
UNIVERSITY OF NN
FACULTY OF PHILOSOPHY
Department of Mathematics

FILOMAT
9:2 (1995)

Conference Filomat '94

GEOMETRY & COMPUTER SCIENCE

Guest Editors: S. Mineie and Lj. KociC

NIS

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT
a continuation of

ZBORNIK RADOVA FILOZOFSKOG FAKULTETA U NIMJ
SERIJ A MATEM ATI KA

EDITORIAL BOARD

Lj. Kainac (Managing Editor)
S. BogdanoviC, S. Jablan, S. Jankovi6, I. Jovanovi6, G. MilovanoviC,

A. Palistrant, Z. PeroviC, V. RakoeeviC, J. Zemanek, Guo Yuqi

Guest Editors: Svetislav Mineie and Ljubiga KociC

This publication was supported by the Faculty of Philosophy, University of Nis

Published by the Faculty of Philosophy, University of Nis

Printed by "Prosveta", Nis

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

UNIVERZITET U NISU
FILOZOFSKI FAKULTET

FILOMAT
9:2 (1995)

Konferencija Filomat '94

Geometrija. Ra'eunarstvo i informatika

Urednici: S. MineiC i Lj. Kocie

NN, 1995

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Conference FILOMAT'94

(October 22-24, 1994, Nig)

Department of Mathematics of the Philosophical Faculty, University of
Nig, organized the mathematical conference „Filomat '94 " from October 22
to October 24, 1994, with two sections:

1. Geometry (The 10'h Yugoslav Meeting of Geometricians),
2. Computer Science (Geometric Modeling, Numerical and System Soft-

ware, Networks)
About 80 mathematicians from Yugoslavia and other countries have taken

part on the conference, with about 60 talks. Some of them are published in
this volume of „Filomat".

Chairman of the Organizing Committee

Svetislav Mini

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The organization of the conference „FILOMAT '94" was helped by
the sponsors:

-Ministry of Science and Technology of Serbia

-EI Sigraf d.o.o.

-Libis Computers

-STN Slavia Trade, Nis

-WB Osiguranje

-Yugoduvan, Nis

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

GEOMETRY

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

'tan al < a e2 	all

If a < lir, then

(3)
✓2b 2 2c2 — a2

sin a < a /2b2 2
c2 a2

bz 	e2
Icos al> 	

b2 	c2 	'

1b2 	c2 	a21

FILOMAT (Nis) 9:2(1995), 117-120

Filomat '94, NiA, October 22-24, 1994
Geometry. Computer Sciences

AN INEQUALITY FOR THE TRIANGLE

Momello Bjelica

ABSTRACT. Inequalities for the triangle in the most of cases become equalities for the
equilateral triangle [2], [5]. In this article is given an inequality with unique property that
it becomes equality for isoscales and rectangular triangles. Also, an inequality connected
with Karamata's inequality is given.

j/2b2 2c2 — a 2

equality holds if and only if b = c or a =

b2 	c2 	 c2 	a2 	 a2 	b2
(2) 2R > relax{ 	

2c 2 — a2 V2c2 2a2 — b2 V2a2 2b2 — c2

equality holds if and only if the triangle is isosceles or rectangular.

Lemma.

Theorem 1. Let a, b, c, a, 13, -y are the sides and angles of a triangle
respectively and R the radius of its circumcircle. Then

(1) 	 2R> 	
b2 c

2

(4)

a 	-V2b 2 2c2 — a2 	
sin 	

a
> 	 cos

	

2 	V2b2 2c2 	
sin 2 — < 	

 V12b2 2c2 '

a
tan a < 	

2 — V2b2 2c2 — a2 '

1991 Mathematics Subject Classification. 51M16.

117

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

118 	 M. Bjelica

and conversely for a > 2 . Equalities hold if and only if b = c or a = f

Proof. Inequality (3.1) is equivalent to 'cos al(b — c) 2 > 0, which becomes

equality if and only if b = c or a = 121 . (3.2) is equivalent to (3.1), and (3.3)
is their consequence. Using 2R sin a = a one obtains that (1) is equivalent
to (3.2). Since cos a > (b2 + c2 a2)/(b2 c2) if a < and conversely if

a > 	inequalities (4) follow. ❑

The inequality of I. J. Schoenberg [4] for the two-dimensional euclidean
space reads as follows: If A 1 , A2, A3 are real numbers, then

(5) 	(A 1 + A2 + A3) 2 R2 > A 2 A3 a2 A3 A 1 b2 A1 A 2 c2 .

Introduce the functional

f(A i , A2, A3) = A2 A3a2 A3 A 1 b2 A1 A 2 c2

and consider now the inequality (5) with two equal parameters. The func-
tional f(A i , A2, A2), Al 2A2 = const. has a maximum if

(b2 c2) 2A2 (a2 — b2 c2) 	0,

For this value (5) becomes

Al = 2A 2
b2 + c2 a2

b2 + c2 	•

b

b2 	c2

2 + c2 a2
2 	+ 2)

2
R2 > a2 2(b2 c2 — a2),

as 2b2 2c2 — a2 > (b — c) 2 > 0, follows (1).
We now give the necessary and sufficient conditions for parameters in

Schoenberg's inequality for holding equality, what led to the given thorem.
Let

(6) Al + A2 + A3 = A.

The functional f has a maximum, with the condition A2 + A3 = const.,

similarly A3 + Al = const. and Al + A2 = const., if

(7) (A 2 — A3)a2 (b2 — c2)Ai = 0, 	cycl.

The system of linear equations (6-7) has solution

= ka2 (b2 	c2 — a2), 	cycl.,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

An Inequality for the Triangle 	 119

where
k = A (2b2c2 2c2a2 2a 2 b 2 _ a4 b4 e4)

Using formulas for area F of a triangle, Heron's and 4FR = abc, we get
equality

a4 b4 e4) = A2R2 (2b 2 C 2 2C2 a 2 2a2 b 2 - f(iti, 	f23 = k 2 a 2 b 2 c 2

By special values of the A's several inequalities for the triangle, includ-
ing the well-known formulas of Weitzenbock, Finsler and Hadwiger, can be
deduced [4], [2].

Remark. Equality in (5) holds if and only if sin 2a = rA 1 , sin 2/3 = rAz,
sin 27 = rA3 , r E R, [1], also

ft1 = ka2 2bc cos a = A-
112

sin 2a, 	cycl.
2F

Theorem 2.

a
(8)

V2b2 2c2 - a2 V2c2 2a2 - b2 	✓2a2 2b2 - c 2

equality holds if and only if the triangle is equilateral.

Proof. The inequality of J. Karamata [3]

a /3 + tan -
2
0 	-Y + tan

and the third formula in (4) for either an acute or a rectangular triangle
induce given inequality. Let A = v2b2 +20 - a2 , cycl. and f — the left-
hand side of (8). Then

fa = (b2 c2)11 -3 - ab13-3 - caC-3 = 0, 	cycl.

implies
a :b:c= A -3 : B -3 : C -3 .

Therefore,

a = b 	or 	A dz bz cz) _ 3
a 2 /3 — b 2 /3

a8 /3 — b8/3
cycl.

and either a = b = c or e. g. a = b, c = (3 2 - 1) 3/2 a . Also f > 2 if
a = b c. ❑

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

120 	 M. Bjelica

References

0. BOTTEMA, An inequality for the triangle, Simon Stevin 33 (1959), 97-100.

0. BOTTEMA ET AL., Geometric inequalities, Wolters—Noordhoff Publishing, Gro-

ningen, 1969.
J. KARAMATA, Problem 119, Glasnik matematiZko—fizieki i astronomski 3 (1948),

223.

0. Koot, Inequalities for the triangle, Simon Stevin 32 (1958), 97-101.

D.S. MITRINOVIe ET AL., Recent Advances in Geometric Inequalities, Dordrecht,

Boston-London, 1989.

"M. PUPIN", UNIVERSITY OF NOVI SAD, ZRENJANIN 23000, YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 121-129

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

THE COMPLETE LIST OF F(2) TYPE STRUCTURES
IN THE COMPLEX FINSLER SPACE

Irena Comic

ABSTRACT. The complex Finsler space E' is formed in such a way, that its tangent
space T(E') is equal to T(F1) iT(F2), where F1 and F2 are two 2n-dimensional
Finsler spaces. Using the nonlinear connections N and N of F i and F2 respectively,
the adapted basis B' of T(E') is formed. There is given the complete list of F(2)
type structures. Some of them for different values of parameters are almost complex,
almost product or tangent structures.

1. Complex Finsler spaces
Let us consider two n-dimensional Finsler spaces F i (x,±) and F2(Y,O•

The allowable coordinate transformations in F1 and F2 are given by

X ei = X el (X)

(1.1) 	 th e' = A cia' (X) X. a

=
at

a 	Or°

where
rank[An = n, rank[Bn = n,

so the inverse transformations exist.
The adapted basis of T(F1) is B 1 = {457, 	and the adapted basis of

T(F2) is B2 = { .5 , -5}, where

	

68 	, 	6 	8 	0

	

= — — 1■1:;(x x — 6xa Oxa 	 = F7y1 Ni(Y ' ° 00 .

	

lq(x, i) and Nji (y, 	are coefficients of the non-linear connections, which
satisfy the usual transformation law with respect to (1).

The complex Finsler space Ei(x,i, y,0 is formed in such a way that B',
the adapted basis of T(E'), is given by B' = B 1 U iB 2 .

1991 Mathematics Subject Classification. 53B40, 53C56, 53C60.

121

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

122 	 I. Comic

For the further exploration we shall use five kinds of indices

a,b,c,d,e, f,g = 1,2,... ,n,
A, B, C, D, E,F,G = 2n + 1, .,3n,

= 1,2,... ,4n.

The following equalities are valid

a = i = A = I(mod n),
c=h=C=.11 (mod n).

j ,h,k,l,m,p,q = n 	1,... ,2n
I, J,H,K,L, M, P,Q = 3n+ 1, .,4n

b = j = B = Amod n)
(1.2)

Using these indices, B' and its dual B'* can be written in the form

	

(1.3) 	(a) B' = {0} = 170

(b) B I* = fel = 	—idyi,Si B ,—iSV},

where
Se = de + N (x, th)de, 	= 	(y, Odyi .

If we introduce the notations

.S 	0 	8

	

(1.4) 	(a) R = 	tw 	
.
Wi

Ac:,,(x') 	0 	0 	0
0 	Hii,(y9 	0 	0

(b) D = 	0 	 0
0 	0 	0 	BI , (Y)

[dxa' , -
(c) K' = —idy

biA
_i6V

then the following relations are valid.

	

(1.5) 	 RI = RD 	K = DK' .

R' is obtained from R if indices a, i, A and I are substituted by a', i',

A' and I' respectively, similarly K is obtained from K' if in K' the sign "'"

over all indices is dropped. D is regular matrix, so exists D -1 . From (4a)

we have

	

(1.6) 	 R = R' 	= D-1 K ,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The complete list of F(2) type structures ... 	 123

• where

D -1 =

A bb i (x)
o
0
0

0
/3?

.,
(g)

0
0

0
0

Agi(x)
0

0
0
0

Bf(y) _

2. The F(2) type structures defined on F'

Definition 2.1. The tensor field F of type (1) defined on E' is the structure
of F(k) type if in the basis B' its matrix can be decomposed on 4 x 4 blocks of
format n x n, such that in each row and each column are k scalar matrices
and 4 — k zero blocks.

Notation. Every one of the scalar fields a, b, c, d, e, f, g, h denotes
the corresponding real or complex scalar matrix of type n x n (for example
a -= a(x ,th,

Theorem 2.1. There exist 90 F(2) type structures on E'. They are:

a 	0 	e 	0
b00g
Oc 	f 	0

a _ 0 	e 	O
b 	0 	0 	

g

0 	c 	0 	

h a 	0 	0 	g b 	
0 	e 	0

0 	f 	0
0 	d 	0 	h Odf 	0 OdOh

a 	0 	0 	g a 	0 	e 	0 a 	0 	e 	0
b 	0 	0 	h 0 	c 	f 	

o

b 	0 	0 	

g 0 	
c 	0 	g

b 	

0 	f 	0 0 	c 	e 	0
Odf 	0 0 	d 	0 	h 0 	d 	0 	h (1)

a 	0 	0 	g a 	0 	0
0 	c 	e 	0 0 .g01 0 	h
b 	0 	f 	0 b0Oh

(
0 	0 	gl

b0e0
0 	d 	0 	h Odf0 Odf0

a 	0 	e 	0 a 	0 e 	0 a 	0 	0 	g
0 	c 	0 	g 0 	0 	

g o 	
e 	0

0 	d 	f 	0 0 	d 	0 	h 0 	d 	f 	0
b 	0 	0 	h b 	0 	f 	0 b 	0 	0 	h

(2)

a 0 e 0
bOf 0
OcOg
0 d 0 h

a 0 0 g
b0e0
OcOh
0 d f 0_

a0e0
0 c 0 g
b0Oh
0 d f 0

a0e0
0 c f 0
0 d 0 g
b0Oh

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

124 	 I. Comic

a 	0 	0 	g -
Oc 	e 	0

Od 	0 	It

a 	0 	0

0 	c 	0 	It

0 	d 	e 	0

0 	C 	0

a 	0 	f 	0

000g

0 	c 	e 	0

a 	0 	0 	g
b 	0 	f 	0

b 	Of 	0_ b 	0 	f 	0 0 	d 	0 	It 0 	d 	0 	1t

o 	e 	e 	0 -*- 0

a 	0 	0 	g.
b 	0 	0 	it

c 	0 	-

a 	0 	e 	0

b 	Of 	0

0 	C 	0 	j -
a 	0 	e 	0
0 	0 	0 	It

0 	c 	0 	j
a 	0 	0 	t
b 	0 	e 	0

O 	d 	f 	0
(3) - 0 	d 	0 	h_ O 	d 	f 	0_ Odf 	0

0 	c 	e 	0 - 0 c 	e 	0 0 	ce0 0 	c 	0 	g

a 	0 	f 	0 a 	0 	0 	g a00g a0e 	0

OdOg Od 	f0 OdOh 0 	d 	f 	0

b 	0 	0 	h_ b 	0 	0 	It 00 	f 	0 b 	0 	0 	h_

0 	c0 	g
a0e 	0

Od 	0 	h

0 	c 	0 	g
a 	0 	0 	It

0 	de 	0

0 	c 	e 	0
Odf 	0
a 	0 	0 	g

0 	c 	e 	0 -
Od0 	g
a0 	f 	0

bOf 	0
(zI)

b 	0 	f 	0_ b 	0 	0 	It b0 	0 	It _

e 	0 - 0 	c 	0 	g 0 c 0 g — 0 	c 	0 	g -

OdOg Ode° 0 	d 	e 	0 0 	d 	0 	It

[

0c

a 	0 	0 	h

b 	Of 	0_
a 	Of 	0
b 	0 	0 	h

a 	0 	Oh

b 	010
a 	0 	e 	0
b010_

a 	c 	0 	0 -
b 	0 	e 	0

a 	c 	0 	0
b 	0 	0 	g

ac00
00e 	0

a 	c 	0 	0 -
b 	0 	0 	g

OdOg Ode° 00f 	g 0 	0 	e 	h

0 	0 	fh_

ac 	0 	0 -
O de0
000g

0 	0 	fh_

a 	c 	0 	0
OdOg
b 	0 	c 	0

0 	d 	0 	It

a 	c 	0 	0 -
0 	Oe 	g
b 	Of 	0

0 	d 	f 	0_

ac 	0 	0
0 	0 	e 	g
b 	0 	0 	h

00 	f 	h_ 00 	fh_ O 	d 	0 	h_ 0 	d 	f 	0_

_ a
	c 	0 	0

_
a 	c 	0 	0 -- ac 	0 	0 ac 	0 	0

Ode 	0 OdOg 0 	0 	e 	9 0 	0

0 	0 	f 	g 0 	0 	c 	h 0 	d 	f 	0 0 	d 	0 	It

b0Oh__00f 0_ _ b0Oh b 	Of 	0 _

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The complete list of F(2) type structures ... 	 125

b 	0 	e 	0
ac00

b009
ac00 ac00 	ac00

OdOg O 	d 	e 	0

b0e0ilb00g

00fg 	00eh
0 	0 	f h 0 	0 	f h 0 	d 	0 	h 	Odf0

0 	d 	e 	0 0 	d 	0 	g 0 	Oeg" 00eg
ac00 ac00 a 	c00 a -c00
b00g b0e0 b 	Of0 b0Oh
0 	0 	f 	h 0 	0 	f h 0 	d 	0 	h Odf0

"Ode0
ac00

0 	d 	0 	
g
	0 Oeg -- 00eg -

 c00 ac00
0 	0 	f 	g

acOOira
00eh 	0 	d f 	0 0 	d 	0 	h

b 	0 	0 	h b 	0 	f 	0 	b 	0 	0 	h_ b0f0_

b0e0 b00g 	b 	OeO b00g
OdOg

[
Od 	e 	Ofg 00eh

ac 	0
00fh

c00 a 	
00j10

00fh 	0 	dOh
ac00
Odf0

0 	de 	0
b 	0 	0
a 	c 	0 	0
0 	0 	fh_

Ode 	0
00f 	y
a 	c 	0 	0
b0Oh

b 	0 	c 	0 	b 	0 	0

0 	0 	fh 	0 	0 	f
a c00_ 	ac00 	a

d 	0 	0 	de 	gO 	0

-0d0
bOeOirb
a 	c0
00 	f 	h 	L 0

0 	d 	0 	g
0 	0 	e 	h
ac00
b0f0_

ir b

g 	0
OegirOOeg b

	

Of° 	00h

	

c00 	ac00

	

dOh 	0 	d 	f 	0

00e0goi[000 	eg [
Odf dOh
ac0 c00
b 	0 	0 	h 	b 	0 	f 	0

Oe

h

	

O 	b009

° 	

1

dO 	h 	0 	d

	

c00 	ac00
ir 0

	

Ofg 	Oe

0 	d 	c 	0
b 00 .9 b0e0 	b0f0 	b0Oh
0 	0 	fh

OdOg00eg1100egi

0 	0 	f 	h 	0 	d 	0 	h 	0df0
_tc 	0 	0 ac00 	ac00 	ac00

- 0 	d 	e 	0 OdOg - 0 	Ocg - 	0 	0 	e 	g
00 	fy 00eh O 	d 	f 	0 	0 	dOh
b 	0 	0 	h b0f0 b0 	0 	h 	I 	bOf 	0
a 	c 	0 	0 _ac00_ a 	c 	0 	0 	L ac00

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

126 I. Comic

a 	c 	0 	0 a 	c 0 	0 ac 00 0 0 e g -

bd00 0 	0 eg 0 	0 eg a c 0 0

0 	0 	e 	g bd 0 	0 0 	0 f h b d 0 0

0 	0 	f 	h
(5)

_ 0 	0 f h b 	d 0 	0_ 0 0 f

0 	0 	e 	g"
a 	c 	0 	0

0 	0 	e
0 	0 	f

g
It

0 	0 	f 	h

{

ac 	0 0
b 	d 	0 	0 _ b 	d 	0 0 - (6)

The first 36 matrices are formed in such a way that in the first two columns
the chosen elements are always in different rows; in the next 48 matrices
the first two columns have once two elements in the same row (ac) and two
elements in different rows; in the last 6 matrices the first and second columns
have two times, two elements in the same row.

Definition 2.2. The tensor field F of type (1,1) defined on E' is almost
complex structure (a.c.s.) if F 2 = —I, almost product structure (a.p.s.) if

F2 = I, or tangent structure (t.s.) if F2 = 0.

Theorem 2.2. The F(2) type structure, which in the former list do not
have the sign "*" can not be a.c.s., or o.p.s., or t.s.

Proof. Some Fi (i = 1, 	, 90) from the above list of F(2) type structures
can be a.c.s., or a.p.s., or t.s. if F,2 has the property, that all elements, which
are not on the main diagonal are equal to zero. All F's, which do not have

the sign "*" (there are 84) are such, that Fi2 has at least on one place, which
is not on the main diagonal, product of two elements. This product is zero
if at least one of the factor is equal to zero, but in this case F i is not F(2)

type structure.

Theorem 2.3. There are only six F(2) type structures defined on E', which
for some special values of parameters can be a.c.s., or a.p.s., or t.s. They
are denoted by "*" in the above list of F(2) type structures.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The complete list of F(2) type structures ... 	 127

Proof. For special values of parameters we have

F1 =

F3 =

F5 =

a 	0 	b
0 	c 	0
c 	0 	—a
0 	g 	0

	

0 	a 	b
—ce 	0 	0

	

cd 	0 	0

	

0 	d 	e

a 	b 	0
c 	—a 	0
0 	0 	e
0 	0 	d

0
d
0

—c _

0
cd

—ca
0

0 -
0
f

—e

=

F4 —

F6 =

a 	0
0 	c
0 	e
f 	0

0
ce
0

—cd

- 	 0
0

a-1 b
c

0
d

—c
0

a
0
d
0

0
0
b
e

b -
0
0

—a _

0
be
0

ac

ae
—ac

0
0

—b
0

0

—ab

0
0

•

By direct calculation we obtain

F12 = diag[a2 + be, c2 + dg ,a2 + be, c2 + dg]
FZ = diag[a2 + b f, c2 + de, c2 + de, a2 + b f]
• = c(bd — ae)I

• = c(bd + ae)I
F: = diag[a2 + bc,a2 bc,e2 + df , + df]
Fs = (de — abc)I .

From Theorem 2.3 follows

Theorem 2.4. The F(2) type structures F1 — F6 are a.c.s. if

in F1 a2 + be = 	dg = —1,
in F2 a2 b f = c2 + de = —1,
in F3 C(bd — ae) = —1,
in F4 C(bd ae) = —1,
in F5 a2 + be = e2 df = —1,
in F6 de — abc = —1.

If in the above equations —1 is everywhere replaced by 1, the structures
Fi — F6 become a.p.s.; if —1 is everywhere replaced by 0, the structures
Fi — F6 become t.s.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

128 	 I. ComiC

3. The tensor character of F(2) type structures

Theorem 3.1. All 90 F(2) type structures from the list in paragraph 2 de-
termine tensor fields of type (1,1) in the basis B', with respect to the coor-
dinate transformation (1).

Proof. As the proof is the same for all structures, we shall give it for F 1 .

The structure F1 in the basis B' determines the following transformation:

Fi () 	 -ke a÷„,bx°
c(i by) '

F1(.d-A-) = b

Fl ay i 	= 	d(i hy. , •

The precise form of F1 is the matrix

aga 0 	bk,B 	0
0 	cei 	0 	d(51

ebbA 0 — abl 	0
0 	gS1 	0 -

The tensor F1 , which is determined by the matrix F1 can be written in the

following way:
F1 =RF1 ® K.

In the basis R' and K' F1 has the form (see (4)):

F1 = RID -1 D K' = R'F;. K',

where

= 	D =

For F; we have

ao!kli, A: 1 	0 	b6,1,3,AaarAf 	0

c81.13I,13:1" 	0 	d(VM,B:r
ebbA At' 	0 	— 	AB' 	0

0 	BI, 	0 	— c(5/./31,B .1 1

F'21 = (D-1 Fi D)(D - FiT)) D -1 F; D.

From the above relation follows:

if .f? = —I 	= —1 ,
if Fl = I 	F/21 = I,

if I? = 0 	F'21 = O.

Fi =

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The complete list of F(2) type structures ... 	 129

Refrences
[1] BEJANCU, A., Geometry of CR-Submanifolds, D Reider Publishing Company,

1986.
[2] COMIC, I., Generalized Connection in the Complex Finsler Space, (to be pub-

lished).
[3] COMIC I., Nimo J., Some Herniae metrics in the complex Finsler spaces, Publ.

Inst. Math. Beograd 55 (69) (1994), 89-97.
[4] IcmYu:), Y., Almost complex structures of tangent bundles and Finsler metrics.

J. Math. Kyoto Univ. 6-3 (1967) 419-452.
[5] KOBAYASHI, SH., NOMIZU, K., Foundations of Differential Geometry, Inter-

science Publishers, New York, London 1963.
[6] PRAKASH, N., Kaehlerian Finsler Manifolds, The Math. Student. Vol. 30, No.

1,2, (1962), 1-11.
[7] RIZZA, G.B., Structure di Finsler di iipo quasi hermitiano, Riv. Mat. Univ.

Parma, 4 (1963) 83-106.
[8] SHIMADA, H., Remarks on the almost complex structures of tangent bundles,

Research Report Kushiro Tech. Coll. No. 21, (1987) 169-176.
[9] YANO, K., Differential Geometry on Complex and Almost Complex Spaces, A

Pergamon Press Book, New York, 1965.

FACULTY OF TECHNICAL SCIENCES, 21000 Novi SAD, YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 131-142

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

GEODESIC TUBES AND JACOBI VECTOR FIELDS
ON COMPLEX SPACE FORMS

Mirjana Djorie

ABSTRACT. Studying geodesic variations and associated Jacobi vector fields is very useful
for examining the theory of curvature in local and global Riemannian geometry. This is
directly connected with the investigation of the geometry of small geodesic spheres and
tubes, so it can be used in the analysis of the curvature of the ambient space. In this
paper, the explicit expressions for the Jacobi vector fields on complex space forms will be
used for calculating the matrix of the shape operator of tubes about geodesics on complex
space forms.

1. Introduction

The study of the curvature of a Riemannian manifold is one of the most
interesting topics in Riemannian geometry. As it is well-known, the study of
variations of geodesics and the associated Jacobi vector fields is very useful
in treating curvature theory in local and global Riemannian geometry. This
is directly related to the investigation of the geometry of small geodesic
spheres and tubes about curves and submanifolds. The properties of the
extrinsic and intrinsic geometry of these geometric objects may be used to
study the curvature of the ambient space, as it was done in [1]-[9]. On this
occasion we consider only the converse situation, namely, it is quite clear
and well-known that when the Riemannian manifold is of a special type (for
example, if it has special curvature), then the properties of geometric objects
on it are strongly influenced. In [4] the author gave the explicit expressions
for the shape operator of tubes about cp -geodesics on Sasakian space forms,
while in this paper the special case when the ambient space is a complex

1991 Mathematics Subject Classification: 53B20, 53B35, 53C22, 53C55
Key words: Kaller manifold, complex space form, geodesic tube, shape operator,

Jacobi vector field.

Supported, by Grant 0401A of RFNS through Math. Inst. SANU

131

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

132 	 M. Dori6

space form is considered. Working with Jacobi vector fields, since this falls
among the best ways of analyzing the geometry of tubular neighborhoods,
the matrix of the shape operator of tubes about geodesics on complex space
form is obtained.

We refer to [11] and [14] for a study of tubular neighborhoods and [2]
where a more detailed and more complete developement may be found, with
an extensive list of references. The article is organized in the following way:
Section 2 is devoted to a brief survey of the concepts used throughout the
paper and in Section 3 the main results are treated.

2. Preliminaries

Let M be a complex analytic manifold of complex dimension tn. By means
of charts we may transfer the complex structure of complex m-dimensional
Euclidean space C' to M to obtain an almost complex structure J on M,

i.e., a tensor field J on M of type (1,1) such that J 2 = —I, where I is the

tensor field which is the identity transformation on each tangent space of M.

A Riemannian metric g on M is a Hermitian metric if g(JX, JY) = g(X,Y)

for any vector fields X and Y on M; M is then called a Hermitian manifold.

If moreover the almost complex structure J is parallel with respect to the

Riemannian connection of g, then J (resp. g) is called a Kiihler structure

(resp. Kilitter metric); M is then called a Kithler manifold. We call a plane

which is tangent to M and is invariant by J a holomorphic plane. If M is

a Kahler manifold, the sectional curvature of a plane p tangent to M will

be denoted by K(p) and the sectional curvature of the holomorphic plane
generated by a unit tangent vector X will be denoted by K(X). M is said to

be of constant holomorphic sectional curvature c if the sectional curvature

of every holomorphic tangent plane is equal to c. As a complex space form
we shall understand a complete Kahler manifold of constant holomorphic
sectional curvature and its curvature tensor RxyZ =V[x,yiZ—[Vs, V y]Z

is completely determined and given by ([15]):

RxyZ = 5-4 (g(X, Z)Y — g(Y, Z)X g(JX, Z)JY — g(JY, Z)JX

+2g(JX,Y)JZ).

As is well known, any simply-connected complex space form M is (after

multiplying the metric of M by a suitable positive constant) holomorphically
isometric to a complex projective space, a complex Euclidean space or a
complex hyperbolic space, in dependence of M being of positive, zero or

negative holomorphic sectional curvature, respectively ([15]).

(1)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Geodesic tubes and jacobi vector fields on... 	 133

We finish these preliminaries by repeating some general facts about tubes.
We refer to [2], [11] and [14] for more details and references.

Therefore, let a :[a,b] 	M be a smooth, embedded unit speed curve in
a Riemannian manifold M of dimension n and denote by al the normal
bundle of a and by exp o the exponential map of this normal bundle, i.e.,

exp,(a(t), v) = exp„ (t) v

for any t E [a, b] and all v E cr(t)I . Here a(t)1 denotes the fiber of al
over a(t) . Further, let 14(r) be the (open) tubular neighborhood or the
(open) solid tube of radius r about a, i.e., the set defined by

14(r) = fexp, (t) v IvE a(t)1, v 	r, t E [a, b]}

and denote by Is10 (r) the (open) solid tube of radius r about the zero section
of the normal bundle crl of a. In further text, we shall always assume that
the radius r of the tubular neighborhood is smaller than the distance from
a to its nearest focal point. In this case, the exponential map exp o is a
diffeomorphism between 14(r) and Na(r) and consequently, the set

Pa(s) = {p E 14(r) I d(o-,p) = 81,

for some s < r, is a (smooth) hypersurface in M , called the tube of radius
s about a . If a is a geodesic on M , the tubes Pa are called geodesic tubes
about a .

For the purpose of describing the geometry of a Riemannian manifold
M in the neighborhood of a curve a we use Fermi coordinates. The Fermi
coordinate system (x 1 , , x„) with respect to a(a) and relative to a given
orthonormal frame field {F 1 , , F„} along the curve a for which &(t) =
(F1),(t) is defined by

x1
(exp c (t) (E tiFi)) = t — a,

x i (expo.(t) (E tiFi)) = ti , i = 2, ... , n,
j=2

provided that the numbers t 2 , 	t„ are small enough in order to have a
diffeomorphic exp,.

Further, if y is a unit speed geodesic of M normal to a with 7(0) = m =
a(t) and v = 7'(0), then there is a system of Fermi coordinates (x 1 , , xn)
such that for small s we have

(k) = &(t) ' zn z

71

(2) j=2

71

E {&(t)} 1 , i = 2, ... , n — 1,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

134 	 M. Doric

7'(s) 8:77.)

Since exp o(t) is diffeomorphism on 14(r), the equations (2) define a co-
ordinate system near m. It is known ([11]) that the restrictions of the coor-

dinate vector fields { , 47,} to cr are orthonormal. In what follows

we shall relate the coordinate frame field to a frame field obtained by consid-
ering a special set of Jacobi vector fields along 'y with a view to obtaining
the expression for the shape operator of P,(r).

In this aim, let p = exp c(t) (rv) , v E a(t)1 , Ilvil = 1 be a point of P,(r)

and let 7 : s expc(g) (sv) be the (unique) unit speed geodesic connecting

cr(t) and p (and cutting cr orthogonally). Denote by {E 1 ,...,E„} the
frame field along 7 obtained by parallel translation of {Fi (t),..., F,,,(t)}
with respect to the Levi Civita connection V . Next, if R = R(s) denotes the

endomorphism u 1-4 R y(3),u7'(3) of the vector space {7'(8)} 1 C Ty (s)M,
then a vector field Y along a geodesic -y is called a Jacobi vector field if it
satisfies the following second order differential equation- the Jacobi equation:

(3) Y" RY = 0 ,

where the prime' denotes covariant differentiation along 7. Next, let Yi , i

1, 	, n — 1 be the n-1 Jacobi vector fields along 7, satisfying the initial
conditions

y,(0) = Fi(t), Coa l) n(0)= (v.,,, 	((TM),
(4)

Yi (0) = 0, YI(0) = Fi (t), 	i = 2, . .. , n — 1

and define

(5) Yi(s) = (B Ei)(s), i= 	— 1.

The vector fields Yi (s) determine a basis for the space {-y i (s)} 1 for suffi-

ciently small s and s H B(s) is an endomorphism-valued function. Then,
each B(s) is an endomorphism of the space {7 1 (s)} 1 and all these spaces
may be identified via the parallel translation along 7 by using the basis
{Ei, i = 1, n} . We shall do this at several places without mentioning it
explicitly.

Now, from (3), (5) and the initial conditions (4) it follows that B satisfies

the Jacobi equation

(6) 	 B" R o B = 0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Geodesic tubes and jacobi vector fields on... 	 135

with the initial conditions

(7) B(0) = 1 ° 	 0 0
0 	\ 	— I ' 	(°) 	I \

since we shall focus our attention only to tubes along geodesics.
Finally, we shall write down the matrix of the shape operator SC of

geodesic tube P,(r), using Jacobi vector fields along geodesics orthogonal
to Q. Since a

s (p) is a unit normal vector of 7),(0 at p = expo.(t) (rv), the shape operator S° of P,(r) at p is defined by

(8) (S'x)(P) = (vx 	(p)

for any vector X tangent to P° (r) at p . Hence, it is easy to see, by using
(5), that the shape operator S°(p) takes the form

(9) S° (p) 	(B'B -1) (r).

3. The main results

In this section we consider complex space forms and we compute the ex-
plicit expressions for the shape operator of geodesic tubes in these manifolds.
To obtain our results we use here one of the most convenient methods for
analyzing the geometry of small geodesic spheres and tubes about curves and
submanifolds, by studying the Jacobi vector fields on complex space forms.
It is quite natural that the Jacobi vector fields play an important role in this
research since it is a well-known fact that the curvature of a Riemannian
manifold is geometrically reflected by the behavior of one-parameter fami-
lies of neighboring geodesics and they are analytically described by Jacobi
vector fields. When the manifold is of a special type, the consideration of
Jacobi vector fields results in the study of the Jacobi differential equation
which has a relatively simple form.

Let m be a point on a complete Kahler manifold M" of constant holo-
morphic sectional curvature c and let 7),(r) be a tube of radius r about a
geodesic a tangent to a unit vector field u . Further, let y be a geodesic
through in = 7(0), parametrized by arc length s, with initial velocity vector
7'(0) = v and meeting a orthogonally at ira = a(t), with u = & at in. Here-
after we shall also write 7'(s)= v at any point of y. For a vector field v
the Jacobi equation

(10) 	 VvVv X + R vxv 0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

136
	 M. DoriE

for a given complex space form M becomes by virtue of (1)

(11) 	 V,V,X + T (X — 3 g(JX,v)Jv) = 0 .

Further, we shall distinguish three cases, depending on the position of

the point p = exp,o) (rv), v E cr(t) I , Dull = 1, in the forthcoming three

theorems.
First, consider the special points p of the geodesic tubes P ° (r) on a

complex space form Mn, such that p = expo(t) (rv),v E Cr(t) 1 , v(a(t)) =

Ju(cr(t)). As this case has already been investigated in [2] and [6], we give
here only the final expression for the matrix of the shape operator. Namely,

the following theorem holds:

Theorem 1. ([6]) Let (M,g,J) be a Kohler manifold of constant holo-

morphic sectional curvature c. Then, at a point p = exp,(t)(rv),v E

a(t) 1 , v(a(t)) = Ju(cr(t)) of the tube P° (r) (along a geodesic u(t) tangent

to a vector u), the shape operator S'(p) can be represented by the following

matrix:

- A(r) 	0 	... 	0
0 	B(r) 	... 	0

• •

0 	0 	B(r)

(12) 	 S° (p) =

with respect to the basis {E1, . . . , En_ 1 } defined in Section 2. The explicit

expressions for the entries are as follows:

1
A(r) = 0, 	 B(r) = —

r
, 	 for c 0;

A(r) = 	,Nfir, 	B(r) = 1- cot 1r, 	for c > 0;

A(r) = 	tanh 	B(r) =
2 	2

coth 113r, 	for c < O.

Now, let us consider sufficiently small tube P ° (r) about the geodesic a

embedded in a Kohler manifold of constant holomorphic sectional curvature

c. Let -y denote the unit-speed geodesic meeting a orthogonally at m = a(t)

and tangent to a vector v such that g(u(m),Jv(m)) = a, where it = u

at m. To obtain the matrix of the shape operator of P c (r) at points p

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Geodesic tubes and jacobi vector fields on... 	 137

expolo (rv), we first choose an orthonormal basis {e 1 , 	, en } for the tangent
space Tm A 1, such that e l = u(m),e 2 = (Jv(m) — au(m))1b,e„ = v(m),
where a 2 	b 2 = 1. Further, let {E 1 , 	, E„} be the basis obtained by
parallel translation of the basis {e 1 , 	, c„} along 7. Then it follows that
any vector field X orthogonal to the geodesic -y can be written as

n-1
(13) 	 X = 	f2 E2 	Ei •

i=3

e ((3a 2 (3a + 1)E1 3abE2)

(3abEi (3b2 1)E2)

— 3 4E%, 	 1,

Since, using (1) we obtain

R v Ei t, =

(14) 	
RvE 2 V =

RvE,11 =

we see that (11) is equivalent to the following system of differential equations:

4 	(3 a 2 	3abc f2 = 0 ,

4 g + 3abc fl + c(3b2 + 1)12 = 0,
(16) 	 4 r + c = 0 , i = 3, 	, n — 1 .

Now, consider the substitution

= a fi b 12 ,
z2 = b — a 12 •

Then the equations (15) take the form

a zin + b + c a zi + 4 b z2 = 0,

b — a z 2" + cb — 4—
c

a z2 = 0 .

In this way, by multiplying the first equation in (18) by a and the second
by b and adding the obtained results, we arrive at a differential equation

(15)

(17)

(18)

Zi 	C ZI = 0,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

138 	 M. D ori6

which is easy to integrate, having in mind that the solutions will depend on
the sign of c. Finally, using the standard solutions of the it — 3 equations
(16), we can derive the complete solutions in the three cases we shall need.

Case 1: 	c = 0

Here we find 	
fu = (aA+bC)s-FaB +bD,

12 = (bA aqs+ bB — aD ,

fi = Ai s + Bi , i = 3, . , n — 1 ,

with A,B,C,D,Ai,Bi being constant along 7.

Case 2: 	c > 0

In this case, putting k = \IC, we obtain

fi= aF cos ks. + aG sin ks + bH cos 	bi sin 23 ,

f2= bF cos ks + bG sin ks — aH cos 2 	 2 — aI sin Al"-9

fi= Fi cost- + Gi sin /1-1 , i = 3, ..., n — 1 ,

with F,G, H,I, Fi ,Gi being constant along 7 .

Case 3: 	c < 0

This time we put k = 	C. Repeating the same computations, we obtain

fi= a(Ke k s Le —ks) -F b(Me +

12 = b(Kek s + Le— ks) — a(Me' + Ne — V),

fi= Ki e kt + Li 	, i = 3, ... , n — 1 ,

with K,L,M,N,Ki,Li being again constant along 7.
Moreover, we shall need the form of the Jacobi vector fields along a geo-

desic. 7 satisfying the following initial conditions:

(19) X1 (0) = Ei (0), X1(0) = 0,

(20) Xi(0) = 0 , 	X.:(0) = Ei(0), i = 3,...,n — 1.

We shall therefore compute these special Jacobi fields in the three above-
described cases, using the notation k = VZ if c > 0 and k = when

c < 0.

Case 1: 	c = 0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Geodesic tubes and jacobi vector fields on... 	 139

= E1(s) , X2(s) = s E2(s) , X(s) = s E:(s), i = 3,,.., n — 1

Case 2: 	c > 0
X1(s)= (a 2 cos ks + b2 cos zs) E1 + a b (cos ks — cos zs) E2,

X2 (s)=
b

(sin ks —2 sin 	E 	1 2
k 	 2) 1 + ~ (b sinks + 2a2 sin zs) E2,

2
X(s)= 	sin a Ez(s) , i = 3,... ,n — 1.

Case 3: 	c < 0
X 1(s)= (a2 cosh ks + b 2

ab
X2(s)= 	(sinh ks — 2

X(s)= sinh zs Es(s)

cosh 2) E1 + a b (cosh ks — cosh 2) E2 ,

sinh 23) E 	1 (2 	 2 	ks 1 + ~ b sinh ks + 2a sinh 2) E2 ,

, i = 3, . . . ,ii — 1.

Finally, using relations (4)-(9) and computed Jacobi vector fields, it fol-
lows that the shape operator S° can be represented by the following quasi-
diagonal matrix:

- A(r) B(r) 0 0
B(r) C(r) 0 	... 0

(21) S(p) = 0 0 D(r) 	... 0

- 	0 0 0 	... D(r)_

with respect to the basis {bE1 — aE2 , Jv, E3 , ... , E,_ 1 }. The explicit ex-
pressions for the entries are as follows:

Case 1: 	c = 0
A(r)= B(r) = 0,

C(r)= D(r) = 1 .
r

Case 2: 	c>0

A(r)= 2 w (—b2 sin 2r sin kr + 2a 2 cos z cos kr) ,

B(r)= —W ab,

C(r)= w (-2a2 sin zT sin kr + b2 cos 2 cos kr) ,

D(r)= 2 cot 2r ,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

140 	 M. Dori6

where co = k (2a 2 sin Zr cos kr + b2 sin kr cos if) .

Case 3: 	c < 0

A(r)= —219 (b2 sinh n sinh kr + 2a2 cosh if cosh kr) ,

B(r)= 	a b ,

CM= a (2a2 sinh z sinh kr + b2 cosh ar cosh kr) ,

D(r)= z coth Zr ,

where B = (2a2 sinh —k2.7" cosh kr + b2 sinh kr cosh if).

Therefore, this proves that the following theorem holds:

Theorem 2. Let (M",g,J) be a Kiihler manifold of constant holomorphic

sectional curvarure c and let P°(r) be a sufficiently small geodesic tube
of radius r around a geodesic a tangent to a vector u on M". Then
the shape operator Sa of tube P7 (r) at points p = exp,(t) (rv), such that

v(a(t)) 1 u(a(t)), g(Jv(a(t)), u(a(t))) = a, can be represented by the matrix

(21).
Finally, since the case v(a(t)) 1 Ju(a(t)) is slightly more difficult than

the case v(a(t)) = Ju(a(t)), but easier than the general case, where

g(J v(o-(t)), u(a(t))) = a, we give here only the final result, i.e., the matrix

of the shape operator in this case.

Theorem 3. Let (M",g,J) be a Kahler manifold of constant holomorphic
sectional curvature c and let 130 (r) be a sufficiently small geodesic tube
of radius r around a geodesic a tangent to a vector u on M". Then
the shape operator Ser of tube P° (r) at points p = expo(t) (rv), such that

v(a(t)) = Ju(a(t)), is given by the following matrix:

A(r) 0 0 0

0 B(r) 0 0

(22) S° (p) 0 0 C(r) 	... 0

0 0 0 	... C(r)_

with respect to the basis {E 1 , E2 ,..., E„_1 } defined in Section 2, such that

E2 (a(t)) = Jv(a(t)). The explicit expressions for the entries are as follows:

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Geodesic tubes and jacobi vector fields on... 	 141

Case 1: 	c = 0

Case 2: 	c > 0

Case 3: 	c < 0

A(r)= 0 , B(r) = C(r) = r.
A(r)= — if tan 2r ,

B(r)= k cot kr ,

C(r)= if cot 2.

A(r)= 2 tanh iT ,

B(r)= k coth kr ,

C(r)= if cot h 2r .

It is evident that the last result follows either directly from Theorem 2
(by replacing a = 0 , b = 1 in (21)), or following the similar procedure
as in Theorem 1 and Theorem 2 (i.e., solving the Jacobi equation (10) and
computing the Jacobi vector fields). The author first used the latter method,
and then checked the results after having proved Theorem 2.

Remark. After having completed this work, the author was informed by
L. Vanhecke, that L. Gheysens derived the complete formulas for SC in his
dissertation [10] and that the needed material is given in [12].

References

[1] P. BUEKEN, Reflections and rotations in contact geometry, doctoral dissertation,
Katholi- eke Universiteit Leuven, 1992.

[2] M. DJoma, Geometrija geodezijskih sfera i ccvi, doctoral dissertation, Faculty of Ma-
thematics, University of Belgrade, 1994.

[3] M. DJoRta, On characterizations of Sasakian space forms and locally co-symmetric
spaces, Publ. Math. Debrecen 46(1995), 1-23.

[4] M. Thome, Geometry of geodesic tubes on Sasakian manifolds, Proc. Colloquium on
Differential Geometry, Debrecen, 1995, Kluwer Ac. Publ., to appear.

[5] M. DJon.to , Geometry of tubes about <p-geodesics on Sasakian manifolds, submitted.
[6] M. Mot u& Characterizations of complex space forms and locally Hermitian symmetric

spaces by geodesic tubes, submitted.
[7] M. Mottle' AND L. VANHECKE, Almost Hermitian geometry, geodesic spheres and

symmetries, Math. Okayama Univ. 32 (1990), 187-206.
[8] M. DJORle AND L. VANHECKE, Geometry of geodesic spheres on Sasakian manifolds,

Rend. Sem. Mat: Univ. Pol. Torino 49 (1991), 329-357.
[9] M. Mollie AND L. VANHECKE, Geometry of tubes about characteristic curves on

Sasakian manifolds, Rend. Circ. Mat. Palermo XLI (1992), 111-122.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

142 	 M. Doric

[10] L. GHEYSENS, Riernannse differentiaalmeetkunde van buisvormige omgevingen, doc-

toral dissertation, Catholic University Leuven, 1981.

[11] A. GRAY, Tubes, Addison-Wesley Publ. Co., Reading, (1990).

[12] A. GRAY AND L. VANHECKE, The volumes of tubes in a Riemannian manifold, Rend.

Sem. Mat. Univ. Politec. Torino 39 (1981), 1 -50.

[13] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential geometry, I,II, Interscience

Publ., New York, 1963, 1969.

[14] L. VANHECKE, Geometry in normal and tubular neighborhoods, Rend. Sem. Far.. Sci.

Univ. Cagliari, Supplement.° al Vol.58 (1988), 73-176.

[15] K. YANO AND M. KON, Structures on manifolds, Series in Pure Mathematics, 3, World

Scientific Publ. Co., Singapore, 1984.

FACULTY OF MATHEMATICS, UNIVERSITY OF BELGRADE, STUDENTSKI TRG 16, P.B.

550, 11000 BELGRADE, YUGOSLAVIA

E-mail: edjoricOubbg.etf.bg.ac.yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 143-148
Filomat '94, Ni,A October 22-24, 1994
Geometry. Computer Sciences

CURVES GENERATED BY MIRROR REFLECTIONS

Slavik V. Jablan

ABSTRACT. 	Curves generated by mirror reflections are discussed from theory of symmetry,
combinatorial geometry and knot theory point of view.

The imitation of the three-dimensional arts of plaiting, weaving and basketry was
the origin of interlacing and knotwork interlacing ornaments. Their highlights are
the Celtic interlacing knotworks [1,2] (Fig.la), Islamic layered patterns and Moorish
floor and wall decorations.

The common geometrical construction principle for all such decorations is the
use of (two-sided) mirrors incident to the edges of a square, triangular or hexagonal
regular plane tiling, or perpendicular to its edges in their midpoints (Fig.la). In
the ideal case, after the series of consecutive reflections, the ray of light reaches its
beginning point, defining a single closed curve [3]. In other cases, the result consists
of several such curves.

The construction of such curves was occupied the attention of two most greatest
painters—mathematicians: Leonardo and Diirer [1]. Some interesting geometrical
and arithmetical properties of the curves mentioned are discovered by Paulus Gerdes
[3,4,5]. Let us notice one more beautiful geometrical property: such curves can be
obtained using only few different prototiles. For the construction of all the curves
with internal mirrors incident to the edges, they are sufficient three prototiles in
the case of a regular triangular tiling, five in the case of square, and 11 in the case
of hexagonal regular tiling. We may also use their combinations occuring in the 11
uniform Archimedean tilings [6] (Fig. lb).

The symmetry of such curves is used for the reconstruction of Tamil designs [4],
as well as for the classification of the Celtic frieze designs [1]. From the ornamental
heritage, at first glance it looks that the symmetry is the mathematical basis for their
construction and possible classification. But, the existence of such asymmetrical
curves suggests the other approach. Trying to discover their common mathematical
background, they appear two questions: how to construct such a perfect curve (this
means, how to arrange the set of mirrors generating it), and how to classify the

1991 Mathematics Subject Classification: Primary 20H15, 57M25
Supported by Grant 0401 of FNS through Math. Inst. SAW!

14:3

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

144 	 Slavik V. Jablan

curves obtained. Our consideration we will restrict to the curves derived from the
square filings.

P"

A. • ■•∎
NY

hh 	.111.

•
• Ai

• .4Ih *Mr*

'VA:

■■ ;

Allh

V V'

Al.

`Ir • r

• •

A. AS AA4

N V.
1 	11

■*,.■

1

or.. A. •

Figure 1

In principle, any polyomino [6] with mirrors on its border, and two-sided mirrors
between cells or perpendicular on the internal edges in their midpoints, can be used
for the creation of the corresponding curves. First, we construct all the different
curves without use of internal mirrors, starting from different edge midpoints and
ending in them, till the polyomino is exausted, i.e. uniformly covered by k curves.
After that, we use "curve surgery" in order to obtain a single curve, according to
the following rules: (a) any mirror introduced in a crossing point of two distinct
curves connects them into one curve; (b) depending on the position of a mirror, a
mirror introduced into a self-crossing point of an (oriented) curve makes no change,
or breaks it into two closed curves. In every polyomino we may introduce k — 1, k,

k + 1, ..., 2A — P/2 internal two-sided mirrors, where A is area and P perimeter
of the polyomino. Introducing minimal number of mirrors k — 1 we first obtain a
single curve, and in the next steps we try to preserve that result.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Curves generated by mirror reflections 	 145

There is also a simple way to preserve such single closed curve: to add on the
border of a polyomino a cell with three mirror-edges and one empty edge, or delete
such a cell. This way, any such polyomino with a single curve can be transformed
into a rectangle. Unfortunately, they are rectangular mirror-schemes which cannot
be derived that way.

In the case of a rectangle with the sides a, b, the initial number of curves, obtained
without use of internal mirrors, is k =gcd(a, b), so in order to obtain a single curve,
the possible number of internal two-sided mirrors is k - 1, k, . . . , tab - a - b.
According to the rules for introduction of internal mirrors, we have the algorithm
for the production of designs consisting of a simple closed curve: each from the first
internal k - 1 mirrors must be introduced in crossing points belonging to different
curves. After that, when they are conected and transformed into a single line, we
may introduce other mirrors, taking care about the number of lines, according to
the rules mentioned. The next question is the classification of the curves obtained.
First criterion we may use is the geometrical: two curves are equal iff there is a
similarity transforming one into the other. Instead of considering the curves, we
may consider the equal mirror arrangements defined in the same way. Having the
algorithm for the construction of such perfect curves and the criterion for their
equality, we may try to enumerate them: to find the number of all the different,
curves (i.e. mirror arrangements) which can be derived from a rectangle with the
sides a, b, for a given number of internal mirrors rn (nt E {k -1, k, . . . , 2ab - a- b}).
Unfortunately, we are very far from the general solution of this problem. Reasons
for this are: every introduction of an internal mirror changes the whole structure,
so it behaves like some kind of "Game of Life" or cellular automata.

Till this time, we have only few combinatorial results, obtained by non-standard
use of POlya enumeration theory [7,8]. Let a rectangle with sides a, b, k =gcd(a, b),
be given, with the minimal number k - 1 of two-sided internal mirrors incident to
the edges of its square tiling. If t = (ab-lcm(a, 6)) : (k(k - 1)), x = a : (2k),
y = b : (2k), we have, for example, for k = 5, a = 0(mod 10) and b = 5(mod 10),
the formula 14720t 4 - 576t 3 + 800 + 32tx - 4xy - x, giving the number of such
curves.

The other point of view on the classification of such perfect curves is that of the
knot theory. As it is mentioned before, every such curve can be simply transformed
into an interlacing knotwork design, this means, a projection of some alternating
knot. In the history of ornamental art, such curves occured most frequently as
knotworks, then as plane curves. Even the name Brahma-midi (Brahma's knot)
[4] denoting such Tamil curves refers us to the knot theory [9,10,11]. In order
to classify them, we will first transform every such knot projection into a proper
(reduced) knot projection [11]- a knot projection without loops, by deleting cells
with loops.

This way, we will obtain proper knot projections with the minimal number of
crossings. Two such projections or knot diagrams are equal if they are isotopic in
projection plane as graphs, where the isotopy is required to respect overcrossing re-
spectectively undercrossing [9]. For the classification of knots they are used different
kinds of knot invariants: Alexander polynomials [9,10,11], Jones polynomials [11],

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

146 	 Slavik V. Jablan

Conway polynomials [10], etc. In order to classify the knot projections [12] we will
define a new invariant of knot (or link) projections. Let consider a proper oriented
knot diagram D with generators gi,...,gn . If the meeting point of generators gi,

gj, gk is "right", then aii = t, aij = 1, aik = —1; if it is "left", then aii = —t,

aii = 1, aik = —1; in all the other cases aij = 0. The determinant d(t) = laij I is

the polynomial invariant of D.
The writhe of D, denoted by w(D), is the sum of signs of all the crossing points

in D, where the sign is +1 if the crossing point is "right", and —1 if it is "left" [11].
The writhe is the most simple visible property of every knot projection: I w(D)I is
the type of the knot projection.

By the use of a computer program developed by Vesna VeliekoviC, based on the
algorithm of Dowker and Thistlethwaite [12], it is derived the complete list of non-
isomorphic alternating knot projections for 3 < n < 11, where 71 is the number of
crossing points. For example, for n = 8 there are 27 non-isomsorphic projections
of the 18 alternating prime knots. They are given by the ordering number of knot
[9,10], by the sequences [12] and by the series of coefficients (cn ,..., ci) of d(t).

