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Introduction

Regression is a statistical tool for the investigation of relationships between variables.
Usually,  the  investigator  seeks  to  ascertain  the  casual  effect  of  one  variable  upon  another.
Regression methods are meant to determine the best functional relationship between a dependent
variable Y with  one  or  more  independent  variables  X.  The  earliest  form of  regression  was
the method  of  least  squares,  which  was  published  by Legendre in  1805 and  by Gauss in
1809. Legendre  and  Gauss  both  applied  the  method  to  the  problem  of  determining,  from
astronomical  observations,  the  orbits  of  bodies  about  the  Sun.  Gauss  published  a  further
development of the theory of least squares in 1821.  The term “regression” was coined by Sir
Francis Galton, while studying the linear relationship between   heights  of sons and heights of
their fathers.

            This thesis focuses  on  tools  and  techniques  for  building  regression  models  using
real data and assessing  their  validity. A key theme throughout the thesis  is that  it makes sense
to base inferences or  conclusions only on valid models.

We will show that plots are important tool for building  regression models  and  assessing
their validity through appropriate diagnostic procedures.

The regression output and plots that appear in thesis have been generated using statistical
software R. In addition, real data sets that have appeared in literature are also considered.

The  thesis  is  divided  into  five  chapters.  In  the  first  chapter  we  introduce  Pearson`s
correlation coefficient,  discuss importance of scatter  plots  and define regression.  The second
chapter focuses on method of least squares and on statistical properties of regression coefficients.
And we show how to test validity of the method and we define prediction intervals. In the third
chapter  we  give  examples  of  nonlinear  regression  models.  The  fourth  chapter  discusses
diagnostic  procedures  for  simple  linear  regression.  In  the  fifth  chapter  we  present  our
conclusions. 

  1- Regression Analysis
             First we will introduce Pearson`s and  Spearman`s  correlation coefficients  as  two  
different measures of  correlation or association between  two variables.
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1-1   Correlation
      We will note that  the  correlation between the two variables in the population with the
Greek letter  ρ,  and Pearson`s  correlation  coefficient,  as  an  estimate  of   ρ,  with  the  letter  r
,Pearson`s  correlation coefficient can assume any value in the interval (-1 ,1) .The absolute
value of  r  (i.e. | r | ) indicate the strength of the relationship between the two variables .As the
absolute  value of  r    approaches 1,  the degree of  linear  relationship between the variables
becomes stronger, achieving the maximum when  | r  |=1 (i.e. when  r   equals +1 or -1 ). The
closer the absolute value of   r   is to 0,  the weaker the linear relationship is between the two
variables.  Pearson’s correlation coefficient determines the degree to which a linear relationship
exists between two variables. 

       The sign of r indicates the nature or direction of the linear relationship which between  two
variables, the positive sign indicates a direct linear relationship, and the negative sign indicates
an  indirect  linear  relationship.  A direct  linear  relationship is  one  in  which a  change on one
variable is associated with a change on the other variable in the same direction (i.e., an increase
on one variable  is  associated with an increase on the other  variable,  and a decrease on one
variable is associated with a decrease on the other variable). 

       An indirect relationship is one in which a change on one variable is associated with a change
on the other variable in the opposite direction (i.e., an increase on one variable is associated with
a decrease on the other variable, and a decrease on one variable is associated with an increase on
the other variable).

       The use of the Pearson’s correlation coefficient assumes that a linear function best describes
the relationship between the two variables, and these two variables have normal distribution. If,
however,  the relationship between the variables is  better  described by a curvilinear function,
Pearson`s correlation coefficient is not appropriate measure of correlation.

1.1.1  -Calculation of Pearson’s correlation coefficient r

Let ( x1 , y1 ),( x2, y2¿ …( xn, yn ) be n paired observations, then Pearson’s correlation

coefficient is equal to

r=
∑
i=1

n

( x i− x́ ) ( y i− ý )

√∑
i=1

n

( x i− x́ )
2 √∑

i=1

n

( y i− ý )
2

or simply
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r=

∑
i=1

n

xi y i

n
− x́ ý

sx s y

where x́=
∑
i=1

n

xi

n
,  ý=

∑
i=1

n

y i

n
are sample means and  sx = √ 1

n
∑
i=1

n

( x i− x́ )
2

,

s y=√ 1
n
∑
i=1

n

( y i− ý )2
 are standard sample deviations.

If   we use    
x i=x i− x́

y i= y i− ý ,

then we get simplified for Pearson’s correlation coefficient

r=
∑
i=1

n

x i
' y i

'

√∑
i=1

n

x i
'2 √∑

i=1

n

y i
'2

1.1.2- Scatter Diagram

Let us have pairs of values (
x2 , y2

x1, y1¿ ,¿ )…( xn, yn ¿ .  In scatter diagram the variable

X is shown along the  x-axis and the variable Y is shown along the  y-axis  and all the pairs of
values of X and Y are shown by points (or dots) on the graph.

The scatter diagram of these points reveals the nature and strength of correlation between
these variable X and Y.  Degrees of correlation between two variables are shown on Figure 1. As
we can see, when there is no correlation, points on the scatter plot are distributed randomly.
Also, we observe the following:

 If the points lie on a straight line rising from lower left to upper right, then there is

a perfect positive correlation between the variables X and Y. If all the points do
not lie on a straight line, but their tendency is to rise from lower left to upper right
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then there is a positive correlation between the variable X and Y. In these cases
the two variables X and Y are in the same direction and the association between
the variables is direct.

 If the movements of the variables X and Y are opposite in direction and the scatter

diagram  is  a  straight  line,  the  correlation  is  said  to  be  negative,  association
between the variables is said to be indirect.

            A scatter plot of the data like that given in Figure1 should always  be drawn to obtain an
idea of the sort of relationship ( if any) that exists between two variables (e.g., linear, quadratic,
exponential, etc.).

Figure 1. The degrees of correlation

Example 1: For the following data draw scatter diagram and calculate Pearson’s correlation 
coefficient.

X  3 5 7 9 11 13 15
Y 5 8 11 13 15 17 19
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Figure 2. Scatter plot for given data

First we calculate sample means, sample standard deviations.

9x
, 

57.12y
, 

920
7

1


i

ii yx

, 

  4
1 7

1

2  
i

iX xx
n

s

, 

  59.4
1 7

1

2  
i

iY yy
n

s

And then Pearson’s correlation coefficient is equal to

99.07

7

1










YX

i
ii

ss

yx
yx

r

.

We can see that correlation between variables X and Y is very strong. By looking at the scatter 
plot it seems that Y is a linear function of X.

