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PREFACE

IN this treatise an attempt is made to give, in as

elementary a form as possible, the main outlines
of Lie’s theory of Continuous Groups. I desire to
acknowledge my great indebtedness to Engel's three
standard volumes on this subject; they have been
constantly before me, and but for their aid the present
work could hardly have been undertaken. His Con-
tinuierliche Gruppen, written as it was under Lie's
own supervision, must always be referred to for the
authoritative exposition of the theory in the form in
which Lie left it. During the preparation of this
volume I have consulted the several accounts which
Scheffers has given of Lie’s work in the books entitled
Differential-gleichungen, Continuierliche Gruppen, and
the Berihrungs-Transformationen ; and also the inte-
resting sketch of the subject given by Klein in his
lectures on Higher Geometry. In addition to these
I have read a number of original memoirs, and would
specially refer to the writings of Schur in the Mathe-
matische Annalen and in the Leipziger Berichte. Yet,
great as are my obligations to others, I am not with-
out hope that even those familiar with the theory of
Continuous Groups may find something new in the
form in which the theory is here presented. Within
the limits of a volume of moderate size the reader
will not expect to find an account of all parts of the
subject. Thus the theory of the possible types of
group-structure has been omitted. This branch of
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group-theory has been considerably advanced by the
labours of others than Lie; especially by W, Killing,
whose work is explained and extended by Cartan in
his Thése sur la structure des groupes de transforma-
tions fimis et continus’. A justification of the omission
of this part of the subject from an elementary treatise
may perhaps also be found in the fact that it does
not seem to have yet arrived at the completeness
which characterizes other parts of the theory.

The following statement as to the plan of the
book may be convenient. The first chapter is in-
troductory, and alms at giving a general idea of
the theory of groups. The second chapter containg
elementary illustrations of the principle of extended
point transformation. Chapters ITI-V establish the
fundamental theorems of group-theory. Chapters VI
and VII deal with the application of the theory to
complete systems of linear partial differential equa-
tions of the first order. Chapter VIII discusses the
invariant theories associated with groups. Chapter IX
considers the division of groups into certain great
classes. Chapter X considers when two groups are
transformable, the one into the other. Chapter XI
deals with isomorphism. Chapters XTI and XIII
show how groups are to be constructed when the
structure constants are given. Chapter XTV discusses
Pfaff’s equation and the integrals of non-linear partial
differential equations of the first order. Chapter XV
considers the theory of complete systems of homo-
geneous functions. Chapters XVI-XIX explain the
theory of contact transformations. Chapter XX deals

1 See the article on Groups by Burnside in $he Encyclopaedia Bri-
tannica.
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with the theory of Differential Invariants. Chapters
XXI-XXIV show how all possible types of groups can
be obtained when the number of variables does not
exceed three. Chapter XXV considers the relation
subsisting between the systems of higher complex
numbers and certain linear groups. I have added
a fairly full table of contents, a reference to which
will, I think, make the general drift of the theory
more easily grasped by the reader to whom the sub-
ject is new.

It now remains to express my gratitude to two
friends for the great services which they have ren-
dered me during their reading of the proofsheets.
Mr. H. T. Gerrans, Fellow of Worcester College,
Oxford, at whose suggestion this work was under-
taken, found time in the midst of many pressing
engagements to aid me with very helpful eriticism.
Mr. H. Hilton, Fellow of Magdalen College, Oxford,
and Mathematical Lecturer in the University College
of North Wales, has most generously devoted a great
deal of time to repeated corrections of the proofs,
and suggested many improvements of which I have
gladly availed myself. With the help thus afforded
me by these friends I have been able to remove some
obscurities of expression and to present the argument
in a clearer light, though I fear I must still ask the
indulgence of my readers in many places. Finally
I desire to thank the Delegates of the Oxford Uni-
versity Press for undertaking the publication of the
book, and the staff of the Press for the great care which
they have taken in printing it.

J. E. CAMPBELL.
HerTtForD COLLEGE, OXFORD.

September, 1903,
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CHAPTER 1
DEFINITIONS AND SIMPLE EXAMPLES OF GROUPS

§ 1. If we have two sets of variables, ,, ..., z, and @’ ..., 2,/,

connected by the equations

(1) ol =fi(@, .0, ,),  (E=1,..,m),
they will define a transformation scheme, provided that we can
solve the equations so 28 to express the varishles @, ..., %, in
terms of the variables z/’, ..., #, .

We shall denote the transformation scheme (1) by S.

The operation, which consists in substituting for z,, ..., ,
in any function of these variables f,, ..., f, respectively, will
be denoted by 8, or simply by 8 when ‘there is no need to
indicate the objects on which the operation S is performed.

So 8, will denote the operation of substituting for y, ..., 9,
respectively, i (1, ..o, Yn)s -vs Siu (Y15 +ovs Un) respectively.

Similarly the operation which consists in substituting for
@; the funetion f;(f,, ..., f,) will be denoted by S?, and so on.

Solving the equations (1) we obtain the algebraically
equivalent set

(2) = Fy(z/, ..., x,)), t=1,..,n)

From (1) and (2) we see that

@ SF (L), ens @p)s oo Fulitys oy 7))
Ef,-(Fl(%, --':xn)! very Fn (zl: ceey ﬁn»

We therefore denote the scheme (2) by $-7, and the operation
of substituting F) (), ..., @), ..., F(2y, o0y @) for o, ..., @,
respectively by §,~%.

The two schemes (1) and (2) are said to be inverse to one
another.

§ 2. If we have a second transformation scheme T, viz.

/= 6y @), (=1 em),

then TS, will denote the operation of substituting 7; (¢y, ..., ¢,,)
for ;.

CAMPBELL B



2 GENERAL DEFINITION OF A GROUP [2

The function f;(¢y, ..., $,) Mmay be more compactly written
fid’,s the function fi ‘f’l(‘lflv oo ‘l’n)f e ‘f’n(‘l’l’ s ‘I’n)) may be
written f; ¢ ¥, and 8o on.

In TS the order in which the operations are to be taken
is from right to left; but it should be noticed that, f being
the functional symbol which corresponds to S, and ¢ the
functional symbol which corresponds to T, the functional
symbol which eorresponds to 718 is not ¢f but f¢.

So if we have & third transformation scheme U, viz.

& = Wi (B s Tn)s (i=1,..m)

UTS would denote the operation which consists in first opera.-
ting with 8, then operating with T’ on this result, and finally
operating with U ; the functional symbol which corresponds
to UTS 18 f¢y : that is, UTS is the operation which consists
in substituting f, ¢V, ..., fuéy for zy, ..., &, respectively*.

ST denotes the operation of substituting ¢f, ..., ¢,f for
@y, +ury &, Tespectively, and T'S the operation of substituting
for @y, ..., %, respectively, fi¢, ..., f,®; if then

fie=¢fs  (i=1L...m)
ST = TS, and the operations S and T are said to be per-
mutable.

§8. In accordance with what precedes, ST'S,~! denotes the
operation of replacing z; by F;¢f; it follows therefore that
when STS,~! is applied to f;(2,, ..., %,) this function becomes
f;ﬁ%ﬁ}f; that is, since f;F = @, it becomes ¢;{(f1, ..., fp)-

o thus see that the operation STS~! has the same effect
on the variables ./, ...,,/, when expressed in terms of &y, ..., 2,
by the scheme 8, viz.

= fi (g, oors ), E=1,..,m)
as the operation T, has on the variables @/, ..., z,,"; STS! is
therefore said to be an operation similar to T with respect
to S.

§ 4. If we have a system of transformation schemes S, S,,...,
and if the resultant operation generated by successively per-
forming any two operations of the system is itself an operation
of the system, then the transformation schemes are said to
form a group.

* In Burnside’s Theory of Groups the order of operations ia taken from left to
right. The reason why we have adopted the opposite convention is that we
shall deal chiefly with differential operators, and it would violate common

wa @ . d
usagetowntezym the formya.



8] CONTINUOUS AND DISCONTINUOUS GROUPS 3

§5. A group is said to be continuous when, if we take any
two operations of the group S and T, we can always find
a series of operations within the group, of which the effect
of the first of the series differs infinitesimally from the effect
of §; the effect of the second differs infinitesimally from the
effect of the first; the third from the second and 80 on; and,
finally, the effect of the last of the series differs infinitesimally
from 7. Naturally this series must contain an infinite number
of operations unless S and T'should themselves chance to differ
only infinitesimally.

§ 6. If the equations which define the transformation
schemes 8,8, ... of a group involve arbitrary functional sym-
bols the group is said to be an infinite group; but we shall
see that & group, with an infinite number of operations within
it, is not necessarily an infinite group.

§ 7. A group is said to be discontinuous if it contains no
w0 operations whose effects differ only infinitesimally.

It should be noticed that the two classes of continuous
and discontinuous groups, though mutually exclusive, do not
exhaust all possible classes of transformation groups.

An example of a transformation group which belongs to
neither of the above classes is

= wz+a,
where a is & parameter and » any root of ™ = 1.

A series of transformations within the group, the effects of
consecutive members of which only differ infinitesimally, could
be placed between

2= owz+a and o = wx+b,

. — 2(b—
viz. z’=wz+a+bTa, x’=wx+a+¥,---,

¥=wt+a+ n—;—l(b—-a),
where n is a very large integer; but such a series could not
be placed between
Z=owz+a and o =w'z+b
if w and o are different m*™ roots of unity.
§ 8. The transformation scheme

xf = z;, (t=1,..,n)

is called the identical transformation; if it isincluded in the

transformations of a group, the group is said to contain the
identical transformation.

B2



4 EXAMPLES OF GROUPS [s

§9. A simple example of a discontinuous group is the set
of six transformations,

1 —1 1 [
=, o= = = - w’=5, o= 1-g, a:’=x—_—1:
by which the six anharmonic ratios of four collinear points
are interchanged amongst themselves,

If we denote the six corresponding operations by 8, (which
is equal to unity since it transforms z into z), S;, 8,, Sy,
85, 8, respectively, we verify the statement that these opera-
tions form a group when we prove that 8;8; = 8, 8,85 = 85,

and so on,

Inversion with respect to a fixed circle offers an even
gimpler example of a disecontinuous group; it only contains
two operations, viz. the identical operation 8, a:nd the opera-
@’z

2?4y

when the cirele of inversion is 2% +4* = a®.

tion S, which consists in replacing « by and ¥y by
aty
2yt
The group property follows from the fact that S, = §,.
§10. In the above two examples there are only a finite
number of operations in the group ; the set of transformations,
o= az+By, ¥=yr+dy,
where q, B, 7, ® are any positive integers, is an example of
a diseontinuous group with an infinite number of operations.
The group property follows from the fact that from

o =ax+By, ¥ =yx+dy,
and ' =ptqy, Y'=rd+sy,
where p, g, 7, & are another set of integers, we can deduce
o= (pa+gy)e+(pB+98)y, Y'={(ratsy)a+(rf+sd)y,
where the coefficients of z and y are still positive integers.

§ 11, Simple examples of continuous groups are the fol-
lowing :
(1) d=f=) y¥'=4ey)
where f and ¢ are arbitrary functional symbols; the group
property follows from the fact that these equations and
a'=A), y'=pl)
where A and p are other arbitrary functional symbols, lead to
L= M@, Y= ()
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(2) x,=f($i ?/)x y’= 4’(“7: ?/), = ‘I’(z)
where f, ¢, and y are all arbitrary functional symbols.
(3) Z=f(2y) y'=é(Y)
where f and ¢ are conjugate functions ; for if 0 and ¥ are two
other conjugate functions, and
'=0(,y), ¥'=vy)
then & +iy'=F(d +iyf) = Fo(w+iy),
so that 2 and y” are also conjugate functions of z and y;
that is, the transformation system, which is obviously con-
tinuous, has the group property.
(4) @=f@y2), ¥=6@92, 7=v&y?2)
where f, ¢, ¥ are functions of their arguments such that their
Jacobian A i d V) _
<=1
A(z, 9, 2)
The group property follows from the identity
Ay ) _ 2y ) 3y 2),
d(wyg) ~ Y, 2) @y 9
These are examples of infinile continuous groups, for the
transformation schemes in (1), (2), (3), (4) involve arbitrary
functional symbols.

§ 12. If the transformation scheme
T = Fi (@ ens Ty Gy ovey B, (i=1,..,n)
defines & group; that is, if from the equations
o =fi (@1 02 T, gy ves Gy
@ = fi (@ ees @' Ops eves By)
we can deduce ;= f; (2, +«-yTn, €1 eres Ol

where a,, ..., a, and by, ..., b, are two sets of » unconnected arbi-
trary constants, and ¢,,..., ¢, are constants connected with these
two sets, then this group is said to be finite and continuous.
If values of ay, ..., a, can be found such that
Ty = [ (T ooy Ty Gy oer &)y (E=1,000,m)

the group contains the identical transformation; if a,% ..., a,°
are these values, a,°, ..., q,° are said to be the parameters of the
identical transformation. Finite continuous groups do exist
which do not contain the identical transformation, but the
properties of such groups will not be investigated here.




6 THE INFINITESIMAL TRANSFORMATION [13

§ 13. A transformation whose effect differs infinitesimally
from the identical transformation is said to be an infi-

itesimal tramsformati The general form of such a
transformation is

o= w82y ey ®y)y,  (E=1,..,m)

where £ is a constant 8o small that its square may be neglected.

If ¢ (2,5 ..., %,) is any function of z,, ..., %,, then if we expand
¢ (x/, ..., 2,") in powers of ¢, neglecting terms of the order #2,
we get

¢($1,; “ery 4”1;/) = ¢(x1+t51, wory zn""tfﬂ)
3¢ 2
= ¢ (ay, ...,aa,,)+t(§-‘,a7l Foetby 37n) .

If then we let X denote the linear operator,

d d
R G T P

S @)y 0oy @) = (1 +1X) ¢ (2 vers ),
80 that we take 1+tX
to be the symbol of an infinitesimal transformation ; and we
call X the infinitesimal operator, or simply the operator, which
corresponds to this infinitesimal transformation.

‘We shall see that any transformation whatever of a finite
continuous group which contains the identical transformation
can be obtained by indefinite repetition of an infinitesimal
operation ; that is we shall prove that if

/= fi (@ cons By gy 10en &), (E=1,.0,70)
are the equations of such a group,

. X\m
i@y o0 @y Ggy .00y @) = the limit of (1 + E) z;,

when m is made infinite, and X is some linear operator.
This limit is, we know by ordinary algebra,

1+ 1—1!X+ %XH— %Xu...) 2.
§ 14. A simple example of a finite continuous group is the
projective transformation of the straight line
;O T+a,
A%+ ay
where a,, @y, @y, @, are four arbitrary constants ; the group
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property of these transformation schemes can be easily
verified.

In this group four arbitrary constants appear, but only
three effective parameters, viz. the ratios of these constants;
it is always to be understood that the parameters of a grou
are taken to be effective ; thus, if a; and a, always occurre
in the combination @,+a, they would be replaced by the
single effective parameter a,.

The identical transformation in the above projective group
is found by taking the parameters a, = a; = 0 and a, = a,.

If we take a, = a,(1+¢,), 0, =ea,, a3 = —¢;0,, where
€,, €, €; are small constants whose squares may be neglected,

,_(lte)zte
@ = (1_’-+3$1 =z+e+ex+e

This is the general form of an infinitesimal transformation of
the projective group of the straight line.

t=1,..,m
15. If  af =ax;+¢ e )y T
§ i o+ b oo Tn) (k= 1’“_,,")
are & sot of » infinitesimal transformations, they are said to be
independent if no set of r constants, A, ..., A, not all zero, can
be found such that
Mgt e +0,E65=0,  (E=1,.m)

The r linear operators, X, ..., X,, where
d d
XkEfklﬁl+...+fk,,5x—n, k=1,...,7)
are said to be independent when no r constants, A,, ..., A,, not
all zero, can be found such that
N+ +AX =0
Any linear operator which can be expressed in the form
MNX o +A X,
is said to be dependent on X, ..., X,.
If we have r operators, EEI, ...,If,., such that no identical
relation of the form
X+ 9, X, =0

connects them, where v, ..., ¥, are » functions of the variables
;5 -+, &, 10t a1l Zoro, they are said to be unconmected. operators.
It is necessary to distinguish between independent operators
and unconnected operators ; unconnected operators are neces-
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sarily independent, but independent operators are not neces-
sarily unconneeted ; thus

_b_ ? ?
3z’ W Y
are unconneeted operators, but X, ¥, Z where
XEy%—z%, YEZ£—$%, ZEw%—y%
are three connected operators, since
2X +y¥ +2Z =0,
and yet they are independent.