81 4 10 16 14 12 2 8 6 1 0 -6 -2 10 8 -4 -4
82 4 10 12 14 16 2 6 8 1 0 3 1 -1 	1 -4 -4
83 6 12 10 16 14 4 2 8 1 0 -6 0 10 0 -4 0 (e)

84 6 10 12 16 14 4 2 8 1 0 -1 -2 -6 1 4 0
85 6 8 12 2 14 16 4 10 1 0 3 2 0 2 -4 -4
86 4 10 14 16 12 2 8 6 1 0 0 -2 -7 -5 4 4
q 4 10 16 12 14 2 8 6 1 0 -1 -1 -5 -5 4 4
87 4 10 12 14 2 16 6 8 1 0 4 1 5 2 4 2
8's 4 8 12 2 16 14 6 10 1 0 0 -1 -2 -3 -4 -2
8 11, 4 10 8 14 2 16 6 12 1 0 1 -1 -2 -2 -4 -2
89 6 10 12 14 16 4 2 8 1 0 4 0 2 0 -4 0 (e)

819 4 8 12 2 14 16 6 10 1 0 4 2 7 4 4 2
81 1 4 10 12 14 16 2 8 6 1 0 -3 1 -2 -4 4 4
811 4 10 12 16 14 2 6 8 1 0 -2 0 -3 -4 4 4
8 112 4 43 14 10 2 16 6 12 1 0 -3 -3 3 3 0 0
812 4 8 16 12 2 14 6 10 1 0 -4 0 8 0 -4 0 (e)

8'n 4 10 8 14 12 2 16 6 1 0 -2 0 -6 0 4 0 (e)

8 113 4 10 12 14 2 16 8 6 1 0 -1 0 -2 -1 -4 -2
813 4 10 14 12 2 16 6 8 1 0 -1 -1 -1 -1 -4 -2
81 4 4 8 10 14 2 16 6 12 1 0 -1 -2 -2 -1 4 4
814 4 8 12 16 2 14 6 10 1 0 -1 1 -2 -2 4 4
814 4 10 8 14 16 2 6 12 1 0 0 -1 -2 -1 4 4
81 6 4 8 12 2 14 6 16 10 1 0 1 1 -4 -3 -4 -8

816 4 8 14 2 12 16 6 10 1 0 1 2 -6 -2 -4 -8
816 6 8 14 12 4 16 2 10 1 0 2 3 3 1 4 2

817 6 8 12 14 4 16 2 10 1 0 2 0 1 0 -4 0 (e)

818 6 8 10 12 14 1624 1 0 0 0 -2 0 -4 0 (e)

There are some important properties of the integer polynomial invariant d(t) =

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Curves generated by mirror reflections 	 147

cn tn + • -d-c i t: (a) for every alternating knot projection, the degree of d(t) is n and
icn = 1; (b) for every knot projection lei is equal to the type of the knot projection
(i.e. I c 1 = w(D)); (c) d(t) and d(—t) correspond to the obverse (enantiomorphic,
mirror symmetrical) knot diagrams; (d) for n = 0(mod 2), a change of the orien-
tation of an alternating knot projection results in the change of d(t) to d(—t); (e)
for n = 1(mod 2) a change of orientation of an alternating knot projection results
in the change of d(t) to —d(—t). According to (c), (d) and (e), in the set of all the
knot invariants d(t) we may distinguish even functions (d(t) = d(—t)), containing
only even degrees of t, corresponding to arnpliichiral knot projections (denoted by
e), and odd functions (d(t) = —d(—t)), containing only odd degrees of t, which are
invariant to a change of orientation of the knot projection. Let us also notice that
invariant introduced makes distinction between non-isomorphic knot projections of
composite knots (i.e. direct products of prime knots).

This invariant may be simply transferred to the alternating link projections.
In this case, the result is the polynomial invariant of the form: d(t) = cn tn
• • • + cktk, where 7/ is the number of crossing points, and k is the number of the
link components. For every link, lc,, = 1. If ai are the link components, aii =
w(ai), and if a id =1k(ai, ai) denotes the linking number of the components
then Ick I = Idet(aii)1. For example, there are two non-isomorphic non-oriented
projections of the link 63 (Figure 2).

Figure 2

The problem exposed shows how the same (old) structures— perfect pavitram
curves [3,4], may be regarded from the three different points of view: that of the the-
ory of symmetry, combinatorial geometry and topology, taking us to a trip through
mathematics, and introducing a new class of mirror-structures: curves generated
by mirror reflections.

References

[1] BAIN G., Celtic art— the methods of construction, Dover, New York, 1973.
[2] CROMWEL P.R., Celtic knotwork: Mathematical art, The Math. Intelligencer, Vol. 15, No. 1

(199:3), 36-47.
[3] GERDES P.P.J., On ethnomathematical research and symmetry, Synunetry: Culture and Sci-

ence, Vol. 1, No. 2 (1990), 154-170.
[4] GERDES P., Reconstruction and extension of lost symmetries: examples from the Tamil of

South India, Computers Math. Applic. Vol. 17, No. 4-6 (1989), 791-813.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

148 	 Slavik V. Jablan

[5] GERDES P., Geometria Sona, Vol. 1, Instituto Superior Pedagogico, Maputo, 1993.

[6] GRONBAUM B., SHEPHARD G.C., Tilings and Patterns, Freeman, New York, 1979.

[7] AIGNER M., Combinatorial Theory, Springer Verlag, Berlin, Heidelberg, New York, 1979.

[8] PoLYA G, READ R.C., Combinatorial enumeration of groups, graphs and chemical compounds,

Springer Verlag, New York, 1987.

[9] BURDE G., ZIESCHANC H., Knots, Walter de Greyter, 1985.

[10] KAUFFMAN L.H., On knots, Princeton University Press, Princeton, 1987.

[11] KciuNo T. (ED.), New developments in the theory of knots, World Scientific, Singapoore, New

Jersey, London, Hong Kong, 1989.

[12] DOWKER C.H., THISTLETHWAITE M.B., Classification of knot projections, Topology Appl.,

16 (1983), 19-31.

DEPARTMENT OF MATHEMATICS, PHYLOSOPHICAL FACULTY, 18000 Ni§ CiftiLA I METODIJA

2, YUGOSLAVIA

E- mail: eslavikAubbg.etf.bg.ac.yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 149-159
Filomat '94, Ni.," October 22-24, 1994
Geometry. Computer Sciences

ON A FAMILY OF TENSOR FIELDS
IN A GENERALIZED RIEMANNIAN SPACE

Svetislav M. Mine1C
ABSTRACT. In a subspace GR M of a generalized Riemannian space GRN we observe a familly of
tensor fields (1.1), which contains as particular cases tangent and normal vectors of the subspace
as well the curvature vector q' of a curve in the subspace. Because of non-symmetry of Cristoffel
symbols we define four kinds of derivational formulas of the above mentioned familly, as well
six integrability conditions of these formulas. As particular cases one obtains Gauss-Codazzi
eqations of the subspace and corensponding eqations for q*. In this manner derivational formulas
of Riemannian space are generalized, as well as their integrability conditions, i.e. the Gauss-
Codazzi equations.

0. Introduction
A generalized Riemannian space GRN in the sense of Eisenhart [1], [2] is a differ-

entiable manifold in which a non-symmetric basic tensor (z oo # apc, is introduced.
If in the GRN the coordinates are y' = 1, N), then by the equations

(0.1) 	 y" = ya (x l ,...,x m) (M < N)

a subspace GRM of the space GRN is defined. If gij is the basic tensor of this
subspace, then in general gii # gii. In every point of the subspace we can observe
N — M unit, mutually orthogonal vectors Nrp) (p = M +1,...,N), which are also
orthogonal to GRM, i.e. to the vectors (for fixed i)

(0.2) 	 to = y a =

where the comma (,) signifies a partial derivative. We remark that in this work the
Greek indices take values 1,..., N and the Latin values 1, M (M < N), except
indices in brackets, which take values M + 1, N.

Let gii signify the symmetrisation, and gii antisymmetrsation with respect to i,

j and analogically in other cases. Then ([7], [8]):

(0.3) 	 aapt`YI = gii,

(0.4 a,b) 	 a„fi t7q = gii, 	 = gii ,

(0.5 a,b) 	 a,a'LL = .51„3 , 	gipig = 61,

(0.6 a,b) 	aoN(p) Ar(13,) = e (p)6(p ,) 	(e(o= ±1), aafiN Co q = 0.

Supported by Grant 0401A of RFNS through Math. Inst. SANIJ

149

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

150 	 S. M. 1k/ham

The Cristoffel symbols of the GRN are given by

(0.7a, b)
	

rc, ft-y = 2 (ao.,7 — 	+ ac,7 „(3), rp7 = a2LT,

and analogically for GRM by gii. Then we have, for example,

ra•137 	ra• 713, Pf4 	r-yat3.

Because of non-summetry of Cristoffel symbols, we can define 4 kinds of covariant
derivative [3], [4]. For example,

(0.8a)

(0.8b)

tom = tz„,+

tz„,+
2

= ti m
3

aIm = tZ m rp, t74,‘,
4

N(P) = N(P) = N(P), m
1 	 3

N' = 	— N'
(P)1m 	(P)inl 	(0 , m 2

4

- qm v;,

 rp to mi p' -

- rpmi g;,

-

+r,'„N(p) ti,,„,

+ rp-7,./v(p) tg,

We also obtain 4 kinds of derivational formulas (see (16) and (37') in [5]):

(0.9a) 	 lim — sm p 	pe P 	p)

(0.9b)
	

N(o)1 = — e(a)gE-19(cr)smt; 	8(pa)ra N(P), 1191(acr)in = 0,

where 9 = 1,2,3,4 signifies the kind of covariant derivative.
On the base of (0.8b) it is

= C2 (P)ii 1 	3

0(po)ni = 1P(pa)m,
3

= 2 	4

0(1N:)m =
4

(po.)m
2

(0.10a)

(0.10b)

and with respect to (48', 24') in [5] we have

(0.11) = 	 = 	+ 2111,n , 	= 	— 2F IL
2 	 1 	3 	1 	 v 	4

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On a family of tensor fields in a generalized Riemannian space 	 151

1. Derivational formula of the
field and integrability conditions

Suppouse that in the points of the GRA! a family of tensor fields is defined:

N

b(r)i tc: 	E C(pr)iN(p)•

p=M+1

Applying to (1.1) the covariant derivative of kind it E {1,2,3,4} with respect to
en and using (0.9), we obtain

A (r) i l - q(T)i ,n tpe + Er('‘ .,.) in2 NCO ,
P 	 P P

P
q(c)itn = 1/()r)i I tri + 1) (7-)i 4)1;tn — E 6 (P) e(PT)i ge2 9(P)sm ,

o 	 P
P

r(Pr)im ' b r)ill(P)5771. + e(Pi)i I m + EC(aT)i 0(Pc)", • P 	 p P a

The formula (1.2) is derivational formula of the field A(T)i .

Applying to (1.2) covariant derivative of kind v E {1,2,3,4} with respect to el
and using (0.9) repeatedly, we get

a
(L4) 	+E(q/(c)ini C2(p)p, 	(pr)im I n Er (a r)i101) (Po)n) A I(P)'

where the tensors qPNim , r(P T)i„, are given by (1.3). From here we obtain o

A(r)i I m I n 	A (r)i I nIm — [(i(c)im I n 	Int ± '7 (7 	— 11(7)in (1)13C4 . 	P 	 P

— EC (a)912.'Icri(ar)irnfi3 (a)sn 	/1,:(ar)in?, (a)sm)1c+
a

(1.5) 	+E{(4',,i„,9(opn — qp(r)inf2p(P)Prn 	lt:(pr)im I n 	7,;(pr)an I m+
P

+E(r(or)imli)(po)n — (or)in (pa)4N (p).
14 a

(1.2)

where

(1.3a)

(1.3b)

A (T)iimin 	(qPNimfn I-, (r)isn'Y s
atp

n Ee(9) g —1" r (ar)im 9(a)s 	+
s

A

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

152 	 S. M. MitgiC

Applying the identities of Ricci-type (7), (11), (56) from [3] and (12), (13), (46)
from [4] to the family of tensor fields A(T)i , we get

(1 . 6) 	A(r)iimin — A(r)il flint = -Stu A(r)it trint ltii — iiiiirnnA(r)p — 2rfrattA(T)ilp)
v

	

i 	1 t

(1 . 7) 	A(-)ilm1n — ..\(7-)%1n1m = Irrtiv A7(r)i igt i n + Ifitttn Ac('T)p + 2 UnnAro 2
itp,

	

2 2 	 2 2 "

— (1.8) 	 At.(1r)i I tn I n — A (T)i I On = -11c;rmn A(r)i 	*limn A (T)P '

	

i 2 	2 1

(1 . 9) 	Ac(r)ilmin, — Ac(r)ilnitn 	.17/41.)(T)At.litt — '5771.11 A(̀‘T)p + 2 rPrvA(T)ilp)

	

3 3 	3 3

(1.10) AFT)i 1 m 1 n — Aroi I n I m = .1:2C;riw A 7(1- 7.)i t 1,",:, t it', — 114inn AFT)p — 217,nn A(T)i 1 p ,

	

4 4 	4 4 	 V 	4

(1.1 1) 11 (7)ilinIn — A (T)il tt Int = j."4<;mn A(r)i + 134rtm A (T)P 1

	

3 4 	4 3

where

	

(1.12) 	 Ri. 	= rji. rn ,n — rsi. n 	— 	m
pirnrt

	

(1.13) 	 Rjmn = 	— rni 	rPmirinp — rPni rmi p ,n

	

(1.14) 	Rijmn = 	— rnj,m. + m rnp — rPrzi rpm + rP,,m (rpi ; —n

Riqmn = lr Fl Fi,v — r v Q ,l1 + 	— r ,or: it)tt,

	

(1.15) 	 -1-21' ilp (yt!,,nn —
V

	

Mmn = 	— 	 — r7,0 r4)t;;A+
4

	

(1.16) 	 +21-1,(yffm„ —

The magnitudes R
13
'

P
,

'
Ri.

mn'
(t = 1,2,3) are tensors and we call them curvature

tensors of the space, and s
3

 of the subspace, respectively the 1st, the 2nd and the 3rd

kind. The magnitudes R5',,„, R f̀;,,,,n are tensors too and we call them curvature

	

3 	4
tensors of the 3rd, of the 4th kind of the space GRN in relation to the subspace

GRm .

1.1. Taking in (1.5) p, = v = 1, in (1.6) replacing 	by virtue of (1.2)

and equating the obtained results, we obtain the first integrability condition of the

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

On a family of tensor fields in a generalized Riemannian space 	 153

derivational formula(1.2):

`'regyA(7)1t.;.‘nt it'a 	/1?i)mnA(T)p 	211;nn(qT)ipt.: 	Er(pT)ipN(p)) = v

	

= 1111(c)irn I 	q

	

n 	i(C•)in lin + (47-)itn (1)1L 	q .(r)in 4)1.;n1 1 111
(1.17) 	 —Ec.(,)g P.--L(?:(cr)irn fi2(a) sn — 71"(ar)inc2(a)stn)K+

+E{11()T)iini(P)PTI 	r()/-)inc(P)Pm 	7;(pr 	— 71 (pr)intrn+

+E(r(a Jim (po)n /i(ar)ig(pa)rn)}N(C'p).
o

Multiplying (1.17) by a t-oi l:, and using (0.4a), (0.6b), (0.5b), we obtain

11Z/3,r/w ill), 	tf;,t ,̀), — R/Ln a„0/1/34 Arop — 2 rfnnellTYPghs = v 1

(1.17')
= (1. 1(ir)itnin 	11. 1()r)in I m 	Vr)irn Tis) n 	y(T)in efas)m)ghp —

— Ee(a)(1(or)im fl(a)hti 	71"(ar)irj?(a)hrn)•
a

If we multiply (1.17) by acoN(13,p) and take into consideration (0.6), we get

0, p,„N 	— 	m a c, n 	qco) — 21-'1,.),z,,,q(cor)ipe(co) =
(1 . 17") 	= e(c,)[? 	m. (c)i 12 (w)Pti 	9 -r)inc2(50)/m, 	7;(,0 7)indi n 	Y(lT)inli m+

+E(711.(ar)irraV1) ((pa)n 	1'(ar)irt 111) (ep0)tn)J.
a

1.2. Taking it = v = 2 in (1.5) and equating with (1.7), using (1.2), we obtain the
second integrability condition of the derivational formula(1.2):

— I-A nn A (T)p 2.11
v
„(q.oip tc; Evp.oip N(p)) =

	

= [ql(r)irn1 n 	q(c)inlm 	q&)irn (1)1.:71 	q(7)10 (nrn 2 	2 	2 	2 	2 	2

(1.18)

	

	 — Ee(a)gaq(ar)imV(a)sn — 2(ar)in 52(a)sm)li pa+
a

	

-FENP . 12() 	qP •) rn 	(pr)i rm 	(p ln 	r -r)inirn+

	

2(T)Irn 2 PiPn 	2 (T)'” 2 " 	2 	2 	2 	2

	

+Eq(or)intt(po)n 	.Var)in112'(pc)m)iNe'p)•

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

154 	 S. M. MinZie.,

Multiplying (1.18) by aaf34, we obtain

.F2eLnn ao04Ar.op +217„„gsolioh =

	

v 2 	—

(1.18') = (((r)im I n !(r)in I m 	5r)im12:11;n 5r)inil;Trt)ghp —

— Ee(a)(2(ar)imV(a)itn 2(ar)in Z(o)hm)'

a

and multiplying the same equation by ac,p4p) :

Rofft ,,„N(130 .A(r)i i,%(. 1,1.,. — 12V:mn aardtr7.)p Nro 2rPrv 2(p.r)ipe(cp) =

(1.18") 	= e(,,,goitnV(P)Pn. 	!(7)inC22 ('P)Prn + 72.(,07-)imln 	t'(cT)in 1m +

+E(2(ar)im2) (cpa)n 2(ar)inItepa)m)]•
a

1.3. If in (1.5) we replace it = 1, v = 2 and use (1.8), we get the third integrability
condition of the derivational formula (1.2):

Fe A' 	Ri? A' — 3 rtnn (r)i — 3 tmn (r)p —

— [q(r)im I n 	(r)in int + q(r)itn (111.)In 	2(r)i n (111:m
1 	2 	2 	1 	2 	2

(1.19) 	 —Ee(„) .0L.'(7;(,„)ims.-22(,)$.—;(,„)inc2(0.)3mAtp+
a

+E[I(r)imV(P)Pn 	(r)inc/(P)Pm 1;(Pr)iml2n 72 (PT)inim +

P

+E (r(a r)im 1/(pa)n 2(r)inl(pc)rn AN(P).

Multiplying the pervious equation by aageh , we obtain

/3?Ormniti31A 7(7)i — Ificn„aapArop trih =

(1.19') 	= (q(r)iml n 	qP(r)in Im 	qr)im (1 2 " 	q(r)inn (1)1;m)ghp
1 	2 	2 	2 	1 	—

— Ee(a)(c(ar)im 9(a) hn 1(ar)in C.12 (a)hm)•
a

where Rormn = a(0 1:1;',,,„„, and Flf,!,.,,n is given by (1.15).
3 	—3 	 3

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On a family of tensor fields in a generalized Riemannian space 	 155

Multipling (1.19) by a coNf,p) , we get

p 	N (13,p) 	
- 	 —

(1.19") 	= e ((p)[7P(r)iincl(C0)Pri 	r()r)inc2(90P7)/ 	7;((pr)irmln 	7;(cor)inirn+

+E(r(or)im 	 2(ar)inii)(ipa)m)]•
a 	I

1.4. 	By replacing it = v = 3 in (1.5) and applying (1.9), we obtain the fourth
integrability condition of the derivational formula (1.2):

-pnn '` (r)p + 2r fr (V oip tc; E,;(„),pNr,,,) =

[q(r)imin 	q(r)inlm 	q(r)ina,4)13) n 	11(7-)inTisri 3 	3 	3 	3 	3 	° 	3 	°

(1.20) 	 —Ee(o)g(73'(77-) i7nC32(cr) sn 	13. 	C(ar)in 32 (a)srn)]tp(1 +
a

	

+E[g()7-)irncl (P)Pn 	(. 	C 7 r)in 32(P)Pm 	3'(pr)imin, 	:c(pr)inim+

+E(r(ar)irralppa)n 	par)inll(pa)1.01N(;))•
a

If we multiply the pervious equation by o, 134, we have

11?/.31-rnn 	 — f211:rnn acoA(T)p t lft. 2rfnnq)ipghs =
v 3

(1.20) = (q(r)imin 	qc)in I m 	qtr)im (1)., 1;n 	q(T)in (1)., 1;tn)ghP 3 	3 	3 	3 	3 	0

— Ee(a)(73.(ar)irre cl(a)hn 	3(ar)inC32(a)htn)•
a

Multiplying (1.20) by a,oN(p) , we get

N(13,p0(T)i tf.`„tr̀,'. — f?!'imn a oroAc(top Nrso 	21-1,v,3(9„..r)ip e (p)

(1.20") 	= e (,0)[(0-)itylV(Onn 	(r)i4(4))/nn + 1;OPT)irntn —1;(cor)inlm+

+E(I;(ar)im113, ((pa)n 	3(ar)in3 (tpa)m)]•
a

1.5 By equalizing the right sides in (1.10) and (1.5) for it = v = 4, we get the

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

156 	 S. M. MinZiC

fifth integrability condition of the derivational formula (1.2):

	

F2?",.1„A 7{7.)i t 7%41, — 	„ A r, 	21`;? (4(.7.)ip t c: E4(pr)ip N(p)) =

[qP(T)imin 	qr)inirri 	q(T)itn (1)1;n 	q(r)in 4)13'm
4 	4 	4 	4 	4

(1.21) 	— Ee(a)9P3(r4(ar)im9(a)sn — 7:4 (a r)in9(a)s m)n+

±E[q(r)inz l2 (P)Pn 	qr)in9 (P)Pin + 1:4 (PT)irn I n 	r(PT)in I In+
4 	4 	4 	4

+E(7 (a r)imV:(p a)n 	fl(or)in 914) (p cr)mAN(p).

Multiplying the pervious equation by a cot?,, we obtain

rp,„,,tif,Ai(rT)i tf!a t.r, — Fie;mn acodkrilp tc:
4

(1.21') 	= (qP(r)irnin 	q(r)in I in + q(r)im (1)13n 	(1)1;rn)ghp
4 	4 	4 	 4 	4

Le(o)(1:1 (c r)im V(cr 	7 — 4' (a r)ini.1(a)hm) •

and multiplying the same equation by a„,6N3w) :

1.10,„„ Nrw) Vjoi t t% t i,', — Fliimn a,s,1('7)p N(,p) — 21;n ri (pT)ip e(p) =

(1.21") = c(s0)[4(r)i,J, -41 ((p)pn 	q4 (T)in i-,-,12 (ro)Prn + 4 (9,7-)im 	— 7:1 (p r)in14 771+

+E(4(ar)im Opo)n 	T;(ar)in 1/4'((pcOrn)l-
a

1.6 Finally, if we equilaize the right sides in (1.11) and (1.5) for it = 3 v = 4, we

obtain the sixth integrability condition of the derivational formula (1.2):

1:4Z7C;MTI Al(T)i 	 At'('T)P =

[3P(r)im I n 	(r)in I rn 	 4 4(91-)in Ts'm

(1.22)

	

	 — Eeegi (13'(ar)im 1.1(a)sn r4(ar)in9(a)3m)n+

a

+E [q(T)im9(P)Pn 	Ip(r)inC32(P)Ptn 	r(pr)imln 	(pr)in I n3 +
3 	 3 	4 	4 	3

+E(;(ar)im1/4'(pa)n ri(ar)init(pa)mA Na) .

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

On a family of tensor fields in a generalized Riemannian space 	 157

If we multiply this equaton by (4, 14, we obtain

	

14?ormit Al(rr) i 	134?tirn ac03.31'(7)p

(1.22) (g(c)i m j n 	q4 (-r)injm 	57-)irn 	4(7)in 411;m)ghP —

— Ee(a)((ar)im V(a)hn 	1:1 (ar)in(a)hm)•
a

where R0 7,-,,,, 1 = aatiR,a„,„ and R 7,.',n„ is given in relation to (1.16).

Multiplying (1.22) by acoN(.13w) , we have

1-4?0„mr, N(,p),\ ljr Rim ttal3~ (r)P N (W)

(1.22") 	= e (99)[9(T)im9(vo)i , 	9:1 (r)i,19(w)Pni 	3(PT)im I 	74'(PT)inlm

	

+E(7:,;(ar)in44) ((pa)rt 	?;(ar)in 113) (coa)rn)] •
a

2. Some special cases

For some fixed values of coeffitients b, c we obtain from (1.1) special cases, some
of which are very importtant.

2.1. If

(2.1) 	btoi = bi 	(kz. e(voi = 0, then A(T)i =

In this case from (1.3) we obtain

g(r)im = 1:5:1 rn 	6: 4)1.: in = 4)1:)ttn, 	r(pr)im = 6% (P) 3771 = CI (P)im , P 	P 	P

and (1.2) gives (0.9a) i.e. the first derivational formula of a subspace of a generalized
Riemannian space. In this case integrability conditions of the first derivational
formula of the field (1.1) reduce to integrability conditions of the first derivational
formula, from which we obtain several equations of the Gauss-Codazzi type. For
example, in this case (1.19') becomes

- R 3 	 himn = 3
(2.2) = (fml rt tin m Tirrits'n 	In4O4hp -

-Ee(a)(9(a)imC22(a)hn V(a)incl(a)hm))
a

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

158 	 S. M. Min6C

and this is the third kind of the Gauss equation of the subspace GRM. Now from

(1.19") we obtain

qPirmn N(w) eir

(2.3) 	= 8(v))[fmC22(w)Pn — 2 1(40)Prn — c2ivinitn+

+E(Y(o)im1/2) ((pa)n. 	C22(a)ini) (y,c)m •
a

and this is the first Codazzi eqation of the third kind.
2.2. The next special case is

(2.4) b (30i = & C(p.r)s = pr A' • = N" S(r) i (r) •

Now, it is

b (r)im — Ee(P) 45PrgU?i (P)srn = --17 9(T) 87n e (T)
p

r (p-r)im = Dor lk(pa)m = k(p-r)rn
a

and (1.2) results in (0.9b), i.e. in the second derivational formula of the subspace .
In this case from (1.19') one obtains the equation which is equivalent to (2.3). The
equation (1.19") in this case becomes

11 or mn IVE5s0) 1V,.) = e(v)[— gla?(.08 ,n e(q(p)pn g1 C21 (T)srie(T) ilo,opm+

	

+1/) (cp r)ynin 	1Pepr)n m 	EOP(or)m IP(cocr)n 	0(ar)n INct,a)m
1 	2 	2 	a 	1 	2 	2 	1

and this is the second Codazzi equation of the third kind.
2.3. Curvature vector of a curve C in a subspace GRM of a space GRN is

determined in the same way [6], as in the usual Riemannian space, i.e.

(2.5) 	 q" = 	EKG,N,)

where K(p) is normal curvature of C, which corresponds to the normal Nip). (P)'
from (1.1) one obtains

(2.6) 	 = p3 	 = K(p)

So the field q° is a special case of the field A(T)i (1.1).
ity conditions of derivational formula of the field Ar ili

 equations for q".

A cv
(T)t = qn .

Therefore, from integrabil-
one obtains corensponding

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On a family of tensor fields in a generalized Riemannian space 	 159

References

[1] L. P. EISENHART, Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA,
37(1951), 311-315.

[2] L. P. EISENHART, Generalized Riemannian spaces II, Proc. Nat. Acad. Sci. USA,
38(1952), 505-508

[3] S. M. MINelo, Ricci type identities in a subspace of a space of non
-surnmetric affine

connexion, Publ. Inst. Math. (Beograd), 18(32)(1975), 137 - 148.
[4] C.M. M141-1 1-114 1-1, Hoeue momdecinea muna Punnu a noonpoempanonee npo-

cmpauentea necumdvIentpunnoii afifinnuoii" ce.,73anocmu, 143BeCTI111 BY:3, Ma-
TemaTHRa, 4(203) (1979), 17 - 27.

[5] S. M. MINC16, Derivational formulas of a subspace of a generalized Riemannian space,
Publ. Inst. Math. (Beograd), 34(48)(1983), 125 - 135.

[6] C.M. MLIFIL114 1-1, 0 eexmope xpueuanbt icpueoii a noanpocuipaucmee o6o6v4e-
nuozo pumanoea npoempanemea,
Facta Universitatis, Ser. Math. Inform 2(1987), 75 - 89.

[7] R. S. MISHRA, Subspaces of a generalized Riemannian space, Bull. Acad. Roy. Bel-
gique, 1954, 1058 - 1071.

[8] M. PRVANOVIe, Equations de Gaus d'un sous - espace plonge dans l'espace Riernannien
generalise , Bull. Acad. Roy. Belgique, 1955, 615-621.

DEPARTMENT OF MATHEMATICS, FACULTY OF PHILOSOPHY, CIRILA I METODIJA 2,
18 000 NIS, YUGOSLAVIA.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 161-167

Filomat '94, NiA, October 22-24, 1994
Geometry. Computer Sciences

F(2k + 1,1)-STRUCTURE ON THE LAGRANGIAN SPACE

Jovanka Nikk

ABSTRACT. If almost product P or almost complex structure J on the tangent space
T(E) = Tv(E)+TH(E) of Lagrangian 2n dimensional manifold E are defined, and
if f„(2k + 1, 1)-structure on Tv(E) is defined, then f p (2k + 1,1) and fj(2k + 1, 1)-

 structures on TH(E) are defined in the natural way. We can define Fp (2k + 1, 1),
Fj(2k + 1,1)-structures on T(E). The condition is given for the reduction of the
structural group of such manifolds.

1. Introduction

Let M be an n dimensional and E 2n dimensional differentiable manifold
and let // = (E,r,M) be vector bundles and 71- E = M. The differential
structures (U,O,R 2n) are vector charts of the vector bundles n . Hence the
canonical coordinates on 71-- '(U) are (x 1 , yl
1, 2,... ,n a = 1,... , n. Transformation maps on E are

x 2 = x e (x 1 , x 2 , ... , e)

y'' = Mnx i , . . . , xn)ya = Mnx i)ya
Ox 2

rank --- = n, rank —
Oya'

	

Ox 	 o a
= rank A1:' = n.

	

i 	 y

The inverse transformations are

x i 	x i(x 1' , x 2' ,

	

ya = (X i' ,• 	Xn')yai

where M:,M:' =

1991 Mathematics Subject Classification. 53B40, 53C60.

161

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

162 	 J. Nikie

The local natural bases of the tangent space T(E) are {ai , Oa }

a. = va = mnxi)a.,

	

axe 	,
= -7 = 	 (X))Y aa'•

	

axi 	aX 2

The nonlinear connection on E is distribution

	

N:uEE —÷ 	C Tii (E)

which is supplementary to the distribution V,

(1.1) 	 Tu (E)= Nu (I) 	V u E E.

They are localy determined by Si = A — Nia0a . The local bases adapted to

decompositions in (1.1) is {Si ,
It is easy to prove that on fo i ,aa l

axi 	oya

	

a6ii = 	—7ua•

	

Si
I aX i" 	Oya

The subspace of T(E) spaned by {S i } will be denoted by TH (E) and the

subspace spaned by {a.} will be denoted by Tv (E), T(E) = TH(E)e Tv (E),

dim TH (E) = n = dim Tv (E).

Definition 1.1. If the Riemannian metrical structure on T(E) is given by

= gii (x i ,ya)dx i dx- 1 gob (xi,ya)bya be where g ii (x i ,ya) = gii (x),

gab = laaabL(Xi,ya) and L(x i , ya) is a Lagrange function, then such a space

we call Lagrangian space.

Let X E T(E), then X = 	Xaaa and the automorphism P :

X(T(E)) X(T(E)) defined by

PX = gi bi + Xaa.

is the natural ahnost product structure on T(E). i.e, Pz = I. If we denote by

v and h the projection morphism of T(E) to Tv (E) and TH (E) respectively,

we have
Poh= vo P.

The automorphism
JX = —X ibi+ Xaaa

is the natural almost complex structure on T(E).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

F(2k + 1, 1)-structure on the Lagrangian Space 	 163

2. .f(2k +1, 1)-structures

Definition 2.1. We call Lagrange vertical f,(2k 1,1)-structure of rank r
on Tv(E) a non-null tensor field f t, of type (1,1) and of class C°° such that fv2k+i = 0, k E N , and rank ft, = r, where r is constant everywhere.

	

Definition 2.2. We call Lagrange horizontal fh(2k 	1,1)-structure on
TH (E) a non-null tensor field fh on TH (E) of type (1,1) of class COO satis- fying A? + + fh = k E

N , rank fh = r, where r is constant everywhere.

An F(2k +1,1)-structure on T(E) is a non-null tensor field F of type (1111)
such that F2k + 1 F = 0, k E N, rank F = 2r =coast.

For our study it is very convenient to consider ft, or fh as morphism of
vectors bundles.

f, : XTv(E) XT v (E)
fh : XTH(E)-- XT H (E).

Let f, be a Lagrange vertical ft,(2k + 1, 1)-structure of rank r. We define
the morphisms

1 = — ft2k and in 	pv2k --r ,r = 	Tv(E)

where Irv(E) denotes the identity morphism on Tv (E).
It is clear thet 1 m = I. Also we have

lrra = rral = _f4k_ fv2k = 	r2k-1-1
v 	f) = 0,

in2 = m, 11 2 ,= 1.

Hence the morphisms 1, in applied to the X(Tv(E)) are complement*
projection morphisms, then there exist complementary distributions V L and
VM corresponding to the projection morphisms 1 and in respectively such
that dim V L = r and dim VM = — r.

It is easily to see that

(2.1) 	lfu = .41 = fv, mh = fvna = 0, .ft k 771 = 0,

fv2 k 	_ 1.

Proposition 2.1. If a Lagrange f„(2k + 1, 1)-structure of rank r defined on
Tv (E), then the horizontal f h (2k 1,1)-structure of rank r is defined on
TH (E) by the natural almost product structure of T(E), as fp , or by the
almost complex natural complex structure of T(E), as L.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

164 	 J. NikiC

Proof. If we put

(2.2) 	 fp X = PLPX, VX E TH (E)

(2.3)
	 = --JfvJX, VX E TH (E)

it is easy to see that

= pfv2k+ipx, fzk+1 X = _ jfv2k+i jx

and
+ fp = 0, f3?k+1 	0

and rank fp = rank fi = r. It is easy to see that fp = f.; = fh.

Proposition 2.2. If a Lagrange f,,(2k 1,1)-structure of rank r is defined
on Tv (E), then an Fp (2k 1,1)-structure or F(2k 1,1)-structure are de-
fined on T(E) by the natural almost product or natural almost complex struc-
ture of T(E).

Proof. We put

Fp = fph
F; =

where fi„ k are defined by (2.2), (2.3) and h, v are the projection morphisms
of T(E) to TH (E) and Tv (E). Then it is easy to check that

F2 = f2 h fv , F2k+1 =
P 	JP 	Ju 	 JP 	it

Thus F: k+1 + Fp = 0. Siinilary Flk + 1 Fj = 0. It is clear that rank
Fp =rankF; = 2r.

If 1p , rnp are complementary projection morphisms of the horizontal
fp (2k + 1, 1)-structure, which is defined by the natural almost product struc-
ture of T(E), we have

/p X = —f 12k x = p ,,91c j7 PX = PIPX,VX E TH(E)

	

rnp x = 2k f 	f

	

j 	iT,(E)X =
p fv2k px F/Tv(E)PX = PmPX,VX E TH(E).

If L p , Mp are complementary projection morphism of the Fp (2k + 1, 1)
structure on T(E), then we have

(2.4) L p = _F2k p

A j 	02k
— r p 	IT(E)

= _112) k h 	v = 411 + IV
= f p2k h 112k ITH(E) h iTv(E)v =

= mp h mv.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

F(2k + 1, 1)-structure on the Lagrangian Space 	 165

Thus, if there is given a Lagrange f„(2k 1,0-structure on Tv(E) of
rank r, then there exist complementary distributions H L p , H Mp of TH (E),
corresponding to the morphisms / p , mp such that

(2.5) 	 H L p = PV L,H Mp = PV M.

Thus we have the decompositions

T(E) = TH (E)E Tv(E)=PVLE PV M ED V L ED V M.

If TL I,,TM I, denote complementary distributions corresponding to the mor-
phisms Lp , Mp respectively, then from (2.4) and (2.5) we have

TL p = PVLEDVL , TM p = PVM EDVM.

Let -g is a pseudo-Riemannian metric tensor, which is symmetric, bilinear
and non-degenerate on Tv (E).

: X(Tv(E)) x X(Tv(E)) .F(T(E)).

(for examples g can be the vertical part of Lagrange metric structure).
The mapping

a : X(Tv(E))x X(T v (E) .F(T(E))

which is defined by

a(X,Y) =
2
-
1
[gux,in g(mxonn] VX,Y E XTv(E)

is a pseudo-Riemannian structure on T(E) such that a(X,Y) = 0, VX E
X (T (V L)), Y E X(T(VM)).

Theorem 2.1. If a Lagrange f,,(2k 	1, 1)-structure k > 1 of rank r is
defined on Tv (E) then there exist a pseudo-Riemannian structure of Tv(E)
with respect to the complementary distributions V L and V M are orthogonal
and f„ is an isometry on Tv (E).

Proof. If we put

g(X,Y)= —
1

2k 	•
[a(X,Y)-F a(f,,X, 	• • + a(L2k-1 X, fv2k-l ni

it is easy to see that

g(X,Y) = 0 dX E X(VL), Y E X(VM).

Using (2.1) we get

g(f„X, f„Y) = 2k [a(f,,X,f,,Y)+ a(f;,2 X, f t Y) 	a(X,Y)].

Thus f„ is an isometry with respect to g.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

166 	 J. NikiC

Let X E X(T(VL)) then f,X, JVC,

9(X, f,,X)= 9(LX,A, +1X)= • ••

Consequently

g(X,A,X)= g(LX,.i .:+1X)

and r = 2km.
Thus we can chose in X(T(V L)) r =

fields such that

f(Xa) = X a+.
f (X a) = — X—(2k-1)m+ct,

, f 2k X E X(T(VL)) and

= 	ft k X) = —g(f:X,X).

= = g(f:X, f:k X) = 0

2km mutualy orthogonal unit vector

a = 1, 2, ... , (2k — 1)m,
a = (2k — 1)m + 1, 	, 2km.

An adapted frame of the Lagrange f,,(2k + 1, 1)-structure on Tv (E) is the

orthogonal frame R = {X„, X0}, where X0 is an orthogonal frame of

X(T(VM)).
Let R = {X„, 	be another adapted frame of the Lagrange fi,(2k +1, 1)-

structure, and R = AR, then orthogonal matrix A is an element of the group

U(km) X 0(n-2km)•

Theorem 2.2. A necessary and suficient condition for T v (E) to admit La-
grange f,(2k 1,1)-structure, k > 1 of rank r is that r = 2km and the
structure group of the tangent bundle of the manifold be reduced to the group

U(km) X 0 (n-2km).

We can define a mailing gp :

gp (X,Y) = g(PX,PY), VX,Y E X(TH(E))

gp is a metric structure on TH (E). Using (2.5) the distributions HLp , H.Mr

are orthogonal with respect to gp and the horizontal fp (2k + 1, 1)-structure

which is define by fp X = Pf„PX,VX E X(TH(E)) is an isometry on TH (E)

with respect to gp .

Proposition 2.3. If {X a, X 13 } is an adapted frame of a given Lagrange

fv(2k +1,1)-structure fy on Tv (E) with respect to y, then the frame {PXa,
P Xp} is an adapted frame of the horizontal f p (2k + 1, *structure with re-

spect to gp .

It is clear that the frames {PX,,PX 0 ,X,„X f3} are adapted frames to the

decomposition

T(E)= H Lp (-1) H Mr (DV L ED V M.

Theorem 2.3. If a Lagrange f,(2k 1,1)-structure is defined on T v (E)
with pseudo-Riemannian structure g, then the structure group of the tangent
bundle on T(E) be reduced to U(km) X O(n -2km) X U(km) X 0(n-2km).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

F(2k +1, 1)-structure on the Lagrangian Space 	 167

Refrences

[1] M. ATANASIU, Modes in Finsler and Lagrange geometry, Proc. IV"' Nat. Sem.
on Finsler and Lagrange geometry, Brasov, (1986), 43-56.

[2] F. G. ANDREOU, On a structure defined by a tensor field f of type (1,1) satis-
fying f 5 + f = 0, Tensor, N.S. 36(1982), 79-84.

[3] S. ISH1HARA, K. YANO, On integrability conditions of a structure satisfying
f 3 f = 0, Quart-J. Math. 15(1964), 217-222.

[4] J. Nixie, I. aomio, f(2 • 2 k + 1,-1)-structure in (k + 1)-Lagrangian Space,
Review of Research Faculty of Science, Mathematics Series, (toappear).

[5] J. Nixie, On a structure defined by a tensor field f of the type (1,1) satisfying
f2 2k+1 f = 0, Review of Research Faculty of Science-University of Novi Sad,
12(1982), 369-377.

FACULTY OF TECHNICAL SCIENCES, UNIVERSITY OF NOVI SAD, TRG D. OBRA-

DovleA 6, 21000 Novi SAD, YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 169-185
Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ON WARPED PRODUCT MANIFOLDS

Mileva PrvanoviC

ABSTRACT. This is a survey article on warped product manifolds and contains: applications in
some relativistic theories (Schwarzschild spacetime and Robertson- Walker spacetime), subprojec-
tive spaces, the invariant way characterizing warped products and the geometry of warped product
in terms of warping function and the geometies of the base and the fiber.

1. Definition and the first example

Let (M, p-) and (M, g) be two Riemannian manifolds such that dint M = q,

dim M = n — q, 1 < q < n. Let F be a positive C' function on M.

* Definition. ([23j,p.204). The warped product M = MxFM of (M Ti) and (M (g)

is the manifold M=MxM which the metric g = xF g. More precisely

g=9 x 	= g (F ir i)ir;ij,

where ir1 : M x M 	M, ir2 : M x M M are natural projections. The manifold

M is caled the base manifold, while M is the fiber.

For each (M, Tit) E M the subset M x 	is a totally geodesic submanifold of
warped product and all such submanifolds are isometrically related; the submani-

folds M. x M are totally umbilic and the map 1r 2 1 	. is a positive homotety onto
mxM

1 	 —
M scale factor

F(Mt)
 . For each (m, m) E M, the submanifolds M x m and Mt x M

are orthogonal at (M, nn). The converse is also true, that is we have the following
theorem:

Theorem. 03], (VD. A Riemannian space is a warped product manifold if and
only if it can be decomposed into two families of mutualy orthogonal submanifolds,
one family consisting of totally geodesic and the other of totally umbilic submani-
folds.

If F = const. then F can be incorporate in the metric g and M=MxM

reduces to a productrrianifold, both M x rrt and M. x M being totally geodesic.

169

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

170 	 M. PrvanoviC

Thus, the class of warped products contains the class of product manifolds and is
its generalization.

The class of warped product contains all Riemannian manifolds of constant cur-
vature. In fact, for each point of such a manifold there exsist a neighbourhood in
which, with respect to the polar coordinats r, 0 1 , ..., 0n -1 the metric is

	

ds2 = dr2 + sin2 fkr (1; 2 (0 1 , 	On -1) for k > 0

ds2 = dr2 + sitt 2 A/kr 4 2 (0 1 , 	0' 1) for k < 0,

* 2
where k 	0 is the constant curvature of M and ds is the metric of the unit

(n - 1)-dimensional sphere Sn -1 . We note that the manifold of constant curvature

k # 0 can not be a product manifold. If k = 0, then the manifold can be represented
as a product manifold on many ways. But for example, for R 3\0, with respect to

the spherical coordinates, we have

ds2 = dr2

It means that R 3 \0 can be identified with warped R+ x,. S 2 with a ray from the

origin as a basis and the spheres S2 (r), r > 0 as the fibers.
The surface of revolution is an other example of Warped products. Let C be the

curve in R3 whose parametric representation is

x = g(u), 	y = 0, 	z = F(u).

If z is the axis of revolution and v is the angle of rotation, then we have

ds2 = [(9/(02 (Fnziduz F2dv2.

Thus, the surface of revolution is warped product C xF 51 , where the curve C is

the basis manifold and the circles of revolution the fibers.
The four dimensional warped products are very important in the construction

of simple models of some relativistic theories.Thus Schwartzschild spacetime is the
simplest relativistic model of a universe containing a single star. The star is assumed
to be static and spherically symmetric and to be the only source of gravitation for
the spacetime. It follows from these assumptions that Schwartzschild spacetime is
warped product P x,. S2 , where the fiber S2 is the unit sphere and the base space

P = R x R+ is a half-plane r > 0 in the rt-plane endowed with the metric

m 	2m ,
- (1

2r 	" 	r 	̀̀'

and

r2(d02 sinzo 42) .

where rn is a constant identified with the mass of the star. The function 1 - —
211/

2m
increases from limit -oo at r = 0 toward limit 1 at r = oo. But 1 - —r 	

0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 177

at r = 2m, that is the metric (1.1), and therefore the metric of Warped product
M = P x,. 82 , degenerates at r = 2m. So, we have to consider two Schwartzschild
spacetimes:

1) Schwartzschild exterior spacetime M = Pj x,. 82 , where P1 is the region
r > 2m;

2) Schwartzschild black hole M = P11 x,. ,52 , where PH is the region 0 < r < 2m.
The star is characterized by its mass m and its radius R. For the spacetime

around the star we have r > R. For an ordinary star we have R> 2m, that is the
surface of the star is in Schwarzschild exterior spacetime. But if R < 2m, then R
can be only 0; the star dissapears and the warped product PH x,. S2 becomes black
hole. ([23],Chapter 13).

According to the astronomical evidences, the universe can be modeled as a space-
time containing a perfect fluid whose "molecules" are the galaxies. Also, the galax-
ies, taking into account the large scale appropiate to cosmology, appear to be dis-
tributed the same in all directions. Starting with this isotropy condition and using
the physical assumptions about the galactic flow, it is possible to construct a simple
cosmological model, so called Robertson-Waker spacetime ([23]). This model is the
warpedproduct

(1.2) 	 M = M(k, F)= I xF S,

where I is an open interval in RI and S is a three-dimensional manifold of constant
curvature k = — 1, 0 or 1. The metric of the manifold (1.2) is

ds2 = —(dt) 2 F d:; 2 ,

where d's'2 is the metric of the mabifolci S. It can be proved that the Ricci curvature
for Robertson-Walker spacetime M(k, F) with flow vector field U = a t is given by

3F"
Ric (U, 	= — 	Ric (U, X) = 0,

+ 2k + j F”1 < 	y > if x , y j_u Ric (x, y) = [2 (-9
F 	F2 F

([23], p.345).
Also, if U is the flow vector field a Robertson-Walker spacetime M(k, F), then

(U, p, p) is a perfect fluid with energy density p and the pressure p given by

8.7r 	F') 	k
3 P 	F) 4- F2 '

(F1) 	k _87rp 2T + F F2

(see [23],p.345).
Acording the astronomical estimates, the spaces 5(t) are expanding, i.e. cur-

rently F has positive derivative. The following theorem considers the past and the
future.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

172 	 M. Prvanovie

Theorem. (123.1,p.3.48). Let in(k, F) = I xF S'andH(t) = F'(t). If Ho =
F(t)

Ho(to) > 0 for some To, and p 3p > 0, then I has an initial endpoint t* with

t o — H 0-1 < t. n < to

and eighter (1) 	> 0 or (2) F has a maximum point after to and I is a finite
interval (t., t..).

It means thet the universe had the definite beginning and eighter continues ex-
panding, or after conctracting for a while, comes to an end. Using some additional
dates, it can be concluded that our universe began in a colossal explosoin.

2. Subprojective spaces

The warped product appears also in the investigations of the subprojective and
generalized subprojective spaces.

The subprojective spaces were first defined and investigated by V.F.Kagan ([20],-
[21],[39]). With respect to the projective properties, these spaces are a natural
generalization of the Riemannian spaces of constant curvature. Namely, according
the well known Beltrami's theorem, the spaces of constant curvature and only such
spaces, admit a mapping on an euclidean space such that the geodesics corenspond
to the streit lines. But if the space allows mapping on the flat space such that
each of its geodesic corresponds to a plane curve and all such planes contain the
same point or are parallel, then we say that the space is subprojective one. A
geodesic can also be considered as an autoparallel line, i.e. it is an object defined
by the connection only. Thus a subprojective space need not to be Riemannian. It
is sufficient that it is a diferentiable manifold endowed with an affine connection.
As for Riemannian subprojective spaces, all of them are known in the sense that
their metrics are known ([32],[39],[43]). In fact, with respect to the special local
coordinates, the metric of the subprojective space has the form

(2.1) 	 ds2 = (dx 1) 2 	F(x l)d.*92 (x 2 ,xn),

where d7s 2 is the metric of (n-1)-dimensional space of constant curvature, or the
form

(2.2) 	 ds2 = 2dx1dx2 F(xi)(62

where d7s 2 is the (n-2)-dimensional euclidean metric. The metric (2.1) is positive
definite, and (2.2) is not.

We see from (2.1) and (2.2) that every subprojective space is a Warped product
manifold.

It is intresting to compare subprojective Riemannian spaces to the spaces of
constant curvature with respect to the group of motions. It is wel known (see for
example [15] or [38]) that the group of motions of an n-dimensional Riemannian

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

space has at most

On warped product manifolds 	 173

n(n + 1)
2 	parametres. Such a group is transitive and a space

admits a group of motions of maximum order 71(71+
	 if and only if it is a space

2 of constant curvature.
n(n — 1) The intransitive group has a most 	

2 	
parametres and all Riemannian

spaces admiting such group of motions are subprojective (see [41],[45]). Conversely,

every subprojective space admits intransitive group of motions of order n(n

2

— 1)
In

both cases (2.1) and (2.2), this group acts as the transitive group on the hyper-
surfaces x 1 = const. In the case (2.2), they are isotropic. In some casees, this

intransitive group of motions becomes the transitive group of order —I
n(n — 1) + 1.

In the case (2.1) this happens only if F = const., that is if the subprojective space is

decomposable. Namely, —
1
2 n(zz — 1)-f- 1 is the order of the transitive group of motions

of (n — 1)-dimensional space of constant curvature. Then we acid one parameter
group of motions along the curve xl

The subprojective space of type (2.2) also admits, in some special cases, the

transitive group of motions of order 2 —
1
n(n — 1) + 1. First, we note that, with respect

to the confortnally euclidean coordinates, (2.2) can be rewritten as follows

(2.3) 	ds2 = e-2P(s 1) [2dx 1 dx 2 	(dx 1) 2] , i = 3, ..., n; 	= +1.

It was proved in [41] that that the manifold endowed with metric (2.3) admits

the transitive group of motions of order —
2

71(n — 1) + 1 if and only if the function

Ax l + B
dx' 	A(x 1) 2 + Cx1 + D'

where A,B,C and D are constants.

Thus, while the Riemannian space of constat curvature are characterized by
the property that they admit the transitive group of motions of maximum order,
the subprojective spaces are characterized by the property that they admit the
intransitive group of motions of maximum order.

The group of motions of general warped products are investigated in [40]. Here,
we cite the following theorem.

Theorem. ([40]). If the intransitive group of motions of a Riemannian space M

is of order
2
—
1
q(q + 1), q > 2 and has q-dimensional nonisotropic surfaces of the

transitivity, then M is the warped product M = M x F M such that dirnM = q.

This is one of the theorems used for proving the above properties of the subpro-
jective spaces.

= p(x 1) satisfies

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

174 	 M. PrvanoviC

We say that a manifold endowed with an affine connection is a generalized sub-
projective manifold if it admits a mapping on an euclidean space such that ev-
ery autoparallel corresponds to the curve belonging to a (q + 1)-dimensional plane

(1 < q < n-2), all this planes containing finite or infinite (q — 1)-dimensional plane.

For q = 1, this definition of the subprojective spaces.
G.Vranceanu ([34],[35]) proved that a generalized Riemannian subprojective spa-

*
ce with positive definite metric is the warped product M = M xF M, where M

is the space of constant curvature. Conversely, each such a warped product is a
generalized subprojective space. But, in the case of indefinite metric, a generalized
subprojective space need not be a warped product ([36]).

3. The invariant way characterizing
the warped product manifolds

Let U : x 1 , xq be a local chart for the manifold M and U : xq+1 , xi' that for

M. Then U x 	xl, xn is a local chart for the warped product M = M xF M.
With respect to this local chart, we have

(3.1) 	 gab =§,b(Z), 	=;„0(x7), F = F(xa),

while for the metric tensor g of warped product M = M xF M, we have

gab 	for i = a, j = b;

(3.2) 	 gib = Fgo 	for i = a, j = 0;

0 	for all other cases.

Here and the seqel the letters a, b, c range over the indices 1, ..., q, greak letters

a, /3, y over the indices q + 1, ...,n and letters i, j, k - over the indices 1, ..., a.
The definition given in §1 shows that a Riemannian manifold is a warped product

if the coordinates can be chosen such that the metric tensor takes the form (3.2)
where (3.1) is satisfied. We shall see in §4 that many interesting properties of the
warped product manifolds can be obtained using so adapted local coordinates.

There exsist also tensor equations, that is an invariant way, characterizing the
warped products. They are contained in the following theorem.

Theorem. ([44]).- A Riemannian manifold is warped product if and only if there
exsists a symmetric tensor Aii, not proportional to the metric tensor, and gradient
vector field uisuch that

(3.3) 	 VkAii = i(uiAkj ujAik), Ai A' = Aik•

then ui =
xi

—log F.

Here and in the sequel, V is the operator of covariant differentatiion with respect
to Levi-Civita connection.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

On warped product manifolds 	 175

If F = con.st., then (3.3) reduces to

VkAij = 0, 	Aij A i k = Aik

and this conditions, given by P.A.Schirokov ([46]), for a Riemannian space to be
decomposable.

For a warped product manifold with /-dimensional base or with /-dimensional
fiber, we have theorems:

Theorem. (1:97],[4.0. A Riemannian manifold is a warped product with 1-dime-
nsional base if and only if the equations

V./ = 	 = co(f)
admit solution f # const.

Theorem. ([44.1).-A Riemannian manifold is a warped product with I-dimensional
fiber if and only if there exists a nonisotropic vector field Ai which, together with

0
the gradient ui _ = log F satisfies

Ox

1
= —

2
(Ai ui — Aj ui).

4. The geometry of the warped product in terms .
of warping function F and the geometries of M and M

There are many papers dedicated to the investigation of the geometry of the *
warped product M = M x F M in terms of warping function F and the geometries *
of M and M. In this section we quote some examples'.
. 4.1 From now on, we suppose F = const. and we use the local coordinates with

respect to which the relation (3.1) and (3.2) are satisfied. We assume that each
object denoted by a dash is formed wai, and each object denoted by a star using
g c,o . Then the local components F ii'i of the Levi-Civita connection on M xF M are
the following (see for example [11], [17], [44]):

11 	. rL = rbac, 	r a = _ yab pb _ c;a13, 	
r 	

*

137 	2 	 ci;-y = 1737 ,
1 	 aF

ràvo=Tp---;Faq, 	r:b = r 'LI = ° 1 	Fa =
oxa

The local components Rhijk of the curvature tensor of M = M xF M which in
general do not vanish identicaly, are the following

Rabcd = 7Rabcd, 	Raabl3 = 42- Tab 6c0) (4.2)
1 4, Raf3 75 = F Ro-x5 — — /-11 r Lrcri37.5) 4

(4.1)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

176 	 M. PrvanoviC

where T is the (0.2) tensor with the local components Tii defined by

(4.3) Tap = Taa = 0, Tab = VbFa — 	
a

F Fb

and

AiF = 9 FaFb,

* 	* 	* 	*
Gap7 5 = 9046907 — garyg 0,5 •

In view of (4.1) and (4.2), we get

Rabcd = VeRabcd,

V a Rabcd = VdRabccx = V-yRaab0 = 0,

V e Rabo = VyRabat,i = VbRap-ya = 0,

VpRaabc 2 = e ab c
2F

(r
t,
biac — 1 ' ab)1 gaf3

(4.4) 	VbRaacp = —(VbTae)gap,

	

1 	

e
V bR otp,a = --

2
[Fall

`''31.6
—
2

(F Te
a

—
2F
—Fa A l F)6'0,81

1 F
aRck,37,5 = —FaRaP-yo 	[Tc,1 AiF 72-1 aa(AlF)]b co-y6,

V p Rap-ro = FVp Rap.o.

