ПРИЛОГ ТЕОРИЈИ МАТЕМАТСКЕ КЛИМЕ

од Д-ра М. Миланковића.

(Примљено на скупу Академије Природних Наука 5. априла 1912. г.)

Под математском или соларном климом разумевамо ову климу која би се на површини земље указала када земља неби била опкољена атмосфером и кад би измала свугде кругу површину.

Познавање те хипотетске климе корисно је и за проучавање особина фактичне климе на земљи, јер се то познавање може сматрати као прво решење оштога проблема земаљске климе када се утицани атмосфере и морских струја сматрају као секундарни утицаји. Сва одступања фактичне климе од те математске климе нису се, према томе, приписати тима секундарним утицајима, па је решењем проблема математске климе и проучавање тих секундарних утицаја озакролено, јер су ефект тих утицаја одељен од ефеката првихарних.

Trabert се је у својој расправи Das solare Klima, Meteor. Zeitschr. Novemb. 1894. бавио проблемом математске климе и ставио себи у задатак да одреди средње месечне температуре које би се указале на разним географским ширинама када земља неби била опкољена атмосфером. Температуре које је он одре-

дио разликују се веома знатно од фактичних температур. Тако би — по његовом расуциу — на половинама земље владала за време полуодишићке ноћи температура од — 273С, тј. температура абсолютне нуле, док би средња температура месеца јуна била на поло 82С.

То велико одступање од фактичне климе потиче, као што ћемо у овој расправи докажемо — од тога што је Trabert защитарно једначоважан фактор који утиче на соларну климу: спровођење топлотних множина унутрашњост земље и обратно. Узме ли се тај утицај и повија интегрирања о соларној копести у обзир, то је могуће на чисто физикалиних претпоставака конструисати хипотетску соларну климу која се знатно мање разликује од ефективне него Trabert-ова.

Ми ћемо се у овој радњи бавити теоријом те хипотетске климе која се математицим сретним да се конструисати и чија је одредба један проблем теоријске физике.

Замислимо ли површину земље солидифицирану и лишену атмосфере, то ће температура једнога произвољног њеног места бити последица следећа три утицаја: инсоляције, радиације и кондукције.

Под инсоляцијом разумевамо довољање топлотних множина на површину земље услед сунчевог зрачења. Услед тога утицаја довоља се на једном произвољном месту земље на једницу површине и у једнини времена множина топлоте која је, аки се експонентитет земљине путање не узима у обзир, једнака:

$$A J \cos \alpha$$

при чему z означава зенијску листацију сунца у уоченом моменту, J соларну константу а A абсорб-
цију земаљске површине. Зеницка дистанција z, која зависи од географске ширине посматраног места и од дневнога и годишњега доба уоченог момената, може се одредити разним, остале две константне величине J и A одређују се експерименталним путем па се зато утицај инсолације може одредити до- волном тачности.

Под радијацијом разумевамо зрачење топлотних мињини са површине земље у интерпланетарни простор. Како је температура интерпланетарног простора близка абсолютној нули или температурни од — 273° Celsius-a, то ће, ако је T абсолютна температура површине у уоченом моменту јединица површине земљине одашћава јединици времену у интерпланетарни простор мињину топлоте која је, према Stefan-овом закону, једнака:

$$ \sigma E T^4 $$

где је σ константа Stefan-овог закона, а E емисиони коефицијент земљине површине. Када би та површина била потпуно црна она би тај коефицијент био једнак јединици, овako је једнак аборбционом коефицијенту A, па је зато горња мињина топлоте једнака

$$ \sigma \cdot A T^4. $$

И та се мињина може одредити довољном тачности.

Под кондукцијом разумевамо спровођање топлотних мињини са површине земље у њену унутрашњост (и обратно) услед тог што температура површине није једнака температури суседних јој слојева. Када су ови слојеви од површине земљине она наступа струјање топлотних мињини према унутрашњости земље, а у обрнутом смислу када су они топлији. То крећење топлотних мињини регулисано је Fou-

гриев-овом теоријом спровођања топлоте па се, према томе, може и тај утицај одредити те ћемо при тог одредбен начин једино на потешкоће математичке природе, но које ће се моћи савладати.