In the projective group of the straight line there are three
independent operators, viz.
P ? ]

ST B3 2P

Az dx gz’

but only one unconnected operator.
We shall find that there are always just as many indepen-
dent operators in a group as there are effective parameters.

§16. If X, and X, are any two linear operators, the symbol
X, X, means that we are first to operate with X, and then
with X, ; the symbol X, X, is not then itself 5 linear operator ;
but X, kg—X2 X, is such an operator, since the parts in X X,

2

and X, X, which involve such terms as are the same
in both.

32
3y 3z,
The expression X, X,— X, X, is written (X, X,) and is
called the alternant of X, 1 and Xl2 !

In the projective group of the streight line we see that

( ) 2. _ 3
% 75) S
? ? ?
— 2 )= —
(a$) & a$) = 2m3$:
2 3y_ L2
($ﬁ , .1;’5;) Eato,
so that the alternant of any two of the three infinitesimal
operators of the group is dependent on these three operators,

This will be proved to be a general property of the infinitesimal
operators of any finite continuous group.
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§ 17. The most general infinitesimal operator of the pro-
jective group of the straight line is X where
X= (31"'929“‘93‘”2)3%
and e,, ¢, ¢, are arbitrary constants.
If wo take

(1) y=2(4ees—ef) Stan! {(4e,6,—e2) 3 (26,24 65)},
it is ea,?sily verified thet o) Gamte)

d_ d
@—(el'f'ezx*‘eaxz)d_w—xs
and therefore
1 1 1
- X4
(1+“X+21X +5 X0+ )
is equal to
1d, 14 e e Vde e, —e,® €.
(1+1-!@+§d~y2+...) (\/a‘@t’“‘——z -y—,rga),

and this by Taylor’s theorem is equal to

e &
e, degt 2
3 3

V1o 6,—6} e
Yt ) —

If we substitute for y its value in terms of  we shall have
an expression of the form

0+ a,
Ay +
where a,, a5, 43, &, are funetions of ¢, , e,, ¢,; and we thus verify,
for the case of the projective group of the straight line, the
general theorem that any transformation of a group can be
obtained by repeating indefinitely a properly chosen infini-
tesimal transformation,

§18. If we have two groups

B =fi(@y eer @y Opyenny), (E=1,...,m)
and Y= iU eV Gy eens @) E=1,.0,m)
where m and n are integers not necessarily equal; and if we
have a correspondence between Sy, ..., a, the operations of the
first, and Ty, ..., a, the operations of the second such that to
every operation Sgy, ..., a, & single operation Ty, ..., 4, corre-
sponds, and to every operation Taj, ...,a, & single operation
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84y, ..., a, and to the product Suy,...,a, Sk, ..., 5, the product
Tays versap Thyyooey byr then the two groups are said to be simply
tsomorphic.

It might appear at first that any two groups with the same
parameters would be simply isomorphic; we could of eourse say
that 8y, ..., 4, corresponds uniquely to Tqy, ..., a, and Sty ..., 4,
to T4y, ..., b,, but it would not follow that Sgy, ..., 2, Sk, ..., &,
corresponded to Tqy, ..., a, Ty, .eerd,- For from the definition
of the group

Sal, ey dy S&l, ey bp = S(:l, very Cps
where ¢, ...,¢, are functions of the two sets ay,...,a, and
by, .05 by; and these functions will naturally depend upon the
for!:lxs of the functions f;, ..., f,, which defined the first group;

hile from

O D cvestr Thyyeorsty = Ty evns Vs
where y,, ..., 7, are functions of a,, ...,a, and b,,...,b,, whose
forms depend on the forms of the functions ¢, ..., ,,; we could
not in general conclude that y, = ¢, ..., 7, = ¢, unless the two
groups are specially related.

An example of two simply isomorphic groups is offered by

# = o toan, @ =,
and ¥ =ntay+loga, y'=y,.
If we take two operations of the first
o = gt Ty, @ = o,
ay'= b/ +bibyy, "= by,
we deduce =@, +0,0,m, %=y,
where e =ab;, cg=a,+b,
g0 that the group property of the first is verified,
Taking two operations of the second
W =thtaptloga, y =y,
Y=y 0y, +loghy, "=y,
we also deduce
N =ty tloge, ¥=1y,
where e =0,b,, ¢;=ay+b,

and thus verify the group property of the second and its
simple isomorphism with the first.
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$ 19. Returning now to the definition of a finite continuous
group and writing f; (;, ..., %, @y, ..., @,) in the abridged form
Ji(@, a) we see that if

z/=fi(a a), "= f;(«,b)

then z/"=fi(z, ),
where ¢, = ¢ (@y, 00y ¥y byyeinsby), k=1,..,7).
It will now be proved that these functions ¢,,...,¢, define
two groups, one of which is simply isomorphic with the given

up.
guit, is to be assumed that f; is an analytic function of
D1y seey By Gy --., &, Within the region of the arguments zy, ..., z,
laF, ...y @, ; and also that the parameters are effective ; that is
if we suppose f; expanded in powers of z, ..., z, the coefficients
will be analytic functions of a,, ..., a,, and there will be exactly
r such functionally unconnected coefficients in terms of which
all other coefficients can be expressed.
From the group definition we have

Jfilw c)=a"=F; (@, by =J; (fl(-"vx @), eons Ju (@ @), By oy bf)’
and since the parameters are effective we have
(1) ep=¢p(ay.e0ra, by,.0b),  (B=1,..,7).
0 T; = F,.(w’,a), (i=1,..,m)
being the inverse transformation scheme to
z{=f; (@ a),
we have

fi(@ ) =fi@ 0} = fi(Fi (s @), oo, By (@, @)y 0y s 60)5
and therefore if we expand f; (2, b) in powers and products of
@, ..., ¢/, since there are exactly r parameters involved, we
see that in the expansion of

2 Fi(Fy (@, a)... F (&, a), ey ..0s0)
there must be exactly » unconnected coefficients.

We further see that b, can in general be expressed in terms
0f Gy, 100y @y, €,..., ¢, Subject to certain limitations in the values
which ay,...,4,, ¢,...,c, can assume in order that (2) may
remain an analytic funetion of its arguments.

Thus suppose we have the equations

f(m’y) =a ¢(@y)=84
a necessary condition that we may be able to express = and
y in terms of o, 8 is that the Jacobian of the functions f (x, y)
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and ¢ (z,y) should not vanish identically, or as we shall say
the functions must be unconnected. The form of the funetions
f and ¢ may, however, be such that whatever the values of
z and ¥, real or complex, f cannot exceed an assigned value a,
nor ¢ an assigned value & ; the equations

f(m!y)‘: o, ¢(:c,y)=ﬁ
could not then be solved unless a <= a and 8 < b.
en we come to seek the conditions that a group may

contain the identical transformation we shall have to make
@y, = ¢y, and the result may be that we cannot solve the equa-
tions (1), and in this case the group will not contain the
identical transformation.

In general, however, we can express by, in terms of a,, ..., a,,
€13 .+ Gy, 80d therefore in the equations

e =g (A eens @, by,..,5,), (k=1,...,7)
the functional forms ¢,, ..., ¢, are such that the determinant

0 2
3%, 3%,

%, L, %
3%, 20
cannot vanish identically.
Similarly from z;/ = j?: (', b) we deduce z;/= F, («”,b); and
from ;= f; (z, ) and from these identities we have
fi(e, a) = Fy(a',b) = F; (fi(@, 0),.0os fr (@, ), D1y, By) 5
so that we see that a, can be expressed in terms of b, ..., b,,
¢y, ..., ¢, and conclude that the determinant

. L M

da, 3¢,

4

r

da, da,
cannot vanish identically.
We can therefore conclude that the equations
() W=l ¥p o) (B=1,.,7)
define a transformation scheme with = effective parameters,
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and we shall now prove that these are the equations of

a oup.
%e Eave fi@, 0)=a"=fi(@¢) =f; (z, ¢ (a0, b)) ;
and if we take any other set of parameters y,,...,y,,
a/"=F (@) =fi (@ ¢ (0. 7)) = Fi (w, ¢ (@ 6 (B 7).
Now fi(@,y)=fil@ ¢(cv) =Ffi(x ¢ (3 @D), 7))

5o that by equating the coefficients in these two expressions
for f; («’y) we have the identity

bn(a b B, ) = ¢3,(¢ (2. 0), 7).
This identity leads at once to the group property of (3), for
by its aid we deduce from

= ¢r (. a) and 7= ¢, (¥, 0) = o, ($ (¥ @), D)
that v =bw (¥, ¢ (2, 0)),

that is the equations (3) generate a group which is known as
the first parameter growp of

B = [ (@1s eoes By By oy By (t=1..,n).
It is an obvious property of this parameter group to be its
own parameter group.

From the definition of simple isomorphism we see that two
groups are then, and only then, simply isomorphic when
they have the same parameter group; the first parameter
group is therefore simply isomorphic with the group of which
1t is the first parameter group.

§ 20. In exactly the same way we see that the equations

Y’ =g (g ens @py Y1y ees Yy), (k=1,...,7)
are the equations of a group.

This group is called the second parameter group; it is its
own second parameter group; but it is not isomorphic with
the original group; for from y,'= ¢y (@, y), ¥, = 5 (b, %) we
deduce y,” = ¢y, (¢, y), where ¢, = ¢, (by, ..., b,, @y, ..., @), B0
[ {‘b, @) 18 not generally equal to ¢, («, b)

he two parameter groups are such that any operation of
the first is permutable with any operation of the second.

This comes at once from the fundamental identity

$(a, ¢ (5, ¢)) = ¢y, (¢ (w0, ¢),
which is true for all values of the suffix & and the arbitrary
parameters oy, ..., @, by,...,b,, ¢,...,¢,; for to prove that

Y¥=¢1(% @) and y/=¢5 (59



14 NOTATION FOR SUMMATION [20

are permutable operations it is only necessary to prove that
(% (4> ) “) =¢ (b, ¢ (¥ a)).

§ 2L As an example we shall find the first parameter group

of the general linear homogeneous group,

z{= Zapx,
the summation being for all positive integral values of % from
1 to n inclusive.

As such summations will very frequently occur it is neces-
sary to employ certain conventions to express them. The
subseripts will always denote positive integers; those which
vary in the summation will be supposed to go through all
positive integral values between their respective limits, thus in

ZCagjAgiNaks
where the summation is for all positive integral values of
a from p to r inclusive, and for all positive integral values
of g from g to k inclusive, we should indicate the sum by
a=r, 8=k
= Cags Moi Rk
a=p,B=g
When the two limite are the same we should write the above

sum in the form
a=g=t

2 capihaihare
a=g=p
This would not of course mean that o = 8 throughout the sum-
mation; a summation in which « = 8 would be expressed by
a=k
E Caaj Aai Aak-
a=p

When the lower limit is unity it will be omitted, thus when
p = 1 the sum would be written

a=g=tk
2, Capihpidare
Expressing the linear group in this notation from

k=mn h=n

w/=2 oy, wd a/=2 b,
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A=n

we obtain 2= ey,
k=n

where on = 2 @by

If then yy;,... are n? variables, the linear group
k=mn

Vi =2 i
is the first parameter group of the general linear homogeneous
group in # variables.

It will be noticed that this group is itself a linear homo-
geneous group in #»? variables, but it is of course not the
general linear group in »? variables.

The second parameter group is

k=n
Yhi =2 O i
§ 22. If in any given group
() @/ =fil@, @y Oy oes @)y (B=100m)
we pass to a new set of variables y,, ..., ¥, where

(@) Yi= i1, -0 Ta)s
and to a cogredient set ¥/, ..., ¥,  given by

¥ = gi(z/, '-"mn,))
where ¢,, ..., g, are any nunconnected functions of their argu-
ments, we must obtain equations of the form

(3) ¥/ =:iWues¥m B1yeenr el E=1..,n)
‘We are now going to find the relation between the two trans-
formation schemes (1) and (3).
Let 7 denote the operation which replaces z; by gy, =, by g.,
and so on.
If then =0 (?/11 s ¥n)

is the inverse scheme to (2), 77! will denote the operation
which replaces z; by G,.
We now take S, to be the operation which replaces z; by
f:(z, «) and S;, the operation which replaces @; by f;(z, ).
he operation T'S,7! acting on y; that is on g;(zy, ..., @)
will transform it into 3;"; for
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T8, T1gy(@y, eonsy) = T8p9:(Gs -, @) = TS, ;,
and TSami = Tf,-(avl, rees iy, O, "')a’v) =fi(gb O A T M R
and JilGoosGns s s ) :‘fc‘(yh coes Yo Gy eeey @) = Yy
The operations of the transformation schemes (3) are
therefore TS, T, TST,...
and since TS, 7-1 T8, T-! = TS, 8, T = TS, T-1,

we see that the equations (3} are the equations of a group
simply isomorphic with the group (1). The two groups (1)
and S3) are said to be similar. Similar groups are therefore
simply isomorphie, but it is not true conversely that all
simply isomorphic groups are similar. The necessary and
sufficient conditions %or the similarity of groups are obtained
in Chapter X. It will then be seen why it is not possible to
transform the two isomorphic groups given in § 18 into one
another. Groups which are similar are also said to be of the
same fype.

§28. It will be proved later that groups which contain the
identical transformation can have their operations arranged
in pairs which are inverse to one another; that is to every
transformation S, another transformation Sy of the group wiil
correspond in such a way that the product of the two will be
the identical transformation. If then 7' is any operation
within the group, 7! will also be an operation of the group,
and so will the operation T'ST-. This operation is said to be
conjugate to S with respect to I'; if TST1 is equal to S,
whatever operation of the group 7' may be, then S is per-
mutable with every operation of the group and is said to be
an Abelian operation.

If T'is an operation of the group so0 is 7.S7-1; but even if
T is not such an operation, 787! may be an operation of the
given group: we should then say that 7 was an operation
which transformed the group into itself.

If T, and T, are two operations each of which transforms
a given group into itself, then 7787~ is an operation within
the group; 71, 7,87, 7,™* must then be within the group;
that is, since 7,7 T, = (T, 7)), 7,7} is also an operation
which transforms the given group into itself.

It follows therefore that the totality of operations with the
property of transforming the group into itself, or as we shall
say the totality of operations which the group admits, form
a group, This group, however, need not be finite.
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§24. If out of all the operations of a group a set be taken
not including all the operations of the group, this set may
itself satisfy the group condition; in this case it is said to be
a sub-group of the given group.

Let 8,, 8y, .e0, Ty, Ty, ... be the operations of a group, and
suppose that S, 8, ... form a sub-group, then 7, §; 7,1,
TS T e which (§ 22) is a similar group to 8, 8,, ... is
said to be conjugate to the sub-group 8,,S,,.... Sub-groups
which are conjugate to one another are also said to be of the
same type.

If, whatever the operation T) may be within the group
8y, 8y vees Ty, Ty ... the sub-group T S, 7)Y, T, S, ..
coincides with S, 8, ..., then the sub-group &, é;, ... 15 said
to be a self-conjugate sub-group. It will be noticed that it
is not necessary in order that the sub-group may be self-
conjugate, that T, 8, 7'~ should be identical with S, but
only that it shoulri‘ be some operation of the system S;, Sj, ...

A group such that all its operations are commutative is called
an Abelian growp.

It is easily proved that if a group contains Abelian opera-
tions they form an Abelian sub-group.

Egample. The linear homog transformation schemes

h=n
m".—:zah;m,,, (’L‘= 1,...,%),

where the parameters are subject to the single condition

@p + o - Oy

Gy« o . Oy
form a group with (n®—1) effective parameters.

