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Conference FILOMAT'94 

( October 22-24, 1994, Nig ) 

Department of Mathematics of the Philosophical Faculty, University of 
Nig, organized the mathematical conference „Filomat '94 " from October 22 
to October 24, 1994, with two sections: 

1. Geometry (The 10'h Yugoslav Meeting of Geometricians ), 
2. Computer Science (Geometric Modeling, Numerical and System Soft-

ware, Networks) 
About 80 mathematicians from Yugoslavia and other countries have taken 

part on the conference, with about 60 talks. Some of them are published in 
this volume of „Filomat". 

Chairman of the Organizing Committee 

Svetislav Mini 
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The organization of the conference „FILOMAT '94" was helped by 
the sponsors: 

-Ministry of Science and Technology of Serbia 

-EI Sigraf d.o.o. 

-Libis Computers 

-STN Slavia Trade, Nis 

-WB Osiguranje 

-Yugoduvan, Nis 
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'tan al < a e2 	all 

If a < lir, then 

( 3 ) 
✓2b 2  2c2  — a2  

sin a < a /2b2 2
c2 a2 

bz 	e2 
Icos al> 	

b2 	c2 	' 

1b2 	c2 	a21 

FILOMAT  (Nis) 9:2(1995), 117-120 

Filomat '94, NiA, October 22-24, 1994 
Geometry. Computer Sciences 

AN INEQUALITY FOR THE TRIANGLE 

Momello Bjelica 

ABSTRACT. Inequalities for the triangle in the most of cases become equalities for the 
equilateral triangle [2], [5]. In this article is given an inequality with unique property that 
it becomes equality for isoscales and rectangular triangles. Also, an inequality connected 
with Karamata's inequality is given. 

j/2b2  2c2  — a 2  

equality holds if and only if b = c or a = 

b2 	c2 	 c2 	a2 	 a2 	b2 
(2) 2R > relax{ 	

2c 2  — a2  V2c2  2a2  — b2  V2a2  2b2  — c2  

equality holds if and only if the triangle is isosceles or rectangular. 

Lemma. 

Theorem 1. Let a, b, c, a, 13, -y are the sides and angles of a triangle 
respectively and R the radius of its circumcircle. Then 

(1) 	 2R>  	
b2 c

2 

(4) 

a 	-V2b 2  2c2  — a2 	
sin 	

a 
> 	  cos 

	

2 	V2b2  2c2 	
sin 2 — < 	

 V12b2 2c2 ' 

a 
tan a < 	  

2 — V2b2  2c2 — a2 ' 

1991 Mathematics Subject Classification. 51M16. 
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118 	 M. Bjelica 

and conversely for a > 2 . Equalities hold if and only if b = c or a = f 

Proof. Inequality (3.1) is equivalent to 'cos al(b — c) 2  > 0, which becomes 

equality if and only if b = c or a = 121 . (3.2) is equivalent to (3.1), and (3.3) 
is their consequence. Using 2R sin a = a one obtains that (1) is equivalent 
to (3.2). Since cos a > (b2 + c2 a2)/(b2 c2) if a  < and conversely if 

a > 	inequalities (4) follow. ❑ 

The inequality of I. J. Schoenberg [4] for the two-dimensional euclidean 
space reads as follows: If A 1 , A2, A3 are real numbers, then 

(5) 	(A 1  + A2 + A3 ) 2  R2  > A 2 A3 a2  A3 A 1 b2  A1 A 2 c2 . 

Introduce the functional 

f(A i , A2, A3) = A2 A3a2  A3 A 1 b2  A1 A 2 c2  

and consider now the inequality (5) with two equal parameters. The func-
tional f(A i , A2, A2), Al 2A2 = const. has a maximum if 

(b2  c2 ) 2A2 (a2  — b2 c2) 	0, 

For this value (5) becomes 

Al = 2A 2  
b2 + c2 a2 

b2 + c2 	• 

b 

b2 	c2 

2 + c2 a2 
2 	+ 2) 

2 
R2  > a2  2(b2  c2  — a2 ), 

as 2b2  2c2  — a2  > (b — c) 2  > 0, follows (1). 
We now give the necessary and sufficient conditions for parameters in 

Schoenberg's inequality for holding equality, what led to the given thorem. 
Let 

(6) Al + A2 + A3 = A. 

The functional f has a maximum, with the condition A2 + A3 = const., 

similarly A3 + Al = const. and Al  + A2 = const., if 

(7) (A 2  — A3 )a2  (b2  — c2 )Ai = 0, 	cycl. 

The system of linear equations (6-7) has solution 

= ka2  (b2 	c2  — a2 ), 	cycl., 
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An Inequality  for the Triangle 	 119 

where 
k  = A  (2b2c2 2c2a2 2a 2 b 2  _  a4 b4 e4) 

Using formulas for area  F  of a triangle, Heron's and 4FR  =  abc,  we get 
equality 

a4 b4  e4  )  =  A2R2 (2b 2 C 2  2C2 a 2  2a2 b 2  - f(iti, 	f23  = k 2  a 2  b 2  c 2  

By special values of  the  A's  several  inequalities for the triangle, includ-
ing the well-known  formulas  of Weitzenbock, Finsler and Hadwiger,  can be 
deduced [4], [2]. 

Remark.  Equality  in (5)  holds  if  and  only if  sin  2a  =  rA 1 ,  sin 2/3 = rAz, 
sin 27  =  rA3 , r E R,  [1], also 

ft1 =  ka2 2bc  cos  a  =  A-
112 

sin 2a, 	cycl. 
2F 

Theorem  2. 

a   
( 8 ) 

V2b2  2c2  -  a2  V2c2  2a2  -  b2 	✓2a2  2b2  -  c 2  

equality holds if and  only if the  triangle is equilateral. 

Proof. The inequality  of J.  Karamata [3] 

a /3  +  tan -
2
0 	-Y +  tan 

and  the  third formula in (4) for either  an acute or a rectangular triangle 
induce given inequality.  Let  A  =  v2b2  +20  -  a2 , cycl. and f  —  the left-
hand  side  of (8). Then 

fa = (b2  c2 )11 -3  - ab13-3  -  caC-3  =  0, 	cycl. 

implies 
a  :b:c=  A -3  : B -3  : C -3 . 

Therefore, 

a = b 	or 	A dz bz cz )  _  3  
a 2 /3  —  b 2 /3  

a8 /3  —  b8/3  
cycl. 

and either a = b  =  c  or e.  g.  a  =  b,  c = ( 3  2  - 1 ) 3/2 a .  Also f  >  2 if 
a  =  b c. ❑ 
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120 	 M. Bjelica 
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FILOMAT (Nis) 9:2 (1995), 121-129 

Filomat '94, Nis, October 22-24, 1994 
Geometry. Computer Sciences 

THE COMPLETE LIST OF  F(2)  TYPE STRUCTURES 
IN THE  COMPLEX FINSLER SPACE 

Irena Comic 

ABSTRACT. The complex  Finsler space E' is formed in such a way, that its tangent 
space T(E') is equal to  T(F1 )  iT(F2), where F1 and F2 are two 2n-dimensional 
Finsler spaces. Using the  nonlinear  connections N and N of F i  and F2 respectively, 
the adapted basis B' of  T(E')  is formed. There is given the complete list of F(2) 
type structures. Some  of them  for different values of parameters are almost complex, 
almost product or tangent  structures. 

1. Complex Finsler spaces 
Let us consider two n-dimensional Finsler spaces F i (x,±) and F2(Y,O• 

The allowable coordinate transformations in F1  and F2 are given by 

X ei  = X el (X) 

(1.1) 	 th e'  = A cia' (X)  X.  a  

= 
at 

a 	Or° 

where 
rank[An  =  n,  rank[Bn  =  n, 

so the inverse transformations exist. 
The adapted basis of T(F1 ) is B 1  = {457, 	and the adapted basis of 

T(F2 ) is  B2 =  { .5 , -5},  where 

	

68 	, 	6 	8 	0 

	

=  — —  1■1:;(x  x —  6xa Oxa 	 =  F7y1  Ni(Y ' °  00 .  

	

lq(x, i)  and Nji  (y, 	are coefficients of the non-linear connections, which 
satisfy the usual transformation law with respect to (1). 

The complex Finsler space  Ei(x,i,  y,0 is formed in such a way that B', 
the adapted basis of  T(E'),  is  given by  B' =  B 1  U  iB 2 . 

1991 Mathematics  Subject  Classification.  53B40, 53C56, 53C60. 
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122 	 I. Comic 

For the further exploration we shall use five kinds of indices 

a,b,c,d,e, f,g = 1,2,... ,n, 
A, B, C, D, E,F,G = 2n + 1, .,3n, 

= 1,2,... ,4n. 

The following equalities are valid 

a = i = A = I(mod n), 
c=h=C=.11 (mod n). 

j ,h,k,l,m,p,q = n 	1,... ,2n 
I, J,H,K,L, M, P,Q = 3n+ 1, .,4n 

b = j = B = Amod n) 
(1.2) 

Using these indices, B' and its dual B'* can be written in the form 

	

(1.3) 	(a) B' = {0} = 170  

(b) B I*  = fel = 	—idyi,Si B ,—iSV}, 

where 
Se = de + N (x, th)de, 	= 	(y, Odyi . 

If we introduce the notations 

.S 	0 	8 

	

(1.4) 	(a) R = 	tw 	
.
Wi 

Ac:,,(x') 	0 	0 	0 
0 	Hii,(y9 	0 	0 

(b) D = 	0 	 0 
0 	0 	0 	BI , (Y) 

[dxa' , - 
(c) K'  = —idy 

biA 
_i6V 

then the following relations are valid. 

	

(1.5) 	 RI  = RD 	K = DK' . 

R' is obtained from R if indices a, i, A and I are substituted by a', i', 

A' and I' respectively, similarly K is obtained from K' if in K' the sign "'" 

over all indices is dropped. D is regular matrix, so exists D -1 . From (4a) 

we have 

	

(1.6) 	 R = R' 	= D-1  K , 
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The complete list of F(2) type structures ... 	 123 

• where 

D -1  = 

A bb i  (x) 
o 
0 
0 

0 
/3?

.,
(g) 

0 
0 

0 
0 

Agi(x) 
0 

0 
0 
0 

Bf( y ) _ 

2. The F(2) type structures defined on F' 

Definition 2.1. The tensor field F of type (1) defined on E' is the structure 
of F(k) type if in the basis  B'  its matrix can be decomposed on 4 x 4 blocks of 
format n x n, such that in each row and each column are k scalar matrices 
and 4 — k zero blocks. 

Notation. Every one  of  the scalar fields a, b, c, d, e, f, g, h denotes 
the corresponding real or complex scalar matrix of type n x n (for example 
a -= a(x ,th, 

Theorem 2.1. There exist 90 F(2) type structures on E'. They are: 

a 	0 	e 	0 
b00g 
Oc 	f 	0 

a _ 0 	e 	O 
b 	0 	0 	

g  

0 	c 	0 	

h a 	0 	0 	g b 	
0 	e 	0 

0 	f 	0 
0 	d 	0 	h Odf 	0 OdOh 

a 	0 	0 	g a 	0 	e 	0 a 	0 	e 	0 
b 	0 	0 	h 0 	c 	f 	

o  

b 	0 	0 	

g  0 	
c 	0 	g 

b 	

0 	f 	0 0 	c 	e 	0 
Odf 	0 0 	d 	0 	h 0 	d 	0 	h (1) 

a 	0 	0 	g a 	0 	0 
0 	c 	e 	0 0 .g01  0 	h 
b 	0 	f 	0 b0Oh 

( 	
0 	0 	gl 

b0e0 
0 	d 	0 	h Odf0 Odf0 

a 	0 	e 	0 a 	0 e 	0 a 	0 	0 	g 
0 	c 	0 	g 0 	0 	

g  o 	
e 	0 

0 	d 	f 	0 0 	d 	0 	h 0 	d 	f 	0 
b 	0 	0 	h b 	0 	f 	0 b 	0 	0 	h 

(2) 

a 0 e 0 
bOf 0 
OcOg 
0 d 0 h 

a 0 0 g 
b0e0 
OcOh 
0 d f 0_ 

a0e0 
0 c 0 g 
b0Oh 
0 d f 0 

a0e0 
0 c f 0 
0 d 0 g 
b0Oh 
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124 	 I. Comic 

a 	0 	0 	g - 
Oc 	e 	0 

Od 	0 	It 

a 	0 	0 

0 	c 	0 	It 

0 	d 	e 	0 

0 	C 	0 

a 	0 	f 	0 

000g 

0 	c 	e 	0 

a 	0 	0 	g 
b 	0 	f 	0 

b 	Of 	0_ b 	0 	f 	0 0 	d 	0 	It 0 	d 	0 	1t 

o 	e 	e 	0 -*- 0 

a 	0 	0 	g. 
b 	0 	0 	it 

c 	0 	- 

a 	0 	e 	0 

b 	Of 	0 

0 	C 	0 	j - 
a 	0 	e 	0 
0 	0 	0 	It 

0 	c 	0 	j 
a 	0 	0 	t 
b 	0 	e 	0 

O 	d 	f 	0 
(3) - 0 	d 	0 	h_ O 	d 	f 	0_ Odf 	0 

0 	c 	e 	0 - 0 c 	e 	0 0 	ce0 0 	c 	0 	g 

a 	0 	f 	0 a 	0 	0 	g a00g a0e 	0 

OdOg Od 	f0 OdOh 0 	d 	f 	0 

b 	0 	0 	h_ b 	0 	0 	It 00 	f 	0 b 	0 	0 	h_ 

0 	c0 	g 
a0e 	0 

Od 	0 	h 

0 	c 	0 	g 
a 	0 	0 	It 

0 	de 	0 

0 	c 	e 	0 
Odf 	0 
a 	0 	0 	g 

0 	c 	e 	0 - 
Od0 	g 
a0 	f 	0 

bOf 	0 
(zI) 

b 	0 	f 	0_ b 	0 	0 	It b0 	0 	It _ 

e 	0 - 0 	c 	0 	g 0 c 0 g —  0 	c 	0 	g - 

OdOg Ode° 0 	d 	e 	0 0 	d 	0 	It 

[

0c 

a 	0 	0 	h 

b 	Of 	0_ 
a 	Of 	0 
b 	0 	0 	h 

a 	0 	Oh 

b 	010 
a 	0 	e 	0 
b010_ 

a 	c 	0 	0 -  
b 	0 	e 	0 

a 	c 	0 	0 
b 	0 	0 	g 

ac00 
00e 	0 

a 	c 	0 	0 - 
b 	0 	0 	g 

OdOg Ode° 00f 	g 0 	0 	e 	h 

0 	0 	fh_ 

ac 	0 	0 -  
O de0 
000g 

0 	0 	fh_ 

a 	c 	0 	0 
OdOg 
b 	0 	c 	0 

0 	d 	0 	It 

a 	c 	0 	0 - 
0 	Oe 	g 
b 	Of 	0 

0 	d 	f 	0_ 

ac 	0 	0
0 	0 	e 	g 
b 	0 	0 	h 

00 	f 	h_ 00 	fh_ O 	d 	0 	h_ 0 	d 	f 	0_ 

_ a 
	c 	0 	0 

_ 
a 	c 	0 	0 -- ac 	0 	0 ac 	0 	0 

Ode 	0 OdOg 0 	0 	e 	9 0 	0 

0 	0 	f 	g 0 	0 	c 	h 0 	d 	f 	0 0 	d 	0 	It 

b0Oh__00f 0_ _ b0Oh b 	Of 	0 _ 
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The complete list of F(2) type structures ... 	 125 

b 	0 	e 	0 
ac00 

b009 
ac00 ac00 	ac00 

OdOg O 	d 	e 	0 

b0e0ilb00g 

00fg 	00eh 
0 	0 	f h 0 	0 	f h 0 	d 	0 	h 	Odf0 

0 	d 	e 	0 0 	d 	0 	g 0 	Oeg" 00eg 
ac00 ac00 a 	c00 a -c00 
b00g b0e0 b 	Of0 b0Oh 
0 	0 	f 	h 0 	0 	f h 0 	d 	0 	h Odf0 

"Ode0 
ac00 

0 	d 	0 	
g 
	0 Oeg -- 00eg - 

 c00 ac00 
0 	0 	f 	g 

acOOira 
00eh 	0 	d f 	0 0 	d 	0 	h 

b 	0 	0 	h b 	0 	f 	0 	b 	0 	0 	h_ b0f0_ 

b0e0 b00g 	b 	OeO b00g 
OdOg 

[ 
Od 	e 	Ofg 00eh 

ac 	0 
00fh 

c00 a 	
00j10 

00fh 	0 	dOh 
ac00 
Odf0 

0 	de 	0 
b 	0 	0 
a 	c 	0 	0 
0 	0 	fh_ 

Ode 	0 
00f 	y 
a 	c 	0 	0 
b0Oh 

b 	0 	c 	0 	b 	0 	0 

0 	0 	fh 	0 	0 	f 
a c00_ 	ac00 	a 

d 	0 	0 	de 	gO 	0 

-0d0 
bOeOirb 
a 	c0 
00 	f 	h 	L 0 

0 	d 	0 	g 
0 	0 	e 	h 
ac00 
b0f0_ 

ir b 

g 	0 
OegirOOeg b  

	

Of° 	00h 

	

c00 	ac00 

	

dOh 	0 	d 	f 	0 

00e0goi[000 	eg [  
Odf dOh 
ac0  c00 
b 	0 	0 	h 	b 	0 	f 	0 

Oe 

h 

	

O 	b009 

° 	

1 

dO 	h 	0 	d 

	

c00 	ac00 
ir 0 

	

Ofg 	Oe 

0 	d 	c 	0 
b 00 .9 b0e0 	b0f0 	b0Oh 
0 	0 	fh 

OdOg00eg1100egi 

0 	0 	f 	h 	0 	d 	0 	h 	0df0 
_tc 	0 	0 ac00 	ac00 	ac00 

- 0 	d 	e 	0 OdOg - 0 	Ocg - 	0 	0 	e 	g 
00 	fy 00eh O 	d 	f 	0 	0 	dOh 
b 	0 	0 	h b0f0 b0 	0 	h 	I 	bOf 	0 
a 	c 	0 	0 _ac00_ a 	c 	0 	0 	L ac00 
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a 	c 	0 	0 a 	c 0 	0 ac 00 0 0 e g - 

bd00 0 	0 eg 0 	0 eg a c 0 0 

0 	0 	e 	g bd 0 	0 0 	0 f h b d 0 0 

0 	0 	f 	h 
( 5 ) 

_ 0 	0 f h b 	d 0 	0_ 0 0 f 

0 	0 	e 	g" 
a 	c 	0 	0 

0 	0 	e 
0 	0 	f 

g 
It 

0 	0 	f 	h 

{ 

ac 	0 0 
b 	d 	0 	0 _ b 	d 	0 0 - (6) 

The first 36 matrices are formed in such a way that in the first two columns 
the chosen elements are always in different rows; in the next 48 matrices 
the first two columns have once two elements in the same row (ac) and two 
elements in different rows; in the last 6 matrices the first and second columns 
have two times, two elements in the same row. 

Definition 2.2. The tensor field F of type (1,1) defined on E' is almost 
complex structure (a.c.s.) if F 2  = —I, almost product structure (a.p.s.) if 

F2  = I, or tangent structure (t.s.) if F2  = 0. 

Theorem 2.2. The F(2) type structure, which in the former list do not 
have the sign "*" can not be a.c.s., or o.p.s., or t.s. 

Proof. Some Fi (i = 1, 	, 90) from the above list of F(2) type structures 
can be a.c.s., or a.p.s., or t.s. if F,2 has the property, that all elements, which 
are not on the main diagonal are equal to zero. All F's, which do not have 

the sign "*" (there are 84) are such, that Fi2  has at least on one place, which 
is not on the main diagonal, product of two elements. This product is zero 
if at least one of the factor is equal to zero, but in this case F i  is not F(2) 

type structure. 

Theorem 2.3. There are only six F(2) type structures defined on E', which 
for some special values of parameters can be a.c.s., or a.p.s., or t.s. They 
are denoted by "*" in the above list of F(2) type structures. 
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Proof. For special values of parameters we have 

F1  = 

F3  = 

F5 = 

a 	0 	b 
0 	c 	0 
c 	0 	—a 
0 	g 	0 

	

0 	a 	b 
—ce 	0 	0 

	

cd 	0 	0 

	

0 	d 	e 

a 	b 	0 
c 	—a 	0 
0 	0 	e 
0 	0 	d 

0 
d 
0 

—c  _ 

0 
cd 

—ca 
0 

0 -  
0 
f 

—e 

= 

F4 — 

F6 = 

a 	0 
0 	c 
0 	e 
f 	0 

0 
ce 
0 

—cd 

- 	 0 
0 

a-1  b 
c 

0 
d 

—c 
0 

a 
0 
d 
0 

0 
0 
b 
e 

b -
0 
0 

—a _ 

0 
be 
0 

ac 

ae 
—ac 

0 
0 

—b 
0 

0 

—ab 

0 
0 

• 

By direct calculation we obtain 

F12  = diag[a2  +  be,  c2  + dg ,a2  + be, c2  + dg] 
FZ  = diag[a2  +  b f,  c2  + de, c2  + de, a2  + b f] 
• = c(bd  —  ae)I 

• = c(bd  +  ae)I 
F: = diag[a2  + bc,a2  bc,e2  + df , + df] 
Fs  = (de  —  abc)I . 

From Theorem 2.3 follows 

Theorem 2.4.  The F(2) type structures F1  —  F6 are a.c.s. if 

in F1  a2  + be = 	dg = —1, 
in  F2  a2  b  f = c2  + de = —1, 
in  F3  C(bd  —  ae) = —1, 
in  F4  C(bd ae) = —1, 
in  F5  a2 + be  =  e2  df = —1, 
in  F6  de  —  abc  =  —1. 

If in the above equations —1 is everywhere replaced by 1, the structures 
Fi  —  F6 become a.p.s.; if —1 is everywhere replaced by 0, the structures 
Fi  —  F6 become t.s. 
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3. The tensor character of F(2) type structures 

Theorem 3.1. All 90 F(2) type structures from the list in paragraph 2 de-
termine tensor fields of type (1,1) in the basis B', with respect to the coor-
dinate transformation (1). 

Proof. As the proof is the same for all structures, we shall give it for F 1 . 

The structure F1  in the basis B' determines the following transformation: 

Fi ( 	) 	 -ke a÷„,bx° 
c( i by ) ' 

F1( .d-A- ) = b 

Fl ay i 	= 	d(i hy. , • 

The precise form of F1  is the matrix 

aga  0 	bk,B 	0 
0 	cei 	0 	d(51 

ebbA  0 — abl 	0 
0 	gS1 	0 -  

The tensor F1 , which is determined by the matrix F1  can be written in the 

following way: 
F1 =RF1 ® K. 

In the basis R' and K' F1  has the form (see (4)): 

F1 = RID -1  D K' = R'F;.  K', 

where 

= 	D = 

For F; we have 

 

ao!kli, A: 1 	0 	b6,1,3,AaarAf 	0 

c81.13I,13:1" 	0 	d(VM,B:r 
ebbA At' 	0 	— 	AB' 	0 

0 	BI, 	0 	— c(5/./31,B .1 1  

 

 

 

 

F'21 = (D-1  Fi D)(D -  FiT)) D -1 F; D. 

From the above relation follows: 

if .f? = —I 	= —1 , 
if Fl = I 	F/21  = I, 

if I? = 0 	F'21  = O. 

Fi = 
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GEODESIC TUBES AND JACOBI VECTOR FIELDS 
ON COMPLEX SPACE FORMS 

Mirjana Djorie 

ABSTRACT. Studying geodesic variations and associated Jacobi vector fields is very useful 
for examining the theory of curvature in local and global Riemannian geometry. This is 
directly connected with the investigation of the geometry of small geodesic spheres and 
tubes, so it can be used in the analysis of the curvature of the ambient space. In this 
paper, the explicit expressions  for  the Jacobi vector fields on complex space forms will be 
used for calculating the matrix  of  the shape operator of tubes about geodesics on complex 
space forms. 

1. Introduction 

The study of the curvature of a Riemannian manifold is one of the most 
interesting topics in Riemannian geometry. As it is well-known, the study of 
variations of geodesics and the associated Jacobi vector fields is very useful 
in treating curvature theory in local and global Riemannian geometry. This 
is directly related to the investigation of the geometry of small geodesic 
spheres and tubes about curves and submanifolds. The properties of the 
extrinsic and intrinsic geometry of these geometric objects may be used to 
study the curvature of the ambient space, as it was done in [1]-[9]. On this 
occasion we consider only the converse situation, namely, it is quite clear 
and well-known that when the Riemannian manifold is of a special type (for 
example, if it has special curvature), then the properties of geometric objects 
on it are strongly influenced. In [4] the author gave the explicit expressions 
for the shape operator of tubes about cp -geodesics on Sasakian space forms, 
while in this paper the special case when the ambient space is a complex 

1991 Mathematics Subject Classification: 53B20, 53B35, 53C22, 53C55 
Key words: Kaller manifold, complex space form, geodesic tube, shape operator, 

Jacobi vector field. 
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132 	 M. Dori6 

space form is considered. Working with Jacobi vector fields, since this falls 
among the best ways of analyzing the geometry of tubular neighborhoods, 
the matrix of the shape operator of tubes about geodesics on complex space 
form is obtained. 

We refer to [11] and [14] for a study of tubular neighborhoods and [2] 
where a more detailed and more complete developement may be found, with 
an extensive list of references. The article is organized in the following way: 
Section 2 is devoted to a brief survey of the concepts used throughout the 
paper and in Section 3 the main results are treated. 

2. Preliminaries 

Let M be a complex analytic manifold of complex dimension tn. By means 
of charts we may transfer the complex structure of complex m-dimensional 
Euclidean space C' to M to obtain an almost complex structure J on M, 

i.e., a tensor field J on M of type (1,1) such that J 2  = —I, where I is the 

tensor field which is the identity transformation on each tangent space of M. 

A Riemannian metric g on M is a Hermitian metric if g(JX, JY) = g(X,Y) 

for any vector fields X and Y on M; M is then called a Hermitian manifold. 

If moreover the almost complex structure J is parallel with respect to the 

Riemannian connection of g, then J (resp. g) is called a Kiihler structure 

(resp. Kilitter metric); M is then called a Kithler manifold. We call a plane 

which is tangent to M and is invariant by J a holomorphic plane. If M is 

a Kahler manifold, the sectional curvature of a plane p tangent to M will 

be denoted by K(p) and the sectional curvature of the holomorphic plane 
generated by a unit tangent vector X will be denoted by K(X). M is said to 

be of constant holomorphic sectional curvature c if the sectional curvature 

of every holomorphic tangent plane is equal to c. As a complex space form 
we shall understand a complete Kahler manifold of constant holomorphic 
sectional curvature and its curvature tensor RxyZ =V[x,yiZ—[Vs, V y]Z 

is completely determined and given by ([15]): 

RxyZ = 5-4  (g(X, Z)Y — g(Y, Z)X g(JX, Z)JY — g(JY, Z)JX 

+2g(JX,Y)JZ). 

As is well known, any simply-connected complex space form M is (after 

multiplying the metric of M by a suitable positive constant) holomorphically 
isometric to a complex projective space, a complex Euclidean space or a 
complex hyperbolic space, in dependence of M being of positive, zero or 

negative holomorphic sectional curvature, respectively ([15]). 

(1) 
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We finish these preliminaries by repeating some general facts about tubes. 
We refer to [2], [11] and [14] for more details and references. 

Therefore, let a :[a,b] 	M be a smooth, embedded unit speed curve in 
a Riemannian manifold M of dimension n and denote by al the normal 
bundle of a and by exp o  the  exponential map of this normal bundle, i.e., 

exp,(a(t), v) = exp„ (t)  v 

for any t E [a, b] and all v  E  cr(t)I . Here a(t)1  denotes the fiber of al 
over a(t) . Further, let  14(r)  be the (open) tubular neighborhood or the 
(open) solid tube of radius  r  about a, i.e., the set defined by 

14(r) = fexp, (t)  v IvE a(t)1, v 	r, t E [a, b]} 

and denote by Is10 (r) the (open) solid tube of radius r about the zero section 
of the normal bundle crl of  a.  In further text, we shall always assume that 
the radius r of the tubular neighborhood is smaller than the distance from 
a to its nearest focal point. In this case, the exponential map exp o  is a 
diffeomorphism between  14(r)  and Na(r) and consequently, the set 

Pa(s) = {p E  14(r) I d(o-,p) = 81, 

for some s < r, is a (smooth) hypersurface in M , called the tube of radius 
s about a . If a is a geodesic on M , the tubes Pa  are called geodesic tubes 
about a . 

For the purpose of describing the geometry of a Riemannian manifold 
M in the neighborhood of a curve a we use Fermi coordinates. The Fermi 
coordinate system (x 1 , , x„) with respect to a(a) and relative to a given 
orthonormal frame field {F 1 , , F„} along the curve a for which &(t) = 
(F1),( t ) is defined by 

x1 
(exp c ( t )  (E  tiFi))  =  t — a, 

x i  (expo.(t)  (E  tiFi)) = ti , i = 2, ... , n, 
j=2 

provided that the numbers t 2 , 	t„ are small enough in order to have a 
diffeomorphic exp,. 

Further, if y is a unit speed geodesic of M normal to a with 7(0) = m = 
a(t) and v = 7'(0), then there is a system of Fermi coordinates (x 1 , , xn ) 
such that for small s we have 

(k) = &(t) ' zn z 

71 

(2) j=2 

71 

E  {&(t)} 1 , i = 2, ... , n — 1, 
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134 	 M. Doric 

7'(s)  8:77.) 

Since exp o(t)  is diffeomorphism on 14(r), the equations (2) define a co-
ordinate system near m. It is known ([11]) that the restrictions of the coor-

dinate vector fields { , 47,} to cr are orthonormal. In what follows 

we shall relate the coordinate frame field to a frame field obtained by consid-
ering a special set of Jacobi vector fields along 'y with a view to obtaining 
the expression for the shape operator of P,(r). 

In this aim, let p = exp c(t) (rv) , v E a(t)1 , Ilvil = 1 be a point of P,(r) 

and let 7 : s expc(g) (sv) be the (unique) unit speed geodesic connecting 

cr(t) and p (and cutting cr orthogonally). Denote by {E 1 ,...,E„} the 
frame field along 7 obtained by parallel translation of {Fi (t),..., F,,,(t)} 
with respect to the Levi Civita connection V . Next, if R = R(s) denotes the 

endomorphism u 1-4 R y(3),u7'(3) of the vector space {7'(8)} 1  C Ty ( s)M, 
then a vector field Y along a geodesic -y is called a Jacobi vector field if it 
satisfies the following second order differential equation- the Jacobi equation: 

(3) Y" RY = 0 , 

where the prime' denotes covariant differentiation along 7. Next, let Yi , i 

1, 	, n — 1 be the n-1 Jacobi vector fields along 7, satisfying the initial 
conditions 

y,(0) = Fi(t), Coa l ) n(0)= (v.,,, 	((TM), 
(4)  

Yi (0) = 0, YI(0) = Fi (t), 	i = 2, . .. , n — 1 

and define 

(5) Yi(s) = (B Ei)(s), i= 	— 1. 

The vector fields Yi (s) determine a basis for the space {-y i (s)} 1  for suffi-

ciently small s and s H B(s) is an endomorphism-valued function. Then, 
each B(s) is an endomorphism of the space {7 1 (s)} 1  and all these spaces 
may be identified via the parallel translation along 7 by using the basis 
{Ei, i = 1, n} . We shall do this at several places without mentioning it 
explicitly. 

Now, from (3), (5) and the initial conditions (4) it follows that B satisfies 

the Jacobi equation 

(6) 	 B" R o B = 0 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Geodesic tubes and jacobi vector fields on... 	 135 

with the initial conditions 

(7) B(0) = 1  ° 	 0 0 
0 	\ 	— I ' 	(°) 	I \  

since we shall focus our attention only to tubes along geodesics. 
Finally, we shall write down the matrix of the shape operator SC of 

geodesic tube P,(r), using Jacobi vector fields along geodesics orthogonal 
to Q. Since a

s (p) is a unit normal vector of 7),(0 at p = expo.(t) (rv), the shape operator S° of P,(r) at p is defined by 

(8) (S'x)(P) = (vx 	(p ) 

for any vector X tangent to P° (r) at p . Hence, it is easy to see, by using 
(5), that the shape operator S°(p) takes the form 

(9) S° (p) 	(B'B -1 ) (r). 

3. The main results 

In this section we consider complex space forms and we compute the ex-
plicit expressions for the shape operator of geodesic tubes in these manifolds. 
To obtain our results we use here one of the most convenient methods for 
analyzing the geometry of small geodesic spheres and tubes about curves and 
submanifolds, by studying the Jacobi vector fields on complex space forms. 
It is quite natural that the Jacobi vector fields play an important role in this 
research since it is a well-known fact that the curvature of a Riemannian 
manifold is geometrically reflected by the behavior of one-parameter fami-
lies of neighboring geodesics and they are analytically described by Jacobi 
vector fields. When the manifold is of a special type, the consideration of 
Jacobi vector fields results in the study of the Jacobi differential equation 
which has a relatively simple form. 

Let m be a point on a complete Kahler manifold M" of constant holo-
morphic sectional curvature c and let 7),(r) be a tube of radius r about a 
geodesic a tangent to a unit vector field u . Further, let y be a geodesic 
through in = 7(0), parametrized by arc length s, with initial velocity vector 
7'(0) = v and meeting a orthogonally at ira = a(t), with u = & at in. Here-
after we shall also write 7'(s)= v at any point of y. For a vector field v 
the Jacobi equation 

(10) 	 VvVv X + R vxv 0 
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for a given complex space form M becomes by virtue of (1) 

(11) 	 V,V,X + T  (X — 3 g(JX,v)Jv) = 0 . 

Further, we shall distinguish three cases, depending on the position of 

the point p = exp,o) (rv), v E cr(t) I  , Dull = 1, in the forthcoming three 

theorems. 
First, consider the special points p of the geodesic tubes P ° (r) on a 

complex space form Mn, such that p = expo(t) (rv),v E Cr(t) 1 , v(a(t)) = 

Ju(cr(t)). As this case has already been investigated in [2] and [6], we give 
here only the final expression for the matrix of the shape operator. Namely, 

the following theorem holds: 

Theorem 1. ([6]) Let (M,g,J) be a Kohler manifold of constant holo-

morphic sectional curvature c. Then, at a point p = exp,( t)(rv),v E 

a(t) 1 , v(a(t)) = Ju(cr(t)) of the tube P° (r) (along a geodesic u(t) tangent 

to a vector u), the shape operator S'(p) can be represented by the following 

matrix: 

 

- A(r) 	0 	... 	0 
0 	B(r ) 	... 	0 

• • 

0 	0 	B(r) 

(12) 	 S° (p) = 

 

with respect to the basis {E1, . . . , En_ 1 } defined in Section 2. The explicit 

expressions for the entries are as follows: 

1 
A(r) = 0, 	 B(r) = —

r
, 	 for c 0; 

A(r) = 	,Nfir, 	B(r) = 1- cot 1r, 	for c > 0; 

A(r) = 	tanh 	B(r) = 
2 	2 

coth 113r, 	for c < O. 

Now, let us consider sufficiently small tube P ° (r) about the geodesic a 

embedded in a Kohler manifold of constant holomorphic sectional curvature 

c. Let -y denote the unit-speed geodesic meeting a orthogonally at m = a(t) 

and tangent to a vector v such that g(u(m),Jv(m)) = a, where it = u 

at m. To obtain the matrix of the shape operator of P c (r) at points p 
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expolo (rv), we first choose an orthonormal basis {e 1 , 	, en } for the tangent 
space Tm A 1, such that e l  = u(m),e 2  = (Jv(m) — au(m))1b,e„ = v(m), 
where a 2 	b 2  = 1. Further, let {E 1 , 	, E„} be the basis obtained by 
parallel translation of the basis {e 1 , 	, c„} along 7. Then it follows that 
any vector field X orthogonal to the geodesic -y can be written as 

n-1 
(13) 	 X = 	f2 E2 	Ei • 

i=3 

e ( (3a 2 ( 3a + 1)E1 3abE2) 

(3abEi  (3b2  1)E2) 

— 3 4E%, 	 1, 

Since, using (1) we obtain 

R v Ei t,  = 

(14) 	
RvE 2 V = 

RvE,11 = 

we see that (11) is equivalent to the following system of differential equations: 

4 	(3 a 2 	3abc f2 = 0 , 

4 g + 3abc fl + c(3b2  + 1 )12 = 0, 
(16) 	 4 r + c = 0 , i = 3, 	, n — 1 . 

Now, consider the substitution 

= a fi  b 12  , 
z2  = b — a 12 • 

Then the equations (15) take the form 

a zin  + b + c a zi  + 4  b z2  = 0, 

b — a z 2" + cb — 4—
c 

a z2 = 0 . 

In this way, by multiplying the first equation in (18) by a and the second 
by b and adding the obtained results, we arrive at a differential equation 

(15) 

(17) 

(18) 

Zi 	C ZI = 0, 
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which is easy to integrate, having in mind that the solutions will depend on 
the sign of c. Finally, using the standard solutions of the it — 3 equations 
(16), we can derive the complete solutions in the three cases we shall need. 

Case 1: 	c = 0 

Here we find 	
fu  = (aA+bC)s-FaB +bD, 

12 = (bA aqs+ bB — aD , 

fi = Ai s + Bi , i = 3, . , n — 1 , 

with A,B,C,D,Ai,Bi being constant along 7. 

Case 2: 	c > 0 

In this case, putting k = \IC, we obtain 

fi= aF cos ks. + aG sin ks + bH cos 	bi sin 23 , 

f2= bF cos ks + bG sin ks — aH cos 2 	 2 — aI sin Al"-9  

fi= Fi  cost- + Gi sin /1-1  , i = 3, ..., n — 1 , 

with F,G, H,I, Fi ,Gi being constant along 7 . 

Case 3: 	c < 0 

This time we put k = 	C. Repeating the same computations, we obtain 

fi= a(Ke k s Le —ks) -F b(Me + 

12 = b(Kek s + Le— ks) — a(Me' + Ne — V ), 

fi= Ki e kt + Li 	, i = 3, ... , n — 1 , 

with K,L,M,N,Ki,Li being again constant along 7. 
Moreover, we shall need the form of the Jacobi vector fields along a geo-

desic. 7 satisfying the following initial conditions: 

(19) X1 (0) = Ei (0), X1(0) = 0, 

(20) Xi(0) = 0 , 	X.:(0) = Ei(0), i = 3,...,n — 1. 

We shall therefore compute these special Jacobi fields in the three above-
described cases, using the notation k = VZ if c > 0 and k = when 

c < 0. 

Case 1: 	c = 0 
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= E1(s) , X2(s) = s E2(s) , X(s) = s E:(s), i = 3,,.., n — 1 

Case 2: 	c > 0 
X1(s)= (a 2  cos ks + b2  cos zs  ) E1 + a b (cos ks — cos zs ) E2, 

X2 (s)= 
b 

 

(sin ks —2 sin 	E 	1  2 
k 	 2) 1 + ~ (b sinks + 2a2  sin zs ) E2, 

2 
X(s)= 	sin a Ez(s) , i = 3,... ,n — 1. 

Case 3: 	c < 0 
X 1(s)= (a2  cosh ks + b 2  

ab 
X2(s)= 	(sinh ks — 2 

X(s)= sinh zs  Es(s) 

cosh 2  ) E1  + a b (cosh ks — cosh 2  ) E2 , 

sinh 23  ) E 	1  ( 2 	 2 	ks 1 + ~ b sinh ks + 2a sinh 2) E2 , 

, i = 3, . . . ,ii — 1. 

Finally, using relations (4)-(9) and computed Jacobi vector fields, it fol-
lows that the shape operator S° can be represented by the following quasi-
diagonal matrix: 

- A(r) B(r) 0 0 
B(r) C(r) 0 	... 0 

(21)  S(p) = 0 0 D(r) 	... 0 

- 	0 0 0 	... D(r)_ 

with respect to the basis {bE1  — aE2 , Jv, E3 , ... , E,_ 1 }. The explicit ex-
pressions for the entries are as follows: 

Case 1: 	c = 0 
A(r)= B(r) = 0, 

C(r)= D(r) = 1  . 
r 

Case 2: 	c>0   

A(r)= 2 w (—b2  sin 2r  sin kr + 2a 2  cos z  cos kr) , 

B(r)= —W ab, 

C(r)= w  (-2a2  sin zT  sin kr + b2  cos 2  cos kr) , 

D(r)= 2 cot 2r , 
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140 	 M. Dori6 

where co = k (2a 2  sin Zr  cos kr + b2  sin kr cos if) . 

Case 3: 	c < 0 

A(r)= —219  (b2  sinh n sinh kr + 2a2  cosh if cosh kr) , 

B(r)= 	a b , 

CM= a (2a2  sinh z  sinh kr + b2  cosh ar cosh kr) , 

D(r)= z coth Zr , 

where B = (2a2  sinh —k2.7" cosh kr + b2  sinh kr cosh if). 

Therefore, this proves that the following theorem holds: 

Theorem 2. Let (M",g,J) be a Kiihler manifold of constant holomorphic 

sectional curvarure c and let P°(r) be a sufficiently small geodesic tube 
of radius r around a geodesic a tangent to a vector u on M". Then 
the shape operator Sa of tube P7  (r) at points p = exp,(t) (rv), such that 

v(a(t)) 1 u(a(t)), g(Jv(a(t)), u(a(t))) = a, can be represented by the matrix 

(21). 
Finally, since the case v(a(t)) 1 Ju(a(t)) is slightly more difficult than 

the case v(a(t)) = Ju(a(t)), but easier than the general case, where 

g(J v(o-(t)), u(a(t))) = a, we give here only the final result, i.e., the matrix 

of the shape operator in this case. 

Theorem 3. Let (M",g,J) be a Kahler manifold of constant holomorphic 
sectional curvature c and let 130  (r) be a sufficiently small geodesic tube 
of radius r around a geodesic a tangent to a vector u on M". Then 
the shape operator Ser of tube P° (r) at points p = expo(t) (rv), such that 

v(a(t)) = Ju(a(t)), is given by the following matrix: 

A(r) 0 0 0 

0 B(r) 0 0 

(22) S° (p) 0 0 C(r) 	... 0 

0 0 0 	... C(r)_ 

with respect to the basis {E 1 , E2 ,..., E„_1 } defined in Section 2, such that 

E2 (a(t)) = Jv(a(t)). The explicit expressions for the entries are as follows: 
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Case 1: 	c = 0 

Case 2: 	c > 0 

Case 3: 	c < 0 

A(r)= 0 , B(r) = C(r) = r. 
A(r)= — if tan 2r , 

B(r)= k cot kr , 

C(r)= if cot 2. 

A(r)= 2 tanh iT , 

B(r)= k coth kr , 

C(r)= if cot h 2r  . 

It is evident that the last result follows either directly from Theorem 2 
(by replacing a = 0 , b = 1 in (21)), or following the similar procedure 
as in Theorem 1 and Theorem 2 (i.e., solving the Jacobi equation (10) and 
computing the Jacobi vector fields). The author first used the latter method, 
and then checked the results after having proved Theorem 2. 

Remark. After having completed this work, the author was informed by 
L. Vanhecke, that L. Gheysens derived the complete formulas for SC in his 
dissertation [10] and that the needed material is given in [12]. 
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CURVES GENERATED BY MIRROR REFLECTIONS 

Slavik V. Jablan 

ABSTRACT. 	Curves generated by mirror reflections are discussed from theory of symmetry, 
combinatorial geometry and knot theory point of view. 

The imitation of the three-dimensional arts of plaiting, weaving and basketry was 
the origin of interlacing and knotwork interlacing ornaments. Their highlights are 
the Celtic interlacing knotworks [1,2] (Fig.la), Islamic layered patterns and Moorish 
floor and wall decorations. 

The common geometrical construction principle for all such decorations is the 
use of (two-sided) mirrors incident to the edges of a square, triangular or hexagonal 
regular plane tiling, or perpendicular to its edges in their midpoints (Fig.la). In 
the ideal case, after the series of consecutive reflections, the ray of light reaches its 
beginning point, defining a single closed curve [3]. In other cases, the result consists 
of several such curves. 

The construction of such curves was occupied the attention of two most greatest 
painters—mathematicians: Leonardo and Diirer [1]. Some interesting geometrical 
and arithmetical properties of the curves mentioned are discovered by Paulus Gerdes 
[3,4,5]. Let us notice one more beautiful geometrical property: such curves can be 
obtained using only few different prototiles. For the construction of all the curves 
with internal mirrors incident to the edges, they are sufficient three prototiles in 
the case of a regular triangular tiling, five in the case of square, and 11 in the case 
of hexagonal regular tiling. We may also use their combinations occuring in the 11 
uniform Archimedean tilings [6] (Fig. lb). 

The symmetry of such curves is used for the reconstruction of Tamil designs [4], 
as well as for the classification of the Celtic frieze designs [1]. From the ornamental 
heritage, at first glance it looks that the symmetry is the mathematical basis for their 
construction and possible classification. But, the existence of such asymmetrical 
curves suggests the other approach. Trying to discover their common mathematical 
background, they appear two questions: how to construct such a perfect curve (this 
means, how to arrange the set of mirrors generating it), and how to classify the 

1991 Mathematics Subject Classification: Primary 20H15, 57M25 
Supported by Grant 0401 of FNS through Math. Inst. SAW! 
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144 	 Slavik V. Jablan 

curves obtained. Our consideration we will restrict to the curves derived from the 
square filings. 

P" 

A. • ■•∎  
NY 

hh 	.111. 

• 
• Ai 

• .4Ih *Mr* 

'VA: 

■■ ; 

Allh 

V V' 

Al. 

`Ir • r 

• • 

A. AS AA4 

N V.  
1 	11 

■*,.■ 

1  

or.. A. • 

Figure 1 

In principle, any polyomino [6] with mirrors on its border, and two-sided mirrors 
between cells or perpendicular on the internal edges in their midpoints, can be used 
for the creation of the corresponding curves. First, we construct all the different 
curves without use of internal mirrors, starting from different edge midpoints and 
ending in them, till the polyomino is exausted, i.e. uniformly covered by k curves. 
After that, we use "curve surgery" in order to obtain a single curve, according to 
the following rules: (a) any mirror introduced in a crossing point of two distinct 
curves connects them into one curve; (b) depending on the position of a mirror, a 
mirror introduced into a self-crossing point of an (oriented) curve makes no change, 
or breaks it into two closed curves. In every polyomino we may introduce k — 1, k, 

k +  1,  ..., 2A — P/2 internal two-sided mirrors, where A is area and P perimeter 
of the polyomino. Introducing minimal number of mirrors k — 1 we first obtain a 
single curve, and in the next steps we try to preserve that result. 
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There is also a simple way to preserve such single closed curve: to add on the 
border of a polyomino a cell with three mirror-edges and one empty edge, or delete 
such a cell. This way, any such polyomino with a single curve can be transformed 
into a rectangle. Unfortunately, they are rectangular mirror-schemes which cannot 
be derived that way. 

In the case of a rectangle with the sides a, b, the initial number of curves, obtained 
without use of internal mirrors, is k =gcd(a, b), so in order to obtain a single curve, 
the possible number of internal two-sided mirrors is k - 1, k, . . . , tab - a - b. 
According to the rules for introduction of internal mirrors, we have the algorithm 
for the production of designs consisting of a simple closed curve: each from the first 
internal k - 1 mirrors must be introduced in crossing points belonging to different 
curves. After that, when they are conected and transformed into a single line, we 
may introduce other mirrors, taking care about the number of lines, according to 
the rules mentioned. The next question is the classification of the curves obtained. 
First criterion we may use is the geometrical: two curves are equal iff there is a 
similarity transforming one into the other. Instead of considering the curves, we 
may consider the equal mirror arrangements defined in the same way. Having the 
algorithm for the construction of such perfect curves and the criterion for their 
equality, we may try to enumerate them: to find the number of all the different, 
curves (i.e. mirror arrangements) which can be derived from a rectangle with the 
sides a, b, for a given number of internal mirrors rn (nt E {k -1, k, . . . , 2ab - a- b}). 
Unfortunately, we are very far from the general solution of this problem. Reasons 
for this are: every introduction of an internal mirror changes the whole structure, 
so it behaves like some kind of "Game of Life" or cellular automata. 

Till this time, we have only few combinatorial results, obtained by non-standard 
use of POlya enumeration theory [7,8]. Let a rectangle with sides a, b, k =gcd(a, b), 
be given, with the minimal number k - 1 of two-sided internal mirrors incident to 
the edges of its square tiling. If t = (ab-lcm(a, 6)) : (k(k - 1)), x = a : (2k), 
y = b : (2k), we have, for example, for k = 5, a = 0(mod 10) and b = 5(mod 10), 
the formula 14720t 4  - 576t 3  + 800 + 32tx - 4xy - x, giving the number of such 
curves. 

The other point of view on the classification of such perfect curves is that of the 
knot theory. As it is mentioned before, every such curve can be simply transformed 
into an interlacing knotwork design, this means, a projection of some alternating 
knot. In the history of ornamental art, such curves occured most frequently as 
knotworks, then as plane curves. Even the name Brahma-midi (Brahma's knot) 
[4] denoting such Tamil curves refers us to the knot theory [9,10,11]. In order 
to classify them, we will first transform every such knot projection into a proper 
(reduced) knot projection [11]- a knot projection without loops, by deleting cells 
with loops. 

