0 <X <1and n 22 (Rabinowitz [1986b]). For A > 1, the question of definiteness is still
open; it is also open for Kronrod extensions of Gauss-Lobatto rules for any Kv(with the obvious
exceptions).

Error constants in Davis-Rabinowitz type estimates of the remainder (Davis and Rabinowitz
[1954]) for functions analytic on ciliptic d'onmins arc given by Patterson [1968a] for his repeated
extensions of the 3-point Gauss formula. They are compared with the corresponding constants

for the Gauss and Clenshaw-Curtis formulae having the same number of points.

4. Computational methods, numerical tables, computer programs and applications.

4.1 Computational methods. Kronrod originally compuled the Stieltjes polynomial
n:ﬂ(' ;dt) in power form, requiring it to be orthogonal (in the sense of (1.14)) to all monomials

of degree < n. The zeros of ., are then obtained by a rootfinding procedure, and the weights
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Oy, G; from a system of linear equations expressing exactness of (1.10) for the first 2n+1 mono-
mials. (Symmetry, of course, was used throughout.) As he himself observes, the procedure is
subject to considerable loss of accuracy and therefore requires elevated precision. Patterson
[1968a] achieves better stability by expanding =,,; in Legendre polynomials and computing the
coefficients recursively. He does so not only for the Kronrod extension of the Gauss formula, but
likewise for the extension of the Lobatto formula. Further improvements and simplifications
result from expansion in Chebyshev polynomials; cf. Piessens and Branders [1974]. Their pro-
cedure, even somewhat simplified and generalized to Gegenbauer measures, actually can be
extracted from the work of Szeg6 [1935], as is pointed out by Monegato [1978b]; see also Mone-
gato [1979], [1982]. For Gegenbauer measures, then, this seems to be the method of choice.

Once the nodes have been computed, the weights can be obtained, e.g., by the formulae in (2.11).

Expansion of m,,,(;d6) in orthogonal polynomials 1, (-;do), k =0, 1,..., n+l, how-
ever, is possible for arbitrary measures do. Replacing p () in (2.9) successively by m;('; d o),
i=0,1,..., n,indeed yields a triangular system of equations which can be readily solved. Its
coefficients can be computed, e.g., by Gauss-Christoffel quadrature relative to the measure d o,
using [(3n + 3)/2] points; cf. Calio, Gautschi and Marchetti [1986, Sec. 4]. (For another method,

see Cali0, Marchetti and Pizzi [1984] and Calid and Marchetti [1987].)

A rather different approach, resembling (in fact, generalizing) the well-known Golub-
Welsch procedure (Golub and Welsch [1969]) for computing Gauss-Christoffel quadrature for-
mulae is developed by Kautsky and Elhay [1984] and Elhay and Kautsky [1984] and relies on
eigenvalues of suitably constructed matrices. For the weights, these authors use their own
methods and software for generating interpolatory quadrature rules (Kautsky and Elhay [1982],

Elhay and Kautsky [1985]).
Instead of computing, as above, the Gauss-Kronrod formula piecemeal — first the Stieltjes

polynomial, then its zeros, and finally the weights — it might be preferable to compute these com-

ponents all atr once, for example by applying Newton’s method to the system of 3n + 2 (non-



linear) equations expressing exactness of the quadrature rule (2.10) for some set of basis func-
tions in P3,.41. The feasibility of this idca is demonstrated in Calio, Gautschi and Marchetti
[1986], where the numerical condition of the underlying problem, hence the stability of the pro-
cedure, is aiso analyzed. It appears, though, that this method runs into severe ill-conditioning

when one attempts to use it for repeated Kronrod extension (Gautschi and Notaris [in prepara-

tion]).

4.2, Numerical tables. There are a number of places where Kronrod extensions of # -point
Gauss formulae can be found tabulated: Kronrod himself (Kronrod [1964b]) has them
(transformed to the interval [0,1]) for n = 1(1)40 to 16 decimals (also in binary form!). In addi-
tion, he tabulates errors incurred when the formulae are applied to monomials. Patterson [1968a]
(on microfiche) gives 20 S values for n = 65, and Piesscns [1973] 16 S values for n = 10. The
most accurate are the 33-decimal tables for n = 7, 10(5)30 in Piessens et al. [1983, pp. 19-23].
Extensions of (n+2)-point Lobatto formulae, n = 1(1)7 and n = 63, can be found to 20 decimals
in Patterson [1968a] (on microfiche), and extensions of the (n+1)-point Radau formula,

n = 2(2)16 (but incomplete), to 15 decimals in Baratella [1979].

Repeated Gauss-Kronrod extensions of the 3-point Gauss formula, as far up as the 127-
point formﬁla, are given to 20 significant digits in Patterson [1968a] (on microfiche), and the
255-point formula to the same accuracy in Patterson [1973] (in a Fortran data statement). The
repeatedly extended 10-point formula, through the one with 87 points, is given to 33 decimals in

Piessens et al. [1983, pp. 19, 26-27]. Exlensions in the sense of Example 2.6 are tabulated to 20

decimals in Patterson [1968b] (on microfiche), using the 33-point and 65-point Gauss formula, as

well as the 65-point Lobatto formula as ‘‘base formulae’’.

For measures other than the constant weight measure, there are 25 S tables of (2n+1)-point
Gauss-Kronrod formulae for do(t) = t* In(1/t)dt on [0,1], o = 0, ¥4, where a = 5(5)25 for
o =0, ¥, and n = 4(4)24 for 0. = —% (Calio, Gautschi and Marchetti [1986, Suppl. S57-S63]).
15 S tables for the same weight funélions, but withn =4and 12 fora =0, ¥, and n = 6 and 12

for o = =%, are given in Calid and Marchetti {1987]. Kahaner, Waldvogel and Fullerton [1984]
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provide 15-18 S tables of Kronrod-heavy extensions of the Gauss-Laguerre  formula
(do(t) =e'dron[0,e Hwithn =1,g =3(1)6 and n = 10, ¢ = 18 (in the notation of Example

2.4).
We finally mention the 16 § tables of Piessens [1969] of the complex Gauss-Kronrod for-

mulae, with n = 2(1)12, for the Bromwich integral, and the 15 S table of the interpolatory
(n+1)-point formula based solely on the Kronrod nodes, given by Monegato [1982] for
do(t) = dt and n = 2(1)9.

4.3. Computer programs. Fortran p}ograxns' for.Kronrod extension of the a -point Gauss
formula are provided in Squire [1970, p. 279] for n = 20, and in Piessens and Branders [1974] for
arbitrary #. Dagnino and Fiorentino [1984] describe a Fortran program (listed in Dagnino and
Fiorentino [1983]) generating Gauss-Kronrod formulae  for Gegenbauer measures
do(t) = (1-t»*~“dt on [-1,1], 0SA 52, A # 1, using the recursive algorithm of Szegd as
resurrected by Monegato, (cf. Subsection 4.1). Programs for more general measures are described

and listed in Calio and Marchetti [1987], [1985], respectively.

A number of routines employiﬁg Gauss-Kronrod quadrature in the context of automatic
integration are discussed and listed in Picssens et al. [1983]. |

4.4. Applications. The original motivation came from a desire to estimate the error of
Gaussian, or other quadrature formulae (taking the more accurate Kronrod extension as a substi-
tute for the exact answer). The need for such error estimates has recently been highlighted in
connection with the development of automatic integration schences; see, e.g., Cranley and Patter-
son [1971], Patterson [1973], Piessens [1973] and Piessens et al. [1983]. For an interesting
interpretation of the Kronrod scheme of error estimation, see Laurie [1985]. A rather different

estimation procedure is proposed in Berntsen and Espelid [1984].

Patterson’s repeated extensions of the 3-point Gauss-Legendre rule (cf. Example 2.5) has
been used with some success in certain methods to compute improper integrals arising in weakly
singular integral equations. One method employs the € — algorithm to accelerate a sequence of
approximants (Evans, Hyslop and Morgan [1983]), another suitable transformations of variables

to atternuate the singularity (Evans, Forbes and Hyslop [1983}).



Kronrod’s idea has been applied to other types of integrals, for example, as already men-
tioned, to the Bromwich integral for the inversion of Laplace transforms (Piessens [1969]), and to
Cauchy type singular integrals involving Gegenbauer measures (Rabinowitz [1983]). These
applications, especially the latter, are not entirely straightforward, as the occurrence of ,numeljcal
cancellation, or derivative values, may present difficulties. They can be surmounted, to some
e;étcnt, by more stable implementations (Rabinowitz [1986a]), using, in part, Kronrod-heavy
extensions (with g = 2; see Example 2.4). For an application of Kronrod’s idea to cubature for-

mulae, see Malik [1980], Genz and Malik [1980], [1983], Laurie [1982], Neumann [1982], Cools

and Hacgemans [1986], [1987] and Berntsen and Espelid [1987].

An interesting application, first noted by Barrucand [1970], is the use of Gauss-Kronrod for-
mulae for computing Fourier coefficients in orthogonal expansions,

)= 11T, 13 o 1 (Of ()o@, n=0,12,..., @.1)
where #t, () = 7, (;do) is the nth degree orthogonal polynomial associated with the measure
do. The (2n+1)-point Gauss-Kronrod formula (for the coefficient ¢, ), in this case, reduces to an
(n+1)-point formula,

n+l
()= Im, | |a& gﬁm@v@HKMJ), 4.2)
Z

but still has degree of exactness (at least) 27 + 1. The new weights, o, T, (Ty), however, even if
all O‘; are positive, alternate in sign, which somewhat detracts from the usefulness of these formu-
lae. For Gegenbauer measures d o™ = (1—t2* =% % 2 0,1, Rabinowilz [1980] shows that the
degree of exactness 2n + 1 2n +2'if n is od‘d) is beét possible. (4.2) is exact for polynomials of
degree 3n — 1, when A = 0, and of degree 3n + 1, when A = 1, both of which is again best possi-
ble. The highest precision is thus obtained for Fourier-Chebyshev coefficients of the second

kind.
Finite element and projection methods frequently rely on numerical integration but so far,

Gauss-Kronrod formulae, unlike the Gauss formulae, have been shunned. An exception is Bellen

[1980], who uses them in his "extended collocation-least squares™ method.

Acknowledgment, The author is indebted to Professor P, Rabinowitz for providing addi-
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THE HOLOGRAPHIC TRANSFORM

WALTER SCHEMPP

ABSTRACT: The basic idea of holography is to record analog
signals as complex-valued functions on the (complexified)
time-frequency plane. The holographic transform is a ses-
quilinear integral transformation which performs a planar
encoding of the time and the frequency domains of signals
simultaneously by means of interference patterns in the holo-
graphic plane. The 'frozen' interference patterns are re-
corded in the holographic plane by the hologram. The phase
differences between the reference wave and the signal waves
may be decoded by the coherent light of a laser beam in order
to reconstruct the three-dimensional object from the planar
hologram. - The present paper establishes an analog of the
Paley-Wiener theorem for the holographic transform. More-
over, the holographic transform of the Hermite (or oscillator
wave) functions is calculated explicitly in terms of Laguerre
and Poisson-Charlier polynomials, and a series of holographic
identities for digital signals are established. As a result,
new identities for theta-null values are popping up. The
energy preserving invariants of the holographic identities
are classified by the ornamental groups (= dihedral groups D
under the crystallographic restriction m Efl 2,3,4,6 p via
the elliptic Mdbius transforms of the holographlc plane C.

The orbits of the plane crystallographic groups D nle{Z 3,

4 6}) in the holographic plane C admit far—reaching appli-
catlons to computerized holography, information theory,
and neuromathematics. .
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1. THE PERFECT LOW-PASS FILTER SINC

Recall the Paley-Wiener theorem which is at the basis of

the classical sampling theorem.

Theorem 1 (Paley-Wiener). Let ¢ denote an entire holomorphic

function such that

j |¢(x)|2dx < + o0
R ' .

and the estimate

10(z)] < ¢ e?mAlZI (zeC)

holds for positive constants A and C. Then there exists

a function Ve L2(—A,+A) such that

+A
0(z) :f w(t)e ™2ty (z €C)
A

("finite Fourier cotransform" of W).

Proof. 1In order to establish that W= 9%¢ vanishes almost
everywhere outside the compact interval [—A,+A] of the real

line R, it will be sufficient by Cauchy's theorem to prove

lim I, = O (t] > A)

T—+ o0 t

where the compact path PT of the complex contour integral

I, - Jﬁ $(z)e 2TtZy, (T > 0)
Pr

is defined in the following way:



Im
+ T PT
t < - A
Re
-1 +T
Im
-T +T Re
t > + A
P
_T T

The Phragmén-Lindeldof principle (a far-reaching generali-

zation of the maximum modulus principle) implies that an

entire holomorphic function of exponential type that is

bounded on a line must be bounded on every parallel 1line

in €. It follows

W (x+iT)| < Me2TAT

(x € R)

where M > 0 is an appropriate constant. Without loss of

generality, suppose t < -A. Then this estimate shows that

the part of the complex contour integral It that belongs

to the horizontal line of P vanishes as T—+ oo .

