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MONDl - PREFACE AND PREPRINCIPLES 

The title words of this book are contained in an extraordinary Newton's 
work [1], which among other things contains Newton's RULE IV of causal 
judgment. In experimental physics the derived assertions on the basis of 
carried out e~periments, disregarding the possible contraries to the assumed, 
should be considered either as more exact or nearly true, until other exact 
phenomena are established, by which they are described more exactly, or 
are excluded. This rule of Newton's theory allows any correction or addition 
of his natural philosophy by more exact proofs. 

1.1. Nature and the science of nature. Nature emerges in a mul­
titude of phenomena, motions and transformations of objects accessible to 
human vision and perception, known and unknown, newly acquired and in­
accessible to cognition. Nature is the emergence, existence and vanishing 
of things and learning about them; it reflects itself in human conscious­
ness in an indefinite number of patterns. Some people understand this fact 
and seek to discover the undiscovered, to check the acquired knowledge to 
the very incompleteness, and others tend to establish belief in academic 
knowledge, even when they do not understand the lecturing of highly ed­
ucated scholars. Science is the discovery of new knowledge and correction 
or modification of established knowledge. Knowledge is comprehensive and 
always a fonder for science. When science discovers novelties that expand 
the standardly accepted omniscience, those scientific truths are becoming 
a part of knowledge, and science is tending to further discover and create 
new knowledge. Higher education export is not a scientist unters enriches 
his knowledge, adopting somebody else's knowledge, as long as he becomes 
confident to check that knowledge regardless of the authorities that have 
created standard knowledge, or until he engages in searching for or creat­
ing new knowledge. So, the author of this contribution views science as a 
speculative and unique practical creativity, whereas academic degrees rep­
resent the level of the existing knowledge attained. Far from sc.ience is a 
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person who, irrespective of his scientific title, states that "a new scientific 
rational result should not be recognized, or published in journals of scientific 
research, for the reason that nobody does something like that in the world, 
i.e. what is unknown". 

1.2. Astronomy and celestial mechanics. To further facilitate un­
derstanding, it is necessary to distinguish between the terms denoted by the 
subtitle words. It is normal to expect that many astronomers and astro­
physicists have their own views, university professors in particular. With­
out indicating whether those perceptions are right or wrong, the author 
points to a significant difference in the understanding of Astronomy and 
Mechanics, even Celestial mechanics. Astronomy is first and foremost the 
knowledge and science of celestial phenomena and observations. Luminos, 
omissions and reflection nebulae, stars and accompanying bodies, galaxies, 1 

their.positl.ons with respect to the position of other stars, motions and rel­
ative resting, emergence and disappearance, stability of the cosmic order, 
and mutual dependence in the motion of celestial objects. Astronomers ob­
served, described and interpreted the nature of motion of the celestiai suns 
long before the mathematical theory about the motion of terrestrial bodies 
had been established, well before the establishment of rational mechanics. 
Of critical importance for the application of the theory of mechanics to ce­
lestial bodies have been and remained Copernicus' hypotheses and Kepler's 
astronomical laws: they are referred to as Kepler's laws because they are 
based on the measurements of observations of the major planetary motions 
around the Sun; and astronomical because as such they belong to astron­
omy, a science of the nature of celestial bodies' motion, and as laws in the 
physical sense of that word, i.e. statement about some attribute of natural 
existence and motion of the body. Those laws of astronomy that applied to 
a small number of celcstial bodies and practical knowledge about mechan­
ical properties of the body motion on a circular path, especially Galileo's 
experiments with heavier falling objects, his invention of a telescope with 
which he saw the Moon much like the surface of the Earth, and Newton's 
mathematical principles of the science of nature, all this has created a solid 
foundation for the emergence and devclopmerit of Celestial mechanics. 

1.3. Rational or analytical mechanics. ln order to facilitate un­
derstanding for all mathematicians, astronomers and astrophysicists, whose 
field of research is not classical and celestial mechanics, the author of this 
contribution finds it necessary to point to that academic knowledge required 

11. Newton, Phylosophia naturalis principia mathematica, London 3 editions: 
1686,1713, 1725. Translated into Russian by A. N. Krilov, Mathematical principles of 
natural philosophy, Academy of Sciences of SSSR, Moscow-Leningrad,1936. 
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for easy understanding of this approach in solving the second or inverse prob­
lem of mechanics as well as for readily rejecting the un professional opponent 
assertions. The concept of 'mechanics' has long involved a widespread per­
ception that these are machines, and therefore the craft of machine building 
and repair. That craft, among other things, demonstrated that it is possible 
to lift or set into motion a considerably bigger object with the lever than 
without it. A general truth was known that a body once set into motion 
will not stop moving unless that motion is opposed by something: and many 
more facts were found out. Master mechanic, who worked with more ex­
actness was a better master than the other craftsman, especially if he was 
perfect in using his knowledge. With unsurpassed mathematical precision 
did Isaac Newton manage to generalize three laws of motion, by the virtue 
of his brilliant genius, using three independent sentences, which like in the 
fundamentals of geometry he called: 
smallskip 

Axiomata sive leges motus (Axioms or laws of motion). That wis­
dom and mental stamina did not describe only artisan operations but pre­
dicted future motions and relative resting of the body using mathematical 
relations. To his opponents' remarks of being unintelligible, he replied in 
writing: I have written it in such a way so as to make it comprehensible for 
mathematicians. Thanks to this, natural philosophy has become a strictly 
precise mathematical science but not a trade. Newton created rational over 
practical reality or, as he called it, rational mechanics (ratio - reason). On 
the basis of this greatest scientific work, as its writer indicated by the title, 
the mathematical principles of natural philosophy were created, later con­
firmed by all mathematical theories, or used as a basis for testing different 
mathematical methods. 

That greatest work of all natural sciences is composed of 8 definitions, 3 
axioms or laws of motion, and a great number of lemmas and theorems. The 
definitions refer to the mass, the momentum, the force of inertia, a general 
concept of the force and centripetal force. The axioms or the laws of motion, 
verbal or in writing, represent the basis of the theory of mechanics, without 
underlying suspicion or changes. All theorems are proved by the axioms 
and phenomena. Let us point out once again that there are three axioms or 
laws of motion and that in his Mathematical Pri'nciples Newton does not use 
the word 'law' for other different statements, as it is common in the post­
Newtonian theoretical mechanics. Given that our contribution is related 
to the generalization of N e'x.rton 's theory of mutual attraction between two 
bodies, we could start herc from the Newtonian axiomatic theory of body's 
motion. 



6 VELJKO A. VUJIČIĆ 

The term Modification (here implies: change, modification, or more ex­
actly, determination, or more generally, generalization of the Newtonian 
and post-N ewtonian classical and celestial dynamics in particular, as well 
as general principles of dynamics. In the title of this ingenious work [l] two 
words are prominent: MATHEMATICAL PRINCIPLES of natural philoso­
phy- Philosophiae naturalis principia mathematica from where a great book 
originates containing basic definitions, axioms or laws of motion, lemmas, 
theorems, tasks, suppositions, phenomena and rules of causal reasoning. 
The author of this work believes that any deviation from those principled 
attitudes is a Modification of Newtonian dynamics, which will be termed 
for short MOND theory- Modified Newtonian Dynamics. It is considerably 
more general than the term taken from WIKIPEDIA, the free encyclopedia, 
which links the theory to the name of Mordehai Milgrom (1983) a physicist 
at Weizmann Institute of Science, Rehovot, Israel.2 The earliest and gen­
eral modification of Newton's theory was proposed by mathematicians in line 
with th~ development of mathematical analysis. The language and relations 
used in writing the post-Newtonian dynamics are of modernized mathemat­
ical analysis. In their analysis the scientists endeavored to keep the nature 
of dynamic objects from being changed by mathematical transformations. 
Following the Hamiltonian manner of reducing differential equations of the 
second kind to twice the number of differential equations of the first kind, an 
entirely non-Newtonian concept of the 'Dynamic systems" was introduced, 
where essential properties of the Newtonian dynamics are left out. Prior 
to gradual generalization of the Newtonian and post-Newtonian mechanics 
2

. we find it useful to introduce the reader with a few sentences from the 
fundamental Newton's work Mathematical Principles of Natural Philosophy 
- (Philosophia Naturalis Principia Mathematica), (1686, 1713, 1725). 

2From \Vikipedia, the free encyclopedia. ln physics Modified Newtonian dynamics­
MOND is a hypothesis that proposcd a modification of Ncwton's law of gravity to explain 
the galaxy rotation problem. When the uniform velocity of rotation galaxies was first 
observed, it was unexpected because Newtonian theory of gravity predicts that objects 
that are farther out will have lower velocities. For example, planets in the Solar System 
orbit with velocities decrease as their distance from the Sun increases. 

MOND was proposed by Mordehai Milgrom in 1983 as a way to model this observed 
uniform velocity data. Milgrom noted that Newton's law for gravitation force has been 
verified only where gravitational acceleration is large, and suggested that for extremely 
low accelerations the theory may not hold MOND theory posits that acceleration is not 
linearly proportional to force at low values. 

MOND stands in contrast to the more widely accepted theory of dark matter. Dark 
matter theory suggests that each galaxy contains ahead of as yet undeniable type of matter 
that provides an overall mass description different from the observed description of normal 
matter. This dark matter modifies gravity so as to cause the uniform rotation velocity 
data 
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"The ancients considered mechanics in a twofold respect: as rational 
(analytical), developed accurately by demonstrations and practical." In this 
sense rational mechanics is the science of motions which result from any 
forces, and of the forces which are required for any motions, accurately pro­
pounded and demonstrated." "I heartily beg that what I have here done 
may be read with candor; and that the defects I have been guilty of upon 
this difficult subject may be not so much reprehended as kindly supplied, 
and investigated by new endeavors of my readers." (8 March 1686) In a short 
preface, consisting of 8 lines, to the second edition of the Principia Newton 
wrote on 28 March 1713 as follows: "In this second edition much scattered 
material is corrected and some has been added. In Book I, Section II, the 
discovery of the forces, by which bodies shall be able to revolve in given or­
bits, is returned easier and more fully." In a SCHOLIUM, inserted between 
8 Definitions and The Laws of Motion, Newton explains 'generally famil­
iar concepts of time, space, place and motion ([1], pp 30-37) referred to as 
Absolute, true or mathematical time and Relative, apparent, and common 
time, Absolute and relative space. This clarification, without mathematical 
symbols and assertions, has left little trace in the post-Newtonian mathe­
matical theory of body motion. Moreover, time is considered and referred to 
as "a natural parameter", while a broader concept of space in mathematics 
has spread out to various 'spaces', such as Euclidean space, Riemann space, 
and consequently to Hilbert space, Weyl space, Poincare space, Minkowski 
space, linear, vector, multi-dimensional, phase, tangential, co-tangential, 
plane, planar curved, zero space These and other absolute mathematical 
deviations have overshadowed and arc still overshadowing general knowledge 
about the nature of thing. In his book Newton himself indkates that he was 
not developing his theory in that direction. His first rule of causal reasoning 
([1], p. 502) reads: No more causes of natural things should be admitted 
than are both true and sufficient to explain their phenomena. Rule IV allows 
corrections or additions of more exact knowledge and it reads: In experimen­
tal physics the derived assertions on the basis of carried out experiments, 
disregarding possible contraries to the assumed, should be considered either 
as more exact or nearly true, until other exact phenomena are established, 
by which they are described more exactly, or are excluded. Historically, a 
modification of Newton's theory started and went on much earlier but was 
and still is differently called, such as: Euler-Lagrangian analytical mechanics 
or Hamiltonian mechanics. Newton grounded his theory in the axioms such 
as geometry, whereas Euler and Lagrange developed that theory by means 
of mathematical analysis using their own principles. In his preface Newton 
says that rational mechanics has two tasks: first, if attributes of motion 



8 VELJKO .A. VUJIČIĆ 

are known, to determine the force and, second, to determine the force ex­
actly. However, Hamilton in his theory sets just one task- to integrate 2n 
differential equations, without changing the words and the notion qf force, 
underlying Newton's dynamics. This was the basis for developing a great 
theory of dynamic systems and noninvariant integration of linear differential 
equations of the first kind and for studying stability of integrable and nonin­
tegrable systems. In order to enhance the accuracy, let us make a distinction 
between two nations: Newton's dynamics and Newtonian dynamics. 

The notion Newton's will imply what Newton exactly wrote, while New­
tonian means what other authors wrote. The simplest example of deviation 
is Newton's second axiom or law of motion. It is not a small number of 
authors of classical mechanics who call that axiom the Basic equation of 
motion and write it in the form: 

(1.1) dmv =F 
dt , 

but according to Newton's axiom or law of motion the accurate one should 
be written as 

(1.2) dv -F 
mdt- ' 

This makes the difference as will be demonstrated further below. It will be 
shown that equation (1.1) is incongruons with Newton's second law or axiom 
of motion. As such, it is not accurate in general, especially as Newtonian 
general law of body's motion. The approaches mentioned above, as well 
as a more detailed analysis of Newton's mathematical principles of natural 
philosophy, and their inconsistent results, required more reliable and bet­
ter clarified frameworks of rational mechanics, which are presented in the 
monograph, [3]. 

1.4. Preprinciples of mechanics. The compound phrase "preprinci­
ple" or "foreprinciple" is here applied as an explicit statement whose truth­
fulness is not subject to requestioning, but which theoretical mechanics as 
a natural science (philosophy) about motion of bodies starts from. The 
preprinciples define the basic starting point of mechanics which is here taken 
as one of the sciences about nature, instead of an abstract mathematical the­
ory with no determined interpretation. As such, the preprinciples allow for 
making distinction between mechanics and, for example, geometry which is 
today no longer considered as a science about real space, but as an abstract 
formal theory that enables different, equally valuable interpretations. The 
preprinciples express the gnoseological assumption that mechanics has its 
determined interpretation as a science about the motion of real bodies. 
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The requirement for clarity assumes that the preprinciples can be and 
are expressed both orally and in writing, with no previously introduced 
concepts and definitions; in this way, it is easy and simple to understand the 
formulated determinations, consistent with empirically acquired knowledge 
or hints, all of which being of interest for the theory of mechanics. While 
describing the motion of bodies the preprinciple represent such assertions 
that are themselves evident; hence they neither provoke questions nor do 
they require answers since it is assumed that the answer to accept would 
be the one given to himself or to others by the very person who posed the 
question. Therefore, mechanics starts from the accepted assertion which is 
not called into doubt at any level of knowledge. Broader implications of 
the preprinciples can be grasped by studying mechanics as a whole. The 
preprinciples are considered accurate in mechanics until opposed either by a 
new discovery or experimentally or even by a newly-discovered phenomenon 
in nature. If and when the scientific assertion, brought into accord with 
natural phenomena, appears to be contradictory to the preprinciples, it can 
be modified, together with the corresponding assumptions of thus envisioned 
mechanics. The preprinciples stressed here are as follows: those of 

l. Existence, 2. of Causal determinacy and 3. of lnvariance. 

The knowledge about motion of bodies dates from ancient times. It has 
been preserved by genetic inheritance, forms ofhuman practice and a multi­
tude of various records ranging from a millenuia-old till the present day ones. 
The historians of science point to five millennia old records dealing with the 
motion of bodies. The existing referential literature about the motion of 
bodies is so large that it considerably exceeds the limits of one congruous 
rational theory. Even the attempts at formal generalization have reached 
the sophistication level at which it is impossible to see the knowledge that 
man needs about the motion of bodies. Numerous definitions that cannot be 
refuted from the standpoint of the author's right to define his own concepts 
have first given rise to disparities among the theories of essential concepts 
which have, in their turn, caused a final split among the existing theories. 
A rough mathematical description giving intellectually simplified models of 
natural objects is often used to explain the body's state of motion in a way 
unfaithful to reality. Besides, hundreds of _theorems about the motion of 
body that are annually published in numerous scientific and professional 
journals contain incongruous "truths". This is sufficiently provoking for 
raising the issue of the "proving truthfulness"~ What is presented here is a 
new systematization of the rational core of mechanics, able to eliminate in­
congruity and vagueness of the existing theories. This has required, among 
other things, that some common and accepted knowledge about principles, 
laws, theorems, axioms should bc averted, given up or modified. It makes 
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sense to expect that such an approach will cause detachment or aversion, es­
pecially among older conoisseurs of mechanics, those who have accepted its 
laws and assertions as indisputable laws of nature. In accordance with the 
preprinciples and for the sake of greater clarity, the basic issues of this study 
are explained by the mathematical apparatus with which it is much easier 
to prove the completion of the preprinciples, especially that of invariance. 
The knowledge about the motion of bodies is expressed by the introduced 
concepts and mathematical relations. The findings are evolving, meaning 
that general knowledge is not given once and for all; hence they do not have 
to be the same and equally true. The assertions about the motion of bodies, 
introduced and deduced in this mechanics, considerably differ from many 
others in numerous works on mechanics, especially in the part describing 
the motion of the body system with variable constraints. 

Ontological assumptions. On the basis of inherited, existing and 
acquired knowledge, mechanics starts from the fact that there are: 

bodies, distance, time 

The existence of a body is manifested in the theoretical mechanics as 
a body mass for which the denotation m and its property or attribute M, 
(attr m = M) are accepted. Consequently, every existing body has its 
mass. This is the property by which the body existing in mechanics differs 
from the geometrical concept of the body characterized by volume L (Lat. 
Volumen). The difference is fundamental since the body mass is not even 
quantitatively identical with its volume whose dimension is derived by means 
of the dimension of length L (Lat. Longus - long), attr V = L3 . Each 
body whose motion is studied in mechanics has its mass regardless of how 
small it is or of the size of its volume. The body of no matter how small 
volume V has a finitc mass m. Likewise, each part of the body has its 
mass. A part of the body of volume V has mass m. If many bodies or 
parts of the bodies are dealt with, their masses are successively denoted 
with the indices m, that are to be read in the following way: "mass of the 
body", 'mass of the v-th part of the body". If it is the v-th existing particle 
of mass m, it is to be written "a particle of mass m". No matter what 
·L'.atural numbers are added to the index v, (ni = l, 2, ... , )., musse m are 
always determined with positive real numbers, designated by units of mass 
M dimension. The existence of distance is identified everywhere: among 
particles, celestial bodies or between various points on the pathway that 
the body is moving along, as well as between the place of the body and 
the place of observation; it is denoted by the letter l (Lat. Longus) and is 
measured in units of length L. Though it is directly perceived or observed, 
inherited, acquired and understood, the distance between the body's place 
or position cannot be simply determined. In order to confirm this assertion 
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it is sufficient to mention the distances between two airplanes in the air, 
two vessels on the sea, two vehicles on the road of the rough terrain, two 
pedestrians in the city. The distances are also the subject of other sciences, 
especially metrology - measure, measuring standard, science, astrometry -
star), geometry, Earth and topology, place, since they depend on the shape 
of the medium which the body's positions belong to. Any common trait can 
be, therefore, deduced only for very small distances between the adjacent 
points; even so, only under the conditions that the backgrounds against 
which the distances are being observed are not degenerative. The positions 
of two bodies, no matter how small particles they are, cannot coincide, 
and therefore their distance must be different from zero although this is 
contradictory to the obvious fact that there are no distances between the 
bodies touching each other. Regardless of how small a particle is, it is not 
a point, but in determining the distance, let us agree, that it should be a 
singular point of the particle or of the body in general, that is, the one that 
can be adjoined by the mass of the particle or of the body in general in such 
a way that the whole body mass is concentrated at this point which thus 
becomes a fictitious mass center. It is for this reason that this point is called 
the mass point or material point. In this way the question of the bodies' 
distance is reduced to the concept of the distance between points. The 
concept of the mass or material point differs from the geometrical concept 
of the point not only by the fact that the mass point is characterized by 
mass; it differs from the particle by the fact that the distance between the 
two particles always exists and does not equal zero, because the particles, in 
addition to their mass centers, also have boundary points of their volume. In 
this way, the mass or material point is represented by the mass and position 
(m, r). The geometrical points can coincide, and therefore their distance can 
be equal to zero. The mass point position relative to any chosen observation 
point can be described by the position vector r, rE R3 , where the symbol 
R3 implies a set of real tri-vectors or in numbers r := (r1 , r 2 , r 3 ) that are 
connected with three linearly independent vectors to be called the base or 
coordinate vectors and denoted by the letters e= (e1,e2,e3 or g1,g2,g3). 
The notation e will be used for orthogonal vectors of unit intensity ei, (i = 
l, 2, 3), ei = l, will be used for other unit vectors of rectilinear coordinate 
systems. In addition to the assumption that they are unit and orthogonal, 
there is another assumption that ei change neither direction nor sense, and 
consequ€mtlythey are constant. ei = const. Note that this assumption about 

the constancy of the base vectors direction has no place in the philosophy of 
the body motion because all bodies on which the vector base is chosen are 
moving. Mechanics introduces this assumption conditionally to be discussed 
below in the introduction of the velocity definition and explanation of the 
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inertia force. Relative to base e, position vector rER3 can be written in its 
simplest form in the following way 

mv 
Cr=r1- =F 

dt ' 
where the iterated indices, both subscript and superscript, denote addition 
till the numbers taken by indices; (r1, r2, r3)E3 are coordinates of vector r, 
and r1 e1 = r1 , ... , r3e3 = r3 are covectors or components of the given vector. 
Scalar multiplication of vector r by vectors ej(j = 1,2,3), i.e. rjej, gives 
the j-th projections Tj of vector r upon the directions of the j-th vectors 
ej. Only with respect to base e, vector rj coordinates are identical to its 
projections r j or to covariant coordinates r j, because it is 

(1.3) e1 = const. 

Note that this assumption about the constancy of the base vectors direc­
tion has no place in the philosophy of the body motion because all bodies on 
which the all bodies on which th vector base is chosen are moving. Mechan­
ics introduces this assumption conditionally to be discussed below in the 
introduction of the velocity definition and explanation of the inertia force. 

Relative to base e position vector r E Rn can be written in its simplest 
from the following way 

l 2 3 '"""" i i (1.4) r = r e1 + r e2 + r e3+ =.LJ r ei = r ei, 

where the iterated induces, both subscript and superscript denote addition 
till the numbers taken by indices, both the iterated induces, both subscript 
and superscript, denote ddition till the numbers taken by indices: (r1, r 2, r 3) 
are coordinates of vector r, and r 1e1 = r1, ... , r 3e3 = r1. 

(1.5) 
(

l o o) 
o l o 
o o l 

Observed from any point O, which the position vectors start from, the di­
rected distance between any two immediately close points M1 and M2 is 
determined by the difference between vectors r 2 - r 1 = p, where r 2 = 
OM2r1 = OM1 and 

- i l - i l i ~r = M1M2 = (r2 - r 1)e = 6-r = N1M2 = (r2- r 1) = ~r i· 

Quantity ~s = 6-r can be called the metric distance or distance ds (Lat. 
spatium- space, interspace, distance) or distance 6-s, 

(1.6) attrs =L. 

Time is denoted by the letter t (Lat. tempus), while its attribute T. It 
is continuous and irrevocable. In the mathematical description it can be 
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represented by a numerical straight linear an ordered multitude of concrete 
numbers, while the multitude of their units is represented by real numbersR 
end t. 

Once the existence of time is accepted, the existence of motion, change, 
duration, the past, the present, the future is also accepted. 

(1.7) 
7;; ~ e; e; ~ U ~ ~ I ) 

Time is denoted by the letter t (Lat. tempus), while its attribute T (a tr. 
attr.t =T). 

It is continuous and irrevocable. In the mathematical description it 
can be represented by a numerical straight line or an ordered multitude of 
concrete numbers, while the multitude of their units is represented by real 
numbers, Once the existence of time is accepted, the existence of motion, 
change, duration, the past, the present, the future is also accepted. 

Preprinciple of casual determinacy. Distances, their changes and 
other factors of the body motion are explicitly determined throughout the 
whole of time, in the future as in the past, and with as much accuracy 
as the determinants of motion are known at any particular time moment. 
This preprinciple of mechanics prefigures that mechanics as a theory of body 
motion is an accurate science in the mathematical sense, while as an applied 
science, it is so accurate as the data which are of importance for motion 
are accurately measured at one particular time moment. In other words, 
mechanics is an accurately conceived theory, almost to perfection, and in 
engineering practice it is as much applicable as it is known, depending on 
the needs and technical capabilities of those applying it. The concept of 
the body motion comprises: walking, driving, sailing, swimming, flying, 
jumping, breaking and all other gerunds that express displacement and 
changes of distance or changes of the position vector in time. 

Preprinciple of invariance. Neither motion nor properties of the 
body motion depend upon the form of statement: the determined truth 
about motion, once it is written in some linguistic form, is equally con­
tained in the written output of some other form or some other alphabet. 
The preprinciple of existence states that there are mass, time and distance, 
determined by concrete real numbers m and t and real vector r. 

This preprinciple of existence or independence of formalities allows for 
mass, as well as time, to be denoted by some other letters, which do not 
change the nature of numbers m and t, and for which there must be in the 
whole correspondence. The same holds for distance r. No matter where the 
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origin of coordinates from which the position vector begins is chosen, let's 
say v, there exists an equality r, and therefore distance r does not depend 
on the form of writing. This is even more expressed in the coordinate form, 
where the choice of forms is considerably larger, such as, 

(1.8) 

As such, all the three realities R, t, and Op. and m and t invariants, m and 
t are invariants, and t, being scalar ones, and· r is a vector invariant. All 
other factors of the body motion are also inyariantly expressed in various 
coordinate systems. 



MOND2 - BASIC DEFINITIONS OF MECHANICS 

Mathematical logical theory of natural sciences requires the determina­
tion (definition) of essential concepts by. of which the whole theory, such as 
that of mechanics, develops. Newton set out his mathematical principles of 
motion from eight basic definitions to determine the following concepts: 

l. Mass, 
2. Impulse or momentum motion, 
3. Inertia force, 
4. Force in action 
5. Centripetal force, 
6. Absolute magnitude of centripetal force, 
7. Vector of the point;s acceleration, 
8. Accelerating magnitude of centripetal force. 
Instead of above mentioned Newton's basic definitions and their inter­

pretations, five general definitions are sufficient for developing theoretical 
mechanics, such as: 

l. Velocity, 
2. Impulse or momentum motion, 
3. Acceleration, 
4. Force of inertia' 
5. Action of force 
Only two of Newton's definitions, the second and third, as evident, co­

incide with the basic definitions given herein. This approach should not be 
taken as a negation of Newton's mathematical principles of the theory of 
body motion but as a modification and improvement of the description of 
body motion in terms of Newton's IV rule of causal reasoning. Mentioned 
properties or characteristics have been referred to as dimensions and were 
written as 

dim m= M, dim l= L,&imt =T. 

However, in mathematics the term 'dimension' is most commonly used to 
denote the number of units in a multi tude and in physics it is used as a unit 
of measurement property, and therefore we will herein refer to the natural 
properties of the body motion as attrilmtesl· and write them as: 

(2.1) attr m= M, attr l = L, attr t= T. 

Obviously, the basic properties or attributes are real numbers and are com­
pletely subject to the calculation rules with real numbers. In classical and 
standard analytical mechanics there are concepts of different properties. 
Mass, energy and action are thus described by their property numbers, i.e. 
scalar calculus, and basic concepts: radius vector, velocity, acceleration, 
impulse, moment of impulse, force and moment of force are all defined by 
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the concept of vector for which there has not been given a unique general 
definition so far. This can be shown by a number of examples. 

In the book ([4] p. 82) it is said: Point and vector are the essential 
concepts not subject to direct logical definition, three axioms being added: 

l 0 . There is one point at a minimum. 
2°. For each pair of points A, B, specified in a certain order, only one 

vector is assigned. 
3°. For every point A and every vector (x) there is one and only one 

point B, such that 

AB=x. 
4° (Parallelogram axiom.) If 

(2.2) AB=BD, 
then 

AC=BD, 
. In the book [5], a) the concept of vector is introduced by means of the 

concept of vector space, which is basically contrary to the concept of the 
agreement of vectors; it is consequently reduced to the concept of parallel­
ogram, or the concept of 

a) middle of the pair of points. Vector space (linear space) is a multi­
tude of elements M, called vectors, for which there are two mathematical 
operations: addition and multiplication of vectors by numbers. 
b) scalar pro duet of two vectors is described, and 
e) orientation, i.e. the sign of scalar product, uu> O, is described. 

So, there is no general definition of vectors, but there is one of a "free 
vector:" 

Definition 15.1: For every pair of points (x, y) in the plane of free vec­
tor (x, y), there is the transfer of plane II which translates x into y; such 
translation is commonly denoted by the symbol (xy). 

In the book [6] it is established: In an arbitrary coordinate system the 
set of coordinates A i defines at every point of space a vector whose length, 
orientation and sense are determined by A i. Vector A at some point P is a 
diagonal from point P in the parallelogram, whose sides are the lengths of 
vector A1 , O, O, A2 , O, O, A3 , O, O. 

In the book ([7], p. l) it stands on the first page: geometrical, mechanical 
and physical quantities, whose complete determination, apart from length, 
requires the knowledge of orientation and sense, are called vectors. A vector 
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is thought of as an oriented line segment with an arrow at one end to denote 
the sense. 

In the book ([6], p.7) it is written: The general concept of a vector- .\i 
ordered set of N numbers taken from some number field is called the vector 
of the N-th order over that field . .\A set of all vectors of a certain order over 
the number field, closed under the operations of addition and multiplication 
by numbers, is called a linear system (space) of a vector or vector space. A 
vector is an element of the vector space V, or v ... V for short. 

In the book ([7], p. 23) we can read: A vector in the RN space means two 
points, so that it is exactly known which point is the first (initial) and which 
point is the second (terminal) one of a vector. Vectors which determine the 
position of points with respect to a certain pole are called position vectors. 

In the book ([8], p.57) we can read: Vector is a quantity determinable 
in every coordinate system by three numbers (or functions) Ai which trans­
forms into Ai* under the space coordinate system change, according to the 
law 

(2.3) 

In a highly estimed book [9] it is essentially precisely written: 

Definition. The vector at point P= (x~, ... , xg) is called z set of num­
bers a ( ~6, ... , ~~), with respect to the system of coordinates ( x\ ... , xn). 
If two systems of coordinates (x1 , ... , xn) and (z1 , ... , zn) linked by alpha 
x = x(z), where xi(zJ, ... , z~) = x = xb, i = l, ... , n, for a new system of 
coordinates z that very same vector at the point z6, ... , z~ is specified by 
another set of numbers ( 1 , ... , (n, which are linked by the initial formula 
(20*) 

It should be emphasized that the 'meat' of this definition is in the form 
of the rule of transformation (20*). 

In the 6th edition of a rarely good textbook ([11], pp.l8,19) we find the 
following: In mathematical physics two types of quantities are encountered: 
scalar and vector. Scalar is a quantity which is completely determined by the 
number and which expresses the relation of that quantity to a corresponding 
unit of measurement. The term 'vector' derives from Latin word 'where' 
meaning 'drag', 'tow'. As it is well-known from analytical geometry, cosines 
of three angles, included by the straight line l of any vector with coordinate 
axes, related by the relation 

cos2 (l, x)+ cos2 (l, y) + cos2 (l, z)= l; 

consequently, vector direction is determined with two numbers, taking into 
account the numeric meaning of the vector; geometric vector can be repre­
sented by the segment AB. 
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It is interesting to note that in a dictionary [12]13 the term vector is 
mentioned just once on page 181 as an entry complex plane and is used 
in a sentence: Sometimes a complex number z is represented by the radius 
vector of that point. 

Vector on the complex plane On the basis of all above mentioned formu­
lations, it can be concluded that vectors can be viewed from two different 
observation points. According to the first, vectors are numbers subject to 
certain mathematical operations, whereas the second views vectors as math­
ematical concepts that have no real numbers and inseparably another two 
determinants indicating orientation and sense. 

If this triplet misses at least one of the three mentioned determinaces, 
it is not a vector. 

2.1. The general concept of vector. vector is a triplet of numeric 
value, orientation and sense. 

_ _j 

In the professional and scientific literature it is denoted with a symbol 
v, or bolded letter v. Numeric value v of the vector v is a scalar, therefore 
v can be multiplied by a scalar. 

Axioms or rules vectors. 

Axiom I. The sum of two vectors VI and v2 is the vector VI + v2 = d 
of magnitude d and oriented diagonal closed by addends VI and v2. Axiom 

I I. The vector product of two vectors VI and v2 in a homogeneous medium 
is the vector M, orthogonal to the vectors VI and v2, that is, 

(2.4) v1 x v2 =M, vl _L M, v2 _L 1\1. 

Axiom II I. Two vectors are equal if both the numeric value and direction 

are equal. Inner axiom. The scalar product of two vectors translates vectors 
into scalars - real numerical functions. Axiom I requires that two vectors 
intersect, and 

Axiom I I enables the displacement of a vector parallel to itself. 

Inner axiom allows for leaving vector calculus, base and coordinate vec­
tors being omitted, whereas numeric values of vectors and their coordinates. 

Point position vector or radius vector is often used within the general 
concept of a vector. Our introduced definitions have to be harmonized with 
the preprinciple. In that regard, lcl us analyze the velocity vector. Ve­
locities exist in a place where they do not exist apparently. Everything 
moves. While sitting and being apparently still, we move in two ways: to­
gether with the Earth around its center of rotation and together with it 
around the Sun. The airplane's flight from one place in the east to an­
other place in the west will take less than the other way round by the same 
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clock. Our planet revolves round the Sun at the speed somewhat lower than 
30km/sec. It is considerably faster than the speed at which a bullet or a 
grenade travels. Therefore, velocities exist everywhere around the observer, 
and in himself/herself too. The preprinciple of existence is satisfied. How­
ever, as there is a variety of velocities of the bodies, liquids, clouds and light, 
mechanics chooses a model that can be used to describe as many motions 
as possible. The velocity at some point is determinable with mathematical 
accuracy by definition l. As such, it is mathematically accurate to the level 
of perfection, and it is applicable as much as the point position vector is 
accurately determinable, as well as the time moment at which the velocity 
is being determined. In this way, the preprinciple of causal determinacy is 
satisfied. The preprinciple of invariance requires a more thorough analysis, 
because of the existing incongruent definitions of the concept of a vector 
in modern mathematics. Vectors are, by definition, linear mathematical 
objects of wide application. And yet, mathematics and mechanics do not 
define the concept of a vector in the same way, as has been shown. Let us 
accept the fact that a point is the basic concept that is not defined. The 
point is the point, but the point position is not definable in itself, because 
it is defined by means of other objects. It is an intersection of two lines, or 
of three planes or surfaces in space; at three distances from two mutually 

l 

normal walls ih a room and height from the floor to ... Elementary geometry 
uses coordinate systems where every point is denoted and determined by 
three coordinates of its position or by radius vector 

2.2. Position vector. Although this is just one of several types of 
vectors, it is the one most often used to describe the concept of a vector 
at the point. Consequently, the point position vector is in the focus of 
our attention, because our approach to this type of vector considerably 
differs from standard definitions and operations on it. The point is a basic 
concept, so it is not explained. And yet, let us add, it is what You, estimed 
reader, understand and know. However, the point position is not such a 
simple concept. In geometry, it means a single place (point) determined 
with respect to another object(s) - points, lines straight or curved, planes 
or surfaces.... with respect to one or more than one observers. For the 
observation point of a single observer, we are going to call a pole and denote 
with the letter Qi is sufficient to know the distance, orientation and sense 
in order to determine the position of the observed point M; in other words, 
one vector r is sufficient. The length or distance from one point to another 
is measured by units of length L (from LatiH longus). That vector used 
to measure the point position is called the point position vector. Standard 
theory states that the beginning of that vector is at pole Ox and end, denoted 
by an arrow, is at the respective point lvf.n doing so, it is necessary to know 
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that the position vector pole is an arbitrary point, so there are arbitrarily 
many of them and they determine only one position of one real existing 
point. 

Example. Let position vector r of point M be an oriented line seg­
ment .... where O is the observation point arbitrarily chosen for the begin­
ning of the observed vector. In other words, it is the point position vector or, 
to put it simply, the point. On the vector axis other points Oi can be chosen 
for the vector beginning as far as the immediate vicinity of the point, and 
even point M itself. In doing so, the position of point M will not change. 
All vectors determine the position of point A1, (Fig. 1). 

M 

o 

FIGURE l 

A more vivid description is provided by an example of two points (Fig. 
2) at mutual distance 

In the professional literature Fig.3 is widely used 

RA + RB - Fc = O, MA+MB-Mc=O 
and 

MA= lFc- 2lRB, Mc= lRA- lRB, MB= 2lRA -lFc, 

indicating that vector addition is performed according to the triangle rule, 
which is incongruent with the vector addition axiom. 

