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IIpenrosop

[Ipenmer ucTpaskuBama OBE MOOKTOPCKE IUCEpPTallije je TeOopPUjCKO
pa3MaTpame TJIaBHUX CBOjcTaBa omeparopa MaJjamaBeHOBOT padyHA:
MamuaBenoBor wu3Bona, CrkopoxomoBor wuHTerpasga wu OpHIITajH-
Y nenbexoBOr omeparopa, Ae(UHUCAHUX HA KJIACKU YOIIITEHUX CTOXAC-
TUUYKNX NIPOIeca HaJa NpocTopuMa OeJsior myma 1 (PaKIrOHOr Oesor
mrymMa, Kao U IpuUMeHa NOOUjeHuX pe3yJiTaTa Ha pemaBame oapebheHux
KJIaCa CTOXACTUYKAX MU(PEePEHIN)aJTHUX jeTHaAUnHA.

Y mumcepranuju cy pa3MaTpaHU YOIIMTEHU CTOXACTUYKUA TPOIECHU
KOjU Ccé MOTY DPa3BUTHU y pen 1mo 6a3u XuibepToBOr MPOCTOPa Cpen-
B€ KBAAPATHO MHTETPAOUIHUX TpoIleca Ha MPOCTOPY OeJsor myma,
U3pasKeHOj y OOJMKY (aMuiaurje OpTOrOHAJIHUX MOJIUHOMA. Y IIPBOM
ey mucepTaluje cy pazMarpanu npoctopu ['aycosor u [loacornoBor
Oesor mywma, Kao U HBUXOBe oarosapajyhe dpakiuone Bep3uje, rue
cy Bese u3aMehy cBaka ABa MPOCTOPA YCIOCTABJHEHE MPEKO YHUTAPHUX
IPECIUKABAA.

Y mpyroMm pmery aucepTanmje je JaTO NIPOIIUpene ne(UHUIM]a
oneparopa MaauaBeHOBOT pauyHa ca KJace KBaAPAaTHO MHTErPabMJI-
HUAX CJIYUYajHUX BEJIUYMHA HA KJIACE YOIIITEHUX CTOXAaCTUYKUX MPOIeca.
WNcrakunyTa je \muxoBa MHTEpPIpeTaIja, Kao 1 Be3a ca oaroBapajynum
¢parkmmornM MaaraBeHOBUM OIlepaTOpUMa.

Y 3aBpIIHOM Mejly MOUCepTaluje, MEeTOX XaoC €eKCHaH3uja je
IPUMEHhEH Ha pellaBalmhe CTOXAaCTUYKUX AU(epeHIVjaTHuX jeTHadnHa
y kojuma ¢urypumy MamnuaBenoB wu3Bon u OpHmTajH-Y 1eMOEKOB
oneparop. WM3mebhy ocrasor, mpencraB/beHO je pelieme yOIIITEeHOT
npobJieMa CONCTBEHUX BPEAHOCTU 3a omepatop MaauaBeHOBOT U3BOIA,
Kao M peleme croxacTuukor lupuxieoBor npobsiema ca neprypbanu-
jama rerepucanuM nejcrBoM OpHIITajH-Y 1eMOEKOBOT OmepaTopa.

OBa mOKTOpCKa aucepTanuja OPeNCcTaB/ba A0 Pe3yaTaTa BUIIe-
FOAUIIK-ET UCTPaKUBama Moa MeHTOpcTBOM mnpogdecopa CreBana
[Mununosuha u Hope Cenemun.

Hosu Cam, 25. menembap 2011. Tujana JleBajroBuh
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Preface

The main subject of this doctoral dissertation is the theoretical investigation
of properties of the operators of Malliavin calculus: the Malliavin derivative,
the Skorokhod integral and the Ornstein-Uhlenbeck operator, all defined on
a class of generalized stochastic processes, which admit the chaos expansion
representation form in terms of orthogonal polynomial basis in white noise
framework, the interpretation and applications of obtained results to solving
some classes of stochastic differential equations.

Generalized stochastic processes defined on white noise spaces, which have
a series expansion representation form given by the Hilbert space orthogonal
polynomials basis of square integrable processes, found place in the disserta-
tion. The first part of the thesis is devoted to Gaussian and Poissonian white
noise spaces together with their corresponding fractional versions, where any
two of them can be identified through a unitary mapping.

In the second part of the dissertation, theorems which characterize the
operators of Malliavin calculus, extended from the space of square integrable
random variables to the space of generalized stochastic processes are ob-
tained. Moreover the connections with the corresponding fractional versions
of these operators are emphasized and proved.

The closing part of this dissertation contains several examples of stochas-
tic differential equations involving the Malliavin derivative operator and
the Ornstein-Uhlenbeck operator, all solved by use of the chaos expansion
method. Particularly, the solutions of a generalized eigenvalue problem with
the Malliavin derivative and the stochastic Dirichlet problem with a pertur-
bation term driven by the Ornstein-Uhlenbeck operator are presented.

This dissertation is the result of several years of research guided and
supervised by Professor Stevan Pilipovi¢ and Dora Selesi.

Novi Sad, 25 December 2011. Tijana Levajkovi¢
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Introduction

The mathematical theory, known as the Malliavin calculus or the stochastic
calculus of variations was first introduced by Paul Malliavin in [38] as an
infinite dimensional integration by parts technique. The original motivation
and important application of this theory is to provide a probabilistic proof
of Hérmanders sum of squares theorem for hypoelliptic operators. Moreover,
the theory is used when proving the results involving smoothness of densities
of solutions of stochastic differential equations driven by Brownian motion.
This deep and fascinating theory was further developed by Stroock, Bismut,
Watanabe, Nualart, Qksendal, Rozovsky and others. It remained relatively
unknown for some time until, in the recent years, the ideas became increas-
ingly important in applications, for instance, in stochastic filtering and in
financial mathematics to compute sensitivities of financial derivatives.

A crucial fact in this theory is the integration by parts formula, which
relates the Malliavin derivative operator on the Wiener space and the di-
vergence operator, called the Ito6-Skorohod stochastic integral in white noise
setting.

Generalized stochastic processes on white noise spaces have a series ex-
pansion form given by the Hilbert space basis of square integrable processes,
i.e. processes with finite second moments, and depending on the stochastic
measure this basis can be represented as a family of orthogonal polynomials
defined on an infinite dimensional space. The classical Hida approach ([17],
[18], [19]) suggests to start with a nuclear space E and its dual E’, such that

E Cc I*(R) C F,

and then take the basic probability space to be 2 = E’ endowed with the
Borel sigma algebra of the weak topology and an appropriate probability
measure P. Since Gaussian processes and Poissonian processes represent the
two most important classes of Lévy processes, we will focus on these two
types of measures.

In case of a Gaussian measure, the orthogonal basis of L?(P) can be con-
structed from any orthogonal basis of L?(R) that belongs to E and from the



Hermite polynomials, while in the case of a Poissonian measure the orthog-
onal basis of L*(P) is constructed using the Charlier polynomials together
with the orthogonal basis of L*(R). We will focus on the case when E and
E’ are the Schwartz spaces of rapidly decreasing test functions S(R) and
tempered distributions S’(R). In this case the orthogonal family of L*(R)
can be represented by the Hermite functions. Following the idea of the con-
struction of S’(R) as an inductive limit space over L*(R) with appropriate
weights, one can define stochastic generalized random variable spaces over
L?(P) by adding certain weights in the convergence condition of the series
expansion (also known as the Wiener-Ito chaos expansion) and thus weaken-
ing the topology of the L? norm. We will define several spaces of this type,
weighted by a sequence ¢ and denote them by (Q)”, for p € [0,1] and thus
obtaining a Gel’fand triplet

(@), € L*(P) c ()5,

Recently, there have been made improvements in economics and financial
modelling by replacing the Brownian motion with the fractional Brownian
motion, and replacing white noise by fractional white noise (see [2], [3], [9]).
In this dissertation we will define the fractional Poissonian process in a frame-
work that will make it easy to link it to its regular version.

In [8] it was proved that there exists a unitary mapping between the
Gaussian and the Poissonian white noise space, by mapping the Hermite
polynomial basis into the Charlier polynomial basis. In [6] and [10] a unitary
mapping was introduced between the Gaussian and the fractional Gaussian
white noise space. We extend these ideas to define the fractional Poissonian
white noise space itself and to connect it to the classical Poissonian white
noise space. As a result we obtain four types of white noise spaces: Gaussian,
Poissonian, fractional Gaussian and fractional Poissonian, where any two of
them can be identified through a unitary mapping.

In white noise setting, the Skorokhod integral represents an extension of
the Ito integral from a set of adapted processes to a set of nonanticipating
processes. Its adjoint operator D is known as the Malliavin derivative. In
spite of many similarities, there are important distinctions between interpre-
tations of the Malliavin derivative in the Gaussian and the Poissonian case.
On a space of Gaussian random variables the Malliavin derivative is inter-
preted as a directional derivative and on a set of Poissonian random variables
the Malliavin derivative is interpreted as a difference operator.

Both operators, the Skorokhod integral and the Malliavin derivative, hav-
ing an interpretation also in the Fock space sense as the annihilation and the
creation operator, are widely used in solving stochastic differential equations



(see [4], [13], [14], [16], [17]). Their composition is known as the Ornstein-
Uhlenbeck operator, and it is a self-adjoint operator on L?*(P) that has the
clements of the orthogonal basis (Hermite or Charlier polynomials) as its
eigenvalues.

The Malliavin derivative and its related operators are all defined on either
of the four white noise spaces we are working on, and their domains are
characterized in terms of convergence in a stochastic distribution space (Q)* o
with special gq-weights.

Furthermore, as the description of the chaos expansion method we provide
some applications to solving several examples of stochastic differential equa-
tions involving the Malliavin derivative, the Ornstein-Uhlenbeck operator
and their fractional versions. All equations we solved can be interpreted on
all four types of white noise spaces. We provide a general method of solving,
using the Wiener-Ito chaos decomposition form, also known as the propaga-
tor method (see [12], [13], [14], [21]). With this method we reduce a problem
to an infinite system of deterministic equations. Summing up all coefficients
of the expansion and proving convergence in an appropriate weight space,
one obtains the solution of the initial equation. Another type of equations
investigated by the same method can be found in several papers: [26], [32],

133], [36], [34], [43], [37), [56].

The dissertation is organized in five chapters. Chapter 1, titled
Fundamental Theory Background, is expository and it represents an overview
of some basic concepts of fundamental theories, which are necessary
to understand the methods used in the sequent chapters of the disserta-
tion. Spaces of deterministic generalized functions, used in the sequel, are
introduced. We summarize definitions and the most important properties
and relations of tensor products and Fock spaces, deterministic fractional
calculus, stochastic analysis and classical Malliavin differential theory, i.e.
the stochastic calculus of variations on an abstract Wiener space.

Chapter 2, entitled White Noise Analysis and Chaos Fxpansions, contains
introduction of four types of white noise spaces, Gaussian and Poissonian,
classical and fractional, together with the unitary mappings which connect
each two of them. Moreover we introduce the weighted stochastic distribution
spaces and the Wick multiplication of their elements, together with definition
of the generalized stochastic processes and present their chaos expansion
representation forms.

Chapters 2, 4 and 5 contain the original parts of the dissertation. All the
results have been achieved in joint work with Dora Selesi and Stevan Pilipovié¢
and are already published in [26], [28], [27], [29] and [30]. Some results have
been partially presented on several international conferences and workshops.



Chapter 3, named Malliavin Calculus in Chaos Expansions Framework for
Square Integrable Processes, is devoted to overview of the Malliavin calculus
on sets of Gaussian and Poissonian square integrable random variables,
represented in their chaos expansion forms. The fractional versions of
the Malliavin operators are introduced on both, classical and fractional
versions of Gaussian and Poissonian spaces, and some connections with the
classical calculus are emphasized.

The definitions of the Malliavin derivative and the Skorokhod integral
which are extensions of the definitions of these operators to a space of sin-
gular generalized stochastic processes are presented in Chapter 4, entitled
Operators of Malliavin Calculus For Singular Generalized Stochastic Pro-
cesses. We allow values in g-weighted spaces of generalized stochastic func-
tionals and obtain larger domains of operators of Malliavin calculus then in
the case of square integrable random variables described in Chapter 3. In
addition, Chapter 4 contains the characterization of the fractional Malliavin
operators in terms of the corresponding classical versions.

Chapter 5 is titled Applications of the Chaos Expansion Method to Some
Classes of Fquations and is devoted to solving some classes of stochastic dif-
ferential equations which are driven by the Malliavin derivative operator and
functionals of the Ornstein Uhlenbeck operator. In particular, we present
and solve a first order equation and a generalized eigenvalue problem with
the Malliavin derivative in a white noise space of general type (Theorem
5.1.1 and Theorem 5.1.4 respectively). In addition, we present the explicit
forms of solutions of equations involving the Ornstein-Uhlenbeck operator
and the exponential of the Ornstein-Uhlenbeck operator, belonging to a cer-
tain space of g-weighted generalized stochastic processes (Theorem 5.2.1 and
Theorem 5.3.1 respectively). Chapter 5 also deals with the stochastic version
of the Fredholm alternative considered in the framework of chaos expansion
methods on white noise probability space. We apply the results to solve the
Dirichlet problem generated by an elliptic second order differential operator
with stochastic coefficients, stochastic input data and boundary conditions,
and with the Ornstein-Uhlenbeck operator as a perturbation term. The
stochastic Dirichlet problem has been previously studied in [57], [58], [67].
Solvability and uniqueness of the solution to the stochastic Dirichlet problem
under assumptions made only on the expectation of L and certain
conditions on the positivity of the perturbation term are stated and proven.
Theorem 5.4.3 represents one of the main contributions of this dissertation to
the Malliavin calculus of generalized stochastic processes within white noise
theory. All solutions obtained in equations we considered in this chapter are
singular generalized stochastic processes having values in a certain g-weighted
space of stochastic distributions.
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Chapter 1

Fundamental Theory
Background

In this introductory chapter some basic concepts of fundamental theories,
which are necessary to understand the methods used in the subsequent chap-
ters of the dissertation are presented. We summarize definitions and the
most important properties and relations of generalized functions theory, ten-
sor products and Fock spaces, deterministic fractional calculus, stochastic
analysis and theory of classical Malliavin calculus. Most of the material pre-
sented here is known and therefore given without proofs but with references
for further reading.

Some basic notation we will use throughout the thesis is the following: Let
V be a topological vector space, V" its dual space, and £(V, U) be the space of
all linear continuous mappings from V' into a topological vector space U. By
L"(R), r > 1, we denote the space of r-integrable functions with respect to
the Lebesgue measure A, by C*(R) denote the space of k-times continuously
differentiable functions, and by Cy(R) the space of continuous functions with
compact support.

1.1 Spaces of Deterministic Functions

At the beginning, we focus on a brief overview of some classes of deterministic
generalized function spaces. We introduce the Schwartz space of generalized
functions, the space of generalized functions of exponential growth and the
Sobolev spaces.



16 Fundamental Theory Background

1.1.1 Hermite functions

The Hermite polynomial of order n, n € Ny, is defined by

(M

hn(x) = (—1)"eé dci:n(e_g), z € R.

These polynomials are the coefficients of the expansion in powers of ¢ of the
generating function F'(z,t) = exp(tx — %) We have

F(z,t) = exp(

From the property (1.1) we have the relation:

d
%hn(x) =nh,—1(x), ne€N. (1.2)
It is well known that the family {#hn : n € Ny} forms an orthonormal basis
x2
of the space L?(R) with respect to the Gaussian measure duy = V%e_?dx.

The Hermite function of order n+ 1, n € Ny, is defined as

1
N
The family of Hermite functions {{,+1 : n € Ny} constitutes a complete

orthonormal system of L?(R) with respect to the Lebesque measure. Namely,
every deterministic function g € L*(R) has a series representation of the form

g(x) = Z ar &k (),

keN

Enri() = e 7 ha(VIr), zER

with coefficients aj, = (g,&)r2®) € R satisfying the convergence condition
> ey Ap < 00.
Moreover .
Cn~ts, |2 < 2/
|€n| S —~z2 )
Ce ™, |z| > 2¢/n

hold for constants C' and v independent of n.
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1.1.2 Schwartz spaces

The Schwartz space of rapidly decreasing functions is defined as
SR) ={f € C*R) : Vo, 3 € No, |[flla,s < 00},
and the topology on S(R) is given by the family of seminorms

[ f1las = sup [2*DP f(x)], a,B € No.
e

The space S(R) is a nuclear countable Hilbert space and the orthonormal
basis of S(R) is the family of Hermite functions {&, }nen.

It is well known that the Schwartz space of rapidly decreasing func-
tions can be constructed as the projective limit of the family of spaces
S(R) = Nen, St(R), where

SR) ={p=) ar& € L*(R): |lplf =) ai(2k)' < o0}, 1 € No.
k=1 k=1

The Schwartz space of tempered distributions S'(R) is the dual space of
the space of rapidly decreasing functions, equipped with the strong topol-
ogy, which is equivalent to the inductive topology. Its elements are called
generalized functions or distributions.

The Schwartz space of tempered distributions is isomorphic to the
inductive limit of the family of spaces S"(R) = ey, S—i(R), where

SO(R) ={f = el |fI% =D bi(2k)" < oo}, €N,
k=1 k=1

The action of a generalized function f = >, (& € S'(R) on a test
function ¢ = Y, .y arér € S(R) is given by the dual paring

(o) =D arby.

keN

Thus,
S(R) € L*(R) C S'(R)

form a Gel’fand triple, with continuous inclusions.

The characterization of the Schwartz spaces of test functions and distribu-
tions in terms of the Hermite functions orthonormal basis gives us motivation
to build on analogous type of spaces consisting of stochastic elements which
allows the decomposition in terms of an orthogonal polynomial basis.
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1.1.3 Deterministic spaces of exponential growth

In this thesis we also consider the test space of deterministic test functions of
exponential growth rate exp S(R) and the corresponding space of determin-
istic distributions of exponential growth rate exp S’(R), introduced in [54]
and [55].

The space of test functions of exponential growth rate, denoted by
exp S(R), is constructed as the projective limit of the family of spaces
exp S(R) = ey, €xp Si(R) where

epSR) ={p =3 & € P®R): [lolZp =3 G < o}, 1€ N,.
k=1 k=1

The space of deterministic distributions of exponential growth rate
is considered to be the inductive limit of the family of spaces
exp S'(R) = ey, exp S—i(R), where

exp S (R) ={f = d&: |f5p 1= die ™ <o}, 1 €Ny
k=1 k=1

These spaces satisfy the relationship
expS(R) C S(R) C L*(R) C S'(R) C expS'(R),

where each inclusion mapping is compact.

1.1.4 Sobolev Spaces

Let I be an open subset of R. The ath weak derivative of f, denoted by D f
is given by the action

[ t@ptas = [ f@p s
for all ¢ € C3°(R).

Denote by W#P(I) the space of weakly differentiable functions f such
that D f € LP(I) for all |a| < k. We endow W*P(I) with the norm

1 fllwer =D 1D Flleq)-

| <k

Clearly, W*2(I) is a Hilbert space.
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Another important space we will consider is W(f P(I) defined as the closure
of C5°(I) in W*?(I). The dual space of Wi (I) will be denoted by W% (I).
An isomorphism between WJP(I) and W~*?(I) can be established via the
Laplace operator. By its Hilbert structure, we also may identify Wg"*(I)
with W=%2(T). Thus, we obtain a Gel’'fand triple

WE(1) € LA(1) € WR2(1).

For further notions and properties of Sobolev spaces we refer to [2].

1.2 Tensor Products and Fock Spaces

Now we summarize standard facts on tensor products of real Hilbert spaces.

Let Hy and Hs be two Hilbert spaces, equipped with the scalar products
(+,)m, and (-, ) g, respectively. Dual spaces are denoted by H; and H} and
corresponding dual parings are denoted by (-,-); and (-, )s.

Definition 1.2.1 Let f, € H, and fo € Hy be fixed. The tensor product
f1 ® fo is a bilinear form over H{ x H) given by

f1® f2(g1:92) = (91, fi)1 (92: f2)2,
for (g1,92) € Hy x H).
The tensor product of Hilbert spaces H; ® Hs is defined to be a Hilbert

space equipped with a bilinear map H; x Hy — H; ® H,, denoted by
(f1, f2) = f1® fo € Hy ® Ho, such that

(/1 ® f2,91 ® g2) mem = (J1.91) 1, (f2, 92) s
The closed linear span of the range of this map equals to H; ® Hs.

Definition 1.2.2 Let n € N. The nth tensor power of a Hilbert space H is
defined by
FOH)=H®---@ H=H®",
—_——
with FO(H) equal to the space of scalars. The corresponding tensor norm is
denoted by || - || -

Definition 1.2.3 Let fi,..., f, € H. The symmetrization of a tensor prod-
uct is given by

f@..@fn:% Y B B, (1.3)

" wePerm(n)

where Perm(n) denotes the group of permutations of first n natural numbers.
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Definition 1.2.4 For arbitrary n € N we define the nth symmetric tensor
power of a Hilbert space H

I™(H)=H®...® = H®" (1.4)

n

as a completion of symmetrized tensor products of elements in H with respect

to the norm || - |lpe gy induced by the scalar product
(®?:1 fis ®?:1 gi)F(">(H) = Z (f1,9m) - (frs G-
w€Perm(n)

Note that T'©(H) is the one-dimensional space of scalars and
I'Y(H) = H. Thus I'™(H) is also called the nth homogeneous chaos of
a Hilbert space H. Moreover, '™ (H) is a subspace of F™(H) and

I HF(”)(H) - \/EH ' H&WM(H)
Definition 1.2.5 The Fock space over a Hilbert space H 1is defined by

Example 1.2.1 Let H be a Hilbert space. Consider
_ >, f&n
exp”(f) = ZOW’ for f € H.

These elements satisfy the property

oo

~ 1 S0
Hexp®(f)||§r(H) = Z [ ”%w
n=0

(n!)?

|
— Z(:an?"nz

n=0
= exp(||fII%)-

In particular, in a Gaussian Hilbert space, the exponentials e:L’p@(f) coin-
cide with the normalized stochastic exponential, which will be defined later in
Section 2.2.3.
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1.2.1 Operators on the Fock space

Let A: H — H be a bounded linear operator on a Hilbert space H. The
operator A induces linear operators between their symmetric tensor powers
by ~
A (iR ... 8f,) = AL® ... ®Af,
and [|A®"[| = [|A[".
Define now the second quantization operator of an operator A on the Fock
space ['(H), i.e. the mapping

D(A): T(H) — T(H)

such that
I'(A) [ yan = A®" peN,

and

I'(A) (i Xn> = i A®X, X, eT™(H).

n=0
Moreover, if A is a contraction, i.e. if ||A]| < 1, then the linear operator
['(A) is of a unit norm ||T'(A)|| = 1.

Annihilation and creation operators

The annihilation and creation operators in quantum mechanics are con-
structed in the framework of Nelson’s stochastic mechanics and have sev-
eral applications in the study of quantum harmonic oscillators and particle
systems.

Definition 1.2.6 Let F™ € I'™(H) be of the form F™W = &, fi, for
fi,.., fn € H. The annihilation operator of a given vector f € H is the
operator

o(f): T™W(H) — TV(H)

defined by

n

O)F™ = (f.f) @ fu

Jj=1

The norm of the annihilation operator is represented by

1OCHI = vVn I f Il

Definition 1.2.7 The adjoint operator 9* of the annihilation operator is
called the creation operator.
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Theorem 1.2.1 For F™ ¢ T™(H) the creation operator has the property
O (f)F™ = fRF™),

where 0*(f)F™ € TV (H).

The annihilation operator lowers the number of particles in a given state by

one and the creation operator increases the number of particles in a given
state by one.

Theorem 1.2.2 The annihilation and the creation operators satisfy the
following canonical commutations:

* [0°()), 07(9)] = [0(]), 0(9)] = 0,
* [0(/),07(9)] = (f,9),
where [A, B] denotes the commutator defined by [A, Bl = AB — BA.

The annihilation operator d(f) is a derivation on a subspace of symmetrized
Fock space I'(H) of sequences consisting of finitely many non zero elements

I (FRG) = d(f)FRG+ F&®I(f)G.

Further on in the following chapters, we will consider nuclear spaces and
thus, by the notation ® we will mean the w-completion, i.e. e-completion of
the tensor product space.

Number operator

Denote by Id the identity operator. Let now r be a real number with |r| < 1.
Consider the operator I'(rId). It is a linear operator and

L(rid)(> X,)=> "X,

We can express this by
I(rid) =", (1.5)
where N is an unbounded operator on I'(H) defined by

N (f: Xn> = f:an, X, e T(H),
n=0 n=0

whenever the right-hand side converges.

N is a self-adjoint operator. In quantum field theory it is called the
number operator.

The operators ['(e~'Id) = e~ t > 0 form an operator semigroup known
as the Ornstein-Uhlenbeck semigroup. The operator I'(r/d) can also be re-
garded as a generalization of the Mehler transform for real functions.
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1.3 Deterministic Fractional Calculus

Fractional calculus is the field of functional analysis which deals with the
investigation and applications of integrals and derivatives of arbitrary order.

In recent years fractional operators of differentiation D and integration
JY «a € R are used in many applications in physics, control theory, heat
conduction, electricity, mechanics, chaos and fractals. In evolution equations
the time derivative is replaced with a derivative of fractional order. When
modeling constitutive equations for viscoelastic bodies the relations between
stress and strain involve linear fractional differential operators.

Depending on the definition, several types of fractional operators can be
found in the literature. Here we focus our attention on basic definitions
and properties of the Riemann-Liouville deterministic fractional operators of
differentiation and integration and the Laplace transform.

In the framework of the Riemann-Liouville calculus, motivation for defin-
ing fractional integral of order o (v > 0) is found in the Cauchy formula,

t
ﬁ/ﬂ (t— "1 f()dr, t>0, neN,
which reduces the calculation of n-fold primitive of a causal-function f(t)
(i.e. identically vanishing for ¢ < 0) to a single integral of convolution type.
In the natural way the above formula can be extended from integer values of
the index to any positive real value by using the Gamma function and the
property I'(n) = (n — 1)L

Denoting by D", n € N, the operator of derivative of order n we note

() = fult) =

n—1
PO = 1) -3 O, s

k=0

and D"J" =1, J"D™ # I, n € N, where [ is the identity operator.

1.3.1 Fractional integral and fractional derivative

Denote by D(R) the space of compactly supported smooth functions in R,
by D'(R) its dual space, the space of Schwartz distributions and D’(R) its
subspace consisting of distributions supported on [0, o). Denote by L; . (R)
the space of locally integrable functions u on R such that u(t) = 0 for ¢ < 0.
By D¥, k € N is denoted the operator of differentiation D* = %.

Definition 1.3.1 Consider o to be an arbitrary positive real number. Then
foru e L ,(R) the left Riemann-Liouville fractional integral of order o > 0
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1s defined by

1 t
Jo‘ut::—/ t—r) u(r)dr, t>0, 1.6
(1) = g7 [ =7 ulr) (1.6
where J° := I is the identity operator and T is the Euler Gamma function

[(a) := 0+°O e~z Ydx having property I'(a + 1) = aT'(a), for Re{a} > 0.
In particular, we have Ju(t) = fot u(T)dr, for t > 0.

Fractional integration admits the semigroup property J*J? = J**# and
the commutative property J*J? = J?J% for all a, 5 € R*. The effect of the
operator J“ on power functions is given by

L(vy+1)

Jor = ——1 T
I'(y+1+a)

T a >0, v>—1, t>0. (1.7)

In particular, its effect on a characteristic function is

1

Fagp (=2 = (=2)?). a#0.teR".

Jx(0,t)(x) =
The proofs of these properties are based on the properties of the two Eulerian
integrals, the Gamma function I' and the Beta function B. Recall, the Beta
function is defined by B(a, ) := fol 2271 (1—2)""1dx and satisfies the property

a)I'(b

B(a,b) = F2E) = B(b,a), for Re{a, b} > 0.
Lemma 1.3.1 Let 0 < o < 1 and let f € LP(R), 1 <p <
then f(z) =0 for almost all x.

Q=

CIfJOf =0

Definition 1.3.2 Let v € L, .(R) and suppose that u belongs to the
space of functions which have continuous derivatives on Ry up to the or-
der k — 1, k € N and kth derivative is an integrable function on [0,al, for

every a > 0. The Riemann-Liouville fractional derivative of order a > 0,
k—1<a<k for somek € N is defined by

Du(t) := D*J*~*u(t), t>0. (1.8)
If a =k € N then D*u(t) = D*u(t), for t > 0.
Namely,
k t f(r
i |:F(k:1—oc) Jo (t—'r)(‘”“‘)'l—k dT] , k—l<a<k
D%u(t) :=

%u(t), a=k
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For a = 0 one defines D° = J° = I. It follows that D*u € L} . (R).
Note that D*J%u = u, for u € L}, (R), a > 0.
We have, for a > 0 the relation

[(y+1)

Dot =172
F'y+1-aw)

7 a>0, vy>—-1, t>0.
Thus it it follows that D** ! = 0, for o > 0, t > 0, which implies that D
is not right inverse to J®. We have J*D%* ! = 0 but D*J* ! = t*~! for
t>0,a>0.
Note the remarkable fact that fractional derivative D®u is not zero for
the constant function u(t) = 1 if « is not an integer number. In fact,
1

Dl = ——1t7¢ >0,t>0.
I'(l—«) ) F=

1.3.2 The Laplace convolution

In D', (R) we consider the causal-function f,(-) defined by

a—1
LSH(), a>0,teR

foe(t) = )
;;—nnfmrn, a<0, a+n>0 neN
where H is the Heaviside function. It is clear that fo = 0, f_1 = ¢, etc,
where 0 is the Dirac d-distribution and H' = §.
The causal-function f, is locally absolutely integrable on R* for all & > 0
and f, is vanishing for ¢ < 0.

Definition 1.3.3 The Laplace convolution integral of two causal-functions
fa and fg, denoted by fo * fg, is defined as

t
Falt) 2 Ja®)i= [ fall = 1p(P)A() = £3(0)* Lol
0
Based on the properties of the Euler integrals, the composition rule

fa(®) = f5(t) = fass(t), @, 8>0

is valid.
The Laplace convolution operator in D', (R) is the operator of fractional
integration for a > 0 and of fractional differentiation for a < 0. Clearly,
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the fractional integral of order & > 0 of a function v € L} . (R) can be
represented as follows

JU(t) = fo(t) xu(t), a>0.

For @ < 0 the causal-function f, is called the function of fractional
differentiation. If 0 < a < k, k € N then we can use

D%u(t) = f_o*u(t)
R S L (G R
- I'(~a) / (t— T)1+C“d

for the formal definition of the fractional derivative of order «.

The formal character follows from the fact that the kernel f_, is not
absolutely integrable and thus the integral is in general divergent. This is
reflected through the non-commutative convolution property. Clearly, for
keN k—1<a<k we have

k() * frma()] * u(t) = for(t) * [fooalt) * u(t)] = DV T u(t),
[fi-a(t) % fou ()] u(t) = fimalt) * [f-r(t) * u(t)] = J**DFu(t).

1.3.3 Laplace transform and Fourier transform

Now we give definitions of two integral transforms which will be used in the
following chapters: the Laplace transform and the Fourier transform.
The Laplace transform of a function f(t) is given by

LLF()Ms) == /Om et f(t)dt, s e C.

The Fourier transform of a function f is defined by

W =Fw) = [ e fla)do. (19)

R

The Fourier transform is unitary on LZ(R, dz). Tt is well known that the
Hermite polynomials represent the sequence of eigenfunctions to the Fourier

transform, i.e.
2
xr

F (hn(\/ﬁx) 6_7> = i" h,(V22) T (1.10)
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The Laplace transform is connected with the Fourier transform through
the following relation

L{F)Y = Fle ™ (D)](y) = ef(y), s=1+1iy.

The Laplace transform of the convolution integral of two functions coin-
cides with product of the Laplace transforms of those two functions,

LLF@) + g(8)} = LLF(2)} - £{g(D)}. (1.11)

The same property stays also for the Fourier transform, i.e.

o~ o~

fxg=1-9

From the previous properties and rules £{f,(t)} = == for a > 0 and
Res > 0 the important identity follows

LI} = £4fu ) = — £{u)(s). (1.12)

1.4 Basic Stochastic Analysis

Now we recall some basic results and concepts of probability theory, which
can be understood as a mathematical model for the intuitive notion of un-
certainty. Probability theory is used in many branches of pure mathematics,
but also in modeling problems in physics, biology and economics. The mod-
ern period of probability theory is connected with names of Bernstein, Borel
and Kolmogorov. Particularly, in 1933 Kolmogorov published his modern
approach to probability theory, including the notion of a measurable space
and a probability space.

We start this overview with definitions of probability spaces, random vari-
ables and classical stochastic processes on a given probability space, then we
continue with some of the most important examples of classical stochastic
processes which we will use in our work. We finish this section with pre-
senting basic parts of stochastic integration, in particular we will introduce
the Ito integral and the Ito-Poisson integral. For more information on basic
stochastic analysis we refer to [14], [16], [39], [52], [60].
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1.4.1 Probability space and random variables

Let Q be a sample space, i.e. a non-empty set of all possible outcomes w
called elementary events or states, of a certain random experiment.

Definition 1.4.1 A family F of subsets of a given sample space €) is called
a oc—algebra on € if:

e QeETF,
o AcF implies A° € F, where A°=Q \ A
o Ay, Ay, ... € Famplies ;= Ai € F.

Elements of the o—algebra & are F—measurable sets and are called random
events. The pair (2, F) is called the measurable space.

Definition 1.4.2 A real function P : F — [0, 1] which satisfies conditions:

o o—additivity, i.e. if Ay, Ao, ... are disjoint sets in F then

P <G Ai> = i P(4;) and

i=1 =1

e normalized condition P(2) =1
15 called a probability measure.

The triplet (Q2,F, P), where € is a space of elementary events, F a
o—algebra of events on 2 and P a probability measure on JF is called a
probability space. A probability space (€, F, P) is called complete if F con-
tains all subsets G of Q with P measure zero, i.e. if G C F, (F € F) and
P(F) =0 implies G € F. A probability measure P; is called absolutely con-
tinuous with respect to measure P on a measurable space (€2, F), if for every
A€ F from P(A) =0 it follows that P;(A) = 0.

Theorem 1.4.1 (Radon-Nikodym theorem) Let P and Py be two probability
measures given on a measurable space (0, F) such that Py is absolutely contin-
uwous with respect to P. Then, there exists a unique non-negative measurable
function f : Q — R such that

P (E) = / fdpP, for every E € F.
E
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For any family U of subsets of €2, the smallest o —algebra By containing
U, i.e. By =[{B|B isc-algebra of subsets of 2, U C B} is the o—algebra
generated by U.

In particular, we consider a minimal o—algebra which contains all open
sets on R™, denoted by B(R"), and call it the Borel c—algebra on R™. The
elements of B(R") are called Borel sets.

Let (2,3, P) be a given probability space, then a function Y : Q@ — R”
is called F-measurable if

Y1 A) ={weQ|Y(w)e A} €7,
for all Borel sets A € R".

Definition 1.4.3 A F-measurable function X : Q — R"™ from a complete
probability space (2, F, P) to a measurable space (R™, B(R™)) is called a n-
dimensional random variable.

Lemma 1.4.1 Let X : Q — R"™ be a random wvariable.
UX) = {Xﬁl(B) : Be B(R")}

15 a o-algebra, called the o-algebra generated by X. This is the smallest sub-
o-algebra of F with respect to which X is measurable.

Thus, the probability measure Px = P o X! on (R", B(R")), induced by a
n-dimensional random variable X, is defined by

Px(B) = P(X"Y(B)), for all B € B(R"),

and is called the law or the distribution of X. In probabilistic terms, the
essential fact is that o-algebra U(X) can be interpreted as the set which
contains all relevant information about the random variable X.

For measure Px there exists a unique function Fy : R™ — [0, 1] such that

Fx(l‘) = Fx(Ilj...,ZEn)
= P{Xl Sl’l,...,XnSl’n}
= PlweQ: X(w) <z}
Function F is called the distribution function of a random variable X. Note

that the structure of a probability space (2,5, P) is transferred onto the
space (R"™, B(R™), Px).

Definition 1.4.4 A random variable is called discrete if there exists a count-
able set S in R™ satisfying Px(S) = 1.
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A discrete random variable X has the following expression
X(@) = Y wdaw), wes
i=1
1, wed

where [4(w) = { 0 wdA
such that (J;-, A; is a disjoint decomposition of €.

is the indicator function of an event A € F,

Definition 1.4.5 A random variable X with measure Px that is absolutely
continuous with respect to the Lebesque measure is called an absolutely con-
tinuous random variable.

For such a random variable X, there exists a non-negative function g(x),
x € R™, measurable with respect to the Borel o-algebra satisfying

PX(M):/ g(x)dx, for M CR",
M

called the probability density function of a random variable X.
If [, | X (w)|dP(w) < oo, then the number

Ep(X) = /Q X (w) dP(w) = /R rdPy(e)

is called the expectation of X with respect to the measure P. Further on
in this text, we will omit writing P in index of notation of the expectation
value whenever it is clear under which probability measure P is expected
value taken.

The covariance matriz of an n-dimensional random vector
X = (Xy,...,X,,) is given by Bx = [Cov(X;, X;)|1<ij<n, Where

COU(XZ‘,X]‘) = Ep(XlXJ) - EP(Xz) EP(X]'), 1 S Z,] S n.

In particular, Cov(X;, X;) = Var(X;), 1 <i < n and is called the variance
of an element X;. Equivalently, variance can be also calculated from

Var(X) = /Q (X — Ep(X)]? dP.

Theorem 1.4.2 Matriz B s the covariance matriz of some random process
if and only if it is symmetric and non-negative definite, i.e.

Z Bx(i,j)a;a; > 0, forall a,...,a, €R.

