UNIVERSITY OF NIS
FACULTY OF PHILOSOPHY
Department of Mathematics

FILOMAT

9:2 (1995)

Conference Filomat 94

GEOMETRY & COMPUTER SCIENCE

Guest Editors: S. Minc¢i¢ and Lj. Kocié

FILOMAT

a continuation of
ZBORNIK RADOVA FILOZOFSKOG FAKULTETA U NISU
SERIJA MATEMATIKA

EDITORIAL BOARD

Lj. Koéinac (Managing Editor)
S. Bogdanovié, S. Jablan, S. Jankovié, 1. Jovanovié, G. Milovanovié,
A. Palistrant, Z. Perovi¢, V. Rakocevic, J. Zemanek, Guo Yuq:

Guest Editors: Svetislav Minci¢ and Ljubisa Kocié

This publication was supported by the Faculty of Philosophy, University of Nis

Published by the Faculty of Philosophy, University of Nis

Printed by “Prosveta”, Nig

UNIVERZITET U NISU
FILOZOFSKI FAKULTET

FILOMAT

9:2 (1995)

Konferencija Filomat ’94

Geometrija. Ratunarstvo i informatika

Urednici: S. Minc¢ié i Lj. Kocié

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITewByre A Jo A1jnoe4 Jo Areiqi] [enlliA

Conference FILOMAT ’'94
(October 22-24, 1994, Nis)

Department of Mathematics of the Philosophical Faculty, University of
Nis, organized the mathematical conference »Filomat '94 ” from October 22
to October 24, 1994, with two sections:

1. Geometry (The 10" Yugoslav Meeting of Geometricians)i

2. Computer Science (Geometric Modeling, Numerical and System Soft-
ware, Networks)

About 80 mathematicians from Yugoslavia and other countries have taken
part on the conference, with about 60 talks. Some of them are published in
this volume of ,,Filomat”.

Chairman of the Organizing Committee

Svetislav Min¢ié

The organization of the conference ,,FILOMAT ’94” was helped by
the sponsors:

“Ministry of Science and Technology of Serbia
-EI Sigraf d.o.o.

-Libis Computers

-STN Slavia Trade, Ni3§

-WB Osiguranje

-Yugoduvan, Nis

GEOMETRY

sIoe6q jew Ariqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jo Areiqi] [enlliA

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoe4 Jo Areuqi] [enlliA

FILOMAT (Nig) 9:2(1995), 117120

Filomat 94, Ni§, October 22-24, 1994
Geometry. Computer Sciences

AN INEQUALITY FOR THE TRIANGLE

Momcilo Bjelica

ABSTRACT. Inequalitics for the triangle in the most of cases become equalities for the
cquilateral triangle [2], [5]. In this artiele is given an inequality with unigue property that
it becomes equality for isoscales and rectangular triangles. Also, an mequality connected
with Karamata's inequalily is given.

Theorem 1. Let a, b, ¢, o, 3, v are the sides and angles of a triangle
respectively and R the radius of its circumeirele. Then

(1) 2R >

202 + 2¢2 — g2

equality holds if and only if b= ¢ or a =
b? + ¢* c? + a? a® 4 b? }
V2R 42T — a2 V2T 26 — 02 VR F 22 — 2 |

equality holds if and only if the triangle is isosceles or rectangular.

(e

(2) 2R> max{

Lemma.
b* 4+ e? —qa? "
|cos a| > J_;Tr_t sina < b1 2)
B 3 2
3
(3) e < YR
an o a ST
= [0* + ¢* — a?|

a V202 +2¢2 — a2 L@ a
cos — y o S = & e,
(4) 2~ V202 + 22 2 V202 + 2¢?

(7}
V202 F 2 — 2

1991 Mathematics Subject Classification. 51M16.

117

118 M. Bjelica

and conversely for a > %

. Equalities hold if and only if b= ¢ or v = 7.

Proof. Inequality (3.1) is equivalent to |cos al(b - ¢)* > 0, which becomes
equality if and only if b=cor a = 7. (3.2) is equivalent to (3.1), and (3.3)
is their consequence. Using 2R sin @ = a one obtains that (1) is equivalent
to (3.2). Since cosa > (b* + 2 —a?)/(b* + ¢*) if a < T, and conversely if
a > T, inequalities (4) follow. O

The inequality of 1. J. Schoenberg [4] for the two-dimensional euclidean
space reads as follows: If Ay, A9, A3 are real numbers, then

(5) (A + A2+ A3)2R2 > Modga® + Aghb? + A doc’.
Introduce the functional
F(A1s Az, Az) = Aadad® + Ashib® + A dge?

and consider now the inequality (5) with two equal parameters. The func-
tional f(A1. Az, A2)y, A1 + 2A; = const. has a maximum if

A% +)+ 2Aq(a® — b® - ¢#) =10,

b'Z +('2 _ 112

Av =24 b2 + c?

For this value (5) becomes

(2 b2 + ¢ — d?

."‘2>2 off2 4 & _ gt
R +2)R_u+2(b + ¢ —a”),

as 207 4 2¢* — a* > (b—¢)? > 0, follows (1).
We now give the necessary and sufficient conditions for parameters in

Schoenberg’s inequality for holding equality, what led to the given thorem.
Let

(6) A+ A+ A=A

The functional [has a maximum, with the condition Ay + A3 = const.,
similarly A3 + A; = const. and Ay + Ay = const., if

(7) (s —X3)al + (% =)M =0, cyel.
The system of linear equations (6-7) has solution

gy = ka*(0* + ¢* — o), eyl

An Inequality for the Triangle 119

where .
k=A (Qbuf'z + 26?4 26052 — gt — bt = (-4)—] .

Using formulas for area /' of a triangle, Heron’s and 4F' R = abe, we get,
equality

Flpay o, p13) = k2a20*® (2% + 20242 + 2¢%b® — a* — p* — r'd) =M R,

By special values of the \’s several inequalities for the triangle, includ-
ing the well-known formulas of Weitzenbéck, Finsler and Hddwngu, can be

deduced [4], [2].

Remark. Equality in (5) holds if and only if sin20 = rAq, sin28 = r\,,
sin2y = rs, r € R, [1], also

2

t1 = ka*2be cosa = A—— sin 2a cyel,
251 3 s Y

Theorem 2.

7 b ¢
8 + T > V3,
(8) V202 +2¢2 — a2 \/2e 4 242 — 52 V2a? + 2027 — 2 T

equality holds if and only if the triangle is cquilateral.

Proof. The inequality of .J. Karamata [3]

X

/3
c11|.—+ta,11k+lanz > V3

and the third formula in (1) for either an acute or a rectangular triangle

induce given inequality. Let A = /202 £ 2¢2 — a*, cycl. and f — the left-
hand side of (8). Then

T = (0> + AP — abB 3 — caC~% = 0, cyel.
implies
boe= A0 g J g
Therefore,
aB/3 _ 313

a==0b or 2(a” +b+r]~j A

cycl.

and cither e = b = core. g a=0b,c= (V2 - I)S/Qu. Also f > 2if

g="b+e O

120 M. Bjelica

References

[1] O. BorTEMA, An inequality for the triangle, Simon Stevin 33 (1959), 97-100.

[2] O. BOTTEMA ET AL., Geometric inequalities, Wolters—Noordhoff Publishing, Gro-
ningen, 1969.

[3] J. Karamata, Problem 119, Glasnik matemati¢cko—fizicki i astronomski 3 (1948),
223.

[4] O. Koo, Incqualities for the triangle, Simon Stevin 32 (1958), 97-101.

[5] D.S. MITRINOVI& ET AL., Recent Advances in (GGeometric Inequalities, Dordrecht,

Boston-London, 1989.

M. Pupin”, UNIVERSITY OF NoVI SAD, ZRENJANIN 23000, YUGOSLAVIA

FILOMAT (Nis) 9:2 (1995), 121-129

Filomat 94, Nis, October 22-24, 1994
Geometry. Computer Sciences

THE COMPLETE LIST OF F(2) TYPE STRUCTURES
IN THE COMPLEX FINSLER SPACE

Irena Comié

ABSTRACT. The complez Finsler space E' is formed in such a way, that its tangent
space T(E") 1s equal to T(Fy) & iT(F,), where Fy and Fy are two 2n-dimensional
Finsler spaces. Using the nonlinear connections N and N of F1 and Fy respectively,
the adapted basis B' of T(E') is formed. There is given the complete list of F(2)
type structures. Some of them for different values of parameters are almost compler,
almost product or tangent siructures.

1. Complex Finsler spaces

Let us consider two n-dimensional Finsler spaces Fy(xz,&) and Fy(y,7).
The allowable coordinate transformations in Fy and F, are given by

o =2t (a) v =9 (y)
(1.1) 3 = Af(z) = i = B (y)if
Aa' — 9z° B;' — oy’
a Jre i ayi?

where ,)
rank[Ag] =n, renk[B!]=n,
so the inverse transformations exist.
The adapted basis of T(F}) is B, = {;, 5%} and the adapted basis of
T(F,)is By = {%, %}, where
) d 5 d] d

= — Nz, &)— —:—*‘Nj,_*“
ozt Pxo ”[I’L)ai"” oyt Oy iy y)'@yf

N(z,2) and N;(y,ﬂ) are coefficients of the non-linear connections, which
satisfy the usual transformation law with respect to (1).

The complex Finsler space E'(z,,y,7) is formed in such a way that B’,
the adapted basis of T(E"), is given by B’ = B, U tB,.

1991 Mathematics Subject Classification. 53B40, 53C5H6, 53C60.

121

122 I. Comié
For the further exploration we shall use five kinds of indices

a.boe doe, Foo= 1,205 570, i, 5,hklL,mpg=n+1,...,2n
A B,C,D,E.F.G=2n+1,.,3n, ILLJHKL,M,FPQ=3n+1,.,4n
a,B,7,6, kv, =1,2,...,4n.

The following equalities are valid

a=1= A= I(modn), b=j=B=J(modn)

(1.2) ¢ = h =C = H(mod n).

Using these indices, B’ and its dual B'" can be written in the form
g s

, , 6 .6 o0 .0
(1.3) (a) B :{3“}:{@’36_11"’5:&7’259_’}

(b) B = {d*} = {da®, —idy’, 6%, —is7’ },
where
537 = di? + NB(z,i)dz, &3 =dy’ + N/ (y,9)dy'.
If we introduce the notations

6 6 0

d
) R=|— - — i
(14} () [63:“ zéy‘ diA zag}"]
Ad(z") 0 0 0
_ 0 Biy) 0 0
(b) D=1 0 AL(z) 0
0 0 0 BL(y")
dz?’
S| —idy”
() K'=| g |,
—i6y"
then the following relations are valid.
(1.5) R =RD K =DK'.

R' is obtained from R if indices a, i, A and I are substituted by o', 7',

A’ and I’ respectively, similarly K is obtained from K’ if in & the sign e
over all indices is dropped. D is regular matrix, so exists D~'. From (4a)
we have

(1.6) R=RD K'=DK,

The complete list of F(2) type structures ... 123

© where
A'(z) 0 0 0
0 0 A% () 0
0 0 0 BY'(y)

2. The r(2) type structures defined on &

Definition 2.1. The tensor field F of type (1) defined on E' is the structure
of F(k) type if in the basis B' its matriz can be decomposed on 4 x 4 blocks of
format n X n, such that in each row and each column are k scalar matrices
and 4 — k zero blocks.

Notation. Every one of the scalar fields a, b, ¢, d, e, f, g, h denotes
the corresponding real or complex scalar matrix of type n X n (for example
a=a(z,z,y,9)I).

Theorem 2.1. There ezist 90 F(2) type structures on E'. They are:

a 0 e 0 a(]aO"(aOeO' a 0 0 g
b 0 f 0 b 0 0 ¢ b 0 0 ¢ b 0 e 0
0 ¢ 0 ¢ 0 ¢ f O 0 ¢ 0 h 0 ¢ f O
L0 d 0 AJLodonr|lodsfol]lodo n]
fa 0 0 g7[a 0 0 g]J[a 0 e 07Ta 0 € 0177
b 0 e 0 b 0 0 h 0 ¢ f O 0 ¢ 0 g
0 ¢ 0 K 0 ¢ e 0 b 0 0 g b 0 f 0
_OdfOJ_Udde_OdOh_UdOth
[a 0 ¢ 07[ae O 0 gJ[a 0 0 g]J[aea O 0 g]
0 ¢ 0 ¢ 0 e 0 0 ¢ e 0 0 ¢ 0 h
b0 o0 A||b 0 fO0|]lbo0oo0hr|]bo0 e 0
lod folloaonllod follodys o]
fa 0 e 0] [a e 077a 0 e 07[a 0 0 g17°
0 ¢ f 0O 0 ¢ 0 g 0 ¢ 0 g 0 ¢ e 0
0 d 0 g 0 d f 0 0 d 0 h 0 d f 0
Lb 00 A)Lb 00 A]Lbo Ffollb ook

1. Comic

124

re————— ey

—— ey | ghonu | ee—— | OHJOIH T 1 | 1 r 1 T 1

o ;o & oo O = o oo o ;e o (=T~ R e o ;LYo
OO W NN VWO SO

[R = O WSO o O WY oo W o L O YN S v O YN
vo o™ o R i =

vo o8 Lo o LS~ e [o} (2 = I == B2 = LS = B = g - (Sl ~ =]
[T S = R] oo 8 =0

o 8o o 1 o 8 O 0 1 oo 8o 0O o [i e R = R o oD

L] — J rm—————— L J L] L e L —— |

1 Do Lo — c o &> T 1 r 1 = 1 r 1

oo o o o2 © ol o oo o o ;YO & o ;o =
o WO Y [e R e |

Vo O VOO Y o WO N (=R) o WO o WO
vooT L O O

veo o= o™ o v oo vo o Vo o nvo o
o 8o o oo 8o

o 80O —— o 8 O =0 —— o 8o e S A e [- T oSO T oo

1 J — L J [——f L B | L - L 1 L Jd

| —— oo o 2) e O O r 1 — 1 r 1 r 1

= R e e R o ;o =8 o o =2 o O =’ o O =2 o ;e o
o WSO oo W N

oo w Lo o [B =) Do VW OO0 VY oo W
Ve o™d o W o

o v o LS [- == e o o voOo e o v O O (ST~ I o i =]
o 8 oo o 8o =

S o o= - o 8o - OO 8o S oo S oo o S oo

= _ - L I L 1 L — L S
* S’ * ~—

| L} | 1 | 1 | S L] T 1 r L] | 1 | 1

o 8O o S O o o o, o 8o o ;Y O oo ol oo Tl oo ol

o WO Y o O Y Lo O o WO Y v O O O VO YN O WO YN o WSO

[oee I £ Bl ~ R Vo o3 vo || o vo e LSRR~ A s Y o Lo o vTEOoO o LSRR . R e B o

S o o o o 8o O o 8T oD o 8o o oo 8 [B R . B e SO Lo S O C o

L] L] L] L] L] L —| L — | L P 1

125

The complete list of F(2) type structures ...

T = | T —1 T === T 2] T 1 T = | T =% T 1 r 1
o = o oo Lo Do 2 O SO oy I i e R L oo oo o 2o o oD oo
= R) VOO VOO D ow O N VOO N OO O U Oo VOO VO SO
o voe o Lo (== Wl ~] co v oS v = oo v oo v oW o v
o 3o o o 80 o (=T« I R Y oo 8o oo 8o co 3o Lo oo g =T = N T | o oo g
| C— J L] L I — ! ; I J = 1 L il — L J
r — 1 T e T | r] T al T 1 ——— r —1 T 1
SO SO O =2 Do o = o oo = SDo o= o O L o o2 O Do S o S0 2 O
VoS o U O NSO OSSO VS o o LSO C WO o Vo o VSO o Vo o
o Lo ™ o vo g o Ve o (=T Ll oo v =R oo oW v oW v o"w o v
o 3o o (=l =) e R e Y oo 8o = B oo I S oo g o0 0o 38 SO0 3
L] =] —_ I G CH] L J [] e J L 1 L]
r —1 T = r ml T 1 r =1 f = T =1 r | 1
SO o= DO O o 2o oo © & o o 2 S O o oo = o o = o = R~ i
SO W N = e R TIR N (=T U S = DD ey =T = I oW o (=TI =] = =] o WSO
o v o "/ v o o i T I o veo | o vo TWo ve o™ o v Voo oo v
o 3o o == R = oS d oD oo g o oo 8o [l e I - Y S oo g oo O g oo T
| FIEEES J L] [J |] L] L J] L 1 L J
r L L} -1 r == | r 1 T 1 r =3 r 1 r el N
o O oye= oo T, o O Ty S o 2 o ;o 2 S Yo &2 o oy o o o2 o o o2 o
U=l R VO D N LT e} LS e B R VOO Y VSO o VoSO P i e I S] v SO O
(=2 M~ A "V oo N v oo oW v o |OoO vo |o o oW e W oo w o o ©
= 8 oo o 8o o o 8 o0 0o 8o s Bio [=T = - N} oo g oL o g o o= g
L] [] [E—] 1 L 1 { A] L] (8 L —

126 . Comié

a ¢ 0 07 a ¢ 0 0 a ¢ 0 0 00 e g
b d 0 0 00 e g 0 0 € g a c 0 0
0 0 e g b d 0 0 0 0 f h b d 0 0
LOth_(s)[){]fh b d 0 0 0 0 f h
'OOfg'OOeg*
a ¢ 0 0 00 f h
0 0 f h a ¢ 0 0
_brlO[)_deO(ﬁ)

The first 36 matrices are formed in such a way that in the first two columns
the chosen elements are always in different rows; in the next 48 matrices
the first two columns have once two elements in the same row (ac) and two
elements in different rows; in the last 6 matrices the first and second columns
have two times, two elements in the same row.

Definition 2.2. The tensor field F of type (1,1) defined on E' is almost
complex structure (a.c.s.) iff F2 = —I, almost product structure (a.p.s.) iff
F? = I, or tangent structure (t.s.) iff F* = 0.

Theorem 2.2. The F(2) type structure, which in the former list do not
have the sign ”*” can not be a.c.s., or o.p.s., or L.s.

Proof. Some Fj(i = 1,...,90) from the above list of F(2) type structures
can be a.c.s., or a.p.s., or t.s. if F has the property, that all elements, which
are not on the main diagonal are equal to zero. All Fs, which do not have
the sign 7*” (there are 84) are such, that F? has at least on one place, which
is not on the main diagonal, product of two elements. This product is zero
f at least one of the factor is equal to zero, but in this case F; is not F/(2)
type structure.

Theorem 2.3. There are only siz F(2) type structures defined on E', which
for some special values of parameters can be a.c.s., or a.p.s., or t.s. They
are denoted by "*” in the above list of F(2) type structures.

The complete list of F(2) type structures ... 197

Proof. For special values of parameters we have

[a 0 b 0 a 0 0 b
0 ¢ 0 d 0 ¢ d 0
= e 0 —a 0 by = 0 e —¢ 0
L0 g 0 -ec f 0 0 -—a
[0 a b 0 0 a 0 —=b
—ce 0 0 cd ce 0 be 0
Fg= ed 0 0 —ca LSS 0 d 0 e
|l 0 d ¢ 0 L —ed 0 ac 0
[a b 0 0 (00 ae —ab
¢c —a 0 0 0 0 —ac d
B=1lo o ¢ ¢ Fe=1lgn 5 0 o
L 0 0 d —e L c e 0 0

By direct calculation we obtain

F} = diag[a® + be, ¢ + dg, a® + be, ¢* + dg]
F} = diag[a® 4 bf,c® + de, ¢ + de,a® + bf]
F2 = ¢(bd — ae)l
F? = c(bd + ae)l
F? = diag[a® + be,a® + be, e? + df, e* + df]
F = (de — abe)l.

From Theorem 2.3 follows

Theorem 2.4. The F(2) type structures F; — F; are a.c.s. if

m a2+be:cz+dg:—1,
in F a2+bf=c2+de=-—1,
in I5 c(bd — ae) = —1,
in F; c(bd+ ae) = -1,
n F ag-}—bc:ez-l-df:—l,
in Fy de—abe= —1.
If in the above equations —1 is everywhere replaced by 1, the structures

Fy — Fg become a.p.s.; if —1 is everywhere replaced by 0, the structures
Fy, — Fg become t.s.

128 I. Comié

3. The tensor character of F(2) type structures

Theorem 3.1. All 90 F(2) type structures from the list in paragraph 2 de-
termine tensor fields of type (1,1) in the basis B', with respect to the coor-
dinate transformation (1).

Proof. As the proof is the same for all structures, we shall give it for F;.
The structure F, in the basis B’ determines the following transformation:

F](EE?) = a&:a +ea:%

Fl(i‘s;—‘) = c(zé—:—) +g(i£—,
Fl(a—;f-’—,,-) = bai, —ab%‘

F1(i5§—;) = d(z%) —c(iaiﬁ,).

The precise form of Fj is the matrix

ad® 0 bSF 0

0 e 0 d§
e, 0 —abf 0O

0 g& 0 —céf

F1=

The tensor F), which is determined by the matrix F; can be written in the
following way:
Fl = RF1 & K.

In the basis R’ and K’ F has the form (see (4)):
Fi=RD'MD®K' =RF ®K',

where
adt A% AY 0 b6E AL AY 0
Pl T 0 c8! B} B 0 ds} Bi, B’
Fi=D7RD=| oavas 0 —abBALAE 0
0 96} Bl, B! 0 —c6{ B}, B’

For F| we have -
F? = (D"'F,D)(D~'F,D) = D~'F?D.
From the above relation follows: .
| i P = f e =
if F2=I=PF3=1,
if F2=0= F}=0.

The complete list of F(2) type structures ... 129

Refrences

(1] BEsaNcU, A., Geomelry of C'R-Submanifolds, D Reider Publishing Company,
1986.

[2] Comié, 1., Generalized Connection in the Complez Finsler Space, (to be pub-
lished).

[3] Comi¢ 1., N1k1é J., Some Hermite metrics in the complez Finsler spaces, Publ.
Inst. Math. Beograd 55 (69) (1994), 89-97.

(4] IcHivio, Y., Almost complex structures of tangent bundles and Finsler metrics.
J. Math. Kyoto Univ. 6-3 (1967) 419-452.

(5] KoBavasH1, Su., Nomizu, K., Foundations of Differential Geometry, Inter-
science Publishers, New York, London 1963.

[6] PrakasH, N., Kaehlerian Finsler Manifolds, The Math. Student. Vol. 30, No.
1,2, (1962), 1-11.

[7] Rizza, G.B., Structure di Finsler di tipo quasi hermitiano, Riv. Mat. Univ.
Parma, 4 (1963) 83-106.

[8] SHiMADA, H., Remarks on the almost complez structures of tangent bundles,
Research Report Kushiro Tech. Coll. No. 21, (1987) 169-176.

(9] Yano, K., Differential Geometry on Complez and Almost Complez Spaces, A
Pergamon Press Book, New York, 1965.

FAacuLTYy oF TECHNICAL SCIENCES, 21000 Novi SAD, YUGOSLAVIA

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoe4 Jo Areiqi] [enlliA

FILOMAT (Nig) 9:2(1995), 131-142
Filomat '94. Ni§, October 22-24, 1994
Geometry. Computer Sciences

GEODESIC TUBES AND JACOBI VECTOR FIELDS
ON COMPLEX SPACE FORMS

Mirjana Djorié

ABSTRACT. Studying geodesic variations and associated Jacobi vector fields is very useful
Jor examining the theory of curvature in local and global Riemannian geometry. This is
directly connected with the tnvestigation of the geometry of small geodesic spheres and
tubes, so it can be used in the analysis of the curvature of the ambient space, In this
paper, the explicit expressions for the Jacobi vector fields on complex space forms will be
used for calculating the matriz of the shape operator of tubes about geodesics on complex
space forms.

1. Introduction

The study of the curvature of a Riemannian manifold is one of the most
interesting topics in Riemannian geometry. As it is well-known, the study of
variations of geodesics and the associated Jacobi vector fields is very useful
in treating curvature theory in local and global Riemannian geometry. This
is directly related to the investigation of the geometry of small geodesic
spheres and tubes about curves and submanifolds. The properties of the
extrinsic and intrinsic geometry of these geometric objects may be used to
study the curvature of the ambient space, as it was done in (1]-[9]. On this
occasion we consider only the converse situation, namely, it is quite clear
and well-known that when the Riemannian manifold is of a special type (for
example, if it has special curvature), then the properties of geometric objects
on it are strongly influenced. In [4] the author gave the explicit expressions
for the shape operator of tubes about p-geodesics on Sasakian space forms,
while in this paper the special case when the ambient space is a complex

1991 Mathematics Subject Classification: 53B20, 53B35, 53022, 53C55

Key words: Kihler manifold, complex space form, geodesic tube, shape operator,
Jacobi vector field.

Supported by Grant 0401A of RFNS through Math. Inst. SANU

131

132 M. Dornié

space form is considered. Working with Jacobi vector fields, since this falls
among the best ways of analyzing the geometry of tubular neighborhoods,
the matrix of the shape operator of tubes about geodesics on complex space
form is obtained.

We refer to [11] and [14] for a study of tubular neighborhoods and 2]
where a more detailed and more complete developement may be found, with
an extensive list of references. The article is organized in the following way:
Section 2 is devoted to a brief survey of the concepts used throughout the
paper and in Section 3 the main results are treated.

2. Preliminaries

Let M be a complex analytic manifold of complex dimension m. By means
of charts we may transfer the complex structure of complex m-dimensional
Euclidean space C™ to M to obtain an almost complex structure J on M,
i.e.. a tensor field J on M of type (1,1) such that J? = —I, where [is the
tensor field which is the identity transformation on each tangent space of M.
A Riemannian metric ¢ on M is a Hermitian metric if g(JX,JY') = g(X,Y)
for any vector fields X and Y on M; M is then called a Hermitian manifold.
[f moreover the almost complex structure J is parallel with respect to the
Riemannian connection of g, then J (resp. g) is called a Kdhler structure
(resp. Kdhler metric); M is then called a Kdhler manifold. We call a plane
which is tangent to M and is invariant by J a holomorphic plane. 1f M is
a Kahler manifold, the sectional curvature of a plane p tangent to M will
be denoted by K(p) and the sectional curvature of the holomorphic plane
generated by a unit tangent vector X will be denoted by K(X). M is said to
be of constant holomorphic sectional curvature ¢ if the sectional curvature
of every holomorphic tangent plane is equal to ¢. As a complez space form
we shall understand a complete Kahler manifold of constant holomorphic
sectional curvature and its curvature tensor RxyZ = V(x y]Z — [Vx,Vy)Z
is completely determined and given by ([15]):

RevZ = %(g(X, Z)Y - (Y, 2)X + g(JX, Z)JY — g(JY, Z)J X
(1)
+ 2g(JX,Y)JZ).

As is well known, any simply-connected complex space form M is (after
multiplying the metric of M by a suitable positive constant) holomorphically
isometric to a complex projective space, a complex FEuclidean space or a
complex hyperbolic space, in dependence of M being of positive, zero or
negative holomorphic sectional curvature, respectively ([15]).

(ieodesic tubes and jacobi vector fields on... 133

We finish these preliminaries by repeating some general facts about tubes.
We refer to [2], [11] and [14] for more details and references.

Therefore, let @ : [a,b] — M be a smooth, embedded unit speed curve in
a Riemannian manifold M of dimension n and denote by ¢t the normal
bundle of ¢ and by exp, the exponential map of this normal bundle, i.e.,

expAe(t)v) = eXPy(y) ¥

for any ¢ € [a,b] and all v € o(t)L. Here o(t)* denotes the fiber of ot
over a(t). Further, let ,(r) be the (open) tubular neighborhood or the
(open) solid tube of radius r about o, i.e., the set defined by

Us (1) = {exp,yv|vEa(t) | v]<rte [a, b]}

and denote by N, (r) the (open) solid tube of radius r about the zero section
of the normal bundle o+ of o. In further text, we shall always assume that
the radius r of the tubular neighborhood is smaller than the distance from
o to its nearest focal point. In this case, the exponential map exp, is a
diffeomorphism between 4, (r) and N,(r) and consequently, the set

Po(s) = {p €Us(r) | d(o,p) = s},

for some s < 7, is a (smooth) hypersurface in M | called the tube of radius
s about o. If ¢ is a geodesic on M , the tubes P, are called geodesic tubes
about o.

For the purpose of describing the geometry of a Riemannian manifold
M in the neighborhood of a curve ¢ we use Fermi coordinates. The Fermi
coordinate system (z1,...,z,) with respect to o(a) and relative to a given
orthonormal frame field {Fy,..., F,} along the curve ¢ for which o(t) =
(F1)o(t) is defined by

Ty (expﬂ(t) (Z tJFj)) =i —a,
=2

o (expa“) (thFj)) =Ty =2, .,
i=2

provided that the numbers t,,...,t, are small enough in order to have a
diffeomorphic exp,.

Further, if v is a unit speed geodesic of M normal to ¢ with ¥(0)=m =
a(t) and v = 7'(0), then thereis a system of Fermi coordinates (zq, ..., B
such that for small s we have

d . b R i
('.(E)m - U(t)-] (E)’—Ii)m . {U(t}} E=2,..,m 1,

134 M. Dorié¢

d) ,
o =7'(s).
(01” (s)

Since exp,, is diffeomorphism on Uy (), the equations (2) define a co-

ordinate system near m. It is known ([L1]) that the restrictions of the coor-
o 2
Axy " T By

we shall relate the coordinate frame field to a frame field obtained by consid-
ering a special set of Jacobi vector fields along y with a view to obtaining
the expression for the shape operator of P,(r).

[n this aim, let p = exp,y(rv), v € a(t)*, ||v]| = 1 be a point of P,(r)
and let 7y : s — exp,(sv) be the (unique) unit speed geodesic connecting
o(t) and p (and cutting o orthogonally). Denote by {Fi,...,E,} the
frame field along v obtained by parallel translation of {Fy(t),..., Rk}
with respect to the Levi Civita connection V. Next,if R = R(s) denotes the
endomorphism u — R.(5)47'(s) of the vector space {¥'(s)}*+ € TyaM,
then a vector field Y along a geodesic 7 is called a Jacobi vector field if it
satisfies the following second order differential equation- the Jacobt equation:

dinate vector fields to o are orthonormal. In what follows

(3) YP e RY =10,
where the prime ’ denotes covariant differentiation along y. Next, let Y;, i =

I,...,n—1 be the n—1 Jacobi vector fields along v, satisfying the initial
conditions

Yi(0) = Fi(t), Yi(0)= (vai) (o(1)),

(4)

Y;(0):=10, Y/(0) = Ei(t), i=2,...,n—1
and define
(9) Yilé) =(B EJ(8); 1= kst —1s

The vector fields Y;(s) determine a basis for the space {y'(s)}* for suffi-
ciently small s and s +— B(s) is an endomorphism-valued function. Then,
cach B(s) is an endomorphism of the space {y'(s)}* and all these spaces
may be identified via the parallel translation along v by using the basis
{E;i=1,...,n}. We shall do this at several places without mentioning it
explicitly.

Now, from (3), (5) and the initial conditions (4) it follows that B satisfies
the Jacobi equation

(6) B"+RoB=0

Geodesic tubes and jacobi vector fields on... 135

with the initial conditions

(7) 50) = (4 8) 50)= (g 7

since we shall focus our attention only to tubes along geodesics.

Finally, we shall write down the matrix of the shape operator §7 of
geodesic tube P,(7), using Jacobi vector fields along geodesics orthogonal
to 0. Since Z(p) is a unit normal vector of Py(r) at p = eXPy(sy(Tv), the
shape operator S7 of P.(r) at p is defined by

9]

(8) (57X)(p) = (V_\' d_é) (p)

for any vector X tangent to Py(r) at p. Hence, it is easy to see, by using
(5), that the shape operator S7(p) takes the form

(9) S9p) = (B'B7") (r).

3. The main results

In this section we consider complex space forms and we compute the ex-
plicit expressions for the shape operator of geodesic tubes in these manifolds.
To obtain our results we use here one of the most convenient methods for
analyzing the geometry of small geodesic spheres and tubes about curves and
submanifolds, by studying the Jacobi vector fields on complex space forms.
It is quite natural that the Jacobi vector fields play an important role in this
research since it is a well-known fact that the curvature of a Riemannian
manifold is geometrically reflected by the behavior of one-parameter fami-
lies of neighboring geodesics and they are analytically described by Jacobi
vector fields. When the manifold is of a special type, the consideration of
Jacobi vector fields results in the study of the Jacobi differential equation
which has a relatively simple form.

Let m be a point on a complete Kahler manifold M™ of constant holo-
morphic sectional curvature ¢ and let Po(r) be a tube of radius r about a
geodesic @ tangent to a unit vector field v . Further, let v be a geodesic
through m = (0), parametrized by arc length s, with initial velocity vector
7'(0) = v and meeting ¢ orthogonally at m = o(t), with u = ¢ at m. Here-
after we shall also write 7'(s) = v at any point of v. For a vector field »
the Jacobi equation

(10) v'uvuX + R‘UX’U =0

136 M. Doric¢

for a given complex space form M becomes by virtue of (1)

c
(11) VUVﬂX—{-E(X—:}g(JX,U)Jv):0.
Further, we shall distinguish three cases, depending on the position of
the point p = exp,y(rv), v € o(t)*, ||v|| = 1, in the forthcoming three
theorems.

First, consider the special points p of the geodesic tubes P,(r) on a
complex space form M™, such that p = exp,(y(rv),v € a(t)t, v(o(t)) =
Ju(a(t)). As this case has already been investigated in [2] and [6], we give

here only the final expression for the matrix of the shape operator. Namely,
the following theorem holds:

Theorem 1. ([6]) Let (M,g,J) be a Kahler manifold of constant holo-
morphic sectional curvature c. Then, at a point p = exp,(y)(Tv), v €
a(t)L, v(a(t)) = Ju(a(t)) of the tube Pq(r) (along a geodesic o(t) tangent
to a vector u), the shape operator 57(p) can be represented by the following
matriz:

Ax) 0 ... 0
| 0 B(r)
(12) S%(p) = . ;
0 0 ... B(r)

with respect to the basis {E1,..., En_1} defined in Section 2. The ezplicit
expressions for the entries are as follows:

1
A(r) =0, B(r) = . for ¢ = 0;
A(r) = —V/ctan ver, B(r) = % cot —\f:r, for ¢ > 0;
A(r) = V/|e| tanh y/|c]r, Blr) = 2|C| coth “;dfr, for ¢ < 0.

Now, let us consider sufficiently small tube P,(r) about the geodesic @
embedded in a Kihler manifold of constant holomorphic sectional curvature
¢. Let v denote the unit-speed geodesic meeting orthogonally at m = a(t)
and tangent to a vector v such that g(u(m),Jv(m)) = a, where a=u
at 1. To obtain the matrix of the shape operator of Ps(r) at points p =

Geodesic tubes and jacobi vector fields on... 137

eXPg(s)(rv), we first choose an orthonormal basis {e1,...,e,} for the tangent
space T, M, such that ¢; = u (m),ex = (Jo(m) — au(m))/b,en = v(m),
where a® + b2 = 1. Further, let {£1,...,E,} be the basis obtained by
parallel translation of the ha,slc; {er,..., n} along y. Then it follows that
any vector field X orthogonal to the geodesic 7 can be written as

n—1

(13) X=hE+hE+) fE.

=3

Since, using (1) we obtain

rR.,,,E;1 = 2(3a® + 1)Ey + 3abE,)

(14) J [{vEQT’ = i(;abE‘l + (352 + I)E)
& :

RnE."":ZE 1= 3. =1,

we see that (11)is equivalent to the following system of differential equations:

4"+ c(3¢* + 1) fy + 3abe f, = 0,
4 £y + 3abe fy + ¢ (30° +1)fa = 0,
(16) 4ff+ecfi=0, i=3,....n—1.

(15)

Now, consider the substitution

21 :af1+bf2:-

(17) Zgzbf]—ﬂ,fg.

Then the equations (15) take the form

az +bz +eazn + Esz:O,
. - 4

(18) ., e
bz —azz +cbz IHEu 25 = .

In this way, by multiplying the first equation in (18) by @ and the second
by b and adding the obtained results, we arrive at a differential equation

138 M. Dorié

which is easy to integrate, having in mind that the solutions will depend on
the sign of ¢. Finally, using the standard solutions of the n—3 equations
(16), we can derive the complete solutions in the three cases we shall need.

Case 1: c=0

Here we find

fi = (@A+bC)s+aB+ 0D,
fo =(bA—aC)s+bB —aD,
f; = Ais+ By, § =3 i =14

with A, B, C, D, A;, B; being constant along 7.

Case 2: c>0
In this case, putting k = /¢, we obtain

fi= aF cosks + a(i sin ks + bH cos -"‘2—"‘ + bl sin 52—5 .
fa= bF cos ks + bG sin ks — aH cos 5 — al sin &,

fi= F; cos%i + (7; sin %, ¢ =08 s ib— s
with F', G, H, I, F;, (; being constant along 7.

Case 3: c<0

This time we put k = /—c. Repeating the same computations, we obtain

-

=

= a(Is"f:’“—}— Lf‘ks)+b(Me% + [\.fe—"-zi)1
fo= b(Keks + Le*) —a(Me% + Ne™ %),
fi= Ix"kas +L,-f:_%’, i1=3,....,n—1,

o]

with ', L, M, N, K;, L; being again constant along 7.
Moreover, we shall need the form of the Jacobi vector fields along a geo-
desic 7 satisfying the following initial conditions:

(19) X1(0) = E4(0), X4(0)=0,
(20) Xi(0)=0, X[(0)= B{0), i=3,....0—1.
We shall therefore compute these special Jacobi fields in the three above-

described cases, using the notation k = /¢ if ¢ > 0 and & = /—c when
ex (.

I
o

Case 1: c

Geodesic tubes and jacobi vector fields on... 139
Xi(s) = Ey(s), Xy(s)=s Ey(s), Xis)=sEis),i=3,....n—1.

Case 2: c>0
= (a® cos ks + b2 cos “) Ll—!—nb (cos ks — cos &2 %) Es,

(2(s)= a_ (sin ks — 2sin —) FEi+ - (b?' sin ks + 2a? sin %‘?) E,,

k
r 2] : 2
Xds)= Z sl By(s),d=8,...,0m= 1.
Case 3: c<0
Xi(s)= (@ cosh ks + b* cosh 42 %) B +ab (cosh ks — cosh &= B) E,,

b
Xa(s)= (;b (smhke — 2 sinh 75) P+ - (b“ sinh ks + 2a” sinh £2 £2) By,

. 2
Xd3)= T sinh £ Ey(s),i=3,...,n— 1.
Finally, using relations (4)-(9) and computed Jacobi vector fields, it fol-
lows that the shape operator §7 can be represented by the fol]owmg quasi-
diagonal matrix:

[Ar) B(r) 0 .0

B(r) C(r) 0 ... 0
(21) 57(p)y=| 0 0 D(r) 0

L 0 0o ... D(?‘)J

with respect to the basis {0F, — aE,, Jv, Es, ..
pressions for the entries are as follows:

. Ey_1}. The explicit ex-

Case 1: =0

Case 2: c>0

A(r)= 5= (=b*sin & sin kr + 242 cos &2 KT cos kr) |

B(r)=-Lab
C(r)= £ (—2a’ sin & sin kr + b2 cos &2 cos k'r) g
D(r)=%c t% ,

140 M. Dorié
where w = 1 (2¢*sin KL cos kr + b? sin kr cos i) .
Case 3: c<0

A(r)= 2_1@ (b2 sinh "—2’3 sinh kr + 2a® cosh 523 cosh kr) -

Bir)= 415 ab,
C(r)= 3 (2¢® sinh & sinh kr + b? cosh &% cosh kr)
D(r)= & coth &,

where 8 = % (2(.','3 sinh -"5'5 cosh kr + b% sinh k7 cosh kz—’")
Therefore, this proves that the following theorem holds:

Theorem 2. Let (M™,g,J) be a Kihler manifold of constant holomorphic
sectional curvarure ¢ and let P?(r) be a sufficiently small geodesic tube
of radius v around a geodesic o tangent to a vector u on M™. Then
the shape operator S° of tube P?(r) at points p = eXPy(y)(T0), such that
v(o(t)) L u(a(t)), g(Jo(a(t)),u(a(t))) = a, can be represented by the matriz
(21).

Finally, since the case v(o(t)) L Ju(a(t)) is slightly more difficult than
the case v(o(t)) = Ju(a(t)), but easier than the general case, where
g(Ju(a(t)),u(c(t))) = a, we give here only the final result, i.e., the matrix
of the shape operator in this case.

Theorem 3. Let (M™,g,J) be a Kihler manifold of constant holomorphic
sectional curvature ¢ and let P°(r) be a sufficiently small geodesic tube
of radius v around a geodesic o tangent to a vector v on M"™. Then
the shape operator S° of tube P7(r) al points p = exp,y(rv), such that
v(a(t)) = Ju(o(t)), is given by the following matriz:

rA(r) 0 0 0 7

0 B(r) 0 0

(22) SU(P) — 0 0 ('(1’) 0
Lo 0o 0 ... C(r)

with respect to the basis {E1, Ea, ..., E,_1} defined in Section 2, such that
Ey(a(t)) = Ju(a(t)). The explicit expressions for the entries are as follows:

Geodesic tubes and jacobi vector fields on... 141

Case 1: c=1
: 1
A(r)=0, B(r) =C(r) = g
Case 2: c>0
A(r)= 7% tan%,
B(r)=k cotkr,
Glr)= % cot%.
Case 3: c<0
A(r)= £ ta,uh%,
B(r)= k coth kr,
v _ k k
C(r)= 3 coth &F.

It is evident that the last result follows either directly from Theorem 2

(by replacing a = 0,b = 1 in (21)), or following the similar procedure
as in Theorem 1 and Theorem 2 (i.e., solving the Jacobi equation (10) and
computing the Jacobi vector fields). The author first used the latter method.
and then checked the results after having proved Theorem 2.

Remark. After having completed this work, the author was informed by

L.

Vanhecke, that L. Gheysens derived the complete formulas for S in his

dissertation [10] and that the needed material is given in [12].

(1]
(2]
(3]
[4]

(5]
(6]

[7]
(8]
(9]

References

P. BUEKEN, Reflections and rotations in contact ‘geometry, doctoral dissertation,
Katholi- eke Universiteit Leuven, 1992,

M. Diori¢, Geometrija geodezijskih sfera i cevi, doctoral dissertation, Faculty of Ma-
thematics, University of Belgrade, 1994.

M. Duiori¢, On characterizations of Sasakian space forms and locally w-symmetric
spaces, Publ. Math. Debrecen 46(1995), 1-23.

M. Diori¢, Geometry of geodesic tubes on Sasakian manifolds, Proc. Collogquium on
Differential Geometry, Debrecen, 1995, Kluwer Ac. Publ., to appear.

M. Duori¢, Geometry of tubes about y-geodesics on Sasakian manifolds, submitted.
M. Duyori¢, Characterizations of complex space forms and locally Hermitian symmetric
spaces by geodesic tubes, submitted.

M. Diorié AND L. VANHECKE, Almost Hermitian geometry, geodesic spheres and
symmetries, Math. Okayama [Univ. 32 (1990), 187-206.

M. DJori¢ AND L. VANHECKE, Geometry of geodesic spheres on Sasakian manifolds,
Rend. Sem. Mat. Univ. Pol. Torino 49 (1991), 329-357.

M. Duyori¢ AND L. VANHECKE, Geometry of tubes about characteristic curves on
Sasakian manifolds, Rend. Circ. Mat. Palermo XLI (1992), 111-122.

142 M. Dorié

[10] L. GHEYSENS, Riemannse differentiaalmeetkunde van buisvormige omgevingen, doc-
toral dissertation, Catholic University Leuven, 1981.

[11] A. Gray, Tubes, Addison-Wesley Publ. Co., Reading, (1990).

[12] A. GrAYy anD L. VANHECKE, The volumes of tubes in a Riemannian manifold, Rend.
Sem. Mat. Univ. Politec. Torino 39 (1981), 1-50.

[13] S. KoBAYASHI AND . Nowmizu, Foundations of Differential geometry, 1,11, Interscience
Publ., New York, 1963, 1969.

[14] L. VANHECKE, Gieometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci.
Univ. Cagliari, Supplemento al Vol.58 (1988), 73-176.

[15] K. YANO AND M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World
Scientific Publ. Co., Singapore, 1984.

FAcULTY OF MATHEMATICS, UNIVERSITY OF BELGRADE, STUDENTSKI TRG 16, P.B.
550, 11000 BELGRADE, YUGOSLAVIA

E-mail: edjoric@ubbg.etf.bg.ac.yu

FILOMAT (Nig) 9:2(1995), 143-148
Filomat '94, Nig, October 22-24. 1994
Geometry. Computer Seiences

CURVES GENERATED BY MIRROR REFLECTIONS

Slavik V. Jablan

ABSTRACT. Curves generated by mirror refleclions are discussed from theory of symmetry,
combinatorial geometry and knot th eory poinl of view.

The imitation of the three-dimensional arts of plaiting, weaving and basketry was
the origin of interlacing and knotwork mterlacing ornaments. Their highlights are
the Celtic interlacing knotworks (1,2] (Fig.1a), Islamic layered patterns and Moorish
floor and wall decorations.

The common geometrical construction principle for all such decorations is the
use of (two-sided) mirrors incident to the edges of a square, triangular or hexagonal
regular plane tiling, or perpendicular to its edges in their midpoints (Fig.la). In
the ideal case, after the series of consecutive reflections, the ray of light reaches its
beginning point, defining a single closed curve [3]. In other cases, the result consists
of several such curves,

The construction of such curves was occupied the attention of two most greatest
painters-mathematicians: Leonardo and Diirer [1]. Some interesting geometrical
and arithmetical properties of the curves mentioned are discovered by Paulus Gierdes
[3,4,5]. Let us notice one more beautiful geometrical property: such curves can be
obtained using only few different prototiles. For the construction of all the curves
with internal mirrors incident to the edges, they are sufficient three prototiles in
the case of a regular triangular tiling, five in the case of square, and 11 in the case
of hexagonal regular tiling. We may also use their combinations occuring in the 11
uniform Archimedean tilings [6] (Fig.1b).

The symmetry of such curves is used for the reconstruction of Tamil designs [4],
as well as for the classification of the Celtic frieze designs [1]. From the ornamental
heritage, at first glance it looks that the synunetry is the mathematical basis for their
construction and possible classification. But, the existence of such asyminetrical
curves suggests the other approach. Trying to discover their common mathematical
background, they appear two questions: how to construct such a perfect curve (this
means, how to arrange the set of mirrors generating it), and how to classify the

1991 Mathematics Subject Classification: Primary 20H15, 57M25
Supported by Grant 0401 of FNS through Math. Inst. SANU

143

144 Slavik V. Jablan

curves obtained. Our consideration we will restrict to the curves derived from the

square tilings.

o)
S R

Figure 1

[n principle, any polyomino [6] with mirrors on its border, and two-sided mirrors
between cells or perpendicular on the internal edges in their midpoints, can be used
for the creation of the corresponding curves. First, we construct all the different
curves without use of internal mirrors, starting from different edge midpoints and
ending in them, till the polyomino is exausted, i.e. uniformly covered by k curves.
After that, we use "curve surgery” in order to obtain a single curve, according to
the following rules: (a) any mirror introduced in a crossing point of two distinct
curves connects them into one curve; (b) depending on the position of a mirror, a
mirror introduced into a self-crossing point of an (oriented) curve makes no change,
or breaks it into two closed curves. In every polyomino we may introduce k — 1, k,
k41, ..., 2A4 — P/2 internal two-sided mirrors, where A is area and P perimeter
of the polyomino. Introducing minimal number of mirrors k& — 1 we first obtain a
single curve, and in the next steps we try to preserve that result.

Curves generated by mirror reflections 145

There is also a simple way to preserve such single closed curve: to add on the
border of a polyomino a cell with three mirror-edges and one empty edge, or delete
such a cell. This way, any such polyomino with a single curve can be trausformed
into a rectangle. Unfortunately, they are rectangular mirror-schemes which canuot
be derived that way.

In the case of a rectangle with the sides a, b, the initial number of curves, obtained
without use of internal mirrors, is k =ged(a, b), so in order to obtain a single curve,
the possible number of internal two-sided mirrors is f — 1 & o vy DA —lt— b,
According to the rules for introduction of internal mirrors. we have the algorithm
for the production of designs consisting of a simple closed curve: each from the first
internal & — 1 mirrors must be introduced in crossing poinuts belonging to different,
curves. After that, when they are conected and transformed into a single line, we
may introduce other mirrors, taking care about the number of lines, according to
the rules mentioned. The next question is the classification of the curves obtained.
First criterion we may use is the geometrical: two curves are equal iff there is a
similarity transforming one into the other. Instead of considering the curves, we
may consider the equal mirror arrangements defined in the same way. Having the
algorithm for the construction of such perfect curves and the criterion for their
equality, we may try to enumerate them: to find the number of all the different
curves (i.e. mirror arrangements) which can be derived from a rectangle with the
sides a, b, for a given number of internal mirrors m (me{k—1k,... 2ab—a—0b}).
Unfortunately, we are very far from the general solution of this problem. Reasons
for this are: every introduction of an internal mirror changes the whole structure,
s0 it behaves like some kind of ”Game of Life” or cellular automata.

Till this time, we have only few combinatorial results, obtained by non-standard
use of Pélya enumeration theory [7.8]. Let a rectangle with sides a, b, k =ged(a, b),
be given, with the minimal number k — 1 of two-sided internal mirrors incident to
the edges of its square tiling. If { = (ab=lem(a, b)) : (k(k = 1)), 2 = a : (2k),
y = b (2k), we have, for example, for k = 5, a = O(mod 10) and b = 5(med 10),
the formula 147206% — 3761 + 80t% &+ 32¢r — dry — z, giving the number of such
curves.

The other point of view on the classification of such perfect curves is that of the
knot theory. As it is mentioned before, every siuch curve can be simply transformed
into an interlacing knotwork design, this means, a projection of some alternating
knot. In the history of ornamental art, such curves occured most frequently as
knotworks, then as plane curves. Even the name Brahma-mudi (Brahma’s knot)
[4] denoting such Tamil curves refers us to the knot theory [9,10,11]. In order
to classify them, we will first transform every such knot projection into a proper
(reduced) knot projection [11] a knot projection without loops, by deleting cells
with loops.

This way, we will obtain proper knot projections with the minimal number of
crossings. Two such projections or knot diagrams are equal off they are isotopic in
projection plane as graphs, where the isotopy is required to respect overcrossing re-
spectectively undercrossing [9]. For the classification of knots they are used different
kinds of knot invariants: Alexander polynomials [9,10,11], Jones polynormnials [11],

146 Slavik V. Jablan

Conway polynomials [10], ete. In order to classify the knot projections [12] we will
define a new invariant of knot (or link) projections. Let consider a proper oriented

knot diagrmn D with generators g1,...,¢n. If the meeting point of generators g;,
gj, gk is "right”, then a;; =1, aj; = 1, a;p = —1; if it is "left”, then a;; = —{,
aij = 1, aix = —1; in all the other cases u” =: (. The determinant d(t) = |ai;]| 1s

the polynomial invariant of D).

The writhe of D, denoted by w(D), is the sum of signs of all the crossing points
in D. where the sign is +1 if the crossing point is "right”, and —1 if it is "left” [11].
The writhe is the most simple visible property of every knot projection: |w(D)] is
the type of the knot projection.

By the use of a computer program developed by Vesna Velickovié, based on the
algorithm of Dowker and Thistlethwaite [12], it is derived the complete list of non-
isomorphic alternating knot projections for 3 < n < 11, where n is the number of
crossing points. For example, for n = 8 there are 27 non- isomsorphic projections
of the 18 alternating prime knots. They are given by the or(lermg number of knot

[9,10], by the sequences [12] and by the series of coefficients (¢n, ..., 1) of d(t).
81 410161412286 10-6-2108-4-4
8o 4101214162638 1031-11-4-4
83 6121016 14428 10-60100-40 (e)
84 610121614428 10-1-2-6140
85 6812214164 10 103202-4-4
8% 410141612286 100-2-7T-h44
8h 410161214286 10-1-1-5-H44
87 410121421668 10415242
8L 4812216146 10 100-1-2-3-4-2
84 4108142166 12 101-1-2-2-4-2
8g 610121416428 104020-40 (e)
B0 4812214166 10 10427442
8§, 410121416286 10-31-2-444
& 410121614268 10-20-3 444
81, 4814102166 12 10-3-33300
S, 481612214610 10-4080-40 (o)
80 410814122166 10-20-6040 (o)
8. 410121421686 10-10-2-1-4-2
8. 410141221668 10-1-1-1-1-4-2
R, AR1014216612 10-1-2-2-144
87, 481216214610 10-11-2-244
8 410814162612 100-1-2-144
8 481221461610 1011-4-3-4-8
8y 4814212166 10 1012-6-2-4-8
Big 681412416210 10233142
S, 681214416210 102010-40 (o)
S5 681012141624 1000-20-40 (o)

There are some important, properties of the integer polynomial invariant d(t) =

Curves generated by mirror reflections 147

ent™ 4 -+ert: (a) for every alternating knot projection, the degree of d(1) is n and
len| = 15 (b) for every knot prajection |ey | is equal to the type of the knot projection
(ie. fer] = [w(D)]); (c) d(t) and d(—t) correspond to the obverse (enantiomorphic,
mirror symmetrical) knot diagrams; (d) for n = O(mod 2), a change of the orien-
tation of an alternating knot projection results in the change of d(t) to d(—t); (e)
for n = 1(mod 2) a change of orientation of an alternating knot projection results
in the change of d() to —d(—t). According to (¢), (d) and (e), in the set of all the
knot invariants d(t) we may distinguish even functions (d(f) = d(—t)), containing
only even degrees of ¢, corresponding to amphichiral knot projections (denoted by
e), and odd functions (d(t) = —d(—t)), containing only odd degrees of ¢, which are
invariant to a change of orientation of the knot projection. Let us also notice that
invariant introduced makes distinction between non-isormnorphic knot projections of
composite knots (i.e. direct products of prime knots).

This invariant may be simply transferred to the alternating link projections.
In this case, the result is the polynomial invariant of the form: dit) = gut® <
oo+ ept®) where n is the nunber of crossing points, and k is the number of the
link components. For every link, len] = 1. If a; are the link components, a;; =
w(a;), and if a;; =lk(a;, a;) denotes the linking number of the components a;, aj,
then |ex| = [det(a;;)|. For example, there are two non-isomorphic non-oriented
projections of the link 63 (Figure 2).

oD %

Figure 2

The problem exposed shows how the same (old) structures— perfect pavitram
curves [3,4], may be regarded from the three different points of view: that of the the-
ory of symmetry, combinatorial geometry and topology, taking us to a trip through
mathematics, and introducing a new class of mirror-structures: curves generated
by mirror reflections.

