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PREFACE

The present book has grown out of a selection of lectures on mo-
del theory 1 have given in recent years at the Mathematical Institute
and the Faculty of Science in Belgrade. These lectures were mainly
attended by graduate students and senior undergreduates. The book is
therefore intended for those who study model theory and its applica-
tions. The book is designed as an excursion through the main topics of
classical model theory. The most important constructions and theorems
of model theory and their proofs are presented.

Boolean algebras play an important role in this boock. The use
of Boolean algebras in model theory is prolific. We have applied them
in many model-theoretic constructions, but we also have applied model
theory in the proofs of certain properties of Boolean algebras.

Basic constructions of models are presented in the book, such as
the method of constants, ultraproducts, and elementary chains of mo-
dels. Notions such as realizing and omitting types, saturated models,
as well as their applications are also given. A few words are devoted
to abstract model theory. An explanation is given why the first order
logic has a distinguished position among all the types of logics
(Lindstr8m’s theorem). Some extensions of the first order logic are
considered in more detail. Special care is given to the first order
logic with additional quantifiers. For example, Keisler's completeness
theorem for the first order logic with the quantifier "there exist
uncountable many” is given, and some applications of this theorem.

The book contains sufficient material to cover a first course in
model theory. However, we could not cover all the important topics in
model theory, since the selection of material reflects, in a way, the
taste of the author. Anyhow, there are books of an encyclopedic nature



on this subject, and the reader is directed to consult them whenever he
needs more details.

After reading the book, one can proceed to advanced topics, such
as nonstandard analysis, models of set theory, models of arithmetic,
infinitary logic, model-theoretic algebra, etc.

We suppose that the reader is acquainted with some parts of the
naive set theory. This includes the basic properties of ordinal and
cardinal numbers, and, partially, their arithmetic. We have adopted
Von Neuman'’s representation of ordinals, so we have taken that every
ordinal is the set of all the smaller ordinals, therefore 0=g, 1={0},
2z{0,1}, ..., w= {0,1,2,...}, ... . Here g denotes the empty set. The
set of all natural numbers is denoted by w, i.e. o= «w = {0,1,2,...].
We do not distinguish ws and Rq. If f:A—»B is a mapping from A into B
and XgA, then

f]X denotes the restriction of f to the set X,

f{X}= {f(x): xeX}, but sometimes we write f(X) for f[X] as well,

fx or f(x) stands for the sequence fx;, fx2,...,fxa, where x de~

notes a sequence Xijy; Xz sesy Xao

The cardinal number of a set X is denoted by |X|, and the set of
all the subsets of X by P(X). Our metatheory is based on the ZFC set-
theory, and we shall not point out explicitly when we use, for ex-
ample, the Axiom of Choice or its equivalents. However, all exceptions
will be indicated, as the use of the Continuum Hypothesis or some
weaker variants of the Axiom of Choice.

Finally, I would like to express gratitude to my colleagues and
friends who have helped somehow this book to appear; to Professor Sla-
visa Pre$id, who stimulated me to write a Serbo-croatian version of
this text, to Milan Grulovié for his assistance in obtaining support
and his valuable comments on the text, and to Djordje (ubrié, Miodrag
Raskovié, Milan BoZié, Kosta DoSen and Zeljko Sokolovi¢ for their help
in reading the manuscript and remarks.

Final remarks are on usage and signs. The word "iff" is often
used instead of the phrase "if and only if". The end of a proof is
indicated by I

Belgrade, November 1986.



1. FIRST NOTIONS OF MODEL THEORY

Some logicians often define model theory as a union of formal
logic and universal algebra. By more detailed analysis, one can see
that the main subject of model theory is the relationship between syn-
tactical objects on the one hand, and the structures of a set-~theoretic-
al nature on the other hand, or more precisely, between formal langusges
and their interpretations. Therefore, two areas of logic, syntax and
semantics, both have a role to play in this subject. While syntax is
concerned mainly with the formation rules of formulas, sentences and
other syntactical objects, semantics bears on the meaning of these no-
tions. One of the most important concepts is the satisfaction relation,
denoted by ]=, a relation between mathematical structures and sentences.
Model theory was recognized as a separate subject during the thirties in
the works of Tarski, G8del, Skolem, Malcev and their followers. Since
then, this field, has developed vigorously, and has received many appli-
cations in other branches of mathematics: algebra, set-theory, nonstan-
dard sanalysis, and even computer science. We shall first study model
theory of first-order predicate calculus.

1.1. First-order languages

We shall define a first order language as any set L of constant
symbols, function symbols and relation symbols. Each of the relation and
function symbols has some definite, finite number of argument places.
Sometimes it is convenient to consider constant symbols as function sym-
bols with zero argument places. According to our classification, we have

L= Fncr U Relr. VU Consty,
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where

Fney= {seL: s is a function symbol of L},
Rel,= {seL: s is a relation symbol of L},
ConstL=z {s€L: s is a constant symbol of L}.

All these three sets are pairwise disjoint, and each of them may
be an empty set. Namely, we shall deal only with logic with equality.
The function ar:L—>© assigns to each se€L its length, i.e. the number of
argument places. By the remark above, if s€Consti, we define ar(s)=0,
while for seFnciLURel,, we have ar(s)zl. In most cases it will be clear
from the context what the lengths of the symbols of L are, so in such
cases the arity function will not be mentioned explicitly.

For example, we may take that L= {+,.,-,%5,0,1} is the language of
ordered fields, where

Fncr= {+,+4~}, ar({+)= 2, ar(-)=2, ar{-)= 1,

Reli = (5}, ar(2)= 2,

Constr.={0,1}.

If L and L’ are first order languages, and Le¢L’, then L’ is cal-
led an expansion of the language L, while L is called a reduct of L'. If
L’\L is a set of constant symbols, then we say that L’ is a simple ex-
pansion of L.

1.2. Terms and formulas

The terms and formulas of a first~order language L are special
finite sequences of the symbols of L, and the logical symbols of the
first-order predicate calculus (which shall be abbreviated PR!). The
logical symbols of PR! are the so-called connectives: A (and), v (or},
—> (implication), €» (equivalence), 1 (negation), then the equality sign
=, quantifiers V (universal quantifier), 3 (existential quantifier)}, and
finally an infinite sequence of variables vo, vi, v2, ... » In order to
enable a unique readability of terms and formulas, some auxiliary signs
are used: the left and right parenthesis, and the comma: ( ) ,. For eas-
ier discussion, we shall use metasymbols. Metavariables are x, vy, 2, Xo,
Yo, Z0, X1, ¥ty Z1, ..., and they may denote any variable vi , i€w, i.e.
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the domain of metavariables is the set Var=z {v¢,vi,v2,...}. Metaequality
is another important such sign and it will be denoted by =.

Terms, or algebraic expressions of the language L can be describ-
ed inductively:

1° Variables and constant symbols are terms.

2° If FeFnc, is of length n, and t;,...,ts are terms of L, then
F(ty,...,tn) is a term of L.

3°  Every term of L can be obtained by a finite number of applications
of rules 1° and 2°.

A somewhat more formal definition of the terms of the language L is
as follows:

Term® = Var U Constr,

Term®*i= {F(ty1,...,tn}: n€w, FeFncL, ar(F)=n,
t1i,.000ytn€Term®}, mew,

Termy= UpTerms .

Then the terms of L are exactly the elements of the set Term..
This definition allows further definitions of related notions, as well
as simple {(inductive} proofs of the basic properties of the terms. It
is not difficult to see that elements of the set Term, satisfy con-
ditions 1°,27,3°.

The complexity function co:Term.—>w of the terms is a measure of
the complexity of the terms, and it is defined in the following way:

If teTerm®, then co(t)=0.
If teTerm"\Term*-1, then co{t)= n, new

The complexity of terms can be visualized from the following diagram.
Letters F and G here are binary function symbols.
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co=2 { o . F(vo ,G(co ,C1)) e )
- z L\
AN
co=1 F(vo,Co) PR G{co,c1)
x\\ Py

( e e )
co=0 Vo W1 V2 +es C C1 C2 eas
2 ®

Var Consty

We shall suppose that the reader is already familiar with basic
properties of the terms and various conventions which have been intro-
duced for the easier use of this notion (rules about deleting parenthe-
sis, special notation for binary function symbols, possible priority of
function symbols, etc.).

Formulas of the first-order language L are defined in a similar
manner. First, the atomic formulas are defined:

A string ¢ is an atamic formula of the language L, if and only if
¢ has one of the following forms:

uszv, u,v are terms of L,

R{ti,tz,...,ta), R is an n-placed relation symbol of L, and

ty, t2, ..., tn are terms of L.

Let Aty denote the set of the atomic formulas of L. Then by the
previous definition we have

Atr= {u=v: u,veTerm.} VU

{(R(t1,...,tn): new, ReRel,, ar(R)=n, ti,...,tn€Term}.

Formulas of the language L are also defined inductively by the
use of an auxiliary sequence Fort, new, of sets of strings of L:
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Ford= At.,

Fore+1=z For® U ((@A¥): ¢,y€Forr} v
{(pw): ¢,yeForn} U
{: geForn} U
{(g—>V¥): ¢,yeForr} U
{(pe>y): ¢@,yeForr} U
{¥x¢: xeVar,geForn} VU
{3x¢: xeVar, ¢eForn},

Forp= UpForn.

Then the elements of the set For. are defined as formulas of the
language L. It is not difficult to see that the formulas satisfy the
following conditions:

1° Atomic formulas are formulas.
° If ¢, are formulas of L , and x is a variable, then

(ony), (oW), W, (9=V), (pey), Vxe, Ix¢

are also formulas of L.

3° Every formula of L is obtained by the finite number of use of rules

1° and 2°

In order to measure the complexity of formulas, we shall extend
the complexity function co to formulas as well. Therefore, co:Fori—o
is defined inductively in the following way:

If ¢eAt.,, then co(g)= O,

If ¢eFor®\For®-1, new\{0}, then co(¢)= n.

As in the case of terms, we suppose that the reader is familiar
with the basic conventions about formulas (rules on deleting parenthe-
sis, priority of logical connectives, etc.). In addition, we shall
shrink blocks of quantifiers, for example instead of WVxoW¥Xi...¥xa® we
shall write Vxox:...Xa®, whenever it is appropriate.

The notion of the free occurrence of variables allows us to de-
scribe precisely the variables of a formula ¢ which are not in the scope
of the quantifiers.

1.2,1. Definition The set Fv(¢) of variables which have free occur-
rences in a formula ¢ of L is introduced inductively by the complexity
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of ¢ in the following way:

1° If ¢eAty, then Fv(g) is the set of variables which occur in ¢.
2% Fv(w)= Fv(g).

37 Fv(gay)= Fv(ew)= Fv(g—y)= Fv(pey)= Fvig) U Fv(y).

4°  Fv(xp)= Fv(¥xe)= Fv(g)\{x}.

The elements of the set Fv(g) are called free variables of the
formula ¢, while the other variables which occur in ¢ are called bound.
For example, if ¢= (=0 —» Jy(x-y= 1))}, then Fv{g)= {x}, so x is a free
variable of ¢, and y is a bound variable of ¢.

If @eFori,, then the notation ¢(xo,Xy,..+,Xn), OF @XoXi...Xns 18
used to denote that free variables of ¢ are among the variables xo ,X1,+.
ceesXne

Formulas ¢ which do not contain free variables, i.e. Fvig)= g,
are called sentences. The formulas

0= 1, Wx(x=0 — Jy(x-ysl1))
are examples of sentences of the langusge L= {-, 0, 1}, where . is =
binary function symbol. The set of all sentences of L is denoted by
Sent..

The cardinal number of Fory is denoted by IL“, therefore “L“:
|For|.| . It is not difficult to see that for every first-order language L
we have

ILI= max(|L] % ).

1.3. Theories
The definition of the notion of a first-order theory is simple:

The theory of a first order language L is any set of sentences
of L.

Therefore, a set T is a theory of L iff T<Sent:. In this case
elements of T are called axioms of T. The main notion connected with the
concept of a theory is the notion of proof in the first-order logic.
There are several approaches to formalizing the notion of proof. For ex-
ample, Gentzen’s systems are very useful for the analysis of the proof-
theoretical strength of mathematical theories. The emphasis in Gentzen’s
approach is on deduction rules, as distinct from Hilbert-oriented sys-
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tems,

where the stress is on the axioms. Hilbert style formal systems

are more convenient in model theory, so we shall confine our attention

to them. Now we shall list the axioms and rules of inference for a first
order language L:

1°

Sentential axioms.
These axioms are derived from propositional tautologies by the si-
multaneous substitution of propositional letters by formulas of L.

Identity axioms.

If ¢eFor., teTerm., x€Var, then ¢(t/x) denotes the formula obtained
from ¢ by substituting the term t for each free occurrence of x in
¢. Sometimes, we shall use the abridged form ¢(t) or ¢t, instead of
o(t/x). Now we shall list the identity axioms:

xX=x
X1ZY1 A oo A Xn=¥n > t{X1y0009Xn)= t{¥y14.4.,¥n), n€w, teTermy.
X121 A oo AXaTYn —> (PXi.0.Xn € @¥1...Y0), @EALL .

Quantifier axioms
Vxgx —> ¢t, @eFor,, teTerm,, x€Var.
gt —> Ixex,

where ¢t is obtained from ¢x by freely substituting each free oc-
currence of x in ¢x by the term t.

Rules of inferences:

let ¢ and ¥ be formulas of L.

Modus Ponens: [*R @ =¥
14
Generalization rules: 9 —> Y provided x does not occur
@ —> ¥xy free in ¢
V=9 provided x does not occur
Iyx —> ¢ free in ¢

A proof of a sentence ¢ in a theory T of a language L is every

sequence VY1, Y2, ...,¥n of formulas of the language L such that ¢= yu,
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and each formula ¥4, i<n, is a logical axiom, or an axiom of T, or it is
derived by inference rules from preceding members of the sequence. If
there exists a proof of ¢ in T, then ¢ is called a theorem of T, and in
this case we use the notation T\~ ¢. The relation |- between theories
and formulas of a language L is the provability relation. 1If T=gs, then
we gimply write }— ¢ instead of ¢}— ¢, and ¢ is called a theorem of the
first-order predicate caleulus. If ¢ is not a theorem of T, then we
shall write ~T}-— ¢ for short.

Formulas of the form ¢ A @ are called contradictions. A theory T
is consistent if there is no contradiction y such that T} ¢. Another
important property which theories may have is completeness. A theory T
of a language L is camplete if for each sentence ¢ of L either T ¢ or
T . Finally, T is deductively closed if T contains all its theorems.

There is group of first-order notions which are related to effec-
tive computability. We shall suppose that the reader has some basic ide-
as of effective computability and arithmetical coding. So, if ¢€Fory,
then r¢- denotes the code of formula ¢. A similar notation is applied to
other syntactical objects (terms, elements of L, etc.).

A first order langusge L is recursive, if the set rlL-={rs-: s€L)
is recursive. Similarly, L is recursively enumerable if ~L~ is a recur-
sively enumerable set. A theory T of the language L is finitely axiomat-
izable, if T is a finite set of axioms. A generalization of this notion
is the concept of an axiomatic theory. A theory T is axiamatic or recur-
sive if T i.e. {r¢-: ¢€T} is a recursive set of sentences. The defini-
tions of notions introduced in this way can be broadened. Namely, two
theories T and S of the same language L are equivalent, if they have the
same theorems. Then a theory T is considered to be also finitely axio-
matizable (axiomatic), 1if there is a theory S equivalent to T which has
a finite set of axioms. It is interesting that the assumption of recur-
sive enumerability does not bring a generalization, as the following
theorem shows.

1.3.1. Theorem (Craig’s trick). Suppose T is a theory of a language L
with a recursively enumerable set of axioms. Then there is a recursive
theory S of the language L equivalent to T.
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Proof Since T is recursively enumerable, there exists a map
T:0—>Sentr such that T= {tn: new}), and fim——r1n~ 1is a recursive
function. Let y:w—>Sent; be defined by yn= ToATIA...ATn, n€w, and Sz
{yn: new}. Then T and S have the same theorems, i.e. T and S are equi-
valent theories. Furthermore, the mapping g:m—>-yu~ is also a recursive
function, because we may take, for example,

r&a-‘: 2r 0~ 3r i~ spa” T~

where psw is the n-th prime. Also, g is a monotonously increasing fun-
ction, since n$m obviously implies ~yn-S-yu~. Yet, from elementary re-
cursion theory, it is well known that the set of all values of a monoto-
nous increasing recursive function is a recursive set, therefore,

rS-= {ga: NEwW)= {rymn-: new)
is a recursive set.

A first-order theory T is decidable, if the set of all the theo-
rems of T is decidable (i.e. recursive) set, otherwise T is undecidable.
The most interesting mathematical theories are undecidable. However, the
following proposition gives a test of decidability for certain theories.

1.3.2. Theorem Suppose T is sn axiomatic and complete theory of a re~
cursive language L. Then T is decidable.

Proof Let T be the set of all the theorems of theory T. Since T is
complete, for each geSent. we have @eT" or weT . If for some sentence ¢
it holds that ¢, weT', then T = Sent., and since Sent, is a recursive
set, it follows that T' is recursive as well.

Suppose the second, more interesting case holds, i.e. that T is a
consistent theory. Since T is recursive, the set (of all the codes) of
proofs may be effectively listed. By the completeness of T, for each
sentence ¢ of L either ¢ or W should occur as the last member of a
proof in the list. In the first case, ¢ is a theorem of T, and in the
second case, ¢ is not a theorem of T by the consistency of T. The pro-
perty of T Jjust described, defines an algorithm for decidability of
T}—- @, where geSent.:
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Generate all the proofs of theory T, and look at the
end of each proof, until one of the formulas ¢, W
appears. If ¢ occurs then ’I‘|-— ¢; otherwise ~T}- g¢.

We know that the search will stop with this algorithm, since
either ‘rf—— ¢ or T[— xz.

Now we shall list several elememtary, but important, theorems
from logic without proofs.

1.3.3. Deduction Theorem Suppose T is a theory of a language L and
T,"' ¢ where geFor,. Then, there are sentences 08¢, 01, ..., 6a€T such
that

-6 AB1 A ... AB0 = g.

As 8 consequence of this theorem we have that a first order theo-
ry T is consistent iff every finite subset of T is consistent.

1.3.4. Lemma on the New Constant Let T be a theory of a language L,
and assue ¢ is a constant symbol which does not belong to L. Then for
every formula ¢(x) of L we have: if T}~ ¢(c), then T|—— Vxo(x).

The proof of this lemma is very easy: if in the proof of ¢(c)
from T, the constant symbol ¢ is replaced by a variable y, which does
not occur in that proof, then we shall obtain a proof of ¢(y) from T,
and by the inference rule of generalization, the lemma follows at once.

A formula ¢ of a first order language L is in a prenex normal
form, if ¢ is of the form @ y1@yz...Guysy, where ¥ is a formula without
quantifiers, and Q ,@,...,Qn are some of the quantifiers Vv, 3. In this
case the formula ¥ is called a matrix.

1.3.5. Prenex Normal Form Theorem For every formula ¢ of a first order
language L, there exists a formula ¥ of L in a prenex normal form, such
that |- ¢ & y.

Another important notion is related to the last theorem. This is
the so-called proof-theoretical hierarchy of formulas of a language L.
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1.3.6. Definition Llet L be a first order language L. Then:
To%= Tb°= {peForL: ¢ does not contain quantifiers},
Ta+1°%= {oxy...xx@: kew, @ello},

Mhe1°= {WxoX1...Xx@: kEw, @EZRO}.

If 9eZs®, then ¢ is a Ia®-formula, and if @ella®, then ¢ is a [L%-
formula. If ¢ is a I,9-formula, then ¢ is also called an existentional
formula, while if ¢ is a M °-formula, then ¢ is called a universal for-
mula. The sequences Zn® and [L® of formulas of L define the proof-theore
tical hierarchy of formulas of L. By Theorem 1.3.5 every formula ¢ of L
is equivalent to a formula ¥, such that either Ye€Ls? or M. If YeZn®,
then ¢ is also called a In?-formula, and analogously, we shall define
the M- formulas. If ¢ is a formula of L and for some neéw there is a
VEDn® and a 8€M® both equivalent to ¢, then ¢ is called a As®-formula.
The main properties of the proof-theoretical hierarchy are described in
the following proposition.

1.3.7. Theorem

To%= T € &4°

1.4. Examples of theories

In this section we shall give several examples of first-order
theories. Most examples are from working mathematics, and we shall con-
sider some cases in greater detail. For every example, we shall exhibit
explicitly the corresponding language L, in which the axioms of the theo-
ry are written down.

1.4.1. Bxample Pure predicate calculus with identity, Jo. For this
theory we have: L=zg, T=g.

Therefore, the theorems of theory T are exactly the theorems of
the first-order predicate calculus which contain logical symbols only.
Here are several interesting examples of sentences which can be written
down in L:
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o1 X W (x=x: ),
02= Baxa (Uxi DX ) A Wx{x v x3x2))

on= 31 ..a%n (( /\ '!(m:‘vq))AVx(v X=%; ))
1<l i <n

13 Iy (X132 )
tz2= Faixe Hxi18x2 )

s Za...x( N Axsx))
"Q"’ﬁ“

We see that or says " there are exactly n elements”, and tn says
“there are at least n elements”. Observe that
}—One(tn!\'h?n*x) s !-—-tne(‘ic;/\.../\’lon-x).

In the following examples we shall often write open formulas in-
stead of their universal closures.

1.4.2. Example The theory of linear ordering, LO. In this case we
have: Lie= {£}, £ is a binary relation symbol. Axioms of T are:

LO.1. x=x reflexivity,
10.2. xSy A y$z —>» x5z transitivity,
10.3. X2y A yX —» X=By antisymmetricity,
10.4. xsy v y&x linearity.

A theory PO whose axioms are LO.1-3. is called a theory of par-
tial ordering. The binary relation symbol < is introduced by the defini-
tion axiom: %<y €> X<y A I=y.

1.4.3. Example The theory of dense linear ordering without endpoints,
DLO. The language of this theory is the same as in the case of 10, and
the axioms are the axioms of LO plus the following sentences:
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Vx3y (x<y), Y3y (y<x),
Yxy3z{x<y — x<z A z<y), Dy x=sy) .

It is not difficult to see that for each new\ (0}, DI_D|—~ Ta, where
Tn is the sentence from Example 1.4.1.

1.4.4. Example The theory of Abelian groups, Ab. In this case we have:
Relas=¢, Fncr= {+, -}, where + is a binary function symbol, and - is a
unary function symbol. Further, Consti= {0}. The axioms of Ab are the
following formulas:

Ab.1l. (xty)+z= x+(y+z) the associative identity,
Ab.2. x4y y+x the commitative identity,
Ab.3. x+0= x the identity of the neutral element,
Ab.4. x+(-x)=s 0 the identity of the inverse element.

It is easy to prove by induction on the complexity of terms: If
teTerm,, then there is a kew and integers mp,...,mx such that
Abl—— t=mx1 + ... + MXky where x;,...,Xx are variables.

1.4.5. Example Field theory, F. The language of this theory is the
language of Abelian groups plus some additional symbols, i.e. Lr=
LagU{:,1) where + is a binary function symbol, and 1 is a constant
symbol. Axioms of F are those of Ab plus the following sentences:

{(X+y)ezE x*(y-2), XY= yoX, x+1= x,
Hx=0) — Fy(x-y=1), X (y+z)= (x+y) + (x+2).
1(0=1)

It is possible to introduce a new function symbol -1 in the the-
ory F by the defining axiom: Wxy{1(x=0) — (x*y= 1 ¢ y=x1)). Then F
proves:

Wx({x20) - xx 15 1).

1.4.6. Example The theory of ordered fields, FO. The language of this
theory is Lro= Lio VU Lr, and the axioms are the axioms of theory F plus

the following formulas:

xSy —> (x+zsy+z2), XSy A 0Kz — x+28y+2.
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We note that the formula
X12 + o0 + X220 = X520 A ... A Xa=0
is a theorem of the theory FO.

1.4.7. Example The theory of Boolean algebras, BA. The language of
this theory is Lsa= {+, «, ', £, 0, 1}, where + and . are binary fun-

ction symbols, is a unary function symbol, £ is a binary relation sym-

bol, and 0, 1 are constant symbols. The axioms of BA are:

BA.1,2. (x+y)+z= x+(y+z), (xey) 28 x+(y-2),
bBA.3,4. X+ys y+x, Xe¥E yoX,

BA.5,6. x+0= x, x-1= x,

BA.7,8. x+x' = 1, xx' = 0,

BA.9. 1(0=1),

BA.10. XSy €> XE X+y.

It is easy to show that in BA we have

1° The relation symbol < satisfies the axioms of PO, With respect to
this ordering, the following holds:

SUp{Xi,esesXn}E ZicnXi, inf{xi,eee,Xn}E Thenxi o
2° For each teTerm,
BA|— t{X1y0009%)E Z t{aryeee,an)X1 % ..uXa% ,
«a€2n

where 2v= {a: a:n—>2}, ai = a({i+tl), O0<i<n, and x= X', x!= x.
This fact is proved by induction on the complexity of terms. In-
stead of + and - in the sequel we shall use the signs A and v.

1.4.8. Example Peano arithmetic, PA. This theory has the same language
as theory BA, i.e. Lpa= Lga. Axioms of PA are the following formulas:

P.1. (x' =0}, P.6. Xy = (x+y)+x,
P.2. x'=y' — x=y, P.7. "1(x«<0),

P.3. x+0= x, P.8. xXy — x<y v xsy,
P.4. x+y = (x+y)', P.9. x<y v x3y v yx,
P.5. x:0= 0, P.10. 1=0'.

(I) Induction scheme: Let ¢xy1...yan be a formula of L. Then the
universal closure of
@OYL+e.¥n A VX{OPXY1 o o¥n ~> X Y1 eoa¥n) —> VXPXYL ... ¥n
is an axiom of PA.
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This theory is also called the formal arithmetic. It contains
several interesting subtheories. At this moment we shall mention two of
them.

The first theory is P-. This theory consists of the axioms Pil-
P10. Therefore, PA= P~ + (I},

Another example is the Presburger arithmetic. It consists of
those axioms of PA which are expressed in the language {+, ', 0}, 1i.e.
in language Lea without the symbols ., <, 1.

All the examples we have listed are axiommtic theories, i.e.
with recursive sets of axioms. Also, all except the last example, are
finitely axiomatizable theories. Theories Jo, LO, DLO, Ab, BA are de-
cidable theories, while F, FO and PA are not. The Pressburger arithmetic
is also decidable and a complete theory.

1.5. Models

We have dealt in the previous sections mainly with syntactical
notions. On the other hand, the most important concept in model theory
is the idea of an operational-relational structure, or simply a model of
a first-order language L. Customary mathematical structures such as
groups, fields, ordered fields, and the structure of natural numbers,
are examples of models. When studying the properties of models, a dis-
tinctively important role is played by the concept of formal language
used to make precise the set of symbols and rules used to build formulas
and sentences. The main reason for introducing formulas is to describe
properties of models. Therefore, it is not astonishing that some proper-
ties of models are often consequences of the structure of sentences or
classes of sentences. The proofs of such features of models are often
called model-theoretical proofs.

By the methods of model theory many open mathematical problems
have been solved. One such famous problem is the consistent foundation
of Leibnitz Analysis, a problem which stood open for 300 years. Abraham
Robinson gave a simple but ingenious solution, and thanks to him there
is now a whole new methodology which is equally well applied to topolo-
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gy, algebra, probability theory, and practically to all mathematical
fields where infinite objects appear.

1.5.1. Definition A model is every structure A= (A,R,F,C) where A is a
nonempty set (the domain of A), R is a set of relations over A, Fis a
family of operations over A, and C is a set of constants of A.

By this definition of model we have:

If ReR, +then there is an new, such that RcA®, i.e. R is a rela-
tion over A of length n. The length of R is denoted by ar(R).

If FeF, then there is an new such that F:Ar——A, i.e. F is an n-
ary operation over A. To denote the length of F we write ar(F)= n.

Finally, C ¢ A.

If R, F, C are finite sets, for example R= {Ro, ...,Ra}, F=
(Fo, +«ssFu}, C= {80, ...y8x}, then A may be denoted as
A= (A, Fo;...y Fo, Ro, ..., Rmy) 80, «e.y BKx).

If these sets are indexed, i.e. R =<R;: jeJ>, F= <F: i€I>, C+=
<ax: keK>, we can also use the notation:

A= (A,Fi ,Rj,ax)i e1,; &1, kK.

1.5.2. Example 1° The ordered field of real numbers:
R= (R1+1':‘151011)~
Here, F = {+,+,-}, ar(+)= ar(+) = 2, ar{~-}= 1, and
R= {5}, ar{(g)=2, and C= {0,1}.

2' The structure of natural numbers: N= (N,+,-,’,<,0).

3° The field of all subsets of a set X: P(X)= (P(X}),u,n,c,q,X)
where P(X)= {Y: YX}, and for YeP(X), Ye= X\Y.

Models are interpretations of first-order languages. To see that,
let L be a first-order language and A a non-empty set. An interpretation
of L into the domain A is every mapping I with the domain L, and values
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determined as follows:

If ReRely, then I{(R) is a relation of A of length ar(R).
1f FeFeny, then I(F) is an operation of A of length ar(F).
If ceConsty, then I(c)eA.

Therefore, every interpretation I of a language L into a domain A
determines a unique model A= (A, I(Rely),I(Feni),I(ConstL)). The model so
introduced is written simply as A= (A,I), or A= (A,s*)seL, where for
sel, sAz I(s).

We see that in Example 1.5.2. R is a model of the language of
ordered fields, while N is a model of the language of Peano arithmetic,
and finally P(X) is a model of the language of the theory of Boolean
algebras.

From now on by the letters A, B, C;, ... we shall denote models,
and by A, B, C, ... their domains, respectively. If L is a language and
A a model of L, then seL and s* denote objects of a quite different na~
ture. However, if the context allows, we shall use the same sign to de-
note a symbol of L and its interpretation in A. This means the super-
script A will be often omitted from sA. The circumstance under which s
appears will determine if seL or if s is in fact an interpretation of a
symbol of L. Very often a structure A is introduced without explicit
mention of the related language. But, from the definition of structure A
it will be clear what is the corresponding language, and in that case we
shall denote the language in question by La. A similar situation may ap-
pear for a theory T; the corresponding language will be denoted by Lg.

Assume Lgl) are first-order languages, and let A be a model of
L'. Omitting sA for s€l’\L from the model A, we obtain a new model B of
L with domain Bz A. In this case, A is called an expansion of model B,
while B is called a reduct of model A. 1f I and I' are interpretations
which determine B and A, respectively, we see that I= I'|L.

1.5.3. Definition let A and B be models of a languasge L. Then B is a
submodel of A, if and only if BcA and

if ReRel, is of length k, then RE= RA n Bk,

if FeFen, is of length k, then F®= FA|Bk,

if ceConsty, then cB= c*,
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The fact that B is a submodel of A, we shall denote by BgA. For
example (N,+,+,%<,0,1) € (R,+,+,%,0,1), but for ¥Y<X, Y#X, it is not true
that (P(Y),u,n,c,q,Y) € (P(X),y,n,¢,s,X).

Algebras are also special types of models; they are models of
languages L, such that Relr= g. As in the case of algebras, it is pos-
sible to introduce the notions of homomorphism and isomorphism for ar-
bitrary models.

1.5.4. Definition Let A and B be models of a language L, and f:A—>B.
The map f is a hamomorphism from A into B, which is denoted by f{:A—>B,
if and only if:

1 For ReRel., ar(R)= k, for all ai,...,8:€A, RA(as,...,ax) implies
R*{fas,...,fax); in this case we say that f is concurrent with
relations RA, RB.

2° For FeFcni of length k, for all a:i,...,ax€A,
f(FA(a;,...,ax))= FB(fa;,...,fax); in this case we say that f is
concurrent with operations FA, FB.

3° For ceConst., f(cr)= cB,

Similarly to the case of algebraic structures, we have the fol-
lowing classification of homomorphisms:

f is an embedding, if f is 1-1.

f is an onto-hamomorphism {or epimorphism), if f is onto.

f is a strong hopamorphism, if for every k-ary relation symbol R
of L, and a1,4...,8k€A, RA(a1,...,ax) holds iff RB(fai,...,fax)
holds.

f is an isomorphism, if f is 1-1 and a strong epimorphism.

f is an autamorphism, if f is an isomorphism and A= B.

Suppose f:A—>B is a homomorphism. Then we shall use the fol-
lowing conventions:

If f is an embedding, we shall say that A is embedded into B.

If f is an onto map, we shall say that B is a homomorphic image
of A, and we shall occasionally note this fact by B= f(A).

If £ is an isomorphism between mudels A and B, then we shall
write f:AxB. The notation A*B is used to indicate that there is an iso-
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morphism f:AxB, and in this case we shall say that A and B are iso-
morphic.

The set of all the automorphisms of a model A is denoted by
Aut A. It is not difficult to see that Aut A is a group under function
multiplication; this group will be denoted by Aut A. The set of all
automorphisms of a countable model has the following interesting
property.

1.5.5. Theorem (Kueker) Let A be a countable model. Then
|Aut Al > R implies JAut A}= 2% .

Proof First let ug introduce some notations. A finite permutation of the
set A is every permutation of a finite subget of A. Further, let G be a
subgroup of Aut A. A finite permutation p of A is extendible (with res~
pect to G}, if there exists a ge€G such that p¢g. Finally, G is a comple-
te group, if it satisfies the following condition:

If po €pPL €DP2 & oa» is a chain of extendible finite
permutations, and f= Uppn is a permutation of A, then feG.

Now we shall proceed to the proof of the theorem.
Claim 1. Aut A is a complete group.

Proof of Claim 1 let f= Uspn where pp € p1 € ... 1is a chain of ex-
tendable finite permutations of A, and suppose f is a permutation of A.
We shall show that f is concurrent with operations of model A. So, let
F be an n-ary operation of model A and choose a;,...,8.€A. As A= dom f=
Undom pn, there is an mew such that a;,...,as,Fla;,...,8s)€ dom pu.
Further, pm is extendible, hence there exists a geAut A such that pesg.
Thus
f{Flar,»..yas))= pn(F(a:,...,an})= g(Fla:i,...,a))=
F(gai, . s88n) = F(Pmai, .0 pwan )= F(far,...,fan).
i.e. feAut A. In a similar way one can show that f is concurrent with
the relations of model A.

Claim 2. If G is an uncountable and complete group of permutations of a
countable set A, then {_G]: 2%
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Proof of Claim 2 First we shall show

(1) For every finite sequence ai,...,an of elements of A, there is an
element geG\{ia} such that g(a:i )= a, 1gisn.

To see this, remark that the set {(fai,...,fan}: f€G) is count-

able (since A* is countable), therefore since G is uncountable, there
are f,heG, so that f# h, and
(fa;,...,faﬂ: (ha;,...,han).

Then, g=f-1h satisfies condition (1).
'Further, we shall show

(2) If p is a finite extendible permutation of A, then there are dif-
ferent finite extendible permutations q, r of A such that pe<q,r,
and p# q,r.

In order to see (2}, let us suppose p(aj j= by, 1<isn. By (1),
there is a g€G, so that g(ai )= ai, 12i<n, and for some a€A, g(a)# a.
Since p is an extendable permutation, there is heG, such that pch. lLet
us define finite permutations q, r as follows

aqla; )= by, 1<%isn, q(a)= ha, r{ai )= by, 1£isn, r(a)= hga.
Then q, r are obviously finite permutations of set A, p < q,r, and q, r
are extendable, since q € h, r ¢ hg. Therefore (2) holds.

Finally, we shall prove:

(3) If p is a finite extendible permutation of A and aeA\dom(p)} then
there 1is a finite extendable permutation q such that p € q and
aedom(q) &/ <o ()0"'\%

Really, if p is extendible and p is given by p(ai )= by, 1<isn,
then there is geG such that peg. Then q= p U {(a,ga),(g a,a)} satisfies
the required conditions.

Now, let A= {ai,a2, ...,}. Since g is a permutation of the empty
set, and ¢ is extendible (every ge€G extends ¢), by (2) and (3) we can
build an infinite binary tree T which satisfies the following
conditions:
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Every member of T is a finite extendible permutation of A.
The ordering of T is the inclusion relation.

If pa«€T, then pao# Par, a€2n,

If a€2®, then ap€dom({pally cod om (T4

B - SR
o e

o

Hence, tree T looks as follows:

\/ \VAVAYE

Po1 Pro Pi1

\/ \/
\/

Therefore, if <t is a branch of T and f«= U p, then f. is a per-
by b, A:JOM‘Q{, A -codowke. per
mutation of set A. Since G is a complete group, it follows that f.:€G. On
the other hand, tree T has 2% branches, hence, {f:: t is a branch of T}
is of the cardinality 2%, i.e. lG|=

Then, by claims 1 and 2, the theorem follows.

We have employed a method in the proof of the theorem which is
often used in model theory: First build a binary tree, and then the pro-
blem of counting the members of a given set (in this case Aut A) is re-
duced to counting the branches of that tree. We shall later see other
examples of a similar nature.
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1.6. Satisfaction relation

When introducing syntactical objects of PR!, as terms, formulas
and sentences are, we had in mind certain meanings related to these no-
tions. Tarski’'s definition of the satisfaction relation p= determines
these ideas precisely. The introduction of this relation also solves the
problem of mathematical truth. Namely, a sentence ¢ will be true in a
structure A, if A[-= ¢. Finally, this formalization of mathematical truth
enables a mathematical analysis of metamathematical notions.

We shall first define the values of the terms in models. Let A
be a model of a first-order language L. A valuation or an assignment of
the domain A is every map u:Var—»A. Therefore, valuations assign values
to variables. The value of a term u{Xs,...;Xs J€Term in model A, denoted
by ur{ul, is defined by induction on the complexity of terms, assuming
that p{vi }J= a , i€ow.