By that axiom I, Fig. 4, the difference (2.5), Fig.5. The start point 
O should be the intersection of all the three vectors. In order to apply 
the rule of vector addition, whose axes do not intersect, i.e. to reduce it 
to the parallelogram diagonal formula, it is necessary to deploy the vector 
product (refer to V.Vujičić, Statics, Belgrade, 1969) to transfer the vector 
of diagonal d, i.e. to point O or M0 . So, if point M does not change its 
position, the change of position vector poles does not affect the change of 
distance between the two points. However, if the point changes its position 
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anyhow, then it is convenient to choose the vector pole at the initial position 
of MO that belongs to the hodograph of a vector function. Such a reflection 
can be supported by the first theorem of Newton's fundamental work of 
Mathematical principles of natural philosophy.3 

Theorem l. The areas, which revolving bodies describe by radii drawn 
to an immovable center of force dolie in the same immovable planes, and 
are proportional to the times in which they are described. 

The title itself indicates that the position vector and determines the 
point position. The start point of that vector, called the pole-orient or 

3v. Vujičić, Forces of central motion according to Newton and Petronijević, CNOSOS, 
Belgrade, 2005. 
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FIGURE 6 

observation point, can be arbitrarily assumed to be relatively at rest, and 
therefore the observation point position is determined according to the cho­
sen point. This is the base of Euclidean geometry of absolute space. Point 
position is determinable by the intersection of three planes or three sur­
faces. The intersection for two planes or surfaces determines the straight 
or curved lines intersecting as such at the pole and representing the rec­
tilinear or curvilinear coordinate systems. Let us denote the coordinates 
of the point position with respect to the orthogonal rectangular coordinate 
system by y1 , y2 , y3 , and with respect to the curvilinear coordinate system 
by x1,x2,x3 . 

Position vector is invariant with respect to all these and other coordinate 
systems, so it can be written that: 

(2.6) r(y) = r(x), 

r= 
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or in more detail 

(2.7) 

Y3 

+ 

FIGURE 7 
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where the same indices repeated in superscript and subscript denote 
summation over those indices. No doubt, it follows from here that: 

(2.8) 

Based on (2.7) and (2.8) it follows that: 

i ar ar 
r = y [)yi == axi . 

In the existence of the functions 

yi= yi(xl,x2,x3) {::::::::?xi= xi(yl,y2,y3), 

it is shown that 

(2.9) 

because 

(2.10) 
ar ar {)yJ ayJ 

gi = axi = yJ 8xJ = axi ej, 

where partial derivatives of the vector-function are considered partial deriva-
tives at points O of a vector. ' 

It should not be overlooked in all above mentioned that partial deriva­
tives of the vector and its coordinates are calculated for an indicated point. 

The differential of the position vector r is indisputable 

for condition that l~ l~ =j:. O is e "her than zero. It should be noted that 
solid heavy line denotes the differential of a vector dr, which substantially 
differs from the differential dri of vector coordinates. This non-standard 
differential of a vector differs from the standard differential of scalar func­
tions dri(t). For the derivative of a scalar function f(t) for an independent 
variable, two mentioned differentials are identified, i.e, df(x) = Df(x). An 
infinitely small value of the position vector equals the differential ds of dis­
placement s, i.e. dr. Therefore, scalar product of two identical vectors 
yi el ds 

dr· dr= ds2. 

Also, note that the position vector can be written in other forms such as: 

r =Xi+ Yi 

vectors yi and xi are vector coordinate of vector r, whereas scalars yi and 
xi are coordinates of that vector. 

r 
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In variant relations (1.5) and (l. 7) indicate that coordinates yi and 4xi 
are function-correlated yi = yi(x1 , x 2 , x 3 ) and vice versa xi= xi(y 1 , y 2 , y3 ) 

in the region of those functions' continuity. Thus, there are differentials 

. ayi . . axj . 
dy2 = --. dxJ +-+ dxJ = -. dy2

, 
axJ ay2 

(2.11) 

for condition 1ayipartialxj l # O. Note that indices i over coordinate yi of 
vector r in transformation (1.10) emerge as free indices, which makes them 
different from summation indices repeated in transformation 

(2.12) 

because 

(2.13) 

i- (ay i) j 
y - axj XM X ., 

ar ar ayj a,Yj 
gi = axi = yj axj = axj ej, 

where partial derivatives of the vector-function are considered partial deriva­
tives at at point O of a vector. 

It should not be overlooked in all above mentioned that partial deriva­
tives of the position vector r is indisputable for condition that 

2.3. Velocity definition. Velocity at some point and time t, whose 
position is determined by position vector r, is change of that vector with 
respect to time, that is, 

(2.14) 
. ayi . . axj . 

dy2 = -. dxJ +------+ dxJ = -. dy2
, 

axJ ay2 

. r dr -1 
hm J\ ) ( ) 6-t = -d , +------+ vo = LT . 
~t-+0 +ut - r t t 

and 

(2.15) 
·dr _1 

attr dt , ======? v0 = LT . 

and for l~~; l~ # O. 
The concept of velocity is widely used in mechanics, in formulations such 

as: velocity vector, momentous velocity of the material point, angular veloc­
ity, relative velocity vector, All velocities at a certain position are vectors. 
This fact makes mechanics a linear science of motion or relative rest of the 
body if it is subject to vector calculus at a certain time moment. Velocity 
is a vector invariant. As such, it can be written in the forms as follows: 
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2.4. Motion impulse definition. The product of mass m of the ma­
terial point and its velocity vector v is called the motion impulse of material 
point P. In accordance with the preprinciples, velocity definition and defini­
tion above given, the motion impulse can be written in the following forms: 

(2.16) ·i ·i t MLT-1 p = mv = my ei = mx g i. ---+ a r . 

In the exposition below, special emphasis will be placed on coordinates Pi 

of impulse p, as well as on base vectors that are point position functions. 
The impulse vector cdordinates are equal to the respective products Pi = 
p· gi = mgiji) = aiji). They are measured or calculated up to the required 
accuracy of masses m and velocity coordinates. However, for the motion 
impulse it is clear enough that the velocity vector coordinates used are 
projections of that vector upon the axis coordinates, i.e. where, as evident, 
the material points differ with respect to the base scalar products of impulse 
vector p and coordinate vectors. Due to the preprinciple of invariance and 
determinacy of vector g j, it follows: 

(2.17) p· gi = m±igi · gj = mxigij = aijXj =Pi· 

Such projections, denoted by the subscript index, represent motion impulses, 
which are also called, due to the subscript index, covariant coordinates of 
the impulse. It should be noted that tensor aij(m, x) differs from geometric 
metric tensor gij. Tensor ai j satisfies the equality of the geometric metric 
tensor form, in property L; tensor aij contains masses of material points, 
and therefore as such it corresponds to the term mass, material, or inertia 
tensor. 

2.5. Acceleration definition. The natural derivative of the velocity 
vector with respect to time is called the vector of the point 's acceleration 
and is written as: 

(2.18) 
d v 

w= dt' attrw = LT-2 . 

In mathematical analysis and kinematics there are some disagreements with 
respect to different coordinate systems and their coordinate vectors that 
have to be overcome herein. When differentiating the velocity vector, one 
encounters the scalar coordinates of the velocity vector but also coordinate 
vectors occurring as the coordinate functions of the point position. If the 
coordinate vectors are the base ones that are invariable, the second deriva­
tives of the point position vector coordinates are equal to ordinary deriva­
tives with respect to time of the scalar coordinates of the velocity vector. 
However, if the coordinate vectors are the functions of point coordinates 
and by means of them the functions of time too, then they are subject to 
differentiation as complex functions. If the x coordinate is an angle, then 
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in accordance with a definition and its corresponding relations acceleration 
vectorw (Latin, acceleration) is w = LT-2 . In dif:ferential geometry and 
analytical mechanics there is a widely spread approach that "acceleration 
vector is not a tensor in the tensor sense", meaning that it does not main­
tain the natural property of acceleration. This misconception needs to be 
clarified. It is not deniable that acceleration can be written in the following 
forms: 

. . . . ar . ar ayi ayi . 
w = w1(y)ei = j/ei = w1 (x)gi = w1(x)-a . = w1(x)-a . -a . = w = -a . e1. xl yJ xl xl 

This shows conclusively enough that acceleration and its coordinates trans­
form in accordance with the tensor calculus. Yet, the relation deriving from 
above 

··i = ay i ( dvi r~ ( ) j dxk ) 
y axi dt + lk x v dt 

suggests, at first sight, the remark that left-hand and right-hand sides are not 
symmetrical in the tensor sense- on the right-hand side there no correlation 
coefficient qk(y). That remark is formally justifiable, but not essentially, 

because correlation coefficients qk(y) equal zero, considering that 

.!!... ar_ = !!...e. = o. 
dt ayJ dt J 

So, this objection is unacceptable and the remark that the velocity vector 
is ·not a vector in the tensor sense is disregarded. An acceleration vector 
invariant is proved. Accordingly 

D i . k y . . 
i/= w · aa;k => w 1 (y)ei = W

1 (x)gi. 

acceleration is invariant under tensor or linear transformations, i.e. differ­
entials, that is, 

Let us demonstrate above stated with a simple example of point accelera­
tion with respect to the cylindrical system of coordinates y1 = p cos e, y2 = 
psine,y3 = (. which are correlated with coordinates yi as the following 
functions: 

y 1 =p cosi), y2 =p sin e, y3 = (. 

ih = (jj - piP)cose + rhoO - 2iiJ) sin e = p - piP, 

ih = (jj - piP) sinO + (pO+ 2{iJ) cos e = pe+ 2{iJ, 

ih=(. 
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The square of the acceleration is 

. . 2 2 2 2 2 
""2 

w 2 = Oiji/i? - (jj- P ) + P · + -:: + ( · p 

The same results are obtained by means of Christopher's symbols, the cor­
responding Christopher's symbols being calculated or known and equaling 
zero for coordinates y1 , y2 , y3 , equal zero, the acceleration is invariant with 
respect to tensor transformations as much as the velocity. 

2.6. Inertia force definition. The product of the material point's 
mass m and acceleration w, which is equal but directed opposite to accel­
eration w, is called the material point's inertia force. If the inertia force 
is denoted by the letter IF or simply I, the definition can be written in a 
shorter form 

p= mv= mf/ei = mi:igi·---+ attrMLT-1
. 

The product of the object's mass and acceleration vector is the inertia force, 
i. e. it follows that (2.15). This significant definition establishes the property 
of every force. In accordance with relations (2.14) and (2.16), it can be 
written F by means of the product M LT, that is, 

d v 
(2.19) I= -mw= -m-. 

. dt 
As such, the force changes velocity in time, where from it is evident that 
vector coordinates are inertia forces proportional to acceleration, whose pro­
portionality factor is the mass of the object or body. Mass is a representative 
of every body as Ji = -m~~; of the totality and is related to a single point 
- the center of mass or the center of inertia 

dvi . . dxk Dvi 
(2.20) -m( dt+ rjkv1 dt) = mdt. 
That point is called the material or mass point. It differs from the geomet­
rical or topological point in that that besides position L it represents the 
mass of the body M (2.17) where 

D v 
aij(m, x) = aijdt· 

2.7. The action of the force definition. The action of the force is 
a natural intcgral.invariant with respect to all coordinate systems y, x, q. 

A(F(y)) = A(F(x)) = A(l<'(q)), 
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where Qk are generalized forces corresponding to generalized independent 
coordinates q. 

For inertia forces I = -m~~ the action of the inertia force is ~, 

lt ( J dv ) 1t v2 A(I) = - m- · dr dt = - m-dt. 
to dt o 2 

We point out that here we give our definition of the action of the force, 
whose property is attr A(F) = M L2T-1 . The term action indicates that 
something is being done or has been done in a time interval, such as: the 
action of medication during 7 days, a three-month's action of aviation, the 
Sun's action from llam to 4pm,. In the prqfessionalliterature we encounter 
the following: "the force is the action", the action of the force, the action 
in Lagrangian mechanics, the amount of action, the action in Hamiltonian 
mechanics, "14, but there are text books of mechanics, i.e. of physics for 
ser:ondary schools or universities, where therm "action" cannot be found in 
t:r~c: register of physical quantities either. ·The Institute for text books and· 
teaching aids from Belgrade has published a color overview of "International 
system of measuring units" adopted in 1960 by the General assembly for 
weights and measures. In that overview there is neither the word "action" 
nor its measure. A more comprehensive second edition of "The engineering­
mechanical engineering manual" was published in 1992 in three Yolumes, but 
action does not exist, nor does 'the magnitude of action". This brief remark 
about the concept of the action leads to the question: Is the concept of ac­
tion inessential for physic;,s or is it nonuniform, and as such it is not accepted 
in scientific and professional community; or; is it renamed by other terms, 
for example, momentum, whose physical dimensions equal the product of 
properties, such as mass. M, length L and time r-1 , i.e. attr M L2T-1 . 

This physical property, from 'the historic and essentially mechanics' view­
point, and physics' too, represents the attribute of the action, which makes 
us wonder why the concept of action is not included in mentioned physical 
properties. Such vagueness is eliminated by our fifth definition, which char­
acterizes the physical property of action A, as incongruity between Newton's 
and Leibniz's concept of t:P,e action. The incongruity of a significant con­
cept of the action requires more detailed explanations [2]. From the historic 
viewpoint as well as that of essential mechanics, and therefore of physics, 
represents a dimension of the action. Consequently, our first modification 
does not change the properties of the action according to Lagrange and 
Hamilton, which by means of integral variational principles modify the def­
initions of the fundamentals of classical analytical theory about the motion 
of the body, so i t remains surprising that the concept of the action is not 
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found among mentioned physics' quantities. The first and general modifica­
tion of Newton's theory was proposed just by mathematicians, along with 
the development of mathematical analysis. The author of this monograph 
shows that the action of the force after Euler is comprehensive in mechan­
ics, like analysis in mathematics. Newton wrote his Principia very logically 
and axiomatically significant for the theory, history and phenomenology of 
physics, using symbols of Euclidean geometry of segment lines and their 
relationships. Post-Newtonian dynamics is written using the language and 
relations of modernized mathematical analysis. In doing so, efforts were 
made not to change 14 On the nature of the action (refer, for example, to 
[3]) the nature of dynamic properties by mathematical transformations. 

Lcibniz's formal action. In the anthology of the variational principles 
of mechanics a lot has been written about the principles of mechanics, but 
there is not much deviation ([15], p. 782). In the epilogue and notes, 
L:S.Polak the editor of that significant work writes: "The first formulation 
of the concept of action, entitled Actio Formalist, was proposed by Leibniz 
(Leibniz Gottfried Wilhelm) during his stay in Italy in 1669. Formal action 
is measured by the product of mass, velocity and length. As such, the 
dimension of Leibniz's action is equal to the expression. 

Newton's action force. In 1686 Newton neither defines nor interprets 
the action, but uses it to define the concept of force: Def. IV. An impressed 
force is an action exerted upon a body, in order to change its state, either of 
rest, or of uniform motion in a right line. Newton clarifies his definition by 
the sentence: This force consists in the action only; and remains no longer 
in the body when the action is over. 

Maupertuis's least action. After Newton, on 20 February 1740, 
Pierre Louis Maupertuis presented his paper entitled "Agreement of sev­
eral natural laws that had hitherto seemed to be incompatible" [15] in the 
Paris Academy of Sciences and published in "Histoire de l' Academie de 
Science de Paris" in 17 44. Let us single out the sentences referring to the 
concept of Action. "When a body is transported from one point to another, 
it involves an action: This action depends on the speed of the body and 
on the distance it travels. However, the action is neither the speed nor the 
distance taken separately." The least action is the true expense of Nature. 
Two years later (1746), in his work "The laws of movement and of rest de­
duced from rnetaphysical principle" [16] Maupertuis clearly defines the least 
action as the product of the mass of the body involved, the distance it had 
tnm~llcd and. the velocity at which it was travelling. Euler's action of forces. 

Euler actions of forces. In 1748 Euler introduced the concept of 
momentary actions of forces, and then formulated The sum of all momentary 
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actions that a body is subjected to for finite time, i.e. it equals 

J dt( J Vdv +J V'dv' +J V"dv" + ... ) 

31 

and has the property of the product of massm, velocityv and distance s that 
is traversed 

attr (mvs) =M L 2T-I, 

which is in accordance with the action of the Leibniz and Maupertuis 
least action. 

Lagrange's action. In his book Analytical mechanics Lagrange im­
plies the concept of action in the same way as Maupertuis, i.e. the sum of 
products of the masses, velocities and distances, in the form 15Mecanique 
Analitique par M.U.Lagrange, ([2], pp. 159:..166) 

M J uds+M' J u'ds' +M" J u"ds", 

where M, M', M" are masses of bodies, u, u', u" are velocities and ds, ds', ds" 
are distances traversed. Since ds = vdt the previous expression can be 
written in the form: 

J (!V!u2 + M'u'
2 

+M" u"
2
)dt =J 2Ekdt 

where 2Ek is "the living force", i.e. double kinetic energy. 

"Planck's quantum of action". In Sommerfeld's paper entitled "Planck's 
quantum of action and its universal meaning in molecular physics" (1911), 
it is written: 'Ve arrive at a more accurate proposition for the energy mag­
nitude : time if we follow the term quantum of action, very successfully 
chosen by Planck. "Universal constant chosen as a means of theoretical and 
experimental investigations of radiation does not emerge as the quantum of 
energy (erg dimensions) but as the quantum of action: 

h == 6, 55 x 10-27 e1·g sec, 

which has the dimension (energy x time) and figures in expression 

J Pidq = nih, 

where ni is a whole number and h is Planck's constant. 
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MOND3 - ACTION AND REACTION FORCES 

The Newtonian theory is primarily founded on Newton's Axioms or Laws 
of motion, as he himself called them. Here and there, the term axiom is 
omitted as a statement or requirement taken to be logically true, which 
requires no proof, and therefore it is more common to refer to the laws of 
motion in nature. However, Newton himself does not use the term law for 
other statements but uses the terms such as lemmas, theorems, propositions, 
phenomena, rules, tasks. Newton's laws are the foundation of theoretical 
and applied rnechanics. Yet, it proved that Newtonian mechanics did not 
respond positively, either physically or mathematically, to all motions and 
phenomena in nature. After Newton, to enrich the theory of motion in na­
ture and human practice, several principles were established. Relying on 
the concept of the action of force, which is incongruent with Newtonian 
force, we are laying down here a general principlc of the action of forces 
to achieve agreement and generalization of all knowledge acquired to date 
about the motion of the body. From the viewpoint of logic, the concept of 
law is distinct from the concepts of equatioris, lemmas or theorems irrespec­
tive of the writings found in the text books of physics or mechanics. Newton 
made a clear distinction between those concepts. Only three of his axioms 
he referred to as laws, calling upon the proofs provided by his predecessors 
Copernicus, Huygens, Kepler and Galileo. Newton used that knowledge, 
laws, phenomena and causal reasoning to describe the attributes of motion 
by means of propositions and theorems. Laws are derived by applying pre­
viously known mathematical relations, as it is done with theorems. In aca­
demic and professional literature, for instance; the formulation of Newton's 
second law we encou~1ter reads: The alteration of motion is proportional to 
the force and takes place in the direction of the force. And there follows 
wrong explanation of the sentence: "The motion in the ser:ond lmv implies 
the momentum- the product of the mass m of the body and its speed v, 
i.e. mv." F\uthermore, it is added: "In the vector form Newton's second 
law reads: 

(3.0) d(mv) = F* 
dt ' 

where F iE' a force vector and represents the resultant of all forces acting 
upon t.he body. When it is assumed that mass does not change during 
motion, m= cnnst., and that m >·0, as Newton tacitly assumed, Newton's 
.secoml law is reduced to the form: 

(3.1) 
d v 

m-=F, 
dt 

r 
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which represents the fundamental vector equation of dynamics. Considering 
a critical importance of this law, it should be noted the following: 

Equation (3.0) does not represent Newton's axiom or law. The text of 
the law, as obvious, does not mention the concept of momentum mv, which 
figures in that equation. l. Anyway, an axiom or a law cannot be arbitrarily 

changed, because based on the law many statements ( theorems) of dynamics 
can follow, as they follow from the law (3.1). 

2. The assumption on whether the mass is like this or like that cannot 
change the law. On the contrary, it will follow from the law, what mass can 
be like. 

3. Moreover, equation (3.0) is not correct physically, because it does 
not describe adequately the corresponding motion of the rockets or bod­
ies with reaction forces. This error might have occurred as a result of not 
reading Newton's works carefully enough. Newton defined the 'momentum' 
but not the concept of 'motion' to formulate the second axiom or law of 
motion. However, in clarifying his Definition V I II Newton writes: "Ac­
celerative force (read: acceleration; author's note) stands in the relation to 
the motive (read: force) as velocity does to momentum. Indeed, momen­
tum is proportional to velocity (mass), and the motive force is proportional 
to acceleration (and mass)." He did riot define the concept of motion, but 
in a lengthy SCHOLIUM he says that time, space, place and motion are 
well known to all. Yet, 'item IV of the SCHOLIUM indicates that "motion 
is the translation of a body from one place into another". The change of 
momentum. 

Equation derived based on the law (3.1), but not vice versa. Formally, 
if is added to the left-hand side of that equation (3.1), that is, ~7v, will be 

dv dm dm 
m-+-v=F+-v 

dt dt dt 
it is obtained 

(3.2) :t(mv) = F*. 

where it isthen F* = F +~~v. This conclusion indicates that forces are not 
formal numbers but diverse vector causal agents of motion, whose common 
p roperty i~ NI LT2 . We do not .change those laws here, we generalize them 
by a,' single principle of mechanics. -

3.1. Principle of action and reaction forces. In a volume of men­
tioned and unmentioned serious scientific and professional papers the con­
cept of action is most commonly associated with the principle of least action. 
However, action is one of the adopted properties of a moving body, which is 
determined by basic properties of mechanics. ln mechanics the principle is 
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a statement used to establish a general provision, rule, relation about being 
in motion or at relative rest of any object, both small and the smallest one. 
In order to bring into congruity Newton's Definition IV of the force, as an 
action, and his third axiom or the law of ACTION AND REACTION with 
Euler's principle [16] of the action of forces, the author of this work has 
clearly formulated the concept of the action of forces F by the formula 

(3.3) 

at the distance r 1 - ro for the t1 - to. 
In this case, distinction should be made between the concept of action 

and the concept of acting, which constitutes mentioned indefinite integral 

A(F) = lt ( 1r F)dr) dt. 
to ro 

(3.4) 

This definition corresponds to all forces attacking at a single material point, 
including the defined inertia force, which is the only one innate to body 
forces, by which a material point resists the action of all other forces. For 
the sake of that distinctive characteristic of inertia force, shorter and more 
striking importance of that force, wc introduce the concept of Reaction. 

Definition: The action of negative inertia force I of the material point 
of mass m represents the reaction of the material point, of a general form: 

A(I) = lt ( 1r Idr) dt 
to ro 

Based on above statement, a link between Leibniz's action of forces and 
Newton's concept of force is established and a general Principle of action 
and reaction is formulated: The action of a force is equal to the action of a 

material point. 

According to above mentioned, mathematical expression of this principle 
is as follows: 

A(F) = A(I), 
respectively 

(3.5) 

All three Newton's laws of motion and other valid principles of analytical 
mechanics follow from this principle. The proof that the whole theory of 
rational mechanics can bc derived based on this principle of forces, and 
preprinciples, will suffice to show hmv Newton's basic laws of mechanics 
result from it. 
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3.2. Axioms or laws of motion. This is Newton's title for his basic 
laws of mechanics taught at all schools of general education and obligatory 
in vocational education of the motion and relative rest of the body. However, 
some opponents find the term axiom to belong to the 17th century language, 
so it is pointless to use it now, whereas others wonder what a law is. For 
many university educated and very distinguished scientists these two terms 
have the same meaning. However, the author of this work makes logical 
distinction between them. The author uses the word axiom (Greek m() as 
a reasonable starting point, the truth that does not require argumentation, it 
is an unprovable truth, an unspectable truth and as such it is adopted. The 
theory developed upon adopted axioms is truthful as much as the axioms 
are, because theoretical approaches are proved by means of them. No matter 
which and how much the deviation from the axiom, it is no longer axiomatic 
rational theory of mechanics. Now, let us present Newton's axioms both in 
words and by mathematical equations. 

I. Newton's first axiom or law of motion reads: Every body continues in 
its state of rest, or of uniform motion in a straight line, unless it is compelled 
to change that state by forces impressed upon it. In Latin: "Corpus omne 
perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi 
quatenus a viribus impressis cogitur statum suum mutare." 

From the equation for the principlc (3.5), it follows that: If v = corv == 
O, then 

(3.6) 

and vice versa, which makes Newton's first law relativized by the preprinci­
ples of existence and causal determinacy, because absolute rest of the body 
does not exist. 

II. The second basic law or axiom reads: The alteration of motion is 
ever proportiorwl to the motive foTce impressed and is made in the direc­
tion in which that force is impressed. A more reliable formulation in Latin 
is: "Mutationem motus proportionalem esse vi matrici impressae, et fireri 
secundum lineam rectam qua vis illa imprimatur." It follows from the ex­
pression for the principle of action and reaction forces (3.5), as a sufil.cient 
condition, that Newton's second law (3.1) is: 

d v 
(3.7) m-= F. 

dt 
Note again that not rare is the case that writers of classical mechanics 
translate and 1mderstand the words "mutationem mot us" as "the change 
of momentum", which changes Newton's second law. This probably comes 
from the fact-that Newton-defined "momentum" as "quantitas motus" (the 
quantity of motion), but did not define the concept of "motion". -In the 
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Serbian language the term "motion" implies the change of the body's pasi­
tion during some time, which is in accordance with the definition of velocity. 
Therefore, "mutationem motus" means the change of the speed of motion. 
In clarifying his Definition VIII, that is, before writing the axiom or law of 
motion, Newton put down: "Accelerative force (read: acceleration; author's 
note) stands in the relation to the motive (read: force) as velocity does to 
momentum. Indeed, momentum is proportional to velocity and mass, and 
the motive force is proportional to acceleration and mass in general, the 
weight of the body will be constantly proportional to the mass of the body 
and the acceleration." 

III. The third law reads: To every action there is always opposed an equal 
or opposite reaction: or the mutual actions of two bodies upon each other are 
always equal, and directed to contrary parts. A more reliable formulation 
in Latin is: "Actioni contrariam semper et aequalem esses reactionem: sive 
corporum duarum actiones in se mutuo semper esse aequales et in partes 
contrarias dirigi." 

By comparing Newton's third axiom and our principle of action and 
reaction forces, it should be first pointed out that in his 

Definition IV Newton wrote: "the force is an action", and in that re­
spect he explains the concept of action. He introduced neither action, nor 
reaction by his definition. Our Definition 5 includes both concepts. From 
that logical deducing, the same statements about the principle of action 
and reaction do not have the same meaning in Newton's third axiom or law 
either. Mathematically, Newton's third axiom or law is written simply for 
two bodies by the equation: 

(3.8) 

This is additional equation to the Newton's second law equation (3.7). 
However, the principle of action and reaction for the motion of two 

material points states that: 

(3.9) 

(3.10) 

These are large and essential differences. 
First and foremost, a crucial difference relates to the properties of forces 

and actions. The property of a force is MLT-2 (1.7), and the property of 
action is ML2 T-1 . In other words, those are different attributes of motion. 

The second objection to Newton's third law refers tc the independence of 
Newton's first and third axiom. The first axiom states that the body remains 
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in its state of rest, or in uniform rectilinear motion. According to equation 
(3.8) this could mean that the sum of forces of two bodies' mutual actions 
is zero, and furthermore that two bodies are in mutual uniform motion in 
a straight line, which is contrary to the condition of manifestation of the 
nature of things. Two bodies can move independently of one another, can 
approach, remain at the same place, distance, or move away. 

The simplest experiment, most convincing and readily available, is: if 
you drop an object from your hand, it will move rapidly toward the earth. 
But, if you tie that object with some string, whose upper part you are 
holding in your hand, the object will be at rest if your hand is at rest, or 
will move if you move your hand. 

In accordance with mentioned three Newton's axioms or laws of motion, 
the outcomes of the Principle of action and reaction forces for the existing 
motions of the system of material points can have more general and precise 
applications than those of Newton's axioms. Also, the Principle of action 
and reaction forces encompasses other principles of mechanics, such as: the 
principle of equilibrium, the principle of work, the principle of action, the 
principle of compulsion,- which occur as the result of our principle. All those 
principles have been developed on manifolds or systems of material points, 
and therefore it is necessary to point first to modification of the system with 
variable constraints. Mentioned simple example of an experiment does iwt 
represent only two bodies but has an additional material object- a particular 
distance constraint. So, this is not about two independent bodies but about 
the system of two material points linked by some real constraint that can 
be represented by equation 

(3.11) 

It is well known in mechanics that such ideal constraints are hiding force R, 
most commonly called the reaction of constraint, that is, 

(3.12) R =-X grad j, 

where 

(3.13) 

and p= lr2- r 1 1. With condition (3.11), we have two equations of motion 

d2
r1 

rn1-2- = F1, 
dt 

(3.14) 

(3.15) 
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where those vector equations can be written in the form of scalar differential 
equations of motion 

m1x1 = .A(xz- xl)= X1, 

mdh = .A(yz- yi) = Y1, 

m1x1 =>.(zz- zi)= Z1; 

mzxz = ->.(xz- xl) = Xz, 

mzih = -.A(yz- YI) = Yz, 

mzz2 = ->.(zz- z1) = Zz. 
In more detail, "The forces of constraints" [3] Obviously, there are 6 differen­
tial and one finite constraint equation (3.13) by means of which 6 coordinates 
of the force vectors and one multiplier of constraints .A can be determined. 
By comparing the right-hand sides of equations, due to explicit meaning of 
parameter .A, it is obtained that is 

Xz = -X1, Yz = -Y1 =, Zz= -Z1, 

or 
Fl= -Fz, 

which means that the forces of mutual action are equal in magnitude and 
direction and opposite in sense. This is in accordance with Newton's third 
axiom. According to above mentioned, it has been proved that all three 
Newton's a.."'!:ioms or laws derive from our principle of action and reaction 
forces, with additional constraint (3.11) or explanation for distinguishing 
between the concept of force and the concept of the action of force. The 

second derivative with respect to. time of distance p (3.11) is reduced to: 

dz p dzrz dzr1 
dtZ dtZ - dtZ 

Considering (3.14) a.nd (3.15), it is obtained: 

Fz F1 dzp 
dtZ' 

or, in accordance with (3.8) 

mlmz dzp 
Fz =-Fl= -z· 

m1 +mz dt 

The principle of the action of force satisfies all three preprinciples. The 
preprinciple of existence and causal determinacy are accurate as much as our 
first four vector definitions, while the preprinciple of invariance is reduced 
here to scalar iuvariant, and as such to tensor invariant. Indeed, subintegral 
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scalar product F ·dr is the elementary work of the force on the displacement 
dr, that is, 

F ·dr= Fiei · dyiej = 9ijXidxj = Xjdxi, 

were Xi and yi vector coordinates, and Xjdxi. In the same way, (3.11) 
there is transformation of the covariant coordinates of inertia force of the 
material point of mass m, 

a yi 
xi= -a Yj. 

Xi 

Thus, invariance of the principle of the action of forces is reduced to 

a yi 
Ii(x) =m-a Ij(y). 

Xi 

Thus, invariance of the principle of the action of forces is reduced to 

that is 

as well as 

3.3. Manifold and a system of material points. Manifold, con­
cerning the preprinciple of existence, denotes a large number of elements, 
more than one, whereas a system can, but need not, mean the element if 
it is conditioned by some connections. The definitions indicate explicitly 
enough that the concepts of 'manifold' and 'system' are not identical. It 
is justifiable to be doubtful whether there exists a single point, in itself, 
without neighborhood, or neighborhood boundaries. Certainly not, because 
the boundary is some kind of connection. In that regard, a single material 
point together with some connection constitutes a system. "Manifold" as a 
set of real numbers is nndeniable in mechanics, but not a set of all rational 
numbers. A system of material points. 

The r;econd part of Nowton's third axiom formulation refers to two bod­
ies, i.e. to two material points which are mutually attracted. This indicates 
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that, besides two bodies, there exist some relations connecting them, as the 
equation of actions 

(3.16) l tl 1r1 1t1 iTl A(F) = F1 · drdt =- F2 · drdt = -A(F2), 
to ro to ro 

and the equation of directed distances 

p= r2- r1. 

The concept of a system indicates that there exists the motion of the material 
point or material points along with other factors that determine and restrict 
motion, respectively. Such objects or programs are referred to in mechanics 
as constraints, which are described by various mathematical equations and 
inequalities. Depending on the type of equations and functions that figure 
in them, in the literature of classical mechanics the constraints are repre­
sented by different terms, such as: finite, geometric, differential, kinematic, 
holonomic, bilateral, restrained, nonholonomic, smooth and real, linear and 
nonlinear, scleronomic and rheonomic, in a vector or coordinate form. For 
brevity and easier general presentation herein, the concept of constraint will 
imply, in addition to differential equations and integral equations (3.16), 
all mathematical relations in the form of equations or inequalities used to 
describe manifested or programmed motion of a system of material points. 
For example: (3.17) where functions . -

(3.17) 

are continuous regular, dimensionally homogeneous in the region S, and 
differentiable with respect to time t, 

3 
dfJJ. ·-J. - ""'N8JJJ. ·i- b· ·i -O 
dt .- JJ. - ~ 8 i y - ~JJ.Y - ' 

i y 
(3.18) 

in the neighborhood of each point y~. A linear system of kinematic equations 
is obtained, by means of which the k coordinate of velocities il can be 
determined, depending on the rest of 3N -k coordinates ofvelocities if'; a= 
l, 2, ... , n= 3N _,.k. 

In order to make the previous proof even more clarified, let us observe 
a simpler system of linear, mutually independent homogeneous algebraic 

equations 

f11 = aJJ.lYl + a~L2Y2 + · · · + aJJ.3NY3N = 0, f-L= l, ... , k~ 3N, 

which can bc always written in the form 
3N-k n 

(3.19) L aJJ.iYi =- La11kYk: n= 3N- k. 
i=l k=l 
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It is evident from here that for conditions la !Lk l i- O, it is possible to de­
termine the k coordinates of yi by means of the n = 3N - k independent 
coordinates. Indices k denote the number of constraint equations to de­
termine 3N unknown position functions y(t) and coordinates of forces }j, 
which is insufficient for solving the primary system, without additional con­
ditions. Mechanics solves this by providing (most commonly, experimen­
tally) constraints, programs and moving conditions as if well-known, while 
forces generating constraints are determined by the method of Lagrange's 
multipliers of constraints. 

Prior to solving the mechanical system motion with more general con­
straints, let us point out some other properties of linear constraints (3.19). 
According to the preprinciple of invariance, mathematical transformations 
do not change mechanical constraints. Simply, it means that if we introduce 
curvilinear coordinates x instead of Cartesian coordinates, we obtain the 
system 

(3.20) 

without changing their property. Change in the second derivative with re­
spect to time is significantly expressed; instead of linear relations, we obtain 
nonlinear eqnations which indicate that the forces generating constraints arc 
proportional to the second derivative xi o 

Misunderstanding, not to say incongruity, is present in a view on depen­
dent and independent coordinates as well as on generalized dependent and 
independent coordinates, for which the most common notation is qa and for 
corresponding generalized forces it is Q 01 • To avoid misunderstanding in this 
contribution, we stress the following: the letters yi are used to denote 3N 
Cartesian rectilinear independent and dependent coordinates of the position 
of N material points; xi denote corresponding curvilinear coordinates; a mix 
of all mentioned 3N coordinates can be called general coordinates, which has 
to be stressed, and writing the systems of stated constraints being manda­
tory. The author of this work always implies that generalized coordinates 
are independent coordinates obt~ined from equations (3.i9) and he denotes 
them with the letters q01

, of which there are n= 3N- k. The significance is 
twofold. First, equations yi = yi(q1 , ... , qn) substitute constraints (3.20), so 
they are sometimes called pammctric constraints. Second, by substituting 
yi= yi(ql, ... , qn) into constraint equations (3.19), nothing else is obtained 
but identities 

Comparcd to independent generalized coordinates, many formulas and equa­
tions of motion are expressed in a shorter and simpler form, such as: 
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Generalized velocities 

generalized impulses 

generalized accelerations, 

q - q a ·!3 q (D"a) (d'a ""l) 
dt M - dt + r f31'q dt M ' 

Kinetic energy 
E -l- ·a·f3- af3 

k - 2 - aaf3q q -a PaPf3, 

Differential covariant equation of the system motion, 

Dil" 
aaf3dt = Qa, 

where aaf3 = a(3a(mi, ... , mN; q1 , ... , qn) is inertia tensor or inertia or mass 
tensor, but not metric, as referred to by many authors. 

Such harmony of motion description is present in the whole analytical 
mechanics of the system with constraints of the form (3.17). However, if the 
constraint functions are explicitly dependent of coordinates x or y, and of 
time t, that is, 

fJ-L(YI,···,Y3N,t)=0, J.L=l, ... ,k, 

everything changes in a standard theory, which is impermissible according 
to the preprindp.k::; .of invariance. 