References

[1] BaIN G., Celtic art- the methods of construction, Dover, New York, 1973.

(2] CroMWEL P.R., Celtic knotwork: Mathematical arl, The Math. Intelligencer, Vol. 15, No. 1
(1993), 36-47.

[3] GERDEs P.P.J., On ethnomathematical vesearch and symmelry, Symmetry: Culture and Sci-
ence, Vol. 1, No. 2 (1990), 154-170.

(4] GERDES P., Reconstruction and ertension of lost symmetries: evamples from the Tamal of
South India, Computers Math. Applic. Vol. 17, No. 4-6 (1989), 791-813.

148 Slavik V. Jablan

[5] GerpES P., Geometria Sona, Vol. 1, Instituto Superior Pedagogico, Maputo, 1993.
[6] Gringaum B., SuepHarD G.C., Tilings and Patlerns, Freeman, New York, 1979.
[7] Aigner M., Combinatorial Theory, Springer Verlag, Berlin, Heidelberg, New York, 1979.
[8] POLya G, READ R.C., Combinatorial enumeration of groups, graphs and chemical compounds,
Springer Verlag, New York, 1987.
[9] BurpE G, ZiEscHaNGg H., Knots, Walter de Greyter, 1985.
[10] Kaurrman L.H., On knots, Princeton University Press, Princeton, 1987,
[11] Kouno T. (p.), New developments in the theory of knots, World Scientific, Singapoore, New
Jersey, London, Hong Kong, 1989.
[12] Dowker CLH., THiIsTLETHWAITE M.B., Classification of knot projections, Topology Appl.,
16 (1983), 19-31.

DEPARTMENT OF MATHEMATICS, PHYLOSOPHICAL FacurTy, 18000 Ni3 CIRILA | METODIJA
2, YUGOSLAVIA

E-mail: eslavik@ubbg.etf.bg.ac.yu

FILOMAT (Nig) 9:2(1995). 149-159
Filomat '94, Nig, October 22-24. 1994
Geometry. Computer Sciences

ON A FAMILY OF TENSOR. FIELDS
IN A GENERALIZED RIEMANNIAN SPACE

Svetislav M. Min¢ié

ABSTRACT. In a subspace GRyy of a generalized Riemannian space GRp we observe a familly of
tensor fields (1.1), which contains as particular cases tangent and normal vectors of the subspace
as well the curvature veetor ¢ of a curve in the subspace. Because of nan-symmetry of Cristaffel
symbols we define four kinds of devivational formulas of the above mentioned Jamilly, as well
str integrability condilions of these formulas. As particular cases one obleins Gauss-Codazzi
eqations of the subspace and corensponding eqations for g®. In this manner derivational formulus
of Riemannian space are generalized, as well as their integrability conditions, i.e. the Gauss-
Codazzi equalions.

0. Introduction

A generalized Riemannian space (¢ Ry in the sense of Eisenhart [1], [2]is a differ-
entiable manifold in which a non-symmetric basic tensor ans # age is introduced.
If in the (G Ry the coordinates are y® (o = 1,..., N), then hy the equations

(0.1) ¥t = ¥ ™) (M2 V)

a subspace (GRp of the space (Ry is defined. If ¢ij 15 the basic tensor of this
subspace, then in general g;; # g;;. In every point of the subspace we can observe
N — M unit, mutually orthogonal vectors N(‘;) (p=M+1,...,N), which are also
orthogonal to (7R, i.e. to the vectors (for fixed i)

(0.2) # = % =8 Jar’,

where the comuma (,) signifies a partial derivative. We remark that in this work the
Greek indices take values I, ..., N and the Latin values 1,.... M (M < N), except

indices in brackets, which take values M + 1, ..., N.
Let g;; signify the symunetrisation, and g;; antisymmetrsation with respect to i,
=2 v

J and analogically in ather cases. Then ([7], [8]):

- ay
(U-}) “(r{jil‘t[‘j = Hij,
gy

(0.4a,b) aapli'ty = gij, ﬂ-uﬁi?ff = Gij»

= K —t v W
(0_5 ah) r!.ﬂu.m = 63‘ :'lfﬁ.')'f“j' = 5;‘1.

3 = B) : i 1

(0.6a,0) awgNGNG) = €000y (e(py = £1), aapNGyti = 0.

Supported by Grant 0401A of RFNS through Math, Inst. SANU

149

150 S. M. Mingié

The Cristoffel symbols of the (GRy are given by
(0.7a,b) e = E(ﬂﬁn’~y — Apy,a+ oy, p), gy = a® Tr gy

and analogically for (/R by gij. Then we have, for example,

Lo gy 3‘£ Ca.vs, Ff}w # Ff:ﬁ-

Because of non-summetry of Cristoffel symbols, we can define 4 kinds of covariant
derivative [3], [4]. For example,

I g o 4 g fi 4 @
ilm — t’l',m + F'rr,uti tm - 1—‘irn,f‘p'
1

0w — 6 e Ml P [
‘ilm — l"i.m + F;urti tm - Fm:'f'p '
2
), 4% Y] Q Myl P o
(0.8a) “§|lm = iEi,m'*' Firut:' tm _Fmitﬂ*
3
al Y o Tyl P a3
ilm — ii‘m + F;mti 1,‘m Fimip !
4

N((:))!m = N((:;)!\m = N(t;v),m + F::;;N(Tn)tﬁl

(0.8b) Nf}}lz"‘ =N (‘blm = NGy, m + Tan Nyt

We also obtain 4 kinds of derivational formulas (see (16) and (37') in [5]):

(0.9a) tim = Phmty + 2Qpyim NG,
H P
(0.9])} N(L';)lm = —E’.(g)ﬂw—g(a)smt; + %Tg)(pﬂ}mN{(;)1 Té‘-’(aajm =0,

where 0 = 1,2,3, 4 signifies the kind of covariant derivative.
On the base of (0.8b) it is

(0.10a) Qpyij = Qpyisy - iz = Qi
(0.10b) 1{’(pcr}m = %’(p(})m! T.J;)(pa)m = '?;’(po)mv

and with respect to (48', 24') in [5] we have

- h h h _ gh g1 h h h gTh
[U~1 l] (E)im = _?iml (gim = ({)im i zribn' (41):'!:1 - _(?im - Z'FIIUI

On a family of tensor fields in a generalized Riemannian space + 151

1. Derivational formula of the
field and integrability conditions

Suppouse that in the points of the G/ Ry a family of tensor fields is defined:

N
(1.1} Alryi = bFr)it.(:_F Z f'(pﬂiN(r,;;-
p=M1

Applying to (1.1) the covariant derivative of kind w€ {1,2,3,4} with respect to

2™ and using (0.9), we ohtain

(1.2) Mosiim = Coynls + > P eomyiom Ny,
" I Zi's

where

(1.3a) E{Jr Jim — bf‘r}irm + h??)r‘%)i‘m - Z(‘(r’)chﬂ)iyﬁsg(ﬂ]s”“
i %

(1.3b) PCerim = b0 pysm + Clorsilm + D etonyi Vipam:

The formula (1.2) is derwational formula of the field Alryi-

Applying to (1.2) covariant derivative of kind v € {1,2,3,4} with respect to 2"
and using (0.9) repeatedly, we get

F;']Hmrn, = (qir)iml,; =t q;r)inl(ubi‘n - E E(ff)gﬂ::(a?')im S}(a‘]sn)t;;‘i‘
B H v M P
(14) =+ 5 (q{)'r]im S}(;i];-u + L'(p-r)z‘m| # E ':;(n:r'r)im fp(pa)n)N(r:;):
“ v 1
3 o

where the tensors Tisyiins ;z["””” are given by (1.3). From lere we obtain
H

[a3 _ o . P - i 5) BP ¢ o P
(T)E|m|n /\(7)”?1!’” o ["’(T)imha q(?]iu]m + q(Tli-m [sﬂ |'1'(?)211 D.-zm
“ #H v 4 i 1 L v #

Hoow 1

_zn:f’[o).’]E(:l'(nr]imS}(v]sn = L'(U'r)in.i?(a)sm)]i;""
I y r 2 . n :
(15) +Z[g”)imsj('ﬂjp” = g(-r)in.‘(‘?[l’n””‘ + L(.‘”')“”I” - L(prjzn|m+

e .

+Z(L(aT)im '?f’(pa)n = E(oT)in 'z"(_pa)m)]N((;)) .

a

152 S. M. Mingéic

Applying the identities of Ricci-type (7), (11), (56) from [3] and (12), (13), (46)
from [4] to the family of tensor fields Af,;, we get

(1.6) fi),:\lm[ln Al pilnim = R?;w (ryitmtn — Rfmn (i — Fﬂm Q‘r]i!;n’
(1.7) ’\{ﬂ'r]il-‘rnln — f\EYT)iLHLm = RS:W (ritmin — [,?’f'm,n"\ (rip T zrmn 0 ()il
(1.8) A?f}t’!mlzn - A?T)iLﬂllm = Ir_}";:"m)‘zr?' Rfﬂm (T)p?
(1.9) /\('TM,..LH‘ - Er'rji!‘n!:n H::.tw (ryitmin — REHIMA?'! p T+ .21“5‘“” mzlr"
(1.10) ’\le]1_|1m|4n /\“ﬂzLﬂLm - E:;w (T)!tﬁlt:}t Rfmn)‘?f]r' 2l If;‘»"A“T!tlp’
(L.11) ’\?”}flnllﬂ - A?T)ilﬂlm = 4i$”1-?l’\grr)i 2 ';ﬁ?nm’\?f e
H is
where
(1.12) ﬁff,nm =¥ = D £ Ealpn = 4
(1.13) Bl = Py = Py T Wiy — T
(1.14) @j,,m = —Tijm+ rjmr;”, [P Thm + 2 (T8 — I3
S‘Emvi =48, v Chamt Ll =T Ce.)tnt+
(1.15) 20, (¥ — Dhonlh),
v
Rismn = = (LGuu = Togu+ FEHF% —) sTr)ttt
(1.16) +2Fﬁp(y1nn — Doty i

The magnitudes me' R;mn, (t = 1,2,3) are tensors and we call them curvature

tensors of the space, and of the subspace, respectively the Ist, the 2nd and the 3rd
kind. The magnitudes Rﬂmn, Rﬁmﬂ are tensors too and we call them curvature

tensors of the 3rd, of 'r.he 4th l\m(I of the space (i Ry in relation to the subspace
G Ry

1.1. Taking in (1.5) g = v = 1, in (1.6) replacing Ayilp by virtue of (1.2)

1
and equating the obtained results, we obtain the first inlegrabilily condition of the

On a family of tensor fields in a generalized Riemannian space

153
derwvational formula(1.2):
r T Hogv P @
}]—\)’ﬂ‘uu/\ff)itrn n {{

9P 8 o ; . ¥ _
imn N r)p T er\z,n(‘{mirts ki ZﬁfﬂfhpN(m) =
7

» _ P s 1
{({(T}imln i’(r}mlm + "{(Tli”lq)
1 1

3
sn
1

_ § r
- (lf{rjin lsm_

_ZF(a)ﬂp_x(flll aT im 512(a)sn T 7;(a'r)z‘ngiztcr Jsm)]t;:+
o

+Z[r{;€r)im {2

P % » ‘ i .
lodp ’IET},'”‘Slzt,ﬂ)pm S :'l(,rrjzrrrﬁrl. - 7lt,u'rlrn|m+
P 1 1 1

+Z[11‘[177 Vi "{‘(pnjn - {'[ar}z‘n '{’(po)m”fl\"?;}
Multiplying (1.17) by a.,,ﬁtj: and using (0.4a), (0.6b), (0.5b), we obtain

a v
{cl.*i‘rruuth)\f_r”f'“ t, — HP

mn

By o anre s _
I’tmn“ﬂih/\(r)p - ZFnUl "]1(_7]1';?”"1_5 =

(1.17")

. 5 P s P
({(‘r)imln ’J"[T)in|m + ?(T)im(})-‘” o ?('T”ﬂ?-‘m)y"'li
1 1

_Z"ﬁ[n](]E'(rr'r]im glz(rr).’m — 71'(ﬂr]in, g_lz((r)hm)
o

If we multiply (1.17) by a, .-‘V(UW and take into consideration (0.6), we get

ol T ; P ¢ 3 9P .. .
‘Fﬁ"’#w Ar(gp))'(T)ll'ﬁlz:l o Il-—li‘:imna‘ﬂ)\(tr]pfv(ga) - ZF:]\],(‘HTI(QDT)E'.DE{QD) ==

e 'y 3 P i
= E(‘P)[I{(T)hn Qoipn — ‘11(7>,:,§|2tw;:m T Tlpryim|n — {terin|m+
1

2 : r
+ (71{ ar)im W

8 Ly

(po)n — :'I.[KYT):!'H Ti'l){:prr'}m H
- | I
1.2. Taking pt = v = 2 in (1.5) and equating with (1.7), using (1.2), we obtain the
second integrabilily condition of the dfrﬁ:a{iona[fnr;'nu!a(].'Z):
éts:;w Err)itfint:jz. = B

B g [ad @ =
g imn(r)p + Zanbu(??'r)ipts + ZQ(PT)ii"’\[(f))) -
o

P n 8 3
[g(:r)imln o ':{;r)injm + zgr)z’m ?fn - ggr)ivx of
< 2] 2 = -

-
2

(1 l b’) _ZE(U}HE(:!1'{ oT)im S;}(a)sn = Z(rfrjins‘}(g]sm)]f.;::"*‘
o

+ Z [r{r‘r Jim S.,Z

r = . = vy !
(el — f,)f,:.r;,'” Szz(p)pm o€ ;(J?T}HHLTI. :';(,nT)m.lm“"
5 2 2 2

+ § (?](arT i ‘”’)(
2

5 pain T g’(nr)in IE’(,’JO}?T{)]N(L:;)

154 S. M. Minéic

Multiplying (1.18) by (Lt,f_;t‘;i, we obtain

+ 217

-‘ 14
l.r)fu“?#,upi /\“ 181 = Rp aﬂiﬂﬂt Al mnq(r)ing‘*

(r)i"m-n mn (7)p

3 . r E N
(L.187) = ({J;(r):imhl Ilﬂ”wm + Q(T 1711(1) 2(1-)1?11(.1;151::,).(1'&,
2 2 2

_Ze(n]('g(ar)imgg(a)hn - ‘g{ar)ing{o)hm)-

a

and multiplying the same equation by (LngN(m

g]’.‘-j?r_up “V('l /\77 tf‘ f” = R (l(_;,(jA N(W) + 2[‘5‘;{',12'[(‘51-)2';,6(,‘0) =

(r)i"m'n 2tmﬂ

(1.18") = e()[(ryimQeorpn — g'{-r),:ni}w)m + Iter)im|n = Jter)in|m T

+Z(72'{crr)irng’(:pcr)1l = Tz'{cr‘r)in"é)(_npo]m)]-

a

1.3. Ifin (1.5) we replace 4 = 1, v = 2 and use (1.8), we get the third inlegrabality
condition of the derivational formule (1.2):

« m »] o
Rrrnm)‘(T)t g"nnnA (r)p —

P
- [?(r‘)imha q(-r)m[m + q T}zrnq) q(r)mq)sm
2

(L.19) _ZF(GJQE(T(UT)fmg(J)Ju - g(or)ingl](a)mu)]t;:+
+Z[q(rlzm y(ppn = q(r)mQ(P)?’m + ’i'(PTJimL?I - g[p'r)in!m‘*'

1

+zﬂ:('§'(dr)im %’(,ﬂo)n - g{afjin"{)(,oa)m)] N((:;)-
Multiplying the pervious equation by a.ﬂtﬂ, we obtain

3
Riimnﬂfh (ryi — Rfmn““ﬁ)‘(ﬂptf -
(1.19°) = (';1’,("1-}5"1|u 1[1-)m|rn + }‘.,—)mlq)sn q{'r)mq)gm)gh_;ﬂf
2

_Zf‘(d}(?(a'r):fmg(a)hn - !;(or)s'n SI)[:J}hm)

where I;ﬂﬂ,m,_” = Qg é?,ﬁ:nm, and RS, is given by (1.15).
3 Ly 3 :

On a family of tensor fields in a generalized Riemannian space 155

Multipling (1.19) by u,,‘_‘-j}\-"(";], we get

it P A
gf‘pﬁ’””” A A j.'!#lfﬁ o [f:mn”“”’\['r)p V(;'g)
” . r
(119) = P(w][(lf(-,-')z‘msg (@)pn tl;,.)msz(e)pm = 7(597 :m|n - 7(t;)1';zr1|ns+

+Z(:’I'{ﬂr)im l;‘"[tpﬂ}ﬂ - g[a"r)z'n T{)(vpa)m)]-

o

1.4. By replacing 4 = v = 3 in ((1.5) and applying (1.9), we obtain the Sourth
wtegrability condition of the derivational formula (1:2);

R:;w)'(‘r)zt::lt:t 5{'””{ /\(T}P + 2rf]rb71(‘:£f'rjipfr: g Zg(ﬁJTJiPN((;’;)) =
’ P
r S 4] P _ .8 »o_
[q(ﬂim|?1 {,!(T]IIHEJH + ?(T)im‘rlj)an g(-r)in,(:lj)sm
(120) _ZP(U)(I'_ lnrjnnﬂ(Jsn — g(ﬂT)iTkg(d)sTn)jt;!+

+Z[lirlrmﬂlpnm = T)ms,z(p)pm + T(PT]Hnin - T(prhnlm

P

+Z(?}l FT)N g’(,m I g(oThin ‘l_.f(prr)m.)} "Vf(:” d

T

If we multiply the pervious equation by rz,ugtg, we have

Rl—fﬂ'"mth’\r 1t::l!:: - Rmm““ﬂ’\(r)pth + Zan TiryipUhs

(120,) (q(”tmh, = “r)mlm + q('r zm(:I; qu)IH@srn)g-&l_

—EC(")(’jl ar)im S,}(a]hn - :,’;(Ur)in g(o)hm)
a

Multiplying (1.20) by rAﬂNt"L), we get

{ﬂﬁW#UN)'ETT)xt:l('l ;}l o R?mna”ﬁ’\[r)p (@) e JFHHITUPT)"PP(W) -

{120“) = f‘("p)[g(r) !z(gpj_pu = .5 T),,IQ(pJ;Jr?l + r[ga‘r 1an - g(;gr]inlqm'i'

im g

+Z(g(o7)im i’(npa n — g(cr‘rjiﬂ. g](‘pd)m)]-

a

1.5 By equalizing the right sides in (1.10) and (1.5) for g = v = 4, we get the

156 S. M. Minei¢

fifth integrability condition of the derivational Jormula (1.2):
R Nyt = R Ao = 200 (4t + ng,mrv;;}} =
[Z?Tlimln ‘1(¢)m|m + q(T]nn(I)s'n fI(r)in® B
(1.21) *Z'ﬁ“(o)gu(g(m)im S}(G]STI = Ior)in E}(mm Nt +
+¥[t{i’r')im S}H'}Pu- - g?ﬂm%p)pm + E{prjim!ln — Tpr)m!m+

+Z(?4'1 aT)im Ei)(pv)n - Z;(‘UT Yyin 15(,00)171)]AI['-’:]] .

a

. 5 . i 4 ‘
Multiplying the pervious equation by aa,_;t‘f‘i, we obtain

Rmpu I ATl 28 — T 7 — ot -

g imn nmqir)zr"

(1:21%) = (r{;E]T)imin 1“_ mlm =+ I(T);:H(I’ (I(T m(bem)!)'fi—
4 4

_Zp(n)('f (a7)im Q(a)hn = 7(07)11LQ(ﬂ)hm)

Ied

and multiplying the same equation by a“ﬁNlﬂw)

;H m (v i I OTP o 5 .
R”"’J“’ ‘\' A T)if'::l n- Ilzt‘imna“ﬁ}'(vrh‘ N[\,c] 2F§rv]2(‘ﬁ"’)ir)"(w) =
S5 o P . -
(121") = f(%’)[g(rjirrrsfl@)ﬂ”’ = (ryin el F Yoryim|n = fpryin|m ¥
+Z(£(”Tﬁm E{"(*ﬂﬂ)ﬂ- - 74’(”7)1'" T{;(‘P(’)m)]'

T

1.6 Finally, if we equilaize the right sides in (1.11) and (1.5) for p =3 v =4, we
obtain the sizth integrability condition of the dertvational formula (1.2):

[43 ™ P (4 g
{?7\'7‘-‘7 i A R -

(T}r inm7)p

P P P
[f{(rjim}n - g1r)in|m + gfr)im?m (I{'r)m(b.sm
“22] _ZF"T(I_(?(H’T)‘&YH()(U)HI = 7(07‘);119(0 sm]t0+

P . -
+ § [‘I(T),'m S;ll(‘p)pn - q(r!ing(i’)?)m + g(pr}imm = Z{_pr)in.im‘l"
3 4+ 7 - 4 3

4

+Z(§{or)im'ﬂ’(_pa)n = Z(Urh‘n ‘é"(pa}m)]N(CL)

a

On a family of tensor fields in a generalized Riemannian space 157

. . 1 -
If we multiply this equaton by u,_wt’,'l‘ we obtain

i
Rﬁnmn"j,)‘(-r;z + Hznm”"“f’\(r)p Sy —
993 — sP .
(1.22°) - (g(’!‘]’iﬂllﬂ B {{lr)in\m + f';(TJim?‘I:” qff")”*q “”)th
. 4 g 3 -

_Z* (o)X (ar)im 542“:) = Var)in gra)hm)-

ad

where ﬁf;;mml = nﬂﬁ(’;‘m,, and ﬂf,‘?mn is given in relation to (1.16).

Multiplying (1.22) by a,. ;\"’f" we have

('

ATt T r « i
i{i'ﬁrmn -‘\"-Y.J/\[T}i =k 5’;“”1”%/\(7"1’1\‘(*;’ —=

G . I P A . a
(122) == Fl-,ol[':{[-r]”” S_qz[.,' Jpn "4![.,.},‘” S‘;z{‘.,n}pm + gt-;.'r)zm]n o 2|QTJEIH|H]+
5 b 4 L]

+Z(Plaryim li:‘(@")u — (a7)in ?/'llﬂﬂ}m)]'
3 4 4 3
a

2. Some special cases
For some fixed values of coeflitients b, ¢ we obtain from (1.1) special cases, some
of which are very importtant.
24, If
(2.1) Bl =8 & e =0, then A%, =& =y°

i .

In this case from (1.3) we obtain

1 " — P . o e A e .
b:ilm + h Ilwn (I)zm ’ Ll."T)”H = hi EEENHH = 512(;’)11n|
n

q('r Jim -
m

and (1.2) gives (0.9a) i.e. the first derivational formula of a subspace of a generalized
Riemannian space. In this case integrability conditions of the first derivational
formula of the field (1.1) reduce to integrability conditions of the first derivational
formula, from which we obtain several equations of the Gauss-Codazzi type. For
example, in this case (1.19") hecomes

J
H 17rmnf,ll ; Rh:nm ==

(22) = (?11u|n P},

oin|m
1

"ZP(" }{S;Z(ﬂlimu(o)hn == 52 111“((7).’1.”1)

o

+ bl Bl —) n

811 in S

158 S. M. Minéié

and this is the third kind of the Gauss equation of the subspace GGRpr. Now from
(1.197) we obtain

B ogr _
IjﬂrrmnN(p)ti -
(2.3) = f(w)[?fmg(wlpn - ?fnfll(w)zﬁm + gw)imlzn - S}w’ﬂilm‘i‘
+Z(53{a)=‘m1§(w)n = Qoyinipam)]

a

and this is the first Codazzi eqation of the third kind.
2.2. The next special case is

(2.4) =0 &oemi=0br = Ao = NGy

(T)i

Now, it is

i = — ps — _aP50).
?‘(T)iﬂl - ZE(P)SPTH_Q(p)sm = g’—%(r)‘,mﬂl”
P

:;(,o'r)im = Z‘SUT ‘tf(pa)m = i{'(pf)m:
o

and (1.2) results in (0.9b), i.e. in the second derivational formula of the subspace .
In this case from (1.19°) one obtains the equation which is equivalent to (2.3). The
equation (1.197) in this case becomes

(4 5
Rimmn Ny N7y = e(o) =058 rramen) Georpn + 9= ysne(n)hepm+

+l{"(¢r!m1h - ?;’(WT)ﬂlm + Z(L:'(ﬂ?‘)m?é)(wﬂ)n - ‘[/J(U'T)” 1{"(‘0"’)”1)]
2 2 1 = 2

and this is the second Codazzi equation of the third kind.
2.3. Curvature vector of a curve C' in a subspace GGRpr of a space GRy 1s
determined in the same way [6], as in the usual Riemannian space, i.e.

(2.5) ¢ =15+ Y KNG
P

where K, is normal curvature of C, which corresponds to the normal N, Now
from (1.1) one obtains

(a4

(2.6) biry = PP & =Ky = AE”T)i =q%,
So the field ¢ is a special case of the field ,\E”T)i (1.1). Therefore, from integrabil-
ity conditions of derivational formula of the field AE‘T)I. one obtains corensponding
equations for ¢“.

(1]
(2]
(3]

On a family of tensor fields in a generalized Riemannian space 159
References

L. P. EISENHART, Generalized Riemannian spaces [, Proc. Nat. Acad. Sci. USA,
37(1951), 311-315.

L. P. EISENHART, Generalized Riemannian spaces 11, Proc. Nat. Acad. Sci. USA,
38(1952), 505-508

S. M. MINCIC, Ricci type identities in a subspace of a space of non-summetric affine
connexion, Publ. Inst. Math. (Beograd), 18(32)(1975), 137-148.

C.M. MUHYUM, Hoswte moncdecmaa muna Puvvu a nodupocinpancmae npo-
empancmean wecummempuiot afipuricod cassanocmu, Ussectun BY3, Ma-
TeMaTHKa, 4(203) (1979), 17-27.

5. M. MINCIC, Derivational formulas of a subspace of a generalized Riemannian space,
Publ. Inst. Math. (Beograd). 34(48)(1983), 125-135.

C.M. MUHYUUY, O sexmope xpuausim Kpuaoii 8 nodnpocmpancmae o6obuye-
NIO20 PUMANOBA NPOCINPAICINAQ,

Facta Universitatis, Ser. Math. Inform 2(1987), 75-89.

R. 5. MiIsuRrA, Subspaces of a generalized Riemannian space, Bull. Acad. Roy. Bel-
gique, 1954, 1058-1071.

M. PRVANOVIC, Equations de (Gaus d'un sous-espace plongé dans Uespace Riemannien
generalisé , Bull. Acad. Roy. Belgique, 1955, 615-621.

DEPARTMENT OF MATHEMATICS, FACULTY OF PHILOSOPHY, CIRILA | METODIIA 2.

18 000 NI1$S, YUGOSLAVIA.

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoe4 jo Areiqi] [enlliA

FILOMAT (Ni3) 9:2 (1995), 161-167

Filomat ’94, Nig, October 22-24, 1994
Geometry. Computer Sciences

F(2k +1,1)-STRUCTURE ON THE LAGRANGIAN SPACE

Jovanka Nikié

ABSTRACT. If almost product P or almost complex structure J on the tangent space
T(E)=Tv(E)+Ty(E) of Lagrangian 2n dimensional manifold F are defined, and
if fo(2k + 1, 1)-structure on Iv(E) is defined, then fp(2k+1,1) and Fi(2k+1,1)-
structures on Ty (E) are defined in the natural way. We can define P2k +1,1),
Fj(2k + 1, 1)-structures on T E). The condition is given Jor the reduction of the
structural group of sueh man tfolds.

1. Introduction

Let M be an u dimensional and £ 2n dimensional differentiable manifold
and let n = (E,7, M) be vector bundles and 7E = M. The differential
structures (U, ¢, #7") are vector charts of the vector bundles 7. Hence the
canonical coordinates on 7= '(/) are (a!,. .. J8 P y) = (2,10, 0 =
1,2,...,m a=1,... ;% Transformation maps on I are

2¥ = :1"',(.1'J B)
y“’ = AI:’(J'[” Yt = flf,‘:’(:z:f)y“
dxt oy ‘
rank ,.I -| = mn, rank ,J =rank M} =n.
U‘l'lf" ()yu

The inverse transformations are

where M2 M3 = 60,

1991 Mathematics Subject Classification. 53B40, 53C60.

161

162 J. Niki¢

The local natural bases of the tangent space T'(£) are {0;, 0.}

o B aiate g

By = o= My (#0
,_()_33:*'“ . i
C}i = 6.1:" = —_07,4 (),‘ +(6)le (.E))y ()a:.

The nonlinear connection on E is distribution
N:u€e E— N, CT.(E)

which is supplementary to the distribution V,
(11) TH(E):NHGBVDH VuEE

They are localy determined by &; = 0; — N#0,. The local bases adapted to
decompositions in (1.1) is {&;,da}-
It is easy to prove that on {6;,0a}

dxt dy*
iamin 0w = aym
The subspace of T(E) spaned by {é;} will be denoted by Tx(FE) and the

subspace spaned by {0,} will be denoted by Ty (E), T(E) = Tu(E)YBTv(E),
dim Ty(E) = n = dim Ty (E).

6it = 6 aﬂ.

Definition 1.1. If the Riemannian metrical structure on T(E) is given by
G = gi(2t,y*)de’ & dai + gap(at,y®)6y® 0 dy" where gii(z,y*) = g;j(z'),
Jap = 0.0, L(2*,y*) and L(z',) is a Lagrange function, then such a space
we call Lagrangian space.

Let X € T(E), then X = Xié; + X9, and the automorphism P
X(T(E)) — X(T(E)) defined by
PX = X'6; + X0,
is the natural almost product structure on T'(E). i.e, P? = [. If we denote by

v and h the projection morphism of T(E) to Ty(E) and Twu(E) respectively,
we have

Poh=voP.

The automorphism
JX = -X'6;+ X0,

is the natural almost complex structure on T'(E).

F(2k + 1, 1)-structure on the Lagrangian Space 163

2. f(2k +1,1)-structures

Definition 2.1. We call Lagrange vertical fu(2k + 1, 1)-structure of rank r
on Ty (E) a non-null tensor field f, of type (1,1) and of class O™ such that
fE 4 £, =0, ke N, and rank f, = v, where v is constant everywhere.

Definition 2.2. We call Lagrange horizontal Mn(2k + 1, 1)-structure on
Ty(E) a non-null tensor ficld f, on Ty(E) of type (1,1) of class ('™ satis-
Sying f25*' 4 £, =0, k€ N, rank fn =1, where v is constant cverywhere.

An F(2k+1,1)-structure on 7'(F) is a non-null tensor field F of type (::
such that F2*+! 4 F' =0 Lk € N, rank F = 2+ =const.

For our study it is very convenient to consider fu or fi as morphism of
vectors bundles.

fu : XTy(E) — XYTy(E)
f;, : .YTH(E) = :YTH(E}.

Let f, be a Lagrange vertical fo(2k 4 1, 1)-structure of rank r. We define
the morphisms

l=—f* and m= Fo¥a Iry ()

where I, g, denotes the identity morphism on Ty (F).
It is clear thet [+ m = /. Also we have

Im=mil=—f— ==ty gy g

9 0
m>o=m, 1°,=1

Hence the morphisms [, m applied to the X(Tv(FE)) are complementaly
projection morphisms, then there exist complementary distributions V L and
VM corresponding to the projection morphisms [and m respectively such
that dim VL =7 and dim VM =n —r.

[t is easily to see that

(21) ‘rfv — fv"’ = fm 7”‘f1! = ft:”l = Oa fjkﬂl =0,

2 =~
Proposition 2.1. [fa Lagrange f,(2k+ 1, 1)-structure of rank r defined on
Tv(E), then the horizontal f,(2k + 1,1)-structure of rank v is defined on

Tu(E) by the natural almost product structure of T(E), as [y, or by the
almost complex natural compler structure of T(E), as Li-

164 J. Niki¢
Proof. If we put

(2.2) X = Pf,PX, VX € Ty(E)

(2.3) i X=-J[JX, VX € Ty(E)
it is easy to see that

f2k+l.¥ = Pf3k+1P1Y, szk-i-l‘X — _JL2k+1'])£’

r)

and

2k+1 ‘l‘fp — 0’ fj2k+] +f] -0

P
and rank f, = rank f; = 7. It is easy to see that fo=Fti =

Proposition 2.2. If a Lagrange f,(2k + 1, 1)-structure of rank r is defined
on Ty(E), then an F,(2k + 1,1)-structure or F;(2k + 1,1)-structure are de-
fined on T(E) by the natural almost product or natural almost complex struc-
ture of T(L).

Proof. We put

E, = fph+ Fs%;
F; = b+ fum,

where f,, f; are defined by (2.2), (2.3) and h, v are the projection morphisms
of T(E) to Ty(E) and Ty (E). Then it is easy to check that

2 g2 2 P2k+1 _ p2k4l 2k +1
F; = fh+ fiv, F; =[,"Th+ fow.

1

Thus F2**' + F, = 0. Similary FP**' + F; = 0. It is clear that rank

F, =rankF; = 2r.
If I,, m, are complementary projection morphisms of the horizontal
fo(2k+ 1,1)-structure, which is defined by the natural almost product struc-

ture of T(E), we have
X = —f*X = -PfFPX = PIPX,VX € Tu(E)

m, X = [+ IryeyX = PfZ*PX + Plp, ey PX = PmPX VX € Ty(E).
If L,, M, are complementary projection morphism of the F,(2k + 1,1)

structure on T(F), then we have

(2.4) L,=—F* = —f%*p_ f*y=Lh+1lv
I ! ! r

;l
M,=F*+Irg = [+ 55+ Ingph + I =
myh + mo.

F(2k + 1, 1)-structure on the Lagrangian Space 165

Thus, if there is given a Lagrange fo(2k + 1, 1)-structure on Ty (E) of

rank r, then there exist complementary distributions H Ly, HM, of Ty(F)
corresponding to the morphisms 1, m,, such that

(2.5) L, =PVL HM, = PVM.

?

Thus we have the decompositions
T(E)=Ty(E)$Tv(E)=PVLG PVM O VLG VM.

IfTL,, TM, denote complementary distributions corresponding to the mor-
phisms L., M, respectively, then from (2.4) and (2.5) we have

TL,=PVL®HVL , TM,=PVM & VM.

Let g is a pseudo-Riemannian metric tensor, which is symmetric, bilinear
and non-degenerate on T (F).

g: X(Tv(E) x X(Ty(E)) — F(T(E)).

(for examples g can be the vertical part of Lagrange metric structure).
The mapping

a: X(Tv(E)x X(Tv(E) — F(T(E))
which is defined hy

1
al XY)= E[g(!_\‘, YY)+ g(mX,mY)] VX,Y € VT, (E)

is a pseudo-Riemannian structure on T(E) such that a{ X, ¥) =0, ¥X e
X(T(VL)),Y e X(T(VM)).

Theorem 2.1. If a Lagrange f,(2k + 1. 1)-structure k > 1 of rank r is
defined on Ty (E) then there czist a pseudo-Riemannian structure of Ty (E)
with respect to the complementary distributions VL and VM are orthogonal
and f, is an isometry on Ty (F).

Proof. If we put

g(X,Y) = El—k[a('X. Yy4a(fo X, ¥) £ val f51X, f25 Y))

it is easy to see that
g(X,Y)=0 VX e X(VL), Y eX(VM).
Using (2.1) we get
. 5 1 5 9 5 P Ve
9 fu X, iY) = E{ﬂ-(.f" X, oY)+ a(f2X, f2Y) 4+ -+ a(X,Y)].

Thus f, is an isometry with respect to g.

166 J. Niki¢

Let X € X(T(VL)) then f, X, f2X,... ,f*X e X(T(VL)) and

gl X, fEX) = g(fu X, FFVX) = ... = g(£2X, 2 X) = (£ X, X).
Consequently
g X, FX) = g(f X, i X)= ... = g(EX.IEX) =]

and r = 2km.
Thus we can chose in X(T(V L)) r = 2km mutualy orthogonal unit vector
fields such that

F(Xa) = Xom a=1,2...,(2k—1)m,
f(Xo) = = X_(@2k-1ym+ar a=(2k-1)m+1,...,2km.
An adapted frame of the Lagrange f,(2k + 1, 1)-structure on Tv(E) is the
orthogonal frame R = {X,,Xp}, where Xy is an orthogonal frame of
X(T(VM)).

Let R = {X,_.._, Xz} be another adapted frame of the Lagrange f,(2k+1,1)-
structure, and B = AR, then orthogonal matrix A is an element of the group
l!(.l'm.J X ()[rl‘—Ekm)'

Theorem 2.2. A necessary and suficient condition for Ty (E) to admit La-
grange f,(2k 4 1,1)-structure, k > 1 of rank 7 is that v = 2km and the
structure group of the tangent bundle of the manifold be reduced to the group
[’r(inn_) X ()[n—'lkm)-

We can define a maping g,:
9,(X,Y)=g(PX,PY), VX,Y € X(Ty(E))

g, is a metric structure on Ty(E). Using (2.5) the distributions H L,, HM,
are orthogonal with respect to g, and the horizontal f,(2k + 1, 1)-structure
which is define by f,X = Pf,PX,VX € X(Ty(E))is an isometry on Ty(L)

with respect to g,.

Proposition 2.3. If {X., X3} is an adapted frame of a given Lagrange
fu(2k + 1, 1)-structure f, on Ty(E) with respect to g, then the frame {PX,,
PXg} is an adapted frame of the horizontal f,(2k + 1,1)-structure with re-
spect to Gp-

It is clear that the frames {PX,, PXp, Xo, Xp} are adapted frames to the
decomposition

T(E)=HL, & HM, VL& VM.

Theorem 2.3. If a Lagrange f,(2k + 1,1)-structure is defined on Ty(E)
with pseudo-Riemannian structure g, then the structure group of the tangent
bundle on T(E) be reduced to Ugmy X Ogn-2km) X Ugem) X O ty—sibm -

F(2k + 1, 1)-structure on the Lagrangian Space 167

Refrences

[1] M. Aranastu, Modes in Finsler and Lagrange geometry, Proc. IV*" Nat. Sem.
on Finsler and Lagrange geometry, Brasov, (1986), 43-56.

[2] F. G. ANDREOU, On a structure defined by a lensor field f of type (1,1) satis-
fying f5+ f =0, Tensor, N.S. 36(1982), 79-84.

(3] S. IsminarA, K. Yano, On integrability conditions of a structure salisfying
2+ f =0, Quart-J. Math. 15(1964), 217-222.

[4] J. Niaé, 1. Comié, f(2- 2% + 1, —1)-structure in (k + 1)-Lagrangian Space,
Review of Research Faculty of Science, Mathematics Series, (toappear).

[5] J. Nik1¢, On a structure defined by a tensor field f of the type (1,1) satisfying
[EE+T _ f = 0, Review of Research Faculty of Science-University of Novi Sad,
12(1982), 369-377.

FacuLty oF TECHNICAL SCIENCES, UNIVERSITY oF Novi SAD, TRG D. OBRA-
DOVICA 6, 21000 Novi SAD, YUGOSLAVIA

s1oe6q jrewAriqie
ape.bpg Jo A1seAIUN -So1TewayIe |\ Jo A1inded Jo AreiqiT [eniiiA

FILOMAT (Nis) 9:2(1995), 169-185
Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ON WARPED PRODUCT MANIFOLDS

Mileva Prvanovié

ABSTRACT. This is a survey article on warped product manifolds and contains: applications in
some relativistic thearies (Schwarzschild spacetime and Robertson- Walker spacetime), subprojec-
trve spaces, the invariant way characterizing warped products and the geometry of warped product
in terms of warping function and the geometies of the base and the fiber.

1. Definition and the first example

Let (M, 7) and (M, g) be two Riemannian manifolds such that dim M = g,
dimM =n—gq, 1 <qg<n. Let F be a positive C'™ function on M.
Definition. ([23],p.204). The warped product M = MxpM of (M, §) and (M, (g)
is the manifold M = M x M whith the metric ¢ = § xp g. More precisely

g=7x Fg=mig+(Fom)msy,

where 1 : M x M — M, 7. Mx M — M are natural projections. The manifold
M s caled the base manifold, while M is the fiber.

. * v * . . -
For each (7, m) € M the subsel M x m is a totally geodesic submanifold of
warped product and all such submanifolds are isometrically related; the submani-

folds 71 x M are totally umbilic and the map ms|__ & 1s a positive homotety onto
mx

M scale factor

1 * - —_— * x
P For each (m, m) € M, the submanifolds M x m and m x M
o8 (

are orthogonal at (7

—

=

* . < -
v, m). The converse is also true, that is we have the following
theorem:

Theorem. ([23], [{4]). A Riemannian space is a warped product manifold if and
only of ot can be decomposed into two families of mutualy orthogonal submanifolds,
one family consisting of totally geodesic and the other of totally winbilic submani-
Solds.

If ' = const. then F can be incorporate in the metric g and M = M x M

—_ £ * ” -
reduces to a productmanifold, both M x m and T x M heing totally geodesic.

169

170 M. Prvanovié

Thus, the class of warped products contains the class of product manifolds and is
its generalization.

The class of warped product contains all Riemannian manifolds of constant cur-
vature. In fact, for each point of such a manifold there exsist a neighbourhood in
whicl, with respect to the polar coordinats r, ¢', ..., ¢" ™" the metric is

. |
ds? = dr? + sin®Vkrds (¢, ..., ¢") fork >0

and

L) 2 v 9 2
ds? = dr® + sin*V/—kr ds (¢, @™ ™) fork <0,

2
where k # 0 is the constant curvature of M and ds is the metric of the unit
(n— 1)—dimensional sphere S™~!. We note that the manifold of constant curvature
k # 0 can not be a product manifold. If k = 0, then the manifold can be represented
as a product manifold on many ways. But for example, for R3\0, with respect to
the spherical coordinates, we have

ds? = dr® + r*(d8? + sin®0 dy?).

It means that R3\0 can be identified with warped R* x, S* with a ray from the
origin as a basis and the spheres $%(r), r > 0 as the fibers.

The surface of revolution is an other example of Warped products. Let €' be the
curve in B® whose parametric representation is

r = g(u), yi= 0, z = F(u).
If = is the axis of revolution and v is the angle of rotation, then we have
ds® = [(g'(w)? + (F')*)du’® + F*dv*.

Thus, the surface of revolution is warped product C' x g S!, where the curve €' is
the basis manifold and the circles of revolution the fibers.

The four dimensional warped products are very important in the construction
of simple models of some relativistic theories. Thus Schwartzschild spacetime is the
simplest relativistic model of a universe containing a single star. The star is assumed
to be static and spherically symmetric and to be the only source of gravitation for
the spacetime. It follows from these assumptions that Schwartzschild spacetime 15
warped product P x, S?, where the fiber S is the unit sphere and the base space
P = R x Rt is a half-plane r > 0 in the rt-plane endowed with the metric

2m 2m

] S D P 4 Il T T
(1.1) (1= Z2)de? + (1= =),

. : ; : o . 2m
where m is a constant identified with the mass of the star. The function | — —
-

; . A osnh 2m
increases from limit —oo at » = 0 toward limit 1 at » = co. But 1 — — =0
=

On warped product manifolds 171

at r = 2m, that is the metric (I.1), and therefore the metric of Warped product
M = P x, 5%, degenerates at r = 2m. So, we have to consider two Schwartzschild
spacetimes:

1) Schwartzschild exterior spacetime M = P; x, $?, where Prois the region
> 2m;

2) Schwartzschild black hole M = Py; x,- 5%, where Py is the region 0 < r < 2m.

The star is characterized by its mass m and its radius R. For the spacetime
around the star we have » > . For an ordinary star we have R > 2m. that is the
surlace of the star is in Schwarzschild exterior spacetime. But if B < 2m, then R
can be only 0; the star dissapears and the warped product Py x, 52 becomes black
hole. ([23],Chapter 13).

According to the astronomical evidences, the universe can be modeled as a space-
time containing a perfect fluid whose "molecules” are the galaxies. Also, the galax-
tes, taking into account the large scale appropiate to cosmology, appear to be dis-
tributed the same in all directions. Starting with this isotropy condition and using
the physical assumptions about the galactic flow, it is possible to construct a simple
cosmological model, so called Robertson-Waker spacetime ([23]). This model is the
warpedproduect

(1.2) M=M(k, F)=1xp S,

where [is an open interval in B! and S is a three-dimensional manifold of constant
curvature k = —1, 0 or 1. The metric of the manifold (1.2) is

ds? = —(dt)? + F ds?,

where ds” is the metric of the mabifold S. It can be proved that the Ricci curvature
for Robertson-Walker spacetime M (k, F) with flow vector field i = 8, is given by

Rie (U, t) = 32 Ric (4, X) =0,
Y\ 2%k F
Ric(X,Y) = [2 (?) + o5+ ?} <X, V> ifv,y.Lu

([23], p.345).
Also, if i is the flow vector field a Robertson-Walker spacetime M(k, F), then
(i, p, p) is a perfect fluid with energy density p and the pressure p given by

8 Yk b ma T [EY B
P = — pr— —QnTp = L— = T
3P \F)T LA RN

(see [23],p.345).

Acording the astronomical estimates, the spaces S(t) are expanding, i.e. cur-
rently F* has positive derivative. The following theorem considers the past and the
future.

172 M. Prvanovi¢

F'(t) .
T If Hy =

Ho(to) > 0 for some Ty, and p+3p > 0, then I has an initial endpoint t, with

Theorem. ([23],p.348). Let m(k, F) = [xp SandH(l) =

= Hy! < ton< ty

and cighter (1) F' > 0 or (2) F has a mazimum point after to and I 1s a finite
inlerval (1., tax).

[t means thet the universe had the definite beginning and eighter continues ex-
panding, or after conctracting for a while, comes to an end. Using some additional
dates, it can be concluded that our universe began in a colossal explosoin.

2. Subprojective spaces

The warped product appears also in the investigations of the subprojective and
generalized subprojective spaces.

The subprojective spaces were first defined and investigated by V.F.Kagan ([20].-
[21],[39]). With respect to the projective properties, these spaces are a natural
generalization of the Riemannian spaces of constant curvature. Namely, according
the well known Beltrami’s theorem, the spaces of constant curvature and only such
spaces, admit a mapping on an euclidean space such that the geodesics corenspond
to the streit lines. But if the space allows mapping on the flat space such that
each of its geadesic corresponds to a plane curve and all such planes contain the
same point or are parallel, then we say that the space is subprojective one. A
geodesic can also be considered as an autoparallel line, i.e. 1t is an object defined
by the connection only. Thus a subprojective space need not to be Riemannian. It
is sufficient that it is a diferentiable manifold endowed with an affine connection.
As for Riemannian subprojective spaces, all of them are known in the sense that
their metrics are known ([32],[39],[43]). In fact, with respect to the special local
coordinates, the metric of the subprojective space has the form

(2.1) ds® = (dz*)? + F(2')ds? (22,2"),

*no. . . .
where ds” is the metric of (n-1)-dimensional space of constant curvature, or the
form

(2.2) ds? = 2datdz? + F(:L‘l)d'}:-2 (2%, ...2"),

where ds? is the (n-2)-dimensional euclidean metric. The metric (2.1) is positive
definite, and (2.2) is not.

We see from (2.1) and (2.2) that every subprojective space is a Warped product
manifold.

[t is intresting to compare subprojective Riemannian spaces to the spaces of
constant curvature with respect to the group of motions. It is wel known (see for
example [15] or [38]) that the group of motions of an n-dimensional Riemannian

On warped product manifolds 173

n(n+1)

space has at most — parametres. Such a group is transitive and a space

n(n—+1)

admits a group of motions of maximum order if and only if it is a space

of constant curvature.
) . n(n—1) ; :
The intransitive group has a most 5 parametres and all Riemannian
spaces admiting such group of motions are subprojective (sce [41],[45]). Conversely,
n(n—1)

every subprojective space adiils intransitive group of motions of order ——— 2 |y

both cases (2.1) and (2.2), this group acts as the transitive group on Lhe hyper-

surfaces 2! = const. In the case (2.2), they are isotropic. In some casees, this

: . : L5 1
Intransitive group of motions becomes the transitive group of order EH{“ - 1)+ 1.
[n the case (2.1) this happens only if F = const.. that is if the subprojective space is
] : . .

decomposable. Namely, —n(n — 1)+ 1 is the order of the transitive group of motions
of (n — l)-dimensional space of constant curvature. Then we add one parameter
group of motions along the curve 2!

The subprojective space of type (2.2) also admits, in some special cases, the
transitive group of motions of arder 5?1[71 — 1)+ 1. First, we note that, with respect

to the conformally euclidean coordinates, (2.2) can be rewritten as follows
P 5 Ly ¢ . . "
(2.3) ds? = g 2ulr) [21/.“([.)'" -+ <,-(r1'.::L)'jJ i 3 S dehindg = £

[t was proved in [41] that that the manifold endowed with metric (2.3) admits
the transitive group of motions of order Qn{” — 1)+ 1 if and only if the function
po= (') satisfies

dp A2l + R

del — Az + Cal 4 D’

where A, B,C" and D are constants.

Thus, while the Riemannian space of constat curvature are characterized by
the property that they admit the transitive group of motions of maximum order,
the subprojective spaces are characterized by the property that they admit the
intransitive group of motions of maximum order.

The group of motions of general warped products are investigated in [40]. Here,
we cite the following theoren:.

Theorem. ([{0]). If the intransitive group of motions of a Riemannian space M

s of order Eq(q + 1), ¢ > 2 and has g-dimensional nonisotropic surfaces of the
o * *

transitivity, then M is the warped product M = M xp M such thal dimM — .

This is one of the theorems used for proving the above properties of the subpro-
Jective spaces.

174 M. Prvanovi¢

We say that a manifold endowed with an affine connection is a generalized sub-
projective manifold if it admits a mapping on an euclidean space such that ev-
ery autoparallel corresponds to the curve belonging to a (¢ + 1)-dimensional plane
(1 < ¢ < n—2), all this planes containing finite or infinite (¢—1)-dimensional plane.
For q = 1, this definition of the subprojective spaces.

(+.Vranceanu ([34],[35]) proved that a generalized Riemannian subprojective spa-

* ™

ce with positive definite metric is the warped product M = M xp M, where M
is the space of constant curvature. Conversely, each such a warped product is a
generalized subprojective space. But, in the case of indefinite metric, a generalized
subprojective space need not be a warped product ([36])-

3. The invariant way characterizing
the warped product manifolds

Let T/ : x',...,27 be a local chart for the manifold M and [/ : 27!, ..., 2" that for

*

, R Ll
M. Then U7 x [7 : x',....z" is a local chart for the warped product M = Mxp M.
With respect to this local chart, we have

(3.1) Tup = Tas (), Gap = Jap(z?), F=F(z"),

s *
while for the metric tensor ¢ of warped product M = M xp M, we have

Tab for i=a,j=10b
(3.2) gij =4 Fgag for i=ua,j=p;
0 for all other cases.

Here and the seqel the letters a, b, e range over the indices 1, ..., q, greak letters
o, 3, v over the indices g + L, ...,n and letters ¢, j, k - over the indices 1, ..., n.

The definition given in §1 shows that a Riemannian manifold is a warped product
if the coordinates can be chosen such that the metric tensor takes the form (3.2)
where (3.1) is satisfied. We shall see in §4 that many interesting properties of the
warped product manifolds can be obtained using so adapted local coordinates.

There exsist also tensor equations, that is an invariant way, characterizing the
warped products. They are contained in the following theorem.

Theorem. ([{4]).- A Riemannian manifold 1s warped product if and only if there
cxsisls a symmelric tensor A;j, not proportional to the melric tensor, and gradient
vector field u;such that

1 :
(3.3) Viedi; = g(u,‘Akj + uj Air), A,‘,jAJk = Ak

P
then u; = —log F'.
dxt
Here and in the sequel, ¥ is the operator of covariant differentatiion with respect
to Levi-Civita connection.

On warped product manifolds 17

@

If F = const., then (3.3) reduces to
Vidi; =0, A A, = Ay,

and this conditions, given by P.A.Schirokov ([46]), for a Riemannian space to be
decomposable.

For a warped product manifold with /-dimensional base or with I-dimensional
fiber, we have theorems:

Theorem. ([37],[44]). A Riemannian manifold s a warped product with I-dime-
nsional base if and only if the equations

af
Vifi = vgij, fizﬁ;, ¢ = p(f)

admal solution f # const.

Theorem. ([{4]).-A Riemannian manifold is a warped product with I-dimensional
fiber if and only if there exists a nonisolropic vector field A; which, together with

. d .
the gradient v; = B—T!og F' satisfies
x

ot

'\7_7' = ‘—(Az'l.tj == Aj‘lt,‘).
4. The geometry of the warped product in terms
——— *
of warping function 7 and the geometries of 17 and A
There are many papers dedicated to the investigation of the geometry of the
warped product M = M xp M in terms of warping function ' and the geometries

of M and M. In this section we quote some examples,

4.1 From now on, we suppose F = const. and we use the local coordinates with
respect to which the relation (3.1) and (3.2) are satisfied. We assume that each
object denoted by a dash is formed Jap and each object denoted by a star using

Efaﬁ. Then the local components l";“‘ﬂ,, of the Levi-Civita connection on A Xp M are
the following (see for example [11], [17], [44]):

—a o 1_,1 ;X o *(r
e = Lie, iy = oY "FiGlag, Iy = T5y

(4-1) (23 I ¥4 a (a3 61?
rcl}j: Eﬁ‘pﬂa:‘ﬁ FL!IJ:Fah :U‘ Fﬂ = H.I'd

The local components Ryij of the curvature tensor of M = M X M which in
general do not vanish identicaly, are the following

1 *
Rabnd = Rabcri‘ Rnab;j = _§ ab(.fap‘,
(4.2) } P
Rnﬁw& = FRW;]‘-V& - EAI F(;cr,’j‘féa

176 M. Prvanovié

where 1" is the (0.2) tensor with the local components 7;; defined by
- - 1
(4.3)]a,ﬁ:Tna = {, Tab:vaﬂ_ﬁFﬂFbv

and

A F = g F,F,

* *

Bl PR
Gapys = Jas9y — Yar9ps-

In view of (4.1) and (4.2), we get

VeRabea = VeRapeds

VaRabed = VaRabea = VyRaarp = 0,
VeRabap = VyRasap = VeRagya =0,

: L —e 1 *
vﬁH-(mbr == § [FFR abe T F(Fb’rﬂl‘ - F"T‘lb)] Jap,
1 *
(4‘1) vanac,ﬂ = —E(vbﬂxc)gaﬂs
1] = P 1 3
véff,—u;j'ya = _i Fn.R(xH'yé + §(FET a ﬁFaAlF)(’ﬂﬁ’yﬁ)

* 1 [F, i ¥
vuRﬂﬁ’M = _Fn Ra[j'yé + 5 I:FAlF - Eda(AlF):‘ (_1(1,1375,

Vs Rapys = FV pRapys.