If co{u)= 0, then we can distinguish two cases:
1° If u is a variable vi , then wWul= a .
If u is a constant symbol ¢, then uAfpl= ch.

Suppose now co(u)= n+l, and assume that the values of the terms
of the complexity <n are determined. Then there is an FeFeny, ar(F)zk,

such that u= F(ui,...,ux) where ui,...,ux are terms of complexity <n.
Then, by definition,

urpl= FA[uiAful, . .o uxAplld.

Instead of uA[pl, it is common to write uA(aj,az,...,a8c) or
ula;,az,...,ar), or u{ai,az,...,ar), if it is clear which model is in

question. Here, r is the number of variables which occur in term u.

If A is a model of a language L, an operation F of domain A is
derived if there is a t(xi,...,xs)€Term. such that for all a:;,...,a:€A,
Flai,+.vy82)= tA[a1,...,an]. The following proposition says that homo-
morphisms of a model remain concurrent with respect to derived opera-
tions.
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1.6.1. Theorem Let A and B be models of a language L, and h:A—B a

homomorphism. Then for every term u(xi,...,xn) of L and all &as,...,8n€A
the following holds:
h(ur[a1,...58a1)= utlha;,...,han].

Proof The proof will be performed by induction on the complexity of

terms. So, let u€Termy, and suppose that the variables vo,vi,... have
the values ag,a;,... under valuation p. First assume co(u)=0. We have
two cases:

1° ueConsty. Then: h{urA{pl)= h(ur)=z uB= ubfhai,...,han].

2° u is a variable x; . Then: h{uvA{u})= h{a )= utlha;,...,hanl.

Now suppose the statement is true for some fixed n€w, and let
co(u)z n+l. Then there is an FeFcni of length k and there are some terms
Ui,..syuk, such that uz F(ui,...,ux). Then the terms w are of complex-
ity <n and hence, by the inductive hypothesis, we have

h{ur{ul)= h{FA(uA[pl, ..., urpl))
= FR(huA{ul,...,hur{ul)
= Fa(uw{hyl,...,uf{hul)

so the theorem follows by induction.

Note The above theorem can be obviously Var ———em=> A
restated in the following way:

For every valuation u:Var—>A the h
displayed diagram commutes, i.e. hp

h(ur[ul)= utlhul. B

An algebraic identity of a language L is every formula usv, where
u,veTermy. We say that an algebra of language L satisfies the identity
uzv, if and only if for all ai;,...,an€A, ur{ar,...,anl= vA{a;,...,8n].

1.6.2. Corollary Let A and B be algebras of a language L, and assume
that B is a homomorphic image of A. Then every identity true in A also
holds in B.
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Proof Let h:A—>»B be onto, and suppose identity uzv holds in A. Then,
for arbitrary bs,...,bn€B, there are a;,...,an€A such that ha;=b;, ...,
ha;=by, ..., han=bs, so
ub[bi,...;bn]= utlhas,...,han]
= huA{as,.+e,8n1
= hvA (81,4408
= VB he1,..0 0}
= v*[by,...,bm].

This corollary is an example of a preservation theorem. Namely,
it says that some properties are preserved under homomorphisms, and in
this case these properties are those which can be described by identi-
ties. Some examples are the associativity and the commutativity of al-
gebraic operations. This is probably one of the places where one can
see the algebraic nature of model theory.

Now we shall turn to the most important concept of model theory.
This is the notion of the satisfaction relation, or the definition of
mathematical truth.

1.6.3. Definition Let A be a model of a language L. We define the re-
lation

Al ¢lul
for all formulas ¢ of L and all valuations p= <a; : iew> of the domain A

by induction on the complexity of formulas ¢:

If ¢= (u=v), u,veTerm., then A= ¢[u]l iff ur[pl= vA(p].

If o= R(ur,...,uan), Re€Rely, wi,...,uwm€Term., then
Ap= olu] iff (u‘ﬂ[u].---,uﬂhiu])eR*. i.e. RA(UALu], ... ur[id)
If ¢= W, then Ap= ¢[ul] iff not  Ap= y(ul.

If ¢= (y A 8), then Ap=glp]l iff Al ylpl and Ap= 6[ul.

If ¢= (y v 8), then Ap=olp]l iff A= ylu]l or Al= 8(n).

If ¢= (y — 6), then Ap= ¢lu]l iff not A= ¥lul or Ap= 8[p].

If ¢= iyxoX1...%Xn, i=n, then AfE= ¢lu] iff there is an
a€A such that A'— V(A0 )81 000 yBio1,8,8i41y00esBnyecels

If ¢= VxiyxoX1...Xn, i<n, then Al= ¢[u]l iff for all aeA,
A= (80,81 5000 s8i-1,848i+1000,80,00.10
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By the definition of the satisfaction relation, we see that the
value of A!= ¢{u] depends only on the free variables which occur in ¢.
A rigorous proof of this fact can be derived by induction on the com-
plexity of formulas. An archetype of this kind of proof is the proof of
Theorem 1.6.1. This enables us to introduce the following conventions.

If ¢= ¢(Vo,Viy++«yVn) and u=<a : i€w>, then we shall simply write
A|== @(a0 ,814...,8n) instead of A|- @[pl. Sentences do not have free
variables, so their values do not depend on the choice of a valuation,
i.e. if ¢eSent, and A}= 9lul, then for all valuations ¢ we have A|-
¢lo]l. Thus, we shall use the abbreviated form A!= ¢ instead of A§=- elul.

The definition of the satisfaction relation permits us to intro-
duce new model-theoretic concepts. One of these is the theory of model A
= {geSenty: Af= ¢}, A is a model of L.

It is easy to see that for each formula ¢ of L and every valua-
tion either A= ¢{u} or A= %{ul, thus, ThA is a complete theory. For
example, the theory of the structure of natural numbers, ThN, is com~-
plete, and hence it is called a complete arithmetic. As N is a model of
theory PA, it follows that PA < ThN, but by the G8del’s Second Incom-
pleteness Theorem, the set of theorems of PA is a proper subset of ThN.
Moreover, ThN is not an axiomatic theory, i.e. it does not have a re-
cursive set of axioms. One of the tasks of model theory is to solve the
problem whether a given theory is axiomatic.

Let T be a theory of a language L. A model A of L is a model of
theory T, if every axiom of T holds in A, i.e. T < ThA. In such a case,
we write A|v= T. For example, every ordered field, like the ordered
fields of rationals and reals, is a model of theory FO. Similarly, every
Boolean algebra is a model of theory BA. Every model A of a language L
satisfies all the axioms of first-order predicate calculus for L. Rules
of inferences (Modus Ponens and Generalization rules) are preserved by
the satisfaction relation, i.e. if p is a valuation of domain A, and
Al oufuly ..o y9nln), where ¢i,...,mm€For, and ¥ is derived by applica-
tions of these rules, then A'= V¥{ul. Therefore, the following theorem is
easily proved by induction on the length of proofs in T.
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1.6.4.80undness Theorem Assume A is a model of a language Land T is a
theory of L. If Af= T and T} ¢, where geSent., then Ap= ¢

Two models A and B of a language L are elementary equivalent if A
and B satisfy the same sentences of L, i.e. ThA= ThB. This relation be-
tween models is denoted by A = B. It is also said that A and B have the
same first-order properties. By induction on the complexity of formulas,
it is easy to show:

1.6.5. Theorem Let g:A x B be an isomorphism of the models A and B of
a language L. Then, for every formula ¢vo...va of L and every valuation
p= <& : i€w> of the domain A, the following holds:

A]— @80 s.esy8n] if and only if B]== ¢lgao,.4vy8an 1.

Since the value of a sentence in a model does not depend on the
choice of a valuation, we have the following consequence.

1.6.6. Corollary If A and B are isomorphic models of a language L,
then A = B.

Therefore isomorphisms preserve first-order properties. Embed-
dings of models which preserve first-order properties are called ele-
mentary embeddings. Therefore, an elementary embedding between models A
and B of a language L is every map g:A—>B, such that for all ¢ecFor.,
all valuations y of domain A, it satisfies

Ap= 9lao,...,as] if and only if Bp= ¢[ga0,...,280].

In this case we can use the notation g:A=<3»B. If A ¢ B and the
inclusion map ia:A—>B, ix:x+—»x (x€A), is elementary, then we can write
A < B. observe that A < B implies A = B.

A class of M of models of a languasge L is axiomatic, if there is
a theory T of L such that M= {A: Ap=T}. For example, the class of all
the ordered fields is axiomatic, and so is the class of all Boolean al-
gebras. Later we shall see that, for example, the class of all cyclic
groups is not an axiomatic class. The class of all models of a theory T
is denoted by MT). The crucial theorem of model theory says that for
every consistent theory T, MIT)# ¢.
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1.7. Method of new corstants

The introduction of new linguistic constants is a dual procedure
to the process of interpretations. Namely, to every nonempty set A there
corresponds a certain language La. If R is a k-ary relation over A, then
let R be a relation symbol of length k which belongs to La. Similarly,
if g is an n—-ary operation over domain A, we can introduce a function
symbol gela of arity k. Finally, if a€A then aeConsti(a) . The symbols R,
g, a are called names of R, g, a, respectively. We have a natural inter-
pretation of language La so defined: If sela, then sAz s. In this way

we have built a model A= (A,R,F,C), where R is the set of all relations
over A, F is the set of all the operations with domain A, and C =A. Of

course, it is not always necessary to consider the full expansion of set
A. For example, if A is any model of a language L, and a;,...,an€A, then
A'={(A,a1,...,80) 1is a simple expansion of A, and A’ is a model of the
language L= L U {@a1,:..48a}.

The following proposition is interesting for two reasons. The
first one relates to the inductive nature of the satisfaction class.
Secondly, this proposition shows that the satisfaction relation can be
defined only for sentences, if, of course, the starting model is modi-
fied.

1.7.1, Theorem Let A be a model of a language L and ¢vevi...vn€Fory.

Then, for all ac,81,...,8n€A, we have A|= ¢lag,a1,...,8n), if and only
if (Ayjeo,...s8a)f= ga0...8a.
Remark that ¢as...an is a sentence of L VU {ap,...;an },

Proof let us first prove an auxiliary statement:

(1) If tvo...vp€Term, and A’= (A,ag,...,8: ), then
tAag...ap= tAfap, .ayanl.

This claim is proved by induction on the complexity of term t:
if co(t)= 0, then:

if t= xi, then t*ap...8:= sy A" = a3 = tA{ag,...,aa],
if teConstr, then tA’ag...as= tA’ = tAz tAlap,...,an].
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If co{t}=z k+l, then for some mew and for feFenr of length m,
there are ti1,.,.,ta€Termy such that t= f{t;,...,ta), so

tA'8g.. .8 fA {(t;2 85 .. .80,..4,L0*" B0...8a)
(by the inductive hypothesis)
= fA(tiA[20,..498a)y . eytmran, ... a0])

t‘[aﬂ,-..,an].
Therefore, (1) follows by induction.

Now we shall proceed to the proof of the theorem. This proof is
also by induction on the complexity of formulas. So let us assume
co(¢)=0, where geFor,. Then we have two possibilities:

¢= (uszv), u,veTermy. Then
A= ¢lao,...,an], iff urlaa,...,8n)= vA{ag,...,80]
iff ur ap...an= VA 85 .. .80
iff A'p= gac...8n .

o= RB{urye..,us), ReERelr, ar{R)=m, w,...,un€Term . Then

A,-Qolan:*'-aan]s iff RA(uiAlag,...58a),...unr{B0,.¢.,8a])
iff RA (WA 80...Bajyse0,Uunr’B0...8a)
iff Afe ga0...8a .

Now, let 9 be a formula of complexity k+l. Then, we can distin-
guish the following cases:

@= (Y A 8). then the formulas ¥ and 6 are of complexity <k, so

A= ¢lao,...,aa] iff Ap= ylac,...,a0] and Ap= Blac,...,a4],
iff Ap=vyas...an and A'j= Ba0...@
iff A= gac...an .

9= W. Then the formula ¥ is of complexity <k, so
Ap= ¢lao,...,8a] 1iff Ap= Y[ao,...,2a]
(using the inductive hypothesis)
iff not A’ b= Yao .. .88
iff A'p= gao...80 .

The proof is similar for other logical connectives.
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Let ¢= 3vi y. Then we may take that i=0, ¢= ¢vi...va and
Y= Y{vo,Viyeasyva). Then
AF=9lay,...,aa} iff for some bea, A!— ¥(b,81y+0¢0,8a]
(using the inductive hypothesis)
iff for some beA, (A’,b)p= ybai...as
iff for some beA, A’j= 6{b],
where 0x= YXai...8, 80
iff  A'p= Xx0x
iff A’ fs QB0 .. +8a .

We shall apply the previous proposition in the following theorem
which says that there is no satisfactory model theory for finite struc-
tures. The reason is that the relation of elementary equivalence and
the isomorphisms of models coincide for finite structures.

1.7.2. Theorem Let A and B be models of a language L. If A is finite
and A = B, then A = B,

Proof Let |A|=n. By Example 1.4.1, we have Aj= ga, therefore Bj= aa,
i.e. }Bi:n as well. Let us now prove the following fact:

(1) If And B are finite models and A = B, then, for each a€A there
is a beB such that (A,a) = (B,b).

Really, let a€A and suppose B={b;,...,ba}. Assume there is no beB
such that (A,a) = (B,b), and choose a constant symbol ce€L (the so-called
new constant symbol). Then, for all isn there is a formula ¢ x of
language L and there is by €B such that (A,a)p= ¢uc and (B,bx )= Wac,
where c is interpreted by a in model (A,a), while in (B,Ix ) it is inter-
preted by by . Hence, (A,a)]= Aignyic, so by Theorem 1.7.1, it follows
that A|-= 3 ANgn 93X. Since A = B, we have B|=- 3X ANgn 93X, thus for
some ksn, Bp= (Ao ¢5x){bk]l. By Theorem 1.7.1, it follows that
(B,bx ) = Asgcn 93bx, hence, (B,bx ) p= Ajen 95C, if c is interpreted by ax,
and this is a contradiction to the choice of the formula ¢x. This
finishes the proof of (1).

By repeated use of (1), we shall find an enumeration {a1,...,8s)}
of domain A, so that
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{2} (Ay815.40982) = (Byb1,...,bn),
where (A,ai,...,an), (B,bi1,...,bn) are models of a language
LU(C],--.,C‘n).

Then, the map f:A—»B defined by fiai+—>bi, isn, is an iso-
morphism of models A and B. To see this, suppose that ¥ is a binary ope-
ration sywbol (we have made this sssumption for simpliocity) of L. If
& ,a; ,88€A satisfy ax= a ¥4 a;, then (A,a1,...,8a )=~ 8k= au *ay , so by
(2), (Bybiyecs, b.)'- x= by , i.e. x= by ¥ b;. Therefore, by the
definition of function f, we have f(a ** g;)= f(a ) ¥® f(a;}, i.e. f is
concurrent in respect to the operations A, ¥®, CObviously, f is onto.
This map is also 1-1, since

(Aya1, .00 y80) = & =y iff  (B,bi,...,bn) = b =by .

In a similar way one can show that f is concurrent with relations
of models A and B. Thus f:A ~ B.

The idea of constructing an isomorphism as it has been done in
the previous theorem is often exploited in model theory. It is
summarized in the following theorem.

1.7.3. Theorem lLet A and B be models of a language L, A= [ai: i€l},
= {by: i€l}, and A’z (A,a i ¢, B'= (B,bx )i « be models of the lan-
guage L U {bi : ieI} with ¢ interpreted in A’ by ai, and in B’ by by .
Then,

{(Ayai Jiam = (B, i & implies A = B.

As can be expected, the map f:ai+—3b, i€I, is an isomorphism of
models A and B.

Exercises

1.1. The set of positive propositional formulas is defined as the least
set P of propositional formulas such that :

Every propositional letter belongs to P.

If ¢,¥€P then (gay), (), (p—>¥)€P.

Show: (a) A propositional formula ¢(pi,...,pn), N€@,is equivalent to
a positive propositional formula iff ¢{1,...,1)=1.
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(b) For every propositional formula ¢ there exists a positive
propositional formula ¥ such that = ¢ & ¥ or = ¢ & W.

1.2. If ¢ is a propositional formula, let I'(¢) denote the set of all
propositional letters which occur in ¢. If ¢ and ¥ are propositional
formulas such that ¢ is not a contradiction, and ¥ is not a tautology,
then prove:

(a) If = ¢—>¢ then there is a propositional formula 8 such that
= ¢>6, p= 60—y, and ['(8) € T(P)NT(Y).
(b) If p= @Y then [(¢@)Nr(y)#g.

1.3. A sequence of propositional formulas Y1,...,¥a is increasing iff

for all 1<i<n, |- Vi-»i+1. If ¢(pi,...,pn) i8 a propositional formuls,

then for every increasing sequence of propositional formulas ¥;,...,¥n:
b= ¢(p1,P1VP2se.osP1V...Vpn) implies | @(¥i,...,¥%n),

where @(Vi,...,¥n) is obtained from ¢(p1,...,pn) by simultaneocus sub-

stitutions of propositional letters pi,...,pn Of ¢ by ¥1,...,¥5.

1.4. Let ¢ and ¥ be propositional formulas such that §- ¢ but not
[ ¥—>¢. Show that there is a formula 6 such that j= ¢—8 and |= 63y,
but "= 8¢ and “j= y—>9.

1.5. Prove : (a) The Deduction Theorem.
{b) The Disjunctive Normal Form Theorem.
{c) The Prenex Normal Form Theorem.

1.6. Assume T and S are theories of a language L. If TUS is an incon~-
sistent theory, then there is a @€Sent: such that Tt—- ¢ and S}—- x.

1.7. If L is an at most countable language, show that lLl: N. IfLis
an infinite languasge, show that lLﬂ: IL] . {(Hint: if k is na infinite
cardinal, then k*=k}.

1.8. Compute the number of theories over a language L if |L|=k.

1.9. Let Vozg, Vu+1= P(Vy), new, and V= LbV,. Prove that (V,¢) is a
model of ZFC set theory without the Axiom of Infinity.
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1.10. If TecTic... is a sequence of theories of a language L such that
(1) Theories Ta and Tu¢1 are not equivalent for any neo,
then T= UpsTa is not finitely axiomatizable.

Show that the condition (1) can be replaced by: For each new
there is a model A of Tr which is not a model of Tas:1.

1.11. Show that the following theories are not finitely axiomatizable:
(a) The theory of infinite models of theory Jo.

{b) The theory of fields of the characteristic 0.

{c) The theory of algebraically closed fields.

1.12. lLet T be a first-order theory with a recursive set of axioms. If T
has only finitely many complete extensions, then T is decidable.

1.13. Construct models A and B such that A is embedded into A and B is
embedded into A, but A and B are not isomorphic.

1.14. Let A and B be models of a language L. Show:

{(a}) If f:A—B is an embedding then there is a model A' such that dia-
gram {1} commutes,

{b) If f:A——>»B is an embedding then there is a model B’ such that dia-
gram {2) commutes.

A’ B’
(1) I \ (2) i I
§ 5
A——————3B A >B
f f

Here ia: x—>x, X€A.

1.15. Let A be an Abelian group in which every element is of finite
order, and assume that the system

miXi + .. + moaXas by
(8) : : m ; are integers, beAr,
1<i,jsn, b=(by,...,bn).
MaiX: + .os + MoaXn= by
has an unique solution in unknowns xi,...,xa for b= {(0,...,0). Show that

the system (S) has an unique solution for all beAr. (Hint: every finite-
ly generated subgroup of A is finite).
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1.16. Show that there are fields F= (F,+,-,0,1) and H= (H,+,-,0,1) such
that (F,+,0) = (H,+,0) and (F,+,1) = (H,-,1) but not F = H,

1.17. If A and B are countable densely ordered sets without end-points,
then A = B.

1.18. A linearly ordered set (X,2) is well ordered iff every nonempty
subset of X has the least element. Now, let A= (A,<) be a countable
linearly ordered set with the property: Every countable well-ordered set
can be embedded into A. Prove that every countable linearly ordered set
can be embedded into A. (Hint: Show that the ordering of rationals can
be embedded into A).

1.19. Prove the identities (xy)z= x(yz) and x+(y+z)=z (x+y)+z in PA.

1.20. Let N= (N,+,-,%5,’,0) denote the standard model of arithmetic.

(a) If M is a model of PA then there is an unique embedding of N into
an initial segment of M.

(b) Numerals are defined as follows: Q is constant symbol O of Lea,
i=0', 2=1', 3=2', ... . Show that for any term tx;...xx of Lea, and
NnyNi,.».,NkEN, PA’— n= tng...nk iff n= t"n,...nk.

1,21, If M= (M,+,-,',5,0) is a nonstandard model of PA (i.e. M is not
isomorphic to the structure of natural numbers), then the order-type of
(M,<) is w+t(0*+0)8, where @ denotes the order-type of natural numbers,
w*+w is the order type of integers, and 8 is the order-type of a dense
linear ordering without end-points.

1.22. If A is a model, prove that (AutA,.,i.) is a group, where « is the
function multiplication.

1.23. A model A of a language L is finitely generated if there is a
finite set ScA such that A= {tB[u]l: p is a valuation of domain A, and t
is a term of language L'}, where L’= L U {d: deS}. If A is a finitely
generated model and L is countable, show that |AutA] < Ro.

1.24. Construct infinite models A such that:
{a) AutA is finite. (b) tAutA&: . () iAutA‘: 2%,  (d) iAutA*) 2%,
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1.25. Let A and B be models of a language L, and assume AB. If ¢x;...%n
i3 a formula of L, and &1,...,8:€A, then

(a}) If ¢ is universal then Bp= ¢lai,...,as] implies A= ¢lai; ... 8a].

(b) If ¢ is existential then Ap= ¢lai,...,as] implies B~ glai,...,aa].

1.26. let A and B be models of a language L, and assume A<B. Then A<B

iff for all Yxi...Xn€L, all 81,...,80€A
B,— {(3xyx)lar,... 8x] implies there is a€A such that Bf= y[a,ar,...,aal.

1.27. Let A and B be models of a language L, and assume AcB. If for all
B1,.++,80€A and beB there is an feAutB such that fa;zay,...,fanzas, and
fbeA, then A<B.

1.28. If (Q,<) is the ordering of rationals, and (R,$) the ordering of
reals, show that (Q,<)<(R,<).

1.29. Let (Q,+,5,0) be the ordered additive group of rationals and
{R,+,%,0) the ordered additive group of reals. Show:

(a) (Q,+,5,0) < (R,+,%5,0).

{b} Let {(S) be a system of linear equations and inequalities over
rationals. Show that (8) has a solution in rationals iff (S) has a so-
lution over reals.



2. BOOLEAN ALGEBRAS AND MODELS

In algebraic considerations of metamathematics, Boolean algebras
play an important role. Many statements from model theory are nothing
but translated facts about Boolean algebras. In addition, Boolean alge-
bras are used for building special models: one of the most important ex-
amples are Boolean models of the set theory. 1In this section we shall
consider some basic properties of Boolean algebras and some related con-
structions from model theory.

2.1. Finite Boolean algebras

The most simple example of a Boolean algebra is the two-element
Boolean algebra 2= {2,A,Vv,’ ,5,0,1). This algebra is sometimes called a
propositional algebra. Powers 2° of this algebra are also Boolean alge-
bras. These are in fact up to isomorphism, the only finite Boolean alge-
bras. On the other hand, infinite Boolean algebras have much more com-
plex structure; therefore, their theory is more involved and far from
trivial. Another important example of Boolean algebras is the field of
all subsets of a set ¥. Namely, P(X)= (P(X),uU,n,¢,<,s,X) is also a Bo-
olean algebra, where P(X) denotes the power-set of X, and Ac=X\A for
AeP(X).

The relation £ of a Boolean algebra B= (B,v,A,’',%,0,1) is a par-
tial ordering of domain B, and operations v and A are supremum and in-
fimum in respect to this ordering i.e. for all x,y€B we have:

xvy= sup(x,y), xAay= inf(x,y).

We have the following classification of Boolean algebras:

B is complete iff every X¢B has the supremum.

Minimal elements of B\{0) are called atoms. Then
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B is atamic iff for every beB\ {0} there is an atom of B below b,
B is atamless iff B has no atoms.

When speaking about finite Boolean algebras, the following fact
plays an important role:

BAF- txi...xa= I tlar,..;a)xi® . xa®, teTermucna)
a€2n

This theorem is known in propositional calculus as a Theorem on
Disjunctive Normal Form. Remark that for ae2® the value of t(ai;... an)
is 0 or 1. A simple consequence of this theorem is that every finitely
generated Boolean algebra is finite., Really, if B is a Boolean algebra
generated by a set X= {81,...,an}, then B= {tBa;...an: teTermuc(sa) ).
Thus for every beB there are elements bi,...,;bs€B, m$2®, such that
bz byv ... Vbm, and every by is of the form a;%,,.an®®, a€2%., Since
there are at most 2" elements of the form a;®'...an?®, we can conclude
that lB[SZzw, i.e. B is finite. In the following, we shall use signs +,
+ for Boolean operations v and A.

Let B be a finite Boolean algebra, aeB\{0} and Ba= (xeB: x=a}.
Then it is epsy to see that Baz (B.,+,+,'?,%5,0,a), where x’' 2=x’ -a, x€B,,
is also a Boolean algebra (but not a subalgebra of B, as long as 0#1}.

2.1.1., Lemma If B is a Boolean algebra and a€B, af0,1, then BaBaxBa:.

Proof Let f:BaxBa:—>B be defined by f(x,y)= x+y. We shall show that
is an isomorphism between algebras B and BaxBa: .

(1) f is 1-1.
If f{xi,y1)= f(x%2,y2), then xa+y:= x2+y2, thus x;atyias xpatyza.
Since x;1,x2%8, ¥1,y2%8’, we have x;a=x:, Xza=xz, y:18=0, y:a8=0, so x3=xz.

Similarly, from x:ia' +y;18' = x28’ +y28’, it follows that yi=y;, hence (1}
holds.
(2) f is onto.

If beB, then from a+a’ =1 we can infer that b=ab+a’'b. On the other
hand ab<a, a'bsa’, so ab€éBa, a'beB,’ , i.e. f(ab,a’'b)=b, so (2) holds.

(3) f is a homomorphism.
The identities f(0,0)=0, f(1®2,1Ba’)=f(q,a' J=a+a' =1 are obvious.
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Further,

fllx:,y1 )4 (x2,¥2))= f£{xi4X2,y1472 )= {(x1+x2)4{yitye )=
(X1 4y YH(X24y2 )= f{x:i,y1 ) +f{xz,y2). Also,

(%, ) (x2,¥2) )= f(xax2,71y2)= xux24y1 72
Since i€ a, i £ a', it follows x3 +y; < a+a’, i.e. xiy;=0. Hence,

fixy, 1 )f{x2,¥2)= (a+y1 ) {xz24y2 )= XiXe+xa Y2 +Y1X24Y1 725 XaXa Y1 )2
i.e. f is concurrent in respect to the operations of algebras B and
B.xBa.: . Finally,

f{x,y)")= £{x 2,y 2}z ax’+a’y’= X’y'= (x#y)’'= fix,¥)’.
since x<a, ysa'. Therefore (3) holds.

A simple consequence of this lemmn is the representation theorem
for finite Boolean algebras.

2.1.2. Theorem Every finite Boolean algebra is isomorphic to some
algebra 28, néw.

Proof We shall derive the proof by induction on ]B! . If !B!:Z, then
obviously B = 2. Assume iB[)Z, and suppose the statement for all the
Boolean algebras of the cardinality <;B} . Then, there is a€B\{0,1}, so
by Lemma 2.1.1, B = BaxBa+ . But ;Baj, |Ba+ ]({B], therefore by the in-
ductive hypothesis, Ba = 2®, By» = 20 for some m,new, thus B x 2m+n,

If X is a finite set, say [X‘:n, then, by the previous theorem,
the field of sets P(X) is isomorphic to 2°. An isomorphism g:P(X) = 2t
is defined by k:Y +—ky, Y € X, where ky is the characteristic function
of set Y. From Theorem 2.1.2, we also have the following consequence.

2.1.3. Corollary If identity usv holds in a two-element Boolean al-
gebra, then usv is true in all the Boolean algebras.

In fact, if usv holds in Boolean algebra 2, then usv also holds
in all the powers 2¢, so does it by Theorem 2.1.1, in all the finite
Boolean algebras. If B is an arbitrary Boolean algebra, then usv holds
in all the finitely generated subalgebras of B, since all these
subalgebras are finite; hence, uzv holds in B.

The representation theorem for Boolean terms enables us to con-
sider in great detail the structure of {ree Boolean algebras. We would
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remind the reader that a Boolean slgebra B is free over a set X of
{free) genersators, if and only if for every Boolean algebra D, and every
map g:X—>D, there is a homomorphism

h:B—>D such that gch, i.e. that the h
displayed diagram commutes. Finally, B—m—>D
if one-element Boolean algebras are

adopted, i.e. if the axiom O#1 is ul

dropped, then all the Boolean alge-

bras mske a variety. By the fundamen-

tal theorem of the theory of univer- X

sal algebras on the existence of free

algebras in algebraic varieties, there exists a free Boolean algebra
over every set. The following theorem gives a condition for a set to be
a set of free generators of Boolean algebra.

2.1.4. Theorem A Boolean algebra B is freely generated by a set X, if
and only if B is generated by X and for all the different n elements
B1,+..,80€X, and all a€2r, a; ®) +.a, an £0,

Proof (—») Let ai,...,an€X be different, and ae2r. Further, let I= [0,1]
be a real interval and F a field of subsets of I* generated by sets
Az {{X1y.00yxn): O2x; £1/2).

Finally, let g be a map defined by g:a; A, isn. Since B is
free over X, there is a homomorphism h:B—>F, gch. Let us define for
AcIn, A0= In\A, AlzA, and f'= 1-B for Be{0,1)}. Then,

(ad1ye0eyan) € AL %01, . . NAg *®
i.e. A1 ®fl...NAn%Z 0. On the other hand

h(a®l,..a%8 )z A, aifl.,.NAy o0
so a1%...aamgf 0,
(¢~} Let @ be a free Boolean algebra generated by set Y of free gene-
rators, where |Y|= |X]. Suppose g maps set Y 1-1 and onto set X. Since @
is free, there is a homomorphism h:0—>B, gch. Algebra B is generated by
set X, and X= h(Y), thus h is onto. Let us see that h is 1-1, so assume
weQ, wE0, Set Y generates Q, hence w= wi+...+wx, where each w is of the
form by at,..byan, b €Y. Since w#0, the sum wi+...+wx is nonempty, thus
w2 by et.,.bpe® for some choice of different elements by,...,bn€Y and
a€2n, Therefore,

h{w)2 h(b1 % ...ba% )= h{by)et...h(bg)as= g(by )., .g{ba)ee,

Map g is 1-1, so g(bx ) are mutually different for different i’s.
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Further, g(bi )eX, hence, by the assumed condition, we have
h(bi)at...h(by)ar¥ 0, i.e. h(w)# 0.
In other words,
(1) for all weQ\ {0}, h(w)# 0.
Now, let h{a}= h(b), and let asb=z ab’+a’b be the symmetrical dif-
ference of elements a,beQ. Then, h(a)ah(b)= 0, so h(aAb)=0, thus by (1),
asb= 0, i.e. asb.

If aj,a824...,an are free generators of a Boolean algebra B, and
uP{ai,...,a8n)= vB(A1,...48a )

then, for every map g:X—>2, there is a homomorphism h:B—>2 such that
gch. Therefore, by Theorem 1.6.1, we have

uZ{gas,...,88n)= W2 (har,...,han )= hu*{as,...,8n )=

hvB(ai,...,8n)= v?(ha;,...,h8a= vZ2(gas,...,g8n ).
Since g was chosen arbitrarily, identity u=v holds in algebra 2, and,
therefore, in all Boolean algebras. For example, if three circular areas
Ki, Kz, K3 are so chosen in the plane that Keiffke2nKa3f § for all a€23,
then, by the last theorem, these circles , as subsets of the plane, ge-
nerate a free Boolean algebra. Hence, every identity u(x,y,2)= vi{x,¥,;z)
in three variables x,y,z, which is satisfied by these circles, holds on
all the Boolean algebras. This remark is in fact a proof of the validity
of Venn's rules for checking set-thecretical identities in three let-
ters. We also have the following consequence.

2.1.5. Theorem Let Bn be a free Boolean algebra generated by n free
generators. Then, By =~ 22"

Proof The proof we shall present is by induction on the number of free
generators. So, let bi,...,bn€B; be free generators of algebra Bn, and
suppose the statement for Boolean algebras generated with fewer number
of free generators. The subalgebra Byp.;CBn generated by elements
biyes.ybn-1 is also free, so, by the inductive hypothesis, Bus-1 = 274,
Further, by Theorem 2.1.4, we have for all a€2®

'b1 I3} ...bu-l‘“‘"bn‘"‘# Q,
Using this fact, it is easy to show that the map

g:1{x,y) +—>xbntyba’, X,y€Bu-1
is an isomorphism between algebras Bn and Bu-1xBa-1. Thus,

Bn » 22Wix 22"l 22T,
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2.2. Filters

Filters of Boolean algebras do not only have applications in
analyzing properties of Boolean algebras, but also in logic, set~theory
and topology. Very often, a topological statement has a natural trans-
lation into the language of Boolean algebras or model theory. The main
reason for this lies in the Stone Representation Theorem for Boolean al-
gebras. Ultrafilters make an important class of filters, whose signifi-
cance comes from the extreme properties of these objects. In Boolean al-
gebras, ultrafilters define maximal congruences, in logic, they provide
logical verification of statements, in set theory they have interesting
combinatorial properties, and in topology, ultrafilters give a method
for the description of convergence at infinity, as well as the compact-
ification of spaces. In this section, we shall speak about filters of
Boolean algebras only as much as we need them for model theory.

2.2.1. Definition ILet B be a Boolean algebra. A filter of B is every
subset FEB which satisfies the following conditions:

1€F.

For all xe€F and all yeB, x<y implies yeF.

For all x,yeF, x-.yeF.

A filter F is an ultrafilter of a Boolean algebra B, if F is a
maximal proper filter of B ("proper" means F#ZB). A simple example of a
filter of B is Facz {x€B: agx), where a€B. Filter Fa is called principal.
Here are some other examples of filters.

2.2.2. Example 1° Filters of the field of sets P(X) are also called
filters over set X. For example, the set F= {Y<X: Y¢ is finitel is a
filter over X.

2° In finite Boolean algebras every filter is principal; F is generated
by AF.

3" If h:B—C is a homomorphism of Boolean algebras B and C, then the
set F= {x€B: hx= 1} is a filter of B. If C= 2, then F is an ultrafilter.

The following proposition gives the equivalent conditions for a
filter to be an ultrafilter.
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2.2.3. Theorem Let F be a proper filter of a Boolean algebra B. Then,
the following are equivalent:

1° F is an ultrafilter of B.

2° For all xe€B either xeF or x' €F.

3° For all x,yeB, x+yeB implies x€F or yeF.

Proof (1°—2°) let F be an ultrafilter, and suppose x¢F, x€B. Then
the set D=z FU{zeB: there is ye€F such that x' y<z}, is a proper filter of
B, and this filter contains FU{x'} as a subset. But F is an ultrafil-
ter, hence, D=F. Since FU{x’' }<D, we have X' €F.

{2°—3") Assume 2° and let x+yeF, x,y¢F. Then x’ ,y €F, hence, x' -y €F,
so (x+y)x' ¥ €F i.e. O0€F, which is a contradiction. Therefore, x€F or
yEF,

(3°-»1°) Let FeD, F#D, where D is a filter, and take xeD\F. Since
x+x' =1 it follows that x+x'€F. So x€F or x'€F, hence x'€F i.e. x'€D,
Thus x-x' =0, i.e. D= B.

Nonprincipal ultrafilters are of special interest in model the-
ory. If F is an ultrafilter over a set I, then we have the following
possibilities:

1" F is principal, i.e. it is generated by a set AcI. If |A|22, then
there are nonempty subsets B,C<I such that A= BUC, BNC= g, so BeF or
CeF. This would mean that F is not generated by A, hence, A={a} for some
a€l, and F= {x<I: aeX]}.

2 F is a nonprincipal ultrafilter, so, for every ael, {(a)l¢F, thus
{a}ceF.Filter F is closed for finite intersections, thus, F contains the
filter from Example 2.2.2.

An easy consequence of the following theorem is that ultrafilters
exist. Let us first introduce the so-called finite intersection property
{abr. FIP) of subsets X of the domain of a Boolean algebra B:

A subset X of B has FIP iff

for all new and all X3 ,X2,...,%Xn€X, Xi*Xz°*...°'xa¥ O.
It is easy to see that every subset X of B which has FIP gene-~
rates the proper filter Fx= {ye€B: Xi...XnSy, NEW, X1,.+.,Xn€X}.

2.2.4. Theorem If F is a filter over a Boolean algebra and F is the
set of all the ultrafilters of B which contain F, then F= nF.
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Proof It suffices to prove NIF € F. Suppose the opposite. Then there is
aENnF, agF. Let S be the set of all the filters of B which contain F but
not a. Then, by Zorn’s Lemma set S has a maximal member, say U, and then
FcU, a¢U. Now, we shall show that U is an ultrafilter of B. Let us first
show that a’' €lU. To see that, let V be a filter of B generated by Uu{a'}.
This set has FIP, since if there is an x€U, a'x=0, then a2x, so ael, and
this is a contradiction. Thus Ve$, UcV, and by the choice of filter U we
have UzV. Further, let beB be any element and suppose bgU. Then the set
UU{b’' } has FIP, so, let W be the filter generated by this set. Then b’ eW
and UecW. Also a¢W, since a' eéW. Therefore, WeS, so, by the choice of
filter U, we again have W=U, i.e. beU.

So we have proved that for all xe€B, either x€U or x' €U, i.e. U is
an ultrafilter. Since FcU, it follows that UeF; thus, by the choice of
element a, we have a€U, which is a contradiction.

