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1. LINEAR INTEGRAL OPERATORS! 

The linear integral operators defined here are in compliance with the require­
ments of the Mathematical Theory of Composite and Prestressed Structures, mean­
ing that their form is adapted to the type of equations found in this theory. The 
application of such operators leads to the substitution of complicated mathematical 
evaluations with a concise symbolical calculus providing the simplest form of the 
results. 

Linear integral operator G is associated to a function of two time variables 
G = G(t, r) having the following property 

(1.1) G(t, r) = 0, t < r. 

It is defined for any function U = U(t, r) as 

(1.2) J = J(t, r) = it G(t, B)U(B, r) dO = GU, rO ~ r < t < 00. 

In input functions J(t, r) and U(t, r) the second variable is a parameter and oper­
ators cannot be associated to them. They fulfill the condition 

(1.3) U(t,r) = 0, t < r. 

Their limit values are denoted as follows 

(1.4) 

or simpler UO and Uoo . We apply the same symbols for a function of two variables 
when the first variable becomes t = rO+ and when t ~ 00. 

Let Eq. (1.2) be multiplied by function L = L(t, r) and integrated over the 
interval from r to t. Then we write 

!See Ref. [1.22] 
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(1.5) 11 = h(t,r) = it L(t, 0)1(0, r) dB = it L(t,w)dw i W 

G(w,O)U(O,r)dB. 

Applying the Dirichlet transformation [2.11]' the equation is redul:ed to 

(1.6) h = it [lot L(t,W)G(W,O)dw] U(O,r) dO. 

By substitution 

(1.7) F = F(t, 0) = lot L(t, w)G(w, 0) dw, 

we obtain 

(1.8) h = it F(t, O)U(O, r) dB. 

An alternate way for obtaining the same expression is to apply the symbolical no­
~tion. The left-hand side multiplication of the operator relation (1.2) by operator 
L gives 

(1.9) 

where 

(1.10) F=LG. 
In the Theory of Functionals, function F determined by Eq. (1. 7) is called the 
composition of the first kind of functions L and G. It is known that usual algebraic 
laws hold for such a composition except the commutative law which is valid if the 
functions Land G commute with each other [2.24]. It immediately follows that 
linear integral operators, defined here, have the same properties. 

We will list operations with operators and input functions, symbols and some 
properties of operators that we apply to the derivation of equations. 

1. The operator product complies with the associative law 

(1.11) 

and the distributive law as well 

(1.12) 

while in the general case the commutative law does not hold 

(1.13) LG;/; GL. 
The operators used in the Mathematical Theory form the set of commuting oper­
ators. The condition that they should satisfy is given later. 

,,2. The distributive law is valid for an input function as well 

(1.14) (b) G (I + U) = G I + GU. 

The operator relation in which no input function exists can be multiplied by an 
input function from the right-hand side, while by an operator it can be multiplied 
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from the left or right-hand side. IT the input function exists, it can be multiplied 
from the left-hand side only. Thus, Eq. (1.2) is multiplied from the left-hand side 
by the operator i, which yields 

(1.15) 11 = iI = i(GU) = (iG)u. 

3. The partial derivatives of function G(t, r) with respect to the first and 
second variable are denoted by the following symbols 

(1.16) G = aC(t, r) G' = aC(t, r) . 
at ' ar 

An input function possesses only the derivative with respect to the first variable 

(1.17) if = dU(t,r) . 
dt 

For the Heaviside step function H(t - r), the following denotation is introduced 

(1.18) 1* = 1*(t,r) = {I, for t > r 
0, for t ~ r. 

It appears as a function of two variables and also as an input function. 
The derivatives of the Heaviside step function with respect to the first and 

second variable are as follows 

(1.19) i = i(t, r) = J(t - r), I' = 1'(t, r) = -J(t - r). 

Symbol i is used when it is an input function, while. l' when it is a function to 
which the operator is associated. 

4. Multiply~g Eq. (1.10) by input function U = i we obtain the function to 
which operator F is associated 

(1.20) 

The above stems from the definition of the Dirac delta function. This operation 
translates the operator product into a composition of the first kind of functions L 
and G. 

5. From the definition of the Dirac delta function it is evident that 

(1.21) (a) I'u = u, 
Unit operator I' takes the role of unity in elementary algebra so that it commutes 
with any other operator. The following holds particularly 

(1.22) 1'1' = I'. 

6. In Eq. (1.2) instead of the input function we introduce its derivative if. 
After integration by parts, and considering condition (1.3) for an input function, 
we arrive at 

(1.23) 1= Gif = gU - G'U = (gI' - G')U, 
where 
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(1.24) 9 = g(t) = G(t, t). 

The indicated operation is symbolically written using Eqs (1.21a) and (1.14a). 
The following rule is introduced for concise writing: a function of two variables 

t and r when t = r is designated by a corresponding lower case letter as in Eq. 
(1.24); if it precedes an operator or a function of two variables it depends on its first 
variable while if it stands behind, it depends on its second variable; if it stands in 
front of an input function it depends on its sole variable. A different combination 
of a single variable function and an input function does not occur. 

7. Introducing L' into Eq. (1.2) instead of G and 1* instead of input function 
U, we get 

(1.25) L* = L*(t,r) = i'l* = 11* - L. 

Function L * is called the integral of function L'. It is evident that the following 
holds 

(1.26) 
L*' = -L', t > r, 

rO ~ r = t < 00. L*(t, t) = 0, 

Particularly the integral of Dirac delta function is the Heaviside step function 

(1.27) 1'1* = 1*. 

8. Let operator G be of the form 

(1.28) 'Y = const f. 0, 

where functions 9 and r are known. We define a division operation of the unit 
operator by operator G 

(1.29) 
I' - 1 --:::: = (G)- = L', 
G 

namely, we determine operator i 
(1.30) 

to be inverse to operator G. Functions l and A are unknown. 
The inverse operators commute with each other satisfying the relations of the 

type 

(1.31) 

In the first equation we introduce the expressions for operators G and i and mul­
tiply it by input function U = i. After carrying out the indicated operations and 
applying the results found in It. 4, we equalize the terms along the Dirac delta 
function and zero, and obtain 

(1.32) gl = 1 

and the nonhomogeneous integral equation 
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(1.33) 

By solving these equations, the unknowns l and A are found. We notice that Eq. 
(1.33) can be reduced to a Volterra equation of the second kind. 

If g = get) is bounded, continuous and a nonzero function for each t (t ~ r) and 
if function r = r( t, r) is bounded and continuous for all t and r under consideration 
(rO ::;; r < t < 00) then these equations uniquely determine unknowns l and A [2.11J, 
[2.24] so that inverse operator L is defined. 

Supposing that operator L is known, we use Eq. (1.31b) to derive in a similar 
manner Eq. (1.32) and the equation 

(1.34) 

When functions l and A have the above properties offunctions g and r, respectively, 
then the inverse operator G is defined. 

It should be noticed that operator relation between inverse operators contains 
nonhomogeneous integral equation and that the determination of inverse operator 
presupposes solving such an equation. 

9. By the homogeneous integro-differential equation 

° 1 (t * . ° (1.35) I(t,r ) = A" iTo F (t,r)U(r,r )dr, oX> 0, 

that is 

(1.36) 

a relationship between stress and strain for concrete is expressed, corresponding to 
the axial state of stress. Function F* = F*(t, r) describes its physical properties 
while for the moment we still do not identify functions U and I. The nondimensional 
function F*, multiplied by dimensional constant *' transforms input function U 
into function I. 

In order to solve Eq. (1.35) it is necessary to give it a form of a nonhomogeneous 
integral equation. Applying the integration by parts and in view of the property 
(1.3) of function U we get 

(1.37) lIt 
I(t,rO) = A"f(t)U(t,rO) + A" iTo q,'(t,r)U(r,rO)dr. 

We note that it can be reduced to a Volterra equation of the second kind. We can 
derive the same equation symbolically from Eq. (1.36) and the formulas in It. 6 

(1.38) 

where the following operator is introduced 

(1.39) 

In accordance with Its 6 and 3 we have 
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(1.40) 
(a) f = f(t) = F*(t, t), 

(b) ~' = ~/(t,'T) = _F*', t > 'T. 

Function ~' represents the kernel of the integral equation (1.37), that is (1.38). 
U sing It. 7 we define its integral as 

(1.41) ~* = ~*(t,'T) = i/1*, 

satisfying the condition 

(1.42) ~*(t,t)=O, 

Equalizing the right-hand sides of Eqs (1.36) and (1.38) when U = 1* and 
applying the relations from Its 4 and 7, we demonstrate that 

(1.43) F* = F/1* = f1* + ~*, 
recognizing that the transformation function F* is the integral of function P, to 
which operator F' is associated. 

If functions f and ~' have the same properties as functions 9 and r (It. 8), 
respectively, then inverse operator k is defined. 

(1.44) R/ =rl/-~/. 
Further, if function [= let, 'TO) is bounded and continuous for each t (t > 'TO), the 
integral equation (1.38) has a unique solution 

(1.45) U = AR' [. 
Function \I!' = \I!'(t, 'T) is a resolvent kernel of the initial equation. Its integral is 

(1.46) \I!* = \I!*(t,'T) = ~/1*, 
fulfilling the condition 

(1.47) \I!*(t,t) =0, 

Analogous to Eq. (1.36) we write the homogeneous integro-differential equation 

(1.48) U = ill*i, 
corresponding to Eq. (1.45). Function R* = R*(t, 'T) is the integral offunction R', 
to which operator R' is associated 

(1.49) 

where 

(1.50) 

R* = R/1* = r1* - \I!* , 

r = r(t} = R*(t, t), 

\I!' = \I! I (t, 'T) = R*', t> 'T. 

The nondimensional function R* , multiplied by dimensional constant A, transforms 
input function [ into function U. 

For inverse operators F' and k Eq. (1.31) holds 

(1.51) PIR/=l/, R'FI=l/. 
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In our problem the transformation function F* is known, which means that function 
I and the kernel q>' of the integral equation (1.38), are known. Based on It. 8 we 
write 

(1.52) Ir = 1 

and the nonhomogeneous integral equation 

(1.53) q>'r - ~1J!' - ~'1J!' = 0, 
r 

the usual form of which is 

(1.54) 
1 rt 

q>'(t,r)r(r) - r(t) 1J!'(t,r) - iT q>'(t,B)1J!'(B,r)dB =0, 

Solving these equations for r and the resolvent kernel 1J!', the inverse operator R' 
as well as the solution (1.45) of the initial equation (1.38), are determined. When 
we carry out the integration, described by Eq. (1.46), we obtain function 1J!*, that 
is the transformation function R* (1.49). 

The same function can be directly determined. Multiplying Eq. (1.51) by input 
function 1* and combining it with Eqs (1.49), (1.43) and (1.27), we obtain 

(1.55) (a) F'R* = 1*, (b) R'F* = 1*. 

The above relations also contain the nonhomogeneous integral equations which can 
be reduced to Volterra equations of the second kind. Starting from the fact that 
the transformation function F* is known, we use the first relation introducing Eqs 
(1.39) and (1.40a). Thus we derive the equation in the unknown R* 

(1.56) F*(t,t)R*(t,r) + it ip'(t,B)R*(B,r)dB = 1, r;;?: rO, 

whose kernel is also function q>'. 

10. Let operator L be inverse to operator a and let operators Pj be expressed 
in terms of operator a in the following manner 

(1.57) aj,bj = const. ¥ 0; j = 1,2, ... ,no 

- -It is easy to show that operators Pi and Pj , satisfying the above relation, commute 
with each other [1.9], while operators a and L commute with each operator Pj . 

Thus 

PiPj = PjPi , i ¥ j, 
(1.58) Pja = GPj, 

PjL = LPj , i,j = 1,2, ... ,n. 

Let operator Qj be inverse to operator Pj . Then 
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(1.59) 
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QJ;Jj = QjQi, 
Q/j = GQj, 

QjL = LQj, 

i #j, 

i, j = 1,2, ... , n. 

Operators Pj, Qj (j = 1,2, ... ,n), G and L, whose properties are described here, 
form the set of commuting operators. 



2. STRESS-STRAIN RELATIONS 

2.1. Concrete 

Based on experimental results, the following assumptions on the physical prop­
erties of concrete (c) have been adopted [2.2], [2.3), [2.15), [2.16): 

a) concrete is homogeneous and isotropic; 
b) instant loading and load relief produce instantaneous finite elastic deforma­

tion; 
c) under long term loading creep deformation appears; if the loading starts 

acting at different ages of concrete then various amounts of this deformation occur 
within the same time intervals and for the same load magnitudes; 

d) under long term loading creep deformation remains finite even for stresses 
close to failure stresses; 

e) after unloading, part of the creep deformation is restored with time and 
represents its reversible portion, while the limit value of the remaining creep defor­
mation represents its irreversible part; 

f) in the course of concrete hardening, gradual spontaneous deformation takes 
place not as a consequence of external forces; this is the so-called concrete shrinkage. 

Due to the nature of the problem treated in this theory it is sufficient to consider 
the uniaxial stress in concrete. The assumptions concerning the other states of 
stress are ignored. For the same reason the behaviour of concrete under special 
conditions is not considered. 

Consistent with these assumptions, concrete possesses the properties of an ag­
ing linear viscoelastic material. A mathematical formulation of uniaxial stress­
strain relation for concrete has been given by Maslov [2.15) and McHenry [2.16). 
They assumed the creep deformation to be a linear functional of stress history, 
namely for stress effects they have adopted the principle of superposition modified 
by the age of concrete. 

The principle of superposition was established by Boltzmann [2.6) and gener­
alized by Volterra [2.23]. It is expressed by a relation of the type of Eq. (1.36) 
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(2.1) 

where (J'c = (J'c(t, rO) is the stress in concrete, positive when it produces tension; 
e = e(t, rO) is the total longitudinal strain, positive when it produces elongation; 
es = es(t,rO) is the known longitudinal strain due to concrete shrinkage and 
gradually grows from zero, so that 

(2.2) e~ = O. 

For each value of variable t (t > rO) input functions are bounded and continuous, 
fulfilling condition (1.3). The time of concrete preparing is r = 0 and r = rO is 
the time of the first load or deformation application. In Eq. (2.2) the shrinkage 
deformation realized in this period is neglected. 

The nondimensional concrete transformation function F* is determined by Eqs 
(1.43) and (1.52) 

(2.3) F*=~1*+~*, 
r 

assuming that such an arbitrary function closely approximates concrete physical 
properties. When the unit stress (J' c = 1* acts from time r (r ~ rO) then, combining 
Eq. (2.1) and results in It. 4, Ch. 1, we show that 

(2.4) 1 F* 1 (11* A.*) e - es = EO = EO - + ~ . 
c c r 

Having in mind Eq. (1.42), that is that ~*(t, t) = 0, we get the instantaneous elastic 
deformation 

(2.5) 
1 1 

e-eS=Eo-' er 

which demonstrates the time variation of the modulus of elasticity (Young's mod­
ulus) of concrete 

(2.6) Ec = Ec(t) = E~r(t), 
Its value at t = rO is constant E~, appearing in the above equations 

(2.7) E~ = Ec(rO). 

It is convenient to represent the nondimensional function r in the form of 

(2.8) r(t) = 1 + q(t), q(t) ~ 0, 

where 

(2.9) 

In Eq. (2.4) we identify nondimensional function ~* = ~*(t,r) as the concrete 
creep function. Multiplied by dimensional constant ~, it determines the creep 
strain value at time t (t > r) due to a unit stress, introduced at r and sustained 
during the interval (r ~ rO, t < 00). Under the same condition, the concrete 
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t 

transformation function F* = F*(t, r), multiplied by -b, gives the strain value in 
time t (t > r). C 

The concrete transformation function F* = F*(t,r) is positive, bounded, 
smooth and continuous for all t and r under consideration (rO :::; r < t < 00) 
and fulfills condition (1.1). Curves F*(t, r = const.) (Fig. 2.1) are monotonic in­
creasing having the limit values of 

(2.10) lim F*(t,r) = F*OO(r), 
t-+oo 

Curves F*(t = const., r) are monotonic decreasing ones. Function F*' = F*'(t, r), 
that is -<l)'(t,r), is bounded and continuous for each t and r (rO :::; r < t < 00). 
Function r(t) is bounded, continuous, strictly positive and monotonic increasing. 
According to Eq. (2.8) we can write 

(2.11) 

The values of the concrete transformation function F*, for all t and r under con­
sideration, are found in the following limits 

(2.12) ~ :::; F*(t, r) :::; F*OO(rO), rO :::; r < t < 00. 
rOO 

From the homogeneous integro-differential equation (2.1) and the results given 
in It. 9, Ch. 1, we derive the nonhomogeneous integral equation 

(2.13) 

where 

(2.14) p' = ~I' +~'. 
r 
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When we recall the properties of functions r and F*/, that is <[>1, and the 
contents of Its 8 and 9, Ch. 1, we know that operator R', being inverse to operator 
F', is defined as 

(2.15) 

Also, having in mind the properties of input function c - cs' we know that Eq. 
(2.13) has the unique solution 

(2.16) 

which can be written in the following form 

(2.17) O"c = E~R:(i - is)' 

The nondimensional concrete transformation function R* is determined by for­
mula found in It. 9, Ch. 1 

(2.18) R* = r1 * - 'l'*. 

Consider the action of the unit strain c - Cs = 1* introduced at r and sustained 
constant during the interval (r ~ rO, t < 00). From the above equation and results 
given in It. 4, Ch. 1, it is simple to obtain 

(2.19) 

Here we notice the nondimensional concrete relaxation function 'l'* = 'l'*(t,r). 
Multiplied by F11 it determines the stress relaxed during the period t - r, caused 
by the action of a unit strain from r, while the concrete transformation function 
R* = R*(t,r), multiplied by £"1, gives the stress value at time t (t > r) for a unit 
strain c - Cs introduced at r. 

The concrete transformation function F* is known as a test function. It is 
stated in It. 9, Ch. 1, that from Eq. (1.55a) we can reveal the properties of the 
second concrete transformation function R*. We find that function R* = R* (t, r) 
is positive, bounded, smooth and continuous for each t and r (rO ~ r < t < 00) 
and satisfies condition (1.1). Curves R*(t, r = const.) (Fig. 2.2) are monotonic 
decreasing, having the limit values of 

(2.20) lim R*(t,r) = R*OO(r), r ~ rO. 
t-too 

Curves R*(t = const., r) are monotonic increasing ones. Function R*' = R*'(t, r), 
that is 'l" (t, r), is bounded and continuous for all t and r under consideration (rO ~ 
r < t < 00). The boundaries in which the values of the concrete transformation 
function R* can be found are 

(2.21) 

It should be noticed that the parts of concrete transformation functions F* and 
R*, as well as the corresponding operators F' and R', have the obvious physical 
meaning. The first members describe the effects of the concrete instantaneous 
elasticity while the second members introduce the effects of the concrete creep or 
relaxation property. 
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It is easy to show that 

(2.22) F*O(TO) = 1, 

21 

t 

namely, that at t = TO+ the relation between stress and strain for concrete is 
formally the same as for an elastic material 

(2.23) O'~ = ~co. 

The stress-strain relation (2.16) will be used in the form of 

(2.24) 

where 

(2.25) 

Concrete shrinkage deformation function cs satisfies Eq. (2.2) so that 

(2.26) O'~ = o. 
In the theory the concrete shrinkage function Cs appears in two forms: as an 

arbitrary function describing experimental curves and as the function having the 
similar time variation as the concrete transformation function F* 

(2.27) £s = -d(F* -1*), 

where constant d is determined by 

( ) d = _ c'S 
2.28 F*OO(TO) -1 

Such an assumption is common in literature and it is of satisfactory accuracy [2.10]' 
[2.18]. Applying Eq. (1.55b) and (1.49), we obtain 

(2.29) O's = ~d(l* - R*). 
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It is assumed that the proposals for concrete transformation function F* predict 
the behaviour of this material as accurately as possible. It means that reversible 
and irreversible creep deformation and their accurate amounts should be expected, 
as well. As this is not always the case, the criteria for the determination of this 
property are established and the amounts of these creep deformations, predicted 
by function F*, are also determined [1.11], [1.12], [1.16]. 

Let concrete be exposed to action of a unit stress in a finite time interval (TO, T), 
meaning O"c = l*(t,TO) and O"c = -l*(t,T) (Fig. 2.3a). According to Eq. (2.4) and 
cs = 0 respective strains can be found 

0) 1 [ 1 *( 0] c(t,T = Eg r(t) + <P t,T) , 

c(t, T) = - ~g [r~t) + <p*(t, T)], 

(2.30) 

Their limit values when t -t 00 are 

(2.31) 
Coo(TO) = ~~ [r: + <P*oo(TO)] , 

coo(T) = - ~o [r: + <P*oo(T)]. 
c 

The sum of these equations indicates the amount of the irreversible part of the 
creep deformation which occurs in t -t 00 due to a unit stress acting in the time 
interval (TO, T) (Fig. 2.3b) 

(2.32) 

From the same figure we read that the amount of the reversible creep deformation 
in t -t 00 due to the same loading is 

(2.33) ° ° 1 (0) cR(T,T ) = c(T,T ) - ~r(T) - Cl T,T , 

where c(T, TO) is the strain at t = T due to a unit stress introduced at TO, while 
the quantities Cl (T, TO) and c R (T, TO) being factors of irreversible and reversible 
creep deformation, respectively. Substituting Eq. (2.31) into the above relations we 
express them in terms of the creep function 

(a) cl(T,TO) = ~O [<P*oo(TO) - <P*oo(T)] , 
c 

(b) c R (T, TO) = ~O [<p* (T, TO) - <p*OO (TO) + <p*oo (T)] . 
c 

(2.34) 

It may happen that the concrete transformation function F* predicts the ex­
istence of the reversible creep deformation when unloading occurs in finite time 
T and that it does not predict it when unloading is at T -t 00, i.e. Too. While 
considering this case we assume that the interval between the time TOO and t -t 00 
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FIGURE 2.3. Loads (a); factors of irreversible and reversible creep 
deformation (b) 
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I' 

~- ... 
t 

is sufficiently long enough for the complete reversible creep deformation to occur. 
Then from Eq. (2.34b) it follows 

(2.35) 6'~(rO) = ;0 ~*OO(TOO). 
c 

If the concrete transformation function P* satisfies the conditions 

(2.36) 

it predicts irreversible and reversible creep deformation when load relief is in finite 
time T as well as when T -t 00. 

The factors of irreversible and reversible creep deformation determine the 
amounts of these portions of the creep deformation that are realized due to a­
unit stress action in time interval (rO, T) when T is finite and when T -t 00. Their 
application to the eEB-FIP creep prediction model, made in Refs [1.11], [1.12], 
has shown that it does not foresee irreversible and reversible creep deformation in 
amounts as was cited in Ref. [2.7]. 

It can be found that the concrete transformation function P* has the form of 

(2.37) P* ~ 1*~ + ~* 
- r ' 
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(see It. 6, Ch. 1) meaning that function r = r(r) refers to the instantaneous elastic­
ity in time when the stress action starts. The consequence is that in time t (t > r) 
function ~* does not determine the accurate amount of the creep strain as can 
be seen in Fig. 2.1. Mc Henry [2.16] names deformation b~* the true creep and 

b~· the apparent creep. Comparing Eq. (2.3) with Eq. "(2.37) we can establish 
the relation between them 

(2.38) ~·(t,r) = r(~) - r~t) + ~*(t,r), r ~ rO. 

If we assume that from t = rO the value of the modulus of elasticity is invariable 
the following holds 

(2.39) Ec(t)=E~, t~rO, 

while from Eq. (2.9) we get 

(2.40) r(t) = 1, q(t) = 0, t ~ rO. 

Then no difference exists between the true and apparent creep. 
Supposing a constant Young's modulus, the concrete transformation functions 

F* and R* and the corresponding operators F' and k become 

(2.41) 
(a) F*=I*+~*, 

( c) R* = 1* - \]!*, 

(b) F' = I' + ~', 
(d) R'=I'-~'. 

2.2. Steel 

We introduce three kinds of steel: prestressing steel (P), steel parts (n) and 
reinforcing steel (m). 

Prestressing steel has the relaxation property. The stress-strain relation is then 
given in the integral form (It. 9, Ch. 1) 

(2.42) 

or 

(2.43) (Jp = EpR~c. 
We suppose that in time interval (r, t) (r ~ rO) the transformation function for this 
steel type is expressed by the concrete transformation function R* in the following 
way [1.7] 

(2.44) R; = p'l * + pR*, p' = 1 - pj p > 0, 

where p is a constant for each pair (r, t) 

(2.45) 
(p 

p = 1 - R*(t, r)' 

Here (p = (p(t, r) is the known ratio of the stress relaxed during the period t - r 
to the initial stress, while the value of the member in the denominator should 
be calculated for the given pair (r, t). Coefficient p also depends on the time 
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when loading starts to act and on the magnitude of the initial stress, which is not 
covered by the above equation. However, the assumption has been adopted after 
the calculation of the stresses in prestressed columns and their comparison with 
measured values, as will be described later. 

The operator in Eq. (2.43) is 

(2.46) R~ = p'l' + pR' 
and the known relation holds 

(2.47) R; = R~1 *. 
In view of Eqs (2.18), (2.15) and (2.8), we find 

(2.48) R; = Tpl* - pip*, R~ = TpI' - p~/, 

where 

(2.49) Tp = 1 + pq. 

When t = 7 0+ the stress-strain relation is formally the same as for the Hookean 
material 

(2.50) 

since 

(2.51) 

Introducing (p = 0, that is p = 0 (p' = 1), in the foregoing formulas we ignore 
the relaxation property of steel (P). Then 

(2.52) R* = 1* R' = l' p = o. p , p , 

The integral relation between stress and strain becomes an algebraic one (It. 5, Ch. 
1) and expresses Hooke's law 

-, 
(2.53) CTp = Epl e = Epe. 

Steel parts (n) and reinforcing steel (m) are of elastic materials. Their trans­
formation functions and corresponding operators are 

(2.54) RI: = 1*, R~ = 1/, k = n,m. 

Stress-strain relations are determined by Hooke's law 

(2.55) CTk = EkI/e = Eke, k = n,m. 

Mod uli of elasticity of these types of steel are designated as Ev (v = p, n, m). 
Stresses CTv (v = p, n, m) have the properties of an input function, and the same 

sign convention holds as for stress in concrete (Ch. 2.1). 
In the sense of Its 10 and 5, Ch. 1, operators that correspond to the transfor­

mation functions for all types of steel create a set of commuting operators, together 
with operators F' and R'. 
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3.1. Reduced Cross Section Geometry 

Before we develop the equations of the elementary theory for predicting the 
behaviour of structures under the action of the permanent loads, it is useful to 
define the geometrical characteristics of a composite cross section. 

Consider a typical cross section in which the co-action of concrete (c) and, in 
the general case, of three kinds of steel: prestressing steel (P), steel parts (n) and 
reinforcing steel (m) is insured (Fig. 3.1). The centroid of a transformed cross 
section is denoted as C, being the origin of the xy coordinate system, located in 
the cross sectional plane. Consider a symmetrical cross section with respect to the 
y axis taken to be positive when it is directed to the bottom edge. 

To define the reduced cross section geometry we introduce the following reduc­
ing factors 

_ E~ E1} 
(3.1) lie - E' 1I1} = E' V = p,n,m, 

where E is Young's modulus arbitrary chosen. 
The part j (j = c, p, n, m) of cross section area is Aj and its portion, separated 

by y = canst., is Aj • The total area of steel parts and reinforcing steel is designated 
as A I and of all steel members in the cross section as Aa. The corresponding 
reduced areas are 

(3.2) (a) A jr = IIjAj, .. (b) Ajr = IIj A jr , j = c,p,n,m, 

(3.3) AIr = LAkr , k=n,m, 
k 

(3.4) Aar = 2:: A1}r, V =p,n,m. 
1} 

The area of a transformed cross section is the sum of all areas Ajr 

(3.5) j = c,p,n,m. 
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FIGURE 3.1. Composite cross section 

The reduced first moment of area Aj , that is Aj, with respect to the x axis, is 

(3.6) 
(a) Sjr = Szjr = Vj! ydA, 

Aj 

(c) Sjr = Szjr = Vj /. ydA, 
Aj 

j = c,p,n,m, 

where Yj is the ordinate of the centroid Cj of area Aj . The reduced first moments 
of areas A I and Aa are 

(3.7) 

and 

(3.8) 

SIr = Szlr = LYkAkr = ylAlr, 
k 

" 

k=n,m 

v=p,n,m, 

where YI is the ordinate of the centroid Cf of area AI and Ya is the ordinate of 
centroid Ca of area Aa. The position of these points, measured from the centroid 
of the concrete part of the cross section Cc, are determined by the ordinates 

(3.9) k=n,m 

and 



28 

(3.10) 
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1 
ea = A LevAvr, 

ar v 
v =p,n,m, 

where ek and ev are the ordinates of the centroids Ck and Cv of areas Ak and 
Av, respectively, in regard to the same point. The position of the centroid of the 
transformed cross section C, measured from Cc, is given by the formula 

(3.11) 

The following relation holds 

(3.12) 

v =p,n,m. 

ea = Ya - Ye· 

From the condition that the sum of reduced first moments of all areas Aj must 
vanish, we find the position of the centroid of a transformed cross section C 

(3.13) LSjr = 0, 
j 

j = c,p,n,m. 

The reduced moment of inertia of area Aj about the axis passing through Cj , 
parallel to the x axis, is denoted by 

(3.14) Ijr=lzjr=vj {(Y-Yj)2dA, j=c,p,n,m. lA; . 
The reduced moments of inertia of areas Af and Aa, about the axes parallel to the 
x axis through centroids Cf and Ca, respectively, are 

(3.15) 

and 

(3.16) 

Ifr = lzfr = L[hr + (Yk - Yf)2 Akr j, 
k 

v 

k=n,m 

v =p,n,m. 

The reduced moment of inertia of area Aj with respect to the x axis is 

(3.17) Jjr = Jzjr = Vj { y2dA, lA; 
while of areas Af and Aa are 

(3.18) 

and 

(3.19) 

j = c,p,n,m, 

The moment of inertia of a transformed cross section is defined by the following 
sum 

(3.20) j = C,p,n,m. 
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It is convenient to use the dimensional quantity 

(3.21) 

We define elements '1hl of the symmetric scalar matrix of the reduced cross 
section geometry, = II'1hII12,2 

Aer Apr Jer Jpr 
'111 = A + P A ' '122 = J + PT' 

Ser Spr Spr 
'112 = '121 = S + Ps = S 

(3.22) 

and elements '1~1 of the symmetric scalar matrix " = 11'1~1112,2 

(3.23) 

1 Air ,Apr 
'111 = T+PT' 

1 Jlr IJpr 
'122 = T+P T' 

1 1 Sir ISpr 
'112 = '121 = S + PS' 

It is evident that 

(3.24) 1: {I, for h = l, 
Uhl = 

0, for h =f l; h,l=1,2. 

The principal values of matrix" denoted bY'1h and of matrix ,', denoted by '1~, 
satisfy the condition 

(3.25) '1h + '1~ = 1, h = 1,2. 