3.4. Systems with variable constraints. [96] In case that finite con­
straints 

(3.21) JJ-L(x\ ... ,x3N,t)=0; J.L=l, ... k, 

(lepend, apart from coordinate functions y( t) E E 3
N, and of time t, the 

conditions of velocity and acceleration are considerably changed, number of 
addends in equations is increased, as evident by the following: 

( ) J
, 0jJ-L ·a Oj/L J 8JJ-L 

3.22 J-L= oyaY + 7it = gmdv J-L. Vv + 8t =o. 

This means that there is one more addend ~~ each of change than it is 
the case with geometric constraints. Variable constraints must satisfy the 
dimensional equation in the course of time, i.e. they must be dimensionally 
homogencous. In order to achieve homogeneity between the coordinates 
y and time t, it is necessary that these quantities be connected by some 
parameter of dimensions L and T. So, in mechanical constraints time 
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occurs as an independent variable in the structure of functions which contain 
dimensional parameters, and therefore variables or moving constraints, in 
accordance with definition (3.21), are written in the form 

(J.L = l, ... , k), 

where T = T(t) is a real function of time with determined real coeffi.cients 
that have physical properties. For brevity, instead of the function T( t) with 
determined coeffi.cients, let us introduce additional coordinate y0 , so that it 
fulfills the condition Jo= y0 - T(t) =O. 

Using the coordinate y0 , constraint equations (3.21) can be written in 
the form 

- ( O l 3N) y= y,y, ... ,y , 
'---v----' 

y 

and the first and second derivatives with respect to time are: 

(3.23) 

.. o2JJ.L.:..:. ofJ.L:.: 
J J.L = <;:l- <;:l- yy + <;:l- y = uyuy uy 

02 j J.L . . 2 02 j .. O 02 j . O . O O j J.L .. O j J.L ··O 0 
~yy+ <::lOĐ YY +<::lO<::loYY +--;:=,)y+<;:l 0 Y = · uyuy uy y uy uy uy uy 

The last relation can be written for short 

(3.24) O j J.L .. + Of J.L ··O _ <l> (- .:.) 
oy Y oy0 Y - Y' Y ' 

where the composition of the function <I> is evident. By incorporating i) from 
differential equations of motion 

(3.25) 
k of 

.. - 1' + """' \ __.!!:_ my - L.....t /\J.L o , 
J.L=l y 

into equation (3.21) it is obtained 

k 

of1~ """'>-u oj~= m(<I> _ ĐJJ.L il) _ yofJ.L. 
ay L.-~ oy oy0 oy 

u= l 

Solutions for unknown multipliers of constraints show that reaction forces 
of rheonomic constraints do not depend only of coordinates y and velocities 
'[;, but also of acceleration il and inertia force -mil, which occurs due to 
change of constraints with respect to time. This indicates that it is not 
only formal writing of a single additional coordinate hut identifying a single 
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existing force that has been lost due to ignoring a rheonomic coordinate. 
Constraints in equations (3.21) can be written in the parametric form 

(3.26) ( O l n) rv = rv q 'q ' ... 'q ' n= 3N- k, 

where q = (ql, ... , qn) are independent generalized coordinates and q0 is a 
rheonomic coordinate that satisfies the equation 

(3.27) q0 - T( t) =O. 

By reducing fini te constraints to the parametric form (3.26), the number of 
differential equations is reduced by the number of constraints, and constraint 
forces RN, are eliminated, which considerably facilitates task solving. The 
velocities of the v-th material points, in accordance with definition (1), are 

(3 .28) _ &rv ·O &rv ·l b &rv ·n_ &rv ·a 
Vv- [)qOq + [)ql q + · · · + &qnq - &qaq 

where 
&rv 

gva = &qa 

are coordinate vectors; index v designates the number of the material point, 
while index a the number of independent coordinates qa, a = O, l, ... , n. 
Summing for index v deploys the summing O'v, whereas summing for co­
ordinates a indices denotes the repetition of the same letter in the same 
expression as a subscript and superscript index. 

The vector (3.28), as obvious, has n+ l independent coordinate vectors. 
Consequently, the impulse vector of the v - th material point of mass m of 
the observed system is 

&rv ·a 
Pv = Pv = mvVv = rnv~q uqa 

Scalar multiplication of above relation by coordinate vectors ~ yields co­

ordinate impulses 

a,~= O, l, .. . ,n. 

Considering that Pv(3 are scalar quantities, it is possible to add them 

N N 
'""""' '""""' &rv &rv ·a ·a P(3 := ~Pv(3 = ~ mv 0 a·[) (3q = aa(3q , 
v=l v=l q q 

(3.29) 

from where it is evident that aaf3 is the inertia tensor of the whole system 

N 
'""""' &rv &rv ( o 1 n (3.30) aa.(3 = ~ rnvB,;_ · [) (3 = aa.(3 m1, ... , mN; q , q , ... , q ). 
v=l . q q 
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Using relations (3.29) the concept of generalized impulses of the system of 
material points is introduced. Generalized impulses occur as linear homoge­
neous forms of generalized velocities, which is in accordance with the basic 
definition of impulse. Considering that the determinant of the inertia ten­
sar aaf3 is, in a general case, different from zero, it is possible to determine 
generalized velocities qa as linear homogeneous combinations of generalized 
impulses, such as 

(3.31) 

where aaf3 is the countervariant inertia tensor. If constraints are not ob­
viously dependent of known functions of time T, rheonomic coordinate q0 

does not occur, and therefore in all expressions (3.28) - (3.29) the coordi­
nates q0 , q0 i p0 . The form of the impulse (3.39) does not change, except 
that indices a = O, l, ... , n do not take the values from O to n, but from l 
to n. In order to make it distinguishable in the text below, let Greek indices 
a, (3, "', 8 take values from O to n, while Latin on es i, j, k, l take values from 
l to n (i, j, k, l= l, 2, ... , n). With such indices, it can be written 

or covariantly 

8rv .0 8rv ·i 
v v = aqo q + oqi q , 

Pi = aoiq0 + ai]rij = aaqa, 
·O ·j ·a 

Po = aooq + aojq = aoaq , 

ci= aoiPo + aijPj = aiaPa, 

qo = aooPo + aOjPj = aoaPa· 

(3.32) 2Ek = aaf3qaqf3 = aaf3PaPf3_, a, (3 = l, ... , n+ l. 

Accordingly, the quadratic form of kinetic energy Ek also obtains the 
invariant form (3.32) which is considerably different from standard non­
invariant form 

2E ·i ·j+ 2b ·i+ . . l .Jk = aijq q iq e, z, J = ... , n. 

Veretennikov and Sinicyn in their book "Method of variable action" 
point out that incongruity is eliminated by the approach proposed by Vujicic, 
[35]. For the case of finite geometric constraints that do not contain explicit 
time, the rheonomic coordinate is equal to zero, and therefore the expression 
(3.32) is reduced to known homogeneous quadratic form 

(3.33) 2E ·i ·J· iJ" 
k= aijq q =a PiPj, i,j=l, ... ,n. 

Generalized coordinates q1 , ... , qn and generalized impulses Pl, ... , Pn are 
also called "Hamiltonian coordinates". This is not only the formal side of 
the problem. 
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The papers and monograph [19] [21] contain a more extensive overview 
and proved changes in classical analytical mechanics of time-dependent sys­
tems. Shorter and credible, it is evident from the review in the Prologue. 
In standard classical mechanics it is considered that the total mechanical 
energy integral cannot be obtained as for the systems whose constraints are 
time-independent. The exception is Painleve's energy integral 

Ek,2 - Ek,O + P = const. 

However, the previous scheme provides, as work [21], a considerably more 
extensive picture. It is shown that the Painleve integral does not occur as 
energy integral but as one from a multitude of cocyclic integrals. One of the 
university professors has given a "counter-example" 

f(x, y, t)= y- tx =O 

with the following commentary: "Behold, if this can be solved according 
to a modified theory by V.V., I admit I do not know mechanics." This 
example, not a counter one, but a nice, simple and instructive example 
called "counter-example" by the opponent shows that he understood nei­
ther essence nor formal procedure of Vujičić modification of the theory of 
mechanics of a system with variable constraints. It can be readily proved: 

First, the equation of the "counter-example" is not dimensionally homo­
geneous, and as such cannot be the constraint of mechanical systems. 

Second, only in case that time t is multiplied by unit angular velocity w 
or unit frequency, which have the property r-l' the rheonomic coordinate 
obtains a simple form y0 = wt a equation (3.34) the form J(x, y, y0

) = O 
and y0 = t(t) =O. 

What's more important is that this modification of the theory of rheo­
nomic systems produced significant results. Writing a book "Preprinciples 
of mechanics" later, the author used the example of the "problem of two 
bodies", as a system of two material points of masses m1 and m2 and their 
existing distance p( t), representing an explicit example of the rheonomic 
constraint, to determine Newton's gravitational force, which could not be 
denied. However, instead of expected familiar expression for Newton's uni­
versal gravitation 

(3.34) F = kmlm2 
p2 ' 

the author has obtained a completely different formula 

(3.35) 
·2 .. 2 

F = p + PP - Var ml m2 
ml+ m2 p ' 

r 
l 
! 
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which was surprising. He thought that he had made some algebraic 
error in his calculations, but could not find it. There was no error, nor 
could he doubt the accuracy of "the most magnificent law of nature that a 
mortal man could grasp", [M. Milanković]. In a two months' preoccupation 
with literature browsing and checking his own calculations, he faced a dis­
appearance of his manuscript. This made him communicate his result at a 
scientific seminar of the Department of Mechanics, Mathematical Institute, 
Serbian Academy of Sciences and Arts, for live check, hoping that some · 
of the people in the audience would notice and point out a likely mistake, 
because he himself was wondering how it was possible that his result had 
not been detected 300 years back. There were no remarks, however diverse 
prologues were not missing out of professional meetings 

A more general and mathematically stricter proof the author submitted 
at the meeting of Serbian Scientific Society on 22 May 1997 published in 
"Scientific Review, Series: Science and Engineering, 24, pp. 61-67 (1997), 
entitled" A Possible Reconsideration of Newton's Gravitation Law". 

Basically, the problem involved the following task: there are two material 
points, of masses ml and m2, connected by mutual distance p(t), which 
varies in the course of time, that is, 

f = (x2- x1)
2 + · · · (z2- z1)

2 
- p2 =O; 

It is necessary to determine the magnitude of force by which the forces 
are acting upon one another. Considering that the Lagrangian method of 
constraints is included in every course in mechanics at the university, the 
solution of the task :was sought just in this way, because the force sought 
should be the reaction of the constraint: 

R =->-.grad j, 

so that differential equations of motion of two material points are: 

.. \aj )..( ) 
ffi1X1 = A-a = - Xl - X2 , 

Xl p 

.. aj ).. 
m1Y1 =>-.-a =-(YI- Y2), 

Yl P 

.. \aj )..( ) 
ffilZl =/\-a =- Zl- Z2 , 

. Zl p 

aj ).. 
m2x2 =>-.-a = -(x1- .1:2), 

X2 p 

.. \aj )..( ) 
m2Y2 = /\-a = - Yl - Y2 , 

Y2 P 
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ffi2Ž2 =A of = ~(zl- Z2)· 
OZ2 p 

The first derivative of the constraint j = O with respect to time is: 

(x1- x2)(±1- ±2) + · · · + (z1- z2)(i1- i2) = pp, 
and the second derivative: 

j= v2 + (x1- x2)(x1- x2) + · · · + (x1- x2)(x1- x2)- p2 - pjj =O, 

where 
v;r = (±1- ±2)2 +···+(il- i2)

2
. 

Substituting the second derivatives x1, ... ž2. from mentioned Lagrangian 
equations of the first kind into the previous relation, it is obtained: 

Substituting thus obtained A multiplier backwards into differential equa­
tions of motion, the following system of differential equations of motion of 
thetwo material points is obtained: 

.. ffilffi2 ( . ) 
ffilXl = x--2- Xl- X2 ' 

p 
.. ffilffi2 

m1Y1 = x--2-(Yl- Y2), 
p 

.. ffilffi2( ) ffilZl = x--2- Z1- Z2 , , 
p 

.. mlm2 
m2x2 = x--(xl- x2), 

p2 
.. ffilffi2 

m2Y2 = x--2-(Yl- Y2), 
p 

.. ffilffi2 
ffi2Z2 = x--2-(zl- Z2)· 

p 

The first derivative of the constant j = O with respect to time is: 

(xl- x2)(±1 - ±2) + · · · + (z1- z2)(i1- i2) =rp, 
The right-hand sides of these equations represent coordinates of the vector 
of forces F 1 and F 2 , so the magnitudes of forces are: 

m1m2 m1m2 
(3.36) F1 = XP[if' F2 = -xP[i)' 

where 
f} + PP- v2 

(3.37) X= or 
, ml +m2 

If another constmint is added h = z1 - z2 - C2 = O, the form of the 
formula does not change, but it is logical and evident that orbital velocity 
will be 

(3.38) 2 ( . . )2 ( . . )2 
V 0 r = Xl - X2 + Yl - Y2 · 

r 
l 
l 
' l 
i 
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Note: Such modification of classical analytical mechanics of rheonomic 
systems urged some authoritarian experts in Lagrangian mechanics to intro­
duce more than one additional coordinate in rheonomic systems, which is not 
in agreement with the previous procedure, i.e. with the theory of indepen­
dent coordinates. Prior to demonstrating why such procedure is precarious 
let us give a very simple example, which in itself shows that this procedure 
is ungrounded in alleged generalization of the Lagrangian formalism. 

Let there be 2 ordinary independent finite equations 

Yl + 2y2 - 3y3 = ax, 

2yl- Y2- 3y3 =b+ esinwx, 

where Yi = Yi(x),and i = l, 2, 3, are functions of independent variable x 
and a, b, e, w are real numbers. 

The number of independent functions y(x) is to be determined. First. 
Commonly, the sum of the observed equations, as obvious, is: 

f(x) =ax+ b+ esinwx 

It follows from here that: 

Y2(x) = 3yl(x)- f(x), 

where f(x) =ax+ b+ esinwx is known function of independent variable x 
and a, b, e, w are real numbers. 

Also, when considering a system of N material points linked by k rheo­
nomic constraints 

(3.39) f~~(Yl(t), ... , Y3N(t), TJl.(t)) = 0, p,= l, ... k< 3N, 

it is reduced to a multitude 3n-k+ l of independent coordinates q0 , q1, ... , qn 
of which q0 (t) is known function of time that is contained in the constraint 
equations. Let us show now that our principle of action and reaction forces 
also includes other integral principles of action in mechanics. 

3.5. Euler's principle of the action of forces. Our definition of th8 
action of forces 

A = J ( J F · dr) dt 

conforms to Euler's sum of all momentary actions of forces [24] 

(3.40) J dt ( J V d v + V' d v' + V" d v" ... ) , 
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where V, V', V" are forces, while dv, dv', dv" are the elements of the path 
and dt is the element of time. Inertia force is primary among these forces; 
let these be Eulerian symbols for forces 

d v 
V =l= -m­

dt' 

and let the others be 

our principle of action and reaction forces, and vice versa. Euler formulated 
the principle of least action over the concept of the sum of all momentary 
actions, saying: A body takes the path at which the sum of all momentary 
actions (3.40) has a minimum. 

Here is a new general principle for free motion of the body subjected to 
the action of a.ny forces, whose accuracy becomes true only if we reflect upon 
the concept of action that I have established" (Euler, note by V.Vujičić) 
([15], p. 76). 

Let us point out again what Euler writes and let us not forget the last 
words of the quotation: "Let us reflect upon the concept of action that I 
have established." (Euler, note by V. Vujičić) This is Euler's principle of 
least action, which follows from our principle of action and reaction. 

3.6. Lagrange's general principle. Lagrange began his work4 with 
the sentence: "Mr. Euler founded his principle in accordance with which 
for the trajectories described by the bodies affected by central forces, the 
integral of velocities multiplied by the elements of the arc of a curve should 
have a minimum." "I am endeavoring here to generalize that principle and 

its application for the solution of all tasks of Dynamics." 

General principle.Let there be as many bodies as needed M, M', M", 
which mutually interact in any manner, and which are moreover animated 
by central forces proportional to any functions of these distances; let s, s', s" 
deno te the spa ces trave led by these bodies in time t and let u, u', u", . . . be 
their speeds at the end of this time; the formula 

(3.41) M J uds +M J u' ds'+ J u" ds", ... 

will always be a ma..-x:imum or a minimum. 

4Lagrange, Application de la method exposee dans la memore precedent a la solution 
de c!"ilt"erentcs problemes de dynamique. Tom 2: Miscellanea Taurinesia pour 1760-1761. 
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In clarifying his general principle Lagrange mentions the action of force 
in the following formula 

u2 J 
2 =h- (Pdp+Qdq+Rdr+ ... ). 

and 

A= J Ekdt =~J aa(3i/~qf3dt =~J aa{3iJ.aildt =~J Padqa, 

In this respect, mentioned Lagrange's principle refers to the systems 
with potential forces. Compared to Euler's principle of action, significant 
differences are noticeable. In Euler we have forces, but in Lagrange speeds 
figure instead of forces. Euler's action has a minimum, whereas Lagrange's 
principle has a minimum and a maximum. Besides, Euler's action of force 
is reduced to action 

A= J Ekdt =~J aaf3qaql3dt =~J aa{3iJ.aq/3dt =~J Padqa, 

whereas Lagrange's action is twofold larger 

(3.42) A = 2A = J 2Ekdt = J Padqa. 

As such, Lagrangian action and Lagrange's action principle occurs as a result 
of the principle of action and reaction forces. In proving generality of his 
principle ([15], pp. 123-124), Lagrange calls upon and conditions himself to 
the "principle of living forces". It is only with this condition that 

(3.43) 

the principle of action and reaction forces will be satisfied 

(3.44) 8 J L(q, q)dt =O. 

where 

(3.45) L= Ek- Ep= L(q,q). 

In that case, Lagrange's principle is reduced to where (3.45) is the so-called 
Lagrangian function. 

3. 7. Hamilton's general method. In analytical mechanics, partic­
ularly in theoretical physics, Hamilton's general method is widely used in 
dynamics, where different notions are deployed: Hamilton's action or Hamil­
tonian action, Hamilton's canonical differential equations, Hamilton's func­
tion, which in itself indicates the importance of this method. Our intention 
is to provo that "Hamilton's principle" follows from our principle of action 
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and reaction forces, as has been proved that Lagrange's principle is valid 
only for the condition that the law of conservation of energy exists. But, 
prior to producing the proof, let us present some of Hamilton's assessments: 
Of the finest scientists, Lagrange has perhaps done more than any other 
analyst, to give extent and harmony to such deductive researches, by show­
ing that the most varied consequences respecting the motions of systems of 
bodies may be derived from one radical formula; the beauty of the method 
so suiting the dignity of the results, as to make his great work a kind of 
scientific poem. Yet the science of the action of forces in time and space 
suffered another modification. However, when that law of a minimum, or 
better to call it, of stationary action is applied to particular actual motions 
of the systems, its purpose is to obtain by the rules of the calculus of vari­
ations the differential equations of motion of the second kind, which can 
always be obtained in another way. It seems that this was why Lagrange, 
Laplace and Poisson underestimated, not without reason, the usefulness of 
that principle with the state-of-art of dynamics in those days. It might 
happen that the second principle introduced by Hamilton, by means of this 
work entitled the Law of Varying Action, where we transfer from actual mo­
tion to another, dynamically virtual, motion by varying the end positions 
of the systems and in general the quantity H, which serves to express by 
means of the function not only of differential equations of motion but also 
of their middle and definite integrals, encounter different evaluation. Here, 
we start from Lagrange's principle, reported by Hamilton as the first one, 
which makes things easier for us, because we have already evaluated La­
grange's principle as the result of our principle of action and reaction forces, 
with the condition that there exists the law of conservation of energy. It is 
possible only for that condition to reduce the Lagrangian action to the form 
(3.40), where L = E k - Ep. With the law of change in energy, Hamilton 
introduces his function H, which represents the sum of kinetic and potential 
energy, 

Ek(P, q) + Ep(q) = H(p, q), -tEk= H- Ep. 

In that respect, Lagrange's action is reduced to 

attr- A= ft (2Ek - H) dt = r Padqa - H dt, 
Jto Jto 

\Vhich is here referred to as Hamilton's action, due to the presence of Hamil­
ton's function H and Hamilton's variables p, q that imply generalized im­
pulses and generalized coordinates, for which Hamilton assumed that func­
tion H need not be a constant. Indeed, if we add or subtract action (3.44) 
Ek, it is obtained 

L= Ek- Ep+ Ek- Ek = 2Ek- (Ek +Ep)= 2Ek- II. 
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So, function L is only what Hamilton assumed that function H need not be a 
constant. In that respect, Hamilton's action is more general than Lagrange's 
principle of action and reaction forces. 



MOND4- GRAVITATION OR ATTRACTION BETWEEN 
BODIES 

In most primary and secondary schools across the world, small or large, 
or universities, the teaching of physics, mathematics and engineering in­
cludes Newton's Law of Universal Gravitation, as a law of nature that ap­
plies to all objects available to humans and those unavailable in the overall 
universe. The Law is globally accepted today too, but a modification of 
Newton's Dynamics involves exactly this Law. It is modification of New­
ton's Law of Universal Gravitation that inspired the title Modification of 
Newton's Dynamics, or MOND theory for short. Considering that many 
specialists adopt Newton's Law as a law of natural attraction between all 
bodies that are really existing, a number of comprehensible proofs would be 
needed to alter or replace the Law. Hence, let us first give some relevant 
Newton's statements on the basis of which it 'was' or 'was not' possible to 
prove the Law of Universal Gravitation: 

(4.1) F = -kmlm2 
p2 ' 

where k is so-called 'universal gravitational constant', whose numeric value 
is: 

k= 6.67 X 10-11m 3kg-ls-2. 

The first chapter of the university text book FUNDAMENTALS OF CELES­
TIAL MECHANICS by M. Milanković ([28], p.30) was titled Newton's law 
of gravitation and its first paragraph Kepler's laws, which refer to the major 
planets of the solar system, and as such are inseparable from the astronomy 
of the solar system. Consequently, a question is imposed: What is mean t by 
the title CELESTIAL MECHANICS. The question is not insignificant. The 
second work to quote is by a. distinguished and recognized specialist5 , which 
represents a complement to the above mentioned attitude: "The foundation 
of classicalmcchanics is constituted of Newton's axioms or laws of motion. 
On that basis, with additional Newton's law of universal gravitation (4.1), 
Celestial mechanics is built up." 

These two approaches are not contradictory. A view that planetary mo­
tion is reduced to the motion of material points implies axioms and theorems 
of a theory. In the theory, the statement (4.1) is one of several Newton's 
theorems. However, as the formula (4.1) prevails in the textbooks and sci­
entific literature wc will often herein refer to that "Newtonian law", without 
overlooking the remark that this is just one of several Newton's theorems. 

In the Preface of his epochal work "Philsophicenatural principia 
mather:nn.tica" Newton writes: It is the task of mathematicians to find 

5V.V.l3cl8lski, Ocherki o dvizhenii kosmicheskih tel. Nauka, Moskva, 1972 

\ 
i, 

l 
l 
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such a force, which would retain with accuracy a given body moving along a 
specified orbit at a given speed, and vice versa, to find that curvilinear path 
on which a body is positioned by a specified force, which leaves a specified 
location at a specified speed. 6 

In section II, Book I titled OF THE INVENTION OF CENTRIPETAL 
FORCES, Newton wrote his first statement: 

Theorem I. The areas, which revolving bodies describe by radii drawn to 
an immovable center of force do lie in the same immovable planes, and are 
proportional to the times in which they are described. 

Theorem IV. The centripetal forces of bodies, which by equable motions 
describe different circles, tend to the centers of the same circles; and are 
one to the other as the squares of the arcs described in equal times applied 
to the radii of the circles. 

Corollary l. Since those arcs are as the velocities of the bodies, the cen­
tripetal forces are in a ratio compounded of the duplicate ratio of the veloci­
ties directly, and of the simple ratio of the radii inversely. Mathematically, 
in symbols it is 

(4.2) 

where m is the factor of proportionality. 

Corollary 2.And since the periodic times are in a ratio compounded of 
the ratio of the radii directly, and the ratio of the velocities inversely, the 
centripetal forces are in a ratio compounded of the radii directly, and the 
duplicate ratio of the periodic times inversely. 

Corollary 6 ls conditional, which means that it has an additional con­
dition which states: If the periodic times are in the sesquiplicate ratio of 
the radii, and therefore the velocities reciprocally in the subduplicate ratio 
of the radii, the centripetal forces will be in the duplicate ratio of the radii 
inversely; and the contrary. 

That condition of the Corollary of IV can be written in mathematical 
symbols for short: 

R3 
T 2 = const. 

6When the author began his lecture at a Serbian-Bulgarian astronomers' meeting by 
Milanković' explicit sentence: "Planet ary motion is reduced to the motion· of material 
points, which have masses of individual planets. This is a starting point of our today's 
Colestial mechanics," one of the participants asked: "Why do you quote Milanković, 
whereas an anonymous reviewer thought that his name should not be associated with 
celestialmeclianics. However, the lecturer maintained his claim that the present textbook 
is better and easier to use than all others, which he used to prepare his exarn in celestial 
mechanics·. 
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It is is evident by above stated that different constants can be introduced 
for different proportionality levels, but the essence of the centripetal force 
magnitude remains the same: it is proportional to the radius of the orbit 
and inversely proportional to the square of periodic time of motion along 
the circular path. 

In Corollary 6 of Theorem IV Newton states that the centripetal force 
will be inversely proportional to the square of the radius of the circle if the 
third Kepler's law exists in nature, i.e. if: 

K = Rr = R~ = ... = R~ 
T[ T:f TJ. 

Considering that this theorem refers to different circles with different radii, 
the formula of the theorem should be written more accurately in the form: 

v? 47r2 R? 
(4 3) F - m t - m 2 

. - Ri- RiT?' 

or if bodies of different masses mi are on different circles: 

(4.4) 
v2 47r2 R2 

F -m t -m t - i-- i--2-. 
~ RiTi 

These are physical, i.e. mechanical properties of the material point's motion 
along a circular line. The property of the force, as obvious, remains the same 
in different formulas. In accordance with the preprinciples of invariance, 
that property will not be changed if the previous formula, or formulas, are 
multiplied by a dimensionless unit quotient Rf j R''i = l, that is 

where 

(4.5) 

is Kepler's constant, and 

(4.6) 

is Gauss's constant. 

It is evident that different constants can be introduced for different pro­
portionality levels, but the essence of the centripetal force magnitude re­
mains proportional to the radius of the circle, aud inversely proportional to 
the square of the time period of motion along a circular line. Proposition. 
The corollaries of the theorem, as well as the entire body of Newton's Prin­
cipia indicate explicitly that Newton's concept of proportional did not imply 
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only one particular value of a real number but a constant proportionality 
factor of relationship between two functions; the constant proportionality 
factor, most commonly referred to as a constant, can be also the function 
of invariable values of objects' properties. 

Typical examples are Kepler's constant and Gauss's constant ( 4.5) and 
(4.6). Newton clarified the additional condition for Corollary l of Theorem 
IV saying that: The case of the 6th Corollary obtains in the celestial bodies 
(as Sir Christopher Wren, Dr. Hook, and Dr. Halley have severally ob­
served), and therefore in what follows, I intend to treat more at large than 
those things which relate to centripetal force decreasing in a duplicate ratio 
of the distances from the centers. 

In Book III titled Of the SYSTEM OF THE WORLD in Hypothesis l 
Newton writes: 

The center of the system of the world is immovable, and 

Theorem XI: The common center of gravity of the earth, the sun, and 
all the planets is immovable. 

Theorem XII: The sun is agitated by continua[ motion, but never recedes 
far from the common center of gravity of all the planets. 

This assumption and the theorem are significant for Newton's theory 
of gravitation, which necessarily includes Newton's law of gravitation (4.1), 
make us call it the Newtonian theory of gravitation. 

Clarification of the concept of constant proved to be necessary, because 
some prominent-for their title scientists state that the constant, among 
which is the 'universal gravitational constant', has only a single value of 
the natural number, even though this problem was extensively treated in 
the work [3].7 

How much reliable that theory is with the "Newtonian law of gravita­
tion" is very well shown by the book Physics and Astronomy of the Moon 
[5]. On the first page titled THE MOTION OF THE MOON IN SPACE the 
author Andrea Dupree, among other things, writes: "Lunar theory has de­
veloped completely difl'erently from other planetary theories." "The Moon 
under simultaneous attraction of the Earth and Sun revolves around the 

7This had gone as far as the incomprehension of challenging. To prave that a constant 
is only a single number, a distinguished university professor presented at a congress the 
example y = ex using it to prave his statement by equation, but overlooking that for a 
single value, e.g. e = 2, his equation '!J =. 2x represents only one straight line, and for 
e= eonst. his equation y = ex represents a family of straight lines in plane xy, which pass 
through the coordinate origin. Nor did he remember that of the angle which the straight 
line doses with axis x. 
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Earth, far from the Keplerian." The previous conclusion about the com­
plexity of the Moon orbiting the Earth, as well as many opponent conclu­
sions, indicate that it is necessary to more explicitly separate the motion 
of the bodies as material points in respect of Newton's mathematical the­
ory from post-Newtonian theoretical mechanics founded on the principles. 
When comparing formulas (4.1) and (4.2) such difference is obvious, which 
is not easy to explain in a simple way. Let us focus on the commentary of 
Corollary l, which is written by the relation 

v2 
(4.7) F =k-, 

T 

where k is some proportionality factor, for the time being, v is the magnitude 
of velocity, by which the material point for the time interval T describes a 
circular line of circumference 2T, that is 2nr, 

Accordingly, 

2nr v=r· 
47!"2T2 47!"2 

F = k TT2 = k T2 T. 

Considering that by definition attr F = M LT - 2, it follows that. from 
where we find that the proportionality factor has the property of mass m, 
i. e. a tr k = M. Therefore, the formula ( 4. 7) can be written in the form: 

v2 
F=m-. 

T 

From the stated formulas it is evident that different constants can be intro­
duced for different proportionality levels, but essentially the magnitude of 
the centripetal force is directly proportional to the square of the velocity of 
the body and inversely proportional to the radius of the circle r. 

Conclusion. This example, as well as the overall body of Newton's 
Principia, show that Newton did not imply the same real number by the 
concept of proportional, but the constant factor of relationship between two 
functions of invariable properties, most often called a constant. 

, Conditional agreement. It is obvious that formulas (4.1) and (4.2) differ 
considerably not only in the proportionality factor but also in qualifying the 
law of gravitation. Let us commence from Newton's second law or axiom, 
sometimes referred to as the 'basic equation of motion', in the vector form: 

( 4.8) 
d v 

rn- =F 
dt ' 

where v = ~~ and r is the material point position vector. In order to 
determine the magnitude Fr of the force F which acts in the direction of 
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the position vector, scalar multiplication of this equation by unit vector is 
sufficient that is 

i.e. 

(4.9) 

It follows that: 

it follows that 

and furthermore 

r 
ro = -; 

T 

d r d r dr Fr 
-V·-= -(v·-) -V·--)=-, 
dt T dt T dt T m 

r dr r d r 
v · -;. = dt ( r . -;. - r dt (-;.) · 

r dr r d r 
v . -;. = dt ( r . -;. - r dt)(-;.) · 

Substituting in the initial scalar product of the vector equation of motion, 
it is obtained that 

r2 + rr- v2 
(4.10) Fr= m----

r 
So, this is the magnitude of the force acting along the direction of the 
position vector of the observed material point, directed towards the center. 

To better understand our approach to applying classical mechanics to 
the Solar System, we will observe the example of a system of two material 
points, of which one is immovable or moves at constant velocity v; this 
statement is allowable according to Newton's hypothesis l and Theorems 
X I and X I I. On the basis of Newton's first axiom, which no doubt says 
that:Every body contin'ues in its state of rest or of uniform motion in a 
straight line, until acted v.pon by a force to change that state, it can be 
concluded that a given body can be acted upon by several forces if their 
sum equals zero, i.e. if the body is not acted upon by no matter which or 
what type of force, it remains in the equilibrium state. 

On the basis of the second axiom d, which doubtlessly states that: The 
alteration of motion is ever proportional to the motive force and moves in 
the direction of the right line in which that force acts, there follows that the 
resultant force equals zero if in a given example: 

v= C, ---tr= ro + C(t- to). 

This indicates that motion is taking place along a straight line. 

The first sentence of the third axiom, which states that to every action 
there is· always opposed an equal and opposite reaction, generates interpre­
tation that ·the inert i a force also equals zero in reaction. Such a result is 

l 
l 
l 
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acceptable in human practice and can be locally verified, where Euclidean 
geometry applies - where there exists a straight line. However, from the 
viewpoint of the preprinciple of existence in celestial spaces, i.e. celestial 
mechanics, the existence of the immovable straight line can neither logically 
nor experimentally be proved. 

The first axiom gains in generality if the phrase in a straight line is 
omitted: it is more general because this means one condition less. This 
conclusion is clarified by a similar, but not identical, 

Example. Material point in uniform motion. The notion uniform mo­
tion here implies the motion, whose magnitude of velocity is constant, that 
· ds _ ds _ _ t _ v 
IS dt v - dt - e - cons . , r - v. 

In such motion Newton's first axiom indicates that the force is not acting 
upon the material point in the direction of a tangent, but it could be some 
other force. 

From the second axiom and first statement of the third axiom of uniform 
motion, it follows that: 

dv dr v 2 

m-= mv-= m-n= F = Fnn· 
dt dt Pk 

where n is unit vector of the main normal and Pk is radius of the trajectory's 
curve. ' 

So: The m~terial point is in uniform motion along a curved line acted 
upon by some force directed towards the center of the curve (centri pet al 
force) 

(4.11) 

This example is in full agreement with Newton's Theorem IV (Book l) 
and its corollaries. 

Newton devotes particular attention to Corollary 6 emphasizing that it is 
significant for celestial bodies, as independently noted by Wren, Hooke and 
Galileo. Here, we also encounter ([1], p.81) Newton's statement: "This is 
the centrifugal force, with which the body impels the circle, and to which the 
contrary force, where with the circle continually repels the body towards the 
center, is equaL" 4 On the basis of present-day basic knowledge, the formula 
(3.3) can be written for a circular line in the forms as follows: 

2 47r2 R 2 47r2 R 3 47r2 K m 
Fn = mKrv = m RT2 = m R2T2 = m T2 R2 = /.l- R2' 

where there are common terms: Kr - curve of the path, K = ~ - Kepler's 

constant, and /.l-= ~K- Gauss's constant. Hence, for the same physical 
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quantity different constants can be introduced, and for the same constants 
their different numeric values. If, for instance, the formula 

471"2 R3 m 
F = m R2T2 = 1-L r2' 

where 
47r2R3 

J.-L = ----;y2 = const., 

471"2 R3 m 
F = m R2T2 = 1-L r2 ' 

is multiplied by unity 
47!"2 R3 

J-L = ----;y2 = const., 

is multiplied by unity ~, the previous formula will not essentially change, 
but the form and the proportionality factor will look different: 

47r2R3 Mm 
F = M m M R2T2 = J R2 ' 

where the proportionality factor is now 

The aim of emphasizing this sentence is to deny some assertions that Newton 
did not use the notion centrifugal force, nor is the centrifugal force a force. 
This proportionality factor, which Professor M. Milanković, in his book 
"Fundamentals of Celestial Mechanics", 2nd ed., Nauchna knjiga, Belgrade, 
1955, ([28], p. 44)," denotes with the letter J and writes that it has the same 
value for all planets and represents a constant that applies to the entire solar 
system and expresses a general property of matter accumulated in that part 
of the universe." 

However, the manner in which we have arrived at that proportionality 
factor does not produce a unique conclusion. Actually, we have simulta­
neously multiplied and divided equation (4.11) by the number M, without 
determining the value of that number, nor its property, which means that 
other propositions could have been taken. This is of particular importance, 
because we haven't yet considered simultaneous motion of a two-body sys­
tem. That subject will be discussed afterwards. Now, while considering 
the determination of the force acting upon a single body's motion, if such a 
body exists in nature, let us discuss as follows: 

Task: Determine the magnitude of forc.e acting upon the material point, 
opposite in direction along the position vector to its pole. 

' l l, 

l 
l 
l 
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The vector differential equation of motion of the material point: 

dv -F 
m dt- ' 

has the velocity 

dr rodr . · 
v = dt = dt = rro + rOTo, To ..l ro, l T l= l, 

wherero unit vector of the position vector of some point and To is unit 
tangent vector to the circle. Consequently, acceleration vector too is de­
composed into radial and transverse acceleration, that is, 

dv -2 · .. 
w = dt = (r- rB )e1 + (2f() + rB)e2 . 