Corollary Every filter of a Boolean algebra B is a subset of an ultra-
filter of B.

Now, we shall consider the example of a Lindenbaum algebra of the
propositional calculus. Let F be the set of all formulas of the proposi-
tional calculus, and ~ the equivalence relation of F defined by

¢~ ¢y iff ¢ < ¥ is a tautology, ¢,y¥,€F.

Let B=F/~, and +,+,” be operations of set B defined as follows:
Suppose x,y€B and ¢,¥€F be such that x= ¢/~, y= ¥/~. Then,

xty= (gwW)/~, x+y= (eA¥)/~, X' = (W)/~.

Further, let O be the equivalence clas of a contradiction, and 1 the
equivalence class of a tautology. It can easily be shown that the oper-
ations +,+,' and constants 0,1 are well-defined, and Q= (F/~,+,,',0,1)
is a Boolean algebra. This Boolean algebra is called the Lindenbaum al-
gebra of the propositional calculus. Assume the set of all propositional
letters is of the cardinality k, where k is an infinite cardinal. For
every infinite set A, the set of all the finite sequences of elements of
A is also of cardinality |A|, therefore, F is of cardinality k. From
this fact we can easily conclude that Qr is of cardinality k, as well.
Namely, the classes of equivalences of propositional letters differ from
each other, thus, there are at least as many classes as propositional
letters, i.e. k.

Let py,pz,...,pn be distinct propositional letters. Then, for
every a€2r, p; “lAp; 2 A...Apn %" is not a contradiction, i.e.
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(pr/~ )% e{p2/~)2 <. .+ {pa/~)2ng 0.
Hence, by Theorem 2.1.4, the set {p/~: p is a propositional letter} is a
set of free generators of Qr. Therefore we have the following theorem.

2.2.5. Theorem Qr is a free Boolean algebra with pa«/~, a<k, as free
generators, where pe are propositional letters.

Let us describe the ultrafilters of Qr. If G is an ultrafilter of
¢r, then for every x€B either x€G or x’ €G. Therefore, { determines a
function t:k—>2 such that t«=1, if pa€C and ta«=0 if pq.¥G. Then the set
Xe= {pa¥a/~: a<k}) determines the filter G, i.e. if D is a proper filter
and X.<D, then D=G. On the other hand, for each t:k—>2 the set X: has
FIP, so, it is contained in an ultrafilter. Further, if v,u:k—>»2 are
different functions, then, for some a<k, tafpa, say ta=1 and pa=0. Thus,
if D and Dy are ultrafilters which correspond, respectively, to t and p
then pa«€D«\Dy, i.e. D¢ # Du. Hence, keeping in mind the well-known fact
that any two free Boolean algebras with sets of free generators of the
same cardinality are isomorphic, we have:

2.2.6 Theorem A free Boolean algebra with k free generators has 2k
ultrafilters.

Using this theorem, we can compute the number of set-theoretical
ultrafilters over any infinite set X.

2.2.7. Theorem (Kantorovic, Pospisl) The number of ultrafilters over
an infinite set X of cardinality k is 2¢“.

Proof First, let us prove:
(1) If B is a Boolean algebra, and Po,...,Pa, Q,...,Qs, are distinct

ultrafilters over B, then, Pofi...NPa@cN...Nuc# o.

Really, if P is an ultrafilter over B which differs from Q,...
«++,Qu, then, there are elements a;, i=0,1,...,n such that a; €P, a'€Q .
If a= ap...an then aePN(N;.aQ °). So, there are elements by , i=0,...,m,
such that by €Pi N(N;<nQ;¢), thus (1) holds.

A family X of subsets of X is independent, if for every finite
sequence of distinct elements Xp,...,Xn€X, and every t:{0,1,...,n}>2,
we have Xo*n...NXa *™"#g. Then,

(2) For every set X of cardinality k, there is an independent family X
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By Theorem 2.2.6, the Lindenbaum algebra Qr of the propositional
calculus with k propositional letters has 2% ultrafilters. Let J be the
set of all these ultrafilters. By {1}, J is an independent family. Fur-
ther, 2r is of cardinality k, so, there is a bijective map f:F/~—3X.
Then, Xt (f[P): PeJ} is an independent family as well, thus, (2) holds.
Observe that |X]= 2k.

For every Z2¢ X, the set ZVU {A¢: AeX \Z} has FIP, so, Zis con-
tained in an ultrafilter Dg. If Z# 2’ then for some AEX we have AeZ
and A°¢Z , so, A€Dg, Ac€Dz’, i.e. Dz # Dz’. Therefore, there are ultra-
filters over X, as many as there are subsets of X, i.e. 22K,

2.3. Boolean-valued models

By the definition of the satisfaction relation, the possible lo~
gical values of a formula ¢ in a model belongs to the set {0,1}, the
domain of the propositional algebra. The notion of Boolean structure, or
a B-model, where B= (B,+,’,%,0,1), is a Boolean algebra, is obtained if
it is allowed that formulas may have logical values in B. If one wants
to compute the Boolean value of a formula, it is necessary to suppose
some assumptions. For example, the completeness of a Boolean algebra
ensures the correctness of the definition of a B-value of a formula,
Therefore, we shall assume in this section that B is a complete Boolean
algebra, if not stated otherwise {as in Example 2.3.3}.

2.3.1. Definition let L be a first-order language. A B-model of a
Jangusge L is every structure A= {A,J}, where A is a nonempty set and,
if ceConsty, then J{c)eA,
if FeFnci, then J{(f) is an operation of length k=ar(F) of domain
AR,
if ReRel., then J(R):A®—B, where n= ar(R).

As before, we shall write sA instead of J(s) for seL.

We see that the notion of B-models differs from the concept of
standard models in the definition of the satisfaction relation. Namely,
the logical values can be arbitrary elements of a Boolean algebra B. To
make this definition precise, we would remind the reader that the supre-
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mum and the infimum of a subset X¢B are denoted by I x, Il x, respecti-
x €X X €X

vely. Further we shall enlarge language L by the names of elements of
domain A, i.e. we shall introduce the language La= L U {a: a€A}. The B~
value of a sentence ¢ of language la will be denoted by |¢||. Some-
times, if the context allows, the subscript will be omitted. The B-val-
ue of sentences then is every map | ‘.:Sent../——-)B which satisfies the
following conditions (in the next, we shall omit’f‘\hhe subscript a):

Equality conditions 1° |c£c|= 1.
2" farzcz = Jezaif.
3" Jersczfejeazes) < jer=caf.
4° 1If ReRel:, is of length n, then
ﬂc;Ecl' l... ICgECn' I'IRC:...Cnl < IRCI. ...c." .

The definition of | | goes further, inductively, as follows:

1° If ReRelr. is of length n, then for all a;,...,az€Consty
[Rar...8a]= RA(a1...20).

2" je A vi= jol vl

3% e vvl= fod + I

LI s B 1

5° leqvxI: ﬂaiAlfﬁal.

6°  J3xox}= Zaea|9a].

We can see that by this definition the 2-values of formulas ¢ co-
incide with the logical values in the sense of Definition 1.6.3. If
J#fs= 1, then we say that formula ¢ is true, or satisfied in structure A
{or more exactly: B-satisfied in A). A B-model is nondegenerate, if 0#1
in B. In this section, by two models we shall mean the standard models.

The most important applications of B-models can be found in
constructing models of formal set-theory, and they are used mainly for
proving independence results. At this time we shall consider models of a
simpler nature.

2.3.2. Example (Boolean product of models) Let A, i€l, be a family
of standard models of a language L. The product of models A is a struc-
ture A of language L., where A= [k A, and for f1,...,fn€A:

if ceConsty, then cA= (g A: igel>,
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if Fefney is of length n, then

FA(f1,.00,F0)=CFA (£ {i),...,fali)): i€D>,

if ReRel, is of lenfth n, then

RA(f1,...,fn), iff for all i€I, RA (f1(i),...,fa(i)).

This is the standard definition of products of models, and, by
this construction from 2-models, & B-model is obtained. By a simple
modification of the part refering to relations, a B-model is obtained,
where Bz 21:

RA(fryeesy,fa)= <RA (£ (1i),...,fu({i)): i€D>.

Therefore, we have that RA:AP—»21 in this case. Products modi-
fied in this way are called Boolean products of models.

2.3.3 Exsmple {(Lindenbaum algebras of rich theories). Let T be a the-
ory and ~ a binary relation defined on Sent. by: ¢ ~ ¢ iff T}— @ ey .
It is easy to see that ~ is an equivalence relation and:
1° If 9 ~ ¢, then W ~ “W.
2° If ¢n ~ Y, ¢ ~ Y2 then (o A@)~ (Y1 AV2),

{r veor) ~ (\n vi2), (g1 —=> ¢2) ~ (Yyu —> ¥z ).

Properties 1" and 2° enable us to define the following operations
on the quotient set Br= Senti/~= {[¢]: @eSent,):

[ed' = [, [¢l-lvi= (o Avy]l, [o]l + ¥l = {gvy]
If we define 0= [¢ A W], 1= [¢p v wl,and [¢] < [y] iff (¢ — ¥]= 1, we
have that Brz= (Br,+,+,’ ,%,0,1} is a Boolean algebra.

The construction of algebra Br is similar to that of the
Lindenbaum algebra of propositional calculus. This is the reason why Br
is also called the Lindenbaum algebra of theory T. Here are some
properties of algebra Br:

1° T is a consistent theory iff Br is nondegenerate, i.e. |Br|22.

2° T is a consistent and complete iff By = 2.

A sentence ¢ of L is a theorem of T iff {¢]=1. Also,

T ¢ = v iff [¢] < [¥].

4 If S is a consistent theory of L such that T<S, then the set
Fs= ([¢]: S|~ ¢} is a filter of Br. S is a maximal consistent theory
iff Fs is an ultrafilter of Br.

5° If ngsk, then Br is at most of the cardinality X +k.
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An interesting case arises when starting from a theory T we can
construct a B-model of T. Under some assumptions on L(T) and T such a
construction is possible. Let 1= lo U C where C is a set of constant
symbols. A theory T of L is rich , if and only if for every sentence
3xpx of L, there is a constant symbol ceC such that (3xgx —> gc)€T. A B-
model of a rich theory T, denoted by A is built in the following way:

Let B=By, i.e. B is a Lindenbaum algebra of theory T. Let us def-
ine a binary relation = of C by 1 ~ cz iff [ciZcz]= 1. The domain of A
is Az {c:! ceC}, where c= c/=.

If ceConsty, then obviously 3x{c=x} is a theorem of T. Since T is

a rich theory, there is deC such that 3x{c=x} -> c=d is also a theorem
of T, so T} c=d. Then we define cA=d.

If FeFncr of length n and c¢i,...,cn€C, then the sentence
Ix(F(C1,C25004Cn)=X)
is 8 theorem of T, and, as above we find c€C, such that T[— FCi .+ sCn=C.
Then, we define FAci...cp=c.
Finally, let ReRely, be of length n and ci1,...,cn€C. Then, we def-
ine RAci...cn= [Ror1...Cal.

Of course, we should check that objects so introduced are well-
defined. For example, let us show that the interpretation of an n-ary
function symbol FeL is well-defined. So let c13¢++4Cn,d1,...,dn,c,deC be
such that ci=d;, c2~dz2,...sCn=%dn, and Tt——- Fci...ca=c, Fdy...da=d. Then,
lci =di }=1, thus, by property 3 of Br, we have T}~ ci=di . Using the
identity axioms of PR!, it follows that T}-— Fci..oCn= Fdyoovda, so
T}-—- c=d, i.e. c~d. Therefore, the function FA is well-defined. In a
similar way, it is proved that cA is correctly defined for ceConst..

Let us prove the correctness of R*, where R is an n-ary relation
symbol of L. So, assume that c;,...,cn,d1,...,ds€C are such that ci~d,,
Cz®dz y4..,Cndn. Then T}»— ci B, 1<i<n, so by the identity axioms of
PR', we have Tf—R«c;...cn €x Rdy...da, i.e. [Rer...colz [Rd;i...dn}.

For each element ¢ of domain A, we shall suppose that the name of
the element ¢ is the symbol c¢. Then A becomes a B-model if we define:

for ci1,c2€C, Jar=c2f= [ci=ec2],

if ReRel, is of length n, and ¢i1,...,Ca€C, then

|Rcicz .. .cn!= RACIC2 v v 00 s

It is easy to see that for so defined structure the conditions of
Definition 2.3.1 are fulfilled. For a B-model constructed in this way,
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we have some additional properties:

6° For each sentence ¢ of L, f¢|= [¢].

The proof of this fact can be deduced by induction on the com-
plexity of sentence ¢.
7° A sentence ¢ of L is a theorem of T, iff W':l.

The proof of this fact follows from 3° and 6°.

The B-model of T constructed in the way described above is called
a canonical model. As a consequence of the preceding, we have

2.3.4. Theorem lLet T be a first-order consistent rich theory. Then T
has a B-model.

This statement is part of the Completeness Theorem of PR!. More
details about this theorem will be given in following section.

2.4. The Completeness of PR?

Theorem 2.3.4. says that a first-order theory has Boolean models
under certain conditions. We shall prove that every consistent first-
order theory is semantically consistent, i.e. it has a model.

2.4.1. lemma let T be a consistent rich theory. Then T has a standard
model.

Proof By Theorem 2.3.4 theory T has a nondegenerated B-model A, where
B is a Lindenbaum algebra of T. let D be an ultrafilter of B, and
k:B—>B/D the canonical homomorphism. Observe that B/Dx2. Further, let
A' be a standard model, where A’ =A, and for seConstiUFnc., sA’=sA, while
for ReRel, of length n, RA’cicp...cazk(RAcicz...cn). Then A' is a 2-
model, where [of2=k(}o})s, @€Sent.. Since T is a rich theory, for every
sentence Ix¢x there is ceéC such that the following holds:

f3xoxf2= k(] 3xgxfaF k{joc)s)= [ec]:
By this and Theorem 1.7.1, we can prove by induction on the complexity
of formulas that the following conditions are equivalent for sentences
¢cy1...cn of L:
(1) A ]- ¢ler,c24000,60)
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(2) A‘r-qa(c;,c:z,...,cn).
(3) !W:Cz...cnugz 1.

Since T}— ¢, we have {¢fa=1, s=o k(ﬂq)l.):l, i.e. [gal;:l. Thus,
A‘}acp, and A' is a standard model of T.

The following lemmas will be used to show that every consistent
theory may be expanded to a consistent rich theory. On the ground of the
proofs of these statements is the method of constants. This method was
introduced by L.Henkin in 1949, when he gave a new proof of the Complet-
eness Theorem for PR!.

2.4.2. Lemma Let S be a set of formulas of L and ceConst, which does
not occur in either 8 or gx. If S|~ ¢c, then S|~ Vxgx, and there is a
proof of ¥x¢gx in S in which symbol ¢ does not appear. In other words,
Sk ¥xgx in L\(c}.

The proof of this lemma was outlined in the proof of Lemma 1.3.4,
so we omit it.

2.4.3. Lemsma Let C be a set of new constant symbols for a language L
(i.e. CNL=g), and let S be a set of formulas of L. If S is a consistent
theory in L, then S is consistent in LUC, also.

Proof Suppose, on the contrary, that S is inconsistent in LUC, and let
{ci,.+.,cn}SC be a minimal subset, such that there is a proof ¢o,...,¢
for x#x in S and LU(c1,...5cn). Further, x#x is {x#x)(y/cs}; so by the
last lemma, S}-—» Wx({x#x) in LuU{ci,...,cn-1}, which is a contradiction by
the choice of the set {c1,...,cn}.

2.4.4. The Witness Lemma (Henkin) Let T be a consistent theory of a
language L. Then, there is a set C of new constant symbols for L, and a
theory S of the language LUC, such that:
(1) TcgcsS.
{(2) S is a consistent theory.
{(3) For every sentence 3x¢x of LUC, there is ce€C such that

{(3xpx —> ¢c) € S,
i.e. 8 is a rich theory of L U C. Set C is called the set of witnesses
for S.
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Proof Let Co be the set of new constant symbols co, where o is a sen-
tence of L of the form 3x6x. For given Ca, let Cnv: be a set of constant
symbols cg, where o is a sentence of LUCa of the form 3x6x. Thus,

CocC c€C € .0 &
Let C=UyCu, and define

8= T U {3Ox—>Bcaxe: 3xOx is a sentence of LUC).
Then, C is the set of witnesses of S, and TcS. By lemma 2.4.3, T is a
consistent theory in LUC. Now, let us show that S is a consistent the-
ory. Suppose , on the contrary, that S is inconsistent. Then there is a
deduction ¢o,;@1s...:¢m of x#x in S. Let So= SN{¢o,..«;%a}. Then,
So l—- x#x. Without a loss of generality, we may assume that S¢ is such a
minimal set, i.e. every proper subset of Sy is consistent. Since So is
not a subset of T because T is consistent, there is the greatest new,
such that S contains a formula Ix0x->0czxe, and C3xe€Co+1\Cn. There-
fore, each sentence in So is a sentence of LUCn+1, and if it differs
from IxOx~»6C;x 8, then it does not contain the symbol caxe. Further, let
S1= So\{3xBx—>0czx 8}. Then, using the axioms of PR!, we have

S1, MOx—>6Cixe |- X#X,

$1 | (Zx0x—8cix8),

(by a tautology and The Deduction Theorem)

81 |- Ix6x, Weaxe

S: t— WVWIXBx, "PBCaxe

{(by Lemma 2.4.2, since cax e does not occur in either ¥ or S;)

81 [— WXOx, Vx0x

Therefore, S is an inconsistent theory, and this is a contra-
diction to the choice of S;.

2.4.5. Completeness Theorem for PR' Every consistent first-order the-
ory has a (standard)} model.

Proof Let T be a consistent theory of a language L. By Lemma 2.4.4,
there is a rich consistent extension S of T. By Lemma 2.4.1, theory S
has a standard model A. Since T<S, a reduct of A is a model of T.

Here are some consequences of the Completeness Theorem. From now
on, when we speak about models, we mean standard models, i.e. 2-models,
while, for Boolean models, we shall keep the old name: the B-models. If
T is a theory, and ¢ a sentence of language L, we should remember that
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Tp= ¢ denotes that ¢ is true in all the models of T. 1In this case, we
say that ¢ is a semantical consequence of T.

2.4.6. Completeness Theorem, another form Let T be a theory of a lan-
guage L , and ¢ a sentence of L. Then: T]—- @ iff T!— @

Proof (-») Suppose T}- 9 and let A be a model of theory T. It is easy
to see that A satisfies all the axioms of PR!, and preserves all the
rules of inference. Therefore, one can show that A satisfies all the
consequences of T by induction on length of the proof.

{«) Suppose mnot T|— ¢. Then, we can conclude that Tu{w} is a con-
sistent theory. Really, if T,Tp‘—- X#x, then by the Deduction theorem,
T % —» x#x follows, so T{~ ¢, a contradiction. Hence, by the Comple-
teness Theorem, there is a model A of the theory TU({Ww}, so Ap= ¢, and
Al %, a contradiction.

From Theorem 2.4.6, we can easily deduce Theorem 2.4.5. First
observe that Theorem 2.4.6. can be stated as follows:
¢ is not a theorem of T iff ¢ is not a semantical consequence of T.
Thus, if T is a consistent theory, and ¢ is a contradiction, then ¢ is
not a semantical consequence of T. Therefore, there is a model of T.
By Theorem 2.3.4, and Lemma 2.4.4, we have these connections be-
tween standard models and B-models:

2.4.7., Theorem The following conditions are equivalent for a first-
order theory T:

(1) T is a consistent theory.

{2) T has a B-model.

(3) T has a standard model.

Let B be a Booelan algebra, and T a theory of a language L. If
veSentr, and f¢fs= 1 in all the B-models of T, then, since 2¢B, |¢fz2=1
in every 2-model of T, i.e. Tf-= @. On the other hand, if Tf-— @, by the
Completeness Theorem, Tj—~ ¢. Using the inductive definition of | fs, it
follows easily that ]W".:l, i.e. ¢ holds in all the B-models of T. Thus,

2.4.8. Corollary Let B and B be Boolean algebras, and T a theory of a
language L. If @eSenty, then ¢ holds in all the B-models of T iff ¢
holds in all the B -models of T.
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A simple, but important consequence of the Completeness Theorem
is the Compactness Theorem. This theorem has many applications not only
in logic, but in other areas of mathematics, as well: algebra, analysis,
ete.

2.4.9. Compactness Theorem Let T be a theory of a language L. If every
finite subset of T has a model, then T has a model.

Proof Suppose T has no models. Then, by the Completeness Theorem, T is
an inconsistent theory. Let ¢w,...,¢ be a proof of a contradiction in
T, and teke that 8= Tn{go,...,9}. Then, S is a finite subset of T,
and it is an inconsistent theory, so S has no models, a contradiction.

Here are some applications of the Compactness Theorem.

2.4.10, Example 1If T has arbitrary large {inite models, then T has an
infinite model. To see this, consider theory
S= TU{Vxo...Xn3y{y#x0 A...A y#Xn)}: new}.

By assumption, every finite SocS has a model; this is a finite model A
of T, such that |A| is greater than any n which occurs in S¢. Thus, S
has a model B, and B is infinite.

By the use of the Compactness Theorem, we can show that certain
theories are not finitely axiomatizable.

2.4.10. Lemma If Th= ¢, then there is a finite To<T such that To = 9.

Proof If T|-= ¢, then by the Completeness Theorem T}— v, thus, by the
Deduction Theorem there is a finite To<T, such that Te !-—- @, so, again by
the Completeness Theorem we have To = 9.

2.4,11. Theorem let To €Ty € T2 € ... be an increasing chain of the-
ories such that for every n€w, there is a model of Tn which is not a mo-
del of Tas+1. Then, the theory T= UhTa is not finitely axiomatizable.

Proof Suppose T is finitely axiomatizable, and let S be it’s finite
set of axiocms. Since S is a finite set, there is mew such that for all
€S, Tap= ¢. On the other hand, for all ¢eT, we have S= 9, so, for all
@€Tme 1 we have Tn}= ¢, and this means that every model of Tm:+: is a mo-
del of Twm, a contradiction.
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By the previous theorem, the following examples are not finitely

axiomatizable theories.

2.4.12. Example 1° The theory of fields of characteristic 0. The axi-
oms of this theory are the axioms of the field theory plus sentences
141#0, 1+1+1£0,... .
2* If T has arbitrary large finite models, then theory Te of all the
infinite models of T is not finitely axiomatizable. Observe that
Te= T U (X1 .. xa3y(y#x1 A <o A ¥#xn): n=1,2,...].
3° The theory of torsion free Abelian groups. The axioms of this theory
are axioms of the theory of Abelian groups, plus
Vx{(2x=0 — x=0), W{3x=0 — x=0), ... .
4° The theory of divisible Abelian groups. The axioms are the axioms
for Abelian groups, plus
Vx3y{2y=x}), Y3y (3y=x), ... .

A class Mof models of & language L is elementary, if M is the
class of all the models of a theory T of a language L. Class M< is the
class of all the models of L which do not belong to M The following
proposition gives the conditions under which an elementary class is fi-
nitely axiomatizable, i.e. when it has a theory with a finite set of
axioms.

2.4.13. Theorem If both classes Mand M¢ are elementary, then Mand
Mc are finitely axiomatizable classes of models.

Proof Let T and S be theories of Mand M<, respectively. Then, TUS
obviously does not have a model, i.e. TUS is an inconsistent theory. So,
there are finite subsets So<S, To<T such that ToUSe is also inconsist-
ent. If Al=To, then A is not a model of So, i.e. A€M <, thus AeM and
Ap= T. Therefore, for all €T we have To = ¢. On the other hand , To<T,
so T is a finitely axiomatizable theory, since T and To are equivalent.
In a similar way, one can prove that S is finitely axiomatizable.
We shall exhibit in the following examples classes of models

which are not elementary. In all the cases the Compactness Theorem is
used.

2.4.14. Example 1° The class of all the fields of the prime charact-
eristic is not elementary.
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Proof Suppose this class is elementary with S as a set of axioms. Let
Mbe the class of all the fields of the characteristic 0, and let ¢ be
the finite conjunction of all the axioms of the field theory. Further,
define T= {¢ — 6: 6€S}. Then, Af— T if and only if A[n S, or Ais not a
field. Thus, A|- T iff AeM <., But, by Theorem 2.4.11, M ¢ is not elemen-
tary since M is not finitely axiomatizable, a contradiction.
2° If T is a theory which has arbitrary large finite models, then the
class of all the finite models of T is not elementary.
Proof Suppose this class 1is elementary with S as a set of axioms.
Then, S has srbitrarily large finite models, so, S8 has an infinite model
{see Example 2.4.10), a contradiction.
3° The class M of all the well-ordered sets (A,<) is not elementary.
Proof Let A= (A,<) be an infinite well-ordered set, and let us intro-
duce the new constant symbols ¢p,c1,C24... « If

S= ThA U {Co>C1,C15C2,.44},
then every finite So<S has a model; this is an expansion of A, so by the
Compactness Theorem S has a model (B,<,bo,b1,...). Then, (B,<) is not
well-ordered, but (B,<)=(A,s). If T were a theory of M, we would have
(B,S)'== T i.e. (B,5)eM, a contradiction. Thus, M is not elementary.

Now we shall give an application of the Completeness Theorem to
the decidability problem of first-order theories. In fact, this is a
generalization of Theorem 1.3.2, see also Problem 1.12. First, we shall
introduce some notation.

Let T be an axiomatic theory of a language L. We shall say that
all complete extensions of T can be effectively and uniformly listed, if
there is a sequence of complete and axiomatic theories Ta, n€éw, such
that:
1° For each new, T € Ta,
2° For every complete extension S of T there is new such that S= Ta.
3° All theories Tn's, new, can be listed effectively, uniformly and
simultaneously.

This last notion can be made more precise. By assumption every
theory Ti is axiomatic, so all theorems of each Ti can be effectively
enumerated, say @, JjEo, is such an enumeration (i.e. the mapping
iib—>rep jo, Jje€w, 1is a recursive function). Then we shall say that 3°
holds by definition, if there is an effective enumeration yx, kew, (i.e.
kip—>ryy~, k€w, is a recursive function) of all theorems of all theories
Tn, new, as displayed on diagram (D). That is ¢ ;= Ye(i ) s, Where
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Tol- Poor o1, Poz2y o0 Top~ VYo, ¥a, V3, oo
// |
Tll—%.;,cm.cm/.... T Yz, Vas Vi oen
[/ ///

Tel Gaey G21y G224 oo Te - ¥sy Ve, Vit s oo

/ / ///
Ts}- @30y P21, P32, «u. Tal- Vo, Vis, V1sy <.
(D)

cl{i,j)= (i+j)(i+j+1)/2+i, 1i,j,ew. This function is known as Cantor’s
enumeration function, and it’s main property is that it is an effective
{(i.e. recursive) pairing of natural numbers; that is, ¢ maps w?* 1-1 and
onto .

2.4.15, Theorem Assume T is an axiomatic theory of a language L, and
suppose all complete extensions of T can be listed in an effective and
uniform way. Then T is decidable.

Proof Suppose Tn, n€w, is an effective and uniform listing of all com-
plete extensions of T, and let 0€Sent.. By assumption, all theorems of
theories Tn can be effectively listed uniformly and simultaneously as
displayed on diagram (D). Also, there is a recursive enumeration of all
theorems of T: w, ¢¥1, 2, ... . Therefore,

(1) Yoy Yo, P1s Y1y @2, V2, ...

is also a recursive enumeration of some sentences of L. Thus, if T}— 0,
then 8= ¢n for some n. If ~T§— 8, then T U {78} is a consistent theory,
so there is a model A of T such that Aj— 8. By the choice of theories
Te, there is mew, such that ThA= Tw, hence T.|- W. Thus, there is j
such that 0= ¢ ;= Ye(i,j>. So, 0 must appear at the even stage, or ¥
must appear at the odd stage of the sequence (1). Hence an algorithm for
the enumeration of this sequence gives a decision procedure for T.



Chapter 2 58

Here are some applications of the last theorem. Therefore, all
the examples of theories bellow are decidable theories.

2.4.16. Example 1° All complete extensions of Jo, the pure predicate
calculus with equality, see Example 1.4.1, are:

Ta= {on)}, neo\{0}, and Te= {T1,T2,T3,...}.
2° The axioms of the theory of algebraically closed fields, which we
denote by AF, are the axioms of the field theory plus the axioms which
say that every polynomial of a degree 21 has a root. All complete ex-~
tensions of this theory are:

AFp= AF U (p+1=0), p is a prime number,

AFo= AF U {n-1#0: new\{0}}.

Later on, we shall prove this fact. Now, we shall mention two,
less trivial examples, but without proofs.
3° All complete extensions of the theory of Boolean algebras were de-
scribed by Tarski. An exposition on this matter can be found in [Chang,
Keisler].
4° A description of all complete extensions of the theory of Abelian
groups one can find in [Cherlin}.

In both cases, the idea of the proof is to find certain "numeri-
cal invariants" (and these are effectively listed), such that two al-
gebras A and B have the same invariant iff A = B. Therefore, numerical
invariants determine effectively all complete extensions of the corres-
ponding theory.

2.5. Reduced products of models

Reduced product of models is a substantial construction of models
owing to its model-theoretic properties. By this construction, new mo-
dels are obtained starting from some of those already given models. The
main theorem related to it is the Lo$ Theorem on ultraproducts, a spe-
cial case of reduced products.

Let {Ai: i€I} be a nonempty family of nonempty sets, and A= [ A .
By the Axiom of Choice, A is also a nonempty set. Further, let D be a

filter over I, and =p a relation over A, defined in the following way:

If f,geA, then =pg 1iff  {ieIl: f(i)=g(i)} € D.
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Instead of f =p g, we shall sometimes write f = g mod D, or
f(i)= g(i) D a.e. This notation is justified , if D is an ultrafilter,
since, in this case, D induces a finite additive two-valued measure over
I: a set X<I has a measure 1, if XeD, otherwise, it has a measure 0. The
class of equivalence of f€A is denoted by fp.

2.5.1. Lemma Let D be a filter over I. Then =p is an equivalence rela-
tion of the domain A= [k A .

Proof let f,g,h € A. Then

(1) f=fp, since IeD and (iel: f(i)=f(i)}el.

(2) =pg implies g=pf, since {i€l: f(i)=g(i)}= {iel: g(i)=£f(i)}.

(3) Suppose f =p g and g =p h. Then, for X= {(iel: f(i)=g(i)}, and
Y={iel: g(i)=h(i)}, we have X,YeD, so XnYeD. Since XnYc{iel: f(i)sh(i)}
it follows that {ieX: f(i)=h(i)}eD, i.e. f=ph.

The quotient set Ik Ai /=p is denoted by IbA;, and it is called the
reduced product of sets A; . An interesting case arises when A; are do-
mains of some models. So, let A, i€l, be models of a language L, and
let D be a filter over I. By the last lemma, relation =p is an equiva-
lence relation, but for models, we have something more.

2.5.2, Lemma Let Ai, i€l, be models of a language L, and A'=TL A .

Then,

1° Relation =p is concurrent with all the operations of A’, i.e. if
FeFncy, ar(F)=n, then, for all f1,...,fo,81,...,Zn€A",
fi=pg14+¢0,fn=pgn implies FA' (fy,...,fn)=0FA (g1 ,...,8n)-

2° If ReRelr, ar(R)=n, then for all fi,...,fu,81,5...,8n€EA"
fi=pg1,...,fu=pgn implies
{iel: RA (1 (i),...,Ea(1))}eD, iff {iel: RAI (g (i},...,8a(1))}eD.

Proof lLet f:i1,f2,...,f0,81,82,...,8:€A’ be such that £fi=pg , i<n. If
X;= {iel: f5(i)=gs{i}}, j=1,...,n, then X;€D, so N;X;€D. Thus,
19 X € (iel: PA V(i (i), ..., fn(i))= FA (g1 (1),...,80 (1))}, so,

FAV (f1(1)yeea fu(i))] i€Dd=p <FM (B1(i),. .o ga(i})] ieD>.
2° Let Y={iel: RM (f1(i),...,fa(i))) and Z={iel: RM (g1(1),...,g{i)}}.
Then, Yn{n;X;) € 2 and Z0(N; X5 ) € Y, so, YeD iff ZeD.

This lemma facilitates defining a model with domain A= A
in the following way:
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If ceConsty, then cAz <{cAi: i€I>/D.

If FeFney, ar{F)=n, then for all f,,...,fa€lk A,
FA(fip,..0fan)= FA (£f1,...,fn)0.

If ReReln, ar(R)=n, then for all fi,...,fa€lk A,
RA(fipy.e.sfnp) iff {(iel: R (£f1{(i),...,ful(i})}eD.

Such a constructed model A is called the reduced product of mo-
dels A, and it is denoted by Ik A /D or IhAi . It is easy to see that the
map k:f-—>fp is a homomorphism of model A’= [ A onto IhA . For example,
if R is a relation symbol of length n, and RA’(fi,...,fa) is true for
fi,...,fa€A’, then, for each iel, RAI {fi{i},...,fa(1)}, so

{iel: RAM (f1(i);...,fa(i))}€D, i.e. RA(fip,.v.,fnpn).

2.5.3. Example 1° 1If D={I}, then MhA = I: A . Thus, the products of
models are special cases of reduced products.

2° Let D be a principal filter over 1 generated by i¢€l. Then, the map
t:fp—>f(io) is an isomorphism between TbA and Aio.

3° Let X¢I, and D be a principal filter over I generated by X<¢I, i.e.
D= {YgI: XcY]. Then the map fp—><f(i}): i€X> is an isomorphism of models
A and Th A .

Suppose that all the models A, i€l, are mutually equal, say
A = A. Then the reduced product IbA is called the reduced power of A,
and is denoted by A! /D.

Now, we shall turn to the most interesting case of reduced pro-
ducts, to ultraproducts.

2.5.4. Definition Let D be an ultrafilter over a set I, and suppose
that A and A;, i€l, are models of a language L. Then, the reduced prod-
uct IbA is called the ultraproduct of models A; . The reduced power
A' /D is called an ultrapower of A.

Example 2.5.3 shows that ultraproducts of interest are those
constructed using nonprincipal ultrafilters. The ultraproduct construc-
tion preserves the first-order properties. This is the content of the
10s theorem and this theorem has many applications in model theory.

2.5.5. Lemma Lel A= [hA be a reduced product of models A, i€, of a
language L, ti,...,t€Termy and R be an m-ary relation symbol of L. Then
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1° tA[fipseeesfunlz <tA [fi(i),ane,fn(i)]: i€Dp.
2° RA(tiA[fipyeeoyfnnly o twpr{fin,ee,fanl) iff
{i€X: RM (A [£ (i) 0oy fafi)), o tmAi [fa (i), ..., Enti)))} € D,

Proof First, let us observe that k:lt & —>TbA , kif)= fo, felhA, is a
homomorphism. By induction on the complexity of terms t, taking B= I\ A,
it is easy to prove that

Kkt®[f1,...:ful= tALKE; ... kfn]l= tA[fip,...,fun].
On the other hand,

KtB{f1,.ou,fulz <tA [f1(i),...,fu(i)]): i€Dp,
80 1° holds.
2' Let g;elk A be defined by g;{i)= A [fi{i),...,fa(i)], 1€I, 1<jsm.
Then, by 1°, 4&io= t;2{fip,...,funl, sc

RAlgip,e.osgnp] iff {i€I: RM (g1 (i),...,8a(i)])eD iff

{i€l: RAi (LA [fi (i), .o, fulid], e tart [f1 (i), .., fa(i)])) € D.|

2.5.6. Theorem (J. Los) Let A, i€l, be models of a language L, and
let D be an ultrafilter over I. Then for every formula ¢vo...va of L and
foyeee,fn€lk A, we have

MpAi p= ¢{fon,...,fan] iff (i€l: A = glfo(i}),...,fa(i)]} € D.

Proof We shall prove this theorem by induction on the complexity of
formula ¢. So, let A= IlhAi, and ¢vo...va be a formula of L. Then, we can
distinguish the following cases:

1° cl{¢)=0. Then we have two subcases:
(1) ¢ is of the form tive...va= tzVo...vn, where ti,tz€Term;. Then,
Mo = ¢ffop,..v,fan]l 1ff GiA{fop,...,fan]= t2A{fonseeesfanl,
so by Lemma 2.5.5,
iff <tad [fo(i},...,fa(i)]: 1€Id=p <taAi [fo(i),...,fa{i)]: i€l>,
iff  {ie€l: t A [fo(i),es.,fu(i)]= teAi [fo(i),...,fu(1)]}eD,
iff {iel: A= ¢{fa(i),...,fa(i)]} € D.
(2) Formula ¢ is of the form R(tive...Va,.csstaVo...va), where R is a
relation symbol of L of lengthm, and ti,...,tu€Term;. So, the state-
ment holds for this case by Lemma 2.5.5.

2° Suppose the statement is true for all the formulas v, cl{y)<cl(g),
and let cl(¢)>1. Then, we can distinguish the following cases:
(1) ¢= (¥ A 8). Then cl(y}), cl(8) < cl(¢), so, by the inductive hypo-
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thesis,

A'-= w{fon,e.syfan] iff A'— Yifon,...,fan] and A’- 6{fon,...,fnnl
iff (iel: A p=yffo(i),...,fa(i)]1}€D and {i€l: A p= 8[fo(i),...,fa(i)]}eD
iff {iel: A= Y[fo (i), ,fu(i)]}n{i€l: A p= 6{fo(i),...,fa{i}]} €D
iff {iel: A= @[fo(i),...,fn(i}]}€D.

