Mathematical Faculty

University of Belgrade

Shadia Ali Shalandi
The Sylow’s Theorems

Master thesis

Advisor:
Prof. Aleksandar Lipkovski, PhD.

Belgrade, 2010.



CONTENTS

INTRODUCGTION ..ottt cieccttecessteereseesssseeesssessestasseresassesesssanessnsessseesssasasassasssnesssasssassessessseressssaseensesssststresmasessassensnes 5
I. HISTORY OF GROUP THEORY ...ooeieciceeiirieteettesseeeieeereessessseesseessesssesssesssssessssssassessessasasssesseessenessssesesssessneransas 8
LT CLASSICAL ALGEBRA ..ot et 9
L2 NUMBER THEORY ... oot e 11
L3 GEOMETRY ...t 13
Lo ANALY SIS Lot 15
LS SYLOW S THEOREMS. ..ot 17
T SYLOW THEOREMS ... .ot cievtteeee e ceeeesvetsseasssssesteessessssssssesasessasasssssssssssssssseessssssessssssesrsssesssssesssesssensrnsessnen 20
2.1 FIRST SYLOW THEOREM ....oovviiiiie oo 23
2.2 SECOND SYLOW THEOREM .....o.ooiiiiiiee i oot ettt 28
2.3 THIRD SYLOW THEOREM ....ooiiiii ittt et 30
2.4 ALTERNATIVE PROOF OF SYLOW THEOREMS ........oioiiiiti oo 32
TTL APPLICATIONS oot eiteerte e ete e et s esae st essee s tessteeanseessesasesneesbe s aaseeasnsaessrasessssentessrasssnsnnessesstasseeseesnsn 36
3.1 APPLICATIONS FOR THEOREMS PROVING ......cooiiiiiiiiiieee oot 37
3.2 APPLICATIONS TO SPECIFIC GROUPS .....cooiiiiiiiiieit oot 40
3.3 ALTERNATIVE APPLICATIONS .....otiiiiiiiiitiitie ettt ettt ettt 48
REFERENCES ... oottt cteeieesiesteseteveseessessestesnesas e st e essaesnsesssesassassasasesasesanseeasas e st aesssssesasesssanensessarssesassssessensenran 50



Introduction

Symmetric objects are so singular in the natural world that our ancestors
must have noticed them very early. Indeed, symmetrical structures were given
special magical status. The Greeks’ obsession with geometrical shapes led them to
the enumeration of platonic solids, and to adorn their edifices with various
symmetrical patterns. In the ancient world, symmetry was synonymous with
perfection. What could be better than a circle or a sphere? The Sun and the planets
were supposed to circle the Earth. It took a long time to get the apparently less than
perfect ellipses.

Of course most shapes in the natural world display little or no symmetry, but
many are almost symmetric. An orange is close to a perfect sphere; humans are
almost symmetric about their vertical axis, but not quite, and ancient man must
have been aware of this. Could this lack of exact symmetry have been viewed as a
sign of imperfection, imperfection that humans need atone for?

It must have been clear that highly symmetric objects were special, but it is a
curious fact that the mathematical structures which generate symmetrical patterns
were not symmetrically studied until the nineteenth century. That is not to say that
symmetry patterns were unknown or neglected, witness the Moors in Spain who
displayed the seventeen different ways to tile a plane on the walls of their palaces.

Evariste Galois in his study of the roots of polynomials degree larger than
four equated the problem to that of a set of substitutions which form that
mathematical structure called a group. In physics, the study of crystals elicited
wonderfully regular patterns which were described in terms of their symmetries
have assumed a central role in the study of Nature.

The importance of symmetries is reinforced by the Standard Model of
elementary particle physics, which indicates that Nature displays more symmetries
in the small than in the large. In cosmological terms, this means that our Universe
emerged from the Big Bang as a highly symmetrical structure, although most of its

symmetries are no longer evident today.



Some symmetries of the natural world are so commonplace, that they are
difficult to identify. The outcome of an experiment performed by undergraduates
should not depend on the time and location of the bench on which it was
performed. Their results should be impervious to shifts in time and space, as
consequences of time and space translation invariances, respectively. But there are
more subtle manifestations of symmetries.

According to Quantum Mechanics, physics takes place in Hilbert spaces.
Bizarre as this notion might be, we have learned to live with it as it continues to be
verified whenever experimentally tested. Surely, this abstract identification of a
physical system with a state vector in Hilbert space will eventually be found to be
incomplete, but in a presently unimaginable way, which will involve some other
weird mathematical structure. That Nature uses the same mathematical structures
invented by mathematicians is a profound mystery hinting at the way our brains are
wired. Whatever the root cause, mathematical structures which find natural
representations in Hilbert spaces have assumed enormous physical interest.
Prominent among them are groups which, subject to specific axioms, describe
transformations in these spaces.

In abstract algebra, as in the case of most twentieth-century developments,
the basic concepts and goals were fixed in the nineteenth century. The fact that
algebra can deal with collections of objects that are not necessarily real or complex
numbers was demonstrated in a dozen nineteenth-century creations. Vectors,
quaternions, matrices, forms such as ax’ + bxy+cy2, hypernumbers of various
sorts, transformations, and substitutions or permutations are examples of objects
that were combined under operations and laws of operation peculiar to the
respective collections. Even the work on algebréic numbers, though it dealt with
classes of complex numbers, brought to the fore the variety of algebras because it
demonstrated that only some properties are applicable to these classes as opposed
to the entire complex number system.

These various classes of objects were distinguished in accordance with the

properties that the operations in them possessed; and we have seen that such



notions as group, ring, ideal, and field, and subordinate notions such as subgroup,
invariant subgroup, and extension field were introduce to identify the sets of
properties. However, nearly all of the nineteenth-century work on these various
types of algebras dealt with the concrete systems mentioned above. It was only in
the last decades of the nineteenth century that the mathematicians appreciated that
they could move up to a new level of efficiency by integrating many separate
algebras through abstraction of their common content. Thus permutation groups,
the groups of classes of forms treated by Gauss, hypernumbers under addition, and
transformation groups could all be treated in one swoop by speaking of a set of
elements or things subject to an operation whose nature is specified only by certain
abstract properties, the foremost of these being that the operation applied to two
elements of the set produces a third element of the set. The same advantages could
be achieved for the various collections that formed rings and fields. Though the
idea of working with abstract collections preceded the axiomatics of Pasch, Peano,
and Hilbert, the latter development undoubtedly accelerated the acceptance of the
abstract approach to algebras.

Thus arose abstract algebra as the conscious study of entire classes of
algebras, which individually were not only concrete but which served purposes in
specific areas as substitution groups did in the theory of equations. The advantage
of obtaining results that might be useful in many specific areas by considering
abstract versions was soon lost sight of, and the study of abstract structures and the
derivation of heir properties became an end in itself.

Abstract algebra has been one of the favored fields of the twentieth century
and is now a vast area.

It 1s a favorite activity of historians, now that the abstract theory 1s In
existence, to trace how many of the abstract ideas were foreshadowed by the

concrete works of Gauss, Abel, Galois, Cauchy, Sylow and dozens of other men.



I. History of group theory

In this chapter we will present the main periods of finite group history and
give the major problems that were solved during these periods.

There are four major sources in the evolution of group theory. They are
(with the names of the originators and dates of origin):

1) Classical algebra (Lagrange, 1770)

2) Number theory (Gauss, 1801)

3) Geometry (Klein, 1874)
4) Analysis (Lie, 1874; Poincaré and Klein, 1876)

We shall deal with each of sources in turn.



