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1. LINEAR INTEGRAL OPERATORS!

The linear integral operators defined here are in compliance with the require-
ments of the Mathematical Theory of Composite and Prestressed Structures, mean-
ing that their form is adapted to the type of equations found in this theory. The
application of such operators leads to the substitution of complicated mathematical
evaluations with a concise symbolical calculus providing the simplest form of the
results. _

Linear integral operator G is associated to a function of two time variables
G = G(t, ) having the following property

(1.1) G(t,7) =0, t<T.
It is defined for any function U = U(t,7) as

t ~
(12) I=I{t7) = / G,OU®,7)d0 =GU, P<r<t<o

In input functions I(¢,7) and U(t, 7) the second variable is a parameter and oper-
ators cannot be associated to them. They fulfill the condition

(1.3) Ut,T) =0, t<T.
Their limit values are denoted as follows
: 0y _ 770/.0 : 0y _ yroo(.0
(14) tB%'*U(t’T)—U (T ): tll)rgoU(t)T )—U (T )
or simpler U® and U™. We apply the same symbols for a function of two variables
when the first variable becomes ¢ = 7%t and when t = .
Let Eq. (1.2) be multiplied by function L = L(¢,7) and integrated over the

interval from 7 to ¢. Then we write

1See Ref. [1.22]
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(15) L =Lt = /tL(t, 0)1(9,7)df = /t L(t, w)dw/w G(w,8)U (8, 7) db.

Applying the Dirichlet transformation {2.11], the equation is reduced to

(1.6) L= / t [ /o tL(t,w)G(w,G) w] U, r)db.

By substitution

(L.7) F=F(t0) = /tL(t,w)G(w,G)dtu,
[
we obtain
i
(1.8) L = / F(t,0)U (9, 7) db.

An alternate way for obtaining the same expression is to apply the symbolical no-
tation. The left-hand side multiplication of the operator relation (1.2) by operator
L gives

(1.9) I, =LI=LGU = FU,
where
(1.10) F=1IG.

In the Theory of Functionals, function F' determined by Eq. (1.7) is called the
composition of the first kind of functions L and G. It is known that usual algebraic
laws hold for such a composition except the commutative law which is valid if the
functions L and G commute with each other [2.24]. It immediately follows that
linear integral operators, defined here, have the same properties.

We will list operations with operators and input functions, symbols and some
properties of operators that we apply to the derivation of equations.

1. The operator product complies with the associative law

(1.11) F(LG) = (FL)G
and the distributive law as well
(1.12) F(I+@G)=FL+FG,
while in the general case the commutative law does not hold
(1.13) LG # GL.
The operators used in the Mathematical Theory form the set of commuting oper-
ators. The condition that they should satisfy is given later.

2. The distributive law is valid for an input function as well
(1.14) @ G+ILWw=GUu+IUu, @®) GU+U)=GI+GU.

The operator relation in which no input function exists can be muitiplied by an
input function from the right-hand side, while by an operator it can be multiplied
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from the left or right-hand side. If the input function exists, it can be multiplied
from the left-hand side only. Thus, Eq. (1.2) is multiplied from the left-hand side
by the operator L, which yields

(1.15) I = LI = L(GU) = (LG)U.

3. The partial derivatives of function G(¢,7) with respect to the first and
second variable are denoted by the following symbols

. 0G(t,7) , _ 0G(t,7)
(1.16) G= ETa G = ol
An input function possesses only the derivative with respect to the first variable
- dU(t, 1)
(1.17) U="2

For the Heaviside step function H (¢ — 7), the following denotation is introduced

1, fort>r
0, fort <.

(1.18) 1" =1*(t,7) = {

It appears as a function of two variables and also as an input function.
The derivatives of the Heaviside step function with respect to the first and
second variable are as follows

(1.19) i=1i¢r)=6t-7), V=107 =-8t~1).
Symbol 1 is used when it is an input function, while.1’ when it is a function to
which the operator is associated.

4. Multiplying Eq. (1.10) by input function U = 1 we obtain the function to
which operator F is associated :
(1.20) F=Fi=ILGi=1IcG.

The above stems from the definition of the Dirac delta function. This operation
translates the operator product into a composition of the first kind of functions L
and G.

5. From the definition of the Dirac delta function it is evident that
(1.21) (@) TU =0, (b) TG =G1'=G.
Unit operator 1’ takes the role of unity in elementary algebra so that it commutes
with any other operator. The following holds particularly
(1.22) 17 =T1.
6. In Eq. (1.2) instead of the input function we introduce its derivative U.

After integration by parts, and considering condition (1.3) for an input function,
we arrive at

(1.23) I=GU=gU-GU = (g1 - G,

where
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(1.24) 9=g(t) =G(t1).

The indicated operation is symbolically written using Eqs (1.21a) and (1.14a).

The following rule is introduced for concise writing: a function of two variables
t and 7 when t = 7 is designated by a corresponding lower case letter as in Eq.
(1.24); if it precedes an operator or a function of two variables it depends on its first
variable while if it stands behind, it depends on its second variable; if it stands in
front of an input function it depends on its sole variable. A different combination
of a single variable function and an input function does not occur.

7. Introducing L' into Eq. (1.2) instead of G and 1* instead of input function
U, we get

(1.25) L*=L*t7)=1L1"=1*-L.
Function L* is called the integral of function L’. It is evident that the following
holds

L*=-L' t>r,
L*(t,t) =0, O Lr=t< 00
Particularly the integral of Dirac delta function is the Heaviside step function
(1.27) 11" =1"

(1.26)

8. Let operator G be of the form
(1.28) G =gl +1T, + = const # 0,

where functions g and I' are known. We define a division operation of the unit
operator by operator G

U -
1.29 ==G) =L,
(1.29) ; (G)
namely, we determine operator L
(1.30) L= ++A,

to be inverse to operator G. Functions ! and A are unknown.
The inverse operators commute with each other satisfying the relations of the

type

(1.31) (a) GL=1, by LG=T.

In the first equation we introduce the expressions for operators G and L and mul-
tiply it by input function U = 1. After carrying out the indicated operations and
applying the results found in It. 4, we equalize the terms along the Dirac delta
function and zero, and obtain

(1.32) gl=1

and the nonhomogeneous integral equation
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(1.33) gA+Tl+4TA =0.

By solving these equations, the unknowns ! and A are found. We notice that Eq.
(1.33) can be reduced to a Volterra equation of the second kind.

If g = g(t) is bounded, continuous and a nonzero function for each ¢ (¢ > ) and
if function I' = I'(¢, ) is bounded and continuous for all ¢ and 7 under consideration
(% € 7 <t < o0) then these equations uniquely determine unknowns ! and A [2.11],
[2.24] so that inverse operator L is defined.

Supposing that operator Lis known, we use Eq. (1.31b) to derive in a similar
manner Eq. (1.32) and the equation

(1.34) IT + Ag +yAl = 0.

When functions ! and A haze the above properties of functions g and I, respectively,
then the inverse operator G is defined.

It should be noticed that operator relation between inverse operators contains
nonhomogeneous integral equation and that the determination of inverse operator
presupposes solving such an equation.

9. By the homogeneous integro-differential equation

1t .
(1.35) 16,7 = 3 / F,0)0(r, % dr,  A>0,
TO
that is
(1.36) I= ;ﬁU

a relationship between stress and strain for concrete is expressed, corresponding to
the axial state of stress. Function F* = F*(¢,7) describes its physical properties
while for the moment we still do not identify functions U and I. The nondimensional
function F*, multiplied by dimensional constant %, transforms input function U
into function I.

In order to solve Eq. (1.35) it is necessary to give it a form of a nonhomogeneous
integral equation. Applying the integration by parts and in view of the property
(1.3) of function U we get

(157) 6,7 = 11006 + 1 [ @00, ar

We note that it can be reduced to a Volterra equation of the second kind. We can
derive the same equation symbolically from Eq. (1.36) and the formulas in It. 6

1

(1.38) : I= /\ﬁ'U,
where the following operator is introduced
(1.39) Fl=fl+%.

In accordance with Its 6 and 3 we have



14 1. LINEAR INTEGRAL OPERATORS

(a) f=f(@)=F"(t1),
(b) & =&'(t,7)=-F*, t>T.

Function @' represents the kernel of the integral equation (1.37), that is (1.38).
Using It. 7 we define its integral as

(1.40)

(1.41) 3* = &*(t, 1) = B'1%,
satisfying the condition
(1.42) ®*(t,t) =0, 70K T=t<o00.

Equalizing the right-hand sides of Eqgs (1.36) and (1.38) when U = 1* and
applying the relations from Its 4 and 7, we demonstrate that
(1.43) F* = F'1* = f1* + &,
recognizing that the transformation function F* is the integral of function FY, to

which operator F' is associated.
If functions f and &' have the same properties as functions g and T' (It. 8),

respectively, then inverse operator R' is defined.

(1.44) R =r1"-¥,

Further, if function I = I(t,7°) is bounded and continuous for each ¢ (t > 7°), the
integral equation (1.38) has a unique solution

(1.45) U=\RT.
Function ¥' = ¥'(t,7) is a resolvent kernel of the initial equation. Its integral is
(1.46) T* = U*(t,7) = ¥'1%,
fulfilling the condition
(1.47) T (t,t)=0, 1°<7=t<0c0.

Analogous to Eq. (1.36) we write the homogeneous integro-differential equation
(1.48) U = AR*],

corresponding to Eq. (1.45). Function R* = R*(t, ) is the integral of function R’,
to which operator R' is associated ’

(1.49) R*=R1*=r1" - ¥,

where

r=r(t) = R*(t,t),

¥ =¥'(t,7) = R", t> T

The nondimensional function R*, multiplied by dimensional constant A, transforms

input function I into function U. _
For inverse operators F' and R' Eq. (1.31) holds

(1'51) F:R/ — ’i’/, ﬁ/f;’:l — 'i'l.

(1.50)
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In our problem the transformation function F™* is known, which means that function
f and the kernel @’ of the integral equation (1.38), are known. Based on It. 8 we
write

(1.52) fr=1

and the nonhomogeneous integral equation
(1.53) d'r — %‘I: -3 =0,
the usual form of which is

(154) &'t 7)r(r) — —=W'(t,7) — / (£,6)8'(6,7)d0 =0, T 31°

()

Solving these equations for r and the resolvent kernel ¥', the inverse operator R’
as well as the solution (1.45) of the initial equation (1.38), are determined. When
we carry out the integration, described by Eq. (1.46), we obtain function ¥*, that
is the transformation function R* (1.49).

The same function can be directly determined. Multiplying Eq. (1.51) by input
function 1* and combining it with Eqs (1.49), (1.43) and (1.27), we obtain

(1.55) (a) F'R*=1% (b) R'F*=1%

The above relations also contain the nonhomogeneous integral equations which can
be reduced to Volterra equations of the second kind. Starting from the fact that
the transformation function F* is known, we use the first relation introducing Eqs
(1.39) and (1.40a). Thus we derive the equation in the unknown R*

1
(1.56) F*(t,t)R*(t,T) + / ' (t,)R*(6,7)dd =1, T>7°,
T

whose kernel is also function ®’'.

10. Let operator L be inverse to operator G and let operators f’_, be expressed
in terms of operator G in the following manner

(1.57) P; = a;1 +b;G, aj,bj =const. #0; j=1,2,...,n

It is easy to show that operators P; and P], satlsfymg the above relation, commute

with each other [1.9], while operators G and L commute with each operator P;.
Thus

l
t

Py = ﬁjﬁu i # 7,
(1.58) P,G =GP,
P,[L = LF;, iji=1,2,...,n.

Let operator @ ; be inverse to operator f’, Then
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Q:Q; = Q;Q;, i1 # 7,
(1.59) Q;G =Gq;,
Q;,L=LQ;, i,j=12,...,n

Operators ﬁ,-, éj H=12,...,n), G and L, whose properties are described here,
form the set of commuting operators.




2. STRESS-STRAIN RELATIONS

2.1. Concrete

Based on experimental results, the following assumptions on the physical prop-
erties of concrete (c) have been adopted [2.2], [2.3], [2.15], [2.16]:

a) concrete is homogeneous and isotropic;

b) instant loading and load relief produce instantaneous finite elastic deforma-
tion;

c¢) under long term loading creep deformation appears; if the loading starts
acting at different ages of concrete then various amounts of this deformation occur
within the same time intervals and for the same load magnitudes;

d) under long term loading creep deformation remains finite even for stresses
close to failure stresses;

e) after unloading, part of the creep deformation is restored with time and
represents its reversible portion, while the limit value of the remaining creep defor-
mation represents its irreversible part;

f) in the course of concrete hardening, gradual spontaneous deformation takes
place not as a consequence of external forces; this is the so-called concrete shrinkage.

Due to the nature of the problem treated in this theory it is sufficient to consider
the uniaxial stress in concrete. The assumptions concerning the other states of
stress are ignored. For the same reason the behaviour of concrete under special
conditions is not considered.

Consistent with these assumptions, concrete possesses the properties of an ag-
ing linear viscoelastic material. A mathematical formulation of uniaxial stress—
strain relation for concrete has been given by Maslov [2.15] and McHenry [2.16].
They assumed the creep deformation to be a linear functional of stress history,
namely for stress effects they have adopted the principle of superposition modified
by the age of concrete. :

The principle of superposition was established by Boltzmann [2.6] and gener-
alized by Volterra {2.23]. It is expressed by a relation of the type of Eq. (1.36)
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(21) E—Eg= '-—EEF d’c,

where o, = 0.(t,7°) is the stress in concrete, positive when it produces tension;
€ = £(t,7°) is the total longitudinal strain, positive when it produces elongation;
eg = €g4(t,7%) is the known longitudinal strain due to concrete shrinkage and

gradually grows from zero, so that
(2.2) €2 =0.

For each value of variable t (¢t > 7°) input functions are bounded and continuous,
fulfilling condition (1.3). The time of concrete preparingis 7 = 0 and 7 = 70 is
the time of the first load or deformation application. In Eq. (2.2) the shrinkage
deformation realized in this period is neglected.

The nondimensional concrete transformation function F* is determined by Egs
(1.43) and (1.52)

(2.3) F* = ;1-1* + &,

assuming that such an arbitrary function closely approximates concrete physical
properties. When the unit stress g, = 1* acts from time 7 (7 > 7°) then, combining
Eq. (2.1) and results in It. 4, Ch. 1, we show that
1 1 /1
. —tg= P = (217 +87).

(2.4) £—eg Eg’F Eg(r +
Having in mind Eq. (1.42), that is that ®*(¢,¢) = 0, we get the instantaneous elastic
deformation

11
E0r’
which demonstrates the time variation of the modulus of elasticity (Young’s mod-
ulus) of concrete

(2.5) E—€g=

(2.6) E, = E.(t) = E2r(t), t> 0.

Its value at t = 70 is constant E?, appearing in the above equations

(2.7) E? = E.(9).

It is convenient to represent the nondimensional function r in the form of
(2.8) rt) =1+q(t), ¢)20, t27°

where

(2.9) @ r) =1 () ¢r°)=0

In Eq. (2.4) we identify nondimensional function ®* = ®*(¢,7) as the concrete
creep function. Multiplied by dimensional constant flg, it determines the creep
strain value at time ¢ (¢ > 7) due to a unit stress, introduced at 7 and sustained
during the interval (r > 7% t < 00). Under the same condition, the concrete
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FIGURE 2.1. Nondimensional concrete transformation functions
F*(t,7 = const.)

transformation function F* = F*(¢, 1), multiplied by Elg, gives the strain value in
time t (¢ > 7). )

The concrete transformation function F* = F*(¢,7) is positive, bounded,
smooth and continuous for all ¢ and 7 under consideration (1° < 7 < t < 00)
and fulfills condition (1.1). Curves F*(t,7 = const.) (Fig. 2.1) are monotonic in-
creasing having the limit values of

. * — *00 0
(2.10) }H&F (t,7) = F*°(7), T>T.

Curves F*(t = const., 7) are monotonic decreasing ones. Function F* = F*(¢,71),
that is —®’(t,7), is bounded and continuous for each ¢ and 7 (7° < 7 < t < ).
Function r(¢) is bounded, continuous, strictly positive and monotonic increasing.
According to Eq. (2.8) we can write

(2.11) r® =1+ ¢*.
The values of the concrete transformation function F*, for all ¢ and 7 under con-
sideration, are found in the following limits

1
(2.12) =y < F*(t,7) < F**(9), P <T<t< 0.

From the homogeneous integro-differential equation (2.1) and the results given
in It. 9, Ch. 1, we derive the nonhomogeneous integral equation

(213) € — ES = ‘EE'FIO'C,
where

~ 1w  ~
(2.14) Fr=-1+9%.
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When we recall the properties of functions r and F*', that is @', and the
contents of Its 8 and 9, Ch. 1, we know that operator R', being inverse to operator
F', is defined as
(2.15) - R=r"-9".

Also, having in mind the properties of input function € — £, we know that Eq.
(2.13) has the unique solution

(2.16) 0. = ER'(e - £€g),
which can be written in the following form
(2.17) o, = EOR* (€ - g).

The nondimensional concrete transformation function R* is determined by for-
mula found in It. 9, Ch. 1

(2.18) R*=rl" - 0",

Consider the action of the unit strain € — £g = 1* introduced at 7 and sustained
constant during the interval (1 > 7°, t < 00). From the above equation and results
given in It. 4, Ch. 1, it is simple to obtain

(2.19) 0. = E°R* = E%(r1* — ¥*).

Here we notice the nondimensional concrete relaxation function ¥* = ¥*(¢, 7).
Multiplied by E? it determines the stress relaxed during the period ¢ — 7, caused
by the action of a unit strain from 7, while the concrete transformation function
R* = R*(t,7), multiplied by E?, gives the stress value at time ¢ (¢ > 7) for a unit
strain € — £¢ introduced at 7.

The concrete transformation function F* is known as a test function. It is
stated in It. 9, Ch. 1, that from Eq. (1.55a) we can reveal the properties of the
second concrete transformation function R*. We find that function R* = R*(t,7)
is positive, bounded, smooth and continuous for each ¢ and 7 (1° < 7 < t < 0)
and satisfies condition (1.1). Curves R*(t,7 = const.) (Fig. 2.2) are monotonic
decreasing, having the limit values of

(2.20) lim R*(t,7) = R**(7), T >7°.
t—o0

Curves R*(t = const., ) are monotonic increasing ones. Function R* = R*(t, 1),
that is ¥(t, ), is bounded and continuous for all ¢ and 7 under consideration (70 <
T <t < 00). The boundaries in which the values of the concrete transformation
function R* can be found are

(2.21) R**(r%) < R*(t,7) < r°™°, <7<t <00

It should be noticed that the parts of concrete transformation functions F* and
R*, as well as the corresponding operators F' and R', have the obvious physical
meaning. The first members describe the effects of the concrete instantaneous
elasticity while the second members introduce the effects of the concrete creep or
relaxation property.
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AR (t,7)
/ S
’:‘ (S,
-
Pl
= =]
& —
i
R £ ¥
& 2y 4
0 70 T t t

FicURE 2.2. Nondimensional concrete transformation functions
R*(t,7 = const.)

It is easy to show that
(2.22) F*(% =1, R =1,

namely, that at ¢ = 79 the relation between stress and strain for concrete is
formally the same as for an elastic material

(2.23) o2 = E%°.
The stress-strain relation (2.16) will be used in the form of
(2.24) 0. = E%Rle + oy,
where
(2.25) og = 0og(t,7°) = —EXR'es.

Concrete shrinkage deformation function e satisfies Eq. (2.2) so that
(2.26) el =0.

In the theory the concrete shrinkage function 4 appears in two forms: as an
arbitrary function describing experimental curves and as the function having the
similar time variation as the concrete transformation function F™
(2.27) £g = —d(F*-1%),
where constant d is determined by
___& .

Froo(£0) 1
Such an assumption is common in literature and it is of satisfactory accuracy [2.10],
(2.18]. Applying Eq. (1.55b) and (1.49), we obtain

(2.29) og = E2d(1* - R*).

(2.28) d=
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It is assumed that the proposals for concrete transformation function F* predict
the behaviour of this material as accurately as possible. It means that reversible
and irreversible creep deformation and their accurate amounts should be expected,
as well. As this is not always the case, the criteria for the determination of this
property are established and the amounts of these creep deformations, predicted
by function F™*, are also determined [1.11}, {1.12], [1.16].

Let concrete be exposed to action of a unit stress in a finite time interval (%, T),
meaning o, = 1*(t,7°) and o, = —1*(t, T) (Fig. 2.3a). According to Eq. (2.4) and
€g = 0 respective strains can be found

171
oy . L *(s -0 0
6= gl ) >
(2.30) N i
e(t,T):-—Eg[m+<I>(t,T)], t>T > 10
Their limit values when t = co are
- 1¢1 .,
() = 5[+ 800,
(2.31) <
o0 — *00
£ (T) = Eg[rmw (T)].

The sum of these equations indicates the amount of the irreversible part of the
creep deformation which occurs in ¢ = oo due to a unit stress acting in the time
interval (7%, T) (Fig. 2.3b)

(2.32) g7 (T,7%) = e® (%) + &>(T).

From the same figure we read that the amount of the reversible creep deformation
in t — oo due to the same loading is

(2.33) ep(T,7%) = &(T,7°) - (T, 79,

1
EIr(T)
where (T, 79) is the strain at t = T due to a unit stress introduced at 7%, while
the quantities €;(T,7%) and ex(T,7°) being factors of irreversible and reversible
creep deformation, respectively. Substituting Eq. (2.31) into the above relations we
express them in terms of the creep function

(@) &(T1°) = 5[e() - &),
(2.34) c
(b) en(T,7°) = E%[Q*(T, %) = 8°(r%) + 8*(T)].

It may happen that the concrete transformation function F* predicts the ex-
istence of the reversible creep deformation when unloading occurs in finite time
T and that it does not predict it when unloading is at T' = oo, i.e. T°. While
. considering this case we assume that the interval between the time 7° and t — oo
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FIGURE 2.3. Loads (a); factors of irreversible and reversible creep
deformation (b)

is sufficiently long enough for the complete reversible creep deformation to occur.
Then from Eq. (2.34b) it follows

(2.35) eR(7°) = EI—O-Q*W(T“).

If the concrete transformation function F* satisfies the conditions
(2.36) (T, 7% #0, ep(T,7®) #0, ¥ #0,

it predicts irreversible and reversible creep deformation when load relief is in finite
time T as well as when T — oc.

The factors of irreversible and reversible creep deformation determine the
amounts of these portions of the creep deformation that are realized due to a’
unit stress action in time interval (7°, T') when T is finite and when T — co. Their
application to the CEB-FIP creep prediction model, made in Refs [1.11], [1.12],
has shown that it does not foresee irreversible and reversible creep deformation in
amounts as was cited in Ref. {2.7].

It can be found that the concrete transformation function F'* has the form of

(2.37) F* = 1*% + ®*,
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(see It. 6, Ch. 1) meaning that function r = r(7) refers to the instantaneous elastic-
ity in time when the stress action starts. The consequence is that in time ¢ (t > 7)
function ®* does not determine the accurate amount of the creep strain as can
be seen in Fig. 2.1. McHenry {2.16] names deformation EI‘E‘I’* the true creep and

Elgi’* the apparent creep. Comparing Eq. (2.3) with Eq. (2.37) we can establish
the relation between them

(2.38) o*(t,7) = +&*(t, 1), > 70

1
r(r) r(®)
If we assume that from ¢ = 7° the value of the modulus of elasticity is invariable
the following holds

(2-39) E.(t)=E2, t>1°
while from Eq. (2.9) we get
(2.40) r)=1, q(t)=0, tx>7°

Then no difference exists between the true and apparent creep.
Supposing a constant Young’s modulus, the concrete transformation functions

F* and R* and the corresponding operators F' and R' become

(@) F*=1"+®&, () F=1+%&,
(2.41) e
(¢) R*=1"-19", d R=1-9.

2.2. Steel

We introduce three kinds of steel: prestressing steel (p), steel parts (n) and
reinforcing steel (m).

Prestressing steel has the relaxation property. The stress—strain relation is then
given in the integral form (It. 9, Ch. 1)

(2.42) ' op = E,RY¢
or
(2.43) op = EpRLe.

We suppose that in time interval (7,t) (7 > 7°) the transformation function for this
steel type is expressed by the concrete transformation function R* in the following
way {1.7]

(2.44) Ry=p1"+pR', p=1-p; p>0,
where p is a constant for each pair (1,t)
(2.45) b T>7°

PEITRG )
Here (, = (p(t,7) is the known ratio of the stress relaxed during the period ¢t —
to the initial stress, while the value of the member in the denominator should
be calculated for the given pair (r,t). Coefficient p also depends on the time
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when loading starts to act and on the magnitude of the initial stress, which is not
covered by the above equation. However, the assumption has been adopted after
the calculation of the stresses in prestressed columns and their comparison with
measured values, as will be described later.

The operator in Eq. (2.43) is

(2.46) Rl = pT + pR'

and the known relation holds

(2.47) Ry =R,

In view of Eqs (2.18), (2.15) and (2.8), we find

(2.48) Ry =r1,1" — p¥*, é;, =r,1 - p¥,
where

(2.49) r, =1+ pq.

When ¢ = 70F the stress—strain relation is formally the same as for the Hookean
material

(2.50) 00 = Epe’,
since
(2.51) RO =1

Introducing ¢, = 0, that is p = 0 (p’ = 1), in the foregoing formulas we ignore
the relaxation property of steel (p). Then

(2.52) Ry=1", R,=T, p=0.

The integral relation between stress and strain becomes an algebraic one (It. 5, Ch.
1) and expresses Hooke’s law

(2.53) op = Epl'e = Ege.

Steel parts (n) and reinforcing steel (m) are of elastic materials. Their trans-
formation functions and corresponding operators are

(2.54) Ry=1*, R,=T, k=nm.
Stress—strain relations are determined by Hooke’s law
(2.55) O = EkTIE = EkE, k= n,m.

Moduli of elasticity of these types of steel are designated as E, (v = p,n,m).

Stresses o, (v = p,n, m) have the properties of an input function, and the same
sign convention holds as for stress in concrete (Ch. 2.1).

In the sense of Its 10 and 5, Ch. 1, operators that correspond to the transfor-
mation functions for all types of steel create a set of commuting operators, together
with operators F' and R'.
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3.1. Reduced Cross Section Geometry

Before we develop the equations of the elementary theory for predicting the
behaviour of structures under the action of the permanent loads, it is useful to
define the geometrical characteristics of a composite cross section.

Consider a typical cross section in which the co-action of concrete (¢) and, in
the general case, of three kinds of steel: prestressing steel (p), steel parts (n) and
reinforcing steel (m) is insured (Fig. 3.1). The centroid of a transformed cross
section is denoted as C, being the origin of the zy coordinate system, located in
the cross sectional plane. Consider a symmetrical cross section with respect to the
y axis taken to be positive when it is directed to the bottom edge.

To define the reduced cross section geometry we introduce the following reduc-
ing factors

E? E,
= 'E'a Uy = 'E",
where FE is Young’s modulus arbitrary chosen.

The part j (j = ¢,p,n, m) of cross section area is A; and its portion, separated
by y = const., is Aj. The total area of steel parts and reinforcing steel is designated
as Ay and of all steel members in the cross section as A,. The corresponding
reduced areas are

(31) Ve v=p,n,m,

(32)  (a) Ajr=v4;, . (b) Ay =vjA;, i=¢p,n,m,
(33) AfT = Z Ak"‘a k= n,m,

k
(3.4) Aer = Z Ayr, v = p,n,m.

The area of a transformed cross section is the sum of all areas A;,

(35) A= Z Aj'ra j=¢,pn,m.
i
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Fi1GURE 3.1. Composite cross section

The reduced first moment of area A;, that is flj, with respect to the z axis, is

(a) Sjr = Szjr = Vj/ yd4, (b) Sj" =Y 4r,

(3.6) S 4
(C) Sjr =Szj1‘=yj /‘ ydA1 jzc)pyn:mv
Aj

where y; is the ordinate of the centroid C; of area A;. The reduced first moments
of areas Ay and A, are

(3.7) St =545, = UkAir =ysAsr, k=n,m
k

and

(38) Sa,r = Sz:ar = ZyuAvr = yaAarv v=p,n,m,

where yy is the ordinate of the centroid Cy of area A; and y, is the ordinate of
centroid C, of area A,. The position of these points, measured from the centroid
of the concrete part of the cross section C., are determined by the ordinates

1
(3.9) €f = ekAk,, k= n,m
Ay, Zk

and
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(3.10) v =p,n,m,

where e; and e, are the ordinates of the centroids C; and C, of areas A; and
A,, respectively, in regard to the same point. The position of the centroid of the
transformed cross section C, measured from C’c, is given by the formula

(3.11) Ze,, ur = ea A , v=p,n,m.

The following relation holds
(3.12) €a = Ya — Ye-

From the condition that the sum of reduced first moments of all areas A; must
vanish, we find the position of the centroid of a transformed cross section C

(3.13) Z Sj,- =0, J=¢pn,m.

The reduced moment of inertia of area A; about the axis passing through Cj,
parallel to the z axis, is denoted by

(314) IjT = IZJ"" =Y /A (y - yj)2dAa j=c D, n, m.
; .