(2) o= W. Then cl(y) < cl(¢), so

Ap= ¢lfop,...,fapl iff not Af- ¢ifonyeea,fanl,
s0, using the inductive hypothesis,

iff not {iel: A p=yifo(i),...,fa(1)]}€D,

D is an ultrafilter, so, by Theorem 2.2.3,

iff {iel: A p=y[fo(i),...,fa(i)]}ceD

iff {iel: not A '-\P[fo(i),...,fn(i)}}ei)

iff (iel: A pwplfo(i),...,fu(i)]1)eD.

This is the only place where we have used the assumption that D
is an ultrafilter, not just a filter.

(3) ¢= 3y¥yvo...va. Then cl{y)<cl(y).

Assume A§-= ¢{fenyeesyfun]. Then, for some gelk A

Ap= ¥lgo,fon,...,fan]. By the inductive hypothesis,

{i€I: A = ylg(i),fo(i),...,fa(i}1}eD. Since

{iel: Ai = Ylg(i),fo(i), ... ,fuli)]}c{iel: A po(fo(i),...,fa(i)]}
it follows that

{iel: A = ¢lfo(i),...,fa(i)]}eD.

On the other hand, suppose {i€l: A |= ¢[fo(i),...,fa(i)]}eD, and
take X= {iel: A = @{fo(i),...,fa{i)]}. Then, for ieX we have
A= 9lfo(i),...,fn(i)], i.e. for some ci€A, A = ylci ,fo(i), .., fu(i)]
Let gelk Ay be defined so that g(i)=zci, i€X, otherwise g(i) is arbitrary.
Then, X ¢ {iel: A I- yigli);fo(i),...,fa(i)]1}, thus, since XeD, we have
(i€I: A = yig(i),fe(i),...,fu{i)]}eD. By the inductive hypothesis, then
Al"‘ Y(go,fonyeee,fan), i.e. A}— @{fop,...,fan].

Other logical operations are reducible to those considered above,
so this finishes the proof of the theorem.

If ¢eSent,, then the logical truth of formula ¢ does not depend
on the choice of a valuation. Therefore, by the Los Theorem, we have

2.5.7 Corollary Let ¢ be a sentence of a language L, and let A, i€l,
be models of L. Then,
ThA = ¢ iff (iel: A p= ¢}eD.
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For example, the ultraproduct of ordered fields is a field. Real-
ly, the axioms of FO are first-order sentences, so, Corollary 2.5.7 can
be applied. On the other hand, the ordinary product of the fields is a
ring but not a field, because there are divisors of zero in the product.

An ultrapower A!' /D is an elementary extension of model A. This
follows from the fact that the map ":A—>Al /D, A= <a: i€l>/D, a€A, is an
elementary embedding of A into Al/D. This is true, because for
¢vo...va€For, and 80,...,82€A by the Lo§ Theorem, we have

AI/DP= olagpse..y8ap] iff f{i€l: A'— o[lao,...,an ]} €D

iff Ap= ¢las,...,anl.
There are some other interesting applications of the Los The-
orem. As an example, we shall give an alternative proof of the Compact-
ness Theorem which does not rely on the Completeness Theorem.

2.5.8. Another proof of the Compactness Theorem Let I be a family of
the finite subsets of a theory T, and suppose for each i€l, A is a mo-
del of i. Further, let Se= {i€l: B8€i}, where 0€T. Then, the family
X= [Se: 6€T} has FIP, so, there is an ultrafilter D over I which con-
tains X. Let A= [bAi . Then, for 6€T, we have Af- 8. Really,

Se ¢ {i€I: A =8} and SeeD
so {iel: A t= 8}eD. By Los Theorem it follows that A}- 8.

There are other constructions similar to ultraproducts. We shall
consider such a construction which is useful for studying certain pro-
perties of models of formal arithmetic, PA. For example, we can prove in
this way that PA is not finitely axiomatizable, and even stronger result
that PA has no Za® axiomatization for any new (A.Mostowski). In a simi-
lar manner, one can prove that a certain combinatorial primciple (a ver-
sion of the Ramsey Theorem} is not provable in PA, even if it is true in
the standard structure of natural numbers. We shall first introduce some
notation.

let M= PA and my,...,mkeM. A subset XdM, necw, is definable with
parameters my,...,mx, if there is gxye€Fori(ray such that
X= {{ai,...,80 )€M: Mp= @la, ... 80 ,m,0..,m]).

A function f:M-—M is definable (with parameterg) iff the graph of f is
definable in the above sense. The set X is Iy®-definable if ¢ is a La®-
formula. Let D(M) denote the set of all subsets of M, definable with
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parameters, and F(M)= {f:M—>M: f is definable with parameters in M)}.
Some simple properties of these sets are summarized in the following
proposition.

2.5.9. Lemma 1° D{M) is closed for the substitution for elements from
F(M), i.e. if f1,...,fa€F(M), meM and BeFori(ra) then

{aeM: M'- 6[fia,...,foa,m}}eD(M).
2° The identity function ix of M belongs to F(M), and if aeM then
acF(M), where a{x)=a, xeM.
3° XeD(M) iff characteristic function kx of X belongs to F(M).
4° D (M)= (D(M),U,n,<,@,M) is a Boolean algebra.
5° If f,geF(M) then f+g,f.g,f’eF(M), hence (F(M),+,+,’,0) is a model.
We shall also denote this model by F(M).

Now, we shall introduce the notion of definable ultrapower. Let M
be a model of PA, and G an ultrafilter of Boolean algebra D= D (M). We
define a binary relation ~ on set F= F(M) as follows:

f-g iff {(ieM: f(i)=g(i)}eG.
It is easy to see that ~ is an equivalence relation of F, moreover, it
is a congruence relation of model F= F(M). Thus, the quotient structure
F/~ is well-defined, and this structure we shall denote by F/G. Now, we
have a variant of Lo Theorem.

2.5.10, Theorem Let M be a model of PA, and G an ultrafilter of D.

1* The map k:a—>a/G, a€M, is an embedding of M in F/G.

2° If ¢ is a formula of language {+,-,’,0}, and f1,...,fn€F, then
F/GE= @[fi16,..+sfne] iff (ieM: M= @[f1(i),...,fu{i)]}eG.

Proof The proof is inductive, and similar to the proof of Theo-
rem 2.5.6, so we shall consider only the main inductive step, the case
of the existential quantifier. Therefore, let @xi...Xn= JyYyxXi...Xn,
X= [ieM: M'u Iyyyfr(i)...fa{i)}, and suppose XeG. Therefore X is a
definable subset of M. Now, let us define function g:M—M,

g{i)= the least deM in respect to <M, such that

Hf-— vid,f1(i),...,fa(i)]), if such d exists, and g(i)=0, otherwise.
As Mp= PA, and scheme (L) is provable in PA, see Problem 2.16, function
g is well-defined and ge€F. Thus (ieM: Mp= y[g(i),f1(i),...,fa(i)]l}eM, so
by the inductive hypothesis F/Gl= ¥l{gc,fia,.:.,fac].

Observe that ~Fjp= PA, but F/Gj= PA.
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Using definable ultrapowers, we shall prove that every countable
model M of PA has an elementary end extension, 1i.e there is N such that
M<N, and M is an initial segment of N in respect to <¥. First, we shall
define a special ultrafilter over D=D(M).

2.5.11., Lemma There is an ultrafilter G of D such that for every
bounded function feF there is XeG such that iX is a constant function.

Proof First we show
(1) Suppose AeD, f€F, the range of f is bounded, i.e. there is meM
such that f(M)c[0,m]ls, and A is unbounded in M. Then there is an

unbounded BeD such that BeA and f is a constant function on B.

If for some beM, ANf-!({b}) is an unbounded subset of M, the
proof of (1) is finished, so assume the other case, i.e. for each beM
there is a€eM such that Anf-1({b})<c[0,a]lu. The set Anf-!({(b}) is
definable in M, so we may write informally

Mp= Vxsndy(ARE-1 ({x})<[0,¥1).

By Problem 2.16, model M satisfies Collection scheme (B}, so there |is
beM such that

ME= VxsaSysb(Anf-! ((x})<[0,y1),

i.e. ANf-1({x}ic[0,bln for all x<"m. Therefore,
U (Anf-1 ({{x})<[0,blx, hence, An(U f-1({x}))c[0,blxn.
xgm x<m
But U f-1({x})=M, thus A<[0,b]ls, which is a contradiction to our hypo-
XSN
thesis that A is an unbounded subset of M, and this finishes the proof
of (1).

M is countable, so §F§:&) . Therefore, there is an enumeration
fo,f1,... of all elements of F which are bounded. By (1), there is a
sequence ...<C;<C1€Co of definable subsets of M such that Co=M, Cp+: is
an unbounded subset of Ca, and fn is a constant function on Ch+1. Let G
be an ultrafilter containing {XeD: for some new CycX). Then G has the
wanted properties. ‘

2.5.13. Theorem Let M be a countable model of PA. Then M has a proper
elementary end extension.

Proof Let G be an wultrafilter with the property as in the previous
Lemma, and M'= F/G. Further, for each a€M, let a€F be defined by a(x)=a
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for all xeM, and N= {ag: a€M}. Then there is a submodel N of M’ with do-
main N, and k:M = N, where k:a—>ag. Therefore, we may identify models
M and N, and then we have M < F/G.

Let feF and suppose fe<as. Then for some YeG, for all xeY, we
have fx<a. If gx=fx for x€Y, and gx=0 for xeM\Y, then fe=gs¢, and for all
xeM, gxsa, i.e. g is a bounded function. By our assumption on G, func-
tion g is a constant function on an X€G, i.e. there is deM such that for
all xeX gx=d. Thus, g¢=ds, i.e. gs€N, and M’ is an elementary end exten-
sion of N.

If M and N are models of PA, and N is an elementary end extension
of M, then we shall write M<N. Then, if we iterate the previous con-~
struction w; times, we can build a chain of models

M=Mo <e Mi <e Mz <e ovs <e Mz < o004, 8¢0n,
and there is a model K of PA such that K= UsMs and for all §<w, Ms<K.
The model K has the interesting property that every proper initial seg-
ment of K is countable, even if K itself is uncountable, i.e. the order-
ing of K resembles to the ordering of ordinal ;. So, such models of PA
are called w; ~like models.

Now, we shall consider, using the same technique, the problem of
finite axiomatizability of PA. First, we shall introduce some refine-
ments. In the following M denotes a model of PA. A subset AcM¥ is Zn (M)
definable, if there is a Zn®-formula ¢X1...Xk¥1...Yn Of Lpa such that

Az ((Baiy.e.,8k)1 Mf‘ ¢lai,oy8kybryece,bull,
where bi,...,bp€M. A function f:M—>»M is Zp (M) definable, if the graph
of f is a Ea(M) definable subset of Mt. Now let D be the set of all de-
finable subsets of M, and Fizs (M) Ia(M)-definable functions of M. For ex-
ample, if ¢ is the Cantor enumeration function, then ceFr; (w), where o
is the standard structure of natural numbers. In the following, we shall
write <x,y> instead of c(x,y). Further, if G is an ultrafilter of D,
then similarly as in the previous paragraph, we can construct a model
Fzn (M)/G. We have also a LoSs-type theorem for such a model.

2.5.14. Lemma Let n2l, 6x;...xx be a Zz-formula and £1,...,fxeFz, (M),
Then, Fzn (M)/Gl= 8(f16,...,fxc) iff {meM: Mj= O[fim,...,fim]}eG.

Proof  As usually, the proof is performed by induction on the complex-
ity of formulas, but in this case up to the complexity of n. We shall
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consider the only interesting case, the existential quantifier step. So
let Bx= Fyi...Yo¥XYi...¥Yp, where ¢ is a Iy-.1-formula, feFz,{(M) and as-
sume A€G, where A= {meM: Mt=- 6{fm}}. Now, we shall define hy,...,hpe
Fza (M) such that
(1) {meM: Mf— y{fm,him,...,hpm]}&G.
Since f is Za(M) definable, there is a In-formula ¢(x,y) of Lea such
that fm=k iff Mj= ¢gmk. Defining hi by
him= k iff M!— St{omt A 32(3y1 .. ¥052{(<Y1 344 ¥2=2 A V1=K A
VEY1 oo Vo) A VSCZYYL . o ¥pSS{<F1 4 eess Ve 28 —> WY1 .. Y2 )} ),
for i=1,...,p, we have A= {(meM: Mp= y[fm,him,...,hpm]}, and so (1)
holds. Using the schemes in Problem 2.16 one can show that hi,...,hp

are In (M) definsble, so the inductive hypothesis can be applied, i.e.
Fza (M)/Gp= ¥[fc ,hic... he0al,

Fza (M)/Gp= 3y ...yp¥[fa,71...,¥p].

As the notions of formulas, sentences and proofs can be arithme-
tizied, i.e. formalized in PA, the notion of truth of particular formu-
las of PA can be formalized as well. In the proof that PA has no Is ax-
iomatization for any n€w, we are going to use such a result. The proof
of this fact can found for example in [Smorinski].

2.5.15. Theorem There exist a Zp~formula Satz(X,¥Yi1j5e«.s¥n) of lan-
guage Lpa such that for every IZz-formula ¢ of Lea, and the code ez ~¢-
of ¢ (the Gbdel number of ¢},

PA‘—- VX1 oo oXa (¢%1 ..o Xn €> Sabzn(€,X1ye00yXn)).

Using that scheme (L) is provable in PA, see Problem 2.16, it is
easy to see that in any nonstandard model M of PA holds the following:

2.5.16. Overspill Lemma (A.Robinson) If § is a formula of Lea, and
M|= 6n for all new, then there is an infinite aeM such that Hf- 8[aj.

Proof Indeed, if there is not such an a, then the set X={meM: M]-= “10m)
is nonempty, so by scheme (L) there is the least beX. Then b is infini-
te, and {(b-1}€X, hence Ml= 6[b-1], a contradiction.

2.5.17. Theorem The theory PA has no I, axiomatization for any neow.

Proof Suppose there is a En-set S of sentences of Lea which is equiva-
lent to PA, Let Fra(w)/G be a definable ultraproduct constructed as in
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Lemma 2.5.14, where G is a nonprincipal ultrafilter of D. Since wp= S,
by this lemma and our assumption that ScZn, we have Fiu(®)/Gf= S.

Now, we shall prove that Fgn (0)/G is not a model of PA; this will
mean that theory S is not equivalent to PA. Suppose, in contrary, that
Fin (0)/G is a model of PA. Since G is nonprincipal, if i is the identity
function of ®w, then for all aew, as<igq. Thus Fz (w)/G is a nonstandard
model of PA, hence, by the Overspill Lemma
(1) If for all neo, Fxn(w)/Gf- On, then there is an infinite element

a€Fza (©)/G such that Fin(0)/Gj= 0a.

Further, let g€F:za (®w) and 6€Za be such that gm=k iff wk= omk. If
e is the G8del number of formula 6, then

gm=k iff a)|— Satz (e,m,k), so

{i€w: w|— Satz (e,i,gi)} € G,

{i€w: of= ¥x(Satz (e,i,x) —> x=gi)} € G.

Since Satzn is a In-formula, by Lemma 2.5.14,

Fin (©)/Gp= Satzin(e,ic,Za), Fia(0)/Gp= ¥x(Satza(e,ic,x) — x=g¢).

Thus, we see that g¢ is the unique element in Fia(0)/G which sat-
isfies these formulas, so

For every g€ Fsa(w) there is eew such that

Fin (w)/Gh Sat:in(e,ie,86) A Vx(Satzn(e,ig,x) —> x=g¢),
thus
(2) For every infinite a€Fza (0)/G,

Fin (@) /Gp= Vz3y<a(Satza (y,ie,2) A Vx(Satza(y,ie,x) = x=z).

Also, for every eew there is at most one g€Fin such that

Fia(0)/Gp= Satzn(e,ic,g6) A Vx(Sat:a(e,ic,x) —> x=g¢).
Therefore, for every jew, set

{ge: there is e<j, Fzn(0)/Gj= Satza(e,ic,g) A

Vx(Satzn (€,ic,x) —> x=ge)}
is finite, hence different from Fg (©)/G, and so
(3) for every jea,

Fro (0) /Gl= W2z3y<j(Satza(y,ic,z) A ¥x(Satza(y,ie,x) — x=2z).

But (2) and (3) contradicts Overspill Lemma, i.e. (1).

If S is a finite set, then obviously Scin for some ne€w. Hence, we
have the following

2.5.18. Corollary (Skolem) The theory PA is not finitely axiomatiz-
able.
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Exercises
2.1. Show that every finite Boolean algebra is atomic.

2.2. Let B be a Boolean algebra, and ne€w, nzl. A map f:Br—>B8 is a
term-mapping iff there are Boolean terms ti,...,ts such that for all
biyesesbn€B, fibi,...,bn)= (£1®¥(br,...,bn)yece,tp ¥ (s yeresban)). If f is
a Boolean term-mapping, show that f is 1-1 iff f is onto.

2.3. If B is a finite Boolean algebra of the cardinality 2», then B
has exactly n ultrafilters.

2.4. Prove that every infinite Boolean algebra has a nonprincipal ul-
trafilter.

2.5. Show that for every infinite cardinal k, there is a Boolean alge-
bra of the cardinality k with exactly k ultrafilters.

2.6. Let k be an infinite cardinal number. A set Cck is closed and un-
bounded, shortly cub, if
1* C is closed, i.e. if X<C and supX<k, then supXeC.
2° C is unbounded i.e. supC=k.

Show that (XeP(k): X conatains a cub subset of k) is a proper
filter of P(k).

2.7. If B is a complete and atomic Boolean algebra, then BaP(X} for
some set X.

2.8. Let X be a topological space.

1° If B is the a family of all clopen subsets of X (AcX is clopen if A
is open and closed in X), then (B,U,n,',<,0,X) is a Boolean algebra.

2° Show that the Boolean algebra of clopen subsets of the Cantor space
2% is isomorphic to the free Boolean algebra with k free generators.

3° A subset Ye¢X is regular open in X, if Y is open and the closure of Y
is open in X. If R is the family of all regular open subsets of X, show

that the Boolean algebra of all regular open subsets of X is a complete
Boolean algebra.
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2.9 If B is a Boolean algebra, then ScB is a pairwise-disjoint set iff
for all distinct x,y€S, x-y=0. Prove that every infinite Boolean algebra
has an infinite pairwise-disjoint set.

2.10. We say that a Boolean algebra B satisfies the countable chain
condition (abr. CCC) iff every pairwise-disjoint set of non-zero ele-
ments of B is countable.

1° Prove that a Boolean algebra B satisfies CCC iff every subset ZcB
has a countable subset Y such that Y and Z have the same set of upper
bounds.

2° A Boolean algebra B is a g-algebra if every countable subset of B
has the least upper bound and the greatest lower bound. Show that every
o-algebra satisfying CCC is complete.

3° Prove that the regular open algebra of a topological space with a
countable base satisfies CCC.

2.11. Let Fin be the filter of all cofinite subsets of w, and let us

define a binary realtion ~ on P(w) as follows:
X~Y iff (XnY) v (XenYe) € Fin.

1° Show that ~ is an equivalence relation of P(w).

2° If o*= P(w), then (w*,u%,n%,c*,0/~,0/~) is a Boolean algebra, where
X/~UxY/~= (XUY)/~, X/~n¥Y/~= (XAY)/~, X<*xY iff Y\XeFin.

3® Show that in w*¥ there are uncountable chains.

4° Show that there is an uncountable pairwise-disjoint set Scw.

2.12. Prove the Completeness Theorem for formulas of language L:
If T is formally consistent set of formulas of L, then there is a
model A and an assignment p of domain A such that Ap= @lul for all ger.

2.13. A partially ordered set (I,<) is upward directed iff
Vi, jeldkel i, jsk.
Suppose, now, that <A : i€I> is a family of models such that
Vi,jel (isj — A <Bi ).

1° Show that there is a unique model A such that

a) A= VA, b) For every i€el, A <A.
A model A is called the direct limit of models <A :iel>.
2* Show that every model is a direct limit of finitely generated mo-
dels.
3° If ¢ is [k°, 1i.e a universal-existential sentence, and if it holds
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in all A, iel, then ¢ holds in the direct limit A.
4° If ¢ is a Ik® sentence of the theory of Boolean algebras which holds
on finite Boolean algebras, then ¢ holds on all Boolean algebras.

2.14. Prove that the following theories are decidable:

1° The theory of pure predicate calculus with equality.

2° The theory of dense linear ordering.

3° The theory of equivalence relation with infinitely many equivalence
classes, and in which every class is infinite.

4° If A is a finite model of a recursive language, then ThA is a deci-
dable theory.

2.15., Let M be a model of Peano arithmetic and N the standard model of
natural numbers. Show that there is unique embedding f:N —» M, and that
f(N) is an initial segment of M (in respect to M),

2.16. let ¢ be a formula of Lea of the form Y(x,y), where x,y are free
variables of ¢¥. Prove that the following schemes (the universal closure

of ¢) are provable in Peanc arithmetic

The scheme of finite induction
FI @{0) A (Vx<w){p(x) = @(x')) = (V& )p(x).

The course-of-value induction
J Y ((Vy<x)o(y) —> o(x)) —> ¥xo(x).

The least element principle
L xp(x) —> xp(x) A (Vy<x)W(y)).

The greatest element principle
G Ixp(x) A TyVx{o(x) — x<y) —> I(@ix) A (VydOx)Wiy)).

The collection scheme
B (Vx<z2)3ug(x,u) —> Iv(¥x<z) (Buvigix,u).

The regularity scheme
R (Vx<v)3zVu(p(x,u) — udz) — Jz(¥x<vIVul(e(x,u) — udz).



3. COMPACTNESS OF PR?

The Compactness Theorem of the first-order predicate calculus is
also considered as a "local" theorem or a theorem of a finitistic natu-
re. However, the term “"compactness” is now often used since it’s formu-
lation resembles the well-known topological theorem, and, in fact, it
has a topological reformulation. As we shall see later, the Compactness
Theorem is an essential feature of PR! (Lindstr8m Theorem). This theorem
is also important because of it’s applications outside of logic, for ex-
ample, in algebra and analysis. It is a significant historical fact that
the first application of mathematical logic to other parts of mathema-
tics were in fact applications of the Compactness Theorem (Malcev 1936).

3.1. Statements equivalent to the Compactness theorem

When we were proving the theorems on the existence of ultrafil-
ters in Boolean algebras, we used the Axiom of Choice. On the other
hand, it is known that in the Zermelo-Freankel set theory, the existence
theorem of ultrafilters does not imply the Axiom of Choice. So, it might
be of interest to consider statements equivalent to the existence of ul-
trafilters. First, we shall introduce some notations.

AC (Axiom of Choice) Every family of nonempty sets has a choice fun-
ction, i.e. if <X; :ieI> is a family of nonempty sets, then there is
a function f whith domain I, such that for all iel, f{i)eX;.
UF (The existence theorem on ultrafilters) Every Boolean algebra has
an ultrafilter.
Further, we recall the reader that Zermelo-Freankel set theory is
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denoted by ZF, and ZF together with the Axiom of Choice by ZFC. Then we
have the following connections between statements AC and ZF:

1°  2ZFC}- UF.

2° ZF}- UF.

3°  ZF+UF}- AC.

So, if ZF is tsken as a basic set theory, then UF is a weaker
statement than AC, but nonprovable in ZF. Therefore, ZF+UF is a stronger
theory than ZF, but weaker than ZFC. However, many mathematical proposi-
tions which are otherwise proved in ZFC are already proved in ZF+UF.

In this section, we shall first consider some statements equi-
valent under ZF to UF, and then prove some propositions which are simple
consequences of the UF hypothesis. In some formulations of these propo-
sitions, the notion of a model of the propositional calculus is used.

3.1.1. Definition Let P be a set of propositional letters and S a set
of propositional formulas whose propositional variables are from P, A
model of S is every map p:P—2, such that for each formula ¢eS, the
logical value of ¢, denoted by ¢*, is equal to 1.

The logical values of propositional formulas are computed in the
following way, taking ¢, ¥ to be propositional formulas: (w)k= (¢#)’,

(@ A Y)r= @rsyi, (@ Vv ¥)r= @eiyr, 1r=1, 0#=0, where +,+,7,0,1 are ope-
rations and constants of the two-elements Boolean algebra 2. Other ob-
jects such as '== y |-— , etc, are defined similarly as in the case of
PRY .

We shall use here the concept of a dual space of a Boolean alge-
bra. To introduce it, assume B is a Boolean algebra, and let

B*= {p: p is an ultrafilter of of B}.
Then B* becomes a topological space, if for the basis is taken the set

{a*: aeB}
where a¥*={peB*: acp} for a€B. By Theorem 2.2.3, we see that every set
a* is a so called clopen set, i.e. a closed and open set, since
a*cz a'%¥, A space defined in this way is called the Stane space, or the
dual space of B. As we shall see, this space is compact, i.e. every
open cover of this space is reducible to a finite cover. Finally, let
us remember that 2X is the Cantor space, i.e. 2X= [} &xV¥i is a product
space, where for all i€X, Y is a discrete two-element space. Now, we
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are able to assert statements equivalent in ZF to the Compactness Theo-
rem of PR!.

3.1.2 Theorem The following statements are equivalent in ZF:

1° Compactness Theorem of PR!.

2' Completeness Theorem of PR!.

3* Compectness Theorem of Propositional Calculus: If L is a set of pro-
positinal formulas, and every finite A¢f has a model, then I has a
model .

4° Completeness Theorem of propositional calculus: IF I is a consistent
set of formulas, then T has a model.

5° Every Boolean algebra has an ultrafilter.

6° Every filter of a Boolean algebra is contained in an ultrafilter
of B.

7° For every set P, the Cantor space 2F is compect.

8" For every Boolean algebra B, the dual space B* is compact.

Proof Some implications have already been proved, for example 2°—>1°,
(Theorem 2.4.9), and 5°—2" (Lemma 2.4.2 and Theorem 2.4.5). Further,
the implication 4°—3° is proved in a similar way as 2°—>1°. So, up to
now, we have the following:

(1 5'—>2"—>1", 4°'—33"°.
We shall proceed to prove the other implications.

{6°—>5°) The assertion 5° holds trivially when 6° is applied to fil-
ter {1).

{(5°—>»4°) Assume 5° and let £ be a consistent set of propositional
formulas. Further, let Q: be a Lindenbaum algebra of theory I. Hence,
Qz= {[¢]: ¢ is a propositional formula},
where [¢]= {y: I} ¢y}, while the operations af this algebra are de-
fined as in the case of the Lindenbaum algebra of the predicate calcu-
lus. Then, Q: is a Boolean algebra. Let u:P—»Qs, p(p)= [p], where P is
the set of propositional letters. Map u can be extended in a natural way
to a function o:Sentp—>Qz, where Sente is the set of all the proposi-
tional formulas in P, as follows:
use, o(@ A ¥)= ole)-al¥), ole v ¥)= ol¥ltol¥), ol W)= aly¥)’.
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Then, it is easy to see that for every a

¢eSenty, o(¢)= [p]. lLet F be an ul- Sentp ————--—3 Q3
trafilter of Qr, k the canonical map,

k:Qr—->Q:/F, and = k+g. Then, for every k
weL, we have <(¢)=l, so t is a model

of L. Remark that for ¢ef, ({¢l= laz, s0 T

t{l9l)= k(lez)= 1. 23/F

(3°—>»6°) let F be a filter of a Boolean algebra B and assume that the
Compactness Theorem of propositional calculus holds. Let a propositional
letter pa€P correspond to each a€B, so that if a#b, then pa and ps dif-
fers. For the set
Zr= {Mpe} U {{pa A pPv) —> pPap: a,beB) V
{pa —> par: a€B} U {pa —> pv: as<b, a,beB} U {pa: ac€F}.
we have

(1) Every finite subset of Zr has a model.

Further, if Acir is finite, then, let
A= {a€B: a occur in a formula of A}

and B’ be the Boolean subalgebra generated by set A. Since A is finite,
by Theorem 2.1.2, B’ is finite too, and FNB' has FIP. So, there is an
ultrafilter V over B’, such that FNB'cV. This is provable already in ZF,
since B’ is finite (this assertion can be proved by induction on the
number of elements of B’). Then, the canonical homomorphism k:B'—>B’/V
determines a model of A. By the compactness Theorem and (1), the set Ir
has a model, say p:Zr—>2. Then, G={aeB: u(pa)=1l} is an ultrafilter of B
and Fe<G.

(1'—>6°) Suppose 1° and let F be a proper filter of B. Define a first
order theory Tr of the language L= Laa U {P} U {a: a€B}, where P is a
unary predicate symbol, with the following axioms:

Px A Py = P(x+y), Px A xSy —-Py, Px v Px', PO,

Pa, a€F,

@, @EA(B).

Here, A(B) denotes the diagram of the model (B,b)ves, i.e. D(B)
is the set of all the atomic and negations of atomic sentences of the
language Lga U {a: a€B} that hold in (B,b)ven.
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If 8 € Tr is a finite subset, then, similarly as in the part
(3°—»6°), we can see that § is finitely satisfiable in a finite subalge-
bra B’cB, where B’ is generated by constants a, whose names a appear in
8, while P is interpreted as an ultrafilter of B’. Therefore, the condi-
tions of the compactness theorem are fulfilled, so the theory Tr has a
model, say C= (C,+,+,',%5,0,1,G,ca)aes. Here, G is an interpretation of
the relation symbol P, while ca is an interpretation of symbol a. Since
C is a model of Tr, we have C|— A(B), so, from this fact we can infer
that h:a—>ca, 2€B, is an embedding of B into (C,+,-,’,5,0,1,calaen.
Therefore, without loss of generality, we may assume that B is a sub-
model of (C,+,-,”,%5,0,1,ca)aee . Then BNG is an ultrafilter of B which
conteins filter F.

(6°~—>8") lLet B be a Boolean algebra and B* the dual space of B, i.e,
Btz {p: p is an ultrafilter of B}. If aeB and af0, then by hypothesis
6°, the filter F,= (x€B: asx} is contained in an ultrafilter p, so pea*,
i.e. a*#0. Remark that by hypothesis 6°, the set

F*= {peB*: Fcp}
is nonempty for every proper filter F of B. Now, let us prove
(1) KeB* is a closed subset iff there is a filter F of B such that

K= F*,

First, suppose K is closed. Then, K is an intersection of basic
closed sets, i.e. K= Naeaa* for some I<B since (x*)c= (x’)*. lLet F be
the filter generated by the set I. Then, by Theorem 2.2.4, Ffz Naeaa*,
thus K= F*.

Second, if K= F*, then since F*= Ny gaf, it follows that K is an
intersection of closed sets, so K is closed. This finishes the proof of
assertion (1).

Now, we shall show that B* is a compact space. Let I' be a col-
lection of closed subsets of space B* which has FIP. By (1), we may as-
sume that 'z {Fi*: i€l}, where F; are filters of B. Since

Fi%,...,Fo*el’ implies F1* N ... N Foa*# ¢,
it follows that F; U ... U Fx has FIP as well, whenever F:i%,...,Fa%€l.
Therefore, U F has FIP, so by hypothesis 6°, there is an ultrafilter p
of B such that UFi ¢ p, i.e. for all i€el, Fi ¢ p. Hence, peniFi*, so
0 Fi *#g. Thus, 0I'Y¢, and this proves that B* is a compact space.
{(8°—>»7°) Let Qr be the free Boolean algebra with P as a set of free
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generators. Further, let us introduce the map u:2?~—>Q¢*, where for
a€2?, up(a) is a filter of Qr generated by the set {pa(®): peP}. By the
proof of Theorem 2.2.5, p(a)is an ultrafilter of Qp, hence, the codomain
of p is Q* indeed. According to the proof of Theorem 2.2.5, map p is
one to one and onto. Now, we shall prove that p is continuous. It suf-
fices to show that inverse images, pu-t(a*), a€Qe, of basic sets of the
space Qr* are open subsets of 2f. 1In fact, if aeQp, then by the theorem
on representation of Boolean terms, there are finite P’¢P and Ic2F’', so
that
ac Iqer@ay P’z {Pry.erPn}, Ba= pro(P1) . .ppatps),
Hence, we have a*= Ujeraq*, since
pea* Aiff a€ep
iff Ds8a € P
iff there is an q€l such that a«€p
iff there is an a€l such that peaq*
iff p € Uqaqd*.
Thus, pu-1(a*)=Userp-!(aqe*). Further, if Pe2F and a€2F', then Beu-1!(aaqt)
iff p(Bleast iff asepn(B). Since p(B) is an ultrafilter generated by the
set {pP(®): peP), and a.= p1* P, . pa%P?), we have aq.epu{fl) if and only
if peste)  ppem gn(B) iff agB. Therefore,
u-i(aq* )= (Be2F: ach},
i.e. pl{aa*) is a basic subset of space 2, so0 u is a continuous map.
on the other hand, each basic subset of 2P is of the form Sa={Be2P :ach}
for some finite P'cP and a€2f' . Therefore, u(Sa)= prpu-1(aqs*)= as*t, i.e.
p(S«) is an open subset of Qr*. Hence, y is a homeomorphism of space 2P
onto Qr*, and since Qp* is compact (by assumption 8°), it follows that
2?7 is compact.

(7°~>3°) Suppose space 2F is compact, where P is the set of proposi~-
tional letters, and let £ be a set of propositional formulas, such that
every finite subset ACX has a model. Let us introduce, for every propo-
sitional formula t, the set Ae¢= {ue2F: tr=1}, i.e. A¢ is the set of all
the models of formula ©. It is easy to see that

(1) Ac=g, Ar= 2P, Acrpo® AcAg, A= AcS,

and, also, for every peP, A, is a clopen subset of 27,

By (1), the set A: is obtained from the sets A, peP, by the fi-
nite applications of set~theoretical operations of intersection, union,
and complementation. Thus, A: is clopen, as well. Additionally, let
#={Ac:t€Z}. By the assumption on X, the set & has FIP, thus, by the
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hypothesis that 2F is a compact space, we have N&fg, i.e. there is aen®.
Then, for all ¢eI, ¢9=1, i.e. a is a model of I.
Accordingly to the preceding, we have proved the following im-
plications in ZF: .
1° —— 2
h

This proves the theorem.

By the last theorem, the list of statements equivalent to the Com-
pactness theorem under ZF is not exhausted. Let us mention the following
proposition without proof.

3.1.3. Theorem The Compactness Theorem of PR!' implies in ZF that a
product of nonempty compact Hausdorff spaces is a nonempty compact Haus-
dorff space.

The next theorem is called the Reflection theorem, and it relates
the Compactness Theorem to the infinitary propesitional calculus.

3.1.4. Theorem Let I be a set of propositional formulas with the pro-
perty that every map u€e2f is a model of a formula ¢ef. Then, there is a
finite set {91,...,¢n}€C such that ¢ v ... v ¢ is a tautology.

If infinite disjunctions of propositional formulas are allowed,
this theorem can be restated as follows:

If £ is an infinite set of propositional formulas, then, Eve
implies the existence of finite A<k, such that ]u- v T. TEZ

L2 7.8

The proof in ZF of the equivalence of the Reflection Theorem and
the Compactness Theorem can be derived in a similar manner as the proof
of (7°—>3"} in Theorem 3.1.2.

According to the proof of Theorem 3.1.2 and the existence theorem
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of ultrafilters, some interesting consequences can be obtained. One is
the representation theorem on Boolean algebras.

3.1.5. Theorem Every Boolean algebra is isomorphic to a field of sets.

Proof Using the notation introduced in Theorem 3.1.2, one can see that
h:a—>a*, a€B, is an isomorphism of the algebra B and the field of
clopen subsets of the dual space B¥. Indeed,
h(a'b)= (a+<b)*= {peB*: a-bep)= {peP*: a€p and bep)=
{peB*: aep} N {peBt: bep}= a* N b*= h(a)- h(b).
The appropriate identities for other Boolean operations are proved in a
similar way.

Using the same technique, we can prove many other interesting
properties of Boolean algebras. In the following, we shall consider the
so—called splitting property of Boolean algebras. Also, we shall use
some ideas which have been already been employed in the proof of Theorem
1.1.5. First, we shall introduce some terminology.

In the following, let B=(B,+,.,’,<,0,1) be a Boolean algebra.

A subset TCB is a dual normal tree in B iff T has the following
properties:
1° T is a binary tree in respect to the dual ordering < of B i.e.
1°.1. There is the greatest element a in T in respect to <.
1°.2. For every teT, the set [t,alr= {xeT: t<x} is linearly ordered and
every nonempty Xc[t,alr has the greatest element.
1°.3. Every teT has exactly two predecessors t;,tz€T such that t=t,+t;.
2° If x,yeT and x,y are incomparable, in respect to £, i.e. neither
X<y nor ys$x, then x-y=0. Such a tree will be called for short a d.n.b.
tree, and this tree is countable if [T{: X .

Now, a subset Ce¢B is splitting, iff the following holds:

1° 0gC.

2° If aeC, then there are a;,8:€C such that a= a;+az, and a; -az=0.
Here are some examples of splitting subsets of B.

3.1.6. Example 1° Every d.n.b. tree of B is a splitting subset.
2° An element a€B\{0) is atomless if a is not an atom and there are no
atoms below a. Then the set C=z {x€B: x is an atomless element of B} is
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a splitting subset. Really, if a€C, then, there is beB, such that
0 ¢<b < a, so byab’eC, b(ab’)=0 and a= bt+ab’.

3.1.7. Lemma Every nonempty splitting subset C of B contains as a
subset a d.n.b. tree of B.

Proof We shall construct, by induction, a sequence of finite dual tre-
es which are subsets of C, as follows. Let To= (a}, where aeC, and sup-
pose Ts has been defined for some new. Let ap,...,akx (k=2") be minimal
elements of T». By the inductive hypothesis, we have a;,...,ax€C. So for
every 12i<k, there are ai¢,a 1€C such that a; = asetai: and aio-a 1 =0.
Then we take that Tne1= Tn U{ai;: 1<isk, 0<j<1}. Finally, we define
T= UaTa. It is easy to see that T is a d.n.b. tree of B and TcC.

By this lemma and the last example, we can see that a subset C of
B contains a splitting set iff C contains a d.n.b. tree of B. We have
also the following simple consequence of the above lemma.