For them the following order is adopted 

(3.26) (a) 1>'11>'12>0, (b) 1 > '1~ > '1~ > 0, 

referring to the general case of cross section geometry. The determinants of the 
matrices are given by the formulas 

(3.27) 

or in the following forms 
(3.28) 

12 1 1 1 1 12 
'1 = '11 '12 = '111 '122 - '112 

2 _ Aer ler [A, er Ipr Apr ler AerApr ( _ )2] 2 Apr Ipr 
'1 - A J + P A J + A J + AJ Ye YP + P A J' 

12 _ Air llr 1 [Air Ipr Apr llr AlrApr ( _ )2] 12 Apr Ipr 
'1 - A J + P A J + A J + AJ Y I Yp + P A J' 

In order to shorten the writing of equations it is convenient to introduce 

(3.29) 

6.'1 = '11 - '12 > 0, 

0,1 = '11 - '111 = '122 - '12 > 0, 

0,2 = '111 - '12 = '11 - ,22 > 0. 
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We cite the relations which are of use for mathematical evaluations 

(3.30) 

J J. J 2 AerAar = er + ar - YeYa A = fer + far + ea A ' 

11 + 12 = 111 + 122 = 1 - 1'2 + 1 2
, 

I~ + I~ = I~l + I~2 = 1 + 1'2 - 1
2

, 

8/1 812 = It2' 

The following dimensional coefficients appear in the equations 

(3.31) All = A, A22 = J, A12 = A21 = S. 

When steel (P) is considered as the Hookean material p = 0 or p' = 1 is 
introduced. The elements of the matrices '"'( and '"'(' become 

Aer Jer Ser 

(3.32) 
111 = A' 122 = J' /12 = 121 = S' 

, Aar , Jar , _ , _ Sar 
111 = A' 122 = J' /12 - 121 - S' 

while Eq. (3.28) reduces to 

(3.33) 
2 Aer fer 

I = AJ' 
,2 Aar far 

I =AJ' 
In Ref. [1.22] stresses and displacements in composite and prestressed structures 
are derived under the above assumption. For that purpose the same reduced cross 
section geometrical characteristics as can be found here have been defined and used. 
The exceptions are the quantities containing constant p which have been defined 
for p = 0, that is p' = 1. 

3.2. Basic Equations 

Consider a composite and prestressed coplanar structure whose cross sectional 
dimensions are small compared to their lengths and whose radii of curvature are 
large in comparison to the cross section heights. The equations are derived under 
known assumptions of the elementary beam - bending theory which is established 
in the analysis of elastic structures. 

A structure is of variable cross section and its axis represents the locus of 
the centroids of transformed cross sections forming the curve line. The tangential 
coordinate of any point of the structure axis is denoted by s or u. The concrete 
parts of the cross section are uncracked. 

The following permanent influences are introduced: dead load (G), concrete 
shrinkage (S), prestressing by forces (P) and subsequent addition of elements to 
cross sections (F) after the influence of F (F = G, P) takes effect. The permanent 
loads, which produce the influences, start to act at time 7"0. They are located in 
the plane of symmetry of a structure being at the same time the bending plane. 

From the above influences the following stress resultants appear: the axial force 
N = N(s, t, 7"0), the shearing force T = Ty = T(s, t, 7"0) and the bending moment 
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M = Mz = M(s,t,rO). Positive forces Nand T act in the positive s and y 
directions, respectively, while the positive bending moment M produces tension in 
the positive y quadrants of the cross section. As input functions they are bounded 
and continuous for each t (t > rO) and fulfill condition (1.3). 

We begin our investigation by developing the governing equations of the ele­
mentary theory. They will later be used to derive the exact stress and displacement 
formulas under the assumption that the concrete transformation function F* is an 
arbitrary function which describes the physical properties of concrete. To create 
the governing equations we start from the following relations referring to any time 
t (t > rO). 

The first is Navier's hypothesis of plane cross sections 

(3.34) c = 17 + yx, 

where c = es = c(y, s, t, rO) is the normal strain at an arbitrary point of the cross 
section while 11 = TJ(s, t, rO) and x = x(s, t, rO) are the normal strain and the 
curvature in the ys plane at any point of the deformed structure axis. The two last 
functions describe the cross section deformation. 

The four equations represent the relationships between normal stresses (1j = 
(1sj = (1j(Y, s, t, rO) and common strain c for materials which co-act in a composite 
cross section (Ch. 2) 

(3.35) 

(3.36) 

and 

(3.37) 

0-' 
(1e = EeR c + (1s, 

(1p = EpR~e = Ep(p'l' + pR')c 

- E -I' (11e - le C, k=n,m. 

The last two equations define the stress resultants by the formulas 

(3.38) N = L i O"jdA, M = 2;:: i. YO"jdA, j = c,p,n,m. 
J ' J ' 

The meaning of function N = N(s, t, rO) and M = M(s, t, rO) will be explained 
later. 

For determination of displacements the principle of virtual forces is applied 

(3.39) ~= l [M(u,s)x(u,t,rO)+.IV(u,S)11(u,t,rO)] du, 

where ~ = e(s, t, rO) is the generalized displacement of a point on the deformed 
structure axis with coordinate s, while.IV = .IV(u, s) and M = M(u, s) represent the 
axial force and bending moment at point u produced by corresponding generalized 
virtual force P = 1 * at point s. Since.IV and M satisfy only the equilibrium 
conditions, they are time independent. 

Based on the creep model, described by the Rate of Creep Method, Duric 
[2.10] has developed the exact stress expressions for statically determinate struc­
tures whose cross sections are of arbitrary geometrical characteristics. For that 
purpose Duric has established the first seven equations (3.34)-(3.38) where Eq. 
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(3.35) has been adapted to the above mentioned concrete transformation function 
F*, while instead of Eq. (3.36) Hooke's law has been introduced. By applying 
N avier's assumption, the stress-strain relations and the equations for stress resul­
tants, Durie was the first to introduce into this problem the procedure common for 
homogeneous elastic cross sections. A great number of authors have divided the 
axial force and bending moment into the parts belonging to steel and concrete and 
afterwards their time variations have been determined from the equilibrium con­
ditions and the deformation compatibility of steel and concrete. Compared with 
such a complicated approach, we can say that Duric has established a simple and 
general method which has been found to have an extraordinary application in the 
Mathematical Theory of Composite and Prestressed Structures. 

J. Lazie [1.4], [1.1] has expanded Durie's procedure to displacements by apply­
ing the principle of virtual forces. For the creep model prediction of the Hereditary 
Theory J. Lazie has derived the first accurate solutions for stresses and displace­
ments for statically indeterminate structures by the known method used in the 
elastic analysis. 

Following Durie's procedure, from the first seven equations we eliminate the 
common strain c and stresses (J'j (j == C, p, n, m). Using the operator calculus, 
after simple mathematical evaluations and the introduction of reduced cross sec­
tion geometry (Ch. 3.1) we come to the sought after equations, the so-called basic 
equations, referring to an arbitrary cross section in time t (t > 1"0) 

E(AR~l TJ + SRbx) == N, 

E(Sii!21TJ + J~2X) == M. 
(3.40) 

Functions 7J and x are derivatives, with respect to variable s, of the s and y compo­
nents of the displacement of a point on a deformed member axis. In regard to these 
functions, the above is the system of integro-differential equations. However, we 
retain 7J and x as unknowns, being the solutions of simultaneous nonhomogeneous 
integral equations. 

Before we begin to solve the basic equations let us determine the kind of per­
manent load by which the concrete shrinkage is introduced. Substituting N == 0 
and M == 0 into Eq. (3.38) and performing the same procedure as for the derivation 
of the basic equations, we arrive at 

(3.41) 

where 

(3.42) 

E(AR~l1) + SR~2X) == ns, 

E(S~lTJ + J~2X) = ms, 

ns=ns(s,t,1"°)=- ( asdA, 
lAc 

ms == ms(s,t,1"°) = - [ yasdA 
lAc 

and where stress as is determined by Eq. (2.25). From Eq. (3.41) it can be shown 
that n s and m s represent the load by axial forces and bending moments with 
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respect to the centroid of the transformed cross section C. Loading by axial forces 
means that at every point of the member axis in the tangent direction acts a pair 
of balanced forces, the magnitudes of whkh are ns' Loading by bending moments 
means that at every point of the member axis in the plane of symmetry acts a pair 
of balanced couples, the moments of which are ms [1.31J.2 

For statically determinate structures, ns and ms are the axial forces and bend­
ing moments due to concrete shrinkage. Considering Eqs (3.40), (3.38) and (3.41), 
we get 

(3.43) 

from where it can be seen that for statkally determinate structures N and M are 
the stress resultants due to all permanent influences, except concrete shrinkage. 
For statically indeterminate structures they are the sum of the stress result ants 
produced by redundants corresponding to concrete shrinkage and due to remaining 
permanent influences. 

To continue our investigation we are going to solve the basic equations. During 
their evaluation, operators Rhl (h, l = 1,2) are formed. They are expressed in terms 
of operator R', referring to the concrete transformation function R*, and elements 
"Yhl (3.22) of the scalar matrix "Y 

(3.44) r { 1, for h = l, 
Uhl = 

0, for h =ll; h,l = 1,2. 

Since we are considering a structure with varying cross section, the reduced cross 
section geometrical characteristics are functions of coordinate s. For that rea­
son functions Rhl = Rhl ("Yhl, t, r) depend on the same variable, so that Rhl = 
Rhl(s,t,r). In accordance with It. 10, Ch. 1, operators Rhl , together with R', F' 
and R~ (Ch. 2), form the set of commuting operators. 

The operator matrix of the basic equations (3.40) is 

(3.45) 

where, instead of transformed cross section characteristics A, S, J, the quantities 
Ahl (3.31) are introduced. This is a symmetric matrix since the coefficients Ahl and 
the scalar matrix "Y are symmetric. 

We recall that for linear integral operators the laws of algebra of plain numbers 
hold and that, in our case, the commutative law is included. Using this circum­
stance, we solve the basic equations for 'TJ and x formally, as a system of algebrai~c 
equations. Let the solution be of the form 

1 - 1 -
(a) E'TJ = A F{lN + SF{2 M , 

1 - 1 -
(b) Ex = SF~lN + JF~2M. 

(3.46) 

2See also Ref. [1.6] 
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The inverse operator matrix 

(3.47) 

is symmetric and is determined by the known expression 

(3.48) 

where 

(3.49) 
detR' = AJ(R~1~2 - R~2~1) = AJlY, 

jj' = R~l ~2 - R~2~1' 
From the above equations operators F~l are obtained 

(3.50) F{l = (jj,)-l ~2' F~2 = (jj')-l R~l' F{2 = F~l = _(jj')-l R~2' 

It can be shown that two operators R~ = R~(rh' t, 7) exist 

(3.51) R~ = 1';5' + I'hR', h = 1,2, 

in which the principal values I'h of the scalar matrix 'Y appear and whose product 
gives operator jj' 

(3.52) jj' = R~~. 
An alternate form of the same operators can be obtained using Eqs (2.15) and 

(2.8). Then 

(3.53) R~ = rhl' - I'h~" h = 1,2, 

where 

(3.54) h = 1,2. 

Functions rh = rh(rh,t) are bounded, continuous and strictly positive for each t 
(t > 7°). For function \lI' = \lI'(t,7) it has already been shown (Ch. 2.1) that it 
is bounded and continuous for all t'and 7 under consideration (7° ~ 7 < t < (0). 
Consistent with It. 8, Ch. 1, the inverse operators Ft. = Fh (rh, t, 7) are defined 

- 1- -
(3.55) F~ = -I' + I'h \lI~, h = 1,2, 

rh 
fulfilling the known conditions 

(3.56) R'hF~ = 1', F~R~ = 1', h = 1,2. 

Together with operators R~ they belong to the already mentioned set of commuting 
operators. 

It is evident that 

(3.57) 

as well as that operators F~l may be expressed in terms of operators F~ in the 
following manner 
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(3.58) 

The solution of the basic equations is given by the above relations and Eq. 
(3.46). It is formal and indicates only the list of operations that have to be carried 
out to determine unknowns TJ and x. Being defined by triple operator products 
their form is inconvenient, especially because they are the starting expressions for 
the derivation of the stress and displacement formulas. It is for this reason that 
our next step is to simplify them. 

We refer to Eqs (3.56) and (3.51), and obtain 

(3.59) h = 1,2, 

while from the above relation and Eq. (1.51) we develop 

( ) 
, -, -, -, -, h 

3.60 'YhF Fh = F - 'YhFh' = 1,2. 

Combining the two foregoing expressions we show that 

(3.61) 

Finally, applying the first and third formula and Eq. (3.44), operators F~l are 
rearranged into the simplest form 

- 1 - -
(a) F{1 = A'Y (c5'Y2F{ + c5'YIFD, 

- 1 - -
(3.62) (b) F~2 = A/c5'YIF{ + c5'Y2F~), 

-, -, 'Y12 -, -, 
(c) F12 = F21 = A'Y (Fl - F2)· 

Such expressions, substituted into Eq. (3.46) are used to derive stresses and dis­
placements. For a reason, which will later be obvious, we do not engage in deter­
mining the unknown functions F~ to which operators F~ are associated. 

The existence and uniqueness of the basic equation solution come from the 
earlier stated properties of input functions N and M and the fact that the inverse 
operators F~ are defined. 

If concretes of different ages co-act in a cross section, operators R~l do not 
commute with each other. Even in this case the basic equations can be formally 
solved as algebraic equations, taking into account this property. The solution is 
unique but for operators F~I the formulas, derived here, do not hold [1.9], [2.13]. 

By analogy with nondimensional concrete transformation functions R* and F* 
(It. 9, Ch. 1), we define the nondimensional cross section transformation functions 
Rh = RhC'Yh,t,r) and Fh = Fh('Yh,t,r) as integrals of functions R~ and F~, re­
spectively 

( ) R* R-' 1* , 1* R* 1* .T,* a h = h = 'Yh + 'Yh = rh - 'Yh ~ , 
(3.63) 

(b) Fh = F~I* = ~I* +'Yh'l1h, h = 1,2. 
rh 
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The application of the statements found in It. 7, Ch. 1 leads to the following 
formulas 

(3.64) 
rh if!1 = rh iftl (t, r) = Rhl = rhR*I, 

rhifth = rhw;'bh, t,r) = -Fh'I, t > rj h = 1,2 

and also shows that functions wh are integrals of functions if!;' 

(3.65) rO ~ r = t < ooj h = 1,2, 

while functions rh (3.54) are found to be 

(3.66) h= 1,2. 

From Eq. (3.56) stem the relations between the cross section transformation 
functions 

(3.67) F~Rh = 1*, h = 1,2. 

It should be noticed that they are analogous to Eq. (1.55) which governs the re­
lations between the concrete transformation functions F* and R*. Two pairs of 
functions Rh' Ft: and operators Rh' F~ can be associated to a composite cross 
section. From Eqs (3.51) and (3.56) follows that they depend on the physical prop­
erties of all co-acting materials as well as on the cross section geometry. 

Let us define the auxiliary operators Rh = Rh(rh, t, r) and Bh = Bhbh, t, r) 
also associated to a composite cross section 

(3.68) h = 1,2, 

being obviously inverse one to the other 

(3.69) RhBh = 'ft, BhRh = 1\ h = 1,2. 

They belong to the mentioned set of commuting operators as well. 
The multiplication of Eq. (3.60) by operator Rh points to the linear relation 

between operators Rh and FI 
(3.70) h= 1,2, 

while Eq. (3.59) also represents the linear relation between operators Bh and F~ 

(3.71) B- 1 -I IF-I 
rh h = 1 - rh h' h= 1,2. 

Multiplying the above equation by operator Rf we reach one more expression, which 
will be used for later mathematical evaluations 

(3.72) R-IB-I R-I I B-1 
rh h = - rh h, h= 1,2. 

Combining Eqs (3.70), (1.39), (1.52) and (3.54) we find operator Rh to be given 
as 

(3.73) h= 1,2, 
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from which it is easy to show that inverse operators B~ are defined (It. 8, Ch. 1 
and Ch. 2), being in the form of 

(3.74) B-, r -I' ,;.;., 
h = - -'h'J.'h, 

rh 
h = 1,2. 

Understanding Ih as a parameter we can create the parameterized nonhomogeneous 
integral equation 

(3.75) 

the solution of which is 

(3.76) 

where A is a dimensional constant, I~ q)' is the kernel, while I~ IJ!~ is the resolvent 
kernel of Eq. (3.75). For their application it is enough to assume that the input 
function I is bounded and continuous for each t (t > rO). Since it has already been 
shown that operator B~ is defined, we know that Eq. (3.76) is a unique solution of 
Eq. (3.75). 

The auxiliary nondimensional functions, the so-called basic functions K'h = 
Kh (,h, t, T) and Bh = B;' (,h, t,r), are defined as integrals offunctions K~ and B~, 
respectively, to which operators Kh and B~ are associated 

(3.77) 
(a) K'h = Kh1 * = R~F* = Ih1 * + I~F* = rh 1 * + I~ q)*, 

. r 

h = 1,2, 

where the foIl9wing holds 

, h..' 'h..'(t) K*' 'F*' Ih ~ = Ih ~ , T = - h = -'h , 
(3.78) 

t> rj h = 1,2 

and 

(3.79) h = 1,2. 

To a composite cross section two pairs of functions Kh and B;' are associated, 
satisfying the equations 

(3.80) KhB'h = 1*, 'h = 1,2. 

As the cross section transformation functions R;', Fi. and their operators R~, F~, 
the basic functions K'h, Bh, and their operators K~, B~, also depend,on the phys­
ical properties of all materials co-acting in a cross section and on cross section 
geometry. The concrete physical properties are introduced through the concrete 
transformation function F* , while the influence of the other factors is achieved by 
the principal values I~ of the scalar matrix "'I'. We notice that the functions as­
sociated to a composite cross section have the same structure as functions which 
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pertain to concrete. They are presented as sums of two functions, where in the first 
addends the Heaviside step function appears. It is expected that these parts have 
the obvious physical meanings connected to a composite cross section as have the 
functions referring to concrete. 

If the calculation is carried out under the assumption that steel (P) is an elastic 
material, Eq. (2.52) holds. The derived equations formally remain the same, while 
elements "fhl of scalar matrix "f are determined from Eq. (3.32). Such equations 
can be found in Ref. [1.22J. 

The supposition that the concrete modulus of elasticity is constant for t ~ TO 
includes Eq. (2.40). Because of that Eq. (3.54) becomes 

(3.81) Th(t) = 1, t ~ TO; h = 1,2. 

Functions and operators associated to a composite cross section are 

(3.82) 
Ri. = 1* - "fh W* , Rh = I' - "fh ~, , 

Fi. = 1* + "fhWi., Fh = I' +"fh~h' h= 1,2 

and 

(3.83) 
K'h = 1* +"f~~*, K~ = I' +"f~~', 
Bh = 1* -"f~wi., B' -I' ,~, h - -"fh h, h = 1,2. 

Beginning from the fact that a concrete cross section is the special case of the 
composite cross section we adapt the relations in Ch. 3.1 to this idea 

E=E2, VC = 1, 
(3.84) 

A = Aer = Ae, J = Jer = Je, Ser = Se = 0 

and 

(3.85) "fhh = "fh = 1, "f12 = "f21 = 0, h= 1,2. 

The matrix of reduced cross section geometry "f becomes the unit matrix. From Eq. 
(3.44) and comparing Eq. (3.56) with Eq. (1.51) it follows that operator matrices 
R' and F' reduce to diagonal matrices 

(3.86) F-, F-' - F-' hh = h - , 

The basic equations (3.40) become independent 

(3.87) 

and their solutions are 

° 1 -, ° 1 -(3.88) EcT/= Ae FN, Ec x = JeF'M. 

h = 1,2. 

We see that functions R* and F* can be understood as the concrete cross 
section transformation functions. On the other side we have 

(3.89) 
Fi. = F*, Ri. = R* , Fh = F', Rh = ii', 
K * * B* * K-' -1' B-' - -1" h=l, h=l, h=' h-' "fh = 1; h = 1,2, 
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meaning that the cross section transformation functions Fh and Rh' as more gen­
eral, reduce to the concrete cross section transformation functions F* and R*, when 
'Yh = 1. In line with this one pair of functions F*, R* and operators F', k can be 
associated to a concrete cross section. 

It should be noticed that for 'Yh = 1 we obtain 

Kh = F* , Bh = R*, Kh = F', Bh = k, 
Fh = 1*, Rh = 1 * , F~ = 1', R~ = 1', 

(3.90) 
'Yh = 1; h = 1,2. 



4. PERMANENT INFLUENCES 

To continue our development we now deal with the stress resultants produced 
by permanent influences. Their application to the determination of stresses and 
displacements requires first their writing for statically determinate structures and 
for primary structures when all redundants are removed, that is when X)'H = 0 
(A = 1,2, ... ,n), separately for each influence H. 

The stress resultants N and M have been introduced in Ch. 3.2 as arbitrary 
functions of variables s and t. It is convenient to present them as products of time 
functions RH = R'H(t, TO) and functions depending on coordinate s, NH = NH(S) 
and MH = MH(S), that is 

(4.1) H = G,S,P,AF. 

Considering the influence of the subsequent addition of elements to cross sections 
(H = F), after a structure has been exposed to influence F (F = G, P), we deter­
mine the additional load AF which is added to the load producing the influence 
of F (F = F + AF). In Eq. (4.1) the corresponding axial force Nt:;.F and bending 
moment Mt:;.F are included. 

Stress resultants and other quantities referring to primary structures when 
X)'H = 0 receive the last subscript 0 when it is necessary to differentiate them from 
those which pertain to statically determinate structures. 

4.1. Dead Load 

This type of load does not change through time. The stress result ants in 
statically determinate structures and primary structures when X)'H = 0 are time 
independent 

(4.2) Na = Na1*, Ma = Ma1*, 

Written in the form ofEq. (4.1) we have 

(4.3) Ra=l*. 

Stress result ants Na and Ma are determined according to known methods. 
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4.2. Concrete Shrinkage3 

It has been shown in Ch. 3.2 that the effect of concrete shrinkage deformation 
is introduced as the time dependent permanent load by the axial forces ns and 
bending moments m s with respect to the centroid of the transformed cross sec­
tion C, described by Eq. (3.42). Having in mind that the concrete shrinkage was 
introduced in two ways (Ch. 2.1), different equations for stress result ants exist. 

When the concrete shrinkage deformation is introduced by function Cs then, 
using Eqs (3.42) and (2.25), we show that 

(4.4) ns = Nskcs, ms = Ye Nskcs, 
where 

(4.5) N = N(s) = EAer . 

It was explained earlier that ns and ms represent the stress resultants in statically 
determinate structures and in primary structures when X)"s = O. The functions 
which are indicated in Eq. (4.1) are as follows 

(4.6) Ns = Ns , Ms = YeNs, Rs = R'cs· 

Introducing the assumption (2.27) about function cs we get 

(4.7) ns = -Nsk(l* - R*), ms = -YcNsk(l* - R*), 

where 

(4.8) 

The functions in Eq. (4.1) are 

(4.9) Rs = 1* -R*. 

We notice that for d = -1 the above formulas for Ns and Ms reduce to those given 
in Eq. (4.6). 

4.3. Prestressing by Forces 

Prestressing is achieved when the wires are stretched at time TO by presses 
which lean on the member ends. The wires are found in pipes with which their 
independent deformation is allowed. Right after the stretching of the wires at time 
TD+, the pipes are grouted and from that moment become an integral part of the 
cross section. The forces are applied to all wires at the same time and the stresses 
in them are equal. The wires are parallel to the member axis or at a small angle to 
it. Prestressing is the first influence that the structure is exposed to [2.10], [1.22]. 

The geometrical characteristics of a transformed cross section in which steel (P) 
is not included are AD, Jo with centroid Co. The other quantities referring to such 
cross sections also have zero as the first subscript. The reduced area of all wires 
is Apr and its moment of inertia, defined by Eq. (3.14), is Ipr. The geometrical 

3See Ref. [1.22] 
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FIGURE 4.1. Positions of centroids of a transformed cross section 

characteristics of a transformed cross section containing steel (P) are A, J while the 
centroid is C. The ordinates of centroid Cp , in regard to Co and C, are YOp and YP' 

respectively. The following relations will be used 

( 4.10) Y = Yo + Yi, 

where Yi is the ordinate of centroid Co (Fig. 4.1). 
The prestressing forces resultant is denoted by P and acts in centroid Cp. At 

time 1'0, when presses lean on the member (Ao, Jo), the external force P produces 

(4.11) 

It is the known load by axial forces ngp and bending moments mgp with respect to 
centroid Co of the transformed cross section (Ao, Jo), producing stress result ants 
Ngp and Mgp at time 1'0. In statically determinate structures and in primary 
structures when X>.p = 0 they are 

(4.12) N,°-no-p OP - OP - - , 

From time 1'0+ in the cross section steel (P) is included, meaning that element 
(d = p) is subsequently added to the cross section (Ao, Jo) after the prestressing 
forces take effect. At that time the structure and the additional element (P) have 
already been exposed to the deformation. That is the reason why instead of load 
(4.11) we introduce the substitute load being for now unknown. 

The deformation of the structure (Ao,Jo) at time rO due to load (4.11) is the 
same as deformation of the structure (A, J) at time r O+, caused by the substitute 



load. It is written as 

(4.13) 
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.,.0 _ ",0 
"'OP -<op 

and refers to any point of the cross section. 
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The compatibility condition for the normal strain expresses the equality of the 
deformation growth of steel (P) and the deformation growth of the corresponding 
points of the cross section (A, J) in time interval (ro+, t) under the substitute load 

( 4.14) 

The normal strain in steel (P) at time r O+, when it starts to co-act in the cross 
section, is 

(4.15) o P 
cpP = EA' 

p p 

To evaluate the stress in steel (P) due to the substitute load (H = P), the 
left-hand side multiplication of Eq. (4.14) by operator EpR~ is performed. Before 
that to constants c~p and c~ the Heaviside step function 1* should be written. 
From Eq. (3.36) we identify the stress O'pP where the second subscript indicates the 
kind of influence 

(4.16) O'pP = EpR~epp = EpR~ep + (: - Epc~ )R;. 
p 

After including steel (P) into the cross section, the prestressing forces become 
internal forces. Assuming that it is the only influence that affects the structure, 
that is that ./If = ° and M = 0, we apply Eq. (3.38). Therefore we replace stress 
O'cP by Eq. (3.35) in which term O's is omitted, as well as stress O'pP and O'kP by 
Eqs (4.16) and (3.37). Following the same procedure as for derivation of the basic 
equations we obtain 

(4.17) 

where 

(4.18) 

E(AR~l'T]P + SR~2XP) = np, 

E(SR~l'T]P + J~2XP) = mp, 

np = np(s, t, rO+) = (-p + Ep i
p 

cgpdA) R;, 

mp = mp(s, t, rO+) = (-ypp + Ep i
p 

ycgpdA) R;. 
It is the time dependent substitute load by axial forces np and bending moments 
mp, with respect to the centroid C, already described earlier. 

The first members in Eq. (4.18) come from the deformation of steel (P) as 
an subsequently added element. The second members come from the structure 
deformation which it possesses at time when steel (P) starts to co-act in the cross 
section. The deformation c~ is replaced by egp to express the substitute load in 
terms of the known stress resultants Ngp and M8p. 
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The calculation of a structure at the time when the load begins to act is known. 
It is the same as for an elastic structure having the modulus of elasticity E and the 
cross section geometrical characteristics A, J or Ao, Jo. Thus 

NO MO 
(4.19) Ec:o = -2E. + ~Y 

OP Aa Jo o· 

From Eq. (4.18), in which the indicated integrations are performed using the above 
expression and Eq. (4.10), we find the substitute load of the form 

(4 20) - 0 R* - 0 R* . np - np P' mp - mp p. 

In the equations which follow n~ = n~(s) and m~ = m~(s) will be presented. 
Using the notations given in Eq. (4.1) the functions corresponding to primary 

structures when X)..p = 0 are 

- 0 ApT 0 YopApr 0 
Np0 = np = -p + Aa Nop + ~Mop, 

(4.21) 

Rp = R;, 
where Ngp and Mgp are stress resultants in statically indeterminate structures at 
t = TO produced by load (4.11). 

For statically determinate structures we apply Eq. (4.12) and obtain 

- 0 ( A y~pApT) 
Np=np=-P Aa +~ , 

(4.22) - 0 0 Ipr 
Mp = mp = ypnp - J

o 
YOPp, 

Rp = R;. 
The expressions (4.21) and (4.22) can be found in Ref. [1.7]. 

Under the assumptions that steel (P) is the Hookean material and that pre­
stressing by forces starts at T P > TO the substitute load has been developed in Ref. 
[1.22]. With respect to the first supposition we can say that the equations of this 
theory contain the special case when p = O. Then the substitute load becomes time 
independent since R; = 1*, that is since Eq. (2.52) holds, while the other formulas 
retain the same form. Such expressions were developed in Ref. [2.10]. As far as the 
second assumption there are no mathematical obstacles for the derivation of the 
substitute load when T P > TO. It is enough to follow the evaluation which in Ref. 
[1.22] has been performed taking into account the relaxation property of steel (p). 

The assumption was introduced that prestressing by forces is the first influence 
affecting the structure. In the following chapter we shall look into the state when 
this is not the case or when prestressing by forces is carried out in phases. 
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FIGURE 4.2. Positions of centroids of a transformed cross section 

4.4. Subsequent Addition of Elements to Cross Sections 

Let us assume that a structure is affected by influence F (F = G, P) starting 
from time 1'0. Right after that, at 1'0+ , elements (d) are added to the cross sections. 
This could be steel parts (d = n) or prestressing steel (d = p) [2.10]' [1.22). 

The geometrical characteristics of a transformed cross section in which the 
element (d) is not included are Aa, Jo, with the centroid Co. After addition of 
element (d) they become A, J and C. The reduced area of the additional element 
(d) is Adr and its reduced moment of inertia, defined by Eq. (3.14), is Idr . The 
ordinates of centroid Cd with respect to Co and C are YOd and Yd, respectively. The 
following relations hold 

(4.23) Y = Yo + Yi, 

where Yi is the ordinate of centroid Co (Fig. 4.2). 
The subsequent addition of elements to cross sections has already been solved 

in the previous chapter when the case in which steel (P) has been included, after a 
structure had been exposed to the prestressing forces, was examined. The difference 
is that now the additional element (d) does not have the start deformation and that 
the structure deformation does not have to originate from the load of axial forces 
and bending moments. The latter is the reason why, instead of the substitute load, 
we determine the additional load 6.F which, for t > 1'0+, is added to the load 
producing the influence of F (F = F + 6.F). The concrete shrinkage (H = S) is 
not included as the influence of F owing to the fact that, in this case, no structure 
deformation exists at time 7 0+ when the element (d) is added to cross sections. 
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The condition (4.13) is also applied here 

(4.24) ",0 _ ",0 
"'OF - "F" F == P, Gj F == F + AF, 

since the deformation of the structure (Aa, Jo) at time rO, due to influence F, is 
the same as the deformation of the structure (A, J) at rO+ caused by the substitute 
influence F. 