            It is important to note that strong correlation does not mean that there is cause-effect
relationship between two variables.  By examining the value of correlation coefficient, we may
conclude that two variables are related, but we can`t draw conclusion that one variable causes the
other.   Variable  (or  variables  )  which  have  not  been  considered  can  be  responsible  for  the
observed correlation between the two variables.
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  1.2.3-Spearman`s  correlation coefficient 

Spearman’s correlation coefficient measures degree of monotonic relationship between
two random variables. Monotonic relationship can be increasing (positive correlation - increase
in values of variable X is followed by increase in values of variable Y) or decreasing (negative
correlation - increase in values of variable X is followed by decrease in values of variable Y).
Monotonically  increasing,  monotonically  decreasing and non-monotonic relationship between
variables are shown on Figure 3

Figure 3. Monotonic and non-monotonic relationships between variables

Spearman’s population correlation coefficient is denoted with 
S

 and Spearman’s sample

correlation coefficient with  
Sr

. When this coefficient is equal to -1 or +1, perfect monotonic
relationship exists between random variables X and Y. 

We will describe how to calculate Spearman’s correlation coefficient in three steps. We

have pairs 
),(),...,,(),,( 2211 nn yxyxyx
 of sample values of random variables X and Y. 

1. Rank the values of variable X and the values of variable Y, separately.  For each element

of sample we will have pair of ranks  
 YX RR ,

.

2.  Form differences of these ranks 
YX RRd 

.
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3. Calculate Spearman’s correlation coefficient by the formula

                                    
 1

6
1

2

2


 

nn

d
rS

1.2-  Regression
 
        When we are interested what value of random variable Y is expected when X=x, we come
to conditional mathematical expectation 
                                                            E(Y | X =x),
the expected value of Y when X takes the specific value x . 

 

If (X,Y) is bi-dimensional continuous  random variable with density function  f (x , y )

and if f x (x)  is density function of random variable X then 

                                                  

X=x

Y /¿=∫
−∞

∞

y
f (x , y )

f x ( x )
¿

E ¿

 

Set of all values  E(Y | X =x) is set of values of random variable E(Y | X ), so to calculate 
E(Y | X ), we first need to calculate E(Y | X =x) for all x.

Random variable E(Y  |  X  ) = R(X )  is called  regression. For example, if variable  X

represents day of the week and variable Y  sales at a given company, then the regression of Y on
X represents the mean (or average) sales on a given day

If (X,Y) is bi-dimensional normally distributed random variable then 

                                                 E(Y | X ) = β0+ β1 X

1.2.1 - Regression Equation
The functional relationship of a dependent variable with one or more independent variables

is called a regression equation: It is also called prediction equation (or estimating equation).

1.2.2 - Curve of Regression 
The graph of the regression equation is called the  curve of regression:  If  the curve is  a

straight line; then it is called the line of regression.

1.2.3 - Types of  Regression

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



   If there are only two variables under consideration, then the regression is called simple
regression. If the relationship between X and Y is non-linear, then the regression is curvilinear .
If there are more than two variables under consideration then the regression is called  multiple
regression. For example, Multiple regression can be used to model relationship between sugar in
blood and weight, age and blood pressure of diabetes patients.  

1.2.4 -  Linear Regression Equation of Y on X

Data are collected in pairs (
x2 , y2

x1 , y1¿ ,¿ )…(
xn , yn ¿ ,

where 
1x
denotes the first value of

the  X  -variable and  
1y
denotes the first value of the  Y  -variable. The  X  variable is called the

predictor  variable,  while the Y -variable is called  the dependent variable. 

The regression of Y on X is linear if
X

Y /¿= β0+β1

¿
E ¿

where the unknown parameters  
0
and  

1
determine the intercept and the slope of a specific

straight line, respectively. Suppose that 
nYYY ,...,, 21

  are independent realizations of the random

variable Y that are observed at the values 
nxxx ,...,, 21

of a random variable X.  If the regression of
Y on X is linear, then for  i = 1, 2, …, n

iiiii exexXYEY  10)|( 

where 
ie

 
is the random error in 

iY
,  with zero expectation.

1.2.5 -  Assumptions necessary about the regression model

In what follows  we shall make the following assumptions:

1. Y  is related to x  by the simple linear regression  model  ( y i=β0+β1 x i+ei¿ .

2. The errors  e1 , e2,…,en are independent of each other.

3. The errors e1, e2,…,en have a common variance  σ2

. 
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4. The errors are normally distributed with a mean of  0  and variance 
σ2

 , that is,

e∨X N (0, S)
 

),0(~ 2Ne

.

    
Because the errors e are normally distributed,  we  also have that  

 
Y 1 ,Y 2 ,…,Y i :

β0+ β1 x , σ 2

N ¿
)  then    ýn=

1
n
∑
i=1

n

yi : N (β0+β1 x ,
σ 2

n )
                      
              Methods for checking these four assumptions will be considered in the fourth chapter.

1.2.6-  Estimating the population slope and intercept

Suppose for example that variable X represents height and variable Y weight of a person.
For a simple regression model the mean weight of individuals of a given height would be a linear
function of  that  height.  In  practice,  we usually  have  a  sample  of  data  instead  of  the  whole

population. The slope
b1 1

and intercept  
0
 are unknown, since these are the values for the

whole population. Thus, we wish to use the given data to estimate the slope and the intercept.
This can be achieved by finding the equation of the line which “best” fits our data, that is, choose

b0
 and  

b1
 such that

ii xbby 10ˆ  ŷ=b0+b1 xi

 is as “close” as possible to 
iY y i

. We

shall refer to 
iŷ
 as 

thei th
 predicted value or the fitted value of 

y i iY
. For estimating these

unknown parameters we will use the method of least squares.

2 -The Method of Least Squares

This method of curve fitting was suggested early in the nineteenth century by the French
mathematician Adrian Legendre. The method of least squares assumes that the best fitting line is
one for which the sum of the squares of the vertical distances of the point (x,y) from the line is
minimal.

For the simple linear regression we can use least squares method to find the estimators b0 and

b1 such that the sum of the squared distances between value y i  and predicted value ŷ i  
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 
2

1
10 )(




n

i
ii xyS 

                                                        

reaches the minimum among all possible choices of regression coefficients  
0 bo

 and
b1

1
.  

Vertical distances of points from regression line are shown on Figure 4

Figure 4. Vertical distances of  points from  regression line

Mathematically,  the  least  squares  estimates  of  the  simple  linear  regression  could  be
obtained by solving the following system:

∂ S
∂ β0

=0,
∂ S
∂ β1

=0

It is more convenient to solve this system using the fitted linear model:
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x i−¿
¿

ŷ i=βo
¿+β1¿

  ,

where
βo=βo

¿
−β1 x́  .