Scalar multiplication of this differential equation by unit vector ro = e yields 
the required magnitude of force in the form: 

Fr = m(r- riP), 
alternatively, considering that v2 = r2 + r2iP, in the form 

·2 + .. 2 
D r rr- v0 r 
rr =m 

r 

Obviously, mass m is here the proportionality factor, which would remain 
the same assuming that r = const., but in that case it could be reduced 
to other proportionality factors via algebraic calculations, as well as via 
previously mentioned relations (4.4). 

Note. Further comprehension of the application of mechanics to the 
motion of celestial bodies points out the fact that previous examples and 
assumptions refer to the motion of a single, of any, and therefore of every 
individual material point of mass m. However, it is not easy to notice, nor 
assume, that only one body is moving independently of others. That is 
why the agreed basic object of the theory of celestial mechanics is a two­
material-point system. The emphasis is placed on 'a two-point system', not 
on two individual points. The term system indicates that material points 
are connected in some way, affect each other's motion, have their program 
of motion, and that it is not sufficient to write two differential equations of 
motion: 

(4.12) 

without mathematical conditions coupling differential equations of motion. 
These two differential equations contain four unknown vectors v1, v2; F1, F2. 
To obtain any solution, two existing independent conditions should be added. 
The conditions can be imposed by the program, but here let's find them as 
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generally existing in the nature of things. Newton's third axiom contains 
the condition 

(4.13) 

and the second condition is manifest, observational and logical, existing as 
a distance between those material points, which can be reduced to vector 
equation 

(4.14) r2- r1 =p. 

Now, the motion of the system of two bodies, as material points is complete. 
As such, it enables determination of the forces if velocity and distances 
are known, i.e. velocity on the path s, or determination of velocities and 
positions of material points if forces are known or specified. 

4.1. The in ver se two-body task. In standard theory of celestial me­
chanics, the concept of the two-body problem implies determination of paths 
and velocities of motion, at given Newton's gravity forces, which are in­
versely proportional to the squares of distances, or according to Hamilton, 
at potential energy inversely proportional to the distance between material 
points. In both cases the task is solved by means of integral calculus, which 
in specific cases does not produce finite and invariantly accurate solutions. 
This problem was a challenging task for many mathematical and mechani­
cal giants. Why has it remained the problem but not the task? The notion 
problem implies a scientific task of doubtful solution to a challenging issue. 
If this is true, isn't doubt cast over centuries-long visible solution of plan­
etary motion? Unlike the predecessors, who started from Newton's Law of 
Universal Gravitation (4.1), here we are solving the basic task of checking 
the validity of Newton's Law, i.e. we are solving the inverse task of mutual 
interaction between· two bodies and determining the force with which the 
two material points are mutually attracted. That task was easy to solve 
by means of Lagrange's multipliers of constraints [6], but as it proved the 
majority of specialists were not familiar with the method, so let's choose a 
shorter one, and it is the vector calculus. 

According to Newton's second axiom or law of motion, there are two 
vector differential equations: 

( 4.15) 

·without loss of generality, let's differentiate equation 

(4.16) 
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Substituting acceleration and from differential equations of motion ( 4.13) 
into the previous relation, it is obtained: 

F2 F1 .. 
---=p, 
m2 m1 

respectively, considering the above relation, 

( 4.17) 

or 

(4.18) 

F _ -F _ m1m2 .. 
2- l- + . p, 

m1 m2 

mlm2 .. 

m1 +m2 
p. 

This is a simple, but significant relation. It cannot be denied for any two 
material points in mechanics that further determination and interpretation 
of the forces of mutual interaction between two celestial bodies cannot be 
focused on this relation. It says at first sight that the forces by which one 
body acts upon the other are proportional to the change of relative velocity 
of one body relative to the other, or proportional to accelerated change of 
mutual distance. Simply put, it is not a problem of any kind, but a simple 
task that is reduced to identifying vector distance between inertia centers 
of these bo dies, the proportionality factor being a reduced mass 

mlm2 
m1+m2 

Note that mentioned result refers to any two material points, and as such 
it is more general than the formula of Newton's Law of Gravitation. So, 
the forces of mutual interaction between two bodies are proportional to 
accelerations p. In order to compare them to "Universal gravitational force", 
scalar multiplication of vector equation of motion by unit vector po = fracpp 
is necessary and sufficient. As shown, a formula for the magnitude of force 
F of mutual interaction between any two material points at distance p is 
obtained in the form: 

·2 .. 2 

F 
_ m1m2 P + PP- Vor 

p-
ml +m2 p 

(4.19) 

where Vor = v2 - v1. Note that this formula is considerably more general 
than formula (4.1) and that it symbolizes Newton's theorems on mutual 
attractlon between two bodies, without taking into account Kepler's Third 
Law. 

Coordinate method. The same result is obtained when respective 
motion of the material point along a circular path of radius p = p(t) is 
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observed relative to the rectangular system of coordinates x and y in the 
plane (xy), or in the space (xyz), i.e. when there is the constraint 

f(x, y) = (x2- x1) 2 + (y2- yi) 2 
- p2 =O. 

Differential equations of motion of the observed points are The first and 
second derivative of function J with respect to time are 

(4.20) 

(4.21) 

j= (:h- ±1)2 + (i/2 -1il)2 + (x2- x1)(x2- x1) + (y2- Yl)(ih- ih)= 
p2 + pp. 

If we substitute derivatives x, jj from differential equations of motion into 
previous equations ( 4.21), we obtain 

(422) ( ) x2 ( )Y2 ·2 .. 
. X2 - Xl - - Y2 - Yl - = p + pp. 

m2 ml 

Taking into account equation (4.12), according to which X 1 = X2; Y1 = Y2, 
previous equation is reduced to 

·2 .. 2 

F _ .jx2 y;2 _ m1m2 P + PP- vor 
- 2 + 2 - ' m1 -t-m2 p 

(4.23) 

where v;r = (i;2 - ±1)2 + (y2 - yi)2 is orbital velocity of the motion of the 
point. For the case when p = R = const. it is obtained that which is in 
accordance with Newton's Theorem IV, that is, 

For the conditions of Kepler's First and Second Law, or for the Third 
law only, previous formula is reduced to: 

(4.24) 
47r2a3 

j-------=­
- (m1 + m2)T2 · 

So, from previous statements it explicitly follows that the gravitational force 
does not depend on distances only, but on planetary parameters: masses, 
mean distances and rotation periods. The difference is not only formal. In 
applying our formula to solving the problem of two to three bodies, the Sun, 
Earth and Moon, it eliminates the paradox generated by Newton's formula 
for g1'avity force. 

4.2. Paradoxes of the theory of lunar motion. In a large-circulation 
not8 there appears a question: Why doesn't the Moon fall into the 
Sun? "The question may seem naive", the author writes, "but when the 
readers learn that the Sun attracts the Moon by a larger force than the 
Earth, they expose suspicion and surprise." Using simple calculations he 

8Ya. ,I._ Pereleman, "Zanimateljnaya astronomiya", str. 64. 
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shows that the attraction force of the Sun is greater than the attraction 
force of the Earth, r~gggg, by two times. A higher mathematical level book 
gives a more specific information: Sun's gravity is stronger by 2.5 times 
than that of the Earth. Note that such paradox is caused by the theory of a 
widely known formula ( 4.1). Specifically, according to that formula, force. 
with which the Sun attracts the Moon of mass m is 

( 4.25) 
M 0 m 

F0 = -k-2-, 
P0 

and the magnitude of force FtĐ with which the Earth attracts the Moon is 

(4.26) 
MtĐm 

FtĐ = -k-2-. 
PtĐ 

The ratio of these two quantities is 

F0 M0P~ 
----2· 
FtĐ MtĐ P0 

For the known numeric values it follows that M0 = 19891 x 1026 kg, MtĐ = 
597 x 1022 kg; p0 = 1496 x 108m, PtĐ = 384.4 x 106m follows that F0 ~ 
2.1820FtĐ which indicates that the magnitude of the attraction force of the 
Sun F0 is greater by over 2 times than the attraction force of the Earth to 
the Moon. Hence, the theory of Newton's gravity force in the obserYed case 
for two bodies lead to unacceptable dynamical paradox. No wonder that 
there are comments by reputable specialists for lunar astronomy. "Lunar 
theory- one of the most difficult problems of celestial mechanics- has been 
developing completely differently from other planetary theories." ([43], p. 9). 
Such statements too readily bring into question both Kepler's and Newton's 
basics of celestial mechanics. 

Our approach to the problem commences from the axiom of classical 
mechanics, by means of which wc have obtained that radial acceleration is 

/J2 + PP- v;r 
Wp= ' 

p 

without referring to Kepler's laws. 
Without loss of generality, let's introduce onto that plane a polar coor­

dinate system p, O, po, Oo relative to which there exists radial velocity p and 
transverse velocity piJ. It is well known that with respect to that system of 
coordinates, radial acceleration has the form because 

.. e·2 
Wp= p- p 

' ' 
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The inverse proof also holds. It is well known and easily provable that radial 
acceleration corresponds to covariant derivative of radial velocity 

o 2 "2 
Dp .. e·2 .. P e 

Wp=-= p- p =p---. 
dt p 

In the literature it has been shown how much radial accelerations of a satel­
lite are at different altitudes H above the Earth's surface, according to 
standard formula 

( 4.27) 

as well as according to the formula 

( 4.28) 
2 .. * v 

p="( =g?, 
p· 

as shown by the following scheme: 

altitudes 
H km 
o 
100 
1000 
10000 
100000 
384400 

velo cities 
v km/s 
7,91 
7,84 
7,35 
4,93 
1,94 
1,02 

accelerations 

981,0 
948,9 
732,1 
148,4 

3,5 
0,002693 

accelerations 

982,3 
950,0 
733,0 
148,4 
3,5 
0.002706 

Note that the last column of the table refers to mean velocity of the 
Moon's motion around the Earth and its mean distance from the center of 
the Earth. It indicates that the magnitude of force F of mutual interaction 
between two moving bodies of masses m1 and m2 is in accordance with 
Newton's basic laws of dynamics. For constant distance between the centers 
of their masses, it can be written that 

( 4.29) 

which complies with Newton's Theorem IV. 

4.3. Elimination of the lunar paradox. In accordance with above 
stated and formula, the force with which Earth of mass MffJ = 5, 97 x 1024kg 
attracts the Moon of mass m = O, 0739 x 1024 kg, at mean distance p = 
384400km and mean velocity v= l, 02km/ s would be equal to 
(4.30) 

FfiJ = - l'vffiJm v~r =O, 987839876 · (vfiJ +l, 02 - VffJ)
2 

m= O, 0026736 m, 
· MfiJ + mpfiJ 384400 . 

L_____:__ _____ ....__ 
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because 
MEĐ 

M = O, 987839878. 
EĐ+m 

For the Sun of mass M0 = l, 9891 x 1030 kg and the Moon of massm, the 
force of attraction will be 

(4.31) 

For known numerical values9 

(4.32) 
19891 X 1026 

19891 X 1026 + 0, 000735 X 1026 =O, 
999999

' 

and formula ( 4.31) shows that: 

( 4.33) 
2 

Vor 
F0 = 0, 999999

149
, 
6 

X 106 m. 

Further calculations, as evident from (4.31), depend of numeric value of the 
Sun's velocity, and in astronomy that number can be determined by a single 
number. In the books we encounter the following: "All stars (that belong 
to our galaxy- the Milky Way), including our Sun, are moving relative to 
each other at mean velocity of 30km/s, i.e. at the velocity at which our 
planet moves along 'its orbit." In the books of higher mathematical level 
[118], [119], [120] the velocity of solar motion in km/s is 

Vo= 20 

determined more accurately And even more accurately in the work [118], 
relying upon lhe book by P. G. Kulikovsky ([120], p. 78), the velocity is 
given in km/s for the Sun: 

v0 = 19,6 

and for given motion Let's calculate the Sun's gravity force in km/h for 
'standard velocity' 

v0 = 19,5. 

At critical position A, for distance p. and reduced mass, we obtain the 
magnitude of force with which the Sun attracts the Moon at Sun's velocity 
of 

Compn.red to the mar;nitude of gravity force of 2, 6736436 X w-3m, with 
which the Earth attracts the Mon, that is, 

FEĐ = 0.00267306, 

9Ya. J. Pereleman, "Zanirnateljnaya astronomiya", p. 64. 
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we obtain that the Earth's gravity force is stronger than the corresponding 
Sun's gravity force by more than 4 times, assuming that paths are circular 
lines. 

Elliptical motion. It is well known that high accuracy has been estab­
lished for the fact that elliptical paths of the Moon and Earth differ a little 
from circular trajectories. Approximation in calculations is even greater, 
when it is well known that Kepler's laws refer to mean distances. This is 
clearly indicated by the eccentricity of the Moon's orbit e = O, 0549 and 
eccentricity of the Earth's orbit e= O, 0681. To keep the Moon on elliptical 
path, it is necessary and sufficiently for radial acceleration to be equal to 
zero, that is, 

·· e·2 o Wp= p- p = ' 

that is 

( 4.34) p= piP. 

The component of transverse acceleration wo, with respect of Newton's 
third axiom, is equal to zero, that is, 

l d 2. 
W(} = ---d (p ()) = 0. 

p t 

Consequently, as it is well known 

P
2iJ = e = 21rab 

T' 

where T is sidereal time of Moon's revolution. 
Furthermore, based on previous equations, it is obtained that 

47r2a2b2 47r2a2b2 47r2 
l' = p = p p4T 2 = a 3T2 = T 2 a(l - e

2
) = O, 0027136, 

amounting approximately to O, 002706555 in mentioned work, which is ob­
tained for circular motion. For lunar motion at mean distance from the Sun 
(along a mean trajectory at the distance of the Earth from the Sun) we 
obtain even more approximate results, considering that the eccentricity of 
the Earth is smaller than the eccentricity of the Moon. 

So, the considered dynamical paradox of the theory of lunat motion has 
been fairly accurately elirninated, irrespective of Newton's universal formula 
of gravity force and a two-body theory. It is reasonably theoretical but not 
realistic result, because the Sun and Moon do not represent au isolated 
system of two material points. It is certainly a more realistic. 
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4.4. The inverse three-body problem. Newton's task of three-body 
system - Sun-Earth-Moon, but this is not inseparable from other plan­
ets,determining the force with which the Sun and Earth simultaneously 
affect lunar motion belongs to a familiar three-body problem. Let's try 
to solve this problem too by means of our formula for the gravity force that 
acts between any two material points. Similar to the view of mathematical 
two-body problem, here the notion 'three-body' problem implies considera­
tions of mutual interaction between three material points. 

In a general case, let's observe three points: M1, M2, M3, 

FIGURE 9 

Gravity sphere In that way, both forces acting simultaneously upon 
the Moon and their sum were determined. For the force in the form ( 4.38), 
let's conclude: first, it differs considerably from a corresponding expression 
for Newton's force and, second, formula ( 4.38) is not based on Kepler's laws, 
as indicated by quoted contemporary astrophysicists. 

For the Moon's extreme positions in the points A( t = 0), G( t = Đ 
it is easy to calculate the magnitudes of forces, which show meaningful 
and interesting results, as evident from ( 4.40). The performed calculations 
deployed well known quantities m3 is mass of the Moon;, used in solving a 
two-body problem. 

F, - .mlm3 F,* - mlm3 
8-"' 2 8-x--

p p 

F8 F* 8 
A 0,0059605 m3 0.000577m3 
e 0,0058995 m3 0.000854m3 

Ftt; F*tf! 
A, B, G 0,002695 ffi3 0.002673m3 

The forces of the Sun and Earth acting upon the Moon According to the 
general view of the notion gravitation, the author of this work implies that 



MOND- MODIFICATION OF NEWTONIAN DYNAMICS 71 

gravitational sphere or gravity sphere is space limited by the sphere, where 
the gravity force of one body, whose center of inertia is in the center of the 
sphere, is stronger than gravity forces of other bodies outside that sphere. 
Specifically, the Earth's gravity sphere is the space around the Earth (as a 
material point) where the Earth's force of attraction is stronger than the 
gravity forces of other bodies, including the Sun's gravity force. 

4.5. Modification ofEarth's gravity sphere. Earth's gravity sphere 
is a space around the Earth (as a material point) where in the Earth's force 
of attraction is stronger than the gravitational forces of other bodies, includ­
ing the gravitational force of Sun. The formula that determines the radius 
p of the so called sphere of influences (gravy sphere) of the Earth's gravity 
in this case is ([1], p. 196), 

(4.41) 

where ris the distance between the Earth and Sun, m1 = MtĐ is the mass 
of the Earth, and 1118 >=::::: 333000 m1 is the mass of the Sun. The size of this 
radius of the Earth 's sphere amounts approximately to 

(4.42) p= 917000km 

or ([2], p. lOS) 923 OOOkm. 
Verification of the formula (4.41) with the use of the Newton's formula 

of "universal gravitational force" 

(4.43) F =K; ml':2
. 

p 

Led to a paradoxical result. According to formula (4.41), at the boundary of 
the Earth's gravity sphere, it should be Fffi = F8 . However, the calculation 
qhows the opposite. And indeed, let us show this with some more details. 

Let it be assumed that: m1 = Mffi is the mass of the Earth, m2 = M8 
is the mass of the Sun, and m is the mass of any body at the boundary 
PffJ = x = Q17 000 km. For the above mentioned assertions of the book the 
mass of the Sun is M8 >=::::: 333 0001\tftiJ, whereas a tabulated distance of the 
Earth from the Sun is p8 = a = 149 600 000 km. 

First. The Sun and the Earth act at the same time on a body having 
the mass m in a critical boundary point at the distance PtiJ = x with the 
forces according to Newton's formula: 

v _ 111ffim 
re7- K; 2 ' 

X 

Therefore, in a critical point Pffi = x, it should be 

( 44) " M8 m l ~::06335 10-11 M 4' }1 8 =K; (149 600 000- x)2 = ' 0 x K; ffim. 
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and 
MtĐ m ll 

FtĐ = tl,--2- =O, 11892 · 10- 1"\,MtĐm. 
X 

This shows that, according to Newton's formula, the gravitational force of 
the Sun at the distance of 917 000 km from the center of the Earth is more 
than 12 times greater than the value of the Earth's gravitational force, i.e. 

F0 = 12,666 611 FtĐ· 

However, this is not in compliance either with the definition of gravity 
sphere, or with the phenomena in the nature. The Moon moves around 
the Earth at an average distance of 384 400 km, under the dominant attrac­
tion of the Earth, not the Sun. 

According to the Newton's formula, gravitational forces (3) at the bound­
ary p= x = 917 000 km of the gravisphere of the Earth are: 

A18 m -ll 
( 4.45) F8 = tl, (149 600 000- X )2 = l, 5063 . lO . 

and 

Fen= tl, MtĐ m =O 11892 · 10-ll 
\l] 2 ' X 

The ratio of these forces is 
l 333000 -ll -ll 

FtĐ : F0 = 
9170002 

: 
1486830002 

= 0.11892·l0 : 1.5063·10 = 0.0789495. 

This would imply that the Earth's force of attraction at the boundary of its 

gravity sphBre is significantly less, FtĐ = O, 789F8 , than the Sun's gravita­
tional force, which represents dynamical paradox. 

The second. Let's determine the boundary of the Earth's gravity 
sphere with the use of a strict procedure, by means of the universal gravity 
formula (4.43). 

According to the Newton's gravity theory ( 4.43), 

F. 
_ MtĐm 

tĐ- tl, ? ' x-

would follow, so that it should be: 

Mffim M 8 m 

x2 (r-x)2 ' 

or for l\118 = 333 OOOMtĐ 

(p- x)
2 

= M 8 = 333 000. 
x2 MtĐ 

Further calculation gives: 

(p-x) 2 = (577,6152x)2, 

1-
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i.e. 

p- x = 577,6152x2
, 

or 

p= 578,0652 x, 

and from there, for p = 149 600 000 km, it follows that 

x = 258 795, 993 km. 

This is contradictory to the fundamental laws of dynamics, as well as the 
actual state of the motion of the Moon around the Earth at an average 
distance of 384 400 km, and particularly the formula (l), which demonstrates 
the radius of the sphere of the Earth's gravity. Doubt about the validity of 
the Newton's formula is increased by a facts from the very above mentioned 
book ([1], p. 193-201). According to the Newton's formula (l) it follows 
that the acceleration of gravity depends not only on the distance, but it is 
asserted that at the first cosmic velocity of 7, 91 km/s, a body will escape 
from the Earth's attraction and will rotate around the planet Earth under 
an assumption that the resistance of the medium is ignored. At the second 
cosmic velocity Var = ll, 19 km/ s, a missile will leave the area of the Earth 's 
gravisphere. 

The third. ln his historical and still unequalled work "mathematical 
principles. of natural philosophy" Is. Newton tells with his Theorem IV, 
Consequence 6 (Volume 1), as well as with Theorem VU (Volume 3), that 
he was acquainted with: normal acceleration of Huygens, Kepler's laws, as 
well as Galileo's measurement of the acceleration g :::::1 9, 81 m/s of body 
falling under gravity. Those facts confirmed his mathematical principles. 
By comparing the formula of the Earth's gravitational force (3) with gravity 
G= -mg, it followed 

]l![ tf) 
g="' R2, 

where R is a radius of the Earth at the equator, whereas "' is "universal 
gravity constant". This is sufficient to calculate, even today, the value of 
the acceleration of gravity at any distance x from the center of the Earth, 

from where it follows 

MtĐ 
'Y = /'l,-2-, 

. X 

R2 
* 'Y =-zg. 

X 

Based on this formula, in the university textbook we find a table ([1], 
p. 194). At the first sight of the formula (l) and the table, disharmony 
of the formula and the table l is evident; the formula clearly demonstrates 
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that the acceleration depends only on the distance, whereas in the table, 
the dependency on the speed and distance is clear 

Altitude Velocity Acceleration 
H km v km/s 'Y 
o 7, 91 981,0 
100 7,84 948,9 
1000 7, 35 732,1 
10000 4,93 148,4 
100000 1,94 3,5 

Table l. 

These provable facts point to the verification of the Newton's formula 
of the value for the force of mutual at tr action of two bodies ( 4.43) exactly 
from the perspective of his axioms of mechanics. This is shown in several 
ways in papers [l], which also can be easily verified here. 

4.6. Modification of universal gravity formula. In communicated 
and published book and papers [2],[3],[6], it is demonstrated that our formula 
of mutual action of two bodies has a form, 

( 4.16) 
F _ p2+pp-v;rm1m2 
P- m1 + m2 p ' 

or, in Simić's form 

( 4.47) 

For the escaping boundary of the attraction of a body having a mass of m 
and the body having a mass of M, it will be 

M ( ·2 + .. 2) m p pp- Vor -0 
(M +m)p - ' 

(4.48) 

or, in Simić's form, 

( 4.49) d ( ") 2 dt PP - Vor = O. 

For average speeds of planets or satellites, average speeds Vor = const. are 
usually considered, the equation (9) shows a relation between the distance 

(4.50) 

and speeds in the state when the force of mutual attraction equals zero. 
For the purpose of clearer and more straightforward comprehension of this 

·l 
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assertion, let us mention that formula (7), in relation to the natural coor­
dinate system, can be reduced to a simpler form. It is sufficient to observe 
that it is 

v2 = p2 + p2(p 

so as to reduce the formula ( 4.4 7) to a form 

(4.51) Fp= mlm2 (p- piJ2). 
ml +m2 

In the state of motion where Fp = O, the known formula for normal acceler­
ation follows 

( 4.52) 
2 

.. Li2 v 
p= pu = -, 

p 

as well as formula for the force of mutual attraction 

(4.53) 
m1m2 v2 

F**=--­
ml +m2 p' 

where p = R = const. It has been shown (See above mentioned Table l) 
what the radial accelerations of the satellites are at different altitudes H 
above the Earth according to the standard formula 

R2 
(4.54) 'Y = g2, 

p 

as well as the formula 

( 4.55) 

which follows from the formula 

(4.56) 
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Let 's note that the last type of table refers to the average speed of the 
Moon's motion around the Earth and its average distance from the center 
of the Earth. 

By the application of formula (12) to the motion of the Moon in rela­
tion to the Sun and in relation to the Earth, it has been proven that the 
gravitational force of the Earth, which acts on the Moon, is greater than 
the corresponding force of the Sun. In this way, dynamical paradox in the 
theory of the Moon's motion has been removed. It is logical that it is pos­
sible to determine the boundary of the Earth's gravity sphere in the same 
way. 

Using this procedure, we obtain a significant modification of the Earth's 
gravitation sphere (1) and (2). Starting from the aforementioned defini­
tional of the gravity sphere of two bodies, let us find the boundary x of the 
gravisphere of the Earth in relation to the gravitational force of the Sun for 
that same body. By the very nature of things and by mathematical logics, 
initial relation of that task is that the gravitational force of the Earth is 
greater than, and at the boundary of the sphere p = x is equal to, the Sun's 
gravitational force, i.e., where : 

D _ Mffim v;rffi 
rffi - ]\,f, , Vor(J) < lkm, 

ffi+m x 

D - M0 m v;r0 9 ( 9 ) 10 r0- --, Vor0 = 2 , 8- l , 5 +O, 3 = , 
M0 +ma-x 

Ratio oi the gravitational forces Fffi and F0 at the boundary of the 
Earth's gravisphere is: 

Fffi = v;rffi : v;r0 =l. 
F0 x a-x 

From here, it follows that 

( 4.57) 
a 

x=----..". 
l+ (Vor(;) )2' 

VorEĐ 

Value of the fraction which is derived, depends, as we can see, on the ratio 
of the orbital speeds of bodies in relation to the Sun and the Earth at the 
boundary x of the Earth's gravisphere. Let us analyze that for our needs. 

First 

because it is 
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The second: for vEĐ = l is 
a 

X= 2 
l+ Vor0 

The third: For Vor > l the value of the fraction is decreased, and 
already for Vor > l the fraction (17) is decreased, and for Vor < l it is 
increased. In view of the fact, let as choose Vor = l. As it can be seen, the 
boundary of the Earth 's gravisphere depends on the ratio of the speeds of two 
bodies in relation to the Earth VorEĐ and in relation to the Sun VorG· Usually 
the speed VorEĐ is not known, so that we are left only with a hypothetical 
analysis on the basis of the average standard data. The speed of the Sun 
V0 r 0 is even less known. Speeds of the Sun in relation to various groups of 
stars [8]. The standard speed of the Sun is usually taken to be v0 = 20 000 
kmjs. Since the mean speed of the Earth's motion around the Sun is VEfl R:J 

30 000 mj s. In this state of motion, it is 

Vor0 R:J VEĐ- v0 = lO km/ s. 

For this logical choice and numerical values of the standard quantities: 

MEĐ m =O 987 
MEĐ+m ' ' 

M0 m =0 999 
M0 +m ' ' 

a = 149 600 OOOkm, M0 = 333 000 MEĐ, 

it is obtained that the radius of the gravi sphere of the Earth is x = 1481188 
km, or 

x R:J 1481 OOOkm. 

Therefore, for the standard data which are taken, the radius of the geosphere 
of the Earth is x = 1481188 km, or 

x R:J 1481000km 

Therefore, for the standard data which are taken, the radius geosphere 
the geosphere of the Earth is significantly greater than the radius (2). 

Corollary. In the first part of this paper it is proven that the formula 
of the gravitational sphere of the Earth (l) has not been derived on the 
basis of the Newton's formula (3). By direct calculation with the use of the 
formula_(3) it is shown that the formula leads to the results, which are not 
in accordance with the nature of the motion between the Sun and the Earth. 
Convincing example is the motion of the Moon, for which the formula (3) 
leads to paradoxical dynamic result of the Newton's gravity theory. 

vVith the use of the formula (6) for the mutual attraction of two bodies, 
the above mentioned paradox in the theory of the Moon's motion is removed 
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and one solution to the problem of three bodies (Sun-Earth-Moon) is ob­
tained. That was a reason to consider the boundary (2) of the gravisphere of 
the Earth in this paper. Approximately correct result for the radius of the 
Earth's gravisphere on the basis of the formula (16) amounts to 1400 000 
km, which is considerably different from the value (2). In this analysis, dif­
ficulty in choosing the Sun's speed is emphasized. Based on our formulas 
(4) and (5) radius of the Earth's gravity sphere is obtained (17). By this 
formula, it is easy to determine the speeds that condition the result of the 
Tisserand's boundary of geosphere 

a 
917000 = 2' 

l+ (_lQ_) 
Vor$ 

or 

917 \
00 

= 149600-917. 
VarEĐ 

It follows that 
VorEĐ =O, 785 km/ s. 

At various values of speeds, which have been taken in the consideration by 
the author of this paper, it is shown that the equation ( 4.18) gives interesting 
indicators of the permissible ratio of the orbital speeds of bodies in relation 
to the Sun and the planet Earth, as material points. 

MEĐ m 
( 4.57) FEĐ = K,-

2
-. 

X 

(4.58) 

Therefore, in a critical point PEĐ = x = 917 000, it should be 

M0m -ll 
F0 = "'(149600000 _ x) 2 =l, 5063 ·lO "'M0m. 

and 
MEĐ m -ll 

FEĐ = 1'\,-2-- = 0, 11892 · 10 "'MEĐm. 
X 

'This shows that, according to Newton's formula, the gravitational force 
of the Sun at the distance of 917 000 km from the center of the Earth is more 
than 12 times greater than the value of the Earth's gravitational force, i.e. 

F0 = 12,666 611 FEĐ ~ FEĐ =O, 0789478 F0. 

However, this is not in compliance either with the definition of gravity 
sphere, or with the phenomena in the nature. The Moon moves around 
the Earth at an average distance of 384 400 km, under the dominant attrac­
tion of the Earth, not the Sun. 
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Let's determine the boundary of the Earth's gravity sphere with the use 
of a strict procedure, by means of the universal gravity formula (4.42). Ac­
cording to the Newton's formula, gravitational forces ( 4.43) at the boundary 
p = x = 917 000 km of the gravisphere on the Earth are: 

M8m -ll 
F8 = K, (149 600 000- x2 = l, 5063. 10 . 

and 
MtĐm -ll 

FtĐ = K,--
2

- =O, 11892 · 10 . 
X 

The racio of these forces is 

F, - l . 333000 . 
$ - K, 917002 . 1486830002 . 

333000
) = 0.11892. 10-11 =o 789495 

1486830002 . . 

This would imply that the earth's force of attraction at the boundary 
of this gravity sphere is significantly less, Fffi = 0.789 F0, than the Sun's 
gravitational force, which represents dynamical paradocs. 

The second. 
MtĐm M0m 
~ (r-x)2 ' 

or for M0 = 333 000111$ follow (p - x) lx )2 = M0 l MtĐ = 333 000. 
Further calculation gives: (p - x )2 = (577, 6152 x )2 , i.e. p - x 

577,6152 x, or p 578,0652 x, and from there, for p = 149 600 000 km, 
it follows that 

x = 258 795, 993km. 

This is contradictory to the fundamental laws of dynamics, as well as 
the actual state of the motion of the Moon around the Earth at an average 
distance of 384 400 km, and particularly the formula (l), which demonstrates 
the radius of the sphere of the Earth's gravity. Doubt about the validity 
of the Newton's formula is increased by a fact from the above mentioned 
book. According to the Newton's formula (1) it follows that the acceleration 
of gravity depends not only on the distance, but it is asserted that at the 
first cosmic velocity of 7, 91 kmls, a body will escape from the Earth's 
attraction and will rotate around the planet Earth under an assumption 
that the resistance of the medium is ignored. At the second cosmic velocity 
Vor = ll, 19 kmls, a missile will leave the area of the Earth's gravity sphere. 

4. 7. Modification of the theory of gravity. In the papers [5, 7, 8, 
9] author demonstrated that our formula of mutual action of two bodies has 
the form 

(4.59) 
·2 .. 2 ·2 .. 2 

Fp = p + p p - Vor ml m2 = M* p + p p - Vor = F* + F**. 
m1 + m2 p P 
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where we introduced notations: 
·2 .. 2 

M*= mlm2 F* =M* p + PP, F** =M* vor. 
m1 +m2' P P 

For the escaping boundary of the attraction of a body having a mass of 
m and the body having a mass of M, it will be 

·2 .. 2 
M* p + p p - Var = O, 

p 

or in Simić's form 

:t (pp) - v;r =O. 

For the purpose of clearer and more straightforward comprehension of 
this. assertion, let us ment.ion that formula ( 4.46), in relation to the natural 
coordinate system, can be reduced to a simpler form. It is sufficient to 
observe that it is v2 = p2 + p2 iJ2 so as to reduce the formula ( 4.46) to a form 

Fp= M*(p- p02). 

In the state of motion where Fp= O, the known formula for normal acceler­
ation follows 

2 
"2 v 

p= p() = -, 
p 

as well as formula for the force of mutual attraction 

(4.60) 

where p = R = const. 

2 

F**- M*~ - p' 

It has been shown what the radial accelerations of the satellites are at 
different altitudes H above the Earth according to the standard formula 
'Y = gR2 l p2 , as well afr the formula 'Y* = v2 l p, which follows from the 
formula (4.46). 

Altitude Velocity Acceleration Acceleration 
H km v kmls 'Y "t* 
o 7,91 981,0 982,3 
100 7,84 948,9 950,0 
1000 7,35 732, l 733,0 
10000 4,93 148,4 148,4 
100000 1,94 3,5 3,5 
384400 l, 02 0,002693 0.002706 
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Let 's note that the last type of table refers to the average speed of the 
Moon's motion around the Earth and its average distance from the center 
of the Earth. 

By the application of formula ( 4.4 7) to the motion of the Moon in re­
lation to the Sun and in relation to the Earth, it has been proven that the 
gravitational force of the Earth, which acts on the Moon, is greater than 
the corresponding force of the Sun. In this way, dynamical paradox in the 
theory of the Moon's motion has been removed, [4.47]. It is logical that it 
is possible to determine the boundary of the Earth's gravity sphere in the 
same way. 

Using this procedure, wc obtain a significant modification of the Earth's 
gravitation sphere. Starting from the aforementioned definitional of the 
gravity sphere of two bodies, let us find the boundary x of the gravity 
sphere of the Earth in relation to the gravitational force of the Sun for 
that same body. By the very nature of things and by mathematical logics, 
initial relation of that task is that the gravitational force of the Earth is 
greater than, and at the boundary of the sphere p = x is equal to, the Sun's 
gravitational force, i.e., 

( 4.60) 

where: 

VorEĐ < l kmls, 

v - M0 m v;r0 ( ) l r0 - , Vor0 = 29, 8 - 19, 5 +O, 3 = 10 km s. 
lYI0 +ma-x 

Ratio of the gravitational forces FEĐ and F0 at the boundary of the 
Earth's gravity sphere is: 

FEĐ = v~rEĐ : V~r0 = l. 
F0 x a-x 

From here, it follows that 

(4.61) 
a 

X= ( l )2. l + Vor0 Vor$ 

Value of the ftaction which is derived, depends, as we can see, on the ratio 
of the orbital speeds of bodies in relation to the Sun and the Earth at the 
boundary x of the Earth's gravity sphere. Let us analyze that for our needs. 

First: Var0 =j:. VorEĐ, because it is Vor0 = VEĐ ± VorEĐ- v0; VorEĐ =/:- v0. 

The second: For vEĐ =l is x == al(l + v~r0 ). 
The third: for v;,. > l the value of the fraction is decreased, and already 

for Vor > l ,the fraction (8) is decreased, and for Vor < l it is increased. In 
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view of the fact, let as choose Vor = l. As it can be seen, the boundary of 
the Earth's gravy sphere depends on the ratio of the speeds of two bodies 
in relation to the Earth VorEĐ and in relation to the Sun V0 r 0 . Usually the 
velocity VorEĐ is not known, so that we are left only with a hypothetical 
analysis on the basis of the average standard data. The velocity of the Sun 
V0 r 0 is even less known. Speeds of the Sun in relation to various groups of 
stars [4]. The standard velocity of the Sun is usually taken to be v0 = 20 000 
kmjs. Since the mean velocity of the Earth's motion around the Sun is 
vEĐ ~ 30 000 km/s. In this state of motion, it is 

(4.62) Vor0 ~ VfĐ- v0 = lOkmjs. 

For this logical choice and numerical values of the standard quantities (see 
for example [3]: 

MEĐ m 
lli =o, 987; 
EĐ+m 

a = 149 600 OOOkm, 

it is obtained that the radius of the gravitation sphere of the Earth is x = 
1481188 km, or 

(4.63) x~1481000km . 

.. Therefore, for the standard data which are taken, the radius of the 
gravitation sphere of the Earth is significantly greater than the radius x = 
917 OOOkm, and expressly than x = 258 795km. 

Conclusion. In the first part of this paper it is proven that the formula 
of the gravitational sphere of the Earth ( 4.41) has not been derived on the 
basis of the Newton's formula (2). By direct calculation with the use of the 
formula ( 4.42) it is shown that the formula leads to the results, which are not 
in accordanc€ with the nature of the motion between the Sun and the Earth. 
Convincing example is the motion of the Moon, for which the formula (2) 
leads to paradoxical dynamic result of the Newton's gravity theory. 