The compatibility condition equalizes the deformation of element (d) with the 
deformation growth of the corresponding points of the cross section (A, J) in the 
time interval (ro+, t), under the substitute influence F. Thus 

( 4.25) 

From the above equation we derive the stress in additional element (d) 

(4.26) d == n, p; F == G, P. 

From Eqs (2.43) and (2.55) we find that 

(4.27) 
R-, - -I' 

d - , 

R~ == R~, 

Rd == 1*, d == n, 

R;t == R;, d == p. 

By the familiar procedure we develop the additional load 

(4.28) 
nAF == nAF(s, t, rO+) = (Ed id c:gFdA) Rd, 

mAF = mAF(S, t, rO+) = (Ed id yc:gFdA) Rd, 

d = n,pj AF = AG,AP, 

representing the load by axial forces nAF and bending moments mAF with respect 
to centroid C. If the additional element is an elastic material (d = n) it is time 
independent. 

The known relation holds 

NO MO 
Ec:o == ~+~y 

OF Aa Jo 0' 
(4.29) F=G,P, 

where N8F and M8F refer to the structure (Aa, Jo) at time t == rO due to influence 
F. By integration of Eq. (4.28) we derive the additional load written in the form 

(4.30) AF=AG,AP. 

To harmonize the above equation with Eq. (4.1) notation RAF is introduced, al­
though the selection of this function does not depend on influence F, rather on the 
type of additional element (d = n,p), which is defined by Eq. (4.27). 
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In statically determinate structures and in primary structures when X>..t:.F = 0 
the stress resultants written in the form of Eq. (4.1) are as follows 

(4.31) 

- 0 A dr 0 YOdAdr 0 
Nt:.F = nt:.F = Ao NOF + ~MOF' 
- 0 0 Idr 0 

Mt:.F = mt:.F = Ydnt:.F + Jo M OF , 

Rt.F = Rd = 1 * , 

R* - R* -R* t:.F - d - P' 

d=n, 

d=Pi AF = AG,AP. 

IT it applies to the primary structures when X>..t:.F = 0, then N8F and M8F repre­
sent the stress result ants in statically indeterminate structures (Aa, Jo) due to the 
influence of F at time t = TO.4 

Under the assumptions that steel (P) is an elastic material and that influence F 
starts acting at time TF > TO, the additional load has been developed in Ref. [1.22). 
Regarding the first supposition, the application of p = 0 shows that the additional 
load becomes time independent even when the additional element is steel (p). As 
far as the second assumption is concerned, there are no mathematical obstacles for 
the derivation of corresponding additional load. Such a solution can be found in 
Ref. [1.7). 

4See also (Ref. 1.35] 
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The general method of analysis of statically indeterminate elastic structures 
known as the method of consistent deformation or Maxwell's method, has been 
expanded by J. Lazic [1.4] to composite and prestressed structures under the as­
sumption that concrete behaviour is described by the Hereditary Theory. Applying 
the same method to arbitrary concrete transformation function F*, the procedure 
common for elastic structures is also employed in the segment of the elementary 
theory which is under consideration.5 

To begin our analysis we define the reduced generalized displacement D. * = 
D.*(s,t,rO) as 

(5.1) 

where generalized displacement ~ is determined by the principle of virtual forces. 
Substituting functions TJ and x, given in Eq. (3.46), into Eq. (3.39) we get 

D.* = i M(u,s)F~2(u,t,r)M(u,r,rO) ~~)dU 
+ ~: i N(u,s)F{l(u,t,r)N(u,r,ro) ~~)dU 

Ju (-, [ ~ ° ~ 0] Su (5.2) ,+ Su iL F12 (u,t,r) M(u,s)N(u,r,r ) + N(u,s)M(u,r,r ) S(u)du. 

Here we have introduced an arbitrary chosen area Au and moment of inertia J u 

while Su is defined analogous to Eq. (3.21). 
To rearrange Eq. (5.2) we first express operators Fhl in terms of operators Fh, 

applying Eq. (3.62). After that we select a structure model which is familiar in the 
calculation of elastic structures, meaning that a structure is divided into a finite 
number of intervals a (a = 1,2, ... , m) of constant cross section. Functions, oper­
ators and other quantities, referring to the interval a, are indicated by superscript 
a. Finally, we group the members along operators Fh(J, having in mind that they 
are independent on variable 8 in interval a, and obtain 

5The slope deflection method can be found in Ref. [2.8J 
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m 2 

(5.3) 6.* = LLF~aD'h. 
a=lh=1 

Functions D'h = D'h(s, t, TO) are determined by the following equations 

1 Da = __ (o""av.na + o""al)1a + ..ca) 
1 6.'Ya /1 /2 , 

1 Da = __ (o""av.na + o""al)1a _ ..ca) 
2 6.'Ya /2 /1 , 

(5.4) 

satisfying the relation 

(5.5) 
2 

Da = Da(s, t, TO) = L D'h = ~ + l)1a, 
h=1 

a = 1,2, .. . ,m, 

a = 1,2, ... ,m. 

The functions found in the above expressions are given by the formulas 

Wla = Wla(s, t, TO) = ~~ ha £feu, s)M(u, t, TO)du, 

(5.6) l)1a = l)1a(S,t,TO) = ~~ ha N(u,s)N(u,t,TO)du, 

..ca = ..ca(s, t, TO) = 'Yf2 ~~ ha [£feu, s)N(u, t, TO) + N(u, s)M(u, t, TO)] du, 

a = 1,2, ... ,m. 
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Stress resultants N and M and the reduced generalized displacement 6. * originate 
from all permanent influences. Equation (5.3) will be later used separately for each 
influence of H. 

In n times statically indeterminate structure, under the effect of influence H, 
in time t (t > TO), the redundants are X>..H = X>"H(t,TO) (A = 1,2, ... ,n), while 
the stress resultants are given by the known expressions 

n 

(a) NH = NH0 + LN>..X>"H' 
>..=1 

n 

(5.7) (b) MH = Mm + LM>.X>'H' 
>..=1 
n 

(c) TH = Tm + LT>..X>"H' H = G,S,P,6.F,F, 
>"=1 

where N>.. = N>.(s) , M>. = M>..(s) and T>. = T>. (s) are stress result ants in a primary 
structure caused by redundant X>..H = 1* (t, TO) at point s = s>.' which is symbolized 
by subscript A. Since such a redundant is time independent they depend on the 
coordinate s only. 
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H,K NH0,MH0 ,RH F'aR* PhH0,P~H QhH0,QhH 
h H 

PhK0,PhK QhK0,QhK 

G (4.3) F'ap 1 _ 'Yh -h 'Y~a 'Y~ 

Cs (4.6) F,aRe 
h S 

5 
(4.9) F//l(l * - R*) 

1 1 - --
'Y~a 'Y~a 

p (4.21). F,aR* p' _ 'Yh - p -h p 
'Y~ 'Y~ 

d=n F'a1* 
1 'Yh -

- 'Y~ h 'Y~a 
tlF ( 4.31) 

d=p F'aR* 
p' _ 'Yh - p -h p 'Y~a 'Y~ 

TABLE 5.1 

We write one continuity condition in time t (t > 1'0) for each redundant and 
separ~tely for each influence of H. Then 

(5.8) JJ, = 1,2, ... ,nj H = G,5,P,F, 

where tl~H is the reduced generalized displacement of the deformed structure axis 
at point 8 = 81-" corresponding to the generalized force XI-'H = 1*. 

First we derive the load dependent members. In Eq. (5.3) we determine func­
tions D", when stress result ants N and M pertain to a primary strusture when 
Xw = 0 for H = G, 5, P, tlF. They are NH0 and MH0, described by Eq. (4.1) as 
the products of NH0 and MH0, being functions of coordinate 8, and time function 
RH' When operators F~a are applied to functions D", the products of F~a RH appear 
as well as coefficients DhI-'H0' To obtain them in Eq. (5.6) we replace N(u,s = 81-') 

and M(u, 8 = 81-') by NI-'(u) and MI-'(u), respectively 

Substituting the above coefficients into Eq. (5.4) we receive 
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(5.10) 
D- a _ 1 (~anna + ~ aena + na ) 

IJ.'H0 - t:::.:ya u'Yl ;.!J~J.'H0 u'Y2 ·J~J.'H0 ..... J.'H0' 

D- a _ 1 (~anna + ~ aena na) 2J.'H0 - A'Ya u'Y2 ;'!J~J.'H0 u'Yl "J~J.'H0 - ..... J.'H0 ' 

a = 1,2, ... , m; fJ, = 1,2, ... , n; H = G, S, P, AF. 

Finally, from Eq. (5.3) we find the load dependent members 

m 2 

(5.11) A~H0 = A~H0(t, TO) = L L fYhJ.'H0F~a RH, 
a=lh=1 

fJ,=1,2, ... ,n; H=G,S,P,AF. 

Table 5.1 contains the numbers of equations for NH</J, MH</J and RH for each of 
influences H together with products F~a RH. To simplify them we apply Eqs (2.44) 
and (3.71) multiplied by the Heaviside step function 1* as well as Eq. (3.77b) in 
which R' Fi. is r~placed by FhR*. The result is 

m 2 

(5.12) A:H0 = :E:E Dhl'H0 (PhH0 1* + QhH0B'ha
) , 

a=lh=l 

fJ, = 1,2, ... ,n; H =G,S,P,AF. 

For the substitute influence F we form the following sum 

m 2 

(5.13) A:P0 = L L L DhJ.'K0 (PhK0 1 * + QhK0B 'ha) , 
K a=l h=l 

fJ,=1,2, ... ,n; K=F,AF; F=G,P. 

The coefficients in the above expressions are recorded in Tab. 5.1. The load depen­
dent members are linear combinations of the basic functions B'ha for each interval 
a, the exception being when the concrete shrinkage deformation is described by 
function cs. Then we determine integrals B~acs found in the following formula 

m 2 

(5.14) A:S0 = L L DhI'S0B~acs, fJ, = 1,2, .. . ,n. 
a=lh=1 

For obtaining coefficients DhJ.'H0 for H = G,S,P,AF, we introduce NH0 and MH0 
in Eq. (5.9) according to the numbers of equations given in Tab. 5.1. When we 
perform the integrations in Eq. (5.9) it should be kept in mind that NS0 and 
MS0 are constants independently of how the concrete shrinkage deformation is 
introduced. 

The load independent members are derived from the same equations when, 
instead of N and M in Eq. (5.6) we introduce the second addends found in Eq. 
(5.7a,b). From their structure we can see that for some A operators F~a are applied 
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to the common time function X>..H. Then the following constants are formed 

(5.15) 

and 

(5.16) 

vn~>.. = ~~ [a MJlo (u)M>.. (u) du, 

1)1~>.. = ~~ la NJlo(u)N)..(u) du, 

£~).. = "Yf2 ~~ [a [MJlo(u)N).. (u) + NJlo(u)M)..(u)) du, 

a = 1,2, ... , m; p, A = 1,2, ... , n 

D~Jlo).. = f).~a (8"Yfvn~).. + 8"Y21)1~>.. + £~)..) , 

D2Jlo ).. = f).~a (8"Y2~)" + 8"Yfl)1~).. - £~)..) , 
a = 1,2, ... , m; p, A = 1,2, ... , n. 

Finally, we obtain 

m 2 

(5.17) Li~)..X)"H = 2::: 2::: D"Jlo)..Fha X)..H, 
a=lh=l 

p,A=1,2, ... ,n; H=G,S,P,F, 

from which we show that the load independent members are operators Li~)... Intro­

ducing Eq. (3.71) we express them in terms of operators Rha, corresponding to the 
basic functions B'ha 

(5.18) p,A= 1,2, ... ,n. 

To determine the integral of function f).~).., to which operator Li~).. is associated, 
we apply Eq. (1.25). Thus 

m 2 

(5.19) f).;).. = Li~)..l * = 2::: L: D"Jlo)..Fha
, p, A = 1,2, ... , n. 

a=lh=l 

Comparing it with Eq. (5.17) we see that function f).;).. = f).;).. (t, 'TO) represents the 
reduced generalized displacement at point s = s Jlo, corresponding to the generalized 
force XJlo = 1*, due to generalized force X>.. = 1* at point s = s).., in time t (t> 'TO). 
It is easy to show that 

(5.20) p, A = 1,2, ... , n, 

being in agreement with Maxwell's reciprocal theorem. 
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, Equation (5.8), expressed through the load independent and load dependent 
members, gives the equations of continuity in the following form 

n 

(5.21) L Ll~'\X'\H + 6.:H0 = 0, J.I. = 1,2, ... ,nj H = G,S,P,P, 
'\=1 

representing simultaneous nonhomogeneous integral equations in unknowns X,\H 
(A = 1,2, ... , n). We can write them in the matrix form 

(5.22) H=G,S,P,P, 

where 

A' = "Ll~'\"n,n' 
(5.23) XH = IIX1H,X2H ... X,\H .. ,XnHIIT, 

V H0 = " - 6.~H0' -6.;H0 ... - 6.~H0 ... - 6.~H01IT. 
The solution is formally the same as for a system of algebraic equations 

(5.24) H=G,S,P,P. 

Since the elements ti~,\ of the symmetric operator matrix A' form the set of com­
muting operators (It. 10, Ch. 1), the inverse operator matrix is given by the known 
equation 

(5.25) 

It can be shown that it is defined and that the equations of continuity always have a 
unique solution under the supposition that a primary structure is immovable [1.22J. 

Operators Ll~,\ do not commute with each other if in the cross section concretes 
of different ages co-act or if only in one segment of the structure there is concrete 

-I 

of different ages. The inverse operator matrix Q is defined, as well, but Eq. (5.25) 
is not valid. The equations of continuity can be formally solved as a system of 
algebraic equations but the above mentioned property of operators ti~,\ must be 
taken into account. The solution is unique if a primary structure is immovable 
[1.22]. 

When the Hereditary Theory or the Rate of Creep Method and constant mod­
ulus of elasticity is selected as a concrete transformation function F* the equations 
of continuity can be solved using the Laplace transforms, that is the redundants as 
time functions can be obtained as well as stresses and displacements. For the Rate 
of Creep Method this has been done on the example of the symmetrical continu­
ous beam of three spans of variable cross section exposed to dead load, concrete 
shrinkage, prestressing by forces and prestressing by lowering the middle supports 
[1.22]. These solutions have been provided under the supposition that steel (P) 
obeys Hooke's law but by use of the same mathematical operations we would arrive 
at the solutions if we take into account the relaxation property of this kind of steel. 

In Refs [2.18], [2.1OJ it was cited that for the Rate of Creep Method statically 
indeterminate structures were not solved due to mathematical difficulties since the 
stress resultants are time functions and the equations of continuity are of integro­
differential type. In an attempt to simplify this problem, Sattler [2.18] suggested a 
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quite correct approximation for the time variation of stress resultants of statically 
indeterminate structures. In line with this we introduce the assumption that in 
the time interval ('To, t) redundants are of the same time variation as the concrete 
transformation function R*, that is that they are of the form 

(5.26) X>'H=X~H+~X>'H(l*-R*), A=1,2, ... ,n; H=G,S,P,F, 

where X~H are the known values of redundants X>.H at t = 'TO+ while ~X>'H are 
the unknown constants corresponding to the selected time t and to the time of the 
load application 'To. From Eq. (2.22) it is evident that 

(5.27) A=1,2, ... ,n; H=G,S,P,F. 

The load dependent members remain the same as in the exact equations. To 
obtain the load independent members the supposed functions for the redundants 
X>.H are substituted into Eq. (5.17) Then 

m 2 

(5.28) LS.~>,X>'H = L L Dh~>.F~a[X~H + ~X>'H(l * - R*)1, 
a=l h=l 

p.,A=1,2, ... ,n; H=G,S,P,F. 

After simple mathematical evaluations we arrive at the following coefficients 

a~>. = f t Dh~>' (,~a 1* - I~a Bi,a) , 
a=lh=l h h 

(5.29) n m 2 (1 a) 
b~H = L L L Dh~>' la 1 * - 'I~ Bi,a X~H' 

>-=1 a=l h=l Ih Ih 

p.,A=1,2, ... ,nj H=G,S,P,F, 

by which we set up the system of algebraic equations of continuity in unknowns 
~X >-H referring to the time interval (TO, t) 

n 

(5.30) L a~>,~X>'H + b~H + ~~H0 = 0, P. = 1,2, ... ,nj H = G, S, P, F. 
>-=1 

From Eq. (4.13) we conclude that immediately after introducing steel (P) into 
cross sections the redundants of structure (A, J) under the substitute load (4.21) 
are equal to the redundants at structure (Aa, Jo), immediately before introducing 
steel (P), due to load (4.10) 

(5.31) X~P = x8>.p, A = 1,2, ... ,n. 

Similarly, from Eq. (4.24) we obtain 

(5.32) X~p = x8>.p, A = 1,2, ... ,n. 

The exact and approximate equations can be found in Ref. [1.29]. When we 
assume that steel (P) is the Hookean material, the expressions remains the same 
with the exception of some coefficients in Tab. 5.1 in which p = 0 (PI = 1) should be 
introduced, presupposing also the application of Eq. (3.32). Such exact solutions 
have been developed in Ref. [1.22]. 
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6.1. Stresses 

6.1.1. Normal Stresses. Following the procedure of elastic analysis we 
develop the stress expressions meaning that from stress-strain relations for the 
materials co-acting in a composite cross section we eliminate common strain c 
using Navier's hypothesis and solution of the basic equations. 

We begin by defining the reference stress a = a(y, s, t, TO) in time t (t > TO) as 

(6.1) a = Ec = E(TJ + yx). 

Functions TJ and x are replaced by Eq. (3.46) while operators F~l are replaced by 
operators F~ according to Eq. (3.62). Rearranging such an expression we obtain 

2 

(6.2) a= LF~8h' 
h=1 

Functions 8h = 8h(y,s,t,TO) depend on stress result ants and on the reduced cross 
section geometry 

1 [N 8 M ( 8 N M) ] 
81 = A7. 872 A + 712 A 7 + 712 J A + 871 7 y , 

82 = _1_[871 N -712~ M + (-712~ N +872 M)y] 
A7 A A J J A J' 

(6.3) 

Application of the relations given in Ch. 3.1 leads to the following formula 

2 N M 
8 = L 8h = A + 7 Y' 

h=1 

(6.4) 

The stress resultants N and M as well as reference stress a originate from all per­
manent influences. The above expressions will be used separately for each influence 
of H. 
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The stresses in some parts j (j = C, p, n, m) of a composite cross section due to 
influence H will be expressed in terms of the reference stress aH. From Eq. (3.35) 
we obtain the stress in concrete (c) 

(6.5) J: {I, for H = S, 
uHS = 

0, for HiS; 

H = G,S,P,llF, 

where the concrete shrinkage deformation is introduced by function € S owing to 
Eq. (2.25) being used. If the assumed form of this function (2.27) is applied we 
introduce Eq. (2.29). This gives 

(6.6) aCH =vC [kaH +f>HsEd(l*-R*)] , H=G,S,P,llF. 

We obtain the stress in steel (P) from Eq. (4.16) 

J: {I, for H = P, 
UHP = 

0, for HiP; 

H=G,S,P,llF. 

The stresses in steel parts (n) and reinforcing steel (m) come from Eq. (3.37) 

(6.8) k = n,mj H = G,S,P,llF. 

The stress in part j due to substitute influence F is the sum of stresses due to 
influence F and the additional load llF. Then 

(6.9) ajP = 2:: ajK, 
K 

j = c,p,n,mjK = F,llFj F = G,P. 

The stress in the additional element (d) due to substitute influence F is written on 
the basis of Eqs (4.26) and (4.27), also in the form of the sum 

(6.10) adP = Vd .l)RdaK - a~Rd)' d = n, Pi K = F, llF; F = G, P. 
K 

The stresses in additional elements (d), produced by influence H = G, P, to which 
the st~ucture is exposed after their introduction into the cross sections, are deter­
mined by Eq. (6.8) when d = n or by Eq. (6.7) when d = p since from the beginning 
they are the component parts of the cross sections. 

We determine the stresses in statically determinate structures and in primary 
structures when X)"'H = O. The first step is to write the corresponding reference 
stress aH. When the stress resultants NH and MH, given in form (4.1), are sub­
stituted into Eqs (6.3) and (6.2), operators F~ are applied to function RH' Then 

2 

(6.11) aH = 2:: ShHF~RH' H = G,S,P,llF, 
h=l 
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(6.12) 

2 --
- ,,- NH MH 

(C) 5H = ~5hH = A + TY' 
h=l 

H = G,5,P,!1F. 

At t = 7 0 , that is t = 70+, when the influence of H begins to act, it holds that 
R1l = 1 (H = G, P,6.F) and Rso = 0 (ehs 2 and 4). The corresponding stress 
resultants are 

(6.13) o - 0 - 0 0 NH=NH, MH=MH, Ns=O, Ms=O, H = G,P,!1F, 

while the reference stress becomes 

o - N~ AIH 
(6.14) aH = 5 B = A + T Y' ~o -0 .... s - , H = G,P,!1F . 

From Eq. (4.13) we show the equality between the reference stress at time 7 0+ in 
cross section (A, J), corresponding to prestressing by forces and produced by the 
substitute load (4.20), on the one side, and the reference stress at 7 0 in cross section 
(Ao, Jo) due to the load (4.11), on the other side 

(6.15) 

Similarly, from Eq. (4.24) we get 

(6.16) 

~o _ ~o 
.... p - vop· 

~o _,...0 VI' - vop· 

Substituting reference stress aH (6.11) into Eqs (6.5)-(6.10) we see that in the 
expressions for stresses in the cross section parts j the products R' F~ RH' R~F~ RH 
and F~RH are found. Table 5.1 contains the numbers of equations for functions 
RH while the corresponding products are given in Tab. 6.1, describing the kind 
and number of mathematical operations leading to the stresses. By applying the 
operator relations we can make significant simplifications changing the indicated 
products to linear combinations of the basic functions Bj., while some of them 
contain the concrete transformation function R*, as well. The integrals B~ C s and 
R' c s exist only when the concrete shrinkage deformation as an arbitrary function 
Cs is introduced. During the simplification of operator products Eqs (2.46), (3.68b), 
(3.71), and (3.72) are used and, if needed, are multiplied by function 1 *. The results 
are recorded in Tab. 6.1 

Such simple forms of the operator products are used to obtain the stress ex­
pressions. From Eqs (6.6)-(6.9) we find their general forms being 

2 

(6.17) aiH = Vi (UiH 1 * + VjH R* + I: WhiH Bh) , 
h=l 

j= c,p,n,m; H = G,5,P,6.F 
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R'F'I* h B* h R~FHl* - R*) 

R'R'R'c (1- 'Yh -) R'R'R* -R'- -Bh cs h S 'Yh 'Yh P h p 
P'2 p2 ('" p)2 
-1"+-R*- ,h- B* 
'Yh 'Yh 'Yh'Yh h 

R'PHl*-R*) --'!"'R* + -.!...Bh F'I* 
'Yh 'Yh h 

R'P'R* ~ R" + 'Yh - P Bh P'R'c h p 
'Yh 'Yh h s 

R' F' 1" p h L 1* _ 'Yh - P B* 
'Yh 'Yh h 

P~(l* -R*) 

R' F'R'c ( ~ R' + 'Yh - P Bh) Cs F'R* p h S 'Yh 'Yh h p 

TABLE 6.1 

and 

(6.18) 
2 

O"jF = Vj L( UjK1* + VjKR* + LWhjKBh), 
K h=l 

j = c,p,n,mj K = F,AF; F = G,P. 

If the concrete shrinkage function Cs is introduced we apply Eq. (6.5). Then 

(6.19) O"jS = Vj (VjsR'cs + t WhjSBhcs), 
h=l 

j = c,p,n,m. 

In Tab. 6.2 the coefficients that are found in the above equations are listed. Further, 
from Eq. (6.10) we get 

2 

O"dF = VdL(UdKl* + VdKR* + LWhdKBh), 
K h=l 

(6.20) 

d = n,p; K = F,AF; F = G,P. 

The formulas for the coefficients appearing here are recorded in Tab. 6.3. Stresses 
O"~ and O"'k in Eqs (6.7) and (6.10) are determined from Eq. (6.14). They are 
included in the coefficients of stress expressions although their values are known 
from the previous calculations at t = 7

0+ . 
Coefficients ShR (H = G, S, P, AF) are obtained from Eq. (6.12a,b) in which 

for some influence H the corresponding quantities N R and MR are substituted, 
according to the equations whose numbers are listed in Tab. 5.1, having in mind that 
in the case of prestressing by forces for statically determinate structures N p and 
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j H,K UjH,UjK VjH, VjK WhjH, W hjK 

G,6.F 
0 0 ShH (d=n) 

1 - 'Yh -Cs 0 -E+ 'E-ShS --ShS 

S 
h 'Yh 'Yh 

C 

-(Ed+ 'E~ShS) Ed 
1 -
-ShS 

h 'Yh 'Yh 

P,6.F 1 - 'Yh - P -
(d=p) 

0 PL-:yShH --ShH 
h h 'Yh 

G,6.F 1 - 'Yh - P -
p''E ,ShH 0 ---SH 

(d=n) h 'Yh 'Yh h 

1 - 'Yh - P-
Cs 0 PL-:yShS --ShS 

S 
h h 'Yh 

P 
1 - 1 - 'Yh - P -

P'L 'Y' ShS -PL-ShS ---S 
h h h 'Yh 'Yh'Y~ hS 

P '( P L 'Yh - P - ) P ( J:-. - 'E 'Yh ~ P S hP) 
('Yh - p)2 _ 

P A+ i ShP S 
pr h h Apr h 'Yh 'Yh'Yh hP 

6.F '2 L 1 - 2 1- ("(h-p)2 S 
P ,ShtlF P L -ShtlF (d=p) h 'Yh h 'Yh 'Yh"/h htlF 

G,6.F 1 - 'Yh -
(d=n) 'E 'Y' ShH 0 -,ShH 

h h 'Yh 

Cs 0 0 ShS n, 
S 

m 1 - 1 -
L y" ShS 0 - 'Y~ ShS h h 

P,6.F 1 - 'Yh - P -
(d=p) P'L,ShH 0 --:;::-ShH 

h 'Yh 

TABLE 6.2 

Mp are given by Eq. (4.22). We notice that quantities ShH depend on coordinate 
s which corresponds to the position of the cross section under consideration. 

If Hooke's law is assumed to hold for steel (P) then on the basis of Eq. (2.52) 
and in the sense of It. 5, Ch. 1, we show that 

(6.21) H = G,S,P,6.F 
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d K UdK VdK WhdK 

G,tlF 
"fh -

0 "fh -
E"fIShK -,ShK 

n h h "fh 

P E "fh -PS 0 
"fh - p-

"f' hP ---,-ShP 
h h "fh 

G 'E"fhS -pEShG 
"fh - p-

p 7' hG ---,-ShG 
h h h "fh 

P 
_ bh - p)2 S 

P,D.F piE "fh -Ps "fh - p-
"f' hK -pE--ShK 

"fh"fh hK h h h "fh 

TABLE 6.3 

and 

(6.22) O'dF = vdL(O'K-O''k), d=n,pj K=F,tlFj F=G,P. 
K 

We recall that the substitute load (4.21), (4.22) as well as the additional load 
(4.31) when the additional element is steel (p), are now time independent. When 
the concrete shrinkage function Cs is given by Eq. (2.27), coefficient Yes can be 
translated into the form 

(6.23) Ed Spr (Spr ) 
VeS = p---- -- - "fuY . 

"f1"f2 J A 

For d = -1 the same expression refers to arbitrary function Cs (Ch. 4.2). With 
this, it is shown that all coefficients VjH and VdK in Tabs 6.2 and 6.3 vanish for 
p = 0, that is that stresses depend only on the basic function Eh' The corresponding 
stress expressions are obtained when p = 0 (pi = 1) is introduced into the remaining 
coefficients presupposing that elements "fhl of the matrix of the reduced cross section 
geometry "Y are calculated from Eq. (3.32). Such solutions have been derived in 
Ref. [1.22].6 

For statically indeterminate structures the reference stress and the stresses in 
some parts j of the cross section due to permanent influence H are presented in 
the known manner. They are the sums of the stresses in a primary structure when 
X>.H = 0 and in a primary structure caused by all redundants 

(6.24) O'H = 0'H0 + O'HX, H = G,S,P,F 

and 

(6.25) 
O'jH = O'jH0 + O'jHX, 

0' dF = 0' dF0 + 0' dF x , 

j = c,p,n,m; H = G,S,P,F, 

d=n,p; F=G,P. 

6For P#-o and P = 0 the stresses also can be found in Refs (1. 7], (1.23], (1.27], (1.29], (1.38], 
(1.41]. 
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The first members in the above equations originate from the stress resultants N H0 
and M H0 in Eq. (5.7a,b). These parts of the stresses are contained in Eqs (6.17)­
(6.20) in which the last subscript 0 is added to the coefficients. In Tabs 6.2 and 
6.3 8hH and 8hK are substituted with 8hH0 and ShK0' meaning that in Eq. (6.12) 
NH and MH are replaced by NH0 and MH0, respectively. 

Reference stress I7HX is obtained when in Eqs (6.3) and (6.2) we introduce the 
second members of Eq. (5.7a,b). For the given A and H they are the products of 
N)., or M)." being the functions of coordinate s, and time functions X).,H, so that 
operators F~ are applied to the common function X)"H. Thus 

n 2 

(6.26) I7HX = L L Sh).,F~XAH' H=G,S,P,F. 
).,=lh=l 

Coefficients Sh)" are obtained from Eq. (6.12a,b) by the formal substitution of NH, 
MH with N)." M)." respectively. 

Introducing reference stress (1HX into Eqs (6.6)-(6.8) we obtain the correspond­
ing stresses in concrete 

n 2 

(6.27) (1cHX =vcL~ShAkF~X)"H'· H=G,S,P,F, 
A=lh=l 

in steel (P) 

n 2 

(6.28) (1pHX = vp ~ ~ Sh).,(R~F~X)"H- oHPXfpR;), H=G,S,P,F 
),=lh=l 

and in steel parts and reinforcing steel 

(6.29) 
n 2 

(1kHX = Vk z= L ShAF~X)"H' 
).,=lh=l 

while from Eq. (6.10), follows 

n 2 

k=n,mj H =G,S,P,F, 

(6.30) (1dPX = Vd z= z= ShA(Rd.F~x).,P - XfpRd)' d=n,Pi F=G,P. 
).,=lh=l 

In this relation and in the equation for (1pHX the following values of reference 
stresses at t = 1"0+ are included 

n 2 

(6.31) (1~x = L L Sh)'X~H' H=P,F. 
),=1h=1 

They are determined from Eq. (6.4) when N and M are replaced by the second 
addends of Eq. (5.7a,b) for t = 1"0+. 