Now sum of squared distances equals to

S=∑
i=1

n

[ y i−( β0
¿
+β1 ( xi− x́ ))]

2

and we need to solve the following system
∂ S
∂ β0

¿ =0,
∂ S
∂ β1

=0

Taking  the  partial  derivatives  with  respect  to  β0
¿
∧β1 we get  system of  equations  (called

normal equations).

x́ )

∑
i=1

n

[ y i−( βo
¿
+β1 ( xi−¿ ]=0

∑
i=1

n

[ y i−( βo
¿
+β1 ( xi− x́ ) ] ( xi− x́ )=0

Note that

∑
i=1

n

y i=nβ0
¿
+∑

i=1

n

β1 ( xi − x́ )=nβ0
¿

Therefore, we have

b0
¿
= β̂0

¿
=

1
n
∑
i=1

n

y i= ý .

Substituting  b0
¿

 by ý we obtain
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x́ )

∑
i=1

n

[ y i−( ý +β1 ( x i−¿ ] ( xi− x́ )=0

Now it is easy to see

b1=

1
n
∑
i=1

n

( y i− ý ) ( xi− x́ )

1
n∑i=1

n

( x i− x́) ²

=
SXY

SXX

and
b0 = bo

¿

 -  b1 x́= ý−b ₁ x́

The fitted value of the simple regression is defined as ŷ i=bo+b1 xi . 

   We have   y1, y2 ,…, y i : N ( β0+β1 x ,σ 2 )  then ýn=
1
n
∑ yi : N (β0+β1 x ,

σ 2

n )

b1=

1
n
∑ ( y i− ýn ) ( x i− x́ )

1
n
∑ ( xi− x́ )

2
=
∑
i=1

n

yi ( x i− x́ )

∑
i=1

n

( x i− x́n )
2

Estimator b1  is normally distributed, as linear combination of normally distributed random 

variables  Y i .  Then, it also follows that estimator b0    has normal distribution.

2.1-.Residuals

 The difference between an observed y i  and the fitted value of  ŷ i ,  e i= y i− ŷ i

is  referred to  as  the i th  regression residual.  Its  magnitude reflects  the  failure of  the  least

squares line to “model” for that particular point.
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We  can  use  these  residuals  to  estimate  unknown  variance  σ2

 of  random  errors  (

σ2
=var (e)¿ with estimator σ̂2

=
1

n−2
∑
i=1

n

êi
2

  .

Example 2:  A regression model for the timing of production runs
We shall consider the following data: variable Y represents the time taken (in minutes) for a
production  run  (run  time)  and  variable  X  the  number  of  items  (run  size)  produced  for  20
randomly selected orders.  We wish to develop an equation to model the relationship between
variables Y and X. The data are given in Table 1 and corresponding scatter plot in Figure 5.

Table 1.  The production data 
Case Run time Run size Case Run time Run size
1 195 175 11 220 337
2 215 189 12 168 58
3 243 344 13 207 146
4 162 88 14 225 277
5 185 114 15 169 123
6 231 338 16 215 227
7 234 271 17 147 63
8 166 173 18 230 337
9 253 284 19 208 146
10 196 277 20 172 68
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Figure 5.  A scatter plot of the production data

Scatter plot of the production data shows us that  there might be linear dependence between run 

time and run size.  We will consider the linear regression model 
exY  10 

. Now we will 

calculate least squares estimators of the unknown parameters 
0
 and 

1
.

We have that 
,75.201x
 

05.202y
, 





20

1

25.49638))((
i

ii yyxx

 and





20

1

2 8.191473)(
i

i xx

,  so the estimators 
1b
 and 

0b
 are equal to

2592.0
8.191473

25.49638

)(

))((

20

1

2

20

1
1 














i
i

i
ii

xx

yyxx
b

7477.14910  xbyb

The fitted regression line is 
xy 75.14926.0ˆ 

      Now we shall give some properties of estimators in simple linear regression model, always
having in mind the assumptions given on page 9.

2.2- Properties of estimator of the  slope 

Theorem 1: The least squares estimator b1 is an unbiased estimator of β
1.

Proof

Here we take  
x i i =

1,2 ,…,n
  as constants ,while 

y Y
 is a random variable .

E ( b1 )=E ( Sxy

Sxx
)= 1

Sxx

E
1
n∑i=1

n

(Y i−Ý ) ( x i− X́ )
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Using the fact that

∑
i=1

n

(x i− X́ )=0

We get:

E (b1 )=
1

SXX

∙
1
n
∑
i=1

n

( x i− x́ ) Ey i=
1

Sxx

∙
1
n
∑
i=1

n

( x i− x́ ) ( βo +β1 x i )=
1

S xx

∙
1
n
∑
i=1

n

( xi− x́ )=¿

¿
1

Sxx

∙
1
n
∑
i=1

n

( x i− x́ ) β1 ( x i− x́ )=
1

S xx

∙
1
n
∑
i=1

n

( xi− x́ )
2
β1=

Sxx

Sxx

β1=β1  .

Theorem 2: Variance of the estimator of the slope is

Var ( b1 ) =
σ2

nSxx

Proof
¿Y i− ý

(¿)( xi− x́)=
1

Sxx
2 Var ( 1

n
∑
i=1

n

Y i ( x i− x́))
1
n
∑
i=1

n

¿

Var ( b1 )=Var ( Sxy

Sxx
)= 1

Sxx
2 Var ¿

=

¿
1

Sxx
2 ∙

1
n2∑

i=1

n

( x i− x́¿ ² Var (Y i)=
1

S xx
2 ∙

1
n2 ∑

i=1

n

( x i− x́ ¿ ² σ ²=
σ ²

nSxx
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Theorem  3:  The  least  square  estimator  b1 and  ý  are  uncorrelated.  Then  under  the

normality  assumption of  y i for  i =1,2,…,n, b1  and ý  are normally  distributed and

independent.

Proof

    As we mentioned before that b1  and ý  are normally distributed and independent, let us 

calculate the covariance between b1  and ý .

x
¿
x

¿ i−¿́

(¿¿ ( y i− ý ) , ý¿)=¿
¿

∑
i=1

n

¿

Cov (b1, ý )=Cov ( Sxy

Sxx

, ý )= 1
nSxx

Cov (Sxy , ý )=
1

n Sxx

Cov ¿

xi

(¿− x́) y i , ý

∑
i=1

n

¿

¿
xi

¿
x

−¿́

(¿ y i , ,∑
i=1

n

y i¿)=¿

∑
i=1

n

¿

¿
1

n Sxx

Cov ¿
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¿
(¿xi− x́)Cov ( yi , y j)

∑
j=1

n

¿

¿
1

n2 Sxx

Cov∑
i=1

n

¿

Note since that, 
0iEe

 and
e i

s are independent, we can write 

Cov ( y i , y j ) =E 

y i

¿−Eyi

¿
y j−Eyi ¿ ]

¿

=E ( E i, E j ¿
jiee

) = {σ
2if i= j

o if i ≠ j

Thus, we conclude that

x i

(¿−x́ )σ2
=0

Cov(b1 , ý )=
1

n2 Sxx

∑
i=1

n

¿

Recall that zero correlation is equivalent to the independence between two normal variables. 