The reduced moments of inertia of areas Ay and A,, about the axes parallel to the
T axis through centroids Cy and C,, respectively, are

(3.15) Ipp=Lge =Y [Ir + @We — 91 Aks],  k=nmym
k

and

(316) Iyp = Izgr = E[Ivr + (yv - ya)2Avr]; v=p,n,m.

v

The reduced moment of inertia of area A; with respect to the z axis is

(317) Jj—,- = szr = Vj/ ysz, j=¢p,n,m,
i

while of areas Ay and A, are

(318) Jfr =Jzfr = Ifr + y?‘Af’r

and

(319) Jor = Jzar = Iar + yZAaw

The moment of inertia of a transformed cross section is defined by the following
sum

(320) J=Jy = ZJJ'H ji=¢p,n,m.
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It is convenient to use the dimensional quantity
(3.21) S=S5,=vAJ.

We define elements yy; of the symmetric scalar matrix of the reduced cross
section geometry v = ||7aill2,2

Apr &-*_ Jor
) Y22 = 7 P J
S,

cr pr _S

I
11 =
(3.22) 4

— er _pr _ e
’712—’721—5, pS 3

and elements 1y, of the symmetric scalar matrix v’ = [v;,ll2.2

Agr Apr Jir | Jor
’)’11=7£‘+PIZ, 722-‘_§‘+P 5,

S S
M2 =71 = ér +PI%-

(3.23)

It is evident that

1, forh=1,

3.24 Y N -
(3:24) Tt Tt = O h {o, for h#£1;  hl=1,2.

The principal values of matrix <, denoted by v, and of matrix 7', denoted by +;,
satisfy the condition

(3.25) T+ =1, h=12.

For them the following order is adopted

(3.26) (@ 1>m>m>0, (b) 1>713>7>0,

referring to the general case of cross section geometry. The determinants of the
matrices are given by the formulas

(3.27) Y =mr2 = 11722 — Vias y? = MY =N1Te2 — ’7122
or in the following forms
(3.28)
A I Ao I, Ap I, AiA Ap I
2 cr Lcr cr tpr pr Lcr cr p'r 2 2<pr fpr
=AT o TF A4 7 T Tag W y”)]+pAJ’
A I A A, T A A A I
2 _ Aprlgr T Asr Dpr | Apr L fr Pr 2 12 fpr Jpr
_AJ+'0[A Tt AT T4 W w)] + AT

In order to shorten the writing of equations it is convenient to introduce
Ay=m-7>0,
(3.29) nm=n-m=r2-71>0
p=m1—-r12=m—72>0.



30 3. EQUATIONS THAT DETERMINE THE PROBLEM

We cite the relations which are of use for mathematical evaluations
AL A
J=Je + Jor — ycyaA =Ty + Lir + ei_ﬁ_"l‘_,
(3.30) TR = =1-1% 417
N+M=71+%=1+72 -1
071072 = i
The following dimensional coefficients appear in the equations
(3.31) A = 4, Agg = J, Ajg =gy = 5.

- When steel (p) is considered as the Hookean material p = 0 or p' = 1 is
introduced. The elements of the matrices ~v and 4’ become

- Ler = Jcr = — Sc:,-
(3.32) T A Y22 7 T2 = 721 < .
' A J. S
M = _zr’ Va2 = ——;r, N2 =T = ____§r,
while Eq. (3.28) reduces to
An I Asr I
2 _. CT LCT 12 — aTr +ar .

In Ref. [1.22] stresses and displacements in composite and prestressed structures
are derived under the above assumption. For that purpose the same reduced cross
section geometrical characteristics as can be found here have been defined and used.
The exceptions are the quantities containing constant p which have been defined
for p=0, thatis p' = 1.

3.2. Basic Equations

Consider a composite and prestressed coplanar structure whose cross sectional
dimensions are small compared to their lengths and whose radii of curvature are
large in comparison to the cross section heights. The equations are derived under
known assumptions of the elementary beam - bending theory which is established
in the analysis of elastic structures.

A structure is of variable cross section and its axis represents the locus of
the centroids of transformed cross sections forming the curve line. The tangential
coordinate of any point of the structure axis is denoted by s or u. The concrete
parts of the cross section are uncracked.

The following permanent influences are introduced: dead load (G), concrete
shrinkage (S), prestressing by forces (P) and subsequent addition of elements to
cross sections (F') after the influence of F' (F = G, P) takes effect. The permanent
loads, which produce the influences, start to act at time 7°. They are located in
the plane of symmetry of a structure being at the same time the bending plane.

From the above influences the following stress resultants appear: the axial force
N = N(s,t,7°), the shearing force T = Ty = T'(s,t,7°) and the bending moment
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M = M, = M(s,t,7°%. Positive forces N and T act in the positive s and y
directions, respectively, while the positive bending moment M produces tension in
the positive y quadrants of the cross section. As input functions they are bounded
and continuous for each ¢ (t > 7°) and fulfill condition (1.3).

We begin our investigation by developing the governing equations of the ele-
mentary theory. They will later be used to derive the exact stress and displacement
formulas under the assumption that the concrete transformation function F* is an
arbitrary function which describes the physical properties of concrete. To create
the governing equations we start from the following relations referring to any time

t(t>7°).
The first is Navier’s hypothesis of plane cross sections
(3.34) €=1+yx,

where € = £, = €(y, 5,t,7°) is the normal strain at an arbitrary point of the cross
section while = n(s,t,7%) and » = x(s,t,7°) are the normal strain and the
curvature in the ys plane at any point of the deformed structure axis. The two last
functions describe the cross section deformation.

The four equations represent the relationships between normal stresses o; =
osj = 0;{y,s,t, 7°) and common strain ¢ for materials which co-act in a composite
cross section (Ch. 2)

(3.35) o. = ESR'c + oy,
(3.36) ap = E,,ﬁ;,e = E,(p'T" + pR')e
and
(3.37) or = Eyl'e, k=n,m.
The last two equations define the stress resultants by the formulas
(3.38) N = Z/A ojdA, M= Z/A yojdA, j =c¢,p,n,m.
¥ J j g

The meaning of function N = N (s,t,7°) and M = M(s,t,7°) will be explained
later.
For determination of displacements the principle of virtual forces is applied

(3.39) f:/ [M(u,s)%(u,t,'ro) + N(u, s)n(u, t,‘TO)] du,
L

where £ = £(s,t,79) is the generalized displacement of a point on the deformed
structure axis with coordinate s, while N = N(u, s) and M = M(u, s) represent the
axial force and bending moment at point « produced by corresponding generalized
virtual force P = 1* at point s. Since N and M satisfy only the equilibrium
conditions, they are time independent.

Based on the creep model, described by the Rate of Creep Method, Durié
[2.10] has developed the exact stress expressions for statically determinate struc-
tures whose cross sections are of arbitrary geometrical characteristics. For that
purpose Durié has established the first seven equations (3.34)-(3.38) where Eq.



32 3. EQUATIONS THAT DETERMINE THE PROBLEM

(3.35) has been adapted to the above mentioned concrete transformation function
F*, while instead of Eq. (3.36) Hooke’s law has been introduced. By applying
Navier’s assumption, the stress-strain relations and the equations for stress resul-
tants, Duri¢ was the first to introduce into this problem the procedure common for
homogeneous elastic cross sections. A great number of authors have divided the
axial force and bending moment into the parts belonging to steel and concrete and
afterwards their time variations have been determined from the equilibrium con-
ditions and the deformation compatibility of steel and concrete. Compared with
such a complicated approach, we can say that Duri¢ has established a simple and
general method which has been found to have an extraordinary application in the
Mathematical Theory of Composite and Prestressed Structures.

J. Lazi¢ {1.4], [1.1] has expanded Durié’s procedure to displacements by apply-
ing the principle of virtual forces. For the creep model prediction of the Hereditary
Theory J. Lazi¢ has derived the first accurate solutions for stresses and displace-
ments for statically indeterminate structures by the known method used in the
elastic analysis.

Following Durié’s procedure, from the first seven equations we eliminate the
common strain € and stresses o; (j = ¢,p,n,m). Using the operator calculus,
after simple mathematical evaluations and the introduction of reduced cross sec-
tion geometry (Ch. 3.1) we come to the sought after equations, the so-called basic
equations, referring to an arbitrary cross section in time ¢ (¢ > 7°)

E(AR} n+ SRiy%) = N,
E(SRyyn+ JRyy) = M.
Functions n and 3¢ are derivatives, with respect to variable s, of the s and y compo-
nents of the displacement of a point on a deformed member axis. In regard to these
functions, the above is the system of integro-differential equations. However, we

retain 1 and s as unknowns, being the solutions of simultaneous nonhomogeneous
integral equations. _

Before we begin to solve the basic equations let us determine the kind of per-
manent load by which the concrete shrinkage is introduced. Substituting A" = 0
and M = ( into Eq. (3.38) and performing the same procedure as for the derivation
of the basic equations, we arrive at

E(AR}in+ SRiy%) = ng,
E(SRyn+ JRjyx) =mg,

(3.40)

(3.41)

where

ns = ns(s, t, TO) = —"/ UsdA.,
(3.42) A
mg = mg(s,t,7°) = —-/ yogdA

<

and where stress 0 is determined by Eq. (2.25). From Eq. (3.41) it can be shown
that ng and mg represent the load by axial forces and bending moments with

;
¢
i
i
!
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respect to the centroid of the transformed cross section C. Loading by axial forces
means that at every point of the member axis in the tangent direction acts a pair
of balanced forces, the magnitudes of which are ng. Loading by bending moments
means that at every point of the member axis in the plane of symmetry acts a pair
of balanced couples, the moments of which are mg [1.31].2

For statically determinate structures, ng and mg are the axial forces and bend-
ing moments due to concrete shrinkage. Considering Eqs (3.40), (3.38) and (3.41),
we get

(3.43) N =N +ng, M =M+ mg,

from where it can be seen that for statically determinate structures A and M are
the stress resultants due to all permanent influences, except concrete shrinkage.
For statically indeterminate structures they are the sum of the stress resultants
produced by redundants corresponding to concrete shrinkage and due to remaining
permanent influences.

To continue our investigation we are going to solve the basic equations. During
their evaluation, operators R}; (h,! = 1,2) are formed. They are expressed in terms
of operator R , referring to the concrete transformation function R*, and elements
Yh (3.22) of the scalar matrix

1, for h =l,

344) Rl = (0m - )T + k',  Om =
(3.44) ht = (Ot = Ya)1' + Yhi hi {o, forh#1; hi=1,2.

Since we are considering a structure with varying cross section, the reduced cross
section geometrical characteristics are functions of coordinate s. For that rea-
son functions R}, = R};(va,t,7) depend on the same variable, so that R}, =
R;,(s,t,7). In accordance with It. 10, Ch. 1, operators E;“, together with R/, F"
and E;, (Ch. 2), form the set of commuting operators.

The operator matrix of the basic equations (3.40) is

(3.45) R’ = [\ Bhilla,2,

where, instead of transformed cross section characteristics A, S, J, the quantities
Ay (3.31) are introduced. This is a symmetric matrix since the coefficients A,, and
the scalar matrix < are symmetric.

We recall that for linear integral operators the laws of algebra of plain numbers
hold and that, in our case, the commutative law is included. Using this circum-
stance, we solve the basic equations for 7 and s formally, as a system of algebraic
equations. Let the solution be of the form

1~ 1~
(3.46) (a) En= ZFIIIN + §F1'2M,

: 1~ 1~
(b) Bx= PN+ 2FpM.

2See also Ref. [1.6]
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The inverse operator matrix
~ 1 ~
3.47 F=|—F ” ,
(3.47) 5Pl

is symmetric and is determined by the known expression

(3.48) ‘F' = (detR')'adj R/,
where
detR' = AJ(EIuRIn - ~12R§1) = AJD,
D= ~'111‘:332 - ~I12R121-
From the above equations operators F}, are obtained
(3.50) Fﬁ = (1’5/)—11‘{’/22, Fz’z = (51)_1}?11, FI’Z = Fél = ‘(51)—11?12-
It can be shown that two operators R}, = R}, (yn,t,7) exist
(3.51) R, =v1'+wR, h=12,

in which the prlncipal values «; of the scalar matrix « appear and whose product
gives operator D’

(3.52) D' = R\ R,
An alternate form of the same operators can be obtained using Eqs (2.15) and
(2.8). Then

(3.49)

(3.53) L=l ¥, h=1,2,
where
(3.54) r,=1+vqe h=1.2

Functions r, = r,(7,t) are bounded, continuous and strictly positive for each ¢
(t > 7°). For function ¥' = ¥'(¢,7) it has already been shown (Ch. 2.1) that it
is bounded and continuous for all ¢-and 7 under consideration (1% € 7 < t < o).
Consistent with It. 8, Ch. 1, the inverse operators F‘,’, = I~7‘/; (", t, T) are defined

~ 1~ -
k
fulfilling the known conditions
(3.56) RF =1, FR=7 h=12
Together with operators ﬁ’h they belong to the already mentioned set of commuting
operators.
It is evident that
(3.57) (D' = F{F,

as well as that operators F’,’u may be expressed in terms of operators ﬁﬂ in the
following manner
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(3.58) = Fll 9299 5 = FIF3R), F,y = 132’1 = ‘ﬁ’fle ~I12-

The solution of the basic equations is given by the above relations and Eq.
(3.46). It is formal and indicates only the list of operations that have to be carried
out to determine unknowns 7 and ». Being defined by triple operator products
their form is inconvenient, especially because they are the starting expressions for
the derivation of the stress and displacement formulas. It is for this reason that

our next step is to simplify them.
We refer to Eqs (3.56) and (3.51), and obtain

(3.59) wRF, =1 -y F.,, h=12,
while from the above relation and Eq. (1.51) we develop
(3.60) WEFF =F —yF,  h=12
Combining the two foregoing expressions we show that
(3.61) AYFFy = F ~ F},.

Finally, applying the first and third formula and Eq. (3.44), operators 17',’1, are
rearranged into the simplest form

- 1 ~ -
(a) Fj = 5(5721‘71' + on Fy),

~ 1 ~ ~
(3.62) (b) Fp= E(J’YlFl + 072 F3),
~ ~ "y —~ -~
© F,=Fy= -5

Such expressions, substituted into Eq. (3.46) are used to derive stresses and dis-
placements. For a reason, which will later be obvious, we do not engage in deter-
mining the unknown functions Fj, to which operators F, are associated.

The existence and uniqueness of the basic equation solution come from the
earlier stated properties of input functions IV and M and the fact that the inverse
operators F}, are defined.

If concretes of different ages co-act in a cross section, operators ﬁ}d do not
commute with each other. Even in this case the basic equations can be formally
solved as algebraic equations, taking into account this property. The solution is
unique but for operators F},; the formulas, derived here, do not hold [1.9], [2.13].

By analogy with nondimensional concrete transformation functions R* and F*
(It. 9, Ch. 1), we define the nondimensional cross section transformation functions
R} = Rj(,t,7) and Fy; = Fy(m,t,7) as integrals of functions R} and Fj, re-
spectively

(a) Ri=Ry1*" =41* + R* =r,1* — 1, 0%,

3.6 -
(3.63) (b) Ff =F1" = 21* 4@, k=12

Th
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The application of the statements found in It. 7, Ch. 1 leads to the following
formulas
W =n¥(t,7) = Ry = mR",

3.64
( ) ’Yh‘I’Ih = 'Yh‘I’;.('Yh,t, T) =- ;:Ii t>T; h= ]-a 2

and also shows that functions ¥} are integrals of functions ¥}
(3.65) P=U1, (et t) =0, 10<r=t<oo h=1,2

while functions r, (3.54) are found to be
1
F, }: (’th t7 t) ’
From Eq. (3.56) stem the relations between the cross section transformation
functions
(3.67) Ry =1, FR =1, h=1,2.
It should be noticed that they are analogous to Eq. (1.55) which governs the re-
lations between the concrete tranifornlation functions F* and R*. Two pairs of
functions Rj, Fp and operators R}, F; can be associated to a composite cross
section. From Eqs (3.51) and (3.56) follows that they depend on the physical prop-
erties of all co-acting materials as well as on the cross section geometry._
Let us define the auxiliary operators K} = K} (v, t,7) and B} = B} (s, ¢,7)
also associated to a composite cross section

(3.66) Ty = (v, t) = Ry(1m,tht) = =1,2.

(3.68) (a) K,=R,F', (b) B,=REF, h=1,2,
being obviously inverse one to the other
(3.69) K,B, =1, B,K,=T1, h=1,2.

They belong to the mentioned set of commuting operators as well.
The multiplication of Eq. (3.60) by operator R}, points to the linear relation

between operators K} and F'

(3.70) K=y +F', h=12,
while Eq. (3.59) also represents the linear relation between operators ﬁ;, and f,;
(3.71) wBL=T -7 F., h=1,2

Multiplying the above equation by operator R' we reach one more expression, which
will be used for later mathematical evaluations

(3.72) wR'B, =R —~v.B,, h=12

Combining Eqs (3.70), (1.39), (1.52) and (3.54) we find operator K + to be given
as

(3.73) R = frﬁ’i’ + &, h=1,2,
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from which it is easy to show that inverse operators E;; are defined (It. 8, Ch. 1
and Ch. 2), being in the form of

(3.74) By=—1-4%, h=12

T
Understanding 7, as a parameter we can create the parameterized nonhomogeneous
integral equation

1~ ~ ~
(3.75) 1=3RK;U, thatis I= %(TT"I + %8,
the solution of which is
(3.76) U=AB\I, thatis U= ,\(5—‘1" -~ 7;,\‘17',,)1,
h

where A is a dimensional constant, v, ®’ is the kernel, while , ¥}, is the resolvent
kernel of Eq. (3.75). For their application it is enough to assume that the input
function I is bounded and continuous for each ¢ (¢ > 7%). Since it has already been
shown that operator B}, is defined, we know that Eq. (3.76) is a unique solution of
Eq. (3.75).

The auxiliary nondimensional functions, the so-called basic functions Kj =
K;(vn,t,7) and By, = Bj(ya,t 7') are defined as integrals of functions K}, and By,
respectively, to which operators K} and Bh are associated

(a) Ki=Eil" =B F ="+ F = 21 4107,

(3.77) - _ '

(b) By =Bi1*=RFr =11 -4 05, h=1,2,
Th

where the following holds

18 =78 (t,7) = —-K}' = -, F*,

3.78 :
(3.78) Y% = Ys(m,t,7) =B},  t>7 h=1,2
and
T T (7h1t) 1
7 A R Y R A . — =1,2.
(3 9) r T(t) h(’Yh ) B;('Yh;t; t) h y

To a composite cross section two pairs of functions K and B}, are associated,
satisfying the equations
(3.80) KBy =1*, BiK;=1%, "h=1,2.
As the cross section transformation functions Rj, F; and their operators R, F,’l,
the basic functions K}, Bj, and their operators K! b Bh, also depend on the phys-
ical properties of all materials co-acting in a cross section and on cross section
geometry. The concrete physical properties are introduced through the concrete
transformation function F™*, while the influence of the other factors is achieved by

the principal values v, of the scalar matrix 4’. We notice that the functions as-
sociated to a composite cross section have the same structure as functions which
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pertain to concrete. They are presented as sums of two functions, where in the first
addends the Heaviside step function appears. It is expected that these parts have
the obvious physical meanings connected to a composite cross section as have the
functions referring to concrete.

If the calculation is carried out under the assumption that steel (p) is an elastic
material, Eq. (2.52) holds. The derived equations formally remain the same, while
elements vp; of scalar matrix « are determined from Eq. (3.32). Such equations
can be found in Ref. {1.22].

The supposition that the concrete modulus of elasticity is constant for ¢ > 7°
includes Eq. (2.40). Because of that Eq. (3.54) becomes
(3.81) rn®)=1, t>7% h=12
Functions and operators associated to a composite cross section are
(3.82) Rp =1" — 3,97, Iilh =i' - ’YhE",

F,: = 1*+’Yh\I”:, F}" = 1'+")’h‘1’;,', h=1,2

and
cay | GEUARE, K=Teo#,
' Bi=1" -3,  By=T1-~4¥,, h=1,2.

Beginning from the fact that a concrete cross section is the special case of the
composite cross section we adapt the relations in Ch. 3.1 to this idea

E=EY, ve=1,

(3.84)

A=A, =A, J=Jow=J., 8.,=8,=0
and
(3-85) Yoh =7h = 1, Y2 =7v1 =0, h=1,2

The matrix of reduced cross section geometry -« becomes the unit matrix. From Eq.
(3.44) and comparing Eq. (3.56) with Eq. (1.51) it follows that operator matrices
R’ and ¥ reduce to diagonal matrices

(3.86) Ri,=R.=R, F,=F=F, h=1,2.
The basic equations (3.40) become independent
(3.87) E°ARm=N, EJ.Rx=M
and their solutions are
1

~ 1 ~
(3.88) Edn=-—FN, Elx= j—F’M.
[+

A
We see that functions R* and F* can be understood as the concrete cross
section transformation functions. On the other side we have

* _ I * _ D* oo Dl _ Dt
Fp=F', Ry=R', F,=F, R,=R,

(389) * * * * 7t Tt it Tt
Kh=1’ Bh'——-l, Kh:'—]., Bh=1; ’Yh:l; h=1,2,




3. EQUATIONS THAT DETERMINE THE PROBLEM 39

meaning that the cross section transformation functions F} and R}, as more gen-
eral, reduce to the concrete cross section transformation functions F* and R*, when
vn = 1. In line with this one pair of functions F*, R* and operators F' R' can be
associated to a concrete cross section.

It should be noticed that for -}, = 1 we obtain

K.=F*, B,=R*, K,=F, B,=F,

(3.90) o
Fy=1*, Ri=1", F.=T1, R,=T, +,=1; h=1,2.



4. PERMANENT INFLUENCES

To continue our development we now deal with the stress resultants produced
by permanent influences. Their application to the determination of stresses and
displacements requires first their writing for statically determinate structures and
for primary structures when all redundants are removed, that is when Xyg = 0
(A=1,2,...,n), separately for each influence H.

The stress resultants N and M have been introduced in Ch. 3.2 as arbitrary
functions of variables s and ¢. It is convenient to present them as products of time

functions Ry = Ry(t, 79) and functions depending on coordinate s, N = Ng(s)
and My = Mpg(s), that is
(4.1) NH=NHR;{, MH=MHR}'.I, H=G,S,P AF.

Considering the influence of the subsequent addition of elements to cross sections
(H = F), after a structure has been exposed to influence F (F = G, P), we deter-
mine the additional load AF which is added to the load producing the influence
of F (F = F + AF). In Eq. (4.1) the corresponding axial force Nar and bending
moment Map are included.

Stress resultants and other quantities referring to primary structures when
X g = 0 receive the last subscript @ when it is necessary to differentiate them from
those which pertain to statically determinate structures.

4.1. Dead Load
This type of load does not change through time. The stress resultants in

statically determinate structures and primary structures when Xy = 0 are time
independent

(42) NG = NG].*, MG = MG].*, 1* = 1*(t,70).
Written in the form of Eq. (4.1) we have

Stress resultants Ng and M,; are determined according to known methods.
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4.2. Concrete Shrinkage®

It has been shown in Ch. 3.2 that the effect of concrete shrinkage deformation
is introduced as the time dependent permanent load by the axial forces ng and
bending moments mg with respect to the centroid of the transformed cross sec-
tion C, described by Eq. (3.42). Having in mind that the concrete shrinkage was
introduced in two ways (Ch. 2.1), different equations for stress resultants exist.

When the concrete shrinkage deformation is introduced by function €4 then,
using Eqs (3.42) and (2.25), we show that

(44) ng = NgReg, mg=y.NgReg,
where
(4.5) N =N(s) = EA,.

It was explained earlier that ng and mg represent the stress resultants in statically
determinate structures and in primary structures when X,s = 0. The functions
which are indicated in Eq. (4.1) are as follows

(4.6) Ng=Ng, Mg=y.Ng, Ri=Rle,.
Introducing the assumption (2.27) about function £4 we get
(47) ng=-Nex(l' ~R'),  mg=—yNa(l' = R),

where

(4.8) Nsg = NSk(S) = EdA,,.

The functions in Eq. (4.1) are

(4.9) Ng=-Nsx, Mg=-y.Nsx, Rt=1*-R"

We notice that for d = —1 the above formulas for Ng and M reduce to those given
in Eq. (4.6).

4.3. Prestressing by Forces

Prestressing is achieved when the wires are stretched at time 7° by presses
which lean on the member ends. The wires are found in pipes with which their
independent deformation is allowed. Right after the stretching of the wires at time
70%, the pipes are grouted and from that moment become an integral part of the
cross section. The forces are applied to all wires at the same time and the stresses
in them are equal. The wires are parallel to the member axis or at a small angle to
it. Prestressing is the first influence that the structure is exposed to [2.10], [1.22].

The geometrical characteristics of a transformed cross section in which steel (p)
is not included are Ao, Jy with centroid Cs. The other quantities referring to such
cross sections also have zero as the first subscript. The reduced area of all wires
is Apr and its moment of inertia, defined by Eq. (3.14), is I,,. The geometrical

3See Ref. [1.22]
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FIGURE 4.1. Positions of centroids of a transformed cross section

characteristics of a transformed cross section containing steel (p) are A, J while the
centroid is C. The ordinates of centroid Cj, in regard to Cp and C, are yo, and yp,
respectively. The following relations will be used

A
(4.10) Y=Yt V= ~Yop g

where y; is the ordinate of centroid Cp (Fig. 4.1).
The prestressing forces resultant is denoted by P and acts in centroid C,. At
time 7°, when presses lean on the member (4, Jp), the external force P produces

(4.11) ndp = —P, mdp = ~yopP.

It is the known load by axial forces ndp and bending moments m3p with respect to
centroid Cp of the transformed cross section (Ag, Jo), producing stress resultants
NJp and MJp at time 7°. In statically determinate structures and in primary
structures when X, p = 0 they are

(4.12) ng = ngp = —-P, Mgp = mgp = —yopP.

From time 7% in the cross section steel (p) is included, meaning that element
(d = p) is subsequently added to the cross section (Ag, Jy) after the prestressing
forces take effect. At that time the structure and the additional element (p) have
already been exposed to the deformation. That is the reason why instead of load
(4.11) we introduce the substitute load being for now unknown.

The deformation of the structure (Ao, Jo) at time 7° due to load (4.11) is the
same as deformation of the structure (4, J) at time 7°%, caused by the substitute
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load. It is written as
(4.13) eop =%

and refers to any point of the cross section.

The compatibility condition for the normal strain expresses the equality of the
déformation growth of steel (p) and the deformation growth of the corresponding
points of the cross section (4, J) in time interval (7%, ¢) under the substitute load

(4.14) €pp —Eop =€p—€p,  t>TOF.
The normal strain in steel (p) at time 7°t, when it starts to co-act in the cross
section, is
P

0
E,p = .
P Ep A,y

To evaluate the stress in steel (p) due to the substitute load (H = P), the
left-hand side multiplication of Eq. (4.14) by operator E,R,, is performed. Before
that to constants Egp and €% the Heaviside step function 1* should be written.

From Eq. (3.36) we identify the stress o,p where the second subscript indicates the
kind of influence

(4.15)

(4.16) Opp = EPR;EPP = EpR;EP + (—AJ—J; - pEOP)R;-

After including steel (p) into the cross section, the prestressing forces become
internal forces. Assuming that it is the only influence that affects the structure,
that is that A = 0 and M = 0, we apply Eq. (3.38). Therefore we replace stress
ocp by Eq. (3.35) in which term o is omitted, as well as stress opp and oxp by
Eqs (4.16) and (3.37). Following the same procedure as for derivation of the basic
equations we obtain

E(Aélunp + Sﬁ’lz’fp) =np,

(4.17) iy iy
E(SRynp + JRogxp) = mp,
where
n,P :nP(s,t’TO+) = (—P"‘Ep/ EgpdA)R;,
(4.18) 4

mp =mp(3,t,7-0+) = <—pr+Ep/ y&gpdA>R;
Ap

It is the time dependent substitute load by axial forces np and bending moments
mp, with respect to the centroid C, already described earlier.

The first members in Eq. (4.18) come from the deformation of steel (p) as
an subsequently added element. The second members come from the structure
deformation which it possesses at time when steel (p) starts to co-act in the cross
section. The deformation £% is replaced by €Jp to express the substitute load in
terms of the known stress resultants N3p and M{p.
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The calculation of a structure at the time when the load begins to act is known.
It is the same as for an elastic structure having the modulus of elasticity E and the
cross section geometrical characteristics A, J or Ag, Jy. Thus

NSy MP
(4.19) Eedp = —A%)E + _;6290-

From Eq. (4.18), in which the indicated integrations are performed using the above
expression and Eq. (4.10), we find the substitute load of the form
(4.20) ‘ np = nopR;, mp = m?;R;.

In the equations which follow n% = n%(s) and m} = m%(s) will be presented.
Using the notations given in Eq. (4.1) the functions corresponding to primary
structures when X,p = 0 are

_ A A
Npg=np=~P+ A’: Nop + yo,:] = Mp,
0
_ I
(4.21) Mpy = mp = ypnp + = Mgp,
Ry = R,

where NJp and MJp are stress resultants in statically indeterminate structures at
t = 79 produced by load (4.11).
For statically determinate structures we apply Eq. (4.12) and obtain

- A y%Ar
=nd = _p(il 4 07 PT
NP—nP—— P(A0+ Jo. ),
_ L,
(4.22) ‘ Mp=m%=ypn?,—7"0—yopP,
Rp = R;.

The expressions (4.21) and (4.22) can be found in Ref. [1.7].

