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PREFACE

The present book has grown out of a selection of lectures on mo-
del theory 1 have given in recent years at the Mathematical Institute
and the Faculty of Science in Belgrade. These lectures were mainly
attended by graduate students and senior undergreduates. The book is
therefore intended for those who study model theory and its applica-
tions. The book is designed as an excursion through the main topics of
classical model theory. The most important constructions and theorems
of model theory and their proofs are presented.

Boolean algebras play an important role in this boock. The use
of Boolean algebras in model theory is prolific. We have applied them
in many model-theoretic constructions, but we also have applied model
theory in the proofs of certain properties of Boolean algebras.

Basic constructions of models are presented in the book, such as
the method of constants, ultraproducts, and elementary chains of mo-
dels. Notions such as realizing and omitting types, saturated models,
as well as their applications are also given. A few words are devoted
to abstract model theory. An explanation is given why the first order
logic has a distinguished position among all the types of logics
(Lindstr8m’s theorem). Some extensions of the first order logic are
considered in more detail. Special care is given to the first order
logic with additional quantifiers. For example, Keisler's completeness
theorem for the first order logic with the quantifier "there exist
uncountable many” is given, and some applications of this theorem.

The book contains sufficient material to cover a first course in
model theory. However, we could not cover all the important topics in
model theory, since the selection of material reflects, in a way, the
taste of the author. Anyhow, there are books of an encyclopedic nature



on this subject, and the reader is directed to consult them whenever he
needs more details.

After reading the book, one can proceed to advanced topics, such
as nonstandard analysis, models of set theory, models of arithmetic,
infinitary logic, model-theoretic algebra, etc.

We suppose that the reader is acquainted with some parts of the
naive set theory. This includes the basic properties of ordinal and
cardinal numbers, and, partially, their arithmetic. We have adopted
Von Neuman'’s representation of ordinals, so we have taken that every
ordinal is the set of all the smaller ordinals, therefore 0=g, 1={0},
2z{0,1}, ..., w= {0,1,2,...}, ... . Here g denotes the empty set. The
set of all natural numbers is denoted by w, i.e. o= «w = {0,1,2,...].
We do not distinguish ws and Rq. If f:A—»B is a mapping from A into B
and XgA, then

f]X denotes the restriction of f to the set X,

f{X}= {f(x): xeX}, but sometimes we write f(X) for f[X] as well,

fx or f(x) stands for the sequence fx;, fx2,...,fxa, where x de~

notes a sequence Xijy; Xz sesy Xao

The cardinal number of a set X is denoted by |X|, and the set of
all the subsets of X by P(X). Our metatheory is based on the ZFC set-
theory, and we shall not point out explicitly when we use, for ex-
ample, the Axiom of Choice or its equivalents. However, all exceptions
will be indicated, as the use of the Continuum Hypothesis or some
weaker variants of the Axiom of Choice.

Finally, I would like to express gratitude to my colleagues and
friends who have helped somehow this book to appear; to Professor Sla-
visa Pre$id, who stimulated me to write a Serbo-croatian version of
this text, to Milan Grulovié for his assistance in obtaining support
and his valuable comments on the text, and to Djordje (ubrié, Miodrag
Raskovié, Milan BoZié, Kosta DoSen and Zeljko Sokolovi¢ for their help
in reading the manuscript and remarks.

Final remarks are on usage and signs. The word "iff" is often
used instead of the phrase "if and only if". The end of a proof is
indicated by I

Belgrade, November 1986.



1. FIRST NOTIONS OF MODEL THEORY

Some logicians often define model theory as a union of formal
logic and universal algebra. By more detailed analysis, one can see
that the main subject of model theory is the relationship between syn-
tactical objects on the one hand, and the structures of a set-~theoretic-
al nature on the other hand, or more precisely, between formal langusges
and their interpretations. Therefore, two areas of logic, syntax and
semantics, both have a role to play in this subject. While syntax is
concerned mainly with the formation rules of formulas, sentences and
other syntactical objects, semantics bears on the meaning of these no-
tions. One of the most important concepts is the satisfaction relation,
denoted by ]=, a relation between mathematical structures and sentences.
Model theory was recognized as a separate subject during the thirties in
the works of Tarski, G8del, Skolem, Malcev and their followers. Since
then, this field, has developed vigorously, and has received many appli-
cations in other branches of mathematics: algebra, set-theory, nonstan-
dard sanalysis, and even computer science. We shall first study model
theory of first-order predicate calculus.

1.1. First-order languages

We shall define a first order language as any set L of constant
symbols, function symbols and relation symbols. Each of the relation and
function symbols has some definite, finite number of argument places.
Sometimes it is convenient to consider constant symbols as function sym-
bols with zero argument places. According to our classification, we have

L= Fncr U Relr. VU Consty,
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where

Fney= {seL: s is a function symbol of L},
Rel,= {seL: s is a relation symbol of L},
ConstL=z {s€L: s is a constant symbol of L}.

All these three sets are pairwise disjoint, and each of them may
be an empty set. Namely, we shall deal only with logic with equality.
The function ar:L—>© assigns to each se€L its length, i.e. the number of
argument places. By the remark above, if s€Consti, we define ar(s)=0,
while for seFnciLURel,, we have ar(s)zl. In most cases it will be clear
from the context what the lengths of the symbols of L are, so in such
cases the arity function will not be mentioned explicitly.

For example, we may take that L= {+,.,-,%5,0,1} is the language of
ordered fields, where

Fncr= {+,+4~}, ar({+)= 2, ar(-)=2, ar{-)= 1,

Reli = (5}, ar(2)= 2,

Constr.={0,1}.

If L and L’ are first order languages, and Le¢L’, then L’ is cal-
led an expansion of the language L, while L is called a reduct of L'. If
L’\L is a set of constant symbols, then we say that L’ is a simple ex-
pansion of L.

1.2. Terms and formulas

The terms and formulas of a first~order language L are special
finite sequences of the symbols of L, and the logical symbols of the
first-order predicate calculus (which shall be abbreviated PR!). The
logical symbols of PR! are the so-called connectives: A (and), v (or},
—> (implication), €» (equivalence), 1 (negation), then the equality sign
=, quantifiers V (universal quantifier), 3 (existential quantifier)}, and
finally an infinite sequence of variables vo, vi, v2, ... » In order to
enable a unique readability of terms and formulas, some auxiliary signs
are used: the left and right parenthesis, and the comma: ( ) ,. For eas-
ier discussion, we shall use metasymbols. Metavariables are x, vy, 2, Xo,
Yo, Z0, X1, ¥ty Z1, ..., and they may denote any variable vi , i€w, i.e.
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the domain of metavariables is the set Var=z {v¢,vi,v2,...}. Metaequality
is another important such sign and it will be denoted by =.

Terms, or algebraic expressions of the language L can be describ-
ed inductively:

1° Variables and constant symbols are terms.

2° If FeFnc, is of length n, and t;,...,ts are terms of L, then
F(ty,...,tn) is a term of L.

3°  Every term of L can be obtained by a finite number of applications
of rules 1° and 2°.

A somewhat more formal definition of the terms of the language L is
as follows:

Term® = Var U Constr,

Term®*i= {F(ty1,...,tn}: n€w, FeFncL, ar(F)=n,
t1i,.000ytn€Term®}, mew,

Termy= UpTerms .

Then the terms of L are exactly the elements of the set Term..
This definition allows further definitions of related notions, as well
as simple {(inductive} proofs of the basic properties of the terms. It
is not difficult to see that elements of the set Term, satisfy con-
ditions 1°,27,3°.

The complexity function co:Term.—>w of the terms is a measure of
the complexity of the terms, and it is defined in the following way:

If teTerm®, then co(t)=0.
If teTerm"\Term*-1, then co{t)= n, new

The complexity of terms can be visualized from the following diagram.
Letters F and G here are binary function symbols.
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co=2 { o . F(vo ,G(co ,C1)) e )
- z L\
AN
co=1 F(vo,Co) PR G{co,c1)
x\\ Py

( e e )
co=0 Vo W1 V2 +es C C1 C2 eas
2 ®

Var Consty

We shall suppose that the reader is already familiar with basic
properties of the terms and various conventions which have been intro-
duced for the easier use of this notion (rules about deleting parenthe-
sis, special notation for binary function symbols, possible priority of
function symbols, etc.).

Formulas of the first-order language L are defined in a similar
manner. First, the atomic formulas are defined:

A string ¢ is an atamic formula of the language L, if and only if
¢ has one of the following forms:

uszv, u,v are terms of L,

R{ti,tz,...,ta), R is an n-placed relation symbol of L, and

ty, t2, ..., tn are terms of L.

Let Aty denote the set of the atomic formulas of L. Then by the
previous definition we have

Atr= {u=v: u,veTerm.} VU

{(R(t1,...,tn): new, ReRel,, ar(R)=n, ti,...,tn€Term}.

Formulas of the language L are also defined inductively by the
use of an auxiliary sequence Fort, new, of sets of strings of L:
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Ford= At.,

Fore+1=z For® U ((@A¥): ¢,y€Forr} v
{(pw): ¢,yeForn} U
{: geForn} U
{(g—>V¥): ¢,yeForr} U
{(pe>y): ¢@,yeForr} U
{¥x¢: xeVar,geForn} VU
{3x¢: xeVar, ¢eForn},

Forp= UpForn.

Then the elements of the set For. are defined as formulas of the
language L. It is not difficult to see that the formulas satisfy the
following conditions:

1° Atomic formulas are formulas.
° If ¢, are formulas of L , and x is a variable, then

(ony), (oW), W, (9=V), (pey), Vxe, Ix¢

are also formulas of L.

3° Every formula of L is obtained by the finite number of use of rules

1° and 2°

In order to measure the complexity of formulas, we shall extend
the complexity function co to formulas as well. Therefore, co:Fori—o
is defined inductively in the following way:

If ¢eAt.,, then co(g)= O,

If ¢eFor®\For®-1, new\{0}, then co(¢)= n.

As in the case of terms, we suppose that the reader is familiar
with the basic conventions about formulas (rules on deleting parenthe-
sis, priority of logical connectives, etc.). In addition, we shall
shrink blocks of quantifiers, for example instead of WVxoW¥Xi...¥xa® we
shall write Vxox:...Xa®, whenever it is appropriate.

The notion of the free occurrence of variables allows us to de-
scribe precisely the variables of a formula ¢ which are not in the scope
of the quantifiers.

1.2,1. Definition The set Fv(¢) of variables which have free occur-
rences in a formula ¢ of L is introduced inductively by the complexity
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of ¢ in the following way:

1° If ¢eAty, then Fv(g) is the set of variables which occur in ¢.
2% Fv(w)= Fv(g).

37 Fv(gay)= Fv(ew)= Fv(g—y)= Fv(pey)= Fvig) U Fv(y).

4°  Fv(xp)= Fv(¥xe)= Fv(g)\{x}.

The elements of the set Fv(g) are called free variables of the
formula ¢, while the other variables which occur in ¢ are called bound.
For example, if ¢= (=0 —» Jy(x-y= 1))}, then Fv{g)= {x}, so x is a free
variable of ¢, and y is a bound variable of ¢.

If @eFori,, then the notation ¢(xo,Xy,..+,Xn), OF @XoXi...Xns 18
used to denote that free variables of ¢ are among the variables xo ,X1,+.
ceesXne

Formulas ¢ which do not contain free variables, i.e. Fvig)= g,
are called sentences. The formulas

0= 1, Wx(x=0 — Jy(x-ysl1))
are examples of sentences of the langusge L= {-, 0, 1}, where . is =
binary function symbol. The set of all sentences of L is denoted by
Sent..

The cardinal number of Fory is denoted by IL“, therefore “L“:
|For|.| . It is not difficult to see that for every first-order language L
we have

ILI= max(|L] % ).

1.3. Theories
The definition of the notion of a first-order theory is simple:

The theory of a first order language L is any set of sentences
of L.

Therefore, a set T is a theory of L iff T<Sent:. In this case
elements of T are called axioms of T. The main notion connected with the
concept of a theory is the notion of proof in the first-order logic.
There are several approaches to formalizing the notion of proof. For ex-
ample, Gentzen’s systems are very useful for the analysis of the proof-
theoretical strength of mathematical theories. The emphasis in Gentzen’s
approach is on deduction rules, as distinct from Hilbert-oriented sys-
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tems,

where the stress is on the axioms. Hilbert style formal systems

are more convenient in model theory, so we shall confine our attention

to them. Now we shall list the axioms and rules of inference for a first
order language L:

1°

Sentential axioms.
These axioms are derived from propositional tautologies by the si-
multaneous substitution of propositional letters by formulas of L.

Identity axioms.

If ¢eFor., teTerm., x€Var, then ¢(t/x) denotes the formula obtained
from ¢ by substituting the term t for each free occurrence of x in
¢. Sometimes, we shall use the abridged form ¢(t) or ¢t, instead of
o(t/x). Now we shall list the identity axioms:

xX=x
X1ZY1 A oo A Xn=¥n > t{X1y0009Xn)= t{¥y14.4.,¥n), n€w, teTermy.
X121 A oo AXaTYn —> (PXi.0.Xn € @¥1...Y0), @EALL .

Quantifier axioms
Vxgx —> ¢t, @eFor,, teTerm,, x€Var.
gt —> Ixex,

where ¢t is obtained from ¢x by freely substituting each free oc-
currence of x in ¢x by the term t.

Rules of inferences:

let ¢ and ¥ be formulas of L.