1.1 Classical Algebra

The major problems in algebra at the time (1770) that Lagrange wrote his
fundamental memoir “Reflections on the solution of algebraic equations”
concerned polynomial equations. There were “theoretical™ questions dealing with
the existence and nature of the roots — for example, does every equation have a
root? How many roots are there? Are they real, complex, positive, negative? And
“practical” questions dealing with methods for finding the roots. In the latter
instance there were exact methods and approximate methods. In what follows we
mention exact methods. The Babylonians knew how to solve quadratic equations,
essentially by the method of completing the square, around 1600. Algebraic
methods for solving the cubic and the quartic were given around 1540. One of the
major problems for the next two centuries was the algebraic solution of the quintic.
This is the task Lagrange set for himsel{ in his paper of 1770.

In this paper Lagrange first analyzed the various known methods, devised by
Viete, Descartes, Fuler, and Bezout, for solving cubic and quartic equations. e
showed that the common feature of these methods is the reduction of such
equations to auxiliary equations — the so-called resolvent equations. The latter are
one degree lower than the original equations.

Lagrange next attempted a similar analysis of polynomial equations of

arbitrary degree n. With each such equation he associated a resolvent equation, as

follows: let f(x) be the original equation, with roots x; x» x3 . .., x, Pick a
rational function R(x, x5 x3 . . ., X, of the roots and coefficients of f(x).

(Lagrange described methods for doing this.) Consider the different values which

R(x;, x> x3, ..., x,) assumes under all the n! permutations of the x,, xy x3, ... .. X,
of f(x). If these are denoted by v;, y5, ¥3 . . ., », then the resolvent equation is
given by

800 = (x = y)(c=y2) - (x ).
[t is important to note that the coefficients of g(x) are symmetric functions

X;, X3 X3 . . ., X, hence they are polynomials in the elementary symmetric



functions of x;, x, x; ..., x,; that is, they are polynomials in the coeflicients of
the original equation f{x). Lagrange showed that k divides n! — the source of what
we call Lagrange’s theorem in group theory.

For example, if f(x) is a quartic with roots x;, x, x3 x,, then Rix,, x, x3 x4
may be taken to be x;x, + xuv,, and this function assumes three distinct values
under the twenty-four permutations of x,. x» x; x,. Thus the resolvent equation of
a quartic is a cubic. However, in carrying over this analysis to the quintic Lagrange
found that the resolvent equation is of degree six. Although Lagrange did not
succeed in resolving the problem of the algebraic solvability of the quintic, his
work was a milestone. [t was the first time that an association was made between
the solutions of a polynomial equation and the permutations of its roots. In fact, the
study of the permutations of the roots of an equation was a cornerstone of
Lagrange’s general theory of algebraic equations. This, he speculated, formed “the
true principles of the solution of equations.” He was, of course, vindicated in this
by Galois. Although lagrange spoke of permutations without considering a
“calculus” of permutations (e.g., there is no consideration ot their composition or
closure), it can be said that the germ of the group concept — as a group of

permutations — is present in his work.



1.2 Number Theory

In the Disquisitiones Arithmeticae (Arithmetical Investigations) of 1801
Gauss summarized and unified much of the number theory that preceded him. The
work also suggested new directions which kept mathematicians occupied for the
entire century. As for its impact on group theory, the Disquisitiones may be said to
have initiated the theory of finite abelian groups. In fact, Gauss established many
of the significant properties of these groups without using any of the terminology
of group theory. The groups appeared in four different guises: the additive group of
integers modulo m, the multiplicative group of integers relatively prime to m,
modulo m, the group of equivalence classes of binary quadratic forms, and the
group of n-th roots of unity.

And although these examples turned up in number-theoretic contexts, it is as
abelian groups that Gauss treated them, using what are clear prototypes of modern
algebraic proofs. For example, considering the nonzero integers modulo p (p a
prime), he showed that they are all powers of a single element; that is, that the
group Z, of such integers is cyclic.

Given any element of Z,,, he defined the order of the element (without using
the terminology) and showed that the order of an element is a divisor of p — 1. He

5

then used this result to prove Fermat’s “little theorem,” namely thata p— 1 = |
(mod p) it p does not divide a, thus employing group-theoretic ideas to prove
number-theoretic results. Next he showed that if ¢ is a positive integer which
divides p — 1, then there exists an element in Z, whose order is ¢ — essentially the
converse of Lagrange’s theorem for cyclic groups.

Concerning the n-th roots of 1, which he considered in connection with the
cyclotomic equation, he showed that they too form a cyclic group. In relation to
this group he raised and answered many of the same questions he raised and
answered in the case of Z,. The problem of representing integers by binary
quadratic forms goes back to Fermat in the early seventeenth century. (Recall his

theorem that every prime of the form 4n + 1 can be represented as a sum of two
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squares x7 + yz.) Gauss devoted a large part of the Disquisitiones to an exhaustive
study of binary quadratic forms and the representation of integers by such forms. A
binary quadratic form is an expression of the form ax” + bxy + cy®, with a, b, ¢
integers. Gauss defined a composition on such forms, and remarked that if K} and
K, are two such forms, one may denote their composition by K, + K>. He then
showed that this composition is associative and commutative, that there exists an
identity, and that cach form has an inverse, thus verifying all the properties of an
abelian group. Despite these remarkable insights, one should not infer that Gauss
had the concept of an abstract group, or even of a finite abelian group. Although
the arguments in the Disquisitiones are quite general, each of the various types of
“groups” he considered was dealt with separately — there was no unifying group-

theoretic method which he applied to all cases.
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1.3 Geometry

We are referring here to Klein’s famous and influential lecture entitled

b

“A Comparative Review of Recent Researches in Geometry,” which he delivered
in 1872 on the occasion of his admission to the faculty of the University of
Erlangen. The aim of this so-called Erlangen Program was the classification of
geometry as the study of invariants under various groups of transformations. Here
there appear groups such as the projective group, the group of rigid motions, the
group of similarities, the hyperbolic group, the elliptic groups, as well as the
geometries associated with them. (The aftine group was not mentioned by Klein.)
Now for some background leading to Klein’s Erlangen Program.

The nineteenth century witnessed an explosive growth in geometry, both in
scope and in depth. New geometries emerged: projective geometry, non-Euclidean
geometries, differential geometry, algebraic geometry, n-dimensional geometry,
and Grassmann’s geometry of extension. Various geometric methods competed for
supremacy: the synthetic versus the analytic, the metric versus the projective. At
mid-century a major problem had arisen, namely the classification of the relations
and inner connections among the different geometries and geometric methods. This
gave rise to the study of “geometric relations,” focusing on the study of properties
of figures invariant under transformations. Soon the focus shifted to a study of the
transformations themselves. Thus the study of the geometric relations of figures
became the study of the associated transformations.

Various types of transformations (e.g., collineations, circular
transformations, inversive transformations, affinities) became the objects of
specialized studies. Subsequently, the logical connections among transformations
were investigated, and this led to the problem of classifying transformations, and
eventually to Klein’s group-theoretic synthesis of geometry.

Klein’s use of groups in geometry was the final stage in bringing order to
geometry. An intermediate stage was the founding of the first major themy of

classification in geometry, beginning in the 1850s, the Cayley-Sylvester Invariant
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Theory. Here the objective was to study invariants of “forms” under
transformations of their variables. This theory of classification, the precursor of
Klein’s Erlangen Program, can be said to be implicitly group-theoretic. Klein’s use
of groups in geometry was, of course, explicit.