Under the assumptions that steel (p) is the Hookean material and that pre-
stressing by forces starts at 7F > 70 the substitute load has been developed in Ref.
[1.22). With respect to the first supposition we can say that the equations of this
theory contain the special case when p = 0. Then the substitute load becomes time
independent since Ry = 1%, that is since Eq. (2.52) holds, while the other formulas
retain the same form. Such expressions were developed in Ref. [2.10]. As far as the
second assumption there are no mathematical obstacles for the derivation of the
substitute load when 7F > 7°. It is enough to follow the evaluation which in Ref.
[1.22] has been performed taking into account the relaxation property of steel (p).

The assumption was introduced that prestressing by forces is the first influence
affecting the structure. In the following chapter we shall look into the state when
this is not the case or when prestressing by forces is carried out in phases.
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FIGURE 4.2. Positions of centroids of a transformed cross section
4.4. Subsequent Addition of Elements to Cross Sections

Let us assume that a structure is affected by influence F (F' = G, P) starting
from time 7°. Right after that, at 79%, elements (d) are added to the cross sections.
This could be steel parts (d = n) or prestressing steel (d = p) {2.10], [1.22].

The geometrical characteristics of a transformed cross section in which the
element (d) is not included are Ag, Jp, with the centroid Cy. After addition of
element (d) they become A, J and C. The reduced area of the additional element
(d) is A4r and its reduced moment of inertia, defined by Eq. (3.14), is I4,. The
ordinates of centroid Cy with respect to Cy and C are yoq and y4, respectively. The
following relations hold

A
(4.23) Y=y +¥%, Y= —yod—f,

where y; is the ordinate of centroid Cp (Fig. 4.2).

The subsequent addition of elements to cross sections has already been solved
in the previous chapter when the case in which steel (p) has been included, after a
structure had been exposed to the prestressing forces, was examined. The difference
is that now the additional element (d) does not have the start deformation and that
the structure deformation does not have to originate from the load of axial forces
and bending moments. The latter is the reason why, instead of the substitute load,
we determine the additional load AF which, for ¢+ > 7%F, is added to the load
producing the influence of F' (F = F + AF). The concrete shrinkage (H = S) is
not included as the influence of F' owing to the fact that, in this case, no structure
deformation exists at time 7%+ when the element (d) is added to cross sections.
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The condition (4.13) is also applied here
(4.24) eor = €%, F=P,G; F=F+AF,

since the deformation of the structure (Ag, Jo) at time 7°, due to influence F, is
the same as the deformation of the structure (A, J) at 7% caused by the substitute
influence F'.

The compatibility condition equalizes the deformation of element (d) with the
deformation growth of the corresponding points of the cross section (4, J) in the
time interval (7°F,t), under the substitute influence F. Thus

(4.25) eqp=€p—ep, t>T F=G,P.

From the above equation we derive the stress in additional element (d)

(4.26) Oy4p = Edﬁfiedp = E;R\ep — E4%Ry, d=n,p; F=G,P.
From Eqgs (2.43) and (2.55) we find that
R, =T, Ry =1%, d=n,

(4'27) Pt Dt * *
dsz’ Rdsz’ d-—'p.

By the familiar procedure we develop the additional load

nar = nap(s,t,7°7) = (Ed/ EngA> Rg,

A4

(4.28)
mar = mar(s,t,7°7) = (Ed / yangA) R,
A4

d=mn,p; AF = AG,AP,

representing the load by axial forces nar and bending moments mar with respect
to centroid C. If the additional element is an elastic material (d = n) it is time
independent.
The known relation holds
N9 MY
4.29 Eelp = =L + 0y F=G,P,
(4.29) oF = T4 To Yo
where N§p and My refer to the structure (Ao, Jo) at time ¢t = 7% due to influence
F. By integration of Eq. (4.28) we derive the additional load written in the form

(4.30) NAF = "OAFRZF’ MAF = moAFRZFa AF = AG,AP.

To harmonize the above equation with Eq. (4.1) notation R}y is introduced, al-
though the selection of this function does not depend on influence F', rather on the
type of additional element (d = n,p), which is defined by Eq. (4.27).



4. PERMANENT INFLUENCES 47

In statically determinate structures and in primary structures when Xyar =0
the stress resultants written in the form of Eq. (4.1) are as follows

Agr YodA

Nap =nlp = 2L N0 4 204741 y 0
AF = NAF Ay OF + AR
~ Idr
(4.31) Mar = mar = yanar + 5~ Mgp,
0
Rip=Ry=1", d=n,
Rip=R;=R), d=p; AF = AG,AP.

If it applies to the primary structures when X ar = 0, then NgF and MgF repre-
sent the stress resultants in statically indeterminate structures (4o, Jo) due to the
influence of F at time ¢t = 79.4 '

Under the assumptions that steel (p) is an elastic material and that influence F
starts acting at time 7¥ > 70, the additional load has been developed in Ref. {1.22].
Regarding the first supposition, the application of p = 0 shows that the additional
load becomes time independent even when the additional element is steel (p). As
far as the second assumption is concerned, there are no mathematical obstacles for
the derivation of corresponding additional load. Such a solution can be found in
Ref. [1.7].

43ee also [Ref. 1.35]



5. STATICALLY INDETERMINATE STRUCTURES

The general method of analysis of statically indeterminate elastic structures
known as the method of consistent deformation or Maxwell’s method, has been
expanded by J. Lazi¢ [1.4] to composite and prestressed structures under the as-
sumption that concrete behaviour is described by the Hereditary Theory. Applying
the same method to arbitrary concrete transformation function £, the procedure
common for elastic structures is also employed in the segment of the elementary
theory which is under consideration.’

To begin our analysis we define the reduced generalized displacement A* =
A*(s,t,70) as

(51) A* = E.]Uf,

where generalized displacement £ is determined by the principle of virtual forces.
Substituting functions n and s, given in Eq. (3.46), into Eq. (3.39) we get

A* :/M(U,S)ﬁz'z(u,t,f)M(u,Tﬂo) S
L

J(u)
. ~ A
+ 55 [ W 9Bt N ) s
(5.2) -f% /L Fy(u,t,7) [M(u, $)N (u,7,7°%) + N(u, )M (u, T, 70)] SS(';) du.

Here we have introduced an arbitrary chosen area A, and moment of inertia J,
while S is defined analogous to Eq. (3.21).

To rearrange Eq. (5.2) we first express operators f‘,’u in terms of operators F‘,’l,
applying Eq. (3.62). After that we select a structure model which is familiar in the
calculation of elastic structures, meaning that a structure is divided into a finite
number of intervals ¢ (@ = 1,2,...,m) of constant cross section. Functions, oper-
ators and other quantities, referring to the interval a, are indicated by superscript
a. Finally, we group the members along operators F;%, having in mind that they
are independent on variable s in interval a, and obtain

5The slope deflection method can be found in Ref. [2.8]
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2
(5.3) A* = i > Fepg.

a=1h=1

Functions D = D$(s,t, 79%) are determined by the following equations

Df = — (52M° + 5737 + £9),
Avs

(5.4) .

Dj = 5 (PAOC 60~ £, a=12,..m,

satisfying the relation

2
(5.5) D*=D%s,t,7%) =) DE=0"+0M, a=12...,m.
h=1

The functions found in the above expressions are given by the formulas
M = M2(s, £, 7°) = %z / M (u, )M (u,t, 7°)du,
Lﬂ.

(5.6) N* =N°(s,t,7°) = i{-/ N(u,s)N(u,t,7°)du,
Lu

Iy

£ = £s,t,7°) =1 55 /L [M(u,s)N(u,t,To) + N (u,5)M(u,t, To)] du,

a=12,...,m.

Stress resultants N and M and the reduced generalized displacement A* originate
from all permanent influences. Equation (5.3) will be later used separately for each
influence of H.

In n times statically indeterminate structure, under the effect of influence H,
in time ¢ (¢t > 7°%), the redundants are Xag = Xom(t,7%) (A = 1,2,...,n), while
the stress resultants are given by the known expressions

n
(@ Nu=DNgg+ ) NyXox,

A=1

(5.7) (b) My =Mpy+ ) MyXsn,

A=l

. _
() Tu=Tgo+» TaXam, H=G,S PAF,F,
A=1

where N, = N, (s), M, = M, (s) and T, = T (s) are stress resultants in a primary
structure caused by redundant Xz = 1*(¢,7°) at point s = s,, which is symbolized
by subscript A. Since such a redundant is time independent they depend on the
coordinate s only.
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~ - ~ pa pa qa qa
HK Nue, My, Ry F°Ry RHO PR | ShHo> Thi
Prxo:Pror | Ihkor Thk
-~ 1 70,
G 43 Flal - _....’l.
(@3) ; = X
€s (4.6) FloReg
S 1 1
49 F!Ia 1* — R* Pl .
| ey | Re-m) 5 =
- P _me
P 4.21). F"1 * . -
(421) £ .
d=n Fioy+ 1 A
d 1
AF (4.31) 7»:“ T
d=p \ Fery | £ | TP
T Y
TABLE 5.1

We write one continuity condition in time ¢ (£ > 7°) for each redundant and
separately for each influence of H. Then

(58) p =A* (t7TO)=01 N=1,21~-,n§ H‘:G:S:P;F:

where A7, is the reduced generalized displacement of the deformed structure axis
at point s = s, corresponding to the generalized force X, g = 17.

First we derive the load dependent members. In Eq. (5.3) we determine func-
tions D when stress resultants N and M pertain to a primary structure when
Xog =0for H=G,S,P,AF. They are Ngy and My, described by Eq. (4.1) as
the products of Ngg and Mg, being functions of coordinate s, and time function
Rj};. When operators F are applied to functions D the products of F’“R 7; appear
as well as coefficients D , . To obtain them in Eq. (5.6) we replace N(u,s = s,)

and M(u,s = s,) by N,(u) and M, (u), respectively

e 119 = JU/ M, (u) Mgg(u) du,
(59) Teao = % [ Nuw)Nas(w) do,

a a J A
Bamo =105 [ (M) No(w)+ N Miro(w)] d,
a=1,2,...,m; u=12,...,n; H=G,S5,P,AF.

Substituting the above coefficients into Eq. (5.4) we receive



5. STATICALLY INDETERMINATE STRUCTURES 51

Na

1 - - -
1WHO = g (DM g + 613 Ty + £2110) »

. 1 N ) _
D3, me = Ay (0V3TM g + 6V T prp — £2ya) »

a=1,2....m p=12,...,n; H=G, S, P,AF.

(5.10)

Finally, from Eq. (5.3) we find the load dependent members

(5.11) Ao = AL p(t,7%) = ZZDhum n R,

a=1h=1
p=12,...,n; H=G,S,P,AF.

Table 5.1 contains the numbers of equations for Ny, Mpus and R}, for each of
influences H together with products f,’,“R;I. To simplify them we apply Eqs (2.44)
and (3.71) multiplied by the Heaviside step function 1* as well as Eq. (3.77b) in
which R'F} is replaced by F/R*. The result is

N
m

2

(5.12) Arme =Y Diuro (Phael” + dhueBit)
a=1 h=1

p=12,...,n; H=G,S,P,AF.

For the substitute influence F we form the following sum

m 2

(5.13) sre =0, 0> Diuxo (Phrel” +aikeBit)
K a=1h,=1

np=1,2...,n; K=FAF; F=QG,P.

The coeflicients in the above expressions are recorded in Tab. 5.1. The load depen-
dent members are linear combinations of the basic functions Bj® for each interval
a, the exception being when the concrete _shrinkage deformation is described by
function 5. Then we determine integrals B;?c¢ found in the following formula

m 2
(5.14) rso=2. 9 DisoBites, w=1,2...,n
a=1 h=1

For obtaining coefficients D2 im0 for H =G, S, P,AF, we introduce Ngg and Mg
in Eq. {(5.9) according to the numbers of equations given in Tab. 5.1. When we
perform the integrations in Eq. (5.9) it should be kept in mind that Ng, and
Mgo are constants independently of how the concrete shrinkage deformation is
introduced.

The load independent members are derived from the same equations when,
instead of N and M in Eq. (5.6) we introduce the second addends found in Eq.
(5.72,b). From their structure we can see that for some A operators Fj® are applied
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to the common time function Xyg. Then the following constants are formed
3 = 7 % [ MW,

(5.15) =2 / N, ()N, (u) du,

Lin = 71’2% /L . [M,, (W)Ny (v) + N, (u)MA(u)] du,

a=1,2,....,m; p,A=12,...,n
and

gpk A a (6’7 mak + 5'72 1.4)\ + ‘8/.&/\)
(5.16) ;
D3y = Aya (Bvsosy\ + P90, — £2,),

a=12,....m; u,A=12,....n

Finally, we obtain

m 2
(5.17) AaXam =Y DhnFiXom,
a=1 h=1
pA=1,2...,n H=G,S, P,F,

from which we show that the load independent members are operators Z;‘ - Intro-

ducing Eq. (3.71) we express them in terms of operators E’;f, corresponding to the
basic functions B;®

(518) :M—ZZDMM < v ','Y_’,I%B;za) ) mA=1,2,...,n

a=1h=1
To determine the integral of function A’ L tO which operator A’ ux 18 associated,
we apply Eq. (1.25). Thus

2

m
(5.19) An =M1 =YY" DhaFrt,  mA=12...,n

a=1 h=1

Comparing it with Eq. (5.17) we see that function A}, = A7, (¢, 7°) represents the
reduced generalized displacement at point s = s, corresponding to the generalized

force X, = 1*, due to generalized force X, = 1* at point s = s,, in time ¢ (¢t > 7°).
It is easy to show that

(5-20) A;A = A;F’ AI uA = AA#’ My A = 1, 2, ey Ny

being in agreement with Maxwell’s reciprocal theorem.
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Equation (5.8), expressed through the load independent and load dépendent
members, gives the equations of continuity in the following form

n
(521) Y AL Xam+ALg =0, p=12...n H=G,S,PF,
A=1
representing simultaneous nonhomogeneous integral equations in unknowns X g
(A=1,2,...,n). We can write them in the matrix form
(5.22) A'Xy =Diy, H=G,S,PF,
where
= 1A} llnns
(523) XH = ||X1H,X2H...X,\H...XnH”T,
Do =l = Almg,~B3mg -~ Do~ Arpll”
The solution is formally the same as for a system of algebraic equations
(5.24) Xy =0Dky, H=G,S,PF.

Since the elements ZL » of the symmetric operator matrix A’ form the set of com-
muting operators (It. 10, Ch. 1), the inverse operator matrix is given by the known
equation

(5.25) Q' = (det A')"'adjA.

It can be shown that it is defined and that the equations of continuity always have a
unique solution~under the supposition that a primary structure is immovable [1.22].

Operators A}, do not commute with each other if in the cross section concretes
of different ages co—act or if only in one segment of the structure there is concrete

of different ages. The inverse operator matrix Q is defined, as well, but Eq. (5.25)
is not valid. The equations of continuity can be formally solved as a system of
algebraic equations but the above mentioned property of operators A’ ) must be
taken into account. The solution is unique if a primary structure is 1mmovable
[1.22].

When the Hereditary Theory or the Rate of Creep Method and constant mod-
ulus of elasticity is selected as a concrete transformation function F™* the equations
of continuity can be solved using the Laplace transforms, that is the redundants as
time functions can be obtained as well as stresses and displacements. For the Rate
of Creep Method this has been done on the example of the symmetrical continu-
ous beam of three spans of variable cross section exposed to dead load, concrete
shrinkage, prestressing by forces and prestressing by lowering the middle supports
[1.22]. These solutions have been provided under the supposition that steel (p)
obeys Hooke’s law but by use of the same mathematical operations we would arrive
at the solutions if we take into account the relaxation property of this kind of steel.

In Refs [2.18], [2.10] it was cited that for the Rate of Creep Method statically
indeterminate structures were not solved due to mathematical difficulties since the
stress resultants are time functions and the equations of continuity are of integro-
differential type. In an attempt to simplify this problem, Sattler [2.18] suggested a
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quite correct approximation for the time variation of stress resultants of statically
indeterminate structures. In line with this we introduce the assumption that in
the time interval (7°,t) redundants are of the same time variation as the concrete
transformation function R*, that is that they are of the form

(5.26) Xom=X3g+AXam(1*-R", A=.2,....n; H=G,S,PF,
where X9, are the known values of redundants X g at t = 7°F while AX, g are

the unknown constants corresponding to the selected time ¢ and to the time of the
load application 7°. From Eq. (2.22) it is evident that

(5.27) AXy =0, A=12,...,n; H=G,S,P,F.

The load dependent members remain the same as in the exact equations. To
obtain the load independent members the supposed functions for the redundants
X g are substituted into Eq. (5.17) Then

m 2
(5.28) NpXom =3 DanFe(X2y + AXou(1* - RY),
a=1 h=1
wpmA=12,...,n; H=G,S,P,F.

After simple mathematical evaluations we arrive at the following coefficients

m 2 1 1
aux = ZZD;‘W)\ ("7‘51* - -EB;:G) 3
a=1 h=1 th ’Yh
(5.29) " om 2 ) .
* ’7 *
b = 03 Dn (51" - 2y X3
A=1a=1h=1 Th Th

wA=12,...,n; H=G,S,P,F,

by which we set up the system of algebraic equations of continuity in unknowns
AX,pg referring to the time interval (°,1)

n
(5.30) > auAXam +bu + 85 =0, p=12...,n H=G,SPF.
A=1
From Eq. (4.13) we conclude that immediately after introducing steel (p) into
cross sections the redundants of structure (A, J) under the substitute load (4.21)
are equal to the redundants at structure (Ao, Jo), immediately before introducing

steel (p), due to load (4.10)

(5.31) X% =X0p, A=12,...,n.
Similarly, from Eq. (4.24) we obtain
(5.32) X% =X%r A=12,...,n

The exact and approximate equations can be found in Ref. [1.29]. When we
assume that steel (p) is the Hookean material, the expressions remains the same
with the exception of some coefficients in Tab. 5.1 in which p = 0 (o’ = 1) should be
introduced, presupposing also the application of Eq. (3.32). Such exact solutions
have been developed in Ref. [1.22].
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6.1. Stresses

6.1.1. Normal Stresses. Following the procedure of elastic analysis we
develop the stress expressions meaning that from stress-strain relations for the
materials co-acting in a composite cross section we eliminate common strain ¢
using Navier’s hypothesis and solution of the basic equations.

We begin by defining the reference stress ¢ = o(y, s,¢,7°) in time ¢ (¢ > 7°) as

(6.1) o = Fe = E(n + yx).

Functions 1 and > are replaced by Eq. (3.46) while operators ﬁ;d are replaced by
operators F}, according to Eq. (3.62). Rearranging such an expression we obtain

2
(6.2) =3 F;8,.
h=1
Functions S, = S, (v, s,t, 79) depend on stress resultants and on the reduced cross
section geometry
1 N SM SN M
Sy = Z;_[J’)’Z’Z treg gt (’71272 + 5’717)!/],

S, = —A—l:y-[Jm% —’nz%ﬁf- + (-’hz?%v +5’72%)y]-

Application of the relations given in Ch. 3.1 leads to the following formula

2
N
(6.4) s=Ys,=2+4,

(6.3)

The stress resultants /N and M as well as reference stress o originate from all per-
manent influences. The above expressions will be used separately for each influence
of H.
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The stresses in some parts j (j = ¢, p,n, m) of a composite cross section due to
influence H will be expressed in terms of the reference stress oy. From Eq. (3.35)
we obtain the stress in concrete (c)

- _(m - _J1, for H=S5,
(6.5) OcH =V, (R oy —0usER ES) ) dps = {0, for H # S
H = G, S, P, AF,

where the concrete shrinkage deformation is introduced by function eg owing to
Eq. (2.25) being used. If the assumed form of this function (2.27) is applied we
introduce Eq. (2.29). This gives

(6.6) el = Ve [fz'aH +OgsEd(1* - R*)] ,  H=G,S PAF

We obtain the stress in steel (p) from Eq. (4.16)

s P o\u {1, frH=P,
(6.7)  gpH =1y [RpaH + dup (:4—; - ap) Rp] y  Omp= {0’ for H # P;

H=G,S,P AF.
The stresses in steel parts (n) and reinforcing steel (m) come from Eq. (3.37)
(6.8) org = Vi l'og = vkoH, k=n,m; H=G,S, P,AF.

The stress in part j due to substitute influence F is the sum of stresses due to
influence F and the additional load AF. Then

(6.9) ajp=§:ajx, j=¢pnmK=FAF, F=G,P.
K

The stress in the additional element (d) due to substitute influence F' is written on
the basis of Eqgs (4.26) and (4.27), also in the form of the sum

(6.10)  o4p =va Y (Ryok —o%R}), d=n,p; K=FAF; F=G,P.
K

The stresses in additional elements (d), produced by influence H = G, P, to which
the structure is exposed after their introduction into the cross sections, are deter-
mined by Eq. (6.8) when d = n or by Eq. (6.7) when d = p since from the beginning
they are the component parts of the cross sections.

We determine the stresses in statically determinate structures and in primary
structures when X,z = 0. The first step is to write the corresponding reference
stress og. When the stress resultants Ny and My, given in form (4.1), are sub-
stituted into Eqgs (6.3) and (6.2), operators f,’, are applied to function R}. Then

2
(6.11) on=Y S,yFiRy, H=G,5PAF,
: h=1
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where functions S, ;; depend only on coordinate s

(a) 5'1H=-A—~[572A +’712i]r/:f]H (712§]Y4H+5’Y )y],

z _ 1 Ny S My S Ny M
612) (0 S =z [ ~magy + (~rF o + o Hay),
2 - -
& _ s _Nu My _
(© Syp=) Sy= <+ H=GS5PAF

h=1
At ¢t = 7°) that is t = 7%F, when the influence of H begins to act, it holds that
Ry =1 (H = G,P,AF) and RY = 0 (Chs 2 and 4). The corresponding stress
resultants are
(6.13) NY% =Ny, MY =Mg, N3=0, M}=0, H=G,PAF,
while the reference stress becomes
= N Ny MH

From Eq. (4.13) we show the equality between the reference stress at time 7°* in
cross section (A, J), corresponding to prestressing by forces and produced by the
substitute load (4.20), on the one side, and the reference stress at 7° in cross section
(Ag, Jo) due to the load (4.11), on the other side

(6.15) 0% = alp.

6 =0, H=G,PAF.

Similarly, from Eq. (4.24) we get
(6.16) oF = Top-

Substituting reference stress o (6.11) into Eqs (6.5)-(6. 10) we see that in the
expressions for stresses in the cross section parts j the products R F’ Ry, R’ F’ Ry

and F} R are found. Table 5.1 contains the numbers of equations for functxons
R3 while the corresponding products are given in Tab. 6.1, describing the kind
and number of mathematical operations leading to the stresses. By applying the
operator relations we can make significant simplifications changing the indicated
products to linear combinations of the basic functions Bj, while some of them
contain the concrete transformation function R*, as well. The integrals Bjeg and
R'e g exist only when the concrete shrinkage deformation as an arbitrary function
£ g is introduced. During the simplification of operator products Egs (2.46), (3.68b),
(3.71),.and (3.72) are used and, if needed, are multiplied by function 1*. The results
are recorded in Tab. 6.1

Such simple forms of the operator products are used to obtain the stress ex-
pressions. From Eqgs (6.6)-(6.9) we find their general forms being

2
(6.17) OjH = Vj (UjHl* +ViuR* + Z WthB,:),
h=1
j=¢pn,m; H=G,S,P,AF
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e =, = ' p Yo — P
R'F!1* B R F;(1*-R*)| =1* - —R* - ————B;
h h Pk ) % M Yy P
2 1o _ Thp 5 2 1 B pe_(1m—p)
R'F!R'e R -2p e R F{ R it R X T B
ho2 =S ('7h Yh ") o PERTE oyt T Wy, "
- . 1 1 _
RE(*~R)| -—R+—B; F1x 1y _2p
Yh Yo Th 87y
RER: %R* + ”‘T;fB;; FlReg Bles
RELr | L1 -2lp | Eae-pY) 2ot
Y Yh Ya T
Bl Ei P i, TP 2 P _Mm—p
RERe, |((ER+12"LRB ) F'Rx Fp L fps
pATS (7h T b)es i h T
TABLE 6.1
and
2
(6.18) OjF =Vj Z(Uj}{l* + VjKR* + Z WthB,:),
K h=1

i=¢pnm; K=FAF, F=G,P.

If the concrete shrinkage function &g is introduced we apply Eq. (6.5). Then

2
(6.19) ojs = Vj (VJ'SR’ES + Z Whst;,ES), j=cp,n,m.
h=1
In Tab. 6.2 the coefficients that are found in the above equations are listed. Further,
from Eq. (6.10) we get

2

(6.20) O4F = Vd Z(del* + Vax R* + Z thKB;L) ,
K h=1

d=np K=FAF; F=G,P.

The formulas for the coefficients appearing here are recorded in Tab. 6.3. Stresses
0% and ¢% in Eqgs (6.7) and (6.10) are determined from Eq. (6.14). They are
included in the coefficients of stress expressions although their values are known
from the previous calculations at ¢ = 70F.

Coefficients S, (H = G, S, P, AF) are obtained from Eq. (6.12a,b) in which
for some influence H the corresponding quantities Ny and My are substituted,
according to the equations whose numbers are listed in Tab. 5.1, having in mind that
in the case of prestressing by forces for statically determinate structures Np and



6. STRESSES AND DISPLACEMENTS

59

il HK Uin, Uik Vier, Vik Whitr, Whik
G,AF _
(d=n) 0 0 ShH

: 0 _E+Y L3 hg
. 5 S = Th hS Yh hS
Ed ~(Bd+ ¥ —I—Shs) s,
r Y Th
P,AF 15 Th—Ps
0 —S S
(d=p) p; ™ T A
G,AF i ! & Th—Ps
P>, =S 0 - S
(d=n) 5 o mo
1 & Y= P&
€ 0 —5 S
p
1. 1 Yh—Pg
/
= P — - 5
2> o P mhs mwrn
P Yh—p P =P 5 (v — p)? &
P ! + S S
p(%r§ Yh ")pum % ) W P
AF me 1 g PR e (1 =p)* &
P23 =S S S
(d=p) }h: 7, ThaF P zh: n hAF Thy, hAF
G,AF 1 ; Yh &
(d=1’l) Z 7’/‘ Sh,H 0 —;ZshH
.. £ 0 0 Shs
S
m 1~ 1 .
2 7 Shs 0 — = 5hs
A Th T
P,AF - 1 a T P&
oy = 0 - S
(d=p) 5 o o "o
TABLE 6.2

Mp are given by Eq. (4.22). We notice that quantities S‘h g depend on coordinate
s which corresponds to the position of the cross section under consideration.

If Hooke’s law is assumed to hold for steel (p) then on the basis of Eq. (2.52)
and in the sense of It. 5, Ch. 1, we show that

(6.21)

OpH =Vp [crp +6Hp(

Apr

o)

?

H=G,S,PAF
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di K Uik Vak Whak
G,AF )Y :YThShK 0 ‘7—75/;1(
n h Th Yh
Ih—"Ps Th—Ps
P > ——Skp 0 ———5p
T Th
Yh & G Th— P&
G P2~ She - She ~—5he
p R Th h T
: Th—P g YTh=Ps (1 = 0)* &
P,AF | p' - S —_——S
P o T kK p;  hE Ty, K
TABLE 6.3
and
(6.22) o4p =vay (0k —0%), d=n,p; K=F,AF; F=G,P.
K

We recall that the substitute load (4.21), (4.22) as well as the additional load
(4.31) when the additional element is steel (p), are now time independent. When
the concrete shrinkage function eg is given by Eq. (2.27), coefficient V.5 can be
translated into the form

Ed S, /S
.2 V = _____E. L .
(6.23) c§ e J ( A ’71111)
For d = —1 the same expression refers to arbitrary function e (Ch. 4.2). With

this, it is shown that all coefficients V;z and Vyi in Tabs 6.2 and 6.3 vanish for
p = 0, that is that stresses depend only on the basic function B}. The corresponding
stress expressions are obtained when p = 0 (p' = 1) is introduced into the remaining
coefficients presupposing that elements ~y5; of the matrix of the reduced cross section
geometry « are calculated from Eq. (3.32). Such solutions have been derived in
Ref. {1.22).8

For statically indeterminate structures the reference stress and the stresses in
some parts j of the cross section due to permanent influence H are presented in
the known manner. They are the sums of the stresses in a primary structure when
Xz =0 and in a primary structure caused by all redundants

(6.24) O =0qp + OHX, H=G,SPF

and

(625) OiH = OjH9 +0jHX, j=¢p,n,m; H=GaSyP’F1
- O4F = Ogpp + O4FX; d=n,p; F=G,P.

SFor p # 0 and p = 0 the stresses also can be found in Refs [1.7], [1.23], {1.27], [1.29], [1.38],
[1.41).
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The first members in the above equations originate from the stress resultants Ngy
and Mpyg in Eq. (5.7a,b). These parts of the stresses are contained in Egs (6.17)~
(6.20) in which the last subscript @ is added to the coefficients. In Tabs 6.2 and
6.3 S,z and S, are substituted with 5, ;4 and S, ;,, meaning that in Eq. (6.12)
Ny and My are replaced by Nyg and Mpyy, respectively.