Modus Ponens: [*R @ =¥
14
Generalization rules: 9 —> Y provided x does not occur
@ —> ¥xy free in ¢
V=9 provided x does not occur
Iyx —> ¢ free in ¢

A proof of a sentence ¢ in a theory T of a language L is every

sequence VY1, Y2, ...,¥n of formulas of the language L such that ¢= yu,
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and each formula ¥4, i<n, is a logical axiom, or an axiom of T, or it is
derived by inference rules from preceding members of the sequence. If
there exists a proof of ¢ in T, then ¢ is called a theorem of T, and in
this case we use the notation T\~ ¢. The relation |- between theories
and formulas of a language L is the provability relation. 1If T=gs, then
we gimply write }— ¢ instead of ¢}— ¢, and ¢ is called a theorem of the
first-order predicate caleulus. If ¢ is not a theorem of T, then we
shall write ~T}-— ¢ for short.

Formulas of the form ¢ A @ are called contradictions. A theory T
is consistent if there is no contradiction y such that T} ¢. Another
important property which theories may have is completeness. A theory T
of a language L is camplete if for each sentence ¢ of L either T ¢ or
T . Finally, T is deductively closed if T contains all its theorems.

There is group of first-order notions which are related to effec-
tive computability. We shall suppose that the reader has some basic ide-
as of effective computability and arithmetical coding. So, if ¢€Fory,
then r¢- denotes the code of formula ¢. A similar notation is applied to
other syntactical objects (terms, elements of L, etc.).

A first order langusge L is recursive, if the set rlL-={rs-: s€L)
is recursive. Similarly, L is recursively enumerable if ~L~ is a recur-
sively enumerable set. A theory T of the language L is finitely axiomat-
izable, if T is a finite set of axioms. A generalization of this notion
is the concept of an axiomatic theory. A theory T is axiamatic or recur-
sive if T i.e. {r¢-: ¢€T} is a recursive set of sentences. The defini-
tions of notions introduced in this way can be broadened. Namely, two
theories T and S of the same language L are equivalent, if they have the
same theorems. Then a theory T is considered to be also finitely axio-
matizable (axiomatic), 1if there is a theory S equivalent to T which has
a finite set of axioms. It is interesting that the assumption of recur-
sive enumerability does not bring a generalization, as the following
theorem shows.

1.3.1. Theorem (Craig’s trick). Suppose T is a theory of a language L
with a recursively enumerable set of axioms. Then there is a recursive
theory S of the language L equivalent to T.
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Proof Since T is recursively enumerable, there exists a map
T:0—>Sentr such that T= {tn: new}), and fim——r1n~ 1is a recursive
function. Let y:w—>Sent; be defined by yn= ToATIA...ATn, n€w, and Sz
{yn: new}. Then T and S have the same theorems, i.e. T and S are equi-
valent theories. Furthermore, the mapping g:m—>-yu~ is also a recursive
function, because we may take, for example,

r&a-‘: 2r 0~ 3r i~ spa” T~

where psw is the n-th prime. Also, g is a monotonously increasing fun-
ction, since n$m obviously implies ~yn-S-yu~. Yet, from elementary re-
cursion theory, it is well known that the set of all values of a monoto-
nous increasing recursive function is a recursive set, therefore,

rS-= {ga: NEwW)= {rymn-: new)
is a recursive set.

A first-order theory T is decidable, if the set of all the theo-
rems of T is decidable (i.e. recursive) set, otherwise T is undecidable.
The most interesting mathematical theories are undecidable. However, the
following proposition gives a test of decidability for certain theories.

1.3.2. Theorem Suppose T is sn axiomatic and complete theory of a re~
cursive language L. Then T is decidable.

Proof Let T be the set of all the theorems of theory T. Since T is
complete, for each geSent. we have @eT" or weT . If for some sentence ¢
it holds that ¢, weT', then T = Sent., and since Sent, is a recursive
set, it follows that T' is recursive as well.

Suppose the second, more interesting case holds, i.e. that T is a
consistent theory. Since T is recursive, the set (of all the codes) of
proofs may be effectively listed. By the completeness of T, for each
sentence ¢ of L either ¢ or W should occur as the last member of a
proof in the list. In the first case, ¢ is a theorem of T, and in the
second case, ¢ is not a theorem of T by the consistency of T. The pro-
perty of T Jjust described, defines an algorithm for decidability of
T}—- @, where geSent.:
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Generate all the proofs of theory T, and look at the
end of each proof, until one of the formulas ¢, W
appears. If ¢ occurs then ’I‘|-— ¢; otherwise ~T}- g¢.

We know that the search will stop with this algorithm, since
either ‘rf—— ¢ or T[— xz.

Now we shall list several elememtary, but important, theorems
from logic without proofs.

1.3.3. Deduction Theorem Suppose T is a theory of a language L and
T,"' ¢ where geFor,. Then, there are sentences 08¢, 01, ..., 6a€T such
that

-6 AB1 A ... AB0 = g.

As 8 consequence of this theorem we have that a first order theo-
ry T is consistent iff every finite subset of T is consistent.

1.3.4. Lemma on the New Constant Let T be a theory of a language L,
and assue ¢ is a constant symbol which does not belong to L. Then for
every formula ¢(x) of L we have: if T}~ ¢(c), then T|—— Vxo(x).

The proof of this lemma is very easy: if in the proof of ¢(c)
from T, the constant symbol ¢ is replaced by a variable y, which does
not occur in that proof, then we shall obtain a proof of ¢(y) from T,
and by the inference rule of generalization, the lemma follows at once.

A formula ¢ of a first order language L is in a prenex normal
form, if ¢ is of the form @ y1@yz...Guysy, where ¥ is a formula without
quantifiers, and Q ,@,...,Qn are some of the quantifiers Vv, 3. In this
case the formula ¥ is called a matrix.

1.3.5. Prenex Normal Form Theorem For every formula ¢ of a first order
language L, there exists a formula ¥ of L in a prenex normal form, such
that |- ¢ & y.

Another important notion is related to the last theorem. This is
the so-called proof-theoretical hierarchy of formulas of a language L.
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1.3.6. Definition Llet L be a first order language L. Then:
To%= Tb°= {peForL: ¢ does not contain quantifiers},
Ta+1°%= {oxy...xx@: kew, @ello},

Mhe1°= {WxoX1...Xx@: kEw, @EZRO}.

If 9eZs®, then ¢ is a Ia®-formula, and if @ella®, then ¢ is a [L%-
formula. If ¢ is a I,9-formula, then ¢ is also called an existentional
formula, while if ¢ is a M °-formula, then ¢ is called a universal for-
mula. The sequences Zn® and [L® of formulas of L define the proof-theore
tical hierarchy of formulas of L. By Theorem 1.3.5 every formula ¢ of L
is equivalent to a formula ¥, such that either Ye€Ls? or M. If YeZn®,
then ¢ is also called a In?-formula, and analogously, we shall define
the M- formulas. If ¢ is a formula of L and for some neéw there is a
VEDn® and a 8€M® both equivalent to ¢, then ¢ is called a As®-formula.
The main properties of the proof-theoretical hierarchy are described in
the following proposition.

1.3.7. Theorem

To%= T € &4°

1.4. Examples of theories

In this section we shall give several examples of first-order
theories. Most examples are from working mathematics, and we shall con-
sider some cases in greater detail. For every example, we shall exhibit
explicitly the corresponding language L, in which the axioms of the theo-
ry are written down.

1.4.1. Bxample Pure predicate calculus with identity, Jo. For this
theory we have: L=zg, T=g.

Therefore, the theorems of theory T are exactly the theorems of
the first-order predicate calculus which contain logical symbols only.
Here are several interesting examples of sentences which can be written
down in L:
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o1 X W (x=x: ),
02= Baxa (Uxi DX ) A Wx{x v x3x2))

on= 31 ..a%n (( /\ '!(m:‘vq))AVx(v X=%; ))
1<l i <n

13 Iy (X132 )
tz2= Faixe Hxi18x2 )

s Za...x( N Axsx))
"Q"’ﬁ“

We see that or says " there are exactly n elements”, and tn says
“there are at least n elements”. Observe that
}—One(tn!\'h?n*x) s !-—-tne(‘ic;/\.../\’lon-x).

In the following examples we shall often write open formulas in-
stead of their universal closures.

1.4.2. Example The theory of linear ordering, LO. In this case we
have: Lie= {£}, £ is a binary relation symbol. Axioms of T are:

LO.1. x=x reflexivity,
10.2. xSy A y$z —>» x5z transitivity,
10.3. X2y A yX —» X=By antisymmetricity,
10.4. xsy v y&x linearity.

A theory PO whose axioms are LO.1-3. is called a theory of par-
tial ordering. The binary relation symbol < is introduced by the defini-
tion axiom: %<y €> X<y A I=y.

1.4.3. Example The theory of dense linear ordering without endpoints,
DLO. The language of this theory is the same as in the case of 10, and
the axioms are the axioms of LO plus the following sentences:
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Vx3y (x<y), Y3y (y<x),
Yxy3z{x<y — x<z A z<y), Dy x=sy) .

It is not difficult to see that for each new\ (0}, DI_D|—~ Ta, where
Tn is the sentence from Example 1.4.1.

1.4.4. Example The theory of Abelian groups, Ab. In this case we have:
Relas=¢, Fncr= {+, -}, where + is a binary function symbol, and - is a
unary function symbol. Further, Consti= {0}. The axioms of Ab are the
following formulas:

Ab.1l. (xty)+z= x+(y+z) the associative identity,
Ab.2. x4y y+x the commitative identity,
Ab.3. x+0= x the identity of the neutral element,
Ab.4. x+(-x)=s 0 the identity of the inverse element.

It is easy to prove by induction on the complexity of terms: If
teTerm,, then there is a kew and integers mp,...,mx such that
Abl—— t=mx1 + ... + MXky where x;,...,Xx are variables.

1.4.5. Example Field theory, F. The language of this theory is the
language of Abelian groups plus some additional symbols, i.e. Lr=
LagU{:,1) where + is a binary function symbol, and 1 is a constant
symbol. Axioms of F are those of Ab plus the following sentences:

{(X+y)ezE x*(y-2), XY= yoX, x+1= x,
Hx=0) — Fy(x-y=1), X (y+z)= (x+y) + (x+2).
1(0=1)

It is possible to introduce a new function symbol -1 in the the-
ory F by the defining axiom: Wxy{1(x=0) — (x*y= 1 ¢ y=x1)). Then F
proves:

Wx({x20) - xx 15 1).

1.4.6. Example The theory of ordered fields, FO. The language of this
theory is Lro= Lio VU Lr, and the axioms are the axioms of theory F plus

the following formulas:

xSy —> (x+zsy+z2), XSy A 0Kz — x+28y+2.
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We note that the formula
X12 + o0 + X220 = X520 A ... A Xa=0
is a theorem of the theory FO.

1.4.7. Example The theory of Boolean algebras, BA. The language of
this theory is Lsa= {+, «, ', £, 0, 1}, where + and . are binary fun-

ction symbols, is a unary function symbol, £ is a binary relation sym-

bol, and 0, 1 are constant symbols. The axioms of BA are:

BA.1,2. (x+y)+z= x+(y+z), (xey) 28 x+(y-2),
bBA.3,4. X+ys y+x, Xe¥E yoX,

BA.5,6. x+0= x, x-1= x,

BA.7,8. x+x' = 1, xx' = 0,

BA.9. 1(0=1),

BA.10. XSy €> XE X+y.

It is easy to show that in BA we have

1° The relation symbol < satisfies the axioms of PO, With respect to
this ordering, the following holds:

SUp{Xi,esesXn}E ZicnXi, inf{xi,eee,Xn}E Thenxi o
2° For each teTerm,
BA|— t{X1y0009%)E Z t{aryeee,an)X1 % ..uXa% ,
«a€2n

where 2v= {a: a:n—>2}, ai = a({i+tl), O0<i<n, and x= X', x!= x.
This fact is proved by induction on the complexity of terms. In-
stead of + and - in the sequel we shall use the signs A and v.

1.4.8. Example Peano arithmetic, PA. This theory has the same language
as theory BA, i.e. Lpa= Lga. Axioms of PA are the following formulas:

P.1. (x' =0}, P.6. Xy = (x+y)+x,
P.2. x'=y' — x=y, P.7. "1(x«<0),

P.3. x+0= x, P.8. xXy — x<y v xsy,
P.4. x+y = (x+y)', P.9. x<y v x3y v yx,
P.5. x:0= 0, P.10. 1=0'.

(I) Induction scheme: Let ¢xy1...yan be a formula of L. Then the
universal closure of
@OYL+e.¥n A VX{OPXY1 o o¥n ~> X Y1 eoa¥n) —> VXPXYL ... ¥n
is an axiom of PA.
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This theory is also called the formal arithmetic. It contains
several interesting subtheories. At this moment we shall mention two of
them.

The first theory is P-. This theory consists of the axioms Pil-
P10. Therefore, PA= P~ + (I},

Another example is the Presburger arithmetic. It consists of
those axioms of PA which are expressed in the language {+, ', 0}, 1i.e.
in language Lea without the symbols ., <, 1.

All the examples we have listed are axiommtic theories, i.e.
with recursive sets of axioms. Also, all except the last example, are
finitely axiomatizable theories. Theories Jo, LO, DLO, Ab, BA are de-
cidable theories, while F, FO and PA are not. The Pressburger arithmetic
is also decidable and a complete theory.

1.5. Models

We have dealt in the previous sections mainly with syntactical
notions. On the other hand, the most important concept in model theory
is the idea of an operational-relational structure, or simply a model of
a first-order language L. Customary mathematical structures such as
groups, fields, ordered fields, and the structure of natural numbers,
are examples of models. When studying the properties of models, a dis-
tinctively important role is played by the concept of formal language
used to make precise the set of symbols and rules used to build formulas
and sentences. The main reason for introducing formulas is to describe
properties of models. Therefore, it is not astonishing that some proper-
ties of models are often consequences of the structure of sentences or
classes of sentences. The proofs of such features of models are often
called model-theoretical proofs.