3.1.8. Lemma Assume B contains a nonempty splitting subset C. Then
|B‘ ]22& (we should remember that B* denotes the set of all the ultra-
filters of B}.

Proof By the last lemma, there is a d.n.b. tree T € C. Every branch
(i.e. a maximal chain) g of T has FIP, so it is contained in an ultra-
filter pg¢ of B. By the normality of T, it follows that for different
branches g and g', we have p¢# per . On the other hand, T has 2% bran-
ches, so ‘B’[Z 2%,

Now, we shall state the main theorem on splitting set. As we
shall see, this theorem has interesting applications in model theory, as
well.

3.1.9. Theorem Assume |B| < |B*|{. Then there is an d.n.b. tree of B
such that for all a€T, ngqa'Q.

We remind the reader that a* is the set of all the ultrafilters
of B which contain a.

Proof 1In the proof of the theorem, we need the folowing assertion of a
purely set-theoretical nature.
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Claim 1. If <Xi: iel> is a family of sets and X= U X, then,
1X| £ |I}-sup |X |-

Proof of Claim 1. If X= UX;, then
[X] £ Ziea|X| €5 asup; |X|= |I]-sup |Xi|.

Claim 2. [B] < |B*| implies there is a€B such that |B| < |a*|.
Proof of Claim 2.  Suppose
(1) |B| < |B*].

If B were a finite Boolean algebra, then {B‘: 2: for some new.
Thus, by (1), B is infinite. Since B*z U;epa*, by Claim 1 it follows
that |B*] < lB) *sups es ja*|. If Supa es ja*| < QB!, then

|B*| < |B|-|B|= |B|, i.e. |B*| < |B|.
But this is a contradiction to our assumption (1), therefore, {B{ <
Supaes|a*|. From this inequality, we can immediately deduce that there
is a€eB such that |B[<|a*|, and this finishes the proof of Claim 2.

Claim 3. The set C= {ae€B: [B|<|a*}} is splitting in B.
Proof of Claim 3. Let aeC and I= {beB,: |B]z|b*|), where Ba={x€B:xsa},
and take S= heb*. Since bel implies lb‘lslB!, and since IcBacB, it
follows that |S| < |I|+suppe |b*| < |B|+|B|. Therefore, for |B|<|a*|,
we have ia‘\S!: |a‘l i.e. a*\S is an infinite set. Thus, there are
p1,p2€a*\S, pi# pz. Then there is cép, such that cgp: i.e. c'epe.
Since a€ép1, a€pz, for elements as;zac and a;=ac’, we have aj€p., az:€pz,
a=aj+az , a:+az=0 and a; ,a:#0. Further, if ]ax‘ ]s[Bi then from ajsa we
have aj€l and pi€a ¥, so p1€S, contradicting p:€a*\S. Hence,
|B] < ]a,*] i.e. a1€C. In a similar way, we can prove that a.eC, and
this finishes the proof of Claim 3.

Now, by Lemma 3.1.7 and Claim 3, the statement of the theorem
follows.

3.1.10.Corollary 1° 1If EB{(!B‘} then |Bt|22%.
2" If B is a Boolean algebra such that for all countable subalgebras
CeB, |C*| <%, then |B*|<|Bj.

Later, we shall see some applications of this corollary.

Theorem 3.1.5 was proved by M. Stone. Applying the compactness
Thecrem, one can prove many other statements of set theory which are
usually proved assuming the Axiom of Choice.
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usually proved assuming the Axiom of Choice.
3.1.11 Theorem lvery set can be linearly ordered.

Proof Let A be a set, < a binary relation symbol, and T a theory with

axioms:

The axioms of linear ordering for £, LO.
For all a,b,ceA and their names a,b,c,

a <a,

a<bab ga-—> ash,
a<bAaAbsgsc-—->ac<cg
as<bvbcsga.

Every finite subset A& of T contains only finitely many constant
symbols, say ai,...,a8n. We can define an ordering on the set f{ai,...,an)
by ai Sa; iff i5j. This means that the set A has a model. Therefore, by
the Compactness Theorem T has a model too, say B= (B,$,ba)aea, where
ba= aB. Then we can define the ordering over A in the [ollowing way:

a; A ay iff ba: € baz.

Even if the Axiom of Choice cannot be inferred from the compact-
ness Theorem in 2F, some weaker forms of the Axiom of Choice can be ob-
tained.

3.1.12. Theorem (in ZF) The Compactness heorem implies the Axiom of

Choice for families of finite sets.

Proof Let <Xi: i€I> be a family of nonempty finite sets, and let ©i be
the discrete topology on Xi. Then, X = (X ,ti) is a compact space, so,
by Theorem 3.1.3.we have I Xi #6. Then every map fefi X; is a choice fun-
ction for the family <Xi : iel>.

We shall see some more applications of the Compactness Theorem in

the next section.
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3.2. The combinatorial universe

It is an interesting question whether it is possible to introduce
in a natural way, a domain in which we can formulate all the notions of
finite combinatorics, and even some of infinite combinatorics. When we
think about finite combinatorics, we deal mainly with finite sets. So,
in such considerations about a finite set x, we may suppose that all the
sets in every chain Xp€x,€...€xa€x, new, are finite. Thus, we come, as
anticipated, to the following sequence of sets Va, new, and the universe
Vo,

3.11. Definition The sequence V,, n€w, of sets is defined inductively
in the following way:

Voz=gy Vue1= Va U P(Vn), neo.
Further, we introduce: Vu= WVs, V= (Vu,€).

The set Vo will be called the domain of finite combinatorics,
while Vo will be called the model of finite combinatorics. At the first
glance, Ve might look sparse, however, Vo is sufficiently rich to admit
definitions of virtually all the basic notions of finite combinatorics.
Let wus denote by ZFf the Zermelo-Freankel set theory but with the nega-
tion of the axiom of infinity, instead of this axiom. It is then easy to
see that the following proposition holds:

3.2.2. Theorem Vo is a model of ZFf .

From this theorem, it follows that Vo is closed under usual set-
theoretical operations. Namely, we have:

Xigeeo s Xn€VO = {31,...,%Xn}€V0, neow,

X,¥eVo —» (x,¥}€Vo, where (x,y)= {{x,¥},{x}},

x€Vo — UxeVo,

X, YEVW —» Xxy€Vo,

if x,yeVe and f:x-—>y, then feVo,

if x,yeVw then x¥eVw, where x¥= {f: f:y—>x}.

Every set in Ve is strictly finite , i.e. if yo€y,€...€yn€Vo,
then all the sets yo,...,¥n are finite, as well. Remember that O0=g,
1= {0}, 2= {0,1},...,n={0,1,...,n~1},... , for all new, hence wcVw. The
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notion of natural number can be introduced already in ZFf, by the de~-
finition axiom

N(x) > (Vy,zex)(y€z v 2€y v y=z) A (Vyex)(Vzey)(zex)
where N is a umary predicate symbol. The interpretation of N in Vo is
unique and it is w, i.e. the set of natural numbers. Further, we see
that the usual linear ordering of o coincides with €.

In a similar manner, one can introduce other elementary set-theo-
retical notions, for example, the notion of function is introduced by
Fn(x) > Vy,z,u ((u,y)ex A (u,z)ex —>» y=z) A Vyex3u,v(y=(u,v)).
If for some f,a,beVw, (a,b)ef and Vm’- Fnif], the we can write
b=f{a) as is customary. In this case, the set {xeVw: IyeVw (x,y)ef} will
be called the domain of f, and this set is denoted by dom(f). The co~-
domain of f is the set codom(f)= (yeVw: Ixedom(f) (x,y)ef}.

We see that all these notions are definable in ZFf, i.e. to each
of these concepts a predicate is related, which is definable in ZFf. For
example, we can introduce the predicate z:x—>y, by the definition axiom

(Zix~>y) «> (Fn{z} A x=dom(z) A codom(z)<y).

If a,beVw, then it is easy to see that f maps a into b iff Vw!— f:a—>b.

Now, we are able to state the theorems of finite combinatorics in
ZFf. As an example, let us present a finite version of the Ramsey theo-
rem.

For a set X and k€w, define [X]k= {yeX:!: |y|=k}. Therefore, {X]?
is the set of all the two-element subsets of X. By a partition of X, we
consider any onto map P:X-»n for some n€w. Remark that every map of this
sort determines a collection P of disjoint subsets of X, a partition of
X: P= {(P-1({i}): ien}. For values of P one can imagine colors. Namely,
assuming that P maps X onto n, then there are n colors, and if P(a)=i,
then we say that element a is colored by color i. According to this no-
tation, elements of one class of partition P are colored by the same
color. So, there is another name for partitions of the set X - the col-
oring of X.

By the finite version of the Ramsey Theorem we mean the sentence

RTf Yk, t,rew 3mew Voom Va((a:[nlk—>r) — (3ee(n]t n| [elk=const)).

In other words, this formula says:
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For all the natural numbers k,t,r there is a natural number m
such that for all new, n>m, all partitions =n:[n}k—>r, there is an ec<n
of size t in respect to which n is homogeneous, i.e. =x takes only one
value on [e]k.

3.2.3. Theorem me—= RTf .

We shall later give a nonconstructive proof of this theorem based
on the infinite version of Ramsey theorem.

3.2.4. Theorem (Infinite version of the Ramsey Theorem) Let S be an
infinite set and k,rew, k,r>0. If =:[S]¥—>r, then there is an infinite
T<S homogeneous for x, i.e. n is constant on [T]k.

Proof We shall give the proof by induction on k. Obviously, we may
suppose that r>1. Without loss of generality, we may assume Scw.

Case 1. For k=1 the statement holds trivially since finite umions of
finite sets are finite.

Case 2. Let k be fixed, and suppose the statement for k-1. let us
introduce a sequence of sets Xi and functions =i, i€w, in the following
way:

Let xo be the least element in S, and mo:[S\{xo]}]*-'—>r, where

7[0(()'1,-cc,}7k-1})= 7 ( {xo vyl'--‘yﬁ-l))) Y1 €e e oYkt

By the induction hypothesis, there is an infinite set Xo<S\{x)
homogeneous for o, i.e. for some ro<r, the function = |[Xo]k-! takes a
constant value ro. We shall briefly write =o l [Xo }x~1=ry.

Assume we have constructed sets Xo,...,Xa, and let xs+; be the
least element in Xa. Now, we shall define the map

%n+1 i [Xa\{Xa¢1}}¥-2e—>r, where

oo {{F1see0s¥k-1})= Al {Xnes,¥1,000,¥k-1))y ¥1<ooolyx-,

Fryeeos¥u-1€Xn\{Xns+1}.

By the induction hypothesis, there is an infinite Xas1 Xa\{Xn+1)
homogeneous for rs+1, i.e. for some ra+1<r, Mae1|{Xee11¥-1= rus;. There-
fore, an infinite sequence of sets Xa, maps %, and numbers ra<r are de-
fined in this way. Since there are only finitely many values in the se-
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quence rn, n€w, there is a sequence nxew and s<r, such that for all keo,

rnk=s. Then,
If X= {Xno sXn1,...}, then for all Ye[X]% we have n(Y)=s, i.e. X
is an infinite subset of 8§ homogeneocus for =.

Let us consider some applications of the Ramsey Theorem.

3.2.5. Example 1° Suppose (X,s) is a linearly ordered set , and let
<xn: new> be a sequence of elements of X. then the sequence xn contains
a monotonous or constant subsequence. Indeed, consider the following
partition =:{w)z—3>3

0 if am<an,
x{ {m,n})= 1 if amd8s, {m,n}elw]?z, m<n,
2 if am=8n .
Let T=(no,n1,.+.}¢0 be an infinite set homogeneous fot n. Then the sub-

sequence {Xaj ¢ 1€w> is monotonous or constant.
Z2° Let (X,€) be an infinite partially ordered set. Then X contains an
infinite chain or an infinite antichain. Really, consider the partition:
0 if msn or nsm
n({m,n})= {m,n}€{X)?
1 if m and n are incomparable
Then any infinite subset Ye<X homogeneous for m satisfies the required
conditions.

Using the Ramsey Theorem and K8nig's Lemma, it is not difficult
to show that RTf is true in Vw. However, we shall prove a combinatorial
statement on hypergraphs from which RTf follows directly. The proof of
this statement is also an example of an application of the Compactness
Theorem.

A hypergraph is every pair G={(G,E} vhere G is a nonempty set, and
E is a set of nonempty subsets ec<G, such that |e|22. As it was already
been explained, a coloring of graph G is any partition n:G—n, new. A
number reéw is a subchromatic number of G if and only if for every color-
ing n:G—>r, there is e€E, such that u!e: const. A number Rew is a sup-
erchromatic number of G if and only if R is not a subchromatic number of
G. Finally, the chromatic number he of G is the least superchromatic
number of G. Therefore,
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he>r ¢ V¥n:G—>r 3e€E n|e= const

3.2.6. Example If P is a class of graphs, then the chromatic number
for P is supl{he: GeP}. The displayed graph
o m— shows that for the class of planar graphs,

~

AN this number is 24.
\\\
\

Hypergraph G’= (G',E’) is a subgraph of a hypergraph G if and
only if G'¢G and E’cE. Lastly, G is k-bounded if for all e€E, |e|<k,
where k is a cardinal number.

3.2.7. The Compactness Theorem for Hypergraphs (N.Bruijin, P.Erdls)
Let G be an infinite w-bounded hypergraph and t it’s subchromatic num-
ber. Then G has a finite subgraph which has t as a subchromatic number.

Proof Without loss of generality, we may assume that GeVw, thus EgVo.
Since we have taken G to be countable, we may suppose that G is linearly
ordered with an order type of w. So, let Gy be the set of the first n
elements of G, and Ep= [e€E: ecGn}. Hence, Gy and Ez are finite and
Gun,EncVo. Now, suppose, on the contrary, that G has no finite subgraph
with a subchromatic number t. Thus, there are mappings ng:Ga—>t, such
that: VeeEn na|ef const.

Consider the structure Vo’s (Vo,w0,€,u,t,n)}, where p:o—Vo,
pn=Cn, T:0~>V0, tn=En, and niw—>»Vw, =%nn are the above introduced
functions. Then, theory: Thve U {con: new} U {w{c))
is finitely consistent, so, this theory has a model

*Vo=(*Vo,*0,*€,*u,*t,*x,H), H is an interpretation of c in *Vo.
Since every element of Vo is definable in Vo, it follows that Vo' is
elementary embeddable in *Vw, so, we may take Vo<V, where ‘Vo is the
corresponding reduct of *Vw. Then,

(1) *V(o)= n:Gc—>t A Ve(eeE; —» ncle;éconst).

Let us define sets E= {xe€*Vw: x*€Eg}, zn= ((X,¥): *ma{x)= ¥},
Gz {x: x*€Gy}. Then, it is easy to see that n:G—>t and E<E, GsG. Let
o=n|G. Then, by (1), it follows that
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for all eeE oje# const,
which is a contradiction to the assumption that t is a subchromatic num-
ber of G.

This proof is in the spirit of nonstandard analysis, and it could
be simplified if we had at our disposal the so called nonstandard umi-

verse.
3.2.8. Corollary Vw[— RTf .

Proof Let us choose the hypergraph G= (G,E), such that

G= [w]kx, E= {[S]¥: Sco, |S|2t}. By the infinitary version of the
Ramsey Theorem, r is a subchromatic number of G, so, by the Compactness
theorem for hypergraphs, there is a finite hypergraph G’cG with r as a
subchromatic number. For G'= (G',E’) take n= maxUG'. If e€E’, then
for some Scw e=[S]*, where |S|2t. Let H= ([n]%,E’). Then, =n:[nlk—>r im-
plies that =x|G’ is an r-coloring of G', so there is e€E’, such that
7t|e= const, i.e. for some S¢n, {Sl?_t there is s<S such that sefn]t and
nf[s]¥= const.

Almost without any change in the proof, one can show that a Par-
is-Harrington version of RT¥ holds in Vo
(PH) ¥k, t,reo3neovVnonVa{(x:[n]k—>r) —>

(3ee(n]t ) (x| [e]*= const A |e|>min e).

A set eeVuw is relatively large if |e|2min e. Therefore, the only
difference between (PH) and the statement RTf is that PH asserts the ex-
istence of a relatively large set homogeneous for partition m. The fact
that makes (PH) interesting is the nonprovability of (PH) in ZFf. This
is the first example (given by J.Paris and L.Harrington in 1978) of a
finitary statement of a "pure mathematical content” with such a proper-
ty. We shall discuss other statements of this kind in some of the
following sections.

Now, we shall consider one more application of the Compactness
Theorem in Vw. We would remind the reader that a tree is every structure
T= (T,<,0), where (T,%) is a partial ordered set with the least element
0, and with the property that for every a€eT the set [0,alr= (x€T: x<a}
is well-ordered by the relation £. If T is a tree, then, it is possible
to introduce the following map ot with domain T and values in a set of
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ordinal numbers. Function ot is defined inductively: ot{x)= {ot(y):y<x}.
Then for every ordinal number a, the a-level of T is Ta= (x€T: ot(x)=a}.

3.2.8. Theorem (K8nig Lemma). let T be an infinite tree in which
every level is finite. Then T has an infinite branch , i.e. there is an
infinite maximal chain in T.

Proof Without loss of generality, we may assume that T is countable
and TeVw, Let *Vo={*Vu,*w,*e,*T,*<,0) be an elementary extension of the
model (Vo,0,€,T,<,0} constructed similarly as in Theorem 3.2.7. Thus,
there is an infinite number He*w\w. Let ae*T, ot(a)=H. Such an element
exists, since Vm|= Vnew Ta#0, 1i.e. *Va)|- Vnew Ta#0. Therefore, since
He*w\w, it follows that Ta#0. ¥Further, since for all new, Ts is finite,
we have Ta= *Ta, so, by
Vm|=- VxVnew(n<ot(x) — JyeTn y<x),

it follows that for every new there is beTa, b*<a. Thus, g= (beT: br<a)
is an infinite chain in T.

In the same way, one can "construct” a non-principal ultrafilter
over w. To see this, let for every Xcw, the sign X denote a unary predi-
cate symbol (the name of X}. Now, using the Compactness Theorem, we can
construct a proper elementary extension (*w,*X)xgw oOf the model
(0,X)xcess Finally, let He*w\w and F= {X<w: He*X). Then, it is easy to
see that F is a non-principal ultrafilter over o.

3.3. Diagrams of models

One of the problems which model theory solves successfully is the
problem of the embeddings of structures. In an analysis of this problem,
the notion of diagrams of models has an important function. We would re-
mind the reader that this concept has been already used , explicitly or
implicitly, in some of the previous sections.

3.3.1. Definition 1° Let A be a model of a language L, and

Laz L U {a: aeA}.
The diagram of model A is the theory Aax of the language La whose axioms
are the atomic and negations of the atomic sentences of the language La
true in (A,a)aea.
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2° The elementary diagram of model A is the theory Th(A,a)aca.

As examples of the use of this notion, we have the following
propositions.

3.3.2. Theorem Let A and B be models of a language L. then,

1° The model A can be embedded in B iff there exists a simple expan-
sion (B,ba)ssa of B which is a model of Aa.

2° A is elementary embedded in B iff there is a simple expansion
(B,ba )a ea which is a model of the elementary diagram Th(A,a)a ea.

Proof 1° If f:A—>B is an embedding, then, (B,fl(a);sea is a model of
the theory Aa. For example, if Rai...as € Aa, then (A,8:,...,8a) satis-
fies Rai...an, hence, (B,fa;,...,fa.,)}— Ra;...8s, since the map f is an
embedding. On the other hand, if (B,ba)aeap= Aa, then the map f:a—>b,
is a an embedding of A into B. Indeed, if for example ai#a:, ai,a2€A,
then (7a1=a;)€la, so (B,ba)serf= Mmi=82, i.e. bat#baz thus fa,;# fa,. In
a similar way, one can prove that f has other properties of embeddings.
2° The proof is similar to the proof of 1°.

As the next example, we have the following proposition.

3.3.3. Theorem Let A and B be models of a language L, and suppose AzB.
Then, there is a model C in which A and B are elementary embedded.

Proof Let T= Thi{A,a)aen U Th(B,b)res and let us prove that T is a con-
sistent theory. Suppose, on the contrary, that there is a finite A<T,
such that A has no model. Let &1,...,8a;b1,...,bn be all the names of
elements from the set AUB which occur in A. We shall assume from now on
that {a: a€Aln{b: beBl=g. Since A is an inconsistent set, we have
A{— ¥x{x#x). Since A is a finite set, and by the choice of symbols a,b,
there are sentences ¢a;...as 0f Lu, ¥bi...bx of Ls, and 6 of L which are
conjunctions of some sentences from A and which also satisfy

8, ¥a1...8a, Vbi...bn }—— Y {x#x).
By the Deduction Theorem, it follows that

6 wai...as, Wb ...ba .
By the New Constant Lemma and the fact that a ,b; do not appear in 6, it
follows that

6}—- Vi oo XY .o Yl WX 0Xm V WYL Y0 )
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Since {Xi1y+«+sXa}N{y1,...,¥n}=g, we have

8’— RE I/, (R S e SRR 11 s T L
The sentence 8 belongs to language L, so Afn 8 and B]= 6, hence

A!= I e e e XmPKL e e X V YL e YU 60 oV o

Further, At— ¢lai,...,anl, hence A[l== y: .. ¥a¥¥i...¥n. There-
fore, using the assumption A=B, we can conclude Bp= Tdyi...yaVy¥1...¥n,
and this is a contradiction to B§= Yi{biy...,bnl.

In a similar way, or by the iterate use of the previous theorem,
one can prove

3.3.4. Theorem Let <Ai: i€l> be a family of models of a language L
which are mutually elementary equivalent. Then there is a model A of L,
in which all the models A, i€l, are elementary embedded.

The following proposition describes when two models of a first-
order theory T are embedded in a model of T.

3.3.5 Theorem Let T be a theory of a first-order language L and let A
and B be models of T. Then, A and B are embedded into a model C of T if
and only if for all E£:° sentences ¢,y of L such that Ap= ¢, Bj= y, there
is a model C of T, such that C]-= @ A VY.

Proof (&) Suppose the conditions of the theorem, and let Sz TUAJUAs.
Now, we shall prove that S is a consistent theory. Assume the contrary.
Then, there is a finite set AcS such that Afu ¥x{x#x). FPFurther, there
are sentences 8a; ...8nx of language L., ob;...bs of language ls, and the
sentence t of L which are conjunctions of some sentences from T, and
which also satisfy:

7,88;1...8a,0b1...bn Q— Yx{x#x).

From this fact, it follows that Tl 6a1...8s2 v Wbi...bn. By the New
Constant Lemma, and since aj,...,8a,bh,...,bn do not occur in L, we have
t}-— VX1 oo oXa0X1 o0 oXm V V¥1 .0 ¥n WOV 00 eVn o
By the choice of formulas 6a;...am, obi...bn, we have
A]-= 3Kt oo o XmBX1 o0 o Xm, B}== 31 ¥aOY1 00 Fno
By the assumption that there is a model C of T such that

{1) Ck= 3x1 .. %nBX1 .o oXn A Jy¥1...¥00Y1+0.5n.



92 Compactness of PRt

On the other hand, since C is a model of T, we have
C'— W1 oo eXaWX1 00 eXm V VY1 c0 o ¥ 10V 00 e¥ny
and this is a contradiction to (1).

(—) If ¢, ¥ are ;9 sentences and Ar- 9, B|- ¥, then by the hypothe-
sis, there is a model C of T, such that A and B are embedded into C. But
Ii1® sentences are preserved under embeddings, so, Cq= ¢ A ¥.

If ¢ is a I1° senetence then there is a formula ¥ without quan-
tifiers, such that |~ ¢ & IZxi1...xa¥. Further, let

Fyve v v,
vhere ¥ are conjunctions of atomic formulas and negations of atomic
ones. Then |~ ¢ & (91 V ... V @), where ¢ = Iy ...xa¥i . Thus, we have
the following variant of Theorem 3.3.5.

3.3.6. Theorem Let L be an algebraic language L. Further, let T be a
theory of L, and let A,B be models of T. Then, A and B are embedded into
a model C of T if and only if for every two finite systems of equations
and negations of equations S;, S: which are consistent respectively in A
and B, there is a model C of T in which the system S;US; is consistent.

Theories of linearly ordered structures give an interesting
possibility. Namely, we can replace, in the previous theorem, the term
"negations of equations" by "inequalities".

3.3.7. Example The amalgamation property of Boolean algebras.

We shall prove that the class of all Boolean algebras has the
amalgamation property, namely, the following holds:
(1) If A,B,C are Boolean algebras and D
f:A—>B, g:A—3C, where f and g are em- p q
beddings, there is an algebra D and em- /

beddings p:B—>D and q:C—D, such that

B C
the displayed diagram commutes.
f E
A

First, let us prove the following proposition.

Claim lLet A be a finite Boolean algebra, B an atomless Boolean alge-
bra, and h:A—>B an embedding. Further, suppose AcA’ and a€A’. If A(a)
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denotes Boolean algebra generated by the subalgebra A and the element a,
then h can be extended to an embedding f:A{a)——>B.

Proof of Claim Without loss of generality, we may suppose that h is
the inclusion map, i.e. hixr—3>x, x€A, and so AcB. Let {ai,...,8a] be the
set of all the atoms of the algebra A. Since B is atomless, for every a;
there is ¢; €B such that a; >c; >0. Let

I= {isn: a-a #0, a’-ai #0}, J= {i<n: a-a #0, a’-a =0},
and b= I exci + Ij es8; . then the map f:A(a)—>B defined by

flasxt+a’+y)= bsx+b’.y , x,y€A,
is an embedding which extends h, and this finishes the proof of Claim.

Now, we shall turn to the proof of statement (1). Let T be the
theory of Boolean algebras, and let us show that the theory T+Aa+o+y is
consistent, where A is a Boolean algebra, and ¢, V¥ are I:? sentences of
the languasge of T expanded with the names of elements from A such that
the theories T+Aa+g, T+Aa+y are consistent. Let IcAa be finite, and EcA
be a finite Boolean subalgebra generated by names in IU{¢,¥}. Further,
let By, Ci be finite Boolean algebras such that Ec<B:, E<C;, and

B }=~ T+Z+p, Cip= TH+E4Y.

Since By and C; are finite Boolean algebras, there are embeddings
a:B;—Q, B:Ci—>Q where Q is a countable atomless Boolean algebra. If
a’ and B’ are restrictions of a and B to E, then, since 2 is homogeneous
(see Claim), there is pu€AutQ such that p-a’=f’ . Further, there is a sim-
ple expansion @ of 2, such that @ |= T+Aa+gty,

Thus the theory T+Aa+¢+y is consistent, so, by Theorem 3.3.5,
every two models of T+4x are embedded into a model of T+Aa. This proves
that the theory of Boolean algebras has the amalgamation property.

Using the amalgamation property of Boolean algebras, it is possi-
ble to show that the same property has the class of distributive lat-
tices with the greatest and the least element. In addition, we shall use
the following theorem which says that every distributive lattice with
the greatest and the least element is embedded into the least Boolean
algebra.

3.3.8. Theorem Let M be a distributive lattice with the greatest and
the least element. Then, there is a Boolean algebra Bx which contains M,
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and has the property:

If B is any Boolean algebra, such that there is an embedding
Jj:M—>B (which preserves 0 and 1), then, there is an embedding p:Bu—>B
such that the displaed diagram commutes.

i is the inclusion map.

B

Proof We shall give only an outline of the proof of this theorem. By
the representation theorem for distributive lattices, there is a ring of
sets 8 isomorphic to M. Then, let Bu be the least field of sets contain-
ing S, i.e. DBu is generated by S and Boolean operations. It is easy to
see that By has the desired properties.

Now, Theorem 3.3.8. is used to transfer the basis of the lattice
{Fig.1) amalgam into the class of the Boolean algebra (Fig.2), to amal-
gamate there, and then, to transfer into the class of distributive lat-
tices (Fig.3). This process is shown by the following diagrams.

RN
AN
NS NN

Fig.1 Fig.2 Fig.3
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Here M, K, and L are distributive lattices with the greatest ele-
ment and the least element, while Bx, Bx, and B, are the least Boolean
algebras containing the lattices M, K, and L, respectively. The first
diagram is the amalgam basis of lattices, and the second is the amalgam
of Boolean algebras. Finally, Bx, Bx, By, Bp are reducts of Boolean al-
gebras Bw, Bx, Bi, Bp to the languasge of the lattices with 0 and 1.

Corollary The class of all the distributive lattices with the greatest
element andthe least element has the amalgamation property.

As one more application of the compactness argument, we shall
prove the Liwenheim-Skolem theorems. These theorems are specific featu-
res of the first-order predicate calculus.

3.3.9 Theorem (Downward Ldwenheim-Skolem Theorem). Let T be a theory
of a first order language L and A an infinite model of this theory such
that *A} > ﬁL, and let XcA. Then, there is an elementary submodel B<A,
such that X<B and |B|x< |X|+JL{.

Proof We going to construct a sequence of sets X € 8¢ €8y € ... € A
in the following way:

So is a set with property: if ¢x is a formula of the language Lx
and A[=-= x¢x, then there is a€Se, such that Ao'la @a, where Ao= {(A,a)a ex.
By the Axiom of Choice, such a set exists, and we may take ]SoisﬁLlﬂXI .

Further, the construction is repeated, i.e. Si+: is constructed
from Si as it was So from X. If Bz U S;, then it is not difficult to see
that B satisfies the conditions of the theorem.

3.3.10. Theorem {Upward Liwenheim-Skolem Theorem) Let A be an infinite
model of a language L. Then, for every infinite cardinal k2 ‘AHHL],
there is a model B of cardinality k such that A<B.

Proof Let C= {ca: a<k} be the set of new constant symbols. By the com~
pactness Theorem, it is easy to see that

T= Th(A,a)a ea VU {cafcp: a<B<k)
is a consistent theory. Namely, every finite subset I of this theory is
satisfied in a simple expansion of model A. Thus, T is a consistent the-
ory, so there is a model B’z (B,ba,da)a e, a<k; where B is the reduct of
B’ to the language L. since there k different constants in B, we can in-
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fer that [BQZ k. Further, the map t:a—>ba is elementary, so we may take
A<, identifying a and b.. Note that A’z {ba: a€A] is an elementary sub-
model of B isomorphic to A. By Theorem 3.3.9, there is a model C of the
language L, such that AcC, CB, |C|=k. Then, it follows that A<C.

The following examples illustrate applications of the Ldwenheim-
Skolem theorems.

3.3.11. Theorem 1° Let R be the ordered field of real numbers. By the
L8wenheim-Skolem Theorems, there are ordered fields *R and F, such that
FR®R and |F|= %, |*R|= 2°.

2° For every infinite cardinal k, there is a model of formal arithme-
tic, which is an elmentary equivalent to the standard structure of na-
tural numbers.

3° We shall exhibit a nonstandard model of real numbers in which there
are nonstandard elements of N as many as there are real nmumbers. To see
this, let R= (R,N,+,+,%5,0,1) be the field of real numbers expanded by
unary relation N, the set of natural numbers. By the Downward L8wenheim-~
Skolem Theorem, there is a countable model S<4R, where S8=(S,N,+,+,%,0,1).
So, there is a map f:S—N which is 1-1 and onto. Using the Upward L8~
wenheim-Skolem Theorem, it can be easily seen that there is a model with
the desired properties for every infinite cardinal.

Exercises

3.1. Llet A and B be Boolean algebras and f:A —> B. Let f*:B* —> Af
be defined by f*(p)= {f(b): bep}, peB*. Show:

1* f is a homomorphism from A intoc B iff f* is continuous map from B*
into A%,

2° f is an embedding of A into B iff f* is continuous and maps B* onto
Ar

3" f is an epimorphism iff f* is an embedding of space B* into A%,

3.2. Let A and B be Boolean algebras. Show:

1° If AcB, then A* is homomorphic to a quotient space of Bt.

2° 1If A= B/J, where J is an ideal of B, then A*=B*\J*, where
Jr={peB*: pNB*#s}.
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3.3. If B is a Boolean algebra, then B* is a metric space iff |B|{N.

3.4. If B is a Boolean algebra and T¢B an infinite binary tree, then
subalgebra C of B generated by T is an atomless Boolean algebra.

3.5. If B is a Boolean algebra and |B‘(]B‘l then B contains as an sub-
algebra an atomless Boolean algebra.

3.6. If T is a first order theory of a countable a language, and C is
the set of all complete extensions of T, then |ClewU(R,2%].

3.7. If B is a countable Boolean algebra then |B*|ewU{®o,2%]}.

3.9. If X is an uncountable metric space, then the Cantor space is a
quotient space of X.

3.10. Show that for every Boolean algebra B, |Bis|B*].
3.11. Show that there are 2% nonisomorphic countable Boolean algebras.

3.12. Assuming that every finite planar gmpli has coloring in four
colors, show that every infinite planar graph has c¢oloring in four
colors, as well.

3.13. Show that for every positive integer n there is a positive integer
m such that in every subset S of plain with m points, there are n points
which are vertices of a convex polygon.

3.14, let P {w]l*ft —> i, 1%i%n, be n partitions. show that there is a
partition P:[w}* —> r such that for all Xgw, |X|2e, X is homogeneous
for P iff X is homogeneous for all the partitions B .

3.15. Show that the following theories are not finitely axaomatizable:
1° The theory of infinite models of pure predicate calculus with equ-
ality.

2° The theory of fields of characteristic 0.

3® The theory of algebraically closed fields.

3.16. Let T be a theory of a language 1 and ¢ a sentence of L. If ¢
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3.16. Let T be a theory of a language 1 and ¢ a sentence of L. If ¢
holds in all infinite models of T, show that there is n€w such that ¢
holds in all models Ap= T such that |A|Zn

3.17. Let ¢ be a sentence in the language of fields. Suppose ¢ is true
in every field of characteristic 0. Show that there exists an integer n
such that ¢ is true in every field of characteristic greater than n.

3.18. Let F be an algebraically closed field. If f:F» — F» is poly-
nomial, i.e. f(x)= (fi{x)y...,fn(x)) where f£,...,fa are polynomials
over F, then: if f is 1-1 then f is onto.

3.19. Suppose that every existential sentence ¢ of a language L which
holds in a model A of L, also holds in a model of T. Show that A is a
submodel of a model of T.

3.20. A linearly ordered set A= (A,<) is homogeneous if for all finite
sequences 8;<az< ... <an, bi<hb2< ... <ban there is feAutA such that
faizb1, «.., fan=bn. Show:

1° The ordering of rational numbers is homogeneous.

2° For every infinite cardinal k there is a homogeneous linearly order-
ed dense set of the cardinality k.



4. REALIZING AND OMITTING TYPES

Saturated structures may be useful in an analysis of the model-
theoretic versions of syntactical notions, as they are, for example,
the elimination of quantifiers. On the other hand, saturated models have
many properties of universal objects in categories, and this enables us
to characterize some model-theoretic properties by arrow diagrams. The
best known example of this kind is the model-completion of theories.
There is one more aspect of saturated models. Namely, the applications
of these structures ensbles one to avoid; in many cases, the call of
transfinite induction, because it is absorbed in the construction of
saturated models. In other words, when a model is built, say in a steps
{a is an infinite cardinal), we can use the existence theorem of satu-
rated models in some cases.

On the other hand, there are few saturated structures; for a gi-
ven infinite cardinal a« up to the elementary equivalence. The existence
of these models is certainly provided only under some set-~theoretical
assumptions, for example under GCH, or the existence of inaccessible
cardinals. Therefore, there are several generalizations of this notion,
and usually it is not necessary to assume an additional set-theoretical
hypothesis for their existence. These generalized concepts are mainly
reduced to the partial saturativness of models, and the most important
are k-saturated models, special models and recursively saturated models.

There is another class of results in model theory which employs
constructions in which structures are extended in such a way that se-
lected sets of formulas are omitted, i.e. not realized. Usually, it is
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more difficult to omit a certain set of formulas then to realize it,
since the process of omitting requires that every element of the exten-
sion be "worried over". There are many applications of omitting types,
not only in the first order logic, but beyond it, as well. We shall
study later such an application in logic with additional quantifiers.

4.1. Partially saturated models

Intuitively spesking, saturated models realize all the consistent
types. This notion was introduced by B. Jonsson, M. Morley, and R. Va-
ught, and it made it possible to unify and simplify a large part of mo-
del theory. Some ramifications of this concept have also been consider-
ed. J. Keisler introduced the notion of a k-saturated model, while re-
cursively saturated models were defined by J. Barwise and J. Schlipf in
1975.

The notion of type plays a main role in the definition of satu~
rated models. In the following, by I(x) we shall denote a set of for-
mulas with x as the only free variable. The set I(x) is satisfiable in a
model A, if there is an element acA, such that A?— @lal for all ¢xeZ(x).

4.1.1. Example 1 Let I(x)=z {1<x, 1+1<¢x, 1+1+1<x,...}. Then an order-
ed field F realizes I(x), iff F is a nonarchimedian field. A model M of
Peano arithmetic realizes I(x) iff M is a nonstandard model, i.e. M is
not isomorphic to the structure of natural numbers.

2" If T{x)= {p(x)#0: p({x)eQ{x]}, where Q[x] is the set of all rational
polynomials, then a field F of characteristic 0 realizes I(x) iff F has
a transcendental element over Q.

Now, 1let A be a model of a language L, and Ax= (A,a)aex, where
XA, A type over Ax is every set of formulas p(x) of the language Ly,
which is consistent with the theory ThAx. We shall keep the notion
introduced in this way in the following definition.

4.1.2. Definition 1° A model A is saturated over XcA iff every type
p{x) over Ax is realized in the model Ax.

2" A model A is saturated iff A is saturated over every XcA, 1Xj<|al.
3° A model A is k-saturated, where k is a cardinal mmber, iff A is
saturated over every XcA, [X] <k.
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The assumption |X|<|A| in the previous definition (part two) is
necessary since the set of formulas I'= (x#a: a€A} obviously cannot be
realized in A, even if I' is a type for infinite A. Therefore, A is
saturated iff A is an ]Al-—saturated model. By countably saturated mo-
dels, we mean countable «-saturated models. Saturated models are
usually obtained by iterating the compactness argument. Another way for
obtaining saturated models is the ultraproduct construction. Here is an
example of this second kind.