Reference stress ogx is obtained when in Egs (6.3) and (6.2) we introduce the
second members of Eq. (5.7a,b). For the given X and H they are the products of
N, or M,, being the functions of coordinate s, and time functions Xg, so that
operators F’,’l are applied to the common function X,g. Thus

n 2
(6.26) oux =YY SuFiXam, H=G,S PF.
A=1h=1
Coefficients Sy, are obtained from Eq. (6.12a,b) by the formal substitution of Ny,
My with N. \» M, respectively.
Introducing reference stress o gy x into Egs (6.6)—(6.8) we obtain the correspond-
ing stresses in concrete

n 2
(6.27) oex =vey,» SuRFXaw, H=G,SPF,
A=1 h=1
in steel (p)
n 2
(628) opax =vp 3 O SR FiXom —SupX3pR;), H=G,SPF
A=1 h=1
and in steel parts and reinforcing steel

n 2
(6.29) okx =vk ¥ > SFiXam,  k=n,m; H=G,SP,F,
: A=1 k=1

while from Eq. (6.10), follows

n 2
(6.30) oupx =va Y Y Su(BuFiXyp~X3pRy), d=n,p F=G,P.
A=1 h=1
In this relation and in the equation for o,yx the following values of reference
stresses at ¢t = 70F are included

n

2
(631) G%X = Z ZShXXQH’ H= P, F
A=1h=1

They are determined from Eq. (6.4) when N and M are replaced by the second
addends of Eq. (5.7a,b) for ¢ = 70+,

In Eqs (6.27)-(6.30) the operator products E'ﬁ,’, and ﬁ;f’,’, are found. Using
the relations analogous to those in Tab. 6.1, we express them and operators F’,’z in
terms of operators ﬁ;‘, corresponding to the basic functions Bj. Thus, the stresses
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5d Ujx, Udx ThjsThd |  Ujr,Vdx | Whj,Wha
c 0 0 0 1
'
. —
p | —6upp'Xp f,— —6uppXJp -2 ; £
Yh Th
1
n,m 0 - 0 —lfi
Th Th
1
n| -X3p e 0 -1
d 7h ’Yh
'
P 0 Yh— P
p| —AX3 = -pX -
AR '7;; AR '7;1
TABLE 6.4

from the redundants are expressed through functions X,y and integrals ELX \H
while some of them also contain function R*. We can write
2

n
(6.32) OiHX = Vj Z Z ;'S'h/\(uj)\].“l + l'th,\H + ‘U_,‘)‘R* + wth;,X,\H),

A=1h=1
i=c¢pnm; H=G,S,PF
and
n 2 -
(6.33) Gapx =Va ) Y Spa(uarl” + ThaXop + varR* + wnaBp X, 5),
A=l A=1

d=n,p; F=G,P.

In Tab. 6.4 the coefficients of these equations are given.” The quantities XJp and
X{p are known from the calculation of the structure (A, Jo) at t = 77 as is stated
in Eqgs (5.31) and (5.32). We remark that stresses oj5x are formally the same,
independent of how function €4 was introduced. However, when determining the
redundants X s a difference exists, as was described in Ch. 5.

Assuming that steel (p) is an elastic material, the coefficients in the stress
equations (6.32) and (6.33) can be obtained from Tab. 6.4 for p =0 (p' = 1). Then
the stresses do not depend on the concrete transformation function R* any more
and become

n 2 -
(6.34) GiHX = VJZZShA(uJ"\]'* + zpi Xow +’wthLX)\H),
A=1 h=1
j=e¢pn,m; H=G,S,PF

TSee Ref. [1.29]
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and
n 2 -
(6.35) TuFx = Vd Z Z Spa(uarnl™ + 2pa Xong + wraBR X, ),
A=1 h=1
d=n,p; F=G,P.

The elements yx; of the scalar matrix v are determined for p = 0, as well. Such
solutions have been derived in Ref. [1.22].

We are now interested in the approximate expressions for the stress parts due
to the redundants. In Eqgs (6.27)—(6.30) functions X,z are replaced by assumption
(5.26), referring to their time dependence, so that the following products appear:
R'F)1*, R'F,(1* - R*), R\F1*, R\F.,(1* - R*), F}1* and F}(1* — R*). With the
addition of relations listed in Tab. 6.1, they reduce to linear combinations of the
basic functions B} and, in some cases, of the concrete transformation function R*.
In compliance with this, we arrive at

n 2
(6.36) oinx =vj 3 3 S (unianl® + vipanR* + wijau By,
A=1 h=1
j=c¢pnm; H=G,S,PF
and
n 2
(6.37) Gapx =vd I Y Spa(Unarpl” + Vpanp R* + waarr BR),
A=1 h=1

d=n,p; F=G,P.
In Tab. 6.5 the coefficients existing in the above equations are found. In contrast
to the exact stresses the approximate stresses are expressed in terms of the basic
functions Bj,, while some of them contain the concrete transformation function R*.8
Assuming that steel (p) is the Hookean material in Tab. 6.5 we introduce p =0

(p' = 1). Stresses 0jgx formally retain the same form, while stresses o4z x do not
depend on function R*

n 2
(638) ourx =va D Spa(Uharrl" +waanpBi),  d=n,p; F=G,P.
A=1 h=1

The reduced cross section geometry is also determined for p = 0.

6.1.2. Shear Flow. We confine our attention to a straight beam of uniform
cross section, the axis of which coincides with the z coordinate. To the other
assumptions, made for developing the elementary theory (Chs 2 and 3), we add
Jourawsky’s hypothesis which is the basis of evaluating the shearing stresses in the
analysis of elastic beams. Using the same method, the derivation of a shear flow is
accomplished by the known procedure.

8See Refs [1.27), [1.29]



64 6. STRESSES AND DISPLACEMENTS

Jd UhjaH ; UpdpF VhixH ) Uhdrf WhirH ) WhaAF
AX AX

P 0 _ A\H ng + M\H
T T

Vd :
(X% +AX AX -
7 ( AH AH) -—p( 7:H+5HPX2P) _Tn P(XE\)H_‘_AXAH)

- Y oupd X3p Th T
n,m —lh—(XgH+AXw) | 0 —%(X2H+Ai>‘”)
P p’%’,:(xgﬁ Aim) —p(X,‘{p N A:’;;AF) —7';;”(X§p+é%5)
TABLE 6.5

We first consider statically determinate structures and primary structures when
Xz = 0. For easier shear flow derivation we rewrite stresses oy, o;p and o4p
concisely in the form of one equation, introducing the assumed concrete shrinkage
function eg (2.27). For this purpose the stress resultants due to the influence of H
in time ¢ (¢ > 7°) are represented as

Ny = Nog1* + N1y R,

.39 _ -
(6 ) My = Mogl* + Mg R*, H=QG,S,PF.

In view of equations m Ch. 4 we derive the functions Nigy = Nig(z) and Mg =
Mig(z) (I = 0,1) listed in Tab 6.6. After rearranging the formulas for the above
mentioned stresses, we arrive at their unique form

. 3 2 41 :

(6.40) GH=V; YD (}: ajors Berer + djbhH) A
b=1 h=1 ‘=0

j=ec,pn,m,d; H=G,S,P,F,

in which the time functions are introduced as follows
(6.41) A, =1, A}, =R', A3, =B, h=1,2.

Owing to the integration over the part of the cross section area, functions epy =
enm(z) are represented in the form of

(6.42) ERLH = My g + Y¥5 s h=1,2;1=0,1; H=G,S,P,F,

where
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H Now Ny Mg Mg
G Ng 0 M, 0
s ~Nsk Nt ~yc Nsk Ye Nk
P p'ne pnp pFmp pmp
G| Ng+nl¢g 0 Mg +mQg 0
¢=n Pl pn% +ndp prd p'm% +mip pm%
G| Ng+onjc PG Mg+ p'miq pmAG
a=p P | p'(np +nQp) | p(np +ndp) | p'(mP +mQp) | p(mp +mAp)
TABLE 6.6
Enyg = Z% [5’73—11% + (=13, —A/—g—.g'],
(6.43)

1 _ N,
Estpy = K;[("l)g h’hz—;fi + 5’7h—-J ],

h=1,2;1=0,1; H=G,S P F.

Coeflicients ajppi and djpn s, which are not equal to zero, are recorded in Tabs 6.7
and 6.8, while the reference stress at time ¢ = 7%t in such notation is

0 Q
where
1 1
(6.45) Ny =Y Npg, M=) My, H=PF
=0 =0

It is known that the shear flow ¢ = ¢(y, 2,t,7°) is the product of the shearing
stress 7., and the cross section thickness in that place. Applying Jourawsky’s
hypothesis we can determine shear flow gg in time ¢ (¢ > 7°) using the known
formula adapted to a composite cross section

(646) qp=3 / oigdA,  j=cpnmd; H=G,S,PF,
i A

where A; is the part or area A; of the cross section separated by y = const.
(Ch. 3.1). The superscript z denotes the derivative of the function with respect to
variable z.

Since a beam is of constant cross section, the differentiation with respect to
variable z refers only to functions Niy and Mg existing in Eq. (6.43). Then we
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. Qjbhl Gjbh
J
Qj1h0 | Qj2h1 Qj3h0 Qj3h1 | Gj1h Q43h
1 z
c 0o | = 1 0/ 1
Th Th
D, Pl | _mmplm=p| P | wm—p
d=p | % | Y Yh Yh Yh
n,m, 1 Th 1 Yh
=1 0 - 1 poll By
d=n | v Yh i Yh
TABLE 6.7
j djshH fioner
H dj1ng djang Finng | fionm
1 1
—FEd —~Fd
¢ S 5 5 0 0
PP _oy|e(E _ L0 L
PP (A,,, %) 2 (A,,, %) %P | T %P
1, 14
ny ~39F 0 ~59nF 0
d — F N 7
_P 0 P Lo |_P
P 7 OF 57F 3 9F | T3%F
TABLE 6.8
use the known relations
(a) ng =-Nf =nogl* +nigR", (b) mg =-Nfy,

(6.47)

(¢) Ty = Mf =Tou?” + T1g R, (d) Tig = My,

1=0,1; H=G,5,P,F,
where ny is the z component of the forces per unit length of the beam axis, positive

in the direction of increasing z, while Ty is the shearing force.
After the operations described by Eq. (6.46) are carried out, we arrive at

3 2 1
(6.48) qa = Z Z Z [Z ajont(bjrum + CinTirr) + fione | Abp,

J b=1h=1"*i{=0
j=C,Pan;mad; H=G,S,P,F.
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The indicated integrations in Eq. (6.46) pertain to members 7,,, and ;. When
we introduce Eqs (3.2b) and (3.6c) the following constants are found

f‘ijr 3-h gjr
[5’7h-3 A +(=1)"""n2 _S—] )

1
b,‘h = -—E

(6.49)

~ -~

1 A S,
o= — (=1 3—-h T J Jr] =1,2: 9 =
Cih A’)’{( ) "2 s towm—) h=1,2; j =c¢c,p,n,m,d,
appearing in the shear flow expression. Coeflicients fjsnzr, which are not equal to
zero, are recorded in Tab. 6.8, while quantities g;?H are derived from Eqgs (6.44) and
(6.45)

ftng + 2578, j=pd; H=PF,
where nd; and TY are obtained from Eq. (6.47a,c) for t = 70+,

We recall that qgg, g, Tine and fpnme in Eq. (6.48) as well as g?m,, %0
and T_?m in Eq. (6.50) should be introduced if the shear flow refers to a primary
structure when X g = 0.

For statically indeterminate structures the shear flow is represented in the
known manner

(6.51) qu =quo +qux, H=G,S,PF.
To determine member gyx we also rewrite o;yx and oypx (Ch. 6.1.1) in the
suitable unique form

n 3 2

(6.52) OHX = Vj Z E Z(ajbhEEh)\Zlth,\H + djbh,\HA;h),
A=1 b=1 h=1

j=c¢pnm,d H=G,SPF.
Functions gy = gpr(2z) are defined by the formula
(6.53) ERA = My + Y30, h=1,2; A=1,2,...,n,
where

1 N _ M
Enpy = 2y [5’73—h—;1A + (=1)3 Py, -§’l],

(6.59) 1 N y
Exnpy = Kv‘[(—l)%h’m—sA +57h—J—A], h=1,2; A=1,2,...,n.

Coeflicients ajpn and djparer, which are not equal to zero, can be found in Tabs 6.7
and 6.9, while

Ny M,

(6.55) (g =7+—J—y, A=1,2,...,n.

>0
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j dibhaH fivham
H djirrg djorrg fitnag fizham
p I P
p P ““UxX “’2‘03Xf\’P ) g,\XRP “592,\)(213
X 1 0 XO
n ~ —""O'X 0 *"2‘ A\ F 0
d F - :
P 410 P _oyo P o0 vo P o yo
P =50 Xr | 5058 | 39 Xir | 59 Xs

TABLE 6.9

When the operations described in Eq. (6.46) are completed, we obtain

n 3 2
(656) qux =3 .3 ) [ajbh(bjhn)‘ + ¢ Ty ) App Xnm + fjbh}HA;h] :

A=1 j b=1h=1
j=e¢,p,n,m,d H=G,S,PF,

where

(6.57) n, = ~N§, T, =M, A=1,2,...,n

Constants fijpnag, which are not equal to zero, are listed in Tab. 6.9, while
(6.58) g?x=—A1;rn,\+—%TA, j=pd; A=1,2,....n

The approximate equation for shear flow gyx is developed under assumption
(5.26) for functions X,g. Stresses o;mx and ogpx (Ch. 6.1.1) are brought to a
mutual form

n 3 2 1
(6.59) OjHX = Vj Z Z Z (Z ajoni BEnTing + djbh)\X,(\]H) Abn

A=1b=1 h=1 “I=0 )
j=e¢pnm,d H=G,S PF,
where coefficients z;xg are introduced as follows
(6.60) Tozg = XBH + AXag, g = —-AX,H,
A=12,...,n; H=G,S,P, F,

while d;sna, which are not equal to zero, are found in tab. 6.10.
Following the similar procedure we get

(6.61) qux = Z > Z Z [E ajon(bjany + cinTy)zonm + fthXX)\H} Abps

A=1 j b=1h=1
j=e¢pnmd; H=G,S,PF.
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. djbhA fiona
! djinx | dizan | fiiaa | fizaa
RESEET e
d=n | - %ag 0 |- %gib 0
TABLE 6.10

Coefficients fjsnx, which are not equal to zero, are given in Tab. 6.10.

The shear flow is expressed in terms of the same time functions as the nor-
mal stresses. For statically determinate structures and primary structures when
Xxg = 0 the shear flow depends on the basic functions B}, and on the concrete
transformation function R*. The same holds for the approximate shear flows gz x .
Such solutions have been derived in Ref. (1.39].°

In the special case when steel (p) is assumed to be the Hookean material the
shear flow formulas can be obtained from equations developed here introducing
p =0 (p' = 1), meaning that the cross section geometry is determined under the
same condition. .

6.2. Displacements

By proceeding in the same manner we first derive the generalized displacement
formulas in time ¢ (¢ > 7°) due to influence H at an arbitrary point of the de-
formed structure axis for statically determinate structures and primary structures
when X g = 0. The load dependent members (Ch. 5) represent such generalized
displacements, but at some points of the structure axis s = s,. It is evident that
the procedure for their determination is the same and for this reason we confine
ourselves to the explanations which result from this difference.

The constants in Eq. (5.9) become functions of coordinate s. Thus

e, = §‘L / ¥ (u, 5) M (u) du,
LG

(6.62) Fe, = %l;- / N(u,s)Nar(u) du,
Lﬂ

J . _ . _
=T /L [¥ (s, 9) N (w) + B (u, ) M ()] s
a=12,...,m; H=G, S, P,AF.

9See also Refs [1.38], [1.41]
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Also D¢ = D¢ (s) come from Eq. (5.10)
2 1 aaTa a aa
' = Aqa (8viMy + o Ny + £%),
i
(6.63) _ 1 ) )
Dig = Ao (813G + SNy — L),
a=12,...,m; H=@G,S,P,AF.

The sought after displacement is consistent with Eq. (5.11). Thus

m 2
(6.64) Ay =Y ) DiyFeRy, H=G,S PAF.

a=1 h=1

In Tab. 5.1 we can find the numbers of equations for Ny, My and R, corre-
sponding to some influence of H, having in mind that for statically determinate
structures due to prestressing by forces, Eq. (4.22) should be used. Analogous to
Egs (5.12) and (5.13) we write

m 2
(6.65) Ay =3 Diyohul”+a5uBi®), H=G,S PAF

a=1 h=1

and

m 2
(6.66) AR=Y Y > Dix(pixl*+aixBi®), K=FAF; F=G,P,
K a=1h=1

whose coeflicients are given in Tab. 5.1. Describing the concrete shrinkage defor-
mation by function eg, we use Eq. (5.14) to find

m 2
(6.67) A=Y DisBjes.

a=1hA=1

When we integrate the expressions in Eq. (6.62) we remember that quantities Ng
and M} are constants in interval a. Also, if equations refer to a primary structure
when Xz = 0, the last subscript § should be written to all corresponding functions
in the above formulas.

Our next concern will be with generalized displacements for statically indeter-
minate structures in time ¢ (¢ > 79) produced by the influence of H. They are
represented as the sums of displacements in a primary structure when X,y = 0
and when all redundants act. Thus

(668) A}{=A;{0+A;;X; H"—'G,S,P,F-

Substituting the second addends of Eq. (5.7a,b) into Eq. (5.6) displacements

4 x are found. Basically, we repeat the procedure of derivation of load indepen-
dent members as was done in Ch. 5, having in mind that displacements refer to an
arbitrary point of the deformed structure axis. The constants in Eqgs (5.15) and



6. STRESSES AND DISPLACEMENTS 71

(5.16) now become functions of coordinate s. Then
= Jﬂ/ M(u, s)M, (u) du,

(6.69) e = A—'; / N, )N, (u) du,
La

e M LR LAC RS (I YA

a=1,2,....,m; A=12,....n
and

1
Dy = o (89 + 53373 + £3),
(6.70) !
Dy = 37 TR+ MM - £3), e=12,...,m A=1,2,...,n

Finally, in accordance with Eqs (5.17) and (5.18), we get

n m 2

(6.71) Ahx =YY DihFi*Xn, H=G,SPF,
A=1a=1 h=1

that is

(6.72) AHX—ZZZD (———X,\H— f,ﬁ;ng), H=G,S,P,F.
h

A=1e=1 k=1

Introducing assumption (5.26) about redundants time variation into Eq. (6.71)
we write the approximate equations

(6.73) Ay = Z Z Z Dg\Fe (X3 + AXag(1* - RY)], H=G,S,PF,
A=1a=1 h=1

which can be expressed in terms of the basic functions

(6.74)
n m 2 . AX)‘H
Hx —ZZZDM[ la(XAH+AXJ\H) —',—a(XAH-F = )BZ“],
A=1a=1h=1 Yh Th

The remark made earlier for stresses o;sx holds here too: the exact and ap-
proximate formulas for displacements A%y retain the same form when an arbitrary
function eg or its approximation (2.27) is used to describe the concrete shrinkage
deformation.

Parts of the displacements A}y depend on time through integrals B;,“X g and
functions X»g. The approximate expressions for A} x as well as displacements in
primary structures when Xy = 0 and in statically determinate structures depend
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on time through the basic functions B;® in a finite number of cross sections of the
structure.'©

Assuming that steel (p) is an elastic material, the expressions for displacements
remain formally the same. The coefficients in Tab. 5.1 and reduced cross section
geometry are determined for p = 0 (¢’ = 1). Such exact solutions have been derived
in Ref. [1.22).

6.3. Theorems!!

Applying the functions and expressions which have been evaluated here we can
formulate the theorems as an appendix to elementary theory. Later we will explain
in detail the idea that the equations of the elementary theory can be comprehended
as the generalization of the equations referring to the concrete cross section. As a
contribution to this we prove the theorems which concern both the concrete and
composite cross sections.

Theorem 1. If in a concrete cross section the axial force and bending moment
depend on the concrete transformation function R*

(6.75) N = Nol* + N, R", M = My1* + My R”,

then the normal strain at any cross section point depends on the concrete trans-
formation function F™

(6.76) € =gol* + 1 F*,

while the stress at any cross section point depends on function R*
(6.77) O = Opl* + 0o R”.

The quantities Ny, ..., 0. do not depend on time.

The theorem can be proved when the assumed stress resultants are introduced
into the solution of the basic equations (3.88). Then, according to the equations
from It. 9, Ch. 1, we get '

o _ N _. No _ M. M
and with the application of Navier’s hypothesis (3.34) we derive the first statement.
The second statement can be proved by substituting the strain €, given by Eq.
(6.76), into the concrete stress—strain relation (3.35) in which member o4 is omitted.

The known Bazant’s theorem [2.5] has been derived from the integral relation-
ship between stress and strain in concrete. Bazant proved that the stress time
variation is as is stated in Eq. (6.77), if the strain obeys the law (6.76). Theorem
1, formulated for a concrete cross section, represents an alternate form of Bazant’s
theorem, and we here speak about functions F™* and R* as the concrete cross section
transformation functions.

F*

E*, E2s

105¢e Refs {1.23], [1.29], [1.41]
11See Refs [1.25), [1.18], [1.45), [1.19], [1.20]

-
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Theorem 2. If in a composite cross section the axial force and bending moment
depend on the cross section transformation functions R}

N = Nol* + N,R! + N2R;,

(679) M = Myl* + MIRI +M2R;:

then, in the general case of cross section geometry, the normal strain at any cross
section point depends on the cross section transformation functions Fy

(6.80) e=¢gol* +e1F + e Fy,

while the stress at any point of the cross section, in the general case, depends on
the same functions and on the concrete transformation function R*

(6.81) o5 = 0’1'01* + U'jl.F’l* + O']'QF; + O'jaR*, j=c,p,m,n.

Coefficients Ny, ..., 0;3 are time independent.
With the application of Eq. (3.63a) the stress resultants are expressed in terms
of function R* :

(6.82) N = Nol* + N,R*, M= Mol* + MlR*,

where Ng, ..., M; do not depend on time. We can prove this theorem when the
above equation and Eq. (3.62) are introduced into the solution of the basic equations
(3.46). At that time functions F;; and the basic functions By, appear. The latter
are replaced by functions Fy, applying Eq. (3.71) which is multiplied by 1*. Using
Navier’s hypothesis (3.34) we arrive at the first statement of this theorem. The
second statement is already contained in Eq. (6.17) for stresses o,y because it
has been derived under the assumption that stress resultants N and M change
according to Eq. (6.82). It is only necessary to substitute the basic functions Bj;
with the cross section transformation functions FJ;.

The same theorem can be formulated in another manner. If the stress resultants
depend on the concrete transformation functions R* according to Eq. (6.82), then
in the general case of cross section geometry, the normal strain at any cross section
point depends on the basic functions By,

(683) € =&l" +§1B; +€2.B;,

while the stress at any point of the cross section, in the general case, depends on
the same functions and on the concrete transformation function R*

(6.84) oj = Gj01* + 3, B] + 6j2B; + 5;3R", Jj=c¢,p,m,n,

where &, ...,0j3 do not depend on time.
It is evident that Theorem 2 becomes Theorem 1 when for functions F} in Eq.
(6.80) and Bj, in Eq. (6.84), v, =1 is applied.

Theorem 3. If the axial force and bending moment depend on the cross section
transformation functions R} according to Eq. (6.79), then the generalized displace-
ment of any point on the deformed structure axis depends on the cross section
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transformation functions Fj;® in a finite number of cross sections of the structure

m
(6.85) A = (A1 + ATF® + AJF3),
a=1

where A§, Af and A} are time independent.

The statement of this theorem is already contained in Eq. (6.65) for the gener-
alized displacement A%, which corresponds to the stress resultants (6.82). Only the
basic functions B;® should be substituted with the cross section transformations
Fge. :

An alternate form of this theorem is: if the stress resultants depend on the
concrete transformation function R* as in Eq. (6.82), then the generalized dis-
placement depends on the basic functions B;® in a finite number of cross sections
of the structure

. ‘
(6.86) A* =) (A31* + A¢Be + A B3,
a=1

where Ag, A¢ and A¢ are time independent.

6.4. Determination of Stresses and Displacements 2

The elementary theory of composite and prestressed structures is completed
with equations for stresses and displacements as time functions, due to permanent
influences, for any cross section geometry and an arbitrary concrete transformation
function F*. It still remains for us to show how to determine the functions by
which stresses and displacements are expressed.

Before that, let us deal with the mathematical basis of this theory. When the
theory has been developed, the concept of the customary mathematical approach
was left because it was extensive and immense. There was an evident need to
introduce a concise way to evaluate and express the equations and that was the
reason why such a kind of linear integral operators was defined and applied. In this
theory the operator calculus has shown one more quality opening up possibilities
to create the auxiliary operator relations whose application leads to the simplest
form of stress and displacement expressions reducing the number of mathematical
operations for obtaining the results. There is a very interesting example related
to this. For the Rate of Creep Method under the assumption of constant modulus
of elasticity, it is easy to develop the stress expressions for statically determinate
structures and constant stress resultants by the analytical method. Under such sup-
positions in the formula for the stress in concrete, obtained by two authors [2.12],
[2.10}, we see the presence of the concrete transformation function R* although the
elementary theory shows that this member does not exist owing to the fact that
the relaxation property of steel (p) was ignored. With this knowledge, after compli-
cated and tedious mathematical evaluations, it is proved that the coefficient along

125ee Ref. [1.22]

i
!
I
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function R* vanishes, that is that stress in concrete contains an excess member. It
is significant that following the evaluations the authors have made, it could not be
possible to foresee that this member should not exist.

Within the elementary theory the cross section transformation functions Rj
and Fy are defined. With their application we derive all necessary expressions in
the most simple form but it can be noticed that stresses and displacements are
not expressed in terms of them. For this purpose another two pairs of auxiliary
functions, the basic functions Kj and Bj, are defined. Between functions Bj and
Fy the linear relation (3.71) exists. From that point of view it is insignificant
whether the stresses and displacements are expressed through the first or second
pair of functions. However, a special reason exists for the introduction of the basic
functions K} and B}, which demands an explanation.

First, we will show how functions Bj and R* are obtained starting from the
concrete transformation function F*, which is a test function. To make the presen-
tation easier we rewrite some of the earlier used equations found in Ch. 3.2.

When we know function

(6.87) F* = %1* +@* thatis F'= %T’ +9,

the creep function &*, its derivative &', functions K} and operators K}, are also
known

r
K; =y1* + 4 F* = —;1* + v, 8%,

(6.88) K =1 + 1 F = ——T:I’ +yh
Th (7h7 t) * T(t) *
ANLILVRRR e AR —) = B(,t,1).
r(t) Alm.6:1) rh (Y, t) w(n, 12)

For now we consider the quantity s, that is «;, as a parameter.
Unknown ¥*, that is ¥, is found in the expression

(6.89) R*=rl*—O* thatis R =r1'-¥,
while unknown ¥}, that is ¥}, is contained in
(6.90) By =11*—~4¥5, thatis B, =-_T1 -+,
Th Th
To determine the unknowns we refer to the operator relations

(6.91) @ KBy =T, (b) K}B;=1"

In the sense of It. 9, Ch. 1, we develop the parameterized nonhomogeneous integral
equations

] t '
(692) #(t,7)— - WD ) o, [ 20,0084, 0,7V 0 =0,
rh('Y;uT) T(t) T

'r;'ro
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and
t .
(6'93) K;;(’)’;” L, t)B;:(’}’;,,t, T) + 7111 / Ql(t’ G)B}:(’Y;,,O, T) ag =1, T2 7.

Their common kernel &' is a known function. Solvmg the first equation for ¥}, we
obtain functions ¥} and ¥, when the pa.rameter 7y, takes the values of «y, = +/
and 7} = 75, respectively, where v, and 7} are the principal values of the matrix
of the reduced cross section geometry, ' defined by Eq. (3.23). Then operators B1
and B are determined. Consistent with Eq. (3.90) from the same function ¥}, for

1 =1 we find the unknown ¥' by which operator B' becomes known. The integral
of function ¥} gives function ¥} so that for the same three values of parameter v},
we determine unknowns By, B and R*. Under the same condition these functions
are the solutions of Eq. (6.93). Summarizing the above results we notice that all
three functions Bf, B} and R* and their operators B), B and R', determining
the stresses and displacements, represent the solutions of only one parameterized
nonhomogeneous integral equation whose kernel ' can be directly determined from
the selected concrete transformation function £.

However, the determination of operators F; requires solving two independent
nonhomogeneous integral equations. First, we have to determinate the solution ¥’
of the equation contained in the operator relation

(6.94) F'R =T, thatis (%T +&)T -8) =T

After that, we form the parameterized nonhomogeneous integral equation stemming
from :

(6.95) RLF =T, thatis (r,1'—m¥) (—I—-T' + 'yh\i},) =T,
Th

the kernel of which is function v, ¥'. For two values of parameter 4, when v, =¥
and vn = <2 where 1 and 7, are the principal values of the scalar matrix v
(3.22), unknowns ¥{ and ¥} are determined. Respecting the fact that the integral
equations often have to be solved by a numerical procedure, the sense of introducing
the basic functions K and By, is obvious. We turn our attention once again to the
operator calculus underlining its role in defining the auxiliary basic functions whose
application also reduces the number of mathematical operations for obtaining the
results.