T
integrals belonging to the vertical parts of P

T

The line

can be
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handled in a similar way. Indeed, consider fhe right vertical

line of the path P Then the corresponding line integral

T
admits in absolute value an estimate by

T T T
2nty . 2nty . 2nty .
e Ip(T+iy)idy = [ e I (T+iy)i dy + e fg(T+iy)l dy
0 0 T

where T'EA]O,T[. Another Phragmén-Lindeldf argument shows
that

lim§(T+iy) = O

T—+

holds uniformly in y € [O,T']. Consequently, we have

T— + o0

-l;l
lim J e?™Y |y (Teiy)|dy = 0O (T > 0).
0

Again by appealing to the Phragmén-Lindeldf principle, we

conclude the estimate

T T

[ .
]'eznty’¢(T+iy)|dy <y J Q2 yy, 2nTt+A) (2T T_ 2n(teA) T
T‘ T‘

Since t < -A, the last terms approach zeroc as T' — +o

and T—+o00 , -

The preceding proof can be traced back to lectures given
by G.H. Hardy. For details of the simplified version, see

the monograph by Boas [1].



The complex vector space Pw(C) of all entire holomorphic
functions of exponential type at most (A < %) that are
square integrable along the real axis R forms a complex

Hilbert space under the standard scalar product

<bié> :f $(x)d(x)dx.
R

Let T denote the compact circle group. Then the Fourier

transform 9}

space 2% (C) onto the complex Hilbert space LZ(T). By taking
the Fourier cotransforml@h of the modes e2"tHE (LEZ) it

follows that the sequence of functions

is an isometric isomorphism of the Paley-Wiener

sinm(z-{)

m(z-H)

(z + 1)

sinc(z-uy) =

1 (z = 1)

forms a Hilbert basis of % (C). Accordingly each function
ye Pw(C) admits a unique expansion of the form

¥(z) = Z 4 sinc(z-y) (z€C)

uez

with 41> = Z lc 1. It follows c_ = ¢(u) for all pe Z
yez H M

and therefore we established the so-called sampling theorem.

Theorem 2 (Whittaker~Nyquist¥Shannon-Kotel'nikov). A func-
tion $CPW(C) can be recaptured from its values at the

integers by the cardinal series:
$(z) = Z\P(.U) sinc (z-p) (z€C).
wez

The cardinal series is uniformly convergent in each hori-

zontal strip in C.



In terms of electrical engineering, a band-limited function ¢
can be recovered from its equidistant samples by passing the
data samples (¢(p))“ c7 through a perfect low-pass filter.
Since voice and videp form band-limited signals, the sampling
theorem is at the basis of digital signal processing. The

scaled sinc-function serves as a perfect low-pass filter.

Example: CD-ROM (=Compact Disc Read Only Memory) for linear
sequential digital signal processing. The encoding process
is normally based on CIRC (= Cross-Interleaved Reed-Solomon

Code) .

Corollary 1. For all functions ¢ énd ¢ in 2%(C) the sesqui-

linear quadrature formula

holds.

Corollary 2. The complex Hilbert space P ¥ (C) admits the

reproducing kernel
(z,w) ~> sinc (z-w).

For all functions ¢ &€ P¥(C) the integral representation

b(z) :-[ ¢(t) sinc (t-z) dt
R

ie valid for all ze€C.

For a survey of the Whittaker-Nyquist-Shannon-Kotel'nikov
sampling theorem, the reader is referred to the articles by
Butzer [3], and Higgins [7]. Higgins also reviews some of
the mathematics connected with the cardinal series and
traces the origins of the result to before Whittaker. Also
see the paper [21] for a proof of the sampling theorem via

harmonic analysis on the compact Heisenberg nilmanifold.



73

As a final application of the Paley-Wiener theorem, we

establish the following result due to S.N. Bernstein (1923).
IﬁEEESﬂfﬁ (Bernstein's inequality). Let Y€ P¥(C) - then
e IRl < wlwiRI_
Proof. Apply Theorem 1 to the entire holomorphic function
¢E: z~=\{{(z)sinc ez (e > 0)

and observe that 1lim ¢, (x) = ¢(x) holds for all x €R.-
e— 0+

Thus the derivative of a band-limited function on the real
line R cannot get too large compared with the value of the
function. This constraint is a fundamental one which has

strong impact to vision. See Marr [12].

2. HOLOGRAPHY

The reasoning of the preceding section depends upon the

duality of the complex Hilbert spaces

L2(R) and L°(R)

or
P 2
PH(C) and L°(T)
performed by the (lineary Fourier transform
——F
b =T
fFrom the physical point of view, however, the separation of
the time and the frequency domains of (band-limited) signals

is artificial. Moreover, it leads to serial algorithms which

are not very efficient ways of signal processing.



The holography or wave front reconstrucfion (cf. Gabor [5])
is based on the following main idea: Consider for parallel
signal processing the wave functions Q)ELZ(H) and their

Fourier transformed versions 5%¢ € LZ(R) simultaneously.

From the mathematical point of view, the simultaneous en-
coding of time and frequency in the holographic plane can
be performed by introducing the quadratic Fourier transform
H(y;.,.) of y € LZ(R) according to the prescription

2wiyt

H(g;x,y) :f b(t+x)P(t)e dt

R

with (x,y)€R @ R. If ¢ €L2(R), the sesquilinear analog

reads as follows:

H(g,dix,y) =f V(o) B (t) e’ ™Y Pat
R

Definition. The cross-correlator

2 2 .

LY(R) x L7(R) 3 (¢,¢) —=H(d,$;.,.)
is called the sesquilinear holographic transform. Its re-
striction to the diagonal, i.e., the corresponding auto-

correlator, is called the guadratic holographic transform.

Key observation: Let A(R) denote the three-dimensional real

Heisenberg two-step nilpotent Lie group with one-dimensional
center Z [23]. The projection A(R)/Z of A(R) along Z induces
a symplectic structure on the plane R 8 R and a twisted con-
volution product on L2(R ® R). The infinite dimensional,
topologically irreducible, unitary, linear representations
of A(R) are square integrable mod Z. The sesquilinear holo-
graphic transform H(Y,¢;.,.) coincides with the projection

of the matrix coefficient of the linear Schrddinger re-
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presentation U1 of A(R) defined bylpeLZ(R) and ¢eL2(R) along

7 to the holographic plane [24],[25],[26]. The coadjoint
orbit associated with U1 under the Kirillov correspondence
carries the symplectic form (X,X')~=det(X,X') and is iso-

morphic to the holographic plane by the exponential mapping.

Obviously the quadratic holographic transform satisfies the

"peak property"
. 2
H(;0,0) = |} 41"

By virtue of the Cauchy-Schwarz-Bunjakovsky inequality, the

sesquilinear holographic transform satisfies the estimate

H(; dsx,y) < 19 e I ((x,y)€R 8 R)
for all ¥, ¢ € LZ(R). More important is the following result:

Theorem 4. For all functions ¥',¢' and ¥, ¢ in L2(R) the

orthogonality relations

H(y', ¢ 5 x,y)A(¥, é;x,y)dxdy = <y'[g><d]o'>
R 8 R

are valid.

As a consequence the following analog of the classical

Paley-Wiener theorem (Theorem 1 supra) obtains.
Corollary. The sesquilinear holographic transform

PR = H{Y,¢;.,.)

extends to an isometry of L2(R) @2 LZ(R) to the complex

Hilbert space of Hilbert-Schmidt operators K on LZ(R)

realized as kernel operators



Ky (x) f K(x,y)¥(y)dy (v €LZ(R))
R
with kernels k €L°(R @ R).

It is known (see Segal [27]) that the kernel k takes the form

keOy) = GTRE) (x-y,y)  ((x,y) €ER 8 R)

5 _
where f€ L°(R ® R) and 25% denotes the partial Fourier co-
transform with respect to the second variable of the holo-
graphic plane. The bijective linear mapping

2 2

L"(R @ R)23f~w»kf €L (R 8 R)
is the Weyl transform. It gives rise to the natural Hilbert-
Schmidt extension of the sesquilinear holographic transform

and hence to the following result:

Theorem 5. A hologram generated on the holographic plane

R ® R by the Weyl transform

fw-:»kf

acts by the Hilbert-Schmidt extension of the holographic
transform as a linear spatial filter in a coherent optical

system.

In Section 6 infra the preceding result will be used to point
out an algorithm for generating sampled Fourier transform

holograms.
3. RADIALITY
The property of the quadratic holographic transform H(y;.,.)

to form a radial function on the holographic plane R 8 R

implies a serious restriction on the wave function ¢ CLZ(R).
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2
Theorem 6. Let y &L (R) be given and suppose that its qua-
Theoreén ©.
dratic holographic transform H(y;.,.) is a radial function on

the holographic plane R @ R. Then

where EnE:C is a constant and Hn is the Hermite function of

degree n > 0.

4. SOME ORTHOGONAL POLYNOMIALS

a) Recall the definition of the Hermite functions
2
H o(x) = e h o (x) (x €R)

where hn denotes the Hermite polynomial of degree n > O
satisfying the orthogonality relation

hn(x)hm(x)e dx = 8
R

b) Let Léa) denote the Laguerre function, i.e.,

1
-5X
(x) = & ° 1§“)(x) (x C€R)

(@)
n
where léa) denotes the lLaguerre polynomial of degree n > O

and order a>-1 satisfying thevorthogonality relations

= 1
-5X
f 1£“)(x)1é“)(x)x“ e % dx = CH

0

c¢) Finally, the Charlier-Poisson polynomials cn(.;a) on N
of degree n > 0 and parameter value a > 0 are needed. The
polynomials cn(.;a) satisfy the discrete orthogonality

relations



x

E a a_n
. . - ]
cn(x,a)cm(x,a)X! e a n.&n

x € N m
where a > 0.

Using the preceding orthogonality relations, we get the

following result:

Theorem 7. The holographic. transform of the Hermite func-
tions reads in terms of lLaguerre functions and Charlier-

Poisson polynomials as follows:

HOHHL 0 y) =4 B Wty )™ 7L ™ (n(xay®))

n

(-1)" _m-n _ 2n "%'2'2 2
= z 1z e cn(m;IZI)

Vmin!

where m > n > 0 and z =4/m(x+iy) € C.

5. THE HOLOGRAPHIC IDENTITIES

In the preceding theorem we identified the holographic plane
R ® R with the complex plane C. If we restrict the holo-
graphic transform H(y,¢;.,.) to the quadratic lattice Z @ Z
in R @ R, i.e., to the lattice Z[i] of Gaussian integers

in € we get

Theorem 8. Let ¥ and ¢ be elements of L2(R) then the holo-
graphic identity

H(giu,v) A p,v) = E H(g,dip,v)1°
(H,v) € Z8Z (p,v) €202

is valid.
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on the left hand side the signal terms occur whereas the
right hand side encompass the interference terms. This
explains the name. It can be established that the holographic
identity implies the classical sampling theorem as a special

case. However, it implies more.

In view of Theorem 7 we get by choosing for ¢ and ¢ the

Hermite functions:

Theorem 9. Let m,n be integers such that m > n > 0 - then
the identity

D O ) L0 (2
(u,v) € 282

%%nm—n ZE: (“2+V2)m—n(L£m—n)(n(“2+v2)))2
(b,v) €202

holds.

The theta function is defined by means of the Fourier series

2 .
9z, 1) = e~ TH 182n1pz

peEZ

which is normally convergent in the domain f(z,r)EﬁCZf Re v > O;.
It was C.G.J. Jacobi (1804-1851) who invented the theta-
function in the 1820s. Since then it has been used in many
investigations by generations of number theorists. It is
involved in many fascinating identities of number-theoretical
and combinatorial import, and it provides one of the most
effective ways to construct automorphic forms. According to
D. Newman (lLecture in honour of A. Sharma, Edmonton 1986)

the theta-function actually belongs to theology, and not to
mathematics. In the early 1960s André Weil, inspired espec-

ially by the work of C.L. Siegel, provided a representation-



theoretic foundation for the theory of theta-function. See
the classical paper by Weil [30]. He found that the theta-
function is intimately connected with the metaplectic (or
oscillator) representation, which forms a most singular
projective wnitary linear representation of the symplectic
group. This representation arises by virtue of the existence
of an action by automorphisms of the symplectic group on the
Heisenberg two-step nilpotent Lie group A(R) mentioned in
Section 2 supra. Moreover, André Weil showed the intimate
relationship to the law of quadratic reciprocity (cf.[22]).
The preceding theorem implies the following identities for
the odd powers of W which can be considered as identities
for the classical theta—function ("theta-null value")

d(r)y = ¢(0,7) = (Ret > 0)

at the point r = 1 of the right half-plane.

See Advanced Problem # 6491, Amer. Math. Monthly 92 (1985),
217.
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See Amer. Math. Monthly 83 (1986), 822-823 and Proc. Amer.

Math. Soc. 92 (1884), 103-110.

6. HOLOGRAPHIC ENCODING
A mapping of the holographic plane
c: R8 R — RBR

is said to be an invariant of the quadratic holographic

transform H(y;.,.), if the identity

H{yix,y) = H(yg 0(x,y))

holds for all pairs (x,y) €R 8 R and all functions ¢ €L°(R)

:\
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in such a way that the assignment ¢y —=y, defines a unitary

operator in LZ(R).