Када нам на тај начин покаже за руку да одре- димо све топлотне мињине, које се течајем године до- важају и одвајају са површине земље, онда ће бити могуће одредити температуру земљине површине у произвољном моменту времена и на тај начин конструисати слику математичке климе. Но пре по што приступимо томе задатку испитујамо квалитативну страну тања утицаја на математичку климу, кон- дукције, који Trabert није узео у обзир.

Позната је чинилица, а она следује и из Fou- grieve-ove teorije sprijavaanja topolote, da se promene temperature na povrshini zemlje vec u dosti malenoj dubini ne opazavaju. Tak sa moze, prema Trabert-yu, uzeti1), da se na kontinentalju u dubini od 10 m temperature ne menju vremenu. Zato je dovoljno da pri ispitivanju kretanja topolotnih mognina uzememo samo gorj sloj zemljinike korove u dubini od 10 m u obzir.

Dona povrshina toga sloja ima, na jednom uchetom mestu zemlje, konstantnu temperature, blisku sred- noj godishnjoj temperature gorje povrshini koja se periodichki menja. U letno dobja godine bije srednja

devjv temperature gorje povrshini posmatranog sloja viša od temperature, na kojoj se stada od- rjava donja povrshina sloja, pa se donja, u to dobja godine nastupiti sprijavaanje topolotnih mognina u ivjetljajnost zemlje, a to je imati za posledicu da

ће температура површине бити мања него што би била без тога спровођења, дакле мања него што се налази из Тнаберт-ових претпоставака. Обратно ће у вимско доба године наступити спровођење топлотних мноштина из унутрашњости земље на површину што ће имати за последицу повећање температуре на површини. Квалитативни утицај кондукције ће се, дакле, у томе, да она снижава температуре површине лети, а повикуа зиму.

Почемо тако како добили апроксимативну слику утицаја кондукције приступимо математском одредби њених ефеката.

У то име можемо сматрати свој земљине коре сматрати на уоченом мосту као равну плочу, јер је његов радиус кривине — једнак радиусу земљине кугле — свеома велики, а на топлотно стање уоченог места утиче само непосредна околнина. Због тога се распоред температуре широм обеју површине те плоче — а и широм свакога равног пресека паралелних тима површинама — може сматрати као унформан, па ће спровођење топлоте на посматрано делу земљине коре бити регулисано Фурисеовом једначином:

\[
\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}
\]

при чему x означава одстојање производне тачке у унутрашњости плоче од њене горње површине, a temperature те тачке, t време, а a² коелективитет унутрашње спровођивости земљине коре. Означивмо ли sa h и на h спровођивост топлоте, a с специфичну густину земљине коре, то је:

\[
a^2 = \frac{h}{cp}
\]

Дебљину плоче, која према пређашњем, изнаша како описали 10 m, означимо опширно са h. Та је величина свакако тако одабрана да се на доњој површини плоче више не осећају осцилације температуре у горње површине a то значи, према поштаво теорији топлотних осцилација на површини земље, да је h тако велико да се помера

\[
e^{-\frac{h}{a} \sqrt{\frac{\pi}{t}}}
\]

(где је t периодосе осцилација) може зањемарити.

Зато је: за x = 0

\[
u = f(t)
\]

у = f(t)

Температура доње површине је константна т. j.

за x = h

\[
u = u_0 = \text{const.}
\]

Функција f(t) (граничног условия 3) још је неодређена, па ју ће заменити одређеном.

У радовима, који се баве теоријом спровођења топлоте у унутрашњост земље, претпоставља се, обично, да су осцилације температуре на површини земље хармоничне, т. j. претстављене функцијом:

\[
u = \cos \frac{2\pi}{\tau} t
\]
где T означава дужину дана (24^h). Ми се са тако једноставног поједноставном не можемо задовољити него моћамо поред дневних узети у обзир и годишње осцилације температуре.