In Eqs (6.27)-(6.30) the operator products ii' F~ and R~F~ are found. Using 

the relations analogous to those in Tab. 6.1, we express them and operators F~ in 
terms of operators B~, corresponding to the basic functions Bh. Thus, the stresses 
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j,d Uj)" Ud), Xhj,Xhd Vp"Vd>. Whj,Whd 

C 0 0 0 1 

P -hHPp'X~p 
pi 

-hHPPX~p 
'Yh - P - ---::rr 'Yh 

0 
1 

0 'Yh n,m -
- 'Yh 'Yh 

-X~p 
1 

0 'Yh n 
'Yh - 'Yh 

d 

P -p'XO-
pi 

-pX~p 
'Yh - P ---)'F 

'Yh 'Yh 

TABLE 6.4 

from the redundants are expressed through functions X)'H and integrals BhX)'H 
while some of them also contain function R*. We can write 

(6.32) 

and 

(6.33) 

n 2 

(jjHX = Vj L L Sh)'(Uj),1* + XhjX),H + vj),R* + whjBhX),H), 
),=lh=l 

j = c,p,n,mi H = G,S,P,F 

n 2 

(jdPX = VdLL Sh,x(Ud)'1* +XhdX,xP +vd,XR* + WhdBhX,xP) , 
>.=1 h=1 

d=n,Pi F=G,F. 

In Tab. 6.4 the coefficients of these equations are given.7 The quantities X~p and 
X~p are known from the calculation of the structure (.40, Jo) at t = TO as is stated 
in Eqs (5.31) and (5.32). We remark that stresses (jjSX are formally the same, 
independent of how function Cs was introduced. However, when determining the 
redundants X,Xs a difference exists, as was described in Ch. 5. 

Assuming that steel (P) is an elastic material, the coefficients in the stress 
equations (6.32) and (6.33) can be obtained from Tab. 6.4 for p = 0 (pi = 1). Then 
the stresses do not depend on the concrete transformation function R* any more 
and become 

(6.34) 
n 2 

(jjHX = Vj L L Sh),(Uj,Xl* + XhjX),H + whjBhX>.H), 
,x=lh=l 

j = c,p,n,m; H = G,S,P,F 

7See Ref. [1.29) 
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n 2 

(7 dFX = Vd L L Sh)' (udAl * + XhdXAH + WhdB~X)'F)' 
A=lh=l 

d = n,p; F = G,P. 
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The elements 'Yhl of the scalar matrix '"Y are determined for p = 0, as well. Such 
solutions have been derived in Ref. [1.22]. 

We are now interested in the approximate expressions for the stress parts due 
to the redundants. In Eqs (6.27)-(6.30) functions X)'H are replaced by assumption 
(5.26), referring to their time dependence, so that the following products appear: 
R'F~l", R'F~(l* - R*), R~F~l*, R~FHl" - R*), F~l* and Fh(l* - R*). With the 
addition of relations listed in Tab. 6.1, they reduce to linear combinations of the 
basic functions Bh and, in some cases, of the concrete transformation function R*. 
In compliance with this, we arrive at 

(6.36) 

and 

(6.37) 

n 2 

(7jHX = Vj L L ShA(uhjAHl* + VhjAHR* + WhjAHBh), 
A=1h=1 

j = c,p,n,m; H = G,S,P,F 

n 2 

(7dPx = Vd L L ShA(uhdApl* + Vhd),pR* + WhdAFBiJ, 
),=1h=1 

d=n,p; F=G,P. 
In Tab. 6.5 the coefficients existing in the above equations are found. In contrast 
to the exact stresses the approximate stresses are expressed in terms of the basic 
functions Bh, while some of them contain the concrete transformation function R* .8 

Assuming that steel (P) is the Hookean material in Tab. 6.5 we introduce p = 0 
(p' = 1). Stresses (7jHX formally retain the same form, while stresses (7dFX do not 
depend on function R* 

n 2 

(6.38) (7dFX = Vd L L ShA(uhdApl* + WhdAFBh) , d = n,p; F = a,P. 
A=1 h=l 

The reduced cross section geometry is also determined for p = O. 

6.1.2. Shear Flow. We confine our attention to a straight beam of uniform 
cross section, the axis of which coincides with the z coordinate. To the other 
assumptions, made for developing the elementary theory (ehs 2 and 3), we add 
Jourawsky's hypothesis which is the basis of evaluating the shearing stresses in the 
analysis of elastic beams. Using the same method, the derivation of a shear flow is 
accomplished by the known procedure. 

8See Refs [1.27], (1.29] 
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j,d Uhj>.H, Uhd>.P Vhj>.H, Vhd>.P Whj>.H, Whd>.P 

c 0 
AX>.H .x1l + AX>.H --- >'H --

'Yh 'Yh 

p' 
(AX>'H 0 ) I(X~H + AX>.H) _ 'Yh-P(X~H+ AX>'H) P Ih -aHP(jX~p -p ---:y;:-+JHPX>.P in Ih 

1 
_ 'Y~ (X~H + AX>'H) n,m ~ (X~H + AX>.n) 0 

Ih 'Yh 

n 'Yh (Xo_ + AX>.I') 

d 
~ >'F 'Yh 

0 _ Ih (Xo + AX)..I') 
'"li . >.1' 'Yh 

p {ilh (XO + AX>.P) 
'Y~ >.1' 'Yh 

(Xo AX>.P) -p >.1'+--
'Yh 

_ 'Yh-P(XO + AX>.P) 
~ >.P 'Yh 

TABLE 6.5 

We first consider statically determinate structures and primary structures when 
X>.H = O. For easier shear flow derivation we rewrite stresses (ljH, (ljl' and (ldP 
concisely in the form of one equation, introducing the assumed concrete shrinkage 
function c8(2.27). For this purpose the stress resultants due to the influence of H 
in time t (t > 7"0) are represented as 

NB = NOH1* + N1HR*, 
(6.39) 

H=G,S,P,F. 

In view of equations in' Ch. 4 we derive the functions N'H = NIH{z) and M'H = 
MIH(z) (I = 0,1) listed in Tab 6.6. After rearranging the formulas for the above 
mentioned stresses, we arrive at their unique form 

(6.40) (ljB = Vj t t (t ajbhlEEhlH + djbhH) Abh , 
b=1 h=1 1=0 

j = c,p,n,m,d; H = G,S,P,F, 

in which the time functions are introduced as follows 

(6.41) h= 1,2. 

Owing to the integration over the part of the cross section area, functions ChlB = 
chlH(Z) are represented in the form of 

(6.42) h=1,2; 1=0,1; H=G,S,P,F, 

where 
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H NOH N1H MOH M1H 

G Na 0 MO 0 

S -NSk NSk -ycNSk YcNSk 

P p'n~ pn~ p'm~ pm~ 

G NG +n~G 0 MG+m~G 0 
d=n 

p'n~ +n~p pn~ p'mO +mo pm~ P P AP 

G NG +pln~G ° pnAG MG+p'm~G 0 pmAG 
d=p 

P p' (ne;, + n~p) p(ne;, + n~p) p' (me;, + m~p) p(me;, +m~p) 

TABLE 6.6 

(6.43) 

1 [ NLH 3-h MLH] 
E'f/hIH = A, o,3-hT + (-1) 1128' 

1 [ 3-h NLH MLH] 
EXhlH = A, (-1) 1128 +O'hJ ' 

h=1,2; 1=0,1; H=G,S,P,F. 

Coefficients ajbhl and djbhH, which are not equal to zero, are recorded in Tabs 6.7 
and 6.8, while the reference stress at time t = 7°+ in such notation is 

N0 MO 
aO = -..!1. + --1i. Y 

H A J' (6.44) H=P,F, 

where 
1 1 

(6.45) N~ = LNLH, M~ = LMLH, H = P,F. 
1=0 1=0 

It is known that the shear flow q = q(y, z, t, TO) is the product of the shearing 
stress Tzy and the cross section thickness in that place. Applying Jourawsky's 
hypothesis we can determine shear flow qH in time t (t > TO) using the known 
formula adapted to a composite cross section 

(6.46) qH = 2;: L. ajHdA, j = c,p,n,m,d; H = G,S,P,F, 
3 1 

where Aj is the part or area Aj of the cross section separated by y = canst. 
(Ch. 3.1). The superscript z denotes the derivative of the function with respect to 
variable z. 

Since a beam is of constant cross section, the differentiation with respect to 
variable z refers only to functions NIB and MIH existing in Eq. (6.43). Then we 
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j 
ajbhl ajbh 

ajlhO aj2hl aj3hO aj3hl ajlh aj3h 

0 
1 

1 _ 'Yh 0 1 c -
'Yh 'Yh 

p, p' P 'Yh - P 'Yh - P p' 'Yh - p 
'Yh -7r ---

d=p 'Yh 'Yh 'Yh 'Yh 

n,m, 1 
0 'Yh 1 

1 'Yh 

'Yh - 'Yh 
-

d=n 'Yh 'Yh 

TABLE 6.7 

j 
djbhH /jbhH 

H djlhH dj2hH /jlhH /j2hH 

c S ~Ed 
2 

1 
--Ed 

2 
0 0 

p p' ( P ) e( ~ -a~) p' 0 p 0 p - --a~ -'2gpP -'2gpP 2 Apr 2 Apr 

n 1 0 0 1 0 0 --a- --g -

F 
2 F 2 nF 

d -
p 

p' 0 p 0 p' 0 p 0 
-'2ap --a- -'2gpP --g p 2 F 2 p 

TABLE 6.8 

use the known relations 

(a) nH=-Nir=noHl*+nlHR*, (b) nIH=-NtH, 

(c) TH = Mir = TOH1"+ T1HR", (d) TlH = MIH, (6.47) 

1 = 0,1; H = G,S,P,F, 

where nH is the z component of the forces per unit length of the beam axis, positive 
in the direction of increasing z, while TH is the shearing force. 

After the operations described by Eq. (6.46) are carried out, we arrive at 

(6.48) 

j = c,p,n,m,dj H = G,S,P,F. 
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The indicated integrations in Eq. (6.46) pertain to members TJhlH and "hlW When 
we introduce Eqs (3.2b) and (3.6c) the following constants are found 

1 [ Air 3 h Sir] 
bjh = - Ll"l b""Ih-3 A + (-1) - "1128 ' 

1 [( )3 h Air Sir] 
Cih = Ll"l -1 - "1128 + d"lh T ' 

(6.49) 

h = 1,2; j = c,p,n,m,d, 

appearing in the shear flow expression. Coefficients /jbhH, which are not equal to 
zero, are recorded in Tab. 6.8, while quantities gJH are derived from Eqs (6.44) and 
(6.45) 

(6.50) j = p, d; H = P, F, 

where n~ and Tij are obtained from Eq. (6.47a,c) for t = rO+. 

We recall that QH0, nLH0, Tih0 and fjbhH0 in Eq. (6.48) as well as gJH0' n~0 
and Tij0 in Eq. (6.50) should be introduced if the shear flow refers to a primary 
structure when X>.H = O. 

For statically indeterminate structures the shear flow is represented in the 
known manner 

(6.51) H=G,S,P,F. 

To determine member qHX we also rewrite UjHX and UdFX (Ch. 6.1.1) in the 
suitable unique form 

n 3 2 

(6.52) UjHX = Vi L L L(ajbhEeh>.A~hX>'H + djbh>.HA'bh), 
>.=1 b=1 h=1 

j = c,p,n,m,d; H = G,S,P,F. 

Functions eh>' = eh>.(Z) are defined by the formula 

(6.53) h = 1,2; ). = 1,2, .. . ,n, 

where 

(6.54) 

h = 1,2; ). = 1,2, ... , n. 

Coefficients ajbh and djbh>.H, which are not equal to zero, can be found in Tabs 6.7 
and 6.9, while . 

(6.55) 
N M 

uO=~+~y 
>. A J' ). = 1,2, ... ,n. 
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j 
djbh>.H /jbh>'H 

H dj1h>.H dj2h>.H /i1h>'H /i2h>.H 

P P p' 0 0 -"2a>.X>.p p °XO -2a >. >'P 
p' 0 XO -"2gp>. >'P 

P 0 XO -2gp>. >'P 

1 0 0 0 1 0 0 0 n -"2a>,X>'F -"2gn>,X>'F 
d r-- F 

I 
P 0Xo p' 0 0 p 0 XO -e..a~Xo_ p 2 >'F -2a >. >'I' -"2gp>,X>,I' -2gp>. >.F' 

TABLE 6.9 

When the operations described in Eq. (6.46) are completed, we obtain 

(6.56) 
n 3 2 

qHX = 2: 2: 2: 2: [aj6h(bjhn >. + cjhT>.)A~hX>'H + /jbh>.HAbh] , 
>.=1 j 6=1 h=l 

j = c,p,n,m,dj H = G,S,P,F, 

where 

(6.57) n>. = -Nf, T>. = Mf, A = 1,2, .. . ,n. 

Constants !jbhAH, which are not equal to zero, are listed in Tab. 6.9, while 

(6.58) 
o Ajr Sjr 

gjA = -An>. + TT>., j = p, dj A = 1,2, ... , n. 

The approximate equation for shear flow qHX is developed under assumption 
(5.26) for functions X>.H. Stresses ajHX and adI'X (Ch. 6.1.1) are brought to a 
mutual form 

(6.59) ajHX = Vj ttt(tajbhIE€hAXI>'H +djbhAXk )Abh , 
A=l b=l h=l 1=0 

j = c,p,n,m,dj H = G,S,P,F, 

where coefficients XI>.H are introduced as follows 

(6.60) XOAH = X~H + IlXAH, X1>.H = -AX>.H, 

A = 1,2, ... ,nj H = G,S,P,F, 

while djbhA' which are not equal to zero, are found in tab. 6.10. 
Following the similar procedure we get 

(6.61) qHX = t 2;: t t [t ajbhl(bjhn >. + cjhT>.)xIAH + /ibhAX~H] Abh , 
>.=1 J b=l h=l 1=0 

j = c,p,n,m,dj H = G,S,P,F. 

!f4 
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j 
djbh>' /;bh>. 

dj1h>. dj2h>. !;lh>. !;2h>. 

p, pi 0 P 0 pi 0 P 0 

d=p 
--(7">. --(7">. -"29p>. -"29p>. 2 2 

d=n 
1 0 0 1 0 

0 --(7">. -"29n>. 2 

TABLE 6.10 

Coefficients hbh>', which are not equal to zero, are given in Tab. 6.10. 
The shear flow is expressed in terms of the same time functions as the nor­

mal stresses. For statically determinate structures and primary structures when 
X>.H = 0 the shear flow depends on the basic functions Bh and on the concrete 
transformation function R*. The same holds for the approximate shear flows qH x . 
Such solutions have been derived in RE£ [1.39].9 

In the special case when steel (P) is assumed to be the Hookean material the 
shear flow formulas can be obtained from equations developed here introducing 
p = 0 (pi = 1), meaning that the cross section geometry is determined under the 
same condition. 

6.2. Displacements 

By proceeding in the same manner we first derive the generalized displacement 
formulas in time t (t > TO) due to influence H at an arbitrary point of the de­
formed structure axis for statically determinate structures and primary structures 
when X>.H = o. The load dependent members (Ch. 5) represent such generalized 
displacements, but at some points of the structure axis s = Sw It is evident that 
the procedure for their determination is the same and for this reason we confine 
ourselves to the explanations which result from this difference. 

The constants in Eq. (5.9) become functions of coordinate s. Thus 

9J1<H = ~~ £ .. !J(u, S)MH(U) du, 

(6.62) !Jl'H = ~~ l .. N(u, S)NH(U) du, 

£'1 = If2 ~~ L .. [!J(u, s)NH(u) + N(u, s)MH(u)] du, 

a = 1,2, ... ,mj H = G, S, P, 1lF. 

9See also Refs [1.38J, [1.41J 
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Also D~H = D~H(S) come from Eq. (5.10) 

(6.63) 
D- a _ 1 (r aona + r ama + c.a ) lH - ll.'Ya U'Yl :.IJ~H u'Y2 :JlH ""'H, 

D- a _ 1 (r aona + r ama c.a ) 2H - ll.'Ya U'Y2 :.IJlH U'Yl :JlH - ""'H , 

a = 1,2, ... ,mj H = G,S,P,ll.F. 

The sought after displacement is consistent with Eq. (5.11). Thus 

m 2 

(6.64) ll.H = LLDhHF~aRH' H = G, S, P, ll.F. 
a=lh=l 

In Tab. 5.1 we can find the numbers of equations for NH, MH and RH' corre­
sponding to some influence of H, having in mind that for statically determinate 
structures due to prestressing by forces, Eq. (4.22) should be used. Analogous to 
Eqs (5.12) and (5.13) we write 

m 2 

(6.65) ll.H = L L DhH (phH 1* + qhHB;;a) , H = G,S,P,ll.F 
a=l h=l 

and 

m 2 

(6.66) ll.j;. = LLLDhK(PhK1* +qhKB;;a), K = F,ll.Fj F = G,P, 
K a=lh=l 

whose coefficients are given in Tab. 5.1. Describing the concrete shrinkage defor­
mation by function cs' we use Eq. (5.14) to find 

m 2 

(6.67) ll.s = L L DhSBhaeS' 
a=lh=l 

When we integrate the expressions in Eq. (6.62) we remember that quantities N~ 
and Ms are constants in interval a. Also, if equations refer to a primary structure 
when X)'H = 0, the last subscript 0 should be written to all corresponding functions 
in the above formulas. 

Our next concern will be with generalized displacements for statically indeter­
minate structures in time t (t > TO) produced by the influence of H. They are 
represented as the sums of displacements in a primary structure when X)'H = 0 
and when all redundants act. Thus 

(6.68) H=G,S,P,F. 

Substituting the second addends of Eq. (5.7a,b) into Eq. (5.6) displacements 
ll.Hx are found. Basically, we repeat the procedure of derivation of load indepen­
dent members as was done in Ch. 5, having in mind that displacements refer to an 
arbitrary point of the deformed structure axis. The constants in Eqs (5.15) and 
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(5.16) now become functions of coordinate s. Then 

(6.69) 

and 

(6.70) 

rott = ~~ la M(u,s)M).(u) du, 

91t = ~~ la N(u, s)N).(u) du, 

£1 = If2 ~~ la [M(u,s)N).(u) + N(u,s)M).(u)] du, 

a = 1,2, ... ,r.n; A = 1,2, ... ,n 

Df). = A 

1 (6If~ + 61~91~ + £~), 
Ula 

D~). = A

l 
(6l grott + 6'Yf91t - £t), a = 1,2, ... , r.nj A = 1,2, ... , n. u'Ya 

Finally, in accordance with Eqs (5.17) and (5.18), we get 

n m 2 

(6.71) ~HX = LLLDh);;~aX)'H' H=G,S,P,F, 
).=la=lh=l 

that is 

n m 2 1 a 

~HX = LLLDh).(IciX).H- 'Y,:B~aX)'H)' 
~l~l~l ~ ~ 

(6.72) H=G,S,P,F. 

71 

Introducing assumption (5.26) about redundants time variation into Eq. (6.71) 
we write the approximate equations 

n m 2 

(6.73) ~HX = 2: 2: 2: Dh,\F~a [X~H + ~X'\H(l* - R*)] , H = G,S,P,F, 
).=1 a=l h=l 

which can be expressed in terms of the basic functions 

(6.74) 
n m 2 1 a ~X 

~HX = LLLDh)'(Ici(X~H +~X)'H)l* - I! (X~H + ~)Bha], 
~1~1~1 ~ ~ ~ 

H=G,S,P,F. 

The remark made earlier for stresses (jj8X holds here too: the exact and ap­
proximate formulas for displacements ~sx retain the same form when an arbitrary 
function c 8 or its approximation (2.27) is used to describe the concrete shrinkage 
deformation. 

Parts of the displacements ~HX depend on time through integrals B~a X)'H and 
functions X)'H. The approximate expressions for ~HX as well as displacements in 
primary structures when X,\H = 0 and in statically determinate structures depend 
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on tirpe through the basic functions B"o. in a finite number of cross sections of the 
structure. la 

Assuming that steel (P) is an elastic material, the expressions for displacements 
remain formally the same. The coefficients in Tab. 5.1 and reduced cross section 
geometry are determined for p = 0 (p' = 1). Such exact solutions have been derived 
in Ref. [1.22]. 

6.3. Theoremsll 

Applying the functions and expressions which have been evaluated here we can 
formulate the theorems as an appendix to elementary theory. Later we will explain 
in detail the idea that the equations of the elementary theory can be comprehended 
as the generalization of the equations referring to the concrete cross section. As a 
contribution to this we prove the t·heorems which concern both the concrete and 
composite cross sections. 

Theorem 1. If in a concrete cross section the axial force and bending moment 
depend on the concrete transformation function R* 

(6.75) N = No1" + NIR", 

then the normal strain at any cross section point depends on the concrete trans­
formation function F* 

(6.76) c = co1* + cIF", 

while the stress at any cross section point depends on function R* 

(6.77) 

The quantities No, ... , a cl do not depend on time. 

The theorem can be proved when the assumed stress resultants are introduced 
into the solution of the basic equations (3.88). Then, according to the equations 
from It. 9, Ch. 1, we get 

(6 .78) EO.., - NI 1* + No F* EO Ml * Mo F* 
e·' - Ae Ae' eX = Tc 1 + Tc 

and with the application of Navier's hypothesis (3.34) we derive the first statement. 
The second statement can be proved by substituting the strain c, given by Eq. 
(6.76), into the concrete stress-strain relation (3.35) in which member as is omitted. 

The known Bazant's theorem [2.5] has been derived from the integral relation­
ship between stress and strain in concrete. Bazant proved that the stress time 
variation is as is stated in Eq. (6.77), if the strain obeys the law (6.76). Theorem 
1, formulated for a concrete cross section, represents an alternate form of Bazant's 
theorem, and we here speak about functions F* and R* as the concrete cross section 
transformation functions. 

lOSee Refs [1.23], (1.29], (1.41] 
llSee Refs [1.25], [1.18], [1.45], [1.19], [1.20] 

... 
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Theorem 2. If in a composite cross section the axial force and bending moment 
depend on the cross section transformation functions Rh 

N = No1* + N1Rr +N2R'2, 
(6.79) 

M = Mo1* + M1Rr + M 2 R2, 
then, in the general case of cross section geometry, the normal strain at any cross 
section point depends on the cross section transformation functions Ph 

(6.80) 

while the stress at any point of the cross section, in the general case, depends on 
the same functions and on the concrete transformation function R* 

(6.81) j = c,p,m,n. 

Coefficients No, . .. , O"j3 are time independent. 
With the application of Eq. (3.63a) the stress resultants are expressed in terms 

of function R* 

(6.82) 

where No, ... , Ml do not depend on time. We can prove this theorem when the 
above equation and Eq. (3.62) are introduced into the solution of the basic equations 
(3.46). At that time functions Ph and the basic functions Eh appear. The latter 
are replaced by functions Ph' applying Eq. (3.71) which is multiplied by 1 * . Using 
Navier's hypothesis (3.34) we arrive at the first statement of this theorem. The 
second statement is already contained in Eq. (6.17) for stresses O"jH because it 
has been derived under the assumption that stress result ants N and M change 
according to Eq. (6.82). It is only necessary to substitute the basic functions Eh 
with the cross section transformation functions Ph' 

The same theorem can be formulated in another manner. If the stress resultants 
depend on the concrete transformation functions R* according to Eq. (6.82), then 
in the general case of cross section geometry, the normal strain at any cross section 
point depends on the basic functions Eh 

(6.83) 

while the stress at any point of the cross section, in the general case, depends on 
the same functions and on the concrete transformation function R* 

(6.84) j = c,p,m,n, 

where to, ... , aj3 do not depend on time. 
It is evident that Theorem 2 becomes Theorem 1 when for functions Ph in Eq. 

(6.80) and Eh in Eq. (6.84), 'rh = 1 is applied. 

Theorem 3. If the axial force and bending moment depend on the cross section 
transformation functions Rh according to Eq. (6.79), then the generalized displace­
ment of any point on the deformed structure axis depends on the cross section 
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transformation functions F;.a in a finite number of cross sections of the structure 
m 

(6.85) I:!.* = ~)l:!.gl* + I:!.~Fta + I:!.~F;a), 
a=l 

where I:!.g, I:!.~ and I:!.~ are time independent. 

The statement of this theorem is already contained in Eq. (6.65) for the gener­
aliz~d displacement I:!.H, which corresponds to the stress resultants (6.82). Only the 
basic functions B'ha should be substituted with the cross section transformations 

Fr· 
An alternate form of this theorem is: if the stress resultants depend on the 

concrete transformation function R* as in Eq. (6.82), then the generalized dis­
placement depends on the basic functions B'ha in a finite number of cross sections 
of the structure 

m 

(6.86) I:!.* = ~)Ag1* + A1Br + A2B;Q), 
a=l 

where Ag, A'1 and Ai are time independent. 

6.4. Determination of Stresses and Displacements 12 

The elementary theory of composite and prestressed structures is completed 
with equations for stresses and displacements as time functions, due to permanent 
influences, for any cross section geometry and an arbitrary concrete transformation 
function F*. It still remains for us to show how to determine the functions by 
which stresses and displacements are expressed. 

Before that, let us deal with the mathematical basis of this theory. When the 
theory has been developed, the concept of the customary mathematical approach 
was left because it was extensive and immense. There was an evident need to 
introduce a concise way to evaluate and express the equations and that was the 
reason why such a kind of linear integral operators was defined and applied. In this 
theory the operator calculus has shown one more quality opening up possibilities 
to create the auxiliary operator relations whose application leads to the simplest 
form of stress and displacement expressions reducing the number of mathematical 
operations for obtaining the results. There is a very interesting example related 
to this. For the Rate of Creep Method under the assumption of constant modulus 
of elasticity, it is easy to develop the stress expressions for statically determinate 
structures and constant stress result ants by the analytical method. Under such sup­
positions in the formula for the stress in concrete, obtained by two authors [2.12], 
[2.10], we see the presence of the concrete transformation function R* although the 
elementary theory shows that this member does not exist owing to the fact that 
the relaxation property of steel (P) was ignored. With this knowledge, after compli­
cated and tedious mathematical evaluations, it is proved that the coefficient along 

12See Ref. [1.22] 
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function R* vanishes, that is that stress in concrete contains an excess member. It 
is significant that following the evaluations the authors have made, it could not be 
possible to foresee that this member should not exist. 

Within the elementary theory the cross section transformation functions Rh 
and Fh are defined. With their application we derive all necessary expressions in 
the most simple form but it can be noticed that stresses and displacements are 
not expressed in terms of them. For this purpose another two pairs of auxiliary 
functions, the basic functions Kh and Eh' are defined. Between functions Eh and 
Fh the linear relation (3.71) exists. From that point of view it is insignificant 
whether the stresses and displacements are expressed through the first or second 
pair of functions. However, a special reason exists for the introduction of the basic 
functions Kh and Eh' which demands an explanation. 

First, we will show how functions Eh and R* are obtained starting from the 
concrete transformation function F*, which is a test function. To make the presen­
tation easier we rewrite some of the earlier used equations found in Ch. 3.2. 

When we know function 

(6.87) F*=!1*+~*, 
r 

that is F' = !I' + i', 
r 

the creep function ~*, its derivative ~', functions K'h and operators K~ are also 
known 

(6.88) 

For now we consider the quantity "(h, that is "(~, as a parameter. 
Unknown w*, that is w', is found in the expression 

(6.89) R* = r1* -w*, that is R' = rI' - \P', 
while unknown wh, that is Wk, is contained in 

(6.90) B * r 1* , .T.* h t . B-' r -1' , ;T., h = - -"(hYh' t a IS h = - -"(hYh' 
rh rh 

To determine the unknowns we refer to the operator relations 

(6.91) (a) K~B~ = I', (b) K~Bh = 1*. 

In the sense of It. 9, Ch. 1, we develop the parameterized nonhomogeneous integral 
equations 

(6.92) ~'(t r) r(r) - rh ("(~, t) W'("(' t r) - 'V' it ~'(t O)w' ("(' 0 r) dO = 0 , (') (t) h' , Ih 'h h' , , 
rh "(h,r r T 
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and 

(6.93) Kh(-y~,t,t)Bh(-y~,t,T) +,~ it (b'(t,B)Bh(-y~,B,T)dB = 1, 

Their common kernel ~' is a known function. Solving the first equation for 1][~ we 
obtain functions 1][1 and 1M2 when the parameter 11. takes the values of ''''{Ia = I{ 
and ,1. = I~,respectively, where If and I~ are the principal values of the matrix 
of the reduced cross section geometry, " defined by Eq. (3.23). Then operators .8~ 
and .82 are determined. Consistent with Eq. (3.90) from the same function IM~ for 
11. = 1 we find the unknown IM' by which operator il' becomes known. The integral 
of function 1][~ gives function IMh so that for the same three values of parameter 11. 
we determine unknowns Bi, B~ and R*. Under the same condition these functions 
are the solutions of Eq. (6.93). Summarizing the above results we notice that all 
three functions Bi, B~ and R* and their operators B~, .8~ and .k, determining 
the stresses and displacements, represent the solutions of only one parameterized 
nonhomogeneous integral equation whose kernel (b' can be directly determined from 
the selected concrete transformation function F*. 

However, the determination of operators Ph requires solving two independent 
nonhomogeneous integral equations. First, we have to determinate the solution 1][' 
of the equation contained in the operator relation 

(6.94) plR' = I', that is (~I' + ~')(rII - ~') = I'. 
After that, we form the parameterized nonhomogeneous integral equation stemming 
from 

(6.95) that is 

the kernel of which is function Ih "\II'. For two values of parameter Ih, when Ih = /1 
and Ih = 12 where /1 and 12 are the principal values of the scaiar matrix , 
(3.22), unknowns 1][~ and 1][2 are determined. Respecting the fact tha.t the integral 
equations often have to be solved by a numerical procedure, the sense' of introducing 
the basic functions Kh and Ej. is obvious. We turn our attention once again to the 
operator calculus underlining its role in defining the auxiliary basic functions whose 
application also reduces the number of mathematical operations for obtaining the 
results. 

Keeping in mind the linear relation between the basic functions Bh and cross 
section transformation functions Fh, that is between their operators Bh and Ph' we 
remark that from the solutions 1][h of Eq. (6.92) we could have determined operators 
Ph and functions Fh and in that way the stress and displacement equations could . 
be expressed in terms of them. 
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7.1. Cross sections with le = Ip = 013 

In practice there are structures whose concrete slabs are thin in comparison to 
the height of their cross sections. In such cases the moments of inertia of concrete 
(c) and steel (P) parts of the cross sections, le and lp defined by Eq. (3.14), can be 
neglected in comparison to the moments of inertia of the transformed cross sections 
[2.14J, so that we can adopt 

(7.1) ler = lpr = 0, Ye = Yp· 

From the relations in Ch. 3.1 we show that the following is valid 

(7.2) 

and 

(7.3) 

"(2 = 0, "(2 = 0, 

t::. "( = ''(1) Ih1 = "(22, 

y~A 
"(22 = "(11 -, 

J 
YeA 

"(12 = "(11 S' 
We use Eq. (3.90) to obtain 

(7.4) 

and 

F~ = I', ~ = I', F; = 1*, R2 = 1 * 

(7.5) K~ = F', B~ = R', K2 = F*, B2 = R*. 