This way, we will obtain proper knot projections with the minimal number of 
crossings. Two such projections or knot diagrams are equal if they are isotopic in 
projection plane as graphs, where the isotopy is required to respect overcrossing re-
spectectively undercrossing [9]. For the classification of knots they are used different 
kinds of knot invariants: Alexander polynomials [9,10,11], Jones polynomials [11], 
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Conway polynomials [10], etc. In order to classify the knot projections [12] we will 
define a new invariant of knot (or link) projections. Let consider a proper oriented 
knot diagram D with generators gi,...,gn . If the meeting point of generators gi, 

gj, gk is "right", then aii = t, aij = 1, aik = —1; if it is "left", then aii = —t, 

aii = 1, aik = —1; in all the other cases aij = 0. The determinant d(t) = laij I is 

the polynomial invariant of D. 
The writhe of D, denoted by w(D), is the sum of signs of all the crossing points 

in D, where the sign is +1 if the crossing point is "right", and —1 if it is "left" [11]. 
The writhe is the most simple visible property of every knot projection: I w(D)I is 
the type of the knot projection. 

By the use of a computer program developed by Vesna VeliekoviC, based on the 
algorithm of Dowker and Thistlethwaite [12], it is derived the complete list of non-
isomorphic alternating knot projections for 3 < n < 11, where 71 is the number of 
crossing points. For example, for n = 8 there are 27 non-isomsorphic projections 
of the 18 alternating prime knots. They are given by the ordering number of knot 
[9,10], by the sequences [12] and by the series of coefficients (cn ,..., ci) of d(t). 

81 4 10 16 14 12 2 8 6 1 0 -6 -2 10 8 -4 -4 
82 4 10 12 14 16 2 6 8 1 0 3 1 -1 	1 -4 -4 
83  6 12 10 16 14 4 2 8 1 0 -6 0 10 0 -4 0 (e) 

84 6 10 12 16 14 4 2 8 1 0 -1 -2 -6 1 4 0 
85 6 8 12 2 14 16 4 10 1 0 3 2 0 2 -4 -4 
86 4 10 14 16 12 2 8 6 1 0 0 -2 -7 -5 4 4 
q 4 10 16 12 14 2 8 6 1 0 -1 -1 -5 -5 4 4 
87 4 10 12 14 2 16 6 8 1 0 4 1 5 2 4 2 
8's  4 8 12 2 16 14 6 10 1 0 0 -1 -2 -3 -4 -2 
8 11, 4 10 8 14 2 16 6 12 1 0 1 -1 -2 -2 -4 -2 
89 6 10 12 14 16 4 2 8 1 0 4 0 2 0 -4 0 (e) 

819 4 8 12 2 14 16 6 10 1 0 4 2 7 4 4 2 
81 1  4 10 12 14 16 2 8 6 1 0 -3 1 -2 -4 4 4 
811  4 10 12 16 14 2 6 8 1 0 -2 0 -3 -4 4 4 
8 112  4 43 14 10 2 16 6 12 1 0 -3 -3 3 3 0 0 
812  4 8 16 12 2 14 6 10 1 0 -4 0 8 0 -4 0 (e) 

8'n 4 10 8 14 12 2 16 6 1 0 -2 0 -6 0 4 0 (e) 

8 113  4 10 12 14 2 16 8 6 1 0 -1 0 -2 -1 -4 -2 
813  4 10 14 12 2 16 6 8 1 0 -1 -1 -1 -1 -4 -2 
81 4  4 8 10 14 2 16 6 12 1 0 -1 -2 -2 -1 4 4 
814  4 8 12 16 2 14 6 10 1 0 -1 1 -2 -2 4 4 
814 4 10 8 14 16 2 6 12 1 0 0 -1 -2 -1 4 4 
81 6  4 8 12 2 14 6 16 10 1 0 1 1 -4 -3 -4 -8 

816  4 8 14 2 12 16 6 10 1 0 1 2 -6 -2 -4 -8 
816 6 8 14 12 4 16 2 10 1 0 2 3 3 1 4 2 

817 6 8 12 14 4 16 2 10 1 0 2 0 1 0 -4 0 (e) 

818 6 8 10 12 14 1624 1 0 0 0 -2 0 -4 0 (e) 

There are some important properties of the integer polynomial invariant d(t) = 
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cn tn + • -d-c i t: (a) for every alternating knot projection, the degree of d(t) is n and 
icn = 1; (b) for every knot projection lei  is equal to the type of the knot projection 
(i.e. I c 1  = w( D) ); (c) d(t) and d(—t) correspond to the obverse (enantiomorphic, 
mirror symmetrical) knot diagrams; (d) for n = 0(mod 2), a change of the orien-
tation of an alternating knot projection results in the change of d(t) to d(—t); (e) 
for n = 1(mod 2) a change of orientation of an alternating knot projection results 
in the change of d(t) to —d(—t). According to (c), (d) and (e), in the set of all the 
knot invariants d(t) we may distinguish even functions (d(t) = d(—t)), containing 
only even degrees of t, corresponding to arnpliichiral knot projections (denoted by 
e), and odd functions (d(t) = —d(—t)), containing only odd degrees of t, which are 
invariant to a change of orientation of the knot projection. Let us also notice that 
invariant introduced makes distinction between non-isomorphic knot projections of 
composite knots (i.e. direct products of prime knots). 

This invariant may be simply transferred to the alternating link projections. 
In this case, the result is the polynomial invariant of the form: d(t) = cn tn 
• • • + cktk, where 7/ is the number of crossing points, and k is the number of the 
link components. For every link, lc,, = 1. If ai are the link components, aii = 
w(ai), and if a id  =1k(ai, ai) denotes the linking number of the components 
then Ick I = Idet(aii)1. For example, there are two non-isomorphic non-oriented 
projections of the link 63 (Figure 2). 

Figure 2 

The problem exposed shows how the same (old) structures— perfect pavitram 
curves [3,4], may be regarded from the three different points of view: that of the the-
ory of symmetry, combinatorial geometry and topology, taking us to a trip through 
mathematics, and introducing a new class of mirror-structures: curves generated 
by mirror reflections. 
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ON A FAMILY OF TENSOR FIELDS 
IN A GENERALIZED RIEMANNIAN SPACE 

Svetislav M. Mine1C 
ABSTRACT. In a subspace GR M  of a generalized Riemannian space GRN we observe a familly of 
tensor fields (1.1), which contains as particular cases tangent and normal vectors of the subspace 
as well the curvature vector q' of a curve in the subspace. Because of non-symmetry of Cristoffel 
symbols we define four kinds of derivational formulas of the above mentioned familly, as well 
six integrability conditions of these formulas. As particular cases one obtains Gauss-Codazzi 
eqations of the subspace and corensponding eqations for q*. In this manner derivational formulas 
of Riemannian space are generalized, as well as their integrability conditions, i.e. the Gauss-
Codazzi equations. 

0. Introduction 
A generalized Riemannian space GRN in the sense of Eisenhart [1], [2] is a differ-

entiable manifold in which a non-symmetric basic tensor (z oo # apc, is introduced. 
If in the GRN the coordinates are y' = 1, N), then by the equations 

(0.1) 	 y" = ya (x l ,...,x m ) ( M < N) 

a subspace GRM of the space GRN is defined. If gij is the basic tensor of this 
subspace, then in general gii # gii. In every point of the subspace we can observe 
N — M unit, mutually orthogonal vectors Nrp)  (p = M +1,...,N), which are also 
orthogonal to GRM, i.e. to the vectors (for fixed i ) 

(0.2) 	 to = y a = 

where the comma (,) signifies a partial derivative. We remark that in this work the 
Greek indices take values 1,..., N and the Latin values 1, M (M < N), except 
indices in brackets, which take values M + 1, N. 

Let gii signify the symmetrisation, and gii antisymmetrsation with respect to i, 

j and analogically in other cases. Then ([7], [8]): 

(0.3) 	 aapt`YI = gii, 

(0.4 a,b) 	 a„fi t7q = gii, 	 = gii , 

(0.5 a,b) 	 a,a'LL = .51„3 , 	gipig = 61, 

(0.6 a,b) 	aoN(p) Ar(13, )  = e (p)6( p ,) 	(e(o= ±1),  aafiN Co q = 0. 
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The Cristoffel symbols of the GRN are given by 

(0.7a, b) 
	

rc,  ft-y = 2 (ao.,7 — 	+ ac,7 „(3 ), rp7  = a2LT, 

and analogically for GRM by gii. Then we have, for example, 

ra•137 	ra• 713, Pf4 	r-yat3. 

Because of non-summetry of Cristoffel symbols, we can define 4 kinds of covariant 
derivative [3], [4]. For example, 

(0.8a) 

(0.8b) 

tom = tz„,+ 

tz„,+ 
2 

= ti m  
3 

aIm = tZ m  rp, t74,‘, 
4 

N(P) = N(P ) = N(P), m 
1 	 3 

N' = 	— N' 
(P)1m 	(P)inl 	(0 ,  m 2   

4 

- qm v;, 

 rp  to  mi p' -  

- rpmi g;, 

-  

+r,'„N(p) ti,,„, 

+ rp-7,./v(p) tg, 

We also obtain 4 kinds of derivational formulas (see (16) and (37') in [5]): 

(0.9a) 	 lim — sm p 	pe P 	p) 

(0.9b) 
	

N(o)1 = — e( a )gE-19( cr)smt; 	8(pa)ra N(P), 1191(acr)in = 0, 

where 9 = 1,2,3,4 signifies the kind of covariant derivative. 
On the base of (0.8b) it is 

= C2 (P)ii 1 	3 

0(po)ni = 1P(pa)m, 
3  

= 2 	4 

0(1N:)m = 
4 

(po.)m 
2 

(0.10a) 

(0.10b) 

and with respect to (48', 24') in [5] we have 

(0.11) = 	 = 	+ 2111,n , 	= 	— 2F IL 
2 	 1 	3 	1 	 v 	4 
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1. Derivational formula of the 
field and integrability conditions 

Suppouse that in the points of the GRA! a family of tensor fields is defined: 

N 

b(r)i tc: 	E C(pr)iN( p )• 

p=M+1 

Applying to (1.1) the covariant derivative of kind it E {1,2,3,4} with respect to 
en and using (0.9), we obtain 

A ( r ) i l - q(T )i ,n  tpe + Er( '‘ .,.) in2 NCO , 
P 	 P P  

P 
q(c)itn = 1/()r)i I tri + 1) (7- )i 4)1;tn — E 6 (P) e(PT)i ge2 9(P)sm , 

o 	 P 
P 

r(Pr)im ' b r)ill(P)5771. + e(Pi)i I m + EC( aT)i 0(Pc)",  • P 	 p P a 

The formula (1.2) is derivational formula of the field A(T)i . 

Applying to (1.2) covariant derivative of kind v E {1,2,3,4} with respect to el 
and using (0.9) repeatedly, we get 

a 
(L4) 	+E(q/(c )ini C2(p)p, 	(pr)im I n Er (a r)i101)  (Po)n) A I(P)' 

where the tensors qPNim , r(P T)i„, are given by (1.3). From here we obtain o   

A(r)i I m I n 	A (r)i I nIm — [(i(c )im I n 	Int ± '7 (7 	— 11(7 )in (1)13C4  . 	P 	 P 

— EC (a )912.'Icri(ar)irnfi3 (a)sn 	/1,:(ar)in?,  (a)sm )1c+ 
a 

(1.5) 	+E{(4',,i„,9(opn — qp(r)inf2p(P)Prn 	lt:(pr)im I n 	7,;(pr)an I m+ 
P 

+E(r(or)imli)(po)n — (or)in (pa)4N (p). 
14  a 

(1.2) 

where 

(1.3a) 

(1.3b) 

A (T)iimin 	( qPNimfn I-,  ( r)isn'Y s
atp

n Ee(9 ) g —1"  r (ar)im 9(a)s 	+ 
s 

A 
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Applying the identities of Ricci-type (7), (11), (56) from [3] and (12), (13), (46) 
from [4] to the family of tensor fields A(T)i , we get 

( 1 . 6 ) 	A(r)iimin — A(r)il flint = -Stu A(r)it trint ltii — iiiiirnnA(r)p — 2rfrattA(T)ilp) 
v 

	

i 	1 t 

( 1 . 7 ) 	A(-)ilm1n — ..\(7-)%1n1m = Irrtiv A7(r)i igt i n + Ifitttn Ac('T)p + 2 UnnAro 2
itp, 

	

2 2 	 2 2  " 

— (1.8) 	 At.(1r)i I tn I n — A (T)i I On = -11c;rmn A(r)i 	*limn A (T)P ' 

	

i 2 	2 1 

( 1 . 9) 	Ac(r)ilmin, — Ac(r )ilnitn 	.17/41.)(T)At.litt — '5771.11 A(̀‘T)p + 2 rPrvA(T)ilp) 

	

3 3 	3 3 

(1.10) AFT  )i 1 m  1 n  — Aroi I n  I m  = .1:2C;riw  A 7(1- 7.)i t 1,",:, t it', — 114inn  AFT  )p  — 217,nn  A(T )i 1 p  , 

	

4 4 	4 4 	 V 	4 

( 1.1 1) 11 ( 7 )ilinIn — A (T)il tt Int = j."4<;mn A(r)i + 134rtm A (T)P 1  

	

3 4 	4 3 

where 

	

(1.12) 	 Ri. 	= rji. rn ,n  — rsi. n 	— 	m  
pirnrt 

	

(1.13) 	 Rjmn = 	— rni 	rPmirinp  — rPni rmi p ,n 

	

(1.14) 	Rijmn  = 	— rnj,m. + m rnp — rPrzi rpm + rP,,m (rpi ;  —n 

Riqmn  = lr Fl Fi,v —  r v Q ,l1 + 	— r ,or: it )tt, 

	

(1.15) 	 -1-21' ilp (yt!,,nn  — 
V 

	

Mmn  = 	— 	 — r7,0 r4)t;;A+ 
4 

	

(1.16) 	 +21-1,(yffm„ — 

The magnitudes R
13
'

P 
,

' 
Ri.

mn' 
(t = 1,2,3) are tensors and we call them curvature 

tensors of the space, and s 
3 

 of the subspace, respectively the 1st, the 2nd and the 3rd 

kind. The magnitudes R5',,„, R f̀;,,,,n  are tensors too and we call them curvature 

	

3 	4 
tensors of the 3rd, of the 4th kind of the space GRN in relation to the subspace 

GRm . 

1.1. Taking in (1.5) p, = v = 1, in (1.6) replacing 	by virtue of (1.2) 

and equating the obtained results, we obtain the first integrability condition of the 
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derivational formula(1.2): 

`'regyA(7)1t.;.‘nt it'a 	/1?i)mnA(T)p 	211;nn(qT)ipt.: 	Er(pT)ipN(p)) = v 

	

= 1111(c)irn I 	q 

	

n 	i(C• )in lin + (47- )itn (1)1L 	q .(r)in 4)1.;n1 1 111 
(1.17) 	 —Ec.(,)g P.--L( ?:(cr)irn fi2(a ) sn  — 71"(ar)inc2(a)stn)K+ 

+E{11()T)iini(P)PTI 	r()/- )inc(P)Pm 	7;(pr 	— 71 (pr)intrn+ 

+E(r(a Jim (po)n /i(ar)ig(pa)rn)}N(C'p). 
o 

Multiplying (1.17) by a t-oi l:, and using (0.4a), (0.6b), (0.5b), we obtain 

11Z/3,r/w ill), 	tf;,t ,̀), — R/Ln a„0/1/34 Arop  — 2 rfnnellTYPghs = v 1 

(1.17') 
= (1. 1(ir)itnin 	11. 1()r)in I m 	Vr)irn Tis) n 	y(T)in efas)m)ghp — 

— Ee(a)(1(or)im fl(a)hti 	71"(ar)irj?(a)hrn)• 
a 

If we multiply (1.17) by acoN(13,p)  and take into consideration (0.6), we get 

0, p,„N 	— 	m a c, n 	qco)  — 21-'1,.),z,,,q(cor)ipe( co) = 
( 1 . 17") 	= e(c, )[? 	m. (c)i 12 (w)Pti 	9 -r)inc2(50)/m, 	7;( ,0 7 )indi n 	Y(lT)inli m+ 

+E(711.(ar)irraV1) ((pa)n 	1'(ar)irt 111) (ep0)tn )J. 
a 

1.2. Taking it = v = 2 in (1.5) and equating with (1.7), using (1.2), we obtain the 
second integrability condition of the derivational formula(1.2): 

— I-A nn A (T)p  2.11
v
„(q.oip tc; Evp.oip N(p) ) = 

	

= [ql(r)irn1 n 	q(c)inlm 	q&)irn (1)1.:71 	q(7)10 (nrn 2 	2 	2 	2 	2 	2 

(1.18) 

	

	 — Ee(a)gaq(ar)imV(a)sn — 2(ar)in 52(a)sm)li pa+ 
a 

	

-FENP  . 12( ) 	qP  • 	) rn 	(pr)i rm 	(p ln 	r -r)inirn+ 

	

2(T)Irn 2  PiPn 	2 (T)'” 2 " 	2 	2 	2 	2 

	

+Eq(or)intt(po)n 	.Var)in112'(pc)m)iNe'p)• 
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Multiplying (1.18) by aaf34, we obtain 

.F2eLnn ao04Ar.op  +217„„gsolioh = 

	

v 2 	— 

(1.18') = (((r)im I n !(r)in I m 	5r)im12:11;n 5r)inil;Trt)ghp — 

— Ee(a)(2(ar)imV(a)itn 2(ar)in Z(o)hm )'  

a 

and multiplying the same equation by ac,p4p) : 

Rofft ,,„N(130 .A(r)i i,%(. 1,1.,. — 12V:mn aardtr7.)p Nro 2rPrv 2(p.r )ipe( cp) = 

(1.18") 	= e( ,,,goitnV(P)Pn. 	!(7)inC22 ('P)Prn + 72.(,07- )imln 	t'(cT)in 1m + 

+E(2(ar)im2) (cpa)n 2(ar)inItepa)m)]• 
a 

1.3. If in (1.5) we replace it = 1, v = 2 and use (1.8), we get the third integrability 
condition of the derivational formula (1.2): 

Fe A' 	Ri? A' — 3  rtnn (r)i — 3  tmn (r)p — 

— [q(r)im I n 	(r )in int + q(r)itn (111.)In 	2(r)i n (111:m 
1 	2 	2 	1 	2 	2 

(1.19) 	 —Ee( „ ) .0L.'(7;(,„)ims.-22(,)$.—;(,„)inc2(0.)3mAtp+ 
a 

+E[I(r)imV(P)Pn 	(r)inc/(P)Pm 1;(Pr)iml2n 72 (PT)inim +  

P 

+E (r(a r )im 1/( pa )n 2( r )inl(pc)rn AN( P). 

Multiplying the pervious equation by aageh , we obtain 

/3?Ormniti31A 7(7 )i — Ificn„aapArop trih = 

(1.19') 	= (q( r)iml n 	qP(r)in Im 	qr)im (1  2 " 	q(r)inn (1)1;m)ghp 
1 	2 	2 	2 	1 	— 

— Ee(a)(c(ar)im 9( a ) hn 1(ar)in C.12 (a)hm)• 
a 

where Rormn = a(0 1:1;',,,„„, and Flf,!,.,,n  is given by (1.15). 
3 	—3 	 3 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



On a family of tensor fields in a generalized Riemannian space 	 155 

Multipling (1.19) by a coNf,p) , we get 

p 	N (13,p) 	
- 	 — 

(1.19") 	= e ((p)[7P(r)iincl(C0)Pri 	r()r)inc2(90P7)/ 	7;((pr)irmln 	7;(cor)inirn+ 

+E(r(or)im 	 2(ar)inii)(ipa)m)]• 
a 	I  

1.4. 	By replacing it = v = 3 in (1.5) and applying (1.9), we obtain the fourth 
integrability condition of the derivational formula (1.2): 

-pnn '` ( r)p  + 2r fr  (V oip tc; E,;(„ ),pNr,,,) = 

[q(r)imin 	q(r)inlm 	q(r)ina,4)13) n 	11(7- )inTisri 3 	3 	3 	3 	3 	° 	3 	° 

(1.20) 	 —Ee(o)g(73'(77- ) i7nC32( cr ) sn 	13. 	C(ar)in 32 (a)srn)]tp(1 + 
a 

	

+E[g()7-)irncl (P)Pn 	(. 	C  7  r)in 32(P)Pm 	3'(pr)imin, 	:c(pr)inim+ 

+E(r(ar)irralppa)n 	par)inll(pa )1.01N(;))• 
a 

If we multiply the pervious equation by o, 134, we have 

11?/.31-rnn 	 — f211:rnn acoA( T )p t lft. 2rfnnq)ipghs  = 
v 3  

(1.20) = (q(r)imin 	qc)in I m 	qtr)im (1)., 1;n 	q(T)in (1)., 1;tn)ghP 3 	3 	3 	3 	3 	0 

— Ee(a)( 73.(ar)irre cl(a)hn 	3(ar)inC32(a)htn)• 
a 

Multiplying (1.20) by a,oN(p) , we get 

N(13,p0(T)i  tf.`„tr̀,'.  — f?!'imn a oroAc( top  Nrso 	21-1,v,3(9„..r)ip  e (p)  

(1.20") 	= e ( ,0)[(0-)itylV(Onn 	(r)i4(4))/nn + 1;OPT)irntn —1;(cor)inlm+ 

+E(I;(ar)im113, ((pa)n 	3(ar)in3 (tpa)m)]• 
a 

1.5 By equalizing the right sides in (1.10) and (1.5) for it = v = 4, we get the 
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fifth integrability condition of the derivational formula (1.2): 

	

F2?",.1„A 7{7. )i t 7%41, — 	„ A r, 	21`;? (4(.7. )ip t c: E4(pr )ip N(p) ) = 

[qP(T)imin 	qr)inirri 	q(T)itn (1)1;n 	q(r)in 4)13'm 
4 	4 	4 	4 	4 

(1.21) 	— Ee(a)9P3(r4(ar)im9(a)sn — 7:4 (a r)in9(a)s m)n+ 

±E[q(r)inz l2 (P)Pn 	qr)in9 (P)Pin + 1:4  (PT)irn I n 	r(PT)in I In+ 
4 	4 	4 	4 

+E(7 (a r)imV:( p a)n 	fl(or)in 914)  ( p cr)mAN( p). 

Multiplying the pervious equation by a cot?,, we obtain 

rp,„,,tif,Ai(rT)i tf!a t.r, — Fie;mn acodkrilp tc: 
4 

(1.21') 	= (qP(r)irnin 	q(r)in I in + q(r)im (1)13n 	(1)1;rn )ghp 
4 	4 	4 	 4 	4 

Le(o)( 1:1 (c r)im V( cr 	7  — 4' (a r)ini.1(a)hm) • 

and multiplying the same equation by a„,6N3w) : 

1.10,„„ Nrw) Vjoi t t% t i,', — Fliimn a,s,1('7)p N( ,p)  — 21;n ri ( pT )ip e( p ) = 

(1.21") = c(s0)[4(r)i,J, -41 ((p)pn 	q4 (T)in i-,-,12 (ro)Prn + 4 (9,7- )im 	— 7:1 (p r)in14 771+ 

+E(4(ar)im Opo)n 	T;(ar)in 1/4'((pcOrn)l- 
a 

1.6 Finally, if we equilaize the right sides in (1.11) and (1.5) for it = 3 v = 4, we 

obtain the sixth integrability condition of the derivational formula (1.2): 

1:4Z7C;MTI Al(T)i 	 At'('T)P = 

[3P(r)im I n 	(r)in I rn 	 4 4(91-)in Ts'm 

(1.22) 

	

	 — Eeegi ( 13'(ar)im 1.1(a)sn r4(ar)in9( a)3m)n+ 

a 

+E [q(T)im9(P)Pn 	Ip(r)inC32(P)Ptn 	r(pr)imln 	(pr)in I n3 + 
3 	 3 	4 	4 	3 

+E(;(ar)im1/4'(pa)n ri(ar)init(pa)mA Na) . 
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If we multiply this equaton by (4, 14, we obtain 

	

14?ormit  Al(rr ) i 	134?tirn  ac03.31'(7 )p  

(1.22) (g(c)i m j n 	q4 (-r)injm 	57- )irn 	4(7)in 411;m )ghP —  

— Ee(a)((ar)im V(a)hn 	1:1 (ar)in(a)hm)• 
a 

where R0 7,-,,,, 1  = aatiR,a„,„ and R 7,.',n„ is given in relation to (1.16). 

Multiplying (1.22) by acoN(.13w) , we have 

1-4?0„mr, N(,p),\ ljr Rim ttal3~ (r)P N ( W ) 
 

(1.22") 	= e (99)[9(T)im9(vo)i , 	9:1 (r)i,19(w)Pni 	3(PT)im I 	74'(PT)inlm 

	

+E( 7:,;(ar)in44) ((pa)rt 	?;(ar)in 113) (coa)rn )] • 
a 

2. Some special cases 

For some fixed values of coeffitients b, c we obtain from (1.1) special cases, some 
of which are very importtant. 

2.1. If 

(2.1) 	btoi  = bi 	(kz. e( voi = 0, then A(T)i  = 

In this case from (1.3) we obtain 

g(r)im = 1:5:1 rn 	6: 4)1.: in = 4)1:)ttn, 	r(pr)im = 6% (P) 3771  = CI (P)im ,  P 	P 	P 

and (1.2) gives (0.9a) i.e. the first derivational formula of a subspace of a generalized 
Riemannian space. In this case integrability conditions of the first derivational 
formula of the field (1.1) reduce to integrability conditions of the first derivational 
formula, from which we obtain several equations of the Gauss-Codazzi type. For 
example, in this case (1.19') becomes 

- R 3 	 himn = 3 
(2.2) = (fml rt tin m Tirrits'n 	In4O4hp - 

-Ee(a)(9(a)imC22(a)hn V(a)incl(a)hm )) 
a 
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and this is the third kind of the Gauss equation of the subspace GRM. Now from 

(1.19") we obtain 

qPirmn N(w) eir  

(2.3) 	= 8(v))[fmC22(w)Pn — 2  1(40)Prn — c2ivinitn+ 

+E(Y(o)im1/2) ((pa)n. 	C22(a)ini) (y,c)m • 
a 

and this is the first Codazzi eqation of the third kind. 
2.2. The next special case is 

(2.4) b (30i = & C(p.r)s = pr A' • = N" S(r) i (r ) • 

Now, it is 

b (r)im — Ee(P) 45PrgU?i (P)srn = --17 9(T) 87n e (T) 
p 

r (p-r)im = Dor lk(pa)m = k(p-r)rn 
a 

and (1.2) results in (0.9b), i.e. in the second derivational formula of the subspace . 
In this case from (1.19') one obtains the equation which is equivalent to (2.3). The 
equation (1.19") in this case becomes 

11 or mn IVE5s0) 1V,.) = e( v )[— gla?(.08 ,n e(q(p)pn g1 C21 (T)srie(T) ilo,opm+ 

	

+1/) (cp r)ynin 	1Pepr)n m 	EOP(or)m IP(cocr)n 	0(ar)n INct,a)m 
1 	2 	2 	a 	1 	2 	2 	1 

and this is the second Codazzi equation of the third kind. 
2.3. Curvature vector of a curve C in a subspace GRM of a space GRN is 

determined in the same way [6], as in the usual Riemannian space, i.e. 

(2.5) 	 q" = 	EKG,N,)  

where K(p) is normal curvature of C, which corresponds to the normal Nip). (P)' 
from (1.1) one obtains 

(2.6) 	 = p3 	 = K(p) 

So the field q° is a special case of the field A(T)i  (1.1). 
ity conditions of derivational formula of the field Ar ili 

 equations for q". 

A cv 
(T)t = qn . 

Therefore, from integrabil- 
one obtains corensponding 
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F(2k + 1,1)-STRUCTURE ON THE LAGRANGIAN SPACE 

Jovanka Nikk 

ABSTRACT. If almost product P or almost complex structure J on the tangent space 
T(E) = Tv(E)+TH(E) of Lagrangian 2n dimensional manifold E are defined, and 
if f„(2k + 1, 1)-structure on Tv(E) is defined, then f p (2k + 1,1) and fj(2k + 1, 1)- 

 structures on TH(E) are defined in the natural way. We can define Fp (2k + 1, 1), 
Fj(2k + 1,1)-structures on T(E). The condition is given for the reduction of the 
structural group of such manifolds. 

1. Introduction 

Let M be an n dimensional and E 2n dimensional differentiable manifold 
and let // = (E,r,M) be vector bundles and 71-  E = M. The differential 
structures (U,O,R 2n) are vector charts of the vector bundles n . Hence the 
canonical coordinates on 71-- '(U) are (x 1  , yl  
1, 2,... ,n a = 1,... , n. Transformation maps on E are 

x 2  = x e  (x 1 , x 2 , ... , e) 

y'' = Mnx i , . . . , xn)ya = Mnx i )ya 
Ox 2  

rank --- = n, rank —
Oya' 

	

Ox 	 o a 
= rank A1:' = n. 

	

i 	 y 

The inverse transformations are 

x i 	x i(x 1' , x 2' ,  

	

ya = (X i' ,• 	Xn' )yai  

where M:,M:' = 

1991 Mathematics Subject Classification. 53B40, 53C60. 
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162 	 J. Nikie 

The local natural bases of the tangent space T(E) are {ai , Oa } 

a. =  va = mnxi)a., 

	

axe 	, 
= -7 = 	 (X))Y aa'• 

	

axi 	aX 2  

The nonlinear connection on E is distribution 

	

N:uEE —÷ 	C Tii (E) 

which is supplementary to the distribution V, 

(1.1) 	 Tu (E)= Nu (I) 	V u  E E. 

They are localy determined by Si = A — Nia0a . The local bases adapted to 

decompositions in (1.1) is {Si , 
It is easy to prove that on fo i ,aa l 

axi 	oya 

	

a6ii = 	—7ua• 

	

Si
I aX i" 	Oya 

The subspace of T(E) spaned by {S i } will be denoted by TH (E) and the 

subspace spaned by {a.} will be denoted by Tv (E), T(E) = TH(E)e Tv (E), 

dim TH (E) = n = dim Tv (E). 

Definition 1.1. If the Riemannian metrical structure on T(E) is given by 

= gii (x i ,ya)dx i  dx- 1  gob (xi,ya)bya be where g ii (x i ,ya) = gii (x), 

gab = laaabL(Xi,ya) and L(x i , ya) is a Lagrange function, then such a space 

we call Lagrangian space. 

Let X E T(E), then X = 	Xaaa  and the automorphism P : 

X(T(E)) X(T(E)) defined by 

PX = gi bi + Xaa. 

is the natural ahnost product structure on T(E). i.e, Pz  = I. If we denote by 

v and h the projection morphism of T(E) to Tv (E) and TH (E) respectively, 

we have 
Poh= vo P. 

The automorphism 
JX = —X ibi+ Xaaa  

is the natural almost complex structure on T(E). 
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2. .f(2k +1, 1)-structures 

Definition 2.1. We call Lagrange vertical f,(2k 1,1)-structure of rank r 
on Tv(E) a non-null tensor field f t, of type (1,1) and of class C°° such that fv2k+i = 0, k E N , and rank ft, = r, where r is constant everywhere. 

	

Definition 2.2. We call Lagrange horizontal fh(2k 	1,1)-structure on 
TH (E) a non-null tensor field fh  on TH (E) of type (1,1) of class COO satis- fying  A? + + fh = k E  

N , rank fh  = r, where r is constant everywhere. 

An F(2k +1,1)-structure on T(E) is a non-null tensor field F of type ( 1111 ) 
such that F2k + 1  F = 0, k E N, rank F = 2r =coast. 

For our study it is very convenient to consider ft, or fh  as morphism of 
vectors bundles. 

f, : XTv(E) XT v (E) 
fh  : XTH(E)-- XT H (E). 

Let f, be a Lagrange vertical ft,(2k + 1, 1)-structure of rank r. We define 
the morphisms 

1 = — ft2k  and in 	pv2k --r ,r = 	Tv(E) 

where Irv(E)  denotes the identity morphism on Tv (E). 
It is clear thet 1 m = I. Also we have 

lrra = rral = _f4k_ fv2k = 	r2k-1-1 
v 	f) = 0, 

in2  = m, 11 2 ,= 1. 

Hence the morphisms 1, in applied to the X(Tv(E)) are complement* 
projection morphisms, then there exist complementary distributions V L and 
VM corresponding to the projection morphisms 1 and in respectively such 
that dim V L = r and dim VM = — r. 

It is easily to see that 

(2.1) 	lfu = .41  = fv, mh = fvna = 0, .ft k 771 = 0, 

fv2 k 	_ 1.  

Proposition 2.1. If a Lagrange f„(2k + 1, 1)-structure of rank r defined on 
Tv (E), then the horizontal f h (2k 1,1)-structure of rank r is defined on 
TH (E) by the natural almost product structure of T(E), as fp , or by the 
almost complex natural complex structure of T(E), as L. 
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164 	 J. NikiC 

Proof. If we put 

(2.2) 	 fp X = PLPX, VX E TH (E) 

(2.3) 
	 = --JfvJX, VX E TH (E) 

it is easy to see that 

= pfv2k+ipx, fzk+1 X  = _ jfv2k+i jx  

and 
+ fp  = 0, f3?k+1 	0  

and rank fp  = rank fi  = r. It is easy to see that fp = f.;  = fh. 

Proposition 2.2. If a Lagrange f,,(2k 1,1)-structure of rank r is defined 
on Tv (E), then an Fp (2k 1,1)-structure or F(2k 1,1)-structure are de-
fined on T(E) by the natural almost product or natural almost complex struc-
ture of T(E). 

Proof. We put 

Fp = fph 
F;  = 

where fi„ k are defined by (2.2), (2.3) and h, v are the projection morphisms 
of T(E) to TH (E) and Tv (E). Then it is easy to check that 

F2 = f2 h  fv , F2k+1 = 
P 	JP 	Ju 	 JP 	it  

Thus F: k+1  + Fp = 0. Siinilary Flk + 1  Fj  = 0. It is clear that rank 
Fp =rankF;  = 2r. 

If 1p , rnp  are complementary projection morphisms of the horizontal 
fp (2k + 1, 1)-structure, which is defined by the natural almost product struc-
ture of T(E), we have 

/p X = —f 12k x = p ,,91c j7 PX = PIPX,VX E TH(E) 

	

rnp x = 2k f 	f 

	

j 	iT,(E)X = 
p fv2k px  F/Tv(E)PX = PmPX,VX E TH(E). 

If L p , Mp  are complementary projection morphism of the Fp (2k + 1, 1) 
structure on T(E), then we have 

(2.4) L p  = _F2k p  

A j 	02k 
— r  p 	IT(E) 

= _112) k h 	v = 411 + IV 
= f p2k h 112k ITH(E) h iTv(E)v  = 

= mp h mv. 
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Thus, if there is given a Lagrange f„(2k 1,0-structure on Tv(E) of 
rank r, then there exist complementary distributions H L p , H Mp  of TH (E), 
corresponding to the morphisms / p , mp  such that 

(2.5) 	 H L p  = PV L,H Mp  = PV M. 

Thus we have the decompositions 

T(E) = TH (E)E Tv(E)=PVLE PV M ED V L ED V M. 

If TL I,,TM I, denote complementary distributions corresponding to the mor-
phisms Lp , Mp  respectively, then from (2.4) and (2.5) we have 

TL p  = PVLEDVL , TM p  = PVM EDVM. 

Let -g is a pseudo-Riemannian metric tensor, which is symmetric, bilinear 
and non-degenerate on Tv (E). 

: X(Tv(E)) x X(Tv(E)) .F(T(E)). 

(for examples g can be the vertical part of Lagrange metric structure). 
The mapping 

a : X(Tv(E))x X(T v (E) .F(T(E)) 

which is defined by 

a(X,Y) = 
2 
-
1
[gux,in g(mxonn] VX,Y E XTv(E) 

is a pseudo-Riemannian structure on T(E) such that a(X,Y) = 0, VX E 
X (T (V L)), Y E X(T(VM)). 

Theorem 2.1. If a Lagrange f,,(2k 	1, 1)-structure k > 1 of rank r is 
defined on Tv (E) then there exist a pseudo-Riemannian structure of Tv(E) 
with respect to the complementary distributions V L and V M are orthogonal 
and f„ is an isometry on Tv (E). 

Proof. If we put 

g(X,Y)= —
1 

2k 	•
[a(X,Y)-F a( f,,X, 	• • + a(L2k-1 X, fv2k-l ni 

it is easy to see that 

g(X,Y) = 0 dX E X(VL), Y E X(VM). 

Using (2.1) we get 

g(f„X, f„Y) = 2k [a(f,,X,f,,Y)+ a(f;,2 X, f t Y) 	a(X,Y)]. 

Thus f„ is an isometry with respect to g. 
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166 	 J. NikiC 

Let X E X(T(VL)) then f,X, JVC, 

9(X, f,,X)= 9(LX,A, +1X)= • •• 

Consequently 

g(X,A,X)= g(LX,.i .:+1X) 

and r = 2km. 
Thus we can chose in X(T(V L)) r = 

fields such that 

f(Xa) = X a+. 
f (X a) = — X—(2k-1)m+ct, 

, f 2k X E X(T(VL)) and 

= 	ft k  X) = —g(f:X,X). 

= = g(f:X, f:k  X) = 0 

2km mutualy orthogonal unit vector 

a = 1, 2, ... , (2k — 1)m, 
a = (2k — 1)m + 1, 	, 2km. 

An adapted frame of the Lagrange f,,(2k + 1, 1)-structure on Tv (E) is the 

orthogonal frame R = {X„, X0}, where X0  is an orthogonal frame of 

X(T(VM)). 
Let R = {X„, 	be another adapted frame of the Lagrange fi,(2k +1, 1)- 

structure, and R = AR, then orthogonal matrix A is an element of the group 

U( km ) X 0(n-2km)• 

Theorem 2.2. A necessary and suficient condition for T v (E) to admit La- 
grange f,(2k 1,1)-structure, k > 1 of rank r is that r = 2km and the 
structure group of the tangent bundle of the manifold be reduced to the group 

U(km) X 0 (n-2km). 

We can define a mailing gp : 

gp (X,Y) = g(PX,PY), VX,Y E X(TH(E)) 

gp  is a metric structure on TH (E). Using (2.5) the distributions HLp , H.Mr  

are orthogonal with respect to gp  and the horizontal fp (2k + 1, 1)-structure 

which is define by fp X = Pf„PX,VX E X(TH(E)) is an isometry on TH (E) 

with respect to gp . 

Proposition 2.3. If {X a, X 13 } is an adapted frame of a given Lagrange 

fv( 2k +1,1)-structure fy  on Tv (E) with respect to y, then the frame {PXa, 
P Xp} is an adapted frame of the horizontal f p (2k + 1, *structure with re-

spect to gp . 

It is clear that the frames {PX,,PX 0 ,X,„X f3} are adapted frames to the 

decomposition 

T(E)= H Lp  (-1) H Mr  (DV L ED V M. 

Theorem 2.3. If a Lagrange f,(2k 1,1)-structure is defined on T v (E) 
with pseudo-Riemannian structure g, then the structure group of the tangent 
bundle on T(E) be reduced to U( km ) X O(n -2km) X U(km) X 0(n-2km). 
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ON WARPED PRODUCT MANIFOLDS 

Mileva PrvanoviC 

ABSTRACT. This is a survey article on warped product manifolds and contains: applications in 
some relativistic theories (Schwarzschild spacetime and Robertson- Walker spacetime), subprojec-
tive spaces, the invariant way characterizing warped products and the geometry of warped product 
in terms of warping function and the geometies of the base and the fiber. 

1. Definition and the first example 

Let (M, p-) and (M, g) be two Riemannian manifolds such that dint M = q, 

dim M = n — q, 1 < q < n. Let F be a positive C' function on M. 

* Definition. ([23j,p.204). The warped product M = MxFM of (M Ti) and (M (g) 

is the manifold M=MxM which the metric g = xF g. More precisely 

g=9 x 	= g (F ir i )ir;ij, 

where ir1  : M x M 	M, ir2 : M x M M are natural projections. The manifold 

M is caled the base manifold, while M is the fiber. 

For each (M, Tit) E M the subset M x 	is a totally geodesic submanifold of 
warped product and all such submanifolds are isometrically related; the submani- 

folds M. x M are totally umbilic and the map 1r 2 1 	. is a positive homotety onto 
mxM 

1 	 — 
M scale factor 

F(Mt) 
 . For each (m, m) E M, the submanifolds M x m and Mt x M 

are orthogonal at (M, nn). The converse is also true, that is we have the following 
theorem: 

Theorem. 03], (VD. A Riemannian space is a warped product manifold if and 
only if it can be decomposed into two families of mutualy orthogonal submanifolds, 
one family consisting of totally geodesic and the other of totally umbilic submani-
folds. 

If F = const. then F can be incorporate in the metric g and M=MxM 

reduces to a productrrianifold, both M x rrt and M. x M being totally geodesic. 
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170 	 M. PrvanoviC 

Thus, the class of warped products contains the class of product manifolds and is 
its generalization. 

The class of warped product contains all Riemannian manifolds of constant cur-
vature. In fact, for each point of such a manifold there exsist a neighbourhood in 
which, with respect to the polar coordinats r, 0 1 , ..., 0n -1  the metric is 

	

ds2  = dr2  + sin2 fkr (1; 2  (0 1  , 	On -1 ) for k > 0 

ds2  = dr2  + sitt 2 A/kr 4 2  (0 1  , 	0' 1 ) for k < 0, 

* 2 
where k 	0 is the constant curvature of M and ds is the metric of the unit 

(n - 1)-dimensional sphere Sn -1 . We note that the manifold of constant curvature 

k # 0 can not be a product manifold. If k = 0, then the manifold can be represented 
as a product manifold on many ways. But for example, for R 3\0, with respect to 

the spherical coordinates, we have 

ds2  = dr2  

It means that R 3 \0 can be identified with warped R+ x,. S 2  with a ray from the 

origin as a basis and the spheres S2 (r), r > 0 as the fibers. 
The surface of revolution is an other example of Warped products. Let C be the 

curve in R3  whose parametric representation is 

x = g(u), 	y = 0, 	z = F(u). 

If z is the axis of revolution and v is the angle of rotation, then we have 

ds2 = [(9/(02 (Fnziduz F2dv2. 

Thus, the surface of revolution is warped product C xF 51 , where the curve C is 

the basis manifold and the circles of revolution the fibers. 
The four dimensional warped products are very important in the construction 

of simple models of some relativistic theories.Thus Schwartzschild spacetime is the 
simplest relativistic model of a universe containing a single star. The star is assumed 
to be static and spherically symmetric and to be the only source of gravitation for 
the spacetime. It follows from these assumptions that Schwartzschild spacetime is 
warped product P x,. S2 , where the fiber S2  is the unit sphere and the base space 

P = R x R+ is a half-plane r > 0 in the rt-plane endowed with the metric 

m 	2m , 
- (1 

2r 	" 	r 	̀̀' 

and 

r2(d02 sinzo 42) .  

where rn is a constant identified with the mass of the star. The function 1 - —
211/ 

2m 
increases from limit -oo at r = 0 toward limit 1 at r = oo. But 1 - —r 	

0 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



On warped product manifolds 	 177 

at r = 2m, that is the metric (1.1), and therefore the metric of Warped product 
M = P x,. 82 , degenerates at r = 2m. So, we have to consider two Schwartzschild 
spacetimes: 

1) Schwartzschild exterior spacetime M = Pj x,. 82 , where P1 is the region 
r > 2m; 

2) Schwartzschild black hole M = P11 x,. ,52 , where PH is the region 0 < r < 2m. 
The star is characterized by its mass m and its radius R. For the spacetime 

around the star we have r > R. For an ordinary star we have R> 2m, that is the 
surface of the star is in Schwarzschild exterior spacetime. But if R < 2m, then R 
can be only 0; the star dissapears and the warped product PH x,. S2  becomes black 
hole. ([23],Chapter 13). 

According to the astronomical evidences, the universe can be modeled as a space-
time containing a perfect fluid whose "molecules" are the galaxies. Also, the galax-
ies, taking into account the large scale appropiate to cosmology, appear to be dis-
tributed the same in all directions. Starting with this isotropy condition and using 
the physical assumptions about the galactic flow, it is possible to construct a simple 
cosmological model, so called Robertson-Waker spacetime ([23]). This model is the 
warpedproduct 

(1.2) 	 M = M(k, F)= I xF S, 

where I is an open interval in RI and S is a three-dimensional manifold of constant 
curvature k = — 1, 0 or 1. The metric of the manifold (1.2) is 

ds2  = —(dt) 2  F d:; 2 , 

where d's'2  is the metric of the mabifolci S. It can be proved that the Ricci curvature 
for Robertson-Walker spacetime M(k, F) with flow vector field U = a t  is given by 

3F" 
Ric (U, 	= — 	Ric (U, X) = 0, 

+ 2k + j F”1 < 	y > if x ,  y j_u Ric (x, y) = [2 (-9 
F 	F2  F  

([23], p.345). 
Also, if U is the flow vector field a Robertson-Walker spacetime M(k, F), then 

(U, p, p) is a perfect fluid with energy density p and the pressure p given by 

8.7r 	F') 	k 
3 P 	F ) 4-  F2 ' 

(F1 ) 	k _87rp 2T  + F F2 

(see [23],p.345). 
Acording the astronomical estimates, the spaces 5(t) are expanding, i.e. cur-

rently F has positive derivative. The following theorem considers the past and the 
future. 
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172 	 M. Prvanovie 

Theorem. (123.1,p.3.48). Let in(k, F) = I xF S'andH(t) = F'(t). If Ho = 
F(t) 

Ho(to) > 0 for some To, and p 3p > 0, then I has an initial endpoint t*  with 

t o  — H 0-1  < t. n < to 

and eighter (1) 	> 0 or (2) F has a maximum point after to and I is a finite 
interval (t., t..). 

It means thet the universe had the definite beginning and eighter continues ex-
panding, or after conctracting for a while, comes to an end. Using some additional 
dates, it can be concluded that our universe began in a colossal explosoin. 

2. Subprojective spaces 

The warped product appears also in the investigations of the subprojective and 
generalized subprojective spaces. 

The subprojective spaces were first defined and investigated by V.F.Kagan ([20],-
[21],[39]). With respect to the projective properties, these spaces are a natural 
generalization of the Riemannian spaces of constant curvature. Namely, according 
the well known Beltrami's theorem, the spaces of constant curvature and only such 
spaces, admit a mapping on an euclidean space such that the geodesics corenspond 
to the streit lines. But if the space allows mapping on the flat space such that 
each of its geodesic corresponds to a plane curve and all such planes contain the 
same point or are parallel, then we say that the space is subprojective one. A 
geodesic can also be considered as an autoparallel line, i.e. it is an object defined 
by the connection only. Thus a subprojective space need not to be Riemannian. It 
is sufficient that it is a diferentiable manifold endowed with an affine connection. 
As for Riemannian subprojective spaces, all of them are known in the sense that 
their metrics are known ([32],[39],[43]). In fact, with respect to the special local 
coordinates, the metric of the subprojective space has the form 

(2.1) 	 ds2  = (dx 1 ) 2 	F(x l )d.*92  (x 2 , ....xn), 

where d7s 2  is the metric of (n-1)-dimensional space of constant curvature, or the 
form 

(2.2) 	 ds2  = 2dx1dx2 F(xi)(62 

where d7s 2  is the (n-2)-dimensional euclidean metric. The metric (2.1) is positive 
definite, and (2.2) is not. 

We see from (2.1) and (2.2) that every subprojective space is a Warped product 
manifold. 

It is intresting to compare subprojective Riemannian spaces to the spaces of 
constant curvature with respect to the group of motions. It is wel known ( see for 
example [15] or [38]) that the group of motions of an n-dimensional Riemannian 
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n(n + 1)  
2 	parametres. Such a group is transitive and a space 

admits a group of motions of maximum order 71(71+ 
	  if and only if it is a space 

2 of constant curvature. 
n(n — 1) The intransitive group has a most 	

2 	
parametres and all Riemannian 

spaces admiting such group of motions are subprojective ( see [41],[45]). Conversely, 

every subprojective space admits intransitive group of motions of order n(n 

2 

— 1) 
In 

both cases (2.1) and (2.2), this group acts as the transitive group on the hyper-
surfaces x 1  = const. In the case (2.2), they are isotropic. In some casees, this 

intransitive group of motions becomes the transitive group of order —I 
n(n — 1) + 1. 

In the case (2.1) this happens only if F = const., that is if the subprojective space is 

decomposable. Namely, —
1 
2 n(zz — 1)-f- 1 is the order of the transitive group of motions 

of (n — 1)-dimensional space of constant curvature. Then we acid one parameter 
group of motions along the curve xl 

The subprojective space of type (2.2) also admits, in some special cases, the 

transitive group of motions of order 2 —
1 
n(n — 1) + 1. First, we note that, with respect 

to the confortnally euclidean coordinates, (2.2) can be rewritten as follows 

(2.3) 	ds2  = e-2P(s 1)  [2dx 1  dx 2 	(dx 1  ) 2 ] , i = 3, ..., n; 	= +1. 

It was proved in [41] that that the manifold endowed with metric (2.3) admits 

the transitive group of motions of order —
2

71(n — 1) + 1 if and only if the function 

Ax l  + B 
dx' 	A(x 1 ) 2  + Cx1  + D' 

where A,B,C and D are constants. 

Thus, while the Riemannian space of constat curvature are characterized by 
the property that they admit the transitive group of motions of maximum order, 
the subprojective spaces are characterized by the property that they admit the 
intransitive group of motions of maximum order. 

The group of motions of general warped products are investigated in [40]. Here, 
we cite the following theorem. 

Theorem. ([40]). If the intransitive group of motions of a Riemannian space M 

is of order 
2 
—
1 
q(q + 1), q > 2 and has q-dimensional nonisotropic surfaces of the 

transitivity, then M is the warped product M = M x F  M such that dirnM = q. 

This is one of the theorems used for proving the above properties of the subpro-
jective spaces. 

= p(x 1 ) satisfies 
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174 	 M. PrvanoviC 

We say that a manifold endowed with an affine connection is a generalized sub-
projective manifold if it admits a mapping on an euclidean space such that ev-
ery autoparallel corresponds to the curve belonging to a (q + 1)-dimensional plane 

(1 < q < n-2), all this planes containing finite or infinite (q — 1)-dimensional plane. 