The local components S;j = R" ;;. of the Ricci tensor of M xp M,which in
general do not vanish identically, are the following
4 = n—
Sap = Sap — TgTabr
45 { . . o
Sap =Sap =5 [zrm + %Aﬁ] dap, tr9T) =TT,

The scalar curvature R of the metric § XFE' satisfies the eqation

— d% n=y n—gq-—1
: = = t — A F .
(4.6) R=R+ =R 7 (r(T}+ iF Ay)

Therefore, Weyl conformal curvature tensor

1 5 5 o 4
Chijke = Rhijk = ~——(9ij 5k — gikSnj + gnkSij — 9hj Sik)+

+m(9ij9‘hk — gixgn;)

On warped product manifolds 177

has the following components

((r“'abrrd = ﬁabad - T}ﬁ(ﬁadgbf - 7J‘ar_'gbd F }jbr‘-?ad - g_b(igﬂf}-k
I - q = e _ _
m(!ﬂmer = TacTba + Ty Tad — GyaTuc)+
R

___—_F'?atm
T T D(n —2) b

b l qg—2 — 1 »
Caatp = e (—‘Q——Taa + F.‘vab) Gap — %—Qaab..‘mﬁ+
(4.7) I v =29+ 1

e - ——-t .
+(”_1)(”_2) H+R 5 (1)~
— 1 —q—1
- (q)(:F q)_\. F] Tasbas)

B d 2 T * - ¥ & %
Capys = FRapys — 590850y = GaySps + 85y Sas — Gp5Say)+

2(1

F FR
az[r—l—f- (T)~+

Cabep = Capap = Capys = 0.

Al F] (’ﬂ’ﬁ’]‘é!

Moreover, from (4.1) and (4.5), we find

; = l
vcbab = vabab —(n—- q)vr (‘z_ﬁfnw))
vcw‘-”ab = vbb‘an =0,

- F, |+ 1 n—qg—1 *
v,dbaa = _ﬁ [“’mi - 5 (“'(T) + —E_F—VIF> ya-jj‘J +

l —e s * o i
(48) +§Fe [*S a QFI-[r Jym‘iz TL a :gebTabs
VaSap =— hn T)+ ———V1F| gap—
15ap F ‘H_ZF[r(T)+ = 2F Vi Jgﬁ

L. n—qg-—1 4
- 5(% [t'f'(T) + —Z(fl?__AlF:' Jap,

= LA
L VisSas = V‘s.‘)m;.

Using (4.4), (4.6), (4.7) and (4.8) we can get the local components of V rCisen
and V.V, Cijkh-

4.2 In view of (4.4) we can state

Theorem. ([22] Th.1)-If a warped product M = M xp M with n # ¢+ 1 is

Cartan-symmetric (i.e. if V, Rijkn =0). then M is Cartan-symmetric and M 15
of a constant curvalure.

178 M. Prvanovié

Simmilary, it follows from (4.7) that if M is conformally flat (i.e. if Cijen = 0),
then 1:'1 is a space of constant curvature. Clonversely is not true, but we have
Theorem. -Let M be an open interval of R with mefrz'c g1 =¢, e€ {1, 1}. Let
F be a pusttur O™ function on M and let (hmM > 2.Then the warped product
M =M xp M is conformally flat of and only 1fM 1s a manifold of constant

curvalure.

If a recurrent space (V, R,th = Ar Rijen) is a locally decomposable, then one
of the decomposition space is flat and other is a recurrent space ([31,p164). The
non-decomposable recurrent Riemannian spaces are all known. Some of them are
warped products. For 2-recurrent (V,V Rijkn = ArsRijrn), conformally sym-
metric (V,Cijin), conformally birecurrent (¥, VsCijen = ArsCijin) Riemannian
spaces, we have

Theorem. ([13], [19], [22]).- If a 2-recureni (ronforma”y symmetric, conformally
recurrent, conformaHJ birecurrent) Riemannian space is a warped product and
dim M > 3. then M is 2-recurent (conformally symmetric, conformally recurrent,

*
conformally birecurrent) and M 1is a space of constant curvalure.

M.C.Chaki and G.Kumer ([6]) generalized this theorem for the space satisfying
V. VsCijen = Ay VsCijrn + BrsCijen.
One generalization of a recurrent space is the Riemannian manifold satisfying ([2]-
[4],[5],[16],[25],[26],[33]):
(4.9) Y, Rijin = Ar Rijin + BiRejin + Bj Rirkn + Bi Rijrn + B Rijir.
Here, we shall give an example of warped product manifolds satisfying (4.9).
Let M, dim M > 2, be equiped with the metric

g
ﬁabdm“d:rb = Z ea(d:va)g, €a = *1

a=1

and let 5
F=(Co=Cz'+, - ,Cpx?),

where (g, ('y,...,(/; are constants such that

q

Y e(Ca)* =10

a=1
Then
(4.10) { Fy = 364{Co =Ciz iy Cyoly VaFe= 20,
ab — 0, vlF = 0.

On warped product manifolds 179

In view of (4.2), (4.4) and (4.10), it follows that the only components of Rizun
and V. Rijpp not identically equal to zero are those related to

Repys = F Ropys,
v,_}Rﬂ;jq,é = vaRG[jTés

Lx 1 *
vaHQL‘H[: = _f‘aRu,ﬁ"yéa van,E"ya =1 :z_FBRﬂ'ﬂ‘TJ)‘

* * * *
Now, if M is a recurrent space, Le. if V,Rapys = A,Rpys, then

vﬂRtxﬁ’vﬁ = A, Ramﬁ»
1 F,

Iy
Va Raﬁ’yﬁ == FRQIJ'}'M vpﬁ)ﬂﬁ-ya =r— ET;FR"!JTTIH

and warped productM = M xp M satisfies (4.9), the vector fields A and Bhaving
the localcomponents

A: A,_,‘ ;“d = s

| F
B:B,=0, B, =_-28
: 2F

(4.11)

.
If M is Cartan-symmetric, Aa =0, and A = 2B. The Ricci tensor of considered
warped product satisfies

(4.12) ViSij = AeSij + BiSi; + BySix,
or (in the case M is Cartan-symmetric)
(1.]3) V;c.’*l'u = QB)CS,:J' + Bib'kj + BJ-.S'M.

Indeed, in view of (4.10), we can reduce the relations (4.5) and (4.8) as follows

Sap = Ssm =0, Seg = Sug;
vnb’ub = Vﬂl‘."ab = vbb’ncr = Ua

. L i, . Far,
vﬁbart == :E_F“-(’uﬁs vltb(r,ﬂ_‘f = = 12?3-5(”3‘.

vﬁ-gﬂ-,ﬁ = Vhb‘c‘xﬁ-

* *ow *
If M is a reccurent manifold, then V S = Ay95, 1@, 1t 1§ also Riccirecurrent
4 I 2 al P af
and taking into account (4.11), we have (4.12).

-
M can be Ricci-reccurent and not recurrent. For example, W.Roter determined
in [29] and [30] the metrics of conformally symmetric and conformally recurrent

180 M. Prvanovié

Ricei recurrent manifolds which are not recurrent. In this way we obtain new
examples of Riemannian manifolds satisfying (4.12). The Riemannian manifolds
satisfying (4.13) was introduced by M.C.Chaki ([3]) and further investigated in [4]
and [7].

S.Ewert-Krzemieniewski ([16]) determined the subprojective spaces satisfying
(4.9) with A = 2B. More precisely, he determined the function F' in (2.1) such
that the condition (4.9) is fulfilled for A = 2B.

N.Pusié ([27],[28]) investigated Ricci- recurrent warped product mdmfolds Amo-

ng others, she proved that if M = M x M is Ricci-recurrent, then M is an Einstein
space.

4.3 An n-dimensional (n > 4) Riemannian manifold is said to have harmonic
Weyl conformal curvature tensor ([1],p440) or to be nearly conformally symmetric
([17]) if its Ricci tensor satisfies the condition

(4.14) VisSij — ViSig = (9i; ViR — g V; R).

|
2(n—1)

Namely, it is easy to check that for every conformally symmetric manifold the
condition (4.14) holds.
If the Ricci tensor satisfies

n n—

2
4.15 Sip = ——————— i V _
Gdsy Faby (n—l)(n+2)g’7 R+ 20n - 1)(n+

(kaViR + gix V),
then it satisfies the condition (4.14), too.
: . . . : R .
Finaly, for Einstein manifold (S;; = —gi;), if n > 2 then R = const. and both
n
conditions (4.14) and (4.15) are identically satisfied.

If the warped product manifold M = M xp M satisfies (4.14), then M is an
Einstein space with a constant scalar curvature. The converse is not true. But if
dim M =1, we have
Theorem. ([17]).-Lel dimM =1 and g, = 1. then the warped product M =

P *®
M x M satisfies (4.14) if and only if M is an Einstein space and its scalar curvalure
ts constant.

Furthermore, if the function f? = T isa solution of ordinary differential equation

d2f 2R f3
(dzt)? B (n—1)(n—2)

= const.,

the Ricci tensor satisfies the condition (4.15). (This is the example of manifolds
satisfying (4.15), given in [1],p.433)
But, if /7 is given by one of the following formulas

On warped product manifolds 181

j[—‘(” - I)j‘?n —3) sh'"'\/a{i +b), a > 0,
ifR >0, F?= mﬁ(rl s

7% (n— 1;;271-*2) e \/:E(.'jl +b)' LA
TR =0 F’=be', 440
if ;I’ <0, F=- %(n - l;t;rr.) cos h? ﬁ(lzl +b}. a > 0;

where a and b are constans, then warped product M = M xp M is an Einstein
space ([18]).
[t is interesting to note that warped product manifold provided with the metric

([,qr‘) = — (d2:1]2 + F‘!;ﬂﬁ(i:l?(‘d:lfﬁ

satisfies (4.14) if and only if _:v(.,j(i;zr“(lrﬁ 1s the metric of an Einstein space with
constant scalar curvature and the function F has the form F = b4 where a and
b are constants.

4.4 The Riemannian space is said to be semi-syrmmetric if its curvature tensor
satisfies

(4.16) R-R=0,

where the first tensor acts on the second as a derivation.
There are many various possibilities to obtain curvature conditions weaker that

(4.16). To expres them, let /2(X, V) and X A4 Y be defined by
R(X,Y)Z = VxVyZ - VyVxZ - Vix v1Z,
(X AaY)Z = A(Y, Z)X — A(X, Z)Y,

respectively, where X, Y, Z are vector fields and A is an (0, 2) tensor field on
(M, g). For (0, k)-tensor field P on M, k > |, we define tensors & P and Q(A, P)
by the formulas

(R PY Xy Xig S ¥ = PRI, WKy oo o Ki)ims so—

~

P(X1,, Xeet, ROX, Y)X0),
Q(A, P)(X1, Xis X, V) =P((X Aa Y) X1, Xp) 4+
P(/\'] y ‘Ik’k_1| (/\, A },)/‘(k)-

182 M. Prvanovié¢

Then, the desired conditions weaker then (4.16) are

(4.18) R-R=LQ(g, R),
(4.19) R-R=Q(S, R),
(4.19) ¢ -C= £Q(g, C),
(4.20) R-R=Q(S, R)+LQ(g, C),

where (7 is the conformal curvature tensor and £ is a function on M.
There exsists many examples of warped product manifolds satisfying one of these
conditions. We cite some of them.

Theorem. ([I1]).- Let M be an open interval of R with the metric g1 =€, ¢ €
{1, 1}, F a positive ('™ function on M and na* M a manifold of constant cur-

vature. Then the warped prodoct M = M xp M satisfied (4.17).

Theorem. ([11]).- Let M be an open subset of R\ {0,...,0}, ¢ > 2, eqiped wnth
1 . %

the melric G, = bap, F(z, ...,z = Z[(fﬂl)“'{- A (29)?)? and nax M (dim M > 2)

a localy flat manifold. Then the warped prodoct M = M xp M satisfied (4.17).

Theorem. ([8]).- Let M = {(z', 2%) € R? and 2' > 0, 2% > 0} be a 2-dimensi-

onal manifold with the metric g defined by 7, = €a, €a = x1. Let M, dim M > 2
be a mantfold of constsnt curvalure and let

c+ 1 c—1

F(z!, %) = (ml)T (z?) e

where ¢ is nonzero constant. Then the warped product M = M xp M satisfied
(4.18).

Theorem. ([14]).- Let M be a [-dimensional manifold and let M be a 3-dimen-
sional manifold or (if dimM > 4) conformally flat. Then the warped product
M =M xp M satisfied (4.19) if and only 1f

Swp = ,u:;ma + Vialg,

"
where i and v are function and uq is a vector field on M.

— I * *
Theorem. ([10]).- Let M, dimM = ¢ > 2 and M, dim M be (wo Riemannian
manifolds of constant curvature and F a positive smoth function on M. Then the

On warped product manifolds 183

warped product M = M xp M satisfied (4.20) with £ = — %—i—)ﬁ if and only if,
qiq —
at every pownt of M, the condition

1 FE _
rank (2—_Tub - n_zyab) <1

ts satisfied. (The (0, 2) tensor T is defined by (4. 3) and R is the scalar curvature
of M.)
Theorem. ([10]).- Let F be a positive smooth Junction on 2-dimensional Riemann-

tan manifold M such that the tensor T is propertional to §. Moreover, let M.
dimM > 2, be a manifold of constant curvature. Let the Junetion L defined by

n—3tr(T) R
L= —— — 2
4 F 7]
il — *
satisfied £ = — ”—2—R. Then M = M xp M is a manifold Julfilling (4.20).

Theorem. ([9]).- An Ewmstemn manifold (M, 9), dimM > 4, salisfying (}.17),
salisfies the condilion (4.19), (oo

References

[1] Bees A.L., Einstein manifolds, Springer-Verlag, 1987,

[2] Csuaki M.C., On pseudo pseudo-symmetric manifolds, An.Stiint.Univ.” ALLCuza, lasi, Ser.
Ia Mat. 33 (]987), 53-58.

[3] Csnaki M.C., On psendo Ricci-symmetric manifolds, Bulgar.J.Plhys. 15 (1988), 526-531.

[4] Csnaki M.C., BARNA B., On a new type of Riemannian manifolds and its aplication io
general relativity,, Mahavishva 4 (1991), 63-65.

[5] CHaki M.C., DE U.C:, On pseudo-symmetric spaces, Acta Matl. Hungar. 54(3-4) (1989),
185-190.

[6] CHaki M.C.,KuMaR G., On semi-decomposable generalized conformally 2-recurrent space,
Mathematica, Revue d’Analyse numerique et de la théorie de I'approximation, T.30 53, No
1 (1988), 11-18.

[7] CHaki M.C., TARAFDAR M., On conformally flut pseudo-Riecti symmetric manifolds, Period.
Math. Hungar. 19(30) (1988), 209-215.

[8] Derever F., Deszoz R., On warped product manifolds satisfying a certain curvature con-
dition, Atti Academia Peloritana dei Pericolonti. Clase [di Sei. Fiz. Matl. e nat. 69 (1991),
213-236.

[9] Derever F., Deszez R., On Ricmannian manifolds satisfying a certain curvature condilion
tmposed on the Weyl curvature tensor, Acta univ. Palackianea Olomucensis facultas rerum
naturalum, Mathematica, 32 110 (1993), 27-34.

[10] DEFEVER F., DEszcz R., Prvanovid M., On warped product manifolds satisfying some
curvature condition of pseudosymmetry type, submited for publication.

[11] DepPrEZ J., DESzoz R., VERSTRAELEN L., Ezamples of pseudo-symmetric flat warped prod-

ucts, Chinese J. Math. No 1 17 (1989), 51-65.

DERDZINSKI A., ROTER W., Some theorems on conformally symmetric manifolds, Tensor

32 (1978), 11-13.

(12

—

184
[13]

(14]

[15)
[16]

(21]
(22)

[23]
[24]

(25]
[26]
[27]
(28]
[29]
[30]

[31]
[32]

[33]
[34]

[35]
[36])

[37]
[38]

[39

(40]

M. Prvanovié

DEszcz R., On semi decomposable conformally recurrent and conformally birecurrent Rie-
mannian spaces,, Scientific papers, Inst.Math.Wroclaw Tech.Univ. No 16 (1976), 27-32.
DEszcz R., VERSTRAELEN L. YAPRAK S., Warped products realizing a certain condition of
pseudometric lype imposed on the Weylcurvature temsor, Chinese J.Math. 22 No3 (1994),
139-157.

FISENHART L.P., Riemannian geometry, Princeton University Press, 1949.
EWERET-KRZEMIENIEWSKI S., On some generalization of recurrent manifolds, Mathematica
Pannonica 4/2 (1993), 191-203.

GEBAROWSKI A., Nearly conformally symmetric warped product manifolds, Bull. Inst. Acad.
Sinica 20, No 4 (1992), 359-377.

CiEBAROWSKI A., On Binstein warped product, Tensor 52 (1993), 204-207.

GRUCAK W., On semi-decomposable 2-recurent Riemannian space, Scientific papers, Inst.
Math. Wroelaw Tech. Univ. No 16 (1976), 15-25.
IKacan B., Uber eine Erweiterung des Begriffes vom projectiven Raume und dem zugehdrigen
Absolut, Abhandlingen aus dem Seminar fiir Vektor-und Tensoranalysis, Lieferung I, Moskau
(1933), 12-101.

IKAGAN B., Der Ausnahmefall in der Theorie der subprojectiven Rawme, Abhandlungen aus
dem Seminar fir Vektor-und Tensoranalysis, Lieferung 11-111, Moskau (1935), 151-170.
Krawczyk A., Some theorems on semi-decomposable conformally symmetric spaces, Scien-
tific papers, Inst. Math. Wroclaw Tech. Univ. No 16 (1976), 3-10.

O°'NEILL B., Semi-Riemanian geomelry with application to relativity, Academic Pres (1983).
Prvanovi M., Poludekomponovani rekurenini Rimanowi prostori, Godisnjak Filozofskog
fakulteta u Novom Sadu XI/2 (1968), T17-720.

PRVANOVIC M., Generalized recurrent Riemannian manifold, An. Stinit. Univ. Al. 1. Cuza,
lasi Ser. Ia Math. 38 (1992), 423-434.

PryANOVIG M., On weakly symmeltrie Riemannian manifold, Publications Mathematicae
Debrecin, in print.

Puiié N., On Ricei reeurrent semi-decomposable Riemanian spaes, Zb. Rad. PMF u Novom
Sadu, Ser. Mat 21,2 (1991), 49-59.

PU3IC N., On Ricei recurrent semi-decomposable Riemanian spaes with vanishing scalar
curvature, Zb. Rad. PMF u Novom Sadu, Ser. Mat; in print 23,1 (1993).

ROTER W., On conformally symmetric Ricci-recurent spaces, Colloq. Math. XXXI (1974),
87-96.

RoTER W., On the existence of conformally symmetric Ricci-recurent spaces, Bull. Acad.
Polonaise Sci., Ser. Math. Ast. Phys. XXIV, Noll (1976), 973-979.

Rusk H.S., WALKER A.G., WiLLMORE T.J., Harmonic spaces, Ed.Cremonese, Roma, 1961.
Senarino H., Uber die Metrik der subprojective Rawme, Abhandlungen aus dem Seminar fiir
Vektor -und Tensoranalysis, Lieferung 1, Moskau (1935), 102-125.

Tamissy L., Bind T.Q., On weakly symmetric and projeclive symmetric Riemannian man-
ifolds, Collogq. Math. Soc. Jinos Bolyai 56 (1992), 663-670.

VRANCEANU G., Aspura spatiilor i Kagan metrice, Bull. Stiint. mat. fiz. chim No 6 (1950),
503-508.

VRANCEANU Gi., Lecon de géométrie differentielle, Ed. Acad. Roumanie, Buchharest, 1957.
VRANCEANU (3., Espaces de Riemann partiellement projectives d melrique indéfinie, Math.
Nachr. 18 No 1-6 (1958), 123-126.

YANO K., Concircular geometry, Proc. Japan Acad. 16 (1940), 195-200, 354-360, 442-448,
5056-511.

Yano K., The theory of the Lie derivatives and ils applications, North-Holand Publisching,
1955.

KATAH B.®. | Cybnpojexmuensie npocmpancmaa , [oc. u3z. pus. MaT. JuTep.,
Mocksa , 1961.

KPYUKOBUY [.W. , O dsumxcenuszr & noaynposodumsr Pusmanosur npoc-
mpanciear , ¥ ciexyd MaT. HayK, T XII 6 (78) (1957), 149-156.

On warped product manifolds 185

(11 —, O dsuacenusr s cybnpoexmuanss npocmpancmaar B. & Kazana, Hay-
YH. NOK. BbIC. WIKOJ., hKn3.MaT. Haykun No 1 (1958), 43-47.

[42] —, O Pumanobunzr npocmpancmeaz ¢ docmamowno Goavuiod epynnoil dau-
xcenudi, IAH, Tom 133 No 6 (1960), 1283-1286.

(43] ——. O npocmpancmensr B.@. Kazana, 8 xuuee: Kazan B.®., Cyonpoexmua-
nore npocmpancmea , l'oc. wan. ¢pus. mat. nurep., Mocksa , 1961.

[44] —, 06 odnom xaacce Pumanobuz npocmparncme , Tpyner cem. Bekrop.
TeHCOp. aHaJ., BbUI XI (1961), 103-128.

[45] — ., Hpocmpancmea Kazana u wempansumuszse zpynnw deuxcenug . Tny-
AbL CEM. BEKTOD. TEHCOP. aHaJdl., Bbil XIV (1968), 144-153.

[46] HIMPOKOB IT.A. | Cusmempuneckue Konopmio-eanaudoane npocmpancinaa
, Uan. Kazancek, gus. matem. o6-na cep 3,11 (1938), 9-27.

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITewayre A Jo A1jnoe4 Jo Areuqi] [enlliA

FILOMAT (Nis) 9:2 (1995), 187-195

Filomat "94, Nig, October 2224, 1994
Geometry. Computer Sciences

HOLOMORPHICALLY-PROJECTIVE
CONNECTIONS OF A HYPERBOLIC
KAEHLERIAN SPACE

Nevena Pusié

ABSTRACT. We consider the sel of connections on a hyperbolic Kaehlerian space
which are in holomorphically-projective correspodence 1o the Levi-Civita connection.
We find an invariant tensor of curvature type for all these connections.

1. About hyperbolic Kaehlerian space

A hyperbolic Kaehlerian space M, (n = 2m) is a differentiable manifold
with indefinite metrics

(1.1) ds* = g;;dz’ da’

and so-called strusture(Fj *)(which is itself a linear transformation of the
tangent space, in every point), which satisfies

(1.2) P}’F,i:éj':

The metrics and the structure are conected in the following way
(1.3) Fij = i, F° j = g5, F;° = — F;

(1.4) ViF; i =0.

The tensor (Fj;), appearing in (1. 3), which we have formally got from
the structure tensor by lowering the upper index, is the covariant structure
tensor. The symbol V denotes the ooperator of covariant differentiation
towards the Levi-Civita connection. (1. 4) means that the structure tensor is
parallel regarding to the Levi-Civita connection. It is clear that the covariant
structure tensor is also parallel. (1. 2) means that the structure is involutjve
as a linear transformation of the tangent space in every point.

The structure tensor is a real nondegenerate tensor and it has n linearly
independent eigenvectors; its matrix has a diagonal expression.

187

188 N. Pusié

There holds

Lemma 1. (A) Every tangent vector of a hyperbolic Kaehlerian space is
transformed by the structure into an orthogonal vector.

(B) The scalar square of a vector-original is opposite to the scalar square of
the vector-image.

Proof. (A) a; F;7 = b;

a;¥ = a;a,F, *g" = gja,F* = —aja,F*% = —a;¥ =0
(B)bb* = bybig® = boa; Fyig™ = bya; F* =
= —a;b,F* = —q;d’. O

The fact that the structure has eigenvectors is enabled by the fact that
the metrics is indefinite. We shall give here some features of eigenvalues and
eigevectors of the structure.

Lemma 2. For two different eigenvectors of the structure on a hyperbolic
Kaehlerian space either the eigenvalues are mutually iopposite or the eigen-
vectors are mutually orthogonal.

Proof. Suppose that u and v are two different eigenvectors for the struc-
ture, with eigenvalues A and & respectively. Then

a k __ s k
U0t = wvpg = -H—u,-F;, v, g’

1

= —uj'u_,Fj’ = ——v,qu’j = ——u,u’,
K K K
and
A
(1.5) w1+ 2)=0
K
and the Lemma is proved. O

Lemma 3. If on a hyperbolic Kaehlerian space the vector u is an eigenvector
for the structure, then Fu is also an eigenvector for the structure.

Proof. v = Fu, v; = F; “u, = Ay,
F}iv,; ZF,'R "ua:uj =)\2‘Ufj :/\‘Uj

and the Lemma is proved. O

It is obvious from the proof of the Lemma 3. that only eigenvalues of the
structure are A = +1.

According to the Lemma 1, eigenvectors of the structure tensor are self-
orthogonal, i. e. their scalar square vanishes. As the structure has n (di-
mension of the manifold) linearly independent eigenvectors, there exists a

Holomorphically-projective connections of a hyperbolic ... 189

basis of the tangent space which consists of isotropic vectors. We call such a
basis an adapted basis. Such a basis shows in the simplest way the geom-
etry of a hyperbolic Kaehlerian space. We can construct an adapted basis
in the following way: we put on the first m = 5 places those eigenvectors
with corresponding eigenvalue 1; on the second m places we put those m
eigenvectors with corresponding eigenvalue —1. According to the Lemma 3.
there is no other eigenvalues. According to the Lemma 2, in every of these
subspaces every basic vector is orthogonal to the every other basic vector; on
every of these subspaces induced metrics vanishes identically. Besides, every
of these subspaces is invariant under structure isomorphism. This means
that a hyperbolic Kaehlerian space is decomposed in very natural way into
two totaly geodesic subspaces of same dimension.

We have to mention that, according to the Lemma 1, there exist vectors
with positive scalar square (space-like vectors) and those with negative scalar
sqare (time-like vectors).

2. Holomorphically planer curves

A two-dimensional submanifold of the manifold M, with a tangent sub-
space of the tangent space on M, generated by vectors u, F'u we call a
holomorphic section of a hyperbolic Kaehlerian space.

A curve £"(t) on M, satisfying the differential equation
dzeh , dE7 dE? des

d h
hou Wb ISP i b
dt? "dt dt a(?) dt + B, dt

where a(t) and () are functions depending of the parameter ¢, we call a
holomorphically planer curve. It can be seen from (2. 1) that a curve
is holomorphically planer if and only if holomorphic sections generated by
tangent vectors are parallel along the curve.

Two F-connections (satisfying Vi F = 0) are said to be mutually holo-
morphically projective if and only if they have holomorhically planer curves
in common.

It is easy to prove that there holds

(2.1)

Proposition 1. Two symmetric F-connections with coefficients A;- ¢ and /_\j- ”
are holomorphically projective if and only if

(2.2) A = A + pibi + pi]
+p.F°F. ' + il " Fy ¢
for some vector field (p;).

In this article, we shall investigate connections which are holomorphically
projective to the Levi-Civita connection.

190 N. Pusié

3. Holomorphically-projective connections

We say that a connection with coefficients A;'. . on a hyperbolic Kaehlerian
space is holomorphically-projective if its coefficients have the form:

(3.1) A’Ek:i‘j’k“&'p.f&i +pk6i+Qiji+Qijia

where (p;) are components of a gradient vector field and (g;) are compo-
nents of a vector which is an image of (p;) under the structure. I stands for
Christoffel symbols. It is obvious that a holomorphically-projective connec-
tion has holomorphically planer curves in common with Levi-Civita connec-

tion.
The curvature tensor of the connection (3. 1) has the form

(3.2) Rijii = Kijia + 9ribij — 9uPei + Friqi — Fliqxj
+ Fi(qu — que)

where

(3.3) pi; = Vipj — pipj — Qg

(3.4) G = vrij — Pig; — qiPj

and

(3.5) Qi = F} *Pla

By Kji we denote Riemann-Christoffel tensor of the hyperbolic Kaehlerian
space.

In order to eliminate p;; and g; from the expression (3. 2), we shall sup-
pose that the curvature tensor of the holomorphically-projective connection
is invariant under change of places of the first and second pair of indices:

(3.6) Rijer = Runij
By (3. 2), we obtain from (3. 6)
gixpir — 9Pk + Fri(@ + @i1) — Fuqr; + Fieqa
+F;i(qr — qu) — Fue(gij — ¢;:) = 0
After transvection the upper equality by F7¥, we obtain
(3:7) qi + (1 = n)gu = Fup;

where p? stands for p;;g%.
As the covariant structure tensor is skew-symmetric, then the left-hand
side of (3. 7) is also skew-symmetric and there holds

@i +(1=n)ga = —qu— (1 —n)gy

Holomorphically-projective connections of a hyperbolic ... 191

what means

(3.8) it = — ;.

Now, the curvature tensor of holomorphically-projective connection on a
hyperbolic Kaehlerian space has the form

(3.9) Rijpi = Kiju + gripy; — gupij + Feiqij — Fiqr; + 2F;q1.

4. HP-curvature tensor

Taking into account equalities (3. 7) and (3. 8), one can easily get

5
(4.1) g = -2k,
n
and by the relation p; = F) ¢,
ps’
4.2 i = i
(4.2) P -

Using (3. 9), we can find the Ricci tensor of the holomorphically-projective
connection

_ Ry - Ky
(43) P = Tn—
and
s, R-K
(4.4) LS T
Then, we have
R—-—K
: (et TR
(4:2) o n(2 —mn))
R-K
(4.6) Pii

- n(2 —n) R

If we substitute (4. 5) and (4. 6) into (3. 9), we obtain
R

m(!}kiyu = 9igki — FriBy; + FyFyj — 2FiFa) =
K

n(2—n)

The tensor on the right-hand side of the upper equality we call the holo-

morphically-projective curvature tensor of a hyperbolic Kaehlerian
space. We have proved

Ryjr—

= Kijr — (9ki9i; — 9ugr; — Fri By + FyFyj — 2F; Fy).

192 N. Pusic

Theorem 1. The tensor
(4.7) HPjn =
K

Q—_n)(gkigfj — gugrj — Frilj + FiFyj — 2F;:F)

K —
ikl ?l(

is an invariant tensor of holomorphically-projective connections on the hy-
perbolic Kaehlerian space.

We can also prove that there holds

Theorem 2. The curvature tensor of a holomorphically-projective connec-
tion on a hyperbolic Kaehlerian space is skew-symetric in first two indices,
but it does not satisfy the first Bianchi identity, ezcept of some special cases.

Proof. One can easily check, using (3. 9), that R;j;, is skew-symmetric in
first two indices.

If we suppose that R;j satisfies the first Bianchi identity, then, by (3. 9),
we obtain

0= Kiju+ Kiij + Kt
+9ripi; — GiiPri + Friqy — Fiqj + 2F5iq0
+gupix — 9P + Fugjx — Fjiqu + 2Faq;
+9jiPxt — GkiPit + Fiiqer — Frigin + 2Figje =
= 4(Friqi; — Fuqej + Fiiqu),
and, taking into account (4. 1)
Py °
n

(FriFyy — FiFyj + F;iFry = 0).

If we suppose that the expression in parentheses vanishes, then, after con-
traction by F'*,
(n-2)F; =0,
what is senseless. Then p, * = 0 and, regarding to (4. 4), K = R, what is a
special case. O
Also, we can prove

Theorem 3. The holomorphically-projective curvature tensor of a hyper-
bolic Kaehlerian space satisfies the following relations

(a)H Pt = —H Piju; H Pije = —H Pjirg; H Pijiq = H Py
(b)H Pijia + H Py + H Pyji = —4(Fui By — FuiFyj + FjiFu)
() HP' o= Kji — %gjk
(d)H P F; ' — HP' jF, " = 0.

Holomorphically-projective connections of a hyperbolic ... 193

One can easily prove all these properties using the expression (3. 9).
5. Some special cases
There always holds
(5.1) . ° =V, p!
according to the Lemma 1. Then also holds

. " V,p* V. p*
(5-2) R= K= (2 —n)V,p*; pu = ‘n—pgri; qi = — e

Fi.
n

As the first special case we shall consider that one when the vector field (p*)
generating holomorphically-projective connection is a harmonic vector field,
that is

o

V,p' =0.
Then, according to (5. 2), there holds
(5.3) . R=K;p:=0; =10
and then

B = Kijia
and the curvature tensor of the holomorphically-projective connection in this
special case will satisfy the first Bianchi identity.
The other special case which we are going to consider here is that one when
the generating vector field for the holomorphically-projective connection is
an eigenvector for the structure; then the holomorphic section is invariant

for the structure. As the only eigenvalues for the structure are +1, then
holds

(54) q; = *pu
As the tensor (py;) is symmetric and the tensor (@) is skew-symmetric, there
will hold
(55) qi; = pgj = 0.
This means that
Ps ‘= v.!icr1 =0

i. e. that the generating vector field is a harmonic one.

If the vector field (p;) is harmonic or isotropic, then

Vipi = pip; + 605 Viai = pigi + ¢pi-
According to the Ricci identity, there holds
vjvkpi - vkéjpi =-K* ikjPr = 0

194 N. Pusic
After contraction by g**, we obtain
"‘I(t in = 0

or, consequently -

g""v_,-ékp,- =,
There holds
Theorem 4. If the vector which is generating a holomorphically-projective
connection of the hyperbolic Kaehlerian space is a harmonic vector field,
then the curvature tensor of the hyperbolic Kaehlerian space is equal to the
curvature tensor of the holomorphically-projective connection. An ezample

of generating harmonic vector field is a structure eigenvector field. For such
a vector field there holds

K! ipe =0 and g"kv_,-\i/kp,- =il

If the generating vector field has constant scalar square, then the difference
between R and K is constant.

Proof. We shall prove just the last statement.

d v s = s Ry
gg(m’) = Vipsp®' = p,Vip' + P Vips.
But

(5.6) Vips = prs + PaPs + @¢s and Vip® = pi + pep’ + @’

As pis = %;‘gks and p; = %5—6;, then

5

3 L] p.T £
0= gg(p,p) =20+ PP)P

and, consequently,

But,
R—- K =(2-n)p, = n(n—2)p,p’

and the proof is completed. O

Holomorphically-projective connections of a hyperbolic . . . 195

Refrences

[1] M. Prvanovié, Holomorphically-projective transformations in a locally product
space, Mathematica Balcanica, 1(1971) 193-213

[2] N. PusI¢, On invariani tensor of a conformal transformation of a hyperbolic
Kaehlerian space, Zbornik radova Filozofskog fakulteta u Nisu, Serija Matem-
atika, 4(1990) 55-64

[3] K. Yano, Differential geometry of complez and almost complez spaces, Perga-
mon Press, New York, 1965.

INSTITUT ZA MATEMATIKU PMF, 21000 Novi SaDp, DR ILIJE DIURICICA 4,
YUGOSLAVIA

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SoITeWwBYe A Jo A1jnoe4 Jo Areiqi] [enlliA

FILOMAT (Nis) 9:2(1995), 197-204
Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ON INFINITESIMAL DEFORMATIONS OF A TOROID
ROTATIONAL SURFACE GENERATED BY
A QUADRANGULAR MERIDIAN

Ljubica Velimirovié

ABSTRACT. In this paper we consider a toroid rolational surface with a quadrangular meridian
and obfain a necessary and sufficient condition for infinitesimal deformations of such a surface
(eq-(1.18)). It is determined the field of deformations too.

0. Introduction

In the paper [1] K.M. Belov gave necessary and sufficient condition for infinites-
imal deformations of a toroid surface of rotation generated by a special case of the
meridian.

One puts question of considering infintensimal deformations, i.e. of the rigidity
of a surface with any quadrangular meridian.

In the plane of the meridian which rotates around the wu-axis let’s introduce
Descartes’ orthogonal coordinate system uOp and let p = p(u) be the equation of
the meridian. If € is unit vector of the axis of rotation, a(v) unit vector of the p-axis,
where v is the angle between the plane of initial position of the meridian and a(v)
then a'(v) La(v) and a'(v)Le (see [2], page 90, or [3] page 253).

The equation of a surface of rotation, in the coordinate system with the base
€, a,d is

(0.1) r(u, v) = ué + p(u)a(v).

As it is known ([2],page 91.) for every k € {2, 3, ...} there is a field of infinitesimal
deformations

2(u,v) = [pe(u)e™™ + gp(u)e~i*v]e

(0.2) + [r(u)e™ + e (w)e*)a(v)
+ [xr(w)e™ + ge(w)e=*]a' (v)

1991 Mathematics Subject Classification: 53A05
Supported by Grant 0401A of RFNS through Math. Inst. SANU

197

198 Lj. Velimirovié

of a surface (0.1),where e.g. @ (u) is the conjugated value for p(u). The functions
r(u), xi(u) satisfy differential equation in the form of

(0.3) ()X (u) + (k? = 1)p" (u)Mu) = 0,

where A(u) is unknown function,and also satisfy the system

(0.4) @i () + o' (W) (u) =0, (u) + ikxi(u) =0
' ikip(u) + p'(u)[ikr(u) — xi(w)] + p(u)x (w) = 0.

In the vertexes u = o of the meridian, ¥ (u) satisfy the equation ([2],page 112)
(0.5) p(o)[¥i(o +0) = (o = 0)] + (k* = 1) (a)[p' (e + 0) — p'(c — 0)] = 0,

supposing the function wg(u), xx(u) to be continuous in this points. Analogously,the
equation (0.5) is satisfied for x(u), if @i (u), ¥x(u) are continuous.

1. Condition for the existence of infinitesimal deformations

Suppose that quadrangle A;(u;, p;) (1 = 1,2,3,4; p; > 0) rotates around the
u-axis. If p(1) is value of p on the A; Ay, pray on Az A3 etc., we get the equations of
the sides of the meridian

Pig1l — Pi
Aidiyi i piy = pi + ———(u—wi),
(1.1) +1 1 P3) = P Ui+1—ui()
(i:1,2,3,4;A5EA1, Ps = A, uszm),

from where

(1.1) Pliy = ki = P — P
Uiyl — U

Dropping index k, let’s designate with v(;) (i = 1,2,3,4) the values of the function
1) on the sides Ay A, ..., A4A; respectively. If we replace A(u) with ¥;)(u) at (0.3)
according to (1.1), we can see that the functions 4,y are linear, i.e.

(1.2) 1,4')(,'}=M,;U+N,' (f:l,2,3,4)

Supposing that the functions t;)(u) are continuous at the points u = o of the
meridian p = p(u), where p'(a — 0) # p'(c + 0), we get the system

Py () = Yay(ur) = Prany(ur)
Proy(uz) = ¥a)(uz) = Yaz)(ua)
Y(3)(ua) = 2)(ua) = Yaz)y(ua)
Ya)(ua) = Y(a)(ua) = thaa)(ua)

(1.3)

On infinitesimal deformations of a toroid rotational surface ... 199
According to (1.2) we have the system

Myuy + Ny = Myu; + Ny
Maus + Ny = Myusy + N,
Mzuz + N3 = Mous + Ny
Maug + Ny = Myug + Ny

(1.4)

ie. if we consider this system as a system on N;:

N] —-N4 :*—M]'U] +M4!£1

(1.5) N =N, = —Myuy + Myu,
’ Ny —Nj = —=Myuz + M3us
N3 =Ny =—Mgu, + Mayu,

At the apeces of the meridian the condition (0.5) gives the equations:

Aq p[(Ml—M.q)-i-(kz—1)(M1U1+N1)(k1—""4):0

Az pa(My — My) + (k% = 1)(Myusy + Na)(ks — k1) =0

Azt p3(Ms — M) + (k2 — 1)(Mzuz + N3)(kz — ky) = 0

Ag: pa(My — Ms) + (k* = 1)(Myuq + Ni)(ks—k3) =0
Oor:

(o1 + (k2 — Dy (k; — ka)]My — py My + (k2 = 1) (k — ky)Ny =0
(16) P2 M+ [p2 + (k% — Dug(ky — ky)] My + (k2 — (ks — ki)Na =0

~P3Mz + [ps + (k% — Dug(ks — ko) My + (k2 — 1) (kg — k2)N3 =0
—PaMs + [pa + (k% — D)ua(kq — ks)] My + (k* — 1)(ks — k3)Ny = 0

Necessary and surficient condition for the compatibility of system (1.5) is rank M =
rank P, where M is the matrix of the system and P is extended matrix of the
system.In order to explore the system, we are making elementary transformations
of the matrices M and P,
According to (1.5) :
Ni Ny N3 N,

10 0 -1 © —Myu + My,
(17) p=|1t -1 0 0 : —Muy+ Mu,
0 1 —1 0 @ —Msyuz + Msusy
0 0 1 =1 : —Myus+ Myu,

Applying Gauss’algorithm for matrix P, let’s realize following elementary trans-
formations successively:

1) —I—1Ir 2) I 111, 3) Il — 1V,
which means: 1) the first row is transcribed, it’s elements are multiplied with -1
and added to corresponding elements of the second row,

200 Lj. Velimirovic¢

2) the elements of the second row obtained in 1) we add to the corresponding
elements of the third row , etc.. Thus we obtain

Ny Na N3 Ny

1 0 0 -1 : m
0 -1 0 1 : my
0 0 -1 1 : ms
0 0 0 0 : mg

where

my = —Myu; + Mau,y

ma = Myju; — Mauy — Myuz + Maus

ma = Miuy — Mauy — Myug + Mauz — Maug + Msus

ma = Myuy — Mauy — Miug + Mausy — Maus + Maug — Maug + Maug

Hence, the system is compatible if
ma = M (1, — uz) + Ma(ug — uz) + Ma(us — ua) + Ma(ua - uy) = 0.

When w; = uis1 (i = 1,2,3,4,us = u;) the meridian contains a side which is
orthogonal on the axis of rotation, generated surface contains a plane part and 1t 1s
non rigid (see[4]). We omit this case in following consideration.

Suppose that us # u;. Then

1

Uy — U4

[(u) — ug) My + (uz — us) Mz + (uz — ua) Ms].

Reduced system (according to (1.8)) is:

Ny — Ny = =Myjuy + Mauy
(1.10) fN2+N4=M1(u1-uz)+M2U2—M4u1
—N3 + Ny = Ml(ul - u'z) + MQ(UQ — ‘U.g) 4+ Mauz — Mauy

From (1.9,10) we have

uy(ug — u uy(us — u uy(uz — u
1£4u2)M1+ 1i2u3)M2+ 1£1u4)M3
1 — Uq 1— Ug] — U4

wa(uy — u Uslg — UL U uy(uz — u
41(‘1”2)M1+ 21‘4 u1 3 M, + 1isu4)
1 — U4 1 — Uy | — Uq
ua(ug — u3) ug(us — uy)

+ My + ————M3

Uy — Ug Uy — Ugq U — U4

Ny =Ny +

M;

On infinitesimal deformations of a toroid rotational surface ... 201

By the equations (1.9,11) unknowns My, N1, Ny, N3 are expressed by My, My, My
and Ny. Substituting (1.9) and (1.11) at (1.6) and designating

u;—uj =u,-_,-
1.12
(22) By ~hy = g

we get the system

[p1uaa + (* — Dkvgugura] My + [(k2 = 1)kyqu, — p1lugs Mo+
+ [(k% = 1)k quy — prlusaMs + (k% — 1)k qu1aNg = 0
[pauar + (k% — Dk21uizua) My + [pauyg + (k% — D)kaiupguy | Mo+
+ (k% = 1) ko uzquy M3 + (k* — DkgiuiaNy =0
(k* — 1)kasuiyug M, + [P3uar + (k% — 1)kasusauq Mot
+ [pawra + (k% — Dkayuzau; | M3 + (k* — 1)ksauraNg = 0
[parz + (k% — 1)ujokazuqg M, + [patas + (k* — 1usskazus Mo+
+ [pauar + (k% — 1)ugakqzuq Ms + (k% = D)urakqaNg = 0.

(1.13)

Necessary and sufficient condition for this system of linear homogeneous equa-
tions to have nontrivial solutions is the rank of matrix

Ny Mz M, M,
An Az Az Ay

(1.14)

An Agy Agz Ay
of the system to be less then 4. We have to find a condition under which it is valid.
According to (1.13) we have
An = (k2 —)k1qu4
A1z = pruzs + (k% — 1)kyqugsu,
Az = (k% — 1)kqyuyy
A2z = pausa + (k% — 1)kgyugsu,

A1z = prugs + (k% — 1)kyquzqu,
Ara = pruzq + (k% — D)kyau;ou,
Azz = (k% — 1)kajuzqu,

Aza = pauay + (k% — Dkguiouy
(1.14)

Evidently,it is always k;;;; # 0 ,as on contrary the meridian will not be quad-

Az = (kz - l)k:szulq
Ass = pauar + (k% — 1)kaousgug
Aq = (k2 - 1)k431114
Asz = pausz + (k% — 1)kazuszuy

Azz = paura + (k% — 1)ksouzqu,
Azq = (k* — 1)kaouyquy

A4z = pauzy + (b — 1)kazuzqug
Ass = pauia + (k% — 1)kazuiaug

rangular. Applying at the same time following operations to the matrix (1.14)

we obtain

(1.15)

ki2 kag k34
I— — 1, I— — I11, I— —]V,
k14 kg kay

H ~ [By],

202 Lj. Velimirovi¢
where

k k
By; =A1j,B21 =0,B = P1u43k—12', Bas = Pl‘kﬂﬁ' + patiiy
14 14

k
By :Pluuaﬁ + pougy + (k% = Dugguiskia, Bay =0
i

ks ks
B3y =p 1t43k—): + pauya, Baz = Pluszm + paugy + (k% — Dusakasura,
1

k 2
Bsa :Pluﬂda‘:gé + (k* — 1)uizkasuia, Bay = 0, Bag = pauay + (k — 1)ugquiaksa

kyg
kg 2 kag
Bas =pattiag— + pattag + (k° — 1)uzzkasura, Baa = paviary— + patrz.
21 21

Further, we apply the operations

IIP?E;:(lesi—i + pauyg) — 111
Hmu%a[ﬂwm + (k? = Dugquyakaq) — IV
and obtain
(1.16) H ~[Cy],
where

(/'lj :BIJ = Alj‘Czj = B2J‘,C31 = 032 = 0

) k 2k
Cas :qumﬂ + Paulun + prpa(t14) kar + (k% — 1)ugzuyakas,
k1o Uq3 prugakys
k k2 —1 2k 2k
o it ot i pa(Jura(w1a) kar | popa(ure) ks
ki2 43 P13 p1tgzksz
C41 =Cy2=10
k3 U papatnausikar pa(k® — 1)(u1a)kiaksd

(1.16)) Cys =pott1a— + pguza— +
! M PR s pruazkys piki2

s _ Patiatizg + patiarksa x pa(k? — l)(u14)2k4,k;34+
Haa k21 prki2
P4(k2 = I)U12H14U31k41 i p2p4u41u31k41
p1ua3 pruaskyz
. (k? = 1)%uya(u1a)?k1aksa
1

By transformation 111 (— %f:) — IV the matrix (1.16) take a form

R

+ (K — V)uzquiakss.

(1.17) H ~ [Dy],

On infinitesimal deformations of a torojd rotational surface ... 203

where
Dij =Cij = Bij = Ayj, Dyj = Cyj = By;, Dy = Cy
(1.17") CiC 1
Dy =Dy = Dip=0, Dy=-22"22 L. — C—(C'ss(f« — C43C34),
a3

<33

and Cj; are given by (1.16"). The rank of the matrix N will be less then 4 for

Dyy = 0,i.e. C33C 44 — Cy3Ca5 =0 ,what gives
[P1p2uaskas + p1psusakis + papsuaka; + pr(k* — Duzzuaskyokaz) x
(1.18) [pawrzuzikar + (k% — 1)uygugguyakshaqg + Pruaztioskss]—
—(P1uzauaskas + psuisuigkyy)x

[P1p2usskas + p1parsokis + popaus kay + pa(k* — 1)urquaskyskza) = 0,
where u;;, k;j are given by (1.12) and (1.1).
Thus, we have

Theorem. Necessary and sufficient condition for infinitesimal deformations of a
torord rotational surface, which is generated by a quadrangular meridian with apeces
Ai(ui, pi) (pi > 0, wip1 # wi, us = uy, i = 1,2,3,4), around the Ou azis is the
relation (1.18) where u;;, k;; are given by (1.12) and (1.1’).

Remark.. If we apply (1.18) to the quadrangle of Belov A;(—1,b), A(0,b+ 1),
As(1,b), A4(0, b—cs) we oblain the relation 1/ea—1/e; = k2 /b, which Belov obtained

in other manner. So, the previous theorem is a generalization of the result of Belov.

2. Determination of the field of infinitesimal deformation
Above applied method makes possible to determine the field of infinitesimal de-
formation.From (1.17) one obtains reduced system
D11Ny+ DioMs + DM, + DygMy =0
(2.1) Dos My + Doz My + DygM, =0
D3z M3 + D3y M, = 0,

from where
(2.2a) M; = - g—;‘:Ml
D
(2.2b) M = (g%%z — D—z:) M,
02 a=[-Da(Dolu_Du) Dubu_ D)y,

Further, from (1.9) we have

1 u23 D34 (Dy3D3q Doy)]
2.2d My = — 9 — + — - — || M,,
() ¢ Ur4 [ul' Das e DzzDaa Dy !

204 Lj. Velimirovié

D DasD D Dy3D, D
le{[l2(230034 24)+ 1334 14]+

(2.2¢) " Dy \D22Dsz D2z DiDss Du
o . 1o (D23D34 _ Qg) _ ujugzDag g lthas UI}MI
g \ D22Daz Daa w1433 Uyq '
D Dys D D Dy3D D
NF{[,& (_23_34__2_4) +_1_3ﬂ_,1_4] b Sl
(2.2f) Dy \ D22D3z D2 Dy1Dss Dn
' 4 D3qus + uiuiy witgazDag 4 UjlUag (D23D34 B %)}ML
D33 Ur4 u14D33 g \ D22Daz Do ’
D Do D D D3 D D
Ngz{[—j'(23 34__:1)+ 13 34——ﬁ]-u1+u2+
Dyy \\Dy2D33 D Dy1D3z Di
. Dsqus Daqus (DosDss Doy) Urtyg
2.2 + = — — —— Jus+ —
(2:2¢) D33 Das D35Dss Da» ¢ U14
Dsgu sy uitsg { DaaDaa Daa
= + 11578 .
Dasuig uyg \D22D3z D2

By the equations (2.2.a — g) we expressed M;, N; (i =1, 2,3,4) by M, (indefinit
const.). Further, we obtain t(;)(u) on the base of (1.2).In this manner, we get the
field Z(u,v) of infinitesimal deformations, given by (0.2).

Finaly, I wish to thank prof. Milica Nli¢-Dajovi¢ for introducing me into the
matter treated in the present work.

References

[1] K.M. BEJIOB, O feckoneuno maavz uzzubanuazr mopoobpasnoil noseprrocmu
spawenus, Cub. mat. xypnan, T H3 (IX)(1968), 490-494.

(2] C.9. KOH-®OCCEH, HekoTophie Bonpockl M depeHImabHoil reoMeTpUn
g nemnom, Puamarruns, Mocksa, 1959.

[3] B.®. KATAH, OcHoBH TeopUH nosepxuocteit, T.U, OT'U3, Mocksa-Jlennu-
urpan, 1947.

[4] H.B. E®MMOB, Kavecmeennsie 60npocst meopuu deopmayuil noaeprnocmet,
YMH 3,2(1948), 47-158.

FacuLty oF Civil ENGINEERING, BEOGRADSKA 14, 18000 Ni15, YUGOSLAVIA

COMPUTER SCIENCE

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYe A Jo A1jnoe4 Jo Areiqli] [enlliA

FILOMAT (Nig) 9:2(1995). 207-231

Filomat 94, Nis, October 22-24, 1994
Geometry. Computer Sciences

FRACTALS AND THEIR APPLICATIONS
IN COMPUTER GRAPHICS

Ljubisa M. Kocié

ABSTRACT. The paper presents elements of fractal geometry and its application in com-
puter graphics and geometric modeling. A connection with chaos dynamics, mostly from
historical angle of view, is stressed. Two Jundamental algorithins for computing fractal
attractors are described. Barnsiey affine iterated Sfunction systems (IFS) are described as
means of constructing deterministic Jractals. It is pointed out how to introduce param-
eters in [FS, wia Bernstein polynomials, to produce different natural forms. Variety of
applications: in animation, data compressing, rendering objects and modeling phenomena
in physics and biology are described.

1. Introduction: Physics and History

At the end of 19. century, physicists considered Physics as a mainly fin-
ished discipline, with everything of any importance in the field being already
explained and known. Everything, except a couple of unimportant loose
ends. Making efforts to remove them. Schrédinger discovered quantum
mechanics, while Einstein invented the relativity theory. The new physics
required new mathematical techniques, and before all, new geometry. So,
the non-euclidean and projective geowetries became topics of interest. Just
when it seemed that relativity theory would finally finish the job of com-
pleting the great book of nature being opened by the Newton physics, the
strange properties of siimple oscillators have heen noticed. Actually, under
certain circumstances, they began to exhibit irregular, chaotic behaviour.
Thus, in the last quarter of 20-th century, scientists have faced the new
revolution called ¢haos.

1991 Mathematics Subject Classification. 58F13.

Key words and phrases. Fractal sets, chaos, computer graphics.

This research was partly supported by Science Fund of Serbia, grant number 0401A,
through Matematicki institut

207

208 Ljubisa M. Koci¢

The word “chaos™ (yaos) stems from the old Greek haino which means
‘open widely’. In Aristotel’s works, 'chaos’ is used to denote an “empty
space’. Later, in the history, this word becomes the synonym for ‘mess’ and
lack of order’.

(‘haos cannot be successfully described neither by Euclid geometry nor
by non-euclidean or projective geometries. Ixcept in some crystal forms,
nature rarely exhibits regularity and geometric order. Natural forms and
structures are irregular and chaotic: clouds, moss, trees, coastlines, feathers,
rocks, surface of the sea, network of neurons etc. These are forms that fractal
geomelry deals with.

Phenomenology of chaos appears in, at least three planes. The plane of
morphology is the most accessible for studying due to huge amount the em-
pirical, factual material which is collected during the time. The plane of
logic is much more complicated, so that only the partial breakthrough has
been done (for ex. in information theory). The causality plane is still in do-
main of hypothesis and till now, it is beyond the experimental confirmation.
Typical example is the hypothetical 'quantum chaos’.

Much earlier before the physicists started coping with chaos, there were
hints of it in mathematical thinking.

So. at the beginning of 19. century Laplace introduced the new discipline
to describe unruliness and disorder — probability theory. Contrary to deter-
ministic theories, probability theory states that future depends randomly on
the past.