8, 18 a transformation included in this scheme, and M,
the above determinant, then, S; being anZ other transformation
of the scheme and My, the determinant which corresponds to it,
the determinant of S, Sy is M, My; and therefore, since this is
unity, the transformations generate a group. This group is
called the special linear homogeneous group; it is a sub-
group of the general linear homozgeneous group. It is also
self-conjugate within it; for if 7 is any operation of the
general group, the determinant of 7'S, 7! is the same as that
of §,, and therefore 7'S, 7-! is itself an operation of the
special linear group.

caMrsELL (o]
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Ezample. The projective group of the straight line
Tt a
T azz+ag

contains the sub-group
= oz +ay.
This sub-group contains two sub-groups, viz.
o=ar and & =2z+a;
the first is the homogeneous linear group, and the second is the
translation group.

We shall prove later that these are the only types of finite
continuous groups of the straight line; that is, all other
groups of the straight line are transformable to one of these
by the method of § 22; it will also be proved that every
group which contains only one parameter is of the type

¥ =x+a,
that is, the type of the translation group of the straight line.

§ 25. A group which contains r effective parameters is said
to be of order =, or to be an r-fold group. We now write
down some groups of transformations of the plane.

The eight-fold projective group is

m/=a’11w+a2ly+a31’ — G®t p Y+,
Oy @+ Oy Y + gy Uz @ -+ Olgg Y + iy
The identical transformation is obtained by taking
Oy = lhgg = Qg3
and making the other parameters zero; the eight infinitesimal
operators (§ 18) are then found to be
i i 3 3 3 d
2 3y’ %o’ y@. 23y’ Y35’
3 d d 3
@+ W5y Wizt ?lzgg
The projective group has as a sub-group the general linear
group, viz.
d=an+ony+ay Y= 0pP+anY+ay,
of which the infinitesimal operators are
3 d 3 d 3 3
52’ 3y z3 yﬁ, m@, Y35

One sub-group of the general linear group is the group of

movements of a rigid lamina in a plane, viz.
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o =zcosf+ysinb+a;,, ¥=~xsind+ycosb+a,
ay, @y, and @ being the arbitrary parameters.

The identical transformation is obtained by putting

a=a=0=0,
and the infinitesimal transformations by teking «,, a,, 8 to be
small unconnected constants ; the infinitesimal operators are
d 3 3 d
% 3y Y%y

Each of these sub-groups could be obtained from the pro-
Jjective group by connecting the parameters of the latter by
certain equations; thus the general linear group was obtained
by taking a3 = a,; = 0. It must not, however, be supposed
that if we are given a group, and connect its parameters by
some arbitrarily chosen equation, the resulting transformation
system will generally be a sub-group ; this would only be true
for equations of a particular form connecting the parameters of
the given group.

It has been stated that there are no groups of the straight
line which are not types of the projective group of the line, or
of one of its sub-groups. In space of more than one dimen-
sion, however, groups do exist which are not of the projective
type ; thus in the plane the equations

L LT v= yaf+a5m*+a,,a!-l+...+a,+5’

g+ oy (a2 + a,)

where the constants are arbitrary, define a non-projective
group of order r+4. The group property may be verified
easily. The identical transformation is obtained hy taking
@ =ay3= a5 = ... =0, and &, =, =1, and the infinitesimal
operators may be written down without much difficulty; but,
since a general method of obtaining these will soon be in-
vestigated, we shall not now consider these operators.

This group is not similar to the projective group, nor to any
of its sub-groups.

§26. In three-dimensional space many of the groups have
long been known; there is the general projective group of
order 15, viz.

= AT+ 0nY+ 05240y L o= U T+ O Y+ U5 2+ g

= L
Oyt oy Y + Ugy 5+ Gy v Oy @+ Gy Y + Uy T+ By
o = U @+ Gy + Uy 2+ Gy |
Gy @+ Uog Y + Uy % + gy

C 2
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From this we obtain the linear group of order 12 by taking
@y = Gy = Gy, = 0; the linear homogeneous growp of order 9
by further taking a,; = @y, = @ =0; the special linear homo-
geneous group of order 8 by ta‘king

ans Oy, A3
Grgy  Oggy Oyy
Oygy  Qg3s O
Other sub-groups of the general projective group are: the
group of rotations about a fixed point of order 3; the group
of translations, also of order 3 ; and the six-fold group of move-
ments of a rigid body, obtained by combining these two groups
of order 3.

There are very many other sub-groups of the projective
group, but we have now perhaps given a sufficient number of
examples of projective groups in three-dimensional space.

From these groups others could be deduced by transforma-
tions of the variables, but they would not be new types, thus
the groups

2= Ay T U Y 40518 Y= U@ 4Gy + g2,
2= &+ Uy + Oy 2,
and _ayetayyhay o GyTHayytay,
Az T+ oy Y + gy Oy + sy + Ay
2= Q@2 + Uy Y2 + Ay 2?
are of the same type, for the first can be transformed into the
second by the scheme
=22, Yr=Y5 5H= 2
- §27. Wemay applly the theory of groups to obtain, in terms
of BEuler’s three angles, the formulae for the transformation
from one set of orthogonal axes to another.

Describe a sphere of unit radius with the origin O as centre,
and let the first set of axes intersect this sphere in 4, B, C.

By a rotation  about the axis OC we obtain the quadrantal
triangle CPQ, and a point whose coordinates referred to the
first set of axes were «, ¥, z will, when referred to the new set,
have the coordinates @, ', 2” where

'=wcos y4ysiny, y=—xzsiny+ycosy, ZF=z.

By arotation 6 about 0Q we pass to the quadrantal triangle
C,FQ, and a point with the coordinates z, ¥, z will now have
the coordinates @, y”, 2”, where

z’=acosf—28ing, y'=1y, #’=a'sinf42 cosé.

=1.
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Finally by a rotation ¢ about OC, we pass to the axes
0C,, 04,, OB’l referred to which the coordinates of z, , z will
be 2, f", 27, where

a”=a"cosp+y”sing, yY'=—a"sin¢ +y" cos ¢, 2"=2".

G

AT

i

If then R denotes the operation of replacing «, ¥, z re-
spectively by

zeosy+ysinyg, —axsiny+ycosy, z,
8§ the operation of replacing «, ¥, 2 by
xcos0—zsind, y, xsinf+zcosd,
and T the operation of replacing «, y, z by
xcos p+ysing, —asing+ycosd, 2z,

the coordinates of a point @, , 2, with respect to the first
axes, will be obtained when referred to the new axes 0A,,
0B,, 00,, by operating on &, ¥, z with RST, and therefore
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/"= (cos § cos ¢ cos Y —sin ¢ siny)
+(cos @ cos ¢ siny + sin ¢ cos ) ¥y —sin f cos ¢ .2,
o= —(cos 0 sin ¢ cos Y +cos ¢ siny) @
+(cos ¢ cosyr—cos 0 8in ¢ sin ) y +8in G sin g . 2,
Z”=sinf cosy.x+sinfsiny.y+cos b2
These are Eunler’s formulae ; if we take
¢+ =¢, Ocos(p—y)=¢, Osin(p—y)=¢,

and then make ¢, €, ¢; small, we obtain the three infini-
tesimal operators

2 2 wb mi 2
¥y’ %% %% dy Y3z

&
of this group. These can, however, be more easily obtained
otherwise,

2
Y3 %

§ 28. An example of a group in three-dimensional space,
which is not derivable from the projective groups by a trans-
formation of coordinates, is

_“1¢+b1?!+cx’ _ G+ by te,
T amtbyy+o, T awtby+e’
o = (byes—bycy)a + (apby —ash,) (y + 22) + ayc, —age, .
(byes—b3er) + (0, b5—a;6,) (y —x2) + a03—as0;
If we notice that
(b1, —8501) @+ (@, by — agh) (y—az) + a1, — a5 R
(br63~—b30) @+ (a1 b5~y by) (y —22) + 665 —aqc,
it will not be difficult to verify the group-property.

As the number of variables inereases the number of different
types of groups increases rapidly. Thus there are only three
types of groups of the straight line ; there are a considerable
number of types of groups in the plane, but they are now
all known and will be given later on; in three-dimensional
space there are a very large number of types, most of which
have been enumerated in Lie’s works; but in space of higher
dimensions no attempt has been made to exhanst the types.

y,— x’z/:




CHAPTER II

ELEMENTARY ILLUSTRATIONS OF THE PRINCIPLE
OF EXTENDED POINT TRANSFORMATIONS

§29. Some classes of differential equations have the property
of being unaltered when we transform to certain new variables.
Such transformation schemes obviously generate a group; for
if S and T are two operations which transform the equation
into itself, or as we shall say operations admitted by the
given equation, 7S will also be an operation admitted by
the equation, and therefore S and T' must be operations of
a group. This group, however, is not necessarily finite or
continuous.

2The differential equation of all straight lines in the plane, viz.
d
o
meaning we know that it must be unaltered by any pro-
jective transformation. .

Again the differential equation of circles in a plane, viz.,
dy (dPy\?_ dy 2y 2y
TG =1+ (@D

must admit the group of movements of a lamina in a plane,
and also inversion.

It would be easy to write down many equations which,
from their geometrical interpretation, must obviously admit
known groups; but more equations exist admitting groups
than we could always obtain by this @ priori method; and
we shall now therefore briefly consider a method by which
the form of those differentis] expressions may be obtained
which are unaltered, save for a factor, by the transformations
of 8 known group. The method will be more fully explained
and illustrated in the chapter on Differential Invariants.

=0, is an equation of this class ; for from its geometrical

§30. In this investigation the underlying principle is that
of the extended point transformation.
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To explain this principle let
d=a+té@y) y=y+in(zy)
be an infinitesimal transformation ; then
3
d?/ +t ( on d?/)

dy _de * Sy de
ad = —W
1+t( +ﬁﬁ)
dy andy ¥ dy
=Gt e ()

since ¢ is & constant so small that its square may be neglected.
s
If we denote 1—1—?1 by p, and glx’ by p/, and the expression

¢
( —5)p- w?
by , we have proved tha.t
P=p+in
Similarly we have
dp B1r )1r dp
dp _da o+ ( * 5 )

1+t(—+——p)
111_1+t()1r p)n’ afdp dp )‘n’dp)

0y  dwdz By at dp dz
If we now write 7 for :iig this gives, after some easy reduction,

= r+tp,
where
r¢ ¥ P
Pt (2 bmby _) + (52 May)l’ @
32
)ypr y dz
The infinitesimal transformation is said to be once exfended
when to the transformation scheme

d=w+tf, Y=y+iy
we add P=p+in;
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it is said to be twice extended when we add to these

= r+ip,
and so on.

A general rule for extending a point transformation to any
order will be explained in Chapter XX.

‘We have only considered the extension of an infinjtesimal
transformation, but any transformation could be similarly
extended; the infinitesimal transformations with thejr exten-
sions are, however, the most important in seeking differential
equations which admit the operations of a known group.

It will be proved in Chapter XX that if we have a group
of transformations, and extend it any number of times, the
resulting set of transformations will belong to a group which
is simply isomorphic with the given group.

§31. In order to illustrate the theory of extended point
transformations we shall find the absolute differential in-
variant of the second order ; that is, an expression of the form
f (@, 9, p, r), which is unaltered by the transformations of the
group of movements of a rigid lamina in the plane ay.

In this problem the infinitesimal transformation is

d=x+té Y=y+ity, P=p+in, Y=r+ip,
where

f=atcy, n=b—cx, 1=—c(1+p?), p= —3cpr,
and a, b, ¢ are constants.
Since -
Jlo, g0, r) Zf(@+tE, y+in p+in, r+ip),
and ¢ is s0 small that its square may be neglected,
> > o 2 >
(a+cy) szt (b—cm)@ —c(14p )@ —3epro
must annihilate f.
As the constants are independent we infer that
d d 2 2 d d
Py 3—2;9 wﬁ*yﬁ+(l+ﬁ)ﬂ;+3prﬁ

must each separately annihilate f.
‘We conclude therefore that in f neither & nor y ean oceur
explicitly, so that f is a function of p and r annihilated by

2 2
(4 5+ 37 5
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it is now at once seen that the required differential invariant
for the group of movements in the plane must be a function

2y
of (ILT]))—-, that is, of the radius of curvature.

§ 82. In the theory of differential invariants we look on the
group as known and deduce its invariants; a related problem
is: ‘given a differential equation or differential expression to
find the infinitesimal transformations which the equation or
the expression admits.’

We know that these transformations must generate a group,
though we do not know that the group will be finite. It
should be noticed, however, that the property of admitting an
infinitesimal transformation at all belongs only to particular
types of differential equations.

Thus if we take the equation

dy
=+

and try whether it admits the infinitesimal transformation
F=x+t& Y =y+tn, P =p+in, ¥=rtip,
we see that it cannot admit it unless
= 2xf+ 2y,

for all values of z, y, p, » satisfying the equation r = a2 + 2
‘We must therefore have

321’ )21’ )25 )2" )25 )25
st Cogag — 3P+ (G = 250 P = 50
w2 2
+ (ﬁ —25, 31’%)(90”#2)—%5—2% =0

for all values of @, y, and p.
Equating the coefficients of the different powers of p to zero,
we get
R¢ _ %y R¢ _
1 Tyz—o: (2 S'y—g—za—m—-ox
Py NE ¢ _
(3) 2W ~32 " 3¥/(¢2+y“)— 0,

() 14 (%—225)(x2+y“)—2w§—2y1; =o.
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From (1) we see that
£=yf(@)+o();
by differentiating (2) with respect to z, and (3) with respect
to ¥, and eliminating  we get
3¢ 2 03
dz?dy +2y w7
that is f (@) +2yf(x) =0,
50 that f(z) vanishes identically.
From (1), (2), and (3) we therefore conclude that

E=¢@), n=y(=)+¥(a)
and 2f/(2) = ¢ (2)
From (4) we get
W@+ (@) + @+ ) (f([@)— 2¢(@)) = 20¢(a) +23°f(x) + 2y ¥ (),
and on equating the coefficients of y? in this equation we see
that flzy+2¢'(z) =0,
and we conclude that f(z) = ¢"(z) = 0.

By equating the coefficients of ¥ we get y(z) = 0; while by
equating the terms independent of ¥ on each side we easily
obtain ¢ {x) = 0, and therefore fgw) =0.

The equation proposed therefore does not admit any in-
finitesimal transformation.

A

2,
d—ﬁ: 0 in the same manner,

d.
we should find that the only infinitesimal transformations it
admits are those of the projective group.

If we were to treat the equation

Example. Find the form of the infinitesimal transformations
which have the property of transforming any pair of curves,
cutting orthogonally, into another such pair.

Let ¥=a+tf, y=y+tn, p=p+in,

be the once extended infinitesimal point transformation ; and
let z, ¥ be the point of intersection of the two curves, and
p and g the tangents of the respective inclinations of the axis
of z to the curves at this point, so that pg+1 = 0.

We have now to find the form of ¢ and 4 in order that
pq+1 = 0 may admit the infinjtesimal transformation.
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‘We must have

Z’(ﬂx"'(ﬂz_f])q—fng)'?'q(’11+(’72—£1)1’“sz2) =0
wherever pg+1=10. In this and other like examples we
shall employ the suffix 1 to denote partial differentiation with
respect to &, and the suffix 2 to denote partial differentiation
with respect to 7.

Substitating 1 tor g in this equation, and equating the
different powers of p to zero, we get
m+é; =0, £&-n,=0,
so that £ and 5 are conjugate functions of  and y.

An infinity of independent infinitesimal transformations
will then have the required property.

§ 83. We know that the differential equation

dur2  du? du\?

52) + () +(55) =0
is unaltered by any transformation of the group of movements
of & rigid body in space; and we also know that it is unaltered
by inversion with respect to any sphere; and finally that it
is unaltered by the transformation

=k, Y=hy, Z=ks
where & is any constant, that is, by uniform expansion with
respect to the origin. We therefore see that this differential
equation admits a group, and we now proceed to find all
the infinitesimal transformations of this group.

It is a matter of interest to connect this problem with
another one, apparently different, but really the same.