In equations for stresses in statically determinate structures and in primary 
structures when X)'H = ° functions ShH (6.12) are rearranged according to Eqs 
(7.2) and (7.3). Then 

(7.6) 

Ye = YP; H = G,S,P,t::.F. 

13See Refs [1.27], [1.22] 
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j H,K UjH,UjK VjH, VjK WIjH, WljK 

G,6.F 
(d =n) * 0 82H 81H 

1 - 'Y~ -Cs 0 -E+-StS --Ss 

S * 
'Yl 'Yl 1 

C 

Ed - ( Ed + ~t SIS) 
1 -
-SIS 
'Yl 

P,6.F 
0 

p - 'Yl - P -
(d =p) -StH --SH 

'YI 'Yl 1 

G,6.F ( 1 - -) pS2H 
'Yl - p-

(d=n) p' ,SIH +S2H ---SH 
'Yl 'Yt 1 

0 
p - 'Yl - p-

cS -SS --SIS 

S 
'Yl 1 'Yl 

P 
p' - P - 'Yl - p-
,SIS --SS ---S 
'Yl 'YI 1 'Yl'Yl IS 

P . ,( P 'YI-P-) (P 'YI-P-) hI - p)2 _ 
P T+--,-SIP p ----SIP - S 

PT 'YI ApT 'Yl 'Yl 'Yf IP 

6.F p,2 _ p2 _ ('Yl - p)2 _ 
'Yl SIAF 'YI SIAF - S 

(d =p) 'YI'Yl lAF 

G,6.F 1 - -
0 

'Yl -
(d=n) ,StH +S2H -ISIH 

'YI 'YI 

CS 0 0 BIB 
n, 

S m 1 - 1 -
,SIS 0 --Ss 
'Yl 'Yl 1 

P,6.F p' -
0 'YI - P -

(d=p) ,SIH ---,-SlH 
'Yl 'h 

TABLE 7.1 

Taking into consideration formulas for NH and MH (Ch. 4), we have 

(7.7) H = P,6.F for d = p 

and 

(7.8) H = S, P,!:1F for d = p, 
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d K UdK VdK W1dK 

G,AF 11 - 0 11 -
,SIK --SK 

n 11 I~ 1 

P 
11 - p-

0 
11 - p-

--,-SIP ---Sp 
11 I~ 1 

G 
,,1 -

-pS1O 
11 - p-

p I~ S10 ---Sa 
It 1 

P 
_ bl - p)2 S 

P,tlF p"I- PS 11 - p-
-P--SIK I~ lK 11 111~ IK 

TABLE 7.2 

where it is irrelevant in which way we introduce the concrete shrinkage function. 
From Eq. (6.11) and the foregoing expressions we find the reference stress 

O"H = SlHFt + S2H1*, H = G,tlF for d = n, 
(7.9) 

O"H = SlHF{ RH, H = S, P, tlF for d = p. 

Applying the procedure as in the general case of cross section geometry (Ch. 6.1.1) 
we develop the stresses in statically determinate structures and in primary struc­
tures when X AH = 0 

(7.10) 
O"jH = vj(UjH1* + V;HR* + W1jHB;), 

O"jE' = Vj L(UjK1* + V;KR* + W1jKB;), 
K 

j = c,p,n,mj H = G,S,P,tlFj K = F,tlFj F = G,P. 

If the concrete shrinkage function Cs is introduced we find 

(7.11) O"jS = Vj(V;sR'cs + WljsB~cs)' j = c,p,n,m. 

In Tab. 7.1 coefficients appearing in these equations are recorded. Stresses in the 
additional element (d) due to the substitute influence F are defined by formula 

(7.12) O"dE' = Vd 2:)UdK1* + VdKR* + W1dKB;), 
K 

d = n,p; K = F,tlF; F = G,P. 

The corresponding coefficients are found in Tab. 7.2 
We can see that in statically determinate structures and in primary structures 

when X>.H = 0 stresses depend on the concrete transformation function R* and on 
one basic function Bi excepting that some stresses depend on function Bi only. 

Simplifying coefficient Vcs we show that 

(7.13) Y =Yc· 
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j Up" Ud>. Xj>.,Xd>. Vj>., Vd>' fj>., Va>. Wlj>., W1d>. 

c 0 0 0 82>, 81>. 

-6HPP' L: 8h>'X~P p'( ~8L\ +82>.) -6HPp I: 8h>'X~P p82>. 
'Yl-p p ---,-81>, 

h "11 h '1'1 

1 '1'1 n,m 0 ,S1>. + S2>' 0 0 -,SI>' 
'1'1 '1'1 

- L:Sh>,X~F 
1 _ "'f.hS n ,81,\ + 82>, 0 0 

d h 'l'h 'I'~ 1>' 

-p' I: Sh>,X~F p'( ~Sl>' +S2>.) -p I: Sh>,X~F pS2>' 
'1'1 -p 

P -~SI>' 
h '1'1 h '1'1 

TABLE 7.3 

For d = -1 it becomes coefficient Vcs in the stress expression (J cS when an arbitrary 
function 6 S is introduced. 

In later examinations we will use the foregoing equations when steel (P) is 
assumed to be an elastic material. Then the stresses depend only on the basic 
function Bi with the remark that stresses (JeH (H = G, S, D.F for d = n) pertain 
to the cross section points Y = Ye, since Eqs (7.6), (7.8) and (7.13) hold. Thus we 
can write 

(a) (JjH = vj(UjH1* + WljHB;), 

(7.14) (b) (JjF = Vj L(UjK1* + W1jKB~), 
K 

(c) (JdF = Vd l:(UdK1* + W1dKB;), 
K 

j = c,p,n,m; d = n,p; H = G,S,P,D.F; K = F,D.F; F = G,P. 

Introducing the concrete shrinkage function 6 s we have 

(7.15) j = c,p,n,m, 

with the same remark that such a stress function refers to the cross section points 
Y = Ye' Coefficients in the above equations are obtained from those in Tabs 7.1 and 
7.2 for p = 0 (p' = 1). In Tab. 7.1 column H, the stresses which only for Y = Ye 
depend on the basic function Bi are indicated with asterisks. 

Stresses due to redundants X>.H can be derived from Eqs (6.32) and (6.33), 
referring to the general case of cross section geometry, since from Tab. 6.4 we see 
that quantities rh do not exist in the denominators, that is that for '1'2 = 0 the 
coefficients in the mentioned equations do not become indefinite. We substitute 
function Bz with function R*, introduce r2 = 0 b~ = 1) and functions ShA join 
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Uj),H,Ud>..F Vj>..H, Vd>..F W1j>..H, W1d>..H Vj>..H, Vd>..F 

1 -
SnX>..H -S2>..D..x>..H 0 --SnD...X>"H + S2>..X>..H 

/1 

p'( !,Sn + S2>..)X>..H 
p -

--Sl>..D...X>..H + S2>..(pX>..H /l-P = /1 /1 ---,-SnX>"H -pS2>..D...X>..H 
-6HPP' L Sh>"X~P -p' D...X>..H) -6HPp L Sh>"X~P /1 

h h 

( !,Sn + S2>..)X>..H -S2>..D...X>..H 
/1 = 

0 11. -,SnX>"H 
/1 /1 

11 = 
-SnD...X>"F 

/1 = 
0 11. ,SnX>"F + S2>..D...X>..F -,SnX>"F 

/1 /1 

,'IS X 's D...X -pS1>..X>..F + (p - P')S2>..D...X>..F 
/l-P = 

-pS2>..tlX>..F pp, I>" >..F+P 2>" >..F ---,-SUX>"F 
/1 /1 

TABLE 7.4 

= 0 tlX>.Q -
Here: X>..H = X~H +tlX>.H, X>'Q = X>.Q + --, Q = H,F 

/1 

the coefficients as was done in the previous equations. Then 
n 

(7.16) ajHX = Vj :l)Uj>..l* + Xj>..X>..H + Vj>..R* + Vj>..R'X>..H + W1j>.B~X>"H)' 
>.=1 

j = c,p,n,m; H = G,S,P,P and j = d; d = n,p; H = P; P = G,P. 

Corresponding coefficients can be found in Tab. 7.3, while functions Sh>" are deter­
mined by Eq. (7.6) in which NH and MH are replaced by N>. and M>., respectively. 

The approximate formulas for stresses a jH X are derived from the beginning 
because in Eqs (6.36) and (6.37), corresponding to the general case of cross section 
geometry, some coefficients become indefinite when /2 = 0 (Tab. 6.5). Combining 
Eqs (6.26) and (7.4) we obtain the reference stress 

n 

(7.17) aHX = L(SnF{X>..H + S2>..X>.H), H=G,S,P,P. 
>"=1 

Applying Eq. (5.26) for the approximate functions X>..H and the known procedure 
we obtain 

n 

(7.18) ajHX = Vj L(Uj>..H1* + Vj>"HR* + W1j>..HB; + Vj>"HR'R*), 
>..=1 

j = c,p,n,m; H = G,S,P,P and j = d; d = n,p; H = P; P = G,P. 

To the above formula we join Tab. 7.4 
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Assuming that steel (P) is the Hookean material, the exact and approximate 
stresses G"jHX and G"dPX are obtained under the known condition (p = O,pl = 1) 
from the given equations and Tabs 7.3 and 7.4. 

The exact and approximate expressions for displacements as well as the load 
dependent and independent members in the equations of continuity for this special 
case are not written here. They can be obtained directly from the general equations 
introducing "{2 = 0 ("(~ = 1) and B; = R*. The example are stresses G"jHX, given 
by Eq. (7.16), when the coefficients in Tab. 7.3 are derived from the coefficients 
listed in Tab. 6.4. 

7.2. Cross Sections with lp = lm = 014 

In the absence of steel parts in structures, in some cases it is possible to neglect 
the moments of inertia of steel (P) and reinforcing steel (m), Ip and Im defined 
by Eq. (3.14), in comparison to the moments of inertia of the transformed cross 
sections. Then 

(7.19) Ipr = Imr = 0, Yp = Ym' 

From the equations found in Ch. 3.1 we show that the following holds 

(7.20) 

and 

(7.21) 

"{I = 0, "{f = 0, 

~"{ = "{~, 0"{1 = 7{1' 

I I YpA 
"{12 = 711 S' 

From Eq. (3.89) it is evident that 

(7.22) F{ =F/, ii/-ii/ 1 - , Fi = F*, 

and 

(7.23) Kf = 1\ BI -11 
1 - , K; = 1*, 

I I (1 Y~A) 
"{2 = 711 + J . 

Rr = R* 

B; = 1*. 

Many coefficients in the stress and displacement expressions and the members 
of the equations of continuity corresponding to the general cross section geometry 
(Chs 6.1.1, 6.2 and 5) become indefinite when 7~ = O. That is why we derive here 
these equations from the beginning, for the special case under consideration. 

Consider the stresses in static ally determinate structures and in primary struc­
tures when X)"H = O. Combining the formulas for functions ShH (6.12) and Eqs 

14See Refs (1.271, (1.221 
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(7.20) and (7.21), we get 

(7.24) 

YP = Ym; H = G,S,P,D..F. 

Taking into account relations for RH and MH (Ch. 4) we arrive at 

o - RH ypRH 
(7.25) aH = S2H = A + -J-Y' H = P, D..F 

and 

(7.26) 8 1H = 0, H = P, D..F. 

We see that no steel parts as the additional element (d) exist. It is presupposed 
that d = p and this will not be especially indicated. 

The reference stress is derived from Eq. (6.11) 

(7.27) 
H=G,S, 

aH = 82HF~RH' H = P,D..F, 

while the stresses in some parts j of the cross section become 

ajH = IIj(UjH1* + YjHF* + VjHR* + W2jHB2'), 

(7.28) ajF = IIj 2)Uj K1* + YjKF* + VjKR* + W2jKB2'), 
K 

j = c,p,m; H = G,S,P,D..Fj K = F,D..Fj F = G,P. 

Introducing the concrete shrinkage functions cS' we obtain 

(7.29) ajs = IIj(UjSCS + VjsR'cs + W2jsB~cs), j = c,p,m. 

Stresses in the additional element (d) due to substituted influence F are given by 
formula 

(7.30) (YdP = lid L(UdK1* + YdKF* + VdKR* + W2dKB2'), 
K 

K = F,D..F; F = G,P. 

The coefficients found in the above expressions are recorded in Tab. 7.5 
In staticaIly determinate structures and in primary structures when X)"H = 0 

the stresses depend on one or both concrete transformation functions F* and R* 
and on one basic function B:; with the exception of some stresses which depend 
only on function B:;. 

Supposing that steel (P) is an elastic material, it can be shown that coefficient 
VeS = 0 for both types of concrete shrinkage function Cs and that the stresses 
depend only on the basic function B:;. Here Eq. (7.24a) is included, meaning that 
stresses adO, and (YjH (j = p, mj H = G, S), when the assumption (2.27) is applied 
for the function Cs' refer to the cross section points Y = Yp. Thus 
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j,d H,K UjH, UjK, UdK YjH, YjK, YdK V}H, V}K, VdK W2jH, W2jK , W2dK 

G SlO 0 0 S20 

0 
- 1 - ~-Cs 0 -E + 5IS + -525 --525 

5 
"{2 "{2 

c 

Ed+ SIS -(Ed+S1S+ ~2 S2S) 
1 -

0 -55 
"{2 2 

P,tlF 0 0 P - "{2 - p--52H --5 
"{2 "{'1. 2H 

G 
- p' -

P'SlO 0 
"{2 - p-

* p510 + ,520 ---50 
"{2 "(~ 2 

P'SlS 0 P(SlS + ~2 S2S) 
"{2 - p-

cS --525 
"(2 

5 
- p' - C 1 - ) P'S1S 

"{2 - p-
p * (p - p')51S + ,525 -p 515 + "{252S ---5 

"{2 "{2"{~ 25 

P '( P ,,(2-P- ) 0 (p "(2-P - ) ("(2 - p)2 S 
p T+-,-52P p T--- 52P 

pr "{2 pr 12 ,,{2"f~ 2P 

tlF 
p'2 _ 

0 
p2 _ ("(2-p)2 S 

"{~ 52AF -52AF 
"{2 ,,{2"f~ 2AF 

1 -
SlO 

"{2 -
G * ,520 0 -,520 

"{2 "{2 

Cs S1S 0 0 S2S 
m 5 

- 1 -
S1S 

1 -
* -515 + ,525 0 --55 

"{2 "{~ 2 

P,tlF 
p' -

0 0 12 - P -
,52H ---5 H 
"{2 "{~ 2 

G 
- "{2 -

P'SlO -p (SlO + S20) 
"{2 - p-* (p-p')51O+p',52G ---50 

d 
"{2 "{~ 2 

P,tlF ,"{2 -PS 0 
"{2 - p- _ ("(2 - p)2 S 

-p--5 K P --;yr- 2K "{2 2 ,,{2"f~ 2K 

TABLE 7.5 
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j Up.., Ud>. Xj>.,Xd>. Vj>., Vd>' }J>., Yd>. 

C 0 Su 0 0 

p -8HPp
l
l: ShAX~p l 

pSl>.+/S2>. 
"12 

-8HPP l:Sh>'X~P lSu 
h h 

1 
0 SI>' m 0 -S2>' 

"12 

d -ll:Sh>'X~P 
l 

-P l:Sh>'X~P plSU pSU +/S2>. 
h "12 h 

TABLE 7.6 

(a) 0'iH = Vj(UjH1* + W2jHB;), 

(7.31) (b) OjP = Vj 2)UjKl * + W2jK B;), 
K 

(c) 0dF = Vd L(UdK1* + W2dKB;), 
K 

j = c,p,m; H = G,S,P,t::..F; K = F,t::..F; F = G,P. 

Introducing the concrete shrinkage function cs' we get 

(7.32) j = c,p,m. 

85 

W2j>., W2d>. 

S2>' 

"I2-P 
---I-S2>' 

"12 

"12 
-/S2>' 

"12 

"I2-P 
---I-S2>' 

"12 

The corresponding coefficients can be obtained from those in Tab. 7.5 for p = 0 
(l = 1). Stresses referring to points y = YP of the cross section, included in the 
above expressions, are designated by asterisks in column H. For the reason which 
can be understood when one sees Tab. 7.5 the asterisk is placed next to stress 0dG 
instead of ° dO. 

The reference stress 0HX is derived from Eq. (6.26) 
n 

(7.33) O"HX = L(SI>.F
I + S2>.F~)X>'H' H=G,S,P,F, 

>.=1 

from where we obtain 
n 

(7.34) O"jHX = Vj L(Uj>.l* + Xj>.X>.H + Vj>.R* + }J>.FIX>.H + W2j>.B~XAH)' 
>.=1 

j=c,p,m; H=G,S,P,Fandj=d; H=F; F=G,F. 

The coefficients are listed in Tab. 7.6, while functions Sh>' are obtained when in 
Eq. (7.24) NH and MH are replaced by N>. and M>. respectively. 
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Up.H, Ud)"F Yj)"H, Yd)"F Vj)"H, Vd)..F W2j )..H, W2d)"F 

SUX)"H 0 -(Sl)" + ~2 S2)..)~X)"H S2)..X)"H 

( pi) _ I 
-p( Sl)" + ~2 S2)") ~X)"H pS1)" +/,"S2)" X)"H-P Sl)..~X)"H 

pi Sl)..X)"H 'Y2-P = 'Y2 --I-S2)..X)"H 
-8HPpl(Sl).. + S2)")X~P -8HPp(Sl).. +S2JX~P 'Y2 

1 -
SuX)"H 

'Y2 = 
-Sl)..~X)"H + /,"S2)..X)"H 0 -/,"S2)..X)"H 

'Y2 'Y2 

- 'Y2 = pISl)..X)..F - p( Sl)"X)..P + S2)" t)..p) 'Y2-P = (p - pl)Sl)"X)..P + pl/,"S2)..X)..F --I-S2)..X)"F 
'Y2 'Y2 

TABLE 7.7 

- 0 = 0 ~X)..Q -
Here: X)..Q = X)..Q + ~X)..Q, X)..Q = X)..Q + --, Q = H,F 

'Y2 

The approximate equations for stresses CTHX are derived from Eqs (7.33) and 
(5.26) where the latter equation describes the supposed time variation ofredundants 
X)"H. Applying the standard procedure we find 

n 

(7.35) CTjHX = Vj L:)Uj )"H1* + Yj)"HF* + Vj)"HR* + W2j )..HB2), 
)..=1 

j = c,p,m; H = G,S,P,P andj = d; H = P; P = a,P. 

The corresponding coefficients are given in Tab. 7.7. 
Equations (7.34) and (7.35) and the coefficients derived from Tabs 7.6 and 7.7 

when p = 0 (pi = 1) determine the exact and approximate stresses CTjHX when the 
relaxation property of steel (P) is ignored. 

Displacements in statically determinate structures and in primary structures 
when X)"H = 0 due to influence H are derived substituting Eq. (7.22) into Eq. 
(6.64). Then 

m 

(7.36) ~H = I)D1HFIRH + D2HF~IlRH)' H = G,S,P,~F, 
11=1 

where functions DhH can be obtained when the special cross section geometry 
(7.20) is introduced into Eq. (6.63). After the familiar procedure we arrive at 

m 

(7.37) ~H = 2)Pii1* + ZiiF* + Q~HBill), H=G,S,P,~F 
11=1 

and 
m 

(7.38) ~p = L:~:)PK1* + Z'kF* + Q2KBill), K = F,~Fj F = G,P. 
K 11=1 
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H,K PH' Pt.:, P:H0 , P:K0 ZB' z~, Z;H0' Z;K0 Q~H' Q~K' Q~I-'H0' Q~I-'K0 
1 -

jjfQ 
_ 7~ jja G 7~a D~Q ~a 2Q 

- 1-
jjfQ 

1 -
S -DfQ + ---;aD~Q - 7~aD~Q 72 

P,6.F 
-a pl-a pljja _ 7~ - P jja 

pDIQ + ---;aD2Q IQ 7~a 2Q 72 

TABLE 7.8 

To these equations we join Tab. 7.8 in which Q = H = G, S, P, 6.F and Q = K = 
F, 6.F, F = G, P should be introduced. IT the concrete shrinkage function Cs is 
applied Eqs (7.36) and (4.6) are combined giving 

m 

(7.39) 6.8 = ~)jjfscs + jj~sB~acs)· 
a=1 

Displacements 6.'Hx due to redundants X>..H are derived from Eqs (6.71) and 
(7.22) 

(7.40) 
n m 1 a 

6.'Hx = L L (IaD~>..X>"H + Df>..PIX>..H - 7?aD~>..B~aX>..H), 
>"=1 a=1 72 72 

H=G,S,P,P. 

The approximate expression is given by the formula 

6.'Hx = :t f ([ -Df>..6.X>..H + ~a D~>,,{X~H + 6.X>..H)] 1 * 
>..=1 a=1 72 

(7.41) Da {XO AX )F* 7~ Da (Xo 6.X>..H)B*a} + 1>.. >"H + u. >"H - la 2>" >"H + --a- 2 , 
72 72 

H=G,S,P,P. 

Functions D~>.. stem from Eqs (6.70) and (7.20), the latter referring to the reduced 
cross section geometry for the special case under consideration. 

When steel (P) is assumed to be the Hookean material, then p = 0 (p' = 1) 
should be introduced in the displacement expressions. 

It was stated earlier that the difference between the displacements in primary 
structures when X>..H = 0 and the load dependent members in equations of con­
tinuity is that the first pertain to an arbitrary point of the structure axis with 
coordinate s, while the second pertain to the axis point s = sI-'" We refer to Eqs 
(7.37) and (7.38) and obtain 
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m 

(7.42) A.;H0 = "L(i>;H0 I* + Z;H0 F* + Q~JSH0B2a), 
a=l 

p. = 1,2, .. . ,n; H = G,S,P, A.F 

and 
m 

(7.43) A.~F0 = L LCP;K0 I * + Z;K0F* + Q~J'K0B2a), 
K a=1 ' 

p. = 1,2, .. . ,n; K = F,A.F; F = G,P. 

To Eq. (7.42) we add the expression 
m 

(7.44) A.;S0 = L(D~~S0€S + D~JSS0B~a€s), p. = I,2, ... ,n. 
a=l 

The coefficients in Eqs (7.42) and (7.43) for p # 0 and for p = 0 are listed in Tab. 
7.8 where Q = p.H0, H = G,S,P,A.F and Q = p.K0, K = F,A.F, F = G,P is 
introduced. Quantities Dh.JSH0 are determined by Eq. (5.10) and (7.20). 

The load independent members are 

m 1 a 
A' '" ( Da -1' Da F-' "f2 Da B-,a) UJSA = L..,.; -;a: 2JSA + lJSA - -;a: 2JSA 2 , 

a=l "f2 "f2 
(7.45) 

p., >. = 1,2, ... , n 

and are formally the same when p = O. Quantities DhJSA can be derived from Eqs 
(5.16) and (7.20). 

In the approximate equations of continuity (5.30) the coefficients become 

(7.46) aJSA = f [( -DfJSA + ~a D2JSA) 1* + DfJSA F* - ~a D2JSA Bia ] , 
a=1 "fa "f2 

p., >. = 1, 2, ... , n 

and 

(7.47) 
n m 1 a 

bJSH = L L ( -;a: D2JSA 1 * + DfJSA F* - "f;a D2JSA BiD. ) , 
A=l a=l "f2 "f2 

P. = 1,2, ... ,n; H = G,S,P,F, 

being formally the same for p = o. 

7.3. Cross Sections Symmetrical About Two Axes 15 

There are two reasons why this special case of the cross section geometry is 
analyzed. The first is because some of Arutiunyan's solutions refer to the stresses 
in this type of cross section. 

15See Ref. [1.22] 



1. SPECIAL CASES OF CROSS SECTION GEOMETRY 89 

In the case under consideration the centroid of the transformed cross section 
C and the centroids of its parts Cj coincide. Thus 

(7.48) Yj =0, j = c,p,n,m. 

From expressions given in Ch. 3.1 we see that 

(a) 712 = 721 = 0, 

(7.49) (b) 711 =;1, 722 = 72, 

(c) 071 = 0, 072 = A7· 

The matrix of the reduced cross section geometry 'Y becomes a diagonal matrix. 
Equation (.7.49b) holds regardless of whether the order (3.2&) is sustained. 

We confine our attention to the stresses in statically determinate structures 
for which Arutiunyan derived some solutions. To this end we refer to Eq. (6.17) 
for stresses (fjH and Tab. 6.2, concerning the general cross section geometry. As a 
consequence of Eqs (6.12) and (7.49c) only functions ShH are different and become 

- NH - MH 
(7.50) (a) SlH = A' (b) S2H = TY' H = G,S,P,AF. 

The second reason why we deal with this kind of cross sections lies in the 
fact that the basiC equations become two independent nonhomogeneous integral 
equations. From Eqs (3.44) and (7.49b), we show that 

(7.51) R~l = R~, ~2 = ~, 
while from Eq. (3.40) we obtain the basic equations 

(7.52) EAR~ 1) = N, EJ ~x = M, 

whose solutions are 

(7.53) 

We notice the analogy between the above equations, on the one side, and the 
basic equations (3.87) and their solutions (3.88), which correspond to the concrete 
cross section, on the other side. The evident analogy therefore follows between 
the cross section transformation functions Ri.., F;; and the concrete cross section 
transformation functions R*, F*. Function R* transforms unit deformations 1} 

and x of the concrete cross section into stress resultants N and M, respectively. 
With this in mind we can say that functions Rh produce the same effects in the 
composite cross section. Also, functions F* and Fi: have a similar role, transforming 
unit stress resultants into functions 1J and x. Taken in that sense we can say that 
functions Rh or F;; describe the composite cross section behaviour, meaning that 
they describe the laws of the co-action of different materials. We have already seen 
that they are influenced by the physical properties of all materials as well as by 
their arrangement, that is the cross section geometry. 



8. SPECIAL CASES OF THE CONCRETE 
TRANSFORMATION FUNCTIONS 

We turn Our attention to the application of the elementary theory equations to 
the selected concrete transformation functions F*. The problem is reduced to the 
determination of the corresponding basic fUnctions Bh, the concrete transformation 
function R* and their operators B~ and k, which are then introduced into the 
general expressions. 

Three concrete transformation functions F* were used for the determination 
of exact equations: the Rate of Creep Method, Maslov-Arutiunyan's function and 
the Hereditary Theory. The mathematical approach to derive the expressions more 
or less depends on the mathematical formulation of the concrete stress-strain re­
lations. For the Hereditary Theory it was the Laplace transforms, for the Rate of 
Creep Method the differential equations were solved, while for Maslov-Arutiunyan's 
function the stresses were the solutions of nonhomogeneous integral equations. fur­
thermore, the starting equations have been formulated in different manners, which 
were presented in Ch. 3.2. Sometimes the selection of the starting equations, and 
sometimes the applied mathematical approach were reasons why the solutions were 
limited mostly to the special cases of cross section geometry and loading. 

In Ref. [1.22] the derivation of functions IJI* and IJI;;' for the mentioned con­
crete transformation functions F* was shown in detail, introducing steel (P) as an 
elastic material. The same results hold when its relaxation property is taken into 
account, but the elements of the matrix of the reduced cross section geometry 'Y 
are determined from Eq. (3.22), that is for p:f. O. 

The Hereditary Theory was formulated by Boltzmann's principle of superpo­
sit ion (2.6] presupposing that the concrete transformation function F* depends on 
the difference of variables t and r. That means that concrete aging property is 
ignored and that it is of constant modulus of elasticity. Then Eq. (2.41a) gives 

(8.1) F*(t - r) = 1* + <l?*(t - r), t > r ~ rO = O. 

Such a function predetermines the application of the Laplace transforms. 
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The cr€ep function ~* was assumed in the form [2.17], [1.4] 

n t 
~*(t)=L<pI[I-exP( -F)]' 

1=1 I 

(8.2) 

where variable t - T is substituted with t and where the coefficients <PI and rh 
are known. The unknowns W' and w~ are obtained from Eqs (6.92), (2.40) and 
(3.81), where the last two expressions adopt the first one to the constant modulus 
of elasticity. Their integrals were found to be 

n t 
w*(t) = Lt/JI[I-exp( -0)]' 

1=1 I 
(8.3) 

n t 
wh (t) = L Ohl [1 - exp ( - :;:-)] , h = 1,2. 

1=1 hI 

The coefficients in these formulas depend on the roots of the Laplace transforms 
polynomials and on the coefficients in Eq. (8.2), [1.4J, [1.22J. 

In the Hereditary Theory two quantities are used. The creep coefficient cp as 
the limit value of the creep function q,* when t -+ 00 

(8.4) (a) q,*oo = cp, (b) P"oo = 1 + cp, 0 < <P < M, 

where Mis the finite number and the relaxation coefficient t/J as the limit value of 
the relaxation function w* when t -+ 00 

(8.5) (a) W*OO = t/J, O<t/J<1. 
Applying the final-value theorem [2.9] to Eq. (1.54) we relate these coefficients 

) ,1 <P t/J 
(8.6 t/J = 1 + <P' t/J = 1 + cp' cp = t/J" 

while from Eq. (3.35), where term Us is omitted, the stress-strain relation when 
t -+ 00 is obtained 

(8.7) 

It is the exact asymptotic equation of the Hereditary Theory. On the basis of the 
same theorem the following is derived 

(8.8) B*OO 1 
h =1+~<p' h = 1,2, 

as well as the limit values of integrals when t -+ 00, appearing in the stress and 
displacement expressions, which can be represented in the form 

(8.9) lim il'u = R*oouoo , lim jj~u = Bhoouoo , h = 1,2. 
t~oo t~oo 

The exact algebraic formulas for stresses and displacements when t -+ 00 of 
the Hereditary Theory, the so-called asymptotic stresses and displacements can be 
obtained from the general expressions exchanging the time functions with their 
limit values, according to the above equations. 
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An alternate procedure for arriving at the asymptotic expressions is to return 
to the eight equations (3.34)-(3.39) when t -+ 00, replacing Eq. (3.35) with (8.7) 
and substituting the integral equation (3.36) for steel (P) with the corresponding 
algebraic equation. With the application of the familiar procedure we obtain the 
simplified formulas for stresses and displacements in which no principal values 'rh 
of the scalar matrix '*Y appear. Assuming that steel (P) follows Hooke's law, such 
expressions were derived in Refs (1.3], [1.22].16 

For the creep function (8.2) and n = 1 Rzanicin (2.17] determined the stresses 
in a reinforced concrete bar for some simple load cases. 