Then. Weierstrass defined the function

=L sin(Alx)
flz) = Z e 0 @ € [0,27] ,
t=1
where A > 1 and 0 < ¢ < 1 are real parameters. Being continuous but
nowhere differentiable [12 , p. 53], this function was unlike the things that
mathematicians had ever seen before. Although bounded, its graph has
infinite length (Figure 1-a).

Actually, Weierstrass function belongs to the fractal’ class C=. Topolog-
ical dimension of this curve is Dimp = 1, while its Hausdor[f (also called
Hausdorff-Besicovitch or geometric, see Section 4.) dimension is apparently
Dimy = 2 — <, but this has not been proved rigorously [15].

The most famous fractal set is probably the Cantor set which is equipo-
tent to the interval [0,1] but of zero measure. Its Hausdorff dimension is
Dimy = In2/In3 = 0.6309... and topological dimension Dimp = 0 (Fig.
I-b). So, the Cantor set can not be reduced to a set of isolated points in
which case its H-dimension should be Dimy = 0.

Fractals and their Applications in Computer Graphics 209

k 0 13 2/3 1
| R ' I\ 5 “Jl“ . . ‘
ﬁlh“drv ﬁ|I M 1 [Vl
LT I =I\||ﬂ|'_ |
‘ %l l{ hqll "!JI Illjde I‘ r“ ||) "‘I\ ‘I["U " "J' ‘Pl‘lﬂ "I I1‘|l Mi LIN 1 - = =

‘I ‘I'ﬂ’ "I.‘L i i ‘ “ . - == -- mom
\I L‘ ! II II 'I;l} EIW 'lih'r "o "o " "o
(| ol W

a) b)

Figure 1. a) The Weierstrass function for A = 1.9, ¢ = 0.3: b)
Generating of the Cantor set

h)

Figure 2. a) Peano curve; b) von Koch curve

In 1890. Peano [24] published a construction of a curve that fills in the
unit square without self-intersections. Peano curve has Hausdorff dimen-
sion Dimgy = 2, while Dimy = 1 (Figure 2-a). A year later, Hilbert [16]
announced its own construction of such, so called space filling curve.

The next important construction is the von Koch curve from 1904 ([19]).
known from calculus texthooks as an example of a simple continuous curve
without tangents. Its geometrical dimension is Dimy =In4/In3=1.2619.. .,
(Dimg = 1), see Figure 2-b.

These "early birds’ were named 'monsters’ and 'pathological cases’ by
other mathematicians, and they refused to deal with them at all. In spite
of lacking the tools (like modern computers), first systematic study of chaos

210 [Ljubisa M. Kocié¢

and irregular structures starts with works of Kowalewska and continues with
works of Lyapunov.

Making efforts to describe the chaotic phenomena as accurate as it is
possible, Poincaré introduces topology and considers the physical chaos on
model of orbits of mapping f: X — X:

z, f(z) fiz) ..., z€X,

and intersection of dynamic trajectory in m-dimensional phase space and
transversal (m — 1)-dimensional hyperplane, now known as the Poincaré
section.

The ideas of Poincaré have been further developed by Gaston Julia and
Pierre Fatou during 20-ies of this century. Their work drew attention of
physicists due to its applicability to the simple dynamical systems called
oscillators. A typical model is a pendulum, but there were other interesting
oscillators.

So, B.van der Pol in Holland studied the oscillating model of an electronic
tube, while the mathematician V. Arnold made detailed analysis of the
mathematical model of the human heart, which is an oscillator by himself.

In 1950-es, ecologists have studied so called logistic equation which de-
scribes variations in population of different zoological forms

(1) Trat =T8u(l —2), HEN, 21 E€R,

where v € R is a parameter. The Sequence {z,} represents the orbit of a
simple quadratic map

f:ao—ra(l—-2), TR,

which exhibits unexpected dynamical properties. For » < 3 the correspond-
ing dynamical system (f,R) is stable, ie. f is a contractive mapping with
a unique fixed point x = limy,_yoo®y. For 3 < r < 3.5699456..., the
system has periodical behaviour with successively doubting of the period,
whilst for the bigger values of r it goes to chaos. The graph of x as function
of 7 is known as bifurcation diagram The sequence of branching points (bi-
furcations) {r,} has an accumulating point 3.5699456. .., which marks the
limit of stability. The ratio Ar, /Ar,41 = 4.6692016091... is invariant for
all mappings with ’parabolic’ maximum and is referred as the Figenbaum
nuniber.

This type of mapping describes ’explosions’ in biological population like
the famous locust flood every seven years, unexpected starting and spreading

Fractals and their Applications in Computer Graphics

211
A
X
1.0 -)
0.5}
r
ry rz rsry... :

Figure 3. The bifurcation diagram for logistic equation.

a

b

Figure 4. a) Lorentz attractor; b) Hénon attractor

of diseases, but it also describes fluctuation of the money value on the market,
where chaos means the economical breakdown.

In 1962., Edward Lorenz made a mathematical model of meteorological
variations of weather, being described by the set of differential equations

(2) () =aly—2), y'(1)=be— gy—az, 2(t)=ay— ez,

212 Ljubisa M. Kocié¢

in time domain. It comes out that the model gives good results, but it is
very sensitive on initial conditions for some parameter values. It implies its
sensitivity

on the error which is accumulated during the numerical integration process.
The exact solution of (2) is a trajectory in R* which has very complicated
form. (Forits XY-projection, see Figure 4-a). If converging, the numerical
solution approaches (in the Hausdorff metric) this trajectory, the reason led
Lorenz in name il strange attractor. In 1963., Michelle Hénon, a French
astronomer, used Poincaré’s ideas and include chaos in mechanical model of
stars motion. This helped him to overcome a many years standstill in the
problem, caused by the classical newtonian approach. The Hénon model can
be reduced to the system of difference equations

5 ’
gt = | —0%5 + 9 5 Yl = Py 5

whose attractor, for &« = 1.4 and 3 = 0.3 has a remarkable self—similar "3-2-1
pattern’ structure (Figure 4-b).

2. Deterministic fractals

Two important observations lead to the fractal geometry.

19 The Nature is permeated with something that scientists call deterniin-
istic chaos. This is the common name of the behaviour of the huge number
of fairly simple physical systems that are governed by deterministic law. but.
in spite of this, they behave unpredictably.

2° There is a hierarchical structure in the Universe. Details resembles to
the whole: it can be easily noticed in forms of crystals and plants, in the
relief of Earth surface, in the structure of stellar clusters and in variation of
market prices.

During sixties, the physics of chaos becomes more and more attractive
field. The remarkable oscillatory chemical reaction of Belousov-Zabotinski is
explained by using chaos. It was discovered that there are three ’scenarios’
for a system to pass to chaos. These types can be described by purely
geometrical language, depending on the type of bifurcation of dynamical
system.

In seventies, Benoit Mandelbrot from IBM-a, made, by the help of com-
puter, first fractal images. These are graphical “portraits’ of dynamics of
simple mappings with astonishing degree of disorder, but this disorder was
systematic and unusually complex. The most popular among these pictures
is probably the Mandelbrot set (Figure 5). It represents the dynamical chart
of mapping = — 224", = € C, for fixed value of complex constant C'. Orbits
are given by the sequence {z,}, which is the solution of difference equation

Fractals and their Applications in Computer Graphics 213

Figure 5. The Mandelbrot set.

Znt1 = 22 +C , 25 = 0. For a given value (', the behaviour of sequernce
{z.} has been examined. If it diverges. the point (' in the complex plane
are ‘painted’ in, for ex., black color. If converges, it will be painted in some
lighter color, as lighter as faster the convergence is (in Fig. 5, this is white).
The Mandelbrot set has an important role in fractal geometry, as for ex.,
circle in Euclid’s geometry, and it is studied out exhaustively [5].

Mandelbrot coined the word "fractal” from lat. fractus which means a
stone, broken and having irregular form. In collaboration with other scien-
tists, he studies a large variety of phenomena being connected with fractals:
stochastic form of a coastline and its relationship with Brownian motion,
furbulence in fluids, statistical distribution of telephone calls, Nile flood-
ings, branching neurons in the neural tissue etc. By the way, Mandelbrot
noticed that fractal images possess aesthetical values.

In 1982. the fundamental Mandelbrot book [22] appeared. The new disci-
pline was born. It includes fractal geometry as its most important part. After
the book has been issued, the interest on fractal exploded. Many definitions
of fractal sets and their dimensions appeared ([5],[7],[8], [11],[13],[15],[30]).

In this section, a large class of fractal sets will be introduced. This very
class has application in computer graphics in modeling natural phenomena.

The notation (X, d) throughout the text will denote the complete metric
space. Also, H(X) will denote the space whose points are compact subsets

of X.

Definition 1. A map /' : X — X of a metric space (X, d) is a Lipschitz map
if there is a number o such that d(F(z), F(y)) < ad(x,y), for all 2,y € X.

214 Ljubisa M. Kocié¢

The least such number, s(/') = min{e} is the Lipschitz constant of F. If
s(1) < 1 then F'is called a contraction.

Definition 2. Let ‘o’ be a usual composition of mappings. Then, F°"

denotes n-th iteration of a mapping I, i.e.

Fon —]*-‘(Fo(nkl}) . F] = F.

Theorem 1 (Contraction principle). If F is a contraction X — X, then
the sequence {n — F°"(x)}r2 converges to a fized point a € X of I'. The
Stzed point is unique. Moreover, if s 1s the Lipschitz constant of F, then

n

d(F°"(z),a) € 1 d(F(z),z) .

-8
Proof. 'or the proof, see any textbook in functional analysis. O

Definition 3. For any # € X and B € H(X), the distance from the point
z to the set B is

d(z,B) = ?élg{d(:zr,b)} .

Definition 4. For any A, B € H(X), the distance from A to B is

p(A,B) = Ii_lét/};({d(:l:. B)} .

It is easy to see that p is not symmetric, i.e. p(A, B) # p(B, A), so p does
not provide a metric on H(X).

Definition 5. For any A, B € H(X), the Hausdorff distance between A and
B (induced by the metric d) is

h(A, B) = max{p(A, B).p(B,A)} .

Theorem 2. The Hausdorff distance I is a metric on the space H(X). The
space (H(X).h) s a complete metric space.

Proof. See [1]. O
Definition 6. A (hyperbolic) function system (IFS)is a set § = {X; f;} 1

=12
where f; is a contraction of (X, d) into itself. If s; is a Lipschitz constant for

fi, then s = max;{s;} is the Lipschitz contractive constant for the IFS.

Fractals and their Applications in Computer Graphics 215

Theorem 3 (Hutchinson). Let S, be an IES, with contractive constant
s.For A € H(X), define F(A) = Ui, fi(A). Then,

h{E(A), F(B)} < sh(A, B) . A, BeH(X),

Proof. See [17]. O

Definition 7. A set A € H(X) is an attractor of IFS T T T
if F(A)= A. Sometimes attractors are called deterministic fractals.

Theorem 4 (Hutchinson). There is a unique closed bounded attractor A
for 5. Moreover, if B is any set from H(X), then

A= lim F°"R .

= (3

Proof. See [17]. O

3. Algorithms, affine IFS and Bernstein polynomials

The fractal geometry is a discipline of computer ages. Without computers,
exploration of fractal sets would not be possible. For the mutual benefit,
fractals contribute in picture synthesis as an mighty tool. There are many
algorithms for computing and visualizing fractals, but all are variations of
two basic ones:

a) Hutchinson's algorithm [10]. This algorithm is based on Theorem 4. [t
starts from an initial set 4 € R? and transforms by the IFS recursively until
graphical details become smaller than a pixel. This algorithm is also known
as deterministic algorith.

b) Algorithm of Barnsley and Demko (random algorithm [1],[2],[3]). It
uses a positive sequence {p;}", of probabilities so that > pi = 1, where p;
is probability of application of contraction fi in given iteration. Choose a
point wg € X and then, for n = 1,2,... s, calculate

Iy = .l'?'("""n,—]) s

where index 7 is chosen randomly from {1,2,...,m} with probability .
This procedure forms the sequence {x,, n = 0, I....} € X which approx-
imates the attractor A of IFS. There are no precise rules for choosing the
probabilities p;, which allows flexibility in choosing the sequence {p;} which
may be useful in modeling, as it will be shown in Section 4.

216 Ljubisa M. Kocié

S
h

Figure 6. Four iterations of Hutchinson algorithm: Sierpinski gas-
ket

An important class of deterministic fractals is defined by the IFS {R*; ¢},
(Fuclidean metric), when ¢; are affine contractions, i.e.

(3) pi(x) = [ff_ f}f]ﬂ [f] ,

- .

where x = [z yl" c R2, and a;,b;, ¢;, di, €, fi are real constants, chosen so
that ¢, is a contraction. In this case, the probabilities p; in Barnsley-Demko’s
algorithm can be calculated as

D,
D = Sm
Zj:l Df

where D; = |aze; — bid;| is the determinant of the matrix in (3).

It is hardly understandable how many different forms can be produced by
an affine IFS. Let us see some examples.

|. Sierpinski gasket. It is a "triangular extension’ of Cantor set defined
by the IFS {R2: ¢y, P2, P35}, where a; = d; = 0.5,b; = 0,4 = 1,23, 64 =
e3=05c=cg=a=f=f=06e=025Ff= V3/4. Applying
Hutchinson algorithm on the initial set—the unit square (leftmost in Figure
6), an approximation of the attractor is obtained through seven iterations
(rightmost in Fig. 6). Figure 6 also shows third and fifth iteration. The same
result will be obtained if any bounded initial set is taken. [t is interesting that
{he Pascal triangle of binomial coefficients has fractal structure of Sierpinski
triangle [31].

2. Takagi function. This is yet another fractal function that fits to the
line of Weierstrass and von Koch construction. It was published in 1903 by
Teiji Takagi [28]. It can be described by the affine IFS (R?: 1, ¢2) so that

Fractals and their Applications in Computer Graphics 217
A Y
PR A
\
/
|JI
‘f
a)
c)
Figure 7. a) Takagi function; b) Sierpinski carpet; ¢) Barnsley
fern; d) The dragon-like attractor
¢ and ¢y are given by @y = a; = ¢) = —cy = dy = dy = €3 = f5 = 0.5,

by = by = e = fi = 0 with probabilities p; = py = 0.5. The attractor,
obtained by Barusley-Demko algorithm is shown in Figure 7-a.

3. Sierpinski carpet. Yet another two-dimensional variation on Cantor
theme. It is defined in R* by eight affine transformations with coefficients:
G =a3=ag=a3 = by =by=by=-br=c3=-c4=—-c5 =c¢cr=dy =
d3=ds=dg=er=es=c=fr=fs=fr=1/3,es=eg=fa=f3 =
2/3, ez = fy = 1. Other entries are zero. The attractor is rendered by the
random algorithm (Fig. 7-b).

4. Barnsley fern. An interesting fern-like attractor (Fig. 7-¢) is found by
M. Barnsley [1]. Four affine contractions are given by the coefficients

1) b c d € f P
0.0 0.0 0 0.16 0.0 0.0 0.01
0.85 0.04 —0.04 0.85 0.0 1.6 0.85
0.2 —0.26 0.23 0.22 0.0 1.6 0.07

—0.15 0.28 0.26 0.24 0.0 044 0.07

The attractor, produced by random algorithm is shown in Figure 7-c.
5. Dragon. The dragon-like set (Iig. 7-d) is defined by IFS data

218 Ljubisa M. Kocié

¢

Figure 8. Wind in fractal plants: the parametric IF5

I b c d e f p
0.824074 0.281482 —0.212346 0.864198 —1.882290 —0.110607 0.787473
0.088272 0.520988 —0.463889 —0.377778 0.785360 8.095795 0.212527

[t is of special importance to introduce one or several parameters into
[FS. so that the form of attractor set depends on them. Parameters should
be incorporated in such a way that affine mappings in IFS maintain their
contractive properties for a whole range of parameter changing. Actually,
the following theorem takes place.

Theorem 4 (Barnsley). Let (X,d) be a metric space, and {X; fi,. .. JIn}
be a hyperbolic IFS of contractivity s. Let [y depend continuously on a
parameter p € P, where P is a compact metric space. Then, the attractor
A(p) € H(X) depends continuously on p € P, with respeet to the Hausdorff
metrie hid).

Proof. See [1]. O

This theorem provides a way of controlling the shape of IF5 in continuous
way. It can be used very effectively in modeling motion of fractal objects. For
example, the fern swung by the wind may be obtained by simple changing
a parameter in IFS-fern data so to get a plant without wind (Figure 8-a),
under breeze (Fig. 8-b) and stronger wind (Fig. 8-c). Such effects are
especially important in animation.

An elegant way to introduce parameters in iterated function systems is to
put one-variable real functions as IFS coefficients in (3). Author made some
experiments using cubic Bernstein polynomials

1

(4) Bi(t) = (3,)#(1 - 1%, te0, 1,

Fractals and their Applications in Computer Graphics 219

the choice approved by the known property of the Bernstein polynomials to
be bounded over the unit interval, i.e. 0 < Bi(1) < 1. Further, numerical

computation of Bernstein polynomials is fast enough through de Casteljau

algorithm [20]. It is considered an IFS with ouly two mappings {R*; ¢y, ¢, },
with two parameters, #; and /. In the tables below the coefficients of four
different 1FS’s are given.

IFs1

[0 b c d e F
bo(ty) —b (ty) ha(ty) bo(t1) 0.0 0.35
bg(fg) bi(ts) —bg(lg) bo(ta) 0.6 0.1

IFS2

113 h o} i (8
bo(ty) —b (1) bo(ta) bo(ty) 0.0 0.45
bo(ts) byi(ty) —ha(t)) bo(ts) 0.6 0.1

IES3

a b c o 3 I
bo(ty) —ba(ty) ho(ts) bo(t1) 0.5 0.0
bo(ta) Dbi(ty) —by(ty) bo(tz2) 2.5 1.5

1754
a b C d r I
bo(tt) —bi(ty) ba(ty) bolty) 0.0 055
—bp(tg) by (ta) —ﬁg(f‘z) ba(tz) 0.4 0.1

As it can be seen from Figure 9, in spite of using only two contractions.
exciting results are obtained. For the attractor e ather’(a) it was used 1I°S1,
with parameterst; = 0.1,4, = 0.22. The ‘cloud formation’ (b) uses IFS2 with
ty = 0.18.1; = 0.22; Next three attractors are produced using 1FS3: ‘star’
(c) with £, = 0.042, ¢, = 0.75. "Nautilus spiral” (d) with ¢; = 0.05.t, = 0.45
and “sunflower seed’ (e) with 1 = 0.033. 6, = 0.52. Finally, a fir twig’ () is
formed by IFS4 with #; = 0.09.1, = 0.18.

Continuous variation of parameters ¢; and £ will reflect in continuous
changing of the forms of attractors. In this way. it is possible to animate the
sequence when the Nautilus spiral” transforms into *sunflower’ by running
t; from 0.05 to 0.033, and £, from 0.45 to 0.52.

4. Modeling of natural phenomena

Describing a way of reproducing the wind, and a variety of natural forms
by using parametric II'S, opens the question of using fractal sets in modeling

220 Ljubisa M. Koci¢

FIGURE 9. SIX ATTRACTORS GENERATED BY TWO-PARAMETER
IFS CONTAINING BERNSTEIN POLYNOMIALS

wider class of forms and processes in the Universe. These forms are not easy
to measure with classical Euclidean tools. So, a more sophisticated technique
is developed. One of the important numbers associated with fractals is their
Hausdorff dimension. The meaning of dimension is the "density” with which
ihe fractal set occupies the metric space in which it lies. It can be used
for comparing fractals. It is an important parameter for modeling natural

objects.
Definition 8. Let K € H(X) be a nonempty set and (X,d) bhe a metric
space. The diameter of K is

|K| = sup {d(=,y)} .
z,yeK

Definition 9. Let K = {K;}1% be a collection of sets in H(X) such that

0< |h;| <e, foreach i. If A C_Ul-I\'.,-, then A is e-cover of A.

Definition 10. Let m be a positive integer and let A be a bounded subset
of the metric space (R™,d), where d is Euclidean metric. The function
p+— (A, p) defined as

+ 00

WA, p)= sup{inf{z ||V
eot i=0

Fractals and their Applications in Computer Graphics 221

where infinum is taken over all /covers of A, is called Hausdorff p-dimen-
stonal measure of A.

Definition 11. Let A be a bounded subset of the metric space (R" d).
Then the real number Dimy(A) defined as

Dimp(A) = inf {p}.

wiAp)=0

is Hausdorff dimension of A. It is also called fTausdor(f- Besicoviteh or geo-
metrical dimension of A.

Theorem 5. Let A be a bounded subsel of the space (R™,d). Dimpy(A) is
a unique real nunmber which satisfies 0 < Dimg(A) < m.

Proof. See [1]. O

Hausdorff dimension of a typical fractal set may not be an integer nunber.
This is 0.6309... for Cantor set, 1.2619... for von Koch curve. 1.5849... for
Sierpinski gasket, 1.8927... for Sierpinski carpet or 2 for Peano curve. Fractal
dimension may characterize type of relief and roughness of terrain or physical
process. Hausdorff dimension of the coastline of Britain is = 1.2 [18], while it
is & 1.5 for jet flame laboratory data [1]. It is possible to determine Hausdorff
dimension of the chain of human DNA from genetic code [4], or for fractured
metal surfaces [9]. Maybe painters or sculptors can be characterized by
Hausdorff dimension of their masterpieces?

Practical determination of fractal dimension is not an easy task. It may
depend on scaling. Mandelbrot gives an interesting example in [22] trying
to answer to the question: "What is the dimension of a ball of yarn?’ From
a great distance it is effectively a point, and appears zero dimensional; on
approach it becomes a three-dimensional solid; moving closer discern the
one-dimensional threads, which then become three dimensional again; the
threads are again composed of fibers, etc. These different scaling regimes
would produce rather extreme oscillations in a numerical estimate of dimen-
sion. Typically, when we are computing dimension we are interested in a
given scaling range, but it may be very difficult to discern.

But there is a class of affine IFS whose attractors’ dimension can be
calculated without much trouble.

Definition 12. If the hyperbolic IFS {R™;¢; i =1,... .] N} has the follow-
ing properties:

a)¢; . i=1,... N are similitudes;

b) (@i(BYN ¢;(B)) = 0. for i # j, and any B c R™,
then attractor A is self-similar.

222 Ljubisa M. Kocié¢

Figure 10. A self-similar set. Expanded area contains set that is
identical to the whole set

Theorem 6. Let A be self-similar attractor, generated by a hyperbolic IFS
with s; being a contractivity factor of ¢;. Then D = Dimpy(A) is the unique
solution of

P =1, Delo,m].

Proof. See [1]. O

An example of self-similar fractal set is given in Figure 10. It means that
a small portion of the set is identical to the whole set.

The property of self-similarity is important for modeling natural objects.
Namely, natural scenes are organized in hierarchical structures. For example
a forest is made of trees; a tree is a collection of boughs and limbs along a
trunk; on each branch there are clusters of leaves; a leaf is filled with veins
and covered with hairs. Similar hierarchy one can find in the structure of
rocks. mountains, live forms... In every case, the object is built up from
numerous near repetitions of some smaller structure. Although the natural
entities have more complex kind of self-similarity, so called statistical self-
similarity, the iterated function systems with similitudes
can be used for modeling approximations of such entities. Also, one can
use some fractal set representing dynamics of some simple mapping, like the
fractal set known as Barnsley-3m, being displayed in the left part of Figure
[1. If specify the domain of mapping to be a rectangle denoted by "A’,
the dynamical mapping will produce a magnified picture that resembles the
‘wave’ (right part of Fig. 11, above). Further multiplication reveals sell—

Fractals and their Applications in Computer Graphics 223

Figure 11. Fractal *Barnsley-3m’ and repeated magnification of
its detail

similar structure of this fractal (Fig. 11, below). The fractal set ‘Barnsley-
3m’ obtained by Barnsley [1] by applying the same principle as in the case
of Mandelbrot set to more general functions of two complex variables. This
set has connection with polarized-light microphotograph of some minerals.
[t reveals patterns that are less organic and more crystalline than those of
the Mandelbrot and Julia sets. The dynamical system for *Barnsley-3m’ is
given by

Re? z, — I'm? zw — 1+2(2Rez, ITmizy) . Bez, =0,

e Re%z, —Im?z, — 1+ ARe zn + U(2Hez Imz, +ARe 2,,) , Rez, <0 ,

where A is a real parameter.

Besides self-similarity, the simplicity of [FS is the next attractive property
of modeling natural scenes by fractals. It results in a tremendous compres-
sion of the data. Instead of keeping the whole picture in the computer’s
memory one can save only IF'S code which gives compression ratio up to one
hundred! To illustrate this. let us compare byte-length of an IFS file with
that of the pex format of the corresponding attractor picture: Barunsley fern
123 : 11732; von Koch curve 270 - 14368; Peano curve 586 : 25884 ete. For
the bmp format the compression ratio is even larger.

Look at the fractal "Barnsley-3m’ from Figure 11. Computer—aided mag-
nification of some part of the fractal set can be performed in two ways:

L. By some graphical software; The framed detail B is magnified using
standard graphical package (for. ex. Corel-Draw). The result is shown in

o
[

Ljubisa M. Kocié

B' BH

Figure 12. Magnification with or without loosing of details.

Fieure 12, frame B'. Repeated magnification will cause further loosing of
graphical information (frame B").

2. By fractal software; If the same rule is used in the window B of
Barnsleydm the picture framed by B in Figure 12 is produced. Repeated
magnification of the frame By is shown as the rightmost below frame. Fractal
images can be magnified endlessly, without loosing of details.

So. fractal attractors are convenient for modeling different natural forms.
[s it important to know how one can define an IFS to produce exactly the
image that he wants? The answer is in the collage theorem:

Theorem 7 (Barnsley). Let L be a nonempty compact subset of X, and

Fractals and their Applications in Computer Grraphics 225

Figure 13. Fractals as natural forms: a leaf, a coral branch, rocks
formation, and a tree crown

£ 2 0 be given. Choose an IFS {X;¢o,...,¢n} with contractivity factor
0 < s <1, sothat h(L, (L)) < € , where F'(L) = Uf\;l (L), and h(-,-)
is Hausdorff metric. Then, h(L,A) < 1= Where A is the attractor of the
IFS.

Proof. See [1],[2] or [3]. O

The value of this theorem is in its practical side. It gives the procedure
of constructing IFS, once the fractal attractor is given. Take, for example
the leaf form in Figure 13. This is a subset in (R? d). Cover this figure
by four smaller copies of this subset, as in making collage. Pieces do not fit
quite perfect — some holes and overlappings will occur. These four copies
are obtained by performing four affine contractions in R?: ¢y, ¢a, ¢3 and ¢y.
This IFS is being used in generating the ’leaf” in Figure 13 by the random
algorithm. The ’holes’ in the leaf structure appear due to the holes in the
collage. But, it is clear that the leaf form is obtained.

In the similar way the "coral branch’, ’ formation of rocks’ or 'tree crown’
are obtained (Fig. 13).

Now, let say something about probabilities p; that appear in Barnsley—
Demko’s random algorithm. Take the IFS {R?; ¢y, ¢, ¢, 4} described
above. The leaf image in Figure 13 is produced by the random algorithm

=

Kocié

26 Ljubisa M.

) b) c) d)

[licure 14. Leaves with different distribution of measure

Figure 15. Waves from affine IF5

with uniformly distributed probabilities (0.25,0.25,0.25,0.25). If this vec-
tor changes into (0.36,0.16,0.34,0.34) the leaf a) in Figure 14 is obtained.
Slight variation: (0.46,0.16,0.34,0.04) brings in an effect as though the leaf
was lighted from the left (Fig. 14-b). The choice (0.16,0.16,0.34, 0.34) will
result into more rounded leaf (Fig. 14-c¢), while (0.16,0.56,0.04,0.04) gives

a fir—tree (Fig. 14-d).

Phenomena in water, wrinkled surface, turbulences and streams can be
nicely modeled by fractal sets. The magnifying details of Barnsley3m fractal

Fractals and their Applications in Computer Graphics 22

Figure 16. Modeling process of cell division

Figure 17. Crystal growth and a plasmatic cloud

from Figure 11 are good background for modeling waves. But they can be
made using a simple affine IFS obtained by varying Takagi function (Fig
7-a). This 'wave’ together with a magnification is shown in Figure 15.

The fractal, known from dynamical systems as Mandellambda, can be of
help in modeling a biological process of cell division, Figure 16 (Stages are
marked by numbers).

An important type of fractals are obtained by the physical processes
known as diffusion—limited aggregation (DLA) [23]. This process is mod-
eled by the use of random generator. Fractal forms obtained resembles tree
root, and stand for models of growth of crystal structures (Figure 17).

228 [jubisa M. Koci¢

If some fractal surface is intersected with a plane, a fractal level-line is
obtained. These level-lines can be used to model clouds of different parti-
cles, which includes plasmatic cloud or intergalactic dust (see the rightmost
illustration in Figure 17).

A large class of self-similar fractals are obtained by varying Peano and
von Koch curves. The Hilbert curve , already mentioned in Section 1, has
important application for digital halftoning. It has geometric dimension
Dimy = 2, the same as Peano curve, which means that it fills the square
in the plane. An approximation of Hilbert curve is shown in Figure 18-a.
Actually, all space filling curves are mappings ¢ : I = [0, 1] — R?. The graph
of ¢ covers the square I?, so that it "visits’ all points of the square in ordered
way if parameter ¢t runs from 0 to 1. If ¢, : I — I? is an approximation
of the space filling curve ¢. Subdivision of the interval I into n subintervals
I,.....I, will result in dividing square I% into n subregions Ry,..., R,. The
size of each subregion R; varies proportionally with the length of the corre-
sponding subinterval I;. The curve ¢, visits all subregions R;. actually each
point of it. The restriction ¢; : I; — R, is itself a space filling curve due to
the self-similar property. Such restrictions will be used for selecting clusters
of pixels (so called dithering) which results in different halftoning effects.
This method of dithering using space filling fractal curves has an advantage
over standard scan-image methods. Actually, it minimizes the grid effect,
which results in better shadow textures [29]. Many variations of space filling
curves include curves of Sierpinski [13], Lebesgue and Schoenberg [27] and
others [21]. Two curves that fill space in different ways are shown in Figure
18-b and c.

This type of fractal curves inspired Prusinkiewitz and Lindenmayer to
introduce L-systems for modeling plants and trees [25]. The central idea
is that. in all cases, plants are defined by a small number of rules, applied
repetitively to produce complex structures. L-system is a graph—-rewriting
mechanism, which operates on axial trees, and operates in parallel. The
result is a fractal on graph alias graftel. Authors of [26] presented a model
of tree synthesis which integrates botanical knowledge of the architecture of
the trees.

5. Conclusion

This paper offers a short information on fractal geometry and its appli-
cation in computer graphics and geometric modeling. This geometrz was
born as a child of computer era, trying to explain some unsolved problems
in mathematics, physics and related sciences. A great insight was given by
the books of Mandelbrot [22] and Barnsley [1]. Fractals are sets having, in
general, very complicated structure. The shortest definition of the class of

Fractals and their Applications in Computer Graphics 229

25
.
s
5 2a 0
=
'%"‘%} ¢

S
s
wlisspgls

d BB

i s
¥ ﬁ ﬁﬂp RE A L u.“E
i
PSRy GRSy UL seg GUGTses q e
>,¢;s.ms§r§.m<>nis.hﬁa,@ﬁ¢;:zﬂ
b bbb ehy

Figure 18. a) The Hilbert curve; b) and ¢) Two variations on
Peano theme

so called deterministic fractals is that this is a subset of a compact metric
space being invariant under the collection of contractive mappings. A simple
but important example of such contractions are affine functions that map
a plane into itself. This leads to the most important feature of determinis-
tic fractals: self-similarity. Using this property, one can use fractal sets to
model many natural forms having hierarchical self-similar structure: plants,
rocks, water dynamics. clouds, foam, neural cells etc.

Text is illustrated with examples of fractal sets, together with some appli-
cations. All pictures, except Fig. 17, are produced by the software created

by the author. Figure 17 was rendered by using the software Fractint by
Bert Tyler.

References

[1] M. F. BARNSLEY, Fractals Everywhere, Academic Press, 1988,

[2] M. F. BARNSLEY, A. Jacquin, F. MavasseneT, L. REUTER, A. D. SLoaN, Har-
nessing Chaos for Image Synthesis, Comput. Graph. 22 (1988), 131-140.

[3] M. F. BARNSLEY, Lecture Notes on Iterated Function Systems, Chaos and Fractals,
The Mathematics Behind the Computer Graphics (R. Devaney and L. Keen, eds.),
Amer. Math. Soc., 1989, pp. 127-144.

(4] €. L. BERTHELSEN, J. A. Grazier, M. H. Skounick, Global fractal dimension of
human DNA sequences ireated as pseudorandom walks, Phys, Rew. A 45 (1992),
8902-8913.

(5] B. BranNER, The Mandelbrot Set, Chaos and Fractals. The Mathematics Behind
the Computer Graphics (R. Devaney and L. Keen, eds.), Amer. Math. Soc., 1989,
pp. 75-105.

230

(6]

[10]
(1]

(12]

[29)

[30]

Ljubisa M. Kocic¢

S. D. Casey, N. F. REINGoOLD, Self-Similar Fractal Sets: Theory and Procedure,
IEEE CG&A 14 (1994), 73-82.

A. 1. CoLg, Compaction Techniques for Raster Scan (raphics using Space-filling
Curves, Computer J. 30 (1987), 87-92.

R. M. CorvLEss, Continued Fractions and Chaos, Amer. Math. Monthly 99 (1992),
203-215.

R. H. DauskarDT, F'. HAUBENSAK, R. O. RITCHIE, On the Interpretation of the
Fractal Character of fracture surfaces, Acta metall. 38 (1990), 143-159.

S. DuBuc, A. ELQoRTOBI, Approrimation of fractal sets, J. Comput. Appl. Math.
29 (1990), T9-89.

S, EuBank, D. FARMER, An Introduction to Chaos and Randomness, Lectures in
Complex Systems, SF1 Studies in the Sciences of Complexity (E. Jean, eds.), Addison-
Wesley, 1990, pp. 75-190.

B. R. GELBaum, J. M. H. OLMSTED, Counterexamples in Analysis, Mir, Moskva,
1967. (Russian)

J. G, GrirrrTas, Table-driven algorithms for generating space—filling curves, Coput.
Aided Design 17 (1985), 37-41.

J. HargrisoN, Continued Fractals and the Seifert Conjecture, Bull. Amer. Math. Soc.
13 (1985), 147-153.

J. Hargrison, Chaos and Fractals. The Mathematics Behind the Computer Graphics
(R. Devaney and L. Keen, eds.), Amer. Math. Soc., 1989, pp. 107-126.

D. HiLBERT, Uber stetige Abbildung einer Linie auf ein Flichenstiick, Math. Annl.
38 (1891), 459-468.

J. E. HurcHINnsoN, Fractals and Self Simalarity, Indian. J. Math 30 (1981), 713-747.
J. KaprPRAFF, The Geometry of Coastlines: A Study in Fractals, Comput. Math.
Appl. 12B (1986), 655-671.

H. Von KocH, Sur une courbe continue sans tangente obtenue par une construction
geométrique éldmentaire, Ark. Mat. Astr. Fys. 1 (1904), 681-704.

LI. M. Kocic, Affine shape control of cubies, PU.M.A. 3 (1992), 207-229.

T. Lance, B. THoMAS, Ares with Positive Measure and Space-Filling Curve, Amer.
Math. Monthly 98 (1991), 124-127.

B. ManpeLBroT, The fractal geometry of nature, Freeman, San Francisco, 1982.
P. MeakiN, J. FEDER, T. Jossana, Radially biased diffusion-limited aggregation,
Physical Review A (1991), 1952-1964.

(i. PEANO, Sur une courbe, qui remplit toute une aire plane, Math. Annl. 36 (1980),
157-160.

P. PRUSINKIEWICZ, A. LINDENMAYER, J. HANAN, Developmental Models of Herba-
ceous Plants for Computer Imagery Purposes, Computer Graph. 22 (1988), 141-150.
P. DE ReFrFYE, C. EDELIN, J. FRANgON, M. JAEGER, C. PUECH, Plant Models
Faithful to Botanical Structure and Development, Computer Graph. 22 (1988), 151-
158.

H. Sacan, Approzimating Polygons for Lebesgue’s and Schoenberg’s Space Filling
Curves, Amer. Math. Monthly 93, 361-368.

T. Taxacl, A sunple example of the continuous function without derivative, Proc.
Phys. Math. Soc. Japan 1 (1903), 176-17T.

L. VeLito, J. M. Gomes, Digital Halftoning with Space Filling Curves, Computer
Giraph. 25 (1991), 81-90.

M. T. Weiss, An Early Introduction to Dynamics, Amer. Math. Monthly 98 (1991),
635-641.

Virtual Library of Faculty of Mathematics - University of Belgrade

elibrary.matf.bg.ac.rs

Fractals and their Applications in Computer Graphics 231

[31] 8. WoLrraM, (Geometry of Binomial Coefficients. Amer. Math. Monthly 91 (1984),
566-570.

DEPARTMENT OF MATHEMATICS, FACULTY oF ELECTRONIC ENGINEERING, P.O.Box
73, 18000 Ni15

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jjo Areuqi] [enlliA

FILOMAT (Nis) 9:2(1995), 233242

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

LINES OF CURVATURE OF FREE FORM
SURFACES TRACING

Dusan M. Milosevié and Ljubisa M. Kocié

ABSTRACT. An level-line tracing algorithm, recently developed by the authors is used
for Bézier surface interrogation. Namely, for Bézier triangular patches the algorithm is
modified so as to trace the lines of constant Gaussian and mean curvature. The map of
these lines can be used for better understanding the shape of these patches. The efficacy
of the method s illustrated through several examples.

1. Introduction

The aim of this paper is to obtain curvature level sets of Bernstein-Bézier
triangle fragment. Particularly, it gives level sets of Gaussian and mean
curvature. This problem is solved by using the algorithm for implicit function
graph tracing. Since the, analytic form for Gaussian and mean curvature
involve derivatives of two degree, it is necessary to have at least thread order
Bézier’s fragment.

As far as the applications is concerning, it is enough to mention Com-
puter Aided Geometric Design and Data Visualization. In both topics, the
sets of curvature level sets is applied for Bézier surface interrogation. From
the curvature level sets one can easily seen the monotonicity, convexity, the
existence of saddle points, locations of extrema and gradient intensity of
curvature lines. This means having more information about surfaces them
self. For example zero Gaussian curvature line share surface on three parts:
elliptic (greater than zero) , hyperbolic (smaller) and parabolic (equal). The
points of extrema of mean curvature is very important for example in indus-
try because this point of surface is critical in mean of tension.

1991 Mathematics Subject Classification. Primary 65D17.
This work was supported in part by the Science Fund of Serbia under grant #0401F.

233

234 Dusan M. Milosevi¢ and Ljubisa M. Kocié

2. Gaussian end mean curvature

For parametric defined surfaces
F = &)= | y(uw) |5 @= [“] €e,b]=T CR?,

where z,y,z are differentiable functions and 7' = [a,b] is triangle in u,v
plane, Gaussian (K') and mean curvature (() are defined as

LN — M? _NE-2MF 4 LG

. Y=Te-r YT Ta@e-m

where L, M ,N ,FE ,F and G fit standard Gauss notation

L =L{u0) =17 %y M= M{u)=08:%,, N=N{uv)=1q- Zy
E=FE(u,v)=8y %y, F=Flup)=2,:%,, G=Gluyv)=2%,-5,.

Bézier surfaces are defined implicitly B(z,y) = 0. To use (1) it was
necessary to express Bézier surfaces in parametric form

U
&= I(u,v)= v : (u,v) € T C R?,
B(u,v)

which makes

E(u,v) =%, -, =1+ 22
(2) F(’U.,‘U') = Fy » By = 2y

Glu,v) =&, - %, = 1+ 2.

The normal vector 7 is

-
. Ta KT 1
?L = — — == 2 B >
||Zu X Zo| N 1o &5+ 25
and because of that
Zuu Zyu Zyu

B) L= —Fm—me——, M= , N=—————.
V1422 + 22 1+ 22422 V1t 22+ 22

Lines of curvature of free form surfaces tracing 235

Using (2), (3) and equalities v = 2z and » = y the analytic form for
Gaussian and mean curvature for Bézier surfaces on triangular domain can
be obtained.

2
ARG — 2
- Srz UU i
I ¥

T2ty
_zyy(1 4 22) — 2259202y + 250(1 + 23)
- (L 428 + 28 P12 '

(4)

For finding m — th derivative of Bézier’s surface in [— th direction, the
following formula [1] is used:

. ()’” n!
'l' .f P?L m b??l I
(J) d.fm (f) ['N« o ??L)! . Z 7k () k()
i+j+hk=m
For m = 1 one obtains from (5)
d ﬂ.
Bu(fit)=n Y PN ObL(0).
i+j+k=1

For [= (—1,1,0) (which specifies z-axis direction) this yields

= Bu(f.t) = n(F5ig" — Pig'),

while in y-axis direction [= (—1,0, 1),
a L n—
B.(f,t) = n(Fgoi' = Plg’).
For m = 2 (5) becomes
5?
(‘)?Bn(f.[): n(n—1) Z P:;kz 1J.,;‘(l,’)
i+jt+k=

By using this formula one can find

52 mn n n—2

@Bn{f,i):n(n)(P2002+PD°02_ P110)a

82 n— n— n—

WBH(}C’I‘) =n(n — 1)(P35" + Pogz” — 2P{g;"),
82 2 n 2

Faay Bn (1) =nln — NP +Fe" + P —APiG” + 257" —4Pj ™).

236 Dusan M. Milodevié¢ and Ljubisa M. Koci¢

3. Curvature level-set

Algorithm for tracing graph of a function given implicitly by flz,y)=0
in some domain is important and attractive problem. Many authors have
given important contribution to this problem (see references in [3]). Majority
of these methods make use of two stages.

I. Fixing seed points;
2. Tracing the curve.

Fixing seed points

In this stage, the seed points (starting points) are determined for each
branch of the curve. This can be done by solving the double sequence of
equations f(z;,y) =0, i=0,...,Nyand f(z,y;)=0, j=0,...,Ny where
z; and y; are uniformly distributed along the interval [a,b]. The density of
"hunting mesh” is controlled by the numbers N, and N,. It is recommended
to use a predictor-corrector method for solving of each equation above. First,
the coarse subdivision of an interval is performed to locate the root and then
an iterative method is applied (here modified Regula falsi method is used).

Tracing the curve

In this stage, starting from the seed points, the algorithm traces branches
of the curve until some of them leaves the domain 7', or until the branch
closes up to form a loop. Tracing of each branch is performed by joining the
sequence of points (z,¥;), ¢ = 0,...,m, where (z2q,yo) is the seed point for
the corresponding branch. The problem of finding next point on the curve
can be solved by using derivatives of f(z,y) or without that. If we choose
to use derivatives in tracing implicit graph function f(z,y) = 0, we must
calculate derivatives of (K) and (H) in (4). It mean that we must calculate
3—th derivatives of Bézier’s surfaces. It is possible to do provided that we
have at least 4—th order Béziers fragment.

a) Algorithms without derivatives

- Four-point algorithm

For each point (z,y), the next point in the sequence is calculated by
evaluating four neighbour points (z,y + h) and (z % h, y) and selecting this
one which minimize |f(z,%)|. In the case when the branch of the curve is
closed loop, lying entirely in D, the terminating criteria employes closeness
to the starting point. So, each point in the sequence is tested whether or
not it is in the ey vicinity of the starting seed point. The accuracy may be
controlled by testing the inequality |f(z,y)| < € for each point. If it is not
satisfied, the step h is halving until it is.

Lines of curvature of free form surfaces tracing 237

- Eight-point algorithm
This algorithm is similar to the previous one, except that the function is

evaluated at eight points (2, y+ h),....(z+ h,y+h), and the next point is
choosing among them so that [f(z,y)| is minimal.

b) Algorithms with derivatives

- Algorithm with initial value problem solver

This stage is consist of M iterations to product the sequence {(zg, o),
-«os (zar,ym)}. Connecting these points results in a polygonal line being an
approximation of the implicit curve. Each point pi = (2;,7;) is tested for
being in €;-vicinity of a singular point i.e.

(6) |2 (@i yi)| + | Fy(ai, 1) < €1

The logical value of (6) is the main switch in this stage of the algorithm. If
it is true, i.e. if p; is close enough to the singularity, the next point p;y, =
(Ziy1,Yit1) calculates by linear extrapolation, i.e. p; = (pi_y + Pi+1)/2.
Of course, the case when the seed point Po = (Zo,1p) is also the singular
point has to be considered separately. Since the preceding point, say p_; is
missing, it is taken z_; = 29 £ h, yi_; = yo £ h where & > 0 is the given
step. The signs + should be chosen arbitrarily if py € intD. But, if pg € 0D
(the border of D), signs should be chosen so that p-1 € extD, which gives
p1 € intD.

If (6) is false, p;;; is found by two-stage predictor-corrector method.
Then, one solves
Fi(wi, yi)

(7) g+ = =, ylwo) = de,
Folzi,y:)

whenever
Fo(zi,ui) > Fo(zi, ui),
or
Fil@)
I ¥ — 01 = = 2y,
®) P) =)= 2o

otherwise. (Note that it can not be F!(z;,1) = 0 and Fileaas) = 0 at
the same time as the consequence of the singular point being far enough).
Equations (7) or (8) are solved by Euler method:

- FJ(:r‘i':yi)
5 = : »I] = ._‘S‘-]L-_‘v_’
Tit z; + Sph, Yi+1 Yi rLFé(Ii,'yi)

238 Dusan M. Milogevié¢ and Ljubisa M. Koci¢
where S, = sgn(z; — z;—1) when §; = |FL(zi,)| — |Fé(mi,yi)| < 0, and

Fy(zi, 4i)

i =Bk, g sy S AL
Yi+1 Yi+ Syfty Tig €T ylFé(mi,yi)

where S, = sgn(yi = Yi-1);
So, the point p;y1 is obtained and it is corrected by the Newton-Raphson
method,
F(zj,y;)
Vil =Y — 7o o v T+
! TOF(ziy)’

F(z;5.95)
Tjy1 =T; — m, Yi+1 = Y5 (6; = 0),

=z, (§; < 0),

until
|F(2j, ;)| < €.
This completed the algorithm.

Algorithm with initial value problem solver is better in aspect of accuracy
and speed (see [4]), but in the case of 3-th order Bézier path it is necessary
to use some of the previous algorithms.

4. Examples

The algorithm is tested through many examples and two of them will
be presented here. The arrangement of the control points of n-th order
Bernstein-Bézier polynomial is accepted to be

PnOO T POH(]

Foon
Fzample I. For the triangular patch given by the control points
0 0
1

9

o o o

the corresponding level-lines map is given in Figure 1.A (level-lines map
is obtain by using algorithm develop in [2]). Figures 1.B and Figure 1.C
presents the level-lines map of Gaussian and mean curvature respectively.

Lines of curvature of free form surfaces tracing 239

Figure 1.A

\

Figure 1.B

Ezample 2. For the control points

oo oo
o = o
oo

the level-lines map for the corresponding patch is given in Figure 2.A. As
in the previous example, the Gaussian and mean curvature are shown by
Figure 2.B. and 2.C respectively.

240 Dusan M. Milosevi¢ and Ljubisa M. Kocic

Figure 1.C

Figure 2.A.

Lines of curvature of free form surfaces tracing 241

Figure 2.B.

Figure 2.C.

242 Dugan M. MiloSevié and Ljubisa M. Koci¢

References

[1] G. FariN, Curves and Surfaces for Computer Aided Geometric Design., Academic
press, 1988.

[2] L. Koei¢, D. MILOSEVIC, On level sets of Bernstein-Bézier operators., Zbornik
radova Filozofskog fakulteta n Nisu, Serija Matematika 6 (1992), 19-25.

[3] LJ. Kocié, D. MiLoSEVIC, Numerical Characteristics of Algorithm for Implicit
Curve tracing, Facta Univ. Ser. Mathematics and Informatics 8 (1993), 97-109.

[4] D. Mmosevic, LIJ. Kocié, Comparison of some algorithms for implicit function
graph tracing., IX Conference on applied mathematics, Budva, 30 May — 1 Jun 1994,
(D. Herceg, Lj. Cvetkovié, eds.), Institut of Mathematics, Novi Sad, 1995, pp. 65-70.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRONIC ENGINEERING, P.O.Box
73, 18000 Ni1s

FILOMAT (Nis) 9:2(1995), 243-250

Filomat "94, Ni§, October 22-24, 1994
Geometry. Computer Sciences

MODELING OF RATIONAL CURVES
BY INTERPOLATION

Nenad V. Blagojevié and Ljubisa M. Kocié

ABSTRACT. The algorithm for modeling shapes with (n,n)-rational curves is proposed. It
is based on interpolation by rational functions using continued fraction numerical tech-
nique. The converse algorithm for transformation of rational curve into a parametric
continued fraction form is also given. The direct algorithm is illustrated through several
examples.

1. Introduction

The Bézier curve of degree n is defined by the control points Bg,..., B,
trough

Pa(t) =Y Bib?(t), te(o,1],
1=0

where b} (t) = (:.‘)t"(] — t)"~" are Bernstein basis polynomials. An example
of a third order Bézier curve is shown in Figure 1(a).

A natural generalization of this model is the rational Bézier curve (of
degree n) that, besides the control points By, ..., B, involves the weights
Wy, ..., Wy as shape parameters

: Y i Biroyd(t]
1 Rn L= T 3
(1) W= 5 @)

1991 Mathematics Subject Classification. Primary 65D05; Secondary 41A20.

Key words and phrases. modeling, rational curve, interpolation, continued fraction,
inverted differences.

This work was supported in part by the Science Fund of Serbia under grant #0401A.

te[0,1).

243

244 Nenad V. Blagojevi¢ and Ljubisa M. Kocié

= | P, =yl ¥
Pl(s [;’ 2 Po ///:’/,‘\\ ."/ 2%
= i /
N/ \\ O
/ f
/
a) \/ / b) \(/
P, \ /Py P, @y, f Py

Figure 1. Bézier curve (a) and rational Bézier curve (b)

If some weight is relatively large comparing to others, the corresponding
control point "pulls” the curve toward it. Figure 1(b) shows the rational
curve with wg = w3z — 1, w; = 3 and wy = 6.

The rational scheme reveals many useful properties. The most important
of them are:

- the possibility of exact modeling of conic sections;

- continuous changing of weights results in continuous adjustment of curve
form.

On the other hand, all good properties of the polynomial Bézier curves
maintains, except subdivision which can not be carried over without weights
being changed.

[t is customary in free form curve modeling to use some interpolation
model as an initiator. The Bézier curve modeling is preceded by the La-
grange or spline interpolation model. For the rational Bézier curve, it is rec-
ommendable to start with rational interpolant. The most natural approach
is to represent such (n,n)-rational interpolation curve via the Bernstein basis,
for each coordinate axis separately. For example for x-axis:

| _ S Bwibt (@)
) = S ewbi(a)

where the ordinates B; and weights w; are to be determined so that R,(z)
interpolates the data {(w{,yi)}?:o, ie.

(2) z € [0,1],

(3] Rn(wi) = Ui, ?::01'--11/1

with v chosen so that there are enough equations to determine B;, w; in (2),
with one arbitrary weight.

Modeling of rational curves by interpolation 245

A variant of this problem is considered by Pieg] [8], but for piecewise
cubic rational curve.

By introducing (3) in (2), the following linear system is obtained

bg(zo) -+ bi(zo) —wobP(zo) -+ —yob2(20)7 [Bowo Yobg (o)
bg(z1) -+ bp(x1) —wibP(z1) -+ —yib(zy) | [By vibg(z1)
bg(z,) --- b:i(m,,) —-yub7(2,) -+ <9 b ;) Wn yubi(z,)

Unfortunately, this system has no such nice behaviour as in the case of La-
grange interpolation (Vandermonde determinant # 0). Here, the singularity
can occur. Next, the interpolant may not exist in spite of regularity of the
system (see Mayers [6]).

In this paper only the case when interpolant exists is considered.

For interpolant construction, the inverted differences are used while the
interpolant has continued fraction form

Tr—Typ T —I1 T —Tp_q
(4) Ro(z)=co + .,
C + Co s Cy

or more conveniently

r—p T — I T — T,
(5) Rn(x): [('(]; 1) ey 3oy CVV]1
where
(6) € = P Toss o Bi)s 3= Bhs ena,

are inverted differences given by

(7)
T — Ig
Bz0) = w0, Glroz1) = T,
Ty — Ty . .
H(zoy.-02;) = - b= A8y e

GlBy - - Bty By} — Bl 20y oo yB1-5,5-1)

Now, the continued fraction R,(z) can be expressed in the form g‘;((j)) By

the using of the known transformation from monomial to Bernstein basis, the

246 Nenad V. Blagojevi¢ and Ljubisa M. Kocié

rational form (2) can be obtained. But, this transformation is numerically
unstable (Farouki, Rajan [3]). So it is better to find the algorithm for direct
expression of the continued fraction in Bernstein form.

2. Algorithms

Here, two algorithms are proposed. One, for transformation the continued
fraction in rational Bézier form and, the second, for inverse transformation
back to the continued fraction form.

For continued fraction R,(z), given by (4), the rational function
(8)

Pi(2) = [CO;m—mg,m—wl,“.,:r—:ck_l]’ k=0,....,v-1,
Qr(z) €1 ca Ch

re(z) =

refers to as k-th convergent of R,(z). Obviously, rn(z) = Ru(2).
It is known that polynomials Py and @ satisfy three term recurrence
relation

2k = Cpzp—1 + (& — Tp—1)2h—2, k=1,...,m,
where the sequence {Pk} is initialized by P_i(z) = 1, Po(z) = co and {Qk}
by Q-1(z) = 0, Qo(z) = 1, see [2], [4], [5], [7].
The Algorithm 1 is given by the following theorem:
Theorem 1. Let the set of points in the plane {(:r,,yt)} be given sash

that 0 = 29 < 1 < -++ < T, = 1. Let the k-th convergent of Rﬂ(m) be given
in Bézier form

E‘L 0 pkbk()

(9) r{E) = S k)

by the coefficients p¥ and ¢¥ (i = 0,...,k) satisfy the recurrence relation

10) SfZA o 1+A S +A2Qk 2+A38 +A4Sf__22,
(i=m“qm k_%&“w

with initial condztzom for {Pk} gwen by p = co, Ph = coc1 — o, Pi =
cocr —zo+1, and ¢§ = 1, ¢4 = ¢} = e1, for {Qr}. The constants A; in (10)
are given by

Modeling of rational curves by interpolation 247

(k—1)eg icy, (k=) (k—1—1Dayp_,y

AO = —k——. /1] = T, Ag = - k(!\,’ _ l) L]
ik = 1)1 = 22p4) __e= 1)1 —mp_q)
T Rt e o

In practical calculations the coefficients A; are replaced with

Ag
Az

(k=1)(k=1)er, Ay=(k- Dicg, As=—(k—1)(k—i—1)azp_,
—t{k — 1)(1 — 224_,), Ay = =i = 1)(1 — z4_4).