With the use of the formula ( 4.46) for the mutual attraction of two 
bodies, the above mentioned paradox in the theory of the Moon's motion is 
removed and one solution to the problem of three bodies (Sun-Earth-Moon) 
is obtained. That was a reason to consider the boundary of the gravity 
sphere of the Earth in this paper. Approximately correct result for the 
radius of the Earth's gravity sphere on the basis of the formula (9) amounts 
to 1400 000 km, which is considerably different from the value 917 000 km 
and 258795km. 
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MOND5 - KEPLER-NEWTON'S LAW OF GRAVITATION 

Previous statements concerning our modification of the fundamentals of 
celestial mechanics differ substantially from classical theory of gravitation, 
with embedded Kepler's laws. In book [35]1°, the author Andrea Dupree, 
among other things, writes: The Moon being under simultaneous attraction 
by the Earth and Sun moves around the Earth in the orbit, far away from 
the Keplerian. At the seminar on the history of mathematics, mechanics 
and astronomy, there have recently been organized a number of discussions 
about Kepler's laws, particularly Kepler's third law, ended by a lecture in 
December 2011. Kepler's laws were accepted as the laws of nature, so it 
was to be shown as follows: If all three Kepler's laws can be derived by the 
help of Newton's gravity law, then Newton's law is the law of nature, and 
as such it cannot be modified. The first sentence indicates awareness of the 
open problem. That these laws are coupled is undeniable, so let's try to find 
the undeniable solution in this exposition. To this end, we will present only 
those statements that contribute to easier understanding of proofs, using 
Kepler's laws and "generalized Kepler's laws". In the book ASTRONOMY 

AND COSMOLOGY, a short chronological guide from ancient times to the 
present day, Kiev, 1967 [36] by S.A. Seleshnykov it is written down: 

1609. A great work by J. Kepler was published in Prague, The New 
Astronomy, Based upon Causes, or Celestial Physics, Treated by Means of 
Commentaries on the Motions of the Star Mars, from the Observations of 
Tycho Brahe, gent. 

l. The planets move in elliptical orbits with the sun at one focus. 

2. Radius vectors sweep out equal areas in equal times. 
1618. The Five Books ofthe HARMONY OF THE WORLD, 15 May 

1618. The third law of planetary motion is: 

3. periodic times are proportional to the cubes of the semi-major axes of 
their orbits. 

In mathematical symbols it can be written as: 

(5.1) Tl= (al)3/2. 
T2 a2 

1686 Newton writes: Any planet, in accordance with Copernicus's hypoth­
esis 2, 01·bits the Sun in an ellipse, with the Sun at one focus. Phenomenon 
IV. Stellar orbital periods of major planets, and also of the Sun around the 
Earth, and vice versa, are proportional to the semi-cube of their mean (note, 

10Physics and Astronomy of the Moon, 2nd ed, Ed. By Zdenchek Kopal, Dept. of 
Astronomy, Univ. of Manchester; Academic Press, NY and London, 1971. Translated 
into Russian. Revised by Leykin, MIR, Moscow,l973, Ch. l, p.9. 



84 VELJKO A. VUJIČIĆ 

distances from the Sun. This Kepler's finding is recognized by everybody, 
as Newton writes ([1], p. 508). 

In his university textbook of celestial mechanics [28] M. Milankovic de­
voted the first paragraph of Chapter l to Kepler's laws: 

I.All planets circle the Sun in elliptical orbits; the Sun is at the common 
focus of the ellipses. 

I I .Radius vector drawn from the Sun to the planet s wee ps out equal areas 
in equal periods of time. 

I I I. The square of the orbita[ period of a planet is directly proportional 
to the cube of the semi-major axis of its orbit. 

In this rarely easy-to-understand and rather short textbook (98 pages), 
Milankovic demonstrates Kepler's second law using the mathematical for­
mula 

2dv- e 
T' dt - ' 

where v is the angle called true anomaly. 
He formulates the third law in a simple and explicit manner, using the 

equation 

(5.2) 

where K is the same number for all planets. 
Later, in 1983, the author of the book ([37], p. 48) writes: "Kepler's 

third law is expressed in the form 

T 2 . rp2 3 . 3 
1 · .L2 =al · a2, 

which is readily derived from 

(5.3) 

and further on "The squares of the orbi tal periods (of planet s around the 
Sun, satellites around the plane ts) are proportional to the cubes of the semi­
major axes of their orbits (mean distances of a movable object from the 
central object). 

"Note this extension of Kepler's third law. As evident, this formulation 
differs somehow from previous formulations of Kepler's third law, which 
refers to the planets of the solar system, but not to the satellites orbiting 
the planets, especially to any of the two bodies. In addition, Kepler's law is 
not derived, but is set up on the basis of natural phenomena. The formula is 
said to be mathematical expression of Kepler's law. This is not as simple as 
it might seem if it is not known what ,\ represents in the expression. In truth, 
on page 45 of his book the author writes that ? is the so-called characteristic 
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gravitational constant related to a specific body as a gravitational parameter 
of the body of mass m1 

(5.4) 

In that case, equation (5.3) holds for any planet of mass m2,. From the 
previous text of the book we learn that k2 is "a universal gravitational 
constant" (the same number), and m 1 is mass of a designated body; if it 
is about the revolving of the planets around the Sun, it will be considered 
that m2 =M, i.e. the mass of the Sun. In that case, equations ([37], p. 48) 
are as follows: 

Division of two equations yields Kepler's law set up for revolving of the 
planets around the Sun. Other additions in formulations represent general­
ization of Kepler's laws. 

Proof or generalization of Kepler's laws. In books ([19], pp. 374-
375) and ([37], p. 54) we read: "If two planets, whose masses are ml and m2, 
are observed traveling around the Sun in elliptical orbits, with semi-major 
axes al and a2, it will be" 

(5.5) 

However, now Al = k2(M + m1) and A2 = k2(M + m2). Dividing Tf by T:j, 
it is obtained 

(39**) T[ M +m2al 
T:j M+ m1 a~' 

and this is the improved Kepler's law that holds when the central body is 
not immovable, i.e. when the mass of one body is not substantially smaller 
than the mass of the other body. 

This approach is sustainable only if Al and A2 l are the same numbers, 
which is not the case in the planetary system, and it will be proved further 
below in considerations of the force of attraction between two bodies. 

Corrections of Kepler's laws can be encountered in other authors too. 
Let us quote a very interesting and highly professional book "A general 
theory of revolving of the Earth", whose authors Z.S.Erzanov and A.A.Koly­
baev write: Kepler's: 

First (generalized) law. Unperturbing orb'it of the point M2 relative to 
the point M1 represents the second-order curve} where at one of the focuses 
the point M1 is located and its focal axis directed along the Laplace vector l. 
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Kepler's second (generalized) law. Sector velocity of the point M2 mo­
tion relative to the point M 1 remains constant over the whole time of mo­
tion, and an area of a sector described by the radius vector r of the point 
M2 changes proportional to time. 

Kepler's third (generalized) law. In an unperturbing elliptical orbiting 
of two material points the products of the squares of orbital periods and 
the sums of masses of the central and material point that is moving, are 
proportional to the cubes of the major axes of the orbits. 

Mathematically presented, it is more explicit: 

Tf(Mo + M1)/T2(Mo + M2) =a{ :a~. 

Newton's theorems of mutual attraction between two bodies are largely 
founded on Kepler's laws. It is even possible to come across the term the 
Keplerian-Newtonian theory. Here, we are trying to prave that there is a 
mismatch in the connection between Kepler's laws and Newton's mathemat­
ical theory, leading to unsustainable conclusions. In the scientific literature 
there are generalizations or corrections of Kepler's laws, and having in mind 
this fact, it is sensible to check how much and in what way this affects 
Newton's theorems of the body motion. 

5.1. Newton's law of gravitation. Professor Milankovic ends the 
second paragraph of his book with the formula 

(5.6) p= 1m1m2 
2 , 

r 

describing it like this: Every particle of matter in the universe attracts every 
other particlc with a force that is directed toward these particles, and its 
intensity is proportional to the product of the masses m1 and m2 of the 
particles, and inversely proportional to the square of the distance r between 
them. 

In hat case, j is the proportionality facto!', a universal constant, denoted 
by the formula 

respectively 

(5.7) j = 4 2~_1_ 
7f T2 , ml 

where !YI is the mass of the Sun. At the same time, the formula of universal 
"Ncwton's law of gravitation" has widespread use in the form 

(5.8) F = k2mlm2 
r2 , 
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were k, si for example ([37], p. 39) 3"Nauka", Moscow, 1984, pp.92-95. (5.8) 
where k (refer to, for example ([37], p.30), 

(5.9) F = JMm 
p2 ' 

where is we find the magnitude of the gravitational force in the form (5.9) 
where 

(5.10) 

The faculty professor mentioned above states that [29] is 

k2 = 6, 67 X 10-11 . 

There is a big difference. The proportionality factor (5.10) changes from 
one planet to the other, such that 

47r2 a? 
fi= M +mi T~· 

t 

Dividing J over fi, it is obtained 

J 
a3 

t 

lvf+miT?. 
M +m T 2 . 

Only provided that the proportionality factors J and fi were equal, the re­
lation of "improved Kepler's law" could be obtained. However, it is obvious 
,that J and fi therefore previous relation, referred to as "generalized Ke­
pler's law"" nor is it correct. Kepler's law does not include masses, so it 
is sufficient to state that the corrected Kepier's law is not Kepler's law. In 
addition, generalization or modification of Kepler's laws cannot be founded 
on mathematical transformations; the laws are formulated based on obser­
vations and identification of measured data on planets' motion of the solar 
system. 

5.2. Gravity forces. The significance of Kepler's laws has been em­
phasized by Newton's describing the rriotion of the body. This is interpreted 
by MilankoviĆ better than by anyone else. First, he observes the motion of a 
single body, in which Kepler's laws for calculating the gravitational constant 
come to the fore with geometrical accuracy. Afterward, Milankovic solves 
two-body motiori, where there occurs change in the constant proportionality 
factor, when formulating gravity forces. 

Let us commence from Corollary l of Newton's Theorem IV ([1], p. 78) 
that Newton himself based his proof on of a general theorem (Book III, 
Theorem VIII, p. 519). 
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Theorem IV. If there are two homogeneous spheres mutually gravitating 
one to the other, equidistant from their centers, the gravitation of each sphere 
by the other is inversely proporlional to the square of distance between their 
centers. 

The centripetal forces of bodies, which by equable motions describe dif­
ferent circles, tend to the centers of the same circles; and are one to the 
other as the squares of the arcs described in equal times applied to the radii 
of the circles. 

Corollary l. Since those arcs are as the velocities of the bodies the 
centripetal forces are in a ratio compounded of the duplicate ratio of the 
velocities directly, and of the simple ratio of the radii inversely. 

The corollary written down mathematically represents the centripetal 
force F in the formula form: 

(5.11) 

(where ~ are radii of the radius, as denoted by Newton. If Ti is used to 
denote time intervals over which the material point describes a full circle, 
the above formula can be written in the form 

4R27r2 
(5.12) Fi= mi T/Ri , 

alternatively, without changing neither magnitude nor property, the force 
Fi can be written 

41r2R2Rn 47r2Rn+2 
(5.13) Fi= mi Tz~r:- ~ =mi T2R~+l · 

~ ~ t 

Corollary 6. If the orbital periods are in a sesquiplicate ratio of the 
radii, the centripetal forces are in the duplicate ratio of the radii inversdy; 
and the contrary. 

The Corollary can be written in the form 

4R{7r2 l 2R3 l 2 K 
Fi= mi--z-2 = mi47r T2 Rz = mi47r R2, 

Ti Ri i i 

where, as obvious, K = !ft: is Kepler's third law ifRi were the semi-major 

axis of an cllipse. Note al~o the consequential fact that all formulas (5.11), 
(5.12) and (5.13) can be reduced to direct proportionality of the radius of a 
circular line, or at different nonlinear proportionality factors of the radius. 
This teaches us again that Newton did not imply that the proportionality 
factor is the same number for the whole universe. If it were that R = a, 
which is not the case, but R ~ a, we could talk of the motion on the ellipse 
and approximate accuracy of the law of gravitation. However, it cannot be 
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talked like that, so we continue to seek the solution. It is well known in 

differential geometry and analytical mechanics that normal acceleration is 
equal to 

v2 
(5.14) Wn = Rk, 

where Rk is the radius of curvature of the path. This is in total compliance 
with mentioned Newton's Theorem IV, because the center of curvature of 
the circular line is exactly its center, which is not the case with an ellipse. 
On the semi-major axis of the ellipse the curvature radius is Rk(A) = ~, 
and at the point B on the semi-minor axis it is Rk(B) = a:. Consequently, 
normal accelerations at points A and B are not equal for a Rj b. This subject 
matter is more extensively discussed by Newton's 

Proposition X. problem V 

A body is moving on the ellipse; to find the law of the centripetal force 
directed to the center of the elli pse. 

By geometrical procedure ([1], ·pp. 88,89) with the help of a drawing of 
the ellipse in two ways, Newton proved that the sought centripetal force is 
directly proportional to the distance of the point on the ellipse to its center. 
So, it is the same as in mentioned uniform motion of the material point 
along a circular line. This is to be confirmed, but here the motion cannot 
be uniform along the arcs as in the circle. Indeed, in order to provide a more 
explicit proof, the equations of central ellipse are described by equations 

(5.15) x =a cos O( t), y =b sin B( t). 

The first and second derivatives with respect t time are 

i; = a sin e e' iJ = b cos e e. 

Furthermore, it follows 

X =.-a cos 002 
- a sin BB, 

jj= -bsinBB2
- b cos BB. 

x2 + jj2 = a2 (cos2 04 + sin2 BB)+ b2 (sin2 004 + cos2 BB)= r 2B4 + r 2B = w 2
, 

racio, respectively 

w = q/ 04 + B2. 
It is obvious from here that the square of accelerated motion on the ellipse 
has two addends ([29], p. 29), the same as in a circle: the square of normal 
acceleration R2 iJ4 ~nd the square of tangential acceleration RB. This would 
mean that motion on the ellipse, in a general case, is non-uniform. At 
the condition that e = wt, w = ~ tangential acceleration is RB = o, and 
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therefore w71 = Rw 2. In that case, the centripetal force sought, acting on 
the material point that is moving on the ellipse, is 

R2 v2 
Fr= mw2R = mw2

- =m-
R R 

directly proportional to the square of velocity v2 and inversely proportional 
to the radius R provided that angular velocity wis a constant, and circular 
motion is uniform. 

5.3. Motion on the eccentric ellipse. By using a likewise procedure 
(refer to, for example ([7], p. 194), let us determine the force acting on the 
planet, of mass m, which moves on the ellipse, in whose one focus the Sun 
of mass M is located. Let the focus with the Sun be at distance e from the 
center of the ellipse, and let the planet's distance from the Sun be p. With 
respect to that focus, the coordinates of the planet's center on the ellipse 
are: 

x =(a- e) cos cp( t)= akcp(t), y =b sin cp( t). 

where, for providing a more explicit proof, the notation ak = a - e. is 
introduced. Now, using the procedure from the previous example of the 
central ellipse (refer to, for example ([37], p. 112) 

p2 = a~ cos2 cp+ b2 sin2cp, w = PV rp4 + cp2, 

for uniform circular motion cp= wt, w = ~, it follows that cp= wt, w = ~, 
and furthermore cp= wt, w ·= ~,following 

2 w = w2p3 = w2a~ = w2(a- e)3 
wP = pw , P p2 p2 p2 , 

where ak = a - e. 
Let us express the line segment e = ae by means of the eccentricity of 

the major planets. 
Planets eccentricity e: Mercury 0.20561 Venus 0.00682 Earth 0.01675 

Mars 0.09331 Jupiter 0.04833 Saturn 0.05589 Uranus 0.04634 Neptune 0.00900 
Afterward, let us calculate deviations from Kepler's third law for each 

planet, using the relation 

Planets Kepler's constant K Mercury 0.500130K Venus 0.000672K Earth 
0.950586K Mars 0.794875K Jupiter 0.861904K Saturn 0.833503K Uranus 
0.866732K Neptune 0.097322K 

Mean deviation of the constant K of Kepler's law is 0.613220. Hence, 
the application of Kepler's third law is only approximately accurate, like 
Newton's law of gravitation derived from Kepler's law. The relations of 
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improved Kepler's third law are obviously related to two-body systems. In 
that case, according to some specialists, we have Newton's laws in the form 

(5.16) F _J Mm1 
1- 1-­p2 

Mm2 
and F2 = h--2-, 

p 

where forces h and h are determined by formulas (5.10) and according to 
the others ([29], p. 187) 

(5.17) and p. = k 2Mm2 
2 2 ) 

p 

where 
k2 = 6,67 x 10-8cm3g-1sec- 2 . 

Dividing constants h and h, it is again obtained 

J 3 3 
l al . a2 

h - (M+ m1)T'[ . (M+ m2)T:j. 

It is only for the case that fl = f2, which cannot be, it would follow: 

T[ (M+ m2)ar 
T[ = (M+ m1)a~ · 

But this is not the case either in theory or in practice, so this allegedly 
improved Kepler's third law is not Kepler's law, nor is it correct. Previous 
analysis contains mainly Kepler's third law and Newton's law of gravitation 
determined by formulas (5.16) and (5.17). 

However, according to Newton, the basic tasks of mechanics are: 
l. to find the force if motion is known, and 
2. to accurately determine motion if the force is known. Solving the 

task based on Newton's axioms, the author of the booklet [40]7 determined 
the force of mutual interaction between two bodies in two to three ways by 
using Newton's axioms. Instead of the forces 

F = JMm2 or F = k2Mm2 
p p2 p p2 

a more general formulawas found for mutual interaction between two bodies 
in the form 

(5.18) 
. ·2 .. 2 

F = mlm2 P + PP- vor = x-m_l_m_2. 
m1 + m2 p p 

where p is the distance between two material points. 

It is noticeable for the condition that the distance does not change, 
i.e.p = const. from where Corollary l of Newton's Them·em IV follows, and 
our analy$is of the application of Kepler's third law started from Corollary 
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6 of that Theorem. Using our previous formula (5.18) for mutual attrac­
tion between two bodies, we have solved the problem of the lunar motion 
paradox. 

5.4. Differential equations of planetary motion. Previously em­
phasized discrepancy in proportionality factors, i.e. whether J and k2 are 
the same number valid for the whole universe, or they differ from one planet 
to the other, lead to substantial difference in different iai equations of plan­
etary motion. According to book ([37], p. 49) the Sun 

(5.19) d
2r _ -Jm(M +m 

m dt2 - r3 r, 

whereas, according to book ([19], p.375) 

(5.20) d2r _ -km(M +m) 
m dt2 - r3 r, 

] Since the left-hand sides of equations are equal, the right-hand sides should 
be equal too, but they are not, because J =l k2

. Given that 

47r2a3 

J= (M +m)T2' 

differential equation of planetary motion (5.19) is reduced to whereas, equa­
tion (3.20) remains unchanged 

m~2r = -K,Jm(M +m). 
dt2 r 3 

This means that the magnitude of the force attracting the planets towards 
the Sun, according to some specialists, is equal 

47r2a 3 JL 47r2a 3 

F =m T2r2 = mr2' JL = -y;2' 

d2
r _ -Jm(M +m) _ _ 47r

2
a

3 ~. 
m dt2 - r3 r - m T2 r3 ' 

while that same force, according to those adhering to the standards, is 

F=-kzm(M:m). 
r 

Based on above presented, it can be concluded that "universal gravitational 
constant" is not universal, and it is only by equalizing with the proportion­
ality factor J that differential equation of planetary motion is invariant, and 
therefore valid in terms of the preprinciple of invariance. 

Lastly, the question asked at the seminar was: What are the differences 
between provisions given in books? Some more important attitudes could 
be singled out: 



MOND - MODIFICATION OF NEWTONIAN DYNAMICS 93 

Group l Group 2 
Newton's law of gravitation 

F = m1m2 jj F = k2m1m2r 
m1 + m2 r 3 

Differential equations of planetary motion 

Kepler's third law 

a3 T[ M +m2 af 
T2 == J( = konst. T:j M +ml a~. 

Conclusion: l.Kepler's third law is approximately accurate for plane­
tary motion with mean deviation of 0.0613220. 

2. By our formula, the gravitational force between two bodies, which is 
not derived by means of Kepler's laws, but based on Newton's axiom, is 

. ·2 .. 2 2 
Fc = M p +p p- Vor = M (p- Vor)' 

p p 

where M = !:/+"':n is a reduced mass. Here, it is quite apparent that the 
force of mutual interaction between two bodies equals zero if 

d2p v2 

dt2 p 
that is, if the centripetal force is equal to the centrifugal force. 

Our formulas that describe spontaneous and programmed motion of two 
bodies do not depend on Kepler's laws, but they can be derived from these 
laws, for specific conditions, and th~refore "th~ Newtonian law of gravita­
tion" is only provisionally correct if it is based on Kepler's laws. 
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5.5. Four-dimensional spaces of classical and celestial mechan­
ics. The concept of relative space will be explained by the help of the notion 
of a system, which implies a single or several points connected by one or 
more than one geometrical or rheonomic constraints. The distance from 
one to the other point is measured by length, whose property or essence 
is expressed by the symbol L (Lat. longus). Many authors dealing with 
differential geometry consider the motion of points as well. However, the 
concept of motion is a part of Kinematics (movement, motion). Conse­
quently, Kinematics is a part of rational mechanics just as Geometry is a 
part of mathematics. Geometric point is a basic notion of geometry, there­
fore it is unnecessary to explain it. However, the position or place of a point 
is defined in various ways, most commonly by means of three measures of the 
same geometric attribute L. Since vector is defined as the triplet of numeric 
value, orientation and sense, the position of a point can be defined relative 
to any observation point by means of one point position vector,r. Kinematic 
point differs from geometric point in that it is set into motion or is moving, 
and motion cannot be separated from the concept of existing time. Time is 
not geometrically "a natural parameter", but it is an independent variable, 
denoted by the letter t, possessing the property T. The basic notion used 
in kinematics is velocity defined as the distance s moved per unit of time 
t. Since the distance has the p roperty L and time has the p roperty T, the 
basic kinematics' notion v has a physical dimension or property LT-1. The 
difference between geometry and kinematics shows the difference between 
their properties, that is, 

L=/= LT-1 . 

In order to provide the proof for the subtitle of this section, let us recollect 
that there is a simple constraint between gcometry, i.e. line segment s, 
whose property or attr is s = L, and kinematics, established by means of 
velocity v, attr v = LT-1 , line segment and time t, that is, 

L 
s = v t ----+ L = T T. 

If is it even assumed that lvl = l, the distance travelled and time cannot be 
equalized, because · 

attrs # attr t. 

At constant speed v= vo it follows that ds= vodt, because attr vo= LT-l, 
but ds = dt not at all. These indicators inspire us to seek a four-dimensional 
geometric-kinematic position of some point. 

Standard and modified kinematics metrics. In analytical mechan­
ics there is an established view that the mechanical system composed of 
N points lviv (v= l, 2, ... N), whose positions are defined by orthonormal 
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coordinates y and linked by k < 3N of mutually independent geometric 
constraints 

(5.21) 

have 3N- k DOF, i. e. point positions can be defined by means of n = 3N- k 
independent generalized coordinates q1 , ... , qn. N ote that in the literature 
there is not a unique notion of generalized coordinates. "Generalized co­
ordinates denoted by the letters qi can represent in general all coordinates 
of point positions in different coordinate systems. However, the notion of 
independent generalized coordinates qa implies those rectilinear or curvilin­
ear coordinates of independent solutions for equations (5.21). Constraints 
are objects and as such they are invariant relative to linear transformations 
of rectilinear coordinates into curvilinear coordinates x 1, , xn, and therefore 
relative to generalized coordinates q1 , ... qn, 

(5.22) 

(5.23) 

Mentioned condition that follows, based on the theorem of implicit func­
tions, has explicit meaning in kinematics, and it reads that constraints (5.21) 
should satisfy the conditions of velocities 

!,1 - of/1 dyi - 8fl1vi -o 
dt - [)yi dt - [)yi 11 - • 

Metrics of such systems of linked points is described in geometry by in variant 
expressions 

(5.24) 

Kinematic constraints. If the coordinates of the points or their con­
straints change in time, it is common in standard mechanics and analytical 
geometry to represent the constraints (5.21) by functions 

(2.25) 

At the same time, it is "found" that the number of DOF, i.e. the number 
of independent coordinates, is increased by l, i.e.n = 3N- k + l, w;here 
i is denoted as the (n+ l)th coordinate. However, the expression (5.25) 
allows dimensional non-homogeneity, leading to incorrect conclusions. For 
example, equations (5.25) include the form of the functions: J = yl +y2+t = 
O, which is impermissible, because (y) -=l atr(t). 
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In work [20] and monograph [21] it is shown that kinematic equations 
of constraints should be written in the form 

(5.26) fJ.t(Yl(t), · ·., Y3N(t), T(t)) = 0. 

and not in the form (5.25). The function T(t) is a known objective indicator 
of constraints' changing in time. If several constraints change in different 
ways, such as 

(5.27) 

it is always possible to choose one known function qn+I, from the set T(t), 
so that t can be defined as a function of qn+ 1 ; even from one equation of 
constraint, where, it is for example, 

and 

T(t) =a+ bsinwt, 

l qn+I - a 
qn+l = T(t) =a+ bsinwt--+ t= ~ arcsin b , 

l qn+I 
qn+l = bsinwt--+ t= -arcsin--, 

w b 

qn+ 1 = sin w t --+ t = I_ arcsin qn+ \ 
w 

qn+l 
qn+l = wt--+ t=-·-. 

w 
Substituting t into (1.7), it is obtained 

(5.28) JJ.!(y\ ... , y3n). 

Let us point out that equations (1.7) differ from equations (2.25) in that 
they characteristically homogenize equations of constraints, as well as that 
the analysis of solutions can provide the effects of motion, depending on the 
(n+ l)th coordinate. On the grounds of above presented, we can draw 

Conclusion l. There is a system of N kinematic points, in our minds 
and every where around us. Position vectors of those points relative to an 
arbitrary observation pole are 

(5.29) 

and there are k < 3N constraints (5.28). The metrics of such system is 
four-dimensional of the form 

(5.30) 

Hence, if, e.g., N = 2, k = 3, it is a system with 4 DOF. Let us prove it, 
first, on a two-body problem. That is to say, if there are two points and 
three constraints (5.26), it is a 4-DOF system. 
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Four-dimensional metrics for two bodies. The significance of this 
statement is underlying Newton's third axiom. The positions of two existing 
points M1 and M2 which are connected by three kinematic scalar constraints 
can be defined by means of three independent coordinate functions y(t) and 
one known function of time T(t). Let us demonstrate this in a convincing 
and shorter manner. The positions of observed points are defined by position 
vectors, where ei are base vectors leil =l, 

(5.31) 

therefore 

mp= ae1 + be2 + T(t)e3. 

From here there follow three scalar constraints 
l l 

Y2- Y1 =a, 2 2 b Y2- Y1 = , Y~- Yr =T( t). 

Accordingly, it is obvious that coordinates of the vector r1 

Yi = Y~- a, Yi= Y~- b, Yr = Y~- T(t). 

depend on coordinates of the vector r2 and one function T(t). 
If independent generalized coordinates are denoted 

y~ = q1 (t), y~ = q2 (2), y~ = q3 (t), T(t) = q4, 

we will have metrics 

d 2 _ Br2 d a . Br2 d 13 Bp d a . Bp d 13 _ 
(J - Bqn q Bq/3 q + Bqn q oq/3 q -

( 
Br2 Br2 Bp Bp ) a 13 _ 2 2 2 2 
Bqn . Bq/3 + Bqn . Bq/3 dq dq - dql + dq2 + dq3 + dq4. 

If coordinate q4 = vot, it" will be 

(5.32) dCJ2 = dqi + dq~ + dq~ + v5dt2, 

where vo is velocity of dimension LT- 1 , and therefore coordinate q4 = v0t 
has dimension of length L. Metrics indicates that there are two points, 
whose positions are defined by 4 functions of time, qi = qi(t), (i= l, 2, 3, 4). 

The Sun planetary system. In classical and celestial mechanics the 
concept of "two bodies" is related, first of all, to the Sun-planet concept. 
Let us denote the center of inertia of the Sun by the point M1 = M0 and the 
centers of inertia of the planets by points Mv. With respect to the arbitrary 
observation point, the position vector of the Sun is denoted by r0 dot and 
position vectors of N planets, like in above text, by rv; (v= 2, ... , N). The 
distances .of the pianets from the Sun are 

(5.33) 
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Given that all position vectors have a common observation pole, they can 
be reduced to relation (5.33) where 

N 

Pp = I: Pv(t). 
1/=2 

In this way, the central planetary system of the Sun is reduced to relation 

rp- P0 = Pp 

where P0 = ae1 +be2 + vote3. 
Since all mentioned vectors have the same vector base e1, e2, e3, as well 

as it is obtained, as in previous example, the metrics of the form 

(5.34) d0'2 = dqi + dq~ + dq~ + dql. 

or 

(5.35) 

If we use some other non-orthogonal or curvilinear coordinate systems xi 

instead of orthonormal coordinate systems yi, proved relations are changed 
only in the form of the metric tensor coordinates. Given that vectors are in­
variant with respect to linear transformations, base vectors are transformed 
by the law It is well known that metric tensor develops by scalar product 

of coordinate vectors, that is. Consequently, the sought space metrics has 
the form of the formula(5.34), that is, where tensor equals matrix. The 
covariant coordinate of tensor can be different from unity, depending on the 
choice of the form of the function q0 (t) and Rqn+l, respectively. 

Conclusion 2. Metrics of the Sun planetary system, with 3N +l- 3 
constraints of the form (5.27) or (5.28), where the Sun moves at constant 
velocity v0 , is four-dimensional relative spaces. Our four-dimensional 
geometric form (5.34) was presented first at the seminars on philosophy 
and history at the Mathematical Institute of Serbian Academy of Sciences 
and Arts on ll December 2011. At the seminar of Dept. of Mathemat­
ics of Mathematical Institute of Serbian Academy of Sciences and Arts, 16 
November 2012, a lecture was given titled "Four-dimensional spaces with 
geometric and kinematic _ constraints; arguments vs negative review". The 
author challenged reviewer's opinion and attendees pointed out that it was 
not a proper review. A seminar manager and editor-in-chief of the journal 
published by Mathematical Institute and an academic, prior to ending the 
discussion, concluded that the paper was correct but derived by means of 
well-known mathematics. In other words, it did not contain novel mathe­
matical contributions, so the paper could not be published in the Journal, 
which otherwise publishes works concerning pure mathematics only. The 
author did not oppose the determined editor-in-chief, although this paper 
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was based exactly on the author's significant mathematical contribution, 
but the editor maintained that the Journal and other publications of Math­
ematical Institute publish only papers on pure mathematics. Judging by 
editor's attitude, even Albert Einstein would not be able to publish his fa­
mous theory of relativity in the respective Journal [43]. Indeed, the authorS 
of mentioned paper derived the metric form in two ways. (5.34) Much earlier 
Einstein's invariant was published in the form (5.35) These two quadratic 
forms are seemingly equal but substantially different. To make our proof 
more comprehensive and acceptable, we will quote I. Newton [1], D. Hilbert 
[48] and A. Einstein [49]. I. Newton [l] "PROPOSITION: Absolute space 
is in its existence without relation to anything, it remains always equal and 
immovable." "Relative space is a measure or any other limited part which is 
defined by our senses according to its position with respect to other objects 
and which is accepted as immovable space in everyday life." 11 

D.Hilbert [47]: "Let w8 (s = l, 2, 3, 4) be any spacetime coordinates" 
(Hilbert wrote). The quantities W8 characterized by state in w8 are: 

l) the first ten, introduced by Einstein, gravitational potentials, and 
9J.Lv = l, 2, 3, 4), which have symmetrical tensor character relative to any 
transformations of (Mirot's) parameters w8 • 

2) four electrodynamic potentials q8 , which are vector transformed. 
In work Albert Einstein [49]. Hamilton's Principle and the General 

Theory of relativity, the first paragraph A variational principle and field 
equations of gravitation and of matter. 

In the third paragraph: The properties of gravitational field equations 
deriving from the invariant theory, Einsten wrote: "Let us allow now that 

(5.36) ds 2 = 9J.LvdxJ.Ldxv, mu, v= l, 2, 3, 4. 

represents eigen invariant. Thus, the character of transformation gJ.Lv is 
established. About the character of qg which describes matter, we do not 
make any assumptions." The provided quotation is sufficient proof that our 
metrics (5.34) of four-dimensional space, attr. L, differs from Einstein's 
four-dimensional invariant, characterized by the attribute space LL, matter 
M and time T. 

However, it should not be overlooked that analogous to Einstein's in­
variant (5.35) in classical analytical mechanics of Lagrange and Hamilton 

11V. Vujičic, Four Dimensional Spaces with Kinematic Constraint, Proceedings, 4th 
Int. Congress of Serbian Society of Mechanics, pp. 153-158, 2013. "In their appearance 
and size absolute and relative spaces are equal, but numerically they do not remain equal. 
Thus, for instance, if the Earth is observed non-stationary, the space of our air, towards 
the Earth, always remains the same, representing part of the absolute space and, second, 
looking at where the air h!lS passed, to put it consequently accurately, it means that space 
is continuously changing." 
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there is a differential invariant 

(5.37) d0" 2 = aaf3dqadq!3, a, f3 =l, ... n. 

where qa are generalized independent coordinates of dynamical systems, 
while tensor 

- '""' ar v ar v - !3'Y - ( . l n ) a{3a-~mv--·-a -a -a{3am1, ... ,mN,q, ... q,t 
aqa qa 

v 

contains the properties of space L, mass of matter M and time T. Using 
that tensor, we can write down Kinetic energy Ek in invariant forms 

_ dqa dq!3 _ !3'Y 
2Ek - af3a dt dt - a P!3P'Y, 

where p'Y = a'Yaq_a are generalized impulses. For the system composed of N 
material points connected by means of k stationary constraints, the position 
of a system is defined by 3N- k generalized coordinates, whereas the state of 
the system's motion is defined by n coordinates q and n generalized impulses. 
If one, more than one, or all constraints change during motion, the number 
of independent coordinates, as well as the number of impulses p'Y is increased 
to n+ l. Consequently, as in metrics form (5.24) and (5.37), the system 
with 3N +l- k varying constraints is reduced to four-dimensional relative 
space, as well as the invariant (5.35). 

On identical basis of rheonomic constraints, four-dimensionality of de­
formation tensorll has been proved, the deformation tensor being of the 
form [44] 

( 

Eoo .Em 
ElQ Ell 

E20 E21 

E30 E31 
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6.1. The principle of work. The concept of the work of the force is 
fundamental in mechanics. Section 3 of this book, dealing with the action 
and reaction forces, contains the differential for the force of the work 

(6.1) dA = F · dr = X dx + Y dy + Z dz, 

where dA, dr, dx, dy, dz are mathematically truth differentials as infinitely 
small quantities. Such work called the principle of work is most commonly 
referred to as elementary work on possible displacements. This statement 
points out the disparity of possible and differential displacements in expres­
sion ( 6 .l) and is written in the form 

(6.2) .6.A = F .6.r. 

Accordance with the preprinciple of invariance, it follows that differentially 
small work 

.6.A = F . .6.r. 

dA, dr, dx, dy, dz is also a scalar invariant. This work is also often called 
elementary work of the forces on real displacement. The phrase "on real 
displacement" emphasizes the difference from the other hypothetical and 
arbitrarily small work of the forces on any possible small displacement .6.r, 

By the concept of possible displacement, one implies any small deviation 
from the real position of the material point, which that point could have 
realized. The concept is even more general than the differential dr of the 
position vector. To put it simply, it is any hypothetically achievable distance 
at possible displacement. In p"ractice, it could be taken as tested factual or 
contemplative small displacement. Quantity is not accurately determinable, 
it is arbitrarily small, from negligibly small to some finite, which can be as­
sumed to be possible quantity. Analytically, the concept may be considered 
a difference between position vector of possible point r displacement and 
vector of undisplaced or specified position r, .6.r := r(x + .6.x)- r(x). Fol­
lowing the example of the formula of finite increments, the vector function 
r can be expressed in the analytical form 

(6 0 3) A _ ~ ( *i _ i) _ ~ A i ur - n . y y - n . uy 
uy~ uy~ 

as well as 

or ĐxJ . or . or 
.6.r = -. - . .6.y~ + ... = - . .6.x1 + ... = -.6.qo. + , .. 

oxJ ay~ oxJ oqo. 