By the methods of model theory many open mathematical problems
have been solved. One such famous problem is the consistent foundation
of Leibnitz Analysis, a problem which stood open for 300 years. Abraham
Robinson gave a simple but ingenious solution, and thanks to him there
is now a whole new methodology which is equally well applied to topolo-
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gy, algebra, probability theory, and practically to all mathematical
fields where infinite objects appear.

1.5.1. Definition A model is every structure A= (A,R,F,C) where A is a
nonempty set (the domain of A), R is a set of relations over A, Fis a
family of operations over A, and C is a set of constants of A.

By this definition of model we have:

If ReR, +then there is an new, such that RcA®, i.e. R is a rela-
tion over A of length n. The length of R is denoted by ar(R).

If FeF, then there is an new such that F:Ar——A, i.e. F is an n-
ary operation over A. To denote the length of F we write ar(F)= n.

Finally, C ¢ A.

If R, F, C are finite sets, for example R= {Ro, ...,Ra}, F=
(Fo, +«ssFu}, C= {80, ...y8x}, then A may be denoted as
A= (A, Fo;...y Fo, Ro, ..., Rmy) 80, «e.y BKx).

If these sets are indexed, i.e. R =<R;: jeJ>, F= <F: i€I>, C+=
<ax: keK>, we can also use the notation:

A= (A,Fi ,Rj,ax)i e1,; &1, kK.

1.5.2. Example 1° The ordered field of real numbers:
R= (R1+1':‘151011)~
Here, F = {+,+,-}, ar(+)= ar(+) = 2, ar{~-}= 1, and
R= {5}, ar{(g)=2, and C= {0,1}.

2' The structure of natural numbers: N= (N,+,-,’,<,0).

3° The field of all subsets of a set X: P(X)= (P(X}),u,n,c,q,X)
where P(X)= {Y: YX}, and for YeP(X), Ye= X\Y.

Models are interpretations of first-order languages. To see that,
let L be a first-order language and A a non-empty set. An interpretation
of L into the domain A is every mapping I with the domain L, and values
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determined as follows:

If ReRely, then I{(R) is a relation of A of length ar(R).
1f FeFeny, then I(F) is an operation of A of length ar(F).
If ceConsty, then I(c)eA.

Therefore, every interpretation I of a language L into a domain A
determines a unique model A= (A, I(Rely),I(Feni),I(ConstL)). The model so
introduced is written simply as A= (A,I), or A= (A,s*)seL, where for
sel, sAz I(s).

We see that in Example 1.5.2. R is a model of the language of
ordered fields, while N is a model of the language of Peano arithmetic,
and finally P(X) is a model of the language of the theory of Boolean
algebras.

From now on by the letters A, B, C;, ... we shall denote models,
and by A, B, C, ... their domains, respectively. If L is a language and
A a model of L, then seL and s* denote objects of a quite different na~
ture. However, if the context allows, we shall use the same sign to de-
note a symbol of L and its interpretation in A. This means the super-
script A will be often omitted from sA. The circumstance under which s
appears will determine if seL or if s is in fact an interpretation of a
symbol of L. Very often a structure A is introduced without explicit
mention of the related language. But, from the definition of structure A
it will be clear what is the corresponding language, and in that case we
shall denote the language in question by La. A similar situation may ap-
pear for a theory T; the corresponding language will be denoted by Lg.

Assume Lgl) are first-order languages, and let A be a model of
L'. Omitting sA for s€l’\L from the model A, we obtain a new model B of
L with domain Bz A. In this case, A is called an expansion of model B,
while B is called a reduct of model A. 1f I and I' are interpretations
which determine B and A, respectively, we see that I= I'|L.

1.5.3. Definition let A and B be models of a languasge L. Then B is a
submodel of A, if and only if BcA and

if ReRel, is of length k, then RE= RA n Bk,

if FeFen, is of length k, then F®= FA|Bk,

if ceConsty, then cB= c*,
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The fact that B is a submodel of A, we shall denote by BgA. For
example (N,+,+,%<,0,1) € (R,+,+,%,0,1), but for ¥Y<X, Y#X, it is not true
that (P(Y),u,n,c,q,Y) € (P(X),y,n,¢,s,X).

Algebras are also special types of models; they are models of
languages L, such that Relr= g. As in the case of algebras, it is pos-
sible to introduce the notions of homomorphism and isomorphism for ar-
bitrary models.

1.5.4. Definition Let A and B be models of a language L, and f:A—>B.
The map f is a hamomorphism from A into B, which is denoted by f{:A—>B,
if and only if:

1 For ReRel., ar(R)= k, for all ai,...,8:€A, RA(as,...,ax) implies
R*{fas,...,fax); in this case we say that f is concurrent with
relations RA, RB.

2° For FeFcni of length k, for all a:i,...,ax€A,
f(FA(a;,...,ax))= FB(fa;,...,fax); in this case we say that f is
concurrent with operations FA, FB.

3° For ceConst., f(cr)= cB,

Similarly to the case of algebraic structures, we have the fol-
lowing classification of homomorphisms:

f is an embedding, if f is 1-1.

f is an onto-hamomorphism {or epimorphism), if f is onto.

f is a strong hopamorphism, if for every k-ary relation symbol R
of L, and a1,4...,8k€A, RA(a1,...,ax) holds iff RB(fai,...,fax)
holds.

f is an isomorphism, if f is 1-1 and a strong epimorphism.

f is an autamorphism, if f is an isomorphism and A= B.

Suppose f:A—>B is a homomorphism. Then we shall use the fol-
lowing conventions:

If f is an embedding, we shall say that A is embedded into B.

If f is an onto map, we shall say that B is a homomorphic image
of A, and we shall occasionally note this fact by B= f(A).

If £ is an isomorphism between mudels A and B, then we shall
write f:AxB. The notation A*B is used to indicate that there is an iso-
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morphism f:AxB, and in this case we shall say that A and B are iso-
morphic.

The set of all the automorphisms of a model A is denoted by
Aut A. It is not difficult to see that Aut A is a group under function
multiplication; this group will be denoted by Aut A. The set of all
automorphisms of a countable model has the following interesting
property.

1.5.5. Theorem (Kueker) Let A be a countable model. Then
|Aut Al > R implies JAut A}= 2% .

Proof First let ug introduce some notations. A finite permutation of the
set A is every permutation of a finite subget of A. Further, let G be a
subgroup of Aut A. A finite permutation p of A is extendible (with res~
pect to G}, if there exists a ge€G such that p¢g. Finally, G is a comple-
te group, if it satisfies the following condition:

If po €pPL €DP2 & oa» is a chain of extendible finite
permutations, and f= Uppn is a permutation of A, then feG.

Now we shall proceed to the proof of the theorem.
Claim 1. Aut A is a complete group.

Proof of Claim 1 let f= Uspn where pp € p1 € ... 1is a chain of ex-
tendable finite permutations of A, and suppose f is a permutation of A.
We shall show that f is concurrent with operations of model A. So, let
F be an n-ary operation of model A and choose a;,...,8.€A. As A= dom f=
Undom pn, there is an mew such that a;,...,as,Fla;,...,8s)€ dom pu.
Further, pm is extendible, hence there exists a geAut A such that pesg.
Thus
f{Flar,»..yas))= pn(F(a:,...,an})= g(Fla:i,...,a))=
F(gai, . s88n) = F(Pmai, .0 pwan )= F(far,...,fan).
i.e. feAut A. In a similar way one can show that f is concurrent with
the relations of model A.

Claim 2. If G is an uncountable and complete group of permutations of a
countable set A, then {_G]: 2%
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Proof of Claim 2 First we shall show

(1) For every finite sequence ai,...,an of elements of A, there is an
element geG\{ia} such that g(a:i )= a, 1gisn.

To see this, remark that the set {(fai,...,fan}: f€G) is count-

able (since A* is countable), therefore since G is uncountable, there
are f,heG, so that f# h, and
(fa;,...,faﬂ: (ha;,...,han).

Then, g=f-1h satisfies condition (1).
'Further, we shall show

(2) If p is a finite extendible permutation of A, then there are dif-
ferent finite extendible permutations q, r of A such that pe<q,r,
and p# q,r.

In order to see (2}, let us suppose p(aj j= by, 1<isn. By (1),
there is a g€G, so that g(ai )= ai, 12i<n, and for some a€A, g(a)# a.
Since p is an extendable permutation, there is heG, such that pch. lLet
us define finite permutations q, r as follows

aqla; )= by, 1<%isn, q(a)= ha, r{ai )= by, 1£isn, r(a)= hga.
Then q, r are obviously finite permutations of set A, p < q,r, and q, r
are extendable, since q € h, r ¢ hg. Therefore (2) holds.

Finally, we shall prove:

(3) If p is a finite extendible permutation of A and aeA\dom(p)} then
there 1is a finite extendable permutation q such that p € q and
aedom(q) &/ <o ()0"'\%

Really, if p is extendible and p is given by p(ai )= by, 1<isn,
then there is geG such that peg. Then q= p U {(a,ga),(g a,a)} satisfies
the required conditions.

Now, let A= {ai,a2, ...,}. Since g is a permutation of the empty
set, and ¢ is extendible (every ge€G extends ¢), by (2) and (3) we can
build an infinite binary tree T which satisfies the following
conditions:
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Every member of T is a finite extendible permutation of A.
The ordering of T is the inclusion relation.

If pa«€T, then pao# Par, a€2n,

If a€2®, then ap€dom({pally cod om (T4

B - SR
o e

o

Hence, tree T looks as follows:

\/ \VAVAYE

Po1 Pro Pi1

\/ \/
\/

Therefore, if <t is a branch of T and f«= U p, then f. is a per-
by b, A:JOM‘Q{, A -codowke. per
mutation of set A. Since G is a complete group, it follows that f.:€G. On
the other hand, tree T has 2% branches, hence, {f:: t is a branch of T}
is of the cardinality 2%, i.e. lG|=

Then, by claims 1 and 2, the theorem follows.

We have employed a method in the proof of the theorem which is
often used in model theory: First build a binary tree, and then the pro-
blem of counting the members of a given set (in this case Aut A) is re-
duced to counting the branches of that tree. We shall later see other
examples of a similar nature.
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1.6. Satisfaction relation

When introducing syntactical objects of PR!, as terms, formulas
and sentences are, we had in mind certain meanings related to these no-
tions. Tarski’'s definition of the satisfaction relation p= determines
these ideas precisely. The introduction of this relation also solves the
problem of mathematical truth. Namely, a sentence ¢ will be true in a
structure A, if A[-= ¢. Finally, this formalization of mathematical truth
enables a mathematical analysis of metamathematical notions.

We shall first define the values of the terms in models. Let A
be a model of a first-order language L. A valuation or an assignment of
the domain A is every map u:Var—»A. Therefore, valuations assign values
to variables. The value of a term u{Xs,...;Xs J€Term in model A, denoted
by ur{ul, is defined by induction on the complexity of terms, assuming
that p{vi }J= a , i€ow.

If co{u)= 0, then we can distinguish two cases:
1° If u is a variable vi , then wWul= a .
If u is a constant symbol ¢, then uAfpl= ch.

Suppose now co(u)= n+l, and assume that the values of the terms
of the complexity <n are determined. Then there is an FeFeny, ar(F)zk,

such that u= F(ui,...,ux) where ui,...,ux are terms of complexity <n.
Then, by definition,

urpl= FA[uiAful, . .o uxAplld.

Instead of uA[pl, it is common to write uA(aj,az,...,a8c) or
ula;,az,...,ar), or u{ai,az,...,ar), if it is clear which model is in

question. Here, r is the number of variables which occur in term u.

If A is a model of a language L, an operation F of domain A is
derived if there is a t(xi,...,xs)€Term. such that for all a:;,...,a:€A,
Flai,+.vy82)= tA[a1,...,an]. The following proposition says that homo-
morphisms of a model remain concurrent with respect to derived opera-
tions.
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1.6.1. Theorem Let A and B be models of a language L, and h:A—B a

homomorphism. Then for every term u(xi,...,xn) of L and all &as,...,8n€A
the following holds:
h(ur[a1,...58a1)= utlha;,...,han].

Proof The proof will be performed by induction on the complexity of

terms. So, let u€Termy, and suppose that the variables vo,vi,... have
the values ag,a;,... under valuation p. First assume co(u)=0. We have
two cases:

1° ueConsty. Then: h{urA{pl)= h(ur)=z uB= ubfhai,...,han].

2° u is a variable x; . Then: h{uvA{u})= h{a )= utlha;,...,hanl.

Now suppose the statement is true for some fixed n€w, and let
co(u)z n+l. Then there is an FeFcni of length k and there are some terms
Ui,..syuk, such that uz F(ui,...,ux). Then the terms w are of complex-
ity <n and hence, by the inductive hypothesis, we have

h{ur{ul)= h{FA(uA[pl, ..., urpl))
= FR(huA{ul,...,hur{ul)
= Fa(uw{hyl,...,uf{hul)

so the theorem follows by induction.

Note The above theorem can be obviously Var ———em=> A
restated in the following way:

For every valuation u:Var—>A the h
displayed diagram commutes, i.e. hp

h(ur[ul)= utlhul. B

An algebraic identity of a language L is every formula usv, where
u,veTermy. We say that an algebra of language L satisfies the identity
uzv, if and only if for all ai;,...,an€A, ur{ar,...,anl= vA{a;,...,8n].