In this way, one can avoid operation of division, which results in improving
the numerical stability of the algorithm.

Finally, the control points B; and weights w; can be determined from the
system

(11) Baw; =pb, wi=qP, i=0,....n.

In the case w; = 0, the control point B; is an arbitrary constant.

The truncation error estimates as (see [4])

(12) Ru(z) = ri(z) = K[ri(z) - re-1(x)], x€0,1],

with K = —di(x)/ (1 + dy(2)), where

(2 =24)Qr ()
Prt1(Toy. .oy Th, 2)Q ()’

(13) dy(z) =

and ¢pqy are inverted differences given by (7) with y; being replaced by
R, (z;). Note that the constant K in (12) can be easily approximated using
extended de Casteljau algorithm [1], which allows to conipute both Q. (z)
and ¢y,

248 Nenad V. Blagojevi¢ and Ljubisa M. Kocic

Converse algorithm

Conversely, the Bézier curve (2) can be transformed in the form

1 1 1
(14) Rilz)= |ao;= n T .
@) = o gy By Bl
where
(15) Br(z) = Cl'n.*k-!-lb(l)(a:) + D'u.—k-H b}(l)s k=1,...,n,

are the Bernstein polynomials of first order. This procedure of the Algorithm
2 is given by the following theorem:

Theorem 2. In (14), the constants ag, Cy and Dy, k = 1,...,n are given
by

i n—1

Py = Gody +Py s
(16) Pt = apql' + hp" (- ')pzl 1 i=12,...,n—1,

T n-1
Py a{)ql +pn—l"

Ii

(17) qf = k;.]("n—m—l}){:—l -+ i-Dn—kJr”’ |+ (k_”ik 1;_1)
7
-i-ll((if‘_:) 5+ ;Ezk]1} risy, i=0,....k k=mnn-1,...,L

Proof. After division in R, () one obtains

1 'l_!.b?_l.. ey n—1 n—lb'n_ ;
Z—OP (l):a{)_{_z: []p (),

(18) R, (t) = _ia_—nﬁ_ [nhn
Yo H(®) Y iz 4107 (2)

1—1

where, according to [3 eq. 48], constants ag, p}', ¢f* and pl~" are connected

as in (16). Note that ag can be expressed explicitly as

Y= (D)pt
Z?:o(—”" 1()‘?a -

g =

Modeling of rational curves by interpolation 249

After k-th division in (18), by the rule of continued fraction, one gets

1 Zfzopf_]bk_l(?;)
Br(e) Z:‘ ”qkb’!‘()

1

(

Rn(":) =ap +

|
= ag +
Bi(x) i
W 4t 8, () + Wﬁ
i.e.
k=2
(19) Zq*b" = Bi(x) Zp (@) + Y e).
i=0 i=0

Relations (17) follow from (19) by comparing coefficients after replac-
ing Bi(x) by (15), then by using identities (1 — :1:}5?_1(:1?) = ”T—Zib;‘(:zr),

k=2
xbl 1 (2) = %bf_{_l(2), and, after that, elevating degree of Z%] *r'f"_')bi"fg(:z:]
=
for two. 0O

3. Applications and examples

The main application of Algorithm 1 is in modeling. Using interpolating
points, the initial interpolation model is found by calculating the control
points B; and weights w; and the one can continue the modeling process by
the standard interactive technique.

Second application is in recognition the parameters for same free form
curve. For example, if one knows that some curve is rational but does not
know its control points or weights they can be retrieved by the Algorithm 1.

The Algorithm 2 carries over the Bézier rational curve into continued
fraction form. It may be important for further processing of such curve, like
for approximation or data reduction.

The following examples illustrate our Algorithm 1

Example 1. The data (24, 9:):(2.5,6.875)(5.0,2.23)(20.0, 0.283)(40.0,0.143)
results the curve in Figure 2(a), while the more complete data (2, 1;)
(2.5,6.875)5.0,2.23)10.0,0.751) (15.0,0.416) (20.0,0.283) (25.0,0.219) (30.
0,0.182) (40.0,0.143) gives curve in Figure 2(b).

250 Nenad V. Blagojevi¢ and Ljubisa M. Kocié

Example 2. Here, the data (7.99,0.0) (8.09,0.000027643) (8.19,0.0437488)

(8

7,0, 169183) (9.2,0.46428) (10.0,0.943740) (12, 0.998636) (15.0,0.999919)

(20.0,0.9999 94) are used. The corresponding rational curve is shown in
Figure 2(c).

Example 3. Figure 2(d) shows the result of applying Algorithm 1 on the
data (—4.0, =1.0) (=3.0,-1.0) (=2.0,-1.0) (-1.0,-1.0) (0.0,0.0) (1.0,1.0)

(2.

(1]
(2]
(3]
(4]

(9]

0,1.0) (3.0,1.0) (4.0, 1.0).

Figure 2. Rational Bézier interpolants for various data

References

N. V. BrLacolEVIC, Racionalni modeli krivih @ povrsi i primene u racuarskoj grafice,
Magistarska teza, Univerzitet nu Nisu, 1993..

J. D. P. DonNELY, Continued Fractions, Methods of Numerical Approximation (D.
(. Handscomb, eds.), Pergamon Press, Oxford, 1965.

R. T. Farouk: anp V. T. RaJan, Algorithins for polynomials in Bernstein form,
Comput. Aided Geom. Design 5 (1988), 1-26.

F. B. HILDERBRAND, Introduction to Numerical Analysis, McGraw Hill, New York,
1956.

W. B. Jones aND W. 1. THRON, Continued Fractions, Analytic Theory and Appli-
cations, Addison-Wesley Publ., London, 1980; Russian transl., Mir, Moskva, 1985.
D. F. Mavers, Interpolation by Rational Function, Methods of Numerical Approxi-
mation (D.C. Handscomb, eds.), Pergamon Press, Oxford, 1965.

G. V. MiLovanovIi¢, Numeriéka Analiza. |, Nauéna Knjiga, Beograd, 1991.

L. PieGL, Interactive Data Interpolation by the Rational Bézier Curves, IEEE Com-
put. Graph. Applic. 1987, no. 9(7), 485-498.

H. WERNER, Algorithm 51 - A Reliable and Numerically Stable Program for Rational
interpolation of Lagrange Data, Computing 1983, no. 5(31), 269-286.

E1 S1GRAF, TRG BRATSTVA 1 JEDINSTVA, 2, 18000 NiS.
[-mail address: nenad@ban. junis.ni.ac.yu

DEPT. OoF MATHEMATICS, FAcuLTYy oF ELEcTRONIC ENGINEERING, P.O.Box 73,

18000 Nis.

E-mail address: kole@gauss.elfak.ni.ac.yu

FILOMAT (Nig) 9:2(1995), 251-259

Filomat 94, Nig, October 22-24. 1994
Geometry. Computer Sciences

"EXACT” DISPLAY OF OBJECTS WITH REAL
VALUED POSITIONS AND DIMENSIONS

Sinisa N. Hristov, Miomir S.
Stankovi¢ and Vesna I. Velickovié

ABSTRACT. [n this paper we consider the correct method Jor the "exact” display of ob-
jecls with arbitrary forms, having positions and dimensions expressed as arbitrary real
numbers. We also consider advantages of such an approach over the usual methods which
do not produce "exract” picture, or can "exactly” display only some forms of objects which
must have integer positions and dimensions. We also consider some difficulties that maght
arise in an implementation.

1. Introduction

This paper deals with methods for generation of an image from an internal
description of a scene.

An image is a two-dimensional array of numbers, held in computer mem-
ory, from which the actual picture on the screen is produced by some suit-
able hardware. A single element of this array is known as a pixel, short for
"picture element”.

A scene is some internal description of the desired picture. We leave
the particular form of the description undefined, but assume that it describes
every detail of the desired picture with the complete precision.

We emphasize the distinction between the desired picture, represented
by the scene description, and the actual one, represented by the image and
presented on the screen.

1991 Mathematics Subject Classification. 68U05; 68U10.
Key words and phrases. computer graphics, signal processing, filters, aliasing.

252 Sinisa Hristov, Miomir Stankovié and Vesna Velickovic

2. Usual ”"nonexact” methods

Image generation methods used in most computer graphics packages fall

into the following three categories:

1. turn-on fully all pixels that have their centers covered by the object;

2. turn-on fully all pixels that have at least half of their area covered by the
object;

3. set the intensity of a pixel in proportion with that part of its area which
is covered by the object.

It is known that each of these methods suffers from one or more of the
following imperfections:
l. object edges appear "ragged”;
2. all dimensions must be expressed as integer multiples of the pixel size;
3. objects are not displayed accurately enough — there is significant distor-
tion of object’s shape and position.

Some graphics package implementors have recognized the first disadvan-
tage as a serious one and have provided an option to use some form of
“anti-aliasing”, so that objects appear to have more "smooth” edges. As the
"anti-aliasing” is usually performed by some semi-empirical procedure, the
resulting picture may appear "smooth”, but it is nevertheless inaccurate.
And inaccurate picture, having either "ragged” or "smooth” edges, has, as
we shall see, serious practical deficiences.

Let us note that most computer graphics applications involve presentation
of some scene which is generally defined in a continuous two-dimensional
space. There are some applications, circuit board design, for example, which
place objects on a predefined grid, but when comes to the image generation,
the grid does not help much. Therefore, we shall restrict our discussion to
continuos space only.

Some basic graphics packages allow only integer values of object coordi-
nates and dimensions. They force the programmer to write explicit conver-
sions from the continuous space, be it rounding or whatever. In this way,
the programmer has full control over the actual picture, which she uses to
create some clever arrangements of objects, disguising aforementioned im-
perfections as much as he can, [1]. Besides placing enormous burden on the
programmer, such an approach suffers from a phenomenon common to all
"singular” designs: small changes in input data can completely invalidate all
she has achieved.

Numerous graphics packages allow specification of real values for coordi-
nates and dimensions. But, to specify is one thing, and to display is quite

7Exact” display of objects with real valued positions and dimensions 253

another. Some "less sophisticated” graphics packages simply round the real
values to the nearest integers. The scene is effectively converted into a "sim-
ilar™ one, from which the image is generated. Many have noticed that the
rounding errors introduced in this process are by no means insignificant.
Other, "more sophisticated” graphics packages attempt to draw approxima-
tions of objects without rounding coordinates first. Some clever algorithms
are employed to determine pixel values, and in specific cases acceptable re-
sults are produced, [1]. However, it is our impression that all such methods
rely too much on clever tricks, without having solid theoretical backgronnd,
and can, therefore, produce acceptable results only in limited cases.

Contrary to the popular belief, we find that an error of "a pixel or two”
is by no means negligible, at least given the resolution of today’s equipment.
Here is a short list of most common consequences of such "small” errors.

L. A uniforim set of objects from the continuous space appears as non-
uniform, and vice versa.
2. Parts of objects or entire objects disappear.

Shape of a small object appears very distorted.

4. The original proportions of object positions and dimensions are not re-
tained.

5. A small change in object’s position or size can sometimes cause significant
effect on the picture, while in some other case a much bigger change
produces no effect.

I'igure 1. "Ragged” appearance of an object edge.

EniaEsiiaa
L] - E]

Figure 2. A uniformn set of objects appears as non-uniform.

Increasing the image resolution makes such errors somewhat less notice-
able, but still visible. The right way to fight this problem is certainly not to
increase the image resolution. This is very expensive and quite limited by

254 Sinisa Hristov, Miomir Stankovi¢ and Vesna Velickovié

Figure 4. Some parts of the object disappear.
The shape appears very distorted.

Figure 5. The relative proportions are not retained.

the state of technology, and does not even touch the heart of the problem
which is simply the improper sampling.

3. Sampling and reconstruction

The Shannon sampling theorem (see, for example [3]) says that a signal
can be properly reconstructed if its spectrum is non-zero only at frequencies
less than a half of the sampling rate.

If there is a signal component not satisfying this condition, it will be
sampled, but the samples will look exactly as if they came from a component
at some frequency less than a half of the sampling rate. In this case the
reconstructed signal will have a component not originally present. This
phenomenon is known as "aliasing”.

As it was mentioned above, the scene is defined in a continuous space, and
therefore shall be regarded as a continuous signal. The "image generation”
process is, in fact, sampling. The scene may or may not satisfy the sampling
theorem condition. The picture is produced from the image by reconstruc-
tion, or interpolation, which is performed by the graphics hardware.

Now we can define the correct method for image generation.

“Exact” display of objects with real valued positions and dimensions 255

If the scene satisfies the sampling condition, everything is well — the afore-
mentioned procedure will produce the exact picture. But, if the scene does
not satisfy the sampling condition, the exact picture cannot be produced.
[nstead, a "correct” replacement shall be provided.

The question of the "correct” replacement is more philosophical and aes-
thetical one, rather than technical. We choose the following line of thought:
if a component of the scene can be displayed exactly, then do so, and if it
cannot be displayed exectly, then suppress it. rather than displaying it as
something else that did not exist in the scene.

In other words, we do not attempt to sample the scene that does not
satisfy the sampling condition. Instead, we transform that scene into a
"similar” one satisfying the sampling condition. This is done by filtering
the scene with well chosen low-pass filter. Please note that the scene is a
continuous signal — we cannot apply a digital filter for this purpose because
we do not have a digital signal.

To further substantiate our choice of the correct” replacement, we note
that the components that we have suppressed carry the structure too fine to
be displayed by the hardware and/or noticed by the viewer. Therefore, we
hope that the absence of those components will not do much harm neither.
Had we done otherwise, those components would “alias” to lower frequencies,
translating to much larger structure which will be displayed by the hardware
and noticed by the viewer.

4. Practical advantages of exact display

Practical advantages of exact display of objects follow from the fact that
dimensions and positions do not have to be unnaturally restricted to integer
multiples of the pixel size.

An object may have arbitrary size and can be placed anywhere on the
screen with the resolution determined by the precision of the floating point
numbers used. The uniformity of a set of objects is preserved, as is the
non-uniformity. The proportions are retained. A small change in object
position or size produces the corresponding small effect on the pucture. In
animation, objects do not jump irregularly from pixel to pixel, instead they
move in uniform steps. The object shape is not distorted, although very
small objects can be smeared or even completely invisible.

The programmer does not have to care about screen resolution and round
off errors. And she gets exactly the picture she specified, unlike some modern
graphics packages which do allow such a freedom of expression, but distort
the picture and leave no possibility for the user to control the picture quality.

256 Sinisa Hristov, Miomir Stankovié and Vesna Velickovic

The quality of the computer graphics equipment is usually specified by
the resolution in the sense of the size of the array holding the image. This
is in contrast to the quality specification method used all other visual and
optical devices, where the resolution denotes the size of the smallest object
that can be reliably reproduced. The resolution of the graphics equipment
with exact display of objects can be also given as the size of the smallest
object that can be reliably reproduced, regardless of its allignment relative
to the pixel grid.

5. How to produce exact pictures systematically?

A new graphics package must be written in order to enable application
programmers to use exact pictures within their programs regularly. Al-
though at the moment we do not have the complete proposition for such a
package, we can state some basic requirements.

The scene shall be defined in a continuous space and shall be represented
in the computer as a set of objects (not to be confused with the so-called
“object oriented programming”).

There shall be a predefined repertoire of parametrized primitive objects
and the user will generate required number of instances and supply actual
values for parameters, e.g. size, position, color, etc.

There shall be a systematic way of building complex objects from more
primitive ones. Complex objects constructed in this way could also be
parametrized, and any number of instances could be generated, with possi-
bility to include them in still more complex objects.

Notions of a point and a line shall be defined in the mathematical sense,
i.e. having no area. Therefore, they will not itself be objects, but will be
used to build primitive objects.

Some set of predefined primitive objects shall be provided. It is important
to select them very carefully, as it must be possible to draw them very
efficiently, and, at the same time, to effectively use them in building complex
objects and constructing typical scenes.

The package shall include basic geometric transforms, such as translation,
rotation, scaling, etc. It shall be possible to apply those transforms uniformly
to any kind of object, and to define complex transforms in terms of simpler
ones.

Finally, when the complete scene is defined, a drawing procedure will be
invoked to produce the image array by filtering the scene and sampling the
filter output. Filtering must be performed analyticaly because a numerical
approximation will involve sampling and result in aliasing. As long as all

"Exact” display of objects with real valued positions and dimensions 257

objects in the scene are disjoint, filtering can be performed object by object
with all outputs summed -~ the filtering is a linear process.

il

Note that the filter output must be known only at sampling points. There-
fore, filtering and sampling can be combined into a conceptually simple pro-
cedure of centering filter’s impulse response at the sampling point and com-
puting the convolution integral. The result is recorded as the pixel value.

6. Desirable filter properties

The most critical thing in implementation of the praposed approach is
certainly the choice of the low-pass filter, which has crucial impact hoth on
the quality of the picture and on implementation efficiency. We'll present
now our preliminary view of desirable properties of such a filter.

H (W)

Figure 6. A filter shape in the frequency domain.

Desirable filter properties in the frequency domain are:

1. Relative intensity of components with different frequencies must not be
considerably distorted, that is, the variation of the |/ (w)| in the passband
shall be from 0.5% to 2%.

2. Components not satisfying the sampling theorem condition should be suf-
ficiently supressed, that is, peaks of |H(w)| in the stopband shall be from
0.2% to 1%. ‘

3. In order to use as wide frequency band as possible, which means as much
scene details as possible, the transition band shall be as narrow as possible,

that is o
upper limit of the passband

p—— = from 0.3 to 0.9.
lower limit of the stopband

258 Sinida Hristov, Miomir Stankovié¢ and Vesna Velickovié
Desirable filter properties in the spatial domain are:

I. To enable computationally efficient filtering, the filter’s impulse response
shall be non-zero only over a finite interval, and that interval shall be
as narrow as possible. This allows us to consider only a relatively small
number of neighbouring objects while computing the value of the filtered
scene at a given point.

2. To prevent apperance of a fine structure which did not exist in the scene,
the filter’s step response should be monotonic, or at least the amplutude
of oscillations should not exceed 0.05% to 2%. Also, the filter’s impulse
response should not have negative values.

3. The transition from one light intensity to another should be as fast as
possible, that is, the filter’s rise time should be as short as possible.

4. The filter’s delay should not depends on frequency or, even better, the
delay should be zero. This will be satisfied if the filter’s impulse response
is an even function.

iy |

. If the scene is rotated, the displayed picture shall appear rotated, but
otherwise unchanged. This will be satisfied if the filter’s impulse response
is rotationally symmetric.

7. Expected implementation difficulties

A relatively complex calculation must be performed in order to obtain
the value of a single pixel. The same procedure must be performed about a
milion times to complete the image. We expect that achieving a reasonable
drawing speed will be the major problem in the implementation.

A rough estimate shows that commonly available processors such as 486,
68040 and T805 permit only experimentation with the proposed approach.
For practical applications processing must be faster for at least one order
of magnitude. As we have to work with continuous signals and relatively
complex data structures and algorithms, currently available digital signal
processors do not seem to be particularly useful — they are very diffucult to
use for anything outside their intended application area.

Our attention is directed towards the T9000, if it becomes regularly avail-
able. It seems that a single T9000 might satisfy basic application require-
ments. Even more important is its capability for parallel operation, which
far exeeds capabilities of all other commercial processors. The single PPC
604 also seems to have enough power for basic applications, but with much
less hope for efficient parallel operation.

"Exact” display of objects with real valued positions and dimensions 259

Another serious difficulty arises from the possibility that a single filter
may not be conveniently applicable to all necessary types of objects.

8. Conclusion

We have described some initial results of our work is this area. Currently
we are investigating various classes of continuous finite-response filters in
order to select viable candidates for an experimental implementation of a
small graphics package exploiting the principles set in this paper.

References

(1] Foley J.D., van Dam A., Feiner S.K., Hughes J.F., Computer Graphics - Principles
and practice, Addison-Wesley, 1990.

[2] Corner, I.B., Return of the Jaggy, IEEE Computer Graphics 9 No 2 (March 1989),
82 - 89.

[3] Jerri ALJ., The Shannon sampling theorem — its various extensions and application:
A tutorial review, Proc. [EEE 65 No 11 (Nov. 1977), 1565 — 1596.

[4] Castleman, K.R., Digital linage Processing, Prentice-Hall, Inc., New Jersey, 1979.

[5] Max N.L., Antialiasing scan-line data, |EEE Computer Graphics and Aplications 10
No 1 (January 1990), 18 - 30.

[6] INMOS Limited, The 79000 Transputer Instruction Set Manual (1993), Bristol.
[7] INMOS Limited, The T9000 Transputer Hardware Reference Manual (1993), Bristol.,

Bozmara Apzue 19/1-11, 18000 Nis.
E-mail address: sike@unitop.elfak.ni.ac.yu

FACULTY OF OCCUPATIONAL SAFETY, CARNOJEVICA 10, 18000 NiIS.

I'ILOZOFSKI FAKULTET, CIRILA I METODIIA 2, 18000 Nis.
E-mail address: vesna@archimed.filfak.ni.ac.yu

s1oe6q jrewAriqie
apelbpg Jo A1seAIUN -So1TewayIe |\ Jo Ajinded Jo AreiqiT feniiiA

FILOMAT (Nis) 9:2(1995), 261-271

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

HALLEY-LIKE ASYNCHRONOUS METHODS
FOR POLYNOMIAL ROOTS

M. Trajkovié, S. Trickovié and M. Petkovié

ABSTRACT. In this paper we present the asynchronous implementation of Halley-like
method for the simultancous approzimation of polynomial roots on a distributed memory
multicomputer. [t is shown that the lower bound of the order of convergence of asyn-
chronous Halley-like method with the delay r is at least Na > 3, where 154 is the unique
posttive root of the equation y"t' — 39" — 1 = 0. The computational cfficiency of the
synchronous and asynchronous versions are studied in the case of hypercube topology.

1. Some preliminary results

Simultaneous methods for the determination of polynomial roots run in
several identical versions so that they are very convenient for the imple-
mentation on parallel computers (see, e.g., [4,5,6,8,9,10]). All n roots are
found simultaneously, n versions of the same algorithm can be run on a dis-
tributed memory multicomputer consisting of k (< n) processors. The main
advantage of parallel implementation comes from the fact that a great deal
of computation can be performed simultaneously. The details concerning an
application of simultaneous methods on parallel computers may be found in
4,5,6,7].

In practical implementation of simultaneous methods on parallel comput-
ers three standard network topologies are usually applied: rings, torus and
hypercubes. The models assume k processors connected through a regular
graph of diameter) and degree d. The efficiency of these methods depends
on three parameters: the computation time of any arithmetical operation
modeled by 7,, the communication start up . and the throughput of the

1991 Mathematics Subject Classification. 65H05, 65W05.

261

262 M. Trajkovi¢, S. Trickovi¢ and M. Petkovié

links 7.. Typical values of 7., 1, and 8. for several types of multiprocessors
can be found in the paper [3]. Since in our analysis we neglect the times
for computing the starting points and checking the stopping criteria, the
computational cost of algorithms is the sum of a computation time with a
communication time. Besides, the number of basic arithmetical operations
of the applied method appears as an additional parameter in the analysis of
the total computational cost. This number for a wide class of simultaneous
iteration methods can be given in the form (see [12, Ch. 6])

N(n)=an® + fBn+ 7,

where n is the polynomial degree. If n is sufficiently large, then we can take
approximately that N(n) = an® + o(n?).

Following (6], the total time for the synchronous implementation can be
expressed as the sum of the computation time N(n)7,/k and the communi-
cation time Df. + O(n/d)7., that is

2 + 2 ’
Lo = (222420 4 D+ 0(%)r (1)

The communication time cannot be neglected in a synchronous implemen-
tation; moreover, it has a great influence on the total execution time and
appears to be a major drawback of this parallelization of the simultaneous
methods. In order to decrease the communicate time the following strat-
egy can be applied [2,7,10]: In each iteration, a processor does not have to
wait at predetermined points, for example, the end of the total-exchange,
for predetermined messages to become available. This type of algorithms is
called asynchronous by Baudet [1] indicating that, at each step, the local
computation is performed using only a part of the global information.

Let m = 0.1.2,... be the iteration index and let us assume that the
new approximation :EW'H) is calculated by a processor P, h € {1,....k}.

Evidently, to force the convergence, this processor must know the value of
(m (m+1)
1

~, i

). The improved approximation z

: is calculated by a general iteration
formula

SE??H-I) - F,‘(Z(m-}), where z(m') o (zim—"(lwm‘h)} o ?zglm—r(n,m,h)])

(2)
In (2) 2("7) is the vector of the last values z; known by the processor P, at
step m, represented by zfi'"L_T(']"m‘h)). Here r(j,m,h) is a delay depending
on j, m and h and indicating that the processor P, only knows the value of
z; computed at step m — r(7,m, k). The maximum delay will be denoted by
v, that is, r = max;, 5 r{1, m,&).

Halley-like asynchronous methods for polynomial roots 263

The implementation of an asynchronous method is executed in such a way
that, at each iteration step, a processor sends the most recently computed
entries to its neighbors only. decreasing the communication time. As it was
presented in [6], the total time per one iteration step is

an? + o(n?)

= ‘ n
Fasy = (}‘)Tfl + f‘i(‘ + O(E)T:" (’j}

Comparing with (1), we obtain one start up instead of D and a propagation
time of O(n/k) instead of O(n/d).

Let Ny, and Nasy be respectively the number of iteration steps of a
synchronous and an asynchronous method. Evidently, the asynchronous
method will be more efficient if NasyTasy < NsynTiyn- By virtue of (1) and
(3) this inequality may be written as follows:

Ny [o ;”{"2))1:, + e+ 0(2)7e] < Nsyn[(””") Z"("z))rﬂ ;s
+ DB+ 0(2)].

Let us suppose that the inequality

A an?
= £
Ta ke (

holds. Namely, if 3./7, > an® [k, then it could be faster to use less pro-
cessors in the synchronous implementation (see [6]). Furthermore, since the
relation 3. > 7. generally occurs ([3]) on distributed nemory computers,
the inequality (1) becomes

9)

an? iy
P W -
Neyn an® 7.

A

Eventual validity of the inequality (6) can be suitable verified by a graph-
ical interpretation in the plane (Nasy/Nsy,,,,{_i(,/‘ra). Let R = 3./7, denote a
realistic parametric ratio depending on the applied network topology. For
the hypercube topology this ratio usually belongs to the interval [102, 10%)
(see [3]). Conditions for the dominance of asynchronous implementation has
been discussed in [13]. Dominant area is bounded above by the curve

an’ (l B N;Lsy)
i N ke N)
T fl\"‘vasy 1) ’

7
Ny

264 M. Trajkovi¢, S. Trickovi¢ and M. Petkovic

which are obtained from (6) taking the sign "=" instead of <", and the
dashing line B8./7, = R.

Let V is the critical ratio given by the abscissa of the intersection of the
curve (7) and the dashing line 8./7, = R, thatis, V = 1+(D— l)/(%-}- 1).
As pointed out in [13], an asynchronous algorithm will be more efficient if
the realistic ratio R is smaller than the bound value B./T. = an® [k and, in
addition. if the ratio of iteration steps Nasy/Nsyn can be realized in practice,
that is, il Nasy/Nsyn < V. We note that the following estimate for the ratio
Nasy/Nsyn has been derived in [13]:

Nasy ., logns

S . (8)
-Nsyn 10g A
2. Convergence analysis of
asynchronous Halley-like method
Let ¢ = :Em] — (; be the error of an asynchronous method of the form

(2) which generates the sequences (zt(-m]) of approximations to the roots
Cyy.vo s Cu. As mentioned in [13], for a wide class of iteration methods for
the simultaneous determination of polynomial roots the following relation
can be derived:

n
q —r(j,m,h .
R G 1D YT S (S PR ORI

;=1

1#1
where «; and [§;; are complex constants and ¢ > 1 is integer. In that case
following general convergence theorem has been proved in [13]:

Theorem 1. Suppose that a polynomial P has only simple roots (y,. . ., Cn
and starting approximations zy ... , ZEP) are reasonably close to these roots.
Further, assume that r(j,m,h) is bounded for all j = 1,...,n and all h =
I....k. Then the asynchronous algorithm (2) for which the relations (9) are
valid is locally convergent with the order of convergence at least 114(q) > q,

where 114(q) is the unique positive root of the equation

ot —qn" = 1=0, r=max r(j,m, h). (10)

Jymh

Halley-like asynchronous methods for polynomial roots 265

In this section we give a convergence analysis of the asynchronous Halley-
like root finding method and its efficiency compared to the synchronous
implementation. Hypercube topology will be considered as the most efficient
network topology for this kind of problems.

Halley-like method for the simultaneous approximation of all zeros of a

polynomial P’ of degree n has been considered in [14] and [11]. For simplicity,
the approximations z;-"”ﬂ') to the roots (,...,(, at the iteration step m
will be shortly denoted with z; if » = 0 and z7if r > 0. According to this
notation we introduce the errors € = z; — (; and G = z; — (j. The new
’ ; . s ' .
approximation zgm+ " will he denoted with 2; and the corresponding error

with €; = 2; — (;. Besides, we define the sums

T

1 .
Sai= Zﬁ (E=1,0. 05 A= 1,2),

p=i W&

i

n

|
v ma . e
ul‘t_g = s Lo et
i — Gy

=1

i

the abbreviations
@ij = (2 =)2 = 27), by =22 — 2] — ¢,

and the function

Then Halley-like method reads:

B g ! 150 T 1
fla)- .Ti% [ﬂl; + 5'2,5] | | Y
or in the form
b Plz)12 PP -Pl(rii(ie)f’{ﬂ) 9 . W)
[P(:,}J " P(z)? T i S

By the way, we observe that the function J in the denowminator of (11)
appears in the well-known Halley iteration formula

1
f(z)

Ly

ol

266 M. Trajkovié, S. Trickovi¢ and M. Petkovic

for the determination of a single root.
In the following we will show that the asynchronous Halley-like method
(11) belongs to the class of methods for which the relation (9) holds, which

means that Theorem 1 can be also applied to this method. For that purpose
we use the identifies

Fex.. 3 1 - (13)

and

(14)

which can be easily derived by logarithmic differentiation.
First. from (13) we have

o =t T gl e)

and
2 2
PH#)NE o - 1 1
(F) -st=\Xsmg) ~\2a=
(n-'-:) jil 23 —' CJ }.‘,f: <1 x.,j
1 [1 ,
= (— - Z —) (— + 51, + El.i).
€; Uy €4

i#i
Using the identity (14) we find
"

Pz —P"(z)P(2i) o _ I L1 €5
Plz)F _52'3‘-2(" C')Q_Z(Zi—:';)z_ 6:‘?— as.

= Ly . 2
= Al 4 J#i

According the two last relations we find from (12)
1
2 (Z + E],é)

1 Fagl o 1 bijc;’
(_ = }:#i -C;) (— + 51, + El.é) i "ZE - ZJ#!’ :;

£ €]

Halley-like asynchronons methods for polynomial roots 267
that is,
s 26;(14+ €215
(1-65.;2)(1+f,.51 i+eX 1)+1—(?Z b‘ff;
iy e s
264235 ;

rele o Y e v G e

2+Fi(.9],i+u1‘[_z E‘*)—(;[(,S].£+‘_J]!1)Z”_+ (‘2.]
i i g M

Let (7;; denotes the denominator in the last relation. After short re-

arrangement of the previous relation we obtain

i &2 b, e
fi:({gla—-—ilz_ +*f l:(sli. —le Z Z JI]} lr))
" iz i i G
Since
1 2 L3
bi"‘ﬁu]i—z Z("r-_C-—(o'-_"*)("“f P):0,
ke i <i 3 29 =5 N\ = Q])

from (15) there follows

€= — (,”[('711 INE Z Z o]

Fy i a3

or in the form

rz---(.S'l ; + Y1) + b;
& 3, . i i i l_} ._
& =4 E ¢ije;, with ¢;; = — (16)
= (r”
J#
The quantities a;;,b,;,5,; and ¥, ; are bounded, namely a;; — (¢; —

2

Gi)%y bi; — 2(¢ — (), while S1; and ;; tend to Yigi(C — (). Also,
assuming that the starting approximations are sufficiently close to 1]19 exact
zeros, the quantities ¢; will be small enough so that there exists a positive
number g < 2 such that |(7;;| > 2 — u. Therefore, ci; is bounded in modulus;
hence, the relation (16) is of the form (9) with ¢ = 3 so that we can directly
applied the assertion of Theorem 1. Thus. the order of convergence of the
asynchronous Halley-like method is at least 74, where 14 > 3 is the unique
positive root of the equation 1"+ — 35" — 1 = 0. Since we assume reasonably
good starting approximations, because of the very fast convergence the total
number of iteration steps will be rather small (2 or 3 steps in practice). For
these reason, greater values of r should not be expected.

268 M. Trajkovié, S. Trickovi¢ and M. Petkovi¢

3. Comparison of asynchronous
and synchronous version

In this section we present a theoretical implementation of Halley-like
method (11) on 4-dimensional hypercube with k = 2! = 16 processors where
the diameter is D = 4. We take a realistic parameters ratio [3] g./7, = 10%/6
(dashing horizontal line). The total arithmetic cost of Halley-like method
is 42027, + o(n*), that is, @ = 42. Polynomials of the degrees n = 16 (the
so-called full parallelization when the number of processors is equal to the
po]ynnmial degmo) and n = 30 have been considered. The bound values
B firg: = -—n for these values of n are represented by the full horizontal
lines in Flg.

Realistic areas where the asynchronous Halley-like method can be more
efficient are given by light shaded area for n = 16 and darker shaded area
(partially invisible) for n = 30. The critical values which determine the
necessary upper bound ratio Nagy/Ngyn are given by Vi for n = 16 and
V, for n = 30. Obviously, a more stronger requirement for the needed ratio
Nasy/Noyn appears in the case of the higher degree; namely, this ratio is closer
to 1 when the degree n is higher, which is more difficult to realize in practice.
Following (8) we find for the worst case model (174 = 3) that the ratio of the
number of iteration steps Nagy/Nsyn which provides a greater efficiency of
asynchronous implementation must be smaller than log4/log3 = 1.26. For
the considered ratio 8./7, = 10%/6 this is available (theoretically) if n < 26.
On the other side, the higher n permits the topology with the greater ratio
Ae/Tq (see Fig. 1).

Finally, we wish to consider a more general problem. We recall that
Durand-Kerner method (with a quadratic convergence) in a synchronous
implementation have the best performances in a wide class of simultaneous
methods although it possesses relatively low convergence rate (see [5,7]).
The following question arises: What is the influence of the convergence rate
of applied methods in a practical realization when the parallel implementa-
tion is performed asynchronously? In other words, we wish to investigate
the case when (from (8))

Nay o logns _ log(g +1) i

A, = =
! Nsyn iOg A TIA(_Q)

v, (17)

in dependendence on the parameter g which defines the convergence orders
of synchronous and asynhronous versions. Here 14(q) is the unique positive
root of the equation (10) and V is the critical ratio which is the upper bound
of the possible area of dominance of the asynchronous version (see Section 1

Halley-like asynchronous methods for polynomial roots 269

and Fig. 1). For this purpose, we have solved the equation (10) and found
the ratio A, for the delay r = 0,1,2.3.4 and the entries g = 1,2,3,4 which
are of a practical importance. The dependence Ay against ¢ with the delay
ras a parameter is displayed in Fig. 2.

hypercube multicomputer
k=16 processors

c
57 logta
nJQ\
4 1 o
& =2362.5
o ta
/ ‘\.é\
37 b Be
7iJ;?.z
_____ s o ____ B 3
T~ T ~10/6
2 -+
|
|
l T I
|
I Nasy
! Ns_vn
0 .1 Vv, v zl '1;]4

Fig. 1 Dominant areas of Halley-like asynchronous method

270 M. Trajkovié, S. Trickovi¢ and M. Petkovié

25 1 r=4
r=3
2 4
r=2
1 P m—
It r=0
0.5 4 q
0 t t y t

Fig. 2 The ratio of the iteration steps as a function of the convergence order

From Fig. 2 we observe that, for all 7, that the ratio A, of iteration steps
is smaller for a greater g, that is, in the case of methods of higher order.
But. under fixed real network performances, a smaller ratio A = Nyusy [Neyn
means that the inequality (8) (and, accordingly, (17)) is feasible much easier.
Hence, the possibility that an asynchronous algorithm be more efficient than
the corresponding synchronous algorithm is greater if the basic method has
a higher convergence order. This fact gives a slight advantage of Halley-like
method (which is of the fourth order) compared to Durand-Kerner method
(quadratic convergence) and Ehrlich-Aberth method (cubic convergence) but
only in the case of the asynchronous implementation.

References

[1] G.M. Bauper, Asynchronous iterative methods for mulliprocessors.).
of ACM 2 (1978), 226-244.

[2] D.P. BERTSEKAS AND J.N. TSITSIKLIS, Parallel and distributed compu-
tation - numerical methods. Prentice-Hall Inc. 1989.

[3] L. Bomans aND D. Roosg, Communication benchmarks for the iPSC/2.
Hypercube and Distributed Computers (Proc. I European Workshop on
hypercube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 93-104.

(4]

[12]
(13]

[14]

Halley-like asynchronous methods for polynomial roots 271

M. CosNARD AND P. FRAIGNIAUD, Asynchronous Durand-Kerner and
Aberth polynomial root finding methods on a distributed memory multi-
computer. Parallel Computing 9 (1989) 79-84.

M. COSNARD AND P. FRAIGNIAUD, Finding the roots of a polynomsial on
an MIMD multicomputer. Parallel Computing 15 (1990) 75-85.

M. CosNARD AND P. FRAIGNIAUD, Asynchronous polynomial root find-
ing methods. Research report 90-21, LIP-IMAG, Ecole Normale Supéri-
eure de Lyon, France 1990,

M. CosSNARD AND P. FRAIGNIAUD. Analysis of asynchronous polyno-
mial root finding methods on a distributed memory mullicomputer. IEEE
Transaction on Parallel and Distributed Systems (to appear).

P. FRAIGNIAUD, Performance analysis of broadcasting in hypercubes. Hy-
percube and Distributed Computers (Proc. I European Workshop on hy-
percube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 311-328.

T.L. FREEMAN, Calculating polynomial zeros on a local memory parallel
computer. Parallel Computing 12 (1989) 351-358.

T.L. FREEMAN AND M.K. BANE, Asynchronous polynomial zero-finding
algorithms. Parallel Computing 17 (1991) 673-681.

M.S. PETKOVIC, On Halley-like algorithms for simultaneous approrima-
tion of polynomial complex zeros. SIAM J. Numer. Anal. 3 (1989),
740-763.

M.5. PETKOVIC, [terative methods for simultancous inclusion of polyno-
mial zeros. Springer-Verlag, Berlin-Heidelberg-New York 1989.

S. TRICKOVIC, M. TRAIKOVIC AND M. PETKOVIC, Asynchronous meth-
ods for simultaneous determination of polynomial roots (submitted).

X. WANG AND S. ZHENG, A family of parallel and interval iterations Jor
Jinding all roots of a polynomial with rapid convergence (1), J. Comput.
Math. 1 (1984), 70-76.

FacuLry or ELECTRONIC ENGINEERING, P.O. Box 73, 18 000 Ni§

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jo Areiqi] [enlliA

FILOMAT (Nis) 9:2(1995), 273-284

Filomat '94, Nig, October 22-24, 1994
Geometry. Computer Sciences

ASYNCHRONOUS METHODS FOR SIMULTANEOUS
DETERMINATION OF POLYNOMIAL ROOTS

S. Trickovi¢, M. Trajkovié¢ and M. Petkovié

ABSTRACT. [n this paper we present the implementation of simultaneous method for the
determination of polynomial roots on a distributed memory multicomputer. The total cost
of such a parallelization per iteration is the sum of a computation time and a commu-
nication time needed for a total exchange of the data at each iteration step. In order to
decrease the communication time, an asynchronous implementation is considered. The
computation of the root approrimations is still shared among processors bul the updat-
ing is performed using only necarest neighbor communications. The price to be paid to
decrease this time consists in reducing the order of convergence of asynchronous meth-
ods. A general theorem which consider the lower bound of the order of convergence is
given. Also, the computational efficiency of the synchronous and asynchronous versions
are studied in the case of hypercube topology.

1. Introduction

Mathematical models in scientific engineering including digital signal pro-
cessing or automatic control reduce to the problem of finding roots of poly-
nomials with degree 100 and higher [15,16]. In these cases the parallel
processing becomes of great interest to speed up the determination of roots.

In practice, all methods for finding polynomial roots can be divided (al-
tho.ugh not strictly) in three classes: analytic, geometric and algebraic. Par-
allel implementation of geometric or algebraic methods often requires fine
grain parallelism (see, e.g. [2,17]). On the other side, the multicomputers
are rather composed of a network of processors with distributed memory
which assumes their coarse grain parallelism. For this reason, we are inter-
ested here in analytic methods and their application on a distributed MIMD

1991 Mathematics Subject Classification. 65H05, 65W05.

273

274 S. Trickovié, M. Trajkovi¢ and M. Petkovic

machine. Moreover, we will restrict our study to iteration methods for the
simultaneous calculation of all roots of a polynomial. As it is well known,
these methods run in several identical versions so that they are very suitably
for the implementation on parallel computers (see, e.g., [6,7,8,9,11,12,13]).
All n roots are found simultaneously, n versions of the same algorithm can
be run on a Multiple Instruction/Multiple Data (MIMD) parallel computer
consisting of & (< n) processors. The main advantage of parallel implemen-
tation is that a great deal of computation can be done simultaneously. The
details concerning an application of simultaneous methods on parallel com-
puters, including an analysis of total running time of a parallel iteration, the
determination of the optimal number of processors as well as experimenta-
tions, may be found in [6,7,8,9].

Many of the simultaneous methods can be written in the form

z(m+l) — F('z(m})’ (l)
where F'is an operator in C*, z(™) = (zgm), ey 2™ is a vector of approx-
imations to the roots (y,...,{, of a given polynomial P of degree n with
any initial vector z(°). In this paper we will always assume that the initial
vector z(?) is chosen so that all zgm)’s tend to the (;’s (i = 1,...,n). For
the construction and a detailed study of simultaneous methods see the book
[18].

As we have noted, we are concerned with the distributed memory multi-
computers. Such parallel computers are modeled by a connected graph. The
vertices of this graph are the processors and its edges are the communication
links. The exchange of data between two nodes which are not directly con-
nected must pass through different other nodes. Hence, the communication
strategy has a great influence to the efficiency of the applied method. Our
aim is to establish such a strategy which will decrease the communication
time and, at the same time, preserve the computational efficiency of the
implemented method.

[n practice, the implementation of simultaneous methods on parallel com-
puters is usually performed by three standard network topologies: rings,
torus and hypercubes. In short, the model is as follows: k is the number of
processors connected through a regular graph of diameter D and degree d.
The exchange cost of length L messages between two neighbor processors is
the sum of a start up 3, and a propagation time proportional to the message
length Lt., that is Tone-to.one = B¢ + LT.. Furthermore, one assumes that
a processor can communicate simultaneously with all its neighbors (link-
bound model), and that the links are full duplex. The arithmetic cost is
modeled by the computation time 7,, where 7, is usually the mean of a

Asynchronous methods for simultaneous. .. 275

floating point addition and the floating point multiplication. Typical values
of 7, 7, and B, for several types of multiprocessors can be found in the paper
[4]. We emphasize that in our analysis the times for computing the starting
points and checking the stopping criteria will he neglected. Accordingly, the
computational cost of algorithms is the sum of a computation time with a
communication time.

The investigation based on the parameters 7., 7, and . shows that the
network topology has a great influence on the global cost of parallel methods.
It has been shown in [7] that, among three mentioned standard topology,
the hypercube is the best topology and the relation

T < T < TS
holds. Another advantage of the hypercube topology appears when full
parallelism (the degree of a polynomial is equal to the number of processors)
is available. Namely, the communication time of an iteration grows linearly
with the degree on a ring of processors, with the square root of the degree
for a torus, but only logarithmically on a hypercube.

2. Implementation of synchronous methods

Before demonstrating the strategy which decreases the communication
time, we present the implementation of so-called synchronous parallel
methods (like (1)) [8,9]. The term ”synchronous” does not refer here
to the control mode of the multicomputer, but refer to the structure of
the algorithm. Actually, considering the iteration formula (1), the next
approximate vector z{"*!) is calculated using the most recent components
of z(m),

In the parallelization of the parallel algorithm (1) we assume that the
number of processors & (< u) is given in advance. The starting vector z(%) is
computed by all the processors Py, ..., P, using some suitable search proce-
dure (see, e.g., [5,10,14]). Furthermore, each step of the algorithm consists
in sharing the computation of n improved approximations ng}’_“ _zlm)
among the processors and in updating their data (") through a broadcast
procedure (shorter BCAST(z"))). As in (7], let I;,... I, be disjunctive
partitions of the set {1,... ,n} where UI; = {I,...,n}. To obtain good
load balancing between the processors, the index sets [y, ... , [are chosen
so that the number of their components w(/;) (j = 1,...,k) is determined
as w(/l;) < [TI]] At the m-th iteration step the processor P; (j = 1,...,k)

computes zgm) forall « € I; by the iteration formula (1) and then it transmits

276 S. Trickovié¢, M. Trajkovié and M. Petkovi¢

these values to all other processors using a broadcast procedure (referred to
as BCAST(z!")). The program terminates when some stopping criterion
(referred to as STO P(z("™)) is fulfilled, for instance, if
(m)
max [Pz <6
max | P(=™)]
for a given sufficiently small §. According to the previous we give a program

in pseudocode for a parallel implementation of a simultaneous method (1)
(following [7]):

Program SYNCHRONOUS SIMULTANEOUS METHOD
begin
for all j = 1,...,k do determination of the starting
approximations z(%);

=)
do
for all j = 1,... ,k do in parallel
begin
(#) Compute z£m+1) = Fi(z{™), i€ [;
(%%) Communication: BC'AST (z("™+1));
end
m:=m+ 1

until .S'T()P(z(m)) holds true;
OUTPUT z™)

end

As it was presented in [18, Ch. 6], the number of basic arithmetic opera-
tions for a wide class of simultaneous iteration methods can be given in the
form

N(n)= an® + fn+ 7,

where n is the polynomial degree and «, 3 and 5 are integers. Dealing
with sufficiently large n we can take approximately that N(n) = an® +
o(n?). Following (8], the total time for the presented implementation of the
synchronons method can be expressed as the sum of the computation time
N(n)r,/k and the communication time Dj. + O(n/d)r., that is
e ((rng + o(n?)
syn — k

From (2) we see that the communication time cannot be neglected; moreover,
it has a great influence on the total execution time and appears to be a major
shortcoming of this parallelization of the simultaneous methods.

)rat DB+ 0(5)e. (2)

Asynchronous methods for simultaneous. .. 277

3. Asynchronous simultaneous methods

In order to decrease the communicate time the following strategy can
be applied [3,9,13]: In each iteration, a processor does not have to wait
at predetermined points, for example, the end of the total-exchange, for
predetermined messages to hecome available. This type of algorithms is
called asynchronous by Baudet [1]. The term ”asynchronous” only refers
to the fact that, at each step, the local computation is performed using only
a part of the global information. An asynchronous algorithm can be modeled
as follows:

. 1Y
Assume that the new approximation zg'”+ Vis caleulated by a processor

Py, hoe {l,..,k}. Evidently, this processor must know the value of sgm) and
(m+1)

i

=

is calculated by the formula

_'(lm+1) _ F_(z(m"))

2 z('m.*) - (ng—'r(l,m,h)) . :Lm—r(n‘m.h)))
. (3)
In (3) 21") is the vector of the last values z; known by the processor P, at

—r(7,m./
step m, represented by z\" 7 7mA)

where

. Here r(j,m.h) is a delay depending
on j, m and h and indicating that the processor P, only knows the value of
z; computed at step m — (7, m,h). In the sequel, the maximum delay will
be denoted by r, that is, » = max; g (7, m,).

The presented asynchronous algorithm (3) will run if the following strat-
egy of distribution of the indices is chosen:

1 c_(‘m+1)

.y

is calculated by only one processor for all ¢ = 1, ..., n;

2. r(z,m, k) = 0, that is, the processor £, must know z,Em). 1€

Iy

Hypothesis 1 insures that there is no redundancy in the computation. Hy-
pothesis 2 has already been discussed and it must be satisfied to provide the

convergence of the sequence (zzm)). Besides, in regard to Hypothesis 1, this

implies that at step m, if ::_”') (0<pu<m, i€ {l,...,n})is known by a
set of processors, its value is the same for all these processors.

A short analysis given in [9] shows that, excepting hypotheses 1 and 2,
some additional conditions must be satisfied. Namely, if each processor al-
ways updates the same components, then each processor will know the most
recent entries of the components which are updated in its neighborhood,
but the other components will never he updated. This causes that, for each
h e {1,...,k} and at each iteration step m, there exists j such that the pro-

0 ; ; ’
cessor 1, knows ouly the value of :5), that is, »(j,m,h) = m. This fact

278 S. Trickovié, M. Trajkovié and M. Petkovié

implies that the convergence is not insured. For this reason the strategy
of the implementation of asynchronous methods should provide such indices
distribution that I), be different in each iteration step and the delay r(7,m,h)
is bounded above by some p < m. If I{(h,m) denotes the set of indices of
the components updated by the processor P, at step m, then the mentioned
conditions can be expressed as follows:

(i) f(h,m)(h=1,...,k)form a partition of (1,...,n) at each step m;

(ii) If 2 € I(h,m), then the processor Pj, knows zgm], 1€ Iy

(iii) For each processor P, and for each component i there exists an
integer p such that the sets I(h,m) have the property that the number of
steps separating two evaluations of this component in the neighborhood of
h does not exceed the delay p.

In this way, (i) and (ii) imply that the hypotheses 1 and 2 respectively are
satisfied, while (iii) provides the convergence with r = p. If these conditions
are fulfilled, then a a program in pseudocode for a parallel implementation
of an asynchronous simultaneous method (3) is as follows:

Program ASYNCHRONOUS SIMULTANEOUS METHOD

begin

for all j = 1,...,k do determination of the starting
approximations z(0);

=0
do
for all 7 = 1,... ,k do in parallel
begin
(0) Compute [(h,m);
(1 Compute 31(-’”“) = Fy(2), i € I(h,m)
(2) Send z;, 1 € I(h,m), to neighbors;
end
m:=m+ 1
(3) until .S'T()P(z('”}) holds true:
OUTPUT z{™)

end

The checking of the stoping criteria (3) is more difficult in the case of
the asynchronous implementation since there are the possibility that some
processors verify the stop condition but not the other ones. For more details
about the detection of termination see [3]. We only note that the step (3)
has to include such a strategy which synchronize the processors, namely, the
first processors which terminate may signal the end of the execution to the
others.

Asynchronous methods for simultaneous. .. 279

The implementation of an asynchranous method is executed in such a way
that. at each iteration step, a processor sends the most recently computed
entries to its neighbors only. As in the case of synchronous algorithm, the
computation time is again N(n)7y/k, but the communication time becomes
Be+O(n/k)T. since it corresponds to sending n/k values from each nodes to
their neighbors in parallel. Therefore, the total time per one iteration step
is

an? + o(n?)
(=

Comparing with (2), we obtain one start up instead of) and a propaga-
tion time of O(n/k) instead of O(n/d). Thus, the communication cost is
decreased by (D —1)8,.+ O(n/d—n/k)r.. However, the order of convergence
of the asynchronous method is reduced (see the next section), which could
increase the number of iteration steps. If these two (contradictory) features
can be balanced in a satisfactory way (by the choice of a suitable network
topology, a good strategy for the indices distribution and synchronization of
stop test, and an efficient iteration algorithm), then we can hope that the im-
plemented asynchronous algorithm be more efficient that the corresponding
synchronous algorithm.

i =)T,, + 3.+ ()(;)TF. (4)

4. R-order of convergence of asynchronous methods

Let ¢ = zE o Gi be the error of an asynchronous method of the form
(3) which generates the sequences (:EmJ_) of approximations to the roots
Ciy- -+ 5 Gy For a wide class of iteration methods for the simultaneous deter-
mination of polynomial roots (see the book (18]), the following relation can
be derived:

(w2 §
—

i
\ g i ‘
Fngﬁ-l) e Qi((ﬁ”l)) 2 :Ht_.j€§77c r{jm k) (l = l,....H), (

i=1
1#1

where a; and f3;; are complex constants and ¢ > 1 is integer. Then we have
the following assertion:

Theorem 1. Suppose that a polynomial P has only simple roots ¢,,... ¢,
; . . 0 0
and starting approximations :(]'), o 2 are reasonably close to these roots.

Further, assume that r(7,m.h) is bounded for all #=1, .5 508nd all & =
I,...;k. Then the asynchronous algorithm (3) for which the relations (5) are

280 $. Trickovié, M. Trajkovié¢ and M. Petkovié

valid is locally convergent with the order of convergence at least 14, where
na is the only positive root of the equation

nr+1 — an = = 0, T = max ’J"(j, m, h) (b}

jym,h

Proof. Under the conditions of theorem we can find the constant A and
B so that |a;] < A and |B;;| < B. If at the iteration step m we define the
absolute error e, by em = ||20™ = (|| then from (5) we obtain

ems1 £ Cel ey with C=(n-1)AB. (7)

In regard to the assumed closeness of root approximations we can adopt that
¢o < 1. Then from (7) it follows that the sequence (€,,) tends to zero.
Let eg = O(E), where 0 < E < 1 and let the order of convergence of the

sequence (€,,) be 14, that is, €41 = O(e:f,f). Then

m-—r

Gy = (E”:l), Cm—r = ()(E”A Y. [r=0,1;... ,m).

From (7) we obtain
m m=r
= 1 _ N+
cvrr = QoL “tmer) = O{ETRHEY,

. . 2 m o+
According to the last relation and the fact that 41 = O(E" 1), by the
comparision of the exponents it follows

it = gy + 1.

Hence, 174 > 0 should satisfy the equation (6). O

Remark 1. Let y(n) = n™t!' — ¢y — 1. Since y(q) = —1 < 0 and
y(g+1) = (¢+1)"=1 > 0,and taking into account that the equation y(n)=10
has the unique positive root, it follows that the order of convergence 74 of
the asynchronous method belongs to the interval (q,q + 1]. Particularly, if
r=0forali=1,...nand m =0,1,..., which means that we have a
synchronous method, one obtains the order of this method s = ¢+ 1.

The lower bound of the order of convergence of asynchronous methods
as the function of the delay r is given in Table 1. We observe that r has
a very strong influence on the value of the convergence rate so that the
main problem which has to be solved in the implementation consists of the
minimization of the delay r.