Thus, we conclude that b1 and ý  are independent. 

2.3- Properties of estimator of the intercept 

Theorem 4. The least squares estimator b0  is an unbiased estimator of βo

Proof

Here also  we take  x i , i=1,2,…. ,n as constants , while Y is a random variable .

βo+¿ β1
1
n
∑
i=1

n

x i−β1 x́=βo

E bo=E (Y i−b1 x́ )=(
1
n
∑
i=1

n

E Y i)− x́ E b1=
1
n
∑
i=1

n

¿
.
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-

Theorem 5: Variance of the estimator of the slope is:

Var ( bo )=( 1
n
+

x́2

nSxx
)σ2

Proof

Var ( bo )=Var ( ý−b1 x́ )=Var ( ý )+( x́ )
2
Var (b1)=

σ 2

n
+ x́2 σ2

nSxx

=( 1
n
+

x́2

n Sxx
)σ2

.

2.4 - Testing the validity of the model 

If the slope of the regression line  β1  is equal to zero, then the linear regression model

reduces to Y i=β0+e i  and we can not predict values of variable Y based on the known values

of variable X.  To test null hypothesis H 0: β1=0 against the   alternative H 1: β1≠ 0, we can

use the test statistics           

211

ˆ XS
b

T





which has under null hypothesis,  Student t-distribution with n-2 degrees of freedom. We used

the fact that estimator 







2

2

11 ,:
XS

Nb
 b1 : N (β1,

σ2

s2 )

, where 

 
2

1

2 



n

i
niX xxS

.

Test is of the form: reject 
0H

at level α if  

cT 
, where

2
1,2





n

tc

is obtained from table of

Student distribution 
2nt
. Otherwise, we do not reject null hypothesis and we conclude that linear

regression model could be valid model for our data.

2.5-   Prediction intervals for the actual  value of  Y

In this section we consider the problem of finding a prediction interval for  the
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actual value of Y at 
px

,  a given value of X . We note 
Y p∨X=x p

as this prediction value of 

variable Y. We have that Y p=β1 x p+β0+e p and Ŷ p=b1 x p+b0 .

First we will derive expectation and variance of 
pp YY ˆ

E (Y p−Ŷ p )=E ( β1 . x P+β0+eP−b1. x p+b0 )=E (b1−β1 ) x p+ E (b0−β0 )+ E eP=0 \

Var (Y p−Ŷ p ¿=Var ( β1 . x p+β0+e p−b1 x p−b0 )=Var (e p−b1 x p−b0 )=¿

b
b

(¿¿0)−2 Cov ( ep , b0 )+2 Cov (b1 x p ,b0 )−2 cov (ep , b1 . x p)

(¿¿1)+Var ¿

Var ( ep )+x p
2 Var¿

As we have that 

    0,, 01  pp ebCovebCov

 and 

2
2

01 ),(
X

n

S

x
bbCov 

,  where

 



n

i
niX xxS

1

22

, we get

  








 


2

2
2

2
22

2

2
2

2

2

2
2

)(1
12ˆ

X

np

X

n
p

X

n

X
ppp S

xx

nS

x
x

S

x

nS
xYYVar 

, 

So, we get that  






















 


2

2
2

)(1
1,0:ˆ

X

np
pp

S

xx

n
NYY 

.  Standardizing and replacing 

2
 by 

2̂
gives 
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  2

2

2
:

1
1ˆ

ˆ






 n

X

np

pp t

S

xx

n

YY
T



                           

A 100(1–α) %  prediction interval for  
pY

, the value of Y at X = 
px

,  is given by

   












 





2

2

2

2
1

1ˆˆ,
1

1ˆˆ
X

np
p

X

np
pY S

xx

n
cY

S

xx

n
cYI

p


,

where  
2

1,2





n
tc

.

2.6 -  Coefficient of determination

The  square  of  the  correlation  between variables  Y  and  X  is  called  the coefficient  of

determination and is denoted with 

2R
. It represents the proportion of the total sample variability

in the Y ’s explained by the regression model. 

Higher value of  

2R
 is preferable because it means that regression model is describing

well relationship that exists between observed variables.

3- Nonlinear Models

Obviously, not all  x y -relationships can be  described by straight lines. Curvilinear

relationships of all  sorts  can be found in every field of application.  Most of these nonlinear
models  can  be  fitted  using  least  squares  method,  provided  the  data  have  been  initially
“linearized” by a suitable transformation.

 3.1 - Polynomial   regression
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          Polynomial  regression is used when dependence between variables Y and X is of the type

                                    

eXaXaXaaY m
m  ...2

210

We will consider the case when m=2.

          When a set of points exhibits a parabolic trend then we can use quadratic function

ecxbxaY  2

y=a+bx+c x2

  We can find unknown coefficients a, b and c   using the

method of least squares. We get system of normal equations

                                                              na+b∑
i=1

n

x i+c∑
i=1

n

xi
2
=∑

i=1

n

y i

a∑
i=1

n

x i+b∑
i=1

n

x i
2+c∑

i=1

n

x i
3=∑

i=1

n

x i y i

a∑
i=1

n

x i
2
+b∑

i=1

n

x i
3
+c∑

i=1

n

x i
4
=∑

i=1

n

x i
2 y i

By solving this system of equations, we find estimates of a, b and c.

 

Example 3  : Find a formula for the line of the form  
y=a+b x+c x2

 
ecxbxaY  2

 to  

fit the  following data 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y 3.16 3.20 3.25 3.30 3.27 3.24 3.19 3.15 3.10 2.99

 Solution: Substituting   the values of

∑
i=1

n

x i ,∑
i=1

n

x i
2,∑

i=1

n

x i
3 ,∑

i=1

n

x i yi ,∑
i=1

n

x i
2 y i ,∑

i=1

n

yi

and n   in above normal equations we get 
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85.3185.25.410  cba

178.14025.285.25.4  cba

89.85333.1025.285.2  cba

Solving these equations, we obtain

,16.3ˆ a 63.0ˆ b
 and 

91.0ˆ c

The required  equation of quadratic regression is 

291.063.016.3ˆ xxy 

Scatter plot with fitted regression function is given below.