Any curve in space, the tangent to which at each point on
it intersects the absolute circle at infinity, is called & minimum
curve. If z,y, z and @ +dw, y + dy, 2 +dz are two consecutive
points on such a curve,

do? +diy +dzt = 0,

Through any point P in space an infinity of minimum
curves can be drawn, and the tangents at P to these curves
form a cone; also through P an infinity of surfaces can be
drawn to satisfy the equation

dun?  du? du.2

5a) + (sg) +(5)=0
and the tangent planes to these also touch a cone; we shall
now prove that these cones coincide,
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On any surface, and through any point on it, two minimum
curves can be drawn; for in the usnal notation we have on
any surface

da*+dyt +dz* = da® + diyf + (pda + gdy 5
if therefore we choose dz : dy 8o that
(1 +2%) do* + 2 padady + (1 +¢%) dy = 0,
we have two directions for minimum curves through the
point.
Now on any surface, % = constant, which satisfies
duB dud du?
M () + Gy + (5 =0
we must have 1+p%+¢* =0,
and therefore the minimum lines on the surface drawn through
any point on the surface must coincide; and, conversely,
surfaces with this property satisfy the differential equation (1).

It follows that any tangent plane, at a given point, to a sur-
face satisfying the equation (1) touches the cone, formed by the
tangents to the minimum curves through the same point ; the
two cones therefore coincide at every point of space, and the

same set of transformations must leave unaltered the two
equations,

S+ G QY=o ana datrdyieas=o.

This is a particular case of a theorem, to be considered later,
connecting partial differential equations of the first order with
equations of the form

(@ ey @y ity o,y daty) = 0,

where dz,, day, ..., dz, enter the equation homogeneously.
These equations are called Mongian equations.

§ 84. Consider the infinitesimal transformation
d=a+tf, yY=y+tn, F=2z+8t(
which has the property of being admitted by the equation
da? + dyt +dz® = 0.
Since da’?+dy”+d2? = 0, wherever da?+dy? +dz? = 0,
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we say that these two equations are connected ; we now have
the equation

da(§ydw+ &, dy + & d2) + dy (n,dw+ 0, Y + 7, d2)

) +dz(Gde+Gdy + Gda) =0

connected with da? + dy? + dz? = 0.

‘We must therefore have

1) &=m=G m+tG=G4+&=5&+n=0.

To verify that we obtain these same equations by the con-
dmon that the two equa.tlons

Y+ Gy + (o) =0, ma (524 (35)'+ (3)'= o0

are connected, we write down the identities

2 2 2 d
% =37t by sy +Gp)
d d 2 2 d
3y = oy THEagy vy + G3,7)

2 d d d 2
5 = 37 HilEsgg gt Gy);

and, since ¢ is 8o small that its square may be neglected, we
deduce from these

2 2 2 d 2
sz = e~ g +mgy + 63,)
2 2 d 2 2
e ——t(«fzﬁ'F ’lzﬁ +G3,)e

?
W (“cabw + "’by + (3)2)

By the condmons of the problem the expression
(flbw'}"'h)y'f'flbz)'f' («fz +ﬂ2)y+(2)z)

(fa)m + ﬂsay + (x)z)
must therefore be zero, wherever t,he expression

)+ Gy (G

i8 zero, and the equa.nons (1) are thus obtained over again.
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§85. We now take
L=m=06G=F(xy2),
K+l = §1+£a = £2+'11 =0.

Differentiating ns+¢, = 0 with respect to y and 2, and ex-
pressing the resulting equation in terms of f, we get

Similarly we obtain
af  Rf
327 7 dar

and conclude that

Rf Nf
0, and a—m;+—a?_0,

¥i_Rf_¥f_
PRy R v s
‘We therefore take
J =0+ 0@+ QY+ 032+ Oy Y2+ g 2T+ Gy 0Y + Oy,
where the coefficients of the powers and products of the
variables are constants, so that
B¢ Py
dx 2y 3z = st in® 5o dy 3z = Gt G,

B
dwdydz Otz 2
By differentiating #,+(, with respect to =, {+¢, with
respect to y, and &+ n, with respect to z, we have

n=m=Cn=0;
and conclude that womTe
Oog = gy = Gy = Oy = 0.
Integrating ¢ =f = ay+a, 2+ Gy+0,2
we see that
¢ = qyz+1a,2* + a2y +aaz+ F(y, 2);
and since £, =0 we see that F(y, z) must be of the form
F, (y)+ Fi5 (2), where Fy, (y? is some unknown funection of y,
and F, (z) some unknown function of z

‘We have now advanced so far that we may take
¢ = g+ 3@, @+ ayry+asxz+ Foo () + Fis (2),
7 = Gy + 7Y + 3 0y + apyz+ Fyy (x) + Fip(2),
(= anz+a,mz;i-a5yz+%a3z2+1"31(z)+1f’32 (@)s
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and from the equations
ntG=G+b=5&+n=0
we next obtain
@Y+ Fip(2) + a2+ Fip(y) = 0,
a2+ Fy (@) + o,z + Fiy(2) = 0,
ayz+ Fiy(y) +ay+ Fp(z) = o0.
‘We conclude then that
Fuu(y)=—%05y"— A, y+ constant,
Fy(2) = —} a,2°+ A, 2+ constant,
with similar expressions for the other functions.
Finally we have
¢ = 1o, —2) t o yr + a@r +apw+at Ay~ Agy,
= do,(y’— &' —2) +asye+azy +agy+ B+ Agz— Az,
¢ = o, =P =)+ agetays +az+y+ 4,y — Ao
‘We now have ten infinitesimal transformations admitted by

the equation U2 duUNE U2
e (s (Y=o,

and by the Mongian equation
da*+dy +dz* = 0.
The ten operators which correspond to these transforma-
tions are

XN VRS S S S >
Frs by’ 7’ ybz_zby’ bw—mbz’ m@~yﬁ,
3 ,.3 .3 . a2 > >
mﬁ+y—a§ +zg, W +2 —w’)bw—zxy@—z‘mg,

d d d
(zz+mz—yz)¥/—2¢?lﬁ—2yz£,

e
§ 86, Example. Find the most general infinitesimal trans-
formation with the property of transforming any two surfaces
intersecting orthogonally into another pair of such surfaces.
Let w and v be any two functions satisfying the equation
1) dudv  dudv + dudv
O mwtyyten=
then % = constant, and v = constant will be two surfaces
intersecting orthogonally.

o O 3 3
2 — —_—— ———
(2®+y2—2%) 3~ 22 P 22z

o,
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The equation (1) must therefore admit
d=z+itf, Y=y+itn, Z=z+i(
‘We bave
aa:' ~t(a 5 % sy W S+ az)
with similar expressions for
du du dv b dv
oW W’ 3y 3
substituting in (1) and neglecting 2 we see that
d 3 d
éa:i; * "22; a; +263; 2:
du dv | du v du dv | du dv

+(na+€z)(@$+$ay) G+6) (5 55+ % %
) (5 55+ s e) =

dz 3y " ¥y
is an equation connected with (1).
We are thus again led to the equations

b=m=0 n+l= &+ =64 =0;

and conclude that the only infinitesimal transformations with
the required property are those found in the last article,

CAMPEELL D



CHAPTER III

THE GENERATION OF A GROUP FROM ITS
INFINITESIMAL TRANSFORMATIONS
The identical transformation.

§ 37. From the equations
oy =f; (@, a), E=1,..,n)

which define a group, and from
o =f (@, 0) =f; (@ o),
we have
(1) ¢, = &z (2, b), k=1,..7.

Subject to certain limitations on the values of oy,...,q,,
€,.+. ¢y, We can deduce from these equations
2) by, = ¥, (a, ©), k=1,..,7.

Now suppose that on taking @, = ¢, ...,a, = c, the func-
tions vy, (¢, ¢) remain analytic functions of their arguments ;
and suppose further that the values of by,...,b, so obtained
make }:(z’l, veus @y byy.ess b,) an analytic function of its argu-
ments, within the region over which af,...,%, may range;
then as we have always

fil@ =1, b);
by the hypothesis a3, = ¢; we have
@ =fi(w @) =f; (@ o),
80 that o =f; (@, b), (E=1,..,m):

that is, by, = ¥, (¢, @) gives the identical transformation.
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Sinee these values of b,,...,, are obtained from the equations -

oy = (g, o0y Oy, by .0ny B,),
it might seem at first as if they would be functions of a;, ..., a,:
this, however, is not the case; they are absolutely independent
of aj,...,a,. To prove this, suppose that
b =M (@005 0,), k=1,..,7)
Ay, being some functional symbol : then
x’i =fi (@, "':x;p Ay eesdy),

and as Ay, ..., A, must occur effectively in f; we should have
expressed in terms of &, ...,%, and arbitrary constants, which
is of course impossible.

§38. Asan example in finding the parameters which give the
identical transformation we take the case of the linear group

h= "
@ =2 opiap.
kE=n
We have Chi =, g by
putting cz; = az; we have
k=n

= o by = o,
and therefore, sinee the determinant

Qus - - Oy

Opys o+ Opy

canngt be zero, we must have b;; = 0, if k and 7 are unequal,
and b, = 1.

Of ‘course these values of the P ters for the identical
transformation could have been obtained by inspection of
the equations of the group, but we have preferred to deduce
them by the general method in order to illustrate the theorem
that they are absolute constants.

As we shall very often have to deal with constants such as
b4, characterized by the property of being zero if A and 7 are
unequal, and unity if they are equal, it will be convenient
to denote such a constant always by the symbol €.

D2
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We should thus express the parameters of the identical
transformation in the general linear group by the equations
h=1,.,7
b}u:‘hi’ (i=l,...,n)’

but it will not always be necessary to explicitly state the
range of the suffixes.

§39. Engel has proved that finite continuous groups do not
necessarily contain the identical transformation.
Thus consider the function due to Poincaré

y=3Z 2",
n=0
which is known (Forsyth, Theory of Functions, § 87, Ex. 3}
to exist only within a circle of radius unity, whose centre is
the origin. It follows that « is an analytic function of y
such that, whatever value y takes, = always lies within
a circle of radius unity. Let # = A(y): then A is & function
such that, whatever may be the value of its argument, it is
always less than unity.
Take now the transformation schemes &’= A(a)«. These
clearly generate a group ; for if

a’=A(b)a’ then o= Ar(a)A(b)a,
and A(g) A(b) =k, k being a constant less than unity, so that
(@) A(b) = A(c), where
c=3 2k
n=0
‘We therefore have the group property, since we can deduce from
o= A(a)z and &”= A(b)z’ the equation x”= A(c)a.
=2
‘We now have A(D) = @)’
but we cannot take ¢ = ¢, for that would give A (b) = 1, which
is imposgible, since A(d) is always less than unity.
The method of obtaining the operators of & group.
§40. Let (W) % =ri@a)

be a transformation of the group; let :TL" , expressed in terms
k
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of @, ...,,, &, ..., a, be written & (e, . ,.,a),
or in a.bmi'ged ‘potation ofki s and denote b by af % th car
operator

3
af;ﬂaT{l +...+af;m£;'
Let g denote the operation of differentiating totally with

day,
respect to a;, any function of &}, ..., 2, ay, .. in which on
account of (1) @l,..., 2}, are to be considered im thclt, functions
ofay,..
We have

d ¥4 39 25, 3¢ |
dakd’(”;""’”;"“l""’“') 3a, 3, +bakbm’ Sa;

= (aﬁﬂa—zz+---+af;,,.m+ 5a)

that is, if we express any function of «f,...,a, ay,...,@,, in
terms of @y, .v., &y, &y, ..., @, by means of the equa.t,lon gystem (1),
and then differentiate with respect to a;, we get the same
result as if we had performed the operation
d
Wt day

directly on the given functlon

If we now keeg @y, eeny By Qo -o0, 0y fixed, af, ..., 2, will also
remain fixed; and the incromont of any function ¢ (=, ...,27),

where o =f; (@, b) =f; (x, c),

due to the increment dby, (the other parameters b, ...,5;;,
ByagsensOp rema.lmng fixed), will be

Xio@y,...,x,)db,.
Since, bowever, aa’ ! = fi(x,c) and @,,...,&, remain fixed, while
€1y veey Cy BTE functlons of @y, ..., @, by, ..., b,, we may write this
mcrement in the form

< oC
5 a,,’ XY ey @) by
Now ¢ (a},..., %) is an arbitrary function of its arguments;
so that we obtain the 1dent1ty

%
2 ab EX
by equating the above two expressions for the inerement.
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By giving k the values 1,...,7 we have » identities which
bold for all values of @, ...,2},, @y,...,a,, b,...,b,, where

g =¢p(@d), (k=1,..,7).

§41. We now take by, ...,b, to be the parameters of the
identical transformation, and since these are absolute constants,
we shall omit the b in X} and write it X simply.

d¢;

=2 is now a function of a, .., e, only, for b, ..., b
3 1 r Y 1 r

are absolute constants; we write it therefore in the form
a3;(%y; ++.,0,), or simply ;.

Also, since b,, ..., b, are the parameters of the identical trans-
formation, ¢;, = oy, and we have the identities

0 Xy = ay (Xt toy, X,
1 :
X, =0, Xyt o, X,
where the determinant

Oy - - 0 Gy

Gpys « o . Oy
cannot vanish identically, that being a condition for the
existence of an identical transformation.

From these identities we deduce
Xy =Ny Xy, X,
@ :
oXe = Ay Xyt dr,, X,

T

where A, ... are functions of a,,...,a,; that is, any operator
with any implicit set of constanis a,, ...,a, 8 dependent on

Xy, .nX,.

*rhis theorem is called the first fundamental theorem in
group theory.

§42. A group of order r contains exactly r independent
operators.

Lemma. If we have any linear operator of the form

kar

(1) E“ka—z?
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where a), is & function of a;,...,a,, We know from the theory
of differential equations that there are exactly (r— 1) functions
ofay,...,a, whfg.\ this operator will annihilate. Letd,,...,4,_,
be any such (r—1) functionally unconnected functions, then
if f is any function of ay,...,d,, which is annihilated by (1),
we know that it must be a function of 4,,..., 4, _,.

It follows that there cannot be any linear operator of the
form (1) which annihilates the » functions f, ...,f, defining
a group ; for if there were such an operator there could not be
more An (r— 1) effective constants involved in fi, ...,f,, Viz.
A n 4y

“From this lemma we conclude that there cannot be any
equation system of the form

k=
¥ ,
EA"MT,:': 0, (@{E=1,..,m),

where A, ..., A, do not contain ,,...,2,; and therefore there
cannot be any identical relation of the form
k=7
2 Xy =0
between the operators , X, ..., o X, When A;, ..., A, only involve
@y +ons @y 5 that is, the 7 operators
aXI! ] cX r
are independent, and therefore so are the operators
X, X,
1f by,..., b, are the parameters of the identical transformation,

and b, +e€,, ..., b,+¢, an adjacent set of parameters, e, ..., ¢,
being so small that their squares may be neglected, then ex-

panding &y = fi @ys ev0r Ty b+ ey Op+6,)
by Taylor's theorem we have
k=r
Gmmt Sl (=1.0m);

or since & is approximately equal to x;,

k=r
o = o+ o
. i=n a
Since p.% —Ef"‘a_w"

and the operators are independent, we see that there are
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exactly  independent infinitesimal transformations; and we
see further that the operators of a g'roup, a8 defined in § 18,
coincide with the operators as defined in this chapter.

§ 43. As an example illustrative of the preceding methods
we take the projective group of space, viz.

(1) o= “1#‘”1"'“26“’2"'“36“’3‘*‘“46’

(i=1,23);
1y @y + gy Tp+ Uy Ty + Gy
from these equations we obtain (p being < 4)
d
ﬁ = if g <4,
By Ay F Uy Ty + gy By + gy
and 3 — . Gt Tt G By Tp+ Uy By Ty + 0y D
Aty (04 2+ oy 23+ 03y 73+ 0,
If AM is the minor of Gpq in the determinant
gy o - Gy
yl ’
Qg+ - . Oy

we have, as the scheme inverse to (1),
2= Apai+ Ao+ A, x;‘*‘AM_
P Anm+ Ayt Aot Ay
Since only the ratios of the constants are involved, we may
take o, as absolutely fixed; and we get as the operator
corresponding to a,,
(2 M= (‘Aplx/1+Ap2x/2+Ap3x/S+Ap
If ¢ = 4 the operator is
() 2 3,2
M (‘Aplx;+‘Ap2xg+‘Apa%+Ap4) (%371 +x,zﬁ‘; +$aa—%) .
The identical transformation is obtained by taking a,

¥,
,)b—z,qd‘q<4.