4.1.3, Theorem Let A, i€o, be models of a language 1, and let D be a
nonpricipal ultrafilter over w. Then A= IhA is an Ny -saturated model.

Proof First, let us note that D contains a decreasing chain of sets

oo €02 €31 € Jo= w, such that NnJn=p. Further, for any simple expan-
sion B= (A,fip,f2p,...), there are simple expansions B =(Ai ,a1,82,...),
such that B=IbBi . Therefore, it suffices to check that A realizes types
over A, i.e. we may assume X=g.

So, let Z(x)= {¢n (x),¢2(x);...) be a set of formulas over L such
that every finite subset of I(x) is realized in A. Further, let us in-
troduce the sequence of sets

Xp= {i€dn: A '= Ik{pix A voh A 1X)}, n>0, neow.

Then, NMnXs=g, and X» is a decreasing sequence of sets in D, so, for
every i€w, there is the greatest rm; €w, such that i€Xai. Let felt A, be a
function such that

if m >0, then A |=- (0 A vue A gni )IE(L)].

Thus, if i€Xa, then A p= ¢u(f(i)], therefore Ap= ¢u[fn] by the LoS The-
orem. Hence, fp realizes the type Z£(x) in A.

Assume p(x) is a type over Ax, X<A. Since p(x) is finitely satis-
fiable, by the Compactness Theorem it follows that p(x) is satisfied in
a model Bx, where Ax<Bx.

4.1.4, Example Let A be an algebraically closed field. Then, A is a
saturated model iff A is of an infinite transcendence degree over its
prime field.

We would remind the reader that a field is prime, if it is iso~
morphic to a finite field Z,, or to the field of rational numbers. A
field A 1is of the finite transcendence degree over F, if there is new
and ay,...,an€A, such that every element a€A is algebraic over the field
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of rational expressions F(ai,...saan), otherwise, it is of the infinite
transcendence degree.
Now, we shall prove the statement itself. We shall use the fact:

(1) The theory of algebraically closed fields T admits the elimina-
tion of quantifiers, i.e. for every formula ¢xi...xn of Ly there
is a formula ¥x:...xa of Lr without quantifiers, such that

Tt— VX1 ...Xa (@ € ¥)

Let A be an algebraically closed field of the infinite transcen-
dence degree, and let p(x) be a type over Ax, where [X|<|A|. Then p(x)
is realized by an element b in a model B, where A<B. If b is algebraic
over X, then beA. Suppose b is transcendental over X, and let C be the
least subfield of the field A which contains X. Choose an element a€A
which is transcendental over X. Such an element exists, since |X{<|A]
and |Al is equal to the transcendence degree of field A. Let G be the
algebraic closure of the field C(a) (C(a) is the field of rational ex-
pressions over CU{a}) in the field A. lLet h:G—>B be the embedding, such
that h}C is the identity function, and hacb. By (1), the embedding h is
elementary, so, the element a realizes p{x) in G, and this means that a
realizes p(x) in A, as well, since G<A.

By this example, it follows that every uncountable algebraically
closed field is saturated.

The theory of dense linearly ordered sets without end-points ad-
mits the elimination of quantifiers, and, using this fact, one can show
that saturated dense linearly ordered sets are exactly Na sets.

4.1.5. Example For a dense linearly ordered set A= {A,<) is said that
it is an N« set iff for all X,YcA, such that |XUY|<N, and X<Y (i.e. for
all xeX, all yeY, x<y), there is an aeA, such that X<a<Y. Then, a dense
linearly ordered set A is k-saturated iff A is an fx-set.

The following theorems are related to the existence and unique-
ness of saturated structure.

4.1.6. Theorem If A and B are saturated models of the same cardinal-
ity, then AzB implies A=xB.
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Proof let gA;:k, A= {aa: a<k} and B= {be: a<k}. We shall define sequ~
ences <ca: a<k> and <da: a<k> by the so-called back-and-forth argument,
so that

(1) {A,Ca)a<s= (B,da)a<e

holds for all B<k. Let us note that (1) is reduced to the already given
condition A=B for B=0. Further, we shall distinguish two cases, when
is an even and when f§ is an odd ordinal.

B is an even ordinal: Let cp be the first element in the sequence aa
which differs from all the ca, a<fi, which were constructed in the first
B steps, and define
plx)= {gx: (A,ca)a<sf= ¢{call.
Then p{x) is a type over Ax, = {ca: a<B}. Let g{x) be a type obtained
from p(x), so that each ca is substituted by a symbol da for a<B. Then
q{x} is a type over By, where Y= {da: a<B)}. As B is a saturated model,
q(x} is realized in B by an element b, so, let das=b. Then,
(A,ca)a<p= (Byda)a<s

f is an odd ordinal: The construction is similar to the case when 8 is
even, but the roles of models A and B are reversed.

Now, we can define the map h:A—>B, taking hicod—>da, a<k. It is
not difficult to see that h is an isomorphism of models A and B.

If A, i€ew, are infinite models of the cardinality less than or
equal to the continuum, then for every nonprincipal ultrafilter D over
w, the ultraproduct bA is of the cardinality continuum. Then, by The-
orem 4.1.3, and ¥o5 Theorem, we have

4.1.7. Corollary (under CH) 1 Llet A and By, iew, be infinite models
of the same language of the cardinality of at most c=2%, and let D be a
nonprincipal ultrafilter over w. Then

A B implies ThA = [bB .

2° If A and B are models of the same language of the cardinality at the
most continuum, then, for every nonprincipal ultrafilter D over w, A= B

implies ThA = kB .

By Example 4.1.4, we also have
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4.1.8. Corollary Let A and B be algebraically closed fields of the
same characteristic, the same cardinality and the infinite transcendence
degree. Then A = B.

A similar statement is true under GCH for {x-sets, namely, every
two ”lk-sets of the same cardinality are isomorphic (Hausdorff).

The following theorem asserts the existence of saturated models.

4.1.9. Theorem Let A be an infinite model of a language L, ‘Llsk Then
for every infinite cardinal k there is a k*-saturated model B such that
A<B and |B|s|Ajk.

Here k* denotes the least cardinal greater than k.

Proof The construction of model B goes as follows. First, model A is
extended to a model Ay which realizes every type over Ax for every XecA,
|X]<k. Such a model A: exists by the Compactness Theorem since the the-
ory

Th(A,a)aea U Ulp(cp): p(x) is a type over Ax, for some XcA, 1 X| <k}
is finitely consistent. By the downward ldwenheim-Skolem Theorem, we may
take that A; has the cardinality at most |Aj +!L1|, where

Li=L U {cp: p{x} is a type over Ax for some XcA, |X|sk}.

Since |{X: XgA, |X|zk}| < [A]%, we may assume that |A:| < jAlx.

We can now construct an elementary chain of models Aq, a<k*, tak-
ing Ao=A, and Aa: is a model of the cardinality <{A|* constructed from
Aq in the same way as Ay was constructed from A. If B is a limit ordin-
al, then Ap= Ug<pAe. Now, defining Bz Ua<k«Aa and using the regularity
of the cardinal k*, it can be easily seen that model B satisfies the
conditions of the theorem.

4.1.10. Corollary Let !Llsk, and assume GCH. Then every theory of L
having infinite models has a saturated model in each regular power t2k.
4.2. Property of universality of saturated models

In this section, we shall discuss some universality features of

saturated models. The first characteristic concerns a diagram property
of saturated models.
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4.2.1 Theorem Let k>®% and suppose |L|<k . A model A of a language L
is k-saturated iff the displayed diagram has the indicated completion
i.e. for all elementary embeddings u:B — A, t:B —> C there is an ele-
mentary embedding a:C —> A such that p= at.

A
B and C are models of language L,
|B| < k, |C| < k.

B ———3 C

Proof Suppose A has the diagram property, and let YcA, |Y|<k. lLet p be
a type over By, where B < A, Yg¢B, |B|<k. The existence of model By is
provided by the downward L8wenheim-Skolem Theorem. Type p is realized in
a model C, where B < C, by an element ceC, and {C{sk. Then, type p is
realized in A by ac.

A
B and C are models of language L,
|B| <k, |C|<Kk,
B<C, B<A

B ——————> C

Suppose, now, that model A is k-saturated. Without loss of gene~
rality, we may assume the situation as indicated in diagram. Let C\B=
{cs: 8<k}. A map a is defined as follows by using the back and forth
argument.

a|B= ip.

Values acs are defined inductively. Suppose

(Cyb,co)bes, ocs = (A,b,ace)ves, ocs.

let p be a type of the element cs in model (B,b,Co)ben, ccs. Then
p is a type over (A,b,aco)ves, o¢ 5, SO, since A is k-saturated, it fol-
lows that A realizes p by an element a. Then we define acs=a.

A model A is homogeneous iff every partial automorphism of A is
extendable to an automorphism of A. More details on this notion will be
given in Chapter 5.2. By the last theorem, we have the following result.
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4.2.2. Corollary Every saturated model is homogeneous.

A model A of a language L is universal for a class M of models of
language L if and only if for every model BeM of the cardinality 5|A|
there is an embedding a:B~—>A. If the embedding a is elementary, then we
say that A is an elementary universal model.

4.2.3. Theorem (J.Keisler) A model A is saturated if A is homogeneous
and elementary universal.

Proof (-—>) Suppose A is saturated. By Corollary 4.2.2, A is homogeneo-
us. We shall now prove that A is an elementary universal model for the

class of models elementary equivalent to model A. The proof is similar
to the one in Theorem 4.2.1, namely by "half" of the back and forth ar-

gument a sequence of partial isomorphisms from B into A is built, and
the union of these maps gives an isomorphism from B into A.

(e~) If A is a homogeneous and elementary universal model, then, on the
displayed diagram, we have

A
a B is an arbitrary model of L,
[Bl < |A]» |C] = |A].

B C > A
8

Map 3 exists since A is universal, and map a exists since A is
homogeneous. Therefore, model A has the diagram property on which Theo-
rem 4.2.1 reflects, and, therefore, A is a saturated model.

A model B is finitely generated, if there is Y<B, |Y|<N such
that B is the least substructure of B which contains Y. Then, we have
for w-saturated models the following variant of theorem 4.2.1.

4.2.4. Theorem A model A is w-saturated iff the displayed diagram has
a completion as indicated.
A
B is finitely generated,
Y IC] = %.
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4.2.5. Theorem Let C be a saturated model of a regular cardinality k,
|Lc| < k. Then for any consistent theory T, such that Th(C)<T, nbrsk,
there is an expansion ¢* of C to the language Lt which is a model of T.

Proof Assume k is a regular cardinal, A is a k*-saturated model of T,
and B is a reduct of A to Lc. Thus, B is a k*-saturated model as a re-
duct of a k*-saturated model. We shall now construct sequences of mo-
dels

Ay <Al < ... <Ag < ... <A,
B <B; < ... <Bg < ... <B, o<k,

such that By is a reduct of As to Le¢, |Aq|= |Bc|= k, Bo € Ag+1, and for
all o<k, Be¢ is a saturated model.

For limit ordinals a, we shall take Aa= Ugc alo; Ba= UocaBo. A mo-
del A < A is chosen arbitrarily so that |As §=k.

Now, suppose the model A, has been constructed. Then the reduct
As|Lc 1is a model of the theory ThC, therefore, by the universality of
model C, model Aa|Lc is elementary embedded into C

B
|Ao|=k, |C|=k,
f B is k*-saturated.

<
Agjl¢ ——— C

By diagram property of saturated models, this diagram is comple-
ted as indicated. Let Be= fC. Thus Bs = C, therefore, Bo is a saturated
model as well. Suppose, now, that B, has been constructed. Let Ao¢; be
such that Ae < Age1, BoSAg+1, and |Agey|=k. Observe that such a model
Aqg+ 1 exists by the Downward LBwenheim-Skolem Theorem. Then Ag.: |lc < B,
s0 Bo < Am;]Lc, i.e. Bo < Ag+1.» Let D= UgckAo. Then,
1° D|Le is a saturated model of the theory ThC, so D|Le =~ C.
2° D is a model of T.

Here we have used the regularity condition on cardinal k:
If XeD, {X} <k, then for some o<k it follows that XcB,.
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4.3. Applications of saturated models

As the first example of an application of saturated structures,
we shall consider the interpolation theorem and propositions to it rel-
ated. These theorems are of arithmetical character, i.e. one can consi-
der them statements about the combinatorial universe Vo, but in the
proofs of these assertions, we shall use very nonconstructive arguments,
such as CCH for example. However, these proofs can be transformed into
proofs of an arithmetical character.

4.3.1. Robinson Consistency Theorem Ilet T: and T: be theories of
countable languages Li and Lz, respectively. Further, suppose these the-
ories are deductively closed, and let T= TinNT: (thus, Lr € IyNlz). If T
is a complete theory and if T; and T: are consistent, then T: U T:; is
consistent, too.

Proof Let A be a saturated model of T. Then, ThA ¢ T:,T:, so by The-
orem 4.2.5, model A has expansions A*!, A*? to models of theories Ty and
T2, respectively. Thus, A* is a model of T: U Tz, where #= #,U#:.

Using the previous theorem, it is easy to deduce the interpola-
tion theorem of PR!.

4.3.2. Craig Interpolation Theorem Let ¢ and ¥ be sentences of PRi. If
b= ¢ — y, then there exists a sentence 8, such that for the language
L(8) of 8, we have L(8) € L(¢)nL(¥), =9 > 6 , and =6 — v

Proof  Suppose f— ¢ —> ¥ and let Li= L{¢), Lz= L{y). Further, define
Z= (PeSent(Lynle ): |- @ —» 8}. Then,

(1) There is 8€X such that f— 8 > v.

Suppose the contrary. Then fU{W} is a consistent theory in l., so, this
theory has a model A. Let T:= ThA. Further, let

T= Tz 0 Sent(LiNLz), i.e. T= Th(A|(L:iNlz)).

Thus, T is complete. Now, define Ti= TU{¢}. Then T: is a consist-
ent theory. If not, then there are senetences ogi,...,on€T such that
9F= o1 A ... Aon). But Wo: A ... Aon) is a sentence in Lifle and
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belongs to £, hence it holds in A. However, this is a contradiction,
since each ai is true in A.

Further, we see that T= TiNT:;. By the Robinson Consistency The-
orem, there is a model of T1 U T: which is a model of ¢ and W too, but
this is a contradiction, since }= Q —-> ¢,

Let P be a new n-ary relation symbol which does not belong to a
language L, and let T be a theory of the language LU{P}. In this case,
we shall write T(P) instead of T. Further, we shall say that P is expli-
citly definable in L by T(P) iff there is a formula ¢xixz...xa of L,
such that

T(P)|== VXt oo oXn (PX1+00Xn € @X)o0eXn)e
A necessary condition for T(P) to define P explicitly is:

(1) For any model A of language L there is at most one relation R of
length n, and with domain A such that the expansion (A,R) is a
model of T(P).
Really, if (A,R) and (A,S) are models of T(P), then for all aj;,...,8.€A
we have
Rai...an iff Ap= ¢lai,...,8a],
Sai...apn 1Iff Af- olat,...,an],

and from these follows that R=S. Padoa was the first to observe this
fact, and it led him to the conclusion

(2) If there is a model A with two different interpretations R and S
of a relation symbol P, such that (A,R) and (A,S) are models of
T{P), then T{P) does not define P explicitly.

Fact (2) is known as the Padoa method, aml it is often used in
order to show that a certain set of axioms T(P) is not sufficient +to
define a predicate P explicitly. It is interesting that the necessary
condition (1) for T(P) to define P explicitly is also sufficient, as the
following theorem says.

4.3.3. Theorem (E.W.Beth) A theory T(P) defines P explicitly if and

only if

(1) For every model A of language L, there exists at most one rela-
tion R over A, such that (A,R)fs T(P}.
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Proof Obviously, we need to show only the sufficiency of condition
(1). Thus, let Q be a relation symbol of length n which is not in LU{P],
and let T(Q) be the appropriate theory of the language LU{Q}, i.e. every
sentence ¢(Q) of T(Q) is obtained from ¢(P} of T(P) by replacing P by Q.
Then, condition (1) implies

T(P),T(Q)'— Vxs oo oXn (PX1¢0eXn € QX1 .44Xn ).
By the Compactness Theorem there are a finite conjunction ¥(P) of sen-
tences of T(P) and a finite conjunction 6(Q) of sentences of T(Q), such
that

'J’(p)ye(Q)’- VXt oo oXn{PX1c0e:Xn € QX1 +++%Xn)e
Replacing the variables by new constant symbols ci,...,cn, we have

Y(P),8(Q) = Pc1...Ca > QC1.::Cn .
Hence, we obtain

V(P) A Por...onfm= 8(Q) — QC1...Cn .
Applying the Craig Interpolation Theorem, we can find an interpolant
aC1 +++Cn, Where axi...xa is a formula of L so that

Y(P} A Pc;...cni— ACL +«+Cn

dC),.uCn"‘ 8{Q) > QC1.++Cn.
Replacing Q by P in the last line, we have

‘/I(P),- PcivesCn = a@C1.44Cn

B(P)l- aCi«e«sCn = PC1.+..Cn

¥(P}, G(P)'- Pcip..iCn &> aC1..Cn

V(P), B(P)f= ¥x1...Xn (PX) «.Xn € aX1...%n0),

T(P)'—- VX1 oo oXn (PX1 oo oeXn € aX1.0.Xn)s

We have supposed in the proof of the Robinson Consistency Theorem
that for sufficiently large cardinals there are saturated models. How-
ever, one cannot assert the existence of these objects without addition-
al set-theoretical assumptions, such as GCH. On the other hand, when one
discusses the syntactical properties of theories, that is, those which
can be stated in the combinatorial universe Vw, then the guestion
naturally arises whether the proofs are correct, i.e. is it necessary to
assume such a strong set-theoretical hypothesis. The scope of model
theory would be more narrow if it were not be possible to eliminate the
strong set-theoretical hypothesis from the proofs of syntactical
properties such as the completeness, the decidability, and the elimi-
nation of quantifiers of theories are. But, fortunately, these elimi-

nations are possible.
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Let ¢ be a formula of the language of the set theory, i.e. of
{e}, and let ¢* be a formula obtained from ¢ by relativising all the
quantifiers in ¢ to w. This means that all occurrences of quantifiers
¥x, 3x in ¢ are replaced by Vxeow, Ixew. A set-theoretical statement
which can be expressed in the form ¢% is called an arithmetical state-
ment. For example, if a theory T has a recursive set of axioms, then the
statement Y= "the theory T has a model"” is not arithmetical, but by the
completeness theorem we have ZFC|- ¢ <> Conr. That a first-order
theory T is formally consistent is often proved by exhibiting a model of
T, therefore, in such a case we have ZFC[—— Conr. But Conr is an
arithmetical statement, so the question is whether AC is a surplus, that
is whether we may assert ZF}— Conr. This and similar questions are
fully resolved by the Levy-Schoenfield theorem. Here we shall give only
a fragmnet of this theorem.

4.3.4. Absoclutness Theorem {Levy-Schoenfield) let ¢ be an arithmetical
statement such that ZF+9|-— ¢, where 8 is one of the hypothesis AC, BPI
{the theorem on the existence of ultrafilters), GCH, V=L (the construct-
ability axiom). Then, ZF}— @.

As a consequence of this theorem, we have that all three previous
theorems (Robinson’s, Craig’s and Beth’s) are valid for arithmetical
theories already in ZF. However, another approach is possible. Namely,
instead of using arbitrary saturated structures, we may employ their re-
finements-recursively saturated models.

4.3.5. Definition A model A 1is recursively saturated iff for every
finite subset X¢A, every recursive set of formulas I{x) of Ix which is
finitely satisfiable in Ax, is satisfiable in Ax.

Since we have bounded ourselves on recursive sets of formulas,
we are now able to prove the next theorem on the existence of recursi-
vely saturated models.

4.3.6. Theorem Every consistent theory T of a countable language L has a
finite or countable recursively saturated model.

Proof Let Ao be a finite or countable model of T. then, there are at
most countably many finite subsets X¢Ags, and for every X there are only
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countably many recursive sets Z{x) of formulas of language lx. Therefo-
re, by the Compactness Theorem, there is a countable elementary exten-
sion Ay of As, such that every recursive I(x) which is finitely satisfi-
able in Apx is satisfiable in Ajx. Repeating this construction countably
many times, we obtain an elementary chain As < At < A2 < ... in which
for every n, An+: is related to Aa as Ay is to Ao, Then, A= UhAs is a
recursively saturated model of T.

Many properties of saturated models are also true for recursively
saturated models. For example, it is easy to see that every recursively
saturated model A is also w-homogeneous, i.e. every finite partial iso-
morphism can be extended to an automorphism of A. Theorem 4.1.6. does
not hold for recursively saturated models, but there is a modification
of it. By a model-theoretic pair of models A and B, we mean a model C of
the language L;Ule, such that A=B, C|L1 =A and C[Lz:B. We then use the
notation C= {A,B).

4,3.7. Theorem 1ILet (A,B) be a countable recursively saturated model-
theoretic pair, where A and B are models of a language L, such that
A = B. Then A = B,

Proof The construction of an isomorphism between models A and B is al-
so by the back and forth argument. We can build enumarations

Az {a0,a1,...}, B= (bo,b1,...}
realizing recursive types of the forms

[={gas ... axe>¢by .. .bu-1x: @eFor.},

I={¢as ...ak-1x¢>gho .. . by @eFor,}.

If k is even we choose ax, and for k odd we take byx. Then we
shall have

(Aya0;a1,...)  (B,bo,b1,...},
and therefore A = B.

Here is a new proof of the Robinson Consistency Theorem, but,
now, using recursively saturated models. We shall suppose that theories
T: and T; are theories of countable languages L, and le. By the Ldwen-
heim~Skolem theorem and Theorem 4.3.6, we can find the finite or count-
able recursively saturated pair (A,B), where A= T: and Bf= T2. Reducts
As and By to the language lo= Lifil; of respectively models A and B , are
models of the theory To= TiNT:z, so As £ B since Ty is complete.Further,
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(Ao ,Bo) is also recursively saturated , so by Theorem 4.3.7, it follows
that Ay % Bo. This isomorphism gives an expansion of As to a model A; of
language L; which is a model of theory T, as well. Changing the in-
terpretation of symbols from L;\L: in model A, we obtain a model of
Ts VT2,

As the second example of the use of recursively saturated models,
we shall prove a preservation theorem for homomorphisms. We shall say
that a theory T is preserved under homomorphic images, if for every mo-
del A of T and every homomorphism f:A—>B, f(A) is a model of T. In the
following we need the notion of positive sentence. A sentence ¢ is cal-

led positive iff it is constructed from atomic formulas using only
logical symbols V, 3, A, v.

4.3.8. Theorem (Lyndon) A theory T is preserved under homomorphic ima-
ges iff T is equivalent to a set of positive sentences.

Proof That the positive sentences are preserved under homomorphic ima-
ges is proved by induction on the complexity of formulas. Suppose, now,
that T is preserved under homomorphic images, and let Tp be the set of
all the positive consequences of theory T. Let A be a model of Tp. Then,
there is a model B of T such that every positive sentence which is true
in B, also holds in A. Choose a recursively saturated pair (A' ,B') such
that A A and B = B . By the back and forth argument, we find that A
is a homomorphic image of B, so A’ |= T. Therefore, theory Tr is
equivalent to T.

4.4. Omitting a type

This construction may be considered as a refinement of the method
employed in the proof of the completeness theorem. The notion of type
also plays a main role in this discussion. In this section, we shall
consider countable languages only. So let L be a countable language and
A a model of L. The model A omits a set of formulas Ixi...xa of L iff
there is no n-tuple (a;,...,aan)€A" such that for all ¢eZ, Al ¢mi...aa.
In other words, the (possible infinite) conjunction Aeezfxi...xa does
not hold in A for any values of variables xj1,...,Xn in A.
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Now, let T be a consistent theory T of language L. According to
the terminology introduced in section 4.1, a type of T is every set of
formulas Ix:...%xs consisteni with T. We say that the theory T realizes
IX1 .. .xXn locally, if there is a formula ¢x;...xa of L such that for all
€T, T}——- Vxi...xn {9 —» o), and ¢ is consistent with T (i.e. there is a
model A of T and at,...,80€A" such that Ap= ¢fai,...,an]). Therefore, T
realizes Ix;...xs by the formula ¢x;...xa, if every model of T, every n-
tuple (a4,...,8n}, such that At— ¢{a1,...,821, this n-tuple realizes
ZX1veeXn o

A type Zx1...xn of T is locally amitted by T iff T does not
locally realize Ix;...Xs. Therefore, T locally omits Ix;...xa iff for
every formula ¢ of L consistent with T, there is o€l such that ¢ A o is
consistent with T.

It is easy to find some algebraic and topological equivalents to
the notions "locally realized” and "locally omitted” in the Lindenbaum
algebra and the Stone space of theory T. First, let us introduce a ref-
inement of a Lindenbaum algebra of a theory. Let &, be the set of all
the formulas of L with only free variables xi,...,x; and consider the
relation of equivalence ~ over &x defined by

P~ ¥ iff T 9 «> vy, ¢,¥eda.

Let Bo (T} be the set of all the equivalence classes of this equ~
ivalence relation, i.e. Ba(T)= {[¢]: ¢€&.}, where [¢] denotes the class
of equivalence of a formula ¢x;...xn of L. Then, as in the case of Lin-
denbaum algebra of theories, see Example 2.3.3, in natural way we can
supply this set with Boolean operations -,+,’ ,0,1 so that

Bp= (Ba(T),+,-,",0,1)
becomes a Boolean algebra. Let us denote by Sa{T)} the Stone space of
this Boolean algebra. Then the points of this space correspond to the
naximal sets of formulas in variables x;,...xa consistent with T, that
is, the so-called maximal n-types of T.

If © € #nX1...%Xn, let Z= {[¢]): ¢eI), and £*= noezlolt, i.e.

I*= {peSy(T): £ € pl.
Now, we can state the mention algebraic and topological equivalents.
First observe that every maximal type p in variables xi,...,X» determi-
nes a unique ultrafilter p= {{¢l: @ep} in Ba{T) i.e. a point in S (T).
Therefore, we can speak of principal or nonprincipal types, depending on
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whether p is a principal or nonprincipal ultrafilter of Bu(T). These
correspond in Sa{T) to the isolated and nonisolated points, res-
pectively.

4.4.1, Proposition Let L be a first-order language and let T € $u be a
type of a theory of L. then,

1° £ is locally realized in T iff L is contained in & principal filter
of B (T).

2° T is locally omitted by T iff I* is a nowhere dense set in Ba*(T).
3° If Zai, sZnz, «.. Bre sets of formulas of T, in variables xj,...,Xni
respectively, which are locally omitted by T, then UiL*n; is a set of
the first category in Bp* (T).

Proof 1° I is locally realized by T iff there is a formula ¢x;3...Xn
such that [¢]>0 and for all o€X {g] 2[¢]l, i.e. if and only if I is con-
tained in filter F of Ba{T) generated by {[¢].

2° By 1°, T is locally realized iff there is [¢]l#¢ such that [¢l* < I*,
i.e. there is a basic open set contained in I*. Thus, £ is locally
realized iff Intf*#s. As I*z= Noe:[o]l*, £* is closed, so the statement
follows.

3° This is an immediate consequence of 1°.

Now, we shall discuss the connection between locally omitted and
omitted. First, we shall see that we may concentrate on rich theories.
Namely, by Lemma 2.4.4 {the Witness Lemma)}, every theory T has a conser-
vative rich extension S. In this case, we have:

4.4.2. lemma let T be a theory of L and S it’s conservative rich ex-
tension to LUC, where C is the set of witnesses for 8. If T locally om-
its £x3...Xs, then S locally omits IX;...xn, as well.

Proof Assume, on the contrary, that locally S realizes Ix)...Xn, i.e.
that there is a formula ¢x;...xnC1...Cw, where ci1,...,Ca€C, consistent
with S such that

St ¥x(¢gxci...ce —> ox) for all o€Ixi...Xn.

So,
’I‘}— Byt YoVl oo Xn {PX1 v s o Xn V1o Vm —> OXieeoXn),
Th VxieooXa 3yt oo Vm{@X oo oXnY1 e ¥ —> OXi oo oXn )y
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T|—— V1 oo o Xa (VF1 e e YmPX1 o0 eXnY1 oo s¥Vm —> OX1L«oeXn ),y
thus, locally T realizes IXi...Xn DBY V¥1i .o Y@Kt oo e XnY1 oo Vo

If T is a complete theory and A is a model of T which omits a
type IXi...Xa, then there is no formula ¢ such that T realizes I locally
by ¢, since otherwise we would have T}-— Ix¢, and so A would realize I.
Thus, T omits I locally in this case. The omitting types theorem is a
converse of this fact.

4,4.3 Omitting Types Theorem (Ehrenfeucht, Ryll-Nardzewski). Let T be a
consistent theory in a countable language L, and let Zxi...xn € &n be a
set of formulas of L. If T omits £ locally, then T has a countable model
which omits I.

Proof By Lemma 4.4.2, we can suppose that T is a rich theory with a

countable set of witnesses C= {co,C1,...}. Also, we shall simplify the

notation by assuming £ € &, i.e. that £= I(x). Suppose T omits %I(x) lo-

cally. The set of formulas of LUC is countable, so, let % ,¢1,... be the

sequence of all the sentences of LUC. We shall construct a sequence
T=To €Tt €Tz € ...

of theories such that

1° Each Te is a consistent, finite extension of T in LUC.

2° Either ¢onw€Tan+1 Or Wu€Tm+1.

3® There is a formula o(x)eZ{x), such that W(cn)€Te+:.

We can construct Tme+:1, assuming Ta is given. Suppose

Tuz TV (‘f”lv"-)\ﬂn}a
and let y= Y1 A VY2 A ... A Yn. Further, suppose co,...,ck are all the
constants from C occuring in ¥. Let yxo...xx be a formula of L, obtained
from yco...ck by replacing ¢ by xi, 05isk, where x; are variables which
do not occur in Yco...ck. Then 8= yYxo...xx is consistent with T, so, by
assumption, there is 0€f such that 8 A 7o is consistent with T. Then, we
can put “Wce in Tw+:, and this assures 3°. To provide 2°, we can put ¢m
in Twe1y if @u is consistent with Ta U {"gcm}, otherwise, we can put
¥ in Tw+r. Hence, Tm+: is a consistent finite extension of Twm, and so
also of T in LuUC.

Now, define T"= UaTan. By 1° T* is a consistent theory, and, by 2°
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complete as well. Let A be a canonical model of T. Then, the universe of
A consists of interpretations of constant symbols from C, and by 3°, A
omils I(x). Since A is a model of T, the theorem follows.

For complete types, we have the following consequence.

4.4.4 Corollary The complete n-type p is omitted by T iff p is a non-
principal ultrafilter of Ba{T).

There is a simple generalization of the Omitting types theorem
which says when a model omits countably many types. We shall refer to
this theorem as to the Omitting types theorem as well.

Omitting types theorem for countably many types Let T be a consistent
theory of a countable language L, and assume that Za{X1s...Xkn) is a set
of formulas in kn variables. If T omits locally each Z., then T has a
countable model which omits each In.

Now, we shall turn to some applications of the Omitting type the-~
orem. The first application will be in the study of the so-called ele-
mentary end-extensions of models. Here we shall present a rather general
case which covers not only specific instances of the first-order logic,
but will go beyond it, as we shall see in logics with additional quanti-
fiers. So, let us introduce first some notation.

Let R be a binary relation symbol of a countable language L and A
a countable model for L. Let us define RaA= {xeA: A'— Rxa} for every
element a€A., We shall write Ra instead of RaA, if there is no ambiguity.
A model B is an elementary R-end-extension of A if and only if the fol-
lowing hold
1° B is a proper elementary extension of A i.e. A<B and A # B.
2° For every a€A, Ra*z Ra®,

We write A<esB iff B is an elementary R~end-extension of A. Our
aim is to give sufficient conditions for R under which A has an elemen-
tary R-end-extension.

4.4.5. Definition A binary relation R is regular ina model A of a
language L iff the following hold in A:
1° For every a€A, Ra#A.
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2° For all a,beA, there is ce€A such that a,beRc.

In the formulation of the third condition, we shall use the fol-
lowing notation: For a formula ¢xy of L with two free variables x,y and
a€A, let gaA= (beA: A{— ¢fa,bl}.
3° Let aeA. If for every ceR, there is beA such that @A € Ry, then
there is deA such that Uc eraa® <€ Ra.

The above conditions are the first order properties of R, since R
is regular in A iff the following sentences hold in A:

S1. Y3y Ryx.

S2. WxVy3z{(Rxz A Ryz).
In the formulation of the third condition, we shall use the fol-

lowing abbreviations: (Vxery)y and (Ixeéry)y will stand for ¥x(Rxy —> ¢)
and Ix(Rxy A ¢), respectively, where ¢ is a formula of L.
S3. Wl{¥xexv)IyVulgxu — Ruy)) —> Fy(vxerv)Vulexu — Ruy)]

So, sentence S3 states that the bounded quantifier (Vxerv) and
the existential quantifier Iy commute in an appropriate way. Here are

some examples of regular relations:

4.4,6. Bxample If k is a regular cardinal and < is the natural order-
ing on k, then < is regular in A=(k,<,...). Observe that if B=(B,<?,...)
is an elementary submodel of A, then <®B is regular in B.

4.4,7. Example If M= (M,<,...) is a model of Peano arithmetic, then <
is a regular relation in M. This is true since sentence S3 can be re-
stated as VYwyv, where yv is

(Vx<v)IyVu(egxu —» udy) —» Iy (¥x<viVu(exu —»udy).
It is easy to prove by induction that ¥wyv is a theorem of Peano arith-
metic.

There are other regular relations in models of Peano arithmetic:
1° The divisibility relation: x|y iff & y= zx.
2° The relation 8 defined by: x8y iff "x occurs in the binary expansion
of y", i.e. if y= Zign2*, x1<...<xn, then for some i<n, x=x% .

4.4.8. Example In any model M= (M,R) of the ZF-set theory, where R is
an interpretation of the membership relation €, R is a regular relation.
In fact, in any model M of the Axiom of pairs, Axiom of regularity (or
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Vx x¢x), Axiom of union and Collection scheme, R is a regular relation.
for example, if M is a model of Peano arithmetic and 8 is the relation
defined in the previous example, then (M,6) is a model of ZF-e+w, where
o denotes the axiom of infinity; and, thus, 9 is regular in (M,0).

4.4.9. Example If r is the rank-function in a model M of Z2ZF, then
RMxy, defined by rx<{ry, is a regular relation.

4.4.10. Example If k is a strongly inaccessible cardinal, then, the
relation of inclusion ¢ is regular in (Sk(k),<,...), where
Sk (X)= (YeX: 'Y| < k}.

Since the regularity of a binary relation is a first order pro-
perty, we have: If A = B and R is regular in A, then R is regular in B,
too. Now we are going to describe the main property of regular relations
in respect to end-extensions. In the following, we shall assume that R
is regular in a model A.

4.,4.11. lemma 1° U;eaRaz= A.

2° For every aj,...,an€A, new, there is beB, such that
Ral U ... URen SRb
and, hence, Ra: VU ... U Ran# A.

Proof 1° This follows since R satisfies S2.

2° It is sufficient to prove that for any a,beA there is ce€A, such that
Ra URpb € Re, since we can obtain the general case easily by induction.
Let a,beA. By S2, there is de€A such that a,beRg. Let ¢xy be Ryx. As for
every x€Rc, for ¢xA=Rx, by S3 there is ce€A, such that Urera € Re. Fur-
ther, a,beRa, so Ra U Ry € Re.

Assume A has an elementary R-end extension. Then, by Lemma 4.4.11
and the compactness theorem the following theory is consistent:
=Th(A,a)aes U {"Rca: a€A}
where ¢ is a new constant symbol.

4.4.12. Lemma Let yx be a formula with free variable x of the language
La= LU{a: a€A}, and ¢ is a new constant symbol. Then yc is inconsistent
with T iff for some a€A, (deA: Af= y[d]) € Ra, i.e. A= ¥x{yx —> Rxa).
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Proof (—») Assume Yc is inconsistent with T. Then Tf— e, hence, for
some 8&1,...a0€A, Th(A,a)a "I_ WRear A ... A TRcag — Wc. Therefore,
A'— Yy(yy — Ryas V ... V Ryaa). By Lemma 4.4.11, there is beA, such
that Rar U ... U Raa € Ro. Then {deA: Ap= y[d]} € Rs.
(<) Assume y(c) is consistent with T, and for some a€A,

AI— Vx(yx — Rxa).
Let B be a model of TU(yc), and cB=co. Then, Bj= y[col. Since A <B
(i.e. A is an elementary submodel of B; we can identify a® with a for
every a€A), it follows that B}- Vy(yy — Rya). Hence, B'— Rea, and this
is a contradiction to B‘-= “Rca (we recall that “RcaeT).

Remark that A <gs B if and only if A < B, and there are no a€A
and beB, such that beR.®, and bfa’ for all a’ €RaA. Hence A <r B iff
A < B and B omits Zaz= {Rxa} U {x#a’: a’€R.) for every a€A.

4.4.13. Lemma If T= Th(A,a)aesa U {Rca: a€A), then T omits Za locally
for every a€A.

Proof Let ¢gxc be consistent with T. Assume there is no o€fa such that
Ix(yxc A 06} is consistent with T. Hence,
(1) 3x(¢xc A "Rxa) is inconsistent with T, so by Lemma 4.4.13, for an
element by,

{deA: Apm Ix(gxd A Rxa)} € Rv:.
(2) Let eeRa. then, Ix(yxc A x=e) is inconsistent with T, i.e. ¢ec is
inconsistent with T, so by Lemma 4.4.12, there is beA, such that
{deA: A|== wed} € Rv. Therefore, we have proved that for every ee€Ra,
there is beA, such that ge* € Ry, hence, by the regularity of R, there
is bzeA, such that Ue ena {deA: Ap= ged] < Rn2.