The local components Sij = Rr ijr of the Ricci tensor of M xF M,which in
general do not vanish identically, are the following

n
Sab = Sab — Tab,

4.5 	 *
So = S ap —

1
— [tr(T)+

n—
2F

- () 	 1
Aid gap ,

*
The scalar curvature R of the metric y x F g satisfies the eqation

1 	 n
4F

 1 * 	 - q -
(4.6) 	R= 	

n q tr(T)+ 	AiF) .

Therefore, Weyl conformal curvature tensor

Chijk = Rhijk
it — 2

(g
ij

,Shk — gikShi ghk Sij — ghj Sik)+

+
(n 1)(n — 2) (g2i9hk gikghi)

tr9T) = rh Tab-

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 177

has the following components

I
C abed = Trtabcd 	2(-9 adO bc 	ac: -4-37 bd ribc3ad Ybd:57. ac)+

n — q ,_
+ 2(71 — 	2)F lgadTbe — k a„..TH + §b,Tad — godTac)+

R
+

(n — 1)(n — 2) 7 'abed,

1 (q — 2
	Tab + FS 7 ab) ; 	

1
a/3 — C aabii = n 	 — 2 	2 	 n — 2 L6Sal3+

	

(4.7) 1 	 * 	— 2q + 1
tr(T)+ + 	 {F.Ti+ R

n
(71— 1)(n — 2) 	 2

+ (q — 1)(7t

4F

 — q — 1)
Ai Fi-gabL13,

F *
Capry b

= F Roya 	

, 	* 	* * 	* * 	*
— 2

(gaoSp-y — gery Soa + go-,S aa — gpoS ay)+

F 	 [FR
+ tr(T)+ n 	2g Ai Fi C* +

n — 2 	 ;076, Ln — 1 	• 	4F
Cabo Cabal3 Ca13-y6 = O.

Moreover, from (4.1) and (4.5), we find

V cSab = VcSa1) (n — q)Ve 61 Tab) ,

VaSab = Vb•aa = 0,
vosaa = 	15*.,00 	(tr(T) n —

q —1V1F)Ld

(4.8) 	

+

1 	
e 	

n 2F

2F

+ Fe [S a 	Te al g,3 	TE a = ffebTab, 2 	 '
Fa* 	1 	r 	n — q — 1

tr(T)+ 	V id; ap- 2F

—
2 	 2F
—
1

 Oa itr(T) +
71—ql

Ald orf.3 1

*
V5Sall = 77,5 a1.3

Using (4.4), (4.6), (4.7) and (4.8) we can get the local components of V rCijkh
and V,V,Cii kh •

4.2 In view of (4.4) we can state

Theorem. (Th.1)-1f a warped product M = .171 x F M with n # q + 1 is

Cartan-symmetric (i.e. if V rRiikh = 0). then M is Cart an-symmetric and M is
of a constant curvature.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

178 	 M. PrvanoviC

Simmilary, it follows from (4.7) that if M is conformally flat (i.e. if Cijkh = 0),

then M is a space of constant curvature. Conversely is not true, but we have

Theorem. -Let M be an open interval of R

F be a positive C' function on M and let

M = M xF M is conformally flat if and
curvature.

with metric 9 11 = c, e E {-1, O. Let

dim M > 2. Then the warped product
71,

only if M is a manifold of constant

If a recurrent space (VrRijkh = A r Ripc h) is a locally decomposable, then one
of the decomposition space is flat and other is a recurrent space ([31,p164). The
non-decomposable recurrent Riemannian spaces are all known. Some of them are
warped products. For 2-recurrent (VrVsRijkh = Ars Rij kh), conformally sym-

metric (VrCijkh
spaces, we have

Theorem. ((14J, [191, [22.0.- If a 2-recurent (conformally symmetric, conformally
recurrent, conformally birecurrent) Riemannian space is a warped product and

dim M > 3, then M is 2-recurent (conformally symmetric, conformally recurrent,

conformally birecurrent) and M is a space of constant curvature.

M.C.Chaki and G.Kumer ([6]) generalized this theorem for the space satisfying

VrVsCijkh = ArVsCijkh BrsCijkh-

One generalization of a recurrent space is the Riemannian manifold satisfying ([2],-
[4],[5],[16],[25],[26],[33]):

(4.9) 	V r Rij kh = Ar Rijkh BiRrjkh B Rirkh Bk Rijrh Bh Rij kr •

Here, we shall give an example of warped product manifolds satisfying (4.9).

Let M, dint M > 2, be equiped with the metric

9abdedx6 = E e a (dxa) 2 , 	ea = ±1
a=1

and let 	
F = (Co = C1 x 1 -1-, • - • ,Cq xq) 2 ,

where Co, 	are constants such that

E ea(Ca) 2 = 0.

a=1

Then

I
Fa = 2Ca (Co = Cix 1 +, • • • , Cq xq), VbFa = 2C,Cb,

(4.10)
Tab = 0, 	= 0.

), conformally birecurrent (V,V,Ciikh = ArsCijkh) Riemannian

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 179

In view of (4.2), (4.4) and (4.10), it follows that the only components of
Riikh and Vriiiikh not identically equal to zero are those related to

R, 07 F R 	,
* *

p R, 1376 = F77 p R,,f376,
*

Re4376 = ," a -"6 0e /376
1 	* VpRao.ya = — 2 —FaRap-rp•

* *
Now, if M is a recurrent space, i.e. if VpRa1376 = A p R ai376, then

pRa1376 = A pRal375,

aRa13 76 = — Fa Rap-y6,
1 Fa

V pRo ya = —
2 F

Rn1j7P,

and warped productM = M xF M satisfies (4.9), the vector fields A and Bhaving
the localcomponents

1 A: 14,, A a = — F±:3 ;
F

If M is Cartan-symmetric, A a = 0, and A = 2B. The Ricci tensor of considered
warped product satisfies

	

(4.12) 	 VkSii = AkSii BiSki BjSik,

or (in the case M is Cartan-symmetric)

	

(1.13) 	 VkSbj = 2BkSij BiSkj Bj Sik •

Indeed, in view of (4.10), we can reduce the relations (4.5) and (4.8) as follows

= Safi = 0 , 	Sal) = Sag;

VcSab = V j3 5'ab = bSaa = 0,
1 Fa *.

oSa, = —
2 F SO, V aSaii = —

V6S,,3 =

* 	;lc

If M is a reccurent manifold, then V p Sao = A p S,p, i.e. it is also Ricci-recurrent
and taking into account (4.11), we have (4.12).

M can be Ricci-reccurent and not recurrent. For example, W.Roter determined
in [29] and [30] the metrics of conformally symmetric and conformally recurrent

(4.11)
1F B: 	= 0, Ba = — -7
2 Fa

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

180 	 M. Prvanovie

Ricci recurrent manifolds which are not recurrent. In this way we obtain new
examples of Riemannian manifolds satisfying (4.12). The Riemannian manifolds
satisfying (4.13) was introduced by M.C.Chaki ([3]) and further investigated in [4]
and [7].

S.Ewert-Krzemieniewski ([16]) determined the subprojective spaces satisfying
(4.9) with A = 2B. More precisely, he determined the function F in (2.1) such
that the condition (4.9) is fulfilled for A = 2B.

N.PuSie. ([27],[28]) investigated Ricci-recurrent warped product manifolds. Arno-
* ng others, she proved that if M =M xFM is Ricci-recurrent, then M is an Einstein

space.
4.3 An n-dimensional (n > 4) Riemannian manifold is said to have harmonic

Weyl conformal curvature tensor ([1],p440) or to be nearly conformally symmetric
([17]) if its Ricci tensor satisfies the condition

1
(4.14) 	VkSii — ViSik = 2(n _ 0 (goVkR — yikV R).

Namely, it is easy to check that for every conformally symmetric manifold the
condition (4.14) holds.

If the Ricci tensor satisfies

(4.15) 	V k Sij = 	 (n — 1)(n + 2)g1VkR+ 	

n — 2

2(n — 1)(n + 2)
(gkiViR+ gikV JR),

then it satisfies the condition (4.14), too.

Finaly, for Einstein manifold (Sij = —
R

gii), if n > 2 then R = const. and both

conditions (4.14) and (4.15) are identically satisfi ed.
*

If the warped product manifold M = MxF M satisfies (4.14), then M is an
Einstein space with a constant scalar curvature: The converse is not true. But if
dim M = 1, we have

Theorem. ([17]).-Let dim M = 1 and g i l = 1. then the warped product M =

MxFM satisfies (/.11) if and only if M is an Einstein space and its scalar curvature
is constant.

Furthermore, if the function f2 = —

1

is a solution of ordinary differential equation

(1 2 f 	2R f3
= const.,

the Ricci tensor satisfies the condition (4.15). (This is the example of manifolds
satisfying (4.15), given in [1],p.433)

But, if F is given by one of the following formulas

(dx') 2 	(n — 1)(n — 2)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 181

(n — 1)(n — 2)
*

4 	R. 2 AF-a(X 1 + b)
a (n — 1)(n — 2) 8M 	2 	, a < 0;

if R = 0, F2 = be"' , a 0 0;
*

*4 	R if R < 0, F2 = 	 cos h2AFt(xl + 6)
a (71 — 1)(n — 2) 	2 	'

a > 0;

where a and b are constans, then warped product M = M xF M is an Einstein
space ([18]).

It is interesting to note that warped product manifold provided with the metric

ds 2 = — (dx 1) 2 FLocledx+3

satisfies (4.14) if and only if g* apdxudx° is the metric of an Einstein space with
constant scalar curvature and the function F has the form F = el'Ea, where a and
b are constants.

4.4 The Riemannian space is said to be semi-symmetric if its curvature tensor
satisfies

(4.16) 	 R • R = 0,

where the first tensor acts on the second as a derivation.
There are many various possibilities to obtain curvature conditions weaker that

(4.16). To expres them, let R(X, Y) and X AA Y be defined by

R(X, Y)Z = VxVyZ — Vy VxZ — V[x, y]Z,
(X AA Y)Z = A(Y, Z)X — A(X, Z)Y,

respectively, where X, Y, Z are vector fields and A is an (0, 2) tensor field on
(M, g). For (0, k)-tensor field P on M, k > 1, we define tensors R • P and Q(A, P)
by the formulas

(R • P)(X1,•••,Xk; X, Y)= — P(7Z(X, Y)Xi., • • , Xlc) — • • • —

P(Xi, • • • , Xk_i, R(X, Y)Xk),
Q(A, 	•••, Xk; X, Y) =r) ((X AA Y)Xi, • • , Xk)-+ •+

P(X i , • ,Xk_i, (X A Y)Xic).

if R > 0, F2

*
4 	R 	 h2\fii(xl 	a > 0, a (n — 1)(n — 2) s 	2

*

+ b)2,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

182 	 M. Prvanovie

Then, the desired conditions weaker then (4.16) are

(4.18)
	

R • R = LQ(g, R),

(4.19)
	

R=Q(S, H),

(4.19)
	

C • C = GQ(g, C),

(4.20)
	

R • R = Q(S, R)± .CQ(g, C),

where C is the conformal curvature tensor and G is a function on M.
There exsists many examples of warped product manifolds satisfying one of these

conditions. We cite some of them.

Theorem. DO.- Let M be an open interval of R with the metric gii = e, e E

{ —1, 1), F a positive. C' function on .M and na * M a manifold of constant cur-
*

vature. Then the warped prodoct M = .M xF M satisfied (4.17).

Theorem. (fi 0.- Let M be an open subset of RI \ {0,...,0}, q > 2, eqiped with

5.6 = 6ab, F (X 1 	xq) the metric 	 = i [(x 1) 2 ...± (xq)92 and na* M (dim M > 2)

a localy flat manifold. Then the warped prodoct M = M xF M satisfied (4.17).

Theorem. ([8]).- Let M = {(x 1 , x 2) E R2 and x 1 > 0, x 2 > 0} be a 2-dimensi-
*

onal manifold with the metric g" defined
by"b fa' fa

= ±1. Let M, dim M > 2
be a manifold of constant curvature and let

C + 1 	C — 1

F(x l , x 2) = (x 1) c 	• (x 2) c ,

where c is nonzero constant. Then the warped product M =MxFM satisfied
(4.18).

Theorem. ([14]).- Let M be a 1-dimensional manifold and let M be a 3-dimen-
sional manifold or (if dim M > 4) conformally flat. Then the warped product

M = M xF M satisfied (4.19) if and only if

ilgap +

where p and v are function and ucr is a vector field on M.

Theorem. ([10]).- Let M, dim M = q > 2 and M, dim M be two Riemannian
manifolds of constant curvature and F a positive moth function on M. Then the

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 183

	

warped product M=MxFM satisfied (4.20) with 	
n — 2

= q(q —1) Ti if and only if,

	

rank 1
	F,C

(—Tab 	gab < 1

	

2 	n — 2

is satisfied. (The (0, 2) tensor T is defined by (4. 3) and R is the scalar curvature
of M.)

Theorem. ((10)).- Let F be a positive smooth function on 2-dimensional Riemann-

ian manifold M such that the tensor T is proportional to Tr. Moreover, let M,
dim M > 2, be a manifold of constant curvature. Let the function ,C defined by

=
n — 3 tr (T)

4 	F 	2

satisfied = n — 2-
	

2 R. Then M=MxFM is a manifold fulfilling (4.20).

Theorem. ([01).- An Einstein manifold (M, g), dim M > 4, satisfying (4.17),
satisfies the condition (4.19), too.

References
[1] BEES A.L., Einstein manifolds, Springer-Verlag, 1987.
[2] CSHAKI M.C., On pseudo pseudo-symmetric manifolds, An.Stiint.Univ."ALLCuza, Iasi, Ser.

Ia Mat. 33 (1987), 53-58.
[3] CSHAKI M.C., On pseudo Ricci-symmetric manifolds, BuIgar.J.Phys. 15 (1988), 526-531.
[4] CSHAKI M.C., BARNA B., On a new type of Riemannian manifolds and its aplication to

general relativity„ Mahavishva 4 (1991), 63-65.
[5] CHAKI M.C., DE U.C, On pseudo-symmetric spaces, Acta Math. Hungar. 54(3-4) (1989),

185-190.
[6] CHAKI M.C.,KUMAR G., On semi-decomposable generalized conformally 2-recurrent space,

Mathematica, Revue d'Analyse numerique et de Ia theorie de l'approximation, T.30 53, No
1 (1988), 11-18.

[7] CHAKI M.C., TARAFDAR M., On conformally flat pseudo-Ricci symmetric manifolds, Period.
Math. Hungar. 19(30) (1988), 209-215.

[8] DEFEVER F., DESZCZ R., On warped product manifolds satisfying a certain curvature con-
dition, Atti Academia Peloritaua dei Pericolonti, Clase I di Sci. Hz. Math. e nat. 69 (1991),
213-236.

[9] DEFEVER F., DESZCZ R., On Riemannian manifolds satisfying a certain curvature condition
imposed on the Weyl curvature tensor, Acta univ. Palackianea Olomucensis facultas rerun
naturalism, Mathematica, 32 110 (1993), 27-34.

[10] DEFEVER F., DESZCZ Ft., PRVANOVIe.: M., On warped product manifolds satisfying some
curvature condition of pseudosymmetry type, submited for publication.

[11] DEPREZ J., DESZCZ R., VERSTRAELEN L., Examples of pseudo-symmetric flat warped prod-
ucts, Chinese J. Math. No 1 17 (1989), 51 -65.

[12] DERDZINSKI A., ROTER W., Some theorems on conformally symmetric manifolds, Tensor
32 (1978), 11-13.

at every point of M, the condition

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

184 	 M. Prvanovie

[13] DESZCZ Ft., On semi decomposable conformally recurrent and conformally birecurrent Rie-

mannian spaces„ Scientific papers, Inst.Math.Wroclaw Tech.Univ. No 16 (1976), 27 -32.

[14] DESZCZ R., VERSTRAELEN L. YAPRAK S., Warped products realizing a certain condition of

pseudometric type imposed on the Weytcurvature tensor, Chinese J.Math. 22 No3 (1994),

139-157.

[15] EISENHART L.P., Riemannian geometry, Princeton University Press, 1949.

[16] EWERET-KRZEMIENIEWSKI S., On some generalization of recurrent manifolds, Mathematics

Pannonica 4/2 (1993), 191 -203.

[17] GEBAROWSKI A., Nearly conformally symmetric warped product manifolds, Bull. Inst. Acad.

Sinica 20, No 4 (1992), 359-377.

[18] GEBAROWSKI A., On Einstein warped product, Tensor 52 (1993), 204-207.

[19] GRUCAK W., On semi-decomposable 2-recurent Riemannian space, Scientific papers, hist.

Math. Wroclaw Tedi. Univ. No 16 (1976), 15-25.

[20] KAGAN B., Ober eine Erweiterung des Begriffes worn projectiven Raume und dem zugeh6rigen

Absolut, Abhandlungen aus dem Seminar fiir Vektor-und Tensoranalysis, Lieferung I, Moskau

(1933), 12-101.

[21] KAGAN B., Der Ausnahmefall in der Theorie der subprojectiven Riume, Abhandlungen ens

dem Seminar fir Vektor-und Tensoranalysis, Lieferung II -III, Moskau (1935), 151 -170.

[22] KRAWCZYK A., Some theorems on semi-decomposable conformally symmetric spaces, Scien-

tific papers, Inst. Math. Wroclaw Tech. Univ. No 16 (1976), 3 - 10.

[23] O'NEILL B., Semi-Riemanian geometry with application to relativity, Academic Pres (1983).

[24] PRVANOVI6 M., Poludekomponovani rekurentni Rimanovi prostori, Godi§njak Filozofskog

fakulteta u Novom Sadu XI/2 (1968), 717-720.

[25] PRVANOVle M., Generalized recurrent Riemannian manifold, An. Stink. Univ. Al. I. Cuza,

Iasi Ser. Ia Math. 38 (1992), 423-434.

[26] PRVANOVIo M., On weakly symmetric Riemannian manifold, Publications Mathematicae

Debrecin, in print.

[27] PtrAi6 N., On Ricci recurrent semi - decomposable Riemanian specs, Zb. Rad. PMF u Novom

Sadu, Ser. Mat 21,2 (1991), 49 -59.

[28] Puic".; N., On Ricci recurrent semi - decomposable Riemanian spaes with vanishing scalar

curvature, Zb. Rad. PMF u Novom Sadu, Ser. Mat; in print 23,1 (1993).

[29] ROTER W., On conformally symmetric Ricci - recurent spaces, Colloq. Math. XXXI (1974),

87-96.

[30] ROTER W., On the existence of conformally symmetric Ricci - recurent spaces, Bull. Acad.

Polonaise Sci., Ser. Math. Ast. Phys. XXIV, Noll (1976), 973-979.

[31] RUSE B.S., WALKER A.G., WILLMORE T.J., Harmonic spaces, Ed.Cremonese, Roma, 1961.

[32] SCHAPIRO H., Ober die Metrik der sub projective Raume, Abhandlungen aus dem Seminar fiir

Vektor -und Tensoranalysis, Lieferung I, Moskau (1935), 102-125.

[33] TAMASSY L., BINH T.Q., On weakly symmetric and projective symmetric Riemannian man-

ifolds, Colloq. Math. Soc. Janos Bolyai 56 (1992), 663-670.

[34] VRANCEANU G., Aspura spatiilor tui Kagan metrice, Bull. Stunt. mat. fiz. shim No 6 (1950),

503-508.

[35] VRANCEANU C., Lecon de geometrie differentielle, Ed. Acad. Roumanie, Buchharest, 1957.

[36] VRANCEANU G., Espaces de Riemann partiellement projectiven d metrigue indefinie, Math.

Nachr. 18 No 1-6 (1958), 123-126.

[37] YANO K., Concircular geometry, Proc. Japan Acad. 16 (1940), 195-200, 354-360, 442-448,

505-511.

[38] YANO K., The theory of the Lie derivatives and its applications, North- Holand Publisching,

1955.

[39] KAFAH B.4). , Cy6npojerniuenue npocmpaucritea , rOC. 143. 4)143. MaT.

MocKBa , 1961.

[40] KPYLIKOBVIII r.14. , 0 deumenuarz a no.nynpoeodumbtx Pumanoeux npoc-
mpancuteax Ycnexis ma?. HayK, T XII 6 (78) (1957), 149-156.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On warped product manifolds 	 185

[41]	, 0 deuwenusa e cy6npoexl111187lblX npocmpancmeax B.O.Kaoana, Hay-
LIH.)10K. BbIC. ILIKOJI., CPI43.MaT. Haymi No 1 (1958), 43 -47.

[42]	 0 Pumano6ux npocmpaucmeax C aocmamonuo 6o.abtuoti opynnoit deu-
aicenuit, LEAH, TOM 133 No 6 (1960), 1283-1286.

[43]	, 0 npocmpaucmeax B.O. Kazana, e miuee: Kagan B.O., Cy6npoelonue-
nue npocmpaucmea , roc. 14311. (IB43. maT. Jurrep., MocKBa , 1961.

[44]	, 06 oduom Icitacce Puf.iauo6bu npocmpaucme , Tpy„Rbi ceM. BeKTop.
TeHcop. man., Hhin XI (1961), 103-128.

[45]	, 17pocmpaucmea Kazaua u nempan3umuexue opynnbt deudicenuo , Tpy-
Am ceM. BeKTOp. TeHcop. aHaJI., EibM XIV (1968), 144-153.

[46] LIIMPOKOB 11.A. , Cumempuneocue xonOopmuo-eemaudoebte npocmpancmea
,143,a. Ka3aHccK. (Pm. maTem. 06-Ba cep 3,11 (1938), 9-27.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 187-195

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

HOLOMORPHICALLY-PROJECTIVE
CONNECTIONS OF A HYPERBOLIC

KAEHLERIAN SPACE

Nevena Pu§ie

ABSTRACT. We consider the set of connections on a hyperbolic Kaehlerian space
which are in holomorphically-projective correspodence to the Levi-Civita connection.
We find an invariant tensor of curvature type for all these connections.

1. About hyperbolic Kaehlerian space
A hyperbolic Kaehlerian space Mn (n = 2m) is a differentiable manifold

with indefinite metrics

(1.1) 	 ds 2 = gii clx i dxj

and so-called strusture(F; %which is itself a linear transformation of the
tangent space, in every point), which satisfies

(1.2) 	 F;dF,i = l

The metrics and the structure are conected in the following way

(1.3) 	 Fij = 9i3 Fs = gisFi = — F;i

(1.4) 	 Ok F; i = 0.

The tensor (Fi;), appearing in (1. 3), which we have formally got from
the structure tensor by lowering the upper index, is the covariant structure
tensor. The symbol V denotes the ooperator of covariant differentiation
towards the Levi-Civita connection. (1. 4) means that the structure tensor is
parallel regarding to the Levi-Civita connection. It is clear that the covariant
structure tensor is also parallel. (1. 2) means that the structure is involutive
as a linear transformation of the tangent space in every point.

The structure tensor is a real nondegenerate tensor and it has n linearly
independent eigenvectors; its matrix has a diagonal expression.

187

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

188 	 N. PaiC

There holds

Lemma 1. (A) Every tangent vector of a hyperbolic Kaehlerian space is
transformed by the structure into an orthogonal vector.
(B) The scalar square of a vector-original is opposite to the scalar square of
the vector-image.

Proof. (A) ai 	bi

(0' = aj a,Ft sg ti = aj as Fis = —aj as Fsj = —aj bj = 0

(B)b,,bs = b,bte = bs ai Ft j g" = b3nJ Fsi=

= —aj b,,Fjs = —ai a j. ❑

The fact that the structure has eigenvectors is enabled by the fact that
the metrics is indefinite. We shall give here some features of eigenvalues and
eigevectors of the structure.

Lemma 2. For two different eigenvectors of the structure on a hyperbolic
Kaehlerian space either the eigenvalues are mutually iopposite or the eigen-
vectors are mutually orthogonal.

Proof. Suppose that u and v are two different eigenvectors for the struc-
ture, with eigenvalues A and i respectively. Then

u a va = uivkg jk 	1 = 	k usll
Yu

= —1
11,3 V,F" = — 1 v s ui Fsj = — A us ,

and

(1.5) 	 ua va(1+ —) = 0

and the Lemma is proved. ❑

Lemma 3. If on a hyperbolic Kaehlerian space the vector u is an eigenvector
for the structure, then Fu is also an eigenvector for the structure.

Proof. v= Fu, vi = au. = Aui

F., 1 /4 = Fj i Fi au° = uj =A 2 uj = Avj

and the Lemma is proved. ❑
It is obvious from the proof of the Lemma 3. that only eigenvalues of the

structure are A = +1.
According to the Lemma 1, eigenvectors of the structure tensor are self-

orthogonal, i. e. their scalar square vanishes. As the structure has n (di-
mension of the manifold) linearly independent eigenvectors, there exists a

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Holomorphically-projective connections of a hyperbolic ... 	189

basis of the tangent space which consists of isotropic vectors. We call such a
basis an adapted basis. Such a basis shows in the simplest way the geom-
etry of a hyperbolic Kaehlerian space. We can construct an adapted basis
in the following way: we put on the first m = aplaces those eigenvectors
with corresponding eigenvalue 1; on the second m places we put those m
eigenvectors with corresponding eigenvalue —1. According to the Lemma 3,
there is no other eigenvalues. According to the Lemma 2, in every of these
subspaces every basic vector is orthogonal to the every other basic vector; on
every of these subspaces induced metrics vanishes identically. Besides, every
of these subspaces is invariant under structure isomorphism. This means
that a hyperbolic Kaehlerian space is decomposed in very natural way into
two totaly geodesic subspaces of same dimension.

We have to mention that, according to the Lemma 1, there exist vectors
with positive scalar square (space-like vectors) and those with negative scalar
sqare (time-like vectors).

2. Holomorphically planer curves

A two-dimensional submanifold of the manifold Mn with a tangent sub-
space of the tangent space on Mn , generated by vectors u, Fu we call a
holomorphic section of a hyperbolic Kaehlerian space.

A curve e(t) on Mn satisfying the differential equation

d2e 	 t de (2.1) 	 4_ Ah
A(t)F h de

dt 2 	dt dt 	a(t) dt 	' ' 	dt
where a(t) and OM are functions depending of the parameter t, we call a
holomorphically planer curve. It can be seen from (2. 1) that a curve
is holomorphically planer if and only if holomorphic sections generated by
tangent vectors are parallel along the curve.

Two F-connections (satisfying VkF = 0) are said to be mutually holo-
morphically projective if and only if they have holomorhically planer curves
in common.

It is easy to prove that there holds

Proposition 1. Two symmetric F-connections with coefficients A.iik and Aiik
are holomorphically projective if and only if

(2.2) 	 Aj k = A j k 	pk b.,

	

Fk 	pj Fk 3
for some vector field (p i).

In this article, we shall investigate connections which are holomorphically
projective to the Levi-Civita connection.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

190 	 N. Pugie

3. Holomorphically-projective connections

We say that a connection with coefficients Aijk on a hyperbolic Kaehlerian
space is holomorphically-projective if its coefficients have the form:

(3.1) 	 Ajk = fijk + 	+ pkb. + giFk 	qkFj i

where (p,) are components of a gradient vector field and (q1) are compo-

nents of a vector which is an image of (p i) under the structure. stands for
Christoffel symbols. It is obvious that a holomorphically-projective connec-
tion has holomorphically planer curves in common with Levi-Civita connec-
tion.

The curvature tensor of the connection (3. 1) has the form

(3.2)
	

Rol = K ijkl gkipi; — glipkj + Fkiqu - Fligkj

Fji(qkl 	q,k)

where

(3.3)

(3.4)

and

(3.5)

prj = V rpj — ptpj —

(hi = V rqj — pi g; — gip;

= Fj apia

By Kijki we denote Riemann-Christoffel tensor of the hyperbolic Kaehlerian
space.

In order to eliminate pki and qt.; from the expression (3. 2), we shall sup-
pose that the curvature tensor of the holomorphically-projective connection
is invariant under change of places of the first and second pair of indices:

(3.6) 	 Rijki = Rkiii

By (3. 2), we obtain from (3. 6)

gjkpil — gripkj + Fki(qu + qp)— Fliqkj Fjkgil

Fji(qkl qik) — Fik(qi; — qji) = 0

After transvection the upper equality by Pk, we obtain

(3.7) 	 qli + (1 — n)qii = Files

where p: stands for mil.
As the covariant structure tensor is skew-symmetric, then the left-hand

side of (3. 7) is also skew-symmetric and there holds

gli + (1— n)qii = 	— (1— n)qii

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Holomorphically-projective connections of a hyperbolic ... 	191

what means

(3.8) 	 = — Di•

Now, the curvature tensor of holomorphically-projective connection on a
hyperbolic Kaehlerian space has the form

(3.9) 	Rip, / = Kijkl gkinj glipki + Fkiqij 	Ftiqkj 2 Fjigki•

4. HP-curvature tensor

Taking into account equalities (3. 7) and (3. 8), one can easily get

(4.1) 	 = — PS

n
and by the relation pr; = F= a gra

,

PS 3 (4.2) 	 =

Using (3. 9), we can find the Ricci tensor of the holomorphically-projective
connection

(4.3) 	 Pt: = 2 — n
and

(4.4)

Then, we have

(4.5)

R — K (4.6) 	 pr: =h• n(2 — n) g

If we substitute (4. 5) and (4. 6) into (3. 9), we obtain

Rijki 	
R

n(2 — n) 	— gligo - 	+ FuFki -2FiiFki)=

K = Kijkl 	 n(2 — n) kgkigu - gligki - 	+

The tensor on the right-hand side of the upper equality we call the holo-
morphically-projective curvature tensor of a hyperbolic Kaehlerian
space. We have proved

R — K
PS = 	 2 — n

R — K = 	
n(2 — n)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

192 	 N. Pu§ie

Theorem 1. The tensor

(4.7)
	

=

K
n(2 — n) kgkigi; — gligo — FkiFy + 	—2FpFki)

is an invariant tensor of holomorphically-projective connections on the hy-
perbolic Kaehlerian space.

We can also prove that there holds

Theorem 2. The curvature tensor of a holomorphically-projective connec-
tion on a hyperbolic Kaehlerian space is skew-symetric in first two indices,
but it does not satisfy the first Bianchi identity, except of some special cases.

Proof. One can easily check, using (3. 9), that Rijki is skew-symmetric in
first two indices.

If we suppose that Rijki satisfies the first Bianchi identity, then, by (3. 9),
we obtain

0 = Kijki Kaki

— giipo + Fkigij Fliqkj 2Fligkl

— giink + 	 2Fkigli

+gjiPk1 gkipjl Fjigkl Fkigji 2Fliqjk =

= 4(Fkiqij - Fliqkj Fjigki),

and, taking into account (4. 1)

Ps 8 Fk Fij Fli Fkj Fii Fk = 0).

If we suppose that the expression in parentheses vanishes, then, after con-
traction by Fa ,

(n 2)4 = 0,

what is senseless. Then p, = 0 and, regarding to (4. 4), K = R, what is a
special case. ❑

Also, we can prove

Theorem 3. The holomorphically-projective curvature tensor of a hyper-
bolic Kaehlerian space satisfies the following relations

(a)H Piiki = — H Piiik; H Piiki = — H Pjikl; H Pijki = H Pklij

(b)H Pijki H Pikij H Pik; = —4(FkiFii — PI; Fki FjiFkl)

Ii
(OH Pt jkt = Kik 	gfic

	

(d)I I Pi ikiFj t - H 	ki 	= 0.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Holomorphically-projective connections of a hyperbolic ... 	193

One can easily prove all these properties using the expression (3. 9).

5. Some special cases

There always holds

(5.1) Ps' = 	3 81)
according to the Lemma 1. Then also holds

	

t sps 	 top' (5.2) 	R — K = (2 — it)t sp3 ; ph = it g1,; q11 = 	Fii • n
As the first special case we shall consider that one when the vector field (pi)
generating holomorphically-projective connection is a harmonic vector field,
that is

tsps = 0.

Then, according to (5. 2), there holds

(5.3) 	• 	R= K; pii = 0; q1, = 0

and then

Rijkl = Kijkl

and the curvature tensor of the holomorphically-projective connection in this
special case will satisfy the first Bianchi identity.

The other special case which we are going to consider here is that one when
the generating vector field for the holomorphically-projective connection is
an eigenvector for the structure; then the holomorphic section is invariant
for the structure. As the only eigenvalues for the structure are ±1, then
holds

(5.4) 	 qri = +Ai

As the tensor (pu) is symmetric and the tensor (qu) is skew-symmetric, there
will hold

(5.5) 	 = pij = 0.

This means that

Ps = sP3 = 0
i. e. that the generating vector field is a harmonic one.

If the vector field (pi) is harmonic or isotropic, then

= PiRi giqi ti q= = pi qi qiPi.

According to the Ricci identity, there holds

	

titkPi — tkt;Pi = — 10 	= 0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

194 	 N. Pu§i6

After contraction by gik , we obtain

— Ii t jpt= 0

or, consequently

gikt jt k pi = o.

There holds

Theorem 4. If the vector which is generating a holornorphically-projective
connection of the hyperbolic Kaehlerian space is a harmonic vector field,
then the curvature tensor of the hyperbolic Kaehlerian space is equal to the
curvature tensor of the holomorphically-projective connection. An example
of generating harmonic vector field is a structure eigenvector field. For such
a vector field there holds

K t j pt = 0 and gik j k pi = 0.

If the generating vector field has constant scalar square, then the difference
between R and K is constant.

Proof. We shall prove just the last statement.

a
(Psps)= tkpsps = p3t kps +pstkps.

axk

But

(5.6) 	tkps = pks + pkps+qkqs and tkPs = Psk PkPs qkq s

As pk , = n 9k, and 74, = n Sk, then

Ps
= — (PsP3) = 2 (

s
 PsPs)Pk

axk 	n

and, consequently,

Pss
= — It .

But,

R — K = (2 — n)p's = n(n — 2)p,p3

and the proof is completed. ❑

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Holomorphically-projective connections of a hyperbolic ... 	195

Refrences
[1] M. PRVANOVIe, Holomorphically-projective transformations in a locally product

space, Mathematica Balcanica, 1(1971) 193 -213
[2] N. PtAte, On invariant tensor of a conformal transformation of a hyperbolic

Kaehlerian space, Zbornik radova Filozofskog fakulteta u Nisu, Serija Matem-
atika, 4(1990) 55-64

[3] K. YANG, Differential geometry of complex and almost complex spaces, Perga-
mon Press, New York, 1965.

INSTITUT ZA MATEMATIKU PMF, 21000 Novi SAD, DR ILIJE DJURIaIoA 4,
YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 197-204
Filomat '94, Nis", October 22-24, 1994
Geometry. Computer Sciences

ON INFINITESIMAL DEFORMATIONS OF A TOROID
ROTATIONAL SURFACE GENERATED BY

A QUADRANGULAR MERIDIAN

Ljubica VelimiroviC

ABSTRACT. In this paper we consider a toroid rotational surface with a quadrangular meridian
and obtain a necessary and sufficient condition for infinitesimal deformations of such a surface
(eq.(1.18)). It is determined the field of deformations too.

0. Introduction

In the paper [1] K.M. Belov gave necessary and sufficient condition for infinites-
imal deformations of a toroid surface of rotation generated by a special case of the
meridian.

One puts question of considering infintensimal deformations, i.e. of the rigidity
of a surface with any quadrangular meridian.

In the plane of the meridian which rotates around the u-axis let's introduce
Descartes' orthogonal coordinate system uOp and let p = p(u) be the equation of
the meridian. If e is unit vector of the axis of rotation, ti(v) unit vector of the p-axis,
where v is the angle between the plane of initial position of the meridian and a(v)
then ezi(v)Ici(v) and ai(v)le (see [2], page 90, or [3] page 253).

The equation of a surface of rotation, in the coordinate system with the base
e, a, a' is

(0.1) 	 f(u, v) = ue p(u)a(v).

As it is known ([2],page 91.) for every k E {2, 3, ...} there is a field of infinitesimal
deformations

v) = kok(u)e i" + gjk(u)e-jk le

(0.2) 	 [ikk (u) eikv
▪ IPIc(u)e —kvia(V)

Nk (u) eikv

▪

ik (u) e —iktl a,(v)

1991 Mathematics Subject Classification: 53A05
Supported by Grant 0401A of RFNS through Math. Inst. SANU

197

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

198 	 Lj. VelimiroviC

of a surface (0.1),where e.g. c25 (U) is the conjugated value for k (u) . The functions
Ok(u), xk(u) satisfy differential equation in the form of

(0.3) 	 p(u)A"(u) + (k 2 — 1)p"(u)A(u) = 0,

where A(u) is unknown function,and also satisfy the system

(u) + pi (u)111k (u) = 0, 0 k (11) ik X k (U) = 0
(0.4)

ikcp(u) + (u)[ikOk (u) — xk (u)] + p(u)4 (u) = 0.

In the vertexes u = a of the meridian, 1k(u) satisfy the equation ([2],page 112)

(0.5) 	P(u)[14 + 0) — (cr — 0)1 + (k 2 — 1)(fik (a)[/1 (or + 0) — (cr — 	= 0,

supposing the function (p (U) X k (U) to be continuous in this points. Analogously,the
equation (0.5) is satisfied for xk(u), if y,k(u), I/4(u) are continuous.

1. Condition for the existence of infinitesimal deformations

Suppose that quadrangle Ai(ui, pi) (i = 1, 2,3,4; pi > 0) rotates around the
u-axis. If p(i) is value of p on the Ai A2) P(2) on A2A3 etc., we get the equations of
the sides of the meridian

(1.1)

from where

(1.1')

AiAi+ i : p(i) = pi ± Pi+1 	— (u
— ui

(i = 1,2,3,4;As 	Ai, P5 E- Pl, U5 E))

P(i) — fts

_ Pi+i — Pi
— — u1 4.1 — ui

Dropping index k, let's designate with tp(i) (i = 1,2,3,4) the values of the function
on the sides Al A2, ..., A4A1 respectively. If we replace A(u) with 00)(u) at (0.3)

according to (1.1), we can see that the functions ow are linear, i.e.

(1.2) 	 = Miu + 	(i = 1, 2, 3, 4)

Supposing that the functions 0(i)(u) are continuous at the points u = of the
meridian p = p(u), where pi(o- — 0) 0 pi (a + 0), we get the system

(1.3)

lk(1)(ui) =
0(2)(112) =
0(3) (13) =
1P(4)(14) =

0(4)(ni)

11)(1)(n2)

0(2)(13)

1,b(3) (n4)

=
=
=
=

0(41)(4 1)

0(12)(112)

0(23)(13)

0(34)(n4)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On infinitesimal deformations of a toroid rotational surface 	
199

According to (L2) we have the system

	

ui + 	+ N4

(1.4) 	 M2u2 + N2 -= M1 U2 ± N1
M3U3 + N3 = M2U3 + N2

M4U4 + N4 = M3u4+ N3

i.e., if we consider this system as a system on

Nl 	 —N 4 = 	IL + M42.11
(1.5) 	 N1 —N2 	 = — M1u2 + M2u2

	

N2 —N3 	= M2 U3 + M3u3
N3 —N4 = — M3 72 4 + M4 u4

At the apeces of the meridian the condition (0.5) gives the equations:

A l : 	(Mi — M4) + (k 2 — 1)(Mi ui + Ni)(ki — k4) = 0
A2 : P2(M2 MI) (k2 —

•

 1)(M2U2 N2)(k2 — k1) =
A3 : p3(M3 — M2) + (k 2 —

•

 1)(M3u3 N3)(k3 — k2) = 0
A4 : p4(M4 — M3) + (k 2 —

•

 1)(M4u4 + N4)(k 4 — k3) = 0
or:

[P1 (k 2 — 1)1/ (ki — k4)1M1 — P1 M4 (k 2 — 1)(k1 — k4)N1 =

(1.6) 	—P2M1 + [p2 + (k 2 — 1)u2(k 2 — ki)]M2 + (k 2 — 1)(k2 — k1)N2 = 0
—p3M2 [p3 (k2 — 1)u3(k3 — k2)1/1/3 (k2 — 1)(k3 — k2)N3 = 0
—P4M3 + [P4 + (k 2 — 1)/t 4 (k4 — k3)1M4 + (k 2 — 1)(k4 — k3)N4 = 0

Necessary and surfficient condition for the compatibility of system (1.5) is rank M = rank P, where M is the matrix of the system and P is extended matrix of the
system.In order to explore the system, we are making elementary transformations
of the matrices M and P.

According to (1.5) :

(1.7) p =

N1

1

1

0

0

N2

0

—1

1

0

N3

0

0

—1

1

N4

—1

0

0

—1

•

:

:

— M1 Ul 	M4 •111

—M1u2 	M2u2

—M2 u3 + M3u3

 —M3u4 	M4u4 _
Applying Gauss'algorithm for matrix P, let's realize following elementary trans-

formations successively:
1) —I —0 II, 	2) II 	III, 	3) III 	IV,

which means: 1) the first row is transcribed, it's elements are multiplied with -1
and added to corresponding elements of the second row,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

200 	 Lj. Velimirovie

2) the elements of the second row obtained in 1) we add to the corresponding
elements of the third row , etc.. Thus we obtain

NI N2 N3 N4

1 0 0 —1 i rni

0 —1 0 1 : m2
(1.8) P

0 0 —1 1 : 1113

_ 0 0 0 0 : 2714

where

m l = — M1 Ul + M4u1

M2 = M1u1 — M4u1 — M1u2 M2u2

m3 = M1u1 — M4u1 — M1u2 + M2u2 — M2u3 + M3u3

m4 = Mlu1 — M4u1 — M1u2 + M2u2 M2u3 M3u3 M3u4 M4u4

Hence, the system is compatible if

1714 = Ml (Ui — U2) + M2(u2 — 123) M3(u3 — u4) + M4 (U4 —) = 0.

When ui = ui + i (i = 1,2,3,4, u5 = ui) the meridian contains a side which is
orthogonal on the axis of rotation, generated surface contains a plane part and it is
non rigid (see[4]). We omit this case in following consideration.

Suppose that 714 0 ul. Then

„
(1 .9) 	M4 = 	

1
Kul — U2)M1 + (u2 — u3)M2 + (123 — U4)M31•

/21 — 124

Reduced system (according to (1.8)) is:

Nl — N4 = —M1 u1 M4u1

(1.10) 	—N2 + N4 = M1 (U1 — U2) + M2u2 — M4u1

—N3 + N4 = M1 (U1 — u2) + M2(u2 — U3) + M3u3 M4u1

From (1.9,10) we have

u i
 (u4 —122)
	u 1 (u2 — 123) 	ui (u3 — 124) ,

N1 = N4 + 	 MI + 	M2 + 	 iVi3

Ul — 124 	 lii — 124 	 121 — 124

U4 (U1 —122) 	U2U4 — tli 123 	Ui (123 — 124) ,
N2 = N4 + 	 M1 + 	 M2 + 	 IVI3

U 1 — 114 	 Ui — 124 U 1 — U4

1/4 (U1 — U2) 	U4 (U2 — U3) 	U4(U3 — Ui) ,
N3 = N4 + 	 M1 + 	 M2 + 	 iVI3

121 — 124 	 111 — U4 	 Ui — U4

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Al2 = piu43
A14 = P1 U24
A22 = (k2 —

A24 = P2 1141

A32 = p3u14
A34= (k 2 —

A42 = P4 U31
A44 = P4U12

(k 2 — 1)k14u34 u 1
▪ (k 2 — 1)ki4unui
1)k2iumul
▪ (k 2 — 1)k21u12u4

▪ (k 2 — 1)k32U34/11
1)k32U12U4

(k 2 — 1)k43u34u4
▪ (k 2 — 1)k43/1 12U4

On infinitesimal deformations of a toroid rotational surface ... 	 201

By the equations (1.9,11) unknowns 144, NI, N2, Ar3 are expressed by MI, M2) M3 and N4. Substituting (1.9) and (1.11) at (1.6) and designating

ui — ui = uii

ki—k2 = kii

we get the system

[Pi u24 + (k 2 — I lk _,._14u1u12]M1 + [(k 2 — 1)ki4u1 — pl[u2012+

[(k 2 — 1)k14u1 — piN34M3 + (k 2 — 1)k14u14N 4 = 0

[P2u4i + (k 2 — 1)k2012u4]M1 + [p2u14 + (k2 — 1)k2iu23u1]M2+

+ (k2 — 1)k21u34u1M3 + (k 2 — 1)k2iui4N4 = 0
(k 2 — 1)k32u12u4M1 + [p3u41 + (k 2 — 1)k32u23u4]12+

+ [P3u14 + (k2 — 1)k32u34u i]M3 (k 2 — 1)k32121 4 N4 = 0
[Nun + (k 2 — 1)ui2k43u4]Mt + [P4u23 + (k 2 — 1)u23k43u4]M2+

+ [p4u31 + (k2 — 1)u34k43u4[11/3 (k 2 — 1)u14k43N4 = 0.

Necessary and sufficient condition for this system of linear homogeneous equa-
tions to have nontrivial solutions is the rank of matrix

N4 M3 M2
Ail Al2 A13 A14 [1

of the system to be less then 4. We have to find a condition under which it is valid.
According to (1.13) we have

A11 = (k 2 — 1)k14U14
A13 = p1u32 + (k 2 — 1)k14U23U1
A21 = (k2 — 1)k21U14

A23 = P2U14 (k 2 — 1)k21U23U1

A31 = (k 2 — 1)k32u14
A33 = P3u41 (k2 — 1)k32u23u4
A41 = (k2 — 1)k43U14
A43 = P4U23 (k2 1)k43u23U4

Evidently,it is always kz1+1 0 0 ,as on contrary the meridian will not be quad-
rangular. Applying at the same time following operations to the matrix (1.14)

k 12
I— II,

k14

k23
I— -4 III,

kt4

k34
II—, -4 IV,

ic.21
we obtain

(1.12)

(1.13)

M1

(1.14)
	

H=

A41 A42 A43 A44

(1.14')

(1.15)
	

H 	[Bi],

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

202 	 Lj. VelimiroviC

where

	

k12 	 k12
Bli =A li, B21 = 0, B22 = 	

Fc14
U43 	, B23 = 	

k14

,
U32 	P2 u14

k12 + 	
+ (k2

I\
B24 =pi U24 ,_ 1- P2U41 1- kr. — 1) u12u14k12, B31 = 0

K14

k23 	 k23
B32 =pi U43 — + P3U14, B33 = piu32— + P3U41 	

2 + 	1 (k —)u23k23u14,
ki4 	 ki4
k23

, (k 2 	iv_ _
B34 =pi U24 — + (k2 — 1)U12k23U14, B41 = 0, B42 = P4U31 + kr. — i 1E1.34 u14 ,,

L
34

k14

k34 	 , f/,2 	1\

	

11 	
k21

k34

B43 =p2u14
k2i 	

0 +P23 --1- k. r, — /123k34U14, B44 = P2U4i 	+ P4u12.

Further, we apply the operations

k41 	k23
 // 	L ‘,P1U43—,. + P3U14)

	

1143&12 	K14

Ln r
// 	LP41/31 	(k 2 — 1)u34u14k341 	/V

p l u43 A-, 1 2

and obtain

(1.16)
	

H

where

C1j =B1j = All, C2j = B2j , C31 = C32 = 0

k32 	U14U24 	P2P3(U14) 2 k41 ,,2

C33 =P2U14 — P3 	 k. /C - —) 71 23U14k23)
k12 	U93 	Pl U43k12

(1.16')

k32 	 U24
C34 =P2U41 P3U41

K12 	 U43

C41 =C42 = 0

k34
C43 =p2u14—,_ + P4U23

U41

E12 	 U43

C44 =
P4U14U23 P2U41k34

U43 	 k21

p3 (k 2 — 1)u12(7114)2k41 + P2P3(1/14)2k14

pi U43 	 Plu43k12

, P2P01.031k41 	p2 (k 2 — 1)(u 14) 2 k 1 4k34
-I-

 P1U43k12 	
+
	P1 k12

, P2(k 2 — 1)(U14) 2 k41k34 , +
	 1-

P1 k12

p4(k 2 — 1)tti2ui4u3ik4i 	p2p4u41u31k4i

pi U43 	 P1U43k12

(k 2 — 1) 2 U12(U14) 2 k14k34 fr
kii7 2 — 11U24U14k34•

P1

By transformation III (—g431,-) —> IV the matrix (1.16) take a form

(1.17) 	 H 	[Dij],

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On infinitesimal deformations of a toroid rotational surface ... 	 203

where

Dij Cl , = Bii = Alf) D2j C2j = B2j D3j = C3j
(1.17')

43 C 	, D41 =D42 = D93 = 0 , D44 = —CC
	
+ C44 =

U33
V...33C44 C43C34))

and Cij are given by (1.16'). The rank of the matrix N will be less then 4 for
D44 = 0,i.e. C33C44 C43C34 = 0 ,what gives

[P1P2u43k32 + P1P3u24k12 +ODU 2,-3 -14k41 	(k 2 — 1)u23u43k12k23] x

(1.18) 	
[Poi 2u31 k4 	(k 2 — 1)u 2u43u14 4144 + P1t143u24 k34] -

— (P1 U23U43k23 P3U121214k4i) X

[P1P2U34k34 P1P4U32k12 p2p4u31k41 + p2(k 2 — 1)n14u43k14k34] = 0,
where uij, kij are given by (1.12) and (1.1').
Thus, we have

Theorem. Necessary and sufficient condition for infinitesimal deformations of a
toroid rotational surface,which is generated by a quadrangular meridian with apeces
Ai(ui, pi) (pi > 0, tai+ i 	ui , u5 = ul, i = 1,2,3,4), around the On axis is the
relation (1.18) where uij , 	 are given by (1.12) and (1.1').

Remark.. If we apply (1.18) to the quadrangle of Belov A1(-1, b), A2(0, b c1), A3(1,b), A4(0, b—c 2) we obtain the relation 1/c2-1/c l = k2/b, which Belov obtained
in other manner. So, the previous theorem is a generalization of the result of Belov.

2. Determination of the field of infinitesimal deformation

Above applied method makes possible to determine the field of infinitesimal de-
formation.From (1.17) one obtains reduced system

Dii N4 + D12M3 + D13M2 + D14M1 = 0
(2.1) 	 D22M3 + D23 M2 + D24M1 = 0

D33M2 D34M1 = 0,

from where

D34

	

(2.2a) 	M2 = — n M1

	

D

(2.2b) 	M3 = (D23 D34 D24
) M1

	

D22 D33 	1-'22
---,-,

	

(2.2c) 	N4 = [D12 (

+

D23 	D34 D24) , D13 D34 D14]

D11 D22D33 	D22 	1-1 11 1-'33
n n

Further, from (1.9) we have

D 1 1
M1

1 	U23 D34 + 	D23D34 D) „
M4 = 	[U12 	

u34
	

24 	
1 , U14 	D33 	D22D33 D22

(2.2d)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

204 	 Lj. Velimirovie

N1 = 1 { DD 12 (DD 23D34 DD 24) + DDiaDD34

 Dl

D14 I+

}M1) + U1 U34 D23 D34 D24 	U1 U23D34 + U1 U12
12 1

U14 	D22 D33 D22 	U14D33 	U14

N2 — 1 [DD12 (DD23DD34 DD 24) ± DD13 034 D14 j

U 1 + U2+

D34 U2 ± tli U12 U1/123D34 + U1U34 D23 D34 D24 	m1 + 	 , ,
U14 D33 D33 	U14 	 U14 D22 D33 D22

	

N3 = { [D12 (D23 D34 D241 + D13 D34 D14 	Ul + U2+
1

D11 D22 D33 D22 	D11 D33 D11

D34u2 D34 U3 (D23D34 D24\ U3 ± 110112

D33 	D33 	D22 1)33 D22
(2.2g) 	+ ,,

U14

— D34u1 U23 + . u1 u34 (D23 D34 D24) 1 .
M
,

I
D331114 	U14 	D22 D33 D22

By the equations (2.2.a — g) we expressed M1, Ni (i = 1,2,3,4) by M1 (indefinit

const.). Further, we obtain 00)(u) on the base of (1.2),In this manner, we get the

field 7(u, v) of infinitesimal deformations, given by (0.2).

Finaly, I wish to thank prof. Milica Ili6-Dajovie for introducing me into the

matter treated in the present work.

References

[1] K.M. BEJIOB, 0 6eocouenuo maAbiz u32u6anuarz mopoo6pa3uoii noeepxuocmu

epaluenurr, 046. maT. mcypuan, T H3 (IX)(1968), 490-494.

[2]c.a. KOH-470CCEH, HexoTophie Bonpocu ,ampcpepeliumaamia reomeTpmn

B UeJIOM, ta43maTrm3, MocI<Ba, 1959.
[3] B.4). KAI'AH, OCHOBbI Teopm nosepxHocTeii, T.14, OFI43, Mocima-J1exm4-

urpaa, 1947.
[4] . H.B. E+I4MOB, Kalecmeeuubte eonpocbt meopuu deOop.magui noeepxuocmeii,

YMH 3,2(1948), 47-158.

FACULTY OF CIVIL ENGINEERING, BEOGRADSKA 14, 18000 Ni, YUGOSLAVIA

(2.2e)

(2.2f)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

COMPUTER SCIENCE

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 207-231

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

FRACTALS AND THEIR APPLICATIONS

IN COMPUTER GRAPHICS

Ljubi§a M. Kocie

ABSTRACT. The paper presents elements of fractal geometry and its application in com-
puter graphics and geometric modeling. A connection with chaos dynamics, mostly from
historical angle of view, is stressed. Two fundamental algorithms for computing fractal
attractors are described. Barnsley affine iterated function systems (IFS) are described as
means of constructing deterministic fractals. It is pointed out how to introduce param-
eters in IFS, via Bernstein polynomials, to produce different natural forms. Variety of
applications: in animation, data compressing, rendering objects and modeling phenomena
in physics and biology are described.

1. Introduction: Physics and History

At the end of 19. century, physicists considered Physics as a mainly fin-
ished discipline, with everything of any importance in the field being already
explained and known. Everything, except a couple of unimportant loose
ends. Making efforts to remove them, Schri5dinger discovered quantum
mechanics, while Einstein invented the relativity theory. The new physics
required new mathematical techniques, and before all, new geometry. So,
the non-euclidean and projective geometries became topics of interest. Just
when it seemed that relativity theory would finally finish the job of com-
pleting the great book of nature being opened by the Newton physics, the
strange properties of simple oscillators have been noticed. Actually, under
certain circumstances, they began to exhibit irregular, chaotic behaviour.
Thus, in the last quarter of 20-th century, scientists have faced the new
revolution called chaos.