Figure 6. Scatter plot and fitted quadratic function for given data

3.2 - Exponential  Regression

Suppose the relationship between two variables is best described by an exponential 
function of the form 

y=aebx
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In case it is possible to obtain approximate solutions using numerical methods or the idea 
of “linearization”.

 Transforming  the  previous  equation by taking  logarithms on both  sides we get 

ln y=ln a+b x

which  implies that  ln y and  x   have  a linear relationship. When  we apply the least 

squares  method  to x  and  ln y that  yield  to 

n

∑
i=1

n

ln y
i−¿(∑

i=1

n

xi)(∑
i=1

n

ln y i)

n∑
i=1

n

x i
2
−(∑

i=1

n

x i)
2

b=¿

and

a=¿

∑
i=1

n

ln y i−b∑
i=1

n

x i

n
ln¿

Example 4 : Find a least square curve of the form  y=aebx (a>0 )  to the data  given below

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

y 4.46 5.72 6.71 6.31 8.92 11.3
2

12.7
8

16.4
6

20.3
1

25.5
4

29.6
7

Solution :

Consider  y=aebx

,  applying  logarithm (with base e¿  on both sides , we get

y= ln a+¿bx (1 )
ln ¿
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Taking 
y=¿Y ,

ln¿  the equation  (1)  can be  written  as 
bxaY  ~

 (2) Y= à+bx (2 )
,  where

aa ln~ 
 

a=¿ ln a
¿̀ .

Equation (2) is linear equation of Y on  x. The normal equations are 

 
 


11

1

11

1

~
i i

ii Yxban





11

1

11

1

2
11

1

~
i

ii
i

i
i

i Yxxbxa

After calculations, we get

a~11
+22b=26.59

392.574.48~22  ba

After  solving these equations, we obtain 

497.0~̂ a
,

96.0ˆ b

a=¿0.0001→ a=1.0001
à=0,0001 → ln¿ So we get 

64.1ˆ
~̂

 aea

The required  curve is  

xey 96.064.1ˆ 
. Scatter plot with fitted  regression line is given below.
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Figure 7. Scatter plot and fitted exponential function for given data

3.3 - Other curvilinear  models

We will consider two other nonlinear regression models.

1. Let 

baxY 
. Taking logarithms of both sides of equation we get 

xbaY lnlnln 
. 

Using the notes 
UY ln

, 
aln

 and 
vx ln

 we get linear regression model 
bvU  

.
            We find estimates of α and b by solving the following system of equations





n

i
i

n

i
i Uvbn

11







n

i
ii

n

i
i

n

i
i vUvbv

11

2

1



            We find estimate of a as 

̂ˆ ea 

2. Let 
bax

Y


 1

. We use 
Y

U
1

 and we get linear regression model
baxU 

.

             We find estimates of a and b by solving the following system of equations:
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



n

i
i

n

i
i Unbxa

11

 
 


n

i
ii

n

i

n

i
ii xUxbxa

11 1

2

4 -Diagnostics for simple linear regression

In Chapter 2 we studied the simple linear regression model. Throughout Chapter 2, we
assumed  that the simple linear regression model was a valid model for the data, that  is, the
conditional mean of Y given X is a linear function of X and the conditional variance of Y given X
is constant. In other words,

E (Y / X )=β0+β1 X∧var (Y / X )=σ2

In Section 4.1, we start by examining the important issue of deciding whether the model
under consideration is indeed valid. In Section 4.2, we will see that when we use a regression
model we implicitly make a series of assumptions. We then consider a series of tools known as
regression diagnostics to check each assumption.

4.1 -Valid and Invalid Regression Models: Anscombe’s Four Data Sets

Throughout this section we shall consider four data sets constructed by Anscombe. This
example illustrates the point that looking only at the numerical regression output may lead to
very misleading conclusions about the data,  and lead to accepting the wrong model. The data are
given in the table below (Table 4.1 ) and are plotted in Figure 8.  Values of random variable Y
differ in each of four data sets, while x-values of variable X are same in first three sets.

Table 4.1  Anscombe’s four data sets

Case x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8  7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.1 8.84 7.04
7 6 6 6 8 7.24 6.13 6.08 5.25
8 4 4 4 19 4.26 3.1 5.39 12.5
9 12 12 12 8 10.84 9.13 8.15 5.56
10 7 7 7 8 4.82 7.26 6.42 7.91
11 5 5 5 8 5.68 4.74 5.73 6.89
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                                   Figure 8. Plots of  Anscombe’s four data sets

When a regression model is fitted to data sets 1, 2, 3 and 4, in each case the fitted

regression model is  ŷ =3.0 +0.5 x ,

The regression output for data sets 1 to 4 is given below. The regression output for the
four data sets is identical (to two decimal places) in every respect. In all cases, results of t-test for
validity of a model (slope of regression line is different from zero) are significant (p-value is
smaller than 0.05). Looking at Figure 8 it  is obvious that a straight-line regression model is
appropriate only for Data Set 1. On the other hand,  the data in Data Set 2  seem to have non
linear rather than a straight-line relationship. The third data set has an extreme outlier that should
be investigated. For the fourth data set,   the slope of  the  regression  line is solely determined by

a single  point, namely, the point with the largest x  –value.
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Regression output from R

First model

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   3.0001     1.1247   2.667  0.02573 * 

x1            0.5001     0.1179   4.241  0.00217 **

­­­

Signif.  codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R­squared: 0.6665,     Adjusted R­squared: 0.6295 

F­statistic: 17.99 on 1 and 9 DF,  p­value: 0.00217

Second model

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)    3.001      1.125   2.667  0.02576

x2             0.500      0.118   4.239  0.00218 **

­­­

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.237 on 9 degrees of freedom

Multiple R­squared: 0.6662,     Adjusted R­squared: 0.6292 

F­statistic: 17.97 on 1 and 9 DF, p­value: 0.00217

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Third model

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   3.0025     1.1245   2.670  0.02562 * 

x3            0.4997     0.1179   4.239  0.00218 **

­­­

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.236 on 9 degrees of freedom

Multiple R­squared: 0.6663,     Adjusted R­squared: 0.6292 

F­statistic: 17.97 on 1 and 9 DF,  p­value: 0.002176

Forth model

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   3.0017     1.1239   2.671  0.02559 * 

x4            0.4999     0.1178   4.243  0.00216 **

­­­

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.236 on 9 degrees of freedom

Multiple R­squared: 0.6667,     Adjusted R­squared: 0.6297 
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F­statistic:    18 on 1 and 9 DF,  p­value: 0.002165

This  example  demonstrates  that  the  numerical  regression  output  should  always  go
together with analysis to ensure that an appropriate model has been fitted to the data. In this case
it is enough to look at the scatter plots in Figure 8 to determine whether an appropriate model has
been fit. However, in some situations we shall need some additional tools in order to check the
validity of the fitted model

4.2-  Plots of residuals

One tool we will use to validate a regression model is one or more plots of residuals (or
standardized residuals, which will be defined later in this chapter). These plots will enable us to
assess visually whether an appropriate model has been fit to the data.