Theorem 10.- A mapping of the holographic plane
c: R® R—R 8 R

is an invariant of H, if and only 1if

ra b ) ‘
0:[ ], detc =1
c d '

with real coefficients a,b,c,d, i.e., oe€SL(2,R).

In the case when o preserves the lattice Z[i] and the radi-

ality of H, the choices of ¢ are drastically reduced.

Theorem 11. Let 6 be an invariant of the holographic iden-

tity displayed in Theorem 8 supra. Then

cos 2nk sin onk
Mm m
o = (0<|kj<m-1)

-sin ZWE cos 2nE
m m

and m satisfies the cristallographic restriction
mef{1,2,3,4,6}.

Proof. Since o preserves the lattice Z[i], the coefficients

a,b,c,d are integers. If

o #{-idpop, idpepl

preserves the radiality of H, the mapping

az+b

Z e
cz+d




83

defines an elliptic Mobius transformation of the upper complex

half-plane preserving R. It follows
ltr o] < 2

and since tr o € Z obviously
troe{.—1,0,+1}.

Therefore o is a turn through +w/3, +m/2 or +27/3, and no

other turn is allowed. -

It follows that the holographic identities have the dihedral
groups Dm (m 621,2,3,4,6}) as their groups of invariants.
Nothing like a turn through +w/5 is possible. Only the
classical planar crystal symmetries (or ornamental groups)
and none of the forbidden fivefold symmetries, well-known
from the theory of quasi-crystals, are allowed. For similar
patterns arising in long crested wave models, see the paper

by Schachter [20].

Tt should be observed that the dihedral groups Dm have order
2m and not the order m of the cyclic groups Z/mZ. Actually
this fact reflects that a hologram generates two images, a
real pseudoscopic image and a virtual orthoscopic image. It
can be shown that the generation of orthoscopic and pseudo-
copic images is at the basis of non-linear laser optics and

in particular of non-linear optical phase-conjugation [24].

The figures on the next page show two superpositions of
patterns formed by squares (m = 4).
7. COMPUTERIZED HOLOGRAPHY

The periodic tilings of the holographic plane R 8 R enable to

implement numerically various discretizations of the kernel
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function kf, the image of fE:LZ(H ® R) under the Weyl
transform. In this way an algorithm arises by Theorem 5

supra to generate computer holograms. One way to do this is
to compute in a first step by the FFT algorithm the Fourier
transform f = 9} o R 9 of the "two-dimensional image" g

on the lattice with group D_ (m€{2,3,4,6}) of invariants

and then the second step 1is to compute the kernel kf on the
grid. In the case m = 4 we get Lee's encoding scheme of
generating sampled Fourier transform holograms by decomposing
the complex~-valued functions to be synthesized into four
companents [10], [11]. Four times more samples are used along
one direction than the other are required by this encoding

technique.

In the case m = 6 we get Burckhardt's encoding scheme of
generating sampled Fourier transform holograms by decomposing
the complex valued functions to be synthesized into three

components [2]. Also see Yaroslavskii [29].

For processing hexagonally sampled two-dimensional signals,
the reader should consult Mersereau [13]. A similar procedure

is possible in the cases m = 3 and m = 2,



3. THE NEURAL HOLOGRAPHIC MODEL

A growing number of theorists in the field of neurophysiology
have invoked the principles of hologréphy to explain certain
aspects of brain function. One of the best established facts
about brain mechanisms and ﬁemory is that large destructions
within a neural system do not seriously impair its function.
Indeed, the pioneering experiments by Lashley [9] showed that
80% or more of the visual cortex of a rat could be damaged
without loss of the abil<ty to correctly respond to patterns.
Moreover, Robert Galambos (see Galambbs, Norton, and From-
mer [6]) has surgically removed as much as 98% of the optic
tracts of cats with little effect on visual recognition be-
haviour. These and similar tests on monkeys and even men
{performed during neurosurgery) have been interpreted to in-
dicate that the neural elemeﬁts necessary to the recognition
and recall processes must be distributed throughout the brain
systems involved. The problem that then confronts neuro-
physiologists is essential this: how can the relationships
between neural activity become distributed and stored (tempo-
rarily or permanently) by a neural network. The neural holo-
graphic model developed by P.R. Westlake, K.H. Pribram and
co-workers (Pribram [15], [16], [17]; also see Pribram,
Nuwer, and Baron [18], Ferguson [4]) explains the property of
distributed storage. Indeed, what makes the hologram unigue
as a storage device is that every element of the original
image is distributed by the holographic transform and the
Weyl transform (cf. Theorem 5 supra) over the entire holo-
graphic plane. Aside from this property, holographic memories
show large capacities, parallel processing, and content
addressability for rapid recognition, associative storage

for perceptual completion, and for associative recall. The
holographic hypothesis is in agreement with the experimental
results of Rodieck [19] who found circularly symmetric exci-
tability profiles of visual receptive fields which are

conformal to Theorems 6 and 7 supra and also with the



_thematical results by Marr [12]. See the figure on the
following page and also Kronauer and Zeevi [8]. Moreover,
Theorem 11 supra is in agreement with the results by Welt,
pschoff, Kameda, and Brooks [28] who found that "sensory
convergence into the motor (sensory) bortex is superimposed
on topographically uniform output organization in radial
arrays, the diameter of which is estimated to be 0.1 to
0.4 mm. Thus, neurons with fixed local receptive fields
provide a radially oriented framework (a reference system)
for common peripheral inputs..." More precisely, Nicolis [14]
concludes from his model of thalamocortical pacemaker that
"specifically cognition is manifested at the cortex as a
result of a matching process between pairs of spatial-
temporal patterns, each containing a great number of elemen-
tal units (neurons). In each pair, one pattern (the same for
all pairs) is the unknown information; it is embodied in in-
coming triggers, coded either in sequences of pulses from the
peripheral nervous system, or, if it comes from other areas
of the central nervous system, encoded in strings of macro-
molecular (neuTro-transmitter/hormonal) releases from pre-
synaptic endings. The other pattern of the pair is one of the
pattern/attractors created by the processor; it constitutes
a prestored spatial-temporal "mosaic" embodied in a set of
partly synchronized post-synaptic membrane potentials or a
spatial-temporal pattern of post-synaptic membrane receptors.
The coupling or cross-correlation between the above two
patterns of each pair takes place dynamically via energy
exchanges between equal or neighbouring frequency pairs
shared by both spectré... The result of the cross-correlation
in phase and amplitude determines the "degree of cognition"
between the'incoming and the‘presét or the unknown and the

expected patterns..."

It follows that the holographic transform provides a rigorous
basis of neuromathematics. It includes the transference of

phase informations to bijective linear transformations of the

87



holographic plane by the metaplectic representation of the
symplectic group which explains the neufal'encoding of signal
pulses emphasized by D.H. Hubel and T.N. Wiesel as well as
the parallel processing of information emphasized by F.W.

Campbell and D.A. Pollen.

Finally, let us quote P, Greguss (Lecture presented at the
International Conference on Holography Applications, Beijing
1986): "I would like to express my belief that the holo-
graphic concept of Gabor is as fundamentad as the general
Telativity theorem of Einstein, and it has to be explored
further for a better understanding of nature in which we

live."
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Numerical Methods and Approximation Theory IIl (Ni$, August 18-21, 1987)

THE MOVING GRID METHOD FOR BLN PROBLEM

M. ALIC and R. MANGER

ABSTRACT. We consdidern Godunov method for the Bardos, Leraux
and Nedelec Lnitiaf-boundary probtem Lin the case of nonuni—
form ghids. Computern code and resulits arne abso inctuded.

Let f e C2(R), ay, a, ¢ R and let Qp=10,LLx10,TL,
&T = [0,L1xJ0,T[ for T >0 , L >0. For u e BY(Q.), ¢ R

and ¢ eCé(éT) we introduce the notation

5}
¢}

©

LT
E{u,e,c) = - J S{]u-cl
0 0

+ sign(u-c)Lf(u)-Flc)] %g} dx dt+

or

T
+ J sign (C—ao)[f(TOu)—f(o)J@(O,t)dt -
0

3

- J sign(ec-a ) [f(TLu) - f{e)] o(L,t)dt ,
0 - . -

where (Tou)(t) = lim u(x,t) in L1(O,T) and (TLu)(t) =
x=0+ . :
= 1im u(x,t) in L'(0,T).
x=1-

For a given Uy e BV(70,L[) we consider Bardos, Leroux

and Nedelec problem

au 3 . _ .

(1) %‘Fb—if(U) = 0 in QT

(2) u(x,0) = uy(x) in 10,1t

(3) min sign (aO—TOu(t))[f(Tou(t))=f(c)] = 0

CEJ[TOu(t),aOT

’

(4) min sigﬁ(TLU(t)—aL)[f(TIu(t))—f‘(c)] -0
- ceJ[TLu(t),aL]



for t €l0,Tl where
q[u,B] = Imin {e,R}, max {o,B}).

DEFINITION. A function u e BV(QT) is a solution of
the problem (1)-(&;‘ if it satisfies' the initial condition
(2) almost evefywhere’in 10,TL and if
(5) - - . E(u,wvc)_i-qn
for all ¢ e R and all non negétive ¢ eCé(&T).

Bardos, Leroux apd Nedelec have .proven in {1] the existen-
ce and uniqueness theorem for the above problem.

The following lemma is a fundamental one for our consi-

deration:

LEMMA. Let e BVU(JO,L[) be a step function. If

Yo
u e BV(Qp) is the solution of (1)-(4) and if weBV(Rx10,T'[)

is the solution of the Cauchy problem

ow 9 . - . !
(6) 3 * 3% f(w) = 0 in Rx]O0,TI[
ag s x<0
(7) w(x,0) = uo(x) , x €]0,LI[
ar x>L
then " v
QT'

for a short time T'I>O.

The proof of this lemma follows from the fact that if
w 1s short time solution of Cauchy problem (with short time
T given by some Courant condition, see [6]) then w satisfies
boundary conditions (3) and (4) as a solution of a Riemann
problem (see [2])

For 6 ¢ ]O,éo[ we consider a set of grids {Gé} in

Qp where Gy = {(xg,tj)] and where



0 = to < t < < tn = T
0 = XJ < X‘j< < X‘j = L
-0 m.
J
We suppose that there exist positive constants CO’C1’kO’k
such that
. Joo_,d . J
(8) kg6 = xj q=xy = Axj < ko
ated gd*Tgd
(9) €y <= <,
AXY Axg
i i
where
(10) c, = —1/__
2 max|f(u)l
nel
o .
I = Lmln{ao,aL, inf uo(x)}, max {ao,aL, sup uo(x)}
(this is Courant condition!).
It follows from (8) and (9) that
(1) ne < C,
where C. = v—zr— . We define a regular set of grids as a
2 COKO

set of grids with properties (8), (9) and (10).
For the formulation of Godunov method we use the so-

lution operator S(t) for . BLN problem (1)-(4) and the

averaging operator Aj’ j:O,.;u,nn?. The operator Aj is
defined for u e LT(O,T) by the formula
xJ
. i+1
(A u)(x) = - . ul(gldg
J ax) xJ
i 71

j

j , . &
for x e LX?, Xi+1 [. We define an approximation v by

vé(x,t) = vj(x,t) s
for (x,t) e ]O,LLthj,tJ+1f and J=0,...,n-1, where

0 .
v ({x,0) = Aouo(x)
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vI(x,t9) = AjvJ'1(x,tJ), 3=1,...,n0-1,
and

vI(x,t) = s(t-tHvi(x,t))
for t e [t9,69%1] and j=0,...,n-1.