1991 Mathematics Subject Classification. 58F13.
Key words and phrases. Fractal sets, chaos, computer graphics.
This research was partly supported by Science Fund of Serbia, grant number 0401A,

through Matematiai institut

207

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

208 	 Ljubi§a M. Koci6

The word 'chaos' (xaoc) stems from the old Greek haino which means
'open widely'. In Aristotel's works, 'chaos' is used to denote an 'empty
space'. Later, in the history, this word becomes the synonym for 'mess' and
'lack of order'.

Chaos cannot be successfully described neither by Euclid geometry nor
by non-euclidean or projective geometries. Except in some crystal forms,
nature rarely exhibits regularity and geometric order. Natural forms and
structures are irregular and chaotic: clouds, moss, trees, coastlines, feathers,
rocks, surface of the sea, network of neurons etc. These are forms that fractal
geometry deals with.

Phenomenology of chaos appears in, at least three planes. The plane of
morphology is the most accessible for studying due to huge amount the em-
pirical, factual material which is collected during the time. The plane of
logic is much more complicated, so that only the partial breakthrough has
been done (for ex. in information theory). The causality plane is still in do-
main of hypothesis and till now, it is beyond the experimental confirmation.
Typical example is the hypothetical 'quantum chaos'.

Much earlier before the physicists started coping with chaos, there were
hints of it in mathematical thinking.

So, at the beginning of 19. century Laplace introduced the new discipline
to describe unruliness and disorder — probability theory. Contrary to deter-
ministic theories, probability theory states that future depends randomly on
the past.

Then, Weierstrass defined the function

00
sin(Aix)
	 x E [0,2r] f(x) =

i=1

where A > 1 and 0 < E < 1 are real parameters. Being continuous but
nowhere differentiable [12 , p. 53], this function was unlike the things that
mathematicians had ever seen before. Although bounded, its graph has
infinite length (Figure 1-a).

Actually, Weierstrass function belongs to the 'fractal' class Ce. Topolog-

ical dimension of this curve is DimT = 1, while its Hausdorff (also called

Hausdorff— Besicovitch or geometric, see Section 4.) dimension is apparently

Dim H = 2 — r, but this has not been proved rigorously [15].
The most famous fractal set is probably the Cantor set which is equipo-

tent to the interval [0,1] but of zero measure. Its Hausdorff dimension is
DimH = In 2/1113 = 0.6309... and topological dimension Dim T = 0 (Fig.
1-h). So, the Cantor set can not be reduced to a set of isolated points in
which case its H-dimension should be DimH = 0.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 209

0 	1/3 	2/3 	1

it

a) 	 h)

Figure 1. a) The Weierstrass function for A = 1.9, E = 0.3; I))
Generating of the Cantor set

b)

Figure 2. a) Peano curve; b) von Koch curve

In 1890. Peano [24] published a construction of a curve that fills in the
unit square without self-intersections. Nano curve has Hausdorif dimen-
sion DimH = 2, while DimT = 1 (Figure 2-a). A year later, Hilbert [16]
announced its own construction of such, so called space filling curve.

The next important construction is the von Koch curve from 1904 ([19]),
known from calculus textbooks as an example of a simple continuous curve
without tangents. Its geometrical dimension is DimH =ln 4/ In 3=1.2619 ...,
(DimT = 1), see Figure 2-b.

These 'early birds' were named 'monsters' and 'pathological cases' by
other mathematicians, and they refused to deal with them at all. In spite
of lacking the tools (like modern computers), first systematic study of chaos

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

210 	 Ljubi§a. 	M. Kock

and irregular structures starts with works of Kowalewska and continues with
works of Lyapunov.

Making efforts to describe the chaotic phenomena as accurate as it is
possible, Poincare introduces topology and considers the physical chaos on
model of orbits of mapping f :X —) X:

	

x, f(s) f 2 (x) 	x E X ,

and intersection of dynamic trajectory in 7n-dimensional phase space and
transversal (in — 1)-dimensional hyperplane, now known as the Poincare
section.

The ideas of Poincare have been further developed by Gaston Julia and
Pierre Fatou during 20-ies of this century. Their work drew attention of
physicists due to its applicability to the simple dynamical systems called
oscillators. A typical model is a pendulum, but there were other interesting
oscillators.

So, B. van der Pol in Holland studied the oscillating model of an electronic
tube, while the mathematician V. Arnold made detailed analysis of the
mathematical model of the human heart, which is an oscillator by himself.

In 1950—es, ecologists have studied so called logistic equation which de-
scribes variations in population of different zoological forms

(1)
	

5,t+1 = T X,i (1 — x„) 	nE/V,

where r E It is a parameter. The Sequence {x„} represents the orbit of a
simple quadratic map

f: xi—)rx(1 — x), r ER,

which exhibits unexpected dynamical properties. For r < 3 the correspond-
ing dynamical system (f, R) is stable, ie. f is a contractive mapping with
a unique fixed point x = lizii„_,+0,,x„. For 3 < r < 3.5699456..., the
system has periodical behaviour with successively doubting of the period,
whilst for the bigger values of r it goes to chaos. The graph of x as function
of r is known as bifurcation diagram The sequence of branching points (bi-
furcations) {r n } has an accumulating point 3.5699456 ..., which marks the
limit of stability. The ratio Ar„/Ar„ +1 = 4.6692016091 ... is invariant for
all mappings with 'parabolic' maximum and is referred as the Figenbaum
number.

This type of mapping describes 'explosions' in biological population like
the famous locust flood every seven years, unexpected starting and spreading

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 211

0.5

X

1.0

r
r, r2 r3 r4.••

Figure 3. The bifurcation diagram for logistic equation.

a) b)

Figure 4. a) Lorentz attractor; b) Henon attractor

of diseases, but it also describes fluctuation of the money value on the market,
where chaos means the economical breakdown.

In 1962., Edward Lorenz made a mathematical model of meteorological
variations of weather, being described by the set of differential equations

(2) 	s'(t) = a(y — x) , y i (t) = bx — y — xz , z'(t) = xy — cz ,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

212 	 Ljubi§a, M. KociC

in time domain. It comes out that the model gives good results, but it is
very sensitive on initial conditions for some parameter values. It implies its
sensitivity
on the error which is accumulated during the numerical integration process.
The exact solution of (2) is a trajectory in R 3 which has very complicated
form. (For its XY-projection, see Figure 4-a). If converging, the numerical
solution approaches (in the Hausdorff metric) this trajectory, the reason led
Lorenz in name it strange attractor. In 1963., Michelle H6non, a French
astronomer, used Poincare's ideas and include chaos in mechanical model of
stars motion. This helped him to overcome a many years standstill in the
problem, caused by the classical newtonian approach. The Helton model can
be reduced to the system of difference equations

x„+ -1 = 1 — ax 2n 	Yn+1 = Oxn

whose attractor, for a = 1.4 and = 0.3 has a remarkable self—similar '3-2-1
pattern' structure (Figure 4-b).

2. Deterministic fractals

Two important observations lead to the fractal geometry.
1° The Nature is permeated with something that scientists call determin-

istic chaos. This•is the common name of the behaviour of the huge number
of fairly simple physical systems that are governed by deterministic law, but,
in spite of this, they behave unpredictably.

2° There is a hierarchical structure in the Universe. Details resembles to
the whole: it can be easily noticed in forms of crystals and plants, in the
relief of Earth surface, in the structure of stellar clusters and in variation of
market prices.

During sixties, the physics of chaos becomes more and more attractive
field. The remarkable oscillatory chemical reaction of Belousov-Zabotinski is
explained by using chaos. It was discovered that there are three 'scenarios'
for a system to pass to chaos. These types can be described by purely
geometrical language, depending on the type of bifurcation of dynamical
system.

In seventies, Benoit Mandelbrot from IBM-a, made, by the help of com-
puter, first fractal images. These are graphical 'portraits' of dynamics of
simple mappings with astonishing degree of disorder, but this disorder was
systematic and unusually complex. The most popular among these pictures
is probably the Mandelbrot set (Figure 5). It represents the dynamical chart
of mapping z z 2 +C, z E C, for fixed value of complex constant C. Orbits
are given by the sequence {z, 1 }, which is the solution of difference equation

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 213

Figure 5. The Mandelbrot set.

z„+1 = 	C , z0 = 0. For a given value C, the behaviour of sequence
{z„} has been examined. If it diverges, the point C in the complex plane
are 'painted' in, for ex., black color. If converges, it will be painted in some
lighter color, as lighter as faster the convergence is (in Fig. 5, this is white).
The Mandelbrot set has an important role in fractal geometry, as for ex.,
circle in Euclid's geometry, and it is studied out exhaustively [5].

Mandelbrot coined the word "fractal" from lat. fractus which means a
stone, broken and having irregular form. In collaboration with other scien-
tists, he studies a large variety of phenomena being connected with fractals:
stochastic form of a coastline and its relationship with Brownian motion,
turbulence in fluids, statistical distribution of telephone calls, Nile flood-
ings, branching neurons in the neural tissue etc. By the way, Mandelbrot
noticed that fractal images possess aesthetical values.

In 1982. the fundamental Mandelbrot book [22] appeared. The new disci-
pline was born. It includes fractal geometry as its most important part. After
the book has been issued, the interest on fractal exploded. Many definitions
of fractal sets and their dimensions appeared ([5],[7],[8], [11],[13],[15],[30]).

In this section, a large class of fractal sets will be introduced. This very
class has application in computer graphics in modeling natural phenomena.

The notation (X, d) throughout the text will denote the complete metric
space. Also, I-1(X) will denote the space whose points are compact subsets
of X.

Definition 1. A map F : X X of a metric space (X, (I) is a Lipschitz map
if there is a number a such that d(F(x), F(y)) < a- d(a: , y), for all x, y E X.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

214 	 Ljubga M. KocV

The least such number, s(F) = min{a} is the Lipschitz constant of F. If
s(F) < 1 then F is called a contraction.

Definition 2. Let io' be a usual composition of mappings. Then, r"
denotes n-th iteration of a mapping F, i.e.

r" = F(r(7i -1)) , F1 = F .

Theorem 1 (Contraction principle). If F is a contraction X --+ X, then
the sequence {n H Fon(x)}1200 converges to a fixed point a E X of F. The
fixed point is unique. Moreover, if s is the Lipschitz constant of F, then

d(r"(x), a) < 1 .5n , d(F(x), x) .

Proof. For the proof, see any textbook in functional analysis. ❑

Definition 3. For any x E X and B E 7-1(X), the distance from the point
x to the set B is

d(x , B) = inin{d(x ,b)} .
bEB

Definition 4. For any A, B E 1-1(X), the distance from A to B is

p(A, B) = mc{d(x , B)} .

It is easy to see that p is not symmetric, i.e. p(A, B) # p(B , A), so p does
not provide a metric on 7-1(X).

Definition 5. For any A, B E 1-1(X), the Hausdorff distance between A and
B (induced by the metric d) is

11(A, B) = max{p(A, B), p(B , Ail .

Theorem 2. The Hausdoiff distance h is a metric on the space 1-1(X). The
space (7-1(X),h) is a complete metric space.

Proof. See [1]. ❑

Definition 6. A (hyperbolic) function system (IFS) is a set S = {X; fi}l1 1 ,
where fi is a contraction of (X, d) into itself. If si is a Lipschitz constant for
fZ , then s = maxi {si} is the Lipschitz contractive constant for the IFS.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 215

Theorem 3 (Hutchinson). Let 5', be an IFS, with contractive constant
s.For A E 7-1(X), define F(A) = UYl i fi(A). Then,

h{F(A), F(B)} < sh(A, B) , A, B E 71(X) ,

Proof. See [17]. ❑

Definition 7. A set A E 1-1(X) is an attractor of IFS {X, f = 1,...m}
if F(A) = A. Sometimes attractors are called deterministic fractals.

Theorem 4 (Hutchinson). There is a unique closed bounded attractor A
for S. Moreover, if B is any set from 1-t(X), then

A = lim F°" B .

Proof. See [17]. ❑

3. Algorithms, affine IFS and Bernstein polynomials

The fractal geometry is a discipline of computer ages. Without computers,
exploration of fractal sets would not be possible. For the mutual benefit,
fractals contribute in picture synthesis as an mighty tool. There are many
algorithms for computing and visualizing fractals, but all are variations of
two basic ones:

a) Flutchinson's algorithm [10]. This algorithm is based on Theorem 4. It
starts from an initial set B E R2 and transforms by the IFS recursively until
graphical details become smaller than a pixel. This algorithm is also known
as deterministic algorithm.

b) Algorithm of Barnsley and Deinko (random algorithm [1],[2],[3]). It
uses a positive sequence {p i }ili I of probabilities so that Epi = 1, where pi
is probability of application of contraction A in given iteration. Choose a
point x0 E X and then, for n = 1,2, ... , m, calculate

n =fi(xn-1) >

where index i is chosen randomly from {1,2, 	, m} with probability pi .
This procedure forms the sequence {x„, it = 0, 	C X which approx-
imates the attractor A of IFS. There are no precise rules for choosing the
probabilities pi, which allows flexibility in choosing the sequence {pi} which
may be useful in modeling, as it will be shown in Section 4.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

216 	 Ljnbi§a. M. Kock

Figure 6. Four iterations of Hutchinson algorithm: Sierpinski gas-

ket

An important class of deterministic fractals is defined by the IFS 1R 2 ;

(Euclidean metric), when O i are affine contractions, i.e.

(3) 	 Oi(x)= [ai 	bi 	[ei
ci di

where x = [x y] T E R2 , and ai, bi, ci, di, e i , fi are real constants, chosen so

that cki is a contraction. In this case, the probabilities p i in Barnsley-Demko's

algorithm can be calculated as

Di
— ra

j=1 Di

where D i = 	— bidil is the determinant of the matrix in (3).
It is hardly understandable how many different forms can be produced by

an affine IFS. Let us see some examples.
1. Sierpinski gasket. It is a 'triangular extension' of Cantor set defined

by the IFS {R2 ; 01,02, 03), where a i = di = 0.5, bi = 0, i = 1, 2,3, c 1 =

e3 = 0.5, c2 = c3 = ef = fu = fs = 0, c2 = 0.25, 12 = .4/4. Applying

Hutchinson algorithm on the initial set—the unit square (leftmost in Figure
6), an approximation of the attractor is obtained through seven iterations
(rightmost in Fig. 6). Figure 6 also shows third and fifth iteration. The same
result will be obtained if any bounded initial set is taken. It is interesting that
the Pascal triangle of binomial coefficients has fractal structure of Sierpinski

triangle [31].
2. Takagi function. This is yet another fractal function that fits to the

line of Weierstrass and von Koch construction. It was published in 1903 by
Teiji Takagi [28]. It can be described by the affine IFS (R2 ; 01 , c2) so that

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

a

0.0 0.0 0 0.16 0.0 0.0 0.01
0.85 0.04 -0.04 0.85 0.0 1.6 0.85
0.2 -0.26 0.23 0.22 0.0 1.6 0.07

-0.15 0.28 0.26 0.24 0.0 0.44 0.07

Fractals and their Applications in Computer Graphics 	 217

a)

c)

Figure 7. a) Takagi function; b) Sierpinski carpet; c) Barnsley
fern; d) The dragon-like attractor

01 and 02 are given by a l = a2 = 	= -c2 = (11 = d2 = e2 = 12 = 0.5,
b l = 62 = c1 = A = 0 with probabilities p1 = P 2 = 0.5. The attractor,
obtained by Barnsley-Demko algorithm is shown in Figure 7-a.

3. .Sierpinski carpet. Yet another two-dimensional variation on Cantor
theme. It is defined in R 2 by eight affine transformations with coefficients:
a1 = a3 = a6 = a8 = -62 =64 = b5 = -1)7 = c2 = -c4 = -e5 = C7 = =
d3 = 	= d8 = e2 = e4 = C5 = 12 = f5 = f7 = 1/3, e6 = e8 = f3 = h =
2/3, e7 = h = 1. Other entries are zero. The attractor is rendered by the
random algorithm (Fig. 7-b).

4. Barnsley fern. An interesting fern-like attractor (Fig. 7-c) is found by
M. Barnsley [1]. Four affine contractions are given by the coefficients

The attractor, produced by random algorithm is shown in Figure 7-c.
5. Dragon. The dragon-like set (Fig. 7-d) is defined by IFS data

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

a

0.824074 0.281482 —0.212346 0.864198 —1.882290 —0.110607 0.787473

0.088272 0.520988 —0.463889 —0.377778 0.785360 8.095795 0.212527

21 	 Ljubi§a M. Kocie

Figure 8. Wind in fractal plants: the parametric IFS

It is of special importance to introduce one or several parameters into
IFS, so that the form of attractor set depends on them. Parameters should
be incorporated in such a way that affine mappings in IFS maintain their
contractive properties for a whole range of parameter changing. Actually,
the following theorem takes place.

Theorem 4 (Barnsley). Let (X, d) be a metric space, and {X; h,... , f

be a hyperbolic IFS of contractility s. Let f n depend continuously on a
parameter p E P, where P is a compact metric space. Then, the attractor
A(p) E 1-1(X) depends continuously on p E P, with respect to the Hausdorff

metric h(d).

Proof. See [1]. ❑

This theorem provides a way of controlling the shape of IFS in continuous
way. It can be used very effectively in modeling motion of fractal objects. For
example, the fern swung by the wind may be obtained by simple changing
a parameter in IFS-fern data so to get a plant without wind (Figure 8-a),
under breeze (Fig. 8-b) and stronger wind (Fig. 8-c). Such effects are
especially important in animation.

An elegant way to introduce parameters in iterated function systems is to
put one-variable real functions as IFS coefficients in (3). Author made some
experiments using cubic Bernstein polynomials

(4) 	 Bi(t) = Ci I t i (1 — t) 3—i , t E [0,1] ,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

a

bo(ti))

bo(t2)

—hi (t2)

hi(i2)

b2(t1)

—b2(12)

bo(ti)

bo(t2)

0.0

0.6

0.35

0.1

IFS2

a

bo(ti)

bo(t2)

—b1 (t2) b2(t2)

— b2(t1)

bo (t1)

bo(t2)

0.0

0.6

0.45

0.1

IFS3

a b

bo(ti)

bo(t2)

— b2(1 2)

(it)

b2(t2)

— bl(ti)

bo(ti)

bo(t2)

0.5

2.5

0.0

1.5

IFS4

a b

bo(ti)

—bo(t2) b1(t2)

b2(4)

—b2(t2)

b0(11)

bo(t2)

0.0

0.4

0.55

0.1

Fractals and their Applications in Computer Graphics 	 219

the choice approved by the known property of the Bernstein polynomials to
be bounded over the unit interval, i.e. 0 < Bi(t) < 1. Further, numerical
computation of Bernstein polynomials is fast enough through de Casteljau
algorithm [20]. It is considered an IFS with only two mappings {R2 ; 01 , 02},
with two parameters, t 1 and t2 . In the tables below the coefficients of four
different IFS's are given.

IFS1

As it can he seen from Figure 9, in spite of using only two contractions,
exciting results are obtained. For the attractor 'feather' (a) it was used IFS1,
with parameters t i = 0.1, t 2 = 0.22. The 'cloud formation'N uses IFS2 with
/ 1 = 0.18,t2 = 0.22; Next three attractors are produced using IFS3: star'
(c) with t 1 = 0.042,1 2 = 0.75, 'Nautilus spiral' (d) with /1 = 0.05, t 2 = 0.45
and 'sunflower seed' (e) with t 1 = 0.033,1 2 = 0.52. Finally, a 'fir twig' (f) is
formed by IFS4 with ti = 0.09,1 2 = 0.18.

Continuous variation of parameters t l and 12 will reflect in continuous
changing of the forms of attractors. In this way, it is possible to animate the
sequence when the 'Nautilus spiral' transforms into 'sunflower' by running
ti from 0.05 to 0.033, and t2, from 0.45 to 0.52.

4. Modeling of natural phenomena

Describing a way of reproducing the wind, and a variety of natural forms
by using parametric IFS, opens the question of using fractal sets in modeling

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

b) 9

d)

22() 	 Ljubia. M. KociC

eGc.e. e.64,

toc
,C,00

 "k•sof

<.,.)

FIGURE 9. SIX ATTRACTORS GENERATED BY TWO-PARAMETER
IFS CONTAINING BERNSTEIN POLYNOMIALS

wider class of forms and processes in the Universe. These forms are not easy
to measure with classical Euclidean tools. So, a more sophisticated technique
is developed. One of the important numbers associated with fractals is their
Hausdorff dimension. The meaning of dimension is the 'density' with which
the fractal set occupies the metric space in which it lies. It can be used
for comparing fractals. It is an important parameter for modeling natural

objects.

Definition 8. Let K E 1-1(X) be a nonempty set and (X, d) be a metric

space. The diameter of K is

1K1 = sup {d(x,y)} .
x,yE K

Definition 9. Let 1C = {Ki }t_Z be a collection of sets in 7-1(X) such that

0 < 1Ki I < E, for each i. If A C U i Ki , then IC is E-cover of A.

Definition 10. Let m be a positive integer and let A be a bounded subset

of the metric space (Rm, d), where d is Euclidean metric. The function

p µ(A, p) defined as

+00
µ(A, p) = sup{inf{E 1Ki r}} ,

c>0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 221

where infimum is taken over all E/covers of A, is called Hausdorff p-dimen-
sional measure of A.

Definition 11. Let A be a bounded subset of the metric space (R"`, d).
Then the real number Dim1j(A) defined as

Dim1j (A) = inf {p},
i►(A,p)=0

is Hausdoiff dimension of A. It is also called Hausdorff-Bcsicovitch or geo-
metrical dimension of A.

Theorem 5. Let A be a hounded subset of the space (R.', d). DiinH(A) is
a unique real number which satisfies 0 < Dim H(A) < in.

Proof. See [1]. ❑

Hausdorff dimension of a. typical fractal set may not be an integer number.
This is 0.6309... for Cantor set, 1.2619... for von Koch curve, 1.5849... for
Sierpinski gasket, 1.8927... for Sierpinski carpet or 2 for Peano curve. Fractal
dimension may characterize type of relief and roughness of terrain or physical
process. Hausdorff dimension of the coastline of Britain is 1.2 [18], while it
is ti 1.5 for jet flame laboratory data [1]. It is possible to determine Hausdorff
dimension of the chain of human DNA from genetic code [4], or for fractured
metal surfaces [9]. Maybe painters or sculptors can be characterized by
Hausdorff dimension of their masterpieces?

Practical determination of fractal dimension is not an easy task. It may
depend on scaling. Mandelbrot gives an interesting example in [22] trying
to answer to the question: 'What is the dimension of a ball of yarn?' From
a great distance it is effectively a point, and appears zero dimensional; on
approach it becomes a three-dimensional solid; moving closer discern the
one-dimensional threads, which then become three dimensional again; the
threads are again composed of fibers, etc. These different scaling regimes
would produce rather extreme oscillations in a numerical estimate of dimen-
sion. Typically, when we are computing dimension we are interested in a
given scaling range, but it may be very difficult to discern.

But there is a class of affine IFS whose attractors' dimension can be
calculated without much trouble.

Definition 12. If the hyperbolic IFS {R. 7"; 	i = 1,... , N} has the follow-
ing properties:

a) , i = 	, N are similitudes;
b) A(Oi(B) fl q5 (B)) = 0, for i # j, and any B C

then attractor A is self-similar.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

222 	 Ljubiga M. 1KociC

Figure 10. A self—similar set. Expanded area contains set that is
identical to the whole set

Theorem 6. Let A be self—similar attractor, generated by a hyperbolic IFS
with s i being a contractility factor of Then D = DimH(A) is the unique
solution of

N

E Ise 1, D E [0,7n] .
i=1

Proof. See [1]. ❑

An example of self—similar fractal set is given in Figure 10. It means that
a small portion of the set is identical to the whole set.

The property of self—similarity is important for modeling natural objects.
Namely, natural scenes are organized in hierarchical structures. For example
a forest is made of trees; a tree is a collection of boughs and limbs along a
trunk; on each branch there are clusters of leaves; a leaf is filled with veins
and covered with hairs. Similar hierarchy one can find in the structure of
rocks, mountains, live forms... In every case, the object is built up from
numerous near repetitions of some smaller structure. Although the natural
entities have more complex kind of self—similarity, so called statistical self—

similarity, the iterated function systems with similitudes
can he used for modeling approximations of such entities. Also, one can
use some fractal set representing dynamics of some simple mapping, like the
fractal set known as Barnsley-3m, being displayed in the left part of Figure
11. If specify the domain of mapping to he a rectangle denoted by 'A',
the dynamical mapping will produce a magnified picture that resembles the
'wave' (right part of Fig. 11, above). Further multiplication reveals self-

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 223

Figure 11. Fractal 'Barnsley-3m' and repeated magnification of
its detail

similar structure of this fractal (Fig. 11, below). The fractal set 'Barnsley-
3m' obtained by Barnsley [1] by applying the same principle as in the case
of Mandelbrot set to more general functions of two complex variables. This
set has connection with polarized-light microphotograph of some minerals.
It reveals patterns that are less organic and more crystalline than those of
the Mandelbrot and Julia sets. The dynamical system for 'Barnsley-3n1' is
given by

Re 2 z„— I nt 2 z„ — 1+ i(2Rez„hitz„) , 	 Rez n > 0 , Zn+1 =
Re 2 z„ — Im 2 z„ — 1 + ARez„ i(2Rez„Iinz„-F ARe z„) , Rez„ < 0 ,

where A is a real parameter.

Besides self-similarity, the simplicity of IFS is the next attractive property
of modeling natural scenes by fractals. It results in a tremendous compres-
sion of the data. Instead of keeping the whole picture in the computer's
memory one can save only IFS code which gives compression ratio up to one
hundred! To illustrate this, let us compare byte—length of an IFS file with
that of the pcx format of the corresponding attractor picture: Barnsley fern
123 : 11732; von Koch curve 270 : 14368; Peano curve 586 : 25884 etc. For
the bmp format the compression ratio is even larger.

Look at the fractal 'Barnsley-3m' from Figure 11. Computer—aided mag-
nification of some part of the fractal set can be performed in two ways:

1. By sonic graphical software; The framed detail B is magnified using
standard graphical package (for. ex. Corel-Draw). The result is shown in

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2'2 1 	 Ljubi§a M. Kock

B'
	

B"

B
	

B1

Figure 12. Magnification with or without loosing of details.

Figure 12, frame B'. Repeated magnification will cause further loosing of
graphical information (frame B").

2. By fractal software; If the same rule is used in the window B of

Barnsley3m the picture framed by B in Figure 12 is produced. Repeated

magnification of the frame B 1 is shown as the rightmost below frame. Fractal
images can be magnified endlessly, without loosing of details.

So, fractal attractors are convenient for modeling different natural forms.
Is it important to know how one can define an IFS to produce exactly the
image that he wants? The answer is in the collage theorem:

Theorem 7 (Barnsley). Let L be a nonempty compact subset of X, and

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 225

Figure 13. Fractals as natural forms: a leaf, a coral branch, rocks
formation, and a tree crown

E > 0 be given. Choose an IFS {X;to,... 'ON} with contractivity factor
0 < s < 1, so that h(L, F(L)) < E , where F(L) = UnOi(L), and h(-,-)
is Hausdorff metric. Then, h(L, A) < where A is the attractor of the
IFS.

Proof. See [1], [2] or [3]. ❑

The value of this theorem is in its practical side. It gives the procedure
of constructing IFS, once the fractal attractor is given. Take, for example
the leaf form in Figure 13. This is a subset in (R 2 , d). Cover this figure
by four smaller copies of this subset, as in making collage. Pieces do not fit
quite perfect — some holes and overlappings will occur. These four copies
are obtained by performing four affine contractions in R 2 : 01 ,02 ,03 and 04.
This IFS is being used in generating the 'leaf' in Figure 13 by the random
algorithm. The 'holes' in the leaf structure appear due to the holes in the
collage. But, it is clear that the leaf form is obtained.

In the similar way the 'coral branch', ' formation of rocks' or 'tree crown'
are obtained (Fig. 13).

Now, let say something about probabilities pi that appear in Barnsley-
Demko's random algorithm. Take the IFS IR 2 ; 01 , 0.2 , 03 , 441 described
above. The leaf image in Figure 13 is produced by the random algorithm

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

2 'c 	 Ljubi§a M. Kock

a)
	

b)
	

d)

Figure 14. Leaves with different distribution of measure

Figure 15. Waves from affine IFS

with uniformly distributed probabilities (0.25,0.25,0.25,0.25). If this vec-
tor changes into (0.36,0.16,0.34,0.34) the leaf a) in Figure 14 is obtained.
Slight variation: (0.46,0.16,0.34,0.04) brings in an effect as though the leaf
was lighted from the left (Fig. 14-b). The choice (0.16, 0.16, 0.34, 0.34) will
result into more rounded leaf (Fig. 14-c), while (0.16, 0.56, 0.04, 0.04) gives
a fir—tree (Fig. 14-d).

Phenomena in water, wrinkled surface, turbulences and streams can be
nicely modeled by fractal sets. The magnifying details of Barnsley3m fractal

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

1.

Fractals and their Applications in Computer Graphics 	 227

Figure 16. Modeling process of cell division

Figure 17. Crystal growth and a plasmatic cloud

from Figure 11 are good background for modeling waves. But they can be
made using a simple affine IFS obtained by varying Takagi function (Fig
7-a). This 'wave' together with a magnification is shown in Figure 15.

The fractal, known from dynamical systems as Mandellambda, can be of
help in modeling a biological process of cell division, Figure 16 (Stages are
marked by numbers).

An important type of fractals are obtained by the physical processes
known as diffusion—limited aggregation (DLA) [23]. This process is mod-
eled by the use of random generator. Fractal forms obtained resembles tree
root, and stand for models of growth of crystal structures (Figure 17).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

228 	 LjubiAa M. Kock

If some fractal surface is intersected with a plane, a fractal level—line is
obtained. These level—lines can be used to model clouds of different parti-
cles, which includes plasmatic cloud or intergalactic dust (see the rightmost
illustration in Figure 17).

A large class of self—similar fractals are obtained by varying Peano and
von Koch curves. The Hilbert curve , already mentioned in Section 1, has
important application for digital halftoning. It has geometric dimension
DintH = 2, the same as Peano curve, which means that it fills the square
in the plane. An approximation of Hilbert curve is shown in Figure 18-a.
Actually, all space filling curves are mappings c :I = [0,1] —> R 2 . The graph

of c covers the square 1 2 , so that it 'visits' all points of the square in ordered
way if parameter t runs from 0 to 1. If c„ : I —> 1 2 is an approximation

of the space filling curve c. Subdivision of the interval I into n subintervals

, In will result in dividing square 1 2 into n subregions R 1 , , Rn . The

size of each subregion Ri varies proportionally with the length of the corre-
sponding subinterval L. The curve c„ visits all subregions R i , actually each

point of it. The restriction c i : 1i —4 Ri is itself a space filling curve due to
the self—similar property. Such restrictions will be used for selecting clusters
of pixels (so called dithering) which results in different balftoning effects.
This method of dithering using space filling fractal curves has an advantage
over standard scan—image methods. Actually, it minimizes the grid effect,
which results in better shadow textures [29]. Many variations of space filling
curves include curves of. Sierpinski [13], Lebesgue and Schoenberg [27] and
others [21]. TWo curves that fill space in different ways are shown in Figure
18-b and c.

This type of fractal curves inspired Prusinkiewitz and Lindenmayer to
introduce L-systems for modeling plants and trees [25]. The central idea
is that, in all cases, plants are defined by a small number of rules, applied
repetitively to produce complex structures. L-system is a graph—rewriting
mechanism, which operates on axial trees, and operates in parallel. The
result is a fractal on graph alias graftal. Authors of [26] presented a model
of tree synthesis which integrates botanical knowledge of the architecture of
the trees.

5. Conclusion

This paper offers a short information on fractal geometry and its appli-
cation in computer graphics and geometric modeling. This geometrz was
born as a child of computer era, trying to explain some unsolved problems
in mathematics, physics and related sciences. A great insight was given by
the books of Mandelbrot [22] and Barnsley [1]. Fractals are sets having, in
general, very complicated structure. The shortest definition of the class of

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

a) b)

" z5 qrr5-6563 r_da.52.4.02.AULVp.i.en.WALMCl2
FiL 	- LI

Fractals and their Applications in Computer Graphics 	 229

Figure 18. a) The Hilbert curve; b) and c) Two variations on
Peano theme

so called deterministic fractals is that this is a subset of a compact metric
space being invariant under the collection of contractive mappings. A simple
but important example of such contractions are affine functions that map
a plane into itself. This leads to the most important feature of determinis-
tic fractals: self—similarity. Using this property, one can use fractal sets to
model many natural forms having hierarchical self—similar structure: plants,
rocks, water dynamics, clouds, foam, neural cells etc.

Text is illustrated with examples of fractal sets, together with some appli-
cations. All pictures, except Fig. 17, are produced by the software created
by the author. Figure 17 was rendered by using the software Fractint by
Bert Tyler.

References
[1] M. F. BARNSLEY, Fractals Everywhere, Academic Press, 1988.
[2] M. F. BARNSLEY, A. J ACQUIN, F. MALASSENET, L. REUTER, A. D. SLOAN, Har-

nessing Chaos for Image. Synthesis, Comput. Graph. 22 (1988), 131-140.
[3] M. F. BARNSLEY, Lecture Notes on Iterated Function Systems, Chaos and Fractals.

The Mathematics Behind the Computer Graphics (R. Devaney and L. Keen, eds.),
Amer. Math. Soc., 1989, pp. 127-144.

[4] C. L. BERTHELSEN, J. A. GLAZIER, M. H. SKOLNICK, Global fractal dimension of
human DNA sequences treated as pseudorandom walks, Phys. Rew. A 45 (1992),
8902-8913.

[5] B. BRANNER, The Mandelbrot Set, Chaos and Fractals. The Mathematics Behind
the Computer Graphics (R. Devaney and L. Keen, eds.), Amer. Math. Soc., 1989,
pp. 75-105.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

230 	 Ljubi§a M. Kock

[6] S. D. CASEY, N. F. REING OLD, Self-Similar Fractal Sets: Theory and Procedure,
IEEE CG&A 14 (1994), 73-82.

[7] A. J. COLE, Compaction Techniques for Raster Scan Graphics using Space-filling
Curves, Computer J. 30 (1987), 87-92.

[8] R. M. CORLESS, Continued Fractions and Chaos, Amer. Math. Monthly 99 (1992),
203-215.

[9] R. H. DAUSKARDT, F. H AUBENS AK, R. 0. RITCHIE, On the Interpretation of the
Fractal Character of fracture surfaces, Acta metal 38 (1990), 14:3-159.

[10] S. DUBUC, A. ELQORTOB I, Approximation of fractal sets, J. Comput. Appl. Math.
29 (1990), 79-89.

[11] S. EUBA NK , D. FARMER, An Introduction to Chaos and Randomness, Lectures in
Complex Systems, SFI Studies in the Sciences of Complexity (E. Jean, eds.), Addison-
Wesley, 1990, pp. 75-190.

[12] B. R. GELB AUM, J. M. H. OLMSTED, Counterexamples in Analysis, Mir, Moskva,
1967. (Russian)

[13] J. G. GRIFFITHS, Table-driven algorithms for generating space—filling curves, Coput.
Aided Design 17 (1985), 37-41.

[14] J. HARRISON, Continued Fractals and the Seifert Conjecture, Bull. Amer. Math. Soc.
13 (1985), 147-153.

[15] J. HARRISON, Chaos and Fractals. The Mathematics Behind the Computer Graphics
(R. Devaney and L. Keen, eds.), Amer. Math. Soc., 1989, pp. 107-126.

[16] D. HILBERT, Uber stetige Abbildung einer Linie auf ein Flcichenstiick, Math. Annl.
38 (1891), 459-468.

[17] J. E. HUTCHINSON, Fractals and Self Similarity, Indian. J. Math 30 (1981), 713-747.

[18] J. K A PPRAFF, The Geometry of Coastlines: A Study in Fractals, Comput. Math.
Appl. 12B (1986), 655-671.

[19] H. VON KOCH, Sur une courbe continue sans tangente obtenue par une construction
goometrique elementaire, Ark. Mat. Astr. Fys. 1 (1904), 681-704.

[20] LJ. M. Kocic, Affine shape control of cubics, PU.M.A. 3 (1992), 207-229.

[21] T. LANCE, E. THOMAS, Arcs with Positive Measure and Space-Filling Curve, Amer.
Math. Monthly 98 (1991), 124-127.

[22] B. M A NDELBROT, The fractal geometry of nature, Freeman, San Francisco, 1982.
[23] P. M EAKIN, J. FEDER, T. J OSSANG, Radially biased diffusion—limited aggregation,

Physical Review A (1991), 1952-1964.
[24] G. PEANO, Sur une courbe, qui remplit toute une aire plane, Math. Annl. 36 (1980),

157-160.
[25] P. PRUSINKIEWICZ, A. LINDENMAYER, J. HANAN, Developmental Models of Herba-

ceous Plants for Computer Imagery Purposes, Computer Graph. 22 (1988), 141-150.

[26] P. DE REFFYE, C. EDELIN, J. FRANc ON, M. J AEGER, C. PUECH, Plant Models
Faithful to Botanical Structure and Development, Computer Graph. 22 (1988), 151-
158.

[27] H. S AG AN, Approximating Polygons for Lebesgue's and Schoenberg's Space Filling
Curves, Amer. Math. Monthly 93, 361-368.

[28] T. TAK AGI, A simple example of the continuous function without derivative, Proc.
Phys. Math. Soc. Japan 1 (1903), 176-177.

[29] L. V ELII0, J. M. G OMES, Digital Halftoning with Space Filling Curves, Computer
Graph. 25 (1991), 81-90.

[30] M. T. W EISS, An Early Introduction to Dynamics, Amer. Math. Monthly 98 (1991),
635-641.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Fractals and their Applications in Computer Graphics 	 231

[31] S. WOLFRAM, Geometry of Binomial Coefficients, Amer. Math. Monthly 91 (1984),
566-570.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRONIC ENGINEERING, P.O.Box
73, 18000 Ni§

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Ni) 9:2(1995), 233-242

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

LINES OF CURVATURE OF FREE FORM

SURFACES TRACING

DuAan M. Milo§evie and Ljubi§a M. KociC

ABSTRACT. An level-line tracing algorithm, recently developed by the authors is used
for Bezier surface interrogation. Namely, for Bezier triangular patches the algorithm is
modified so as to trace the lines of constant Gaussian and mean curvature. The map of
these lines can be used for better understanding the shape of these patches. The efficacy
of the method is illustrated through several examples.

1. Introduction

The aim of this paper is to obtain curvature level sets of Bernstein-Bezier
triangle fragment. Particularly, it gives level sets of Gaussian and mean
curvature. This problem is solved by using the algorithm for implicit function
graph tracing. Since the, analytic form for Gaussian and mean curvature
involve derivatives of two degree, it is necessary to have at least thread order
Bezier's fragment.

As far as the applications is concerning, it is enough to mention Com-
puter Aided Geometric Design and Data Visualization. In both topics, the
sets of curvature level sets is applied for Bezier surface interrogation. From
the curvature level sets one can easily seen the monotonicity, convexity, the
existence of saddle points, locations of extrema and gradient intensity of
curvature lines. This means having more information about surfaces them
self. For example zero Gaussian curvature line share surface on three parts:
elliptic (greater than zero) , hyperbolic (smaller) and parabolic (equal). The
points of extrema of mean curvature is very important for example in indus-
try because this point of surface is critical in mean of tension.

1991 Mathematics Subject Classification. Primary 65D17.
This work was supported in part by the Science Fund of Serbia under grant #0401F.

233

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

234 	 Daan M. Milo§evit. and LjubiAa M. Kock'

2. Gaussian end mean curvature

For parametric defined surfaces

= u , v) = 'it= I 	 E [a, I)] = T CR2 ,

where x, y, z are differentiable functions and T = [a, b] is triangle in u, v
plane, Gaussian (K) and mean curvature (G) are defined as

(1)
LN — M 2 NE —2MF LG

K — 	 H = 	
EG — F 2 	 2(EG — F 2)

where L, M ,N ,E ,F and G fit standard Gauss notation

L =L(u,v)= ii, • Eu„, M = M(u,v) = • 	 N = N(u,v)

E =E(u,v)= 	F = F(u,v)= iv • Ev , G = G(u,v)=

Bezier surfaces are defined implicitly B(x, y) = 0. To use (1) it was
necessary to express Bezier surfaces in parametric form

which makes

u E = E(u,v)= 	v 	; [
B(u,v)

(u, v) E T K2 ,

E(U, V) = it, • iv = 1 +
(2) F(U, v) = iv • iv = ZuZv

G(u,v)= Et, • iv = 1+ zt,2

The normal vector fi is

n =
Ilxu Xxvll

xu x xv 	
[1

7zzuv i

and because of that

(3) L =
zuu , N =

V1+ 	zi2, M V1+ +

zvv

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

aye B„,(f, ,t) =n(n - 1.)(P 720e Pj'0"2 2 -2 P1O-1 2),
02

Lines of curvature of free form surfaces tracing 	 235

Using (2), (3) and equalities u = x and v = y the analytic form for
Gaussian and mean curvature for Bezier surfaces on triangular domain can
be obtained.

(4)

H =

K =

zyy (1+ zx2) - 2.z y zx zy + zsx (1 + zy2)

(1+ +4)2 >

ZssZyy — zx y

(1 + 4 + q)312 	•

2

For finding m - th derivative of Bezier's surface in / - th direction, the
following formula [1] is used:

n!

nt)! (5) pzk -(067, k (/).
017n

B„(f ,t) =
(n - 	E

i+ k=in

For in = 1 one obtains from (5)

01 Bii(f,t)= n E PZV (t)b!jk (1).
i+j+ k=1

For / = (-1, 1,0) (which specifies x-axis direction) this yields

— B (f ,t) n(pw - Poo ax 	 100))

while in y-axis direction / = (-1,0,1),

	

ay B
n (f, t) = n(POjoi l).

For in = 2 (5) becomes

02

 p B f ,t) = 71(n - 1) E Pni/c 2 (t)b2ik (l).
i+ j+ k=2

By using this formula one can find

02
01x2 B „(f ,t) =n(n - 1)(P200 2 + PA-0 2 — 2 P1110 2)1

8 2

	B f ,t)= nen — 1)(4 nc02 7,n2 pn
2

2
-

n02
-Won -F 00 	

p
1 + 2 PAI 2 —4n0— Oxay 	 12).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

236 	 Dugan M. Milogevi6 and Ljubiga M. Kock

3. Curvature level-set

Algorithm for tracing graph of a function given implicitly by f(x, y) = 0
in some domain is important and attractive problem. Many authors have
given important contribution to this problem (see references in [3]). Majority
of these methods make use of two stages.

1. Fixing seed points;
2. Tracing the curve.

Fixing seed points

In this stage, the seed points (starting points) are determined for each
branch of the curve. This can be done by solving the double sequence of
equations f (xi, y) = 0, i = 0, , Nx and f(x, yi) = 0, j = 0, , Ny where

xi and yi are uniformly distributed along the interval [a, b]. The density of

"hunting mesh" is controlled by the numbers N s and Ny . It is recommended
to use a predictor-corrector method for solving of each equation above. First,
the coarse subdivision of an interval is performed to locate the root and then
an iterative method is applied (here modified Regula falsi method is used).

Tracing the curve

In this stage, starting from the seed points, the algorithm traces branches
of the curve until some of them leaves the domain T, or until the branch
closes up to form a loop. Tracing of each branch is performed by joining the
sequence of points (xi, yi), i = 0, , m, where (x o , yo) is the seed point for
the corresponding branch. The problem of finding next point on the curve
can be solved by using derivatives of f (x, y) or without that. If we choose
to use derivatives in tracing implicit graph function f(x, y) = 0, we must

calculate derivatives of (K) and (H) in (4). It mean that we must calculate
3—th derivatives of Bezier's surfaces. It is possible to do provided that we
have at least 4—th order Beziers fragment.

a) Algorithms without derivatives

- Four-point algorithm
For each point (x, y), the next point in the sequence is calculated by

evaluating four neighbour points (x, y f h) and (x f h, y) and selecting this

one which minimize I f (x , y)I. In the case when the branch of the curve is
closed loop, lying entirely in D, the terminating criteria employes closeness
to the starting point. So, each point in the sequence is tested whether or
not it is in the c 2 vicinity of the starting seed point. The accuracy may be
controlled by testing the inequality I f (x, y)l < c for each point. If it is not

satisfied, the step h is halving until it is.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Lines of curvature of free form surfaces tracing 	 237

- Eight-point algorithm

This algorithm is similar to the previous one, except that the function is
evaluated at eight points (x, y+ h), . . . , (x h, y h), and the next point is
choosing among them so that I f(x,y)I is minimal.

b) Algorithms with derivatives

- Algorithm with initial value problem solver
This stage is consist of M iterations to product the sequence {(xo, yo),
, (x m , ym)}. Connecting these points results in a polygonal line being an

approximation of the implicit curve. Each point pi = (xi , yi) is tested for
being in fl-vicinity of a singular point i.e.

(6) 	 IF;(xi,N)i <

The logical value of (6) is the main switch in this stage of the algorithm. If
it is true, i.e. if pi is close enough to the singularity, the next point p 2+1 =

yi÷ i) calculates by linear extrapolation, i.e. pi = (pi-1 + p1+1)/2.
Of course, the case when the seed point po = (xo,Yo) is also the singular
point has to be considered separately. Since the preceding point, say p_ i is
missing, it is taken x_ i = xo h, yi--1 = yo f h where h > 0 is the given
step. The signs + should be chosen arbitrarily if P o E intD. But, if po E OD
(the border of D), signs should be chosen so that p_ i E extD, which gives
pi E intD.

If (6) is false, p 1+1 is found by two-stage predictor-corrector method.
Then, one solves

	

, 	F;(xi , yi)

	

Y 	 = 0, Y(x0) = YO,
F;(xi, yi)

Fy1 (X i , yi) 	FI (Xi 7 yi) ,

F'(xi ,yi)
	 = 0, x(Yo) = Fgx„ yi)

otherwise. (Note that it can not be Fgxi , yi) = 0 and n(xi,y i) = 0 at
the same time as the consequence of the singular point being far enough).
Equations (7) or (8) are solved by Euler method:

F' (xi , yi)

	

xi+1 = xi + Sxh, Y1-1-1 = yi — Sz h 	
Fgxi,yiY

(7)

whenever

Or

(8)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

238 	 Dugan M. Milogevk and Ljubiga M. Kock

where Sx = sgn(xi — xi_ 1) when bi = IFx1 (xi,Yi)1 — 	Yi)I < 0, and

Yi+1 = yi + Sy h,
F1 (xi ,yi)

= xi — Sy h Y
11(Xil Yi)

where Sy = sgn(yi = yi_ i);

So, the point pt+i is obtained and it is corrected by the Newton-Raphson
method,

F(

	

yj+1 =yj
	Fy (xj,

 X j,Y.j) 	
Xj+1 = 	(5i < 0), xj

F(Xj,
xj+1 =X

	

3 	11(Xj, yi)' 	
= yj (6. ?_ 0),

until

IF(Xj , Yj)I < E2.

This completed the algorithm.

Algorithm with initial value problem solver is better in aspect of accuracy
and speed (see [4]), but in the case of 3-th order Bezier path it is necessary
to use some of the previous algorithms.

4. Examples

The algorithm is tested through many examples and two of them will
be presented here. The arrangement of the control points of n-th order
Bernstein-Bezier polynomial is accepted to be

Pn00 ' " • POn0

POOn

Example 1. For the triangular patch given by the control points

0 0 0
0 1 ,
0

the corresponding level-lines map is given in Figure 1.A (level-lines map
is obtain by using algorithm develop in [2]). Figures 1.B and Figure 1.0
presents the level-lines map of Gaussian and mean curvature respectively.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Lines of curvature of free form surfaces tracing 	 239

Figure 1.A

Figure 1.B

Example 2. For the control points

0
0
0
0

0
1
0

0
0

0

the level-lines map for the corresponding patch is given in Figure 2.A. As
in the previous example, the Gaussian and mean curvature are shown by
Figure 2.B. and 2.0 respectively.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

240 	 Du§an M. Milogevi6 and Ljubga M. KociE

Figure 1.0

Figure 2.A.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Lines of curvature of free form surfaces tracing 	 241

Figure 2.B.

Figure 2.C.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

242 	 Dusan M. Milogevk and Ljubi§a M. Kock

References

[1] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design., Academic

press, 1988.
[2] LJ. Kocre, D. Mum§Evie, On level sets of Bernstein -Bizier operators., Zbornik

radova Filozofskog fakulteta u Ni§u, Serija Matematika 6 (1992), 19-25.

[3] LJ. Kocie, D. Mu.,o§Evio, Numerical Characteristics of Algorithm for Implicit

Curve tracing, Facta Univ. Ser. Mathematics and Informatics 8 (1993), 97-109.

[4] D. Mmo§Evia, LJ. Kocto, Comparison of some algorithms for implicit function

graph tracing., IX Conference on applied mathematics, Budva, 30 May — 1 Jun 1994,
(D. Herceg, Lj. Cvetkovk, eds.), Institut of Mathematics, Novi Sad, 1995, pp. 65-70.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRONIC ENGINEERING, P.O.Box

73, 18000 Ni§

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 243-250

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

MODELING OF RATIONAL CURVES

BY INTERPOLATION

Nenad V. BlagojeviC and LjubiAa M. Kocie

ABSTRACT. The algorithm for modeling shapes with (n,n)-rational curves is proposed. It
is based on interpolation by rational functions using continued fraction numerical tech-
nique. The converse algorithm for transformation of rational curve into a parametric
continued fraction form is also given. The direct algorithm is illustrated through several
examples.

1. Introduction

The Bezier curve of degree it is defined by the control points B0, . • • , B n
trough

n

P„(t) = E 	t E [0,1],
i=0

where b?(t) = (7)ti(1 — t)n — i are Bernstein basis
of a third order Bezier curve is shown in Figure 1

A natural generalization of this model is the
degree n) that, besides the control points B0, ..
wo, • • .,w,,, as shape parameters

polynomials. An example
(a).

rational Bezier curve (of
B„ involves the weights

(1) E!1_
 Rn(t) 	
BiwiP(t)

= t E [0, 1].

1991 Mathematics Subject Classification. Primary 65D05; Secondary 41A20.
Key words and phrases. modeling, rational curve, interpolation, continued fraction,

inverted differences.

This work was supported in part by the Science Fund of Serbia under grant #0401A.

243

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

244 	 Nenad V. Blagojevi6 and Ljubga M. Kock

 Jf

---- 	P22 P2 P 	---
\ 	 //

a) 	h1
/

\
b)

///

0 /P3 Pomo P3(03

Figure 1. Bezier curve (a) and rational Bezier curve (b)

If some weight is relatively large comparing to others, the corresponding
control point "pulls" the curve toward it. Figure 1(b) shows the rational
curve with coo = co3 — 1, co l = 3 and w2 = 6.

The rational scheme reveals many useful properties. The most important
of them are:

- the possibility of exact modeling of conic sections;

- continuous changing of weights results in continuous adjustment of curve
form.

On the other hand, all good properties of the polynomial Bezier curves
maintains, except subdivision which can not be carried over without weights
being changed.

It is customary in free form curve modeling to use some interpolation
model as an initiator. The Bezier curve modeling is preceded by the La-
grange or spline interpolation model. For the rational Bezier curve, it is rec-
ommendable to start with rational interpolant. The most natural approach
is to represent such (n,n)-rational interpolation curve via the Bernstein basis,
for each coordinate axis separately. For example for x-axis:

(2) Rn,(x) 	Ein=no Biwib="(x) 	x E [0,1],
a.o wib7(x)

where the ordinates Bi and weights coi are to be determined so that R n (x)

interpolates the data {(xi, y i)} iv 0 , i.e.

(3) R„(xi) = yi , i = 0, ... , v,

with v chosen so that there are enough equations to determine Bi, wi in (2),

with one arbitrary weight.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

x — X0 —
Rn(X) = [co; 	

c1 	C2

X — X v—li
j

ev 	
) (5)

Modeling of rational curves by interpolation 	 245

A variant of this problem is considered by Piegl [8], but for piecewise
cubic rational curve.

By introducing (3) in (2), the following linear system is obtained

-Wx0) • • • b,n,,(xo) — Yobi(xo)
41 (x l) • • • b7,:(xi) —YM(xi)

. 	

▪ 	

.

b'c:;(x,) • • • 1) 77;,(x,,) 	„)

—Yob igx0)" Bowo - - Yobo (xo)
—Yib;;(xl) 	 1)

	

v) 	W11 	y„bg(s,,)

Unfortunately, this system has no such nice behaviour as in the case of La-
grange interpolation (Vandermonde determinant 0). Here, the singularity
can occur. Next, the interpolant may not exist in spite of regularity of the
system (see Mayers [6]).

In this paper only the case when interpolant exists is considered.
For interpolant construction, the inverted differences are used while the

interpolant has continued fraction form

(4) 	R„,(x) = co +
x — X0 x — X1 	X — X v-1

Cl 	+ 	C2 +...+ 	Cv

or more conveniently

where

(6) ci = 0(X0, ... x4), 	i = 0, 	, v,

are inverted differences given by

(7)
— X0

0(4, Xi) = 	
Y1 Yo

x i —
0(x 0 ,..., x i) = 	= 2, 3, ...

eP(xo, • • • 9 X i-2 Xi) — 0(41 • • • X 4••27 x4-1)

Now, the continued fraction R„(x) can be expressed in the form P'N. By
Q.

the using of the known transformation from monomial to Bernstein basis, the

4(xo) = Yo,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

246 	 Nenad V. Blagojevi6 and Ljubi§a M. Kock

rational form (2) can be obtained. But, this transformation is numerically
unstable (Farouki, Rajan [3]). So it is better to find the algorithm for direct
expression of the continued fraction in Bernstein form.

2. Algorithms

Here, two algorithms are proposed. One, for transformation the continued
fraction in rational Bezier form and, the second, for inverse transformation
back to the continued fraction form.

For continued fraction R n(x), given by (4), the rational function

(8)

.
, 	Pk (x) 	{ x — X0 X — X1

= 	, 	
X — X k-1

rk(x) 	
1 , k = 0, .. . , v — 1,

Q k(x) 	
Co;

C1 	C2 	C k

refers to as k-th convergent of R n(x). Obviously, rn (x) = Rn (x).

It is known that polynomials Pk and Qk satisfy three term recurrence

relation
zk = ckzk-i (x — xk-i)zk_2, k = 1, . . . , n,

where the sequence {Pk} is initialized by P_ 1 (x) = 1, Po (x) = co and {Qk }

by Q.-1(x) = 0, Q0(x) = 1, see [2], [4], [5], [7].