Figure 9 provides plots of the residuals against X for each of  Anscombe’s four data sets.  

There is no pattern can be recognized in the plot of the residuals for data Set 1 against X1  .

 
Figure 9. Residual plots for Anscombe’s data sets

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



We shall see next that this indicates that an appropriate model has been fit to the data. We
shall see that a plot of residuals against X that produces a random pattern indicates an appropriate
model has been fit to the data. Additionally, we shall see that a plot of residuals against  X that
produces a non random pattern indicates an incorrect model has been fit to the data. 

Using Plots of Residuals to Determine Whether  the Proposed Regression Model Is a Valid 

Model 
One way of checking whether a valid simple linear regression model has been fit is to

plot residuals versus  x and look for patterns. If no pattern is found then this indicates that the
model provides an adequate summary of the data, i.e., is a valid model. If a pattern is found then
the shape of the pattern provides information on the function of x that is missing from the model.

For example, suppose that the true model is a straight line 
Y i=β0+β1 x i+e i

And we  fit  a  straight  line  ŷ i=b0+b1 x i .  Then,  assuming  that  the  least  squares  estimates

b0∧b1  are close to the unknown population parameters  β0∧β1   , we find that 

ê i=Y i− ŷ i = ( β0−b0 )+(β1−b1) x i  + e i≈ e i

that is, the residuals should resemble random errors. If the residuals vary with x then this 
indicates that an incorrect model has been fit. For example, suppose that the true model is a 
quadratic

Y i=β0+β1 x i+β2 x i
2
+ei

and that we fit a straight line 
ŷ i=b0+b1 x i

   

Then, somewhat simplistically assuming that the least squares estimates β̂0∧β̂1 are close to 

the unknown population parameters β0  and β1 , we find that  

ê i=Y i− ŷ i=( β0−b0 )+ ( β1−b1 ) x i+ β2 x i
2
+ei ≈ β2 x i

2
+ei

Example of a Quadratic Model

Suppose that Y is a quadratic function of X without any random error. Then, the residuals
from the straight-line fit of Y and X will have a quadratic pattern. Hence, we can conclude that
there is  need for a quadratic term to be added to the original straight-line regression model.
Anscombe’s data set 2 is an example of such  a situation. Figure 10 contains scatter plots of the
data and the residuals from a straight-line model for data set 2. As expected, a clear quadratic
pattern is evident in the residuals in Figure 10.
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Figure 10  Scatter plots and the residuals from a straight-line model for data set 2

4.3 - Regression Diagnostics: Tools for Checking the Validity of a Model
 

We next look at tools (called regression diagnostics) which are used to check the validity
of all aspects of regression models. When fitting a regression model we will discover that it is
important to:

1.  Determine whether the proposed regression model is a valid model (i.e., determine whether it
provides  an  adequate  fit  to  the  data).  The  main  tools  we  will  use  to  validate  regression
assumptions are plots of standardized residuals.  The plots enable us to assess visually whether
the assumptions are being violated.  

2. Determine which (if any) of the data points have x -values that have an unusually large effect
on the estimated regression model (such points are called leverage points ).

3. Determine which (if any) of the data points are outliers , that is, points which do not follow the
pattern set by the rest of the data, when one takes into account the given model.

4. If leverage points exist, determine whether each is a bad leverage point. If a bad leverage point
exists we shall assess its influence on the fitted model.

5. Examine whether the assumption of constant variance of the errors is reasonable.

We begin by looking at the second item of the above list, leverage points, as these will be needed
in the explanation of standardized residuals.
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4.3.1 - Leverage Points

Data points which have considerable influence on the fitted model are called  leverage
points. To make things as simple as possible, we shall begin by describing leverage points as
either “good” or “bad.”

Example of a “good” and a “bad” leverage point

Twenty points are randomly generated from a known straight-line regression model. We
get a plot like that shown in Figure 11.  One of the 20 points has an x -value which makes it
distant from the other points on the x -axis. We shall see that this point, which is marked on the

plot, is a good leverage point. True population regression line (namely,  Y i = β0+ β1 xi  ) and

the least squares regression line (namely, ŷ i = b0  + b1 x1 ) are marked on the plot.

Figure 11. Good leverage poiint

      Next we move one of the points away from the true population regression line. In particular,

we focus on the point with the largest x  -value. Moving this point vertically down (so that its

x  -value stays the same) produces the results shown in Figure 12. Notice how in the least

squares regression line has changed dramatically in response to changing the Y  -value of just

a single point. The least squares regression line has been levered down by single point. Hence we
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call this point a leverage point. It is a bad leverage point since its Y  -value does not follow

the pattern set by the other 19 points.

In summary, a leverage point is a point whose x -value is distant from the other x -values.

A point is a bad leverage point if its Y  -value does not follow the pattern set by the other data

points. In other words, a bad leverage point is a leverage point which is also an outlier. 

Figure 12. Bad leverage point

Returning to Figure 11, the point marked on the plot is said to be a good leverage point
since its  Y -value closely follows the upward trend pattern set by the other 19 points. In other
words, a good leverage point is a leverage point which is NOT also an outlier.

Next we investigate what happens when we change the Y -value of a point in Figure 11

which has a central  x -value. We move one of these points away from the true population

regression line. In particular, we focus on the point with the 11th largest  x -value. Moving this

point vertically up (so that its x  –value stays the same) produces the results shown in Figure

13. Notice how in the least squares regression line has changed relatively little in response to

changing the Y -value of centrally located x . This point is said to be an outlier that is not a

leverage point.
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                    Figure 13  A plot of  Y  against  x showing an outlier that is not a leverage point

Numerical rule that will identify x i  as a leverage point (i.e., a point of high leverage) 

is based on:

• The distance x i  is away from the bulk of the x’s.

• The extent to which the fitted regression line is influenced by the given point.