THEOREM. If u e BV(QT) is the solution of the problem

(1)-(4) and {Gb} a regular set of grids in QT then

u o= 1lim v® in L%(0,T:L (0,L)).
60 _

Proof. Let wY be the solution of Cauchy problem

(12) W2 rw =0, in Rxltd, eI
ag s x <0
(13) wix,t9) = v(x,td), x e 10,LI
a; x> L
For wY and t e [tJ,tJ+1] we have fundamental Kruzkov esti-

mates:

(14) inf wJ(x,tJ) < wJ(x,t) < sup wJ(x,tJ) ,
X X

(15)  varlw(+,t);R] < Var [wd(-,t3);R]
and

(16) ij(°’t+T>’Wj(°,t)Hﬂ < |- L'Var[wj(-tj) i R ]

(R)

for t+1 e [tJ,tJ+1] where L is the Lipschitz constant

of f on I . We define the function v° by the formula
n-1 .
=6 _ J. X .
R SR T A
Jj=0
such that
& =6
v o= v |

By using the results of Lemma 3.1. and Lemma 3.2. from [5]
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we obtain that for some positive constant C1,C2 and C3
—6
(1) vl <Gy
L (R2)
(18) varl v%(-,t); R < C,
and
—6 —6
(19) IV e -TOCe,0) ] < Co(]tl+s).
L®(Re)~ 3

Estimates (17), (18) and (19) imply that every sequence
(VG) with 6 tending to zero has a subsequence converging
to a limit in Lm(O,T;L (0,L)). This limit is also in BV(QT),

by some integral criterium (see [7]1,C.IV.§3). By the inequality
& &

(17) there exists a subsequence (v "y such that v V—-v in

6

6
Lj(QT), f(TOV ™y - p and f(TLv 'y - q weak star in Lm(O,T).

Similarly as in (5] it follows that p = f(TOv) and q :f(TLv)
&

if  lim t(v r,¢,C) < 0. TIndeed, from inequalities E(vj,¢,C)§ 0
o
for
¢ e Cy(l0,T] 189,637
¢ > 0 , j=0, ,n-1, C € R

we obtain the inequality

5 n11 L . . .
B(v®, 0,0) < ¥ S |vIx,td-clolx,t))dx}-
j=0 O
(20)

B .
- flvj(x,t3+1)— clw(x,t3+1)dx} ,
O .

for o aco<6T) , 9 >0 . The ihequélity (20) implies, as in
[6]1 the inequality
E(v6,¢,0)5 K6
for a positive K and we fihally have
E(v,9,c) <0
which, because of uniqueness theorem, completes the proof

of Theorem.



y

i,xJ L . Using the

Define vJ = vﬁ(x,tj) for x e [x S oL
i A+
fact that vé\ is the exact solution on the strip
]O,L[x]tj,tj+1[> and the divergence theorem on the trapezium
A . o1 . . L o
with vertices (tJ% ,xii]), (t3+1,x§+1), (tJ,xﬁ), (tJ,xi) we

obtain the Godunov sheme

X R 1-1
] - L L .
(21) I axd - Jaxd - atedryd -yJ
Vi X3 Lovphxp - aTeRlYy L o-ve o0
r=k
where
min . [E(u)-xd ul, if v < v
J K,i b K-1 K
: uelv_q, vy ’
vy
k,1 .
max , . [f(u)—Xj .u ] if vj < Vj
J K,i ' k k-1 !
uelvie vi ’ -
and where j
. AX Y
X = 1
k,1i A+t3

The index k (or 1) is chosen such that the line segment
. e L . . L
(xg Y ),(xﬁ,tJ) (or (xgi},t3+1),(xi,t3)) nowhere
transversaly crosses any Riemann fan.
In order to test the method numerically, we have made

a computer program which solves the BLN problem. Our program

is only one of many possible implementations of the method.

A grid of points (xi,tj), j=0,...,n, i:O,...,mj is auto-
matically constructed:
T
The grid covers
the domain of s °
e domain o ] : N
Xo xh X3 X{ ) xymL
our problem, i.e.
0_ J
Xj—O,ij-—L t‘ . - -
* Ko NS b XA -
0 n 4 2 w= L
t7=0,t7 > T t°_J o )
_y® © o ] 0
I O T R S
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The parameters n,mj (j=1,...,n), tJ(j=1,...,n) are

chosen by the program during the computation. On one time

layer (for fixed j) the grid is uniform, i.e.:

N R B B o wd _d _ - .
x1~xo = X5 x1 = ... = ij ij"T = L/mj = .hj

Yet, the whole grid is still nonuniform, since mj and

Atj = t:j‘”—t‘j depend on j. There is even stronger regula-
rity among the numbers mj: mj+1 can be either equal to vmj
or two times greater than mj or two times less than mj
For given tj, the solution u(x,tj) of the BLN problem

is approximated by a step function:

Vg N

N Ny
v

\im; -4

4

3
Vs

¢ .

w==] i

TRt SN S Xin,

wooxd

The set of all computed step functions is stored in random-
access files. Additional modules of the program use these
files to produce printed or plotted reports containing ap-
proximate versions of the functions u(x,tj) (for some user-
specified values tj).
Now, we will describe essential features of the algorithm
used in our program:
- The computation is adVanciﬁg time layer by time layer.
The grid is being constructed in the course of com-
putation
- In order to construct the next time layer, the program

selects one of three possible patterns:



[e]

17 the grid has equal i S i*A
X; RAIY f(n. t:m
number //
of x-intervals on j-th j////
and on (j+1)-th time layer - ¢
SO Kien xi,
‘: XL e
2° the grid is two times X oy
sparser on (j+1)-th
time layer o
¥ Xilta g Kiian
i 4 it1
3% the grid is two times % K ina Xiva oy

denser on (j+1)-th

time layer

3 &
e Kifpra

X

- The decision which pattern to choose is based on the
following simple heuristics:
"If the function u(x,tj) is oscillating very much and/or
has big discontinuities, then it should be computed more
precisely (i.e. with denser grid)"

To measure oscillations and discontinuities of the fun-

ction u(x,tj) , the following variational norm is introduced:
. m, . . .
J_vd (3,3 2 Jo_ Jo_.
dv =} (vi-vy_4)%, where vl ,=agy, vy =a,

Jj=0 J
r qJ (computed using the grid resulting from pattern 19)

is significantly greater than dj, then pattern 30 , 1s rat-
her used. Else if dj+1 is significantly less than dj ,
then pattern 2° is rather used.
- Time step Atj is chosen so as to keep the quotient
Atj/hj constant through the whole computation. Initial va-
lue Ato/ho is determined as to satisfy the Courant condi-

tion.
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- To compute the next step-function (on j+l1-th time layer)
the program uses formulae for v£+1 which are derived
from more general formula (21). The trapesium (used in
formula (21)) is substituted by a rectangle (pattern
1O,pattern 20) or by one of the triangles (pattern 30).
On figures illustrating the patterns, rectangles and
triangles used are shaded.

~ Since the quotient Atj/hj is kept constant, the
"Godunov function" (used in formula (21)) can be re-

placed by three simpler functions:

<|

min f(u) , for v <
gO(V,V): uelv,vl]
max_  f(u) , for v > v
uefv,v]
1 -
min (f(u)- w) , for v <V
_ UE[V,—\;] 2Ato -
g_1(v,v):
n° -
max (f(u)- u) , for v >V
uelv,v] 2at®
h° -
min (flu)+ u) , for v < v
B uelv,v] 2at® -
g1(v,v)=
: 10 3
max (f(u)+ u) , for v > v
uelv,v] 2at®

- Each evaluation of any of the functions 8g18_1184
involves a constrained optimization problem. In order
to solve these optimization problems efficiently, our

program initially finds all local extrema of functions

o)

o
h S U flu) + 5
2At 2at

The table of local extrema i1s used whenever one of

f(u) , f(u) - u

the functions. go,g_1,g1 is being evaluated.



The program was tested on a number of examples involving

three different

f~-functions.

The results were compared with

known exact solutions (or numerical solutions obtained by a

different method) as given in papers

[371,

[ul.

There is a

good accordance between the computed and expected values.

On the following page a plotted report generated by our

program is reproduced. All data describing the corresponding

BLN problem are quoted. Approximate yersions of the functions
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u(x,tj) for six different values of tj are plotted.
since the value t° is equal to 0, the initial condition
is also visible.

REMARKS. The work described in this paper was carried
out as a part of authors’ collaboration with INA Naftaplin
petroleum Industry from Zagreb, Yugoslavia. The considered
BLN problem has an interpretation which arises in the study
of one-dimensional flow of two immiscible fluids (i.e. oil
and water) through a porous medium. By solving a series of
BLN problems and comparing the solutions with experimental
results, one can estimate parameters describing physical
properties of a given porous material. This is an important
step leading to a reliable petroleum reservoir simulation.
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THE SPLINE TRANSFORM AND ITS APPLIC;ATION IN THE PROBLEMS

OF SIGNALS' DIGITAL TREATMENT

A.H. ARAKELIAN and M.R. VOSKANIAN

ABSTRACT$ In this work the calculating formulas for compu~
ting the spectral characteristics are brought, obtained by
the application of wide class of splines. The programmes of
computing the spectral characteristics were used for inves-
tigating the medical-biological curves.

The practical application of splines shows, that for ob-
taining a considerable degree of closeness of a gpline to
the interpolating function, it is sufficient that the degree
of splines be limited by four,

INTRODUCT ION

A great number of papers is devoted to the treatment
and prophylaxis of postcholecystectomy syndrome, Bubt the num-
ber of research works on usage of differentiated health re-
sort treatment complexes depending upon clinical variations
of postcholecystectomy syndrome course is as far-extremely
insufficient. In a number of papers the significance of sana-
toria and health resort treatment using mineral waters at
early period after choledystectomy is especially emphasized
as a prophylactic method of serious complications after cho-
lecystectomy, ' '

Relative to the problem we have supposed that it would
be timely to make clear the possibility and expedience of
the usage at early periods after operation on bilare tract
the health resort factors in particular, mineral water
"Jermuk" of complex chemical composition, with the purpose
of prophylaxis of postcholecystectomy syndrome and most ra-
pid restoration of working capacity. There are no informa-
tion concerning effect of Armenian mineral waters both under
health resort and under common conditions on patient rehabi-
litation at early periods after cholecystectomy.,
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The paper presented is devoted to the invesbtigation
of the effect of complex treatment method developed for the

patients after cholecystectomy operation, on the disease
course. The investigation was conducted by means of rheopa~

tography namely, utilization of registration of hepatic
blood supply regularities by means of rheohepatograms (RHG)
Fig.l presents a typical RHG-registration.

-Fig. 1.

1, THiE AIM OF INVESTIGATIONS

The basic aim of investigations conducted consista in
the development of effective methods of patients early reha-
bilitation after cholecystectomy by physical factors depen—
ding upon the character of pathologic process in hepatobil-
iary system, in the estimation of efficiency, and in the
recommendations for these methods usage.

The pecularities of clinical course of the pabtients
condition after cholecystectomy, the effect of mineral wa-
ter "Jermuk" combined with pine bath, massage of portal fis-
sure zone muscles, remedial gymnastics on the patient condi-
tion after cholecystectomy, laboratbory indices characteri-
zing the hepatobiliary system condition, the alteration of
liver hemodynamics according to rheohepatography data and
modification dynamics of RGH-curve spectral characteristics

were investigated.

2, METHODS OF SPECTRAL ANALYSIS
75 patients were observed. 50 of them have been trans-—

ferred from surgical clinic to gastroenterological depart-
ment in 2-3 weeks after cholecystectomy 25 patients had a
period from 6 months to 6 years after operation. Almost all
the patients investigated had a pain in the right hypochon=
drium, discomfort in epigastric region after eating, and abt
times nausea, heartburn, bitter taste and xerostomia. Often
the patients have mentioned disorders of intestine emptying

function,



107

In the first group of patients the phenomen of asthe-
nic syndrome has been observed., The patients from both
groups have received the same treatment complex during 24-
26 days of hospital treatment, The analysis of data received
has shown that for 95,8% patients in first group and 76,5%
patienbs in second group the pain in the right hypochondrium
has disappeared and for the others the pain intensity has
essentlially decreased. An analogous effect was observed for
the pain in epigastric region. But, unlike the pain a num=
ber of patients have continued to complain of gastric dys-
pepsia effects in particular, heartburn, eructations al-
though with decreased frequency of their appearance. For alk
most all the patients bitter taste, gastric flatulence, as-
thenic effects (weakness, erethism) have disappeared, defe-
cation has normalized. For the registration of hepatic blood
supply character the active electrode was placed across the
medioclavicular line to the right, in the reglon of its in=-
tersection with the costal arch, and the passive one across
the medioscapular line to the right, in the center between
the angle of the scapulae and the crest of the iliac bonse.

For calculation of integral Fourier transformation a
method based on the approximate representation of integrand
function by means of Hermite spline was used[I,BJJPhe spec=
tral processing of the signals was conducted on a computer
in real-time.

Special attention was drawn to functional condition
of liver affected mostiy by cholelithiasis, The liver condi-
tion was invesbtigated by meéns of rheohepatography. Analy-
sis of used treatment complex results was conducted by means
of RHG-curve registration received by 4RGLA apparatus.

The interesting RHG characteristics are splash values
m=0,058 Hz before and n=0,07 Hz after treatment., Fig.2 gives
the typical shape of RHG spectrum before and after treatment
with distinguished peaks. The typical frequency values are
about 0,056~0,04 Hz for m and about 0,067=0,071 Hz for n.



3, ALGORITHM OF RHG SPECTRAL ANALYSIS

In the investigations conducted a calculation proce-
dure based on RHG-curve Fourier transform represented by Her-
mite spline 1s used. The method permits in contrast with
the visual one not only to reduce the investigation time
but also to free the investigator from elements of subjec-
tively peculiar to the visual method[2,33.

The calculation procedure of amplitude-frequency cha-
racteristic determination proceeds as follows:

Let }(x) € Cm[a,glfunction' be analysed where C [a,b]
is a space of real functions continuous on [a,b] interval
and has continuous derivatives of m-degree,

Let

D P QKo < X(<Kp< oo < Xp2b, nel
is a net given on a finite interval [a,b].

Let us denote (x—:u)fm = max[0; (X-:!;)]m.

Definition {1]. S (x) =.5, (x4, m=1{ function is
called Hermite interpolation spline for a function

{(x) € Cmfa_)g], m e it
a) SZM(X;j) = C”"[a,b] ana

2 (¢) ()
ayg s A 309 21 2Am
() = - X Lamet .
Sqm (x;f) = Z, 5 (0o¥0)"+ TEES (09,
for SVery  xe lug, %03, ¢2 04, ..., 7 -4,
035, (x) = {*xe),
/{:O;!,.--)’";' ‘.:0/1,... 4.

s

£ {tx)e C”1la,bl, then 1,47 spline transform of
Fourier for Hermite spline representation of )((X) function

)

. . -4 Hlog
is equal to A/(jw) =;§..Z S2m (x; §) =

n-1 ?Zm o< K o i, Kooy ‘Lax/ ]
4 —= 5 @i ‘ e X
3F[Z‘,,§=o S!x{(x-xé) e jx +£(x-:1¢) € .