Варијације температуре на површини земље претстављају суперпозицију дневних и годишњих варијација од којих свака има осцилаторан карактер, па је периоду првих 24^h а других године. Функција $f(t)$ ваља, према томе, даки такав облик да показује тај двоструко осцилаторан карактер. Функција, која задовољава тима условима, је косинус зенитске дистанције, па како је она и узрок двоструко осцилаторског карактера варијације температуре на површини земље — најважнији фактор загревања земљине површине осцилација пропорционалана је косинусу зенитске дистанције — то ћемо претпоставити да је функција $f(t)$ исте природе.

Косинус зенитске дистанције z дат је једначином:

$$\cos z = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos \omega \quad \ldots \quad 51,$$

где је φ географска ширина посматраног места на земљи, δ деклинација сунца, а ω сатни угл. На једном одређеном месту земље је φ константно, δ је периодична функција времена са периодом од једне године, а ω је периодична функција времена са периодом од 24^h.

Означио ли са t сунчано дневно доба — бројано од подне до подне — а са τ интервал од 24 сунчаних сати то је

$$\omega = \frac{2\pi}{\tau} t \quad \ldots \quad 6).$$

Зато је:

$$\cos z = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos \frac{2\pi}{\tau} t \quad \ldots \quad 7),$$

У горњој једначини није интервал τ — због не- једнакости сунчаних сати — потпуно константна, но

ми можемо без осетљиве погрешке сунчано време τ заменити са средњим временом онда је τ константна и једнако 24^h средњега времена.

Претпоставио да је функција $f(t)$ пропорционална функцији γ, па стављамо:

$$f(t) = c \sin \varphi \sin \delta + c \cos \varphi \cos \delta \cos \frac{2\pi}{\tau} t \quad \ldots \quad 8)$$

У горњој је једначини и величина δ функција времена:

$$\delta = \psi(t) \quad \ldots \quad 9)$$

са овим особинама: њена је максимална вредност $23^h 30'$ или у луксаро истер 041, она, растећи непре- стано од вредности нула, достигава своју максималну вредност тек по извуку интервал од једне четвртине године; њено раштване је веома споро па је максимална вредност нивода $\psi'(t)$:

$$\max \psi'(t) = 0.0064 \quad \{ \text{по дану} \}$$

Због тога ће се величина $\psi'(t)$ моћи у извесним слу- чајевима заменарити.

Наш је следећи задатак, према томе, овај: ваља наћи интервал једначине 1) који задовољава ове гра- ничне услове:

за $x = 0$

$$u = f(t) = c \sin \varphi \sin \psi(t) + c \cos \varphi \cos \psi(t) \cos \frac{2\pi}{\tau} t \quad \ldots \quad 10)$$

за $x = h$

$$u = u_a \quad \ldots \quad 11)$$
При томе је извод $y'(t)$ неома мален, а h је одабрано тако да је израз
\[e = \frac{h}{a} \sqrt{\frac{\pi}{x}} \]
занемарив.

Ставимо:
\[u = c \sin \varphi \sin \psi(t) + \frac{c}{h} \sin \varphi \cos \psi(t) x + \]
\[+ c \cos \varphi \cos \varphi(t) e^{at + bx} \]
(12)

Ова функција задовољава, ако се α и β згодно одаберу, једначину 1) јер је:
\[\frac{\partial u}{\partial t} = c \left(1 - \frac{x}{h}\right) \sin \varphi \cos \psi(t) \psi'(t) - \]
\[- c \cos \varphi \sin \psi(t) e^{\psi'(t) + \alpha c \cos \varphi \cos \psi(t) e^{at + bx}} \]
но како је $\psi'(t)$ занемариво, то је:
\[\frac{\partial u}{\partial t} = \alpha c \cos \varphi \cos \psi(t) \psi'(t) e^{at + bx} \]
(13)

Сем тога је:
\[\frac{\partial^2 u}{\partial x^2} = \beta^2 c \cos \varphi \cos \psi(t) e^{at + bx} \]
(14)

Ставимо у вредности 13) и 14) у једначину 1) то видимо да ће она бити задовољена ако буде:
\[\alpha = a^2 \beta^2 \]

Претпоставимо да је β комплексно, т.к. ставимо место β редом један од следећих двају израза:
\[p + i \beta \]
\[p - i \beta \]