J. Lazic [1.4] developed the elementary theory of composite and prestressed 
structures, introducing the Hereditary Theory as the creep prediction model in the 
form of Eq. (8.2) and steel (P) as the Hookean material. Applying DuriC's method, 
the principle of virtual forces and the algebraic operations with the Laplace trans­
forIllS, J. Lazic developed the simple formulas for stresses and displacements which 
can be obtained from the general equations when the concrete transformation func­
tion R*, the basic functions Bh and their operators ii', B~ are determined from 
Eqs (8.3), (2.41) and (3.83) and when Hooke's law is assumed to be valid for steel 
(P). Also, J. Lazic (1.3], [1.4] developed the asymptotic equations of the Hereditary 
Theory. An interesting discussion of the extreme values of the stress functions in 
steel and concrete due to permanent eccentric pressure force and concrete shrinkage 
in statically determinate structureS in time interval 0 < t < 00 was performed by J. 
Lazic [1.1], [1.5] assuming the general cross section geometry. Using the influence 
functions, J. Lazic [1.3], [1.4] created two simultaneous nonhomogeneous integral 
equations of the second-order theory where the influence of the longitudinal defor­
mation was taken into account. The application of the corresponding asymptotic 
equations was shown by J. Lazic [1.1] on the example of the symmetrical, one time 
statically indeterminate prestressed structure of variable cross section, due to dead 
load, prestressing by forces and concrete shrinkage. 

For the Rate of Creep Method and Maslov-Arutiunyan's function; as creep 
prediction models, the concrete transformation function R*, the basic functions 
Bh and their operators ii', Bh have been obtained from the parameterized nonho­
mogeneous integral equation (3.75) and its solution (3.76) following the standard 
procedure for obtaining the resolvent kernel (1.22]. The starting equation in which 
the function rh and kernel ~' are known, was translated into a parameterized 

r 
differential equation. By comparing its solution with Eq. (3.76) function '1!h was 
identified. Operators k, Bh and functions R*, Bh can then be found by the manner 
explained in Ch. 6.4. 

The concrete transformation function F*, corresponding to the Rate of Creep 
Method, was proposed by Whitney [2.25] 

(8.10) 
1 

F*(t,r) = r(r) + F(t) - F(r), t> r ~ rO, 

16See also Refs [1.2], [1.4]. 
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where F(t) is an arbitrary time function. It can be seen that it is defined by the 
apparent creep. According to Eq. (2.38) we establish the relation 

(8.11) ~*(t, r) = [F(t) - rtt)] - [F(r) - r(~)]' 
from which the kernel ~' was determined. In the Rate of Creep Method variables 
cp and f were introduced in the following way . 

(8.12) (a) cp = F(t), (b) f = F(r), 

where variable cp17 is known as the effective time. The resolvent kernel is 

(8.13) 'l1~(cp, f) = -!;-e-(h(<P).!!:.- [ rU) e(h(J)]. 
'Yh df rhU) 

Integrating the above relation we get 

(8.14) 'l1h{cp,f) = 4{ r(cp) _ rU) e-[(h(<p)-(h(J)l}, 

'Yh rh(cp) rhU) 

where 

(8.15) 

The constant modulus of elasticity is often used in the Rate of Creep Method. 
Applying Eqs (2.41a) and (8.12) we obtain 

(8.16) F*(cp - f) = 1* + (cp - f), 

so that the Laplace transforms can be used for the derivation of formulas for stresses 
and displacements according to the same procedure as in the Hereditary Theory. 
We point out that the final-value theorem cannot be applied because the effective 
time cp = F(t) has a finite value CPn when t -t 00. 

The stress-strain relation of the Rate of Creep Method is often used in a dif­
ferential equation form 

(8.17) 

which can be derived from the integral equation (2.13) and Eq. (8.10). The time 
variation of the concrete shrinkage deformation Cs is assumed to be the same as 
for the creep function 

CSk 0 0 (8.18) Cs = cs(cp) = --cp, f = F(r ) = 0, 
CPn 

where CSk is the value of concrete shrinkage deformation when t -t 00 [2.10). 
Supposition (2.27) about the same function, introduced in this theory, has the 
same meaning. When the differential equation (8.17) is written for the constant 
modulus of elasticity, r(cp) = 1 is applied. 

17With Eq. (8.4) the creep coefficient of the Hereditary Theory also was denoted as <po The 
notations are retained in that way as they can be found in literature. 
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Going from differential equation (8.17) and constant modulus of elasticity, 80n­
tag [2.19], Kunert [2.14] and Ulicky [2.21] derived the formulas for stresses in con­
crete and steel for some special cases of the cross section geometry and constant 
stress resultants. For the same starting suppositions Fr6hlich [2.12] and Durie 
[2.10] obtained the equations for concrete and steel stresses in the cross section of 
the general geometrical characteristics. According to our notations, the last two 
authors derived stresses O'jH (j = c, n, m; H = G, S) for statically determinate 
structures, constant modulus of elasticity and p = O. Under these conditions, from 
Eq. (6.17) and Tab. 6.2 we see that these stresses are expressed only in terms of 
the basic functions Bh. As was mentioned in Ch. 6.4, both authors obtained the 
excess member containing function R* in the equation for stress in concrete as a 
consequence of the supplemental integration. We emphasize again that during the 
mathematical evaluations this cannot be predicted. 

A few solutions for stresses were obtained when the variable modulus of elas­
ticity was assumed. For example, 8attler [2.18] determined the stresses in a bar 
with a cross section symmetrical about two axes due to prestressed axial force. The 
same can be said for statically indeterminate structures. Guderian [2.18] found the 
time variation of redundants in a continuous beam with le = 0 due to concrete 
shrinkage and support displacements. 

The Maslov-Arutiunyan concrete transformation function F* is given by for­
mula [2.15]' [2.4] 

(8.19) 

where 

(8.20) 

F*(t 1') = _1_ + E0<p(r) [1- e-'Y(t-T)] t > l' ~ 1'0, , r(r) e , 

Eo t r(t) = EO (1 - (3e-O: ), 
e 

Eo = lim E(t), 
t-+oo 

Al 
<per) = Co + -

l' 

and where 0, (3, "Y, Eo, Co and Al are known constants. It is also formulated 
through apparent creep from which we derive the true creep function 

(8.21) ""*( ) _ 1 1 rll ( ) [ -'Y(t-T)] 
'J.' t,r - r(r) - r(t) +..c~<p l' 1-e , 

using Eq. (2.38). The kernel <pI of the parameterized integral equations (3.75) was 
obtained from the above equation. The resolvent kernel is 

(8.22) 

By integration we find 

(8.23) Wi,(t,r) =!,[ r(t) _ r(r) ] +"YE~<p(r) r(r) e<h(T) rt r(e) e-<h(())de, 
"Yh rh(t) rh(r) rh (1') iT Th(e) 
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where 

(8.24) 

and 

(8.26) 

where 
dr(B) 

(h(t) = ft {'Y[I + 'Y~E~cp(B) r(B) ] _ 'Y~ dF }dB. iTa rh (B) r(B)rh(B) 
(8.27) 

The difference between the two forms of the resolvent kernelwh, that is function 
wj;, disappears if the constant modulus of elasticity is assumed, which follows from 
Eqs (2.40) and (3.81). 

Aleksandrovsky [2.2] determined the resolvent kernel w' corresponding to Eq. 
(8.22) for 'Y~ = 1. 

Introducing the constant modulus of elasticity Arutiunyan [2.4] derived the 
relaxation function w* as in Eq. (8.23) or (8.26) for 'Y~ = 1. Arutiunyan also ob­
tained the formulas for concrete and steel (P) stresses, both at points y = YP in 
a prestressed bar of cross section with Jp = 0 due to prestressing by forces and 
concrete shrinkage. Separately, Arutiunyan solved the task when such a loaded 
bar was subjected to the action of a constant bending moment. For a reinforced 
concrete cross section with Im = 0 Arutiunyan found the concrete and steel stresses 
at points Y = Ym due to constant bending moment. For a reinforced concrete cross 
section symmetrical about two axes Arutiunyan determined the stresses in concrete 
and steel due to a constant pressure axial force and concrete shrinkage. Some of 
the solutions pertain to the variable modulus of elasticity. The concrete shrink­
age function Cs was assumed as a difference of exponential functions. Arutiunyan 
solved every task separately by forming the equilibrium equations and the deforma­
tion compatibility conditions of steel and concrete. It is interesting to notice that 
Arutiunyan selected such special cases of the cross section geometry, loading and 
points where stresses were determined so that the problem would always reduce to 
two independent nonhomogeneous integral equations in unknown steel or concrete 
stress function. In Arutiunyan's solutions we find functions wi and w; in two forms 
as in Eqs (8.23) and (8.26). 

According to our notations Arutiunyan derived stresses (7jH (j = c,p; H = 
G, S, P) at points Y = YP and stresses (7jG (j = c, m) at Y = Ym in cross sections 
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with lp = lm = 0 in statically determinate structures when p = O. From Eq. 
(7.31a) and Tab. 7.5 we see that they only depend on the basic function B~, that 
is W~. For the double symmetrical cross section Arutiunyan obtained stresses IJ'jH 

(j = c, rn, H = G, S) in statically determinate structures for p = 0 due to axial 
force only. In that case Eq. (7.50b) shows that coefficient S2H = 0 when MH = O. 
From Eqs (6.17) and (6.23) and Tab. 6.2 can be seen that then the stresses are 
expressed only in terms of the basic function Bi, that is Wi. 

From the point of view of the task selection, Arutiunyan's solutions are inter­
esting because only the stresses depending on one basic function Bi or B~ were 
determined. From the point of view of the elementary theory the solutions are 
interesting because in each separate procedure Arutiunyan determined the same 
function wi or w2, that is the same basic function Bi or B~. The elementary 
theory developed here reveals that the solution of only one such equation leads to 
all stress and displacement expressions when Maslov-Arutiunyan's creep prediction 
model is assumed. 

Let us now examine the cited concrete transformation functions F* pertaining 
to the prediction of the reversible and irreversible creep deformation. 

Applying Eqs (2.34) and (2.36) on Eq. (8.1) of the Hereditary Theory we obtain 

(8.28) cR(T,'T°) = ;o~*(T,'TO) #0, 
c 

meaning that this function presupposes the reversibility of the complete creep de­
formation, that is that concrete exhibits the delayed elasticity. 

For the creep function of the Rate of Creep Method (8.11) we derive 

(8.29) c[(T,'T°) = ~o~*(T,'TO)#O, cR(T,'T°) =0, 
c 

indicating that this function predicts the irreversibility of the complete creep de­
formation. 

For Maslov-Arutiunyan's creep function (8.21) we obtain 

(8.30) 
c](T,'T°) = ;g {r(~O) - r(~) + E~[<p('T°) - <P(T)]} # 0, 

C R(T, 'To) = <p(T) - <p( 'T°)e-oy(T-r
O

) # O. 

Predicting both types of the creep deformation this function is more realistic. 
Regarding the predication of the creep deformation the Hereditary Theory and 

the Rate of Creep Method are the limit functions of all concrete transformation 
functions F* because the first foresees only reversible and the second only irre­
versible creep deformation. They are also limit functions in respect to the predic­
tion of the stress relaxation. Adopting the same value of the creep function ~* for 
the Hereditary Theory and the Rate of Creep Method, when the same t and 'To 
are presupposed, we can show that the first foresees the smallest, while the second 
predicts the largest stress changes in the time interval ('To, t). They demonstrate 
the same properties in composite cross sections. In Ref. [1.22) the exact stress val­
ues were calculated in the four cross sections of different geometry when t -+ 00 
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under influences H = G, S, P assuming that steel (P) follows Hooke's law. The 
stress calculations have been performed for the Hereditary Theory, the Rate of 
Creep Method and for the Maslov-Arutiunyan function, supposing Ec{t) = const., 
the same time of the load application TO and the same values of concrete creep 
functions ct>* when t -* 00. The results show that the Hereditary Theory gives the 
smallest and the Rate of Creep Method the largest stress changes in the time inter­
val (TO, t -* 00), while the stresses calculated by the Maslov-Arutiunyan function 
are found in between these values. 



9. EXACT AND APPROXIMATE 
ALGEBRAIC EQUATIONS 

9.1. Numerical Integration 
of the Stress-Strain Relation for Concrete18 

We begin our study with the evaluation of the algebraic relation between stress 
and strain for concrete. For that purpose we rearrange the integral equation (2.13) 
introducing operator F' (2.14) and Eqs (1.40b) and (2.6). In the expression ob­
tained 

() ( 0) (0) O'c(t,70) 1 rt */( ) ( O)d 
9.1 c t,7 -cs t,7 = Ec(t) - E~ iro F t,7 O'c 7,7 7, 

we determine the integral value by the numerical procedure. 
The concrete transformation function F* is often given in the following form 

EO 
(9.2) F*(t,70) = 1 + E c <p(t,7°)' 

c28 

where function <p(t,70) is named the creep coefficient19. As is already known, 
the proposals for function F* contain values of the coefficient <p( t, TO) in time t, 
depending on the concrete age at the first load application 7° and other factors 
affecting the creep phenomenon and contain the descriptions of function Ec(t). 
The value of Ec28 is Young's modulus of concrete at the age of 28 days. 

By comparing the concrete transformation function F* given by Eq. (2.37) for 
T = 7°, in which Eq. (2.9a) is included, with Eq. (9.2) it can be seen that its second 
term refers to the apparent creep. We derive the true creep function from Eq. (2.38) 
for 7 = 7° 

(9.3) 

18See Ref. (1.13] 

;r,.* (0) E~ ~ ( 0) 
'i.' t,7 = 1 - E ( ) + -E <p t, T . 

c t c28 

19This name and designation are quoted as found in literature, and it should be distinguished 
from the creep coefficient of the Hereditary Theory (S.4a) and from the effective time of the Rate 
of Creep Method (S.12a). 
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Recalling that the concrete transformation function F*(t = canst., T) is monotonic 
decreasing (Ch. 2.1), we assume that in the time interval from T = TO to T = t it is 
a linear function of variable T. From Fig. 9.1a we read that 

(9.4) F*'(t'T)=-~T~*(t,TO), tlt=t-To. 

For stress function oAT, TO) we suppose that it is monotonic decreasing and con­
cave (Fig. 9.1b), which corresponds to the stress variation under constant deforma­
tion. At the limits of interval tlT its values are C1~ = C1~(TO, TO) and C1c = C1c (t, TO). 

Consider area A.,. limited by function C1c(T,TO), ordinates T = TO and T = t and 
the appurtenant portion of the abscissa. We calculate it as the sum of areas of 
rectangle C1etlT and the remaining portion w(C1~ - C1e )tlT 

(9.5) A.,. = [C1c + w(C1~ - C1e)]tlT. 

For now parameter w is still not determined but it is evident that it lies within the 
limits 

(9.6) 
1 O<w<_· 
2 

The value of w = 0 corresponds to the constant stress C1~ = C1e , while w = t 
corresponds to the linear variation of the stress function C1e (T, TO). 

Combining Eqs (9.4) and (9.5), we find the value of the integral in Eq. (9.1) 

(9.7) it F*'(t, T)C1c (T, TO) dT = -~*(t, TO)[C1c + w(C1~ - C1e )]. 
TO 

In this way the integral equation becomes algebraic. It is written in the form 

(9.8) 

where 

() 
, 1" (0) 1 (0) w~* 

9.9 (c = '>c t, T ,<p, W = F* _ w<P* Pc = Pc t, T ,<p, W = F* _ w<P* 

In the algebraic equation (9.8) there are two parameters: the creep coefficient 
<p(t, TO) which introduces the effects of the concrete creep and w which will be 
related to the relaxation of concrete. 

The concrete transformation function R* is determined by Eq. (2.19). It was 
obtained when a unit deformation is introduced into Eq. (2.17) and then C1 e = E~ R* . 
Also, for a unit deformation Eq. (2.23) gives C1~ = ~. When all this is taken into 
account from Eq. (9.8) and C - Cs = 1, we derive 

(9.10) R* = (~- Pc, 

from where we relate parameter w with concrete transformation function R* 

1- R*~* 
(9.11) w = w(t, TO, <p, R*) = (1 _ R*)<p* . 

Assuming that for the selected concrete transformation function F* the time func­
tion R* is determined and that for a given time t and the concrete age TO the 
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corresponding value of parameter w is calculated. Then for the same pair (TO, t) 
the algebraic equation (9.8) is accurate. 

Let us introduce the relaxation factor .,pR defined as the ratio of the stress 
relaxed during the period t - TO to the initial stress O"~, due to a unit deformation 
acting from TO. Thus 

(9.12) ° .1. .1. (0 ) O"c - O"c 1 R* 1"' o/R=o/R t,T ,cp,w = ° = - =l-,>c+Pc, 
o"c 

that is 

(9.13) 

For the selected value of the creep coefficient cp(t, TO), that is creep function ~*, in 
the time interval (TO, t) the lower value of parameter w corresponds to the lower 
value of the relaxation factor .,pR and the w parameter limits define the limits of 
the relaxation factor .,pR. Also, the algebraic equation (9.S) predicts smaller stress 
relaxation in the time interval (TO, t) if the smaller value for parameter w is adopted. 
The selection of the parameter w value is the selection of the amount of concrete 
relaxation. 

We are going to discus two limit cases of algebraic equation (9.S). The adoption 
of w = 0 means a constant stress in time interval ~T. Then the value of the 
integral (9.7) is directly obtained and the assumption related to function O"c( T, TO) 

is unnecessary. For w = 0 we find 

1 
(9.14) .1.' _ 

0/ R - --E-=n"o ---, 
1 + E C cp(t,rO) 

c28 

and the algebraic equation 

E rlI.l,I E~ 
eff=.lCJco/R= EO ' 

1 + E c cp(t, rO) 
c28 

(9.15) 

known as the Effective Modulus Method (EM Method). Assuming that Ec(t) = 
Ec28 = canst., it is also cited as the Total Deformation Modulus Method [2.7]. It has 
been shown [1.13] that this method could not be applied for young concrete because 

the factor EE~ considerably reduces the value of the creep coefficient cp(t, TO) in 
028 

time t (t > TO). 

For a constant modulus of elasticity when t -7 00, function E~ cp(t, TO) and the 
028 

relaxation factor .,pR become the creep coefficient cp and the relaxation coefficient 
.,p of the Hereditary Theory, respectively, which can be seen from Eqs (S.4b) and 

FIGURE 9.1. (See the facing page) Assumed variations in the time 
interval ~T of: concrete transformation function F*(t = canst., T) 
(a); stress O"c(T, TO) (b) 
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(8.5b). Algebraic equation (9.8) then becomes the exact asymptotic equation of 
the Hereditary Theory (8.7). Otherwise, for any finite time t the EM Method is 
an approximate relation between stress and strain of the Hereditary Theory. The 
equations can be improved when we adopt the constant E~ value corresponding to 
the given concrete age T°. 

The algebraic equation (9.8) for w = t is known as the Mean Stress Method 
with Variable Modulus of Elasticity [2.7] 

(9.16) 

This is the approximate equation of the Rate of Creep Method. Assuming a con­
stant modulus of elasticity, Duric [2.10] derived such an equation starting from the 
differential equation (8.17). 

The formulas derived from Eq. (9.8) for w = 0 and w = ! are the so-called single 
parameter algebraic equation. For a given pair (TO, t) we select only the value of 
the creep coefficient 'P(t, T°), but we cannot adjust the relaxation prediction, that 
is the relaxation factor '!/JR' since it was already done when the value of parameter 
w was adopted. For w = 0 algebraic equation (9.8) underestimates the concrete 
relaxation, while for w = ~ it overestimates it. 

On the basis of certain approximations, Trost [2.20J was the first to create 
the algebraic equation in which, besides the creep coefficient 'P(t, T°), one more 
parameter, which he named the coefficient of relaxation, exists. 

The known Bazant's Age-Adjusted Effective Modulus Method (AAEM Method) 
[2.5} is also an algebraic equation with two parameters. Bazant based the deriva­
tion on his own theorem meaning that the stress depends on the creep coefficient 
'P(t, T°). The equation obtained is given here in the form of Eq. (9.8) in which 

I 1 X'(F* - 1) 
(9.17) (c = 1 + X(F* _ 1)' Pc = 1 + X(F* _ 1)' X' = 1 - X· 

Parameter X is named the aging coefficient, the values of which were determined 
through the concrete transformation function R* as follows 

(9 8) ( ° R*) 1 1 .1 X = X t, l' ,'P, = 1 _ R* - F* _ 1 . 

In this way the AAEM Method, expressed by Eqs (9.8), (9.17) and (9.18), provides 
us with the accurate values of stresses for each pair (T°, t) and for each concrete 
transformation function F*. 

The relaxation factor '!/JR can be written in terms of aging coefficient X 

(9.19) 

For the given value of the creep coefficient 'P(t, T°) in the time interval t - T° 
the lower value of the aging coefficient X corresponds to the higher value of the 
relaxation factor '!/JR' 
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The relation between the aging coefficient X and parameter w can be established 
by equalizing the relaxation factors tPR given by Eqs (9.13) and (9.19). Then 

(9.20) 
wq,* 

X=I- F*-I' 

The upper limit of X = 1, corresponds to the bottom limit w = 0, while its lower 
limit corresponds to the upper limit w = ~. Then we show that the aging coefficient 
X lies within the boundaries 

(9.21) 0< X < 1, X(w = 0) = 1. 

For the concrete transformation function F* suggested by the ACI [2.1]' Bazant 
[2.5] calculated the values of function R* and created a table of values of the aging 
coefficient X for various ages of concrete TO and various times t - TO. It is obvious 
that such tables can be formed for any concrete transformation function F* . 

Under the assumption that for a given pair (TO, t) we adopt the value of the 
aging coefficient X or parameter w different from those corresponding to Eqs (9.19) 
or (9.11), the algebraic equation (9.8) becomes approximate. The preceding analysis 
shows that such an equation predicts smaller stress relaxation in the time interval 
(TO,t) than the exact one, iffor the same value of the creep coefficient c,o(t,TO) the 
larger value of X or smaller of w is adopted. Also, if a lower value is adopted for X, 
or a higher for w, the same algebraic equation will predict larger stress relaxation 
and will thus define the stresses on the safe side. 

It can be seen that the assumptions used here for deriving the numerical integra­
tion and for obtaining the AAEM Method are insignificant. Different assumptions 
gave the algebraic equations, exact for certain values of parameter w that is for the 
aging coefficient X, or approximate, in which the degree of prediction of the stress 
relaxation depends only on the selection of their values. 

By introduction of parameter w into the numerical integration, the algebraic 
equations for concrete can be analyzed as a whole from the aspect of the stress 
relaxation prediction. The single parameter algebraic equations as the limits in the 
prediction of the stress changes are of specific importance. 

We have already mentioned in Ch. 8 that the Hereditary Theory and the Rate 
of Creep Method are two concrete transformation functions F* predicting, for the 
same value of the creep coefficient c,o(t, TO), the smallest and the largest stress re­
laxation in the time interval (TO,t). The EM Method (9.15) is the approximate 
equation of the Hereditary Theory and, presupposing w = 0, defines smaller stress 
relaxation than the Hereditary Theory. The Mean Stress Method with Variable 
Modulus of Elasticity (9.16) is the approximate equation of the Rate of Creep 
Method and, presupposing w = ~, defines larger stress relaxation than the Rate 
of Creep Method, all under the assumption of the same value of the creep coef­
ficient c,o(t, TO). Summarizing the above, we possess the limits beyond which we 
cannot expect the real values of stresses in time t (t > TO) independent of whether 
approximate or accurate equations are used. 

This circumstance was used to confirm the assumption concerning the trans­
formation function R; for steel (P) described by Eq. (2.44). The stress decreasing 



104 9. EXACT AND APPROXIMATE ALGEBRAIC EQUATIONS 

in steel (P) due to prestressing by forces and concrete shrinkage has been calculated 
for a large number of prestressed columns having various concrete ages TO of the 
load applications, from 66 hours to 10 days, and various amounts of the steel relax­
ation. The stress values have been calculated in times of 3 to 900 days. The stress 
limits then have been determined beyond which their values could not be expected. 
The bottom limits have been obtained applying the algebraic equation for w = 0 
(EM Method) where for each TO the corresponding constant E~ has been accepted. 
For specific reasons the upper stress limits have been derived from accurate equa­
tions of the Rate of Creep Method and constant modulus of elasticity, although 
the calculation of these values is simpler when the algebraic equation for w = ~ is 
applied. Since the measured values of stresses mostly occurred in these intervals it 
has been shown that assumption (2.44) closely approximates the behaviour of steel 
(P) in the structure [1. 7]2° 

9.2. Algebraic Formulation of Stress and Displacement Expressions21 

The starting equations for deriving the algebraic equations for stresses and 
displacements are basically the same as those from which the exact expressions have 
been obtained. Those are Eqs (3.34)-(3.39) where the integral relations between 
stress and strain for concrete and steel (P) are substituted with algebraic relations. 

For concrete we introduce the two parameter algebraic equation (9.8) 

(9.22) 

where the coefficients are 

(9.23) 
I 1 

(c= l+Xj(F*-l)' 

X' (F* - 1) 
p' = f , 

c 1 + Xj(F* - 1) 
XI = 1- XI' 

They differ from the coefficients of the AAEM Method in that, instead of the aging 
coefficient X defined by Eq. (9.18), the free parameter Xj is introduced with values 
within the same limits (9.21). 

For steel (P) we establish the algebraic equation of the EM Method 

(9.24) (Tp = Ep(~e, (~ = 1- (p. 

It is Eq. (9.15) in which coefficient tf;k is substituted with (~, since (p represents 
the relaxation factor of steel (P) (Ch. 2.2). 

We derive the basic equations by the known procedure and obtain 

EA(TJ + ES(x = N + PcN~, 
ES(TJ + EJ(x = M + Pc (YcN~ + M~), 

(9.25) 

where 

(9.26) 

20 See also Ref. [1.10] 
21See Refs [1.18], [1.25] 
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N~ and M~ being the parts of the axial force NO and bending moment MO received 
at t = r O+ by the concrete part of the cross section. The cross section geometrical 
characteristics are determined by formulas 

(9.27) 
A( = A - (cAcr - (pApr, S( = -(cScr - (pSpr, 

(c = 1- (~. 

It is obvious that they correspond to the given time interval (rO, t) which means 
that the algebraic basic equations refer also to the same period. Solving Eq. (9.25) 
we get 

(9.28) 

ETJ = ~( {J(N -S(M +Pc [(J( -YcS()N~ -S(M~]), 

Ex = ~( {A(M - S(N + Pc [(YcA( - S()N~ + A(M~]}, 
D( = A(J( -Sr 

The procedure for the evaluation of the algebraic stress and displacement for­
mulas is well known and it is the topic of the approximate theory developed in 
Ref. [1.24]. Here we remark only that they contain the free parameter XI through 
coefficients (c and Pc. In the general case of cross section geometry, for P f:. 0 and 
P = 0, the algebraic expressions are always approximate even when we take for 
the free parameter XI the value of the aging coefficient X of the AAEM Method. 
Exceptions to this are some special cases of the cross section geometry when such 
values can be found for the free parameter XI f:. X, for which accurate stresses and 
displacements can be obtained for each pair (rO, t) under the assumption that steel 
(P) is an elastic material. This will be the subject of later analysis. 

Such algebraic expressions are suitable because the same formulas can be used 
for various values of the free parameter XI" Introducing XI = X for the given 
concrete transformation function F* we receive the results of the AAEM Method. 
Stresses and displacements corresponding to the EM Method and the Mean Stress 
Method with Variable Modulus of Elasticity are calculated for XI = XI(w = 0) = 1 

and XI = X(w = ~), respectively, defining the limits of their values for a given pair 
(rO, t), assuming the common value of the creep coefficient cp(t, rO). 

The algebraic basic equations for the concrete cross section are derived com­
bining Eqs (9.25) and (3.84), the solution of which is 

1 (N NO) 1 (M MO) 
(9.29) E~'TJ = 1"1 A + PCA' ~x = /"1 -J, + PC-J, , 

'>c c c '>c c c 

where the following is introduced 

(9.30) A( = (~Ac, J( = (~Jc. 
The free parameter XI appears in quantities TJ and x through coefficients (~ and 

Pc· 
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9.3. Generalized AAEM Method 

We turn our attention first to a concrete cross section in order to determine the 
value of the free parameter Xf for which the algebraic stress expression becomes 
exact. To this end we refer to the exact and algebraic formulas for functions 11 and 
x, assuming that stress resultants N and M depend on the concrete transformation 
function R*, as is described in Eq. (6.75). Then Theorem 1 provides us with the 
exact functions 11 and x, given by Eq. (6.78). In the algebraic relations (9.29) we 
introduce the same stress resultants N and M as well as their values at t = TO+, 

denoted by N° and MO. Equalizing them we get 

1 1 
(9.31) Xf = X = 1 _ R* - P* - 1 . 

As was expected, with this we have shown that for the concrete cross section, the 
algebraic equations of the AA EM Method are accurate for each given pair (TO, t) 
and each selected concrete transformation function P*. 

Now we express the stress through the aging coefficient X using Theorem 1 and 
the above equation. One way is to start from the algebraic formulas for 11 and x 
(9.29) to which Eqs (6.75) and (9.8) are added. We obtain 

_ *' 1 - X'(p* - 1) 
(9.32) . ~c - O'c01 + O'c1 1 + X(P* _ 1) , l = 0,1, 

representing the accurate algebraic expression of the AAEM Method. 
Analogous to coefficient X, associated to a concrete cross section, we define the 

pair of the corrected aging coefficients by the expression 

( ° K* B*) 1 1 X"Yht,T, h' h=-1 B*-K* l' 
- h h-

(9.33) h= 1,2 

and associate them to a composite cross section. Consistent with Eq. (3.90) we show 
that for r~ = 1 they reduce to the aging coefficient X. In contrast to the aging 
coefficient, which depends on the physical properties of concrete, the corrected 
aging coefficients depend on the physical properties of all materials co-acting in the 
cross section and on the cross section geometry, as do other functions associated to 
a composite cross section. 

The influence of the cross section geometry on the corrected aging coefficients 
X"Yh is examined for two concrete transformation functions P*, the ACI [2.1] and 
CEB-FIP [2.7] proposals [1.25].22 Introducing rh as a parameter (0 < rh ~ 1), 
the values of X"Yh were calculated for rh = 0.1; 0.5 and 1, while the corresponding 
curves are shown in Fig. 9.2. Solid lines refer to the CEB-FIP creep prediction 
model, dry environment rpf1 = 3.0, ho = 20 cm and TO = 7 days. Dashed lines 
refer to the ACI proposal for TO = 7 days and rjJ(oo, 7) = 4.152, which was obtained 
from the condition that for TO = 7 days and t - TO = 104 days both functions have 
the same value. 

22See also Refs [1.18], [1.19], [1.17] 
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FIGURE 9.2. Corrected aging coefficients X..,h: the CEB-FIP pro­
posal (solid lines) and ACI proposal (dashed lines) 

For a given pair (TO, t) the smaller values of the corrected aging coefficients 
X..,h correspond to the smaller values of parameter 'Y~. Their largest values appear 
when 'Y~ = 1 and represent the aging coefficient X values. It is obvious that 

(9.34) 0< X..,h < 1. 

