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Predgovor

Predmet istra�ivaǌa ove doktorske disertacije je teorijsko
razmatraǌe glavnih svojstava operatora Maliavenovog raquna:
Maliavenovog izvoda, Skorohodovog integrala i Ornxtajn-
Ulenbekovog operatora, definisanih na klasi uopxtenih stohas-
tiqkih procesa nad prostorima belog xuma i frakcionog belog
xuma, kao i primena dobijenih rezultata na rexavaǌe odre�enih
klasa stohastiqkih diferencijalnih jednaqina.

U disertaciji su razmatrani uopxteni stohastiqki procesi
koji se mogu razviti u red po bazi Hilbertovog prostora sred-
ǌe kvadratno integrabilnih procesa na prostoru belog xuma,
izra�enoj u obliku familije ortogonalnih polinoma. U prvom
delu disertacije su razmatrani prostori Gausovog i Poasonovog
belog xuma, kao i ǌihove odgovaraju�e frakcione verzije, gde
su veze izme�u svaka dva prostora uspostavǉene preko unitarnih
preslikavaǌa.

U drugom delu disertacije je dato proxireǌe definicija
operatora Maliavenovog raquna sa klase kvadratno integrabil-
nih sluqajnih veliqina na klase uopxtenih stohastiqkih procesa.
Istaknuta je ǌihova interpretacija, kao i veza sa odgovaraju�im
frakcionim Maliavenovim operatorima.

U zavrxnom delu disertacije, metod haos ekspanzija je
primeǌen na rexavaǌe stohastiqkih diferencijalnih jednaqina
u kojima figurixu Maliavenov izvod i Ornxtajn-Ulembekov
operator. Izme�u ostalog, predstavǉeno je rexeǌe uopxtenog
problema sopstvenih vrednosti za operator Maliavenovog izvoda,
kao i rexeǌe stohastiqkog Dirihleovog problema sa perturbaci-
jama generisanim dejstvom Ornxtajn-Ulembekovog operatora.

Ova doktorska disertacija predstavǉa deo rezultata vixe-
godixǌeg istra�ivaǌa pod mentorstvom profesora Stevana
Pilipovi�a i Dore Selexi.

Novi Sad, 25. decembar 2011. Tijana Levajkovi�
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Preface

The main subject of this doctoral dissertation is the theoretical investigation
of properties of the operators of Malliavin calculus: the Malliavin derivative,
the Skorokhod integral and the Ornstein-Uhlenbeck operator, all defined on
a class of generalized stochastic processes, which admit the chaos expansion
representation form in terms of orthogonal polynomial basis in white noise
framework, the interpretation and applications of obtained results to solving
some classes of stochastic differential equations.

Generalized stochastic processes defined on white noise spaces, which have
a series expansion representation form given by the Hilbert space orthogonal
polynomials basis of square integrable processes, found place in the disserta-
tion. The first part of the thesis is devoted to Gaussian and Poissonian white
noise spaces together with their corresponding fractional versions, where any
two of them can be identified through a unitary mapping.

In the second part of the dissertation, theorems which characterize the
operators of Malliavin calculus, extended from the space of square integrable
random variables to the space of generalized stochastic processes are ob-
tained. Moreover the connections with the corresponding fractional versions
of these operators are emphasized and proved.

The closing part of this dissertation contains several examples of stochas-
tic differential equations involving the Malliavin derivative operator and
the Ornstein-Uhlenbeck operator, all solved by use of the chaos expansion
method. Particularly, the solutions of a generalized eigenvalue problem with
the Malliavin derivative and the stochastic Dirichlet problem with a pertur-
bation term driven by the Ornstein-Uhlenbeck operator are presented.

This dissertation is the result of several years of research guided and
supervised by Professor Stevan Pilipović and Dora Seleši.

Novi Sad, 25 December 2011. Tijana Levajković

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Introduction

The mathematical theory, known as the Malliavin calculus or the stochastic
calculus of variations was first introduced by Paul Malliavin in [38] as an
infinite dimensional integration by parts technique. The original motivation
and important application of this theory is to provide a probabilistic proof
of Hörmanders sum of squares theorem for hypoelliptic operators. Moreover,
the theory is used when proving the results involving smoothness of densities
of solutions of stochastic differential equations driven by Brownian motion.
This deep and fascinating theory was further developed by Stroock, Bismut,
Watanabe, Nualart, Øksendal, Rozovsky and others. It remained relatively
unknown for some time until, in the recent years, the ideas became increas-
ingly important in applications, for instance, in stochastic filtering and in
financial mathematics to compute sensitivities of financial derivatives.

A crucial fact in this theory is the integration by parts formula, which
relates the Malliavin derivative operator on the Wiener space and the di-
vergence operator, called the Itô-Skorohod stochastic integral in white noise
setting.

Generalized stochastic processes on white noise spaces have a series ex-
pansion form given by the Hilbert space basis of square integrable processes,
i.e. processes with finite second moments, and depending on the stochastic
measure this basis can be represented as a family of orthogonal polynomials
defined on an infinite dimensional space. The classical Hida approach ([17],
[18], [19]) suggests to start with a nuclear space E and its dual E ′, such that

E ⊂ L2(R) ⊂ E ′,

and then take the basic probability space to be Ω = E ′ endowed with the
Borel sigma algebra of the weak topology and an appropriate probability
measure P . Since Gaussian processes and Poissonian processes represent the
two most important classes of Lévy processes, we will focus on these two
types of measures.

In case of a Gaussian measure, the orthogonal basis of L2(P ) can be con-
structed from any orthogonal basis of L2(R) that belongs to E and from the
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6

Hermite polynomials, while in the case of a Poissonian measure the orthog-
onal basis of L2(P ) is constructed using the Charlier polynomials together
with the orthogonal basis of L2(R). We will focus on the case when E and
E ′ are the Schwartz spaces of rapidly decreasing test functions S(R) and
tempered distributions S ′(R). In this case the orthogonal family of L2(R)
can be represented by the Hermite functions. Following the idea of the con-
struction of S ′(R) as an inductive limit space over L2(R) with appropriate
weights, one can define stochastic generalized random variable spaces over
L2(P ) by adding certain weights in the convergence condition of the series
expansion (also known as the Wiener-Itô chaos expansion) and thus weaken-
ing the topology of the L2 norm. We will define several spaces of this type,
weighted by a sequence q and denote them by (Q)P−ρ, for ρ ∈ [0, 1] and thus
obtaining a Gel’fand triplet

(Q)Pρ ⊂ L2(P ) ⊂ (Q)P−ρ.

Recently, there have been made improvements in economics and financial
modelling by replacing the Brownian motion with the fractional Brownian
motion, and replacing white noise by fractional white noise (see [2], [3], [9]).
In this dissertation we will define the fractional Poissonian process in a frame-
work that will make it easy to link it to its regular version.

In [8] it was proved that there exists a unitary mapping between the
Gaussian and the Poissonian white noise space, by mapping the Hermite
polynomial basis into the Charlier polynomial basis. In [6] and [10] a unitary
mapping was introduced between the Gaussian and the fractional Gaussian
white noise space. We extend these ideas to define the fractional Poissonian
white noise space itself and to connect it to the classical Poissonian white
noise space. As a result we obtain four types of white noise spaces: Gaussian,
Poissonian, fractional Gaussian and fractional Poissonian, where any two of
them can be identified through a unitary mapping.

In white noise setting, the Skorokhod integral represents an extension of
the Itô integral from a set of adapted processes to a set of nonanticipating
processes. Its adjoint operator D is known as the Malliavin derivative. In
spite of many similarities, there are important distinctions between interpre-
tations of the Malliavin derivative in the Gaussian and the Poissonian case.
On a space of Gaussian random variables the Malliavin derivative is inter-
preted as a directional derivative and on a set of Poissonian random variables
the Malliavin derivative is interpreted as a difference operator.

Both operators, the Skorokhod integral and the Malliavin derivative, hav-
ing an interpretation also in the Fock space sense as the annihilation and the
creation operator, are widely used in solving stochastic differential equations
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7

(see [4], [13], [14], [16], [17]). Their composition is known as the Ornstein-
Uhlenbeck operator, and it is a self-adjoint operator on L2(P ) that has the
elements of the orthogonal basis (Hermite or Charlier polynomials) as its
eigenvalues.

The Malliavin derivative and its related operators are all defined on either
of the four white noise spaces we are working on, and their domains are
characterized in terms of convergence in a stochastic distribution space (Q)P−ρ
with special q-weights.

Furthermore, as the description of the chaos expansion method we provide
some applications to solving several examples of stochastic differential equa-
tions involving the Malliavin derivative, the Ornstein-Uhlenbeck operator
and their fractional versions. All equations we solved can be interpreted on
all four types of white noise spaces. We provide a general method of solving,
using the Wiener-Itô chaos decomposition form, also known as the propaga-
tor method (see [12], [13], [14], [21]). With this method we reduce a problem
to an infinite system of deterministic equations. Summing up all coefficients
of the expansion and proving convergence in an appropriate weight space,
one obtains the solution of the initial equation. Another type of equations
investigated by the same method can be found in several papers: [26], [32],
[33], [36], [34], [43], [37], [56].

The dissertation is organized in five chapters. Chapter 1, titled
Fundamental Theory Background, is expository and it represents an overview
of some basic concepts of fundamental theories, which are necessary
to understand the methods used in the sequent chapters of the disserta-
tion. Spaces of deterministic generalized functions, used in the sequel, are
introduced. We summarize definitions and the most important properties
and relations of tensor products and Fock spaces, deterministic fractional
calculus, stochastic analysis and classical Malliavin differential theory, i.e.
the stochastic calculus of variations on an abstract Wiener space.

Chapter 2, entitled White Noise Analysis and Chaos Expansions, contains
introduction of four types of white noise spaces, Gaussian and Poissonian,
classical and fractional, together with the unitary mappings which connect
each two of them. Moreover we introduce the weighted stochastic distribution
spaces and the Wick multiplication of their elements, together with definition
of the generalized stochastic processes and present their chaos expansion
representation forms.

Chapters 2, 4 and 5 contain the original parts of the dissertation. All the
results have been achieved in joint work with Dora Seleši and Stevan Pilipović
and are already published in [26], [28], [27], [29] and [30]. Some results have
been partially presented on several international conferences and workshops.
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Chapter 3, named Malliavin Calculus in Chaos Expansions Framework for
Square Integrable Processes, is devoted to overview of the Malliavin calculus
on sets of Gaussian and Poissonian square integrable random variables,
represented in their chaos expansion forms. The fractional versions of
the Malliavin operators are introduced on both, classical and fractional
versions of Gaussian and Poissonian spaces, and some connections with the
classical calculus are emphasized.

The definitions of the Malliavin derivative and the Skorokhod integral
which are extensions of the definitions of these operators to a space of sin-
gular generalized stochastic processes are presented in Chapter 4, entitled
Operators of Malliavin Calculus For Singular Generalized Stochastic Pro-
cesses. We allow values in q-weighted spaces of generalized stochastic func-
tionals and obtain larger domains of operators of Malliavin calculus then in
the case of square integrable random variables described in Chapter 3. In
addition, Chapter 4 contains the characterization of the fractional Malliavin
operators in terms of the corresponding classical versions.

Chapter 5 is titled Applications of the Chaos Expansion Method to Some
Classes of Equations and is devoted to solving some classes of stochastic dif-
ferential equations which are driven by the Malliavin derivative operator and
functionals of the Ornstein Uhlenbeck operator. In particular, we present
and solve a first order equation and a generalized eigenvalue problem with
the Malliavin derivative in a white noise space of general type (Theorem
5.1.1 and Theorem 5.1.4 respectively). In addition, we present the explicit
forms of solutions of equations involving the Ornstein-Uhlenbeck operator
and the exponential of the Ornstein-Uhlenbeck operator, belonging to a cer-
tain space of q-weighted generalized stochastic processes (Theorem 5.2.1 and
Theorem 5.3.1 respectively). Chapter 5 also deals with the stochastic version
of the Fredholm alternative considered in the framework of chaos expansion
methods on white noise probability space. We apply the results to solve the
Dirichlet problem generated by an elliptic second order differential operator
with stochastic coefficients, stochastic input data and boundary conditions,
and with the Ornstein-Uhlenbeck operator as a perturbation term. The
stochastic Dirichlet problem has been previously studied in [57], [58], [67].
Solvability and uniqueness of the solution to the stochastic Dirichlet problem
under assumptions made only on the expectation of L and certain
conditions on the positivity of the perturbation term are stated and proven.
Theorem 5.4.3 represents one of the main contributions of this dissertation to
the Malliavin calculus of generalized stochastic processes within white noise
theory. All solutions obtained in equations we considered in this chapter are
singular generalized stochastic processes having values in a certain q-weighted
space of stochastic distributions.
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2.2.2 The Itô integral . . . . . . . . . . . . . . . . . . . . . . 74
2.2.3 Chaos expansion for Gaussian random variables . . . . 74
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Chapter 1

Fundamental Theory
Background

In this introductory chapter some basic concepts of fundamental theories,
which are necessary to understand the methods used in the subsequent chap-
ters of the dissertation are presented. We summarize definitions and the
most important properties and relations of generalized functions theory, ten-
sor products and Fock spaces, deterministic fractional calculus, stochastic
analysis and theory of classical Malliavin calculus. Most of the material pre-
sented here is known and therefore given without proofs but with references
for further reading.

Some basic notation we will use throughout the thesis is the following: Let
V be a topological vector space, V ′ its dual space, and L(V, U) be the space of
all linear continuous mappings from V into a topological vector space U . By
Lr(R), r ≥ 1, we denote the space of r-integrable functions with respect to
the Lebesgue measure λ, by Ck(R) denote the space of k-times continuously
differentiable functions, and by C0(R) the space of continuous functions with
compact support.

1.1 Spaces of Deterministic Functions

At the beginning, we focus on a brief overview of some classes of deterministic
generalized function spaces. We introduce the Schwartz space of generalized
functions, the space of generalized functions of exponential growth and the
Sobolev spaces.
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16 Fundamental Theory Background

1.1.1 Hermite functions

The Hermite polynomial of order n, n ∈ N0, is defined by

hn(x) = (−1)ne
x2

2
dn

dxn
(e−

x2

2 ), x ∈ R.

These polynomials are the coefficients of the expansion in powers of t of the
generating function F (x, t) = exp(tx− t2

2
). We have

F (x, t) = exp(
x2

2
− 1

2
(x− t)2)

= e
x2

2

∞∑
n=0

tn

n!
(
dn

dtn
e−

1
2

(x−t)2) |t=0

=
∞∑
n=0

tn

n!
hn(x) (1.1)

From the property (1.1) we have the relation:

d

dx
hn(x) = nhn−1(x), n ∈ N. (1.2)

It is well known that the family { 1√
n!
hn : n ∈ N0} forms an orthonormal basis

of the space L2(R) with respect to the Gaussian measure dµ = 1√
2π
e−

x2

2 dx.

The Hermite function of order n+ 1, n ∈ N0, is defined as

ξn+1(x) =
1

4
√
π
√
n!
e−

x2

2 hn(
√

2x), x ∈ R.

The family of Hermite functions {ξn+1 : n ∈ N0} constitutes a complete
orthonormal system of L2(R) with respect to the Lebesque measure. Namely,
every deterministic function g ∈ L2(R) has a series representation of the form

g(x) =
∑
k∈N

ak ξk(x),

with coefficients ak = (g, ξk)L2(R) ∈ R satisfying the convergence condition∑
k∈N a

2
k <∞.

Moreover

|ξn| ≤
{

Cn−
1
12 , |x| ≤ 2

√
n

Ce−γx
2
, |x| > 2

√
n

,

hold for constants C and γ independent of n.
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1.1 Spaces of Deterministic Functions 17

1.1.2 Schwartz spaces

The Schwartz space of rapidly decreasing functions is defined as

S(R) = {f ∈ C∞(R) : ∀α, β ∈ N0, ‖f‖α,β <∞},

and the topology on S(R) is given by the family of seminorms

‖f‖α,β = sup
x∈R
|xαDβf(x)|, α, β ∈ N0.

The space S(R) is a nuclear countable Hilbert space and the orthonormal
basis of S(R) is the family of Hermite functions {ξn}n∈N.

It is well known that the Schwartz space of rapidly decreasing func-
tions can be constructed as the projective limit of the family of spaces
S(R) =

⋂
l∈N0

Sl(R), where

Sl(R) = {ϕ =
∞∑
k=1

ak ξk ∈ L2(R) : ‖ϕ‖2
l =

∞∑
k=1

a2
k(2k)l <∞}, l ∈ N0.

The Schwartz space of tempered distributions S ′(R) is the dual space of
the space of rapidly decreasing functions, equipped with the strong topol-
ogy, which is equivalent to the inductive topology. Its elements are called
generalized functions or distributions.

The Schwartz space of tempered distributions is isomorphic to the
inductive limit of the family of spaces S ′(R) =

⋃
l∈N0

S−l(R), where

S−l(R) = {f =
∞∑
k=1

bk ξk : ‖f‖2
−l =

∞∑
k=1

b2
k(2k)−l <∞}, l ∈ N0.

The action of a generalized function f =
∑

k∈N bkξk ∈ S ′(R) on a test
function ϕ =

∑
k∈N akξk ∈ S(R) is given by the dual paring

〈f, ϕ〉 =
∑
k∈N

akbk.

Thus,
S(R) ⊆ L2(R) ⊆ S ′(R)

form a Gel’fand triple, with continuous inclusions.
The characterization of the Schwartz spaces of test functions and distribu-

tions in terms of the Hermite functions orthonormal basis gives us motivation
to build on analogous type of spaces consisting of stochastic elements which
allows the decomposition in terms of an orthogonal polynomial basis.
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18 Fundamental Theory Background

1.1.3 Deterministic spaces of exponential growth

In this thesis we also consider the test space of deterministic test functions of
exponential growth rate expS(R) and the corresponding space of determin-
istic distributions of exponential growth rate expS ′(R), introduced in [54]
and [55].

The space of test functions of exponential growth rate, denoted by
expS(R), is constructed as the projective limit of the family of spaces
expS(R) =

⋂
l∈N0

expSl(R) where

expSl(R) = {ϕ =
∞∑
k=1

ck ξk ∈ L2(R) : ‖ϕ‖2
exp,l =

∞∑
k=1

c2
k e

2kl <∞}, l ∈ N0.

The space of deterministic distributions of exponential growth rate
is considered to be the inductive limit of the family of spaces
expS ′(R) =

⋃
l∈N0

expS−l(R), where

expS−l(R) = {f =
∞∑
k=1

dk ξk : ‖f‖2
exp,−l =

∞∑
k=1

d2
k e
−2kl <∞}, l ∈ N0.

These spaces satisfy the relationship

expS(R) ⊆ S(R) ⊆ L2(R) ⊆ S ′(R) ⊆ expS ′(R),

where each inclusion mapping is compact.

1.1.4 Sobolev Spaces

Let I be an open subset of R. The αth weak derivative of f , denoted by Dαf
is given by the action∫

I

Dαf(x)ϕ(x)dx = −
∫
I

f(x)Dαϕ(x)dx,

for all ϕ ∈ C∞0 (R).
Denote by W k,p(I) the space of weakly differentiable functions f such

that Dαf ∈ Lp(I) for all |α| ≤ k. We endow W k,p(I) with the norm

‖f‖Wk,p =
∑
|α|≤k

‖Dαf‖Lp(I).

Clearly, W k,2(I) is a Hilbert space.
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1.2 Tensor Products and Fock Spaces 19

Another important space we will consider is W k,p
0 (I) defined as the closure

of C∞0 (I) in W k,p(I). The dual space of W k,p
0 (I) will be denoted by W−k,p(I).

An isomorphism between W k,p
0 (I) and W−k,p(I) can be established via the

Laplace operator. By its Hilbert structure, we also may identify W k,2
0 (I)

with W−k,2(I). Thus, we obtain a Gel’fand triple

W k,2
0 (I) ⊆ L2(I) ⊆ W−k,2(I).

For further notions and properties of Sobolev spaces we refer to [2].

1.2 Tensor Products and Fock Spaces

Now we summarize standard facts on tensor products of real Hilbert spaces.
Let H1 and H2 be two Hilbert spaces, equipped with the scalar products

(·, ·)H1 and (·, ·)H2 respectively. Dual spaces are denoted by H ′1 and H ′2 and
corresponding dual parings are denoted by 〈·, ·〉1 and 〈·, ·〉2.

Definition 1.2.1 Let f1 ∈ H1 and f2 ∈ H2 be fixed. The tensor product
f1 ⊗ f2 is a bilinear form over H ′1 ×H ′2 given by

f1 ⊗ f2(g1, g2) = 〈g1, f1〉1 〈g2, f2〉2,

for (g1, g2) ∈ H ′1 ×H ′2.

The tensor product of Hilbert spaces H1 ⊗H2 is defined to be a Hilbert
space equipped with a bilinear map H1 × H2 → H1 ⊗ H2, denoted by
(f1, f2) 7→ f1 ⊗ f2 ∈ H1 ⊗H2, such that

(f1 ⊗ f2, g1 ⊗ g2)H1⊗H2 = (f1, g1)H1(f2, g2)H2 .

The closed linear span of the range of this map equals to H1 ⊗H2.

Definition 1.2.2 Let n ∈ N. The nth tensor power of a Hilbert space H is
defined by

F(n)(H) = H ⊗ · · · ⊗H︸ ︷︷ ︸
n

= H⊗n,

with F(0)(H) equal to the space of scalars. The corresponding tensor norm is
denoted by ‖ · ‖F(n)(H).

Definition 1.2.3 Let f1, . . . , fn ∈ H. The symmetrization of a tensor prod-
uct is given by

f1⊗̂ . . . ⊗̂fn =
1

n!

∑
π∈Perm(n)

fπ1 ⊗̂ . . . ⊗̂fπn (1.3)

where Perm(n) denotes the group of permutations of first n natural numbers.
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20 Fundamental Theory Background

Definition 1.2.4 For arbitrary n ∈ N we define the nth symmetric tensor
power of a Hilbert space H

Γ(n)(H) = H⊗̂ . . . ⊗̂︸ ︷︷ ︸
n

= H⊗̂n (1.4)

as a completion of symmetrized tensor products of elements in H with respect
to the norm ‖ · ‖Γ(n)(H) induced by the scalar product

(⊗̂ni=1 fi, ⊗̂
n

i=1 gi)Γ(n)(H) =
∑

π∈Perm(n)

(f1, gπ1) . . . (fn, gπn).

Note that Γ(0)(H) is the one-dimensional space of scalars and
Γ(1)(H) = H. Thus Γ(n)(H) is also called the nth homogeneous chaos of
a Hilbert space H. Moreover, Γ(n)(H) is a subspace of F(n)(H) and

‖ · ‖Γ(n)(H) =
√
n! ‖ · ‖F(n)(H)

Definition 1.2.5 The Fock space over a Hilbert space H is defined by

F(H) =
∞⊕
n=0

F(n)(H)

and the symmetric Fock space over H is defined by

Γ(H) =
∞⊕
n=0

Γ(n)(H).

Example 1.2.1 Let H be a Hilbert space. Consider

exp⊗̂(f) =
∞∑
n=0

f ⊗̂n

n!
, for f ∈ H.

These elements satisfy the property

‖exp⊗̂(f)‖2
F(H) =

∞∑
n=0

1

(n!)2
‖f ⊗̂n‖2

Γ(n)

=
∞∑
n=0

n!

(n!)2
‖f 2n‖2

H

= exp(‖f‖2
H).

In particular, in a Gaussian Hilbert space, the exponentials exp⊗̂(ξ) coin-
cide with the normalized stochastic exponential, which will be defined later in
Section 2.2.3.
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1.2 Tensor Products and Fock Spaces 21

1.2.1 Operators on the Fock space

Let A : H → H be a bounded linear operator on a Hilbert space H. The
operator A induces linear operators between their symmetric tensor powers
by

A⊗̂n(f1⊗̂ . . . ⊗̂fn) = Af1⊗̂ . . . ⊗̂Afn
and ‖A⊗̂n‖ = ‖A‖n.

Define now the second quantization operator of an operator A on the Fock
space Γ(H), i.e. the mapping

Γ(A) : Γ(H) → Γ(H)

such that
Γ(A) �H⊗̂n = A⊗n, n ∈ N,

and

Γ(A)

(
∞∑
n=0

Xn

)
=
∞∑
n=0

A⊗nXn, Xn ∈ Γ(n)(H).

Moreover, if A is a contraction, i.e. if ‖A‖ ≤ 1, then the linear operator
Γ(A) is of a unit norm ‖Γ(A)‖ = 1.

Annihilation and creation operators

The annihilation and creation operators in quantum mechanics are con-
structed in the framework of Nelson’s stochastic mechanics and have sev-
eral applications in the study of quantum harmonic oscillators and particle
systems.

Definition 1.2.6 Let F (n) ∈ Γ(n)(H) be of the form F (n) = ⊗̂ni=1 fi, for
f1, ..., fn ∈ H. The annihilation operator of a given vector f ∈ H is the
operator

∂(f) : Γ(n)(H) → Γ(n−1)(H)

defined by

∂(f)F (n) =
n∑
j=1

(f, fj) ⊗̂
n
i=1
i6=j

fi.

The norm of the annihilation operator is represented by

‖∂(f)‖ =
√
n ‖f‖H .

Definition 1.2.7 The adjoint operator ∂∗ of the annihilation operator is
called the creation operator.
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22 Fundamental Theory Background

Theorem 1.2.1 For F (n) ∈ Γ(n)(H) the creation operator has the property

∂∗(f)F (n) = f⊗̂F (n),

where ∂∗(f)F (n) ∈ Γ(n+1)(H).

The annihilation operator lowers the number of particles in a given state by
one and the creation operator increases the number of particles in a given
state by one.

Theorem 1.2.2 The annihilation and the creation operators satisfy the
following canonical commutations:

• [∂∗(f), ∂∗(g)] = [∂(f), ∂(g)] = 0,

• [∂(f), ∂∗(g)] = (f, g),

where [A,B] denotes the commutator defined by [A,B] = AB −BA.

The annihilation operator ∂(f) is a derivation on a subspace of symmetrized
Fock space Γ(H) of sequences consisting of finitely many non zero elements

∂(f) (F ⊗̂G) = ∂(f)F ⊗̂G+ F ⊗̂ ∂(f)G.

Further on in the following chapters, we will consider nuclear spaces and
thus, by the notation ⊗ we will mean the π-completion, i.e. ε-completion of
the tensor product space.

Number operator

Denote by Id the identity operator. Let now r be a real number with |r| ≤ 1.
Consider the operator Γ(rId). It is a linear operator and

Γ(rId)(
∞∑
n=0

Xn) =
∞∑
n=0

rnXn.

We can express this by
Γ(rId) = rN, (1.5)

where N is an unbounded operator on Γ(H) defined by

N

(
∞∑
n=0

Xn

)
=
∞∑
n=0

nXn, Xn ∈ Γ(n)(H),

whenever the right-hand side converges.
N is a self-adjoint operator. In quantum field theory it is called the

number operator.
The operators Γ(e−tId) = e−tN, t ≥ 0 form an operator semigroup known

as the Ornstein-Uhlenbeck semigroup. The operator Γ(rId) can also be re-
garded as a generalization of the Mehler transform for real functions.
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1.3 Deterministic Fractional Calculus 23

1.3 Deterministic Fractional Calculus

Fractional calculus is the field of functional analysis which deals with the
investigation and applications of integrals and derivatives of arbitrary order.

In recent years fractional operators of differentiation Dα and integration
Jα, α ∈ R are used in many applications in physics, control theory, heat
conduction, electricity, mechanics, chaos and fractals. In evolution equations
the time derivative is replaced with a derivative of fractional order. When
modeling constitutive equations for viscoelastic bodies the relations between
stress and strain involve linear fractional differential operators.

Depending on the definition, several types of fractional operators can be
found in the literature. Here we focus our attention on basic definitions
and properties of the Riemann-Liouville deterministic fractional operators of
differentiation and integration and the Laplace transform.

In the framework of the Riemann-Liouville calculus, motivation for defin-
ing fractional integral of order α (α > 0) is found in the Cauchy formula,

Jnf(t) := fn(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ, t > 0, n ∈ N,

which reduces the calculation of n-fold primitive of a causal-function f(t)
(i.e. identically vanishing for t < 0) to a single integral of convolution type.
In the natural way the above formula can be extended from integer values of
the index to any positive real value by using the Gamma function and the
property Γ(n) = (n− 1)!.

Denoting by Dn, n ∈ N, the operator of derivative of order n we note

JnDnf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, t > 0,

and DnJn = I, JnDn 6= I, n ∈ N, where I is the identity operator.

1.3.1 Fractional integral and fractional derivative

Denote by D(R) the space of compactly supported smooth functions in R,
by D′(R) its dual space, the space of Schwartz distributions and D′(R) its
subspace consisting of distributions supported on [0,∞). Denote by L1

loc+(R)
the space of locally integrable functions u on R such that u(t) = 0 for t < 0.

By Dk, k ∈ N is denoted the operator of differentiation Dk = dk

dxk
.

Definition 1.3.1 Consider α to be an arbitrary positive real number. Then
for u ∈ L1

loc+(R) the left Riemann-Liouville fractional integral of order α > 0
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24 Fundamental Theory Background

is defined by

Jαu(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1 u(τ) dτ, t > 0, (1.6)

where J0 := I is the identity operator and Γ is the Euler Gamma function
Γ(a) :=

∫ +∞
0

e−xxa−1dx having property Γ(a+ 1) = aΓ(a), for Re{a} > 0.

In particular, we have Ju(t) =
∫ t

0
u(τ) dτ , for t > 0.

Fractional integration admits the semigroup property JαJβ = Jα+β and
the commutative property JαJβ = JβJα, for all α, β ∈ R+. The effect of the
operator Jα on power functions is given by

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tα+γ, α > 0, γ > −1, t > 0. (1.7)

In particular, its effect on a characteristic function is

Jαχ(0, t)(x) =
1

Γ(α + 1)
((t− x)α − (−x)α), α 6= 0, t ∈ R+.

The proofs of these properties are based on the properties of the two Eulerian
integrals, the Gamma function Γ and the Beta function B. Recall, the Beta
function is defined by B(a, b) :=

∫ 1

0
xa−1(1−x)b−1dx and satisfies the property

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

= B(b, a), for Re{a, b} > 0.

Lemma 1.3.1 Let 0 < α < 1 and let f ∈ Lp(R), 1 ≤ p < 1
α

. If Jαf = 0
then f(x) = 0 for almost all x.

Definition 1.3.2 Let u ∈ L1
loc+(R) and suppose that u belongs to the

space of functions which have continuous derivatives on R+ up to the or-
der k − 1, k ∈ N and kth derivative is an integrable function on [0, a], for
every a > 0. The Riemann-Liouville fractional derivative of order α ≥ 0,
k − 1 ≤ α < k for some k ∈ N is defined by

Dαu(t) := DkJk−αu(t), t > 0. (1.8)

If α = k ∈ N then Dαu(t) = Dku(t), for t > 0.
Namely,

Dαu(t) :=


dk

dtk

[
1

Γ(k−α)

∫ t
0

f(τ)
(t−τ)α+1−k dτ

]
, k − 1 ≤ α < k

dk

dtk
u(t), α = k

.
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1.3 Deterministic Fractional Calculus 25

For α = 0 one defines D0 = J0 = I. It follows that Dαu ∈ L1
loc+(R).

Note that DαJαu = u, for u ∈ L1
loc+(R), α ≥ 0.

We have, for α ≥ 0 the relation

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α ≥ 0, γ > −1, t > 0.

Thus it it follows that Dαtα−1 ≡ 0, for α > 0, t > 0, which implies that Dα

is not right inverse to Jα. We have JαDαtα−1 ≡ 0 but DαJαtα−1 ≡ tα−1 for
t > 0, α > 0.

Note the remarkable fact that fractional derivative Dαu is not zero for
the constant function u(t) ≡ 1 if α is not an integer number. In fact,

Dα1 =
1

Γ(1− α)
t−α, α ≥ 0, t > 0.

1.3.2 The Laplace convolution

In D′+(R) we consider the causal-function fα(·) defined by

fα(t) :=


tα−1

Γ(α)
H(t), α > 0, t ∈ R

dn

dxn
fα+n, α ≤ 0, α + n > 0, n ∈ N

,

where H is the Heaviside function. It is clear that f0 = δ, f−1 = δ
′
, etc,

where δ is the Dirac δ-distribution and H ′ = δ.
The causal-function fα is locally absolutely integrable on R+ for all α > 0

and fα is vanishing for t < 0.

Definition 1.3.3 The Laplace convolution integral of two causal-functions
fα and fβ, denoted by fα ∗ fβ, is defined as

fα(t) ∗ fβ(t) :=

∫ t

0

fα(t− τ)fβ(τ)d(τ) = fβ(t) ∗ fα(t).

Based on the properties of the Euler integrals, the composition rule

fα(t) ∗ fβ(t) = fα+β(t), α, β > 0

is valid.
The Laplace convolution operator in D′+(R) is the operator of fractional

integration for α > 0 and of fractional differentiation for α < 0. Clearly,
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26 Fundamental Theory Background

the fractional integral of order α > 0 of a function u ∈ L1
loc+(R) can be

represented as follows

Jαu(t) = fα(t) ∗ u(t), α > 0.

For α < 0 the causal-function fα is called the function of fractional
differentiation. If 0 ≤ α < k, k ∈ N then we can use

Dαu(t) = f−α ∗ u(t)

=
1

Γ(−α)

∫ t+

0−

f(τ)

(t− τ)1+α
dτ.

for the formal definition of the fractional derivative of order α.
The formal character follows from the fact that the kernel f−α is not

absolutely integrable and thus the integral is in general divergent. This is
reflected through the non-commutative convolution property. Clearly, for
k ∈ N, k − 1 < α < k we have

[f−k(t) ∗ fk−α(t)] ∗ u(t) = f−k(t) ∗ [fk−α(t) ∗ u(t)] = DkJk−αu(t),

[fk−α(t) ∗ f−k(t)] ∗ u(t) = fk−α(t) ∗ [f−k(t) ∗ u(t)] = Jk−αDku(t).

1.3.3 Laplace transform and Fourier transform

Now we give definitions of two integral transforms which will be used in the
following chapters: the Laplace transform and the Fourier transform.

The Laplace transform of a function f(t) is given by

L{f(t)}(s) :=

∫ +∞

0

e−stf(t)dt, s ∈ C.

The Fourier transform of a function f is defined by

F(f)(y) = f̂ (y) =

∫
R
e−ixy f(x) dx. (1.9)

The Fourier transform is unitary on L2
C(R, dx). It is well known that the

Hermite polynomials represent the sequence of eigenfunctions to the Fourier
transform, i.e.

F
(
hn(
√

2x) e−
x2

2

)
= in hn(

√
2x) e−

x2

2 . (1.10)
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1.4 Basic Stochastic Analysis 27

The Laplace transform is connected with the Fourier transform through
the following relation

L{f (t)} = F[ e−xt f (t)](y) = ê−xy f (y), s = x + iy .

The Laplace transform of the convolution integral of two functions coin-
cides with product of the Laplace transforms of those two functions,

L{f(t) ∗ g(t)} = L{f (t)} · L{g(t)}. (1.11)

The same property stays also for the Fourier transform, i.e.

f̂ ∗ g = f̂ · ĝ.

From the previous properties and rules L{fα(t)} = 1
sα

for α > 0 and
Res > 0 the important identity follows

L{Jαf(t)} = L{fα ∗ u} =
1

sα
L{u}(s). (1.12)

1.4 Basic Stochastic Analysis

Now we recall some basic results and concepts of probability theory, which
can be understood as a mathematical model for the intuitive notion of un-
certainty. Probability theory is used in many branches of pure mathematics,
but also in modeling problems in physics, biology and economics. The mod-
ern period of probability theory is connected with names of Bernstein, Borel
and Kolmogorov. Particularly, in 1933 Kolmogorov published his modern
approach to probability theory, including the notion of a measurable space
and a probability space.

We start this overview with definitions of probability spaces, random vari-
ables and classical stochastic processes on a given probability space, then we
continue with some of the most important examples of classical stochastic
processes which we will use in our work. We finish this section with pre-
senting basic parts of stochastic integration, in particular we will introduce
the Itô integral and the Itô-Poisson integral. For more information on basic
stochastic analysis we refer to [14], [16], [39], [52], [60].
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28 Fundamental Theory Background

1.4.1 Probability space and random variables

Let Ω be a sample space, i.e. a non-empty set of all possible outcomes ω
called elementary events or states, of a certain random experiment.

Definition 1.4.1 A family F of subsets of a given sample space Ω is called
a σ−algebra on Ω if:

• Ω ∈ F,

• A ∈ F implies Ac ∈ F, where Ac = Ω \ A

• A1, A2, ... ∈ F implies
⋃∞
i=1Ai ∈ F.

Elements of the σ−algebra F are F−measurable sets and are called random
events. The pair (Ω,F) is called the measurable space.

Definition 1.4.2 A real function P : F → [0, 1] which satisfies conditions:

• σ−additivity, i.e. if A1, A2, ... are disjoint sets in F then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) and

• normalized condition P (Ω) = 1

is called a probability measure.

The triplet (Ω,F, P ), where Ω is a space of elementary events, F a
σ−algebra of events on Ω and P a probability measure on F is called a
probability space. A probability space (Ω,F, P ) is called complete if F con-
tains all subsets G of Ω with P measure zero, i.e. if G ⊆ F , (F ∈ F) and
P (F ) = 0 implies G ∈ F. A probability measure P1 is called absolutely con-
tinuous with respect to measure P on a measurable space (Ω,F), if for every
A ∈ F from P (A) = 0 it follows that P1(A) = 0.

Theorem 1.4.1 (Radon-Nikodym theorem) Let P and P1 be two probability
measures given on a measurable space (Ω,F) such that P1 is absolutely contin-
uous with respect to P . Then, there exists a unique non-negative measurable
function f : Ω→ R such that

P1(E) =

∫
E

f dP, for every E ∈ F.
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1.4 Basic Stochastic Analysis 29

For any family U of subsets of Ω, the smallest σ−algebra BU containing
U, i.e. BU =

⋂
{B |B isσ-algebra of subsets of Ω, U ⊂ B} is the σ−algebra

generated by U.
In particular, we consider a minimal σ−algebra which contains all open

sets on Rn, denoted by B(Rn), and call it the Borel σ−algebra on Rn. The
elements of B(Rn) are called Borel sets.

Let (Ω,F, P ) be a given probability space, then a function Y : Ω → Rn

is called F-measurable if

Y −1(A) = {ω ∈ Ω |Y (ω) ∈ A } ∈ F,

for all Borel sets A ∈ Rn.

Definition 1.4.3 A F-measurable function X : Ω → Rn from a complete
probability space (Ω,F, P ) to a measurable space (Rn,B(Rn)) is called a n-
dimensional random variable.

Lemma 1.4.1 Let X : Ω → Rn be a random variable.

U(X) := {X−1(B) : B ∈ B(Rn)}

is a σ-algebra, called the σ-algebra generated by X. This is the smallest sub-
σ-algebra of F with respect to which X is measurable.

Thus, the probability measure PX = P ◦X−1 on (Rn,B(Rn)), induced by a
n-dimensional random variable X, is defined by

PX(B) = P (X−1(B)), for all B ∈ B(Rn),

and is called the law or the distribution of X. In probabilistic terms, the
essential fact is that σ-algebra U(X) can be interpreted as the set which
contains all relevant information about the random variable X.
For measure PX there exists a unique function FX : Rn → [0, 1] such that

FX(x) = FX(x1, ..., xn)

= P{X1 ≤ x1, ..., Xn ≤ xn}
= P{ω ∈ Ω : X(ω) ≤ x}.

Function FX is called the distribution function of a random variable X. Note
that the structure of a probability space (Ω,F, P ) is transferred onto the
space (Rn,B(Rn), PX).

Definition 1.4.4 A random variable is called discrete if there exists a count-
able set S in Rn satisfying PX(S) = 1.
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30 Fundamental Theory Background

A discrete random variable X has the following expression

X(ω) =
∞∑
i=1

xiIAi(ω), xi ∈ S,

where IA(ω) =

{
1, ω ∈ A
0, ω 6∈ A is the indicator function of an event A ∈ F,

such that
⋃∞
i=1 Ai is a disjoint decomposition of Ω.

Definition 1.4.5 A random variable X with measure PX that is absolutely
continuous with respect to the Lebesgue measure is called an absolutely con-
tinuous random variable.

For such a random variable X, there exists a non-negative function g(x),
x ∈ Rn, measurable with respect to the Borel σ-algebra satisfying

PX(M) =

∫
M

g(x) dx, for M ⊂ Rn,

called the probability density function of a random variable X.
If
∫

Ω
|X(ω)| dP (ω) <∞, then the number

EP (X) :=

∫
Ω

X(ω) dP (ω) =

∫
Rn

x dPX(x)

is called the expectation of X with respect to the measure P . Further on
in this text, we will omit writing P in index of notation of the expectation
value whenever it is clear under which probability measure P is expected
value taken.

The covariance matrix of an n-dimensional random vector
X = (X1, ..., Xn) is given by BX = [Cov(Xi, Xj)]1≤i,j≤n, where

Cov(Xi, Xj) = EP (XiXj)− EP (Xi)EP (Xj), 1 ≤ i, j ≤ n.

In particular, Cov(Xi, Xi) = V ar(Xi), 1 ≤ i ≤ n and is called the variance
of an element Xi. Equivalently, variance can be also calculated from

V ar(X) =

∫
Ω

[X − EP (X)]2 dP.

Theorem 1.4.2 Matrix B is the covariance matrix of some random process
if and only if it is symmetric and non-negative definite, i.e.

n∑
i,j=1

BX(i, j) ai aj ≥ 0, for all a1, ..., an ∈ R.
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1.4 Basic Stochastic Analysis 31

A random variable X is said to have a finite moment of order p ≥ 1,
provided E(|X|p) < ∞. In this case, the pth moment of X is defined by
E(Xp). The set of all random variables with finite pth moment is denoted by
Lp(P ) = Lp(Ω,F, P ).

It is convenient now to introduce an integral transform, which will later
provide us with a useful means to identify normal random variables.

Definition 1.4.6 Characteristic function of an n-dimensional random vari-
able X = (X1, ..., Xn) is the function f : Rn → C defined by relation

CX(t1, t2, · · · , tn) = E(ei(t,X))

= E(ei
∑n
k=1 tkXk), t = (t1, t2, · · · , tn) ∈ Rn,

where (·, ·) denotes the scalar product in Rn.

Characteristic function of an absolutely continuous random variable
X represents the Fourier transform of its probability density function g.
Namely,

CX(t) =

∫
Rn
ei(x,t) g dP =

∫
Rn
ei

∑n
k=1 tk xk g(x1, ..., xn) dx1...dxn.

Characteristic function of every random variable X exists and uniquely
determines the distribution of X. Namely, if X1 and X2 are random variables
such that CX1(t) = CX2(t) for all t, then their distribution functions also
coincide FX1(x) = FX2(x), for all x.

Theorem 1.4.3 (Properties of the characteristic function)

• CX(0) = 1, |CX(t)| ≤ 1, CX(−t) = CX(t),

• If Y = α1X + α2 for α1, α2 ∈ R, then CY (t) = CX(α1t) e
itα2 ,

• If E(Xn) exists, then the moments of a random variable can be com-
puted from the derivatives of the characteristic function at the origin,
i.e. we have

EXn =
1

in
C

(n)
X (t) |t=0, n = 1, 2, 3, ...
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32 Fundamental Theory Background

Theorem 1.4.4 (The Bochner-Minlos theorem) Function C is the charac-
teristic function of a random variable X if and only if C has the following
properties:

1. C(0) = 1,

2. |C(t)| ≤ 1,

3. C is continuous and

4. C is non-negative definite, i.e. for any set of real numbers
t1, t2, · · · , tn ∈ R and complex numbers z1, z2, · · · , zn ∈ C, n ∈ N:

n∑
j,k=1

f(tj − tk) zj zk ≥ 0.

For the proof and more details we refer to [17], [19].

Theorem 1.4.5 Let the characteristic function C(t) of a given random vari-
able X be an absolutely continuous function. Then its distribution function
F (x) is an absolutely continuous function and its corresponding probability
density function g(x) is continuous. Moreover,

g(x) =
1

2π

∫
R
e−itxC(t)dt.

Note that density g is obtained as inverse Fourier transform of the charac-
teristic function C. Important property of characteristic functions, which is
often applied in probability theory, is described by the following theorem.

Theorem 1.4.6 (Multiplication rule for characteristic functions) If
X1, ..., Xn are independent random variables then the characteristic function
of their sum is equal to the product of characteristic functions, i.e.

CX1+...+Xn(t) =
n∏
k=1

CXk(t), t ∈ Rn.

We continue with the notion of Hilbert space of random variables.
Let (Ω,F, P ) be a probability space. Denote by

L2(P ) = L2(Ω,F, P )
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1.4 Basic Stochastic Analysis 33

the space of square integrable random variables, i.e. the space of random
variables which have the second moment finite E(X2) < ∞. It is a Hilbert
space with the norm ‖X‖2

L2(P ) = E(X2) induced by the scalar product

(X, Y )L2(P ) = EP (XY ), X, Y ∈ L2(P ).

Convergence of random variables in L2(P ) is the mean square convergence.
Namely, if we assume that Xn is a sequence of random variables in L2(P ) for

all n ∈ N, then Xn
L2

→ X, if E|Xn −X|2 → 0, when n→∞.

We now state the Bochner Minlos theorem for S ′(R).

Theorem 1.4.7 (The Bochner-Minlos theorem for infinite dimensional case)
A necessary and sufficient condition for the existence of a probability measure
P on S ′(R) and a functional g on S(R) such that

g(φ) =

∫
S′(R)

ei〈ω,φ〉 dP (ω), φ ∈ S(R)

is that g satisfies:

1. g(0) = 1,

2. g is positive definite and

3. g is continuous in the Fréchet topology.