Asynchronous methods for simultaneous...

281

T
g | 0 I 2 3 4
1 2 1.618 1.466 1.380 1:325
2 3 2.414 2.206 2.107 2.056
3 4 3.303 3.104 3.036 3.012
Table 1

The lower bounds of the order of convergence of asynchronous methods
in function of the delay r

5. Efficiency of implementation

In this section we will compare the implementation of an asynchronous
method and corresponding synchronous method on a hypercube multicom-
puter. Let Ny, and N, be respectively the number of iteration steps of
a synchronous and an asynchronous method. Evidently, the asynchronous
method will be more efficient if NasyTasy < NeynTiyn. By virtue of (2) and
(4) this inequality may be written as follows:

Nasy [(on? -{;:u(nz)

an? 4 o(n?)

)7atBetO(F)re] < Nugn [(L2

)rﬂ+Dﬂc+O(%)rc]. (8)

Since the relation 8. > 7. generally occurs ([4]) on distributed memory
computers, the inequality (8) becomes

an? 8,
Nuy Tk PP "
Ny an* 3,7 '
k T
This inequality will be considered together with the condition
2
-) (10)
T k

Namely, if 8./7, > an?/k, then it could be faster to use less processors in
the synchronous implementation (see [8]).
Eventual validity of the inequality (9) can be suitable verified by a graph-

N, B . - ;
ical interpretation in the plane (—ﬂ, /—) A typical graph is displayed in

syn Ta

282 S. Trickovié, M. Trajkovié¢ and M. Petkovié

Fig. 1. The intersection of the curve

an? N
DR 1— asy
ﬁc k (Nsyn)
T = N) (11)
a asy _ D
Ns_yn
and the horizontal bound line 8./, = an®/k, which are obtained from

(9) and (10) taking the sign ”=" instead of "<”, gives the area where the
asynchronous implementation could be faster (shaded area). Of course, this
area will be feasible only if the network topology is such that the ratio
f3./7a (dashing line on Fig. 1) is smaller than the bound value an?/k (full
horizontal line). In fact, the realistic area where the asynchronous algorithm
could be faster is bounded by the curve (11) and the realistic parametric
ratio B := B./7, (darker shaded area). This ratio usually belongs to the
interval [102,10%] (see [4]). But, these conditions are not still sufficient. Let
V is the critical ratio which is given by the absissa of the intersection of
the curve (11) and the dashing line, that is (from (9) for Bc/7a = R),
2
4+ DR
vt
il
2 +
Then the asynchronous implementation will be more efficient only if the ratio
Nasy/Nsyn can be realized in practice, that is, if Nasy/Neyn < V.

We give a short analysis for a theoretical value of the ratio Nasy/Neyn
taking into account the accuracy of the initial errors |3:('0) — (|, the required
accuracy 6 and the orders of convergence 7, and 75 of the asynchronous and
synchronous methods respectively. Besides, we assume that (complex) roots
of tested polynomials are normalized to lie in the unit disk. In that case, a
stopping criterion can be given by

11253511257”) -Gl <6=107",
where m is the iteration index and » is the number of significant decimal dig-
its at the approximations ng)’ e ,z,(,m). If |z£0) — (| = 0(107") and 7 is the
order of convergence of applied simultaneous method, then the (theoretical)
number of iteration steps, necessary for obtaining the accuracy é, can be de-
termined approximately as m 2 log v/ log (following from 107" = 1077™).
According to this we could expect that the ratio Nasy /Neyn be approximately

Nasy log s
Neyn Tog A"

e

(12)

Asynchronous methods for simultaneous. .. 283

Bc
logﬁ
4 -5
3 -
Be _ an’
a k
2 s
- Be _635
a
I =S
Nasy
Nsyn
0

Fig. 1 Dominant area of asynchronous implementation

Finally, from a theoretical point of view, an asynchronous method will be
more efficient than the corresponding synchronous method if

2
T
QT' E i o
logns/logna <V =-Lg— =14 ——.
Ll R ai o |
kT kR
References

[1] G.M. BAUDET, Asynchronous iterative methods for multiprocessors. J.
of ACM 2 (1978), 226-244.

[2] M. BEN-ORr, E. FrEIG, D. Kozin aNDp P. Tiwari, A fast parallel
algorithm for determining all roots of a polynomial with real roots. Proc.
ACM (1989), 340-349.

[3] D.P. BERTSEKAS AND J.N. TSITSIKLIS, Parallel and distributed compu-
tation - numerical methods. Prentice-Hall Inc. 1989.

284 S. Trickovié, M. Trajkovié and M. Petkovi¢

(4]

[10]

(11

[12]
[13]
[14]
[15]

(16]

[17]

(18]

L. BOMANS AND D. RoosE, Communication benchmarks for the iPSC/2.
Hypercube and Distributed Computers (Proc. I European Workshop on
hypercube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 93-104.

D. BraEess AND K. HADELER, Simultaneous inclusion of the zeros of a
polynomial. Numer. Math. 21 (1973) 161-165.

M. COSNARD AND P. FRAIGNIAUD, Asynchronous Durand-Kerner and
Aberth polynomial root finding methods on a distributed memory multi-
computer. Parallel Computing 9 (1989) 79-84.

M. COSNARD AND P. FRAIGNIAUD, Finding the roots of a polynomial on
an MIMD multicomputer. Parallel Computing 15 (1990) 75-85.

M. COSNARD AND P. FRAIGNIAUD, Asynchronous polynomial oot find-
ing methods. Research report 90-21, LIP-IMAG, Ecole Normale Supéri-
eure de Lyon, France 1990.

M. COSNARD AND P. FRAIGNIAUD, Analysis of asynchronous polyno-
mial root finding methods on a distributed memory multicomputer. IEEE
Transaction on Parallel and Distributed Systems (to appear).

M.R. FARMER AND G. Loizou, Locating multiple zeros interactively.
Comput. Math. Appl. 11 (1985) 595-603.

P. FRAIGNIAUD, Performance analysis of broadcasting in hypercubes. Hy-
percube and Distributed Computers (Proc. I European Workshop on hy-
percube and Distributed Computers, eds. F. Andre and J. P. Verjus),
North Holland, Amsterdam 1989, pp. 311-328.

T.L. FREEMAN, Calculating polynomial zeros on a local memory parallel
computer. Parallel Computing 12 (1989) 351-358.

T.I.. FREEMAN AND M.K. BANE, Asynchronous polynomial zero-finding
algorithms. Parallel Computing 17 (1991) 673-681.

H. GUGGENHEIMER, Initial approzimations in Durand-Kerner’s root find-
ing method. BIT 26 (1986) 537-539.

L.H. JaMIESON AND T.A. Ricg, A highly parallel algorithms for root
extraction. IEEE Trans. on Comp. 28 (1989), 443-449.

J.L. NICOLAS AND A. SCHINZEL, Localisation des zéros de polynomes
intervenant end théorie du signal. Reserach report, University of Lyon 1,
1988.

V. PaN, Sequential and parallel complezity of approzimate evaluation of
polynomial zeros. Comput. Math. Appls 14 (1987), 591-622.

M.S. PETKOVIC, Iterative methods for simultaneous incluston of polyno-
mial zeros. Springer-Verlag, Berlin-Heidelberg-New York 1989.

FACULTY OF ELECTRONIC ENGINEERING, P.O. Box 73, 18 000 Nis

FILOMAT (Ni§) 9:2(1995), 285-294

Filomat '94, Ni3, October 22-24, 1994
Geometry. Computer Sciences

COMPUTING PSEUDOINVERSES USING
MINORS OF AN ARBITRARY MATRIX

Predrag Stanimirovié

ABSTRACT. In this paper we establish a general determinantal representation of gener-
alized tnverses tn terms of minors of an arbitrary matriz of an adequate order. Then we
obtain a general algorithm for eract computation of different classes of pseudoinverses:
Moore-Penrose inverse, group inverse, left, right inverses and Radié’s and Stojakovié’s
tnverse. In this way, this paper is a generalization of an earlier paper [12], where an
algorithm for computing of the Moore-Penrose inverse, Radic¢’s and Stojakovicé’s inverse
s described. We also give some examples which illustrate our results.

1. Introduction

Let C**™ be the set of 7 X n complex matrices whose rank is 7. Con-
jugate, transpose and conjugate-transpose matrix of A will be denoted by

A, AT and A* respectively. Submatrix and minor of A containing rows

ay,...,a; and columns fy,...,3; will be denoted by A [g;g:} and

A (g: g:) respectively, and the algebraic complement corresponding to
the element a;; is defined by

Gy i Op—f § QpLr e @ _ O oo Qg1 Cpgy ... Oy
A (5 5T e) = (1A (31 LRI)
For any matrix A € C"*" | consider the following equations in X:
(1) AXA=A (2) XAX=X (3) (AX)*=AX (4) (XA)*=XA
and if m = n, also

(5) AX =XA.
1991 Mathematics Subject Classification. 68C05, 15A09, 65F05.

285

286 P. Stranimirovié

For a subset S of {1,2,3,4,5}, the set of matrices (7 obeying the conditions
represented in § will be denoted by A{S}. A matrix G € A{S} is called an
S-inverse of A and is denoted by A(S), In particular, for any A € C"*",
the set A{1,2,3,4} consists of a single element, the Moore-Penrose inverse
of A, denoted by A' [9]. In the case m = n, the group inverse, denoted as
A# of A is the unique {1,2,5} inverse, and exists if and only if ind(A) =
min{k : k> 0 and rank(A*t!) = rank(A*)} = 1.

The starting point of the investigations of this paper is the determinantal
representation of Moore-Penrose inverse, studied in (1], [2], [3], [4], [8]. The
main result of these papers is:

Theorem 1.1. FElement a:'j lying on the i-row and j-column of the Moore-
Penrose pseudoinverse of a given matriz A € CI"*" is given by

—f(a1 e J ...y XY eee] oeee Gy
A ; Aji .
1<,61<Z.;<,B,.<n (,6] P TS ,Br') 1 (,Bl swe ' B vau ,8,-)
t _ 1<a<...<a,<m (1<z’<n)
t) Z I(’;‘l ;fr A(‘;’l "‘5{1-)) .
1<6, <. <6, <n R L s O
]S'Yl<---<”frsm

Determinantal representation of the Group inverse of a singular n by n
matrix is introduced in [7]:

Theorem 1.2. The group inverse A¥ = (a?;-) of A € CI*™ has the follow-
ing determinantal representation:

Oy s i B Oy v J i @
Z AT(ﬂl : ﬁr)Ajl(ﬁ] A ﬁr)
1S&1<---<arsn 1 eee ees r 1 ees sas r
a# _ 1€p:1<...<fBEn
ij — P e ST 1 Ir
b A7 (g s)A(s s):
1€ <...<Y-En
1€6:<...<6,<n

For the sake of completeness, in the following definition we unify the
definitions of generalized inverses introduced by M. Radi¢ [10], [11], M. Sto-
jakovi¢ [13] and V.N. Joshi [5].

Definition 1.1. Let i, j be integers, 1 <i<n, 1 < j <m. Then the (1,7)-
th entry of Radié’s, Stojakovié’s and Joshi’s generalized inverse A € C**"
is defined by

(1he b)G+ bin) g ('1 wvi Jrawe ir)

Y ik T Lo BT L
125 <. . <ic . <ip Zm
a;;= —= . e , €€{-1,1}.
Z E(ﬂl+---+ﬂr)+(.ﬂ]+---+BV)A(B ﬁ)
1 o0 B

1< <...<a,.<m
1<p1<...<03-<n

Computing pseudoinverses using... 287

For € = 1, we get Stojakovié’s definition, and for ¢ = —1, we get Radié’s
definition.

Now, we describe the main results of the paper. First we define a general
determinantal representation for the Moore-Penrose, group inverse , and the
class of left and right generalized inverses. Later we describe algorithms for
exact computation of generalized inverses based on the introduced deter-
minantal representation. Finally, we give several examples which illustrate
presented theory and algorithms.

2. General determinantal representation

According to Theorem 1.1, Theorem 1.2 and Definition 1.1, we define
a general determinantal representation which includes the determinantal
representations of the Moore- Penrose pseudoinverse and the group inverse.
Also, this determinantal representation represents the class of left and right
inverses for full-rank matrices and generalized inverses introduced by M.
Stojakovié, M. Radié¢ and V.N. Joshi.

Theorem 2.1. For A € C**" determinantal representation of an (i, 7)-
element of an arbitrary left and right inverse, the Moore-Penrose pSeu-
doinverse, the group inverse, Radié’s and Stojakovic’s inverse is

=7 i § e, o0y QY wun] wes Oy
R 1 Aj :
I<Bl<§<ﬁi<“ (/31 ...z...ﬁ,) ! (81 e oL, ,Gf)
1< <...<a <m
(2-1) gij = — ! : =77 i G T ’
R)4)

b
1<61<n<hygn VO o 8 /T sy
IS <...<m<m

where R € C"*" and t = re(A) < r < min{m,n} is the greatest integer
which ensures DET(g 1 (A) # 0.

For the briefness sake, we denote the numerator of the expression (2.1)
by Agf’t) and call it the generalized algebraic complement corresponding to
element a;;. The denominator is shortly denoted by DET g (A), and it is
called the generalizd determinant.

Proof. Consider the following cases:

1. Suppose that t = m < n. Using the Laplace’s development for the
square-minors A (jl] ;:), we get

288 P. Stranimirovié¢

DET(rm(A) = Z. ﬁ(}l jj‘_;:) [iaijkAijk (; - }Z)} =
“Sa| Y B aa(ininn) =3 wal.
i=1

1< <Jm =1

For two integers p # ¢, 1< p,g<m, substituting in the minors of A
the ¢g-th row by the p-th row, and using

DET(rm)(A) = M;;(jmﬁ(;l) A (1) =i,

jm jl nen jm

The relation Y, a,p;AEf'm) = (can be proved in the same way. Hence,
=1
gi; = 6:;; DET rm)(A), and consequently A - A(_I%‘m) = I,,, for arbitrary R.

It means that A(“]% i) represents the class of right inverses of the full-rank

matrix A.

On the other hand, it can be proved that A(_Plz) in the case t = n < m,
represents the class of left inverses of A. Now, it is obvious that (2.1)
represents the general determinantal representation of right/left inverses of

a full rank matrix A.

2. For R = A, we obtain determinantal representation of A, presented in
Theorem 1.1. In this case, 7.(A) = r, which represents the known result in

(4].

3. Ifm=mn, ind(A)=1and R = A" the determinantal representation of
the group inverse is obtained (Theorem 1.2).

4. Ifr = r.(A) and a matrix R satisfies condition

F(;i - ;r) =K -e('-1+"'+"')+(j1+"'+j'), where K € C, ee{-1,1},

1 0
(1) for all combinations 1 <4 < ...<¢<my 1< h <...<ir<m,

then, in the case € = 1, the inverse A('Rl, " is equal to the Stojakovié’s inverse

and reduces to the Radi¢’s inverse in the case € = —1 (Definition Lay

5. If A is regular square matrix, then (2.1) reduces into the well known
inversion of regular square matrices, for an arbitrary regular matrix R of an
adequate size. O

Note that the partial cases 4. and 2. are studied in [12].

Computing pseudoinverses using... 289

3. Algorithms

In this section we give a high-level description of the algorithms for com-
puting generalized inverses. Theoretical base of these algorithms is contained
in Theorem 2.1.

In all presented algorithms complex and rational numbers are represented
by an adequate union in programming language C, called the internal form
of numbers. The internal form of a given matrix A is the two-dimensional
array or the binary tree of the internal forms of the elements of A. Addition,
subtraction, multiplication and division of complex or rational numbers in
the internal forms are denoted by & © © @, respectively (so called
makrooperations).

Various implementation details about the generating combinations are
presented in [6].

Here presented procedures receive the following global parameters:
¢ §: the actual value of DET gy (A).

o p(l:mn), ¢(l:n): The sequences representing combinations of rows
and columns of A respectively.

Now, we describe algorithm for computation of DET g 1)(A) of a rectan-
gular matrix A € sz“‘, such that ro(A) = k. In the algorithm a combination
I<q <...< g <nof rows or columns of A is fixed.
procedure Di(n,k,z,y,lq)

¢ n,k < n: The number of rows and number of columns.

© z,y: The internal forms of A and R respectively.

¢ lg: The indikator.
begin

Step 1: p(l:k) — (1:k);

Step 2: A while cycle which terminates when all the combinations

I <p1 <...<pp <n are generaed.
Step 2.1: Compute det(M) and det(M), using z and y, where

AT %], lg=1 R[B =P lg=1
(P ’) _
M = A[Pl---?’k]’ lg=2 , My = R[m---pk]’ lg=2
Py - Pk P1o-. Pk .
A[‘i"“"“]’ lg =3 R[!h---qk]’ ig=4.

Step 2.2: § «—— 5@ det (M,) ® det(M).
Step 2.3: Generate a new combination 1 < Pi K . KPR S M
end D,

290 P. Stranimirovic¢

In the following procedure D, is described the algorithm for computa-
tion of DET(r,)(A), where A € C™*™ is a matrix, such that [= r.(A4) <
min{m,n}. The main part of this algorithm is a cycle generating all combi-
nations 1 < g; < ... < ¢ < n and calling the procedure Dy(m,l,z,y,3).

procedure D;(m,n,l, z,y)
o m,n: The number of rows and the number of columns respectively.
o l=rA) < min{m,n}.
o, y: The internal forms of A and R, respectively.
begin
Step 1: ¢(1:1)— (1:1);
Step 2: An while cycle, which terminates when all of the combinations
1<q <...<q <nare formed. In the cycle perform:
Step 2.1: Dy(m,l,z,y,3);
Step 2.2: Generate a new combination 1 < ¢ < ... < g < n.
end D,

Finally, the algorithms D; and D are used in the following procedure D,
which computes D ET(g) (A), for t = r.(A).

procedure D(l,m,n,z,y)
o | =r.(A): Dimensions of square submatrices of A and R.
o m,n: Dimensions of the given matrix A.
begin
S—20
if [=n < m then Dy(m,n,z,y,1)
else if [= m < n then Dy(n,m,z,y,2)
else Dy(m,n,l,z,y)
end D

In the following procedure I, we describe the algorithm for exact compu-
tation of generalized inverses.

procedure I(m,n,z,y,G) { Computing the generalized inverse G of A.}
o m,n: The number of rows and number of columns of A, respectively.

o z,y: The internal forms of A and R, respectively.
o G = (gi;) : The internal form of computed generalized inverse of A.

begin
Step 1: t«— rank(A)+1
repeat
t—t—1; D(t,m,n,z,y)
until S #0

Step 2: p(1:1) — (1:1); q(1:t) «— (1:1);

Computing pseudoinverses using...

Step 3:
for w=1:ndo
for v=1:m do
Step 3.1: suma — 0
Step 3.2:

A while cycle over the combinations 1 <Sp<...<;m<m
A while cycle over the combinations 1 Sa<...<q<mn

In the while cycles perform step a, step b and step c.
Step a: if (g[k] = w) and (p[l] = v) then
{lek<t, 121t

q1 - 9y q1 .-

291

Step a.1: Form R [pl p‘], A [p‘ z:J, using y and z.

Step a.2: suma — suma® R (E: z:) 0 Ay (Z:

Step b: Form a new combination 1 <@ <...; <n
Step ¢: Form a new combination 1 <m<...;p<m
Step 3.3: gy, «— suma @ §
end [

4. Numerical examples

)

If a matrix R runs over the set of m by n matrices, in (2.1) we get various

definitions of generalized inverses.

(Rur) is

1. If r = r.(A) and a matrix R satisfies condition (1), then A}
equal to the Stojakovié’s inverse, i.e. the equivalent Joshi’s inverse, in the
case € = 1 and the Radic’s inverse, in the case ¢ = —1.

11 23
o B g
’ ; 2 15 :
For example, consider the matrix A = (s) 234). Using R =
20 T 7 233

(% (1] —6) we get the following Stojakovié’s inverse of A:

58600 619780
440191 1320573

fi_l _ 139335 366975
(R,2) — 880382 440191

22135 1720705
880382 1320573

Using fixed point representation for the elements in A, e,

A= (5.50000000000000000 1.53333333333333344 1.00000000000000000
— \0.14999999999999999 —0.28571428571428569 1.00429184549356232

and the same matrix R we get the following Stojakovié’s inverse of A:

. 0.1331240302505049270 —0.4693265726317288330
A(_R 2) = (0.1582665‘252129189510 0.8336722013853078430 | .
' 0.0251424949624140422 1.3029987740170365700

),

292 P. Stranimirovié

2. Furthermore, if R = A satisfies (1), then A(_I%'T) = A', and both gen-

eralized inverses are identical to the Stojakovié’s or the Radié’s generalized
tnverse.

5729 5729 0
327 327
' = 4 e 5729 5729 ;
Concertly, for R = A = 0 35 357 | we get the following
_ 5729 0 _5720

327
Moore-Penrose inverse of A, which is identical to the Stojakovié’s inverse of
A:

2008044837 0 - 2008044837
256295929 256295929
A-1 _ At — | 2008044837 2008044837 0
ARz = = 256295929 256295929)
') 2008044837 2008044837
256205929 256205929
mXn = -1 =
3. TAeCr*" and R = Aweget Ap)= At
175 g 1B
3 73
g L Ll
For example, if weuse R=A=| ;75 ¥ &% |, then is obtained
46 13 46
o L 1Ll
13 23
192878339 201395239 4258450 201395239
497627891 995255782 197627891 995255782
A-l = At = 1684865000 _ 1263648750 _ 421216250 _ 2263648750
(R2) = = 197627891 497627891 197627891 497627891
_ 655721205 _ 1075979571 1281633260 _ 1075979571
197627891 995255782 995255782 995255782
4. For a square matrix A, such taht ind(A) = 1 and B = A* we get
-1 o e -
ARm) = A#. For example, let
. 275 .
21.93 — 3 4. 9.13570 + 2950.847251
. 35917
11.35 35'73138?11 0 1221%24‘%0 _
= 257384 12 + 15i AT, |y B gk
23 5762403
. 183294
159384 — 1351 109825.23 0.000579
7359
Using R = A*, we get the following group inverse, approximately:
—0.006 — 0,011z —0.00003 4 0.00001: 0.000004 + 0.0000012 0
_ —0.029 +0.011: 0.00002 4+ 0.00007t —0.000004 + 0.0000011: 0.00001
- 167.245 — 23.2311 - 0.05330 — 0.392651 —0.0109 4 0.0004: —0.0057 — 0.000732
0.000001 0.000001 0 0
1..00..0
p mXn . — 0..10..0 _ (L0 mXn
5. ForAeC using R = iy —(@@ eC , we

obtain

Computing pseudoinverses using... 293

DET(rn(4) = A(} 7)),

and the following algebraic complement of the element Gyt

(Rir) 0, forg>rori>r
Aij' = A 1 wes @ il
Ajily ;) forji<r,
Generalized inverse of A is equal to
y y R o)RR s
(i) o an(Gnn) 0 o
- _ A Lwis # e T
r 0 0 0 0
0 0 0 0
13 5 476
56 115 53 14 b
L 372 2B ; b
Concretly, for A = 3{ 14 3% | and R = 301 the following
_' 3 17
12 1 0 000
. - . 13 . -
right generalized inverse of A is obtained :
10652600 _ 8558144 _ 1364947612
6188751 80453763 26817921
A=l — 35980 _ 3615752 7448669
(R2) — 2062917 8939307 160907526
76388480 7857808 _ 1097248)
18566253 6188751 6188751

5. Conclusion

The memory requirements of the above presented procedures for A €
Cr*™ are two ro(A) X 7.(A) matrices. The advantage of the presented
algorithms is in their generality, induced by theoretical weight of Theorem
2.1. The efficiency of these algorithms is identical to the efficiency of the
algorithms presented in [12].

References

(1] ARGHIRIADE, E. DRAGOMIR, A., Une nouvelle definition de I'inverse generalisée
d’une matrice, Lincei - Rend. Sc. fis. mat. e nat. XXXV 35 (1963), 158-165.

[2] BEN-ISRAEL, A., Generalized inverses of matrices: a perspective of the work of
Penrose, Math. Proc. Camb. Phil. Soc. 100 (1986), 407-425.

[3] GaBriEL, R., Extinderea complementilor algebrici generalizati la matrici oarecare,
Studil si cercetari matematice 17 -Nr. 10 (1965), 1566-1581.

[4] GaBrIEL, R., Das verallgemeinerte Inverse einer Matrir, iiber einem beliebigen
Kérper - analytish betrack!et, J. Rewie Ansew Math. 244(V), (1970), 83-93.

294

(5]

(6]
(7]

P. Stranimirovi¢

JosHi, V.N., A determinant for rectangular matrices, Bull. Australl. Math. Soc.
21 (1980), 137-146.

Lipskr, W, Combinatorics for Programmers, Mir, Moscow, 1988. (in Russian)
MANJUNATHA, K.P., BHASKARA RA0 AND BapaT, R.B., Generalized inverses over
integral domains. II. Group inverses and Drazin inverses, Linear Algebra Appl. 146
(1991), 31-47.

Moorg, E.H., General Analysis, Part I. The Algebra of Matrices, (compiled and
edited by R.W. Barnard, The Amer. Philos. Soc., 1935.

PENROSE, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51
(1955), 406-413.

RADIC, M., Inverzija Pravokutnih Matrica, Doktorska disertacija, 1964.

RADIG, M., A definition of the determinant of a rectangular matrir, Glasnik ma-
tematicki 1(21)-No. 1 (1966), 17-22.

STANIMIROVIG, P., STANKOVIC, M., Computing pseudoinverses of rectangular ma-
trices in terms of square submatrices, VIII Conference on Applied Mathematics,
Tivat (1993), 207-216.

Stosaxkovié, M., Determinante nekvadratnih matrica, Vesnik D.M.N.R.S. 1-2
(1952), 9-21.

UNIVERSITY OF N13, FAcUuLTY oF PHILOSOPHY, DEPARTEMENT OF MATHEMATICS,
CIRILA T METODLIA 2, 18000 NIS, YUGOSLAVIA

FILOMAT (Nis) 9:2(1995), 295-302

Filomat ’94, Nis, October 22-24, 1994
Geometry. Computer Sciences

ON TRANSLATING MODULA-2 PROGRAMS TO C:
LOCAL PROCEDURES AND MODULES

Lehel Szarapka and Dragan Masulovié¢

ABSTRACT. This paper demonstrates techniques that enable efficient translation of Mo-
dula-2 programs to C. It Jocuses on a key problem that appears during translation: local
procedures and modules. The techniques are presented via examples. For the sake of
readability, instead of C' a subset of Modula-2 (called Flat Modula-2) is used as a target
language.

Introduction

Modula-2 [1] is a high-level programming language designed by Prof.
Niklaus Wirth at the ETH, Ziirich. Its key design goal was simple and
elegant support of modular programming which is the most important step
towards programming in the large.

C [2] is a low-level programming language designed to help reimplemen-
ting UNIX!. In spite of its consistent inconsistency and poor design, C is
a wide spread programming language. Because of that, it has been recog-
nized lately as a platform independent assembly language thus giving rise
to a slightly different approach to compilation: translation to C as a target
language. Such compilers are more portable than “classic” compilers, even
those which choose a form of pseudo code as a target language.

Following the tradition of Algol-like languages, Modula-2 admits decla-
ration of procedures and modules local to other procedures. On the other
hand, C does not allow declarations of functions local to other functions.
Thus local modules and procedures present a key problem that a translator
to C has to take care of [3, 4]. This paper presents a set of techniques that
solve the problem.

1991 Mathematics Subject Classification. 68N20.

Key words and phrases. translation, nested procedures, nested modules.
'UNIX is a trade mark of AT&T Bell Labs

295

296 Lehel Szarapka and Dragan Masulovié

For the sake of readability, instead of C a subset of Modula-2 (called
Flat Modula-2) is used as a target language. Flat Modula-2 does not allow
declarations of modules, procedures, types and constants local to other pro-
cedures. Thus, translation of Flat Modula-2 programs to C is an one-one
mapping and shall not be discussed here because there are several public
domain translators from restrictions of Modula-2 (similar to Flat Modula-2)
to C (e.g. [4]). Some examples of translating Flat Modula-2 to C can be
found in Appendix A.

The rest of the paper is organized as follows: Section 1 describes two
major techniques upon which the translation process is based. Section 2
handles constant and type declarations, Section 3 handles local procedures,
while Section 4 discusses local modules. Section 5 concludes the paper.

1. Two major techniques

The translation process is based on two major techniques:

(1) globalization of local entities that are not local variables and
(2) systematic renaming.

The basic idea is simple: all the local entities (except local variables) are
taken out of the procedure declaration and are declared globally. This is the
only way to take care of local procedures and modules. At the same time,
globalization gives an elegant solution to local type and constant declara-
tions. In order to prevent name clashes, a systematic renaming is performed.
Because names are of no relevance to the compiler, a brute force approach
can be employed. We would like to stress that the resulting code can be
compiled as efficiently as the original code.

Naturally, several well known techniques are used to support the basic
ideas: symbol table, extension of procedure signatures, dependency analysis
__Instead of a formal treatment, the fundamental ideas shall be presented
through examples.

2. Constant And Type Declarations

Constants and types declared in a procedure are taken out of the pro-
cedure and are declared as global entities. For example, see Figure 1 (the
‘dentifier X' is a renamed identifier X). This is an example that gives also
a4 motivation for the approach. The translation process makes procedure Q a
global procedure. Thus, both constant C, and type T) (modulo renaming)
have to be declared as global entities.

3. Local Procedures

Let us recall that all local procedures are taken out of the procedure

On Translating Modula-2 Programs to C . .. 297
(* Modula-2 code *) (* Flat Modula-2 code *)
MODULE M; MODULE M;
CONST Cp = ...; CONST C) = ...;
TYPE Ty = ...; TYPE T = ...,
CONST ('} = up";
PROCEDURE P(...); Tl oTYeE T = L.
CONST Cy = "A";
TYPE Ty = ...; PROCEDURE Q(a : 7Y; n: CHAR);
VAR x : Ty; BEGIN
PROCEDURE Q(a : i e
n : CHAR); END Q;
BEGIN
S PROCEDURE P(...);
END Q; VAR x : T{;
BEGIN BEGIN
Qlx, C1); Qlx, €C{);
END P; END P;
END M. END M.
Fig. 1: Constant and type declarations
(* Modula-2 code %) (* Flat Modula-2 code *)
MODULE M; MODULE M;
VAR x & ...; VAR % = s
PROCEDURE P; PROCEDURE Q(z:...; VAR y : o) 3

VAR y : ...;
PROCEDURE Q(z:.
BEGIN

¥ 5wy
X IS el
END Q;

BEGIN
Q(7)

END P;

END M.

BEGIN

-3 ¥ 5% inug

X 1T ...
END Q;

PROCEDURE P;
VARy : ...;
BEGIN

Q7, y)
END P;

END M.

I'ig. 2: Side effects

298 Lehel Szarapka and Dragan Masulovi¢

(* Modula-2 code *) (* Flat Modula-2 code *)
MODULE M; MODULE M;
VAR X T <::5 VAR 'x 3 ...:3
PROCEDURE P; PROCEDURE Qi(z : ...;
VARy : ... VAR y : ...);
BEGIN
PROCEDURE Q1(z : ...); ¥y o= ..
BEGIN END Q1;
yoi= ...
END Q1; PROCEDURE Q2(u : ...;
VAR y : ...);
PROCEDURE Q2(u : ...); BEGIN
BEGIN Qi(10, y)
Q1(10) END Q2;
END Q2;
PROCEDURE P;
BEGIN VAR y : -<.;
Q1(6); BEGIN
Q2(7) Q1(6, y);
END P; Q2(7, v)
Y- END P;
END M. G
END M.

Fig. 3: More side effects

they are declared in and are made global entities. This raises a couple of
problems:

(1) (mutually) recursive procedures and
(2) side effects.

3.1. (Mutually) Recursive Procedures.

Recursive procedures are handled easily, because C supports recursive
procedure calls. Mutually recursive procedures are detected using standard
dependency analysis algorithm and are translated to a sequence of C proce-
dures preceeded by a set of prototypes.

3.2. Side Effects.
Local variables, of course, remain local. The problem arises when nested
procedure uses local variable whose nesting level is less then or equal to

On Translating Modula-2 Programs to C . .. 299

(* Modula-2 code *) (* Flat Modula-2 code *) W
PROCEDURE Q; PROCEDURE Q;

Decls for @

Consts, Types & Vars|

MODULE M1; -

LCon.sts, Types & Vm‘s] BEGIN
Body of 1]

BEGIN Body of Q

END Mi;

BEGIN

END Q;

Fig. 4: Local modules

the nesting level of the procedure itself (this situation is known as a side
effect). After globalization of a nested procedure, local variable declared in
the surrounding procedure is no longer available to the globalized procedure.
Consider an example given in Figure 2. Procedure Q changes the variable y.
After globalization, procedure Q does not have access to variable y.

The best solution is to extend the signature of (previously) nested proce-
dure and to pass the variables as VAR parameters. This change is recorded in
symbol table in order to extend the signature in procedure calls as well. In
our example this means that after globalization another formal parameter
has to be introduced to procedure Q.

Unfortunately, the problem is not as simple as it has just been presented.
There are situations in which a local procedure does not have side effects,
but it depends upon other local procedures which do have side effects. Sig-
natures of such local procedures have to be extended, too, in order to obtain
correct translation. These situations are easily discovered (an unavoidable
dependency analysis does the job), and are recorded in symbol table. As
an example, consider the module and its translation given in Figure 3: al-
though procedure Q2 does not change variable y, it calls procedure Q1 that
does change the variable. This is why the signature of procedure Q1 has to
be extended, too.

300 Lehel Szarapka and Dragan Masulovi¢

4. Local Modules

Local modules serve only one purpose: to regulate the visibility and acces-
sibility of identifiers. Systematic renaming and symbol table book-keeping
during the translation process can take care of these tasks. Therefore, the
translation of local modules is straightforward: the module bounds are bro-
ken. the identifiers renamed (having in mind the IMPORT/EXPORT lists) and
the declarations are included in the surrounding environment. The body of
the local module is moved to the beginning of the body of the surrounding
entity (another module or procedure). Thus, the semantics of the initial-
ization part of the module is preserved, as well as the initialization order.
After all the local modules are removed, previous procedures can be applied
to flatten the code. All these ideas are demonstrated in the example in
Figure 4. It shows a procedure and its translation.

5. Conclusion

The paper has presented basic ideas upon which a translator of Modula-
2 programs to C can be based. It has payed attention to translation of
procedures and modules local to other procedures and modules, because
other Modula-2 language constructs are easily translated to equivalent C
constructs. Systematic renaming and globalization of local entities have
appeared as key techniques in the process of translation.

The translation process requires two passes. In the first pass the symbol
table has to be constructed and all the dependency analyses performed. The
first pass can also break local modules and take care of renaming. After the
first pass has been completed, the code can be generated in the second pass.
Since all the checkings and analyses have been performed in the first pass,
the second pass can be carried out very quickly.

Appendix A: Translating Flat Modula-2 to C

In this appendix some Flat Modula-2 programs are translated to a C
equivalent just to give the reader a raw idea how the task can be performed.

On Translating Modula-2 Programs to C ... 301

(* Flat Modula-2 code #*) /* C code */
MODULE M; #define C
CONST Cj§ = ...; typedef ... T};
TYPE T] = ...;
void P(...) {
PROCEDURE P(...); - BS
BEGIN
}
END P; int main() { ... }
END M.
(* Flat Modula-2 code %) /* C code */
MODULE M; o X2
VAR x ¢ ...
void Q1(... z; ... *xy) {
PROCEDURE Q1(z:...; VAR y:...); Xy = ...
BEGIN)
¥ S8 sue
END Q1; void Q2(... u; . *y) {
Q1(10, y)
PROCEDURE Q2(u:...; VAR y:...); }
BEGIN
Qi(10, y) void P(void) {
END Q2; -y
PROCEDURE P; Qi(e, &y);
VARy : ...; Q2(7, &y);
BEGIN }
Qi(ss Y) i
Q2(7, y) int main() { ... }
END P;
END M.
References

[1] N. WIRrTH, Programming in Modula-2, 4th Ed., Springer-Verlag, Berlin, 1988.
[2] B. W. KERNIGHAN AND D. M. RrircHIE, The C Programming language, Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.

[3] N. SuNDARESAN, Translation of Nested Pascal Routines to C, SIGPLAN Notices,

May 1990, pp. 69-81.

302 Lehel Szarapka and Dragan Masulovié

[4] M. MARTIN, Entwurf und Implementierung eines Ubersetzers von Modula-2 nach C,
Diplomarbeit, Universitat Karlsruhe, Fakultat fiir Informatik, 1990.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF Novi SaD, TRG DosITEJA OBRADO-
viéa 4, Novi SAD, YUGOSLAVIA
E-mail address: ilehel@unsim.ns.ac.yu

INSTITUTE OF MATHEMATICS, UNIVERSITY OF Novi SAD, TRG DoSITEJA OBRADO-
vIGCA 4, Novi SAD, YUGOSLAVIA
E-mail address: masul@unsim.ns.ac.yu

FILOMAT (Nis) 9:2(1995), 303-313

Filomat 94, Nig, October 22-24, 1994
Geometry. Computer Sciences

DETERMINING MODULE DEPENDENCIES
IN MODULAR PROGRAMS

Lehel Szarapka and Zoran Budimac

ABSTRACT. A short and precise algorithm for determining a module initialization or-
der in modular programming languages is described. This algorithm is compared with a
classical technique of dependency analysis of module names. It is also shown how an
algorithm for determining a module compilation order is drawn from a given algorithm,

1. Introduction

Modular programming languages enable division of a program into a set
of modules that limit the scope of their identifiers. In this way is the design
and maintenance of large programs easier, especially in team pro jects.

An identifier from module A4 is visible in module B if it is exported from
module A and imported in module B. Exporting and importing of identi-
fiers is achieved by specialized programming language constructs. Among
the most popular modular languages (Ada, Modula-2, Modula-3, ...) the
definition of (every) module M consists of (at least) two parts:

(1) an interface (or definition module, package specification, ...) of the
module M, which lists all identifiers which module M exports,

(2) an implementation (or simply module, package, ...) of the module M,
which implements (i.e., defines exported identifiers) the interface of
module M,

In the rest of the paper we shall assume that a main (i.e., program) module
contains a “dummy” interface. In this way all modules have interface and
implementation parts. An implementation of a module can have (possibly

1991 Mathematics Subject Classification. 68N20,
The second author is supported by Science Fund of Serbia, Grant #0403 through
Mathematical Institute, Belgrade.

303

304 Lehel Szarapka and Zoran Budimac

empty) initialization part: the sequence of statements to be executed before
the main program starts its execution.

Both interface and its implementation can import identifiers from other
modules, via the special language constructs (import lists). The scope of the
imported identifiers is only the module that has imported them.

Implementations of truly modular programming languages (Ada, Modula-
2. Modula-3, Oberon, Oberon-2) should keep a complete “bookkeeping” of
their modules to correctly maintain a module compilation order and initial-
ization order. Implementations of other programming languages that only
enable independent compilation (C, C++) are usually supported by separate
utilities (for example make) to do the same task.

In this paper the algorithms for both activities are presented. It is shown
how the algorithm for determining compilation order can be successfully
drawn from an algorithm for determining initialization order, thus merging
two activities into only one. The main contribution of the paper however is
a construction of a small and efficient algorithm that can be included into
a compiler of a modular language, which precisely determine the module
initialization order. This is especially important in the presence of circular
dependencies among modules, where many programming languages allow
uncertainty.

The rest of the paper is organized as follows. The second section empha-
sizes the importance of the module compilation and initialization order and
different approaches to its determination. The third section describes de-
pendency analysis - a “classical” technique for determination of dependency
order. The fourth section introduces the new algorithm, while the fifth sec-
tion compares two approaches. The sixth section extends the algorithm for
initialization order to an algorithm for compilation order. The last section
concludes the paper.

2. Definitions and previous work

2.1 Initialization order.
According to definitions of all modular programming languages, an ini-
tialization part of every implementation of a module M is to be executed:
(1) exactly once,
(2) after initialization parts of all modules (in arbitrary order) which
module M imports, and
(3) before execution of the main program.

Definition 1. Initialization order is the order in which all modules consti-
tuting the program are initialized, such that the above three conditions are

fulfilled.

Determining Module Dependecies in Modular Programs 305
|

Example 1. Let module A import modules B, C and D, and modules B,
C' and D import nothing (which means, that they are independent of other
modules.) The initialization order is the following: (B, C, D), A, where the
order of B, C' and D is arbitrary.

In languages where mutual imports (i.e., circular dependency) of mod-
ule implementations is allowed, the initialization order is undefined (see for
example [7] and [3] for Modula-2 and Modula-3 respectively.)

Example 2. Let module A import modules B and D, module B import
module ', module €' import module E and module D is independent. The
structure of the modules is the same as in Figure 1 except that modules '
and D are not connected. The possible initialization orders are the following:
E,C,B, D, A or E,C, D, B, Ayor E, D, C, B, A, or D, E, C, B, A.
Note that module E is always initialized before module €', and module ¢

is always initialized before module B. Module D must be initialized before
module A.

In real programming projects, circular dependencies among module im-
plementations are not rare. If in such cases the initialization order is not
defined, the programmer alone must take care of the correct and explicit
initialization, to produce reliable and portable code (which is not in the
“spirit” of modular programming languages.)

Example 3. Let module A import module B, module B import module
C" and module C import module B (circular dependency among modules B
and C.) Initialization order is the following: (B, C'), A, where initialization
order of modules B and (' is not defined. Note the difference between this
example and Example 1, where initialization order of modules B, C' and D
was arbitrary (and always correct.) In this example the order chosen by the
target compiler might be “incorrect”, i.e. different from the programmer’s
intentions.

2.2. Compilation order.
According to definitions of all modular programming languages, an inter-
face of module M is to be compiled:

(1) before compilation of implementation(s) of module M and
(2) after compilation of all interfaces that the interface of M imports.

Similarly, an implementation of module M is to be compiled:

(1) after compilation of interface(s) of module M and
(2) after compilation of all interfaces that the implementation of M im-
ports.

306 Lehel Szarapka and Zoran Budimac

Definition 2. Compilation order is the order in which all modules con-
stituting the program are compiled, such that the above four (two + two)
conditions are fulfilled.

Example 4. Let module A import modules B and D, module B import
module ', module C' import module D and module D is independent. The
compilation order is the following: D, C, B, A.

In order to make a compilation a deterministic process, circular depen-
dencies among interfaces are not allowed. Note that circular dependencies
among module implementations are allowed.

Example 5. Let module A import module B and module B import module
A. In this case the compilation order can not be established, because it is
not clear which module should be compiled first.

2.3. Previous work.
Most of the research and publicly available compilers of modular pro-
gramming languages:

(1) rely on external tools to establish compilation order and
(2) separately deal with compilation order and initialization order.

For example, MOCKA Modula-2 compiler [4] provides a separate utility
which maintains the dependency graph to establish correct compilation order
of modules. Modula-2* compiler [6] uses also dependency graph to estab-
lish compilation order, but later relies on Unix make utility to maintain it.
Modula-2 implementation described in [5] leaves the responsibility of the
compilation order to the programmer.

Almost all publicly available compilers implement initialization parts of
modules as separate procedures which are called in order of their appearance
in import lists. To avoid multiple calls, an indication variable for every
module is set to TRUE, when initialization procedure is called.

Algorithms and strategies for determining compilation and initialization
order are not publicly available in commercial implementations of modular
programming languages.

In the next section we describe in more detail dependency analysis, as
a tool for establishing correct dependencies. Up to the sixth section, we
concentrate only on algorithm for determining initialization order.

3. Dependency analysis

Dependency analysis is a classical technique applied when exact depen-
dency between some entities is to be determined. As stated in [2], it consists
of the following three steps:

(1) construct a directed graph (dependency graph), such that a node a

Determining Module Dependecies in Modular Programs 307

is connected to a node b if and only if the entity a in a real world
domain depends on entity b,
(2) find all strongly connected components of the dependency graph,
(3) sort strongly connected components of the dependency graph into
dependency order. This is usually achieved by coalescing all compo-
nents into single nodes and by sorting them topologically.

The graph transformed in the described manner shows dependencies be-
tween entities represented as graph nodes, where all nodes coalesced into
one node are mutually (i.e., circularly) dependent. More details about the
construction of dependency order can be found for example in [1] p. 221.
The graph for determining module dependencies consists of module names
(as nodes of the graph) and links between them. More formally, the initial
graph (step 1 of the above algorithm) is constructed in the following way:

(1) Construct a graph which consists of isolated nodes M;,i = 1,..,n
where M;,i = 1,...,n are module names,
(2) Connect M; to M; if and only if module M; imports module M;.

?

Circularly dependent module names can be initialized in any order (which
is in accordance with definitions of most modular languages.)

Dependency analysis is time and space consuming, no matter how effi-
ciently graphs are represented (see the fifth section for details.) Dependency
analysis is therefore not very suitable in direct inclusion in compilers. In the
next section we proceed with a description of a more efficient solution.

4. Another solution

Basic design decisions of the new solution are:

(1) In the absence of circular depen dencies, dependency analysis is equiv-
alent to (much more efficient) depth-first search of a graph.

(2) Therefore, circular dependencies have to be resolved in a determin-
istic way, if possible.

The most natural way to resolve circular dependencies in a deterministic way
iIs to establish a precise initialization order. A natural solution is to initialize
modules in the order in which they appear in import lists. However, the
rule that initialization of a module must be executed after initialization of
all imported modules, must be obeyed. For example, if main module M
imports module A, module A imports module B and module B imports
module A, then the initialization of module B is to be executed prior to
initialization of module A.

Once accepting this principle, an algorithm is simple and straightforward.
The Modula-2 (pseudo-)procedure Analyzet implements the proposed algo-

308 Lehel Szarapka and Zoran Budimac

rithm. The following variables and procedures are used:

(1) initialization - a list of module names in the initialization order,

(2) InsertBefore(M,Module,List) - a procedure which inserts module
name M before the module name Module in a list List,

(3) Member(M,List) - a function procedure which returns logical truth
value TRUE if name M belongs to a list List,

(4) Intf0f(M) - a function procedure which returns the name(s) of the
interface(s) of module M, and

(5) ImplOf(M) - a function procedure which returns the name(s) of the
implementation(s) of module M.

We shall assume that Intf0f (Impl (module)) is undefined, i.e. returns a
null value, and that Impl (Impl (module)) = Impl (module).

Prior to calling Analyzel, the list initialization contains only the
name of a (main) module implementation. The procedure is as follows.

PROCEDURE Analyzei(module: ARRAY OF CHAR);
FOR every import list of module DO
FOR every module name M in import list DO
IF NOT Member(ImplOf(M), initialization) THEN
InsertBefore(Impl0f (M), module, initialization);
Analyzel(Impl0f(M))
END
END
END

After procedure Analyzel returns, the list initialization contains the
list of module names in their initialization order. Note that initialization or-
der depends only on module implementations, and not on module interfaces.

5. Comparison of two algorithms

Our algorithm gives the same initialization order as dependency analysis,
if circular dependencies are not present among modules. However, when
circular dependencies are present, our algorithm sometimes gives a different
initialization order than dependency analysis.

In the example of module dependencies displayed in Figure 1, A imports B
and D (in that order), B imports C, C imports D and E (in that order), and
D imports C'. Dependency analysis gives the following initialization order:
E,(C, D), B, A, where the order of C and D is arbitrary. Our algorithm
however, gives the slightly different, but deterministic initialization order as
follows: D. E,C, B, A. If the order of imported modules of module C' were

Determining Module Dependecies in Modular Programs 309

—

R
= |

4/'
;-

(£]

Figure 1. An example of module dependencies

changed into E and D (instead of D and E. as displayed), our algorithm
would give the following order: E, D, C, B, A, which is same as the result
of dependency analysis, but is deterministic. If A would import D before B,
the initialization order would be E,C, D, B, A, no matter what imports
first, which is again the same as a result of dependency analysis.

Dependency analysis has a computational complexity of Q(n?), where n
is a total number of modules. Qur algorithm has complexity proportional
to hn, where h is the deepest possible nesting level of modules constituting
the program. Since in most cases h < n, the complexity of our algorithm
is O(n). Only in degenarate cases (when h = n), the complexity of our
algorithm is equal to the complexity of dependency analysis.

However, in reality (i.e., when n is finite) performances of our algorithm
are much better than those of dependency analisys (and better than com-
putational complexity shows.) In the following table some characteristics of
both approaches are compared. Compile-time sizes of implementations of
both approaches are given in the number of lines of source (Modula-2) code,
while the run-time size is given in bytes. Graphs in dependency analysis are
implemented as adjacency matrices of static size, but appropriate dynamic
implementation would not be much smaller.

310 Lehel Szarapka and Zoran Budimac

Feature Dependency Our

Analysis Algorithm
Speed (29 modules) 4.40 sec 0.72 sec
Speed (21 modules) 3.41 sec 0.55 sec
Code size (Compile-time) 555 lines 35 lines
Code size (Run-time) 4450 bytes 800 bytes
Data size (Run-time) 340n bytes n+16h bytes

6. Compilation order

The algorithm for determining compilation order can be easily obtained
by the appropriate extension of the algorithin for determining initialization
order. Since circular dependencies are not allowed in interfaces of mod-
ules, our algorithm will always give the same results as dependency analysis.
Let us recall that for establishing initialization order only module imple-
mentations are taken into account. In order to produce an algorithm for
determiming compilation order, however,

(1) module interfaces have to be taken into account as well, and

(2) a list of visited module names has to be maintained to report any

violation of circular dependency restriction.

Besides the already introduced variables and procedures, the following new
variable and procedures are needed for the implementation of a new algo-
rithm:

(1) visited - a list of visited interface names which are imported from
interfaces,

(2) InsertFront(M, List) - inserts module name M at the front of a
list List,

(3) RemoveFront(List) - removes a module name from the front of a
list List (the above two operations are analogous to the Push and
Pop operations on stacks), and

(4) MakeEmptyList() - returns an empty list.

If the procedure Analyze is to be called to determine compilation order, the
list initialization has to contain the module name to be compiled. If the
procedure Analyze is to be called to determine initialization order, the list
initialization has to contain Impl(module). The parameter check is set
to TRUE il an interface is to be analyzed.

At the beginning the list visited is always set to an empty list and is
made local to the module. This is important because of the detection of
the circural dependencies. When we analyze an implementation module a

Determining Module Dependecies in Modular Programs 311

new list will be created, and a new compilation order check will start. The
algorithm for determining initialization order is not affected.

Because of features of procedures Intf and Impl, the Member (Intf
(module)) (seventh line of the following procedure) returns TRUE if a mod-
uleisaninuﬂeuunnaﬁnn1uoduh(h9uumoadudlvMueisalnemberofevmw
list.) Similarly, FOR loop (18th line of the following procedure) will execute
only once (for implementation part only).

PROCEDURE Analyze(module: ARRAY OF CHAR; check: BOOLEAN;
visited: List);
IF check THEN
InsertFront (module, Visited)
END;
IF module is an implementation module THEN
IF NOT Member(Intf(module), initialization) THEN
InsertBefore(Intf(module), module, initialization);
IF M1 = Intf(M) THEN
Analyze (M1, TRUE, visited)
ELSE
Analyze (M1, FALSE, MakeEmptyList());
END
END
END;
FOR cvery import list of module DO
FOR every module name M in import list DO
FOR M1 := Intf(M) TO ImplOf(M) DO
IF NOT Member(M1i, initialized) THEN
InsertBefore(M1, module, initialization);
Analyze(M1, M1 = Intf(M));
ELSE
IF check AND Member (M1, visited) THEN
report circular dependency;
END
END
END
END
END;
IF check THEN
RemoveFront(visited)
END;

312 Lehel Szgarapka and Zoran Budimac

7. Conclusion

An algorithm for establishing initialization and compilation order of mod-
ular programming languages is proposed. Its main contributions are:

(1) it establishes both compilation and initialization order;

(2) it is smaller and more efficient than “classical” dependency analysis,
and thus can be included directly into a compiler;

(3) it improves the definition of modular programming languages by in-
troducing deterministic initialization order in case of circular depen-
dencies.

The third improvement of our algorithm over dependency analysis comes
with a cost of producing (in some cases) different initialization order than
dependency analysis would. However, according to [8], the emerging ISO
Modula-2 standard (for example) gives also a clear advantage to the precise
definition of module initialization order than to a classical (and sometimes
vague) dependency analysis.

The presented algorithm can be applied without changes to any modular
programming language regardless of how many interfaces and implemen-
tations of a module M are allowed. That includes languages like: Ada,
Modula-2. and Modula-3. In languages like Oberon and Oberon-2, where
circular dependencies are forbidden in implementation modules as well, a
slight modification is required.

The proposed algorithm is included in a Modula-2 compiler, which is
currently under development at the Institute of Mathematics in Novi Sad.

References

[1] A. Ano, J. HOPCROFT, AND 1. UrLMaN, Data Structures and Algorithms, Addison
Wesley, London, 1985.

[2] Z. BuDiMAC, L. SZARAFPKA, 7. PUTNIK, AND M. Ivanovi¢, Dependeney Analysis in
a Compiler of a Functional Language, Bull. Appl. Math. 1047/94 (LXXIV) (1994),
43-50.

[3] L. CaRDELLL, J. DONAHUE, L. GLASSMAN, M. JorpaN, B. KaLsow, anD G. NEL-
soN. Modula-3 Report (vevised), SRC of Digital Equipment Corp. and Olivetti Re-
search Center, Palo Alto and Menlo Park, 1989.

[4] H. EMMELMANN AND J. VoLLMER, GMD Modula System MOCKA - User Manual,
University of Karlsruhe, Technical Report, Karlsruhe, Germany, 1994.

[5] L. B. GEISSMANN, Separate Compilation in Modula-2 and the Structure of the Mo-
dula-2 Compiler on the Personal Computer Lilith, Ph.D. thesis no. 7286 ETH Ziirich,
Switzerland, 1983.

[6] S. U. Hinsscen, E. A. Henz, P. LukowiTz, M. PHILIPFSEN, aND W. F. TicHY,
The Modula-2* Environment for Parallel Programming, Proc. of the Working Conf.

Determining Module Dependecies in Modular Programs 313

on Programming Models for Massively Parallel Computers, 1993, Berlin, Germany,
(to appear).

[7] N. WirTH, Programming in Modula-2, fourth edition, Springer Verlag, Berlin, 1988.

[8] M. WooDMAN, A Taste of Modulu-2 Standard, SIGPLAN Notices 28 (9) (1993),
15-24.