Differences in the values of the corrected aging coefficients X..,h for 'Y~ = 0.1 and 
'Y~ = 1 in time t (t > TO) depend on the selection of the concrete transformation 
function F*. It can be seen that for the ACI creep model the differerices are smaller 
than for the CEB-FIP prediction (Fig. 9.2). 

In analogy to the AAEM method (9.32) for concrete cross sections, the General­
ized AAEM Method is established based on Theorem 2. We recall that it determines 
the stresses in the composite cross section of arbitrary geometrical characteristics 
when stress result ants N and M depend on the cross section transformation func­
tions Rh' as was described by Eq. (6.79). Instead of stress function (6.81), we use 
Eq. (6.17) in which functions R* and Bi. are substituted with the aging coefficient 
X and the corrected aging coefficients X..,h, respectively, according to Eqs (9.18) and 
(9.33). Then we get 

[ 
* I-x'(P*-I) 2 I-X~h(Ki.-I)] 

(9.35) ajH = Vj UjH 1 + VjH 1 + X(p* _ 1) + t; WhjH 1 + X..,h(Ki. - 1) , 

X~h = 1- X..,h; h = 1,2, 
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representing the exact algebraic expressions of the Generalized AAEM Method. 23 

It is clear that starting from Theorem 3 we could write the Generalized AAEM 
Method for the generalized displacement A *, as well. 

As mentioned, a table of the values of the aging coefficient X exists for the 
concrete transformation function F* suggested by ACI. In the same way a table 
of values of the coefficients X and X-yh can be also made for the series of discrete 
values of TO, t - TO and 'Y~ for any concrete transformation function F*. This 
presupposes solving the parameterized nonhomogeneous integral equation (6.93), 
which has already been solved by the numerical procedure for the ACI and CEB­
FIP creep models when the curves in Fig. 9.2 were formed. Introducing such 
values of coefficients X and X-yh in Eq. (9.35) the exact stresses for a given concrete 
transformation function F* and given pair (TO, t) can be calculated. 

The algebraic formulation of equations presented in Ch. 9.2 leads to the ap­
proximate expressions for stresses having only one parameter, the free parameter 
Xi' Because of their simplicity they are quite suitable in practice expecting to give 
the stresses on the safe side, that is to say that in the time interval (TO, t) they 
predict moderately larger stress changes than the accurate one. The Generalized 
AAEM Method is used to give an insight into such values of the free parameter 
X/ 4. It is enough to confine our analysis to stresses because the discussion of the 
generalized displacement expression leads to the same results. 

Consider two special cases of the cross section geometry assuming that steel 
(P) is an elastic material. 

In the cross sections for which we can adopt le = Ip = 0 stresses depend only 
on one basic function Bi where some of them refer to the cross section points 
Y = Ye' The stresses of the Generalized AAEM Method are written on the basis of 
Eq. (7.14a) 

(9.36) 

For cross sections in which we can adopt Ip = Im = 0 stresses depend only on 
the basic function B2 where some of them refer to the cross section points Y = YP' 
The stresses of the Generalized AAEM Method are written on the basis of Eq. 
(7.31a) 

(9.37) 

The stresses are expressed in terms of only one corrected aging coefficient X-y1 
or X-y2 as in the algebraic formulas where the free parameter Xi exists. Adopting 

the value Xi = X-y1 in the first case and Xi = X-y2 in the second, these expressions 
provide accurate stresses for the selected concrete transformation function F* and 
a given pair (TO, t). For its other values Xi :j:. X-y1 or Xi :j:. X-y2, the same equations 

23See Refs [1.18], [1.27], [1.20] 
24See Refs [1.18], [1.27], [1.21], [1.50) 
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define approximate stresses, representing the AA EM Method when XI = X is in­
troduced. When we know that the largest values of the corrected aging coefficients 
X-yh occur for I~ = 1, representing the aging coefficient X, and that the algebraic 
stress-strain relation (9.22) predicts smaller stress relaxation for larger values of 
the free parameter XI (Ch. 9.1), it can be concluded that, for a given concrete 
transformation function F", the AAEM Method predicts smaller stress changes in 
the time interval (TO, t) than the accurate one. The aging coefficient X depends only 
on the physical properties of concrete. However, the laws related to composite cross 
sections point out that the free parameter XI must take into account the effects of 
the co-action, meaning that the physical properties of all materials in a composite 
cross section as well as its geometrical characteristics have to be respected. The 
influence of these factors reduces the value of the aging coefficient X. 

In Ref. [1.18]25 the stresses have been calculated in two cross sections with 
lp = lm = 0 and le = Ip = 0 due to influences H = G,S,P in t -t 00. The 
accurate stress values have been obtained applying the equations of the Rate of 
Creep Method for a constant modulus of elasticity and using the Generalized AAEM 
Method, in the first example for XI = X-y2 and in the second for X, = X-yl. The 

approximate values have been calculated using the AAEM Method (X, = X) and 

the EM Method (X, = 1). The first method predicts smaller stress changes and 
the second even more smaller ones than the exact. 

In Ref. [1.27] stresses have been calculated for the same cross sections and 
influences as in the preceding examples, assuming the ACI and CEB-FIP creep 
models, variable modulus of elasticity and TO = 7 days, while at time t - TO = 104 

days both functions have the same value. The accurate stresses have been obtained 
by the Generalized AAEM Method while the approximate by the AAEM Method. 
The approximate stresses have predicted smaller stress changes than the exact ones, 
but for the ACI function stresses were closer to the accurate values than for the 
CEB-FIP model. 

We know that differences in the values of the corrected aging coefficients X'rh for 
I~ = 0.1 and I~ = 1 vary for different concrete transformation function F". These 
differences define the degree of deviation of the AAEM Method values from the 
accurate ones. For the CEB-FIP function deviations in stresses are larger than for 
the ACI since the differences in values of X-yh are larger. Considering the fact that 
the AAEM Method gives results which underestimate the concrete creep effects, 
the selected concrete transformation function p. should be tested in regard to this 
circumstance. 

In the general case of cross section geometry, under the same assumption that 
steel (P) is the Hookean material, in the stress expressions both basic functions Eh 
appear. A question arises as to how to select the value of the free parameter XI so 
that the algebraic expressions moderately overestimate the effects of the concrete 
creep. A general rule does not exist, but it is certain that the selection of the 
value of XI depends on the type of cross section. Certain authors' experience leads 

25See also Ref. [1.21J 
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to the following proposal. The higher value of the corrected aging coefficient for 
the free parameter X I = X..,2 can be accepted if no steel parts exist in the cross 
section. If they exist, then for the free parameter the lower value of the corrected 
aging coefficient XI = X..,l can be applied. In Ref. [1.18]26 the stresses in two cross 
sections have been examined due to influences H = G, S, Pat t -t 00. The stress 
limits have been calculated using the exact expressions of the Rate of Creep Method 
for constant modulus of elasticity and by EM Method (XI = 1). In the algebraic 
equations the free parameter XI has been selected according to the above proposal. 
For the cross section that has no steel parts the value of XI = X..,2 has produced 
the stresses which have almost no'deviations from the exact ones. For the cross 
section having steel parts and a concrete slab the stresses corresponding to value 
X I = X..,1 considerably deviated from the accurate values on the safe side, while a 
small number of them had insignificant deviations to the opposite side. 

Introducing into calculation the relaxation property of steel (P) the algebraic 
equations for stresses are always approximate since its integral stress-strain relation 
is substituted with the algebraic equation of the EM Method (9.24). In an attempt 
to estimate the value of the free parameter XI in Ref. [1.18]27 two examples have 
been solved, identical to the previous ones, when the amounts of the relaxation of 
steel (P) was: (p = 0.09 and 0.18. The stress limits were calculated in the same 
way, while the approximate stresses were obtained for XI = X (AAEM Method) 
and for XI = Xw' The latter mentioned stress values had satisfactory accuracy 
being on the safe side in almost all points of the cross section and discrepancies are 
larger for the larger amount of the steel (P) relaxation. To select the value of the 
free parameter X I = Xw, it was suggested that the quotient be found 

) - (1jH H G S P (9.38 WjH - -0-' j = c,p,n,mj =", 
(1jH 

referring to an arbitrary point of the cross section. Its exact value, corresponding to 
a given concrete transformation function F* , should be equalized to the algebraic 
expression from where the value of Xw can be obtained. In the above examples 
the quotient wpG for y = yp was used. We can state that the selection of the 
free parameter X I value is influenced by the cross section geometry, the amount of 
relaxation of steel (P) and by the choice of concrete transformation function F*. 

26See also Ref. [1.21] 
27See also Ref. [1.21] 



10. BENDING OF SLENDER BEAMS28 

By a study of slender beams loaded by simultaneous transverse and axial loads 
we expand our analysis to the second-order theory. We retain the assumptions 
concerning the materials and cross sections of a beam which can be found in Chs 
2 and 3.1. As is customary in the elastic theory, the equilibrium requirements are 
written for the geometry of the deformed configuration, but the supposition of small 
deformations holds. A beam is of variable cross section and of arbitrary support 
conditions. A straight beam axis coincides with the z axis. The displa~ement of 
the deflected beam axis in the positive y direction is denoted by v = v(z, t, TO), the 
slope by </J = </J(z, t, TO), while the curvature x = x(z, t, TO) and its normal strain 
1] = 1](Z, t, TO) have been already introcl.uced in Ch. 3.2. 

The permanent time dependent distributed load per unit length of the unde­
formed beam axis acts in the plane of symmetry of the beam starting at time TO. 

It consists of the components of forces py = Py(z, t, TO) and pz = Pz(z, t, TO) in 
the positive y and z direction, retaining the same directions during the beam de­
formation, and of the couples m = m(z, t, TO). We assume that before and after 
deflection the load resultants on the axis element remain unchanged. Then for any 
t (t > TO) it holds that 

(10.1) pydz = pydz, pzdz = Pzdz, mdz = mdz. 

The lengths of the beam axis element dz before and dz after deformation are related 
by the formula 

(10.2) dz = (1 + 1])dz. 

The functions referring to the deformed beam will be designated in the same manner 
as the beam element dz and loads Py, Pz, m in Eq. (10.1). 

Besides the axial force N = N(z, t, TO) and shearing force T = T(z, t, TO), 
we introduce forces H = H(z, t, TO) and V = V(z, t, TO) directed in the z and 
y direction, positive as is indicated in Fig. lO.la. Forces N = N(z, t, TO), f = 
fez, t, TO), H = H(z, t, TO) and V = V(z, t, TO) as well as the bending moments ° - - ° .. M = M(z, t, T ) and M = M(z, t, T ) are shown In FIg. 10.1. 

28See Refs [1.42], [1.36] 
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FIGURE 10.1. Loads and forces on an element of the undeformed 
(a) and deformed (b) slender beam axis; forces in the cross section 
of a deformed slender beam (c) 

The starting equations and the derivation procedure of the bending equation 
are analogous to equations and the familiar procedure of the elastic analysis by 
which Durit's method is expanded to the second-order theory. 

The equilibrium conditions on an isolated element of the deformed beam (Fig. 
10.lb) in time t (t> TO) give 

oH av 
oz dz + pzdz = 0, oz dz + pydz = 0, 

aM - - av 
az dz - V dz + H azdz + mdz = O. 

(10.3) 

Combining them with Eqs (10.1) and (10.2) we arrive at 

(10.4) 
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where we apply the already used superscript z to designate the derivative of a 
function with respect to variable z. Higher order derivatives are denoted in the 
same manner with the corresponding superscript number. As is common with 
elastic slender beams, in Eq. (lOAc) the member V1], introducing the influence of 
the longitudinal beam deformation, is neglected. It should be noticed that the force 
V and bending moment M depend on the beam deformation even when a beam is 
statically determinate. 

The relations between deflection v and the functions also describing the beam 
axis deformation are 

(10.5) (b) x = _vzz . 

The following equation holds for the forces shown in Fig. W.1c 

(10.6) N = fI + Vv z
• 

In the above expressions the geometricallinearization has been performed. 
The equation for the curvature x (3A6b) is applied to the axial force N and 

bending moment M 

(10.7) 

We define operator 1~2' which is inverse to operator F~2 and operator ~1' 
satisfying the formulas 

(10.8) (a) F~242 = I', (b) 41 = 1~2F~1 
and belonging to the set of commuting operators. Multiplying Eq. (10.7) byoper­
ator ~2 we get 

(10.9) 

We evaluate the bending equation by eliminating functions V .. , x, N and M 
from Eqs (lOAb,c), (1O.5b), (10.6) and (10.9). At that time we differentiate Eq. 
(10.9) with respect to variable z having in mind that the beam is of variable cross 
section, meaning that functions 122 and 1~1 depend on coordinate z. Then 

(10.10) - (J - )ZZ _ E(Jl~2v"Z)ZZ + SI~1 Vvz - (Hvz)"' = Py - (mZ + md)' 

This is the integro-differential equation in unknown v in which the presence of 
unknown forces fI and V can be noticed. We determine force fI from Eq.(lOAa) 
and the end condition. For force V we apply the known method used in the elastic 
theory. In the first approximation V is substituted with V and after solving the 
equation' we correct it. If it is necessary the procedure is repeated. 

On the right-hand side of Eq. (10.10) member md = md(z, t, T°) is found rep­
resenting the derivative, with respect to variable z, of the additional load by dis­
tributed couples per unit length of the beam axis defined by formula 

(10.11) (
J - _)Z 

md = SI~lH . 
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y 

FIGURE 10.2. Simply supported beam-column subjected to con­
stant eccentric forces 

Functions I~2 and I~l' to which operators ~2 and ~1 are associated, as well 
as the geometrical characteristics of the transformed cross section J and S, do not 
depend on coordinate z when a beam is of constant cross section. Then we multiply 
Eq. (10.10) by operator F~2 and, applying Eq. (10.8), obtain 

(10.12) EJvzZZZ + ~F~l(VVzyz - F~2(itVZ)Z = F~2(Py - mZ) - m~, 
where the additional load is 

(10.13) 

The bending equation is solved on an example of a simply supported beanl­
column of constant cross section subjected from TO to the constant eccentric pres­
sure forces o.P (a. > 0, P> 0) with eccentricity c (Fig. 10.2). The value of the load 
parameter a. is smaller than the value of the first buckling load parameter which 
corresponds to t -t 00. The solution of the bending equation (10.12) is evaluated 
for an arbitrary concrete transformation function F*. 

Into Eq. (10.12) we introduce 

Py = 0, v=o, it = -o.P[U(z) - U(z - L)]l*, 
(10.14) 

m = o.Pc[8(z) - 8(z - L)]l*, 

while in the additional load (10.13) we substitute 

(10.15) itZ = -o.P [8(z) - 8(z - L)], 

where U(z - a) and 8(z - a) (a = 0, L) are the Heaviside step function and the 
Dirac delta function, respectively. When we know that 

(10.16) 

and when function 4> is introduced using Eq. (1O.5a) we obtain 

(10.17) 4>zzz + k2 F~24>z = -k2QW(z) - 8z (z- L)]. 

The known function Q = Q(t, TO) is given by the relation 

(10.18) 
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while 

(10.19) 

The solution of Eq. (10.17) is assumed to be in the form 

(10.20) cp=2:Cjcos(kjz), kj =(2j-1)I' j=1,2, ... , 
j 

satisfying the end conditions. Coefficients Cj = Cj(t, TO) are unknown functions. 
The term in brackets on the right-hand side ofEq. (10.17) is expanded into sin(kjz) 
series 

(10.21) OZ(Z) - OZ(z - L) = -! 2: kj sin(kjz). 
L . 

J 

Introducing these series into Eq. (10.17) and applying the known procedure for 
determining coefficients Cj we arrive at the nonhomogeneous integral equations in 
unknowns Cj 

j = 1,2,. '" 

The formal solution of Eq. (10.17) is obtained when the inverse operators Gj 
are defined by formula 

(10.23) (1' - !3JF~2)Gj = I', j = 1,2, .... 

Coefficients Cj become 

(10.24) j = 1,2, ... , 

while the solution of Eq. (10.17) is 

4,", 2-, 
(10.25) cp = L L.,;!3jGjQcos(kjz). 

j 

The foregoing expressions provide the list of mathematical operations in order 
to obtain function cp. That means that the following procedure should be car­
ried out. First, using Eq. (3.62b) operator F~2 is exchanged with operators F~, 
recalling that for their determination the parameterized nonhomogeneous integral 
equation has to be solved, as was described in Ch. 6.4. After forming and solving 
the parameterized nonhomogeneous integral equation (10.23), whose solutions are 
functions Gj, we finally determine the integrals GjQ. However, we can simplify 
this procedure by introducing auxiliary functions in terms of which the unknown 
cp is expressed. We already feel that these functions are solutions of only one non­
homogeneous integral equation the kernel of which is known. 

To this end the member in brackets in Eq. (10.23) will be rearranged. Using 
expressions found in Ch. 3.2 it can be written as 

j = 1,2, ... , 
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where operators Rjk = Rjk(Wjk,t,T) are determined by formula 

(10.27) Rjk = wjS' + k, k = 1,2; j = 1,2, .... 

Coefficients Wjk depend on the reduced cross section geometry while through quan­
tities {3J they depend on the magnitude of the eccentric force. They satisfy the 
relations 

(10.28) 

1 (' 1 (32 ) Wj1 + Wi2 = -- 11''Y2 + 11{2 - i III , 
1112 

1(1' (32,) W'lW'2 = -- 1112 - 'Ill' 
1 1 1112 J 

Wj1 > WjZ; j = 1,2, .... 

It can be shown that each operator iijk has defined the inverse operator Fjk =: 

fjk(Wjk,t,r) fulfilling the known conditions 

(10.29) k = 1,2; j = 1,2, .... 

Combining the above expressions and Eq. (3.56) we arrive at 

- 1 - - - -
(10.30) Gt = --R~R~FjlFi2' j = 1,2, .... 

"I1{2 

By analogy to Eqs (3.61) and (3.59) we set up the operator relations 

.6.wi Fjl Fjz = Fjz - Fil' .6.Wj = Wil - Wj2 > 0, 
R'Fjk = I' - WjkFjk, k = 1,2; j = 1,2, .... 

(10,31) 

Using them, operators 0] are obtained as the linear combination of operators iil 
and ij2 as follows 

(10.32) j = 1,2, ... , 

where 

(10.33) 
1 1 

/-k == ----a'kla 'k2, a,·kh. == "I~ - w3'eyh., 
1 .6.wi 'Yl1'z 3 1 

k,h = 1,2; j == 1,2, .... 

When we introduce Eq. (3.62b,c) multiplied by 1 * into function Q (10.18) it becomes 

(10.34) 

where 

(10.35) le = 1,2. 

In products GjQ members iikFi: can be eliminated by the relation 

(10.36) k,h = 1,2; j = 1,2 .... 



10. BENDING OF SLENDER BEAMS 

In that way we reach their simplest form 
2 

(10.37) GjQ = 2)-ll(cgjk - hjk)Flk' 
k=l 

j = 1,2, .. ,. 
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Functions Flk are the integrals of functions Fjk to which operators Jjk are associ­
ated 

(10.38) k = 1,2; j = 1,2, ... , 

while the coefficients in Eq. (10.37) are 

1 1 
(10.39) gjk = ~-[1- (1 + Wjk)-rll], 

w.Wj 'Y1 'Y2 

1 'Y12 J 
hjk = -----(1 + Wjk), 

Llwj 'Yn2 S 
k = 1,2; j = 1,2, .... 

It could be seen that operators Rjk (10.27) are obtained from operators Rh 
(3.51) by formal substitution 

(10040) 'Yh = 1, 'Y~ = Wjk, Ll'Y = -Llwj, k, h = 1,2; j = 1,2, ... , 

that operators :tjk (10.29) are defined analogous to operators F~ (3.56) and that 
Eqs (3.61) and (3.59) reduce to Eq. (10.31) when the above relations are applied, 
and when operators Fh are substituted with operators Jjk' Actually, it can be 
seen that the evaluations made, are in essence the same as those in Ch. 3.2 when 
in the solution of the basic equations the triple operator products were eliminated. 
By continuing in this manner a parameterized nonhomogeneous integral equation 
should be established through whose solutions function t/J is directly expressed. This 
can be done by independent derivation while here we use the analogy with already 
existing functions and equations. 

Consistent with Eqs (3.70) and (10040) we define the pair of auxiliary functions 
Kjk = Kjk(Wjk, t, 7') for each j 

(10041) Kjk = 1* + wjkF*, k = 1,2; j = 1,2, ... 

and the pairs of auxiliary functions Bjk = Bjk(Wjk,t, 7') whose operators f(jk and 

Bjk are inverse. By analogy to Eq. (6.91b), that is Eq. (6.93), the following param­
eterized nonhomogeneous integral equation holds 

(10042) Kjk (Wjk, t, t)Bjk (Wjk, t, 7'0) + Wjk t ~'(t, 7')Bjk (Wjk, 7', 7'0) d7' = 1, iTo 
and finally, from Eq. (3.71) and (10.40), we get 

(10.43) Bjk = 1* - WjkFlk' k = 1,2; j = 1,2, .. " 

Using the above relation and Eq. (10.37), we express solution (10.25) in terms of 
functions Bjk' retaining a finite number of series terms 

(10044) 
n 2 

t/J = ~ 'I:J3J cos(kjZ) ~) -1)k(cgjk - hjk) ~(1 * - Bjk)' 
j=l k=l W1k 
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For 2n values of parameter Wjk functions Bjk represent the solutions of Eq. (10.42) 
knowing that its kernel <pI can be directly determined from the selected concrete 
transformation function F*. When steel (P) is introduced as the Hookean material 
then in coefficients Wjk (10.28) quantities [hi should be calculated for p = O. 

Applying solution (10.44) to the Hereditary Theory we introduce the creep 
function <p* (8.2) for n = 1, where 191 = 19 and where CP1 = cP represents the creep 
coefficient determined by Eq. (8.4a). Then 

4
n 

2 2 k 1 1 
</l = L L,Bj cos(kjz) L( -1) (cgjk - hjk) 1 -:".1,/-:---

j=l k=l + Wjk <p + Wjk 

(10.45) x [1 +Wjk - 'lj;exp ( - ~I ~/:::kk !)] . 
For the simply supported beam for which the data can be found in Ref. [1.42] the 
end slope at t -t 00 is investigated. For that purpose we use 

(10.46) 
2 a1 

(3j = (2j _1)2' 
_ a 
a1 = -e-' 

a 1cr 
0< a1 < 1, j = 1,2, .... 

On this occasion we give the other form of coefficients (3J which will be used later 

(10.47) 
p. _ e p _ (2j - 1)211"2 EJ 

JE - ajcr - £2 ' j = 1,2, ... , 

where PjE is the lh Euler buckling load of the corresponding elastic beam (E, J). 
The saught after end slope </loo = </loo(cp, at, Z = 0), 

4 n 1 2 1 
</loo = La1 L (2' -1)2 L:(-l)k(cgjk - hjk ) 'lj;1 + W'k ' 

j=l J k=l J 

(10.48) 

is examined as a function of a1 for different values of creep coefficient cp. The 
graphical presentation of curves L</loo, corresponding to cp = 0, 1, 2, 3, 4, are shown 
in Fig. 10.3. The curve cp = 0 refers to the elastic beam (E, J) as well as to t = rO+. 
In that case slope </loo becomes infinite when a1 = 1, that is when the load parameter 
a becomes the first elastic buckling load parameter a = (t1er = aicr' With the 
increase of creep coefficient cp, the value of parameter a = (t1er decreases. 

We turn our attention to the stability problem, determining the buckling load 
parameters ajcr = ajcr (t, rO) for slender beams. To discuss it, we start from terms 
CjQ in Eq. (10.25) and c = 0 giving them the same form as the elastic solution has. 
To this aim we can rearrange Eq. (10.37) and carry out complicated mathematical 
evaluations, but the simpler way is to start from Eqs (10.23), (10.26), (10.18) and 
(10.47). Then we have 

(10.49) C-I Q R-I R-I (R-I R-I - R-I )-1 ( Jp,-I 1*) 
j = 1 2 1 2 - a j 11 - S 21 , j = 1,2, .... 
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.... , 

When the expression for operator F~l' given by Eq. (3.58), is applied we arrive at 

(10.50) G'.Q _ :!.. R~21* 
J - 8 R~ ~ - a)l~l ' 

j = 1,2, .... 

Now we introduce function fil = fil ('Y11' t, TO) = ill 1 .. , that is operator ill inverse 
to operator R~l' satisfying the known equations 

(10.51) 

and from the second expression the following relation is derived 

(10.52) 'Y11 k f;l = lOO - 'Y~l f;l . 

We multiply the numerator and denominator in Eq. (10.50) by f;l and introduce 

(10.53) 

keeping in mind Eqs (1O.8a) and (3.58) in which the expression for operator F~2 
can be found. Then we obtain 

G'.Q =:!.. Rbfil 
J 81* -' 22 -etj 

(10.54) j = 1,2, .... 

For each t (t ~ TO) the above functions have infinite values when 

(10.55) et = etjcr = etjcrf22' j = 1,2, .... 

This formula determines the buckling load parameters as time functions and refers 
to any end conditions and any concrete transformation function F*. When we know 
that fig = 1, the boundaries of the buckling load parameters in the time interval 
(TO, t ~ 00) can be found 

(10.56) 0< f;2' < 1, j = 1,2, .... 
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It remains for us to express the unknown function 122 in terms of functions R* 
and Bi1 being the solutions of the parameterized integral equation, the kernel of 
which is t~e known function ~'. To create it we define operators 

(10.57) K~l = R~);;', B~l = kn1' 

analogous to operators K~ and B~ found in Eq. (3.68). When the procedure as for 
obtaining Eq. (6.93) is carried out we get 

t 

(10.58) K;l (')'~l' t, t)B;l (')'~l' t, rO) + 'Yfl / ~' (t, 8)B;l ('Yfl, 8, rO) dB = 1, 

in which parameter 'Y~l takes the values given by Eq. (3.23) and 'Yfl = 1. Then the 
solutions become functions Bit and R*, respectively. 

We use Eqs (10.53) and (10.52) as well as 

(10.59) 'Y11 Bfl = I' - 'Y~l nl, 

analogous to Eq. (3.71), to obtain the desired form offunction 122 

(10.60) 1;2 = _1_,_ ('Y~ 'Y~'Y111 * + 'Yl 'Y2'Y~lR* + O'Y1 o'Y2B~1) . 
'Y11'Y11 

When steel (P) is an elastic material the quantities 'Yhl' that is 'Y~l' should be 
determined from Eq. (3.32). 

The expressions given by Eqs (10.55) and (10.56) can be found in Ref. [1.28]. 
Functions 0jcr has been obtained as the individual values of the homogeneous inte­
gral equation in unknown <p whose time dependent kernel represents the derivatives 
of the influence function for displacement v under a unit transverse force. The 
additional load by distributed couples is also time dependent, thus Volterra's prin­
ciple of superposition is applied. A few interestmg details appear when we compare 
these two different methods and when, from the bending equation (10.12) and Eq. 
(10.14) for c = 0 and R = const., the additional load is determmed.29 

29Related to the stability problem see Refs [1.33], [1.44], [1.321, [1.301; see also Refs [1.461, 
[1.471. 
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11.1. Reduced Cross Section Geometry 

The evaluation of equations for open thin-walled beams is easier if the cross 
section geometrical characteristics are defined in advance. 

Consider an open thin-walled composite cross section of general shape in which 
concrete (c) and, in the general case, three kinds of steel, prestressing steel (P), 
steel parts (n) and reinforcing steel (m), co-act (Fig. 11.1). 

The origin of the xyz coordinate system is located at the centroid of the trans­
formed cross section C. The x and y axes, lying in the cross sectional plane, are 
the principal axes of inertia of the cross section area, while the z coincides with 
the beam axis. The tangential coordinate along the center line of the cross section, 
denoted by s, is measured from the sectorial centroid 0, so that the position of any 
point of the middle surface is determined by the s and z coordinates. The sectorial 
coordinate w, being a double sectorial area, is measured from the sectorial centroid 
o with respect to the center of twist D as a pole. 

The reduced cross section geometry is defined analogous to the homogeneous 
cross section taking into consideration its particularity. 

The reducing factors of steel (P) and the reinforcing steel (m) are the same as 
in Eq. (3.1), while 

(11.1) 
Zln = E(l + J-L~) , 

where J-Li is Poisson's ratio of the material j (j = c, n). 
The reduced area of part j of cross section Air, its part separated by s = const. 

Air (j = c, p, n, m) and the transformed cross section area A are defined by Eqs 
(3.2) and (3.5). 

The reduced first moments of area Ai, that is Ai, with respect to the x or y 
axis are 

30See Refs [1.43], [1.37] 
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:--:le 

FIGURE 11.1. Open thin-walled composite cross section 

(11.2) 
S"jr = Vj! Y dA, 

A; 

S"jr = Vj f. y dA, h; 
The conditions 

Syjr = Vj! x dA, 
A; 

Syjr = Vj f. x dA, h; 
j = c,p,n,m. 

(11.3) 2:Syjr = 0, 
j 

j = c,p,n,m, 

locate the position of the centroid of the transformed cross section C. 
The reduced first sectorial moment of area Aj , that is Aj , with respect to the 

center of twist D as a pole, is 

(11.4) Swjr = Vj! w dA, 
A; 

Swjr = Vj f w dA, h; 
From the condition 

(11.5) 2:Swjr = 0, 
j 

j = c,p,n,m, 

j = c,p,n,m. 

the position of the sectorial centroid of the transformed cross section 0 is deter­
mined. 

The reduced moments of inertia of area Aj about x or y axis are 

(11.6) Jyjr = Vj! x
2 dA, 

Aj 
j = c,p,n,m, 
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while the moments of inertia of the transformed cross section with respect to the 
same axes are defined by the formulas 

(11. 7) j = c,p,n,m. 

The reduced product of inertia of area Aj about the orthogonal system of the x 
and y axes is 

(11.8) J,JJyjr = Vj 1 xy dA, 
Aj 

j = c,p,n,m. 

They are the principal axes of inertia for which the following holds 

(11.9) LJ:r;yjr = 0, 
j 

J = c,p,n,m. 

The reduced warping constant of area Aj is 

(11.10) j = c,p,n,m, 

while the warping constant of the transformed cross section is 

(11.11) j = c,p,n,m. 

The reduced sectorial products of inertia of area Aj about the x or y axis are 

(11.12) J:r;wjr = Vj! yw dA, 
Aj 

Jywjr = Vj! xw dA, 
Aj 

j = c,p,n,m. 

From the conditions 

(11.13) LJ:r;wjr =0, 
j 

LJywjr = 0, 
j 

j = c,p,n,m, 

the position of the center of twist of the transformed cross section D is determined. 
It is convenient to introduce the following dimensional constants 

(11.14) 
S:r; = JAJ:r;, Sy = JAJy, 

J:r;y = JJ:r;Jy, J:r;w = JJ:r;Jw, 

Sw = JAJw, 

Jyw = JJyJw. 