а место α:
\[a^2 (p + i \beta)^2 = a^2 (p^2 - \beta^2) + 2i \beta p a^2 \]
\[a^2 (p - i \beta)^2 = a^2 (p^2 - \beta^2) - 2i \beta p a^2 \]

На тај начин можемо место всличине:
\[e^{at + bx} \]

Ставимо једну од ових двеју:
\[e^{at + bx + \beta \psi(t) + px + i \beta x} \]
\[e^{at + bx - \beta \psi(t) + px - i \beta x} \]
које можемо склопити у општину ако прву поменујемо са константом A другу са константом B па их саберемо. На тај начин можемо последњи члан једначине 12) заменити изразом:
\[c \cos \varphi \cos \psi(t)e^{At + Bt + px} \{ A, e^{i \beta (x + 2pa^2t)} \} + \]
\[+ B e^{-i \beta (x + 2pa^2t)} \]

Употребије Euler-ове обрасце можемо горњим изразу дати овај облик:
\[c \cos \varphi \cos \psi(t) e^{a^2 \theta + 2px} \{ A + B \cos \beta (x + 2pa^2t) + \]
\[+ i (A - B) \sin \beta (x + 2pa^2t) \} \]

Ставимо:
\[A + B = C_1 \]
\[i (A - B) = C_2 \]
где су даље C_1 и C_2 опет константе, а се тако узима $p = \beta$, т.о. горњи израз добијамо овај облик:
\[c \cos \varphi \cos \psi(t) e^{px} \{ C_1, \cos (px + 2p^2a^2t) + \]
\[+ C_2 \sin (px + 2p^2a^2t) \]
Функцији 12) можемо, према томе, дати овај облик:

\[u = c \sin \varphi \sin \psi (t) + \frac{u_0 - c \sin \varphi \sin \psi (t)}{h} x + \]

\[+ c \cos \varphi \cos \psi (t) \cos \left(\frac{t}{\tau} - \frac{x}{a} \sqrt{\frac{\pi}{\tau}} \right) + \]

Oва функција задовољава једначину 2) а формирана је у таквом облику да при згодном избору констаната задовољава и граничне услове 10) и 11), јер ставимо ли:

\[C_1 = 1 \]

\[C_2 = 0 \]

\[p = -\frac{1}{a} \sqrt{\frac{\pi}{\tau}} \]

то добивамо:

\[u = c \sin \varphi \sin \psi (t) + \frac{u_0 - c \sin \varphi \sin \psi (t)}{h} x + \]

\[+ c \cos \varphi \cos \psi (t) \cos \left(2\pi \frac{t}{\tau} - \frac{x}{a} \sqrt{\frac{\pi}{\tau}} \right) \]

15)

Ставимо ли у овој функцији:

\[x = h, \]

то добивамо:

\[u = u_0 + c e^{-\frac{h}{a} \sqrt{\frac{\pi}{\tau}}} \cos \varphi \cos \psi (t) \cos \left(2\pi \frac{t}{\tau} - \frac{h}{a} \sqrt{\frac{\pi}{\tau}} \right) \]

но како је:

\[e^{-\frac{h}{a} \sqrt{\frac{\pi}{\tau}}} \]

знамемо, то је:

\[u = u_0 \]

дакле је и гранични услов 11) задовољен. Зато нам једначина 16) претставља тражени интеграл парцијалне диференцијалне једначине 1) и даје нам закон по којем варирају температуре у посматраној плочи са дубином \(x \) и са временом \(t \).

Из једначине 16) следи да је температура посматраног дела земаљске коре дводимензионална функција; периода малих осцилација је \(\tau = 24 \) а великних година. Испитујемо ли промене температуре, што се дешавају у току једнога дана на дубини \(x \), то можемо изразити:

\[c \sin \varphi \sin \psi (t) = m \]

\[c \cos \varphi \cos \psi (t) = n \]

сматрати константнима за време тога интервала, па ће температура дубине \(x \) бити дата једначином:

\[u = m - \frac{u_0 + m}{h} x + n e^{-\frac{x}{a} \sqrt{\frac{\pi}{\tau}}} \cos \left(2\pi \frac{t}{\tau} - \frac{x}{a} \sqrt{\frac{\pi}{\tau}} \right) \]