,j=1
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A random variable X is said to have a finite moment of order p > 1,
provided E(|X|[P) < oco. In this case, the pth moment of X is defined by
E(XP?). The set of all random variables with finite pth moment is denoted by
LP(P) = LP(Q,F, P).

It is convenient now to introduce an integral transform, which will later
provide us with a useful means to identify normal random variables.

Definition 1.4.6 Characteristic function of an n-dimensional random vari-
able X = (X1, ..., X,,) is the function f: R"™ — C defined by relation

Cx(ti,ta, -+ ,t,) = B(Y)
E(eizziltk‘xk), t= (tltha"' atn) GRn’

where (-,-) denotes the scalar product in R™.

Characteristic function of an absolutely continuous random variable
X represents the Fourier transform of its probability density function g.
Namely,

Cx(t) = / el gdpP = / et k= T gy ) dy . dy,.

Characteristic function of every random variable X exists and uniquely
determines the distribution of X. Namely, if X; and X5 are random variables
such that Cx,(t) = Cx,(t) for all ¢, then their distribution functions also
coincide F,(x) = FXx,(z), for all x.

Theorem 1.4.3 (Properties of the characteristic function)
o Ox(0) =1, [COx()] < 1, Ox(=t) = Cx (1),
o IfY = a1 X + ay for ar,as € R, then Cy(t) = Cx(ayt) eo2,

o [f E(X™) exists, then the moments of a random wvariable can be com-
puted from the derivatives of the characteristic function at the origin,
i.e. we have

I
EX" = —CP() im0, n=1,2,3,..
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Theorem 1.4.4 (The Bochner-Minlos theorem) Function C' is the charac-
teristic function of a random variable X if and only if C has the following
properties:

3. C 1is continuous and

4. C' is mon-negative definite, i.e.  for any set of real numbers
ty,ta, -+ ,t, € R and complex numbers zy, 29, -+ , 2z, € C, n € N:

jk=1

For the proof and more details we refer to [17], [19].

Theorem 1.4.5 Let the characteristic function C(t) of a given random vari-
able X be an absolutely continuous function. Then its distribution function
F(z) is an absolutely continuous function and its corresponding probability
density function g(z) is continuous. Moreover,

g(x) = % /]R e " C(t)dt.

Note that density ¢ is obtained as inverse Fourier transform of the charac-
teristic function C'. Important property of characteristic functions, which is
often applied in probability theory, is described by the following theorem.

Theorem 1.4.6 (Multiplication rule for characteristic functions) If

X1, ..., X, are independent random variables then the characteristic function
of their sum is equal to the product of characteristic functions, i.e.

Cx,4.4x,(t) = H ka(t), t € R™.
k=1

We continue with the notion of Hilbert space of random variables.
Let (2, F, P) be a probability space. Denote by

L*(P) = L*(Q,F, P)
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the space of square integrable random variables, i.e. the space of random
variables which have the second moment finite F(X?) < oo. It is a Hilbert
space with the norm [ X||7, p) = E(X?) induced by the scalar product

(X,Y)2p) = Ep(XY), X,Y € L*(P).

Convergence of random variables in L?(P) is the mean square convergence.
Namely, if we assume that X, is a sequence of random variables in L?(P) for

all n € N, then X, 5 X, if E|X,, — X|> — 0, when n — oc.
We now state the Bochner Minlos theorem for S'(R).

Theorem 1.4.7 (The Bochner-Minlos theorem for infinite dimensional case)
A necessary and sufficient condition for the existence of a probability measure
P on S'(R) and a functional g on S(R) such that

90)= [ EHaPw), oes®

is that g satisfies:
1. g(0) =1,
2. g 1is positive definite and
3. g 1is continuous in the Fréchet topology.

This important theorem will be used in Chapter 2, when defining white noise
probability measure. Proof of the previous theorem can be found in [19].

Gaussian random variable

We say that a random variable X is a one-dimensional Gaussian (normal)
random variable with parameters m and o2, and write X : N(m, c?), if its
density function is of the form

1 _(@—m)?
g(x) = e 22, forxeR.

vV 2mo?

The expectation of a Gaussian random variable is £ X = m and variance

Var(X) = o2

An n-dimensional random vector X = (Xi,...,X,) has a multi-
dimensional Gaussian (normal) law X : N(m, B), with parameters m i B,
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where m = (my,...m,) € R" and B is a symmetric, regular, positive definite
matrix with the inverse matrix A, if X has the density function

detB LT T—m
gX<x17._.,gjn) =4 / (277-)71 e 3 ( ) A( )7

for all x = (24, ..., z,) € R™

Thus if X = (X3, ..., X,,) : N(m, B) is an n-dimensional Gaussian random
vector then F(X;) = m;, i = 1,...,n, where m = (my, ..., m,,) and the matrix
B is the covariance matrix of a random vector X.

The characteristic function of an n-dimensional Gaussian random vector
X : N(m, B) is given by

Cx(t1, o ty) = €GM=27B  where = (ty,.... ). (1.13)

Theorem 1.4.8 Let Xq,..., X, : Q — R be one-dimensional random vari-
ables. Then, an n-dimensional random variable X = (X1, ..., X)) is Gaussian
if and only if the random wvariable Y = M X1 + ... + A\, X,, is Gaussian for
every Ai, ..., A, € R.

Theorem 1.4.9 Let {X, },en be a sequence of Gaussian random variables.

2
If X, L X then the mean square limit X is also a Gaussian random variable.

Poisson random variable

A random variable X is said to be Poisson random variable of parameter
A > 0 if its density law is of the form

N

k) =P{X =k} =e ek

k=1,2,.. (1.14)

It is a discrete random variable with values in Ny and with F(X) = A and
Var(X) = A

The characteristic function of Poisson distribution is
Cx(t) = exp(A(e” —1)). (1.15)

The Poisson distribution is used, for example, to model stochastic pro-
cesses with a continuous time parameter and jumps: the probability that the
process jumps k times between the time-points s and t with 0 < s <t < 1 is

equal to pu—s) (k).
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Compound Poisson random variable

Let Z(n), n € N be a sequence of i.i.d. random variables with values in R
with common law and let N be a Poisson random variable that is indepen-
dent of all Z(n). The compound Poisson random wvariable X is defined by
X =Z(1)+...Z(N). One can think of X as a random walk with a random
number of steps, which are controlled by the Poisson random variable N.

Exponential random variable

A random variable X : Q — (0,+00) has exponential distribution of
parameter A > 0 if

P{X >t} =e forallt >0. (1.16)
Then X has a density function

gx(t) = X e X (0,100 (1)

The expected value of an exponential random variable X is given by

E(X) = 1 and its variance is Var(X) = 55. The exponential distribu-

tion plays a fundamental role in continuous time Markov processes because
of the following result.

Lemma 1.4.2 (Memoryless property) A continuous random variable X :
Q — (0,+00) has an exponential distribution if and only if it has the mem-
oryless property

P{X>s+t|X>s}=P{X >t}, foralls,t>D0. (1.17)

Conditional expectation

Definition 1.4.7 Let (2, F, P) be a probability space, X :  — R"™ an n-
dimensional random variable such that E|X| < oo and A C F a o—algebra.
The unique function E(X|A) : Q — R™ which satisfies the following condi-
tions:

o E(X|A) is A-measurable and
o [LE(X|A)dP = [, XdP, forall Ac A

1s called the conditional expectation of a random variable X with respect to
o—algebra A.
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The existence and uniqueness of the conditional expectation follow from the
Radon-Nikodym theorem. Let

P(M|A) = E(Iy|A), for Med.

Then P(-]A) is called the conditional probability on a c—algebra F with
respect to o—algebra A. In the special case, when o—algebra A is generated
by a random variable Y, then the conditional expectation is denoted by
E(X|Y).

Theorem 1.4.10 The main properties od conditional expectation are:
o BE(E(X|A)) = E(X),
o [f X is A-measurable, then E(X|A) =X a.s.,
o [f X is independent of A, then E(X|A) = X,
o [f X >0 then is also E(X|A) >0 a.s.,
o If A=1{0,Q} is trivial c—algebra, then E(X|A) = E(X),

o IfY is A-measurable and E|XY| < oo, then E(Y -X|A) = Y- E(X|A),
where - represents the scalar product in R™.

Theorem 1.4.11 Let X; : Q — R", ¢ =1, 2 be two random variables such
that E|X;| < oo, i =1, 2. Then

E(aX; +bXaA) %2 aE(X(|A) + bE(X,|A), a,beR.

Theorem 1.4.12 Let G, A be o—algebras such that § C A. Then the fol-
lowing is valid

E(X|9) = E(E(X]A)[9).

Theorem 1.4.13 (Theorem of dominated convergence) Let {X,} be a se-
quence of random wvariables which converges X, =3 X. If there exists
Y € LY(Q) such that for alln € N |X,| <Y a.s. then

BE(X, - X||A) 2 0.

Theorem 1.4.14 Let X,, be non-negative random variables for all n € N.
Then we have

EQ) X.|A) =) E(X,|A) as.

n=1



1.4 Basic Stochastic Analysis 37

If a random wvariable X is square integrable, but not necessarily
measurable with respect to A, then the conditional expectation Y = E(X|A)
represents the best approximation (in context of least squares) of X upon
the class of all measurable functions with respect to Y. Moreover, if Y is
A-measurable then

E(Y - X)* > E(Y — X)%

Hence it represents the orthogonal projection of a random variable X onto a
closed convex subset of a Hilbert space.

1.4.2 Classical stochastic processes

This subsection is devoted to classical stochastic processes, their definitions,
main properties and important examples. In particular we will focus on two
special types of Lévy processes, the Wiener process (Brownian motion) and
the Poisson process.

A classical stochastic process X;(w) = X(t,w),t € T C R, w € Q can
be defined in three equivalent ways. It can be regarded either as a family
of random variables X;(-), t € T, as a family of trajectories X .(w), w € ,
or as a family of functions X : T" x 2 — R such that for each fixed t € T,
X(t,-) is an R-valued random variable and for each fixed w € 2, X(-,w) is
an R-valued deterministic function, called a trajectory.

Using basic properties of stochastic processes, later on in Section 2.7,
we will generalize the definition of a classical stochastic process and define
generalized stochastic processes with respect to Gaussian and Poissonian
measures.

Definition 1.4.8 A real-valued stochastic process is a parameterized collec-
tion of random variables {X;her defined on a probability space (2, F, P),
taking values in R.

The parameter space T is also called the index set. If T' = N then the process
is said to be a discrete parameter process and if T' is not countable, the process
is said to have a continuous parameter. Here we will usually consider T to
be the halfline [0, +00).

We may regard the stochastic process X; = X;(w) = X(t,w) as a function
of two variables t € T" and w € ). Note that for each t € T fixed we obtain
a F-measurable function, i.e. a random variable

w— Xi(w), we
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and for each w € ) fixed we can consider the function X(-,w) : T" — R,
given by
t — Xt<W)7 te T,

called a path, trajectory or realization of a stochastic process Xj.

Definition 1.4.9 Finite-dimensional marginal distributions of a stochastic
process { X, her are given by

Ft1,...tn(x17 l‘n) = P{ th S xIy, ...,th S an},
where t1,...,t, €T and x4, ...,x, € R, n € N.

A famous Kolmogorov theorem states that it is possible to construct a
stochastic process having finite-dimensional marginal distribution functions
equal to a given finite family of measures.

Theorem 1.4.15 The family of finite-dimensional marginal distributions of
a random process satisfies conditions:

e consistency

Fipototiststn (@1, oy T, +00, ., +00) = Fy g, (201, ...0%) (1.18)

for every k <n and ty,...t, € T, k,n € N and

e symmetry

Ftl,...,tn (331, ceey l'n> = Ftﬂlv"'vtﬂn (.To-l, ceny .Z'o-n) (119)

for alln € N and all permutations o on {1,2,...,n}.

Theorem 1.4.16 (The Kolmogorov extension theorem)

Let {F(t1,..,tn, 1, ..., Tp), for finite {t1,..t,} C T} be a family of functions
which satisfy the consistency condition (1.18) and the symmetry condition
(1.19). Then there exists a probability space (Q,F, P) and a stochastic process
{ X }ier defined on Q2 such that all finite-dimensional marginal distributions
of X are equal to the given family of functions F.

The mean and the covariance function of a second order process { X; }er,
i.e. process with F(X?) < oo for all t € T, are defined by mx(t) = E(X;)
and Bx(t,s) = Cov(X, X;).
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A stochastic process having all finite-dimensional marginal distributions
invariant with respect to translation of the time component, i.e. for all
ti,t;+heT,ieNandevery h >0

F;f1+h,...,tn+h(xla ceey .an) = Ft1,...,tn (xla sy wn)»

is called a stationary stochastic process. A stationary process X; has finite
second moments and the corresponding covariance function is of the form

Cov(Xy, Xs) = Bx(t,s) = B(t—s), for t>s>0.

Suppose that {X;} and {Y;} are stochastic processes on same probability
space (§2,F, P). Then, {X,} is called a version or modification of {Y;} if

P{w | Xi(w) =Y (w)} =1 for all ¢.

It is clear that if {X;} is a version of {Y;}, then X; and Y; have the same
finite-dimensional distributions. Although two processes of such a type are
the same, their path properties may be different.

Theorem 1.4.17 (The Kolmogorov continuity criterion) Let X = {X; her
be a stochastic process which satisfies the condition: for all T > 0 there exist
positive constants o, 3, D such that

E(X,—XJ*) < D-jt—s]", 0<st<T. (1.20)
Then, there exists a continuous version of a process X.

Let H be a Hilbert space of random variables which have finite second
moments and zero mean value. Let X = {X;};cr be a stochastic L2-process.
Let H(X) consist of all finite linear combinations of the form

alth + CLQXt2 + ...+ anth, for all ti,to, ..., t, €T

and mean-square limits of such linear combinations. Subspace H(X) in H
is the Hilbert space of the stochastic process X;. A stochastic process can be
regarded as a function in the Hilbert space H, i.e. as a curve ¢(X) in H.
Then, H(X) is the minimal subspace of H which contains the curve ¢(X).

Martingales

Now, we focus ourselves on a brief review of definition and some properties
of a martingale.

Let (€2, 3, P) be a probability space. A family of sub-oc—algebras {F;} of
o-algebra F is called a filtration if for every s < t it follows that F, C F;. A
stochastic process { X, }ier is called adapted to the filtration {F;} if for every
t € T random variable X;(w) is F;-measurable.
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Definition 1.4.10 A stochastic process {M;} is a martingale with respect
to the filtration {F;} if the following is valid:

o M, is {Fi}-measurable for every t (adaptivity property),
o Ep(|M,]) < oo, for everyt € T and

o Ep(M|F,) = M, for every s < t.

Definition 1.4.11 A stochastic process {X;} is a Markov process if for
every t > s and every Borel set B € R follows

P{X, € B|7,} = P{X, € B|X,}, a.s. (1.21)

For Markov process, the parameter ¢ is interpreted as time and values X;
describe the rate of change of evolution stages of the a certain stochastic
physical system during time.

1.4.3 Important examples of classical processes
a) Gaussian process

Gaussian processes form a class of stochastic processes widely used in pure
and in applied mathematics. Among all Gaussian processes, Brownian mo-
tion and fractional Brownian motion are explored the most. Some typical
examples in applications can be found in modeling of telecommunication traf-
fic, where the fractional Brownian motion is used. In real analysis the Laplace
operator is directly connected to the Brownian motion, and in the theory of
stochastic processes many processes can be represented and investigated as
transformations of the Brownian motion.

Definition 1.4.12 A real-valued stochastic process { X }er is said to be a
Gaussian (normal) process if each of its finite-dimensional marginal distri-
butions is a multi-dimensional Gaussian random variable.

Recall, every Gaussian process is uniquely determined by its mean function
and the covariance function.

b) Brownian motion

Botanist Robert Brown in 1826 observed the irregular motion of pollen par-
ticles suspended in water and noted that the path of a given particle is very
irregular, having a tangent at no point, and the motions of two distinct par-
ticles appear to be independent. In 1900 Bachelier described fluctuations
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in stock prices mathematically and essentially discovered first certain results
later extended by Einstein in 1905. Einstein suggested that the main char-
acteristics of this motion were randomness, its independent increments, its
Gaussian distribution and its continuity.

Definition 1.4.13 A real valued stochastic process {B; : t € [0,00)} is called
a one-dimensional Brownian motion with a parameter o if:

e By =0 a.s,
e increments are independent and

e B, — B, has distribution N(0, (t — s) 0?) for all 0 < s < t.

A stochastic process X;(w) can be interpreted as a realization of a certain
experiment w at the moment of time ¢, thus the Brownian motion B; is
interpreted as a position of a pollen particle in the moment ¢.
One-dimensional density function of Brownian motion is
1 22

e 202t

[ t? T) =
(t,) ov2mt
Notice that Brownian motion is a centered Gaussian process with the covari-

ance function
Cov(By, B,) = 0 min{t, s}.

In particular Var(B;) = o%t, t > 0.

Brownian motion satisfies the Kolmogorov continuity condition (1.20)
with constants a = 4, D = n(n + 2) and = 1 (for proof see for example
[52] and references therein) and therefore it has a continuous version. From
now we will assume B; is such a continuous version.

In Definition 1.4.13, we have assumed that Brownian motion is defined
on an arbitrary probability space (2, F, P).

The mapping

Q — C([0,+00),R)

defined by w + B.(w) induces a probability measure Pz = P o B~!, called
the Wiener measure, on the space of continuous functions C' = C([0, +00), R)
equipped with its Borel o-field B. Then we can take as canonical probability
space for the Brownian motion the space (C, B¢, Pg). All random variables
in this canonical space are the evaluation mappings X;(w) = w(t).
Brownian motion admits the Markov property described by (1.21) i.e.
a distribution function of difference B, — B, on an interval (s,t) does not
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depend on the past. Clearly, for t; < ty < --- < t,, the difference B;, — B;
can be represent as a sum of independent random variables

1

Btn - Bt1 = [Btn - Btn—1] +oot [Bts - Btz] + [Btz - Btl]’
thus for 0 < t; < --- < t, the n-dimensional density function is defined by

Gn(te, - stnsxa, -, 2y) = g1(t, 1) g1 (ta—t1, xo—x1) - - - 1 (En—tn—1, Trn—Tp_1).

Brownian motion is a Gaussian process almost all whose trajectories are
continuous, but nowhere differentiable functions. This statement means that
classical stochastic process which is equal to the first derivative of Brownian
motion does not exist. We overcome this problem by defining the generalized
derivative of Brownian motion called the white noise.

The sum of square of differences of Brownian motion, denoted by

n n

Z (ABk)Q = Z [Btk - Btkfl]Q

k=1 k=1

converges in mean square to the length of the interval, as the norm of the
subdivision tends to zero.

Theorem 1.4.18 (The Kolmogorov theorem) Let a =ty < t; < ---t, = b.
Then

> (ABY)? = o*(b—a), max(Aty) — 0.

k=1

On the other hand, the total variation is infinite with probability one. The
trajectories of Brownian motion B; have infinite variation on any finite in-
terval. i.e. for any A € R stays

P{> |By, — Bi,_,| > A} = 1, max(At) = 0.
k=1

For any a > 0 the process {\/La Bt }+>0 is a Brownian motion (this property
is called the self-similarity property).

Note one more important property: Brownian motion B; is a martingal
with respect to o-algebra F generated by {Bs : s < t}.
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Example 1.4.1 (Stochastic processes related to Brownian motion)

e Brownian motion with drift is the process
Xt:Bt+at, tzo,
a € R is a constant. It is a Gaussian process with E(X;) = at and
Bx(s,t) = 0 min{s, t}.

e Geometric Brownian motion s the exponential of a Brownian motion
with drift
X, =eBrrat ¢ >0,

where a € R. It is not a Gaussian process and the probability distribu-
tion of X; is lognormal. This process is proposed by Black, Scholes and
Merton as model for the curve of prices of financial assets.

c) Poisson process

Definition 1.4.14 A stochastic process {N;}i>0 defined on a probability
space (0, F, P) is a Poisson process of intensity A\ if it satisfies the following:

L4 Nt = 07
e for any n > 1 and any 0 < t; < ... < t, the increments
Ny, — Nt y...; Ny, — Ny, are independent random variables,

e for any 0 < s < t, the increment Ny — Ny has a Poisson distribution
with parameter A(t — s)

At — s)]F
P{N, — N, =k} = et~ % k=0,1,2,..., (122

where X > 0 is a fized constant.

Increments of a Poisson process are independent and stationary. Poisson
process can be constructed from a sequence X,,, n > 1 of independent random
variables with exponential law of parameter A > 0, defined by (1.16). Clearly,
if weset Lo=0and L, = X; +Xo+ ... + X,, for n > 1, then lim L, = oo

n—oo
a.s. The process {N;}; > 0, which represents the arrival process associated

with the interarrival times X,

(o]
Ny = E N XL, <t<Lpi1-
n=1
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is a Poisson process with parameter A\. Notice that F(N;) = At. Thus A is

the expected number of arrivals in an interval of unit length, or in another

words, A is the arrival rate. The expected time until a new arrival is %

Moreover, Var(N;) = At.
Sample paths of a Poisson process are discontinuous with jumps of size
1. However, a Poisson process is continuous in mean of square:

E[(N,= N’ = At —s)+[At—s)]> =0, s—t
Notice that we cannot apply here the Kolmogorov continuity criterion (1.20).

Definition 1.4.15 A process {M;}:>o defined by
15 called compensated Poisson process with intensity A > 0.

It is clear that E(M;) = 0 and Var(M;) = At for all ¢.

A compensated Poisson process is a cadlag (has continuous paths from
the right with left-sided limits) martingale with respect to the o-algebra F
generated by Ny, 0 < s <t ie. E(M;— M,|FY)=0.

Let {Z(n), n € N} be a sequence of i.i.d. random variables taking values
in R with common law and let N be a Poisson process of intensity A that is
independent of all the Z(n). The compound Poisson process Y is defined by

Y(t)=2Z(1)+ -+ Z(N(1)),
for all t > 0, so each Y () is a Poisson process of intensity At.

The Charlier polynomials

Consider now the generating function
Fy(k,t) = e M(1+N)F

of the Poisson density px(t) = ot
One can prove that for A € (—=1,1) it holds

S

Fy(k 1) = i X Gtk ), (1.24)
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where C,,(k,t) are the Charlier polynomials of order n € N and of parameter
t > 0 defined by

Cg(k',t) = 1,

Cilk,t) =k —t, keR, ¢>0

and by the induction relation
Coy1(k,t) == (k—n—1t)Cu(k,t) —nC,_1(k,t), n€N.

The Charlier polynomials represent orthogonal polynomials for the Pois-
son distribution with parameter ¢ > 0. The equivalent definition is

Gt = 3 (1) (- w

=1 \J

where (k); denotes the descending factorial k(k — 1)...(k — j + 1) with (k)
interpreted as 1.

d) Lévy process

In this part of thesis we deal with a more general class of processes, the
Lévy processes. First we have introduced the special cases of Lévy processes,
Brownian motion, described in Section 1.4.3 and Poisson process presented
in Section 1.4.3. For theory of Levy processes we refer to [3], [18], [19], [64].

Definition 1.4.16 Let (2, F,P) be a probability space. A real valued
stochastic process n; = n(t,w), t € [0,00), w € Q is called an one-dimensional
Lévy process if it satisfies the conditions:

e 7(0) =0 a.s.

e 1) has independent increments

n has stationary increments

n 1s stochastically continuous and

n has cadlaag paths, i.e. paths of n are continuous from the right (con-
tinue a droite) with left-sided limits (limites a gauche).

Note that both the Brownian motion and the Poisson process are tempo-
rary homogeneous Lévy processes, meaning the probability distribution of
the increment X,,, — X;, for A > 0 is independent of t. A Lévy process has
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stationary, independent increments like Brownian motion, but it differs from
B; in that it does not necessarily have continuous paths. Almost all sample
functions of a Brownian motion are continuous while those of a Poisson pro-
cess are discontinuous, and they increases only by jumps of unit magnitude.

The reproducing property is satisfied by both the Gaussian and the Pois-
son distributions. Namely, a given distribution has the reproducing property
if for independent random variables X and Y having the common distri-
bution law it follows that their sum X + Y also has the same distribution
law.

The jump of n at time ¢ is defined by

L(t) = n(t) —n(t”).

Put Ry = R\ {0} and let B(Ry) be the topology of all Borel sets S C R such
that S C Ry. If S € B(Ry) and ¢t > 0 we define N(t,5) to be the number
of jumps of 7(-) of size An(s) € S, s < t. Since the paths are cadlaag then
N(t,S) < oo forall t >0, S € B(Ry). Then for all w € Q the function

(a,b) x S — N(b,S) — N(a,S), 0<a<b<oo, Se€BRy

defines a measure on B([0,00)) x B(Ry), called the Poisson random measure
of n. The differential form of this measure is denoted by N (dt,dz). The Lévy
measure v of n(-) is defined by

v(S) = E[N(1,5)], S € B(Ro).

The Lévy measute v determines the law of 7(-).
We continue with the Lévy-Khintchine formula.

Theorem 1.4.19 (The Lévy-Khintchine formula) Let n be a Lévy process
with the Lévy measure v. Then

/min{l,zz}y(dz) < 00 (1.25)
R
and ‘
E(e™) =™ 4y eR (1.26)

where

1 ‘ .
(u) = ——02u2+iau/ ("™ —1—iuz) V(d2)+/ (e™*—=1)v(dz) (1.27)

2 |2]<1 |2[>1

for some constants a,oc € R. Conversely, given constants a,c € R and a
measure v such that (1.25) is satisfied, there ezists a unique Lévy process n
such that (1.26) and (1.27) hold.



1.4 Basic Stochastic Analysis 47

A complete description of a Lévy process is given by the following theorem.

Theorem 1.4.20 (The It6-Lévy decomposition theorem) Let n be a Lévy
process. Then n can be written in the form

n = art +oBy + / zN(t,dz) + / ZzN(t,dz) (1.28)
|z]>1

|z|<1

where ay, 0 are constants, B is a Brownian motion, N(-,-) is the Poisson ran-

dom jump measure of n, N(ds,dz) = N(ds,dz) —v(dz)ds is the compensated
Poisson random measure of n and n(dz) the Lévy measure of n.

We conclude that every Lévy process can be decomposed into the sum of
three terms. The first term, seen as a continuous part of a Lévy process is
represented by a Brownian motion with drift. The second term is the process
f\Zl _1 #N(t,dz) which represents a compensated sum of small jumps and the

third, given by the process f|z zN(t,dz) that describes the large jumps in

>1
(1.28) is a compound Poisson process.

e) Fractional Brownian motion

Fractional Brownian motion represents a natural one-parameter extension of
a standard Brownian motion, represented by the Hurst parameter H. The
parameter H is called after the climatologist Hurst, who developed statistical
analysis of the early water run-offs of the river Nile. The Hurst index H allows
values in interval (0,1) and in particular, for H = % a fractional Brownian
motion coincides with a standard Brownian motion.

Fractional Brownian motion is a processes with dependent increments
which have long-range dependence and self-similarity properties. Many prob-
lems in hydrology, telecommunications, queueing theory and mathematical
finance gave motivation to input noises without independent increments
which have long-range dependence and self-similarity properties to appro-
priate models. If H > % then fractional Brownian motion has a certain
memory feature and this property has been used, for example, in the model-
ing of weather derivatives, the temperature at a specific place as a function
of time, in the modeling the water level in a river as a function of time, when
describing the widths of consecutive annual rings of a tree or when describing
the values of the log returns of a stock. In addition, if H < % then fractional
Brownian motion has a certain turbulence feature and this property found
applications, for example in mathematical finance in the modeling of finan-
cial turbulence, i.e. empirical volatility of a stock or in modeling the prices
of electricity in a liberated Nordic electricity market.
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Fractional Brownian motion was first introduced within a Hilbert spaces
framework by Kolmogorov in 1940, where it was called the Wiener Spirals.
He was the first to consider continuous Gaussian process with stationary
increments and with self-similarity property. The name fractional Brownian
motion is due to Mandelbrot and Van Ness, who in paper [41] from 1968,
provided a stochastic integral representation of this process in terms of a
standard Brownian motion on an infinite interval.

Definition 1.4.17 Fractional Brownian motion with the Hurst index
H € (0,1) on a probability space (2, F, P) is defined to be a Gaussian process
BWH) = {BISH)(-), t € R} having properties:

° BéH) =0a.s.,
e zero expectation E[Bt(H)] =0 for allt € R, and

e the covariance function
1
BB B™) = S{t" + s — |t = s}, steR (129)

Fractional Brownian motion is a centered Gaussian process with non-
independent stationary increments and its dependence structure is modified
by the Hurst parameter H € (0, 1).

For H = % the covariance function can be written in the form

E(B?B!?) = min{s, t}

1
and the process Bt(2) becomes a standard Brownian motion and it has inde-
pendent increments. From (1.29) it follows that

E(B™ — B2 = |t —

and according to the Kolmogorov continuity criterion (1.20), stated in Theo-
rem 1.4.17, with values « = 2, D = 1 and 8 = 1, we conclude that fractional
Brownian motion B has a continuous modification. From now on we as-
sume for BH) to be that continuous version.

Furthermore, for all n € N it holds

B(B{™ — BID)" = [ = D(= =)t - |,

The parameter H controls the regularity of trajectories.
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The characteristic function has the form

i (H)
oA(t) == Ee Z ¢~ 3(CON).

where C}y = (EBt(f)Bt(fI))lgkgn and (-,-) is the scalar product on R".
The covariance function (1.29) is homogeneous of order 2H, thus frac-
tional Brownian motion B#) is an H self-similar process, i.e.
B — o™ > 0.

Hence, self-similarity can be considered as a fractal property in probability.
For H € (0,3) U (5,1) and ¢ <ty < t3 < ty it follows that

to tg
H H H H _
BB - BMYBIM — By = H(2H — 1) / /(u P2 gy

t1 t3

Therefore, the increments are positively correlated for H € (%, 1) and neg-
atively correlated for H € (0, %) For any n € Z, n # 0 the autocovariance
function is given by

1 n+1

r(n) = E[B™ (B — BUD) = H(2H —1) / / (1 — v)2H 2 dudy
0 n
~ H(2H — 1)~ when |n| — oco.

For H € (%, 1) fractional Brownian motion has the long-range depen-
dence property Y 2 7(n) = oo and for H € (0, 3) the short-range property
S |r(n)| < co. For H € (3,1) the difference sequence B,(fi)l ~ B n>o0
presents an aggregation behavior which can be used to describe cluster phe-
nomena and for H € (0, %) this sequence can be used to model sequence with
intermittency. For more details in applications we refer to [44], [47].

Furthermore, note that fractional Brownian motion is neither a semi-
martingale (except for H = %) nor a Markov process.

Because of these properties fractional Brownian motion has been sug-
gested as a useful tool in modeling in finance and physics. More details on
fractional Brownian motion, modeling and applications can be also found in
[7], (8], [13], [20], [26], [41], [46], [62].
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1.4.4 Stochastic integration

The problem of defining a stochastic integral with respect to Brownian mo-
tion in the Riemann-Stieltjes sense arises from the fact that the total variation
of the path of Brownian motion is infinite almost surely. Moreover the paths
of Brownian motion are nowhere differentiable almost surely. Two the most
common concepts to overcome this problem are the concept of the Ito inte-
gral and the Stratonovich integral (difference is a consequence of the choice
of the partition points of an integration interval). Here we will present the
construction of the Itd integral. First we will define the stochastic integral
for simple processes and then extend the definition to an appropriate class
of processes, i.e. to the class of predictable processes. The reason of defining
the stochastic integrals for integrands which are predictable processes is the
usage of martingale theory for such a construction. Our aim is to define an
integral of the form

/Ot f(s,w)dBs(w), tel[S,T]

where B; is an one-dimensional Brownian motion. First, a given function
f(t,w), i.e. a stochastic process which satisfy certain initial assumptions (for
process to be predictable), will be approximated by the sum

2" —1
Z f(t;vw) Xltjstj+1) for t; € [tjvtj—i-l)'
=0

Then definition of the stochastic integral |, ST f(t,w)dBy(w) is obtained by
taking limits of sums

2" —1

Z f(tjaw) [Btj+1 - Btj](w>7

=0

when the maximal lenght of partition intervals [t;,¢;11) tends to zero. The
choice of ¢} leads us to several different types of integrals. In particular, if we
choose the left end point ¢; = ¢;, we obtain the [t0 integral and if we choose
the mid-point, 7 = %(tj +t;+1), we obtain the Stratonovich integral.

In general Stratonovich integral has advantage of leading to ordinary
chain rule formulas under a transformation (change of variable), i.e. there
are no second order terms in Stratonovich analogue of the Ito transformation
formula (1.35). This property makes the Stratonovich integral natural to use,
for example, in connection with stochastic differential equations on manifolds.
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Also the Stratonovich integral interpretation is the most frequently used
interpretation within the physical sciences. On the other hand, Stratonovich
integrals are not martingales as Ito0 integrals are. This gives the It6 integral an
important computational advantage in many real-world applications, such as
in financial mathematics for modeling stock prices, or in biology. In following
we describe both concepts of stochastic integrals but in further chapters we
will base our discussion on the It type of integrals.

More information on the Stratonovich type of integral can be found in
[60], and on the It6 integral in [14], [19], [52].

The It6 integral

Assume that B, = By(w) is a one-dimensional Brownian motion given on a
probability space (2, F, P), starting at zero. For ¢t > 0 let F; be the o-algebra
generated by the random variables {Bs}s<;. Then for 0 < ¢t < s we have an
increasing family {0,Q} =F, CF, CF, C F.

Let 0 < S < T. The class of functions f(¢,w) : [0,400) x 2 — R for
which the It6 integral will be defined is denoted by £ = £(S,T). It is the
class of F;-adapted functions (meaning that f(t,-) is F;-measurable), such
that mapping (t,w) — f(t,w) is B x F measurable and the condition

T
E ( / det) < 00
s
is satisfied.

A stochastic process ¢ = {¢}i0 € L(S,T) is called a simple or
elementary process if it is of the form
on 1

Bt w) = du(w) = Y €;(w) - Xpja—n, Grn2-m (1),

j=0
where x is the characteristic function, n € N and e; is F;;-measurable pro-
vided E(e;)? < oo.

Definition 1.4.18 The It6 integral of an elementary function ¢ € L(S,T)
on the interval (S,T'), denoted by 1(¢), is defined by

2"—1

1(6) = / o) dBiw) = 3 e5(w) By, — By (),

J=0

with points

t;=1" =
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If elementary function ¢ € £(S,T') is bounded then the It6 isometry holds

(/OT ¢(t,w)dBt(w)>2 =E [/OT ¢2(t,w)dt} . (1.30)

We use the isometry (1.30) to extend the definition from elementary functions
to functions in £(5, 7).

Definition 1.4.19 The Ito6 integral of a function f € L(S,T), denoted by
I(f), is defined by

T

_ /S f(t,w)dByw) = lim [ u(t,w)dBy(w). (1.31)

n—oo S

where limit is taken in L*(Q,F, P) and {¢,} is a sequence of elementary
processes such that

E MT (F(t,w) — ¢n(t,w))2dt1 50, n— oo (1.32)

Note, the sequence {¢,} exists and (1.32) implies that lim /(¢,) exists in
n—oo
L2(Q, 7, P).

Remark 1.4.1 The Ito isometry

(/ " () d&(w))z

holds for all functions f € L(S,T).

=F UST f2(t,w)dt]

Let 0 < S < T. For given functions f,¢g € £(0,7T) and constants a,b € R
the Ito integral satisfies the following properties:

e linearity fOT(af + bg)dB, = afOT fdB, + beT gd By,

e zero expectation E(fOT fdBy) =0,

variance  Varl(f) = [fo fdBy) ]— (fOTdet),

polarization formula fo fdB; - fo gdBy) = fo fgdt),

It6 integral fOT fdB, is F-measurable,
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e additivity with respect to the integration interval
Sy fdB, = [ fdB; + [4 fdB,, for almost all w

e for all 0 <t < T, the Ito integral process

M= [ flsan

as a function of the upper limit ¢, has a continuous version,

e [t0 integral is a martingale, i.e. for s <t we have

(/fude |”f) /fde Y.

Moreover, P{ sup [M;| > A} <55 (fo ) for \, T > 0.

<t<T

The Ito formula

Instead of using Definition 1.4.19, in concrete situations we usually apply the
Ito formula to compute the It6 integral.

Definition 1.4.20 Let B; be an one-dimensional Brownian motion on a

probability space (Q,F, P). The one-dimensional 1td process is a stochastic
process Xy = X¢(w) on (Q,F, P) of the form

X,,:XS+/ fdt+/ gd By (1.33)

for f € LY0,T),g € L*(0,T) and 0 < s <7 <T.