Pq=EPqZ
this gives Ay = €4, and the corresponding 15 operators are
2 2=1,2,8
”;‘371 ’ g=1,2, 3)’

) a—; =123,

S, d 3 2 _
(%5 +oigg thsg)  (P=123).
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The reader may easily verify that the set of 15 operators
given by (2) and (3) is dependent on the set of 15 given by
(4); and also that either of these sets of operators contains 15
independent operators.

Examples. Find the infinitesimal operators of

(1) the projective group of the plane;
(2) the orthogonal linear homogeneous group, viz.
= anxtany+ans Y= auTtany+ags
7= 0T+ apY + 52,
where the constants are such that
2yt = a4yt 2t
(3) the linear homogeneous group in 7 variables ;
(4) the non-projective group given in § 25.
The canonical equations of a group.
§ 44. The parameters by, ..., b, which determine the identical
transformation in the group
o = fi(=z, a)
give for all values of the parameters a,, ..., a,
@y = ¢y (O .or s by, by);
they are therefore the same parameters as those which determine
the identical transformation in the first parameter group (cf.

(3),§ 19). L. .
Tt also follows from the definition of the functions
ay; @y <y @)
that the infinitesimal operators of the first parameter group
are 4,, ..., 4, where

d 3
Akzaklaz+...+ak,a—ar, k=1,..,7).

Let now a0, ...,a,° be the initial values of the variables

@y, .00y @y 3 lot the operator
el'A1+"'+ef'Af

be written A; and the operator obtained by replacing
Qyy oey @y in A by @, ..., a,° Tespectively be written 4.

If X is anylinearoperator, weshall denote by ¢ theexpression

1 1., 1, -
1+ﬁX+§—!X+3—!X+...tomﬁmty.
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We now take
aq=ce¢ta0, (=1,..,7),
when we have o%a" = Aa,

and therefore, ¢(ay, ..., a,) being any function of gy evuy Oy,

d
(ﬁd’(a‘l’ '--’ar) = Ao ¢(a'la ~--:ar)-

d d
We also have d_tA" =4, @

since the operators are in unconnected sets of variables, viz.
t and a,% ...,a,°; and therefore

d? d d
d_ﬂ¢=¢7tA°¢=A°¢7t¢=Ag¢'
Similarly we have
& ;
T =4
s o dig : :
and therefore the limit of Pl when ¢ is zero, is
Afp (e ..., a,%.
Since ¢ (4, ..., @,) is a function of ¢ and of the initial values
a,° ..., a,° we have by Taylor's theorem
dé e A
() = ¢+t (7)) + '2_1(@ e
and therefore
3 ts
¢ (@) = (14 17 dot 57 A8+ ) ¢ (a0 -,

From this formula we deduce

t=0

d ¢ 2
g{‘i’(“v ) =A,(1+ 1—!A0+ 31 AZ+..) p(a ..., 0,0,
t t2
=(1+ T1do+ 3748+ ) Agd(@, ..., a,%),

=A¢(ay...,a,),
by a second application of the same formula.
A particular case of this second formuls is

(ia E=r
(1) —d_tk=2 €y Oy
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The identities of § 41 (expressed in the variables 2, ...,2;)
Ar =X+t 0, X, (=1,.,7)
are equivalent to
2 afhi = M €l o+ 0 6

and therefore, since « is a function of z,,...,2,, a;,.-.,a, and
thus implicitly of @, ..., %,, @,%,...,a,%t, and since

3
a—é = ofki>
dat, Fise=r
we have —d—t’ = E Ay Ejies any
by (1) and (2).
Now the identities (1) and (2) of § 41 are equivalent, so that
k=r
we must have 2 Aj G = €455
and therefore
d, 5 .
3 -d_; =2 €5 a4

We can deduce from the formula (3) a result which will be
useful later; since

= f; (w, a), E=1..,n)
we have the inverse scheme
5= F, i (m/) a);
and therefore, since «; does not involve t, we see that

d
E.l",-(m’l,...,m’,,, Gy eenyy) = 0.

It follows from (1) and (3) that the operator
s=k=r,j=n

2 2
2 ey % + "gkg;k)’

. =7
that is, the operator Eea (X,+4,)

annihilates every function of a, ..., 2, When e:,pressed in terms
of &, ..., %}, @y, ...,ap. If we notice that i, ..., 2}, @, ...,
@y, €, ..., &, are all independent of one another, we shall see
that each of the operators X} + 4, ..., X, + 4,, must have this
property.
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If we now takea,’,...,a, to be the parameters of the identical
transformation, then, when t=0, o; =;; and applying
Taylor’s theorem we have

Y N
“/"_z‘+t(ﬁ),=o+ 2_!(?):=o+""
If we write X” for the linear operator

X +..+e X,

and express any function of «, ...,/ in terms of Ty eoey Ty b,
)5 «+., €& W have from (3)

G ety = X' @y i)
Now X'¢ (a, ..., },) is itself a function of , ...,a,, so that
LX) = Ky rr),
and therefore
g; (@ vny @) = X2 (@), o0, ),
and more generally
O W) = XY (.., ).

d(;;:/') is X™a;, and therefore
t=0

It follows that the limit of (

z =1 txy ﬁX2 @ = é¥ay
i =01+ g7 ) = iy

Similarly we could prove that

® b @l s 7)) = €5P (@, 100y ),
where X denotes the operator
aX,+..+¢.X,.
Example. Assuming that
@ = ¢Xz;, prove that ¢ (@], ..., 2}) = éX¢ (@, ..., z,).
Since 4, ..., 4, are operators given by

2 2
Akzﬂklsa—l +..-+ﬂk,sa—f, (k: l,...,’l’)
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where the determinant
[ TR

Gpys + ¢ o Oy
does not vanish identically, these operators are not merely
independent but also wnconnected.

A group in n variables with n unconnected operators is
said to be tramsitive; if the order of the group is also equal
to » the group is said to be simply transitive.

We now see that the first parameter group is simply
transitive.

Since 4,,...,4, are unconnected ogemt.ors, and ¢, ..., e,
arbitrary parameters, and a,, ..., @, are defined by

ap=¢a?,  (k=1,..71),
we know that there can be no functional connexion between

@y, o0y Gy, they may therefore be any parameters whatever.
It follows that if

Ty = [i (@ eeis By By oees By)s E=1,..n)
we can always throw f; (z, a) into the form
eﬁX,+...+8¢sz’.‘
‘When the equations of a group are given in the form
m/‘=ee,23+...+e,-1,m‘, (’i: 1,”.,,,1),
the group is said to be in canonical form.
Since ¢4 %1 ¥..-+er Xr ig the limit when m = of

l+e1Xl+...+e,.X,""
(1 +3=0)

we see that every finite operation of a group can be generated
by indefinite repetition of an infinitestmal operation.

It should be noticed that the operation of substituting
for @, ...,x, in any given function of these variables
@, ..., &, Tespectively, an operation demoted in the first
chapter of this treatise by Sgy, ..., ¢,, has now been proved
equivalent to operating on @, ..., ¥, With e1fi+--+erXr when
€, ..vs €, aTe functions of @y, ...,a, known as the canonical
parameters. We shall sometimes speak of enfi+--+oZr g8
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a finite operator of the group, or simply as an operator, when
there is no risk of confusing it with a linear operator.
‘When in canonical form, the parameters of a transformation
scheme and its inverse are very simply related.
We have seen that
¢ ("Jv --"z,n) = eX¢ (zp e ),

and since this formula holds for any funetion of «, ...,z we
must also have
T, ..., 7)) = eXe T p(wy, ..., ).
Now just as in elementary algebra we see that
efemZ=1,

and therefore ¢ (2y, «ees %) = 6% ¢ (T, ovey ).

A particular case of this general formula is

@y = e—exX’l—...—-e,-X’rm/‘,

5o that the canonical parameters of any transformation scheme
being ey, ..., €,, those of the inverse scheme are —e,, ..., —e,.
Ezamples. (1) Prove that, X being any linear operator,

o =¥ gy (i=1,..,mn)

is & group of order unity.
(2) ]}_)f X and Y are two linear operators whose alternant
is zero, prove that any transformation
2 = ez
is permutable with any transformation
=T,

§45. When we are given the infinitesimal transformations
of a group—and the group is generally discovered through the
infinitesimal transformations—we are given the group in its
canonical form; the question then arises, How are we to
determine whether a known set of linear operators do, or do
not, generate a finite continuous group ?

This question will be answered In the next chapter, but just
now it will be assumed that X, ..., X, are r linear operators,
known to generate a group given by

w=eafitetaeg,  (i=1,...,7).

The group is, however, only given in the form of an infinite

series, involving the evaluation of such terms as

(61X1+ e +8,X,.)"‘ 27
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s0 that we may ask, Can 2, ..., be expressed as finite
functions of ..., %,?
The differential equa.tlon

@X+...+eX)u=1
has n unconnected integra.ls; let these be
D {21y 0 00s Ty wvens P (Tgs eony Ty
If we take as a new set of variables y,, ...,y, where
H=010 s Tn)y Y2 == P10 Y =Py
we see that GX,;+..+e, X))y, =1,
and X +...+e.X)y; =0 ifi>1;
and therefore the operator
X=e¢X +..+¢. X,
expressed in the new variables, is % .
1
Now we have proved that ¢ (z;, ..., z,) being any function
of the variables ¢ (2], ...,a}) = eXp(z;, ..., T,),
and therefore we conclude that

¢.2 ("/11 -'-:“/n)—d’l(wb RARS ¢l(z1)"-:zn)—'¢l(z1! veny @)

B (T evs )= 1 (T e T = by (T s @)= by (15 20 T),
while

By ) = €Yy = 4yt = Gy ) 1.

From these n equations we can therefore deduce the expres-
sions for «}, ..., a7, in terms of ey Ty

It follows that, when we are glven the infinitesimal operators
of a group, we can find the equations of the group in finite
terms if we can find the integrals ¢, ..., ¢, of

GX,+...+e. X)u=1,

and then solve the equations

il o @) = Pil@y e TR) 1, (E=1,.0m),
50 &8 to express &, ..., af, finitely in terms of z,, ..., #,
The functions ¢, ..., ¢,, will of course involve the a.rbltrary
parameters ¢, ..., ¢,

Egample. The operators

? P ? ?
tas Yy tey

?
3y o y 7%’ @y— z) +yby “3’
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are known to generate a group; find the equations of the
group in finite form,
e have to find the integrals of
du du ou
s@y—2z+t@taytay)s +@rtarteay) =1
The subsidiary equations are
de dy _ dz _du
&@y—2) " qteytey’ qrtezteys 1
and if we write

3

_Yiee—¢’
= 2o, s
these equations become

a atan¢ = y+ &, gtans=
2¢,

®lw
+
J.

dlogae . . Jiee—e}
Bag—_tang = 2P =d0="—"— du.
So that
2¢ 2 1 _(eyte)
w=— tan-1 2
Viees—e®  Vigo—er Vige—e?

- co8 ¢

is an integral of the proposed equation ; and

sand ¢ —4,
are functions annihilated by the operator ~ ©08 ¢

d 3 d
&(@Y—2) 5, +Etaytay) s, +@rtas ey

€2t + e,z + 0 ® an z—my
&y +ay+a 26,52+ (vy +2) +2¢,2
are annihilated by this operator.
The finite equations therefore of the required group are
6P +6,7d/+ea? el +emten?
sYtrey+a  aytayte
7y _ z—xy
20,7 to, (@Y +7) 4264  26yite@y+a) +26a
2 tan-1 203y +e,
‘/4‘1‘53—‘32"x “/43153—922
2 2¢,4 + ¢,
= fan—t —22 22
Yige—e'  Vige—¢]

that is
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and if we were to solve these, and thus express Y, 7 in
terms of , y, 2, we should have the finite equations of the
group in canonical form.

§ 46. There is generally considerable difficulty in expressing
the equations of a group in finite form when we are given the
infinjtesimal operators; but for most parts of the theory of
groups the knowledge of the forms of the infinitesimal opera-
tors is of more interest than the knowledge of the finite fgrm;
and the most important result which we have proved in this
chapter is that every transformation of a group may be
obtained by indefinite repetition of a properly chosen infini-
tesimal transformation.

Thus if we take the binary quantie

U = agz®+pa, Py +.,.,
and apply the linear transformation
d=latmy, y=Latm,y,
we get % = agdP+ paja’Ply + ...
From the identity of these two expressions for u, we deduce
1) a4y = ayl P+ pa, 121, 4.,
@ = aylPim 4 ...,
with similar expressions for ),...; and the problem of the
invariant theory is the deduction of the functions which have
the property
Flag @, o) = Mf (a4, @y, ...),

where M is & function of [, m,, ,, m, only.

Now the equations (1) are easily proved to be the finite
equations of a group of order four; but they are of little
use in the invariant theory in comparison with their four
infinitesimal operators

a, L 2q, 2 3a, 2
oba1+ 13—%+ ga—aa+.-.,

@ 2 2 d
- t2a,_
? Ay, »-1 3y s

+3ap + ...,

’23ap_3
? ? P
aobao +EIE+CL2E+..U

d 2 d 3 d +
a‘b—al+ agm+ aaaa3

CAMPBELL E
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A like regult holds for most of the applications of continuous
groups; thus, one of the questions to which the theory is
applied is the investigation of those linear partial differential
equations, which are unaltered by the transformations of a
known group; we know that every equation, which admits
all the infinitesimal transformations, will admit all the finite
transformations of the group, for the latter can be thrown
into canonical form ; and it 18 much simpler to find the forms
of differential equations admitting known infinitesimal trans-
formations than the form of those admitting known finite
transformations.



CHAPTER IV

THE CONDITIONS THAT A GIVEN SET OF LINEAR
OPERATORS MAY GENERATE A GROUP

§ 47. We have proved in the last chapter that a group of
order = has exactly + independent linear operators, in terms
of which all other linear operators of the group can be ex-
pressed ; and when these operators are known the group is
also known in canonical form.

If X,,..., X, are any r independent operators of the group.
we can express all other operators of the group in terms of
these; there is therefore no unique system of operators; thus,
in the group of rotations about the origin,

) P 2 ) 2 2
X:yg—zﬁ, Y:zﬂ—mg- Z= m@—yﬂ
will be three independent operators ; but so also would be
X +6,Y+¢,Z, 0, X+6,Y 40,2, a;X+b,Y+¢,7,

provided that the determinant

@, b,
Gy, by, G
Qs 03, €y

did not vanish.

We shall, however, suppose that we have fixed on some one
set of independent operators, in terms of which the others
are to be expressed.

The proposition which, with its converse, will form the
subject of the present chapter may now be stated.

15 +++s X, i8 & set of independent operators of the group,
the alternant of any two of these is dependent on the set;
that is

k=r
X XXX = (X, X) =3 e X, (

i=1,..,7
J= l,...,'r)

where the symbols Cyjgs - denote a set of constants, called the
siructure constants of the group; these constants are fixed,
T2
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when onee the set X, ..., X, is fixed, but they vary with our
choice of the set.

The converse of this theorem is, if X,,..., X, are any 7
independent linear operators such that

k=r
(Xi X)) =2 o Xpo
then X, ..., X, will be the operators of a group, which will be

finite and contmuous and will contain the identical trans-
formation ; the canonical form of the group will be

m’ — ez.X,+ .+¢'X,.m (’L =1,. )
We have proved that in opemtmg on any function of

A ,a!ﬂ, @y, ..., @,, where we Tegard #y,...,%, 88 fixed, and

%}, ... %, as verying, through being 1mp].1c1tly functions of
Zyyeiny Ty @y, eeey Gy, We have (§ 40)

a 2
da; ~ ¢ k+bak

d? d?