If we denote * Aoy

) X Sje K ‘ am - jux
Q (s,w) = /(4)(:".:)"&J C/X,' L (2m,w):y[(”‘jc) € a/x,

Xe o, (i
then it is possible to construct the following iteration
proq?dures for their definition © o

(¢ WK ITAY. % () _ . . - v+ S
O (o‘g) = (e ! - e ! ”)/J‘(,J : a (1’w):[0(0,u)) (7(‘,4»‘ x.)e l.ﬂ),

(«! i,
Q (5)‘«\)):[SO(S“I)(J)"(K:{,L-XC)SG') “l/w

( - ’~qu;,4 IS TRYA (& . ) ‘ AT
and L (O, W)= (C - e )/J(A);Ll ¢ (1,\«7)1[L{U(O,‘*’/"\I%H-jc)' 3 H]/ju);

<
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L(U(Knu):[J(G(K-1¢J)~(xi+‘-ycy‘e‘“waqj/jcd
espectively,
If we denote the Fourier transform of jbd functlon by
/—/(ju) then/; (J(,) H(Ju)_zl//(}(x)_ Zm(x ;))e o/x/_{
£ (2,”A+1)4£&uﬁ31£1££ifiﬁ29_;{2
2T 22”7(2”7)/ ) o .
there /A n/= MCLX(X\“ ), w(f‘“)//ﬂ W) =rmasx ma/x/f(,,) (j) '

9SSt Sy, Kevdd

t, RHG SIGNAL SPECTRAL ANALYSIS

It is known that RHG represents an electrical signal
renerated by an non-stationary source, the liver. Fig.2 and
5 represent the results of RHG-curve spectral analysis for
she first and second groups of patients, respectively.

) -[Og/aé/(jw)/ ) g {uj//‘/(jw)

Ha Ha

g Y S " ¥

The results of invesﬁigations conducted have shown
that the increase speed of frequency value at which the
spectrum peak 1s observed, is conditioned by intensity in~
crease of hepatic blood flow at the expense of both arter-
iagl inflow and venous outflow, Besides, the first group of
patients has larger values of spectral characteristics than
second one.,

Thus, the observations have shown that the used treat-
ment complex including inner dose of carbonate-=hydrocarbo-
nate=-sulphate~chlorine-natrium-calcium-magnesium mineral

water "Jermuk" permits to improve essentially the liver



hemodynamics for both groups of patients. At the same time
information obtained testifies more evidently expressed de-
crease of liver hypozia, for the first group of patients

for which the rehabilitating treatment began at earlier per—
iod after operation.

5. CONCLUSIONS

1. The rehabilitating treatment involving the balneo-
"logiérfactors and conducted at éarly périod after cholecys-
tectomy promotes the favourable dynamics of post~operation-
al syndromes, the normalization of lives functional condi-
tion, circulation of the blood in liver, the most rapid res-
toration of working capacity. ‘

2. The use of signal digital processing methods and
algorithms and their realizing programs stipulates for pds—
sibility of objective quantitative estimation of RHG-curve.
The problem of determining when and under what conditions
RHG-curve changes was so far not solved. The RHG spectral
processing method used in the paper permits to receive the
quantitative information about violations of hepatic blood
supply character.
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AN IMPLEMENTATION OF A SEMI-DEFINITE PROGRAMMING METHOD

TO CHEBYSHEV APPROXIMATION PROBLEMS
M.D. ASIC and V.V. KOVACEVIC-VUJICIC

ABSTRACT: A discretization method for solving linear semi-infi-
nite programming problems arising from Chebyshev approximation
is presented. The method is based on selective refinement of
the initial coarse grid, which enables an efficient treatment
of multidimensional problems. Numerical examples from Chebyshev
approximation are also presented.

1. INTRODUCTION

This paper 1s a natural extension of a sequence of papers
on semi-infinite programming methods ( [2], [3), (4], (5], [6]). We

consider here the following Chebyshev approximation problem:

Let C:[p1,q1]x...x[pr,qr] and let g :C»R, i=1,...,m and
f:C+R be given functions. Find XqyeeaXy such that
(1) max |f(t)-x,g,(t)=...-x_g ()]
tec =1 mem

is minimized.
It is easy to see that this problem can be reformulated as

the linear semi-infinite programming problem:

min x
m+1
(2) .
xm+1>|f(t)—x1g1(t>—...5xmgm(t)l for all teC.
For brevity, let x:(x1r}..,xm+1),

01(x,t):x1g1(t)+...+xmgm(t)—xm+1
Cz(x,t):—x1g1(t)—...-xmgm(t)-xm+1.
Then (2) becomes
min X
m+1

(3) '
xeX, X={xe’™ le, (x,£)€r(t), o (x,t)€-£(t) For all teC).

In the sequel we shall use the following:

Assumption 1. (i) There exists an eX such that the set
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hemodynamics for both groups of patiehts. At the same time
information obtained testifies more evidently expressed de-
crease of liver hypozia, for the first group of patients

for which the rehabilitating treatment began at earlier per-
iod after operation.

5. CONCLUSIONS

1. The rehabilitating treatment involving the balneo-
"logic factors and conducted at éarly period after cholecys-—
tectomy promotes the favourable dynamics of post-operation-
al syndromes, the normalization of lives functional condi-
tion, circulation of the blood in liver, the most rapid res-
toration of working capacity. ‘

2, The use of signal digital processing methods and
algorithms and their realizing programs stipulates for pdsm
sibility of objective quantitative estimation of RHG-curve.
The problem of determining when and under what conditions
RHG-curve changes was so far not solved. The RHG spectral
processing method used in the paper permits o receive the
quantitative information about violations of hepatic blood
supply character,
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AN IMPLEMENTATION OF A SEMI-DEFINITE PROGRAMMING METHOD

TO CHEBYSHEV APPROXIMATION PROBLEMS
M.D. ASIC and V.V. KOVACEVIC-VUJCIC

ABSTRACT: A discretization method for solving linear semi-infi-
nite programming problems arising from Chebyshev approximation
is presented. The method is based on selective refinement of
the initial coarse grid, which enables an efficient treatment
of multidimensional problems. Numerical examples from Chebyshev
approximation are also presented.

1. INTRODUCTION

This paper is a natural extension of a sequence of papers
on semi-infinite programming methods ([2], [3]}, [4], [5), [6]). We

consider here the following Chebyshev approximation problem:

Let C:[p1,q1]x...x[pp,qr] and let g;:C-R, i=1,...,m and
f:C+R be given functions. Find Xqyee Xy such that
(1) max |[f(t)-x.,g,(t)=...-x_g (&)]
tec 121 m-m

is minimized.
It is easy to see that this problem can be reformulated as

the linear semi-infinite programming problem:

‘min x
m+ 1
(2) R :
xm+1/|f(t)—x1g1(t)—..T—Xmgm(t)l for all teC.
For brevity, let x:(x1é,..,xm+1),

Cw(x,t)=x1g1(t)+...+Xmgm(t)—xm+1
Cg(x,t):~x1g1(t)~...—xmgm(t)—xm+1.
Then (2) becomes
min X1

(3) m+ 1 :
xeX, X={xeR |c1(x,t)éf(t), cy(x,t)€-f(t) for all teC}.

In the sequel we shall use the following:

Assumption 1. (i) There exists an xeX such that the set

m



T=X N (xeR™ |

is bounded.
(ii) The functions Bqs--eaBy and f satisfy the Lipschitz

condition.

It is clear that Assumption 1 implies the existence of a
uniform Lipschitz constant L for functions 01(X,t), 02(x,t)
and f(t), i.e.

lo; (x,87)=cy (x,8")] ¢ LIE -t , xeX, i=1,2
(e )-f(eml < Lite? -t .

The main idea of the ﬁethdd Which will be described in
Section 2 is to use selective discretization of the index set C
in order to replace semi-infinite programming problem (3) by a
sequence of linear programming problems. The method starts with
a uniform grid which depends on the Lipschitz constant L and suc
cessive refinements are made in such a way to ensure linear grow
of the number of grid points, while retaining the usual converge

ce properties.
2. THE METHOD

In order to describe the algorithm of the method we need th
following notation:
Let (Mj) denote the sequence of uniform discretizations of

the set C defined by
M= {(p1+k1h$,...,pp+kphg)l kKEO,1,...,29m}, i=1,...,r)

where hi:(qi—pi)/(iji), and m; are appropriately chosen posit
ve integers. Furthermore, for given yeRm+1, teC, h1>O,...,hF>O
let a, and a5 be the functions defined by
r r
a,(s)= ¢ (y, )-rlt)+ i)—jﬁﬂ(si-ti) + §§i1lsi—ti|
() r r
qz(s): cz(y,t)+f(t)+ %;%Kiz(si—ti) + %;%Ei2|si_til ,

where Ai1’Ai2’Bi1’Bi2 are such that
q.(s) > c,ly,s)-f(s), a,(8) 2 c,(y,s)+1(s)
for all s satisfying Isi—tﬂékHj i=1,...,r. It is obvious that

and ay depend also on y,t,h1,...,hp and that they are actually

piecewise linear majorants of 01—f and 02+f, respectively.
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lgorithm 1. Input parameters: ﬂo>0, Lipschitz constant L, in-

zgers My, ...,Mm, satisfying

my>(qy-py)LVE/(24), i=1,...,r.

tep O Set Xb:QD/L, CO:MO, k=0.
cep 1 Solve the linear programming problem:
min X
1 .
XeY, , Yk:{xeRm" [ eq(x,0)4f(t)-4,, cy(x,t)&-F(t)-A4,, teck}

1d let y Dbe a solution. Set j=0, EO:CO.
sep 2. If j=k go to Step 4. Otherwise, for each teEj find
mctions a9, 95 such that

a,(s) 2 c (y,8)-(s), ay(s)>e,(y,s)+f(s),

r all s satisfying [si—tilé hi , i=1,...,r.
Let E3+T be the set of points teEj for which either dq or 4,

s greater than or equal to —ﬁk at some ektreme point of the set
J Jy .- J J
([ty-hy,tq+hylx ... x[tp—hr,tr+hp1 YNc.
et Ej+1 be the set of points in Mj+1 whose distance from the set

7
j+1 does not exceed Xﬁ. Replace j by j+1.

tep 3. If for all tEEj
01(Y7t)éf(t)_ﬂ1<; CZ(Y,t)S-f(t)—/JK,
o to Step 2. Otherwise, let
T= {téEJI 01(y,t)>f(t)-/3k or Cz(Yyt)>—f(t)‘ﬂk}$

eplace Ck by C

k
k+1 !
tep 4. Set x<*'=y, Cy1=Cys ﬁk+1:6k/2, Yk+1=YL/2, replace k by

UT and.go to Step 1.

+1 and go to Step 1.

It is easy to see that Algorithm 1 belongs to the class of
ethods defined in [4] . The result in [y] implies that the Al-
orithm is well defined and that each cluster point of the sequ-
nce (xk) generated by the Algorithm is a solution to (3). Moreover,

x¥ex  for all k=0,1,...

The efficiency of the Algorithm depends on the cardinalities

of the sets Ej and on the number of inner cycles of the type
Step 1 + Step 2 » Step 3 + Step 1 at the k-th iteration, which de-

termines the cardinality of the set C For further analysis we

K
need the following:



Assumption 2. (i) ¥ is the unique solution to (3).

(ii) (01()(",t)-f(t))(cZ(X*,t)+f(t) )=0 for finitely many t’:
Let T* be a complete list.

(iii) Functions f,g1,...,gm are twice continuously differen
tiable on C.

(iv) For each t¢T* the following property holds: If tg is
an endpoint of [p,,q;] and, say, 01(x*,t*)—f(t*):0 then
6(01(X*,t*)—f(t*))/&ti# 0. Moreover, the Hessian matrix with res
pect to the remaining ti’s is negative definite at t*. Similar
property holds if cz(x*,ﬁ*)+f(t*):0.

The following result on the cardinalities of the sets Ej he

Theorem 1. Let Assumptions 1 and 2 be satisfied and let q, @
d, have the form (4). Moreover, assume that Ei14 0, Eize 0 as

h14 O,...,hra 0 for all i=t1,...,r. Then the cardinalities of the
sets Ej generated by Algorithm 1 are bounded above by a constant

independent on j and k.

The proof is similar to that of Theorem 3.1 in [5] and is t
omitted. Let us only point out that under Assumption 2 functions
17 0, Ei2* 0 as h1+ 0, ..
hp+ 0, i=1,...,r can be obtained using the first order Taylor ¢

9, and g, of the type (4) satisfying Bi

pansion of 01-f and 02+f and rounding up the remainder term.
It remains to analyze the number of inner cycles at the k-

iteration, which is done by the following theorem:

Theorem 2. Assume that the functions Y - satisfy the
condition on the set C and f ¢ span{g1,...,gm}. Suppose furth
more that Assumptions 1 and 2 hold. Then the number of cycles ¢
the type Step1 »Step2 +»Step3 +Step1 in Algorithm1 is boundec

a constant independent on k.
The proof follows directly from the following three Lemmas

Lemma 1. Suppose that the assumptions of Theorem 2 are sati
fied. Let y be one of the points generated in Step 1 of Algori
during the (k+1)-th iteration. Then there is a positive constar

independent on k such that

- 2 - k- k _k
Yne1¢ Ymet1 $ Vet DBk+1 » Where y:(x1,... %

m Xme 1 Bk
The proof of Lemma 1 is similar to that of Lemma 3.1 in [6
and is omitted.