Keeping in mind the linear relation between the basic functions B} and cross
section transformation functions Fy, that is between their operators §§, and F’,’,, we
remark that from the solutions ¥}, of Eq. (6.92) we could have determined operators

F! and functions F and in that way the stress and displacement equations could -
be expressed in terms of them.
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7.1. Cross sections with I. = I, = 03

In practice there are structures whose concrete slabs are thin in comparison to
the height of their cross sections. In such cases the moments of inertia of concrete
(¢) and steel (p) parts of the cross sections, I. and I, defined by Eq. (3.14), can be
neglected in comparison to the moments of inertia of the transformed cross sections
[2.14], so that we can adopt
(7-1) I = Ip’r =0, Ye = Yp-

From the relations in Ch. 3.1 we show that the following is valid

72=07 72=O: ‘)é:ly

(72 Ay=m, =72 Mm=mm

and

(7.3) Y22 = M1 iA', M2 =1 %Sé, Mm=m (1 + y%é)
We use Eq. (3.90) to obtain

(7.4) =T R=1, Ff=1", Rj=1"

and _

(7.5) Ky=F, B,=R, K!=F*, B,=R"

In equations for stresses in statically determinate structures and in primary
structures when Xz = O functions S, (6.12) are rearranged according to Eqs
(7.2) and (7.3). Then
g Ny Eg yeA
Sun = (G + ) (1+2570),
= _ 71 Mg—yNg

S2H—_’—_J——(y‘yc); Ye = Yps H=GyS;P:AF
M

(7.6)

13gee Refs [1.27], [1.22]
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J HK Ujn,Ujk Vin, Vik Wiim, Wijk
G,AF ~ -
(d - n)* 0 SZH SlH
1 . !
ES 0 "‘E + ;"Sls “%1‘ IS
1 1
S *
i Ed ~(Bd+ 13 ) 13
71 18 " 18
PAF 0 ya NPz
(d=p) 9! 1H 5! 1H
G,AF NEX: & & M —Pg
d=n) | P (7{ Simt 2H) P2y Ty S1h
P& N—Ps
€ t] -8 S
s 18 1S
p S ;
P & _ﬁg _Nn—-Ps
" 15 ! 15 ’71’)’1 18
P m-p P m-pg m-0?z
P ! + S -~ S
(APr v TP ) p(Apr m P ny, T
AF P2 2z -0’5
(d = p) 71 1AF " 1AF ’)’1')’{ 1AF
G,AF 1 ~ M =
—S, g+ 8. 0 -
(d - n) ,Yi 1H 2H ’)’{ 1H
. Eg 0 0 S5
TT; S 1 1
o 0 -=8
7{ 18 ,yi 15
P,AF F s =Pz
’ —8 0 -5
(d=p) ¥, 1H S
TABLE 7.1

Taking into consideration formulas for Ny and Mg (Ch. 4), we have

.7)

and
(7.8)

- N N,
J(f)f =51H = _‘ZH—+ prHya
S'ZH = 0,

H=PAF ford=p

H = S,P,AF for d = p,
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d| K Uax Vi Wiak

G,AF| 1g. 0 SNEY-2
5] "
n
MN—Ps _n-p
P '7{ 1P 0 ,71 SIP
ry - —
e p/:i_ —pSIG 7171 pS
P
N=Pg N-Pg m=-0?s
P AF | p S —p S —_—S
Pk m K ny,
TABLE 7.2

where it is irrelevant in which way we introduce the concrete shrinkage function.
From Eq. (6.11) and the foregoing expressions we find the reference stress

gH = SHF]. +SH1* H= G AF for d = n,
oH = S1HF1'RH, H = S§,P,AF for d = p.

Applying the procedure as in the general case of cross section geometry (Ch. 6.1.1)
we develop the stresses in statically determinate structures and in primary struc-
tures when X g =0

ojg =vi(Ujgl" + V;aR* + Wy;u BY),
(7.10) oir =v; 3_(Ujk1* +VikR* + Wik BY),
K

(zm

j=¢,p,nm; H=G,5 P AF; K=F AF; F=G,P.
If the concrete shrinkage function € is introduced we find
(7.11) o5 = vj(VisR'es + WijsBies),  j=c,pn,m.

In Tab. 7.1 coefficients appearing in these equations are recorded. Stresses in the
additional element {d) due to the substitute influence F are defined by formula

(7.12) O4f = V4 Z(del* + Vax R* + WldKB;),
Y K

d=n,p, K=F,AF; F=QG,P.

The corresponding coefficients are found in Tab. 7.2
We can see that in statically determinate structures and in primary structures
when X, g = 0 stresses depend on the concrete transformation function R* and on
one basic function B} excepting that some stresses depend on functlon B7 only.
Simplifying coefficient V.5 we show that

Ed Apr

7.13 ‘fc = »
(7.13) s p‘7’11 A

Y=Y
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J Uix, Uax Xin Xar Vix, Vax Vi Vax | Wijn, Wian
c 0 0 0 Sox Si
(5 ! S 0 ! 1 0 N—p
D | —0mpp Z wXap |P (‘751,\ +S2;\) ~8upp ). SpaXap| PSay =5,
h T h M
1 "1
n,m 0 — —S5,+8S 0 0 -=8
7{ 1A 2X 7{ 1A
1 Yh
nl =~ SnX3p —S1a + Saa 0 0 —= 51,
d h Tn Tn
o1 =P
p| ¢ ZShAX?\F P (—:Sm +S2A) "PZSMXRF PSa “"1"7"‘ 1A
h T h "
TABLE 7.3
For d = —1 it becomes coeflicient Vg5 in the stress expression Ocs when an arbitrary

function €4 is introduced.

In later examinations we will use the foregoing equations when steel (p) is
assumed to be an elastic material. Then the stresses depend only on the basic
function B} with the remark that stresses o,y (H = G, S, AF for d = n) pertain
to the cross section points y = y., since Eqs (7.6), (7.8) and (7.13) hold. Thus we

can write
(a) o5 = vj(U;al* + Whi;n BY),
(7.14) (b) o5 = v; »_(Ujx1* + Wik BY),
K

(c) ogr = va Z(Ud}{].* + Whak Bi),
K
j=¢pmn,m;d=np, H=G,S5 P,AF; K =F,AF; F=G,P.
Introducing the concrete shrinkage function &5 we have

(715) 038 = VjWIjsgiES; .7 =c,p,n,m,

with the same remark that such a stress function refers to the cross section points
y = y.. Coefficients in the above equations are obtained from those in Tabs 7.1 and
72 for p =0 (¢ =1). In Tab. 7.1 column H, the stresses which only for y = y.
depend on the basic function BY are indicated with asterisks.

Stresses due to redundants X,y can be derived from Eqs (6.32) and (6.33),
referring to the general case of cross section geometry, since from Tab. 6.4 we see
that quantities v, do not exist in the denominators, that is that for y» = 0 the
coefficients in the mentioned equations do not become indefinite. We substitute
function B} with function R*, introduce 2 = 0 (75 = 1) and functions S, join
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Ui, Ugap Viam, Vaar Wijam, Wiaar | Virer, Vg
1 _ =
0 —7—151/\AX,\H+S2)‘X,\H SlAXf\H _Sz,\AX/\H
’ 1 v p ‘ =
p (‘751,\ + Sz,\)XAH ——S8\AX\H + 8,5, (pXaH m—p. =
e n __,'—Sl,\Xz\H _psz,\AX/\H
—8mpPp 3 SpX3p —p'AX\m)=0mpPp Y S Xap N
A A
1 = Y1 =
n (’7{-51,\4-52/\))(,\1{ - 2,\AX,\H _fy'{SIAXI\H 0
Ne 7 o %
1| S Xop + Sy AXyp ~SpAXyp - 2SnXor 0
N ' M
= = Y- =
p plz_islxX,\F-i-P'Sz,\AX,\F —pSinXoar +(p — p')S5AX,\p ————17, pSL\XAp ~pS;AX
1 1

TABLE 7.4

AXxe o g F

Here: X,\H = Xf\)H + AX, g, )?,\Q = XgQ + >
1

the coefficients as was done in the previous equations. Then

(7.16) OiHX =Vj Z(Uj’\l* + Xj,\X,\H + Vj,\R* + V}'AE’X,\H + le,\gllX,\H),
A=1
i=c¢,pn,m; H=G,S,P,Fand j=d; d=n,p, H=F; F=G,P.

Corresponding coefficients can be found in Tab. 7.3, while functions S, , are deter-
mined by Eq. (7.6) in which Ny and My are replaced by N, and M, , respectively.

The approximate formulas for stresses o;x are derived from the beginning
because in Eqs (6.36) and (6.37), corresponding to the general case of cross section
geometry, some coefficients become indefinite when vy, = 0 (Tab. 6.5). Combining
Egs (6.26) and (7.4) we obtain the reference stress

n
(7.17) oux = (SFXag + 8, Xam), H=G,SPF.
A=1

Applying Eq. (5.26) for the approximate functions X,z and the known procedure
we obtain

. n
(7.18) oigx =vj Y (Upngl® + VixgR* + Wijnm B + Vg R'RY),
A=1
i=¢pnm; H=G,S,P,Fand j=d; d=n,p, H=F; F=G,P.

To the above formula we join Tab. 7.4




82 7. SPECIAL CASES OF CROSS SECTION GEOMETRY

Assuming that steel (p) is the Hookean material, the exact and approximate
stresses ojpx and o5y are obtained under the known condition (p = 0,p' = 1)
from the given equations and Tabs 7.3 and 7.4.

The exact and approximate expressions for displacements as well as the load
dependent and independent members in the equations of continuity for this special
case are not written here. They can be obtained directly from the general equations
introducing v2 = 0 (3 = 1) and B; = R*. The example are stresses o;5x, given
by Eq. (7.16), when the coefficients in Tab. 7.3 are derived from the coefficients
listed in Tab. 6.4.

7.2. Cross Sections with I, = I;, = 0™

In the absence of steel parts in structures, in some cases it is possible to neglect
the moments of inertia of steel (p) and reinforcing steel (m), I, and I, defined
by Eq. (3.14), in comparison to the moments of inertia of the transformed cross
sections. Then

(7.19) L =Inr =0, Yp=ym.
From the equations found in Ch. 3.1 we show that the following holds

’YI=07 ’Y]’,=0) 7].:11

7.20
(7:20) Ay=7, =, %=y
and
2 2
v ypA y
(7.21) Va2 =M —?J—, N2 = 711—27‘, Y =T (1 + '%—)
From Eq. (3.89) it is evident that
(7.22) Fi=F, R=R, Ff=F", R =R
and
(7.23) K!'=1, B!=1, Ky=1%, Bf=1"

Many coefficients in the stress and displacement expressions and the members
of the equations of continuity corresponding to the general cross section geometry
(Chs 6.1.1, 6.2 and 5) become indefinite when v; = 0. That is why we derive here
these equations from the beginning, for the special case under consideration.

Consider the stresses in statically determinate structures and in primary struc-
tures when X»z = 0. Combining the formulas for functions S, ; (6.12) and Eqs

14gee Refs {1.27), [1.22]
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(7.20) and (7.21), we get
_ Y M~y Ne

2) Sy=taMr-tela, .,

- @ Sip= T )

' = _ Mi(Nu Mgy ypA
®) S = T+ ) (1+ ),

Yp =Ym; H =G,S5,P,AF.

Taking into account relations for N and My (Ch. 4) we arrive at

. N N

(7.25) oY = 2H=—-XH-+prHy, H=PAF
and

(7.26) S,y =0, H=PAF.

We see that no steel parts as the additional element (d) exist. It is presupposed
that d = p and this will not be especially indicated.
The reference stress is derived from Eq. (6.11)

on =5,y F' Ry + 5,y F3RYy, H=G,S5,
on =8, FsRY, H = P,AF,
while the stresses in some parts j of the cross section become
OjH = Vj(UjH].* + YjHF* +ViaR* + szHB;),
(7.28) ojp =v; 3 _(Uik1" + Yik F* + V;x R* + Wik B}),
K

(7.27)

j=¢pm; H=G,S85 P,AF; K=F AF; F=G,P.
Introducing the concrete shrinkage functions g, we obtain
(7.29) ois = v;(Ujseg + VijsRleg + WajsByes),  j=c,p,m.

Stresses in the additional element (d) due to substituted influence F' are given by
formula

(7.30) O4p = Vd Z(Udkl* +Yyx F* + Vag R* + Waak B3),
K

K = F,AF; F=G,P.

The coefficients found in the above expressions are recorded in Tab. 7.5

In statically determinate structures and in primary structures when X,z = 0
the stresses depend on one or both concrete transformation functions F* and R*
and on one basic function Bj; with the exception of some stresses which depend
only on function Bj.

Supposing that steel (p) is an elastic material, it can be shown that coefficient
Ves = 0 for both types of concrete shrinkage function €5 and that the stresses
depend only on the basic function Bj. Here Eq. (7.24a) is included, meaning that
stresses 043, and oz (j = p,m; H =G, S), when the assumption (2.27) is applied
for the function g, refer to the cross section points y = yp,. Thus
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id| H,K | U;n,Uijk,Usx |Yin,Yjk,Yax Vin,Vik,Vak Waie, Waik , Waak
G S.c 0 0 S,
e 0 0 _E+8,5+ 28 _Yg
s 15 28 28
Y2
c S 1
Ed+5,g 0 —(Ed+SlS+7~st) —~
P & Y —Ps
P,AF 0 0 L3
2 D
!
- - — Yo — _
G = pS16 + =55 P'Sic 0 - 275 pSzG
& 1 T2 P5
'S 0 S,¢ + —8&. S.
. €s P o3 P( 15T 25) 28
P P R PR P e
P * (0= p')Ss + i Sys P'Sis P(Sls + 5 525) P, Sas
P v-pa P y-ps Y (v2— p)*
P ! + S 0 - S -
P (Apr Vs 2P) p(ApT Y2 2P) ’Y2’Y§ P
p'2 - P2 = ("/2"[')2 &
AF —S 0 —S - S.
7 J28F  D2AF gy POF
1 - = "2 &
G * "Y—é"S2G SIG O —%Szc
m| § - — - T
* =S¢+ '7—5525 S1s 0 ’"7;525
- T2 - Pg
& Y2 5 & @ & Y2 Pg
G « (P"P’)Slc“'PITYZ‘SZG P'Sic =p (516 + S36) - W Sy
d
TP r=Ps (2= 0) &
PAF| o 5 0 - 5 s
PP P DK Ty

TABLE 7.5
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J Uja,Uax X Xax Vi, Vax Yin, Yar | Wajn, Waax
c 0 S5 0 0 S,y
p Y2—p
p|=0apP' Y. S Xp | PSia+ Sa0 | —0uPP Y. Sy X3p | £'S1y | —=-San
A Y2 h Y2
1 Y2
m 0 —S. 0 S. —=G.
v A 1A v A
4 Ta—p
d| —¢ EShAXﬁp pSiat 75 —pEShAXgi‘ P'Sin | =5
h Y2 h Y2
TABLE 7.6

(a) ojx =v;(U;jnl" + Wi B3),

(7.31) (b) - a;p =v; »_(Uj1" + Wajx B}),
K

(©) oup=vay (Uskl®+ WakBj),
Jj=c¢,p,m; H:G,.SI'TP,AF; K=FAF; F=G,P.
Introducing the concrete shrinkage function ¢g, we get
(7.32) ojs = vj(Ujseg + Wz,-sgéss), j=c¢,p,m.

The corresponding coefficients can be obtained from those in Tab. 7.5 for p = 0
(¢’ = 1). Stresses referring to points ¥ = y, of the cross section, included in the
above expressions, are designated by asterisks in column H. For the reason which
can be understood when one sees Tab. 7.5 the asterisk is placed next to stress o
instead of oy¢.

The reference stress oy x is derived from Eq. (6.26)

n
(7.33) oux = Y (SpF' + 5, F) X, H=G,S,P,F,
A=1

from where we obtain
n
(7.34) ojnx =v; 3 (Unl" + XpnXom + ViaR* + VnF' X + Wajn By Xom),

A=1
j=c¢,pm; H=G,S,P,Fandj=d; H=F; F=G,P.

The coefficients are listed in Tab. 7.6, while functions S,, are obtained when in
Eq. (7.24) Ng and My are replaced by N, and M , Tespectively.
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Uiret, Uanp Yizm, Yorr Viner, Vaar Waine, Woarp
_ 1 -
S, Ko 0 |-(Si+ ;;su) AXam| Sy Xam
pl v / 1
(/’Su""‘sz)\)Xz\H‘P SnBXow o o 'P(S1,\+“Sz,\) AXxm To—p . =
T2 p'S\ Xam 72 — S XK
=6upp'(Syy + Sy X3p —8rpPp(S;+5,,)Xp g
1 = - =
—SU‘AX)\H-I- ;;SzAX/\H Sl,\X)\H 0 _%ZSW‘XAH

(p— P')SuX,\F + P%%Szxixﬁ‘ P'SL\X,\F —P(SuX,\F""Sz,\):f,\F) "E,Yé—psz,\iw

TABLE 7.7

Here: Xsq = X3 + AXag, Xag = X3 +

The approximate equations for stresses ogx are derived from Eqs (7.33) and
(5.26) where the latter equation describes the supposed time variation of redundants
X u. Applying the standard procedure we find

n

(7.35) OiHX = Vj Z(Up‘ﬂl* + Yjzg F* + Vijxg R* + WeauB3),
A=1

j=c¢,pm; H=G,S,P,Fandj=d; H=F; F=G,P.

The corresponding coefficients are given in Tab. 7.7.
Equations (7.34) and (7.35) and the coefficients derived from Tabs 7.6 and 7.7
when p = 0 (p' = 1) determine the exact and approximate stresses o;gx when the
relaxation property of steel (p) is ignored. ,
Displacements in statically determinate structures and in primary structures
when X g = 0 due to influence H are derived substituting Eq. (7.22) into Eq.
(6.64). Then
m ~ —~
(736)  Ap=Y (DtuFRy + DigFi Ry,

a=1

H=G,S,PAF,

where functions D§ can be obtained when the special cross section geometry
(7.20) is introduced into Eq. (6.63). After the familiar procedure we arrive at

m .
(7.37) Ay = (PH1* + ZyF* + Q34 B3®), H=G,S5P,AF

a=1

and

m
(7.38)  Ap =3 Y (PR1"+ ZEF* + Q3x B3®),
K a=1

K =F,AF; F=G,P.
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H,K | P, Py, Poyg, Poxo | 28 2%, 20100 Zokco | Q3m Qx> Q%um0r Q5 uk0
1 = _ a
a a
G T?D2Q ‘D].Q 710 a
S D + — 1 ra . 1 Da.
1Q 7 2Q 1Q ’Yéa 2Q
4 . P 5
P,AF | pD%y+ +2D3, p'Dég -2 —=Dg,
1 Y2
TABLE 7.8

To these equations we join Tab. 7.8 in which Q = H =G,S,PAF and Q = K =
F,AF, F = G, P should be introduced. If the concrete shrinkage function €4 is
applied Eqs {7.36) and (4.6) are combined giving

m

(7.39) § = (Dises + D3sByes).

a=1
Displacements A} x due to redundants X, g are derived from Eqgs (6.71) and
(7.22)

1]

(7.40) AHX = z Z ( Dg)\XAH + Dl,\F,XAH - %"
A=1a=1 2

e Bt X,\H)

H=G,SPF.

The approximate expression is given by the formula

n m
Anx =) {[-DhdXom + ,Yi (X + AXom) |

A=1 a=1
AX
(7.41) +D3\ (X3 + AXom) F* - D2A (X% + — )Bs°},
2
H=G,S,PF.

“Functions D§, stem from Eqs (6.70) and (7.20), the latter referring to the reduced
cross section geometry for the special case under consideration.

When steel (p) is assumed to be the Hookean material, then p = 0 (p' = 1)
should be introduced in the displacement expressions.

It was stated earlier that the difference between the displacements in primary
structures when X g = 0 and the load dependent members in equations of con-
tinuity is that the first pertain to an arbitrary point of the structure axis with
coordinate s, while the second pertain to the axis point s = s,,. We refer to Eqs
(7.37) and (7.38) and obtain
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m
(7.42) Drgo =Y (Pipol" + Zyg F* + Q5,50B3°),
a=1

u=12,...,n; H=G,S,P,AF

and

(7.43) Arpo =9 (Prol™ + ZaxoF” + Q3,x0B3%),
K a=1 ' .
p=12,...,n; K=FAF; F=G,P.

To Eq. (7.42) we add the expression

m
(744) A:so = E(Dg“soes + Dg“stéGES'), B = 1, 2, P (N

a=1
The coefficients in Eqs (7.42) and (7.43) for p # 0 and for p = 0 are listed in Tab.
7.8 where Q = pH9, H = G,S,P,AF and Q = pK0, K = F,AF, F = G,P is
introduced. Quantities D3, no are determined by Eq. (5.10) and (7.20).

The load independent members are
~ m 1 ~ ~ fYa ~
(7.45) = (FDng + D5, F - ;%DE”ABQ’),
— ' 2

pA=12....n

and are formally the same when p = 0. Quantities Df,, can be derived from Egs
{5.16) and (7.20).
In the approximate equations of continuity (5.30) the coefficients become

= 1 . . 1 .
(746)  an=3 [(-Dfa+ %—GDgM)1 + D3 F” — ’Y—g;Dg”,\Bz“],
a=1

pA=12,...,n

and
n m 1 g ‘
(7.47) WESID (_,;Dg,,m +D§\F* — —,’{;DgMB;a),
Amlam1 T2 Y2

p=12,...,n; H=G,S,P,F,
being formally the same for p = 0.
7.3. Cross Sections Symmetrical About Two Axes !®
There are two reasons why this special case of the cross section geometry is
analyzed. The first is because some of Arutiunyan’s solutions refer to the stresses

in this type of cross section.

155¢e Ref. {1.22]
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In the case under consideration the centroid of the transformed cross section
C and the centroids of its parts C; coincide. Thus
(7.48) y; =0, j=c,p,n,m.
From expressions given in Ch. 3.1 we see that
(a) m2=7a =0,
(7.49) ®) m=m, 22 = V2,
() =0, d&y=An.
The matrix of the reduced cross section geometry v becomes a diagonal matrix.
Equation (7.49b) holds regardless of whether the order (3.26a) is sustained.
We confine our attention to the stresses in statically determinate structures

for which Arutiunyan derived some solutions. To this end we refer to Eq. (6.17)
for stresses o;4 and Tab. 6.2, concerning the general cross section geometry. As a

consequence of Eqs (6.12) and (7.49c¢) only functions S, ;; are different and become
~ N - M
(750 @) Sg="E, () Sy= ~Hy,  H=G,SPAF.

The second reason why we deal with this kind of cross sections lies in the

fact that the basic equations become two independent nonhomogeneous integral
equations. From Eqgs (3.44) and (7.49b), we show that

(7.51) Ry, =R, BRy,=§K,
while from Eq. (3.40) we obtain the basic equations
(7.52) EARn=N, EJR,x=M,
whose solutions are

1~ 1~
(7.53) En=—4FN, Ex==EM.

We notice the analogy between the above equations, on the one side, and the
basic equations (3.87) and their solutions (3.88), which correspond to the concrete
cross section, on the other side. The evident analogy therefore follows between
the cross section transformation functions R}, Fy¥ and the concrete cross section
transformation functions R*, F*. Function R* transforms unit deformations 5
and 3¢ of the concrete cross section into stress resultants N and M, respectively.
With this in mind we can say that functions R; produce the same effects in the
composite cross section. Also, functions F* and F}; have a similar role, transforming
unit stress resultants into functions 5 and . Taken in that sense we can say that
functions R; or F; describe the composite cross section behaviour, meaning that
they describe the laws of the co-action of different materials. We have already seen
that they are influenced by the physical properties of all materials as well as by
their arrangement, that is the cross section geometry.



8. SPECIAL CASES OF THE CONCRETE
TRANSFORMATION FUNCTIONS

We turn our attention to the application of the elementary theory equations to
the selected concrete transformation functions F*. The problem is reduced to the
determination of the corresponding basic functions B}, the concrete transformation
function R* and their operators B and R', which are then introduced into the
general expressions.

Three concrete transformation functions F* were used for the determination
of exact equations: the Rate of Creep Method, Maslov-Arutiunyan’s function and
the Hereditary Theory. The mathematical approach to derive the expressions more
or less depends on the mathematical formulation of the concrete stress-strain re-
lations. For the Hereditary Theory it was the Laplace transforms, for the Rate of
Creep Method the differential equations were solved, while for Maslov—Arutiunyan’s
function the stresses were the solutions of nonhomogeneous integral equations. Fur-
thermore, the starting equations have been formulated in different manners, which
were presented in Ch. 3.2. Sometimes the selection of the starting equations, and
sometimes the applied mathematical approach were reasons why the solutions were
limited mostly to the special cases of cross section geometry and loading,.

In Ref. [1.22] the derivation of functions ¥* and ¥} for the mentioned con-
crete transformation functions F* was shown in detail, introducing steel (p) as an
elastic material. The same results hold when its relaxation property is taken into
account, but the elements of the matrix of the reduced cross section geometry -y
are determined from Eq. (3.22), that is for p # 0.

The Hereditary Theory was formulated by Boltzmann’s principle of superpo-
sition [2.6] presupposing that the concrete transformation function F* depends on
the difference of variables ¢ and 7. That means that concrete aging property is
ignored and that it is of constant modulus of elasticity. Then Eq. (2.41a) gives

(8.1) F*t-1)=1"+3"(t-7), t>T27°=0.

Such a function predetermines the application of the Laplace transforms.
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The creep function ®* was assumed in the form [2.17], [1.4]

) 0= all-e0 (- )]
I=1

i

where variable ¢t — 7 is substituted with ¢t and where the coefficients ¢; and 9,
are known. The unknowns ¥’ and ¥} are obtained from Eqgs (6.92), (2.40) and
(3.81), where the last two expressions adopt the first one to the constant modulus
of elasticity. Their integrals were found to be

w0=Y wfl-ew (- 7))
i=1

53) -
Ti(t) = Zam[l—exp(— —t—)] h=1,2.
=1

Thi

The coefficients in these formulas depend on the roots of the Laplace transforms
polynomials and on the coefficients in Eq. (8.2), {1.4], {1.22].

In the Hereditary Theory two quantities are used. The creep coefficient ¢ as
the limit value of the creep function * when t = oo

(8.4) (8 8 =p, (b) F™=1+g¢, 0<p<M,

where M is the finite number and the relaxation coefficient 1) as the limit value of
the relaxation function ¥* when t — oo

(8.5) (a) T*° =49, (b) R =1-9¢y =1, O<yp<l.
Applying the final-value theorem [2.9] to Eq. (1.54) we relate these coefficients
p_ 1 __¥ _¥
(8:6) V=11, Y=Trgy =g

while from Eq. (3.35), where term og is omitted, the stress-strain relation when
t — oo is obtained

E?
(8.7) o = EPe™, E® = E%' = 1—+£S—0- .
It is the exact asymptotic equation of the Hereditary Theory. On the basis of the
same theorem the following is derived

1
(8.8) Bp>® = ,
T 1+ e
as well as the limit values of integrals when ¢ — oo, appearing in the stress and
displacement expressions, which can be represented in the form

(8.9) lim R'U = R*°U®, lim ByU = B{*U®, h=1,2.
t—o0 t—00

h=12,

The exact algebraic formulas for stresses and displacements when t — oo of
the Hereditary Theory, the so-called asymptotic stresses and displacements can be
obtained from the general expressions exchanging the time functions with their
limit values, according to the above equations.
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An alternate procedure for arriving at the asymptotic expressions is to return
to the eight equations (3.34)—(3.39) when ¢t — o0, replacing Eq. (3.35) with (8.7)
and substituting the integral equation (3.36) for steel (p) with the corresponding
algebraic equation. With the application of the familiar procedure we obtain the
simplified formulas for stresses and displacements in which no principal values v,
of the scalar matrix ~ appear. Assuming that steel (p) follows Hooke’s law, such
expressions were derived in Refs [1.3], {1.22].1®

For the creep function (8.2) and n = 1 Rzanicin [2.17] determined the stresses
in a reinforced concrete bar for some simple load cases.

J. Lazi¢ [1.4] developed the elementary theory of composite and prestressed
structures, introducing the Hereditary Theory as the creep prediction model in the
form of Eq. (8.2) and steel (p) as the Hookean material. Applying Purié’s method,
the principle of virtual forces and the algebraic operations with the Laplace trans-
forms, J. Lazi¢ developed the simple formulas for stresses and displacements which
can be obtained from the general equations when the concrete transformation func-
tion R*, the basic functions B} and their operators R', B}, are determined from
Eqgs (8.3), (2.41) and (3.83) and when Hooke’s law is assumed to be valid for steel
(p). Also, J. Lazié [1.3], {1.4] developed the asymptotic equations of the Hereditary
Theory. An interesting discussion of the extreme values of the stress functions in
steel and concrete due to permanent eccentric pressure force and concrete shrinkage
in statically determinate structures in time interval 0 < ¢ < oo was performed by J.
Lazi¢ [1.1], [1.5] assuming the general cross section geometry. Using the influence
functions, J. Lazié¢ {1.3], [1.4] created two simultaneous nonhomogeneous integral
equations of the second-order theory where the influence of the longitudinal defor-
mation was taken into account. The application of the corresponding asymptotic
equations was shown by J. Lazi¢ [1.1] on the example of the symmetrical, one time
statically indeterminate prestressed structure of variable cross section, due to dead
load, prestressing by forces and concrete shrinkage.