This important theorem will be used in Chapter 2, when defining white noise
probability measure. Proof of the previous theorem can be found in [19].

Gaussian random variable

We say that a random variable X is a one-dimensional Gaussian (normal)
random variable with parameters m and σ2, and write X : N(m, σ2 ), if its
density function is of the form

g(x) =
1√

2πσ2
e−

(x−m)2

2σ2 , for x ∈ R.

The expectation of a Gaussian random variable is EX = m and variance
V ar(X) = σ2.

An n-dimensional random vector X = (X1, ..., Xn) has a multi-
dimensional Gaussian (normal) law X : N(m,B), with parameters m i B,
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34 Fundamental Theory Background

where m = (m1, ...mn) ∈ Rn and B is a symmetric, regular, positive definite
matrix with the inverse matrix A, if X has the density function

gX(x1, ..., xn) =

√
detB

(2π)n
e−

1
2

(x−m)T A (x−m),

for all x = (x1, ..., xn) ∈ Rn.
Thus if X = (X1, ..., Xn) : N(m,B) is an n-dimensional Gaussian random

vector then E(Xi) = mi, i = 1, ..., n, where m = (m1, ...,mn) and the matrix
B is the covariance matrix of a random vector X.

The characteristic function of an n-dimensional Gaussian random vector
X : N(m,B) is given by

CX(t1, ..., tn) = ei(t,m)− 1
2
tTBt, where t = (t1, ..., tn). (1.13)

Theorem 1.4.8 Let X1, ..., Xn : Ω → R be one-dimensional random vari-
ables. Then, an n-dimensional random variable X = (X1, ..., Xn) is Gaussian
if and only if the random variable Y = λ1X1 + ... + λnXn is Gaussian for
every λ1, ..., λn ∈ R.

Theorem 1.4.9 Let {Xn}n∈N be a sequence of Gaussian random variables.

If Xn
L2

→ X then the mean square limit X is also a Gaussian random variable.

Poisson random variable

A random variable X is said to be Poisson random variable of parameter
λ > 0 if its density law is of the form

pλ(k) = P{X = k} = e−λ
λk

k!
, k = 1, 2, ... (1.14)

It is a discrete random variable with values in N0 and with E(X) = λ and
V ar(X) = λ.

The characteristic function of Poisson distribution is

CX(t) = exp(λ(eit − 1)). (1.15)

The Poisson distribution is used, for example, to model stochastic pro-
cesses with a continuous time parameter and jumps: the probability that the
process jumps k times between the time-points s and t with 0 ≤ s < t < 1 is
equal to pλ(t−s)(k).
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1.4 Basic Stochastic Analysis 35

Compound Poisson random variable

Let Z(n), n ∈ N be a sequence of i.i.d. random variables with values in R
with common law and let N be a Poisson random variable that is indepen-
dent of all Z(n). The compound Poisson random variable X is defined by
X = Z(1) + . . . Z(N). One can think of X as a random walk with a random
number of steps, which are controlled by the Poisson random variable N .

Exponential random variable

A random variable X : Ω → (0,+∞) has exponential distribution of
parameter λ > 0 if

P{X > t} = e−λt, for all t ≥ 0. (1.16)

Then X has a density function

gX(t) = λ e−λtχ(0,+∞)(t).

The expected value of an exponential random variable X is given by
E(X) = 1

λ
and its variance is V ar(X) = 1

λ2
. The exponential distribu-

tion plays a fundamental role in continuous time Markov processes because
of the following result.

Lemma 1.4.2 (Memoryless property) A continuous random variable X :
Ω → (0,+∞) has an exponential distribution if and only if it has the mem-
oryless property

P{X > s+ t |X > s} = P{X > t}, for all s, t > 0. (1.17)

Conditional expectation

Definition 1.4.7 Let (Ω,F, P ) be a probability space, X : Ω → Rn an n-
dimensional random variable such that E|X| <∞ and A ⊂ F a σ−algebra.
The unique function E(X|A) : Ω → Rn which satisfies the following condi-
tions:

• E(X|A) is A-measurable and

•
∫
A

E (X |A) dP =
∫
A

X dP, for all A ∈ A

is called the conditional expectation of a random variable X with respect to
σ−algebra A.
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36 Fundamental Theory Background

The existence and uniqueness of the conditional expectation follow from the
Radon-Nikodym theorem. Let

P (M |A) = E(IM |A), for M ∈ F.

Then P (·|A) is called the conditional probability on a σ−algebra F with
respect to σ−algebra A. In the special case, when σ−algebra A is generated
by a random variable Y , then the conditional expectation is denoted by
E(X|Y ).

Theorem 1.4.10 The main properties od conditional expectation are:

• E(E(X|A)) = E(X),

• If X is A-measurable, then E(X|A) = X a.s.,

• If X is independent of A, then E(X|A) = X,

• If X ≥ 0 then is also E(X|A) ≥ 0 a.s.,

• If A = {∅,Ω} is trivial σ−algebra, then E(X|A)
a.s.
= E(X),

• If Y is A-measurable and E|XY | <∞, then E(Y ·X|A) = Y ·E (X |A),
where · represents the scalar product in Rn.

Theorem 1.4.11 Let Xi : Ω → Rn, i = 1, 2 be two random variables such
that E|Xi| <∞, i = 1, 2. Then

E(aX1 + bX2|A)
a.s.
= aE(X1|A) + bE(X2|A), a, b ∈ R.

Theorem 1.4.12 Let G,A be σ−algebras such that G ⊂ A. Then the fol-
lowing is valid

E(X|G) = E(E(X|A)|G).

Theorem 1.4.13 (Theorem of dominated convergence) Let {Xn} be a se-
quence of random variables which converges Xn

a.s.→ X. If there exists
Y ∈ L1(Ω) such that for all n ∈ N |Xn| ≤ Y a.s. then

E(|Xn −X| |A)
a.s→ 0 .

Theorem 1.4.14 Let Xn be non-negative random variables for all n ∈ N.
Then we have

E(
∞∑
n=1

Xn |A) =
∞∑
n=1

E(Xn |A) a.s.
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1.4 Basic Stochastic Analysis 37

If a random variable X is square integrable, but not necessarily
measurable with respect to A, then the conditional expectation Y = E(X|A)
represents the best approximation (in context of least squares) of X upon

the class of all measurable functions with respect to Y . Moreover, if Ỹ is
A-measurable then

E(Ỹ −X)2 ≥ E(Y −X)2.

Hence it represents the orthogonal projection of a random variable X onto a
closed convex subset of a Hilbert space.

1.4.2 Classical stochastic processes

This subsection is devoted to classical stochastic processes, their definitions,
main properties and important examples. In particular we will focus on two
special types of Lévy processes, the Wiener process (Brownian motion) and
the Poisson process.

A classical stochastic process Xt(ω) = X(t, ω), t ∈ T ⊆ R, ω ∈ Ω can
be defined in three equivalent ways. It can be regarded either as a family
of random variables Xt(·), t ∈ T , as a family of trajectories X·(ω), ω ∈ Ω,
or as a family of functions X : T × Ω → R such that for each fixed t ∈ T ,
X(t, ·) is an R-valued random variable and for each fixed ω ∈ Ω, X(·, ω) is
an R-valued deterministic function, called a trajectory.

Using basic properties of stochastic processes, later on in Section 2.7,
we will generalize the definition of a classical stochastic process and define
generalized stochastic processes with respect to Gaussian and Poissonian
measures.

Definition 1.4.8 A real-valued stochastic process is a parameterized collec-
tion of random variables {Xt}t∈T defined on a probability space (Ω,F, P ),
taking values in R.

The parameter space T is also called the index set. If T = N then the process
is said to be a discrete parameter process and if T is not countable, the process
is said to have a continuous parameter. Here we will usually consider T to
be the halfline [0, +∞).

We may regard the stochastic process Xt = Xt(ω) = X(t, ω) as a function
of two variables t ∈ T and ω ∈ Ω. Note that for each t ∈ T fixed we obtain
a F-measurable function, i.e. a random variable

ω → Xt(ω), ω ∈ Ω
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38 Fundamental Theory Background

and for each ω ∈ Ω fixed we can consider the function X(·, ω) : T → R,
given by

t → Xt(ω), t ∈ T,

called a path, trajectory or realization of a stochastic process Xt.

Definition 1.4.9 Finite-dimensional marginal distributions of a stochastic
process {Xt}t∈T are given by

Ft1,...tn(x1, ...xn) = P{Xt1 ≤ x1, ..., Xtn ≤ xn },

where t1, ..., tn ∈ T and x1, ..., xn ∈ R, n ∈ N.

A famous Kolmogorov theorem states that it is possible to construct a
stochastic process having finite-dimensional marginal distribution functions
equal to a given finite family of measures.

Theorem 1.4.15 The family of finite-dimensional marginal distributions of
a random process satisfies conditions:

• consistency

Ft1,...,tk,tk+1,...,tn(x1, ..., xk,+∞, ...,+∞) = Ft1,...tk(x1, ...xk) (1.18)

for every k < n and t1, ...tn ∈ T , k, n ∈ N and

• symmetry

Ft1,...,tn(x1, ..., xn) = Ftσ1 ,...,tσn (xσ1 , ..., xσn) (1.19)

for all n ∈ N and all permutations σ on {1, 2, ..., n}.

Theorem 1.4.16 (The Kolmogorov extension theorem)
Let {F (t1, .., tn, x1, ..., xn), for finite {t1, ..tn} ⊂ T} be a family of functions
which satisfy the consistency condition (1.18) and the symmetry condition
(1.19). Then there exists a probability space (Ω,F, P ) and a stochastic process
{Xt}t∈T defined on Ω such that all finite-dimensional marginal distributions
of Xt are equal to the given family of functions F .

The mean and the covariance function of a second order process {Xt}t∈T ,
i.e. process with E(X2

t ) < ∞ for all t ∈ T , are defined by mX(t) = E(Xt)
and BX(t, s) = Cov(Xt, Xs).
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1.4 Basic Stochastic Analysis 39

A stochastic process having all finite-dimensional marginal distributions
invariant with respect to translation of the time component, i.e. for all
ti, ti + h ∈ T, i ∈ N and every h > 0

Ft1+h,...,tn+h(x1, ..., xn) = Ft1,...,tn(x1, ..., xn),

is called a stationary stochastic process. A stationary process Xt has finite
second moments and the corresponding covariance function is of the form

Cov(Xt, Xs) = BX(t, s) = B(t− s), for t ≥ s ≥ 0.

Suppose that {Xt} and {Yt} are stochastic processes on same probability
space (Ω,F, P ). Then, {Xt} is called a version or modification of {Yt} if

P{ω |Xt(ω) = Yt(ω)} = 1 for all t.

It is clear that if {Xt} is a version of {Yt}, then Xt and Yt have the same
finite-dimensional distributions. Although two processes of such a type are
the same, their path properties may be different.

Theorem 1.4.17 (The Kolmogorov continuity criterion) Let X = {Xt}t∈T
be a stochastic process which satisfies the condition: for all T > 0 there exist
positive constants α, β,D such that

E (|Xt −Xs|α) ≤ D · |t− s|1+β, 0 ≤ s, t ≤ T. (1.20)

Then, there exists a continuous version of a process X.

Let H be a Hilbert space of random variables which have finite second
moments and zero mean value. Let X = {Xt}t∈T be a stochastic L2-process.
Let H(X) consist of all finite linear combinations of the form

a1Xt1 + a2Xt2 + ...+ anXtn , for all t1, t2, ..., tn ∈ T

and mean-square limits of such linear combinations. Subspace H(X) in H
is the Hilbert space of the stochastic process Xt. A stochastic process can be
regarded as a function in the Hilbert space H, i.e. as a curve c(X) in H.
Then, H(X) is the minimal subspace of H which contains the curve c(X).

Martingales

Now, we focus ourselves on a brief review of definition and some properties
of a martingale.

Let (Ω,F, P ) be a probability space. A family of sub-σ−algebras {Ft} of
σ-algebra F is called a filtration if for every s < t it follows that Fs ⊂ Ft. A
stochastic process {Xt}t∈T is called adapted to the filtration {Ft} if for every
t ∈ T random variable Xt(ω) is Ft-measurable.
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40 Fundamental Theory Background

Definition 1.4.10 A stochastic process {Mt} is a martingale with respect
to the filtration {Ft} if the following is valid:

• Mt is {Ft}-measurable for every t (adaptivity property),

• EP (|Mt|) <∞, for every t ∈ T and

• EP (Mt |Fs) = Ms, for every s ≤ t.

Definition 1.4.11 A stochastic process {Xt} is a Markov process if for
every t > s and every Borel set B ∈ R follows

P{Xt ∈ B |Fs} = P{Xt ∈ B |Xs}, a.s. (1.21)

For Markov process, the parameter t is interpreted as time and values Xt

describe the rate of change of evolution stages of the a certain stochastic
physical system during time.

1.4.3 Important examples of classical processes

a) Gaussian process

Gaussian processes form a class of stochastic processes widely used in pure
and in applied mathematics. Among all Gaussian processes, Brownian mo-
tion and fractional Brownian motion are explored the most. Some typical
examples in applications can be found in modeling of telecommunication traf-
fic, where the fractional Brownian motion is used. In real analysis the Laplace
operator is directly connected to the Brownian motion, and in the theory of
stochastic processes many processes can be represented and investigated as
transformations of the Brownian motion.

Definition 1.4.12 A real-valued stochastic process {Xt}t∈T is said to be a
Gaussian (normal) process if each of its finite-dimensional marginal distri-
butions is a multi-dimensional Gaussian random variable.

Recall, every Gaussian process is uniquely determined by its mean function
and the covariance function.

b) Brownian motion

Botanist Robert Brown in 1826 observed the irregular motion of pollen par-
ticles suspended in water and noted that the path of a given particle is very
irregular, having a tangent at no point, and the motions of two distinct par-
ticles appear to be independent. In 1900 Bachelier described fluctuations
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1.4 Basic Stochastic Analysis 41

in stock prices mathematically and essentially discovered first certain results
later extended by Einstein in 1905. Einstein suggested that the main char-
acteristics of this motion were randomness, its independent increments, its
Gaussian distribution and its continuity.

Definition 1.4.13 A real valued stochastic process {Bt : t ∈ [0,∞)} is called
a one-dimensional Brownian motion with a parameter σ2 if:

• B0 = 0 a.s,

• increments are independent and

• Bt −Bs has distribution N(0, (t− s)σ2) for all 0 ≤ s ≤ t.

A stochastic process Xt(ω) can be interpreted as a realization of a certain
experiment ω at the moment of time t, thus the Brownian motion Bt is
interpreted as a position of a pollen particle in the moment t.

One-dimensional density function of Brownian motion is

g1(t, x) =
1

σ
√

2πt
e−

x2

2σ2t .

Notice that Brownian motion is a centered Gaussian process with the covari-
ance function

Cov(Bt, Bs) = σ2 min{t, s}.

In particular V ar(Bt) = σ2 t, t > 0.
Brownian motion satisfies the Kolmogorov continuity condition (1.20)

with constants α = 4, D = n(n + 2) and β = 1 (for proof see for example
[52] and references therein) and therefore it has a continuous version. From
now we will assume Bt is such a continuous version.

In Definition 1.4.13, we have assumed that Brownian motion is defined
on an arbitrary probability space (Ω,F, P ).

The mapping

Ω → C([0,+∞),R)

defined by ω 7→ B·(ω) induces a probability measure PB = P ◦ B−1, called
theWiener measure, on the space of continuous functions C = C([0,+∞),R)
equipped with its Borel σ-field BC . Then we can take as canonical probability
space for the Brownian motion the space (C,BC , PB). All random variables
in this canonical space are the evaluation mappings Xt(ω) = ω(t).

Brownian motion admits the Markov property described by (1.21) i.e.
a distribution function of difference Bt − Bs on an interval (s, t) does not
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42 Fundamental Theory Background

depend on the past. Clearly, for t1 < t2 < · · · < tn, the difference Btn − Bt1

can be represent as a sum of independent random variables

Btn −Bt1 = [Btn −Btn−1 ] + · · ·+ [Bt3 −Bt2 ] + [Bt2 −Bt1 ],

thus for 0 < t1 < · · · < tn the n-dimensional density function is defined by

gn(t1, · · · , tn;x1, · · · , xn) = g1(t1, x1)g1(t2−t1, x2−x1) · · · g1(tn−tn−1, xn−xn−1).

Brownian motion is a Gaussian process almost all whose trajectories are
continuous, but nowhere differentiable functions. This statement means that
classical stochastic process which is equal to the first derivative of Brownian
motion does not exist. We overcome this problem by defining the generalized
derivative of Brownian motion called the white noise.

The sum of square of differences of Brownian motion, denoted by

n∑
k=1

(4Bk)
2 =

n∑
k=1

[Btk −Btk−1
]2

converges in mean square to the length of the interval, as the norm of the
subdivision tends to zero.

Theorem 1.4.18 (The Kolmogorov theorem) Let a = t0 < t1 < · · · tn = b.
Then

n∑
k=1

(4Bk)
2 → σ2(b− a), max(4tk)→ 0.

On the other hand, the total variation is infinite with probability one. The
trajectories of Brownian motion Bt have infinite variation on any finite in-
terval. i.e. for any A ∈ R stays

P{
∞∑
k=1

|Btk −Btk−1
| > A} → 1, max(4tk)→ 0.

For any a > 0 the process { 1√
a
Bat}t≥0 is a Brownian motion (this property

is called the self-similarity property).
Note one more important property: Brownian motion Bt is a martingal

with respect to σ-algebra F generated by {Bs : s ≤ t}.
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1.4 Basic Stochastic Analysis 43

Example 1.4.1 (Stochastic processes related to Brownian motion)

• Brownian motion with drift is the process

Xt = Bt + at, t ≥ 0,

a ∈ R is a constant. It is a Gaussian process with E(Xt) = at and
BX(s, t) = σ2 min{s, t}.

• Geometric Brownian motion is the exponential of a Brownian motion
with drift

Xt = eBt+at, t ≥ 0,

where a ∈ R. It is not a Gaussian process and the probability distribu-
tion of Xt is lognormal. This process is proposed by Black, Scholes and
Merton as model for the curve of prices of financial assets.

c) Poisson process

Definition 1.4.14 A stochastic process {Nt}t≥0 defined on a probability
space (Ω,F, P ) is a Poisson process of intensity λ if it satisfies the following:

• Nt = 0,

• for any n ≥ 1 and any 0 ≤ t1 ≤ ... ≤ tn the increments
Ntn −Ntn−1 , ..., Nt2 −Nt1 are independent random variables,

• for any 0 ≤ s < t, the increment Nt − Ns has a Poisson distribution
with parameter λ(t− s)

P{Nt −Ns = k} = e−λ(t−s) [λ(t− s)]k

k!
, k = 0, 1, 2, ..., (1.22)

where λ > 0 is a fixed constant.

Increments of a Poisson process are independent and stationary. Poisson
process can be constructed from a sequenceXn, n ≥ 1 of independent random
variables with exponential law of parameter λ > 0, defined by (1.16). Clearly,
if we set L0 = 0 and Ln = X1 + X2 + ... + Xn for n ≥ 1, then lim

n→∞
Ln = ∞

a.s. The process {Nt}t ≥ 0, which represents the arrival process associated
with the interarrival times Xn

Nt =
∞∑
n=1

nχLn≤t<Ln+1 .
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44 Fundamental Theory Background

is a Poisson process with parameter λ. Notice that E(Nt) = λt. Thus λ is
the expected number of arrivals in an interval of unit length, or in another
words, λ is the arrival rate. The expected time until a new arrival is 1

λ
.

Moreover, V ar(Nt) = λt.

Sample paths of a Poisson process are discontinuous with jumps of size
1. However, a Poisson process is continuous in mean of square:

E
[
(Nt −Ns)

2
]

= λ(t− s) + [λ(t− s)]2 → 0, s→ t.

Notice that we cannot apply here the Kolmogorov continuity criterion (1.20).

Definition 1.4.15 A process {Mt}t≥0 defined by

Mt := Nt − λt (1.23)

is called compensated Poisson process with intensity λ > 0.

It is clear that E(Mt) = 0 and V ar(Mt) = λt for all t.

A compensated Poisson process is a càdlàg (has continuous paths from
the right with left-sided limits) martingale with respect to the σ-algebra FNt
generated by Ns, 0 ≤ s ≤ t, i.e. E(Mt −Ms | FNs ) = 0.

Let {Z(n), n ∈ N} be a sequence of i.i.d. random variables taking values
in R with common law and let N be a Poisson process of intensity λ that is
independent of all the Z(n). The compound Poisson process Y is defined by

Y (t) = Z(1) + · · ·+ Z(N(t)),

for all t ≥ 0, so each Y (t) is a Poisson process of intensity λt.

The Charlier polynomials

Consider now the generating function

Fλ(k, t) := e−λt (1 + λ)k

of the Poisson density pk(t) = (λt)k

k!
e−λt.

One can prove that for λ ∈ (−1, 1) it holds

Fλ(k, t) =
∞∑
n=0

λn

n!
Cn(k, t), (1.24)
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1.4 Basic Stochastic Analysis 45

where Cn(k, t) are the Charlier polynomials of order n ∈ N and of parameter
t ≥ 0 defined by

C0(k, t) := 1,

C1(k, t) := k − t, k ∈ R, t ≥ 0

and by the induction relation

Cn+1(k, t) := (k − n− t)Cn(k, t)− nCn−1(k, t), n ∈ N.

The Charlier polynomials represent orthogonal polynomials for the Pois-
son distribution with parameter t ≥ 0. The equivalent definition is

Cn(k, t) =
n∑
j=1

(
n

j

)
(−1)n−j t−j (k)j,

where (k)j denotes the descending factorial k(k − 1)...(k − j + 1) with (k)0

interpreted as 1.

d) Lévy process

In this part of thesis we deal with a more general class of processes, the
Lévy processes. First we have introduced the special cases of Lévy processes,
Brownian motion, described in Section 1.4.3 and Poisson process presented
in Section 1.4.3. For theory of Lev́y processes we refer to [3], [18], [19], [64].

Definition 1.4.16 Let (Ω,F, P ) be a probability space. A real valued
stochastic process ηt = η(t, ω), t ∈ [0,∞), ω ∈ Ω is called an one-dimensional
Lévy process if it satisfies the conditions:

• η(0) = 0 a.s.

• η has independent increments

• η has stationary increments

• η is stochastically continuous and

• η has càdlaàg paths, i.e. paths of η are continuous from the right (con-
tinue à droite) with left-sided limits (limites à gauche).

Note that both the Brownian motion and the Poisson process are tempo-
rary homogeneous Lévy processes, meaning the probability distribution of
the increment Xt+h −Xt, for h > 0 is independent of t. A Lévy process has
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46 Fundamental Theory Background

stationary, independent increments like Brownian motion, but it differs from
Bt in that it does not necessarily have continuous paths. Almost all sample
functions of a Brownian motion are continuous while those of a Poisson pro-
cess are discontinuous, and they increases only by jumps of unit magnitude.

The reproducing property is satisfied by both the Gaussian and the Pois-
son distributions. Namely, a given distribution has the reproducing property
if for independent random variables X and Y having the common distri-
bution law it follows that their sum X + Y also has the same distribution
law.

The jump of η at time t is defined by

4η(t) = η(t)− η(t−).

Put R0 = R \ {0} and let B(R0) be the topology of all Borel sets S ⊆ R such
that S ⊂ R0. If S ∈ B(R0) and t > 0 we define N(t, S) to be the number
of jumps of η(·) of size 4η(s) ∈ S, s ≤ t. Since the paths are càdlaàg then
N(t, S) <∞ for all t > 0, S ∈ B(R0). Then for all ω ∈ Ω the function

(a, b)× S 7→ N(b, S)−N(a, S), 0 ≤ a < b <∞, S ∈ B(R0)

defines a measure on B([0,∞))×B(R0), called the Poisson random measure
of η. The differential form of this measure is denoted by N(dt, dz). The Lévy
measure ν of η(·) is defined by

ν(S) = E[N(1, S)], S ∈ B(R0).

The Lévy measute ν determines the law of η(·).
We continue with the Lévy-Khintchine formula.

Theorem 1.4.19 (The Lévy-Khintchine formula) Let η be a Lévy process
with the Lévy measure ν. Then∫

R
min{1, z2} ν(dz) <∞ (1.25)

and
E(eiuη) = etψ(u), u ∈ R (1.26)

where

ψ(u) = −1

2
σ2u2+iαu

∫
|z|<1

(eiuz−1−iuz) ν(dz)+

∫
|z|≥1

(eiuz−1)ν(dz) (1.27)

for some constants α, σ ∈ R. Conversely, given constants α, σ ∈ R and a
measure ν such that (1.25) is satisfied, there exists a unique Lévy process η
such that (1.26) and (1.27) hold.
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1.4 Basic Stochastic Analysis 47

A complete description of a Lévy process is given by the following theorem.

Theorem 1.4.20 (The Itô-Lévy decomposition theorem) Let η be a Lévy
process. Then η can be written in the form

ηt = a1t+ σBt +

∫
|z|<1

zÑ(t, dz) +

∫
|z|≥1

zN(t, dz) (1.28)

where a1, σ are constants, B is a Brownian motion, N(·, ·) is the Poisson ran-

dom jump measure of η, Ñ(ds, dz) = N(ds, dz)−ν(dz)ds is the compensated
Poisson random measure of η and η(dz) the Lévy measure of η.

We conclude that every Lévy process can be decomposed into the sum of
three terms. The first term, seen as a continuous part of a Lévy process is
represented by a Brownian motion with drift. The second term is the process∫
|z|<1

zÑ(t, dz) which represents a compensated sum of small jumps and the

third, given by the process
∫
|z|≥1

zN(t, dz) that describes the large jumps in

(1.28) is a compound Poisson process.

e) Fractional Brownian motion

Fractional Brownian motion represents a natural one-parameter extension of
a standard Brownian motion, represented by the Hurst parameter H. The
parameter H is called after the climatologist Hurst, who developed statistical
analysis of the early water run-offs of the river Nile. The Hurst indexH allows
values in interval (0, 1) and in particular, for H = 1

2
a fractional Brownian

motion coincides with a standard Brownian motion.
Fractional Brownian motion is a processes with dependent increments

which have long-range dependence and self-similarity properties. Many prob-
lems in hydrology, telecommunications, queueing theory and mathematical
finance gave motivation to input noises without independent increments
which have long-range dependence and self-similarity properties to appro-
priate models. If H > 1

2
then fractional Brownian motion has a certain

memory feature and this property has been used, for example, in the model-
ing of weather derivatives, the temperature at a specific place as a function
of time, in the modeling the water level in a river as a function of time, when
describing the widths of consecutive annual rings of a tree or when describing
the values of the log returns of a stock. In addition, if H < 1

2
then fractional

Brownian motion has a certain turbulence feature and this property found
applications, for example in mathematical finance in the modeling of finan-
cial turbulence, i.e. empirical volatility of a stock or in modeling the prices
of electricity in a liberated Nordic electricity market.
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48 Fundamental Theory Background

Fractional Brownian motion was first introduced within a Hilbert spaces
framework by Kolmogorov in 1940, where it was called the Wiener Spirals.
He was the first to consider continuous Gaussian process with stationary
increments and with self-similarity property. The name fractional Brownian
motion is due to Mandelbrot and Van Ness, who in paper [41] from 1968,
provided a stochastic integral representation of this process in terms of a
standard Brownian motion on an infinite interval.

Definition 1.4.17 Fractional Brownian motion with the Hurst index
H ∈ (0, 1) on a probability space (Ω,F, P ) is defined to be a Gaussian process

B(H) = {B(H)
t (·), t ∈ R} having properties:

• B(H)
0 = 0 a.s.,

• zero expectation E[B
(H)
t ] = 0 for all t ∈ R, and

• the covariance function

E[B(H)
s B

(H)
t ] =

1

2
{|t|2H + |s|2H − |t− s|2H}, s, t ∈ R. (1.29)

Fractional Brownian motion is a centered Gaussian process with non-
independent stationary increments and its dependence structure is modified
by the Hurst parameter H ∈ (0, 1).

For H = 1
2

the covariance function can be written in the form

E(B
( 1
2

)
t B

( 1
2

)
s ) = min{s, t}

and the process B
( 1
2

)
t becomes a standard Brownian motion and it has inde-

pendent increments. From (1.29) it follows that

E(B
(H)
t −B(H)

s )2 = |t− s|2H

and according to the Kolmogorov continuity criterion (1.20), stated in Theo-
rem 1.4.17, with values α = 2, D = 1 and β = 1, we conclude that fractional
Brownian motion B(H) has a continuous modification. From now on we as-
sume for B(H) to be that continuous version.

Furthermore, for all n ∈ N it holds

E(B
(H)
t −B(H)

s )n =

√
2n

π
Γ(
n+ 1

2
)|t− s|nH .

The parameter H controls the regularity of trajectories.
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1.4 Basic Stochastic Analysis 49

The characteristic function has the form

ϕλ(t) := Ee
i
n∑
k=1

λkB
(H)
tk = e−

1
2

(Ctλ,λ),

where Ct = (EB
(H)
tk

B
(H)
ti )1≤k≤n and (·, ·) is the scalar product on Rn.

The covariance function (1.29) is homogeneous of order 2H, thus frac-
tional Brownian motion B(H) is an H self-similar process, i.e.

B
(H)
αt = αHB

(H)
t , α > 0.

Hence, self-similarity can be considered as a fractal property in probability.

For H ∈ (0, 1
2
) ∪ (1

2
, 1) and t1 < t2 < t3 < t4 it follows that

E(B
(H)
t4 −B

(H)
t3 )(B

(H)
t2 −B

(H)
t1 ) = H(2H − 1)

t2∫
t1

t4∫
t3

(u− v)2H−2 dudv.

Therefore, the increments are positively correlated for H ∈ (1
2
, 1) and neg-

atively correlated for H ∈ (0, 1
2
). For any n ∈ Z, n 6= 0 the autocovariance

function is given by

r(n) := E[B
(H)
1 (B

(H)
n+1 −B(H)

n )] = H(2H − 1)

1∫
0

n+1∫
n

(u− v)2H−2dudv

∼ H(2H − 1)|n|2H−1, when |n| → ∞.

For H ∈ (1
2
, 1) fractional Brownian motion has the long-range depen-

dence property
∑∞

n=1 r(n) =∞ and for H ∈ (0, 1
2
) the short-range property∑∞

n=1 |r(n)| <∞. For H ∈ (1
2
, 1) the difference sequence B

(H)
n+1−B

(H)
n , n ≥ 0

presents an aggregation behavior which can be used to describe cluster phe-
nomena and for H ∈ (0, 1

2
) this sequence can be used to model sequence with

intermittency. For more details in applications we refer to [44], [47].

Furthermore, note that fractional Brownian motion is neither a semi-
martingale (except for H = 1

2
) nor a Markov process.

Because of these properties fractional Brownian motion has been sug-
gested as a useful tool in modeling in finance and physics. More details on
fractional Brownian motion, modeling and applications can be also found in
[7], [8], [13], [20], [26], [41], [46], [62].
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50 Fundamental Theory Background

1.4.4 Stochastic integration

The problem of defining a stochastic integral with respect to Brownian mo-
tion in the Riemann-Stieltjes sense arises from the fact that the total variation
of the path of Brownian motion is infinite almost surely. Moreover the paths
of Brownian motion are nowhere differentiable almost surely. Two the most
common concepts to overcome this problem are the concept of the Itô inte-
gral and the Stratonovich integral (difference is a consequence of the choice
of the partition points of an integration interval). Here we will present the
construction of the Itô integral. First we will define the stochastic integral
for simple processes and then extend the definition to an appropriate class
of processes, i.e. to the class of predictable processes. The reason of defining
the stochastic integrals for integrands which are predictable processes is the
usage of martingale theory for such a construction. Our aim is to define an
integral of the form ∫ t

0

f(s, ω) dBs(ω), t ∈ [S, T ]

where Bt is an one-dimensional Brownian motion. First, a given function
f(t, ω), i.e. a stochastic process which satisfy certain initial assumptions (for
process to be predictable), will be approximated by the sum

2n−1∑
j=0

f(t∗j , ω)χ[tj ,tj+1), for t∗j ∈ [tj, tj+1).

Then definition of the stochastic integral
∫ T
S
f(t, ω) dBt(ω) is obtained by

taking limits of sums

2n−1∑
j=0

f(t∗j , ω) [Btj+1
−Btj ](ω),

when the maximal lenght of partition intervals [tj, tj+1) tends to zero. The
choice of t∗j leads us to several different types of integrals. In particular, if we
choose the left end point t∗j = tj, we obtain the Itô integral and if we choose
the mid-point, t∗j = 1

2
(tj + tj+1), we obtain the Stratonovich integral.

In general Stratonovich integral has advantage of leading to ordinary
chain rule formulas under a transformation (change of variable), i.e. there
are no second order terms in Stratonovich analogue of the Itô transformation
formula (1.35). This property makes the Stratonovich integral natural to use,
for example, in connection with stochastic differential equations on manifolds.
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1.4 Basic Stochastic Analysis 51

Also the Stratonovich integral interpretation is the most frequently used
interpretation within the physical sciences. On the other hand, Stratonovich
integrals are not martingales as Itô integrals are. This gives the Itô integral an
important computational advantage in many real-world applications, such as
in financial mathematics for modeling stock prices, or in biology. In following
we describe both concepts of stochastic integrals but in further chapters we
will base our discussion on the Itô type of integrals.

More information on the Stratonovich type of integral can be found in
[60], and on the Itô integral in [14], [19], [52].

The Itô integral

Assume that Bt = Bt(ω) is a one-dimensional Brownian motion given on a
probability space (Ω,F, P ), starting at zero. For t ≥ 0 let Ft be the σ-algebra
generated by the random variables {Bs}s≤t. Then for 0 ≤ t < s we have an
increasing family {∅,Ω} = F0 ⊆ Ft ⊆ Fs ⊆ F.

Let 0 ≤ S < T . The class of functions f(t, ω) : [0,+∞) × Ω → R for
which the Itô integral will be defined is denoted by L = L(S, T ). It is the
class of Ft-adapted functions (meaning that f(t, ·) is Ft-measurable), such
that mapping (t, ω) → f(t, ω) is B× F measurable and the condition

E

(∫ T

S

f 2dt

)
<∞

is satisfied.
A stochastic process φ = {φt}t≥0 ∈ L(S, T ) is called a simple or

elementary process if it is of the form

φ(t, ω) = φt(ω) =
2n−1∑
j=0

ej(ω) · χ[j·2−n, (j+1)·2−n)(t),

where χ is the characteristic function, n ∈ N and ej is Ftj -measurable pro-
vided E(ej)

2 <∞.

Definition 1.4.18 The Itô integral of an elementary function φ ∈ L(S, T )
on the interval (S, T ), denoted by I(φ), is defined by

I(φ) :=

∫ T

S

φ(t, ω) dBt(ω) =
2n−1∑
j=0

ej(ω) [Btj+1
−Btj ](ω),

with points

tj = t
(n)
j =


j · 2−n, S ≤ j · 2−n ≤ T

S, j · 2−n < S
T, j · 2−n > T
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52 Fundamental Theory Background

If elementary function φ ∈ L(S, T ) is bounded then the Itô isometry holds

E

[(∫ T

0

φ(t, ω)dBt(ω)

)2
]

= E

[∫ T

0

φ2(t, ω)dt

]
. (1.30)

We use the isometry (1.30) to extend the definition from elementary functions
to functions in L(S, T ).

Definition 1.4.19 The Itô integral of a function f ∈ L(S, T ), denoted by
I(f), is defined by

I(f) :=

∫ T

S

f(t, ω) dBt(ω) = lim
n→∞

∫ T

S

φn(t, ω) dBt(ω), (1.31)

where limit is taken in L2(Ω,F, P ) and {φn} is a sequence of elementary
processes such that

E

[∫ T

S

(f(t, ω)− φn(t, ω))2 dt

]
→ 0, n→∞. (1.32)

Note, the sequence {φn} exists and (1.32) implies that lim
n→∞

I(φn) exists in

L2(Ω,F, P ).

Remark 1.4.1 The Itô isometry

E

[(∫ T

S

f(t, ω) dBt(ω)

)2
]

= E

[∫ T

S

f 2(t, ω)dt

]
holds for all functions f ∈ L(S, T ).

Let 0 ≤ S < T . For given functions f, g ∈ L(0, T ) and constants a, b ∈ R
the Itô integral satisfies the following properties:

• linearity
∫ T

0
(af + bg)dBt = a

∫ T
0
fdBt + b

∫ T
0
gdBt,

• zero expectation E(
∫ T

0
fdBt) = 0,

• variance V arI(f) = E
[
(
∫ T

0
fdBt)

2
]

= E
(∫ T

0
f 2dt

)
,

• polarization formula E(
∫ T

0
fdBt ·

∫ T
0
gdBt) = E(

∫ T
0
fg dt),

• Itô integral
∫ T

0
fdBt is F-measurable,
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1.4 Basic Stochastic Analysis 53

• additivity with respect to the integration interval∫ T
0
fdBt =

∫ S
0
fdBt +

∫ T
S
fdBt, for almost all ω,

• for all 0 ≤ t ≤ T , the Itô integral process

Mt :=

∫ t

0

f(s, ω)dBs(ω)

as a function of the upper limit t, has a continuous version,

• Itô integral is a martingale, i.e. for s ≤ t we have

E

(∫ T

0

f(u, ω) dBu(ω) |Fs
)

=

∫ s

0

f(u, ω)dBu(ω).

Moreover, P{ sup
0≤t≤T

|Mt| ≥ λ} ≤ 1
λ2
· E
(∫ T

0
f(s, ω)2ds

)
, for λ, T > 0.

The Itô formula

Instead of using Definition 1.4.19, in concrete situations we usually apply the
Itô formula to compute the Itô integral.

Definition 1.4.20 Let Bt be an one-dimensional Brownian motion on a
probability space (Ω,F, P ). The one-dimensional Itô process is a stochastic
process Xt = Xt(ω) on (Ω,F, P ) of the form

Xr = Xs +

∫ r

s

fdt+

∫ r

s

gdBt (1.33)

for f ∈ L1(0, T ), g ∈ L2(0, T ) and 0 ≤ s ≤ r ≤ T .

From (1.33) it is clear that in the representation of an Itô process two integrals
appear, one Itô integral and one Lebesgue integral. If a process Xt is an Itô
process then the expression (1.33) can be replaced with the corresponding
stochastic differential form

dXt = f dt + g dBt, for 0 ≤ t ≤ T. (1.34)

Theorem 1.4.21 (The Itô formula for an one-dimensional Itô process) Let
Xt be an Itô process, represented in the differential notation (1.34). If a
function u : R× [0, T ]→ R is continuous together with its partial derivatives
∂u
∂t

, ∂u
∂x

and ∂2u
∂x2

, then the process

Yt := u(Xt, t)
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54 Fundamental Theory Background

is again an Itô process described explicitly by the Itô formula

dYt =
∂u

∂t
dt+

∂u

∂x
dXt +

1

2

∂2u

∂x2
(dXt)

2

=

(
∂u

∂t
dt+

∂u

∂x
f +

1

2

∂2u

∂x2
g2

)
dt +

∂u

∂x
g dBt, (1.35)

where (dXt)
2 = dXt · dXt is computed using the multiplication rules:

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

Theorem 1.4.22 (Itô multiplication rule) Let{
dX1 = f1 dt+ g1 dBt

dX2 = f2 dt+ g2 dBt
, 0 ≤ t ≤ T

for f1, f2 ∈ L1(0, T ) and g1, g2 ∈ L2(0, T ), then we have the multiplication
rule for Itô processes given in the differential form

d(X1X2) = X2 dX1 +X1 dX2 + g1g2 dt. (1.36)

The last term on the right-hand side of (1.36) represents so-called Itô
correction term. Integral version of such multiplication rule for two Itô pro-
cesses given in differential forms is called the Itô partial integration formula∫ t

s

X2 dX1 = X1(r)X2(r)−X1(s)X2(s)−
∫ t

s

X1dX2 −
∫ t

s

g1g2dt.

In particular, for a continuous function f which is of bounded variation on
[0, t], such that f(s, ω) = fs is independent of ω, then the expression of the
Itô integral is given by∫ t

0

fs dBs = ftBt −
∫ t

0

Bs dfs.

Recall, the property (1.2) describes a nice behavior of the first derivative
of nth Hermite polynomial hn, n ∈ N0 and its connection with (n−1)th Her-
mite polynomial hn−1. Now, we state an important theorem which connects
the nth normalized Hermite polynomial of parameter t, defined by

hn(x, t) := (−1)n
tn

n!
e
x2

2t
dn

dxn
(e−

x2

2t ), x ∈ R, n ∈ N0

with the Itô integral.
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1.4 Basic Stochastic Analysis 55

Theorem 1.4.23 Let hn(x, t), n ∈ N0, x ∈ R be the nth normalized Hermite
polynomial of parameter t. Then for t ≥ 0 and n ∈ N0, the following∫ t

0

hn(Bs, s) dBs = hn+1(Bt, t) (1.37)

holds. Therefore, equality (1.37) can be rewritten as

dhn+1(Bt, t) = hn(Bt, t) dBt.

The following important theorem, due to Itô, states that any random
variable can be represented in terms of a unique adapted stochastic process.

Theorem 1.4.24 (The Itô representation theorem) For any random vari-
able F ∈ L2(Ω,F, P ), which is F-measurable there exists a unique adapted
stochastic process ϕ(t, ω) such that

F (ω) = E(F ) +

∫ T

0

ϕt(ω) dBt(ω). (1.38)

We have to point out here that from the Clark-Ocone formula follows the
explicit form of such adapted process

ϕt(ω) = E(DF |Ft),

i.e. it is represented as a conditional expectation of the Malliavin derivative
D of a given function F ∈ L2(Ω,F, P ) with respect to the filtration Ft. The
Clark-Ocone formula represents an important result in applications in finance
when obtaining explicit formula for replicating portfolios of contingent claims
in complete markets. For more information see [10].

Now we focus to the Girsanov theorem, which states that a Brownian
motion with drift can be seen as a Brownian motion without drift, with a
change of probability.

Theorem 1.4.25 (Girsanov theorem) Let Yt be an Itô process given in the
stochastic differential form

dYt = ut(ω)dt+ dBt, 0 ≤ t ≤ T, Y0 = 0,

where T is a given constant and Bt is a Brownian motion. Denote

Mt = e−
∫ t
0 us(ω) dBs− 1

2

∫ t
0 u2s(ω)ds, t ≤ T (1.39)
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56 Fundamental Theory Background

and denote by Q the measure on (Ω,FT ) such that

dQ(ω) = MT (ω) dP (ω).

If we assume that stochastic process ut(ω) satisfies the Novikov condition

E(e
1
2

∫ t
0 u2s(ω) ds) <∞. (1.40)

then the stochastic process Yt represents a Brownian motion with respect to
the probability law Q, for t ≤ T .

Probability transformation P → Q is called the Girsanov transformation
of measures. Furthermore, if the Novikov condition (1.40) is replaced with
assumption that {Mt}t≤T is a martingale with respect to filtration Ft and
measure P , then the Girsanov theorem is still valid.

In particular we have the following result.

Theorem 1.4.26 Let dXt(ω) = ut(ω) dt + dBt(ω) be an Itô process and let
u be a bounded function. If

Yt(ω) = Xt(ω)Mt, t ≤ T

for Mt given in the form (1.39), then the stochastic process Yt is
a F-martingale.

In particular, for any bounded function g : R→ R and all t ≤ T we have

EQ[g(Yt)] = EP [g(Bt)].

If ut(ω) = ut = u(t) is a deterministic function and if we assume that ut = 0
for t > T , then we can write

exp

[
−
∫ T

0

u(t) dBt −
1

2

∫ T

0

u2(t) dt

]
= exp♦[−〈ω, u(t)〉], (1.41)

where exp♦ is for the stochastic Wick exponential, which will be defined latter
in Example 2.39. Thus,∫

Ω

g(Bt) exp♦[〈ω, u(t)〉] dQ(ω) =

∫
Ω

g

(
Bt +

∫ t

0

u(s)ds

)
dQ(ω).

For the proof and more details on the Itô integral and its applications we
refer to [10], [18], [19], [21], [39], [52].
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1.5 Classical Malliavin Calculus 57

The Itô-Poisson integral

Providing a construction analogous to the one from the previous subsection,
when defining the Itô integral, one can define a stochastic integration with
respect to a compound Poisson process. Integral obtained is called the Itô-
Poisson integral and is denoted by

IP (f) =

∫
R
ft(ω) dPt(ω).

It is defined for a class of Ft adapted functions, where Ft is the σ−algebra
generated by compensated Poisson random variables {Ps}s≤t.

1.5 Classical Malliavin Calculus

The Malliavin calculus or the stochastic calculus of variations is an infinite-
dimensional differential calculus on the Wiener space. It was originally cre-
ated by Paul Malliavin in work [38] in 70ies as a tool for finding a proof
of smoothness for densities of solutions of stochastic differential equations.
The original motivation, and the most important application of this theory,
is to provide a probabilistic proof of Hörmander’s sum of squares theorem.
Originally, the Malliavin calculus is a Gaussian calculus, i.e. a calculus with
respect to a Gaussian process. Nowadays the theory has found many ap-
plications which include numerical methods, stochastic control, not only for
systems driven by Brownian motion, but also for systems driven by Lévy pro-
cesses. Malliavin calculus has been developed by Stroock, Bismut, Watanabe,
Nualart, Øksendal, Rozovsky and others. The integration-by-parts formula,
which relates the Malliavin derivative operator on the Wiener space and the
divergence operator, called the Itô-Skorohod stochastic integral in white noise
setting, represents a crucial fact in this theory.