The second bullet point above deals with the extent to which ŷ i  (the predicted value

of Y  at ¿ x i  ) depends on y i  (the actual value of  Y at  x=x i  ). We have that

ŷ i=b0+b1 x i

where 
xbyb 10 

  and   





n

j
jj ycb

1
1

, 

c j=
x j− x́

Sx
2

. So that 

ŷ i= ý−b1 x́+b1 x i= ý+b1 ( x i− x́ )
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x
x j−¿́

¿
¿

Sx
2

¿
¿

¿
1
n
∑
j=1

n

y j+∑
j=1

n

¿

where

hij=[ 1
n
+

( xi− x́ ) (x j− x́ )

Sx
2 ]

Notice that 

x
x j−¿́

¿
x

xi−¿́
¿
¿

1
n
+( x i− x́ )¿=

n
n
+¿

¿

∑
j=1

n

hij=∑
j=1

n

¿

 

We can express the predicted value, ŷ i as   

ŷ i=hii y i+∑
j≠ i

n

hij y j(¿)
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where

hii=
1
n
+

( xi− x́ )
2

∑
j=1

n

( x j− x́ )
2

The term hii  is commonly called the leverage of the i th  data point,  notice that

hii  shows how y i  affects  ŷ i . For example, if hii≅1  then the other hij  terms are 

close to zero since ∑
j=1

n

h ij=1 ,  

ŷ i=1 × y i+other terms≅ y i .

In this situation, the predicted value  ŷ i   will be close to the actual value  y i  no

matter what values of the rest of the data take. Notice also hii  that depends only on the x ’ s .

Thus a point of high leverage (or a leverage point) can be found by looking at just the values of

the x’ s   and not at the values of the y’ s .   We have 

   

1
n
∑
i=1

n

hii=
1
n
∑
i=1

n

(
1
n
+

( xi− x́ )
2

∑
j=1

n

( x j− x́ )
2 )

                                       
¿

1
n

.
n
n
+

1
n

( x i− x́ )
2

∑
j=1

n

( x j− x́ )
2

=
1
n
+

1
n
=

2
n

  

  

Rule for identifying leverage points

A popular rule, which we shall accept, is to classify x i  as a point of high leverage ( a 

leverage point) in a simple linear regression model if

hii>2× average ( hii )=2×
2
n
=

4
n

Strategies for dealing with “bad” leverage points
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1. Remove invalid data points
We ask a question about the validity of the data points corresponding to bad leverage

points, Are these data points unusual or different in some way from the rest of the data? If so, we
remove these points and refit the model without them.   

2. Fit a different regression model
We ask a question about the validity of the regression model that has been fitted, has an 

incorrect model been fitted to the data? If so, we should consider a different model.

“Good” leverage points
While “good” leverage points do not have an adverse effect on the estimated regression

coefficients, they do decrease their estimated standard errors as well as increase the value of  

2R
.

Hence, it is important to check extreme leverage points for validity, even when they are so-called
“good”.

4.4-   Standardized Residuals       

In this section we will consider standardized residuals and their importance in linear 

regression diagnostics. First we will show that the i th  least squares residual has variance 

given by

var ( êi )=σ2 [1−hii ]   

Proof 

Recall from formula (*) that 

                                            ŷ i=hii y i+∑
j=i

n

hij y j

Thus,

                          ê i= y i− ŷ i= y i−hii y i−∑
j=i

n

hij y j=(1−hii) y i−∑
j=i

n

hij y j

                        var ( êi )=var [ (1−hii ) y i−∑
j ≠i

n

hij y j ]=(1−hii )
2 σ2+∑

j ≠i

n

hij
2 σ2
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                                        ¿σ2[1−2hii+hii
2+∑

i ≠ j

n

hij
2 ]

Next, notice that 

                     

∑
j=1

n

h ij
2
=∑

j=1

n

[ 1
n
+

( x i− x́ ) ( x j− x́ )

Sx
2 ]

2

=n.
1
n2 +

2
n
∑
j=1

n ( x i− x́ ) ( x j− x́)

Sx
2 +∑

j=1

n ( x i− x́ )
2
( x j− x́ )

2

(Sx
2 )

2 =
1
n
+

( x i− x́ )
2

(S x
2 )

2 ∑ ( x j− x́ )
2
=

1
n
+ ( x i− x́ ) .

Sx
2

(Sx
2 )

2 =
1
n
+

( x i− x́ )
2

Sx
2 =hii

So that,

               var ( ŷ i )=var (∑
j=1

n

hij y j)=∑
j ≠i

n

hij
2 var ( y j )=σ 2∑

j

h ji
2 =σ2 hii

           Thus, if hii≅  1, so that the i th  point is a leverage point, then the corresponding

residual,  ê i ,  has  small  variance  (since  1– hii≅ 0 ).  This  seems  reasonable  when  one

considers that if hii≅1  then ŷ i≅ y i   so  that  ê i will always be small (and so it does not

vary much). We have also shown that  Var ŷi=σ2 hii .  This again seems reasonable when we

consider  the  fact  that  when  hii≅1  then  ŷ i≅ y i  .  In  this  case,

var ( ŷ i)=σ2 hii≅σ 2
=var ( yi )   The problem of the residuals having different variances can be

overcome by standardizing each residual by dividing it by an estimate of its standard deviation.

Thus, thei th standardized residual  , ri    is given by

r i=
êi

σ̂ ri

=
êi

s√1−hii

where  s=√ 1
n−2

∑
j=1

n

ê j
2

 is the estimate of  σ  obtained from the model.
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A crucial assumption in any regression analysis is that the errors have constant variance.
In literature it is recommended that an effective plot to diagnose non constant error variance is a

plot of |Residuals|

5.0

 against x or a plot of | Standardized Residuals|

5.0

 against x. (or against the
fitted values.

When points of  high leverage exist,  it  is informative to look at plots of  standardized
residuals. The advantage of  standardized residuals is that they immediately tell us how many
estimated standard deviations any point is away from the fitted regression model. For example,
suppose that the 6th point has a standardized residual of 4.3,  then this means that the 6th point is
an  estimated  4.3  standard  deviations  away  from the  fitted  regression  line.  If  the  errors  are
normally  distributed,  then  observing  a  point  4.3  standard  deviations  away  from  the  fitted
regression line is highly unusual. Such a point would commonly be referred to as an outlier and
as such it should be investigated. We shall follow the common practice of labeling points as
outliers in small- to moderate-size data sets if the standardized residual for the point falls outside
the  interval  from  –2  to  2.  In  very  large  data  sets,  we  shall  change  this  rule  to  –4  to  4.
Identification and examination of any outliers is a key part of regression analysis. Recall that a
bad leverage point is a leverage point which is also an outlier. Thus, a  bad leverage point  is a
leverage point whose standardized residual falls outside the interval from –2 to 2 for small to
moderate size data sets.  On the other hand, a  good leverage point  is a leverage point whose
standardized residual falls inside the interval from –2 to 2.

4.5 - Assessing the Influence of Certain Cases

One or more cases can strongly control or influence the least squares fit of a regression
model. In this section we look at summary statistics that measure the influence of a single case
on the least squares fit of a regression model.