16\(x \)

Означимо са \(u_0 \) средњу дневну температуру у дубини \(x \), то је она представљена изразом:

10°
\[u_t = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} u dt \]

t. j.

\[u_t = m + u_0 \frac{m}{h} x + \frac{n}{\tau} e^{-\frac{x^2}{\sqrt{\frac{\pi}{\tau}}}} \cos \left(2\pi \frac{t}{\tau} - \frac{x}{a} \sqrt{\frac{\pi}{\tau}} \right) dt \]

но како је:

\[\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cos \left(2\pi \frac{t}{\tau} - \frac{x}{a} \sqrt{\frac{\pi}{\tau}} \right) dt = 0 \]

tо је средња дневна температура на дубини \(x \) дати изразом:

\[u_t = m + \frac{u_0 - m}{h} x \]

На горњој површини, тј. за \(x = 0 \) је средња дневна температура

\[u_t = m \]

а на дубини \(x = h \) је средња дневна температура

\[u_t = u_0 \]

Једначина 17) показује да се средње дневне температуре \(u_t \) мењају са дубином линеарно. Пренесемо ли, према томе, на ортогоналном координатном систему као абсцису дубину \(x \) посматраног слоја вемлине коре (зато смо наперили осу \(x \) према доле) а као ординату средњу дневну температуру то нам праће \(ML \) претставља зависност средњих дневних температура са дубином у једном одређеном дану године. Абсциса тачке \(L \) је абсциза \(h \) слоја посло-женог осцилацијама температуре, а њена је ордината константна температура \(u_a \) у дубини \(h \).

За време једнога уоченог дана осцилирају температуре око њихових средњих вредности претстављених правом \(ML \). Амплитуда тих дневних осцила-ција је:

\[\pm n e^{-\frac{x}{a} \sqrt{\frac{\pi}{\tau}}} \]

она, како, она и да са дубином. На горњој је површини њена вредност

\[n \]

а у дубини \(h \) је тако малена да је занемарива. Криве \(S_1L \) и \(S_2L \), којих је одстојање у правцу осе \(Y \) од праве \(ML \) дато изразима:

\[+ n e^{-\frac{x}{a} \sqrt{\frac{\pi}{\tau}}} \]

\[- n e^{-\frac{x}{a} \sqrt{\frac{\pi}{\tau}}} \]
и које пролазе веома близу поред тачке L претстављају нам границе између којих температура у току уоченог дна варира. У току године осцилира тачка M између тачака M_s и M_v, које одговарају средњим дневним температурама најхладнијег и најтоплијег дана. Тачка L не мења свој положај.

Досадашњи резултати омогућују нам да при израчунавању соларне климе узмемо у обзир и утицај спротивана топлоте у унутрашњост земље и обратно. Соларна клима је, према пређашњем, ефекат инсолације, радиације и кондукције. Услед та три узрока довођују на једнину површину земље у малом интервалу времена Δt позитивне или негативне топлотне моножине

$$
\Delta q_1, \Delta q_2, \text{ и } \Delta q_3
$$

па ће се на површини указати у томе интервалу она температура за коју је алгебарски збир тих топлотних моножина раван нули, јер код то неби био случај онда би, ако је тај збир позитиван, температура површине одмах порасла, а опада ако је негативан све дотле док тај збир не исчезне.

Зато ће се температура површине израчунати из једначине:

$$
\Delta q_1 + \Delta q_2 + \Delta q_3 = 0 \quad \cdots \cdots \quad 18
$$

Као време Δt узимамо — по примеру Trabert-овом време τ, т. j. време од 24°. Средње дневне температуре израчунавамо, даље, из топлотних моножина што се у току једнога дана довођују на земљину површину.

Величине $\Delta q_1, \Delta q_2, \Delta q_3$ ће одредити као функције времена и температуре површине земље у уоченом месту.