In the next section we will note the significance of Klein’s Erlangen
Program (and his other works) for the evolution of group theory. Since the
Program originated a hundred years after Lagrange’s work and eighty years after
Gauss’ work, its importance for group theory can best be appreciated after a
discussion of the evolution of group theory beginning with the works of Lagrange

and Gauss and ending with the period around 1870.
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1.4 Analysis

In 1874 Lie introduced his general theory of continuous transformation
groups — essentially what we call Lie groups today. Such a group is represented by
the transformations x;; = filx;. x5 ... .. X, . o oay,), 1= 1,2, ..., n, where the
/; are analytic functions in the x; and a; (the a; are parameters, with both x; and a,
real or complex). For example, the transformations given by

xX; = (ax + b)/(cx + d),

where a, b, ¢. d are real numbers and ad — be = 0, deline a continuous
transformation group. Lie thought of himself as the successor of Abel and Galois,
d-di.ng for differential equations what they had done for algebraic equations. His
work was inspired by the observation that almost all the differential equations
which had been integrated by the older methods remain invariant under continuous
groups that can be easily constructed. He was then led to consider, in general,
differential equations that remain invariant under a given continuous group and to
investigate the possible simplifications in these equations which result from the
known properties of the given group (ct. Galois theory). Although Lie did not
succeed in the actual formulation of a “Galois theory of differential equations,” his
work was fundamental in the subsequent formulation ot such a theory by Picard
(1883-1887) and Vessiot (1892).

Poincaré and Klein began their work on “automorphic functions™ and the
groups associated with them around 1876. Automorphic functions (which are
generalizations of the circular, hyperbolic, elliptic, and other functions of
elementary analysis) are functions of a complex variable z, analytic in some
domain D, which are invariant under the group of transformations

x, = (ax + b)/(cx + d) (a, b, ¢, dreal or complex and ad — be = 0),
or under some subgroup of this group. Moreover, the group in question must be
“discontinuous,” that is, any compact domain contains only finitely many
transforms of any point. Examples of such groups are the modular group (in which

a, b, ¢ d are integers and ad — bc = 1), which is associated with the elliptic
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modular functions, and Fuchsian groups (in which a, b ¢. d are real and

ad — be = 1) associated with the Fuchsian automorphic functions.



1.5 Sylow’s theorems

Among the methods of determining all finite groups, the approach of
examining individual groups of certain orders can seem at times slow and
methodical. Yet this task, begun in 1892 by Otto Holder, has proven fruitful in the
advancement of group theory, if not always in the discovery of new simple groups.
[t has shed a great deal of light upon the structure of groups with given orders
which allows one to understand the nature of simple groups, at least in so far as
determining, what they are not. This pérticular problem, each aided by the work
and discoveries of those who came before.

The range problem itself is not difficult to understand, in light of the search
for simple groups. It is simply this: given a particular natural number, say n, what
can we say about the structure of any group having n element? And in particular,
can we determine if the group has any normal subgroups besides itself and the
identity, i.e., can we show that the group is not simple? If the group is simple, is it
unique? Through the history of this problem, there were two main methods used to
explore the structure of groups with a given order. One was to use Sylow theorems
and the other was to employ character theory.

“It would be of the greatest interest if it were possible to give an overview of
the entire collection of finite simple groups.” So begins an article by Otto Holder in
Mathematische Annalen in 1982. Insofar as it is possible to give the birthyear of
the program to classify the finite simple groups, this would be it. The first paper
classifying an infinite family of finite simple groups, starting from a hypothesis on
the structure of certain proper subgroups, was published by Burnside in 1899. As
the final paper (the classification of quasithin simple groups of even characteristic
by Aschbacher and S. D. Smith) in the first proof of the Classification Theorem for
the Finite Simple Groups (henceforth to be called simply the Classification) will
probably be published in the year 2001 or 2002, the classification endeavor comes

very close to spanning precisely the 20" century.



Of course there were some important pre-natal events. Galois introduced the
concept of a normal subgroup in 1832, and Camille Jordan in the preface to his
Traite des substitutions et des equations algebriques in 1870 flagged Galois’

29

distinction between “groupes simples” and “groupes composees” as the most
important dichotomy in the theory of permutation groups. Moreover, in the Traite,
Jordan began to build a database of finite simple groups — the alternating groups of
degree at least 5 and most of the classical projective linear groups over fields of
prime cardinality. Finally, in 1872, Ludwig Sylow published his famous theorems
on subgroups of prime power order.

Nevertheless Holder’s paper is a landmark. Holder threw down a gauntlet
which was rapidly taken up by Frank Cole, who in 1892 determined all simple
groups of orders up to 500 (except for some uncertainties related to 360 and 432)
and in 1893 extended this up to 660, discovering in the process a new simple group
SL(2, 8). By the dawn of the 20" century Miller and Ling (1900) had pushed this
{rontier out to 2001. These results were achieved with the only available tools —
Sylow’s Theorems and the Pigeonhole Principle. Needless to say, the arsenal of
weapons needed to be enlarged and the strategy of proceeding one integer at a time
needed to be abandoned if any serious progress was to be made.

The abstract group concept spread rapidly during the 1880s and 1890s,
although there still appeared a great many papers in the areas of permutation and
transformation groups. The abstract viewpoint was manifested in two ways:

(a) Concepts and results introduced and proved in the setting of “concrete™
groups were now reformulated and reproved in an abstract setting;

(b) Studies originating in, and based on, an abstract setting began to appear.

An interesting example of the former case is the reproving by Frobenius, in
an abstract setting, of Sylow’s theorem, which was proved by Sylow in 1872 for
permutation groups. This was done in 1887, in a paper entitled “A new proof of
Sylow’s theorem.” Although Frobenius admitted that the fact that every finite
group can be represented by a group of permutations proves that Sylow’s theorem

must hold for all finite groups, he nevertheless wished to establish the theorem
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abstractly: “Since the symmetric group, which is introduced into all these proofs, is

totally alien to the context of Sylow’s theorem, [ have tried to find a new

derivation of it”.
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II. Sylow theorems

For further presenting of Sylow theorems proofs, we should remind some

necessary definitions and theorems and solve several essential lemmas.

Definition I: Two subgroups S and T of a group G are called conjugate if there

isa geG suchthat g7'Sg=7 (g™ 'Sg=T ¢ g 'Sg = {g"Sgs € S}).
Definition 2: let A be a non-empty subset of a group G. The set

{hh"'/!h:A,heH} is called the normalizer of 4 in H and is
written N, (A4).

Definition 3: Let A and B be non-empty subsets of G. B is said to be an
H-conjugate of A if h™'Ah =B for some he H .

Definition 4. Suppose H is a subgroup of G of order a power of a prime p, and
|H| is the highest power of p that divides |G|. Then H is called a
Sylow p-subgroup of G.

Lagrange’s theorem

The order of a subgroup H of a finite group G divides the order of G, or in

other words
|Gl=IH]|G:H|
Lemmas 1, 2
1) If 4 is a subset of G, then N(4) is a subgroup of G;
2) If A is a subgroup of G, then 4 <G ifand only if N(4) = G.

Proof
1) N(A)#0, since e N(4). Let f,geN(A). Using gd=Ag and

JA=Af implies (Jg7)4=f(g"4)=f(4g™ )= (/g™ =(4)g” = A(fe™").
Hence f,g e N(A4) implies fg~' € N(A4). Therefore N(4) is a subgroup of G.
Clearly, if 4 is a subgroup, A < N(A) and 4 < N(A4).

20



2) If 4 is a subgroup and 4< G, then for each geG,gAd=Ag. Hence
ge N(A) and so G < N(A). Therefore G = N(A4). Il 4 is a subgroup and
N(A)= G, thensince A aN(A), A<G.