For q = 1, this definition of the subprojective spaces. 
G.Vranceanu ([34],[35]) proved that a generalized Riemannian subprojective spa- 

* 
ce with positive definite metric is the warped product M = M xF M, where M 

is the space of constant curvature. Conversely, each such a warped product is a 
generalized subprojective space. But, in the case of indefinite metric, a generalized 
subprojective space need not be a warped product ([36]). 

3. The invariant way characterizing 
the warped product manifolds 

Let U : x 1 , xq be a local chart for the manifold M and U : xq+1  , xi' that for 

M. Then U x 	xl, xn is a local chart for the warped product M = M xF M. 
With respect to this local chart, we have 

(3.1) 	 gab =§,b(Z), 	=;„0(x7 ), F = F(xa), 

while for the metric tensor g of warped product M = M xF M, we have 

gab 	for i = a, j = b; 

(3.2) 	 gib = Fgo 	for i = a, j = 0; 

0 	for all other cases. 

Here and the seqel the letters a, b, c range over the indices 1, ..., q, greak letters 

a, /3, y over the indices q + 1, ...,n and letters i, j, k - over the indices 1, ..., a. 
The definition given in §1 shows that a Riemannian manifold is a warped product 

if the coordinates can be chosen such that the metric tensor takes the form (3.2) 
where (3.1) is satisfied. We shall see in §4 that many interesting properties of the 
warped product manifolds can be obtained using so adapted local coordinates. 

There exsist also tensor equations, that is an invariant way, characterizing the 
warped products. They are contained in the following theorem. 

Theorem. ([44]).- A Riemannian manifold is warped product if and only if there 
exsists a symmetric tensor Aii, not proportional to the metric tensor, and gradient 
vector field uisuch that 

(3.3) 	 VkAii = i(uiAkj ujAik), Ai A' = Aik• 

then ui = 
xi

—log F. 

Here and in the sequel, V is the operator of covariant differentatiion with respect 
to Levi-Civita connection. 
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If F = con.st., then (3.3) reduces to 

VkAij = 0, 	Aij A i  k = Aik 

and this conditions, given by P.A.Schirokov ([46]), for a Riemannian space to be 
decomposable. 

For a warped product manifold with /-dimensional base or with /-dimensional 
fiber, we have theorems: 

Theorem. (1:97],[4.0. A Riemannian manifold is a warped product with 1-dime-
nsional base if and only if the equations 

V./ = 	 = co(f) 
admit solution f # const. 

Theorem. ([44.1).-A Riemannian manifold is a warped product with I-dimensional 
fiber if and only if there exists a nonisotropic vector field Ai which, together with 

0 
the gradient ui _ = log  F satisfies 

Ox 

1 
= —

2 
(Ai ui — Aj ui ). 

4. The geometry of the warped product in terms . 
of warping function F and the geometries of M and M 

There are many papers dedicated to the investigation of the geometry of the * 
warped product M = M x F M in terms of warping function F and the geometries * 
of M and M. In this section we quote some examples'. 
. 4.1 From now on, we suppose F = const. and we use the local coordinates with 

respect to which the relation (3.1) and (3.2) are satisfied. We assume that each 
object denoted by a dash is formed wai, and each object denoted by a star using 
g c,o . Then the local components F ii'i  of the Levi-Civita connection on M xF M are 
the following (see for example [11], [17], [44]): 

11 	. rL = rbac, 	r a = _ yab pb  _ c;a13, 	
r 	

* 

137 	2 	 ci;-y = 1737 ,  
1 	 aF 

ràvo=Tp---;Faq, 	r:b = r 'LI = ° 1 	Fa = 
oxa 

The local components Rhijk of the curvature tensor of M = M xF M which in 
general do not vanish identicaly, are the following 

Rabcd = 7Rabcd, 	Raabl3 = 42- Tab 6c0) (4.2) 
1 4, Raf3 75 = F Ro-x5 — — /-11 r Lrcri37.5) 4 

(4.1) 
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176 	 M. PrvanoviC 

where T is the (0.2) tensor with the local components Tii defined by 

(4.3) Tap = Taa  = 0, Tab = VbFa — 	
a 

F Fb 

and 

AiF = 9 FaFb, 

* 	* 	* 	* 
Gap7 5 = 9046907 — garyg 0,5 • 

In view of (4.1) and (4.2), we get 

Rabcd = VeRabcd, 

V a  Rabcd = VdRabccx = V-yRaab0 = 0, 

V e Rabo = VyRabat,i = VbRap-ya = 0, 

VpRaabc 2 = e ab c   
2F

(r
t,  
biac — 1 ' ab )1 gaf3 

(4.4) 	VbRaacp = —(VbTae)gap, 

	

1 	

e  
V bR otp,a  = --

2  
[Fall

`''31.6 
— 
2

(F Te 
a 

— 
2F 
—Fa A l F)6'0,81 

1 F 
aRck,37,5 = —FaRaP-yo 	[Tc,1  AiF 72-1  aa(AlF)]b co-y6, 

V p Rap-ro = FVp Rap.o. 

The local components Sij = Rr ijr  of the Ricci tensor of M xF M,which in 
general do not vanish identically, are the following 

n  
Sab = Sab — Tab, 

4.5 	 * 
So = S ap — 

1 
— [tr(T)+ 

n— 
2F 

- ( ) 	 1
Aid  gap , 

* 
The scalar curvature R of the metric y x F  g satisfies the eqation 

1 	 n 
4F 

 1 * 	 - q - 
(4.6) 	R= 	

n q tr(T)+ 	AiF) . 

Therefore, Weyl conformal curvature tensor 

Chijk = Rhijk 
it — 2 

(g
ij

,Shk — gikShi ghk Sij — ghj Sik)+ 

+
(n 1)(n — 2) (g2i9hk  gikghi) 

tr9T) = rh Tab- 
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has the following components 

I 
C abed = Trtabcd 	2(-9 adO bc 	ac: -4-37  bd ribc3ad Ybd:57.  ac)+ 

n — q ,_ 
+ 2(71 — 	2)F lgadTbe — k a„..TH + §b,Tad — godTac)+ 

R  
+ 

(n — 1)(n — 2) 7 'abed, 

1 ( q — 2 
	Tab + FS 7  ab) ; 	

1 
a/3 —  C aabii = n 	 — 2 	2 	 n — 2 L6Sal3+  

	

(4.7) 1 	 * 	— 2q + 1  
tr(T)+ + 	 {F.Ti+ R 

n 
(71— 1)(n — 2) 	 2 

+ (q — 1)(7t

4F 

 — q — 1) 
Ai Fi-gabL13, 

F * 
Capry b 

 
= F Roya 	

, 	* 	* * 	* * 	* 
— 2 

(gaoSp-y  — gery Soa + go-,S aa — gpoS ay )+ 

F 	 [FR  
+ tr(T)+ n 	2g  Ai Fi C*  + 

n — 2 	 ;076, Ln — 1 	• 	4F 
Cabo Cabal3 Ca13-y6 = O. 

Moreover, from (4.1) and (4.5), we find 

V cSab = VcSa1) (n — q)Ve 61  Tab) , 

VaSab = Vb•aa = 0, 
vosaa  = 	15*.,00 	(tr(T)  n — 

q —1V1F)Ld 

(4.8) 	

+ 

1 	
e 	

n 2F 

2F 

+ Fe [ S a 	Te al g,3 	TE a  = ffebTab, 2 	 ' 
Fa* 	1 	r 	n — q — 1 

tr(T)+ 	V id; ap- 2F 

— 
2 	 2F 
—
1 

 Oa  itr(T) +
71—ql

Ald orf.3 1 

* 
V5Sall = 77,5 a1.3 

Using (4.4), (4.6), (4.7) and (4.8) we can get the local components of V rCijkh 
and V,V,Cii kh • 

4.2 In view of (4.4) we can state 

Theorem. ( 	Th.1)-1f a warped product M = .171 x F M with n # q + 1 is 

Cartan-symmetric (i.e. if V rRiikh = 0 ). then M is Cart an-symmetric and M is 
of a constant curvature. 
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Simmilary, it follows from (4.7) that if M is conformally flat (i.e. if Cijkh = 0), 

then M is a space of constant curvature. Conversely is not true, but we have 

Theorem. -Let M be an open interval of R 

F be a positive C' function on M and let 

M = M xF M is conformally flat if and 
curvature. 

with metric 9 11  = c, e E {-1, O. Let 

dim M > 2. Then the warped product 
71, 

only if M is a manifold of constant 

If a recurrent space (VrRijkh = A r Ripc h ) is a locally decomposable, then one 
of the decomposition space is flat and other is a recurrent space ( [31,p164). The 
non-decomposable recurrent Riemannian spaces are all known. Some of them are 
warped products. For 2-recurrent (VrVsRijkh = Ars Rij kh ), conformally sym-

metric (VrCijkh 
spaces, we have 

Theorem. ((14J, [191, [22.0.- If a 2-recurent (conformally symmetric, conformally 
recurrent, conformally birecurrent ) Riemannian space is a warped product and 

dim M > 3, then M is 2-recurent (conformally symmetric, conformally recurrent, 

conformally birecurrent ) and M is a space of constant curvature. 

M.C.Chaki and G.Kumer ([6]) generalized this theorem for the space satisfying 

VrVsCijkh = ArVsCijkh BrsCijkh- 

One generalization of a recurrent space is the Riemannian manifold satisfying ([2],- 
[4],[5],[16],[25],[26],[33] ): 

(4.9) 	V r Rij kh = Ar Rijkh BiRrjkh B Rirkh Bk Rijrh Bh Rij kr • 

Here, we shall give an example of warped product manifolds satisfying (4.9). 

Let M, dint M > 2, be equiped with the metric 

9abdedx6 = E e a (dxa) 2 , 	ea  = ±1 
a=1 

and let 	
F = (Co = C1 x 1 -1-, • - • ,Cq xq) 2 , 

where Co, 	are constants such that 

E ea(Ca) 2  = 0. 

a=1 

Then 

I 
Fa  = 2Ca (Co = Cix 1 +, • • • , Cq xq), VbFa = 2C,Cb, 

(4.10) 
Tab = 0, 	= 0. 

), conformally birecurrent (V,V,Ciikh = ArsCijkh ) Riemannian 
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On warped product manifolds 	 179 

In view of (4.2), (4.4) and (4.10), it follows that the only components of 
Riikh and Vriiiikh not identically equal to zero are those related to 

R, 07 F R 	, 
* * 

p R, 1376 = F77 p R,,f376, 
* 

Re4376 = ," a -"6 0e /376 
1 	* VpRao.ya  = — 2 —FaRap-rp• 

* * 
Now, if M is a recurrent space, i.e. if VpRa1376 = A p R ai376, then 

pRa1376 = A pRal375, 

aRa13 76 = — Fa Rap-y6, 
1 Fa  

V pRo ya  = — 
2 F

Rn1j7P, 

and warped productM = M xF M satisfies (4.9), the vector fields A and Bhaving 
the localcomponents 

1  A: 14,, A a  = — F±:3 ; 
F 

If M is Cartan-symmetric, A a  = 0, and A = 2B. The Ricci tensor of considered 
warped product satisfies 

	

(4.12) 	 VkSii = AkSii BiSki BjSik, 

or ( in the case M is Cartan-symmetric ) 

	

(1.13) 	 VkSbj = 2BkSij BiSkj Bj Sik • 

Indeed, in view of (4.10), we can reduce the relations (4.5) and (4.8) as follows 

= Safi = 0 , 	Sal) = Sag; 

VcSab = V j3 5'ab = bSaa = 0, 
1 Fa  *. 

oSa, = —
2 F SO, V aSaii = — 

V6S,,3 = 

* 	;lc 

If M is a reccurent manifold, then V p Sao = A p S,p, i.e. it is also Ricci-recurrent 
and taking into account (4.11), we have (4.12). 

M can be Ricci-reccurent and not recurrent. For example, W.Roter determined 
in [29] and [30] the metrics of conformally symmetric and conformally recurrent 

(4.11) 
1F B: 	= 0, Ba  = — -7 
2 Fa 
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180 	 M. Prvanovie 

Ricci recurrent manifolds which are not recurrent. In this way we obtain new 
examples of Riemannian manifolds satisfying (4.12). The Riemannian manifolds 
satisfying (4.13) was introduced by M.C.Chaki ([3]) and further investigated in [4] 
and [7]. 

S.Ewert-Krzemieniewski ([16]) determined the subprojective spaces satisfying 
(4.9) with A = 2B. More precisely, he determined the function F in (2.1) such 
that the condition (4.9) is fulfilled for A = 2B. 

N.PuSie. ([27],[28]) investigated Ricci-recurrent warped product manifolds. Arno- 
* ng others, she proved that if M =M xFM is Ricci-recurrent, then M is an Einstein 

space. 
4.3 An n-dimensional (n > 4) Riemannian manifold is said to have harmonic 

Weyl conformal curvature tensor ([1],p440) or to be nearly conformally symmetric 
([17]) if its Ricci tensor satisfies the condition 

1 
(4.14) 	VkSii — ViSik = 2(n  _ 0  (goVkR — yikV R). 

Namely, it is easy to check that for every conformally symmetric manifold the 
condition (4.14) holds. 

If the Ricci tensor satisfies 

(4.15) 	V k Sij = 	 (n — 1)(n + 2)g1VkR+ 	

n — 2 

2(n — 1)(n + 2)
(gkiViR+ gikV JR), 

then it satisfies the condition (4.14), too. 

Finaly, for Einstein manifold (Sij = —
R

gii), if n > 2 then R = const. and both 

conditions (4.14) and (4.15) are identically satisfi ed. 
* 

If the warped product manifold M = MxF M satisfies (4.14), then M is an 
Einstein space with a constant scalar curvature: The converse is not true. But if 
dim M = 1, we have 

Theorem. ([17]).-Let dim M = 1 and g i  l = 1. then the warped product M = 

MxFM satisfies (/.11) if and only if M is an Einstein space and its scalar curvature 
is constant. 

Furthermore, if the function f2  = —

1 

is a solution of ordinary differential equation 

(1 2  f 	2R f3  
= const., 

the Ricci tensor satisfies the condition (4.15). (This is the example of manifolds 
satisfying (4.15), given in [1],p.433) 

But, if F is given by one of the following formulas 

(dx') 2 	(n — 1)(n — 2) 
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On warped product manifolds 	 181 

( n — 1)(n — 2) 
* 

4 	R. 2  AF-a(X 1  +  b)  
a (n — 1)(n — 2) 8M 	2 	, a < 0; 

if R = 0, F2  = be"' , a 0 0; 
* 

*4 	R if R < 0, F2  = 	 cos  h2AFt(xl + 6) 
a (71 — 1)(n — 2) 	2 	' 

a > 0; 

where a and b are constans, then warped product M = M xF M is an Einstein 
space ([18]). 

It is interesting to note that warped product manifold provided with the metric 

ds 2  = — (dx 1 ) 2  FLocledx+3  

satisfies (4.14) if and only if g*  apdxudx° is the metric of an Einstein space with 
constant scalar curvature and the function F has the form F = el'Ea, where a and 
b are constants. 

4.4 The Riemannian space is said to be semi-symmetric if its curvature tensor 
satisfies 

(4.16) 	 R • R = 0, 

where the first tensor acts on the second as a derivation. 
There are many various possibilities to obtain curvature conditions weaker that 

(4.16). To expres them, let R(X, Y) and X AA Y be defined by 

R(X, Y)Z = VxVyZ — Vy VxZ — V[x, y]Z, 
(X AA Y)Z = A(Y, Z)X — A(X, Z)Y, 

respectively, where X, Y, Z are vector fields and A is an (0, 2) tensor field on 
(M, g). For (0, k)-tensor field P on M, k > 1, we define tensors R • P and Q(A, P) 
by the formulas 

(R • P)(X1,•••,Xk; X, Y)= — P(7Z(X, Y)Xi., • • , Xlc) —  • • • — 

P(Xi, • • • , Xk_i, R(X, Y)Xk), 
Q(A, 	•••, Xk; X, Y) =r) ((X AA Y)Xi, • • , Xk)-+ •+ 

P(X i , • ,Xk_i, (X A Y)Xic). 

if R > 0, F2  

* 
4 	R 	  h2\fii(xl 	a > 0, a (n — 1)(n — 2) s 	2 

* 

+ b)2, 
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182 	 M. Prvanovie 

Then, the desired conditions weaker then (4.16) are 

(4.18) 
	

R • R = LQ(g, R), 

(4.19) 
	

R=Q(S, H), 

(4.19) 
	

C • C = GQ(g, C), 

(4.20) 
	

R • R = Q(S, R)± .CQ(g, C), 

where C is the conformal curvature tensor and G is a function on M. 
There exsists many examples of warped product manifolds satisfying one of these 

conditions. We cite some of them. 

Theorem. DO.- Let M be an open interval of R with the metric gii = e, e E 

{ —1, 1), F a positive. C' function on .M and na * M a manifold of constant cur- 
* 

vature. Then the warped prodoct M = .M xF M satisfied (4.17). 

Theorem. (fi 0.- Let M be an open subset of RI \ {0,...,0}, q > 2, eqiped with 

5.6 = 6ab, F (X 1 	xq) the metric 	 = i [(x 1 ) 2  ...± (xq)92  and na* M (dim M > 2) 

a localy flat manifold. Then the warped prodoct M = M xF M satisfied (4.17). 

Theorem. ([8]).- Let M = {(x 1 , x 2 ) E R2  and x 1  > 0, x 2  > 0} be a 2-dimensi- 
* 

onal manifold with the metric g" defined 
by"b  fa'  fa 

= ±1. Let M, dim M > 2 
be a manifold of constant curvature and let  

C + 1 	C — 1 

F(x l , x 2 ) = (x 1 ) c 	• (x 2) c , 

where c is nonzero constant. Then the warped product M =MxFM satisfied 
(4.18). 

Theorem. ([14]).- Let M be a 1-dimensional manifold and let M be a 3-dimen- 
sional manifold or (if dim M > 4) conformally flat. Then the warped product 

M = M xF M satisfied (4.19) if and only if 

ilgap + 

where p and v are function and ucr  is a vector field on M. 

Theorem. ([10]).- Let M, dim M = q > 2 and M, dim M be two Riemannian 
manifolds of constant curvature and F a positive moth function on M. Then the 
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warped product M=MxFM satisfied (4.20) with 	
n — 2 

= q(q —1) Ti if and only if, 

	

rank 1 
	F,C 

(—Tab 	gab < 1  

	

2 	n — 2 

is satisfied. (The (0, 2) tensor T is defined by (4. 3) and R is the scalar curvature 
of M.) 

Theorem. ((10)).- Let F be a positive smooth function on 2-dimensional Riemann-

ian manifold M such that the tensor T is proportional to Tr. Moreover, let M, 
dim M > 2, be a manifold of constant curvature. Let the function ,C defined by 

= 
n — 3 tr (T) 

4 	F 	2 

satisfied = n — 2- 
	 

2 R. Then M=MxFM is a manifold fulfilling (4.20). 

Theorem. ([01).- An Einstein manifold (M, g), dim M > 4, satisfying (4.17), 
satisfies the condition (4.19), too. 
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HOLOMORPHICALLY-PROJECTIVE 
CONNECTIONS OF A HYPERBOLIC 

KAEHLERIAN SPACE 

Nevena Pu§ie 

ABSTRACT. We consider the set of connections on a hyperbolic Kaehlerian space 
which are in holomorphically-projective correspodence to the Levi-Civita connection. 
We find an invariant tensor of curvature type for all these connections. 

1. About hyperbolic Kaehlerian space 
A hyperbolic Kaehlerian space Mn  (n = 2m) is a differentiable manifold 

with indefinite metrics 

(1.1) 	 ds 2  = gii clx i  dxj 

and so-called strusture(F;  %which is itself a linear transformation of the 
tangent space, in every point), which satisfies 

(1.2) 	 F;dF,i = l 

The metrics and the structure are conected in the following way 

(1.3) 	 Fij = 9i3 Fs  = gisFi = — F;i 

(1.4) 	 Ok F;  i  = 0. 

The tensor (Fi; ), appearing in (1. 3), which we have formally got from 
the structure tensor by lowering the upper index, is the covariant structure 
tensor. The symbol V denotes the ooperator of covariant differentiation 
towards the Levi-Civita connection. (1. 4) means that the structure tensor is 
parallel regarding to the Levi-Civita connection. It is clear that the covariant 
structure tensor is also parallel. (1. 2) means that the structure is involutive 
as a linear transformation of the tangent space in every point. 

The structure tensor is a real nondegenerate tensor and it has n linearly 
independent eigenvectors; its matrix has a diagonal expression. 
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188 	 N. PaiC 

There holds 

Lemma 1. (A) Every tangent vector of a hyperbolic Kaehlerian space is 
transformed by the structure into an orthogonal vector. 
(B) The scalar square of a vector-original is opposite to the scalar square of 
the vector-image. 

Proof. (A) ai 	bi  

(0' = aj a,Ft sg ti = aj as Fis = —aj as Fsj = —aj bj = 0 

(B)b,,bs = b,bte = bs ai  Ft  j g" = b3nJ Fsi= 

= —aj b,,Fjs = —ai a j. ❑ 

The fact that the structure has eigenvectors is enabled by the fact that 
the metrics is indefinite. We shall give here some features of eigenvalues and 
eigevectors of the structure. 

Lemma 2. For two different eigenvectors of the structure on a hyperbolic 
Kaehlerian space either the eigenvalues are mutually iopposite or the eigen-
vectors are mutually orthogonal. 

Proof. Suppose that u and v are two different eigenvectors for the struc-
ture, with eigenvalues A and i respectively. Then 

u a va  = uivkg jk 	1 = 	k usll 
Yu 

= —1
11,3 V,F" = — 1 v s ui  Fsj = — A  us , 

and 

(1.5) 	 ua va(1+ —) = 0 

and the Lemma is proved. ❑ 

Lemma 3. If on a hyperbolic Kaehlerian space the vector u is an eigenvector 
for the structure, then Fu is also an eigenvector for the structure. 

Proof. v= Fu, vi  = au. = Aui  

F., 1 /4 = Fj  i Fi  au°  = uj  =A 2 uj = Avj  

and the Lemma is proved. ❑ 
It is obvious from the proof of the Lemma 3. that only eigenvalues of the 

structure are A = +1. 
According to the Lemma 1, eigenvectors of the structure tensor are self-

orthogonal, i. e. their scalar square vanishes. As the structure has n (di-
mension of the manifold) linearly independent eigenvectors, there exists a 
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basis of the tangent space which consists of isotropic vectors. We call such a 
basis an adapted basis. Such a basis shows in the simplest way the geom-
etry of a hyperbolic Kaehlerian space. We can construct an adapted basis 
in the following way: we put on the first m = aplaces those eigenvectors 
with corresponding eigenvalue 1; on the second m places we put those m 
eigenvectors with corresponding eigenvalue —1. According to the Lemma 3, 
there is no other eigenvalues. According to the Lemma 2, in every of these 
subspaces every basic vector is orthogonal to the every other basic vector; on 
every of these subspaces induced metrics vanishes identically. Besides, every 
of these subspaces is invariant under structure isomorphism. This means 
that a hyperbolic Kaehlerian space is decomposed in very natural way into 
two totaly geodesic subspaces of same dimension. 

We have to mention that, according to the Lemma 1, there exist vectors 
with positive scalar square (space-like vectors) and those with negative scalar 
sqare (time-like vectors). 

2. Holomorphically planer curves 

A two-dimensional submanifold of the manifold Mn  with a tangent sub-
space of the tangent space on Mn , generated by vectors u, Fu we call a 
holomorphic section of a hyperbolic Kaehlerian space. 

A curve e(t) on Mn  satisfying the differential equation 

d2e 	 t  de (2.1) 	 4_ Ah 
A(t)F h de 

dt 2 	dt dt 	a( t)  dt 	' ' 	dt 
where a(t) and OM are functions depending of the parameter t, we call a 
holomorphically planer curve. It can be seen from (2. 1) that a curve 
is holomorphically planer if and only if holomorphic sections generated by 
tangent vectors are parallel along the curve. 

Two F-connections (satisfying VkF = 0) are said to be mutually holo-
morphically projective if and only if they have holomorhically planer curves 
in common. 

It is easy to prove that there holds 

Proposition 1. Two symmetric F-connections with coefficients A.iik and Aiik 
are holomorphically projective if and only if 

(2.2) 	 Aj k = A j k 	pk b., 

	

Fk 	pj  Fk 3  
for some vector field (p i ). 

In this article, we shall investigate connections which are holomorphically 
projective to the Levi-Civita connection. 
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190 	 N. Pugie 

3. Holomorphically-projective connections 

We say that a connection with coefficients Aijk on a hyperbolic Kaehlerian 
space is holomorphically-projective if its coefficients have the form: 

(3.1) 	 Ajk = fijk  + 	+ pkb.  + giFk 	qkFj i  

where (p,) are components of a gradient vector field and (q1 ) are compo-

nents of a vector which is an image of (p i ) under the structure. stands for 
Christoffel symbols. It is obvious that a holomorphically-projective connec-
tion has holomorphically planer curves in common with Levi-Civita connec-
tion. 

The curvature tensor of the connection (3. 1) has the form 

(3.2) 
	

Rol = K ijkl gkipi;  — glipkj + Fkiqu - Fligkj 

Fji(qkl 	q,k) 

where 

(3.3) 

(3.4) 

and 

(3.5) 

prj = V rpj — ptpj — 

(hi = V rqj — pi g; — gip; 

= Fj apia 

By Kijki we denote Riemann-Christoffel tensor of the hyperbolic Kaehlerian 
space. 

In order to eliminate pki  and qt.;  from the expression (3. 2), we shall sup-
pose that the curvature tensor of the holomorphically-projective connection 
is invariant under change of places of the first and second pair of indices: 

(3.6) 	 Rijki = Rkiii 

By (3. 2), we obtain from (3. 6) 

gjkpil — gripkj + Fki(qu + qp)— Fliqkj Fjkgil  

Fji(qkl qik) — Fik(qi; — qji) = 0 

After transvection the upper equality by Pk, we obtain 

(3.7) 	 qli + (1 — n)qii  = Files  

where p: stands for mil. 
As the covariant structure tensor is skew-symmetric, then the left-hand 

side of (3. 7) is also skew-symmetric and there holds 

gli + (1— n)qii  = 	— (1— n)qii 
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what means 

(3.8) 	 = — Di• 

Now, the curvature tensor of holomorphically-projective connection on a 
hyperbolic Kaehlerian space has the form 

(3.9) 	Rip, /  = Kijkl gkinj glipki  + Fkiqij 	Ftiqkj 2 Fjigki• 

4. HP-curvature tensor 

Taking into account equalities (3. 7) and (3. 8), one can easily get 

(4.1) 	 = — PS 

n 
and by the relation pr;  = F=  a gra

, 

PS 3  (4.2) 	 = 

Using (3. 9), we can find the Ricci tensor of the holomorphically-projective 
connection 

(4.3) 	 Pt: = 2 — n 
and 

(4.4) 

Then, we have 

(4.5) 

R  —  K (4.6) 	 pr: =h• n(2 — n) g  

If we substitute (4. 5) and (4. 6) into (3. 9), we obtain 

Rijki 	
R 

n(2 — n) 	— gligo - 	+ FuFki -2FiiFki)= 

K = Kijkl 	 n(2 — n) kgkigu - gligki - 	+ 

The tensor on the right-hand side of the upper equality we call the holo-
morphically-projective curvature tensor of a hyperbolic Kaehlerian 
space. We have proved 

R — K 
PS = 	 2 — n 

R — K = 	 
n(2 — n) 
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192 	 N. Pu§ie 

Theorem 1. The tensor 

(4.7) 
	

= 

K  
n(2 — n) kgkigi; — gligo — FkiFy + 	—2FpFki) 

is an invariant tensor of holomorphically-projective connections on the hy-
perbolic Kaehlerian space. 

We can also prove that there holds 

Theorem 2. The curvature tensor of a holomorphically-projective connec- 
tion on a hyperbolic Kaehlerian space is skew-symetric in first two indices, 
but it does not satisfy the first Bianchi identity, except of some special cases. 

Proof. One can easily check, using (3. 9), that Rijki is skew-symmetric in 
first two indices. 

If we suppose that Rijki satisfies the first Bianchi identity, then, by (3. 9), 
we obtain 

0 = Kijki Kaki 

— giipo + Fkigij Fliqkj 2Fligkl 

— giink + 	 2Fkigli 

+gjiPk1 gkipjl Fjigkl Fkigji 2Fliqjk = 

= 4(Fkiqij - Fliqkj Fjigki), 

and, taking into account (4. 1) 

Ps 8  Fk Fij Fli Fkj Fii Fk = 0). 

If we suppose that the expression in parentheses vanishes, then, after con-
traction by Fa , 

(n 2)4 = 0, 

what is senseless. Then p, = 0 and, regarding to (4. 4), K = R, what is a 
special case. ❑ 

Also, we can prove 

Theorem 3. The holomorphically-projective curvature tensor of a hyper-
bolic Kaehlerian space satisfies the following relations 

(a)H Piiki = — H Piiik; H Piiki = — H Pjikl; H Pijki = H Pklij 

(b)H Pijki H Pikij H Pik; = —4(FkiFii — PI; Fki FjiFkl) 

Ii 
(OH Pt  jkt = Kik 	gfic 

	

(d)I I Pi  ikiFj t  - H 	ki 	= 0. 
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One can easily prove all these properties using the expression (3. 9). 

5. Some special cases 

There always holds 

(5.1) Ps' = 	3  81) 
according to the Lemma 1. Then also holds 

	

t sps 	 top'  (5.2) 	R — K = (2 — it)t sp3 ; ph  = it g1,; q11 = 	Fii • n 
As the first special case we shall consider that one when the vector field (pi) 
generating holomorphically-projective connection is a harmonic vector field, 
that is 

tsps = 0. 

Then, according to (5. 2), there holds 

(5.3) 	• 	R= K; pii  = 0; q1, = 0 

and then 

Rijkl = Kijkl 

and the curvature tensor of the holomorphically-projective connection in this 
special case will satisfy the first Bianchi identity. 

The other special case which we are going to consider here is that one when 
the generating vector field for the holomorphically-projective connection is 
an eigenvector for the structure; then the holomorphic section is invariant 
for the structure. As the only eigenvalues for the structure are ±1, then 
holds 

(5.4) 	 qri = +Ai 

As the tensor (pu ) is symmetric and the tensor (qu) is skew-symmetric, there 
will hold 

(5.5) 	 = pij  = 0. 

This means that 

Ps = sP3  = 0 
i. e. that the generating vector field is a harmonic one. 

If the vector field (pi ) is harmonic or isotropic, then 

= PiRi giqi ti q= = pi qi qiPi. 

According to the Ricci identity, there holds 

	

titkPi — tkt;Pi = — 10 	= 0 
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194 	 N. Pu§i6 

After contraction by gik  , we obtain 

— Ii t jpt= 0 

or, consequently 

gikt jt k pi  = o. 

There holds 

Theorem 4. If the vector which is generating a holornorphically-projective 
connection of the hyperbolic Kaehlerian space is a harmonic vector field, 
then the curvature tensor of the hyperbolic Kaehlerian space is equal to the 
curvature tensor of the holomorphically-projective connection. An example 
of generating harmonic vector field is a structure eigenvector field. For such 
a vector field there holds 

K t  j pt  = 0 and gik  j k pi  = 0. 

If the generating vector field has constant scalar square, then the difference 
between R and K is constant. 

Proof. We shall prove just the last statement. 

a 
(Psps)= tkpsps = p3t kps +pstkps. 

axk 

But 

(5.6) 	tkps = pks + pkps+qkqs and tkPs  = Psk PkPs  qkq s  

As pk , = n 9k, and 74, = n Sk, then 

Ps  
= — (PsP3 ) = 2 (

s 
 PsPs )Pk 

axk 	n 

and, consequently, 

Pss 
= — It . 

But, 

R — K = (2 — n)p's  = n(n — 2)p,p3  

and the proof is completed. ❑ 
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ON INFINITESIMAL DEFORMATIONS OF A TOROID 
ROTATIONAL SURFACE GENERATED BY 

A QUADRANGULAR MERIDIAN 

Ljubica VelimiroviC 

ABSTRACT. In this paper we consider a toroid rotational surface with a quadrangular meridian 
and obtain a necessary and sufficient condition for infinitesimal deformations of such a surface 
(eq.(1.18)). It is determined the field of deformations too. 

0. Introduction 

In the paper [1] K.M. Belov gave necessary and sufficient condition for infinites-
imal deformations of a toroid surface of rotation generated by a special case of the 
meridian. 

One puts question of considering infintensimal deformations, i.e. of the rigidity 
of a surface with any quadrangular meridian. 

In the plane of the meridian which rotates around the u-axis let's introduce 
Descartes' orthogonal coordinate system uOp and let p = p(u) be the equation of 
the meridian. If e is unit vector of the axis of rotation, ti(v) unit vector of the p-axis, 
where v is the angle between the plane of initial position of the meridian and a(v) 
then ezi(v)Ici(v) and ai(v)le (see [2], page 90, or [3] page 253). 

The equation of a surface of rotation, in the coordinate system with the base 
e, a, a' is 

(0.1) 	 f(u, v) = ue p(u)a(v). 

As it is known ([2],page 91.) for every k E {2, 3, ...} there is a field of infinitesimal 
deformations 

v) = kok(u)e i" + gjk(u)e-jk le 

(0.2) 	 [ikk  ( u ) eikv  
▪ IPIc(u)e —kvia(V) 

Nk ( u) eikv 

▪  

ik ( u) e —iktl a,( v ) 

1991 Mathematics Subject Classification: 53A05 
Supported by Grant 0401A of RFNS through Math. Inst. SANU 
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198 	 Lj. VelimiroviC 

of a surface (0.1),where e.g. c25 (U) is the conjugated value for k (u) . The functions 
Ok(u), xk(u) satisfy differential equation in the form of 

(0.3) 	 p(u)A"(u) + (k 2  — 1)p"(u)A(u) = 0, 

where A(u) is unknown function,and also satisfy the system 

(u) + pi (u)111k (u) = 0, 0 k (11) ik X k (U) = 0 
(0.4) 

ikcp(u) + (u)[ikOk (u) — xk (u)] + p(u)4 (u) = 0. 

In the vertexes u = a of the meridian, 1k(u) satisfy the equation ([2],page 112) 

(0.5) 	P(u)[14 + 0) — (cr — 0)1 + (k 2  — 1 )(fik (a)[/1  (or + 0) — (cr — 	= 0, 

supposing the function (p (U) X k (U) to be continuous in this points. Analogously,the 
equation (0.5) is satisfied for xk(u), if y,k(u), I/4(u) are continuous. 

1. Condition for the existence of infinitesimal deformations 

Suppose that quadrangle Ai(ui, pi) (i = 1, 2,3,4; pi > 0) rotates around the 
u-axis. If p(i) is value of p on the Ai A2) P(2) on A2A3 etc., we get the equations of 
the sides of the meridian 

(1.1) 

from where 

(1.1') 

AiAi+ i : p(i) = pi ± Pi+1 	— (u 
— ui 

( i = 1,2,3,4;As 	Ai, P5 E- Pl, U5 E 	)) 

P(i) — fts 

_ Pi+i — Pi 
— — u1 4.1 — ui 

Dropping index k, let's designate with tp( i ) (i = 1,2,3,4) the values of the function 
on the sides Al A2, ..., A4A1 respectively. If we replace A(u) with 00)(u) at (0.3) 

according to (1.1), we can see that the functions ow  are linear, i.e. 

(1.2) 	 = Miu + 	(i = 1, 2, 3, 4) 

Supposing that the functions 0(i)(u) are continuous at the points u = of the 
meridian p = p(u), where pi(o- — 0) 0 pi (a + 0), we get the system 

(1.3) 

lk(1)(ui) = 
0(2)(112 ) = 
0(3) ( 13) = 
1P(4)(14) = 

0(4)(ni) 

11)(1)(n2) 

0(2)( 13) 

1,b(3) (n4) 

= 
= 
= 
= 

0(41)(4 1) 

0(12)( 112) 

0(23)( 13) 

0(34)(n4 ) 
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According to (L2) we have the system 

	

ui + 	+ N4 

(1.4) 	 M2u2  + N2 -= M1 U2 ± N1 
M3U3  + N3 = M2U3 + N2 

M4U4  + N4 = M3u4+ N3 

i.e., if we consider this system as a system on 

Nl 	 —N 4  = 	IL + M42.11 
(1.5) 	 N1  —N2 	 = — M1u2 + M2u2 

	

N2  —N3 	=  M2 U3 + M3u3 
N3 —N4  = — M3 72 4 + M4 u4 

At the apeces of the meridian the condition (0.5) gives the equations: 

A l  : 	(Mi — M4) + (k 2  — 1)(Mi  ui + Ni)(ki — k4) = 0 
A2 : P2(M2  MI  ) (k2  —

• 

 1)(M2U2 N2)( k2 — k1) = 
A3 : p3(M3  — M2) + (k 2  —

• 

 1)(M3u3  N3)(k3  — k2) = 0 
A4 : p4(M4  — M3) + (k 2  —

• 

 1 )(M4u4 + N4)(k 4  — k3) = 0 
or: 

[P1 (k 2  — 1)1/  (ki  — k4)1M1 — P1 M4 (k 2  — 1 )(k1 — k4)N1 = 

(1.6) 	—P2M1 + [p2 + (k 2  — 1)u2(k 2  — ki)]M2 + (k 2  — 1)(k2 — k1)N2 = 0 
—p3M2  [p3  (k2  — 1)u3(k3  — k2)1/1/3  (k2  — 1)(k3  — k2)N3 = 0 
—P4M3 + [P4 + (k 2  — 1)/t 4 (k4  — k3)1M4 + (k 2  — 1 )(k4 — k3)N4 = 0 

Necessary and surfficient condition for the compatibility of system (1.5) is rank M  = rank P, where M is the matrix of the system and P is extended matrix of the 
system.In order to explore the system, we are making elementary transformations 
of the matrices M and P. 

According to (1.5) : 

(1.7) p = 

N1 

1 

1 

0 

0 

N2 

0 

—1 

1 

0 

N3 

0 

0 

—1 

1 

N4 

—1 

0 

0 

—1 

• 

: 

: 

— M1 Ul 	M4 •111 

—M1u2 	M2u2 

—M2 u3  + M3u3 

 —M3u4 	M4u4 _ 
Applying Gauss'algorithm for matrix P, let's realize following elementary trans-

formations successively: 
1) —I —0 II, 	2) II 	III, 	3) III 	IV, 

which means: 1) the first row is transcribed, it's elements are multiplied with -1 
and added to corresponding elements of the second row, 
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200 	 Lj. Velimirovie 

2) the elements of the second row obtained in 1) we add to the corresponding 
elements of the third row , etc.. Thus we obtain 

NI N2 N3 N4 

1 0 0 —1 i rni 

0 —1 0 1 : m2 
(1.8) P 

0 0 —1 1 : 1113  

_ 0 0 0 0 : 2714  

where 

m l = — M1 Ul + M4u1 

M2 = M1u1 — M4u1 — M1u2 M2u2 

m3 = M1u1 — M4u1 — M1u2 + M2u2 — M2u3 + M3u3 

m4  = Mlu1 — M4u1 — M1u2 + M2u2 M2u3 M3u3 M3u4 M4u4 

Hence, the system is compatible if 

1714 = Ml (Ui — U2) + M2(u2 — 123) M3(u3 — u4) + M4 (U4 — ) = 0. 

When ui = ui + i (i = 1,2,3,4, u5 = ui) the meridian contains a side which is 
orthogonal on the axis of rotation, generated surface contains a plane part and it is 
non rigid (see[4]). We omit this case in following consideration. 

Suppose that 714 0 ul. Then 

„ 
( 1 .9) 	M4 = 	

1 
Kul — U2 )M1 + (u2 — u3)M2 + ( 123 — U4 )M31• 

/21 — 124 

Reduced system (according to (1.8)) is: 

Nl — N4 = —M1 u1 M4u1 

(1.10) 	—N2 + N4 = M1 (U1 — U2) + M2u2 — M4u1 

—N3 + N4 = M1 (U1 — u2) + M2(u2 — U3) + M3u3 M4u1 

From (1.9,10) we have 

u i 
 (u4 —122) 
	u 1  (u2 — 123) 	ui (u3 — 124) , 

N1 = N4 + 	 MI + 	M2 + 	 iVi3 

Ul — 124 	 lii — 124 	 121 — 124 

U4 (U1 —122) 	U2U4 — tli 123 	Ui (123 — 124) , 
N2 = N4 + 	 M1 + 	 M2 + 	 IVI3 

U 1 — 114 	 Ui — 124 U 1 — U4 

1/4 (U1 — U2) 	U4 (U2 — U3) 	U4(U3 — Ui) , 
N3 = N4 + 	 M1 + 	 M2 + 	 iVI3 

121 — 124 	 111 — U4 	 Ui — U4 
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Al2 = piu43 
A14 = P1 U24 
A22 = (k2  — 

A24 = P2 1141 

A32 = p3u14 
A34= (k 2  — 

A42 = P4 U31 
A44 = P4U12 

(k 2  — 1 )k14u34 u 1  
▪ (k 2  — 1 )ki4unui 
1)k2iumul 
▪ (k 2  — 1)k21u12u4 

▪ (k 2  — 1 )k32U34/11 
1 )k32U12U4 

(k 2  — 1 )k43u34u4 
▪ (k 2  — 1 )k43/1 12U4 

On infinitesimal deformations of a toroid rotational surface ... 	 201 

By the equations (1.9,11) unknowns 144, NI, N2, Ar3 are expressed by MI, M2) M3 and N4. Substituting (1.9) and (1.11) at (1.6) and designating 

ui — ui = uii 

ki—k2 = kii 

we get the system 

[Pi u24 + (k 2  — I lk  _,._14u1u12]M1 + [(k 2  — 1)ki4u1 — pl[u2012+ 

[(k 2  — 1 )k14u1 — piN34M3 + (k 2  — 1)k14u14N 4  = 0 

[P2u4i + (k 2  — 1 )k2012u4]M1 + [p2u14 + (k2  — 1)k2iu23u1]M2+ 

+ (k2  — 1 )k21u34u1M3 + (k 2  — 1)k2iui4N4 = 0 
(k 2  — 1)k32u12u4M1 + [p3u41 + (k 2  — 1)k32u23u4]12+ 

+ [P3u14 + (k2  — 1)k32u34u i]M3  (k 2  — 1)k32121 4 N4  = 0 
[Nun + (k 2  — 1 )ui2k43u4]Mt + [P4u23 + (k 2  — 1 )u23k43u4]M2+ 

+ [p4u31 + (k2  — 1)u34k43u4[11/3 (k 2  — 1)u14k43N4  = 0. 

Necessary and sufficient condition for this system of linear homogeneous equa- 
tions to have nontrivial solutions is the rank of matrix 

N4 M3 M2 
Ail Al2 A13 A14 [ 	  1 

of the system to be less then 4. We have to find a condition under which it is valid. 
According to (1.13) we have 

A11 = (k 2  — 1 )k14U14 
A13 = p1u32 + (k 2  — 1 )k14U23U1 
A21 = (k2  — 1)k21U14 

A23 = P2U14 (k 2  — 1 )k21U23U1 

A31 = (k 2  — 1 )k32u14 
A33 = P3u41 (k2  — 1 )k32u23u4 
A41 = (k2  — 1 )k43U14 
A43 = P4U23 (k2 1 )k43u23U4 

Evidently,it is always kz1+1 0 0 ,as on contrary the meridian will not be quad-
rangular. Applying at the same time following operations to the matrix (1.14) 

k 12  
I— II, 

k14 

k23 
I— -4 III, 

kt4 

k34 
II—, -4 IV, 

ic.21 
we obtain 

(1.12) 

(1.13) 

M1  

(1.14) 
	

H= 

A41 A42 A43 A44 

(1.14') 

(1.15) 
	

H 	[Bi], 
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where 

	

k12 	 k12  
Bli =A li, B21 = 0, B22 = 	

Fc14 
U43 	, B23 = 	

k14 

, 
U32 	P2 u14 

k12 + 	
+ (k2 

I\ 
B24 =pi U24 ,_ 1-  P2U41 1-  kr. — 1 ) u12u14k12, B31 = 0 

K14 

k23 	 k23 
B32 =pi U43 —  + P3U14, B33 = piu32— + P3U41 	

2 + 	1 (k — )u23k23u14, 
ki4 	 ki4 
k23

, (k 2 	iv_ _ 
B34 =pi U24 — + (k2  — 1)U12k23U14, B41 = 0, B42 = P4U31 + kr. — i 1E1.34 u14 ,,

L  
34 

k14 

k34 	 , f/,2 	1\ 

	

11 	
k21 

k34 

B43 =p2u14 
k2i 	

0 +P23 --1-  k. r, — /123k34U14, B44 = P2U4i 	+ P4u12. 

Further, we apply the operations 

k41 	k23 
 // 	L  ‘,P1U43—,. + P3U14) 

	

1143&12 	K14 

Ln  r  
// 	LP41/31 	(k 2  — 1)u34u14k341 	/V 

p l u43 A-, 1 2 

and obtain 

(1.16) 
	

H 

where 

C1j =B1j = All, C2j = B2j , C31 = C32 = 0 

k32 	U14U24 	P2P3(U14) 2 k41 ,,2 

C33 =P2U14 —  P3 	 k. /C -  — ) 71 23U14k23) 
k12 	U93 	Pl U43k12 

(1.16') 

k32 	 U24 
C34 =P2U41 P3U41 

K12 	 U43 

C41 =C42 = 0 

k34  
C43 =p2u14—,_ + P4U23 

U41 

E12 	 U43 

C44 =
P4U14U23 P2U41k34 

U43 	 k21 

p3 (k 2  — 1)u12(7114)2k41  + P2P3(1/14)2k14  

pi U43 	 Plu43k12 

, P2P01.031k41 	p2 (k 2  — 1)(u 14 ) 2 k 1 4k34 
-I- 

 P1U43k12 	
+ 
	P1 k12 

, P2(k 2  — 1 )(U14) 2 k41k34 , + 
	 1- 

P1 k12 

p4(k 2  — 1)tti2ui4u3ik4i 	p2p4u41u31k4i  

pi U43 	 P1U43k12 

(k 2  — 1) 2 U12(U14) 2 k14k34 fr 
kii7 2  — 11U24U14k34• 

P1 

By transformation III (—g431,-) —> IV the matrix (1.16) take a form 

(1.17) 	 H 	[Dij], 
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where 

Dij Cl , = Bii = Alf) D2j C2j = B2j D3j = C3j 
(1.17') 

43 C 	, D41 =D42 = D93 = 0 , D44 = —CC 
	
+ C44 = 

U33
V...33C44 C43C34)) 

and Cij are given by (1.16'). The rank of the matrix N will be less then 4 for 
D44 = 0,i.e. C33C44 C43C34 = 0 ,what gives 

[P1P2u43k32 + P1P3u24k12 +ODU 2,-3 -14k41 	(k 2  — 1 )u23u43k12k23] x 

(1.18) 	
[Poi 2u31 k4 	(k 2  — 1)u 2u43u14 4144 + P1t143u24 k34] -  

— (P1 U23U43k23 P3U121214k4i) X 

[P1P2U34k34 P1P4U32k12 p2p4u31k41 + p2(k 2  — 1 )n14u43k14k34] = 0, 
where uij, kij are given by (1.12) and (1.1'). 
Thus, we have 

Theorem. Necessary and sufficient condition for infinitesimal deformations of a 
toroid rotational surface,which is generated by a quadrangular meridian with apeces 
Ai(ui, pi) (pi > 0, tai+ i 	ui , u5 = ul, i = 1,2,3,4), around the On axis is the 
relation (1.18) where uij , 	 are given by (1.12) and (1.1'). 

Remark.. If we apply (1.18) to the quadrangle of Belov A1(-1, b), A2(0, b c1), A3(1,b), A4(0, b—c 2 ) we obtain the relation 1/c2-1/c l  = k2/b, which Belov obtained 
in other manner. So, the previous theorem is a generalization of the result of Belov. 

2. Determination of  the  field of infinitesimal deformation 

Above applied method makes possible to determine the field of infinitesimal de-
formation.From (1.17) one obtains reduced system 

Dii N4 + D12M3 + D13M2 + D14M1 = 0 
(2.1) 	 D22M3 + D23 M2 + D24M1 = 0 

D33M2 D34M1 = 0, 

from where 

D34 

	

(2.2a) 	M2 = — n  M1 

	

D 

(2.2b) 	M3 = ( D23 D34 D24 
) M1 

	

D22 D33 	1-'22 
---,-,  

	

(2.2c) 	N4 = [ D12 ( 	

+ 

D23 	D34 D24 ) , D13 D34 D14] 

D11 D22D33 	D22 	1-1 11 1-'33 
n  n  

Further, from (1.9) we have 

D 1 1 
M1 

1 	U23 D34 + 	D23D34  D ) „ 
M4 = 	[U12 	

u34 
	

24 	
1 , U14 	D33 	D22D33 D22 

(2.2d) 
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204 	 Lj. Velimirovie 

N1  = 1 { DD  12 (DD  23D34 DD  24 ) + DDiaDD34 

 Dl

D14 I+ 

}M1 ) + U1 U34 D23 D34 D24 	U1 U23D34 + U1 U12 
12 1 

U14 	D22 D33 D22 	U14D33 	U14 

N2 — 1 [ DD12 (DD23DD34  DD  24) ± DD13  034 D14 j  

U 1 + U2+ 

D34 U2 ±  tli U12 U1/123D34 + U1U34 D23 D34 D24 	m1  + 	 , , 
U14 D33 D33 	U14 	 U14 D22 D33 D22 

	

N3 = { [ D12 (  D23 D34 D241 + D13 D34 D14 	Ul + U2+ 
1 

D11 D22 D33 D22 	D11 D33 D11  

D34u2 D34 U3 (  D23D34 D24\ U3 ± 110112 

D33 	D33 	D22 1)33 D22 
(2.2g) 	+ ,,  

U14 

— D34u1 U23 + . u1 u34 (  D23 D34 D24 ) 1 . 
M
, 

I 
D331114 	U14 	D22 D33 D22 

By the equations (2.2.a — g) we expressed M1, Ni (i = 1,2,3,4) by M1 (indefinit 

const.). Further, we obtain 00)(u) on the base of (1.2),In this manner, we get the 

field 7(u, v) of infinitesimal deformations, given by (0.2). 