(6.4) 
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where !::l.y, !::l.x, I:::J..q are coordinates of the vector of possible displacement in 
various coordinate systems. It is these coordinates of vector r that are most 
commonly referred to as possible displacements. Analogously to elementary 
work on real displacement (6.1), formula (6.2) will be called work on possible 
displacements. 

Formula (6.1) is a scalar invariant, like (6.2), but due to possible and 
real displacement, the preprinciple of existence is satisfied. The invariant 
form 

(6.5) 

satisfies the preprinciple of invariance, while relations (6.3) and (6.4) define 
the level of accurate determinacy, and therefore satisfy the preprinciple of 
determinacy as well. 

Being scalar quantities, they enable summation 

N 3N n 

(6.6) 2:::: F v · l::l.r v = 2:::: Yk I:::J..yk = 2:::: Q f3 I:::J..qf3, 
k=1 k=1 /3=1 

which makes up the total of the work of all forces F v, (v = l, ... , N) on 
possible displacements. Formulation of the principle of work. The essence 
of the principle of work has been known (according to Galileo) since Aris­
totle as "the golden rule of mechanics", and afterward as "the principle of 
possible displacements", "the principle of possible variations", "the funda­
mental basis of the eqnations of mechanics', "the principle of virtual work", 
"the D'Alembert-Lagrange principle", . One of the most severe mathemati­
cal analysts of classical mechanics A. M. Lyapunov writes: "The principle of 
possible displacements was familiar to Galileo, and then Wallis and Johann 
Bernoulli used it too. However, the first general proof of the princip le was 
laid down by Lagrange, who established the basis of analytical mechanics. 
Later, it was proved by Poisson, Cauchy and others, although the best proof 
is considered to be that of Lagrange's." In the present approach to the the­
ory of the motion of a body, the principle is not proved but, as pointed 
out in the preprinciples [3] about the concept of the principle of mechanics 
(p.74), the principle is a truthful proof, verbal or written, and therefore 
being either the former or the latter, as much accurate as it is possible to 
tell the most, based on the level of knowledge. Formulation of the principle 
encompasses its generality. Instead of providing the proof, its interpretation 
and demonstration is applied to various systems. In short, the principle of 
work can be expressed by the following sentence. The total work done by 
the forces on possible displacements is null and void, and in the presence of 
unilateral constraints, nonpositive. Mathematical expression is even shorter: 
(6.7) For a mathematically educated reader, the following sentence may be 

l 

l 
1 
·l ~ i 
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more explicit: The total work done by all forces on all independent possible 
displacements equals zero, and for the system with unilateral constraints 
nonpositive. Relation 

(6.7) LFv · 6.rv ~O. 
v= l 

is very general, but not directly operational. Its application requires strict 
mathematical analysis implying, first of all, understanding of constituent 
elements. Limited arbitrariness of possible displacements is described. Vec­
tors F contain the properties or attributes as components of the inertia force 
Iv of the v-th material point and main vectors of all other forces F v k acting 
in the v-th point, i.e. F v = O"kF vk· Accordingly, without loss of generality 
of the relation ( 6. 7), the principle can be written in the form 

N 

(6.8) L (Iv + F v) · 6.r v ~ O 
v= l 

In the thus written principle it is implied that in vectors F v, as pointed out, 
all forces, except the inertia force, are contained, as well as the reactions of 
constraints, in accordance with the law of constraints [3]. This means that 
the reactions of J-L constraints are represented by the forces 

If the reactions of constraints are not calculated apriori, as above mentioned, 
the relations describing the constraints should be added to the relation (6.8), 
that is, 

(6.9) 

(6.10) 

N 

L(Iv+Fv)·6.rv=0 
v= l 

JJ.L(r, v, r);?! O. 

As for the signs of equality and inequality, the difference is noticeable be­
tween the relations (6.9) and (6.8); the sign of inequality from (6.8) is en­
compassecl by the relations (6.10). For the case of bilateral constraints 
represented by the forces, the relation of the principle (6.8) is written in the 
form (6.9), and for the case when constraints are not calculated in relation 
(6.8), relations (6.9) and (6.10) should be written in the form 

(6.11) 

(6.12) 

"1 
l 
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Starting from the fact that constraints are more commonly written in the 
coordinate form, let us observe the application of the principle for some me­
chanical systems relative to the Cartesian coordinate system y = (y1, y2, y3). 

Static systems. By the concept of "static system", one here implies 
N points of application Mv= (l, ... , N) of forces F v = YJei (l, 2, 3) which 
are linked by k finite constraints (2.5). These constraints are written more 
specifically 

(6.13) 

or by formalizing indices y~ = y3v-2, y~ = y3v-l, y~ = y3v, 

(6.14) 

Such system Iv = O, and therefore the relations (6.11) and (6.12) can be 
written in the following coordinate form 

l 3N (6.15) Ya~~Ya := Y1~Y + · · · + Y3N~Y = 0. 

(6.16) 

First, we conclude that the non-ideal factor of the constraint is represented 
by the force contained in the forces Ya, while relations (6.16) describe ideal­
ization of the constraints. Developing in a series for possible displacements 
of those constraints in the neighborhood bf equilibrium positions of points 
Mv(Y = b), it is obtained, in addition to the linear form (6.15), another k 
linear forms for ~y, such as 

(6.17) 

where 

(6.18) 

So, relations (6.15) and (6.16) are reduced to k+ l linear equations 

(6.19) 

(6.20) ap.a~Ya =O, (J..L = l, ... , k< 3N), 

where there figure 3N mutually dependent dis placements ~y3N. Given that 
relation (6.19) contains independent possible displacements, this task can be 
further solved in two ways, with the aim of eliminating dependent possible 
displacements, as follows: 

a. by direct solution of equations, 
b. by introducing undetermined multipliers of constraints. 

r 
l : 

. ! 
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Solving for dependent possible displacements. ·u possible dis­
placements are divided into dependent b.y1 , ... , D.yk and independent ones: 
then addends in equations (6.15) and (6.16) are divided into those with 
dependent and independent possible displacements 

(6.21) Yvb.Yv + Y13b.yf3 = O, v = l, ... , k, 

(6.22) aJ.Lvb.Yv + aJ.Lf3Yf3 =O, (3 =k+ l, ... , 3N. 

Substituting 

b.yv = -aJ.Lv aJ.L13b.yf3 =b~, b.y13 ; laJ.Lvl #O, 

a single relation with independent displacements is obtained, such as 

(6.23) 

Due to independence of displacements b.yf3, it follows that the system of 
observed forces will be in equilibrium in the presence of constraints (6.16) 
if it satisfies the following system of 3N - k algebraic equations 

(6.24) 

As obvious from the system of equations, it is possible to define 3N - k 
coordinates of the force vector. 

U ndetermined multipliers of constraints. If each of the equations 
(6.17) is multiplied by a corresponding multiplier Aa and then summed for 
index f.L, the systems of k+ l equations (6.19) and (6.20) are reducedto two 
equations 

(6.25) 

The sum of the two relations 

(6.26) 
( 

J.L=k &J ) 
Ya + LAJ.L& ~ b.ya =O, 

J.L=l y 

also enables, as in the previous method, to eliminate dependent possible 
dis placements b.y1 , ... , b._yk. Given that Aa are for the time being unde­
termined multipliers, it is permissible to elicit the conditions that delete k 
multipliers A + f.L from equations ( 6.26), so that it is 

(6.27) 
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There remain k equations (6.26) with 3N- k independent displacements, 
such as 

(6.28) 
( 

J.L=k of ) 
y/3 + I: )./-1. 8 ~ D.yi3 = o. 

Jl.=l y 

From here, as from (6.23), another 3N- k equations are obtained of the 
form (6.27). In this way, the system of 3N equations of force are obtained 
for the solution of a static task 

J.L=k of 
Ya+l:.A/-1. 0 ~=0 (a=l, ... ,3N). 

Jl.=l y 

with k equations of constraints 

f/-L(yl, ... y3N) = 0 

with k equations of constraints. 

Rheonomic systems. As in the previous static system, the principle 
of work is also applied for the mechanical system with variable constraints. 
Without loss of generality, for brevity, let us assume that the constraints 
are specified by equations of constraints 

(6.29) fJ.L(y0; yi, ... , y3N) =O, y0 =T( t), 

where T( t) is a known function of time. Developing the function in a series, 
analogously to ( 6.17), it is shown that there are 3n+ l possible displacements 
D.y0, D.y1, ... , D.y3N. Indeed, 

i\f = of,. i\ o+ of /-L i\ i= o (. l 3N) 
u /-L [)yO uy [)yi uy , z = , ... , . 

The principle of work states about all possible displacements and work of 
corresponding forces on the displacements. So, here, apart from works on 
possible displacements Yi D-yi, the work on possible displacement D.y0, i.e. 
Yob:.y0 should be added. Thus, for such a system with variable constraints, 
instead of relations (6.15) and (6.16), here we have the system of equations 

(6.30) 

(6.31) 

(a = O, l, ... , 3N; i= l, ... , 3N). From here, using the same procedure as 
from (G.25) to (6.29), another additional equation is obtained 

(6.32) """ of/-1. Yo + L.....,; )./-L oyO = 0. 
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The force 

(6.33) 

is also evident in more general relations ( 6.30). 

The system with unilateral and bilateral constraints. The prin­
ciple of work, expressed by relation (6.1), states that the sign of inequality 
is related to the unilateral constraints. For the case of unilateral constraints 
only, the principle states that the work on possible displacements is less than 
zero, that is, 

v=N 

(6.34) l:= F v · ~rv ~ O 
v= l 

and for bilateral constraints, as shown 

v=N 

(6.35) l:= F v · ~rv = O. 
v= l 

Consider simultaneous presence of bilateral constraints 

(6.36) 

and of unilateral 

(6.37) <I>a(rl, ... ,rN)~O 0"=1, ... ,l, 

p rovi ded that k + l < 3N. Let us 

(6.38) 

(6.39) 

l 

l:= xa ~~~~ya = l:=xat.cu, 
a=l Y 

(6.40) 

where ~ea ~ O or ~ea ~ O. 

(6.41) 
3N ( k af a=l af ) 
~ Ya +~)..May~+ ~Xa ay: ~ya =<k+ l:=xafla 

The sum of these equations (6.41) leads to deriving necessary and sufficient 
number of equations for solving the task. As in the case of bilateral or 
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restrained constraints of dependent k + l possible displacements Del taya, 
let us exclude by request that multipliers )..11 and Xa be such that 

k of/1 l ofa 
(6.42) Yi+ L )..11 0 

i +L Xa 
0 

i =O, i= l, ... , k; k+ l, ... , k+ l. 
J.t=l Y a=l Y 

The rest of 3N- (k+ l) coefficients with independent possible displacements 
b..yj, (j = k +l + l, ... , 3N) will also equal zero, that is, 

J.t=k of a=l of 
(6.43) Yj +L )..11 0 ~+L Xa 0 ; ' 

J.t=l Y a=l Y 

in order that in accordance with the principle be b..c + L: xab..ca = O. How­
ever, since in accordance with (6.60) and (6.61), b..c < O, it follows that 

l 

(6.44) LXab..ca >O. 

Taking into account the independence of undetermined multipliers of 
constraints, there follow additional conditions for equations (6.42) and (6.43) 
that Xa and b..ca have the same sign. 

Kinetic systems Let us recall that vector functions F v, whose coordi­
nates are Y, contain all active forces F including the inert i a force -m~~ .F. 
Accordingly, 3N differential equations of motion (6.42) and (6.43) and k+ l 
finite equations of constraints with conditions resulting from (6.8) make up 
a complete system of relations for solving the motion of the observed system 
with fini te unilateral and bilateral constraints. 

N onholonomic systems. The title implies the system of N material 
points, whose motion is restricted, among other things, by at least one 
differential nonintegrable (nonholonomic) constraint. Taking into account 
mentioned restriction, let them be the constraints 

(6 45) J ( 1 . 3N ·l · 3N) _ 0 . J.ty, ... ,y ,y, ... ,y -. 

Due to difficulties that occur during developing in a series, the functions in 
the neighborhood of trajectory C(y) and complexity of possible equations 
of the constraints, as well as of their kinematic character, and for generality 
and brevity, we will here apply the method of constraint substitution, in ac­
cordance with the law of constraints, by corresponding constraint reaction 
forces Rvw That is to say that each constraint acting on the v-th point 
is substituted by the resultant vector of the reactions of constraints R 11v, 

i.e. Rv= JcrJav11 . Given previously introduced notation, this can be written 
more concisely, as well as the other force vectors, using a set of 3N coor­
dinates R1, ... , r3N. In such general approach, let us write the principle 
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of work (6.35) in the coordinate form ooo. The system of 3N differential 
equations of motion 

(6.46) 

respectively 

(6.47) 

contains, among other things, 3N unknown reactions of constraints Ra that 
should satisfy the conditions of acceleration 

(6.48) J
o ( o "")- 8JJ.L ·a+ ofp, ··a- o 
J.L Y' Y' Y - [)ya Y [)ya Y - · 

Substituting Ya from equations (6.46) into previous equations (6.47), k linear 
equations for Ra are obtained as follows 

o fp, iJa + _l_(y; + R ) of p, =O. 
[)ya ma a a [)ya 

It is possible from here to determine k reactions 

Ri =~(m, y, iJ, Y, Rk+1 , ... , R3N) (i= l, ... , k) 

depending, among other things, on 3N coordinates of forces Y and 3N- k 
reactions Rj (j = k+ l, ... , 3N). Further, substituting Ri into equations 
(6.46) and (6.47), respectively, in the system of N differential equations 
of motion there remain 3N - k unknown reactions of the constraints. As 
such, it is possible to determine them from that system, depending on other 
functions in the equations, or to seek new 3N - k conditions that define or 
determine the remaining 3N- k unknown reactions of differential constraints 
(6.45). Many studies deal with this problem, which is still actual. 

First conclusion. The principle of work may be used to derive and 
develop the relations of dynamic equilibrium. The principle of equilibrium 
may be used for the same purpose as well. Both principles are equivalent. 

Invariant notation of the principle of work. Expressions (6.17), 
(6.19) and (6.20) indicate that relations (6.30) can be written in an analogous 
form relative to different coordinate systems. Let it further be (y, e) immov­
able Cartesian orthogonal coordinate system; (z, gE) rectilinear coordinate 
system; (x, g(x)) curvilinear coordinate system, and (q, g(q)) a system of 
independent generalized coordinates. The same constraints, as shown, are 
written by invariant form 

(6.49) rv= r 1,(q0 ,q\ ... ,qm) =: rv(q) 

(6.50) 

r 
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Possible displacements, according to (6.4), are written, depending on the 
choice of the coordinate system 

(6.51) 

or 

(6.52) 

where ~ are coordinate vectors of the v-th point on the configuration 
manifold. 

The number of possible displacements allows possible changes in 
constraints 

(6.53) Af _ [)J f.L A [)J f.L A _ [)J f.L A [)J f.L A _ o 
Ll f.L - fJy uy + fJT Ll T - fJx LlX + ćJT Ll T -

.6.Jo = .6.y0 - .6.T = O. 

If we accept the constraint (6.50), which exists as long as other constraints, 
by the force Ro, possible changes in constraints (6.53) indicate that there 
exist 3N + l possible clisplacements, so that indices in (6.51) and (6.78) 
take the values i = O, l, ... , 3N; a = O, l, ... , n.) Consequently, the basic 
formulation of the work (6.30) has the following invariants (6.54) as well as 
(6.55) For the case when constraint functions do not depend explicitly on 
time, the coordinate qO does not exist, and therefore zero indices I= O, do 
not exi:st in relations 

(6.54) 

JJ.L~O; J.L=l, ... ,k<3N, i=0,1, ... ,3N 

and 

(6.55) Q.6.q := Qa..6.qa. ~O (a= O, l, ... , n). 

The same invariant forms refer to relation (6.8). Given that the observed 
relations (6.16) and (6.32) have been previously developed relative to recti­
linear coordinates y, we will further below use curvilinear coordinates x and 
generalized independent coordinates qEM. 

The principle of work in curvilinear coordinates. In relations 
(1.40) it has been shown that the coordinates of the inertial force vector 
relative to curvilinear coordinate systems are determined by the expressions 

D vJ 
J.- -a··--

t - t) dt . (6.56) 
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Since Xi in relation (6.54) denotes the sum of active forces and inertia forces 
(6.82), it is 

(6.57) 

This follows straightforward from relation (6.32) if it is taken into account 
that possible displacements are 

(6.58) arvA 8 ~rv= -a ux, xs 
(s= 1,2,3). 

Substituting into ( 6.32), it is obtained 

= ~ (9(v)"X~- a(v)" d;f) ~x",;; O. 

If indices i, j, ... , 3N; m 3k = m3k-1 = m3k-2, i = 3v = 3v- l = 3v- 2 are 
incorporated it follows 

(6.59) 

or given that Xi = 9ijXj. If displacements are restricted by bilateral or 
restrained constraints 

JJ.L(x\ ... ,x3
N,T) =0 J.L= l, ... ,k 

in relation (6.57) the sign of inequality is left out and by means of the 
constraint 

fo = x0 - T(t) =O, 

to which the force Ro corresponds, k homogeneous linear equations for pos­
sible displacements are obtained 

( ) ajJ.L i ajJ.L o 
6.60 !lf1L = -a . !lx + -a !lx = o. 

X~ X0 

!lfo = !lx0 +!lT= O. (i= l, ... , 3N) 

Multiplication by corresponding undetermined multipliers )..J.L and Ao and 
summing with 

(6.61) 
D vJ 

X· -a··--
2 - ~J dt 
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From here, there follow 3N differential equations of motion 

(6.62) 

. k 
DvJ ~ ajJ.L 

ai j dt = xi + ~ )..J.L ax i ' 
J.L=l 

and the force of change in the constraints and 

J.L=N aj 
(6.63) >.o = - ~ )..J.L a:O = X o, 

J.L=l 

of which k finite equations of the observed constraints JJ.L = O should be 
added. 

The principle of work in independent coordinates. Let us write 
all constraints (6.57) by corresponding reactions of the constraints 

J.L=N aj 
(6.64) Ri = ~ )..J.La ~' (i= 1, ... ,3N), 

J.L=l y 

and an additional constraint y0 -T= O by the force Ro. The equation (6.72) 
will then look more specifically, such as 

( 

J.L=k aj ) ~ J.L i o-Ii + Yi + ~ )..J.L a i !:::..y + Ro!:::..y - O, (i = l, ... , n). 
J.L=l y 

(6.65) 

If equations of constraints (6.57) are substituted by the parametric form 

i i( O l n) O O 3N k y =y q,q, ... ,q ,y =q,n= -' 

and displacements Llyi by independent possible displacements t:::..ya, 

A i - ayi A a ( o l ) 
uy - aqa uq a = ' ' ... ' n ' 

equation (6.65), considering (6.57), is reduced to a new invariant form 
J.L-N . 

( Q ) 
A a ~- ' ajJ.L ay

2 
A a 

Ia + a uq + "'1•-a . -a uq =O. y2 qa 
J.L=O 

(i= l, ... ,n). However, since fJ.L(q0,q1, ... ,qn) =O, it is and 

Llj ( ( ),) = ajJ.L Ll i= ajJ.L ayi!:::.. a= ajJ.L =O 
J.L y q [)y2 y ay2 aqa q aqa ' 
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for j = l, ... , n= 3N- k, there follows that the principle of work observed 
relative to the generalized coordinates has this form 

(6.66) 
. o 

(Ij + Qj)6_qJ +(Jo+ Q~ + Ro)tlq =O. 

!lJ (y(q)) = at ll tlyi = atP: ayi tlqa. = at ll =o. 
Ji ay~ ay~ aqa. aqa. 

This equation is derived from equations (6.30), it is equivalent to the sys­
tem of equations (6.30) and (6.31). Due to described character of possible 
independent generalized displacement tlq, apart from equations (6.30) and 
(6.31), the principle of work (6.66) indicates correlation between the forces 
Ij, Qj, displacements tlq0 and forces Io, Qo, Ro. 

Second conclusion: As evident from above statements, the principle 
of work is applicable to a high degree with respect to any coordinate system, 
retaining the linear invariant scalar form for all coordinate systems, systems 
of constraints and systems of forces. 

6.2. Variational principles. Lagrange's variational principle and its 
generalization by Hamilton are mentioned in subsection 3. However, the 
interpretation of the concept of variation is not given, so that variation is 
often taken as an operator of determining the extremum of an integral (3.43). 
In order to distinguish between variation and differential, Lagrange was the 
firstl to introduce the notation o so that o Z expresses the "differential" of Z, 
which does not coincide with dZ; if it is possible to have dZ = mdx, it is then 
possible to have oZ = mox. Here, we develop relation (3.44) in more detail 
and more extensively, with which we represent the variation of the action 
functional. In analytical mechanics, theoretical physics, and mathematics 
as well, by the concept of action one implies more or less accurately defined 
functional, whose definition does not contain force. That is why, here, as 
in the principle of work, let us mention various notations for action, for 
accuracy and explicitness. In book [3] the concept of variation is formulated 
as: The concept of variation of the function y( a, x) implies the product of 
the derivative of the function for parameter a and a small perturbation oa 
of that parameter, that is, 

o r y(a+tla,x)-y(a,x) 
y = ll~~o tla · 

Example. If the motion of the material point is described by the for­
mula 

.., 
y = gt~, g= const., 
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the change of the function for independent variable t can be done at every 
change of t, by the rule12 

dy = ~;dt = 2gtdt. 

However, if parameter g is not accurately estimated to the smallest deviation 
l:l.g, we write 

ay 2 
8y = -8g = t 8g. ag 

The change of the constant a for independent variable t equals zero, that is, 

l:l.a =O 
!::,.t . 

Likewise, the change of independent variable t for parameter a 

l:l.t =o 
l:l.a . 

More generally, differentials of the function J= J(xt, ... , xn), where Xi are 
independent variables, will be 

the same as for the function J = J(x1, ... , xn; a1, ... , ak)· But variation 
of that function is 8J = lf8ai. Here, we present in more detail and more 

extensively the variation of the action functional. In analytical mechanics, 
theoretical physics, and in mathematics too, the concept of action implies 
more or less accurately defined functional, whose definition does not contain 
force. That is why, here, as in the principle of work, let us mention various 
notations for action, for accuracy and explicitness. 

6.3. Variational principle of the action. The action of mechanical 
system is an integral quantity 

(6.67) A = ft A(F)dt. 
l ta 

where A is the work of the force F. Physical property of the action is as 
that of the moment of impulse, 

(6.68) 

121 See: [15] Pol. Variational principles of mechanics. V.A.Vujicic, Preprinciples 
of mechanics, Institute for textbooks and teaching aids and Mathematical institute of 
Serbian Academy of Sciences and Arts, Belgrade, 1998 
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This notation also allows for understanding that action is an integral of the 
product of the work of some force and time interval. Subintegral expres­
sion is a scalar invariant, and therefore the action . . can be written in the 
invariant form 

(6.69) 

alternatively 

(6.70) 

A = rt A(X)dt, 
ito 

A= rt A(Y)dt. 
ito 

Just as there are several invariant and equivalent forms of the notation of 
action, so can the action principle be stated and is stated by various but 
equivalent sentences. Here, mathematical expression is essential: Variation 
of the action A during time [to, t] equals zero if the work of the active forces 
on possible variations for equal time equals zero, that is, if, according to 
aforementioned, the work of the active forces F on possible variations is 

(6.71) oA(F) = O, +---+ oA = O, 

and variation of the action 

(6.72) oA = o rt Ekdt = rt oEkdt = - rt oA(I)dt = O. 
}~ ho ho 

In order to reconcile oĐ and oA(Y), let us multiply (6.70) by the time 
differential dt > O and differentiate under the integral sign, that is, 

(6.73) lt . lt 
oA(Y)dt = o A(Y)dt. 

to to 

Summing (6.71) and (6.72) the action principle is operationalized by relation 

(6.74) i
tl 

o [A(F)- A(I)]dt =O 
to 

alternatively 

(6.75) 

A more complete and accurate determinacy of the relation (6.74) or (6.75) 
of the principle can be interpreted by its application to some mechanical 
systems, from simple to more complex ones. 

Kinetic task. Unlike previous static task, the number of forces F is 
here extended by the inertia forces and determination of their work, such as 
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kinetic energy 

E - l""' -l ··( )·i·j- l ··( )·i·j - 2 ~ffivVv·Vv- 29tJ m,y y y - 29tJ ffi,X X X. (i,j = 1, ... ,3N). 

Then relation (6.75) becomes 

l.
tl k 

(oEk + }joyj +L >-.Jl.ofJl.)dt =o. 
to Jl.=l 

(6.76) 

The essential difference between the action principle and the principle of 
work is that the former is used to study motion by means of the function of 
kinetic energy. 

Lagrange's variational principle. If all forces, except for the inertia 
force, acting on the material point of constant mass m, mutually annul, i.e. 
if the resultant equals zero, the result is that there is only the action 

A= 1.t1 

Ekdt, 
to 

and, in that case, the variational principle is written as 

(6.77) s rt Ekdt =o. 
l to 

The significance of the formula (6.72) is underpinned by the fact that 
here and there it is referred to as the Lagrangian action and relation (6. 72) 
as the principle of least action developed and expanded by the most dis­
tinguished and meritorious creators of analytical mechanics: Wolff (1726), 
Maupertuis (1746), Euler (1748), Lagrange 1760), ... Jacobi even wrote that 
the principle of least action is the mother of the whole analytical mechanics. 
Relation (6.12) deriving here from a simple example can be obtained from 
much or increasingly more general observation. If the variation of the work 
of active forces equals zero, then tl J oEkdt =o, 

h J oAdt =o, 
to to 

as well as conversely, that is, 

(6.78) 8A = O {:::> 8A = O. 

For the system with potential energy, previous relation is reduced to 

(6.79) l.
tl l.tl l.tl 

(oEk + oA(x))dt = (oEk- oEp)dt = 8 Ldt =O 
to to to 

where function L := E k -Ep, is known as Lagrange 's function, Lagra.ngian, 
or kinetic potential. It is, actually, Lagrange's variational principle, even 
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though it is also known as Hamilton's principle, and the expression L := 

E k - Ep, where -Lagrange's function L = Ek - Ep, known as the Hamilton­
ian action, refers as such only to mechanical systems with potential forces, 
written in Hamilton's variables p, q. Considering relations (6.78) and (6.79) 
in a general and modified form, the author has here opted for the phrase 
action principle, because action is a scalar invariant 

A= t Ldt = t (Ek- Ep)dt = rt (2E~;;- H)= rt ((Pai{'- H(p, q, t))dt. 
J~ J~ ho J~ 

In that notation Hamilton's principle has the form 

where H = Ek - Ep. Being such, it refers to mechanical systems with 
potential forces. Given the relations (6.78) and (6.79) in a general and 
modified form of the principle, the author has also opted here for the phrase 
The action principle. In applying Hamilton's principle the attention is often 
directed to the physical meaning of the function L, for which the principle 
is laid down, and therefore it is for the function L that the term Lagrangian 
is acceptable for any function depending of used independent coordinates x, 
its derivatives ± and time t. Such approach led to some results incongruent 
with the preprinciples of mechanics, and consequently incongruent with real 
motion. In order to facilitate compa-rison of our statements to the standards 
of classical analytical mechanics, we will demonstrate below a somewhat 
more detailed application of the action principle (6.74) and (6.72) using 
configuration manifolds. 

6.4. Action on configuration manifolds. Observe N material points 
of masses mv (N). Relative to the arbitrarily chosen pole O and orthonor­
mal coordinate system (y, e), let the position of the v- th point be defined 
by vectorrv = y~ei. Let the point motion be restricted by k ~ 3N restrained 
constraints that can be represented, according k ~ 3N to the law of con­
straints, by vectors R~ (resistance, friction, ) and by the help of independent 
equations 

(6.80) f/.L(r1, ... , rN, T( t))= O (J-L= l, ... , k). 

alternatively, which is the same, 

(6.81) 

(6.82) f ( 1 sN o)_ 0 . /.L y , ... ,y ,y - ' 
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Functions J M are ideally smooth and regular in the reference frame of the 
material points. The condition of constraints' independence is in the sim­
plest way reflected by the conditions of velocities on the constraints 

(6.83) j - 8JM ·i+ 8JM ·O- 0 
M - 8yi y 8y0 y - . 

For evidence, these equations can be written in the form 

(6.84) 8JM ·l+ ... + 8JM ·k-+ 8JM ·k+l + ... + 8JM ·3N + 8JM ·O 
8yl y 8yk y - 8yk+l y 8y3N y 8y0 y 

From this, for velocities i;, linear system of equations, it is possible to de­
fine k velocities y1 , ... , yk by the help of the other 3N - k + l velocities 
yk+ 1, ... , y3N, y0 , at condition that the determinant is 

(6.85) aJ M IZ i= o (JJ,, m= 1, ... , k). ay m 

Many ways, or for short, the manifold of the choice of the sets of coordinates 
qa by means of which the position or configuration of the points of a system 
at an instant of time is determined, indicate that the set of independent 
coordinates q := (q0 , q\ ... , qn) E Mn+l is to be called the configuration 
manifold. Equally, a set of coordinates q and velocities q = ( q0 , q1, ... , q_n )T 

will be termed tangential manifolds T Mn+l. Accordingly, the pencil of all 
velocity vectors in point q will be deno ted as q = ( q0 , q_l, ... , g_ nf, which 
implies n + l coordinate vectors T qMn+ 1 , at each point on manifolds n+ l. 
So, further below we will consider two sets. For brevity, let us introduce 
the following notations, and in accordance with that too. At this condi­
tion and mentioned properties of the functions J it is possible, according 
to the theorem of implicit functions, to determine from equations (6.82) k 
dependent coordinates y• ... , yk by the help of the other 3N - k+ l coordi­
nates yk+ 1 , ... , y3N, y0 .. In doing so, the conditions of velocities (6.83) are 
substituted, in accordance with the definition, by relations 

(6.86) 
8rv ·O 8rv .1 8rv ·n 8rv ·a 

Vv=-q +-q + .. ·+-q =-q 
aqo 8ql aqn aqa 

In such theory, the action principle is 

(6.87) 

where 
ay i 

Qa =Yi aqa, (i= O, l, ... , 3N; a= O, l, ... , n.) 

are generalized forces. The work of the inertia forces, for mv= const., may 
be represented as the kinetic energy, and therefore, considering (6.86) and 
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( 6.83), it is 

N 
~mv 2 2 l~ Orv 8rv ·a ·!3 

A = -E k = - ~ 2v v . v v = -2 ~mv oqa . 8qf3 q q = 
v=l (6.88) 

l ( ) ·a ·!3 . TN - 2 aaf3 mv, q q q , q E . 

The conditions of velocity (6.73) are substituted, in accordance with the 
definition (l. l) 

(6.89) 
8rv .0 Orv .1 8rv ·n Orv ·a 

Vv = f)qOq + f)ql q + ... + f)qnq =: f)qaq 

In such analysis, the action principle (6. 73) is 

(6.90) 

where 
oyi 

Qa=~aqa i=0,1, ... ,3N, a=O,l, ... ,n 

are generalized forces or coordinates of the acting force vectors. The work of 
the inertia forces, for mv = constv, is defined as a negative kinetic energy, 
and therefore, considering (6.86), 

N 
l~ mv 2 2 l~ 8rv Orv ·a ·!3 

A(I) = -Ek = -2 ~ mv2Vv. V v= -2 ~mv oqa. 8qf3q q = 
v= l 

l ·a ·{3 --aaM q . 
2 

6.5. Hamiltonian variational principle. The notation T* N here 
implies 2n + 2 dimensional manifold, consisting of n + l generalized co­
ordinates q = ( q0 , q1 , ... , qn) i n + l and n + l generalized impulses p = 
(po, PI, ... ,Pn); p, q E T* N. The vocabulary which terms TN the tangential 
manifold calls the symbol T* N the cotangential manifold. In the literature 
there are, here and there, the phrases such as 'phase space', 'state space', 
'Hamilton 's variables', etc. If we start from the fact that the state of motion 
is characterized by the position coordinates of point qa and coordinates of 
impulse Pa, then it could be stated here that T* N is the state of motion of 
a system. As T* N, for T* N can be said to be the extended manifold if it 
is necessary to point out the difference from configuration manifold and its 
corresponding cotangential manifold. It is more important to understand 
and accept that are impulses, whose essence is defined by definition 2, than 
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to know the names. In that case, there is mutual linear combination of 
generalized impulses and generalized velocities 

(6.91) Pa= aaf3il {::} qa = aaf3Pf3· 

Further considerations for the action principle on T* N consists simply of 
substituting the velocities q_a and considered relations by generalized im­
pulses Pa, 

t t 

(6.92) A = ~J Padqa = ~J Paqadt. 

to to 

Kinetic energy 

(6.93) E l ·a·/3 l ·/3 l 13~ k = -aaf3q q = -p13q = -a 'Pt3P1· 
2 2 2 

Hamiltonian action is 

A= lt Ldt =lt (Ek- Ep)dt = rt (2Ek- (Ek + Ep))dt =lt (paqa- H)dt 
~ ~ ~ ~ 

where 

(6.94) 

is Hamilton's function. 
If generalized forces Qa are divided into potential and nonpotential 

forces Pa such that 
8Ep 

Qa =- aqa +Pa, 

and substituted into (6.90), it is obtained 

l
t o(paqa- H)+ Pa6qadt =O. 

to 

Furthermore, 

(6.95) 

- .r altl itl[( ·a 8H)].r - (. 8H).r a -- Pauq to + q - a upa - Pa + 0 a uq dt - O 
~ Pa q 

and further 

(6.96) PaOqal~~ + rtl [(qa- ~H )OPa+ (Pa- Pa- ~~ )oqa]dt =o. 
}to upa uq 

o l 

'l 
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If it is taken into account that 

(6.97) ·!3 aH af3 q =--=a Pa, 
apa 

it is obtained (6.97). 
Due to this, relation (6.96) is reduced to 

(6.98) J: a\tl ltl(P . aH)' ad -O Pauq t + a -Pa - -a uq t - · 
o to qa 

With the condition that, besides potential, there exist nonpotential forces 
P, from the principle (6.96), the equations will follow 

. aH 
(6.99) Pa=- aqa +Pa, (a= O, l, ... , n), 

and these are differential equations of the state of motion of the system, 
constituting the system of 2n + 2 differential equations 

( ) . aH P ·i aH 
6.100 Pi=- aqi + i, q = api, 

(6 l ) . aH R .0 aH 
. 01 Po = - aqo + o, q = apo, 

where Po= P0 +R0 . For the case when Pi= O i P0 =O, the function (6.94) 
can be extended to the total mechanical energy 

(6.102) E= H+ P, 

so that differential equations of motion can be written in the canonical form 

. aE ·a aE 
(6.103) Pa=- aqa, q =-apa, a= O, l, ... , n. 

For the case of in variable constraints of the system, when there is not arheo­
nomic coordinate qO, equations with index O disappear, so that in equations 
(6.100) indices range from l to n. 



MOND7 - DETERMINATION OF MOTION 

7.1. Vector and tensor integration. The main task of mechanics, 
as enunciated by Newton, is to determine forces if motion is known, and if 
forces are known to determine motion - velocities and trajectories. Motion 
is described by a differential equation of motion 

d v 
(7.1) mdt = F. 

Much later, after Newton, Hamilton elicits just one task of mechanics: to 
integrate the system of 2n, i.e. 6n differential equations of relative motion 

dpi aH dqi aH 

dt aqi ' dt api ' 
(7.2) i= l, ... ,n. 

Differences are substantial: the first equation (7.1) is a vector equation, 
whereas the second ones (7.2) are scalar, where forces are not included, 
except for the scalar function H which has the property of energy. In Section 
MOND2 of this book, the difference between the vector and the tensor of the 
same object is sufficiently emphasized, so there exists an issue of determining 
motion by the vector and tensor integral. To this end, it is necessary to 
clarify what vector integral is and what tensor integral is, when determining 
the same motion of the same object. Let us commence from the simplest 

example, F = O. 

and 

d v 
-=O-+ dv =O 
dt ' ' 

(7.3) 1v dv = v- vo = O. 
vo 

This is in full agreement with Newton's first axiom or law of motion- a body 
is at rest, or in uniform motion in the direction of the right line. Considering 
the first elementary definition of velocity at the point, = ~~, from equation 
(7.3) there follows 

(7.4) Jr dr= rT Vodt = r- ro = Vo(t-to) · 
ro ito 

The example of the gravity force F = G = const is similar 

m lav dv = lt Gdt. 

dr G G 2 -=-t-+ r= -t 
dt m' 2m 

Galileo was familiar with this phenomenon owing to his practice with 
a falling body. The examples indicate that standard vector integrals are 
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applied to vector differentials. In accordance with the principle of invariance, 
vectors can be decomposed into coordinate vectors in rectilinear yi and 
curvilinear xi coordinates xi. Thus the position vector r of the same point 
M(y) = M(x) can be decomposed into three vectors each 

(7.5) 

Let us repeat integration of (7.3) and (7.4) with base vectors ei being con­
stant; their differentials are dei = O, and coordinate vectors gi are functions 
of coordinates xi . Consequently, their differentials are: 

(7.6) dr= dyiei = dxigi + xidgi(x), 

and relative integrals 

r = yiei =J gi(x)dxi +J xidgi(x), 

where 

(7.7) 

Considering that 

(7.8) 

it follows that it is a differential of the covariant vectors or for short 
ay j 

(7.9) Dgi = ~dej = O. 
ux~ 

By applying standard vec tor integral to relation (7 .6), it is obtained 
xi 

r- ro =(yi- Yb)ei = 1 d(xigi(x)), 
xa 

which coincides with equations (7.5) for corresponding boundary conditions. 
However, if only vector coordinates yi and dx i are observed, with exclusion 
of dgi(x), the integration task is more complex and does not yield the results 
complying with the preprinciple of mechanics. This is sufficient to doubt 
the invariant standard integration on vector coordinates, i.e. tensors. 