1.6.2. Corollary Let A and B be algebras of a language L, and assume
that B is a homomorphic image of A. Then every identity true in A also
holds in B.
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Proof Let h:A—>»B be onto, and suppose identity uzv holds in A. Then,
for arbitrary bs,...,bn€B, there are a;,...,an€A such that ha;=b;, ...,
ha;=by, ..., han=bs, so
ub[bi,...;bn]= utlhas,...,han]
= huA{as,.+e,8n1
= hvA (81,4408
= VB he1,..0 0}
= v*[by,...,bm].

This corollary is an example of a preservation theorem. Namely,
it says that some properties are preserved under homomorphisms, and in
this case these properties are those which can be described by identi-
ties. Some examples are the associativity and the commutativity of al-
gebraic operations. This is probably one of the places where one can
see the algebraic nature of model theory.

Now we shall turn to the most important concept of model theory.
This is the notion of the satisfaction relation, or the definition of
mathematical truth.

1.6.3. Definition Let A be a model of a language L. We define the re-
lation

Al ¢lul
for all formulas ¢ of L and all valuations p= <a; : iew> of the domain A

by induction on the complexity of formulas ¢:

If ¢= (u=v), u,veTerm., then A= ¢[u]l iff ur[pl= vA(p].

If o= R(ur,...,uan), Re€Rely, wi,...,uwm€Term., then
Ap= olu] iff (u‘ﬂ[u].---,uﬂhiu])eR*. i.e. RA(UALu], ... ur[id)
If ¢= W, then Ap= ¢[ul] iff not  Ap= y(ul.

If ¢= (y A 8), then Ap=glp]l iff Al ylpl and Ap= 6[ul.

If ¢= (y v 8), then Ap=olp]l iff A= ylu]l or Al= 8(n).

If ¢= (y — 6), then Ap= ¢lu]l iff not A= ¥lul or Ap= 8[p].

If ¢= iyxoX1...%Xn, i=n, then AfE= ¢lu] iff there is an
a€A such that A'— V(A0 )81 000 yBio1,8,8i41y00esBnyecels

If ¢= VxiyxoX1...Xn, i<n, then Al= ¢[u]l iff for all aeA,
A= (80,81 5000 s8i-1,848i+1000,80,00.10
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By the definition of the satisfaction relation, we see that the
value of A!= ¢{u] depends only on the free variables which occur in ¢.
A rigorous proof of this fact can be derived by induction on the com-
plexity of formulas. An archetype of this kind of proof is the proof of
Theorem 1.6.1. This enables us to introduce the following conventions.

If ¢= ¢(Vo,Viy++«yVn) and u=<a : i€w>, then we shall simply write
A|== @(a0 ,814...,8n) instead of A|- @[pl. Sentences do not have free
variables, so their values do not depend on the choice of a valuation,
i.e. if ¢eSent, and A}= 9lul, then for all valuations ¢ we have A|-
¢lo]l. Thus, we shall use the abbreviated form A!= ¢ instead of A§=- elul.

The definition of the satisfaction relation permits us to intro-
duce new model-theoretic concepts. One of these is the theory of model A
= {geSenty: Af= ¢}, A is a model of L.

It is easy to see that for each formula ¢ of L and every valua-
tion either A= ¢{u} or A= %{ul, thus, ThA is a complete theory. For
example, the theory of the structure of natural numbers, ThN, is com~-
plete, and hence it is called a complete arithmetic. As N is a model of
theory PA, it follows that PA < ThN, but by the G8del’s Second Incom-
pleteness Theorem, the set of theorems of PA is a proper subset of ThN.
Moreover, ThN is not an axiomatic theory, i.e. it does not have a re-
cursive set of axioms. One of the tasks of model theory is to solve the
problem whether a given theory is axiomatic.

Let T be a theory of a language L. A model A of L is a model of
theory T, if every axiom of T holds in A, i.e. T < ThA. In such a case,
we write A|v= T. For example, every ordered field, like the ordered
fields of rationals and reals, is a model of theory FO. Similarly, every
Boolean algebra is a model of theory BA. Every model A of a language L
satisfies all the axioms of first-order predicate calculus for L. Rules
of inferences (Modus Ponens and Generalization rules) are preserved by
the satisfaction relation, i.e. if p is a valuation of domain A, and
Al oufuly ..o y9nln), where ¢i,...,mm€For, and ¥ is derived by applica-
tions of these rules, then A'= V¥{ul. Therefore, the following theorem is
easily proved by induction on the length of proofs in T.
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1.6.4.80undness Theorem Assume A is a model of a language Land T is a
theory of L. If Af= T and T} ¢, where geSent., then Ap= ¢

Two models A and B of a language L are elementary equivalent if A
and B satisfy the same sentences of L, i.e. ThA= ThB. This relation be-
tween models is denoted by A = B. It is also said that A and B have the
same first-order properties. By induction on the complexity of formulas,
it is easy to show:

1.6.5. Theorem Let g:A x B be an isomorphism of the models A and B of
a language L. Then, for every formula ¢vo...va of L and every valuation
p= <& : i€w> of the domain A, the following holds:

A]— @80 s.esy8n] if and only if B]== ¢lgao,.4vy8an 1.

Since the value of a sentence in a model does not depend on the
choice of a valuation, we have the following consequence.

1.6.6. Corollary If A and B are isomorphic models of a language L,
then A = B.

Therefore isomorphisms preserve first-order properties. Embed-
dings of models which preserve first-order properties are called ele-
mentary embeddings. Therefore, an elementary embedding between models A
and B of a language L is every map g:A—>B, such that for all ¢ecFor.,
all valuations y of domain A, it satisfies

Ap= 9lao,...,as] if and only if Bp= ¢[ga0,...,280].

In this case we can use the notation g:A=<3»B. If A ¢ B and the
inclusion map ia:A—>B, ix:x+—»x (x€A), is elementary, then we can write
A < B. observe that A < B implies A = B.

A class of M of models of a languasge L is axiomatic, if there is
a theory T of L such that M= {A: Ap=T}. For example, the class of all
the ordered fields is axiomatic, and so is the class of all Boolean al-
gebras. Later we shall see that, for example, the class of all cyclic
groups is not an axiomatic class. The class of all models of a theory T
is denoted by MT). The crucial theorem of model theory says that for
every consistent theory T, MIT)# ¢.
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1.7. Method of new corstants

The introduction of new linguistic constants is a dual procedure
to the process of interpretations. Namely, to every nonempty set A there
corresponds a certain language La. If R is a k-ary relation over A, then
let R be a relation symbol of length k which belongs to La. Similarly,
if g is an n—-ary operation over domain A, we can introduce a function
symbol gela of arity k. Finally, if a€A then aeConsti(a) . The symbols R,
g, a are called names of R, g, a, respectively. We have a natural inter-
pretation of language La so defined: If sela, then sAz s. In this way

we have built a model A= (A,R,F,C), where R is the set of all relations
over A, F is the set of all the operations with domain A, and C =A. Of

course, it is not always necessary to consider the full expansion of set
A. For example, if A is any model of a language L, and a;,...,an€A, then
A'={(A,a1,...,80) 1is a simple expansion of A, and A’ is a model of the
language L= L U {@a1,:..48a}.

The following proposition is interesting for two reasons. The
first one relates to the inductive nature of the satisfaction class.
Secondly, this proposition shows that the satisfaction relation can be
defined only for sentences, if, of course, the starting model is modi-
fied.

1.7.1, Theorem Let A be a model of a language L and ¢vevi...vn€Fory.

Then, for all ac,81,...,8n€A, we have A|= ¢lag,a1,...,8n), if and only
if (Ayjeo,...s8a)f= ga0...8a.
Remark that ¢as...an is a sentence of L VU {ap,...;an },

Proof let us first prove an auxiliary statement:

(1) If tvo...vp€Term, and A’= (A,ag,...,8: ), then
tAag...ap= tAfap, .ayanl.

This claim is proved by induction on the complexity of term t:
if co(t)= 0, then:

if t= xi, then t*ap...8:= sy A" = a3 = tA{ag,...,aa],
if teConstr, then tA’ag...as= tA’ = tAz tAlap,...,an].
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If co{t}=z k+l, then for some mew and for feFenr of length m,
there are ti1,.,.,ta€Termy such that t= f{t;,...,ta), so

tA'8g.. .8 fA {(t;2 85 .. .80,..4,L0*" B0...8a)
(by the inductive hypothesis)
= fA(tiA[20,..498a)y . eytmran, ... a0])

t‘[aﬂ,-..,an].
Therefore, (1) follows by induction.

Now we shall proceed to the proof of the theorem. This proof is
also by induction on the complexity of formulas. So let us assume
co(¢)=0, where geFor,. Then we have two possibilities:

¢= (uszv), u,veTermy. Then
A= ¢lao,...,an], iff urlaa,...,8n)= vA{ag,...,80]
iff ur ap...an= VA 85 .. .80
iff A'p= gac...8n .

o= RB{urye..,us), ReERelr, ar{R)=m, w,...,un€Term . Then

A,-Qolan:*'-aan]s iff RA(uiAlag,...58a),...unr{B0,.¢.,8a])
iff RA (WA 80...Bajyse0,Uunr’B0...8a)
iff Afe ga0...8a .

Now, let 9 be a formula of complexity k+l. Then, we can distin-
guish the following cases:

@= (Y A 8). then the formulas ¥ and 6 are of complexity <k, so

A= ¢lao,...,aa] iff Ap= ylac,...,a0] and Ap= Blac,...,a4],
iff Ap=vyas...an and A'j= Ba0...@
iff A= gac...an .

9= W. Then the formula ¥ is of complexity <k, so
Ap= ¢lao,...,8a] 1iff Ap= Y[ao,...,2a]
(using the inductive hypothesis)
iff not A’ b= Yao .. .88
iff A'p= gao...80 .

The proof is similar for other logical connectives.
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Let ¢= 3vi y. Then we may take that i=0, ¢= ¢vi...va and
Y= Y{vo,Viyeasyva). Then
AF=9lay,...,aa} iff for some bea, A!— ¥(b,81y+0¢0,8a]
(using the inductive hypothesis)
iff for some beA, (A’,b)p= ybai...as
iff for some beA, A’j= 6{b],
where 0x= YXai...8, 80
iff  A'p= Xx0x
iff A’ fs QB0 .. +8a .

We shall apply the previous proposition in the following theorem
which says that there is no satisfactory model theory for finite struc-
tures. The reason is that the relation of elementary equivalence and
the isomorphisms of models coincide for finite structures.

1.7.2. Theorem Let A and B be models of a language L. If A is finite
and A = B, then A = B,

Proof Let |A|=n. By Example 1.4.1, we have Aj= ga, therefore Bj= aa,
i.e. }Bi:n as well. Let us now prove the following fact:

(1) If And B are finite models and A = B, then, for each a€A there
is a beB such that (A,a) = (B,b).

Really, let a€A and suppose B={b;,...,ba}. Assume there is no beB
such that (A,a) = (B,b), and choose a constant symbol ce€L (the so-called
new constant symbol). Then, for all isn there is a formula ¢ x of
language L and there is by €B such that (A,a)p= ¢uc and (B,bx )= Wac,
where c is interpreted by a in model (A,a), while in (B,Ix ) it is inter-
preted by by . Hence, (A,a)]= Aignyic, so by Theorem 1.7.1, it follows
that A|-= 3 ANgn 93X. Since A = B, we have B|=- 3X ANgn 93X, thus for
some ksn, Bp= (Ao ¢5x){bk]l. By Theorem 1.7.1, it follows that
(B,bx ) = Asgcn 93bx, hence, (B,bx ) p= Ajen 95C, if c is interpreted by ax,
and this is a contradiction to the choice of the formula ¢x. This
finishes the proof of (1).

By repeated use of (1), we shall find an enumeration {a1,...,8s)}
of domain A, so that
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{2} (Ay815.40982) = (Byb1,...,bn),
where (A,ai,...,an), (B,bi1,...,bn) are models of a language
LU(C],--.,C‘n).

Then, the map f:A—»B defined by fiai+—>bi, isn, is an iso-
morphism of models A and B. To see this, suppose that ¥ is a binary ope-
ration sywbol (we have made this sssumption for simpliocity) of L. If
& ,a; ,88€A satisfy ax= a ¥4 a;, then (A,a1,...,8a )=~ 8k= au *ay , so by
(2), (Bybiyecs, b.)'- x= by , i.e. x= by ¥ b;. Therefore, by the
definition of function f, we have f(a ** g;)= f(a ) ¥® f(a;}, i.e. f is
concurrent in respect to the operations A, ¥®, CObviously, f is onto.
This map is also 1-1, since

(Aya1, .00 y80) = & =y iff  (B,bi,...,bn) = b =by .

In a similar way one can show that f is concurrent with relations
of models A and B. Thus f:A ~ B.

The idea of constructing an isomorphism as it has been done in
the previous theorem is often exploited in model theory. It is
summarized in the following theorem.

1.7.3. Theorem lLet A and B be models of a language L, A= [ai: i€l},
= {by: i€l}, and A’z (A,a i ¢, B'= (B,bx )i « be models of the lan-
guage L U {bi : ieI} with ¢ interpreted in A’ by ai, and in B’ by by .
Then,

{(Ayai Jiam = (B, i & implies A = B.

As can be expected, the map f:ai+—3b, i€I, is an isomorphism of
models A and B.

Exercises

1.1. The set of positive propositional formulas is defined as the least
set P of propositional formulas such that :

Every propositional letter belongs to P.

If ¢,¥€P then (gay), (), (p—>¥)€P.

Show: (a) A propositional formula ¢(pi,...,pn), N€@,is equivalent to
a positive propositional formula iff ¢{1,...,1)=1.
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(b) For every propositional formula ¢ there exists a positive
propositional formula ¥ such that = ¢ & ¥ or = ¢ & W.

