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ABSTRACT

The relationship between brain structure and complex be-
havior is governed by large-scale neurocognitive networks.
Diffusion weighted imaging(DWI) is a noninvasive tech-
nique that can visualize the neuronal projections connect-
ing the functional centers and thus provides new keys to
the understanding of brain function. In this paper, we as-
sume there are up to two diffusion channels at each voxel. A
variational framework for 3D simultaneous smoothing and
reconstruction of a multi-diffusion tensor field as well as
a novel multi-tensor deflection(MTEND) algorithm for ex-
tracting white matter fiber traces based on the multi-diffusion
tensor field are provided. By applying the proposed model
to both synthetic data and human brain high angular reso-
lution diffusion(HARD) magnetic resonance imaging(MRI)
data of several subjects, we show the effectiveness of the
model in recovering branching fiber traces. Superiority of
the proposed model over existing models are also demon-
strated.

1. INTRODUCTION

The assessment of connectivity and the reconstruction of
3D curves representing fiber traces are useful for both basic
neuroanatomical research and disease detection. Diffusion
imaging is based on magnetic resonance imaging technique
which was introduced in mid 1980s [1]and provides a very
sensitive probe for detecting biological tissue structure. The
diffusion of water molecules in tissues over a time interval
t on the displacement r can be described by a probability
density function pt(r). pt is related to diffusion weighted
signal via a Fourier Transformation (FT) with respect to q,
which represents the diffusion sensitizing gradients, by

s(q) = s0

∫
pt(r)e−iq·rdr, (1)

where s0 is the signal in absence of gradients.
For Gaussian diffusion, pt is assumed to be a Gaussian,

(1) is then reduced to s(q) = s0e
−buT Du, where D is a

second order diffusion tensor, b = t|q|2 is the diffusion-
weighting factor, and u = q/|q|. Fractional anisotropy(FA)

of D with eigenvalues λ1 ≥ λ2 ≥ λ3 > 0 is defined as

FA =

√
3
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2)

(λ1 + λ2 + λ3)2
.

(2)
However, it has been recognized that Gaussian model is

inappropriate when there are different tissues with different
tensors occupying the same voxel[2, 3, 4, 5]. A simple alter-
native is the partial volume model for two diffusion-tensor
components. It assumes that pt is a mixture of 2 Gaus-
sians(in short, biGaussian). Then the diffusion is modelled
by

s(q) = s0(fe−buT D1u + (1 − f)e−buT D2u), (3)

where f ≥ 0, 1− f ≥ 0 are considered as volume fractions
of diffusion tensors D1, D2 respectively.

Considering the acquisition noise which corrupts data
measurement,natural smoothness of Di(x), i = 1, 2 and
f(x) across voxels, we present a new variational method
which simultaneously recovers and smoothes Di(x), i =
1, 2 and f(x). We applied the biGaussian model to each
voxel in the field while Parker et al [6] and Tuch et al. [7] ap-
plied it only to the voxels where the Gaussian model fits the
data badly. Thus they required voxel classification which
will incorporate error. Moreover, they did not consider de-
noising at all. Section 2 will explain in detail how to recover
the smooth multi-diffusion tensor field.

Regarding reconstruction of white matter fiber traces, a
widely used scheme is line propagation based on the princi-
ple eigenvector(PE) of the diffusion tensor[8, 9, 10].PE suc-
cessfully determines the fiber direction in cases when there
is a single fiber direction in each voxel. However, image
noise will influence the direction of the major eigenvector.
And as magnitude of anisotropy decreases, the uncertainty
in the major eigenvector increases, at which tracking may
be erroneous. Westin et.al [11] and Lazar et.al[12] used the
entire tensor to deflect the estimated fiber trajectory. This
algorithm is called tensor deflection(TEND). TEND is bet-
ter than using PE in the sense that the previous one is less
sensitive to image noise and is less erroneous in situation
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of degenerated anisotropy. But it still has the problem of
partial volume averaging of fiber direction.

In section 3, we will provide a new line propagation al-
gorithm based on the smooth multi-tensor field. It keeps all
the advantages of TEND and has two additional good prop-
erties: firstly, problem of partial volume averaging is au-
tomatically solved as it is based on multi-tensor field; sec-
ondly, it uses dynamically adjusted step size to keep total
curvature of traces low, to appropriately terminate tracking
and to increase algorithm accuracy.