           Cook proposed measure of the influence of individual cases which is called Cook`s
distance and it is given by:

Di=
ri

2

2
h ii

1−hii
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where r i  is the i th  standardized residual and hii  is the i th  leverage value, in 

literature it is  recommended to use  
2

4

n
  as “a rough cut-off  for  noteworthy values of

Di

  
for simple linear

regression. (Meaning if Cook`s distance of a point is bigger than  
4

n−2  , it has significant

influence on fitted regression model).

  Recommendations for Handling Outliers and Leverage Points

We conclude this section with some general advice about how to deal with outliers and  leverage 
points.

• Points should not be routinely deleted from an analysis just because they do not fit the model.
Outliers and bad leverage points are signals, flagging potential problems with the model.

• Outliers often point out an important feature of the problem not considered before. They may 
point to an alternative model in which the points are not an outlier. In this case it is then worth 
considering fitting an alternative model.

4.6 - Normality of the Errors

The  assumption  of  normal  errors  is  needed  in  small  samples for  the  validity  of  t-
distribution  based  hypothesis  tests  and  confidence  intervals  and  for  all  sample sizes for
prediction intervals. This assumption is generally checked by looking at the distribution of the
residuals or standardized residuals. 

A common way to assess normality of the errors is to look at what is commonly referred
to as a  normal probability plot  or a  normal Q–Q plot of the standardized residuals. A normal
probability plot of the standardized residuals is obtained by plotting the ordered standardized
residuals  on  the  vertical  axis  against  the  expected  order  statistics  from  a  standard  normal
distribution on the horizontal axes. If the resulting plot produces points “close” to a straight line
then the data are said to be consistent with that from a normal distribution. On the other hand,
departures from linearity provide evidence of non-normality.
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Example 6: Recall the example from Chapter 2 on the timing of production runs for which we
fit a straight-line regression model to run time from run size. The data are given in Table (along
with values of leverages, residuals and standardized residuals) and are plotted in Figure 14.

Table Regression diagnostics for the model in Figure 14

Case Run time Run size Leverage Residuals Std. residuals
1 195 175 0.053 -6.892 -0.132
2 215 189 0.060 -49.226 -0.948
3 243 344 0.145 26.907 0.543
4 162 88 0.141 -0.942 -0.019
5 185 114 0.066 -39.726 -0.767
6 231 338 0.098 54.707 1.075
7 234 271 0.108 -20.743 -0.410
8 166 173 0.124 72.791 1.452
9 253 284 0.197 -61.260 -1.276
10 196 277 0.052 92.291 1.769
11 220 337 0.068 84.691 1.638
12 168 58 0.116 -47.842 -0.950
13 207 146 0.051 -69.693 -1.336
14 225 277 0.080 10.607 0.206
15 169 123 0.112 14.341 0.284
16 215 227 0.060 -11.226 -0.216
17 147 63 0.222 16.308 0.345
18 230 337 0.094 56.524 1.109
19 208 146 0.052 -72.509 -1.390
20 172 68 0.101 -49.109 -0.967

Figure 14.  A plot of the production data with the least squares line included
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We begin by considering the simple regression model where Y = run size and x = run 
time. Regression output from R is given below.

Residuals:

    Min    1Q     Median   3Q     Max 

-72.509 -48.159  -3.917  33.857  92.291 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept) -367.3606    82.4122  -4.458 0.000304 ***

run.time       2.8167     0.4035   6.980 1.61e-06 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 53.57 on 18 degrees of freedom

Multiple R-squared: 0.7302,     Adjusted R-squared: 0.7152 

F-statistic: 48.72 on 1 and 18 DF,  p-value: 1.615e-06
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Looking at the given output in R, we could conclude that simple regression output is
valid for given data – coefficient of slope of regression line is significantly different from zero
(based on results  of t  test)  and 73.02% of variance of variable run size is  explained by the
regression model (value of coefficient of determination). But, before we make such a conclusion
we should look at the diagnostic plots.

Also, we should check leverage values – as we said before, point is classified as high

leverage point if its leverage value is bigger that 

2.0
4 
n

. Only the 17th point has leverage value
bigger than this cut-off point. On scatter plot,  we  can see that y-value of this point is not distant
from other points, meaning that this is good leverage point (also its standardized residual falls
inside the interval from –2 to 2). 

Figure  15  provides  diagnostic  plots  produced  by  R:  on  the  top  left  is  the   plot  for
randomness of residuals, top right is normal Q-Q plot, down left plot for variance of residuals
and on down right is  plot for Cook’s distance. Variance of the error term appears to be constant.
These plots  suggest  that  linear  model  is  appropriate  for  our  production data:  residuals  seem
distributed randomly, having approximately normal distribution with constant variance. None of
the points have Cook’s distance greater than cut-off point 4/18= 0.22.
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Figure 15.  Diagnostic  plots 

Conclusion
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This master thesis deals with an important area of statistics - namely correlation and regression.
These topics could be also very useful in teaching statistic at the university.  We have chosen and
explained some aspects of this topic.

First we discussed about correlation as measure of association between variables. We introduced
Pearson`s correlation coefficient as measure of linear relationship and Spearman`s correlation
coefficient  as  measure  of  monotonic  relationship.  After,  we  emphasized  the  importance  of
constructing the scatter plot of observed variables to reveal the nature and strength of correlation.

 We discussed diagnostic plots as methods for checking assumptions of simple linear regression.
We presented  example  based  on  Anscombe’s  four  data  sets  which  illustrates  the  point  that
looking only at the numerical regression output may lead to very misleading conclusions about
the data and  to accept  the wrong model. 

We introduced regression models to describe causal relationship between two variables. Further,
we dealt especially with simple linear regression. For estimating unknown parameters of linear
regression  we  used  method  of  least  squares.  We  proved  properties  of  unbiasedness  and
consistency of these parameters, as well as some other properties concerning distribution and
independence of statistics we have used.

We  talked  about  testing  the  validity  of  the  model  using  Student’s  t-  test  and  about  the
significance of coefficient of determination. Regression models are primarily used for prediction,
so we considered prediction intervals for values of dependent variables.

Some of the examples given here are only for illustrations of definitions and procedures, some of
them, with larger sets of data were solved using statistical package R.  

A part of the references given here, I have used teaching materials from my Arabic courses at the
University of Libya (Al Mergeb, Zliten ).

For future research, it would be interesting to consider other types of regression – for example,
when  dependent  variable  is  binary  (logistic  regression)  or  when  we  have  more  than  one
dependent variable (multivariate regression). Also, we could explore how is regression used to
solve problems  in biology, medicine and other areas.
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