7.2. On the solutions of differential equations of motion. Inte­
gration of differential equations or systems of differential equations of motion 
and analysis of obtained solutions for known parameters at some instant of 
time means comprehension of the motion of mechanical objects. There are 
very few real mo tions of the body, of the system of bodies in particular, 
which can be described by finite general analytical solutions of differential 
equations. Many models of the system, presented in the text book literature 
do not reflect accurately the real motion of objects. And yet, mechanics 

....,. 
l 
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solves successfully, with high accuracy and pretty correct assessment of er­
ror size, the problems of all mechanical motions accessible to the human eye, 
and even more than that. Here, our attention focuses on several conclusions, 
based on parallel motion of vectors and more general solutions grounded on 
linear or tensor transformations. Two approaches deriving from differential 
equation (7.1) - the second axiom of motion, which are rational starting 
points of Newtonian mechanics, require verification in accordance with the 
preprinciple of existence. 

a. Material points, such as celestial bodies, ballistic missiles, or a falling 
body, are acted upon by the gravity force, so that the relation, according 
to the present knowledge about forces, does not satisfy the preprinciple 
of existence, and therefore it cannot be stated that bodies are in uniform 
motion in the direction of the straight lines. If we knew, but we don't, at any 
moment and at any position, the universal gravitation force of all celestial 
bodies and if we could currently produce opposing forces, the missile would 
move along a straight line, and this means: if it were, what is not and what 
is known, which cannot be predicted by our knowledge. 

b. Vessels can move on calm waters of the ocean at the velocity of 
constant magnitude, but not in a straight line, which does not really occur 
in the ocean. 

e. Locally, the technical measurement system, tied to the Earth, can 
apply the reaction and other forces to the object to make it move at constant 
velocity, but this does not still lead to the conclusion on the trajectory shape 
as a straight line; the straight line being the concept of plane geometry is 
not available for logical-physical experiment, so it is unnecessary to ground 
mechanics on this fact, especially if the whole theory can be developed 
without the principle of rectilinear motion. 

7.3. Impulse integrals for material point motion. For the mate­
rial point of constant mass and condition, 

(7.10) F+R= O, 

from equation (7.1) it is obtained that the impulse vector of motion is con­
stant, 

(7.11) p= mv(t) =e= const. = mv(to) =po. 

At first sight, this is the simplest first vector integral which solves the task 
of determination of motion 

(7.12) r(t) = v(to)t + r(to). 

However, relation (7.11) and incongruity with impulse coordinates require 
more clarification of this essential meaning. Integral (7.11) satisfies and 
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explains the best the preprinciple of determinacy; how much accurately the 
mass and initial velocity are known at some instant of time t 0 , with such 
accuracy (7.12) is the impulse of motion determined at any other instant of 
time. 

The preprinciple of invariance must be satisfied, so that integral (7.12) 
- essentially impulse p survives in the present theory. If vector (7.12) is 
decomposed in a coordinate system y, e as 

. i i . i p = mv = my ei = e ei = my0ei 

and scalar multiplication is performed by vector ej, it is obtained 

(7.13) 

Note that these equations are not vector but scalar equations. Allowing 
parallel shift of base vectors ei and along with them the transformation of 
coordinate vectors gk = ~ei for the material point free shift, vector 

p= mi:kgk(x) = mi:k(to)gk(xo) 

can undergo scalar multiplication by vector g(x). Projections of integrals 
onto coordinate directions 

(7.14) 

where the capital letter in an index denotes relative quantity at the initial 
instant of time, where as tensor 

(7.15) 

Tensor mgkz found in the lecture as "parallel shift tensor". 

To satisfy the preprinciple of invariance, integrals should be obtained 
directly from coordinate forms of the equations of motion. According to 
the preprinciple of invariance, this relation should also hold for a curvilinear 
coordinate system. This is confirmed by integration of equations with forces 
Xi + Rj = O. The covariant integral is 

(7.16) J D(aijvj) = aijVj- Ai= O, 

where Ai = gfpK(to) is a covariantly constant co-vector; DAidt =O. Ac­
cordingly, integral (7.14) is the integral of differential equations of motion. 

(7.17) ·(t)- ... j - .. J- . JK - K (t ) p~ - a~1 x - a~JX - a~Ja PK- 9i PK o , 

where gf PK is a covariantly constant vector; DAi dt = O. Without indi~ 
eating the possibility of parallel shift _of the. co-vector, the impulses can be 
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translated from the system of coordinates y to the curvilinear coordinates 
x. If coordinates x are denoted by indices Xk; l = l, 2, 3, it will follow 

oxk OXK 
Pj(t) = Pk oyj = Pj(to) = PK(to) oyJ · 

Multiplying by matrix ( ~) it is obtained 

oyJ axK oyj K 
Pj(t) oxl = PK(to) oyJ · oxl = gz PK(t) = pz(t), 

because 
K OXK oyj 

gz = oyJ oxl' 

Although co-variant integrals satisfy all three preprinciples, such integration 
is not widespread in mechanics due to 'difficulties' in determining the tensor 
gf. So, let us seek ordinary first integrals, reduced to constants, but not 
covariantly constant impulse coordinates. 

Let us write differential equations of motion (7.1) in a developed form 

Dxi DaijXj Dpi dpi k dxJ 
(7.18) aijdt = dt =dt= dt- Pkrij dt = Xj + Rj. 

For conditions 

(7.19) 

which differ, it should be noted, from conditions (7.10), that first integrals 
are obtained 

(7.20) 

relative to coordinate system ((x, g). So, as in the case of integral (7.4) in 
the base coordinate system (y, e). These integrals differ considerably from 
integrals (7.8), and therefore in their essence from integrals (7.13). This is 
why integrals (7.4) and (7.8) will be referred to as covariant integrals, unlike 
ordinary integrals (7.11). Ordinary integrals are destructive for the tensor 
nature of the observed objects. 

Example 19. Observe the motion of a material point in parallel relative 
to rectilinear yi, y2 , y3 and cylindrical coordinate system x1 := r, x2 

:= cp, 
x3 := z. It is well-known13 that y1 =T cos rp, y2 = r sin rp, y3 =z 

a,,= o ,; n 
13V. Vujicic, Preprinciples of Mechanics, pp. 164,165. 
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( 

cos( 'P- <po) ro sin( 'P- 'Po) 
9ik = -rsin('P- 'Po) rrocos('P- 'Po) 

o o 
Differential equations and integrals for 

Y + Ry = O ==> X + Rx = O 

and covariant differentiation and covariant integration establish equivalence 
at the same transformation 

i/= iJb 

D±i- O 
dt -

t 
±1 = ±6 cos(x2 - x6)+ 

+ x6±6 sin(x2 - x6) 
. l . 2 

±2 = XoXo cos(x2- x6)+ 
xl 

+ x6 sin(x2 - x6), 
. 3 ·3 

X = x0 . 

A shorter, more explicit, general and significant difference between the 
first impulse integrals Pi = Ci and covariant integrals Pi = Ai shows integra­
tion of differential equations (7.4) for the condition that generalized forces 
are Qi = O. Let it be for now the motion of a single material point in the 
curvilinear coordinate system x1 , x 2 , x 3 , that is, 

(7.21) .!!._ aEk - aEk =o, (i = 1, 2, 3). 
dt 8i;t 8xt 

These equations can be written in the form 

(7 22) D 8Ek = O. 
. dt 8i;'! 

From (7.21) integrals (7.20) are obtained for 8E1j8xi = O, and from 
(7.22) covariant integrals (7.17), because 

aEk 
8xi =Pi· 

Canonical equations (7.2), as evident from 

dpi = _ 8H X· (. ) 2 ) 
dt ax i + t' '/, = l ' ' 3 

commonly yield integral impulses of the type (7.20) for the condition that 
the right-sides of those equations equal zero. 

Standard integration and integrals (7.20) are more widespread compared 
to covariant integrals (7.17). This is mainly due to undeveloped vector and 
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tensor calculus, respectively, in contrast to scalar functions. The conve­
n~ence of ordinary integration is that constants can be determined, depend­
ing on a given initial value of the observed impulse, when the number of 
impulse integrals is smaller than the number and coordinates of impulses, 
for instance, 

P2 # const. 

This advantage comes to the fore in the system of material points with 
constraints, especially on manifolds T* M. The accuracy of both integrations 
is proved, but for different conditions. Covariant integration is invariant in 
relation to linear homogeneous transformations of coordinate systems, and 
therefore reflects the tensor nature of integrals. However, this is not the 
case with standard integration, nor is it in agreement with the preprinciple 
of invariance; this indicates that final synthesis results should be checked by 
comparing them with corresponding results in coordinate systems (y, e). 

Example 20. Impulse integrals for motion along a surface. Differential 
equations of the material point motion along a surface 

(7.23) f(yl, Y2, Y3, Yo) = 0, Jo= Yo- T( t) = 0 

are of the form 

(7.24) 

and 

(7.25) 

.. v ,aJ 
myi =·li+ A-a '? yt 

Ao aja +A aj =O. 
ayo ayo 

From the acceleration conditions, i.e. in a specific case 

(7 26) J.. a
2 
f ·k ·1 aJ ·i aJ .. o (k z o 1 2 3 · 1 2 3) . = a ka l Y Y + -a Y + -a Yo = ; ' = , , , ; '/, = ' , , 

Y Y Yi Yo 
it is obtained that 

(7.27) 
(

A.. .EL .. ) !ll_ v 
m '+' + 8yo Yo + 8y; L i 

A = - !ll_ !ll_ 
8y; 8y; 

where 

(7.28) 

It becomes obvious that on the right-hand sides of differential equations of 
motion (7.24) the inertia force -mijo figures for the case when the equation 
of mii~ and hyo surface (7.23) contains the function of time to the power 
different from unity, and for the case when the power to one constant velocity 
v 0is present. That is why prior to integration of differential equations it is 
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important to take this fact into account in order to obtain accurate impulse 
integrals. Pointing out this conclusion does not affect the general proof if it 
is assumed that the resultant of active forces is not present Yi = O. 

If the multiplier (7.27) also equals zero, impulse integrals (7.23) would 
exist. Also, if it is assumed that the surface does not change in time, i.e. 
that equation (7.23) has the form J(yl, Y2, y3) =O, it would follow that 

~-· 
' ay•ByJ YiYi = O. 
A= -m 21..21.. (7.29) 

Dyi 8yi 

which brings us back to considering the motion along a double-sided immov­
able surface. However, if that surface changes, it would follow from (7.27) 
and (7.28) that 

, _ _ a J .. 2 a2 J . i . j 2 a2 
J .... ?.. a . a J 

A- ma Yo+ a ·a .yy ·Yo+a ·a YtYJJ Yta . 
Yo Y2 Y1 Y2 Yi Yi 

(7.30) 

Equalizing with zero would lead to the conclusion that impulses of motion 
are constant at material point motion along a surface that is in uniform and 
translational motion in the absence of forces. But, the assumptions are in 
contradiction with the preprinciple of existence, Galileo's laws and universal 
gravitation law. 

The assumption (7.3) is possible, but in that case multipliers of con­
straints (7.21) indicate a significant difference between the material point 
motion along a movable and immovable surface. 

Example 21. A heavy point, of mass m, moves along a horizontal 
smooth plane J = z :- (at)2 = O, a = const, which moves horizontally 
upward. Differential equations of motion (7.24) are 

mx = o, my = o, mž = -mg+ >.. 

If we choose zo = at, rom relations (8.12), for an auxiliary coordinate, it 
follows that a2 = V9!2. and therefore there will exist three integrals (8.4) 
for a2 = V9!2. It need not be proved tlu1t for any other different motion of 
the observed horizontal plane ('lift floor') the first integral Pz = mi = e = 
mio. will not exist. Relative to curvilinear coordinate systems (x, g) the 
equation of constraint (8.14) is transformed into 

(7.31) 

From these equations, for the assumed conditions, covariarit impulse inte­
grals (7.8) can be obtained, and for the conditions (7.10) first integrals of 
the form (7.11) will be obtained. If the observed motion along the surface 

-------~====~="'-' =~~~~ -- ~"""""~-,-=--"'----'-__l 
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(7.22) is determined by means of equations (7.2) where kinetic energy is 

a, j3 =O, l, 2, 

and impulses are 

Po = ao(3Qf3, Pl = a1f3qf3, P2 = a2(3i/, 

three covariant integrals will be obtained 

Po = ao{3Qf3, Pl = alf3q_f3, P2 = a2f3qf3, 

for the conditions that generalized forces equal zero, Qa = O, or the first 
three integrals 

(7.32) Pa(t) = Ca =Pa( to) 

for the conditions 
ĐEk 

Qa + -
8 

=O. qa< 

For the case when constraints (7.31) do not depend explicitly on the time 
of rheonomic coordinates q0 , and the corresponding impulse, then there are 
only two impulses (7.32). 

Impulse integrals for the rotation motion of the body. For an 
arbitrary system of material points from the impulse of point change theorem 
(7.1) covariant impulse integrals are obtained 

Pa= Aa (p( to), q(t)) 

where Aa are covariantly constant vectors if generalized forces equal zero. 
The first integrals Pa( t) = Ca =Pa( to) are sought, which are obtained in 

the simplest way from differential equations of motion (7.2), from where it is 
evident that there also exist the first integrals for the conditions Pa- Uf = 
O, a= O, l, ... ,n. For p0 -# -H from here, as from (7.2), it is proved that 
Po-# -H. 

Impulse integrals for the rotational motion of the body Based 
on relations (7.1) and (7.2), it follows that there exist impulse integrals for 
the rotational motion of the body, of constant mass, around a stationary 
point and relative to a stationary orthonormal coordinate system (y; e), 

(7.33) 

if moments of forces are Mi = O, (i, j = l, 2, 3). Similarly, from di fferential 
equations 
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(7.34) 
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Pl= In01 = A1 = c1, 

P2 = h202 = A2 = c2, 

P3 = h303 = A2 = C3' 

131 

where Ci = const. By squaring these equations and summing, it is obtained 

(7.35) (h101)2 -1- (h202)2 -1- (h303)2 = c2* 

where e = constant 
The theorem of change in kinetic energy shows that Ek equals integral 

(7.36) Ek =J Sdt -1- Cl, 

and is constant only if the power S of that system equals zero, and therefore 
total mechanical energy is constant, that is, 

(7.37) Ek -1- Ep -1- P(q0
) = c2 

if the power of nonpotential forces equals zero. The same integral can be 
written in the form 

(7.38) 

For the case when constraints are also unchangeable, the right-hand side 
integral disappears (7.38), and under such condition a well-known "conser­
vation" of energy integral is obtained 

(7.39) Ek -1- Ep = h = const. 

is shown extensively and explicitly in the work by V. Vujicic: Integral test 
for canonical differential equations. 

Each function fl-l(q 0 , ... , qn;po, ... ,Pn), or equation 

(7.40) fl-l(q 0
, ... , qn;po, ... ,pn)= cl-l, 

is the integral of equations 

(7 41 ) ·a aE . aE p 
. q = -a ' Pa = -a a -1- a' 

Pa. q 
(a=O,l, ... ,n), 

if the derivative with respect to time of the function fl-l equals zero along 
the phase space trajectory of the system, that is, 

(7_42) j = aji-l aE _ aji-l aE -1- Pa aji-l =O 
1-l aqa apa apa aqa apa 

alternatively, 

(7.43). ( ) 
aji-l 

J~,, E -1- Pa-Đ = O, 
Pa 
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where (!JJ., E) are the Poisson brackets for T* N. 
Example 22. Gyroscopic forces are specified by the formula 

Pa= Ga{3ČJ.f3, Gaf3 = -Gf3a· 

Check if E is the integral of differential equations (7.41). Since (E; E) =O 
and 

G ·!3 8E G ·!3 ·a O aM-= af3q q = 
Opa 

it follows that there exists the integral 

E= ~aaf3PaP{3 + Ep(q0
, ql, ... , qn) +J Ro(q0 )dq0 =e. 

Analogously, the existence of the energy integral in the presence of nonholo-
nomic constraints of the form <p(]" = b(]"(]" ( q0 , q1, ... , qn )qa = O is shown. 

Example 23. Hamilton's function H(p1, ... , Pn; q1
, ... , qn) is not the 

integral of the starting Hamilton's differential equations in a general case, 
because (H, E) =/:. O. Indeed, it follows that 

8H 8 8H 8P 
(H,F+P) =(H, H)+ (H, P)= (H,P) = ~~-~~ = 

uqa upa UPa uqa 

= 8H 8P _ 8H 8P + 8H 8P _ 8H 8P = 8H 8P = q_o Ro =/:. O 
8qi opi opi 8qi 8q0 8po 8po 8q0 8po 8q0 · 

It is only for the case when constraints do not depend on time, or when Ro = 
O that Hamilton's function occurs as an integral of a potential mechanical 
system. 

Example 24. By composing differential equations (of rotational motion 
(7.34) with ni, for lik = O, (i =/:. k), Mi = O, or by gradual multiplication 
of equations of motion by corresponding angular velocities n 1' n 2' n 3' by 
summing and integration, one obtains the energy integral 

2Ek = Iu(n1)2 + I22(n2)2 + h3(n3)2 =h= const 

of rotational motion around the center of inertia. Integration and preprin­
ciples. In developing the theory of mechanics, based on some principles of 
mechanics, it has been demonstrated that the same motions of the same me­
chanical systems can be described by various differential equations relative 
to the same or different coordinate systems. For all mentioned systems of 
differential equations of motion, it has been shown that they are congruent 
with the preprinciples. The preprinciple of invariance could have been rep­
resented for very complex systems of differential equations of motion due to 
a very developed theory of differential geometry on manifolds and invariance 
of natural ('covariant.' or 'absolute') vector derivative with respect to time. 
However, in integral calculus and its application in mechanics the attention 
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is insufficiently paid to the issue of invariance of differential expressions in­
tegration, of which the most frequent are differential equations of motion. It 
has been already pointed out that standard integration is destructive for the 
tensor nature of geometrical and mechanical objects, which is in disagree­
ment with the preprinciples, especially those of determinacy and invariance. 
Generalization of vectors as an arranged set of functions over a vector base, 
constituted again by vectors, does not lead to determining the attribute 
of motion in mechanics neither by differentiating nor by integration, and 
therefore that generality cannot be the basis for agreement between the de­
rived theory and the prepinciple of determinacy. More general categories of 
knowledge belong to higher-level mathematics. The examples explicitly in­
dicate the kind of difficulties encountered with the preprinciple of invariance 
if vector base is not determined and known. There is still the presence of 
'truths': 'acceleration is not a vector (in terms of the tensor), 'acceleration 
vector is not a vector', or 'inertia tensor is not a tensor'. Such theses do not 
have their place in the theory that starts from the herein introduced preprin­
ciples of existence, determinacy and invariance. In mechanics, it does not 
exist only one general configuration arrangement- a single general, arranged 
set of all bodies and their mutual distances, but many diverse sets and sub­
sets, whose problems of motion are not solved in a single way, i.e. uniformly 
but in a number of equivalent ways. That is why the phrase 'differentiation 
and integration of tenso rs on manifolds' is meaningful if the type of manifold 
is clarified, or valid evidence provided for invariance of differentiation and 
integration on manifolds. Generality indicates a multitude of diversity, and 
therefore it is justifiable to seek solutions of general accuracy in terms of the 
preprinciple of determinacy; the subject matter of solving requires specific 
and general knowledge. Simple integral, for example 

f(x) =j xdx = ~x2 +e, e= eonst. 

is indefinite or definite to a constant, for if there is no other knowledge about 
the function f(x) it is impossible to determine \vhat type of curve it is (path, 
force, energy, ... ) for uninterrupted multitude of curves for each e E R. It 
is only·when we have at least one data more about f(x) at any point, let's 
say f(2) = 2, will we know what type of line it is. Similar situation is with 
covariant integrals on metric differential manifolds which are, as evident, 
present in mechanics. For integral 

(7.44) 
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or more simply 

(7.45) 

it can be said that it is indefinite or definite to a covariantly-constant tensor. 
(Ai are vector coordinates, A- constant). To the level of knowledge about 
manifold, which means about metric tensor 9ij too and covariantly constant 
tensor A, at some defined point, the integral sought can be determined. 
Integral (7.45) is of the energy integral type (7.39), whereas integral (7.45) 
is of the impulse type (7.33). 

Example 25. A system of N material points of constant masses mv 
(v= l, ... , N) and of 3N -2, 3N -2 finite constraints j 1_t(r1, ... , rN) =O has 
two-dimensional manifold 2 , whose metric, or more precisely, mass tensor is 

N """' ar !J ar !J ( l 2 
ai j = L.....J mv aqi · aqj = aji q , q ) . 

v= l 

(7.46) 

Differential equations of motion for Q1 = O, Q2 = O are 

D (aEk) =O 
dt aqi ' 

or considering that 

aEk . 
aq_i =Pi= aijQ1 , Dpi = D(aijqj) =O. 

Covariant integral is 

(7.47) 

where Ai is covariant constant tensor, that is, 
k o 

(7.48) DAi= dAi- Akrijdq1 =O. 

7.4. Superfluous symbols in tensor integration. Here, we start 
from the definition of a vector, as a tensor, provided by B.A. Dubrovin, S.P. 
Novikov, A.G. Fomenkoo [1], or taken from the book [2]. 

Definition 4. The vector at point P = (x~, ... , xS) is called z set of 
numbers a (~6, ... , ~~),with respect to the system of coordinates (x1 , ... , xn). 
if two systems of coordinates (x1 , oo., xn) end (zl, oo., zn) linked by alft 
x = x(z), where xi(z6, ... , zg) = x = xb, i= l, ... , n, for a new system of 
coordinates z that very same vector at the point z6, ... , zg is specified by 
another set of numbers( l' o o o 'en' which are linked by the initial formula 

. axi . 
(l*) C=(acj)(k=(~C1 · 

tl 
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Note that a from of transformation law appears as the major provision of a 
vector, bring a first-rank tensor (1)." 

In order to clarify our assertions,let as present some basic knowledge: a 
point is an essential concept not undergoing logical determination.However, 
the position of a point is not that simple understanding. I is generally de­
termined with recept to coordinate systems. Let point P be al). intersection 
in a Cartesian coordinate system P(y1 , y2, y3) of there straight lines or three 
planets, or an intersection of three curves of three curved surfaces. 

In accordance with the invariance principle [3], 

P(yl,y2,y3) = P(xl,x2,x3) 

and 

at the condition 
i ayi . ayi 3 

y =(-a .)pox1 , ... , 1-a -13 #O. xJ xJ 
Immediately next to the point Po the differentials are 

. ayi . . ( ay i ) . 
dy~ = (-a . )R dxJ +----t dx1 = -a . R dy\ xJ o xJ o 

and derivatives for the parameter t 

dyi _ ayi dxi 
dt - ( axi ) Po dt ' 

but since 
ay i 

(-a .)R #O, xJ o 

the velocity vectors are also created at the point Po 

. ayi . axi . 
v~(y) = (-a . )R v(x) +----t vl(x) = (-a . )R vJ (y), xJ o y~ o 

as well as· the acceleration vectors wi, 

. ayi . 
w~(y) = (-a . )R wl(x), xJ o 

which ure often written in the forme: 

wi(y) = ~i = :t[(~~: )xi] = (a::~~i )xkxi +(~~:)xi= 
k i 2 i - ri . k . j (ay ) - ( ay ) .. j - D Y 

- jkx x axi · 1- axi x - dt2 ' 
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where rh symbols by the provision (see, for example [1], str. 258.) 

i - a2yi ayk 
rjk- 8xk8xi (axJ. 

However, since (~)Po are constants, it follows that 

d ayi 
dt [(8xi) Po]= O,--+ qk =O. 

Now, it is clear that the linear partial derivative is invariant with respect 
to the multi-degree coordinate vectors. This follows from the determination 
(definition) of a vector as a first-rank tensor. 

The system of points. The term the system of points M1, ... , MN 
impulses a multitude of points linked by geometric constraints continuous 
in specified region 

fJl.(y\ ... y3N =O, fL= l, ... k~ 3N, 

and under conditions 
8JJl.d i= o 
a . y , 

yt 

when l %bl =j:. O. Equations JJ-L= O enable the determination 3N -k= n inde­

pendent coordinates referred to and denoted as independent and generalized 
coordinates, qa; a= l, ... , n= 3N- k. Indeed, further determination of 
a vector, as first-rank tensor (1), refers to the system of n independent 
coordinates q1, ... , qn and it is obtained 

Yl = yl(ql, ... , qn). 

Analogous to the relations, it will be 

i ( Byi ) a 
y = 8qa Po q ' attry =L. 

Furthermore, with respect to the natural argument t it will be 

dyl d Byl dqa 82yl ·a . 8yl dqa 
dt= dt (aqJ Po dt)= (8qf38qJ Poq q!3 + (aqa) Po Tt· 

However, since, like with respect to coordinates xi, ( ~) qo are constants, 
it is 

it follows that G~f3 =O, 

va(q) = (~~: )povk(y), attT v= LT-1· , 

Pi 
l 
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wa(q) = (~~:)Po wk(y), attr w = LT-2; 

An obvious example. Differential equation of motion of the mechanical 

system are written in the form 

aa13 ( q_f3 + r~-·Af3 q-r) = Q a. 

however, since, r~'Y =o, it follows 

or 

dil 
aaf3Tt = Qa, 

dpa 
dt= Qa, 

where Pa = aaf3ĆJ.f3 impulses, which d denotes an absolute differential. 

7.5. lnvariant tensor integrals. In accordance with the definition (1) 
it is found that there exist linear inverse transforms of standard integrals J 
and tensor integral j independent of a derivative rank at a particular point 
of the system. In symbols: 

l ~ J dyi = (;~j) Po/ dxj · 

7.6. Methods and applications in mechanics. It is well known 
that tensor integration of differential equation of motion is different from 
standard integration. This due to the acceptedassertionthat a non invariant 
in the linear transform. That is why we are here solving that problem 
and propose easier and more precise solution of a tensor integral. Based 
on standard differentiations, tensor calculus should transform coordinate 
functions from absolute t>r covariant differentials of those function. 

In mechanics a linear transformation is implemented in: coordinates of 
the position vector, 

o (EJyi . 
t- ) J y- ~Dx' 

uxJ ' 0 

differentials of coordinate positions at the point, 
o ()yi . 

dyt = ( -Đ . ) p, dxJ ' 
. xJ o 

coordinates of the velocity vectors, 

( 8yi) · 
vi(Y) = Đxi Po v1 (x), 

differentials 
!l i . . . uy . 

dvt (!l-·) l.) dx1 , 
uxJ •o 
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and coordinates of the acceleration vectors 

dvi(y) _ (Đyi) dvj(x) 
~- 8xj Po~· 

where yi are rectilinear coordinates, xj are curvilinear coordinates of the 
position vector at point x}

0
• 

However, as generalized coordinates qa are exactly the solutions of ex­
isting constants that are the functions of coordinates yi or xi ,written using 
the letters qa, it means that they are the coordinates of the point Po. 

It can be shown that the same linear transformation that holds for the 
the differentials of a vector dvi ,holds for tensor integrals,i.e 

J dvi(y) =;~:](vj+ Aj), 

therefore 

where 

k= (ayk) Aj 
e axj . 

Yo 

that is 
. . 8yi . . 

vt(y) +ct= 8xj vl(x) +Al); 

k . 
k 8y · · · 8xJ k 

e = -. A1 ----- A1 (x) =-e . 
8xJ Đyk 

7.7. The system of points. A multitude of points Mv (v= l, ... , N), 
linked by k < 3N finite continuous constraints will be referred to as the 
system of points. Functions fM are mutually independent and represent zero 
rank tensors. 

JJ.L(y) = JJ.L(x) =O, ~t= l, 
Consequently, their differentials dfJ.L are equal to absolute differentials D JJ.L = 
o. 

It follows that it is possible to determine yk or xk as functions of other 
3N- k independent coordinates y or x, that are generally referred to gen­
eralized independent coordinates qa (a= l, ... , n= 3N- k), 

k k ( l n) y = y q , . .. ,q ' 

where Mn configurational n-dimensional manifold on which 

d i = ( 8yi ) d a. 
y 8qa !]O q 

P j 
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This way, the system of 3N coordinates y3N and k mutually independent 
constraints will be 3N - k = n independent generalized coordinates qcx of 
manifold Mn, whose met ric tensor is 9a(3, (a, f3 = l ... , n). However, apart 
from coordinates of the position of points and time t, mechanics contains the 
essential property of masses mv. Mass and velocity are used to determine 
the concept of momentum the point 

8rv dqcx 
Pv = mvVv =mv 8qcx dt' 

In a system of particles, mass mv, instead of a spatial metric tensor 9cxf3 in 
geometry, there is an inertia or a mass tensor 

aaf3 = a(3 0 (m1, ... , mN; q1, ... , qn), 

that figures in a number of relations in mechanics,. 

Scalar multiplication of the impulse mv v v a coordinate vectors gv yields 
a covariant tensor 

- dqcx dqf3 - cx(3 
Pf3 - aa(3 dt +---t dt - a Pa· 

It is known that the differential of a metric tensor 9cxf3 equals zero however 
the differential of an inertia tensor aa.f3,m is equal to zero only if masses are 
constant quantities. 

The inertia force is described by a first-rank tensor 

dvf3 
la= acx(3dt' 

where dJ: coordinates of the acceleration vector which is not possible to 
regard identical with standard second derivatives for time t of generalized 
coordinates q_cx. 

The work of the inertia force is a zero-rank tcnsor 
~ O (3 A 

J ex -J dv d a -J ad (3 _ Iadq - aa(3dt q - aaf3V V -

J~ l ( (3 ex) - l (3 ex h 2d aaf3V v - 2aaf3V v + , 
and represents the formula of kinetic energy of the system of particles. The 
same occurs with other forces. 

This proves that integrals also t.ransform linear i.e. by tensor transfor­
mations. 

For the work of generalized potential forces Qcx(q1, ... , qn) = gradaU, 
it follows 
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Lastly, the Lagrangian second-order differential equations of motion 

d 8Ek BEk 
dt {)qn - {)qn = Qa, 

on the-dimensional manifold are transformed to n covariant equations of the 
form 

dvf3 
aaf3 dt = Qa, 

that can be integrated over a tensor, which eliminates difficulties of standard 
integral calculus nonlinearity and non invariance in analytical mechanics, 
while establishing inverse transformation of differential d and tensor integral 

j. 

"l 



MONDS - THE STABILITY OF MOTION AND REST 

8.1. Introductory remarks. "Dynamics is the study of real states of 
rest and motion of the material systems. Galileo and Newton discovered its 
principles and demonstrated their plausibility by experiments with heavy 
falling bodies and interpretation of planetary motion. However, each state 
of a mechanical system, corresponding to a mathematically strict solution of 
both rest equations and differential equations of motion, does not correspond 
to reality." "A general principle for the choice of solution, corresponding to 
steady states in mechanics, has not been given; there is recognition of the 
character of science about idealized systems and for each strict application to 
nature, in principle, every time, the solutions to the stability task have been 
always sought." "The major problem of the stability of motion in classical 
theory was solved by Lyapunov". The above mentioned statements given 
by Nikolai Gurevich Chetaev fully in compliance with the preprinciples of 
mechanics, as well as the work by V. V. Rumyantsev and A. S. Oziranara 
[65] represent the best introduction to a brief consideration of the stability 
of motion of the mechanical systems. 

8.2. Differential equations of motion. For the purpose of the gen­
erality of mechanical systems, observe 2n + 2 differential equations 

aH 
(8.1) Pa=- aqa +Pa, 

(8.2) q_a = DH, a = O, l, . .. , n. 
Dpa 

where H (po, Pl, ... , Pn; q0 , q1 , ... , qn) is the function determined by the for­
mula 

(8 3) H l {3-y ( O l n) + E ( O l n) . = 2a q 'q ' ... 'q Pf3P'Y P q 'q ' ... 'q 

In the system of equations (8.1) and (8.2), n+ l unknown impulses 

(8.4) _ ( O l n) ·f3 Pa - aaf3 q , q , · · · , q q , 

and n unknown and independent generalized coordinates q1 (t), ... , qn(t) and 
up to the solution of differential equations (8.1), inconiforce Ro(q0 ). Coor­
dinate q0 (t) is specified ahead to the accuracy level of the chosen parameter. 
The inertia matrix aaf3 is positive definite and its rank is n+ l. It is easy to 
prave it by positive-definite kinetic energy Ek· Starting from determinants 
which show that kinetic energy is 

(8 5) Ek - l ·a ·f3 - l af3 ......_ O 
· - 2aaM q - 2a PaPf3 ::::' 
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a homogeneous quadratic form of generalized velocities q0 , q1 , ... , q_n or gen­
eralized impulses po, pl, ... ,pn, positive for each q_a and equal to zero only 
for the case of rest, i.e. for q_a =O (a= O, l, ... , n) or Pa= O. Hence, both 
matrix aa/3 and its inverse matrix aa/3 are positive definite. Equation 

( ) . aH P.* 
8.6 Po=- aqo + o + Ro, 

is the only one of the entire system (8.1) that contains the function Ro, 
which is possible to avoid by observing only the system of 2n differential 
equations of motion (8.1). Such system of equations is not complete- it does 
not describe completely the motion of a mechanical system with variable 
constraints, so it can be referred to as the system of differential equations of 
motion with respect to one part of the variables. By excluding the auxiliary 
coordinate q0 , the function (8.5) loses the homogeneity degree 2, which is 
not in compliance with the preprinciple of invariance. Mechanical systems 
of material points with constraints independent on time and coordinates q0 , 

satisfy the same form of differential equations 

(8.7) Pi=-
8a~ +Pi, 

q~ 

and 

(8.8) 

where the function 

·i aH 
q = -a ' (i= l, ... ' n), 

Pi 

(8 g) H _ ~ .. ( l n) ·i ·j E ( l n) . -. 2 a~J q ' ... ' q q q + P q ' ... ' q 

contains positive-definite matrix ai.j = aji of the n rank. For the variable­
mass systems mv(t), the inertia matrix depends indirectly by masses m(t) 
on time t as well. · 

8.3. State of equilibrium and equilibrium position. The concept 
of the state of equilibrium of a system implies the state of rest of the observed 
bodies in the observed position qa = qg = const; all generalized velocities 
equal zero, and considering (8.4) all generalized impulses are Pa =O. Hence, 
the equilibrium state equations derive from equations (8.7), that is, 

(8.10) (Pa - ~E:) = O, 
q p"'=O 

or, 

(8.11) 

so, solutions of cquations (8.10) or (8.11) determine the state of equilibrium 
of a mechanical system. 

'l 
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Definition l. The state of equilibrium of a mechanical system implies 
the set of solutions qg E N for equations (8.11) and qa(t) = O or Pa(t) =O. 

Definition 2. The position of equilibrium of a mechanical system implies 
the position qa = qg on a coordinate manifold, whose coordinates satisfy 
equation (8.11). 

Example 26. On a rotational ellipsoid, whose equation in a coordinate 
system (y, e) 

f(y, t) = e2 (t)(yr + y~) + a2 (t)y~- a2 (t)e2 (t) =o, 
or relative to generalized coordinates q1 =cp, q2 =e, q0 = a(t), 

y1 = q0 cos e sin cp, 

y2 = q0 sin e sin cp, 

y3 = e( q0
) cos cp, 

there is a point of mass G; axis e of the ellipsoid is vertical, as coordinate 
y3. 