Sinee then Ty da, = dayday’

we have

. 3
(Xk+aa)(a "+ba) (Xh+ (a k+a )
expanding tlns we get

b ]
o X% aX'h+aX3=3—ah +3a; aXk
] d
EaX,h a.X’k+nX’hb—" + 'a_haXGc'
This identity is true for all values of ay,...,e, s Ty e @y}

we may therefore replace &; by z;, and in the "hotation of
alternants we have

> 2y _
(1) (X X+ (g];’ o&X3) + (X b—a,,) =0.
From the set of identities obtained in § 41, viz.
IO C— VHD. 6 S V. ¢
in which Ay, ... only involve ay, ..., @,, We have

) Een My,

(57 i) S3m Kt 50 X,y
¥ b}\kl Oy,

(Xb 30;) =7 3, 117 30, X0
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and therefore conclude from (1) that
@Xis oX0) = M X oo+ e Xy
where the functions Ayy;, ... only involve ay, ..., a,.

This identity holds for all values of the parameters ay, ..., a,;
we therefore take d,, ..., @, to be the parameters of the identical
transformation, and the functions A4, ... now become absolute
constants and give the identities

E=r
@ &y, X)) =205 X

This is called the second fundamental theorem in group
theory.

Example. The equations (1) of §46 are those of a group
of order four, with the independent operators X;, X,, X;, X,,
where _ d d
X, = %3q; +2a‘b—a2 + e +pa1,_15a—P,

X, = -a_ 1 2 2
2 = PO b%—{-(]’— )‘1237;1+---+01,W-1:
o=a 2 ) >
s = a“ﬁ;"'“’ﬁ +...+aI,E:
2 > )
X, =a 5a, +2a237“—2+...+pa1,@y
and we may verify that
(X, X)=pX—2X,, (X, X)=0, X, X)=4X,,
Xy Xy = —X,, (X, XY= —X,, (£, X)=0.
If we teke as the four independent operators of the group,
¥, Y,, ¥, Y,, where
v, =X, Y,=X, Y,=pX,—2X,, Y,=X,,
we see that the group has the structure
(TuYy=T, (Y, F)=2F, (L, T)=12F,
¥, ¥y=o (F.T¥)=0, (Y, Y)=0.

§48. We now know that unless a system of linear operators
is such that the alternant of any two of them is dependent on
the set, they cannot generate & finite continuous group; but
more important, and, at the same time, more difficult to prove,

is the converse theorem, viz. that any operators which satisfy
these conditions will generate a group.
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Before proceeding to prove this we shall consider some
formal laws according to which the symbols of linear operators
are combined.

Let y and = denote two linear operators, and let 3, denote

yx —xy, Y, denote y,@—axy,, y, denote y,z—ay,, and so on.
The identity

Py = ya —ny, 2™ + 'n__('r;l—l)yz -t
may easily be proved by induction ; for it is obviously true
when n = 1; assume that it holds for all values up to %, then
@y = oya® — nay,a + "‘(7;" I)Wzmn-z_ s
and a8 oy, , = ¥,_,Z—y¥,, we have
n(n—1)
2t
ey @ mgyatl
=yatl—(n+ 1)y, a"+ w
so that the identity holds universally.
If we denote by [y, 7] the expression
ya +ayx 4 PyaT 4 .., 42Ty,
we next prove the identity

2 *ly = ya"tl —ny 2" + et t—...,

n—1
P2,

T a1 a2
v G‘%m] =Iy1ir1—2zy(lr—1)z + 33/(2'—2)!—"'+(—l)r('r—:l{{—rl)!'
Assuming that this identily holds for all values of » up to
n-—1, then
T n—1 2
[ ) =[n e+ 5L
= YT e
Tit(n—1)t  21(n—2)t
Now we have proved that

_1yp1gnm® | Ty
ot (1t T
n{n—1)
2!
so that by addition of similar terms in the two series we get

Zq_ ya" pa (= 1)"¥ny.
[ 7)== O+ D (G — oy + o et

"y = ya" — ny, "1 4 Y22 — .,
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and ss the identity holds when n =1 we conclude that it
holds universally.
We have of course similarly

a’ a” ot
) = ?lhTr_' - 2‘111?1}—1)1"'
Examples.
(1) Prove similarly by induction the formula
(n=1)
2

n(n—
ya® = 2y +na "y + 7 2"y +...,

_ 2 2
(2) Ify:aoﬁ+2a1571+...+pa1,_lsa;,

_ J 1 d d
m:pa,m + (p— )%E +..-+apa————ap_1:
prove that
d d
o =p(aoa—% +...+aI,E)
P d J
_2(0"ﬁ +2112372 +...+papm),
Y+ =thy;  H=—28 %=0 y=0..
(8) Prove that y and  being as defined in example (2),
¥ =&y g —r+1),

ny =y @27

*(4) Apply induction to deduce from (3) the more general
formula

yo _Zy, & g

i Al i o y F 11
R el ) o) (—r+s=1)

T2 1 2

3yt (o) (o rHe=l) (= r+e=2)
*aosiE—3) 1 2 3

(5) Prove that z and y being any linear operators,
2t~ 2y + 27y
is a linear operator.

* A generalization of the formula of Hilbert, see Elliott, digebra of Quantics,
p. 154, Ex. 5.
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(6) Prove that
Y, = Yy’ —raya 1 + 'ﬁ%—)w‘ym'—z— v+ (1) ary.
§ 49, Let

701 = -t + et —atttatt—alb yatt— ... ;
then, if B), B,, ... are Bernouilli’s numbers,
B,
= (—1)-1228-1 =g, =, =, —
Ogp = (—1) )l and @=a;=0;=...=0.
We shall now prove the identity

e I a1 arf =2
=l Frnitalt Trlvaln gl e,

If we substitute for each expression in brackets the series
to which we have proved it equal, we find that the coefficient
1
vl
1 o o
— d — —_— -
(57 =~ atr=al T E=Difr=ai— )

By equating the coefficients of the powers of £ in

t=(¢—1) (1 -yt + a8 —at® + g t4—...)
we seo that the expression in brackets is zero, and therefore
the identity required is proved.

of y2” on the right is —, and that the coefficient of Y, &T8 ig

Ezample, If
=Y+ nY + WY+ Ay + A Y + ..
and %, =2, 222, ,, (r=1,2,3,..),
prove that . A B
y=z 2!+3! 4!+-.-.
We now let

2= Y+ +0,+... to infinity,
then, from what we have proved, we have

¥y=y
’le‘@: }[(’I; m]+a1yl’
2
Y51=[051)+ @ ve 57] + 0t
- . . w". . 'mr-{
¥ =[y,m]+aq[%,7]+----
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Adding these expressions we get
z a? soa
(1) y*=21+][s ET] + [ ﬂ] +... to infinity.
Now if £ is a constant so small that its square may be

neglected, (@+ty) = +t[y, 1]
and therefore from (1), if we neglect %,
(+ty)ee=1+a+tc+ Zl!(m+t2)2+ élj(m+tz)3+...
=t

‘We can now say that, if ¢ is a constant no longer small,
(1+ty)e® = =1+ 2R,
where R is some operator formed by combinations of the
symbols z and y.
§ 50. We now suppose that
z=e¢X, +..+¢X,,
ySqX i+ +e X,
where ¢, ...,¢, and ¢,,...,¢, are two sets of parameters, and
P SN k + linear operators such that
k=r i=1,..,T
Xi, X)) = 2 o Xy, (j= 1,...,7)'
From these conditions it follows that, if 2 is the linear
operator deduced from z and y by the law
2= Y+ a0t ...
then z is equal to e ’
X +...+¢.X,,
where ¢,, ..., ¢, are a set of constants, which are functions of
se00s €y €, 00y €y, 8Nd of the absolute constants ¢y, ...
From the definition of 2z we see that these constants
€5 oiey €, BTE ana‘lt%tic functions of e,...,¢,, €,...,¢; and
therefore the coefficients of the differential operators in 2
will be finite, provided that e, ...,¢,, €, ..., ¢, do not exceed
certain fixed limits. It now follows that, €* and ¢®+* being
two operators whose effects on the subject of their operations
are not in general infinite, the effect of R on any such subject
cannot be infinite.

If wo now denote by @, the operator z+ ;i—, where m is

some integer, then z; will be a linear operator dependent on
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X,,....X,; and the result at which we have arrived may be
thus expressed

Yy o ey L
(1) (1+ @)= R
Similarly we must have
1
@) (1+ %)w=ﬁ+wlip
where «, has replaced « in (1).
So we have
Y \ots — gy L
(3) (1+ )=t Ry,

(1+ L)tz dn R,
Multiplying (1) by (1 + %)m—l, (2) by (1 + %)m—z, and
50 on, and then adding we obtain
m-1 mn-2
(l + %)%‘:e’“w%((l + %) R+ (1+ —-’%) Rl+)

Now let m become infinite; from what we have proved
for R we see that

1 y m-1 y m-2
W((l + E) R+(1+ E) R+ )
is an operator whose effect on any subject on which it
operates is zero when m is infinite ; and because z,, is always
a linear operator dependent on X,, ..., X, whatever m may

be, and because also the limit of (l + %)m is e¥ we conclude
that eve® = e,
where X is some linear operator dependent on X, ..., X,.

§ 51. We can now easily prove that a set of operators
which have the property

E=r
(1) (Xi X) =2 e Xy,
will generate a group.
From the definition of a group in ecanonical form, we see
that what we have to prove is, that if
X=0aX+..+0%,,
Y=pX+otr X,
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where A, ..., A, and p, ..., 4, are two sets of parameters, and
if ¥” denotes the operator obteined by replacing z; in ¥ by

; where o =eXz;,  (i=1,..,m),
then eY'a!, — ev,X.+... +vp Xy x;,
where », ..., 7, are a set of parameters, which are functions of
Mgy s Apy gy eons iy, @0 of the structure constants Cifr o+ »
Now e”’;},- is afunetion of &}, ..., 2, and therefore by § 44, (4)
ey'a!.- = eX.er‘;
and as we have proved that
eX ¥ = v,X,+...+v.-X,’
we now conclude that the conditions (1) are sufficient as well
as necessary in order that X, ..., X, may generate a group.

§52. To find »,, ..., v, in terms of A,,..., A, and py, ..., p,
would be to find for the group in canonieal form the functions

¢k()\1,‘..,)n,., p.l,...,p.f), (k= 1,00,7),
which define the parameter groups.

‘Without attempting to perform the calculations necessary to
find these functions, we can see the terms of the first degree in
the expansions of v, ..., », respectively, in powers of A, ..., A,,
fas +es fty 3 fOT, neglecting all products of these parameters, we
have

Mt A M Xy g Xyt + P X,

=(1+MX + A X (L X+ o+, ),
=1 +(A‘l+l‘1) X1+"' +()‘r+"'r) Xr’
and therefore v = At Rpten,
where the terms not written down are of higher degree than
those which are written down.
It follows that any operation of the group
o= it +9rer‘.
can in general be written in the form
o = ehXighda, . e gy,

To prove this we recollect that the necessary and sufficient
conditions, that » functions of r variables should be capable of
assuming 7 assigned values, are that the functions should be
unconnected. Now we have proved that eifiehds ... v &r ig
equa.l to ev,X,+v,Z,+ +v,X,’
where v =1t + .., k=1,...,7);
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and 88 %, ...,f, are unconnected so must »,,...,», be uncon-
nected: by a suitable choice of the parameters ¢, ... they can
therefore be made to assume the respective values ¢, ..., ¢,.

§58. Ezample. Prove that the operators

_ 2 2 ) ) 2 )
X:yg—z@, Y:zﬁ—mgx sz@_yb_m’
generate a group.

‘We have

T, 2)=-%, ZX)=-Y, (X,T)=-4,

and therefore by the converse of the second fundamental
theorem these operators generate a group.

If now we require the equations of this particular group
in finite form, we may proceed as follows.

The most general operation of the group is

SZgHT AT,
Let o=y, y=éTy, =¥y,
s0 that
3 dy £, Ay
y=(1 +tl(y$"z@)+§(y£'—za_y)+"‘)y

- A
= y—tlz——2—1y+ﬁz+ Y
=yecost,—zsint,.
Similarly we see that
2= ysint, +zcost
and o’ =z, !
‘We now have

¥ Eg = T o' = o’ cost,+4 sint,= 2,

¥t Ty = hT'of = o =y,
e Yei Ty = h? = o/ cost,—a sin f,= 2.
And finally we get

&= a cos t;—y" sin i,

y”= a”sint;+y" cost,.
From which equations we could express #”, ¥, 2 in terms
of @, 4, 2, and the parameters ¢, t,, £,.
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§ 54. If m of the operators of a given group X, ..., X, are
such that the alternant of any two of them is dependent on
the m operators, then these m operators will themselves form
a group, which will of course be & sub-group of X, ..., X,.

Eaxample. Find the projective transformations which do

not alter the equation
o ryita? =1

The most general operator of the projective group is
d
(G0+ 0@+ 0y +asz + T (G + ey +e2) 3o

d
+ (b + by + by + byz + Y (6,2 + 6,5+ 6;2)) %

+(Co+ 6,8+ 0y + C2+ 2 (68 + €Y + 6:2)) ;z— ;
we must therefore have
@ (g + 0y @ + 3y +a32) +y (b + 512 +5,y + by2)
+a(+testay+e)+lgrtayted)(@®+yi+7) =10
for all values of the variables such that
22+ 42t =1
This gives @y =by=¢;=0,
Gt by = ay+0, =bsto=d, e =b+e=¢+6=0,
8o that there are six operators admitted by the given equa-
tion, viz.

d d d d d
X1=(w”—1)a—m+my—a§+mza—. T =y5; %50

z %y
d d d d d
X = 2 Y, =
2 ymba:+(y l)by+yzbz' 2 =25 T%%

Xﬁ%‘% +2/y:—y+(2”—1);;’ Ya=w;4y—y§a;-
We find that
(X, Xy=T1, (X3, X)) =Y, (&, X =1,
(Y, ¥y) =-%, X,¥)=0,
(Y, Y)=—Y,, (¥,,7,) =-Y, X,Y)=-X,,
(X, Yy = X, (X, Y)=0,
(X, )= X5, (X, Y3) =—X;, (sz Yl) =—X,,
(Xy ¥y) = X, (X, Y)=0;
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these six operators will therefore generate a group, and of
this group E, Y,, Y, will form a sub-group.

We could of course have foreseen that such operators must
generate a group, from the general principle that if 7} and T,
are any two operators admitted by an equation, then 7', T, is
also admitted ; and therefore the alternant T, T, —T, T,, which
is a linear operator, is also admitted ; and must therefore be
conmected with the operators which belong to the group
admitted by the equation.

Also in this example the group must be a finite one ; for, if
it is & group at all, it is a sub-group of the general projective
group.

§ 55. If X,, ..., X, are the operators of a simply transitive
group, and }1, ..., Yy the operators of a second such group,
and if the alternant of (X ;, ¥;) is zero for all values of ¢ and j,
then it is clear, from the cahonical forms of the groups, that
any operation of the one group is permutable with any opera-
tion of the other group; such groups are said to be reciprocal.
In the group we have just considered, taking as our set of
six independent operators
Zy =X, +iY,, 4, = X,44Y,, Z; = X, +iY,,
W,=X,-iY,, W,=X,-iY,, W,=X,—iY,,
where 4 is a square root of negative unity, the group has,
with respect to these operators, the structure
(Zys Zg) =~ 22y, (2, 5) = —2iZ,, (4, Z,) = —2iZ,,
(Woa W) = 20Wy, (W, W) =2iW,, (W, W,) = 2iW,,
i=1,2,3
Z:;, W) =0, (j=1,2,3)'
It is easily proved that each of the sub-groups %, %, Z,
and W, W,, W, is simply transitive; they are therefore reci-
procal sub-groups.

§ 56. Examples.
(1) X w,, w are three quadratic functions of x, prove that
sy 0d, wl
&’ T3’ 3z

generate a group.

d d
2 — 3 =
(2) Prove that 3 and & 3

cannot be operators of a finite continuous group.
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(3) Find the relations between the constants a, b, ¢, d
in order that

d d d
(am+b;l/)a~5:+(ca:+dy)a—y- and m@

may be operators of a group of order three.
(4) Prove that

> 3 s .3 d 2 2

Y55 —z@ and (22—yf —zz)ﬁ+2'zyay+2ng

are the operators of a group of order two; find the finite

equations of the group, and hence verify that the group is
an Abelian one.