There are many ways of introducing the Malliavin derivative. The original
construction was given on the Wiener space. In this section we present the
stochastic calculus of variations in the framework of an abstract Wiener space
and focus our attention on the notions and results that depend only on the
covariance operator or the associated Hilbert space. We follow [15], [16], [46]
for the case of an abstract Wiener space.

A survey of the different approaches to the Malliavin calculus can be
found in [32], [34], [35], [36], [44], [46], [51], [52].

In Chapter 3, we will return again to notions of the Malliavin calculus
and consider the operators of the Malliavin calculus within the white noise
analysis approach, give representations of their domains in terms of chaos
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58 Fundamental Theory Background

expansions and prove several important properties. Further on, in Chapter 4
we will define the generalizations of these operators on the space of singular
generalized stochastic processes and thus in Chapter 5 introduce and solve
several stochastic differential equations involving generalized versions of such
operators.

1.5.1 The Wiener space

At the beginning we define the abstract Wiener space and introduce its chaos
expansion decomposition. Then we will introduce a notion of the derivative
DF of a square integrable random variable F : Ω → R, defined in a weak
sense on an abstract Wiener space, without assuming topological structure
of Ω. The idea is to differentiate F with respect to the random parameter
ω ∈ Ω.

The idea of the abstract Wiener space or Gaussian Hilbert space is to
use a Hilbert space with an underlying Gaussian structure. In the following
we assume that (Ω,F, P ) is a complete probability space and H is a real
separable Hilbert space with the scalar product (·, ·)H .

Recall that a family of random variables Gi : Ω → R, i ∈ N is Gaussian
provided that all finite linear combinations

n∑
j=1

cj Gij : Ω→ R

are Gaussian random variables for all n ∈ N and c1, c2, ..., cn ∈ R.

Definition 1.5.1 (Abstract Wiener space)

(i) The family of Gaussian random variables G = {Gh, h ∈ H}, where
Gh : Ω → R is called isonormal provided that G is centered with the
covariance function of the form

E(GhGk) = (h, k)H , for all h, k ∈ H.

(ii) If F is the completion of σ{G}, then the space L2(Ω,F, P ) = L2(P )
is called the Wiener space associated with the Gaussian family G or
Gaussian Hilbert space.

Thus G is a Gaussian process indexed by functions in a Hilbert space which
describes the covariance of G. The standard Brownian motion, from Defini-
tion 1.4.13, fits in the setting of isonormal Gaussian process in the sense of
Definition 1.5.1.
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1.5 Classical Malliavin Calculus 59

Example 1.5.1

• Let H = L2(R, dt) be the space of deterministic functions f : R → R
such that

∫
R f

2(t)dt <∞. We define

Gh :=

∫
R
h(t) dBt, h ∈ H, (1.42)

where the stochastic integral is the Itô integral. Then, Gh is an isonor-
mal Gaussian process and

Gχ[0,t] =

∫
R
χ[0, t](s) dBs = Bt, t ≥ 0.

Moreover, from this representation one can recover the covariance func-
tion of the standard Brownian motion

E(BtBs) = E(Gχ[0,t] Gχ[0,s]) = 〈χ[0, t], χ[0, s]〉 = min{t, s}.

According to Wiener, Brownian motion is a certain Gaussian measure
W, now called the Wiener measure, on the space of continuous paths,
called the Wiener space. Cameron and Martin discovered that Wiener
measure is translation invariant measure in infinite dimensions. They
showed that if H is the Hilbert subspace of Wiener space, whose ele-
ments h are absolutely continuous and have square integrable derivative,
then translation of W by an h ∈ H results in a measure Wh that is ab-
solutely continuous with respect to W and has simple Radon-Nikodym
Rh all of whose powers are integrable.

• A fractional Brownian motion can be seen as an isonormal Gaussian
process. Consider the set of step functions S on [0, T ] and the Hilbert
space H which is the closure of S with respect to the scalar product

〈χ[0, t], χ[0, s]〉H :=
1

2
(s2H + t2H − |t− s|2H), t, s ∈ [0, T ].

We define the family of random variables

GH
χ[0,t] := BH

t , for every t,

which constitutes the isonormal Gaussian process associated to the frac-
tional Brownian motion BH .
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60 Fundamental Theory Background

For any separable Hilbert space H we can construct an isonormal Gaus-
sian family and a Wiener space associated with the family G. Clearly, we
assume an orthogonal basis {en, n ∈ N} of infinite dimensional Hilbert space
H and a sequence of i.i.d. random variables {ϕn : n ∈ N} ∼ N(0, 1)
on (Ω,F, P ), where F is the completion of the σ-algebra generated by
{ϕn : n ∈ N}. If we let

Gh :=
∑
n∈N

(h, en)H ϕn ∈ L2(P ),

then G = {Gh, h ∈ H} is an isonormal family of random variables.

Note that from Definition 1.5.1 it follows that h 7→ Gh, h ∈ H is a linear
isometry from H into L2(P ).

Definition 1.5.2 Let

H0 := {f : Ω→ R : f ≡ c a.s. for some c ∈ R}, and

Hn := span {hn(Gh) : h ∈ H, ‖h‖ = 1}, n ∈ N,
for the Hermite polynomials hn. The closed linear subspace Hn ⊆ L2(P ) is
called the Wiener chaos of order n.

The following fundamental theorem of the decomposition of L2(P ) space
is due to Wiener 1938, Itô 1951 and Segal 1956.

Theorem 1.5.1 (The Wiener chaos expansion) It holds that the space L2(P )
can be decomposed in the following way

L2(P ) =
∞⊕
n=0

Hn,

where the sum is an orthogonal sum in L2(P ), i.e. the following is valid

1. Hn ⊥ Hm for n 6= m, i.e. E(fg) = 0, for f ∈ Hn, g ∈ Hm.

2. For all f ∈ L2(P ) there exist unique fn ∈ Hn such that

f =
∞∑
n=0

fn in L2(P ), (1.43)

such that the condition
∞∑
n=0

‖fn‖2
L2 = ‖f‖2

L2(P )

is fulfilled.
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1.5 Classical Malliavin Calculus 61

The proof of the previous theorem is based on properties of the orthogonal
projection Pn : L2(P )→ Hn ⊆ L2(P ) of L2(P ) onto the nth Wiener chaos.
Recall, if Pn is the orthogonal projection, then Pn is linear and Pn(L2) ⊆ Hn.
Moreover, we have Pnf = f and (Pnf, f − Pnf)L2(P ) = 0 valid for all
f ∈ L2(P ). From the property (Pnf, g)L2(P ) = (f, Png)L2(P ), valid for
f, g ∈ L2(P ), it follows that P 2

n = Pn. Then

∞∑
n=0

‖Pnf‖2
L2(P ) ≤ ‖f‖2

L2(P )

so that
∞∑
n=0

Pnf converges in L2(P ) and

f =
∞∑
n=0

Pnf in L2(P ).

Thus, every square integrable random variable with respect to a Gaussian
random field could be written as a sum of elements in the Wiener chaos.

The closure of the set Pn of all polynomials p = pn(Gh1 , ..., Ghk) of k
variables of degree less then or equal to n satisfies Pn = H0

⊕
...
⊕

Hn.
Namely, the set if polynomials Pn is a dense subspace of L2(P ).

Moreover, the set of finite linear combinations of the exponentials

{ expGh, h ∈ H }

is also a dense subspace of L2(P ) and the projections Pn preserve the space
of polynomial variables.

Moreover, one can show that the elements of the form hn(Gh), h ∈ H can
be considered as multiple integrals of order n. In particular, for illustration
in the Brownian motion case see Theorem 1.4.23.

For more details on abstract Wiener space we refer to [15], [16].

1.5.2 The Malliavin derivative operator

In this section we assume that we have an abstract Wiener space (Ω,F, P )
based on a Gaussian structure (Gh)h∈H . Following [7], [20] and [46] we will
introduce a notion of the differential DF of a smooth square integrable ran-
dom variable F : Ω→ R, defined in a weak sense on abstract Wiener space,
without assuming topological structure of Ω. The aim is to differentiate F
with respect to the random parameter ω ∈ Ω.
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62 Fundamental Theory Background

Let G = {Gh, h ∈ H} denote an isonormal Gaussian process defined in
a complete probability space (Ω,F, P ) associated with the Hilbert space H.
Thus, G is a centered Gaussian family of random variables such that

E(Gh1Gh2) = (h1, h2)H , for all h1, h2 ∈ H.

We assume that F is generated by this Gaussian family G.
Denote by E the class of smooth random variables of the form

F = f(Gh1 , ..., Ghn), (1.44)

where f ∈ C∞(Rn) such that f and all its partial derivatives have polyno-
mial growth and h1, ..., hn ∈ H ,n ∈ N. These random variables are called
elementary.

Definition 1.5.3 The derivative D of an elementary random variable F ∈ E

of the form (1.44) is the H-valued random variable defined by

DF =
n∑
i=1

∂f

∂xi
(Gh1 , ..., Ghn) · hi. (1.45)

The derivative D is also called the stochastic gradient or the Malliavin deriva-
tive of an elementary random variable F .

The scalar product (DF, h)H is the derivative at ε = 0 of the random
variable F composed with shifted process {Gg+ε(g, h)H , g ∈ H}. Therefore,

(DF, h)H = lim
ε→0

1

ε
[f(Gh1 + ε(h1, h)H , ..., Ghn + ε(hn, h)H)− f(Gh1 , ..., Ghn)]

for all h1, ..., hn, h ∈ H. The derivative operator D is interpreted as a direc-
tional derivative in direction h.

From Definition 1.5.3 it follows that

DGh = h, for all h ∈ H.

In particular, if Gh is a Brownian motion from (1.42), then the stochastic
gradient is an inverse operator of the Itô integral.

Now we give some properties and state theorems without proofs, which
can be found, for example, in [15], [16], [20], [46].

By definition of the gradient operator for smooth random variables of the
form (1.45), we have

D(FG) = F DG + GDF.

We continue with the integration by parts formula.
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1.5 Classical Malliavin Calculus 63

Theorem 1.5.2 (Integration by parts formula I) For F ∈ E and h ∈ H we
have the integration by parts formula

E ((DF, h)H) = E(FGh).

Theorem 1.5.3 (Integration by parts formula II) For elementary smooth
random variables F1, F2 ∈ E and h ∈ H we have that

E[F1(DF2, h)H ] = −E[F2(DF1, h)H ] + E[F1F2Gh].

Definition 1.5.4 Let X and Y be Banach spaces, E ⊆ X be a linear subspace
and D : E → Y a linear operator. Operator D is called closable provided
that E 3 xn → 0 and Dxn → y ∈ Y imply y = 0.

The Malliavin derivative D is a closable operator from the space of ele-
mentary functions E into the space of H-valued random variables.

Theorem 1.5.4 Let X and Y be Banach spaces and E ⊆ X be a subspace
and D : E→ Y be a closable operator and let

Dom(D) :=

{
x ∈ X :

∃xn ∈ E such that xn → x
∃ y ∈ Y such that Dxn → y

}
.

Given x ∈ Dom(D) define

D̃x := y, for xn → x and Dxn → y.

Thus, we have the following assertions:

• it holds E ⊆ Dom(D) ⊆ X,

• the operator D̃ is an extension of D to Dom(D),

• Dom(D) is a Banach space under

‖x‖2
Dom(D) := ‖x‖2

X + ‖D̃x‖2
Y ,

• the operator D̃ : Dom(D)→ Y is continuous.

Definition 1.5.5 Consider the space of elementary smooth functions
E ⊆ L2(P ). The domain of the extension of the Malliavin derivative
D : E→ L2(P,H) is denoted by D1,2 and called the Malliavin Sobolev space.
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64 Fundamental Theory Background

The extension of D to D1,2 → L2(P,H) is also denoted by D. Thus we have

Dom(D) = D1,2.

In particular, this means that the space D1,2 is the closure of the class of
elementary random variables E with respect to the norm

‖F‖2
D1,2 = E|F |2 + E‖DF‖2

H . (1.46)

Characterization of the domain of the Malliavin derivative in terms of the
orthogonal projection of a random variable is given by the following theorem.

Theorem 1.5.5 Let Pn : L2(P )→ Hn ⊆ L2(P ) be the orthogonal projection
onto nth Wiener chaos. Then

D1,2 =

{
F ∈ L2(P ) :

∞∑
n=0

(n+ 1) ‖PnF‖2
L2(P ) <∞

}

with

‖F‖2
D1,2 =

∞∑
n=0

(n+ 1) ‖PnF‖2
L2(P ) <∞.

Theorem 1.5.6 (Chain rule) Let F ∈ D1,2 and f ∈ C1(R) such that f(F )
is differentiable in Malliavin sense. Then the chain rule follows

D(f(F )) = f ′(F )DF, a.s.

1.5.3 The divergence operator

In this section we consider the divergence operator defined as the adjoint
operator of the Malliavin derivative operator in the framework of abstract
Wiener space. In particular, if the underlying Hilbert space H is L2(R)
space, we will interpret the divergence operator as a stochastic integral and
we will call it the Skorokhod integral, because in the Brownian motion case it
coincides with the generalization of the Itô stochastic integral to anticipating
integrands. This will be the subject of Chapter 3, where we will focus on
the interpretation of the operators of Malliavin calculus in the framework
of white noise analysis. Furthermore we will deduce the expression of the
Skorokhod integral in terms of the Wiener-Itô chaos expansion.

Definition 1.5.6 (Divergence operator) Denote by δ the adjoint of the
Malliavin derivative operator D. Then, δ is an unbounded operator defined
on L2(P,H) with values in L2(P ) such that:
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1.5 Classical Malliavin Calculus 65

• The domain of δ, denoted by Dom(δ), is the set of H-valued integrable
random variables u ∈ L2(P,H) such that

|E[(DF, u)H ]| ≤ c ‖F‖L2(P ) (1.47)

for all F ∈ D1,2, where c is some constant depending on u.

• If u ∈ Dom(δ), then the unique element δ(u) ∈ L2(P ) such that

E[F δ(u)] = E[(DF, u)H ] (1.48)

for all F ∈ D1,2 is called the divergence operator of u.

Thus the divergence operator δ : Dom(δ) → L2(P ) is closed as the adjoint
of an unbounded and densely defined operator. It is a linear operator.

Remark 1.5.1 Taking F = 1 in (1.48) we obtain

Eδ(u) = 0, for u ∈ Dom(δ).

Note that the divergence operator can be decomposed into two parts, one
part that can be considered as a path-wise integral and another that involves
the derivative operator. Thus it is possible to factor out a scalar random
variable in a divergence.

Theorem 1.5.7 Let F ∈ D1,2 and u ∈ Dom(δ) such that Fu ∈ L2(P,H).
Then Fu ∈ Dom(δ) and

δ(Fu) = Fδ(u)− (DF, u)H , (1.49)

provided the right-hand side is square integrable.

Denote by D1,2(H) the space of H-valued random variables F whose
Malliavin derivative DF is a square integrable random variable with values
in the Hilbert space H ⊗ H. Then D1,2(H) is included in the domain of δ.
For u, v ∈ D1,2(H) the following nice property is valid

E[δ(u) δ(v)] = E[(u, v)H ] + E[Tr(Du ◦Dv)].

1.5.4 The Ornstein-Uhlenbeck operator

Now we define the third important operator of the Malliavin calculus in the
framework of abstract Wiener space, the Ornstein-Uhlenbeck operator.

Consider a square integrable random variable F ∈ L2(P ) and the orthog-
onal projection Pn : L2(P ) → Hn ⊂ L2(P ). Then, following the Wiener
chaos expansion theorem, Theorem 1.5.1, F has representation of the form

F =
∞∑
n=0

Pn(F ).

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



66 Fundamental Theory Background

Definition 1.5.7 The Ornstein-Uhlenbeck operator R is defined by

RF =
∞∑
n=0

nPn(F ), (1.50)

provided the series converges in L2(P ).

Thus the domain of the operator R is

Dom(R) = {F =
∞∑
n=0

Pn(F ) ∈ L2(Ω) :
∞∑
n=1

n2‖Pn(F )‖2
L2(P ) <∞}.

In particular, one can prove

Dom(R) ⊂ D1,2.

Operator R is a linear, unbounded and symmetric operator on L2(P ).
That is,

E(GRF ) = E(FRG),

for F,G ∈ Dom(R). Operator R is a self-adjoint operator, hence closed
and it coincides with the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup {Tt, t ≥ 0}, defined by

Tt(F ) =
∞∑
n=0

entPn(F ), for F ∈ L2(P ).

The relationship between three operators, D, δ and R of the classical
Malliavin calculus is given in the following theorem.

Theorem 1.5.8 Let F ∈ D1,2 and DF ∈ Dom(δ). Then a random variable
F belongs to the domain of the operator R and

δD F = RF. (1.51)

The Ornstein-Uhlenbeck operator can be considered as the composition of
the divergence operator and the Malliavin derivative operator.
Operator R is a second order differential operator when it acts on smooth
random variables.

Theorem 1.5.9 Let F ∈ E be of the form (1.44). Then F ∈ Dom(R) and

RF =
n∑

i,j=1

∂2

∂xi∂xj
f(Gh1 , ..., Ghn)(hi, hj)H −

n∑
i=1

∂

∂xi
f(Gh1 , ..., Ghn)G(hi).
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1.5 Classical Malliavin Calculus 67

Notice that DomR = D2,2.
Similarly, the Malliavin Sobolev space D1,2 can be characterized as the

domain in L2(P ) of the operator C = −
√
R defined by

CF =
∞∑
n=0

−
√
nPn(F ). (1.52)

One can show that operator C is the infinitesimal generator of the Cauchy
semigroup of operators given by

QtF =
∞∑
n=0

e−
√
ntPn(F ).

Note that DomC = D1,2 and for any F ∈ DomC we have

E(CF )2 =
∞∑
n=1

n‖Pn(F )‖2
L2(P ) = E(‖DF‖2

H).

Remark 1.5.2 The operators of the Malliavin calculus and their chaos ex-
pansion representations have been used in different frameworks. In the gen-
eral context of the Fock space, in particular in applications in quantum prob-
ability, the derivative operator D is interpreted as the annihilation operator.
Also the divergence operator δ is interpreted as the creation operator and the
Ornstein-Uhlenbeck operator R corresponds to the number operator in the
Fock space setting (see Section 1.2).

Remark 1.5.3 An abstract Wiener space is built on a complete probability
space L2(Ω,F, P ), where P is a measure. In particular, if the Gaussian fam-
ily Gh, given by Definition 1.5.1, is a classical Brownian motion then the
Malliavin derivative is denoted by D and we consider whole calculus to be
the classical Malliavin calculus. On the other hand, the differential operator
with respect to a fractional Brownian motion is called the fractional Malli-
avin derivative and will be defined either on the space L2(P ) or on the space
L2(PH), given by (3.29). Thus, the fractional Malliavin derivative, depend-

ing on which underlying space is considered, is denoted by D(H) or D̃(H) for
H ∈ (0, 1). The corresponding fractional divergence operator and the frac-
tional Ornstein-Uhlenbeck operator are denoted by δ(H) and R(H) respectively.
Specificaly, for H = 1

2
the fractional operators become the corresponding

classical operators. The fractional Malliavin calculus on L2(P ) is the sub-
ject of Section 3.2.1 and the fractional Malliavin operators are considered in
Section 3.2.3.
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Chapter 2

White Noise Analysis and
Chaos Expansions

White noise analysis, introduced by Hida in [17] and further developed by
many authors (see for example [18], [19], [31], [46] and references therein), as
a discipline of infinite dimensional analysis has found applications in solving
stochastic differential equations and thus in the modeling of stochastic dy-
namical phenomena arising in physics, economy, biology. We mention some
[34], [45], [37], [56].

The chaos expansion of stochastic processes provides a series decomposi-
tion of square integrable processes in a Hilbert space orthogonal basis built
upon a class of special functions, Hermite polynomials and functions, in the
framework of white noise analysis. In order to build spaces of stochastic test
and generalized functions, one has to use series decompositions via orthogo-
nal functions as a basis, with certain weight sequences.

We follow the classical Hida approach, which suggests to start with a
nuclear space E and its dual E ′, such that

E ⊂ L2(R) ⊂ E ′,

and then take the basic probability space to be Ω = E ′ endowed with the
Borel sigma algebra of the weak topology and an appropriate probability
measure P . Since Gaussian processes and Poissonian processes represent
the two most important classes of Lévy processes, in this chapter of the
dissertation we are focused on these two types of measures. Some of the
results presented in this chapter have been achieved in collaboration with
Dora Seleši and represent an original part of the thesis. The results are
already published in [29] and [30].
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2.1 White Noise Space 69

In case of a Gaussian measure, the orthogonal basis of L2(P ) can be con-
structed from any orthogonal basis of L2(R) that belongs to E and from the
Hermite polynomials, while in the case of a Poissonian measure the orthog-
onal basis of L2(P ) is constructed using the Charlier polynomials together
with the orthogonal basis of L2(R). We will focus on the case when E and
E ′ are the Schwartz spaces of rapidly decreasing test functions S(R) and
tempered distributions S ′(R). In this case the orthogonal family of L2(R)
can be represented by the Hermite functions.

The first part of this chapter is devoted to constructions of the Gaussian
and Poissonian white noise spaces. We deal with chaos expansion representa-
tions of the corresponding random variables. There exists unitary mapping
which connects the elements of these two spaces.

The spaces of generalized random variables are stochastic analogues of
deterministic generalized functions. They have no point value for ω ∈ Ω,
only an average value with respect to a test random variable. For more
details we refer to [17], [19], [25]. Several spaces of stochastic distributions,
weighted by a sequence q will be introduced in this chapter. We denote them
by (Q)P−ρ, ρ ∈ [0, 1] and thus obtain a Gel’fand triplet

(Q)Pρ ⊂ L2(P ) ⊂ (Q)P−ρ.

A class of generalized stochastic processes, defined as measurable map-
pings from R into some q-weighted space of generalized stochastic random
variables (Q)P−ρ, will be introduced in this chapter. The chaos expansion of
generalized stochastic processes will be given together with the main prop-
erties of the Wick calculus and stochastic integration.

We close this chapter with introduction of the fractional white noise
spaces, by use of the fractional transform mapping, for all values of the
Hurst index H ∈ (0, 1). As a result, we will define the fractional Poissonian
white noise space and through composition of unitary mappings connect it
with other white noise spaces we are working on, a Gaussian, a Poissonian
and a fractional Gaussian space. Moreover, we will extend the action of the
fractional transform operator to a class of generalized stochastic processes.

2.1 White Noise Space

Consider the Schwartz space of rapidly decreasing functions S(R), its dual
space, the space of tempered distributions S ′(R), the Borel sigma-algebra B

generated by the weak topology on S ′(R) and a given characteristic function
C. Recall, a mapping C : S(R)→ C given on a nuclear space S(R) is called
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70 White Noise Analysis and Chaos Expansions

a characteristic function if it is continuous, positive definite, i.e.

n∑
i=1

n∑
j=1

zizj C(ϕi − ϕj) ≥ 0,

for all ϕ1, ..., ϕn ∈ S(R) and z1, ..., zn ∈ C, and if it satisfies C(0) = 1.
Then by the Bochner-Minlos theorem, Theorem 1.4.7, there exists a unique
probability measure P on (S ′(R),B) such that for all ϕ ∈ S(R) the relation

EP (ei〈ω,ϕ〉) = C(ϕ)

holds. Here EP denotes the expectation with respect to the measure P , i.e.

EP (f) =

∫
S′(R)

f(ω) dP (ω), for f ∈ S ′(R)

and 〈ω, ϕ〉 denotes the usual dual paring between a tempered distribution
ω ∈ S ′(R) and a rapidly decreasing function ϕ ∈ S(R). Thus,∫

S′(R)

ei〈ω,ϕ〉dP (ω) = C(ϕ), ϕ ∈ S(R). (2.1)

The triplet (S ′(R),B, P ) is called the white noise probability space and the
measure P is called the white noise probability measure.

However, for different choices of positive definite functionals C(ϕ) in (2.1)
one can obtain different white noise probabilistic measures, which then corre-
spond to such functionals. In particular, if C(ϕ) is the characteristic function
of the normal random variable then the corresponding white noise measure is
the Gaussian white noise measure (which is described in Section 2.2), if C(ϕ)
is the characteristic function of the compound Poisson random variable then
the corresponding white noise measure is the Poissonian white noise measure
(which is the objective of Section 2.3). In the article [45] written by Mura
and Mainardi the characteristic function C(ϕ) was replaced by a completely
monotonic function defined by the Mittag-Leffler function of order 0 < β ≤ 1
and the measure obtained is the gray noise measure, which is generalization
of the white noise measure. With a similar construction, one can also obtain
the Lévy white noise measure, as it was done in [10].

In this dissertation we study the Gaussian and Poissonian measures and
properties of functions defined on the related white noise spaces. In Sec-
tion 2.8 we will introduce their fractional versions and give the connections
between these four white noise spaces. In recent years many papers were
published on this subject. We mention here some [10], [23], [32], [43].
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2.1 White Noise Space 71

From now on we suppose that the basic probability space (Ω,F, P ) is the
space (S ′(R),B, P ). If we put L2(P ) = L2(S ′(R),B, P ), then the space L2(P )
is the Hilbert space of square integrable functions on S ′(R) with respect to
the measure P , equipped with the norm induced by the inner product

(F,G)L2(P ) = EP (FG), for F,G ∈ L2(P ).

2.1.1 Wiener-Itô chaos expansion of random variables

Let I = (NN
0 )c denote the set of sequences of non-negative integers which have

finitely many nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈ N0,
i = 1, 2, ...,m, m ∈ N. The kth unit vector ε(k) = (0, · · · , 0, 1, 0, · · · ), k ∈ N
is the sequence of zeros with the number 1 as the kth component.

Throughout this thesis we will use notation αβ = αβ11 α
β2
2 · · · for given

multi-indices α, β ∈ I. The length of a multi-index α = (α1, α2, ...) ∈ I is
defined as |α| =

∑∞
k=1 αk and α! =

∏∞
k=1 αk!. Let (2N)α =

∏∞
k=1(2k)αk .

Then,

•
∑
α∈I

(2N)−pα <∞ if and only if p > 1, and

•
∑
α∈I

e−p(2N)α <∞ if and only if p > 0.

Let Kα, α ∈ I be the orthogonal polynomial basis of a Hilbert space
L2(P ), which produces a Wiener chaos. Throughout the thesis we will con-
sider only two special measures P , the Gaussian and the Poissonian measures,
which produce the Wiener chaos.

The space spanned by {Kα : |α| = k} is called the Wiener chaos of
order k and is denoted by Hk, k ∈ N0. Then, H0 is the set of constant
random variables, i.e. for α = (0, 0, ...) we obtain the expectation of a random
variable. The space H1 consists of linear combinations of elements 〈ω, ·〉
(for example Brownian motion lives in the first order chaos) and the space⊕k

j=0 Hj is the set of random variables of the form p(〈ω, ·〉), where p is a
polynomial of degree n ≤ k with real coefficients. This implies that each Hk

is a finite-dimensional subspace of L2(P ). Moreover,

L2(P ) =
∞⊕
k=0

Hk,

where the sum is an orthogonal sum.
Guided by the well known fact that the Hermite polynomials form

an orthogonal basis in L2(R), Wiener showed that there exists an
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72 White Noise Analysis and Chaos Expansions

analogous orthogonal basis for the Wiener or Gaussian measure on the space
of trajectories. More precisely, just as in L2(R), it is best to group together
all the Hermite polynomials of a fixed degree k and to consider the subspace
spanned by them (subspaces consisting of functions that have homogeneous
kth order randomness). Wiener looked at the spaces Hk that are obtained
by closing in L2(P ) the linear span of the kth order Hermite polynomials. In
other words, Wiener described a spectral decomposition of L2(P ) in which
the spectral parameter is randomness.

We can now formulate the Wiener-Itô chaos expansion theorem for ran-
dom variables in L2(P ).

Theorem 2.1.1 (The Wiener-Itô chaos expansion theorem) For each ele-
ment F ∈ L2(P ) there exists a unique family of real constants {cα}α∈I such
that F has a representation of the form

F (ω) =
∑
α∈I

cαKα(ω), cα ∈ R, (2.2)

where cα = (F,Kα)L2(P ). Moreover,

‖F‖2
L2(P ) =

∑
α∈I

c2
α‖Kα‖2

L2(P ) <∞. (2.3)

In terms of the previous theorem, the Wiener chaos of order k is given as
the set

Hk = span{F ∈ L2(P ) ; F =
∑
α∈I

aαKα, |α| = k}, k ∈ N0.

Thus,

F =
∑
α∈I

cαKα(ω)

=
∞∑
k=0

[
∑
α∈I,
|α|=k

cαKα(ω)

︸ ︷︷ ︸
elements of the kth Wiener chaos

],

for every F ∈ L2(P ).

Two important special cases of probability measures will be considered in
this thesis, when the measure P is the Gaussian measure and the Poissonian
measure. In these cases Kα can be taken as families of Hermite and Charlier
polynomials respectively, defined on an infinite-dimensional space.
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2.2 Gaussian White Noise Space 73

2.2 Gaussian White Noise Space

If we choose in (2.1) the characteristic function of a Gaussian random variable

C(ϕ) = exp

[
−1

2
‖ϕ‖2

L2(R)

]
, ϕ ∈ S(R), (2.4)

then the corresponding unique measure P from the Bochner-Minlos theorem
is called the Gaussian white noise measure and is denoted by µ. The triplet
(S ′(R),B, µ) is called the Gaussian white noise probability space and L2(µ) is
the Hilbert space of square integrable random variables on S ′(R) with respect
to the Gaussian measure µ.

Thus, from (2.1) and (2.4) it follows that∫
S′(R)

ei〈ω,ϕ〉dµ(ω) = e
− 1

2
‖ϕ‖2

L2(R) , ϕ ∈ S(R), (2.5)

where 〈ω, ϕ〉 denotes the usual dual paring between a tempered distribution
ω ∈ S ′(R) and a rapidly decreasing function ϕ ∈ S(R).

Note that from (2.5) it follows that the random element 〈ω, ϕ〉 has a zero
expectation Eµ(〈ω, ϕ〉) = 0 and variance (the isometry)

V ar(〈ω, ϕ〉) = Eµ(〈ω, ϕ〉2) = ‖ϕ‖2
L2(R), for ϕ ∈ S(R).

Moreover, by the formula

Eµ(〈ω, f〉 〈ω, g〉) = (f, g)L2(R)

holds for all f, g ∈ S(R). Thus, the element 〈ω, ϕ〉, with f ∈ S(R) and
ω ∈ S ′(R) is a centered Gaussian square integrable random variable which
belongs to L2(µ).

The map
J1 : ϕ → 〈ω, ϕ〉, ϕ ∈ S(R)

can be extended to an isometry from L2(R) to L2(µ).

2.2.1 Brownian motion

By extending the action of a distribution ω ∈ S ′(R) not only onto test
functions from S(R) but also onto elements of L2(R) we obtain Brownian
motion with respect to the measure µ in the form

Bt(ω) := J1(χ[0, t]) = 〈ω, χ[0, t]〉, ω ∈ S ′(R),
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74 White Noise Analysis and Chaos Expansions

where χ[0, t] represents the characteristic function of interval [0, t], t ∈ R.
To be precise, 〈ω, χ[0, t]〉 is a well defined element of L2(µ) for all t, defined by
lim
n→∞
〈ω, ϕn〉, where ϕn → χ[0, t], n→∞ in L2(R). It has a zero expectation

value and its covariance function is

Eµ (〈ω, χ[0, t]〉〈ω, χ[0, s]〉) = min{t, s}, t, s > 0.

Recall, in Section 1.4.3 we summarize definition and basic properties of
the Brownian motion. Now, we connect them with the Gaussian probabil-
ity measure. Recall an important property, that is Brownian motion is a
Gaussian process almost all whose trajectories are continuous but nowhere
differentiable functions.

2.2.2 The Itô integral

In Section 1.4.4 we defined the Itô integral on a set of adapted stochastic
processes. Furthermore, the Itô integral of a deterministic function f ∈ L2(R)
is also represented by

I(f) = 〈ω, f〉 =

∫
R
f(t) dBt(ω).

Then Eµ(I(f)) = 0 and the Itô isometry ‖I(f)‖L2(µ) = ‖f‖L2(R) holds for
all f ∈ L2(R). In Section 2.2.6 the notion of the Itô integral is extended for
processes which are not necessarily adapted.

2.2.3 Chaos expansion for Gaussian random variables

A crucial role in the chaos decomposition of L2(µ) elements have the Fourier-
Hermite polynomials. The family of Fourier-Hermite polynomials represents
an analogous orthogonal basis for L2(µ) to a standard Hermite polynomial
orthogonal basis in L2(R).

Definition 2.2.1 For a given α ∈ I the αth Fourier-Hermite polynomial is
defined by

Hα(ω) =
∞∏
k=1

hαk(〈ω, ξk〉), α ∈ I, (2.6)

where ξk are the Hermite functions of order k, k ∈ N.
The Fourier-Hermite polynomials can be obtained by differentiating the

normalized stochastic exponential

εh = exp

(
〈ω, h〉 − 1

2
‖h‖2

L2(R)

)
, h ∈ S(R). (2.7)
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2.2 Gaussian White Noise Space 75

The stochastic exponential have equivalent representation in terms of the
Wick exponentials given in Example 2.5.1.

The family of Fourier-Hermite polynomials {Hα; α ∈ I} forms an orthogonal
basis of the space L2(µ), where ‖Hα‖2

L2(µ) = α!.

In particular, for the kth unit vector ε(k) we have

Hε(k)(ω) = 〈ω, ξk〉 =

∫
R
ξk(t) dBt(ω) = I(ξk), k ∈ N.

From the Wiener-Itô chaos expansion theorem, Theorem 2.1.1, it follows
that each element F ∈ L2(µ) has a unique chaos expansion representation of
the form

F (ω) =
∑
α∈I

cαHα(ω), (2.8)

where the coefficients cα = 1
α!
Eµ(FHα) satisfy the convergence condition

‖F‖2
L2(µ) =

∑
α∈I

c2
α α! <∞, (2.9)

which correspond to the condition (2.3).
This dissertation is based on this chaos expansion construction of random

elements. Note that definitions behind (2.8) are rather complicated.

Example 2.2.1 1. Let ϕ ∈ S(R) be fixed. The element

ω → 〈ω, ϕ〉, ω ∈ S ′(R)

is called the one-dimensional smoothed white noise. Recall from
(2.5), it is a zero-mean Gaussian random variable with the variance
Eµ(〈ω, ϕ〉2) = ‖ϕ‖2

L2(R), for ϕ ∈ S(R). Chaos expansion of an
one-dimensional smoothed white noise is given by

〈ω, ϕ〉 =
∞∑
k=1

(ϕ, ξk)L2(R) 〈ω, ξk〉

=
∞∑
k=1

(ϕ, ξk)L2(R) Hε(k)(ω),

where ϕ =
∑∞

k=1 (ϕ, ξk)L2(R)ξk ∈ S(R) is the decomposition of ϕ ∈ S(R)
in the Hermite orthonormal basis {ξk}k∈N.

2. Function
f(ω) = ei〈ω,ϕ〉, ϕ ∈ S(R) (2.10)

is called the stochastic exponent.
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76 White Noise Analysis and Chaos Expansions

3. The stochastic exponential εh, defined by (2.7) belongs to the Kon-
dratiev space (S)µ1 as long as ‖h‖L2(R) is sufficiently small. The chaos
expansion of the stochastic exponential is given by

εh =
∑
α∈I

hαHα(ω),

where h =
∑∞

k=1 hk ξk ∈ S(R).

We refer to [19] and [31] for more details.

We continue with an alternative formulation of the Wiener-Itô chaos expan-
sion theorem in terms of iterated Itô integrals. Although this formulation
will not play the central role in our presentation, we give a brief review of
it. Moreover, we will need this version when defining the Skorokhod integral
and Wick multiplication of generalized random variables.

2.2.4 Iterated Itô integral

Let Bt = Bt(ω), t ≥ 0, ω ∈ Ω be a one-dimensional Wiener process (Brownian
motion) on probability space (Ω,F, µ) such that B0(ω) = 0 a.s. µ. For t ≥ 0

let Ft be the σ-algebra generated by Bs(·), 0 ≤ s < t. Let L̂2(Rn) be
the set of symmetric deterministic square integrable functions on Rn, i.e.

f ∈ L̂2(Rn) if f(xσ1 , xσ2 , · · · , xσn) = f(x1, x2, · · · , xn) for all permutations σ
of {1, 2, · · · , n} and

‖f‖2
L2(Rn) =

∫
Rn
f 2(x1, x2, · · · , xn) dx1dx2 · · · dxn <∞.

If f is a real function defined on Rn then the symmetrization f̃ of f is
defined by

f̃(x1, x2, · · · , xn) =
1

n!

∑
σ

f(xσ1 , xσ2 , · · · , xσn),

where the sum is taken over all permutations σ of the set {1, 2, · · · , n}.

Definition 2.2.2 The n-fold iterated Itô integral of a symmetric determin-

istic function f ∈ L̂2(Rn) is defined by

In(f) :=

∫
Rn
f(t1, t2, · · · , tn)dB⊗nt

= n!

∫ +∞

−∞

∫ tn

−∞
· · ·
∫ t2

−∞
f(t1, · · · , tn) dBt1 · · · dBtn , (2.11)

where the integral on the right-hand consists of n iterated Itô integrals of the
first order.
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2.2 Gaussian White Noise Space 77

In each Itô integration with respect to dBti , 1 ≤ i ≤ n the integrand is Ft
adapted and square integrable with respect to dµ× dti, 1 ≤ i ≤ n.

The family of iterated Itô integrals {In}n≥0 forms an orthogonal zero-
mean family of linear operators

In : L̂2(Rn) → L2(µ),

satisfying
‖In(f)‖2

L2(µ) = n! ‖f‖2
L2(Rn), (2.12)

for f ∈ L̂2(Rn).

In particular, for all f, g ∈ L̂2(Rn) we can formulate these results as
follows

Eµ(In(f) Im(g)) =

{
0 , n 6= m
n! (f, g)L2(Rn) , n = m,

, n,m ∈ N0,

where (f, g)L2(Rn) =
∫
R ...

∫
R f(x1, ..., xn) g(x1, ..., xn) dx1...dxn denotes the

inner product in Rn.
The map I0 is the identity, where the real scalars are embedded naturally

in L2(µ) as the constant random variables. Thus, every element F of the
Hilbert space L2(µ) can be represented in terms of iterated Itô integrals, i.e.
another formulation of Wiener-Itô chaos expansion theorem holds.

2.2.5 Chaos expansion in terms of multiple
Itô integrals

Now we formulate an alternative statement of the Wiener-Itô chaos expansion
Theorem 2.1.1 in the one-dimensional case, which gives the chaos expansion
decomposition of a Gaussian random variable in terms of multiple Itô
integrals defined by (2.11).

Theorem 2.2.1 (The Wiener-Itô chaos expansion theorem)
Let F ∈ L2(µ). Then there exists a unique family of symmetric functions

fn ∈ L̂2(Rn) such that F has the chaos representation form

F (ω) =
∞∑
n=0

In(fn)

= Eµ(F ) +
∞∑
n=1

In(fn), fn ∈ L̂2(Rn), n ∈ N. (2.13)
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78 White Noise Analysis and Chaos Expansions

Moreover, the isometry

‖F‖2
L2(µ) =

∞∑
n=0

n! ‖fn‖2
L2(Rn)

holds.

Remark 2.2.1 For α = (α1, · · · , αm, 0, 0, · · · ) ∈ I, |α| = α1 + ... + αm = n

and the Hermite functions {ξk, k ∈ N} let ξ⊗̂α := ξ⊗α1
1 ⊗̂ . . . ⊗̂ξ⊗αmm be the

symmetrized tensor product with factors ξ1, ...ξm each ξi being taken αi times.
In [21] Itô proved

Hα(ω) =

∫
R|α|

ξ⊗̂α(t) dBt
⊗|α|(ω). (2.14)

Thus the connection between two chaos expansion theorems (2.8) and (2.13)
is given by fn =

∑
|α|=n

cα ξ
⊗̂α
n .

Clearly, the statement follows from

F (ω) =
∑
α∈I

cαHα(ω)

=
∑
n∈N0

∑
|α|=n

cα

∫
R|α|

ξ⊗̂α(t) dBt
⊗|α|(ω)

=
∑
n∈N0

∫
Rn

∑
|α|=n

cα ξ
⊗̂α(t)


︸ ︷︷ ︸

fn

dBt
⊗n(ω)

=
∑
n∈N0

∫
Rn

fn dBt
⊗n(ω), (2.15)

where fn =
∑
|α|=n

cα ξ
⊗̂α
n are symmetric functions in L̂2(Rn). Note that fn

belongs to the nth Wiener chaos Hn.
Moreover, from (2.9) and (2.12) the isometry follows

‖F‖2
L2(µ) =

∞∑
n=0

n! ‖fn‖2
L2(Rn).

Furthermore, the Itô representation theorem states that if F ∈ L2(µ) is
Ft-measurable, then there exists a unique Ft-adapted process ϕ(t, ω) such
that

F (ω) = Eµ(F ) +

∫
R

ϕ(t, ω) dBt(ω).
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2.2 Gaussian White Noise Space 79

By the Clark-Ocone formula, under some extra conditions, the integrand
ϕ(t, ω) is given explicitly by

ϕ(t, ω) = Eµ[DF |Ft](ω),

where DF is the Malliavin derivative of F and conditional expectation is
taken with respect to the filtration Ft (up the moment t). This formula is
found to be very valuable in economic, when computing parameters of sensi-
tivity of financial derivatives called Greeks. For applications we recommend
papers [10], [13], [52], [31]. This theorem will be stated in next section.

Now we give the multiplication formula for Itô integrals

In(f)Im(g) =
n∧m∑
k=0

k!

(
n
k

)(
m
k

)
Im+n−2k(f ⊗k g)

which holds whenever f ∈ L̂2(Rn) and g ∈ L̂2(Rm).
As a consequence of the previous formula we have

In(u⊗n) = hn(〈ω, u〉), u ∈ L2(R),

where hn, n ∈ N0 are the Hermite polynomials of order n. This very useful
result, which connects Itô integrals and the Hermite polynomials can be also
stated as:

Theorem 2.2.2 Let g ∈ L2(R). Then

n!

∫
R
· · ·
∫
R
g(t1) · · · g(tn) dBt1 · · · dBtn = ‖g‖nhn

(
θ

‖g‖

)
, (2.16)

where ‖g‖ = ‖g‖L2(R) and θ =
∫
R g(t) dBt = 〈ω, g〉.

2.2.6 The Skorokhod integral

The Skorokhod integral is an extension of the Itô integral, for integrands
which are not necessarily Ft-adapted. Also, it is connected to the Malliavin
derivative. We now give a brief overview of the definition and the most
important properties of the Skorokhod integral. For more details we refer to
[19], [46].

Let u(t, ω) = ut(ω), ω ∈ Ω, t ∈ R be a stochastic process such that ut(·)
is Ft-measurable for all t ∈ R and Eµ(u2

t (ω)) < ∞, for all t ∈ R. Then,
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80 White Noise Analysis and Chaos Expansions

applying the Wiener-Itô chaos expansion theorem, Theorem 2.2.1 we obtain

that there exist functions fn,t(t1, · · · , tn) ∈ L̂2(Rn) such that

ut(ω) =
∞∑
n=0

In(fn,t(·)). (2.17)

The functions fn,t(·) are functions of n+1-variables since they depend on pa-
rameter t, so we write fn,t(t1, · · · , tn) = fn(t1, · · · , tn, t). The symmetrization

of a function fn,t is denoted by f̃n,t and is given by f̃n,t = f̃n(t1, ..., tn, t) =
1

n+1
[fn(t1, ..., tn, t)+ ...+fn(t1, ..., ti−1, ti+1, ..., tn, t, ti)+ ...+fn(t2, ..., tn, t, t1)],

where we only sum over those permutations σ of {1, 2, ..., n, n+ 1} which in-
terchange only the last component with one of the others and leave the rest
in place.

Let u be a square integrable Ft-measurable stochastic process, for all
t ∈ R represented in the form (2.17). Then u is F-adapted if and only if

fn,t = fn(t1, ..., tn, t) = 0, for t < max
1≤i≤n

ti.

Definition 2.2.3 The Skorokhod integral of a stochastic process u repre-
sented by chaos expansion (2.17) is defined by

δ(u) :=

∫
R
ut(ω) δBt(ω)

=
∞∑
n=0

In+1(f̃n,t). (2.18)

We say that a process u is integrable in the Skorokhod sense and write u ∈
Dom(δ) if the series in (2.18) converges in L2(µ). This occurs if and only if

‖δ(u)‖2
L2(µ) = Eµ(δ(u)2)

=
∞∑
n=0

(n+ 1)! ‖f̃n,t‖2
L2(Rn+1) < ∞. (2.19)

From the Wiener-Itô chaos expansion theorem the isometry condition

‖ut‖2
L2(µ×λ) =

∞∑
n=0

n! ‖f̃n,t‖2
L2(Rn)

holds. Thus, Dom(δ) is included in L2(µ × λ). Moreover, the Skorokhod
integral (2.18) is a linear operator

u ∈ Dom(δ) ⊆ L2(µ× λ) ⇒ δ(u) ∈ L2(µ).
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2.2 Gaussian White Noise Space 81

Lemma 2.2.1 For any u ∈ Dom(δ) the Skorokhod integral has zero expec-
tation, i.e.

Eµ δ(u) = 0.

Proof. The assertion follows from the fact that Itô integrals and thus also
iterated Itô integrals have zero expectation. �

The following important theorem states that the Itô integral and the Sko-
rokhod integral, given by the formal definition (2.18), coincide on the set
of adapted processes. Further on we will call these integrals Itô-Skorokhod
integrals.

Theorem 2.2.3 (The Skorokhod integral as an extension of the Itô integral)
Let u(t, ω) = ut(ω) be a Ft-adapted stochastic process for all t ∈ R such that∫

R
Eµ[u2

t (ω)] dt <∞.