Величина Δq_1 је она мно巽ина топлоте која се услед инсолације довођа на јединицу површину земље у времену τ. У једнини времена довођа се, према пређашњем, топлотна моножина:

$$
\frac{dq_1}{dt} = AJ \cos \varphi
$$

Употребив једначину 7) добивамо:

$$
\Delta q_1 = AJ \left\{ \sin \varphi \sin \delta \cos \varphi \cos \delta \cdot \frac{2\pi}{\tau} \cdot t \right\} dt \quad \cdots \cdots \quad 20
$$

па је:

$$
\Delta q_1 = \left\{ \frac{dq_1}{\tau} \right\} \quad \cdots \cdots \quad 21
$$

При примене једначине 20) у једначини 21) ваља имати на уму да се инсолација врши само за време док се сунце налази над хоризонтом, т. j. док је:

$$
\tau \leq \frac{\pi}{4}
$$

дакле од изласка до заласка сунчевог. Означимо ли трајање дневног лука сунчевог, дакле дужину дана, са θ, то је време сунчевог изласка $\frac{\theta}{2}$, а време заласка $\frac{\theta}{2}$, зато је:

$$
\Delta q_1 = \left\{ \frac{dq_1}{\tau} \right\} \quad \cdots \cdots \quad 21^*)
Величина \(\theta \) се израчунава из једначине 7) ако се у њој стави \(t = \theta / 2 \), \(r = \pi / 2 \). На тај начин добивамо:

\[
\sin \varphi \sin \vartheta + \cos \varphi \cos \vartheta \cos \frac{\pi}{r} \vartheta = 0
\]

одакле се може одредити величина \(\vartheta \):

\[
\cos \frac{\pi}{r} \vartheta = - \tan \varphi \tan \vartheta = - \tan \psi(t) \tan \varphi \cdot 22)
\]

Из једначина 20) и 21*) следује:

\[
\Delta q = AJ \left\{ \sin \varphi \sin \vartheta + \cos \varphi \cos \vartheta \cos \frac{2\pi}{r} t \right\} dt \cdot 23)
\]

т. j.

\[
\Delta q = AJ \left\{ \theta \sin \varphi \sin \vartheta + \frac{\tau}{\pi} \cos \varphi \cos \vartheta \sin \frac{\theta}{r} \right\} \cdot 24)
\]

Величина \(\Delta q \), израђена је, дакле, као функција дејнкалације \(\vartheta \) и дужине дана \(\theta \), а обе ове величине су функције времена, односно датума дана за који одређујемо величину \(\Delta q \).

Величине \(\delta, \theta, \varphi \) налазе се директно у сваком астрономском календару, \(J \) је, према најновијим испи-

тивањима, једнако 2 грам-калорије ако се за једницу времена узме минута, а за јединицу површине cm\(^2\), \(A \) зависи од природе посматраних дела површине.

Величина \(\Delta q \) је она множина топлоте која се у току од 24\(^\circ\) радијацијом додељива на земљину површину, па како земљска површина без престанка губи радијацијом топлоте множине, то је \(\Delta q \) негативно.

Према предањуњем додаћа се у јединици времена на јединицу површине топлота множине:

\[
\sigma A \cdot T^4
\]

gle је \(T \) абсолютна температура површине. При израчунавању топлоте множине која се у време \(T = 24\) додаја на земљину површину узимамо — по примеру Trabertовом — средњу дневну температуре \(u_r \) (у Cel-sius-овим степенима) у обзир, па је зато:

\[
\Delta q = - \sigma A (273 + u_r) \cdot T^4
\]

коефицијенат \(\sigma \) изаша по новијим испитивањима, 0·768·10\(^{-10}\) грам-калорија ако се за једницу времена узме минута а за јединицу површине cm\(^2\).}

1) Trabert, Lehrbuch der kosmischen Physik, Leipzig 1911. стр. 444. За израчунавање величине \(\Delta q \) могу се употребити и Angot-ове таблице, публиковане у: Annales du Bureau Central météor. de France. 1889.

\[
\frac{dq}{dt} = c \cdot T^4
\]

где су с и \(T \) константе које зависе од природе површине тела. Siegl, Uber das Emissionsvermögen von Gesteinen, Wied. und Ein. Wiener Sitzungsbe-
Величина Aq_i је она множина топлоте која се у току времена t довођа кондукцијом на јединицу површине земље. Према Fourier-овој теорији довођа се у јединицу времена на јединицу површине топлотна множина:

$$\frac{dq_s}{dt} = k \frac{du}{dx} \bigg|_{x=0}$$

где је k коефицијент сроподвижности температуре. И у овом случају сматрамо температуру површине у току једног дана константну и једнаку средњој дневној температури u_t тога дана.