Finaly, I wish to thank prof. Milica Ili6-Dajovie for introducing me into the 

matter treated in the present work. 
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FRACTALS AND THEIR APPLICATIONS 

IN COMPUTER GRAPHICS 

Ljubi§a M. Kocie 

ABSTRACT. The paper presents elements of fractal geometry and its application in com-
puter graphics and geometric modeling. A connection with chaos dynamics, mostly from 
historical angle of view, is stressed. Two fundamental algorithms for computing fractal 
attractors are described. Barnsley affine iterated function systems (IFS) are described as 
means of constructing deterministic fractals. It is pointed out how to introduce param-
eters in IFS, via Bernstein polynomials, to produce different natural forms. Variety of 
applications: in animation, data compressing, rendering objects and modeling phenomena 
in physics and biology are described. 

1. Introduction: Physics and History 

At the end of 19. century, physicists considered Physics as a mainly fin-
ished discipline, with everything of any importance in the field being already 
explained and known. Everything, except a couple of unimportant loose 
ends. Making efforts to remove them, Schri5dinger discovered quantum 
mechanics, while Einstein invented the relativity theory. The new physics 
required new mathematical techniques, and before all, new geometry. So, 
the non-euclidean and projective geometries became topics of interest. Just 
when it seemed that relativity theory would finally finish the job of com-
pleting the great book of nature being opened by the Newton physics, the 
strange properties of simple oscillators have been noticed. Actually, under 
certain circumstances, they began to exhibit irregular, chaotic behaviour. 
Thus, in the last quarter of 20-th century, scientists have faced the new 
revolution called chaos. 

1991 Mathematics Subject Classification. 58F13. 
Key words and phrases. Fractal sets, chaos, computer graphics. 
This research was partly supported by Science Fund of Serbia, grant number 0401A, 

through Matematiai institut 
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208 	 Ljubi§a M. Koci6 

The word 'chaos' (xaoc) stems from the old Greek haino which means 
'open widely'. In Aristotel's works, 'chaos' is used to denote an 'empty 
space'. Later, in the history, this word becomes the synonym for 'mess' and 
'lack of order'. 

Chaos cannot be successfully described neither by Euclid geometry nor 
by non-euclidean or projective geometries. Except in some crystal forms, 
nature rarely exhibits regularity and geometric order. Natural forms and 
structures are irregular and chaotic: clouds, moss, trees, coastlines, feathers, 
rocks, surface of the sea, network of neurons etc. These are forms that fractal 
geometry deals with. 

Phenomenology of chaos appears in, at least three planes. The plane of 
morphology is the most accessible for studying due to huge amount the em-
pirical, factual material which is collected during the time. The plane of 
logic is much more complicated, so that only the partial breakthrough has 
been done (for ex. in information theory). The causality plane is still in do-
main of hypothesis and till now, it is beyond the experimental confirmation. 
Typical example is the hypothetical 'quantum chaos'. 

Much earlier before the physicists started coping with chaos, there were 
hints of it in mathematical thinking. 

So, at the beginning of 19. century Laplace introduced the new discipline 
to describe unruliness and disorder — probability theory. Contrary to deter-
ministic theories, probability theory states that future depends randomly on 
the past. 

Then, Weierstrass defined the function 

00 
sin(Aix) 
	 x E [0,2r]  f(x) = 

i=1 

where A > 1 and 0 < E < 1 are real parameters. Being continuous but 
nowhere differentiable [12 , p. 53], this function was unlike the things that 
mathematicians had ever seen before. Although bounded, its graph has 
infinite length (Figure 1-a). 

Actually, Weierstrass function belongs to the 'fractal' class Ce. Topolog-

ical dimension of this curve is DimT = 1, while its Hausdorff (also called 

Hausdorff— Besicovitch or geometric, see Section 4.) dimension is apparently 

Dim H  = 2 — r, but this has not been proved rigorously [15]. 
The most famous fractal set is probably the Cantor set which is equipo-

tent to the interval [0,1] but of zero measure. Its Hausdorff dimension is 
DimH  = In 2/1113 = 0.6309... and topological dimension Dim T  = 0 (Fig. 
1-h). So, the Cantor set can not be reduced to a set of isolated points in 
which case its H-dimension should be DimH = 0. 
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Figure 1. a) The Weierstrass function for A = 1.9, E = 0.3; I)) 
Generating of the Cantor set 

b) 

Figure 2. a) Peano curve; b) von Koch curve 

In 1890. Peano [24] published a construction of a curve that fills in the 
unit square without self-intersections. Nano curve has Hausdorif dimen-
sion DimH = 2, while DimT = 1 (Figure 2-a). A year later, Hilbert [16] 
announced its own construction of such, so called space filling curve. 

The next important construction is the von Koch curve from 1904 ([19]), 
known from calculus textbooks as an example of a simple continuous curve 
without tangents. Its geometrical dimension is DimH =ln 4/ In 3=1.2619 ..., 
( DimT = 1), see Figure 2-b. 

These 'early birds' were named 'monsters' and 'pathological cases' by 
other mathematicians, and they refused to deal with them at all. In spite 
of lacking the tools (like modern computers), first systematic study of chaos 
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and irregular structures starts with works of Kowalewska and continues with 
works of Lyapunov. 

Making efforts to describe the chaotic phenomena as accurate as it is 
possible, Poincare introduces topology and considers the physical chaos on 
model of orbits of mapping f :X —) X: 

	

x, f(s) f 2 (x) 	x E X , 

and intersection of dynamic trajectory in 7n-dimensional phase space and 
transversal (in — 1)-dimensional hyperplane, now known as the Poincare 
section. 

The ideas of Poincare have been further developed by Gaston Julia and 
Pierre Fatou during 20-ies of this century. Their work drew attention of 
physicists due to its applicability to the simple dynamical systems called 
oscillators. A typical model is a pendulum, but there were other interesting 
oscillators. 

So, B. van der Pol in Holland studied the oscillating model of an electronic 
tube, while the mathematician V. Arnold made detailed analysis of the 
mathematical model of the human heart, which is an oscillator by himself. 

In 1950—es, ecologists have studied so called logistic equation which de-
scribes variations in population of different zoological forms 

(1) 
	

5,t+1 = T X,i (1 — x„) 	nE/V, 

where r E It is a parameter. The Sequence {x„} represents the orbit of a 
simple quadratic map 

f: xi—)rx(1 — x), r ER, 

which exhibits unexpected dynamical properties. For r < 3 the correspond-
ing dynamical system (f, R) is stable, ie. f is a contractive mapping with 
a unique fixed point x = lizii„_,+0,,x„. For 3 < r < 3.5699456..., the 
system has periodical behaviour with successively doubting of the period, 
whilst for the bigger values of r it goes to chaos. The graph of x as function 
of r is known as bifurcation diagram The sequence of branching points (bi-
furcations) {r n } has an accumulating point 3.5699456 ..., which marks the 
limit of stability. The ratio Ar„/Ar„ +1 = 4.6692016091 ... is invariant for 
all mappings with 'parabolic' maximum and is referred as the Figenbaum 
number. 

This type of mapping describes 'explosions' in biological population like 
the famous locust flood every seven years, unexpected starting and spreading 
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0.5 

X 

1.0 

r 
r, r2  r3  r4.•• 

Figure 3. The bifurcation diagram for logistic equation. 

a) b) 

Figure 4. a) Lorentz attractor; b) Henon attractor 

of diseases, but it also describes fluctuation of the money value on the market, 
where chaos means the economical breakdown. 

In 1962., Edward Lorenz made a mathematical model of meteorological 
variations of weather, being described by the set of differential equations 

(2) 	s'(t) = a(y — x) , y i (t) = bx — y — xz , z'(t) = xy — cz , 
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in time domain. It comes out that the model gives good results, but it is 
very sensitive on initial conditions for some parameter values. It implies its 
sensitivity 
on the error which is accumulated during the numerical integration process. 
The exact solution of (2) is a trajectory in R 3  which has very complicated 
form. (For its XY-projection, see Figure 4-a). If converging, the numerical 
solution approaches (in the Hausdorff metric) this trajectory, the reason led 
Lorenz in name it strange attractor. In 1963., Michelle H6non, a French 
astronomer, used Poincare's ideas and include chaos in mechanical model of 
stars motion. This helped him to overcome a many years standstill in the 
problem, caused by the classical newtonian approach. The Helton model can 
be reduced to the system of difference equations 

x„+ -1 = 1 — ax 2n 	Yn+1 = Oxn 

whose attractor, for a = 1.4 and = 0.3 has a remarkable self—similar '3-2-1 
pattern' structure (Figure 4-b). 

2. Deterministic fractals 

Two important observations lead to the fractal geometry. 
1° The Nature is permeated with something that scientists call determin-

istic chaos. This•is the common name of the behaviour of the huge number 
of fairly simple physical systems that are governed by deterministic law, but, 
in spite of this, they behave unpredictably. 

2° There is a hierarchical structure in the Universe. Details resembles to 
the whole: it can be easily noticed in forms of crystals and plants, in the 
relief of Earth surface, in the structure of stellar clusters and in variation of 
market prices. 

During sixties, the physics of chaos becomes more and more attractive 
field. The remarkable oscillatory chemical reaction of Belousov-Zabotinski is 
explained by using chaos. It was discovered that there are three 'scenarios' 
for a system to pass to chaos. These types can be described by purely 
geometrical language, depending on the type of bifurcation of dynamical 
system. 

In seventies, Benoit Mandelbrot from IBM-a, made, by the help of com-
puter, first fractal images. These are graphical 'portraits' of dynamics of 
simple mappings with astonishing degree of disorder, but this disorder was 
systematic and unusually complex. The most popular among these pictures 
is probably the Mandelbrot set (Figure 5). It represents the dynamical chart 
of mapping z z 2  +C, z E C, for fixed value of complex constant C. Orbits 
are given by the sequence {z, 1 }, which is the solution of difference equation 
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Figure 5. The Mandelbrot set. 

z„+1  = 	C , z0 = 0. For a given value C, the behaviour of sequence 
{z„} has been examined. If it diverges, the point C in the complex plane 
are 'painted' in, for ex., black color. If converges, it will be painted in some 
lighter color, as lighter as faster the convergence is (in Fig. 5, this is white). 
The Mandelbrot set has an important role in fractal geometry, as for ex., 
circle in Euclid's geometry, and it is studied out exhaustively [5]. 

Mandelbrot coined the word "fractal" from lat. fractus which means a 
stone, broken and having irregular form. In collaboration with other scien-
tists, he studies a large variety of phenomena being connected with fractals: 
stochastic form of a coastline and its relationship with Brownian motion, 
turbulence in fluids, statistical distribution of telephone calls, Nile flood-
ings, branching neurons in the neural tissue etc. By the way, Mandelbrot 
noticed that fractal images possess aesthetical values. 

In 1982. the fundamental Mandelbrot book [22] appeared. The new disci-
pline was born. It includes fractal geometry as its most important part. After 
the book has been issued, the interest on fractal exploded. Many definitions 
of fractal sets and their dimensions appeared ([5],[7],[8], [11],[13],[15],[30]). 

In this section, a large class of fractal sets will be introduced. This very 
class has application in computer graphics in modeling natural phenomena. 

The notation (X, d) throughout the text will denote the complete metric 
space. Also, I-1(X) will denote the space whose points are compact subsets 
of X. 

Definition 1. A map F : X X of a metric space (X, (I) is a Lipschitz map 
if there is a number a such that d(F(x), F(y)) < a- d(a: , y), for all x, y E X. 
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The least such number, s(F) = min{a} is the Lipschitz constant of F. If 
s(F) < 1 then F is called a contraction. 

Definition 2. Let io' be a usual composition of mappings. Then, r" 
denotes n-th iteration of a mapping F, i.e. 

r" = F(r(7i -1) ) , F1  = F . 

Theorem 1 (Contraction principle). If F is a contraction X --+ X, then 
the sequence {n H Fon(x)}1200 converges to a fixed point a E X of F. The 
fixed point is unique. Moreover, if s is the Lipschitz constant of F, then 

d(r"(x), a) < 1 .5n  , d(F(x), x) . 

Proof. For the proof, see any textbook in functional analysis. ❑ 

Definition 3. For any x E X and B E 7-1(X), the distance from the point 
x to the set B is 

d(x , B) = inin{d(x ,b)} . 
bEB 

Definition 4. For any A, B E 1-1(X), the distance from A to B is 

p(A, B) = mc{d(x , B)} . 

It is easy to see that p is not symmetric, i.e. p(A, B) # p(B , A), so p does 
not provide a metric on 7-1(X). 

Definition 5. For any A, B E 1-1(X), the Hausdorff distance between A and 
B (induced by the metric d) is 

11(A, B) = max{p(A, B), p(B , Ail . 

Theorem 2. The Hausdoiff distance h is a metric on the space 1-1(X). The 
space (7-1(X),h) is a complete metric space. 

Proof. See [1]. ❑ 

Definition 6. A (hyperbolic) function system (IFS) is a set S = {X; fi}l1 1 , 
where fi  is a contraction of (X, d) into itself. If si is a Lipschitz constant for 
fZ , then s = maxi {si} is the Lipschitz contractive constant for the IFS. 
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Theorem 3 (Hutchinson). Let 5', be an IFS, with contractive constant 
s.For A E 7-1(X), define F(A) = UYl i fi(A). Then, 

h{F(A), F(B)} < sh(A, B) , A, B E 71(X) , 

Proof. See [17]. ❑ 

Definition 7. A set A E 1-1(X) is an attractor of IFS {X, f = 1,...m}  
if F(A) = A. Sometimes attractors are called deterministic fractals. 

Theorem 4 (Hutchinson). There is a unique closed bounded attractor A 
for S. Moreover, if B is any set from 1-t(X), then 

A = lim F°" B . 

Proof. See [17]. ❑ 

3. Algorithms, affine IFS and Bernstein polynomials 

The fractal geometry is a discipline of computer ages. Without computers, 
exploration of fractal sets would not be possible. For the mutual benefit, 
fractals contribute in picture synthesis as an mighty tool. There are many 
algorithms for computing and visualizing fractals, but all are variations of 
two basic ones: 

a) Flutchinson's algorithm [10]. This algorithm is based on Theorem 4. It 
starts from an initial set B E R2  and transforms by the IFS recursively until 
graphical details become smaller than a pixel. This algorithm is also known 
as deterministic algorithm. 

b) Algorithm of Barnsley and Deinko (random algorithm [1],[2],[3]). It 
uses a positive sequence {p i }ili I  of probabilities so that Epi = 1, where pi 
is probability of application of contraction A in given iteration. Choose a 
point x0  E X and then, for n = 1,2, ... , m, calculate 

n =fi(xn-1) > 

where index i is chosen randomly from {1,2, 	, m} with probability pi . 
This procedure forms the sequence {x„, it = 0, 	C X which approx- 
imates the attractor A of IFS. There are no precise rules for choosing the 
probabilities pi, which allows flexibility in choosing the sequence {pi} which 
may be useful in modeling, as it will be shown in Section 4. 
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Figure 6. Four iterations of Hutchinson algorithm: Sierpinski gas-

ket 

An important class of deterministic fractals is defined by the IFS 1R 2 ; 

(Euclidean metric), when O i  are affine contractions, i.e. 

(3) 	 Oi(x)= [ ai 	bi 	[ ei  
ci di   

where x = [x y] T  E R2 , and ai, bi, ci, di, e i , fi are real constants, chosen so 

that cki is a contraction. In this case, the probabilities p i  in Barnsley-Demko's 

algorithm can be calculated as 

Di 
— ra 

j=1 Di 

where D i  = 	— bidil is the determinant of the matrix in (3). 
It is hardly understandable how many different forms can be produced by 

an affine IFS. Let us see some examples. 
1. Sierpinski gasket. It is a 'triangular extension' of Cantor set defined 

by the IFS {R2 ; 01,02, 03), where a i  = di = 0.5, bi = 0, i = 1, 2,3, c 1  = 

e3  = 0.5, c2  = c3 = ef = fu = fs = 0, c2 = 0.25, 12 = .4/4. Applying 

Hutchinson algorithm on the initial set—the unit square (leftmost in Figure 
6), an approximation of the attractor is obtained through seven iterations 
(rightmost in Fig. 6). Figure 6 also shows third and fifth iteration. The same 
result will be obtained if any bounded initial set is taken. It is interesting that 
the Pascal triangle of binomial coefficients has fractal structure of Sierpinski 

triangle [31]. 
2. Takagi function. This is yet another fractal function that fits to the 

line of Weierstrass and von Koch construction. It was published in 1903 by 
Teiji Takagi [28]. It can be described by the affine IFS (R2 ; 01 , c2) so that 
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a 

0.0 0.0 0 0.16 0.0 0.0 0.01 
0.85 0.04 -0.04 0.85 0.0 1.6 0.85 
0.2 -0.26 0.23 0.22 0.0 1.6 0.07 

-0.15 0.28 0.26 0.24 0.0 0.44 0.07 
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a) 

c) 

Figure 7. a) Takagi function; b) Sierpinski carpet; c) Barnsley 
fern; d) The dragon-like attractor 

01 and 02  are given by a l  = a2 = 	= -c2 = (11 = d2 = e2 = 12 = 0.5, 
b l  = 62 = c1 = A = 0 with probabilities p1 = P 2  = 0.5. The attractor, 
obtained by Barnsley-Demko algorithm is shown in Figure 7-a. 

3. .Sierpinski carpet. Yet another two-dimensional variation on Cantor 
theme. It is defined in R 2  by eight affine transformations with coefficients: 
a1 = a3  = a6  = a8  = -62  =64 = b5  = -1)7 = c2  = -c4 = -e5 = C7 = = 
d3 = 	= d8 = e2 = e4 = C5 = 12 = f5 = f7 = 1/3, e6 = e8 = f3 = h = 
2/3, e7 = h = 1. Other entries are zero. The attractor is rendered by the 
random algorithm (Fig. 7-b). 

4. Barnsley fern. An interesting fern-like attractor (Fig. 7-c) is found by 
M. Barnsley [1]. Four affine contractions are given by the coefficients 

The attractor, produced by random algorithm is shown in Figure 7-c. 
5. Dragon. The dragon-like set (Fig. 7-d) is defined by IFS data 
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a 

0.824074 0.281482 —0.212346 0.864198 —1.882290 —0.110607 0.787473 

0.088272 0.520988 —0.463889 —0.377778 0.785360 8.095795 0.212527 
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Figure 8. Wind in fractal plants: the parametric IFS 

It is of special importance to introduce one or several parameters into 
IFS, so that the form of attractor set depends on them. Parameters should 
be incorporated in such a way that affine mappings in IFS maintain their 
contractive properties for a whole range of parameter changing. Actually, 
the following theorem takes place. 

Theorem 4 (Barnsley). Let (X, d) be a metric space, and {X; h,... , f 

be a hyperbolic IFS of contractility s. Let f n  depend continuously on a 
parameter p E P, where P is a compact metric space. Then, the attractor 
A(p) E 1-1(X) depends continuously on p E P, with respect to the Hausdorff 

metric h(d). 

Proof. See [1]. ❑ 

This theorem provides a way of controlling the shape of IFS in continuous 
way. It can be used very effectively in modeling motion of fractal objects. For 
example, the fern swung by the wind may be obtained by simple changing 
a parameter in IFS-fern data so to get a plant without wind (Figure 8-a), 
under breeze (Fig. 8-b) and stronger wind (Fig. 8-c). Such effects are 
especially important in animation. 

An elegant way to introduce parameters in iterated function systems is to 
put one-variable real functions as IFS coefficients in (3). Author made some 
experiments using cubic Bernstein polynomials 

(4) 	 Bi(t) = Ci I t i (1 — t) 3—i  , t E [0,1] , 
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a 

bo(ti ) ) 

bo(t2) 

—hi (t2) 

hi(i2) 

b2(t1) 

—b2(12) 

bo(ti) 

bo(t2) 

0.0 

0.6 

0.35 

0.1 

IFS2 

a 

bo(ti) 

bo(t2) 

—b1 ( t2) b2(t2) 

— b2(t1) 

bo (t1 ) 

bo(t2) 

0.0 

0.6 

0.45 

0.1 

IFS3 

a b 

bo(ti) 

bo(t2) 

— b2( 1 2) 

(it) 

b2(t2) 

— bl(ti ) 

bo(ti) 

bo(t2) 

0.5 

2.5 

0.0 

1.5 

IFS4 

a b 

bo(ti) 

—bo(t2) b1(t2) 

b2(4) 

—b2(t2) 

b0(11) 

bo(t2) 

0.0 

0.4 

0.55 

0.1 
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the choice approved by the known property of the Bernstein polynomials to 
be bounded over the unit interval, i.e. 0 < Bi(t) < 1. Further, numerical 
computation of Bernstein polynomials is fast enough through de Casteljau 
algorithm [20]. It is considered an IFS with only two mappings {R2 ; 01 , 02}, 
with two parameters, t 1  and t2 . In the tables below the coefficients of four 
different IFS's are given. 

IFS1 

As it can he seen from Figure 9, in spite of using only two contractions, 
exciting results are obtained. For the attractor 'feather' (a) it was used IFS1, 
with parameters t i  = 0.1, t 2  = 0.22. The 'cloud formation'N uses IFS2 with 
/ 1  = 0.18,t2  = 0.22; Next three attractors are produced using IFS3: star' 
(c) with t 1  = 0.042,1 2  = 0.75, 'Nautilus spiral' (d) with /1  = 0.05, t 2  = 0.45 
and 'sunflower seed' (e) with t 1  = 0.033,1 2  = 0.52. Finally, a 'fir twig' (f) is 
formed by IFS4 with ti = 0.09,1 2  = 0.18. 

Continuous variation of parameters t l  and 12  will reflect in continuous 
changing of the forms of attractors. In this way, it is possible to animate the 
sequence when the 'Nautilus spiral' transforms into 'sunflower' by running 
ti from 0.05 to 0.033, and t2, from 0.45 to 0.52. 

4. Modeling of natural phenomena 

Describing a way of reproducing the wind, and a variety of natural forms 
by using parametric IFS, opens the question of using fractal sets in modeling 
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eGc.e. e.64,  

toc 
,C,00 

 "k•sof 

<.,.) 

FIGURE 9. SIX ATTRACTORS GENERATED BY TWO-PARAMETER 
IFS CONTAINING BERNSTEIN POLYNOMIALS 

wider class of forms and processes in the Universe. These forms are not easy 
to measure with classical Euclidean tools. So, a more sophisticated technique 
is developed. One of the important numbers associated with fractals is their 
Hausdorff dimension. The meaning of dimension is the 'density' with which 
the fractal set occupies the metric space in which it lies. It can be used 
for comparing fractals. It is an important parameter for modeling natural 

objects. 

Definition 8. Let K E 1-1(X) be a nonempty set and (X, d) be a metric 

space. The diameter of K is 

1K1 = sup {d(x,y)} . 
x,yE K 

Definition 9. Let 1C = {Ki }t_Z be a collection of sets in 7-1(X) such that 

0 < 1Ki I < E, for each i. If A C U i Ki , then IC is E-cover of A. 

Definition 10. Let m be a positive integer and let A be a bounded subset 

of the metric space (Rm, d), where d is Euclidean metric. The function 

p µ(A, p) defined as 

+00 
µ(A, p) = sup{inf{E 1Ki r}} , 

c>0 
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where infimum is taken over all E/covers of A, is called Hausdorff p-dimen-
sional measure of A. 

Definition 11. Let A be a bounded subset of the metric space (R"`, d). 
Then the real number Dim1j(A) defined as 

Dim1j (A) = inf {p}, 
i►(A,p)=0 

is Hausdoiff dimension of A. It is also called Hausdorff-Bcsicovitch or geo-
metrical dimension of A. 

Theorem 5. Let A be a hounded subset of the space (R.', d). DiinH(A) is 
a unique real number which satisfies 0 < Dim H(A) < in. 

Proof. See [1]. ❑ 

Hausdorff dimension of a. typical fractal set may not be an integer number. 
This is 0.6309... for Cantor set, 1.2619... for von Koch curve, 1.5849... for 
Sierpinski gasket, 1.8927... for Sierpinski carpet or 2 for Peano curve. Fractal 
dimension may characterize type of relief and roughness of terrain or physical 
process. Hausdorff dimension of the coastline of Britain is 1.2 [18], while it 
is ti 1.5 for jet flame laboratory data [1]. It is possible to determine Hausdorff 
dimension of the chain of human DNA from genetic code [4], or for fractured 
metal surfaces [9]. Maybe painters or sculptors can be characterized by 
Hausdorff dimension of their masterpieces? 

Practical determination of fractal dimension is not an easy task. It may 
depend on scaling. Mandelbrot gives an interesting example in [22] trying 
to answer to the question: 'What is the dimension of a ball of yarn?' From 
a great distance it is effectively a point, and appears zero dimensional; on 
approach it becomes a three-dimensional solid; moving closer discern the 
one-dimensional threads, which then become three dimensional again; the 
threads are again composed of fibers, etc. These different scaling regimes 
would produce rather extreme oscillations in a numerical estimate of dimen-
sion. Typically, when we are computing dimension we are interested in a 
given scaling range, but it may be very difficult to discern. 

But there is a class of affine IFS whose attractors' dimension can be 
calculated without much trouble. 

Definition 12. If the hyperbolic IFS {R. 7"; 	i = 1,... , N} has the follow- 
ing properties: 

a) , i = 	, N are similitudes; 
b) A(Oi(B) fl q5 (B)) = 0, for i # j, and any B C 

then attractor A is self-similar. 
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Figure 10. A self—similar set. Expanded area contains set that is 
identical to the whole set 

Theorem 6. Let A be self—similar attractor, generated by a hyperbolic IFS 
with s i  being a contractility factor of Then D = DimH(A) is the unique 
solution of 

N 

E Ise 1, D E [0,7n] . 
i=1 

Proof. See [1]. ❑ 

An example of self—similar fractal set is given in Figure 10. It means that 
a small portion of the set is identical to the whole set. 

The property of self—similarity is important for modeling natural objects. 
Namely, natural scenes are organized in hierarchical structures. For example 
a forest is made of trees; a tree is a collection of boughs and limbs along a 
trunk; on each branch there are clusters of leaves; a leaf is filled with veins 
and covered with hairs. Similar hierarchy one can find in the structure of 
rocks, mountains, live forms... In every case, the object is built up from 
numerous near repetitions of some smaller structure. Although the natural 
entities have more complex kind of self—similarity, so called statistical self—

similarity, the iterated function systems with similitudes 
can he used for modeling approximations of such entities. Also, one can 
use some fractal set representing dynamics of some simple mapping, like the 
fractal set known as Barnsley-3m, being displayed in the left part of Figure 
11. If specify the domain of mapping to he a rectangle denoted by 'A', 
the dynamical mapping will produce a magnified picture that resembles the 
'wave' (right part of Fig. 11, above). Further multiplication reveals self- 
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Figure 11. Fractal 'Barnsley-3m' and repeated magnification of 
its detail 

similar structure of this fractal (Fig. 11, below). The fractal set 'Barnsley-
3m' obtained by Barnsley [1] by applying the same principle as in the case 
of Mandelbrot set to more general functions of two complex variables. This 
set has connection with polarized-light microphotograph of some minerals. 
It reveals patterns that are less organic and more crystalline than those of 
the Mandelbrot and Julia sets. The dynamical system for 'Barnsley-3n1' is 
given by 

Re 2  z„— I nt 2  z„ — 1+ i(2Rez„hitz„) , 	 Rez n  > 0 , Zn+1 = 
Re 2 z„ — Im 2  z„ — 1 + ARez„ i(2Rez„Iinz„-F ARe z„) , Rez„ < 0 , 

where A is a real parameter. 

Besides self-similarity, the simplicity of IFS is the next attractive property 
of modeling natural scenes by fractals. It results in a tremendous compres-
sion of the data. Instead of keeping the whole picture in the computer's 
memory one can save only IFS code which gives compression ratio up to one 
hundred! To illustrate this, let us compare byte—length of an IFS file with 
that of the pcx format of the corresponding attractor picture: Barnsley fern 
123 : 11732; von Koch curve 270 : 14368; Peano curve 586 : 25884 etc. For 
the bmp format the compression ratio is even larger. 

Look at the fractal 'Barnsley-3m' from Figure 11. Computer—aided mag-
nification of some part of the fractal set can be performed in two ways: 

1. By sonic graphical software; The framed detail B is magnified using 
standard graphical package (for. ex. Corel-Draw). The result is shown in 
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B' 
	

B" 

B 
	

B1 

Figure 12. Magnification with or without loosing of details. 

Figure 12, frame B'. Repeated magnification will cause further loosing of 
graphical information (frame B"). 

2. By fractal software; If the same rule is used in the window B of 

Barnsley3m the picture framed by B in Figure 12 is produced. Repeated 

magnification of the frame B 1  is shown as the rightmost below frame. Fractal 
images can be magnified endlessly, without loosing of details. 

So, fractal attractors are convenient for modeling different natural forms. 
Is it important to know how one can define an IFS to produce exactly the 
image that he wants? The answer is in the collage theorem: 

Theorem 7 (Barnsley). Let L be a nonempty compact subset of X, and 
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Figure 13. Fractals as natural forms: a leaf, a coral branch, rocks 
formation, and a tree crown 

E > 0 be given. Choose an IFS {X;to,... 'ON} with contractivity factor 
0 < s < 1, so that h(L, F(L)) < E , where F(L) = UnOi(L), and h(-,-) 
is Hausdorff metric. Then, h(L, A) < where A is the attractor of the 
IFS. 

Proof. See [1], [2] or [3]. ❑ 

The value of this theorem is in its practical side. It gives the procedure 
of constructing IFS, once the fractal attractor is given. Take, for example 
the leaf form in Figure 13. This is a subset in (R 2 , d). Cover this figure 
by four smaller copies of this subset, as in making collage. Pieces do not fit 
quite perfect — some holes and overlappings will occur. These four copies 
are obtained by performing four affine contractions in R 2 : 01 ,02 ,03  and 04. 
This IFS is being used in generating the 'leaf' in Figure 13 by the random 
algorithm. The 'holes' in the leaf structure appear due to the holes in the 
collage. But, it is clear that the leaf form is obtained. 

In the similar way the 'coral branch', ' formation of rocks' or 'tree crown' 
are obtained (Fig. 13). 

Now, let say something about probabilities pi that appear in Barnsley-
Demko's random algorithm. Take the IFS IR 2 ; 01 , 0.2 , 03 , 441 described 
above. The leaf image in Figure 13 is produced by the random algorithm 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



2 'c 	 Ljubi§a M. Kock 

a) 
	

b) 
	

d) 

Figure 14. Leaves with different distribution of measure 

Figure 15. Waves from affine IFS 

with uniformly distributed probabilities (0.25,0.25,0.25,0.25). If this vec-
tor changes into (0.36,0.16,0.34,0.34) the leaf a) in Figure 14 is obtained. 
Slight variation: (0.46,0.16,0.34,0.04) brings in an effect as though the leaf 
was lighted from the left (Fig. 14-b). The choice (0.16, 0.16, 0.34, 0.34) will 
result into more rounded leaf (Fig. 14-c), while (0.16, 0.56, 0.04, 0.04) gives 
a fir—tree (Fig. 14-d). 

Phenomena in water, wrinkled surface, turbulences and streams can be 
nicely modeled by fractal sets. The magnifying details of Barnsley3m fractal 
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Figure 16. Modeling process of cell division 

Figure 17. Crystal growth and a plasmatic cloud 

from Figure 11 are good background for modeling waves. But they can be 
made using a simple affine IFS obtained by varying Takagi function (Fig 
7-a). This 'wave' together with a magnification is shown in Figure 15. 

The fractal, known from dynamical systems as Mandellambda, can be of 
help in modeling a biological process of cell division, Figure 16 (Stages are 
marked by numbers). 

An important type of fractals are obtained by the physical processes 
known as diffusion—limited aggregation (DLA) [23]. This process is mod-
eled by the use of random generator. Fractal forms obtained resembles tree 
root, and stand for models of growth of crystal structures (Figure 17). 
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If some fractal surface is intersected with a plane, a fractal level—line is 
obtained. These level—lines can be used to model clouds of different parti-
cles, which includes plasmatic cloud or intergalactic dust (see the rightmost 
illustration in Figure 17). 

A large class of self—similar fractals are obtained by varying Peano and 
von Koch curves. The Hilbert curve , already mentioned in Section 1, has 
important application for digital halftoning. It has geometric dimension 
DintH = 2, the same as Peano curve, which means that it fills the square 
in the plane. An approximation of Hilbert curve is shown in Figure 18-a. 
Actually, all space filling curves are mappings c :I = [0,1] —> R 2 . The graph 

of c covers the square 1 2 , so that it 'visits' all points of the square in ordered 
way if parameter t runs from 0 to 1. If c„ : I —> 1 2  is an approximation 

of the space filling curve c. Subdivision of the interval I into n subintervals 

, In  will result in dividing square 1 2  into n subregions R 1 , , Rn . The 

size of each subregion Ri varies proportionally with the length of the corre-
sponding subinterval L. The curve c„ visits all subregions R i , actually each 

point of it. The restriction c i  : 1i  —4 Ri is itself a space filling curve due to 
the self—similar property. Such restrictions will be used for selecting clusters 
of pixels (so called dithering) which results in different balftoning effects. 
This method of dithering using space filling fractal curves has an advantage 
over standard scan—image methods. Actually, it minimizes the grid effect, 
which results in better shadow textures [29]. Many variations of space filling 
curves include curves of. Sierpinski [13], Lebesgue and Schoenberg [27] and 
others [21]. TWo curves that fill space in different ways are shown in Figure 
18-b and c. 

This type of fractal curves inspired Prusinkiewitz and Lindenmayer to 
introduce L-systems for modeling plants and trees [25]. The central idea 
is that, in all cases, plants are defined by a small number of rules, applied 
repetitively to produce complex structures. L-system is a graph—rewriting 
mechanism, which operates on axial trees, and operates in parallel. The 
result is a fractal on graph alias graftal. Authors of [26] presented a model 
of tree synthesis which integrates botanical knowledge of the architecture of 
the trees. 

5. Conclusion 

This paper offers a short information on fractal geometry and its appli-
cation in computer graphics and geometric modeling. This geometrz was 
born as a child of computer era, trying to explain some unsolved problems 
in mathematics, physics and related sciences. A great insight was given by 
the books of Mandelbrot [22] and Barnsley [1]. Fractals are sets having, in 
general, very complicated structure. The shortest definition of the class of 
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Figure 18. a) The Hilbert curve; b) and c) Two variations on 
Peano theme 

so called deterministic fractals is that this is a subset of a compact metric 
space being invariant under the collection of contractive mappings. A simple 
but important example of such contractions are affine functions that map 
a plane into itself. This leads to the most important feature of determinis-
tic fractals: self—similarity. Using this property, one can use fractal sets to 
model many natural forms having hierarchical self—similar structure: plants, 
rocks, water dynamics, clouds, foam, neural cells etc. 

Text is illustrated with examples of fractal sets, together with some appli-
cations. All pictures, except Fig. 17, are produced by the software created 
by the author. Figure 17 was rendered by using the software Fractint by 
Bert Tyler. 
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LINES OF CURVATURE OF FREE FORM 

SURFACES TRACING 

DuAan M. Milo§evie and Ljubi§a M. KociC 

ABSTRACT. An level-line tracing algorithm, recently developed by the authors is used 
for Bezier surface interrogation. Namely, for Bezier triangular patches the algorithm is 
modified so as to trace the lines of constant Gaussian and mean curvature. The map of 
these lines can be used for better understanding the shape of these patches. The efficacy 
of the method is illustrated through several examples. 

1. Introduction 

The aim of this paper is to obtain curvature level sets of Bernstein-Bezier 
triangle fragment. Particularly, it gives level sets of Gaussian and mean 
curvature. This problem is solved by using the algorithm for implicit function 
graph tracing. Since the, analytic form for Gaussian and mean curvature 
involve derivatives of two degree, it is necessary to have at least thread order 
Bezier's fragment. 

As far as the applications is concerning, it is enough to mention Com-
puter Aided Geometric Design and Data Visualization. In both topics, the 
sets of curvature level sets is applied for Bezier surface interrogation. From 
the curvature level sets one can easily seen the monotonicity, convexity, the 
existence of saddle points, locations of extrema and gradient intensity of 
curvature lines. This means having more information about surfaces them 
self. For example zero Gaussian curvature line share surface on three parts: 
elliptic (greater than zero) , hyperbolic (smaller) and parabolic (equal). The 
points of extrema of mean curvature is very important for example in indus-
try because this point of surface is critical in mean of tension. 

1991 Mathematics Subject Classification. Primary 65D17. 
This work was supported in part by the Science Fund of Serbia under grant #0401F. 

233 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



234 	 Daan M. Milo§evit.  and LjubiAa M. Kock' 

2. Gaussian end mean curvature 

For parametric defined surfaces 

= u , v ) = 'it= I 	 E [a, I)] = T CR2  , 

where x, y, z are differentiable functions and T = [a, b] is triangle in u, v 
plane, Gaussian (K) and mean curvature (G) are defined as 

(1) 
LN — M 2 NE —2MF LG 

K — 	 H = 	  
EG — F 2 	 2(EG — F 2 ) 

where L, M ,N ,E ,F and G fit standard Gauss notation 

L =L(u,v)= ii, • Eu„, M = M(u,v) = • 	 N = N(u,v) 

E =E(u,v)= 	F = F(u,v)= iv • Ev , G = G(u,v)= 

Bezier surfaces are defined implicitly B(x, y) = 0. To use (1) it was 
necessary to express Bezier surfaces in parametric form 

which makes 

u  E = E(u,v)= 	v 	; [ 
B(u,v) 

(u, v) E T K2 , 

E(U, V) = it, • iv = 1 + 
(2) F(U, v) = iv • iv = ZuZv 

G(u,v)= Et, • iv  = 1+ zt,2  

The normal vector fi is 

n = 
Ilxu Xxvll 

xu x xv 	
[ 1  

7zzuv i 

and because of that 

(3) L = 
zuu    , N = 

V1+ 	zi2, M  V1+ + 

 

zvv 
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Using (2), (3) and equalities u = x and v = y the analytic form for 
Gaussian and mean curvature for Bezier surfaces on triangular domain can 
be obtained. 

(4) 

H = 

K = 

zyy (1+ zx2 ) - 2.z y zx zy  + zsx (1 + zy2 ) 

(1+ +4)2 > 
 

ZssZyy  —  zx y 
 

(1 + 4 + q)312 	• 

2 

For finding m - th derivative of Bezier's surface in / - th direction, the 
following formula [1] is used: 

n!

nt)! (5) pzk -(067, k (/). 
017n 

B„(f ,t) = 
(n - 	E 

i+ k=in 

For in = 1 one obtains from (5) 

01 Bii(f,t)= n E PZV (t)b!jk (1). 
i+j+ k=1 

For / = (-1, 1,0) (which specifies x-axis direction) this yields 

— B ( f ,t) n(pw - Poo ax 	 100 )) 

while in y-axis direction /  =  (-1,0,1), 

	

ay B
n (f, t) = n(POjoi l 	). 

For in = 2 (5) becomes 

02 

 p B f ,t) = 71(n - 1) E Pni/c 2 (t)b2ik (l). 
i+ j+ k=2 

By using this formula one can find 

02 
01x2 B „( f ,t) =n(n - 1 )( P200 2  + PA-0 2  — 2 P1110 2  )1 

8 2 

	B f ,t)= nen — 1 )(4 nc02 7,n2 pn
2

2 
- 

n02 
-Won -F 00 	

p
1 + 2 PAI 2 —4n0—  Oxay 	 12). 
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3. Curvature level-set 

Algorithm for tracing graph of a function given implicitly by f(x, y) = 0 
in some domain is important and attractive problem. Many authors have 
given important contribution to this problem (see references in [3]). Majority 
of these methods make use of two stages. 

1. Fixing seed points; 
2. Tracing the curve. 

Fixing seed points 

In this stage, the seed points (starting points) are determined for each 
branch of the curve. This can be done by solving the double sequence of 
equations f (xi, y) = 0, i = 0, , Nx  and f(x, yi) = 0, j = 0, , Ny  where 

xi and yi are uniformly distributed along the interval [a, b]. The density of 

"hunting mesh" is controlled by the numbers N s  and Ny . It is recommended 
to use a predictor-corrector method for solving of each equation above. First, 
the coarse subdivision of an interval is performed to locate the root and then 
an iterative method is applied (here modified Regula falsi method is used). 

Tracing the curve 

In this stage, starting from the seed points, the algorithm traces branches 
of the curve until some of them leaves the domain T, or until the branch 
closes up to form a loop. Tracing of each branch is performed by joining the 
sequence of points (xi, yi), i = 0, , m, where (x o , yo ) is the seed point for 
the corresponding branch. The problem of finding next point on the curve 
can be solved by using derivatives of f (x, y) or without that. If we choose 
to use derivatives in tracing implicit graph function f(x, y) = 0, we must 

calculate derivatives of (K) and (H) in (4). It mean that we must calculate 
3—th derivatives of Bezier's surfaces. It is possible to do provided that we 
have at least 4—th order Beziers fragment. 

a) Algorithms without derivatives 

- Four-point algorithm 
For each point (x, y), the next point in the sequence is calculated by 

evaluating four neighbour points (x, y f h) and (x f h, y) and selecting this 

one which minimize I f (x , y)I. In the case when the branch of the curve is 
closed loop, lying entirely in D, the terminating criteria employes closeness 
to the starting point. So, each point in the sequence is tested whether or 
not it is in the c 2  vicinity of the starting seed point. The accuracy may be 
controlled by testing the inequality I f (x, y)l < c for each point. If it is not 

satisfied, the step h is halving until it is. 
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- Eight-point algorithm 

This algorithm is similar to the previous one, except that the function is 
evaluated at eight points (x, y+ h), . . . , (x h, y h), and the next point is 
choosing among them so that I f(x,y)I is minimal. 

b) Algorithms with derivatives 

- Algorithm with initial value problem solver 
This stage is consist of M iterations to product the sequence {(xo, yo), 
, (x m , ym)}. Connecting these points results in a polygonal line being an 

approximation of the implicit curve. Each point pi  = (xi , yi ) is tested for 
being in fl-vicinity of a singular point i.e. 

( 6 ) 	 IF;(xi,N)i < 

The logical value of (6) is the main switch in this stage of the algorithm. If 
it is true, i.e. if pi  is close enough to the singularity, the next point p 2+1  = 

yi÷ i) calculates by linear extrapolation, i.e. pi = (pi-1 + p1+1)/2. 
Of course, the case when the seed point po = (xo,Yo) is also the singular 
point has to be considered separately. Since the preceding point, say p_ i  is 
missing, it is taken x_ i  = xo h, yi--1 = yo f h where h > 0 is the given 
step. The signs + should be chosen arbitrarily if P o  E intD. But, if po E OD 
(the border of D), signs should be chosen so that p_ i  E extD, which gives 
pi E intD. 

If (6) is false, p 1+1  is found by two-stage predictor-corrector method. 
Then, one solves 

	

, 	F;(xi , yi ) 

	

Y 	 = 0, Y(x0) = YO, 
F;(xi, yi) 

Fy1 ( X i , yi) 	FI ( Xi 7 yi) , 

F'(xi ,yi ) 
	 = 0, x(Yo) = Fgx„ yi ) 

otherwise. (Note that it can not be Fgxi , yi) = 0 and n(xi,y i ) = 0 at 
the same time as the consequence of the singular point being far enough). 
Equations (7) or (8) are solved by Euler method: 

F' (xi , yi ) 

	

xi+1  = xi + Sxh, Y1-1-1 = yi — Sz h 	 
Fgxi,yiY 

(7) 

whenever 

Or 

(8)  
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where Sx  = sgn(xi — xi_ 1 ) when bi  = IFx1 (xi,Yi)1 — 	Yi)I < 0, and 

Yi+1 = yi + Sy h, 
F1 (xi ,yi ) 

= xi — Sy h  Y  
11(Xil Yi) 

where Sy  = sgn(yi = yi_ i ); 

So, the point pt+i is obtained and it is corrected by the Newton-Raphson 
method, 

F(  

	

yj+1  =yj 
	Fy (xj, 

 X j,Y.j) 	
Xj+1 = 	(5i < 0),  xj 

F(Xj, 
xj+1 =X 

	

3 	11(Xj, yi)' 	
= yj (6.  ?_ 0), 

until 

IF( Xj ,  Yj)I < E2. 

This completed the algorithm. 

Algorithm with initial value problem solver is better in aspect of accuracy 
and speed (see [4]), but in the case of 3-th order Bezier path it is necessary 
to use some of the previous algorithms. 

4. Examples 

The algorithm is tested through many examples and two of them will 
be presented here. The arrangement of the control points of n-th order 
Bernstein-Bezier polynomial is accepted to be 

Pn00 ' " • POn0 

POOn 

Example 1. For the triangular patch given by the control points 

0 0 0 
0 1 , 
0 

the corresponding level-lines map is given in Figure 1.A (level-lines map 
is obtain by using algorithm develop in [2]). Figures 1.B and Figure 1.0 
presents the level-lines map of Gaussian and mean curvature respectively. 
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Figure 1.A 

Figure 1.B 

Example 2. For the control points 

0 
0 
0 
0 

0 
1 
0 

0 
0 

0 

the level-lines map for the corresponding patch is given in Figure 2.A. As 
in the previous example, the Gaussian and mean curvature are shown by 
Figure 2.B. and 2.0 respectively. 
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Figure 1.0 

Figure 2.A. 
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Figure 2.B. 

Figure 2.C. 
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MODELING OF RATIONAL CURVES 

BY INTERPOLATION 

Nenad V. BlagojeviC and LjubiAa M. Kocie 

ABSTRACT. The algorithm for modeling shapes with (n,n)-rational curves is proposed. It 
is based on interpolation by rational functions using continued fraction numerical tech-
nique. The converse algorithm for transformation of rational curve into a parametric 
continued fraction form is also given. The direct algorithm is illustrated through several 
examples. 

1. Introduction 

The Bezier curve of degree it is defined by the control points B0, . • • , B n 
trough 

n 

P„(t) = E 	t  E [0,1], 
i=0 

where b?(t) = (7)ti(1 — t)n — i are Bernstein basis 
of a third order Bezier curve is shown in Figure 1 

A natural generalization of this model is the 
degree n) that, besides the control points B0, .. 
wo, • • .,w,,, as shape parameters 

polynomials. An example 
(a). 

rational Bezier curve (of 
B„ involves the weights 

(1) E!1_ 
 Rn(t) 	
BiwiP(t)  

= t E [0, 1]. 

1991 Mathematics Subject Classification. Primary 65D05; Secondary 41A20. 
Key words and phrases. modeling, rational curve, interpolation, continued fraction, 

inverted differences. 
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 Jf 

---- 	P22 P2 P 	--- 
\ 	 // 

a) 	h1 
/ 

\ 
b) 

/// 

0 /P3  Pomo P3(03 

Figure 1. Bezier curve (a) and rational Bezier curve (b) 

If some weight is relatively large comparing to others, the corresponding 
control point "pulls" the curve toward it. Figure 1(b) shows the rational 
curve with coo  = co3 — 1, co l  = 3 and w2  = 6. 

The rational scheme reveals many useful properties. The most important 
of them are: 

- the possibility of exact modeling of conic sections; 

- continuous changing of weights results in continuous adjustment of curve 
form. 

On the other hand, all good properties of the polynomial Bezier curves 
maintains, except subdivision which can not be carried over without weights 
being changed. 

It is customary in free form curve modeling to use some interpolation 
model as an initiator. The Bezier curve modeling is preceded by the La-
grange or spline interpolation model. For the rational Bezier curve, it is rec-
ommendable to start with rational interpolant. The most natural approach 
is to represent such (n,n)-rational interpolation curve via the Bernstein basis, 
for each coordinate axis separately. For example for x-axis: 

(2) Rn,(x) 	Ein=no Biwib="(x) 	x E [0,1], 
a.o wib7(x)  

where the ordinates Bi and weights coi are to be determined so that R n (x) 

interpolates the data {(xi, y i )} iv  0 , i.e. 

(3) R„(xi) = yi , i = 0, ... , v, 

with v chosen so that there are enough equations to determine Bi, wi in (2), 

with one arbitrary weight. 
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x — X0 —  
Rn(X) = [co; 	 

c1 	C2 

X — X v—li 
j 

ev 	
) (5) 
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A variant of this problem is considered by Piegl [8], but for piecewise 
cubic rational curve. 

By introducing (3) in (2), the following linear system is obtained 

-Wx0) • • • b,n,,(xo) — Yobi(xo) 
41 (x l ) • • • b7,:(xi) —YM(xi) 

. 	

▪ 	

. 

b'c:;(x,) • • • 1) 77;,(x,,) 	„)  

—Yob igx0)" Bowo - - Yobo (xo) 
—Yib;;(xl) 	 1) 

	

v ) 	W11 	y„bg(s,,) 

Unfortunately, this system has no such nice behaviour as in the case of La-
grange interpolation (Vandermonde determinant 0). Here, the singularity 
can occur. Next, the interpolant may not exist in spite of regularity of the 
system (see Mayers [6]). 