The equilibrium position of the observed point is determined by 2 + l 
equations (8.11), such as 

y1 = q0 cos e sin cp, 

y2 = q0 sin e sin cp, 

y3 = e( q0
) cos cp, 

lt follows that the equilibrium positions at mentioned variable constraint 
cp= k7r (k= O, l, 2, ... , n) are at the condition 

&e &e 
Ro = ±G &qO, or &qO = O --+ Ro = O, 

and that the axis of ellipsoids along which force G acts does not change. 
Deviations from solutions qa = qg i Pa = O, which can be called unperturbed 
or specified state of equilibrium, describe differential equations of motion 
(8.7) and (8.8), so they can be considered differential equations of non­
equilibrium state, and they can be written in the covariant form 

( 
b.pa 

8.12) dt = Qa, 

(8.13) qaaf3Pf3, 

implying that perturbations belong to the neighborhood of the point of 
equilibrium state q = qo, p= O, where right-hand sides of previous equations 
equal zero 

(8.14) Q(O, O, .. , O) = O, 
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(8.15) 

Previous equations (8.8) differ in that from non-equilibrium state equations 
(8.12)-(8.15). Non-equilibrium position equations qa = qg =: ba = const, 
can be considered approximately accurate, sufficient for rough technical 
practice. 

For some other values of q =b+ .6. and q =O forces Da will not satisfy 
equations (8.11), except for first-degree accuracy 

- (8Q) Q(q, q)q=O = Q(b + .6-q, 0) = Qq, O+ ~ .6-q + · · · 
uq q=b,q=O 

or on account of (8.11) 

(8.16) Qa = (~Q;) D.qf3. 
uq q=b 

By the analysis of this expression for solutions of IID.qall i= O, i.e. in terms 

of the derivative \\~~;\\b, it is possible to arrive at certain conclusions on 

the equilibrium position q = b of the system and its stability. 

8.4. Differential equations of perturbed motion. In the profes­
sional literature dealing with the motion of the body this term does not 
always imply the same thing, irrespective of the generality of the title: In 
the general theory of planetary perturbations these are most generally dif­
ferential equations of motion1 

(8.17) 

with perturbation forces added. In describing the motion of a system by 
equations (8.1) in the absence of forces, equations of perturbed motion are 
in the form of variation 

(8.18) dtoPi- -oqJoq'oq - opjDq•opj, 
{ 

d _ az H j az Il 

.!!:._o i - az Il o j + az H Op . 
dt q - oqJ op; q 8pj8p; J· 

In an attempt to derive the equations of perturbed motion, described 
by covariant equations (8.12), tensor variationEJ,l equations were derived14 

2 i 
D ~ + Ri. ·j ck ·l = \l Qi cl 
dt2 ]klq <, q l <, (8.19) 

which have not taken a proper place in the stability theory, due to their 
complex non-linear structure. Differential equations (8.19) are equivalent to 
differential equations (8.18)' where e := oqi' and Qi' and time t, generalized 

14Refer to, e.g. M. Milanković, Fundamcntals of celestial mechanics,Prosveta, Serbian 
publishing house, Belgrade, 1947, p.53. 

l' 
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forces dependent on the position q and time t3 In the theory of stability 
of motion the differential equations of perturbed motion are reduced to a 
general form 

(8.20) 

Equations (8.17) essentially differ from other mentioned equations and the 
entire theory of planetary perturbations has been elaborated over them. All 
other mentioned systems of perturbation differential equations are created 
from basic differential equations of motion by developing into the power 
series or by varying functions and their derivatives figuring in them. In 
work [78] it has been proved that variation of the vector projection is not 
equal to the projection of the variation vector, so instead of equations (8.19), 
the covariant perturbation differential equations are derived in the form 

) 
D'T}a 

(8.21 dt= '1/Ja(t, T},~) 

In order to clarify and evaluate the satisfaction of the preprinciples, let us 
derive p revi o us equations from the theo rem of impulse change ( 4.1), i e 

d 
(8.22) - (mvvv) = F v(r, v, t). 

dt 
Solutions for unperturbed motion are 

(8.23) Vn = 
8

rv qa and r = r(q(t)). 
8qa 

For any other (perturbed) solution 

(8.24) * ea 8rv 
rv=rv+<, ~' uqa 

a corresponding impulse is 

( ) * dr v ;.a 8r v ea 8 rv . f3 '* ( 2 ) 
8.25 mv v v= mv dt =mv V v+.,; 8qo. + <, 8qf38qo. q 

and therefore impulse perturbations, in accordance with (2.25), will be 

N 

* """" ( * ) 8rv P, -p, =: ry, = ~mv v v - v v . 8 l = 
v=l q 

=~mv (8rv . 8r ~a -t- f'Y.~2rv 8rv g_f3). 
~ 8qa 8ql 8qf3 8qo. 8ql 
v= l 

However, as there is a link 

(8.26) 

.., 



146 VELJKO A. VUJIČIĆ 

considering (8.26), it follows further that 

(8.27) - i:a. r8 e-a. ·.B _ (i:a. + ro. c-8 ·.B) _ Dea. 'T/-y _ aa.-y<, + a7 5 a.f3<, q - aa.-y ., 8(3<, q - aa.-ydt 

or 

(8.28) 

For solutions of (8.25), differential equations of motion (8.23) are 

d . {3 .. 
dt (mv v~) = mv(B8a.rveo.q_ + Ba.rvea.+ 

+ B8a.f3rveo.q_f3 q8 + Ba.f3rveo.q_f3 + Ba.f3rvea.cl) = 

= F:(rv +spv, V v+ -~,t), 

where 
a. 82 · 

Ba. := Bqo.' Ba..B = Bqo.Bq.B. 

After scalar multiplication of these equations and equations (8.23) by coor­
dinate vectors ~' and summing over index v, it is obtained 

N 

(8.29) L mv(Ba.r11 • 87 rv{a. + 287 rv · Ba.f3rveo.rl+ 
11=1 

+ 87 rv · B8a.f3rveo.q_f3q_8 + 87 rv · Ba..Brvea.cl) = 
N 

= L(F~- F11 ) • ~r~· 
11=1 q 

Partial derivatives 88a.f3rv figuring in the previous relation can, by means of 
(8.26), be reduced to 

. l . 
B8a.f3rv = 88(Ba.f3rv) = 85(r a.f3Bzrv) = 

= Bzrv88r~f3 + r~.BB.;zrv = Bzrv88r~.B + r~.Brt1 B11 rv. 
where 

(8.30) 
B8a.f3rv = 88(Ba.p·,~) = 8.;(r~'"q8zrv) = 

= Bzrv88r~.B + r~.aDszrv = BzrvDsr~.B + r~.ert1 B1lrv. 
where 

(8.31) 
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Equations (8.30) can be further reduced to a shorter form 

a .!!:_ (ea + ra (:CT il) + a rJ.L (~CT + ru ~a rl) i/ = \J! 
D</ dt <" uli':. /J.L uf3 ali 1 

or, taking into account (8.27) 

aa, :t (~~a) + a,J.Lr~13 (~~u) q13 = W1 , 

that is 
a .!}_ (D~a) - D (a D~a) - Drh -\J! 

D<! dt dt - dt D</ dt - dt - 1 ' 

which, together with equations (8.28), constitutes 2n + 2 perturbation dif­
ferential equations (8.21) and (8.22). 

Stability of equilibrium state of motion and rest. The title term 
is not unambiguous, irrespective of previously defined nations of equilibrium 
state and position. 

Determination l. If at any specified positive real numbers Aa and 
Ba, disregarding how small they are not, such positive numbers Aa and .\a 
and can be chosen for all numeric values of coordinates of the equilibrium 
state qi = qiO, p= O, subject to restrictions 

(8.32) 

and for each time t > to satisfy inequalities 

(8.33) lqi(t)- qbl <Ai, IPi(t)l <Bi, 

the equilibrium state (qi- qb;Pi =O) of a system is stable with respect to 
perturbations qi # qiO i Pi # O; otherwise it is unstable. 

The above determination can be formulated in another way or by rela­
tions (8.33). By suitable choice of the origin ofthe coordinate system at the 
equilibrium position, the equilibrium state can be represented by zero point 
on the manifold T* N, i.e. qa =O, Pa =O; (8.14) is then reduced to 

(8.34) Qa(O, ... , O, t)= O. 

Determination 2. If at any arbitrarily specified number A l, O, disre­
garding how small it is not, such real number can be chosen, for which all 
initial positions are restricted by relation 

(8.35) OaMa(to)l(to) + oaf3Pa(to)Pf3(to) ~.A, 

and for each t ~ to inequality is satisfied 

(8.36) OaMagf3 + oaf3PaPf3 < A, 

unperturbed equilibrium state Pa = O, qa = O is stable; otherwise it is 
unstable. 
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The 8afJ andi 5afJ are the Kronecker symbols. If the equilibrium state 
stability or unperturbed motion is considered only with respect to a part 
of variables 2m promenljivih q1 , ... , qm, Pl, ... , Pm, m < n, the stabilit~ 
condition (8.36) is reduced to the observed variables 

(8.37) 

Stability criterion. If for differential equations of motion of a scle­
ronomic system (8.12) and (8.13) can be found positive definite function 
W(t, q1 , ... , qn) such that 

(8.38) aw ( aw) ·i 
8t + Qi + aqi q ~o (i=l, ... ,n) 

the equilibrium state q = q0 , p= O or q =O, q =O is stable. 

P roof. For the assumed existence of function W, the function 

(8.39) V _ l ij( l n) .. + W( l n t) - 2a q , · · ·, q P1P1 q , ... , q , 

is positive definite, because kinetic energy is 

l ·i •J' l iJ' Ek = -aijq q = -a PiPi 
2 2 

by definition, positive definite. Time derivative of the function (8.39) is 

because 

. i·DPi aw aw dqi 
V= aldtpj + 8t + aqi dt' 

and 
Da ii 
--0 dt - . 

Taking into account equations (8.12) and (8.13), previous derivative is 
reduced to 
(8.40) 
aw .. aw .. aw .. ( aw) aw ( aw) . 
8t+a1JQiPj+ aqi a1JPi = 8t+a1J Qi+ aqi Pi= at+ Qi+ aqi q\ 

whereby the criterion is proved. 

Corollaries 
l. If the system is autonomous, the function W should be sought only 

depending on coordinates, so that the condition (6.38) is reduced to 

(8.41) (Q aw) ·i 0 i+ aqi q ~ . 
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Such are conservative mechanical systems for which the potential energy 
Ep(ql, ... , qn) exists. By the choice of just that energy, if it is positive 
definite, for the function W, W = Ep it is shown 

· ij ( aEp aw) _ ( aw aw) ·i_ 
a - aqi + aqi Pj - - aqi + aqi q = O 

that the equilibrium state of the system is stable. 

2. If generalized forces consist of conservative and any other forces 
Pi(q, q), i.e, 

aEp .) Q.- --P.(q q 
~- + ~ ' ' 

that is, by choosing again \V = Ep, for the stability condition of the system 
equilibrium state, it is obtained 

(8.42) ijp -p ·i/' o a iPj - iq :::::: · 

3. If the system is acted upon by gyroscopic forces 

(8.43) pi = 9ijqJ = -gjiqj 

the condition of the equilibrium state stability (8.41) is satisfied, because 
Piqi = 9i]tij qi = O. 

4. For dissipative forces Pi = bi]tij condition (8.41) is reduced to the 
requirement that quadratic function of energy dissipation R = -bijqiqj 
should be larger than or equal to zero. 

8.5. Generalization of the criterion. Previous theorem also holds 
for mechanical systems with rheonomic constraints. Condition (8.38) changes 
only for indices i, j == l, ... , n, taking the valueso:, (3 =O, l, ... , n. So, three 
additional addends are obtained 

(8.44) a;+ aafJ ( Qa + ~;) PfJ = a;~'+ aij ( Qi + ~;) Pj+ 

= ai
0 

( Qi +~;)Po+ a0
i ( Q0 +~;~)Pi+ a00 

( Q0 +~:a) Po~ O 

The proof is identical to the previous one, indices in equations (8.12) and 
(8.13) being retained in the range O, l, n. For the case of the system of 
forces, whose potential energy is Ep= Ep(q0 , q1, ... , qn), a Po = P0 + Ro, 
the function W = Ep can be chosen if E1) is definite-positive function of 
q0 , q1 , ... , qn, and therefore the expression (8.43) is reduced to aafJ PaP {J = 
Paqa = Piqi + (P0 + Ro)q0 ~ O. . 

l 
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Corollaries 
l. Expressions (8.38 - 8.43) occur as a consequence of relations (8.44) 

for the case when constraints are scleronomic, because auxiliary coordinate 
q0 disappears. 

2. Classical (standard) mode of testing the stability of equilibrium state 
of a rheonomic system with respect to variables q1 , ... , qn;p1, ... ,Pn can be 
considered the stability with respect to a part of variables. 

6. Necessary additional comment. To prove the criterion (8.38) or 
(8.44) we commenced from the fact that function (8.39), that is, 

(8.45) V= Ek + W(t, q0, ql, ... , qn) 

is a positive-definite function. Considering the starting assumption that 
W is a positive-definite function, and Ek is kinetic energy, the issue of the 
function definiteness V should not be problematic. Yet, a question is raised 
on the definiteness of kinetic energy. The proof starts from the preprinciple 
of invariance which states that the attributes of motion do not depend on 
formal mathematical description and on the expression for kinetic energy of 
the system 

N 

(8.46) 2Ek = m1vi + m2v~ + · · · + ffiNVFv =L mvVv · Vv. 

v= l 

All masses mi are positive named real numbers, so it is undeniable that 
Ek from (8.46) is positive function of v v and equals zero only if all velocities, 
i. e. functions v v equal zero. So, it is true that 

(8.47) 
N 

2Ek = LmvVv · Vv ~O. 
v= l 

Relative to orthonormal coordinate system (y, e), it follows that 

N 

(8.48) 2Ek = L mv(Y~l + Y~2 + Y~3) ~ O. 
v= l 

Nothing will change it we introduce other notation 

m3i = m3i-l = m3i-2i i= 3v- 2, 3v- l, 3v, 

because (8.48) will be 
3N 

2Ek =L miiJt ~O. 
i=l 

In other coordinate systems, say (z, e) or (x, g), between which there 
are unambiguous point mappings yi = J/(z1 , ... , z3N), yi= yi(xl, ... , x3N) 

1 
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or constraints yi= yi(q0 ,q1 , ... ,qn;n < 3N), the quadratic homogeneous 
form (8.48) will remain unchanged in the forms 

3N 3N 3N 
~ .. ? - ~ . ayi ayi . k ·l - ~ . ayi ayi . k ·l -
L.....t mtyt - L.....t mt a k a l Z Z - L.....t mt a k a l X X -
i=1 i=1 Z Z i=1 X X 

3N · · -I: _aytayt·a·f3_ ·k·l_ ()·k·l_ ()·a·f3....__o - mt-a -a q q - Ek[Z Z - 9kl X X X - aa(3 q q q ,;:; , . qe< qe< 
t=1 

where E k t, 9kl, aaf3 are positive-definite matrices. "Deviation from matrix 
definiteness" for some values of x or q does not derive from the nature of 

kinetic energy but from irregularity of transformation matrices (8.20) ( ~) 

or ( ~) transition from one coordinate to another. For those values of 

coordinates x for which the relation ii = ~i;a is irregular (i.e. nonexistent) 
the definiteness of matrix aij, or coordinate forms of kinetic energy cannot 
be assessed. 

Example 27. Kinetic energy of the planar motion of the point, of mass 
m, can be written relative to the cylindrical coordinate system p,(), zeta, for 
which there exist the relations 

Yl = pcos(), Y2 = psin(), Y3 =z, 

at the condition p f O, in the form 

(8.49) Ek = ; (ili+ il~+ il~) = ; (/12 + p2 iP + z2) ~o 
or in the plane z = e = const, 

Ek = ; (/12 + p2(j2). 

All three relations for E k equal zero only if velocities equal zero, because Ek 

cannot be taken into account, given that p= O, is excluded from considera­
tions in the transformation between the observed coordinate systems. 

8.6. lnvariant criterion of the stability of motion. The phrase 
'invariant criterion' stresses a general measure in all coordinate systems for 
assessing the stability of some unperturbed motion of a mechanical system. 
As such it encompasses the stability of equilibrium state and position, the 
stability of stationary motions and the stability of motion of mechanical 
systems in general, whose perturbation equations are of the coordinate form 
(8.21) and (8.22). 

If for perturbation differential equations (8.21) and (8.22) there exists a 
positive-definite function liV of perturbations eo, e, ... , en and time t, such 
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that the expression 

(8.50) 

is smaller than or equal to zero, the state of unperturbed motion of a me­
chanical system is steady. Proof. Functions \].i a, as obvious from ( 8. 31), for 

unperturbed motion ~a =O, TJa =O equal zero \].i a(O, O, t) =O. The function 

(8.51) 

is positive definite, because aaf3(q0 (t), q1(t), ... , qn(t)) is positive definite, 
matrix of the functions in Mn+l, a W(~, t) for is assumed to be positive­
definite function of perturbation Mn+l, a W(~, t). Being scalar invariant, 
V is a zero-rank tensor. That is why the ordinary derivative ~~ is 

(8.52) 

which requires to be smaller than or identically equal to zero on perturba­
tions. Substituting natural derivatives from (8.21) and (8.22) into (8.52), it 
is obtained, 

DV afJ DTJa aw D~a aw 
dt = a dtTJ/3 + a~a dt + 8t 

is equal to natural derivative (8.52) which requires to be smaller than or 
identically equal to zero on perturbations. 

Substituting natural derivatives from (8.21) and (8.22) into (8.52), it is 
obtained, 

DV _aw o./3 , aw afJ 
dt- Dt+ a WaTJ/3 + a~aa TJf3, 

which, with the criterion requirement, is reduced to 

(8.53) 

Hence, the stability criterion is proved. 
If forces F~ and F. from (8.31) and if differences F~-F v, do not depend 

on the position r and velocity v, nor will the function Illi' depend on t. If 
the constraints of a mechanical system do not depend on time t. Then and 
function W disappear ~0 ,er, ... ,~n, i.e. W = W(~0 ,e, ... ,~n), so that 
expression (8.50), i.e. (8.53) is reduced to 

(8.54) a0 (:J \].i + - 'fir~ < O. ( mv) 
a 0~0 "I~J '-" 
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If the mechanical system's constraints do not dep8nd on time q0 , ~o, ry0 , 

'l/Jo vanish, so that expression (8.50) that is to (8.53), is reduced to 

(8.55) aw .. ( aw) Dt+ a~J Wi + a~i 'TlJ ::;;; O, 

and (8.54) to 

(8.56) 

where functions w i and W do not depend on ~o and ry0 . 

All expressions for above mentioned criterion of equilibrium state stabil­
ity occur as a consequence of the expression (8.53) if~ and ry are considered 
perturbations of of the equilibrium state. q and p. 

8. 7. On integrals of perturbation equations. Covariant equations 
of motion (8.12) or their corresponding perturbation differential equations 
(8.21) in a developed form and general case have a very complex structure, 
which makes their integration difficult. However, by applying covariant in­
tegration some first covariantly constant integrals are obtained, which can 
be used to assess the stability of the equilibrium state, as well as the un per­
tur bed motion. We will support this statement by two distinguishing and 
acceptable examples. 

l. Let generalized forces Qa in equations (8.12) have the function of 
force U(q0 ,q1, ... ,qn). Let us multiply each equation (8.12) by a corre­
sponding differential from equation (8.13) and sum as follows 

Since Daaf3 = O to 
' 

and furthermore 

a{3 Q d Ci au d Ci a paDpa·= a q. = ~ q · 
tJ . uqa 

l 
-aaf3Pf3Pa - U = C = const. 
2 

2. Let right-hand sides of covariant equations (8.21) be linear forms of 
perturba-~ ... ms of e' ... '~n' that is, 

wi = -gij (q1 (t)' ... ' qn(t) )~j' 

where .9ij is a covariantly constant tensor. For thus specified perturbations, 
equations (8.21) and (8.22) can bc written in the covariant form 

Dryi _ .. d dt -91:J'-,' 
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and in the counter-variant form 

ne = aijr]jdt. 

By complete mutual multiplication and summa tion over index I, as in the 
previous example for a, the scalar invariant is obtained 

aiJTJJDTJi = -giJeJ Dei· 

Covariant integration yields 
l . . . . 
-at1TJJTJi- 9-ijee =A 
2 

here A constant, DA= dA= O. 
Stability of the whole or piecewise variables. For the stability of motion 

or equilibrium of mechanical systems, it is more important to note if pertur­
bations in perturbation equations are a consequence of calculation error or 
they are caused by new changes of forces; the inertia force due to the change 
of tensor aij, active forces due to approximate accuracy of dynamic param­
eters and non-ideally accurate laws of dynamics, produced by formulas of 
some forces. The laws of dynamics, as viewed herein, are formulated based 
on the stability processes in terms of mentioned definitions of stability. This 
means exactly up to the boundary value of the chosen number, irrespective 
of how small it is not. In differential equations (8.12), especially (8.21), any 
deviation of the functions or their parameters from real values, no matter 
how small they are, can but need not affect the stability or non-stability of 
the observed motion. That is why the stability of mechanical systems with 
respect to the forces is of crucial importance. 
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Modifications 
ISAAC NEWTON (Isaaca Newtona) is the founder of the modern sci­

ence of rationall mechanics. The introduction of the book emphasizes the 
acronym MOND, standing for 'modified Newton's dynamics', but the title 
word MOND actually denotes 'modification of NEWTONIAN dynamics'. 
The difference is in that the entire classical rational mechanics is Newto­
nian. Almost all modifiers have used Newton's basic axioms to check their 
various mathematical relations. Newton wrote axioms or laws, like axioms 
of geometry, but not the later called 'law of gravitation'. He wrote his 
axioms using the term THEOREM. Refer to, for example, Book I, Theo­
rem IV, Corollary 6, or Book III, Theorems VII and VIII. Here, it is 
moreover shown that theorems of gravitation do not derive genuinely from 
axioms, but only with addition of Kepler's third law of the major planetary 
motion, which is only approximately accurate. In short, all approaches to 
the state of motion and rest are presented herein so as to be readable and 
understandable for secondary-school, post-secondary-school and university 
students. Quotations of Newton's rules at the very beginning of the book are 
to demonstrate in a straightforward manner that we do not change Newton's 
essential starting points of his natural philosophy. 

Newton's Rules of causal judgment in physics. 

Rule I. 
No more causes of natural things should be admitted than are both true 

and sufficient to explain their phenomena. 

Rule II 
. Therefore, the causes assigned to natural effects of the same kind must 

be, so far as possible, the same. 

Rule III. 
Those qualities of bodies that cannot be intended and remitted and that 

belong to all bodies on which experiments can be made should be taken as 
qualities of all bodies universally. 

Rule IV. 

In experimental philosophy, propositions gathered from phenomena by 
induction should be considered either exactly or very nearly true notwith­
standing any contrary hypotheses, until yet 0ther phenomena make such 
propositions either more exact or liable to exceptions. 

These rules are not modified here by lviOND theory. We modify (Lat. 
modus- measure, manner), i.e. change, alter, transform, denote more pre­
cisely, mathematically adequate measure of the science of nature. We have 
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not started from apriori statement, but from inherited, existing knowledge, 
acquired 

Rational (Lat. rationalis) - phil. reasonable, endowed with reason, 
reason-based, scientific; math. which can be completely calculated, calcula­
ble, expressed without root sign; which can be calculated by whole quanti­
ties; (opposite: phil. empirical; mat h. irrational). 

by taking over and attaining the existing logical and mathematical stan­
dards, whereby the accuracy of mathematically most precise science of na­
ture has been relativized. Instead of Newton's introductory SCHOLIUM: 
about time, space, position and motion; absolute and real, three PREPRIN­
CIPLES are herein adopted: l. Of Existence, 2. Of Invariance, and 3. Of 
Determinacy. Instead of Newton's 8 basic definitions:" I. Amount of mat­
ter (mass) II. Quantity of motion (momentum) III. Innate forces (Inertia) · 
IV. Motive (acting) forces V. Centripetal forces VI. Absolute quantities of 
centripetal force VII. Acceleration quantities of centripetal force VIII. Cen­
tripetal forces 

We have here formulated only five definiti~~2s: l. Velocities at the point 
2. Impulses of motion at the point 3. Accelera~ions at the point 4. Inertia 
forces at the point 5. The action of the force. 

The first corollary and fig. l of Newton's axioms or laws of motion ([1], 
pp. 41/42), as well as Newton's Theorem l, are encompassed by our figures 
4 and 5, and it reads: Corollary l. A body acted on by forces acting jointly 
describes the diagonal of a parallelogram in the same time in which it would 
describe the sides if the forces were acting separately. 

Proof: The intersections of parallelogram sides are denoted by letters 
A, B, D and e. If only a single force M would act upon a body at point A, 
in a specified added time the body would move from point A to point B, and 
if at the same point only another force N would act, and the body would 
move from point A to point e, at the action of both forces simultaneously, 
the body would move along the diagonal of the parallelogram ABeD from 
point A to point D. MOND theory differs from standard rational mechanics, 
which the following mathematical relations make clear. 

Standards 

Laws of motion 

Author's modifications 

Principle of the action of forces 

I. f = o,-+ e; 
dv -

II. m- =F, 
dt 

III. A= R. A(F) = A(f). 
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Time 

N at ural parameter independent variable; at tr. T 

Space 

Three-dimensional Four-dimensional; attr L 

pl 

ds 2 = JijdyidyJ 

(i,j = 1,2,3), 

Distance 

p( s) 
ds 2 = 9J.LvdxJ.Ldxv 

(JL,V = 1,2,3,4) 

Velocity at the point (momentary) 

_ ar. ar 
v= -q+-

aq at 
· _ (·l ·n) q- q ' ... ,q 

__ ar. ar .
0 

v- aq q + aqoq 

· _ (·O ·l ·n) q- q,q, ... ,q. 

Impulses of motion 

Pi = ai/Jj + bi, 

Po=: -H 

.J· ·O Pi = aijQ + awq , 

Po = aojf'/ + aooq0 

Accelerations in space 

D ·i . q 
wt= --

dt ' 

D·o 
wo= _q_ 

dt 

Generalized forces 

Q Q,Qo 

Work 

A= fs(Qidqi + Qodq0 ) 

Variation principles 

J It:l Ldt =o J It:l (A( P)- A(i))dt =o 

Kinetic energy 
l . . . 

Ek = 2aijq1q1 + biq1 + c(q), 

Differential equations of motion 
DqJ Dq0 

aijqj + rjk,iqjqk = Qi, aw-;jj: + awdt = Qi, 

Lagrange's equations 

157 
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D ( 8L) =O 
dt oci 

D (ac) =O 
dt aq_i ' 

D (ac) 
dt 8q0 =o 

Hamilton 's equations 

~(~~)=o D (ac)= 0 
dt aq_i ' 

D (ac) 
dt 8q0 =o 

Equations of perturbed motion 

Space integration 

f(dvi + rjkvidxk) =? {Dvi =vi+ ci 

in point 

lnvariant generalization stability criterion 

La p unov theory. For different iai equations of motion of a sclero­
nomic system (8.12) and (8.13) can be found positive definite function 
W(t, q1 , ... , qn) such that 

aw (Q aw) ·i 0 (. 1 ) 8t + i + oqi q :::;; z = ' ... ' n 

the equilibrium state q = qo, p= O or q =O, q =O is stable. 

Newton-Kepler's law of gravitation 

F _ m1 m2 F _ m1 m2 
- /'i,--2-, - x--, 

p p 
p2 + pp _ v2 

/'i,= 6,67 X w-8cm3g-1s-2 , X= or 
m1+m2 

Paradox of Lunar motion 

F0 ~ 2, 5FEB FEB ~ 3, SF0 

Radius of the Earth's gravy sphere 

260000km, or 720000km 1450000km 
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Planetary space metric 

3-metric 4-metric 

Considering such and comparisons, the author of this book was asked 
significant and logical questions at scientific meetings: "Do you find to date 
assertions of standard mechanics wrong?", "Assuming your assertions are 
right, how do you explain the fact that it hasn't been noted in practice?" 
Avoiding the word "wrong" the answer was that the assertions are more 
general and complete. From Aristotle to Galileo and Newton, respectively, 
a viewpoint was accepted that a body has uniform motion under the action 
of a constant force. After Newton wrote his first axiom or law of motion that 
a body will remain in uniform motion in a straight line in the absence of 
forces, philosophy was assessing and finally assessed Aristotle's view wrong. 
Such a rough evaluation was neither proposed by Newton nor by Einstein, 
who did not call incorrect the postulate of rectilinear motion, but used a 
more complete and ni cer expression saying that "rectilinear motion deri ves 
neither logically nor experimentally from experience". 

' Example of a beam bridge (the sim plest structural form for a bridge) 
provides a simple answer to another question - even though such object of 
mechanics is considered, excluding the calculations of axial forces, practice 
always allows for possibility of displacing' one· end. So, this fact has been 
noted in practice. The approach presented herein extends mathematical 
knowledge to be applicable in the theory of body motion, entailing some 
other different views of some attributes of motion. The book points out 
novelties in more detail than it describes familiar and accepted relations. 
Thus, for example, a detailed distinction between 'material point' and 'par­
tide' is provided, as well as between 'covariant integration' and 'standard 
integration' of differential.equations of rotational motion of a rigid body. It 
is emphasized that a model of material point can be used to develop the 
theory applicable to all mechanical objects. 

Preprinciples preceding the entire body of the book, the starting point 
of mechanics is unambiguously determined; its fundamental concepts of ex­
istence are mass, distance and time, and thereby its realm of investigations 
by means of three sets of real numbers and changes of three orientation 
vectors; the concept of geometric spaces has been abandoned but not the 
concept of the volume of a body; the possibility of identity of two particles 
has been ruled out, which geometrically distinguishes the concept of par­
tide from both material and geometric point, thus making redundant 'the 
law of impenetrability'. The possibility of determination of motion is pre­
dicted a priori, however, the accuracy to ::~,chicve it by available knowledge 
of relevant natural parameters at some particular time moment of motion is 
relativized. Relativized is the knowledge of lhe state of motion and rest in 
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mechanics, which is described by mathematical relations in various coordi­
nate systems, a prerequisite for invariance that natural properties of motion 
do not depend on formal manner of describing. Consequently, the preprinci­
ples objectify the subject of theoretical mechanics but relativize its general 
knowledge; they are the accompanying corrector and verifier of all assertions 
of the theory of body motion. The basics of mechanics include definitions 
of five concepts only, which can be employed to upgrade the entire theory 
of the body motion. In accordance with the preprinciples, initially it was 
necessary to open up the problem of the choice of base orientation vectors, 
unchangeable in time. Unlike the definition of velocity by means of bound­
ary values for distance, the definition of acceleration did not include a vector 
to a vector boundary transfer, so that a standard definition of acceleration 
as natural source of velocity per time has been accepted. In describing the 
impulse of motion, emphasis is placed on the importance of i:hertia tensor 
and its distinction from geometric metric tensor. This definition, as the 
others, remains in the entire theory presented later, excluding from current 
considerations the impulse of motion as a negative energy (Hamiltonian), 
i.e. the work of the forces. The term 'impulse of motion' is used instead of 
'impulse' to make it distinct from 'the impulse of force'. The definition of 
the inertia force is used to determine the dimension of the force in general, 
which later comes to the fore when introducing and dimensioning various 
dynamics parameters, as well as in formulating the laws of dynamics. 

The concept of 'law' has been attributed an unambiguous meaning of the 
determinant of the force; this is more markedly incompatible than Newton's 
laws, but it is used to make strict distinction between the concept of the 
law in mechanics and the concepts of the principle and theorem. Dominant 
place in this chapter is given to the law of constraints, which points out that 
the relation between material points or partl.cles can be abstracted by the 
force, i.e. the constraints are the sources of the forces, and mathematical or 
thought relation termed constraint has to be distinguished from the concept 
of the mechanically objective existing constraint. A more prominent place 
is given to Kepler's laws compared to Newton's gravity force. Laws of grav­
itation represent inherited knowledge about mutual motions of bodies, but 
the formula for the force by which two bodies attract one another has been 
altered. Consistent interpretation of the concept of law remains in the After 
word. For 'the force of mutual attraction' a formula is derived to be used 
for certain assumptions, to develop a modified formula of Newton's gravity 
force. By omitting the determinants of other forces, i.e. laws of dynamics, 
for brevity, a newly introduced concept of the lav·: of gravitation is not chal­
lenged. The section The principles of mechanics contains four principles that 
can each become a basis for developing the entire theory of body motion. 
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The principle of equilibrium is assigned, not without reason, the largest 
part of the text despite being based on the smallest number of definitions 
and consequent determinants. But it is sufficient to embrace all motions 
of bodies coupled by any constraints in any coordinate systems. And con­
sequently the action of the moment of a couple in a system of material or 
dynamic points subjected to constraints has been shown. From the princi­
ple it has reversely originated the necessity for modification of the formula 
of gravity force or calling into question the validity of differential equations 
of motion with multipliers of constraints. By introducing additional defi­
nition of the concept of work, the principle of work has been formulated. 
Unlike the vector invariant of the principle of equilibrium, the principle of 
work is expressed by scalar invariant, whereby difficulties in summation of 
the coupled vectors are avoided. Consequently there occurs, apart from po­
tential energy, 'the rheonomic potential' as the negative work of the force 
of constraint change; also, it is shown that kinetic energy is the negative 
work of the inertia force. In his own manner the author characterizes the 
elementary works on real displacement, possible displacement, as well as 
the work on possible variations. By introducing the additional coordinate -
rheonomic coordinate - the principle of rheonomic constraints solidification 
is abandoned, so the relation for the principle of work is expanded by a 
single adequate addendum. This has been preceded by a modification of the 
constraints' variations as well as of the work of a mechanical system with 
rheonomic constraints. The concept of work was used to define the concept 
of action, which is the object of a general integral variation principle re­
ferred to as the principle of action. For such formulations of the principle, 
at the unique concept of variation, the well-known classical integral varia­
tion principles occur as a consequence. Since the preprinciple of existence 
takes time as an independent variable, being as such it does not vary, this 
integral principle is shown to be invariant on expanded configuration mani­
folds TMn+l and T*Mn+l the same as for schleronomic systems on TMn 
and T*Mn; in other words, it is shown in the form by the same relations for 
autonomous and non-autonomous systems. A more substantial meaning of 
this principle is expressed in Chapter IV in the proof for the theorem of op­
timal control of motion. On the grounds of the first four definitions and the 
definition of constraint, the differential variational principle of constraint is 
expressed, which essentially scalarizes the vector invariant of the equilibrium 
principle. By describing the constraint as a homogeneous quadratic form of 
the acceleration vector coordinate over the inertia tensor, the possibility of 
its transformation into any coordinate system has been proved. From the 
requirement that the constraint has the lowest value on real motion, it is 
easy to arrive at ordinary scalar differential equations of motion, expressed 

l 
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by the functions of the constraint. Here, it is explicitly explained what the 
concept of theorem implies in mechanics. Natural derivative with respect 
to time is employed to prove the theorem of change of impulse and the the­
orem of change in kinetic energy; they both have, in accordance with the 
preprinciples, the invariant sense and differ from accepted approaches of an­
alytical mechanics. Determination of motion by the solutions of differential 
equations of motion is devoted mainly to undeveloped covariant integra­
tion, first integrals and covariant integrals; Poisson brackets are extended 
for rheonomic systems. A short and clear enough attention was focused on 
the modification of cocyclic energy integrals. The ending of the chapter is a 
section on The stability of motion and rest that assesses the accuracy and 
validity of the solutions of differential equations of motion, depending on 
the observed dynamic and kinematic parameters. In addition to quoting, 
not without reason, the thoughts of a great and esteemed professor Nikolai 
Gurevich Chetaev about false modernization, not less topical today than 
at the time they were written, the author presents general and covariant 
differential equations of perturbations and the criterion of the stability of 
equilibrium state of motion and rest of mechanical systems: The book is 
rightly called a monograph because it constitutes a theoretical entirety based 
on the author's results published in scientific journals and monographs, re­
ferred in bibliography. In short, this theory encompasses all mechanical 
systems, rigid and deformable bodies being implied. The author's concep­
tion of the application of rheonomic coordinate to deformable media is not 
missing herein. It proved that deformable bodies can be represented as a 
system of material points with rheonomic constraints and that deformable 
medium can be modelled as (3+ l )-dimensional geometric, kinematic or dy­
namic with the metrics. 

The far-reaching significance of this metrics for learning about the pro­
cesses in nature the author perceives from the pages of this and other books 
in mechanics. Metrics inspires the introduction of other adequate examples. 
More than that, at the end of this book metrics is used to challenge any 
view that mechanics, as a science of body motion, was finished long ago; 
on the contrary, new pieces of information about the body motion and in­
teraction between bodies are presented. Grateful recognition. All scientific 
contributions have been previously presented at scientific seminars of the 
Mathematical Institute of Serbian Academy of Sciences and Arts, starting 
from the first one on March ll, 1959: V. Vujičić, Identification of trajec­
tories of variable-mass point with auto-parallels, under the chairmanship of 
academic M. Tomić, and to the last lecture on March 22, 2014 at the semi­
nar of probability logic titled Numbers and vectors, under the chairmanship 
of Prof. Dr. M. Rašković having this fact in mind, the author points out 
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that Mathematical Institute of Serbian Academy of Sciences and Arts has 
provided multiple contribution to science, as evidenced by bibliography. 
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