For the Rate of Creep Method and Maslov—Arutiunyan’s function; as creep
prediction models, the concrete transformation function R*, the basic functions
B;; and their operators R', B;, have been obtained from the parameterized nonho-
mogeneous integral equation (3.75) and its solution (3.76) following the standard
procedure for obtaining the resolvent kernel [1.22]. The starting equation in which

the function TT" and kernel & are known, was translated into a parameterized
differential equation. By comparing its solution with Eq. (3.76) function ¥} was

identified. Operators R, ~;l and functions R*, By, can then be found by the manner
explained in Ch. 6.4.

The concrete transformation function F*, corresponding to the Rate of Creep
Method, was proposed by Whitney [2.25]

(8.10) F(t,r) = 7(% +F@) - F(r), t>7310

165ee also Refs {1.2], [1.4].
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where F(t) is an arbitrary time function. It can be seen that it is defined by the
apparent creep. According to Eq. (2.38) we establish the relation

(8.11) #°(t,7) = [Ft) - 755] - [F() - )

from which the kernel ¢’ was determined. In the Rate of Creep Method variables
@ and f were introduced in the following way

(8.12) - (@) ¢=F(@), (b) f=F(n),
where variable p!7 is known as the effective time. The resolvent kernel is

! = .1_ —=Ca( )i I_(_Q_ ¢a(f)
(8.13) V(o f) = e [rh(f)e ]

Integrating the above relation we get

(8.14) (o, f) = l{i(‘P_) - L(f_)e—[o.w)—ch(f)l},

W@ ()
where
‘ _ [fr®
(8.15) (o) =, /0 i

The constant modulus of elasticity is often used in the Rate of Creep Method.
Applying Eqs (2.41a) and (8.12) we obtain

(8.16) Flo-fl=T"+(p- 1),
so that the Laplace transforms can be used for the derivation of formulas for stresses
and displacements according to the same procedure as in the Hereditary Theory.
We point out that the final-value theorem cannot be applied because the effective
time ¢ = F(t) has a finite value o, when t = oco.

The stress—strain relation of the Rate of Creep Method is often used in a dif-
ferential equation form

de de
ofc _=s)y_ _ - YY

(8.17) E( T ) +o.,
which can be derived from the integral equation (2.13) and Eq. (8.10). The time
variation of the concrete shrinkage deformation g is assumed to be the same as
for the creep function

818  e=eslo)=-Tp,  f=F")=0,

where €s; is the value of concrete shrinkage deformation when ¢ — oo [2.10].
Supposition (2.27) about the same function, introduced in this theory, has the
same meaning. When the differential equation (8.17) is written for the constant
modulus of elasticity, r(¢) = 1 is applied.

17With Eq. (8.4) the creep coefficient of the Hereditary Theory also was denoted as ¢. The
notations are retained in that way as they can be found in literature.
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Going from differential equation (8.17) and constant modulus of elasticity, Son-
tag [2.19], Kunert [2.14] and Ulicky [2.21] derived the formulas for stresses in con-
crete and steel for some special cases of the cross section geometry and constant
stress resultants. For the same starting suppositions Fréhlich [2.12] and Duri¢
[2.10] obtained the equations for concrete and steel stresses in the cross section of
the general geometrical characteristics. According to our notations, the last two
authors derived stresses o;jg (j = ¢,n,m; H = G,S) for statically determinate
structures, constant modulus of elasticity and p = 0. Under these conditions, from
Eq. (6.17) and Tab. 6.2 we see that these stresses are expressed only in terms of
the basic functions Bj. As was mentioned in Ch. 6.4, both authors obtained the
excess member containing function R* in the equation for stress in concrete as a
consequence of the supplemental integration. We emphasize again that during the
mathematical evaluations this cannot be predicted.

A few solutions for stresses were obtained when the variable modulus of elas-

ticity was assumed. For example, Sattler {2.18] determined the stresses in a bar’

with a cross section symmetrical about two axes due to prestressed axial force. The
same can be said for statically indeterminate structures. Guderian [2.18] found the
time variation of redundants in a continuous beam with I, = 0 due to concrete
shrinkage and support displacements.

The Maslov-Arutiunyan concrete transformation function F* is given by for-
mula {2.15], [2.4]

(8.19) F*(t,7) = r_(l;'j + E%p(7) [1 - e"’“‘”] , t>T210,
where
A

T

—_ EO —at . H __i
(820) ’I‘(t) - 'E?'(l - ﬂe )7 EO - tll’lgo E(t)a SO(T) - CO +
and where a, 8, v, Ey, Co and A; are known constants. It is also formulated
through apparent creep from which we derive the true creep function
A1
r(r) r(t)

using Eq. (2.38). The kernel &' of the parameterized integral equations (3.75) was
obtained from the above equation. The resolvent, kernel is

¥, (t,7) = e [ D] () [ 2]

(5:21) @ (t,7) = + Bp(r) [1 - 710,

Thdr Lr,(r) r4(7)
T B TOPNG o NPty Bl ) B
(8.22) By [Lp(t)rh(T)e ] /T e dé.

By integration we find

vy = L[IO T ooy T e [C16) oo
829) %)= [rh(t) Th(T)]+’YEc<P( o / Zae e
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where

t
(8.24) a® =7 [ [1+%E200 ’(("2)
m° Th

Applying an alternate substitution while determining the resolvent kernel we obtain

Th(t,7) = %% [-r@—] +vEQp() [I@_]"'

Jas.

h( Th(T)
(1) 12 eam) [* g=ca®)
(8.25) B Lo )[w)] } / =40 dp
and
. @ ) 0o [V nn) [ @
826 Ti(tr)= [rh(t) rh(T)]+”yEc<p( )[rhm] e / =0 g,
where
t (0) i

_ / r__df

(8.27) Cn(t) = / , {7[1+7hE3 ) h(9)] r(a)rh(O)}dg

The difference between the two forms of the resolvent kernel ¥}, that is function
U7, disappears if the constant modulus of elasticity is assumed, which follows from
Eqs (2.40) and (3.81).

Aleksandrovsky [2.2] determined the resolvent kernel ¥’ corresponding to Eq.
(8.22) for v, = 1.

Introducing the constant modulus of elasticity Arutiunyan [2.4] derived the
relaxation function ¥* as in Eq. (8.23) or (8.26) for v}, = 1. Arutiunyan also ob-
tained the formulas for concrete and steel (p) stresses, both at points y = y, in
a prestressed bar of cross section with I, = 0 due to prestressing by forces and
concrete shrinkage. Separately, Arutiunyan solved the task when such a loaded
bar was subjected to the action of a constant bending moment. For a reinforced
concrete cross section with I, = 0 Arutiunyan found the concrete and steel stresses
at points y = Yy, due to constant bending moment. For a reinforced concrete cross
section symmetrical about two axes Arutiunyan determined the stresses in concrete
and steel due to a constant pressure axial force and concrete shrinkage. Some of
the solutions pertain to the variable modulus of elasticity. The concrete shrink-
age function €5 was assumed as a difference of exponential functions. Arutiunyan
solved every task separately by forming the equilibrium equations and the deforma-
tion compatibility conditions of steel and concrete. It is interesting to notice that
Arutiunyan selected such special cases of the cross section geometry, loading and
points where stresses were determined so that the problem would always reduce to
two independent nonhomogeneous integral equations in unknown steel or concrete
stress function. In Arutiunyan’s solutions we find functions ¥] and ¥} in two forms
as in Eqgs (8.23) and (8.26).

According to our notations Arutiunyan derived stresses ojy (j = ¢,p; H =
G, S, P) at points y = y, and stresses g;¢ (j = ¢,m) at y = ym, in cross sections
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with I = I, = 0 in statically determinate structures when p = 0. From Eq.
(7.31a) and Tab. 7.5 we see that they only depend on the basic function B}, that
is ¥3. For the double symmetrical cross section Arutiunyan obtained stresses ojp
(j = ¢,;m, H = G,S) in statically determinate structures for p = 0 due to axial
force only. In that case Eq. (7.50b) shows that coefficient S,z = 0 when My = 0.
From Eqs (6.17) and (6.23) and Tab. 6.2 can be seen that then the stresses are
expressed only in terms of the basic function B}, that is ¥7.

From the point of view of the task selection, Arutiunyan’s solutions are inter-
esting because only the stresses depending on one basic function Bf or Bj were
determined. From the point of view of the elementary theory the solutions are
interesting because in each separate procedure Arutiunyan determined the same
function ¥} or ¥3, that is the same basic function B} or B. The elementary
theory developed here reveals that the solution of only one such equation leads to
all stress and displacement expressions when Maslov—Arutiunyan’s creep prediction
model is assumed.

Let us now examine the cited concrete transformation functions F* pertaining
to the prediction of the reversible and irreversible creep deformation.

Applying Eqs (2.34) and (2.36) on Eq. (8.1) of the Hereditary Theory we obtain

1
E?
meaning that this function presupposes the reversibility of the complete creep de-
formation, that is that concrete exhibits the delayed elasticity.

For the creep function of the Rate of Creep Method (8.11) we derive

(828) EI(T, TO) =0, ER(Tv To) = o* (T: TO) 75 0,

1
{8.29) e(T, 7% = ﬁ)@*(T, 7%) #0, ex(T,7°%) =0,
c
indicating that this function predicts the irreversibility of the complete creep de-
formation.
For Maslov-Arutiunyan’s creep function (8.21) we obtain

1( 1 1
(8.30) ei(Tir?) = E—S{r—(;"—) N Bele() - (p(T)]} #0,

er(T,°) = (T) = p(r%)e™ 7T~ 2 0,

Predicting both types of the creep deformation this function is more realistic.
Regarding the predication of the creep deformation the Hereditary Theory and
the Rate of Creep Method are the limit functions of all concrete transformation
functions F* because the first foresees only reversible and the second only irre-
versible creep deformation. They are also limit functions in respect to the predic-
tion of the stress relaxation. Adopting the same value of the creep function ®* for
the Hereditary Theory and the Rate of Creep Method, when the same t and 7°
are presupposed, we can show that the first foresees the smallest, while the second
predicts the largest stress changes in the time interval (7°,t). They demonstrate
the same properties in composite cross sections. In Ref. [1.22] the exact stress val-
ues were calculated in the four cross sections of different geometry when t = oo
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under influences H = G, S, P assuming that steel (p) follows Hooke’s law. The
stress calculations have been performed for the Hereditary Theory, the Rate of
Creep Method and for the Maslov—-Arutiunyan function, supposing E.(t) = const.,
the same time of the load application 7° and the same values of concrete creep
functions $* when ¢ — 0o. The results show that the Hereditary Theory gives the
smallest and the Rate of Creep Method the largest stress changes in the time inter-
val (1°,¢ — 00), while the stresses calculated by the Maslov-Arutiunyan function
are found in between these values.



9. EXACT AND APPROXIMATE
ALGEBRAIC EQUATIONS

9.1. Numerical Integration
of the Stress—Strain Relation for Concrete!®

We begin our study with the evaluation of the algebraic relation between stress
and strain for concrete. For that purpose we rearrange the integral equation (2.13)
introducing operator F' (2.14) and Eqs (1.40b) and (2.6). In the expression ob-
tained .

oc(t, 1/t
(9.1) e(t, %) —e5(t, 70) = —cEgc—(t-)—)- ~ /TO F*'(t, 7)o (r,7%)dr,
we determine the integral value by the numerical procedure.

The concrete transformation function F* is often given in the following form

EO
(9.2) F*(t,7%) =1+ E—;—sw(t,f"),

where function ¢(t,7°) is named the creep coefficient'®. As is already known,
the proposals for function F* contain values of the coefficient ¢(t,7°) in time ¢,
depending on the concrete age at the first load application 7° and other factors
affecting the creep phenomenon and contain the descriptions of function E,(t).
The value of E,o5 is Young’s modulus of concrete at the age of 28 days.
By comparing the concrete transformation function F* given by Eq. (2.37) for
7 = 79, in which Eq. (2.9a) is included, with Eq. (9.2) it can be seen that its second
term refers to the apparent creep. We derive the true creep function from Eq. (2.38)
for 7 = 70
0
(9.3) &*(t, %) =1- E

12
AR 4% 7).

Ec28

185¢e Ref. {1.13]

19This name and designation are quoted as found in literature, and it should be distinguished
from the creep coefficient of the Hereditary Theory (8.4a) and from the effective time of the Rate
of Creep Method (8.12a).
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Recalling that the concrete transformation function F*(t = const.,T) is monotonic
decreasing (Ch. 2.1), we assume that in the time interval from 7 = 7% to r =t it is
a linear function of variable 7. From Fig. 9.1a we read that

*/ __i * 0 —y_ 0
(9.4) F'(t,7) = ATQ (t,7), At=t-1".

For stress function o, (7, 7°) we suppose that it is monotonic decreasing and con-
cave (Fig. 9.1b), which corresponds to the stress variation under constant deforma-
tion. At the limits of interval A7 its values are 0 = 0%(%,7°) and o, = o.(t, °).
Consider area A, limited by function o.(7,7%), ordinates 7 = 7° and 7 = ¢ and
the appurtenant portion of the abscissa. We calculate it as the sum of areas of
rectangle o,At and the remaining portion w(o? — ,)AT

(9.5) Ay =o. +w(of — 0.)]AT.
For now parameter w is still not determined but it is evident that it lies within the
limits

1
(9.6) I<w< 3
The value of w = 0 corresponds to the constant stress ¢ = o,, while w = %

corresponds to the linear variation of the stress function o.(7,7°).
Combining Eqs (9.4) and (9.5), we find the value of the integral in Eq. (9.1)

t

9.7) / F*(t,7)oc(T, %) dr = —8*(t, 7%)[0 + w(a? — a.)].

70
In this way the integral equation becomes algebraic. It is written in the form
(0.8) o = EOC(e - €5) — peo?,
where

1 _ (g -0 — - 0 __ we .

(99) Cc - Cc(t7T 7(10)"‘}) - F* "'LUQ* I Pc - pC(t7T ,QO,UJ) - F* —w<I>*

In the algebraic equation (9.8) there are two parameters: the creep coefficient
w(t,7°) which introduces the effects of the concrete creep and w which will be
related to the relaxation of concrete.

The concrete transformation function R* is determined by Eq. (2.19). It was
obtained when a unit deformation is introduced into Eq. (2.17) and then o, = ECR*.
Also, for a unit deformation Eq. (2.23) gives 02 = E?. When all this is taken into
account from Eq. (9.8) and ¢ — e = 1, we derive

(910) R*=( - p,
from where we relate parameter w with concrete transformation function R*
1— R*®*
. = w(t 0’ , RY= —— .
(9.11) w=w(t,7,p,R) (1-R"®*

Assuming that for the selected concrete transformation function F* the time func-
tion R* is determined and that for a given time ¢ and the concrete age 7° the
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corresponding value of parameter w is calculated. Then for the same pair (7°,1)
the algebraic equation (9.8) is accurate.

Let us introduce the relaxation factor ¥, defined as the ratio of the stress
relaxed during the period ¢t — ° to the initial stress 2, due to a unit deformation

acting from 7°. Thus

od-g .
(912) wR'= ¢R(t’7—01‘p’w) = _C_a._o_‘i =1- R =1- Cé +p07
[
that is
F* -1
(9.13) Yp = o

For the selected value of the creep coefficient ¢(t,7°), that is creep function ®*, in
the time interval (r9,¢) the lower value of parameter w corresponds to the lower
value of the relaxation factor ¥, and the w parameter limits define the limits of
the relaxation factor ¥z. Also, the algebraic equation (9.8) predicts smaller stress
relaxation in the time interval (79, ) if the smaller value for parameter w is adopted.
The selection of the parameter w value is the selection of the amount of concrete
relaxation.

We are going to discus two limit cases of algebraic equation (9.8). The adoption
of w = 0 means a constant stress in time interval A7. Then the value of the
integral (9.7) is directly obtained and the assumption related to function o.(r,7°)
is unnecessary. For w = 0 we find

1
014 Yo=——pr——— R'=1-9%p=uj
1+ —=%(t,7°
A
and the algebraic equation
EO
(9.15) 0. = Eei(e — €5), Eeg=EXWp= — 5,
1+ 7 ;8 (¢, 0)
C

known as the Effective Modulus Method (EM Method). Assuming that E.(t) =
E.28 = const., it is also cited as the Total Deformation Modulus Method [2.7]. It has
been shown [1.13] that this method could not be applied for young concrete because
the factor ’EEEE considerably reduces the value of the creep coefficient (¢, 7°%) in
time ¢ (t > 79).

For a constant modulus of elasticity when ¢ — oo, function %tp(t, 70) and the

relaxation factor 95 become the creep coefficient ¢ and the relaxation coefficient
¥ of the Hereditary Theory, respectively, which can be seen from Eqgs (8.4b) and

FIGURE 9.1. (See the facing page) Assumed variations in the time
- interval A7 of: concrete transformation function F*(t = const., )
(a); stress oc(r,7°) (b)
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(8.5b). Algebraic equation (9.8) then becomes the exact asymptotic equation of
the Hereditary Theory (8.7). Otherwise, for any finite time ¢t the EM Method is
an approximate relation between stress and strain of the Hereditary Theory. The
equations can be improved when we adopt the constant E? value corresponding to
the given concrete age 7°.

The algebraic equation (9.8) for w = £ is known as the Mean Stress Method
with Variable Modulus of Elasticity [2.7]

0 *
(9.16) Oc = —-E—-()Q—E-E——(e—-es)— —ET({—US-
~ + =+ P
E.(t) E(t)

This is the approximate equation of the Rate of Creep Method. Assuming a con-
stant modulus of elasticity, Duri¢ [2.10] derived such an equation starting from the
differential equation (8.17).

The formulas derived from Eq. (9.8) forw =0 andw = % are the so-called single
parameter algebraic equation. For a given pair (7°,¢) we select only the value of
the creep coefficient (¢, 7°), but we cannot adjust the relaxation prediction, that
is the relaxation factor 1y, since it was already done when the value of parameter
w was adopted. For w = 0 algebraic equation (9.8) underestimates the concrete
relaxation, while for w = £ it overestimates it.

On the basis of certain approximations, Trost [2.20] was the first to create
the algebraic equation in which, besides the creep coefficient (¢, %), one more
parameter, which he named the coefficient of relaxation, exists.

The known Bazant’s Age-Adjusted Effective Modulus Method (AAEM Method)
[2.5] is also an algebraic equation with two parameters. Bazant based the deriva-
tion on his own theorem meaning that the stress depends on the creep coefficient
o(t,7°). The equation obtained is given here in the form of Eq. (9.8) in which

<-1= 1 pe = XI(F*"']-) !
¢ T 14 x(F*-1)’ T 14 x(Fr-1)’
Parameter x is named the aging coefficient, the values of which were determined
through the concrete transformation function R* as follows

1 1
— 0 *) — - .
(9.18) x=xt71,¢,R )”— 1— R* F*—-1

(9.17)

In this way the AAEM Method, expressed by Eqs (9.8), (9.17) and (9.18), provides
us with the accurate values of stresses for each pair (r°,¢) and for each concrete
transformation function F*.

The relaxation factor 15 can be written in terms of aging coefficient x

_ 0 -1
(9.19) ¢R = ¢R(t;7 Py X) = 1+ x(F* = 1)

For the given value of the creep coefficient (t,7°) in the time interval ¢ — r°
the lower value of the aging coefficient x corresponds to the higher value of the
relaxation factor 5.
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The relation between the aging coefficient x and parameter w can be established
by equalizing the relaxation factors 1, given by Eqs (9.13) and (9.19). Then
v wd*
F*-1
The upper limit of x = 1, corresponds to the bottom limit w = 0, while its lower

limit corresponds to the upper limit w = % Then we show that the aging coefficient
x lies within the boundaries

(9.21) 0<x<1l, x(w=0)=1.

(9.20) x=1-

For the concrete transformation function F* suggested by the ACI [2.1], Bazant
[2.5] calculated the values of function R* and created a table of values of the aging
coefficient x for various ages of concrete 7° and various times ¢ — 70. It is obvious
that such tables can be formed for any concrete transformation function F*.

Under the assumption that for a given pair (7°,t) we adopt the value of the
aging coefficient x or parameter w different from those corresponding to Eqs (9.19)
or {9.11), the algebraic equation (9.8) becomes approximate. The preceding analysis
shows that such an equation predicts smaller stress relaxation in the time interval
(7°,t) than the exact one, if for the same value of the creep coefficient (¢, 7%) the
larger value of x or smaller of w is adopted. Also, if a lower value is adopted for ¥,
or a higher for w, the same algebraic equation will predict larger stress relaxation
and will thus define the stresses on the safe side.

It can be seen that the assumptions used here for deriving the numerical integra-
tion and for obtaining the AAEM Method are insignificant. Different assumptions
gave the algebraic equations, exact for certain values of parameter w that is for the
aging coefficient y, or approximate, in which the degree of prediction of the stress
relaxation depends only on the selection of their values.

By introduction of parameter w into the numerical integration, the algebraic
equations for concrete can be analyzed as a whole from the aspect of the stress
relaxation prediction. The single parameter algebraic equations as the limits in the
prediction of the stress changes are of specific importance.

We have already mentioned in Ch. 8 that the Hereditary Theory and the Rate
of Creep Method are two concrete transformation functions F* predicting, for the
same value of the creep coefficient ¢(t,7%), the smallest and the largest stress re-
laxation in the time interval (7°,¢). The EM Method (9.15) is the approximate
equation of the Hereditary Theory and, presupposing w = 0, defines smaller stress
relaxation than the Hereditary Theory. The Mean Stress Method with Variable
Modulus of Elasticity (9.16) is the approximate equation of the Rate of Creep
Method and, presupposing w = %, defines larger stress relaxation than the Rate
of Creep Method, all under the assumption of the same value of the creep coef-
ficient ¢(¢,7°). Summarizing the above, we possess the limits beyond which we
cannot expect the real values of stresses in time ¢ (¢ > 7°) independent of whether
approximate or accurate equations are used.

This circumstance was used to confirm the assumption concerning the trans-
formation function Ry for steel (p) described by Eq. (2.44). The stress decreasing
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in steel (p) due to prestressing by forces and concrete shrinkage has been calculated
for a large number of prestressed columns having various concrete ages 70 of the
load applications, from 66 hours to 10 days, and various amounts of the steel relax-
ation. The stress values have been calculated in times of 3 to 900 days. The stress
limits then have been determined beyond which their values could not be expected.
The bottom limits have been obtained applying the algebraic equation for w = 0
(EM Method) where for each 7° the corresponding constant E? has been accepted.
For specific reasons the upper stress limits have been derived from accurate equa-
tions of the Rate of Creep Method and constant modulus of elasticity, although
the calculation of these values is simpler when the algebraic equation for w = % is
applied. Since the measured values of stresses mostly occurred in these intervals it
has been shown that assumption (2.44) closely approximates the behaviour of steel
(p) in the structure [1.7]%°

9.2. Algebraic Formulation of Stress and Displacement Expressions®!

The starting equations for deriving the algebraic equations for stresses and
displacements are basically the same as those from which the exact expressions have
been obtained. Those are Eqs (3.34)—(3.39) where the integral relations between
stress and strain for concrete and steel (p) are substituted with algebraic relations.

For concrete we introduce the two parameter algebraic equation (9.8)

(9.22) oc = EOCl(e — £5) — pec?,
where the coefficients are
1 X (F*—1)
(023 ¢ = L= Xy =1-%,.

T+, -1 T TG E -
They differ from the coefficients of the AAEM Method in that, instead of the aging
coefficient x defined by Eq. (9.18), the free parameter X is introduced with values
within the same limits (9.21).

For steel (p) we establish the algebraic equation of the EM Method
(9.24) op = EpGe, G =1-(.
It is Eq. (9.15) in which coefficient ¢ is substituted with ¢, since {;, represents

the relaxation factor of steel (p) (Ch. 2.2).
We derive the basic equations by the known procedure and obtain

EAm+ ES;»x=N + pe N2,

(9.25) 0 o
ESn+ EJex=M + pc (ye N, + M),
where
A S, I
0 _ “er 270 | Oer ps0 0 _ 2oT 350
(9.26) NC-AN+JM, M, JM,

205ee also Ref. [1.10]
215ee Refs [1.18], [1.25]
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N9 and M? being the parts of the axial force N? and bending moment M received
at t = 701 by the concrete part of the cross section. The cross section geometrical
characteristics are determined by formulas

AC =A = (A - CpApTa S( = —CcScr - CpSpr’
J( =J- Cchr - CpJpra gc =1- Cé

It is obvious that they correspond to the given time interval (7°,¢) which means
that the algebraic basic equations refer also to the same period. Solving Eq. (9.25)
we get

(9.27)

B = - (e = S M + e [0 ~0eS 2 - 58]}

D¢
9.28 E'—1 AcM-S.N Ac— S, )N? + A M?
(9.28) x"'b?{( —9¢ +Pc[(yc ¢~ ()c"‘ < c]};
DC=A(JC—52.

The procedure for the evaluation of the algebraic stress and displacement for-
mulas is well known and it is the topic of the approximate theory developed in
Ref. [1.24]. Here we remark only that they contain the free parameter x, through
coefficients (. and p.. In the general case of cross section geometry, for p # 0 and
p = 0, the algebraic expressions are always approximate even when we take for
the free parameter x, the value of the aging coefficient x of the AAEM Method.
Exceptions to this are some special cases of the cross section geometry when such
values can be found for the free parameter x; # X, for which accurate stresses and
displacements can be obtained for each pair (7°,t) under the assumption that steel
(p) is an elastic material. This will be the subject of later analysis.

Such algebraic expressions are suitable because the same formulas can be used
for various values of the free parameter x s+ Introducing x, = x for the given
concrete transformation function F* we receive the results of the AAEM Method.
Stresses and displacements corresponding to the EM Method and the Mean Stress
Method with Variable Modulus of Elasticity are calculated for x; = x;(w=0) =1
and x; = x(w = 1), respectively, defining the limits of their values for a given pair
(79,t), assuming the common value of the creep coefficient (¢, 7°).

The algebraic basic equations for the concrete cross section are derived com-
bining Eqs (9.25) and (3.84), the solution of which is

1/N NO 1 /M MO
0, . — (- - - (= —
(9'29) Ecn - C(I: (Ac + pC Ac )7 ng Cé (Jc + Pc Jc )’
where the following is introduced
(9.30) A = (A, Je = (..

The free parameter x 7 appears in quantities 7 and » through coefficients ¢, and
Pe-
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9.3. Generalized AAEM Method

We turn our attention first to a concrete cross section in order to determine the
value of the free parameter x 5 for which the algebraic stress expression becomes
exact. To this end we refer to the exact and algebraic formulas for functions 7 and
», assuming that stress resultants N and M depend on the concrete transformation
function R*, as is described in Eq. (6.75). Then Theorem 1 provides us with the
exact functions 1 and , given by Eq. (6.78). In the algebraic relations (9.29) we
introduce the same stress resultants N and M as well as their values at t = 79t
denoted by N° and M°. Equalizing them we get

.11
XEXEI TR TP o1
As was expected, with this we have shown that for the concrete cross section, the
algebraic equations of the AAEM Method are accurate for each given pair (7°,¢)
and each selected concrete transformation function F™*.

Now we express the stress through the aging coefficient x using Theorem 1 and
the above equation. One way is to start from the algebraic formulas for n and »
(9.29) to which Egs (6.75) and (9.8) are added. We obtain
1= x(F*-1) N M

32 = 1* —_—— = = 5 l= a]-:
(93 ) -0-'0 UCO +Uc1 1+X(F*-‘1), Ucl Ac+ ch 0
representing the accurate algebraic expression of the AAEM Method.

Analogous to coefficient x, associated to a concrete cross section, we define the
pair of the corrected aging coefficients by the expression

11
1-B; K;-1

and associate them to a composite cross section. Consistent with Eq. (3.90) we show
that for 7, = 1 they reduce to the aging coefficient x. In contrast to the aging
coefficient, which depends on the physical properties of concrete, the corrected
aging coefficients depend on the physical properties of all materials co-acting in the
cross section and on the cross section geometry, as do other functions associated to
a composite cross section.

The influence of the cross section geometry on the corrected aging coefficients
X~h 18 examined for two concrete transformation functions F*, the ACI [2.1] and
CEB-FIP (2.7] proposals {1.25].22 Introducing <} as a parameter (0 < 7, < 1),
the values of x» were calculated for v; = 0.1; 0.5 and 1, while the corresponding
curves are shown in Fig. 9.2. Solid lines refer to the CEB-FIP creep prediction
model, dry environment ¢y, = 3.0, hp = 20 cm and 10 = 7 days. Dashed lines
refer to the ACI proposal for 7° = 7 days and ¢(00,7) = 4.152, which was obtained
from the condition that for 7% = 7 days and ¢t — 7% = 10* days both functions have
the same value.

(9.31)

(933) X‘Yh(t) TO’K}‘;:B;) = h= 1,2

225ee also Refs [1.18}, [1.19], [1.17]
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F1GURE 9.2. Corrected aging coeflicients xy4: the CEB-FIP pro-
posal (solid lines) and ACI proposal (dashed lines)

For a given pair (7°,¢) the smaller values of the corrected aging coefficients
X~ correspond to the smaller values of parameter +y;,. Their largest values appear
when v, =1 and represent the aging coefficient x values. It is obvious that

(9.34) 0<xyn<1.

Differences in the values of the corrected aging coefficients x5 for 7, = 0.1 and
7, = 1 in time ¢ (¢ > 7°) depend on the selection of the concrete transformation
function F™*. It can be seen that for the ACI creep model the differences are smaller
than for the CEB-FIP prediction (Fig. 9.2).