From (1.33) it is clear that in the representation of an It6 process two integrals
appear, one [t6 integral and one Lebesgue integral. If a process X; is an [to
process then the expression (1.33) can be replaced with the corresponding
stochastic differential form

Theorem 1.4.21 (The It6 formula for an one-dimensional 1t6 process) Let
X; be an Ito process, represented in the differential notation (1.34). If a
function v : R x [0,T] — R is continuous together with its partial derivatives

%7 ?{; nd g %, then the process

Y, = u(Xy, 1)
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1s again an 1to process described explicitly by the It6 formula

1 2
ay, = a0y, L0

2T 5 552 (X

ou ou 1 0% ou

where (dX;)? = dX; - dX; is computed using the multiplication rules:
dt-dt =dt-dB; = dB; - dt =0, dB; - dBy = dt.
Theorem 1.4.22 (It6 multiplication rule) Let

Xm = fl dt + a1 dBt
<t<T
{ X, = fodt + g, V=TS
for fi, fo € LY(0,T) and g1,9o € L*(0,T), then we have the multiplication
rule for Ito processes given in the differential form

d(X1X2> = Xg dX1 +X1 dX2+g1gg dt. (136)

The last term on the right-hand side of (1.36) represents so-called Ito
correction term. Integral version of such multiplication rule for two It6 pro-
cesses given in differential forms is called the [to partial integration formula
t t t
/ XpdXy = Xy (r)Xa(r) — Xi(s)Xa(s) — / X1dXy — / g1gadt.
In particular, for a continuous function f which is of bounded variation on

0,t], such that f(s,w) = fs is independent of w, then the expression of the
It6 integral is given by

t t
/fsstzftBt—/ B, df.
0 0

Recall, the property (1.2) describes a nice behavior of the first derivative
of nth Hermite polynomial h,, n € Ny and its connection with (n— 1)th Her-
mite polynomial h,_;. Now, we state an important theorem which connects
the nth normalized Hermite polynomial of parameter ¢, defined by

2 odr

(e72r), xz€eR, neNy

hn(x,t)

|
—~
|
[
~—
@
B4

with the Ito integral.
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Theorem 1.4.23 Let h,(x,t), n € Ny, x € R be the nth normalized Hermite
polynomial of parameter t. Then fort > 0 and n € Ny, the following

t
/ hn(BS,S) dBS = hn+1(Bt,t) (137)
0

holds. Therefore, equality (1.37) can be rewritten as
dhn+1(Bt7 t) - hn(Bt, t) dBt

The following important theorem, due to Ito, states that any random
variable can be represented in terms of a unique adapted stochastic process.

Theorem 1.4.24 (The It representation theorem) For any random vari-
able F € L*(Q,F, P), which is F-measurable there erists a unique adapted
stochastic process p(t,w) such that

F(w) = E(F) —i—/o i(w) dBi(w). (1.38)

We have to point out here that from the Clark-Ocone formula follows the
explicit form of such adapted process

pi(w) = E(DF | &),

i.e. it is represented as a conditional expectation of the Malliavin derivative
D of a given function F € L?(Q, F, P) with respect to the filtration F;. The
Clark-Ocone formula represents an important result in applications in finance
when obtaining explicit formula for replicating portfolios of contingent claims
in complete markets. For more information see [10].

Now we focus to the Girsanov theorem, which states that a Brownian
motion with drift can be seen as a Brownian motion without drift, with a
change of probability.

Theorem 1.4.25 (Girsanov theorem) Let Y; be an Ité process given in the
stochastic differential form

dY; = ut(w)dt + dBt, 0 S t S T, }/0 = O,
where T" is a given constant and By is a Brownian motion. Denote

M, = e Jows@)dBomg Jy uitw)ds 4 < (1.39)

)
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and denote by @ the measure on (2, Fr) such that
dQ(w) = Mp(w) dP(w).
If we assume that stochastic process uy(w) satisfies the Novikov condition
E(exJo w3@)dsy « o0 (1.40)

then the stochastic process Y; represents a Brownian motion with respect to
the probability law Q, fort <T.

Probability transformation P — @ is called the Girsanov transformation
of measures. Furthermore, if the Novikov condition (1.40) is replaced with
assumption that {M;}; <7 is a martingale with respect to filtration F; and
measure P, then the Girsanov theorem is still valid.

In particular we have the following result.

Theorem 1.4.26 Let dX;(w) = us(w) dt + dBi(w) be an [to process and let
u be a bounded function. If

K(W) = Xt(CU) Mt7 t S T

for M; given in the form (1.39), then the stochastic process Y; is
a F-martingale.

In particular, for any bounded function g : R — R and all ¢ < T we have

Eqlg(Yy)] = Eplg(By)).

If uy(w) = uy = u(t) is a deterministic function and if we assume that u; = 0
for t > T, then we can write

exp {— /0 " () dB, % /0 L2 dt} —expl[—(w ()], (1.41)

where exp? is for the stochastic Wick exponential, which will be defined latter
in Example 2.39. Thus,

[ o) el unaqe) = [ o5+ t uls)ds) Qo)

For the proof and more details on the It6 integral and its applications we
refer to [10], [18], [19], [21], [39], [52].
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The Ito-Poisson integral

Providing a construction analogous to the one from the previous subsection,
when defining the Ito integral, one can define a stochastic integration with
respect to a compound Poisson process. Integral obtained is called the [to-
Poisson integral and is denoted by

IP(f) = / fi(w) dPy(w),

It is defined for a class of F; adapted functions, where F; is the o—algebra
generated by compensated Poisson random variables { P }s<;.

1.5 Classical Malliavin Calculus

The Malliavin calculus or the stochastic calculus of variations is an infinite-
dimensional differential calculus on the Wiener space. It was originally cre-
ated by Paul Malliavin in work [38] in 70ies as a tool for finding a proof
of smoothness for densities of solutions of stochastic differential equations.
The original motivation, and the most important application of this theory,
is to provide a probabilistic proof of Hormander’s sum of squares theorem.
Originally, the Malliavin calculus is a Gaussian calculus, i.e. a calculus with
respect to a Gaussian process. Nowadays the theory has found many ap-
plications which include numerical methods, stochastic control, not only for
systems driven by Brownian motion, but also for systems driven by Lévy pro-
cesses. Malliavin calculus has been developed by Stroock, Bismut, Watanabe,
Nualart, @ksendal, Rozovsky and others. The integration-by-parts formula,
which relates the Malliavin derivative operator on the Wiener space and the
divergence operator, called the It6-Skorohod stochastic integral in white noise
setting, represents a crucial fact in this theory.

There are many ways of introducing the Malliavin derivative. The original
construction was given on the Wiener space. In this section we present the
stochastic calculus of variations in the framework of an abstract Wiener space
and focus our attention on the notions and results that depend only on the
covariance operator or the associated Hilbert space. We follow [15], [16], [46]
for the case of an abstract Wiener space.

A survey of the different approaches to the Malliavin calculus can be
found in [32], [34], [35], [36], [44], [46], [51], [52].

In Chapter 3, we will return again to notions of the Malliavin calculus
and consider the operators of the Malliavin calculus within the white noise
analysis approach, give representations of their domains in terms of chaos
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expansions and prove several important properties. Further on, in Chapter 4
we will define the generalizations of these operators on the space of singular
generalized stochastic processes and thus in Chapter 5 introduce and solve
several stochastic differential equations involving generalized versions of such
operators.

1.5.1 The Wiener space

At the beginning we define the abstract Wiener space and introduce its chaos
expansion decomposition. Then we will introduce a notion of the derivative
DF of a square integrable random variable F' : €2 — R, defined in a weak
sense on an abstract Wiener space, without assuming topological structure
of ). The idea is to differentiate ' with respect to the random parameter
w e .

The idea of the abstract Wiener space or Gaussian Hilbert space is to
use a Hilbert space with an underlying Gaussian structure. In the following
we assume that (Q,F, P) is a complete probability space and H is a real
separable Hilbert space with the scalar product (-, +)g.

Recall that a family of random variables G; : 2 — R, ¢ € N is Gaussian
provided that all finite linear combinations

ichij O —->R

i=1
are Gaussian random variables for all n € N and ¢y, ¢y, ..., ¢, € R.

Definition 1.5.1 (Abstract Wiener space)

(i) The family of Gaussian random variables G = {Gpn, h € H}, where
G @ Q2 — R is called isonormal provided that G is centered with the
covariance function of the form

E(Gth) = (h, ]f)H, forall h,k e H.

(ii) If F is the completion of o{G}, then the space L*(Q,F, P) = L*(P)
is called the Wiener space associated with the Gaussian family G or
Gaussian Hilbert space.

Thus G is a Gaussian process indexed by functions in a Hilbert space which
describes the covariance of G. The standard Brownian motion, from Defini-
tion 1.4.13, fits in the setting of isonormal Gaussian process in the sense of
Definition 1.5.1.
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Example 1.5.1

o Let H= L*R,dt) be the space of deterministic functions f : R — R
such that [, f*(t)dt < co. We define

e ::/h(t)dBt, hed, (1.42)
R

where the stochastic integral is the Ito integral. Then, G}, is an isonor-
mal Gaussian process and

Gy = /R x[0,t](s)dBs = By, t>0.

Moreover, from this representation one can recover the covariance func-
tion of the standard Brownian motion

E(B; B;) = E(Gyjo,q Gypo,s) = (x[0,1], x[0, s]) = min{t, s}.

According to Wiener, Brownian motion is a certain Gaussian measure
W, now called the Wiener measure, on the space of continuous paths,
called the Wiener space. Cameron and Martin discovered that Wiener
measure is translation invariant measure in infinite dimensions. They
showed that if H s the Hilbert subspace of Wiener space, whose ele-
ments h are absolutely continuous and have square integrable derivative,
then translation of W by an h € H results in a measure Wy, that is ab-
solutely continuous with respect to W and has simple Radon-Nikodym
Ry, all of whose powers are integrable.

e A fractional Brownian motion can be seen as an isonormal Gaussian

process. Consider the set of step functions 8 on [0,T] and the Hilbert
space H which is the closure of & with respect to the scalar product

1
<X[07 t]v X[Oa S]>H = §(S2H + t2H - |t - S|2H)7 t,s € [07 T]
We define the family of random variables
GXH[O,t] =B for every t,

which constitutes the isonormal Gaussian process associated to the frac-
tional Brownian motion B.
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For any separable Hilbert space H we can construct an isonormal Gaus-
sian family and a Wiener space associated with the family G. Clearly, we
assume an orthogonal basis {e,, n € N} of infinite dimensional Hilbert space
H and a sequence of i.i.d. random variables {¢, : n € N} ~ N(0,1)
on (Q,F, P), where F is the completion of the o-algebra generated by
{¢n : n € N}. If we let

Ghi=Y (hen)uon € L*(P),
neN

then G = {G),, h € H} is an isonormal family of random variables.

Note that from Definition 1.5.1 it follows that h +— G},, h € H is a linear
isometry from H into L?(P).

Definition 1.5.2 Let
Ho:={f: Q=R : f=cas. for some c€ R}, and

H, :=span {h,(Gp) : h€ H, |h]| =1}, n €N,

for the Hermite polynomials h,. The closed linear subspace 3, C L*(P) is
called the Wiener chaos of order n.

The following fundamental theorem of the decomposition of L?(P) space
is due to Wiener 1938, 1to 1951 and Segal 1956.

Theorem 1.5.1 (The Wiener chaos expansion) It holds that the space L*(P)
can be decomposed in the following way

L2(P) = é X,
n=0

where the sum is an orthogonal sum in L*(P), i.e. the following is valid
1. ¥, LXK, forn#m, i.e. E(fg)=0, for f € H,, g € Hp,.
2. For all f € L*(P) there exist unique f, € H, such that

f=Y fu in IL*P), (1.43)
n=0
such that the condition

D Mallze = 1F172p)
n=0

1s fulfilled.
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The proof of the previous theorem is based on properties of the orthogonal
projection P, : L*(P) — 3, C L*(P) of L*(P) onto the nth Wiener chaos.
Recall, if P, is the orthogonal projection, then P, is linear and P, (L?) C 3.
Moreover, we have P,f = f and (P,f,f — Pyf)r2py = 0 valid for all
f € L*(P). From the property (P.f,9)rzpy = (f, Pnug)r2(p), valid for
f,g € L*(P), it follows that P?> = P,. Then

D NPt iy < 1172y
n=0

so that > P,f converges in L?(P) and
n=0

f=>_P.f in L*P).

Thus, every square integrable random variable with respect to a Gaussian
random field could be written as a sum of elements in the Wiener chaos.

The closure of the set P, of all polynomials p = p,(Gp,, ..., Gp,) of k
variables of degree less then or equal to n satisfies P, = Ho@P ... P H,.
Namely, the set if polynomials P, is a dense subspace of L?*(P).

Moreover, the set of finite linear combinations of the exponentials

{expGy, he H}

is also a dense subspace of L?(P) and the projections P, preserve the space
of polynomial variables.

Moreover, one can show that the elements of the form h,(G}), h € H can
be considered as multiple integrals of order n. In particular, for illustration
in the Brownian motion case see Theorem 1.4.23.

For more details on abstract Wiener space we refer to [15], [16].

1.5.2 The Malliavin derivative operator

In this section we assume that we have an abstract Wiener space (2, F, P)
based on a Gaussian structure (Gp,)pen. Following [7], [20] and [46] we will
introduce a notion of the differential DF of a smooth square integrable ran-
dom variable F': 2 — R, defined in a weak sense on abstract Wiener space,
without assuming topological structure of 2. The aim is to differentiate F
with respect to the random parameter w € ).
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Let G = {Gj, h € H} denote an isonormal Gaussian process defined in
a complete probability space (2, F, P) associated with the Hilbert space H.
Thus, G is a centered Gaussian family of random variables such that

E(GhlGhQ) = (hl, hQ)H, for all hl, hy, € H.

We assume that F is generated by this Gaussian family G.
Denote by € the class of smooth random variables of the form

F = f(Gp,.Gr), (1.44)

where f € C*(R") such that f and all its partial derivatives have polyno-
mial growth and hq,...,h, € H,n € N. These random variables are called
elementary.

Definition 1.5.3 The derivative D of an elementary random variable F' € €
of the form (1.44) is the H-valued random variable defined by

DF =Y of (Ghys .y Gry) - B (1.45)

i=1 Oz;

The derivative D is also called the stochastic gradient or the Malliavin deriva-
tive of an elementary random variable F'.

The scalar product (DF,h)y is the derivative at ¢ = 0 of the random
variable F' composed with shifted process {G,+¢c(g,h)n, g € H}. Therefore,

(DF. )y = lim 2 [F(Go. + £(ht, B, s G + (s ) i) — F(Gonsoos G )]

e—0 €

for all hy,...,h,,h € H. The derivative operator D is interpreted as a direc-
tional derivative in direction h.
From Definition 1.5.3 it follows that

DGy = h, for all h e H.

In particular, if G, is a Brownian motion from (1.42), then the stochastic
gradient is an inverse operator of the Ito integral.

Now we give some properties and state theorems without proofs, which
can be found, for example, in [15], [16], [20], [46].

By definition of the gradient operator for smooth random variables of the
form (1.45), we have

D(FG) = F DG + G DF.

We continue with the integration by parts formula.
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Theorem 1.5.2 (Integration by parts formula I) For F € € and h € H we
have the integration by parts formula

E((DF,h)y) = E(FGYy,).

Theorem 1.5.3 (Integration by parts formula II) For elementary smooth
random variables Fy, F5 € € and h € H we have that

E[F\(DFy, h)y) = —E[Fy(DFy, h) ] + E[FLF2G)).

Definition 1.5.4 Let X andY be Banach spaces, € C X be a linear subspace
and D : & = Y a linear operator. Operator D is called closable provided
that €3 x, — 0 and Dx,, -y €Y imply y = 0.

The Malliavin derivative D is a closable operator from the space of ele-
mentary functions € into the space of H-valued random variables.

Theorem 1.5.4 Let X and Y be Banach spaces and € C X be a subspace
and D : € =Y be a closable operator and let

Dom(D) := {x €X:

dz, € € such that x, — =
dy € Y such that Dz, — vy |~

Given x € Dom(D) define

Dz .=y, forx,— x and Dx, —y.
Thus, we have the following assertions:
e it holds E C Dom(D) C X,
e the operator D is an extension of D to Dom(D),

e Dom(D) is a Banach space under

12 Doy = llZll% + 1D]f5-,

e the operator D : Dom(D) — Y is continuous.

Definition 1.5.5 Consider the space of elementary smooth functions
& C L*(P). The domain of the extension of the Malliavin derivative
D: & — L*(P, H) is denoted by DY? and called the Malliavin Sobolev space.
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The extension of D to D? — L?(P, H) is also denoted by D. Thus we have
Dom(D) = D2,

In particular, this means that the space D'? is the closure of the class of
elementary random variables & with respect to the norm

|F||2:2 = E|F|> + E||DF||%. (1.46)

Characterization of the domain of the Malliavin derivative in terms of the
orthogonal projection of a random variable is given by the following theorem.

Theorem 1.5.5 Let P, : L*(P) — H,, C L*(P) be the orthogonal projection
onto nth Wiener chaos. Then

DLQ:{FELQ Z (n+ 1) | PuF172p <oo}
n=0

with

[e.e]

I3 =D (n+ 1) [|PuF |32 < 0o

n=0

Theorem 1.5.6 (Chain rule) Let F' € D'? and f € CY(R) such that f(F)
is differentiable in Malliavin sense. Then the chain rule follows

D(f(F)) = f(F)DF, a.s.

1.5.3 The divergence operator

In this section we consider the divergence operator defined as the adjoint
operator of the Malliavin derivative operator in the framework of abstract
Wiener space. In particular, if the underlying Hilbert space H is L?*(R)
space, we will interpret the divergence operator as a stochastic integral and
we will call it the Skorokhod integral, because in the Brownian motion case it
coincides with the generalization of the Ito stochastic integral to anticipating
integrands. This will be the subject of Chapter 3, where we will focus on
the interpretation of the operators of Malliavin calculus in the framework
of white noise analysis. Furthermore we will deduce the expression of the
Skorokhod integral in terms of the Wiener-1t6 chaos expansion.

Definition 1.5.6 (Divergence operator) Denote by § the adjoint of the
Malliavin derivative operator D. Then, ¢ is an unbounded operator defined
on L?(P, H) with values in L?(P) such that:
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e The domain of 0, denoted by Dom(0), is the set of H-valued integrable
random variables uw € L*(P, H) such that

E[(DF,u)a]| < cl|Fllzzp (1.47)
for all F € DY2, where c is some constant depending on u.

o Ifu € Dom(6), then the unique element 5(u) € L*(P) such that
EIF §(u)] = EI(DF,u)] (1.43)
for all F' € DY? is called the divergence operator of u.

Thus the divergence operator ¢ : Dom(§) — L*(P) is closed as the adjoint
of an unbounded and densely defined operator. It is a linear operator.

Remark 1.5.1 Taking F' =1 in (1.48) we obtain
Ej(u) =0, for w € Dom(9).

Note that the divergence operator can be decomposed into two parts, one
part that can be considered as a path-wise integral and another that involves
the derivative operator. Thus it is possible to factor out a scalar random
variable in a divergence.

Theorem 1.5.7 Let F € D'? and uw € Dom(§) such that Fu € L*(P,H).
Then Fu € Dom(§) and
§(Fu) = Fé(u) — (DF,u)m, (1.49)
provided the right-hand side is square integrable.
Denote by D?(H) the space of H-valued random variables F whose
Malliavin derivative DF' is a square integrable random variable with values

in the Hilbert space H ® H. Then D?(H) is included in the domain of 4.
For u,v € DV(H) the following nice property is valid

E[5(w) 6(v)] = E[(u,v)y] + E[Tr(Du o Dv)).

1.5.4 The Ornstein-Uhlenbeck operator

Now we define the third important operator of the Malliavin calculus in the
framework of abstract Wiener space, the Ornstein-Uhlenbeck operator.
Consider a square integrable random variable F' € L?*(P) and the orthog-
onal projection P, : L?*(P) — 3, C L*(P). Then, following the Wiener
chaos expansion theorem, Theorem 1.5.1, F' has representation of the form

F= iPn(F).
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Definition 1.5.7 The Ornstein-Uhlenbeck operator R is defined by
RF =Y nP,(F), (1.50)
n=0

provided the series converges in L*(P).

Thus the domain of the operator R is
Dom(R) ={F =Y Pu(F) € L*(Q) : Y _n’||Pu(F)|72(p) < o0}
n=0 n=1

In particular, one can prove
Dom(R) Cc D'2.

Operator R is a linear, unbounded and symmetric operator on L?(P).
That is,
E(GRF) = E(FRG),

for F,G € Dom(R). Operator R is a self-adjoint operator, hence closed
and it coincides with the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup {7}, t > 0}, defined by

T,(F) = i e"P,(F), for F € L*(P).

n=0

The relationship between three operators, D, § and R of the classical
Malliavin calculus is given in the following theorem.

Theorem 1.5.8 Let F' € D2 and DF € Dom(5). Then a random variable
F belongs to the domain of the operator R and

SDF = RF. (1.51)

The Ornstein-Uhlenbeck operator can be considered as the composition of
the divergence operator and the Malliavin derivative operator.

Operator R is a second order differential operator when it acts on smooth
random variables.

Theorem 1.5.9 Let F € € be of the form (1.44). Then F € Dom(R) and

1 89@18%

0

RF = FGys oo Gy (his ) =Y 5L (G G, )G ().
i=1 v

1,J=
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Notice that Dom®R = D?2.
Similarly, the Malliavin Sobolev space D2 can be characterized as the
domain in L?(P) of the operator C' = —/R defined by

CF = f: —\/nP,(F). (1.52)

One can show that operator C' is the infinitesimal generator of the Cauchy
semigroup of operators given by

QF =) e VP, (F).
n=0

Note that DomC = D%? and for any F' € DomC we have

E(CF)* =) n|Pu(F)i2p) = E(IDF|3)-

n=1

Remark 1.5.2 The operators of the Malliavin calculus and their chaos ex-
pansion representations have been used in different frameworks. In the gen-
eral context of the Fock space, in particular in applications in quantum prob-
ability, the derivative operator D 1is interpreted as the annihilation operator.
Also the divergence operator ¢ is interpreted as the creation operator and the
Ornstein-Uhlenbeck operator R corresponds to the number operator in the
Fock space setting (see Section 1.2).

Remark 1.5.3 An abstract Wiener space is built on a complete probability
space L*(Q2, F, P), where P is a measure. In particular, if the Gaussian fam-
ily Gy, gwen by Definition 1.5.1, is a classical Brownian motion then the
Malliavin derivative is denoted by D and we consider whole calculus to be
the classical Malliavin calculus. On the other hand, the differential operator
with respect to a fractional Brownian motion is called the fractional Malli-
avin derivative and will be defined either on the space L*(P) or on the space
L3(Py), given by (3.29). Thus, the fractional Malliavin derivative, depend-
ing on which underlying space is considered, is denoted by D) or DH) for
H € (0,1). The corresponding fractional divergence operator and the frac-
tional Ornstein-Uhlenbeck operator are denoted by 6" and R respectively.
Specificaly, for H = % the fractional operators become the corresponding
classical operators. The fractional Malliavin calculus on L*(P) is the sub-
ject of Section 3.2.1 and the fractional Malliavin operators are considered in
Section 3.2.3.



Chapter 2

White Noise Analysis and
Chaos Expansions

White noise analysis, introduced by Hida in [17] and further developed by
many authors (see for example [18], [19], [31], [46] and references therein), as
a discipline of infinite dimensional analysis has found applications in solving
stochastic differential equations and thus in the modeling of stochastic dy-
namical phenomena arising in physics, economy, biology. We mention some
[34], [45], [37], [56].

The chaos expansion of stochastic processes provides a series decomposi-
tion of square integrable processes in a Hilbert space orthogonal basis built
upon a class of special functions, Hermite polynomials and functions, in the
framework of white noise analysis. In order to build spaces of stochastic test
and generalized functions, one has to use series decompositions via orthogo-
nal functions as a basis, with certain weight sequences.

We follow the classical Hida approach, which suggests to start with a
nuclear space E and its dual E’, such that

E c L*(R) C F,

and then take the basic probability space to be Q = E’ endowed with the
Borel sigma algebra of the weak topology and an appropriate probability
measure P. Since Gaussian processes and Poissonian processes represent
the two most important classes of Lévy processes, in this chapter of the
dissertation we are focused on these two types of measures. Some of the
results presented in this chapter have been achieved in collaboration with
Dora Selesi and represent an original part of the thesis. The results are
already published in [29] and [30].
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In case of a Gaussian measure, the orthogonal basis of L?(P) can be con-
structed from any orthogonal basis of L?(R) that belongs to E and from the
Hermite polynomials, while in the case of a Poissonian measure the orthog-
onal basis of L?(P) is constructed using the Charlier polynomials together
with the orthogonal basis of L*(R). We will focus on the case when F and
E'’ are the Schwartz spaces of rapidly decreasing test functions S(R) and
tempered distributions S’(R). In this case the orthogonal family of L?*(R)
can be represented by the Hermite functions.

The first part of this chapter is devoted to constructions of the Gaussian
and Poissonian white noise spaces. We deal with chaos expansion representa-
tions of the corresponding random variables. There exists unitary mapping
which connects the elements of these two spaces.

The spaces of generalized random variables are stochastic analogues of
deterministic generalized functions. They have no point value for w € €2,
only an average value with respect to a test random variable. For more
details we refer to [17], [19], [25]. Several spaces of stochastic distributions,
weighted by a sequence ¢ will be introduced in this chapter. We denote them
by (@)%, p € [0, 1] and thus obtain a Gel'fand triplet

(@), ¢ L*(P) c (@7,

A class of generalized stochastic processes, defined as measurable map-
pings from R into some ¢-weighted space of generalized stochastic random
variables (Q)” p» Will be introduced in this chapter. The chaos expansion of
generalized stochastic processes will be given together with the main prop-
erties of the Wick calculus and stochastic integration.

We close this chapter with introduction of the fractional white noise
spaces, by use of the fractional transform mapping, for all values of the
Hurst index H € (0,1). As a result, we will define the fractional Poissonian
white noise space and through composition of unitary mappings connect it
with other white noise spaces we are working on, a Gaussian, a Poissonian
and a fractional Gaussian space. Moreover, we will extend the action of the
fractional transform operator to a class of generalized stochastic processes.

2.1 White Noise Space

Consider the Schwartz space of rapidly decreasing functions S(R), its dual
space, the space of tempered distributions S’(R), the Borel sigma-algebra B
generated by the weak topology on S’(R) and a given characteristic function
C'. Recall, a mapping C' : S(R) — C given on a nuclear space S(R) is called
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a characteristic function if it is continuous, positive definite, i.e.

Zzzﬁj Clpi — ;) 20,

i=1 j=1

for all p1,...,0, € S(R) and z1,...,2, € C, and if it satisfies C'(0) = 1.
Then by the Bochner-Minlos theorem, Theorem 1.4.7, there exists a unique
probability measure P on (S’(R), B) such that for all ¢ € S(R) the relation

Ep(e'“#) = C(p)

holds. Here Ep denotes the expectation with respect to the measure P, i.e.

Ep(f) = squ(w} dP(w), for fe S (R)

and (w, @) denotes the usual dual paring between a tempered distribution
w € S'(R) and a rapidly decreasing function ¢ € S(R). Thus,

/S ’ )e““””dP(w) =C(p), ¢eSR). (2.1)

The triplet (S'(R), B, P) is called the white noise probability space and the
measure P is called the white noise probability measure.

However, for different choices of positive definite functionals C'(¢) in (2.1)
one can obtain different white noise probabilistic measures, which then corre-
spond to such functionals. In particular, if C'(¢) is the characteristic function
of the normal random variable then the corresponding white noise measure is
the Gaussian white noise measure (which is described in Section 2.2), if C'(y)
is the characteristic function of the compound Poisson random variable then
the corresponding white noise measure is the Poissonian white noise measure
(which is the objective of Section 2.3). In the article [45] written by Mura
and Mainardi the characteristic function C'(¢) was replaced by a completely
monotonic function defined by the Mittag-LefHer function of order 0 < g <1
and the measure obtained is the gray noise measure, which is generalization
of the white noise measure. With a similar construction, one can also obtain
the Lévy white noise measure, as it was done in [10].

In this dissertation we study the Gaussian and Poissonian measures and
properties of functions defined on the related white noise spaces. In Sec-
tion 2.8 we will introduce their fractional versions and give the connections
between these four white noise spaces. In recent years many papers were
published on this subject. We mention here some [10], [23], [32], [43].
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From now on we suppose that the basic probability space (€2, F, P) is the
space (S'(R), B, P). If we put L?(P) = L?(S’(R), B, P), then the space L?(P)
is the Hilbert space of square integrable functions on S’(R) with respect to
the measure P, equipped with the norm induced by the inner product

(F, G)L2(p) = EP(FG), for F,G € L2(P)

2.1.1 Wiener-It6 chaos expansion of random variables

Let J = (N).. denote the set of sequences of non-negative integers which have
finitely many nonzero components o = (aj,ag,...,q,,0,0...), a; € Ny,
i=1,2,..,m, m € N. The kth unit vector ¢*® = (0,---,0,1,0,---), k € N
is the sequence of zeros with the number 1 as the kth component.

Throughout this thesis we will use notation of = o#*ab?--- for given
multi-indices «, 5 € J. The length of a multi-index o = (aq,an,...) € T is
defined as || = > ;0 o and o! = [[,2, axl. Let (2N)* = [[.2,(2k).
Then,

e > (2N)™P* < oo if and only if p > 1, and

ael

o Y PN < oo if and only if p > 0.
o€l

Let K,, a € J be the orthogonal polynomial basis of a Hilbert space
L*(P), which produces a Wiener chaos. Throughout the thesis we will con-
sider only two special measures P, the Gaussian and the Poissonian measures,
which produce the Wiener chaos.

The space spanned by {K, : |a] = k} is called the Wiener chaos of
order k and is denoted by Hy, k& € Ny. Then, H, is the set of constant
random variables, i.e. for a« = (0,0, ...) we obtain the expectation of a random
variable. The space H; consists of linear combinations of elements (w, -)
(for example Brownian motion lives in the first order chaos) and the space
@?:0 H; is the set of random variables of the form p((w,-)), where p is a
polynomial of degree n < k with real coefficients. This implies that each Hj
is a finite-dimensional subspace of L?(P). Moreover,

L*(P) = P Hy,
k=0

where the sum is an orthogonal sum.
Guided by the well known fact that the Hermite polynomials form
an orthogonal basis in L?(R), Wiener showed that there exists an
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analogous orthogonal basis for the Wiener or Gaussian measure on the space
of trajectories. More precisely, just as in L?(R), it is best to group together
all the Hermite polynomials of a fixed degree k and to consider the subspace
spanned by them (subspaces consisting of functions that have homogeneous
kth order randomness). Wiener looked at the spaces 3, that are obtained
by closing in L?(P) the linear span of the kth order Hermite polynomials. In
other words, Wiener described a spectral decomposition of L?*(P) in which
the spectral parameter is randomness.

We can now formulate the Wiener-1t6 chaos expansion theorem for ran-
dom variables in L?(P).

Theorem 2.1.1 (The Wiener-1t6 chaos expansion theorem) For each ele-
ment F € L*(P) there exists a unique family of real constants {cs}acy such
that F' has a representation of the form

F(w) =Y cKo(w), ca€R, (2.2)
a€eld
where co = (F, Ko)p2(py. Moreover,
HF”%Q(P) = ZCiHKaH%Z(P) < 0. (2.3)
aeld

In terms of the previous theorem, the Wiener chaos of order £ is given as
the set

Hi = span{F € L*(P); F =) a4 Ko, [a| =k}, k€ No.

acld

Thus,

F =) coKaw)

a€d
= [ Z cala(w) ],
k=0 a€d,

||=Ek

elements of the kth Wiener chaos

for every F' € L*(P).

Two important special cases of probability measures will be considered in
this thesis, when the measure P is the Gaussian measure and the Poissonian
measure. In these cases K, can be taken as families of Hermite and Charlier
polynomials respectively, defined on an infinite-dimensional space.
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2.2 Gaussian White Noise Space

If we choose in (2.1) the characteristic function of a Gaussian random variable

Cle) =exp | ~glellm | ¢ € SR, (2.4)

then the corresponding unique measure P from the Bochner-Minlos theorem
is called the Gaussian white noise measure and is denoted by p. The triplet
(S"(R), B, u1) is called the Gaussian white noise probability space and L?(u) is
the Hilbert space of square integrable random variables on S’(R) with respect
to the Gaussian measure .

Thus, from (2.1) and (2.4) it follows that

i{w,p) o _%”‘PHQQ
" dp(w) =e e, pe SR, (2.5)
S'(R)

where (w, ¢) denotes the usual dual paring between a tempered distribution
w € S’'(R) and a rapidly decreasing function ¢ € S(R).

Note that from (2.5) it follows that the random element (w, ) has a zero
expectation E,({w, ¢)) = 0 and variance (the isometry)

Var((w,¢)) = Eu((w,9)%) = llollim, for ¢ € S(R).

Moreover, by the formula

Eﬂ<<w7 f> <w7g>) = (fu g)LQ(R)

holds for all f,g € S(R). Thus, the element (w,¢), with f € S(R) and
w € S'(R) is a centered Gaussian square integrable random variable which
belongs to L?(u).
The map
Jip = (wp), peSR)

can be extended to an isometry from L?(R) to L*(u).

2.2.1 Brownian motion

By extending the action of a distribution w € S’'(R) not only onto test
functions from S(R) but also onto elements of L?(R) we obtain Brownian
motion with respect to the measure i in the form

By(w) := h(x[0,1]) = (w, x[0,1]), we ' (R),
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where x[0,t] represents the characteristic function of interval [0,t], t € R.
To be precise, (w, x[0, t]) is a well defined element of L?(y) for all ¢, defined by
lim (w, ©,), where o, — x[0,t], n — oo in L*(R). It has a zero expectation

n—oo
value and its covariance function is

E, ({(w, x[0, t]){w, x[0, s])) = min{t, s}, t,s>0.

Recall, in Section 1.4.3 we summarize definition and basic properties of
the Brownian motion. Now, we connect them with the Gaussian probabil-
ity measure. Recall an important property, that is Brownian motion is a
Gaussian process almost all whose trajectories are continuous but nowhere
differentiable functions.

2.2.2 The Ito integral

In Section 1.4.4 we defined the Ito integral on a set of adapted stochastic
processes. Furthermore, the Itd integral of a deterministic function f € L*(R)
is also represented by

I1(f) = (w. f) = /R £(t) dBy(w).

Then E,(I(f)) = 0 and the It6 isometry ||I(f)|/z2(s) = [/f|lz2@r) holds for
all f € L*(R). In Section 2.2.6 the notion of the Itd integral is extended for
processes which are not necessarily adapted.

2.2.3 Chaos expansion for Gaussian random variables

A crucial role in the chaos decomposition of L?(j1) elements have the Fourier-
Hermite polynomials. The family of Fourier-Hermite polynomials represents
an analogous orthogonal basis for L?(u) to a standard Hermite polynomial
orthogonal basis in L*(R).

Definition 2.2.1 For a given o € J the ath Fourier-Hermite polynomial is
defined by

Ho(w) = [ [ han((w.60)), @€, (2.6)

where &, are the Hermite functions of order k, k € N.
The Fourier-Hermite polynomials can be obtained by differentiating the
normalized stochastic exponential

1
Ep = €xp ((w, h) — §HhH%2(R)> ., heSR). (2.7)
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The stochastic exponential have equivalent representation in terms of the
Wick exponentials given in Example 2.5.1.

The family of Fourier-Hermite polynomials { H,; o € J} forms an orthogonal

basis of the space L?*(u), where HHQHQLQ(M) =al.

k)

In particular, for the kth unit vector ¢*) we have

Haow) = (0.6) = [ 60)dBiw) = 1(6), keN

From the Wiener-Ito chaos expansion theorem, Theorem 2.1.1, it follows
that each element F' € L?*(u) has a unique chaos expansion representation of

the form
Fw) =Y caHa(w), (2.8)

a€cld

where the coefficients ¢, = %EH(F H,) satisfy the convergence condition

||F||%2(M) = Z c2al < oo, (2.9)

a€ed

which correspond to the condition (2.3).
This dissertation is based on this chaos expansion construction of random
elements. Note that definitions behind (2.8) are rather complicated.

Example 2.2.1 1. Let p € S(R) be fizred. The element
w— (w, p), w e S'(R)

1s called the one-dimensional smoothed white noise. Recall from
(2.5), it is a zero-mean Gaussian random variable with the variance
E,((w,¢)?) = Hg0||%2(R), for ¢ € S(R). Chaos expansion of an
one-dimensional smoothed white noise is given by

[e.9]

(w, ) = Z(SO,&)LZ’(R) (w, &)

= Z(% &) 2wy How (W),

k=1
where o =Y 771 (0, &) 2@)ér € S(R) is the decomposition of ¢ € S(R)

in the Hermite orthonormal basis {&k }ren-

2. Function ‘
fw) =9 »e SR) (2.10)

18 called the stochastic exponent.
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3. The stochastic exponential e, defined by (2.7) belongs to the Kon-

dratiev space (S)] as long as ||h||2w) is sufficiently small. The chaos

expansion of the stochastic exponential is given by
Ep = Z h* H,(w
a€cl

where h =Y~ hy & € S(R).

We refer to [19] and [31] for more details.
We continue with an alternative formulation of the Wiener-Ito chaos expan-
sion theorem in terms of iterated Ito integrals. Although this formulation
will not play the central role in our presentation, we give a brief review of

it. Moreover, we will need this version when defining the Skorokhod integral
and Wick multiplication of generalized random variables.

2.2.4 TIterated It6 integral

Let B; = By(w), t > 0,w €  be a one-dimensional Wiener process (Brownian
motion) on probability space (€2, F, ) such that By(w) =0 a.s. u. Fort >0

let F; be the o-algebra generated by Bg(-), 0 < s < t. Let L?(R") be
the set of symmetric deterministic square integrable functions on R”, i.e.

fe L2R")if f(xg), Ty, T0,) = f(x1, 29, ,2,) for all permutations o
of {1,2,--- ,n} and

Hf”%%ngn) :/R f2(5’51,$27 o, @) dwyday - - - dry, < 00.

If f is a real function defined on R™ then the symmetrization ]7 of f is
defined by

~ 1
f(mlax%"'axn): me(xawxaza“'?man)?
B

where the sum is taken over all permutations o of the set {1,2,--- ,n}.

Definition 2.2.2 The n-fold iterated Ito integral of a symmetric determin-
istic function f € L2(R™) is defined by

In(f) = f(tthv"' )dB@n

+o0
= nl/ / / fltr, -+ ,tn)dBy, ---dBy,, (2.11)

where the integral on the right-hand consists of n iterated Ito integrals of the
first order.
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In each Ito integration with respect to dB,;;, 1 < ¢ < n the integrand is J;
adapted and square integrable with respect to du x dt;, 1 <11 < n.