Lemma 3

If H is a subset of a group G and geG, then | g 'Hg|=|H |, where
g Hg={g ' hghe i},
Proof

We define a matching oo H —> g 'Hg by a:h—> g 'hg for he H. « is
clearly an onto mapping. To show « is also one-to-one, we must prove
h =hy(h,h, e H) if and only if g-'hg=g 'hg. Let h =h,. Then by
multiplying on the left by g~ and on the right by g we get g 'hg =g 'hg.
Similarly g¢™'hg=g 'h,g implies & =h,. Hence « is a matching and
|g " Hg|=|H]|.

Lemma 4

Let |G|=p'm(r>1 and p{m) and let P be a Sylow p-subgroup of G.
Then if H is a p-group such that Pc H < G, then H = P.

Proof
Suppose |H |= p',t>0. By Lagrange's theorem, p'|p"m. Since p | m,

t<r.But Pc H and |P|=p". Hencet=rand | H|= P|, and so P = H.

Lemma 5

If H is a Sylow p-subgroup of G, then g~ 'Hg is also a Sylow p-subgroup
of G.
Proof

21



Suppose | G|=p"m (r=0 and p { m); then |H |=p". But |g"'Hg|=|H |
by Lemma 3. Hence g 'Hg is a Sylow p-subgroup of G if it is a subgroup.
Now we have to prove that g~'Hg is a subgroup. According to well-known fact
that if 7, f, e H < G then H — subgroup < f, ;' € H. Let us observe that
(e'hele me) =g hh'g e g He.

g~ 'Hg is therefore a subgroup.

Lemma 6
Ny(A)=Ngs(4)nH for any non-empty subset A4 and subgroup

of a group G.

Proof
Let ne N, (A4); then ne H and n'An= 4. But H <G, so that ne G and

by  definition ne N;(A4). Consequently Ny(Ac N (AnH. I
neNg(4)NH, then n'An=A and ne H. Thus Ng(A)NmH < N,y (A) and the

equality follows.
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2.1 First Sylow Theorem

To prove Sylow’s First Theorem yet two more lemmas will be needed.
Lemma 7

I G is a finite group with subgroup /4 and non-empty subset 4, the number
of distinct /H-conjugates of 4 is the index of N, (4) in H, i.c. [H N, (A)]
Proof.

Since [H : N, (A)] is the number of distinct right cosets of N, (4) in H,
we need only define a one-to-one mapping, «, of the right cosets of N, (A4) in

H onto the distinct H-conjugates of A. I.ct « be defined by

a: N, (Ah—>h " Ah(he H)
To show that « is a one-to-one mapping, we must prove that for

h,h, e H,

N, (A)h, =N, (Ah, if and only if h' Ak = hy' Ak,

(<) Let h'Ah =hy'Ah,. Then A=hhi' Ahh™" = (hyh ")y A(hh™).
Hence h,h' € N, (4) and so h, € N, (A)h,. Since two right cosets are
equal or disjoint, we conclude N, (A = N, (A)h,. Thus h ' Ah, =h,' Ah,
implies N, (A)h, = N, (A)h,.

(=) If N, (Ah =N, (A)h,, then h e N, (A)h,, i.e. h =nh, for some
ne N, (A). Therefore

W' Ah = (nhy) ™" Anhy = hy'n™' Anh, = hy' 4h,

because n”'An= A by definition of N, (A4). Hence N, (A)h =N, (4)h,

implies h]—'/lhl = h;lAh2 a is clearly onto, so the proof is complete.



We will make a few observations about ~, which follow because it is an
equivalence relation on 3. Recall that if /€3, 4~= {XXE Aand X ~A},
l.e. A~ Is the equivalence class containing A. Recall that the distinct equiva-

lence classes are disjoint and that their union is 3.

By a set of representatives of the equivalence classes we mean a set R which
contains one and only one element {rom each of the distinct equivalence classes.

[t follows that T is the disjoint union of the sets R~, R € N . Hence

REDIVE]

ReW

Lemma 8
Let 3 (#0) be a set of subsets of G. Suppose that for each 4 € 3 and
cach he H, /7_'/1h_€ 3. Let ~ denote the equivalence relation defined by A~B
if B is an H-conjugate of 4. Let N be a set of representatives of the equivalence

classes. Then | 3| =Y. [H : N, (R)]

ReR

Proof:

We know from the remarks above that

(=2 R

ReM

But R~= {X‘X =h™'Rh for some h e H} since h"'Rhe T for every he H. So

R~ is the set of H-conjugates of R. The number of such H-conjugates is, by
Lemma 7, [H : N, (4)] Hence | 3|= > [H : N, (R)], as claimed.

ReN

Corollary 1
Let P (#0) be a subset of G. Let S={g'Pgge G} Let R, H and ~ be

as in Lemma 8. Then | J|=Y[H : N, (R)]=[G: N, (P)]

Rel

Corollary 2
24



Let 3={ A|] A is a subset of G and A has precisely one element}. Let ~
be the equivalence relation in 3 when H=G, and let /! be a set of

representatives of the equivalence classes. Let M* = {R RNZ(G)=0,R e 9?}.

Then
|G|=1Z2(G)|+X[G: N, (B)]

Ren

Proof:
Clearly | 3|=|G|; hence

1G|=Y[G:N,(B)] (*)

Rem

If zeZ(G), then {Z}ES and the number of G-conjugates of {z} is one,
namely {z} itself. Consequently {z}e‘ﬂ for each ze Z(G). Note that
No({z})=G if zeZ(G). Hence adding first the contribution made by all
ReNR with RN Z(G)#0 in (*), we obtain | Z(G) | and the result follows.

Note that as R = {r},
Ne(R)=lggeGand g'rge Ri=lg g Gand g rg e r}=C(R)
[lence Corollary 2 takes the form

1G|=12(G)|+3[G:C(R)] (**)

Remtr
is called the class equation of G.

Firstly, we will prove a weak form of the first Sylow theorem.
Proposition 1 v

If G is a finite abelian group and p is a prime dividing the order of G, then
G has an element of order p.
Proof:

We will prove the proposition by induction on the order of G. If |G| = |
there is nothing to prove. Assume the proposition is true for all groups of order

less than n, the order of G, where n > 1. If G is cyclic there is a subgroup of order
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any integer that divides |G|. Thus if G is cyclic the theorem holds, and we may
therefore assume G is not cyclic. If n is a prime, G is cyclic; hence » is not a
prime.

Suppose A(# 1) € G, h of order m. Clearly m < n. Let H be the cyclic group
generated by h. A is a proper subgroup of G. Now if p | m, by the induction
assumption, /1 has an element of order p. If p{m, form the factor group G/H
(every subgroup of an abelian group is a normal subgroup so // < G). Since
|H| > 1, |G/H| <|G|. As |G/H| = |G|/|H|, p||G|/|H|. Therefore by the induction
assumption, G/H has an element g of order p.

Let v:G — G/H be the natural homomorphism of a group onto its factor

group and g be a preimage of g under v. Now (g”)v = ¢” = the identity of G/I1,

so g¥ e H. As H is of order m, (g’” )p = (g"’)m =1. Therefore g™ has order p or

"

g"=1.1f g" =1, then g”"v=g" =1. Since g has order p this implies p divides

m, contrary to our assumption. Therefore g™ is an element of G of order p.

First Sylow Theorem

Let G be a finite group, p a prime, and p’ the highest power of p dividing
the order of G. Then there is a subgroup of G of order p".

Proof:

We will prove the theorem by induction on the order n of G. For |G| =1 the
theorem is trivial. Assume n>1 and that the theorem is true for groups of
order < n. Suppose |Z(G)| = ¢. We have two possibilities:

Dple

Z(G) is an abelian group. By Proposition 1, Z(G) has an element of order p.
Let NV be a cyclic subgroup of Z(G) generated by an element of order p. N <G,
since any subgroup of Z(G) is normal in G. Consider G/N. Then |G/N| = n/p by

Lagrange’s Theorem. Hence by our induction assumption, G/N has a subgroup

H of order p"".
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There exists a subgroup H of G such that H/N=H. As
p = HI|E H|/INIJ=| H|/p, we conclude that | H |= p". Thus in this case, G
has a subgroup of order p”.