1.2. If ¢ is a propositional formula, let I'(¢) denote the set of all
propositional letters which occur in ¢. If ¢ and ¥ are propositional
formulas such that ¢ is not a contradiction, and ¥ is not a tautology,
then prove:

(a) If = ¢—>¢ then there is a propositional formula 8 such that
= ¢>6, p= 60—y, and ['(8) € T(P)NT(Y).
(b) If p= @Y then [(¢@)Nr(y)#g.

1.3. A sequence of propositional formulas Y1,...,¥a is increasing iff

for all 1<i<n, |- Vi-»i+1. If ¢(pi,...,pn) i8 a propositional formuls,

then for every increasing sequence of propositional formulas ¥;,...,¥n:
b= ¢(p1,P1VP2se.osP1V...Vpn) implies | @(¥i,...,¥%n),

where @(Vi,...,¥n) is obtained from ¢(p1,...,pn) by simultaneocus sub-

stitutions of propositional letters pi,...,pn Of ¢ by ¥1,...,¥5.

1.4. Let ¢ and ¥ be propositional formulas such that §- ¢ but not
[ ¥—>¢. Show that there is a formula 6 such that j= ¢—8 and |= 63y,
but "= 8¢ and “j= y—>9.

1.5. Prove : (a) The Deduction Theorem.
{b) The Disjunctive Normal Form Theorem.
{c) The Prenex Normal Form Theorem.

1.6. Assume T and S are theories of a language L. If TUS is an incon~-
sistent theory, then there is a @€Sent: such that Tt—- ¢ and S}—- x.

1.7. If L is an at most countable language, show that lLl: N. IfLis
an infinite languasge, show that lLﬂ: IL] . {(Hint: if k is na infinite
cardinal, then k*=k}.

1.8. Compute the number of theories over a language L if |L|=k.

1.9. Let Vozg, Vu+1= P(Vy), new, and V= LbV,. Prove that (V,¢) is a
model of ZFC set theory without the Axiom of Infinity.
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1.10. If TecTic... is a sequence of theories of a language L such that
(1) Theories Ta and Tu¢1 are not equivalent for any neo,
then T= UpsTa is not finitely axiomatizable.

Show that the condition (1) can be replaced by: For each new
there is a model A of Tr which is not a model of Tas:1.

1.11. Show that the following theories are not finitely axiomatizable:
(a) The theory of infinite models of theory Jo.

{b) The theory of fields of the characteristic 0.

{c) The theory of algebraically closed fields.

1.12. lLet T be a first-order theory with a recursive set of axioms. If T
has only finitely many complete extensions, then T is decidable.

1.13. Construct models A and B such that A is embedded into A and B is
embedded into A, but A and B are not isomorphic.

1.14. Let A and B be models of a language L. Show:

{(a}) If f:A—B is an embedding then there is a model A' such that dia-
gram {1} commutes,

{b) If f:A——>»B is an embedding then there is a model B’ such that dia-
gram {2) commutes.

A’ B’
(1) I \ (2) i I
§ 5
A——————3B A >B
f f

Here ia: x—>x, X€A.

1.15. Let A be an Abelian group in which every element is of finite
order, and assume that the system

miXi + .. + moaXas by
(8) : : m ; are integers, beAr,
1<i,jsn, b=(by,...,bn).
MaiX: + .os + MoaXn= by
has an unique solution in unknowns xi,...,xa for b= {(0,...,0). Show that

the system (S) has an unique solution for all beAr. (Hint: every finite-
ly generated subgroup of A is finite).



Chapter 1 35

1.16. Show that there are fields F= (F,+,-,0,1) and H= (H,+,-,0,1) such
that (F,+,0) = (H,+,0) and (F,+,1) = (H,-,1) but not F = H,

1.17. If A and B are countable densely ordered sets without end-points,
then A = B.

1.18. A linearly ordered set (X,2) is well ordered iff every nonempty
subset of X has the least element. Now, let A= (A,<) be a countable
linearly ordered set with the property: Every countable well-ordered set
can be embedded into A. Prove that every countable linearly ordered set
can be embedded into A. (Hint: Show that the ordering of rationals can
be embedded into A).

1.19. Prove the identities (xy)z= x(yz) and x+(y+z)=z (x+y)+z in PA.

1.20. Let N= (N,+,-,%5,’,0) denote the standard model of arithmetic.

(a) If M is a model of PA then there is an unique embedding of N into
an initial segment of M.

(b) Numerals are defined as follows: Q is constant symbol O of Lea,
i=0', 2=1', 3=2', ... . Show that for any term tx;...xx of Lea, and
NnyNi,.».,NkEN, PA’— n= tng...nk iff n= t"n,...nk.

1,21, If M= (M,+,-,',5,0) is a nonstandard model of PA (i.e. M is not
isomorphic to the structure of natural numbers), then the order-type of
(M,<) is w+t(0*+0)8, where @ denotes the order-type of natural numbers,
w*+w is the order type of integers, and 8 is the order-type of a dense
linear ordering without end-points.

1.22. If A is a model, prove that (AutA,.,i.) is a group, where « is the
function multiplication.

1.23. A model A of a language L is finitely generated if there is a
finite set ScA such that A= {tB[u]l: p is a valuation of domain A, and t
is a term of language L'}, where L’= L U {d: deS}. If A is a finitely
generated model and L is countable, show that |AutA] < Ro.

1.24. Construct infinite models A such that:
{a) AutA is finite. (b) tAutA&: . () iAutA‘: 2%,  (d) iAutA*) 2%,
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1.25. Let A and B be models of a language L, and assume AB. If ¢x;...%n
i3 a formula of L, and &1,...,8:€A, then

(a}) If ¢ is universal then Bp= ¢lai,...,as] implies A= ¢lai; ... 8a].

(b) If ¢ is existential then Ap= ¢lai,...,as] implies B~ glai,...,aa].

1.26. let A and B be models of a language L, and assume A<B. Then A<B

iff for all Yxi...Xn€L, all 81,...,80€A
B,— {(3xyx)lar,... 8x] implies there is a€A such that Bf= y[a,ar,...,aal.

1.27. Let A and B be models of a language L, and assume AcB. If for all
B1,.++,80€A and beB there is an feAutB such that fa;zay,...,fanzas, and
fbeA, then A<B.

1.28. If (Q,<) is the ordering of rationals, and (R,$) the ordering of
reals, show that (Q,<)<(R,<).

1.29. Let (Q,+,5,0) be the ordered additive group of rationals and
{R,+,%,0) the ordered additive group of reals. Show:

(a) (Q,+,5,0) < (R,+,%5,0).

{b} Let {(S) be a system of linear equations and inequalities over
rationals. Show that (8) has a solution in rationals iff (S) has a so-
lution over reals.



2. BOOLEAN ALGEBRAS AND MODELS

In algebraic considerations of metamathematics, Boolean algebras
play an important role. Many statements from model theory are nothing
but translated facts about Boolean algebras. In addition, Boolean alge-
bras are used for building special models: one of the most important ex-
amples are Boolean models of the set theory. 1In this section we shall
consider some basic properties of Boolean algebras and some related con-
structions from model theory.

2.1. Finite Boolean algebras

The most simple example of a Boolean algebra is the two-element
Boolean algebra 2= {2,A,Vv,’ ,5,0,1). This algebra is sometimes called a
propositional algebra. Powers 2° of this algebra are also Boolean alge-
bras. These are in fact up to isomorphism, the only finite Boolean alge-
bras. On the other hand, infinite Boolean algebras have much more com-
plex structure; therefore, their theory is more involved and far from
trivial. Another important example of Boolean algebras is the field of
all subsets of a set ¥. Namely, P(X)= (P(X),uU,n,¢,<,s,X) is also a Bo-
olean algebra, where P(X) denotes the power-set of X, and Ac=X\A for
AeP(X).

The relation £ of a Boolean algebra B= (B,v,A,’',%,0,1) is a par-
tial ordering of domain B, and operations v and A are supremum and in-
fimum in respect to this ordering i.e. for all x,y€B we have:

xvy= sup(x,y), xAay= inf(x,y).

We have the following classification of Boolean algebras:

B is complete iff every X¢B has the supremum.

Minimal elements of B\{0) are called atoms. Then
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B is atamic iff for every beB\ {0} there is an atom of B below b,
B is atamless iff B has no atoms.

When speaking about finite Boolean algebras, the following fact
plays an important role:

BAF- txi...xa= I tlar,..;a)xi® . xa®, teTermucna)
a€2n

This theorem is known in propositional calculus as a Theorem on
Disjunctive Normal Form. Remark that for ae2® the value of t(ai;... an)
is 0 or 1. A simple consequence of this theorem is that every finitely
generated Boolean algebra is finite., Really, if B is a Boolean algebra
generated by a set X= {81,...,an}, then B= {tBa;...an: teTermuc(sa) ).
Thus for every beB there are elements bi,...,;bs€B, m$2®, such that
bz byv ... Vbm, and every by is of the form a;%,,.an®®, a€2%., Since
there are at most 2" elements of the form a;®'...an?®, we can conclude
that lB[SZzw, i.e. B is finite. In the following, we shall use signs +,
+ for Boolean operations v and A.

Let B be a finite Boolean algebra, aeB\{0} and Ba= (xeB: x=a}.
Then it is epsy to see that Baz (B.,+,+,'?,%5,0,a), where x’' 2=x’ -a, x€B,,
is also a Boolean algebra (but not a subalgebra of B, as long as 0#1}.

2.1.1., Lemma If B is a Boolean algebra and a€B, af0,1, then BaBaxBa:.

Proof Let f:BaxBa:—>B be defined by f(x,y)= x+y. We shall show that
is an isomorphism between algebras B and BaxBa: .

(1) f is 1-1.
If f{xi,y1)= f(x%2,y2), then xa+y:= x2+y2, thus x;atyias xpatyza.
Since x;1,x2%8, ¥1,y2%8’, we have x;a=x:, Xza=xz, y:18=0, y:a8=0, so x3=xz.

Similarly, from x:ia' +y;18' = x28’ +y28’, it follows that yi=y;, hence (1}
holds.
(2) f is onto.

If beB, then from a+a’ =1 we can infer that b=ab+a’'b. On the other
hand ab<a, a'bsa’, so ab€éBa, a'beB,’ , i.e. f(ab,a’'b)=b, so (2) holds.

(3) f is a homomorphism.
The identities f(0,0)=0, f(1®2,1Ba’)=f(q,a' J=a+a' =1 are obvious.
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Further,

fllx:,y1 )4 (x2,¥2))= f£{xi4X2,y1472 )= {(x1+x2)4{yitye )=
(X1 4y YH(X24y2 )= f{x:i,y1 ) +f{xz,y2). Also,

(%, ) (x2,¥2) )= f(xax2,71y2)= xux24y1 72
Since i€ a, i £ a', it follows x3 +y; < a+a’, i.e. xiy;=0. Hence,

fixy, 1 )f{x2,¥2)= (a+y1 ) {xz24y2 )= XiXe+xa Y2 +Y1X24Y1 725 XaXa Y1 )2
i.e. f is concurrent in respect to the operations of algebras B and
B.xBa.: . Finally,

f{x,y)")= £{x 2,y 2}z ax’+a’y’= X’y'= (x#y)’'= fix,¥)’.
since x<a, ysa'. Therefore (3) holds.

A simple consequence of this lemmn is the representation theorem
for finite Boolean algebras.

2.1.2. Theorem Every finite Boolean algebra is isomorphic to some
algebra 28, néw.

Proof We shall derive the proof by induction on ]B! . If !B!:Z, then
obviously B = 2. Assume iB[)Z, and suppose the statement for all the
Boolean algebras of the cardinality <;B} . Then, there is a€B\{0,1}, so
by Lemma 2.1.1, B = BaxBa+ . But ;Baj, |Ba+ ]({B], therefore by the in-
ductive hypothesis, Ba = 2®, By» = 20 for some m,new, thus B x 2m+n,

If X is a finite set, say [X‘:n, then, by the previous theorem,
the field of sets P(X) is isomorphic to 2°. An isomorphism g:P(X) = 2t
is defined by k:Y +—ky, Y € X, where ky is the characteristic function
of set Y. From Theorem 2.1.2, we also have the following consequence.

2.1.3. Corollary If identity usv holds in a two-element Boolean al-
gebra, then usv is true in all the Boolean algebras.

In fact, if usv holds in Boolean algebra 2, then usv also holds
in all the powers 2¢, so does it by Theorem 2.1.1, in all the finite
Boolean algebras. If B is an arbitrary Boolean algebra, then usv holds
in all the finitely generated subalgebras of B, since all these
subalgebras are finite; hence, uzv holds in B.

The representation theorem for Boolean terms enables us to con-
sider in great detail the structure of {ree Boolean algebras. We would
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remind the reader that a Boolean slgebra B is free over a set X of
{free) genersators, if and only if for every Boolean algebra D, and every
map g:X—>D, there is a homomorphism

h:B—>D such that gch, i.e. that the h
displayed diagram commutes. Finally, B—m—>D
if one-element Boolean algebras are

adopted, i.e. if the axiom O#1 is ul

dropped, then all the Boolean alge-

bras mske a variety. By the fundamen-

tal theorem of the theory of univer- X

sal algebras on the existence of free

algebras in algebraic varieties, there exists a free Boolean algebra
over every set. The following theorem gives a condition for a set to be
a set of free generators of Boolean algebra.

2.1.4. Theorem A Boolean algebra B is freely generated by a set X, if
and only if B is generated by X and for all the different n elements
B1,+..,80€X, and all a€2r, a; ®) +.a, an £0,

Proof (—») Let ai,...,an€X be different, and ae2r. Further, let I= [0,1]
be a real interval and F a field of subsets of I* generated by sets
Az {{X1y.00yxn): O2x; £1/2).