The Algorithm 1 is given by the following theorem:

Theorem 1. Let the set of points in the plane {(x i ,yi)}i 0 be given sash

that 0 = xo < x1 < • • < x n = 1. Let the k-th convergent of R n(x) be given

in Bezier form

Eik 0 74; (x)
k(X) = 	k

 Ei.0 Pi
k
 bi

k
(x)

by the coefficients p.if and qt 	0, ..., k) satisfy the recurrence relation

(10)
k A S 	A 	+ A2 4-2 A 3,5 1:_-12 A 4s

= 	k 0 	rl 1 0
c: I

= 0, 	k, k = 2,3,...,n,

with initial conditions for {Pk}, given by ps = co , p(1) = coci — xo, pi =
co ci — xo +1, and g?, = 1, qo = qi = el , for {Qk}. The constants Ai in (10)

are given by

(9)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Modeling of rational curves by interpolation 	 247

(k i)ck 	iek 	A 	(k — i)(k — i — Ao = 	 A 1 = 	P12 — k 	 k(k — 1)
i(k — 1)(1 — 	 i(i — 1)(1 — xk — i) A3 = 	 A4 — k(k —1) 	 k(k — 1)

In practical calculations the coefficients A i are replaced with

Ao = (k — 1)(k — i)ck, Al = (k — flic k , A2 = —(k — i)(k— i-1)x k _ 1 ,

	

A3 = —i(k — 1)(1 — 2Xk-1)1 	A4 = 	— 1)(1 — Xk—I)•

In this way, one can avoid operation of division, which results in improving
the numerical stability of the algorithm.

Finally, the control points Bi and weights wi can be determined from the
system

(11) Biwi = 	wi = 	i = 0, 	, n.

In the case wi = 0, the control point B i is an arbitrary constant.

The truncation error estimates as (see [4])

(12) R ti (x)— 7. k (x) = K[rk(x) — rk-1(x)1, x E [0, 1],

with K = — dk(x)I (1 + dk(x)), where

(x — xk)(.2k-1(x) (13) dk(x) =
Ok-ki(xo,•••, 34,x)(h(x)'

and Ok+1 are inverted differences given by (7) with y i being replaced by
R„(xi). Note that the constant K in (12) can he easily approximated using
extended de Casteljau algorithm [1], which allows to compute both Qk(x)
and chk+1•

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

248 	 Nenad V. Blagojevi6 and LjubiAa M. Koci6

Converse algorithm

Conversely, the Bezier curve (2) can he transformed in the form

(14)

 where

(15)

11 	1
R„(x) = I.ao; 01(x)'02(x)"• • On(x)j ,

13k(s) = Cn-k+14(x) Dn - k+ibl(x), k = 1, . . . , n,

are the Bernstein polynomials of first order. This procedure of the Algorithm
2 is given by the following theorem:

Theorem 2. In (14), the constants ao , Ck and Dk, k = 1, . . . , n are given

by

(16)
{

po = aoq0'

pi = aogli +

P7,1 = aoq +

+(1— t)p4L-1 , i = 1, 2, ..., n — 1,

(k-1)(k-i-1) ,k-2
k(k-1) 	' i

= k cn_k+ipk-1 D„ - k+1 74-11 +

k-2 	„,k-2

	

k(k-1) ri-2 -r- k(k-1) 1 2-2 7 	= u, • • . , k k = not —1,...,1.

Proof. After division in R„(a:) one obtains

	

) 	71_71 7 1-1 	(x)

(18) 	Rn(t) = 	17 ° 	= ao 	
Ei„
	

	

Ei=o ebl(x) 	 =o qi b1L (x)

where, according to [3 eq. 48], constants a o , 	and pi 	are connected

as in (16). Note that a o can be expressed explicitly as

E:1=o(-1)"-1 (7)P=1
ao =

Ei.o(- 0"-1 Cnql'

tit
(17)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Modeling of rational curves by interpolation 	 249

After k-th division in (18), by the rule of continued fraction, one gets

1 	ak. 0 	b lic-1 (x)
R,„(x) = ao 	

di(x) + Eik 0 (eb iAx)

= ao
13 1 (0 4_

(x)+ 	 E pi bi 	(x)

i.e.

k-1 	 k-2

(19) k, k oi (x) = f3k(x) 	pik-i k_1 (x)

Relations (17) follow from (19) by comparing coefficients after replac-
ing /3k (x) by (15), then by using identities (1 — x)br i (x) =

k-2
xbr l (x) — 	(x) and, after that, elevating degree of E rr2 bli' -2 (x) - 71

i=0
for two. ❑

3. Applications and examples

The main application of Algorithm 1 is in modeling. Using interpolating
points, the initial interpolation model is found by calculating the control
points Bi and weights wi and the one can continue the modeling process by
the standard interactive technique.

Second application is in recognition the parameters for same free form
curve. For example, if one knows that some curve is rational but does not
know its control points or weights they can be retrieved by the Algorithm 1.

The Algorithm 2 carries over the Bezier rational curve into continued
fraction form. It may be important for further processing of such curve, like
for approximation or data reduction.

The following examples illustrate our Algorithm 1

Example 1. The data (xi, yi):(2.5, 6.875)(5.0, 2.23)(20.0, 0.283)(40.0, 0.143)
results the curve in Figure 2(a), while the more complete data (xi, y i) :
(2.5, 6.875X5.0, 2.23X10.0, 0.751) (15.0, 0.416) (20.0, 0.283) (25.0, 0.219) (30.
0,0.182) (40.0,0.143) gives curve in Figure 2(b).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

250 	 Nenad V. Blagojevi6 and Ljubi.§a. M. Kocid

Example 2. Here, the data (7.99, 0.0) (8.09, 0.000027643) (8.19,0.0437488)
(8.7, O. 169183) (9.2, 0.46428) (10.0, 0.943740) (12, 0.998636) (15.0, 0.999919)
(20.0, 0.9999 94) are used. The corresponding rational curve is shown in
Figure 2(c).

Example 3. Figure 2(d) shows the result of applying Algorithm 1 on the
data (-4.0, —1.0) (-3.0,-1.0) (-2.0, —1.0) (-1.0,-1.0) (0.0,0.0) (1.0,1.0)
(2.0,1.0) (3.0,1.0) (4.0,1.0).

a)
	

b)

d)

\t,

Figure 2. Rational Bezier interpolants for various data

References

[1] N. V. BLAGoJEvio, Racionalni modeli krivih i povrii i primene u raduarskoj grafici,
Magistarska teza, Univerzitet u Ni§u, 1993..

[2] .1. D. P. DONNELY, Continued Fractions, Methods of Numerical Approximation (D.
C. Handscomb, eds.), Pergamon Press, Oxford, 1965.

[3] R. T. FAROUKI AND V. T. RAJAN, Algorithms for polynomials in Bernstein form,
Comput. Aided Geom. Design 5 (1988), 1-26.

[4] F. B. HILDERBRAND, Introduction to Numerical Analysis, McGraw Hill, New York,

1956.
[5] W. B. JONES AND W. J. THRON, Continued Fractions, Analytic Theory and Appli-

cations, Addison-Wesley Publ., London, 1980; Russian transl., Mir, Moskva, 1985.
[6] D. F. MAYERS, Interpolation by Rational Function, Methods of Numerical Approxi-

mation (D.C. Handscomb, eds.), Pergamon Press, Oxford, 1965.

[7] G. V. MILOVANOVI6, Nutnerieka Analiza. I, Naigna Knjiga, Beograd, 1991.

[8] L. PIEGL, Interactive Data Interpolation by the Rational Bezier Curves, IEEE Corn-

put. Graph. Applic. 1987, no. 9(7), 485-498.
[9] H. WERNER, Algorithm 51 - A Reliable and Numerically Stable Program for Rational

interpolation of Lagrange Data, Computing 1983, no. 5(31), 269-286.

Ei SIGRAF, TRG BRATSTVA I JEDINSTVA, 2, 18000 Ni§.
E-mail address: nenad@ban. junis .ni . ac . yu

DEPT. OF MATHEMATICS, FACULTY OF ELECTRONIC ENGINEERING, P.O.Box 73,

18000 NI§.
E-mail address: koleigauss. elf ak .ni . ac . yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 251-259

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

"EXACT" DISPLAY OF OBJECTS WITH REAL

VALUED POSITIONS AND DIMENSIONS

SiniAa N. Hristov, Miomir S.
Stankovie and Vesna I. VelielcoviC

ABSTRACT. In this paper we consider the correct method for the "exact" display of ob-
jects with arbitrary forms, having positions and dimensions expressed as arbitrary real
numbers. We also consider advantages of such an approach over the usual methods which
do not produce "exact" picture, or can "exactly" display only some forms of objects which
must have integer positions and dimensions. We also consider some difficulties that might
arise in an implementation.

1. Introduction

This paper deals with methods for generation of an image from an internal
description of a scene.

An image is a two-dimensional array of numbers, held in computer mem-
ory, from which the actual picture on the screen is produced by some suit-
able hardware. A single element of this array is known as a pixel, short for
"picture element".

A scene is some internal description of the desired picture. We leave
the particular form of the description undefined, but assume that it describes
every detail of the desired picture with the complete precision.

We emphasize the distinction between the desired picture, represented
by the scene description, and the actual one, represented by the image and
presented on the screen.

1991 Mathematics Subject Classification. 681.105; 68U10.
Key words and phrases. computer graphics, signal processing, filters, aliasing.

251

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

252 	 Sinisa Hristov, Miomir Stankovk and Vesna Velistkovi6

2. Usual "nonexact" methods

Image generation methods used in most computer graphics packages fall
into the following three categories:

1. turn-on fully all pixels that have their centers covered by the object;
2. turn-on fully all pixels that have at least half of their area covered by the

object;
3. set the intensity of a pixel in proportion with that part of its area which

is covered by the object.

It is known that each of these methods suffers from one or more of the
following imperfections:

1. object edges appear "ragged";
2. all dimensions must be expressed as integer multiples of the pixel size;
3. objects are not displayed accurately enough — there is significant distor-

tion of object's shape and position.

Some graphics package implementors have recognized the first disadvan-
tage as a serious one and have provided an option to use some form of
"anti-aliasing", so that objects appear to have more "smooth" edges. As the
"anti-aliasing" is usually performed by some semi-empirical procedure, the
resulting picture may appear "smooth", but it is nevertheless inaccurate.
And inaccurate picture, having either "ragged" or "smooth" edges, has, as
we shall see, serious practical deficiences.

Let us note that most computer graphics applications involve presentation
of some scene which is generally defined in a continuous two-dimensional
space. There are some applications, circuit board design, for example, which
place objects on a predefined grid, but when comes to the image generation,
the grid does not help much. Therefore, we shall restrict our discussion to
continuos space only.

Some basic graphics packages allow only integer values of object coordi-
nates and dimensions. They force the programmer to write explicit conver-
sions from the continuous space, be it rounding or whatever. In this way,
the programmer has full control over the actual picture, which she uses to
create some clever arrangements of objects, disguising aforementioned im-
perfections as much as he can, [1]. Besides placing enormous burden on the
programmer, such an approach suffers from a phenomenon common to all
"singular" designs: small changes in input data can completely invalidate all
she has achieved.

Numerous graphics packages allow specification of real values for coordi-
nates and dimensions. But, to specify is one thing, and to display is quite

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

"Exact" display of objects with real valued positions and dimensions 	253

another. Some "less sophisticated" graphics packages simply round the real
values to the nearest integers. The scene is effectively converted into a "sim-
ilar" one, from which the image is generated. Many have noticed that the
rounding errors introduced in this process are by no means insignificant.
Other, "more sophisticated" graphics packages attempt to draw approxima-
tions of objects without rounding coordinates first. Some clever algorithms
are employed to determine pixel values, and in specific cases acceptable re-
sults are produced, [1]. However, it is our impression that all such methods
rely too much on clever tricks, without having solid theoretical background,
and can, therefore, produce acceptable results only in limited cases.

Contrary to the popular belief, we find that an error of "a pixel or two"
is by no means negligible, at least given the resolution of today's equipment.
Here is a short list of most common consequences of such "small" errors.

1. A uniform set of objects from the continuous space appears as non-
uniform, and vice versa.

2. Parts of objects or entire objects disappear.
3. Shape of a small object appears very distorted.
4. The original proportions of object positions and dimensions are not re-

tained.
5. A small change in object's position or size can sometimes cause significant

effect on the picture, while in some other case a much bigger change
produces no effect.

Figure 1. "Ragged" appearance of an object edge.

0

•

Figure 2. A uniform set of objects appears as non-uniform.

Increasing the image resolution makes such errors somewhat less notice-
able, but still visible. The right way to fight this problem is certainly not to
increase the image resolution. This is very expensive and quite limited by

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

254 	 Singa Hristov, Miomir Stankovi6 and Vesna Velitkovk

•••■■■■■■■•

.111.11.1•,■•••■

Figure 3. A non-uniform set of objects appears as uniform.

sw.111■•■■111

Figure 4. Some parts of the object disappear.
The shape appears very distorted.

Figure 5. The relative proportions are not retained.

the state of technology, and does not even touch the heart of the problem
which is simply the improper sampling.

3. Sampling and reconstruction

The Shannon sampling theorem (see, for example [3]) says that a signal
can be properly reconstructed if its spectrum is non-zero only at frequencies
less than a half of the sampling rate.

If there is a signal component not satisfying this condition, it will be
sampled, but the samples will look exactly as if they came from a component
at some frequency less than a half of the sampling rate. In this case the
reconstructed signal will have a component not originally present. This
phenomenon is known as "aliasing".

As it was mentioned above, the scene is defined in a continuous space, and
therefore shall be regarded as a continuous signal. The "image generation"
process is, in fact, sampling. The scene may or may not satisfy the sampling
theorem condition. The picture is produced from the image by reconstruc-
tion, or interpolation, which is performed by the graphics hardware.

Now we can define the correct method for image generation.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

"Exact" display of objects with real valued positions and dimensions 	255

If the scene satisfies the sampling condition, everything is well — the afore-
mentioned procedure will produce the exact picture. But, if the scene does
not satisfy the sampling condition, the exact picture cannot be produced.
Instead, a "correct" replacement shall be provided.

The question of the "correct" replacement is more philosophical and aes-
thetical one, rather than technical. We choose the following line of thought:
if a component of the scene can be displayed exactly, then do so, and if it
cannot be displayed exectly, then suppress it, rather than displaying it as
something else that did not exist in the scene.

In other words, we do not attempt to sample the scene that does not
satisfy the sampling condition. Instead, we transform that scene into a
"similar" one satisfying the sampling condition. This is done by filtering
the scene with well chosen low-pass filter. Please note that the scene is a
continuous signal — we cannot apply a digital filter for this purpose because
we do not have a digital signal.

To further substantiate our choice of the "correct" replacement, we note
that the components that we have suppressed carry the structure too fine to
he displayed by the hardware and/or noticed by the viewer. Therefore, we
hope that the absence of those components will not do much harm neither.
Had we done otherwise, those components would "alias" to lower frequencies,
translating to much larger structure which will be displayed by the hardware
and noticed by the viewer.

4. Practical advantages of exact display

Practical advantages of exact display of objects follow from the fact that
dimensions and positions do not have to be unnaturally restricted to integer
multiples of the pixel size.

An object may have arbitrary size and can be placed anywhere on the
screen with the resolution determined by the precision of the floating point
numbers used. The uniformity of a set of objects is preserved, as is the
non-uniformity. The proportions are retained. A small change in object
position or size produces the corresponding small effect on the pucture. In
animation, objects do not jump irregularly from pixel to pixel, instead they
move in uniform steps. The object shape is not distorted, although very
small objects can be smeared or even completely invisible.

The programmer does not have to care about screen resolution and round
off errors. And she gets exactly the picture she specified, unlike some modern
graphics packages which do allow such a freedom of expression, but distort
the picture and leave no possibility for the user to control the picture quality.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

256 	 Sini§a Hristov, Miomir Stankovi6 and Vesna Velielcovi6

The quality of the computer graphics equipment is usually specified by
the resolution in the sense of the size of the array holding the image. This
is in contrast to the quality specification method used all other visual and
optical devices, where the resolution denotes the size of the smallest object
that can be reliably reproduced. The resolution of the graphics equipment
with exact display of objects can be also given as the size of the smallest
object that can be reliably reproduced, regardless of its allignment relative
to the pixel grid.

5. How to produce exact pictures systematically?

A new graphics package must be written in order to enable application
programmers to use exact pictures within their programs regularly. Al-
though at the moment we do not have the complete proposition for such a
package, we can state some basic requirements.

The scene shall be defined in a continuous space and shall be represented
in the computer as a set of objects (not to be confused with the so-called
"object oriented programming").

There shall be a predefined repertoire of parametrized primitive objects
and the user will generate required number of instances and supply actual
values for parameters, e.g. size, position, color, etc.

There shall be a systematic way of building complex objects from more
primitive ones. Complex objects constructed in this way could also be
parametrized, and any number of instances could be generated, with possi-
bility to include them in still more complex objects.

Notions of a point and a line shall be defined in the mathematical sense,
i.e. having no area. Therefore, they will not itself be objects, but will be
used to build primitive objects.

Some set of predefined primitive objects shall be provided. It is important
to select them very carefully, as it must be possible to draw them very
efficiently, and, at the same time, to effectively use them in building complex
objects and constructing typical scenes.

The package shall include basic geometric transforms, such as translation,
rotation, scaling, etc. It shall be possible to apply those transforms uniformly
to any kind of object, and to define complex transforms in terms of simpler
ones.

Finally, when the complete scene is defined, a drawing procedure will be
invoked to produce the image array by filtering the scene and sampling the
filter output. Filtering must be performed analyticaly because a numerical
approximation will involve sampling and result in aliasing. As long as all

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

"Exact" display of objects with real valued positions and dimensions 	257

objects in the scene are disjoint, filtering can be performed object by object,
with all outputs summed - the filtering is a linear process.

Note that the filter output must be known only at sampling points. There-
fore, filtering and sampling can be combined into a conceptually simple pro-
cedure of centering filter's impulse response at the sampling point and com-
puting the convolution integral. The result is recorded as the pixel value.

6. Desirable filter properties

The most critical thing in implementation of the proposed approach is
certainly the choice of the low-pass filter, which has crucial impact both on
the quality of the picture and on implementation efficiency. We'll present
now our preliminary view of desirable properties of such a filter.

Figure 6. A filter shape in the frequency domain.

Desirable filter properties in the frequency domain are:

1. Relative intensity of components with different frequencies must not be
considerably distorted, that is, the variation of the I H (w)I in the passband
shall be from 0.5% to 2%.

2. Components not satisfying the sampling theorem condition should be suf-
ficiently supressed, that is, peaks of I H(L))1 in the stopband shall be from
0.2% to 1%.

3. In order to use as wide frequency band as possible, which means as much
scene details as possible, the transition band shall be as narrow as possible,
that is

upper limit of the passband

lower limit of the stopband
from 0.3 to 0.9.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

258 	 SiniAa Hristov, Miomir Stankovi6 and Vesna VelkkoviC

Desirable filter properties in the spatial domain are:

1. To enable computationally efficient filtering, the filter's impulse response
shall be non-zero only over a finite interval, and that interval shall be
as narrow as possible. This allows us to consider only a relatively small
number of neighbouring objects while computing the value of the filtered
scene at a given point.

2. To prevent apperance of a fine structure which did not exist in the scene,
the filter's step response should be monotonic, or at least the amplutude
of oscillations should not exceed 0.05% to 2%. Also, the filter's impulse
response should not have negative values.

3. The transition from one light intensity to another should be as fast as
possible, that is, the filter's rise time should be as short as possible.

4. The filter's delay should not depends on frequency or, even better, the
delay should be zero. This will be satisfied if the filter's impulse response
is an even function.

5. If the scene is rotated, the displayed picture shall appear rotated, but
otherwise unchanged. This will be satisfied if the filter's impulse response
is rotationally symmetric.

7. Expected implementation difficulties

A relatively complex calculation must be performed in order to obtain
the value of a single pixel. The same procedure must. be performed about a
milion times to complete the image. We expect that achieving a reasonable
drawing speed will be the major problem in the implementation.

A rough estimate shows that commonly available processors such as 486,
68040 and T805 permit only experimentation with the proposed approach.
For practical applications processing must be faster for at least one order
of magnitude. As we have to work with continuous signals and relatively
complex data structures and algorithms, currently available digital signal
processors do not seem to be particularly useful — they are very diffucult to
use for anything outside their intended application area.

Our attention is directed towards the T9000, if it becomes regularly avail-
able. It seems that a single T9000 might satisfy basic application require-
ments. Even more important is its capability for parallel operation, which
far exee.ds capabilities of all other commercial processors. The single PPC
604 also seems to have enough power for basic applications, but with much
less hope for efficient parallel operation.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

"Exact" display of objects with real valued positions and dimensions 	259

Another serious difficulty arises from the possibility that a single filter
may not be conveniently applicable to all necessary types of objects.

8. Conclusion

We have described some initial results of our work is this area. Currently
we are investigating various classes of continuous finite-response filters in
order to select viable candidates for an experimental implementation of a
small graphics package exploiting the principles set in this paper.

References

[1] Foley J.D., van Dam A., Feiner S.K., Hughes J.F., Computer Graphics - Principles
and practice, Addison-Wesley, 1990.

[2] Corner, J.B., Return of the Jaggy, IEEE Computer Graphics 9 No 2 (March 1989),
82 - 89.

[3] .Terri A.J., The Shannon sampling theorem - its various extensions and application:
A tutorial review, Proc. IEEE 65 No 11 (Nov. 1977), 1565 - 1596.

[4] Castleman, K.R., Digital Image Processing, Prentice-Hall, Inc, New Jersey, 1979.
[5] Max N.L., Antialiasing scan-hue data, IEEE Computer Graphics and Aplications 10

No 1 (January]990), 18 30.
[6] INMOS Limited, The T9000 Transputer Instruction Set Manual (1993), Bristol.
[7] INMOS Limited, The T9000 Transputer Hardware Reference Manual (1993), Bristol.

BOZIDARA ADZIJE 19/I-11, 18000
E-mail address: sikeeunit op . elf ak .ni ac yu

FACULTY OF OCCUPATIONAL SAFETY, C%ARNOJEVIe,'A 10, 18000 Ni..§

FILOZOFSKI FAKULTET, alRILA I METODIJA 2, 18000 NI§.
E-mail address: vesnaarchimed. ilf ak .ni . ac . yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 261-271

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

HALLEY-LIKE ASYNCHRONOUS METHODS

FOR POLYNOMIAL ROOTS

M. Trajkovie, S. Triaovie and M. Petkovie

ABSTRACT. In this paper we present the asynchronous implementation of Halley-like
method for the simultaneous approximation of polynomial roots on a distributed memory
multicomputer. It is shown that the lower bound of the order of convergence of asyn-
chronous Halley-like method with the delay r is at least 71A > :3, where 11,4 is the unique
positive root of the equation 70.1 - 3i(- 1 = O. The computational efficiency of the
synchronous and asynchronous versions are studied in the case of hypercube topology.

1. Some preliminary results

Simultaneous methods for the determination of polynomial roots run in
several identical versions so that they are very convenient for the imple-
mentation on parallel computers (see, e.g., [4,5,6,8,9,10]). All n roots are
found simultaneously, n versions of the same algorithm can be run on a dis-
tributed memory multicomputer consisting of k (< n) processors. The main
advantage of parallel implementation comes from the fact that a great deal
of computation can be performed simultaneously. The details concerning an
application of simultaneous methods on parallel computers may be found in
[4,5,6,7].

In practical implementation of simultaneous methods on parallel comput-
ers three standard network topologies are usually applied: rings, torus and
hypercubes. The models assume k processors connected through a regular
graph of diameter D and degree d. The efficiency of these methods depends
on three parameters: the computation time of any arithmetical operation
modeled by ra , the communication start up /3, and the throughput of the

1991 Mathematics Subject Classification. 65H05, 65W05.

261

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

262 	 M. TrajkoviC, S. Trkkovi6 and M. Petkovie

links rc . Typical values of 7-,,ra and fie for several types of multiprocessors
can be found in the paper [3]. Since in our analysis we neglect the times
for computing the starting points and checking the stopping criteria, the
computational cost of algorithms is the sum of a computation time with a
communication time. Besides, the number of basic arithmetical operations
of the applied method appears as an additional parameter in the analysis of
the total computational cost. This number for a wide class of simultaneous
iteration methods can be given in the form (see [12, Ch. 6])

N(n) = an2 + [3n + 7,

where n is the polynomial degree. If n is sufficiently large, then we can take
approximately that N(n) = an 2 + o(n2).

Following [6], the total time for the synchronous implementation can be
expressed as the sum of the computation time N(n)T alk and the communi-
cation time DO, + 0(n/d)re , that is

a1L2 + O(n2) 	 it
Ts y n = 	 To, + Dile + O(—d)Tc.

k
(1)

The communication time cannot be neglected in a synchronous implemen-
tation; moreover, it has a great influence on the total execution time and
appears to be a major drawback of this parallelization of the simultaneous
methods. In order to decrease the communicate time the following strat-
egy can be applied [2,7,10]: In each iteration, a processor does not have to
wait at predetermined points, for example, the end of the total-exchange,
for predetermined messages to become available. This type of algorithms is
called asynchronous by Baudet [1] indicating that, at each step, the local
computation is performed using only a part of the global information.

Let in = 0, 1,2, ... be the iteration index and let us assume that the
(n1+1) is new approximation z i 	is calculated by a processor Ph , h E {1, ..., k}.

Evidently, to force the convergence, this processor must know the value of
(at) 	 (nt-I-1) •

Zi . The improved approximation z i 	is calculated by a general iteration
formula

Fi(z (m•)s ,) 	where z(m•) — (_on 	,m,h)) 	, z„ (771—r(n,m,h))).
—

(2)
In (2) z(ni *) is the vector of the last values zi known by the processor Ph at

step in, represented by zi(m—r(j,m,h)). Here r(j, mm, h) is a delay depending
on j, in and h and indicating that the processor Ph only knows the value of
zi computed at step in — r(j, m, h). The maximum delay will be denoted by
r, that is, r = max i,„,, h r(j,m,h).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Halley-like asynchronous methods for polynomial roots 	 263

The implementation of an asynchronous method is executed in such a way
that, at each iteration step, a processor sends the most recently computed
entries to its neighbors only, decreasing the communication time. As it was
presented in [6], the total time per one iteration step is

Tasy
	((rid o(n2)

)7a + 13, + 0 (—)Te . 	 (3)

-1-

Comparing with (1), we obtain one start up instead of D and a propagation
time of O(n/k) instead of 0(n/d).

Let N5y , and Nasy be respectively the number of iteration steps of a
synchronous and an asynchronous method. Evidently, the asynchronous
method will be more efficient if N asyTasy < NSynTs y n By virtue of (1) and
(3) this inequality may be written as follows:

N asy [(

a7/2

k O(?t2)) Ta 13, + 0() 	< 	{((11' 2 +
k

°(712))-ra

D + 0 (1711-N.
(4)

Let us suppose that the inequality

0, (AO

Ta
— <

holds. Namely, if /3,/r„ > ctn 2 /k, then it could be faster to use less pro-
cessors in the synchronous implementation (see [6]). Furthermore, since the
relation /3, > 7-, generally occurs ([3]) ou distributed memory computers,
the inequality (4) becomes

	

an t 	fie

Nasy
	D Ta

Nsyn 	CY7/ 2 	/3c • 	 (6)

	

k 	r„

Eventual validity of the inequality (6) can be suitable verified by a graph-
ical interpretation in the plane (Nasy I Nsynl iicka). Let R = Odra denote a
realistic parametric ratio depending on the applied network topology. For
the hypercube topology this ratio usually belongs to the interval [10 2 ,103]
(see [3]). Conditions for the dominance of asynchronous implementation has
been discussed in [13]. Dominant area is bounded above by the curve

an2 	Nasy
fic 	k 	„) — = 	

7 Ta 	Nasy 	 ()

D Nsyn

(5)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

264 	 M. TrajkoviC, S. Trielcovi6 and M. Petkovk

which are obtained from (6) taking the sign "=" instead of "<", and the

dashing line Odra = R.
Let V is the critical ratio given by the abscissa of the intersection of the

curve (7) and the dashing line Odra = R, that is, V = 1+ (D —1)/(±i + 1).

As pointed out in [13], an asynchronous algorithm will be more efficient if

the realistic ratio Ft is smaller than the bound value 13,/r a, = an2 /k and, in

addition, if the ratio of iteration steps Nasy /Nsyn can be realized in practice,

that is, if Nasy I Nsyn < V. We note that the following estimate for the ratio

Nasy /Nsyn has been derived in [13]:

Nasy 	logns

Nsyn 	logllA •

2. Convergence analysis of
asynchronous Halley-like method

Let 47,n) = 47) — (be the error of an asynchronous method of the form

(2) which generates the sequences (z1 m) of approximations to the roots
(1, • • • ,(n. As mentioned in [13], for a wide class of iteration methods for
the simultaneous determination of polynomial roots the following relation

Can be derived:

(77L-1-1) 	 (en,)) q E a . 	 (i = 	... ,n) ,
Et 	= at

i=1

(9)

where ai and Oij are complex constants and q > 1 is integer. In that case

following general convergence theorem has been proved in [13]:

Theorem 1. Suppose that a polynomial P has only simple roots (

and starting approximations z(1°) , . , zT) are reasonably close to these roots.

Further, assume that r(j,m,h) is bounded for all j = 	n and all h =

1,.., k. Then the asynchronous algorithm (2) for which the relations (9) are

valid is locally convergent with the order of convergence at least riA(q)> q,

where n ii (q) is the unique positive root of the equation

(8)

(10) nr+1 qnr 1 = 0, r = max r(j,m, h).
jon,h

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Halley-like asynchronous methods for polynomial roots 	 265

In this section we give a convergence analysis of the asynchronous Halley-
like root finding method and its efficiency compared to the synchronous
implementation. Hypercube topology will be considered as the most efficient
network topology for this kind of problems.

Halley-like method for the simultaneous approximation of all zeros of a
polynomial P of degree n has been considered in [14] and [11]. For simplicity,
the approximations zr-r) to the roots (1 , 	,(„ at the iteration step m
will be shortly denoted with zi if r = 0 and z; if r > 0. According to this
notation we introduce the errors c i = zi — (i and E; = z; — 	The new
approximation zion+i)

will be denoted with Zi and the corresponding error
with Ei = Zi — 	Besides, we define the sums

the abbreviations

aii

and the function

Then Halley-like method

or in the form

zi = z t

n 1
= (i = 1,... , n;) 	= 1,

= 	1 , • • • 	,

bii = 2zi — zj —

P"(z)

2),

. . 	, n) (11)

(12)

E (zi _ zty,
1 .1 	3
J#.

71 1
=

zi —
i =1

i0 .

= (zi —)(zi — z;),

131 (z)
f(z) =

P(z) 	2 1-"(z) .

reads:

1

Azi) 	P(zi)
(i = 1, . s 	. 1 [92

 I, ' 	2,1 -I

2P(zi)

2P' (zi)

P(zi)

[

P I (Zi)] 2 	PI (.24 2 — P"(ZOP(Zi) 	_ 2
.

— 52 i
P(zi) 	 P(Z02

By the way, we observe that the function f in the denominator of (11)
appears in the well-known Halley iteration formula

1
= z

f(z)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

266 	 M. Trajkovi6, S. Tridcovi6 and M. PetkoviC

for the determination of a single root.
In the following we will show that the asynchronous Halley-like method

(11) belongs to the class of methods for which the relation (9) holds, which
means that Theorem 1 can be also applied to this method. For that purpose

we use the identities
131 (z) v. 1

P(z) 	z — (j

and
pi(z)2 - P"(z)P(z) _ 	1

	

P(z)2

	,z

(j)2
j=1 (

TL

which can he easily derived by logarithmic differentiation.

First, from (13) we have

2f"(zi) = 2 (1 	1) = 2 (1 +

P 	 i(zi) 	— 4,i 	 z — 	c i
0i

and

(71

i P(Zi)\ 2 — S2 . 	 1 	 1

) 2 P(zi)) 	 E z. (•

2

	

3 	jOi

= (I 	---+ (7

(Lii) Ei

Using the identity (14) we find

	

71 	 1 	1 	bij

	

pi(zi)2 1,11(Zi)P(Zi) S2,t = E 	

	

2 	z3)2 - 	doi at • (
.4. k zi 37- 1

P(Zi)2 	 zi — (j) 2.1

According the two last relations we find from (12)

2(
1

— +

= Z2 	($ 	1 	 1 	 bije;

	

E • ;() (-1 + 	+ Ei,i) + — Ejoi 	2
f 	3° 2 a t. i 	ci 	 E i 	aij

(13)

(14)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

i0 i

Halley-like asynchronous methods for polynomial roots 	 267

= Ez

2Ei(1 	fiEi,i)

 ll (1 - E 	fi 	+ 1 — Ei2 E bijE3 . aii 	 a?•
jOi

2fid-2qE1i
Ej 	 bi

L F 	i •- 	 aii

that is,

Ei = E,

Let Gii denotes the denominator in the last relation. After short re-
arrangement of the previous relation we obtain

0.
b•

.1]
• '! 1 ,

E ' ii = ---- { ,51 i — Ei,i — E --i-(– Ei[(S1,i + El ,i) 	—H-E 	"2. (15) Gi; 	, 	 aii 	 a 	iij 	. . a i .ii 	 ?#z 	302
Since

	

e 	1 	 2-; -
Sl,i

-Ei,i - 2_ 	= E = Q

	

aij 	(zi — z 	zi — 	(zi — z;)(z i — (i)
3

from (15) there follows

E

	

= _ 	[(si +

	

a- 	a?. J
30, 	2.7 37- 2

or in the form

Ei = E cij , , with cii =
jOi

bii
a? .G• 3• 2 3 	2

(16)

The quantities a%j , bij, 51 ,i and E 1 ,i are bounded, namely aij—> 	—
(j) 2 , bij 2(6 — while ,51,i and E li tend to Ej#i((% — (i) -1 . Also,
assuming that the starting approximations are sufficiently close to the exact
zeros, the quantities f i will be small enough so that there exists a positive
number p < 2 such that > 2 —p. Therefore, ci j is bounded in modulus;
hence, the relation (16) is of the form (9) with q= 3 so that we can directly
applied the assertion of Theorem 1. Thus, the order of convergence of the
asynchronous Halley-like method is at least y A , where 7/A > 3 is the unique
positive root of the equation y'•+ 1 — 371r —1 = 0. Since we assume reasonably
good starting approximations, because of the very fast convergence the total
number of iteration steps will be rather small (2 or 3 steps in practice). For
these reason, greater values of r should not be expected.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

268 	 M. TrajkoviC, S. TriElcovi6 and M. Petkovi6

3. Comparison of asynchronous
and synchronous version

In this section we present a theoretical implementation of Halley-like
method (11) on 4-dimensional hypercube with k = 24 = 16 processors where
the diameter is D = 4. We take a realistic parameters ratio [3] /3,/ra 2---= 10/6
(dashing horizontal line). The total arithmetic cost of Halley-like method
is 42n2 ra o(n2), that is, a = 42. Polynomials of the degrees n = 16 (the
so-called full parallelization when the number of processors is equal to the
polynomial degree) and n = 30 have been considered. The bound values
fi c /ra = 2in2 for these values of 7/ are represented by the full horizontal
lines in Fig. 1.

Realistic areas where the asynchronous Halley-like method can be more
efficient are given by light shaded area for n = 16 and darker shaded area
(partially invisible) for n = 30. The critical values which determine the
necessary upper bound ratio Nasy /Ns y n are given by V1 for 7/ = 16 and
V2 for n = 30. Obviously, a more stronger requirement for the needed ratio
Nasy I Nsyn appears in the case of the higher degree; namely, this ratio is closer
to 1 when the degree n is higher, which is more difficult to realize in practice.
Following (8) we find for the worst case model (71A = 3) that the ratio of the
number of iteration steps Nasy /Nsyn which provides a greater efficiency of
asynchronous implementation must be smaller than log 4/ log3 1.26. For
the considered ratio 13,1r„ = 10/6 this is available (theoretically) if 7/ < 26.
On the other side, the higher n permits the topology with the greater ratio
13,/-ra (see Fig. 1).

Finally, we wish to consider a more general problem. We recall that
Durand-Kerner method (with a quadratic convergence) in a synchronous
implementation have the best performances in a wide class of simultaneous
methods although it possesses relatively low convergence rate (see [5,7]).
The following question arises: What is the influence of the convergence rate
of applied methods in a practical realization when the parallel implementa-
tion is performed asynchronously? In other words, we wish to investigate
the case when (from (8))

Aq 	Nasy 	log 	log(q + 1) < 17,

Nsyn 	log yA 	I1A(q)

in dependendence on the parameter q which defines the convergence orders
of synchronous and asynhronous versions. Here yA (q) is the unique positive
root of the equation (10) and V is the critical ratio which is the upper bound
of the possible area of dominance of the asynchronous version (see Section 1

(17)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Halley-like asynchronous methods for polynomial roots 	 269

and Fig. 1). For this purpose, we have solved the equation (10) and found
the ratio \ q for the delay r = 0,1,2,3,4 and the entries q = 1,2,3,4 which
are of a practical importance. The dependence A q against q with the delay
r as a parameter is displayed in Fig. 2.

hypercuhe multicomputer
k = 16 processors

5

4

3

2

0

log Pc
T a

—

\(0

.sN

1 	- 	

V1 	2 	3

a2 = 2362.5
a

Pc _ 672
ta

Ra
-- 103/ 6

Nasy
Nsvn

Fig. 1 Dominant areas of Halley-like asynchronous method

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

q

2.5 — r = 4

r= 3
2—

r= 2

1.5 — 1= 1

r= 0

0.5 —

0

q

1 	 2 	 3 	 4

270 	 M. Trajkovi6, S. Tritkovi6 and M. Petkovi6

Fig. 2 The ratio of the iteration steps as a function of the convergence order

From Fig. 2 we observe that, for all r, that the ratio A q of iteration steps

is smaller for a greater q, that is, in the case of methods of higher order.
But, under fixed real network performances, a smaller ratio A = Nasy/Nsyn

means that the inequality (8) (and, accordingly, (17)) is feasible much easier.
Hence, the possibility that an asynchronous algorithm be more efficient than
the corresponding synchronous algorithm is greater if the basic method has
a higher convergence order. This fact gives a slight advantage of Halley-like
method (which is of the fourth order) compared to Durand-Kerner method
(quadratic convergence) and Ehrlich-Aberth method (cubic convergence) but
only in the case of the asynchronous implementation.

References

[1] G.M. BAUDET, Asynchronous iterative methods for multiprocessors. J.

of ACM 2 (1978), 226-244.
[2] D.P. BERTSEKAS AND J.N. TS1TSIKLIS, Parallel and distributed compu-

tation - numerical methods. Prentice-Hall Inc. 1989.

[3] L. BOMANS AND D. ROOSE, Communication benchmarks for the iPSC/2.
Hypercube and Distributed Computers (Proc. I European Workshop on
hypercube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 93-104.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Halley-like asynchronous methods for polynomial roots 	 271

[4] M. COSNARD AND P. FR.AIGNIAUD, Asynchronous Durand-Kerner and
Aberth polynomial root finding methods on a distributed memory multi-
computer. Parallel Computing 9 (1989) 79-84.

[5] M. COSNARD AND P. FRAIGNIAUD, Finding the roots of a polynomial on
an MIMD multicomputer. Parallel Computing 15 (1990) 75-85.

[6] M. COSNARD AND P. FRAIGNIAUD, Asynchronous polynomial root find-
ing methods. Research report 90-21, LIP-IMAG, Ecole Normale Superi-
eure de Lyon, France 1990.

[7] M. COSNARD AND P. FRAIGNIAUD, Analysis of asynchronotis polyno-
mial root finding methods on a distributed memory multicomputer. IEEE
Transaction on Parallel and Distributed Systems (to appear).

[8] P. FRAIGNIAUD, Performance analysis of broadcasting in hypercubes. Hy-
percube and Distributed Computers (Proc. I European Workshop on hy-
percube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 311-328.

[9] T.L. FREEMAN, Calculating polynomial zeros on a local memory parallel
computer. Parallel Computing 12 (1989) 351-358.

[10] T.L. FREEMAN AND M.K. BANE, Asynchronous polynomial zero-finding
algorithms. Parallel Computing 17 (1991) 673-681.

[11] M.S. PETKovia, On Halley-like algorithms for simultaneous approxima-
tion of polynomial complex zeros. SIAM J. Numer. Anal. 3 (1989),
740-763.

[12] M.S. PETKOVI6, Iterative methods for simultaneous inclusion of polyno-
mial zeros. Springer-Verlag, Berlin-Heidelberg-New York 1989.

[13] S. TW:Kov16, M. TRAJKOVIa AND M. PETKOVIa, Asynchronous meth-
ods for simultaneous determination of polynomial roots (submitted).

[14] X. WANG AND S. ZHENG, A family of parallel and interval iterations for
finding all roots of a polynomial with rapid convergence (I). J. Comput.
Math. 1 (1984), 70-76.

FACULTY OF ELECTRONIC ENGINEERING, P.O. Box 73, 18 000 Ni; V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 273-284

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ASYNCHRONOUS METHODS FOR SIMULTANEOUS

DETERMINATION OF POLYNOMIAL ROOTS

S. Triakovie, M. Trajkovie and M. Petkovie

ABSTRACT. In this paper we present the implementation of simultaneous method for the
determination of polynomial roots on a distributed memory multicomputer. The total cost
of such a parallelization per iteration is the sum of a computation time and a commu-
nication time needed for a total exchange of the data at each iteration step. In order to
decrease the communication time, an asynchronous implementation is considered. The
computation of the root approximations is still shared among processors but the updat-
ing is performed using only nearest neighbor communications. The price to be paid to
decrease this time consists in reducing the order of convergence of asynchronous meth-
ods. A general theorem which consider the lower bound of the order of convergence is
given. Also, the computational efficiency of the synchronous and asynchronous versions
are studied in the case of hypercube topology.

1. Introduction

Mathematical models in scientific engineering including digital signal pro-
cessing or automatic control reduce to the problem of finding roots of poly-
nomials with degree 100 and higher [15,16]. In these cases the parallel
processing becomes of great interest to speed up the determination of roots.

In practice, all methods for finding polynomial roots can be divided (al-
though not strictly) in three classes: analytic, geometric and algebraic. Par-
allel implementation of geometric or algebraic methods often requires fine
grain parallelism (see, e.g. [2,17]). On the other side, the multicomputers
are rather composed of a network of processors with distributed memory
which assumes their coarse grain parallelism. For this reason, we are inter-
ested here in analytic methods and their application on a distributed MIMD

1991 Mathematics Subject Classification. 651105, 65W05.

273

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

274 	 S. Triekovi6, M. Trajkovi6 and M. Petkovi6

machine. Moreover, we will restrict our study to iteration methods for the
simultaneous calculation of all roots of a polynomial. As it is well known,
these methods run in several identical versions so that they are very suitably
for the implementation on parallel computers (see, e.g., [6,7,8,9,11,12,13]).
All n roots are found simultaneously, n versions of the same algorithm can
be run on a Multiple Instruction/Multiple Data (MIMI)) parallel computer
consisting of k (< n) processors. The main advantage of parallel implemen-
tation is that a great deal of computation can be done simultaneously. The
details concerning an application of simultaneous methods on parallel com-
puters, including an analysis of total running time of a parallel iteration, the
determination of the optimal number of processors as well as experimenta-
tions, may be found in [6,7,8,9].

Many of the simultaneous methods can be written in the form

z (m+ 1) = F(z(m)), 	 (1)

where F is an operator in C7, , z(m) = (A m) , 	is a vector of approx-
imations to the roots (1 , ...,(n of a given polynomial P of degree n with
any initial vector z (°). In this paper we will always assume that the initial
vector z(°) is chosen so that all z ni') 's tend to the (i's (i = 1, ...,n). For
the construction and a detailed study of simultaneous methods see the book
[18]

As we have noted, we are concerned with the distributed memory multi-
computers. Such parallel computers are modeled by a connected graph. The
vertices of this graph are the processors and its edges are the communication
links. The exchange of data between two nodes which are not directly con-
nected must pass through different other nodes. Hence, the communication
strategy has a great influence to the efficiency of the applied method. Our
aim is to establish such a strategy which will decrease the communication
time and, at the same time, preserve the computational efficiency of the
implemented method.

In practice, the implementation of simultaneous methods on parallel com-
puters is usually performed by three standard network topologies: rings,
torus and hypercubes. In short, the model is as follows: k is the number of
processors connected through a regular graph of diameter D and degree d.
The exchange cost of length L messages between two neighbor processors is
the sum of a start up /3, and a propagation time proportional to the message
length LTc , that is Tone-to-one = Oc Ll-c . Furthermore, one assumes that
a processor can communicate simultaneously with all its neighbors (link-
bound model), and that the links are full duplex. The arithmetic cost is
modeled by the computation time ra , where ra is usually the mean of a

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Asynchronous methods for simultaneous... 	 275

floating point addition and the floating point multiplication. Typical values
of 7-,,ra and ,8c for several types of multiprocessors can be found in the paper
[4]. We emphasize that in our analysis the times for computing the starting
points and checking the stopping criteria will be neglected. Accordingly, the
computational cost of algorithms is the sum of a computation time with a
communication time.

The investigation based on the parameters r a , Ta and /3, shows that the
network topology has a great influence on the global cost of parallel methods.
It has been shown in [7] that, among three mentioned standard topology,
the hypercube is the best topology and the relation

	

phypercube < T.torus 	,ring
total

	

-"total 	total

holds. Another advantage of the hypercube topology appears when full
parallelism (the degree of a polynomial is equal to the number of processors)
is available. Namely, the communication time of an iteration grows linearly
with the degree on a ring of processors, with the square root of the degree
for a torus, but only logarithmically on a hypercube.

2. Implementation of synchronous methods

Before demonstrating the strategy which decreases the communication
time, we present the implementation of so-called synchronous parallel
methods (like (1)) [8,9]. The term "synchronous" does not refer here
to the control mode of the multicomputer, but refer to the structure of
the algorithm. Actually, considering the iteration formula (1), the next
approximate vector z(" 1 + 1) is calculated using the most recent components
of z(m).

In the parallelization of the parallel algorithm (1) we assume that the
number of processors k (< n) is given in advance. The starting vector z(°) is
computed by all the processors P 1 , , Pk using some suitable search proce-
dure (see, e.g., [5,10,14]). Furthermore, each step of the algorithm consists

in sharing the computation of n improved approximations z1 m) , ,zfr")
 among the processors and in updating their data z(7") through a broadcast

procedure (shorter BCAST(z (m))). As in [7], let /1 , , Ik be disjunctive
partitions of the set {1, 	, n} where U/j = {1, 	, 	To obtain good
load balancing between the processors, the index sets 	, Ik are chosen
so that the number of their components w(h) 	= 1, 	, k) is determined
as w(I) < 	. At the m—th iteration step the processor Pi (j = 	k)
computes zi for all i E Ij by the iteration formula (1) and then it transmits

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

276 	 S. Tridcovk, M. Trajkovi6 and M. Petkovk

these values to all other processors using a broadcast procedure (referred to
as BCAST(z (m)). The program terminates when some stopping criterion
(referred to as STOP(z(m))) is fulfilled, for instance, if

max IP(z.(i m))1 <
<i<n 	-

for a given sufficiently small b. According to the previous we give a program
in pseudocode for a parallel implementation of a simultaneous method (1)
(following [7]):

Program SYNCHRONOUS SIMULTANEOUS METHOD
begin

for all j = 1, . . . , k do determination of the starting
approximations z(°);
in := 0
do

for all j = 1,... ,k do in parallel
begin

(*) 	 Compute z! m+1) := Fi (z(")), i E

(**) 	 Communication: BC AST (z(m+ 1));
end
in :=m+1

until STOP(z(m)) holds true;
OUTPUT z(m)

end

As it was presented in [18, Ch. 6], the number of basic arithmetic opera-
tions for a wide class of simultaneous iteration methods can be given in the
form

N(n) = ant + On + y,

where n is the polynomial degree and ct, 0 and -y are integers. Dealing
with sufficiently large n' we can take approximately that N(n) = ant
o(n2). Following [8], the total time for the presented implementation of the
synchronous method can be expressed as the sum of the computation time
N (n)ra/ k and the communication time D/3, + 0(n/ d)r,, that is

Tun 7-7

(cEn2 o(n2))
T c, 	+ 0 (—

n
d)

Tc . 	 (2)

From (2) we see that the communication time cannot be neglected; moreover,
it has a great influence on the total execution time and appears to be a major
shortcoming of this parallelization of the simultaneous methods.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Asynchronous methods for simultaneous... 	 277

3. Asynchronous simultaneous methods

In order to decrease the communicate time the following strategy can
be applied [3,9,13]: In each iteration, a processor does not have to wait
at predetermined points, for example, the end of the total-exchange, for
predetermined messages to become available. This type of algorithms is
called asynchronous by Baudet [1]. The term "asynchronous" only refers
to the fact that, at each step, the local computation is performed using only
a part of the global information. An asynchronous algorithm can be modeled
as follows:

Assume that the new approximation 4' 4-1) is calculated by a processor
Ph, it E { 1, ..., k}. Evidently, this processor must know the value of 4') and
(m+1) i

s is calculated by the formula

where z (711*) = (z1 711—r(l ' In ' h)) , 	Z(m-r(n ' m ' h))).

(3)
In (3) z (m *) is the vector of the last values zi known by the processor Ph at
step in, represented by zi(m—r(j,m,h)). Here r(j,m,h) is a delay depending
on j, in and h and indicating that the processor Ph only knows the value of
zi computed at step in — r(j,mit). In the sequel, the maximum delay will
be denoted by r, that is, r = maxj,k,h r(j, mit).

The presented asynchronous algorithm (3) will run if the following strat-
egy of distribution of the indices is chosen:

1. 4'4.1) is calculated by only one processor for all i = 1, ..., n;

2. r(i,m,h) = 0, that is, the processor Ph must know zi(no , i E
I h.

Hypothesis 1 insures that there is no redundancy in the computation. Hy-
pothesis 2 has already been discussed and it must be satisfied to provide the
convergence of the sequence (z! m")). Besides, in regard to Hypothesis 1, this

implies that at step in, if z' i) (0 < u < in , i E {1,... , n}) is known by a
set of processors, its value is the same for all these processors.

A short analysis given in [9] shows that, excepting hypotheses 1 and 2,
some additional conditions must be satisfied. Namely, if each processor al-
ways updates the same components, then each processor will know the most
recent entries of the components which are updated in its neighborhood,
but the other components will never be updated. This causes that, for each
h E 11, and at each iteration step in, there exists j such that the pro-

cessor Ph knows only the value of z .r, that is, r(j, in, 	= in. This fact

z(--") = Ft(z(,n*)),

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

278 	 S. Tridcovi6, M. Trajkovi6 and M. PetkoviC

implies that the convergence is not insured. For this reason the strategy
of the implementation of asynchronous methods should provide such indices
distribution that I, be different in each iteration step and the delay r(j, na, h)
is bounded above by some p < m. If 1(h, m) denotes the set of indices of
the components updated by the processor P, at step in, then the mentioned
conditions can be expressed as follows:

(i) I(h, in) (h = 1, . . . , k) form a partition of (1, ..., n) at each step m;

(ii) If i E I (h, in), then the processor Ph knows 4 7n) , i E Iii ;

(iii) For each processor P, and for each component i there exists an
integer p such that the sets 1(h, in) have the property that the number of
steps separating two evaluations of this component in the neighborhood of
h does not exceed the delay p.

In this way, (i) and (ii) imply that the hypotheses 1 and 2 respectively are
satisfied, while (iii) provides the convergence with r = p. If these conditions
are fulfilled, then a a program in pseudocode for a parallel implementation
of an asynchronous simultaneous method (3) is as follows:

Program ASYNCHRONOUS SIMULTANEOUS METHOD
begin

for all j = 1, 	, k do determination of the starting
approximations z(°);
era := 0
do

for all j = 1,... , k do in parallel
begin

(0) 	 Compute 1(h, in);
(1) Compute e+1) := Fi(z ()), i E 1(h, in)
(2) Send zi, i E I(h, in), to neighbors;

end
m := m + 1

(3) until STOP(z(7")) holds true;
OUTPUT z(m)

end

The checking of the stoping criteria (3) is more difficult in the case of
the asynchronous implementation since there are the possibility that some
processors verify the stop condition but not the other ones. For more details
about the detection of termination see [3]. We only note that the step (3)
has to include such a strategy which synchronize the processors, namely, the
first processors which terminate may signal the end of the execution to the
others.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Asynchronous methods for simultaneous... 	 279

The implementation of an asynchronous method is executed in such a way
that, at each iteration step, a processor sends the most recently computed
entries to its neighbors only. As in the case of synchronous algorithm, the
computation time is again N (qr.,/ k, but the communication time becomes
0, + 0(n/ k)r, since it corresponds to sending n/k values from each nodes to
their neighbors in parallel. Therefore, the total time per one iteration step
is

Tas y) Ta f3c + (re .
(an 2 + 0(7/2 	

(4)

Comparing with (2), we obtain one start up instead of D and a propaga-
tion time of 0(n/ k) instead of 0(n/d). Thus, the communication cost is
decreased by (D — 1)/3,+ 0(n/d— n/ k)7-c . However, the order of convergence
of the asynchronous method is reduced (see the next section), which could
increase the number of iteration steps. If these two (contradictory) features
can be balanced in a satisfactory way (by the choice of a suitable network
topology, a good strategy for the indices distribution and synchronization of
stop test, and an efficient iteration algorithm), then we can hope that the im-
plemented asynchronous algorithm be more efficient that the corresponding
synchronous algorithm.

4. R-order of convergence of asynchronous methods

Let 47,n) = 4 m) — be the error of an asynchronous method of the form
(3) which generates the sequences (e)) of approximations to the roots

,(„. For a wide class of iteration methods for the simultaneous deter-
mination of polynomial roots (see the book [18]), the following relation can
be derived:

(m+ 1) = 	(€ 7n)) 9 E. 	(i = 	
(5)

where c.t i and 	are complex constants and q > 1 is integer. Then we have
the following assertion:

Theorem 1. Suppose that a polynomial P has only simple roots 0, .. • ,
and starting approximations 431 , 	, 4°1 are reasonably close to these roots.
Further, assume that r(j, 7n, h) is bounded for all j = 1, 	, n and all h =
1, ..., k. Then the asynchronous algorithm (3) for which the relations (5) are

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

280 	 S. Tritkovi6, M. Trajkovk and M. Petkovi6

valid is locally convergent with the order of convergence at least 11A, where

1A is the only positive root of the equation

nr+1 v.(1 = 0, r= max r(j,m,h). 	 (6)
j,,n,h

Proof. Under the conditions of
B so that lail < A and I Ni j < B

absolute error e n, by em = liz(m)

theorem we can find the constant A and
. If at the iteration step in we define the

(II,„, then from (5) we obtain

	

e m+i < CELEm-, with C = (n - 1)AB.
	