2. RECONSTRUCTION OF MULTI-TENSOR
FIELD IN HARD MRI

We assume the data acquisition noise is additive and the dis-
tribution pt(r) is a biGaussian. The goal of this section
is to recover a smooth multi-tensor field Di(x), i = 1, 2
and f(x) from the noisy HARD MRI data. To guaran-
tee the positive definiteness of diffusion tensor D1, D2, by
Cholesky factorization theorem, we let Di = LiL

T
i , for

i = 1, 2, Li is a lower triangular matrix with positive di-
agonal entries. Positiveness of the diagonal entries is en-
forced by setting them to be exponents of some other vari-
ables. Constraint 0 ≤ f ≤ 1 is fulfilled through letting
f(x) = .5 + arctan(ω(x))

π which is an increasing smooth
function of ω. For conciseness, we still use diagonal entries
of L1, L2 and f themselves to set up the model. We use the
following non-constrained minimization model:

min
L1(x),L2(x),f(x)

∫
Ω

(
2∑

i=1

3∑
m=1

m∑
n=1

α|∇Lmn
i (x)| + β|∇f(x)|)dx

+
∫

Ω

∫ 2π

0

∫ π

0

|s0(x)(fe−buT L1LT
1 u + (1 − f)e−buT L2LT

2 u)

−s(x, θ, φ)|2sinθdθdφdx (4)

Where Lmn
i denotes the mnth entry of Li, α, β are used to

control smoothness of Lmn
i and f and thus that of the tensor

field. u = (sinθcosφ, sinθsinφ, cosθ)T with 0 ≤ θ < π
and 0 ≤ φ < 2π. The first two terms are the regularization
terms, the last term is the nonlinear data fidelity term based
on (3).

We employ a gradient descent scheme to solve the mini-
mization problem(4). Initials of f, L1, L2 are carefully cho-
sen to avoid sticking on local minima. How to select α, β
is a challenging question. We use two criteria to control the
choice: Firstly, it is well known that at locations with high
FA values, single Gaussian diffusion is enough to describe
the water molecule motion, thus f should be very close to 1
or 0 ; Secondly, images of ADC profile uT Diu also help to
evaluate smoothness of Lmn

i .

3. WHITE MATTER FIBER TRACTOGRAPHY

Results of (4) provide a smooth multi-tensor vector field and
a smooth volume fraction field f , fiber tractography based
on which is almost not sensitive to noise and thus more ac-
curate. In this section, we will provide an improved line
propagation algorithm for reconstructing white matter fiber
traces. Line propagation scheme is defined by: x(t + 1) =
x(t) +v(t + 1)δ, where x(t) is the position vector in R3 of
the streamline at time t, v(t + 1) is a unit vector from the
position x(t) to the next step x(t+1), and δ is the step size.

Based on DTI model, the widely used v(t + 1) is the
PE of the tensor at x(t). Due to the sensitivity of PE to
noise and the ambiguity of PE at voxels with low anisotropy,
Westin et.al [11] used the whole tensor D at x(t) to deflect
v(t) to obtain v(t + 1) as D · v(t). This scheme is named
as TEND. The multi-tensor deflection(MTEND) we will in-
troduce is based on partial volume model (3), at each voxel,
there are up to 2 diffusion tensors Di, i = 1, 2, define

vi(t + 1) = (1 − γ)v(t) + γDi · v(t) (5)

Where γ ∈ [0, 1] is a weight balancing previous fiber di-
rection v(t) and the deflected fiber direction Di ·v(t) which
is normalized before being used. Normalization is essen-
tially necessary as for human brain diffusion weighted MRI
data, norm of Di · v(t) is usually in the order of 10−3, ten-
sor deflection without normalization would not contribute
as much as expected.

To make following explanation concise, let f1 = f and
f2 = 1 − f . For i = 1, 2 we define step size corresponding
to tensor Di as δi = cfiFAiv(t) · vi(t + 1) with c a fixed
constant, FAi the fractional anisotropy(FA) corresponding
to tensor Di. As we know, if fi is very close to 0, channel
Di could be ignored; if FAi is very low, anisotropy of Di is
low; if v(t) ·vi(t+1) is low, there is too much bending be-
tween v(t) and vi(t+1). So fiber tracking should be termi-
nated at channel Di when anyone of the above quantities is
low. This could simply be done by setting a threshold to step
size so that channels with step size less than this threshold
are terminated. The threshold is a statistical value obtained
through a large size of experiments. This self adapting step
size constrains propagation speed in regions with high cur-
vature or low diffusion anisotropy while increases speed in
regions with low curvature or high diffusion anisotropy, it
also automatically terminates fiber tracking at channel(s)
with extremely low step size(s).

4. EXPERIMENTAL RESULTS

In this section we present synthetic as well as real data ex-
perimental results. We did experiments on a set of subjects,
but only list results of one subject for demonstration.
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(a) (b)

Fig. 1. (a)-(b)Images of ADC profile uT D1u with D1 the solu-
tion of Parker’s method and proposed model(4) respectively.