Then u ∈ Dom(δ) and∫
R
ut(ω) δBt(ω) =

∫
R
ut(ω) dBt(ω).

Proof. We will give the version of the proof found in [19]. Assume that
process ut has the chaos expansion ut =

∑∞
n=0

∫
Rn fn(x, t) dB⊗n(x), for

fn(·, t) ∈ L̂2(Rn) for all n ∈ N. Thus, fn(x1, ..., xn, t) = 0 if max
1≤i≤n

xi > t.

The symmetrization f̃n(x1, ..., xn, t) of fn(x1, ..., xn, t) is given by

f̃n(x1, ..., xn, t) =
1

n+ 1
f(y1, ..., yn, max

1≤i≤n
xi).

Hence, the Itô integral of ut is∫
R
ut dBt =

∞∑
n=0

∫
R

(∫
Rn
fn(x1, ..., xn, t) dB

⊗n
)
dBt

=
∞∑
n=0

n! (n+ 1)

∫
R

∫ xn+1

−∞
...

∫ x2

−∞
f̂n(x1, ..., xn, xn+1) dBx1 ... dBxn+1

=

∫
R
ut δBt

as it is claimed. �
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82 White Noise Analysis and Chaos Expansions

In Section 2.7.5 we will give a chaos expansion representation of the
Skorokhod integral of a stochastic process in terms of the Fourier-Hermite
orthogonal polynomials basis and state the integrability conditions for such
representation. In similar manner we will decompose the Itô-Skorokhod
integral of a S ′(R)-valued singular generalized stochastic process in terms
of a family of orthogonal polynomials.

So far analysis has been exclusively with Gaussian white noise, starting
with the Bochner-Minlos theorem (2.1). One could replace the characteristic
function C of a standardized Gaussian random variable by other positive
definite functionals and obtain a different measure. An important case is
the case of Poisson white noise which is objective on next subsection. Thus
now we introduce the Poissonian white noise probability space and later on
we will construct the corresponding fractional white noise spaces. In this
settings we represent square integrable functionals in terms of orthogonal
polynomial basis.

2.3 Poissonian White Noise Space

Recently, there have been made improvements in economics and financial
modeling by replacing Brownian motion with more general processes and
Gaussian white noise with more general white noise. In particular, fractional
Brownian motion and Lévy processes are used as driving processes in many
applications. It has been pointed out that certain classes of processes based
on Lévy processes fit the stock prices data better then classical models based
on Brownian motion. In this section we will restrict our research to the
special, the Poissonian process.

From a modeling point of view one can investigate physical phenomena
where the underlying basic probability measure is not only the Gaussian
measure. For example, in [3], [19] the stochastic models for pollution growth
when the rate of increase of the concentration is a Poissonian noise were
discussed.

Now we introduce the Poissonian white noise space, state chaos expansion
theorem for Poisson random variables and define the iterated Itô-Poisson
integral.

If we choose in (2.1) the characteristic function of a compensated Poisson
random variable

C(ϕ) = exp

[∫
R
(eiϕ(x) − 1)dx

]
, ϕ ∈ S(R) (2.20)

then the corresponding unique measure P from the Bochner-Minlos theorem
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2.3 Poissonian White Noise Space 83

is called the Poisonian white noise measure ν and the triplet (S ′(R),B, ν)
is called the Poissonian white noise probability space. The Hilbert space of
square integrable random variables on S ′(R) with respect to the Poissonian
measure ν is denoted by L2(ν).

Thus, from (2.1) and (2.20) we take∫
S′(R)

ei〈ω,ϕ〉dν(ω) = exp

[∫
R
(eiϕ(x) − 1)dx

]
, ϕ ∈ S(R) (2.21)

for the definition of the Poissonian white noise space.

From (2.21) it follows that an element 〈ω, ϕ〉 has a non-zero expectation

Eν(〈ω, ϕ〉) =

∫
R
ϕ(x)dx and

Eν(〈ω, ϕ〉2) = ‖ϕ‖2
L2(R) + (

∫
R
ϕ(x)dx)2

i.e. its variance is V ar(〈ω, ϕ〉) = ‖ϕ‖2
L2(R), for all ϕ ∈ S(R).

Hence the map

J2 : ϕ 7→ 〈ω, ϕ〉 −
∫
R
ϕ(x)dx, ϕ ∈ S(R)

can be extended to an isometry from L2(R) into L2(ν). Then Eν(J2(ϕ)) = 0
and ‖J2(ϕ)‖2

L2(ν) = ‖ϕ‖2
L2(R), for all ϕ ∈ L2(R). The formula

Eν(J2(φ)J2(ϕ)) = (φ, ϕ)L2(R)

holds for all φ, ϕ ∈ L2(R).

2.3.1 Compensated Poisson process

A right continuous integer valued version of the process

Pt(ω) = J2(χ[0, t]) = 〈ω, χ[0, t]〉 − t, ω ∈ S ′(R)

belongs to L2(ν) and is called the compensated one-parameter Poisson pro-
cess. Process Pt(·), t ∈ R has independent increments. Moreover Pt is a
martingale, so it is possible to define the stochastic integral in the same way
as we did in the Gaussian case.
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84 White Noise Analysis and Chaos Expansions

2.3.2 Chaos expansion of Poissonian random variables

An essential role in chaos decomposition of L2(ν) elements have the Charlier
polynomials, which are built by use of the Hermite functions.

Definition 2.3.1 For a given multi-index α = (α1, ..., αm, 0, 0, ...) ∈ I, the
αth Charlier polynomial is defined as

Cα(ω) = C|α|(ω; ξ1, ..., ξ1︸ ︷︷ ︸
α1

, ...., ξm, ..., ξm︸ ︷︷ ︸
αm

), (2.22)

where ξk are the Hermite functions and

Ck(ω;ϕ1, ..., ϕk) =
∂k

∂u1....∂uk
exp [ 〈ω, log

(
1 +

k∑
j=1

ujϕj

)
−

−
k∑
j=1

uj

∫
R
ϕj(y)dy〉 ]∣∣

u1=...=uk=0
,

for k ∈ N and ϕj ∈ S(R).

In particular, for ω ∈ S ′(R), k, j ∈ N we have

C0(ω) = 1, (2.23)

Cε(k)(ω) = C1(ω, ξk) = 〈ω, ξk〉 −
∫
R
ξk(x)dx = J2(ξk), (2.24)

and

Cε(k)+ε(j)(ω) = 〈ω, ξk〉〈ω, ξj〉 − 〈ω, ξkξj〉 − 〈ω, ξk〉
∫
R
ξj(x)dx−

− 〈ω, ξj〉
∫
R
ξk(x)dx+

∫
R
ξk(x)dx

∫
R
ξj(x)dx. (2.25)

It is a familiar fact that the family of Charlier polynomial functionals
{Cα; α ∈ I} forms an orthogonal basis of the space of Poissonian square
integrable random variables L2(ν) and ‖Cα‖2

L2(ν) = α!. For more information

we refer to [10], [19], [59].

From the Wiener-Itô chaos expansion theorem, Theorem 2.1.1 it follows
that every element G ∈ L2(ν) is given in a unique form

G(ω) =
∑
α∈I

bαCα(ω), bα ∈ R, (2.26)

where ‖G‖2
L2(ν) =

∑
α∈I α! b2

α is finite.
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2.3 Poissonian White Noise Space 85

2.3.3 Stochastic integrals with respect to the
Poissonian measure

The iterated Itô integral with respect to the Poissonian measure is defined in
an analogous way as iterated Itô integral in Gaussian case. In the following
we will call it the iterated Itô-Poisson integral.

We assume to have the compensated one-parameter Poisson process
Pt(·), t ∈ R on a probability space (Ω,F, P ). For t ≥ 0 let Ft be the σ-

algebra generated by Ps(·), 0 ≤ s < t. Let L̂2(Rn) be the set of symmetric
deterministic square integrable functions on Rn. Then the n-fold iterated

Itô-Poisson integral of a function f ∈ L̂2(Rn) is defined by

Iνn(g) =

∫
Rn
g(t1, t2, · · · , tn)dP⊗nt

= n!

∫ +∞

−∞

∫ tn

−∞
· · ·
∫ t2

−∞
g(t1, · · · , tn) dPt1 · · · dPtn ,

where the integral on the right-hand of equality consist of n-iterated Itô-
Poisson integrals of the first order.

Thus, every element F of the Hilbert space L2(ν) can be represented in
terms of iterated Itô integrals, i.e. another formulation of Wiener-Itô chaos
expansion theorem holds.

2.3.4 Chaos expansion in terms of multiple
Itô-Poisson integrals

Now we formulate an alternative statement of the Wiener-Itô chaos expan-
sion theorem 2.1.1 in the one-dimensional case, which gives the chaos ex-
pansion decomposition of a Poissonian random variable in terms of multiple
Itô-Poisson integrals.

Theorem 2.3.1 (The Wiener-Itô chaos expansion theorem) For every Pois-
sonian random variable G ∈ L2(ν) there exists a unique family of sym-

metrized functions gn ∈ L̂2(R), n ∈ N such that

G(ω) =
∞∑
n=0

∫
Rn

gn(t1, ..., tn) dP⊗nt (ω). (2.27)

Moreover, the isometry ‖G‖2
L2(ν) =

∑∞
n=0 n!‖gn‖2

L2(R) holds.

Similar as in Gaussian case, there is connection between chaos expansions
(2.26) and (2.27). Multiple integrals with respect to Pt are expressed in terms
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86 White Noise Analysis and Chaos Expansions

of the Charlier polynomials in the following way

Cα(ω) =

∫
R|α|

ξ⊗̂α1
1 ⊗̂...⊗̂ξ⊗̂αkk dP

⊗|α|
t

=

∫
R|α|

ξ⊗̂α dP
⊗|α|
t , α = (α1, ..., αk, 0, 0, ...) ∈ I.

Clearly, we have

G(ω) =
∑
α∈I

bαCα(ω)

=
∞∑
n=0

∑
|α|=n

bα

∫
Rn

ξ⊗̂n dP⊗nt

=
∞∑
n=0

∫
Rn
gn dP

⊗n
t ,

with the sequence of symmetrized functions in L̂2(Rn)

gn =
∑
|α|=n

bαξ
⊗̂n. (2.28)

Moreover we have the isometry

‖G‖2
L2(ν) =

∞∑
n=0

n! ‖gn‖2

L̂2(Rn)
.

For more details on Poissonian processes, Itô-Poisson integrals and the
Charlier polynomials we refer to [3], [19], [64].

2.4 Unitary Mapping U

The following important theorem, proved by Benth and Gjerde in [11], states
the existence of a unitary correspondence between the Gaussian and the
Poissonian spaces of random variables.

Theorem 2.4.1 ([11]) The map U : L2(µ)→ L2(ν) defined by

U

(∑
α∈I

bαHα(ω)

)
=
∑
α∈I

bαCα(ω), bα ∈ R, α ∈ I (2.29)

is unitary i.e. it is surjective and the isometry ‖U(F )‖L2(ν) = ‖F‖L2(µ) holds.
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2.5 Spaces of Generalized Random Variables 87

Using the isometry U all results obtained in the Gaussian case can be carried
over to the Poissonian case. The Fourier-Hermite orthogonal basis {Hα}α∈I
of the space of Gaussian random variables just has to be replaced with the
corresponding elements of the Charlier polynomials orthogonal basis {Cα}α∈I
of the space of Poissonian random variables. In [29], [30] we used this isome-
try to interpret stochastic differential equations with the Malliavin derivative
and their solutions obtained in Gaussian versions of q-weighted spaces with
their corresponding Poissonian versions.

For more details on Gaussian white noise spaces, Poissonian white noise
spaces, Hermite and Charlier polynomials we refer to [3], [8], [17], [19].

2.5 Spaces of Generalized Random Variables

(q-weighted Stochastic Spaces)

Following the ideas introduced in [17], [19], [31], [34] we define q-weighted
stochastic spaces of test functions (Q)Pρ and stochastic generalized functions
(Q)P−ρ, with respect to the measure P , which represent the stochastic ana-
logue of the deterministic spaces S(R), S ′(R), expS(R) and expS ′(R) for
l ∈ N0. These q-weighted stochastic spaces of test functions and distribu-
tions will constitute our spaces of smooth and generalized random variables
respectively. The choice of the weight q depends on a concrete problem
which is studied. The proceeding characterization of q-weighted spaces is
taken from our papers [29] and [30].

Let qα > 1, α ∈ I and let ρ ∈ [0, 1].
The space of q-weighted P -stochastic test functions (test random vari-

ables), denoted by (Q)Pρ , consists of elements f =
∑
α∈I

bαKα ∈ L2(P ), bα ∈ R,

α ∈ I, such that

‖f‖2
(Q)Pρ,p

=
∑
α∈I

(α!)1+ρ b2
α q

p
α <∞, for all p ∈ N0.

The space of q-weighted P -stochastic generalized functions (generalized
random variables), denoted by (Q)P−ρ, consists of formal expansions of the
form F =

∑
α∈I

cαKα, cα ∈ R, α ∈ I, such that

‖F‖2
(Q)P−ρ,−p

=
∑
α∈I

(α!)1−ρ c2
α q
−p
α <∞, for some p ∈ N0.

The action of a generalized function F ∈ (Q)P−ρ onto a test function
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88 White Noise Analysis and Chaos Expansions

f ∈ (Q)Pρ is given by

� F, f �=
∑
α∈I

α! cαbα.

The generalized expectation of F is defined as EP (F ) =� F, 1�= b0. It
is considered to be the zero coefficient in the chaos expansion of a generalized
function F in orthogonal basis {Kα}α∈I. In particular, if F ∈ L2(P ) it
coincides with usual expectation.

Note that the space (Q)Pρ can also be constructed as the projective limit
of the family (Q)Pρ,p = {f =

∑
α∈I bαKα ∈ L2(P ) : ‖f‖2

(Q)Pρ,p
< ∞}, p ∈ N0,

i.e.
(Q)Pρ =

⋂
p∈N0

(Q)Pρ,p.

Space (Q)P−ρ can also be constructed as the inductive limit of the family
(Q)P−ρ,−p = {F =

∑
α∈I cαKα : ‖F‖2

(Q)P−ρ,−p
<∞}, p ∈ N0, i.e.

(Q)P−ρ =
⋃
p∈N0

(Q)P−ρ,−p.

Three important special cases will be given by weights of the form:

• qα = (2N)α,

• qα = e(2N)α ,

• qα = aα(2N)α.

For weights of the form qα = (2N)α we obtain the Kondratiev spaces of
P -stochastic test functions and P -stochastic generalized functions, denoted
by (S)Pρ and (S)P−ρ, respectively. In particular, for ρ = 0 the Kondratiev
spaces are called the Hida spaces of test and generalized stochastic functions,
denoted by (S) and (S)∗ respectively.

For qα = e(2N)α we obtain the exponential growth spaces of P -stochastic
test functions and P -stochastic generalized functions, denoted by exp(S)Pρ
and exp(S)P−ρ respectively. It holds that

exp(S)Pρ ⊆ (S)Pρ ⊆ L2(P ) ⊆ (S)P−ρ ⊆ exp(S)P−ρ, (2.30)

with continuous inclusions.
Particulary, for P = µ the spaces in (2.30) become Gaussian q-weighted

spaces and in that case relation (2.30) was proven in [56]. For P = ν we
obtain the Poissonian q-weighted spaces. For more details on the Kondratiev
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2.5 Spaces of Generalized Random Variables 89

spaces we refer to [19] and references therein and on spaces of exponential
growth to [56].

The largest spaces of q-weighted P -stochastic distributions (Q)P−1 are ob-
tained for ρ = 1.

For weights of the form qα = aα(2N)α we obtain the Kondratiev spaces of
P -stochastic test functions and P -stochastic generalized functions modified
by the given sequence a = (ak)k∈N, ak ≥ 1, and denoted by (Sa)ρ,p and

(Sa)−ρ,−p respectively. We use notation aα =
∏∞

k=1 a
αk
k , aα

α!
=
∏∞

k=1

a
αk
k

αk!
and

(2Na)α =
∏∞

k=1(2k ak)
αk .

The result, proven by Zhang in [69], which states that∑
α∈I

(2N)−pα <∞ if and only if p > 1

is used to verify the statement
∑
α∈I

(2Na)−pα <∞ if and only if p > 1.

The space of Kondratiev P -stochastic test functions modified by the
sequence a, denoted by (Sa)Pρ =

⋂
p∈N0

(Sa)Pρ,p, p ∈ N0, is the projective
limit of spaces

(Sa)Pρ,p = {f =
∑
α∈I

bαKα ∈ L2(P ) : ‖f‖2
(Sa)Pρ,p

=
∑
α∈I

(α!)1+ρ b2
α (2N a)pα <∞}.

The space of Kondratiev P -stochastic generalized functions modified by
the sequence a, denoted by (Sa)P−ρ =

⋃
p∈N0

(Sa)P−ρ,−p, p ∈ N0, is the inductive
limit of the spaces

(Sa)P−ρ,−p = {F =
∑
α∈I

cαKα : ‖F‖2
(Sa)P−ρ,−p

=
∑
α∈I

(α!)1−ρ c2
α(2N a)−pα <∞}.

For ak = 1, k ∈ N these spaces reduce to the spaces of Kondratiev P -
stochastic test functions (S)Pρ and the Kondratiev P -stochastic generalized
functions (S)P−ρ respectively. For all ρ ∈ [0, 1] we have a Gel’fand triplet

(Sa)Pρ ⊆ L2(P ) ⊆ (Sa)P−ρ.

In particular, the largest space of the Kondratiev P -stochastic distribu-
tions modified by the sequence a is obtained for ρ = 1 and is denoted by
(Sa)P−1. For P = µ these spaces are called Gaussian and for P = ν Poisso-
nian Kondratiev spaces modified by the sequence a. In [27] we introduced
the Gaussian type of these spaces and solve equations related to them.

We will return to the notion of q-weighted spaces and recall some proper-
ties when presenting applications of the chaos expansion method for solving
stochastic differential equations. Equations presented and solved in Chapter
5 have solutions which are generalized stochastic processes with values in
some space of q-weighted stochastic distributions.
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90 White Noise Analysis and Chaos Expansions

2.5.1 Unitary mapping U of q-weighted
stochastic distributions

We can extend the unitary mapping U, given in the Theorem 2.4.1, into a
linear and isometric mapping on q-weighted spaces by defining

U : (Q)µ−ρ → (Q)ν−ρ

such that

U

[∑
α∈I

aαHα(ω)

]
=
∑
α∈I

aαCα(ω), aα ∈ R, (2.31)

for elements F =
∑

α∈I aαHα(ω) ∈ (Q)µ−ρ,−p0 . Furthermore, the isometry

‖U(F )‖(Q)ν−ρ,−p
= ‖F‖(Q)µ−ρ,−p

holds for all p ≥ p0. More details can be found in [11], [19] and [29].

2.5.2 Wick product for stochastic distributions

In the framework of white noise analysis, the problem of pointwise multipli-
cation of generalized functions is overcome by introducing the Wick product.
Historically, the Wick product first arose in quantum physics, as a renormal-
ization operation and is close connected to the S-transform. The most impor-
tant property of the Wick multiplication is its relation to the Itô-Skorokhod
integration. For more details we refer to [18],[19], [24], [31], [35].

The Wick product is well defined in the Hida and Kondratiev spaces of
test and generalized stochastic functions; see for example [17], [19], [25]. In
[56] it is defined for stochastic test functions and distributions of exponential
growth. In this subsection we give a generalization of the Wick multiplication
of random variables belonging to spaces of q-weighted test functions and
distributions.

The Wick product can be defined in a very simple manner:

Definition 2.5.1 Let ρ ∈ [0, 1] and let F,G ∈ (Q)P−ρ be given by their
chaos expansions F (ω) =

∑
α∈I fαKα(ω), G(ω) =

∑
β∈I gβKβ(ω), for unique

fα, gβ ∈ R. The P -Wick product of F and G is the element denoted by
F♦PG and defined by

F♦PG(ω) =
∑
γ∈I

( ∑
α+β=γ

fαgβ

)
Kγ(ω). (2.32)
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2.5 Spaces of Generalized Random Variables 91

The same definition is provided for the Wick product of test q-weighted
stochastic functions belonging to (Q)Pρ .

Consider now the special case, the spaces obtained for ρ = 1. Providing
the additional condition (2.33), we prove that the space (Q)P−1 is closed under
the P -Wick multiplication.

Theorem 2.5.1 Let F,G ∈ (Q)P−1. Assume that, for some C > 0 weights
qα satisfy the property

qα+β ≥ C qα qβ, α, β ∈ I. (2.33)

Then the element F♦PG, defined by (2.32), belongs to (Q)P−1.

Proof. Let F,G ∈ (Q)P−1. Then there exist p1 ≥ 0 such that∑
α∈I

f 2
α q
−p1
α <∞ and

∑
β∈I

f 2
β q
−p1
β <∞.

The P -Wick product is given by

F♦PG(ω) =
∑
γ∈I

cγKγ(ω), for cγ =
∑

α+β=γ

fαgβ.

Then there exists k > 0 such that for p = p1 + k we have∑
γ∈I

c2
γ q
−p
γ =

∑
γ∈I

(
∑

α+β=γ

fαgβ)2 q−p1γ q−kγ

≤ C
∑
γ∈I

q−kγ (
∑

α+β=γ

f 2
α) (

∑
α+β=γ

g2
β) q−p1α q−p1β

≤ C m · (
∑
α∈I

f 2
α q
−p1
α ) (

∑
β∈I

g2
β q
−p1
β ) < ∞,

for m =
∑

γ∈I q
−k
γ <∞. �

Theorem 2.5.2 Let F,G ∈ (Q)P1 . Assume that, for some C > 0 weights qα
satisfy the following property

qα+β ≤ C qα qβ, α, β ∈ I. (2.34)

Then the element F♦PG, defined by (2.32), belongs to (Q)P1 .

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



92 White Noise Analysis and Chaos Expansions

In particular, if we focus on two special types of weights, qα = (2N)α and
qα = e(2N)α , we verify that, in both cases, both conditions (2.33) and (2.34)
are satisfied since qα+β = qα qβ, thus the corresponding spaces of stochastic
distributions (S)P±1 and exp(S)P±1 are closed under the Wick multiplication.
The Wick product for F,G ∈ exp(S)µ−1 was first introduced in [56]. Moreover
it is also known that the spaces (S), (S)∗, (S)P1 , exp(S)P1 are closed under the
P -Wick multiplication while the space L2(P ) is not closed under the P -Wick
multiplication.

Further on we will write ♦ for the P -Wick multiplication ♦P and E for
the expectation EP with respect to P , whenever the underlying measure P
is understood.

The Wick product is a commutative, associative operation, distributive
with respect to addition. In particular, for the orthogonal polynomial basis
of L2(P ), in both cases P = µ and P = ν, we have

Kα♦Kβ = Kα+β, for α, β ∈ I. (2.35)

Whenever F,G and F♦G are P -integrable, the following equality

E(F♦G) = E(F ) · E(G)

holds. Here E denotes the generalized expectation. Note that independence
of F and G is not required.

The Wick powers of element F ∈ (Q)P−1 are defined inductively by{
F ♦ 0 = 1,
F ♦k = F♦F ♦ (k−1), k ∈ N. (2.36)

More generally, if p(x) =
∑m

k=0 ak x
k, ak ∈ R, x ∈ R is a polynomial of

degree m with real coefficients, then its Wick version p♦ : (Q)P−1 → (Q)P−1 is
defined by

p♦(F ) =
m∑
k=0

ak F
♦k, for F ∈ (Q)P−1. (2.37)

The Wick exponential of X ∈ (Q)P−1 is defined as a formal sum

exp♦X =
∞∑
n=0

X♦n

n!
. (2.38)

In view of the properties mentioned above, for F,G ∈ (Q)P−1 we have

(F +G)♦ 2 = F ♦2 + 2F♦G+G♦2 and
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2.5 Spaces of Generalized Random Variables 93

exp♦(F +G) = exp♦ F ♦ exp♦G.

By induction it follows that

E(exp♦ F ) = exp(EF ), F ∈ (Q)P−1.

Example 2.5.1 (Normalized stochastic exponential) Consider now a spe-
cial case of the Wick exponential defined by (2.38) in P = µ case. We let
X = 〈ω, ϕ〉 ∈ (S)µ−1 to be a one-dimensional smoothed white noise, defined
in Example 2.2.1, for ϕ ∈ S(R) and ω ∈ S ′(R). One can show that this el-
ement coincides with the normalized stochastic exponential, defined in (2.7).
In particular we have

exp♦(〈ω, ϕ〉) = exp

(
〈ω, ϕ〉 − 1

2
‖ϕ‖2

L2(R)

)
= εϕ, ϕ ∈ S(R). (2.39)

The identity (2.39) follows from the chaos expansion theorem and the gener-
ating property (1.1) for the Hermite polynomials, i.e.

exp♦(〈ω, ϕ〉) =
∞∑
n=0

1

n!
〈ω, ϕ〉♦n

=
ϕ=λξ1

∞∑
n=0

λn

n!
〈ω, ξ1〉♦n

=
∞∑
n=0

λn

n!
Hnε(1)(ω)

=
∞∑
n=0

λn

n!
hn(〈ω, ξ1〉)

= exp

(
λ〈ω, ξ1〉 −

1

2
λ2

)
= exp

(
〈ω, ϕ〉 − 1

2
‖ϕ‖2

L2(R)

)
,

= εϕ, ϕ ∈ S(R).

Hence, combining with (2.16) we have the decomposition

εϕ = exp

(
〈ω, ϕ〉 − 1

2
‖ϕ‖2

L2(R)

)
=
∞∑
n=0

‖ϕ‖nL2(R)

n!
hn

(
〈ω, ϕ〉
‖ϕ‖L2(R)

)
, ϕ ∈ S(R).

Note that from Theorem 2.2.2 we can conclude

〈ω, g〉♦n = ‖g‖nL2(R) hn

(
〈ω, g〉
‖g‖L2(R)

)
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94 White Noise Analysis and Chaos Expansions

and thus (2.39) is obtained directly.
The set of all combinations of functions of the form exp♦(〈ω, ϕ〉) is dense

in both spaces of random variables (S)µ1 and (S)µ−1. Moreover they are nor-
malized in the sense that the expectation is E exp♦(〈ω, ϕ〉) = 1 for all ϕ. For
more details we refer to [19], [35].

Definition of the P -Wick multiplication based on chaos expansion in terms
of the orthogonal polynomials basis {Kα}α∈I is wide enough to include also
the P -singular white noise (particularly, for P = µ the Gaussian singular
white noise Wt and for P = ν the Poissonian white noise Vt). It is also
important to know how to express the P -Wick product in terms of multiple
Itô integrals in L2(µ), respectively the multiple Itô-Poisson integrals in L2(ν).

Further on we denote by

In(fn) =

∫
R
fn dQ

⊗n
t

the n-fold iterated stochastic integral of a symmetrized sequence of functions

fn ∈ L̂2(Rn), for all n ∈ N, with respect to Qt, where Qt denotes either
Brownian motion Bt or compensated Poisson process Pt. Thus for P = µ
the integral In represents the nth Itô integral and for P = ν the integral In
is the nth Itô-Poisson integral.

Theorem 2.5.3 Let X =
∑∞

n=0 In(fn), fn ∈ L̂2(Rn) , n ∈ N and

Y =
∑∞

m=0 Im(gm), gm ∈ L̂2(Rm) , m ∈ N belong to the Kondratiev space of
generalized functions (S)−1. Then the Wick product X♦Y of X and Y can
be expressed by

X♦Y =
∞∑

n,m=0

In+m(fn⊗̂gm) =
∞∑
k=0

(
∞∑

n+m=k

Ik(fn⊗̂gm)).

Remark 2.5.1 In L2(µ) case, the property I1(f)♦n = In(f ⊗̂n) for f ∈
L̂2(R), which is similar to the Fubini theorem, follows from the previous
theorem. If f ∈ L2(R) then this result becomes

(

∫
R
f(t)dBt)

♦n = n!

∫
Rn
f⊗n(x1, ..., xn)dB⊗n.

In particular, the partial integration formula holds

I1(f)♦I1(g) = I1(f) · I1(g)− (f, g)L2(R)
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2.5 Spaces of Generalized Random Variables 95

for deterministic f, g ∈ L2(R). This identity gives connection between the
Wick and ordinary multiplication by the correction term (f, g)L2(R).

Note that the Wick multiplication and ordinary multiplication coincide
when at least one of the multiplication terms is deterministic, i.e.

F♦G = F ·G, F ∈ R.

S-transform

An equivalent definition of the Wick product can be formulated in terms
of the S-transform. In [19], [24], [35] the S-transform is considered on
the Kondratiev space of generalized stochastic random variables (S)−ρ, for
ρ ∈ [0, 1].

Definition 2.5.2 The S-transform of an element F ∈ (S)−ρ is defined by

SF (h) :=� F, εh �, (2.40)

where h ∈ Sp(R) with ‖h‖2
p < 1.

Recall εh is the normalized stochastic exponential defined by (2.7) and
� ·, · � denotes the duality paring between (S)ρ and (S)−ρ. Following
Definition 2.5.2 the S-transform of an element F =

∑
α∈I fαKα from (S)−ρ

is given by the chaos expansion

SF (h) =
∑
α∈I

hαfα, (2.41)

where h =
∑

k∈N hkξk ∈ S(R) and hα =
∏

j∈N(hj)
αj .

Therefore, if ρ < 1 then SF (h) is well-defined for all h ∈ S(R) and if
ρ = 1, the SF (h) is well-defined for h with sufficiently small L2(R) norm.
The S-transform is a bijection onto a space of so-called U-functionals. For de-
tailed construction of the S-transform and its properties we refer to [17],[24],
[35], [37].

Definition 2.5.3 The Wick product ♦ of two Kondratiev stochastic distri-
butions F,G ∈ (S)−ρ, ρ ∈ [0, 1] is the unique element whose S-transform is
SF · SG.

If S−1 is the inverse S-transform then

F♦G = S−1(SF · SG). (2.42)

Now, the singular white noise Wt on R can be defined as the unique
element of the Hida space (S)−0 = (S)∗ whose S-transform satisfies
SWh = h.
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96 White Noise Analysis and Chaos Expansions

If G ∈ L2(µ) then G ∈ (S)µ−0 and the Fourier transform is defined

F(G)(h) =

∫
S′(R)

ei〈ω,h〉G(ω)dµ(ω).

Thus for a random variable G the S-transform is given by

S(G)(ih) = FG(h) e
1
2
‖h‖2

L2(R) .

As a result, we conclude that the Wick product can be interpreted as a
convolution on the infinite-dimensional space (S)−ρ.

The definition (2.40) of the S-transform can be extended on an analogous
way, from the Kondratiev space (S)−ρ, ρ ∈ [0, 1] to all q-weighted stochastic
distributions (Q)−ρ.

2.6 Hilbert Space Valued q-weighted

Generalized Random Variables

In this subsection, by H we mean a separable Hilbert space with the or-
thonormal basis {ηi}i∈N and the inner product (·, ·)H . We will treat H as
the state space. Recall that the basic probability space is (S ′(R),B, P ). We
denote by L2(P,H) the space of functions on Ω with values in H, which are
square integrable with respect to the white noise measure P . It is a Hilbert
space equipped with the inner product

� F,G�L2(P,H) = EP ((F,G)H), for all F,G ∈ L2(P,H).

The family of functions { 1√
α!
Kα ηi}i∈N,α∈I forms an orthonormal basis of the

Hilbert space L2(P,H).
Now we define H-valued q-weighted generalized random variables of

growth rate determined by the sequence qα, over L2(P,H).
Let qα > 1, α ∈ I and let ρ ∈ [0, 1].
The space of H-valued q-weighted P -stochastic test random vari-

ables Q(H)Pρ consists of functions f ∈ L2(P,H), with the expansion
f(ω) =

∑
α∈I

∑
k∈N

aα,k ηkKα(ω), aα,k ∈ R, such that

‖f‖2
QP (H)ρ,p

=
∑
α∈I

∑
k∈N

α!1+ρ a2
α,k q

p
α

=
∑
k∈N

∑
α∈I

α!1+ρ a2
α,k q

p
α <∞, for all p ∈ N0.
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2.6 Hilbert Space Valued Generalized Random Variables 97

Note, that f(ω) can be expressed in several ways

f(ω) =
∑
α∈I

∑
k∈N

aα,k ηkKα(ω)

=
∑
α∈I

aαKα(ω)

=
∑
k∈N

ak(ω) ηk,

where
aα = (f,Kα)L2(P ) =

∑
k∈N

aα,k ηk ∈ H

and
ak(ω) = (f, ηk)H =

∑
α∈I

aα,kKα(ω) ∈ (Q)Pρ ,

with aα,k =� f, ηkKα �L2(P,H)∈ R for k ∈ N, α ∈ I.

The corresponding space of q-weighted P -stochastic generalized functions
(generalized random variables) Q(H)P−ρ consists of formal expansions of the
form F (ω) =

∑
α∈I

∑
k∈N

bα,k ηkKα(ω), bα,k ∈ R, such that

‖F‖2
Q(H)P−ρ,−p

=
∑
α∈I

∑
k∈N

α!1−ρ b2
α,k q

−p
α

=
∑
k∈N

∑
α∈I

α!1−ρ b2
α,k q

−p
α <∞, for some p ∈ N0.

It is clear that F (ω) can be expressed in several ways

F (ω) =
∑
α∈I

∑
k∈N

bα,k ηkKα(ω)

=
∑
α∈I

bαKα(ω)

=
∑
k∈N

bk(ω) ηk,

where bα =
∑
k∈N

bα,k ηk ∈ H, and bk(ω) =
∑
α∈I

bα,kKα(ω) ∈ (Q)P−ρ, with a

unique bα,k ∈ R for k ∈ N and α ∈ I.
The action of F onto f is given by

� F, f �=
∑
α∈I

α! (bα, aα)H .
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98 White Noise Analysis and Chaos Expansions

When we choose one of the two special types of weights, either weights of
the form qα = (2N)α to obtain the H-valued Kondratiev type of P -stochastic
test functions and distributions, denoted by S(H)Pρ and S(H)P−ρ respectively,

or weights of the form qα = e(2N)α to obtain the H-valued exponential growth
type stochastic test functions and distributions, denoted by expS(H)Pρ and
expS(H)P−ρ respectively, the following important results are valid

S(H)−ρ ∼= (S)−ρ ⊗H and expS(H)−ρ ∼= exp(S)−ρ ⊗H. (2.43)

An isomorphism (2.43) with tensor product spaces, the property similar as for
the Schwartz spaces in the deterministic case, is based on nuclear structure
of q-weighted stochastic spaces (S)Pρ and exp(S)Pρ .

Both S(H)ρ and expS(H)ρ are countably Hilbert spaces and

expS(H)Pρ ⊆ S(H)Pρ ⊆ L2(P,H) ⊆ S(H)P−ρ ⊆ expS(H)P−ρ.

An important example arises when the separable Hilbert space H is the
space L2(R) with the Hermite functions orthonormal basis {ξi}i∈N.

2.7 Generalized Stochastic Processes

Generalized stochastic processes can be defined in several ways depending
on whether the author regards them as a family of random variables or as a
family of trajectories, but also depending on the type of continuity implied
onto this family.

In Section 1.4.2 we pointed out that a classical stochastic process
Xt(ω) = X(t, ω), t ∈ T ⊆ R, ω ∈ Ω can be defined in three equivalent ways.
It can be regarded either as a family of random variables Xt(·), t ∈ T , as a
family of trajectories X·(ω), ω ∈ Ω, or as a family of functions X : T×Ω→ R
such that for each fixed t ∈ T , X(t, ·) is an R-valued random variable and
for each fixed ω ∈ Ω, X(·, ω) is an R-valued deterministic function, called a
trajectory.

By replacing the space of trajectories with some space of deterministic
generalized functions, or by replacing the space of random variables with
some space of generalized random variables, different types of generalized
stochastic processes can be obtained. In this manner, we can obtain pro-
cesses generalized with respect to the t argument, processes generalized with
respect to the ω argument and also processes generalized with respect to
both arguments, t and ω argument.

The classification of generalized stochastic processes by various conditions
of continuity, their structural theorems and series expansions, is subject of
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2.7 Generalized Stochastic Processes 99

various articles. Here we mention [19], [56], [70] with references therein.
Detailed survey on generalization of classical stochastic processes is given in
[56], where several classes of generalized stochastic processes were distinguish
and represented in appropriate chaotic expansions. In this dissertation we
follow the classification from [56] and focus only on two classes of such gener-
alized processes. Definition and main properties of the first class, the class of
generalized stochastic processes of type (O), here named generalized stochas-
tic processes, are subject of Section 2.7.1. Study of the second class, the
class of generalized stochastic processes of type (I), here called the singular
generalized stochastic processes we will present in Section 4.1.

2.7.1 Generalized stochastic processes

A very general concept of generalized stochastic processes, based on chaos
expansions was developed in [17], [19], [52], [56], etc.

In [19] generalized stochastic processes are defined as measurable map-
pings T → (S)µ−1, where (S)µ−1 denotes the Kondratiev space for the Gaussian
measure, but one can consider also other spaces of generalized random vari-
ables instead of it. Thus, they are pointwisely defined with respect to the
parameter t ∈ T and generalized with respect to ω ∈ Ω.

In this dissertation we will consider a class of generalized stochastic pro-
cess wider than in [19]. We follow [29], [56], [65] and [66] to define such
processes and give their chaos expansion representations in terms of orthog-
onal polynomial basis.

Let ρ ∈ [0, 1].

Definition 2.7.1 Generalized stochastic processes are measurable mappings
from R into some q-weighted space of generalized functions i.e. measurable
mappings R→ (Q)P−ρ.

From definition it follows that for every fixed t we obtain generalized random
variable Ft(·) from q-weighted space (Q)P−ρ.

2.7.2 Chaos expansion of generalized
stochastic processes

We let ρ ∈ [0, 1]. Since generalized stochastic processes with values in (Q)P−ρ
are defined pointwisely with respect to the parameter t ∈ R, their chaos ex-
pansion representation follows directly from the Wiener-Itô chaos expansion
theorem, Theorem 2.1.1.
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100 White Noise Analysis and Chaos Expansions

Theorem 2.7.1 (Chaos expansion theorem for generalized stochastic pro-
cess) Let F : R → (Q)P−ρ be a generalized stochastic process with respect to
measure P . Then it is given by the formal expansion

Ft(ω) =
∑
α∈I

fα(t)Kα(ω), t ∈ R (2.44)

where fα : R → R, α ∈ I are measurable functions and there exists p ∈ N0

such that for all t ∈ R

‖Ft‖2
(Q)P−ρ,−p

=
∑
α∈I

(α!)1−ρ |fα(t)|2 q−pα <∞. (2.45)

For different choices of measure P , generalized stochastic processes are
expressed in terms of corresponding orthogonal basis {Kα}α∈I. In particular,
for P = µ orthogonal basis is Kα = Hα and in case P = ν is Kα = Cα,
α ∈ I. On the other hand, if generalized stochastic processes have values in
a certain type of q-weighed space, the convergence condition (2.45) modifies.

2.7.3 Pettis intregral of generalized
stochastic processes

Now let the q-weighted stochastic spaces be either the Kondratiev spaces or
the stochastic spaces of exponential growth. We extend the definition of the
Pettis integral with values in the Hida space of stochastic distributions, given
for the Gaussian case in [17] and [19]. Consider now a special case, the space
(Q)P−1 for ρ = 1.

Suppose Y : R → (Q)P−1 is a given q-weighted stochastic function, i.e.
generalized stochastic process, such that� Yt, F �∈ L1(R) for all functions
F ∈ (Q)P1 from the corresponding q-weighted test space. Then q-weighted
integral of Yt, denoted by

∫
R Yt dt, is defined to be the unique element of

(Q)P−1 such that

�
∫
R
Ytdt, F �=

∫
R
� Yt, F � dt, F ∈ (Q)P1 . (2.46)

We also say that generalized stochastic process Yt is Pettis integrable in (Q)P−1

or q-Pettis integrable.

Theorem 2.7.2 Assume that a generalized stochastic process Yt ∈ (Q)P−1,
for t ∈ R has a chaos expansion of the form Yt(ω) =

∑
α∈I fα(t)Kα(ω),
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2.7 Generalized Stochastic Processes 101

ω ∈ S ′(R), where coefficients fα : R → R satisfy the following convergence
condition ∑

α∈I

‖fα‖2
L1(R)q

−pα‖Kα‖2
L2(P ) <∞ for some p ≥ 0. (2.47)

Then generalized stochastic process Yt is said to be q-Pettis integrable and∫
R
Yt(ω) dt =

∑
α∈I

(∫
R
fα(t)dt

)
Kα(ω). (2.48)

Proof. Assume that F =
∑

α∈I aαKα ∈ (Q)P1 for aα ∈ R. Recall the fact

‖Kα‖L2(P ) =
√
α!, for all α ∈ I in both cases, when P = µ and P = ν. Thus,

the sum
‖F‖2

(Q)P1
=
∑
α∈I

‖aα‖2α!2 qpα

is finite for all p ∈ N0. The q-Pettis integrability of a generalized stochastic
process Yt follows from (2.47). Clearly,∫

R
| � Yt, F � | dt =

∫
R
|
∑
α∈I

fα(t)α! aα|dt

≤
∑
α∈I

‖fα(t)‖L1(R)α! |aα|dt ≤

≤
∑
α∈I

‖fα‖L1(R) q
− pα

2 |aα|α! q
pα
2

≤

(∑
α∈I

‖fα‖2
L1(R) q

−pα

) 1
2
(∑
α∈I

‖aα‖2α!2 qpα

) 1
2

<∞.

Then, the statement of the theorem is completed with∫
R
� Yt, F � dt =

∫
R
�
∑
α∈I

fα(t)Kα,
∑
β∈I

aβKβ � dt =

=

∫
R

∑
α∈I

fα(t)aα‖Kα‖2
L2(P )dt

=
∑
α∈I

(∫
R
fα(t)dt

)
aα‖Kα‖2

L2(P )

= �
∑
α∈I

∫
R
fα(t)dtKα,

∑
β∈I

aβKβ �

= �
∫
R
Yt dt, F � . �

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



102 White Noise Analysis and Chaos Expansions

The proof for a Gaussian case in the Hida space of stochastic distributions
(S)∗ can be found in [19].

We will return to this topic again when proving the chaos expansion for-
mula for the Skorokhod integral of singular generalized stochastic processes
in Chapter 4.

The expansion theorems for singular generalized stochastic processes, in
[56] also called the generalized stochastic processes of type (I), defined in
Section 4.1.1 as linear and continuous mappings from a certain space of
deterministic functions T into the space of q-weighted generalized functions
(Q)P−1 i.e. elements of L(T, (Q)P−1), will give an extension of the expansion of
the q-Pettis integrable generalized stochastic processes in the sense that the
coefficients fα(t), α ∈ I in (2.44) will be generalized functions, for example
from the Schwartz space of tempered distributions S ′(R).

2.7.4 Unitary mapping U of generalized
stochastic processes

We extend the unitary mapping U, defined by (2.29) in the Theorem 2.4.1,
to the class of generalized stochastic processes in a similar way as we did
in (2.31). Consider U to be a linear and isometric mapping on the space of
generalized stochastic processes with values in q-weighted µ-measured space
such that for all t ∈ R

U

[∑
α∈I

fα(t)Hα(ω)

]
=
∑
α∈I

fα(t)Cα(ω), fα ∈ R, (2.49)

for generalized stochastic process F : R→ (Q)µ−ρ, given in the form
Ft =

∑
α∈I fα(t)Hα(ω). Furthermore, for every t ∈ R the isometry

‖U(Ft)‖(Q)ν−ρ,−p
= ‖Ft‖(Q)µ−ρ,−p

holds for all p ≥ p0.

Examples of generalized stochastic processes are Brownian motion and
singular white noise, given by their chaos expansions in Example 2.7.1, and
compensated Poisson process and Poissonian compensated white noise, de-
scribed in Example 2.7.2.

Example 2.7.1 Brownian motion is given by the chaos expansion

Bt(ω) =
∞∑
k=1

 t∫
0

ξk(s)ds

Hε(k)(ω) (2.50)
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2.7 Generalized Stochastic Processes 103

and it is an element of L2(µ).
Singular white noise Wt(·) is defined by the chaos expansion

Wt(ω) =
∞∑
k=1

ξk(t)Hε(k)(ω), (2.51)

and it is an element of the space (S)µ−1, for all t ∈ R. It is integrable and the
relation

d

dt
Bt = Wt

holds in the (S)µ−1 sense, see (2.46).

Example 2.7.2 The chaos expansion of compensated Poisson process
Pt(ω) ∈ L2(ν) is given by

Pt(ω) =
∞∑
k=1

(∫ t

0

ξk(s)ds

)
Cε(k)(ω). (2.52)

The Poissonian compensated white noise Vt(·) is defined by the chaos expan-
sion

Vt(ω) =
∞∑
k=1

ξk(t)Cε(k)(ω), (2.53)

and it is an element of the space (S)ν−1 for all t ∈ R. It is integrable and the
relation

dPt
dt

= Vt

holds in (S)ν−1 sense. Note that

Pt(ω) = U(Bt(ω)) and Vt(ω) = U(Wt(ω)),

which is consistent with (2.31).