(7)

In regard to the assumed closeness of root approximations we can adopt that

eo < 1. Then from (7) it follows that the sequence (e m) tends to zero.

Let c o = 0(E), where 0 < E < 1 and let the order of convergence of the

sequence (em) be 71A, that is, e m+1 = O (e',i,t1). Then

= (E"';), e m _,. = 0 (E"7-r), 	(r = 0, 1, 	,
~ rz

From (7) we obtain

e„,+1 = 0 (47, ern-r/ = 0 (Eq"';+"7-r)

According to the last relation and the fact that e m+1 = 0 (E'V l) , by the

comparision of the exponents it follows

761+1 = orA

Hence, 17,4 > 0 should satisfy the equation (6). 0

Remark 1. Let y(i) = 71T11 - qnr - 1. Since y(q) = - 1 < 0 and

y(q-1-1) = (q+1)r - 1 > 0, and taking into account that the equation y(ri) = 0
has the unique positive root, it follows that the order of convergence 71 A of

the asynchronous method belongs to the interval (q, q + 1]. Particularly, if

r = 0 for all i = 1,...,n and in = 0, 1, , which means that we have a
synchronous method, one obtains the order of this method = q + 1.

The lower bound of the order of convergence of asynchronous methods
as the function of the delay r is given in Table 1. We observe that r has
a very strong influence on the value of the convergence rate so that the
main problem which has to be solved in the implementation consists of the
minimization of the delay r.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Asynchronous methods for simultaneous... 	 281

T

q 0 1 2 3 4
1 2 1.618 1.466 1.380 1.325
2 3 2.414 2.206 2.107 2.056
3 4 3.303 3.104 3.036 3.012

Table 1
The lower bounds of the order of convergence of asynchronous methods

in function of the delay r

5. Efficiency of implementation

In this section we will compare the implementation of an asynchronous
method and corresponding synchronous method on a hypercube multicom-
puter. Let Nsyn and Nasy be respectively the number of iteration steps of
a synchronous and an asynchronous method. Evidently, the asynchronous
method will be more efficient if NasyTasy < Nsyn Tsyn . By virtue of (2) and
(4) this inequality may be written as follows:

Nasy [(an2 +k 0(n2))ra-Ffic+0(;:)rd < Nsyn [(an2 +k 0(n2))ra-FDfi c +0(!(11)re]. (8)

Since the relation /3 >> re generally occurs ([4]) on distributed memory
computers, the inequality (8) becomes

an
Nasy

IVsyn <

	

2 	fic
+ D—

	

k 	Tn
an

	

2 	0,
+

	

k 	ra

(9)

(10)

This inequality will be considered together with the condition

0,
<
 ant

Ta 	k

Namely, if /3,/ra > an2 1k, then it could be
the synchronous implementation (see [8]).

Eventual validity of the inequality (9) can
13c ical interpretation in the plane (— Na s

' , —).
Nsyn Ta

faster to use less processors in

be suitable verified by a graph-

A typical graph is displayed in

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

282 	 S. TritkoviC, M. Trajkovi6 and M. Petkovi6

Fig. 1. The intersection of the curve

ant (i Nasy

 k 	Nur,
= 	 (11)

Ta 	Nasy D
Nsy n

and the horizontal bound line Odra = an2 /k, which are obtained from
(9) and (10) taking the sign "=" instead of "<", gives the area where the
asynchronous implementation could be faster (shaded area). Of course, this
area will be feasible only if the network topology is such that the ratio
Odra (dashing line on Fig. 1) is smaller than the bound value an 2 /k (full

horizontal line). In fact, the realistic area where the asynchronous algorithm
could be faster is bounded by the curve (11) and the realistic parametric

ratio R 0,Ira (darker shaded area). This ratio usually belongs to the

interval [10 2 ,103] (see [4]). But, these conditions are not still sufficient. Let

V is the critical ratio which is given by the absissa of the intersection of

the curve (11) and the dashing line, that is (from (9) for)3,/r a = R),

an2

=
+R

Then the asynchronous implementation will be more efficient only if the ratio

Nasy/Nsyn can be realized in practice, that is, if N asy /Nsyn < V.
We give a short analysis for a theoretical value of the ratio Nasy lNsyn

taking into account the accuracy of the initial errors le — (i l, the required
accuracy S and the orders of convergence 11A and /is of the asynchronous and
synchronous methods respectively. Besides, we assume that (complex) roots
of tested polynomials are normalized to lie in the unit disk. In that case, a
stopping criterion can be given by

max lz,(!n) — (il < = 10 -11 ,
1<i<n

where m is the iteration index and v is the number of significant decimal dig-

its at the approximations 4m) , ... If lzr — (il = 0(10-1) and n is the
order of convergence of applied simultaneous method, then the (theoretical)
number of iteration steps, necessary for obtaining the accuracy 6, can be de-

termined approximately as m log v/ log II (following from 10' = 10 — n m).

According to this we could expect that the ratio Nasy /Nsyn be approximately

Nasy 	log 115
Nun log

+ DR

an2

(12)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Pc ant
To 	k

Ta
= 63.5

Nosy

Nsyn

Asynchronous methods for simultaneous... 	 283

log Pc
ta

4

3

2

1

0
	

V 2
	

3 	4

Fig. 1 Dominant area of asynchronous implementation

Finally, from a theoretical point of view, an asynchronous method will be
more efficient than the corresponding synchronous method if

+ DR 	D —1 log lis/ log ?TA < V = k = 1 +
an 2 	 an

+ R k 	 TV +1
References

[1] G.M. BAUDET, Asynchronous iterative methods for multiprocessors. J.
of ACM 2 (1978), 226-244.

[2] M. BEN-OR, E. FREIG, D. KOZEN AND P. TIWARI, A fast parallel
algorithm for determining all roots of a polynomial with real roots. Proc.
ACM (1989), 340-349.

[3] D.P. BERTSEKAS AND J.N. TSITSIKLIS, Parallel and distributed compu-
tation - numerical methods. Prentice-Hall Inc. 1989.

ant

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

284 	 S. Tritkovi6, M. Trajkovi6 and M. PetkoviE

[4] L. BOMANS AND D. ROOSE, Communication benchmarks for the iPSC/2.
Hypercube and Distributed Computers (Proc. I European Workshop on
hypercube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 93-104.

[5] D. BRAESS AND K. HADELER, Simultaneous inclusion of the zeros of a

polynomial. Numer. Math. 21 (1973) 161-165.

[6] M. COSNARD AND P. FRAIGNIAUD, Asynchronous Durand-Kerner and
Aberth polynomial root finding methods on a distributed memory multi-

computer. Parallel Computing 9 (1989) 79-84.

[7] M. COSNARD AND P. FRAIGNIAUD, Finding the roots of a polynomial on

an MIMD multicomputer. Parallel Computing 15 (1990) 75-85.

[8] M. COSNARD AND P. FRAIGNIAUD, Asynchronous polynomial root find-

ing methods. Research report 90-21, LIP-IMAG, Ecole Normale Superi-

eure de Lyon, France 1990.
[9] M. COSNARD AND P. FRAIGNIAUD, Analysis of asynchronous polyno-

mial root finding methods on a distributed memory multicomputer. IEEE

Transaction on Parallel and Distributed Systems (to appear).

[10] M.R. FARMER AND G. Loizou, Locating multiple zeros interactively.

Comput. Math. Appl. 11 (1985) 595-603.

[11] P. FRAIGNIAUD, Performance analysis of broadcasting in hypercubes. Hy-

percube and Distributed Computers (Proc. I European Workshop on hy-
percube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 311-328.

[12] T.L. FREEMAN, Calculating polynomial zeros on a local memory parallel

computer. Parallel Computing 12 (1989) 351-358.

[13] T.L. FREEMAN AND M.K. BANE, Asynchronous polynomial zero-finding

algorithms. Parallel Computing 17 (1991) 673-681.

[14] H. GUGGENHEIMER, Initial approximations in Durand-Kerner's root find-

ing method. BIT 26 (1986) 537-539.

[15] L.H. JAMIESON AND T.A. RICE, A highly parallel algorithms for root

extraction. IEEE Trans. on Comp. 28 (1989), 443-449.

[16] J.L. NICOLAS AND A. SCHINZEL, Localisation des zeros de polynomes

intervenant end theorie du signal. Reserach report, University of Lyon 1,

1988.
[17] V. PAN, Sequential and parallel complexity of approximate evaluation of

polynomial zeros. Comput. Math. Appls 14 (1987), 591-622.

[18] M.S. PETKOVIC, Iterative methods for simultaneous inclusion of polyno-
mial zeros. Springer-Verlag, Berlin-Heidelberg-New York 1989.

FACULTY OF ELECTRONIC ENGINEERING, P.O. Box 73, 18 000 Ni§

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 285-294

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

COMPUTING PSEUDOINVERSES USING

MINORS OF AN ARBITRARY MATRIX

Predrag Stanimirovie

ABSTRACT. In this paper we establish a general determinantal representation of gener-
alized inverses in terms of minors of an arbitrary matrix of an adequate order. Then we
obtain a general algorithm for exact computation of different classes of pseudoinverses:
Moore-Penrose inverse, group inverse, left, right inverses and Radio's and Stojakovie's
inverse. In this way, this paper is a generalization of an earlier paper [12], where an
algorithm for computing of the Moore—Penrose inverse, Radio's and Stojakovie's inverse
is described. We also give some examples which illustrate our results.

1. Introduction

Let Cr xn be the set of m x n complex matrices whose rank is r. Con-
jugate, transpose and conjugate-transpose matrix of A will be denoted by
A, A T and A* respectively. Submatrix and minor of A containing rows

ai...at , a t and columns 	will be denoted by A [01... ot and

A (TT: ../3att) respectively, and the algebraic complement corresponding to

the element aii is defined by

	

a -1 i 	+1 ••• at 	 ai ••• Cap-1p-1 a5+1 ••• at

Air (73: •••••• 4-1 j 14%1 • • • Of) 	(—1)59+ q A (131 • • • N4 -1 t3q +1 • • • 13t)

	

For any matrix A E 	xn, consider the following equations in X:
(1) AX A = A (2) X AX = X (3) (AX)* = AX (4) (XA)* = XA

and if m = n, also

	

(5) 	AX = X A .

1991 Mathematics Subject Classification. 68CO5, 15A09, 65F05.

285

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

286 	 P. Stranimirovi6

For a subset S of {1, 2,3,4, 5}, the set of matrices G obeying the conditions
represented in S will be denoted by A{S}. A matrix G E A{S} is called an
S-inverse of A and is denoted by A(s). In particular, for any A E cm x n

the set A{ 1, 2,3,4} consists of a single element, the Moore-Penrose inverse
of A, denoted by At [9]. In the case m = n, the group inverse, denoted as
A#, of A is the unique {1,2,5} inverse, and exists if and only if ind(A)
min{k : k > 0 and rank(Ak+ 1) = rank(Ak)} = 1.

The starting point of the investigations of this paper is the determinantal
representation of Moore-Penrose inverse, studied in [1], [2], [3], [4], [8]. The
main result of these papers is:

Theorem 1.1. Element at s) - lying on the i-row and j-column of the Moore-
Penrose pseudoinverse of a given matrix A E ermxn is given by

71 (ai) A al j)

1< th 	<n 	\..01 ••• ••• 	" 	
.

(1<i<n

aii 	
 — 	

Tirvi ••• "Yr \ A 01 • • "Yr \ 	 1<j<m) •

i<6.1<...<6r<n A \61 ... 6r I 	51 ... ör

1-y1<••••<ry,• .Ztn

Determinant al representation of the Group inverse of a singular n by n
matrix is introduced in [7]:

Theorem 1.2. The group inverse A# = (4) of A E C 1xn has the follow-

ing determinantal representation:

150, 1 <...<a r <n AT Gali ::: ii ::: °I.3:) 11"' (73: ...• ii ... c,;:
at = -1.0,.<•..<0,-Zn

AT in ••• 'Yr) A (-31. ••• 'Yr)

	

-1<1.1<...<-y,.<n 	k 81 — 6r I ‘ 61 — S r i*
15.81<••.5.6rZn.

For the sake of completeness, in the following definition we unify the
definitions of generalized inverses introduced by M. RadiC [10], [11], M. Sto-
jakoviC [13] and V.N. Joshi [5].

Definition 1.1. Let i, j be integers, 1 < i < n, 1 < j < m. Then the (i, j)-
th entry of Radie's, Stojakovie's and Joshi's generalized inverse A E q.nxn

is defined by

a:3 =

	

(i' 	** 6

it

15.)1 <•••<j<•••<jr <n 	 " 31

1<ii
E { - 1}.

+...+«,-)+01+•••+00 A (r a
P1••• 11cOli‹...<ar<Th.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	

Computing pseudoinverses using... 	 287

For f = 1, we get StojakoviC's definition, and for E =
— 1, we get RadiC's

definition.

Now, we describe the main results of the paper. First we define a general
determinantal representation for the Moore-Penrose, group inverse , and the class of left and right generalized inverses. Later we describe algorithms for
exact computation of generalized inverses based on the introduced deter-
minantal representation. Finally, we give several examples which illustrate
presented theory and algorithms.

2. General determinantal representation

According to Theorem 1.1, Theorem 1.2 and Definition 1.1, we define
a general determinantal representation which includes the determinantal
representations of the Moore-Penrose pseudoinverse and the group inverse.
Also, this determinantal representation represents the class of left and right
inverses for full-rank matrices and generalized inverses introduced by M.
StojakoviC, M. RadiC and V.N. Joshi.

Theorem 2.1. For A E C"' determinantal representation of an (i, j)-
element of an arbitrary le ft and right inverse, the Moore-Penrose pseu-
doinverse, the group inverse, Radie's and Stojakovie's inverse is

	

Ti (ai ..• j ••• at)A (

01 	0t
 ai ••• j ••• at)

1 <01 <...<0,<n 	01 	0t 	' 1

<ai<•••<at <m
Rol .•• 7e) 	Y1 •••

k

1 <61<...<5,<n 	61 ••• 64 	61 ••• 6s 1
1 	<...<"yt <m

where R E Crmxn and t = r c (A) < r < min{m,n} is the greatest integer
which ensures DET(R ,t) (A) # 0.

For the briefness sake, we denote the numerator of the expression (2.1)
by A1 13. 't) and call it the generalized algebraic complement corresponding to
element a ii . The denominator is shortly denoted by D ET(x t)(A), and it is
called the generalizd determinant.

Proof. Consider the following cases:

1. Suppose that t = m < n. Using the Laplace's development for the
square-minors A (.711), we get

(2.1) 	gij =

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

288 	 P. Stranimirovie

[r

DET(R,m)(A) = E w(j -. ..-. z) E • atj• k Asj•,
ii <•••<.i. 	 k=1

n 'E E
1= 1 	I ji <•..<jm

A".11 	I

1) =

n

ail A(iiR'rn)
1=1

For two integers p # q, 1 < p, q < rn, substituting in the minors of A

the q-th row by the p-th row, and using

DET(R , m)(A) = 	E 	••') A (Tn = 0,
1 31 ••• 3m 	31 ••• 3m

31<•••<im

1=1
gij= 6ij DET(R, m)(A), and consequently A • Ai -Ftl 	= 	for arbitrary R.

It means that 	 m) 24-1(R 	represents the class of right inverses of the full-rank

matrix A.

On the other hand, it can be proved that A(R1 .) , in the case t = n < m,

represents the class of left inverses of A. Now, it is obvious that (2.1)

represents the general determinantal representation of right/left inverses of

a full rank matrix A.

2. For R = A, we obtain determinantal representation of At, presented in

Theorem 1.1. In this case, r c (A) = r, which represents the known result in

[4].

3. If m = n, ind(A)= 1 and R = A* the determinantal representation of

the group inverse is obtained (Theorem 1.2).

4. If r = re(A) and a matrix R satisfies condition

T?) = K • t(i14---Fir)+01+..•4-jr) where K E C, E — 1 , 1 ,

(1)
for all combinations 1 < i 1 < 	< it < in; 1 < j1 < 	< jr < n,

then, in the case c = 1, the inverse A(1 0 is equal to the StojakoviC's inverse

and reduces to the Radii's inverse in the case e = —1 (Definition 1.1).

5. If A is regular square matrix, then (2.1) reduces into the well known
inversion of regular square matrices, for an arbitrary regular matrix R of an

adequate size. 	❑

Note that the partial cases 4. and 2. are studied in [12].

The relation E a A (R' rn) = 0 can be proved in the same way. Hence, _ pi_ ig

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Computing pseudoinverses using... 	 289

3. Algorithms

In this section we give a high-level description of the algorithms for com-
puting generalized inverses. Theoretical base of these algorithms is contained
in Theorem 2.1.

In all presented algorithms complex and rational numbers are represented
by an adequate union in programming language C, called the internal form
of numbers. The internal form of a given matrix A is the two-dimensional
array or the binary tree of the internal forms of the elements of A. Addition,
subtraction, multiplication and division of complex or rational numbers in
the internal forms are denoted by €1) e 	0, respectively (so called
makrooperations).

Various implementation details about the generating combinations are
presented in [6].

Here presented procedures receive the following global parameters:
o S: the actual value of DET(Rm(A).
o p(1 : n), q(1 : n): The sequences representing combinations of rows

and columns of A respectively.

Now, we describe algorithm for computation of DET(R , k)(A) of a rectan-
gular matrix A E Ck" k , such that r c (A) = k. In the algorithm a combination
1 < q1 < 	< qk < it of rows or columns of A is fixed.
procedure D 1 (n,k,x,y,1g)

o n, k < n: The number of rows and number of columns.
o x, y: The internal forms of A and R respectively.
o lg: The indikator.

begin
Step 1: p(1 : k) 	(1 : k) ;
Step 2: A while cycle which terminates when all the combinations

M=

Step

A [Pi'

A

A

2.1:
1 < pi <

::: 	i:1,

[1 19i 	 ::: pkk 1,
[Pq: ::: Pq:1

Compute
< pk < n are generaed.

det(M) and det(M1),

lg = 1
1g = 2 	Ml =

, 	lg = 3

using

R L

R

R

x and

...k J ' k 1

	

1. pi 	Pk

{

Pi Pk

ql qk

y, where

19= 1

lg = 2

= 3 .

Step 2.2: S 	S det (M 1) det(M).
Step 2.3: Generate a new combination 1 < p1 < 	< pk < n.

end D1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

290 	 P. StranimiroviC

In the following procedure D2 is described the algorithm for computa-

tion of DET(R,i)(4), where A E C"a " n is a matrix, such that 1 = rc (A) <
min{m, n}. The main part of this algorithm is a cycle generating all combi-
nations 1 < ql < < qi < n and calling the procedure D 1 (m,1,x,y,3).

procedure D2 (m,n,1,x,y)
o in, n : The number of rows and the number of columns respectively.

o / = re(A) < min {m,
o x, y: The internal forms of A and R, respectively.

begin
Step 1: q(1 : /) 4-- (1: /) ;
Step 2: An while cycle, which terminates when all of the combinations

1 < ql < 	< qi < n are formed. In the cycle perform:

Step 2.1: D1 (m,1,x,y,3);
Step 2.2: Generate a new combination 1 < ql < 	< qi < n.

end D2

Finally, the algorithms D 1 and D2 are used in the following procedure D,

which computes DET(i, t)(A), for t = rc (A).

procedure D(1,m,n,x,y)
o 1= rc (A): Dimensions of square submatrices of A and R.

o m, n : Dimensions of the given matrix A.

begin
S 	0
if / = n < m then 	D 1 (m,n,x,y,1)

else if 1 = m < n then 	D i (n,m,x,y,2)

else 	D 2 (m,n,1,x,y)
end D

In the following procedure I, we describe the algorithm for exact compu-

tation of generalized inverses.

procedure /(m,n,x,y,G) { Computing the generalized inverse G of A.}

o in ,
n : The number of rows and number of columns of A, respectively.

o x, y: The internal forms of A and R, respectively.

o G = (g,j) : The internal form of computed generalized inverse of A.

begin
Step 1: t 	rank(A) + 1

repeat
t 4-- t - 1; 	D(t, m, n, x, y)

until S# 0
Step 2: p(1 : t) 	(1 : t) ; 	q(1 : t) 	(1 : t) ;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Computing pseudoinverses using... 	 291

Step 3:
for w= 1:n do
for v = 1 : m do

Step 3.1: suma 	0
Step 3.2:

A while cycle over the combinations 1 < p l < 	< pi < m
A while cycle over the combinations 1 < q l < 	< qt < n

In the while cycles perform step a, step b and step c.
Step a: if (q[k] = w) and (p[1] = v) then

{1 < k < t , 1 < 1 < t}
Step a.1: Form R [p ' q 	Pq:], A„„, { qPii 	Pq: , using y and x.

Step a.2: 	suma 	su 	 pi .•. Pt) soma(})R (Pq: :;:) Avw (qi q,

Step b: Form a new combination 1 < q l < ...qt < n
Step c: Form a new combination 1 < p l < ...Pt < m

Step 3.3: gw, 	suma 0 S
end I

4. Numerical examples

If a matrix R runs over the set of m by n matrices, in (2.1) we get various
definitions of generalized inverses.

1. If r = re(A) and a matrix R satisfies condition (1), then A -1 is ASR
equal to the Stojakovie's inverse, i.e. the equivalent Joshi's inverse, in the
case e = 1 and the Radio's inverse, in the case e = —1.

11 	23

For example, consider the matrix A = (2 15 1)

3 	2 234
. Using R =

20 — 7 233 (2 0 —2) k 1 1 0 we get the following Stojakovie's inverse of A:

6

	

440191 	9

	

1 	1320573

(

	

A1 — 	139335 	366975

	

(R,2) — 	88288200133388 	44

	

522 	113722000571 079351

Using fixed point representation for the elements in A, i.e.
A= (5.50000000000000000 1.53333333333333344 1.000000000000000001

k 0.14999999999999999 —0.28571428571428569 1.00429184549356232)
and the same matrix R we get the following Stojakovie's inverse of A:

0.1331240302505049270 —0.4693265726317288330
ASR 	(•0 0.1582665252129189510 	0.8336722013853078430) (R 2) = 	 . —

	

0.0251424949624140422 	1.3029987740170365700

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

292 	 P. Stranimirovie

2. Furthermore, if R = A satisfies (1), then 24-R r) 1 = At, and both gen-
eralized inverses are identical to the Stojakovie's or the Radio's generalized
inverse.

5729 	5729
1 	327 	327

Concertly, for R = A =

	

n 5729 	5729

	

327 	327 we get the following

5729 	0 -5729
327 	 327

Moore-Penrose inverse of A, which is identical to the Stojakovie's inverse of
A:

A -1 = At = (R,z)

(2008044837
256295929

2008044837
256295929

0

0

2008044837
256295929

2008044837
256295929

2008044837
256295929

0

2008044837
256295929

3. If A E en" and R = A we get A (-11 7) = At.

	

175 	175

	

(23 	° 	23
175

0 1
For example, if we use R = A = 	175 	13 	52235 	,

	

46 	13 	46
175

	

0 	1 	23 13

then is obtained

192878339 201395239 4258450 201395239
497627891 995255782 497627891 995255782

A -1 	= At = (R,2)
1684865000 1263648750 421216250 2263648750
497627891 497627891 497627891 497627891

655721205 1075979571 1281633260 1075979571
497627891 995255782 995255782 995255782

4. For a square matrix A, such taht ind(A) = 1 and R = A* we get
A-1 m) = A#. For example, let (R,

21.93 - 3i 4.
275

9.13570 + 2950.847251
35917

11.35 35.75 - 2i 0 1257420
A = 257384

91584
12 + 151

213574 i =
23 5762403

183294
159384 - 135i 109825.23 0.000579

7359

Using R = A*, we get the following group inverse, approximately:
(-0.006 - 0.011i

A# = 	-0.029 + 0.011i
167.245 - 23.231i ,

0.000001

-0.00003
0.00002
0.05330

+ 0.00001i
+ 0.00007i
- 0.392651

0.000001

0.000004 + 0.0000011
-0.000004 + 0.0000011

-0.0109 + 0.0004i
0

-0.0057

0
0.00001

- 0.00073i
0

1 ... 0 0 ... 0

5. For A E Cm"' using R o
o
••• 	•••

..................
o

o o
••• 	••• 	•••

o
o
•••

(H, 0)
 0 0

E CmXrt , we

0 ... 0 0 ... 0
obtain

0

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

0 I 0) 	, 	• the following

1 00

000

and the following algebraic

A (R 'r) — ii 	—

Generalized inverse of

 1

Computing pseudoinverses using...

DET(R, r)(A) =
A (11 ::.. r) ,

complement of the element a id :

	

{ 0, 	 for j > r or i > r

Ali
(1 	... i 	... r'\

	

3 	1 ...i ...r) 	' 	for j, i < r .

A is equal to

	

A11 (1 ::.• r) 	Ad. (11 i rr) 	0

	

Air (i i r) 	Arr (1 —r

	

1...r) 	0

	

0 	 0 	0
...

	

0 	•• • 	 ..d

0\

0

0

-6 1

293

A(R,r)

	

— A (1 	... r)

	

■ I 	... 	r/

	

Concretly, for A = (U-

	115 4-'-71)

—3 —3
12

56

	

1 	72 26 and R = 3
14 	1
3 	17

1 	0

13

13
right generalized inverse of A is obtained :

10652600 8558144 	1364947612

(R,2) — (

	

71862350686682429851307 	

80453763

8939307

7857808
6188751

26817921

160907526

1097248

6188751

A 	_ 	35980 	3615752 	7448669

6188751

0

0) * 0

5. Conclusion

The memory requirements of the above presented procedures for A E
Crnixn are two r c (A) x r,(A) matrices. The advantage of the presented
algorithms is in their generality, induced by theoretical weight of Theorem
2.1. The efficiency of these algorithms is identical to the efficiency of the
algorithms presented in [12].

References
[1] ARGtimIADE, E. DRAGOMIR, A., Une nouvelle definition de !'inverse generalisee

dune matrice, Lincei - Rend. Sc. fis. mat. e nat. XXXV 35 (1963), 158-165.
[2] BEN-ISRAEL, A., Generalized inverses of matrices: a perspective of the work of

Penrose, Math. Proc. Camb. Phil. Soc. 100 (1986), 407-425.
[3] GABRIEL, R., Extinderea complementilor algebrici generalizati la matrici oarecare,

Studii si cercetari matematice 17 -Nr. 10 (1965), 1566-1581.
[4] GABRIEL, R., Das uerallgemeinerte Inverse einer Matrix, fiber einem beliebigen

Kiirper - analytish betrachtet, J. Rewie Ansew Math. 244(V), (1970), 83-93.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

294 	 P. Stranimirovk

[5] JOSH!, V.N., A determinant for rectangular matrices, Bull. Australl. Math. Soc.

21 (1980), 137-146.
[6] LIPSKI, W, Combinatorics for Programmers, Mir, Moscow, 1988. (in Russian)

[7] MANJUNATHA, K.P., BHASKARA RAO AND BAPAT, R.B., Generalized inverses over
integral domains. II. Group inverses and Drazin inverses, Linear Algebra Appl. 146

(1991), 31-47.
[8] MooRE, E.H., General Analysis, Part I. The Algebra of Matrices, (compiled and

edited by R.W. Barnard, The Amer. Philos. Soc., 1935.
[9] PENROSE, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51

(1955), 406-413.
[10] RADIO, M., Inverzija Pravokutnih Matrica, Doktorska disertacija, 1964.

[11] RADIO, M., A definition of the determinant of a rectangular matrix, Glasnik ma-

tematitki 1(21)-No. 1 (1966), 17-22.
[12] STANIMIROVIo, P., STANKOVIa, M., Computing pseudoinverses of rectangular ma-

trices in terms of square submatrices, VIII Conference on Applied Mathematics,
Tivat (1993), 207-216.

[13] STOJAKOVIo, M. , Determinante nekvadratnih matrica , Vesnik D.M.N.R.S. 1-2

(1952), 9-21.

UNIVERSITY OF 	FACULTY OF PHILOSOPHY, DEPARTEMENT OF MATHEMATICS,

CIRILA I METODIJA 2, 18000 Ni§, YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis") 9:2 (1995), 295-302

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ON TRANSLATING MODULA-2 PROGRAMS TO C:

LOCAL PROCEDURES AND MODULES

Lehel Szarapka and Dragan Maulovie

ABSTRACT. This paper demonstrates techniques that enable efficient translation of Mo-
dula-2 programs to C. It focuses on a key problem that appears during translation: local
procedures and modules. The techniques are presented via examples. For the sake of
readability, instead of C a subset of Modula-2 (called Flat Modula-2) is used as a target
language.

Introduction

Modula-2 [1] is a high-level programming language designed by Prof.
Niklaus Wirth at the ETH, Zurich. Its key design goal was simple and
elegant support of modular programming which is the most important step
towards programming in the large.

C [2] is a low-level programming language designed to help reimplemen-
ting UNIX'. In spite of its consistent inconsistency and poor design, C is
a wide spread programming language. Because of that, it has been recog-
nized lately as a platform independent assembly language thus giving rise
to a slightly different approach to compilation: translation to C as a target
language. Such compilers are more portable than "classic" compilers, even
those which choose a form of pseudo code as a target language.

Following the tradition of Algol-like languages, Modula-2 admits decla-
ration of procedures and modules local to other procedures. On the other
hand, C does not allow declarations of functions local to other functions.
Thus local modules and procedures present a key problem that a translator
to C has to take care of [3, 4]. This paper presents a set of techniques that
solve the problem.

1991 Mathematics Subject Classification. 68N20.
Key words and phrases. translation, nested procedures, nested modules.
'UNIX is a trade mark of AT&T Bell Labs

295

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

296 	 Lehel Szarapka and Dragan MaAulovi6

For the sake of readability, instead of C a subset of Modula-2 (called
Flat Modula-2) is used as a target language. Flat Modula-2 does not allow
declarations of modules, procedures, types and constants local to other pro-
cedures. Thus, translation of Flat Modula-2 programs to C is an one-one
mapping and shall not be discussed here because there are several public
domain translators from restrictions of Modula-2 (similar to Flat Modula-2)
to C (e.g. [4]). Some examples of translating Flat Modula-2 to C can be
found in Appendix A.

The rest of the paper is organized as follows: Section 1 describes two
major techniques upon which the translation process is based. Section 2
handles constant and type declarations, Section 3 handles local procedures,
while Section 4 discusses local modules. Section 5 concludes the paper.

1. Two major techniques

The translation process is based on two major techniques:

(1) globalization of local entities that are not local variables and

(2) systematic renaming.
The basic idea is simple: all the local entities (except local variables) are
taken out of the procedure declaration and are declared globally. This is the
only way to take care of local procedures and modules. At the same time,
globalization gives an elegant solution to local type and constant declara-
tions. In order to prevent name clashes, a systematic renaming is performed.
Because names are of no relevance to the compiler, a brute force approach
can be employed. We would like to stress that the resulting code can be
compiled as efficiently as the original code.

Naturally, several well known techniques are used to support the basic
ideas: symbol table, extension of procedure signatures, dependency analysis
... Instead of a formal treatment, the fundamental ideas shall be presented

through examples.

2. Constant And Type Declarations

Constants and types declared in a procedure are taken out of the pro-
cedure and are declared as global entities. For example, see Figure 1 (the

identifier X' is a renamed identifier X). This is an example that gives also
a motivation for the approach. The translation process makes procedure Q a

global procedure. Thus, both constant C i and type T1 (modulo renaming)

have to be declared as global entities.

3. Local Procedures

Let us recall that all local procedures are taken out of the procedure

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

--+

(* Flat Modula-2 code
MODULE M;

CONST Co = ...;
TYPE 7;`, = ...;
CONST C; = "A";
TYPE T1 = ...;

*)

PROCEDURE Q(a : 771; n: CHAR);
BEGIN

END Q;

PROCEDURE P(...);
VAR 	x : 7'1;
BEGIN

Q(x, CI);
END P;

END M.

On Translating Modula-2 Programs to C 	 297

(* Modula-2 code
MODULE M;
CONST Co = •
TYPE To = 	;

PROCEDURE P(...);
CONST C, = " A";
TYPE T1 = ...;
VAR 	x : 7 1 ;
PROCEDURE Q(a : 7 1 ;

n : CHAR);
BEGIN

END Q;
BEGIN

Q(x, CI);
END P;

END M.

Fig. 1: Constant and type declarations

(* Modula-2 code *)
MODULE M;

VAR x : 	;

PROCEDURE P;
VAR y : ...;

PROCEDURE Q(z:...);
BEGIN

y := ...;
x := ...;

END Q;
BEGIN

Q (7)
END P;

END M.

(* Flat Modula-2 code *)
MODULE M;

VAR x : 	;

PROCEDURE Q(z:...; VAR y :
BEGIN

y := ...;
x := ...;

END Q;

PROCEDURE P;
VAR y : ...;
BEGIN

Q(7, y)
END P;

END M.

Fig. 2: Side effects

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

298 	 Lehel Szarapka and Dragan Ma§uloviC

(* Modula-2 code *)
MODULE M;

VAR x : .

PROCEDURE P;
VAR y : ...;

PROCEDURE Q1(z : ...);

BEGIN
y :=

END Q1;

PROCEDURE Q2(u : ...);
BEGIN

Q1(10)
END Q2;

BEGIN
Q1(6);
Q2(7)

END P;

END M.

(* Flat Modula-2 code *)
MODULE M;

VAR x : 	;

PROCEDURE Q1 (z : . . . ;
VAR y : ...);

BEGIN

Y := • •
END Ql;

PROCEDURE Q2(u : ...;
VAR y : ...);

BEGIN
Q1(10, y)

END Q2;

PROCEDURE P;
VAR y ...;
BEGIN

Q1(6, y);
Q2(7, y)

END P;

END M.

Fig. 3: More side effects

they are declared in and are made global entities. This raises a couple of

problems:

(1) (mutually) recursive procedures and
(2) side effects.

3.1. (Mutually) Recursive Procedures.
Recursive procedures are handled easily, because C supports recursive

procedure calls. Mutually recursive procedures are detected using standard
dependency analysis algorithm and are translated to a sequence of C proce-
dures preceeded by a set of prototypes.

3.2. Side Effects.
Local variables, of course, remain local. The problem arises when nested

procedure uses local variable whose nesting level is less then or equal to

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

(* Modula-2 code *)
PROCEDURE Q;

Deels for Q

MODULE M1;
Consts, Types 4 VarsI
Procedures

BEGIN
I Body of M1

END Mi ;

BEGIN
Body of Q

END Q;

(* Flat Modula-2 code *)
PROCEDURE Q;

Decls for QI
Consts, Types & VarsI
Procedures'

BEGIN
Body of Ml
Body of QI

END Q;

On Translating Modula-2 Programs to C 	 299

Fig. 4: Local modules

the nesting level of the procedure itself (this situation is known as a side
effect). After globalization of a nested procedure, local variable declared in
the surrounding procedure is no longer available to the globalized procedure.
Consider an example given in Figure 2. Procedure Q changes the variable y.
After globalization, procedure Q does not have access to variable y.

The best solution is to extend the signature of (previously) nested proce-
dure and to pass the variables as VAR parameters. This change is recorded in
symbol table in order to extend the signature in procedure calls as well. In
our example this means that after globalization another formal parameter
has to be introduced to procedure Q.

Unfortunately, the problem is not as simple as it has just been presented.
There are situations in which a local procedure does not have side effects,
but it depends upon other local procedures which do have side effects. Sig-
natures of such local procedures have to be extended, too, in order to obtain
correct translation. These situations are easily discovered (an unavoidable
dependency analysis does the job), and are recorded in symbol table. As
an example, consider the module and its translation given in Figure 3: al-
though procedure Q2 does not change variable y, it calls procedure Qi that
does change the variable. This is why the signature of procedure Q 1 has to
be extended, too.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

300 	 Lehel Szarapka and Dragan MaAulovi6

4. Local Modules

Local modules serve only one purpose: to regulate the visibility and acces-
sibility of identifiers. Systematic renaming and symbol table book-keeping
during the translation process can take care of these tasks. Therefore, the
translation of local modules is straightforward: the module bounds are bro-
ken, the identifiers renamed (having in mind the IMPORT/EXPORT lists) and
the declarations are included in the surrounding environment. The body of
the local module is moved to the beginning of the body of the surrounding
entity (another module or procedure). Thus, the semantics of the initial-
ization part of the module is preserved, as well as the initialization order.
After all the local modules are removed, previous procedures can be applied
to flatten the code. All these ideas are demonstrated in the example in
Figure 4. It shows a procedure and its translation.

5. Conclusion

The paper has presented basic ideas upon which a translator of Modula-
2 programs to C can be based. It has payed attention to translation of
procedures and modules local to other procedures and modules, because
other Modula-2 language constructs are easily translated to equivalent C
constructs. Systematic renaming and globalization of local entities have
appeared as key techniques in the process of translation.

The translation process requires two passes. In the first pass the symbol
table has to be constructed and all the dependency analyses performed. The
first pass can also break local modules and take care of renaming. After the
first pass has been completed, the code can be generated in the second pass.
Since all the checkings and analyses have been performed in the first pass,
the second pass can be carried out very quickly.

Appendix A: Translating Flat Modula -2 to C

In this appendix some Flat Modula-2 programs are translated to a C
equivalent just to give the reader a raw idea how the task can be performed.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

On Translating Modula-2 Programs to C
	

301

(* Flat Modula-2 code *)
MODULE M;

CONST C,o =
TYPE 7'4 = .

PROCEDURE P(...);
BEGIN

B1

/* C code */
#define Ca
typedef 	7'4;

void P(. .) {

}

END P;

int main() {
	

}

END M.

(* Flat Modula-2 code *)
MODULE M;

VAR x : 	;

/* C code */
x;

void Q1(... z; .

• 	

*y) {
*y = ...;

}

void Q2(... u; .

• 	

*y) {
Q1(10, y)

}

void P(void) {

Y;

Q1(6, &y);
Q2(7, &y);

}

int main() {
	

}

PROCEDURE Q1(z:...; VAR y:...);
BEGIN

y :=

END Q1;

PROCEDURE Q2(u:...; VAR y:...);
BEGIN

Q1(10, y)
END Q2;

PROCEDURE P;
VAR y : ...;
BEGIN

Q1(6, y);
Q2(7, y)

END P;

END M.

References
[1] N. WIRTH, Programming in Modula-2, 4th Ed., Springer-Verlag, Berlin, 1988.
[2] B. W. KERNIGHAN AND D. M. RITCHIE, The C Programming language, Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.
[3] N. SUNDARESAN, Translation of Nested Pascal Routines to C, SIGPLAN Notices,

May 1990, pp. 69-81.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

302 	 Lehel Szarapka and Dragan MaAulovio

[4] M. MARTIN, Entwurf and Implementierung eines Ubersetzers von Modula-2 with C,
Diplomarbeit, Universitat Karlsruhe, Fakultat fiir Informatik, 1990.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF NOVI SAD, TRG DOSITEJA OBRADO-

VICA 4, Novi SAD, YUGOSLAVIA

E-mail address: ilehelOunsim.ns.ac.yu

INSTITUTE OF MATHEMATICS, UNIVERSITY OF NOVI SAD, TRG DOSITEJA OBRADO-

VIC. A 4, Novi SAD, YUGOSLAVIA
E-mail address: masulliunsis.ns.ac.yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 303-313

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

DETERMINING MODULE DEPENDENCIES

IN MODULAR PROGRAMS

Lehel Szarapka and Zoran Budimac

ABSTRACT. A short and precise algorithm for determining a module initialization or-
der in modular programming languages is described. This algorithm is compared with a
classical technique of dependency analysis of module names. It is also shown how an
algorithm for determining a module compilation order is drawn from a given algorithm.

1. Introduction

Modular programming languages enable division of a program into a set
of modules that limit the scope of their identifiers. In this way is the design
and maintenance of large programs easier, especially in team projects.

An identifier from module A is visible in module B if it is exported from module A and imported in module B. Exporting and importing of identi-
fiers is achieved by specialized programming language constructs. Among
the most popular modular languages (Ada, Modula-2, Modula-3, ...) the
definition of (every) module M consists of (at least) two parts:

(1) an interface (or definition module, package specification, ...) of the
module M, which lists all identifiers which module M exports,

(2) an implementation (or simply module, package, ...) of the module M,
which implements (i.e., defines exported identifiers) the interface of
module M.

In the rest of the paper we shall assume that a main (i.e., program) module
contains a "dummy" interface. In this way all modules have interface and
implementation parts. An implementation of a module can have (possibly

1991 Mathematics Subject Classification. 68N20.
The second author is supported by Science Fund of Serbia, Grant #0403 through

Mathematical Institute, Belgrade.

303

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

304 	 Lehel Szarapka and Zoran Budimac

empty) initialization part: the sequence of statements to be executed before
the main program starts its execution.

Both interface and its implementation can import identifiers from other
modules, via the special language constructs (import lists). The scope of the
imported identifiers is only the module that has imported them.

Implementations of truly modular programming languages (Ada, Modula-
2, Modula-3, Oberon, Oberon-2) should keep a complete "bookkeeping" of
their modules to correctly maintain a module compilation order and initial-

ization order. Implementations of other programming languages that only
enable independent compilation (C, C++) are usually supported by separate
utilities (for example make) to do the same task.

In this paper the algorithms for both activities are presented. It is shown •
how the algorithm for determining compilation order can be successfully
drawn from an algorithm for determining initialization order, thus merging
two activities into only one. The main contribution of the paper however is
a construction of a small and efficient algorithm that can be included into
a compiler of a modular language, which precisely determine the module
initialization order. This is especially important in the presence of circular
dependencies among modules, where many programming languages allow
uncertainty.

The rest of the paper is organized as follows. The second section empha-
siies the importance of the module compilation and initialization order and
different approaches to its determination. The third section describes de-
pendency analysis - a "classical" technique for determination of dependency
order. The fourth section introduces the new algorithm, while the fifth sec-
tion compares two approaches. The sixth section extends the algorithm for
initialization order to an algorithm for compilation order. The last section
concludes the paper.

2. Definitions and previous work

2.1 Initialization order.
According to definitions of all modular programming languages, an ini-

tialization part of every implementation of a module M is to be executed:

(1) exactly once,
(2) after initialization parts of all modules (in arbitrary order) which

module M imports, and
(3) before execution of the main program.

Definition 1. Initialization order is the order in which all modules consti-

tuting the program are initialized, such that the above three conditions are
fulfilled.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Determining Module Dependecies in Modular Programs 	 305
1

Example 1. Let module A import modules B, C and D, and modules B,
C and D import nothing (which means, that they are independent of other
modules.) The initialization order is the following: (B, C, D), A, where the
order of B, C and D is arbitrary.

In languages where mutual imports (i.e., circular dependency) of mod-
ule implementations is allowed, the initialization order is undefined (see for
example [7] and [3] for Modula-2 and Modula-3 respectively.)

Example 2. Let module A import modules B and D, module B import
module C, module C import module E and module D is independent. The
structure of the modules is the same as in Figure 1 except that modules C
and D are not connected. The possible initialization orders are the following:
E, C, B, D, A, or E, C, D, B, A, or E, D, C, B, A, or D, E, C, B, A.
Note that module E is always initialized before module C, and module C
is always initialized before module B. Module D must be initialized before
module A.

In real programming projects, circular dependencies among module im-
plementations are not rare. If in such cases the initialization order is not
defined, the programmer alone must take care of the correct and explicit
initialization, to produce reliable and portable code (which is not in the
"spirit" of modular programming languages.)

Example 3. Let module A import module B, module B import module
C and module C import module B (circular dependency among modules B
and C.) Initialization order is the following: (B, C), A, where initialization
order of modules B and C is not defined. Note the difference between this
example and Example 1, where initialization order of modules B, C and D
was arbitrary (and always correct.) In this example the order chosen by the
target compiler might be "incorrect", i.e. different from the programmer's
intentions.

2.2. Compilation order.
According to definitions of all modular programming languages, an inter-

face of module M is to be compiled:

(1) before compilation of implementation(s) of module M and
(2) after compilation of all interfaces that the interface of M imports.

Similarly, an implementation of module M is to be compiled:
(1) after compilation of interface(s) of module M and
(2) after compilation of all interfaces that the implementation of M im-

ports.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

306 	 Lehel Szarapka and Zoran Budimac

Definition 2. Compilation order is the order in which all modules con-
stituting the program are compiled, such that the above four (two + two)
conditions are fulfilled.

Example 4. Let module A import modules B and D, module B import
module C, module C import module D and module D is independent. The
compilation order is the following: D, C, B, A.

In order to make a compilation a deterministic process, circular depen-
dencies among interfaces are not allowed. Note that circular dependencies
among module implementations are allowed.

Example 5. Let module A import module B and module B import module
A. In this case the compilation order can not be established, because it is
not clear which module should be compiled first.

2.3. Previous work.
Most of the research and publicly available compilers of modular pro-

gramming languages:

(1) rely on external tools to establish compilation order and
(2) separately deal with compilation order and initialization order.

For example, MOCKA Modula-2 compiler [4] provides a separate utility
which maintains the dependency graph to establish correct compilation order
of modules. Modula-2* compiler [6] uses also dependency graph to estab-
lish compilation order, but later relies on Unix make utility to maintain it.
Modula-2 implementation described in [5] leaves the responsibility of the
compilation order to the programmer.

Almost all publicly available compilers implement initialization parts of
modules as separate procedures which are called in order of their appearance
in import lists. To avoid multiple calls, an indication variable for every
module is set to TRUE, when initialization procedure is called.

Algorithms and strategies for determining compilation and initialization
order are not publicly available in commercial implementations of modular
programming languages.

In the next section we describe in more detail dependency analysis, as
a tool for establishing correct dependencies. Up to the sixth section, we
concentrate only on algorithm for determining initialization order.

3. Dependency analysis

Dependency analysis is a classical technique applied when exact depen-
dency between some entities is to be determined. As stated in [2], it consists
of the following three steps:

(1) construct a directed graph (dependency graph), such that a node a

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Determining Module Dependecies in Modular Programs 	 307

is connected to a node b if and only if the entity a in a real world
domain depends on entity b,

(2) find all strongly connected components of the dependency graph,
(3) sort strongly connected components of the dependency graph into

dependency order. This is usually achieved by coalescing all compo-
nents into single nodes and by sorting them topologically.

The graph transformed in the described manner shows dependencies be-
tween entities represented as graph nodes, where all nodes coalesced into
one node are mutually (i.e., circularly) dependent. More details about the
construction of dependency order can be found for example in [1] p. 221.

The graph for determining module dependencies consists of module names
(as nodes of the graph) and links between them. More formally, the initial
graph (step 1 of the above algorithm) is constructed in the following' way:

(1) Construct a graph which consists of isolated nodes Mi, i = 1, ...,n,
where Mi , i = 1, n are module names,

(2) Connect Mi to Ali if and only if module Mi imports module M.
Circularly dependent module names can be initialized in any order (which
is in accordance with definitions of most modular languages.)

Dependency analysis is time and space consuming, no matter how effi-
ciently graphs are represented (see the fifth section for details.) Dependency
analysis is therefore not very suitable in direct inclusion in compilers. In the
next section we proceed with a description of a more efficient solution.

4. Another solution

Basic design decisions of the new solution are:

(1) In the absence of circular dependencies, dependency analysis is equiv-
alent to (much more efficient) depth-first search of a graph.

(2) Therefore, circular dependencies have to be resolved in a determin-
istic way, if possible.

The most natural way to resolve circular dependencies in a deterministic way
is to establish a precise initialization order. A natural solution is to initialize
modules in the order in which they appear in import lists. However, the
rule that initialization of a module must be executed after initialization of
all imported modules, must be obeyed. For example, if main module M
imports module A, module A imports module B and module B imports
module A, then the initialization of module B is to be executed prior to
initialization of module A.

Once accepting this principle, an algorithm is simple and straightforward.
The Modula-2 (pseudo-)procedure Analyzel implements the proposed algo-

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

308 	 Lehel Szarapka and Zoran Budimac

rithm. The following variables and procedures are used:

(1) initialization - a list of module names in the initialization order,
(2) InsertBefore(M ,.Module ,List) - a procedure which inserts module

name M before the module name Module in a list List,
(3) Member(M,List) - a function procedure which returns logical truth

value TRUE if name M belongs to a list List,
(4) Intf Of (M) - a function procedure which returns the name(s) of the

interface(s) of module M, and
(5) ImplOf (M) - a function procedure which returns the name(s) of the

implementation(s) of module M.

We shall assume that Intf Of (Impl (module)) is undefined, i.e. returns a
null value, and that Imp]. (Impl (module)) rj Impl (module).

Prior to calling Analyzei, the list initialization contains only the
name of a (main) module implementation. The procedure is as follows.

PROCEDURE Analyzel (module : ARRAY OF CHAR) ;
FOR every import list of module DO

FOR every module name M in import list DO
IF NOT Member(ImplOf (M) , initialization) THEN

InsertBefore (ImplOf (M) , module, initialization) ;
Analyzei(ImplOf (M))

END
END

END

After procedure Analyzel returns, the list initialization contains the
list of module names in their initialization order. Note that initialization or-
der depends only on module implementations, and not on module interfaces.

5. Comparison of two algorithms

Our algorithm gives the same initialization order as dependency analysis,
if circular dependencies are not present among modules. However, when
circular dependencies are present, our algorithm sometimes gives a different
initialization order than dependency analysis.

In the example of module dependencies displayed in Figure 1, A imports B
and D (in that order), B imports C, C imports D and E (in that order), and
D imports C. Dependency analysis gives the following initialization order:
E, (C, D), B, A, where the order of C and D is arbitrary. Our algorithm
however, gives the slightly different, but deterministic initialization order as
follows: D, E, C, B, A. If the order of imported modules of module C were

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Determining Module Dependecies in Modular Programs 	 309

Figure 1. An example of module dependencies

changed into E and D (instead of D and E, as displayed), our algorithm
would give the following order: E, D, C, B, A, which is same as the result
of dependency analysis, but is deterministic. If A would import D before B,
the initialization order would be E, C, D, B, A, no matter what C imports
first, which is again the same as a result of dependency analysis.

Dependency analysis has a computational complexity of 0(n 2), where n
is a total number of modules. Our algorithm has complexity proportional
to hn, where h is the deepest possible nesting level of modules constituting
the program. Since in most cases h < n, the complexity of our algorithm
is 0(n). Only in degenarate cases (when h = n), the complexity of our
algorithm is equal to the complexity of dependency analysis.

However, in reality (i.e., when n is finite) performances of our algorithm
are much better than those of dependency analisys (and better than com-
putational complexity shows.) In the following table some characteristics of
both approaches are compared. Compile-time sizes of implementations of
both approaches are given in the number of lines of source (Modula-2) code,
while the run-time size is given in bytes. Graphs in dependency analysis are
implemented as adjacency matrices of static size, but appropriate dynamic
implementation would not be much smaller.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

310 	 Lehel Szarapka and Zoran Budimac

Feature
	 Dependency 	 Our

	

Analysis 	Algorithm

Speed (29 modules)
	

4.40 sec
	

0.72 sec
Speed (21 modules)
	

3.41 sec
	

0.55 sec

Code size (Compile-time) 	555 lines 	85 lines
Code size (Run-time) 	4450 bytes 	800 bytes
Data size (Run-time) 	340n bytes 	n+16h bytes

6. Compilation order

The algorithm for determining compilation order can be easily obtained
by the appropriate extension of the algorithm for determining initialization
order. Since circular dependencies are not allowed in interfaces of mod-
ules, our algorithm will always give the same results as dependency analysis.
Let us recall that for establishing initialization order only module imple-
mentations are taken into account. In order to produce an algorithm for
determining compilation order, however,

(1) module interfaces have to be taken into account as well, and
(2) a list of visited module names has to be maintained to report any

violation of circular dependency restriction.

Besides the already introduced variables and procedures, the following new
variable and procedures are needed for the implementation of a new algo-
rithm:

(1) visited - a list of visited interface names which are imported from
interfaces,

(2) InsertFront(M, List) - inserts module name M at the front of a
list List,

(3) RemoveFront(List) - removes a module name from the front of a
list List (the above two operations are analogous to the Push and
Pop operations on stacks), and

(4) MakeEmptyList() - returns an empty list.

If the procedure Analyze is to be called to determine compilation order, the
list initialization has to contain the module name to be compiled. If the
procedure Analyze is to be called to determine initialization order, the list
initialization has to contain Impl (module). The parameter check is set
to TRUE if an interface is to be analyzed.

At the beginning the list visited is always set to an empty list and is
made local to the module. This is important because of the detection of
the circural dependencies. When we analyze an implementation module a

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Determining Module Dependecies in Modular Programs 	 311

new list will be created, and a new compilation order check will start. The
algorithm for determining initialization order is not affected.

Because of features of procedures Intf and Impl, the Member (Intf
(module)) (seventh line of the following procedure) returns TRUE if a mod-
ule is an implementation module (because a null value is a. member of every
list.) Similarly, FOR loop (18th line of the following procedure) will execute
only once (for implementation part only).

PROCEDURE Analyze(module: ARRAY OF CHAR; check: BOOLEAN;
visited: List);

IF check THEN
InsertFront(module, Visited)

END;
IF module is animptcnuldation module THEN

IF NOT Member(Intf(module), initialization) THEN
InsertBefore(Intf(module), module, initialization);
IF M1 = Intf(M) THEN

Analyze (M1, TRUE, visited)
ELSE

Analyze (M1, FALSE, MakeEmptyList());
END

END
END;
FOR every import list of module DO

FOR every module mane M in import list DO
FOR M1 := Intf(M) TO ImplOf (M) DO

IF NOT Member(M1, initialized) THEN
InsertBefore(M1, module, initialization);
Analyze(M1, M1 = Intf (M));

ELSE

IF check AND Member(M1, visited) THEN
mport circular dependency;

END
END

END
END

END;
IF check THEN

RemoveFront(visited)
END;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

312 	 Lehel Szarapka and Zoran Budimac

7. Conclusion

An algorithm for establishing initialization and compilation order of mod-
ular programming languages is proposed. Its main contributions are:

(1) it establishes both compilation and initialization order;

(2) it is smaller and more efficient than "classical" dependency analysis,
and this can be included directly into a compiler;

(3) it improves the definition of modular programming languages by in-
troducing deterministic initialization order in case of circular depen-

dencies.
The third improvement of our algorithm over dependency analysis comes

with a cost of producing (in some cases) different initialization order than
dependency analysis would. However, according to [8], the emerging ISO
Modula-2 standard (for example) gives also a clear advantage to the precise
definition of module initialization order than to a classical (and sometimes
vague) dependency analysis.

The presented algorithm can be applied without changes to any modular
programming language regardless of how many interfaces and implemen-

tations of a module M are allowed. That includes languages like: Ada,
Modula-2, and Modula-3. In languages like Oberon and Oberon-2, where
circular dependencies are forbidden in implementation modules as well, a
slight modification is required.

The proposed algorithm is included in a Modula-2 compiler, which is
currently under development at the Institute of Mathematics in Novi Sad.

References

[1] A. Alio, J. HOPCROFT, AND J. ULLMAN, Data Structures and Algorithms, Addison

Wesley, London, 1985.