UNIVERSITY OF Novi San, FAcuLTy oF SCIENCE, INSTITUTE oF MATHEMATICS, TRG
D. OBrRADOVICA 4, 21000 Novi SAD, YUGOSLAVIA

E-mail address: ilehel@unsim.ns.ac.yu

UNIVERSITY OF Novi SaD, FACULTY OF SCIENCE, INSTITUTE oF M ATHEMATICS, TRG
D. OBrRADOVIGA 4, 21000 Novi SAD, YUGOSLAVIA

E-mail address: zjbluns.ns.ac.yu, zjbeunsim.ns.ac.yu

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jo Areiqi] [enlliA

FILOMAT (Nis) 9:2(1995). 315-324

Filomat '94, Ni3, October 22-24, 1994
Geometry. Computer Sciences

USAGE OF S-EXPRESSIONS AND
PREDICATE EXPRESSIONS IN
PROCEDURAL PROGRAMMING LANGUAGES

Tatjana Vukelié and Mirjana Ivanovié¢*

ABSTRACT. An extension of a procedural programming language with S-expressions and
predicate expressions is described. Several examples in the field of graph theory, logic and
set theory, hash tables, and sparse matrices are presented.,

1. Introduction

Procedural programming languages are still the most frequently used pro-
gramming languages. However, during the last decade many other program-
ming paradigms (functional, logical, relational, etc.) came into the wide us-
age. Various programming languages and programming styles enable more
natural and “simpler” solving of various classes of problems.

Great variety of programming styles lead to development of new program-
ming languages and extensions of existing programming languages. Proce-
dural programming languages are a good base that can be easily extended
with new concepts and elements.

To enhance expressiveness of programming language Modula-2 [4], S-
expressions [1] and predicate expressions (some forms of predicate formu-
las) [3] are included into the language. Modula-2 is widely used procedural
programming language. It has variety of data types amd data structures,
supports structured and modular programming style and forces a program-
mer to write clear and readable code. With proposed extensions, Modula-2
programs are even more readable, shorter and simpler than their equivalents
written in “real” Modula-2.

1991 Mathematics Subject Classification. 68N15.
*Supported by Grant 0401A of RFNS through Math. Inst. SANU

315

316 Tatjana Vukeli¢ and Mirjana Ivanovié

Although extensions described in this paper are part of the extended
Modula-2 (and are implemented by a translator of extended Modula-2 pro-
grams into the “real” ones,) similar extensions can be achieved by abstract
data type mechanism or by building suitable function libraries (in Modula-2
and other procedural languages.)

In the rest of the paper we shall shortly introduce the basic constructs of
extended Modula-2 and then proceed with examples of possible applications.

2. S-expressions and predicate expressions

In this section an S-expression as built-in data type of extended Modula-2
and two new language constructs (predicate expressions and FORALL loop)
are presented.

2.1. S-expressions.
S-expressions are basic data structures in some functional programming
languages. Using Beckus-Naur form, S-expression is defined as follows:

S-exp = atom | "(" S-exp-list ")"
S-exp-list = S-exp | S-exp "." S-exp | S-exp S-exp-list
atom = symbolic-atom | numeric-atom

numeric-atom = integer-atom | real-atom

The empty S-expression is denoted as nil. The following two conventions
hold for S-expressions:

(1) .nil can be omitted (i.e., need not be written down), and
(2) .(and corresponding) can be omitted.

S-expression is a built-in data type of extended Modula-2 and is denoted
as SExp (but it also can be implemented as an abstract data type [1].) SExp
is supported with the set of primitive functions, predicates, arithmetic op-
erations and input-output operations.

Examples of possible operations over S-expressions are [2] (for every S-
expression e, ey, and e3):

(1) Hd(e) - returns e if € is of the form: (e; . €2),

(2) Tl(e) - returns ey if e is of the form: (e; . €),

(3) Add(ey, e2) - returns the sum of two numerical atoms e; and ez,
(4) Mul(e, e3) - returns the product of (numerical atoms) e; and ey,
(5) e :: ey - returns a new S-expression of the form (e; . e3),

(6) e, ++ ey - appends two S-expressions giving a new one.

An empty S-expression is in extended Modula-2 denoted as NULL (i.e.,
NULL is a constant value of the type SExp). Some of the built-in functions over

Usage of S-Expressions and Predicate Expressions... 317

S-expressions could be implemented as operators (function Add, for example
could be implemented by “overloading” operator +). First experiences show
however, that chosen set of functions and operators (as presented in this
section) enables best readability of resulting programs.

As an example of programming with S-expression, we quote the implemen-
tation of procedure List0fPair(el, e2: SExp): SExp which returns the
following S-expression: ((e1 e2)),ie. ((el .(e2 .nil)) . nil).

PROCEDURE List0fPair(el, e2: SExp): SExp;
BEGIN

RETURN (el :: (e2 :: NULL)) :: NULL
END ListO0fPair;

2.2. Predicate expressions.

Predicate expressions are special kind of expressions (3] based on formulas
of first order predicate calculus. In an extended Modula-2, they have the
following form (given in extended Beckus-Naur form:)

PredExp = PredSym Ident {"," PredSym Ident)
“|" WhereFrom {"," WhereFrom}
"WHERE" Condition {"," Condition}.

WhereFrom = Ident "IN" Domain.

PredSym = "EVERY" | "EXIST".

Domain = Ident | Set | Interval | S-exp | Array.
Interval = "[" LowerBound ".." UpperBound "]".

where Condition is a standard Modula-2 expression, whose value is a
logical truth value. The value of predicate expression has a logical truth value
as well. Predicate expression can also be implemented as abstract data types
and supported with suitable functions, but then the corresponding programs
would be less readable.

A following predicate expression:

EVERY x | x IN X WHERE Condition
can be read as “is it true that every x from X fulfills the Condition?” This
expression returns TRUE if for all elements x from X the value of the (boolean)
expression Condition is TRUE.

A following predicate expression:

EXIST x | x IN X WHERE Condition
can be read as “is it true that there exists at least one x in X such that
Condition is fulfilled?” This expression returns TRUE if for at least one
element x from X the value of the (boolean) expression Condition is TRUE.

318 Tatjana Vukeli¢ and Mirjana Ivanovié

Predicate expressions can be used with S-expressions, sets, arrays, and
intervals. Arrays and intervals (i.e., subranges) are the same as in “real”
Modula-2. Sets are however, more general. The elements of Set in extended
Modula-2 [3] can be of arbitrary data types (simple or composite) and car-
dinality of a Set is not limited. All the types of set elements must be the
same (like in “real” Modula-2.)

2.3. FORALL loop.

Usage of S-expressions and predicate expressions is immense in various
areas and in solving of different problems. However, to make this usage
simpler and more powerful, we introduced a new kind of FOR loop called
FORALL loop. A new loop could be defined by the following rule of
extended Beckus-Naur form:

ForAllLoop = "FORALL" Identifier "IN" Domain "DO"
Statements
"END".

Domain in FORALL loop is the same as domain in predicate expression,
and Statements are all available statements in extended Modula-2, including
FORALL. Statement

FORALL x IN X DO Statements END
means that statements inside FORALL loop are executed for every element x
that belongs to S-expression, set, array or interval X.

In the next section we proceed with some possible applications of 5-
expressions and predicate expressions: hash tables, graphs, sets, sparse vec-
tors and matrices. Using S-expressions and predicate expressions, simpler
and more readable programs are obtained.

3. Possible applications

3.1. Hash tables.

A hash table is one of the most popular structures for fast data retrieval.
It is most often used with dictionaries. A dictionary is presented as a hash ta-
ble, and consists of n ordered sets. Every set is presented as an S-expression.
Hash function is a function that transforms a word into a number between
| and n. Value of the hash function determines a set that the word belongs
to.

Definition of a hash table can be (in extended Modula-2) as follows:

CONST n = 211;
TYPE HTab = ARRAY (1..n] OF SExp;

Usage of 5-Expressions and Predicate Expressions... 319

Procedure Initialize initializes elements of a hash table:

PROCEDURE Initialize(VAR HT: HTab) ;
VAR i: [1..n];
BEGIN
FORALL i IN [1..n] DO HT[i] := NULL END
END Initialize;

Procedure Found checks if a word belongs to a dictionary:

(1) by the hash function HashFun the word is transformed into a hash
value (number k)

(2) if the word belongs to the set that contains all words with the same
hash value k, function returns TRUE.

In the following procedure we shall assume that the data type String
exists and that it is implemented as a fixed-length array of characters.

PROCEDURE Found(Word: String; HT: HTab): BOOLEAN:
VAR x: String;
BEGIN
RETURN EXIST x | x IN HT[HashFun(Word)] WHERE x=Word
END Found;

Procedure Store stores a word into a hash table.

PROCEDURE Store(Word: String; VAR HT: HTab);
VAR pos: [1..n];
BEGIN
pos := HashFun(Word) ;
HT[pos] := Word :: HT [pos]
END Store;

Graphs.
A graph G consists of

(1) set V', whose elements are called nodes and
(2) set of pairs E, whose elements are called edges.
Graph can be defined using adjacency lists. To every node, a list of

adjacent nodes is attached. Graph can also be defined as a list of edges. An
edge is represented as a pair of nodes, which it connects.

320 Tatjana Vukelié¢ and Mirjana Ivanovic

TYPE node = CARDINAL;
edge = RECORD c1, c2 : node END;
Graph = RECORD nodes : SET OF node;

edges : SET OF edge
END;

Graph is connected if there is a path between every pair of its nodes. We
shall assume that function Path(ci, c2: node): BOOLEAN returns the
value TRUE if there is a path between nodes c1 and c2, otherwise returns the
value FALSE.

Function Connected checks if a graph is connected.

PROCEDURE Connected(G: Graph): BOOLEAN;
VAR ci1, c2: node;
BEGIN
RETURN EVERY ci, EVERY c2 | c1 IN G.nodes, c2 IN G.nodes
WHERE Path(ci,c2)
END Connected;

A graph is complete if each node is connected to every other node. Proce-
dure Edge(c1, c2):BOOLEAN checks if there is an edge incident to nodes c1
and c2. It assumes that if ¢1 = c2, there is an edge between those nodes.

Function Complete checks if a graph is complete.

PROCEDURE Complete(G: Graph): BOOLEAN;
BEGIN
RETURN EVERY c1, EVERY c2 | c¢1 IN G.nodes, c2 IN G.nodes
WHERE Edge(cl, c2) AND (c1 <> c2)
END Complete;

Degree of a node v, is equal to the number of edges that are adjacent to
v. Function Degree determines the degree of node v in the graph G.

PROCEDURE Degree(v: node; G: Graph) : CARDINAL;
VAR Deg : CARDINAL; E : edge;
BEGIN
Deg := 0;
FORALL E IN G.edges DO
IF (E.c1 = v) OR (E.c2 = v) THEN INC(Deg) END
END
END Degree;

Usage of S-Expressions and Predicate Expressions... 321

3.2. Sets.

Let us recall that elements of a set in extended Modula-2 can be of ar-
bitrary type and that the number of set types is (conceptually) unlimited.
For example, in the following definition:

TYPE SetAnyType = SET OF AnyType

where AnyType can be of arbitrary type, including arrays, records and
other sets. Procedure SetMember determines whether an element x is a
member of a set S.

PROCEDURE SetMember(x: AnyType; S: SetAnyType);
VAR e : AnyType;
BEGIN
RETURN EXIST e | e IN S WHERE e = x
END SetMember;

Procedure SubSet checks whether set s1 is a subset of a set s2.

PROCEDURE SubSet(s1, s2: SetAnyType) ;
VAR x1, x2: AnyType;
BEGIN
RETURN EVERY x1, EXIST x2 |
x1 IN 's1, x2 IN s2 WHERE x1 = x2
END SubSet;

3.3. Sparse vectors and matrices.

A sparse vector is a vector that consists mostly of zero elements. It
can be presented by S-expression whose elements are ordered pairs. Every
pair presents one non-zero element of a sparse vector. The first element of
the ordered pair is an index of the element in a vector, and the second is the
value of the element. For example, a vector V = [100 0 0 2 0] is represented
by ((11) (6 2)).

Procedure MulVec returns a product of a vector v and scalar n.

PROCEDURE MulVec(v: SExp; n: INTEGER): SExp;
VAR res, el: SExp;
BEGIN

res := NULL;

322 Tatjana Vukeli¢ and Mirjana Ivanovié

FORALL el IN v DO
res := res ++ ListO0fPair(Hd(el), Mul(Tl(el), n))
END;
RETURN res
END MulVec;

Procedure SumVec sums two vectors. In this procedure, following proce-
dures will be used:

(1) Find(e,v) which returns a pair in the vector v, whose index is equal
to a value e.
(2) Delete(e,v) which deletes a pair e from the vector v.

PROCEDURE SumVec(v1l, v2: SExp): SExp;
VAR res, ell, el2 : SExp;
BEGIN
res := NULL;
FORALL el1l IN vi DO
el2 := Find(Hd(ell), v2);
IF el2 <> NIL
res := res ++ ListOfPair(Hd(ell),
Add(T1(ell), T1(el2)));
Delete(el2, v2)

ELSE
res := res ++ (ell :: NULL)
END
END;
RETURN res ++ v2;
END SumVec;

Procedure VecScPro returns a scalar product of two vectors. In this
procedure, the procedure FindVal(n, v) is assumed to return the value of
the element with an index n in the vector v.

PROCEDURE VecScPro(vi, v2: SExp): SExp;
VAR res, ell, el2: SExp;
BEGIN
res := 0;
FORALL ell IN v1 DO
IF EXIST el12 | el2 IN v2 WHERE Hd(ell) = Hd(el2) THEN
res := Add(res, Mul(Tl(ell), FindVal(Hd(ell), v2)))

Usage of S-Expressions and Predicate Expressions... 323

END
END;
RETURN res
END VecScPro;

A sparse matrix is a matrix that contains relatively many zero elements.
A sparse matrix can be represented by S-expression that consists of ordered
pairs. By every pair a row of matrix that has at least one non-zero element
is presented. The first element of the pair is the index of a row of matrix,
and the second element of the pair is a sparse vector.
Matrix

M =

(=2 e i e

4
0
0

o o o
e i e 1 s

has the representation M = ((1 ((2 4)))(3((16)(47)))). We shall also
assume that function procedure Transpose(M) returns transposed matrix of
matrix M.

Procedure MatVecPro multiplies a matrix by a vector. In this procedure,
procedure VecScPro (defined previously) is used.

PROCEDURE MatVecPro(V, M: SExp) : SExp;
VAR res, s, TM: SExp;
val : INTEGER;
BEGIN
res := NULL;
TM := Transpose(M);
FORALL s IN TM DO
val := VecScPro(V, 8);
IF val <> 0 THEN
res := res ++ ListOfPair(Hd(s), val)
END
END;
RETURN res
END MatVecPro;

The result of multiplying a sparse vector and a sparse matrix is a new
sparse vector.

Procedure MatPro, multiplies two matrices. In this procedure, procedure
MatVecPro is used.

PROCEDURE MatPro(M1, M2: SExp): SExp;

324 Tatjana Vukeli¢ and Mirjana Ivanovié

VAR res, v, c, TM, tpro : SExp;
BEGIN
res := NULL;
TM := Transpose(M2);
FORALL v IN M1 DO
tpro := MatVecPro(v, M2);
res := res ++ ListOfPair(Hd(v), tpro)
END;
RETURN res
END MatPro;

LY
4. Conclusion

S-expressions and predicate expressions are included into programming
language Modula-2. In a similar way they can be included into other proce-
dural programming languages. Inside a procedural programming language,
S-expressions bring elements and concepts of functional programming lan-
guages. Elements of functional programming style in procedural program-
ming languages bring advantages of both programming styles in different
areas. Programs are shorter, simpler and more readable than in pure proce-
dural programs and more efficient than equivalent functional programs.

A usage of predicate expressions in procedural programming languages
brings more concise, clearer and more powerful code. Both extensions con-
tribute to better expressiveness of progranis.

Usages mentioned in this paper present only a small part of possibilities
which extensions of procedural language bring.

References
[1] Z. Bupimac AND M. Ivanovi¢, New Data Type in Pascal (1989), Proc. of DECUS
Europe Symposium, The Hague, Holland, 193-199.

(2] M. Ivanovié AND Z. Bupmmac, Usage of S-exzpression in Pascal (1989), Proc. of 11th
International Symposium ”Computer at the University”, Cavtat, 3.18.1-3.18.6.

[3] T. VUkeLic AND M. IvaNovi¢, Predicate expressions in procedural programming
languages (to appear).

[4] N. WirTH, Programming in Modula-2, fourth edition, Springer Verlag, Berlin, 1988,

UNIVERSITY OF Novi SAD, FACULTY OF SCIENCE, INSTITUTE OF M ATHEMATICS, TrRG
D. OBRADOVICA 4, 21000 Novi SAD, YUGOSLAVIA
E-mail address: {vukelic,mira}@unsim.ns.ac.yu

FILOMAT (Nis) 9:2(1995), 325-332

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

IMPLEMENTATION OF PREDICATE EXPRESSIONS
IN PROCEDURAL PROGRAMMING LANGUAGES

Tatjana Vukeli¢ and Dusan Kamenov

ABSTRACT. Predicate expressions in a procedural programming language are based on
sentences of predicate calculus of first order. The usage of predicate expressions in pro-
cedural languages leads to shorter, more effective and more readable programming code,
and also decreases number of loops and local variables in procedures and programs. Pred-
icate erpressions in programming languages could be used with array, set and interval
data types. Elements of array or set could be simple or compler data type. In this paper,
definition and tmplementation of predicate expressions in procedural programming lan-
guage Modula-2 1s presented. Areas of usage are logic, set theory, graph theory, pattern
recognition and others.

1. Introduction

Many statements, particularly in mathematics, are of the form “x satisfies

»

a”, where z belongs to set D and « is relation relevant to the elements of
set D [1].

Statement “For every = € D, a(z)
statement. Symbolically,

”

is an example of a mathematical

(Ve € D)a(z), orshorter, (Vz)a(z)
denotes this kind of statement. The part (Vz) is called universal quantifier.
Statement “Exists @ €), a(z)” is also often used in mathematical sen-
tences. Symbolically, this kind of sentence can be presented as
(3z € D)a(z), orshorter, (Jz)a(z)
The part (3z) is called existentional quantifier.

1991 Mathematics Subject Classification. 68N15.

325

326 Tatjana Vukeli¢ and Dusan Kamenov

It is possible to use more than one quantifier in a single sentence. For
example,

(Ve)(3y)a(z,y)

is a valid sentence of predicate calculus.

In the further text, symbols and will be referred to as predicate symbols.

These sentences can be efficiently implemented and used in procedural
programming languages. The implementation shown in following chapters
is an extension of Modula-2 programming language [2]. In further text, this
extension will be called EM2.

Predicate expression in procedural programming languages has the form
of list of quantifiers (predicate symbols followed by variables). After that,
domains of the variables which follow predicate symbols in quantifiers are
stated. At the end stands condition of predicate expression, which is pre-
sented by list of boolean expressions. Expressions are separated by commas.

The equivalent symbols for predicate symbols ¥ and 3 in EM2 are EVERY
and EXIST, respectively.

Syntax of predicate expressions can be presented by following rules of
EBNF:

#PredicateExpr = PredicateSymbol Identifier
{ "," PredicateSymbol Identifier } "|"
Identifier "IN" Range { "," Identifier "IN" Range }
"WHERE" Expression { "," Expression }.
#PredicateSymbol = "EXIST" | "EVERY".
#Range = Array | Set | Interval.
#Array = Identifier.
#Set = Identifier | "{" [Member {"," Member}] "}".
#Interval = "[" LowerBound ".." UpperBound "]".

Existing set data type in M2 language can also be extended. In Modula-
2, elements must be simple data type. In EM2, this restriction is no longer
valid: elements can be any data type - single or complex. Elements of set are
not ordered, and an element can appear in set several times. For example,
{1,2,1,3} is a valid set in EM2.

Range of the variables in quantifiers must be finite. Range of those vari-
ables is determined by standard Modula-2 data types array or interval, or
by new data type set.

Example 1.1. Some simple predicate expressions are:
VAR
a, b : BOOLEAN;
array : ARRAY [1..10] OF CARDINAL;
set : SET OF CHAR;

Implementation of Predicate Expressions in ... 327

X : CHAR;
y ¢ CARDINAL;

a := EXIST x | x IN set WHERE x < L
b EVERY y | y IN array WHERE y < 10;

The first assignment could be read: “if exist character x, which belongs
to set set and x is before character ‘f* in the ASCII table, then a becomes
true, else a becomes false”. The second assignment could be read: “if for
every y, where y is an element of array array, condition y < 5 is satisfied,
then b becomes true, else b becomes false”. Simpler, if every element of
array array is less than 5 then b becomes true. else b becomes false.

It is possible to combine more than one quantifier in one predicate expres-
sion. Let’s see an example. Suppose that set1 and set2 are set of cardinals,
a is type boolean, and x and y are type cardinal.

Example 1.2.
a := EVERY y, EXIST x | y IN set1, x IN set2 WHERE x = y;

Simply said, if for every y exist X, y belongs to set1, x belongs to set2,
equation x = y is satisfied, then a becomes true, else a becomes false.

2. Implementation of predicate expressions

Predicate expressions can be implemented in procedural programming
languages in many different ways. One of them, which is based on transla-
tion of predicate expressions to equivalent code in Modula-2 programming
language, is presented in further text. To make the translation simpler, some
constructions of Modula-2 can be extended. Therefore, following statements
are defined:

(1) FORALL x IN X (a kind of loop)
(2) NEXT x

FORALL x IN X means that statements inside loop are executed for all
elements of an interval, set or array signed by X.

NEXT x determines the next element of X.

Interval and array are ordered. Theoretically, the order of the elements
of a set is irrelevant. But in the computer memory a set is ordered and it is
possible to take it’s elements one after another.

328 Tatjana Vukeli¢ and Dusan Kamenov

Example 2.1. Structure
FORALL x IN [1..10] DO
Write(x);
NEXT x
is equivalent to
x = 1;
WHILE x <= 10 DO
Write(x);
¥ 1=x + 1
END;

For simplicity, predicate expressions with one and two quantifiers will be
discussed first. After that, we’ll make a generalization of translation for any
number of quantifiers.

2.1. Predicate expressions with one quantifier.
In general, predicate expression with one quantifier has the form:
PS z | z IN X WHERE condition
where predicate symbol is denoted by PS. Following cases are possible:

(a) EVERY z | = IN X WHERE condition

First, suppose that condition is satisfied for every z from X, and suppose
that predicate expression has the truth value true. If z that does not sat-
isfy the condition condition is found in for-all loop, then whole predicate
expression gets truth value false.

EV.x := TRUE;
FORALL x IN X DO
IF NOT condition THEN
EVx := FALSE
END
NEXT x;
Result := EVx

(b) EXIST z | z IN X WHERE condition

First, suppose that there is no from X that satisfies the condition and
suppose that whole predicate expression has the truth value false. If z that
satisfy the condition condition is found in for-all loop, then the predicate
expression gets the truth value true.

EX_x := FALSE;
FORALL x IN X DO
IF condition THEN

Implementation of Predicate Expressions in ... 329

EXx := TRUE
END
NEXT x
Result := EX x;

2.2. Predicate expressions with two quantifiers.
In general, predicate expression with two quantifiers has the form:
PSz, PSy | 2 IN X, y IN Y WHERE condition
where predicate symbol is denoted by PS. Following cases are possible:

(a) EXIST z, EXIST y | « IN X, y IN Y WHERE condition
In this case, construction 2.1.(b) will be used.

EX_x := FALSE;
FORALL x IN X DO
EX_y := FALSE;
FORALL y IN Y DO
IF condition THEN
EX_y := TRUE
END
NEXT y;
EXx := EXx OR EXy
NEXT x;
Result := EX x;

(b) EVERY z, EVERY y | 2 IN X, y IN Y WHERE condition
Construction 3.1.(a) is used in this case.

EV.x := TRUE;
FORALL x IN X DO
EV_y := TRUE;

FORALL y IN Y DO
IF NOT condition THEN
EV_y := FALSE
END
NEXT y;
EVx := EV.x AND EV_y
NEXT x;
Result := EV.x;

(¢) EXIST z, EVERY y | z IN X, y IN Y WHERE condition
Construction 3.1.(a) and 3.1.(b) are used combined in this case.

330 Tatjana Vukeli¢ and Dusan Kamenov

EX_x := FALSE;
FORALL x IN X DO
EV_y := TRUE;
FORALL y IN Y DO
IF NOT condition THEN
EV_y := FALSE;
END
NEXT y;
EXx := EXx OR EVy
NEXT x
Result := EX_x;

(d) EVERY z, EXIST y | z IN X, y IN Y WHERE condition
Similar to case 3.2.(c),

EV_x := TRUE;
FORALL x IN X DO
EX_y := FALSE;

FORALL y IN Y DO
IF condition THEN
EX_.y := TRUE
END
NEXT y;
EV.x := EV.x AND EX_y
NEXT x;
Result := EV.x;

2.3. Predicate expressions with any number of quantifiers.
Predicate expressions are analyzed from left to right. For every quan-
tifier there is a for-all loop and one boolean variable that starts with EX_,
if quantifier is EXIST, EV_, if quantifier is EVERY. Boolean variable gets its
value before entering the for-all loop. Its value is FALSE in case of EXIST
quantifier, and TRUE in case of EVERY quantifier.
Inside for-all loop two cases are possible:

(1) If quantifier is the last of the quantifiers in predicate expression, then
inside for-all loop is an IF statement:
(a) If the quantifier is EXIST quantifier then it is following IF state-
ment:

IF condition THEN
EX_ident := TRUE
END;

Implementation of Predicate Expressions in ... 331

(b) If the quantifier is EVERY quantifier then it is following IF state-
ment:

IF NOT condition THEN
EV_ident := FALSE
END;
NEXT ident follows the IF statement.

(2) If the quantifier is not the last one in predicate expression then inside the
for-all loop are statements that matches quantifiers that come after current
quantifier (this part could be implemented by recursion). After that follows:
(a) If current quantifier is EVERY then
EV_ident EV_ident AND EV_ident2 (1) or
EV_ident := EV_ident AND EX_ident2 . (2)
Statement (1) if the quantifier after current quantifier is of form EVERY
ident2, statement (2) if the quantifier after current quantifier is of form
EXIST ident2.

(b) If current quantifier is EXIST then
EX_ident := EX_ident OR EV_ident2 (3) or
EX_ident := EX_ident OR EX_ident2 (4)
Statement (3) if the quantifier after current quantifier is of form EVERY
ident2, statement (4) if the quantifier after current quantifier is of form
EXIST ident2.
After this statement follows NEXT ident statement.

3. An example of usage of predicate expressions
Predicate expressions can be used in solving different classes of problems.

One of the areas of usage is mathematical logic.

Definition 3.1. Proposition P(p,q,...) that has the truth value true for
any truth values of their variables is called tautology.

A procedure which determines if a expression is a tautology could be as
follows:

332 Tatjana Vukeli¢ and Dusan Kamenov

PROCEDURE Tautology;
VAR
a, b: BOOLEAN;
BEGIN
IF EVERY a, EVERY b | a IN [FALSE..TRUE],
b IN [FALSE..TRUE] WHERE a OR b OR NOT b THEN
WriteStr(" Expression is a tautology ")
ELSE
WriteStr(" Expression is NOT a tautology ")
END
END Tautology.
The result of this program will be “Expression is a tautology” because
expression is a tautology.

4. Conclusion

Predicate expressions have wide usage in many areas of computer science.
Their great power is in area of mathematics. They allow short, readable and
concise presentation of different definitions and theorems. They also have
wide usage in pattern recognition. Combined with sets, they are powerful
tool for fast and natural solving of different problems. Their usage decreases
number of loops and local variables to minimum required, which makes the
programming code shorter and more readable.

The future of predicate expressions can also be found in functional and
logical programming languages. Predicate expressions are a step closer to
human-like way of thinking in programming languages.

- References

(1] MiLié, SVETOZAR, Elementi matematicke logike i teorije skupova, A-S delo, Beograd,
1991.

[2] WirTH, NIKLAUS, Programiranje na jeziku Modula-2, Dragon, Beograd, 1990.

SELJACKIH BUNA 25, 21000 Novi SAD
E-mail address: {vukelic,ikamenov}@unsim.ns.ac.yu

FILOMAT (Nis) 9:2(1995), 333-343

Filomat *94, Nis, October 22-24, 1994
Geometry. Computer Sciences

DEPENDENCE TESTING ON LOOPS WITH BOUNDS
WHICH ARE FUNCTIONS OF OUTER LOOP INDICES

Suzana Stojkovié

ABSTRACT. Parallelizing compilers are compilers which translate sequential programs
into parallel ones. Program loops are the most frequent sources of parallelism in se-
quential programs. Because of that, parallelizing compilers first must detect loops which
can be run in parallel. Different iterations of the same loop can execute in parallel if they
process different data. Parallel loops can be identified by detecting data dependencies
across the loop body. For data dependence testing a few algorithms were developed. In
this paper GCD test and Banerjee’s test are presented. These algorithms are applicable
when bounds of loop indices are constant. This paper shows how Banerjee’s test can be
exploited when the inner loop bounds are functions of outer loops indices. We, first, must
compute minimums of the lower and mazimums of the upper loop hounds. We solved this
problem when the loop bounds are linear functions. We show that this minimums and
mazrimums are dependent on the data dependence direction vector. We have also modified
Banerjee’s test, slightly.

1. Introduction

Developments in semiconductor technology tend to reduce dimension and
price of electronic components, but to grow their speed. Hardware perfor-
mances become better every day. Now, supercomputers are developed.

Fast hardware development lead to a software crisis. A new problem
appears: how to exploit all hardware performances. Because of that, parallel
algorithms have been developed, in the last few years. Programmer who
designs parallel algorithms must be familiar with hardware

architecture for which these algorithms are meant. This leads to the
idea that the parallelization can be done by compilers. Now, parallelizing
compilers are very popular area of computer science.

The major problem of parallelizing compilers is to detect parallelism dur-
ing sequential programs. Program loops are the most frequent source of
parallelism. Because of that, first problem is to detect loops which can be

333

334 Suzana Jankovic

run in parallel. Different iterations of the same loop can execute in parallel
if they process different data. The key to identification of parallel loops is
to detect data dependencies across loop body.

There are three types of data dependencies exist:

(1) Data true dependence - exists when a variable computed in statement Sy
is used in some next statement Sy. We say that S5 is data true dependent
on Si, and write this as §76'S5.

(2) Data anti dependence - exists when a variable is used in statement 5
and it is defined in some next statement S,. We say that S; is data anti
dependent on Sy, and write this as 516°5>.

(3) Data output dependence - exists if the same variable is defined by state-
ments §; and S;. We say that Sy is data output dependent on 57, and
write this as §76°955.

Detection of dependence is not difficult if only scalar variables figure in
the loop. Difficulties are caused by subscripted variables. For example, we
will try to determine all dependencies which exist in the next loop:

L: DO10I=5,10
Sy : A(T+3)=2+A(I - 4)
Sy : B(I)= A(I) + C10

10 CONTINUE

First dependence which can be identified is the dependence between state-
ments §; and S,. Elements of array A defined in statement S; are used in
statement S,. We can say that S, is true dependent on Sy (516*S2).

On the basis of the above, we can say that 5;6'5;. However, if we look a
bounds of the loop index I, we will see that the statement S; defines elements
A(8),...,A(13), but uses elements A(1),...,A(6), and dependence 5165 does
not exist.

2. Data dependence testing algorithms

Below example shows that data dependence testing algorithms must ana-
lyze several more different elements, like: dependence among the statements
in the loop; dependence in the appropriate region, etc. These algorithms
find data dependence direction vectors [2,4], too.

Data dependence direction vector, 6, defines relations between values of
loop indices for which dependence exists. The dimension of vector # (m) is
the number of loops which enclose the statements Sy and S;. The elements
of vector are members of the set {<,=,>,+}. We will assume that certain
loop include two statement Sy and S3. Lets us label the I-th iteration of

Dependence testing on loops with bounds which ... 335

statement Sy as §1(1). Let also §)()8g85(J). The appropriate element of
vector # is:

- &y if I < J:

= i > T

== = J

- *, if relation between [an J is unknown.

For the loop L: m=1 and 5,645, where is § = (<), because the element
of array A which was defined in the first iteration of statement 57, will be
used in forth iteration of statement Sy (1 < 4).

Let us consider two statements (5; and 52) which are enclosed by m loops:

DO 10T, =14,
DO 10 [2 = Tg, Uz

DO 10 Im = m,Um
AU .
LAY

10 CONTINUE

Indices I and J are functions defined as:

(1) [:f](11,121---,1m):f1(1)
@ J = oIt By I) = o)

The dependence between S; and S, exists in those iterations in which I
equals J. The goal of these algorithms is to determine whether the equation

(3) h(l) = f(J)
has got integer solutions. This equation is a dependence equation.
Functions fy and f;, in most cases, are linear:

(4) fi :Zﬂk1k+ﬂo
k=1
(5) fa= Z biJy + by

k=1

336 Suzana Jankovié

In this case the dependence equation is a diophantine equation and can
be stated as:

M

(6) > apli =) biJi = bo — ao
k=1 k=1

Whether the diophantine equation has a solution can be detected by GCD
test. The dependence equation can be written as follows:

T m T
MY (w—b)l+ Y, ali— Y beJi=bo—ag
k=1,0)="=! k=16 #'=' k=1,0;#'='

Let g = GCD({a — by, 0 ='="}, {ax, 0 #'="}, {br, 0 £'="})-

GCD test: The dependence equation has solutions iff g | (bo — ao) or
ag = by.

Note that this test does not answer the question whether the solutions
exist in the given region. This question can be answered second by a group
of data dependence testing algorithms - Banerjee’s test.

This test needs to introduce a positive part of real number r (7+), and
the negative part of 7 (r~), as:

I &30
(8) T =
0 r<0
_ -1 r<0
(9) ro =
' 0 #2210

Banerjee’s criteria: The data dependence for a given vector # does
exist if the GCD test is satisfied and the next inequality is satisfied, too:

(10) Y LCk<by—ag< Y UCk
k=1 k=1

where:

(11)

—(ax +b)T(Ue - T = 1) + (ag — bg)Tx — by for O ='<'
—(a — b))~ (Ug — Tx) + (ar — bi)Tk g i =t
— (b} — ap)t (U = T = 1) + (ax — b)Tk + i for 6 =">'
~(ag + b})(Ux = T) + (ax — bi)Tk fiom By, =18

Dependence testing on loops with bounds which ... 337

(12)
(@ = b)* (U — Tk = 1) + (ak — bi)Ti — by for 6, =<
47 8 (akhbk)+(l:k_Tk)+(ﬂk~—bk]Tk for) ='—/
(b —ar)T (U = T — 1) + (a — bp)Tx + ax for 6, ='>'
(af + 0)(Usk — Ti) + (ay — by)Ty for B =" ¥

Here we present a generalized algorithm for determining dependence re-
lations for the given loop. Data dependence testing is done hierarchically.
First, we begin with the assumption that data dependence direction vector
is unknown () =' «’k[1:m]), and determine if the dependence exists for any
vector #. When the dependence is determined for the unknown vector 4,
we have to concretize for which vectors # it exists. The analysis has to be
repeated, but with changed vector 8. In the vector #, leftmost star will be
changed with ' <’, latter with ’=", and at the last one with ' >'. When we
determine independence in some step, this vector # need not be refined. The
tree of analysis for m=2 is shown on the next figure:

iy

i —
— e S
e —

(<) (=% 59
)~ | Mg o [
(<9 =) (£>) (=2 E3) =E3) 9 62)

Figure 1.

The order of analysis is determined by PREORDER traversal of tree. If
independence is determined for some node, the subtree whose root is that
node, need not be analyzed.

3. Dependence testing on loops in which inner
loop bounds are functions of outer loop indices

In practice, the loop with constant loop indices bounds are very infre-

quent. Loops of the form:

DO101=1,N
DO10J=TI+1,N

338 Suzana Jankovié

or

DO10I=1,N
DO10J=1,N—-T+1

are more frequent.
In the general case, we can assume that the inner loop bounds are func-
tions of outer loop indices. We well look at the next, generalized loop:

DO 10 11 = T1,U1
DO 10 12 = 12(11),u2(11)

DO 10 Tm = tm(I1, 12, ..., Im — 1), u2(I1, 12, .., Im — 1)
{loopbody}
10 CONTINUE

For the application of Banerjee’s test, we must compute loop indices
bounds, in first. In the phase of compilation that is impossible because
these values are different for all different iterations of outer loops. Because
of that, we introduce the worst case assumptions: for the lower bound of
index I; we take ¢;min, but for the upper bound u;maz. Our problem, now,
is reduced to the determination of minimums of functions #;, and maximums
of functions u;. We will assume that the functions ¢; and u; are linear. In
that case, the functions t; and u; can be described as follows:

i—1

(13) i :T£D+ZT£J'IJ'
i=1
i—1

(14) u; = iO+ZU:'jIj
Jj=1

If we know the minimums and maximums of indices I; (j[1,i-1]) we can
compute the lower and upper bounds of index I;:

i—-1
(15) T; =timin = Tio + Z(T?;Ijmin - Ti;Ijma.r)
j=1
1—1
(lb) Ui =Uimaz = Vio + Z(Ugfjmaz = U{_J:Ijmin)

j=1

Dependence testing on loops with bounds which ... 339

Iymin and I;maz are the lower and upper bounds of index L (T, 05).
From there, the values T; and U; can be computed from the next formulas:

1—1

(17) Ti=To+) (TET; - T;U;)
i=1
i—1

(18) Ui =Uio +) (USU; - U5T)
J=1

These formulas determine the order of computation of bounds, too. Ob-
viouly, bounds 7} and U; can be computed if the bounds T; and U; for
J € [1,7— 1] are known.

4. Influence of data dependence
direction vector on loops

Banerjee’s test checks data dependence for all data dependence direction
vector, independently. It imposes a question: can the data dependence
direction vector influence the coefficients T; and U;?

If 8; ='>', the lower bound of index I; can not be equal to the value
computed by formula (17), because there is not a value of index I; smaller
than t;,,;,. Because of that. for #; ='>', the lower bound of index I; is
necessary to grow for 1.

Similarly, it can be shown that for 0; ='<’, the upper bound of index I;
is necessary to reduce for 1.

Definitive formulas for computation the loop indices bounds are:

i—1

(19) Ti(0) =T + Y (T}T;(6) - T;U;(0)) + CTy(6)
j=1
i—1

(20) Ui(8) =Uso +) (U U;(8) - UZTi(8)) + CUi(8)
7=1

where

(21) CTy(0) = { 0 forbie(n=,>)

1 for 91' =<
0 for 8; € (x,=,<)

340 Suzana Jankovic

T; is dependent on these elements of direction vector j for which is j < 7.
Thist means that the order of computing of bounds T; and U; is identical to
the order of dependence testing for corresponding vectors (see figure 1.).

It makes a question: whay do we have to correct the bounds T; and U;
adding the coefficients C'T; and CU;, when all this job is done by Banerjee’s
test, too? In our cases, inner loop bounds are the functions of outer loop
bounds. Because of that, the coefficients C'T; and C'U; influence on values
of all coefficients T; and Uj for j;i. The original Banerjee’s test is not taking
that influence into consideration.

5. Banerjee’s test modification

As we desctibed, we and Banerjee’s test, too, correct the lower and upper
bounds dependently on corresponding direction vector f. If we use the our
computed loop bounds for dependence testing by Banerjee's test, we take
these corrections into consideration two times. Because of that, we have to
do a little modification of Banerjee’s test. We will take the cases i=";’ and
i="", because in these cases we must modificate Banerjee’s inequalities.

Banerjee’s test begins from assumptions:

(23) T, <; <J;,—-1<U; -1 for 8; =<
(24) Ti+1< L, +1 <L LU; for 8; =>

Instead of these, we take in next assumptions:

(25) Ti(g) <L <LJ;—-1% Ut(G) for 8; =<
(26) Ti0) < Ji+1< [; < Ui(8) for 6 =>

In that case modificated Banerjee’s coefficients have a next form:

2
(27) —(a7 + b)) H(U(6) = Ti(8)) + (ai — bi)Ti(8) — b; for 6, ='<’
LC; = —(a; — b;)~(Ui(6) — Ti(6)) + (a: — b:)Ti(6) forf), ='='
U Z(bF —)t (Ui(0) — Ti(8)) + (a; — b)Ti(8) + b; for 6 =">'
— (a7 + bE)(Ui(6) — Ti(8)) + (ai = b)Ti() forf), ="+
(28)
(aF — by (Ui(0) — Ti(8)) + (ai — b)Tu(8) = b for O ='<’
vo, = | (@ = BT U0 = Ti(0)) + (a: = bi)T: forf, ='="

(b7 — a;)F(Ui(8) = Tu(8)) + (ai — b)Ti(0) + b; for B =">'
(af + b7)(Ui(8) — Ti(8)) + (ai — bi)Ti(0) for B =' %'

Dependence testing on loops with bounds which ... 341

Proof:

We need a next lemma [1] for proving of our assertion:

Lemma 1. Let f(x,y)=ax+by denote a linear function, and U > ¢ a
number.

1) min(az +by:0<y<z<U)=—(a—-b")"U

2)maz(az +by:0<y <z <U)= (a4 bt)tU

Let f1 and f2 be the index functions defined by equations (1) and (2),
respectively: and let is:

(29) h(I,J) = fi(I) = f2(J).

In given region, dependence exists for given vector 6 iff the function h(I,J)
has a null into that region.

Thus,
(30) min(h(1,J)) <0 < maz(h(I,J))

By combining (4),(5) and (29) we obtain:

(31)]I(I,J): Z (rr;\.—bk)lk.-}— Z (Lklk— Z kak-FfL(}-*bg
k=10 ="=' k=1,6#'=' k=1,0,4#'=!

Let we take a case §; =<
We need minimum and maximum of function:

(32) f = (Lif,' - bg.},‘

Next inequality is derived from our assumption (25):

(33) 0< 1 =Ti(0) < Ji - Ti(0) — 1 < Ui(8) — Ti(0)

Because of that we will transform the function f (32) on follows:

(34) (Lifi i biJi = —b;‘(n];' - Tl(()) -])+ “1‘([:' - T,'(Q)} + (ai - bi)Ti(gr) - bi

Now, by using of Lemma 1. we obtain:

342 Suzana Jankovié

for 8; =<:
(35) LC; = - (a] +b)* (U'(ﬂ)—T'(B))+(ae—bi)Ti(9)—bi
(36) UC; =(aF — b;)(Ui(6) — Ti(0)) + (a; — b)) Ti(8) — b

Second correction of Banerjee'’s test was done for 6; =>. In that case, we,
first, must transform our assumption (26) as follows:

(37) 0< J; —Ti(8) + 1 < I; — Ti(6) < Ui(8) — Ti(6)

The function f (32) can be written as follows, too:

(38) ail; — biJi = ai(L; — Ti(8)) — bi(J; — Ti(0) + 1) + (ai — b:)Ti(6) + b

Now, by using Lemma 1. we obtain:
for 0; =>:

(39) LC; = —(bF + @) (Ui(6) = Tu(9)) + (@ — b)Ti(8) + bi
(40) UC; = (af + b)(Ui(8) — Ti(8)) + (ai — b:)Ti(0) + b

This completes proof of our modification of Banerjee’s test.

6. Conclusion

In designe process of a FORTRAN parallelizing compiler appeared a prob-
lem: how do we test the dependence on loops which bounds are not constant.
In our testing examples, the most frequent cases were the loops in which inner
loop bounds are linear function of outer loop indices. For dependence test-
ing on loops with constant loop bounds we used Banerjee’s test. It makes
a question: is it possible to replace these functions with constants? We
solwe this problem at next way: we change the lower bounds functions with
their minimums, and we also change the upper bounds functions with their
maximums. The expressions for computing these bounds values, when cor-
responding function are linear, are given in chapter 3 of this paper. We show
that the loop bound values, in our case, are dependent on data dependence
direction vector, too. We had to do some modification of Banerjee’s test, be-
cause we take in the direction vector influence on loop bounds. Modificated
Banerjee’s test was presented in chapter 5.

Dependence testing on loops with bounds which ... 343

References

[1] Z.L1, P.C.YEW, An Eficient Interprocedural Analysis for Program Parallelization
and Restructuring (1988), ACM Press, New York.

[2] M. WALF, Optimizing Supercompiler for Supercomputers, Pitman, London, 1989,

(3] M. WaLF, The power test for data dependence, IEEE Transactions on Parallel and
Distributed Systems 3, No. 5 (September 1992), 591-601.

[4] H. Zima, B. CHAPMAN, Supercompilers for Parallel and Vector Computers, ACM
Press, New York, 1988.

[5] T. M. O’KeEerg, H. G. DEITZ, Loop Coalescing and Scheduling for Barier MIMD
Architectures, IEEE Transactions on Parallel and Distributed Systems 4, No. 9 (Sep-
tember 1993), 1060-1064.

[6] T. H. TzeN, L. M. N1, Dependence Uniformization: A Loop Parallelization Techni-
que, IEEE Transactions on Parallel and Distributed Systems 4, No. 5 (May 1993.),
54T7-558.

SUZANA SToJkOVIE, FAcULTY oF ELECTRONIC ENGENEERING, COMPUTEER SCIENCE
DEPARTMETNT, BEOGRADSKA 14, 18000 Ni§

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jo Areiqi] [enlliA

FILOMAT (Ni3) 9:2(1995), 345-355

Filomat 94, Ni3, October 22-24, 1994
Geometry. Computer Sciences

THE GENERATION OF PERMUTATIONS THROUGH GDD

Dragan Jankovié and Milena Stankovié

ABSTRACT. [In this paper we consider the generation of permutations, i.e. all ordered
n-tuples of different elements from the set An ={ag,a1,...,an—1} which is a combina-
torial problem often occurring in practice. We give a method for the generation of all
permutations of n given items through generalized decision diagrams. Each of n! paths
in the appropriate decision diagram maps into one of n! permutations. The proposed
method is suitable for generating all permutations for direct generation of only one per-
mutation without generating and saving preceding permutations. Our method provides
efficient hardware realization.

1. Introduction

The generation of permutations on a given set A, = {ag, a1, ...,a,_1 } with
n elements is in fact the generation of all ordered n-tuples of elements from
Ay. This problem occurs frequently in practice as a part of many complex
combinatorial problems. For example, many problems in logic design: min-
imization, simetry examination, NPN classification or function decomposi-
tion are combinatorial problems in solving of which different permutations of
variables or function values of examined functions are often required [3,6,7].
Important field for application of permutations are permutation intercon-
nect networks which are consistent parts of many multiprocessor systems
for discrete transform calculation (DFT, WHT, ...) [4]. In this paper we use
generalized decision diagraim to generate the permutations.

The basic idea of the presented method was found in the representation
of switching functions by binary decision diagram (BDD) [1,2]. BDD for an
n-variable switching function is a binary tree with n-levels and 2" terminal
nodes. The terminal node values are the function values of the represented
switching function.

345

346 Dragan Jankovié¢ and Milena Stankovié

LEVEL1 O

e g

a4 ™ > g
P N ; -

e ~ s
e

P Tk s = ~
LEVEL md O O 'O
=y TN AN

/ % ¥ 1
’ Y ‘ . /
\ v by s \ / K
\ / / \ / \
Y ,4 5\

TERMINAL LEVEL ﬁ \h |ﬁ’ b ﬁ \ﬁ ﬁ h

Figure 1. BDD

Example 1. BDD for three variable function is shown in Fig. 1.

If it is allowed that nodes at different levels have different number of edges
(assuming that the number of edges of all nodes at one level is equal) we
obtain generalized decision diagrams (GDDs) suitable for the representation
of the multiple valued functions [5].

Example 2. The typical GDD is shown in Fig 2.

LEVEL md
il ey /

/
/ A / JF

/ ‘ ! “\ /' !
bdo

/
S0/
TERMINAL LEVEL Ij Ifl O 6 0 l‘f}

Figure 2. GDD

The Generation of Permutations through GDD 347

LEVEL 1 O

LEVEL 1l

ok
LEVEL 111 Q

A A

‘/f ; \ \ ; / ;_t

/ Y A

;r' / \ 4R

ofoToleTole

LEVEL N-1 (5

0 1 2 NN
TERMINALLEVEL I o o o 91

_‘\

Figure 3. GDD for generation of the permutations

2. The representation of
permutations with decision diagram

It is possible to represent all permutations of items from set A, through
particular GDD consisting of n— 1 levels. The first level consists of one node
(root node) with two edges, the second of two nodes with three edges, the
third of six nodes with four edges, etc. There are k! nodes with k + 1 edges
at k-th level (Fig. 3).

Thus defined GDD with n — 1 level has n! terminal nodes. Therefore,
we can assign one of n! permutations to each node. The GDD nodes are

348 Dragan Jankovi¢ and Milena Stankovi¢

denoted as shown in Fig. 4., where we have a node at k-th level denoted
by ¢ connected to the root node by the path p. The node g is connected
to k+ 1 nodes (go, q1,- - -,qx) at (k+1)-st level by the output edges denoted

by 0,1,...,k, respectively. If the string zox...2x-1, (2i € An, for s

0,1,...,k—1)is assigned to the node ¢, to the each node ¢; may be assigned

the string derived by the following rule:

i = TOT1Ty...Ti—1QkT;..Th—1 fOr 1 # k
qr = TpT1T2...Tp—10)

Each node g; is connected to the root node by the path p; = pi.
For k=0 (root node) ¢ = ag and p = 0.

; A e \ Y
q { ‘\ @ Keel-st level - i b @ Ll level
s /L G /L -

® & ® &

LI}

Figure 4. a) The node notation b) The path notation

With the introduced notation, each of the n! terminal nodes corresponds
to one permutation, as shown in Fig. 5. for A4 = {0,1,2,3}.

3. The procedure for generation of permutations

For the generation of a particular permutation the corresponding path
from the root node must be found. Moving from one to another level along

this path we generate the required permutation. When we move from the
level k to the level k 4+ 1 trough the edge i we insert the value a; at i-th

position in the generated string. Repeating this procedure for all terminal

nodes (moving along all pats in the GDD) we obtain all permutations of n
items (Fig. 5).

The decimal index of permutation path, Dec(p), is defined as:

N-1
Dec= Y g:N!/(i+1)!
=1

The Generation of Permutations through GDD 349

0

LEVEL] @

0o o

LEVEL Il

A /
000 " 091 1 o 010 o1

LEVEL 11l @ @ /
000[3/ \ / . \ | /11 o123
ﬁﬁiﬁﬁé%'

\ \
Vo \ /
aYalila éjt E ﬁéél

321023102130 2103 3120 1320 1230 1203 3102 1302 1032 1023 3001 2301 20312013 30210321 0231 0213 3012 031201320123

Figure 5. GDD for n=4

where p[i] is i-th element in permutation path p.

All permutations are ordered on the basis of Dece(p). The ordering o can
be defined as follows:

Let P and @ be two distinct permutations with paths p and ¢, respectively.

Po@Q if Dec(p) < Dec(q).

For example, for n = 4 | the permutations of Ay = {0,1,2,3} ordered
according to ¢ are given in Table 1.

This ordering is very useful for generation one permutation or the per-
mutations from interval. We generate the permutation from decimal index.
The decimal index to be mapped to the permutation path after which the
described procedure is applied. For this method generating and saving all
previous permutations are not necesserly. This method is not recursive,
which is very important for execution time and permutation length. The
permutation length is practically unlimited in this method. No permuta-
tion is generated again. Therefore, there is no need to check whether the
permutation has been generated earlier.

350 Dragan Jankovié and Milena Stankovi¢

Table 1: Decimal indices of the permutations

Dec.ind. | path | perm.
0 0000 | 3210
1 0001 | 2310
2 0002 | 2130
3 0003 | 2103
4 0010) 3120
5 0011 1320
6 0012 1230
7 0013 | 1203
8 0020 3102
9 0021 1302
10 0022 | 1032
11 0023] 1023
12 0100| 3201
13 0101 | 2301
14 0102 | 2031
15 0103 | 2013
16 0110 3021
17 0111] 0321
18 0112] 0231
19 0113 0213
20 0120 3012
21 0121] 0312
22 0122] 0132
23 0123] 0123

4. Implementation

The implementation of the described procedure for the generation of all
permutations is given as follows:
1. initialization (the length of the permutations and the beginning path)
2. for i=2,n do
begin
2.1 shift all the permutation elements from p-th element for one
position to the right (the element p is the weight of the i-th
element in the path)
2.2 set the i-th element at the p-position

The Generation of Permutations through GDD 351

end

3. print the generated permutation

4. generate the new path

5.if the generated path is different from the beginning path go to step 2

6. stop

Some advantages of GDD can be used in implementation. There is no
need to move along the complete path for each permutation. It may be
continued from the position where the new path is different from the old
one. In this way the execution time may be decreased considerably with
the increase of N, as shown in Table 2 where the execution time is given (in
millisecond) using the complete path and a part of the path too.

Table 2: The execution times when the complete path and a part of path
are used

len.perm | complete path (ms) [a part of path (ms)

2 0.017 0.023
3 0.05 0.06
4 0.3 0.28
5 1.9 1.4

G 15 9

7 134 70

8 1318 606
9 14240 5830
10 171600 62200
11 2158000 738000

5. The modification of basic procedure

Described procedure can be modified according to some specific require-
ments of the application of permutations. If the generation of a permutation
or permutations from interval are needed, then it is enough to run the cor-
responding initialization (set the value for array NIVO(i), i = 0,n — 1).
The generation of a permutation from another one is the problem that often
appears in practice. In this case, our method is very successful. The move
from one permutation to another one is executed by the following procedure:

1. starting from the terminal node corresponding to the beginning permu-
tation and then moving up to the crossing of the beginning and the desired
permutations.

352 Dragan Jankovi¢ and Milena Stankovié

(' START)

length of permutatio

initiclization
NIVO(i)=0 ; PERMUT(Q)=0 ; i=0,...N

PERMUT() 1=0,...N-1

NIVON)=NIVO(N)+1
ii=N

NVO(i)=il A NVO(0)=0

NIVO(ii)=0
NIVO(ii-1INIVO(ii-1)+1
ji=i-1

Figure 6. Algorithm for the generation of all permutations with
length n

The Generation of Permutations through GDD 353

2. moving down to the terminal node corresponding to the desired per-
mutation. Moving up, the elements are ejected from the sequence (i.e. per-
mutation), and moving down, the elements are inserted into the sequence,

The example for the generation of permutation 1032 from 2310 permuta-

tion is shown in figure 7. The moving through graph is depicted by a dotted
line.