In Chapter 4 we will study another class of generalized stochastic processes,
the class of singular generalized stochastic processes. We regard them as el-
ements of tensor product of a certain topological space X onto (Q)P−ρ. Thus,
Brownian motion and singular white noise can be considered as elements of
spaces C∞(R)⊗L2(µ) and C∞(R)⊗ (S)µ−1,−p, for p > 5

12
, respectively. Same

stays for the corresponding analogs in the Poisson case, i.e. a compensated
Poisson process is considered to be an element of C∞(R)⊗L2(ν) and Poisso-
nian compensated white noise the process belonging to C∞(R)⊗ (S)ν−1 (see
Example 4.1.1).
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104 White Noise Analysis and Chaos Expansions

2.7.5 Itô-Skorokhod integral of generalized
stochastic processes

We assume now that the measure P is either the Gaussian measure µ or the
Poissonian measure ν. The Kondratiev space (S)P−1 is denoted now by (S)−1

and the Wick product ♦P is denoted by ♦. We state a fundamental property
of the P -Wick product, which is the following relation to Itô-Skorokhod
integration. The proof of the theorem is based on the chaos expansion form
of a generalized stochastic process and will be presented here in an analogous
form to one given in [19]. Denote by

δ(Yt) =

∫
R
Yt δQt(ω)

the P -Itô-Skorokhod stochastic integral of a process Yt, and Zt a generalized
stochastic process satisfying d

dt
Zt = Qt for a.a. t, in sense of the relation

(2.46). For the Gaussian measure, Qt = Bt is a Brownian motion and Zt = Wt

is a singular white noise. In Poissonian case, Qt = Pt denotes a compensated
Poisson process and Zt = Vt a Poissonian compensated white noise.

Theorem 2.7.3 Let Yt(ω) : R× Ω→ R be a Skorohod-integrable stochastic
process. Then Yt(ω)♦Zt is dt-integrable in (S)−1 and∫

R
Yt(ω) δQt(ω) =

∫
R
Yt ♦Ztdt. (2.54)

The left-hand side of (2.54) denotes the Skorohod integral of the stochastic
process Y = Yt(ω) which coincides with the Itô integral if Y is adapted.
Integral on the right-hand side of (2.54) is interpreted as (S)−1-valued Pettis
integral. This generalization we will call the Itô-Skorokhod integral.

Proof. First we compute the left-hand side of (2.54) explicitly. Assume
that a Skorokhod integrable process Yt is given by the chaos expansion forms
Yt =

∑∞
n=0

∫
Rn fn(u1, ..., un, t)dQ

⊗n(u1, ..., un), for symmetric functions fn
and equivalently Yt =

∑
α∈I cα(t)Kα, for measurable cα. Then by (2.15)

and (2.28) we have fn =
∑
|α|=n

cα ξ
⊗̂α
n the symmetric functions in L̂2(Rn) and

Yt =
∞∑
n=0

∫
Rn

∑
|α|=n

cα ξ
⊗̂α
n (u1, ..., un) dQ⊗n(u1, ..., un)

=
∞∑
n=0

∫
Rn

∑
|α|=n

∑
k∈N

(cα, ξk)ξk ξ
⊗̂α
n (u1, ..., un) dQ⊗n(u1, ..., un)

(2.55)
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2.7 Generalized Stochastic Processes 105

Due to the symmetrization ξ⊗̂(α+ε(k)) and (2.14) and (2.2.6), the Skorokhod
integral of Yt becomes∫

R
Yt δQt =

∞∑
n=0

∫
Rn+1

∑
|α|=n

∑
k∈N

(cα, ξk)ξ
⊗̂(α+ε(k)) Q⊗(n+1)

=
∞∑
n=0

∑
|α|=n

∑
k∈N

(cα, ξk)Kα+ε(k)

=
∑
α∈I

∑
k∈N

(cα, ξk)Kα+ε(k) . (2.56)

Providing direct computation of the right-hand side of (2.54) we obtain∫
R
Yt♦Zt dt =

∫
R

(∑
α∈I

cα(t)Kα

)
♦

(∑
k∈N

ξk(t)Kε(k)

)
dt

=

∫
R

(∑
α∈I

∑
k∈N

cα(t) ξk(t)Kα+ε(k)

)
dt

=
∑
α∈I

∑
k∈N

(∫
R
cα(t) ξk(t)dt

)
Kα+ε(k)

=
∑
α∈I

∑
k∈N

(cα, ξk)Kα+ε(k) , (2.57)

because

‖
∑
α,k

α+ε(k)=β

cα(t) ξk(t)‖2
L1(R) ≤ [

∑
α,k

α+ε(k)=β

‖cα(t)‖L1(R) ξk(t)]
2

≤ C2|β|2
∑
α,k

α+ε(k)=β

‖cα‖2
L1(R)

and ∑
β∈I

β!‖
∑
α,k

α+ε(k)=β

cα(t) ξk(t)‖2
L1(R)(2N)−pβ <∞ (2.58)

for some p ∈ N0. With this statement we complete the proof. �

The relation (2.54) is an important and a very useful property in ap-
plications, when solving stochastic differential equations. That means the
Wick calculus with ordinary differential calculus rules is equivalent to the Itô
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106 White Noise Analysis and Chaos Expansions

calculus governed by the Itô formula and ordinary multiplication. For more
information we refer to [19], [49].

Moreover the previous theorem can be extended to the case of q-weighted
generalized stochastic processes.

Now we state and prove the main theorem of this overview, which we will
use as the starting point when defining the Itô-Skorokhod integral of singular
generalized stochastic processes. A similar proof of the following theorem,
for P = µ is given in [19].

Theorem 2.7.4 Let Yt : R → (S)−1 be a Skorokhod integrable generalized
stochastic process given by the chaos expansion

Yt(ω) =
∑
α∈I

cα(t)Kα(ω), t ∈ R,

with the coefficients cα ∈ L2(R) for all α ∈ I. Then the chaos expansion of
its Skorokhod integral is given in the form∫

R
Yt(ω) δQt(ω) =

∑
α∈I

∑
k∈N

cα,kKα+ε(k)(ω), (2.59)

where the real numbers

cα,k = (cα, ξk)L2(R) =

∫
R
cα(t) ξk(t) dt, k ∈ N

represent the Fourier coefficients of cα, α ∈ I, provided that the right-hand
of equality (2.59) converges in (S)−1.

If we assume, in addition, that
∫
R Yt(ω) δQt(ω) ∈ L2(P ), then

EP

∫
R

Yt(ω) δQt(ω)

 = 0. (2.60)

Proof. The proof of this theorem directly follows from (2.56), (2.57) and
(2.58). Recall that expectation of a L2(P ) element

∫
R Yt(ω) δQt(ω) is equal

to the zero coefficient in its chaos expansion. Thus, from (2.59) we obtain
and c(0,0,0,...) = 0 the assertion (2.60) is verified. �

Note that the expansion (2.59) is not necessarily orthogonal, since it may
happen that α + ε(k) = β + ε(j) for some α, β ∈ I, α 6= β, k, j ∈ N.
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2.8 Fractional White Noise Spaces 107

2.8 Fractional White Noise Spaces

Recall, in Section 1.4.3 e) we introduced a fractional Brownian motion as a
one-parameter extension of a standard Brownian motion and presented the
main properties of such a Gaussian process with respect to values of the
Hurst parameter H ∈ (0, 1).

Fractional Brownian motion, as a process with independent increments
which have a long-range dependence and self-similarity properties found
many applications when modeling a wide range of problems in hydrology,
telecommunications, queueing theory and mathematical finance.

This section is devoted to a specific construction of a stochastic integral
with respect to a fractional Brownian motion defined for all possible values
H ∈ (0, 1), introduced by Elliot and van der Hoek in [13]. Several different
definitions of stochastic integration for fractional Brownian motion appear
in literature. We refer reader to [8], [13], [52], [44], [48] for illustration.

We focus here on defining the fractional white noise spaces by use of
the fractional transform mapping for all values of H ∈ (0, 1). We extend the
action of the fractional transform operator to a class of generalized stochastic
processes. The main properties of the fractional transform operator and the
connection of a fractional Brownian motion with a classical Brownian motion
on the classical white noise space will be stated. Moreover, we will define the
fractional Poissonian process in a framework that will make it easy to link it
to its regular version.

In [19] it was proved that there exists a unitary mapping between the
Gaussian and the Poissonian white noise space, by mapping the Hermite
polynomial basis into the Charlier polynomial basis. In [13] and [29] a unitary
mapping was introduced between the Gaussian and the fractional Gaussian
white noise space. We extend these ideas to define the fractional Poissonian
white noise space itself and to connect it to the classical Poissonian white
noise space. As a result we obtain four types of white noise spaces: Gaussian,
Poissonian, fractional Gaussian and fractional Poissonian, where any two of
them can be identified through a unitary mapping. The construction of frac-
tional Poissonian space and the structural properties of the aforementioned
four types of white noise spaces and operators defined on them are published
in [29] and [30] and represent an original part of this thesis.

2.8.1 Fractional transform operator M (H)

Further on we follow the ideas represented by Elliot and van der Hoek in
[13], where fractional white noise theory for Hurst parameter H ∈ (0, 1)
was developed. In [13] the fractional transform operator M = M (H) was
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108 White Noise Analysis and Chaos Expansions

introduced, which connects fractional Brownian motion B
(H)
t and classical

Brownian motion Bt on the white noise probability space (S ′(R),B, µ).

Definition 2.8.1 ([13]) Let H ∈ (0, 1). The fractional transform operator
M = M (H) : S(R)→ L2(R) ∩ C∞(R) is defined by

M̂f(y) = |y|
1
2
−H f̂(y), y ∈ R, f ∈ S(R), (2.61)

where f̂(y) :=
∫
R e
−ixyf(x)dx is the Fourier transform of f .

An equivalent definition of the operator M = M (H) is given by

Mf(x) = − d

dx

CH
H − 1

2

∫
R
(t− x)

f(t)

|t− x|H− 3
2

dt, f ∈ S(R), (2.62)

where CH = [2Γ(H− 1
2
) cos(π

2
(H− 1

2
))]−1[Γ(2H+1) sin(πH)]

1
2 is a normalizing

constant and Γ is the Gamma function. This definition can be restated as
follows

M (H)f(x) =



CH
∫
R

f(x−t)−f(x)

|t|
3
2−H

dt, H ∈ (0, 1
2
)

f(x), H = 1
2

CH
∫
R

f(t)

|t−x|
3
2−H

dt, H ∈ (1
2
, 1)

.

Note that the operator M = M (H) has the structure of a convolution operator
(we recall (1.12) from the Section 1.3.3).

The form of the inverse operator M−1 = M (1−H) follows from (2.61), i.e.
for all H ∈ (0, 1)

M (H) ◦M (1−H)(f) = f, f ∈ S(R). (2.63)

Definition 2.8.2 The inverse fractional transform operator M−1 is defined
by

M̂−1f(y) = |y|H−
1
2 f̂(y), y ∈ R, f ∈ S(R). (2.64)

Following the work of [61], the fractional transform operator M = M (H),
for H ∈ (1

2
, 1) can be interpreted as the Riesz potential

Iαϕ
4
=

1

2Γ(α) cos(απ
2

)

∫
R

ϕ(t)

|t− x|1−α
dt
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2.8 Fractional White Noise Spaces 109

for Re{α} > 0, α 6= 1, 3, 5, ... and ϕ ∈ Lp(R), 1 ≤ p < 1
Reα

, if we chose
α = H − 1

2
. The corresponding inverse operator of the operator Iα is

(Iα)−1f(x) =
cos(απ

2
)

2Γ(−α)

∫
R

f(t− x)− f(x)

|t|1+α
dt,

for f ∈ Iα(Lp(R)). We conclude that for H ∈ (1
2
, 1) the fractional operator

M = M (H) corresponds to the Riesz potential M (H)ϕ = IH−
1
2ϕ and for

H ∈ (0, 1
2
) to the inverse of Riesz potential (IH−

1
2 )−1f = M (1−H)f .

From (2.62) follows that the operator M can be interpreted as the αth
Riemann-Liouville fractional integral of f , where α = 1

2
− H. Recall, basic

definitions and properties of the theory of deterministic fractional derivatives
and integrals are given in Section 1.3. For more details we refer to [61].

Let

L2
H(R) := {f : R→ R; M (H)f(x) ∈ L2(R)}.

The space L2
H(R) is the closure of S(R) with respect to the norm

‖f‖L2
H(R) = ‖Mf‖L2(R), f ∈ S(R) induced by the inner product

(f, g)L2
H(R) = (Mf,Mg)L2(R).

The operator M = M (H) is self-adjoint and for f, g ∈ L2(R)∩L2
H(R) we have

(f,Mg)L2
H(R) = (Mf, g)L2

H(R).

Let H ∈ (1
2
, 1) be fixed. Define φ(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R.

Then, ∫
R
(M (H)f(x))2dx = cH

∫
R

∫
R
f(s)f(t)φ(s, t)dsdt, (2.65)

where cH is constant.

In [13], [20], [26] and [41], the classical white noise calculus was adapted
to the fractional white noise by the use of property (2.65). For that purpose
the fractional white noise and stochastic integral as an element of the frac-
tional stochastic distributions spaces were defined. We proved in [26] that
generalized stochastic processes with values in these spaces have a series ex-
pansion, and different Wick products were discussed. Analogous theorems of
the fractional Itô-Skorokhod calculus to Theorem 2.7.1, Theorem 2.7.2 and
Theorem 2.7.4 were obtained. Here we just mention these results without
further detailed presentation.
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110 White Noise Analysis and Chaos Expansions

Example 2.8.1 Let H ∈ (0, 1). The characteristic function χ[0, t](·), for
fixed t ∈ R belongs to the Hilbert space L2

H(R). Moreover,

Mχ[0, t](x) =
1

2Γ(H + 1
2
) cos(π

2
(H + 1

2
))

(
t− x

|t− x| 32−H
+

1

|x| 12−H

)
.

From the Parseval theorem and χ̂[0, t](y) = − 1
iy

(e−ity − 1) it follows that∫
R

(Mχ[0, t](x))2 dx =
1

2π

∫
R
|y|1−2H |e−ity − 1|2

|y|2
dy =

1

sin(πH)(2H + 1)
t2H .

Furthermore,∫
R
Mχ[0, t](x)Mχ[0, s](x) dx =

1

2

(
|t2H |+ |s|2H − |t− s|2H

)
= (χ[0, t](x), χ[0, s](x))L2

H(R)

holds for arbitrary t, s ∈ R.

The following important theorem gives the orthonormal basis for the frac-
tional version of L2(R). The proof can be found in [7] and [13].

Theorem 2.8.1 ([13]) Let M : L2
H(R) → L2(R) defined by (2.61) be the

extension of the operator M from Definition 2.8.1. Then, M is an isometry
between the two Hilbert spaces L2(R) and L2

H(R). The functions

en(x) = M−1ξn(x), n ∈ N, (2.66)

belong to S(R) and form an orthonormal basis in L2
H(R).

Following [7] and [13] we extend M onto S ′(R) and define the fractional
operator M : S ′(R)→ S ′(R) by

〈Mω, f〉 = 〈ω,Mf〉, f ∈ S(R), ω ∈ S ′(R). (2.67)

Example 2.8.2 For all t ∈ R define the process

B
(H)
t (ω) := 〈ω,Mχ[0, t](·)〉, ω ∈ S ′(R).
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2.8 Fractional White Noise Spaces 111

It is a Gaussian process with zero expectation and the covariance function

E[B(H)
s B

(H)
t ] = (Mχ[0, s],Mχ[0, t])L2(R) = (χ[0, s], χ[0, t])L2

H(R)

=
1

2
{|t|2H + |s|2H − |t− s|2H}, s, t ∈ R.

The t-continuous version of the process B
(H)
t is an element of L2(µ) and is

called fractional Brownian motion.

The relationships between classical Brownian motion Bt and fractional
Brownian motion B

(H)
t , as elements of L2(µ) are given by

B
(H)
t (ω) =

∫
R
M (H)χ[0, t] dBt(ω) and

Bt(ω) =

∫
R
M (1−H)χ[0, t] dB

(H)
t (ω), ω ∈ S ′(R).

Fractional Itô integral

The fractional Itô integral of a deterministic function f ∈ L2
H(R) is defined

by

I(H)(f) =

∫
R
f(t) dB

(H)
t (ω)

=

∫
R
Mf(t) dBt(ω) = I(Mf), (2.68)

which implies isometries

‖I(Mf)‖L2(µ) = ‖Mf‖L2(R) = ‖f‖L2
H(R).

Furthermore, the Itô integral of a deterministic function f ∈ L2
1−H(R) can

be expressed in terms of the fractional Itô integral and the inverse M−1 =
M (1−H) of the fractional transform operator M (H) by

I(H)(M (1−H)f) =

∫
R
M (1−H)f(t)dB

(H)
t (ω)

=

∫
R
f(t)dBt(ω) = I(f).

For more details on this subject we refer to [7], [8], [13] and [19].
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112 White Noise Analysis and Chaos Expansions

2.8.2 Fractional Gaussian white noise space

Let H ∈ (0, 1). Now we extend the action of the operator M from S ′(R)
onto L2(µ) and define the stochastic analogue of L2

H(R). Denote by

L2(µH) = L2(µ ◦M−1) = L2(µ ◦M (1−H))

= {G : Ω→ R ; G ◦M ∈ L2(µ)}. (2.69)

It is the space of square integrable functions on S ′(R) with respect to frac-
tional Gaussian white noise measure µH . Since G ∈ L2(µH) if and only if
G ◦M ∈ L2(µ), it follows that G has an expansion of the form

G(Mω) =
∑
α∈I

cαHα(ω)

=
∑
α∈I

cα

∞∏
i=1

hαi(〈ω, ξi〉)

=
∑
α∈I

cα

∞∏
i=1

hαi(〈ω,Mei〉)

=
∑
α∈I

cα

∞∏
i=1

hαi(〈Mω, ei〉).

Definition 2.8.3 Define the family of Fourier-Hermite polynomials by

H̃α(ω) =
∞∏
k=1

hαk(〈ω, ek〉), α ∈ I. (2.70)

Now, it follows that the family {H̃α; α ∈ I} forms an orthogonal basis

of L2(µH), with ‖H̃α‖2
L2(µH) = α!, α ∈ I. Thus G ∈ L2(µH) has a chaos

expansion representation of the form

G(ω) =
∑
α∈I

cαH̃α(ω), cα ∈ R

such that ‖G‖2
L2(µH) =

∑
α∈I

c2
αα!. Moreover, cα = 1

α!
EµH (GH̃α(ω)) and

‖G‖L2(µH) = ‖G ◦M‖L2(µ).

Definition 2.8.4 ([29]) Let M : L2(µH) → L2(µ) be defined by

M(H̃α) = Hα and extend it by linearity and continuity to

M

(∑
α∈I

cαH̃α

)
=
∑
α∈I

cαHα (2.71)

for G =
∑

α∈I cαH̃α ∈ L2(µH).
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2.8 Fractional White Noise Spaces 113

Note that from (2.6), (2.70) and (2.71) it follows that

M(H̃α(ω)) = H̃α(Mω) = Hα(ω), ω ∈ S ′(R), α ∈ I.

It holds that

‖M(H̃α)‖L2(µ) = ‖Hα‖L2(µ) = α! = ‖H̃α‖L2(µH),

thus the operator M is an isometry between spaces of classical Gaussian
and fractional Gaussian random variables and its action can be seen as
a transformation of the corresponding elements of the orthogonal basis
{H̃α}α∈I into {Hα}α∈I. The connection between the two bases is given by

Hα(ω) = MH̃α(ω) and H̃α(ω) = M−1Hα(ω), ω ∈ S ′(R), α ∈ I. Thus,
every element F ∈ L2(µH) can be represented as the image of a unique
f(ω) =

∑
α∈I cαHα(ω) ∈ L2(µ) such that F = M−1f . Then, F is of the form

F (ω) =
∑
α∈I

cα H̃(ω).

For P = µH the spaces in (2.30) reduce to fractional q-weighted spaces
of stochastic test functions and stochastic generalized functions. In [26] we
considered the following inclusions

exp(S)µH1 ⊆ (S)µH1 ⊆ L2(µH) ⊆ (S)µH−1 ⊆ exp(S)µH−1 .

The action of the operator M can be extended to q-weighted spaces by
defining M : (Q)µH−1 → (Q)µ−1 given by

M

[∑
α∈I

aαH̃α(ω)

]
=
∑
α∈I

aαHα(ω), aα ∈ R. (2.72)

This extension is well defined since there exists p ∈ N such that∑
α∈I

a2
αq
−p
α <∞.

In an analogous way the action of the operator M can be extended to
generalized stochastic processes.

Example 2.8.3 Fractional Brownian motion B
(H)
t (ω) as an element of

L2(µ) is defined by the chaos expansion

B
(H)
t (ω) = 〈ω,Mχ[0, t]〉 = 〈Mω,χ[0, t]〉

=
∞∑
k=1

(χ[0, t], ek)L2
H(R) 〈Mω, ek〉 =

∞∑
k=1

(Mχ[0, t],Mek)L2(R) 〈ω,Mek〉

=
∞∑
k=1

(χ[0, t],Mξk)L2(R) 〈ω, ξk〉 =
∞∑
k=1

(∫ t

0

Mξk(s)ds

)
Hε(k)(ω).

(2.73)
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114 White Noise Analysis and Chaos Expansions

Applying the map M−1 = M(1−H) we obtain the chaos decomposition form
of fractional Brownian motion in L2(µH):

B
(H)
t (ω) =

∞∑
k=1

(∫ t

0

Mξk(s)ds

)
H̃ε(k)(ω). (2.74)

On the other hand,

B
(H)
t (ω) =

∞∑
k=1

〈χ[0, t], ξk〉L2(Rn)〈ω,Mξk〉

=
∞∑
k=1

(∫ t

0

ξk(s)ds

)
〈ω,Mξk〉. (2.75)

Note that for a fixed Hurst parameter H ∈ (0, 1) we have M = M (H) and due

to (2.63) M−1 = M (1−H), thus e
(H)
k = M (1−H)ξk implies M (H)ξk = e

(1−H)
k and

we may consider (2.75) to be the chaos decomposition of fractional Brownian
motion in L2(µ(1−H)) = L2(µ ◦M (H)) by the orthogonal basis

H̃ε(k)(ω) = 〈ω, e(1−H)
k 〉.

In other words, fractional Brownian motion with Hurst parameter H ∈ (0, 1)
is the image of classical Brownian motion under the mapping M = M(H) in
the fractional white noise space L2(µ(1−H)). Thus, we can consider fractional
Brownian motion as an element of three different spaces, as defined in (2.73),
(2.74) and (2.75).

Example 2.8.4 Fractional white noise W
(H)
t (·) is defined by the chaos

expansions

W
(H)
t (ω) =

∞∑
k=1

Mξk(t)Hε(k)(ω)

=
∞∑
k=1

ξk(t) H̃ε(k)(ω) (2.76)

in the spaces (S)µ−1 and (S)
µ(1−H)

−1 respectively. It is integrable and the relation
d
dt
B

(H)
t = W

(H)
t holds in the (S)µ−1 sense.
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2.8 Fractional White Noise Spaces 115

2.8.3 Fractional Poissonian white noise space

In this subsection we follow [29] and use the same idea as in the Gaussian
case and apply the isomorphism M = M (H) to the elements of the Poissonian
white noise space to obtain their corresponding fractional versions. Let H ∈
(0, 1) and recall the mapping J : L2(R) → L2(ν), defined in the Section 2.3
by

J(f) = 〈ω, f〉 −
∫
R
f(x)dx.

Now we define
J (H) := J ◦M

as the mapping L2(R)→ L2(ν),

f 7→ 〈ω,Mf〉 −
∫
R
Mf(x)dx.

Then ‖J (H)(f)‖L2(ν) = ‖J(Mf)‖L2(ν) = ‖Mf‖L2(R) = ‖f‖L2(R) holds for all
f ∈ L2(R). Similarly as in (2.69) we let

L2(νH) = L2(ν ◦M−1)

= {F : Ω→ R; G ◦M ∈ L2(ν)} (2.77)

be the space of square integrable functions on S ′(R) with respect to the
fractional Poissonian white noise measure νH .

Definition 2.8.5 Define the family of Charlier polynomials

C̃α(ω) = C|α|(ω; e1, ..., e1︸ ︷︷ ︸
α1

, ...., em, ..., em︸ ︷︷ ︸
αm

), α = (α1, ..., αm, 0, 0, ...) ∈ I,

where Ck are defined by (2.22) and the family {ek}k∈N by (2.66).

The family of Charlier polynomials forms the orthogonal basis of the Hilbert
space of fractional Poissonian random variables i.e. L2(νH) consists of ele-

ments F =
∑

α∈I aα C̃α(ω), aα ∈ R such that ‖F‖2
L2(νH) =

∑
α∈I a

2
αα! <∞.

Definition 2.8.6 The mapping M−1 : L2(ν)→ L2(νH) defined by

C̃α(ω) = M−1Cα(ω), α ∈ I, (2.78)

extends by linearity and continuity to L2(ν).
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116 White Noise Analysis and Chaos Expansions

Thus, every element G ∈ L2(νH) can be represented as an inverse image
of a unique g =

∑
α∈I aαCα(ω) ∈ L2(ν) such that

G(ω) = M−1g(ω) =
∑
α∈I

aαCα(ω) ∈ L2(ν).

Example 2.8.5 A right t-continuous version of the process

P
(H)
t (ω) = J (H)χ[0, t](ω) = J(Mχ[0, t])(ω), ω ∈ S ′(R)

belongs to L2(νH) and is called the fractional compensated Poisson process.
It is given by the chaos expansions

P
(H)
t (ω) =

∞∑
k=1

(∫ t

0

Mξk(s)ds

)
Cε(k)(ω) in L2(ν), (2.79)

P
(H)
t (ω) =

∞∑
k=1

(∫ t

0

ξk(s)ds

)
C̃ε(k)(ω) in L2(ν(1−H)). (2.80)

Example 2.8.6 Fractional compensated Poissonian noise is defined by the
chaos expansions

V
(H)
t (ω) =

∞∑
k=1

ξk(t) C̃ε(k)(ω) =
∞∑
k=1

Mξk(t)Cε(k)(ω), (2.81)

in the spaces (S)
ν(1−H)

−1 and (S)ν−1 respectively.

Theorem 2.8.2 ([29]) Let U : L2(µ)→ L2(ν) and M : L2(µH)→ L2(µ) be
the isometries defined by (2.29) and (2.71) respectively. Then U ◦ M−1 is
well defined and we have

M−1 ◦ U = U ◦ M−1

i.e. the following diagram is commutative.

L2(µ)
M−1

//

U◦M−1

M−1◦U &&MMMMMMMMMM

U
��

L2(µH)

U
��

L2(ν)
M−1

// L2(νH)

Diagram 1.
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2.8 Fractional White Noise Spaces 117

Proof. Let F =
∑

α∈I fαH̃α ∈ L2(µH). Then by applying the composition
M ◦ U ◦M−1 to F we obtain an element in L2(νH) given in the form

M ◦ U ◦ M−1(F ) = M ◦ U

(∑
α∈I

fαHα

)
= M

(∑
α∈I

fαCα

)
=
∑
α∈I

fαC̃α.

On the other hand, when applying U to F we obtain the same element, i.e.

U (F ) = U

(∑
α∈I

fαH̃α

)
=
∑
α∈I

fαC̃α.

This follows from the uniqueness of chaos expansion in orthogonal basis. �

2.8.4 Summary

• Since there exists an isomorphism M between the classical white noise
spaces (Gaussian or Poissonian) and their corresponding fractional
white noise spaces; and also there exists the isomorphism U between
Gaussian and Poissonian white noise spaces (classical or fractional),
all results obtained, for example, in the classical Gaussian case can be
interpreted in all other spaces.

In this manner, the space L2(νH) can be obtained from the frac-
tional Gaussian white noise space by L2(νH) = U[L2(µH)] or directly
from the Gaussian white noise space L2(νH) = U[M−1[L2(µ)]] or
L2(νH) = M−1[U[L2(µ)]]. All connections are described in the
Diagram 1, given in Theorem 2.8.2.

• Denote by ek, k ∈ N the orthonormal basis of L2
H(R), i.e. the orthonor-

mal fractional basis ek = M−1ξk, k ∈ N for H ∈ (0, 1), which reduces
to the orthonormal Hermite basis ξk, k ∈ N for H = 1

2
. The orthogonal

basis Kα, α ∈ I of the four white noise spaces L2(P ), built on the white
noise space (S ′(R),B, P ), is thus obtained in the manner described in
the following table:

white noise classical fractional
space Gaussian Poissonian Gaussian Poissonian

measure P µ ν µH νH
basis Kα Hα Cα H̃α C̃α
basis ek ξk ξk ek ek

Table 1.
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Chapter 3

Malliavin Calculus in Chaos
Expansions Framework for
Square Integrable Processes

In this chapter we return to an infinite-dimensional differential calculus of
variations, called the Malliavin stochastic calculus, in the white noise space.
We summarize the most important results within this theory involving the
operators of Malliavin calculus acting on appropriate random variables, al-
together with their fractional versions. Recall that the main operators of
the Malliavin calculus: the Malliavin derivative operator D, the divergence
operator i.e. Itô-Skorokhod integral δ and the Ornstein-Uhlenbeck operator
R = δD and their chaos expansion forms have been used in different frame-
works. In the general context of a Fock space the Malliavin derivative D
coincides with the annihilation operator, the divergence operator δ coincides
with the creation operator and their composition, the Ornstein-Uhlenbeck
operator R, with the number operator studied in quantum probability.

The chaos expansion method provides us with a unified approach, valid
for both, the continuous and discontinuous measures and can be carried out
naturally to the Lévy processes setting.

Following [7], [8], [20], [31], [46], [63], [59] we first introduce the Malliavin
derivative, the Skorokhod integral and the Ornstein-Uhlenbeck operator as
operators with values in L2(P ). In addition, in Chapter 4 we will allow the
operators of Malliavin calculus to take values in some q-weighted distribution
space and thus obtain a larger domain for all operators. Moreover, in Chapter
5 we will extend actions of the Malliavin operators to a class of singular
generalized stochastic processes and apply them to some classes of stochastic
differential equations.
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3.1 Classical Malliavin calculus 119

The main theorems and properties of Malliavin operators in this chapter
will be stated for both, the Gaussian and the Poissonian white noise spaces
due to the unitary mapping U : L2(µ) → L2(ν). We end this chapter with
introducing the fractional operators of Malliavin calculus defined on L2(P )
and L2(PH) spaces for all H ∈ (0, 1). Throughout this chapter we will use
the notation L2(P,H) for the set of H-valued random variables L2(Ω, H).

3.1 Classical Malliavin calculus

The first part of this chapter is devoted to definitions of stochastic derivatives
considered separately for random variables belonging to the space of Gaussian
square integrable random variables L2(µ) and to the space of Poissonian
square integrable random variables L2(ν) . In spite of many similarities, there
are important distinctions between the Gaussian and the Poissonian case. In
particular, in the Gaussian case definitions of the directional derivative and
the Malliavin derivative are equivalent and both, the ordinary chain rule and
the Wick chain rule are valid. In the Poissonian case, when the stochastic
gradient is defined as the directional derivative the ordinary chain rule is
satisfied, but the Wick chain rule is not. Thus in the Poissonian case we have
to abandon the Malliavin derivative based on the directional derivative and
define it in terms of chaos expansions in the Charlier polynomials orthogonal
basis of L2(ν), analogously to the definition in general Gaussian case. With
this restriction we continue. For more information we refer to [1], [10], [22],
[49], [59].

3.1.1 The derivative operator in L2(µ)

We assume that the basic probability space is the Gaussian white noise space.

Following [7], [19], [20] and [46] we introduce a notion of the stochastic
derivative DF of a square integrable random variable F : Ω→ R, defined on
a Gaussian white noise space (Ω,F, µ), where Ω = S ′(R), and we recall the
main relations between integral and differential calculus. Suppose now that
the separable Hilbert space H is L2(R) space equipped with the Lebesque
measure λ on R.

In the theory of Gaussian Hilbert spaces, introduced in Section 1.5, the
scalar product (DF, h)H is interpreted as a directional derivative in direc-
tion h. We consider now only directions which belong to a subspace of Ω
called the Cameron-Martin space H. An absolutely continuous function with
respect to the Lebesque measure, i.e. a trajectory γ ∈ Ω belongs to the
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120 Malliavin Calculus for Chaos Expansions in L2(P )

Cameron-Martin space H if it can be represented as

γ(t) =

∫ t

0

g(s) ds, (3.1)

for some g ∈ L2(R). Thus H is a Hilbert space with respect to the inner
product

(γ1, γ2)H =

∫ t

0

g1(s) g2(s) ds

and is isomorphic to L2(R).
Elementary random variables F ∈ E are defined in Section 1.5. In this

particular case they are of the form

F = f(〈ω, y1〉, ..., 〈ω, yn〉), (3.2)

for a smooth function f ∈ C∞(Rn) of polynomial growth with and all its
partial derivatives, where y1, ..., yn ∈ L2(R) are deterministic functions and
n ∈ N. We formulate a version of Definition 1.5.3 for this specific case.

Definition 3.1.1 The stochastic derivative D of an elementary random
variable F ∈ E ⊆ L2(µ) of the form (3.2) is the L2(R)-valued random variable
defined by

DF =
n∑
i=1

∂f

∂xi
(〈ω, y1〉, ..., 〈ω, yn〉) · yi. (3.3)

In particular, when the underlying isonormal family is the family of Brownian
motion Bt = 〈ω, χ[0, t]〉, t ≥ 0 it it follows that

(DF, γ)L2(R) =
n∑
i=1

∂f

∂xi
(Bt1 , ..., Btn) ·

∫ ti

0

g(s)ds

=
d

dε
F (ω + εγ) |ε=0

As a result, we can use the following definition for the Malliavin derivative
operator in the Gaussian white noise space.

Definition 3.1.2 Let F ∈ L2(µ) and γ ∈ L2(R) be of the form (3.1). Then
the directional derivative of F in direction γ is defined by

DγF (ω) = lim
ε→0

F (ω + εγ)− F (ω)

ε

=
d

dε
F (ω + εγ) |ε=0, (3.4)
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3.1 Classical Malliavin calculus 121

provided that the limit exists in L2(µ).
Assume that there exists a function ψ : R→ L2(µ) such that

DγF (ω) =

∫
R
ψt(ω) γ(t) dt, for all γ ∈ L2(R).

Then we say that F is differentiable and we call

DF (ω) := ψt(ω), t ∈ R (3.5)

the Malliavin derivative or the stochastic gradient of a random variable F .

The Malliavin derivative DF is not a derivative with respect to t, but a kind
of derivative with respect to ω ∈ Ω.

The domain of extension of D : E → L2(µ, L2(R)) onto L2(µ) is called
the Malliavin Sobolev space and is denoted by D1,2. That is the set of all
Malliavin differentiable random variables. Note that when considering the
Gaussian white noise case definitions of the stochastic gradient of a random
variable Definition 3.1.1 and Definition 3.1.2 are equivalent, i.e. the Malli-
avin derivative in Brownian motion case can be interpreted as a stochastic
gradient.

Example 3.1.1 Let F (ω) = 〈ω, f〉 =
∫
R f(s)dBt(ω), for some deterministic

function f ∈ L2(R) and ω ∈ Ω. Then by linearity

DγF (ω) = lim
ε→0

〈ω + εγ, f〉 − 〈ω, f〉
ε

=

∫
R
f(t)γ(t)dt

= (f, γ)L2(R), for all γ ∈ L2(R).

Thus the random variable F is differentiable in the sense of the Definition
3.1.2 and its derivative is given by

D

(∫
R
f(s)dBs

)
= DI(f) = f(t), for almost all t. (3.6)

In particular, for F (ω) = Bt(ω) we obtain

DBt = χ[0, t], for t ∈ R.

On the other hand, in the sense of Definition 3.1.1 it is clear that we also
obtain DF (ω) = D〈ω, f〉 = f(t), t ∈ R.
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122 Malliavin Calculus for Chaos Expansions in L2(P )

Some of the basic properties of the calculus, such as chain rule, follow
easily from Definition 3.1.2. The stochastic gradient satisfies the chain rule,
with respect to both, the ordinary product and the Wick product. Proofs
can be found in [10] and [46].

Theorem 3.1.1 (Chain rule) Let f : Rn → R be a Lipschitz continuous
function, i.e. there exists C > 0 such that

|f(x)− f(y)| ≤ C|x− y|, for all x, y ∈ Rn.

Let X = (X1, ..., Xn) be an n-dimensional random variable where each com-
ponent Xi : Ω→ Rn is differentiable. Then f(X) is differentiable and

Df(X) =
n∑
k=1

∂f

∂xk
(X) · DXk. (3.7)

We use now the definition (2.37) for the Wick version f♦ of a function f
and assume the sum converges in the Hida space of distributions (S)∗. We
state the Wick chain rule theorem, which will also remain true for q-weighted
stochastic distributions.

Theorem 3.1.2 (Wick chain rule) Let f : Rn → R be a real analytic
function and let X = (X1, ..., Xn) be an n-dimensional vector such that Xi ∈
(S)∗ for every i = 1, ..., n. Then, if f♦(X) ∈ (S)∗ then it is differentiable and

Df♦(X) =
n∑
k=1

(
∂f

∂xk

)♦

(X)♦DXk. (3.8)

Alternatively, the Malliavin derivative can be also introduced by means of
the Wiener-Itô chaos expansion of a random variable. Recall, every random
variable F ∈ L2(µ) has a chaos representation form either expressed in terms
of iterated stochastic integrals or in terms of orthogonal Fourier-Hermite
basis. The following theorems are describing the domain of the Malliavin
derivative of F given in both representation forms.

Let F ∈ L2(µ) be represented in terms of the Wiener-Itô chaos expansion
as a series of iterated Itô integrals of symmetric functions fn ∈ L2(Rn) with
respect to Brownian motion F =

∑∞
n=0 In(fn). Then the domain D1,2 of the

derivative operator D is characterized by

E(‖DF‖2
H) =

∞∑
n=1

n‖In(fn)‖2
L2(µ) <∞.

In this setting the Malliavin derivative gets the following chaos expansion
representation form.
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3.1 Classical Malliavin calculus 123

Theorem 3.1.3 Let F =
∑∞

n=0 In(fn) ∈ L2(µ) for a family of symmetrized

functions fn ∈ L̂2(Rn). Then, F is differentiable if and only if condition

∞∑
n=1

nn! ‖fn‖2
L2(Rn) <∞ (3.9)

is satisfied. Thus the Malliavin derivative of F has the chaos expansion

DF =
∞∑
n=0

nIn−1(fn(·, t)), (3.10)

where In−1(fn(·, t)) represents the (n − 1)−iterated first order Itô inte-
grals with respect to the first n − 1 variables t1, ..., tn−1 of a function
fn(t1, ..., tn−1, t).

Here we omit the proof and refer the reader to [8] and [46].

The characterization of the Malliavin differentiable square integrable
random variables, represented in the chaos expansion form of the Fourier-
Hermite orthogonal basis is stated in the following theorem.

Theorem 3.1.4 Let F ∈ L2(µ) have a chaos expansion representation of the
form F (ω) =

∑
α∈I cαHα(ω), cα ∈ R. A random variable F is differentiable

in the Malliavin sense if and only if the condition

∑
α∈I

|α|α! c2
α <∞ (3.11)

is satisfied, with |α| =
∑∞

k=1 αk the length of multi-index α = (α1, α2, · · · ) ∈
I. Then the stochastic gradient of F has the chaos expansion of the form

DF (ω) =
∑
α∈I

∑
k∈N

cααkHα−ε(k)(ω)ξk(t), for a.a. t ∈ R. (3.12)

Proof. Assume F ∈ L2(µ) is differential in the Malliavin sense. The ex-
pression (3.12) follows directly by use of the linearity property, chain rule
(3.7), result (3.6) from Example 3.1.1 and property (1.2) for the Hermite
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124 Malliavin Calculus for Chaos Expansions in L2(P )

polynomials

DF = D

[∑
α∈I

cα

∞∏
k=1

hαk(〈ω, ξk〉)

]

=
∑
α∈I

cα
∑
i∈N

[
h′αi(〈ω, ξi〉)

∏
k 6=i

hαk(〈ω, ξk〉)

]

=
∑
α∈I

cα
∑
i∈N

[
αihαi−1 ξi(t)

∏
i 6=k

hαk(〈ω, ξk〉)

]

=
∑
α∈I

cα
∑
i∈N

αi ξi(t)

[
hαi−1 ·

∏
i 6=k

hαk(〈ω, ξk〉)

]
=

∑
α∈I

∑
i∈N

αi cαξi(t)Hα−ε(i)(ω)

with α− ε(k) = (α1, ..., αk−1, αk − 1, αk+1, ...). Operator D maps the domain
D1,2, represented through the condition (3.11), into L2(µ, L2(R)), i.e. we
have to prove now that ‖DF‖2

L2(µ,L2(R)) is finite. Recall, the family of the

Hermite functions {ξk}k∈N constitutes an orthonormal basis in L2(R) and the
family of the Fourier-Hermite polynomials is an orthogonal basis in L2(µ),
therefore we have (ξk, ξj)L2(R) = δk,j, for all k, j ∈ N and Eµ(HαHβ) = α!δαβ,
for all α, β ∈ I, with δ denotes the Kronecker delta symbol. Thus

‖DF‖2
L2(µ,L2(R)) = Eµ(DF,DF )L2(R) =

=
∑
α,β∈I

∑
k,j∈N

αkβjcαcβ Eµ(Hα−ε(k)Hβ−ε(j))(ξk, ξj)L2(R)

=
∑
α,β∈I

∑
k∈N

α2
k c

2
αEµ(Hα−ε(k)Hβ−ε(k))

=
∑
α∈I

∑
k∈N

α2
k (α− ε(k))! c2

α

=
∑
α∈I

(
∑
k∈N

αk)α! c2
α

=
∑
α∈I

|α|α! c2
α < ∞

by assumption, provided (α− ε(k))! = α!
αk

, k ∈ N. �

Operator D is continuous from D1,2 into L2(µ, L2(R)).
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3.1 Classical Malliavin calculus 125

By linearity and continuity the definition of the Malliavin derivative in
terms of the chaos expansions can be extended to wider classes of random
variables, in particular, to q-weighted random variables.

3.1.2 The derivative operator in L2(ν)

Now we focus on the Poissonian white noise space and consider the Malli-
avin derivative of square integrable Poissonian random variables discussed in
Section 2.3.

Every Poissonian random variable F ∈ L2(ν) admits two types of chaos
expansion representations, first as series of iterated Itô-Poisson integral of
symmetric functions with respect to the compensated Poisson process and
second in terms of the Charlier polynomials orthogonal basis of L2(ν). We
define the Malliavin derivative of a Poissonian random variable analogously
to both definitions, Definition 3.1.1 and Definition 3.1.2, in the Gaussian
case. In the Poissonian case these two definitions of the Malliavin derivative
are not equivalent and the Malliavin derivative cannot be interpreted as a
directional derivative. Actually in discontinuous case it is interpreted as a
difference operator.

In particular, if we maintain definitions (3.3) and (3.5) in the Poissonian
case, than as in the Gaussian case the ordinary chain rule (3.7) holds but
the Wick chain rule (3.8) is no more valid. To see this clearly we present the
example from [1].

Example 3.1.2 Let F (ω) = 〈ω, ξi〉♦
ν 2. Then from properties (2.24) and

(2.25) of the Charlier polynomials and Cα♦ν Cβ = Cα+β, α, β ∈ I it follows
that

C2ε(i) = 〈ω, ξi〉2 − 〈ω, ξ2
i 〉 − 2〈ω, ξi〉

∫
R
ξi(t) dt+ (

∫
R
ξi(t) dt)

2, i ∈ N

and thus we have

F (ω) =

(
Cε(i)(ω) +

∫
R
ξi(t) dt

)♦ν 2

= C2ε(i)(ω) + 2Cε(i)(ω)

∫
R
ξi(t) dt+ (

∫
R
ξi(t) dt)

2

= 〈ω, ξi〉2 − 〈ω, ξ2
i 〉.

Therefore, by (3.7), we obtain

DF (ω) = D
(
〈ω, ξi〉2 − 〈ω, ξ2

i 〉
)

= 2〈ω, ξi〉ξi(t)− ξ2
i (t)

6= 2〈ω, ξi〉 ξi(t).
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126 Malliavin Calculus for Chaos Expansions in L2(P )

Equivalently we have

D(C2ε(i)(ω)) = D

(
〈ω, ξi〉♦

ν 2 − 2C2ε(i)

∫
R
ξi(t) dt+ (

∫
R
ξi(t) dt)

2

)
= 2Cε(i)(ω)ξi(t)− ξ2

i (t)

6= 2C2ε(i)(ω)ξi(t).

Having in mind the previous example, we must abandon in the Poissonian
case the Malliavin derivative based on the directional derivative in Definition
3.1.2. We orientate on stating the formal definition of a stochastic derivative,
i.e the Malliavin derivative in terms of chaos expansions via the Charlier
polynomials in an analogous way as in a general Gaussian case.

Definition 3.1.3 Let F (ω) =
∑

α∈I fαCα(ω) ∈ L2(ν), fα ∈ R, α ∈ I. We
say that a random variable F is Malliavin differentiable if the condition∑

α∈I

|α|α! f 2
α <∞

is satisfied and write F ∈ D1,2
ν . Then the chaos expansion form of the Malli-

avin derivative of F is given by

DνF (ω) =
∑
α∈I

∑
k∈N

fα αk Cα−ε(k)(ω) ξk(t), for a.a. t ∈ R. (3.13)

With this definition the ordinary chain rule does not hold.

Consider again F (ω) = 〈ω, ξi〉♦
ν 2 from Example 3.1.2. From (3.13) and the

Wick chain rule (3.8) for the Poissonian case, we obtain

Dν
(
〈ω, ξi〉2

)
= Dν

(
〈ω, ξi〉♦

ν 2 + 〈ω, ξ2
i 〉
)

= 2〈ω, ξi〉 ξi(t) + ξ2
i (t)

6= 2〈ω, ξi〉 ξi(t). (3.14)

More precisely, Dν is equivalent to a finite difference operator and we have

DνF (ω) = F (ω + δt)− F (ω), a.a t, ω,

if F is in L2(ν) domain of Dν , where δt ∈ S ′(R) is the Dirac measure at t.
As a consequence, the non-classical derivation property holds

Dν(FG) = F DνG + GDνF + DνF DνG, for F,G, FG ∈ D1,2
ν .