(5) Prove that

d d d d d
Y55~ z@ and (y’—zz—w“)@ +2yma—é +2yza~z
are two operators of a group; and find the other operators of
the group of lowest order containing these two.

§ 57. Example. Prove that a finite group containing

d 2 d 2
Chvep may, Y355 yay,

cannot contain an operator of the form u-a% + va—a?; where u
and v are homogeneous integral functions of z and y, of degree
higher than unity.

The principle which enables us to prove this theorem is
that a group which contains two operators must contain their
alternant. The alternant of two operators which are both
homogeneous is then itself a homogeneous operator of the
group; and if the degrees of the two operators are » and s
the degree of the alternant is (r+s—1). If then the grou
is to be finite, there must be a limit to the degree in whicg
z and y can be involved in an operator; we may therefore
suppose that there is no operator of degree higher than that
of the operator

k) d
"3z +v dy )
Now suppose that ua%; +v b_b?} is of degree 7, and can exist
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in a group which contains

2 2 3 2
ma—é, may, yﬁ, y-a_:;.

As we cannot have u and v both identically zero, we may
suppose that « is not identically zero.
d
3y

Form the alternant of ua%: +v
d . -
an operator U3; t 0y also of degree 7; in u,, however, y is

with mi, and we have
2y
of lower degree than it is in «.
. d ¥ . d
By forming the alternant of u,a-a:+v1@ with m@, and

proceeding similarly with the resultant operator, we see that
the group must contain the operator
d d
r S el
Tt Ay !
when v is some homogeneous function of « and y of degree 7.
Denote this operator by ¥, and w% by X, and let

Y,=¥X-X7, ¥,= V,X_X7,

3eee

d . dv
then Y., = ('r—l)""‘w'ﬂs since a"+1 sFi =0
Now r>1: 8o that the group, if it exists, must contain the
operator m'a—w .

Forming the alternant of w’% and y%; we see that the
group will contain ym'—la% » and therefore

(m’%, g/a:'ﬂ%‘),

that is, yw“"’% .
But, since r > 1, this operator is of degree higher than », and

therefore we may conclude that the proposed group cannot
exist.
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§ 58. We proved in § 44 that A4, ..., 4,, the operators of
the first parameter group, were unconnected; and that
X,, ..., X, being the operators of the group of which 4,,...,4
is the parameter group

Xi+A,. ., X,+4,
each annihilated any function of #,...,2,, when expressed
in terms of 7, ...,27, and a;, ..., @,.

It follows that the alternant

(Xi+4;, Xi+ 4y
annihilates such a function ; and therefore so also does
k=7
Tk Ay, Xt A)— T oy (X + 4y).
Expanding the alternant and noting that

k=7
(X X))~ Do X;
vanishes identically, we conclude that

T

k=r
(A A)—Zcgip 4,
annihilates any function of «,, ..., ,,, when expressed in terms

of &, .0 @y, Gyyeee, @pe
Now this operator does not contain z,...,2), and there-
fore, from what we proved in § 42, it cannot annihilate the
functions which express ,,...,&,, respectively, in terms of
1 ey @5 @5 -oey @, Unless it vanishes identically ; we must
therefore conclude that
k=r

(A, A7) =2 egjp Ay, 5

that is, the first parameter group has the same structure con-
danis as the group X,,...,X,.

§ 59. The theorem of § 41, known as the first fundamental
theorem, tells us that if

(1) &/=f;(®,.00s%p, @gyennr @), (i=1,..,n)
are the equations of a group, and
P SRR ¢

the operators derived from (1), by the method explained in
§ 40, then

CAMPBELL F

r
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(2) oXp=rpXi+... 40, X, k=1,..1),
where Ay, ... are functions of a,, ..., a,, and
X X,

Deeesdy

are the operators obtained from
ltXh ceey aXr

by substituting therein, for a,,...,a,, the parameters of the
identical transformation.

The converse of this theorem can now be proved.

Let (1) denote a system of equations known to involve the
identical transformation ; we can form the operators

aX1yeingX, and Xy X,

from the equations (1) without presupposing any group pro-
perty of those equations; the converse theorem then is, ‘if the
equations (2) are satisfied, then the equations (1) will define
a finite continuous group.”

On referring back to § 44, it will be seen that the two facts,
firstly that (1) involved the identical transformation, and
secondly that its operators were connected by the equations (2),
involved as a consequence that

7% =e¥m,.

If therefore we can prove that the alternants obtained from
X, ..., X, are dependent on X,,...,X,, then the converse of
the second fundamental theorem will show us that the equa-
tions (1) are the equations of a group.

Now the equations of § 40, viz.

d ,
(3) d_a;—“x"-'-m’ (k=1,...,7),

are independent of any group property in the equations (1};
and (3) and (2) were the only equations used in § 47 to deduce
(2) of that article. We conclude therefore that the facts, that

&= fi (T ey Ty Bpyeenty)y  (E=1,.,m)
involves the identical transformation, and that its operators
are connected by the equations (2), are sufficient to ensure
that the equations (1) are the equations of a group.

This is converse of the first fundamental theorem.



CHAPTER V
THE STRUCTURE CONSTANTS OF A GROUP

§ 60. If X, X, X, are any three linear operators whatever
we have from the definition of an alternant

1) X X))+ (X, X)) =o.
Also from the same definition
(Xp (Xz’ Xa)) = Xl (Xm Xa)—(Xz: Xa) Xl
=X, XZXs—XlXaXz—X2X3X1+X3X2X,
and therefore
(@) (Xu (X, X))+ (X, (X, X))+ (X, (X, X)) = 0.

This equation will be referred to as Jacobi’s identity.
X,, ..., X, are r independent operators the second funda~
mental theorem has shown us that

Eer
(3) X X)) =S 0 X,

if, and only if, these operators generate a group.
From (1) we then have

k=1
2 legrtoa) Xy, = 03
and therefore, since the operators are independent,
Cijr+Cjap = O.
Again by (3) (X;, (X, X;)) is equal to
h=r h=r k=m=r
(Xj Zean Xn) =2 e (X Xp) = 2o Citm Xm»
so that, applying Jacobi’s identity, we have
h=m=r
= Can it Chjh Cinm + Cin Chpm) X = 0.
F 2
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Since the operators are independent we must therefore have
k=2
= (0at Gn + Cajh it F i Chhn) = O
The constants then which occur in the identities
h=r
(X, Xp) =ean Xy
are such that they satisfy the system of equations
Cipgt ey = 0,
(4) h=r
= (€ith Cihm + Cuh Citm+ G, Chhm) = 05
where 1, &, j, m may have any integral values from 1 to r.

These constants are the structure constants of the group
corresponding to the operators X, ..., X,.

The third fundamental theorem in the theory of finite
continuous groups is that the structure constants of any
group must satisfy these conditions; and the converse pro-
position is that any set of constants, satisfying these conditions,
will be structure constants of some finite continuous group.

A set of constants satisfying the conditions (4) is called a set
of structure constants of order r; what we are now about to
show is, how, when we are given any such set of structure
constants, » unconnected operators X, ..., X, in » variables,

can be found such that
k=vr

(X Xy =2 ey Xy

that is, we shall find » operators generating a simply transitive
group, with the given constants as its structure constants.

Groups of order r with the given set of structure constants
may exist in & number of variables greater or less than «;
and the method of obtaining types of such groups will be
investigated in Chapter XI; in this chapter, however, as we
are only concerned to prove the converse of the third funda-
mental theorem, it will be sufficient to prove the existence of
a simply transitive group with the required structure.

k=r
§ 61. If x; =Eakiw}a (i=1,..,1)
is any linear transformation scheme, whose determinant
Pgs » o o Gy

Gppy « o o Oy
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E=r
does not vanish, and o= > A, x,

is the inverse scheme, then, c;zz, ... being any other set of 73
variables, and ¢}, ... another set connected with the first set
by the equation system
= p=q=r
(1) 2 Wy Cin =2 Fip Vrg Cpgs>

we see that, since the above determinant does not vanish,
(1) must give ¢z, ... in terms of ¢z, ...

From the fact that in the notation of § 88

p=r
2 Api Oy = €15
we easily verify that
h=r p=g=r
D Ansinn =2 Agy Arg0pass

and therefore ¢;35, ... are given in terms of ¢jzz, ...

It will now be proved that if one set ¢y, ... satisfy the
system of equations (4) of § 60, so will the other ¢}z, ...

To prove this, multiply (1) by @y Comy, and sum for all
values of &, s, m, p, g, when we shall have

R=s=m=r m=p=s=g=r
2 Qg Ve c;kh Comg = 2 i Og Y Cpgs Com -
Since by (1) the left hand member of this equation may be
m=h=7r b
written E Lgng in Chim
we see that
m=h=r
> L] (3 Chtm + ot Shim + Chin Shlom)

is the sum of a number of terms which vanish by the con-
ditions (4) of § 60.

We therefore conclude, since the determinant does not
vanish, that

h=r
2 (Cn Shim + Cith Chim + Chin Chm) = O

for all values of 7, k, m, t.

To prove that Copt+Chis = 0,
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interchange ¢, k, in (1) ; we then get

k=7 p=g=r
2 Ppg ‘Jkih = 2 Fig Okp Cpgar
Adding this equation to (1), from the conditions (4) of § 60
we must have . = 0,
Cint + Cpge = O

Suppose now that we have a group with the structure con-
stants ¢;.;, ..., the corresponding operators bei;xrg X, ...

[t

If we take as a new set of operators ¥, ..., ¥, where
b=y
@ =2 ayX,,
then it can be at once verified that ¢y, ... are the structure

constants of the group corresponding to Yy, ..., ¥,. The con-
clusion we draw is that when we can find & group with the
structure constants c;;;, ... this group has also the structure
constants ¢z, ... corresponding to another set of independent
operators.

We often take advantage of the fact that the structure
constants of a group vary, with the choice of what we may
call the fundamental set of operators, in order to simplify
the structure constants of the group. Thus in § 55 we simpli-
fied the structure of the group of projective transformations
admitted by 2*+ 42422 =1.

If two groups are such that the structure constants of the
first, corresponding to some one fundamental set of operators,
are the same as the structure constants of the second, corre-
sponding to some one fundamental set of its operators, then
the two groups are said to be of the same structure.

It is, however, & matter of considerable labour when we are
given two groups, with their respective fundamental sets of
operators not given in such a form as to have the same
structure constants, to determine whether or no the groups
have the same structure with respect to some two sets of
fundamental operators.

§ 62. Suppose that we are given a set of structure constants
Cikn, -+ Such that all (r—s+ 1)-rowed determinants, but not
I (r—s)-rowed determinants, vanish in the matrix

Cjigs +
Cos -

Cirkss
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(in any row all positive integral values of j and % are to be
taken from 1 to 7).
We now choose constants @y, ... such that
Wi+ oo+ Onr Gy = 0,
G=1.,mk=1,.,r; h=1,..,,9),
and complete the determination of these constants by taking
@y, Tbitrarily if m >s; these arbitrary constants, however,
must be subject to the limitation that the determinant of the
7% constants I an s
AP ¥

#* 0.
Bpgs o o o Oy

If a group of the required structure exists, and X, ..., X,

are its operators, then

X4+, X, (R=1,..9
will be s independent operators of the group permutable with
every other operator of the group; thatis, s Abelian operators
forming therefore an Abelian sub-group.

We now take the operators given by (2) of § 61, and thus
we get & new set of structure constants cjyp,... with the
following properties:

(@ Cien = dinn
where 4, k, i may have any values from (s+1) to 7, and
d gy aTe & seb of strueture constants of the nt: order, m being
written for (r—s);

(B) the constant Cipp =0,
if either ¢ or k is less than s+ 1, 2 having any value from
1 to 7 inclusive ;

(y) the constants ot o
where % and k both exceed s, and m does not exceed s, are
such that Cipm + Coim™= 0
h=r

2 (dign Shim + g Shim+ Ljin Gigm) = O
h=s+1
We may therefore say (with the slight change of notation
which consists in writing

s i’
digh = Cooty sk, v—ns 800 Coem =d7 g, v g, rom)
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that the problem of finding a group with the required
structure 1s now reduced to that of finding a group with
the structure constants df,... defined by the following
properties :
(9) i = Cpns
if none of the suffixes 4, k, i exceeds n, where the constants
Cixp, 870 known structure constants of the n* order, such that
not all n-rowed determinants vanish in the matrix
Citks -
o (j:l,...,'lb)_
X ’ k=1,..n’
Cirks -
(8) the constant digp =0,
if either ¢ or % exceeds m, & having any value from 1 to r;
169) d;km = %gms
itm + Ay, = 0,
where (1) {i=»
2 Condpgm + hin Dnem + jen Dppm) = 0,
if neither 4 nor % exceeds n, and m does exceed n.

The constants djy;,... may be called normal structure
constants, and the problem of ﬁ_nding a group with a given
set of structure constants is now reduced to that of finding
a %roli;) with a given set of normal strueture constants.

f ¥, ..., ¥, are the operators of a group with normal
structure constants, ¥,,,,..., Y, are the Abelian operators of
the group, if any such exist ; and there is no Abelian operator
in the group independent of Y,,,, ..., ¥,.

Erample.

oy = =0y Cyg = Dey, Gy = be, = 0, =0,
Cozg = 0, Comp = — 0y, Coopy = —aly, 1y = €6, Cpy=  Ct
Comg = Qe Cyg= 0, Gy = 0, ey = —be,, ¢, =—be,
Cm = —Clp G = 0, Gy = —cey G=  be,
G = 0,05 = co, Cy,= 0, C3 = —ae,,
O = Ay Oy =—00y, Cpy= a6, = O,
are s set of structure constants, forming the matrix
—ceg, be, b, 0, 0, —ce,, 0, —ce,, be,

0, —ae,, —ae,, cey,  Cey, 0, cey, 0, —ae,

ae, 0, 0, —be,, ~be,, ae, —be, ae, 0
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We see that every determinant of the third order vanishes;
and that, unless a =b=1¢, or ¢ =¢,=¢;= 0, it cannot
happen that every determinant of the second degree vanishes.

If then a group X, X,, X, exists with these given constants
as structure constants,

aX +bX,+cX,

will be permutable with every operator of the group, that is,
will be an Abelian operator ; and we take then

Y, =aX,+b0X,+cX,, Y,=X, ¥V,=X,
to be the operators of the .

‘We have now a group of which the structure is
(Ys, ¥y) = 0, ¥, +(ae,—be) ¥, + (ag3—ce) ¥,
(¥, Y=o, (Y, ¥y =o.

If ae,— bey, and ae,—ce, are both zero, we see that Z, = ¥,
Z,=7Y, Z;=Y, will be three independent operators of the
group with the structure

(Z,Z) =0, (Z,2)=0, (%, 2%,)=2,.

If ae,—be, and ae,—ce, are not both zero, suppose that
aey—be, is not zero, and take
Zy=e Y+ (0e—be) Yy +(ac,—0e) ¥, Z, = (ae,—be)) 'Y,
when we shall have

(2o, 2y) = 25, (24, Z) =0, (Z1, Z) = 0.

§ 63. We have proved in § 58 that the first parameter
group has the same structure constants as the group which
generates it, and that it is a simply transitive group. Now it
may be at once verified that, if

j=k=n

p:] .
X€=Ecjikx137k’ i=1,..mn),

then the operators X, ..., X,,, if independent, will form a linear
group with the structure constants cjy,.... The first para-
meter group of this linear group will be simply transitive and
have these constants as its structure constants,

Now the operators X, ..., X, are independent, since by hy-
pothesis not all n-rowed determinants vanish in the matrix

|QMV

ik -
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and we thus see that, given the structure constants, the group
can be ab once obtained if it does mot contain any Abelian
operators.

Ezample. Find a simply transitive group with the structure
=1, =0, e==1, ¢=0, ;=0
oz =0, & =0, Cp=0
Writing down the matrix we see that
? o
X, = L5 X, = Y35

is a group of the required structure, but it is not simply
transitive.