The family of iterated Ito integrals {I,},>o forms an orthogonal zero-
mean family of linear operators

I,: I2A(R") — L*(p),

satisfying ) )
()22 = 2t Z2@ny,s (2.12)

for f € EE(R”)

In particular, for all f,g € ﬁ(R”) we can formulate these results as
follows

B @) = { ) 1 s Do €

where (f,¢)r2@ny = [ - [ (@1, 20) g(21, ..., xy) doy...dx,, denotes the
inner product in ]R"

The map I, is the identity, where the real scalars are embedded naturally
in L?*(p) as the constant random variables. Thus, every element F' of the

Hilbert space L?(u1) can be represented in terms of iterated It6 integrals, i.e.
another formulation of Wiener-Ito chaos expansion theorem holds.

2.2.5 Chaos expansion in terms of multiple

Ito integrals
Now we formulate an alternative statement of the Wiener-It6 chaos expansion
Theorem 2.1.1 in the one-dimensional case, which gives the chaos expansion

decomposition of a Gaussian random variable in terms of multiple Ito
integrals defined by (2.11).

Theorem 2.2.1 (The Wiener-1t6 chaos expansion theorem)
Let F € L?(u). Then there exists a unique family of symmetric functions

fn € L2(R™) such that F' has the chaos representation form
Flw) = Y In(fa)
n=0

= E,(F)+ i[nm), fo€I2R™), neN.  (2.13)
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Moreover, the isometry
o0
||F||%2(u) = Z”! ”an%Q(R”)
n=0

holds.

Remark 2.2.1 For a = (o1, ,,0,0,-++) €I, |a| = a1 + ... + o = 1
and the Hermite functions {&, k € N} let €% := £8MQ .. @2 be the
symmetrized tensor product with factors &1, ...&,, each &; being taken oy times.
In [21] It6 proved

How)= [ €24 dB=(w). (2.14)

Rlol
Thus the connection between two chaos expansion theorems (2.8) and (2.13)
is given by f, = > ca £3°.

la|=n
Clearly, the statement follows from

Fw) = Y coHolw)

acl

- Y Y[ 0w
n€Noy |a|=n o

- [ wdn ] amew
neNg lal=n

fn
S| fadBF (W), (2.15)
n€eNp R
where f, = > Cq ff?a are symmetric functions in ZE(R”) Note that f,

|a|=n
belongs to the nth Wiener chaos H,,.
Moreover, from (2.9) and (2.12) the isometry follows

[e.e]

HFH%W) = Z n! an”%z([@n)-

n=0

Furthermore, the Ito representation theorem states that if F' € L*(u) is
Fi-measurable, then there exists a unique F;-adapted process ¢(t,w) such
that

F(w)=E,(F)+ /go(t,w) dB(w).

R
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By the Clark-Ocone formula, under some extra conditions, the integrand
@(t,w) is given explicitly by

p(t,w) = E[DF|F](w),

where DF' is the Malliavin derivative of F' and conditional expectation is
taken with respect to the filtration F; (up the moment t). This formula is
found to be very valuable in economic, when computing parameters of sensi-
tivity of financial derivatives called Greeks. For applications we recommend
papers [10], [13], [52], [31]. This theorem will be stated in next section.

Now we give the multiplication formula for It integrals

L(N1n(9) = kigk' ( . ) ( " ) Lgn-ov(f @ 9)

which holds whenever f € L2(R") and g € L2(R™).
As a consequence of the previous formula we have

L,(u®") = h,((w,u), ue€ L*R),

where h,,, n € Ny are the Hermite polynomials of order n. This very useful
result, which connects Ito integrals and the Hermite polynomials can be also
stated as:

Theorem 2.2.2 Let g € L*(R). Then

n!/R ---/Rg(tl) < g(tn) dBy, - --dBy, = ||g||"hn (ﬁ), (2.16)

where ||g|| = ||g|| 2wy and § = fR g(t)dB; = (w, g).

2.2.6 The Skorokhod integral

The Skorokhod integral is an extension of the Ito integral, for integrands
which are not necessarily F;-adapted. Also, it is connected to the Malliavin
derivative. We now give a brief overview of the definition and the most
important properties of the Skorokhod integral. For more details we refer to
[19], [46].

Let u(t,w) = uy(w), w € Q, t € R be a stochastic process such that wu(+)
is F-measurable for all t € R and E,(u?(w)) < oo, for all ¢ € R. Then,
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applying the Wiener-It6 chaos expansion theorem, Theorem 2.2.1 we obtain
that there exist functions f,:(t1,-- ,t,) € L2(R") such that

ur(@) = L(fuil))- (2.17)

The functions f, () are functions of n+ 1-variables since they depend on pa-
rameter ¢, so we write f, (1, -+ ,t,) = fu(t1, -+, t,,t). The symmetrization
of a function f,; is denoted by fm and is given by ﬁm = ]?;L(tl, b, t) =
L[ttt ) ot fulty, oot ity ooyt £ 8) o fu(tay ooy T 1),
where we only sum over those permutations o of {1,2,...,n,n+ 1} which in-
terchange only the last component with one of the others and leave the rest
in place.

Let u be a square integrable F;-measurable stochastic process, for all
t € R represented in the form (2.17). Then u is F-adapted if and only if

ot = fult1, .. ty,t) =0, for t< 112;&5%751

Definition 2.2.3 The Skorokhod integral of a stochastic process u repre-
sented by chaos expansion (2.17) is defined by

o(u) = /Rut(w)dBt(w)
= > Lipa(fae): (2.18)

We say that a process u is integrable in the Skorokhod sense and write u €
Dom(0) if the series in (2.18) converges in L?(u1). This occurs if and only if

||5(U)||%2(M) = Eu(5(u)2)

= (n 4+ DU frell 2oy < oo (2.19)

n=0
From the Wiener-Ito chaos expansion theorem the isometry condition

o0

||Ut||%2(um) = Z n! an,t”%z’(Rn)

n=0

holds. Thus, Dom(6) is included in L?(u x A). Moreover, the Skorokhod
integral (2.18) is a linear operator

u € Dom(0) C L*(ux \) = 6(u) € L*(p).
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Lemma 2.2.1 For any uw € Dom(§) the Skorokhod integral has zero expec-
tation, 1.e.
E,o(u) = 0.

Proof. The assertion follows from the fact that Ito integrals and thus also
iterated It0 integrals have zero expectation. O

The following important theorem states that the It6 integral and the Sko-
rokhod integral, given by the formal definition (2.18), coincide on the set
of adapted processes. Further on we will call these integrals Ito-Skorokhod
integrals.

Theorem 2.2.3 (The Skorokhod integral as an extension of the It6 integral)
Let u(t,w) = us(w) be a Fr-adapted stochastic process for all t € R such that

/ Efu2(w)] dt < oo,
R
Then uw € Dom(6) and

[ wt)iBie) = [ wwdBio)

Proof. We will give the version of the proof found in [19]. Assume that

process u; has the chaos expansion u, = > [0, fa(z,t)dB®"(z), for
fu(,t) € L2(R") for all n € N. Thus, f,(z1,...,2,,t) = 0 if max z; > 1.

The symmetrization ﬁ(ml, ey Ty t) Of fr(1, ..y, t) is given by
(@1, oy @n, t) = ——f(Y1y vy Yn, max x;).

n -+ 1 <i<n

Hence, the It6 integral of w; is

u dB; = / < folzy, ... oz, t dB®”) dB
[ wan, S [ ([t t
0 Tn41 T2
= Zn! (n+1)// / Ja(@1, oy @y, Xpy1) dBy, ... dB,, |
n—=0 R J—o00 —00

= / Ut 5Bt
R

as it is claimed. O
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In Section 2.7.5 we will give a chaos expansion representation of the
Skorokhod integral of a stochastic process in terms of the Fourier-Hermite
orthogonal polynomials basis and state the integrability conditions for such
representation. In similar manner we will decompose the It6-Skorokhod
integral of a S’(R)-valued singular generalized stochastic process in terms
of a family of orthogonal polynomials.

So far analysis has been exclusively with Gaussian white noise, starting
with the Bochner-Minlos theorem (2.1). One could replace the characteristic
function C of a standardized Gaussian random variable by other positive
definite functionals and obtain a different measure. An important case is
the case of Poisson white noise which is objective on next subsection. Thus
now we introduce the Poissonian white noise probability space and later on
we will construct the corresponding fractional white noise spaces. In this
settings we represent square integrable functionals in terms of orthogonal
polynomial basis.

2.3 Poissonian White Noise Space

Recently, there have been made improvements in economics and financial
modeling by replacing Brownian motion with more general processes and
Gaussian white noise with more general white noise. In particular, fractional
Brownian motion and Lévy processes are used as driving processes in many
applications. It has been pointed out that certain classes of processes based
on Lévy processes fit the stock prices data better then classical models based
on Brownian motion. In this section we will restrict our research to the
special, the Poissonian process.

From a modeling point of view one can investigate physical phenomena
where the underlying basic probability measure is not only the Gaussian
measure. For example, in [3], [19] the stochastic models for pollution growth
when the rate of increase of the concentration is a Poissonian noise were
discussed.

Now we introduce the Poissonian white noise space, state chaos expansion
theorem for Poisson random variables and define the iterated Ito-Poisson
integral.

If we choose in (2.1) the characteristic function of a compensated Poisson
random variable

C(p) = exp [/R(eiw(”) — 1)dx] , e SR) (2.20)

then the corresponding unique measure P from the Bochner-Minlos theorem
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is called the Poisonian white noise measure v and the triplet (S(R), B,v)
is called the Poissonian white noise probability space. The Hilbert space of
square integrable random variables on S'(R) with respect to the Poissonian
measure v is denoted by L?(v).

Thus, from (2.1) and (2.20) we take

/ "l dy(w) = exp [/(ei“"(@ - 1)d$] , p€SR) (2.21)
S'(R) R

for the definition of the Poissonian white noise space.
From (2.21) it follows that an element (w, ¢) has a non-zero expectation

E,({w,¥)) :/ap(x)dm and

R

Ey((w,0)) = lplam + ( / () dz)?

i.e. its variance is Var({w, p)) = H(pH%Q(R), for all ¢ € S(R).
Hence the map

Jo i {w,p) — /Rgo(x)dx, v e S(R)

can be extended to an isometry from L?(R) into L?*(v). Then E,(Ja(p)) = 0
and || J2(9) |72,y = l¢llZ2 gy, for all ¢ € L*(R). The formula

Eu(‘]2(¢)<]2<30)) = (¢7 ¢)L2(R)

holds for all ¢, ¢ € L*(R).

2.3.1 Compensated Poisson process

A right continuous integer valued version of the process
Fi(w) = J2(x[0,1]) = (w, x[0,t]) =, we ' (R)

belongs to L?(v) and is called the compensated one-parameter Poisson pro-
cess. Process P,(:),t € R has independent increments. Moreover P, is a
martingale, so it is possible to define the stochastic integral in the same way
as we did in the Gaussian case.
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2.3.2 Chaos expansion of Poissonian random variables

An essential role in chaos decomposition of L?(v) elements have the Charlier
polynomials, which are built by use of the Hermite functions.

Definition 2.3.1 For a given multi-inder o = (ay, ..., @y, 0,0,...) € I, the
ath Charlier polynomial s defined as

Co(@) = Cla (@i s ooer €1 ooy G oonr ), (2.22)

aq Qm

where & are the Hermite functions and

" e
Cr(w; 1, -y 1) = mexp [ (w, log (1 + Z%‘%’) -

j=1

—iuj /R ;(y)dy) ]\ul:,,:uk:w

for k € N and p; € S(R).
In particular, for w € S'(R), k, 7 € N we have
Co(w) =1, (2.23)

C.n (W) = Cr(w, &) = (w, &) — /ng(x)dx = Jo (&), (2.24)

and
Cotoraor(®@) = (@, E)w, &) — (. 6E5) — (w0, &) / & (w)dr —
— (w,@)/Rfk(x)dx—l—/Rfk(x)dx/Rﬁj(x)d:p. (2.25)

It is a familiar fact that the family of Charlier polynomial functionals
{C4; a € T} forms an orthogonal basis of the space of Poissonian square
integrable random variables L?(v) and ||C,, ||%2(V) = a!. For more information

we refer to [10], [19], [59].

From the Wiener-1to6 chaos expansion theorem, Theorem 2.1.1 it follows
that every element G' € L?(v) is given in a unique form
Gw) =) buCalw), bsE€R, (2.26)
o€l

where [|G|72,) = 2 ,ey ! b2 is finite.
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2.3.3 Stochastic integrals with respect to the
Poissonian measure

The iterated Ito integral with respect to the Poissonian measure is defined in
an analogous way as iterated It0 integral in Gaussian case. In the following
we will call it the iterated Ito-Poisson integral.

We assume to have the compensated one-parameter Poisson process
P,(-),t € R on a probability space (2,F,P). For t > 0 let F; be the o-
algebra generated by Ps(-), 0 < s < t. Let Z/LE(R”) be the set of symmetric
deterministic square integrable functiggs on R™. Then the n-fold iterated
Ito-Poisson integral of a function f € L?(R") is defined by

() = / Gt o, 1) APE"

! —+o00 tn to
= n!/ / / g(tl,"'7tn)dpt1"'dptn,

where the integral on the right-hand of equality consist of n-iterated Ito-
Poisson integrals of the first order.

Thus, every element F of the Hilbert space L?(v) can be represented in
terms of iterated Ito integrals, i.e. another formulation of Wiener-Ito chaos
expansion theorem holds.

2.3.4 Chaos expansion in terms of multiple
It6-Poisson integrals

Now we formulate an alternative statement of the Wiener-1t6 chaos expan-

sion theorem 2.1.1 in the one-dimensional case, which gives the chaos ex-

pansion decomposition of a Poissonian random variable in terms of multiple
[t6-Poisson integrals.

Theorem 2.3.1 (The Wiener-It6 chaos expansion theorem) For every Pois-
sonian random variable G € L*(v) there exists a unique family of sym-

metrized functions g, € Z\Q(R), n € N such that
Gw) = Z/ gn(t1, o tn) PP (w). (2.27)
n=0 "

Moreover, the isometry ||G|72,y = 2020 2l|gnll72 ) holds.

Similar as in Gaussian case, there is connection between chaos expansions
(2.26) and (2.27). Multiple integrals with respect to P; are expressed in terms
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of the Charlier polynomials in the following way
Co(w) = (e | @edor gpelel
Rlel

— . €®o¢ dPt®|oz\’ o= (al, ey g, 0,0, ) eJ.
RO{

Clearly, we have

Gw) = Y baCalw)

aeld

= i Z ba/Rn g@ndpt@n

n=0 |a|=n
o
- Z / 9n dpt®n>
n=0 "
with the sequence of symmetrized functions in ZE(R”)

gn = Z ba5®n- (228)

|a|=n
Moreover we have the isometry

oo

n=0

For more details on Poissonian processes, Ito-Poisson integrals and the
Charlier polynomials we refer to [3], [19], [64].

2.4 Unitary Mapping U

The following important theorem, proved by Benth and Gjerde in [11], states
the existence of a unitary correspondence between the Gaussian and the
Poissonian spaces of random variables.

Theorem 2.4.1 ([11]) The map U : L*(u) — L*(v) defined by

u (Z baHa(w)) = b.Ca(w), ba€ER@€ET (2.29)

a€cd a€cd

is unitary i.e. it is surjective and the isometry ||W(F)| L2y = ||F||2(u) holds.
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Using the isometry U all results obtained in the Gaussian case can be carried
over to the Poissonian case. The Fourier-Hermite orthogonal basis {H, }aes
of the space of Gaussian random variables just has to be replaced with the
corresponding elements of the Charlier polynomials orthogonal basis {Cy, } e
of the space of Poissonian random variables. In [29], [30] we used this isome-
try to interpret stochastic differential equations with the Malliavin derivative
and their solutions obtained in Gaussian versions of g-weighted spaces with
their corresponding Poissonian versions.

For more details on Gaussian white noise spaces, Poissonian white noise
spaces, Hermite and Charlier polynomials we refer to [3], [8], [17], [19].

2.5 Spaces of Generalized Random Variables
(¢-weighted Stochastic Spaces)

Following the ideas introduced in [17], [19], [31], [34] we define g-weighted
stochastic spaces of test functions (Q)f and stochastic generalized functions
Q)* ,» with respect to the measure P, which represent the stochastic ana-
logue of the deterministic spaces S(R), S’(R), exp S(R) and exp S’(R) for
[ € Ny. These ¢g-weighted stochastic spaces of test functions and distribu-
tions will constitute our spaces of smooth and generalized random variables
respectively. The choice of the weight ¢ depends on a concrete problem
which is studied. The proceeding characterization of g-weighted spaces is
taken from our papers [29] and [30].

Let ¢, > 1, « € Jand let p € [0,1].

The space of q-weighted P-stochastic test functions (test random wvari-
ables), denoted by (Q)f, consists of elements f = Y b, K, € L*(P), b, € R,

a€c]
a € J, such that

Iffgyr, = > (a)'*7b% gk < oo, forall p € N,

acld

The space of q-weighted P-stochastic generalized functions (generalized
random variables), denoted by (Q)F | consists of formal expansions of the

Zp
form F = > ¢, K,, ca € R, @ € I, such that

a€cl

HFH?Q)’E,, = Z((x!)l’p 2 q? < oo, forsome p € Ny.

aeld

P

The action of a generalized function F' € (Q)~, onto a test function
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f€(Q)F is given by
< F, f>=)" alcaba.
acld

The generalized expectation of F' is defined as Fp(F) =< F,1 >=by. It
is considered to be the zero coefficient in the chaos expansion of a generalized
function F' in orthogonal basis {K,}aes. In particular, if F € L*(P) it
coincides with usual expectation.

Note that the space (Q)f can also be constructed as the projective limit

of the famlly (Q)ip - {f - Zaej baKa € LQ(P) : HfH?Q)/I;p < 00}7 pE NO;

N QF = N (@F,

p€Np

Space (Q)F, can also be constructed as the inductive limit of the family
(@F,_, ={F = 0cscaka: "F“?Q)ij,,p < oo}, p € Ny, ie.

(Q)I—Dp = U (Q)I—Dp,—p'

S
Three important special cases will be given by weights of the form:

® (o — (QN)aa

(2N

® (o = )

® g, = a*(2N)~.

For weights of the form ¢, = (2N)® we obtain the Kondratiev spaces of
P-stochastic test functions and P-stochastic generalized functions, denoted
by (S)) and (S)”,, respectively. In particular, for p = 0 the Kondratiev
spaces are called the Hida spaces of test and generalized stochastic functions,
denoted by (S) and (S)* respectively.

For ¢, = e we obtain the exponential growth spaces of P-stochastic
test functions and P-stochastic generalized functions, denoted by exp(S)fj
and exp(S)? , respectively. It holds that

exp(S)) C (8)) CL*(P) C (9)F, C exp(9)”,, (2.30)
with continuous inclusions.

Particulary, for P = p the spaces in (2.30) become Gaussian g-weighted
spaces and in that case relation (2.30) was proven in [56]. For P = v we
obtain the Poissonian ¢-weighted spaces. For more details on the Kondratiev
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spaces we refer to [19] and references therein and on spaces of exponential
growth to [56].

The largest spaces of g-weighted P-stochastic distributions (Q)”, are ob-
tained for p = 1.

For weights of the form ¢, = a*(2N)® we obtain the Kondratiev spaces of
P-stochastic test functions and P-stochastic generalized functions modified
by the given sequence a = (ax)ren, ar > 1, and denoted by (Sa),, and

a

k
-k and

. . e
(Sa)_p,—p respectively. We use notation a® = [~ ap*, & = [[52, ™

(2Na)" = [T, (2k ay)™
The result, proven by Zhang in [69], which states that

Z(ZN)_W <oo ifandonlyif p>1
a€cl
is used to verify the statement ) (2Na)™* < oo if and only if p > 1.
acl
The space of Kondratiev P-stochastic test functions modified by the
sequence a, denoted by (Sa)l = oy, (Sa)),, p € Ny, is the projective
limit of spaces

(Sa)T, = {f = 3 baku € LH(P) ||l = S (a) 82 (2N a)™ < oo},
a€el a€cl
The space of Kondratiev P-stochastic generalized functions modified by
the sequence a, denoted by (Sa)” ) = ey, (Sa)®, _,, p € Ny, is the inductive
limit of the spaces

(Sa)’, ,={F=> cuKy: ||F||?Sa)1_:p,_p = (a)'*(2Na) ™ < oo},
agcl agl
For ar = 1, k € N these spaces reduce to the spaces of Kondratiev P-
stochastic test functions (S )5 and the Kondratiev P-stochastic generalized
functions (S)”, respectively. For all p € [0, 1] we have a Gel'fand triplet

(Sa)? € L*(P) C (Sa)"”,.

In particular, the largest space of the Kondratiev P-stochastic distribu-
tions modified by the sequence a is obtained for p = 1 and is denoted by
(Sa)?,. For P = u these spaces are called Gaussian and for P = v Poisso-
nian Kondratiev spaces modified by the sequence a. In [27] we introduced
the Gaussian type of these spaces and solve equations related to them.

We will return to the notion of ¢g-weighted spaces and recall some proper-
ties when presenting applications of the chaos expansion method for solving
stochastic differential equations. Equations presented and solved in Chapter
5 have solutions which are generalized stochastic processes with values in
some space of g-weighted stochastic distributions.
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2.5.1 Unitary mapping U of ¢-weighted
stochastic distributions

We can extend the unitary mapping U, given in the Theorem 2.4.1, into a
linear and isometric mapping on ¢g-weighted spaces by defining

U: (@5, = (@)Y,

such that
u [Z aaHa(w)] = Z 0,Co(w), as €R, (2.31)
agl acl
for elements ' = 3" _ja,Ho(w) € (Q), _,,. Furthermore, the isometry

IU(E) @y, _, = IFll@x,

holds for all p > pg. More details can be found in [11], [19] and [29].

2.5.2 Wick product for stochastic distributions

In the framework of white noise analysis, the problem of pointwise multipli-
cation of generalized functions is overcome by introducing the Wick product.
Historically, the Wick product first arose in quantum physics, as a renormal-
ization operation and is close connected to the 8-transform. The most impor-
tant property of the Wick multiplication is its relation to the It6-Skorokhod
integration. For more details we refer to [18],[19], [24], [31], [35].

The Wick product is well defined in the Hida and Kondratiev spaces of
test and generalized stochastic functions; see for example [17], [19], [25]. In
[56] it is defined for stochastic test functions and distributions of exponential
growth. In this subsection we give a generalization of the Wick multiplication
of random variables belonging to spaces of g-weighted test functions and
distributions.

The Wick product can be defined in a very simple manner:

Definition 2.5.1 Let p € [0,1] and let F,G € (Q)F, be given by their
chaos expansions F(w) = 3 g falKa (W), G(w) =355 95 Ks(w), for unique
fa,98 € R. The P-Wick product of F' and G is the element denoted by
FOPG and defined by

FOPG(w) = Z( S fagﬂ> K, (). (2.32)

~veJ \a+pB=v
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The same definition is provided for the Wick product of test g¢-weighted

stochastic functions belonging to (Q)f :

Consider now the special case, the spaces obtained for p = 1. Providing
the additional condition (2.33), we prove that the space (Q)* is closed under

the P-Wick multiplication.

Theorem 2.5.1 Let F,G € (Q)”,. Assume that, for some C > 0 weights
Qo satisfy the property

Qo+B 2 C qa 4s, a,fB €. (233)

Then the element FOPG, defined by (2.32), belongs to (Q)F,.

Proof. Let F,G € (Q)”,. Then there exist p; > 0 such that

ngq;pl <oo and ngq;pl < 00.

a€cl Bed

The P-Wick product is given by

FOPG(w):Zc,yKV(w), for ¢, = Z fags-

~v€ed a+p=vy

Then there exists k£ > 0 such that for p = p; + k£ we have

D Aa" = D () fage) " et

yed vE€T  a+f=y
< CY P R Bt g”
~€d a+p=y a+B=y
< Cm-O_ a0 gha™) < o,
a€c] Bed
formzzwejq;k < 00. O

Theorem 2.5.2 Let F,G € (Q)Y. Assume that, for some C > 0 weights q,
satisfy the following property

o+ S CQOz 43, avﬂ e J. (234)

Then the element FOT'G, defined by (2.32), belongs to (Q)F.
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In particular, if we focus on two special types of weights, ¢, = (2N)* and
Go = ¢V we verify that, in both cases, both conditions (2.33) and (2.34)
are satisfied since ¢,43 = ¢a q3, thus the corresponding spaces of stochastic
distributions (S)%; and exp(S)%; are closed under the Wick multiplication.
The Wick product for F, G € exp(S)", was first introduced in [56]. Moreover
it is also known that the spaces (S), (S)*, (S)!, exp(S)!" are closed under the
P-Wick multiplication while the space L?(P) is not closed under the P-Wick
multiplication.

Further on we will write ¢ for the P-Wick multiplication {* and E for
the expectation Ep with respect to P, whenever the underlying measure P
is understood.

The Wick product is a commutative, associative operation, distributive
with respect to addition. In particular, for the orthogonal polynomial basis
of L*(P), in both cases P =y and P = v, we have

KQOKﬁ = Ka+5, for (& 6 eld. (235)
Whenever F, G and FOG are P-integrable, the following equality
E(FOG) = E(F) - E(G)

holds. Here F denotes the generalized expectation. Note that independence
of F and G is not required.
The Wick powers of element F' € (Q)F; are defined inductively by

FO0 =1,
{ FOk — FoO FO (k—l), k e N. (2.36)

More generally, if p(z) = >_,-, ax2*, ar € R, z € R is a polynomial of
degree m with real coefficients, then its Wick version p® : (Q)F;, — (Q)F, is
defined by

m

p’(F) = Z ap FO%, for  F e (Q)F,. (2.37)
k=0

The Wick exponential of X € (Q)F, is defined as a formal sum

[e%S) XO"

expOX = T
n!

n=0

(2.38)

In view of the properties mentioned above, for F, G € (Q)¥, we have

(F+G)"% = F? 4+ 2F0G + G and
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exp?(F + G) = exp® F O exp® G.
By induction it follows that
E(exp® F) = exp(EF),  Fe(Q)L.

Example 2.5.1 (Normalized stochastic exponential) Consider now a spe-
cial case of the Wick exponential defined by (2.38) in P = p case. We let
X = (w,p) € (S)" to be a one-dimensional smoothed white noise, defined
in Ezample 2.2.1, for ¢ € S(R) and w € S'(R). One can show that this el-
ement coincides with the normalized stochastic exponential, defined in (2.7).
In particular we have

o2l = o ((w) = 3 el )

Ep p e S(R). (2.39)

The identity (2.39) follows from the chaos expansion theorem and the gener-
ating property (1.1) for the Hermite polynomials, i.e.

oo

() = D ()

n=0
[

_ N .
P=A&1 Z ! {w, &)O

n=0
oo

A"
= Z m Hna(l) (W)

n=0
oo n

= > T k(e 6)

n=0

- em ot - 32)

1
= o ({3l )

= &, v € S(R).

Hence, combining with (2.16) we have the decomposition

1 = Nellzzm (W, )
o mexp ({09) = g el ) =S h B b () pe s
n=0

Note that from Theorem 2.2.2 we can conclude

(01 = Lol o (o2

91l 22 @)
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and thus (2.39) is obtained directly.
The set of all combinations of functions of the form exp®((w, ¢)) is dense
in both spaces of random variables (S)y and (S)",. Moreover they are nor-

malized in the sense that the expectation is E exp®((w, p)) = 1 for all p. For
more details we refer to [19], [35].

Definition of the P-Wick multiplication based on chaos expansion in terms
of the orthogonal polynomials basis { K, }.eg is wide enough to include also
the P-singular white noise (particularly, for P = p the Gaussian singular
white noise W, and for P = v the Poissonian white noise V;). It is also
important to know how to express the P-Wick product in terms of multiple
[to integrals in L?(u), respectively the multiple It6-Poisson integrals in L?(v).

Further on we denote by

1(f) = /R f dP"

the n—f}!d iterated stochastic integral of a symmetrized sequence of functions
fn € L2(R™), for all n € N, with respect to Q;, where Q; denotes either
Brownian motion B; or compensated Poisson process P;. Thus for P = pu
the integral I,, represents the nth Ito integral and for P = v the integral I,
is the nth Ito-Poisson integral.

Theorem 2.5.3 Let X = Y 2 L(f.), fn € E\Q(R") ., n € N and

—

Y =3 o Ln(gm), gm € L2(R™) , m € N belong to the Kondratiev space of
generalized functions (S)_1. Then the Wick product XQY of X and Y can
be expressed by

n,m=0 k=0 n+m=k

Remark 2.5.1 In L2(n) case, the property I,(f)°" = IL,(f®") for f €

E\Z(R), which is similar to the Fubini theorem, follows from the previous
theorem. If f € L*(R) then this result becomes

([ swamyr=n [ 5o iz
R R™

In particular, the partial integration formula holds

L(f)OL(g) = Li(f) - Ii(g) — (f, 9) 2w
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for deterministic f,g € L?(R). This identity gives connection between the
Wick and ordinary multiplication by the correction term (f, g)r2(r)-

Note that the Wick multiplication and ordinary multiplication coincide
when at least one of the multiplication terms is deterministic, i.e.

FOG=F-G, FeR.

S-transform

An equivalent definition of the Wick product can be formulated in terms
of the 8-transform. In [19], [24], [35] the 8-transform is considered on
the Kondratiev space of generalized stochastic random variables (S)_,, for
p € [0,1].

Definition 2.5.2 The S-transform of an element F' € (S)_, is defined by
SF(h) =< F,ep, >, (2.40)

where h € S,(R) with [|A]]> < 1.

Recall ¢, is the normalized stochastic exponential defined by (2.7) and
< +,- > denotes the duality paring between (S5), and (S)_,. Following
Definition 2.5.2 the S-transform of an element F' = Y~ _, fo K, from (S5)_,
is given by the chaos expansion

SF(h) =Y h"fa, (2.41)

where h =3, iy € S(R) and h® = [, (hy).

Therefore, if p < 1 then 8F(h) is well-defined for all h € S(R) and if
p = 1, the 8F(h) is well-defined for h with sufficiently small L?(R) norm.
The 8-transform is a bijection onto a space of so-called U-functionals. For de-
tailed construction of the 8-transform and its properties we refer to [17],[24],

[35], [37].

Definition 2.5.3 The Wick product { of two Kondratiev stochastic distri-
butions F,G € (S)_,, p € [0,1] is the unique element whose 8-transform is
SF - 8G.

If 87! is the inverse S-transform then
FOG =87 Y1(8F - 8G). (2.42)

Now, the singular white noise W, on R can be defined as the unique
element of the Hida space (S)_o = (5)* whose S-transform satisfies
SWy, = h.
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If G € L*(u) then G € (S9)", and the Fourier transform is defined

F(G)(h) = / @M G (w)dp(w).
5'(R)
Thus for a random variable G the S-transform is given by

8$(G)(ih) = FG(h) ez M2,

As a result, we conclude that the Wick product can be interpreted as a
convolution on the infinite-dimensional space (5)_,.

The definition (2.40) of the 8-transform can be extended on an analogous
way, from the Kondratiev space (S)_,, p € [0,1] to all g-weighted stochastic
distributions (Q)_,.

2.6 Hilbert Space Valued ¢g-weighted
Generalized Random Variables

In this subsection, by H we mean a separable Hilbert space with the or-
thonormal basis {n;};eny and the inner product (-, ). We will treat H as
the state space. Recall that the basic probability space is (S’(R), B, P). We
denote by L?(P, H) the space of functions on §2 with values in H, which are
square integrable with respect to the white noise measure P. It is a Hilbert
space equipped with the inner product

< F,G>ppm= Ep(F,G)g), foral F,G € L*(P, H).

The family of functions { \/% K, ni }ien.aes forms an orthonormal basis of the
Hilbert space L*(P, H).

Now we define H-valued gq-weighted generalized random wvariables of
growth rate determined by the sequence g, over L*(P, H).

Let go > 1, « € J and let p € [0, 1].

The space of H-valued q-weighted P-stochastic test random vari-
ables Q(H)} consists of functions f € L?*(P,H), with the expansion
fw)=>">" ok Ka(w), anr € R, such that

acd keN

Hf||2QPH p O‘!Hpai,kqg
(H),

o€l keN

= ZZOAH” al qb < oo, forall pe Ny.

keN aeld
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Note, that f(w) can be expressed in several ways

flw) = Zzaa,kmﬂ[(&(w)

a€ed keN

where
and

with aqp =< f,m Ko >r2pm€ Rfor ke Nya € J.

The corresponding space of q-weighted P-stochastic generalized functions
(generalized random variables) Q(H )Y , consists of formal expansions of the

form F(w) = 3" > bak ik Ko(w), bax € R, such that
a€d keN

PG - = DD ol a

a€cl keN

= ZZ ol b2 L q." < oo, for some p € Ny.

keN a€l

It is clear that F'(w) can be expressed in several ways

Flw) = Zzba,knk[(a(w)

a€l keN

= ) ba Ko(w)

a€ed

= Zbk(w) Mk

keN

where by, = Y boxme € H, and bp(w) = Y boi Ko(w) € (Q)F

keN acl
unique b, € R for k € Nand a € J.

The action of F' onto f is given by

K F f>=> al(by,aa)u.

aeld

with a
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When we choose one of the two special types of weights, either weights of
the form ¢, = (2N)® to obtain the H-valued Kondratiev type of P-stochastic
test functions and distributions, denoted by S(H)Z and S(H)” , respectively,
or weights of the form ¢, = V" to obtain the H-valued exponential growth
type stochastic test functions and distributions, denoted by exp S(H)) and
exp S(H)? , respectively, the following important results are valid

S(H)-,=(5)-,®H and expS(H)_,=exp(S)_,® H. (2.43)

An isomorphism (2.43) with tensor product spaces, the property similar as for
the Schwartz spaces in the deterministic case, is based on nuclear structure
of g-weighted stochastic spaces (S )5 and exp(S )5 )

Both S(H), and exp S(H), are countably Hilbert spaces and

exp S(H)Y € S(H)! € L*(P,H) C S(H)”, C exp S(H)" .

An important example arises when the separable Hilbert space H is the
space L?(R) with the Hermite functions orthonormal basis {&; }en.

2.7 Generalized Stochastic Processes

Generalized stochastic processes can be defined in several ways depending
on whether the author regards them as a family of random variables or as a
family of trajectories, but also depending on the type of continuity implied
onto this family.

In Section 1.4.2 we pointed out that a classical stochastic process
Xi(w) = X(t,w), t € T CR, w e Q can be defined in three equivalent ways.
It can be regarded either as a family of random variables X;(:), t € T', as a
family of trajectories X.(w), w € Q, or as a family of functions X : T'xQ — R
such that for each fixed ¢t € T', X(t,-) is an R-valued random variable and
for each fixed w € Q, X(-,w) is an R-valued deterministic function, called a
trajectory.

By replacing the space of trajectories with some space of deterministic
generalized functions, or by replacing the space of random variables with
some space of generalized random variables, different types of generalized
stochastic processes can be obtained. In this manner, we can obtain pro-
cesses generalized with respect to the t argument, processes generalized with
respect to the w argument and also processes generalized with respect to
both arguments, ¢ and w argument.

The classification of generalized stochastic processes by various conditions
of continuity, their structural theorems and series expansions, is subject of



2.7 Generalized Stochastic Processes 99

various articles. Here we mention [19], [56], [70] with references therein.
Detailed survey on generalization of classical stochastic processes is given in
[56], where several classes of generalized stochastic processes were distinguish
and represented in appropriate chaotic expansions. In this dissertation we
follow the classification from [56] and focus only on two classes of such gener-
alized processes. Definition and main properties of the first class, the class of
generalized stochastic processes of type (O), here named generalized stochas-
tic processes, are subject of Section 2.7.1. Study of the second class, the
class of generalized stochastic processes of type (I), here called the singular
generalized stochastic processes we will present in Section 4.1.

2.7.1 Generalized stochastic processes

A very general concept of generalized stochastic processes, based on chaos
expansions was developed in [17], [19], [52], [56], etc.

In [19] generalized stochastic processes are defined as measurable map-
pings T — (S5)",, where (S)"; denotes the Kondratiev space for the Gaussian
measure, but one can consider also other spaces of generalized random vari-
ables instead of it. Thus, they are pointwisely defined with respect to the
parameter ¢ € T and generalized with respect to w € €.

In this dissertation we will consider a class of generalized stochastic pro-
cess wider than in [19]. We follow [29], [56], [65] and [66] to define such
processes and give their chaos expansion representations in terms of orthog-
onal polynomial basis.

Let p € [0,1].

Definition 2.7.1 Generalized stochastic processes are measurable mappings
from R into some q-weighted space of generalized functions i.e. measurable
mappings R — (Q)%,.

From definition it follows that for every fixed ¢ we obtain generalized random
variable Fy(-) from g-weighted space (Q)”,.

2.7.2 Chaos expansion of generalized
stochastic processes

We let p € [0,1]. Since generalized stochastic processes with values in (Q)” P

are defined pointwisely with respect to the parameter ¢ € R, their chaos ex-
pansion representation follows directly from the Wiener-It6 chaos expansion
theorem, Theorem 2.1.1.



100 White Noise Analysis and Chaos Expansions

Theorem 2.7.1 (Chaos expansion theorem for generalized stochastic pro-
cess) Let F: R — (Q)F , be a generalized stochastic process with respect to
measure P. Then it is given by the formal expansion

Fw)=> falt) Ko(w), teR (2.44)

a€ed

where f, : R — R, a € J are measurable functions and there exists p € Ny
such that for all t € R

Bl =3 (@) a7 < oo (2.45)

aeld

For different choices of measure P, generalized stochastic processes are
expressed in terms of corresponding orthogonal basis { K, }4es. In particular,
for P = p orthogonal basis is K, = H, and in case P = v is K, = C,
a € J. On the other hand, if generalized stochastic processes have values in
a certain type of g-weighed space, the convergence condition (2.45) modifies.