For more information we refer to [1], [10], [22], [49], [59].
One can prove that Theorem 3.1.3 is also valid in the Poissonian case.
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3.1 Classical Malliavin calculus 127

3.1.3 The divergence operator in L2(P,L2(R))

In the framework of abstract Wiener space, the divergence operator is de-
fined as adjoint operator of the Malliavin derivative, see Section 1.5.3. In
particular, if the underlying Hilbert space H is L2(R) space, we interpret the
divergence operator as a stochastic integral and we call it the Skorokhod inte-
gral, because in the Brownian motion case it coincides with the generalization
of the Itô stochastic integral to anticipating integrands. In Section 2.2.6 we
defined the Skorokhod integral on a set of stochastic process u(t, ω) = ut(ω),
ω ∈ Ω, t ∈ R which are Ft-measurable for all t ∈ R and Eµu

2
t (ω) < ∞, for

all t ∈ R and represented them in chaos expansion form in terms of multiple
Itô integrals.

Now we follow the general notions from Section 2.7.5 and denote by

δ(ut) =

∫
R
ut δQt(ω)

the P -Itô-Skorokhod stochastic integral of a process ut with respect to Qt. If
we choose P = µ, the Gaussian measure, then Qt = Bt is a Brownian motion
and if we choose P = ν, the Poissonian measure, then Qt = Pt denotes a
compensated Poisson process. The stochastic derivative, defined in terms of
orthogonal polynomial basis of L2(P ), is denoted by D and its domain by
D1,2.

In white noise setting, the domain Dom(δ) of the divergence operator
of a process u is the set of L2(R)-valued integrable random variables u ∈
L2(P,L2(R)) such that

|E[(DF, u)L2(R)]| ≤ c ‖F‖L2(P ), for all F ∈ D1,2,

where c is some constant depending on u. If u ∈ Dom(δ), then the unique
element δ(u) ∈ L2(P ) is obtained from

E[F δ(u)] = E[(DF, u)L2(R)], for all F ∈ D1,2.

Two types of conditions which characterize the domain of the Skorokhod
integrable random variables are distinguished. In Section 2.2.6 we defined
the Skorokhod integral in terms of multiple Itô integrals by relation (2.18)
and thus characterized its domain Dom(δ) by condition (2.19), i.e. by

∞∑
n=0

(n+ 1)! ‖f̃n,t‖2
L2(Rn+1) <∞.

The same condition is valid for the Itô-Poissonian integrals.
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128 Malliavin Calculus for Chaos Expansions in L2(P )

On the other hand, the operator δ can be computed in terms of chaos
expansion of a L2(R)-valued random variable u, by the orthogonal basis

{ ξk(t)Kα(ω) }α∈I, k∈N,

i.e. we have the relation

δ [ ξk(t)Kα(ω) ] = Kα+ε(k)(ω), α ∈ I, k ∈ N.

This is a consequence of Theorem 2.7.4. Recall that the chaos expan-
sion form of the Skorokhod integral of a generalized stochastic process
Ft =

∑
α∈I

fα(t)Kα, with the coefficients fα =
∑
k∈N

fα,k ξk ∈ L2(R) for all α ∈ I

is given by

∫
R
Ft(ω) δQt(ω) =

∫
R

(∑
α∈I

∑
k∈N

fα,k ξk(t)Kα(ω)

)
δQt(ω)

=
∑
α∈I

∑
k∈N

fα,kKα+ε(k)(ω),

An equivalent characterization of the domain Dom(δ), stated by the cri-
terion (2.19), is given in the following theorem.

Theorem 3.1.5 Let Ft : R → L2(P ), t ∈ R be a generalized stochas-
tic process given in the form Ft =

∑
α∈I fα(t)Kα, with the coefficients

fα =
∑

k∈N fα,k ξk ∈ L2(R) for all α ∈ I. If the condition∑
α∈I

∑
k∈N

f 2
α,k |α| α! < ∞ (3.15)

is satisfied then the stochastic process Ft is Skorokhod integrable, i.e.
Ft ∈ Dom(δ).

Proof. Due to the condition (3.15) we have

‖δ(Ft)‖2
L2(P ) = ‖

∑
α∈I

∑
k∈N

fα,k ξk(t)Kα‖2
L2(P )

=
∑
α∈I

∑
k∈N

f 2
α,k (α + ε(k))!

=
∑
α∈I

∑
k∈N

f 2
α,k (αk + 1) α!

≤ C
∑
α∈I

∑
k∈N

f 2
α,k |α| α! <∞.

�
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3.1 Classical Malliavin calculus 129

Further on we consider the Skorokhod integral of stochastic generalized
processes and state some of the most important results of stochastic
differential calculus. For proofs and more details we refer to [19], [20], [32],
[34], [35], [37], [46].

The connection between the Malliavin derivative and the Itô-Poisson-
Skorokhod integral is given by relation (3.16) in the following theorem.

Theorem 3.1.6 (The fundamental theorem of stochastic calculus) Let Ft be
a stochastic process such that EP [

∫
R F

2
t dt] <∞. Assume

• Ft ∈ D1,2, for all t ∈ R,

• DFt ∈ Dom(δ) for all t ∈ R and

• E[
∫
RDFt dt]

2 <∞.

Then
∫
R Ft δQt is a well defined element from D1,2 and

D

(∫
R
Ft(ω) δQt(ω)

)
=

∫
R
DYt(ω) δQt(ω) + Yt(ω). (3.16)

Proof. Suppose Ft =
∑

α∈I fα(t)Kα(ω). Then we apply the Malliavin
derivative D, given by (3.12) and (3.13), to the chaos expansion of the Sko-
rokhod integral of F , represented by the property (2.59) and obtain

D

(∫
R
Yt δQt(ω)

)
= D

( ∑
α∈I,k∈N

fα,kKα+ε(k)(ω)

)
=

∑
α∈I,k∈N

fα,k
∑
i∈N

(α + ε(k))iKα+ε(k)−ε(i) ξi(t)

=
∑

α∈I,k∈N

fα,k

[
(αk + 1)Kαξk +

∑
i∈N,i 6=k

αiKα+ε(k)−ε(i)ξi

]
.

On the other side, by applying the formula (2.59) to process DYt we obtain

D

(∫
R
Yt δQt(ω)

)
=

∑
α∈I,k∈N

(fα, ξk)L2(R)

[
(αk + 1)Kαξk +

∑
i∈N,i 6=k

αiKα+ε(k)−ε(i)ξi

]
.

Thus the equality (3.16) follows. �

Relation between the ordinary product and the Wick product is stated
by the following theorem.
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130 Malliavin Calculus for Chaos Expansions in L2(P )

Theorem 3.1.7 Let g ∈ L2(R) be a deterministic function and F ∈ L2(P )
be a random variable. Then

F ♦
∫
R
gdQt = F ·

∫
R
g dQt −

∫
R
g DF dt.

Theorem 3.1.8 (Integration by parts formula) Let F ∈ L2(P ) and assume
that Y : R × Ω → R is Skorokhod integrable with

∫
R Yt(ω)δQt(ω) ∈ L2(P ).

Then

F ·
∫
R
Yt δQt =

∫
R
FYt δQt +

∫
R
YtDF dt, (3.17)

provided that the integral
∫
R YtDF dt converges in L2(P ). Moreover, the

Itô-Skorokhod isometry holds

EP

(∫
R
YtδQt

)2

= EP

(∫
R
Y 2
t dt

)
+ EP

(∫
R

∫
R
DYsDYt dsdt

)
.

Taking expectations on the both sides in (3.17), we obtain the duality formula

EP

(
F ·

∫
R
Yt δQt

)
= EP

(∫
R
YtDF dt

)
, (3.18)

i.e. the Skorokhod integral is the dual operator of the Malliavin derivative.
This important relationship between these two operators we will use when
defining the Malliavin operators of generalized stochastic processes in the
following chapter. As a consequence of the duality formula (3.18) it follows
that the Skorokhod integral is a closed operator.

Stochastic integral representation of Wiener functionals

We have already seen that any random variable F , which is measurable with
respect to a one-dimensional Brownian motion Bt, can be written as

F (ω) = E(F ) +

∫
R
ϕt(ω) dBt(ω),

where the process ϕ is an adapted square integrable process. One of the
main contributions of the Malliavin calculus is the famous Clark-Ocone for-
mula which gives an explicit representation of process ϕ in terms of the
Malliavin derivative. In particular, when ϕ ∈ D1,2 then by the Clark-Ocone
representation formula the process ϕ is represented as a conditional expec-
tation of the Malliavin derivative D of a given function F ∈ L2(Ω,F, µ) with
respect to the filtration Ft. Moreover, the process ϕ can be identified as the
orthogonal projection of the derivative of F .
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3.1 Classical Malliavin calculus 131

Theorem 3.1.9 (The Clark-Ocone formula) Let F ∈ D1,2 be Ft-measurable.
Then

F (ω) = E(F ) +

∫
R
E(DF |Ft) dBt(ω).

The proof of the theorem, provided by the chaos expansion approach, can be
found, for example in [10] and [46]. The formula (3.19) can only be applied
to random variables in D1,2. Extensions beyond this domain to the whole
L2(µ) are possible in the white noise framework (see [10]).

The corresponding version of the Clark-Ocone formula for the Poissonin
case is given in [1] and [49].

3.1.4 The Ornstein-Uhlenbeck operator

Let F ∈ L2(P ) be a square integrable random variable with respect to the
measure P . We let P to be either the Gaussian measure µ or the Poissonian
measure ν. Let F be represented in the form

F =
∑
α∈I

aαKα, aα ∈ R,

where Kα, α ∈ I is notation for the Fourier-Hermite polynomial basis in
L2(µ) or respectively for the Charlier polynomial basis in L2(ν). Consider
general results from the Section 1.5.

Definition 3.1.4 The operator defined as a composition of the Malliavin
derivative and the Skorokhod integral

R = δ ◦ D

is called the Ornstein-Uhlenbeck operator.

The Ornstein-Uhlenbeck operator is defined on the set D1,2 of Malliavin
differentiable square integrable random variables. We obtain

R

(∑
α∈I

aαKα

)
= δ

(∑
α∈I

∑
k∈N

αkaαKα−ε(k)

)

=
∑
α∈I

(∑
k∈N

αk

)
aαKα

=
∑
α∈I

|α| aαKα, (3.19)
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132 Malliavin Calculus for Chaos Expansions in L2(P )

provided that the sum converges in L2(P ). The orthogonal polynomials Kα

represent eigenfunctions of the operator R and the corresponding eigenvalues
are lengths of multi-indices |α|.

The domain of R is denoted by Dom(R) and is obtained from the condi-
tion

‖RF‖2
L2(P ) <∞.

Thus in terms of the chaos expansions the domain Dom(R) is characterized
by the following condition ∑

α∈I

a2
α |α|2α! <∞. (3.20)

3.2 Fractional Malliavin Calculus

In this section we study fractional versions of Malliavin operators: the frac-
tional Malliavin derivative, the fractional Itô-Skorokhod integral and the
fractional Ornstein-Uhlenbeck operator, for any value of the Hurst param-
eter H ∈ (0, 1) in the space of square integrable random variables L2(P ).
Using the white noise analysis approach we define fractional Malliavin op-
erators within chaos expansions in the classical white noise space. Recall
that the fractional transform operator M = M (H), introduced in Section
2.8.1, connects fractional Brownian motion B

(H)
t and classical Brownian mo-

tion Bt on the Gaussian white noise probability space (S ′(R),B, µ). It also

connects fractional compensated Poisson process P
(H)
t and classical compen-

sated Poissonian process Pt on the Poissonian white noise probability space
(S ′(R),B, ν). Due to the isometry provided by the fractional transform op-
erator, introduction of the fractional white noise theory is not required. Def-
inition of the fractional Malliavin derivative is connected to definition of
directional derivative and is an element of q-weighted distributional space.
The fractional stochastic integral, as an element of classical q-weighted distri-
butional space, is the adjoint operator of the fractional Malliavin derivative.
All the results stated in this section are obtained analogously to the results
from the classical Malliavin calculus and are given in the general case, i.e.
they are valid in both cases Gaussian and Poissonian. Moreover, we de-
fine the fractional operators of the Malliavin calculus on fractional space
L2(PH) = L2(P ◦M−1).

The main references used in this section are [7], [8], [13], [20], [41], [46].
The second approach in fractional Malliavin calculus is based on studying

fractional versions of the Malliavin derivative and the stochastic integral
for H ∈ (0, 1

2
) and for H ∈ (1

2
, 1) separately. For all H 6= 1

2
fractional
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3.2 Fractional Malliavin Calculus 133

Brownian motion is not a semimartingale. Semimartingales are the natural
class of processes for which a stochastic calculus can be developed and they
can be expressed as the sum of a bounded variation process and a local
martingale which has finite quadratic variation. In the case H < 1

2
the

quadratic variation is infinite and if H > 1
2

the quadratic variation is zero
and the 1-variation is infinite. For H 6= 1

2
it is necessary to define fractional

white noise space which differ from the classical one. Stochastic integral in
H < 1

2
case is of the Stratonovich type and for H > 1

2
is of the Itô-Skorokhod

type. For introduction to the classical and fractional Malliavin calculus in
these two concepts and connections between we refer to [7], [8], [20], [26],
[47].

3.2.1 The fractional Malliavin derivative in L2(µ)

Let H ∈ (0, 1). Following [7], [13] and [20] we introduce a notion of the
fractional Malliavin derivative D(H)F of a square integrable random variable
F ∈ L2(µ). This survey on fractional stochastic gradient for the Gaussian
case provides us a motivation for defining the fractional Malliavin derivative
in general case L2(P ). Let M = M (H) be the fractional transform operator
defined by (2.61).

Definition 3.2.1 Let F ∈ L2(µ) and γ ∈ Ω be of the form (3.1). Then F
has a directional derivative in the direction γ if

D(H)
γ F (ω) = lim

ε→0

F (ω + εMγ)− F (ω)

ε
(3.21)

the limit exists in L2(µ).
Assume that there exists function ψ : R→ L2(µ) such that

D(H)
γ F (ω) =

∫
R
MψtMγ(t) dt, for all γ ∈ L2

H(R).

Then we say that F is Malliavin differentiable and

D(H)F (ω) := ψt(ω), t ∈ R (3.22)

is called the fractional stochastic gradient or the fractional Malliavin deriva-
tive of a random variable F .

The fractional stochastic gradient in L2(µ) satisfies a chain rule both with
respect to the ordinary product and with respect to the Wick product of
random variables

D(H) (〈ω,Mf〉n) = n〈ω,Mf〉n−1 f(t), (3.23)
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134 Malliavin Calculus for Chaos Expansions in L2(P )

and

D(H)
(
〈ω,Mf〉♦n

)
= n〈ω,Mf〉♦(n−1) f(t), (3.24)

for a.a. t ∈ R. In particular,

D(H)(

∫
R
f dB

(H)
t ) = f(t) for a.a. t ∈ R.

The set of all differentiable random variables is denoted by D
(H)
1,2 and is

called the fractional Malliavin Sobolev space. The fractional Malliavin deriva-
tive D(H) is a continuous mapping from D

(H)
1,2 ⊆ L2(µ) onto L2(µ, L2

H(R)).

Example 3.2.1 From (3.23) and (3.24) we obtain

D(H)Hα(ω) =
∑
k∈N

cα αkHα−ε(k)(ω) ek(t), (3.25)

where ek = M−1ξk, k ∈ N are the elements of an orthonormal basis of L2
H(R).

This property is used as a motivation for stating an equivalent definition of
the fractional Malliavin derivative in L2(µ).

Definition 3.2.2 (Fractional Malliavin Sobolev spaces) Let D
(H)
1,2 be the set

of all random variables

F (ω) =
∑
α∈I

cαHα(ω) ∈ L2(µ), cα ∈ R

which satisfy the condition ∑
α∈I

|α|α! c2
α <∞. (3.26)

Then, a random variable F ∈ D
(H)
1,2 is called Malliavin differentiable and the

fractional Malliavin derivative of F has the chaos expansion of the form

D(H)F (ω) =
∑
α∈I

∑
k∈N

cα αkHα−ε(k)(ω) ek(t), for a.a. t ∈ R. (3.27)
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3.2 Fractional Malliavin Calculus 135

3.2.2 The fractional Malliavin derivative in L2(ν)

Due to Definition 3.2.2 and results stated in Section 3.2.1 for the Gaussian
case, we give the formal definition of the fractional Malliavin derivative in
the space of square integrable Poissonian random variables.

Definition 3.2.3 Let D
(H)
1,2 be the set of all random variables

F (ω) =
∑
α∈I

cαCα(ω) ∈ L2(ν), cα ∈ R

which satisfy the condition ∑
α∈I

|α|α! c2
α <∞. (3.28)

Then the fractional Malliavin derivative of F has the chaos expansion of the
form

D(H)F (ω) =
∑
α∈I

∑
k∈N

cα αk Cα−ε(k)(ω) ek(t), for a.a. t ∈ R.

3.2.3 Relation with the standard Malliavin
derivative in (Q)P−ρ

We continue with presentation of properties of the fractional Malliavin deriva-
tive in the general white noise space (Ω,F, P ), where P is either Gaussian
measure µ or Poissonian measure ν. Let Kα, α ∈ I denote the orthogonal
basis of L2(P ), i.e. the Fourier-Hermite polynomials Hα in L2(µ) and the
Charlier polynomials Cα in L2(ν). Let M = M (H) be the fractional transform
operator defined by (2.61). Denote by

L2(PH) = L2(P ◦M−1) (3.29)

the space of fractional random variables, where PH is the fractional measure
corresponding to the P , i.e. the fractional Gaussian measure µH or fractional
Poissonian measure νH . Let K̃α, α ∈ I denote the orthogonal polynomials
basis of L2(PH), i.e. the fractional Fourier-Hermite polynomials H̃α and the

fractional Charlier polynomials C̃α. Due to the Wiener-Itô chaos expansion
theorem, every F ∈ L2(PH) is of the form

F (ω) =
∑
α∈I

aαK̃α(ω),
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136 Malliavin Calculus for Chaos Expansions in L2(P )

for a unique family of constants aα ∈ R. Then the operator M induces the
mapping M : L2(PH)→ L2(P ) defined by

M

[∑
α∈I

aαK̃α(ω)

]
=
∑
α∈I

aαKα(ω),

which follows from Definition 2.8.4 in Section 2.8.2 and also Definition 2.8.6
in Section 2.8.3.

Denote by D the Malliavin derivative and D(H) the fractional Malliavin
derivative on L2(P ). Thus for a random variable F =

∑
α∈I

cαKα ∈ L2(P ),

cα ∈ R, the chaos expansion forms of its Malliavin derivatives, classical and
fractional, are given respectively by

• DF (ω) =
∑
α∈I

∑
k∈N

cα αkKα−ε(k)(ω) ξk(t), and

• D(H)F (ω) =
∑
α∈I

∑
k∈N

cα αkKα−ε(k)(ω) ek(t), for a.a. t ∈ R.

On an analogous way, we define the Malliavin derivative and the frac-
tional Malliavin derivative on fractional space L2(PH) and denote them by

D̃ respectively D̃(H). In particular, for F =
∑
α∈I

cα K̃α ∈ L2(PH), cα ∈ R

these operators on L2(PH) are represented in the following chaos expansion
forms

• D̃F (ω) =
∑
α∈I

∑
k∈N

cα αk K̃α−ε(k)(ω) ek(t), and

• D̃(H)F (ω) =
∑
α∈I

∑
k∈N

cα αk K̃α−ε(k)(ω)M−1ek(t), for a.a. t ∈ R.

The extension of the fractional Malliavin derivative, stated in Definition
3.2.2, from the space L2(P ) to the space of q-weighted stochastic distributions
(Q)P−ρ, for ρ ∈ [0, 1] is characterized by (3.27) and also denoted by D.

Relation between the fractional Malliavin derivative and the classical
Malliavin derivative of elements from L2(P ), respectively from L2(PH), are
given through the mapping M1.

Definition 3.2.4 Let F : R → (Q)P−ρ be a generalized stochastic processes
with respect to the measure P given in the form (2.44). We define the map-
ping M1 of F by the following

M1Ft(ω) = M1

(∑
α∈I

fα(t)Kα(ω)

)
=
∑
α∈I

Mfα(t)Kα(ω), (3.30)
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3.2 Fractional Malliavin Calculus 137

for coefficients fα ∈ L2
H(R), which are measurable functions, satisfying the

convergence condition (2.45) for some p > 0.

Theorem 3.2.1 Let F ∈ (Q)P−ρ. Then

DF = M1 ◦ D(H) F, for all t ∈ R. (3.31)

Proof. Let F have the chaos expansion representation

F (ω) =
∑
α∈I

cαKα(ω), cα ∈ R.

Then by (3.27) and (3.30) we obtain

M1D
(H)F = M1

(∑
α∈I

∑
k∈N

cα αk ek(t)Kα−ε(k)(ω)

)
=

∑
α∈I

∑
k∈N

cα αk ξk(t)Kα−ε(k)(ω)

= DF. �

• Similarly, for F ∈ (Q)PH−ρ we have

D̃ F = M1 ◦ D̃(H)F. (3.32)

Theorem 3.2.2 Let F ∈ (Q)PH−ρ for ρ ∈ [0, 1]. Then the following is true

D̃F = M−1 ◦ D(H) ◦ MF. (3.33)

Proof. Assume F =
∑
α∈I

fα K̃α ∈ (Q)PH−ρ such that the convergence condition

(2.45) in (Q)PH−ρ is satisfied for some p > 0. Then we obtain

M−1 ◦D(H) ◦MF = M−1 ◦D(H)

(∑
α∈I

fαKα

)

= M−1

(∑
α∈I

∑
k∈N

fα αkKα−ε(k)(ω) ek(t)

)
=

∑
α∈I

∑
k∈N

fα αk K̃α−ε(k)(ω) ek(t)

= D̃ F. �

• Moreover, for F ∈ (Q)PH−ρ , ρ ∈ [0, 1] we have:

D̃(H)F = M1
−1 ◦ M−1 ◦ D(H) ◦ MF. (3.34)
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138 Malliavin Calculus for Chaos Expansions in L2(P )

3.2.4 The fractional Wick Itô-Skorokhod integral

In this section we follow the notations from Section 2.7.5. Let Zt be a P -white
noise, i.e. a generalized stochastic process such that d

dt
Zt = Qt for a.a. t ∈ R,

in sense of the relation (2.46) and let Z
(H)
t be the corresponding fractional

generalized stochastic process such that d
dt
Z

(H)
t = Q

(H)
t , t ∈ R. In particular,

in the Gaussian case Qt = Bt is a Brownian motion and Zt = Wt is a singular
white noise, defined by (2.50) and (2.51) respectively, and Q

(H)
t = B

(H)
t is a

fractional Brownian motion and Z
(H)
t = W

(H)
t is a fractional singular white

noise, defined respectively by chaos expansion forms (2.73) and (2.76). In the
Poissonian case, Qt = Pt denotes a compensated Poisson process and Zt = Vt
a Poissonian compensated white noise, defined respectively by (2.52) and
(2.53) with the corresponding fractional versions, a fractional compensated

Poisson process P
(H)
t defined by (2.79) and a fractional Poissonian compen-

sated white noise V
(H)
t defined (2.81). Then, the chaos expansion of P -white

noise is given by

Zt(ω) =
∞∑
k=1

ξk(t)Kε(k) , t ∈ R

and the chaos expansion form of the fractional P -white noise is given by

Z
(H)
t (ω) =

∞∑
k=1

Mξk(t)Kε(k) , t ∈ R.

Definition 3.2.5 (The Wick Itô-Skorokhod integral) Let Y : R → (S)−1

be a stochastic process such that Yt♦Z
(H)
t is P -Pettis integrable in (S)−1.

Then Y is integrable in the Itô-Skorokhod sense and the Wick Itô-Skorokhod
integral of Y = Yt(ω) is defined by

δ(H)(Yt) =

∫
R
Yt(ω) dQ

(H)
t

=

∫
R
Yt ♦Z

(H)
t dt (3.35)

where ♦ denotes the P -Wick product.

Consider now a special case, when the process Y = f is a deterministic
function belonging to L2

H(R). Then from the chaos expansion form of the
fractional P -white noise it follows that the previous definition of the Wick
Itô-Skorokhod integral coincides with∫

R
f(t) dQ

(H)
t =

∫
R
Mf(t) dQt.
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3.2 Fractional Malliavin Calculus 139

Clearly, we have

∫
R
f(t)♦Z(H)

t dt =
∞∑
k=1

[ ∫
R
f(t)Mξk(t) dt

]
Kε(k)(ω)

=
∞∑
k=1

(f,Mξk)L2(R) Kε(k)(ω)

=
∞∑
k=1

(Mf, ξk)L2(R) Kε(k)(ω)

=

∫
R
Mf ♦Zt dt

=

∫
R
Mf(t) dQt.

Example 3.2.2 The fractional normalized stochastic exponential is defined
by

εMh = exp♦[〈ω,Mh〉]

= exp

(
〈ω,Mh〉 − 1

2
‖Mh‖2

L2(R)

)
, (3.36)

for h ∈ L2
H(R).

Theorem 3.2.3 Let a generalized stochastic process Yt =
∑

α∈I fα(t)Kα(ω),
t ∈ R be integrable in the Wick Itô-Skorokhod sense. Then the chaos expan-
sion of its Wick Itô-Skorokhod integral is given by

∫
R
Yt dQ

(H)
t =

∑
α∈I

∑
k∈N

(fα,Mξk)L2(R) Kα+ε(k) . (3.37)

Moreover, if
∫
R Yt dQ

(H)
t ∈ L2(P ) then

EP

[∫
R
Yt dQ

(H)
t

]
= 0. (3.38)
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140 Malliavin Calculus for Chaos Expansions in L2(P )

Proof. Using the chaos expansion method, we obtain∫
R
Yt dQ

(H)
t =

∫
R
Yt(ω)♦Z

(H)
t (ω)

=

∫
R

(∑
α∈I

fα(t)Kα(ω)

)
♦

(∑
k∈N

MξkKε(k)(ω)

)
dt

=

∫
R

(∑
α∈I

∑
k∈N

fα(t)MξkKα+ε(k)

)
dt

=
∑
α∈I

∑
k∈N

(fα,Mξk)L2(R) Kα+ε(k) .

Moreover, the expectation of a L2(P ) element
∫
R Yt(ω) dQ

(H)
t (ω) is equal to

the zero coefficient in its chaos expansion, thus we obtain f(0,0,0,...) = 0 and
the assertion (3.38) is proved. �

The corresponding result for the chaos expansion representation of general-
ized stochastic process in the classical Malliavin calculus is already stated in
Theorem 2.7.4.

Theorem 3.2.4 (Fractional integration) Suppose Y : R → (S)−1 is inte-
grable in the sense of Definition 3.2.5 and (3.30) converges in (S)−1. Then

the Wick Itô-Skorokhod integral with respect to process Q
(H)
t coincides with

the Skorokhod integral with respect to filtration Qt, t > 0, i.e. we have∫
R
Yt dQ

(H)
t (ω) =

∫
R
MYt δQt(ω). (3.39)

Proof. Let Yt(ω) =
∑

α∈I fα(t)Kα(ω) be a generalized stochastic process,
such that fα ∈ L2

H(R), α ∈ I. Then the chaos expansion of its fractional
Wick Itô-Skorokhod integral is unique and represented by (3.37). Moreover,
the fractional integral coincides with the Skorokhod integral with respect to
Qt. Clearly, ∫

R
Yt dQ

(H)
t =

∑
α∈I

∑
k∈N

(fα,Mξk)L2(R) Kα+ε(k)

=
∑
α∈I

∑
k∈N

(Mfα, ξk)L2(R) Kα+ε(k)

=

∫
R
MYt δQ

(H)
t . �

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



3.2 Fractional Malliavin Calculus 141

The following theorem is an analogue to the fundamental theorem of
classical stochastic calculus, Theorem 3.1.6. The proof in the Gaussian case
can be found in [8] and [46].

Theorem 3.2.5 Let Y : R → (S)−1 be a generalized process, such that

Yt ∈ D
(H)
1,2 . Assume thet Y and D(H)Y : R→ (S)−1 are Wick Itô- Skorokhod

integrable. Then we have

D(H)

(∫
R
Yt dQ

(H)
t

)
=

∫
R
D(H)Yt dQ

(H)
t + Yt. (3.40)

Proof. If Yt =
∑

α∈I fα(t)Kα(ω) then by (3.37) and (3.27) we obtain

D(H)

(∫
R
Yt dQ

(H)
t

)
= D(H)

( ∑
α∈I,k∈N

(fα,Mξk)L2(R) Kα+ε(k)(ω)

)
=

∑
α∈I,k∈N

(fα,Mξk)L2(R)

∑
i∈N

(α + ε(k))iKα+ε(k)−ε(i) ei(t)

=
∑

α∈I,k∈N

(fα,Mξk)L2(R) (αk + 1)Kα ek

+
∑

α∈I,k∈N

∑
i∈N,i 6=k

αi (fα,Mξk)L2(R) Kα+ε(k)−ε(i)ei.

On the other side, when applying the differentiation formula (3.27) for D(H)Yt
we obtain the right-hand side of (3.40). This follows because the fractional
operator M is a self adjoint operator

(fα, ek)L2
H(R) = (Mfα,Mek)L2(R) = (Mfα, ξk)L2(R) = (fα,Mξk)L2(R). �

3.2.5 The fractional Ornstein-Uhlenbeck operator

The fractional Ornstein-Uhlenbeck operator R(H) of a random variable F ∈
L2(P ) is defined as the composition of the fractional Wick Itô-Skorokhod
integral and the fractional Malliavin derivative, i.e.

R(H) F = δ(H) ◦ D(H) F, F ∈ D
(H)
1,2 ⊆ L2(P ).

Let F =
∑

α∈I fαKα, for fα ∈ R, α ∈ I. Then we obtain

R(H) F =
∑
α∈I

fαKα

= RF. (3.41)

Thus the fractional Ornstein-Uhlenbeck operator and the standard Ornstein-
Uhlenbeck operator coincide on the set of Malliavin differentiable random
variables.
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Chapter 4

Operators of Malliavin Calculus
For Singular Generalized
Stochastic Processes

Recall that the Malliavin derivative appears as the adjoint operator of the
Skorokhod integral which is an extension of the stochastic Itô integral of an-
ticipating processes to the class of non-anticipating processes. Moreover the
composition of these two operators, called the Ornstein-Uhlenbeck operator,
is a linear, unbounded and self-adjoint operator.

We give now the definitions of the Malliavin derivative and the Skorokhod
integral which are extension of the definitions of these operators to a space of
singular generalized stochastic processes. We allow now values in q-weighted
spaces of generalized stochastic functionals and obtain larger domains of op-
erators of Malliavin calculus then in the L2(P )-case described in the previous
chapter.

This chapter represents an original part of the dissertation and all the re-
sults presented are obtained in collaboration with Professor Stevan Pilipović
and Dora Seleši and are already published in [27], [28], [29] and [30].

The Malliavin derivative, further on denoted by D, and its related opera-
tors, δ and R, are all defined on either of the four white noise spaces we are
working on, and their domains are characterized in terms of convergence in
a stochastic distribution space (Q)P−1 with special q-weights.

In the following, we denote by ek, k ∈ N the orthonormal basis of L2
H(R),

i.e. ek is the orthonormal fractional basis ek = M−1ξk, k ∈ N, for all H ∈
(0, 1), which reduces to the orthonormal Hermite basis ξk, k ∈ N when H =
1
2
. Note, ‖ek‖2

−l = (2k)−l and ‖ek‖2
exp,−l = e−2kl for all k, l ∈ N. We denote
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4.1 Singular Generalized Processes 143

by Kα, α ∈ I the orthogonal basis of the space of square integrable random
variables L2(P ) on the white noise space (S ′(R),B, P ).

4.1 Singular Generalized Stochastic

Processes

In Section 2.7 we presented a survey on generalization of stochastic processes
and categorized the generalized stochastic processes (also known as general-
ized stochastic processes of type (O)) as measurable mappings from R into
some q-weighted space of generalized functions i.e. measurable mappings
R→ (Q)P−1 and provided a version of chaos expansion representation of such
processes. These processes are generalized in ω but not in t.

Since generalized stochastic processes with values in (Q)P−1 are defined
pointwise with respect to the parameter t ∈ R, their chaos expansion is
given by

Ft(ω) =
∑
α∈I

fα(t)Kα(ω), t ∈ R

where fα : R → R, α ∈ I are measurable functions, such that there exists
p ∈ N0 such that for all t ∈ R

‖Ft‖2
−ρ,−p =

∑
α∈I

|fα(t)|2q−pα <∞.

Now, we define singular generalized stochastic processes as linear and
continuous mappings from some deterministic space of distributions into the
space of q-weighted generalized functions (Q)P−1.

4.1.1 Chaos expansion of singular generalized
stochastic process

Let X be a topological vector space and X ′ its dual. The most common
examples used in applications are Schwartz spaces S(R) and S ′(R), distri-
butions with compact support X = E(R) and X ′ = E′(R), the Sobolev
spaces X = W 1,2

0 (R) and X ′ = W−1,2(R), and essentially bounded functions
X = L∞(I), where I ⊆ R has finite Lebesgue measure.

We extend the Wiener-Itô chaos expansion theorem to the class of sin-
gular generalized stochastic processes as it was done in [56]. The definition
2.7.1 of generalized stochastic processes is now generalized in the sense that
coefficients in (4.1) can be also deterministic generalized functions. Processes
of such type are generalized by both arguments, t and ω, and they do not
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144 Generalized Operators of Malliavin Calculus

have values in fixed points. We can only see their action on appropriate test
functions.

Definition 4.1.1 Singular generalized stochastic processes are linear and
continuous mappings from X into the space of q-weighted generalized func-
tions (Q)P−1 i.e. elements of L(X, (Q)P−1).

If at least one of the spaces X or (Q)P−1 is nuclear, then

L(X, (Q)P−1) ∼= X ′ ⊗ (Q)P−1, (4.1)

and thus one can consider singular generalized processes as elements of the
space X ′ ⊗ (Q)P−1. The Kondratiev space (S)−1 and the space of stochastic
distributions of exponential growth exp(S)−1 are nuclear and consequently
in these cases we have isomorphisms (X ⊗ (S)−1)′ ∼= X ′ ⊗ (S)−1 and (X ⊗
exp(S)−1)′ ∼= X ′⊗exp(S)−1. Thus one can consider stochastic processes also
as elements of the spaces X ⊗ (S)−1 and X ⊗ exp(S)−1 respectively.

The chaos expansion theorems for a class of generalized stochastic pro-
cesses which belong to X ⊗ (Q)P−1 are given by the following statements,
proved in [56].

Theorem 4.1.1 ([56]) Let X be a Banach space endowed with ‖ · ‖X .
Singular generalized stochastic processes as elements of X ⊗ (Q)P−1 have a
chaos expansion of the form

u =
∑
α∈I

fα ⊗Kα, fα ∈ X,α ∈ I (4.2)

and there exists p ∈ N0 such that

||u||2X⊗(Q)P−1,−p
=
∑
α∈I

‖fα‖2
Xq
−p
α <∞. (4.3)

Example 4.1.1 Brownian motion defined in (2.50) and fractional Brownian
motion defined in (2.73), as well as the Poissonian process defined in (2.52)
and fractional Poissonian process (2.79) are regular generalized stochastic
processes, i.e. elements of the space X ⊗ (Q)P−1 where X = C∞([0,+∞)).

White noise (2.51), fractional white noise (2.76), Poissonian noise (2.53)
and fractional Poissonian noise (2.81) are singular generalized stochastic pro-
cesses, i.e. elements of the space X ⊗ (Q)P−1 where X = S ′(R).
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4.1 Singular Generalized Processes 145

Theorem 4.1.2 ([56]) Let X =
⋂∞
k=0Xk be a nuclear space endowed with a

family of seminorms {‖ ·‖k; k ∈ N0} and let X ′ =
⋃∞
k=0X−k be its topological

dual. Singular generalized stochastic processes as elements of X ′ ⊗ (Q)P−1

have a chaos expansion of the form

u =
∑
α∈I

fα ⊗Kα, fα ∈ X−k, α ∈ I, (4.4)

where k ∈ N0 does not depend on α ∈ I, and there exists p ∈ N0 such that

||u||2X′⊗(Q)P−1,−p
=
∑
α∈I

‖fα‖2
−kq

−p
α <∞.

The action of a singular generalized stochastic process u, represented in
the form (4.4), on a test function ϕ ∈ X gives a generalized random variable
from q-weighed space (Q)P−1

� u, ϕ�=
∑
α∈I

〈fα, ϕ〉Kα ∈ (Q)P−1

and the action of such process u onto a test q-weighted random variable
θ ∈ (Q)P1 gives a generalized deterministic function in X ′

〈u, θ〉 =
∑
α∈I

� Kα, θ � fα ∈ X ′.

In particular, if X = S(R) then for θ =
∑

β∈I θβKβ ∈ S(R) the action of
process u on θ is given by

〈u, θ〉 =
∑
α∈I

fα � Kα,
∑
β∈I

θβKβ �

=
∑
α∈I

θα fα α!

=
∑
α∈I

∑
k∈N

α! θα fα,k ξk(t)

=
∑
k∈N

(∑
α∈I

α! θα fα,k

)
ξk(t),

for fα =
∑
k∈N

fα,kξk(t) ∈ S ′(R).

With the same notation as in (4.2) we will denote by E(u) = f(0,0,0,...) the
generalized expectation of the singular process u.

An important case is whenX = L∞(I), I ⊆ R, λ(I) <∞ and qα = (2N)α,
α ∈ I in Theorem 4.1.1.
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146 Generalized Operators of Malliavin Calculus

4.1.2 Extension of operators U and M

We extend the action of the operator U given by (2.31) and also the action of
the operator M given by (2.72) to the class of singular generalized stochastic
processes.

We define U : X ⊗ (Q)µ−1 → X ⊗ (Q)ν−1 such that for every singular
generalized stochastic process

∑
α∈I uα ⊗Hα ∈ X ⊗ (Q)µ−1

U

[∑
α∈I

uα ⊗Hα

]
=
∑
α∈I

uα ⊗ Cα, uα ∈ X, α ∈ I. (4.5)

For all processes in X ⊗ (Q)µH−1 , represented in the form
∑

α∈I vα⊗ H̃α(ω) we
define the operator M : X ⊗ (Q)µH−1 → X ⊗ (Q)µ−1 by

M

[∑
α∈I

vα ⊗ H̃α

]
=
∑
α∈I

vα ⊗Hα, vα ∈ X, α ∈ I. (4.6)

Remark 4.1.1 Note that U ◦M−1 : X ⊗ (Q)µ−1 → X ⊗ (Q)νH−1 such that

U ◦M−1

[∑
α∈I

uα ⊗Hα

]
=
∑
α∈I

uα ⊗ C̃α, uα ∈ X, α ∈ I.

The same is obtained by action of the operator M−1 ◦ U, which follows from
the commutative property U ◦M−1 = M−1 ◦ U (see the Diagram 1).

4.1.3 Wick product of singular generalized
stochastic processes

We generalize the definition of the Wick product of random variables (Defi-
nition 2.5.1 in Section 2.5.2) and give the corresponding statement for special
type of singular generalized stochastic processes in the way as it is done in
[28] and [57].

Definition 4.1.2 Let ρ ∈ [0, 1]. Let F,G ∈ X⊗(Q)P−ρ be singular generalized
processes given in chaos expansions of the form (4.2). Assume X to be a space
closed under the multiplication fαgβ, for fα, gβ ∈ X. Then the Wick product
F♦G of processes F and G is defined by

F♦G =
∑
γ∈I

( ∑
α+β=γ

fαgβ

)
⊗Kγ.
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4.1 Singular Generalized Processes 147

An important example appears when considering essentially bounded pro-
cesses. In particular, an essentially bounded singular generalized stochastic
process F ∈ L∞(I)⊗ (S)P−1 has an expansion F (x, ω) =

∑
α∈I fα(x)⊗Kα(ω)

such that for all α ∈ I, fα ∈ L∞(I) and there exists q ∈ N0 such that∑
α∈I

‖fα‖2
L∞(I)(2N)−qα <∞.

We denote by Tq the mapping Tq : L∞(I) ⊗ (S)P−1,−(q−4) → L∞(I) ⊗
(S)P−1,− q

2
defined by

Tq(F ) = F̃ =
∑
α∈I

√
|fα(x)| ⊗Kα(ω).

Due to the nuclearity of the Kondratiev spaces, Tq is a continuous mapping
from L∞(I)⊗ (S)P−1,−(q−4) to L∞(I)⊗ (S)P−1,− q

2
(for a proof see [57]).

The following lemma, proven in [57], shows that the Wick product is well
defined, and that for fixed F the mapping G 7→ F♦G is continuous. Here we
omit the proof.

Lemma 4.1.1 ([57]) If F ∈ L∞(I)⊗(S)P−1,−(p−4) and if G ∈ L2(I)⊗(S)P−1,−p,
then their Wick product F♦G given by

F♦G(x, ω) =
∑
γ∈I

( ∑
α+β=γ

fα(x)gβ(x)

)
⊗Kγ(ω)

is an element of L2(I)⊗ (S)−1,−p. Moreover, there exists C > 0 such that:

‖F♦G‖L2(I)⊗(S)P−1,−p
≤ C‖F̃‖2

L∞(I)⊗(S)P
−1,− p2

‖G‖L2(I)⊗(S)P−1,−p
.

4.1.4 S ′-valued singular generalized stochastic process

In [65] and [66] we provided a general setting of vector-valued singular gen-
eralized stochastic processes. S ′(R)-valued generalized random processes are

elements of X̃ ⊗ (Q)P−1, where X̃ = X ⊗ S ′(R), and are given by chaos
expansions of the form

f =
∑
α∈I

∑
k∈N

aα,k ⊗ ek ⊗Kα

=
∑
α∈I

bα ⊗Kα

=
∑
k∈N

ck ⊗ ek, (4.7)
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148 Generalized Operators of Malliavin Calculus

where bα =
∑

k∈N aα,k ⊗ ek ∈ X ⊗ S ′(R), ck =
∑

α∈I aα,k ⊗Kα ∈ X ⊗ (Q)P−1

and aα,k ∈ X. Thus, for some p, l ∈ N0,

‖f‖2
X⊗S−l(R)⊗(Q)P−1−p

=
∑
α∈I

∑
k∈N

‖aα,k‖2
X(2k)−lq−pα <∞.

In a similar manner one can also consider expS ′(R)-valued singular gener-
alized stochastic processes as elements of X ⊗ expS ′(R)⊗ (Q)P−1 given by a
chaos expansion of the form (4.7), with the convergence condition

‖f‖2
X⊗expS−l(R)⊗(Q)P−1−p

=
∑
α∈I

∑
k∈N

‖aα,k‖2
Xe
−2klq−pα <∞,

for some p, l ∈ N0.

4.2 Malliavin Calculus for Singular

Generalized Stochastic Processes

In this part of the thesis we present original results in exploring the properties
of generalized operators of Malliavin calculus, the Malliavin derivative, the
Skorokhod integral and the Ornstein-Uhlenbeck operator on the set of sin-
gular generalized stochastic processes, their chaos expansion representations
and applications in some classes of equations. These results are published
in [27], [28], [29] and [30] and are achieved in collaboration with Professor
Stevan Pilipović and Dora Seleši.

From this section and further on we will consider only the Kondratiev-
type spaces (S)P−ρ and spaces of exponential growing rate exp(S)P−ρ, ρ ∈ [0, 1],

defined by the weights qα = (2N)α and qα = e(2N)α respectively. We will
omit writing the measure P , and denote these spaces (S)−ρ and exp(S)−ρ,
since there exist unitary mappings between all four white noise spaces
(Diagram 1).

We give now the definitions of the Malliavin derivative and the Skorokhod
integral which are slightly more general than in [10], [46], [48], [51]. Instead of
setting the domain in a way that the Malliavin derivative and the Skorokhod
integral take values in L2(P ), we allow values in (S)−ρ and exp(S)−ρ and
thus obtain a larger domain for both operators.
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4.2 Generalized Malliavin Calculus 149

4.2.1 The Malliavin derivative

Recall, ε(k) is the kth unit vector, the sequence of zeros with the num-
ber 1 as the kth component, for k ∈ N. Denote by ι the multi-index
ι =

∑∞
k=1 ε

(k) = (1, 1, 1, . . .). Note that ι /∈ I, but we will use the following
convention: for α ∈ I, define α− ι as the multi-index with kth component

(α− ι)k =

{
αk − 1, αk ≥ 2

0, αk ∈ {0, 1}
.

Thus, α− ι ∈ I, for all α ∈ I.

Definition 4.2.1 Let u ∈ X ⊗ (S)−1 be of the form (4.2). If there exists
p ∈ N0 such that ∑

α∈I

|α|2 ‖fα‖2
X(2N)−pα <∞, (4.8)

then the Malliavin derivative of u is defined by

Du =
∑
α∈I

∑
k∈N

αk fα ⊗ ek ⊗Kα−ε(k) . (4.9)

The operator D is also called the stochastic gradient of a singular gener-
alized stochastic process u. The set of processes u such that (4.8) is satisfied
is the domain of the Malliavin derivative, which will be denoted by Dom(D).
All processes which belong to Dom(D) are called differentiable in Malliavin
sense.

We characterize separately the domains of the Malliavin derivative of
singular generalized processes which are elements of spaces X ⊗ (S)−1 and
X⊗exp(S)−1. The following theorem describes the domain of D in X⊗(S)−1

as it was done in [27].