In this paper only the case when interpolant exists is considered. 
For interpolant construction, the inverted differences are used while the 

interpolant has continued fraction form 

(4) 	R„,(x) = co + 
x — X0 x — X1 	X — X v-1  

Cl 	+ 	C2 +...+ 	Cv 

or more conveniently 

where 

(6) ci  = 0(X0, ... x4), 	i = 0, 	, v, 

are inverted differences given by 

(7) 
— X0 

0(4, Xi) = 	 
Y1 Yo 

x i  — 
0(x 0 ,..., x i ) =  	= 2, 3, ... 

eP(xo, • • • 9 X i-2 Xi) — 0(41 • • • X 4••27 x4-1) 

Now, the continued fraction R„(x) can be expressed in the form P'N.  By 
Q. 

the using of the known transformation from monomial to Bernstein basis, the 

4(xo) = Yo, 
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rational form (2) can be obtained. But, this transformation is numerically 
unstable (Farouki, Rajan [3]). So it is better to find the algorithm for direct 
expression of the continued fraction in Bernstein form. 

2. Algorithms 

Here, two algorithms are proposed. One, for transformation the continued 
fraction in rational Bezier form and, the second, for inverse transformation 
back to the continued fraction form. 

For continued fraction R n(x), given by (4), the rational function 

(8) 

. 
, 	Pk (x) 	{ x — X0 X — X1 

= 	, 	
X — X k-1  

rk(x) 	
1 , k = 0, .. . , v — 1, 

Q k(x) 	
Co; 

C1 	C2 	C k 

refers to as k-th convergent of R n(x). Obviously, rn (x) = Rn (x). 

It is known that polynomials Pk and Qk satisfy three term recurrence 

relation 
zk = ckzk-i (x — xk-i)zk_2, k = 1, . . . , n, 

where the sequence {Pk} is initialized by P_ 1  (x) = 1, Po (x) = co and {Qk } 

by Q.-1(x) = 0, Q0(x) = 1, see [2], [4], [5], [7]. 

The Algorithm 1 is given by the following theorem: 

Theorem 1. Let the set of points in the plane {(x i ,yi)}i 0  be given sash 

that 0 = xo < x1 < • • < x n  = 1. Let the k-th convergent of R n(x) be given 

in Bezier form 

Eik 0 74; (x ) 
k(X) = 	k 

 Ei.0 Pi
k 
 bi

k  
(x) 

by the coefficients p.if and qt 	0, ..., k) satisfy the recurrence relation 

(10) 
k A S 	A 	+ A2  4-2 A 3,5 1:_-12 A 4s  

= 	k  0 	rl 1 0
c: I 

= 0, 	k, k = 2,3,...,n, 

with initial conditions for {Pk}, given by ps = co , p(1)  = coci — xo, pi = 
co ci  — xo +1, and g?, = 1, qo = qi = el , for {Qk}. The constants Ai  in (10) 

are given by 

(9) 
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(k  i)ck 	iek 	A 	(k  — i)(k — i — Ao = 	 A 1  = 	P12 — k 	 k(k — 1) 
i(k — 1)(1 — 	 i(i — 1)(1 — xk — i)  A3 = 	 A4 — k(k —1) 	 k(k — 1) 

In practical calculations the coefficients A i  are replaced with 

Ao  = (k — 1)(k — i)ck, Al  = (k — flic k , A2 = —(k — i)(k— i-1)x k _ 1 , 

	

A3 = —i(k — 1)(1 — 2Xk-1 )1 	A4 = 	— 1)(1 — Xk—I )• 

In this way, one can avoid operation of division, which results in improving 
the numerical stability of the algorithm. 

Finally, the control points Bi and weights wi can be determined from the 
system 

(11) Biwi  = 	wi  = 	i = 0, 	, n. 

In the case wi  = 0, the control point B i  is an arbitrary constant. 

The truncation error estimates as (see [4]) 

(12) R ti (x)— 7. k (x) = K[rk(x) — rk-1(x)1, x E [0, 1], 

with K = — dk(x)I ( 1 + dk(x)), where 

(x — xk)(.2k-1(x)  (13) dk(x) = 
Ok-ki(xo,•••, 34,x)(h(x)' 

and Ok+1  are inverted differences given by (7) with y i  being replaced by 
R„(xi). Note that the constant K in (12) can he easily approximated using 
extended de Casteljau algorithm [1], which allows to compute both Qk(x) 
and chk+1• 
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Converse algorithm 

Conversely, the Bezier curve (2) can he transformed in the form 

(14)

 where 

(15) 

11 	1 
R„(x) = I.ao; 01(x)'02(x)"• • On(x)j , 

13k(s) = Cn-k+14(x) Dn - k+ibl(x), k = 1, . . . , n, 

are the Bernstein polynomials of first order. This procedure of the Algorithm 
2 is given by the following theorem: 

Theorem 2. In (14), the constants ao , Ck and Dk, k = 1, . . . , n are given 

by 

(16) 
{ 

po = aoq0' 

pi = aogli  + 

P7,1 = aoq + 

+(1— t)p4L-1 , i = 1, 2, ..., n — 1, 

(k-1)(k-i-1)  ,k-2 
k(k-1) 	' i 

= k cn_k+ipk-1 D„ - k+1 74-11  + 

k-2 	„,k-2 

	

k(k-1) ri-2 -r-  k(k-1) 1  2-2 7 	= u, • • . , k k = not —1,...,1. 

Proof. After division in R„(a:) one obtains 

	

) 	71_71  7 1-1 	( x)  

(18) 	Rn(t) = 	17 ° 	= ao 	
Ei„ 
	 

	

Ei=o ebl(x) 	 =o qi b1L (x) 

where, according to [3 eq. 48], constants a o , 	and pi 	are connected 

as in (16). Note that a o  can be expressed explicitly as 

E:1=o(-1 )"-1 (7)P=1  
ao =  

Ei.o( - 0"-1  Cnql' 

tit 
(17) 
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After k-th division in (18), by the rule of continued fraction, one gets 

1 	ak. 0 	b lic-1 (x)  
R,„(x) = ao 	 

di(x) +  Eik  0  (eb iAx) 

= ao  
13 1 (0 4_ 

(x)+ 	  E pi  bi 	(x) 

i.e. 

k-1 	 k-2 

(19) k, k oi (x) = f3k(x) 	pik-i k_1 (x)  

Relations (17) follow from (19) by comparing coefficients after replac-
ing /3k (x) by (15), then by using identities (1 — x)br i (x) = 

k-2 
xbr l  (x) — 	(x) and, after that, elevating degree of E rr2 bli' -2 (x) - 71 

i=0 
for two. ❑ 

3. Applications and examples 

The main application of Algorithm 1 is in modeling. Using interpolating 
points, the initial interpolation model is found by calculating the control 
points Bi and weights wi  and the one can continue the modeling process by 
the standard interactive technique. 

Second application is in recognition the parameters for same free form 
curve. For example, if one knows that some curve is rational but does not 
know its control points or weights they can be retrieved by the Algorithm 1. 

The Algorithm 2 carries over the Bezier rational curve into continued 
fraction form. It may be important for further processing of such curve, like 
for approximation or data reduction. 

The following examples illustrate our Algorithm 1 

Example 1. The data (xi, yi  ):( 2.5, 6.875)(5.0, 2.23)(20.0, 0.283)(40.0, 0.143) 
results the curve in Figure 2(a), while the more complete data (xi, y i ) : 
(2.5, 6.875X5.0, 2.23X10.0, 0.751) (15.0, 0.416) (20.0, 0.283) (25.0, 0.219) (30. 
0,0.182) (40.0,0.143) gives curve in Figure 2(b). 
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Example 2. Here, the data (7.99, 0.0) (8.09, 0.000027643) (8.19,0.0437488) 
(8.7, O. 169183) (9.2, 0.46428) (10.0, 0.943740) (12, 0.998636) (15.0, 0.999919) 
(20.0, 0.9999 94) are used. The corresponding rational curve is shown in 
Figure 2(c). 

Example 3. Figure 2(d) shows the result of applying Algorithm 1 on the 
data (-4.0, —1.0) (-3.0,-1.0) (-2.0, —1.0) (-1.0,-1.0) (0.0,0.0) (1.0,1.0) 
(2.0,1.0) (3.0,1.0) (4.0,1.0). 

a) 
	

b) 

d) 

\t, 

Figure 2. Rational Bezier interpolants for various data 
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"EXACT" DISPLAY OF OBJECTS WITH REAL 

VALUED POSITIONS AND DIMENSIONS 

SiniAa N. Hristov, Miomir S. 
Stankovie and Vesna I. VelielcoviC 

ABSTRACT. In this paper we consider the correct method for the "exact" display of ob-
jects with arbitrary forms, having positions and dimensions expressed as arbitrary real 
numbers. We also consider advantages of such an approach over the usual methods which 
do not produce "exact" picture, or can "exactly" display only some forms of objects which 
must have integer positions and dimensions. We also consider some difficulties that might 
arise in an implementation. 

1. Introduction 

This paper deals with methods for generation of an image from an internal 
description of a scene. 

An image is a two-dimensional array of numbers, held in computer mem-
ory, from which the actual picture on the screen is produced by some suit-
able hardware. A single element of this array is known as a pixel, short for 
"picture element". 

A scene is some internal description of the desired picture. We leave 
the particular form of the description undefined, but assume that it describes 
every detail of the desired picture with the complete precision. 

We emphasize the distinction between the desired picture, represented 
by the scene description, and the actual one, represented by the image and 
presented on the screen. 

1991 Mathematics Subject Classification. 681.105; 68U10. 
Key words and phrases. computer graphics, signal processing, filters, aliasing. 
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2. Usual "nonexact" methods 

Image generation methods used in most computer graphics packages fall 
into the following three categories: 

1. turn-on fully all pixels that have their centers covered by the object; 
2. turn-on fully all pixels that have at least half of their area covered by the 

object; 
3. set the intensity of a pixel in proportion with that part of its area which 

is covered by the object. 

It is known that each of these methods suffers from one or more of the 
following imperfections: 

1. object edges appear "ragged"; 
2. all dimensions must be expressed as integer multiples of the pixel size; 
3. objects are not displayed accurately enough — there is significant distor-

tion of object's shape and position. 

Some graphics package implementors have recognized the first disadvan-
tage as a serious one and have provided an option to use some form of 
"anti-aliasing", so that objects appear to have more "smooth" edges. As the 
"anti-aliasing" is usually performed by some semi-empirical procedure, the 
resulting picture may appear "smooth", but it is nevertheless inaccurate. 
And inaccurate picture, having either "ragged" or "smooth" edges, has, as 
we shall see, serious practical deficiences. 

Let us note that most computer graphics applications involve presentation 
of some scene which is generally defined in a continuous two-dimensional 
space. There are some applications, circuit board design, for example, which 
place objects on a predefined grid, but when comes to the image generation, 
the grid does not help much. Therefore, we shall restrict our discussion to 
continuos space only. 

Some basic graphics packages allow only integer values of object coordi-
nates and dimensions. They force the programmer to write explicit conver-
sions from the continuous space, be it rounding or whatever. In this way, 
the programmer has full control over the actual picture, which she uses to 
create some clever arrangements of objects, disguising aforementioned im-
perfections as much as he can, [1]. Besides placing enormous burden on the 
programmer, such an approach suffers from a phenomenon common to all 
"singular" designs: small changes in input data can completely invalidate all 
she has achieved. 

Numerous graphics packages allow specification of real values for coordi-
nates and dimensions. But, to specify is one thing, and to display is quite 
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another. Some "less sophisticated" graphics packages simply round the real 
values to the nearest integers. The scene is effectively converted into a "sim-
ilar" one, from which the image is generated. Many have noticed that the 
rounding errors introduced in this process are by no means insignificant. 
Other, "more sophisticated" graphics packages attempt to draw approxima-
tions of objects without rounding coordinates first. Some clever algorithms 
are employed to determine pixel values, and in specific cases acceptable re-
sults are produced, [1]. However, it is our impression that all such methods 
rely too much on clever tricks, without having solid theoretical background, 
and can, therefore, produce acceptable results only in limited cases. 

Contrary to the popular belief, we find that an error of "a pixel or two" 
is by no means negligible, at least given the resolution of today's equipment. 
Here is a short list of most common consequences of such "small" errors. 

1. A uniform set of objects from the continuous space appears as non-
uniform, and vice versa. 

2. Parts of objects or entire objects disappear. 
3. Shape of a small object appears very distorted. 
4. The original proportions of object positions and dimensions are not re-

tained. 
5. A small change in object's position or size can sometimes cause significant 

effect on the picture, while in some other case a much bigger change 
produces no effect. 

Figure 1. "Ragged" appearance of an object edge. 

                     

      

0  

              

                    

                    

         

• 

          

                    

                    

                     

Figure 2. A uniform set of objects appears as non-uniform. 

Increasing the image resolution makes such errors somewhat less notice-
able, but still visible. The right way to fight this problem is certainly not to 
increase the image resolution. This is very expensive and quite limited by 
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Figure 3. A non-uniform set of objects appears as uniform. 

sw.111■•■■111 

Figure 4. Some parts of the object disappear. 
The shape appears very distorted. 

Figure 5. The relative proportions are not retained. 

the state of technology, and does not even touch the heart of the problem 
which is simply the improper sampling. 

3. Sampling and reconstruction 

The Shannon sampling theorem (see, for example [3]) says that a signal 
can be properly reconstructed if its spectrum is non-zero only at frequencies 
less than a half of the sampling rate. 

If there is a signal component not satisfying this condition, it will be 
sampled, but the samples will look exactly as if they came from a component 
at some frequency less than a half of the sampling rate. In this case the 
reconstructed signal will have a component not originally present. This 
phenomenon is known as "aliasing". 

As it was mentioned above, the scene is defined in a continuous space, and 
therefore shall be regarded as a continuous signal. The "image generation" 
process is, in fact, sampling. The scene may or may not satisfy the sampling 
theorem condition. The picture is produced from the image by reconstruc-
tion, or interpolation, which is performed by the graphics hardware. 

Now we can define the correct method for image generation. 
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If the scene satisfies the sampling condition, everything is well — the afore-
mentioned procedure will produce the exact picture. But, if the scene does 
not satisfy the sampling condition, the exact picture cannot be produced. 
Instead, a "correct" replacement shall be provided. 

The question of the "correct" replacement is more philosophical and aes-
thetical one, rather than technical. We choose the following line of thought: 
if a component of the scene can be displayed exactly, then do so, and if it 
cannot be displayed exectly, then suppress it, rather than displaying it as 
something else that did not exist in the scene. 

In other words, we do not attempt to sample the scene that does not 
satisfy the sampling condition. Instead, we transform that scene into a 
"similar" one satisfying the sampling condition. This is done by filtering 
the scene with well chosen low-pass filter. Please note that the scene is a 
continuous signal — we cannot apply a digital filter for this purpose because 
we do not have a digital signal. 

To further substantiate our choice of the "correct" replacement, we note 
that the components that we have suppressed carry the structure too fine to 
he displayed by the hardware and/or noticed by the viewer. Therefore, we 
hope that the absence of those components will not do much harm neither. 
Had we done otherwise, those components would "alias" to lower frequencies, 
translating to much larger structure which will be displayed by the hardware 
and noticed by the viewer. 

4. Practical advantages of exact display 

Practical advantages of exact display of objects follow from the fact that 
dimensions and positions do not have to be unnaturally restricted to integer 
multiples of the pixel size. 

An object may have arbitrary size and can be placed anywhere on the 
screen with the resolution determined by the precision of the floating point 
numbers used. The uniformity of a set of objects is preserved, as is the 
non-uniformity. The proportions are retained. A small change in object 
position or size produces the corresponding small effect on the pucture. In 
animation, objects do not jump irregularly from pixel to pixel, instead they 
move in uniform steps. The object shape is not distorted, although very 
small objects can be smeared or even completely invisible. 

The programmer does not have to care about screen resolution and round 
off errors. And she gets exactly the picture she specified, unlike some modern 
graphics packages which do allow such a freedom of expression, but distort 
the picture and leave no possibility for the user to control the picture quality. 
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The quality of the computer graphics equipment is usually specified by 
the resolution in the sense of the size of the array holding the image. This 
is in contrast to the quality specification method used all other visual and 
optical devices, where the resolution denotes the size of the smallest object 
that can be reliably reproduced. The resolution of the graphics equipment 
with exact display of objects can be also given as the size of the smallest 
object that can be reliably reproduced, regardless of its allignment relative 
to the pixel grid. 

5. How to produce exact pictures systematically? 

A new graphics package must be written in order to enable application 
programmers to use exact pictures within their programs regularly. Al-
though at the moment we do not have the complete proposition for such a 
package, we can state some basic requirements. 

The scene shall be defined in a continuous space and shall be represented 
in the computer as a set of objects (not to be confused with the so-called 
"object oriented programming"). 

There shall be a predefined repertoire of parametrized primitive objects 
and the user will generate required number of instances and supply actual 
values for parameters, e.g. size, position, color, etc. 

There shall be a systematic way of building complex objects from more 
primitive ones. Complex objects constructed in this way could also be 
parametrized, and any number of instances could be generated, with possi-
bility to include them in still more complex objects. 

Notions of a point and a line shall be defined in the mathematical sense, 
i.e. having no area. Therefore, they will not itself be objects, but will be 
used to build primitive objects. 

Some set of predefined primitive objects shall be provided. It is important 
to select them very carefully, as it must be possible to draw them very 
efficiently, and, at the same time, to effectively use them in building complex 
objects and constructing typical scenes. 

The package shall include basic geometric transforms, such as translation, 
rotation, scaling, etc. It shall be possible to apply those transforms uniformly 
to any kind of object, and to define complex transforms in terms of simpler 
ones. 

Finally, when the complete scene is defined, a drawing procedure will be 
invoked to produce the image array by filtering the scene and sampling the 
filter output. Filtering must be performed analyticaly because a numerical 
approximation will involve sampling and result in aliasing. As long as all 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



"Exact" display of objects with real valued positions and dimensions 	257 

objects in the scene are disjoint, filtering can be performed object by object, 
with all outputs summed - the filtering is a linear process. 

Note that the filter output must be known only at sampling points. There-
fore, filtering and sampling can be combined into a conceptually simple pro-
cedure of centering filter's impulse response at the sampling point and com-
puting the convolution integral. The result is recorded as the pixel value. 

6. Desirable filter properties 

The most critical thing in implementation of the proposed approach is 
certainly the choice of the low-pass filter, which has crucial impact both on 
the quality of the picture and on implementation efficiency. We'll present 
now our preliminary view of desirable properties of such a filter. 

Figure 6. A filter shape in the frequency domain. 

Desirable filter properties in the frequency domain are: 

1. Relative intensity of components with different frequencies must not be 
considerably distorted, that is, the variation of the I H (w)I in the passband 
shall be from 0.5% to 2%. 

2. Components not satisfying the sampling theorem condition should be suf-
ficiently supressed, that is, peaks of I H(L))1 in the stopband shall be from 
0.2% to 1%. 

3. In order to use as wide frequency band as possible, which means as much 
scene details as possible, the transition band shall be as narrow as possible, 
that is 

upper limit of the passband 

lower limit of the stopband 
from 0.3 to 0.9. 
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Desirable filter properties in the spatial domain are: 

1. To enable computationally efficient filtering, the filter's impulse response 
shall be non-zero only over a finite interval, and that interval shall be 
as narrow as possible. This allows us to consider only a relatively small 
number of neighbouring objects while computing the value of the filtered 
scene at a given point. 

2. To prevent apperance of a fine structure which did not exist in the scene, 
the filter's step response should be monotonic, or at least the amplutude 
of oscillations should not exceed 0.05% to 2%. Also, the filter's impulse 
response should not have negative values. 

3. The transition from one light intensity to another should be as fast as 
possible, that is, the filter's rise time should be as short as possible. 

4. The filter's delay should not depends on frequency or, even better, the 
delay should be zero. This will be satisfied if the filter's impulse response 
is an even function. 

5. If the scene is rotated, the displayed picture shall appear rotated, but 
otherwise unchanged. This will be satisfied if the filter's impulse response 
is rotationally symmetric. 

7. Expected implementation difficulties 

A relatively complex calculation must be performed in order to obtain 
the value of a single pixel. The same procedure must. be performed about a 
milion times to complete the image. We expect that achieving a reasonable 
drawing speed will be the major problem in the implementation. 

A rough estimate shows that commonly available processors such as 486, 
68040 and T805 permit only experimentation with the proposed approach. 
For practical applications processing must be faster for at least one order 
of magnitude. As we have to work with continuous signals and relatively 
complex data structures and algorithms, currently available digital signal 
processors do not seem to be particularly useful — they are very diffucult to 
use for anything outside their intended application area. 

Our attention is directed towards the T9000, if it becomes regularly avail-
able. It seems that a single T9000 might satisfy basic application require-
ments. Even more important is its capability for parallel operation, which 
far exee.ds capabilities of all other commercial processors. The single PPC 
604 also seems to have enough power for basic applications, but with much 
less hope for efficient parallel operation. 
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Another serious difficulty arises from the possibility that a single filter 
may not be conveniently applicable to all necessary types of objects. 

8. Conclusion 

We have described some initial results of our work is this area. Currently 
we are investigating various classes of continuous finite-response filters in 
order to select viable candidates for an experimental implementation of a 
small graphics package exploiting the principles set in this paper. 
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HALLEY-LIKE ASYNCHRONOUS METHODS 

FOR POLYNOMIAL ROOTS 

M. Trajkovie, S. Triaovie and M. Petkovie 

ABSTRACT. In this paper we present the asynchronous implementation of Halley-like 
method for the simultaneous approximation of polynomial roots on a distributed memory 
multicomputer. It is shown that the lower bound of the order of convergence of asyn-
chronous Halley-like method with the delay r is at least 71A > :3, where 11,4 is the unique 
positive root of the equation 70.1  - 3i( - 1 = O. The computational efficiency of the 
synchronous and asynchronous versions are studied in the case of hypercube topology. 

1. Some preliminary results 

Simultaneous methods for the determination of polynomial roots run in 
several identical versions so that they are very convenient for the imple-
mentation on parallel computers (see, e.g., [4,5,6,8,9,10]). All n roots are 
found simultaneously, n versions of the same algorithm can be run on a dis-
tributed memory multicomputer consisting of k (< n) processors. The main 
advantage of parallel implementation comes from the fact that a great deal 
of computation can be performed simultaneously. The details concerning an 
application of simultaneous methods on parallel computers may be found in 
[4,5,6,7]. 

In practical implementation of simultaneous methods on parallel comput-
ers three standard network topologies are usually applied: rings, torus and 
hypercubes. The models assume k processors connected through a regular 
graph of diameter D and degree d. The efficiency of these methods depends 
on three parameters: the computation time of any arithmetical operation 
modeled by ra , the communication start up /3, and the throughput of the 

1991 Mathematics Subject Classification. 65H05, 65W05. 

261 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



262 	 M. TrajkoviC, S. Trkkovi6 and M. Petkovie 

links rc . Typical values of 7-,,ra  and fie  for several types of multiprocessors 
can be found in the paper [3]. Since in our analysis we neglect the times 
for computing the starting points and checking the stopping criteria, the 
computational cost of algorithms is the sum of a computation time with a 
communication time. Besides, the number of basic arithmetical operations 
of the applied method appears as an additional parameter in the analysis of 
the total computational cost. This number for a wide class of simultaneous 
iteration methods can be given in the form (see [12, Ch. 6]) 

N(n) = an2  + [3n + 7, 

where n is the polynomial degree. If n is sufficiently large, then we can take 
approximately that N(n) = an 2  + o(n2 ). 

Following [6], the total time for the synchronous implementation can be 
expressed as the sum of the computation time N(n)T alk and the communi-
cation time DO, + 0(n/d)re , that is 

a1L2 + O(n2) 	 it 
Ts y n = 	 To, + Dile + O( —d )Tc.

k 
(1)  

The communication time cannot be neglected in a synchronous implemen-
tation; moreover, it has a great influence on the total execution time and 
appears to be a major drawback of this parallelization of the simultaneous 
methods. In order to decrease the communicate time the following strat-
egy can be applied [2,7,10]: In each iteration, a processor does not have to 
wait at predetermined points, for example, the end of the total-exchange, 
for predetermined messages to become available. This type of algorithms is 
called asynchronous by Baudet [1] indicating that, at each step, the local 
computation is performed using only a part of the global information. 

Let in = 0, 1,2, ... be the iteration index and let us assume that the 
(n1+1) is  new approximation z i 	is calculated by a processor Ph , h E {1, ..., k}. 

Evidently, to force the convergence, this processor must know the value of 
(at) 	 (nt-I-1) • 

Zi . The improved approximation z i 	is calculated by a general iteration 
formula 

Fi(z (m•)s ,  ) 	where z( m•)  — ( _on 	,m,h)) 	, z„ (771—r(n,m,h)) ).  
— 

(2) 
In (2) z(ni * ) is the vector of the last values zi known by the processor Ph at 

step in, represented by zi(m—r(j,m,h)).  Here r(j, mm, h) is a delay depending 
on j, in and h and indicating that the processor Ph only knows the value of 
zi computed at step in — r(j, m, h). The maximum delay will be denoted by 
r, that is, r = max i,„,, h  r(j,m,h). 
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The implementation of an asynchronous method is executed in such a way 
that, at each iteration step, a processor sends the most recently computed 
entries to its neighbors only, decreasing the communication time. As it was 
presented in [6], the total time per one iteration step is 

Tasy 
	( (rid  o(n2 ) 

)7a + 13, + 0 (—)Te . 	 (3) 

-1- 

 

Comparing with (1), we obtain one start up instead of D and a propagation 
time of O(n/k) instead of 0(n/d). 

Let N5y , and Nasy  be respectively the number of iteration steps of a 
synchronous and an asynchronous method. Evidently, the asynchronous 
method will be more efficient if N asyTasy < NSynTs y n By virtue of (1) and 
(3) this inequality may be written as follows: 

N asy [(

a7/2 

k O(?t2) ) Ta 13, + 0() 	< 	{( (11' 2 +
k

°(712) )-ra  

D + 0 ( 1711-N. 
(4) 

Let us suppose that the inequality 

0, (AO 

Ta 
— < 

holds. Namely, if /3,/r„ > ctn 2 /k, then it could be faster to use less pro- 
cessors in the synchronous implementation (see [6]). Furthermore, since the 
relation /3, > 7-, generally occurs ([3]) ou distributed memory computers, 
the inequality (4) becomes 

	

an t 	fie 

Nasy 
	D  Ta  

Nsyn 	CY7/ 2 	/3c  • 	 (6) 

	

k 	r„ 

Eventual validity of the inequality (6) can be suitable verified by a graph-
ical interpretation in the plane (Nasy I Nsynl iicka). Let R = Odra  denote a 
realistic parametric ratio depending on the applied network topology. For 
the hypercube topology this ratio usually belongs to the interval [10 2 ,103 ] 
(see [3]). Conditions for the dominance of asynchronous implementation has 
been discussed in [13]. Dominant area is bounded above by the curve 

an2 	Nasy  
fic 	k 	„ ) — = 	

7 Ta 	Nasy 	 ( )  

D  Nsyn 

(5) 
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which are obtained from (6) taking the sign "=" instead of "<", and the 

dashing line Odra  = R. 
Let V is the critical ratio given by the abscissa of the intersection of the 

curve (7) and the dashing line Odra  = R, that is, V = 1+ (D —1)/(±i  + 1). 

As pointed out in [13], an asynchronous algorithm will be more efficient if 

the realistic ratio Ft is smaller than the bound value 13,/r a, = an2 /k and, in 

addition, if the ratio of iteration steps Nasy  /Nsyn  can be realized in practice, 

that is, if Nasy  I Nsyn  < V. We note that the following estimate for the ratio 

Nasy  /Nsyn  has been derived in [13]: 

Nasy 	logns 

Nsyn 	logllA • 

2. Convergence analysis of 
asynchronous Halley-like method 

Let 47,n)  = 47)  — ( be the error of an asynchronous method of the form 

(2) which generates the sequences (z1 m ) of approximations to the roots 
(1, • • • ,(n. As mentioned in [13], for a wide class of iteration methods for 
the simultaneous determination of polynomial roots the following relation 

Can be derived: 

(77L-1-1) 	 (en,)) q  E a . 	 (i  = 	... ,n ) ,  
Et 	= at 

i=1 

( 9 ) 

where ai and Oij  are complex constants and q > 1 is integer. In that case 

following general convergence theorem has been proved in [13]: 

Theorem 1. Suppose that a polynomial P has only simple roots ( 

and starting approximations z(1°)  , . , zT )  are reasonably close to these roots. 

Further, assume that r(j,m,h) is bounded for all j = 	n and all h = 

1,.., k. Then the asynchronous algorithm (2) for which the relations (9) are 

valid is locally convergent with the order of convergence at least riA(q)> q, 

where n ii (q) is the unique positive root of the equation 

(8) 

(10) nr+1 qnr 1 = 0, r = max r(j,m, h). 
jon,h 
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In this section we give a convergence analysis of the asynchronous Halley-
like root finding method and its efficiency compared to the synchronous 
implementation. Hypercube topology will be considered as the most efficient 
network topology for this kind of problems. 

Halley-like method for the simultaneous approximation of all zeros of a 
polynomial P of degree n has been considered in [14] and [11]. For simplicity, 
the approximations zr-r)  to the roots ( 1 , 	,(„ at the iteration step m 
will be shortly denoted with zi if r = 0 and z; if r > 0. According to this 
notation we introduce the errors c i  = zi  — (i  and E; = z; — 	The new 
approximation zion+i) 

will be denoted with Zi  and the corresponding error 
with Ei = Zi  — 	Besides, we define the sums 

the abbreviations 

aii 

and the function 

Then Halley-like method 

or in the form 

zi = z t  

n 1 
= (i = 1,... , n; 	) 	= 1, 

= 	1 , • • • 	, 

bii = 2zi  — zj — 

P"(z) 

2), 

. . 	, n) (11) 

(12) 

E (zi  _ zty, 
1 .1 	3 
J#. 

71 1 
= 

zi  — 
i =1 

i0 . 

= (zi  — 	)(zi  — z;), 

131 (z) 
f(z) = 

P(z) 	2 1-"(z) .  

reads: 

1 

Azi) 	P(zi) 
(i = 1, . s 	. 1 [92 

 I, ' 	2,1 -I 

2P(zi ) 

2P' (zi) 

P(zi) 

[ 

P I (Zi)] 2 	PI (.24 2  — P"(ZOP(Zi) 	_ 2  
. 

— 52 i 
P(zi) 	 P(Z02  

By the way, we observe that the function f in the denominator of (11) 
appears in the well-known Halley iteration formula 

1 
= z 

f(z) 
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for the determination of a single root. 
In the following we will show that the asynchronous Halley-like method 

(11) belongs to the class of methods for which the relation (9) holds, which 
means that Theorem 1 can be also applied to this method. For that purpose 

we use the identities 
131 (z)  v. 1  

P(z) 	z — (j 

and 
pi(z)2 -  P"(z)P(z)  _ 	1  

	

P(z)2 

	,z 

(j)2   
j=1 ( 

TL 

which can he easily derived by logarithmic differentiation. 

First, from (13) we have 

2f"(zi)  = 2 (  1 	1  ) = 2  (1 + 

P 	 i(zi) 	— 4,i 	 z — 	c i  
0i 

and 

( 71 

i  P(Zi )\ 2 — S2 . 	 1 	 1  

) 2  P(zi) ) 	 E z. (• 

2  

	

3 	jOi 

= (I 	---+ (7 

(Lii) Ei 

Using the identity (14) we find 

	

71 	 1 	1 	bij 

	

pi( zi  )2 1,11(Zi)P(Zi)  S2,t  = E 	 

	

2  	z3 )2 - 	doi at • ( 	
.4. k zi 37- 1  

P(Zi)2 	 zi — (j)  2.1 

According the two last relations we find from (12) 

2( 
1

— + 

= Z2 	($ 	1 	 1 	 bije; 

	

E • ;( ) (-1  + 	+ Ei,i) + — Ejoi 	2 
f 	3° 2  a t. i 	ci 	 E i 	aij 

(13) 

(14) 
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= Ez 

2Ei(1 	fiEi,i) 

 ll (1 - E 	fi 	+ 1 — Ei2  E bijE3 . aii 	 a?• 
jOi 

2fid-2qE1i  
Ej 	 bi  

L F 	i •- 	 aii 

that is, 

Ei = E, 

Let Gii  denotes the denominator in the last relation. After short re-
arrangement of the previous relation we obtain 

0.  
b•

.1] 
• '! 1 , 

E ' ii = ---- { ,51 i — Ei,i — E --i-( – Ei[(S1,i + El ,i) 	—H-E 	"2. (15) Gi; 	, 	 aii 	 a 	iij 	. . a i  .ii 	 ?#z 	302 
Since 

	

e 	1 	 2-; - 
Sl,i 

 
-Ei,i - 2_ 	= E     = Q 

	

aij 	(zi — z 	zi  — 	(zi  — z;)(z i  — (i) 
3  

from (15) there follows 

E  

	

= _ 	[(si + 

	

a- 	a?. J 
30, 	2.7 37- 2  

or in the form 

Ei = E cij , , with cii = 
jOi 

bii  
a? .G• 3• 2 3 	2 

(16) 

The quantities a%j , bij, 51 ,i and E 1 ,i are bounded, namely aij—> 	— 
(j) 2 , bij 2(6 — while ,51,i and E li  tend to Ej#i((% — (i) -1 . Also, 
assuming that the starting approximations are sufficiently close to the exact 
zeros, the quantities f i  will be small enough so that there exists a positive 
number p < 2 such that > 2 —p. Therefore, ci j  is bounded in modulus; 
hence, the relation (16) is of the form (9) with q= 3 so that we can directly 
applied the assertion of Theorem 1. Thus, the order of convergence of the 
asynchronous Halley-like method is at least y A , where 7/A > 3 is the unique 
positive root of the equation y'•+ 1 — 371r —1 = 0. Since we assume reasonably 
good starting approximations, because of the very fast convergence the total 
number of iteration steps will be rather small (2 or 3 steps in practice). For 
these reason, greater values of r should not be expected. 
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3. Comparison of asynchronous 
and synchronous version 

In this section we present a theoretical implementation of Halley-like 
method (11) on 4-dimensional hypercube with k = 24  = 16 processors where 
the diameter is D = 4. We take a realistic parameters ratio [3] /3,/ra  2---= 10/6 
(dashing horizontal line). The total arithmetic cost of Halley-like method 
is 42n2 ra  o(n2 ), that is, a = 42. Polynomials of the degrees n = 16 (the 
so-called full parallelization when the number of processors is equal to the 
polynomial degree) and n = 30 have been considered. The bound values 
fi c /ra  = 2in2  for these values of 7/ are represented by the full horizontal 
lines in Fig. 1. 

Realistic areas where the asynchronous Halley-like method can be more 
efficient are given by light shaded area for n = 16 and darker shaded area 
(partially invisible) for n = 30. The critical values which determine the 
necessary upper bound ratio Nasy /Ns y n are given by V1  for 7/ = 16 and 
V2 for n = 30. Obviously, a more stronger requirement for the needed ratio 
Nasy  I Nsyn  appears in the case of the higher degree; namely, this ratio is closer 
to 1 when the degree n is higher, which is more difficult to realize in practice. 
Following (8) we find for the worst case model (71A = 3) that the ratio of the 
number of iteration steps Nasy /Nsyn  which provides a greater efficiency of 
asynchronous implementation must be smaller than log 4/ log3 1.26. For 
the considered ratio 13,1r„ = 10/6 this is available (theoretically) if 7/ < 26. 
On the other side, the higher n permits the topology with the greater ratio 
13,/-ra  (see Fig. 1). 

Finally, we wish to consider a more general problem. We recall that 
Durand-Kerner method (with a quadratic convergence) in a synchronous 
implementation have the best performances in a wide class of simultaneous 
methods although it possesses relatively low convergence rate (see [5,7]). 
The following question arises: What is the influence of the convergence rate 
of applied methods in a practical realization when the parallel implementa-
tion is performed asynchronously? In other words, we wish to investigate 
the case when (from (8)) 

Aq 	Nasy 	log 	log(q + 1) < 17,  

Nsyn 	log yA 	I1A(q) 

in dependendence on the parameter q which defines the convergence orders 
of synchronous and asynhronous versions. Here yA (q) is the unique positive 
root of the equation (10) and V is the critical ratio which is the upper bound 
of the possible area of dominance of the asynchronous version (see Section 1 

(17) 
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and Fig. 1). For this purpose, we have solved the equation (10) and found 
the ratio \ q  for the delay r = 0,1,2,3,4 and the entries q = 1,2,3,4 which 
are of a practical importance. The dependence A q  against q with the delay 
r as a parameter is displayed in Fig. 2. 

hypercuhe multicomputer 
k  = 16 processors 

5 

4 

3 

2 

0 

log Pc 
T a 

— 

\(0 

.sN 

1 	- 	

V1 	2 	3 

a2 = 2362.5 
a 

Pc _ 672 
ta 

Ra 
-- 103/ 6 

Nasy 
Nsvn 

Fig. 1 Dominant areas of Halley-like asynchronous method 
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Fig. 2 The ratio of the iteration steps as a function of the convergence order 

From Fig. 2 we observe that, for all r, that the ratio A q  of iteration steps 

is smaller for a greater q, that is, in the case of methods of higher order. 
But, under fixed real network performances, a smaller ratio A = Nasy/Nsyn 

means that the inequality (8) (and, accordingly, (17)) is feasible much easier. 
Hence, the possibility that an asynchronous algorithm be more efficient than 
the corresponding synchronous algorithm is greater if the basic method has 
a higher convergence order. This fact gives a slight advantage of Halley-like 
method (which is of the fourth order) compared to Durand-Kerner method 
(quadratic convergence) and Ehrlich-Aberth method (cubic convergence) but 
only in the case of the asynchronous implementation. 
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Geometry. Computer Sciences 

ASYNCHRONOUS METHODS FOR SIMULTANEOUS 

DETERMINATION OF POLYNOMIAL ROOTS 

S. Triakovie, M. Trajkovie and M. Petkovie 

ABSTRACT. In this paper we present the implementation of simultaneous method for the 
determination of polynomial roots on a distributed memory multicomputer. The total cost 
of such a parallelization per iteration is the sum of a computation time and a commu-
nication time needed for a total exchange of the data at each iteration step. In order to 
decrease the communication time, an asynchronous implementation is considered. The 
computation of the root approximations is still shared among processors but the updat-
ing is performed using only nearest neighbor communications. The price to be paid to 
decrease this time consists in reducing the order of convergence of asynchronous meth-
ods. A general theorem which consider the lower bound of the order of convergence is 
given. Also, the computational efficiency of the synchronous and asynchronous versions 
are studied in the case of hypercube topology. 

1. Introduction 

Mathematical models in scientific engineering including digital signal pro-
cessing or automatic control reduce to the problem of finding roots of poly-
nomials with degree 100 and higher [15,16]. In these cases the parallel 
processing becomes of great interest to speed up the determination of roots. 

In practice, all methods for finding polynomial roots can be divided (al-
though not strictly) in three classes: analytic, geometric and algebraic. Par-
allel implementation of geometric or algebraic methods often requires fine 
grain parallelism (see, e.g. [2,17]). On the other side, the multicomputers 
are rather composed of a network of processors with distributed memory 
which assumes their coarse grain parallelism. For this reason, we are inter-
ested here in analytic methods and their application on a distributed MIMD 

1991 Mathematics Subject Classification. 651105, 65W05. 
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machine. Moreover, we will restrict our study to iteration methods for the 
simultaneous calculation of all roots of a polynomial. As it is well known, 
these methods run in several identical versions so that they are very suitably 
for the implementation on parallel computers (see, e.g., [6,7,8,9,11,12,13]). 
All n roots are found simultaneously, n versions of the same algorithm can 
be run on a Multiple Instruction/Multiple Data (MIMI)) parallel computer 
consisting of k (< n) processors. The main advantage of parallel implemen-
tation is that a great deal of computation can be done simultaneously. The 
details concerning an application of simultaneous methods on parallel com-
puters, including an analysis of total running time of a parallel iteration, the 
determination of the optimal number of processors as well as experimenta-
tions, may be found in [6,7,8,9]. 

Many of the simultaneous methods can be written in the form 

z ( m+ 1)  = F(z( m ) ), 	 (1) 

where F is an operator in C7, , z(m) = (A m) , 	is a vector of approx- 
imations to the roots (1 , ...,(n  of a given polynomial P of degree n with 
any initial vector z (°). In this paper we will always assume that the initial 
vector z(°) is chosen so that all z ni' ) 's tend to the (i's (i = 1, ...,n). For 
the construction and a detailed study of simultaneous methods see the book 
[18] 

As we have noted, we are concerned with the distributed memory multi-
computers. Such parallel computers are modeled by a connected graph. The 
vertices of this graph are the processors and its edges are the communication 
links. The exchange of data between two nodes which are not directly con-
nected must pass through different other nodes. Hence, the communication 
strategy has a great influence to the efficiency of the applied method. Our 
aim is to establish such a strategy which will decrease the communication 
time and, at the same time, preserve the computational efficiency of the 
implemented method. 

In practice, the implementation of simultaneous methods on parallel com-
puters is usually performed by three standard network topologies: rings, 
torus and hypercubes. In short, the model is as follows: k is the number of 
processors connected through a regular graph of diameter D and degree d. 
The exchange cost of length L messages between two neighbor processors is 
the sum of a start up /3, and a propagation time proportional to the message 
length LTc , that is Tone-to-one = Oc Ll-c . Furthermore, one assumes that 
a processor can communicate simultaneously with all its neighbors (link-
bound model), and that the links are full duplex. The arithmetic cost is 
modeled by the computation time ra , where ra  is usually the mean of a 
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floating point addition and the floating point multiplication. Typical values 
of 7-,,ra  and ,8c  for several types of multiprocessors can be found in the paper 
[4]. We emphasize that in our analysis the times for computing the starting 
points and checking the stopping criteria will be neglected. Accordingly, the 
computational cost of algorithms is the sum of a computation time with a 
communication time. 

The investigation based on the parameters r a , Ta  and /3, shows that the 
network topology has a great influence on the global cost of parallel methods. 
It has been shown in [7] that, among three mentioned standard topology, 
the hypercube is the best topology and the relation 

	

phypercube < T.torus 	,ring 
total 

	

-"total 	total 

holds. Another advantage of the hypercube topology appears when full 
parallelism (the degree of a polynomial is equal to the number of processors) 
is available. Namely, the communication time of an iteration grows linearly 
with the degree on a ring of processors, with the square root of the degree 
for a torus, but only logarithmically on a hypercube. 

2. Implementation of synchronous methods 

Before demonstrating the strategy which decreases the communication 
time, we present the implementation of so-called synchronous parallel 
methods (like (1)) [8,9]. The term "synchronous" does not refer here 
to the control mode of the multicomputer, but refer to the structure of 
the algorithm. Actually, considering the iteration formula (1), the next 
approximate vector z(" 1 + 1 ) is calculated using the most recent components 
of z(m). 

In the parallelization of the parallel algorithm (1) we assume that the 
number of processors k (< n) is given in advance. The starting vector z(°) is 
computed by all the processors P 1 , , Pk using some suitable search proce-
dure (see, e.g., [5,10,14]). Furthermore, each step of the algorithm consists 

in sharing the computation of n improved approximations z1 m) , ,zfr" ) 
 among the processors and in updating their data z(7") through a broadcast 

procedure (shorter BCAST(z ( m ) )). As in [7], let /1 , , Ik be disjunctive 
partitions of the set {1, 	, n} where U/j = {1, 	, 	To obtain good 
load balancing between the processors, the index sets 	, Ik are chosen 
so that the number of their components w(h) 	= 1, 	, k) is determined 
as w(I) < 	. At the m—th iteration step the processor Pi (j = 	k) 
computes zi  for all i E Ij by the iteration formula (1) and then it transmits 
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these values to all other processors using a broadcast procedure (referred to 
as BCAST(z ( m ) ). The program terminates when some stopping criterion 
(referred to as STOP(z(m))) is fulfilled, for instance, if 

max IP(z.(i m) )1 < 
<i<n 	- 

for a given sufficiently small b. According to the previous we give a program 
in pseudocode for a parallel implementation of a simultaneous method (1) 
(following [7]): 

Program SYNCHRONOUS SIMULTANEOUS METHOD 
begin 

for all j = 1, . . . , k do determination of the starting 
approximations z( ° ); 
in := 0 
do 

for all j = 1,... ,k do in parallel 
begin 

(*) 	 Compute z! m+1)  := Fi (z(")), i E 

(**) 	 Communication: BC AST (z(m+ 1 )); 
end 
in :=m+1 

until STOP(z(m ) ) holds true; 
OUTPUT z( m )  

end 

As it was presented in [18, Ch. 6], the number of basic arithmetic opera-
tions for a wide class of simultaneous iteration methods can be given in the 
form 

N(n) = ant  + On + y, 

where n is the polynomial degree and ct, 0 and -y are integers. Dealing 
with sufficiently large n' we can take approximately that N(n) = ant 
o(n2 ). Following [8], the total time for the presented implementation of the 
synchronous method can be expressed as the sum of the computation time 
N (n)ra/ k and the communication time D/3, + 0(n/ d)r,, that is 

Tun 7-7  

(cEn2  o(n2 )) 
T c, 	+ 0 (—

n
d) 

Tc . 	 (2) 

From (2) we see that the communication time cannot be neglected; moreover, 
it has a great influence on the total execution time and appears to be a major 
shortcoming of this parallelization of the simultaneous methods. 
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3. Asynchronous simultaneous methods 

In order to decrease the communicate time the following strategy can 
be applied [3,9,13]: In each iteration, a processor does not have to wait 
at predetermined points, for example, the end of the total-exchange, for 
predetermined messages to become available. This type of algorithms is 
called asynchronous by Baudet [1]. The term "asynchronous" only refers 
to the fact that, at each step, the local computation is performed using only 
a part of the global information. An asynchronous algorithm can be modeled 
as follows: 

Assume that the new approximation 4' 4-1)  is calculated by a processor 
Ph, it E { 1, ..., k}. Evidently, this processor must know the value of 4')  and 
(m+1) i

s is calculated by the formula 

where z (711*)  = (z1 711—r(l ' In ' h)) , 	Z(m-r(n ' m ' h)) ). 

( 3 ) 
In (3) z ( m * ) is the vector of the last values zi  known by the processor Ph  at 
step in, represented by zi(m—r(j,m,h)).  Here r(j,m,h) is a delay depending 
on j, in and h and indicating that the processor Ph only knows the value of 
zi computed at step in — r(j,mit). In the sequel, the maximum delay will 
be denoted by r, that is, r = maxj,k,h r(j, mit). 

The presented asynchronous algorithm (3) will run if the following strat-
egy of distribution of the indices is chosen: 

1. 4'4.1)  is calculated by only one processor for all i = 1, ..., n; 

2. r(i,m,h) = 0, that is, the processor Ph must know zi(no  , i E 
I h. 

Hypothesis 1 insures that there is no redundancy in the computation. Hy- 
pothesis 2 has already been discussed and it must be satisfied to provide the 
convergence of the sequence (z! m" ) ). Besides, in regard to Hypothesis 1, this 

implies that at step in, if z' i)  (0 < u < in , i E {1,... , n}) is known by a 
set of processors, its value is the same for all these processors. 

A short analysis given in [9] shows that, excepting hypotheses 1 and 2, 
some additional conditions must be satisfied. Namely, if each processor al-
ways updates the same components, then each processor will know the most 
recent entries of the components which are updated in its neighborhood, 
but the other components will never be updated. This causes that, for each 
h E 11, and at each iteration step in, there exists j such that the pro- 

cessor Ph knows only the value of z .r, that is, r(j, in, 	= in. This fact 

z(--") = Ft(z(,n*)), 
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implies that the convergence is not insured. For this reason the strategy 
of the implementation of asynchronous methods should provide such indices 
distribution that I, be different in each iteration step and the delay r(j, na, h) 
is bounded above by some p < m. If 1(h, m) denotes the set of indices of 
the components updated by the processor P, at step in, then the mentioned 
conditions can be expressed as follows: 

(i) I(h, in) (h = 1, . . . , k) form a partition of (1, ..., n) at each step m; 

(ii) If i E I (h, in), then the processor Ph knows 4 7n) , i E Iii ; 

(iii) For each processor P, and for each component i there exists an 
integer p such that the sets 1(h, in) have the property that the number of 
steps separating two evaluations of this component in the neighborhood of 
h does not exceed the delay p. 

In this way, (i) and (ii) imply that the hypotheses 1 and 2 respectively are 
satisfied, while (iii) provides the convergence with r = p. If these conditions 
are fulfilled, then a a program in pseudocode for a parallel implementation 
of an asynchronous simultaneous method (3) is as follows: 

Program ASYNCHRONOUS SIMULTANEOUS METHOD 
begin 

for all j = 1, 	, k do determination of the starting 
approximations z(°); 
era := 0 
do 

for all j = 1,... , k do in parallel 
begin 

(0) 	 Compute 1(h, in); 
(1) Compute e+1)  := Fi(z ( )), i E 1(h, in) 
(2) Send zi, i E I(h, in), to neighbors; 

end 
m := m + 1 

(3) until STOP(z( 7")) holds true; 
OUTPUT z(m) 

end 

The checking of the stoping criteria (3) is more difficult in the case of 
the asynchronous implementation since there are the possibility that some 
processors verify the stop condition but not the other ones. For more details 
about the detection of termination see [3]. We only note that the step (3) 
has to include such a strategy which synchronize the processors, namely, the 
first processors which terminate may signal the end of the execution to the 
others. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Asynchronous methods for simultaneous... 	 279 

The implementation of an asynchronous method is executed in such a way 
that, at each iteration step, a processor sends the most recently computed 
entries to its neighbors only. As in the case of synchronous algorithm, the 
computation time is again N (qr.,/ k, but the communication time becomes 
0, + 0(n/ k)r, since it corresponds to sending n/k values from each nodes to 
their neighbors in parallel. Therefore, the total time per one iteration step 
is 

Tas y 	 ) Ta f3c + ( re  . 
( an  2  + 0(7/2 	

(4) 

Comparing with (2), we obtain one start up instead of D and a propaga- 
tion time of 0(n/ k) instead of 0(n/d). Thus, the communication cost is 
decreased by (D — 1)/3,+ 0(n/d— n/ k)7-c . However, the order of convergence 
of the asynchronous method is reduced (see the next section), which could 
increase the number of iteration steps. If these two (contradictory) features 
can be balanced in a satisfactory way (by the choice of a suitable network 
topology, a good strategy for the indices distribution and synchronization of 
stop test, and an efficient iteration algorithm), then we can hope that the im- 
plemented asynchronous algorithm be more efficient that the corresponding 
synchronous algorithm. 