Finally, let g be a map defined by g:a; A, isn. Since B is
free over X, there is a homomorphism h:B—>F, gch. Let us define for
AcIn, A0= In\A, AlzA, and f'= 1-B for Be{0,1)}. Then,

(ad1ye0eyan) € AL %01, . . NAg *®
i.e. A1 ®fl...NAn%Z 0. On the other hand

h(a®l,..a%8 )z A, aifl.,.NAy o0
so a1%...aamgf 0,
(¢~} Let @ be a free Boolean algebra generated by set Y of free gene-
rators, where |Y|= |X]. Suppose g maps set Y 1-1 and onto set X. Since @
is free, there is a homomorphism h:0—>B, gch. Algebra B is generated by
set X, and X= h(Y), thus h is onto. Let us see that h is 1-1, so assume
weQ, wE0, Set Y generates Q, hence w= wi+...+wx, where each w is of the
form by at,..byan, b €Y. Since w#0, the sum wi+...+wx is nonempty, thus
w2 by et.,.bpe® for some choice of different elements by,...,bn€Y and
a€2n, Therefore,

h{w)2 h(b1 % ...ba% )= h{by)et...h(bg)as= g(by )., .g{ba)ee,

Map g is 1-1, so g(bx ) are mutually different for different i’s.
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Further, g(bi )eX, hence, by the assumed condition, we have
h(bi)at...h(by)ar¥ 0, i.e. h(w)# 0.
In other words,
(1) for all weQ\ {0}, h(w)# 0.
Now, let h{a}= h(b), and let asb=z ab’+a’b be the symmetrical dif-
ference of elements a,beQ. Then, h(a)ah(b)= 0, so h(aAb)=0, thus by (1),
asb= 0, i.e. asb.

If aj,a824...,an are free generators of a Boolean algebra B, and
uP{ai,...,a8n)= vB(A1,...48a )

then, for every map g:X—>2, there is a homomorphism h:B—>2 such that
gch. Therefore, by Theorem 1.6.1, we have

uZ{gas,...,88n)= W2 (har,...,han )= hu*{as,...,8n )=

hvB(ai,...,8n)= v?(ha;,...,h8a= vZ2(gas,...,g8n ).
Since g was chosen arbitrarily, identity u=v holds in algebra 2, and,
therefore, in all Boolean algebras. For example, if three circular areas
Ki, Kz, K3 are so chosen in the plane that Keiffke2nKa3f § for all a€23,
then, by the last theorem, these circles , as subsets of the plane, ge-
nerate a free Boolean algebra. Hence, every identity u(x,y,2)= vi{x,¥,;z)
in three variables x,y,z, which is satisfied by these circles, holds on
all the Boolean algebras. This remark is in fact a proof of the validity
of Venn's rules for checking set-thecretical identities in three let-
ters. We also have the following consequence.

2.1.5. Theorem Let Bn be a free Boolean algebra generated by n free
generators. Then, By =~ 22"

Proof The proof we shall present is by induction on the number of free
generators. So, let bi,...,bn€B; be free generators of algebra Bn, and
suppose the statement for Boolean algebras generated with fewer number
of free generators. The subalgebra Byp.;CBn generated by elements
biyes.ybn-1 is also free, so, by the inductive hypothesis, Bus-1 = 274,
Further, by Theorem 2.1.4, we have for all a€2®

'b1 I3} ...bu-l‘“‘"bn‘"‘# Q,
Using this fact, it is easy to show that the map

g:1{x,y) +—>xbntyba’, X,y€Bu-1
is an isomorphism between algebras Bn and Bu-1xBa-1. Thus,

Bn » 22Wix 22"l 22T,
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2.2. Filters

Filters of Boolean algebras do not only have applications in
analyzing properties of Boolean algebras, but also in logic, set~theory
and topology. Very often, a topological statement has a natural trans-
lation into the language of Boolean algebras or model theory. The main
reason for this lies in the Stone Representation Theorem for Boolean al-
gebras. Ultrafilters make an important class of filters, whose signifi-
cance comes from the extreme properties of these objects. In Boolean al-
gebras, ultrafilters define maximal congruences, in logic, they provide
logical verification of statements, in set theory they have interesting
combinatorial properties, and in topology, ultrafilters give a method
for the description of convergence at infinity, as well as the compact-
ification of spaces. In this section, we shall speak about filters of
Boolean algebras only as much as we need them for model theory.

2.2.1. Definition ILet B be a Boolean algebra. A filter of B is every
subset FEB which satisfies the following conditions:

1€F.

For all xe€F and all yeB, x<y implies yeF.

For all x,yeF, x-.yeF.

A filter F is an ultrafilter of a Boolean algebra B, if F is a
maximal proper filter of B ("proper" means F#ZB). A simple example of a
filter of B is Facz {x€B: agx), where a€B. Filter Fa is called principal.
Here are some other examples of filters.

2.2.2. Example 1° Filters of the field of sets P(X) are also called
filters over set X. For example, the set F= {Y<X: Y¢ is finitel is a
filter over X.

2° In finite Boolean algebras every filter is principal; F is generated
by AF.

3" If h:B—C is a homomorphism of Boolean algebras B and C, then the
set F= {x€B: hx= 1} is a filter of B. If C= 2, then F is an ultrafilter.

The following proposition gives the equivalent conditions for a
filter to be an ultrafilter.
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2.2.3. Theorem Let F be a proper filter of a Boolean algebra B. Then,
the following are equivalent:

1° F is an ultrafilter of B.

2° For all xe€B either xeF or x' €F.

3° For all x,yeB, x+yeB implies x€F or yeF.

Proof (1°—2°) let F be an ultrafilter, and suppose x¢F, x€B. Then
the set D=z FU{zeB: there is ye€F such that x' y<z}, is a proper filter of
B, and this filter contains FU{x'} as a subset. But F is an ultrafil-
ter, hence, D=F. Since FU{x’' }<D, we have X' €F.

{2°—3") Assume 2° and let x+yeF, x,y¢F. Then x’ ,y €F, hence, x' -y €F,
so (x+y)x' ¥ €F i.e. O0€F, which is a contradiction. Therefore, x€F or
yEF,

(3°-»1°) Let FeD, F#D, where D is a filter, and take xeD\F. Since
x+x' =1 it follows that x+x'€F. So x€F or x'€F, hence x'€F i.e. x'€D,
Thus x-x' =0, i.e. D= B.

Nonprincipal ultrafilters are of special interest in model the-
ory. If F is an ultrafilter over a set I, then we have the following
possibilities:

1" F is principal, i.e. it is generated by a set AcI. If |A|22, then
there are nonempty subsets B,C<I such that A= BUC, BNC= g, so BeF or
CeF. This would mean that F is not generated by A, hence, A={a} for some
a€l, and F= {x<I: aeX]}.

2 F is a nonprincipal ultrafilter, so, for every ael, {(a)l¢F, thus
{a}ceF.Filter F is closed for finite intersections, thus, F contains the
filter from Example 2.2.2.

An easy consequence of the following theorem is that ultrafilters
exist. Let us first introduce the so-called finite intersection property
{abr. FIP) of subsets X of the domain of a Boolean algebra B:

A subset X of B has FIP iff

for all new and all X3 ,X2,...,%Xn€X, Xi*Xz°*...°'xa¥ O.
It is easy to see that every subset X of B which has FIP gene-~
rates the proper filter Fx= {ye€B: Xi...XnSy, NEW, X1,.+.,Xn€X}.

2.2.4. Theorem If F is a filter over a Boolean algebra and F is the
set of all the ultrafilters of B which contain F, then F= nF.
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Proof It suffices to prove NIF € F. Suppose the opposite. Then there is
aENnF, agF. Let S be the set of all the filters of B which contain F but
not a. Then, by Zorn’s Lemma set S has a maximal member, say U, and then
FcU, a¢U. Now, we shall show that U is an ultrafilter of B. Let us first
show that a’' €lU. To see that, let V be a filter of B generated by Uu{a'}.
This set has FIP, since if there is an x€U, a'x=0, then a2x, so ael, and
this is a contradiction. Thus Ve$, UcV, and by the choice of filter U we
have UzV. Further, let beB be any element and suppose bgU. Then the set
UU{b’' } has FIP, so, let W be the filter generated by this set. Then b’ eW
and UecW. Also a¢W, since a' eéW. Therefore, WeS, so, by the choice of
filter U, we again have W=U, i.e. beU.

So we have proved that for all xe€B, either x€U or x' €U, i.e. U is
an ultrafilter. Since FcU, it follows that UeF; thus, by the choice of
element a, we have a€U, which is a contradiction.

Corollary Every filter of a Boolean algebra B is a subset of an ultra-
filter of B.

Now, we shall consider the example of a Lindenbaum algebra of the
propositional calculus. Let F be the set of all formulas of the proposi-
tional calculus, and ~ the equivalence relation of F defined by

¢~ ¢y iff ¢ < ¥ is a tautology, ¢,y¥,€F.

Let B=F/~, and +,+,” be operations of set B defined as follows:
Suppose x,y€B and ¢,¥€F be such that x= ¢/~, y= ¥/~. Then,

xty= (gwW)/~, x+y= (eA¥)/~, X' = (W)/~.

Further, let O be the equivalence clas of a contradiction, and 1 the
equivalence class of a tautology. It can easily be shown that the oper-
ations +,+,' and constants 0,1 are well-defined, and Q= (F/~,+,,',0,1)
is a Boolean algebra. This Boolean algebra is called the Lindenbaum al-
gebra of the propositional calculus. Assume the set of all propositional
letters is of the cardinality k, where k is an infinite cardinal. For
every infinite set A, the set of all the finite sequences of elements of
A is also of cardinality |A|, therefore, F is of cardinality k. From
this fact we can easily conclude that Qr is of cardinality k, as well.
Namely, the classes of equivalences of propositional letters differ from
each other, thus, there are at least as many classes as propositional
letters, i.e. k.

Let py,pz,...,pn be distinct propositional letters. Then, for
every a€2r, p; “lAp; 2 A...Apn %" is not a contradiction, i.e.
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(pr/~ )% e{p2/~)2 <. .+ {pa/~)2ng 0.
Hence, by Theorem 2.1.4, the set {p/~: p is a propositional letter} is a
set of free generators of Qr. Therefore we have the following theorem.

2.2.5. Theorem Qr is a free Boolean algebra with pa«/~, a<k, as free
generators, where pe are propositional letters.

Let us describe the ultrafilters of Qr. If G is an ultrafilter of
¢r, then for every x€B either x€G or x’ €G. Therefore, { determines a
function t:k—>2 such that t«=1, if pa€C and ta«=0 if pq.¥G. Then the set
Xe= {pa¥a/~: a<k}) determines the filter G, i.e. if D is a proper filter
and X.<D, then D=G. On the other hand, for each t:k—>2 the set X: has
FIP, so, it is contained in an ultrafilter. Further, if v,u:k—>»2 are
different functions, then, for some a<k, tafpa, say ta=1 and pa=0. Thus,
if D and Dy are ultrafilters which correspond, respectively, to t and p
then pa«€D«\Dy, i.e. D¢ # Du. Hence, keeping in mind the well-known fact
that any two free Boolean algebras with sets of free generators of the
same cardinality are isomorphic, we have:

2.2.6 Theorem A free Boolean algebra with k free generators has 2k
ultrafilters.

Using this theorem, we can compute the number of set-theoretical
ultrafilters over any infinite set X.

2.2.7. Theorem (Kantorovic, Pospisl) The number of ultrafilters over
an infinite set X of cardinality k is 2¢“.

Proof First, let us prove:
(1) If B is a Boolean algebra, and Po,...,Pa, Q,...,Qs, are distinct

ultrafilters over B, then, Pofi...NPa@cN...Nuc# o.

Really, if P is an ultrafilter over B which differs from Q,...
«++,Qu, then, there are elements a;, i=0,1,...,n such that a; €P, a'€Q .
If a= ap...an then aePN(N;.aQ °). So, there are elements by , i=0,...,m,
such that by €Pi N(N;<nQ;¢), thus (1) holds.

A family X of subsets of X is independent, if for every finite
sequence of distinct elements Xp,...,Xn€X, and every t:{0,1,...,n}>2,
we have Xo*n...NXa *™"#g. Then,

(2) For every set X of cardinality k, there is an independent family X
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By Theorem 2.2.6, the Lindenbaum algebra Qr of the propositional
calculus with k propositional letters has 2% ultrafilters. Let J be the
set of all these ultrafilters. By {1}, J is an independent family. Fur-
ther, 2r is of cardinality k, so, there is a bijective map f:F/~—3X.
Then, Xt (f[P): PeJ} is an independent family as well, thus, (2) holds.
Observe that |X]= 2k.

For every Z2¢ X, the set ZVU {A¢: AeX \Z} has FIP, so, Zis con-
tained in an ultrafilter Dg. If Z# 2’ then for some AEX we have AeZ
and A°¢Z , so, A€Dg, Ac€Dz’, i.e. Dz # Dz’. Therefore, there are ultra-
filters over X, as many as there are subsets of X, i.e. 22K,

2.3. Boolean-valued models

By the definition of the satisfaction relation, the possible lo~
gical values of a formula ¢ in a model belongs to the set {0,1}, the
domain of the propositional algebra. The notion of Boolean structure, or
a B-model, where B= (B,+,’,%,0,1), is a Boolean algebra, is obtained if
it is allowed that formulas may have logical values in B. If one wants
to compute the Boolean value of a formula, it is necessary to suppose
some assumptions. For example, the completeness of a Boolean algebra
ensures the correctness of the definition of a B-value of a formula,
Therefore, we shall assume in this section that B is a complete Boolean
algebra, if not stated otherwise {as in Example 2.3.3}.