124 11. OPEN THIN-WALLED BEAMS 

We define elements "Ihl of the symmetric scalar matrix of the reduced cross 
section geometry I = lI"1hII14,4 

(11.15) 

Syer Sypr 
"113 = -- + p--, 

Sy Sy 

Sxer Sxpr 
"112 = -- + p--, 

Sx Sx 

Swer Sw pr 
"114 = -- + p--, 

Sw Sw 

_ Jxyer + Jxypr 
"123 - -- p--, 

Jxy Jxy 

Jxwer Jxwpr Jyer Jypr 
"124 = -J- + p-J--' "133 = -J + p-J ' 

zw xw y y 

Jywer + Jywpr Jwer Jwpr 
"134 = -- p--, "144 = -- + p-- . 

Jyw Jyw Jw Jw 

The principal values of matrix I are denoted by "Ih and for them the following 
order is adopted 

(11.16) 1 > "11 > "12 > "13 > "14 > O. 

The following quantities will be used 

(11.17) 

afterwards 

(11.18) 

as well as 

(11.19) 

where 

(11.20) 

and 

Llhl = "Ih - "11, h,l = 1,2; h # 1, 

(a) bhhq = "I; - Hhh"l; + Lhh"lq - Thh, 

(b) bhlq = -Hhn; + Lhnq - Thl, q = 1,2,3,4, 

Hhh = "Ill + "Iii + "Ijj, 

L 2 2 2 
hh = "Ilnii + "Iii"lji + "IjnU - "I1i - "Iij - "Ijl, 

T 2 2 2 2 
hh = "Ill"lii'Yii - "Ili'Yij"/jl - "I1l"lij - "Iii"ljl - "Iij"/li 

Hhl = "Ihl, 

(11.21) Lhl = "Iii'Yhl + "Iij"/hl - "Ihj"/li - "Ihi'Yli, 
. 2 

Thl = "Iii'Yjj"/hl + "Iij bhi"lli + "Ihj"/li) - "Iii'Yhj"/li - "Ijj"/hi'Yli - "Ihnij' 

In Eqs (11.19)-(11.21) subscripts h,l,i,j are in cyclic order and h # 1 # i # j 
(h, 1, i, j = 1,2,3,4). For the selected h in Eqs (11.19a) and (11.20), that is h and 
1 in Eqs (11.19b) and (11.21) the remaining subscripts are fixed. 
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We give some of the relations used for mathematical evaluations 
4 

(11.22) 2)-1)h-11i8,hth = 0, 
h=1 
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where superscript j denotes the exponent of ,h. For the above expression it holds 
that 

th = 1, j = 0,1,2; h = 1,2,3,4, 

th = L'p, j =0,1,3; h,p= 1,2,3,4; h =f: p, 
P 

(11.23) 1 
th = 2 L ,p,q, j =0,2,3; h,p,q = 1,2,3,4; h =f: p; q =f: h,p, 

p,q 

th = IT ,p, j=1,2,3; h,p= 1,2,3,4; h =f: p, 
p 

where 

(11.24) 
8,1 = ~23~24~34' 8'2 = ~13~14~34, 

8,3 = ~12~14~24' 8'4 = ~12~13~23' 
The dimensional coefficients Ahl = Alh appear in the equations 

All =A, 

(11.25) A22 = Jz , A23 = Jzy , 

A34 = Jyw , A44 = Jw • 

A13 = -Sy' 

A24 = Jzw , 

The torsional constant of area Aj being 

1 n 

(11.26) Jtj = 3 L bjqt~q, j = c, n, 
q=1 

A14 = -Sw, 

A33 = Jy , 

assuming that area Aj consists of n parts whose wall thickness is tjq on length bjq . 

The torsional constant of the transformed cross section is 
1 

(11.27) Jt = G I:, Gj Jtj , j = c,n, 
j 

where G is the shear modulus arbitrary chosen and 

(11 28) Gc = E1 , Gn = En 
. 2(1 + J.l.c) 2(1 + J.l.n) 
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11.2. Basic Equations31 

In the theory of composite and prestressed open thin-walled beams the ideas 
and the mathematical approach are the same as in the elementary theory. The 

. difference is that this problem contains more unknowns and demands some com­
plicated mathematical evaluations to study their behaviour. 

Supposing that a beam is of constant cross section, we retain the assumptions 
concerning the materials co-acting in the composite open thin-walled cross sections. 
The equations are derived under the usual suppositions for the same kind of elastic 
beams. With respect to the deformation it is assumed that the original shape of 
the cross section is unaltered during deformation and that the effect of the shearing 
strain 'Ysz on the final deformation is extremely small so that it can be neglected. In 
regard to the stress distribution it is assumed that the normal stresses are uniform 
while the shearing stresses vary linearly over the thickness of the cross section [2.22]. 

The beam is acted upon by the permanent forces distributed over the middle 
surface of the beam, having the components p", = p", (s, z, t, rO), py = Py(s, z, t, rO) 
and pz = pz(s, z, t, rO), directed in the positive x, y and z direction, respectively 
and whose action starts at time rO. 

The following stress resultants exist: axial force N = N(z, t, rO), shearing forces 
T", = T",(z, t, rO) and Ty = Ty(z, t, rO) acting in the x and y direction, bending 
moments M", = M", (z, t, rO) and My = My(z, t, rO) acting about the x and y axis 
and the total twisting moment Mt = Mt(z, t, rO). Their positive directions are 
shown in Fig. 11.2. As input functions they are bounded and continuous for each 
t (t > rO) and satisfy condition (1.3) 

The components of the displacement of any point of the deformed beam middle 
surface in the positive x and y direction are denoted by ~ = ~(z, t, rO) and T/ = 
T/(z, t, rO), respectively, retaining the same notations as in the elastic analysis. The 
counterclockwise angle of twist is 0 = O(z, t, rO). 

The equilibrium conditions of an isolated element of the beam middle surface 
(Fig. 11.2) in time t (t > rO) lead to 

(a) NZ = -Pz, 

(11.29) 
(b) T: = -p"" (c) T; = -Py, 

(d) M;=Ty-m"" (e) M; =T", -my, 

(f) M; = -mt. 

On the right-hand sides of these equations the following distributed forces per unit 
length of the beam axis appear 

(11.30) p", = 1 p",ds, Py = 1 pyds, pz = 1 pz ds, 

31See Refs [1.43], [1.37], [1.40] 
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FIGURE 11.2. Forces and loads on an element of the middle surface 
of an open thin-walled beam 

as well as the couples 

. m z = Is yp"ds, my = Is xp"ds, 

mt = 1 [(x - XD)Py - (y - YD)Pz] ds. 

(11.31) 

Eliminating the shearing forces from Eq. (l1.29b-e), we get 

(11.32) M "z _ z 
y - -pz - my. 
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From Eq. (11.29a), the above equations and the corresponding end conditions we 
determine axial force N and bending moments Mz and My directly from the given 
load. 

Durie's method applied in the elementary theory is expanded to this problem, 
meaning that the starting equations and the procedure for evaluating the stress 
expressions are analogous to those applied in the corresponding elastic analysis. 

The first equation refers to the normal strain C = Cz = c(s, z, t, TO) of any point 
of the cent er line 

(11.33) 

For a given cross section Wo = wo(z, t, TO) represents the uniform displacement of 
all points in the z direction. Four functions W5, TJzz, ezz and (PZ describe the cross 
section deformation in time t (t > TO). Under the known conditions this equation 
reduces to Navier's hypothesis of plane cross sections. 

The following four equations (3.35)-(3.37) put into a relationship the normal 
stresses (1 j = (1 zj = (1 j ( s, z, t, TO) and the common strain c for materials co-acting 
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in the composite cross section 

O'e = IIji'(Ec) + 0' S' 

(11.34) O'p = IIpR~(Ec) = IIp (/I' + pR') (Ec), 

k=n,m. 

The reducing factors lie and IIn are given in Eq. (11.1), lip and IIm in Eq. (3.1) while 
operator R~ is expressed in terms of operator R' introducing Eq. (2.46). 

Finally, four equations define the stress resultants 

(a) N = ~ L. O'jdA, (b) Mo; = ~ L. YO'jdA, 
J ' J ' (11.35) 

(c) My = ~ L. xO'jdA, (d) Mw = ~ L. WO'jdA, 
1 ' J ' 

j = c,p,n,m. 

The bimoment Mw = Mw(z, t, 1'0) is staticaliy zero and for this reason an additional 
relation should be provided. 

The shearing stresses in the cross section are divided into 1'w = 1'w(s, Z, t, 1'0) 
and 1's = 1'.(s, z, t, 1'0). The first are of uniform distribution over the cross section 
thickness, having the average value. The second are linearly distributed as Saint 
Venant's theory of torsion predicts. Consequently, in Eq. (11.29f) the total twisting 
moment Mt is the sum of the warping torque M tw and Saint Venant's torsion 
moment Mts = Mts (z, t, 1'0). Thus 

(11.36) 

Expanding the correspondence principle [1.8] to Saint Venant's torsion moment 
we find that it is given by the formula 

(11.37) M ts = GJtR~oz. 

Operator R~ is defined as 

(11.38) R~ = (3'1' + f3R', f3' = 1- f3, 
where 

(11.39) 

The torsional constant of the transformed cross section Jt and of concrete part Jte 
as well as the shearing modulus Ge can be found in Eqs (11.26)-(11.28). Since the 
beam is of constant cross section, function R~ does not depend on coordinate z, 
that is R~ = R~(t, 1'). 

The warping torque M tw is defined in the known way 

(11.40) 
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~c 

FIGURE 11.3. Forces and load on a portion of an open thin-walled 
beam element 

where q = q(s, z, t, ,D) is the shear flow at any point of the center line 

(11.41) 

Summing the forces indicated in Fig. 11.3 in the z direction we get 

(11.42) q = - L r. ajdA - ~Pzds, 
j h; ls 

j = c,p,n,m, 

from which the warping torque M tw is obtained in the form 

j = c,p,n,m. 

Applying integration by parts we derive 

(11.44) Mtw = (~ L. wajdA) z + /, wpzds, 
J 1 

j = c,p,n,m. 
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The first term on the right-hand side is the derivative with respect to variable z 
of bimoment Mw (ll.35d), while the second represents the distributed bimoments 
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mw = mw(z, t, rO) per unit length of the beam axis. Then the warping torque is 

(11.45) 

which, together with Eqs (11.36) and (11.37), provides the additional equation 

(11.46) M ZZ = -(GJ fit (}ZZ + mZ + m ) w t {3 w t , 

relating bimoment Mw to the angle of twist (}. 
The elimination of the common strain c: and stresses (1j from the nine equations 

(11.33)-(11.35) leads to the governing equations referring to an arbitrary open thin­
walled composite cross section and any time t (t > rO). They are the basic equations 

(11.47) 

E(AR~l Wo - S)i~21/zZ - SJ?~3ez - Sj?~4(}ZZ) = N, 

E(-S)?'~lWO + J2)i~21/zZ + J",y~3ez + J"'w~4(}ZZ) = -M"" 

E( -SyR~l Wo + J",yR~21/zZ + JyR~3eZ + Jyw~4(}ZZ) = -My, 

E(-SwR~lWO + J",wR~21/zZ + JywR~3eZ + JwR~4(}ZZ) = -Mw, 

being simultaneous nonhomogeneous integro-differential equations in unknowns Wo, 
1/, ~ and (}. When the basic equations were derived the designations given in Ch, 
11.1 were used while in the concrete stress expression member (1 s was omitted, 
because it has been shown that the concrete shrinkage can be introduced as a 
permanent load (Ch. 3.2), 

Operators R~I in the basic equations are of the same form as operators R~I 
(3.44) in the elementary theory 

J: {I, for h= I, 
Uhl = 

0, for h # l; h, I = 1,2,3,4. 

Since a beam is of constant cross section the matrix elements 'Yhl (11.15) and 
operators R~I = R~IC'Yhl' t, r) do not depend on the coordinate z, that is R~l = 
Rhl(t, r). 

The basic equations differentiated twice with respect to variable z are written 
in the matrix notation. 

(11.49) ER'DZZ = SZz, 

where SZz and DZZ are the column vectors 

(a) SZz = IINu , -M;Z, _M;z, (GJtR~(}ZZ + m~ + mt)I!T, 
(11.50) 

(b) DZZ = Ilwozz, 1/zzzz, ezzz , (}ZZZZ liT 

and where R' is the symmetric operator matrix 

(11.51) 

The dimensional constants Ahl , containing the geometrical characteristics of the 
transformed cross section, are found in Eq. (11.25). 

It is not necessary to especially explain that solving the basic equations and 
evaluating the simplest stress expressions requires the introduction of operators 
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and functions associated to an open thin-walled composite cross section, which 
have been already defined in the elementary theory, having the same properties 
and the same role. We recall only that all operators, also including R~, commute 
with each other. 

Equation (11.49) has a unique solution 

(11.52) 

where F' is the symmetric operator matrix 

(11.53) F' -11 1 Rill - )..hl hi 4,4' 

It is inverse to the operator matrix R' so that the known formula holds 

(11.54) 

The determinant of the operator matrix R' is written in the form of 

(11.55) 

We introduce operators Rh' defined by Eqs (3.51) and (3.53) adapted to the kind 
of cross sections under consideration, meaning that quantities 'rh represent four 
principal values of the scalar matrix 'Y, the elements of which are found in Eq. 
(11.15) 

(11.56) 

Then 

(11.57) 

h = 1,2,3,4. 

4 

fy = IT Rh' 
h=1 

Operators Rh have defined inverse operators F~ (Ch. 3.2) satisfying the known 
relations 

(11.58) F~Rh = 1/, h = 1,2,3,4. 

Combining the above equations, we obtain 

4 
- 1 1 IT-(detR/)- = AJ J J F~. 

z y w h=1 

(11.59) 

Now, from Eq. (11.54) we can determine the elements of the inverse matrix F/, that 
is operators F~l 

(11.60) 

F~h = F{F~F~F~ [RII(RiiRjj - RijRji) + Rfi(RljRji - RliRjj) 
+ R;j(RliRjj - R;jRii)], 

F~l = F{F~F~F~ [Rhl(RijRji - Ri)ljj) + Rhi(RliRjj - RljRij) 
+ Rhj (Rlj Rii - RliRij )] . 
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Subscripts h, l, i, j are in cyclic order and h =I l =I i =I j (h, l, i, j = 1,2,3,4). For 
the selected h, that is h and l, the remaining subscripts are fixed. 

To eliminate the operator products in the foregoing equations the following 
operator relations will be used 

(11.61) OM = {I, for h = l, 
0, for h =I l; 

h, l, j = 1,2,3,4, 

obtained from Eq. (11.48), which is multiplied by operator PJ, and Eq. (3.59), and 

(11.62) h, l = 1,2,3,4; h =I l, 
which is analogous to Eq. (3.61). Their application brings operators P~l to the 
linear combinations of operators P~ 

4 

(11.63) P~l = L(-I)q-1~qbhlqP~, h, l = 1, 2, 3, 4. 
q=l 

Coefficients tlq and bhlq are given in Eqs (11.18)-(11.21). 
To create the equation in unknown angle of twist 8 we use solution (11.52) of 

the basic equations and Eq. (11.50). Then we obtain 

3 

8zZZZ _ GJt P' R' 8zZ = '"' _1_ p ' SZZ + _1_ p ' (mZ + m ) 
El 44 (3 L.J E>" 4q q El 44 wt· 

w p1 ~ w 
(11.64) 

The operator product on the left-hand side of the equation can also be substituted 
with the linear combination of operators Ph. according to the equation 

4 

P~4R~ = L( _1)q-1 tlq b44q [,81' - (,8 - "{q )P~]. 
q=l "{q 

(11.65) 

Coefficients tlq and b44q are given in Eqs (11.18) and (11.19a). 
The remaining equations in unknowns w5zz , TJzzzz and ezzz are found to be 

(11.66) 

4 

wZzz = '"' _1_ p ' SZZ 
o L.J E>" lq q , 

q=l lq 

4 

'I'lzzzz = '"' _I_F.' szz 
'/ L.J E>" 2q q , 

q=l 2q 

4 

~zzzz = L _1_p~qS:Z. 
q=l E>"3q 

In the above equations and in Eq. (11.64) quantities S~z represent the elements of 
the column vector szz (11.50a). Its first three elements are determined from the 
given load as was explained earlier, while the fourth element is expressed through 
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the angle of twist (). That means that after solving the nonhomogeneous integro­
differential equation (11.64) for () we form the remaining equations. 

The equations developed here hold when steel (P) is assumed to be an elastic 
material. Only the elements 'Yhl (11.15) of the scalar matrix 'Y should be calculated 
.according to this assumption. 

11.3. Stresses32 

For obtaining normal stresses (J"j we first determine the reference stress u. To 
this aim we start from the basic equations (11.47) and their unique solution, which 
are written in the matrix notation 

(11.67) (a) ER'D = S, (b) ED = F'S. 

The operator matrices R' and F' remain the same as in Eqs (11.49) and (11.52), 
while the column vectors S and D are 

S = /IN, -M." -My, -Mw/lT
, 

(11.68) 
D = I/ wo, l1zz, ez, BzzI/T . 

It is convenient to present the strain € (11.33), that is the reference stress u, as 
the sum of the products of D h , being the elements of the column vector D and 
quantities (h. Then 

4 

(11.69) U = E€ = ELDh(h, 
h=1 

where 

(11.70) (1 = 1, (2 = -Y, (3 = -x, 

From Eq. (11.67b) elements Dh can be obtained as 

4 -
"F~, -, EDh = L..J -S, = F hS, (11.71) 
1=1 Ahl 

h = 1,2,3,4, 

where SI represents the elements of the column vector S, while F~ designates the 
hth row of the operator matrix F' (11.53) 

(11.72) F~=IIF~1,F~2,F~3,F~411, h=1,2,3,4. 
Ah1 Ah2 Ah3 Ah4 

Returning to Eq. (11.69) we find the reference stress u in the form of 

4 

(11.73) u = LF~(hS. 
h=1 

32See Refs (1.43], (1.37] 
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In the equations for stresses (J'j (11.34) the operator products R' FIu and R~i'hl 
can be found. We use Eq. (11.63) to express operators Fhl in terms of operators 
Fh and after that we apply the relation 

(11.74) h = 1,2,3,4, 

written on the basis of Eq. (3.59), to eliminate the mentioned products and obtain 

4 

FI R-I FI "( 1)q-1 Aq b (11 I FI) hi (c) = hi = L....J - - hlq - 'Yh q , 
q=1 'Yq 

4 

P-I R-I p-I "( l)q-l Aq b [p-11 ( )P-/] hl(p) = p hi = L....J - - hlq + 'Yq - P q, 
q=l 'Yq 

(11.75) 

4 

Fhl(k) = 11 Fhl = L(-l)q-l AqbhlqF~, k=n,m. 
q=l 

Subscripts in brackets denote the kind of material j (j = c,p,n,m). The corre­
sponding rows of the operator matrices R'F/, R~FI and I/FI are denoted as follows 

(11.76) FI . = 11 Fhl(j) Fh2(j) Fh3(j) Fh4(j) 11 
h(;) >..' >.. ' >.. ' >.. ' 

hl h2 h3 h4 

j = c,p,n,mj h = 1,2,3,4. 

Finally, normal stresses (J'j in time t (t > TO) are found from the above expressions 
and Eq. (11.34) 

4 

(11.77) (J'j = Vj L F~(j)(hS + 8jc (J's, '. _ {I, for j = c, 
UJC - • 

0, for J i= Cj j = c,p,n,m. 
h=l 

Instead of the shearing stress Tw we determine the shear flow q (11.41). The 
differentiation of functions (J'j with respect to variable z, indicated in Eq. (11.42), 
refers to the column vector S only, giving 

(11.78) 

When the integrations over the cross section portion separated by s = const. are 
performed, quantities of (h in Eq. (11.77) should be substituted with 

(11.79) 

found in Ch. 11.1. Then the shear flow in time t (t > TO) is obtained in the form 

4 

q = - L L Fh(j)ZhSz - r pzds, (11.80) 
j h=l 18 

j = c,p,n,m. 

Bimoment Mw is determined through deformation and can be obtained either 
from Eq. (11.46) or (11.67a). Starting from the second possibility, we get 

(11.81) Mw = -ER~D, M z - -ER/Dz w - 4, 
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where R4 is the fourth row of the operator matrix R' (11.51) . 

(11.82) 

while D Z is the derivative with respect to variable z of the column vector D 

(11.83) D Z = IIw~z, 17zzz, ezz , (izzzIIT. 

In the expressions for normal stresses aj (11.77) and shear flow q (11.80), Mw 
and M~ appear as the elements of the column vectors S and SZ, meaning that 
operator products P~R41 (h, 1= 1,2,3,4) exist. They can be expressed in terms of 
operators P~ using Eqs (11.48) and (11.74), so that only these operators are found 
in the mentioned equations. 

The shearing stress Ts, corresponding to Saint Vennat's torsion, in steel parts 
(n) as an elastic material, is determined by the known formula, while in concrete 
it can be obtained by expanding the correspondence principle [1.8]. Then 

(11.84) 

where e is the perpendicular distance of any cross section point to the center line. 
Here the same requirement exists. It is necessary to determine operators PJ. 

and il' directly from the given concrete transformation function F*. The pro­
cedure for obtaining them was explained in Ch. 6.4. The difference is that the 
parameterized nonhomogeneoUs integral equation (6.92) should be solved for four 
values of parameter '"fh = 1 - '"fh where '"fh represent the principal values of the 
scalar matrix I (11.15). When functions IPh are obtained, then operators PJ. can 
be found from Eq. (3.55). We recall that the solution of the same equation when 
'"fh = 1 represents function 1l1', so that operator il', corresponding to the concrete 
transformation function R*, is also determined. 

To complete this analysis we turn our attention to the functions associated 
to an open thin-walled composite cross section, which are not directly included in 
these equations. Starting from the fact that operators Rh and P~ are defined by 
the same expressions as in the elementary theory satisfying the same relations, we 
know that four pairs of the cross section transformation functions Ri. and Fh can 
be also associated to the cross section under consideration. We include here four 
pairs of auxiliary basic functions Kit and Eh and their operators Kh and Bh, also 
associated to an open thin-walled composite cross section, which are defined by the 
same equations as in the elementary theory, satisfying the same relations. We racall 
that all these functions depend on the physical properties of materials co-acting in 
an open thin-walled composite cross section and on their arrangement, that is on 
the cross section geometry. In line with considerations made in the elementary 
theory, we can say that cross section transformation functions Rh or Fh describe 
the behaviour of an open thin-walled composite cross section, meaning that they 
describe the effects of the mutual action of different materials. 
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Equations of the mathematical theory, elementary and open thin-walled beams 
are general in regard to the concrete transformation F* and the cross section geo­
metrical characteristics. They are exact as much as the made assumptions are close 
to the phenomena which are described by them. The analytical methods applied 
to study the structures behaviour are analogous to the known methods in elastic 
analysis. Such an approach with the application of concise operator calculus leads 
to the equations revealing an aspect of the theory which to this point has not been 
emphasized sufficiently. We focus our attention on these results, beginning with 
the elementary theory. 33 

The cross section transformation functions Ri. and Fi: associated to the com­
posite cross section have been defined analogous to the concrete cross section trans­
formation functions R* and F*, which are their special case when rh = 1. The same 
can be said for their operators and the equations they satisfy. The basic equations 
of the composite cross section as more general, become the basic equations of the 
concrete cross section, and the same is valid for Theorem 2 and Theorem 1. The 
generalization of the aging coefficient x, joined with the concrete cross section, leads 
to the corrected aging coefficients X,h, associated to the composite cross section, 
while the AA EM Method is generalized to the composite cross section, giving the 
Generalized AAEM Method. 

Comparing functions F* and R*, which describe the concrete cross section 
behaviour, with the cross section transformation functions Fi: and Ri., it is clear 
that Fi: or Ri. describe the behaviour of the composite cross section. This is best 
seen considering the basic equation for the composite cross section symmetrical 
about two axes on the one side, and for the concrete cross section on the other. The 
result leads to understanding their identical roles in these different kinds of cross 
sections. Owing to the fact that the cross section transformation functions Fi: and 
Ri. are defined independently on the individual form of the concrete transformation 
function F* they are basic for the composite cross section as much as functions F* 
and R* are basic for the concrete cross section, determining the results of the mutual 

33Related to this topic see Refs (1.14], (1.26], (1.38], (1.15], (1.48], (1.49] 



o 

12. FINAL REMARKS 

F* Fi F; 
R* Ri R2 

r------------------------------------------ 1* 

FIGURE 12.1. Nondimensional cross section transformation func­
tions F;:(t,T = const.) and Ri.(t,T = const.) (h = 1,2) for the 
general case of the cross section geometry. 
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action of different materials. It is evident that the essence of the generalization 
made in the elementary theory is the introduction of the co-action effects that affect 
the composite and prestressed structures behaviour. This phenomenon is influenced 
by the physical properties of materials, their participation and their arrangement in 
the composite cross section, as was stated earlier. From Eq. (3.63a), which defines 
functions Ri., we read that these factors have been introduced through the concrete 
transformation function R* and the principal values rh of the matrix of the reduced 
cross section geometry r. 

The theory of open thin-walled beams is based on the supposition of the beam 
deformation whose one special case is Navier's hypothesis of plane cross sections. 
The more general equations then become equations of the elementary theory, as 
is known in the elastic analysis. Our attention will be focussed on the particular­
ity related to composite and prestressed beams. In this theory the cross section 
transformation functions Ri., Fh, the auxiliary basic functions Ki., Bj, and their 
operators exist, defined in the same way as in the elementary theory. In that way 
we possess the equations they satisfy, which are found in both theories and which 
have the same application in them, the only difference being that we associate 
four pairs of functions and operators to an open thin-walled cross section while we 
associate two pairs in the elenemtary theory. This is a direct consequence of the 
number of unknown functions describing the cross section deformation. In the first 
case there are four such functions, four equations compose the basic equations, the 
matrix of the cross section geometry is of the fourth order, while in the second case 
two functions describe the cross section deformation. Along with this difference 
connected to the problem particularities we can see that they have the same nature 
and role in the similar theories, that is that they describe and introduce the laws 
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~ _____ -F* 

1----------------------------------- 1* F; R2 

--------R* 

FIGURE 12.2. Nondimensional cross section transformation func­
tions Fi: (t, 7 = const.) and Rh (t, 7 = const.) (h = 1, 2) for the 
special case of the cross section geometry when le = lp = 0 

t 

of the co-action, determining the behaviour of such kind of structures. When we 
speak about cross section transformation functions Rh and Fi: we know that they 
introduce the effects of the mutual action of different materials in the equations of 
both theories. 

Starting from the fact that the concrete transformation function F* or R* de­
scribes concrete physical properties, we can imagine that a certain hypothetical 
material exists associated to the composite cross section, the properties of which 
are described by functions F;: or Rh' Comparing Eq. (2.18) which defines the con­
crete transformation function R*, with Eq. (3.63a), which defines the cross section 
transformation functions Rh, we see that functions rh determine the time variation 
of the instantaneous modulus of elasticity of this material and that through func­
tions rh 111* its aging viscoelastic property is introduced. Since these features are 
the result of the co-action in the composite cross section, they are also influenced 
by the material properties, as well as its geometrical characteristics. To cross sec­
tions of different geometry we associate different hypothetical materials both in the 
elementary theory and open thin-walled beam theory. 

The hypothetical material properties have been analyzed for the cross section 
transformation functions F;: and Rh of the elementary theory for the general case 
of cross section geometry and 7 = const. It has been shown that the cross section 
transformation functions Fi: and the concrete transformation function F* have 
similar time variation and that the same holds for functions Rh and R*; that the 
aging viscoelastic property is less evident than for concrete; that the change of the 
modulus of elasticity of the hypothetical material is less than that of concrete and 
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F* Fi F; 
R* Ri R2 

1* 

~S"?"'""?~~~---- Ri 

R* Ri 

FIGURE 12.3. Nondimensional cross section transformation func­
tions F;;,(t,7 = const.) and Rh(t,7 = canst.) (h = 1,2) for the 
special case of the cross section geometry when lp = lm = 0 

t 
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that functions F;;'h lie in the zone bounded by functions Ft and F;, while Rhh lie 
in the zone bounded by Ri and Ri. 

The results of examinations of the influence of the cross section geometry on 
the properties of the hypothetical material are very illustrative. It was supposed 
that concrete is of constant modulus of elasticity and that steel (P) is an elastic 
material. The first supposition does not affect the character of the investigated 
phenomenon, only functions Ft:, Ft:h Rh' Rhh and F*, R* begin from the same 
starting point with the abscissa 7 (7 ~ 7°) whose ordinate is equal to one. For any 
t (t > 7) the functions are in the following orders 

(12.1) F* ~ Fi > F; ~ 1*, R* ~ R* < R* ~ 1* '" 1 ~"2'" , 

where the signs of equality refer to the special cases of the cross section geometry. 
In the general case of cross section geometry the position of the cross section 

transformation functions Fi:. and Rh is shown in Fig. 12.1. In this case when the 
participation of concrete and elastic materials are almost equalized, functions Fhh 
lie in the zone within the area limited by the concrete transformation function F* 
and the elastic material transformation function 1*, while functions Rhh lie in the 
zone within the area limited by functions R* and 1 * . 

Wh~n in the cross sections thin concrete slabs exist so that le = lp = 0 can be 
adopted, Eq. (7.4) holds.' In such cross sections elastic materials dominate and zones 
in which functions Fi:.h and Rhh lie are concentrated around the elastic material 
transformation function 1* (Fig. 12.2). The hypothetical material associated to 
such a cross section is of least expressed aging viscoelastic property. 

When the cross sections do not contain steel parts and when lp = lm = 0 
can be adopted, Eq. (7.22) is valid. In this kind of cross sections the influence of 
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the concrete properties is more significant and the zones in which functions Fhh 
and Rhh are found are supported by the concrete transformation functions F* and 
R*, respectively (Fig. 12.3). The hypothetical material associated to such a cross 
section is of most expressed aging viscoelastic property. 

Being described by the cross section transformation functions Rh or Fh, the hy­
pothetical material is an aging linear viscoelastic material whose properties demon­
strate the behaviour of the composite cross section. The results obtained contribute 
to the understanding of how the participation of concrete and elastic materials and 
their arrangement affect the properties of the hypothetical material, that is how 
they influence the effects of the mutual action of these different materials in the 
composite cross section. From the equations of the theory of composite and pre­
stressed structures we comprehend that the laws of co-action are basic and that 
they determine the behaviour of such kinds of structures. 

Here is the right place to racall the proposal, made in Ch. 9.3, concerning the 
selection of the free parameter value in order for the approximate algebraic stress 
expressions to predict the values on the safe side. The acception of the larger 
corrected aging coefficient for the free parameter, XI = X'"(2, is recomended if no 
steel parts exist in the cross section. The presence of concrete and its influence 
on the co-action in such a cross section is significant, so that the value of the free 
parameter XI should be closer to the aging coefficient X of the AAEM Method. 
If steel parts exist, the influence of the elastic material is now significant, thus 
the smaller corrected aging coefficient for XI, XI = X'"(l, should be selected. This 
proposal, supported by examples in Ref. [1.18J, respects the laws revealed in this 
theory of composite and prestressed structures. 
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