Theorem 4.2.1 ([27]) Let u ∈ X ⊗ (S)−1 be a Malliavin differentiable sin-
gular process. Then the Malliavin derivative D is a linear and continuous
mapping

D : Dom(D) ⊆ X ⊗ (S)−1,−p → X ⊗ S−l(R)⊗ (S)−1,−p,

for some p ∈ N0 and l > p+ 1, l ∈ N.
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150 Generalized Operators of Malliavin Calculus

Proof. Assume that a process u is of the form (4.2) satisfying the condition

(4.9). Note (2N)ε
(k)

= (2k) and ‖ek‖2
−l = (2k)−l. Thus we have

‖Du‖2
X⊗S−l(R)⊗(S)−1,−p =

∑
α∈I

‖
∞∑
k=1

αkfα ⊗ ek‖2
X⊗S−l(2N)−p(α−ε

(k))

≤
∑
α∈I

(∑
k∈N

α2
k ·
∑
k∈N

‖ek‖2
−l (2k)p

)
‖fα‖2

X(2N)−pα

≤
∑
α∈I

|α|2(
∑
k∈N

(2k)−l+p) ‖fα‖2
X(2N)−pα

≤ C
∑
α∈I

|α|2‖fα‖2
X(2N)−pα <∞,

where
∑

k∈N(2k)−l+p = C for l > p+ 1. �

Following [29] we define the Malliavin derivative of singular generalized
processes from X ⊗ exp(S)−1 and characterize the domain of such operator.

Definition 4.2.2 Let a singular process u ∈ X ⊗ exp(S)−1 be of the form
(4.2). If there exists p ∈ N0 such that∑

α∈I

|α|2‖fα‖2
X e
−p(2N)α−ι <∞ (4.10)

then process u is differentiable in Malliavin sense i.e. u ∈ Domexp(D) and
the Malliavin derivative of u is defined by (4.9).

Theorem 4.2.2 ([29]) Consider a process u ∈ X ⊗ exp(S)−1. Then the
Malliavin derivative of u is a linear and continuous mapping

D : Domexp(D) ⊆ X ⊗ exp(S)−1,−p → X ⊗ expS−l(R)⊗ exp(S)−1,−p,

for all l ∈ N0.

Proof. Clearly, from ‖ek‖2
exp,−l = e−2kl for all k, l ∈ N and (4.10) we have

‖Du‖2
X⊗expS−l(R)⊗exp(S)−1,−p =

∑
α∈I

‖
∞∑
k=1

αkfα ⊗ ek‖2
X⊗expS−l(Rn)e

−p(2N)(α−ε
(k))

≤
∑
α∈I

∑
k∈N

α2
k e
−2kl ‖fα‖2

Xe
−p(2N)α−ι

≤
∑
α∈I

|α|2‖fα‖2
Xe
−p(2N)α−ι <∞.

�
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4.2 Generalized Malliavin Calculus 151

Remark 4.2.1 Note that Domexp(D) ⊇ Dom(D).

Let now ρ ∈ [0, 1]. Consider the Kondratiev spaces (S)−ρ and also the
spaces of exponential growth exp(S)−ρ defined in the Section 2.5. Recall that
inclusion (S)−ρ ⊆ exp(S)−ρ is continuous.

Definition 4.2.3 Let a singular generalized stochastic process u ∈ X⊗(S)−ρ
be of the form (4.2). We say that u belongs to Dom(D)−ρ,−p if there exists
p ∈ N0 such that ∑

α∈I

|α|1+ρ(α!)1−ρ‖fα‖2
X(2N)−pα <∞. (4.11)

Then the process u is Malliavin differentiable and its Malliavin derivative is
given by (4.9).

Note that if a process u ∈ X ⊗ (S)−ρ then there exists p ∈ N0 such that

‖u‖2
X⊗(S)−ρ,−p =

∑
α∈I

‖fα‖2
X(α!)1−ρ (2N)−pα

is finite. We proceed with proving the statement that the Malliavin derivative
is a continuous operator on the set of processes from X ⊗ (S)−ρ.

Theorem 4.2.3 The Malliavin derivative of a process u ∈ X ⊗ (S)−ρ is a
linear and continuous mapping

D : Dom(D)−ρ,−p ⊆ X ⊗ (S)−ρ,−p → X ⊗ S−l(R)⊗ (S)−ρ,−p,

for l > p+ 1 and p ∈ N0.

Proof. We use the property (α − ε(k))! = α!
αk

, for k ∈ N in the proof of this

theorem. Assume that a singular process is of the form (4.2) such that it
satisfies (4.11) for some p ≥ 0. Then we have

‖Du‖2
X⊗S−l(R)⊗(S)−ρ,−p =

∑
α∈I

‖
∑
k∈N

αk fα ⊗ ek‖2
X⊗(S)−ρ,−p (2N)−pα+pε(k)

≤
∑
α∈I

∞∑
k=1

α2
k(α− ε(k))!1−ρ‖fα‖2

X(2N)−p(α−ε
(k))(2k)−l

=
∑
α∈I

∞∑
k=1

α2
k

(
α!

αk

)1−ρ

‖fα‖2
X(2N)−pα(2k)−(l−p)

≤ C
∑
α∈I

(
∞∑
k=1

αk

)1+ρ

(α!)1−ρ‖fα‖2
X(2N)−pα

= C
∑
α∈I

|α|1+ρ(α!)1−ρ‖fα‖2
X(2N)−pα <∞,
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152 Generalized Operators of Malliavin Calculus

where C =
∞∑
k=1

(2k)−(l−p) <∞ for l > p+ 1. �

It is clear that when ρ = 1 the result of the previous theorem reduces to the
corresponding one in Theorem 4.2.1. We formulate now an analogue theorem
for a class of singular generalized processes belonging toX⊗exp(S)−ρ. Recall,
if a process u ∈ X ⊗ exp(S)−ρ then it can be decomposed in the way (4.2)
such that the condition∑

α∈I

(α!)1−ρ‖fα‖2
X e
−p(2N)α <∞ (4.12)

is fulfilled for some p ∈ N0.

Definition 4.2.4 We say that a given singular generalized stochastic process
u ∈ X ⊗ exp(S)−ρ is Malliavin differentiable and write u ∈ Domexp(D)−ρ if
it satisfies the condition∑

α∈I

|α|1+ρ(α!)1−ρ‖fα‖2
X e
−p(2N)α−ι <∞ (4.13)

for some p ∈ N0. Thus the chaos expansion of its Malliavin derivative is
given by (4.9).

Theorem 4.2.4 The Malliavin derivative of a singular generalized stochas-
tic process u ∈ X ⊗ exp(S)−ρ,−p, p ∈ N0 is a linear and continuous mapping

D : X ⊗ exp(S)−ρ,−p → X ⊗ expS−l(R)⊗ exp(S)−ρ,−p,

for all l ∈ N.

Proof. Clearly, from ‖ek‖2
exp,−l = e−2kl for all k, l ∈ N and (4.13) it follows

that

‖Du‖2
X⊗expS−l(R)⊗exp(S)−ρ,−p ≤

∑
α∈I

∞∑
k=1

α2
k(α− ε(k))!1−ρ‖fα‖2

Xe
−p(2N)α−ε

(k)

e−2kl

=
∑
α∈I

∞∑
k=1

α2
k

(
α!

αk

)1−ρ

‖fα‖2
Xe
−p(2N)α−ε

(k)

e−2kl

≤ C
∑
α∈I

(
∞∑
k=1

αk

)1+ρ

(α!)1−ρ‖fα‖2
Xe
−p(2N)α−ε

(k)

≤ C
∑
α∈I

|α|1+ρ(α!)1−ρ‖fα‖2
Xe
−p(2N)α−ι <∞,
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4.2 Generalized Malliavin Calculus 153

where C =
∞∑
k=1

e−2kl <∞ for all l ∈ N.
�

When comparing the families of the Malliavin Sobolev type of spaces
Dom(D)−ρ and Domexp(D)−ρ for different values ρ ∈ [0, 1] the following
properties arise:

• If p < q then Dom(D)−ρ,−p ⊆ Dom(D)−ρ,−q.

• The inclusion Dom(D)−ρ ⊆ Domexp(D)−ρ is satisfied for all ρ ∈ [0, 1].

• Note Dom(D)−1 = Dom(D) and Domexp(D)−1 = Domexp(D).

• For all α = (α1, α2, ...) ∈ I we have

|α| =
∑
k∈N

αk < α! =
∏
k∈N

αk, αk ∈ N.

Thus, the smallest domains of the spaces Dom(D)−ρ and Domexp(D)−ρ
are obtained for ρ = 0 and the largest domains are obtained for ρ = 1.
In particular we have inclusions

Dom(D)−0 ⊂ Dom(D)−1 ⊆ Domexp(D)−0 ⊂ Domexp(D)−1.

4.2.2 The Skorokhod integral

Motivated by the identity (2.59) for the Skorokhod integral of an H-valued
generalized random variables, we extend the definition of the Skorokhod in-
tegral to the class of singular generalized processes. As an adjoint operator
of the Malliavin derivative the Skorokhod integral is defined as follows.

Definition 4.2.5 Let F =
∑

α∈I fα ⊗ vα ⊗ Kα ∈ X ⊗ S−p(R) ⊗ (S)−1,−p,
p ∈ N0 be a singular generalized S−p(R)-valued stochastic process and let
vα ∈ S−p(R) be given by the expansion vα =

∑
k∈N vα,k ek, vα,k ∈ R. Then

the process F is integrable in the Skorokhod sense and the chaos expansion
of its stochastic integral is given by

δ(F ) =
∑
α∈I

∑
k∈N

vα,k fα ⊗Kα+ε(k) . (4.14)

Next theorem is proved in [27].
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154 Generalized Operators of Malliavin Calculus

Theorem 4.2.5 ([27]) The Skorokhod integral δ of a S−p(R)-valued singular
generalized stochastic process is a linear and continuous mapping

δ : X ⊗ S−p(R)⊗ (S)−1,−p → X ⊗ (S)−1,−p.

Proof. Clearly,

‖δ(F )‖2
X⊗(S)−1,−p =

∑
α∈I

‖
∑
k∈N

vα,k fα‖2
X(2N)−p(α+ε(k))

≤
∑
α∈I

(
∑
k∈N

v2
α,k (2k)−p)‖fα‖2

X(2N)−pα

=
∑
α∈I

‖vα‖2
−p ‖fα‖2

X (2N)−pα <∞,

because F ∈ X ⊗ S−p(R)⊗ (S)−1,−p, p ∈ N0. �

Definition 4.2.6 Let a singular generalized expS−p(R)-valued stochastic
process be of the form

F =
∑
α∈I

fα ⊗ vα ⊗Kα ∈ X ⊗ expS−p(R)⊗ exp(S)−1,−p,

for some p ∈ N0 and let vα ∈ expS−p(R) be given by the expansion
vα =

∑
k∈N vα,k ek, vα,k ∈ R. Then the process u is integrable in the Sko-

rokhod sense and δ(F ) is defined by (4.14).

The proof of the following theorem can be found in [29].

Theorem 4.2.6 ([29]) Let F ∈ X ⊗ expS−p(R) ⊗ exp(S)−1,−p be an
expS−p(R)-valued singular generalized process for some p > 0. Then the
Skorokhod integral δ of F is a linear and continuous mapping

δ : X ⊗ expS−p(R)⊗ exp(S)−1,−p → X ⊗ exp(S)−1,−p.

Proof. This assertion follows from the inequality

e−p(2N)α (2k) ≤ e−2kp · e−p(2N)α (4.15)

valid for α ∈ I and k, p ≥ 0. Clearly,

‖δ(F )‖2
X⊗exp(S)−1,−p =

∑
α∈I

‖
∑
k∈N

vα,k fα‖2
Xe
−p(2N)α+ε

(k)

≤
∑
α∈I

(
∑
k∈N

v2
α,k e

−2kp)‖fα‖2
Xe
−p(2N)α

=
∑
α∈I

‖vα‖2
exp,−p ‖fα‖2

X e
−p(2N)α <∞,
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4.2 Generalized Malliavin Calculus 155

since F ∈ X ⊗ expS−p(R)⊗ exp(S)−1,−p, for p ∈ N0. �

From 2(2N)α ≤ (2N)2α we conclude that the image of the Malliavin
derivative is included in the domain of the Skorokhod integral and thus we
can define their composition.

Both theorems, Theorem 4.2.5 and Theorem 4.2.6 can be stated for
singular generalized stochastic processes which have values in the Kondratiev
space (S)−ρ respectively in the space with exponential growing rate exp(S)−ρ,
for any ρ ∈ [0, 1].

Theorem 4.2.7 Let ρ ∈ [0, 1]. The Skorokhod integral δ of a S−q(R)-valued
singular generalized stochastic process is a linear and continuous mapping

δ : X ⊗ S−q(R)⊗ (S)−ρ,−p → X ⊗ (S)−ρ,−(q+1−ρ), for q − p > 1.

Proof. This statement follows from inequalities (αk + 1) ≤ |α + ε(k)| ≤
(2N)α+ε(k) , when α ∈ I, k ∈ N. Clearly, we have

‖δ(F )‖2
X⊗(S)−ρ,−p =

∑
α∈I

∑
k∈N

v2
α,k ‖fα‖2

X(2N)−(q+1−ρ)(α+ε(k)) (α + ε(k))!1−ρ

=
∑
α∈I

∑
k∈N

v2
α,k ‖fα‖2

X(2N)−(q+1−ρ)(α+ε(k)) (αk + 1)1−ρ α!1−ρ

≤
∑
α∈I

∑
k∈N

v2
α,k ‖fα‖2

X(2N)−(q+1−ρ)(α+ε(k)) (2N)(1−ρ)(α+ε(k)) α!1−ρ

≤
∑
α∈I

(
∑
k∈N

v2
α,k (2k)−q)‖fα‖2

X(2N)−pαα!1−ρ (2N)−(q−p)α

≤ C
∑
α∈I

‖vα‖2
−q ‖fα‖2

X (2N)−pα α!1−ρ <∞,

because F ∈ X ⊗ S−q(R) ⊗ (S)−ρ,−p and C =
∑
α∈I

(2N)−(q−p)α is a finite

constant for q − p > 1. �

Theorem 4.2.8 Let F ∈ X ⊗ expS−p(R) ⊗ exp(S)−ρ,−q be an expS−p(R)-
valued singular generalized process for some p > 0 and q > 0. Then the
Skorokhod integral δ of F is a linear and continuous mapping

δ : X ⊗ expS−p(R)⊗ exp(S)−ρ,−q → X ⊗ exp(S)−ρ,−l,

when l − q > 1− ρ and l − p > 1− ρ.
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156 Generalized Operators of Malliavin Calculus

Proof. From (4.15) and inequality (αk + 1) ≤ e2k e(2N)α , α ∈ I, k ∈ N it
follows that

‖δ(F )‖2
X⊗exp(S)−ρ,−l

=
∑
α∈I

∑
k∈N

v2
α,k ‖fα‖2

X (α + ε(k))!1−ρ e−l(2N)α+ε
(k)

≤
∑
α∈I

∑
k∈N

‖vα‖2
exp,−p e

2kp ‖fα‖2
Xe
−(l+ρ−1)(2N)α(α!)1−ρ e−2k(l+ρ−1)

≤ C1C2

∑
α∈I

‖vα‖2
exp,−p ‖fα‖2

X e
−q(2N)α (α!)1−ρ <∞,

for finite constants C1 =
∑

k∈N e
−2k(l+ρ−1−p) < ∞, when 1 − ρ > l − p and

C2 =
∑

α∈I e
−(l+ρ−1−q)(2N)α <∞ when l − q > 1− ρ. �

4.2.3 The Ornstein-Uhlenbeck operator

Definition 4.2.7 The composition of the Malliavin derivative and the Sko-
rokhod integral is denoted by R = δ ◦ D and called the Ornstein-Uhlenbeck
operator.

The Fourier-Hermite i.e. the Charlier polynomials are eigenfunctions of R

and the corresponding eigenvalues are |α|, α ∈ I, i.e.

R(Kα) = |α|Kα.

Moreover, if we apply the previous identity k times successively, we obtain

Rk(Kα) = |α|kKα, k ∈ N, for α ∈ I.

Theorem 4.2.9 Let a singular generalized stochastic process u ∈ Dom(D)
be given by the chaos expansion u =

∑
α∈I uα ⊗Kα, uα ∈ X. Then

Ru =
∑
α∈I

|α|uα ⊗Kα. (4.16)

Denote by

Dom(R) = {u ∈ X ⊗ (S)−1 : ∃p ∈ N0,
∑
α∈I

|α|2‖uα‖2
X(2N)−pα <∞}

and

Domexp(R) = {u ∈ X ⊗ exp(S)−1 : ∃p ∈ N0,
∑
α∈I

|α|2‖uα‖2
Xe
−p(2N)α <∞}.

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



4.2 Generalized Malliavin Calculus 157

Theorem 4.2.10 ([29]) The operator R is a linear and continuous mapping
from Dom(R) ⊂ X ⊗ (S)−1 into the space X ⊗ (S)−1, and in this case the
domains of D and R coincide, i.e. Dom(R) = Dom(D).

Proof. Clearly, if u ∈ Dom(D) ⊂ X ⊗ (S)−1,−p then Ru ∈ X ⊗ (S)−1,−p.
This follows from (4.16) and

‖Ru‖2
X⊗(S)−1,−p =

∑
α∈I

|α|2 ‖uα‖2
X(2N)−pα = ‖u‖2

Dom(D) <∞.
�

For u ∈ X ⊗ exp(S)−1,−p it follows that

Domexp(D) ⊆ Domexp(R).

Now we consider the Kondratiev type of q-weighted spaces and character-
ize the Ornstein-Uhlenbeck operator in the sense of the previous statement.
Let ρ ∈ [0, 1]. We define the domain Dom(R)−ρ to be the set of all processes
u ∈ X ⊗ (S)−ρ represented in the form (4.2) such that the condition∑

α∈I

|α|2(α!)1−ρ‖uα‖2
X(2N)−pα <∞

is satisfied for some p ∈ N0. Furthermore we define the domain Domexp(R)−ρ
to be the set of all processes u ∈ X ⊗ exp(S)−ρ, having the chaos expansion
of the form (4.2) and satisfying the condition∑

α∈I

|α|2(α!)1−ρ‖uα‖2
Xe
−p(2N)α <∞

for some p ∈ N0.

Theorem 4.2.11 Let ρ ∈ [0, 1]. Then we have the following inclusions

Dom(R)−ρ ⊆ Dom(D)−ρ ⊆ Domexp(D)−ρ ⊆ Domexp(R)−ρ.

We have already seen that for ρ = 1 spaces Dom(R)−ρ and Dom(D)−ρ
coincide.
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158 Generalized Operators of Malliavin Calculus

4.3 Operators of Fractional Malliavin

Calculus

Consider the extension of the operator M from S ′(R)→ S ′(R) onto general-
ized stochastic processes.

Definition 4.3.1 Let M = M ⊗ Id : S ′(R) ⊗ (Q)P−1 → S ′(R) ⊗ (Q)P−1 be
given by

M

(∑
α∈I

aα(t)⊗Kα(ω)

)
=
∑
α∈I

Maα(t)⊗Kα(ω). (4.17)

Its restriction to L2
H(R)⊗ L2(P ) is an isometric mapping

L2
H(R)⊗ L2(P )→ L2(R)⊗ L2(P ).

Example 4.3.1 In Example 2.8.3 and Example 2.8.4 we have seen that

B
(H)
t = MBt in L2(µ) and W

(H)
t = MWt in (S)µ−1.

In [51], the fractional Malliavin derivative in L2(µ) was defined as

D(H) = M−1 ◦ D.

Thus, in [29] we extended this notion to a class of singular generalized
stochastic processes. For example, on the Kondratiev white noise spaces
with Gaussian measure

D(H) : X ⊗ (S)µ−1 → X ⊗ S ′(R)⊗ (S)µ−1

is given by

D(H)F = M−1 ◦ D F

= M−1

(∑
α∈I

∑
k∈N

αk fα ⊗ ξk ⊗Hα−ε(k)

)
=
∑
α∈I

∑
k∈N

αk fα ⊗ ek ⊗Hα−ε(k) ,

(4.18)

for F =
∑

α∈I fα ⊗ Hα, fα ∈ X, α ∈ I. Note that the domain of the frac-
tional Malliavin derivative coincides with the domain of the classical Malli-
avin derivative. The following definition holds on a general white noise space
(Gaussian, Poissonian, fractional Gaussian or fractional Poissonian).
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4.3 Operators of Fractional Malliavin Calculus 159

Definition 4.3.2 Let F =
∑

α∈I fα ⊗ Kα ∈ X ⊗ (S)−1, respectively X ⊗
exp(S)−1. If F ∈ Dom(D), respectively F ∈ Domexp(D), then the fractional
Malliavin derivative of F is defined by

D(H)F =
∑
α∈I

∑
k∈N

αk fα ⊗ M−1ek ⊗Kα−ε(k) . (4.19)

In the following theorem, P will denote either the Gaussian or Poissonian
measure, and PH will denote their corresponding fractional measures. The
notation (Q)−1 will refer to either (S)−1 or exp(S)−1 with the appropriate
measure.

Theorem 4.3.1 ([29]) Let D and D(H) denote the Malliavin derivative, re-

spectively the fractional Malliavin derivative on X⊗ (Q)P−1. Let D̃ denote the

Malliavin derivative on X ⊗ (Q)PH−1 . Then,

D(H)F = M−1 ◦ D F = M ◦ D̃ ◦M−1 F, (4.20)

for all F ∈ Dom(D).

Proof. We will conduct the proof for the Gaussian case. Since D(H)F =
M−1 ◦ DF follows directly from (4.17) and (4.19), we need to prove that

(4.18) is equal to M ◦ D̃ ◦M−1F , where D̃ stands for the Malliavin derivative
in L2(µH). Clearly,

M ◦ D̃ ◦M−1

(∑
α∈I

fα ⊗Hα

)
= M ◦ D̃

(∑
α∈I

fα ⊗ H̃α

)

= M

(∑
α∈I

∑
k∈N

αk fα ⊗ ek ⊗ H̃α−ε(k)

)
=
∑
α∈I

∑
k∈N

αk fα ⊗ ek ⊗Hα−ε(k) .
�

Example 4.3.2 It is well known that in L2(µ), the Malliavin derivative of
Brownian motion is DBt(ω) = χ[0, t] =

∑∞
k=1 ckξk. Thus,

D(H)Bt(ω) = M−1χ[0, t] = M (1−H)(0, t) =
∞∑
k=1

ckek,

where

ck = (ξk, χ[0, t])L2(R) = (M−1ξk,M
−1χ[0, t])L2

1−H(R)

= (ek,M
(1−H)(0, t))L2

1−H(R).
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160 Generalized Operators of Malliavin Calculus

Definition 4.3.3 Let δ : X ⊗ S ′(R)⊗ (Q)P−1 → X ⊗ (Q)P−1 denote the Sko-
rokhod integral in sense of Definition 4.2.5 and Theorem 4.2.6. The fractional
Skorokhod integral δ(H) : X⊗S ′(R)⊗(Q)P−1 → X⊗(Q)P−1 is defined for every
F ∈ Dom(δ) by

δ(H)F = δ ◦M F. (4.21)

Finally, for the Ornstein-Uhlenbeck operator we note that its fractional
version coincides with the regular one, i.e. from (4.20) and (4.21) it follows
that

R(H) = δ(H) ◦ D(H) = δ ◦M ◦M−1 ◦ D = δ ◦ D = R.

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Chapter 5

Applications of the Chaos
Expansion Method to Some
Classes of Equations

In this chapter we present some applications of the chaos expansion method
to obtain explicit forms of solutions of some classes of stochastic differen-
tial equations involving the Malliavin derivative and the Ornstein-Uhlenbeck
operator. We provide a general method of solving stochastic differential
equations, also known as the propagator method, first introduced by Boris
Rozovsky. The Wiener-Itô chaos decomposition of general random processes
which appear in equations is used to set all coefficients in the chaos expansion
on the left-hand side of the equation equal to the corresponding coefficients on
the right-hand side of the equation. With this method we reduce a problem
to an infinite system of deterministic equations. Summing up all coefficients
of the expansion and proving convergence in an appropriate weighted space
of stochastic distributions, one obtains the solution of the initial equation.
The equations presented and solved in this chapter are original results of this
thesis and are published in [27], [28], [29] and [30]. Other types of equations
investigated by the same method can be found in [26], [31], [35], [56], [67].

All stochastic equations solved in this section can be interpreted, by the
use of the isometric transformations U and M defined in (4.5) and (4.6),
in all four white noise spaces, Gaussian, Poissonian, fractional Gaussian and
fractional Poissonian white noise spaces, we have considered so far. Also, due
to Theorem 4.3.1 the Malliavin derivative and the Skorokhod integral can be
interpreted as their fractional counterparts in the corresponding fractional
white noise space. With this argumentation we state the equations and solve
them in a white noise space of general type.
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162 Applications of the Chaos Expansion Method to SDEs

5.1 Equations With the Malliavin Derivative

At the beginning we apply the chaos expansion transform in order to solve
two equations involving the Malliavin derivative, the first order equation in-
volving the Malliavin derivative, and then a generalized eigenvalue problem
for the Malliavin derivative. In both cases, solutions obtained by this ap-
proach have a simple form and belong to a certain space of weighted singular
generalized stochastic processes.

Denote by r = r(α) = min{k ∈ N : αk 6= 0}, for nonzero multi-index
α ∈ I. Then the first nonzero component of α is the rth component αr,
i.e. α = (0, 0, ..., 0, αr, ..., αm, 0, 0, ...). Denote by αε(r) the multi-index with
all components equal to the corresponding components of α, except the rth,
which is αr − 1. We call αε(r) the representative of α and write

α = αε(r) + ε(r), α ∈ I, |α| > 0. (5.1)

For example, the first nonzero component of α = (0, 0, 2, 1, 0, 5, 0, 0, ...) is its
third component. It follows that r = 3, αr = 2 and the representative of α
is αε(r) = α− ε(3) = (0, 0, 1, 1, 0, 5, 0, 0, ...).

The set Kα = {β ∈ I : α = β + ε(j), for some j ∈ N}, α ∈ I, |α| > 0
is a nonempty set, because αε(r) ∈ Kα. Moreover, if α = nε(r), n ∈ N
then Card(Kα) = 1 and in all other cases Card(Kα) > 1. For example if
α = (0, 1, 3, 0, 0, 5, 0, ...), then the set Kα has three elements Kα = {αε(2) =
(0, 0, 3, 0, 0, 5, 0, ...), (0, 1, 2, 0, 0, 5, 0, ...), (0, 1, 3, 0, 0, 4, 0, ...)}.

5.1.1 A first order equation

Let us consider a first order equation involving the Malliavin derivative i.e.
an equation of the form{

Du = h, h ∈ X ⊗ S ′(R)⊗ (S)−1

Eu = ũ0, ũ0 ∈ X
. (5.2)

The next result characterizes the family of stochastic processes that can be
written as the Malliavin derivative of some singular stochastic process. A
necessary and sufficient condition for existence of a solution is stated and the
solution is expressed in its explicit form, the chaos expansion form.

Theorem 5.1.1 ([30]) Let h =
∑
α∈I

∑
k∈N

hα,k ⊗ ek ⊗Kα ∈ X ⊗ S ′(R)⊗ (S)−1,

with coefficients hα,k ∈ X such that

1

αr
hα

ε(r)
,r =

1

αj
hβ, j , (5.3)
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5.1 Equations With the Malliavin Derivative 163

for the representative αε(r) of α ∈ I, |α| > 0 and all β ∈ Kα, such that
α = β+ ε(j), for j ≥ r, r ∈ N. Then, equation (5.2) has a unique solution in
X ⊗ (S)−1. The chaos expansion of the generalized stochastic process, which
represents the unique solution of equation (5.2) is given by

u = ũ0 +
∑

α=α
ε(r)

+ε(r)∈I

1

αr
hα

ε(r)
,r ⊗Kα. (5.4)

Proof. We seek the solution in the form u = ũ0 +
∑
α∈I
|α|>0

uα ⊗Kα. Thus,

D

ũ0 +
∑
α∈I
|α|>0

uα ⊗Kα

 =
∑
α∈I

∑
k∈N

hα,k ⊗ ek ⊗Kα

∑
α∈I
|α|>0

(∑
k∈N

αk uα ⊗ ek

)
⊗Kα−ε(k) =

∑
α∈I

(∑
k∈N

hα,k ⊗ ek

)
⊗Kα

∑
α∈I

(∑
k∈N

(αk + 1)uα+ε(k) ⊗ ek

)
⊗Kα =

∑
α∈I

(∑
k∈N

hα,k ⊗ ek

)
⊗Kα

Due to uniqueness of the Wiener-Itô chaos expansion it follows that, for
all α ∈ I ∑

k∈N

(αk + 1)uα+ε(k) ⊗ ek =
∑
k∈N

hα,k ⊗ ek.

Due to uniqueness of the series expansion in S ′(R) we obtain a family of
deterministic equations

uα+ε(k) =
1

αk + 1
hα,k, for all α ∈ I, k ∈ N, (5.5)

from which we can calculate uα, by induction on the length of α.
For α = (0, 0, 0, ...), the equations in (5.5) reduce to uε(k) = hα,k, α ∈

I, k ∈ N, i.e. 
u(1,0,0,...) = h(0,0,0,...),1

u(0,1,0,...) = h(0,0,0,...),2

u(0,0,1,0...) = h(0,0,0,...),3
...

,
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164 Applications of the Chaos Expansion Method to SDEs

and we obtain the coefficients uα for α of length one. Note, uα are obtained
in terms of hα

ε(r)
,r = h(0,0,0,...),r, r ∈ N.

For |α| = 1 multi-indices are of the form α = ε(j), j ∈ N, so several cases
occur. For j = 1, α = ε(1) = (1, 0, 0, ...), we have

u(2,0,0,...) = 1
2
h(1,0,0,...),1

u(1,1,0,...) = h(1,0,0,...),2

u(1,0,1,0...) = h(1,0,0,...),3

u(1,0,0,1,0...) = h(1,0,0,...),4
...

. (5.6)

Continuing, for j = 2, α = ε(2) = (0, 1, 0, ...) the equations in (5.5) reduce to

u(1,1,0,0,...) = h(0,1,0,0,...),1

u(0,2,0,...) = 1
2
h(0,1,0,0,...),2

u(0,1,1,0...) = h(0,1,0,0,...),3

u(0,1,0,1,0...) = h(0,1,0,0,...),4
...

, (5.7)

and then, for α = ε(3) = (0, 0, 1, 0, ...) we obtain

u(1,0,1,0,...) = h(0,0,1,0,...),1

u(0,1,1,0,...) = h(0,0,1,0,...),2

u(0,0,2,0...) = 1
2
h(0,0,1,0,...),3

u(0,0,1,1,0...) = h(0,0,1,0,...),4
...

. (5.8)

The coefficient u(1,1,0,0,...) appears in systems (5.6) and (5.7) and thus the
additional condition h(1,0,0,...),2 = h(0,1,0,0,...),1 has to hold in order to have a
solvable system. Also, from expressions for u(0,1,1,0,...) and u(0,1,0,1,....) in (5.7)
and (5.8) we obtain conditions h(0,1,0,...),3 = h(0,0,1,0,...),2 and h(0,0,0,1,0,...),2 =
h(0,1,0,0,...),4 respectively, which need to be satisfied, in order to have a unique
uα. In the same manner we obtain all coefficients uα, for α of the length two,
expressed as a function of hα

ε(r)
,r.

Let now |α| = 2. Then different combinations for the multi-indices occur:
if we choose α = (1, 1, 0, 0, ...) then (5.5) transforms into the system

u(2,1,0,0,...) = 1
2
h(1,1,0,0,...),1

u(1,2,0,...) = 1
2
h(1,1,0,0,...),2

u(1,1,1,0...) = h(1,1,0,0,...),3

u(1,1,0,1,0...) = h(1,1,0,0,...),4
...

, (5.9)
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5.1 Equations With the Malliavin Derivative 165

and if we choose α = (1, 0, 1, 0, 0, ...), then the equations in (5.5) transform
into 

u(2,0,1,0,...) = 1
2
h(1,0,1,0,0,...),1

u(1,1,1,0,...) = h(1,0,1,0,0,...),2

u(1,0,2,0...) = 1
2
h(1,0,1,0,0,...),3

u(1,0,1,1,0...) = h(1,0,1,0,0,...),4
...

. (5.10)

We continue with α = (0, 1, 1, 0, 0, ...) and α = (2, 0, 0, ...) and obtain the
systems 

u(1,1,1,0,...) = h(0,1,1,0,0,...),1

u(0,2,1,0,...) = 1
2
h(0,1,1,0,0,...),2

u(0,1,2,0...) = 1
2
h(0,1,1,0,0,...),3

u(0,1,1,1,0...) = h(0,1,1,0,0,...),4
...

, and (5.11)



u(3,0,0,...) = 1
3
h(2,0,0,...),1

u(2,1,0,...) = h(2,0,0,...),2

u(2,0,1,0...) = h(2,0,0,...),3

u(2,0,0,1,0...) = h(2,0,0,...),4
...

(5.12)

respectively. For α = (0, 2, 0, 0, ...) the system (5.5) transforms into

u(1,2,0,0,...) = h(0,2,0,0,...),1

u(0,3,0,...) = 1
3
h(0,2,0,0,...),2

u(0,2,1,0...) = h(0,2,0,0,...),3

u(0,2,0,1,0...) = h(0,2,0,0,...),4
...

. (5.13)

Combining with the previous results, we obtain uα for |α| = 3. Two
different representations of u(2,1,0,0,...) are given in systems (5.9) and (5.12),
so the additional condition 1

2
h(1,1,0,0,...),1 = h(2,0,0,0,...),2 follows. We express

u(2,1,0,0,...) = 1
2
h(1,1,0,0,...),1 in form of the representative of the multi-index

α = (2, 1, 0, 0, ...). Since the coefficient u(1,2,0,...) appears both in (5.9) and
(5.13), we receive another condition 1

2
h(1,1,0,0,...),2 = h(0,2,0,0,...),1, and express

u(1,2,0,...) = h(0,2,0,0,...),1 by its representative. From (5.9), (5.10) and (5.11) we
obtain u(1,1,1,0,...) = h(0,1,1,0,0,...),1 and the condition h(1,1,0,0,...),3 = h(1,0,1,0,...),2 =
h(0,1,1,0,0,...),1. Then, 1

2
h(0,1,1,0,...),2 = h(0,2,0,...),3 follows from (5.11) and (5.13),

and u(0,2,1,0,...) = 1
2
h(0,1,1,0,...),2.

We proceed by the same procedure for all multi-index lengths to obtain
uα.

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



166 Applications of the Chaos Expansion Method to SDEs

If the set Kα, α ∈ I, has at least one more element besides the representa-
tive αε(r) of α, then the condition for the process h is given in the form (5.3).
We obtain the coefficients uα of the solution as functions of the representative
αε(r)

uα =
1

αr
hα

ε(r)
, r, for |α| 6= 0, α = αε(r) + ε(r),

and the form of the solution (5.4).
It remains to prove convergence of the solution (5.4) in X ⊗ (S)−1. Let

h ∈ X ⊗ S−p(R)⊗ (S)−1,−p. Then, there exists p > 0 such that

‖h‖2
X⊗S−p(R)⊗(S)−1,−p =

∑
α∈I

∑
k∈N

‖hα,k‖2
X (2k)−p (2N)−pα <∞.

Note that for ũ0 ∈ X we have ‖ũ0‖X = ‖ũ0‖X⊗(S)−1,−q for all q > 0. Then,
the convergence follows from

‖u‖2
X⊗(S)−1,−2p

= ‖ũ0‖2
X⊗(S)−1,−2p

+
∑

α∈I,|α|>0,

α=α
ε(r)

+ε(r)

1

α2
r

‖hα
ε(r)

,r‖2
X(2N)−2p(α

ε(r)
+ε(r))

≤ ‖ũ0‖2
X⊗(S)−1,−2p

+
∑

α=α
ε(r)

+ε(r)

‖hα
ε(r)

,r‖2
X (2r)−p (2N)−pα

≤ ‖ũ0‖2
X⊗(S)−1,−2p

+
∑
α∈I

∑
r∈N

‖hα,r‖2
X (2r)−p(2N)−pα <∞,

where we have used the fact that (2N)pε
(r)

(2N)−pα ≤ 1 for all α ∈ I, r ∈ N.�

Special cases

• Assume that the process h is expressed as a product h = c ⊗ g, c ∈
S ′(R) and g ∈ X ⊗ (S)−1.

Theorem 5.1.2 ([30]) Let c =
∑

k∈N ck ek ∈ S ′(R) and g =∑
α∈I gα ⊗Kα ∈ X ⊗ (S)−1 with coefficients gα ∈ X such that

1

αr
gα

ε(r)
cr =

1

αj
gβ cj, (5.14)

holds for all β ∈ Kα, j ≥ r, r ∈ N, and their representative αε(r). Then

Du = c ⊗ g, Eu = ũ0, ũ0 ∈ X, (5.15)

has a unique solution in X ⊗ (S)−1 given by

u = ũ0 +
∑

α=α
ε(r)

+ε(r)∈I

1

αr
gα

ε(r)
cr ⊗Kα. (5.16)
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5.1 Equations With the Malliavin Derivative 167

Proof. Providing an analogous procedure as in the previous theorem,
we reduce equation (5.15) to a family of deterministic equations

uα+ε(k) =
1

αk + 1
gα ck, for all α ∈ I, k ∈ N, (5.17)

from which, by induction on |α|, we obtain the coefficients uα of the
solution u, as functions of the representative αε(r) . Let α ∈ I, |α| > 0
be given by (5.1). Condition (5.14) implies uα = 1

αr
gα

ε(r)
cr. The proof

of convergence of the solution (5.16) in X ⊗ (S)−1 follows in the same
way as in the previous theorem. �

• Especially, if we choose c = ei, for fixed i ∈ N, then equation (5.15)
transforms into {

Du = ei ⊗ g, g ∈ X ⊗ (S)−1

Eu = ũ0, ũ0 ∈ X
. (5.18)

Theorem 5.1.3 ([30]) Let g ∈ X ⊗ (S)−1. Then (5.18) has a unique
solution in X ⊗ (S)−1 of the form

u = ũ0 +
∑
n∈N

1

n
g(n−1)ε(i) ⊗Knε(i) , (5.19)

if and only if g is of the form

g =
∞∑
n=0

gnε(i) ⊗Knε(i) =
∞∑
n=0

gnε(i) (I(ei))
♦n , (5.20)

where I(·) represents the Itô integral.

Proof. Let u ∈ X ⊗ (S)−1 be a process of the form (5.19). Then,
u ∈ Dom(D) and from

Du =
∞∑
n=1

1

n
g(n−1)ε(i) ⊗ nK(n−1)ε(i) ⊗ en =

∞∑
n=1

gnε(i) ⊗ Knε(i) ⊗ en

follows that it is a solution to (5.18).

Conversely, let a process g ∈ X ⊗ (S)−1 be of the form (5.20). Then,
following the notation of Theorem 5.1.2, c = ei has the expansion
c =

∑∞
k=1 ck ek, where ck = 1 for k = i and ck = 0 for k 6= i, k ∈ N.
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168 Applications of the Chaos Expansion Method to SDEs

The family of equations (5.17) transforms to the family of deterministic
equations{

(αi + 1)uα+ε(i) = gα, gα ∈ X
uα+ε(k) = 0, k = 1, 2, 3..., k 6= i

, α ∈ I. (5.21)

If (5.20) holds, then for fixed i ∈ N, gα = 0, for all α 6= nε(i), and
from (5.21) similarly as in Theorem 5.1.2 the coefficients are obtained
by induction on |α|,

uα =

{
1
n
g(n−1)ε(i) , α = nε(i)

0, α 6= nε(i) , n ∈ N.

The chaos expansion of the solution is

u = ũ0 +
∑
n∈N

1

n
g(n−1)ε(i) ⊗Knε(i) = ũ0 +

∑
n∈N

1

n
g(n−1)ε(i) ⊗ (I(ek))

�n.

Convergence in X ⊗ (S)−1 can be proven by the same method as in
Theorem 5.1.2. Clearly, there exists p ∈ N, such that

‖u‖2
X⊗(S)−1,−p = ‖ũ0‖2

X +
∞∑
n=1

1

n2
‖g(n−1)ε(i)‖2

X(2N)−pnε
(i)

≤ ‖ũ0‖2
X +

∞∑
n=1

‖g(n−1)ε(i)‖2
X(2N)−p(n−1)ε(i)

= ‖ũ0‖2
X +

∞∑
n=0

‖gnε(i)‖2
X(2N)−pnε

(i)

<∞.
�

5.1.2 A generalized eigenvalue problem

Consider the equation{
Du = C ⊗ u, C ∈ S ′(R)

Eu = ũ0, ũ0 ∈ X.
(5.22)

Motivation for studying this equation can be found in optimal control prob-
lems. In particular, in [43] a special type of this equation appeared when
stochastic maximum principle was applied to an optimal control problem.
The solution is an F-measurable Malliavin differentiable random variable and
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5.1 Equations With the Malliavin Derivative 169

is obtained by applying the Clark-Ocone formula. General solution methods
of this type of Malliavin differential equations were not discussed. In [53] par-
tial information stochastic control problem of a system of forward-backward
stochastic differential equations driven by Lévy process was studied. Lin-
ear homogeneous partial information Malliavin-differential type equation ap-
peared in risk minimization of the terminal wealth in financial markets by
using representation of convex risk measure, i.e. in terms of g-expectations.

The eigenvalue problem is studied also in [33] and [36].

Theorem 5.1.4 ([27]) Let C =
∑∞

k=1 ck ξk ∈ S ′(R). If ck ≥ 1
2k
, for all k ∈ N

then equation (5.22) has a unique solution in X ⊗ (Sc)−1, given by

u = ũ0 ⊗
∑

α=(α1,α2,...)∈I

(
∞∏
k=1

cαkk
αk!

)Kα = ũ0 ⊗
∑
α∈I

cα

α!
Kα. (5.23)

Proof. Using the chaos expansion method, we transform equation (5.22)
into the system of deterministic equations

(αk + 1)uα+ε(k) = uα ck, α ∈ I, k ∈ N. (5.24)

The solution is obtained by induction with respect to the length of multi-
indices α. From Eu = ũ0 it follows that u(0,0,0,...) = ũ0.

Starting with |α| = 0 i.e. α = (0, 0, 0, ...) equations in (5.24) reduce to

u(1,0,0,0,...) = ũ0 c1

u(0,1,0,0,...) = ũ0 c2

u(0,0,1,0,0,...) = ũ0 c3
...

uε(k) = ũ0 ck

, k ∈ N. (5.25)

and we receive the coefficients uα for α of length one.
Next, for |α| = 1 we have α = ε(i), i = 1, 2, ...

If α = (1, 0, 0, 0, ...) then from (5.24) and (5.25) we obtain
u(2,0,0,0,...) = 1

2
u(1,0,0,0,...)c1 = 1

2!
c2

1 ũ0

u(1,1,0,0,...) = u(1,0,0,0,...)c2 = c1c2 ũ0

u(1,0,1,0,0,...) = u(1,0,0,0,...) c3 = c1c3 ũ0
...

. (5.26)

If α = (0, 1, 0, 0, ...) then from (5.24) and (5.25) we have
u(1,1,0,0,...) = u(0,1,0,0,...) c1 = c1c2 ũ0

u(0,2,0,0,...) = 1
2
u(0,1,0,0,...) c2 = c2

2 ũ0

u(0,1,1,0,...) = u(0,1,0,0,...) c3 = c2c3 ũ0
...

. (5.27)
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170 Applications of the Chaos Expansion Method to SDEs

Continuing with α = ε(k), k ≥ 3 we obtain all uα of length two.
For |α| = 2 from system of equations (5.24) and results obtained in pre-

vious step (5.26), (5.27),... we obtain uα, for |α| = 3.
We start with α = (1, 1, 0, 0, ...) and obtain the family

u(2,1,0,0,...) = 1
2
u(1,1,0,0,...) c1 = 1

2
c2

1c2 ũ0

u(1,2,0,0,...) = 1
2
u(1,1,0,0,...) c2 = 1

2
c1c

2
2 ũ0

u(1,1,1,0,...) = u(1,1,0,0,...) c3 = c1c2c3 ũ0
...

,

then continue with α = (2, 0, 0, ....) and receive
u(3,0,0,0,...) = 1

3
u(2,0,0,0,...) c1 = 1

3!
c3

1 ũ0

u(2,1,0,0,...) = u(2,0,0,0,...) c2 = 1
2
c2

1c2 ũ0

u(2,0,1,0,...) = u(2,0,0,0,...) c3 = c2
1c3 ũ0

...

,

and so on. We proceed by the same procedure for all multi-index lengths to
obtain uα in the form

uα = ũ0 ⊗
cα1

1

α1!
· c

α2
2

α2!
· c

α3
3

α3!
· · · , for all α = (α1, α2, α3, · · · ) ∈ I,

and the form of the solution (5.23).
It remains to prove the convergence of the solution (5.23) in the space

X ⊗ (Sc)−1, i.e. to prove that, for some p > 0

‖u‖2
X⊗(Sc)−1,−p,c =

∑
α∈I

‖uα‖2
X (2N c)−pα <∞.

From assumption ck ≥ 1
2k

, for all k ∈ N, it follows that
∑

α∈I(2Nc)−pα < ∞
if p > 0. Then, for p > 3, we have

‖u‖2
X⊗(Sc)−1,−p =

∑
α∈I

‖ũ0‖2
X

c2α

(α!)2
(2Nc)−pα

≤ ‖ũ0‖2
X

∑
α∈I

c2α(2N)−pαc−pα

≤ ‖ũ0‖2
X

∑
α∈I

c−(p−2)α
∑
α∈I

(2N)−pα <∞.

With this statement we complete the proof. �
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5.2 An Equation Involving the Ornstein-Uhlenbeck Operator 171

Special cases

• Especially, for C = ξi, for fixed i ∈ N, the equation (5.22) transforms
into {

Du = ξi ⊗ u
Eu = ũ0, ũ0 ∈ X.