Зато је:

$$\frac{dq_s}{dt} = k \frac{du_t}{dx} \bigg|_{x=0} \quad \ldots \ldots \quad 26)$$

но како је, обзиром на једначину 17)

$$\frac{du_t}{dx} = \frac{u_o - m}{h},$$

где m значи средњу дневну температуру површине то је:

$$\frac{du_t}{dx} \bigg|_{x=0} = \frac{u_o - u_t}{h}$$

пак зато је

$$\frac{dq_s}{dt} = k \frac{u_o - u_t}{h} \quad \ldots \ldots \quad 26')$$

множина топлоте која се у јединицу времена довођа на површину. У времену t довођа се множина

прилог теорији математске климе

$$Aq_s = \frac{h}{k} (u_o - u_t) t \quad \ldots \ldots \quad 27)$$

Ставимо ли вредности за Aq_1, Aq_2 и Aq_3 из једначина 24), 25 и 27) у једначину 18), то добијамо:

$$AJ \left\{ \theta \sin \varphi \sin \delta + \frac{t}{\pi} \cos \varphi \cos \delta \sin \frac{\pi}{\tau} \theta \right\} =$$

$$- \sigma A (273 + u_t) t + \frac{k}{h} (u_o - u_t) t = \sigma \quad \ldots \ldots \quad 28)$$

Означимо ли

$$\frac{\theta}{\tau} = \lambda \quad \ldots \ldots \quad 29),$$

где, дакле, λ означава однос дужине уоченог дана према интервалу од 24^h, то горња једначина добива овај облик:

$$\sigma A (273 + u_t)^4 + \frac{k}{h} (u_t - u_o) =$$

$$= AJ \left\{ \lambda \sin \varphi \sin \delta + \frac{1}{\pi} \cos \varphi \cos \delta \sin (\lambda \pi) \right\} \quad \ldots \ldots \quad 30)$$

У горњој једначини претставља u_o, према предањем, средњу годишњу температуру површине, tj.

$$u_o = \frac{1}{365} \sum_{i=1}^{365} u_t$$

Та вредност није још позната, но неће бити тешко прво ју априкосимативно одредити па ју помоћу једначина 30) и 31) верификовати и користити. Иначе су у једначини, осим величине u_t, познате све вредности, па нам зато једначина 30) служи за одредбу средње дневне температуре произвољног дана године на произвољном месту земалjsке површине и дозвољава, према томе, одредбу математске или соларне климе.
Примена теорије, што смо ју у овој расправи развили, на конкретне случајеве, посао је климатолошке, он ће најбоље знаћи одабрати материјалну константу која се у једначини 30) појављују. Ми смо се зато у превраћајима излаганима кретали на пољу чисте теорије, но мислимо да неће бити сувише да сада ту теорију применимо на један конкретан случај да би се и практична вредност њена јачо осетила.

Ми смо у почетку наше радње навели да је Trabert у својој цитираниој расправи израчунавао да би у месецу јуну владала на полутемпературата од +82°C док би за време полугодишње ноћи та температура пала на −273°C. Питамо сада какве резултате пружа наша теорија и израчунано температуре најточнијега и најхладнијега дана на полу.

Једначине, што смо их навели, дозвољавају нам да те температуре израчунамо само треба да у њима метну специфичне вредности величине које се у њима појављују. Те вредности одређуемо са овај начин.