2.7.3 Pettis intregral of generalized
stochastic processes

Now let the g-weighted stochastic spaces be either the Kondratiev spaces or
the stochastic spaces of exponential growth. We extend the definition of the
Pettis integral with values in the Hida space of stochastic distributions, given
for the Gaussian case in [17] and [19]. Consider now a special case, the space
(@)L, for p=1.

Suppose Y : R — (Q)F, is a given g-weighted stochastic function, i.e.
generalized stochastic process, such that < Y;, F' > € L'(R) for all functions
F € (Q)F from the corresponding g-weighted test space. Then g-weighted
integral of Y;, denoted by fRYtdt, is defined to be the unique element of

(Q)}j1 such that
<</RYtdt,F>>=/R<<Y;,F>> dt, F e Q). (2.46)

We also say that generalized stochastic process Y; is Pettis integrable in (Q)]_D1
or q-Pettis integrable.

Theorem 2.7.2 Assume that a generalized stochastic process Y; € (Q)F,
for t € R has a chaos expansion of the form Y,(w) = > o fa(t) Ka(w),
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w € S'(R), where coefficients f, : R — R satisfy the following convergence
condition

Z ||faHil(R)q_paHKaH%z(P) < oo for some p> 0. (2.47)
a€l

Then generalized stochastic process Y; is said to be q-Pettis integrable and

/R Yi(w)dt =) ( /R fa(t)dt> Ko(w). (2.48)

a€d

Proof. Assume that F =) ;a0 K, € (Q)] for a, € R. Recall the fact
1Ko r2(py = Val, for all a € J in both cases, when P =y and P = v. Thus,

the sum
IFIZ, = S flaal?at? ¢
acd

is finite for all p € Ny. The ¢-Pettis integrability of a generalized stochastic
process Y; follows from (2.47). Clearly,

/|<<Yt,F>>|dt = /|Zfa(t)a!aa]dt
R R

a€eld
< ) fa®)llalagldt <
a€eld
< D fallp@a? laalalq™
a€eld
1 1
2 2
< (ananilm)q-pa) (Znaan?a!?qpa) <o
a€gl a€gl

Then, the statement of the theorem is completed with

/<<Yt,F>> dt = /<<Zfa(t)Ka,Z agKpg > dt =
R R

a€cl Bed

_ / S fa®)aa | Kol g dt

a€cd

= X ([ floe) aullieg,

a€eld

- < Z/Rfa(t)dtKa,Z asKy >

o€l BEd
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The proof for a Gaussian case in the Hida space of stochastic distributions
(S)* can be found in [19].

We will return to this topic again when proving the chaos expansion for-
mula for the Skorokhod integral of singular generalized stochastic processes
in Chapter 4.

The expansion theorems for singular generalized stochastic processes, in
[56] also called the generalized stochastic processes of type (I), defined in
Section 4.1.1 as linear and continuous mappings from a certain space of
deterministic functions T into the space of g-weighted generalized functions
(Q)F, i.e. elements of £(T,(Q)T,), will give an extension of the expansion of
the ¢-Pettis integrable generalized stochastic processes in the sense that the
coefficients f,(t),a € J in (2.44) will be generalized functions, for example
from the Schwartz space of tempered distributions S'(R).

2.7.4 Unitary mapping U of generalized
stochastic processes

We extend the unitary mapping U, defined by (2.29) in the Theorem 2.4.1,
to the class of generalized stochastic processes in a similar way as we did
in (2.31). Consider U to be a linear and isometric mapping on the space of
generalized stochastic processes with values in ¢g-weighted p-measured space
such that for all t € R

u

Zfa(t)Ha(W)] =) fall)Calw), fa€R, (2.49)

a€el acld

for generalized stochastic process F': R — (Q)” p» given in the form
Fy =3 ey fa(t)Hy(w). Furthermore, for every ¢ € R the isometry

U @y, = II1Ftll@r,

holds for all p > py.

Examples of generalized stochastic processes are Brownian motion and
singular white noise, given by their chaos expansions in Example 2.7.1, and
compensated Poisson process and Poissonian compensated white noise, de-
scribed in Example 2.7.2.

Example 2.7.1 Brownian motion is given by the chaos expansion

Biw)=Y / &x(s)ds | B (w) (2.50)
k=1 0
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and it is an element of L*(u).
Singular white noise Wy(+) is defined by the chaos expansion

ka Hoo (w (2.51)

and it is an element of the space (S)", for allt € R. It is integrable and the

relation p
— B, =W,
PTR

holds in the (S)", sense, see (2.46).

Example 2.7.2 The chaos expansion of compensated Poisson process

P(w) € L2(v) is given by
_ fj (/ t 6(5)ds ) Cun ), (252)

The Poissonian compensated white noise Vi(+) is defined by the chaos expan-
sion

Z &(t) Cow (w (2.53)

and it is an element of the space ( )_1 for allt € R. It is integrable and the

relation P
t —
o

holds in (S)", sense. Note that
F(w) = WB(w)) and Vi(w) = UW(w)),
which is consistent with (2.31).

In Chapter 4 we will study another class of generalized stochastic processes,
the class of singular generalized stochastic processes. We regard them as el-
ements of tensor product of a certain topological space X onto (Q)" ,- Thus,
Brownian motion and singular white noise can be considered as elements of
spaces C°(R) @ L?(u) and C*(R) ® (S)", _,, for p > 3, respectively. Same
stays for the corresponding analogs in the Poisson case, i.e. a compensated
Poisson process is considered to be an element of C°°(R) ® L?(v) and Poisso-
nian compensated white noise the process belonging to C*(R) ® (S5)”; (see
Example 4.1.1).
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2.7.5 Ito-Skorokhod integral of generalized
stochastic processes

We assume now that the measure P is either the Gaussian measure y or the
Poissonian measure v. The Kondratiev space (S)F; is denoted now by (S)_4
and the Wick product ¥ is denoted by . We state a fundamental property
of the P-Wick product, which is the following relation to Ito-Skorokhod
integration. The proof of the theorem is based on the chaos expansion form
of a generalized stochastic process and will be presented here in an analogous
form to one given in [19]. Denote by

5(Y;) = /R Y; §0,(w)

the P-1t6-Skorokhod stochastic integral of a process Y;, and Z; a generalized
stochastic process satisfying % Z; = Q; for a.a. t, in sense of the relation
(2.46). For the Gaussian measure, Q; = B; is a Brownian motion and Z, = W}
is a singular white noise. In Poissonian case, Q, = P, denotes a compensated
Poisson process and Z; = V; a Poissonian compensated white noise.

Theorem 2.7.3 Let Yi(w) : R x Q@ — R be a Skorohod-integrable stochastic
process. Then Y, (w) O Zy is dt-integrable in (S)_1 and

Yi(w)6Qu(w) = [ Y; 0 Zydt. (2.54)
/ /

The left-hand side of (2.54) denotes the Skorohod integral of the stochastic
process Y = Yi(w) which coincides with the Ito integral if Y is adapted.
Integral on the right-hand side of (2.54) is interpreted as (S)_1-valued Pettis
integral. This generalization we will call the Ito-Skorokhod integral.

Proof. First we compute the left-hand side of (2.54) explicitly. Assume
that a Skorokhod integrable process Y; is given by the chaos expansion forms
Vi = 3000 Jan falun, oo, £)dQ¥ (g, ..., uy,), for symmetric functions f,
and equivalently Y; = > cq(t)K,, for measurable c¢,. Then by (2.15)
and (2.28) we have f, = 3 ¢, £ the symmetric functions in EZ(R”) and

|a|=n
o= Z/ 37 a2 (ur, o un) dQ (ug, .o )
n=0 v R" |a|=n
- Z/ > Z(Cmfk)fkff?a(m,...,un)dQ®”(u1,...,un)
n=0 Y R" |a|=n keN

(2.55)
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Due to the symmetrization €2+ and (2.14) and (2.2.6), the Skorokhod
integral of Y; becomes

/RY;(SQt - Z/R +1 Z Z Cou €® (octe®) Q®(n+1

la|=n keN

- Z Z Z(Ca7fk)Ka+5<k>

n=0 |a|=n keN

= 2D (ca &) Kapaw. (2.56)

acd keN

Providing direct computation of the right-hand side of (2.54) we obtain

/RY%Qtht = /}R(Z Ca(t)Ka> O (ka(ﬂ KM)) dt

a€cd keN
-/ (zz ) 1) ) p
a€d keN
= ZZ (/ )dt) Ka+5(k)
a€d keN
= Z Z Cars ) K pp et (2.57)
o€l keN
because
I Y ca®&Olie < [ Y leal®llom &)
a+:(kk> B a+:(7kk>:[3
< C?pP Z leallZs @)
a+t§’kk):[‘3
and
DB D cald) &7 (2N) P < oo (2.58)
,BEj a,k
a+s(k>:,8
for some p € Ny. With this statement we complete the proof. O

The relation (2.54) is an important and a very useful property in ap-
plications, when solving stochastic differential equations. That means the
Wick calculus with ordinary differential calculus rules is equivalent to the Ito
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calculus governed by the It6 formula and ordinary multiplication. For more
information we refer to [19], [49].

Moreover the previous theorem can be extended to the case of g-weighted
generalized stochastic processes.

Now we state and prove the main theorem of this overview, which we will
use as the starting point when defining the It6-Skorokhod integral of singular
generalized stochastic processes. A similar proof of the following theorem,
for P = y is given in [19)].

Theorem 2.7.4 Let Y; : R — (S)_1 be a Skorokhod integrable generalized
stochastic process given by the chaos expansion

Yi(w) = an(t) K,(w), t € R,

acd

with the coefficients c, € L*(R) for all « € J. Then the chaos expansion of
its Skorokhod integral is given in the form

/]R #(w) 0Q4(w Z Z Cak Koo (W), (2.59)

acd keN

where the real numbers

o = (Cor €)1 = / calt) Ex(t) dt, K EN

R

represent the Fourier coefficients of c¢,, a € J, provided that the right-hand
of equality (2.59) converges in (S)_1.
If we assume, in addition, that [, Yy(w)09Q,(w) € L*(P), then

Ep /Y;(w)éQt(w) = 0. (2.60)

R

Proof. The proof of this theorem directly follows from (2.56), (2.57) and
(2.58). Recall that expectation of a L?(P) element [, Y;(w)dQ(w) is equal
to the zero coefficient in its chaos expansion. Thus, from (2.59) we obtain
and ¢(g,0,0,..) = 0 the assertion (2.60) is verified. O

Note that the expansion (2. 59) is not necessarily orthogonal, since it may
happen that o +e® = g8+ ¢ for some o, 5 €9, a # B, k,j € N.
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2.8 Fractional White Noise Spaces

Recall, in Section 1.4.3 e) we introduced a fractional Brownian motion as a
one-parameter extension of a standard Brownian motion and presented the
main properties of such a Gaussian process with respect to values of the
Hurst parameter H € (0, 1).

Fractional Brownian motion, as a process with independent increments
which have a long-range dependence and self-similarity properties found
many applications when modeling a wide range of problems in hydrology,
telecommunications, queueing theory and mathematical finance.

This section is devoted to a specific construction of a stochastic integral
with respect to a fractional Brownian motion defined for all possible values
H € (0,1), introduced by Elliot and van der Hoek in [13]. Several different
definitions of stochastic integration for fractional Brownian motion appear
in literature. We refer reader to [8], [13], [52], [44], [48] for illustration.

We focus here on defining the fractional white noise spaces by use of
the fractional transform mapping for all values of H € (0,1). We extend the
action of the fractional transform operator to a class of generalized stochastic
processes. The main properties of the fractional transform operator and the
connection of a fractional Brownian motion with a classical Brownian motion
on the classical white noise space will be stated. Moreover, we will define the
fractional Poissonian process in a framework that will make it easy to link it
to its regular version.

In [19] it was proved that there exists a unitary mapping between the
Gaussian and the Poissonian white noise space, by mapping the Hermite
polynomial basis into the Charlier polynomial basis. In [13] and [29] a unitary
mapping was introduced between the Gaussian and the fractional Gaussian
white noise space. We extend these ideas to define the fractional Poissonian
white noise space itself and to connect it to the classical Poissonian white
noise space. As a result we obtain four types of white noise spaces: Gaussian,
Poissonian, fractional Gaussian and fractional Poissonian, where any two of
them can be identified through a unitary mapping. The construction of frac-
tional Poissonian space and the structural properties of the aforementioned
four types of white noise spaces and operators defined on them are published
in [29] and [30] and represent an original part of this thesis.

2.8.1 Fractional transform operator M ()

Further on we follow the ideas represented by Elliot and van der Hoek in
[13], where fractional white noise theory for Hurst parameter H € (0,1)
was developed. In [13] the fractional transform operator M = M) was
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introduced, which connects fractional Brownian motion Bt(H) and classical
Brownian motion B; on the white noise probability space (S’(R), B, u).

Definition 2.8.1 ([13]) Let H € (0,1). The fractional transform operator
M =M . S(R) — L*(R) N C=(R) is defined by

Mfy)=1lyl> " fly), yeR, feSR), (2.61)

where f(y) == [y e ™ f(x)dx is the Fourier transform of f.

An equivalent definition of the operator M = M) is given by
d Cy ft)
M = —— t—x) —————dt, e S(R), 2.62

where Cyy = [2I'(H—3) cos(5(H—3)) [T (2H+1) sin(mH)]2 is a normalizing
constant and I' is the Gamma function. This definition can be restated as

follows

M(H)f(x> = f(.if), H = %

Note that the operator M = M) has the structure of a convolution operator
(we recall (1.12) from the Section 1.3.3).

The form of the inverse operator M—' = M=) follows from (2.61), i.e.
for all H € (0,1)

M o MA-H(fy=f  feSR). (2.63)

Definition 2.8.2 The inverse fractional transform operator M~ is defined
by

~

M Tiy) = y|"* Jly), yeR, feSR). (2.64)

Following the work of [61], the fractional transform operator M = MU,
for H € (%, 1) can be interpreted as the Riesz potential

A 1 o(t)
1% 2 dt
77 20 () cos(5F) /R It — z|i—o
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for Re{a} > 0, & # 1,3,5,... and ¢ € LP(R), 1 < p < 7, if we chose

a=H — % The corresponding inverse operator of the operator I¢ is

cos(%G") flt—x)—

a\—1 . )
(1) () e,

for f € I*(LP(R)). We conclude that for H € (3,1) the fractional operator

M = MU corresponds to the Riesz potential My = 734 and for
H € (0,3) to the inverse of Riesz potential (IH=2)"1f = MO-H)f.

From (2.62) follows that the operator M can be interpreted as the ath
Riemann-Liouville fractional integral of f, where a = % — H. Recall, basic
definitions and properties of the theory of deterministic fractional derivatives

and integrals are given in Section 1.3. For more details we refer to [61].
Let
LZ(R) :={f:R = R; MP f(z) e L*(R)}.

The space L%(R) is the closure of S(R) with respect to the norm
[fllz2,®y = [IM fllz2®), [ € S(R) induced by the inner product

(f> )L2 (R) = (Mf> MQ)L2( R)-
The operator M = M) is self-adjoint and for f,g € L*(R)N L% (R) we have

(f, MQ)L?,(R) = (M, Q)Lg(R)-

Let H € (3,1) be fixed. Define ¢(s,t) = H(2H — 1)|s — t|* 72, s,t € R.

Then,
/R (M) f(2))%dx = cy /R /R f(s)f(t)p(s,t)dsdt, (2.65)

where ¢y is constant.

In [13], [20], [26] and [41], the classical white noise calculus was adapted
to the fractional white noise by the use of property (2.65). For that purpose
the fractional white noise and stochastic integral as an element of the frac-
tional stochastic distributions spaces were defined. We proved in [26] that
generalized stochastic processes with values in these spaces have a series ex-
pansion, and different Wick products were discussed. Analogous theorems of
the fractional Ito-Skorokhod calculus to Theorem 2.7.1, Theorem 2.7.2 and
Theorem 2.7.4 were obtained. Here we just mention these results without
further detailed presentation.
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Example 2.8.1 Let H € (0,1). The characteristic function x[0,t](-), for
fized t € R belongs to the Hilbert space L% (R). Moreover,

1 t—=x 1
Mx(0,1)(w) = 2I(H + %) cos(3(H + 3)) <|t — |z A ! |I|%_H> |

From the Parseval theorem and X/[(R(y) = —i(e*“y — 1) 1t follows that
—ity __ 1|2 1
M0, 4]( 1- 2H|€ (2H
/R( X0, (= T on / vl P dy = sin(mnH)(2H + 1)

Furthermore,

(thH‘ + ‘S|2H - |t o 8‘2H)

DN | —

‘4JWMQﬂ@9MXWﬁK@d$ -

= (X[0,#](2), x[0, s](2)) 13, (g

holds for arbitrary ¢,s € R.

The following important theorem gives the orthonormal basis for the frac-
tional version of L*(R). The proof can be found in [7] and [13].

Theorem 2.8.1 ([13]) Let M : L%(R) — L*(R) defined by (2.61) be the
extension of the operator M from Definition 2.8.1. Then, M is an isometry
between the two Hilbert spaces L*(R) and L%(R). The functions

en(x) = MY, (z), neN, (2.66)

belong to S(R) and form an orthonormal basis in L3 (R).

Following [7] and [13] we extend M onto S’(R) and define the fractional
operator M : S'(R) — S’(R) by

(Mw, f) ={(w,Mf), [feSR),wesR). (2.67)

Example 2.8.2 For allt € R define the process

B (w) = (w, Mx[0,4](")), w e S'(R).
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It s a Gaussian process with zero expectation and the covariance function
BB B = (Mx[0, ], Mx[0,1]) 2w = (X[0. 8], X[0. )13,

1
= §{|t]2H + s — |t — 5?1}, s,t € R.

The t-continuous version of the process Bt(H)

called fractional Brownian motion.

is an element of L*(u) and is
The relationships between classical Brownian motion B, and fractional
Brownian motion B, as elements of L?(u) are given by

B (w / M0, 1] dBy(w) and

By(w) = /R MO=D30,]dB™ (@), w € S'(R).

Fractional It6 integral

The fractional Ité integral of a deterministic function f € L2%(R) is defined
by

1) = [ feyas”
R
_ / Mf(t) dBy(w) = I(MF), (2.68)
which implies isometries

(M )2y = 1M fllzeey = 11|z, )

Furthermore, the It integral of a deterministic function f € L} ,(R) can
be expressed in terms of the fractional It6 integral and the inverse M~! =
MO=H) of the fractional transform operator M) by

Q) = [ MO @B )
— [ taBi) = 1)

For more details on this subject we refer to [7], [8], [13] and [19].
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2.8.2 Fractional Gaussian white noise space

Let H € (0,1). Now we extend the action of the operator M from S’(R)
onto L*(p) and define the stochastic analogue of L% (R). Denote by

L¥(pw) = L*(po M™") = L*(uo M"~)
{G:Q—=R;GoM e L*(n)}. (2.69)

It is the space of square integrable functions on S’(R) with respect to frac-
tional Gaussian white noise measure pug. Since G € L*(uy) if and only if
G oM € L?(u), it follows that G has an expansion of the form

G(Mw) = caHq(w)

agcl
= an Hhai<<w7£i>)
o€l i=1
:anHh (U Mez
acd i=1
:anHh (Mw, e;)
a€gl i=1

Definition 2.8.3 Define the family of Fourier-Hermite polynomials by
= [[1e.((w,er)), €l (2.70)

Now, it follows that the family {ﬂtCa; a € J} forms an orthogonal basis
of L*(uu), with [|3a|72(,,,, = !, a € J. Thus G € L*(upg) has a chaos
expansion representation of the form

G(w) = anﬂffa(w), co €ER
agcl
such that ||G||L2 () = Y cal. Moreover, ¢, = iEMH(GJ?Ca(w)) and
a€gd

1G] 22 sy = 1G © M| L2y

Definition 2.8.4 ([29]) Let M : L*(pug) — L*(w) be defined by
M(H,) = H, and extend it by linearity and continuity to

M (Z caﬁfca> = cut, (2.71)

acld acld

for G =73 caHo € L2(pust).
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Note that from (2.6), (2.70) and (2.71) it follows that
M(H,(w)) = Ho(Mw) = Ho(w), we S (R), aed.
It holds that
IM(Ha)ll 2 = | Hall 2w = 0! = 1Fall 2

thus the operator M is an isometry between spaces of classical Gaussian
and fractional Gaussian random variables and its action can be seen as
a_transformation of the corresponding elements of the orthogonal basis
{5{ }aes into {Hq}taes. The connection between the two bases is given by
Ho(w) = MH,(w) and Ha(w) = M Hy(w), w € S'(R),a € J. Thus,
every element F' € L?*(uy) can be represented as the image of a unique
f(w) =" ey CalHa(w) € L*(p) such that FF = M~'f. Then, F is of the form

Fw)=Y o H(w).
agl
For P = py the spaces in (2.30) reduce to fractional g-weighted spaces

of stochastic test functions and stochastic generalized functions. In [26] we
considered the following inclusions
exp(S)1" C (SN € L*(un) C ()" C exp(S)]

The action of the operator M can be extended to ¢-weighted spaces by
defining M : ()" — (Q)", given by

M [Z aaﬂtfa(w)] = ZaaHa(w), a, € R. (2.72)

a€l acl
This extension is well defined since there exists p € N such that
Z a’q,? < .
agl

In an analogous way the action of the operator M can be extended to
generalized stochastic processes.

Example 2.8.3 Fractional Brownian motion BlgH)(w) as an element of
L?(u) is defined by the chaos expansion

B (w) = (w, Mx[0,1]) = (Mw, x[0,#])

=D (X[0.8], ex) 2wy (Mw, 1) =

Mg

(Mx[0,t], Meg) 12wy (w, Mey)

i
I

1

(00,8 M6 (0,680 = 3 [ et s ) Ho ),
. (2.73)

8?

I
Mg

3
I
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Applying the map M~ = M=) we obtain the chaos decomposition form
of fractional Brownian motion in L*(puz):

e}

B = Y ([ Mee)as) o o (2.74)

k=1

On the other hand,

[e.9]

B (w) = > (x[0,1], &) ra@ny (w, M)

- f: ([ torts) ) 2.75)

Note that for a fived Hurst parameter H € (0,1) we have M = M) and due
to (2.63) M~* = MO~ thus e\ = MO-H¢, implies M &, = ¢! and
we may consider (2.75) to be the chaos decomposition of fractional Brownian
motion in L*(jua—my) = L*(po MUD) by the orthogonal basis

Hom (w) = (w, el ™).

In other words, fractional Brownian motion with Hurst parameter H € (0, 1)
is the image of classical Brownian motion under the mapping M = MEH) in
the fractional white noise space L*(pu—my). Thus, we can consider fractional
Brownian motion as an element of three different spaces, as defined in (2.73),
(2.74) and (2.75).

Example 2.8.4 Fractional white noise Wt(H)(-) is defined by the chaos
erpansions

|
I
B
—~

~
~
=
z
—~

&
~—

(2.76)

in the spaces ()", and (S)"\™™" respectively. It is integrable and the relation

%Bt(H) = W) holds in the (S)", sense.
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2.8.3 Fractional Poissonian white noise space

In this subsection we follow [29] and use the same idea as in the Gaussian
case and apply the isomorphism M = M®) to the elements of the Poissonian
white noise space to obtain their corresponding fractional versions. Let H €
(0,1) and recall the mapping J : L?(R) — L?(v), defined in the Section 2.3
by

J(f) = (w. ) / f(z)d.

Now we define

JH = JoM
as the mapping L*(R) — L?(v),

fr{w, Mf) —/RMf(x)dx.

Then [|J(H)l2w) = IJ(M )l 2wy = 1M fllz2@) = [If]lz2@) holds for all
f € L*(R). Similarly as in (2.69) we let

L*(vy) = L*(voM™)
{F: Q= R;GoM c L*(v)} (2.77)

be the space of square integrable functions on S’'(R) with respect to the
fractional Poissonian white noise measure vy.

Definition 2.8.5 Define the family of Charlier polynomials

Co(w) = Claj(wier, ..y €1y ey my s €), @ = (01, ...,000,0,0,...) €7,
——

(o5} m

where Cy are defined by (2.22) and the family {ex}ren by (2.66).

The family of Charlier polynomials forms the orthogonal basis of the Hilbert
space of fractional Poissonian random variables i.e. L?*(vy) consists of ele-

ments F' =37 5 dq Ca(w), ao € R such that [[F[|72,,, = >, aza! < oo

acl Yo

Definition 2.8.6 The mapping M~ : L?(v) — L*(vy) defined by

Co(w) = M1 CL(w), ac], (2.78)

extends by linearity and continuity to L*(v).



116 White Noise Analysis and Chaos Expansions

Thus, every element G € L*(vg) can be represented as an inverse image
of a unique g = Y, 5 aaCo(w) € L?*(v) such that

G(w) = Zaa (W) € L*(v).

aeld

Example 2.8.5 A right t-continuous version of the process
F(w) = J™X[0,1)(w) = J(Mx[0.) (@), e S'(R)

belongs to L*(vy) and is called the fractional compensated Poisson process.
It is given by the chaos expansions

P ( / Mé&(s ) (W) in L2(v), (2.79)

P () = i ( /0 fk(s)ds> Cowlw) in L2(vam). (2.80)

Example 2.8.6 Fractional compensated Poissonian noise is defined by the
chaos expansions

Dw)=3"&(t) o (w ZM& Cem (w), (2.81)
k=1

V(1-H)

in the spaces (S)_; " and (S)", respectively.

Theorem 2.8.2 ([29]) Let U : L*(u) — L*(v) and M : L*(ug) — L*(n) be
the isometries defined by (2.29) and (2.71) respectively. Then U o M~ 4
well defined and we have

Mtoll =UoM!

i.e. the following diagram is commutative.

Diagram 1.
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Proof. Let F' =3} ., foj-vfa € L*(pug). Then by applying the composition

MoUoM™ to F we obtain an element in L?(vg) given in the form

Mol o M_I(F) =MoU <ZfaHa> =M <Zfa0a> :Zfaéa

a€cld acd acd

On the other hand, when applying U to F' we obtain the same element, i.e.

U(F)=U (Z faica> =" fuCa.

acd acld

This follows from the uniqueness of chaos expansion in orthogonal basis. [

2.8.4 Summary

e Since there exists an isomorphism M between the classical white noise
spaces (Gaussian or Poissonian) and their corresponding fractional
white noise spaces; and also there exists the isomorphism U between
Gaussian and Poissonian white noise spaces (classical or fractional),
all results obtained, for example, in the classical Gaussian case can be

interpreted in all other spaces.

In this manner, the space L?(vy) can be obtained from the frac-
tional Gaussian white noise space by L?(vy) = U[L*(ug)] or directly
from the Gaussian white noise space L?(vg) = U[ML?*(u)]] or
L*(vy) = M7YU[L%*(n)]]. All connections are described in the

Diagram 1, given in Theorem 2.8.2.

e Denote by ¢x, k£ € N the orthonormal basis of L% (R), i.e. the orthonor-
mal fractional basis e, = M1, k € N for H € (0,1), which reduces
to the orthonormal Hermite basis &, k € N for H = % The orthogonal
basis K,, o € J of the four white noise spaces L?(P), built on the white
noise space (S'(R), B, P), is thus obtained in the manner described in

the following table:

white noise classical fractional
space Gaussian \ Poissonian | Gaussian \ Poissonian
measure P L v 1% Vi
basis K, H, c, H,, C,
basis e, & &k ek €k

Table 1.



Chapter 3

Malliavin Calculus in Chaos
Expansions Framework for
Square Integrable Processes

In this chapter we return to an infinite-dimensional differential calculus of
variations, called the Malliavin stochastic calculus, in the white noise space.
We summarize the most important results within this theory involving the
operators of Malliavin calculus acting on appropriate random variables, al-
together with their fractional versions. Recall that the main operators of
the Malliavin calculus: the Malliavin derivative operator D, the divergence
operator i.e. Ito-Skorokhod integral § and the Ornstein-Uhlenbeck operator
R = 0D and their chaos expansion forms have been used in different frame-
works. In the general context of a Fock space the Malliavin derivative D
coincides with the annihilation operator, the divergence operator § coincides
with the creation operator and their composition, the Ornstein-Uhlenbeck
operator R, with the number operator studied in quantum probability.

The chaos expansion method provides us with a unified approach, valid
for both, the continuous and discontinuous measures and can be carried out
naturally to the Lévy processes setting.

Following [7], [8], [20], [31], [46], [63], [59] we first introduce the Malliavin
derivative, the Skorokhod integral and the Ornstein-Uhlenbeck operator as
operators with values in L?(P). In addition, in Chapter 4 we will allow the
operators of Malliavin calculus to take values in some ¢g-weighted distribution
space and thus obtain a larger domain for all operators. Moreover, in Chapter
5 we will extend actions of the Malliavin operators to a class of singular
generalized stochastic processes and apply them to some classes of stochastic
differential equations.
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The main theorems and properties of Malliavin operators in this chapter
will be stated for both, the Gaussian and the Poissonian white noise spaces
due to the unitary mapping U : L*(u) — L?*(v). We end this chapter with
introducing the fractional operators of Malliavin calculus defined on L?(P)
and L?(Py) spaces for all H € (0,1). Throughout this chapter we will use
the notation L?(P, H) for the set of H-valued random variables L*(Q, H).

3.1 Classical Malliavin calculus

The first part of this chapter is devoted to definitions of stochastic derivatives
considered separately for random variables belonging to the space of Gaussian
square integrable random variables L?(u) and to the space of Poissonian
square integrable random variables L?(v) . In spite of many similarities, there
are important distinctions between the Gaussian and the Poissonian case. In
particular, in the Gaussian case definitions of the directional derivative and
the Malliavin derivative are equivalent and both, the ordinary chain rule and
the Wick chain rule are valid. In the Poissonian case, when the stochastic
gradient is defined as the directional derivative the ordinary chain rule is
satisfied, but the Wick chain rule is not. Thus in the Poissonian case we have
to abandon the Malliavin derivative based on the directional derivative and
define it in terms of chaos expansions in the Charlier polynomials orthogonal
basis of L?(v), analogously to the definition in general Gaussian case. With
this restriction we continue. For more information we refer to [1], [10], [22],
[49], [59].

3.1.1 The derivative operator in L?(u)

We assume that the basic probability space is the Gaussian white noise space.

Following [7], [19], [20] and [46] we introduce a notion of the stochastic
derivative DF' of a square integrable random variable F': 2 — R, defined on
a Gaussian white noise space (€2, F, i), where 2 = S’(R), and we recall the
main relations between integral and differential calculus. Suppose now that
the separable Hilbert space H is L*(R) space equipped with the Lebesque
measure A on R.

In the theory of Gaussian Hilbert spaces, introduced in Section 1.5, the
scalar product (DF,h)y is interpreted as a directional derivative in direc-
tion h. We consider now only directions which belong to a subspace of {2
called the Cameron-Martin space H. An absolutely continuous function with
respect to the Lebesque measure, i.e. a trajectory v € €2 belongs to the
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Cameron-Martin space H if it can be represented as

vm:Am$w (3.1)

for some g € L?(R). Thus H is a Hilbert space with respect to the inner
product

(%%leﬂ@@@%

and is isomorphic to L*(R).
Elementary random variables ' € € are defined in Section 1.5. In this
particular case they are of the form

F:f<<w7y1>7"'7<w7yn>)7 (32>

for a smooth function f € C*(R") of polynomial growth with and all its
partial derivatives, where yi,...,y, € L*(R) are deterministic functions and
n € N. We formulate a version of Definition 1.5.3 for this specific case.

Definition 3.1.1 The stochastic derivative D of an elementary random
variable F € & C L*(p) of the form (3.2) is the L?(R)-valued random variable
defined by

DF = Z gi(@,yl), o w, ) - i (3.3)

In particular, when the underlying isonormal family is the family of Brownian
motion B; = (w, x[0,]), t > 0 it it follows that

n 9 ti
(_D}?7 ’Y)LQ(R) = Z a_g‘f(Btl’ "'7Btn) . /0 g(S)dS

i=1

d
= d—gF(w +&7) |e=o0

As a result, we can use the following definition for the Malliavin derivative
operator in the Gaussian white noise space.

Definition 3.1.2 Let F' € L*(u) and v € L*(R) be of the form (3.1). Then
the directional derivative of F' in direction « is defined by

F —F
DyF(w) = lim (”J“EZ) )
£—

d
= d—gF(w +&7) |e=o, (3.4)
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provided that the limit exists in L*(j).
Assume that there exists a function ¢ : R — L?(u) such that

= / Uy (w)y(t)dt, for all ~ € L*(R).
R
Then we say that F' is differentiable and we call
DF(w) :=¢(w), teR (3.5)
the Malliavin derivative or the stochastic gradient of a random variable F.

The Malliavin derivative DF' is not a derivative with respect to t, but a kind
of derivative with respect to w € Q.

The domain of extension of D : & — L*(u, L*(R)) onto L?(u) is called
the Malliavin Sobolev space and is denoted by D2, That is the set of all
Malliavin differentiable random variables. Note that when considering the
Gaussian white noise case definitions of the stochastic gradient of a random
variable Definition 3.1.1 and Definition 3.1.2 are equivalent, i.e. the Malli-
avin derivative in Brownian motion case can be interpreted as a stochastic
gradient.

Example 3.1.1 Let F(w) = [z f(s)dBy(w), for some deterministic
function f € L*(R) and w € Q Then by lmeamty

o wte, f) {w, f)

D,YF((,U) - 5—)0
_ / ()
= )LQ(]R), for all v € L*(R).

Thus the random variable F is differentiable in the sense of the Definition
3.1.2 and its derivative is given by

D ( /R f(s)st> = DI(f) = f(t), for almost all t. (3.6)

In particular, for F(w) = By(w) we obtain
DB; = x[0,t], forteR.

On the other hand, in the sense of Definition 3.1.1 it is clear that we also
obtain DF(w) = D{(w, f) = f(t), t € R,
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Some of the basic properties of the calculus, such as chain rule, follow
easily from Definition 3.1.2. The stochastic gradient satisfies the chain rule,
with respect to both, the ordinary product and the Wick product. Proofs
can be found in [10] and [46].

Theorem 3.1.1 (Chain rule) Let f : R® — R be a Lipschitz continuous
function, i.e. there exists C' > 0 such that

lf(x) = fly)| < Clz—vyl|, foralzyeR"

Let X = (Xy,..., X,) be an n-dimensional random variable where each com-
ponent X; : Q@ — R™ is differentiable. Then f(X) is differentiable and

Df(X)=> = (X) - DX (3.7)

We use now the definition (2.37) for the Wick version f of a function f
and assume the sum converges in the Hida space of distributions (S)*. We
state the Wick chain rule theorem, which will also remain true for g-weighted
stochastic distributions.

Theorem 3.1.2 (Wick chain rule) Let f : R* — R be a real analytic
function and let X = (X, ..., X)) be an n-dimensional vector such that X; €
(S)* for everyi =1,...,n. Then, if f®(X) € (S)* then it is differentiable and

n O
DfO(X)=) (%) (X) O DX;. (3.8)

k=1

Alternatively, the Malliavin derivative can be also introduced by means of
the Wiener-1t6 chaos expansion of a random variable. Recall, every random
variable F' € L?(u) has a chaos representation form either expressed in terms
of iterated stochastic integrals or in terms of orthogonal Fourier-Hermite
basis. The following theorems are describing the domain of the Malliavin
derivative of F' given in both representation forms.

Let F' € L?(u1) be represented in terms of the Wiener-Itd chaos expansion
as a series of iterated It6 integrals of symmetric functions f,, € L*(R") with
respect to Brownian motion F' = »">° I,(f,). Then the domain D* of the
derivative operator D is characterized by

o0
2 2
E(IDFI3) = > nlla(fa)ll72g < oo
n=1
In this setting the Malliavin derivative gets the following chaos expansion
representation form.



3.1 Classical Malliavin calculus 123

Theorem 3.1.3 Let F =) I,(f,) € L*(u) for a family of symmetrized
functions f, € L2(R™). Then, F' is differentiable if and only if condition

Sl fullFaqun, < o0 (39)
n=1

1s satisfied. Thus the Malliavin derivative of F' has the chaos expansion

DF = " nl,1(fu(-.1)), (3.10)

where I, 1(f.(-,1)) represents the (n — 1)—iterated first order Ité inte-
grals with respect to the first n — 1 wariables ty,...,t,_1 of a function

fn(tl, "'atn—lat)-

Here we omit the proof and refer the reader to [8] and [46].

The characterization of the Malliavin differentiable square integrable
random variables, represented in the chaos expansion form of the Fourier-
Hermite orthogonal basis is stated in the following theorem.

Theorem 3.1.4 Let F' € L*(11) have a chaos expansion representation of the
form F(w) = 3" cjcala(w), ca € R. A random variable F is differentiable
i the Malliavin sense if and only if the condition

Z lalalc® < oo (3.11)

a€d

is satisfied, with || =Y ;| ay the length of multi-index o = (o, g, -+ ) €
J. Then the stochastic gradient of I’ has the chaos expansion of the form

DF(w) = Z anOékHa_e(k) (W)&k(t), for a.a. t€R. (3.12)

a€el keN

Proof. Assume F' € L*(p) is differential in the Malliavin sense. The ex-
pression (3.12) follows directly by use of the linearity property, chain rule
(3.7), result (3.6) from Example 3.1.1 and property (1.2) for the Hermite
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polynomials
DF = D [Z caHh%(<w,§k>)]
acd k=1

= Y w Y | (. 6) Hh%«w,sm]
acd ieN L k#i

= ZC&Z Q; a—lfz Hhak wﬁk ]
acd ieN L i#k

= Z Cq Z a; §Z(t) [hai—l : H hozk(<w> gk))]
acd ieN i#k

— ZZ%CO‘& H, .o(w)
aed ieN

with a —e® = (aq, ..., 51, o — 1, gq1, ...). Operator D maps the domain
DL2 represented through the condition (3.11), into L?(u, L*(R)), i.e. we
have to prove now that HDF||%2(# L2(r)) 18 finite. Recall, the family of the

Hermite functions {& }xen constitutes an orthonormal basis in L?(R) and the
family of the Fourier-Hermite polynomials is an orthogonal basis in L?(1),
therefore we have (§i,&;) 2y = Orj, for all k,j € N and E,(H,Hg) = aldags,
for all a, 8 € J, with ¢ denotes the Kronecker delta symbol. Thus

||DFH%2(M,L2(R)) = E.(DF, DF)L2( R) =
= Z Z arBicacs Eu(Ho_ oy Ha_ ) (k) L2(m)

o,BeT k,jEN

- Z Z az Ci Eu(Ha—g<k)H5_E<k))

a,Bed keN

= ZZ af (o —e®)

acd keN

= Z(Z ag)al

acd keN

= Z lajalcd < oo

aeld

by assumption, provided (o —e®)!l = &k ¢ N. OJ

Operator D is continuous from D2 into L?(u, L*(R)).