2 pte

The class equation for G is (see equation (**) of Corollary 2):

(GIH Z(G)]+ Y[G:C(w)]

Re*

Since p | |G| and ple, we have p + > [G:C(R)]. Therefore for at least one

ReN*
ReR* pt [G : C(R)]. But |G |= [G : C(R)]) C(R)| by Lagrange's theorem. Hence

P lIC(R)|, since p"||G|. Now

C(R)|#|CG; for if |C(R)|=|G, then
C(R)=G and RN Z(G)=R, contrary to the assumption that RN Z(G)=0.
Thus by the induction assumption, C(R) has a subgroup H of order p".
Consequently so does G.

In either case we have found a subgroup H of order p".
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2.2 Second Sylow Theorem

Lemma 9 will help us to prove Second Sylow Theorem.
Lemma 9:

If G is a finite group, P a Sylow p-subgroup of G, and H is a subgroup of
G of order a power of p, then

Ny(Py=HNP

PNH < N, (P), as conjugation by an clement of P sends P to itsell. We
show N,(P)c PnH. N,(P)c N;(P) and P<aN;(P) (see Lemma 2 and
Lemma 6), so that by the subgroup isomorphism theorem we have: N, (P)Pis
a subgroup of G and

Ny(PYPIP=N,(P)/N,(P)NnP
Consequently [N, (P)P:P]=[N,(P):N,(P)nP]. But N,(P) is a

p-group, i.e. a group of order a power of p, since it is a subgroup of the p-group
H. Thus [NH (P): N, (P)n P] is a power of p. [N,, (P)P: P} is therefore also a
power of p and, as P is a p-group, | N, (P)P| is a power of p. Accordingly,
N, (P)P is a p-group. But P < N, (P)P and P is a Sylow p-subgroup. Hence
P =N, (P)P, for P cannot be a proper subgroup of any other p-subgroup of G
(see Lemma 6). N, (P) is therefore a subgroup of P. As N, (P)c H, we

conclude N, (P)c PN H.

Second Sylow Theorem

If H is a subgroup of a finite group G, and let P be a Sylow p-group of G. If

H is a p-group, then H is contained in a G-conjugate of P.
Proof:
We apply Corollary 1, to 3= {g‘IPg ge G} to conclude
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Sl S [H N, (R)]=[G: Ns(P)]

ReM

By Lemma 9, N, (P)=H n P for each R € R. Hence
[G:NG(P)]= Z[H:f[ﬁR] (%)

RN

If HNR=#H for all ReN, as H is a p-group, the right-hand side of
equation (***) is divisible by p. Hence [G:NG(P)] is divisible by p. But
P < N (P), so that p does not divide [G : N (P)]. This contradiction implies that
HNR=H forat least one ReNR. But as Re I, R is a G-conjugate of P. The

result follows.
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2.3 Third Sylow Theorem

Third Sylow Theorem
1) Any two Sylow p-subgroups of a finite group G are G-conjugate.

2) The number s, of distinct Sylow p-subgroups of G is congruent to 1

modulo p.

3) s, divides |G].
Proof:

) Let P and P’ be two Sylow p-subgroups of G. By the second Sylow
theorem, P', as ap-group, is contained in some G-conjugate R of P. But
IP'| = |R|, by Lemma 3. Hence P’ = R and P'is conjugate to P under G.

2) Let P be any Sylow p-subgroup of G. Since any other Sylow
p-subgroup is conjugate to P and any conjugate of a Sylow p-subgroup is a
Sylow p-subgroup (Lemma 5), we conclude by Lemma 7 that

s, = G NG(P)]
But on putting ” = H in equation (***), we have

s, = Z[P:PmR]
Rel

Now for exactly one Re R, R = P; for the only P-conjugate of P is P itself
and so P is the only possible representative of its equivalence class. In all

other cases, PR # P. Therefore [P: P R]| is a power of p for all ReR
except one, and for this one [P: PmR] =1. Hence
s, =1+kp
3) By Lagrange's theorem, |G‘| =[G:N,(P)]| N,(P)]. Since
s, =[G NP s, 1G]

Corollary 3



If p and g are different prime factors of G and »n,=1 and n, =1 then the

elements of the p-Sylow subgroup commute with the elements of the g-Sylow

subgroup.

Proof
Let P be the p-Sylow subgroup and Q be the g-Sylow subgroup. Since P and
0 have relatively primes sizes, PN Q = {e} by Lagrange. The subgroups P and Q

are normal in G since n, =1 and n, =1 by hypothesis. For ae P and be Q,

aba”'b™" = (aba " )b _ aba™'bYe PNQ = e}

so ab = ba.

(OS]
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2.4 Alternative proof of Sylow theorems

In this chapter, we would like to present some historical proof of Sylow’s

Theorem.

Sylow’s Theorem proof by Sylow

In modern language, here is Sylow’s proof that his subgroups exist.

Pick a prime p dividing |G|. Let P be a p-subgroup of G which is as large as
possible. We call P a maximal p-subgroup. We do not yet know its size is the
biggest p-power in |G|. The goal is to show [G:P] is not =0 mod p, so |P| is the
largest p-power dividing |G].

Let N = N(P) be the normalizer of P in G. Then all the elements of p-power
order in N lie in P. Indeed, any element of N with p-power order which is not in P
would give a non-identity element of p-power order in N/P. Then we could take
inverse images through the projection N — N/P to find a p-subgroup inside N
properly containing P, but this contradicts the maximality of P as a p-subgroup of
G.

Since there are no non-trivial elements of p-power order in N/P, the index
[N ; P] is not divisible by p by Cauchy’s theorem.

Nvow let the p-group P act on G/N by left multiplication. Since [G : P] is not
=0 mod p, there must be a fixed point, say gN for some geG. For every
teP,tgN=gN, so g'Pgc N. Because (as shown above) all elements of
p-power order in N lie in P, g'Pgc P, and therefore g~'Pg=PF. Thus
geNP)=N,so gN=N.

Thus N e G/ N is the only fixed point for left multiplication of P on G/N.
Every other orbit has size divisible by p, so the fixed point congruence tells us
[G:N]=1mod p.

Therefore



[G:P]:[G:N][N:P}E[N:P]isnoz‘zlmodp

which proves P is'a p-Sylow subgroup of G.

Sylow’s Theorem by I'robenius

Here is Frobenius’ first proof on the existence of Sylow subgroups. It takes
for granted that there are Sylow subgroups of symmetric groups; this had been
shown in a paper of Cauchy before Sylow’s work.

By Cayley’s theorem, every finite group can be embedded in a symmetric
group. Given a f[inite group G, suppose we have G < S, . Pick a prime p. By
Cauchy’s work, S has a p-Sylow subgroup, say P. Consider the (G,P) double
coset decomposition of S, :

S =l JGs P

Each double coset G5 P has size |G| P|/|(G NS 'PS)|, which is divisible by |P].

Therefore

1S, | |G|
| P Zqu&W&w

Since |S,|/| P| is not =0 mod p, one of the terms in the sum is not divisible
by p. Let it be the j-th term. Then G &' P&, is a p-group (since it’s a subgroup of
5_;'P6/) with maximal p-power size inside of G (since its ratio with |G| is not

divisible by p). Thus G N PS, is a p-Sylow subgroup of G.