Let beA be such that Rbiy U Rbz € Rp. Then:

{deA:Al= 3x(¢xd A Rxa}} U {d€A:Ap= 3x(¢xd A Rxa)) € Ro,
i.e. (dEA:Ar= Ixyxd) € Ro. Thus, by Lemma 4.4.12, the sentence 3xgxc is
inconsistent with T, and this is a contradiction.

Now, we shall state the main theorem of this section.
4.4.14. Theorem Let A be a countable model of a countable language L

and R a regular relation in A. Then A has an elementary countable R-end
extension.
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Proof By Lemma 4.4.13, the theory T=Th(A,a)aea UV {“Rca: a€A} omits
fax= {Rxa] U {x#b: beRa} locally for every aeA. Thus by the Omitting
types theorem, there is a model B of T which omits each £a. Then, model
B is an elementary R-end extension, if we identify a® with a; in fact,
the mapping a—>»a® is an elementary embedding of A into B.

We infer the following corollary as an immediate consequence of
the above theorem. It is obtained by the repeated use of the theorem.

4.4.15. Corollary If R is a regular relation in a countable model A,
then there is a model B such that A <gr B and {B{: © .

Proof In view of Theorem 4.4.14, we can construct an elementary chain
of countable models

A= A <A < .i. $Ag < .u. , alon,
s0 that Ag %r Aass, {Ad: @ . If yis a limit ordinal, then we take
Ap= Ua pAq, and it is easy to check that for a{y, A« <er Aux. Then, the
required model B is Va<w, Aa.

Now, we are going to consider some examples which illustrate The-
orem 4.4.14.

4.4.16. Example 1° Every countable model N of Peano arithmetic has an
elementary end extension M in respect to standard ordering. By Corollary
4.4.15, it follows that M may be chosen to be uncountable. If M is con-
structed as in this corollary, then M has an additional property:

Every initial segment is countable.

Every linear ordering with this property is called an w -like ordering;
an archetype of such an ordering is @ itself. In view of the above dis-
cussion, every countable model has an uncountable w;-elementary end-ex-~
tension. We shall see later that there are 2%+ such extensions for every
countable model of PA.

The statement that every countable model of PA has an elementary
end-extension is part of MacDowel-Specker theorem, which states that
every model of Peano arithmetic has an elementary <-end extension of the
same cardinality.

2° (Keisler, Morley) Every countable model of ZF set theory, and it's
variants as well, has an elementary €~end extension.
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Now, we shall see that the assumption of property S3 (the regu-
larity property} is crucial for a linear ordered model to have an ele-
mentary end-extension. Namely, we have the following assertion.

4.4.17. Proposition The countable linearly ordered model A= (A,<A,...)
has an elementary <-end extension if and only if A satisfies conditions
S1 and 83.

Proof The if-part follows from Theorem 4.4.14. So let B= (B,<®,...} be
an elementary <-end extension of A. Then, for every a€A, a<Bb for beB\A.
Therefore, B|= Jy(x<y)[al, hence A= VxIy(x<y), i.e. model A satisfies
S1. Property S3 is checked similarly.

We are going to give an additional application of Theorem 4.4.14.
We shall prove a theorem from series of the so-called two-cardinal the-
orems, These theorems are related to theories T of language L which con-
tain a unary predicate symbol P. Let us denote a model A of such a the-
ory by A= (A,V,...), where V= PA, We see that V may be considered a
"second"” domain or subdomain of A. The cardinal type of A is the pair
(|A| , [V] ). For example, if the set of natural numbers N is distinguished
in the field of real numbers, say R= (R,N,+,+,0,1), then the cardinal
type of R is (2%,%). The main question which is associated with such
theories is what are the cardinal types of models of theory T? For ex-
ample, it is easy to see (by the L8wenheim-Skolem theorem) that if a
theory has a model of the cardinal type (k,8), 0<k, then T admits a mo-
del of the cardinal type (k' ,B8) for any 0<k’ <k. The following theorem is
called Keisler's two cardinal theorem.

4.4.18. Theorem (Keisler) Let A= (A,V,...) be a model of a countable
language L such that ws}VIQA} . Then, there are models B= (B,W,...) and
C={C,W,...), such that B < A, |B[= R, B <Cand |C]= M.

Proof By the downward L8wenhim~Skolem theorem, we can assume that
|A{= |V]*. Let us consider the expansion (A,<}, where < is the ordering
of the cardinal |A| and let (B,<®P) < (A,<), where |B|= X . We have re-
marked already that <B is still regular. Since V ¢ A, |VI<|A| and |A| is
a regular cardinal, there is a€A, such that V ¢ {xe€A: x<a}. Hence, there
is beB, such that for W= VB, W ¢ {x€B: x<{Bb}. Since <® is a regular re-
lation, by Corollary 4.4.15, it follows that there is a model (C,<¢)
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which 1is an elementary <-end extension of (B,<®), such that {C{: R .
Since W ¢ {xeB: x<®b}, it follows that V¢ ¢ {xeB x<Bb} and, hence, VC=zW.

4.4.19. Corollary Assume a theory T has a model of the type (k,8),
6<k. Then, T has a model of the type (Wi ,MN).

Exercises

4.1. Let F= (F,+,+,%,0,1) be an ordered field. Show that F is a satur-
ated model iff (F,<) is an ¥ o-set.

4.2, let M= (M,+,+,’,%5,0) be a nonstandard model of Peano arithmetic.
Prove that (M,+,’ ,£,0) is recursively saturated.

4.3, Assume M= (M,+,',%,0) is a nonstandard, recursively saturated mo-
del of Thiw,+,’ ,%<,0). Show that M has an expansion to a model of Peano
arithmetic.

4.4, Show that every countable atomless Boolean algebra is a saturated
model.

4.5. Suppose T is a complete theory of a countable language 1.. Prove:
1° If T has no countable saturated model, then T has 2% nonisomorphic
countable models.

2° If T has a countable elementary universal model, then T has a count-
able saturated model.

4.6. Let B be an atomless Boolean algebra and k an infinite cardinal
number. Show that the following are equivalent:
1° B is a k-saturated model.
2° B satisfies the following property:
Hy For all nonempty subsets X,Y<B such that
X is directed upwards, i.e. x,yeX implies x+yeX,
Y is directed downwards, i.e. x,yeY implies x-.ye€Y,
X<Y i.e. for all xe€X, y€Y, we have x<y,
there is an element aeB such that for all xeX, yeY, x<a<y.
3" B is k-injective in the class of all Boolean algebras i.e. for any
Boolean algebras B and C such that |B| <k, 'C|sk, and any embeddings



124 Realizing and omitting types
f:B—> A, g:B —> C there is an embedding h:C —> A such that f=hg.

4.7. Assume a filter F over o has the following, so called Cantor sepa-
ration property: Foe every decreasing chain ... <az<ai1<as in Boolean
algebra P(w)/F there is beP(w)}/F such that O0<b< ... <@az<a1<as. If
P(w)/F is an atomless Boolean algebra, show that P(w)/F is a saturated
model that P(w) is a saturated

4.8. If Fin is a filter of cofinite subsets of ® then the reduced
product Tk A /F is w; ~saturated.

4.9. If Fo= {acw: Sneal/(n+l)<eo}, show that Fp is a filter over w, and
P(w)/F is a saturated model.

4.10. If F is one of the filters from the previous two problems, show,
assuming CH, that for any family of Boolean algebras <B ! i€w> such that
for all i€w |Bi |4, B /F = Plw)/F.

4.11. Let I be an ideal of a Boclean algebra P(w). We say that I has the
property (M) if for any sequence <a; : i€w> such that a €P{w)\I for all i
there is there is a sequence <bj : i€w> such that Iy Sa; for all i and
U{bi : i€en}eP(w)\I. Further, assume P(w)/I is an atomless Boolean alge-
bra. Show that P{w)}/I is an w; -saturated model iff I has property (M).

4,12, A topological space X is called a Parovicenko space iff it satis-
fies:

1° X is a Stone space of weight 2% without isolated points.

2° Every two disjoint open Fos sets have disjoint closures.

3" Every nonempty G§ set in X has a nonempty interior.

Show:

{1} A topological space X is a Parovicenko space iff it 1is a Stone
space of an N -saturated atomless Boolean algebra of cardinality 2%.

{(2) If CH is assumed, then every tiwo Parovicenko spaces are home-
omorphic. Particularly, every Parovicenko space is homeomorphic to the
space P(w)/Fin.

4.13. A P-point of a topological space X is an element aeX with the
property: If S is any countable family of neighborhoods of a then NS is
a neighborhood of a, too. let w* be the Stone space of P(w)/Fin. Show
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1° If p is an ultrafilter over «, then p is a P-point of ot iff
{P(w},p)})/Fin is an R -saturated model (p is considered as an unary
relation in {Ple),p)).

2° Llet p and g be P-points of «*. Assuming CH, show that there is an
autchomeomorphism ¢ of «w* such that a(p)=q.

4.14. If M=(M,e™) is a countable model of ZF set theory, then M has a
proper elementary end extension, i.e. there is a model K= (K,€F) such
that M < K, M#K, and for all aeM, beKm beMa implies beM.



5. ABSTRACT MODEL THEORY

The Compactness theorem and the Lbwenheim~Skolem theorem are fun-
damental properties of the first-order predicate calculus. In fact,
these two properties characterize PR! completely, as the Lindstrém the-
orem shows. To state the theorem itself, we need some general notions of
a logic.

The Lindstr8m theorem is part of the so-called soft or abstract
model theory. The most important task of the abstract model theory is,
perhaps the discovering and investigation of useful extensions of the
first-order predicate calculus. A large amount of effort has been spent
on the study of logics which enhance PR! in some way. It appears that
some of the logics have proved profitable, while others have been aban-
doned for obscurity. We shall see that a logic can be understood as an
operation which assigns to each set L of symbols a syntax and semantics,
s0 that elementary syntactical operations are performable, on one side,
and isomorphic structures satisfy the same senetences, on the other
side.

5.1. Abstract logics
By an abstract logic, we shall consider a class pair (L1¥,p=*)

where 1* is called a class of sentences, and }—‘ a satisfaction re-
lation. We shall adopt the following axioms for abstract logics.
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Occurrence axiom For each formula ¢ of 1#, there is a finite language
L{¢),which is called the set of symbols that occur in ¢. Further, A'—‘ @
is a relation between sentences ¢ and models A of a language L which
contains L(g).

Expansion axiom If AF* ¥ and B is an expansion of model A to a larger
language, then B[sr‘go.

Isomorphism axiom If A = B and Ap* ¢, then Bl=* ¢.

Closure axiam Class L¥ contains all the atomic sentences, and it is
closed under logical connectives A, v, 1. Also, the usual rules for the
satisfaction class hold in the case of atomic formulas and logical con-
nectives.

Quantifier axiom For every constant symbol c€L(g), there are sentences
We@ and Jvey with the set of symbols L{¢)\{c}, such that

A|=-‘ Ve iff for all aeA, (A,a)]—' @,

A}=-’ 3vep iff there is aeA, (A,a)p=* 9.

Relativisation axiom For every sentence ¢ of language 1* and a rela-
tion Rvb;...bx, such that R,b,...,bxgL{g), there is a new sentence ¢*,
read ¢ relativised Rvby...bk, such that whenever there is a submodel B
of A with the domain B= {a: A}= Rab;...bx}, then

(A\R,br, .00y} =t @* iff Bp=* g.

We shall list several important examples of abstract logics. Each
example is an extension of the first order predicate calculus, and it is
usually obtained by adding one or more formation rules for syntactically
well-defined formulas of the logic. Then, 1* will be the class of sen-
tences formed under these rules, but having only finitely many relation
symbols. All these logics can be divided into two large groups. In the
first, the ranges of quantifiers are changed, or new quantifiers are ad-
ded. In the second group, the formation rules allow the construction of
formulas of the infinite size. The most general cases arises when both
kinds of formation rules are allowed, i.e. adding new quantifiers and
building formulas of infinite size.

5.1.1. Example The logic PR! or Lww, the usual first-order predicate
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calculus. The syntax and semantics have been explained in detail in the
previous sections.

5.1.2. Example The logic Lmyw - logic with countable conjunctions and
disjunctions.

We shall add a new formation rule to PR!: If S is a countable set
of formulas, then AS and VS are formulas. Logical sings of PR! are in-
terpreted in usual way, with additions:

If A is a structure of a language L, and S a countable set of
formulas of L, then

"Al=* AS means that A=t ¢, for all ¢eS,

A}=_=’ v S means that Ap=* ¢, for some geS.

This logic has a greater power than Lww. For example, the class
of all cyclic groups is axiomatizable in this logic; we shall see that a
group G is cyclic if and only if G satisfies ¢, where

¢= IVy{y=1 v y=x2 v y=x"2 v y=x3 v y=x"3 v ...), 1i.e.

¢= KVyviy=x": neZ}.

It is easy to see that the class of finite models of a given
first-order theory is also axiomatizable in Lw;w. This example show that
the logic L w, as well as its extensions, does not satisfy the Compact-
ness theorem.

5.1.3. Example The logic Lew - logic with infinite conjunctions and
disjunctions.

Its syntax is similar to the syntax of Lmw, except that it does
not require S to be countable, while the semantics is defined exactly
like that of Lwo.

There is an obvious refinement of the previous two examples, i.e.
it is possible to define logic Lkxw, where k is an infinite cardinal num-
ber. The new formation rule is then: if p<k is a cardinal number, and S
a set of formulas of the cardinality u, then AS and vS are formulas of
Lkw. It can be shown that the power of logic Liw increases as k grows.

5.1.4. Example The logic Lmw, ~ logic with countable conjunctions,
disjunctions and countable blocks of quantifiers.
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The syntax rules of this logic are those of luyw with the addi-
tion of the following formation rule: If ¢ is a formula and X a count-
able set of variables, then ¥X¢ and 3¢ are formulas of Luww; as well.
Therefore, this logic admits countable conjunctions and disjunctions and
the "gluing” of countable sequences of quantified variables to formulas.
For example, in the ordered field of reals, we have

Rta‘ VXY (x<y —» Fixaxzreoo X<y A X1<Y A Xi€X2 A X2<Y A *o2)).

The next sentence of lLwiw; expresses "there are at most denumer-
ably many elements":
g= Bvevivz + o VxVh €wX=Va .

The possible refinement of previous examples are lg, logics,
where k and y are cardinal numbers. In addition to the formation rules
of Lex, there is the syntax rule according to which, as in the case of
Loywi, we have the formation of formulas with sequences of quantified
variables of the length <. Thus, if ¢ is a formula of l«s and X a set
of variables such that |X|<u, then WXy and ¢ are formulas of Lku, too.

5.1.5. Example L{) - logic with an additional quantifier “there
exist infinitely many".

To the syntax of Low a new symbol Q is added, by means of the
formation rule: If ¢ is a formula, then Qx¢ is a formula tooc. The in-
terpretation of the new quantifier is as follows:

A=t Qoxox iff the set {aeA: A}v—’ ¢l{al} is infinite.

This logic is also more expressive than Lww. For example, a simple sen-
tence of L(Q ) axiomatizes the class of all the finite models of langu-
age L: Wox{x=x).

5.1.6. Example L{Gx) - logic with an additional quantifier "there ex-
ists N many elements"”.

The syntax of this logic is similar to that of L{Q )}, and the
interpretation of @ is:
APt Quxgx  iff | (a€A: AR ¢lall] 2 N,

The most interesting case is the logic L{g )}, i.e. PR! with ad-
ditional quantifier Qi x= "there exist uncountably many x". Later on we
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shall discuss this logic in greater detail.
5.1.7. Example 1!'! - the second order logic.

Besides individual variables vo,vi,... of Lww, variables Xo ,X1,..
are added and a new logical symbol €. The intended range of new vari-
ables consists of sets. If t is a term of lLww, new atomic formulas teX;
are allowed. The following formation rule is added to those of Lww:

If ¢ is a formula, so are VX ¢ and 3 ¢.

The semantics of this logic is determined in the following way:

Thé sign € is interpreted as a set-theoretical membership relati-
on. Also, if A is a model of a language L and ¢ is a formula of L, then

A=+ VXg(X) iff for all S c A, (A,S)p=* @(S), ARt Fe(X)

iff there is S € A, (A,S)|=' @(S}).

5.1.8. Example LY - weak second order logic.

The syntax of this logic is exactly like that of Lf!. The symbol
€ is also interpreted by the set membership relation, but the range of
quantifiers VX, 3K is changed:

A=t VXp(X) means that for all finite S ¢ A, (A,S)p=* ¢(S),
Ap=t Je(X) means that for some finite S5 c A, (A,S)=* ¢(8).

The list of examples is potentially infinite, but these examples
suffices for isolating some of the crucial features of the notion of a
logic. We see in all the examples that a logic is a certain mapping,
which in a uniform way assigns to any set L of symbols a set of formu~
las. This mapping may be considered part of syntax of this logic. Fur-
ther more, a logic correlates a semantics with the syntax, whether or
not ¢ is true in a given structure. This second feature is the heart of
the notion of a logic: the examples above show that radically different
logics may often have exactly the same syntax. In conclusion, we may
consider a logic an operation which assigns to each set L of symbols a
syntax and semantics, such that elementary syntactical operations are
performable, and isomorphic structures satisfy the same sentences.

We shall consider several properties of abstract logics. The in-
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troduction of these notions is mainly motivated by the fundamental the-
orems of the first order predicate calculus. These results may be regar-
ded as entirely "soft", in that they use only very general properties of
logic, properties that are valid for a large number of extensions of
Laxw,

5.1.10. Definition An abstract logic (1# ,|—‘) is countably compact iff
for every countable T < I*# holds:
If every finite subset of T has a model, then T has a model, too.

The following two notions are connected with the validity of the
Ldwenheim-Skolem theorem. The Léwenheim number of a logic {(1# s
the least cardinal number k, such that every sentence of I* which has a
model, also has a model of cardinality at most k. The Hanf number of a
logic (L#, }—‘) is the least cardinal number p such that every sentence
of L which has a model of the cardinality at least u, has models of ar-
bitrary large power. These cardinal mumbers we shall denote respect-
ively by L8(1*) and Ha(l*},

Since the Compactness theorem holds for Lww, we see that Low is
countably compact. Further, by the Liwenheim-Skolem theorems for Luww, it
follows that the L8wenheim and Hanf numbers coincide, and they are equal
to N . In general case, these numbers do not exist for a logic (I ,!-r‘ )y
for example, if 1* is a proper class; an illustration is Lew.

The following table shows the status of some logics in respect to
the introduced notions:

Logic countably compact L8{(L*) Ha(l®)
Loy @ no o exists
Le® no none none

Ling no 2% exists
L(Q) no Ry exists
L(Qi ) yes Y exists

The following theorems tell us when the Hanf number and Léwenheim
number exist.
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5.1.11. Theorem (Hanf) Assume (U,t—-’) is an abstract logic. If L* is
a set, then the L8wenheim number and the Hanf number of this logic

exist.

Proof Let us introduce a mapping k, which assigns to every consistent
sentence ¢ of L* the least cardinal mmber k(¢), such that there is a
models of ¢ of the cardinality k(¢). Further, we shall define a mapping
6 on sentences of I* in the following way: if ¢ has arbitrary large mo-
dels, then 8(¢)= N, otherwise 6(¢) is the supremum of the cardinal
numbers of models of @. Then the Lwenheim number and Hanf one of logic
(12, p=*) are, respectively,

1812 )= sup{k{y): ¢ is a formula of 1*},

Ha(l* )= sup{0(y¢): ¢ is a formula of 15]}.

5.2. A characterization of PR!

This section is devoted to the Lindstrdm theorem and related
subjects. We shall start with definition of the notion of a partial
isomorphism which is due to Carol Karp, and plays an important role in
infinitary logics. We shall see that this notion is very closely con-
nected to the so-called back-and-forth construction.

Before proceeding further, we shall introduce some notions to be
used throughout. Let A and B be models of a language L. A map [ is cal-
led a partial isamorphism from A into B, denoted by f:A % B, if f is an
isomorphism from a submodel of A onto a submodel of B. If Dom f is ge-
nerated by less than p elements, where p is an infinite cardinal, then f
will be called a y-partial isomorphism. The empty map will also be con-
sidered a partial isomorphism.

A nonempty set I of partial isomorphisms from A into B is said to
have the back-and-forth property, if:

For every fel and xe€A (respectively, yveB), there is a gel with
f < g and x€eDom g (respectively, yelm g). We write

I:A ~ B,

if I is a nonempty set of partial isomorphisms from A into B having
back-and-forth-property. We say that A and B are partially isomorphic,
in notation A % B, if there is an I:A =z B.
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The following theorem of C. Karp enables one to show that certain
countable structures are isomorphic.

5.2.1. Theorem Assume A and B are countably generated models of =a
first-order language L. Then A = B iff A~ B. In fact, if 1:4 % B
and fo€l, then fo can be extended to an isomorphism of A onto B

Proof If f:A = B, then (f}:A z, B. To see the converse, let A be ge-
nerated by {ac,81,+..}, and B by {bo,bi,...}, and assume 1:A % B. Thus,
I#s so let foel. Now, we shall use the back-and-forth argument to extend
fo to an isomorphism from A onto B. We define a sequence

focfy cf2 € ...
of functions as follows, new:

fan+1 is some function g€l such that f2. € g and as€Dom g,

fans2 is some function gel such that fzn+: € g and be€Dom g.
This sequence of functions exists by the back-and-forth property of the
family I, so the limit f= Uafn of these functions clearly has for its
domain the whole of A, and for its range the whole of B. It also pre-
serves all the operations and relations from A into B, that is, f is an
isomorphism of A onto B.

5.2.2. Example (Cantor) We shall show that any countable, dense line-
arly ordered set without end points is isomorphic to the set of rational
numbers with a natural ordering.

The proof of this statement is based on Theorem 5.2.1, so let
Az (A,%a) and B= (B,<s) be dense linearly ordered sets without end po-
ints, not necessarily countable, and define the following set of partial
isomorphisms
I= {f: f is a isomorphism of a finite subordering of A onto
a finite subordering of Bj.

To see that I has the back-and-forth property, let fel and ae€A.
Assume Dom f= f{ap <a 81 <a @2 <A ... <po @n)}, and a-; <a <a, is.
Then, by the density of B, there is beB, such that f(ai-;) < b < f(a ).
If we define g= f U {(a,b)}, then gel. The proof is similar, if a<ae or
an<a, so, for any fe€l and a€A there is gel, such that f ¢ g and acDom g.
In a similar manner, one can show that for every fel and beB, there is
g€l such that f € g and belm g.
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It shold be noted that the example above shows that for any two
dense linearly ordered sets A and B, regardless of their cardinality, we
have A = B.

A further refinement of the notion of partial isomorphism is pos-
gible. We shall write I:A =% B whenever I is a non-empty family of par-
tial isomorphisms from A into B with the following two properties:
1° The @-extension property Given F ¢ I totally ordered by the ex-
tension order €, of a power less than 8, and gDc!n Utcrﬂ < 8, there is
g€l which extends all the feF.
2° The back-and~forth property.

A similar theorem to Theorem 5.2.1 holds:

5.2.3. Theorem Assume A and B are models of the same language, and
suppose they are generated by sets of the power 8. Then,

1* A=xB iff A =8 B.

2° If 1:A =9 B, then every fo€l can be extended to an isomorphism be-
tween A and B.

The proof of this theorem is just "a 8-extension” of the proof of
Theorem 5.2.1, wusing now induction on even and odd ordinals, so we omit
it. As an example of the application of the last theorem, we can consi-
der Qk—se‘cs. We have the following Hausdorff extension of Cantor’s the-~

orem.

5.2.4. Bxample If X« is a regular cardinal number, then any two hu-
sets of power k are isomorphic.

The proof of this statement is based on Theorem 5.2.3. Namely, we
consider
I= {f: f is an order preserving map defined on a subset of A of a
power < k, with values in B}.

Now, we shall turn to one more application of Theorem 5.2.1.
5.2.5. Example Let A and B be atomless Boolean algebras. Then A %, B,

and so if A and B are countable, then A = B,
To see the validity of this statement, consider the family
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I= {f: f ia an isomorphism from a finite subalgebra of A onto a
subalgebra of B}.
According to the proof of Claim in Example 3.3.7, it follows that
the family I has the back-and-forth property.
The content of this example can be restated as follows, see also
Example 3.3.7.

5.2.6. Lemma Let A be a finite Boolean algebra, B an atomless Boolean
algebra, and h:A—>B an embedding. Then, h can be extended to an embed-
ding f:A(a)—>B,

We have also the following conclusion of Example 5.2.5.

5,2.7. Theorem The theory of atomless Boolean algebras is w-catego-
rical i.e. every two countable atomless Boolean algebras are isomorphic.

The proof of Theorem 4.1.6 shows the validity of the following
statement.

5.2.8. Theorem Let A and B be elementary equivalent, p-saturated, inf-
inite models of the same language. Then, A zp#¢ B.

There is a surprising link between logic Lew and the relation =,.
We shall first introduce some additional notations. Given the structures
A and B for language L, we write A =« B, if A and B are models of the
same sentences of Law. The following basic result belongs to C. Karp.

5.2.9. Theorem Given the models A and B of language L, the following
are equivalent.

1° A =e B.

2 A =z B.

3° There is a set 1:A zp B such that every fel has finitely generated
domain and range.

Proof In the following we shall assume that there are no function sym~
bols in L. Obviously 3" implies 2°. So, we shall show that 2° implies
1°. To prove this fact, let I:A =, B. We can show by induction on the
complexity of formulas ¢x;...xa of Leow, that if f€l and ai1,...,82€Dom f,
then

A= glai,...,an] iff Bp= gif{ai},...,f(an)].
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If ¢ is atomic, this holds because f is an partial isomorphism.
The case for propositional connectives is easy. So, suppose by the in-
duction hypothesis, that the equivalence for ¢ ...xp holds, and let
81,+++480-1 belong to Dom f, fel. Then, :

A= 3x¢a;...an-1 implies there is an a€A, such that

A§== ¢la,a1,00058a-11
By the back-and-forth property of family I, there is g€l such that f ¢ g
and a€Dom g. Then, by the induction hypothesis we have

Bl= ¢lga,ga1,...,822-11
i.e. B}= ¢lga,fay,...,fas-11, thus B!== Fnplfar...fan-1].

The proof of the converse, i.e. that Bp= 3xg¢[fa:, eeosfag-1] im-
plies A§== Ixelar,...s8n-1] is similar to the proof above, again by using
the back-and-forth property of I.

There is no need to check the case Yx¢, because this is equiva-
lent to I3xw.

Now, we shall prove that 1° implies 3°. We shall suppose a sim~
plification, namely, that A and B are models of a language L which con-
tains only relation symbols and at most finitely many constant symbols.
So, let us assume A So B, and construct a set I satisfying 3°. We define
that

I= {f: f is an isomorphism of a finitely generated submodel A of

A onto a finitely generated submodel Bo of B, such that
for all aj,...,8.€A0 and all ¢x1...xn of Low,
Ap= glar,...,a0] iff Bf= ¢[fai,...,fas]}.

The hypothesis that A Zo B guarantees that the submodels of A and
B generated by the empty set are isomorphic, and that the isomorphism
belongs to I. Further, we note that finitely generated means finite. Let
us show that I has the back-and-forth property. So, let fel and a€A. The
case where beB is similarly done, so we can omit it. Let

D= Dom f= {a1,824+++58a-1), n21.
If aeD, then we can take g=f, so assume agD. We have to find an element
beB, such that for all the formulas ¢xo...Xn,

if A[= ¢la,a1,824...,80-1} , then B!= ¢{b,fa; ,faz,...,fan-11.
Now, suppose there is no such b. Then, for every beB there is a formula
PvXo .« .Xn such that

A= wwla,a1,...,an-1] and B|== %o [b,far,...,fan-11.
If ¥XoXp...Xan = AbenPpXo...Xn, then A= y[a,ai,...,an-1], hence

A= Ixo¥(xo)[a1,... 8011,
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But B|== 1o W(xo )(fa1,...,fan~-1], and this is a contradiction to
the definition of I, since feI. Hence, there is an element b with wanted
property, so, we can define an extension of f by g= f U {(a,b)]}.

The previous theorem is the first theorem which illustrates the
connection between infinitary languages and the back-and-forth argument.
Karp’s theorem has a natural generalization to the Lsk logic, but in or-
der to state it, we need some more notations. However, the proof of the
last theorem gives the core of the back and forth method, so, we shall
not enter into generalizations.

Before we state and prove the characterization theorem for PR!,
we shall introduce one more notation of abstract logics. An abstract
logic (1L*,=*) has the Karp property, if any two models which are part-
ially isomorphic are elementary equivalent, with respect to (L¥, |=-" ); in
other words, A % B implies A Z1x B. For example, Karp's theorem shows
that Lew has Karp’s property. Since the sublogic inherits Karp’s proper-
ty, we see that Lww and Lu o have this property, as well. Examples of
logics which do not have this property are L w and L(Qw: ). The follow-
ing Barwise theorem gives a sufficient condition for a logic to have
Karp’s property.

5.2.10. Theorem If an abstract logic (L*,[=*) has the Ldwenheim number
¥, then it has Karp’s property.

Proof Suppose I1:A = B but not A =« B. Thus, there is a sentence ¢,
such that Ap=* ¢ and Bj=* . Let Ae be the set of finite sequences of
elements of domain A, and let F:AaxA—>Aw be the map

Fil{X130003%m)3Y) > (X1,.0:Xas¥) .
Further, define set Bo and map G analogously. Then using coding functi-
on, we obtain an expanded model (A,B,A«,B«,F,G,I). Observe that we can
make ANB be the set of constants, since A %=, B. By the closure, quan-
tifier, and relativisation properties, there is a sentence 8 of L*,
which states that

AR ¢ , BE=* % and I:A %B.
By assumption, the Ldwenheim number of the given logic is R, so, 0 has
a countable model D' = (A’ ,B ,As,Bo, ' ,G’,I'}. But, then I’ :A’ z, B' and
A’ and B' are countable, so they are isomorphic. Since 6 holds in D', it
follows that A" |=* ¢ , B ’=‘ % , contradicting the isomorphism proper-
ty. Hence, the logic has Karp's property.
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The converse of this theorem does not hold, for instance logic
Lew has Karp's property, but not the L8wenheim-Skolem number & . Now, we
shall state the main theorem of this section.

5.2.11. Theorem (Lindstrdm) The logic Lo is the only abstract logic
which has the L8wenheim number R, and for which one of the following
holds

1° Countable compactness,

2° The Hanf number is No.

Proof We shall prove case 1°. So, let (L¥, h’) be an abstract logic
with L8(1# )= N, and for which countable compactness holds. We can show

that every sentence ¢ of I# is equivalent to a sentence ¥ of Lww, i.e.
that for every model A, we have

A!r-' 9 iff ARt v

It suffices to prove this fact for a finite language L which has
only relation symbols. The given models A and B of a langusge L and se-
quences a= aj,...,8s and b= by ,...,bn, we can define a relation alzb in-
ductively, in the following way:

alob means that a and b satisfy the same atomic formulas,

alns1b holds iff
1° For each ce€A, there is deB, such that a,clinb,d.
2° As in 1°, but changing the roles of A and B.

We write A = B to denote gIng (¢ denotes the empty sequence).
Then, there is a finite set ®» of sentences of Lww, such that A B iff
A and B satisfy the same sentences of &..

let ¢ be a sentence of L*¥, where the language of ¢ is a subset of
L. It suffices to show:
3° For some n, A =, B and ARt ¢ implies Bt ¢
since then ¢ is equivalent to a Boolean combination of sentences of &n.
Suppose, on the contrary, that 3° does not hold for any neéw. Thus, there
are models A; and Bn, such that
4° An =g B, A= 9 and Bnp=*t .

Consider the expanded model (C,D,R,S,w,%,...}, such that for each
new

A, is a submodel of C with the domain {a: Ran},

By is a subwmodel of D with the domain {b: Sbn}.
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Then, there is a sentence ¢ of I# which indicates that 4° holds for
every new. By countable compactness, y has a model
(C,D,R,S,0 ,<,...)
so that (' ,< ) has a nonstandard element H, i.e, Hevw \w. Then,
5° Aup=* ¢, Baf=* W and As = Ba.
From this, it follows that the relation between m-tuples, given by
aJb iff als-amb,
is an isomorphism between models As and Bg. But the logic (I#,|=*) has
Karp’s property by Theorem 5.2.10. Hence, we have a contradiction.
Therefore,¢ is equivalent to a sentence of Low.

5.3. Model theory for L{Q)

In this section we shall go beyond the classical first-order lo-
gic., Namely, we shall illustrate some methods and problems of abstract
logics by an example: the first order logic with additional quantifier
"there exist uncountably many"”. We shall see that some model-theoretic
constructions which are important in classical model theory are avail-
able in this logic, as well. From now on, this logic will be denoted by
L{Q). The first reason why we have decided to consider this logic in
more detail is that it has a well behaved model theory. The other reason
is that L{Q), after PR! has probably the most applications.

We have already described the syntax of L{Q} in Example 5.1.6.
Now, we shall present a proof of the completeness theorem for L(Q).
Keisler proved that this theorem holds for very simple set of axiom
schemes:

All axioms of PRt.
Kl. Yax({x=y v xzz}.
K2, Vx(p = ¥) — (xg — &xy¥).
K3, x¢(x) ¢« Qyyly), y does not occur in ¢{x), and ¢{y) is obtained
by replacing each free occurrence of x by y.
K. Qyzxg — DQyy v @3yg.
Here, ¢ and ¥ are arbitrary formulas of L(Q). Occasionally, we
shall consider the following axiom, too:
K5, @Qx{x=x).
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As has been indicated, the intended meaning of Qx¢x in a model A
is "for uncountably many a€A, ¢a is true in A". The negation of the
quantifier Qx is denoted by 4x, so, the meaning of ixgx, which is read
"for few x, ¢x" is given by ixy « ¥ax¢. Then, the axioms K1-K5 can be
restated as follows:

KI' . dx(x=y v x=2).

K2'. Wx{e — ¢} — (3xy — dx¢).
K3 . Ixgx € dyyy.

K4 . Wxdyg A &x3ye —> dy3xg,

K5 . dx{x=x).

The intuitive contents of these axioms are:

Kl. Every set of power 52 is countable.

K2, Every set which has an uncountable subset is uncountable.

K4, If U exAx is an uncountable family, then either some A( is uncount-
able or X is uncountable. This is equivalent to: The union of countably
many of countable sets is countable.

K5. The universe itself is uncountable.

So, for the axioms of L(Q) we take all the first-order axiom
scheme for L plus the axioms K1-K4 (the axiom K5 is optional). The rules
of inference of L(Q) are the same as for L in PR!. Now, we shall con-
sider models of L{(Q) in more detail.

There are, in fact, two interpretations of L{Q): standard models
and weak models. The standard models are the intended interpretations,
where @x means '"there are uncountably many x", while the weak models are
used as & main tool for constructing standard models.

By a weak model for L{Q), we mean a pair (A,q), such that A is =&
model of the first-order language 1., and q is a set of subsets of the
universe A of A, The definition of the satisfaction relation

(A,q) p= ¢lar, ... an]
for a formula ¢xi...xn of L(Q) and a1,...,2n€A is defined in the usual
way, by induction on the complexity of ¢. The Qx case in the definition
for QxXexxi...xn is:

(A,q) = @9lar,...,aa] iff (beA: (A,q) = ¢lb,a1,...,an]) € q.
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Many simple propositions and definitions of the first-order pre-
dicate calculus can be transferred directly to L{(Q). For example, the
truth of a formula ¢x;...xan whose free variables are Xi;...,xn, depends

only on Xi,...yXn i.e. if y and ¢’ are valuations of the domain A, which
coincide on x1,..,Xa, then ¢{u] holds in A iff ¢[y’' ] holds in A. Fur-
ther, we can define, similarly as in PR!, the notions as: '"realizing a

type", and "omitting a type".

Let A be a model for L. We shall write Ap= ¢lai,...,an] iff
(A,q)|= ¢lai,...,aa), where q is the set of all the uncountable subsets
of A. We say that A is a standard model of a sentence ¢ iff Ap= ¢, in
the above sense. Therefore, A is a standard model of ¢ just in case ¢
holds in A with Qx interpreted by "there exist uncountably many x".

We shall particularly use following formulas which are provable
in L(Q).

5.3.1. Lemma (Keisler) let ¢ and ¢ be formulas of L(Q) and x,y dis-
tinct variables. Then, the following formulas are provable in L(Q):

17 x¢ —~» Ix¢.

2° 2Qyy = QyIx¢.

37 Qo AY) > Qxp A XY,

4° Q(p v V) ©& &9 v QY.

5° Qo A Ty - (e A W),

Proof 1° Assuming that y,z do not occur in ¢, we have
= ¢ —> ¥x(¢ —> (x=y v x=z)).
Further, by Axiom 2,
- ke = (¢ — Qx{x=y v x=z)).
By Axiom 1, |~ 3x¢ —> 9}, and the statement 1° follows by
propositional logic.
The proofs of 2° and 3° are not difficult, so we omit them.

4° Obviously P ¥x{y - ¢ v ¥), so by Axiom 2, - &x¢ = @x(g v ¥). In
a similar way we obtain |- Qxy — Qx(¢ v y), thus
(1) - o v axy —» @x(p v y).

Now, we shall show that the converse of (1) also holds. So let
u,v be distinct variables which do not occur in ¢ v ¢, and take

o= ({y=u A ¢) v {y=v A ¥)).
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Then by predicate logic |~ ¥x({¢ v ¥} — Fyo}, so by Axiom 2°

(2) | (9 v ¥) —> 3o,

Further, using Axiom 2,

(3) | @3yo —» JyQxo v Qy3xo.