3.1 Classical Malliavin calculus 125

By linearity and continuity the definition of the Malliavin derivative in
terms of the chaos expansions can be extended to wider classes of random
variables, in particular, to ¢g-weighted random variables.

3.1.2 The derivative operator in L?(v)

Now we focus on the Poissonian white noise space and consider the Malli-
avin derivative of square integrable Poissonian random variables discussed in
Section 2.3.

Every Poissonian random variable F' € L?*(v) admits two types of chaos
expansion representations, first as series of iterated I[to-Poisson integral of
symmetric functions with respect to the compensated Poisson process and
second in terms of the Charlier polynomials orthogonal basis of L*(v). We
define the Malliavin derivative of a Poissonian random variable analogously
to both definitions, Definition 3.1.1 and Definition 3.1.2, in the Gaussian
case. In the Poissonian case these two definitions of the Malliavin derivative
are not equivalent and the Malliavin derivative cannot be interpreted as a
directional derivative. Actually in discontinuous case it is interpreted as a
difference operator.

In particular, if we maintain definitions (3.3) and (3.5) in the Poissonian
case, than as in the Gaussian case the ordinary chain rule (3.7) holds but
the Wick chain rule (3.8) is no more valid. To see this clearly we present the
example from [1].

Example 3.1.2 Let F(w) = (w,&)%"2. Then from properties (2.24) and
(2.25) of the Charlier polynomials and Co, Q¥ Cg = Cotp, «, 5 € I it follows
that

Coor = (0.6 — (0, €2) — 2w, &) / E(t) dt + ( / E(t)dt)?, €N

and thus we have

P = (Cow+ [60) dt)w

= Coi(w)+2C.» (w) /Rfl(t) dt + (/R &i(t) dt)2
= <w7§i>2 - <w7£z2>
Therefore, by (3.7), we obtain
DF(w) = D((w,&)" — (w,&))
= 2(w,&)&(t) — (1)
# 2w, &) &(0).
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Equivalently we have

D(Chr(w) = D (<w,@->0“2 - 2000 [ ad+ ([ i) an?)

= 2C.0(w)&(t) = (1)
# 2050 (W)&(1).
Having in mind the previous example, we must abandon in the Poissonian
case the Malliavin derivative based on the directional derivative in Definition
3.1.2. We orientate on stating the formal definition of a stochastic derivative,

i.e the Malliavin derivative in terms of chaos expansions via the Charlier
polynomials in an analogous way as in a general Gaussian case.

Definition 3.1.3 Let F(w) = Y o5 fa Calw) € L*(v), fa € R, a € J. We
say that a random variable F is Malliavin differentiable if the condition

Z lalal f2 < oo
acl
is satisfied and write F € DY2. Then the chaos expansion form of the Malli-
avin derivative of F' is given by
D'F(w) = Z Z faarCo_ (W) &(t), fora.a. teR. (3.13)
a€d keN
With this definition the ordinary chain rule does not hold.
Consider again F(w) = (w,&)¢"? from Example 3.1.2. From (3.13) and the
Wick chain rule (3.8) for the Poissonian case, we obtain
D" ((w,&)*) = D" ({w, &) + (w,&))
= 2(w,&) &) +&()
# 2w, &) &(t). (3.14)
More precisely, D" is equivalent to a finite difference operator and we have

D'F(w)=F(w+ &) — F(w), aat,w,

if Fis in L?(v) domain of D", where §; € S'(R) is the Dirac measure at .
As a consequence, the non-classical derivation property holds

D'(FG) = FD'G + GD'F + D'FD'G, for F,G,FG € D-*

For more information we refer to [1], [10], [22], [49], [59].
One can prove that Theorem 3.1.3 is also valid in the Poissonian case.
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3.1.3 The divergence operator in L?(P, L*(R))

In the framework of abstract Wiener space, the divergence operator is de-
fined as adjoint operator of the Malliavin derivative, see Section 1.5.3. In
particular, if the underlying Hilbert space H is L?(R) space, we interpret the
divergence operator as a stochastic integral and we call it the Skorokhod inte-
gral, because in the Brownian motion case it coincides with the generalization
of the Ito stochastic integral to anticipating integrands. In Section 2.2.6 we
defined the Skorokhod integral on a set of stochastic process u(t,w) = u;(w),
w € Q, t € R which are F-measurable for all t € R and E,u?(w) < oo, for
all £ € R and represented them in chaos expansion form in terms of multiple
[to integrals.

Now we follow the general notions from Section 2.7.5 and denote by

5(uy) = /R uy 50(w)

the P-Ito-Skorokhod stochastic integral of a process u; with respect to Q,. If
we choose P = p, the Gaussian measure, then Q; = B, is a Brownian motion
and if we choose P = v, the Poissonian measure, then Q, = P, denotes a
compensated Poisson process. The stochastic derivative, defined in terms of
orthogonal polynomial basis of L?*(P), is denoted by D and its domain by
D2,

In white noise setting, the domain Dom(§) of the divergence operator

of a process u is the set of L?(R)-valued integrable random variables u €
L*(P,L*(R)) such that

|E[(DF,’U,)L2(R)]| < CHFHLQ(P), for all F € @1’2,

where ¢ is some constant depending on u. If w € Dom(6), then the unique
element 6(u) € L*(P) is obtained from

E[F6(u)] = E[(DF,u)2m), forall FeDW2

Two types of conditions which characterize the domain of the Skorokhod
integrable random variables are distinguished. In Section 2.2.6 we defined
the Skorokhod integral in terms of multiple It6 integrals by relation (2.18)
and thus characterized its domain Dom(d) by condition (2.19), i.e. by

Z (n + 1)' ”fTL,t”%Q(RTH—I) < 0.

n=0

The same condition is valid for the It6-Poissonian integrals.
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On the other hand, the operator § can be computed in terms of chaos
expansion of a L?*(R)-valued random variable u, by the orthogonal basis

{gk’(t) Ka(w) }aeﬂ, keN,

i.e. we have the relation
§ [&(t) Ko(w)] = Ka_,’_e(k)(u}), a€ed keN.

This is a consequence of Theorem 2.7.4. Recall that the chaos expan-
sion form of the Skorokhod integral of a generalized stochastic process

Fy =Y falt) Ko, with the coefficients fo, = > far & € L*(R) for all « € J
aeld keN
is given by

/RFt(W) 0 (w) = /R<Z Z Jar &k(t) Ka(“)) 0Q¢(w)

acd keN

— Z Z fa,k: Ka+5(k) (w)7

a€el keN

An equivalent characterization of the domain Dom(d), stated by the cri-
terion (2.19), is given in the following theorem.

Theorem 3.1.5 Let F; : R — L*(P), t € R be a generalized stochas-
tic process given in the form Fy, = Y 4 fa(t) Ko, with the coefficients
fa =2 ken fak & € L*(R) for all o € J. If the condition

ZZ forlal ol < oo (3.15)
a€d keN
1s satisfied then the stochastic process F; 1s Skorokhod integrable, i.e.
F, € Dom/(9).

Proof. Due to the condition (3.15) we have

6ENZaey = 1Y D fanw&lt) Kallfap)

acl keN

= XY ot ety

a€cl keN

= Z ch%k (o +1) o

a€cl keN

< CZZf§k|a| al < 0.

acl keN O
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Further on we consider the Skorokhod integral of stochastic generalized
processes and state some of the most important results of stochastic
differential calculus. For proofs and more details we refer to [19], [20], [32],
[34], [35], [37], [46].

The connection between the Malliavin derivative and the Ito-Poisson-
Skorokhod integral is given by relation (3.16) in the following theorem.

Theorem 3.1.6 (The fundamental theorem of stochastic calculus) Let F; be
a stochastic process such that Ep[ [, F? dt] < co. Assume

o F,c D2 forall tER,
e DF, € Dom(d) forall t€R and
o EB[f, DF,dt]* < o0
Then [, Fy 09, is a well defined element from D'? and

D (/ Fi(w) 5Qt(w)) = / DY (w) 694 (w) + Yi(w). (3.16)
R R
Proof. Suppose F; = ) . fa(t) Ko(w). Then we apply the Malliavin

derivative D, given by (3.12) and (3.13), to the chaos expansion of the Sko-
rokhod integral of F', represented by the property (2.59) and obtain

D(/ngt(w)> = D( Y far Ko (W ))

a€d,keN
= Z fakza+5 )) Ka+€(k) 5()51()
a€lkeN 1EN
= > far |l + D&+ D Ko Mé,] :
a€dkeN 1€Ni£k

On the other side, by applying the formula (2.59) to process DY; we obtain

p([¥096) = ¥ Untiw

o€l keN

(Oék + 1)Ka§k + Z OCiKa+g(k>—e(i)§z‘] .

ieN ik
Thus the equality (3.16) follows. O

Relation between the ordinary product and the Wick product is stated
by the following theorem.
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Theorem 3.1.7 Let g € L*(R) be a deterministic function and F € L*(P)
be a random wvariable. Then

FO/ngt—F~/ngt—/gDth.
R R R

Theorem 3.1.8 (Integration by parts formula) Let F € L*(P) and assume
that Y : R x Q — R is Skorokhod integrable with [, Y;(w)0Q,(w) € L*(P).
Then

F-/Yt(SQt :/FY}5Qt+/}/}Dth, (3.17)
R R R

provided that the integral [, Y, DF dt converges in L*(P). Moreover, the
Ito-Skorokhod isometry holds

2
Ep </Yt5Qt> =FEp </ det)—i—Ep (//DYSDYtdsdt>.
R R R JR

Taking expectations on the both sides in (3.17), we obtain the duality formula

Ep (F : /RYtéQt> — Ep (/RYtDth) , (3.18)

i.e. the Skorokhod integral is the dual operator of the Malliavin derivative.
This important relationship between these two operators we will use when
defining the Malliavin operators of generalized stochastic processes in the
following chapter. As a consequence of the duality formula (3.18) it follows
that the Skorokhod integral is a closed operator.

Stochastic integral representation of Wiener functionals

We have already seen that any random variable F', which is measurable with
respect to a one-dimensional Brownian motion By, can be written as

F(w) :E(F)—l—/R oi(w) dB(w),

where the process ¢ is an adapted square integrable process. One of the
main contributions of the Malliavin calculus is the famous Clark-Ocone for-
mula which gives an explicit representation of process ¢ in terms of the
Malliavin derivative. In particular, when ¢ € D? then by the Clark-Ocone
representation formula the process ¢ is represented as a conditional expec-
tation of the Malliavin derivative D of a given function F' € L*(Q, &, ) with
respect to the filtration F,. Moreover, the process ¢ can be identified as the
orthogonal projection of the derivative of F'.
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Theorem 3.1.9 (The Clark-Ocone formula) Let F' € D2 be F;-measurable.
Then

F(w) —E(F)—ir/R E(DF|%,) dBy(w).

The proof of the theorem, provided by the chaos expansion approach, can be
found, for example in [10] and [46]. The formula (3.19) can only be applied
to random variables in D2, Extensions beyond this domain to the whole
L*(p) are possible in the white noise framework (see [10]).

The corresponding version of the Clark-Ocone formula for the Poissonin
case is given in [1] and [49].

3.1.4 The Ornstein-Uhlenbeck operator

Let F € L*(P) be a square integrable random variable with respect to the
measure P. We let P to be either the Gaussian measure p or the Poissonian
measure v. Let [’ be represented in the form

F=> a,K, a,€R,

acld

where K,, a € J is notation for the Fourier-Hermite polynomial basis in
L*(p) or respectively for the Charlier polynomial basis in L?(v). Consider
general results from the Section 1.5.

Definition 3.1.4 The operator defined as a composition of the Malliavin
derivative and the Skorokhod integral

R=60oD
15 called the Ornstein-Uhlenbeck operator.

The Ornstein-Uhlenbeck operator is defined on the set D'? of Malliavin
differentiable square integrable random variables. We obtain

R (Z %Ka> =6 (Z > ozkaaKaE(k)>

ael a€cl keN

SIS

agl keN

= Y Jalas Ko, (319)

a€el
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provided that the sum converges in L?(P). The orthogonal polynomials K,
represent eigenfunctions of the operator R and the corresponding eigenvalues
are lengths of multi-indices |a/.
The domain of R is denoted by Dom(R) and is obtained from the condi-
tion
HRFH%%P) < 00.

Thus in terms of the chaos expansions the domain Dom(R) is characterized
by the following condition

Zai |2l < oo. (3.20)

a€d

3.2 Fractional Malliavin Calculus

In this section we study fractional versions of Malliavin operators: the frac-
tional Malliavin derivative, the fractional Ito-Skorokhod integral and the
fractional Ornstein-Uhlenbeck operator, for any value of the Hurst param-
eter H € (0,1) in the space of square integrable random variables L?(P).
Using the white noise analysis approach we define fractional Malliavin op-
erators within chaos expansions in the classical white noise space. Recall
that the fractional transform operator M = MW introduced in Section
2.8.1, connects fractional Brownian motion Bt(H) and classical Brownian mo-
tion B, on the Gaussian white noise probability space (S’(R), B, u). It also
connects fractional compensated Poisson process Pt(H) and classical compen-
sated Poissonian process P; on the Poissonian white noise probability space
(S'(R), B, v). Due to the isometry provided by the fractional transform op-
erator, introduction of the fractional white noise theory is not required. Def-
inition of the fractional Malliavin derivative is connected to definition of
directional derivative and is an element of ¢g-weighted distributional space.
The fractional stochastic integral, as an element of classical g-weighted distri-
butional space, is the adjoint operator of the fractional Malliavin derivative.
All the results stated in this section are obtained analogously to the results
from the classical Malliavin calculus and are given in the general case, i.e.
they are valid in both cases Gaussian and Poissonian. Moreover, we de-
fine the fractional operators of the Malliavin calculus on fractional space
L*(Py) = L*(Po M™Y.

The main references used in this section are [7], [8], [13], [20], [41], [46].

The second approach in fractional Malliavin calculus is based on studying
fractional versions of the Malliavin derivative and the stochastic integral

for H € (0,3) and for H € (3,1) separately. For all H # 3 fractional
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Brownian motion is not a semimartingale. Semimartingales are the natural
class of processes for which a stochastic calculus can be developed and they
can be expressed as the sum of a bounded variation process and a local
martingale which has finite quadratic variation. In the case H < % the
quadratic variation is infinite and if H > % the quadratic variation is zero
and the 1-variation is infinite. For H # % it is necessary to define fractional
white noise space which differ from the classical one. Stochastic integral in
H < % case is of the Stratonovich type and for H > % is of the Ito-Skorokhod
type. For introduction to the classical and fractional Malliavin calculus in
these two concepts and connections between we refer to [7], [8], [20], [26],
[47].

3.2.1 The fractional Malliavin derivative in L?(y)

Let H € (0,1). Following [7], [13] and [20] we introduce a notion of the
fractional Malliavin derivative D) F of a square integrable random variable
F € L?*(p). This survey on fractional stochastic gradient for the Gaussian
case provides us a motivation for defining the fractional Malliavin derivative

in general case L?(P). Let M = M) be the fractional transform operator
defined by (2.61).

Definition 3.2.1 Let F € L*(n) and v € Q be of the form (3.1). Then F
has a directional derivative in the direction v if

Flw+eMy)— F(w)

(1) _
DYV F(w) ll_r% 8 (3.21)
the limit exists in L?(u).
Assume that there exists function 1 : R — L*(u) such that
DE/H)F(w) :/ M, M~y(t)dt, for all ~ € L%(R).
R
Then we say that F' is Malliavin differentiable and
DI F(w) := iy (w), teR (3.22)

15 called the fractional stochastic gradient or the fractional Malliavin deriva-
tive of a random variable F.

The fractional stochastic gradient in L?(u) satisfies a chain rule both with
respect to the ordinary product and with respect to the Wick product of
random variables

DI ((w, Mf)™) = nfw, M f)"" f(t), (3.23)
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and
DU ((w, MFY™) = e, M f(2), (3.24)

for a.a. t € R. In particular,

D<H>(/ FdBMY = f(t) for a.a. t €R.
R

The set of all differentiable random variables is denoted by 1)@ and is
called the fractional Malliavin Sobolev space. The fractional Malliavin deriva-
tive DU?) is a continuous mapping from Dﬁ{;” C L?*(u) onto L*(u, L% (R)).

Example 3.2.1 From (3.23) and (3.24) we obtain

DU H,(w) = co o Hy (w) ex(t), (3.25)

keN

where ey, = M~'¢,, k € N are the elements of an orthonormal basis of L%(R).

This property is used as a motivation for stating an equivalent definition of
the fractional Malliavin derivative in L*(u).

Definition 3.2.2 (Fractional Malliavin Sobolev spaces) Let D&{? be the set
of all random variables

F(w) = Z Ca Ho(w) € L*(p), ca €R

aeld

which satisfy the condition

Z lalaléd < oco. (3.26)

aeld

Then, a random variable F' € Dﬁf? is called Malliavin differentiable and the
fractional Malliavin derivative of F' has the chaos expansion of the form

D F(w) = Z Z Cap Hy_ o0y (w)ex(t), for a.a. teR. (3.27)

a€cl keN
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3.2.2 The fractional Malliavin derivative in L?(v)

Due to Definition 3.2.2 and results stated in Section 3.2.1 for the Gaussian
case, we give the formal definition of the fractional Malliavin derivative in
the space of square integrable Poissonian random variables.

Definition 3.2.3 Let @f? be the set of all random variables

F(w) = Z Ca Oa(w) € L*(V), co €R

aeld

which satisfy the condition

Z lalalcd < oco. (3.28)

aecld

Then the fractional Malliavin derivative of F' has the chaos expansion of the
form

DH P (w) = Z Z Coa 0, Coyovy (w) €x(t), for a.a. t € R.

a€cl keN

3.2.3 Relation with the standard Malliavin

derivative in (Q)”,

We continue with presentation of properties of the fractional Malliavin deriva-
tive in the general white noise space (2, F, P), where P is either Gaussian
measure [ or Poissonian measure v. Let K,, a € J denote the orthogonal
basis of L?(P), i.e. the Fourier-Hermite polynomials H, in L?(u) and the
Charlier polynomials C,, in L?(v). Let M = M) be the fractional transform
operator defined by (2.61). Denote by

L*(Py) = L*(Po M) (3.29)

the space of fractional random variables, where Py is the fractional measure
corresponding to the P, i.e. the fractional Gaussian measure iy or fractional
Poissonian measure vy. Let X, a € J denote the orthogonal polynomials
basis of L?(Py), i.e. the fractional Fourier-Hermite polynomials H, and the
fractional Charlier polynomials éa. Due to the Wiener-Ito chaos expansion
theorem, every F' € L*(Py) is of the form

Flw) = Zaaﬁ%a(w)v

aeld
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for a unique family of constants a, € R. Then the operator M induces the
mapping M : L?(Py) — L?(P) defined by

M [Z aaﬂza(w)] = Zaa[(a(w),

aeld aeld

which follows from Definition 2.8.4 in Section 2.8.2 and also Definition 2.8.6
in Section 2.8.3.

Denote by D the Malliavin derivative and D) the fractional Malliavin
derivative on L?*(P). Thus for a random variable F' = > ¢, K, € L*(P),

a€cl
co € R, the chaos expansion forms of its Malliavin derivatives, classical and

fractional, are given respectively by

e DF(w)=>> caar K, .n»(w)&(t), and

acd keN

e DIF(W) =33 coap K, . (w)ex(t), for a.a. t € R.
a€l keN
On an analogous way, we define the Malliavin derivative and the frac-
tional Malliavin derivative on fractional space L?(Pg) and denote them by

D respectively DU In particular, for F = 3 ¢, Ko € L3(Py), ca € R
ael
these operators on L?(Py) are represented in the following chaos expansion

forms

e DF(W)= caxX, .w(w)er(t), and

acd keN

e DDF(w) =3 Y oy J?HW (W) M~tey(t), for a.a. t € R.
acl keN
The extension of the fractional Malliavin derivative, stated in Definition

3.2.2, from the space L?(P) to the space of g-weighted stochastic distributions
(Q)F,, for p € [0,1] is characterized by (3.27) and also denoted by D.

Relation between the fractional Malliavin derivative and the classical
Malliavin derivative of elements from L?(P), respectively from L?(Py), are
given through the mapping M;.

Definition 3.2.4 Let F : R — (Q)fp be a generalized stochastic processes
with respect to the measure P given in the form (2.44). We define the map-
ping My of F by the following

M, Fy(w) = My (Z fa(t) Ka(w)> =) Mfu(t) Kalw), (3.30)

aeld
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for coefficients f, € L%(R), which are measurable functions, satisfying the
convergence condition (2.45) for some p > 0.

Theorem 3.2.1 Let F € (Q)”,. Then

DF = M; o DD FE forallt € R. (3.31)

Proof. Let F' have the chaos expansion representation

F(w) = Z Ca Ko(w), co €R.

acld

Then by (3.27) and (3.30) we obtain

M, DI F = M, (Z Z Co O ex(t) K o) (w))

acd keN

= Z Z Cq Ol fk (t) Ka_s(k) (w>

a€ed keN
= DF. O

o Similarly, for F' € (Q)™ we have

DF =M, o DUF. (3.32)

Theorem 3.2.2 Let F € (Q)™ for p € [0,1]. Then the following is true
DF = M o D) o MF. (3.33)

Proof. Assume F = ¥ f, K, € (Q) " such that the convergence condition
agd

(2.45) in (Q)Ijﬁ is satisfied for some p > 0. Then we obtain

MtoDH o MF = M 'oDH (Z fa Ka>

a€d

= M! (Z Z Joar Koo (w) ek(t))

acl keN

_ Z Z For cx K eiir () ex(t)

a€d keN
— DF O

e Moreover, for F' € (Q)]_Dﬁ, p € [0, 1] we have:
DUWF = M; oMo DU o MF. (3.34)
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3.2.4 The fractional Wick It6-Skorokhod integral

In this section we follow the notations from Section 2.7.5. Let Z; be a P-white
noise, i.e. a generalized stochastic process such that % Z; = Q,fora.a. t € R,
in sense of the relation (2.46) and let Z,gH) be the corresponding fractional

generalized stochastic process such that % ZgH) = QgH), t € R. In particular,

in the Gaussian case Q; = B, is a Brownian motion and Z, = W, is a singular
white noise, defined by (2.50) and (2.51) respectively, and o) = B is a
fractional Brownian motion and ZEH) = Wt(H) is a fractional singular white
noise, defined respectively by chaos expansion forms (2.73) and (2.76). In the
Poissonian case, Q; = P, denotes a compensated Poisson process and Z;, =V,
a Poissonian compensated white noise, defined respectively by (2.52) and
(2.53) with the corresponding fractional versions, a fractional compensated

Poisson process Pt(H) defined by (2.79) and a fractional Poissonian compen-

sated white noise V;(H) defined (2.81). Then, the chaos expansion of P-white
noise is given by

Zy(w) =Y &(t) K., teR
k=1

and the chaos expansion form of the fractional P-white noise is given by
2 (w) =Y Me(t) Kaw, teR.
k=1

Definition 3.2.5 (The Wick It6-Skorokhod integral) Let Y : R — (5)_;

be a stochastic process such that YtOZEH) is P-Pettis integrable in (S)_;.
Then Y s integrable in the Ito-Skorokhod sense and the Wick It6-Skorokhod
integral of Y = Y;(w) is defined by

) = [ Yi(w)agl”
R
- / Y, 0 2 at (3.35)
R

where { denotes the P-Wick product.

Consider now a special case, when the process Y = f is a deterministic
function belonging to L% (R). Then from the chaos expansion form of the
fractional P-white noise it follows that the previous definition of the Wick
[t6-Skorokhod integral coincides with

/R F(t)dol) = /R Mf(t) dQ,.
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Clearly, we have

[ oz ar = i [ rome i) )

= Z(ﬂ M&) 2wy Koo (w)
st

= Z(Mf» &) 2 () Koo (W)

k=1

R
_ / MF(t) d9,.
R
Example 3.2.2 The fractional normalized stochastic exponential is defined
by
EMn = expo[(w, Mh)]

1
— exp (o 01 — 51MAEe ). (330)

for h € L} (R).

Theorem 3.2.3 Let a generalized stochastic process Yy = 3 oy fa(t) Ko(w),
t € R be integrable in the Wick Ito-Skorokhod sense. Then the chaos expan-
sion of its Wick Ito-Skorokhod integral is given by

/ Ve dQi™ =373 (for ME) 2wy Koyt (3.37)
R

a€cl keN

Moreover, if fRY}dQEH) € L*(P) then

Ep { / YtdQEH)} = 0. (3.38)
R
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Proof. Using the chaos expansion method, we obtain

[viag® = [ viwozw)
R R

_ /R <Z () Ka(w)> o (Z Mé Ko (w)) dt

agl keN

— /R <ZZ fal(t) MngW(k)) dt

a€d keN

= > D (far M&)ra@) Koo

a€ed keN

Moreover, the expectation of a L*(P) element [, Y(w) ao(™ (w) is equal to
the zero coefficient in its chaos expansion, thus we obtain f(gp,.) = 0 and
the assertion (3.38) is proved. O

The corresponding result for the chaos expansion representation of general-
ized stochastic process in the classical Malliavin calculus is already stated in
Theorem 2.7.4.

Theorem 3.2.4 (Fractional integration) Suppose Y : R — (S)_1 is inte-
grable in the sense of Definition 3.2.5 and (3.30) converges in (S)_1. Then
the Wick Ito-Skorokhod integral with respect to process Q,EH) coincides with
the Skorokhod integral with respect to filtration Q;, t > 0, i.e. we have

/ Y, o\ (w) = / MY, §Q4(w). (3.39)

Proof. Let Y;(w) = > o fa(t) Ko(w) be a generalized stochastic process,
such that f, € L%(R), « € J. Then the chaos expansion of its fractional
Wick It6-Skorokhod integral is unique and represented by (3.37). Moreover,
the fractional integral coincides with the Skorokhod integral with respect to
Q,. Clearly,

/YtdQEH) = DD (fa M&)12@) Kopew
R

a€cd keN

- Z Z(Mfa’ fk)LQ(]R) Ka-i—a(k)

a€cd keN

= [ My, sQH).
J wvisel -
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The following theorem is an analogue to the fundamental theorem of
classical stochastic calculus, Theorem 3.1.6. The proof in the Gaussian case
can be found in [8] and [46].

Theorem 3.2.5 Let Y : R — (S5)_1 be a generalized process, such that
Y, e ”Dgg). Assume thet Y and DYDY : R — (S)_; are Wick It6- Skorokhod

integrable. Then we have

Dwu(/mdqﬂv::/zﬂmndQ?W+n. (3.40)
R R

Proof. If Y, =3 ., fa(t) Ko(w) then by (3.37) and (3.27) we obtain

D) (/YtdQEH)) - D ( Z (fos M&) r2m) Ka+e<k>(w)>
R

a€d.keN

= Z (fou MSk)LQ(]R) Z(O& —|— g(k))l Ka-‘ra(k)—a(i) el(t>

acl,keN ieN

Z (far M&) 2wy (ar + 1) Ky €y,

a€d,keN

+ > i (fa M&) 2(r) Kopet o€

a€9,kEN iEN itk

On the other side, when applying the differentiation formula (3.27) for D#)Y;
we obtain the right-hand side of (3.40). This follows because the fractional
operator M is a self adjoint operator

(farer)r2,®y = (M fos Meg) 2wy = (M fa, &) 2@y = (fos M&)r2w). U

3.2.5 The fractional Ornstein-Uhlenbeck operator

The fractional Ornstein-Uhlenbeck operator R¥) of a random variable F €
L*(P) is defined as the composition of the fractional Wick It6-Skorokhod
integral and the fractional Malliavin derivative, i.e.

RID p = 54 o pI E F e D) C L3(P).
Let FF' =3 . fa Ko, for f, € R, @ € J. Then we obtain
RIOF = 3 fukKa

acld

= RF (3.41)

Thus the fractional Ornstein-Uhlenbeck operator and the standard Ornstein-
Uhlenbeck operator coincide on the set of Malliavin differentiable random
variables.



Chapter 4

Operators of Malliavin Calculus
For Singular Generalized
Stochastic Processes

Recall that the Malliavin derivative appears as the adjoint operator of the
Skorokhod integral which is an extension of the stochastic Ito integral of an-
ticipating processes to the class of non-anticipating processes. Moreover the
composition of these two operators, called the Ornstein-Uhlenbeck operator,
is a linear, unbounded and self-adjoint operator.

We give now the definitions of the Malliavin derivative and the Skorokhod
integral which are extension of the definitions of these operators to a space of
singular generalized stochastic processes. We allow now values in g-weighted
spaces of generalized stochastic functionals and obtain larger domains of op-
erators of Malliavin calculus then in the L?(P)-case described in the previous
chapter.

This chapter represents an original part of the dissertation and all the re-
sults presented are obtained in collaboration with Professor Stevan Pilipovié¢
and Dora Selesi and are already published in [27], [28], [29] and [30].

The Malliavin derivative, further on denoted by D, and its related opera-
tors, 0 and R, are all defined on either of the four white noise spaces we are
working on, and their domains are characterized in terms of convergence in
a stochastic distribution space (Q)?, with special g-weights.

In the following, we denote by e, k¥ € N the orthonormal basis of L% (R),
i.e. e is the orthonormal fractional basis e, = M1, k € N, for all H €
(0,1), which reduces to the orthonormal Hermite basis &, k € N when H =
1. Note, [[ex]|?; = (2k)7" and |[ex]|2, ., = e ¥ for all k,I € N. We denote

exp,
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by K., a € J the orthogonal basis of the space of square integrable random
variables L?(P) on the white noise space (S'(R), B, P).

4.1 Singular Generalized Stochastic
Processes

In Section 2.7 we presented a survey on generalization of stochastic processes
and categorized the generalized stochastic processes (also known as general-
ized stochastic processes of type (O)) as measurable mappings from R into
some g-weighted space of generalized functions i.e. measurable mappings
R — (@)%, and provided a version of chaos expansion representation of such
processes. These processes are generalized in w but not in ¢.

Since generalized stochastic processes with values in (Q)”; are defined
pointwise with respect to the parameter ¢ € R, their chaos expansion is
given by

F@) =Y fulKa(w), teR
a€l
where f, : R — R,a € J are measurable functions, such that there exists
p € Ny such that for all t € R

1EN2, o = D 1 falt)Pae” < oo

acld

Now, we define singular generalized stochastic processes as linear and
continuous mappings from some deterministic space of distributions into the
space of g-weighted generalized functions (Q)%.

4.1.1 Chaos expansion of singular generalized
stochastic process

Let X be a topological vector space and X’ its dual. The most common
examples used in applications are Schwartz spaces S(R) and S’(R), distri-
butions with compact support X = E(R) and X' = &'(R), the Sobolev
spaces X = W;?(R) and X’ = W~12(R), and essentially bounded functions
X = L*°(I), where I C R has finite Lebesgue measure.

We extend the Wiener-Ito chaos expansion theorem to the class of sin-
gular generalized stochastic processes as it was done in [56]. The definition
2.7.1 of generalized stochastic processes is now generalized in the sense that
coefficients in (4.1) can be also deterministic generalized functions. Processes
of such type are generalized by both arguments, ¢ and w, and they do not
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have values in fixed points. We can only see their action on appropriate test
functions.

Definition 4.1.1 Singular generalized stochastic processes are linear and

continuous mappings from X into the space of q-weighted generalized func-
tions (Q)%, i.e. elements of L(X,(Q)F)).

If at least one of the spaces X or (Q)F; is nuclear, then

LX, (@) =X e @), (4.1)

and thus one can consider singular generalized processes as elements of the
space X' ® (Q)%,. The Kondratiev space (S)_; and the space of stochastic
distributions of exponential growth exp(S)_; are nuclear and consequently
in these cases we have isomorphisms (X ® (S)_1) = X' ® (5)-; and (X ®
exp(S)_1) = X'®exp(S)_1. Thus one can consider stochastic processes also
as elements of the spaces X ® (5)_; and X ® exp(S)_; respectively.

The chaos expansion theorems for a class of generalized stochastic pro-
cesses which belong to X ® (Q)f, are given by the following statements,
proved in [56].

Theorem 4.1.1 ([56]) Let X be a Banach space endowed with || - | x.
Singular generalized stochastic processes as elements of X ® (Q)F, have a
chaos expansion of the form

u=Y fo®Ks fo€X €] (4.2)

aecld

and there exists p € Ny such that

el xepr, , = D Ifallkas” < oo (4.3)

acld

Example 4.1.1 Brownian motion defined in (2.50) and fractional Brownian
motion defined in (2.73), as well as the Poissonian process defined in (2.52)
and fractional Poissonian process (2.79) are reqular generalized stochastic
processes, i.e. elements of the space X ® (Q)F, where X = C°°([0, +o0)).
White noise (2.51), fractional white noise (2.76), Poissonian noise (2.53)
and fractional Poissonian noise (2.81) are singular generalized stochastic pro-
cesses, i.e. elements of the space X @ (Q)F', where X = S'(R).
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Theorem 4.1.2 ([56]) Let X = (\,—, Xk be a nuclear space endowed with a
family of seminorms {|| - ||x; k € No} and let X' = J,o, X_& be its topological
dual. Singular generalized stochastic processes as elements of X' @ (Q)F,
have a chaos expansion of the form

u:Zfa(X)Ka, fo€ Xy, a€d, (4.4)

acld

where k € Ny does not depend on o € I, and there exists p € Ny such that

el fos@r, , = 2 Mfall2rga?” < oo
a€ld

The action of a singular generalized stochastic process u, represented in

the form (4.4), on a test function ¢ € X gives a generalized random variable

from g-weighed space (Q)F,

LU= (far0) Ka € (Q)F,

acld

and the action of such process u onto a test ¢-weighted random variable
0 € (Q)¥ gives a generalized deterministic function in X’

(w,0) = < Ko 0> fo €X'
ael
In particular, if X = S(R) then for 6 =}, 05K € S(R) the action of
process u on 6 is given by

(,0) = Y fo <KoY 05K5>
a€gl Bed

= ) b fac

acld

= > D b farbld)

a€l keN

= Z (Z alf, fa,k> §e(t),

keN \a€d

for fa - Z fa,ké-k(t) S S/(R)
kEN
With the same notation as in (4.2) we will denote by E(u) = f(0,0,0,.) the

generalized expectation of the singular process u.
An important case is when X = L>([), I C R, A\(I) < oo and ¢, = (2N)?*,
a € J in Theorem 4.1.1.
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4.1.2 Extension of operators U and M

We extend the action of the operator U given by (2.31) and also the action of
the operator M given by (2.72) to the class of singular generalized stochastic
processes.

We define U : X ® (@), — X ® (Q)”; such that for every singular
generalized stochastic process .5 ta ® Ho € X @ (Q)%,

Zua®Ha

acd

u =Y 4®Cq, U €X, a€l (4.5)

a€ed

For all processes in X ® (Q)", represented in the form _ _ v, ® Ho(w) we

define the operator M : X ®@ (Q)"F — X @ (Q)", by

M [Z%@?ﬁfa

a€eld

acld

:Zva@)l—[a, vy € X, a €17 (4.6)

acld

Remark 4.1.1 Note that WoM™!: X @ (Q)", = X ® (Q)"™ such that

=Y u.®Cs us€X, €.

acd

UoM™ [Zua®Ha

aeld

The same is obtained by action of the operator M~ o U, which follows from
the commutative property Wo M=t = M~ o U (see the Diagram 1).

4.1.3 Wick product of singular generalized
stochastic processes

We generalize the definition of the Wick product of random variables (Defi-
nition 2.5.1 in Section 2.5.2) and give the corresponding statement for special
type of singular generalized stochastic processes in the way as it is done in
[28] and [57].

Definition 4.1.2 Letp € [0,1]. Let F,G € X®(Q)", be singular generalized
processes given in chaos expansions of the form (4.2). Assume X to be a space

closed under the multiplication fa,gs, for fa,g9s € X. Then the Wick product
FOG of processes F' and G is defined by

FOG =) ( > fa%) ® K,.

~vel \a+B=y
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An important example appears when considering essentially bounded pro-
cesses. In particular, an essentially bounded singular generalized stochastic
process F' € L®(I) ® (S)”; has an expansion F(z,w) =Y fa(2) ® Ko(w)
such that for all a € J, f, € L>(I) and there exists ¢ € Ny such that

S 1 fall ooy (2N) 7" < oo,

a€ed

We denote by T, the mapping T, : L¥(I) ® (S)T, 5 — L*() ®
(S)F, _4 defined by
)

= F =Y VL@ © Kafw)

a€l
Due to the nuclearity of the Kondratiev spaces, T} is a continuous mapping
from L=(I) @ (S)7, _, 4 to L=(I) @ (S)L, _4 (for a proof see [57]).

The following lemma, proven in [57], shows that the Wick product is well
defined, and that for fixed F' the mapping G' +— F'QG is continuous. Here we
omit the proof.