Величине σ и J имају, ако се рачуна у грамкаложијама, за јединицу дужине узме см а за јединачку времену минута, према најновијим испитивањима ове вредности

$$\sigma = 0.768 \times 10^{-10}$$
$$J = 2$$

Абсорбциони коefицијенат A израчунамо на овaj начин:

Према напред цитираниој радњи Siegl-овоj дате су радијације воде и леда једначинама:

$$\frac{d q_1}{dt} = 0.496 \times 10^{-12} T^4$$

$$\frac{d q_2}{dt} = 0.437 \times 10^{-12} T^4$$

Експоненти ε не разликују се много од експонента ε који би следовао по Stefan-овом закону, а средња вредност обај коэффицијената горњих израза

$$0.467 \times 10^{-12}$$

не разликује се много од одговарајућих коэффцијената за хумус и за шкриље. Зато можемо увећати као средњу вредност:

$$\sigma A = 0.467 \times 10^{-12}$$

и претпоставити да Stefan-ов закон вреди. Обзиром на превраћању вредност коэффцијената σ добивамо

$$A = 0.36$$

За коэффцијенат h може се увести — ако је јединачку површину cm^2 а времена секунда — средња вредност 0.005,*) но како смо досад узели за јединачку времену минуту то је:

$$h = 0.3$$

Величина h је, према превраћању, 10 m, а како мери мо дужине у см то стављамо

$$h = 1000$$

Једначина 30) добива, дакле, овај облик:

$$0.768 \times 10^{-10} \times 0.36 (273 + u_v)^4 + \frac{0.3}{1000} (u_v - u_s) =$$

$$= 0.36 \times 2 \left\{ \lambda \sin \varphi \sin \delta + \frac{1}{\pi} \cos \varphi \cos \delta \sin(\lambda \pi) \right\}$$

За температурлу u_s узимамо вредност

$$u_s = -65^\circ$$

*) Овај податак дао нам је д.р. П. Бујовић, стаљин доктор Универзитета за климатологију и метеорологију.
на ћемо касније показати да је ова температура веома блиска средњој годишњој температури, а како је на полу $\phi = 90^\circ$ то горња једначина добива овај облик:

$$0.768 \times 10^{-10} \times 0.36 (273 + u_t)^2 + 0.0003 (u_t + 65) = 0$$

Сваком дану године одговара једно одређено λ и δ па се из горње једначине може одредити средња температура свакога произвољнога дана године. Ми ћемо ју применити за одредбу средњих дневних температура 21. јуна (п. р.) и 21. децембра (п. р.).

21. јуна достигава сунце своју највећу деклинацију, тј. за тај је дан

$$\delta = 23^\circ 50'$

а како тога дана сунце не зајализи то је

$$\lambda = 1$$

па горња једначина добива овај облик:

$$0.768 \times 10^{-10} \times 0.36 (273 + u_t)^2 + 0.0003 (u_t + 65) = 0$$

Ова једначина има корен:

$$u_t = -115^\circ C$$

Средњу годишњу температуру израчунаваћемо постојно тачно на овај начин: Како се сунце на полу не држе изнад хоризонта од 22. IX. до 21. III. то је за тај интервал неопходно $\lambda = 0$ па зато влада у томе интервалу температура од -115° или у абсолютној мери од $+115^\circ$. 21. III. почиње температура да расте достижући 21. VI. свој максимум од $38^\circ C$ или у абсолютној мери од 311° да до 23. IX. оцет падне на абсолютну температуру од $+155^\circ$. Претставимо ли између средњих дневних температура дијаграмом то ће тај дијаграм бити састављен из два дела: за интервал од 22. IX. до 21. III. биће дијаграм према паралелна абцисној оси са ординатом од -155°; за интервал од 21. III. до 23. IX. имаће дијаграм облик једне симетричне прома абцисној оси конкавне криве са максималном ординатом од $+311^\circ$ у средини интервала. Претставимо да је тај део дијаграма нараховао и узимио абцисну лу жену читавог дијагrama, која одговара једној години, за једницу абцисне, то је средња годишња температура једнака површини тога дијаграма т. j.

$$155 + \frac{1}{2} \frac{2}{3} (311 - 155) = 207$$

Средња је годишња температура, према томе, у абсолютној мери 207° или 66°C, па се разликује само за 1°C од претпостављене температуре u_t. Зато би, према нашој теорији, средње дневне температуре најтоплијега и најхладнијега дана на полу биле
+ 38°C и -118°C

оне су знатно ближе фактичним температурама него Trabert-ове вредности

+ 82°C и -273°C

па показују јасно велики утицај кондукције који је овом радњом добио свој математски облик.