Modern alternative proof

Here we give an alternative proof, elementary and combinatoric in nature,
due to Wielandt. There are many other proofs of this result. For a finite group G,

Sylow's Theorems guarantee the existence of subgroups of all prime-power orders

(OS]
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dividing the order of G. This can be viewed as a kind of partial converse to
Lagrange's Theorem.
Sylow’s Theorem:
Let G be a finite group, p a prime, |G| = p“m, (p;m) = 1. Then:
1) every p-subgroup of G is contained in a subgroup of order p“ (and hence,
since {1} is a p-subgroup, Sylow p-subgroups exist)
2) if n, denotes the number of Sylow p-subgroups, then n, =1 (mod p) and n,
divides m;
3) any two Sylow p-subgroups are conjugate in G (and hence also isomorphic).
Proof:
First we show existence of Sylow p-subgroups. Let S denote the set of all

subsets of G with exactly p” elements, and let G act on S by left multiplication.

a I
Notice | §'|= — (}Z m): —.
p i(p°m—p*)!

We claim that this is not divisible by p. We have

“m(p m—=1)---(p°m—p° +1 P pm =1
g PmpTm ) (pm D) H(p ]

m :
I

12 (p" =1)p° -

PM7L | <i<p” If p’ divides i then j<a and p’ divides
!

Consider

o

pm—i
[

p“m—i. Therefore p does not divide any of the factors and so does not

divide |S]. This implies there is some orbit of § under the action of G which has

- order not divisible by p. Call it S,. Let X € S, and consider [G ; G,,\,]zl S, |. Then p
dbes not divide this index, so p“ divides |G, |. Now X is a subset of G with
exactly p” elements. Choose xe€ X . Then ng‘g € G,\,H:[ G,|. Since G,
stabilizes X, we must have gxe X for all ge G, . Therefore |G, |<p” =| X|.
Thus |G, |= p“, and we have found a Sylow p-subgroup.

Now let i denote the set of all conjugates of some Sylow p-subgroup P in

G. Then P acts on y by conjugation. The number of elements in an orbit must be a
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power of p:[P:P\,]:| O.|. We claim that P is the only element in y with a
singleton orbit. If O, =P, then P, <(P,P,), so PP, is a subgroup of order
|P||P|/|PNP=p° so P=PP=PF. Thus |y|=1l(modp). Also
ly |= [G N (P)] and m =[G P] = [G ; N(’.(P)}[NH(P) : P], so || divides m. We
will be done if we can show that any p-subgroup of G is contained in some group
in  (for then any Sylow p-subgroup will be conjugate to P, and every p-subgroup
will be contained in a Sylow p-subgroup).

Let P' be a p-subgroup of G. Suppose P' is not contained in some conjugaltce
of P. Let P" act on iy by conjugation. Then there can be no singleton orbits or, as
before, P'P, would be a subgroup of order greater than p“, a contradiction. That
says all P'-orbits in y have order a power of p, and are not 1. That implies

|y |=0(mod p), a contradiction. Thus ' is contained in some P, €y .



II1. Applications

In the last chapter we would like to show you different applications of Sylow’s
theorems. Usually theorems are used for the classification of finite groups.

Also, the bulk of these applications use the Sylow’s Theorems to show the
existence of nontrivial proper normal subgroups, allowing one to show that a group

of a given size is not simple and to proof theorems about cyclic groups,



3.1 Applications for theorems proving

Here is a nice application of First Sylow Theorem.

Theorem 1

If a finite group has at most one subgroup of any size, then it is a cyclic
group.

Our argument has two steps: use Sylow I to reduce the theorem to the prime
power case, and then settle the prime power case.

Step 1. Let G be a group with a unique subgroup of each size. In particular,
for each prime p we obtain by Sylow I that G has one p-Sylow subgroup. Each

Sylow subgroup is normal since n, = 1. Then, [or different primes p and g dividing

|G|, the elements of the p-Sylow and ¢g-Sylow subgroups commute with each other
by Corollary 3.

Any subgroup of G has at most one subgroup of any size (otherwise G itsell
would have two subgroups of the same size). Suppose we knew the theorem for all
groups with prime-power size. Then, for each prime p dividing |G|, the p-Sylow
subgroup of G has to be cyclic. Choose a generator a, of the p-Sylow subgroup of
G. The order of a, is the size of the p-Sylow subgroup of G. These a,'s commute

as p varies and their orders are relatively prime, so the product of the a,'s has

order equal to the product of the sizes of the Sylow subgroups of G. This product
of sizes is |G|, so G is cyclic.

Step 2. We are now reduced to verifying our theorem for groups with prime-
power size. The Sylow theorems will not be used further.

Let |G|=p" where p is prime, k=1, and assume G has at most one
subgroup of each size. To show G is cyclic, we argue by induction on k. If k =/
then G has prime size so it is cyclic. We now suppose that k£ > 2 and the theorem is

proved for all groups with p-power size less than p* which have at most one

subgroup of each size.



Since G is a nontrivial group with p-power size, it has a nontrivial center.
Pick (by Cauchy) an element a of order p in the center of G. Then <a> Is a
subgroup of G with order p, so it is the unique such subgroup. Since every
nontrivial subgroup of G contains a subgroup of size p by Cauchy, every nontrivial
subgroup of G contains (a).

Since a lies in the center of G, <a> is a normal subgroup of G. We therefore
can consider the group G/<a>, whose size is p'™'. Let's show G/<a> has at most
one subgroup of any size. For any subgroup /1 ol G/<a>, let /7' be the inversc
image of /7 in G (all the elements of & which reduce to H). Then H' contains <a>,
has p times as many elements as /, and H = H‘/<a>. If K is a subgroup ol G/<a>
with the same size as A then | K'|=|G'| (we define K’ from K in the same way as
H’ 1s defined from H), so H = K’ since G is assumed to have at most one subgroup
of any size. Reducing back modulo <a>, we get H = H'/<a> = K'/<a> =K i
G /{a).

By induction, G/<a> is a cyclic group:

G/<a> = <27>

Then every element of G has the form b'a’ for some i and j, and b # e since
G/<a> is nontrivial. Since <b> is a nontrivial subgroup of G, it must contain <a>
Therefore a € <b>, so b'a’ is a power of b. This implies G is cyclic, which settles
the theorem for groups of prime-power size.

0

Here is another application of Iirst Sylbw Theorem to prove a similar
theorem.

Theorem 2

Let G be a finite group such that, for each » dividing |G|, the equation x" =1

in G has at most » solutions. Then G is cyclic.

Proof



We again argue in two steps: reduction to the prime power case using I'irst
Sylow Theorem and then the prime power case.

Step 1. Let p be a prime dividing |G| and p* be the largest power of p in |G|.
Every g€ G of p-power order in G has order dividing p* (all orders divide |G]),

50 g is a solution to x”" =1. Let P be a p-Sylow subgroup of G. It provides us with

p* solutions to this equation, so by assumption these are all the solutions.

Therefore all elements of p-power order are in P, so P is the only p-Sylow
subgroup. |

The hypothesis on G passes to any of its subgroups, such as its Sylow
subgroups. If we knew the theorem for groups of prime-power size then we get
cyclicity of the Sylow subgroups, so G is cyclic by the same argument as in Step 1
of the proof of Theorem 1.