ﬁ& il

321023102130 2103 3120 1320 1230 1203 3102 1302 1032 1023 3201 2301 2031 2013 3021 0321 0231 0213 30120312 01320123

o1 ()
b

Figure 7. The generation 1032 permutation from 2310 permuta-
tion

6. The hardware implementation

Our method provides efficient hardware realization. The types of hard-
ware realization depend on the actual application. As an example, the de-
scriptions of pipeline realization, shown in figure 8, follow. The generation
of permutation of n items requires n processing elements (PEs). Every PE
has two inputs and one output. PE passes one of the two inputs depending
on the state of the counter which runs as the adder modulo k if PE is at k
level (i.e. k-th in pipe). If the immediate state of the counter is p, the PE
passes p inputs X, (and) afterwards input ¥ and finally n — p— 1 inputs X.
The counter of PE at level k changes its state when the state of counter of
PE on level k4 1 becomes k + 1. In other words, every PE activates the
counter of the previous PE (Figure 9).

354

Dragan Jankovié¢ and Milena Stankovic

PEL PE2 PE3 PEN-2 PEN-1 clk
uld % X X __. .) X X ‘ 1;cm|
Y v Y v Y
I Y [I Y
inl inl ind inN-2 inN-1
a)
L |e1Kem counter (1K)
mod K
L] muxbux -
Py
b)
Figure 8. a) Pipeline system b) PE
[1 1 1 | 3 |
PEIV [i

1w

L

=
b
F—— o

PRHL

—

L]

PEC-1 [

X - pussing X
Y - passing Y
M - inactiv

o
P I z 2 ¥ [
— I x x ¥ M
Gl X ¥ M M
n i
s ¥ M M Mo

Figure 9. The state diagram of the counter of PEs for n=4

The Generation of Permutations through GDD 355

7. Conclusions

In this paper, we propose the method for the generation of the permu-
tations with unlimited length, through GDD. We define GDD appropriated
for the generation of all the n! permutations of n given items. Based on
GDD, the efficient procedure for mapping the paths in GDD into permuta-
tions is also presented. The proposed method is suitable for both software

and different hardware realizations. As an example, pipeline realization is
described.

References

[1] S. B. AKERs, Binary decision diagram, IEEE Transaction on Computers C-27, No.
6 (June 1978), 509-516.

[2] R. BRYANT, Graph-based algorithms for Boolean function, IEEE Transaction on Com-
puters C-35, No. 8 (August 1986), 677-691.

(3] D. CVETKOVIC, Diskretne matematicke strukture, Nauéna Knjiga, Beograd, 1987.

(4] P. FrRaGoPoULOU, S. G. AKL, A parallel algorithm for computing Fourier transforms
on the Star graph, IEEE Transaction on Parallel and Distributed Systems 5, No. 5
(May 1993), 525-531.

[5] D. Jankovié, R. Stankovie, M. Niki1é, Calculation of the Fourier transform on
finite Abelian groups through GDD (1994), Proc. Yugoslav Conference for ETRAN,
Nis, Yugoslavia.

[6] C. J. LiN, Parallel generation of permutations on systolic arrays, Parallel Computing
15 (1990), North-Holland, 267-276.

[7] R. SEDWICK, Permutation generation method, Computing Surveys, 9, No. 2 (1977),
137-164.

FacurLty oF ELECTRONIC ENGINEERING COMPUTER SCIENCE DEPARTMENT, BEO-
GRADSKA 14, 18000 Ni1s§

sIoebq jrew ArIqlp
apebpg Jo A1sBAIUN -SIITeWwBYre A Jo A1jnoeH Jo Areiqi] [enlliA

FILOMAT (Nis) 9:2(1995), 357-366

Filomat ’94, Ni3, October 22-24, 1994
Geometry. Computer Sciences

A SYSTEM FOR STORAGE, MANIPULATION AND
CONTROL OF DIFFERENT GRAPHICS FORMATS

Zoran Putnik

ABSTRACT. In this paper, a detailed outline of a system for memorizing, manipulation
and control of pictures given in different graphic formats is given. System consists of
several modules, already known and available, but the value of the system is mainly in
combination of several useful functions, enabling complete and efficient management of
miscellaneous kinds of pictures and cutting on expenses and possible errors in manipula-
tion with various graphics formats.

1. Introduction

Manipulation of drawings and other graphics elements is mush more then
Just a simple storing/retrieving of data and drawings. It is rather a com-
plicated process of drawings’ creation - starting by a designer, external and
internal skilled consultants, through artists who actually make drawing, up
to users of the finished drawings, or some of its parts. During drawing cre-
ation, standard parts from shared or private libraries are incorporated, or
referred to, and usual necessary data - names, dates, references, are given.
Dates of drawing creation are still not the final dates of need for a drawing.
Often changes, especially for technical drawings, demand easy access to a
drawing for a long period. This demand, naturally includes a need for some
tools for transferring drawings from one graphics format to another. As for
any other data stored in a computer, manipulation with drawings requires
handling of standard problems: efficient storing system, fast and simple data
retrieval, enabling changes in existing drawings or using existing drawing in
creation of a new ones, managing an efficient data base about drawings and
related data, transferring drawings from paper to a computer and similar.

1991 Mathematics Subject Classification. 68105, 68P15.
Work supported in part by Ministry for Science of Republic Serbia

357

358 Z. Putnik

Toward overcoming of mentioned problems, in this paper, a system for
storage, manipulation and control of drawings in different graphics formats
is given. Separate modules, this system consists of, are not new nor origi-
nal, instead, most of them are available for a commercial use in some form.
Value of this system is mainly in unifying and combining all necessary func-
tions, enabling simple and efficient control of data and drawings flow even
for a long period and reducing expenses and chance for errors in drawings’
manipulation.

2. State of the art

We can notice several different logical modules in modern systems for
information and documents management (from now on CDMS - Corporate
Document Management Systems):

module for storing information - data base

module for data search - key-words data base

module for documentation viewing and control
communication module - fax, e-mail, modems

module for controlling computer network

module for changing documents (in original programs)
module for automatic text recognition

module for handling pictures

Separate programs for each of the mentioned modules are developing for
years (more or less successfully), everything toward creation of ”paperless
office.” Information stored in digital - electronic form, does not need a paper
as a storage media. But, to be easily available to the user, it demands another
elements of a system for data storing and retrieval. As main elements, we
can mention:

e computer for data storage - "main computer”
o (computer for communication with a "main computer”)
e software for "reading” and ”presenting” given information

As much as textual data are concerned, several mostly used text-proces-
sors can be identified, that each CDMS have to support, with always present,
final solution, of recognizing text in its simplest form - ASCII standard. For
graphics data, such standards do not exist. We can talk of "most frequent”
graphics forms, i.e. *.PCX, *.TIF, *.GIF, *.IMG - as bit-mapped, or *.DWG,
* DXF or *.CDR - as vectorized, but, basic standard does not exist jet.

Computer system for storage, manipulation and control of graphics for-
mats is very important subsystem of a system for creation, management and
archiving documents - CDMS. It must successfully and efficiently integrate

A System for Storage, Manipulation and Control . .. 359

some commonly accepted programs for graphical documentation manage-
ment, from scanning and character recognition programs, through programs
for editing bit-mapped, vectorized or ASCII graphics files and transferring
drawings from one form to another, up to programs for presentation and
printout graphical documentation on various kinds of output devices. This
subsystem is also an useful step towards creation of a multimedial data base,
which will enable fast and simple finding, retrieval and exporting any doc-
ument stored in any existing form. Modular and flexible, this subsystem
has to be (theoretically) usable equally in small and in big business systems,
despite working area. In its nature, such subsystem assumes (and gives best
results) computers connected in a network, which again permit successful
control of document flow, transforming several "personal” computers in an
efficient information system.

A system for storage, manipulation and control of graphics formats (some-
where called EDM, standing for "Engineering Drawing Management” or
"Electronic Data Mng” or "Engineering Data Mng”) has to emulate, for
a successful work all standard activities in a process of creation, storing and
"maintenance” of drawings. Main of these activities are:

e Control function - DIRECTOR - a module handling work and com-
munication of other modules, controlling them and controlling users’
behavior according to his priority level;

* Data storage function - LIBRARIAN - a relational data base, en-
abling a search for a specified drawing based on a key-word and
creation of a report on a drawing including place and time of cre-
ation, author, dates and types of changes, current status, list of key-
words and list of access rights;

e Digitalization function - SCANNER - a module for connection be-
tween "old” and "new” technology of drawing creation and for con-
nection with third parties, which produce their drawings in a paper
form. It should also contain some standard way of data compression
(for example - scanned drawing of A0 format, with resolution of only
400 dpi, as a result requires 40 MB of storage space if stored in a
bit-mapped form);

e Bditing function - EDITOR - a module that enables that drawing
we want to change (coming through module LIBRARIAN or module
SCANNER) can be edited either with standard geometric functions
(scaling, rotation, translation ...) or manually (adding or deleting
picture pieces, coloring, text editing...)

e Vectorization function - VECTOR - a module that (if needed) en-
ables transformation of bit-mapped drawing into a vectorized draw-
ing. Experience shows that this function is not always necessary,

360 Z. Putnik

since very good abilities for changing raster images are developed,
and on the other hand, vectorization process takes a lot of time not
always bringing significant improvement of quality;

o External communication function - TRANSFER - a module that
overcomes a problem of using different software for drawing creation
and enables combining of drawings created on different places in a
different ways;

e Text recognition function - READER - a module enabling usage of
text documents created in most standard text processing programs,
or, if nothing else is possible, enables text recognition using usual
optical character recognition techniques;

e Viewing and printing function - OUTPUT - a module enabling that
library drawings, can be viewed on (any kind of) a screen, and/or
plotted /printed on (any kind of) a printing device.

3. System modules

3.1. Drawings storage module - data base.

Creation of a complex drawing, consisted of several drawings, sometimes
already created in different graphics formats, using different software tools, is
usual very difficult. Reason for this is existence of three principally different
formats - bit-mapped drawings, vectorized drawings and drawings created
of ASCII characters - with a huge number of subtypes for the first two.
Emerging of a new version of existing graphics software, usually brings lots
of problems to the end-users. Besides that, for each graphics document,
some extra information is needed, for example: date and time of creation
and editings, names of authors, coauthors, consultants and "maintenance”
employees, references to parts taken from standard libraries or to bigger
drawings of which the given one is a part of, and so on. The most convenient
method for storage of this kind of data is some standard, relational data base,
which will enable easy sorting, searching and editing of existing data.

This module has to provide a simple and obvious searching method thro-
ugh the graphical data base on any criteria, without previous knowledge
of programming languages or data bases. This can be achieved through
a simple and readable graphics interface, enabling easy entering of wanted
search criteria. Multiple criteria search, easy access to the results of a previ-
ous search and other similar, practical options are usual in any serious data
base, so there is no need to explain them separately.

As a first result, a search gives simplified, smaller picture of all drawings
satisfying given criteria. Later, those pictures, depending on users access
level, could be viewed, edited, printed, commented and so on. Naturally, for
advanced users, it would be very useful to have programming language, which

A System for Storage, Manipulation and Control . .. 361

can define either aestethic (i.e., shape of a search screen) or essential search
details (definition of new fields of a data base, with their attributes, creation
and organization of an archive of technical and business documentation,

catalogues of products, data bases of persons involved in drawings creation
and so on).

3.2. Module for transferring paper documentation into electronic
form.

Because of paper documentation inherited from previous work and be-
cause of need for cooperation with other parties producing paper drawings,
this module is necessary in any system for storage, manipulation and control
of graphics formats. It should cover following functions:

picture scanning

editing of errors of scanning
optical character recognition
editing of bit-mapped pictures
picture vectorization

editing of vectorized pictures
editing of ASCII pictures

3.2.1. Subsystem for scanning.

Any "real-life” business system, besides documentation created on a com-
puter, is doomed to have contact with paper documentation. That docu-
mentation is, seldom or rarely, used, saving of some documentation is usually
legal obligation. Transformation of that documentation into an electronic
form by repeated drawing is usually too complicated and too expensive. In-
stead, it is more natural to keep it in a computer archive in a form of scanned
pictures. After scanning, these pictures can be edited more or less, vector-
ized, if necessary, or transformed into text, which all are parts of subsystems
that will be mentioned later.

Process of scanning and editing of scanned pictures, should be, according
to latest trends in this field [5], equipped with tools for performing following
functions:

e scanning errors’ correction

e straightening of aslanted pictures

¢ removal of "snow” emerging because of a dirt on a paper

e thickening or thinning of lines '

e definitions of separate, different filters, for specific parts of a picture

e linking of disconnected contours, or separating of badly connected
contours

e standard functions for adding, editing and deleting parts of drawing

362 Z. Putnik

3.2.2. OCR subsystem.

This module confirms to all standard demands for this class of programs,
which will not be especially discussed in this context. It should only be em-
phasized that this subsystem has to supply a connection between a graphics
document in an unknown format and ASCII file obtained by process of scan-
ning and optical character recognition. This is, naturally, performed only
as a final measure, if information about the contents of a picture cannot be
obtained by any other means.

3.2.3. Subsystem for picture editing.

This is again a standard subsystem, that should not be explained in much
details. It should be only mentioned, that this subsystem in fact is consisted
of three separate parts, for editing different types of drawings - bit-mapped,
vectorized and ASCII character drawings. Since one drawing can be created
as a combination of all these types, all editing tools have to be available at
any moment.

3.2.4. Vectorization subsystem.

There is often a need for large amount of changes that should be performed
on an existing drawing. This is usually much easier (end with higher quality)
performed on a vectorized picture. Besides, vectorized picture, compared to
a bit-mapped picture, usually take much less space, which is a very important
demand in this field,. Considering all mentioned, subsystem for vectorization
is an obligatory part of a system for storage, manipulation and control of
graphics formats.

There is a set of standard tools for this process and usual procedures
for manual and automatic vectorization. Here, some more advanced actions
about vectorization will be underscored:

o definition of vectorization "filter” (for example artistic or technical,
or even more specific - electronic, architect, engineering ...), which
as a consequence, brings different definitions of some standard vec-
torization parameters:

(1) characteristics for approximation of curves,

(2) definition of smallest object that is vectorized,

(3) minimal offset of horizontal/vertical line that is not neglected,
(4) method of text recognition,

(5) minimal distance that separates two lines and so on.;

e enabling manual or automatic vectorization and vectorization of a
whole picture, of a part of a picture or definition of a part of a picture
that should not be vectorized;

A System for Storage, Manipulation and Control 363

¢ enabling recognition of at least some basic contours - circle, ellipse,
square, for example - as contour, and not as a combination of simple
lines and curves. The same should stand for a combination of those
basic shapes. For example, a square written IN a circle, should be
vectorized as those two contours, and not as a combination of four
lines and four curves;

* text, as a part of a picture, can be recognized either as graphics
(transformed to curves), as letters (i.e., optical character recognition
of ASCII characters) or completely removed from a drawing;

o after finished automatic vectorization, there should be a possibility
for comparison of bit-mapped original and achieved result. Natu-
rally, there should be an ability for additional, manual changing of
vectorized picture;

3.3. Output module.

This module has to enable rough and/or detailed view of "all” important
graphics formats - bit-mapped or vector, including documents created by
important text-processing programs, spreadsheets or data-base programs.
For this module, only a quick and simple access to document is important,
including output abilities on all output devices, screens, printers and plotters.
Eventual changes of documents should not be incorporated into this module,
since these abilities are a part of another modules.

3.4. Module for manipulation of technical drawings.

Special problem in this field is production, maintenance and editing of
technical drawings. During creation, technical drawings go through many
phases of treatment, addition and editing, so that, as a result there is too
many paper versions of a drawing, usually right one at the wrong place. Chief
problem with technical drawings (for example drawings of bridges, buildings
and similar) is that they have to be saved and maintained for several tenths
of years.

Unfortunately, introducing computer aided design (CAD) into this area,
can put us in an even worse situation. Part of documentation is saved on a
computer, part on a paper, some initial versions of a drawing are declared
final, while some final versions are rejected as unnecessary. In order to
overcome these problems it is urgent to, right after introduction of computer
aided design, transfer all documentation into electronic form, no matter of
what kind, origin or shape they are and organize a data base to accompanies
that documentation. Later phase will usually demand several computers
connected into network.

3.5. Communication module.

364 Z. Putnik

This module has to enable safe, fast and easy communication between dif-
ferent modules in a system for storage, manipulation and control of graphics
formats. As much as an user is concerned, it should supply simple usage, dif-
ferent methods to perform functions (keyboard, mouse, arrows ...), readabil-
ity of a screen, easy-to-use help system and all other standard requirements
for a proper user-friendly graphic interface [7].

4. Future development

It seems, considering fast development of science, especially computer sci-
ence, that it will be possible in near futwre to spread system like this one in
several different areas. Even though commercial versions are still unavail-
able, some fields are developing very fast and we can expect soon expansion
of system for storage, manipulation and control of graphics formats, for ex-
ample with:

(1) Optical recognition of text - not characters

Latest research shows [1] [4], that optical character recognition
systems are very close to their upper limits. Although those limits
are rather high (over 95%), for large texts, and, more important,
for texts that allow no errors, this is insufficient. Consequently, or-
ganizations that want to work with ”electronic documents” cannot
rely on them. These facts, initiated research in a field of optical
recognition of texts, based on analysis of a document structure and
its contents. A system like that, must contain several text character-
istics: big dictionaries, text styles, font types, document styles and
structure, word meanings, relationships between words and assump-
tions about text contents - expected contents, expected contents of
certain parts or knowledge on relationship between text and field of
its application.

(2) Intelligent interpretation of a drawing

Drawings, especially technical, could be scanned and recognized,
much better and more precise, by using certain algorithms for de-
termining location of textual parts of a drawing and its separation,
or methods for analysis of scanned drawings in order of acquiring
regular shapes, instead of set of lines, irregular in their shape, size
and thickness, algorithms for recognizing fill patterns and similar [2]

[3].
5. Comment instead of conclusion

By some available statistics (from year 1992) [5], it is estimated that there
is over 15 billion of paper drawings used in different companies, which have

A System for Storage, Manipulation and Control ... 365

to be used and controlled, and that only 13% of them are in electronic form.
It is also estimated, that over 10% of those drawings are lost or misplaced,
because of inefficient organization, and that, only in USA, about 43 million
man/hours are spent on storage, search, copying and other manipulation of
paper graphics documentation and space of over 1.5 million of square meters
is used for drawings storage and saving.

There is a lot of legal and practical reasons to store drawings for several
years, including potential need for drawing editing. Drawings used in ma-
chine construction, had to be treasured as long as machines are produced,
and even later, because of maintenance. The same, but for much longer
period, stands for architecture drawings or civil engineering, for example.

Introduction of CAD systems, aimed for improvements in a field of pro-
ductivity in drawings creation, easier usage of graphics libraries, easier stor-
age, editing and communication with drawings. But, need for communica-
tion with companies not using electronic systems for picture manipulation,
forced a situation in which every company had to keep people, offices and
working methods, for handling both paper and electronic drawings. Conse-
quently, instead of increase in productivity, that usually lead to duplicated
capacities and decreasing of efficiency, because of a need for cooperation
between two very incompatible, parallel systems.

Everything mentioned, clearly shows urgent need for creation and usage
of efficient system for storage, manipulation and control of different graphics
formats, toward which this paper hopefully leads.

References

[1] A. DENGEL, Stepping from Automatic Spelling towards Automatic Reading, Interna-
tional Summer School ”Information Technologies and Programming” Sofia (1992).

[2] S.H. JosepH, T.P. PRIDMORE, Knowledge- Directed Interpretation of Mechanical En-
gineering Drawings, IEEE Trans. on Pattern Analysis and Machine Intelligence 14,
No. 9 (1992).

[3] R. KasTury, S. Bow, W. EL-Masri, J. SHAH, J. GATTIKER, U. MOKATE, A System
for Interpretation of Line Drawings, IEEE Trans. on Pattern Analysis and Machine
Intelligence 12, No. 10 (1990).

[4] K. KukicH, Techniques for Automatic Correcting Words in Text, ACM Computing
Surveys 24, No. 2 (1992).

[5] T. MAXWELL, Engineering Drawing Management, DECSYM’92 - Latest Trends in
Computing.

[6] J. McKENDREE, J.M. CaRROLL, Proceedings of CHI'86 Human Factors in Comput-
ing System, ACM, 1986.

[7] Z. PurNik, Intelligent HELP System as a Help in Educational Process, Proceedings
of IV Symposium ”Informatics in Education and new Educational Technologies”, Novi
Sad, (in Serbian) (1994), 86-91.

366 7. Putnik

(8] R. Rapiev, V. DimiTRov, N. MARINOV, A System for Development of Intelligent
Interfaces, Proceedings of 17 School with Conference Information Technologies and
Programming, Sofie, Bulgaria (1992).

7ZoRAN PUTNIK, UNIVERSITY OF NovIl SAD, FACULTY OF SCIENCE, INSTITUTE FOR
MaTHEMATICS, TRG D. OBRADOVICA 4, 21000 NovI SAD, YUGOSLAVIA

FILOMAT (Nis) 9:2(1995), 367-376

Filomat ’94, Nig§, October 22-24, 1994
Geometry. Computer Sciences

ONE METHOD OF IMPLEMENTATION OF
LISP INTERPRETER TO TRANSPUTERS

Jozef Kratica

ABSTRACT. The paper describes one method of itmplementation of LISP interpreter to
transputers. Developed interpreter contains standard functions common for almost all
LISP versions. Architecture is binary tree message passing. Implementation was de-
veloped on transputer parallel ¢ language (ANSI C with procedures for interprocessor
communications and synchronization). Part intended for evaluation of functions (expres-
stons) was parallelized, but /0 operation and parsing were sequential. This is caused
by the technical limitations of transputer systems, because 1/0 operations can executed
only by first transputer, and interprocessor communication is slow. Mazima increase in
speed equals 6.5 times, on transputer system with 17 transputers T800, by as compared
to single transputer T800. That increase in speed is obtained for recursive problems de-
manding much computing. Small increase in speed is obtained for problems with more
1/0 operations.

1. Implementation method

In LISP implementation on uniprocessor machines ([2], [3]), the basic part
for parallelizing is part for evaluating expressions (functions). Provided that
only first transputer can perform 1/O operations, these operations (I/0)
must be executed sequentially. Parsing functions are also executed on the
first transputer, because interprocessor communication is slow. First trans-
puter sends function definitions to other transputers when they need them
(when other transputers evaluate functions).

Technical limitations of transputer systems are ([7]):

a) Every transputer have 4 links to other transputers;

b) Every transputer must be reset (one of its 4 links) by other transputer.
Only first transputer is reset by the host.

c) Every transputer can reset maximally another 2 transputers, one hy
system, and the other by subsystem reset link.

367

368 Jozef Kratica

Graph theory defines precisely technical limitations by term RS complete
graph maximal degree 4. [3]

Binary tree architecture satisfies technical constrains of transputers (RS
complete graph maximal degree 4) [3]. Binary tree architecture is applied in
this paper.

Transputers can be grouped in 3 categories:

a) The first transputer;

b) Transputers that have successors (transputers with numbers 2-8.);

¢) Transputers which have no successor (other 9 transputers).

File with NIF extension describes architecture (configuration) of the tran-
sputer system. Example of NIF file for our implementation, which contains
17 transputers T800 is shown below:

1, lisptrl, RO, 0, 2, 3, i
2 lisptr2, RI, 4, I 5, ;
3, lisptr2, Sl1, 6, 1y 1, ;
4, lisptr2, R2, 2, 8, 9, :
5, lisptr2, S2, 10, 11, 2, ;
6, lisptr2, R3, 3, 12, 13, g
i lisptr2, 53, 14, 3, LT, g
8, lisptr2, R4, 18, 4, 19, i
9, lisptr2, 54, ; : 4, ¢
10, lisptr2, RS, 5, , , :
11, lisptr2, S5, ; 5, " :
12, lisptr2, RG, s 6, s :
13, lisptr2, 56, . ’ 6, '
14, lisptr2, R7, T s , :
17, lisptr2, S7, ; 5 i ;
18, lisptr2, RS, 8, \ , ;
19, lisptr2, S8, ; ; 8, :

Every line contains:

a) Number of the transputer (the first transputer must be connected to
the host by link 0);

b) Name of a program that will be executed on that transputer;

¢) R or S (system or subsystem reset), and number of the transputer
which will reset him;

d) Number of the transputer which is connected by link 0;

e) link 1;

f) link 2;

g) link 3;

Free connection by that link marking empty place.

One method of implementation of LISP interpreter ... 369

Example: 5. Transputer execute LISPTR2, reset by subsystem link of
2. Transputer (52). Link 0 connects to transputer number 10, link 1 to
transputer 11, link 2 to transputer number 2. Link 3 is free.

Configuration of the transputer system given in previous NIF file is binary
tree (Figure 1). More about a configuration of a transputer in a network is
presented [3] and [7].

Qasr

12) (13 (4 a7

2
i (9

FIGURE 1. Architecture of the transputer system

1.1 Work done by the first transputer.

First transputer performs following operations:

a) Loading input data;

b) Parsing input data for definitions of user-defined functions;

¢) Saving that definitions;

d) Saving names of variables and functions;

e) Parsing function calls from input data;

f) Printing output results;

g) Deciding about the execution of the functions (whether to execute
function itself, or to send it to "successors”).

1.1.1 Calling of user-defined function.

If the first transputer evaluates user defined function, two cases can arise:

a) If the function contains only calls of built-in functions, the first trans-
puter itself evaluates all parts of the function, because in many cases this
evaluation is short.

b) In case that the user-defined function also contains calls of other user-
defined function (functions), much computing can be expected. In that case,
if some of "successors” are free, this transputer sends parts of those user-
defined function to free "successors” for evaluation. If all "successors” are
busy, then this transputer itself evaluates all function calls.

370 Jozef Kratica

1.1.2 Calling of built-in function.
In this case, the first transputer performs all computing alone, because
the evaluation of calls of built-in functions is short.

1.2 Work performed by the transputers that have ”successors”.

Every transputer that has ”successors” (in this configuration of 17 trans-
puters, these are transputers Nos. 2-8), waits for the message "COMPUTE”
from ”parent” transputer.

After receiving the message "COMPUTE?, it receives the following data:

a) Expression (function) that it will evaluate;

b) Names and values of variables in that expression;

¢) Definitions of functions, that the expression (function) needs for the
evaluation;

d) Contents of argument stack in that moment.

After that, the transputer evaluates function calls, in the same way that
the first transputer does. After the end of the evaluation of that function
call, the transputer sends the "FREE” command to the "parent”, and saves
a result to its communication stack.

In the moment in which the "parent” needs this result, the transputer
loads this value from his communication stack and sends it to the "parent”.

1.3 Work performed by transputers that have no ”successors”.

Every transputer that has no "successors” (in this configuration of 17
transputers, these are transputers Nos. 9-19), waits the message "COM-
PUTE” from the "parent” transputer.

After the receival of the message "COMPUTE?, ite receives the following
data:

a) Expression (function) which it will evaluate;

b) Names and values of variables in that expression;

¢) Definitions of functions, which the expression (function) needs for eval-
uation;

d) Contents of argument stack in that moment. After that, it itself eval-
uates the function call (because it has no "successors”).

After the end of the evaluation of the function call, a transputer sends the
"FREE” command to a "parent”, and saves the result to its communication
stack. In the moment in which the "parent” needs this result, the transputer
loads this value from its communication stack and sends it to the "parent”.

2. Realization

The implementation of LISP interpreter for transputers (multiprocessors),
was based upon the corresponding implementation for uniprocessor machines

One method of implementation of LISP interpreter ... 371

[3]. Changes in parts of implementation for uniprocessor machines are minor.
The implementation for multiprocessors (transputers) contains two new par-
ts:

1. Argument passing and

2. Control part

In this implementation there are two segments of the program:

a) the segment which will be executed on the first transputer;

b) the segment that will be executed on the other transputers. This
segment does not contain the procedures which other transputers cannot
execute (I/O operations, parsing, ...).

2.1 The segment for the first transputer.

2.1.1 Argument passing.

The parallel C contains only procedures intended for passing of integers or
characters to (from) communication channels. In the program the complex
and powerful data structures (pointers, linked lists, ...) and procedures nec-
essary for passing those data structures to (from) communication channels
were used. This part of the program contains procedures that enable those
possibilities.

2.1.2 The control part.

This is the most important part of the program.

It performs following operations:

a) receives messages from input channels, and performs their commands;

b) takes note of transputers which ended theis previous evaluation, and
now are free;

c) when it evaluates function calls, it analyses following cases: if the
transputer has "successors”, if its "successors” are free, and if expression is
user-defined function, then it sends a function to be evaluatet to the first
free "successor”. In other case it itself evaluates a function call;

d) it sends the message "GIVE ME” to a "successor”, demanding the
value it computed. Then it waits until it receives the value.

2.1.3 The segment intended for other transputers.

On the other transputers some procedures are disposed as unnecessary.
Some procedures are new.

In the part Argument passing new procedures are procedures intended
for the communication stack (not necessary for the first transputer).

In the part Control parts there are several operations to be performed:

a) receival of function intended for evaluation (and all necessary data)
from the "parent”.

b) receival of the message "GIVE ME”, from the "parent”;

372 Jozef Kratica

¢) receival of the message "END” from the ”parent”. This message means
the end of the interpreter work. In that moment, execution of program ends,
and the user exits from the interpreter to the operating system.

3. The efficiency of the implementation

This implementation is efficient, in case of the great number of operations,
and recursive oriented solutions. However, increase in speed depends upon
the nature of a problem.

The testing was performed using few test examples. The increase in
speedup was notable only for problems .with a small number of 1/O op-
erations, and a great number of computing operations. In the alternate case
(a great number of 1/O operations) the increase in speed is small, because
the communication time for one datum is 4 times greater than the time
needed for the arithmetic operation on that datum.

In Tables 1-3 all times are given in ms. The maximal error of measurement
equals Hms.

The results for different arguments are given in different rows of each
table.

In each row are given:

a) arguments of functions;

b) the execution time on 1 transputer;

¢) the execution time on configuration with 3 transputers, and increase in
speedup in comparison to time on 1 transputer;

d) the execution time on configuration with 7 transputers, and increase
speed compared to the time on 1 transputer.
e) the execution time on configuration with 15 transputers, and increase
in speed compared to the time on 1 transputer;

f) the execution time on configuration with 17 transputers, and increase
in speed compared to the time on 1 transputer;

Example 1: The function with 2 recursive calls:

(defun t2 (x)

(if (=x0)
1
(+ (2 (- x 1) (82 (- x 1))

The method of evaluation of (t2 17) is given in Fig. 2.

Example 2: The recursive search of Fibonacci numbers:

(defun fib (x)

(if (i x 2)
X
(+ (fib (- x 1)) (fib (- x 2)))))
The method of evaluation of (fib 24) is presented in Fig. 3.

it

X

10
11
12
13
14
15
16
17

X

10
15
16
17
18
19
20
21
22
23
24

1 tr.
741
1481
2961
5921
11841
23681
47362
94722

1 tr.
65
710
1148
L8537
3004
4860
7862
12721
20582
33301
53881

One method of implementation of LISP interpreter ...

TABLE 1.
3 tr. spe.
428 1.73
850 1.74
1695 1.74
3384 1.75
6764 1.75
13522 1.75
27039 1.75
54073 1.75

FIGURE 2.

TABLE 2
3tr. spe.
49 1.32
502 1.41
309 1.41
1306 1.42
2111 1.42
3412 1.42
5519 1.42
8927 1.42
14433 1.42
23353 1.42
37758 1.42

Times for the Example 1

T tr.
232
457
906
1804
3541
7073
14138
28267

T 41,
36
337
543
874
1411
2279
3684
5957
9476
15311
24761

spe.
3.19
3.24
3.26
3.28
3.34
3.34
3.35
3.35

| (2 145) (G2 14)| (2 14)] |2 14

15
125
237
461
911
1809
3605
7197

spe.
5.92
6.24
6.42
6.49
6.54
6.56
6.58

14382 6.58

17
125
237
461
910
1808
3604
7197

spe.
5.92
6.24
6.42
6.50
6.54
6.5

6.58

14382 6.58

spe.
1.80

2.10
2.11
2.12
2.12

2.18
2.13
2.13
2.17
2.17
217

15
26
201
317
506
826
1310
2115
3418
HH23
8932
14453

. Times for the Example 2

spe.
2.5

3.53
3.62
3.67
3.63
3.71
3.71
3:72
3:72
3.72
3.72

Scheme of evaluation for example |

17
22
138
216
343
548
879
1416
2284
3688
5961
9639

S S S R IS
i
%)

&)
[
=}

374 Jozef Kratica

(fib 22)

(@b 21)] [20)] [0 20)] [cEib 1] [chib 20)] [chib 19)] [cEib 19)] [cEib 18)]

FIGURE 3. Scheme of evaluation for example 2

Example 3: Some problems have a great number of I/O operations, a lot of
communication, or their execution is slow due to certain technical limitations
of transputers. In the evaluation of those problems a small increase in speed
is obtained, or, conversely, more time is needed than on one transputer. The
example of such a problem is the program which forms a "big” list.

(define form (n)

(if (= n 0) (set list (cons 'l list))

(begin
(form (- n 1
(form (- n 1

(form (- n 1
(form (- n 1
(set list *())

)
)
(form (- n 1))
)
)

TaBLE 3. Times for the Example 3

1 3 spe. T spe. 15 spe. 17 spe.
53 63 0.84 63 0.84 63 0.84 63 0.84
293 344 0.85 344 0.85 344 0.85 344 0.85
1461 1721 0.84 1721 0.84 1721 0.84 1721 0.34
7338 8633 0.85 8633 0.85 8633 0.85 8633 0.85

G W N g

Remaining methods of implementation are extensively described in [1].

Some of them are:
1. Translation of a program code into metalanguage, that is more suitable

for evaluation [6];

One method of implementation of LISP interpreter ... 375

2. Division of the problem into subproblems (divide and conquer ap-
proach) [5];

3. Translation of the program into a code that does not the requirements
of speed, and after that, during run-time, automatic improvement of its
performances [4].

4. Conclusions

Most implicit parallel languages implement functional programming lan-
guages. Reasons for using functional paradigm (insted of the procedural
one) are:

L. Smaller kernel of language;

A precise grammar, and, consequently, uniform constructions;
No side effects;

Easy writing of recursive functions;

. No explicit sequence of execution.

Because of that, parallel implicit programuiing languages are most popu-
lar.

In this paper the interpreter for LISP that implicitly solves problems
of communication and synchronization between processors was developed.
This method is the most general one, but it does not, in the same time,
produce the fastest code. The code is equal to the code used for uniprocessor
machines, and all programs written in sequential LISP can operate on those
machines as well. But a programmer can manually write the fastest code (in
explicit parallel programming languages, like Parallel C or Occam).

Architecture is binary tree. This means easier control of processors (com-
munication and synchronization), but it also means the unnecessary waiting
of some processors (transputers). A more complex architecture (than the
tree) can reduce waiting of processors, but it will also increase a communi-
cation.

The methods of improving this implementation are:

1. the implementation of new built-in functions in accordance with the
Common LISP standard. It should be noted that there are few thousand of
built-in functions in Common LISP;

2. using more complex architecture of the transputer system. New gen-
eration of transputers has more interprocessor channels (16) than this gen-
eration (4). This means that architecture can be more complex, and the
increase in speed can be greater.

[SV]

[B N)

376 Jozefl Kratica

References

[1] AsHcrorT E.A., FAUSTINI A.A., JAGANNATHAN R., An Intensional Language for
Parallel Aplication Programming, Parallel Functional Languages and Compilers,
ACM Press, 1991, pp. 11 - 50.

[2] Kamin N. S., Programming languages - An interpreter based approach, Addison-
Wesley, 1990.

[3] KraTica J., Paralelization of functional programming languages and implementation
to transputer systems, Mag. thesis, University of Belgrade, Faculty of Mathematics,
1994.

[4] LEUNG S., ZAHORJAN I., Improving the Performance of Runtime Paralelization,
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (1993), ACM Press, 208-217.

[5] Mou Z.G., A Formal Model for Divide-and-Conquer and its Parallel Realization,
Ph.D. thesis, Yale University, Department of Computer Science, 1990.

[6] SkEpzIELEVSKI S.K., GLAUERT J., IFI - An intermediate form for aplicative lan-
guages, Manual M-170, Lawrence Livermore National Labaratory, 1985.

[7] Transputer Toolset, Inmos corp., 1989.

27. MARTA 80, 11000 BELGRADE

FILOMAT (Ni$) 9:2(1995), 377-384

Filomat '94, Nis, October 22-24, 1994
Geometry. Computer Sciences

CODING FOR (5,13) CHANNEL CONSTRAINTS

Milan Simié and Rade Petrovié¢

ABSTRACT. Data Translation codes for the particular channel constraints are designed
and presented in this paper. The encoding schemes belongs to the RLL(5, k) codes family
and can be used in digital recording and telecommunication practise.

1. Introduction

Runlength limited codes, RLL, are used for digital storage, or as Transla-
tion codes for digital data transmission /1/. System for digital transmission
can be defined as a system designed to best use a given channel, while the
analog communication system is defined as the one designed to best fit a
given signal source. Unconstrained data stream must be converted to con-
strained stream of symbols, (d, k), in order to solve the problems of spec-
tral shaping, self-timing, and intersymbol interference (ISI). Lower bound of
zero runs defined by parameter d is used to control ISI, while upper bound
defined by parameter k is used to insure data stream selfclocking. Gener-
ally, parameters of any translation encoding scheme belong to the range of
0 < d <k < oo. Through the numberof already published papers, we have
shown that channels with constraints in the range of d = 5 and 12 < k < 16,
are interesting for the future use in both areas of application. The channel
(5,13) have not been especially treated yet, and it is the purpose of this
paper. The presented encoding schemes offer a great opportunities in choos-
ing encoding rules, so that RLL codes can be combined with permutation
codes, and the signal spectral density can be adjusted. Permutation codes
are a class of error correction codes which have been suggested for use on
the Gaussian channel.

2. Capacity and Coding Rate Consideration

Based on Schannon’s FSM channel model (Finite State Machine), gen-
eral algorithms are already developed for practical encoding schemes design.

377

378 Milan Simié¢ and Rade Petrovic

Code designers try to enlarge the parameter d, and to shorten the parameter
k, for the same coding rate R = m/n, defined as ratio of unconstrained input
data symbols number, m, to the number of constrained signal symbols, n, at
the coder output. The operation of string translators, named encoders and
decoders, is to map input string of symbols from one alphabet into the out-
put string of symbols from the other alphabet. Input string may possibly be
of infinite length, but for the practical reasons it is devised into finite strings
of fixed or variable lengths, so that we have FL or VL encoding schemes.
Codeword assignment is obviously the function of the incoming dataword,
but also it can be dependent on the channel state, presented by the FSM,
" when we have state dependent coding. Finally, it can be the function of the
future dataword, and in that case we have Future dependent coding - FD.
Shannon proved that, as codeword length n grows, the number N(n) of (d, k)
sequences approaches the value 2€™, where C' is called information capacity.
Capacity C' can be treated as the theoretically maximum achievable coding
rate I for infinite value of codeword length n, according to the equation:

(1) C = lim %(logzN(n))

It is clear that coding rate R always satisfies inequality R < C. The
code is called the efficient one if the coding rate R is close to the capacity
C'. Different (d, k) sequences information capacities are already given in the
references, but we did some more calculations based on the solution of the
characteristic equation given by det(A — M) = O, where A is FSM state-
transition matrix. The calculated capacity C is the capacity of a discrete
noiseless channel expressed in units of bits per channel symbol, although
it can also be calculated in units of bits per second, bps. Capacity of
the channel in bits per channel symbol differ only by a factor equal to the
number of channel symbols per second. Considering channel characteristics
there are four concepts related to one another:

Data rate in bps, at which data can be communicated,

Bandwidth of the transmitted signal and the nature of the transmission
medium in hertz,

Noise or average level of noise over the communications path,

Error rate, the rate at which errors occur.

For the coding purposes, or alphabet conversion, it is convenient to con-
sider capacity in bits per symbol. Qur conclusion was that the codes with
coding rate R = 1/3 and parameters (d,k) = (5,k) could be of interest
in recording, as well as telecommunication practice. Density ratio of these
codes, given by DR = R(d 4 1) = 2, is valuable improvement over existing
codes.

Coding for (5,13) channel constraints 379

After the considerations described above, we have found out that it is
possible to design new coding schemes defined by parameters (dyk) = (5,13)
and R = 1/3, as the (5,13) constrained sequences information capacity is
C =0.343 < 1/3 = R. Clock rate, defined as CLR = 1/RT, is increased,
CLR = 3, and thus compensates information rate loss caused by translation
of unconstrained input data sequences to the constrained sequences. The
original information bit time interval, which corresponds to NRZ clock signal,
is called bit window, and is labelled with T.

3. Encoding Schemes for (5,13) Constraints

- State and Future Dependent Coding

Figure.1 illustrates State transition diagram or FSM, for general con-
straints (d, k). In our particular case when d = 5 and k = 13, it is a graph
with 14 nodes, or channel states, where arrows directed edges represents
state transitions, and are labelled with channel bits. In the terminology of
synchronous Bounded Delay (BD), or FD coding /2-5/, set S. is a set of cod-
ing, or terminal states, which are the states entered at the end of codewords.
Codewords are the paths through the FSM graph.

0 [

go oo v

Fig. 1 State transition diagram for the (d, k) sequence

The existence of set 5. = (S,), as a subset of all FSM states set, § =
(5i),i=1,...,14, is a necessary and sufficient condition for the existence of
a code. FD RLL(5,13) code can be defined with 26 codewords, the lengths
of which vary from 3 to 21 signal symbols, representing 1 to 7 data bits.
Coding states set is Se = (5.),¢ = 1,2,4,5,6,7,8. The codeword choice is
a function of the current state (State Dependent-SD), the information to be
represented, and the future information. Code conversion rules are given in
Table 1. Data bits in brackets indicate future bits in certain states, and are
related to the states 51, 53, Sy, and S5, where we have future dependency.

380 Milan Simié and Rade Petrovié

TABLE 1. Future Dependent RLL(5,13) Code

Initial State Input Data Qutput Sequences Final State
1 Se, 97,98 00 100000 Se
2 010 010000000 Ss
3 011 001000000 Sz
4 100 000100000 Se
5 1010 000010000000 Sg
6 1011 000001000000 S7
7 1100 000000100000 Se
8 11010 010000010000000 Sg
9 11011 010000001000000 S7
10 11100 001000001000000 S7
11 111010 000010000010000000 Ss
12 111011 000010000001000000 S7
13 111100 000001000001000000 S7
14 1111010 010000010000010000000 S
15 1111011 010000010000001000000 57
16 1111100 010000001000001000000 S7
17 1111101 001000001000001000000 57
18 1111110(0) 000010000010000010000 S5
19 1111110(1) 000010000010000001000 Sy
20 1111111(1) 000001000001000001000 54
21 1111111(00) 010000010000010000010 5>
22 1111111(01) 010000010000010000001 5,
23 5 0 000 54
24 5, 0 000 Ss
25 8,4 1 000 S7
2% S 0 000 S

- State Independent Coding

Using the same codepaths in the state transition diagram from Fig.1,
state independent SI RLL(5,13) code can be defined with no look-ahead.
In this case, coding states set is S. = (S5.),¢c = 6,7,8. Code translation
table can consists of 22 or 21 codewords, the lengths of which vary from
6 to 24 signal symbols, representing 2 to 8 data bits. Generally, future
dependency can shorten codeword length, but in this case it does not affect
the error propagation limiting (EPL), or codec complexity reduction. The
next RLL(5,13) code is designed with given coding states set 5., where the
translation rules are defined for 21 VL codewords as presented in the Table2.

Coding for (5,13) channel constraints 381

TABLE 2. State Independent RLL(5,13) Code

Input Data Output Sequences
1 00 100000
2 010 010000000
3 111 001000000
4 100 000100000
5 1010 000010000000
6 0111 000001000000
7 1011 000000100000
8 11001 010000010000000
9 11011 010000001000000
10 11000 001000001000000
11 011001 000010000010000000
12 011011 000010000001000000
13 011000 000001000001000000
14 1101001 010000010000010000000
15 1101011 010000010000001000000
16 1101000 010000001000001000000
17 1101010 001000001000001000000
18 01101001 000010000010000010000000
19 01101011 000010000010000001000000
20 01101000 000010000001000001000000
21 01101010 000001000001000001000000

The problem of EPL is directly related to the appropriate codeword to
the data word assignment and the decoder design /6/. Based of that, similar
data sequences are coded with similar symbol sequences, The encoder for
the New code can be designed as any PAL SM (State Machine) encoder for
Rldgcodes,asfbrexanuﬂeIhrI{LL(QJU,orIILL(5,16)codes,but\vepropose
sliding window decoder.

The decoder for New RLL(5,13) code has 26 bits shift register, as sliding
window, with serial input-parallel output and PLA array architecture for
combinatorial logic design. Programmable AND-OR array generates canon-
ical form sum-of-products of the variables involved in a function. Variables
are taken from the shift register positions. Sequential decoder generates one
output data bit for each incoming 3 symbol bit pattern, after the time delay
for 9 symbols, or 3 data bits. There is no internal feedback in the decoder
as the output depends only on the input string in length of 26 bits, so that
the error propagation is limited to only 9 data bits since 24 < 26 < 27. If

382 Milan Simié¢ and Rade Petrovié

we denote the contents of the shift register positions by z;,7 = 1,2, ..., 26,
with shifts from z, to zs6, the decoded group occupies positions ziq, 21,
and z, while the past (z;,7 = 13 — 26), as well as, the future (z;,i=1-19)
bit groups, can affect the decoder decision. After a great deal of calculation,
since the truth table has 116 rows and 26 columns, it can be shown that the
decoder output, d = f(z1,...,22), is defined by Boolean expression:

18
By
=1

P1 = I7I13; P2 = IT7T14, P3 = T3T14, P4 = I9T18; P5 = T9I19,

(2) P6 = ToT20; P7 = T13%19; P8 = T13Z25; P9 = 14205 P1o = T4T11T17;

Pi1 = T5E11817; P12 = Z10Z16%17; P13 = T10Z16%22; P14 = T10211217223;

P15 = £1E228E15L16217; P16 = T6T12213T14Z15T16717;

P17 = T12T18T19T20T21T22223; P18 = T15T21 7222237242257 26;

The truth table used in the evaluation of decoder function is only a part
of the whole table with 2?¢ = 67108864 rows.

- Improved ACH coding

Referring to the FSM model, as in any other method, with ACH approach
it is possible to derive encoder state transition table in systematic manner,
for any channel constraints, if coding is realisable depending on R and C.
Recently /7/ the novel method, or improved ACH, was presented. The same
approach was used for the following scheme design. Constrained channel is
described by 14-by-14 state transition matrix D:

D= (dig)y 45=1;u,14
dip=1 for i>(d+1)=6
dij =1 for] =i+1

dij =0 for the other cases

Next step was to derive B = D3 from D, and it should be for our channel
the following matrix :
B=D=(bg); i4,J=15.,14
bjp=1 for 4<i1<12
bi=1 for 5<:¢<13
bz=1 for 6 <1< 14
bi; =1 for j=1i+43

bi; =0 for the other cases

Coding for (5,13) channel constraints 383

After that we have found vector V' with positive integer components such
that:

D3V > 2v

Two optimal, from many possible solutions, are the following:
VI transposed = (4568 10121211997333)
m=uv(z) for i=1 to l4;m =102
V2 transposed = (4568 1012121199733 1)
m=uwv(i) for it=1 to 14;m =100
where v(1) are components of the vector V.

The number of encoder states, in the state splitting process, is given by
the corresponding component of vector V' so that the total number of encoder
and decoder states is m. . |'he Encoder matrix F is squared, 100x100 matrix
in the other case which is the best one, and we can use Milan approach, with
H matrix, to define the encoder /7/.

Since the number of states is 100 < 128 = 27 states, the error propagation
is limited to only 7 data bits, for this class of codes /7/.

4. Conclusion

Encoding schemes presented in this article are coding problem solutions
for (5,13) channel constraints. Error propagation is limited in each case, as
more precisely presented in the previous papers for similar codes, and the
further analyse can be done in order to adjust signal spectres. In addition
to that, RLL codes can be combined with permutation codes to improve the
reliability, or Data Rate in the communication channel.

The last one scheme from this paper, can give us more freedom to make
the appropriate codewords to datawords choice. Since the presented channel
codes are selfclocking, and according to the existing standards they can be
used for voice and all other source data transfer, so they are suitable to be
data encoding schemes for ISDN, or BISDN via fibre optic media. Finally,
the FDDI code is only RLL(0,3) encoding scheme.

References

[1] Ricoarp, E.B., Digital transmission of information, Addison Wesley Publishing
Company, 1990.

[2] ApLER, R.L., CoppERsMiTH, D, HAssNER, M., Algorithms for Shiding Block Codes,
IEEE Trans.Inf. Theory IT-29, No. 1, January (1983), 5-22.

[3] Smi¢, M., PeTrovIC, R.. New RLL code for digital data storage, Electron. Lett.
25, (15) (1989), 951-954.

[4] Franaszek, P.A., Synchronous bounded delay coding for input restricted channels,
IBM J. Res. and Develop. 24, No.1 (January 1980,), 43-48.

Virtual Library of Faculty of Mathematics - University of Belgrade

elibrary.matf.bg.ac.rs

384 Milan Simié¢ and Rade Petrovic

[5] Franaszex, P.A., A general method for channel coding, IBM J. Res. Develop. 24,

No.5 (September 1980), 638-641.
(6] Smi¢, M., PETROVIC, R., New EPL RLL(5,16) code, Electron.Lett. 27, (23) (1991),

2100-2102.
(7] Smaié, M., RLL(5,12) Coding, ETRAN, Nis 1994.

MILAN SiMI¢, FACULTY OF PHILOSOPHY, DEPARTMENT OF MATHEMATICS, UNIVER-
SITY OF NIS, YUGOSLAVIA

RaADE PETROVIG, UNIVERSITY OF MIssisstPPl, CENTRE FOR TELECOMMUNICATION,
PO Box 9031, UnNiveERsITY, MS, 38677

FILOMAT

FILOMAT is a continuation of Zbornik radova Filozofskog fakulteta v Nisu, Ser-
ya Matematika (vol. 1(1987)- vol. 6(1992) and is published yearly. It publishes
original papers in all fields of pure and applied mathematics.

INSTRUCTIONS FOR AUTHORS

All manuscripts (the original and a copy) must be written in English. The
extent of the papers is limited to ten pages in length; manuscripts over 10 pages
are accepted only exceptionally. Manuscripts should not require many language
corrections.

FILOMAT is produced using Ap(S-TEX. Authors are encouraged to prepare their
manuscripts using Ap4S-TEX. Only a hard copy should be submitted for assessment,
but if the paper is accepted the author will be asked to send the text on an IBM
PC compatible diskette.

The author(s) should write their names, addresses and the title of the paper on
a separate sheet. All manuscripts should start with a short Abstract and include
the footnote 1991 Mathematics Subject Classification on the first page. Definitions,
theorems, lemmas, remarks, proofs etc. should be written using only one of two
alternative styles: Definition 2.1. or 3.2. Theorem consistently throughout the
paper.

Figures are included in the text and must be numbered (by arabic numbers)
and mentioned in the text. Equations (or formulas) must be numbered (for future
references) in parentheses () at the left margin.

References should be listed alphabetically in the following form:

[3] E.HEWITT AND K.A.Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag,

Berlin, 1963.

[11] D.KUREPA, On regressive functions, 7. Math. Logik 4 (1958), 148-156.
[15] P.PETROVIC, Neka svojstva ..., Doctoral dissertation, University of Belgrade,

1980.

A total of 30 reprints of each paper will be available free of charge; additional
reprints can be ordered.

All correspondence concerning both manuscripts and exchange should be ad-
dressed to:

Filozofski fakultet (FILOMAT), ul. Cirila i Metodija 2, 18000 Nis, Yugoslavia.

The subscription price is 20 dollars USA per volume, post free,

For subscriptions write to the same address.

CONTENTS

Geometry
M. Bjelica: An Inequality for the Triangleociiiiiiinnniniinneaenieenn LT
I. Comié¢: The complete list of F(Q) type structures in the complex Finsler space 121
M. Dorié: Geodesic tubes and Jacobi vector fields on complex space forms 131
S. V. Jablan: Curves generated by mirror reflectionsccoooiiiuiinnaniianen 143
S. M. Minéié: On a family of tensor fields in a generalized Riemannian space 149
J. Nikié: F'(2k + 1,])—structure on the Lagrangian Spacecocuoveneneencnnnns 161
M. Prvanovié: On warped product manifoldsoiviiiiriiniiiiiiiiii s 169
N. Pugi¢: Holomorphically-projective connections of a hyperbolic Kaehlerian space 187
+j. Velimirovié: On infinitesimal deformations of a toroid rotational surface generated by a

quadrangular Meridianoovnut et e 197

Computer Science
Lj. M. Kocié: Fractals and their Applications in Computer Graphicsooooonnn 207
D.M. Milogevi¢ and Lj.M. Kocié: Lines of curvature of free form surfaces tracing 233
N.V. Blagojevi¢ and Lj.M. Kocié: Modeling of rational curves by interpolation 243
3. Hristov, M. Stankovié and V. Velickovié: "Exact” display of objects with real valued

positions and diMensIONSouvvevuuuunianei o ante s 251
M. Trajkovié, S. Trickovi¢ and M. Petkovi¢: Halley-like asynchronous methods for polyno-

L IR LR o) siaios wisin = wsacsions s wisin womie simis €8 $1078 Se/e aife sieatais siais alalls sieie 4 261
S. Trickovi¢, M. Trajkovié and M. Petkovi¢: Asynchronous methods for simultaneous deter-

mination of polynomial TOOES ... vvvunn ettt ara et 273
P. Stanimirovié: Computing pseudoinverses using minors of an arbitrary HRalaiR ey 285
L. 3zarapka and D. Masulovié¢: On Translating Modula-2 Programs to C: Local Procedures

il N S e e s oiel S5 5 a s laa o /a8 sals wia)s =/ea Sies Wals wisie nie oy sivie v eje sis e oimim b 295

L. Szarapka and Z. Budimac: Determining Module Dependecies in Modular Programs ... 303

T. Vukeli¢ and M. Ivanovié: Usage of S-Expressions and Predicate Expressions in Procedu-

ral Programming Languagesccoviioinnnuterenaesrnneinsseessnns 315
T. Vukeli¢ and D. Kamenov: Implementation of Predicate Expressions in Procedural Pro-

ramming LanUAagesceesvsnsteansanntootoaanaannsanesansannsonnten s 325
S. Jankovié: Dependence testing on loops with bounds which are functions of outer loop

i I e ts o s visis oo s s wlia &lane wieieh oiaie winih wiisia Wials Heia sibis dls alsisiete 333
D. Jankovié and M. Stankovié: The Generation of Permutations through GDD 345
7. Putnik: A System for Storage, Manipulation and Control of Different Graphics Formats 357
J. Kratica: One method of implementation of LISP interpreter to transputers 367
M. Simié¢ and R. Petrovié; Coding for (5,13) channel constraintsoovveees 377

ISSN 0354-5180

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278