(5.28)

The chaos expansion of the generalized stochastic process u ∈ X⊗(S)−1

which represents the solution of (5.28) is given by

u = ũ0 ⊗
∞∑
n=0

cni
n!
Knε(i) = ũ0 ⊗

∞∑
n=0

1

n!
Knε(i) = ũ0 ⊗ exp♦ I(ξi),

where I(ξi) represents the Itô integral of the Hermite function ξi, i ∈ N.
Using the generating property of Hermite polynomials (1.1) we obtain
another form of the solution

u = ũ0 ⊗ exp

(
I(ξi)−

1

2

)
= ũ0 ⊗ εξi ,

where εξi is the normalized stochastic exponential of ξi, defined in (2.7).

Remark 5.1.1 In [31] it is proved that Dεh = h εh, for deterministic
h, i.e. the family of normalized stochastic exponential represents the
family of eigenfunctions of the operator D, thus Theorem 5.1.4 gives a
more general result.

• If we choose C = 0 then equation (5.22) transforms to

Du = 0, Eu = ũ0, ũ0 ∈ X (5.29)

and has a unique trivial solution u = ũ0 in the space X.

5.2 An Equation Involving the

Ornstein-Uhlenbeck Operator

In this section we solve a stochastic equation involving generalized stochastic
processes and the Ornstein-Uhlenbeck operator R.

Let P (t) = pmt
m + pm−1t

m−1 + ... + p1t + p0, t ∈ R be a polynomial of
degree m with real coefficients. Then,

P (R) = pmR
m + pm−1R

m−1 + ...+ p1R + p0Id,
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172 Applications of the Chaos Expansion Method to SDEs

where Id is the identity operator.
Recall that a family of orthogonal polynomials Kα, i.e. a family of the

Fourier-Hermite and the Charlier polynomials, is the family of eigenfunctions
of the Ornstein-Uhlenbeck operator, and the corresponding eigenvalues are
|α|, i.e.

RKα = |α|Kα, α ∈ I.

If we apply the operator R onto the Kα successively k times, we obtain

Rk (Kα) = |α|kKα, k ∈ N, for α ∈ I.

Action of the operator R onto a singular generalized stochastic process u is
given by (4.16).

Theorem 5.2.1 ([27])

(i) Let P be a polynomial such that P (k) 6= 0, k ∈ N0. Then equation

P (R)u = g, where g ∈ X ⊗ (S)−1,−p for some p > 0, (5.30)

has a unique solution in X ⊗ (S)−1 given by

u =
∑
α∈I

gα
P (|α|)

⊗Kα. (5.31)

(ii) Let P be a polynomial such that P (k) = 0 for k ∈ M , where M is a
finite subset of N0 and let ci ∈ X, i ∈M . Equation

P (R)u = g, g ∈ X ⊗ (S)−1, uα = ci, |α| = i, i ∈M,

has a unique solution in X ⊗ (S)−1, given by

u =
∑

α∈I, |α|/∈M

gα
P (|α|)

⊗Kα +
∑

|α|=i∈M

ci ⊗Kα. (5.32)

Proof. Note that the Fourier-Hermite respectively the Charlier polynomials
Kα are eigenfunctions also for the operator P (R):

P (R)Kα = P (|α|)Kα, α ∈ I.

Assume that u ∈ X ⊗ (S)−1 is a generalized stochastic process of the form
(4.2). Then

P (R)u =
∑
α∈I

uα ⊗ P (R)Kα =
∑
α∈I

P (|α|)uα ⊗Kα. (5.33)
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5.2 An Equation Involving the Ornstein-Uhlenbeck Operator 173

Thus, P (R) maps Dom(D) ⊂ X⊗(S)−1,−p → X⊗(S)−1,−p−r for r > 1+2m,
where r depends on the growth of P (|α|).
Note that for all α ∈ I, |α| 6= 0, |P (|α|)| ≤ (2N)mα|α|. Then

‖P (R)u‖2
X⊗(S)−1,−p−r =

∑
α∈I

‖P (|α|)uα‖2
X(2N)−(p+r)α

= |P (0)|2 ‖u(0,0,0,··· )‖2
X +

∑
α∈I,|α|>0

|P (|α|)|2‖uα‖2
X(2N)−(p+r)α

≤ |P (0)|2‖u(0,0,0,··· )‖2
X +

∑
α∈I,|α|>0

|α|2(2N)2mα‖uα‖2
X(2N)−(p+r)α

≤ D
∑

α∈I,|α|>0

|α|2‖uα‖2
X(2N)−pα <∞,

where D = |P (0)|2 +
∑

α∈I,|α|>0(2N)−(r−2m)α, for r > 2m + 1. We can also

conclude that P (R) is a continuous and bounded operator.
Let g =

∑
α∈I gα ⊗Kα, where gα ∈ X, α ∈ I. Then by (5.33):∑

α∈I

P (|α|)uα ⊗Kα =
∑
α∈I

gα ⊗Kα.

Due to the uniqueness of the Wiener-Itô chaos expansion, the last equation
transforms to the system of deterministic equations

P (|α|)uα = gα, for all α ∈ I.

Now we prove (i). Since P (|α|) 6= 0 for all α ∈ I, it follows that uα = gα
P (|α|)

and equation (5.30) has a unique formal solution of the form (5.31).
It remains to prove convergence of the solution in X ⊗ (S)−1,−p, for some

p > 0. Note that there exists C > 0 such that |P (|α|)| ≥ C for all α ∈ I.
Thus,

‖u‖2
X⊗(S)−1,−p =

∑
α∈I

‖ gα
P (|α|)

‖2
X(2N)−pα ≤ 1

C2

∑
α∈I

‖gα‖2
X(2N)−pα <∞,

because g ∈ X ⊗ (S)−1,−p. Thus equation (5.30) has a unique solution u ∈
X ⊗ (S)−1,−p.

The proof of assertion (ii) simply follows by the the previous analysis.
The coefficients of the solution u are given by

uα =

{ gα
P (|α|) , |α| /∈M

ci, |α| = i ∈M,

and the solution has the form (5.32) if and only if gα = 0, for |α| ∈M .
Note, if there exists at least one α̃ ∈ M such that gα̃ 6= 0, then equation

(5.30) has no solution. �
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174 Applications of the Chaos Expansion Method to SDEs

5.3 An Equation Involving the Exponential

of the Ornstein-Uhlenbeck Operator

Consider now a stochastic differential equation of the form

ecRu = h, (5.34)

where ecR =
∑∞

k=0
ckRk

k!
, c ∈ R and h ∈ X ⊗ exp(S)−1,−p is a singular gener-

alized stochastic process.

Theorem 5.3.1 ([30]) Let h ∈ X ⊗ exp(S)−1,−p, for some p > 0. Then,
there exists q > 0 such that equation (5.34) has a unique generalized solution
in X ⊗ exp(S)−1,−q given by the form

u =
∑
α∈I

e−c|α|hα ⊗Kα. (5.35)

Proof. Assume u ∈ X ⊗ exp(S)−1,−p is a generalized stochastic process of
the form (4.2), satisfying condition (4.3) with q−pα = e−p(2N)α .

Note that the differential operator ecR satisfies the identity

ecRKα =
∞∑
k=0

ckRk

k!
Kα =

∞∑
k=0

ck|α|k

k!
Kα = ec|α|Kα, α ∈ I.

Then

ecRu =
∑
α∈I

ec|α|uα ⊗Kα, uα ∈ X. (5.36)

For c > 0 the operator ecR is a continuous and bounded mapping from
X⊗ exp(S)−1,−p into X⊗ exp(S)−1,−q, for some q > p+2c. From e|α| ≤ e(2N)α ,
α ∈ I it it follows that

‖ecRu‖2
X⊗exp(S)−1,−q =

∑
α∈I

e2c|α|‖uα‖2
Xe
−q(2N)α

≤
∑
α∈I

e2c|α| e−p(2N)α ‖uα‖2
X e
−(q−p)(2N)α

≤

(∑
α∈I

e2c|α|e−(q−p)(2N)α

) (∑
α∈I

‖uα‖2
Xe
−p(2N)α

)

≤

(∑
α∈I

e−(q−p−2c)(2N)α

)
‖u‖2

X⊗exp(S)−1,−p <∞,

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



5.3 An Equation Involving the Exponential of the OU Operator175

for q > p+ 2c.
If c ≤ 0 then the operator ecR is a continuous and bounded mapping from

X ⊗ exp(S)−1,−p into X ⊗ exp(S)−1,−q, for q > p :

‖ecRu‖2
X⊗exp(S)−1,−q =

∑
α∈I

e2c|α|‖uα‖2
Xe
−q(2N)α

≤

(∑
α∈I

e−(q−p)(2N)α

)
‖u‖2

X⊗exp(S)−1,−p <∞.

Let h ∈ X ⊗ exp(S)−1,−p be of the form h =
∑

α∈I hα ⊗ Kα such that
hα ∈ X and ∑

α∈I

‖hα‖2
X e
−p(2N)α <∞. (5.37)

We are looking for the solution u of (5.34) in the form (4.2) where uα ∈ X
are the coefficients to be determined.

We apply (5.36) to transform equation (5.34) into the system of deter-
ministic equations

ec|α|uα = hα, α ∈ I.

Thus, uα = e−c|α|hα and we obtain a unique solution of equation (5.34) in
the form (5.35).

Finally, the convergence of the solution in X ⊗ exp(S)−1,−p, in case of
c > 0, follows directly from (5.37). But, in case of c ≤ 0 the solution
converges in the space X ⊗ exp(S)−1,−q, for some q > p− 2c, i.e.

‖u‖2
X⊗exp(S)−1,−q =

∑
α∈I

e−2c|α|‖hα‖2
Xe
−q(2N)α

≤ (
∑
α∈I

e−2c|α| e−(q−p)(2N)α) (
∑
α∈I

‖hα‖2
X e
−p(2N)α)

≤ M ‖h‖2
X⊗exp(S)−1,−p <∞,

where M =
∑
α∈I

e−(q−p+2c)(2N)α <∞ for q > p− 2c.
�
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176 Applications of the Chaos Expansion Method to SDEs

5.4 The Stochastic Dirichlet Problem Driven

by The Ornstein-Uhlenbeck Operator:

Approach by The Fredholm Alternative

for Chaos Expansions

This section is devoted to the stochastic version of the Fredholm alterna-
tive in the framework of chaos expansion methods on white noise probability
space. We apply the results to solve the Dirichlet problem generated by an
elliptic second order differential operator with stochastic coefficients, stochas-
tic input data and boundary conditions, and with the Ornstein-Uhlenbeck
operator as a perturbation term. The stochastic Dirichlet problem was stud-
ied in [57], [58], [67] and as a conclusion to this series of papers in [28] we
introduced the Malliavin derivative and its related operator, the Ornstein-
Uhlenbeck operator, into this setting. The following results represent the
main contribution of this dissertation to the Malliavin differential theory in
white noise framework.

In [28] we studied a stochastic Dirichlet problem with a perturbation term
driven by the Ornstein-Uhlenbeck operator

L♦u(x, ω) + cP (R)u(x, ω) = h(x, ω) +
n∑
i=1

Dif
i(x, ω), x ∈ I, ω ∈ Ω,

u(x, ω) �∂I = g(x, ω),

(5.38)

where I is an open bounded subset of Rn, c ∈ R, and L is a stochastic
differential operator of the form

L♦u(x, ω) =
n∑
i=1

Di(
n∑
j=1

aij(x, ω)♦Dju(x, ω) + bi(x, ω)♦u(x, ω))

+
n∑
i=1

ci(x, ω)♦Diu(x, ω) + d(x, ω)♦u(x, ω),

(5.39)

where aij(x, ω), bi(x, ω), ci(x, ω), d(x, ω) ∈ L∞(I) ⊗ (S)−1,−(p−4), i, j =
1, 2, . . . , n, P is a polynomial with coefficients in R, h, f i ∈ L2(I)⊗ (S)−1,−p
and g ∈ W 1,2(I)⊗ (S)−1,−p.

In [57] and [58] the stochastic Dirichlet problem of the form

L♦u(x, ω) = h(x, ω) +
n∑
i=1

Dif
i(x, ω), x ∈ I, ω ∈ Ω,

u(x, ω) �∂I = g(x, ω),

(5.40)
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5.4 The Stochastic Dirichlet problem 177

is considered and we showed the existence of a unique solution assuming
that L is an elliptic operator with essentially bounded coefficients satisfying
standard conditions. The maximum principle and the approach developed
in [5] for the deterministic Dirichlet problem are used.

In the framework considered, the coefficients of L are stochastic processes,
thus in physical interpretation corresponding equation with constant coeffi-
cients to the equation (5.40) can be understood as a diffusion process in a
stochastic anisotropic medium, with transport and creation also dependent
on some random factors, and with a stochastic boundary value. Example
of a stochastic anisotropic medium is a medium consisting of two randomly
mixed immiscible fluids.

In [57] and [58] is proved that in order to obtain a solution of (5.40), the
operator should generate a bilinear form that is both coercive and continuous.
Assuming that all input data f , g and the coefficients of L are in (S)−1,−p
(for fixed x) and that L is elliptic, one obtains ellipticity (and thus also
coercivity of the associated bilinear form) in (S)−1,−q for q ≥ p. On the
other hand, the associated bilinear form is continuous on (S)−1,−q for q ≤ p.
Since both conditions must hold, it is necessary to hold p fixed and work only
in (S)−1,−p. Thus, it is of great interest to develop Fredholm alternative type
theorems holding in (S)−1,−p, which will be the first topic of this section. We
will find conditions for the operator A acting on Kondratiev spaces, under
which equations of the form f − A(f) = g have a unique solution.

In [28] we proved solvability and uniqueness of the solution to (5.38) under
assumptions made only on the expectation of L and certain conditions on the
positivity of the perturbation term. In particular, when c = 0, (5.38) reduces
to the equation considered in [57] and [58], but with much less restrictive
conditions on L. This is one of the important contributions of this section
and is included in this thesis as its original and the most important part. We
will prove that there is a solution in (S)−1,−p for p large enough.

The method used in all equations is the chaos expansion method, i.e
the propagator method. With this method we reduce the stochastic partial
differential equations to an infinite triangular system of partial differential
equations, which can be solved by induction. Summing up all coefficients
of the expansion and proving convergence in an appropriate weighted space,
one obtains the solution of the initial stochastic partial differential equation.
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178 Applications of the Chaos Expansion Method to SDEs

5.4.1 The Fredholm alternative for chaos expansions

Now we prove a general form of the Fredholm alternative theorem for map-
pings given by chaos expansions.

Definition 5.4.1 Let X be a Banach space and X ′ its dual space. The
operator A : X → X ′ is an operator of FA-type if it satisfies the Fredholm
alternative:

• either the equation f − A(f) = 0 has a nontrivial solution f ∈ X

• or the equation f − A(f) = g has a unique solution f ∈ X for each
g ∈ X ′.

It is well known that if A is a compact operator A : V → V where V is a
Hilbert space, then it is of FA-type. Note that the embedding Id : W 1,2

0 (I)→
W 1−ε,2(I) is compact for ε > 0, but not as a mapping Id : W 1,2

0 (I)→ W 1,2
0 (I).

We will use the following fact in Hilbert spaces V . If A : V → V is a
compact operator, then for every c ≥ 0 the equation f(1− c)− Af = 0 has
only the trivial solution if and only if equation f(1−c)−Af = g has a unique
solution for each g ∈ V . For c = 0 this statement reduces to the classical
Fredholm alternative theorem.

In the following theorems we provide some sufficient conditions (other
then compactness) under which an operator is of FA-type.

Theorem 5.4.1 ([28]) Let X be a Banach space and Tα : X → X ′, α ∈ I,
be a family of FA-type operators that are uniformly bounded by a constant
K > 0. Let p ∈ N. Consider the mapping T̂ : X ⊗ (S)−1,−p → X ′ ⊗ (S)−1,−p
defined by

T̂ (
∑
α∈I

uα ⊗Kα) =
∑
α∈I

Tα(uα)⊗Kα. (5.41)

Then,

• either the equation f − T̂ (f) = 0 has a nontrivial solution f ∈ X ⊗
(S)−1,−p

• or the equation f − T̂ (f) = g has a unique solution f ∈ X ⊗ (S)−1,−p
for each g ∈ X ′ ⊗ (S)−1,−p.

In the second case, the operator (Id− T̂ )−1 whose existence is asserted there,
is also a bounded operator.

Especially, if K < 1, then T̂ is a contraction mapping, thus f − T̂ (f) = g
has a unique solution for all g ∈ X ′ ⊗ (S)−1,−p.
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5.4 The Stochastic Dirichlet problem 179

Proof. For u ∈ X ⊗ (S)−1,−p we have∑
α∈I

‖Tα(uα)‖2
X′(2N)−pα ≤ K

∑
α∈I

‖uα‖2
X(2N)−pα <∞,

thus the operator T in (5.41) is continuous.
Assume now that f − T̂ (f) = 0 has only the trivial solution f = 0. This

means that in the expansion f =
∑

α∈I fα ⊗ Kα, fα = 0 for all α ∈ I, i.e.
each equation fα − Tα(fα) = 0 has only the trivial solution fα = 0.

Consider now the equation f − T̂ (f) = g i.e.∑
α∈I

(fα − Tα(fα))⊗Kα =
∑
α∈I

gα ⊗Kα.

Due to uniqueness of the Wiener-Itô chaos expansion this is equivalent to

fα − Tα(fα) = gα, gα ∈ X ′, for all α ∈ I.

But since Tα is FA-type, and fα − Tα(fα) = 0 has only the trivial
solution, from the Fredholm alternative it follows that there exists a
unique solution fα ∈ X solving fα − Tα(fα) = gα. Every generalized
stochastic process is uniquely determined by its coefficients in the chaos
expansion, thus f =

∑
α∈I fα ⊗Kα is the unique solution of f − T̂ (f) = g.

It remains to prove that
∑

α∈I fα⊗Kα converges in X⊗ (S)−1,−p i.e. that∑
α∈I

‖fα‖2
X(2N)−pα <∞.

Since Tα are uniformly bounded, it follows that (Id−Tα)−1 are also uniformly
bounded, and from fα = gα + Tα(fα) it follows that

‖fα‖X ≤ C‖gα‖X′ ,

where C = max
α∈I
‖(Id− Tα)−1‖op.

Thus, ∑
α∈I

‖fα‖2
X(2N)−pα ≤ C2

∑
α∈I

‖gα‖2
X′(2N)−pα <∞.

Especially, if K < 1, then

C = max
α∈I
‖(Id− Tα)−1‖op ≤ max

α∈I
(1− ‖Tα‖op)−1 ≤ (1−K)−1. �
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180 Applications of the Chaos Expansion Method to SDEs

Corollary 5.4.1 ([28]) Let X be a Banach space and Tα : X → X ′, be a
family of compact operators that are uniformly bounded by a constant K > 0.
Let p ∈ N and let T̂ : X⊗(S)−1,−p → X ′⊗(S)−1,−p be an operator of the form
(5.41). Let Qα : X ′ → X ′, α ∈ I, be a family of uniformly bounded operators
and consider the mapping Q̂ : X ′ ⊗ (S)−1,−p → X ′ ⊗ (S)−1,−p defined by

Q̂(
∑
α∈I

uα ⊗Kα) =
∑
α∈I

Qα(uα)⊗Kα. (5.42)

Then,

• either the equation f − Q̂(T̂ (f)) = 0 has a nontrivial solution f ∈
X ⊗ (S)−1,−p

• or the equation f−Q̂(T̂ (f)) = g has a unique solution f ∈ X⊗(S)−1,−p
for each g ∈ X ′ ⊗ (S)−1,−p.

Proof. Since Tα is compact and Qα is continuous, Qα ◦ Tα is a compact
operator for each α ∈ I and the assertion follows from the classical Fredholm
alternative similarly as in Theorem 5.4.1. �

For operators which can not be represented in the form (5.41) or (5.42)
the following theorem will provide sufficient conditions under which these
operators are of FA-type. Before we state the theorem we will explain the
framework.

Consider an operator A : X⊗ (S)−1,−p → X ′⊗ (S)−1,−p. Let the equation
f − A(f) = 0 have only the trivial solution f = 0 in X ⊗ (S)−1,−p. Let
g =

∑
γ∈I gγ ⊗Kγ ∈ X ′ ⊗ (S)−1,−p and assume that the equation

f − A(f) = g

can be reduced (using the chaos expansion on both the left and the right-hand
side) to a lower triangular system of the form

fγ − aγ(fγ) = gγ + Fγ({fα, α < γ}), γ ∈ I,

for some family of FA-type operators aγ : X → X ′, γ ∈ I, and some family
of functions Fγ, γ ∈ I, so that Fγ depends on fα, α < γ, but not on α ≥ γ
(this means that the system is lower triangular and thus can be solved by
induction on γ). Since by assumption fγ − aγ(fγ) = 0 has only the trivial
solution for every γ ∈ I and aγ is of FA-type, it follows that there exists a
unique fγ solving fγ − aγ(fγ) = gγ + Fγ({fα, α < γ}) given by

fγ = (Id− aγ)−1(gγ + Fγ({fα, α < γ})).
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5.4 The Stochastic Dirichlet problem 181

Now, if
∑

γ∈I fγ ⊗ Kγ converges in X ′ ⊗ (S)−1,−p, then by uniqueness
of the Wiener-Itô chaos expansion it follows that f =

∑
γ∈I fγ ⊗ Kγ is the

unique solution to f − A(f) = g.
In the following theorem we provide a general concept which is based on

the procedure described above.

Theorem 5.4.2 ([28]) Let X be a Banach space and Q : X ⊗ (S)−1 →
X ′ ⊗ (S)−1 an operator of the form Q = A+B + C, where

1. C = c P (R), for some c ∈ R and R = δD is the Ornstein-Uhlenbeck
operator, P (R) the differential operator P (R) = pmR

m + pm−1R
m−1 +

...+p1R+p0Id and P is a polynomial of degree m with real coefficients
such that cP (k) ≤ 0, k ≥ k0, k, k0 ∈ N0.

2. A(
∑
γ∈I

fγ⊗Kγ) =
∑
γ∈I

aγ(fγ)⊗Kγ and aγ : X → X ′ are compact operators

such that

sup
γ∈I

(
1

1− cP (|γ|)− ‖aγ‖op

)
< K, (5.43)

for some constant K > 0.

3. B(
∑
γ∈I

fγ ⊗ Kγ) =
∑
γ∈I

∑
|γ−β|>0

bβ(fγ−β)Kγ for some bounded operators

bγ : X → X ′ and there exists p > 0 such that

K
∑
|β|>0

‖bβ‖op(2N)
−pβ
2 <

1√
2
. (5.44)

Let the equation f − Q(f) = 0 have only the trivial solution f = 0 in X ⊗
(S)−1. Then, for every g ∈ X ′ ⊗ (S)−1 there exists a unique f ∈ X ⊗ (S)−1

solving
f −Qf = g. (5.45)

Proof. Equation f −Qf = 0 is equivalent to

f − (A(f) + c P (R)(f) +B(f)) = 0 and

∑
γ∈I

fγ − aγ(fγ)− cP (|γ|)fγ −
∑
|γ−β|>0

bβ(fγ−β)

⊗Kγ = 0.

Due to uniqueness of the Wiener-Itô chaos expansion this is equivalent to

fγ(1− cP (|γ|))− aγ(fγ)−
∑
|γ−β|>0

bβ(fγ−β) = 0, γ ∈ I. (5.46)
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182 Applications of the Chaos Expansion Method to SDEs

Since f−Q(f) = 0 has only the trivial solution f = 0 in X⊗(S)−1, it follows
that for each γ ∈ I equation (5.46) has only the trivial solution fγ = 0. Since
aγ is compact, the classical Fredholm alternative implies that

fγ(1− cP (|γ|))− aγ(fγ) =
∑
|γ−β|>0

bβ(fγ−β) + gγ (5.47)

has a unique solution

fγ = ((1− cP (|γ|)) Id− aγ)−1(gγ +
∑
|γ−β|>0

bβ(fγ−β)), γ ∈ I,

such that

‖fγ‖X ≤
1

1− cP (|γ|)− ‖aγ‖op

‖gγ‖X′ + ∑
|γ−β|>0

‖bβ‖op‖fγ−β‖X

 , γ ∈ I.

We will prove that
∑
γ∈I

fγ ⊗Kγ converges in X ⊗ (S)−1. Indeed,

∑
γ∈I

‖fγ‖2
X(2N)−pγ ≤ K2

∑
γ∈I

‖gγ‖X′ + ∑
|γ−β|>0

‖bβ‖op‖fγ−β‖X

2

(2N)−pγ

≤ 2K2

∑
γ∈I

‖gγ‖2
X′(2N)−pγ + (

∑
|γ−β|>0

‖bβ‖op(2N)−
pγ
2 )2
∑
γ∈I

‖fγ‖2
X(2N)−pγ


by the Hölder-Young inequality. Thus,1− 2K2(

∑
|γ−β|>0

‖bβ‖op(2N)−
pγ
2 )2

∑
γ∈I

‖fγ‖2
X(2N)−pγ ≤ 2K2

∑
γ∈I

‖gγ‖2
X′(2N)−pγ.

By assumption (5.44), there exists p > 0 large enough so that

M = 1− 2K2(
∑
|γ−β|>0

‖bβ‖op(2N)−
pγ
2 )2 > 0.

This implies∑
γ∈I

‖fγ‖2
X(2N)−pγ ≤ 2K2

M

∑
γ∈I

‖gγ‖2
X′(2N)−pγ <∞.

�
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5.4 The Stochastic Dirichlet problem 183

Remark 5.4.1

(1) If aγ, γ ∈ I is a family of uniformly bounded operators and
1− cP (|γ|)− ‖aγ‖op 6= 0, γ ∈ I, then condition (5.43) holds.

(2) If bγ, γ ∈ I are uniformly bounded operators then there exists p ∈ N0

large enough such that (5.44) holds, thus (5.45) always has a solution
in X ⊗ (S)−1. Otherwise, bγ might be bounded but not uniformly and
then condition (5.44) is essential.

The following example shows that the conditions of the above theorems
are sufficient, but not necessary.

Example 5.4.1 The identity operator Id : (S)−1,−p → (S)−1,−p is of FA-
type although it is not compact and it does not satisfy ‖Id‖ < 1. Clearly,
u − u = 0 has nontrivial solutions, i.e. every element in (S)−1,−p satisfies
this equation. Note also that Id : (S)−1,−p → (S)−1,−q is a compact embedding
for each q > p.

Example 5.4.2 Let a ∈ (S)−1 be a stochastic process such that
E(a) = a(0,0,...) ∈ (−1, 1). Then the equation

u− a♦u = g,

has a unique solution for each g ∈ (S)−1. Indeed, in [6] it was recently proved
that there exist no zero divisors for the Wick product in (S)−1. Thus, from
(1 − a)♦u = 0 it follows that either u = 0 or a = 1. Since E(a) 6= 1, it
follows that u = 0. So, u− a♦u = 0 has only the trivial solution. Note that
u− a♦u = g can be reduced to a lower triangular form as in (5.47):

uγ − a(0,0,...)uγ = gγ +
∑
|γ−α|>0

aγ−αuα,

where a =
∑

γ∈I aγKγ, aγ ∈ R, γ ∈ I. Applying the same procedure as in
Theorem 5.4.2 we obtain by induction on |γ|:

uγ = (Id− a(0,0,...))
−1(gγ +

∑
|γ−α|>0

aγ−αuα),

where uα, α < γ, are known from the previous steps. Choose p ∈ N large
enough such that ∑

|α|>0

|aα|
1− |a(0,0,...)|

(2N)−
pα
2 <

1√
2
.

Then,
∑

γ∈I |uγ|2(2N)−pα <∞, and u =
∑

γ∈I uγKγ is the unique solution to
u− a♦u = g.
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184 Applications of the Chaos Expansion Method to SDEs

In the following example we consider the case of Sobolev spaces X = W 1,2
0 (I),

X ′ = W−1,2(I), and I is an open subset of R.

Example 5.4.3 Let a =
∑

α∈I aα⊗Kα be a singular generalized process such
that ã ∈ L∞(I)⊗ (S)−1,−p/2. Consider the mapping A : W 1,2(I)⊗ (S)−1,−p →
W 1,2(I)⊗ (S)−1,−p defined by

A(u) = a♦u, u ∈ W 1,2(I)⊗ (S)−1,−p.

In Lemma 4.1.1 we proved that A is a continuous mapping.

In general, A is not a compact mapping, but if ‖E(a)‖L∞ < 1 and if

∑
|α|>0

‖aα‖L∞
1− ‖E(a)‖L∞

(2N)−
pα
2 <

1√
2
,

then A is of FA-type.

Especially, if a = W is white noise given by Wx(ω) =
∑∞

k=1 ξk(x)Hε(k)(ω),
x ∈ R, ω ∈ Ω, then E(W ) = 0, and

∞∑
k=1

‖ξk‖L∞(2k)−
p
2 ≤ 2(π)−

1
4

∞∑
k=1

(2k)−
p
2

by the uniform boundedness of the Hermite functions. Now we can choose p

large enough such that
∑∞

k=1(2k)−
p
2 < π

1
4

2
√

2
. Thus, the equation

u−W♦u = g

has a unique solution u ∈ W 1,2(I)⊗(S)−1,−p for each g ∈ W 1,2(I)⊗(S)−1,−p.

5.4.2 Applications to the Dirichlet problem

In this section we continue with the assumption that X = W 1,2
0 (I),

X ′ = W−1,2(I) and I is an open bounded subset of Rn.

Consider the stochastic Dirichlet problem with a perturbation term driven
by the Ornstein-Uhlenbeck operator, given by (5.38)

L♦u(x, ω) + cP (R)u(x, ω) = h(x, ω) +
n∑
i=1

Dif
i(x, ω), x ∈ I, ω ∈ Ω,

u(x, ω) �∂I = g(x, ω),
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5.4 The Stochastic Dirichlet problem 185

where L is a stochastic differential operator of the form (5.39), c is a real
constant, R = δD and P is a polynomial of degree m with real coefficients.
Denote by h = h+

∑n
i=1 Dif

i. Denote by

Lα =
n∑
i=1

Di(
n∑
j=1

aijα (x)Dj + biα(x)) +
n∑
i=1

ciα(x)Di + dα(x).

For each α ∈ I, Lα is a deterministic linear differential operator. Recall that
E(aij) = aij(0,0,0,...), E(bi) = bi(0,0,0,...), E(ci) = ci(0,0,0,...), E(d) = d(0,0,0,...).

Now we impose the following conditions on the operator L+ cP (R)Id:

• E(L) = L(0,0,0,...) is elliptic i.e. there exists λ > 0 such that

n∑
i,j=1

E(aij)(x)ψiψj ≥ λ|ψ|2, x ∈ I, ψ ∈ Rn, (5.48)

•
aij, bi, ci, d ∈ L∞(I)⊗ (S)−1,−(p−4) i, j = 1, 2, . . . , n, (5.49)

•

〈E(d) + cP (|α|), ϕ〉L2(I) −
n∑
i=1

〈E(bi), Diϕ〉L2(I) ≤ 0, (5.50)

for all ϕ ∈ W 1,2
0 (I), ϕ ≥ 0, α ∈ I,

•
cP (k) ≤ 0, k ≥ k0, k, k0 ∈ N. (5.51)

Proposition 5.4.1 ([28]) Assume that the operator L + cP (R)Id satisfies
(5.48), (5.49), (5.50) and (5.51). If u ∈ W 1,2

0 (I)⊗ (S)−1,−p satisfies equation

L♦u(x, ω) + cP (R)u(x, ω) = 0

in I × Ω, then u = 0.

Proof. By (5.48) L(0,0,...) = E(L) is an elliptic (deterministic) linear differ-
ential operator and equation L♦u(x, ω) + cP (R)u(x, ω) = 0 can be reduced
to a system of equations(

L(0,0,...) + cP (R)Id
)
uγ =

∑
|γ−β|>0

Lγ−β uβ,
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186 Applications of the Chaos Expansion Method to SDEs

that can be solved by induction on |γ| to obtain that uγ = 0 for all γ ∈ I.
Clearly, u =

∑
γ∈I uγ⊗Kγ = 0 converges in W 1,2

0 (I)⊗(S)−1,−p for all p ∈ N0.
Thus, u = 0 is the unique solution to L♦u(x, ω) + cP (R)u(x, ω) = 0. �

Let us stress that the boundary condition in (5.38) is interpreted in the
sense that (u(x, ω) − g(x, ω)) �∂I= 0 in W 1,2

0 (I) ⊗ (S)−1,−p. First we note
that it suffices to solve the Dirichlet problem (5.38) for zero boundary values.
Namely, for û(x, ω) = u(x, ω)− g(x, ω) we have by linearity of the operator
L♦ + cP (R) that

L♦û+ cP (R)û

= L♦u+ cP (R)u− L♦g − cP (R)g

= h+
n∑
i=1

Dif
i −

(
n∑
i=1

Di(
n∑
j=1

aij♦Djg + bi♦g) +
n∑
i=1

ci♦Dig + d♦g

)
− cP (R)g

= h−
n∑
i=1

ci♦Dig − d♦g − cP (R)g +
n∑
i=1

Di

(
f i −

n∑
j=1

aij♦Djg − bi♦g

)

= ĥ+
n∑
i=1

Dif̂
i,

where ĥ = h−
∑n

i=1 c
i♦Dig−d♦g−cP (R)g and f̂ i = f i−

∑n
j=1 a

ij♦Djg−bi♦g,
i = 1, 2, . . . , n. Clearly, û �∂I= 0. Thus, any stochastic Dirichlet problem of
the form (5.38) can be reduced to the case with zero boundary condition.
Moreover, if h, f i ∈ L2(I) ⊗ (S)−1,−p and g ∈ W 1,2(I) ⊗ (S)−1,−p, then

ĥ, f̂ i ∈ L2(I) ⊗ (S)−1,−p, û ∈ W 1,2
0 (I) ⊗ (S)−1,−p and u = û + g ∈

W 1,2(I)⊗ (S)−1,−p.

Theorem 5.4.3 ([28]) Let the operator L and the polynomial P satisfy
conditions (5.48), (5.49), (5.50) and (5.51). Then for h, f i ∈ L2(I) ⊗
(S)−1,−p, i = 1, 2, . . . , n and for g ∈ W 1,2(I) ⊗ (S)−1,−p the stochastic
Dirichlet problem (5.38) has a unique solution u ∈ W 1,2(I)⊗ (S)−1,−p.

Proof. Without loss of generality we may assume that g = 0 and p is large
enough so that (in accordance with (5.44)) we have∑

|α|>0

‖Lγ‖L∞
‖L(0,0,...)‖L∞

(2N)−
pγ
2 <

1√
2
, (5.52)
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5.4 The Stochastic Dirichlet problem 187

where ‖Lγ‖L∞ = max
1≤i,j≤n

{‖aijγ ‖L∞ , ‖biγ‖L∞ , ‖ciγ‖L∞ , ‖dγ‖L∞}.

Let ‖Lγ‖op, γ ∈ I, denote the operator norm of Lγ : W 1,2(I)→ W−1,2(I),
which has the property (see [57], [58]) that

‖Lγ‖op ≤ 4 max
1≤i,j≤n

{‖aijγ ‖L∞ , ‖biγ‖L∞ , ‖ciγ‖L∞ , ‖dγ‖L∞}.

Clearly, if (5.49) holds, then from
∑

γ∈I ‖Lγ‖L∞(2N)−
pγ
2 < ∞ it follows

that
∑

γ∈I ‖Lγ‖op(2N)−
pγ
2 <∞. Also, (5.52) implies that

∑
|γ|>0

‖Lγ‖op
‖L(0,0,...)‖op

(2N)−
pγ
2 <

1√
2
.

Observe that L♦u+ P (R)u = h+
∑n

i=1Dif
i can be written as

(
L(0,0,...) + cP (|γ|)Id

)
uγ(x) = hγ(x)−

∑
β∈I

|γ−β|>0

Lγ−βuβ(x), uγ(x) �∂I= 0, γ ∈ I.

This system is lower triangular and can be solved by induction on |γ|.
In each step the operator that is involved, L(0,0,...) + cP (|γ|)Id is by the
assumptions (5.48), (5.49) and (5.50) a deterministic elliptic linear differential
operator with bounded coefficients. From (classical) deterministic theory
([5]) it follows that the last equation has a unique solution and that

‖(L(0,0,...) + cP (|γ|)Id)−1‖op 6= 0, γ ∈ I.

Let us show that {L(0,0,...) + cP (k)Id, k ∈ N0} is a bounded family of
operators. We have, for m0 > 0 large enough

‖L(0,0,...)+cP (k)Id‖op ≥ |c||P (k)|−‖L(0,0,...)‖op ≥ |c|m0−‖L(0,0,...)‖op ≥
|c|m0

2
,

thus there exists C > 0 such that

‖(L(0,0,...) + cP (k)Id)−1‖op ≤ C, k ∈ N0. (5.53)

Let γ = (0, 0, . . .). Since h(0,0,...), f
i
(0,0,...) ∈ L2(I), i = 1, . . . , n, from the

deterministic theory of elliptic PDEs (see e.g. [5]) it follows that the Dirichlet
problem

(L(0,0,...) + cP (0)Id)u(0,0,...)(x) = h(0,0,...)(x), u(0,0,...)(x) �∂I= 0
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188 Applications of the Chaos Expansion Method to SDEs

has a unique weak solution u(0,0,...) ∈ W 1,2
0 (I). Moreover, there exists the

inverse operator (L(0,0,...) + cP (0)Id)−1 as a bounded operator

(L(0,0,...) + cP (0)Id)−1 : L2(I)→ W 1,2
0 (I)

and the estimate

‖u(0,0,...)‖W 1,2 ≤ ‖(L(0,0,...) + cP (0)Id)−1‖op · ‖h(0,0,...)‖L2 ≤ C‖h(0,0,...)‖L2 ,

holds, where C is the constant from (5.53).

Let γ = (1, 0, 0, . . .). From the previous step we already obtained u(0,0,...),
so it remains to solve the problem(

L(0,0,...) + cP (1)Id
)
u(1,0,...)(x) = h(1,0,...)(x)− L(1,0,...)u(0,0,...)(x)

with a zero boundary condition. Since all coefficients in L(1,0,...) are L∞(I)
functions, u(0,0,...) ∈ W 1,2(I), after differentiating in the weak sense we will
have L(1,0,...)u(0,0,...) ∈ L2(I). By assumption, h(1,0,...) ∈ L2(I), i = 1, . . . , n,

thus there exists a unique weak solution u(1,0,...) ∈ W 1,2
0 (I). Moreover,

‖u(1,0,...)‖W 1,2 ≤ ‖(L(0,0,...) + cP (1)Id)−1‖op ·
(
‖h(1,0,...)‖L2 + ‖L(1,0,...)‖op · ‖u(0,0,...)‖L2

)
≤ C

(
‖h(1,0,...)‖L2 + ‖L(1,0,...)‖op · ‖u(0,0,...)‖L2

)
, (5.54)

and the constant C is the same as in the previous step.
In the same manner we obtain uγ for γ = (0, 1, 0, . . .), . . ., in general for

all |γ| = 1.
Let now |γ| = 2. For example, if γ = (2, 0, 0, . . .) the problem we obtain

will have the form(
L(0,0,...) + cP (2)Id

)
u(2,0,...)(x) = h(2,0,...)(x)−L(2,0,...)u(0,0,...)(x)−L(1,0,...)u(1,0,...)(x).

If for example, γ = (1, 1, 0, . . .), then we have to solve(
L(0,0,...) + cP (2)Id

)
u(1,1,0,...)(x) = h(1,1,...)(x)−L(1,0,...)u(0,1,...)(x)−L(0,1,...)u(1,0,...)(x).

In any case, the right-hand of the equation involves known terms determined
in the previous steps, while on the left-hand side in each step only the elliptic
operator L(0,0,...) and the perturbation term cP (2) are involved. Thus, we
obtain the weak solutions uγ for each γ of length two. For each uγ an estimate
of the form (5.54) holds, e.g.

‖u(2,0,...)‖W 1,2 ≤ ‖(L(0,0,...) + cP (2)Id)−1‖op
·
(
‖h(2,0,...)‖L2 + ‖L(2,0,...)‖op · ‖u(0,0,...)‖L2 + ‖L(1,0,...)‖op · ‖u(1,0,...)‖L2

)
≤ C

(
‖h(2,0,...)‖L2 + ‖L(2,0,...)‖op · ‖u(0,0,...)‖L2 + ‖L(1,0,...)‖op · ‖u(1,0,...)‖L2

)
.
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5.4 The Stochastic Dirichlet problem 189

For each γ ∈ I we will solve a deterministic Dirichlet probem of the form(
L(0,0,...) + cP (|γ|)Id

)
uγ = hγ −

∑
|γ−β|>0

Lγ−βuβ,

where the right-hand side becomes more complicated in each step, but in-
volves only known terms for which the problem can be solved. Moreover,
we obtain norm estimates in each step with the same constant C. This
follows from the fact that on the left-hand side of the Dirichlet problem
L(0,0,...) + cP (|γ|)Id plays always the role of the differential operator, and we
have proved in (5.53) that

‖(L(0,0,...) + cP (|γ|)Id)−1‖op

is uniformly bounded by C.

We will prove now that the series
∑

γ∈I uγ(x) ⊗ Kγ(ω) converges in

W 1,2(I)⊗ (S)−1,−p, and this will define the solution

u(x, ω) =
∑
γ∈I

(
L(0,0,...) + cP (|γ|)Id

)−1

hγ(x)−
∑
β∈I

|γ−β|>0

Lγ−βuβ(x)

⊗Kγ(ω).

Indeed, from the estimates (5.53), (5.54) and the generalized Hölder
inequality we obtain

∑
γ∈I

‖uγ‖2
W 1,2(2N)−pγ ≤

2C2

∑
γ∈I

‖hγ‖2
L2(2N)−pγ +

∑
γ∈I

 ∑
α+β=γ
|α|>0

‖Lα‖op · ‖uβ‖L2


2

(2N)−pγ

 ≤
2C2

∑
γ∈I

‖hγ‖2
L2(2N)−pγ +

∑
|α|>0

‖Lα‖op(2N)−
pα
2

2∑
β∈I

‖uβ‖2
L2(2N)−pβ

 .

Clearly, K =
∑

γ∈I ‖hγ‖2
L2(2N)−pγ < ∞ since h, f i ∈ L2(I) ⊗ (S)−1,−p,

and Λ =
∑
|α|>0 ‖Lα‖op(2N)−

pα
2 <∞ by assumption (5.49). Thus,∑

γ∈I

‖uγ‖2
W 1,2(2N)−pγ ≤ 2C2(K + Λ2

∑
γ∈I

‖uγ‖2
W 1,2(2N)−pγ).
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190 Applications of the Chaos Expansion Method to SDEs

By (5.53) we have that 1− 2C2Λ2 > 0. Thus,∑
γ∈I

‖uγ‖2
W 1,2(2N)−pγ ≤ 2C2K

1− 2C2Λ2
<∞.

This means that u =
∑

γ∈I uγ(x) ⊗ Kγ(ω) ∈ W 1,2(I) ⊗ (S)−1,−p is the
unique solution (uniqueness follows from uniqueness of the Wiener-Itô chaos
expansion representation of stochastic processes) of the Dirichlet problem.�

Example 5.4.4 Assume the coefficients of the operator L are uniformly
bounded i.e. ‖Lγ‖L∞ ≤ M , γ ∈ I. Choose p large enough such that∑

γ∈I,|γ|>0(2N)−
pγ
2 <

‖L(0,0,...)‖L∞
M
√

2
. Then, condition (5.52) is satisfied. For

example, white noise W and exp♦W have uniformly bounded coefficients in
their chaos expansion.

V
ir

tu
al

 L
ib

ra
ry

 o
f 

F
ac

ul
ty

 o
f 

M
at

he
m

at
ic

s 
- 

U
ni

ve
rs

it
y 

of
 B

el
gr

ad
e

el
ib

ra
ry

.m
at

f.
bg

.a
c.

rs



Epilogue

The chaos expansion approach of the Malliavin calculus, the calculus of
variations in infinite dimensional analysis, interpreted in the white noise
setting provides a unified approach valid for both continuous and discon-
tinuous measures, and can be carried over to the Lévy processes. This is left
as a possibility to consider for further research.

Another possibility for generalization of the concept of the Malliavin
calculus of singular generalized stochastic processes is to take advantage of
Colombeau generalized function spaces.

Additionally, the theory can be developed for a wider class of operators
generated, for example by the Lévy-Laplacian and the symmetrized Lévy-
Laplacian, and be applied to linear and nonlinear equations. The operator
semigroup technique can also be considered within this framework.

Further applications to stochastic partial differential equations, the
modeling of probabilistic properties of their solutions and the studying of
numerical approximations of their solutions remain as enticing possibilities
for future investigations.
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Born on January 1st 1974 in Belgrade, Republic of Serbia.

Academic Degrees Awards

• Bachelor of Sciences (Mathematics), October 1997, Faculty of
Mathematics, University of Belgrade, GPA: 8,55.

Education

• 1992-1997 : Undergraduate studies at Faculty of Mathematics,
University of Belgrade, Major: graduate mathematician in theoretic
and applied mathematics

• 2000-2004 : Master studies at Faculty of Mathematics, University of
Belgrade, Major: Probability and statistics

• 2007 - Present : Doctoral studies at Department of Mathematics
and Informatics, Faculty of Sciences, University of Novi Sad, Major:
Analysis and probability

Study Abroad Experience

• November 2010 - February 2011, Unit for Engineering Mathematics,
Department of Civil Engineering, University of Innsbruck, Austria,
supervised by Prof. Michael Oberguggenberger

Scholarship

• Scholarship of the Council of the Scholarship Foundation of the Repub-
lic of Austria for Undergraduates, Graduates and Postgraduates, given
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process, chaos expansion, Fourier-Hermite polynomials, Charlier polyno-
mials, Wick product, distributions, Malliavin derivative, Itô-Skorokhod
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