Step 2. We now verify the theorem for p-groups. The Sylow theorems are
not going to be used. Let |G |= p", where k>2. (The case k=] is trivial.) Assume
x" =1 has at most # solutions in G whenever n| p". We want to show G is cyclic.
If N<G and |(G/N)[> pthen G/N has a nontrivial normal subgroup of order p
(such as a subgroup of order p in its center). Lifting this subgroup of G/N back to
G gives a normal subgroup 4 G with N A < G and [H:N]=p. We can repeat
this with A in place of N, and so on, so a maximal proper normal subgroup of

=

has index p in G. Let M be such a subgroup, so | M |= p*". The equation x” =1

~ has p*™" solutions in M, so by hypothesis these are the only solutions to this
equation in G. Therefore any element of G - M does not have order dividing p*™',

s0 its order must be p*, which shows G is cyclic.
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3.2 Applications to specific groups

Application 1

Let us prove that a group G of order 48=2%.3 is not simple. Also we arc
going to show that G has either a normal subgroup of order § or 16.
Proof

If G is simple, n, =3. Let P e Syl,(G) and let G act by left multiplication
on the left cosets of P; in this way, we get a nontrivial homomorphism p:G — S,.
Since G is simple, Ker p is trivial, so 48 divides 6, which is absurd.

If n, =1, then G has a Sylow 2rsubgroup which is normal. Otherwise,
assume n, =3, so that there are 3 subgroups of order 16. Let /, K be any two ol

them. Then H ~ K must be of order &: for if | H N K [<4 then | HK |2 1»2_ =064,

impossible. It follows that H MK is normal in both A and K since /[ N K has
index 2 in both / and K; this implies
H=N,(HNK)=N.(HNK)NH = <N, (I1TNK)
Thus N (H m K) has order a multiple of 16 and a divisor of 48 so
IN.(HNK)=48< Gl= N, (HNK)=GC

so H mK is anormal subgroup of G of order §.

Application 2
Let us show that a group G of order 108 =2*-3" has a normal subgroup of

order 9 or 27.
Proof

We have either n, =1 or 4; if n, =1, then G has a normal subgroup of
order 27.

[f n,#1, let S be a Sylow 3-subgroup of G. Now, |G :S|=4, so let G act by
left multiplication on the left cosets of S. This action affords a permutation

representation g :G — S,. Observe that | 4(G)| divides both 108 and 24, so it
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must be a divisor of ged(108,24) = 12. So | u(G)[£12=|Kerp[29. On the other

hand, the kernel of this action is the largest normal subgroup of G contained in S,
and this implies | Kerz | must be a divisor of 27.

Since | Keru |29, 1t follows that | Keru|=9 or 27.

Application 3

In this example we will prove that if NV is a normal subgroup of G that
contains a Sylow p-subgroup of G, then the number of Sylow p-subgroups of N
is the same as that of G, i.e. n (G)=n (N). Also we will use this to show that
if G is a group of order 105, then G has a normal Sylow S5-subgroup and a
normal Sylow 7-subgroup.
Proof

Suppose that N contains the Sylow p-subgroup P. Then since N is
normal it also contains all of the conjugates of 7. But now N contains all of
the Sylow p-subgroups of G, since they are all conjugate. Conclude that N and
G have the same number of Sylow p-subgroups.

Next, 105=3-5-7 and we have n, =1 or 7; n, =1 or 21, and n, =1 or 15.
Let Pe Syl (G) and Qe Syl (G). Note that at least one of P, Q must be
normal, since otherwise we would have 21(5-1)=48 e lements of order 5 and
15(7-1)=90 eclements of order 7. Now, PQ is a subgroup, and it must be
normal since its index is the smallest prime divisor of |G|. Since PQ is normal
and contains a Sylow 5-subgroup, it contains all of the Sylow 5-subgroups of G.
It follows that PQ and G have the same number of Sylow S-subgroups, i.e.
n,(PQ) =n,(G). Similarly, n,(PQ)=n,(G). It now follows n,(G)=n,(G)=1.

Application 4
Let us show that a group of order p’q, with p, g distinct primes, has either
a normal Sylow p-subgroup, or a normal Sylow g-subgroup. V

Proof



Suppose by way of contradiction n,>1 and In, > . But n, divides q so
n,=q=1+kp for k=0 soin particular, g > p.

Next n,  divides p’ so either n =p or n =p’. But distinct Sylow
g-subgroups intersect trivially, so there are », (g 1) elements of order g in G

Suppose first n, = p*. Then there are p’g - p’(g—1) elements not of order
g. But if Pe Syl , then P has no elements of order ¢, so P accounts for all the

elements of G not of order ¢, so P must be the unique Sylow p-subgroup of G, i.e.

n, =1, acontradiction. Therefore, n,=p. But since n, = I mod ¢, we have p>q, a

contradiction. Conclude that either n, =1 or n, =1.

Application 5

No group of order 36=2%-3’

Proof

Suppose there is such a group G; then n, =4. Let /1, K be two distinct

is simple.

Sylow 3-subgroups, each of order 9. Notice that H K must have (at least) 3
elements, otherwise we would have | HK |=81 elements in G, which is absurd.
Also, HNK is normal in both A and K. As before, /H <N, (Il NK) so
N, (IT"K) has order a multiple of 9 and a divisor of 36; that is, either
N, (H N K) has order either 18 or 36. [['it has order 18, then it has index 2 in
G, so it is normal in G; if the order is 36, then N . (HNK)=G so HNK is

normal in G. Either way, no group of order 36 is simple.

Application 6

Every group G ol order 255=3-5-17 is abelian.
Proof

Let H be the unique Sylow 17-subgroup. Then G/H has order 15. Since /
1s a normal subgroup of G with abelian quotient, the commutator G’<H. Thus,

G’ has order 1 or 17 as a subgroup of /7.
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But now G has either 1 or 85 subgroups of order 3; either 1 or 51
subgroups of order 5. By order considerations (85 subgroups of order 3 and 51 of
order 5 would require 375 clements of G, im possible), we must have either a
subgroup K of order 3 or S.

Then G/K has order either 5-17 or 3-17; in either case, G/K is abelian
(pq, again). Thus G’ < K and this implies G has order cither I, 3 or 5. But
G’ < H shows that G’ has order either 1 or 17, so G’ is trivial, hence G is

abelian.

Application 7

Prove that a group of order 105 contains a subgroup of order 35.
Proof

Let G be a group oforder |G|=105=3-5-7. Then n,=1 or 21; and
n, =1 or 15.If n, =21 then there are 4 x 21 = 84 elements of order 5, and il
n, =15 there are 6 x 15 =90 elements of order 3; but this implies & has at
least 174 elements, which is absurd. So we must have »n, =1 or n,=1. So let P
be a Sylow S-subgroup, and let Obe a Sylow 7-subgroup. Now PnQ = {e}
since e is the only element whose order divides | P|=5and |Q|=7. Since either

P or Qisnormal, it follows PQ is a subgroup of G of order 35, as desired.

Application 8
Let G be a [inite group and let N be a normal subgroup of G. Show that
n,(G/N)<n (G)

We show, for any P e Syl (G), that PN/N is a Sylow p-subgroup of G/V,

and that every Sylow p-subgroup of G/N arises in this way.

Let PeSyl (G). The subgroup PN/N is a p-subgroup, since

PN/N = P/(PnN). Now we have the inclusions



' NcPNcG,PcPNcG
and the first of these show that [G/N : PN/N]|=[G:PN] and the second shows
that [G ; PN] # 0mod p; therefore PN/N is a Sylow p-subgroup of G/N.

Next we show that cvery Sylow p-subgroup of G/N has the form PN/N for
some Sylow p-subgroup P of G. Let Q € Syl (G/N) and write Q = H/N lor some
subgroup H < G containing N. Then

[G:H]:[G/N:Q]i 0 modp
Choose P eSyl (H) so that PeSyl (G), which follows from the above
congruence and [G : P]: [G ; H][H ; P]. Then PN/N is a subgroup of Q; but we
have just shown that it is also a Sylow p-subgroup of G/N, so Q=FPN/N as

desired.