2.3.1. Definition let L be a first-order language. A B-model of a
Jangusge L is every structure A= {A,J}, where A is a nonempty set and,
if ceConsty, then J{c)eA,
if FeFnci, then J{(f) is an operation of length k=ar(F) of domain
AR,
if ReRel., then J(R):A®—B, where n= ar(R).

As before, we shall write sA instead of J(s) for seL.

We see that the notion of B-models differs from the concept of
standard models in the definition of the satisfaction relation. Namely,
the logical values can be arbitrary elements of a Boolean algebra B. To
make this definition precise, we would remind the reader that the supre-
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mum and the infimum of a subset X¢B are denoted by I x, Il x, respecti-
x €X X €X

vely. Further we shall enlarge language L by the names of elements of
domain A, i.e. we shall introduce the language La= L U {a: a€A}. The B~
value of a sentence ¢ of language la will be denoted by |¢||. Some-
times, if the context allows, the subscript will be omitted. The B-val-
ue of sentences then is every map | ‘.:Sent../——-)B which satisfies the
following conditions (in the next, we shall omit’f‘\hhe subscript a):

Equality conditions 1° |c£c|= 1.
2" farzcz = Jezaif.
3" Jersczfejeazes) < jer=caf.
4° 1If ReRel:, is of length n, then
ﬂc;Ecl' l... ICgECn' I'IRC:...Cnl < IRCI. ...c." .

The definition of | | goes further, inductively, as follows:

1° If ReRelr. is of length n, then for all a;,...,az€Consty
[Rar...8a]= RA(a1...20).

2" je A vi= jol vl

3% e vvl= fod + I

LI s B 1

5° leqvxI: ﬂaiAlfﬁal.

6°  J3xox}= Zaea|9a].

We can see that by this definition the 2-values of formulas ¢ co-
incide with the logical values in the sense of Definition 1.6.3. If
J#fs= 1, then we say that formula ¢ is true, or satisfied in structure A
{or more exactly: B-satisfied in A). A B-model is nondegenerate, if 0#1
in B. In this section, by two models we shall mean the standard models.

The most important applications of B-models can be found in
constructing models of formal set-theory, and they are used mainly for
proving independence results. At this time we shall consider models of a
simpler nature.

2.3.2. Example (Boolean product of models) Let A, i€l, be a family
of standard models of a language L. The product of models A is a struc-
ture A of language L., where A= [k A, and for f1,...,fn€A:

if ceConsty, then cA= (g A: igel>,



Chapter 2 48

if Fefney is of length n, then

FA(f1,.00,F0)=CFA (£ {i),...,fali)): i€D>,

if ReRel, is of lenfth n, then

RA(f1,...,fn), iff for all i€I, RA (f1(i),...,fa(i)).

This is the standard definition of products of models, and, by
this construction from 2-models, & B-model is obtained. By a simple
modification of the part refering to relations, a B-model is obtained,
where Bz 21:

RA(fryeesy,fa)= <RA (£ (1i),...,fu({i)): i€D>.

Therefore, we have that RA:AP—»21 in this case. Products modi-
fied in this way are called Boolean products of models.

2.3.3 Exsmple {(Lindenbaum algebras of rich theories). Let T be a the-
ory and ~ a binary relation defined on Sent. by: ¢ ~ ¢ iff T}— @ ey .
It is easy to see that ~ is an equivalence relation and:
1° If 9 ~ ¢, then W ~ “W.
2° If ¢n ~ Y, ¢ ~ Y2 then (o A@)~ (Y1 AV2),

{r veor) ~ (\n vi2), (g1 —=> ¢2) ~ (Yyu —> ¥z ).

Properties 1" and 2° enable us to define the following operations
on the quotient set Br= Senti/~= {[¢]: @eSent,):

[ed' = [, [¢l-lvi= (o Avy]l, [o]l + ¥l = {gvy]
If we define 0= [¢ A W], 1= [¢p v wl,and [¢] < [y] iff (¢ — ¥]= 1, we
have that Brz= (Br,+,+,’ ,%,0,1} is a Boolean algebra.

The construction of algebra Br is similar to that of the
Lindenbaum algebra of propositional calculus. This is the reason why Br
is also called the Lindenbaum algebra of theory T. Here are some
properties of algebra Br:

1° T is a consistent theory iff Br is nondegenerate, i.e. |Br|22.

2° T is a consistent and complete iff By = 2.

A sentence ¢ of L is a theorem of T iff {¢]=1. Also,

T ¢ = v iff [¢] < [¥].

4 If S is a consistent theory of L such that T<S, then the set
Fs= ([¢]: S|~ ¢} is a filter of Br. S is a maximal consistent theory
iff Fs is an ultrafilter of Br.

5° If ngsk, then Br is at most of the cardinality X +k.
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An interesting case arises when starting from a theory T we can
construct a B-model of T. Under some assumptions on L(T) and T such a
construction is possible. Let 1= lo U C where C is a set of constant
symbols. A theory T of L is rich , if and only if for every sentence
3xpx of L, there is a constant symbol ceC such that (3xgx —> gc)€T. A B-
model of a rich theory T, denoted by A is built in the following way:

Let B=By, i.e. B is a Lindenbaum algebra of theory T. Let us def-
ine a binary relation = of C by 1 ~ cz iff [ciZcz]= 1. The domain of A
is Az {c:! ceC}, where c= c/=.

If ceConsty, then obviously 3x{c=x} is a theorem of T. Since T is

a rich theory, there is deC such that 3x{c=x} -> c=d is also a theorem
of T, so T} c=d. Then we define cA=d.

If FeFncr of length n and c¢i,...,cn€C, then the sentence
Ix(F(C1,C25004Cn)=X)
is 8 theorem of T, and, as above we find c€C, such that T[— FCi .+ sCn=C.
Then, we define FAci...cp=c.
Finally, let ReRely, be of length n and ci1,...,cn€C. Then, we def-
ine RAci...cn= [Ror1...Cal.

Of course, we should check that objects so introduced are well-
defined. For example, let us show that the interpretation of an n-ary
function symbol FeL is well-defined. So let c13¢++4Cn,d1,...,dn,c,deC be
such that ci=d;, c2~dz2,...sCn=%dn, and Tt——- Fci...ca=c, Fdy...da=d. Then,
lci =di }=1, thus, by property 3 of Br, we have T}~ ci=di . Using the
identity axioms of PR!, it follows that T}-— Fci..oCn= Fdyoovda, so
T}-—- c=d, i.e. c~d. Therefore, the function FA is well-defined. In a
similar way, it is proved that cA is correctly defined for ceConst..

Let us prove the correctness of R*, where R is an n-ary relation
symbol of L. So, assume that c;,...,cn,d1,...,ds€C are such that ci~d,,
Cz®dz y4..,Cndn. Then T}»— ci B, 1<i<n, so by the identity axioms of
PR', we have Tf—R«c;...cn €x Rdy...da, i.e. [Rer...colz [Rd;i...dn}.

For each element ¢ of domain A, we shall suppose that the name of
the element ¢ is the symbol c¢. Then A becomes a B-model if we define:

for ci1,c2€C, Jar=c2f= [ci=ec2],

if ReRel, is of length n, and ¢i1,...,Ca€C, then

|Rcicz .. .cn!= RACIC2 v v 00 s

It is easy to see that for so defined structure the conditions of
Definition 2.3.1 are fulfilled. For a B-model constructed in this way,
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we have some additional properties:

6° For each sentence ¢ of L, f¢|= [¢].

The proof of this fact can be deduced by induction on the com-
plexity of sentence ¢.
7° A sentence ¢ of L is a theorem of T, iff W':l.

The proof of this fact follows from 3° and 6°.

The B-model of T constructed in the way described above is called
a canonical model. As a consequence of the preceding, we have

2.3.4. Theorem lLet T be a first-order consistent rich theory. Then T
has a B-model.

This statement is part of the Completeness Theorem of PR!. More
details about this theorem will be given in following section.

2.4. The Completeness of PR?

Theorem 2.3.4. says that a first-order theory has Boolean models
under certain conditions. We shall prove that every consistent first-
order theory is semantically consistent, i.e. it has a model.

2.4.1. lemma let T be a consistent rich theory. Then T has a standard
model.

Proof By Theorem 2.3.4 theory T has a nondegenerated B-model A, where
B is a Lindenbaum algebra of T. let D be an ultrafilter of B, and
k:B—>B/D the canonical homomorphism. Observe that B/Dx2. Further, let
A' be a standard model, where A’ =A, and for seConstiUFnc., sA’=sA, while
for ReRel, of length n, RA’cicp...cazk(RAcicz...cn). Then A' is a 2-
model, where [of2=k(}o})s, @€Sent.. Since T is a rich theory, for every
sentence Ix¢x there is ceéC such that the following holds:

f3xoxf2= k(] 3xgxfaF k{joc)s)= [ec]:
By this and Theorem 1.7.1, we can prove by induction on the complexity
of formulas that the following conditions are equivalent for sentences
¢cy1...cn of L:
(1) A ]- ¢ler,c24000,60)
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(2) A‘r-qa(c;,c:z,...,cn).
(3) !W:Cz...cnugz 1.

Since T}— ¢, we have {¢fa=1, s=o k(ﬂq)l.):l, i.e. [gal;:l. Thus,
A‘}acp, and A' is a standard model of T.

The following lemmas will be used to show that every consistent
theory may be expanded to a consistent rich theory. On the ground of the
proofs of these statements is the method of constants. This method was
introduced by L.Henkin in 1949, when he gave a new proof of the Complet-
eness Theorem for PR!.

2.4.2. Lemma Let S be a set of formulas of L and ceConst, which does
not occur in either 8 or gx. If S|~ ¢c, then S|~ Vxgx, and there is a
proof of ¥x¢gx in S in which symbol ¢ does not appear. In other words,
Sk ¥xgx in L\(c}.

The proof of this lemma was outlined in the proof of Lemma 1.3.4,
so we omit it.

2.4.3. Lemsma Let C be a set of new constant symbols for a language L
(i.e. CNL=g), and let S be a set of formulas of L. If S is a consistent
theory in L, then S is consistent in LUC, also.

Proof Suppose, on the contrary, that S is inconsistent in LUC, and let
{ci,.+.,cn}SC be a minimal subset, such that there is a proof ¢o,...,¢
for x#x in S and LU(c1,...5cn). Further, x#x is {x#x)(y/cs}; so by the
last lemma, S}-—» Wx({x#x) in LuU{ci,...,cn-1}, which is a contradiction by
the choice of the set {c1,...,cn}.

2.4.4. The Witness Lemma (Henkin) Let T be a consistent theory of a
language L. Then, there is a set C of new constant symbols for L, and a
theory S of the language LUC, such that:
(1) TcgcsS.
{(2) S is a consistent theory.
{(3) For every sentence 3x¢x of LUC, there is ce€C such that

{(3xpx —> ¢c) € S,
i.e. 8 is a rich theory of L U C. Set C is called the set of witnesses
for S.



Chapter 2 52

Proof Let Co be the set of new constant symbols co, where o is a sen-
tence of L of the form 3x6x. For given Ca, let Cnv: be a set of constant
symbols cg, where o is a sentence of LUCa of the form 3x6x. Thus,

CocC c€C € .0 &
Let C=UyCu, and define

8= T U {3Ox—>Bcaxe: 3xOx is a sentence of LUC).
Then, C is the set of witnesses of S, and TcS. By lemma 2.4.3, T is a
consistent theory in LUC. Now, let us show that S is a consistent the-
ory. Suppose , on the contrary, that S is inconsistent. Then there is a
deduction ¢o,;@1s...:¢m of x#x in S. Let So= SN{¢o,..«;%a}. Then,
So l—- x#x. Without a loss of generality, we may assume that S¢ is such a
minimal set, i.e. every proper subset of Sy is consistent. Since So is
not a subset of T because T is consistent, there is the greatest new,
such that S contains a formula Ix0x->0czxe, and C3xe€Co+1\Cn. There-
fore, each sentence in So is a sentence of LUCn+1, and if it differs
from IxOx~»6C;x 8, then it does not contain the symbol caxe. Further, let
S1= So\{3xBx—>0czx 8}. Then, using the axioms of PR!, we have

S1, MOx—>6Cixe |- X#X,

$1 | (Zx0x—8cix8),

(by a tautology and The Deduction Theorem)

81 |- Ix6x, Weaxe

S: t— WVWIXBx, "PBCaxe

{(by Lemma 2.4.2, since cax e does not occur in either ¥ or S;)

81 [— WXOx, Vx0x

Therefore, S is an inconsistent theory, and this is a contra-
diction to the choice of S;.

2.4.5. Completeness Theorem for PR' Every consistent first-order the-
ory has a (standard)} model.

Proof Let T be a consistent theory of a language L. By Lemma 2.4.4,
there is a rich consistent extension S of T. By Lemma 2.4.1, theory S
has a standard model A. Since T<S, a reduct of A is a model of T.

Here are some consequences of the Completeness Theorem. From now
on, when we speak about models, we mean standard models, i.e. 2-models,
while, for Boolean models, we shall keep the old name: the B-models. If
T is a theory, and ¢ a sentence of language L, we should remember that
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Tp= ¢ denotes that ¢ is true in all the models of T. 1In this case, we
say that ¢ is a semantical consequence of T.

2.4.6. Completeness Theorem, another form Let T be a theory of a lan-
guage L , and ¢ a sentence of L. Then: T]—- @ iff T!— @

Proof (-») Suppose T}- 9 and let A be a model of theory T. It is easy
to see that A satisfies all the axioms of PR!, and preserves all the
rules of inference. Therefore, one can show that A satisfies all the
consequences of T by induction on length of the proof.