Lemma 4.1.1 ([57]) If F € L=(I)®(S)"
then their Wick product F'OG given by

FOG(z,w) = Z(Zfa )®K()

1y end if G € L(D@(S)F, _,,

v€J \a+p=y
is an element of L*(I) ® (S)_1._,. Moreover, there exists C > 0 such that:
IFOG sy, < anan e, 1Cesr

4.1.4 S’-valued singular generalized stochastic process

In [65] and [66] we provided a general setting of vector-valued singular gen-
eralized stochastic processes. S’(R)-valued generalized random processes are
elements of X ® (Q)¥;, where X = X ® S'(R), and are given by chaos

expansions of the form
F e Y Y amen sk,
a€d keN

= ) b ®K,

a€eld

= ZCk X €L, (47)

keN
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where by = Y, cy@ar @ e € X QS (R), cx =D c9ak ® Ko € X ® (@)%,
and a, ; € X. Thus, for some p,l € Ny,

£ 1% es => > llaarli(2k)"

a€ed keN

In a similar manner one can also consider exp S’'(R)-valued singular gener-
alized stochastic processes as elements of X ® exp S’(R) ® (Q)¥, given by a
chaos expansion of the form (4.7), with the convergence condition

1 seps mo@r, . = > 2 llaaxllike a7 <

a€cl keN

for some p,l € Ny.

4.2 Malliavin Calculus for Singular
Generalized Stochastic Processes

In this part of the thesis we present original results in exploring the properties
of generalized operators of Malliavin calculus, the Malliavin derivative, the
Skorokhod integral and the Ornstein-Uhlenbeck operator on the set of sin-
gular generalized stochastic processes, their chaos expansion representations
and applications in some classes of equations. These results are published
n [27], [28], [29] and [30] and are achieved in collaboration with Professor
Stevan Pilipovi¢ and Dora Selesi.

From this section and further on we will consider only the Kondratiev-
type spaces (S)fp and spaces of exponential growing rate exp(S)ij, p € [0,1],
defined by the weights ¢, = (2N)® and ¢, = eV respectively. We will
omit writing the measure P, and denote these spaces (5)_, and exp(S)_,,
since there exist unitary mappings between all four white noise spaces
(Diagram 1).

We give now the definitions of the Malliavin derivative and the Skorokhod
integral which are slightly more general than in [10], [46], [48], [51]. Instead of
setting the domain in a way that the Malliavin derivative and the Skorokhod
integral take values in L?*(P), we allow values in (S)_, and exp(S)_, and
thus obtain a larger domain for both operators.
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4.2.1 The Malliavin derivative

Recall, ¢ is the kth unit vector, the sequence of zeros with the num-
ber 1 as the kth component, for £ € N. Denote by ¢ the multi-index
v=Y 2, e® = (1,1,1,...). Note that ¢ ¢ J, but we will use the following
convention: for o € J, define @ — ¢ as the multi-index with kth component

. Oék—l, O./kZQ
(a L)’“_{ 0, oy €{0,1}°

Thus, a —¢ € 7, for all a € J.

Definition 4.2.1 Let u € X ® (S)_1 be of the form (4.2). If there ezists
p € Ny such that

D lal [ fallk (2N) ™ < oo, (4.8)

a€cld

then the Malliavin derivative of u is defined by

Dy = Z Z (693 fa X e X Kaia(k). (49)

a€ed keN

The operator D is also called the stochastic gradient of a singular gener-
alized stochastic process u. The set of processes u such that (4.8) is satisfied
is the domain of the Malliavin derivative, which will be denoted by Dom(D).
All processes which belong to Dom(D) are called differentiable in Malliavin
sense.

We characterize separately the domains of the Malliavin derivative of
singular generalized processes which are elements of spaces X ® (S)_; and
X ®exp(S)-_1. The following theorem describes the domain of D in X ®(5)_4
as it was done in [27].

Theorem 4.2.1 ([27]) Let u € X ® (S)_1 be a Malliavin differentiable sin-
gular process. Then the Malliavin derivative D is a linear and continuous
mapping

D: Dom(D) C X ® (S)_1p > X @ S4(R) ® (5)_1,—p,

for somepe Ny andl >p+1,1 €N.
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Proof. Assume that a process u is of the form (4.2) satisfying the condition
(4.9). Note (2N)*" = (2k) and ||ex]|2, = (2k)~'. Thus we have

- —p(a—e®)
||DUH§<®S,Z(R)®(S),1,,Z, = ZHZOékfa@ekH%(@s,l(?N) Pl )
aced k=1
< >y <Z ai - Y llexll?, (%)p> I fall% (2N) P2
o€l \keN keN
< D1l Q2R [ fallk (2N)
a€d keN
< O fal fall 3 (2N) P < oo,
a€eld
where Y, (2k)™"P =C for I > p+ 1. O

Following [29] we define the Malliavin derivative of singular generalized
processes from X ® exp(S)_; and characterize the domain of such operator.

Definition 4.2.2 Let a singular process u € X ® exp(S)_1 be of the form
(4.2). If there exists p € Ny such that

S 1Pl fallZ e P20 < o0 (4.10)

acld

then process w is differentiable in Malliavin sense i.e. © € Dome,,(D) and
the Malliavin derivative of u is defined by (4.9).

Theorem 4.2.2 ([29]) Consider a process u € X ® exp(S)_1. Then the
Malliavin derivative of u is a linear and continuous mapping

D: Dome,,y(D) € X ®exp(S)-1,—p = X ® exp S_(R) @ exp(S)_1,_p,
for all I € Ny.

Proof. Clearly, from |[e]|2,, _, = e * for all k,] € N and (4.10) we have
- _ (a—c(R))
||]D)u||§(®expS_Z(R)®exp(S),1,,p = Z || Z akfa & ek”g(@expg_l([@n)@ p(2N)
acl k=1
< YN ade | fuf g
acd keN
< 3 ol fallie P < oo,

acd



4.2 Generalized Malliavin Calculus 151

Remark 4.2.1 Note that Dome,,(D) O Dom(D).

Let now p € [0,1]. Consider the Kondratiev spaces (S)_, and also the
spaces of exponential growth exp(S)_, defined in the Section 2.5. Recall that
inclusion (S5)_, C exp(5)_, is continuous.

Definition 4.2.3 Let a singular generalized stochastic processu € X ®(S5)_,
be of the form (4.2). We say that u belongs to Dom(D)_, _, if there exists
p € Ny such that

D lal* (@) 77| fall 3 (2N) 7 < oo (4.11)
a€l
Then the process u is Malliavin differentiable and its Malliavin derivative is
given by (4.9).
Note that if a process u € X ® (S5)_, then there exists p € Ny such that
lulas),_, = > I fallk () =* (2N) P
acd

is finite. We proceed with proving the statement that the Malliavin derivative
is a continuous operator on the set of processes from X ® (5)_,.

Theorem 4.2.3 The Malliavin derivative of a process u € X ® (S)_, is a
linear and continuous mapping

D: Dom(D)_,_, CX®(S)_p—p > XRS4(R)® (5)—p—p:
forl>p+1 andp e Ny.
Proof. We use the property (a —e®)! = 2‘—;, for k € N in the proof of this

theorem. Assume that a singular process is of the form (4.2) such that it
satisfies (4.11) for some p > 0. Then we have

patpe(®)
IDulkos @ow) , ., = D 1D o fa®ellkam , , (2N)Po

a€d kEN

< 3OS e el (2N) P ok
a€cd k=1

= ZZ ( ) Il (2N) e (2k)

< cz(zak) () || ful 3 (2)

= O) laf"™*P(a)' 7|l fal (2N) 7 < o0,

acld
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where C' = Z(2k‘) P) < oo forl>p+1.
k=1

O

It is clear that when p = 1 the result of the previous theorem reduces to the
corresponding one in Theorem 4.2.1. We formulate now an analogue theorem
for a class of singular generalized processes belonging to X ®@exp(S)_,. Recall,
if a process u € X ® exp(S)_, then it can be decomposed in the way (4.2)
such that the condition

ST (@) P full% eV < 00 (4.12)
acld

is fulfilled for some p € Nj.

Definition 4.2.4 We say that a given singular generalized stochastic process
u € X ®@exp(S)_, is Malliavin differentiable and write uw € Domey,(D)_, if
it satisfies the condition

Sl 7@l | fullf e T < o (4.13)
a€cl
for some p € Nyg. Thus the chaos expansion of its Malliavin derivative is

given by (4.9).

Theorem 4.2.4 The Malliavin derivative of a singular generalized stochas-
tic process u € X ® exp(S)_,_p, p € Ny is a linear and continuous mapping

D: X®exp(S)_p—p = X ®expS_(R) ®exp(S)_p—p,

for alll € N.
Proof. Clearly, from |[[e; |2, _, = e ** for all k,I € N and (4.13) it follows
that
Jame® _
||Du||§(®expS_Z(R)®exp(5),p —p < Zzak O{—z’f '1 p||f04||2 e 2
acl k=1
al\'" e
= St (2) Ml e
a€cl k=1
e (k)
< ) (Zak> ()2 fall e 0"
a€d \k=1
< O fal"™ (@) | fal ke PV < oo,

aeld
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where C' = " e < o for all [ € N.
k=1 U

When comparing the families of the Malliavin Sobolev type of spaces
Dom(D)_, and Domey,(D)_, for different values p € [0, 1] the following
properties arise:

o If p < g then Dom(D)_,_, € Dom(D)_, _,.
e The inclusion Dom(D)_, C Dome,(D)_, is satisfied for all p € [0, 1].
e Note Dom(D)_; = Dom(D) and Domey,(D)—1 = Domex, (D).

e For all @ = (ay,as,...) € I we have

|| :Zak < a!:Hak, ar € N.

keN keN

Thus, the smallest domains of the spaces Dom(D)_, and Domey,(D)_,
are obtained for p = 0 and the largest domains are obtained for p = 1.
In particular we have inclusions

Dom(D)_g C Dom(D)_1 € Domexp(D)_g C Domexp(D)_.

4.2.2 The Skorokhod integral

Motivated by the identity (2.59) for the Skorokhod integral of an H-valued
generalized random variables, we extend the definition of the Skorokhod in-
tegral to the class of singular generalized processes. As an adjoint operator
of the Malliavin derivative the Skorokhod integral is defined as follows.

Definition 4.2.5 Let F = 3 ., fa @ 4 @ Ky € X @ S_,(R) @ (S)_1,—p,
p € Ny be a singular generalized S_,(R)-valued stochastic process and let
Vo € S_p(R) be given by the expansion voa = Y . cnVak ks Vak € R. Then
the process F' is integrable in the Skorokhod sense and the chaos expansion
of its stochastic integral is given by

6<F) - Z Z Vo, k fa ® Ka+5(k>)- (414)

acd keN

Next theorem is proved in [27].
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Theorem 4.2.5 ([27]) The Skorokhod integral § of a S_,(R)-valued singular
generalized stochastic process is a linear and continuous mapping

0: XRS5 ,R)® (S)1-p = X ® (5)_1,—p.
Proof. Clearly,
—plate®
BE a0y = DD vk fallk (2N) P+

acl  keN

< SO @)l N

acld keN

= D lvall?, I fallk 2N) ™ < oo,

acld

because F' € X ® S_,(R) ® (S)-1,—p, p € Np. O

Definition 4.2.6 Let a singular generalized exp S_,(R)-valued stochastic
process be of the form

F= Z fa®ua @K, € X ®expS_,(R)®exp(S)_1_p,
ael

for some p € Ny and let v, € expS_,(R) be given by the expansion
Vo = ZkeN Vak €k, Vo € R. Then the process u is integrable in the Sko-
rokhod sense and 6(F') is defined by (4.14).

The proof of the following theorem can be found in [29].

Theorem 4.2.6 ([29]) Let ' € X ® expS_,(R) ® exp(S)-1,—, be an
exp S_,(R)-valued singular generalized process for some p > 0. Then the
Skorokhod integral § of F is a linear and continuous mapping

d: X®expS_,(R) ®exp(S)_1,—p = X @exp(S)_1,-p.
Proof. This assertion follows from the inequality

PN (2R) < =2k | —p(N)® (4.15)

valid for o € J and k,p > 0. Clearly,

_ a+5(k>
H(S(F)Hgﬁgexp(é”)_l,_p = Z ” Zva,k fa”%{e P(2N)

acl  keN

SO 02 e ) e

acl keN

= D vallZe—p 1fall5 7Y < o0,
acld

IN
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since I € X ® exp S_,(R) ® exp(S)_1,_,, for p € No. O

From 2(2N)* < (2N)?>* we conclude that the image of the Malliavin
derivative is included in the domain of the Skorokhod integral and thus we
can define their composition.

Both theorems, Theorem 4.2.5 and Theorem 4.2.6 can be stated for
singular generalized stochastic processes which have values in the Kondratiev
space (5)_, respectively in the space with exponential growing rate exp(S)_,,
for any p € [0, 1].

Theorem 4.2.7 Let p € [0,1]. The Skorokhod integral 6 of a S_;(R)-valued
singular generalized stochastic process is a linear and continuous mapping

§: X®S_((R)@(S)_p—p = X®(5)—p—(g+1-p), forq—p>1.

Proof. This statement follows from inequalities (o + 1) < |a + e®)| <
(2N)*+" when o € J, k € N. Clearly, we have

(41— ) (e _
16 ko), = DD vaklfallx (@N) =Nt (o 4 eB)1=r

acl keN

= 3 ST falk (@N) e ) (1)l i

acl keN

3302 4 fallk (2N) @) (o) Ukt 1o

acl keN

STk (2K ) ful 3 (2N) Pl (2N) v

acl keN

< O vally I fallk 2N) 7 @l < oo,

acd

IN

IN

because F € X ®@ S_4(R) ® (S)_,_, and C = > (2N)~@P iy a finite
acl
constant for ¢ — p > 1. O

Theorem 4.2.8 Let ' € X ® exp S_,(R) ® exp(S)_,—, be an exp S_,(R)-
valued singular generalized process for some p > 0 and ¢ > 0. Then the
Skorokhod integral & of F' is a linear and continuous mapping

d: X ®expS_,(R) ®exp(S)_p_q = X ®@exp(S)_p i,

whenl—q>1—pandl—p>1—p.
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Proof. From (4.15) and inequality (o + 1) < eV o € 3 k € N it
follows that

(k)

_ _ a—+¢e
B ksepis) 0 = DD vaxllfallk (o +e®)ri=re N
a€J keN
< NS valZ—p €27 | fall xe ™ HHmDEN? (1)1 g2k
a€J keN
< G0 Y [valZgp 1 fallk €Y () < oo,
acd

for finite constants C; = >, g e 2FF7717P) < oo, when 1 — p > | — p and
Cy =3, cqe WP 170CN" < o0 when | — ¢ > 1 — p. O
4.2.3 The Ornstein-Uhlenbeck operator

Definition 4.2.7 The composition of the Malliavin derivative and the Sko-
rokhod integral is denoted by R = 6 o D and called the Ornstein-Uhlenbeck
operator.

The Fourier-Hermite i.e. the Charlier polynomials are eigenfunctions of R
and the corresponding eigenvalues are ||, a € J, i.e.

R(Ky) = |a| K.
Moreover, if we apply the previous identity k times successively, we obtain
RE(K,) = |a|"K,, keN, foracl.

Theorem 4.2.9 Let a singular generalized stochastic process u € Dom(D)
be given by the chaos expansion u = Zaej Uy @ K, uy € X. Then

Ru=>"|afu, ® K, (4.16)
ac]

Denote by

Dom(R) = {u € X @ ()1 3p € No, 3_ [of*Jua (2N) 7 < o0}

a€eld

and

Domiegy(R) = {u € X @exp(S)_1: Ip €N, > [af*||ual5e V) < oo}

acld
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Theorem 4.2.10 ([29]) The operator R is a linear and continuous mapping
from Dom(R) C X ® (5)_1 into the space X ® (S)_1, and in this case the
domains of D and R coincide, i.e. Dom(R) = Dom(D).

Proof. Clearly, if u € Dom(D) C X ® (S)_1,—p then Ru € X ® (5)_1 .
This follows from (4.16) and

1Rl sis) o, = D ol [uall3 (2N) 7 = [[u] homm) < oo
aeld

For u € X ® exp(5)_1,_, it follows that

Domeyy (D) € Domieg,y(R).

Now we consider the Kondratiev type of g-weighted spaces and character-
ize the Ornstein-Uhlenbeck operator in the sense of the previous statement.
Let p € [0,1]. We define the domain Dom(R)_, to be the set of all processes
u e X ® (5)_, represented in the form (4.2) such that the condition

D lal (@) a5 (2N) 7 < oo
acld

is satisfied for some p € Ny. Furthermore we define the domain Dom,,(R)_,
to be the set of all processes u € X ® exp(S)_,, having the chaos expansion
of the form (4.2) and satisfying the condition

al?(ah)t=r Ueg, 26PN o9
o] *( X
a€c]

for some p € Nj.
Theorem 4.2.11 Let p € [0,1]. Then we have the following inclusions
Dom(R)_, € Dom(D)_, C Domy,(D)_, € Domey,(R)_,.

We have already seen that for p = 1 spaces Dom(R)_, and Dom(D)_,
coincide.
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4.3 Operators of Fractional Malliavin
Calculus

Consider the extension of the operator M from S’'(R) — S’(R) onto general-
ized stochastic processes.

Definition 4.3.1 Let M = M ® Id : S'(R) ® (Q)F, — S'(R) ® (Q), be
given by

M (Z o (t) ® Ka(w)) = Mag(t) ® Kow). (4.17)

acl agl
Its restriction to L2 (R) ® L*(P) is an isometric mapping

L} (R) ® L*(P) — L*(R) ® L*(P).

Example 4.3.1 In Fxample 2.8.3 and Example 2.8.4 we have seen that

B =MB, in L*(n) and W' =MW, in (S)",.

In [51], the fractional Malliavin derivative in L*(u) was defined as
D =M oD.

Thus, in [29] we extended this notion to a class of singular generalized
stochastic processes. For example, on the Kondratiev white noise spaces
with Gaussian measure

D X @ (S, - X ® S5 (R)® ()",

is given by
DIEF-—M'oDF

—M! (Z dowfa® & ® Ha-a<k>> (4.18)

a€ed keN

- ZZ g fo @ ex @ Hy v,

a€el keN

for ' =% i fa ® Hy, fo € X, o € J. Note that the domain of the frac-
tional Malliavin derivative coincides with the domain of the classical Malli-
avin derivative. The following definition holds on a general white noise space
(Gaussian, Poissonian, fractional Gaussian or fractional Poissonian).
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Definition 4.3.2 Let F' = ) _,fo ® K, € X ® (5)_1, respectively X ®
exp(S)_1. If FF € Dom(D), respectively F' € Dome,,(D), then the fractional
Malliavin derivative of F' is defined by

DIF ="y fo ® M ey @K, 0. (4.19)

a€l keN

In the following theorem, P will denote either the Gaussian or Poissonian
measure, and Py will denote their corresponding fractional measures. The
notation (Q)_; will refer to either (S)_; or exp(S)_; with the appropriate
measure.

Theorem 4.3.1 ([29]) Let D and DY) denote the Malliavin derivative, re-
spectively the fractional Malliavin derivative on X @ (Q)F,. Let D denote the
Malliavin derivative on X @ (Q)™. Then,

DIF=M"'oDF=MoDoM'F, (4.20)
for all F € Dom(D).

Proof. We will conduct the proof for the Gaussian case. Since DU F =
M~! o DF follows directly from (4.17) and (4.19), we need to prove that
(4.18) is equal to M o DoMLF, where D stands for the Malliavin derivative
in L?(pug). Clearly,

MoDoM! (ZfaegHa) :Mof)(z]“a@ica)

a€el a€cl
Y (z S nss oo fﬂ)
aed keN
= ZZ arp fo @ e @ Hy 0.
aed keN O

Example 4.3.2 [t is well known that in L*(p), the Malliavin derivative of
Brownian motion is DBy(w) = x[0,t] = > "7~ cx&k. Thus,

DU By(w) = M~'x[0,8] = MU0, 4) =) " epe,
k=1

where

cr = (& x[0.8]) 2w = (M_lfk,M_lx[O;tDL@H(R)
= (ekvM(liH)<Oat>)L§_H(]R)'
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Definition 4.3.3 Let 6 : X @ S'(R) ® (Q)F, — X @ (Q)F, denote the Sko-
rokhod integral in sense of Definition 4.2.5 and Theorem 4.2.6. The fractional
Skorokhod integral §#) : X @5 (R)®(Q)F; — X®(Q)T, is defined for every
F € Dom(9) by

SWF=5cMF (4.21)

Finally, for the Ornstein-Uhlenbeck operator we note that its fractional
version coincides with the regular one, i.e. from (4.20) and (4.21) it follows
that

RH) = §H oD =§oMoM oD =§oD =R,



Chapter 5

Applications of the Chaos
Expansion Method to Some
Classes of Equations

In this chapter we present some applications of the chaos expansion method
to obtain explicit forms of solutions of some classes of stochastic differen-
tial equations involving the Malliavin derivative and the Ornstein-Uhlenbeck
operator. We provide a general method of solving stochastic differential
equations, also known as the propagator method, first introduced by Boris
Rozovsky. The Wiener-1to chaos decomposition of general random processes
which appear in equations is used to set all coefficients in the chaos expansion
on the left-hand side of the equation equal to the corresponding coefficients on
the right-hand side of the equation. With this method we reduce a problem
to an infinite system of deterministic equations. Summing up all coefficients
of the expansion and proving convergence in an appropriate weighted space
of stochastic distributions, one obtains the solution of the initial equation.
The equations presented and solved in this chapter are original results of this
thesis and are published in [27], [28], [29] and [30]. Other types of equations
investigated by the same method can be found in [26], [31], [35], [56], [67].

All stochastic equations solved in this section can be interpreted, by the
use of the isometric transformations U and M defined in (4.5) and (4.6),
in all four white noise spaces, Gaussian, Poissonian, fractional Gaussian and
fractional Poissonian white noise spaces, we have considered so far. Also, due
to Theorem 4.3.1 the Malliavin derivative and the Skorokhod integral can be
interpreted as their fractional counterparts in the corresponding fractional
white noise space. With this argumentation we state the equations and solve
them in a white noise space of general type.
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5.1 Equations With the Malliavin Derivative

At the beginning we apply the chaos expansion transform in order to solve
two equations involving the Malliavin derivative, the first order equation in-
volving the Malliavin derivative, and then a generalized eigenvalue problem
for the Malliavin derivative. In both cases, solutions obtained by this ap-
proach have a simple form and belong to a certain space of weighted singular
generalized stochastic processes.

Denote by r = r(a) = min{k € N : a4 # 0}, for nonzero multi-index
a € J. Then the first nonzero component of « is the rth component a,
ie. a=(0,0,...,0, ..., 0, 0,0,...). Denote by a_¢ the multi-index with
all components equal to the corresponding components of «, except the rth,
which is o, — 1. We call a_ the representative of o and write

a=a.m+e”, acd |al>0. (5.1)

For example, the first nonzero component of a = (0,0,2,1,0,5,0,0, ...) is its
third component. It follows that » = 3, a,, = 2 and the representative of «
is a.n =a—e® =(0,0,1,1,0,5,0,0,...).

The set Ko, = {8 €J:a =8+ forsomej € N}, a €7, |a] >0
is a nonempty set, because o,y € K,. Moreover, if a = ne™, n € N
then Card(X,) = 1 and in all other cases Card(X,) > 1. For example if
a=(0,1,3,0,0,5,0,...), then the set K, has three elements K, = {a.2 =
(0,0,3,0,0,5,0,...), (0,1,2,0,0,5,0,...), (0,1,3,0,0,4,0,...)}.

5.1.1 A first order equation

Let us consider a first order equation involving the Malliavin derivative i.e.
an equation of the form

{ Du = h, heX@S’(R)@(S)_l_

Eu = 1y, ug € X (52)

The next result characterizes the family of stochastic processes that can be
written as the Malliavin derivative of some singular stochastic process. A
necessary and sufficient condition for existence of a solution is stated and the
solution is expressed in its explicit form, the chaos expansion form.

Theorem 5.1.1 ([30]) Let h= ) > hoy®e, @K, € X ®S5'(R)® (5)_1,
a€cd keN
with coefficients hq € X such that

1 1
- has(r) o a— h,B,j 5 (53)

QU j
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for the representative a.y of a € I, || > 0 and all § € K, such that
a=LF+¢e9, forj>r, reN. Then, equation (5.2) has a unique solution in
X ®(S)_1. The chaos expansion of the generalized stochastic process, which
represents the unique solution of equation (5.2) is given by

~ 1
u=Tp+ Y. — oy @ Ko (5.4)
a:as(r) +E(T)€j "

Proof. We seek the solution in the form u =4y + > u, ® K,. Thus,
a€ed
|| >0

D ﬂo+zua®Ka = Zzha,k®ek®Ka

‘ﬂ|€>30 acl keN
[e3

Z <Z Qp Uy @ ek) ® Ky e = Z (Z hay @ ek> ® K,

acd keN acl keN
a|>0

3 (zmk g © ) oK =Y (z o ) oK,

a€el keN aeld keN

Due to uniqueness of the Wiener-Ito chaos expansion it follows that, for
alla €7

Z(@k + Do ® e = Z haj & eg.

keN keN
Due to uniqueness of the series expansion in S’'(R) we obtain a family of
deterministic equations

1
o + 1

Ugpelk) = hog, foral o€l keN, (5.5)
from which we can calculate u,, by induction on the length of «.
For a = (0,0,0,...), the equations in (5.5) reduce to u.x) = hax, o €
J, keNie.
U1,0,0,..) = h(o,o,o,.l.),l
U0,1,0,...) = h(o,o,o,...)g
U(0,0,1,0..) = h(07o,0,...),3 ’
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and we obtain the coefficients u, for o of length one. Note, u, are obtained
in terms of haE(T> = Nnw00,.)r 7 €N,

For |a| = 1 multi-indices are of the form o = V), j € N, so several cases
occur. For j =1, a =M = (1,0,0,...), we have

( U2,0,0,..) = %h(1,0,0,...),1
U1,1,0,.) = h(1,0,07...),2
U(1,0,1,0..) = N(1,00,.),3 . (5.6)
U(1,0,0,1,0...) = h(l,o,o,...),4

\

Continuing, for j = 2, a = ® = (0, 1,0, ...) the equations in (5.5) reduce to

.

U(1,1,0,0,...) = 1(0,1,0,0,...),1
_ lh
U(0,2,0,...) = 37%(0,1,0,0,...),2
U(o,1,1,0... ho100..)3 | (5.7)
%(0,1,0,1,0...) = h(O,l,OO )4

\

and then, for o = ¢® = (0,0,1,0,...) we obtain

(
U(1,0,1,0,...) = h(o,o,l,o,...),l
U(0,1,1,0,...) :1h(0,0,1,0,...),2
U(0,0,2,0..) = 510,0,1,0,..)3 . (5.8)
U(0,0,1,1,0...) = N(0,0,1,0,...).4

\

The coefficient w(1,1,0,0,...) appears in systems (5.6) and (5.7) and thus the
additional condition A 00,.)2 = h(0,1,00,.),1 has to hold in order to have a
solvable system. Also, from expressions for w1,1,0,.) and u,10,1,..) in (5.7)
and (5.8) we obtain conditions h( 1,3 = h(o 0,1,0,.).2 and h(o001.0,.)2 =
h(0,1,0,0,...),4 Tespectively, which need to be satisfied, in order to have a unique
Uy In the same manner we obtain all coefficients u,, for a of the length two,
expressed as a function of h%m .

Let now |a| = 2. Then different combinations for the multi-indices occur:
if we choose a = (1,1,0,0,...) then (5.5) transforms into the system

( U(2,1,0,0,.. ) = %h(l,l,o,o,...),l
U(1,2,0,...) — %h(l 1,0,0,...),2
¢ U(1,1,1,0... ha100..)3 | (5.9)
U(1,1,0,1,0...) = h(l,l,o,o,...),4




5.1 Equations With the Malliavin Derivative 165

and if we choose o = (1,0,1,0,0,...), then the equations in (5.5) transform
into

U(2,0,1,0,...) = %h(l,O,l,0,0,.‘.),l

U1,1,1,0,..) = h(1,0,1,0,0,...),2

U(1,0,2,0...) = %h(1,0,1,0,0,..‘),3 ) (5.10)
U(1,0,1,1,0...) = h(l,O,l,0,0,...)A

\
We continue with o = (0,1,1,0,0,...) and a = (2,0,0,...) and obtain the
systems

U1,1,1,0,...) = h(0,1,1,0,0,...)71

_ 1
U0,2,1,0,...) = Qh(o,l,l,0,0,.‘.),Q
_ i
¢ uo120.) = 3M0,1,1,00,.).3 ., and (5.11)
(0,1,1,0,0,...),4

U0,1,1,1,0..) =

( U(3,0,0,...) = %h(z,o,o,...m
U2,1,0,...) = h(2,0,07...),2
U(2,0,1,0..) = N(2,00,.)3 (5.12)
U(2,0,0,1,0...) = h(2,0,0,...),4

\

respectively. For a = (0,2,0,0,...) the system (5.5) transforms into

)
U(1,2,00,...) = 1(0,2,00..)1

U(0,3,0,...) = gh(o,z,o,o,...),Q
U(0,:2,1,0..) = 1(0,2,00,.)3 . (5.13)
U(0,2,0,1,0...) = h(0,2,0,0,...),4

\

Combining with the previous results, we obtain u, for |a| = 3. Two
different representations of u1,0,0,.) are given in systems (5.9) and (5.12),
so the additional condition %h(l,l,0,0,...),l = h2,0,0,0,.),2 follows. We express
U(2,1,00,.) = %h(1,1,0,0,...),1 in form of the representative of the multi-index
a = (2,1,0,0,...). Since the coefficient u 9, appears both in (5.9) and
(5.13), we receive another condition %h(Ll,Q’O’“_)’Q = h(2,0,0,.)1, and express
U(1,2,0,..) = N0,2,00,.),1 Dy its representative. From (5.9), (5.10) and (5.11) we
obtain u(l,l,l,O,,..) = h(0717170707",)71 and the condition h(l,l,0,0,...),?} = h(l,O,l,O,...),Q =
h(O,l,l,0,0,...),l- Then, %h(071’1707..')72 = h(O,Q,O,...),?) follows from (511) and (513),
and U0,2,1,0,...) = %h(o,1,1,0,...),2-

We proceed by the same procedure for all multi-index lengths to obtain
Uy -
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If the set K, a € J, has at least one more element besides the representa-
tive a,() of «, then the condition for the process h is given in the form (5.3).
We obtain the coefficients u,, of the solution as functions of the representative
Oég(")

1
Uy = —hg ) r, for la] #0, a = a.x + e,
ap ¢
and the form of the solution (5.4).
It remains to prove convergence of the solution (5.4) in X ® (S)_;. Let

he X®S_,(R)®(5)-1,—p. Then, there exists p > 0 such that
||h||g<®s,p(R)®(S),1,,p = Z Z 1o ll5 (2K)7F (2N) 7P < o0,
a€cl keN

Note that for uy € X we have ||uo||x = |[to||xg(s)_, _, for all ¢ > 0. Then,
the convergence follows from

U 1 — « (r)
||U0||§(®(s)71772p + Z 2 Hhas(r),r”%((QN) 2p(a (r)+et)

aed,|al>0, T
- (r)
feY azs(T) +e

< Naolkes) ot Do lhagldli @) EN)T

Oé:OlE(T) +E(T)
< |Iao||§(®(5)—1,—2p + Z Z ”hoz,rH%( (27’)_p(2N)_pa < 00,
a€ed reN

where we have used the fact that (2N)*=""(2N)7> < 1 for all a € J, r € NO

HU’HAQX@(S)fl,pr

Special cases

e Assume that the process h is expressed as a product h = ¢ ® ¢, ¢ €
S'(R) and g € X ® (5)_1.
Theorem 5.1.2 ([30]) Let ¢ = Y, .yaer € S(R) and g =
Y ooey 9o ® Ko € X ® (5)-1 with coefficients g, € X such that
1 1
o o Cr = oz_j 98 C;, (5.14)
holds for all B € K, 5 > r, r € N, and their representative a. Then
Du=c®g, FEu=uy uye€X, (5.15)
has a unique solution in X ® (S)_1 given by

- 1
U= Uy + Z o Yoy Cr ® K,. (5.16)

a=a_(r) +elmeg
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Proof. Providing an analogous procedure as in the previous theorem,
we reduce equation (5.15) to a family of deterministic equations

1
ozk—}—l

Ugpelt) = Jo Ck, forall ael keN, (5.17)

from which, by induction on |«|, we obtain the coefficients wu, of the
solution wu, as functions of the representative a . Let a € J, |a| > 0
be given by (5.1). Condition (5.14) implies u, = 5- Yo Cr- The proof
of convergence of the solution (5.16) in X ® (S5)_; follows in the same
way as in the previous theorem. ]

e Especially, if we choose ¢ = ¢;, for fixed i € N, then equation (5.15)
transforms into

(5.18)

DU:%@g, gEX@(S)_l
Eu:ﬂo, ﬁOEX '

Theorem 5.1.3 ([30]) Let g € X ® (S)_1. Then (5.18) has a unique
solution in X @ (S)-1 of the form

- 1
U = Ug + Z E g(nfl)s(i) & Km_:(i), (519)
neN
if and only if g is of the form
g = Zgnsm ® ans(i) = Zgna(i) (I<ei))<>n7 (520)
n=0 n=0
where I(-) represents the Ité integral.

Proof. Let u € X ® (S)_; be a process of the form (5.19). Then,
u € Dom(D) and from

oo 1 o
Du = Z - I(n—1)e @ nK(nfl)s(i) R e, = Zgne(i) ® K,.0) Qe
n=1 n=1

follows that it is a solution to (5.18).

Conversely, let a process g € X ® (S)_; be of the form (5.20). Then,
following the notation of Theorem 5.1.2, ¢ = ¢; has the expansion
c=3 o cre, where ¢ = 1 for k =i and ¢, =0 for k # i, k € N.
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The family of equations (5.17) transforms to the family of deterministic
equations

(O[i + 1) ucx—&-s(“ = Ga, Ja c X
{ Ugrow =0, k=123 k#7’ acl. (5.21)

If (5.20) holds, then for fixed i € N, g, = 0, for all & # ne®, and
from (5.21) similarly as in Theorem 5.1.2 the coefficients are obtained
by induction on |af,

e = { I, @=ne? cN.

0, a#ne®”’

The chaos expansion of the solution is

- 1 _ 1 "
U = Uy + Z " In-1)e @ K.y = ug+ Z " I(n—1)eH @ (1 (ex))°™.

neN neN

Convergence in X ® (S)_; can be proven by the same method as in
Theorem 5.1.2. Clearly, there exists p € N, such that

% (2N) e

_ =1
[ullkew) ., = H%H?ﬁZﬁHg(m)sw
n=1

~ - Cp(n—1)e(®
< wollx + ) gen1yeoIx (2N) PrDe

n=1

o0
~ _ (¢
= Jaollx + D" llgneollx (2N) =" < oo,
n=0

O
5.1.2 A generalized eigenvalue problem
Consider the equation
Du=C ® u, C e S'(R)
{ Eu= ’170, ZL/() e X. (522>

Motivation for studying this equation can be found in optimal control prob-
lems. In particular, in [43] a special type of this equation appeared when
stochastic maximum principle was applied to an optimal control problem.
The solution is an F-measurable Malliavin differentiable random variable and
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is obtained by applying the Clark-Ocone formula. General solution methods
of this type of Malliavin differential equations were not discussed. In [53] par-
tial information stochastic control problem of a system of forward-backward
stochastic differential equations driven by Lévy process was studied. Lin-
ear homogeneous partial information Malliavin-differential type equation ap-
peared in risk minimization of the terminal wealth in financial markets by
using representation of convex risk measure, i.e. in terms of g-expectations.
The eigenvalue problem is studied also in [33] and [36].

Theorem 5.1.4 ([27]) Let C' = Y77 e & € S'(R). Ifcy > 5, forallk € N
then equation (5.22) has a unique solution in X ® (Sc)_q1, given by

[ee]

=T ® > (HZ DD _K (5.23)

a=(a1,a2,...)€] k=1 agl

Proof. Using the chaos expansion method, we transform equation (5.22)
into the system of deterministic equations

(o + 1) Upyor) = Uq Ci, aecd, kel (5.24)

The solution is obtained by induction with respect to the length of multi-
indices a. From Fu = wy it follows that w...) = to.
Starting with |a| = 0 ie. a = (0,0,0,...) equations in (5.24) reduce to

4 ~
U(1,0,0,0,...) = Uo C1

U(0,1,0,0,...) = Up C2

U(0,0,100,.) = U C3 , k€N, (5.25)

\ Uty = Up C

and we receive the coefficients u, for a of length one.
Next, for |a| =1 we have a = @, i =1,2, ...
If @« =(1,0,0,0,...) then from (5.24) and (5.25) we obtain

_ 1 _ 1.9~
%4(2,000,...) = 2U%(1,000,...)¢1 = 31¢1 Yo
U(1,1,0,0,...) = U(1,0,0,0,...)C2 = C1C2 Ug

U(1,0,1,0,0,...) = U(1,0,0,0,...) C3 = C1C3 Uy (5’26)
If « =(0,1,0,0,...) then from (5.24) and (5.25) we have
U(1,1,0,0,...) = U(0,1,0,0,...) C1 = C1C2 U
U(0,2,0,0,...) = %u(0,1,070,...) Co = Cg Uo (5.27)

U(0,1,1,0,...) = %(0,1,0,0,...) €3 = C2C3Up ~
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Continuing with a = ¢®), k > 3 we obtain all u, of length two.

For |a|] = 2 from system of equations (5.24) and results obtained in pre-
vious step (5.26), (5.27),... we obtain u,, for |a| = 3.