[2] Z. BUDIMAC, L. SZARAPKA, Z. PUTNIK, AND M. IvANovre, Dependency Analysis in

a Compiler of a Functional Language, Bull. Appl. Math. 1047/94 (LXXIV) (1994),

43-50.

[3] L. CARDELLI, J. DONAHUE, L. GLASSMAN, M. JORDAN, B. KALSOW, AND G. NEL-

SON, Modula-3 Report (revised), SRC of Digital Equipment Corp. and Olivetti Re-

search Center, Palo Alto and Menlo Park, 1989.

[4] H. EMMELMANN AND J. VOLLMER, GMD Modula System MOCKA - User Manual,

University of Karlsruhe, Technical Report, Karlsruhe, Germany, 1994.

[5] L. B. GEISSMANN, Separate Compilation in Modula-2 and the Structure of the Mo-

dula-2 Compiler on the Personal Computer Lilith, Ph.D. thesis no. 7286 ETH Zurich,

Switzerland, 1983.

[6] S. U. HANSSGEN, E. A. HEINZ, P. LUKOWITZ, M. PHILIPPSEN, AND W. F. TICHY,

The Modula-2* Environment for Parallel Programming, Proc. of the Working Conf.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Determining Module Dependecies in Modular Programs 	 313

on Programming Models for Massively Parallel Computers, 1993, Berlin, Germany,
(to appear).

[7] N. WIRTFI, Programming in Modtda-2, fourth edition, Springer Verlag, Berlin, 1988.

[8] M. WOODMAN, A Taste of Modula-2 Standard, SIGPLAN Notices 28 (9) (1993),
15-24.

UNIVERSITY OF NOVI SAD, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS, TRG
D. OBRADOVICA 4, 21000 Novi SAD, YUGOSLAVIA

E- mail address: ilehellunsim.ns.ac .yu

UNIVERSITY OF NOVI SAD, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS, TRO
D. OBRADOVICA 4, 21000 Novi SAD, YUGOSLAVIA

E- mail address: zjlAuns.ns.ac .yu , zjblunsim.ns.ac.yu

•

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 315-324

Filomat '94, NiA, October 22-24, 1994
Geometry. Computer Sciences

USAGE OF S - EXPRESSIONS AND

PREDICATE EXPRESSIONS IN

PROCEDURAL PROGRAMMING LANGUAGES

Tatjana VukeliC and Mirjana Ivanovie*

ABSTRACT.
An extension of a procedural programming language with S-expressions and

predicate expressions is described. Several examples in the field of graph theory, logic and
set theory, hash tables, and sparse matrices are presented.

1. Introduction

Procedural programming languages are still the most frequently used pro-
gramming languages. However, during the last decade many other program-
ming paradigms (functional, logical, relational, etc.) came into the wide us-
age. Various programming languages and programming styles enable more
natural and "simpler" solving of various classes of problems.

Great variety of programming styles lead to development of new program-
ming languages and extensions of existing programming languages. Proce-
dural programming languages are a good base that can be easily extended
with new concepts and elements.

To enhance expressiveness of programming language Modula-2 [4], S-
expressions [1] and predicate expressions (some forms of predicate formu-
las) [3] are included into the language. Modula-2 is widely used procedural
programming language. It has variety of data types and data structures,
supports structured and modular programming style and forces a program-
mer to write clear and readable code. With proposed extensions, Modula-2
programs are even more readable, shorter and simpler than their equivalents
written in "real" Modula-2.

1991 Mathematics Subject Classification. 68N15.
* Supported by Grant 0401A of RFNS through Math. Inst. SANU

315

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

316 	 Tatjana Vukeli6 and Mirjana Ivanovi6

Although extensions described in this paper are part of the extended
Modula-2 (and are implemented by a translator of extended Modula-2 pro-
grams into the "real" ones,) similar extensions can be achieved by abstract
data type mechanism or by building suitable function libraries (in Modula-2
and other procedural languages.)

In the rest of the paper we shall shortly introduce the basic constructs of
extended Modula-2 and then proceed with examples of possible applications.

2. S-expressions and predicate expressions

In this section an S-expression as built-in data type of extended Modula-2
and two new language constructs (predicate expressions and FORALL loop)
are presented.

2.1. S -expressions.
S-expressions are basic data structures in some functional programming

languages. Using Beckus-Naur form, S-expression is defined as follows:

S - exp 	= atom I "(" S-exp-list ")"
S- exp- list 	= S-exp I S-exp "." S-exp I S-exp S-exp-list

atom 	= symbolic-atom I numeric-atom

numeric- atom = integer-atom I real-atom

The empty S-expression is denoted as nil. The following two conventions
hold for S-expressions:

(1) .nil can be omitted (i.e., need not be written down), and

(2) . (and corresponding) can be omitted.

S-expression is a built-in data type of extended Modula-2 and is denoted

as SExp (but it also can be implemented as an abstract data type [1].) SExp

is supported with the set of primitive functions, predicates, arithmetic op-
erations and input-output operations.

Examples of possible operations over S-expressions are [2] (for every S-

expression e, e l , and e2):

(1) Hd(e) - returns e l if e is of the form: (e 1 . e2),

(2) T1(e) - returns e 2 if e is of the form: (el . e 2),

(3) Add(ei, e 2) - returns the sum of two numerical atoms e 1 and e2 ,

(4) Mul(ei , e2) - returns the product of (numerical atoms) e 1 and e2,

(5) e l : : e2 - returns a new S-expression of the form (el . e2),
(6) e 1 ++ e2 - appends two S-expressions giving a new one.

An empty S-expression is in extended Modula-2 denoted as NULL (i.e.,

NULL is a constant value of the type SExp). Some of the built -in functions over

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Usage of S-Expressions and Predicate Expressions... 	 317

S-expressions could be implemented as operators (function Add, for example
could be implemented by "overloading" operator +). First experiences show
however, that chosen set of functions and operators (as presented in this
section) enables best readability of resulting programs.

As an example of programming with S-expression, we quote the implemen-
tation of procedure ListOfPair(el, e2: SExp): SExp which returns the
following S-expression: ((el e2)), i.e. ((el .(e2 .nil)) . nil).

PROCEDURE List0fPair(el, e2: SExp): SExp;
BEGIN

RETURN (el 	(e2 :: NULL)) :: NULL
END ListOfPair;

2.2. Predicate expressions.
Predicate expressions are special kind of expressions [3] based on formulas

of first order predicate calculus. In an extended Modula-2, they have the
following form (given in extended Beckus-Naur form:)

PredExp 	= PredSym Ident {"," PredSym Ident}
"I" WhereFrom {"," WhereFrom}
"WHERE" Condition {"," Condition}.

WhereFrom = Ident "IN" Domain.
PredSym 	= "EVERY" I "EXIST".
Domain 	= Ident I Set I Interval I S -exp I Array.
Interval 	= "[" LowerBound " " UpperBound "]".

where Condition is a standard Modula-2 expression, whose value is a
logical truth value. The value of predicate expression has a logical truth value
as well. Predicate expression can also be implemented as abstract data types
and supported with suitable functions, but then the corresponding programs
would be less readable.

A following predicate expression:
EVERY x I x IN X WHERE Condition

can be read as "is it true that every x from X fulfills the Condition?" This
expression returns TRUE if for all elements x from X the value of the (boolean)
expression Condition is TRUE.

A following predicate expression:
EXIST x I x IN X WHERE Condition

can be read as "is it true that there exists at least one x in X such that
Condition is fulfilled?" This expression returns TRUE if for at least one
element x from X the value of the (boolean) expression Condition is TRUE.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

318 	 Tatjana Vukelk and Mirjana Ivanovi6

Predicate expressions can be used with S-expressions, sets, arrays, and
intervals. Arrays and intervals (i.e., subranges) are the same as in "real"
Modula-2. Sets are however, more general. The elements of Set in extended
Modula-2 [3] can be of arbitrary data types (simple or composite) and car-
dinality of a Set is not limited. All the types of set elements must be the
same (like in "real" Modula-2.)

2.3. FORALL loop.
Usage of S-expressions and predicate expressions is immense in various

areas and in solving of different problems. However, to make this usage
simpler and more powerful, we introduced a new kind of FOR loop called

FORALL loop. A new loop could be defined by the following rule of
extended Beckus-Naur form:

ForAllLoop = "FORALL" Identifier "IN" Domain "DO"
Statements

"END".

Domain in FORALL loop is the same as domain in predicate expression,
and Statements are all available statements in extended Modula-2, including
FORALL. Statement

FORALL x IN X DO Statements END
means that statements inside FORALL loop are executed for every element x
that belongs to S-expression, set, array or interval X.

In the next section we proceed with some possible applications of S-
expressions and predicate expressions: hash tables, graphs, sets, sparse vec-
tors and matrices. Using S-expressions and predicate expressions, simpler
and more readable programs are obtained.

3. Possible applications

3.1. Hash tables.
A hash table is one of the most popular structures for fast data retrieval.

It is most often used with dictionaries. A dictionary is presented as a hash ta-
ble, and consists of n ordered sets. Every set is presented as an S-expression.
Hash function is a function that transforms a word into a number between
1 and n. Value of the hash function determines a set that the word belongs
to.

Definition of a hash table can be (in extended Modula-2) as follows:

CONST n = 211;

TYPE 	HTab = ARRAY ijl..n] OF SExp ;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Usage of S-Expressions and Predicate Expressions... 	 319

Procedure Initialize initializes elements of a hash table:

PROCEDURE Initialize(VAR HT: HTab);
VAR i: [1..n] ;
BEGIN

FORALL i IN [1..n] DO HT[i] := NULL END
END Initialize;

Procedure Found checks if a word belongs to a dictionary:
(1) by the hash function HashFun the word is transformed into a hash

value (number k)
(2) if the word belongs to the set that contains all words with the same

hash value k, function returns TRUE.

In the following procedure we shall assume that the data type String
exists and that it is implemented as a fixed-length array of characters.

PROCEDURE Found(Word: String; HT: HTab): BOOLEAN;
VAR x: String;
BEGIN

RETURN EXIST x I x IN HT[HashFun(Word)] WHERE x=Word
END Found;

Procedure Store stores a word into a hash table.

PROCEDURE Store(Word: String; VAR HT: HTab);
VAR pos: [1..n];
BEGIN

pos := HashFun(Word);
HT[pos] := Word :: HT[pos]

END Store;

Graphs.
A graph G consists of

(1) set V, whose elements are called nodes and
(2) set of pairs E, whose elements are called edges.

Graph can be defined using adjacency lists. To every node, a list of
adjacent nodes is attached. Graph can also be defined as a list of edges. An
edge is represented as a pair of nodes, which it connects.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

320 	 Tatjana Vukelk and Mirjana Ivanovk

TYPE node = CARDINAL;
edge = RECORD cl, c2 : node END;
Graph = RECORD nodes : SET OF node;

edges : SET OF edge
END;

Graph is connected if there is a path between every pair of its nodes. We
shall assume that function Path(c1, c2: node): BOOLEAN returns the

value TRUE if there is a path between nodes ci and c2, otherwise returns the

value FALSE.
Function Connected checks if a graph is connected.

PROCEDURE Connected(G: Graph): BOOLEAN;
VAR c1, c2: node;
BEGIN

RETURN EVERY cl, EVERY c2 I c1 IN G.nodes, c2 IN G.nodes

WHERE Path(c1,c2)
END Connected;

A graph is complete if each node is connected to every other node. Proce-

dure Edge(c1, c2) :BOOLEAN checks if there is an edge incident to nodes ci

and c2. It assumes that if ci = c2, there is an edge between those nodes.

Function Complete checks if a graph is complete.

PROCEDURE Complete(G: Graph): BOOLEAN;
BEGIN

RETURN EVERY ci, EVERY c2 I cl IN G.nodes, c2 IN G.nodes
WHERE Edge(cl, c2) AND (c1 <> c2)

END Complete;

Degree of a node v, is equal to the number of edges that are adjacent to

v. Function Degree determines the degree of node v in the graph G.

PROCEDURE Degree(v: node; G: Graph): CARDINAL;
VAR Deg : CARDINAL; E : edge;
BEGIN

Deg := 0;
FORALL E IN G.edges DO

IF (E.c1 = v) OR (E.c2 = v) THEN INC(Deg) END

END
END Degree;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Usage of S-Expressions and Predicate Expressions... 	 321

3.2. Sets.

Let us recall that elements of a set in extended Modula-2 can be of ar-
bitrary type and that the number of set types is (conceptually) unlimited.
For example, in the following definition:

TYPE SetAnyType = SET OF AnyType

where AnyType can be of arbitrary type, including arrays, records and
other sets. Procedure SetMember determines whether an element x is a
member of a set S.

PROCEDURE SetMember(x: AnyType; S: SetAnyType);
VAR e : AnyType;
BEGIN

RETURN EXIST e I e IN S WHERE a= x
END SetMember;

Procedure SubSet checks whether set sl is a subset of a set s2.

PROCEDURE SubSet(sl, s2: SetAnyType);
VAR xl, x2: AnyType;
BEGIN

RETURN EVERY xl, EXIST x2 I
xl IN'sl, x2 IN s2 WHERE xl = x2

END SubSet;

3.3. Sparse vectors and matrices.
A sparse vector is a vector that consists mostly of zero elements. It

can be presented by S-expression whose elements are ordered pairs. Every
pair presents one non-zero element of a sparse vector. The first element of
the ordered pair is an index of the element in a vector, and the second is the
value of the element. For example, a vector V = [1 0 0 0 0 2 0] is represented
by ((1 1) (6 2)).

Procedure MulVec returns a product of a vector v and scalar n.

PROCEDURE MulVec(v: SExp; n: INTEGER): SExp;
VAR res, el: SExp;
BEGIN

res := NULL;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

322 	 Tatjana Vukelie and Mirjana IvanoviC

FORALL el IN v DO
res := res ++ ListOfPair(Hd(el), Mul(T1(el), n))

END;
RETURN res

END MulVec;

Procedure SumVec sums two vectors. In this procedure, following proce-

dures will be used:

(1)Find(e,v) which returns a pair in the vector v, whose index is equal
to a value e.

(2)Delete(e,v) which deletes a pair e from the vector v.

PROCEDURE SumVec(v1, v2: SExp): SExp;
VAR res, ell, e12 : SExp;
BEGIN

res := NULL;
FORALL ell IN vl DO

el2 := Find(Hd(e11), v2);
IF e12 <> NIL
res := res ++ List0fPair(Hd(e11),

Add(T1(811), Tl(e12)));

Delete(e12, v2)
ELSE

res := res ++ (ell :: NULL)
END

END;
RETURN res ++ v2;

END SumVec;

Procedure VecScPro returns a scalar product of two vectors. In this

procedure, the procedure FindVal(n, v) is assumed to return the value of

the element with an index n in the vector v.

PROCEDURE VecScPro(v1, v2: SExp): SExp;
VAR res, ell, e12: SExp;
BEGIN

res := 0;
FORALL ell IN vl DO

IF EXIST e12 I el2 IN v2 WHERE Hd(ell) = Hd(e12) THEN
res := Add(res, Mul(T1(e11), FindVal(Hd(e11), v2)))

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Usage of S-Expressions and Predicate Expressions... 	 323

END
END;

RETURN res
END VecScPro;

A sparse matrix is a matrix that contains relatively many zero elements.
A sparse matrix can be represented by S-expression that consists of ordered
pairs. By every pair a row of matrix that has at least one non-zero element
is presented. The first element of the pair is the index of a row of matrix,
and the second element of the pair is a sparse vector.
Matrix

0 4 0 O -
M = 0 0 0 0

6 0 0 7

has the representation M = ((1 ((2 4)))(3 ((1 6) (4 7)))). We shall also
assume that function procedure Transpose(M) returns transposed matrix of
matrix M.

Procedure MatVecPro multiplies a matrix by a vector. In this procedure,
procedure VecScPro (defined previously) is used.

PROCEDURE MatVecPro(V, M: SExp) : SExp;
VAR res, s, TM: SExp;

val : INTEGER;
BEGIN

res := NULL;
TM := Transpose(M);
FORALL s IN TM DO

val := VecScPro(V, S);
IF val <> 0 THEN

res := res ++ ListOfPair(Hd(s), val)
END

END;
RETURN res

END MatVecPro;

The result of multiplying a sparse vector and a sparse matrix is a new
sparse vector.

Procedure MatPro, multiplies two matrices. In this procedure, procedure
MatVecPro is used.

PROCEDURE MatPro(M1, M2: SExp): SExp;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

324 	 Tatjana Vukelie and Mirjana Ivanovi6

VAR res, v, c, TM, tpro : SExp;
BEGIN

res := NULL;
TM := Transpose(M2);
FORALL v IN M1 DO

tpro := MatVecPro(v, M2);
res := res ++ ListOfPair(Hd(v), tpro)

END;
RETURN res

END MatPro;

4. Conclusion

5-expressions and predicate expressions are included into programming
language Modula-2. In a similar way they can be included into other proce-
dural programming languages. Inside a procedural programming language,
S-expressions bring elements and concepts of functional programming lan-
guages. Elements of functional programming style in procedural program-
ming languages bring advantages of both programming styles in different
areas. Programs are shorter, simpler and more readable than in pure proce-
dural programs and more efficient than equivalent functional programs.

A usage of predicate expressions in procedural programming languages
brings more concise, clearer and more powerful code. Both extensions con-
tribute to better expressiveness of programs.

Usages mentioned in this paper present only a small part of possibilities
which extensions of procedural language bring.

References

[1] Z. BUDIMAC AND M. IvANovie, New Data Type in Pascal (1989), Proc. of DECUS
Europe Symposium, The Hague, Holland, 193-199.

[2] M. IVANOVIC AND Z. BUDIMAC, Usage of 5-expression in Pascal (1989), Proc. of 11th
International Symposium "Computer at the University", Cavtat, 3.18.1-3.18.6.

[3] T. VUKELIo AND M. IvANovia, Predicate expressions in procedural programming

languages (to appear).

[4] N. WIRTH, Programming in Modula-2, fourth edition, Springer Verlag, Berlin, 1988.

UNIVERSITY OF Novi SAD, FACULTY OF SCIENCE, INSTITUTE OF MATHEMATICS, TRG

D. OBRADOVI6A 4, 21000 NOVI SAD, YUGOSLAVIA

E-retail address: {vukelic,mira}funsim.ns.ac.yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 325-332

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

IMPLEMENTATION OF PREDICATE EXPRESSIONS
IN PROCEDURAL PROGRAMMING LANGUAGES

Tatjana Vukelie and Dusan Kamenov

ABSTRACT. Predicate expressions in a procedural programming language are based on
sentences of predicate calculus of first order. The usage of predicate expressions in pro-
cedural languages leads to shorter, more effective and more readable programming code,
and also decreases number of loops and local variables in procedures and programs. Pred-
icate expressions in programming languages could be used with array, set and interval
data types. Elements of array or set could be simple or complex data type. In this paper,
definition and implementation of predicate expressions in procedural programming lan-
guage Modula-2 is presented. Areas of usage are logic, set theory, graph theory, pattern
recognition and others.

1. Introduction

Many statements, particularly in mathematics, are of the form "x satisfies
a", where x belongs to set D and a is relation relevant to the elements of
set D [1].

Statement "For every x E D, a(x)" is an example of a mathematical
statement. Symbolically,

(Vx E D)a(x), or shorter, (V x)a(x)

denotes this kind of statement. The part (Vx) is called universal quantifier.
Statement "Exists x E D, a(x)" is also often used in mathematical sen-

tences. Symbolically, this kind of sentence can be presented as

(3x E D)a(x), or shorter, (]x)a(x)

The part (3x) is called existentional quantifier.

1991 Mathematics Subject Classification. 68N15.

325

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

326 	 Tatjana Vukelie and Dugan Kamenov

It is possible to use more than one quantifier in a single sentence. For
example,

(Vx)(3y)a(x,y)

is a valid sentence of predicate calculus.
In the further text, symbols and will be referred to as predicate symbols.
These sentences can be efficiently implemented and used in procedural

programming languages. The implementation shown in following chapters
is an extension of Modula-2 programming language [2]. In further text, this
extension will be called EM2.

Predicate expression in procedural programming languages has the form
of list of quantifiers (predicate symbols followed by variables). After that,
domains of the variables which follow predicate symbols in quantifiers are
stated. At the end stands condition of predicate expression, which is pre-
sented by list of boolean expressions. Expressions are separated by commas.

The equivalent symbols for predicate symbols V and 3 in EM2 are EVERY
and EXIST, respectively.

Syntax of predicate expressions can be presented by following rules of
EBNF:

*PredicateExpr = PredicateSymbol Identifier
{ "," PredicateSymbol Identifier } "I"
Identifier "IN" Range "," Identifier "IN" Range }
"WHERE" Expression { "," Expression }.

*PredicateSymbol = "EXIST" I "EVERY".
*Range = Array I Set I Interval.
*Array = Identifier.
*Set = Identifier I "1" [Member {"," Member}] "}".
#Interval = "[" LowerBound ".." UpperBound "]".

Existing set data type in M2 language can also be extended. In Modula-
2, elements must be simple data type. In EM2, this restriction is no longer
valid; elements can be any data type - single or complex. Elements of set are
not ordered, and an element can appear in set several times. For example,
{1,2,1,3} is a valid set in EM2.

Range of the variables in quantifiers must be finite. Range of those vari-
ables is determined by standard Modula-2 data types array or interval, or
by new data type set.

Example 1.1. Some simple predicate expressions are:
VAR

a, b 	- . BOOLEAN;

array • . ARRAY [1..10] OF CARDINAL;
set 	• . SET OF CHAR;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Implementation of Predicate Expressions in ... 	 327

x : CHAR;

y 	: CARDINAL;

a := EXIST x I x IN set WHERE x < 'f ' ;
b := EVERY y I y IN array WHERE y < 10;

The first assignment could be read: "if exist character x, which belongs
to set set and x is before character 'f' in the ASCII table, then a becomes
true, else a becomes false". The second assignment could be read: "if for
every y, where y is an element of array array, condition y < 5 is satisfied,
then b becomes true, else b becomes false". Simpler, if every element of
array array is less than 5 then b becomes true, else b becomes false.

It is possible to combine more than one quantifier in one predicate expres-
sion. Let's see an example. Suppose that sett and set2 are set of cardinals,
a is type boolean, and x and y are type cardinal.

Example 1.2.
a := EVERY y, EXIST x I y IN sett, x IN set2 WHERE x = y;

Simply said, if for every y exist x, y belongs to sett, x belongs to set2,
equation x = y is satisfied, then a becomes true, else a becomes false.

2. Implementation of predicate expressions

Predicate expressions can be implemented in procedural programming
languages in many different ways. One of them, which is based on transla-
tion of predicate expressions to equivalent code in Modula-2 programming
language, is presented in further text. To make the translation simpler, some
constructions of Modula-2 can be extended. Therefore, following statements
are defined:

(1) FORALL x IN X (a kind of loop)
(2) NEXT x

FORALL x IN X means that statements inside loop are executed for all
elements of an interval, set or array signed by X.

NEXT x determines the next element of X.
Interval and array are ordered. Theoretically, the order of the elements

of a set is irrelevant. But in the computer memory a set is ordered and it is
possible to take it's elements one after another.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

328 	 Tatjana Vukelie and Dusan Kamenov

Example 2.1. Structure
FORALL x IN [1..10] DO

Write(x);
NEXT x

is equivalent to
x := 1;
WHILE x <= 10 DO

Write(x);
x := x + 1

END;

For simplicity, predicate expressions with one and two quantifiers will be
discussed first. After that, we'll make a generalization of translation for any
number of quantifiers.

2.1. Predicate expressions with one quantifier.
In general, predicate expression with one quantifier has the form:

PS x I x IN X WHERE condition
where predicate symbol is denoted by PS. Following cases are possible:

(a) EVERY x I x IN X WHERE condition
First, suppose that condition is satisfied for every x from X, and suppose

that predicate expression has the truth value true. If x that does not sat-

isfy the condition condition is found in for-all loop, then whole predicate

expression gets truth value false.

EVic := TRUE;
FORALL x IN X DO

IF NOT condition THEN
EV_x := FALSE

END
NEXT x;
Result := EV_x

(b) EXIST x I x IN X WHERE condition
First, suppose that there is no x from X that satisfies the condition and

suppose that whole predicate expression has the truth value false. If x that

satisfy the condition condition is found in for-all loop, then the predicate
expression gets the truth value true.

EX_x := FALSE;
FORALL x IN X DO

IF condition THEN

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Implementation of Predicate Expressions in ... 	 329

EX_x := TRUE
END

NEXT x
Result := EX_x;

2.2. Predicate expressions with two quantifiers.
In general, predicate expression with two quantifiers has the form:

PS x, PS y I x IN X, y IN Y WHERE condition
where predicate symbol is denoted by PS. Following cases are possible:

(a) EXIST x, EXIST y I x IN X, y IN Y WHERE condition
In this case, construction 2.1.(b) will be used.

EX_x := FALSE;
FORALL x IN X DO

EX_y := FALSE;
FORALL y IN Y DO

IF condition THEN
EX_y := TRUE

END
NEXT y;
EX_x := EX_x OR EX_y

NEXT x;
Result := EX_x;

(b) EVERY x, EVERY y I x IN X, y IN V WHERE condition
Construction 3.1.(a) is used in this case.

EVx := TRUE;

FORALL x IN X DO

EV_y := TRUE;
FORALL y IN Y DO

IF NOT condition THEN
EV_y := FALSE

END
NEXT y;
Elf_x := EV_x AND EV_y

NEXT x;
Result := EV_x;

(c) EXIST x, EVERY y I x IN X, y IN Y WHERE condition
Construction 3.1.(a) and 3.1.(b) are used combined in this case.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

330 	 Tatjana VukeliC and Dusan Kamenov

EX_x := FALSE;
FORALL x IN X DO

EV_y := TRUE;
FORALL y IN Y DO

IF NOT condition THEN
EV_y := FALSE;

END
NEXT y;
EX_x := EX_x OR EV_y

NEXT x
Result := EX_x;

(d) EVERY x, EXIST y I x IN X, y IN Y WHERE condition
Similar to case 3.2.(c),

EV_x := TRUE;
FORALL x IN X DO

EX_y := FALSE;
FORALL y IN Y DO

IF condition THEN
EX_y := TRUE

END
NEXT y;
EV_x := EV_x AND EX_y

NEXT x;
Result := EV_x;

2.3. Predicate expressions with any number of quantifiers.
Predicate expressions are analyzed from left to right. For every quan-

tifier there is a for-all loop and one boolean variable that starts with EX_,
if quantifier is EXIST, EV_, if quantifier is EVERY. Boolean variable gets its
value before entering the for-all loop. Its value is FALSE in case of EXIST

quantifier, and TRUE in case of EVERY quantifier.
Inside for-all loop two cases are possible:

(If quantifier is the last of the quantifiers in predicate expression, then
inside for-all loop is an IF statement:

(a) If the quantifier is EXIST quantifier then it is following IF state-

ment:

IF condition THEN
EX_ident := TRUE

END;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Implementation of Predicate Expressions in ... 	 331

(b) If the quantifier is EVERY quantifier then it is following IF state-
ment:

IF NOT condition THEN
EV_ident := FALSE

END;
NEXT ident follows the IF statement.

(2) If the quantifier is not the last one in predicate expression then inside the
for-all loop are statements that matches quantifiers that come after current
quantifier (this part could be implemented by recursion). After that follows:

(a) If current quantifier is EVERY then
EV_ident := EV_ident AND EV_ident2 	 (1) or
EV_ident := EV_ident AND EX_ident2 	 (2)

Statement (1) if the quantifier after current quantifier is of form EVERY
ident2, statement (2) if the quantifier after current quantifier is of form
EXIST ident2.

(b) If current quantifier is EXIST then
EX_ident := EX_ident OR EV_ident2 	 (3) or
EX_ident := EX_ident OR EX_ident2 	 (4)

Statement (3) if the quantifier after current quantifier is of form EVERY
ident2, statement (4) if the quantifier after current quantifier is of form
EXIST ident2.

After this statement follows NEXT ident statement.

3. An example of usage of predicate expressions

Predicate expressions can be used in solving different classes of problems.
One of the areas of usage is mathematical logic.

Definition 3.1. Proposition P(p, q, . . .) that has the truth value true for
any truth values of their variables is called tautology.

A procedure which determines if a expression is a tautology could be as
follows:

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

332 	 Tatjana Vukeli6 and Dugan Kamenov

PROCEDURE Tautology;
VAR

a, b: BOOLEAN;
BEGIN

IF EVERY a, EVERY b I a IN [FALSE..TRUE],
b IN [FALSE—TRUE] WHERE a OR b OR NOT b THEN

WriteStr(" Expression is a tautology ")

ELSE
WriteStr(" Expression is NOT a tautology ")

END
END Tautology.

The result of this program will be "Expression is a tautology" because

expression is a tautology.

4. Conclusion

Predicate expressions have wide usage in many areas of computer science.
Their great power is in area of mathematics. They allow short, readable and
concise presentation of different definitions and theorems. They also have
wide usage in pattern recognition. Combined with sets, they are powerful
tool for fast and natural solving of different problems. Their usage decreases
number of loops and local variables to minimum required, which makes the
programming code shorter and more readable.

The future of predicate expressions can also be found in functional and
logical programming languages. Predicate expressions are a step closer to
human-like way of thinking in programming languages.

References

MILK, SVETOZAR, Elementi matematieke logike i teorije skupova, A-g delo, Beograd,

1991.
[2] WIRTH, NumAus, Programiranje na jeziku Modula - 2, Dragon, Beograd, 1990.

SELJA6KIH DUNA 25, 21000 Novi SAD
E-mail address: {vukelic,ikamenov}funsim.ns.ac.yu

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 333-343

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

DEPENDENCE TESTING ON LOOPS WITH BOUNDS

WHICH ARE FUNCTIONS OF OUTER LOOP INDICES

Suzana Stojkovie

ABSTRACT. Parallelizing compilers are compilers which translate sequential programs
into parallel ones. Program loops are the most frequent sources of parallelism in se-
quential programs. Because of that, parallelizing compilers first must detect loops which
can be run in parallel. Different iterations of the same loop can execute in parallel if they
process different data. Parallel loops can be identified by detecting data dependencies
across the loop body. For data dependence testing a few algorithms were developed. In
this paper GCD test and Banerjee's test are presented. These algorithms are applicable
when bounds of loop indices are constant. This paper shows how Banerjee's test can be
exploited when the inner loop bounds are functions of outer loops indices. We, first, must
compute minimums of the lower and maximums of the upper loop bounds. We solved this
problem when the loop bounds are linear functions. We show that this minimums and
maximums are dependent on the data dependence direction vector. We have also modified
Banerjee's test, slightly.

1. Introduction

Developments in semiconductor technology tend to reduce dimension and
price of electronic components, but to grow their speed. Hardware perfor-
mances become better every day. Now, supercomputers are developed.

Fast hardware development lead to a software crisis. A new problem
appears: how to exploit all hardware performances. Because of that, parallel
algorithms have been developed, in the last few years. Programmer who
designs parallel algorithms must be familiar with hardware

architecture for which these algorithms are meant. This leads to the
idea that the parallelization can be done by compilers. Now, parallelizing
compilers are very popular area of computer science.

The major problem of parallelizing compilers is to detect parallelism dur-
ing sequential programs. Program loops are the most frequent source of
parallelism. Because of that, first problem is to detect loops which can be

333

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

334 	 Suzana Jankovie

run in parallel. Different iterations of the same loop can execute in parallel
if they process different data. The key to identification of parallel loops is
to detect data dependencies across loop body.

There are three types of data dependencies exist:
(1) Data true dependence - exists when a variable computed in statement S i

 is used in some next statement S2. We say that 52 is data true dependent
on Si , and write this as Sib t Sz.

(2) Data anti dependence - exists when a variable is used in statement Si
and it is defined in some next statement S2. We say that 52 is data anti
dependent on Si , and write this as SiO a Sz.

(3) Data output dependence - exists if the same variable is defined by state-
ments Si and S2. We say that 52 is data output dependent on S i , and

write this as SIPS2.
Detection of dependence is not difficult if only scalar variables figure in

the loop. Difficulties are caused by subscripted variables. For example, we
will try to determine all dependencies which exist in the next loop:

L:
	

DO 10 1 = 5, 10

Si :
	

A(/ + 3) = 2* A(/ — 4)

52
	B(I) = A(I) + C10

10 CONTINUE

First dependence which can be identified is the dependence between state-
ments Si and S2. Elements of array A defined in statement S1 are used in
statement S2. We can say that 52 is true dependent on Si (S1eS2).

On the basis of the above, we can say that Sib i Si. However, if we look a
bounds of the loop index I, we will see that the statement S i defines elements
A(8),...,A(13), but uses elements A(1),...,A(6), and dependence SieSi does
not exist.

2. Data dependence testing algorithms

Below example shows that data dependence testing algorithms must ana-
lyze several more different elements, like: dependence among the statements
in the loop; dependence in the appropriate region, etc. These algorithms
find data dependence direction vectors [2,4], too.

Data dependence direction vector, 0, defines relations between values of
loop indices for which dependence exists. The dimension of vector 0 (m) is
the number of loops which enclose the statements S i and S2. The elements
of vector are members of the set {<, =, >, *}. We will assume that certain
loop include two statement Si and S2. Lets us label the I-th iteration of

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Dependence testing on loops with bounds which ... 	 335

statement Si as SW). Let also Si(I)69S2(J). The appropriate element of
vector 0 is:

- <, if I < J;
- >, if I > J;
- =, if = J;
- *, if relation between I an J is unknown.
For the loop L: m=1 and Si6eS2 where is 0 = (<), because the element

of array A which was defined in the first iteration of statement S i , will be
used in forth iteration of statement S2 (1 < 4).

Let us consider two statements (S i and S2) which are enclosed by m loops:
DO 10 Ii = T1 , U1

DO 10 12 = T2) U2

DO 10 I, ?, = T,„Un,

A(I)

A(J)

10 CONTINUE

Indices I and J are functions defined as:

I =f1(11,12,-, 	= 11(1)

=i2(11, 	...,) = f2 (J)
The dependence between S i and S2 exists in those iterations in which I

equals J. The goal of these algorithms is to determine whether the equation

(3) (I) = f2 (J)

has got integer solutions. This equation is a dependence equation.
Functions h and 12 , in most cases, are linear:

(4) A = > akIk ao
k=1

(5) f2 = > bak + bp

k=1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

336 	 Suzana Jankovi6

In this case the dependence equation is a diophantine equation and can
be stated as:

m 	m

E akIk — 	bk.ik bo — ao
k=1 	k=1

Whether the diophantine equation has a solution can be detected by GCD
test. The dependence equation can be written as follows:

(7)

rn 	 m 	 m

E (ak — bk)Ik 	E akIk — E bkJk = 1)0 — ao

k=1,8k =, =, 	 k=i,ek ot=, 	k=1, 19k#'= 1

Let g = GCD({ak — bk,ek =1=1, la ke Ok 1 = 1 }, {bklOk P=1 })•

GCD test: The dependence equation has solutions if g I (b0 — ao) or

(to = bo .
Note that this test does not answer the question whether the solutions

exist in the given region. This question can be answered second by a group
of data dependence testing algorithms - Banerjee's test.

This test needs to introduce a positive part of real number r (r+), and
the negative part of r (r —), as:

1 1 r > 0
(8) r+ =

0 r < 0
1-1 r < 0

(9) r — =
0 r > 0

Banerjee's criteria: The data dependence for a given vector 0 does
exist if the GCD test is satisfied and the next inequality is satisfied, too:

m 	 m

(10)

where:

(11)

LCk =

E Lek 5_ bo — ao E k
k=1 	 k=1

— (ak +

•

 bk)+(Uk — Tk — 1) + (ak — bk)Tk — bk for 0k ='<'

—(ak — bk) (Uk — TO+ (ak — bk)Tk 	 for 0k = 1 = 1

—(bk —

•

 ak)÷(Uk — Tk — 1) + (ak — bk)Tk + ak for 0k =`> 1

—(ak+ bt)(14 — Tk) -F (ak — bk}Tk 	 for 0k =' *'

(6)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Dependence testing on loops with bounds which ... 	 337

(12)

(at — bk) + (Uk — Tk — 1)+ (ak — bk)Tk bk

UCk 	
(ak — bk)+(Uk — TO+ (ak bk)Tk
(bk 	ak) -1- (Uk Tk 1) + (ak bk)Tk ak

(at bk 	Tk) (ak — bk)Tk

for 9k = 1 < 1
for 9k =1 =-1

for 9k =- 1 > i

for Ok =- 1 *1

Here we present a generalized algorithm for determining dependence re-
lations for the given loop. Data dependence testing is done hierarchically.
First, we begin with the assumption that data dependence direction vector
is unknown (Ok =' *',k[l:in]), and determine if the dependence exists for any
vector O. When the dependence is determined for the unknown vector 9,
we have to concretize for which vectors 9 it exists. The analysis has to be
repeated, but with changed vector 9. In the vector 9, leftmost star will be
changed with ' <', latter with '=', and at the last one with ' >'. When we
determine independence in some step, this vector 9 need not be refined. The
tree of analysis for m=2 is shown on the next figure:

(*,*)

(<,*) 	 (=,*) 	(>,*)
∎

(<,<) (<,=) (<,>) 	(=,<) (=,=) (= ,>) (>,<) 	(>,>)

Figure 1.

The order of analysis is determined by PREORDER traversal of tree. If
independence is determined for some node, the subtree whose root is that
node, need not be analyzed.

3. Dependence testing on loops in which inner
loop bounds are functions of outer loop indices

In practice, the loop with constant loop indices bounds are very infre-
quent. Loops of the form:

DO 10 I = 1, N

DO 10 J = I + 1, N

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

338 	 Suzana Jankovi6

Or

DO 10 I = 1,N

DO 10 J = 1,N — 1 +1

are more frequent.
In the general case, we can assume that the inner loop bounds are func-

tions of outer loop indices. We well look at the next, generalized loop:

DO 10 I1 = T1,U1

DO 10 12 = t2(/1), u2(/1)

DO 10 Im = tm(/1,/2,...,/m — 1),u2(/1, I2, Int — 1)

{loopbody}

10 CONTINUE

For the application of Banerjee's test, we must compute loop indices
bounds, in first. In the phase of compilation that is impossible because
these values are different for all different iterations of outer loops. Because
of that, we introduce the worst case assumptions: for the lower bound of
index Ii we take timin, but for the upper bound uimax. Our problem, now,
is reduced to the determination of minimums of functions t i , and maximums

of functions u i . We will assume that the functions ti and ui are linear. In
that case, the functions t i and ui can be described as follows:

(13) ti =Tio + E
Tij lj

(14) ui =UiO E Uijlj

If we know the minimums and maximums of indices I j (j[1,i-1]) we can
compute the lower and upper bounds of index h:

(15) Ti =timin = TiO E(Ti4.; ijmin Tij ijmax)

j=1

i-1

(16) Ui =Uimax = Ui0 E(UAmax Ujj Ijmira)

j=1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Dependence testing on loops with bounds which ... 	 339

Ijmin and I imax are the lower and upper bounds of index 	, 	. From there, the values Ti and Ui can be computed from the next formulas:

(17) Ti =Tic) + E (Tilt — Tr) Uj)
j.1

(18) =Ujo
j-i

These formulas determine the order of computation of bounds, too. Ob-
viouly, bounds Ti and Ui can be computed if the bounds Ti and Ui for j E [1,i — 1J are known.

4. Influence of data dependence
direction vector on loops

Banerjee's test checks data dependence for all data dependence direction
vector, independently. It imposes a question: can the data dependence
direction vector influence the coefficients Ti and U i ?

If Oi ='>', the lower bound of index Ii can not be equal to the value
computed by formula (17), because there is not a value of index I i smaller than timin . Because of that, for O i ='>', the lower bound of index h is
necessary to grow for 1.

Similarly, it can be shown that for O i ='<', the upper bound of index Ii
is necessary to reduce for 1.

Definitive formulas for computation the loop indices bounds are:

(19) Ti(0) =Tio E(Ti-137; (0) _
i=1

(20) Ui(0) = U ,0 E(II ;17 U J(B)

where:

(21) _{0
CT,(0) — 	

for Oi E (*,=,>)
1 for Oi =<
0 	for Oi E (*,=,<) (22) 	 CUi(0) = —

1 for Oi =>

Ti; Ui (9)) C T,(0)

— U j(0)) C U ,(0)

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

(27)

LCi =

—bi)Ti(0) — bi

bi gi(0)

—bi)Ti(0) + bi

 bigi(0)

—Ti(0)) (ai

Ti(0)) + (ai
- Ti (0))+ (ai

Ti(0))+ (ai —

for Ok

forOk =`='

for 9k =1 > 1

forOk = i *'

—(aT bi)+Wi(0)

—(ai — bi) - (Ui(0) —

—(bt — a i)+ (Ui (0)
—(ai + bt)(Ui(0)—

340 	 Suzana Jankovie

Ti is dependent on these elements of direction vector j for which is j < i.
Thist means that the order of computing of bounds Ti and Ui is identical to
the order of dependence testing for corresponding vectors (see figure I.).

It makes a question: whay do we have to correct the bounds Ti and U i
 adding the coefficients CTi and CUi, when all this job is done by Banerjee's

test, too? In our cases, inner loop bounds are the functions of outer loop
bounds. Because of that, the coefficients CTi and CUi influence on values
of all coefficients Ti and Ui for ji,i. The original Banerjee's test is not taking
that influence into consideration.

5. Banerjee's test modification

As we desctibed, we and Banerjee's test, too, correct the lower and upper
bounds dependently on corresponding direction vector O. If we use the our
computed loop bounds for dependence testing by Banerjee's test, we take
these corrections into consideration two times. Because of that, we have to
do a little modification of Banerjee's test. We will take the cases and

because in these cases we must modificate Banerjee's inequalities.
Banerjee's test begins from assumptions:

(23) Ti< Ii < 	 1 	for Oi .<

(24) Ti +1 < Ji +1 < Ii < Ui 	for Oi =>

Instead of these, we take in next assumptions:

(25) Ti(9) < Ii < Ji — 1 < Ui (0) 	for Oi .<

(26) Ti (0) < Ji +1 < Ii < Ui (0) 	for Oi =>

In that case modificated Banerjee's coefficients have a next form:

—bi)Ti(0) — b i

 bi)Ti

—bi)Ti(0)+ bi

 bi)Ti(0)

— Ti(9)) + (ai

MO)) + (ai

Ti (0))+ (ai

Ti (0)) + (ai —

(28)

1 UCk =

(at — b i)+ (Ui(0)

(ai — bi)+Wi(0)—

(b.T — ai)+ (Ui(0)

(at + bi)(Ui(0) —

for 9k =1 < 1
fore),

for 9k =1 > i

for 9k = 1 *1

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Dependence testing on loops with bounds which ... 	 341

Proof:
We need a next lemma [1] for proving of our assertion:

Lemma 1. Let f(x,y)=ax+by denote a linear function, and U > qo a
number.

1) min(ax + by : 0 < y < x < U) = —(a — 	U
2) max(ax + by : 0 < y < x < U) = (a + b+)+ U

Let fl and f2 be the index functions defined by equations (1) and (2),
respectively; and let is:

(29) h(I,J) = fi(I) — f2(J).

In given region, dependence exists for given vector 0 iff the function h(I,J)
has a null into that region.

Thus,

(30) rnin(h(I , J)) < 0 < max(h(I , J))

By combining (4),(5) and (29) we obtain:

77L

(31) h(I,J)= E (ak — bk)Ik 	E akIk — > b k ork +ao — bo
 k=i,ek$'='

Let we take a case O i =<:
We need minimum and maximum of function:

(32) f = ai Ii — b i Ji

Next inequality is derived from our assumption (25):

(33) 0 < Ii — Ti(0) < Ji — Ti(0) — 1 < U i(0) — T i (0)

Because of that we will transform the function f (32) on follows:

(34) aili — biJi = —bi (Ji — T i (0)— 1) + aj(/i Ti(0)) (ai — b i)Ti(0) — bi

Now, by using of Lemma 1. we obtain:

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

342 	 Suzana Jankovi6

for 9j =<:

(35) LCi = — (at + bi)+(Ui(0) — Ti(0)) (ai — bi)Ti(0) — b,

(36) UCi .(at — b,)(Ui(0) — Ti(0)) (ai — bi)Ti(0) — bi

Second correction of Banerjee's test was done for 8i =>. In that case, we,
first, must transform our assumption (26) as follows:

(37) 0 < Ji — Ti(0) + 1 < Ii — Ti(0) < Ui(0) — Ti(0)

The function f (32) can be written as follows, too:

(38) ai/i — biJi = a i (h — Ti(0)) — bi(Ji — Ti(0) + 1) + (ai — bi)Ti(0) bi

 Now, by using Lemma 1. we obtain:

for Oi =>:

(39) LCi = —(bt a i)+(Ui(0) — Ti(9)) (ai — bi)Ti(0) b i

(40) UCi = (at + b)i (Ui(0) — Ti (0))+ (ai — bi)Ti (0) bi

This completes proof of our modification of Banerjee's test.

6. Conclusion

In designe process of a FORTRAN parallelizing compiler appeared a prob-
lem: how do we test the dependence on loops which bounds are not constant.
In our testing examples, the most frequent cases were the loops in which inner
loop bounds are linear function of outer loop indices. For dependence test-
ing on loops with constant loop bounds we used Banerjee's test. It makes
a question: is it possible to replace these functions with constants? We
solwe this problem at next way: we change the lower bounds functions with
their minimums, and we also change the upper bounds functions with their
maximums. The expressions for computing these bounds values, when cor-
responding function are linear, are given in chapter 3 of this paper. We show
that the loop bound values, in our case, are dependent on data dependence
direction vector, too. We had to do some modification of Banerjee's test, be-
cause we take in the direction vector influence on loop bounds. Modificated
Banerjee's test was presented in chapter 5.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Dependence testing on loops with bounds which ... 	 343

References
[1] z.Li, P.C.YEw, An Eficient Interprocedural Analysis for Program Parallelization

and Restructuring (1988), ACM Press, New York.
[2] M. WALF, Optimizing Supercompiler for Supercomputers, Pitman, London, 1989.
[3] M. WALF, The power test for data dependence, IEEE Transactions on Parallel and

Distributed Systems 3, No. 5 (September 1992), 591-601.
[4] H. ZIMA, B. CHAPMAN, Supercompilers for Parallel and Vector Computers, ACM

Press, New York, 1988.
[5] T. M. O'KEEFE, H. G. DEITZ, Loop Coalescing and Scheduling for Barier MIMD

Architectures, IEEE Transactions on Parallel and Distributed Systems 4, No. 9 (Sep-
tember 1993), 1060-1064.

[6] T. H. TZEN, L. M. NI, Dependence Uniformization: A Loop Parallelization Techni-
que, IEEE Transactions on Parallel and Distributed Systems 4, No. 5 (May 1993.),
547-558.

SUZANA STOJKOVIo, FACULTY OF ELECTRONIC ENGENEERING, COMPUTEER SCIENCE
DEPARTMETNT, BEOGRADSKA 14, 18000 NI§

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2(1995), 345-355

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

THE GENERATION OF PERMUTATIONS THROUGH GDD

Dragan Jankovie and Milena Stankovie

ABSTRACT. In this paper we consider the generation of permutations, i.e. all ordered
n-tuples of different elements from the set A n = lachai,•••,an—il which is a combina-
torial problem often occurring in practice. We give a method for the generation of all
permutations of n given items through generalized decision diagrams. Each of n! paths
in the appropriate decision diagram maps into one of n! permutations. The proposed
method is suitable for generating all permutations for direct generation of only one per-
mutation without generating and saving preceding permutations. Our method provides
efficient hardware realization.

1. Introduction

The generation of permutations on a given set A n = { ao, a i , an _i). with
n elements is in fact the generation of all ordered n-tuples of elements from
An . This problem occurs frequently in practice as a part of many complex
combinatorial problems. For example, many problems in logic design: min-
imization, simetry examination, NPN classification or function decomposi-
tion are combinatorial problems in solving of which different permutations of
variables or function values of examined functions are often required [3,6,7].
Important field for application of permutations are permutation intercon-
nect networks which are consistent parts of many multiprocessor systems
for discrete transform calculation (DFT, WHT, ...) [4]. In this paper we use
generalized decision diagram to generate the permutations.

The basic idea of the presented method was found in the representation
of switching functions by binary decision diagram (BDD) [1,2]. BDD for an
n-variable switching function is a binary tree with n-levels and 2n terminal
nodes. The terminal node values are the function values of the represented
switching function.

345

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

346 	 Dragan Jankovie and Milena Stankovi6

LEVEL I

LEVEL II

LEVEL III

l'ERMINAL LEVEL

Figure 1. BDD

Example 1. BDD for three variable function is shown in Fig. 1.
If it is allowed that nodes at different levels have different number of edges

(assuming that the number of edges of all nodes at one level is equal) we
obtain generalized decision diagrams (GDDs) suitable for the representation
of the multiple valued functions [5].

Example 2. The typical GDD is shown in Fig 2.

LEVEL I

LEVEL ll

LEVEL III

/

TERMINAL LEVEL 6011166n Di

/
 \ 	

, 	I
/ I ,\ 	\

I666

Figure 2. GDD

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The Generation of Permutations through GDD 	 347

LEVEL!

0

LEVEL LI

2 0

LEVEL III

,/ / • , / \ ,
ac3o66666666666

\
66

•
•
•

LEVEL k

%. 	 1 \ \

sa6d6:5.6

k-1

LEVEL k+1 0 c,„,d
AA b, 	:4 NA

0 1 2 k k+I
•

• • • bt:)0

•

TERMINAL LEVEL

LEVEL N-1

7/1/2
El 	• • •b b

Figure 3. GDD for generation of the permutations

2. The representation of
permutations with decision diagram

It is possible to represent all permutations of items from set A n through
particular GDD consisting of n —1 levels. The first level consists of one node
(root node) with two edges, the second of two nodes with three edges, the
third of six nodes with four edges, etc. There are k! nodes with k + 1 edges
at k-th level (Fig. 3).

Thus defined GDD with n — 1 level has n! terminal nodes. Therefore,
we can assign one of n! permutations to each node. The GDD nodes are

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

348 	 Dragan JankoviC and Milena Stankovi6

denoted as shown in Fig. 4., where we have a node at k-th level denoted
by q connected to the root node by the path p. The node q is connected

to k 1 nodes (q0 ,q1,...,qk) at (k+1)-st level by the output edges denoted
by 0,1, ..., k, respectively. If the string xoxi • • • xk—i, (xi E A„, for i =

0,1, ..., k —1) is assigned to the node q, to the each node qi may be assigned
the string derived by the following rule:

qi = x o x i x 2 ...xi_ l akxj...xk_i for i # k

qk = xoxix2•••xk—iak

Each node qi is connected to the root node by the path p, = pi.

For k=0 (root node) q = cto and p = 0.

R•I. len!

r,'

1I-st lord

a) 	 h)

Figure 4. a) The node notation b) The path notation

With the introduced notation, each of the n! terminal nodes corresponds
to one permutation, as shown in Fig. 5. for A4 = {0, 1, 2, 3}.

3. The procedure for generation of permutations

For the generation of a particular permutation the corresponding path
from the root node must be found. Moving from one to another level along
this path we generate the required permutation. When we move from the
level k to the level k + 1 trough the edge i we insert the value ak at i-th
position in the generated string. Repeating this procedure for all terminal
nodes (moving along all pats in the GDD) we obtain all permutations of n
items (Fig. 5).

The decimal index of permutation path, Dec(p), is !defined as:

N-1

Dec = > giN!1(i + 1)!

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

LEVEL 1

0

002

II ME ■
3210 2310 2130 2103 3120 13201230 1203 3102 1302 1032 1023 3201 2301 2031 2013 3021 0321 02310213 3012 0312 0132 0123

01

The Generation of Permutations through GDD 	 349

Figure 5. GDD for n=4

where p[i] is i-th element in permutation path p.
All permutations are ordered on the basis of Dec(p). The ordering o can

be defined as follows:
Let P and Q be two distinct permutations with paths p and q, respectively.

PoQ if Dec(p) < Dec(q).

For example, for n = 4 , the permutations of A4 = {0, 1, 2, 3} ordered
according to o are given in Table 1.

This ordering is very useful for generation one permutation or the per-
mutations from interval. We generate the permutation from decimal index.
The decimal index to be mapped to the permutation path after which the
described procedure is applied. For this method generating and saving all
previous permutations are not necesserly. This method is not recursive,
which is very important for execution time and permutation length. The
permutation length is practically unlimited in this method. No permuta-
tion is generated again. Therefore, there is no need to check whether the
permutation has been generated earlier.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

350 	 Dragan Jankovi6 and Milena StankoviC

Table 1: Decimal indices of the permutations

Dec.ind. path perm.

0 0000 3210

1 0001 2310

2 0002 2130
3 0003 2103

4 0010 3120

5 0011 1320

6 0012 1230

7 0013 1203

8 0020 3102

9 0021 1302

10 0022 1032

11 0023 1023

12 0100 3201
13 0101 2301

14 0102 2031

15 0103 2013
16 0110 3021

17 0111 0321

18 0112 0231

19 0113 0213
20 0120 3012

21 0121 0312

22 0122 0132
23 0123 0123

4. Implementation

The implementation of the described procedure for the generation of all
permutations is given as follows:

1. initialization (the length of the permutations and the beginning path)
2. for i=2,n do

begin
2.1 shift all the permutation elements from p-th element for one

position to the right (the element p is the weight of the i-th
element in the path)

2.2 set the i-th element at the p-position

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The Generation of Permutations through GDD 	 351

end
3. print the generated permutation
4. generate the new path
5. if the generated path is different from the beginning path go to step 2
6. stop

Some advantages of GDD can be used in implementation. There is no
need to move along the complete path for each permutation. It may be
continued from the position where the new path is different from the old
one. In this way the execution time may be decreased considerably with
the increase of N, as shown in Table 2 where the execution time is given (in
millisecond) using the complete path and a part of the path too.

Table 2: The execution times when the complete path and a part of path
are used

len.perm complete path (ms) a part of path (ms)
2 0.017 0.023
3 0.05 0.06
4 0.3 0.28
5 1.9 1.4
6 15 9
7 134 70
8 1318 606
9 14240 5830
10 171600 62200
11 2158000 738000

5. The modification of basic procedure
Described procedure can be modified according to some specific require-

ments of the application of permutations. If the generation of a permutation
or permutations from interval are needed, then it is enough to run the cor-
responding initialization (set the value for array NIVO(i), i = 0, n — 1).
The generation of a permutation from another one is the problem that often
appears in practice. In this case, our method is very successful. The move
from one permutation to another one is executed by the following procedure:

1. starting from the terminal node corresponding to the beginning permu-
tation and then moving up to the crossing of the beginning and the desired
permutations.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

352 	
Dragan Jankovi6 and Milena Stankovk

(START (---Z"--D

\ength of permutatiop/

initialization

NIVO(i)=0 ; PERMUT(0)=0 ; 1=0 N

NIV0(0)=0

1
 1. 	PERMUT(0)=0 	I

1 	
i — 2, N

1

PERMUT(j+1)=PERMUTO) 	1

PERMUT(1)=1-1

/PERMUT(I) 1=0, 	N-1 \

i NIVO(N)=NIVO(N)+ 1
ii=N

	 MVO(ii)=ii A NIV0(0)=C>

NIV0(11)=0
NIV0(I1-1)NIV0(11-1)+ 1

11=11-1

1

STOP 	
)

Figure 6. Algorithm for the generation of all permutations with

length n

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The Generation of Permutations through GDD 	 353

2. moving down to the terminal node corresponding to the desired per-
mutation. Moving up, the elements are ejected from the sequence (i.e. per-
mutation), and moving down, the elements are inserted into the sequence.