{«) Suppose mnot T|— ¢. Then, we can conclude that Tu{w} is a con-
sistent theory. Really, if T,Tp‘—- X#x, then by the Deduction theorem,
T % —» x#x follows, so T{~ ¢, a contradiction. Hence, by the Comple-
teness Theorem, there is a model A of the theory TU({Ww}, so Ap= ¢, and
Al %, a contradiction.

From Theorem 2.4.6, we can easily deduce Theorem 2.4.5. First
observe that Theorem 2.4.6. can be stated as follows:
¢ is not a theorem of T iff ¢ is not a semantical consequence of T.
Thus, if T is a consistent theory, and ¢ is a contradiction, then ¢ is
not a semantical consequence of T. Therefore, there is a model of T.
By Theorem 2.3.4, and Lemma 2.4.4, we have these connections be-
tween standard models and B-models:

2.4.7., Theorem The following conditions are equivalent for a first-
order theory T:

(1) T is a consistent theory.

{2) T has a B-model.

(3) T has a standard model.

Let B be a Booelan algebra, and T a theory of a language L. If
veSentr, and f¢fs= 1 in all the B-models of T, then, since 2¢B, |¢fz2=1
in every 2-model of T, i.e. Tf-= @. On the other hand, if Tf-— @, by the
Completeness Theorem, Tj—~ ¢. Using the inductive definition of | fs, it
follows easily that ]W".:l, i.e. ¢ holds in all the B-models of T. Thus,

2.4.8. Corollary Let B and B be Boolean algebras, and T a theory of a
language L. If @eSenty, then ¢ holds in all the B-models of T iff ¢
holds in all the B -models of T.
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A simple, but important consequence of the Completeness Theorem
is the Compactness Theorem. This theorem has many applications not only
in logic, but in other areas of mathematics, as well: algebra, analysis,
ete.

2.4.9. Compactness Theorem Let T be a theory of a language L. If every
finite subset of T has a model, then T has a model.

Proof Suppose T has no models. Then, by the Completeness Theorem, T is
an inconsistent theory. Let ¢w,...,¢ be a proof of a contradiction in
T, and teke that 8= Tn{go,...,9}. Then, S is a finite subset of T,
and it is an inconsistent theory, so S has no models, a contradiction.

Here are some applications of the Compactness Theorem.

2.4.10, Example 1If T has arbitrary large {inite models, then T has an
infinite model. To see this, consider theory
S= TU{Vxo...Xn3y{y#x0 A...A y#Xn)}: new}.

By assumption, every finite SocS has a model; this is a finite model A
of T, such that |A| is greater than any n which occurs in S¢. Thus, S
has a model B, and B is infinite.

By the use of the Compactness Theorem, we can show that certain
theories are not finitely axiomatizable.

2.4.10. Lemma If Th= ¢, then there is a finite To<T such that To = 9.

Proof If T|-= ¢, then by the Completeness Theorem T}— v, thus, by the
Deduction Theorem there is a finite To<T, such that Te !-—- @, so, again by
the Completeness Theorem we have To = 9.

2.4,11. Theorem let To €Ty € T2 € ... be an increasing chain of the-
ories such that for every n€w, there is a model of Tn which is not a mo-
del of Tas+1. Then, the theory T= UhTa is not finitely axiomatizable.

Proof Suppose T is finitely axiomatizable, and let S be it’s finite
set of axiocms. Since S is a finite set, there is mew such that for all
€S, Tap= ¢. On the other hand, for all ¢eT, we have S= 9, so, for all
@€Tme 1 we have Tn}= ¢, and this means that every model of Tm:+: is a mo-
del of Twm, a contradiction.
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By the previous theorem, the following examples are not finitely

axiomatizable theories.

2.4.12. Example 1° The theory of fields of characteristic 0. The axi-
oms of this theory are the axioms of the field theory plus sentences
141#0, 1+1+1£0,... .
2* If T has arbitrary large finite models, then theory Te of all the
infinite models of T is not finitely axiomatizable. Observe that
Te= T U (X1 .. xa3y(y#x1 A <o A ¥#xn): n=1,2,...].
3° The theory of torsion free Abelian groups. The axioms of this theory
are axioms of the theory of Abelian groups, plus
Vx{(2x=0 — x=0), W{3x=0 — x=0), ... .
4° The theory of divisible Abelian groups. The axioms are the axioms
for Abelian groups, plus
Vx3y{2y=x}), Y3y (3y=x), ... .

A class Mof models of & language L is elementary, if M is the
class of all the models of a theory T of a language L. Class M< is the
class of all the models of L which do not belong to M The following
proposition gives the conditions under which an elementary class is fi-
nitely axiomatizable, i.e. when it has a theory with a finite set of
axioms.

2.4.13. Theorem If both classes Mand M¢ are elementary, then Mand
Mc are finitely axiomatizable classes of models.

Proof Let T and S be theories of Mand M<, respectively. Then, TUS
obviously does not have a model, i.e. TUS is an inconsistent theory. So,
there are finite subsets So<S, To<T such that ToUSe is also inconsist-
ent. If Al=To, then A is not a model of So, i.e. A€M <, thus AeM and
Ap= T. Therefore, for all €T we have To = ¢. On the other hand , To<T,
so T is a finitely axiomatizable theory, since T and To are equivalent.
In a similar way, one can prove that S is finitely axiomatizable.
We shall exhibit in the following examples classes of models

which are not elementary. In all the cases the Compactness Theorem is
used.

2.4.14. Example 1° The class of all the fields of the prime charact-
eristic is not elementary.
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Proof Suppose this class is elementary with S as a set of axioms. Let
Mbe the class of all the fields of the characteristic 0, and let ¢ be
the finite conjunction of all the axioms of the field theory. Further,
define T= {¢ — 6: 6€S}. Then, Af— T if and only if A[n S, or Ais not a
field. Thus, A|- T iff AeM <., But, by Theorem 2.4.11, M ¢ is not elemen-
tary since M is not finitely axiomatizable, a contradiction.
2° If T is a theory which has arbitrary large finite models, then the
class of all the finite models of T is not elementary.
Proof Suppose this class 1is elementary with S as a set of axioms.
Then, S has srbitrarily large finite models, so, S8 has an infinite model
{see Example 2.4.10), a contradiction.
3° The class M of all the well-ordered sets (A,<) is not elementary.
Proof Let A= (A,<) be an infinite well-ordered set, and let us intro-
duce the new constant symbols ¢p,c1,C24... « If

S= ThA U {Co>C1,C15C2,.44},
then every finite So<S has a model; this is an expansion of A, so by the
Compactness Theorem S has a model (B,<,bo,b1,...). Then, (B,<) is not
well-ordered, but (B,<)=(A,s). If T were a theory of M, we would have
(B,S)'== T i.e. (B,5)eM, a contradiction. Thus, M is not elementary.

Now we shall give an application of the Completeness Theorem to
the decidability problem of first-order theories. In fact, this is a
generalization of Theorem 1.3.2, see also Problem 1.12. First, we shall
introduce some notation.

Let T be an axiomatic theory of a language L. We shall say that
all complete extensions of T can be effectively and uniformly listed, if
there is a sequence of complete and axiomatic theories Ta, n€éw, such
that:
1° For each new, T € Ta,
2° For every complete extension S of T there is new such that S= Ta.
3° All theories Tn's, new, can be listed effectively, uniformly and
simultaneously.

This last notion can be made more precise. By assumption every
theory Ti is axiomatic, so all theorems of each Ti can be effectively
enumerated, say @, JjEo, is such an enumeration (i.e. the mapping
iib—>rep jo, Jje€w, 1is a recursive function). Then we shall say that 3°
holds by definition, if there is an effective enumeration yx, kew, (i.e.
kip—>ryy~, k€w, is a recursive function) of all theorems of all theories
Tn, new, as displayed on diagram (D). That is ¢ ;= Ye(i ) s, Where
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Tol- Poor o1, Poz2y o0 Top~ VYo, ¥a, V3, oo
// |
Tll—%.;,cm.cm/.... T Yz, Vas Vi oen
[/ ///

Tel Gaey G21y G224 oo Te - ¥sy Ve, Vit s oo

/ / ///
Ts}- @30y P21, P32, «u. Tal- Vo, Vis, V1sy <.
(D)

cl{i,j)= (i+j)(i+j+1)/2+i, 1i,j,ew. This function is known as Cantor’s
enumeration function, and it’s main property is that it is an effective
{(i.e. recursive) pairing of natural numbers; that is, ¢ maps w?* 1-1 and
onto .

2.4.15, Theorem Assume T is an axiomatic theory of a language L, and
suppose all complete extensions of T can be listed in an effective and
uniform way. Then T is decidable.

Proof Suppose Tn, n€w, is an effective and uniform listing of all com-
plete extensions of T, and let 0€Sent.. By assumption, all theorems of
theories Tn can be effectively listed uniformly and simultaneously as
displayed on diagram (D). Also, there is a recursive enumeration of all
theorems of T: w, ¢¥1, 2, ... . Therefore,

(1) Yoy Yo, P1s Y1y @2, V2, ...

is also a recursive enumeration of some sentences of L. Thus, if T}— 0,
then 8= ¢n for some n. If ~T§— 8, then T U {78} is a consistent theory,
so there is a model A of T such that Aj— 8. By the choice of theories
Te, there is mew, such that ThA= Tw, hence T.|- W. Thus, there is j
such that 0= ¢ ;= Ye(i,j>. So, 0 must appear at the even stage, or ¥
must appear at the odd stage of the sequence (1). Hence an algorithm for
the enumeration of this sequence gives a decision procedure for T.
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Here are some applications of the last theorem. Therefore, all
the examples of theories bellow are decidable theories.

2.4.16. Example 1° All complete extensions of Jo, the pure predicate
calculus with equality, see Example 1.4.1, are:

Ta= {on)}, neo\{0}, and Te= {T1,T2,T3,...}.
2° The axioms of the theory of algebraically closed fields, which we
denote by AF, are the axioms of the field theory plus the axioms which
say that every polynomial of a degree 21 has a root. All complete ex-~
tensions of this theory are:

AFp= AF U (p+1=0), p is a prime number,

AFo= AF U {n-1#0: new\{0}}.

Later on, we shall prove this fact. Now, we shall mention two,
less trivial examples, but without proofs.
3° All complete extensions of the theory of Boolean algebras were de-
scribed by Tarski. An exposition on this matter can be found in [Chang,
Keisler].
4° A description of all complete extensions of the theory of Abelian
groups one can find in [Cherlin}.

In both cases, the idea of the proof is to find certain "numeri-
cal invariants" (and these are effectively listed), such that two al-
gebras A and B have the same invariant iff A = B. Therefore, numerical
invariants determine effectively all complete extensions of the corres-
ponding theory.

2.5. Reduced products of models

Reduced product of models is a substantial construction of models
owing to its model-theoretic properties. By this construction, new mo-
dels are obtained starting from some of those already given models. The
main theorem related to it is the Lo$ Theorem on ultraproducts, a spe-
cial case of reduced products.

Let {Ai: i€I} be a nonempty family of nonempty sets, and A= [ A .
By the Axiom of Choice, A is also a nonempty set. Further, let D be a

filter over I, and =p a relation over A, defined in the following way:

If f,geA, then =pg 1iff  {ieIl: f(i)=g(i)} € D.
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Instead of f =p g, we shall sometimes write f = g mod D, or
f(i)= g(i) D a.e. This notation is justified , if D is an ultrafilter,
since, in this case, D induces a finite additive two-valued measure over
I: a set X<I has a measure 1, if XeD, otherwise, it has a measure 0. The
class of equivalence of f€A is denoted by fp.

2.5.1. Lemma Let D be a filter over I. Then =p is an equivalence rela-
tion of the domain A= [k A .

Proof let f,g,h € A. Then

(1) f=fp, since IeD and (iel: f(i)=f(i)}el.

(2) =pg implies g=pf, since {i€l: f(i)=g(i)}= {iel: g(i)=£f(i)}.

(3) Suppose f =p g and g =p h. Then, for X= {(iel: f(i)=g(i)}, and
Y={iel: g(i)=h(i)}, we have X,YeD, so XnYeD. Since XnYc{iel: f(i)sh(i)}
it follows that {ieX: f(i)=h(i)}eD, i.e. f=ph.

The quotient set Ik Ai /=p is denoted by IbA;, and it is called the
reduced product of sets A; . An interesting case arises when A; are do-
mains of some models. So, let A, i€l, be models of a language L, and
let D be a filter over I. By the last lemma, relation =p is an equiva-
lence relation, but for models, we have something more.

2.5.2, Lemma Let Ai, i€l, be models of a language L, and A'=TL A .

Then,

1° Relation =p is concurrent with all the operations of A’, i.e. if
FeFncy, ar(F)=n, then, for all f1,...,fo,81,...,Zn€A",
fi=pg14+¢0,fn=pgn implies FA' (fy,...,fn)=0FA (g1 ,...,8n)-

2° If ReRelr, ar(R)=n, then for all fi,...,fu,81,5...,8n€EA"
fi=pg1,...,fu=pgn implies
{iel: RA (1 (i),...,Ea(1))}eD, iff {iel: RAI (g (i},...,8a(1))}eD.

Proof lLet f:i1,f2,...,f0,81,82,...,8:€A’ be such that £fi=pg , i<n. If
X;= {iel: f5(i)=gs{i}}, j=1,...,n, then X;€D, so N;X;€D. Thus,
19 X € (iel: PA V(i (i), ..., fn(i))= FA (g1 (1),...,80 (1))}, so,

FAV