4. R-order of convergence of asynchronous methods 

Let 47,n)  = 4 m)  — be the error of an asynchronous method of the form 
(3) which generates the sequences (e) ) of approximations to the roots 

,(„. For a wide class of iteration methods for the simultaneous deter-
mination of polynomial roots (see the book [18]), the following relation can 
be derived: 

(m+ 1 ) = 	(€ 7n)) 9  E. 	(i  = 	
(5 ) 

where c.t i  and 	are complex constants and q > 1 is integer. Then we have 
the following assertion: 

Theorem 1. Suppose that a polynomial P has only simple roots 0, .. • , 
and starting approximations 431 , 	, 4°1  are reasonably close to these roots. 
Further, assume that r(j, 7n, h) is bounded for all j = 1, 	, n and all h = 
1, ..., k. Then the asynchronous algorithm (3) for which the relations (5) are 
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valid is locally convergent with the order of convergence at least 11A, where 

1A is the only positive root of the equation 

nr+1 v.( 1 = 0, r= max r(j,m,h). 	 (6) 
j,,n,h 

Proof. Under the conditions of 
B so that lail < A and I Ni j < B 

absolute error e n, by em = liz(m)  

theorem we can find the constant A and 
. If at the iteration step in we define the 

(II,„, then from (5) we obtain 

	

e m+i < CELEm-, with C = (n - 1)AB. 
	

( 7 ) 

In regard to the assumed closeness of root approximations we can adopt that 

eo  < 1. Then from (7) it follows that the sequence (e m ) tends to zero. 

Let c o  = 0(E), where 0 < E < 1 and let the order of convergence of the 

sequence (em ) be 71A, that is, e m+1 = O (e',i,t1 ). Then 

= (E"'; ), e m _,. = 0 (E"7-r  ), 	(r = 0, 1, 	, 
~ rz

From (7) we obtain 

e„,+1 = 0 (47, ern-r/ = 0 (Eq"';+"7-r ) 

According to the last relation and the fact that e m+1 = 0 (E'V l  ) , by the 

comparision of the exponents it follows 

761+1 = orA  

Hence, 17,4 > 0 should satisfy the equation (6). 0 

Remark 1. Let y(i) = 71T11  - qnr - 1. Since y(q) = - 1 < 0 and 

y(q-1-1) = (q+1)r - 1 > 0, and taking into account that the equation y(ri) = 0 
has the unique positive root, it follows that the order of convergence 71 A  of 

the asynchronous method belongs to the interval (q, q + 1]. Particularly, if 

r = 0 for all i = 1,...,n and in = 0, 1, , which means that we have a 
synchronous method, one obtains the order of this method = q + 1. 

The lower bound of the order of convergence of asynchronous methods 
as the function of the delay r is given in Table 1. We observe that r has 
a very strong influence on the value of the convergence rate so that the 
main problem which has to be solved in the implementation consists of the 
minimization of the delay r. 
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T 

q  0 1 2 3 4 
1  2 1.618 1.466 1.380 1.325 
2 3 2.414 2.206 2.107 2.056 
3 4 3.303 3.104 3.036 3.012 

Table 1 
The lower bounds of the order of convergence of asynchronous methods 

in function of the delay r 

5. Efficiency of implementation 

In this section we will compare the implementation of an asynchronous 
method and corresponding synchronous method on a hypercube multicom-
puter. Let Nsyn  and Nasy be respectively the number of iteration steps of 
a synchronous and an asynchronous method. Evidently, the asynchronous 
method will be more efficient if NasyTasy < Nsyn Tsyn . By virtue of (2) and 
(4) this inequality may be written as follows: 

Nasy  [( an2 +k 0(n2) )ra-Ffic+0(;:)rd < Nsyn  [( an2 +k 0(n2) )ra-FDfi c +0(!(11 )re]. (8) 

Since the relation /3 >> re  generally occurs ([4]) on distributed memory 
computers, the inequality (8) becomes 

an 
Nasy 

IVsyn < 

	

2 	fic  
+ D— 

	

k 	Tn  
an 

	

2 	0,  
+ 

	

k 	ra  

(9)  

(10) 

This inequality will be considered together with the condition 

0,
< 
 ant 

Ta 	k 

Namely, if /3,/ra  > an2 1k, then it could be 
the synchronous implementation (see [8]). 

Eventual validity of the inequality (9) can 
13c ical interpretation in the plane (— Na s

' , —). 
Nsyn  Ta  

faster to use less processors in 

be suitable verified by a graph- 

A typical graph is displayed in 
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Fig. 1. The intersection of the curve 

ant ( i  Nasy 

 k 	Nur, 
=  	 (11) 

Ta 	Nasy D  
Nsy n 

and the horizontal bound line Odra  = an2 /k, which are obtained from 
(9) and (10) taking the sign "=" instead of "<", gives the area where the 
asynchronous implementation could be faster (shaded area). Of course, this 
area will be feasible only if the network topology is such that the ratio 
Odra  (dashing line on Fig. 1) is smaller than the bound value an 2 /k (full 

horizontal line). In fact, the realistic area where the asynchronous algorithm 
could be faster is bounded by the curve (11) and the realistic parametric 

ratio R 0,Ira  (darker shaded area). This ratio usually belongs to the 

interval [10 2 ,103] (see [4]). But, these conditions are not still sufficient. Let 

V is the critical ratio which is given by the absissa of the intersection of 

the curve (11) and the dashing line, that is (from (9) for )3,/r a  = R), 

an2  

= 
+R 

Then the asynchronous implementation will be more efficient only if the ratio 

Nasy/Nsyn can be realized in practice, that is, if N asy /Nsyn  < V. 
We give a short analysis for a theoretical value of the ratio Nasy lNsyn  

taking into account the accuracy of the initial errors le — ( i l, the required 
accuracy S and the orders of convergence 11A and /is of the asynchronous and 
synchronous methods respectively. Besides, we assume that (complex) roots 
of tested polynomials are normalized to lie in the unit disk. In that case, a 
stopping criterion can be given by 

max lz,(!n)  — (il < = 10 -11 , 
1<i<n 

where m is the iteration index and v is the number of significant decimal dig-

its at the approximations 4m) , ... If lzr — (il = 0(10-1 ) and n  is the 
order of convergence of applied simultaneous method, then the (theoretical) 
number of iteration steps, necessary for obtaining the accuracy 6, can be de-

termined approximately as m log v/ log II  (following from 10' = 10 — n m ). 

According to this we could expect that the ratio Nasy /Nsyn  be approximately 

Nasy 	log 115  
Nun  log 

+ DR 

an2  

(12) 
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log Pc 
ta 

4 

3 

2 

1 

0 
	

V 2 
	

3 	4 

Fig. 1 Dominant area of asynchronous implementation 

Finally, from a theoretical point of view, an asynchronous method will be 
more efficient than the corresponding synchronous method if 

+ DR 	D  —1 log lis/ log ?TA <  V  = k  = 1 + 
an 2 	 an 

+ R k 	 TV +1  
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COMPUTING PSEUDOINVERSES USING 

MINORS OF AN ARBITRARY MATRIX 

Predrag Stanimirovie 

ABSTRACT. In this paper we establish a general determinantal representation of gener-
alized inverses in terms of minors of an arbitrary matrix of an adequate order. Then we 
obtain a general algorithm for exact computation of different classes of pseudoinverses: 
Moore-Penrose inverse, group inverse, left, right inverses and Radio's and Stojakovie's 
inverse. In this way, this paper is a generalization of an earlier paper [12], where an 
algorithm for computing of the Moore—Penrose inverse, Radio's and Stojakovie's inverse 
is described. We also give some examples which illustrate our results. 

1. Introduction 

Let Cr xn be the set of m x n complex matrices whose rank is r. Con-
jugate, transpose and conjugate-transpose matrix of A will be denoted by 
A, A T  and A* respectively. Submatrix and minor of A containing rows 

ai...at , a t  and columns 	will be denoted by A [01... ot  and 

A (TT: ../3att  ) respectively, and the algebraic complement corresponding to 

the element aii is defined by 

	

a -1 i 	+1 ••• at 	 ai ••• Cap-1p-1 a5+1 ••• at 

Air (73: •••••• 4-1 j 14%1 • • • Of ) 	( —1)59+  q A ( 131 • • • N4 -1  t3q +1 • • • 13t) 

	

For any matrix A E 	xn, consider the following equations in X: 
(1) AX A = A (2) X AX = X (3) (AX)* = AX (4) (XA)* = XA 

and if m = n, also 

	

(5) 	AX = X A . 

1991 Mathematics Subject Classification. 68CO5, 15A09, 65F05. 
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286 	 P. Stranimirovi6 

For a subset S of {1, 2,3,4, 5}, the set of matrices G obeying the conditions 
represented in S will be denoted by A{S}. A matrix G E A{S} is called an 
S-inverse of A and is denoted by A(s). In particular, for any A E  cm x n 

the set A{ 1, 2,3,4} consists of a single element, the Moore-Penrose inverse 
of A, denoted by At [9]. In the case m = n, the group inverse, denoted as 
A#, of A is the unique {1,2,5} inverse, and exists if and only if ind(A) 
min{k : k > 0 and rank(Ak+ 1 ) = rank(Ak)} = 1. 

The starting point of the investigations of this paper is the determinantal 
representation of Moore-Penrose inverse, studied in [1], [2], [3], [4], [8]. The 
main result of these papers is: 

Theorem 1.1. Element at s)  - lying on the i-row and j-column of the Moore-
Penrose pseudoinverse of a given matrix A E ermxn  is given by 

71 (ai 	) A  al j 	) 

1< th 	<n 	\..01 ••• ••• 	" 	
. 

 
( 1<i<n 

aii 	
 — 	

Tirvi ••• "Yr \ A  01 • • "Yr \ 	 1<j<m ) • 

i<6.1<...<6r<n A \61 ... 6r I 	51 ... ör 

1-y1<••••<ry,• .Ztn 

Determinant al representation of the Group inverse of a singular n by n 
matrix is introduced in [7]: 

Theorem 1.2. The group inverse A# = (4) of A E C 1xn  has the follow-

ing determinantal representation: 

150, 1 <...<a r <n AT  Gali ::: ii ::: °I.3: ) 11"' ( 73: ...• ii ... c,;: 
at  = -1.0,.<•..<0,-Zn  

AT  in ••• 'Yr ) A ( -31. ••• 'Yr ) 

	

-1<1.1<...<-y,.<n 	k 81  — 6r I  ‘ 61  — S r i*  
15.81<••.5.6rZn. 

For the sake of completeness, in the following definition we unify the 
definitions of generalized inverses introduced by M. RadiC [10], [11], M. Sto-
jakoviC [13] and V.N. Joshi [5]. 

Definition 1.1. Let i, j be integers, 1 < i < n, 1 < j < m. Then the (i, j)- 
th entry of Radie's, Stojakovie's and Joshi's generalized inverse A E q.nxn  

is defined by 

a:3 = 

	

(i' 	** 6 

it 

15.)1 <•••<j<•••<jr <n 	 " 31 

1<ii 
E { - 1}. 

+...+«,-)+01+•••+00 A ( 	r a 
P1••• 11cOli‹...<ar<Th. 
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For f  =  1, we get StojakoviC's definition, and for E = 
— 1, we get RadiC's 

definition. 

Now, we describe the main results of the paper. First we define a general 
determinantal representation for the Moore-Penrose, group inverse ,  and the class of left and right  generalized inverses. Later we describe algorithms for 
exact computation of generalized inverses based on the introduced deter-
minantal representation. Finally, we give several examples which illustrate 
presented theory and algorithms. 

2. General determinantal representation 

According to Theorem 1.1, Theorem 1.2 and Definition 1.1, we define 
a general determinantal representation which includes the determinantal 
representations of the  Moore-Penrose  pseudoinverse and the group inverse. 
Also, this determinantal representation represents the class of left and right 
inverses for full-rank matrices and generalized inverses introduced by M. 
StojakoviC, M. RadiC and V.N. Joshi. 

Theorem 2.1. For A  E C"'  determinantal representation of an (i, j)-
element of an arbitrary le ft and right inverse, the Moore-Penrose pseu-
doinverse, the group inverse, Radie's and Stojakovie's inverse is 

	

Ti (ai ..• j  ••• at )A (

01 	0t 
 ai •••  j  ••• at ) 

1 <01  <...<0,<n 	01 	0t 	' 1   

<ai<•••<at  <m 
Rol .•• 7e ) 	Y1  ••• 

k 
 

1 <61<...<5,<n 	61  ••• 64 	61 ••• 6s 1 
1 	<...<"yt  <m 

where R E Crmxn and t = r c (A) < r <  min{m,n} is the greatest integer 
which ensures DET( R ,t) (A) #  0. 

For the briefness sake, we denote the numerator of the expression (2.1) 
by A1 13. 't)  and call it the generalized algebraic complement corresponding to 
element a ii . The denominator is shortly denoted by D ET(x t)(A), and it is 
called the generalizd determinant. 

Proof. Consider the following cases: 

1. Suppose that t = m < n. Using the Laplace's development for the 
square-minors A ( .711 	), we get 

(2.1) 	gij = 
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[r 

DET(R,m)(A) = E w( j -. ..-. z) E • atj• k  Asj•, 
ii <•••<.i. 	 k=1 

n  'E E 
1= 1 	I ji <•..<jm 

A".11 	I 

1) = 

n 

ail A(iiR'rn) 
1=1 

For two integers p # q, 1 < p, q < rn, substituting in the minors of A 

the q-th row by the p-th row, and using 

DET( R , m )(A) = 	E 	••' ) A ( 	Tn  = 0,
1 31 ••• 3m 	31 ••• 3m 

31<•••<im 

1=1 
gij= 6ij DET(R, m )(A), and consequently A • Ai -Ftl 	= 	for arbitrary R. 

It means that 	 m) 24-1(R 	represents the class of right inverses of the full-rank 

matrix A. 

On the other hand, it can be proved that A(R1 .) , in the case t = n < m, 

represents the class of left inverses of A. Now, it is obvious that (2.1) 

represents the general determinantal representation of right/left inverses of 

a full rank matrix A. 

2. For R = A, we obtain determinantal representation of At, presented in 

Theorem 1.1. In this case, r c (A) = r, which represents the known result in 

[4]. 

3. If m = n, ind(A)= 1 and R = A* the determinantal representation of 

the group inverse is obtained (Theorem 1.2). 

4. If r = re(A) and a matrix R satisfies condition 

T? ) = K • t(i14---Fir)+01+..•4-jr) where  K E C, E — 1 , 1 , 

( 1) 
for all combinations 1 < i 1  < 	< it  < in; 1 < j1  < 	< jr < n, 

then, in the case c = 1, the inverse A(1 0  is equal to the StojakoviC's inverse 

and reduces to the Radii's inverse in the case e = —1 (Definition 1.1). 

5. If A is regular square matrix, then (2.1) reduces into the well known 
inversion of regular square matrices, for an arbitrary regular matrix R of an 

adequate size. 	❑ 

Note that the partial cases 4. and 2. are studied in [12]. 

The relation E a A (R' rn)  = 0 can be proved in the same way. Hence, _ pi_ ig  

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Computing pseudoinverses using... 	 289 

3. Algorithms 

In this section we give a high-level description of the algorithms for com- 
puting generalized inverses. Theoretical base of these algorithms is contained 
in Theorem 2.1. 

In all presented algorithms complex and rational numbers are represented 
by an adequate union in programming language C, called the internal form 
of numbers. The internal form of a given matrix A is the two-dimensional 
array or the binary tree of the internal forms of the elements of A. Addition, 
subtraction, multiplication and division of complex or rational numbers in 
the internal forms are denoted by €1) e 	0,  respectively (so called 
makrooperations). 

Various implementation details about the generating combinations are 
presented in [6]. 

Here presented procedures receive the following global parameters: 
o S: the actual value of  DET(Rm(A). 
o p(1 : n), q(1 : n): The sequences representing combinations of rows 

and columns of A  respectively. 

Now, we describe algorithm for computation of DET( R , k )(A) of a rectan- 
gular matrix A E Ck" k  , such that r c (A) =  k. In the algorithm a combination 
1 < q1  < 	< qk < it  of rows or columns of A is fixed. 
procedure D 1  (n,k,x,y,1g) 

o n, k < n: The number of rows and number of columns. 
o x, y: The internal forms of A and R respectively. 
o lg: The indikator. 

begin 
Step 1: p(1 : k) 	(1 : k)  ; 
Step 2: A while  cycle which terminates when all the combinations 

M= 

Step 

A [ Pi' 

A 

A 

2.1: 
1 < pi  < 

::: 	i:1, 

[ 1 19i 	 :::  pkk  1, 
[  Pq: ::: Pq:1 

Compute 
<  pk  < n are generaed. 

det(M) and det(M1 ), 

lg  =  1  
1g  = 2 	Ml  = 

, 	lg  = 3 

using 

R L 

R  

R 

x and 

...k J ' k 1 

	

1. pi 	Pk  

{

Pi Pk 

ql qk 

y, where 

19= 1 

lg = 2 

=  3 .  

Step 2.2: S 	S det (M 1 ) det(M). 
Step 2.3: Generate  a  new combination 1 < p1  < 	< pk < n. 

end D1 
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In the following procedure D2 is described the algorithm for computa-

tion of DET(R,i)(4), where A E C"a " n  is a matrix, such that 1 = rc (A) < 
min{m, n}. The main part of this algorithm is a cycle generating all combi-
nations 1 < ql < < qi < n and calling the procedure D 1 (m,1,x,y,3). 

procedure D2 (m,n,1,x,y) 
o in, n : The number of rows and the number of columns respectively. 

o / = re(A) < min {m, 
o x, y: The internal forms of A and R, respectively. 

begin 
Step 1: q(1 : /) 4-- (1: /) ; 
Step 2: An while cycle, which terminates when all of the combinations 

1 < ql  < 	< qi < n are formed. In the cycle perform: 

Step 2.1: D1 (m,1,x,y,3); 
Step 2.2: Generate a new combination 1 < ql < 	< qi < n. 

end D2 

Finally, the algorithms D 1  and D2 are used in the following procedure D, 

which computes DET( i, t )(A), for t = rc (A). 

procedure D(1,m,n,x,y) 
o 1= rc (A): Dimensions of square submatrices of A and R. 

o m, n : Dimensions of the given matrix A. 

begin 
S 	0 
if / = n < m then 	D 1 (m,n,x,y,1) 

else if 1 = m < n then 	D i (n,m,x,y,2) 

else 	D 2 (m,n,1,x,y) 
end D 

In the following procedure I, we describe the algorithm for exact compu-

tation of generalized inverses. 

procedure /(m,n,x,y,G) { Computing the generalized inverse G of A.} 

o in , 
n : The number of rows and number of columns of A, respectively. 

o x, y: The internal forms of A and R, respectively. 

o G = (g,j ) : The internal form of computed generalized inverse of A. 

begin 
Step 1: t 	rank(A) + 1 

repeat 
t 4--  t - 1; 	D(t, m, n, x, y) 

until S# 0 
Step 2: p(1 : t) 	(1 : t) ; 	q(1 : t) 	(1 : t) ; 
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Step 3: 
for w= 1:n do 
for v = 1 : m do 

Step 3.1: suma 	0 
Step 3.2: 

A while cycle over the combinations 1 < p l  < 	< pi  < m 
A while cycle over the combinations 1 < q l  < 	< qt  < n 

In the while cycles perform step a, step b and step c. 
Step a: if (q[k] = w) and (p[1] = v) then 

{1 < k < t , 1 < 1 < t} 
Step a.1: Form R [ p ' q 	Pq:], A„„, { qPii 	Pq: , using y and x. 

Step a.2: 	suma 	su 	 pi .•. Pt ) soma( })R ( Pq: :;:) Avw ( qi  q, 

Step b: Form a new combination 1 < q l  < ...qt  < n 
Step c: Form a new combination 1 < p l  < ...Pt  < m 

Step 3.3: gw, 	suma 0 S 
end I 

4. Numerical examples 

If a matrix R runs over the set of m by n matrices, in (2.1) we get various 
definitions of generalized inverses. 

1. If r = re(A) and a matrix R satisfies condition (1), then A -1  is ASR 
equal to the Stojakovie's inverse, i.e. the equivalent Joshi's inverse, in the 
case e = 1 and the Radio's inverse, in the case e = —1. 

11 	23 

For example, consider the matrix A = (  2 15 1) 

3 	2 234 
. Using R = 

20 — 7 233 (2 0 —2) k 1 1 0 we get the following Stojakovie's inverse of A: 

6  

	

440191 	9  

	

1 	1320573 

( 

	

A1 — 	139335 	366975  

	

(R,2) — 	88288200133388 	44 

	

522 	113722000571 079351 

Using fixed point representation for the elements in A, i.e. 
A=  (5.50000000000000000 1.53333333333333344 1.000000000000000001 

k 0.14999999999999999 —0.28571428571428569 1.00429184549356232) 
and the same matrix R we get the following Stojakovie's inverse of A: 

0.1331240302505049270 —0.4693265726317288330 
ASR 	( •0 0.1582665252129189510 	0.8336722013853078430) (R 2) = 	 . — 

	

0.0251424949624140422 	1.3029987740170365700 
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292 	 P. Stranimirovie 

2. Furthermore, if R = A satisfies (1), then 24-R r)  1  = At, and both gen-
eralized inverses are identical to the Stojakovie's or the Radio's generalized 
inverse. 

5729 	5729 
1 	327 	327 

Concertly, for R = A = 

	

n  5729 	5729 

	

327 	327 we get the following 

5729 	0 -5729 
327 	 327 

Moore-Penrose inverse of A, which is identical to the Stojakovie's inverse of 
A: 

A -1  = At = (R,z) 

( 2008044837  
256295929 

2008044837  
256295929 

0 

0 

2008044837  
256295929 

2008044837  
256295929 

2008044837  
256295929 

0 

2008044837  
256295929 

3. If A E en" and R = A we get A (-11 7)  = At. 

	

175 	175 

	

(23 	° 	23 
175 

0 1  
For example, if we use R = A = 	175 	13 	52235 	, 

	

46 	13 	46 
175 

	

0 	1 	23 13 

then is obtained 

192878339 201395239 4258450 201395239 
497627891 995255782 497627891 995255782 

A -1 	= At = (R,2) 
1684865000 1263648750 421216250 2263648750 
497627891 497627891 497627891 497627891 

655721205 1075979571 1281633260 1075979571 
497627891 995255782 995255782 995255782 

4. For a square matrix A, such taht ind(A) = 1 and R = A* we get 
A-1 m) = A#. For example, let (R,  

21.93 - 3i 4. 
275 

9.13570 + 2950.847251 
35917 

11.35 35.75 - 2i 0 1257420 
A = 257384 

91584 
12 + 151 

213574 i = 
23 5762403 

183294 
159384 - 135i 109825.23 0.000579 

7359 

Using R = A*, we get the following group inverse, approximately: 
(-0.006 - 0.011i 

A# = 	-0.029 + 0.011i 
167.245 - 23.231i ,  

0.000001 

-0.00003 
0.00002 
0.05330 

+ 0.00001i 
+ 0.00007i 
- 0.392651 

0.000001 

0.000004 + 0.0000011 
-0.000004 + 0.0000011 

-0.0109 + 0.0004i 
0 

-0.0057 

0 
0.00001 

- 0.00073i 
0 

1 ... 0 0 ... 0 

5. For A E Cm"' using R o 
o 
••• 	••• 

.................. 
o 

o o 
••• 	••• 	••• 

o 
o 
••• 

(H, 0) 
 0 0 

E  CmXrt ,  we 

0 ... 0 0 ... 0 
obtain 

0 
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0 I 0 ) 	, 	• the following 

1 00 

000 

and the following algebraic 

A (R 'r) — ii 	— 

Generalized inverse of 

 1 

Computing pseudoinverses using... 

DET(R, r)(A) = 
A  (11  ::.. r ) , 

complement of the element a id : 

	

{ 0, 	 for j > r or i > r  

Ali
(1 	... i 	... r'\ 

	

3 	1 ...i ...r) 	' 	for j, i < r . 

A is equal to 

	

A11 (1 ::.• r ) 	Ad. ( 11  i rr ) 	0 

	

Air ( i i r ) 	Arr ( 1 —r  

	

1...r) 	0 

	

0 	 0 	0 
... 

	

0 	•• • 	 ..d 

0\ 

0 

0 

-6 1  

293 

A(R,r) 

	

— A  (1 	... r) 

	

■ I 	... 	r/ 

	

Concretly, for A = ( U- 

	115 4-'-71 ) 

—3 —3 
12 

56 

	

1 	72 26 and R = 3 
14 	1 
3 	17 

1 	0 

13 

13 
right generalized inverse of  A  is obtained : 

10652600  8558144 	1364947612 

(R,2) — ( 

	

71862350686682429851307 	

80453763 

8939307 

7857808  
6188751 

26817921 

160907526 

1097248 

6188751 

A 	_ 	35980 	3615752 	7448669  

6188751 

0 

0 ) *  0 

5.  Conclusion 

The memory requirements of the above presented procedures for A E 
Crnixn are two r c (A) x r,(A) matrices. The advantage of the presented 
algorithms is in their generality, induced by theoretical weight of Theorem 
2.1. The efficiency of these algorithms is identical to the efficiency of the 
algorithms presented in [12]. 
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ON TRANSLATING MODULA-2 PROGRAMS TO C: 

LOCAL PROCEDURES AND MODULES 

Lehel Szarapka and Dragan Maulovie 

ABSTRACT. This paper demonstrates techniques that enable efficient translation of Mo- 
dula-2 programs to C. It focuses on a key problem that appears during translation: local 
procedures and modules. The techniques are presented via examples. For the sake of 
readability, instead of C a subset of Modula-2 (called Flat Modula-2) is used as a target 
language. 

Introduction 

Modula-2 [1] is a high-level programming language designed by Prof. 
Niklaus Wirth at the ETH, Zurich. Its key design goal was simple and 
elegant support of modular programming which is the most important step 
towards programming in the large. 

C [2] is a low-level programming language designed to help reimplemen-
ting UNIX'. In spite of its consistent inconsistency and poor design, C is 
a wide spread programming language. Because of that, it has been recog-
nized lately as a platform independent assembly language thus giving rise 
to a slightly different approach to compilation: translation to C as a target 
language. Such compilers are more portable than "classic" compilers, even 
those which choose a form of pseudo code as a target language. 

Following the tradition of Algol-like languages, Modula-2 admits decla-
ration of procedures and modules local to other procedures. On the other 
hand, C does not allow declarations of functions local to other functions. 
Thus local modules and procedures present a key problem that a translator 
to C has to take care of [3, 4]. This paper presents a set of techniques that 
solve the problem. 

1991 Mathematics Subject Classification. 68N20. 
Key words and phrases. translation, nested procedures, nested modules. 
'UNIX is a trade mark of AT&T Bell Labs 
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296 	 Lehel Szarapka and Dragan MaAulovi6 

For the sake of readability, instead of C a subset of Modula-2 (called 
Flat Modula-2) is used as a target language. Flat Modula-2 does not allow 
declarations of modules, procedures, types and constants local to other pro-
cedures. Thus, translation of Flat Modula-2 programs to C is an one-one 
mapping and shall not be discussed here because there are several public 
domain translators from restrictions of Modula-2 (similar to Flat Modula-2) 
to C (e.g. [4]). Some examples of translating Flat Modula-2 to C can be 
found in Appendix A. 

The rest of the paper is organized as follows: Section 1 describes two 
major techniques upon which the translation process is based. Section 2 
handles constant and type declarations, Section 3 handles local procedures, 
while Section 4 discusses local modules. Section 5 concludes the paper. 

1. Two major techniques 

The translation process is based on two major techniques: 

(1) globalization of local entities that are not local variables and 

(2) systematic renaming. 
The basic idea is simple: all the local entities (except local variables) are 
taken out of the procedure declaration and are declared globally. This is the 
only way to take care of local procedures and modules. At the same time, 
globalization gives an elegant solution to local type and constant declara-
tions. In order to prevent name clashes, a systematic renaming is performed. 
Because names are of no relevance to the compiler, a brute force approach 
can be employed. We would like to stress that the resulting code can be 
compiled as efficiently as the original code. 

Naturally, several well known techniques are used to support the basic 
ideas: symbol table, extension of procedure signatures, dependency analysis 
... Instead of a formal treatment, the fundamental ideas shall be presented 

through examples. 

2. Constant And Type Declarations 

Constants and types declared in a procedure are taken out of the pro-
cedure and are declared as global entities. For example, see Figure 1 (the 

identifier X' is a renamed identifier X). This is an example that gives also 
a motivation for the approach. The translation process makes procedure Q a 

global procedure. Thus, both constant C i  and type T1 (modulo renaming) 

have to be declared as global entities. 

3. Local Procedures 

Let us recall that all local procedures are taken out of the procedure 
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--+ 

(* Flat Modula-2 code 
MODULE M; 

CONST Co = ...; 
TYPE 7;`, = ...; 
CONST C; = "A"; 
TYPE T1 = ...; 

* ) 

PROCEDURE Q(a : 771; n: CHAR); 
BEGIN 

END Q; 

PROCEDURE P(...); 
VAR 	x : 7'1; 
BEGIN 

Q(x, CI); 
END P; 

END M. 

On Translating Modula-2 Programs to C 	 297 

(* Modula-2 code 
MODULE M; 
CONST Co = • 
TYPE To = 	; 

PROCEDURE P(...); 
CONST C, = " A"; 
TYPE T1 = ...; 
VAR 	x : 7 1 ; 
PROCEDURE Q(a : 7 1 ; 

n : CHAR); 
BEGIN 

END Q; 
BEGIN 

Q(x, CI); 
END P; 

END M. 

Fig. 1: Constant and type declarations 

   

(* Modula-2 code *) 
MODULE M; 

VAR x : 	; 

PROCEDURE P; 
VAR y : ...; 

PROCEDURE Q(z:...); 
BEGIN 

y := ...; 
x := ...; 

END Q; 
BEGIN 

Q (7) 
END P; 

END M. 

 

(* Flat Modula-2 code *) 
MODULE M; 

VAR x : 	; 

PROCEDURE Q(z:...; VAR y : 
BEGIN 

y := ...; 
x := ...; 

END Q; 

PROCEDURE P; 
VAR y : ...; 
BEGIN 

Q(7, y) 
END P; 

  

END M. 

Fig. 2: Side effects 
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(* Modula-2 code *) 
MODULE M; 

VAR x : . 

PROCEDURE P; 
VAR y : ...; 

PROCEDURE Q1(z : ...); 

BEGIN 
y := 

END Q1; 

PROCEDURE Q2(u : ...); 
BEGIN 

Q1(10) 
END Q2; 

BEGIN 
Q1(6); 
Q2(7) 

END P; 

END M. 

 

(* Flat Modula-2 code *) 
MODULE M; 

VAR x : 	; 

PROCEDURE Q1 (z : . . . ; 
VAR y : ...); 

BEGIN 

Y := • • 
END Ql; 

PROCEDURE Q2(u : ...; 
VAR y : ...); 

BEGIN 
Q1(10, y) 

END Q2; 

PROCEDURE P; 
VAR y ...; 
BEGIN 

Q1(6, y); 
Q2(7, y) 

END P; 

  

END M. 

Fig. 3: More side effects 

they are declared in and are made global entities. This raises a couple of 

problems: 

(1) (mutually) recursive procedures and 
(2) side effects. 

3.1. (Mutually) Recursive Procedures. 
Recursive procedures are handled easily, because C supports recursive 

procedure calls. Mutually recursive procedures are detected using standard 
dependency analysis algorithm and are translated to a sequence of C proce-
dures preceeded by a set of prototypes. 

3.2. Side Effects. 
Local variables, of course, remain local. The problem arises when nested 

procedure uses local variable whose nesting level is less then or equal to 
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(* Modula-2 code *) 
PROCEDURE Q; 

Deels for Q 

MODULE M1; 
Consts, Types 4 VarsI 
Procedures 

BEGIN  
I Body of M1 

END Mi ; 

BEGIN 
Body of Q 

END Q; 

(* Flat Modula-2 code *) 
PROCEDURE Q; 

Decls for QI 
Consts, Types & VarsI 
Procedures' 

BEGIN 
Body of Ml 
Body of QI 

END Q; 

On Translating Modula-2 Programs to C 	 299 

Fig. 4: Local modules 

the nesting level of the procedure itself (this situation is known as a side 
effect). After globalization of a nested procedure, local variable declared in 
the surrounding procedure is no longer available to the globalized procedure. 
Consider an example given in Figure 2. Procedure Q changes the variable y. 
After globalization, procedure Q does not have access to variable y. 

The best solution is to extend the signature of (previously) nested proce-
dure and to pass the variables as VAR parameters. This change is recorded in 
symbol table in order to extend the signature in procedure calls as well. In 
our example this means that after globalization another formal parameter 
has to be introduced to procedure Q. 

Unfortunately, the problem is not as simple as it has just been presented. 
There are situations in which a local procedure does not have side effects, 
but it depends upon other local procedures which do have side effects. Sig-
natures of such local procedures have to be extended, too, in order to obtain 
correct translation. These situations are easily discovered (an unavoidable 
dependency analysis does the job), and are recorded in symbol table. As 
an example, consider the module and its translation given in Figure 3: al-
though procedure Q2 does not change variable y, it calls procedure Qi that 
does change the variable. This is why the signature of procedure Q 1 has to 
be extended, too. 
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4. Local Modules 

Local modules serve only one purpose: to regulate the visibility and acces-
sibility of identifiers. Systematic renaming and symbol table book-keeping 
during the translation process can take care of these tasks. Therefore, the 
translation of local modules is straightforward: the module bounds are bro-
ken, the identifiers renamed (having in mind the IMPORT/EXPORT lists) and 
the declarations are included in the surrounding environment. The body of 
the local module is moved to the beginning of the body of the surrounding 
entity (another module or procedure). Thus, the semantics of the initial-
ization part of the module is preserved, as well as the initialization order. 
After all the local modules are removed, previous procedures can be applied 
to flatten the code. All these ideas are demonstrated in the example in 
Figure 4. It shows a procedure and its translation. 

5. Conclusion 

The paper has presented basic ideas upon which a translator of Modula-
2 programs to C can be based. It has payed attention to translation of 
procedures and modules local to other procedures and modules, because 
other Modula-2 language constructs are easily translated to equivalent C 
constructs. Systematic renaming and globalization of local entities have 
appeared as key techniques in the process of translation. 

The translation process requires two passes. In the first pass the symbol 
table has to be constructed and all the dependency analyses performed. The 
first pass can also break local modules and take care of renaming. After the 
first pass has been completed, the code can be generated in the second pass. 
Since all the checkings and analyses have been performed in the first pass, 
the second pass can be carried out very quickly. 

Appendix A: Translating Flat Modula -2 to C 

In this appendix some Flat Modula-2 programs are translated to a C 
equivalent just to give the reader a raw idea how the task can be performed. 
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(* Flat Modula-2  code  *) 
MODULE M; 

CONST C,o  = 
TYPE 7'4  = . 

PROCEDURE P(...); 
BEGIN 

B1 

   

/* C code */ 
#define Ca 
typedef 	7'4; 

void P(. .) { 

 

        

    

} 

   

 

END P; 

   

int main() { 
	

} 

 

 

END M. 

       

         

         

 

(* Flat Modula-2  code  *) 
MODULE M; 

VAR x : 	; 

   

/* C code */ 
x; 

void Q1(... z;  . 

• 	

*y) { 
*y  =  ...; 

} 

void Q2(... u; . 

• 	

*y) { 
Q1(10, y) 

} 

void P(void) { 

Y; 

Q1(6, &y); 
Q2(7, &y); 

} 

int main() { 
	

} 

 

 

PROCEDURE Q1(z:...; VAR y:...); 
BEGIN 

y := 

END Q1; 

PROCEDURE Q2(u:...; VAR y:...); 
BEGIN 

Q1(10, y) 
END Q2; 

   

 

PROCEDURE P; 
VAR y : ...; 
BEGIN 

Q1(6, y); 
Q2(7, y) 

END P; 

END M. 
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DETERMINING MODULE DEPENDENCIES 

IN MODULAR PROGRAMS 

Lehel Szarapka and Zoran Budimac 

ABSTRACT. A short and precise algorithm for determining a module initialization or-
der in modular programming languages is described. This algorithm is compared with a 
classical technique of dependency analysis of module names. It is also shown how an 
algorithm for determining a module compilation order is drawn from a given algorithm. 

1. Introduction 

Modular programming languages enable division of a program into a set 
of modules that limit the scope of their identifiers. In this way is the design 
and maintenance of large programs easier, especially in team projects. 

An identifier from module A is visible in module B if it is exported from module A and imported in module B. Exporting and importing of identi-
fiers is achieved by specialized programming language constructs. Among 
the most popular modular languages (Ada, Modula-2, Modula-3, ...) the 
definition of (every) module M consists of (at least) two parts: 

(1) an interface (or definition module, package specification, ...) of the 
module M, which lists all identifiers which module M exports, 

(2) an implementation (or simply module, package, ...) of the module M, 
which implements (i.e., defines exported identifiers) the interface of 
module M. 

In the rest of the paper we shall assume that a main (i.e., program) module 
contains a "dummy" interface. In this way all modules have interface and 
implementation parts. An implementation of a module can have (possibly 

1991 Mathematics Subject Classification. 68N20. 
The second author is supported by Science Fund of Serbia, Grant #0403 through 
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empty) initialization part: the sequence of statements to be executed before 
the main program starts its execution. 

Both interface and its implementation can import identifiers from other 
modules, via the special language constructs (import lists). The scope of the 
imported identifiers is only the module that has imported them. 

Implementations of truly modular programming languages (Ada, Modula-
2, Modula-3, Oberon, Oberon-2) should keep a complete "bookkeeping" of 
their modules to correctly maintain a module compilation order and initial-

ization order. Implementations of other programming languages that only 
enable independent compilation (C, C++) are usually supported by separate 
utilities (for example make) to do the same task. 

In this paper the algorithms for both activities are presented. It is shown • 
how the algorithm for determining compilation order can be successfully 
drawn from an algorithm for determining initialization order, thus merging 
two activities into only one. The main contribution of the paper however is 
a construction of a small and efficient algorithm that can be included into 
a compiler of a modular language, which precisely determine the module 
initialization order. This is especially important in the presence of circular 
dependencies among modules, where many programming languages allow 
uncertainty. 

The rest of the paper is organized as follows. The second section empha-
siies the importance of the module compilation and initialization order and 
different approaches to its determination. The third section describes de-
pendency analysis - a "classical" technique for determination of dependency 
order. The fourth section introduces the new algorithm, while the fifth sec-
tion compares two approaches. The sixth section extends the algorithm for 
initialization order to an algorithm for compilation order. The last section 
concludes the paper. 

2. Definitions and previous work 

2.1 Initialization order. 
According to definitions of all modular programming languages, an ini-

tialization part of every implementation of a module M is to be executed: 

(1) exactly once, 
(2) after initialization parts of all modules (in arbitrary order) which 

module M imports, and 
(3) before execution of the main program. 

Definition 1. Initialization order is the order in which all modules consti- 

tuting the program are initialized, such that the above three conditions are 
fulfilled. 
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1 

Example 1. Let module A import modules B, C and D, and modules B, 
C and D import nothing (which means, that they are independent of other 
modules.) The initialization order is the following: (B, C, D), A, where the 
order of B, C and D is arbitrary. 

In languages where mutual imports (i.e., circular dependency) of mod-
ule implementations is allowed, the initialization order is undefined (see for 
example [7] and [3] for Modula-2 and Modula-3 respectively.) 

Example 2. Let module A import modules B and D, module B import 
module C, module C import module E and module D is independent. The 
structure of the modules is the same as in Figure 1 except that modules C 
and D are not connected. The possible initialization orders are the following: 
E, C, B, D, A, or E, C, D, B, A, or E, D, C, B, A, or D, E, C, B, A. 
Note that module E is always initialized before module C, and module C 
is always initialized before module B. Module D must be initialized before 
module A. 

In real programming projects, circular dependencies among module im-
plementations are not rare. If in such cases the initialization order is not 
defined, the programmer alone must take care of the correct and explicit 
initialization, to produce reliable and portable code (which is not in the 
"spirit" of modular programming languages.) 

Example 3. Let module A import module B, module B import module 
C and module C import module B (circular dependency among modules B 
and C.) Initialization order is the following: (B, C), A, where initialization 
order of modules B and C is not defined. Note the difference between this 
example and Example 1, where initialization order of modules B, C and D 
was arbitrary (and always correct.) In this example the order chosen by the 
target compiler might be "incorrect", i.e. different from the programmer's 
intentions. 

2.2. Compilation order. 
According to definitions of all modular programming languages, an inter-

face of module M is to be compiled: 

(1) before compilation of implementation(s) of module M and 
(2) after compilation of all interfaces that the interface of M imports. 

Similarly, an implementation of module M is to be compiled: 
(1) after compilation of interface(s) of module M and 
(2) after compilation of all interfaces that the implementation of M im-

ports. 
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Definition 2. Compilation order is the order in which all modules con-
stituting the program are compiled, such that the above four (two + two) 
conditions are fulfilled. 

Example 4. Let module A import modules B and D, module B import 
module C, module C import module D and module D is independent. The 
compilation order is the following: D, C, B, A. 

In order to make a compilation a deterministic process, circular depen-
dencies among interfaces are not allowed. Note that circular dependencies 
among module implementations are allowed. 

Example 5. Let module A import module B and module B import module 
A. In this case the compilation order can not be established, because it is 
not clear which module should be compiled first. 

2.3. Previous work. 
Most of the research and publicly available compilers of modular pro-

gramming languages: 

(1) rely on external tools to establish compilation order and 
(2) separately deal with compilation order and initialization order. 

For example, MOCKA Modula-2 compiler [4] provides a separate utility 
which maintains the dependency graph to establish correct compilation order 
of modules. Modula-2* compiler [6] uses also dependency graph to estab-
lish compilation order, but later relies on Unix make utility to maintain it. 
Modula-2 implementation described in [5] leaves the responsibility of the 
compilation order to the programmer. 

Almost all publicly available compilers implement initialization parts of 
modules as separate procedures which are called in order of their appearance 
in import lists. To avoid multiple calls, an indication variable for every 
module is set to TRUE, when initialization procedure is called. 

Algorithms and strategies for determining compilation and initialization 
order are not publicly available in commercial implementations of modular 
programming languages. 

In the next section we describe in more detail dependency analysis, as 
a tool for establishing correct dependencies. Up to the sixth section, we 
concentrate only on algorithm for determining initialization order. 

3. Dependency analysis 

Dependency analysis is a classical technique applied when exact depen-
dency between some entities is to be determined. As stated in [2], it consists 
of the following three steps: 

(1) construct a directed graph (dependency graph), such that a node a 
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is connected to a node b if and only if the entity a in a real world 
domain depends on entity b, 

(2) find all strongly connected components of the dependency graph, 
(3) sort strongly connected components of the dependency graph into 

dependency order. This is usually achieved by coalescing all compo-
nents into single nodes and by sorting them topologically. 

The graph transformed in the described manner shows dependencies be-
tween entities represented as graph nodes, where all nodes coalesced into 
one node are mutually (i.e., circularly) dependent. More details about the 
construction of dependency order can be found for example in [1] p. 221. 

The graph for determining module dependencies consists of module names 
(as nodes of the graph) and links between them. More formally, the initial 
graph (step 1 of the above algorithm) is constructed in the following' way: 

(1) Construct a graph which consists of isolated nodes Mi, i = 1, ...,n, 
where Mi , i = 1, n are module names, 

(2) Connect Mi  to Ali  if and only if module Mi  imports module M. 
Circularly dependent module names can be initialized in any order (which 
is in accordance with definitions of most modular languages.) 

Dependency analysis is time and space consuming, no matter how effi-
ciently graphs are represented (see the fifth section for details.) Dependency 
analysis is therefore not very suitable in direct inclusion in compilers. In the 
next section we proceed with a description of a more efficient solution. 

4. Another solution 

Basic design decisions of the new solution are: 

(1) In the absence of circular dependencies, dependency analysis is equiv-
alent to (much more efficient) depth-first search of a graph. 

(2) Therefore, circular dependencies have to be resolved in a determin-
istic way, if possible. 

The most natural way to resolve circular dependencies in a deterministic way 
is to establish a precise initialization order. A natural solution is to initialize 
modules in the order in which they appear in import lists. However, the 
rule that initialization of a module must be executed after initialization of 
all imported modules, must be obeyed. For example, if main module M 
imports module A, module A imports module B and module B imports 
module A, then the initialization of module B is to be executed prior to 
initialization of module A. 

Once accepting this principle, an algorithm is simple and straightforward. 
The Modula-2 (pseudo-)procedure Analyzel implements the proposed algo- 
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rithm. The following variables and procedures are used: 

(1) initialization - a list of module names in the initialization order, 
(2) InsertBefore(M ,.Module ,List) - a procedure which inserts module 

name M before the module name Module in a list List, 
(3) Member(M,List) - a function procedure which returns logical truth 

value TRUE if name M belongs to a list List, 
(4) Intf Of (M) - a function procedure which returns the name(s) of the 

interface(s) of module M, and 
(5) ImplOf (M) - a function procedure which returns the name(s) of the 

implementation(s) of module M. 

We shall assume that Intf Of (Impl (module)) is undefined, i.e. returns a 
null value, and that Imp]. ( Impl (module)) rj  Impl (module). 

Prior to calling Analyzei, the list initialization contains only the 
name of a (main) module implementation. The procedure is as follows. 

PROCEDURE Analyzel (module : ARRAY OF CHAR) ; 
FOR every import list of module DO 

FOR every module name M in import list DO 
IF NOT Member(ImplOf (M) , initialization) THEN 

InsertBefore (ImplOf (M) , module, initialization) ; 
Analyzei(ImplOf (M)) 

END 
END 

END 

After procedure Analyzel returns, the list initialization contains the 
list of module names in their initialization order. Note that initialization or-
der depends only on module implementations, and not on module interfaces. 

5. Comparison of two algorithms 

Our algorithm gives the same initialization order as dependency analysis, 
if circular dependencies are not present among modules. However, when 
circular dependencies are present, our algorithm sometimes gives a different 
initialization order than dependency analysis. 

In the example of module dependencies displayed in Figure 1, A imports B 
and D (in that order), B imports C, C imports D and E (in that order), and 
D imports C. Dependency analysis gives the following initialization order: 
E, (C, D), B, A, where the order of C and D is arbitrary. Our algorithm 
however, gives the slightly different, but deterministic initialization order as 
follows: D, E, C, B, A. If the order of imported modules of module C were 
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Figure 1. An example of module dependencies 

changed into E and D (instead of D and E, as displayed), our algorithm 
would give the following order: E, D, C, B, A, which is same as the result 
of dependency analysis, but is deterministic. If A would import D before B, 
the initialization order would be E, C, D, B, A, no matter what C imports 
first, which is again the same as a result of dependency analysis. 

Dependency analysis has a computational complexity of 0(n 2 ), where n 
is a total number of modules. Our algorithm has complexity proportional 
to hn, where h is the deepest possible nesting level of modules constituting 
the program. Since in most cases h < n, the complexity of our algorithm 
is 0(n). Only in degenarate cases (when h = n), the complexity of our 
algorithm is equal to the complexity of dependency analysis. 

However, in reality (i.e., when n is finite) performances of our algorithm 
are much better than those of dependency analisys (and better than com-
putational complexity shows.) In the following table some characteristics of 
both approaches are compared. Compile-time sizes of implementations of 
both approaches are given in the number of lines of source (Modula-2) code, 
while the run-time size is given in bytes. Graphs in dependency analysis are 
implemented as adjacency matrices of static size, but appropriate dynamic 
implementation would not be much smaller. 
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Feature 
	 Dependency 	 Our 

	

Analysis 	Algorithm 

Speed (29 modules) 
	

4.40 sec 
	

0.72 sec 
Speed (21 modules) 
	

3.41 sec 
	

0.55 sec 

Code size (Compile-time) 	555 lines 	85 lines 
Code size (Run-time) 	4450 bytes 	800 bytes 
Data size (Run-time) 	340n bytes 	n+16h bytes 

6. Compilation order 

The algorithm for determining compilation order can be easily obtained 
by the appropriate extension of the algorithm for determining initialization 
order. Since circular dependencies are not allowed in interfaces of mod-
ules, our algorithm will always give the same results as dependency analysis. 
Let us recall that for establishing initialization order only module imple-
mentations are taken into account. In order to produce an algorithm for 
determining compilation order, however, 

(1) module interfaces have to be taken into account as well, and 
(2) a list of visited module names has to be maintained to report any 

violation of circular dependency restriction. 

Besides the already introduced variables and procedures, the following new 
variable and procedures are needed for the implementation of a new algo-
rithm: 

(1) visited - a list of visited interface names which are imported from 
interfaces, 

(2) InsertFront(M, List) - inserts module name M at the front of a 
list List, 

(3) RemoveFront(List) - removes a module name from the front of a 
list List (the above two operations are analogous to the Push and 
Pop operations on stacks), and 

(4) MakeEmptyList() - returns an empty list. 