The example for the generation of permutation 1032 from 2310 permuta-
tion is shown in figure 7. The moving through graph is depicted by a dotted
line.

LEVEL!

10

11111111111111111M
3210 2310 2130 2103 3120 1320 1230 1203 3102 1302 1032 1023 3201 2301 2031 2013 3021 0321 0231 0213 3012 0312 0132 0123

Figure 7. The generation 1032 permutation from 2310 permuta-
tion

6. The hardware implementation

Our method provides efficient hardware realization. The types of hard-
ware realization depend on the actual application. As an example, the de-
scriptions of pipeline realization, shown in figure 8, follow. The generation
of permutation of n items requires n processing elements (PEs). Every PE
has two inputs and one output. PE passes one of the two inputs depending
on the state of the counter which runs as the adder modulo k if PE is at k
level (i.e. k-th in pipe). If the immediate state of the counter is p, the PE
passes p inputs X, (and) afterwards input Y and finally n — p— 1 inputs X.
The counter of PE at level k changes its state when the state of counter of
PE on level k 1 becomes k 1. In other words, every PE activates the
counter of the previous PE (Figure 9).

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

uI()

PEI

in I

Pk:2

X

V

net.

-11.• • 	•

PEN-2

inN•2

PEN -1

inN• I

clk

perm

354 	 Dragan Jankovie and Milena Stankovie

PEV [

PM I

PETI [

a)

C I 14 • ■•‘ 	cvsnier
	Ilk

mud K

I

mu box

Figure 8. a) Pipeline system b) PE

i 	rl 1 ii 	 El 1 .11 	ri
II 	 II 	 J 	

I 1
rE-I r

X - pang X
Y - pandag Y
M - WOO

PE-P7

0

II F

PP 111 11 x

P541
X Y

PE-I
V

Figure 9. The state diagram of the counter of PEs for n=4

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

The Generation of Permutations through GDD 	 355

7. Conclusions

In this paper, we propose the method for the generation of the permu-
tations with unlimited length, through GDD. We define GDD appropriated
for the generation of all the n! permutations of n given items. Based on
GDD, the efficient procedure for mapping the paths in GDD into permuta-
tions is also presented. The proposed method is suitable for both software
and different hardware realizations. As an example, pipeline realization is
described.

References
[1] S. B. AKERS, Binary decision diagram, IEEE Transaction on Computers C-27, No.

6 (June 1978), 509-516.
[2] R. BRYANT, Graph-based algorithms for Boolean function, IEEE Transaction on Com-

puters C-35, No. 8 (August 1986), 677-691.
[3] D. CVETKOVIO, Diskretne matematieke strukture, Nautna Knjiga, Beograd, 1987.
[4] P. FRAGOPOULOU, S. G. AKL, A parallel algorithm for computing Fourier transforms

on the Star graph, IEEE Transaction on Parallel and Distributed Systems 5, No. 5
(May 1993), 525-531.

[5] D. JANKOVI6, R. STANKOVI C, M. Nnue, Calculation of the Fourier transform on
finite Abelian groups through GDD (1994), Proc. Yugoslav Conference for ETRAN,
Nit, Yugoslavia.

[6] C. J. LIN, Parallel generation of permutations on systolic arrays, Parallel Computing
15 (1990), North-Holland, 267-276.

[7] R. SEDWICK, Permutation generation method, Computing Surveys, 9, No. 2 (1977),
137-164.

FACULTY OF ELECTRONIC ENGINEERING COMPUTER SCIENCE DEPARTMENT, BEO-
GRADSKA 14, 18000 Nit

q

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Ng) 9:2(1995), 357-366

Filomat '94, Nit, October 22-24, 1994
Geometry. Computer Sciences

A SYSTEM FOR STORAGE, MANIPULATION AND

CONTROL OF DIFFERENT GRAPHICS FORMATS

Zoran Putnik

ABSTRACT. In this paper, a detailed outline of a system for memorizing, manipulation
and control of pictures given in different graphic formats is given. System consists of
several modules, already known and available, but the value of the system is mainly in
combination of several useful functions, enabling complete and efficient management of
miscellaneous kinds of pictures and cutting on expenses and possible errors in manipula-
tion with various graphics formats.

1. Introduction

Manipulation of drawings and other graphics elements is mush more then
just a simple storing/retrieving of data and drawings. It is rather a com-
plicated process of drawings' creation - starting by a designer, external and
internal skilled consultants, through artists who actually make drawing, up
to users of the finished drawings, or some of its parts. During drawing cre-
ation, standard parts from shared or private libraries are incorporated, or
referred to, and usual necessary data - names, dates, references, are given.
Dates of drawing creation are still not the final dates of need for a drawing.
Often changes, especially for technical drawings, demand easy access to a
drawing for a long period. This demand, naturally includes a need for some
tools for transferring drawings from one graphics format to another. As for
any other data stored in a computer, manipulation with drawings requires
handling of standard problems: efficient storing system, fast and simple data
retrieval, enabling changes in existing drawings or using existing drawing in
creation of a new ones, managing an efficient data base about drawings and
related data, transferring drawings from paper to a computer and similar.

1991 Mathematics Subject Classification. 68U05, 68P15.
Work supported in part by Ministry for Science of Republic Serbia

357

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

358 	 Z. Putnik

Toward overcoming of mentioned problems, in this paper, a system for
storage, manipulation and control of drawings in different graphics formats
is given. Separate modules, this system consists of, are not new nor origi-
nal, instead, most of them are available for a commercial use in some form.
Value of this system is mainly in unifying and combining all necessary func-
tions, enabling simple and efficient control of data and drawings flow even
for a long period and reducing expenses and chance for errors in drawings'
manipulation.

2. State of the art

We can notice several different logical modules in modern systems for
information and documents management (from now on CDMS - Corporate
Document Management Systems):

• module for storing information - data base
• module for data search - key-words data base
• module for documentation viewing and control
• communication module - fax, e-mail, modems
• module for controlling computer network
• module for changing documents (in original programs)
• module for automatic text recognition
• module for handling pictures

Separate programs for each of the mentioned modules are developing for
years (more or less successfully), everything toward creation of "paperless
office." Information stored in digital - electronic form, does not need a paper
as a storage media. But, to be easily available to the user, it demands another
elements of a system for data storing and retrieval. As main elements, we
can mention:

• computer for data storage - "main computer"
• (computer for communication with a "main computer")
• software for "reading" and "presenting" given information

As much as textual data are concerned, several mostly used text-proces-
sors can be identified, that each CDMS have to support, with always present,
final solution, of recognizing text in its simplest form - ASCII standard. For
graphics data, such standards do not exist. We can talk of "most frequent"
graphics forms, i.e. *.PCX, *.TIF, *.GIF, *.IMG - as bit-mapped, or *.DWG,
*.DXF or *.CDR - as vectorized, but, basic standard does not exist jet.

Computer system for storage, manipulation and control of graphics for-
mats is very important subsystem of a system for creation, management and
archiving documents - CDMS. It must successfully and efficiently integrate

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A System for Storage, Manipulation and Control ... 	 359

some commonly accepted programs for graphical documentation manage-
ment, from scanning and character recognition programs, through programs
for editing bit-mapped, vectorized or ASCII graphics files and transferring
drawings from one form to another, up to programs for presentation and
printout graphical documentation on various kinds of output devices. This
subsystem is also an useful step towards creation of a multimedial data base,
which will enable fast and simple finding, retrieval and exporting any doc-
ument stored in any existing form. Modular and flexible, this subsystem
has to be (theoretically) usable equally in small and in big business systems,
despite working area. In its nature, such subsystem assumes (and gives best
results) computers connected in a network, which again permit successful
control of document flow, transforming several "personal" computers in an
efficient information system.

A system for storage, manipulation and control of graphics formats (some-
where called EDM, standing for "Engineering Drawing Management" or
"Electronic Data Mng" or "Engineering Data Mng") has to emulate, for
a successful work all standard activities in a process of creation, storing and
"maintenance" of drawings. Main of these activities are:

• Control function - DIRECTOR - a module handling work and com-
munication of other modules, controlling them and controlling users'
behavior according to his priority level;

• Data storage function - LIBRARIAN - a relational data base, en-
abling a search for a specified drawing based on a key-word and
creation of a report on a drawing including place and time of cre-
ation, author, dates and types of changes, current status, list of key-
words and list of access rights;

• Digitalization function - SCANNER - a module for connection be-
tween "old" and "new" technology of drawing creation and for con-
nection with third parties, which produce their drawings in a paper
form. It should also contain some standard way of data compression
(for example - scanned drawing of AO format, with resolution of only
400 dpi, as a result requires 40 MB of storage space if stored in a
bit-mapped form);

• Editing function - EDITOR - a module that enables that drawing
we want to change (coming through module LIBRARIAN or module
SCANNER) can be edited either with standard geometric functions
(scaling, rotation, translation ...) or manually (adding or deleting
picture pieces, coloring, text editing...)

• Vectorization function - VECTOR - a module that (if needed) en-
ables transformation of bit-mapped drawing into a vectorized draw-
ing. Experience shows that this function is not always necessary,

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

360 	 Z. Putnik

since very good abilities for changing raster images are developed,
and on the other hand, vectorization process takes a lot of time not
always bringing significant improvement of quality;

• External communication function - TRANSFER - a module that
overcomes a problem of using different software for drawing creation
and enables combining of drawings created on different places in a

different ways;
• Text recognition function - READER - a module enabling usage of

text documents created in most standard text processing programs,
or, if nothing else is possible, enables text recognition using usual -
optical character recognition techniques;

• Viewing and printing function - OUTPUT - a module enabling that

library drawings, can be viewed on (any kind of) a screen, and/or
plotted/printed on (any kind of) a printing device.

3. System modules

3.1. Drawings storage module - data base.
Creation of a complex drawing, consisted of several drawings, sometimes

already created in different graphics formats, using different software tools, is
usual very difficult. Reason for this is existence of three principally different
formats - bit-mapped drawings, vectorized drawings and drawings created
of ASCII characters - with a huge number of subtypes for the first two.
Emerging of a new version of existing graphics software, usually brings lots
of problems to the end-users. Besides that, for each graphics document,
some extra information is needed, for example: date and time of creation
and editings, names of authors, coauthors, consultants and "maintenance"
employees, references to parts taken from standard libraries or to bigger
drawings of which the given one is a part of, and so on. The most convenient
method for storage of this kind of data is some standard, relational data base,
which will enable easy sorting, searching and editing of existing data.

This module has to provide a simple and obvious searching method thro-
ugh the graphical data base on any criteria, without previous knowledge
of programming languages or data bases. This can be achieved through
a simple and readable graphics interface, enabling easy entering of wanted
search criteria. Multiple criteria search, easy access to the results of a previ-
ous search and other similar, practical options are usual in any serious data
base, so there is no need to explain them separately.

As a first result, a search gives simplified, smaller picture of all drawings
satisfying given criteria. Later, those pictures, depending on users access
level, could be viewed, edited, printed, commented and so on. Naturally, for
advanced users, it would be very useful to have programming language, which

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A System for Storage, Manipulation and Control ... 	 361

can define either aestethic (i.e., shape of a search screen) or essential search
details (definition of new fields of a data base, with their attributes, creation
and organization of an archive of technical and business documentation,
catalogues of products, data bases of persons involved in drawings creation
and so on).

3.2. Module for transferring paper documentation into electronic
form.

Because of paper documentation inherited from previous work and be-
cause of need for cooperation with other parties producing paper drawings,
this module is necessary in any system for storage, manipulation and control
of graphics formats. It should cover following functions:

• picture scanning
• editing of errors of scanning
• optical character recognition
• editing of bit-mapped pictures
• picture vectorization
• editing of vectorized pictures
• editing of ASCII pictures

3.2.1. Subsystem for scanning.
Any "real-life" business system, besides documentation created on a com-

puter, is doomed to have contact with paper documentation. That docu-
mentation is, seldom or rarely, used, saving of some documentation is usually
legal obligation. Transformation of that documentation into an electronic
form by repeated drawing is usually too complicated and too expensive. In-
stead, it is more natural to keep it in a computer archive in a form of scanned
pictures. After scanning, these pictures can be edited more or less, vector-
ized, if necessary, or transformed into text, which all are parts of subsystems
that will be mentioned later.

Process of scanning and editing of scanned pictures, should be, according
to latest trends in this field [5], equipped with tools for performing following
functions:

• scanning errors' correction
• straightening of aslanted pictures
• removal of "snow" emerging because of a dirt on a paper
• thickening or thinning of lines
• definitions of separate, different filters, for specific parts of a picture
• linking of disconnected contours, or separating of badly connected

contours
• standard functions for adding, editing and deleting parts of drawing

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

362 	 Z. Putnik

3.2.2. OCR subsystem.
This module confirms to all standard demands for this class of programs„

which will not be especially discussed in this context. It should only be em-
phasized that this subsystem has to supply a connection between a graphics
document in an unknown format and ASCII file obtained by process of scan-
ning and optical character recognition. This is, naturally, performed only
as a final measure, if information about the contents of a picture cannot be
obtained by any other means.

3.2.3. Subsystem for picture editing.
This is again a standard subsystem, that should not be explained in much

details. It should be only mentioned, that this subsystem in fact is consisted
of three separate parts, for editing different types of drawings - bit-mapped,
vectorized and ASCII character drawings. Since one drawing can be created
as a combination of all these types, all editing tools have to be available at
any moment.

3.2.4. Vectorization subsystem.
There is often a need for large amount of changes that should be performed

on an existing drawing. This is usually much easier (end with higher quality)
performed on a vectorized picture. Besides, vectorized picture, compared to
a bit-mapped picture, usually take much less space, which is a very important
demand in this field,. Considering all mentioned, subsystem for vectorization
is an obligatory part of a system for storage, manipulation and control of
graphics formats.

There is a set of standard tools for this process and usual procedures
for manual and automatic vectorization. Here, some more advanced actions
about vectorization will be underscored:

• definition of vectorization "filter" (for example artistic or technical,
or even more specific - electronic, architect, engineering ...), which
as a consequence, brings different definitions of some standard vec-
torization parameters:

(1) characteristics for approximation of curves,
(2) definition of smallest object that is vectorized,
(3) minimal offset of horizontal/vertical line that is not neglected,
(4) method of text recognition,
(5) minimal distance that separates two lines and so on.;

• enabling manual or automatic vectorization and vectorization of a
whole picture, of a part of a picture or definition of a part of a picture
that should not be vectorized;

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A System for Storage, Manipulation and Control ... 	 363

• enabling recognition of at least some basic contours - circle, ellipse,
square, for example - as contour, and not as a combination of simple
lines and curves. The same should stand for a combination of those
basic shapes. For example, a square written IN a circle, should be
vectorized as those two contours, and not as a combination of four
lines and four curves;

• text, as a part of a picture, can be recognized either as graphics
(transformed to curves), as letters (i.e., optical character recognition
of ASCII characters) or completely removed from a drawing;

• after finished automatic vectorization, there should be a possibility
for comparison of bit-mapped original and achieved result. Natu-
rally, there should be an ability for additional, manual changing of
vectorized picture;

3.3. Output module.

This module has to enable rough and/or detailed view of "all" important
graphics formats - bit-mapped or vector, including documents created by
important text-processing programs, spreadsheets or data-base programs.
For this module, only a quick and simple access to document is important,
including output abilities on all output devices, screens, printers and plotters.
Eventual changes of documents should not be incorporated into this module,
since these abilities are a part of another modules.

3.4. Module for manipulation of technical drawings.
Special problem in this field is production, maintenance and editing of

technical drawings. During creation, technical drawings go through many
phases of treatment, addition and editing, so that, as a result there is too
many paper versions of a drawing, usually right one at the wrong place. Chief
problem with technical drawings (for example drawings of bridges, buildings
and similar) is that they have to be saved and maintained for several tenths
of years.

Unfortunately, introducing computer aided design (CAD) into this area,
can put us in an even worse situation. Part of documentation is saved on a
computer, part on a paper, some initial versions of a drawing are declared
final, while some final versions are rejected as unnecessary. In order to
overcome these problems it is urgent to, right after introduction of computer
aided design, transfer all documentation into electronic form, no matter of
what kind, origin or shape they are and organize a data base to accompanies
that documentation. Later phase will usually demand several computers
connected into network.

3.5. Communication module.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

364 	 Z. Putnik

This module has to enable safe, fast and easy communication between dif-
ferent modules in a system for storage, manipulation and control of graphics
formats. As much as an user is concerned, it should supply simple usage, dif-
ferent methods to perform functions (keyboard, mouse, arrows ...), readabil-
ity of a screen, easy-to-use help system and all other standard requirements
for a proper user-friendly graphic interface [7].

4. Future development

It seems, considering fast development of science, especially computer sci-
ence, that it will be possible in near futue to spread system like this one in
several different areas. Even though commercial versions are still unavail-
able, some fields are developing very fast and we can expect soon expansion
of system for storage, manipulation and control of graphics formats, for ex-
ample with:

(1) Optical recognition of text - not characters
Latest research shows [1] [4], that optical character recognition

systems are very close to their upper limits. Although those limits
are rather high (over 95%), for large texts, and, more important,
for texts that allow no errors, this is insufficient. Consequently, or-
ganizations that want to work with "electronic documents" cannot
rely on them. These facts, initiated research in a field of optical
recognition of texts, based on analysis of a document structure and
its contents. A system like that, must contain several text character-
istics: big dictionaries, text styles, font types, document styles and
structure, word meanings, relationships between words and assump-
tions about text contents - expected contents, expected contents of
certain parts or knowledge on relationship between text and field of
its application.

(2) Intelligent interpretation of a drawing
Drawings, especially technical, could be scanned and recognized,

much better and more precise, by using certain algorithms for de-
termining location of textual parts of a drawing and its separation,
or methods for analysis of scanned drawings in order of acquiring
regular shapes, instead of set of lines, irregular in their shape, size
and thickness, algorithms for recognizing fill patterns and similar [2]

[3].

5. Comment instead of conclusion

By some available statistics (from year 1992) [5], it is estimated that there
is over 15 billion of paper drawings used in different companies, which have

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

A System for Storage, Manipulation and Control ... 	 365

to be used and controlled, and that only 13% of them are in electronic form.
It is also estimated, that over 10% of those drawings are lost or misplaced,
because of inefficient organization, and that, only in USA, about 43 million
man/hours are spent on storage, search, copying and other manipulation of
paper graphics documentation and space of over 1.5 million of square meters
is used for drawings storage and saving.

There is a lot of legal and practical reasons to store drawings for several
years, including potential need for drawing editing. Drawings used in ma-
chine construction, had to be treasured as long as machines are produced,
and even later, because of maintenance. The same, but for much longer
period, stands for architecture drawings or civil engineering, for example.

Introduction of CAD systems, aimed for improvements in a field of pro-
ductivity in drawings creation, easier usage of graphics libraries, easier stor-
age, editing and communication with drawings. But, need for communica-
tion with companies not using electronic systems for picture manipulation,
forced a situation in which every company had to keep people, offices and
working methods, for handling both paper and electronic drawings. Conse-
quently, instead of increase in productivity, that usually lead to duplicated
capacities and decreasing of efficiency, because of a need for cooperation
between two very incompatible, parallel systems.

Everything mentioned, clearly shows urgent need for creation and usage
of efficient system for storage, manipulation and control of different graphics
formats, toward which this paper hopefully leads.

References
[1] A. DENGEL, Stepping from Automatic Spelling towards Automatic Reading, Interna-

tional Summer School "Information Technologies and Programming" Sofia (1992).
[2] S.H. JOSEPH, T.P. PRIDMORE, Knowledge-Directed Interpretation of Mechanical En-

gineering Drawings, IEEE Trans. on Pattern Analysis and Machine Intelligence 14,
No. 9 (1992).

[3] R. KASTURI,R -. Bow, W. EL-MASRI, J. SHAH, J. GATTIKER, U. MOKATE, A System
for Interpretation of Line Drawings, IEEE Trans. on Pattern Analysis and Machine
Intelligence 12, No. 10 (1990).

[4] K. KUKICH, Techniques for Automatic Correcting Words in Text, ACM Computing
Surveys 24, No. 2 (1992).

[5] T. MAXWELL, Engineering Drawing Management, DECSYM'92 - Latest Trends in
Computing.

[6] J. MCKENDREE, J.M. CARROLL, Proceedings of CHI'86 Human Factors in Comput-
ing System, ACM, 1986.

[7] Z. PUTNIK, Intelligent HELP System as a Help in Educational Process, Proceedings
of IV Symposium "Informatics in Education and new Educational Technologies", Novi
Sad, (in Serbian) (1994), 86-91.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

366 	 Z. Putnik

[8] R. RADIEV, V. Dmirruov, N. MARINOV, A System for Development of Intelligent

Interfaces, Proceedings of 17 School with Conference Information Technologies and
Programming, Sofie, Bulgaria (1992).

ZORAN PUTNIK, UNIVERSITY OF NOVI SAD, FACULTY OF SCIENCE, INSTITUTE FOR

MATHEMATICS, TRG D. OBRADOVIGA 4, 21000 Novi SAD, YUGOSLAVIA

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Ni) 9:2(1995), 367-376

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ONE METHOD OF IMPLEMENTATION OF

LISP INTERPRETER TO TRANSPUTERS

Jozef Kratica

ABSTRACT. The paper describes one method of implementation of LISP interpreter to
transputers. Developed interpreter contains standard functions common for almost all
LISP versions. Architecture is binary tree message passing. Implementation was de-
veloped on transputer parallel C language (ANSI C with procedures for interprocessor
communications and synchronization). Part intended for evaluation of functions (expres-
sions) was parallelized, but I/O operation and parsing were sequential. This is caused
by the technical limitations of transputer systems, because I/O operations can executed
only by first transputer, and interprocessor communication is slow. Maxima increase in
speed equals 6.5 times, on transputer system with 17 transputers T800, by as compared
to single transputer T800. That increase in speed is obtained for recursive problems de-
manding much computing. Small increase in speed is obtained for problems with more
I/O operations.

1. Implementation method
In LISP implementation on uniprocessor machines ([2], [3]), the basic part

for parallelizing is part for evaluating expressions (functions). Provided that
only first transputer can perform I/O operations, these operations (I/O)
must be executed sequentially. Parsing functions are also executed on the
first transputer, because interprocessor communication is slow. First trans-
puter sends function definitions to other transputers when they need them
(when other transputers evaluate functions).

Technical limitations of transputer systems are ([7]):
a) Every transputer have 4 links to other transputers;
b) Every transputer must be reset (one of its 4 links) by other transputer.

Only first transputer is reset by the host.
c) Every transputer can reset maximally another 2 transputers, one by

system, and the other by subsystem reset link.

367

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

368 	 Jozef Kratica

Graph theory defines precisely technical limitations by term RS complete
graph maximal degree 4. [3]

Binary tree architecture satisfies technical constrains of transputers (RS
complete graph maximal degree 4) [3]. Binary tree architecture is applied in
this paper.

Transputers can be grouped in 3 categories:
a) The first transputer;
b) Transputers that have successors (transputers with numbers 2-8.);
c) Transputers which have no successor (other 9 transputers).
File with NIF extension describes architecture (configuration) of the tran-

sputer system. Example of NIF file for our implementation, which contains
17 transputers T800 is shown below:

1, lisptrl, RO, 0, 2, 3,
2, lisptr2, R1, 4, 1, 5,
3, lisptr2, Si, 6, 7, 1,
4, lisptr2, R2, 2, 8, 9,
5, lisptr2, S2, 10, 11, 2,
6, lisptr2, R3, 3, 12, 13,
7, lisptr2, S3, 14, 3, 17,
8, lisptr2, R4, 18, 4, 19,
9, lisptr2, S4, 4,
10, lisptr2, R5, 5,
11, lisptr2, S5, 5,
12, lisptr2, R6, 6,
13, lisptr2, S6, 6,
14, lisptr2, R7, 7,
17, lisptr2, S7,
18, lisptr2, R8, 8,

' 19, lisptr2, S8, 8,
Every line contains:
a) Number of the transputer (the first transputer must be connected to

the host by link 0);
b) Name of a program that will be executed on that transputer;
c) R or S (system or subsystem reset), and number of the transputer

which will reset him;
d) Number of the transputer which is connected by link 0;
e) link 1;
f) link 2;
g) link 3;

Free connection by that link marking empty place.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

One method of implementation of LISP interpreter ... 	 369

Example: 5. Transputer execute LISPTR2, reset by subsystem link of
2. Transputer (S2). Link 0 connects to transputer number 10, link 1 to
transputer 11, link 2 to transputer number 2. Link 3 is free.

Configuration of the transputer system given in previous NIF file is binary
tree (Figure 1). More about a configuration of a transputer in a network is
presented [3] and [7].

FIGURE 1. Architecture of the transputer system

1.1 Work done by the first transputer.
First transputer performs following operations:
a) Loading input data;
b) Parsing input data for definitions of user-defined functions;
c) Saving that definitions;
d) Saving names of variables and functions;
e) Parsing function calls from input data;
f) Printing output results;
g) Deciding about the execution of the functions (whether to execute

function itself, or to send it to "successors").

1.1.1 Calling of user-defined function.
If the first transputer evaluates user defined function, two cases can arise:
a) If the function contains only calls of built-in functions, the first trans-

puter itself evaluates all parts of the function, because in many cases this
evaluation is short.

b) In case that the user-defined function also contains calls of other user-
defined function (functions), much computing can be expected. In that case,
if some of "successors" are free, this transputer sends parts of those user-
defined function to free "successors" for evaluation. If all "successors" are
busy, then this transputer itself evaluates all function calls.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

370 	 Jozef Kratica

1.1.2 Calling of built-in function.
In this case, the first transputer performs all computing alone, because

the evaluation of calls of built-in functions is short.

1.2 Work performed by the transputers that have "successors".
Every transputer that has "successors" (in this configuration of 17 trans-

puters, these are transputers Nos. 2-8), waits for the message "COMPUTE"
from "parent" transputer.

After receiving the message "COMPUTE", it receives the following data:
a) Expression (function) that it will evaluate;
b) Names and values of variables in that expression;
c) Definitions of functions, that the expression (function) needs for the

evaluation;
d) Contents of argument stack in that moment.

After that, the transputer evaluates function calls, in the same way that
the first transputer does. After the end of the evaluation of that function
call, the transputer sends the "FREE" command to the "parent", and saves
a result to its communication stack.

In the moment in which the "parent" needs this result, the transputer
loads this value from his communication stack and sends it to the "parent".

1.3 Work performed by transputers that have no "successors".
Every transputer that has no "successors" (in this configuration of 17

transputers, these are transputers Nos. 9-19), waits the message "COM-
PUTE" from the "parent" transputer.

After the receival of the message "COMPUTE", ite receives the following
data:

a) Expression (function) which it will evaluate;
b) Names and values of variables in that expression;
c) Definitions of functions, which the expression (function) needs for eval-

uation;
d) Contents of argument stack in that moment. After that, it itself eval-

uates the function call (because it has no "successors").

After the end of the evaluation of the function call, a transputer sends the
"FREE" command to a "parent", and saves the result to its communication
stack. In the moment in which the "parent" needs this result, the transputer
loads this value from its communication stack and sends it to the "parent".

2. Realization
The implementation of LISP interpreter for transputers (multiprocessors),

was based upon the corresponding implementation for uniprocessor machines

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

One method of implementation of LISP interpreter ... 	 371

[3]. Changes in parts of implementation for uniprocessor machines are minor.
The implementation for multiprocessors (transputers) contains two new par-
ts:

1. Argument passing and
2. Control part

In this implementation there are two segments of the program:
a) the segment which will be executed on the first transputer;
b) the segment that will be executed on the other transputers. This

segment does not contain the procedures which other transputers cannot
execute (I/O operations, parsing, ...).

2.1 The segment for the first transputer.

2.1.1 Argument passing.
The parallel C contains only procedures intended for passing of integers or

characters to (from) communication channels. In the program the complex
and powerful data structures (pointers, linked lists, ...) and procedures nec-
essary for passing those data structures to (from) communication channels
were used. This part of the program contains procedures that enable those
possibilities.

2.1.2 The control part.
This is the most important part of the program.
It performs following operations:
a) receives messages from input channels, and performs their commands;
b) takes note of transputers which ended theis previous evaluation, and

now are free;
c) when it evaluates function calls, it analyses following cases: if the

transputer has "successors", if its "successors" are free, and if expression is
user-defined function, then it sends a function to be evaluatet to the first
free "successor". In other case it itself evaluates a function call;

d) it sends the message "GIVE ME" to a "successor", demanding the
value it computed. Then it waits until it receives the value.

2.1.3 The segment intended for other transputers.
On the other transputers some procedures are disposed as unnecessary.

Some procedures are new.
In the part Argument passing new procedures are procedures intended

for the communication stack (not necessary for the first transputer).
In the part Control parts there are several operations to be performed:
a) receival of function intended for evaluation (and all necessary data)

from the "parent".
b) receival of the message "GIVE ME", from the "parent";

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

372 	 Jozef Kratica

c) receival of the message "END" from the "parent". This message means
the end of the interpreter work. In that moment, execution of program ends,
and the user exits from the interpreter to the operating system.

3. The efficiency of the implementation

This implementation is efficient, in case of the great number of operations,
and recursive oriented solutions. However, increase in speed depends upon
the nature of a problem.

The testing was performed using few test examples. The increase in
speedup was notable only for problems with a small number of I/O op-
erations, and a great number of computing operations. In the alternate case
(a great number of I/O operations) the increase in speed is small, because
the communication time for one datum is 4 times greater than the time
needed for the arithmetic operation on that datum.

In Tables 1-3 all times are given in ms. The maximal error of measurement
equals 5ms.

The results for different arguments are given in different rows of each
table.

In each row are given:
a) arguments of functions;
b) the execution time on 1 transputer;
c) the execution time on configuration with 3 transputers, and increase in

speedup in comparison to time on 1 transputer;
d) the execution time on configuration with 7 transputers, and increase

in speed compared to the time on 1 transputer.
e) the execution time on configuration with 15 transputers, and increase

in speed compared to the time on 1 transputer;
f) the execution time on configuration with 17 transputers, and increase

in speed compared to the time on 1 transputer;
Example 1: The function with 2 recursive calls:
(defun t2 (x)

(if (= x 0)
1
((t2 (- x 1)) (t2 (- x 1)))))

The method of evaluation of (t2 17) is given in Fig. 2.
Example 2: The recursive search of Fibonacci numbers:
(defun fib (x)

(if (i x 2)
x
(+ (fib (- x 1)) (fib (- x 2)))))

The method of evaluation of (fib 24) is presented in Fig. 3.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

(t215)

t2 14) (t2 14) (t2 14;

(t2 17)

(t2 16)

(t2 13)

(t2 15)

One method of implementation of LISP interpreter ... 	 373

TABLE 1. Times for the Example 1

X 1 tr. 3 tr. spe. 7 tr. spe. 15 spe. 17 spe.
10 741 428 1.73 232 3.19 125 5.92 125 5.92
11 1481 850 1.74 457 3.24 237 6.24 237 6.24
12 2961 1695 1.74 906 3.26 461 6.42 461 6.42
13 5921 3384 1.75 1804 3.28 911 6.49 910 6.50
14 11841 6764 1.75 3541 3.34 1809 6.54 1808 6.54
15 23681 13522 1.75 7073 3.34 3605 6.56 3604 6.5
16 47362 27039 1.75 14138 3.35 7197 6.58 7197 6.58
17 94722 54073 1.75 28267 3.35 14382 6.58 14382 6.58

FIGURE 2. Scheme of evaluation for example 1

TABLE 2. Times for the Example 2

X 1 	tr. 3 tr. spe. 7 tr. spe. 15 spe. 17 spe.
10 65 49 1.32 36 1.80 26 2.5 22 2.95
15 710 502 1.41 337 2.10 201 3.53 138 5.14
16 1148 809 1.41 543 2.11 317 3.62 216 5.31
17 1857 1306 1.42 874 2.12 506 3.67 343 5.41
18 3004 2111 1.42 1411 2.12 826 3.63 548 5.48
19 4860 3412 1.42 2279 2.13 1310 3.71 879 5.52
20 7862 5519 1.42 3684 2.13 2115 3.71 1416 5.55
21 12721 8927 1.42 5957 2.13 3418 3.72 2284 5.57
22 20582 14433 1.42 9476 2.17 5523 3.72 3688 5.58
23 33301 23353 1.42 15311 2.17 8932 3.72 5961 5.58
24 53881 37758 1.42 24761 2.17 14453 3.72 9639 5.59

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

374 	 Jozef Kratica

FIGURE 3. Scheme of evaluation for example 2

Example 3: Some problems have a great number of I/O operations, a lot of
communication, or their execution is slow due to certain technical limitations
of transputers. In the evaluation of those problems a small increase in speed
is obtained, or, conversely, more time is needed than on one transputer. The
example of such a problem is the program which forms a "big" list.

(define form (n)
(if (= n 0) (set list (cons '1 list))

(begin
(form (- n 1))
(form (- n 1))
(form (- n 1))
(form (- n 1))
(form (- n 1)))))

(set list '0)

TABLE 3. Times for the Example 3

X 1 3 spe. 7 spe. 15 spe. 17 spe.
2 53 63 0.84 63 0.84 63 0.84 63 0.84
3 293 344 0.85 344 0.85 344 0.85 344 0.85
4 1461 1721 0.84 1721 0.84 1721 0.84 1721 0.84
5 7338 8633 0.85 8633 0.85 8633 0.85 8633 0.85

Remaining methods of implementation are extensively described in [1].
Some of them are:

1. Translation of a program code into metalanguage, that is more suitable
for evaluation [6];

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

One method of implementation of LISP interpreter ... 	 375

2. Division of the problem into subproblems (divide and conquer ap-
proach) [5];

3. Translation of the program into a code that does not the requirements
of speed, and after that, during run-time, automatic improvement of its
performances [4].

4. Conclusions

Most implicit parallel languages implement functional programming lan-
guages. Reasons for using functional paradigm (insted of the procedural
one) are:

1. Smaller kernel of language;
2. A precise grammar, and, consequently, uniform constructions;
3. No side effects;
4. Easy writing of recursive functions;
5. No explicit sequence of execution.
Because of that, parallel implicit programming languages are most popu-

lar.

In this paper the interpreter for LISP that implicitly solves problems
of communication and synchronization between processors was developed.
This method is the most general one, but it does not, in the same time,
produce the fastest code. The code is equal to the code used for uniprocessor
machines, and all programs written in sequential LISP can operate on those
machines as well. But a programmer can manually write the fastest code (in
explicit parallel programming languages, like Parallel C or Occam).

Architecture is binary tree. This means easier control of processors (com-
munication and synchronization), but it also means the unnecessary waiting
of some processors (transputers). A more complex architecture (than the
tree) can reduce waiting of processors, but it will also increase a communi-
cation.

The methods of improving this implementation are:
1. the implementation of new built-in functions in accordance with the

Common LISP standard. It should be noted that there are few thousand of
built-in functions in Common LISP;

2. using more complex architecture of the transputer system. New gen-
eration of transputers has more interprocessor channels (16) than this gen-
eration (4). This means that architecture can be more complex, and the
increase in speed can be greater.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

376 	 Jozef Kratica

References

[1] ASHCROFT E.A., FAUSTINI A.A., JAGANNATHAN R., An Intensional Language for
Parallel Aplication Programming, Parallel Functional Languages and Compilers,
ACM Press, 1991, pp. 11 — 50.

[2] K AMIN N. S., Programming languages - An interpreter based approach, Addison-
Wesley, 1990.

[3] KRATICA J., Paralelization of functional programming languages and implementation
to transputer systems, Mag. thesis, University of Belgrade, Faculty of Mathematics,
1994.

[4] LEUNG S., ZAHORJAN J., Improving the Performance of Runtime Paralelization,
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (1993), ACM Press, 208-217.

[5] Mou Z.G., A Formal Model for Divide-and-Conquer and its Parallel Realization,
Ph.D. thesis, Yale University, Department of Computer Science, 1990.

[6] SKEDZIELEVSKI S.K., GLAUERT J., IF! - An intermediate form for aplicative lan-
guages, Manual M-170, Lawrence Livermore National Labaratory, 1985.

[7] Transputer Toolset, Inmos corp., 1989.

27. MARTA 80, 11000 BELGRADE

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT (Nis) 9:2 (1995), 377-384

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

CODING FOR (5,13) CHANNEL CONSTRAINTS

Milan Simie and Rade Petrovie

ABSTRACT. Data Translation codes for the particular channel constraints are designed
and presented in this paper. The encoding schemes belongs to the RLL(5, k) codes family
and can be used in digital recording and telecommunication practise.

1. Introduction

Runlength limited codes, RLL, are used for digital storage, or as Transla-
tion codes for digital data transmission /1/. System for digital transmission
can be defined as a system designed to best use a given channel, while the
analog communication system is defined as the one designed to best fit a
given signal source. Unconstrained data stream must be converted to con-
strained stream of symbols, (d, k), in order to solve the problems of spec-
tral shaping, self-timing, and intersymbol interference (ISI). Lower bound of
zero runs defined by parameter d is used to control ISI, while upper bound
defined by parameter k is used to insure data stream selfclocking. Gener-
ally, parameters of any translation encoding scheme belong to the range of
0 < d < k < oo. Through the numberof already published papers, we have
shown that channels with constraints in the range of d = 5 and 12 < k < 16,
are interesting for the future use in both areas of application. The channel
(5, 13) have not been especially treated yet, and it is the purpose of this
paper. The presented encoding schemes offer a great opportunities in choos-
ing encoding rules, so that RLL codes can be combined with permutation
codes, and the signal spectral density can be adjusted. Permutation codes
are a class of error correction codes which have been suggested for use on
the Gaussian channel.

2. Capacity and Coding Rate Consideration

Based on Schannon's FSM channel model (Finite State Machine), gen-
eral algorithms are already developed for practical encoding schemes design.

377

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

378 	 Milan SimiC and Rade PetroviC

Code designers try to enlarge the parameter d, and to shorten the parameter
k, for the same coding rate R = m/n, defined as ratio of unconstrained input
data symbols number, m, to the number of constrained signal symbols, n, at
the coder output. The operation of string translators, named encoders and
decoders, is to map input string of symbols from one alphabet into the out-
put string of symbols from the other alphabet. Input string may possibly be
of infinite length, but for the practical reasons it is devised into finite strings
of fixed or variable lengths, so that we have FL or VL encoding schemes.

Codeword assignment is obviously the function of the incoming dataword,
but also it can be dependent on the channel state, presented by the FSM,
when we have state dependent coding. Finally, it can be the function of the
future dataword, and in that case we have Future dependent coding - FD.
Shannon proved that, as codeword length n grows, the number N (n) of (d, k)
sequences approaches the value 2cn, where C is called information capacity.
Capacity C can be treated as the theoretically maximum achievable coding
rate R for infinite value of codeword length n, according to the equation:

(1) C 	
1

lim — (1 og21V (n))
n —0 oo n

It is clear that coding rate R always satisfies inequality R < C. The
code is called the efficient one if the coding rate R is close to the capacity
C. Different (d, k) sequences information capacities are already given in the
references, but we did some more calculations based on the solution of the
characteristic equation given by det(A — Al) = O, where A is FSM state-
transition matrix. The calculated capacity C is the capacity of a discrete
noiseless channel expressed in units of bits per channel symbol, although
it can also be calculated in units of bits per second, bps. Capacity of
the channel in bits per channel symbol differ only by a factor equal to the
number of channel symbols per second. Considering channel characteristics
there are four concepts related to one another:

Data rate in bps, at which data can be communicated,
Bandwidth of the transmitted signal and the nature of the transmission

medium in hertz,
Noise or average level of noise over the communications path,
Error rate, the rate at which errors occur.
For the coding purposes, or alphabet conversion, it is convenient to con-

sider capacity in bits per symbol. Our conclusion was that the codes with
coding rate R = 1/3 and parameters (d, k) = (5, k) could be of interest
in recording, as well as telecommunication practice. Density ratio of these
codes, given by DR = R(d 1) = 2, is valuable improvement over existing
codes.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

• 0
V

Coding for (5,13) channel constraints 	 379

After the considerations described above, we have found out that it is
possible to design new coding schemes defined by parameters (d, k) = (5,13)
and R = 1/3, as the (5,13) constrained sequences information capacity is
C = 0.343 < 1/3 = R. Clock rate, defined as CLR=1IRT, is increased,
CLR = 3, and thus compensates information rate loss caused by translation
of unconstrained input data sequences to the constrained sequences. The
original information bit time interval, which corresponds to NRZ clock signal,
is called bit window, and is labelled with T.

3. Encoding Schemes for (5,13) Constraints

- State and Future Dependent Coding

Figure.1 illustrates State transition diagram or FSM, for general con-
straints (d, k). In our particular case when d = 5 and k = 13, it is a graph
with 14 nodes, or channel states, where arrows directed edges represents
state transitions, and are labelled with channel bits. In the terminology of
synchronous Bounded Delay (BD), or FD coding /2-5/, set S, is a set of cod-
ing, or terminal states, which are the states entered at the end of codewords.
Codewords are the paths through the FSM graph.

Fig. 1 State transition diagram for the (d, k) sequence

The existence of set S, = (S,), as a subset of all FSM states set, S =
(Si), i = 1, ..., 14, is a necessary and sufficient condition for the existence of
a code. FD RLL(5,13) code can be defined with 26 codewords, the lengths
of which vary from 3 to 21 signal symbols, representing 1 to 7 data bits.
Coding states set is Sc = (Se), c = 1,2,4,5,6,7,8. The codeword choice is
a function of the current state (State Dependent-SD), the information to be
represented, and the future information. Code conversion rules are given in
Table 1. Data bits in brackets indicate future bits in certain states, and are
related to the states S i , S2, 54, and S5, where we have future dependency.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

380 Milan Simi 	and Rade Petrovie

TABLE 1. Future Dependent RLL(5,13) Code

Initial State Input Data Output 	Sequences Final State

1 Ss, S71 58 00 100000 S6
2 010 010000000 58
3 011 001000000 S7
4 100 000100000 S6
5 1010 000010000000 S8
6 1011 000001000000 S7

7 1100 000000100000 S6
8 11010 010000010000000 S8
9 11011 010000001000000 S7
10 11100 001000001000000 S7
11 111010 000010000010000000 S8
12 111011 000010000001000000 S7
13 111100 000001000001000000 S7
14 1111010 010000010000010000000 S8
15 1111011 010000010000001000000 S7
16 1111100 010000001000001000000 S7
17 1111101 001000001000001000000 S7
18 1111110(0) 000010000010000010000 55
19 1111110(1) 000010000010000001000 S4
20 1111111(1) 000001000001000001000 S4
21 1111111(00) 010000010000010000010 S2
22 1111111(01) 010000010000010000001 Si
23 Si 0 000 54
24 S2 0 000 S5
25 S4 1 000 S7
26 S5 0 000 S8

- State Independent Coding

Using the same codepaths in the state transition diagram from Fig.1,
state independent SI RLL(5,13) code can be defined with no look-ahead.
In this case, coding states set is S, = (S e), c = 6, 7,8. Code translation
table can consists of 22 or 21 codewords, the lengths of which vary from
6 to 24 signal symbols, representing 2 to 8 data bits. Generally, future
dependency can shorten codeword length, but in this case it does not affect
the error propagation limiting (EPL), or codec complexity reduction. The
next RLL(5,13) code is designed with given coding states set S c , where the
translation rules are defined for 21 VL codewords as presented in the Tablet.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Coding for (5,13) channel constraints 	 381

TABLE 2. State Independent RLL(5,13) Code

Input Data Output Sequences

1 00 100000
2 010 010000000
3 111 001000000
4 100 000100000
5 1010 000010000000
6 0111 000001000000
7 1011 000000100000
8 11001 010000010000000
9 11011 010000001000000
10 11000 001000001000000
11 011001 000010000010000000
12 011011 000010000001000000
13 011000 000001000001000000
14 1101001 010000010000010000000
15 1101011 010000010000001000000
16 1101000 010000001000001000000
17 1101010 001000001000001000000
18 01101001 000010000010000010000000
19 01101011 000010000010000001000000
20 01101000 000010000001000001000000
21 01101010 000001000001000001000000

The problem of EPL is directly related to the appropriate codeword to
the data word assignment and the decoder design /6/. Based of that, similar
data sequences are coded with similar symbol sequences. The encoder for
the New code can be designed as any PAL SM (State Machine) encoder for
RLL codes, as for example for RLL(2,7), or RLL(5,16) codes, but we propose
sliding window decoder.

The decoder for New RLL(5,13) code has 26 bits shift register, as sliding
window, with serial input-parallel output and PLA array architecture for
combinatorial logic design. Programmable AND-OR array generates canon-
ical form sum-of-products of the variables involved in a function. Variables
are taken from the shift register positions. Sequential decoder generates one
output data bit for each incoming 3 symbol bit pattern, after the time delay
for 9 symbols, or 3 data bits. There is no internal feedback in the decoder
as the output depends only on the input string in length of 26 bits, so that
the error propagation is limited to only 9 data bits since 24 < 26 < 27. If

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

382 	 Milan Simi and Rade Petrovi6

we denote the contents of the shift register positions by x i , i = 1, 2, ..., 26,
with shifts from x 1 to x26 , the decoded group occupies positions x 10 , xil

 and x12 , while the past (xi, i = 13 — 26), as well as, the future (x i , i = 1— 9)
bit groups, can affect the decoder decision. After a great deal of calculation,
since the truth table has 116 rows and 26 columns, it can be shown that the
decoder output, d = f(x i ,..., x26), is defined by Boolean expression:

18

d = E pi

P1 = x7r13; P2 = x7X14; P3 = x8x14; P4 = X9X18; P5 = x9x19;

(2) 	P6 = X9X20; P7 = X13i19; PS = X13x25; P9 = X14i20; P10 = x4r11i17;

P11 = x5x11i17; P12 = x10i16i17; P13 = i10X16i22; P14 = 1 10i11x17x23;

P15 = i1i2X8i15i16i17; P16 = x6i12 113 1. 14i15i161 17;

P17 = x12i18i19i20i21 122i23; P18 = x15i21i22i23i24i25i26;

The truth table used in the evaluation of decoder function is only a part
of the whole table with 2 26 = 67108864 rows.

- Improved ACH coding

Referring to the FSM model, as in any other method, with ACH approach
it is possible to derive encoder state transition table in systematic manner,
for any channel constraints, if coding is realisable depending on R and C.
Recently /7/ the novel method, or improved ACH, was presented. The same
approach was used for the following scheme design. Constrained channel is
described by 14-by-14 state transition matrix D:

D = (did); i,j = 1,...,14

di 1 = 1 for i >(d +1) = 6

do = 1 for j = i + 1

do = 0 for the other cases

Next step was to derive B = D3 from D, and it should be for our channel
the following matrix :

B = D3 = (bid); i,j = 1, ...,14

bil = 1

bi2 = 1

bi3 =1

bi = 1

bij = 0 for the other cases

for 4 < i < 12

for 5 < i < 13

for 6 < 	< 14

for j = i + 3

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

Coding for (5,13) channel constraints 	 383

After that we have found vector V with positive integer components such
that:

D3 V > 2V

Two optimal, from many possible solutions, are the following:
V1 transposed = (4 5 6 8 10 12 12 11 9 9 7 3 3 3)

= v(i) for i = 1 to 14; m = 102

V2 transposed = (4 5 6 8 10 12 12 11 9 9 7 3 3 1)
m = v(i) for i = 1 to 14; m = 100

where v(i) are components of the vector V.
The number of encoder states, in the state splitting process, is given by

the corresponding component of vector V so that the total number of encoder
and decoder states is in.. l'he Encoder matrix E is squared, 100x100 matrix
in the other case which is the best one, and we can use Milan approach, with
H matrix, to define the encoder /7/.

Since the number of states is 100 < 128 = 2 7 states, the error propagation
is limited to only 7 data bits, for this class of codes /7/.

4. Conclusion

Encoding schemes presented in this article are coding problem solutions
for (5,13) channel constraints. Error propagation is limited in each case, as
more precisely presented in the previous papers for similar codes, and the
further analyse can be done in order to adjust signal spectres. In addition
to that, RLL codes can be combined with permutation codes to improve the
reliability, or Data Rate in the communication channel.

The last one scheme from this paper, can give us more freedom to make
the appropriate codewords to datawords choice. Since the presented channel
codes are selfclocking, and according to the existing standards they can be
used for voice and all other source data transfer, so they are suitable to be
data encoding schemes for ISDN, or BISDN via fibre optic media. Finally,
the FDDI code is only RLL(0,3) encoding scheme.

References

[1] RICHARD, E.B., Digital transmission of information, Addison Wesley Publishing
Company, 1990.

[2] ADLER, R.L., COPPERSMITH, D., HASSNER, M., Algorithms for Sliding Block Codes,
IEEE Trans.Inf. Theory IT-29, No. 1, January (1983), 5-22.

[3] SImIC, M., PETROVIe, R., New RLL code for digital data storage, Electron. Lett.

25, (15) (1989), 951-954.

[4] FRANASZEK, P.A., Synchronous bounded delay coding for input restricted channels,
IBM J. Res. and Develop. 24, No.1 (January 1980,), 43-48.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

384 	 Milan Simi6 and Rade Petrovie

[5] FRANASZEK, P.A., A general method for channel coding, IBM J. Res. Develop. 24,

No.5 (September 1980), 638-641.
[6] Simi& M., PETROVIO, R., New EPL RLL(5,16) code, Electron.Lett. 27, (23) (1991),

2100-2102.
[7] Smite, M., RLL(5,12) Coding, ETRAN, Ni 1994.

MILAN SIMIO, FACULTY OF PHILOSOPHY, DEPARTMENT OF MATHEMATICS, UNIVER-

SITY OF NIS, YUGOSLAVIA

RADE PETROVIO, UNIVERSITY OF MISSISSIPPI, CENTRE FOR TELECOMMUNICATION,

PO Box 9031, UNIVERSITY, MS, 38677

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

FILOMAT

1
FILOMAT is a continuation of Zbornik radova Filozofskog fakulteta u Ni§u, Ser-

ija Matematika (vol. 1(1987)— vol. 6(1992) and is published yearly. It publishes
original papers in all fields of pure and applied mathematics.

INSTRUCTIONS FOR AUTHORS

All manuscripts (the original and a copy) must be written in English. The
extent of the papers is limited to ten pages in length; manuscripts over 10 pages
are accepted only exceptionally. Manuscripts should not require many language
corrections.

FILOMAT is produced using AmS -TOC. Authors are encouraged to prepare their
manuscripts using AmS -TE X. Only a hard copy should be submitted for assessment,
but if the paper is accepted the author will be asked to send the text on an IBM
PC compatible diskette.

The author(s) should write their names, addresses and the title of the paper on
a separate sheet. All manuscripts should start with a short Abstract and include
the footnote 1991 Mathematics Subject Classification on the first page. Definitions,
theorems, lemmas, remarks, proofs etc. should be written using only one of two
alternative styles: Definition 2.1. or 3.2. Theorem consistently throughout the
paper.

Figures are included in the text and must be numbered (by arabic numbers)
and mentioned in the text. Equations (or formulas) must be numbered (for future
references) in parentheses () at the left margin.

References should be listed alphabetically in the following form:
[3] E.HEWITT AND K .A . Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag,

Berlin, 1963.
[11] D.KUREPA, On regressive functions, Z. Math. Logik 4 (1958), 148-156.
[15] P.PETRovI6, Neka svojstva ..., Doctoral dissertation, University of Belgrade,

1980.
A total of 30 reprints of each paper will be available free of charge; additional

reprints can be ordered.
All correspondence concerning both manuscripts and exchange should be ad-

dressed to:
Filozofski fakultet (FILOMAT), ul. Cirila i Metodija 2, 18000 Nis, Yugoslavia.
The subscription price is 20 dollars USA per volume, post free.
For subscriptions write to the same address.

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

CONTENTS

Geometry

M. Bjelica: An Inequality for the Triangle
	 117

I. Comic: The complete list of F(2) type structures in the complex Finsler space 	 121

M. -Doric: Geodesic tubes and Jacobi vector fields on complex space forms 	 131

S. V. Jablan: Curves generated by mirror reflections 	 143

S. M. Minek: On a family of tensor fields in a generalized Riemannian space 	 149

J. Nikk: F(2k +1, 1) -structure on the Lagrangian Space 	 161

M. Prvanovk: On warped product manifolds 	 169

N. Pu§k: Holomorphically-projective connections of a hyperbolic Kaehlerian space 	 187

Lj. Velimirovk: On infinitesimal deformations of a toroid rotational surface generated by a

quadrangular meridian 	 197

Computer Science

Lj. M. Kock: Fractals and their Applications in Computer Graphics 	 207

D.M. Miloevit. and Lj.M. Kock: Lines of curvature of free form surfaces tracing 	 233

N.V. Blagojevk and Lj.M. Kock: Modeling of rational curves by interpolation 	 243

S. Hristov, M. Stankovk and V. Velkkovk: "Exact" display of objects with real valued

positions and dimensions 	 251

M. TrajkoviC, S. Trkkovk and M. Petkovk: Halley-like asynchronous methods for polyno-

mial roots 	 261

S. Trkkovie, M. Trajkovk and M. Petkovk: Asynchronous methods for simultaneous deter-

mination of polynomial roots 	 273

P. Stanimirovk: Computing pseudoinverses . using minors of an arbitrary matrix 	 285

L. Szarapka and D. MaAulovie: On Translating Mod ula-2 Programs to C: Local Procedures

And Modules 	 295

L. Szarapka and Z. Budimac: Determining Module Dependecies in Modular Programs 	 303

T. Vukelk and M. Ivanovk: Usage of S-Expressions and Predicate Expressions in Procedu-

ral Programming Language's 	 315

T. Vukelk and D. Kamenov: Implementation of Predicate Expressions in Procedural Pro-

gramming Languages 	 325

S. Jankovk: Dependence testing on loops with bounds which are functions of outer loop

indices 	 333

D. Jankovk and M. Stankovk: The Generation of Permutations through GDD 	 345

Z. Putnik: A System for Storage, Manipulation and Control of Different Graphics Formats 357

J. Kratica: One method of implementation of LISP interpreter to transputers 	 367

M. Simk and R. Petrovk; Coding for (5,13) channel constraints 	 377

ISSN 0354-5180

V
ir

tu
al

 L
ib

ra
ry

 o
f

F
ac

ul
ty

 o
f

M
at

he
m

at
ic

s
-

U
ni

ve
rs

it
y

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278