The first experiment is to demonstrate the superiority
of the proposed model (4) over Parker et. al’s method[6]
in recovering smooth multi-tensor field as well as the vol-
ume fraction f using human brain HARD MRI data. The
data set consists of 33 diffusion weighted images as well
as one image in the absence of a diffusion-sensitizing field
gradient. 27 evenly spaced axial planes with 128 × 128
voxels in each slice are obtained using a 3T MRI scanner
with a single shot spin-echo EPI sequence. Slice thickness
is 3.8mm, gap is 0 between two consecutive slices , repe-
tition time (TR) = 1000ms, echotime(TE) = 85ms and
b = 1000s/mm2, and the field of view (FOV) = 200mm×
200mm. Fig.1(a)−(b) compare maps of apparent diffusion
coefficient(ADC) profiles corresponding to D1, i.e. uT D1u
using solutions obtained from Parker et.al’s([6]) and pro-
posed model(4) respectively. The region is chosen around
corpus callosum in one slice of the human brain. In Fig.1(a)
shapes of ADC profile varies a lot from voxel to voxel, es-
pecially in regions outside the corpus callosum. In compar-
ison, in Fig.1(b), shapes of ADC profile change smoothly
from voxel to voxel, and in the region below corpus callo-
sum, voxels which are most likely to be of isotropic diffu-
sion have sphere-shaped ADC, this is more consistent with
the neuroanatomy.

The second experiment is to show MTEND algorithm
outdoes TEND algorithm in reconstructing fiber traces with
bifurcation involved. This is done on a simulated diffu-
sion tensor field with bifurcation of fiber traces expected
to appear on the boundary between portion of the field with
one tensor and the other portion with two diffusion tensors.
We firstly simulate a 20 × 20 × 3 multi-vector field shown
in blue arrows in Fig.2(a)(b). At each voxel, one arrow
corresponds to principal eigenvector of a diffusion tensor.
So there would be two diffusion tensors at location with
two arrows while one tensor at location with only one ar-
row. Secondly, we construct a multi-tensor field so that the
multi-vector field is the corresponding principle eigenvec-
tor field. MTEND algorithm is applied to the multi-tensor
field and the result is shown in Fig.2(a). Notice TEND is
applied on single tensor field, we then construct raw DTI
data based on the simulated multi-tensor field using(3) with
s0 = 400, b = 1000, f = 1 at voxels with one vector,f = .5
at voxels with two vectors, and 33 u’s which are uniformly
distributed on a sphere. Single tensor field could finally

(a) (b) (c)

Fig. 2. (a) Traces recovered by using MTEND based on simu-
lated multi-tensor field, the black points at the bottom are seeds.
(b) Traces recovered by using TEND based on the corresponding
reconstructed DTI data. (c) Axial view of fiber tracking results in
corpus callosum region using MTEND(top),TEND(bottom) algo-
rithm resp.

(a) (b) (c)

Fig. 3. (a)(c) are tracking results using TEND, MTEND method
respectively. (b) Anatomic image of one slice with red regions the
seeds of tracking.

be reconstructed using least-squares method based on DTI
model. Applying TEND algorithm to the single-tensor field
we obtain result shown in Fig.2(b). In Fig.2(a)(b) the four
black points are seeds of the fiber tracking. Nice bifurca-
tions are observed in Fig.2(a), and they take place on the
boundary between the single tensor field and the two-tensor
field as expected. In comparison, no bifurcation is visual-
ized from Fig.2(b) and only the most left fiber trace goes al-
most along the vector field, while the other 3 fiber traces do
not make sense at all. This verifies the accuracy of MTEND
algorithm based on multi-tensor field outdoes TEND based
on single-tensor field in recovering fibers with branching.

Next, fiber tracking results on human brain HARD MRI
data are shown. The main aim is to show that MTEND and
TEND work similarly in the corpus callosum region where
Gaussian diffusion is dominant. But they differ in regions
with non-Gaussian diffusion. Fig.2(c) shows axial view of
tracking results around the corpus callosum region using
MTEND(top),TEND(bottom) algorithm. The tracking re-
sults are embedded on a 2D anatomic image. Tracking starts
from a small portion inside the corpus callosum. No signif-
icant difference is observed as in corpus callosum region,
Gaussian distribution is dominant, biGuassian model with
f � 1 and Gaussian model work equivalently in recovering
a single-tensor field.