If the procedure Analyze is to be called to determine compilation order, the 
list initialization has to contain the module name to be compiled. If the 
procedure Analyze is to be called to determine initialization order, the list 
initialization has to contain Impl (module). The parameter check is set 
to TRUE if an interface is to be analyzed. 

At the beginning the list visited is always set to an empty list and is 
made local to the module. This is important because of the detection of 
the circural dependencies. When we analyze an implementation module a 
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new list will be created, and a new compilation order check will start. The 
algorithm for determining initialization order is not affected. 

Because of features of procedures Intf and Impl, the Member (Intf 
(module)) (seventh line of the following procedure) returns TRUE if a mod-
ule is an implementation module (because a null value is a. member of every 
list.) Similarly, FOR loop (18th line of the following procedure) will execute 
only once (for implementation part only). 

PROCEDURE Analyze(module: ARRAY OF CHAR; check: BOOLEAN; 
visited: List); 

IF check THEN 
InsertFront(module, Visited) 

END; 
IF module is animptcnuldation module THEN 

IF NOT Member(Intf(module), initialization) THEN 
InsertBefore(Intf(module), module, initialization); 
IF M1 = Intf(M) THEN 

Analyze (M1, TRUE, visited) 
ELSE 

Analyze (M1, FALSE, MakeEmptyList()); 
END 

END 
END; 
FOR every import list of module DO 

FOR every module mane M in import list DO 
FOR M1 := Intf(M) TO ImplOf (M) DO 

IF NOT Member(M1, initialized) THEN 
InsertBefore(M1, module, initialization); 
Analyze(M1, M1 = Intf (M)); 

ELSE 

IF check AND Member(M1, visited) THEN 
mport circular dependency; 

END 
END 

END 
END 

END; 
IF check THEN 

RemoveFront(visited) 
END; 
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7. Conclusion 

An algorithm for establishing initialization and compilation order of mod-
ular programming languages is proposed. Its main contributions are: 

(1) it establishes both compilation and initialization order; 

(2) it is smaller and more efficient than "classical" dependency analysis, 
and this can be included directly into a compiler; 

(3) it improves the definition of modular programming languages by in-
troducing deterministic initialization order in case of circular depen-

dencies. 
The third improvement of our algorithm over dependency analysis comes 

with a cost of producing (in some cases) different initialization order than 
dependency analysis would. However, according to [8], the emerging ISO 
Modula-2 standard (for example) gives also a clear advantage to the precise 
definition of module initialization order than to a classical (and sometimes 
vague) dependency analysis. 

The presented algorithm can be applied without changes to any modular 
programming language regardless of how many interfaces and implemen-

tations of a module M are allowed. That includes languages like: Ada, 
Modula-2, and Modula-3. In languages like Oberon and Oberon-2, where 
circular dependencies are forbidden in implementation modules as well, a 
slight modification is required. 

The proposed algorithm is included in a Modula-2 compiler, which is 
currently under development at the Institute of Mathematics in Novi Sad. 
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USAGE OF S - EXPRESSIONS AND 

PREDICATE EXPRESSIONS IN 

PROCEDURAL PROGRAMMING LANGUAGES 

Tatjana VukeliC and Mirjana Ivanovie* 

ABSTRACT. 
An extension of a procedural programming language with S-expressions and 

predicate expressions is described. Several examples in the field of graph theory, logic and 
set theory, hash tables, and sparse matrices are presented. 

1. Introduction 

Procedural programming languages are still the most frequently used pro-
gramming languages. However, during the last decade many other program-
ming paradigms (functional, logical, relational, etc.) came into the wide us-
age. Various programming languages and programming styles enable more 
natural and "simpler" solving of various classes of problems. 

Great variety of programming styles lead to development of new program-
ming languages and extensions of existing programming languages. Proce-
dural programming languages are a good base that can be easily extended 
with new concepts and elements. 

To enhance expressiveness of programming language Modula-2 [4], S-
expressions [1] and predicate expressions (some forms of predicate formu-
las) [3] are included into the language. Modula-2 is widely used procedural 
programming language. It has variety of data types and data structures, 
supports structured and modular programming style and forces a program-
mer to write clear and readable code. With proposed extensions, Modula-2 
programs are even more readable, shorter and simpler than their equivalents 
written in "real" Modula-2. 

1991 Mathematics Subject Classification. 68N15. 
* Supported by Grant 0401A of RFNS through Math. Inst. SANU 
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Although extensions described in this paper are part of the extended 
Modula-2 (and are implemented by a translator of extended Modula-2 pro-
grams into the "real" ones,) similar extensions can be achieved by abstract 
data type mechanism or by building suitable function libraries (in Modula-2 
and other procedural languages.) 

In the rest of the paper we shall shortly introduce the basic constructs of 
extended Modula-2 and then proceed with examples of possible applications. 

2. S-expressions and predicate expressions 

In this section an S-expression as built-in data type of extended Modula-2 
and two new language constructs (predicate expressions and FORALL loop) 
are presented. 

2.1. S -expressions. 
S-expressions are basic data structures in some functional programming 

languages. Using Beckus-Naur form, S-expression is defined as follows: 

S - exp 	= atom I "(" S-exp-list ")" 
S- exp- list 	= S-exp I S-exp "." S-exp I S-exp S-exp-list 

atom 	= symbolic-atom I numeric-atom 

numeric- atom = integer-atom I real-atom 

The empty S-expression is denoted as nil. The following two conventions 
hold for S-expressions: 

(1) .nil can be omitted (i.e., need not be written down), and 

(2) . ( and corresponding ) can be omitted. 

S-expression is a built-in data type of extended Modula-2 and is denoted 

as SExp (but it also can be implemented as an abstract data type [1].) SExp 

is supported with the set of primitive functions, predicates, arithmetic op-
erations and input-output operations. 

Examples of possible operations over S-expressions are [2] (for every S-

expression e, e l , and e2): 

(1) Hd(e) - returns e l  if e is of the form: (e 1  . e2), 

(2) T1(e) - returns e 2  if e is of the form: (el . e 2 ), 

(3) Add(ei, e 2 ) - returns the sum of two numerical atoms e 1  and e2 , 

(4) Mul(ei , e2 ) - returns the product of (numerical atoms) e 1  and e2, 

(5) e l  : : e2 - returns a new S-expression of the form (el . e2), 
(6) e 1  ++ e2  - appends two S-expressions giving a new one. 

An empty S-expression is in extended Modula-2 denoted as NULL (i.e., 

NULL is a constant value of the type SExp). Some of the built -in functions over 
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S-expressions could be implemented as operators (function Add, for example 
could be implemented by "overloading" operator +). First experiences show 
however, that chosen set of functions and operators (as presented in this 
section) enables best readability of resulting programs. 

As an example of programming with S-expression, we quote the implemen-
tation of procedure ListOfPair(el, e2: SExp): SExp which returns the 
following S-expression: ( (el e2) ), i.e. ( (el .(e2 .nil)) . nil). 

PROCEDURE List0fPair(el, e2: SExp): SExp; 
BEGIN 

RETURN (el 	(e2 :: NULL)) :: NULL 
END ListOfPair; 

2.2. Predicate expressions. 
Predicate expressions are special kind of expressions [3] based on formulas 

of first order predicate calculus. In an extended Modula-2, they have the 
following form (given in extended Beckus-Naur form:) 

PredExp 	= PredSym Ident {"," PredSym Ident} 
"I" WhereFrom {"," WhereFrom} 
"WHERE" Condition {"," Condition}. 

WhereFrom = Ident "IN" Domain. 
PredSym 	= "EVERY" I "EXIST". 
Domain 	= Ident I Set I Interval I S -exp I Array. 
Interval 	= "[" LowerBound " " UpperBound "]". 

where Condition is a standard Modula-2 expression, whose value is a 
logical truth value. The value of predicate expression has a logical truth value 
as well. Predicate expression can also be implemented as abstract data types 
and supported with suitable functions, but then the corresponding programs 
would be less readable. 

A following predicate expression: 
EVERY x  I  x IN X WHERE Condition 

can be read as "is it true that every x from X fulfills the Condition?" This 
expression returns TRUE if for all elements x from X the value of the (boolean) 
expression Condition is TRUE. 

A following predicate expression: 
EXIST x I x IN X WHERE Condition 

can be read as "is it true that there exists at least one x in X such that 
Condition is fulfilled?" This expression returns TRUE if for at least one 
element x from X the value of the (boolean) expression Condition is TRUE. 
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Predicate expressions can be used with S-expressions, sets, arrays, and 
intervals. Arrays and intervals (i.e., subranges) are the same as in "real" 
Modula-2. Sets are however, more general. The elements of Set in extended 
Modula-2 [3] can be of arbitrary data types (simple or composite) and car-
dinality of a Set is not limited. All the types of set elements must be the 
same (like in "real" Modula-2.) 

2.3. FORALL loop. 
Usage of S-expressions and predicate expressions is immense in various 

areas and in solving of different problems. However, to make this usage 
simpler and more powerful, we introduced a new kind of FOR loop called 

FORALL loop. A new loop could be defined by the following rule of 
extended Beckus-Naur form: 

ForAllLoop = "FORALL" Identifier "IN" Domain "DO" 
Statements 

"END". 

Domain in FORALL loop is the same as domain in predicate expression, 
and Statements are all available statements in extended Modula-2, including 
FORALL. Statement 

FORALL x IN X DO Statements END 
means that statements inside FORALL loop are executed for every element x 
that belongs to S-expression, set, array or interval X. 

In the next section we proceed with some possible applications of S-
expressions and predicate expressions: hash tables, graphs, sets, sparse vec-
tors and matrices. Using S-expressions and predicate expressions, simpler 
and more readable programs are obtained. 

3. Possible applications 

3.1. Hash tables. 
A hash table is one of the most popular structures for fast data retrieval. 

It is most often used with dictionaries. A dictionary is presented as a hash ta-
ble, and consists of n ordered sets. Every set is presented as an S-expression. 
Hash function is a function that transforms a word into a number between 
1 and n. Value of the hash function determines a set that the word belongs 
to. 

Definition of a hash table can be (in extended Modula-2) as follows: 

CONST n = 211; 

TYPE 	HTab = ARRAY ijl..n] OF SExp ; 
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Procedure Initialize initializes elements of a hash table: 

PROCEDURE Initialize(VAR HT: HTab); 
VAR i: [1..n] ; 
BEGIN 

FORALL i IN [1..n] DO HT[i] := NULL END 
END Initialize; 

Procedure Found checks if a word belongs to a dictionary: 
(1) by the hash function HashFun the word is transformed into a hash 

value (number k) 
(2) if the word belongs to the set that contains all words with the same 

hash value k, function returns TRUE. 

In the following procedure we shall assume that the data type String 
exists and that it is implemented as a fixed-length array of characters. 

PROCEDURE Found(Word: String; HT: HTab): BOOLEAN; 
VAR x: String; 
BEGIN 

RETURN EXIST x I x IN HT[HashFun(Word)] WHERE x=Word 
END Found; 

Procedure Store stores a word into a hash table. 

PROCEDURE Store(Word: String; VAR HT: HTab); 
VAR pos: [1..n]; 
BEGIN 

pos := HashFun(Word); 
HT[pos] := Word :: HT[pos] 

END Store; 

Graphs. 
A graph G consists of 

(1) set V, whose elements are called nodes and 
(2) set of pairs E, whose elements are called edges. 

Graph can be defined using adjacency lists. To every node, a list of 
adjacent nodes is attached. Graph can also be defined as a list of edges. An 
edge is represented as a pair of nodes, which it connects. 
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TYPE node = CARDINAL; 
edge = RECORD cl, c2 : node END; 
Graph = RECORD nodes : SET OF node; 

edges : SET OF edge 
END; 

Graph is connected if there is a path between every pair of its nodes. We 
shall assume that function Path(c1, c2: node): BOOLEAN returns the 

value TRUE if there is a path between nodes ci and c2, otherwise returns the 

value FALSE. 
Function Connected checks if a graph is connected. 

PROCEDURE Connected(G: Graph): BOOLEAN; 
VAR c1, c2: node; 
BEGIN 

RETURN EVERY cl, EVERY c2 I c1 IN G.nodes, c2 IN G.nodes 

WHERE Path(c1,c2) 
END Connected; 

A graph is complete if each node is connected to every other node. Proce-

dure Edge(c1, c2) :BOOLEAN checks if there is an edge incident to nodes ci 

and c2. It assumes that if ci = c2, there is an edge between those nodes. 

Function Complete checks if a graph is complete. 

PROCEDURE Complete(G: Graph): BOOLEAN; 
BEGIN 

RETURN EVERY ci, EVERY c2 I cl IN G.nodes, c2 IN G.nodes 
WHERE Edge(cl, c2) AND (c1 <> c2) 

END Complete; 

Degree of a node v, is equal to the number of edges that are adjacent to 

v. Function Degree determines the degree of node v in the graph G. 

PROCEDURE Degree(v: node; G: Graph): CARDINAL; 
VAR Deg : CARDINAL; E : edge; 
BEGIN 

Deg := 0; 
FORALL E IN G.edges DO 

IF (E.c1 = v) OR (E.c2 = v) THEN INC(Deg) END 

END 
END Degree; 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Usage of S-Expressions and Predicate Expressions... 	 321 

3.2. Sets. 

Let us recall that elements of a set in extended Modula-2 can be of ar-
bitrary type and that the number of set types is (conceptually) unlimited. 
For example, in the following definition: 

TYPE SetAnyType = SET OF AnyType 

where AnyType can be of arbitrary type, including arrays, records and 
other sets. Procedure SetMember determines whether an element x is a 
member of a set S. 

PROCEDURE SetMember(x: AnyType; S: SetAnyType); 
VAR e : AnyType; 
BEGIN 

RETURN EXIST e I e IN S WHERE a= x 
END SetMember; 

Procedure SubSet checks whether set sl is a subset of a set s2. 

PROCEDURE SubSet(sl, s2: SetAnyType); 
VAR xl, x2: AnyType; 
BEGIN 

RETURN EVERY xl, EXIST x2 I 
xl IN'sl, x2 IN s2 WHERE xl = x2 

END SubSet; 

3.3. Sparse vectors and matrices. 
A sparse vector is a vector that consists mostly of zero elements. It 

can be presented by S-expression whose elements are ordered pairs. Every 
pair presents one non-zero element of a sparse vector. The first element of 
the ordered pair is an index of the element in a vector, and the second is the 
value of the element. For example, a vector V = [1 0 0 0 0 2 0] is represented 
by ((1 1) (6 2)). 

Procedure MulVec returns a product of a vector v and scalar n. 

PROCEDURE MulVec(v: SExp; n: INTEGER): SExp; 
VAR res, el: SExp; 
BEGIN 

res := NULL; 
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FORALL el IN v DO 
res := res ++ ListOfPair(Hd(el), Mul(T1(el), n)) 

END; 
RETURN res 

END MulVec; 

Procedure SumVec sums two vectors. In this procedure, following proce-

dures will be used: 

(1)Find(e,v) which returns a pair in the vector v, whose index is equal 
to a value e. 

(2)Delete(e,v) which deletes a pair e from the vector v. 

PROCEDURE SumVec(v1, v2: SExp): SExp; 
VAR res, ell, e12 : SExp; 
BEGIN 

res := NULL; 
FORALL ell IN vl DO 

el2 := Find(Hd(e11), v2); 
IF e12 <> NIL 
res := res ++ List0fPair(Hd(e11), 

Add(T1(811), Tl(e12))); 

Delete(e12, v2) 
ELSE 

res := res ++ (ell :: NULL) 
END 

END; 
RETURN res ++ v2; 

END SumVec; 

Procedure VecScPro returns a scalar product of two vectors. In this 

procedure, the procedure FindVal(n, v) is assumed to return the value of 

the element with an index n in the vector v. 

PROCEDURE VecScPro(v1, v2: SExp): SExp; 
VAR res, ell, e12: SExp; 
BEGIN 

res := 0; 
FORALL ell IN vl DO 

IF EXIST e12 I el2 IN v2 WHERE Hd(ell) = Hd(e12) THEN 
res := Add(res, Mul(T1(e11), FindVal(Hd(e11), v2))) 
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END 
END; 

RETURN res 
END VecScPro; 

A sparse matrix is a matrix that contains relatively many zero elements. 
A sparse matrix can be represented by S-expression that consists of ordered 
pairs. By every pair a row of matrix that has at least one non-zero element 
is presented. The first element of the pair is the index of a row of matrix, 
and the second element of the pair is a sparse vector. 
Matrix 

0 4 0 O - 
M = 0 0 0 0 

6 0 0 7 

has the representation M = ( ( 1 ((2 4)) )( 3 ((1 6) (4 7)) ) ). We shall also 
assume that function procedure Transpose(M) returns transposed matrix of 
matrix M. 

Procedure MatVecPro multiplies a matrix by a vector. In this procedure, 
procedure VecScPro (defined previously) is used. 

PROCEDURE MatVecPro(V, M: SExp) : SExp; 
VAR res, s, TM: SExp; 

val : INTEGER; 
BEGIN 

res := NULL; 
TM := Transpose(M); 
FORALL s IN TM DO 

val := VecScPro(V, S); 
IF val <> 0 THEN 

res := res ++ ListOfPair(Hd(s), val) 
END 

END; 
RETURN res 

END MatVecPro; 

The result of multiplying a sparse vector and a sparse matrix is a new 
sparse vector. 

Procedure MatPro, multiplies two matrices. In this procedure, procedure 
MatVecPro is used. 

PROCEDURE MatPro(M1, M2: SExp): SExp; 
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VAR res, v, c, TM, tpro : SExp; 
BEGIN 

res := NULL; 
TM := Transpose(M2); 
FORALL v IN M1 DO 

tpro := MatVecPro(v, M2); 
res := res ++ ListOfPair(Hd(v), tpro) 

END; 
RETURN res 

END MatPro; 

4. Conclusion 

5-expressions and predicate expressions are included into programming 
language Modula-2. In a similar way they can be included into other proce-
dural programming languages. Inside a procedural programming language, 
S-expressions bring elements and concepts of functional programming lan-
guages. Elements of functional programming style in procedural program-
ming languages bring advantages of both programming styles in different 
areas. Programs are shorter, simpler and more readable than in pure proce-
dural programs and more efficient than equivalent functional programs. 

A usage of predicate expressions in procedural programming languages 
brings more concise, clearer and more powerful code. Both extensions con-
tribute to better expressiveness of programs. 

Usages mentioned in this paper present only a small part of possibilities 
which extensions of procedural language bring. 
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IMPLEMENTATION OF PREDICATE EXPRESSIONS 
IN PROCEDURAL PROGRAMMING LANGUAGES 

Tatjana Vukelie and Dusan Kamenov 

ABSTRACT. Predicate expressions in a procedural programming language are based on 
sentences of predicate calculus of first order. The usage of predicate expressions in pro-
cedural languages leads to shorter, more effective and more readable programming code, 
and also decreases number of loops  and local variables in procedures and programs. Pred-
icate expressions in programming languages could be used with array, set and interval 
data types. Elements of  array or set could be simple or complex data type. In this paper, 
definition and implementation of predicate expressions in procedural programming lan-
guage Modula-2 is presented. Areas of usage are logic, set theory, graph theory, pattern 
recognition and others. 

1. Introduction 

Many statements, particularly in mathematics, are of the form "x satisfies 
a", where x belongs to set  D and a is relation relevant to the elements of 
set D [1]. 

Statement "For every  x  E D, a(x)" is an example of a mathematical 
statement. Symbolically, 

(Vx  E  D)a(x), or shorter, (V x)a(x) 

denotes this kind of statement. The part (Vx) is called universal quantifier. 
Statement "Exists  x E  D, a(x)" is also often used in mathematical sen-

tences. Symbolically, this kind of sentence can be presented as 

(3x  E  D)a(x), or shorter, (]x)a(x) 

The part (3x) is called existentional quantifier. 

1991 Mathematics Subject Classification. 68N15. 
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It is possible to use more than one quantifier in a single sentence. For 
example, 

(Vx)(3y)a(x,y) 

is a valid sentence of predicate calculus. 
In the further text, symbols and will be referred to as predicate symbols. 
These sentences can be efficiently implemented and used in procedural 

programming languages. The implementation shown in following chapters 
is an extension of Modula-2 programming language [2]. In further text, this 
extension will be called EM2. 

Predicate expression in procedural programming languages has the form 
of list of quantifiers (predicate symbols followed by variables). After that, 
domains of the variables which follow predicate symbols in quantifiers are 
stated. At the end stands condition of predicate expression, which is pre-
sented by list of boolean expressions. Expressions are separated by commas. 

The equivalent symbols for predicate symbols V and 3 in EM2 are EVERY 
and EXIST, respectively. 

Syntax of predicate expressions can be presented by following rules of 
EBNF: 

*PredicateExpr = PredicateSymbol Identifier 
{ "," PredicateSymbol Identifier } "I" 
Identifier "IN" Range "," Identifier "IN" Range } 
"WHERE" Expression { "," Expression }. 

*PredicateSymbol = "EXIST" I "EVERY". 
*Range = Array I Set I Interval. 
*Array = Identifier. 
*Set = Identifier I "1" [ Member {"," Member} ] "}". 
#Interval = "[" LowerBound ".." UpperBound "]". 

Existing set data type in M2 language can also be extended. In Modula-
2, elements must be simple data type. In EM2, this restriction is no longer 
valid; elements can be any data type - single or complex. Elements of set are 
not ordered, and an element can appear in set several times. For example, 
{1,2,1,3} is a valid set in EM2. 

Range of the variables in quantifiers must be finite. Range of those vari-
ables is determined by standard Modula-2 data types array or interval, or 
by new data type set. 

Example 1.1. Some simple predicate expressions are: 
VAR 

a, b 	- . BOOLEAN; 

array • . ARRAY [1..10] OF CARDINAL; 
set 	• . SET OF CHAR; 
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x : CHAR; 

y 	: CARDINAL; 

a := EXIST x I x IN set WHERE x < 'f ' ; 
b := EVERY y I y  IN array WHERE y < 10; 

The first assignment could be read: "if exist character x, which belongs 
to set set and x is before character 'f' in the ASCII table, then a becomes 
true, else a becomes false". The second assignment could be read: "if for 
every y, where y is an element of array array, condition y < 5 is satisfied, 
then b becomes true, else b becomes false". Simpler, if every element of 
array array is less than 5 then b becomes true, else b becomes false. 

It is possible to combine more than one quantifier in one predicate expres-
sion. Let's see an example. Suppose that sett and set2 are set of cardinals, 
a is type boolean, and x and  y  are type cardinal. 

Example 1.2. 
a := EVERY y, EXIST x  I y IN sett, x IN set2 WHERE x = y; 

Simply said, if for every y exist x, y belongs to sett, x belongs to set2, 
equation x = y is satisfied, then a becomes true, else a becomes false. 

2. Implementation of predicate expressions 

Predicate expressions can be implemented in procedural programming 
languages in many different ways. One of them, which is based on transla-
tion of predicate expressions to equivalent code in Modula-2 programming 
language, is presented in further text. To make the translation simpler, some 
constructions of Modula-2 can be extended. Therefore, following statements 
are defined: 

(1) FORALL x IN X (a kind of loop) 
(2) NEXT x 

FORALL x IN X means that statements inside loop are executed for all 
elements of an interval, set or array signed by X. 

NEXT x determines the next element of X. 
Interval and array are ordered. Theoretically, the order of the elements 

of a set is irrelevant. But in the computer memory a set is ordered and it is 
possible to take it's elements one after another. 
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Example 2.1. Structure 
FORALL x IN [1..10] DO 

Write(x); 
NEXT x 

is equivalent to 
x := 1; 
WHILE x <= 10 DO 

Write(x); 
x := x + 1 

END; 

For simplicity, predicate expressions with one and two quantifiers will be 
discussed first. After that, we'll make a generalization of translation for any 
number of quantifiers. 

2.1. Predicate expressions with one quantifier. 
In general, predicate expression with one quantifier has the form: 

PS x I x IN X WHERE condition 
where predicate symbol is denoted by PS. Following cases are possible: 

(a) EVERY x I x IN X WHERE condition 
First, suppose that condition is satisfied for every x from X, and suppose 

that predicate expression has the truth value true. If x that does not sat-

isfy the condition condition is found in for-all loop, then whole predicate 

expression gets truth value false. 

EVic := TRUE; 
FORALL x IN X DO 

IF NOT condition THEN 
EV_x := FALSE 

END 
NEXT x; 
Result := EV_x 

(b) EXIST x I x IN X WHERE condition 
First, suppose that there is no x from X that satisfies the condition and 

suppose that whole predicate expression has the truth value false. If x that 

satisfy the condition condition is found in for-all loop, then the predicate 
expression gets the truth value true. 

EX_x := FALSE; 
FORALL x IN X DO 

IF condition THEN 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Implementation of Predicate Expressions in ... 	 329 

EX_x := TRUE 
END 

NEXT x 
Result := EX_x; 

2.2. Predicate expressions with two quantifiers. 
In general, predicate expression with two quantifiers has the form: 

PS x, PS y I x IN X, y IN Y WHERE condition 
where predicate symbol is denoted by PS. Following cases are possible: 

(a) EXIST x, EXIST y I x IN X, y IN Y WHERE condition 
In this case, construction 2.1.(b) will be used. 

EX_x := FALSE; 
FORALL x IN X DO 

EX_y := FALSE; 
FORALL y IN Y DO 

IF condition THEN 
EX_y := TRUE 

END 
NEXT y; 
EX_x := EX_x OR EX_y 

NEXT x; 
Result := EX_x; 

(b) EVERY x, EVERY y I x IN X, y IN V WHERE condition 
Construction 3.1.(a) is used in this case. 

EVx := TRUE; 

FORALL x IN X DO 

EV_y := TRUE; 
FORALL y IN Y DO 

IF NOT condition THEN 
EV_y := FALSE 

END 
NEXT y; 
Elf_x := EV_x AND EV_y 

NEXT x; 
Result := EV_x; 

(c) EXIST x, EVERY y I x IN X, y IN Y WHERE condition 
Construction 3.1.(a) and 3.1.(b) are used combined in this case. 
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EX_x := FALSE; 
FORALL x IN X DO 

EV_y := TRUE; 
FORALL y IN Y DO 

IF NOT condition THEN 
EV_y := FALSE; 

END 
NEXT y; 
EX_x := EX_x OR EV_y 

NEXT x 
Result := EX_x; 

(d) EVERY x, EXIST y I x IN X, y IN Y WHERE condition 
Similar to case 3.2.(c), 

EV_x := TRUE; 
FORALL x IN X DO 

EX_y := FALSE; 
FORALL y IN Y DO 

IF condition THEN 
EX_y := TRUE 

END 
NEXT y; 
EV_x := EV_x AND EX_y 

NEXT x; 
Result := EV_x; 

2.3. Predicate expressions with any number of quantifiers. 
Predicate expressions are analyzed from left to right. For every quan-

tifier there is a for-all loop and one boolean variable that starts with EX_, 
if quantifier is EXIST, EV_, if quantifier is EVERY. Boolean variable gets its 
value before entering the for-all loop. Its value is FALSE in case of EXIST 

quantifier, and TRUE in case of EVERY quantifier. 
Inside for-all loop two cases are possible: 

( 	If quantifier is the last of the quantifiers in predicate expression, then 
inside for-all loop is an IF statement: 

(a) If the quantifier is EXIST quantifier then it is following IF state-

ment: 

IF condition THEN 
EX_ident := TRUE 

END; 
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(b) If the quantifier is EVERY quantifier then it is following IF state-
ment: 

IF NOT condition THEN 
EV_ident := FALSE 

END; 
NEXT ident follows the IF statement. 

(2) If the quantifier is not the last one in predicate expression then inside the 
for-all loop are statements that matches quantifiers that come after current 
quantifier (this part could be implemented by recursion). After that follows: 

(a) If current quantifier is EVERY then 
EV_ident := EV_ident AND EV_ident2 	 (1) or 
EV_ident := EV_ident AND EX_ident2 	 (2) 

Statement (1) if the quantifier after current quantifier is of form EVERY 
ident2, statement (2) if the quantifier after current quantifier is of form 
EXIST ident2. 

(b) If current quantifier is EXIST then 
EX_ident  :=  EX_ident OR EV_ident2 	 (3) or 
EX_ident  :=  EX_ident OR EX_ident2 	 (4) 

Statement (3) if the quantifier after current quantifier is of form EVERY 
ident2, statement (4) if the quantifier after current quantifier is of form 
EXIST ident2. 

After this statement follows NEXT ident statement. 

3. An example of usage of predicate expressions 

Predicate expressions can be used in solving different classes of problems. 
One of the areas of usage is mathematical logic. 

Definition 3.1. Proposition P(p, q, . . .) that has the truth value true for 
any truth values of their variables is called tautology. 

A procedure which determines if a expression is a tautology could be as 
follows: 
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PROCEDURE Tautology; 
VAR 

a, b: BOOLEAN; 
BEGIN 

IF EVERY a, EVERY b I a IN [FALSE..TRUE], 
b IN [FALSE—TRUE] WHERE a OR b OR NOT b THEN 

WriteStr(" Expression is a tautology ") 

ELSE 
WriteStr(" Expression is NOT a tautology ") 

END 
END Tautology. 

The result of this program will be "Expression is a tautology" because 

expression is a tautology. 

4. Conclusion 

Predicate expressions have wide usage in many areas of computer science. 
Their great power is in area of mathematics. They allow short, readable and 
concise presentation of different definitions and theorems. They also have 
wide usage in pattern recognition. Combined with sets, they are powerful 
tool for fast and natural solving of different problems. Their usage decreases 
number of loops and local variables to minimum required, which makes the 
programming code shorter and more readable. 

The future of predicate expressions can also be found in functional and 
logical programming languages. Predicate expressions are a step closer to 
human-like way of thinking in programming languages. 
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DEPENDENCE TESTING ON LOOPS WITH BOUNDS 

WHICH ARE FUNCTIONS OF OUTER LOOP INDICES 

Suzana Stojkovie 

ABSTRACT. Parallelizing compilers are compilers which translate sequential programs 
into parallel ones. Program  loops are the most frequent sources of parallelism in se-
quential programs. Because of that, parallelizing compilers first must detect loops which 
can be  run in parallel. Different iterations of the same loop can execute in parallel if they 
process different data. Parallel loops can be identified by detecting data dependencies 
across the loop body. For data dependence testing a few algorithms were developed. In 
this paper GCD test and Banerjee's test are presented. These algorithms are applicable 
when bounds of loop indices are constant. This paper  shows how Banerjee's test can be 
exploited when the inner  loop bounds are functions of outer loops indices. We, first, must 
compute minimums of the lower and maximums of the upper loop bounds. We solved this 
problem when the loop bounds are linear functions. We show that this minimums and 
maximums are dependent on the data dependence direction vector. We have also modified 
Banerjee's test, slightly. 

1.  Introduction 

Developments in semiconductor technology tend to reduce dimension and 
price of electronic components, but to grow their speed. Hardware perfor-
mances become better every day. Now, supercomputers are developed. 

Fast hardware development lead to a software crisis. A new problem 
appears: how to exploit all hardware performances. Because of that, parallel 
algorithms have been developed, in the last few years. Programmer who 
designs parallel algorithms must be familiar with hardware 

architecture for which these algorithms are meant. This leads to the 
idea that the parallelization can be done by compilers. Now, parallelizing 
compilers are very popular area of computer science. 

The major problem of parallelizing compilers is to detect parallelism dur-
ing sequential programs. Program loops are the most frequent source of 
parallelism. Because of that, first problem is to detect loops which can be 
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run in parallel. Different iterations of the same loop can execute in parallel 
if they process different data. The key to identification of parallel loops is 
to detect data dependencies across loop body. 

There are three types of data dependencies exist: 
(1) Data true dependence - exists when a variable computed in statement S i 

 is used in some next statement S2. We say that 52 is data true dependent 
on Si , and write this as Sib t Sz. 

(2) Data anti dependence - exists when a variable is used in statement Si  
and it is defined in some next statement S2. We say that 52 is data anti 
dependent on Si , and write this as SiO a Sz. 

(3) Data output dependence - exists if the same variable is defined by state-
ments Si  and S2. We say that 52 is data output dependent on S i , and 

write this as SIPS2. 
Detection of dependence is not difficult if only scalar variables figure in 

the loop. Difficulties are caused by subscripted variables. For example, we 
will try to determine all dependencies which exist in the next loop: 

L: 
	

DO 10 1 = 5, 10 

Si : 
	

A(/ + 3) = 2* A(/ — 4) 

52 
	B(I) = A(I) + C10 

10 CONTINUE 

First dependence which can be identified is the dependence between state-
ments Si  and S2. Elements of array A defined in statement S1 are used in 
statement S2. We can say that 52 is true dependent on Si (S1eS2). 

On the basis of the above, we can say that Sib i Si. However, if we look a 
bounds of the loop index I, we will see that the statement S i  defines elements 
A(8),...,A(13), but uses elements A(1),...,A(6), and dependence SieSi does 
not exist. 

2. Data dependence testing algorithms 

Below example shows that data dependence testing algorithms must ana-
lyze several more different elements, like: dependence among the statements 
in the loop; dependence in the appropriate region, etc. These algorithms 
find data dependence direction vectors [2,4], too. 

Data dependence direction vector, 0, defines relations between values of 
loop indices for which dependence exists. The dimension of vector 0 (m) is 
the number of loops which enclose the statements S i  and S2. The elements 
of vector are members of the set {<, =, >, *}. We will assume that certain 
loop include two statement Si and S2. Lets us label the I-th iteration of 
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statement Si  as SW). Let also Si(I)69S2(J). The appropriate element of 
vector 0 is: 

- <, if I < J; 
- >, if I > J; 
- =, if = J; 
- *, if relation between I an J is unknown. 
For the loop L: m=1 and Si6eS2 where is 0 = (<), because the element 

of array A which was defined in the first iteration of statement S i , will be 
used in forth iteration of statement S2 (1 < 4). 

Let us consider two statements (S i  and S2) which are enclosed by m loops: 
DO 10 Ii  = T1 , U1  

DO 10 12 = T2) U2 

DO 10 I, ?, = T,„Un, 

A(I) 

A(J) 

10 CONTINUE 

Indices I and J are functions defined as: 

I =f1(11,12,-, 	= 11(1) 

=i2(11, 	..., 	) = f2 (J)  
The dependence between S i  and S2 exists in those iterations in which I 

equals J. The goal of these algorithms is to determine whether the equation 

(3) (I) = f2 (J ) 

has got integer solutions. This equation is a dependence equation. 
Functions h and 12 , in most cases, are linear: 

(4) A = > akIk ao  
k=1 

(5) f2  = > bak  + bp 

k=1 
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In this case the dependence equation is a diophantine equation and can 
be stated as: 

m 	m 

E akIk — 	bk.ik bo — ao 
k=1 	k=1 

Whether the diophantine equation has a solution can be detected by GCD 
test. The dependence equation can be written as follows: 

( 7) 

rn 	 m 	 m 

E (ak — bk)Ik 	E akIk — E bkJk = 1)0 — ao 

k=1,8k =, =, 	 k=i,ek ot=, 	k=1, 19k#'= 1  

Let g = GCD({ak — bk,ek =1=1, la ke Ok 1 = 1 }, {bklOk P=1 })• 

GCD test: The dependence equation has solutions if g I (b0 — ao ) or 

(to  = bo . 
Note that this test does not answer the question whether the solutions 

exist in the given region. This question can be answered second by a group 
of data dependence testing algorithms - Banerjee's test. 

This test needs to introduce a positive part of real number r (r+), and 
the negative part of r (r — ), as: 

1  1 r > 0 
(8) r+ = 

0 r < 0 
1-1 r < 0 

(9) r —  = 
0 r > 0 

Banerjee's criteria: The data dependence for a given vector 0 does 
exist if the GCD test is satisfied and the next inequality is satisfied, too: 

m 	 m 

(10) 

where: 

(11) 

LCk = 

E Lek 5_ bo  — ao  E k 
k=1 	 k=1 

— (ak  +

• 

 bk)+(Uk — Tk — 1) + (ak — bk)Tk — bk for 0k ='<' 

—(ak — bk) (Uk — TO+ (ak — bk)Tk 	 for 0k  = 1 = 1  

—(bk —

• 

 ak)÷(Uk — Tk — 1) + (ak — bk)Tk + ak for 0k =`> 1  

—(ak+ bt)(14 — Tk) -F (ak — bk}Tk 	 for 0k =' *' 

(6) 
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(12) 

(at — bk) + (Uk — Tk — 1)+ (ak — bk)Tk bk 

UCk 	
(ak  — bk)+(Uk — TO+ (ak bk)Tk 
(bk 	ak) -1- (Uk Tk 1) + (ak bk)Tk ak 

(at bk 	Tk) (ak — bk)Tk 

for 9k = 1 < 1  
for 9k =1 =-1  

for 9k =- 1 > i  

for Ok =- 1  *1 

Here we present a generalized algorithm for determining dependence re-
lations for the given loop. Data dependence testing is done hierarchically. 
First, we begin with the assumption that data dependence direction vector 
is unknown (Ok  =' *',k[l:in]), and determine if the dependence exists for any 
vector O. When the dependence is determined for the unknown vector 9, 
we have to concretize for which vectors 9 it exists. The analysis has to be 
repeated, but with changed vector 9. In the vector 9, leftmost star will be 
changed with ' <', latter with '=', and at the last one with ' >'. When we 
determine independence in some step, this vector 9 need not be refined. The 
tree of analysis for m=2 is shown on the next figure: 

(*,*) 

(<,*) 	 (=,*) 	(>,*) 
∎   

(<,<) (<,=) (<,>) 	(=,<) (=,=) (= ,>) (>,<) 	(>,>) 

Figure 1. 

The order of analysis is determined by PREORDER traversal of tree. If 
independence is determined for some node, the subtree whose root is that 
node, need not be analyzed. 

3. Dependence testing on loops in which inner 
loop bounds are functions of outer loop indices 

In practice, the loop with constant loop indices bounds are very infre-
quent. Loops of the form: 

DO 10 I = 1, N 

DO 10 J = I + 1, N 
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Or 

DO 10 I = 1,N 

DO 10 J = 1,N — 1 +1 

are more frequent. 
In the general case, we can assume that the inner loop bounds are func-

tions of outer loop indices. We well look at the next, generalized loop: 

DO 10 I1 = T1,U1 

DO 10 12 = t2(/1), u2(/1) 

DO 10 Im = tm(/1,/2,...,/m — 1),u2(/1, I2, Int — 1) 

{loopbody} 

10 CONTINUE 

For the application of Banerjee's test, we must compute loop indices 
bounds, in first. In the phase of compilation that is impossible because 
these values are different for all different iterations of outer loops. Because 
of that, we introduce the worst case assumptions: for the lower bound of 
index Ii we take timin, but for the upper bound uimax. Our problem, now, 
is reduced to the determination of minimums of functions t i , and maximums 

of functions u i . We will assume that the functions ti and ui are linear. In 
that case, the functions t i  and ui can be described as follows: 

(13) ti =Tio + E 
Tij lj 

(14) ui =UiO E Uijlj 

If we know the minimums and maximums of indices I j  (j[1,i-1]) we can 
compute the lower and upper bounds of index h: 

(15) Ti =timin = TiO E(Ti4.; ijmin Tij ijmax) 

j=1 

i-1 

(16) Ui =Uimax = Ui0 E(UAmax Ujj Ijmira) 

j=1 
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Ijmin and I imax are the lower and upper bounds of index 	, 	. From there, the values Ti  and Ui  can be computed from the next formulas: 

(17) Ti  =Tic)  +  E (Tilt — Tr)  Uj) 
j.1 

(18) =Ujo 
j-i 

These formulas determine the order of computation of bounds, too. Ob- 
viouly, bounds Ti  and Ui can be computed if the bounds Ti  and Ui  for j E [1,i — 1J are known. 

4. Influence of data dependence 
direction vector on loops 

Banerjee's test checks data dependence for all data dependence direction 
vector, independently. It imposes a question: can the data dependence 
direction vector influence the coefficients Ti and U i ? 

If Oi  ='>', the lower bound of index Ii  can not be equal to the value 
computed by formula (17), because there is not a value of index I i  smaller than timin . Because of that, for O i  ='>', the lower bound of index h is 
necessary to grow for 1. 

Similarly, it can be shown that for O i  ='<', the upper bound of index Ii 
is necessary to reduce for 1. 

Definitive formulas for computation the loop indices bounds are: 

(19) Ti(0) =Tio  E(Ti-137; (0) _ 
i=1 

(20) Ui(0) = U ,0  E(II ;17 U J(B) 

where: 

(21) _{0 
CT,(0) — 	

for Oi E (*,=,>) 
1 for Oi =< 
0 	for Oi  E (*,=,<) (22) 	 CUi(0) = —

1 for Oi => 

Ti; Ui (9)) C T,(0) 

— U j(0)) C U ,(0) 
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(27) 

LCi = 

—bi )Ti(0) — bi 

bi gi(0) 

—bi)Ti(0) + bi 

 bigi(0) 

—Ti(0)) (ai 

Ti(0)) + (ai 
- Ti (0))+ (ai 

Ti(0))+ (ai — 

for Ok 

forOk =`=' 

for 9k =1 > 1  

forOk = i *' 

—(aT bi)+Wi(0) 

—(ai  — bi) - (Ui(0) — 

—(bt — a i )+ (Ui (0) 
—( ai  + bt)(Ui(0)— 
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Ti  is dependent on these elements of direction vector j for which is j < i. 
Thist means that the order of computing of bounds Ti and Ui is identical to 
the order of dependence testing for corresponding vectors (see figure I.). 

It makes a question: whay do we have to correct the bounds Ti and U i 
 adding the coefficients CTi and CUi, when all this job is done by Banerjee's 

test, too? In our cases, inner loop bounds are the functions of outer loop 
bounds. Because of that, the coefficients CTi and CUi influence on values 
of all coefficients Ti  and Ui for ji,i. The original Banerjee's test is not taking 
that influence into consideration. 

5. Banerjee's test modification 

As we desctibed, we and Banerjee's test, too, correct the lower and upper 
bounds dependently on corresponding direction vector O. If we use the our 
computed loop bounds for dependence testing by Banerjee's test, we take 
these corrections into consideration two times. Because of that, we have to 
do a little modification of Banerjee's test. We will take the cases and 

because in these cases we must modificate Banerjee's inequalities. 
Banerjee's test begins from assumptions: 

(23) Ti< Ii  < 	 1 	for Oi .< 

(24) Ti +1 < Ji  +1 < Ii < Ui 	for Oi => 

Instead of these, we take in next assumptions: 

(25) Ti(9) < Ii  < Ji  — 1 < Ui (0) 	for Oi .< 

(26) Ti (0) < Ji +1 < Ii  < Ui (0) 	for Oi  => 

In that case modificated Banerjee's coefficients have a next form: 

—bi)Ti(0) — b i 

 bi)Ti 

—bi )Ti(0)+ bi 

 bi )Ti(0) 

— Ti( 9)) + (ai 

MO)) + (ai 

Ti (0))+ (ai 

Ti (0)) + (ai — 

(28) 

1 UCk = 

(at — b i )+ (Ui(0) 

(ai — bi)+Wi(0)— 

(b.T — ai)+ (Ui(0) 

(at + bi)(Ui(0) — 

for 9k =1 < 1  
fore), 

for 9k =1 > i  

for 9k = 1  *1 
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Proof: 
We need a next lemma [1] for proving of our assertion: 

Lemma 1. Let f(x,y)=ax+by denote a linear function, and U > qo  a 
number. 

1) min(ax + by : 0 < y < x < U) = —(a — 	U 
2) max(ax + by : 0 < y < x < U) = (a + b+)+ U 

Let fl and f2 be the index functions defined by equations (1) and (2), 
respectively; and let is: 

(29) h(I,J) = fi(I) — f2(J). 

In given region, dependence exists for given vector 0 iff the function h(I,J) 
has a null into that region. 

Thus, 

(30) rnin(h(I , J)) < 0 < max(h(I , J)) 

By combining (4),(5) and (29) we obtain: 

77L 

(31) h(I,J)= E (ak — bk)Ik 	E akIk — > b k ork +ao  — bo 
 k=i,ek$'=' 

Let we take a case O i  =<: 
We need minimum and maximum of function: 

(32) f = ai Ii — b i Ji  

Next inequality is derived from our assumption (25): 

(33) 0 < Ii — Ti(0) < Ji — Ti(0) — 1 < U i(0) — T i (0) 

Because of that we will transform the function f (32) on follows: 

(34) aili — biJi = —bi (Ji  — T i (0)— 1) + aj(/i Ti(0)) (ai  — b i )Ti(0) — bi  

Now, by using of Lemma 1. we obtain: 
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for 9j =<: 

(35) LCi = — (at + bi)+(Ui(0) — Ti(0)) (ai — bi)Ti(0) — b, 

(36) UCi .(at — b,)(Ui(0) — Ti(0)) (ai — bi )Ti(0) — bi  

Second correction of Banerjee's test was done for 8i =>. In that case, we, 
first, must transform our assumption (26) as follows: 

(37) 0 < Ji — Ti(0) + 1 < Ii — Ti(0) < Ui(0) — Ti(0) 

The function f (32) can be written as follows, too: 

(38) ai/i — biJi = a i (h — Ti(0)) — bi(Ji — Ti(0) + 1) + (ai — bi )Ti(0) bi 

 Now, by using Lemma 1. we obtain: 

for Oi =>: 

(39) LCi = —(bt a i )+(Ui(0) — Ti(9)) (ai — bi)Ti(0) b i  

(40) UCi = (at + b)i (Ui(0) — Ti (0))+ (ai — bi )Ti (0) bi 

This completes proof of our modification of Banerjee's test. 

6. Conclusion 

In designe process of a FORTRAN parallelizing compiler appeared a prob-
lem: how do we test the dependence on loops which bounds are not constant. 
In our testing examples, the most frequent cases were the loops in which inner 
loop bounds are linear function of outer loop indices. For dependence test-
ing on loops with constant loop bounds we used Banerjee's test. It makes 
a question: is it possible to replace these functions with constants? We 
solwe this problem at next way: we change the lower bounds functions with 
their minimums, and we also change the upper bounds functions with their 
maximums. The expressions for computing these bounds values, when cor-
responding function are linear, are given in chapter 3 of this paper. We show 
that the loop bound values, in our case, are dependent on data dependence 
direction vector, too. We had to do some modification of Banerjee's test, be-
cause we take in the direction vector influence on loop bounds. Modificated 
Banerjee's test was presented in chapter 5. 
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THE GENERATION OF PERMUTATIONS THROUGH GDD 

Dragan Jankovie and Milena Stankovie 

ABSTRACT. In this paper we consider the generation of permutations, i.e. all ordered 
n-tuples of different elements from the set A n  = lachai,•••,an—il which is a combina-
torial problem often occurring in practice. We give a method for the generation of all 
permutations of n given items through generalized decision diagrams. Each of n! paths 
in the appropriate decision diagram maps into one of n! permutations. The proposed 
method is suitable for generating all permutations for direct generation of only one per-
mutation without generating and saving preceding permutations. Our method provides 
efficient hardware realization. 

1. Introduction 

The generation of permutations on a given set A n  = { ao, a i , an _i ). with 
n elements is in fact the generation of all ordered n-tuples of elements from 
An . This problem occurs frequently in practice as a part of many complex 
combinatorial problems. For example, many problems in logic design: min-
imization, simetry examination, NPN classification or function decomposi-
tion are combinatorial problems in solving of which different permutations of 
variables or function values of examined functions are often required [3,6,7]. 
Important field for application of permutations are permutation intercon-
nect networks which are consistent parts of many multiprocessor systems 
for discrete transform calculation (DFT, WHT, ...) [4]. In this paper we use 
generalized decision diagram to generate the permutations. 

The basic idea of the presented method was found in the representation 
of switching functions by binary decision diagram (BDD) [1,2]. BDD for an 
n-variable switching function is a binary tree with n-levels and 2n  terminal 
nodes. The terminal node values are the function values of the represented 
switching function. 
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LEVEL I 

LEVEL II 

LEVEL III 

l'ERMINAL LEVEL 

Figure 1. BDD 

Example 1. BDD for three variable function is shown in Fig. 1. 
If it is allowed that nodes at different levels have different number of edges 

(assuming that the number of edges of all nodes at one level is equal) we 
obtain generalized decision diagrams (GDDs) suitable for the representation 
of the multiple valued functions [5]. 

Example 2. The typical GDD is shown in Fig 2. 

LEVEL I 

LEVEL ll 

LEVEL III 

/ 

TERMINAL LEVEL 6011166n Di 

/ 
 \ 	

, 	I 
/ I ,\ 	\ 

I666 

Figure 2. GDD 
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LEVEL! 

0 

LEVEL LI 

  

2 0 

   

LEVEL III 

,/ / • , / \ , 
ac3o66666666666

\
66 

• 
• 
• 

LEVEL k 

%. 	 1 \ \ 

sa6d6:5.6 

k-1 

LEVEL k+1 0 c,„,d 
AA b, 	:4 NA  

0 1 2 k k+I 
• 

• • • bt:)0 

• 

TERMINAL LEVEL 

LEVEL N-1 

7/1/2 
El 	• • •b b 

Figure 3. GDD for generation of the permutations 

2. The representation of 
permutations with decision diagram 

It is possible to represent all permutations of items from set A n  through 
particular GDD consisting of n —1 levels. The first level consists of one node 
(root node) with two edges, the second of two nodes with three edges, the 
third of six nodes with four edges, etc. There are k! nodes with k + 1 edges 
at k-th level (Fig. 3). 

Thus defined GDD with n — 1 level has n! terminal nodes. Therefore, 
we can assign one of n! permutations to each node. The GDD nodes are 
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denoted as shown in Fig. 4., where we have a node at k-th level denoted 
by q connected to the root node by the path p. The node q is connected 

to k 1 nodes (q0 ,q1,...,qk) at (k+1)-st level by the output edges denoted 
by 0,1, ..., k, respectively. If the string xoxi • • • xk—i, (xi E A„, for i = 

0,1, ..., k —1) is assigned to the node q, to the each node qi may be assigned 
the string derived by the following rule: 

qi = x o x i x 2 ...xi_ l akxj...xk_i for i # k 

qk = xoxix2•••xk—iak 

Each node qi is connected to the root node by the path p, = pi. 