Application 9
et G be a finite group and H < G. Show that n (H)<n (G).

Proof

[f O QO are distinct Sylow p-subgroups of /7, and they lie in a common
Sylow p-subgroup P of G, then <Q,Q'> is a p-subgroup of H. But Q O’ are
distinct, so <Q, Q'> strictly contains Q (and @), whose order then exceeds that of
Q (and Q°). In other words, any Sylow p-subgroup of G contains at most one

Sylow p-subgroup of H, so the inequality follows.

Application 10
Let G be a finite group and H < G. For any P e Syl (G) thereisa geG

such that gPg™ N H e Syl (H).

Proof
Note that P n H is p-subgroup of H, so there is a Sylow p-subgroup Q of

H containing PNH .As (Q is also a p-subgroup of G, it is contained in a

Sylow p-subgroup of G, we have that Q < gPg™" for some g. Therefore
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O<gPg ' nH

This intersection is a p-subgroup of /, so by maximality, it must be equal
to Q.

Here is another proof: note that for any g, the subgroup gPg™ N H is ap-
subgroup of G. To show that it is indeed a Sylow p-subgroup of H, it is enough
to show that its index in H is not divisible by p. To do this, consider the action
of /1 by left multiplication on G/P, the set of left cosets of P in G. Since [G. P/
is not divisible by p, there is some lelt coset gP who se /-orbit has size not
divisible by p. But the s ize of this orbit is the index of the sta bilizer of gP in
H:

Stab(gP)=1{he H :h(gP)= gP}={he H :g 'hg e P}=
= {h eH:hegPg™ }: gPg N H

Application 11

S, contains no subgroup of order 30 or 40.

Proof

Let A be a subgroup of order 30, and consider the action of .S, on the set

of the left cosets of H; this gives rise to a permutation representation

p:S; = S, whose kernel is contained in /4, i.e. Kerp < H . In particular, p is
nontrivial, and since 120 does not divide 24, p cannot be injective. So ecither
Kerp=H 1n which case H 1s normal in S, or [/ contains a nontrivial normal
subgroup, a contradiction, since the only proper nontrivial normal subgroup of
S 1s 4.

Adapt this argument when K is a subgroup of order 40.

Application 12
No group of order 144 is simple.

Proof
Suppose G is a simple group of order 144. We have either n, =4 or 16; if
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n, =4, then the normalizer of any Sylow 3-subgroup P has index 4 in G, so G
contains a nontrivial normal subgroup contained in N_(P), and G cannot be
simple, so we must have n, =16.

If all the Sylow 3-subgroups have trivial intersection, then there are
8-16 =128 elements of order a divisor of 9, so there are 16 remaining elements
in G, and these clements constitute the unique Sylow 2-subgroup, which is
normal in G.

If two (distinct) Sylow 3-subgroups P, @ intersect nontrivially, then
| PN G |=3. Consider the normalizer of 7:= PN Q; it contains both P and Q as
normal subgroups, so PQ is a (normal) subgroup of N _(7) of order
FPOIE PI-|QI/|T|. So | N.(T)] is at least 36, since it is a divisor ol |G|, so
the index of N, (T) in G is at most 4, in which case G must contain a

nontrivial proper normal subgroup.

Application 13

There is no simple group of order 528.
Proof

If G is a simple group of order 528, we must have n,, =12. Let P be a
Sylow 11-subgroup, whose normalizer N,(P) has index 12 in G; by the
embedding theorem, G is isomorphic to a subgroup of 4,,.

Now P is cyclic of order 11, and | N, (P)/C,.(P)]| divides [Aut(P)| = 10;
and since |N| = 44 this forces |C|=22 or 44. In either case, C contains an
element x of order 2, and it commutes with a generator y of P, which has order

11, thus xy is an element of order 22. But A, contains no element of order 22.

Application 14
Group of order 240 is simple.
Proof
Let G be a simple group of order 240. Notice that G cannot have
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subgroups of index <6; otherwise, G can be embedded in S, for n<6. If
n, =6, then G can be embedded in S, (to see this, let G act on the lelt cosets of
the normalizer of any Sylow 5-subgroup). FHowever, 240 does not divide
| A,1=360,s0 | A, N G|=120 (since any subgroup of S, is either contained in 4,
or else it has the same number of even and odd permutations), and A, has a
subgroup of index 3. But 4, is simple and cannot have a subgroup of any index #,
whenever | 4, | does not divide n!. Therelore, n, =16. If Qe Syl (G), then
N =N, (Q) has index 16, so |N| = 15. Up to isomorphism there is a unique cyclic
group of order 15 and thus N = Z(N). Since Q <N =Z(N), then Q is an abclian
Sylow subgroup of G which is contained in the centre of its normalizer. According
to Burnside’s Normal Complement Theorem, O has a normal complement X, i.e. K

isnormal in G and QK = G. IHence, G cannot be simple.

Application 15

A group of order 255 is cyclic.
Proo

Let G be a group of order 255; then G has a unique Sylow 17-subgroup. Let
Q be a Sylow S-subgroup, and consider the subgroup PQ, of order |PQ| = 85. Now,
PQ is normal in G since it has index 3, and 3 is the smallest prime dividing |G].
Also, PQ is cyclic, since it contains a unique Sylow 5- and 17-subgroup, and so
|Aut(PQO)| = p(85)=64. Next, consider the action of a Sylow 3-subgroup S on PQ by

conjugation; this induces a homomorphism 7 :.S — Aut(PQ), which then must be
trivial.  Since S PQ = {1}, and G =S(PQ) we have an isomorphism
GC=S(PQ)=SxPQO=Z7Z/3x7Z/85=7/255, as desired.
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3.3 Alternative applications

Consider, for a moment, a Rubik’s cube. If we label each face of the cube
I'ront, Back, Up, Down, Lelt and Right, and then let I, B, U, D, I. and R denote
the quarter-turn clockwise rotation of cach respective face as we look directly at it,
then the group R = <F,B,U,D, L,R> is the group of possible conligurations of the
smaller cubes which compose the Rubik’s cube. We will call these smaller cubes
“cubies.” There are three different kinds of cubies: [ace cubies, which arc in the
center ol cach face of the Rubik’s cube, and do not move relative to each other,
corner cubies, which have three [aces exposed and lie at the corners of the cube,
and edge cubies, which have two faces exposed and lic between two corner cubies.
There are 12 corner cubies, and each has 3 orientations; likewise there are 8 edge
cubies, each with 2 orientations. It follows that the number of configurations of a

Rubik’s cube should be 12!8!2"3%, but this is not the case. Instead, because certain
parities must be maintained among cubies, only %2 ol the above configurations
result in a solvable Rubik’s cube. Thus there arc
121812937 = 43252003274489856000 = 2"3"5°7°1 1 configurations possible, which
is also the order of R.

According to Sylow’s theorem, since the order of R is divisible by 11, and
no higher power of 11, there exists at least one Sylow 11-subgroup of R. There arc
in fact many more Sylow 11-subgroups of R, but by Sylow’s theorem we know

that the number of them must be of the form n, =1+11k,k€Z" such that n,

divides 273"5'7*. We can demonstrate that this must be the case simply by
looking at a Rubik’s cube itself. Imagine a Rubik’s cube configuration where 11
of the twelve edge cubies have been cycled amongst each other, leaving the
remaining cubies where they started. If we cycle the cubies in the same way 10
more times, the cube will return to its original configuration. An example of onc

such cycle is rulF'BufDBUDbuRRALLULLALLURR, where lowercase letters denote
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counter-clockwise rotations of their respective faces. The group generated by the

above element has eleven elements, and is thus a Sylow 11-subgroup of R.
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