?



115

Lemma 2. Suppose that the assumptions of Theorem 2 are satisfied
Let y be one of the points generated in Step 1 of Algorithm1 during
the iteration k+1. Then there is a positive constant E independent
on k such that

- 2 -_,.k k _k
ly-yl & EB, 4, where y_(x1,...,xm,xm+1—6k+1).
Proof : Note first that y is a solution to the problem
k min x
m+ 1

01(x,t)éf(t)—ﬂk , 02(x,t)$-f(t)ﬂ6k , LEC, .
By duality theorem there are nonpositive numbers d1(t), d2(t), tecC
such that

]

d,(t)g, (t)- Z: d,(t)g;(t) = 0, i=1,...,m

tec, tec,
Y_od(E)e ) dy(8) = -1,
tec, tec,

By Caratheodory’s theorem we may assume that

m’ . . m" . .
Y d . (tdg.(e9) = > a (edeg (vd) = 0, i=1,...,m
: 1 i N — 2 i
J=1 j=m’+1
(5) m’ . m" .
Jd e+ 3 (el = -1,
J=1 J=m’+1
where d1(tJ)<0, J=1,0.,m, dy(89)<0, JEmi+1,...,m" and mUsmet.

It easily follows that for k large enough each tJ is in the neigh

borhood of some point in ™ . Without loss of generality we may as
i} m? M

ot e e™" and that the

corresponding neighborhoods are disjoint. It is clear that m"¢m"g

sume that these points are t%

We will show that m"=m+1.
Assume the contrary and ‘let

ol ol "
g1(t”> ceeg (1) —g1(€m Ty ... ~g (£7)

F =

* «m’ 7+ *m"
gLt ) ... gt ) -g (¢ ) .. =g (£ )

1 N 1 1 v 1

Due to the Haar condition, the system

Flu = [1 ... 117

u -1

m+1”



has a solution 61 ...,ﬁm,ﬁ Moreover, for k large enough,

m+1°
J s oo

g1(t )u +. ..+gm(t')um+um+1>0 ,

>0

N e .n
—g1(t )u .—gm(t )um+um+1

Multiplying the equalities (5) by ﬁi’s and adding we obtain:

m’ . . .
0> j;d1(tJ)(g1(tJ)u1+...+gm(t3>um+um+1) "
m" .
E : J J o Lo __o _
J m’ +1d (0 (g (8- (BTl ) =mup =

which is a contradiction. .
Hence, m"=m+1 and (5) holds with m"=m+1. It is easy to see
now that d1(tJ) and d2(t3)»in (5) are‘bounded above by a negative

constant G. Multiplying the equalities (5) by §1,...,§m,—ym+1,

respectively, and adding, we obtain

m’ . . m+1
k J BN J
X Bt dod e (3,8 o ) as(ehie, (5, e
j=1 J=m?+1
which implies
k J J J
(6) X1 Beq® Zd (ehye(ed) - iz }m +1d D) + 48 .

Let y be an arbitrary point generated at Step 1 during the itera-
tion k+1. Then

Jy _ J . ,
7 e (y,tY) = £(t)- ﬁk 1+ 5 j=1,...,m
e (y,tJ) =-f(tY )-/3k HV 5 dEmi et me
where Vjéo, J=1,...,m+1. Multiplying the equalities (5) by Yqrenes
Yo' Va1 respectively, and adding, we obtain

Zd (t9)e, (y,t0) « Z d,(t9)e, (y,t9),

Ymet™

J=m’+1
which by (7) implies
m+1
Vae1* Zd (e (e(ed)-B, ov ) 4 ngjod () (-£(e9)-B, 4v ).

Now using (6) we obtain

S J N 2
= X g
y e e d (t )v + E — d2(t )v o A&+1+D6k+1

where the inequality follows from Lemma 1. Hence,

m’ ;
) a4 (e e E d (th DA
j=1

J=m’+1
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so that
2
P
(8) 0» v >DB /G
Note that y and y can be thought of as solutions to system of 1i-
near equations (7) and the corresponding system when vi’s are re-

placed by 0. By Cramer’s rule we obtain
Wy=yi &DyClvyl+oaariv 1),
where D1 does not depend on k. Finally, (8) yields
Iy-5us EA, -

Lemma 3. Suppose that the assumptions of Theorem 2 are fulfille
k _k -

] m a1 )y W (8)=eq (T, 0)-00)4B o, wp(t)=
02(y,t)+f(t)+6k+1. Let t be any point added to Ck during the ite~

ration k+1. Then for k large enough either w1(t) or wz(t) has a lo-

and let §=(xf,...,x

cal maximum £ such that H%-EHS:EQK+1, where F does not depend on !

The proof of Lemma 3 and Theorem 2 is analogous to the proof
of Lemma 3.3 and Theorem 3.2 in [6].
Let us note that an immediate consequence of Theorem 2 is that

the cardinality of the sets C,_ generated by Algorithm 1 grows at

most linearly with k. Theoremg 1 and 2 also imply that the total

number of points generated by the algorithm at the k-th iteration
is bounded above by a function 1linear in k, while at the same

time the cardinality of the uniform grid Mk depends exponentially
on k. Numerical experience seems to indicate that this linear behs
viour is retained also when Haar’s condition is omitted. It shoulc
be pointed out that the existing discretization methods (see e.g.
[9), see also [8]) have an exponential upper bound on the number ¢

points generated at the k-th step.

3. NUMERICAL EXPERIENCE

The method described in Section 2 was tested on a number of
test problems, mostly taken from [1] and [7] . The obtained result
agree very well with the data in the literature. Here we give the
details for three examples. In the corresponding tables N(Ck) and

N(Ej) stand for the cardinality of C, and the average cardinality

k
of Ej at the k-th iteration, respectively.

Example 1.(1]. Approximate (t1)2t2 by v
2

2
121, Vo=t v3:(t1) )

)E e (b)%< 1.

2
VM:tE’ V5:(t2) , v6:t1ﬁ2 on (t1



Following the authors in [1] the problem is reduced to the
approximation problem on [0,1} x [0,2%] . Input parameters are
Bo:’-l.u, L=10.5, m1:2, m2:11.

k ' 0 1 2 3 b 5 6 7 8 9 10 11 12 13

N(Ck) 36 42 46 50 54 58 62 66 70 T4 78 82 86 90
N(Ej) 86 64 61 60 53 Ly U7 U7 L1 45 46 41 L2 41

x13=(0.0000,0.0000,0.0000,0.2500,0.0000,0.0000).
Exact solution x*=(0,0,0,1/4,0,0).

Example 2.[7] . Approximate exp(—(t1)2—t ) by functions v,=1,
- - - 2 - -

Ye_t1, v3-t2, Vu—Z(t1) —1,.v5_t1t2, V= 2(t2) -1 on the set

LO,11 X [0,1].

Input parameters are: 60:2.5, L=24.2, m,=m,=7.

k | 0 1 2 3 u 5 6 7 8 9 10 11 12 13

N(C, )| 64 70 76 79 83 85 88 93 97 100 103 106 108 111
N(Ej) 0 46 44 4o 40 u0 k2 39 36 37 35 36 34 36

x132(0.9858,-0.3480,-0.9027,-0.1446,0.4246,0.1129) .
Solution in [71 : (0.9858,-0.3480,-0.9027,-0.1446,0.4246,0.1129).

Example 3. [1] . Approximate t2 by functions V1:t, v2:exp(t)
on the interval [0,2].
Input parameters are: ﬁ%:Z, L=13, m1=8.
k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13

N(Ck) 9 11 12 13 14 15 16 17 18 19 20 21 22 23
N(Ej) 0 7 7 6 6 6 6 6 6 6 6 6

x132(0.1842,0.4186).
Solution in {1] : (0.1842,0.4186).
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ON THE ZEROS OF A POLYNOMIAL

M. BIDKHAM and K.K. DEWAN

ABSTRACT: In this paper we have considered the problem of finding the
maximum number of zeros in a prescribed region.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result is due to Mohammad [ 4]

n
THEOREM A. Let p(z) = z akzk be a polynomial of degree n
k=0
such that
a >a

then the number of zeros of p(z) in |z] f_%‘ does not exceed

1 %u
1+ =
log 2 Log ag
As a generalization of Theorem A, Dewan [1] proved
n
THEOREM B, Let p(z) = Z akzk be a polynomial of degree n
k=0
with complex coefficients such that
|mg%—8|iuiﬂﬂ,k=0,L.“,n
for some real B , and
ol 2 lay 1l > oo > fagl > lagl

then the number of zeros of p(z) in !zl 5A%» does not exceed
n-1
la |(Cos o + Sin o + 1) + 2 Sin o ) Ja, |
n L k
1 k=0
log
log 2 la

O ]

THEOREM C, Let p(z) =

il o133

alzk be a polynomial of degree n
k=0 °

with complex coefficients. If Re a Ima = B

Kk = dk 5 " % for
121




k=0, 1, ..., n and

o > Zoc0>0,

> e >0
n Z Z

n-1 1

then the number of zeros of p(z) }ﬂ |z| i%— does not exceed

.

TN
o+ B
1 1 noyZo K
og ——————————
log 2 |aO|

1+

1n this paper, we generalize Theorems A, B and C for different
classes of polynomials which in turn also refine upon them. More

precisely, we prove the following.

n .
THEOREM 1. Let p(z) = ) aizl be a polynomial of degree n
i o
with complex coefficients. If for some real § , |arg a; - Bl <a<m/2,

0<i<n and for some 0 < t <1

k
lagh < elaji < ovn < e%a | > ¢ a1 200 2

then the number of zeros of p(z) in iz| < 5 does not exceed.

ntl |a |

K+ o
2c° ]ak|(}osoc+2tSinoc ) tliail—(COSOL+Sin(X—l) t
i=0

n

log
1 2
og tlaol

REMARK 1. For t =1 and k = n the above theorem reduces to
Theorem B, If in addition to t= 1 and k= n, a = B =0 then it

reduces to Theorem A.

n

THEOREM 2. Let p(z) = Z aizl be a polynomial of degree n
i=o

with compex coefficients. If Re a, = o, , Ima, = B, , for
— i i i i’ ==

i= 20,1, ..., n and for some 0<t<1l

k k+1 n
< < < ... < > > ..
0 Og £ toy < ftoo >t O pq 2 2 to,

then the number of zeros of p(z) in |z] i%— does not exceed
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n
+ 4
o+ 7|8, et
1 k4= 1
1+ log { }
1 2
og tluol
REMARK 2. For k=mn and t = 1, Theorem 2 reduces to Theorem C

nd for k=mn, t =1 and Bi =0, 0<1i<n, it reduces to Theorem A.

The proof of next theorem follows on combining Theorem B and Lemma 2.

n

THEOREM 3. Let

be a polynomial of degree =n

i
p(z) = Z aiz
i=0
jith complex coefficients such that

|arg a; - B] <o <w/2,1i=0,1,

for some real B -, and

la|

Axda _h 2 2|

then the number of zeros of < |z|

p(z) in R,

la_|(Cos o + sin o +1)

|v

A o

lao!’

f_%— does not exceed
n
+ 2 83 '
2 Sin o ‘ 2 [ail
i=0

log
log 2 |30|

where R2 is the same as defined in Lemma 2,

The above Thoerem

if o= B = 0, then it

is a refinement of Theorem B.

In particular,

givesa refinement of Theorem A.

n ,
THEOREM 4. let p(z) = ) 4.z .- If Rea, = q,, Ima, = B, ,
— j=¢ 1 - i i i i
for 1 =0, 1, ..., n, and
>
A N AR 0y 2 g > 0, o 0,
then the number of zeros of p(z) in R4 < lz‘ < %» does not exceed
n
o, + 1 g,
1 i=0
1+ log
*log 2
: |



where R is the same as defined in Lemma 3 .

4
Theorem 4, follows from Theorem C and Lemma 3. If Bi = 0 for

i=0,1, ..., n then it gives a refinement of Theorem A otherwise it

is a refinement of Theorem C.

2. LEMMAS
5 i
LEMMA 1. Let p(z) = | a;z" be a polynomial of degree n such
i=0. _ '
that |arg a; - BI <o < w2 for 1=0,1, ..., n and for some real
8 , then for some t > O
Itai - ai—l! h [tlai| - |ai_lHCos a + (t|ai| + |ai_l[)Sin a .

The proof of the above lemma is omitted as it follows immediately

from the Lemma in [3] .