We start with o = (1,1,0,0,...) and obtain the family

_ 1 12, ~
U(2,1,0,0,...) = 3U%(1,1,0,0,...) C1 = %0103 E{o
U(1,2,0,0,...) = 3U(1,1,0,0,...) €2 = 5C1C3 Uo

U(1,1,1,0,...) = U(1,1,0,0,...) €3 = C1C2C3 Up ’

=

then continue with o = (2, 0,0, ....) and receive

_1 _ 1.3~
U(3,0,0,0,...) = 3%(2,0,0,0,...) C1 = 3;C1 Uo
_ _ 12~
U(2,1,0,0,...) = U(2,0,0,0,...) C2 = 5C1C2 Ug

_ 2.~
U(2,0,1,0,...) = 1(2,0,0,0,..) C3 = C1C3Up ’

and so on. We proceed by the same procedure for all multi-index lengths to
obtain u, in the form

ua:u0®_,_._---, foraﬂ a:(a17a27a3"”)ej7

and the form of the solution (5.23).
It remains to prove the convergence of the solution (5.23) in the space
X ® (Sc¢)_q, i.e. to prove that, for some p > 0

lullXeser e = D luallk (2Ne)™* < oo,

a€ed

From assumption ¢, > o, for all k € N, it follows that Y, _;(2Nc)™P* < oo

if p > 0. Then, for p > 3, we have

2
e C o
lullXese ., = ZHUoH?xw(?NC) g

aeld

< ol Yo @N) e

a€eld
< Jlollx D e (2N < o
a€eld a€cld

With this statement we complete the proof. [l
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Special cases

e Especially, for C' = ¢, for fixed i € N, the equation (5.22) transforms

into
Du =& ®u
{ Eu = ao, ao e X. (528)

The chaos expansion of the generalized stochastic process u € X®(S)_
which represents the solution of (5.28) is given by

-~ - cy ~ =1 ~
U=t & ZEK’““) = Uo & ZmKnem = @ exp’ I(§),
n=0 n=0

where I(§;) represents the It6 integral of the Hermite function ;, i € N.
Using the generating property of Hermite polynomials (1.1) we obtain
another form of the solution

- 1 ~
U= up & exp <I(§z‘) - 5) = Uy @ Eg;,
where ¢, is the normalized stochastic exponential of &;, defined in (2.7).

Remark 5.1.1 In [31] it is proved that Dej, = hey, for deterministic
h, i.e. the family of normalized stochastic exponential represents the
family of eigenfunctions of the operator D, thus Theorem 5.1.4 gives a
more general result.

e If we choose C' = 0 then equation (5.22) transforms to
Du = 0, EFu= ﬁo, 60 e X (529)

and has a unique trivial solution u = uy in the space X.

5.2 An Equation Involving the
Ornstein-Uhlenbeck Operator

In this section we solve a stochastic equation involving generalized stochastic
processes and the Ornstein-Uhlenbeck operator R.

Let P(t) = ppt™ + pm1t™ ' + ... + pit + po, t € R be a polynomial of
degree m with real coefficients. Then,

P(R) = ppuR™ + ppa R+ .+ miR + pold,
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where Id is the identity operator.

Recall that a family of orthogonal polynomials K, i.e. a family of the
Fourier-Hermite and the Charlier polynomials, is the family of eigenfunctions
of the Ornstein-Uhlenbeck operator, and the corresponding eigenvalues are
la, i.e.

RK, =l|a|K,, «a€l.

If we apply the operator R onto the K, successively k times, we obtain
RE(K,) = |off K., k€N, foracl.

Action of the operator R onto a singular generalized stochastic process u is
given by (4.16).

Theorem 5.2.1 ([27])
(i) Let P be a polynomial such that P(k) # 0, k € Ny. Then equation
P(R)u =g, where g € X ® (S)_1,_p for some p >0, (5.30)
has a unique solution in X ® (S)_1 given by
Ja
u=3S - _gK, (5.31)
2 P(lal)
(i1) Let P be a polynomial such that P(k) = 0 for k € M, where M is a
finite subset of Ny and let ¢; € X, 1 € M. Equation
PRu=g,9g€ X®(5)_1,us=0¢, |la| =1i,i € M,

has a unique solution in X ® (S)_1, given by

u= Y Pg“ @Kot Y. ¢® K, (5.32)

a€l; |a|¢gM (lOé|) |a|=te M

Proof. Note that the Fourier-Hermite respectively the Charlier polynomials
K, are eigenfunctions also for the operator P(R):

P(R)K, = P(la|]) K., a €.

Assume that v € X ® (S5)_1 is a generalized stochastic process of the form
(4.2). Then

PRu=> u,®P(R) Ko =Y P(la))u, @ K. (5.33)

a€cd acld
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Thus, P(R) maps Dom(D) C X®(S)_1_p = X ®(S5)_1,_p—y for r > 1+42m,
where 7 depends on the growth of P(|a]).
Note that for all @ € J, |o| # 0, |P(Jer|)| < (2N)™¥|ar|. Then

“P(R)M@(@(S),L,p,r - Z||P(|a|)ua||§(<2N)—(p+7’)a

aeld
= |P(0)|2||U(o,o,o,...)||§(+ Z |P(|a|)|2||ua||§<(2N)—(p+r)a
a€l,|lal>0
< |P(O)|2||U(0,0,0,..-)|!§(—i— Z |a|? (2N)2"9 |y || % (2N) ~ (P
a€l|a|>0
< D > JaPfuak N < o,
a€l|al>0

where D = |P(0)|*> + Zael‘a|>0(2N)*(’”*2m)°‘, for r > 2m 4+ 1. We can also
conclude that P(R) is a continuous and bounded operator.
Let g = > cy9a ® Ko, where g, € X, a € J. Then by (5.33):

S P(la)un ® Ko = ga ® Ko

acld a€eld

Due to the uniqueness of the Wiener-Ito chaos expansion, the last equation
transforms to the system of deterministic equations

P(la))ug = g, forall a €.

Now we prove (). Since P(|a|) # 0 for all a € 7, it follows that u, =
and equation (5.30) has a unique formal solution of the form (5.31).

It remains to prove convergence of the solution in X ® (S)_1,_,, for some
p > 0. Note that there exists C' > 0 such that |P(|a|)| > C for all a € J.
Thus,

2 _ Ja 12 —pa 1 2 —pa
lullXss)_._, = aze; HWHX(QN) P <L Yo?) Z 9all5% (2N) P < oo,

acld

9o
P(lal)

because g € X ® (S)_1,_p. Thus equation (5.30) has a unique solution u €
X®(S )—L—p'

The proof of assertion (i) simply follows by the the previous analysis.
The coefficients of the solution u are given by

- %7 |Oé|¢M
“ ¢, lal=1i€e M,

and the solution has the form (5.32) if and only if g, = 0, for |a] € M.
Note, if there exists at least one @ € M such that gz # 0, then equation
(5.30) has no solution. O
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5.3 An Equation Involving the Exponential
of the Ornstein-Uhlenbeck Operator

Consider now a stochastic differential equation of the form

ey = h, (5.34)

where e = > %, ceRand h € X ®exp(S5)_1,_, is a singular gener-

alized stochastic process.

Theorem 5.3.1 ([30]) Let h € X ® exp(S)_1,—p, for some p > 0. Then,
there exists ¢ > 0 such that equation (5.34) has a unique generalized solution
in X ® exp(S)_1,_, given by the form

u=>Y e h, K, (5.35)

a€l

Proof. Assume u € X ® exp(S)_1,_, is a generalized stochastic process of
the form (4.2), satisfying condition (4 3) with ¢ 7 = e P(2N)*
Note that the differential operator e“* satisfies the identity

0 k:Rk

chK Z

. kla\
Z K, = el K, «a€cl.

Then
eRu = Z ey, @ K, Uy € X. (5.36)
a€c]
For ¢ > 0 the operator e* is a continuous and bounded mapping from

X®exp(S)_1,_,into X® exp(S)_1_,, for some ¢ > p+2c. From el < eV
a € 7 it it follows that

||ecyu|‘§(®exp(5),1,,q - Zehla‘nuang(e_q(QN)a
agl
< Ze2cla\ e PN ||y ||% e~ PN
agl
< (Z 2¢lal ,=(g=p)(2N)* > <ZHUQHX€ p(2N) >
a€cl agl

IN

(Ze \a=p=2)(2N) ) HUHX®6XP(S) < 00,

acld
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for ¢ > p + 2c.
If ¢ < 0 then the operator e* is a continuous and bounded mapping from
X ® exp(S)_1,—p into X @ exp(S)_1,—4, for g > p:

||eCRuHA2X®exp(S),1,,q - ZGQCW\HUJ&”%(@—Q(QN)O‘
agl
< (Z e(qp)(QN)"‘) HUHAQX'@exp(S)_L_p < 0.
agl
Let h € X ® exp(S)—1,—p be of the form h = Y, hy ® K, such that
he, € X and
> lhallf e < oc. (5.37)

acld

We are looking for the solution w of (5.34) in the form (4.2) where u, € X
are the coefficients to be determined.
We apply (5.36) to transform equation (5.34) into the system of deter-
ministic equations
ey, = he, a el

Thus, u, = e “°lh, and we obtain a unique solution of equation (5.34) in
the form (5.35).

Finally, the convergence of the solution in X ® exp(S)_1 _p, in case of
¢ > 0, follows directly from (5.37). But, in case of ¢ < 0 the solution
converges in the space X ® exp(S)_1,_,, for some g > p — 2¢, i.e.

ulkgepe) oy = D€ |hal5e "
a€gl
< (Z e~ 2clal e—(q—p)(2N)“) (Z I hall% e—p(2N)c“)
a€c] acT

< M HhH,2X®exp(S)_17_p < o9,

where M = 5 e~ (@ P+2)CN® < o for ¢ > p — 2c.
a€el
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5.4 The Stochastic Dirichlet Problem Driven
by The Ornstein-Uhlenbeck Operator:
Approach by The Fredholm Alternative
for Chaos Expansions

This section is devoted to the stochastic version of the Fredholm alterna-
tive in the framework of chaos expansion methods on white noise probability
space. We apply the results to solve the Dirichlet problem generated by an
elliptic second order differential operator with stochastic coefficients, stochas-
tic input data and boundary conditions, and with the Ornstein-Uhlenbeck
operator as a perturbation term. The stochastic Dirichlet problem was stud-
ied in [57], [58], [67] and as a conclusion to this series of papers in [28] we
introduced the Malliavin derivative and its related operator, the Ornstein-
Uhlenbeck operator, into this setting. The following results represent the
main contribution of this dissertation to the Malliavin differential theory in
white noise framework.

In [28] we studied a stochastic Dirichlet problem with a perturbation term
driven by the Ornstein-Uhlenbeck operator

Lou(z,w) + cP(R)u(z,w) = h(z,w) + i D;f(z,w), rel,weq,
u(z,w) lor = g(z,w), )
(5.38)

where I is an open bounded subset of R™, ¢ € R, and L is a stochastic
differential operator of the form

Lou(z,w) = Z D;( Z a’(z,w)ODju(z,w) + b'(z, w)Ou(z,w))
A (5.39)
+ 3 d(a,w) 0Dz, w) + d(z, w)Ou(x, w),
i=1
where a"(z,w), b (z,w), ' (z,w),d(z,w) € L®) @ (5)_1-p-1), i,J
1,2,...,n, Pis a polynomial with coefficients in R, h, f* € L*(I) ® (S)_1._,
and g € WH(I) @ (S)-1,—p.
In [57] and [58] the stochastic Dirichlet problem of the form

LOu(z,w) :h(m,w)%—ZDifi(:E,w), rel,we,

=1

(5.40)

u(z,w) lor = g(z,w),
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is considered and we showed the existence of a unique solution assuming
that L is an elliptic operator with essentially bounded coefficients satisfying
standard conditions. The maximum principle and the approach developed
in [5] for the deterministic Dirichlet problem are used.

In the framework considered, the coefficients of L are stochastic processes,
thus in physical interpretation corresponding equation with constant coeffi-
cients to the equation (5.40) can be understood as a diffusion process in a
stochastic anisotropic medium, with transport and creation also dependent
on some random factors, and with a stochastic boundary value. Example
of a stochastic anisotropic medium is a medium consisting of two randomly
mixed immiscible fluids.

In [57] and [58] is proved that in order to obtain a solution of (5.40), the
operator should generate a bilinear form that is both coercive and continuous.
Assuming that all input data f, ¢ and the coefficients of L are in (S)_; _,
(for fixed x) and that L is elliptic, one obtains ellipticity (and thus also
coercivity of the associated bilinear form) in (S)_;_, for ¢ > p. On the
other hand, the associated bilinear form is continuous on (S)_; _, for ¢ < p.
Since both conditions must hold, it is necessary to hold p fixed and work only
in (S)_1,—p. Thus, it is of great interest to develop Fredholm alternative type
theorems holding in (S5)_1,_,, which will be the first topic of this section. We
will find conditions for the operator A acting on Kondratiev spaces, under
which equations of the form f — A(f) = g have a unique solution.

In [28] we proved solvability and uniqueness of the solution to (5.38) under
assumptions made only on the expectation of L and certain conditions on the
positivity of the perturbation term. In particular, when ¢ = 0, (5.38) reduces
to the equation considered in [57] and [58], but with much less restrictive
conditions on L. This is one of the important contributions of this section
and is included in this thesis as its original and the most important part. We
will prove that there is a solution in (S)_; _, for p large enough.

The method used in all equations is the chaos expansion method, i.e
the propagator method. With this method we reduce the stochastic partial
differential equations to an infinite triangular system of partial differential
equations, which can be solved by induction. Summing up all coefficients
of the expansion and proving convergence in an appropriate weighted space,
one obtains the solution of the initial stochastic partial differential equation.
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5.4.1 The Fredholm alternative for chaos expansions

Now we prove a general form of the Fredholm alternative theorem for map-
pings given by chaos expansions.

Definition 5.4.1 Let X be a Banach space and X' its dual space. The
operator A : X — X' is an operator of FA-type if it satisfies the Fredholm
alternative:

e cither the equation f — A(f) =0 has a nontrivial solution f € X

e or the equation f — A(f) = g has a unique solution f € X for each
ge X'

It is well known that if A is a compact operator A : V — V where V is a
Hilbert space, then it is of FA-type. Note that the embedding Id : VVO1 ’2(1 ) —
W'=%2(T) is compact for € > 0, but not as a mapping Id : W, >(I) — Wy ().

We will use the following fact in Hilbert spaces V. If A:V — V is a
compact operator, then for every ¢ > 0 the equation f(1 —¢) — Af = 0 has
only the trivial solution if and only if equation f(1—c)—Af = g has a unique
solution for each g € V' . For ¢ = 0 this statement reduces to the classical
Fredholm alternative theorem.

In the following theorems we provide some sufficient conditions (other
then compactness) under which an operator is of FA-type.

Theorem 5.4.1 ([28]) Let X be a Banach space and T, : X — X', a € 7,
be a family of FA-type operators that are uniformly bounded by a constant
K > 0. Let p € N. Consider the mapping T : X @ (S)_1_, = X' @ (S)_1._p
defined by

T ua @ Ko) =Y Tulua) © Ka. (5.41)

ac] a€el

Then,

e cither the equation f — T(f) = 0 has a nontrivial solution f € X ®

e or the equation [ — T(f) = g has a unique solution f € X @ (S)_1,—p
for each g € X' ® (S)_1,p-

L whose existence is asserted there,

In the second case, the operator (Id—T)~
is also a bounded operator. )
FEspecially, if K < 1, then T' is a contraction mapping, thus f —T(f) =g

has a unique solution for all g € X' ® (S)_1,—p.
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Proof. For u e X ® (5)_1,_, we have

DI Ta(ua)lF (2N) ™ < K ) fluall % (2N) ™ < oo,

a€el a€cld

thus the operator 7" in (5.41) is continuous.

Assume now that f — T (f) = 0 has only the trivial solution f = 0. This
means that in the expansion f = > . fo ® Kq, fo = 0 forall a € 7, ie.
each equation f, — T, (f,) = 0 has only the trivial solution f, = 0.

Consider now the equation f — T(f) =gie.

Z(fa - Ta(fa)) & Ka = Zga & Ka'

acld a€cld

Due to uniqueness of the Wiener-Ito chaos expansion this is equivalent to
fa_Ta(fa):ga, Jda EX/, for all a € 7.

But since T, is FA-type, and f, — To(fo) = 0 has only the trivial
solution, from the Fredholm alternative it follows that there exists a
unique solution f, € X solving f, — To(fa) = go- Every generalized
stochastic process is uniquely determined by its coefficients in the chaos
expansion, thus f =" _; fo ® K, is the unique solution of f — T(f) =g.

It remains to prove that ) ., fo ® K converges in X ® (5)_1,_p i.e. that

> I fallX(2N) ™ < oo,

aecld

Since T,, are uniformly bounded, it follows that (Id—T,)~! are also uniformly
bounded, and from f, = g4 + Tw(fs) it follows that

[fallx < Cllgallx,

where C' = max I(Id —To) ™ op-
ae
Thus,
d I fallZ@N) T < Y lgal% (2N) 7 < oo

aeld a€el

Especially, if K < 1, then

= max 1(1d = To)lop < rggjx(l — | Tallop) ™ < (1= E) O
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Corollary 5.4.1 ([28]) Let X be a Banach space and T, : X — X', be a
family of compact operators that are uniformly bounded by a constant K > 0.
Letpe NandletT : X®(S)_1,_p — X'®(S)_1,_, be an operator of the form
(5.41). Let Qn : X' — X', a € T, be a family of uniformly bounded operators
and consider the mapping Q : X' @ (S)_1_, — X' @ (S)_1,_, defined by

Q) ua®@Ka) = Qaltta) ® K. (5.42)

a€cld aeld

Then,

o cither the equation f — Q(T(f)) = 0 has a nontrivial solution f €
X® (S)—l,—p

~

e or the equation f—Q(T(f)) = g has a unique solution f € X®(5)-1-p
for each g € X' ® (S)_1,p-

Proof. Since T, is compact and @), is continuous, @, o T, is a compact
operator for each o € J and the assertion follows from the classical Fredholm
alternative similarly as in Theorem 5.4.1. 0

For operators which can not be represented in the form (5.41) or (5.42)
the following theorem will provide sufficient conditions under which these
operators are of FA-type. Before we state the theorem we will explain the
framework.

Consider an operator A : X ® (S)_1,-p, = X'®(5)_1,_,. Let the equation
f — A(f) = 0 have only the trivial solution f = 0 in X ® (S)_1,_,. Let
9=2 19y ® K, € X' ®(5)-1,-p and assume that the equation

f=A(f)=g

can be reduced (using the chaos expansion on both the left and the right-hand
side) to a lower triangular system of the form

fy—ay(fy) =g, + F\({fa;a <}), v €7,

for some family of FA-type operators a, : X — X', v € J, and some family
of functions F.,, v € J, so that F), depends on f,, o < vy, but not on a >
(this means that the system is lower triangular and thus can be solved by
induction on 7). Since by assumption f, — a,(f,) = 0 has only the trivial
solution for every v € J and a, is of FA-type, it follows that there exists a

unique f, solving f, — a(fy) = gy + Fy({fa, @ < 7}) given by

fy=0d~- av)_l(gv + Fy({ fa, e < 7})).
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Now, if Z’yeﬂ fy ® K, converges in X’ ® (5)_1,_p, then by uniqueness
of the Wiener-Ito chaos expansion it follows that f = Zwej fy ® K, is the
unique solution to f — A(f) = g.

In the following theorem we provide a general concept which is based on
the procedure described above.

Theorem 5.4.2 ([28]) Let X be a Banach space and Q : X ® (S)_1 —
X' ® (5)_1 an operator of the form Q = A+ B+ C, where

1. C = cP(R), for some c € R and R = 0D is the Ornstein-Uhlenbeck
operator, P(R) the differential operator P(R) = p,,R™ + p 1 R™1 +
o+ P1R+pold and P is a polynomial of degree m with real coefficients
such that cP(k) <0, k > ko, k, ko € Ny.

A K =) ay(fy)®K, and a, : X — X' are compact operators

ved €
such that )
sup <K, (5.43)
el (1 —cP(|y]) — Ha»yHop)

for some constant K > 0.

B> fy®K,) = > > bs(fy—p)K, for some bounded operators

ved v€J |v—B|>0
by, : X — X' and there exists p > 0 such that

K sl ¥ < 2= (5.44)

18>0

Let the equation f — Q(f) = 0 have only the trivial solution f =0 in X ®
(S)—1. Then, for every g € X' ® (S)_1 there exists a unique f € X ® (S)_1
solving

[-Qf=g (5.45)
Proof. Equation f — Qf = 0 is equivalent to
f—=(A(f) +cP(R)(f)+B(f))=0  and

Z [y = ay(fy) = cP(]) fy Z ba(fr-5) | @ Ky =0.

Y€l lv=8]>0

Due to uniqueness of the Wiener-1t6 chaos expansion this is equivalent to

[ =cP(y]) = ay(f5) — Z ba(fy-5) =0, €. (5.46)

[y—B[>0
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Since f—Q(f) = 0 has only the trivial solution f = 0in X ® (5)_1, it follows
that for each v € J equation (5.46) has only the trivial solution f, = 0. Since
a~ is compact, the classical Fredholm alternative implies that

(L =cP(1)) — ay(f,) = | %: Obﬁ(fv—ﬁ) + 9, (5.47)
has a unique solution
fy=(1=cP()) Id —a,)" (g, + | %: Dbﬂ(fv—ﬂ»a ved,
such that

1
”f’YHX < 1 —CP(|’7’) _

lgnllx+ D Mosllopll fr-pllx |, 7 €.

Ha"YHOP |[y—B8|>0

We will prove that ) f, ® K, converges in X ® (S)_;. Indeed,

Y€

2

DIAIEEN <KDY gy lx+ > lbsllopllfr-sllx | (2N)

~ved ved |[v—8|>0

<2K7 () g3 @N) ™ 4+ (> (Ibsllop(2N)72)2 ) 1A 15 (2N)

~v€T |[v—B|>0 ~v€J

by the Holder-Young inequality. Thus,

L=207( ) 0 Ilbsllop@N) ") | DO IR EN) T <262 g, 13 (2N) 7.

|[y—B[>0 eI ~eEd

By assumption (5.44), there exists p > 0 large enough so that

M=1-2K( Y [Ibsllop(2N)")* > 0.
lv—8|>0
This implies

DI EN) P < —legw\l;« 2N)™"" < o0,

€ v€d
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Remark 5.4.1

(1) If ay,y € T is a family of uniformly bounded operators and
1 —cP(|v]) — llayllop # 0, v € J, then condition (5.43) holds.

(2) If by, v € T are uniformly bounded operators then there exists p € Ny
large enough such that (5.44) holds, thus (5.45) always has a solution
in X ® (S)_1. Otherwise, b, might be bounded but not uniformly and
then condition (5.44) is essential.

The following example shows that the conditions of the above theorems
are sufficient, but not necessary.

Example 5.4.1 The identity operator Id : (S)_1—, — (S)_1,—p is of FA-
type although it is not compact and it does not satisfy ||Id|| < 1. Clearly,
u—u = 0 has nontrivial solutions, i.e. every element in (S)_1_, satisfies
this equation. Note also that Id : (S)_1_, — (S)_1,_4 is a compact embedding
for each q > p.

Example 5.4.2 Let a € (S)_; be a stochastic process such that
E(a) = aqyp,.) € (=1,1). Then the equation

u—adu =g,

has a unique solution for each g € (S)_1. Indeed, in [6] it was recently proved
that there exist no zero divisors for the Wick product in (S)_1. Thus, from
(1 —a)Qu = 0 it follows that either u = 0 or a = 1. Since E(a) # 1, it
follows that u = 0. So, u — aQu = 0 has only the trivial solution. Note that
u— adu = g can be reduced to a lower triangular form as in (5.47):

Uy — G(0,0,...) Uy = G~ + E Qy—aUeq,
|[vy—a|>0

where a = Zveg a K, a, € R, v € J. Applying the same procedure as in
Theorem 5.4.2 we obtain by induction on |7y|:

uy = (Id — a(o,o,“.))fl(g7 + Z Ay—qlUa),
[v—a|>0

where u,, a < v, are known from the previous steps. Choose p € N large
enough such that

|aa| _pa 1
Z — = (2N) T < —.
>0 1-la V2

Then, 3. cq luy|?(2N) 77 < 00, and u = 3
u—adu = g.

e u, K, is the unique solution to
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In the following example we consider the case of Sobolev spaces X = VVO1 (1),
X' =W=H(I), and I is an open subset of R.

Example 5.4.3 Leta =) a0, K, be a singular generalized process such
that a € L>®(1)®(S)_1,—pj2. Consider the mapping A : WH(I)®(S)_1,—, —
W2(I) @ (S)-1,—, defined by

Au) = aQu, uwe W) ® (S)_1_,p.

In Lemma 4.1.1 we proved that A is a continuous mapping.
In general, A is not a compact mapping, but if |E(a)||L~ <1 and if

Z HOJQHL‘X’ (QN)—% <

1
2 1= Bl V2

then A is of FA-type.

Especially, if a = W is white noise given by Wy(w) = >~ &k(x)Hom (w),
reR,we, then E(W) =0, and

= _b _1 = _b
D NGkl (2k) 72 < 2(m)75 ) (2k) 7%
k=1 k=1
by the uniform boundedness of the Hermite functions. Now we can choose p
1
large enough such that 3 5, (2k)™2 < % Thus, the equation

u—Wou=g

has a unique solution u € W'(I)®(S)_1,_, for each g € WH2(I)@(S)_1_,.

5.4.2 Applications to the Dirichlet problem

In this section we continue with the assumption that X = W;*(I),
X' =W~Y%(I) and I is an open bounded subset of R".

Consider the stochastic Dirichlet problem with a perturbation term driven
by the Ornstein-Uhlenbeck operator, given by (5.38)

LOu(z,w) + cP(R)u(x,w) = h(z,w) + ZDifi(:lr,w), relweQ,
i=1

u(z,w) lar = g(z,w),
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where L is a stochastic differential operator of the form (5.39), ¢ is a real
constant, R = /D and P is a polynomial of degree m with real coefficients.
Denote by h = h+ Y"1 | D; f*. Denote by

ZD Za” )D; + b (x Z 2)D; + d, ().

For each a € J, L,, is a deterministic linear differential operator. Recall that
E(aV) = a(ooo , BE(V) = bzo,o,o,...)’ E(d) = (0,0,0,...) E(d) = do,,.)-

Now we impose the following conditions on the operator L 4+ ¢P(R)Id:

o (L) = Lop,,.) is elliptic i.e. there exists A > 0 such that

Z E(a)(x)ybip; > AP, z el eR, (5.48)
i,7=1
[ J
a? b, de L) ® ()1 -p-ay 4,75=1,2,...,n, (5.49)
[ J
(E(d) + cP(la]), @) 2y — Y (B, Dig)r2(ry <0, (5.50)

for all p € Wy *(I), ¢ >0, a €9,

cP(k) <0, k> ko k ko €N. (5.51)

Proposition 5.4.1 ([28]) Assume that the operator L + cP(R)Id satisfies
(5.48), (5.49), (5.50) and (5.51). Ifu € W, *(I) ® (S)_1._, satisfies equation

LOu(z,w) + cP(R)u(z,w) =0
m I x Q, then u = 0.

Proof. By (5.48) L,y = E(L) is an elliptic (deterministic) linear differ-
ential operator and equation LOu(z,w) + ¢P(R) u(x,w) = 0 can be reduced
to a system of equations

(Lo, + cP(R)Id)uy = Y Ly pug,

[v—8]>0
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that can be solved by induction on |y| to obtain that w, = 0 for all v € J.
Clearly, u =} _qu,® K, = 0 converges in Wy 2(I)®(S)_1._p for all p € Ny.
Thus, u = 0 is the unique solution to Lu(x,w) 4+ c¢P(R)u(z,w) = 0. O

Let us stress that the boundary condition in (5.38) is interpreted in the
sense that (u(z,w) — g(z,w)) lar= 0 in Wy*(I) ® (S)_1_,. First we note
that it suffices to solve the Dirichlet problem (5.38) for zero boundary values.
Namely, for u(z,w) = u(z,w) — g(z,w) we have by linearity of the operator
LO 4 cP(R) that

LOG+ cP(R)a
= LOu+ cP(R)u — LOg — cP(R)g

=h+ Z D;f" — (Z DZ(Z a’QD;g +b'Og) + Z 0D g+ d<>g> —cP(R)g
i=1 i=1 j=1 i=1

=h— ZciQDig —d0g — cP(R)g + ZDi <fi — ZaijOng — bi<>g>
i=1 i=1 j=1
i=1

where h = h—Y"1" | ¢0D;g—dOg—cP(R)g and fi = fi— > i_1a90D;g=b"0g,
it =1,2,...,n. Clearly, 4 [s;= 0. Thus, any stochastic Dlrlchlet problem of
the form (5.38) can be reduced to the case with zero boundary condition.
Moreover, if h, f* € L*(I) ® (S)_1_, and g € W"*(I) ® (S)_1_,, then
hfi e LX) ®@ (S)-1—p, @ € Wi(I) @ (S)-1—p and v = G+ g €
WI2(1) & () 1.,

Theorem 5.4.3 ([28]) Let the operator L and the polynomial P satisfy
conditions (5.48), (5.49), (5.50) and (5.51). Then for h,f' € L*(I) ®
(S)-1—p, @ = 1,2,...,n and for g € W'(I) ® (S)_1,_, the stochastic
Dirichlet problem (5.38) has a unique solution u € WH(I) @ (S)_1,_p.

Proof. Without loss of generality we may assume that ¢ = 0 and p is large
enough so that (in accordance with (5.44)) we have

L. Py 1
> Myl (2N)"7 < —, (5.52)
la|>0 || 00,... |Loo \/§
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where || L[|z = max {||a¥[lz=, |65]lz=, 1€ llz=, lld ]Iz}

Let ||L,|lop, v € J, denote the operator norm of L. : W2(I) — W12(I),
which has the property (see [57], [58]) that

1Z:llop < 4 max {[la[lzoe, (105 2o, 15 e by o}
Clearly, if (5.49) holds then from >, | L+l (2N)~ 2" < o0 it follows
that > 4 [|L, lop(2N) =% < 00. Also, (5.52) implies that

L., P 1
Z Ml oy o L
ly|>0 ” (0,0,...) ||0p \/5

Observe that LOu+ P(R)u =h+ ;" | D; f* can be written as

(Lo..y + eP(NDId) uy () =l (2)= Y Lypug(e),  uy(2) lor=0, 7 €.

BEI
[v=81>0
This system is lower triangular and can be solved by induction on |v|.
In each step the operator that is involved, Ly, ) + cP(|v])Id is by the
assumptions (5.48), (5.49) and (5.50) a deterministic elliptic linear differential
operator with bounded coefficients. From (classical) deterministic theory
([5]) it follows that the last equation has a unique solution and that

I(Zo0...) + eP(Y)Id) oy #0, 7 €.

Let us show that {L(p,..) + cP(k)Id, k € No} is a bounded family of
operators. We have, for my > 0 large enough

|c|mq

1L @0...)+eP(R)Id]lop 2 |el|[P(K)| =1L 00,0 lop 2 Ielmo=lILo0..slop 2 =5
thus there exists C > 0 such that

I(Loo,.) + cP(k)Id) s < C, k€ Ny. (5.53)

Let v = (0,0,...). Since h(0,07---)7f(io,0,...) € L*(I),i=1,...,n, from the
deterministic theory of elliptic PDEs (see e.g. [5]) it follows that the Dirichlet
problem

(Lo,0,..) + cP(0)1d) uqp,.)(x) = hop,.)(®), woo,.)(x) [or="0
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has a unique weak solution w,.) € VVO1 ’2(1 ). Moreover, there exists the
inverse operator (Lo, + ¢P(0)Id)~* as a bounded operator

(Loo..y + cP(0)Id)~ = L*(I) — Wy *(I)
and the estimate
o, yllwrz < [[(Lo..y + cP0)Id) " lop - oo
holds, where C' is the constant from (5.53).

ez < Cliho,. 22,

yoos

Let v = (1,0,0,...). From the previous step we already obtained u(,...),
so it remains to solve the problem

(L(0707_.,) + CP(l)Id) u(l,O,...) (SL’) = h(1707m) (JJ) — L(l,O,...)u(O,O,...) ($)

with a zero boundary condition. Since all coefficients in L, ) are L>(I)
functions, u(y,.) € WH?(I), after differentiating in the weak sense we will
have L1, )u@,,.) € L*(I). By assumption, hio.) € LAD),i=1,...,n,

thus there exists a unique weak solution ug oy € Wy*(I). Moreover,

goue

w0, )llwre < [[(Leog,.) + CP(1>Id)71Hop : (Hh(l,o,.‘.)HLQ + 1 L(1,0,..)llop - Hu(o,o,...)HL?)
< C (bl + 1La0.llop - u0,.9]l22) 5 (5.54)
and the constant C' is the same as in the previous step.
In the same manner we obtain u, for v = (0,1,0,...),..., in general for
all |y] = 1.

Let now |y| = 2. For example, if v = (2,0,0,...) the problem we obtain
will have the form

(Loo,.) + cP(2)1d) uao,.)(x) = heg, ) (2)—Leo, w0, (@) —Lao,. ) wio..) ().

If for example, v = (1, 1,0, ...), then we have to solve

In any case, the right-hand of the equation involves known terms determined
in the previous steps, while on the left-hand side in each step only the elliptic
operator Lo, .y and the perturbation term cP(2) are involved. Thus, we
obtain the weak solutions u, for each v of length two. For each u., an estimate
of the form (5.54) holds, e.g.

w0, llwie < (Lo, + cP(2)Id) o
(o, 2 + 1L@o,..llop - 1w©o0,. 122 + | L0, lop - 10,1l 22)
< C (Iheo, ez + 1L@o. ) llop - lwoo,. 22 + 1 L0, lop - 1eo,..9]l22) -
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For each v € J we will solve a deterministic Dirichlet probem of the form

(L(O,O,...) + CP("YD[d) uy =h, — Z Ly _pug,

|[y—B1>0

where the right-hand side becomes more complicated in each step, but in-
volves only known terms for which the problem can be solved. Moreover,
we obtain norm estimates in each step with the same constant C. This
follows from the fact that on the left-hand side of the Dirichlet problem
L,,.) + cP(|y|)1d plays always the role of the differential operator, and we
have proved in (5.53) that

(L0, + cP(Y)Id) ™ |op

is uniformly bounded by C.

We will prove now that the series » _,u,(z) ® K,(w) converges in
WH2(I) ® (S)_1,—p, and this will define the solution

u(@,w) =Y (Lo +cP(W)Id) " [ hy(a) = D Ly sus(@) | 9K, (w).

=
7 =510

Indeed, from the estimates (5.53), (5.54) and the generalized Holder
inequality we obtain

D My 2 (2N) 77 <

v€J

207 [ Yo l17:2N) "+ > | D allop - llugllze | (2N)77 | <

€l €l a+B=vy
v v || >0

2
20 | Y I [222N) 7 4 | D (1 ZallopN)7% | D flugll72(2N) 7

ved lo|>0 Beg

Clearly, K = >~ ;[/h,[72(2N)"" < oo since h, f* € L*(I) @ (S)-1,-p,
and A =37, | Lallop(2N)~%" < 00 by assumption (5.49). Thus,

D My 2 (2N) Y S 2C%(K + A Yl 1.2 (2N) 7).

yed yed
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By (5.53) we have that 1 — 2C%A? > 0. Thus,

20°K

2 —
Sl e 2N) 7 < =2 <

v€J

Q.

This means that u = > ju,(z) @ Ky(w) € WH(I) @ (S) -1, is the
unique solution (uniqueness follows from uniqueness of the Wiener-1t6 chaos
expansion representation of stochastic processes) of the Dirichlet problem.[

Example 5.4.4 Assume the coefficients of the operator L are uniformly
bounded i.e. ||L,||p~ < M, v € J. Choose p large enough such that

2763,|w|>0<2N)_% < % Then, condition (5.52) is satisfied. For

example, white noise W and exp®V have uniformly bounded coefficients in
their chaos expansion.



Epilogue

The chaos expansion approach of the Malliavin calculus, the calculus of
variations in infinite dimensional analysis, interpreted in the white noise
setting provides a unified approach valid for both continuous and discon-
tinuous measures, and can be carried over to the Lévy processes. This is left
as a possibility to consider for further research.

Another possibility for generalization of the concept of the Malliavin
calculus of singular generalized stochastic processes is to take advantage of
Colombeau generalized function spaces.

Additionally, the theory can be developed for a wider class of operators
generated, for example by the Lévy-Laplacian and the symmetrized Lévy-
Laplacian, and be applied to linear and nonlinear equations. The operator
semigroup technique can also be considered within this framework.

Further applications to stochastic partial differential equations, the
modeling of probabilistic properties of their solutions and the studying of
numerical approximations of their solutions remain as enticing possibilities
for future investigations.
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Kao monmpuroc ManuaBeHoBOj mudepeHujassHoj teopuju, ¢op-
MyJIICaHe Cy TeopeMme Koje onucyjy ManmaBeHOBe onmepaTope Ha yOIl-
MITEHWM CTOXACTUYKUM MporecuMa. Takobhe cy yodeHe m MCTaAKHYyTe
Be3e OBUX omepaTopa ca oarosapajyhmum ¢parkmuonnm ManuasBenoBum
orepaTopuMa.

Meton xaoc ekcnani3uja, IPUMEHEH Ha pelaBame CTOXaCTUYKUX
mdepeHnnjalHX jefHaYnHa y KojuMa ¢urypumy ManmaBeHOB U3BOL
u Opumraju-Y 1eMO6eKOoB omepaTop, MPE3eHTOBAH je y 3aBPIIHOM eIy
nucepranuje. KOHKpPeTHO, NpenCcTaB/beHA CYy pellelmha YOIIITEHOT
npobJjeMa COICTBEHUX BPETHOCTU 3a omeparop MasmaBeHOBOT M3BOIA
kao u JlupuxmeoBor mpobJsema ca mneprypbdamujamMa TeHEePUCAHUM
nejcrBoM OpHmTajH-Y 1eMOEeKOBOT omepaTopa.
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