Finally, we select two regions of interest(ROI) from the
internal capsule(red region in Fig.3(b)) for another set of
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comparison. We set all voxels with high anisotropy in the
whole brain volume as seeds, then apply MTEND based
on multi-tensor field recovered using model(4) and TEND
based on single-tensor field recovered using Guassian diffu-
sion model to reconstruct fiber traces separately. In MTEND
we set γ = 0.9, threshold of step size δ to be 0.1 which
is obtained from a large size of experiments. Only those
fibers passing through the ROIs are retained and shown in
Fig.3(a)(c) for TEND and MTEND respectively. Clearly,
MTEND method recovers more branching fibers than TEND
method does and these branching fibers are reasonable from
the view point of neuroanatomy. Specifically, it happens in
3 different locations: the first one is at the lower right corner
and directed by orange arrow. Bunches of fiber traces with
several branches are nicely shown up in Fig.3(c), but they do
not appear in Fig.3(a). The second one is located at the mid-
dle and directed by blue arrow. A strong bundle connecting
the left portion and the right portion is clearly visualized
in Fig.3(c) but only one fiber trace is shown in Fig.3(a).
The third one lies in the most upper left position: Fig.3(c)
looks thicker and includes more fibers in each branching
than Fig.3(a) does. The main reason for the difference is that
voxels involving branching in MTEND method are charac-
terized as isotropic, so TEND algorithm terminates at these
voxels.

5. CONCLUSION

A new variational framework for simultaneous reconstruc-
tion and regularization of multi-diffusion tensor field to-
gether with a new fiber tractography algorithm based on
multi-tensor field are provided. The performance of the
proposed model has been evaluated on synthetic data and
several human brain HARD MR images. The experimen-
tal results indicate that proposed model(4) for recovering
multi-tensor field together with MTEND for reconstruction
of white matter fiber traces work more accurately than Gaus-
sian diffusion model together with TEND.

The proposed model is under the assumption that the
probability density function of diffusion is of linear com-
bination of two Gaussians. This results in 13 unknowns at
each voxel, and hence at least 13 diffusion weighted im-
ages acquisition is required to solved out 13 unknowns ac-
curately. Model that does not require specific assumption
on diffusion and that requires less diffusion weighted im-
ages will be addressed in separate papers.

6. REFERENCES

[1] D. Le Bihan, E. Brethon, D. Lallemand, P. Grenier,
E. Cabanis, and M. Laval-Jeantet, “Mr imaging of
intravoxel incoherent motions: Application to diffu-
sion and perfusion in neurologic disorders,” Radiol-
ogy, vol. 161, pp. 401–407, 1986.

[2] PJ Basser, J Mattiello, and D LeBihan, “Mr diffu-
sion tensor spectroscopy and imaging,” Biophys, vol.
66:259, pp. 267, 1994.

[3] A.L.Alexander, K.M.Hasan, M.Lazar, J.S.Tsuruda,
and D.L.Parker, “Analysis of partial volume effects
in diffusion-tensor mri,” Magn Reson Med, vol. 45,
pp. 770–780, 2001.

[4] LR Frank, “Anisotropy in high angular resolution
diffusion-weighted mri,” Magn Reson Med, vol. 45,
pp. 935–939, 2001.

[5] DS Tuch, RM Weisskoff, JW Belliveau, and
VJ Wedeen, “High angular resolution diffusion imag-
ing of the human brain,” in Proc. of the 7th ISMRM,
Philadelphia, 1999, p. 321.

[6] G.J.M.Parker and D.C.Alexander, “Probabilistic
monte carlo based mapping of cerebral connections
utilizing whole-brain crossing fiber information,” in
Information Processing in Medical Imaging, Amble-
side UK, 07 2003, pp. 684–696.

[7] D.S.Tuch, T.G. Reese, M.R. Wiegell, N.Makris, J.W.
Belliveau, and V.J. Wedeen, “High angular resolution
diffusion imaging reveals intravoxel white matter fiber
heterogeneity,” Magn Reson Med, vol. 48, pp. 577–
582, 2002.

[8] B. C. Vemuri, Y. Chen, M. Rao, Z. Wang, T. McGraw,
T. Mareci, S.J. Blackband, and P. Reier, “Automatic
fiber tractograph from dti and its validation,” in Proc.
of 1st IEEE International Symposium on Biomedical
Imaging, 2002, pp. 505–508.

[9] C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett, and
G. Di Chiro, “Diffusion tensor mr imaging of the
human brain,” Radiology, vol. 201(3), pp. 637–648,
1996.

[10] Rachid Deriche, David Tschumperle, and Christophe
Lenglet, “Dt-mri estimation, regularization and fiber
tractography,” in Proc. of 2nd ISBI, Washington D.C,
2004, pp. 9–12.

[11] C.-F. Westin, S. E. Maier, B. Khidir, P. Everett, F.A.
JoleszH., and R. Kikinis, “Image processing for
diffusion tensor magnetic resonance imaging,” in
Lecture notes in computer science:MICCAI, Cam-
bridege:Springer, 1999, pp. 441–452.

[12] M.Lazar, D.M.Weinstein, J.S. Tsuruda, Khader M.
Hasan, K. Arfanakis, M. Meyerand, B. Badie, H. Row-
ley, V. Haughton, A. Field, and A. Alexander, “White
matter tractography using diffusion tensor deflection,”
Human Brain Mapping, vol. 18, pp. 306–321, 2003.

72