In analogy to the AAEM method (9.32) for concrete cross sections, the General-
ized AAEM Method is established based on Theorem 2. We recall that it determines
the stresses in the composite cross section of arbitrary geometrical characteristics
when stress resultants N and M depend on the cross section transformation func-
tions R}, as was described by Eq. (6.79). Instead of stress function (6.81), we use
Eq. (6.17) in which functions R* and B}, are substituted with the aging coefficient
x and the corrected aging coefficients xp, respectively, according to Eqs (9.18) and
(9.33). Then we get

) 1—x(F*=1) 1 -xn(KR —1)
. g =vi \Usgl Vi
(935) o ”J[J” TR TIXF D) *Z T X - D))

X7h =1 = Xvhi h=1,2,
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representing the exact algebraic expressions of the Generalized AAEM Method.??
It is clear that starting from Theorem 3 we could write the Generalized AAEM
Method for the generalized displacement A*, as well.

As mentioned, a table of the values of the aging coefficient x exists for the
concrete transformation function F* suggested by ACI. In the same way a table
of values of the coefficients x and xy can be also made for the series of discrete
values of 7%, t — 7° and v} for any concrete transformation function F*. This
presupposes solving the parameterized nonhomogeneous integral equation (6.93),
which has already been solved by the numerical procedure for the ACI and CEB-
FIP creep models when the curves in Fig. 9.2 were formed. Introducing such
values of coefficients x and x4 in Eq. (9.35) the exact stresses for a given concrete
transformation function F* and given pair (7°,¢) can be calculated.

The algebraic formulation of equations presented in Ch. 9.2 leads to the ap-
proximate expressions for stresses having only one parameter, the free parameter
X . Because of their simplicity they are quite suitable in practice expecting to give
the stresses on the safe side, that is to say that in the time interval (7°,t) they
predict moderately larger stress changes than the accurate one. The Generalized
AAEM Method is used to give an insight into such values of the free parameter
x;>* It is enough to confine our analysis to stresses because the discussion of the
generalized displacement expression leads to the same results.

Consider two special cases of the cross section geometry assuming that steel
(p) is an elastic material.

In the cross sections for which we can adopt I = I, = 0 stresses depend only
on one basic function BT where some of them refer to the cross section points
y = y.. The stresses of the Generalized AAEM Method are written on the basis of
Eq. (7.14a)

1- Xfyl(Kf - 1)] .
T+ xn (i — 1)

For cross sections in which we can adopt I, = I, = 0 stresses depend only on
the basic function B} where some of them refer to the cross section points y = y,.
The stresses of the Generalized AAEM Method are written on the basis of Eq.
(7.31a)

(936) OjH = Vj [UjHl* + leH

1- Xfyz(Kf - 1)] .

The stresses are expressed in terms of only one corrected aging coefficient x.,1
Or X4z as in the algebraic formulas where the free parameter x f exists. Adopting
the value x; = X1 in the first case and x; = X2 in the second, these expressions
provide accurate stresses for the selected concrete transformation function F* and
a given pair (7°,t). For its other values X; # X1 OF X; # X2, the same equations

(9.37) OiH =Vj [UjHl* + Wain

235ee Refs [1.18], [1.27], [1.20]
24gee Refs [1.18], [1.27}, [1.21], [1.50]
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define approximate stresses, representing the AAEM Method when y F=X is in-
troduced. When we know that the largest values of the corrected aging coefficients
X~h occur for v, = 1, representing the aging coefficient x, and that the algebraic
stress~strain relation (9.22) predicts smaller stress relaxation for larger values of
the free parameter x, (Ch. 9.1), it can be concluded that, for a given concrete
transformation function F™*, the AAEM Method predicts smaller stress changes in
the time interval (7°,¢) than the accurate one. The aging coefficient ¥ depends only
on the physical properties of concrete. However, the laws related to composite cross
sections point out that the free parameter x, must take into account the effects of
the co-action, meaning that the physical properties of all materials in a composite
cross section as well as its geometrical characteristics have to be respected. The
influence of these factors reduces the value of the aging coeflicient x.

In Ref. [1.18]%° the stresses have been calculated in two cross sections with
I, =In =0and I, = I, = 0 due to influences H = G,S,P in t -+ oco. The
accurate stress values have been obtained applying the equations of the Rate of
Creep Method for a constant modulus of elasticity and using the Generalized AAEM
Method, in the first example for x; = X2 and in the second for x; = x41. The

approximate values have been calculated using the AAEM Method (x, = x) and

the EM Method (x; = 1). The first method predicts smaller stress changes and
the second even more smaller ones than the exact.

In Ref. [1.27] stresses have been calculated for the same cross sections and
influences as in the preceding examples, assuming the ACI and CEB-FIP creep
models, variable modulus of elasticity and 70 = 7 days, while at time ¢ — 7% = 10*
days both functions have the same value. The accurate stresses have been obtained
by the Generalized AAEM Method while the approximate by the AAEM Method.
The approximate stresses have predicted smaller stress changes than the exact ones,
but for the ACI function stresses were closer to the accurate values than for the
CEB-FIP model.

We know that differences in the values of the corrected aging coefficients x4 for
v = 0.1 and v, =1 vary for different concrete transformation function F*. These
differences define the degree of deviation of the AAEM Method values from the
accurate ones. For the CEB-FIP function deviations in stresses are larger than for
the ACI since the differences in values of x., are larger. Considering the fact that
the AAEM Method gives results which underestimate the concrete creep effects,
the selected concrete transformation function F* should be tested in regard to this
circumstance.

In the general case of cross section geometry, under the same assumption that
steel (p) is the Hookean material, in the stress expressions both basic functions B},
appear. A question arises as to how to select the value of the free parameter 50
that the algebraic expressions moderately overestimate the effects of the concrete
creep. A general rule does not exist, but it is certain that the selection of the
value of x; depends on the type of cross section. Certain authors’ experience leads

253ce also Ref. [1.21]
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to the following proposal. The higher value of the corrected aging coefficient for
the free parameter x; = X2 can be accepted if no steel parts exist in the cross
section. If they exist, then for the free parameter the lower value of the corrected
aging coefficient x; = x1 can be applied. In Ref. [1.18]26 the stresses in two cross
sections have been examined due to influences H = G, S, P at t — co. The stress
limits have been calculated using the exact expressions of the Rate of Creep Method
for constant modulus of elasticity and by EM Method (xs = 1). In the algebraic
equations the free parameter X has been selected according to the above proposal.
For the cross section that has no steel parts the value of xy = Xx+2 has produced
the stresses which have almost no ‘deviations from the exact ones. For the cross
section having steel parts and a concrete slab the stresses corresponding to value
X = Xy considerably deviated from the accurate values on the safe side, while a
small number of them had insignificant deviations to the opposite side.
Introducing into calculation the relaxation property of steel (p) the algebraic
equations for stresses are always approximate since its integral stress—strain relation
is substituted with the algebraic equation of the EM Method (9.24). In an attempt
to estimate the value of the free parameter X, in Ref. [1.18)?" two examples have
been solved, identical to the previous ones, when the amounts of the relaxation of
steel (p) was: (, = 0.09 and 0.18. The stress limits were calculated in the same
way, while the approximate stresses were obtained for x; = x (AAEM Method)
and for x5 = xw. The latter mentioned stress values had satisfactory accuracy
being on the safe side in almost all points of the cross section and discrepancies are
larger for the larger amount of the steel (p) relaxation. To select the value of the
free parameter x; = X., it was suggested that the quotient be found
(9.38) WiH = —U%Ii, j=¢,pmn,m; H=G,S,P,

g;

referring to an arbitrary point of the cross section. Its exact value, corresponding to
a given concrete transformation function F™, should be equalized to the algebraic
expression from where the value of x,, can be obtained. In the above examples
the quotient wpg for y = y, was used. We can state that the selection of the
free parameter x; value is influenced by the cross section geometry, the amount of
relaxation of steel (p) and by the choice of concrete transformation function F*.

265ce also Ref. [1.21]
273¢e also Ref. [1.21]




10. BENDING OF SLENDER BEAMS?

By a study of slender beams loaded by simultaneous transverse and axial loads
we expand our analysis to the second-order theory. We retain the assumptions
concerning the materials and cross sections of a beam which can be found in Chs
2 and 3.1. As is customary in the elastic theory, the equilibrium requirements are
written for the geometry of the deformed configuration, but the supposition of small
deformations holds. A beam is of variable cross section and of arbitrary support
conditions. A straight beam axis coincides with the 2z axis. The displagement of
the deflected beam axis in the positive y direction is denoted by v = v(z, ¢, 7°), the
slope by ¢ = ¢(z,t,7°%), while the curvature » = s(z,t,7%) and its normal strain
n = n(z,t,7°) have been already introduced in Ch. 3.2.

The permanent time dependent distributed load per unit length of the unde-
formed beam axis acts in the plane of symmetry of the beam starting at time 7°.
It consists of the components of forces py, = py(z,t,7°) and p, = p.(z,t,7°) in
the positive y and z direction, retaining the same directions during the beam de-
formation, and of the couples m = m(z,t,7°). We assume that before and after
deflection the load resultants on the axis element remain unchanged. Then for any
t (t > 79) it holds that

(10.1) pydz = Pydz, p.dz = p,dz, mdz = mdz.

The lengths of the beam axis element dz before and dZ after deformation are related
by the formula

(10.2) dz = (1+ n)dz.

The functions referring to the deformed beam will be designated in the same manner
as the beam element dZ and loads py, 5., m in Eq. (10.1).

Besides the axial force N = N(z,t,7%) and shearing force T = T(z,¢,79),
we introduce forces H = H(z,t,7°) and V = V(z,t,7%) directed in the z and
y direction, positive as is indicated in Fig. 10.1a. Forces N = N(z,t,7°), T =
T(z,t,7%), H = H(z,t,7°) and V = V(2,t,7°%) as well as the bending moments
M = M(z,t,7°) and M = M(z,t,7°) are shown in Fig. 10.1.

28gee Refs [1.42}, [1.36]
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FIGURE 10.1. Loads and forces on an element of the undeformed
(a) and deformed (b) slender beam axis; forces in the cross section
of a deformed slender beam (c)

The starting equations and the derivation procedure of the bending equation
are analogous to equations and the familiar procedure of the elastic analysis by
which Durié’s method is expanded to the second-order theory.

The equilibrium conditions on an isolated element of the deformed beam (Fig.
10.1b) in time t (¢ > 7°) give

08 e pidz=0, Nazipdz=oq,
I 4z —Vdz + AL dz + mdz = 0.
0z 03

Combining them with Eqs (10.1) and (10.2) we arrive at
(10.4) (a) H* = —p,, (b) V== -p,, () M* -V +Hv =m,

|
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where we apply the already used superscript z to designate the derivative of a
function with respect to variable 2. Higher order derivatives are denoted in the
same manner with the corresponding superscript number. As is common with
elastic slender beams, in Eq. (10.4c) the member V7, introducing the influence of
the longitudinal beam deformation, is neglected. It should be noticed that the force
V and bending moment M depend on the beam deformation even when a beam is
statically determinate.

The relations between deflection v and the functions also describing the beam
axis deformation are '

(10.5) (a) o= (b) = —v*.
The following equation holds for the forces shown in Fig. 10.1c
(10.6) N = H+ Vv

In the above expressions the geometrical linearization has been performed.
The equation for the curvature s (3.46b) is applied to the axial force N and
bending moment M

1~ - ~
(10.7) Es = §F§1N + %FézM
We define operator Ez: which is inverse to operator f’z’z and operator fél,

satisfying the formulas

(10.8) (a) fz’zféz =T, (b) El = féziél

and belonging to the set of commuting operators. Multiplying Eq. (10.7) by oper-
ator I3, we get

(10.9) M =EJLyx -~ gfglz\‘r.

We evaluate the bending equation by eliminating functions V'?, s, N and M
from Egs (10.4b,c), (10.5b), (10.6) and (10.9). At that time we differentiate Eq.
(10.9) with respect to variable z having in mind that the beam is of variable cross
section, meaning that functions I3, and I3, depend on coordinate z. Then

-~ -~ 2z
(10.10) E(IThv)™ + (é 2 70) " = (@) = py = (m* +m)).
This is the integro-differential equation in unknown v in which the presence of
unknown forces H and V can be noticed. We determine force H from Eq. (10.4a)
and the end condition. For force V we apply the known method used in the elastic
theory. In the first approximation V is substituted with V and after solving the
equation we correct it. If it is necessary the procedure is repeated. ‘

On the right-hand side of Eq. (10.10) member mZ = m2(z,t,7°) is found rep-
resenting the derivative, with respect to variable z, of the additional load by dis-
tributed couples per unit length of the beam axis defined by formula

o~ z
(10.11) ma = (gI{,lﬂ) :
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v
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Ficure 10.2. Simply supported beam-column subjected to con-
stant eccentric forces

Functions I3, and I};, to which operators .7;2 and fél are associated, as well
as the geometrical characteristics of the transformed cross section J and S, do not
depend on coordinate z when a beam is of constant cross section. Then we multiply
Eq. (10.10) by operator Fj, and, applying Eq. (10.8), obtain

(1012) B 4 B (Vo) - Bly(Hv®) = Falp, —m*) — m,
where the additional load is
(10.13) me = éﬁglﬁﬂ

The bending equation is solved on an example of a simply supported beam-
column of constant cross section subjected from 7° to the constant eccentric pres-
sure forces aP (a > 0, P > 0) with eccentricity ¢ (Fig. 10.2). The value of the load
parameter a is smaller than the value of the first buckling load parameter which
corresponds to t = oo. The solution of the bending equation (10.12) is evaluated
for an arbitrary concrete transformation function F™.

Into Eq. (10.12) we introduce

=0, V=0, H=-aP[U(z) -U(z — L)]1*,
010 Py =0 () - U(z - D)

m = aPc(é(z) — 6(z — L)]1*, 1* = 1*(¢,79),
while in the additional load (10.13) we substitute
(10.15) H?* = —aP[§(z) - 6(z — L)),

where U(z — a) and §(z — @) (a = 0,L) are the Heaviside step function and the
Dirac delta function, respectively. When we know that

(10.16) Fy, = F(t,°) = Fpl®,  Fpy = Fat,7°) = 10
and when function ¢ is introduced using Eq. (10.5a) we obtain
(10.17) 7% + K2, 97 = ~k*Q[¢%(2) — (2 — L)].

The known function @ = Q(t,7°) is given by the relation

(10.18) Q= cFy— 5F3,
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while
2_aF
(10.19) k= %7
The solution of Eq. (10.17) is assumed to be in the form
(10.20) $=3 Cjcos(kz), k; =(2j—1)%, j=1,2,...,
J

satisfying the end conditions. Coefficients Cj = Cj(t,7°) are unknown functions.
The term in brackets on the right-hand side of Eq. (10.17) is expanded into sin(k; z)
series

(10.21) §%(2) = 6*(z — L) = _% Sk sin(k; 2).
J

Introducing these series into Eq. (10.17) and applying the known procedure for
determining coefficients C; we arrive at the nonhomogeneous integral equations in
unknowns C}

~ ~ 4 K? .
. 3
The formal solution of Eq. (10.17) is obtained when the inverse operators é;
are defined by formula

(10.23) ' -B2Fp)G =T, j=1.2,...

Coefficients C; become

4 .~
(10.24) C;= Zﬁ,?G;.Q, i=12,...,
while the solution of Eq. (10.17) is

(10.25) = % > B2G}Q cos(k;z2).
i

The foregoing expressions provide the list of mathematical operations in order
to obtain function ¢. That means that the following procedure should be car-
ried out. First, using Eq. (3.62b) operator Fj, is exchanged with operators F},
recalling that for their determination the parameterized nonhomogeneous integral
equation has to be solved, as was described in Ch. 6.4. After forming and solving
the parameterized nonhomogeneous integral equation (10.23), whose solutions are
functions G, we finally determine the integrals éjQ. However, we can simplify
this procedure by introducing auxiliary functions in terms of which the unknown
¢ is expressed.We already feel that these functions are solutions of only one non-
homogeneous integral equation the kernel of which is known.

To this end the member in brackets in Eq. (10.23) will be rearranged. Using
expressions found in Ch. 3.2 it can be written as

(10.26) T' - B}y, = F{Fj(R\ R, ~ B1RY) = mmFIRRy Ry, j=12,...,
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where operators ’ﬁ.}k = ’fé;k (wjk,t,7) are determined by formula

(10.27) Ry =wpl +R, k=12%j=12,....

Coefficients w;; depend on the reduced cross section geometry while through quan-
tities ﬂ]? they depend on the magnitude of the eccentric force. They satisfy the
relations

wj1 +wjz = MY+ — ﬂf’)’n),

—(
(10.28) Nz

1 o
wiwjr = —— (W% — B31),  wit Swie; j=1,2,....
Y172

It can be shown that each operator ﬁ;k has defined the inverse operator f]’-k =
f’]f o (wjk, t, 7) fulfilling the known conditions

(10.29) RipFie =1, FuRyp=T, k=1,27=1,2,....
Combining the above expressions and Eq. (3.56) we arrive at

- 1 ~ o~ o~
(1030) G; = ;].—’ER;,[R; ]"1 ]"2, j = 1,2, ceee

By analogy to Eqs (3.61) and (3.59) we set up the operator relations
(10 31) ij ;-1.7:;-2 = f;z - JI-]_, Aw,- =Wy — Wy > 0,
RF, =T -wiFp, k=1,2%j=12, ..

Using them, operators @; are obtained as the linear combination of operators f;l
and .7?]’2 as follows

(10.32) G =1~ fnFp+fnFy  §=12,...,
where

1 1
(10.33) fir = —A’Z}—j‘majklajk% Ajkh = ’YL = WjkYh,

kh=1,2; j=1,2,....
When we introduce Eq. (3.62b,c) multiplied by 1* into function Q (10.18) it becomes

(10~34) Qz(fcl"fp)F;+(fc2+fp)F2"‘:
where

= o =2 d -
(10.35) fee=c Ay’ fo= Ay’ k=1,2.

In products G;Q members f]’-kF,;‘ can be eliminated by the relation

(10.36) Bl Ry = afl;(f;k —mED),  kh=1,2j=12....
]
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In that way we reach their simplest form
2
(10.37) GiQ =Y (—-Df(cgi — hit)Ffyy  F=1,2,....
k=1

Functions F7; are the integrals of functions ¥, to which operators j-:J' & are associ-
ated

(10.38) =Fhlt, k=12j=12,.,
while the coefficients in Eq. (10.37) are
1 1 1 m2 J
0. = ————[1= (L +wix)yl, bk = — %1+ wjx),
(10.39)  gje Ac; 7172[ (1 + wjk)n) jk Aoy 7o S( + wik)

It could be seen that operators ’ﬁ;k (10.27) are obtained from operators R},
(3.51) by formal substitution

(10.40) Ww=1 9 =wjp Ay=-Aw;j, kh=1,2; 5=1,2,...,

that operators f}k (10.29) are defined analogous to operators f,’l (3.56) and that
Egs (3.61) and (3.59) reduce to Eq. (10.31) when the above relations are applied,
and when operators Fy are substituted with operators F7,. Actually, it can be
seen that the evaluations made, are in essence the same as those in Ch. 3.2 when
in the solution of the basic equations the triple operator products were eliminated.
By continuing in this manner a parameterized nonhomogeneous integral equation
should be established through whose solutions function ¢ is directly expressed. This
can be done by independent derivation while here we use the analogy with already
existing functions and equations.

Consistent with Eqs (3.70) and (10.40) we define the pair of auxiliary functions

,C;k = ’C}k (wjk, t,7) for each j

(10.41) K =1 +wipF*, k=12 j=12,...

and the pairs of auxiliary functions Bj, = Bjj (wjk,t,7) whose operators IE;-,c and
~;-k are inverse. By analogy to Eq. (6.91b), that is Eq. (6.93), the following param-
eterized nonhomogeneous integral equation holds

¢
(10.42) K (wik, t, ) Bjy (wik, 8, %) + wjk /o ®'(t, 7)Bj (Wi, T, 0)dr =1,
T

and finally, from Eq. (3.71) and (10.40), we get

(10.43) Byp=1"-wpFh, k=123 =12,....

Using the above relation and Eq. (10.37), we express solution (10.25) in terms of
functions B}y, retaining a finite number of series terms

n 2

(10.44) ¢ = % Zﬂ;" cos(k;z) Z(—l)k(cgjk - hjk)"u%(].* = Bji)-

j=1 k=1
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For 2n values of parameter w;; functions Bj, represent the solutions of Eq. (10.42)
knowing that its kernel &' can be directly determined from the selected concrete
transformation function F*. When steel (p) is introduced as the Hookean material
then in coefficients w;; (10.28) quantities yp; should be calculated for p = 0.

Applying solution (10.44) to the Hereditary Theory we introduce the creep
function ®* (8.2) for n = 1, where 9; = ¥ and where ¢, = © represents the creep
coefficient determined by Eq. (8.4a). Then

2

Z 82 cos(k;2) 3 (1) (cgh — hak)— 1

L k=1 1+ wie ¥ +wjie

(10.45) x [1 + wjkx — Pexp ( -

L¥ +wn 1
i’ 1+w,~k 9/

For the simply supported beam for which the data can be found in Ref. [1.42] the
end slope at ¢ =& oo is investigated. For that purpose we use

ay = [
i) Hegrmm BT

On this occasion we give the other form of coefficients ﬂ} which will be used later

0<a1<1, j=12,....

(2j - 1)2n2EJ

(1047) B = 73

= @, PJ'E:a;ch: i=12,...,

jer

where Pjg is the j** Euler buckling load of the corresponding elastic beam (E, J).
The saught after end slope ¢ = ¢*°(p, &1,z = 0),

(10.48) a1z (2J Z( 1)*(cgjk — Jk)¢,+w 0

Jj=1

is examined as a function of @; for different values of creep coefficient ¢. The
graphical presentation of curves L¢$>°, corresponding to ¢ = 0, 1,2, 3,4, are shown
in Fig. 10.3. The curve ¢ = 0 refers to the elastic beam (E, J) as well as to t = 70+,
In that case slope ¢ becomes infinite when &; = 1, that is when the load parameter
o becomes the first elastic buckling load parameter a = oy = af,,.. With the
increase of creep coefficient ¢, the value of parameter a = ;. decreases.

We turn our attention to the stability problem, determining the buckling load
parameters &jer = jer (¢, 7°) for slender beams. To discuss it, we start from terms
@Q in Eq. (10.25) and ¢ = 0 giving them the same form as the elastic solution has.
To this aim we can rearrange Eq. (10.37) and carry out complicated mathematical
evaluations, but the simpler way is to start from Eqs (10.23), (10.26), (10.18) and
(10.47). Then we have

~ o~ o J = . '
(1049)  G,Q=RiRy(R R, - 6,Rs)) 1(—§F411 ) i=1,2,....
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FIGURE 10.3. End slope ¢ for different values of the creep coef-
ficient ¢
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When the expression for operator F’él, given by Eq. (3.58), is applied we arrive at
J __ Ryl

10.50 é’Q = ===,
(1050 " SRR, -a;R),

i=12....
Now we introduce function I}; = Iy (Y11,t,7%) = I 117, that is operator f{l inverse
to operator R, satisfying the known equations

(10.51) RuL, =T, BRuh=r

and from the second expression the following relation is derived

(10.52) mBL =1" -, Iy

We multiply the numerator and denominator in Eq. (10.50) by I7; and introduce
(10.53) ‘ RiRyIY =13,

keeping in mind Eqs (10.8a) and (3.58) in which the expression for operator fz’z
can be found. Then we obtain

J Ry I3

10.54 G.O=
( ) Q@ Gy

, i=12....

For each t (¢t > 7°) the above functions have infinite values when
(10-55) a= ajcr = a;crIsz, j = 1,2, cern

This formula determines the buckling load parameters as time functions and refers
to any end conditions and any concrete transformation function F*. When we know
that I39 = 1, the boundaries of the buckling load parameters in the time interval
(7%,t = 00) can be found

(10.56) Qler 2 Qo 2 Qe 557, 0< I3 <1, j=12,....
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It remains for us to express the unknown function I3, in terms of functions R*
and Bj, being the solutions of the parameterized integral equation, the kernel of
which is the known function o', To create it we define operators

(10.57) hw=BE,F, B,=RI,
analogous to operators K 5, and Bh found in Eq. (3.68). When the procedure as for

obtaining Eq. (6.93) is carried out we get
t

(1058 KO t)Bh (it ) + o [ (66)B5 (07 o= 1,
70
in which parameter 7;; takes the values given by Eq. (3.23) and 41; = 1. Then the

solutions become functions By; and R*, respectively.
We use Egs (10.53) and (10.52) as well as

(10.59) ’Yugil =7- M T{la
analogous to Eq. (3.71), to obtain the desired form of function I3,
* 1 * * *
(10.60) 22 = ;7 (’71757111 + 1R+ 5'715'72B11) .
um

When steel (p) is an elastic material the quantities «y,;, that is +y};, should be
determined from Eq. (3.32).

The expressions given by Eqs (10.55) and (10.56) can be found in Ref. [1.28].
Functions ;.. has been obtained as the individual values of the homogeneous inte-
gral equation in unknown ¢ whose time dependent kernel represents the derivatives
of the influence function for displacement v under a unit transverse force. The
additional load by distributed couples is also time dependent, thus Volterra’s prin-
ciple of superposition is applied. A few interesting details appear when we compare
these two different methods and when, from the bending equation (10.12) and Eq.
(10.14) for ¢ = 0 and H = const., the additional load is determined.?®

29Related to the stability problem see Refs [1.33], [1.44], [1.32], [1.30]; see also Refs [1.46],
[1.47].
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11.1. Reduced Cross Section Geometry

The evaluation of equations for open thin-walled beams is easier if the cross
section geometrical characteristics are defined in advance.

Consider an open thin-walled composite cross section of general shape in which
concrete (¢) and, in the general case, three kinds of steel, prestressing steel (p),
steel parts (n) and reinforcing steel (m), co-act (Fig. 11.1).

The origin of the zyz coordinate system is located at the centroid of the trans-
formed cross section C. The z and y axes, lying in the cross sectional plane, are
the principal axes of inertia of the cross section area, while the z coincides with
the beam axis. The tangential coordinate along the center line of the cross section,
denoted by s, is measured from the sectorial centroid O, so that the position of any
point of the middle surface is determined by the s and z coordinates. The sectorial
coordinate w, being a double sectorial area, is measured from the sectorial centroid
O with respect to the center of twist D as a pole.

The reduced cross section geometry is defined analogous to the homogeneous
cross section taking into consideration its particularity.

The reducing factors of steel (p) and the reinforcing steel (m) are the same as
in Eq. (3.1), while

_ B _ B

(L) “TEQ+®) T EQ+2)

where p; is Poisson’s ratio of the material j (j = c,n).

The reduced area of part j of cross section A;,, its part separated by s = const.
Ajr (j = ¢,p,n,m) and the transformed cross section area A are defined by Eqs
(3.2) and (3.5).

The reduced first moments of area Aj, that is A;, with respect to the z or y
axis are

305ee Refs [1.43), [1.37]
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Ficure 11.1. Open thin-walled composite cross section

Sz]’r =Vj/Aj’ydA, Sij:yjAjsz,

(11.2)
S::jr =Vj /. ydA’ S‘Uj" =Vj /. di’ ‘7 =6pnm.
. A;

¥ 3

The conditions

(113) Z Szj,- =0, Z Syj,- =0, J =¢p,n,m,
J J

locate the position of the centroid of the transformed cross section C.
The reduced first sectorial moment of area A;, that is A;, with respect to the
center of twist D as a pole, is

(11.4) sw.,=y,~/ wdA, Swj,=u]-/ wdA,  j=¢p,n,m.
A; :

2 3

From the condition

(11.5) > 8,;=0, j=cpn,m,
j

the position of the sectorial centroid of the transformed cross section O is deter-
mined.
The reduced moments of inertia of area A; about x or y axis are

(11.6) Jzjr = Vj/ y? dA, Jyjr = yj/ z?dA, j=c,p,n,m,
A; :

3 3
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while the moments of inertia of the transformed cross section with respect to the
same axes are defined by the formulas

(11.7) Jy = ZJZJ-,, Jy = ZJW’" Jj=¢,p,n,m.
J J

The reduced product of inertia of area A; about the orthogonal system of the z
and y axes is

(11.8) Jzyjr = u,'/ TydA, j=¢p,n,m.