LEMMA 2. Let p(z) be the same as defined in Theorem B. Then

p(z) has all its zeros in the ring shaped region given by

RzilinRl M

Here 1
2

R =S Ly e Sy

L2° Jag M 4 anl M a,

and
- 1
2

_ 1 2 _ 2.3 . Ay 2 2
R, 22[ R b ], Iaol)+{4|aOlRlM2+Rl]b] o, - lagh ]

n-1
L lan[(Cos o+ 8in o) + 2 Sin o Z

=
]

ol

M, = |a & (£ 5D 2 SinanillalJfR(l "2 1) (cos o + sin )]
- 0s in
2 n'1 \an\ k=0 k 1 Ian >



Il

LEMMA 3. Let p(z) be defined as in Theorem C . Then p(z) has

all its zeros in the ring shaped region given by

R, < [z] <R

4 = 3 0
Here
L
2 2 M, 2
c, 1 1 [ 1 1 3
= (= =2 ) 4+ > (= - = + =2
Ry= 5t M){A(u ) oc}
n 3 n 3 n
and
1
1 2 2.3, 4, 2 2,2
= .= _[- - + + -
R, 5 Ralbl(M4 Iaol) {4|aOIR3M4 R3|bl o, ]aol) }1,
2M
A
where

My= o R,
1 n-1
R= 1+a—I2_Z IBk|+|Bn|],
n k=0
M, = Ry LGy, * 1B DRy + oy k- (g + (B DT,
c = ]an - an-—ll ,
b = a; - ag .

Lemmas 2 and 3 are due to Govil and Jain {2] .

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Consider




For Iz|it§

|F(z)] <

A

= 2

| A

F(z) = (t - z)p(z)

1t

n
(t—z)(ao+az+...+anz )

1
n+1 e i
= _az +ta, + ) (ta, —a, )z
n 0 i=1 * i-1
1,
n+1 2 i
t |anl +t|a-0[ +i£l |t|ai| - |ai_l||t Cos o

n .
+ 7 (t]ai[ + fai_ll) ti Sin o , (by Lemma 1)
i=1

k
e [ 4elagi + [ elag] - la et cos @
1=1
) | et
+ ) (Ja, _ - t]a,|)t” Cos o
i=k+1 i-1 i

s i
+ ) (tlag ]+ lai_ll)t Sin a
i=1

n .
Iak| Cos o + 2t Sin a i——Zo et ]ail

+
tk 1

nt+1l

—tlaof(CosOL+Sinoc-l)-t ]anl(Cosa+Sin0L—l)

2tk+l|ak] Cos o + 2t Sin o

I o~
o

I
=

i=0

-t lan|(COS o+ Sin a - 1).

Now it is known (see [5], p. 171) that 1f P(z) is regular, P(0) # 0 and

|F(z)] <M 1in
does not exceed

we get that the

| z] < 1 then the number of zeros of P(z) in |z] i%-

L
log 2

number of zeros of T(z) in |z[ i%— does not exceed

M ,
{1og W}. Applying this result to F(z) ,
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n .
2tk+l|akICosoc+2t Sina ) tl[ail—(Cosoc Sinot-=-l)|an|tn+l
1 i=0 .
—1——7{ log }
o8 t]a0|

As the number of zeros of p(z) in [z[ _<_%— does not exceed the number
of zeros of F(z) in |z] f_% , the theorem follows.

Proof of Theorem 2., Consider

F(z) = (t - z) p(z)

n
_ n+1 i
-a z + tao + _z (tai - ai_l)z

i=1

For lz|it_<_l,

+1 u i
[F(2)] < - ]an| + t|a0| + z 'tai - ai—lltl

n+1 o i
st lanl +t]aol +i:§:l|tui—ai—llt
i 1
syl +ele De
i=1
L |t elagl + ) .
<t ]an t a0| . l(toti - ai_l)t
2 i, B i
+ ) (o ~ta )t  + 7 (B, | +t|B. e
1=K+ -1 i 1=1 i-1 i
n+l | kt1 nt1l
<t |an|+t|a0[ + 2t o, -t -t an+tlBOI
+ n .
S lIBHI +2c ) t1|Bi’
i=1
< kt1

2(t

vod
k+t4_Z t lBi[)
i=0

and following on the lines of the proof of Theorem 1, the proof of

Theorem 2 can be completed..



128

REFERENCES

K.K. Dewan: Extremal properties and coefficient estimates for
polynomials with restricted zeros and on location of zeros of
polynomials, Ph.D. Thesis, I.I,T,, Delhi, New Delhi, 1980,

N.K. Govil and V.K. Jain: On the Enestrom-Kakeya Theorem II.

. Jour, of Apprex. Theory 22-(1978); 1-10.

N.K. Govil and Q.I. Rahman: On the Enestrom-Kakeya Theorem.
T&hoku Math, J. 20 (1968), 126~136.

Q.G. Mohammad: On the zeros of the polynomials, Amer. Math.
Monthly, 72 (1965), 631-633.

E.C. Titchmarsh: The theory of functions, 2nd ed., Oxford
University Press, London, 1939,



....;erical Methods and Approximation Theory Il (Nig, August 18-21, 1987)

A POSTERIORI ERROR BOUNDS FOR EIGENSYSTEMS OF MATRICES

Z. BOHTE

ABSTRACT: In this paper an a posteriori error bound for approximate
eigenvectors corresponding to simple eigenvalues of non-defective
matrices is obtained. Under some additional assumptions the computable
bound for the condition number is derived. Some illustrative numerical
examples are given.

1. INTRODUCTION

A  posteriori error bounds for computed eigenvalues of
non-defective matrices and for computed eigenvectors of normal matrices
are well-known (see [41).

Let us summarize some of these known results.

Throughout this paper let A be a non-defective square complex

matrix of order n and denote its eigenpairs by (Ai,xi), so that

(1) Ax, = Ax i=1, .. ,n

it
Denote by X the matrix of eigenvectors
Xo= [xy, oa., x, ]

which is by assumptibn non-singular.

Let (Xx,x) be an approximate eigenpair, usually computed by some
numerical method, and let

(2) r = AX - Ax

be the corresponding residual vector. Then there exists an eigenvalue
of the matrix A such that

(3) min |x, - Al < k() JIell /x|
i<i<n 1

129



where

(%) k(a) = ()l x

The bound (3) holds for any of the norms 1, 2 or <. The number
k(4) is called the condition number of the matrix A with respect to
the eigenvalue problem. For normal matrices kZ(A) = 1 and (3) gives
the most satisfactory and easily computable a posteriori bound.

For normal matrices Wilkinson (4] gives the corresponding a
posteriori error bound for the approximate eigenvector x. Let X be an

approximation to A;, let x, and x be normalized so that

(5) eyl =l = 1

and suppose that X4 is multiplied by such a complex factor of modulus
1 that in

(6) X 2 axy + ... +ax
the coefficient ay is non-negative:
(7) a,;20

Further, let

(8) d= min |x, = x| £ 0
2<i<n *
then
(9) e =y, < Cera) 1+ (er)®)'?
where
(10) c = frll,

To use (9) in practice we need some information about other
eigenvalues so that we can estimate the distance: d from ‘bel * ‘“nless

¢ is significantly less then d, (9) provides no useful boun. .

Let us now consider a general non-defective matrix.
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2. ERROR BOUND FOR APPROXTMATE EIGENVECTOR

Under the same conditions as above we shall prove that for the
general non-defective matrix the bound for the error in the approximate

eigenvector x is

() [ =%l < 2k, (A)erd

From (1), (2) and (6) it follows

- Aa_x

r = (A1 - X)a1x1 o+ (ln X

If we define

. 1
D = diag(0, (A, = X)"", ..., (xn - A7)
we have
(12) XDX—1r T AgX, + ...+ A X U
and
Clearly,

D,
where d is defined by (8). Using the notation (4) and (10) we can
write the bound (13) in the form

1/d

(14) ||u||2 gAk2(A)c/d

Further, under the assumptions (5) - (7) we have

(15) ’|a1X1|!2 = a_l

Since
X=Xy = (31 - 1)x1 + U
where u is defined by (12), we have

(16) x -l <

a1 - 1| + |hﬂ|2
On the other hand
@qXq = X - u

and using (15) and (5) we have



1= fully < ay 2 1+ Il

From this two-sided inequality it follows
(17) lag = 1] < lull,
The bound (11) follows directly from (16), (17) and (14).

For normal matrices the bound (11) is slightly weaker then the
bound (9) where the orthogonality of eigenvectors has been taken into
account.

In order to be able to uée the bound (11) in practice we need
also approximations to 11l other eigenveétors. The practical difficulty
is that we must calculate an upper bound for‘k2(A) and a lower bound

for d from an approximate eigensystem.

3. THE COMPUTABLE UPPER BOUND FOR THE CONDITION NUMBER

Let us denote by k the spectral condition number

- _ -1
ko= ky0a) = Ixl, 1577,
In order to be able to compute a reliable upper bound for k we shall
make a number of additional assumptions.
First, suppose that all the eigenvalues Ai are simple and that we

have calculated an approximate eigensystem (ui,yi), i=1, ..., n.

Let all eigenvectors x; and their approximations y, be normalized
gl =yl =1, i=1, ...,

and similarly to (6) and (7) we suppose that X; are such that in

+ agi)x. +

(i)
X
i i es + an

Y
Yi—a1 X1+ N

all
(i)
a;7’ 20
Denote the matrix of approximate eigenvectors by
1= rY1, ces yn]

Then, clearly an approximation to k is the number

(18)  a =izl = Rzl



but it may not be an upper bound for it. This may happen because Y is
only an approximation to X and it may be ill-conditioned and Z may be

a poor approximation to Y'1.

We shall have to calculate all the residual vectors

ry = Ayi - WYy i=1, ... ,n

Denote

r

max ”p.”
1<ien 107
and

m = min |p, - u,|
iy +
Now, let us make the main assumption, that all the circles

Ci:(ui,r’k), i:1, sea 4 NN

with the centres g and radii rk in the complex plane are disjoint.
This means that in every one of them lies exactly one eigenvalue of
the matrix A. We call A, the eigenvalue of A lying in C; and from (3)
we have the bounds

(19) Dy =wlsrk, i=1,...,n

i

To obtain the bounds for the errors in y; we need a lower bound for

d. =min e, =A,] , 1i=1, ... , n
ooga b

and clearly it follows from (19) that

(20) dzm-rk=e, i=1,.1.,0

From the assumption that all C; are disjoint it is obvious that
e>0

Therefore it follows from (11)

”Xi'yi”2$2”f“i“2k/e sy i=1, ..., n

These inequalities may be written in the form
1 X - Ylig < 2lrllg kre
where R is the residual matrix

R=1lr,, ..., rn]
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° Because

(22) k< X Il
and
(23) Ixllg = ¥

we need only a bound for ”X"1HE,
Let us denote
F=Y2-1

Then,

(24) E=zXZ-I=F+ (X-Y)Z
and using (21) we have the bound

(25) 1Elg < IIFllg + 2 IRlIg 2]l k/e = &

Suppose that
(26) g <1

This means that the matrix A should not be too ill-conditioned with
respect to other terms in the right-hand side of (25). From (24) -

(26) it follows directly
-1
@) X g < Hzligra - &)
and we have the final inequality from (22), (23), (27), and (20)
(28) k< llzllg/¢ - IIFllg - 2lRlig IZllg k/(m = rk))
Under the assumptions (20) and (26) both denominators on the
right-hand side of (28) are positive.
' Denoting

b= 1 IFlly, o= 2RIzl
and recalling (18) we can.write (28) in the .form

k <a/(b - ck/(m = rk)) = a(m - rk)/(bm - (e + br)k)
leading to the quadratic inequality

(29) (c + br)k? - (ar + bm)k + am >0

For the exact eigensystem r = ¢ = 0 and we obtain from (29) an



obvious bound
k <a/b

where the only errors are made in the computation of the inverse of

the matrix of eigenvectors.
From (29) we obtain the bound
(30) k< (p- (0% - hamg)'/?)/(2q) = K
where
p=ar +bm q-=c¢+br

This bound can be computed directly from approximate eigensystems. It
can be shown that for sufficiently small r the numbe; K is greater
then 1 and gives therefore a useful bound for the cohdition number
kZ(A)' It may happen, of course, that the number K is complex and then

we have no bound for k.

The bound (30) can be used in the bounds (3) and (9) for individual

eigenpairs. For the errors in eigenvalues we have from (3)
GOy -l sklngl,
and for the errors in eigenvectors we have from (9)
(32) ”Xi - yi”Z L 2K HPiHE/gi
where

g: = min (Ju, - u,| - Kllr.l)

* J#i l J Jre
We must remember that thesg bounds hold provided all the above

assumptions are fulfilled.

4, NUMERICAL EXAMPLES

Let us illustrate the obtained bounds by some simple examples of
matrices of order n = 3.

(i) The matrix

3 5 -6
A=]6 12 -36
2 5 =15
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has eigenvalues

X1l: 1, X2

and the spectral condition number

= 2, X3 = —3

kz(A) = 32”“4...
If we take
M= 14107, uy =24+ 2,107, My =3 - 3.10™

and for eigenvectors the correct eigenvectors rounded to 5 decimal
places and also the correct inverse to 5 places, we obtain the bound

K = 52°u4, ..
By the way, the number
a = 33°45...

is a very good approximation to kg(A). The bounds (31) and (32) are

severe overestimates in this case. For instance,

Ny - gl = 107>

but

Klleyll, = 910,107
and

ey =y, = 0°52.1072
but

-5
2K |lrgll, /g, = 1836.10

(ii) The matrix

9 7 -2
A= 110 16 =2
4 -8 19

has eigenvalues

X1 = 9, l2 = 18, l3 = 27

and

ky(R) = 1 + 2 = 27U1...