For k=0 (root node) q = cto  and p = 0. 

R•I. len! 

r,' 

1I-st lord 

a) 	 h) 

Figure 4. a) The node notation b) The path notation 

With the introduced notation, each of the n! terminal nodes corresponds 
to one permutation, as shown in Fig. 5. for A4 = {0, 1, 2, 3}. 

3. The procedure for generation of permutations 

For the generation of a particular permutation the corresponding path 
from the root node must be found. Moving from one to another level along 
this path we generate the required permutation. When we move from the 
level k to the level k + 1 trough the edge i we insert the value ak at i-th 
position in the generated string. Repeating this procedure for all terminal 
nodes (moving along all pats in the GDD) we obtain all permutations of n 
items (Fig. 5). 

The decimal index of permutation path, Dec(p), is !defined as: 

N-1 

Dec = > giN!1(i + 1)! 
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Figure 5. GDD for n=4 

where p[i] is i-th element in permutation path p. 
All permutations are ordered on the basis of Dec(p). The ordering o can 

be defined as follows: 
Let P and Q be two distinct permutations with paths p and q, respectively. 

PoQ if Dec(p) < Dec(q). 

For example, for n = 4 , the permutations of A4 = {0, 1, 2, 3} ordered 
according to o are given in Table 1. 

This ordering is very useful for generation one permutation or the per- 
mutations from interval. We generate the permutation from decimal index. 
The decimal index to be mapped to the permutation path after which the 
described procedure is applied. For this method generating and saving all 
previous permutations are not necesserly. This method is not recursive, 
which is very important for execution time and permutation length. The 
permutation length is practically unlimited in this method. No permuta- 
tion is generated again. Therefore, there is no need to check whether the 
permutation has been generated earlier. 
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Table 1: Decimal indices of the permutations 

Dec.ind. path perm. 

0 0000 3210 

1 0001 2310 

2 0002 2130 
3 0003 2103 

4 0010 3120 

5 0011 1320 

6 0012 1230 

7 0013 1203 

8 0020 3102 

9 0021 1302 

10 0022 1032 

11 0023 1023 

12 0100 3201 
13 0101 2301 

14 0102 2031 

15 0103 2013 
16 0110 3021 

17 0111 0321 

18 0112 0231 

19 0113 0213 
20 0120 3012 

21 0121 0312 

22 0122 0132 
23 0123 0123 

4. Implementation 

The implementation of the described procedure for the generation of all 
permutations is given as follows: 

1. initialization (the length of the permutations and the beginning path) 
2. for i=2,n do 

begin 
2.1 shift all the permutation elements from p-th element for one 

position to the right (the element p is the weight of the i-th 
element in the path) 

2.2 set the i-th element at the p-position 
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end 
3. print the generated permutation 
4. generate the new path 
5. if the generated path  is  different from the beginning path go to step 2 
6. stop 

Some advantages of GDD can be used in implementation. There is no 
need to move along the complete path for each permutation. It may be 
continued from the position where the new path is different from the old 
one. In this way the execution time may be decreased considerably with 
the increase of N, as shown in Table 2 where the execution time is given (in 
millisecond) using the complete path and a part of the path too. 

Table 2: The execution times when the complete path and a part of path 
are used 

len.perm complete path (ms) a part of path (ms) 
2 0.017 0.023 
3 0.05 0.06 
4 0.3 0.28 
5 1.9 1.4 
6 15 9 
7 134 70 
8 1318 606 
9 14240 5830 
10 171600 62200 
11 2158000 738000 

5. The modification of basic procedure 
Described procedure can  be  modified according to some specific require-

ments of the application of permutations. If the generation of a permutation 
or permutations from interval are needed, then it is enough to run the cor-
responding initialization  (set  the value for array NIVO(i), i  =  0, n — 1). 
The generation of a permutation from another one is the problem that often 
appears in practice. In this case, our method is very successful. The move 
from one permutation to another one is executed by the following procedure: 

1. starting from the terminal node corresponding to the beginning permu-
tation and then moving up to the crossing of the beginning and the desired 
permutations. 
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( START (---Z"--D 

\ength of permutatiop/  

initialization 

NIVO(i)=0 ; PERMUT(0)=0 ; 1=0 ..... N 

NIV0(0)=0 

1 
 1. 	PERMUT(0)=0 	I 

1 	
i — 2, N 

1 

PERMUT(j+1)=PERMUTO) 	1  

PERMUT(1)=1-1 

/PERMUT(I) 1=0, 	N-1 \ 

i  NIVO(N)=NIVO(N)+ 1  
ii=N 

	 MVO(ii)=ii A NIV0(0)=C> 

NIV0(11)=0 
NIV0(I1-1)NIV0(11-1)+ 1  

11=11-1  

1 

STOP 	
) 

Figure 6. Algorithm for the generation of all permutations with 

length n 
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2. moving down to the terminal node corresponding to the desired per-
mutation. Moving up, the elements are ejected from the sequence (i.e. per-
mutation), and moving down, the elements are inserted into the sequence. 

The example for the generation of permutation 1032 from 2310 permuta- 
tion is shown in figure 7. The moving through graph is depicted by a dotted 
line. 

LEVEL! 

10 

11111111111111111M 
3210 2310 2130 2103 3120 1320 1230 1203 3102 1302 1032 1023 3201 2301 2031 2013 3021 0321 0231 0213 3012 0312 0132 0123 

Figure 7. The generation 1032 permutation from 2310 permuta-
tion 

6. The hardware implementation 

Our method provides efficient hardware realization. The types of hard-
ware realization depend on the actual application. As an example, the de-
scriptions of pipeline realization, shown in figure 8, follow. The generation 
of permutation of n items requires n processing elements (PEs). Every PE 
has two inputs and one output. PE passes one of the two inputs depending 
on the state of the counter which runs as the adder modulo k if PE is at k 
level (i.e. k-th in pipe). If the immediate state of the counter is p, the PE 
passes p inputs X, (and) afterwards input Y and finally n — p— 1 inputs X. 
The counter of PE at level  k  changes its state when the state of counter of 
PE on level k 1 becomes k 1. In other words, every PE activates the 
counter of the previous PE (Figure 9). 
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PEV  [  

PM  I  
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Figure 8. a) Pipeline system b) PE 
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Figure 9. The state diagram of the counter of PEs for n=4 
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7. Conclusions 

In this paper, we propose the method for the generation of the permu-
tations with unlimited length, through GDD. We define GDD appropriated 
for the generation of all the n! permutations of n given items. Based on 
GDD, the efficient procedure for mapping the paths in GDD into permuta-
tions is also presented. The proposed method is suitable for both software 
and different hardware realizations. As an example, pipeline realization is 
described. 
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A SYSTEM FOR STORAGE, MANIPULATION AND 

CONTROL OF DIFFERENT GRAPHICS FORMATS 

Zoran Putnik 

ABSTRACT.  In this paper, a detailed outline of a system for memorizing, manipulation 
and control of pictures given in different graphic formats is given. System consists of 
several modules, already known and available, but the value of the system is mainly in 
combination of several useful functions, enabling complete and efficient management of 
miscellaneous kinds of pictures and cutting on expenses and possible errors in manipula-
tion with various graphics formats. 

1.  Introduction 

Manipulation of drawings and other graphics elements is mush more then 
just a simple storing/retrieving of data and drawings. It is rather a com-
plicated process of drawings' creation - starting by a designer, external and 
internal skilled consultants, through artists who actually make drawing, up 
to users of the finished drawings, or some of its parts. During drawing cre-
ation, standard parts from shared or private libraries are incorporated, or 
referred to, and usual necessary data - names, dates, references, are given. 
Dates of drawing creation are still not the final dates of need for a drawing. 
Often changes, especially for technical drawings, demand easy access to a 
drawing for a long period. This demand, naturally includes a need for some 
tools for transferring drawings from one graphics format to another. As for 
any other data stored in a computer, manipulation with drawings requires 
handling of standard problems: efficient storing system, fast and simple data 
retrieval, enabling changes in existing drawings or using existing drawing in 
creation of a new ones, managing an efficient data base about drawings and 
related data, transferring drawings from paper to a computer and similar. 

1991 Mathematics Subject Classification.  68U05, 68P15. 
Work supported in part by Ministry for Science of Republic Serbia 
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Toward overcoming of mentioned problems, in this paper, a system for 
storage, manipulation and control of drawings in different graphics formats 
is given. Separate modules, this system consists of, are not new nor origi-
nal, instead, most of them are available for a commercial use in some form. 
Value of this system is mainly in unifying and combining all necessary func-
tions, enabling simple and efficient control of data and drawings flow even 
for a long period and reducing expenses and chance for errors in drawings' 
manipulation. 

2. State of the art 

We can notice several different logical modules in modern systems for 
information and documents management (from now on CDMS - Corporate 
Document Management Systems): 

• module for storing information - data base 
• module for data search - key-words data base 
• module for documentation viewing and control 
• communication module - fax, e-mail, modems 
• module for controlling computer network 
• module for changing documents (in original programs) 
• module for automatic text recognition 
• module for handling pictures 

Separate programs for each of the mentioned modules are developing for 
years (more or less successfully), everything toward creation of "paperless 
office." Information stored in digital - electronic form, does not need a paper 
as a storage media. But, to be easily available to the user, it demands another 
elements of a system for data storing and retrieval. As main elements, we 
can mention: 

• computer for data storage - "main computer" 
• (computer for communication with a "main computer") 
• software for "reading" and "presenting" given information 

As much as textual data are concerned, several mostly used text-proces-
sors can be identified, that each CDMS have to support, with always present, 
final solution, of recognizing text in its simplest form - ASCII standard. For 
graphics data, such standards do not exist. We can talk of "most frequent" 
graphics forms, i.e. *.PCX, *.TIF, *.GIF, *.IMG - as bit-mapped, or *.DWG, 
*.DXF or *.CDR - as vectorized, but, basic standard does not exist jet. 

Computer system for storage, manipulation and control of graphics for-
mats is very important subsystem of a system for creation, management and 
archiving documents - CDMS. It must successfully and efficiently integrate 
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some commonly accepted programs for graphical documentation manage-
ment, from scanning and character recognition programs, through programs 
for editing bit-mapped, vectorized or ASCII graphics files and transferring 
drawings from one form to another, up to programs for presentation and 
printout graphical documentation on various kinds of output devices. This 
subsystem is also an useful step towards creation of a multimedial data base, 
which will enable fast and simple finding, retrieval and exporting any doc-
ument stored in any existing form. Modular and flexible, this subsystem 
has to be (theoretically) usable equally in small and in big business systems, 
despite working area. In its nature, such subsystem assumes (and gives best 
results) computers connected in a network, which again permit successful 
control of document flow, transforming several "personal" computers in an 
efficient information system. 

A system for storage, manipulation and control of graphics formats (some-
where called EDM, standing for "Engineering Drawing Management" or 
"Electronic Data Mng" or "Engineering Data Mng") has to emulate, for 
a successful work all standard activities in a process of creation, storing and 
"maintenance" of drawings. Main of these activities are: 

• Control function - DIRECTOR -  a module handling work and com-
munication of other modules, controlling them and controlling users' 
behavior according to his priority level; 

• Data storage function - LIBRARIAN -  a relational data base, en-
abling a search for a specified drawing based on a key-word and 
creation of a report on a drawing including place and time of cre-
ation, author, dates and types of changes, current status, list of key-
words and list of access rights; 

• Digitalization function - SCANNER -  a module for connection be-
tween "old" and "new" technology of drawing creation and for con-
nection with third parties, which produce their drawings in a paper 
form. It should also contain some standard way of data compression 
(for example - scanned drawing of AO format, with resolution of only 
400 dpi, as a result requires 40 MB of storage space if stored in a 
bit-mapped form); 

• Editing function - EDITOR  -  a module that enables that drawing 
we want to change (coming through module LIBRARIAN or module 
SCANNER) can be edited either with standard geometric functions 
(scaling, rotation, translation ...) or manually (adding or deleting 
picture pieces, coloring, text editing...) 

• Vectorization function - VECTOR -  a module that (if needed) en-
ables transformation of bit-mapped drawing into a vectorized draw-
ing. Experience shows that this function is not always necessary, 
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since very good abilities for changing raster images are developed, 
and on the other hand, vectorization process takes a lot of time not 
always bringing significant improvement of quality; 

• External communication function - TRANSFER - a module that 
overcomes a problem of using different software for drawing creation 
and enables combining of drawings created on different places in a 

different ways; 
• Text recognition function - READER - a module enabling usage of 

text documents created in most standard text processing programs, 
or, if nothing else is possible, enables text recognition using usual -
optical character recognition techniques; 

• Viewing and printing function - OUTPUT - a module enabling that 

library drawings, can be viewed on (any kind of) a screen, and/or 
plotted/printed on (any kind of) a printing device. 

3. System modules 

3.1. Drawings storage module - data base. 
Creation of a complex drawing, consisted of several drawings, sometimes 

already created in different graphics formats, using different software tools, is 
usual very difficult. Reason for this is existence of three principally different 
formats - bit-mapped drawings, vectorized drawings and drawings created 
of ASCII characters - with a huge number of subtypes for the first two. 
Emerging of a new version of existing graphics software, usually brings lots 
of problems to the end-users. Besides that, for each graphics document, 
some extra information is needed, for example: date and time of creation 
and editings, names of authors, coauthors, consultants and "maintenance" 
employees, references to parts taken from standard libraries or to bigger 
drawings of which the given one is a part of, and so on. The most convenient 
method for storage of this kind of data is some standard, relational data base, 
which will enable easy sorting, searching and editing of existing data. 

This module has to provide a simple and obvious searching method thro-
ugh the graphical data base on any criteria, without previous knowledge 
of programming languages or data bases. This can be achieved through 
a simple and readable graphics interface, enabling easy entering of wanted 
search criteria. Multiple criteria search, easy access to the results of a previ-
ous search and other similar, practical options are usual in any serious data 
base, so there is no need to explain them separately. 

As a first result, a search gives simplified, smaller picture of all drawings 
satisfying given criteria. Later, those pictures, depending on users access 
level, could be viewed, edited, printed, commented and so on. Naturally, for 
advanced users, it would be very useful to have programming language, which 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



A System for Storage, Manipulation and Control ... 	 361 

can define either aestethic (i.e., shape of a search screen) or essential search 
details (definition of new fields of a data base, with their attributes, creation 
and organization of an archive of technical and business documentation, 
catalogues of products, data bases of persons involved in drawings creation 
and so on). 

3.2. Module for transferring paper documentation into electronic 
form. 

Because of paper documentation inherited from previous work and be-
cause of need for cooperation with other parties producing paper drawings, 
this module is necessary in any system for storage, manipulation and control 
of graphics formats. It should cover following functions: 

• picture scanning 
• editing of errors of scanning 
• optical character recognition 
• editing of bit-mapped pictures 
• picture vectorization 
• editing of vectorized pictures 
• editing of ASCII pictures 

3.2.1. Subsystem for scanning. 
Any "real-life" business system, besides documentation created on a com-

puter, is doomed to have contact with paper documentation. That docu- 
mentation is, seldom or rarely, used, saving of some documentation is usually 
legal obligation. Transformation of that documentation into an electronic 
form by repeated drawing is usually too complicated and too expensive. In- 
stead, it is more natural to keep it in a computer archive in a form of scanned 
pictures. After scanning, these pictures can be edited more or less, vector-
ized, if necessary, or transformed into text, which all are parts of subsystems 
that will be mentioned later. 

Process of scanning and editing of scanned pictures, should be, according 
to latest trends in this field [5], equipped with tools for performing following 
functions: 

• scanning errors' correction 
• straightening of aslanted pictures 
• removal of "snow" emerging because of a dirt on a paper 
• thickening or thinning of lines 
• definitions of separate, different filters, for specific parts of a picture 
• linking of disconnected contours, or separating of badly connected 

contours 
• standard functions for adding, editing and deleting parts of drawing 
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3.2.2. OCR subsystem. 
This module confirms to all standard demands for this class of programs„ 

which will not be especially discussed in this context. It should only be em-
phasized that this subsystem has to supply a connection between a graphics 
document in an unknown format and ASCII file obtained by process of scan-
ning and optical character recognition. This is, naturally, performed only 
as a final measure, if information about the contents of a picture cannot be 
obtained by any other means. 

3.2.3. Subsystem for picture editing. 
This is again a standard subsystem, that should not be explained in much 

details. It should be only mentioned, that this subsystem in fact is consisted 
of three separate parts, for editing different types of drawings - bit-mapped, 
vectorized and ASCII character drawings. Since one drawing can be created 
as a combination of all these types, all editing tools have to be available at 
any moment. 

3.2.4. Vectorization subsystem. 
There is often a need for large amount of changes that should be performed 

on an existing drawing. This is usually much easier (end with higher quality) 
performed on a vectorized picture. Besides, vectorized picture, compared to 
a bit-mapped picture, usually take much less space, which is a very important 
demand in this field,. Considering all mentioned, subsystem for vectorization 
is an obligatory part of a system for storage, manipulation and control of 
graphics formats. 

There is a set of standard tools for this process and usual procedures 
for manual and automatic vectorization. Here, some more advanced actions 
about vectorization will be underscored: 

• definition of vectorization "filter" (for example artistic or technical, 
or even more specific - electronic, architect, engineering ...), which 
as a consequence, brings different definitions of some standard vec-
torization parameters: 

(1) characteristics for approximation of curves, 
(2) definition of smallest object that is vectorized, 
(3) minimal offset of horizontal/vertical line that is not neglected, 
(4) method of text recognition, 
(5) minimal distance that separates two lines and so on.; 

• enabling manual or automatic vectorization and vectorization of a 
whole picture, of a part of a picture or definition of a part of a picture 
that should not be vectorized; 
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• enabling recognition of at least some basic contours - circle, ellipse, 
square, for example - as contour, and not as a combination of simple 
lines and curves. The same should stand for a combination of those 
basic shapes. For example, a square written IN a circle, should be 
vectorized as those two contours, and not as a combination of four 
lines and four curves; 

• text, as a part of a picture, can be recognized either as graphics 
(transformed to curves), as letters (i.e., optical character recognition 
of ASCII characters) or completely removed from a drawing; 

• after finished automatic vectorization, there should be a possibility 
for comparison of bit-mapped original and achieved result. Natu-
rally, there should be an ability for additional, manual changing of 
vectorized picture; 

3.3. Output module. 

This module has to enable rough and/or detailed view of "all" important 
graphics formats - bit-mapped or vector, including documents created by 
important text-processing programs, spreadsheets or data-base programs. 
For this module, only a quick and simple access to document is important, 
including output abilities on all output devices, screens, printers and plotters. 
Eventual changes of documents should not be incorporated into this module, 
since these abilities are a part of another modules. 

3.4. Module for manipulation of technical drawings. 
Special problem in this field is production, maintenance and editing of 

technical drawings. During creation, technical drawings go through many 
phases of treatment, addition and editing, so that, as a result there is too 
many paper versions of a drawing, usually right one at the wrong place. Chief 
problem with technical drawings (for example drawings of bridges, buildings 
and similar) is that they have to be saved and maintained for several tenths 
of years. 

Unfortunately, introducing computer aided design (CAD) into this area, 
can put us in an even worse situation. Part of documentation is saved on a 
computer, part on a paper, some initial versions of a drawing are declared 
final, while some final versions are rejected as unnecessary. In order to 
overcome these problems it is urgent to, right after introduction of computer 
aided design, transfer all documentation into electronic form, no matter of 
what kind, origin or shape they are and organize a data base to accompanies 
that documentation. Later phase will usually demand several computers 
connected into network. 

3.5. Communication module. 
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This module has to enable safe, fast and easy communication between dif-
ferent modules in a system for storage, manipulation and control of graphics 
formats. As much as an user is concerned, it should supply simple usage, dif-
ferent methods to perform functions (keyboard, mouse, arrows ...), readabil-
ity of a screen, easy-to-use help system and all other standard requirements 
for a proper user-friendly graphic interface [7]. 

4. Future development 

It seems, considering fast development of science, especially computer sci-
ence, that it will be possible in near futue to spread system like this one in 
several different areas. Even though commercial versions are still unavail-
able, some fields are developing very fast and we can expect soon expansion 
of system for storage, manipulation and control of graphics formats, for ex-
ample with: 

(1) Optical recognition of text - not characters 
Latest research shows [1] [4], that optical character recognition 

systems are very close to their upper limits. Although those limits 
are rather high (over 95% ), for large texts, and, more important, 
for texts that allow no errors, this is insufficient. Consequently, or-
ganizations that want to work with "electronic documents" cannot 
rely on them. These facts, initiated research in a field of optical 
recognition of texts, based on analysis of a document structure and 
its contents. A system like that, must contain several text character-
istics: big dictionaries, text styles, font types, document styles and 
structure, word meanings, relationships between words and assump-
tions about text contents - expected contents, expected contents of 
certain parts or knowledge on relationship between text and field of 
its application. 

(2) Intelligent interpretation of a drawing 
Drawings, especially technical, could be scanned and recognized, 

much better and more precise, by using certain algorithms for de-
termining location of textual parts of a drawing and its separation, 
or methods for analysis of scanned drawings in order of acquiring 
regular shapes, instead of set of lines, irregular in their shape, size 
and thickness, algorithms for recognizing fill patterns and similar [2] 

[3]. 

5. Comment instead of conclusion 

By some available statistics (from year 1992) [5], it is estimated that there 
is over 15 billion of paper drawings used in different companies, which have 
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to be used and controlled, and that only 13% of them are in electronic form. 
It is also estimated, that over 10% of those drawings are lost or misplaced, 
because of inefficient organization, and that, only in USA, about 43 million 
man/hours are spent on storage, search, copying and other manipulation of 
paper graphics documentation and space of over 1.5 million of square meters 
is used for drawings storage and saving. 

There is a lot of legal and practical reasons to store drawings for several 
years, including potential need for drawing editing. Drawings used in ma-
chine construction, had to be treasured as long as machines are produced, 
and even later, because of maintenance. The same, but for much longer 
period, stands for architecture drawings or civil engineering, for example. 

Introduction of CAD systems, aimed for improvements in a field of pro-
ductivity in drawings creation, easier usage of graphics libraries, easier stor-
age, editing and communication with drawings. But, need for communica-
tion with companies not using electronic systems for picture manipulation, 
forced a situation in which every company had to keep people, offices and 
working methods, for handling both paper and electronic drawings. Conse-
quently, instead of increase in productivity, that usually lead to duplicated 
capacities and decreasing of efficiency, because of a need for cooperation 
between two very incompatible, parallel systems. 

Everything mentioned, clearly shows urgent need for creation and usage 
of efficient system for storage, manipulation and control of different graphics 
formats, toward which this paper hopefully leads. 
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ONE METHOD OF IMPLEMENTATION OF 

LISP INTERPRETER TO TRANSPUTERS 

Jozef Kratica 

ABSTRACT. The paper  describes one method of implementation of LISP interpreter to 
transputers. Developed  interpreter  contains standard functions common for almost all 
LISP versions. Architecture is binary tree message passing. Implementation was de-
veloped on transputer parallel C language (ANSI C with procedures for interprocessor 
communications and synchronization). Part intended for evaluation of functions (expres-
sions) was parallelized, but I/O operation and parsing were sequential. This is caused 
by the technical limitations of transputer systems, because I/O operations can executed 
only by first transputer, and interprocessor communication is slow. Maxima increase in 
speed equals 6.5 times, on transputer system with 17 transputers T800, by as compared 
to single transputer T800. That increase in speed is obtained for recursive problems de-
manding much computing. Small increase in speed is obtained for problems with more 
I/O operations. 

1. Implementation method 
In LISP implementation  on  uniprocessor machines ([2], [3]), the basic part 

for parallelizing is part  for  evaluating expressions (functions). Provided that 
only first transputer  can perform  I/O operations, these operations (I/O) 
must be executed  sequentially.  Parsing functions are also executed on the 
first transputer, because interprocessor communication is slow. First trans-
puter sends function  definitions  to other transputers when they need them 
(when other transputers  evaluate  functions). 

Technical limitations  of  transputer systems are ([7]): 
a) Every transputer  have  4 links to other transputers; 
b) Every transputer  must  be reset (one of its 4 links) by other transputer. 

Only first transputer is  reset  by the host. 
c) Every transputer  can  reset maximally another 2 transputers, one by 

system, and the other by subsystem reset link. 
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Graph theory defines precisely technical limitations by term RS complete 
graph maximal degree 4. [3] 

Binary tree architecture satisfies technical constrains of transputers (RS 
complete graph maximal degree 4) [3]. Binary tree architecture is applied in 
this paper. 

Transputers can be grouped in 3 categories: 
a) The first transputer; 
b) Transputers that have successors (transputers with numbers 2-8.); 
c) Transputers which have no successor (other 9 transputers). 
File with NIF extension describes architecture (configuration) of the tran-

sputer system. Example of NIF file for our implementation, which contains 
17 transputers T800 is shown below: 

1, lisptrl, RO, 0, 2, 3, 
2, lisptr2, R1, 4, 1, 5, 
3, lisptr2, Si, 6, 7, 1, 
4, lisptr2, R2, 2, 8, 9, 
5, lisptr2, S2, 10, 11, 2, 
6, lisptr2, R3, 3, 12, 13, 
7, lisptr2, S3, 14, 3, 17, 
8, lisptr2, R4, 18, 4, 19, 
9, lisptr2, S4, 4, 
10, lisptr2, R5, 5, 
11, lisptr2, S5, 5, 
12, lisptr2, R6, 6, 
13, lisptr2, S6, 6, 
14, lisptr2, R7, 7, 
17, lisptr2, S7, 
18, lisptr2, R8, 8, 

' 19, lisptr2, S8, 8, 
Every line contains: 
a) Number of the transputer (the first transputer must be connected to 

the host by link 0); 
b) Name of a program that will be executed on that transputer; 
c) R or S (system or subsystem reset), and number of the transputer 

which will reset him; 
d) Number of the transputer which is connected by link 0; 
e) link 1; 
f) link 2; 
g) link 3; 

Free connection by that link marking empty place. 
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Example: 5. Transputer execute LISPTR2, reset by subsystem link of 
2. Transputer (S2). Link 0 connects to transputer number 10, link 1 to 
transputer 11, link 2 to transputer number 2. Link 3 is free. 

Configuration of the transputer system given in previous NIF file is binary 
tree (Figure 1). More about a configuration of a transputer in a network is 
presented [3] and [7]. 

FIGURE 1. Architecture of the transputer system 

1.1 Work done by the first transputer. 
First transputer performs following operations: 
a) Loading input data; 
b) Parsing input data for definitions of user-defined functions; 
c) Saving that definitions; 
d) Saving names of variables and functions; 
e) Parsing function calls from input data; 
f) Printing output results; 
g) Deciding about the execution of the functions (whether to execute 

function itself, or to send it to "successors"). 

1.1.1 Calling of user-defined function. 
If the first transputer evaluates user defined function, two cases can arise: 
a) If the function contains only calls of built-in functions, the first trans-

puter itself evaluates all parts of the function, because in many cases this 
evaluation is short. 

b) In case that the user-defined function also contains calls of other user-
defined function (functions), much computing can be expected. In that case, 
if some of "successors" are free, this transputer sends parts of those user-
defined function to free "successors" for evaluation. If all "successors" are 
busy, then this transputer itself evaluates all function calls. 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



370 	 Jozef Kratica 

1.1.2 Calling of built-in function. 
In this case, the first transputer performs all computing alone, because 

the evaluation of calls of built-in functions is short. 

1.2 Work performed by the transputers that have "successors". 
Every transputer that has "successors" (in this configuration of 17 trans-

puters, these are transputers Nos. 2-8), waits for the message "COMPUTE" 
from "parent" transputer. 

After receiving the message "COMPUTE", it receives the following data: 
a) Expression (function) that it will evaluate; 
b) Names and values of variables in that expression; 
c) Definitions of functions, that the expression (function) needs for the 

evaluation; 
d) Contents of argument stack in that moment. 

After that, the transputer evaluates function calls, in the same way that 
the first transputer does. After the end of the evaluation of that function 
call, the transputer sends the "FREE" command to the "parent", and saves 
a result to its communication stack. 

In the moment in which the "parent" needs this result, the transputer 
loads this value from his communication stack and sends it to the "parent". 

1.3 Work performed by transputers that have no "successors". 
Every transputer that has no "successors" (in this configuration of 17 

transputers, these are transputers Nos. 9-19), waits the message "COM-
PUTE" from the "parent" transputer. 

After the receival of the message "COMPUTE", ite receives the following 
data: 

a) Expression (function) which it will evaluate; 
b) Names and values of variables in that expression; 
c) Definitions of functions, which the expression (function) needs for eval-

uation; 
d) Contents of argument stack in that moment. After that, it itself eval-

uates the function call (because it has no "successors"). 

After the end of the evaluation of the function call, a transputer sends the 
"FREE" command to a "parent", and saves the result to its communication 
stack. In the moment in which the "parent" needs this result, the transputer 
loads this value from its communication stack and sends it to the "parent". 

2. Realization 
The implementation of LISP interpreter for transputers (multiprocessors), 

was based upon the corresponding implementation for uniprocessor machines 
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[3]. Changes in parts of implementation for uniprocessor machines are minor. 
The implementation for multiprocessors (transputers) contains two new par-
ts: 

1. Argument passing and 
2. Control part 

In this implementation there are two segments of the program: 
a) the segment which will be executed on the first transputer; 
b) the segment that will be executed on the other transputers. This 

segment does not contain the procedures which other transputers cannot 
execute (I/O operations, parsing, ...). 

2.1 The segment for the first transputer. 

2.1.1 Argument passing. 
The parallel C contains only procedures intended for passing of integers or 

characters to (from) communication channels. In the program the complex 
and powerful data structures (pointers, linked lists, ...) and procedures nec-
essary for passing those data structures to (from) communication channels 
were used. This part of the program contains procedures that enable those 
possibilities. 

2.1.2 The control part. 
This is the most important part of the program. 
It performs following operations: 
a) receives messages from input channels, and performs their commands; 
b) takes note of transputers which ended theis previous evaluation, and 

now are free; 
c) when it evaluates function calls, it analyses following cases: if the 

transputer has "successors", if its "successors" are free, and if expression is 
user-defined function, then it sends a function to be evaluatet to the first 
free "successor". In other case it itself evaluates a function call; 

d) it sends the message "GIVE ME" to a "successor", demanding the 
value it computed. Then it waits until it receives the value. 

2.1.3 The segment intended for other transputers. 
On the other transputers some procedures are disposed as unnecessary. 

Some procedures are new. 
In the part Argument passing new procedures are procedures intended 

for the communication stack (not necessary for the first transputer). 
In the part Control parts there are several operations to be performed: 
a) receival of function intended for evaluation (and all necessary data) 

from the "parent". 
b) receival of the message "GIVE ME", from the "parent"; 
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c) receival of the message "END" from the "parent". This message means 
the end of the interpreter work. In that moment, execution of program ends, 
and the user exits from the interpreter to the operating system. 

3. The efficiency of the implementation 

This implementation is efficient, in case of the great number of operations, 
and recursive oriented solutions. However, increase in speed depends upon 
the nature of a problem. 

The testing was performed using few test examples. The increase in 
speedup was notable only for problems with a small number of I/O op-
erations, and a great number of computing operations. In the alternate case 
(a great number of I/O operations) the increase in speed is small, because 
the communication time for one datum is 4 times greater than the time 
needed for the arithmetic operation on that datum. 

In Tables 1-3 all times are given in ms. The maximal error of measurement 
equals 5ms. 

The results for different arguments are given in different rows of each 
table. 

In each row are given: 
a) arguments of functions; 
b) the execution time on 1 transputer; 
c) the execution time on configuration with 3 transputers, and increase in 

speedup in comparison to time on 1 transputer; 
d) the execution time on configuration with 7 transputers, and increase 

in speed compared to the time on 1 transputer. 
e) the execution time on configuration with 15 transputers, and increase 

in speed compared to the time on 1 transputer; 
f) the execution time on configuration with 17 transputers, and increase 

in speed compared to the time on 1 transputer; 
Example 1: The function with 2 recursive calls: 
(defun t2 ( x ) 

(if (= x 0) 
1 
( 	(t2 (- x 1)) (t2 (- x 1))))) 

The method of evaluation of ( t2 17 ) is given in Fig. 2. 
Example 2: The recursive search of Fibonacci numbers: 
(defun fib ( x ) 

(if (i x 2) 
x 
(+ (fib (- x 1)) (fib (- x 2))))) 

The method of evaluation of ( fib 24 ) is presented in Fig. 3. 
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TABLE 1. Times for the Example 1 

X 1 tr. 3 tr. spe. 7 tr. spe. 15 spe. 17 spe. 
10 741 428 1.73 232 3.19 125 5.92 125 5.92 
11 1481 850 1.74 457 3.24 237 6.24 237 6.24 
12 2961 1695 1.74 906 3.26 461 6.42 461 6.42 
13 5921 3384 1.75 1804 3.28 911 6.49 910 6.50 
14 11841 6764 1.75 3541 3.34 1809 6.54 1808 6.54 
15 23681 13522 1.75 7073 3.34 3605 6.56 3604 6.5 
16 47362 27039 1.75 14138 3.35 7197 6.58 7197 6.58 
17 94722 54073 1.75 28267 3.35 14382 6.58 14382 6.58 

FIGURE 2. Scheme of evaluation for example 1 

TABLE 2. Times for the Example 2 

X 1 	tr. 3 tr. spe. 7 tr. spe. 15 spe. 17 spe. 
10 65 49 1.32 36 1.80 26 2.5 22 2.95 
15 710 502 1.41 337 2.10 201 3.53 138 5.14 
16 1148 809 1.41 543 2.11 317 3.62 216 5.31 
17 1857 1306 1.42 874 2.12 506 3.67 343 5.41 
18 3004 2111 1.42 1411 2.12 826 3.63 548 5.48 
19 4860 3412 1.42 2279 2.13 1310 3.71 879 5.52 
20 7862 5519 1.42 3684 2.13 2115 3.71 1416 5.55 
21 12721 8927 1.42 5957 2.13 3418 3.72 2284 5.57 
22 20582 14433 1.42 9476 2.17 5523 3.72 3688 5.58 
23 33301 23353 1.42 15311 2.17 8932 3.72 5961 5.58 
24 53881 37758 1.42 24761 2.17 14453 3.72 9639 5.59 
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374 	 Jozef Kratica 

FIGURE 3. Scheme of evaluation for example 2 

Example 3: Some problems have a great number of I/O operations, a lot of 
communication, or their execution is slow due to certain technical limitations 
of transputers. In the evaluation of those problems a small increase in speed 
is obtained, or, conversely, more time is needed than on one transputer. The 
example of such a problem is the program which forms a "big" list. 

(define form (n) 
( if (= n 0) (set list (cons '1 list)) 

(begin 
(form (- n 1)) 
(form (- n 1)) 
(form (- n 1)) 
(form (- n 1)) 
(form (- n 1))))) 

(set list '0) 

TABLE 3. Times for the Example 3 

X 1 3 spe. 7 spe. 15 spe. 17 spe. 
2 53 63 0.84 63 0.84 63 0.84 63 0.84 
3 293 344 0.85 344 0.85 344 0.85 344 0.85 
4 1461 1721 0.84 1721 0.84 1721 0.84 1721 0.84 
5 7338 8633 0.85 8633 0.85 8633 0.85 8633 0.85 

Remaining methods of implementation are extensively described in [1]. 
Some of them are: 

1. Translation of a program code into metalanguage, that is more suitable 
for evaluation [6]; 
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2. Division of the problem into subproblems (divide and conquer ap-
proach) [5]; 

3. Translation of the program into a code that does not the requirements 
of speed, and after that, during run-time, automatic improvement of its 
performances [4]. 

4. Conclusions 

Most implicit parallel languages implement functional programming lan- 
guages. Reasons for using functional paradigm (insted of the procedural 
one) are: 

1. Smaller kernel of language; 
2. A precise grammar, and, consequently, uniform constructions; 
3. No side effects; 
4. Easy writing of recursive functions; 
5. No explicit sequence of execution. 
Because of that, parallel implicit programming languages are most popu-

lar. 

In this paper the interpreter for LISP that implicitly solves problems 
of communication and synchronization between processors was developed. 
This method is the most general one, but it does not, in the same time, 
produce the fastest code. The code is equal to the code used for uniprocessor 
machines, and all programs written in sequential LISP can operate on those 
machines as well. But a programmer can manually write the fastest code (in 
explicit parallel programming languages, like Parallel C or Occam). 

Architecture is binary tree. This means easier control of processors (com-
munication and synchronization), but it also means the unnecessary waiting 
of some processors (transputers). A more complex architecture (than the 
tree) can reduce waiting of processors, but it will also increase a communi-
cation. 

The methods of improving this implementation are: 
1. the implementation of new built-in functions in accordance with the 

Common LISP standard. It should be noted that there are few thousand of 
built-in functions in Common LISP; 

2. using more complex architecture of the transputer system. New gen-
eration of transputers has more interprocessor channels (16) than this gen- 
eration (4). This means that architecture can be more complex, and the 
increase in speed can be greater. 
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CODING FOR (5,13) CHANNEL CONSTRAINTS 

Milan Simie and Rade Petrovie 

ABSTRACT. Data Translation codes for the particular channel constraints are designed 
and presented in this paper. The encoding schemes belongs to the RLL(5, k) codes family 
and can be used in digital recording and telecommunication practise. 

1. Introduction 

Runlength limited codes, RLL, are used for digital storage, or as Transla-
tion codes for digital data transmission /1/. System for digital transmission 
can be defined as a system designed to best use a given channel, while the 
analog communication system is defined as the one designed to best fit a 
given signal source. Unconstrained data stream must be converted to con-
strained stream of symbols, (d, k), in order to solve the problems of spec-
tral shaping, self-timing, and intersymbol interference (ISI). Lower bound of 
zero runs defined by parameter d is used to control ISI, while upper bound 
defined by parameter k is used to insure data stream selfclocking. Gener-
ally, parameters of any translation encoding scheme belong to the range of 
0 < d < k < oo. Through the numberof already published papers, we have 
shown that channels with constraints in the range of d = 5 and 12 < k < 16, 
are interesting for the future use in both areas of application. The channel 
(5, 13) have not been especially treated yet, and it is the purpose of this 
paper. The presented encoding schemes offer a great opportunities in choos-
ing encoding rules, so that RLL codes can be combined with permutation 
codes, and the signal spectral density can be adjusted. Permutation codes 
are a class of error correction codes which have been suggested for use on 
the Gaussian channel. 

2. Capacity and Coding Rate Consideration 

Based on Schannon's FSM channel model (Finite State Machine), gen-
eral algorithms are already developed for practical encoding schemes design. 
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378 	 Milan SimiC and Rade PetroviC 

Code designers try to enlarge the parameter d, and to shorten the parameter 
k, for the same coding rate R = m/n, defined as ratio of unconstrained input 
data symbols number, m, to the number of constrained signal symbols, n, at 
the coder output. The operation of string translators, named encoders and 
decoders, is to map input string of symbols from one alphabet into the out-
put string of symbols from the other alphabet. Input string may possibly be 
of infinite length, but for the practical reasons it is devised into finite strings 
of fixed or variable lengths, so that we have FL or VL encoding schemes. 

Codeword assignment is obviously the function of the incoming dataword, 
but also it can be dependent on the channel state, presented by the FSM, 
when we have state dependent coding. Finally, it can be the function of the 
future dataword, and in that case we have Future dependent coding - FD. 
Shannon proved that, as codeword length n grows, the number N (n) of (d, k) 
sequences approaches the value 2cn, where C is called information capacity. 
Capacity C can be treated as the theoretically maximum achievable coding 
rate R for infinite value of codeword length n, according to the equation: 

(1) C 	
1 

lim — (1 og21V (n)) 
n —0 oo n 

It is clear that coding rate R always satisfies inequality R < C. The 
code is called the efficient one if the coding rate R is close to the capacity 
C. Different (d, k) sequences information capacities are already given in the 
references, but we did some more calculations based on the solution of the 
characteristic equation given by det(A — Al) = O, where A is FSM state-
transition matrix. The calculated capacity C is the capacity of a discrete 
noiseless channel expressed in units of bits per channel symbol, although 
it can also be calculated in units of bits per second, bps. Capacity of 
the channel in bits per channel symbol differ only by a factor equal to the 
number of channel symbols per second. Considering channel characteristics 
there are four concepts related to one another: 

Data rate in bps, at which data can be communicated, 
Bandwidth of the transmitted signal and the nature of the transmission 

medium in hertz, 
Noise or average level of noise over the communications path, 
Error rate, the rate at which errors occur. 
For the coding purposes, or alphabet conversion, it is convenient to con-

sider capacity in bits per symbol. Our conclusion was that the codes with 
coding rate R = 1/3 and parameters (d, k) = (5, k) could be of interest 
in recording, as well as telecommunication practice. Density ratio of these 
codes, given by DR = R(d 1) = 2, is valuable improvement over existing 
codes. 
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After the considerations described above, we have found out that it is 
possible to design new coding schemes defined by parameters (d, k) = (5,13) 
and R = 1/3, as the (5,13) constrained sequences information capacity is 
C = 0.343 < 1/3 = R. Clock rate, defined as CLR=1IRT, is increased, 
CLR = 3, and thus compensates information rate loss caused by translation 
of unconstrained input data sequences to the constrained sequences. The 
original information bit time interval, which corresponds to NRZ clock signal, 
is called bit window, and is labelled with T. 

3. Encoding Schemes for (5,13) Constraints 

- State and Future Dependent Coding 

Figure.1 illustrates State transition diagram or FSM, for general con-
straints (d, k). In our particular case when d = 5 and k = 13, it is a graph 
with 14 nodes, or channel states, where arrows directed edges represents 
state transitions, and are labelled with channel bits. In the terminology of 
synchronous Bounded Delay (BD), or FD coding /2-5/, set S, is a set of cod-
ing, or terminal states, which are the states entered at the end of codewords. 
Codewords are the paths through the FSM graph. 

Fig. 1 State transition diagram for the (d, k) sequence 

The existence of set S, = (S,), as a subset of all FSM states set, S = 
(Si), i = 1, ..., 14, is a necessary and sufficient condition for the existence of 
a code. FD RLL(5,13) code can be defined with 26 codewords, the lengths 
of which vary from 3 to 21 signal symbols, representing 1 to 7 data bits. 
Coding states set is Sc = (Se), c = 1,2,4,5,6,7,8. The codeword choice is 
a function of the current state (State Dependent-SD), the information to be 
represented, and the future information. Code conversion rules are given in 
Table 1. Data bits in brackets indicate future bits in certain states, and are 
related to the states S i , S2, 54, and S5, where we have future dependency. 
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TABLE 1. Future Dependent RLL(5,13) Code 

Initial State Input Data Output 	Sequences Final State 

1 Ss, S71 58 00 100000 S6 
2 010 010000000 58 
3 011 001000000 S7 
4 100 000100000 S6 
5 1010 000010000000 S8 
6 1011 000001000000 S7 

7 1100 000000100000 S6 
8 11010 010000010000000 S8 
9 11011 010000001000000 S7 
10 11100 001000001000000 S7 
11 111010 000010000010000000 S8 
12 111011 000010000001000000 S7 
13 111100 000001000001000000 S7 
14 1111010 010000010000010000000 S8 
15 1111011 010000010000001000000 S7 
16 1111100 010000001000001000000 S7 
17 1111101 001000001000001000000 S7 
18 1111110(0) 000010000010000010000 55 
19 1111110(1) 000010000010000001000 S4 
20 1111111(1) 000001000001000001000 S4 
21 1111111(00) 010000010000010000010 S2 
22 1111111(01) 010000010000010000001 Si 
23 Si 0 000 54 
24 S2 0 000 S5 
25 S4 1 000 S7 
26 S5 0 000 S8 

- State Independent Coding 

Using the same codepaths in the state transition diagram from Fig.1, 
state independent SI RLL(5,13) code can be defined with no look-ahead. 
In this case, coding states set is S, = (S e ), c = 6, 7,8. Code translation 
table can consists of 22 or 21 codewords, the lengths of which vary from 
6 to 24 signal symbols, representing 2 to 8 data bits. Generally, future 
dependency can shorten codeword length, but in this case it does not affect 
the error propagation limiting (EPL), or codec complexity reduction. The 
next RLL(5,13) code is designed with given coding states set S c , where the 
translation rules are defined for 21 VL codewords as presented in the Tablet. 
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TABLE 2. State Independent RLL(5,13) Code 

Input Data Output Sequences 

1 00 100000 
2 010 010000000 
3 111 001000000 
4 100 000100000 
5 1010 000010000000 
6 0111 000001000000 
7 1011 000000100000 
8 11001 010000010000000 
9 11011 010000001000000 
10 11000 001000001000000 
11 011001 000010000010000000 
12 011011 000010000001000000 
13 011000 000001000001000000 
14 1101001 010000010000010000000 
15 1101011 010000010000001000000 
16 1101000 010000001000001000000 
17 1101010 001000001000001000000 
18 01101001 000010000010000010000000 
19 01101011 000010000010000001000000 
20 01101000 000010000001000001000000 
21 01101010 000001000001000001000000 

The problem of EPL is directly related to the appropriate codeword to 
the data word assignment and the decoder design /6/. Based of that, similar 
data sequences are coded with similar symbol sequences. The encoder for 
the New code can be designed as any PAL SM (State Machine) encoder for 
RLL codes, as for example for RLL(2,7), or RLL(5,16) codes, but we propose 
sliding window decoder. 

The decoder for New RLL(5,13) code has 26 bits shift register, as sliding 
window, with serial input-parallel output and PLA array architecture for 
combinatorial logic design. Programmable AND-OR array generates canon-
ical form sum-of-products of the variables involved in a function. Variables 
are taken from the shift register positions. Sequential decoder generates one 
output data bit for each incoming 3 symbol bit pattern, after the time delay 
for 9 symbols, or 3 data bits. There is no internal feedback in the decoder 
as the output depends only on the input string in length of 26 bits, so that 
the error propagation is limited to only 9 data bits since 24 < 26 < 27. If 

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



382 	 Milan Simi and Rade Petrovi6 

we denote the contents of the shift register positions by x i , i = 1, 2, ..., 26, 
with shifts from x 1  to x26 , the decoded group occupies positions x 10 , xil 

 and x12 , while the past (xi, i = 13 — 26), as well as, the future (x i , i = 1— 9) 
bit groups, can affect the decoder decision. After a great deal of calculation, 
since the truth table has 116 rows and 26 columns, it can be shown that the 
decoder output, d = f(x i ,..., x26 ), is defined by Boolean expression: 

18 

d = E pi 

P1 = x7r13; P2 = x7X14; P3 = x8x14; P4 = X9X18; P5 = x9x19; 

(2) 	P6 = X9X20; P7 = X13i19; PS = X13x25; P9 = X14i20; P10 = x4r11i17; 

P11 = x5x11i17; P12 = x10i16i17; P13 = i10X16i22; P14 = 1 10i11x17x23; 

P15 = i1i2X8i15i16i17; P16 = x6i12 113 1. 14i15i161 17; 

P17 = x12i18i19i20i21 122i23; P18 = x15i21i22i23i24i25i26; 

The truth table used in the evaluation of decoder function is only a part 
of the whole table with 2 26  = 67108864 rows. 

- Improved ACH coding 

Referring to the FSM model, as in any other method, with ACH approach 
it is possible to derive encoder state transition table in systematic manner, 
for any channel constraints, if coding is realisable depending on R and C. 
Recently /7/ the novel method, or improved ACH, was presented. The same 
approach was used for the following scheme design. Constrained channel is 
described by 14-by-14 state transition matrix D: 

D = (did); i,j = 1,...,14 

di 1 = 1 for i >(d +1) = 6 

do = 1 for j = i + 1 

do = 0 for the other cases 

Next step was to derive B = D3  from D, and it should be for our channel 
the following matrix : 

B = D3  = (bid); i,j = 1, ...,14 

bil  = 1 

bi2  = 1 

bi3  =1 

bi = 1 

bij  = 0 for the other cases 

for 4 < i < 12 

for 5 < i < 13 

for 6 < 	< 14 

for j = i + 3 
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After that we have found vector V with positive integer components such 
that: 

D3 V > 2V 

Two optimal, from many possible solutions, are the following: 
V1 transposed = ( 4 5 6 8 10 12 12 11 9 9 7 3 3 3 ) 

= v(i) for i = 1 to 14; m = 102 

V2 transposed = ( 4 5 6 8 10 12 12 11 9 9 7 3 3 1 ) 
m = v(i) for i = 1 to 14; m = 100 

where v(i) are components of the vector V. 
The number of encoder states, in the state splitting process, is given by 

the corresponding component of vector V so that the total number of encoder 
and decoder states is in.. l'he Encoder matrix E is squared, 100x100 matrix 
in the other case which is the best one, and we can use Milan approach, with 
H matrix, to define the encoder /7/. 

Since the number of states is 100 < 128 = 2 7  states, the error propagation 
is limited to only 7 data bits, for this class of codes /7/. 

4. Conclusion 

Encoding schemes presented in this article are coding problem solutions 
for (5,13) channel constraints. Error propagation is limited in each case, as 
more precisely presented in the previous papers for similar codes, and the 
further analyse can be done in order to adjust signal spectres. In addition 
to that, RLL codes can be combined with permutation codes to improve the 
reliability, or Data Rate in the communication channel. 

The last one scheme from this paper, can give us more freedom to make 
the appropriate codewords to datawords choice. Since the presented channel 
codes are selfclocking, and according to the existing standards they can be 
used for voice and all other source data transfer, so they are suitable to be 
data encoding schemes for ISDN, or BISDN via fibre optic media. Finally, 
the FDDI code is only RLL(0,3) encoding scheme. 
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