2

They are the principal axes of inertia for which the following holds

(11.9) Z Jzyjr =0, J=¢pn,m.
’ J
The reduced warping constant of area A4; is

(11.10) Jojr = uj/ w? dA, j=c¢pn,m,

7

while the warping constant of the transformed cross section is

(11.11) Jo=) Jujrs  i=cpn,m.
J
The reduced sectorial products of inertia of area A; about the z or y axis are

(11.12)  Jeujr = V,-/ ywdA, Jywjr = I/j/ zwdA, Jj=¢pn,m.
A -

i A;

From the conditions

(11.13) Zszjr =0, ZJywjr =0, Jj=¢pn,m,
J j

the position of the center of twist of the transformed cross section D is determined.
It is convenient to introduce the following dimensional constants

S,=vAL, S,=+/47,  S,=+/4l,
Jzy = Jsz: Jow = V Jzdu, Jyw = JyJw-

(11.14)
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We define elements ~yp; of the symmetric scalar matrix of the reduced cross
section geometry v = ||vnt|l4,4

"= AX + P%’i, M2 = -ngil +P-§fl,
ms = ;:’ + p%:—', T4 = S;:’ + ps—;j—',
(11.15) Y22 = J;:, + Pi}:—r1 Y23 = %—:—;—r + P%,
’724=£;i51+ J.;—:f:, ’733=J;—:r+ '{%:—r,
Y34 = -J%il +P%‘:’—r, Yaa = J;:r +PJ;:T ‘

The principal values of matrix ~ are denoted by ~y, and for them the following
order is adopted

(11.16) I1>m>m>73>7>0.
The following quantities will be used
(11.17) Y%w=1l=%, Au=m- h,l=1,2; h#1,
afterwards
1 1
A, = — Ao = ———
T ARALAL 27 Balgslas
(11.18)
Az = 1 Ay = 1
JASEYACY YAV YR A14AgsAsy’
as well as
(11.19) (8) brrg = — HraY2 + Lnnyg — Thn,
' (b) bng = —Hu? + Luvg — T, g=1,2,3,4,
where

Hpp = yu + i + %55,
(11.20) Lun = yuvis + YiaVis + Vit — V% — Vi — Vo
Thr = YuYiYii — 2MaYi Vit — ’Yu’Yizj - ’Yﬁ’YJ?z - ViV
and ‘
Hp = Y,
(11.21)  Ln = YisYt + Y5 h — YhiNi — Vhi Vi
Thi = viaYij T + Yij ('Yhi')’lj + Yriii) = ViiYhi Wi — ViiYhiYi — ’Yh17i2j~
In Eqs (11.19)-(11.21) subscripts h,l,i,j are in cyclic order and h # | # 1 # j

(h,1,i,7 = 1,2,3,4). For the selected h in Eqs (11.19a) and (11.20), that is h and
l in Eqs (11.19b) and (11.21) the remaining subscripts are fixed.
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We give some of the relations used for mathematical evaluations

4
(11.22) S (=D s =0,
h=1

where superscript j denotes the exponent of 4. For the above expression it holds
that
=1, 7=0,1,2; h=1,2,3,4,

:)Ih:z:’)'p: j=0a113; h7p=1121314;h#p’
P
1 . .
(11.23) 5 = 3 YW =023 hpg=1,23,4 h#p g#hp,
Pr.q

= [ 1 i=1,23% hp=1,234 h#p,
p

where
0 = Aa3AagAgy, 0v2 = A13A14A34,

11.24
( ) Oy = A12A14A04, 0ys = A12A1303.

The dimensional coefficients A,; = A;, appear in the equations
Ay =4, A1g = =5, Az = —Sy’ Ay =5,
(11.25) Agy = Jz, Aoz = Jzy, Ay = Jzu, Agg = Jy,
Asq = Jyws Agg = Jo-
The torsional constant of area A; being
n
(11.26) Jij = %z;qutgq, i=¢n,
q=

assuming that area A; consists of n parts whose wall thickness is ¢;, on length b;,.
The torsional constant of the transformed cross section is

1 .
(11.27) =g }J:ijtj’ j=on,

where G is the shear modulus arbitrary chosen and
E? En

11.28 Ge=——2—, Gp==—o—=>2—.
(11.28) 2(1 + pe) 2(1 + pn)
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11.2. Basic Equa'.tions31

In the theory of composite and prestressed open thin-walled beams the ideas
and the mathematical approach are the same as in the elementary theory. The
" difference is that this problem contains more unknowns and demands some com-
plicated mathematical evaluations to study their behaviour.

Supposing that a beam is of constant cross section, we retain the assumptions
concerning the materials co-acting in the composite open thin-walled cross sections.
The equations are derived under the usual suppositions for the same kind of elastic
beams. With respect to the deformation it is assumed that the original shape of
the cross section is unaltered during deformation and that the effect of the shearing
strain v,, on the final deformation is extremely small so that it can be neglected. In
regard to the stress distribution it is assumed that the normal stresses are uniform
while the shearing stresses vary linearly over the thickness of the cross section [2.22].

The beam is acted upon by the permanent forces distributed over the middle
surface of the beam, having the components p. = Pz (s, z,t,7%), By = Py(s, 2,1, 7°)
and p, = P,(s,2,t,7°), directed in the positive z, y and z direction, respectively
and whose action starts at time 7°.

The following stress resultants exist: axial force N = N(z,t,7°), shearing forces
T, = Ty(z,t,7°) and T, = Ty(z,t,7°) acting in the z and y direttion, bending
moments M, = M,(z,t,7°) and M, = M,(z,t,7%) acting about the z and y axis
and the total twisting moment M; = M;(z,t,7°). Their positive directions are
shown in Fig. 11.2. As input functions they are bounded and continuous for each
t (t > 7°) and satisfy condition (1.3)

The components of the displacement of any point of the deformed beam middle
surface in the positive = and y direction are denoted by ¢ = £(z,t,7°) and =
n(z,t, 7°), respectively, retaining the same notations as in the elastic analysis. The
counterclockwise angle of twist is 8 = 8(z,t,7°).

The equilibrium conditions of an isolated element of the beam middle surface
(Fig. 11.2) in time ¢ (¢t > 7°) lead to

(8 N*=-p,,

(11.29) (b) T; = —pa, (c) T; = Dy,
(d) M;=T,-m,, (e) My =T, -my,
) M{=-m.

On the right-hand sides of these equations the following distributed forces per unit
length of the beam axis appear

(11'30) Pz = /ﬁzds: Dy = /ﬁy ds, P2 = /I_’z ds,
s s s

315ee Refs [1.43], [1.37], [1.40]
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FIGURE 11.2. Forces and loads on an element of the middle surface
of an open thin-walled beam

as well as the couples

"M = /yﬁzds, my = /zﬁ,ds,
8 s

(11.31)
me= [ @ =205y - (v~ yo)pul ds.

Eliminating the shearing forces from Eq. (11.29b-¢), we get
(11.32) M =—p,—mZ,  M*=-p,—m. .
From Eq. (11.29a), the above equations and the corresponding end conditions we
determine axial force N and bending moments M, and M, directly from the given
load.

Durié’s method applied in the elementary theory is expanded to this problem,
meaning that the starting equations and the procedure for evaluating the stress
expressions are analogous to those applied in the corresponding elastic analysis.

The first equation refers to the normal strain € = ¢, = €(s, 2, ¢, 7°) of any point
of the center line

(11.33) e =w§ — yn*? — x€*® — wh**.

For a given cross section wg = wo(z,t,7°) represents the uniform displacement of
all points in the 2z direction. Four functions w§, n*#, £ and 6** describe the cross
section deformation in time ¢ (¢ > 7°). Under the known conditions this equation
reduces to Navier’s hypothesis of plane cross sections.

The following four equations (3.35)-(3.37) put into a relationship the normal
stresses o; = 0,; = 0;(s,2,t,7°) and the common strain ¢ for materials co-acting
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in the composite cross section
e = v.R'(Ee) + o,

(11.34) ap = R (Ee) = vp(p'1' + pR')(Ee),
o = v 1'(Ee), k=n,m.

The reducmg factors v, and v, are given in Eq. (11 1), vp and vy, in Eq. (3.1) while
operator R’ is expressed in terms of operator R introducing Eq. (2.46).
Fmally, four equations define the stress resultants

(a) N=Z/A.ajdA, (b) M, =Z/Alya,-dA,
(c) M, =zj:/1;j zojdd, (d) M, = ;/Aj wojdA,

j = C,p,n,m.

(11.35)

The bimoment M, = M, (z,t,7°) is statically zero and for this reason an additional
relation should be provided.

The shearing stresses in the cross section are divided into 7, = 7,(s, 2,t,7°)
and T, = 74(s, 2,t,7°). The first are of uniform distribution over the cross section
thickness, having the average value. The second are linearly distributed as Saint
Venant’s theory of torsion predicts. Consequently, in Eq. (11.29f) the total twisting
moment M; is the sum of the warping torque M;, and Saint Venant’s torsion
moment M, = Mys(2,t,7°). Thus

(11.36) ME, + MZ, = —m,.

Expanding the correspondence principle [1.8] to Saint Venant’s torsion moment
we find that it is given by the formula

(11.37) M, = GJLRG0°.
Operator ﬁb is defined as
(11.38) Ry=pT+pR, #=1-5,
where B

) G Jtc
(11.39) =7 7,

The torsional constant of the transformed cross section J; and of concrete part J;
as well as the shearing modulus G, can be found in Egs (11.26)—(11.28). Since the
beam is of constant cross section, function Rb does not depend on coordinate z,
that is Ry = Rj(t, 7).

The warping torque My, is defined in the known way

(11.40) M, = / gdw,
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Ficure 11.3. Forces and load on a portion of an open thin-walled
beam element

where ¢ = q(s, z,t,7°) is the shear flow at any point of the center line
(11.42) g=tr,.

Summing the forces indicated in Fig. 11.3 in the z direction we get

(11.42) q= —Z/ o;dA — /ﬁ,ds, ji=c¢p,n,m,
i /i,' §
from which the warping torque M, is obtained in the form

(1143) My, = —Z/ (/ ajdA)dw—/ (/ﬁﬂs)dw, j=c¢,p,n,m.
j Jw Aj w ]

Applying integration by parts we derive

(11.44) M, = (Z/ wajdA) +/w;5,ds, j=e¢,pn,m.
j A] 8

The first term on the right-hand side is the derivative with respect to variable z
of bimoment M, (11.35d), while the second represents the distributed bimoments
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m, = my(2,t,7%) per unit length of the beam axis. Then the warping torque is

(11.45) Mtw = M: +my,
which, together with Eqs (11.36) and (11.37), provides the additional equation
(11.46) M2 = —(GJRp6% +mZ +my),

relating bimoment M,, to the angle of twist 4.

The elimination of the common strain £ and stresses o; from the nine equations
(11.33)—(11.35) leads to the governing equations referring to an arbitrary open thin-
walled composite cross section and any time t (t > 7°). They are the basic equations

E(ARyw - S, Riyn™ — 8, Ri36 ~ 5, R,07) = N,
E(—Szﬁélwg + Jzéﬁzznu + Jzyﬁ“lzsgu + szﬁluezz) = —M,,
E(—Syéglwg + Jzyﬁlazrlu + Jyégsfu + Jywﬁé‘teu) =—-M,,
E(=S, Ry wh + Jew Ripn™ + Jyu Ry + JuRiy6™) = M,
being simultaneous nonhomogeneous integro-differential equations in unknowns wp,
7, € and 8. When the basic equations were derived the designations given in Ch.
11.1 were used while in the concrete stress expression member o was omitted,
because it has been shown that the concrete shrinkage can be introduced as a
permanent load (Ch. 3.2).

Operators ﬁ’h, in the basic equations are of the same form as operators E;u
(3.44) in the elementary theory

(11.47)

1, for h=1,

11.48) Ri, = (6 — a1’ R, bu=
(1148) Ry = (O = )1 + h {0, for h#£1; hl=1,234.

Since a beam is of constant cross section the matrix elements «y (11.15) and
operators R}, = R};(Yn,t,7) do not depend on the coordinate z, that is R}, =
Rhl (ta T)'

The basic equations differentiated twice with respect to variable z are written
in the matrix notation.
(11.49) ER'D* = §%,
where S$%% and D?* are the column vectors

(a) S% =||N*,-MZ,-M”, (GLRE6% + mZ + my)||”,

11.50
( ) (b) D?** = ”wézz’nzzzz’ gzzzz,gzzzz”T

and where R’ is the symmetric operator matrix
(11.51) R' = |y Rhillas.

The dimensional constants A,;, containing the geometrical characteristics of the
transformed cross section, are found in Eq. (11.25).

It is not necessary to especially explain that solving the basic equations and
evaluating the simplest stress expressions requires the introduction of operators
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and functions associated to an open thin-walled composite cross section, which
have been already defined in the elementary theory, having the same properties
and the same role. We recall only that all operators, also including Rj, commute
with each other.

Equation (11.49) has a unique solution

(11.52) ED* = F'S**,

where F is the symmetric operator matrix
(11.53) = ” ,;,“
Ant

It is inverse to the operator matrix R’ so that the known formula holds
(11.54) F'= (detR')'adjR’.

The determinant of the operator matrix R’ is written in the form of
(11.55) detR' = AJ,J,J,D'.

We introduce operators EZ’ defined by Egs (3.51) and (3.53) adapted to the kind
of cross sections under consideration, meaning that quantities vy represent four
principal values of the scalar matrix -y, the elements of which are found in Eq.
(11.15)

(11.56) Ry =1 + R =r, 1 =¥, h=1,234
Then

4
(11.57) : D'=T] &.

h=1

Operators ﬁ;; have defined inverse operators F‘,’l (Ch. 3.2) satisfying the known
relations

(11.58) RF, =T, FR, =1, h=1234

Combining the above equations, we obtain
~hl1
(11.59) (det R')™1 = 17T Jy H Fl.

Now, from Eq. (11.54) we can determine the elements of the inverse matrix F , that
is operators Fy,

Flh = F'F’F3F4 [Ru (RI R’ ﬁigﬁgz) + Efi(ﬁfjﬁl“ - Eiiﬁl' )
+ Ry;(R;R); - R|,R,;
(11'60) s It Tt ool ! Dl Dl Dl "'f]( "'l/1 y I)]
= F{F, F3F, [ (Rth]‘l R;R};) + Ry;(R;R; ngR )
+ Ry; (Rijii - Ru ij)]'
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Subscripts h, 1,1, j are in cyclic order and h # 1 # i # j (h,{,i,j = 1,2,3,4). For
the selected h, that is h and I, the remaining subscripts are fixed.

To eliminate the operator products in the foregoing equations the following
operator relations will be used

~ ~ ~ ~ 1, forh=1

11.61 FR = T + Gy — ) E Su=4 ’
( ) Vi Fj Ry = Yl + (Gnrvs — vu) Fj hl {0’ for h £ 1,
hl,j=1,2,3,4,

obtained from Eq. (11.48), which is multiplied by operator F/, and Eq. (3.59), and
(11.62) AnELE = WEL —wF,  h1=1,2,3,4 h#1,
which is analogous to Eq. (3. 61) Their application brings operators th to the

linear combinations of operators F H
5 4
(11.63) Fy =Y (-1)""AgbuFy,  h1=1,2,3,4
g=1
Coeflicients Ag and by, are given in Egs (11.18)-(11.21).
To create the equation in unknown angle of twist 6 we use solution (11.52) of
the basic equations and Eq. (11.50). Then we obtain

3
(1L.64) 6722 — —CiIiFM 0= —i——nqs;z BT ——Fl, (m? +my).

EJ. q=1 4q

The operator product on the left-hand side of the equation can also be substituted
with the linear combination of operators F}, according to the equation

(11.65) Fi,R, Z( 1)! "b44q[ﬂ1 ~ (B-1)F1).

Coefficients Ag and b4y are given in Eqs (11.18) and (11.19a).
The remaining equations in unknowns wg??, n**** and £*#?* are found to be

4
z 1 =~ z
wo"=z——*m e

(11.66) =Y P 57,
Z EAzq !
4 1 =~
£722% = Z o éq ;z.
g=1 EA3q

In the above equations and in Eq. (11.64) quantities S7* represent the elements of
the column vector S** (11.50a). Its first three elements are determined from the
given load as was explained earlier, while the fourth element is expressed through
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the angle of twist . That means that after solving the nonhomogeneous integro-
differential equation (11.64) for 8 we form the remaining equations.

The equations developed here hold when steel (p) is assumed to be an elastic
material. Only the elements y; (11.15) of the scalar matrix 4 should be calculated
according to this assumption.

11.3. Stresses®?

For obtaining normal stresses o; we first determine the reference stress o. To
this aim we start from the basic equations (11.47) and their unique solution, which
are written in the matrix notation

(11.67) (a) ERD=S, (b) ED=F'S.

The operator matrices R’ and F' remain the same as in Eqs (11.49) and (11.52),
while the column vectors S and D are

S = IN, ~ Mz, -M,,—M,||",

D= ”wg’nzz,é-zz’ezz”T.

It is convenient to present the strain ¢ (11.33), that is the reference stress o, as

the sum of the products of Dy, being the elements of the column vector D and
quantities ;. Then

(11.68)

4

(11.69) o=FEe=EY DpG,
h=1
where
(1170) Cl = 17 C2 ==Y C3 = -z, C4 = —uw.
From Eq. (11.67b) elements Dy can be obtained as
4 B 5
(11.71) EDy=) s =F;S, h=1,2334,
=1 Al

where S, represents the elements of the column vector S, while F, designates the

hth row of the operator matrix F' (11.53)
- IO o L
(11.72) = “ﬂ& Fio Fhs E’Li” h=1,2,3,4.
Ani Anz Ars Ang

Returning to Eq. (11.69) we find the reference stress o in the form of

) 4
(11.73) o= FaS.
h=1

325ee Refs [1.43), [1.37]
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In the equations for stresses o (11.34) the operator products E’F,’u and ﬁ’.;,f,’u
can be found. We use Eq. (11.63) to express operators Fj; in terms of operators
F}, and after that we apply the relation

(11.74) WwRE =T -wF, h=1234,

written on the basis of Eq. (3.59), to eliminate the mentioned products and obtain

4
- - A, -
Fueo=RFy =) (-1 ,Y—:bhlq(l' - TaFy),

g=1
- -~ 4 A - -
(11.75) Fyw=RFy= Z(—l)q'ljy—"bmq[pl’ + (1 = P)Fyl,
g=1 q

4
Frgy =1VFy = Z(" 1) Agbu Fy, k=n,m.
=1

Subscripts in brackets denote the kind of material j ( = ¢,p,n,m). The corre-
sponding rows of the operator matrices R'F', R F' and 1'F" are denoted as follows

j=¢pmnm; h=1,2134.

Frag) Frag) Frag “
Arz Ans Ang
Finally, normal stresses o; in time t (¢ > 7°) are found from the above expressions
and Eq. (11.34)

~ Fii
(11.76) Fi = | 2o,
hl

1, forj=c,

4
(1L.77) o5 =v; ;F%(a’)Chs +0ic05,  Oje = {0, forj #¢; j=c,p,n,m.

Instead of the shearing stress 7, we determine the shear flow ¢ (11.41). The
differentiation of functions o; with respect to variable z, indicated in Eq. (11.42),
refers to the column vector S only, giving
(11.78) 8% = ||N*, -MZ,-Mz,-MZ||"T.

When the integrations over the cross section portion separated by s = const. are
performed, quantities of (s in Eq. (11.77) should be substituted with

(11.79) Zy =44, Za=-S5;, Z3=-S5,, Zi=-5,,
found in Ch. 11.1. Then the shear flow in time ¢ (¢ > 7°) is obtained in the form
4
(11.80) g=-Y_> Fn;Zns" - / p,ds, j=cpn,m.
i h=1 §

Bimoment M, is determined through deformation and can be obtained either
from Eq. (11.46) or (11.67a). Starting from the second possibility, we get

(11.81) M, =-ER,D, M?=-ER,D?
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where R}, is the fourth row of the operator matrix R’ (11.51) .

(11.82) R = || - S Ry, JowRig, Jyo Rig, Ju Riall,
while D? is the derivative with respect to variable z of the column vector D
(11‘83) DZ — ”w(z)z’,,’zzz’é-zzz,ozzz“T.

In the expressions for normal stresses o; (11.77) and shear flow ¢ (11.80), M,,
and M7 appear as the elements of the column vectors S and S?, meaning that
operator products ﬁ,’, ~iu (h,l =1,2,3,4) exist. They can be expressed in terms of
operators IT“,’, using Eqs (11.48) and (11.74), so that only these operators are found
in the mentioned equations.

The shearing stress 75, corresponding to Saint Vennat’s torsion, in steel parts
(n) as an elastic material, is determined by the known formula, while in concrete
it can be obtained by expanding the correspondence principle {1.8]. Then

(11.84) Ten = 2eGn8?,  Tse = 2eG.R'67,

where e is the perpendicular distance of any cross section point to the center line.

Here the same requirement exists. It is necessary to determine operators F‘,‘,
and R' directly from the given concrete transformation function F*. The pro-
cedure for obtaining them was explained in Ch. 6.4. The difference is that the
parameterized nonhomogeneous integral equation (6.92) should be solved for four
values of parameter v; = 1 — -y, where 7, represent the principal values of the
scalar matrix 4 (11.15). When functions ¥} are obtained, then operators E’I can
be found from Eq. (3.55). We recall that the solution of the same equation when
7}, = 1 represents function ¥’, so that operator R, corresponding to the concrete
transformation function R*, is also determined.

To complete this analysis we turn our attention to the functions associated
to an open thin-walled composite cross section, which are not directly included in
these equations. Starting from the fact that operators R; and Fj are defined by
the same expressions as in the elementary theory satisfying the same relations, we
know that four pairs of the cross section transformation functions R}, and F} can
be also associated to the cross section under consideration. We include here four
pairs of auxiliary basic functions K} and B} and their operators K} and Bj, also
associated to an open thin-walled composite cross section, which are defined by the
same equations as in the elementary theory, satisfying the same relations. We racall
that all these functions depend on the physical properties of materials co-acting in
an open thin-walled composite cross section and on their arrangement, that is on
the cross section geometry. In line with considerations made in the elementary
theory, we can say that cross section transformation functions R} or F; describe
the behaviour of an open thin-walled composite cross section, meaning that they
describe the effects of the mutual action of different materials.
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Equations of the mathematical theory, elementary and open thin-walled beams
are general in regard to the concrete transformation F* and the cross section geo-
metrical characteristics. They are exact as much as the made assumptions are close
to the phenomena which are described by them. The analytical methods applied
to study the structures behaviour are analogous to the known methods in elastic
analysis. Such an approach with the application of concise operator calculus leads
to the equations revealing an aspect of the theory which to this point has not been
emphasized sufficiently. We focus our attention on these results, beginning with
the elementary theory.3?

The cross section transformation functions R}, and F}; associated to the com-
posite cross section have been defined analogous to the concrete cross section trans-
formation functions R* and F*, which are their special case when -y, = 1. The same
can be said for their operators and the equations they satisfy. The basic equations
of the composite cross section as more general, become the basic equations of the
concrete cross section, and the same is valid for Theorem 2 and Theorem 1. The
generalization of the aging coefficient x, joined with the concrete cross section, leads
to the corrected aging coefficients xr, associated to the composite cross section,
while the AAEM Method is generalized to the composite cross section, giving the
Generalized AAEM Method.

Comparing functions F* and R*, which describe the concrete cross section
behaviour, with the cross section transformation functions Fj and Rj, it is clear
that Fy or R}, describe the behaviour of the composite cross section. This is best
seen considering the basic equation for the composite cross section symmetrical
about two axes on the one side, and for the concrete cross section on the other. The
result leads to understanding their identical roles in these different kinds of cross
sections. Owing to the fact that the cross section transformation functions F}; and
R} are defined independently on the individual form of the concrete transformation
function F* they are basic for the composite cross section as much as functions F™*
and R* are basic for the concrete cross section, determining the results of the mutual

33Related to this topic see Refs [1.14], [1.26], [1.38], [1.15], [1.48], [1.49)]
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A F* F} F}
R E; B;

0 r>70 t

F1GURE 12.1. Nondimensional cross section transformation func-
tions Fp(t,7 = const.) and R}(t,7 = const.) (h = 1,2) for the
general case of the cross section geometry.

action of different materials. It is evident that the essence of the generalization
made in the elementary theory is the introduction of the co-action effects that affect
the composite and prestressed structures behaviour. This phenomenon is influenced
by the physical properties of materials, their participation and their arrangement in
the composite cross section, as was stated earlier. From Eq. (3.63a), which defines
functions R}, we read that these factors have been introduced through the concrete
transformation function R* and the principal values 7 of the matrix of the reduced
cross section geometry v. - '

The theory of open thin-walled beams is based on the supposition of the beam
deformation whose one special case is Navier’s hypothesis of plane cross sections.
The more general equations then become equations of the elementary theory, as
is known in the elastic analysis. Our attention will be focussed on the particular-
ity related to composite and prestressed beams. In this theory the cross section
transformation functions R}, Fy, the auxiliary basic functions K}, B} and their
operators exist, defined in the same way as in the elementary theory. In that way
we possess the equations they satisfy, which are found in both theories and which
have the same application in them, the only difference being that we associate
four pairs of functions and operators to an open thin-walled cross section while we
associate two pairs in the elenemtary theory. This is a direct consequence of the
number of unknown functions describing the cross section deformation. In the first
case there are four such functions, four equations compose the basic equations, the
matrix of the cross section geometry is of the fourth order, while in the second case
two functions describe the cross section deformation. Along with this difference
connected to the problem particularities we can see that they have the same nature
and role in the similar theories, that is that they describe and introduce the laws
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A F* F} Fy
R R} Bj
F*

1" Fj R
R;

R*

v

0 T?To t

FIGURE 12.2. Nondimensional cross section transformation func-
tions Fy(t,7 = const.) and R;(t,7 = const.) (h = 1,2) for the
special case of the cross section geometry when I, = I, =0

of the co-action, determining the behaviour of such kind of structures. When we
speak about cross section transformation functions R} and F; we know that they
introduce the effects of the mutual action of different materials in the equations of
both theories.

Starting from the fact that the concrete transformation function F* or R* de-
scribes concrete physical properties, we can imagine that a certain hypothetical
material exists associated to the composite cross section, the properties of which
are described by functions Fj or R}. Comparing Eq. (2.18) which defines the con-
crete transformation function R*, with Eq. (3.63a), which defines the cross section
transformation functions Ry, we see that functions r, determine the time variation
of the instantaneous modulus of elasticity of this material and that through func-
tions v, ¥* its aging viscoelastic property is introduced. Since these features are
the result of the co-action in the composite cross section, they are also influenced
by the material properties, as well as its geometrical characteristics. To cross sec-
tions of different geometry we associate different hypothetical materials both in the
elementary theory and open thin-walled beam theory.

The hypothetical material properties have been analyzed for the cross section
transformation functions Fyf and R} of the elementary theory for the general case
of cross section geometry and 7 = const. It has been shown that the cross section
transformation functions Fy and the concrete transformation function F* have
similar time variation and that the same holds for functions R} and R*; that the
aging viscoelastic property is less evident than for concrete; that the change of the
modulus of elasticity of the hypothetical material is less than that of concrete and
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N F* FT F3
R R K

— F* I}

v

0 r>70 : t

F1GURE 12.3. Nondimensional cross section transformation func-
tions Fj(t,7 = const.) and R} (t,7 = const.) (h = 1,2) for the
special case of the cross section geometry when I, = I,; =0

that functions F}}, lie in the zone bounded by functions F}* and F3, while R}, lie
in the zone bounded by R} and R3.

The results of examinations of the influence of the cross section geometry on
the properties of the hypothetical material are very illustrative. It was supposed
that concrete is of constant modulus of elasticity and that steel (p) is an elastic
material. The first supposition does not affect the character of the investigated
phenomenon, only functions Fy, Fy, Rj, R}, and F*, R* begin from the same
starting point with the abscissa 7 (7 > 7°) whose ordinate is equal to one. For any
t (t > 7) the functions are in the following orders

(12.1) F*>F'>F;>1*, R*<RI <R <1,

where the signs of equality refer to the special cases of the cross section geometry.

In the general case of cross section geometry the position of the cross section
transformation functions F} and Rj is shown in Fig. 12.1. In this case when the
participation of concrete and elastic materials are almost equalized, functions Fy;,
lie in the zone within the area limited by the concrete transformation function F*
and the elastic material transformation function 1*, while functions R}, lie in the
zone within the area limited by functions R* and 1*.

When in the cross sections thin concrete slabs exist so that I, = I, = 0 can be
adopted, Eq. (7.4) holds. In such cross sections elastic materials dominate and zones
in which functions Fj, and R}, lie are concentrated around the elastic material
transformation function 1* (Fig. 12.2). The hypothetical material associated to
such a cross section is of least expressed aging viscoelastic property.

When the cross sections do not contain steel parts and when I, = I, = 0
can be adopted, Eq. (7.22) is valid. In this kind of cross sections the influence of
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the concrete properties is more significant and the zones in which functions Fj;,
and R}, are found are supported by the concrete transformation functions F* and
R*, respectively (Fig. 12.3). The hypothetical material associated to such a cross
section is of most expressed aging viscoelastic property.

Being described by the cross section transformation functions R}, or Fy, the hy-
pothetical material is an aging linear viscoelastic material whose properties demon-
strate the behaviour of the composite cross section. The results obtained contribute
to the understanding of how the participation of concrete and elastic materials and
their arrangement affect the properties of the hypothetical material, that is how
they influence the effects of the mutual action of these different materials in the
composite cross section. From the equations of the theory of composite and pre-
stressed structures we comprehend that the laws of co-action are basic and that
they determine the behaviour of such kinds of structures.

Here is the right place to racall the proposal, made in Ch. 9.3, concerning the
selection of the free parameter value in order for the approximate algebraic stress
expressions to predict the values on the safe side. The acception of the larger
corrected aging coefficient for the free parameter, x5 = X2, is recomended if no
steel parts exist in the cross section. The presence of concrete and its influence
on the co-action in such a cross section is significant, so that the value of the free
parameter xs should be closer to the aging coefficient x of the AAEM Method.
If steel parts exist, the influence of the elastic material is now significant, thus
the smaller corrected aging coefficient for x¢, x5 = X1, should be selected. This
proposal, supported by examples in Ref. [1.18], respects the laws revealed in this
theory of composite and prestressed structures.
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