If we take .

5 5 5

wy =9+ 3.1077, uy = 18 + 5.10 7, My = 27 + 6.10‘

and similarly round the eigenvectors and the inverse matrix} we obtain
the bounds for the condition number

K = 3°87...
for the error in the third eigenvalue

[ =
Kllr - -2
fI 3H2 = 24,10

and for the error in the third eigenvector

2K ||r’3||2/g3 - 5.107°

which is very satisfactory. The approximace condition number a is almost
the same 3°87.

(iii) The upper triangular mstrix

1100 0
A = 2 0 ”
100

with eigenvalues
X1 =1, kz = 2, X3 = 100
is very ill-conditioned, namely

kz(A) = 200°05...

With

5

T I O T - e

, Wy = 100 + 1073

and rounded eigenvectors we get a complex number K and cannot use any

of the bounds for the.errors. The approximate condition number a is

equal to 245.
%

5. CONCLUSIONS
&
It is rarely Jjustified to use expensive a posteriori bounds which
are usually too pessimistic. But compared to a posteriori bounds for
the solution of the system of linear algebraic equations where the

bound is approximately 6 times more expensive as the solution by the
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Gauss elimination, here, even with the most economic methods (e.g. the

3

QR method), the additional number of arithmetic operations 6n- is not
worrying. Of course, for practical use, some sort of iterative

improvement of the approximate eigensystem is more desirable (see [31).

Recently Chu [2] generalized the Bauer-Fike theorem {[1] to
defective matrices. Along these lines it would be worthwhile to attempt
finding a posteriori bounds foribthe computed eigenvalues and
eigenvectors using the Schur form.

®
Acknowledgement. I wish to express my sincere thanks to I. Vidav who

proved the bound (11).
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ON THE UNIFORM CONVERGENCE OF MODIFIED GAUSSIAN RULES FOR THE

IUMERICAL EVALUATION OF DERIVATIVES OF PRINCIPAL VALUE INTEGRALS

G. CRISCUOLO and G. MASTROIANNI

ABSTRACT: The authons prove some convergence theorems of a modified
gaussian rule fon the evaluation of the derivatives of Cauchy prin-
cipal value Aintegnals.

1. INTRODUCTION
Let o(wint) denote the integral in the Cauchy principal value
sense of the function f, associated with the weight w and defined by

o

1
f
(1) @ (uwizt)= £(x) w(x)dx=1im (x) w(x)dx , -1<t<1.
x~t esot x-t
-1 |X—t|£e>

In order to approximate the integral (1) we may consider the gaussian

rule

-f(t
w(x) - f(xm,l) (t) '
dx + = A ,— , t#x_ ., i=1,2,...,m ,
X-t m,1 x .-t m,1

i=1 m,i

¢m(wf;t)=f(x)

-1

where Xm,i’ i=1,2,...mt are the zeros of the m-th orthogonal polynomial
associated with the fuﬂction w and Am,i’ i=1,2,...m, are the Christoffel
constants.

If the function f is "sufficiently smooth", then the sequence

{@m(wf;t)}converges to ®(wf;t). Furthermore, it is easy to prove that

the inequality
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|¢(wf;t)-®m(wf;t)|§const m_k w(f(k);m—l)logm , feCk(I), k21,

hold on every closed interval Ac(-1,1). <

Unfortunately, in the general rule, if f is an Holder continuous
function, then {@m(wf;t)} doeé not converge to ¢#(wf;t) almost everywhere
in (-1,1), (see[4]).

in order to avoid this problem, the authors iitroduced in [1] a new

formula @;(wf;t); this is defined by &

1
m filx_ .)-f(t)
(2) e (wf;t)=f(t) w0 dx + 5 Ap 4 — , me N
x-t i=1 4 ‘xm’i-t ’
-1 i ) 1#C -4

W

where c denotes the index corresponding to the 'closest knot' Xo(m)™m, ¢

to the singularity t, defi;éd by |t-xm’c|=min{t—xm’d,xm,d+1-t},xm’d§t§xm’d+l

for some de{0,1,...,m} with Xm,o=_1’ xm,m+l=l‘

The "modified gaussian rule" Qz(wf;t) has degree of exactness 0;

. nevertheless the hypothesis xm’i¢t, i=1,2,...,m becomes unnecessary.

l Notice that the derivative %t ¢(wf;t) appears in some integrodiffe-

rential equations concerning several branches of physics and engineering.
Further, the analytic solution of the integral equations with loga-

rithmic singularities in the kernel may be represented by the derivati-

ves of Cauchy principal value integrals.

In this paper we study the uniform convergence of the sequence

5 ar_ ¢;(wf;t)) to QB— #(wf;t) on (-1,1) for p20.
U aep § aP
This is of interest in solving singular integral equations with a
collocation method too. Indeed, uniform convergence results éf a qua-
drature rule on the whole interval (-1,1) are necessary to study the
convergence of the method when, for example, the collocation points are
zeros of orthogonal polynomials in {-1,17. ’

The convergence theorems are stated in the Section 2; they generalize
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previous results [2] and are proved in the Section 3.

2. CONVERGENCE THEOREMS AND ESTIMATES OF THE REMAINDER
We start with some notation. Throughout this paper DT denotes the
space of the continuous functions in I:=[-1,1] satisfying a "Dini type"

condition, and LipM A the space of the H6lder continuous functions; i.e.:

1
DT:={£eC(I)/ j 871 w(£38)ds < )
(o]

LipA:={£eC(T)/ w(f38) s M&" , M0, 0<As1}

where w(f;6)=Tax | |f(x)-f(y)|,‘x,yele §20, is the modulus of continuity
x-y|<8§

of the function £. We ought to remark that DTDLipMA.

In the computation of the integral &(wf;t) defined by (1) we suppose
that the weight function w can be written in the form w(x)=y(x) ua’ﬁ(x),
xeI, with ua’B(x)=(l-x)a(l+x)B, a,B>-1 and O<yeDT.

Let {Pm(w)} be the sequence of the orthonormal polynomials on I as-

sociated with the weight function w; we denote the zeros of
= . m
Pm(x)~Pm(w,x)=amx + lower degree terms , am>0,

by xm,i=xm’i(w)=cos Om,i’ 1=1,2{...,m, so that

Ozem,m+l<em,m<'"<Qm;2<em,l<om,o= e

Furthermore, the numbers A .=A .(w), i=1,2,...m, are the Christoffel
m,i “m,i -1

. - 2 -1
constants defined by Am’i(w)=xm(w;xm’i) where Am(w;x)={?gi Pk(w;x)]
is the m-th Christoffel function.

Denoting by Ei(wf)=®(wf)-¢;(wf) the remainder term of the formula

®;(wf) defined by (2), we can state the following



THEOREM 1. ‘
If w=¢uu’3, >0, w(P)sDT, a,p20, then for any function f such that
P
(p) dP K (F i 1y to & ¢(uf;t
£'P/¢DT the sequence s ¢m(wf,t) converges uniformly to 4P (wfst)
on the whole open interval (-1,1) p20.

Moreover, if f(p)ELipMX, 0<Agl, it is also

P,
& gF(ufstr)

< const m_)\ logm, -1<t<1, p20
dtp m

THEOREM 2.

If w=¢ua B, y>0, w(P)eDT, ~1<a, B<O, thén for any function f such
that f(P)eLipMA, O<ASl, it results

(3)

P
qop Em(wf;t)

< const m-)\uou+>\/2,ﬂ+k/2(t) log /_"‘T , -1<e<l, pz20
1-t ‘

In particular, if o+A/2,B+A/220 then by Theorem 2 it follows

Corollary 3. If w=¢ua’8, y>0, w(p)EDT, -4<a,p<0, then for any function

f such that f(p)sLipM)\, -2 min(a,B)<ASl, the Sequenceggg_ ¥ (ut3t) }
1P "

P
converges uniformly to a4

¢(wf;t) on the whole open interval (-1,1),
dtP

p20.

Moreover, taking into account (3), it seems that the sequence
4P

deP

Nevertheless, a favourable case of interest in the applications comes

¢$(wf;t) can not converge uniformly on (-1,1) for a«,ps-3, generally.

true when tEAm:=[-l+const muz, l-const m_z]. In fact, by Theorem 2 we de-

duce also

Corollary 4. If w=¢ua’ﬁ, P>0, w(p)s DT, -1<a,R<0, then for any function f
X : . p "
such that f(p)eLlpMA, -2min(a,R)SAS 1, the sequence { %Eﬁ ¢;(wf;t)} con-
. dP ‘
verges uniformly to IcP ¢(wf;t) on A, P20,

Moreover, it results

QE_ %
deP Em(Wf;t)

< const m™A ua+A/2’B+A/2(t) logm, tehy, p20.
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orollary 5. If w=bu®PB, y>0, y(P)eDT, -1<a,B<0, then for any function f

dp ¥
uch that f(P)ELipMk, -min(o,B8)=Y<A<-2 min(a,B), the sequence§ g—§¢m(wf;t)}

aP
onverges uniformly to P ¢(wf;t) on 8,, p20.

loreover, it results

dP
\@Em(wf;t)

logm
< const ;2%}?;7 s tebdp, p20.

3. PROOF SKETCH OF THE MAIN RESULTS

For the convenience of the reader, we collect some properties of
the orthonormal polynomials Pm(w) with w(x)=w(x)ua’8(x), -1gx4l,

WP 0)=(1-x)*(14+x)®, «,8>-1, O<peDT, which will be used in the following.

The equivalence

(4)

-1 .
Om,k - em,k+lwm , uniformly for Osksm, meN,

(5) Am k,\lm'l uu+l/2,B+l/2(x

m,k)’ uniformly for 1<ksm, meN

holds for the zeros of Pm(w) and for the Christoffel constants respectively.

One can find the relations (4) and (5) in [3].

Furthermore, it follows from (4) that

() P v P )

<
m,k = Xm,k+1’

for k=2,3,...,m~1 (see[3,p.48j).
To derive the proofs of the theorems stated in the previous section,
the following lemmas are needed.

Lemma 1. If feCT(I), r20, then for each meN there exists a polynomial t_

of degree at most mw24(r+l) such that



|f<k)<x)-t§}‘)(x)

-] ~———o1I1r-k -
§const[m L% ] w(f(r);m 1\/»1—x2),05k§r, -18x£1,

"tép)(x) éconst“[Am(X)]r—Pm(f(r); Am(x)), poT, -1s5x21,

where Am(x)=m_lw/1-x2 +m_2.
Lemma 2. If w=wuu’B, 0<$eDT, a,p>-1 then for any function feC(I) the ine-
quality '

tm(xm,c)_tm(t)

™, Xy,e b
£

’ - 0297 — )28
éconst{?l—t 4m~ ] [/1+t +m } m(f;Am(t)),

holds uniformly for te(-1,1), where tm is the polynomial of Lemma 1, LI
’

is the closest knot to the point t, and Am(t)=m_l\/l—t2 +m 2,
., % m A s
Setting o (t)= = Ml | we can state
?‘1 |x -t
itc m,i

Lemma 3. If w=pu™®, O<YeDT, then the inequalities

cg(t)éconst logm , if «,B20,

o;(t)éconst ua’B(t) logm , if -1<a,B< O,

hold uniformly for te(-1,1).

Lemma 4., If w=wua’B, 0<yeDT, then the inequalities

e ) ] w(t;m_l)logm, if o,B20, £eC(I)
Tm Xm,i “Tn t

'Xm,i_t!’

A, i <const m-xua+k/2,B+A/2(t)lOgm,

0 Ms

i=1
e if  -1<a,g<0, felipyA, OKASL,
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hold uniformly for te(-1,1), where r =f-t , being t the polynomial of

Lemma 1.

Lemma 5. If w=¢ua’8, 0<ypeDT, then the inequalities

m(f;m_l)logm , if a,p20, feC(I),
rm(x)—rm(t)

w(x)dxSconst S B
-t n )\ua+)\/2,8+)\/2(t)log m

-1 v1-t
if -1<a,B<0, fELipMX, O<Asl,

hold uniformly for te(-1,1), where r =f-t  being t; the polynomial of Lemma 1.

Lemma 1 can be found in [5]; instead, the other previous lemmas are

proved in [2].

Lemma 6. Let veLl[-l,I], i.e.jl |v(x)|dx<m, possibly having singularities
1

at ViV and assume that v is continuous on each closed interval en-

closed in I—{vl,...,vl}. If g is a function such that g(p)EDT, pzl, then the

1 gp -
integral J — [ §£§2—§£El v(x)dx exists and the identity
-1 dtp X~t
1 1
p -g(t P -
dP (x)-g(t) v(x)dx = | & [ (x) (t)]v(x)dx,
aP Xt datP x-t
-1 - -1
holds whenever t is in a closed set enclosed in I—{Vl,...,vs} and p21.

The proof of Lemma 6 is based on known results of classical analysis

and elementary inequalities for the modulus of continuity.

Lemma 7. If w=¢ua’B, P>0, ¢(p)ED