We have *——a—-)ymvy-w, thus !»—-»3xo—-)ya1vy‘-:=V, and by Axiom 2,
- @30 - Q(y=u v y=v).

Then by Axiom 1, we have

(4) b Qy3xo.

From (3) and (4) it follows that

(5) - @3yo — JyQxo.

Now, we have to consider two cases: WVuv{usv) and 3uv{ugv).
Case 1 By predicate logic,
Vuv(u’=‘v)|--— Vx((g v ¥) — xBu v xSV},
Further, by Axiom 2,
Vuv(uEv)f-‘ x(p vV ¥) > X(x8u v X=V),
thus, by Axiom 1,
{6) Yuv(usv) |- x(p v ¥).
It follows from (1) and (6} that the formula 4° is deducible [rom
Vuv{usv}.
Case 2 We have |~ y=u — Vx{og —> ¢), thus by Axiom 2,
b~ w=u ~» (Qxo —> Qxy).
In a similar way, one can obtain |~ WEV > (Qxo —» Qx¢). Therefore,
- = v yEv o (ko > X V @xy).
Hence by predicate logic,
b oupv - (x(g v ¥) © Q@9 v Qxy),
therefore 4° is deducible from Juv(u#v).

5° Since |- ¥x(¢ = ¢ v (9 A W)), by Axiom 2 it follows that
- @9 —> (¥ v (g A W)).
By 4°,
Fax{vviea W) — e v le A W.
Then formula 5° follows from the above two formulas by propositional
logic.

Now, we shall show that there is a close connection between regu-
lar relations and quantifiers @, 4. In most applications of Logic L(Q),
the quantifier Q is eliminated by the use of some binary (or ternary)
relation. This approach was first used by Fuhrken, and it is known as
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Fuhrken’s reduction technique. In that way Vaught proved the first form
of the completeness theorem for the logic L(Q). Keisler also used this
approach in several papers, either implicitly or explicitly. Jervell
gave a new proof of Keisler’s completeness theorem, taking as a binary
relation a special kind of ordering. The method, we shall use here is a
utilization of all the mentioned methods.

As we shall see, the notion of regular relation discussed in
Section 4.4, i.e. properties S1, S2, and S3 of a binary relation plays
an important role in this approach. So, we shall recall that L(R) de-
notes the langusge LU{R)}, where R is a binary relation. Now, we can de-
fine a map * from L(4) into L{R). This map preserves the classical
logical conjunctivae and eliminates quantifier 4 in terms of R.

5.3.2. Definition Let ¢ and ¥ be formulas of L(4). Then,
¢*= ¢, for ¢ atomic.
(err= W, (@AY= ¢ A, (Dxg)r= Ixgt,
(3xp)*= Jy¥x{¢*x — Rxy), ¥y is not free in ¢.

Of considerable importance is language L*, where

1= [¢*: ¢ is a formula of L(4)}.
Thus, [f is the set of all the *-transforms of the formulas of L(J4),
and, so For, € L*¥ < Fory(r) . Observe that if Rel,, then L*= ForL(as).

5.3.3. Lemma Let * be from the previous definition. Then,
17 (x{x=x))* is Vy3x"Rxy.
2°  (dw{wsx v wEy))* is Jz(Rxz A Ryz).
3" 1If ReL, and ¢ is a formula of L, then, the condition of regularity of
R (i.e. the property S3 in section 4.4.) is the *-transform of the for-
mula
Qy{3xeru)yxy —> (xeru)Qyyxy,
where (3xe€ru)g¢ stands for I(Rxy A @) (se Section 4.4).

Proof  The proofs of 1° and 2° are easy, so we shall prove only 3°. By
the first order predicate calculus and the definition of *, we have
Az (V¥xeru)Vy(gxy — Ryz) © FzVyWx(Rxu — (gxy — Ryz))
© JaVy(Ix(Rxu A ¢gxy) —> Ryz)
= {dy{3xeru)gxy)t.
Thus, S3 can be restated as the *-transform of
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(Vx€pu) dypxy —> dy(3x€ru)yxy.
Teking a contraposition of this formula, we have that S3 is a *-trans-
form of

Qy (Ixeru)gxy — (Ixeru)Qypxy.

By (A,q) we shall denote a weak model of L(Q), and by (A,q¢) a
weak model of L(4). If (A,q) is a weak model of L(Q), then it is easy to
see that the set g¢ of all the subsets of A definable in (A,q), which do
not belong to q, ma y be taken for the weak model (A,q¢) of L(4). Now,
let (A,RA) be a model of L(R). A model (A,q°), where

gc= {X: for some aeA, XcRaA},
is said to be induced by relation RA. We shall recall that

RaoAz {beA: RAba}.

5.3.4 Llemma Assume that (A,q¢) is a model induced by a binary relation
RA on A. Then, for every formula @x3...xa of L{d) and every valuation

al,-..,a.neA:
(A,qc)]- olaryre.yas) iff (A,R")!— (v, IF- VR - YA TN

Proof The proof is by induction on the complexity of ¢. We shall give
the proof only for the main step, when ¢ is of the form 4xyxX;...%Xa. We
have:
(Ayqf )= @ iff (A,q%)p= dxylas,...,an]
iff {deA: (A,q°)p= v[d,a1,...,aa]}eq"
iff (by definition of g¢) there is a€A, such that
{deA: (A,q° )’-x yid,a15...5an]} € Ra?
iff (by induction hypothesis), there is a€A such that
(deA: (A,RA)|= y*(d,a1,...,a0]} € Ra®
iff there is a€A such that for all deA,
(A,RA = (y*[d,a1,...y80] —> R[a,d]}
iff (ARM) = yWx(¥*x — Rxy)lar, ... 2]
iff (ARM) = ¢*[a1,...,a8a].

Now we shall introduce a refinement of the notion of a regular
relation. So, let (A,RA) be a model of L(R). Relation RA is *-regular in
model A’ = (A,RA) iff A satisfies the conditions S1, 82, and S3 restrict-
ed to the formulas ¢ which are *-transforms of formulas of L{4). We can
see that every regular relation is also f*-regular.
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5.3.5 Lemsa Let A be a model of a language L, and assume that RA is an
*.regular relation in (A ,R*). If (A,q¢) is induced by R*, then (A,q%)
verifies all the axioms K1' -K5 of logic L{J}.

Proof Since RA satisfies S1 and 82, (A,q¢) satisfies axioms KI' and
K5 by Lemma 5.3.3 and Lemma 5.3.4. Further, it is easy to see that K2'
and K3' are verified, as well. We shall show that K4’ holds, too. In or-
der to avoid working with assignments, we shall assume that formulas ¢,
¢,... are sentences of the language L(4) expanded with names of the ele-
ments of the domain A, and that A is the simple expansion of A. Suppose
) (A,q° ) = Vxdypxy A Ix3yexy.
From (A,qf )= 3yexy, by Lemma 5.3.4,

(A,RA) b= W (ygtxy —> Rxw) .
Let weA be such that (A,R‘)f- Vxy(¢*xy — Rxw). Hence,
(2) for all a,beA, if (A,RA)p= ¢*ab then acRuA.
By (1), we also have (A,q¢ )f— Vxdyypxy. Thus, by Lemma 5.3.4,

(A,RA ) b= VXV (¢*xy —> Ryw),
and, so, for each aeRwA, there is deA, such that

(A,RA) |= Vy(¢*ay — Ryd).
By assumption , RA is *-regular, therefore
(3) for some deA and for all a€RwA, (A,R‘)}= VYy(g¢*ay —» Ryd).
Let a,beA and assume that (A,RA)le= ¢*ab. Then, by (2), aeRwr. By (3} it
follows (Q,R‘)Fs Rbd, i.e. beRaA. Thus we have proved

(4,Rr) = Z2Vxy(¢*xy — Ryz).
Hence, by Lemma 5.4.4, (A,q°)}= Jdy3xgxy.

5.3.6. Corollary lLet A be a model of a lenguage L, ReL and R* a regu-
lar relation in A. If (A,q¢) is induced by RA, then (A,q°) verifies all
the axioms K1’ -K5' of logic L(4).

Now, we shall show that the converse of Theorem 5.3.5 also holds.
Let (A,q°) be a weak model of L(3). By axioms K1, K5 and Lemma 5.3.1.4°
it follows that A is infinite, so let t be a map from A onto the set of
all the formulas of La{d) with one free variable. Therefore, (r(a):‘aEA)
is the set of all the formulas of La(4) with exactly one free variable.
In the following, we shall often write ta. instead of t(a).

A binary relation on the domain A is induced by (A,q¢) iff for
all a,beA:

Rab iff (A,q¢)}= wn(a) A IxTp(x)
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Therefore, for every a€A, we have
(ARA,qF ) = Vx(Rxa € Ta(x) A dxta(X)).

5.3.7. Lemma Let a binary relation R* on A be induced by a weak model
(A,q° ) of K1-K5. Then,

1° The sentence {d¢x « Jy¥x{gx ~> Rxy) holds in {A,Rr,q°) for all the
formulas ¢x of La(d4) with one free variable x.

2° For any sentence ¢ in Lu(3), (A,q¢)}p= ¢ iff (A,RA )= ¢*.

Proof 1° Let ¢x be a formula of La{d4) with one free variable x. Then,
there is deA such that ¢ is 1¢. Assume (4A,q° }{z 4xyx. Since
(ARA,q¢ ) f= (dxTa(x) A ta(a) —> Rad),
it follows that (A,RA,q°)p= ta(a) — Rad, hence
(A,Rr g ) = (dxgx — Fy¥x{gx —> Rxy)).
Now, assume
{A,RA g )*"' 3y¥x(gx —> Rxy).
So there is e€A, such that
(1) (ARA ,q¢ ) f= Wx(gx —> Rxe).
Since Rxe may be considered as the formula (ze (x) A dXte(x)}) of La(d),
we may apply K2' to (1}. then, we get
(2) (Mg )= (x(Te (x) A dxTe(x)) — dxgx).
By Lemma 5.3.1, we have the following theorem of L(Q) for any formula ¥
@y A ANYX) —> Qxyx A Iy,
hence “Rx{yx A “xyx), i.e.

{3) Ix{yx A Dyx).
Taking for yx the formula te {x), by (2) and (3), it follows that
(Ayq¢ ) p= dxox

so we have proved

(ARA  q¢ ) = DyWx{gx —> Rxy) —> dxpx.
2° This assertion may be proved by induction on the complexity of for-
mula ¢, using 1°.

5.3.8. Lemma Let a binary relation R* on A be induced by a weak model
{A,g¢) of K1-K5. Then R* is a *-regular relation in (A,RA).

Proof the model (A,RA) satisfies conditions Sl and S2 by Lemma 5.3.3.
Therefore, we have to check only if condition S3, restricted to *-trans-
forms of formulas of L(4), holds in (A,RA). So let ¢xy be a formula of
L{4) with free variables x,y. Then for agA:
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(A,RA) = VxeradzVy (¢* xy — Ryz) — 3z(Vxera)Vy(¢*xy — Ryz)
iff

(A,RA,q¢ ) = (Vx€ra)dygxy —> dy(3xe€ra)exy
iff
(1) (A,RA,q¢ ) p= Qy(3xera)gxy —> (Ixera)Qyyxy.
Therefore, it suffices to prove (1}.

The following holds in (A,RA,qc)
(2) Qy(3xera)exy = QyIx(ta (X) A Ixta (%) A ¢xy) (by definition of RA)

> IQy{ta (X) A IxXta(X) A Pxy) Vv
xFy{ta (X) A IxTa (X) A @xy) (by Axiom K4).

Further, by Lemma 5.3.1,

@y {ta{x) A dxta(X) A @xy)} = T2 {x) A ©yoxy A XTa (X).
So,
(3) b= RxBy(ra(x) A dxta(x) A gxy).
From (2},(3) and a propositional tautology, it follows that

(A,RA ¢ )[=- Qy(3Ixera)oxy —> IQy(ta(x) A AxTa(X) A ¥X¥),
thus (1) holds.

The following technical lemma will be used later.

5.3.9 Lesma let R be a binary relation on A induced by a weak model
(A,q°) of Ki-K5. Then,

1° Ui eaRa= A.

2° For all a€A, Ri# A.

3®° For all ai,...,80€A, there is be€A such that Rsa: U ... U Rsn € R

Proof Relation R satisfies conditions Sl and S2 by the previous lemma,
so 1° and 2° follow immediately. We shall prove clause 3° for n=2, since
the general case follows easily by induction. Let ¢ and ¥ be the formu-
las of L(4). By (3), from the proof of Lemma 5.3.3, we have

b= dx(ox A dxex) A dx(yx A dxyx)
and by Lemma 5.3.1,

b odx{{ox A dxex) v (¥x A Hx)).
Hence, for a,beA

(A,q° ) p= ¥x((Ta(x) A 3xTa(x)) v (To(X) A IXTB(X)) —

Te (X) A Ixre (X)),

where ceA is such that tc is the formula

{Ta({x) A IxTalx) Vv {To({X) A dxTH(X)).
therefore, for a,b€A, there is ceA such that
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(A,R*)]— Vx{Rxa A Rxb — Rxc),
i.e. RaURp € Re.

5.3.10. Definition Let (A,RA) and (B,R?) be models of L(R). Then

1° A is a *-elementary submodel of B iff A¢B and for all formulas ¢ of

L* and all a1,...8.€A, (A,RA)}= o{a1,...,80) iff (B.R‘)k— plar,...,8al.
For this notion we shall use the notation A<*B (sometimes the

subscript R is omitted).

2° B is an *-elementary R-end extension of A iff A<z*B, A#B and for all

a€A, Rs? ¢ A. We shall use the notation A<a*B. (If (A,Rr) ¢ (B,RY),

then the condition R:¥ € A may be replaced by Ra?= Ret.)

Before we state and prove the main lemma used in the proof of the
completeness theorem of L(Q), we shall present an *-version of the omit-
ting types theorem.

5.3.11. Lewmn (*-version of the omitting types theorem). let T be a
consistent set of sentences of 1%, and for each neéw, let fa(x) be a set

of formulas of LY (with only x» free). Assume that for every new and

every formula ¢x. of 1#, if 3xag is consistent with T, then there exists

0€fn, such that s (¢ A W) is consistent with T (i.e. T locally *-omits

Zs). Then, T has a countable model (A,R*), which omits each I and R* is

s-regular in (A,RA).

This lemma may be proved in a similar way as the omitting types
theorem, if we observe that 1#is closed under logical conjunctivas 1, A
and quantifier 3. Thus, we can omit the proof of this lemma.

The following lemma is the main step in Keisler’s proof of the
completeness theorem of L(Q). A close look at the proof will show many
steps similar to those in the proof of Theorem 4.4.3.

5.3.12. Lemma Let (A,q) be a countable weak model of L(Q) in which all
the axioms of L(Q) hold, and let 8x be a formula of L.{(Q), such that
(A/q) = Q@®x. Then, there is a countable elementary extension (B,r) of
(A,q), such that:

1° For some beB\A, {B,r)j— 6(bl.

2° For every formula Yy of La(Q), such that (A,q) = Wy, we have
{aeB: (B,r)}= y[a}} € A.
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Proof Let R* be a binary relation induced by (A,q¢), and
T= Th*(A) U {“R*ca: a€A} U (8*c},
where ¢ is a new constant symbol and R*ca stands for an *-transform of
tale) A dxta{x). In the following, we shall use the fact
(1) (AR*)j= Rab © R*ab for all a,beA.

Claim 1 T is a consistent theory.

Proof of Claim 1 We shall show that every finite subset I of T has a
model. Let a;,...,8n be all the elements of A, such that "Rfcay, 15isn,
belong to §. By Lemma 5.3.9, here is a€A, such that Rra;U...URA nSRABFA.
Let deA\R.. Since {A,q)p= Qx0x, we have (A,R*}}= VyZx(0*x A Rxy}. So,
there is ee€A, such that (A,RA)}= (6*e A TRed). Hence, (A,R*,e) is a
model of I, where c is interpreted by e.

Claim 2 lLet yx be a formula with one free variable in the language

La*. Then, yc¢ is inconsistent with T iff there is a€A, such that
(ARA) = ¥x(0*x A Yx —> Rxa).

Proof of Claim 2 Assume that yc is inconsistent with T. Then,

Tf— Wec, hence for some ai,...,an€A,
ThA® p= “Rfcai A ... A TR*cas A 8'c = We.
Therefore,

ThA* = Vy(yy —> 9*y v RSyas v ... v Rfyaa).
Using (1) and Lemma 5.3.9, we obtain for some beA,
’Ihl_\*f— Yyi{yy — B*y v R*yb), i.e.
ThA* = Vy(yy A 8%y — Ryb).
Now, assume that Yc is consistent with T and that for some a€A,
(ARA) p= ¥X(Vx A 87X —> Rixa).
Let (B,RE,b) be a model of TU{yc}. Then, (B,R‘,b)h (yc A 8%c). Since,
A<z*B (we identify aB with a), it follows that
(B,R®,b) J= Wx(yx A 6*x — R*xa).
Hence,
(B,R®,b)}= R*ca, contradicting (B,RP,b)j= “R*ca.

Claim 3 For every a€A, T locally *-omits Ia(x)= {R*xa} U {xZ#d: deRa.*}.
Proof of Claim 3 Let Ixgxc be a formula of (La U {c))* which is con-
sistent with T. Assume that there is no g€La, such that 3x(gxc A W) is
consistent with T. Then, 3x{¢xc A R*xa} is inconsistent with T, so, by
Claim 2 and {1}, for some b;€A:

(2) {A\RA) = Vy(x(exy A R*xa) A 6%y — Rybi).
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Let deRs4. Then, 3x{gxc A x=d) is inconsistent with T, i.e. e¢dc
is inconsistent with T, so, by Claim 2, there is beA such that
(A)R*) = Vy(B*y A oy — Ryb).
Therefore, we have proved
(A)RA) = (Vxera)3zVy(6*y A 9xy — Ryz).
Since the relation RA is *-regular in (A,R*), it follows that
(A,RA) = 3z(Vxera)Vy{6*y A gxy —> Ryz).
Thus, for some b;€A
(3) (A,RA) = (Vxera)Vy(gxy A 0%y —> Rybz ).
By Lemma 5.3.9, there is bs€A such that Rpi* U Rbz2A € Rpar. Then, using
{2) and {3), we have

- (A,RM) = Vy((8*y A Zx(gxy A Rxa)) v (6*y A 3x{ygxy A Rxa)) —> Ryba}.
US

(A,RA) = Vy(Ixyxy A 6*y — Rybs).
So, by Claim 2, Ixgxc is inconsistent with T, which is a contradiction.

This finishes the proof of Claim 3.

Since T locally *-omits each Za, by the *-omitting theorem, it
follows that there is a countable model (B,ba,RP,d)aea of T omitting
each Za (a€A), in which RE is *-regular. Identifying b, with a, we have:
1°  A<g*B.

2" RB is ¥-regular in (B,RE},
3" (B,RP)j= 6*d and deB\A.

Really, if deA, then for all aeA, (A,RA)|=-= R*da, contradicting
to Us eaRa?= A (see Lemma 5.3.9). let (B,r¢) be induced by (B,R®). Since
RP iz *-regular in (B,RB), by Theorem 3.6. (B,r¢) is a weak model of
axioms Kl - K5 for L{(Q). By 1°, 3° and Lemma 5.3.4, we have
47 (B,q) < (B,r) and (B,r}}= 8[d].

Now, assume that formula yx of La(Q) is such that (A,q)p= Wxyx.
Lel a€A be such that s is ¥ (where t is the map from the definition of
relation RA induced by (A,q¢)}}. By Lemma 5.3.7, (A,RH}= {QxTa (N} )%,
Since A <®* B, it follows that (g,RB){= {Qxta({x))*, hence

(g,R")l== Rtba, 1i.e. (B,R")Ir-= Rba.
Since (B,ba ;RB,d)aer omits L., we have beR,A, hence beA. Thus,

{beB: (B,R%)|= (¥b)*} c A,
therefore, by Lemma 5.3.11, (beB:(B,r)f= ¥[bl} < A.

In the following, we shall need the notion of elementary chains
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of models of L{Q), and their unions. A sequence (Aq«,Qa), a<8, of weak

models is said to be elementary iff we have (A«,qQq) < (Ag,qs) for all

a<f<§. The union of an elementary chain {(Aqs,qa), a<§, is the weak model
{A,q}= Uac8{Aa,qa)},

such that A= UacsAa, and q= {ScA: For some B<§, RASa<d implies SNA«€qa).

That is, q is the set of all ScA, such that SNA« is eventually in Qe.

5.3.13. Let (Aa,qe), a<6, be an elementary chain, and let (A,q) be the
union of this models. Then, for all a<é, (A«,qa) < (A,q).

Proof VWe shall show by induction on the complexity of ¢xi...xa that
(1) For all a<8 and all ai,...,an€A,
(Aa;q«t)i"' olai,...an]l iff (A)Q).“ ofai,...,anl.

We shall consider the main step, i.e. when ¢ is of the form Qxyx, as-
suming that (1) holds for vy.

So assume a<§, and ai,...,an€A and let

S= {aeA:(A,q)|= ¥l[a,a1,...,8a]}.
Let (A,q)}= axy¥lai,...;an)]. Then 8eq, hence, for some B, a<B<é and
SnAgeqe. Since (1) holds for ¥, we have

SnAs= {a€Ap: (As,qe) = y{a,a1,...,an]).
Thus (As,qe) = @xy[a1,...,80a], and since, (Aa,q«) < (Ag,qs), it follows
that (Aa,C[a)F xylaiy...,anl.

Now, assume (A,q)'s ylar,...r8n 1. Then, S¢q, so, there exists
8 such that a<f<§ and SnApg¢qps. Reasoning as above, we obtain

{Aa;ch)}"‘ “xvlar,...;an].
Therefore, ¢= Qxyx satisfies (1).

By iterating the main lemma (Lemma 5.3.12), we have the following
stronger result

5.3.14. Lemma Let (A,q) be a countable weak model of K1 - K5 let Li be
the language of A= (A,a)aea. Then, (A,q) has a countable elementary
extension (B,r), such that for all the formulas ¢(x) of La(Q),
(A,q) = Qxgx iff there exists beB\A, such that (B,r)|== ofbl.

Proof Since (A,q)F= Qx(x=x), and set A is countable, we may list all
the formulas ¢x of La(Q), such that Qx¢x holds in (A,q), in a sequence:
o {xo), @u(x1), ...
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Then, using Lemma 5.3.12 countably many times, we get a countable ele-

mentary chain (Ao,Q) < {A1,q1) < ... , such that

(1Y (Ao,q0)= (A,q).

{2) There exists an€An+1i\Aa, such that {(Aa+1,qn+1)}= ¢nlanl}, neo.

(3) For all the formulas ¥ of La(Q), such that (én,q)r= Qyyy, and all
n€w, (a€Aa+1: (An+1,Quer)p= Vlal} <€ As.

Then, model (B,r)= Un(As,Qn) is an elementary extension of (A,q), and by

(1) - (3), (B,r) satisfies the conclusion of the lemma.

Now, we are going to prove the Completeness theorem for L(Q).
This form of Completeness theorem for L(Q) was proved by J.Keisler.

5.3.15. Completeness theorem for L(Q) Let T be a set of sentences of
L{Q). Then T has a standard model iff T is comsistent in L(Q).

Proof If T has a standard model, then, it is easy to see that T is
consistent; this follows simply from the fact that standard models sat-
isfy axioms K1 - K5. So, we shall consider only the hard direction.

The proof is divided into two parts. The first part in most de-
tails is similar to the proof of the completeness theorem of PR!, i.e.
a weak model of L(Q) is constructed. Thus, we shall only outline this
part of the proof. Then, by appropriate application of Lemma 5.3.14, we
obtain a standard model of L{(Q).

Claim 1 (Weak completeness theorem) Let T be a consistent set of sent-
ences of L{(Q). Then, T has a countable weak model.
Proof of Claim 1 We can enlarge language L to Le= LUC, where C is a
set of new constant symbols. Then, T is still consistent in Lc{(Q). By
the method of Henkin, T can be extended to a maximal set S of sentences
of L¢c(Q), such that C is a set of witnesses for S. Now, we shall show
that S has a weak model.

Let Soz= [¢€S: ¢eSentr}. Then, So is a maximal and consistent in
the sense of L. By the Henkin construction, it follows that Se¢ has a
model A, such that A= (cA: ceC}. Let us define for each formula ¢x of
L(Q) the set

Yo= {cA: ceC and Sf— wct.
Further, we shall introduce the family

g= {Ye: ¢ has only one free variable, say x, and Sr— aQxex) .
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Then, obviously, q is a set of subsets of A. Now, we shall show by in-
duction on the complexity of ¢, that for all sentences of L{(Q)

(1 {A,glF= 9 iff 8F o.

We shall consider only the main step, when ¢ is Qx8x. So, assume (1)
holds for all sentences 8c, c€C. Then

(2)  Ye= {c*: S}~ 8cl= (cr: (A,q)p= 8cl= (ch: (A,q)f= Blct]}.

If Sp- QxBx, them Ye€q, by definition of q, so, (A,q)}p= Qu@x by (2},

Now assume (A,q}}= @ux. Then, Ye€q by (2). from the definition
of q, we can see that there is a formula oy such that Ye= Yo and
S]—- Qvay. Then by (2), cA€Ya implies S}~ 6c, for all ceC, and similarly
for o. Therefore, for all ceC, S'—~ 8c iff Sf-—- oc, thus for all ceC,
Sk g € 0. Let v be a variable occurring in neither 8x nor ox. Then
since C is a set of witnesses for S, we have Sl»—~ vYv(8v ¢« ov). Then, by
K2,

Si— Qviv « Quov,
and so, by K3,

S]—- Ox ¢ QvOv, Sk QoY © Qviv,
and thus

S5 @xéx <> Qyoy.

Since S!—— Qyoy, we have S[-— QBx. So, ¢ satisfies (1), i.e. (A,q) is a
model of L{(Q).

Claim 2 If T is a consistent set of sentences, then T has a a standard
model.
Proof of Claim 2 Suppose T is a consistent set of sentences of L(Q).
By Claim 1, there is a countable weak model (Ao,qo) of T. By repeated
applications of Lemma 5.3.14 w times, we obtain an elementary chain of
countable wesk models: {Aq,qa), adw;, such that:
{1) If a is a limit ordinal then (Aa,qa)= Usca(As,qs).
(2) For any a<w and each formula ¢x of La{Q)

(Aa,qa) j= @xgx iff there is a€Aar1\A« such that (Aari,qei)f= plal.
Now, take Bz Ua< wiAa. We shall show that B is a standard model of T.

First, consider the weak model (B,r)= Ug<cw: (Aasqe). Then, by

Lemma 5.3.13, (Ao,q) < (B,r), i.e. (B,r) is a weak model of T. Further,
observe that B is an uncountable model. So, it suffices to prove that

(3) For all the formulas ¢x;...xp of L{Q) and all bi,...,bn€B,
(B,r)f= ¢{bi,...,ba] iff B ¢[by,...,ba].
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This statement will be proved by induction on the complexity of
formulas ¢. We shall consider only the main step, when ¢= QYXy1...¥n.

So, let by,...,bn€B. Then for some ad<wy, by,...,bn€Aq.
First, assume (B,r)fa @ylbi,...,be}. Since (As,qs} < {B,r) for
all f<w1, we have (Aa,qs)ru xy{bi,y...,bn] for all B<w . By (2), if

a<B<w;, there is ap€Ap:\Ag such that (Age1,Qpes )= ¥lag,bi,...,bn}, so
(B,r)f— ylag,br,...,ba}. Since all the elements from the sequence
<ap:B<w; > are distinct, the set S= (beB: (B,r)}= ¥[b,b1,...,bal} is of
the cardinality ¥ . By the induction hypothesis, y satisfies (3), so,

S= (beB: Bf= y[b,bi,...,ball.
Therefore, Bf- x¥[by, ... bl

Now, suppose st @y[bi,...ybn). Then, whenever asfi<w;, we have
(Aa.qa)f- Y[bi,.,bnl. Thus, from (1) and (2), we can infer that

S= (beB: (B,r)f= ¥{b,b1,...,ba]} € Aa.
The set A« is countable, so, S is countable, as well. Again, using the
induction hypothesis for ¥, we have Bk— Q@y[bi,...,bnl, so B satisfies
the conclusion of Claim 2.

We have the following consequence of the completeness theorem for
L(Qj.

5.3.16. Corollary A sentence ¢ of L{Q) is provable iff it is valid.

5.3.17. Corrolary (Compactness theorem for L{Q)) Assume T is a set of
sentences of L(Q). If every finite subset of T has a standard model,
then T has a standard model.

We shall note that neither the completeness theorem nor the com-
pactness theorem are valid for uncountable L. For example, the theory

T= {3xPx} U (Pca a<oy} VU [cafcp: alBi<an}
is finitely consistent (i.e. every finite subset of T has a standard
model), but T itself obviously does not have a standard model.

A form of the completeness theorem was proved by R. Vaught.
Namely, he proved the following assertion.

5.3.18. Proposition The set of 8all the valid sentences of L{Q) is
recursively enumerable in the set of symbols of L.
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We can see that this statement is an immediate consequence of
Completeness theorem for L(Q). We would note that proposition 5.3.18 can
be proved using Proposition 4.4.17 without appealing to the Completeness
theorem for L{Q). 1In fact, if M is the class of all the countable line-
arly ordered models which satisfy S1 and 83, then for any formula ¢ of
L{Q) we have: I‘Q=- ¢ iff M= ¢*. Here ¢* denotes the t—transform of ¢, if
we take for R the symbol <. Then, the statement follows from the
L8wenheim-Skolem theorem, i.e. that LO, S1, S3t— ¢ iff M}— @t .

As an example of a theory in L(Q) consider Peano arithmetic,
but with the induction scheme applied to all the formulas of Lp.\(Q)‘. Let
us denote this theory by PA(Q). By induction, it is easy to show that
(1) PAQ)|- Vydx(x<y).

Now, let us describe the standard models , in the sense of L(Q), of
PA(Q). So assume A is a standard model of PA(Q). Then, since

PA(Q) | @x(x=x),
it follows that A is uncountable. By (1), A}e Vyidx(x<y), so every ini-
tial segment in A is countable.

Thus, 1if A is a standard model of PA(Q), then A is an w;-like
model of PA of cardinality ;. Further, it is possible to show that
theory PA(Q) admits the elimination of the quantifier Q, i.e.

(2) PA(Q) |- Qx¢ © Vy3>yy, ¢ is a formula of Lea(Q).

So, if A is an w; -like uncountable model of PA, then A obviously
satisfies the ¥~transform of the induction scheme of PA(Q), and by vir-
tue of (2), A also satisfies the induction scheme of PA(Q) in the sense
of logic L(Q). Thus, A is a standard model of PA(Q). Hence, we can prove

5.3.19 Proposition Let A be a model of Lea(Q). Then A is a standard
model of PA(Q) iff A is an uncountable w;~like model of PA.

Therefore, Example 4.4.16.1° may be considered a particular case
of Keisler’s Completeness theorem. It is possible to show (for example,
by using so-called end-extension types) that there are 2% w;-like, un-
countable models of PA, i.e. 2% standard models of PA(Q). Proposition
5.3.19 also shows that L8wenheim-Skolem theorems do not hold for L{Q).

By analyzing the proof of the completeness theorem of L(Q), it is
possible to obtain improvements which leads to the application of vari-
ous kinds. Such an improvement is the omitting types theorem for L(Q).
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5.3.20. Theorem Let T be a consistent set of sentences of L(Q), and
for each new agsume that Zp(xn) is a set of formulas, such that
1° For some on€Zu, T|- dXuoa.
2° If 3xap is consistent with T, then there exists o€Zn, such that
Fxn (@ A ) is consistent with T.

Then T has a standard model which omits each L., ne€o.

Proof By the Completeness theorem for L(Q), the theory T has a stan-
dard model, say A. By Lemmsa 5.3.7, and Lemma 5.3.8, we can expand A to a
model (A,RA} such that:
(1) RA is *-regular in (A,RA),
(2) (A,RA) b= dxgx > Fy¥x(yx —> Rxy), ¢x is a formula of La(d).
(3) For all the sentences ¢ of La(J4), A{- ¢ iff (A,Rﬂ)h @ .
Thus, theory T of the language LU{R}, R is a binary relation symbol,
which consists of:

the axioms of theory T,

S1*, S82* and scheme S3%,

dxgx €> JyVx(egx —> Rxy), where f is a formula of L(Q),
is a consistent theory, and obviously T' satisfies the conditions of the
*—version of the Omitting types theorem (Lemma 5.3.11). By this lemma,
there is a countable model (B,R;*) of T which omits each Ix*, and R;®
is *-regular in (B,Ri®). Then the induced model (B,q) is a weak model of
L(Q) which omits each I,. From the proof of the Completeness theorem, it
follows that there is an elementary extension (C,r) of (B,q), such that

(Cyr)p= glbr,...,ba] iff (B,q)f= ¢ibs,...,bn}, bi,...,bn€B,
and for each formula ¥x of Ls(Q),

(B,q) = Iy iff (beC: (C,r)}= y{bl} < A.
Therefore, C is a standard model of T. Also, for all ne€w, (B,q)f= 4%a0n,
so (beC: (C,r)}p= oalbl} ¢ B.

Since on(xn)€Ln, and no element of B satisfies L. in (B,q), it
follows that (C,r) omits Zn. Therefore, C omits Za.

As an application of the Omitting types theorem for L(Q), we
shall give a new proof of Keisler’s Two-cardinal theorem, Theorem 4.4.18

5.3.21. Example (Proof of Theorem 4.4.18) So, let T be a theory in a
countable language L= {P,...} with a model A= (A,U,...) of type (k*,k).
Let < be an ordering of the domain A of the ordering type of ordinal k*.
Then, relation < is regular, and so the quantifier 4x, introduced by
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Ixox > Wx(ex —> x<y),

satisfies the axioms K1 - K5. Let B<A be countable, Bz (B,W,...), and
define T{x)= {P{x)} U {x¢fb:beB}. Then, for 'z ThB U {ixPx} we have:
1 [f~ 4xPx.

2° If 3x¢x is consistent with ', by the Completeness of [ follows
I Zx¢x, so, for some beB, we have I't~ ¢b, i.e. I{gx A FD) is con-
sistent with .

Therefore, by the Omitting types theorem for L(Q), it follows
that there is a standard model C= (C,V,...} of I" which omits Z(x}.
Since C omits IZ(x), it follows that V"= W. Also, B < C, and C has the
type (o ,00).

Exercises

1. Show that the class of Archimedian fields has a characterization in
Loy w, i.e. there is a sentence ¢ in Lo w where L is the language of ord-
ered fields, such that for a model A of L,

A!— @ iff A is an Archimedian field.

2. Let A be a countable model of L. Show that there is a sentence ¢ of
Lww such that for all countable models B of L, Bj= ¢ iff A = B.

3. Assume A and B are countable models of a countable L, and let A= B
in Lwyw. Show that A = B.

4. let A and B be elementary equivalent, k-saturated, infinite models.
Show that A and B are elementary equivalent in Lek.

5. Prove
1° If (A,q°) is a weak model of axioms for L(d4), Rr is induced by
{A,q¢) and (A,r¢) is induced by (A,Rr), then (A,q° )}s{A,r<).
2% If (A,q°) is induced by (A,R*}), where RA is *-regular in (A,RA)}, and
8% is induced by (A,q¢), then for all sentences ¢ of La%*:

(ARM) =g iff (A,5%) = ¢.

6. Show that Tarski-Vaught lemma holds for weak models of the language
L{Q) {which need not satisfy axioms K1, K2, K4, K5): Let (A,q) and (B,r)
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be weak models of the language L(Q). Then (A,q)<(B,r) iff
1" For any formula @{X,X1,...,Xa) of L{Q) and a1,...,an€A, if (B,r}f=
3x¢plas,...,an] then there is a€A such that (B,r) [-: ¢la,a1440098al.
2° A set Xeq is definable in (A,q) iff X=YnA for some Yer, which is de-
finable in (B,r) with "parameters" from A.

If @x is interpreted as "there exist uncountably many x", instead
of clause 2° we have
3° If XcB is uncountable and definable in (B,r) with "parameters” from
A, then XNA is uncountable.

7. let L be a first order language, R a binary relation symbol, and
L{(R)= LU{R}. Further, let * be the map introduced be Definition 5.3.2.
We shall say that a first order theory T of L(R) is regular (*-regular)
if 81, S2 and S3 (S1, S2, and S3 restricted to *-transforms of formulas
of L{Q)) are provable in T. T(Q) denotes a theory in L(Q) obtained from
T by expanding all schemes, if there are any, of T to all formulas of
L{(Q). Finally, let (4) denote the following scheme:
() dJyx © FyVx(epx —Rxy).
Prove
1° Let ReL, T be a theory of L and assume that the axioms K1-K5 for
L(Q) are provable in T by use of axioms of PR! and the scheme (d4). Then
T is a regular theory.
2° Let T be a *-~regular theory in L(R). Then for each formula ¢ of L{Q)
the following holds:

(1) TQ)}- ¢ implies Tf- ¢*.

(2) T+(4) |~ KI1-K5.
3" Let T be a *-regular theory in L(R). If

T(Q) |—x VydxRxy, T(Q) |« VxdyRxy,
then

(1) ’I‘(Q)}—x (¢ © ¢*), ¢ is a formula of L(Q).

(2) TR« ¢ iff T ¢*.

{3) T{Q) |« dxex € TyVx(gx — Rxy), y does not occur in ¢.
Here |—x denotes the provability relation with addition of Keisler
axioms K1-K5.

8. Show

1° There are 2% w;~like nonisomorphic models of PA.

2" There are 2%1(; -like nonisomorphic recursively saturated models of
PA.
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