The finite equations of this group in canonical form are (if
we take ¢, X, +¢, X, as the general operator of the group)

d=ertat Aeni-1)y,  y=y.
2
If we change to a new set of parameters given by
a=ent, g = (A1)
€2
the finite equations of the group are no longer given in
canonical form, but yet they take the simple form
F=wptay, Y=y
The first parameter group is now
o= a2, Y=ay+a,
since the equations which generate it are
= by, 6y =byag+b,

The parameter group is therefore a group of the required
type, since it is simply transitive, and it may be verified that
it has the required structure, for its operators are

J J d
w3t ya > R
§ 64. We now proceed with the theory of the construction

of 'a group when the assigned structure constants are such
that the group, if it exists, must contain Abelian operators.
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Let X ,...,X, be the simply transitive group, which we
have shown how to construct with the structure constants

Cilghs veee
‘ zssumi.ng for the moment that the simultaneous equation
system

h=n
0 it —Xp i = i+ 2 Citte Y
E=1.,n;k=1..m m=n+l,.,7)
can be solved, let %y, ..., Uy, be any set of integrals. We can
then at once verify that the r linear operators

Xi"""’i'. n+1

d
e Uy — i=1,..,m),
it o Uy 3z, (@ yeees )

d d
EEN - oz,

generate a simply transitive group of order  with the structure
constants djy;,....

Example, Find a group with the structure

Xy X) =0, (X, Xp)=—-X,+X,, (X;,Xy)=0,
X Xy =0, (X, X9=0, (X, X)=0

The constants of the proposed group are such that the group
must have two Abelian operators; and the constants are in
normal form, for X, and X, are clearly these Abelian operators.

Using the results of the last example, we take

=2
27,

;

d
Xlzx‘_"'xﬁa—%’

and the operators of the required group will be ¥,,Y,, ¥,, Y,,

p:] p:] d p:]
where Y, =X +&— 46— Yo=Xotngs— 4o
Ay d, EEN dz,
_ 2 _
3_5_9:—3’ £ 7 da,

We sce then, by the condition of the problem, that &, £,,
73, 1, are functions not involving &; or =,, and that

X=X, & = 1—1 Xim—X, 6 =0
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As we can take any integrals of these equations, we choose
7y = & = £ = 0; and we must then determine n, so that

b ]
("“"x(\;l +w23?2)"73 =1-—n,
We therefore take 5, = 1, and we see that
2 d d d d
will be four independent operators forming a group of the
required structure.

§65. We now proceed to show how the equation system (1)
of § 64 may be solved.
Since X,,...,X,, is & known set of unconnected operators,
d

p:] P

Say’ v can be expressed thus:—
by .
r=)‘u‘X1+~-~+)‘m'Xm (i=1,..,n),
;

where A, ... is & known set of functions of the variables
Ty e, Ty
From the fact that
p:] _ 2 2
dudzy,  dwy, oy
and that X, ..., X, form a group, we see that A;;, ... are func-
tions satisfying the equation system

a=f=n
Mp My _
(1) 2, Capj Aar Agi.
It will now be verified that

i b} ) b}
{5 Aai A s—AarAgi+ 5o Asi g ) =
@) Zdu (awl}w ﬂk+3wj)\ EAg +5 )= 0

for all values of 4, j, k.
‘We have

L Agr = A 2 Agr+A 2 A,
b—x‘}\“’ 8r = -ja—w‘. 8 gka_wi aiy

p:] p:] p:]
T AarAgi = Ak s—Ag; i 5 Aa.
da, k0 kbx,- ait A oz, b

2 Aaidgi =\ 2 Agi+A 2 A
iy, o BT Rai g A Y
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Since dagm+dgam = 0,
we gee that what we have to prove is that
a=f=n e=g=n
d J d d
2 Aoj@agm (S‘;}‘ﬁk'— S&;}‘ﬂi){- E Agk dﬂﬂm(rx.Aa]’ - b—mkai)
i v J

a=g=n 3 3
Agidagm { 5—Ask— 5= Ay} Z 0.
+ sid, 'm(bmj)‘ * Bwk)\ )=0

Writing the second and third of these sums in the re-
spectively equivalent forms,

vE ) )
2 Midyen (a—x,.}"“— 530:-)"”) s

b=§'ﬂ4 d a a
Aps bﬂm(‘ahw: Agj— b_mABk) ’
¢

and substituting from (1), we see that the coefficient of
AajAyiAp; in the identity is
B=n
— 2 (dsam &5+ dgam Coys + dgon Oars) 5

sud this is zero by (1) of § 62, so that the identical relation
(2) is now proved.

In order to prove that the simultaneous equation system (1)
of § 64 can be satisfied, multiply the equation there given by
Agp Apg and sum for all values of 4, k; then, if the new set of
equations—there will be one for each pair of values of p, g—
can be satisfied, so can the old.

To see this we notice that for the equation, with & given
pair of values of 4, &, the multiplier is A;, A, —Ay, Agy ; and the
determinant of these multipliers cannot vanish, for the deter-
minant of A does not vanish (Forsyth, Differential Equa-

tions, § 212).
If we now take
Vi = Ay Uy F eos + A U E=1..,m),
the simultaneous equation system takes the simple form

by by i=k=n
Se Vam— 5 '”pm=2 DigmNip Meg = Tpgus
whete o, ... are functions such that

Tikm+ Tkim = 05
since Aipm+ i = 05
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and from (2) we know that
J d 3
T ¥ 3 Tim 5o Tijm = 0-
i E)
§ 66. Tosolve these equations consider the following lemma:
if we have %w (n—1) functions oy,... of the variables

@,, ..., &, such that oo =0,
> 2 2
52, et 5, T F 5, W T
E=1,.,n;j=1,..,n; k=1,..,mn),
then » functions 4, ..., %, can be found such that

W= 5aa, (s — ).
To prove that this is true for the case n = 3, let
22 2
= m(ul—“z)a Ty (u—ug);
here we can take wu, arbitrarily, and obtain u, and u, by
integration.
Since oy, + 0y = 0, and o+ 05, = 0,
2 %
on= m(’%‘“&)! Oy = m("‘/a_“l)'
b d p:]
Now (‘—wla'za+ b—wza-“_i-ﬁaa“:o’
therofors 2 Y=o
erefor ﬁ;“’za’*‘ a4 a%(’%—uz =0,

and therefore Y]
O = m(uz—ua) +J (2, @)

It is clear that we can write f(x,, ;) in the equivalent form
2
Sy ) = 57, 35, ()
where w, and w, are functions of ,, z, only; and if w, is
taken to be some arbitrary funetion, then w, can be obtained
by integration ; therefore

»?
%= 3z, 0m, (g + w, — Uy —wy).
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Sinee w, and w, do not involve z,, we see that Uy, Uy + Wy,
and 3+ w, are three functions in terms of which Oy 031, ARG
oy, can be expressed in the required form.

The extension to n variables is now easy. Assuming that
the theorem has been proved for the case of (n—1) variables,

2
let = Sam, (u;—uy), (k=1,...,n),
where as before u, is arbitrary.
F d J d
rom a—wl‘fkh+m“m+m0ug—0,
> 3,
we get 55 78 T Sadagva, (g ~wp)s

and therefore oy = 3, %, (ug—up) + Ppas
where py;, is a function of z,, ..., %, only.
We have punt P =0,
J
da;
C=2,..,n; k=2,..., 03 k=2,..,7);
and therefore, since we now have only (n— 1) variables,

d d
PrE + EP;,N- E’Pmy

2
PEL = S (wy—wy),
where w,, ..., w, do not involve «;.
It follows as before that
Ugy Uy b Wy veny Uy + Wy
will be a set of functions in terms of which we ean express

@i --. in the required manner.
If we now write, as we can,

*
Tpgm = Bwp bwq (E«m_ VQ’")’

where the functions ¥, ... can be obtained by quadrature,
the integrals of the equation system,

p:] p:] v

3o Vem ™ 5. Vpin = Tpgms

2, ¢ bwqa m
will be Vp = — — V,

m pme
? @
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§ 67. We have thus proved that, given any set of structure
constants, we can in all cases find a simply transitive group
of that structure.

Of the three fundamental theorems in the theory of finite
continuous groups, the first asserts that in a group with
r parameters there are exactly r operators which are inde-
pendent; and this property, together with the existence of
the identical transformation, is sufficient to ensure that the
equations

=i (@1, oons Tpy By, s @), (t=1,...,m)

will define a group.
The second fundamental theorem asserts that these operators
X,,...,X, are such that
k=r

Xor Xj) =g, Xa s

and that from any set of linear operators satisfying these
identities a group may be generated. The theory of the
canonical form of a group shows us that the group is entirely
iven, when we know the linear operators; and therefore, to
End all possible groups, we have to find all possible sets of
independent operators, such that the alternants of any set are

dependent on the operators of that set.
The third fundamental theorem asserts that this set of

structure constants satisfies the conditions
Capnt Crap = 0,

h=7r
2 (iah Ghm+ Oagh Conm + Ciih Chim) = 03

and that, corresponding to every set of constants satisfying
these conditions, & simply transitive group can be found whose
operators satisfy the conditions

A=y
Xy, Xp) = o X

Later on we shall see how all types of groups with a given
set of constants as structure constants can be found, for so far
the third fundamental theorem has merely shown us that one
;impéy transitive group of the required structure may be

ound,



CHAPTER VI

COMPLETE SYSTEMS OF DIFFERENTIAL
EQUATIONS

§ 68. If ¢ linear operators X;,..., X, are such that no
identity of the form

By s ) Xyt oo+ g (@, 0s ) X, =0

connects them, the operators are said to be unconnected,
Any operator which can be expressed in the form

1@y, e @) Xyt o+ g, o ) Xy
is said to be connected with X, ...,Xq; and all operators so
connected are said to belong to the system X, ..., ¢

There cannot be more than # unconnected operators, though
there may be an infinity of independent operators ; uncon-
nected operators are of course independent, but independent
operators may be connected (§ 15).

If ¢,(2,...,2,) and ¢, (@y,...,2,) are two functions of the
variables @), ..., z,, such that there is no functional relation
between them of the form

V(¢ ¢) =0,
they are generally said to be independent; it will be perhaps
more convenient if we say they are unconnected, and reserve
the word independent for functions not connected by & relation
of the form Mt A g, =0

1%1 2=
where A, and A, are constants, and not both zero.

Similarly any number of functions ¢,, ..., ¢, will be said to
be unconnected, if there is no identical relation between them

of the form V(10 99 = 0;
and they will be said to be independent if there is no relation
between them of the form
Mgt 42,0, =0,
where A, ..., ), are constants.

CAMPBELL [c3
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If we have ¢ unconnected operators, such that the alternant
of any pair is connected with the ¢ operators; that is, if

h=q
(Xi Xp) =2 5%
the operators are said to form a complete system of order ¢.

If we take any system of unconnected operators X, ..., X,
and form their alternants (X;, X3), ...,then, unless each alternant
is connected with X, ..., Xq, the system made up of Xl,...,Xq
and their alternants (X;, X3), ... will contain a greater number
of unconnected operators than the original system X, ..., X .

Suppose it contains (g +s) unconnected operators; we can
add to this system as we added to the original system, and we
shall thus obtain a new system containing still more uncon-
nected operators; proceeding in this way we must at last
arrive at a complete system, since there can never be more
unconnected operators than there are variables.

If a function of @, ..., %, is unaltered by the infinitesimal
transformation

=gt @y oo &)y (E= 1,00, 1),

it is said to admit the infinitesimal transformation, or to be
an invariant of that transformation.

If f (2, ..., ,) is & function admitting this transformation
we must have

i=n by
f @y e @) =F @ on @) =1 (@ ~-~,%)+t2€,-3—£?

it follows that the necessary and sufficient condition that the
function may admit the infinitesimal transformation is that it
should be annihilated by the linear operator

d d
£‘b-a;1+ oo F f"s.’t‘n
The set of ¢ infinitesimal transformations

k=1,...,
= rtbutonnnd (00
are said to be unconnected if no identities of the form
k=g
St builm o) =0 (=1,.,m)
connect them, where ¢, ..., $q are functions of the variables
@yyoens e
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§ 69. The problem of finding whether there is any function
f @, ..., x,) admitting a given set of ¢ unconnecfed infini-
tesimal transformations, is the same as that of finding whether
there is any function annihilated by each of the ¢ given
operators Xy Xq‘

Since, if fis annihilated by X; and X, it is also annihilated
by the alternant (X, X,), this probleni may be replaced by
that of finding whether there is any function annihilated by
the operators of a complete system.

If the complete system is of order =, i.e. if the number of
unconnected operators is equal to the number of variables,
then the only function which can be so annihilated is a mere
constant.

If, however, the order is less than =, it will now be proved
that there are (n—gq) functions which are so annihilated; in
other words, there are (n—gq) unconnected imvariants of «
complete system of order q.

Let Y,,..., ¥, be & new set of operators connected with
X, ..., X4 by the identitios

Ni=m&itotm, X, (=19,
where p;,... are any system of functions such that the
determinant
P - - Pig

qu, . . . pqq
is not identically zero.

The operators Y,..., ¥, also form a complete system of
order ¢, and any invariant of one system is an invariant
of the other.

In order to simplify the forms of Yy,..., ¥, wo now so
choose p,z,... a8 to have, in the notation of § 38,

i=¢q
2 puibin-gen = e

Since Xy, ..., X, are unconnected, these values of py,...
cannot make the above determinant vanish ; we now have

i=n—g

?
+2ﬂkc(%--~,wn)a?.’ (k=1,...,9).
3
G2

d
Y, = Sz
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The operators Y,..., Yq are now said to be in nmormal
form, and the problem before us is to find the unconnected
invariants of a complete system given in normal form.

The operators in normal form are all permutable; for
suppose that

TV =m i+ +p, Y,
where i, ..., prg BT functions of y, ..., ,.
From the forms of Y, ..., ¥, we see that the coefficient of

in the alternant of (¥, ¥3) is zero; and, since on the

awﬂ—qi»h
right hand of the above identity this coefficient is p;, we con-
clude that gy, ..., s, are each zero.

We now know that ¥,..., ¥, generate an Abelian group,
all of whose operators are unconnected. (It is not of course
true that the operators X, ..., X, necessarily generate a group;
such a conelusion could only be drawn if X,,..., X, were
dependent on ¥, ..., Yq; here all we know is that they are
connected with Y, ..., Yq.
The problem of finding the integrals of a complete sgstem
of linear partial differential equations is the same as that of
finding the invariants of the corresponding operators; and
this problem is now reduced to that of determining the
invariants of a known Abelian group, all of whose operators
are unconnected.

It will be noticed that in this reduction of the problem only
the direct processes of algebra have so far been employed.

§ 70. We shall now show how the form of such an Abelian
group may be simplified by the introduction of new variables.

d d
Let X=£la?1+"'+£"3_x—
'n

be any operator, and let f, (2, ..., @), -.ey frmy (@, ..., ) be
any (n—1) unconnected invariants of this operator, and
fu @y, ..., x,) any other function unconnected with £, ..., ;.
Take as a new set of variables
Yi=Si ¥ =fp:
then the operator X, when expressed in terms of these new
d s
5?—/—-, where 7 is some function
n
of %y, ..., ¥, which is known, when we know X and its in-
variants,

variables, must be of the form 4
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We can now find by quadratures a function ¢ (y,, ..., ¥,)
such that 2
"5

=1,

This function ¢, which we shall now denote by ¥/, must con-
tain y,, and must therefore be unconnected with vy, ..., ¥n_: 3
if then we take as variables ¥y, ...,%,_;, ¥, the operator X
will be of the form N
EZ
In order to bring ¥, into the form s’ it is only necessary
n
to be able to find the invariants of a linear operator in
(n—q +1) variables ; for, since the coefficients of
d d
_— e
Ly_g41 ATy

vanish in ¥, the variables #,_g 41, ...,%,_, cen only enter that
operator in the form of parameters.
t is not to be supposed that in every operator of an
pp ry op y

Abelian group the coefficients of

must vanish ;

T

d
K X bw,,_qﬂ Ay y
but in the particular Abelian group we are dealing with the
operator ¥, has this property.)

§ 71. We shall now prove by induction that every Abelian

group, with ¢ unconnected operators, can be reduced, by a
transformation of the variables, to the form

d d d
S L e
o0z, by g 41

Let X,,..., X, be the given operators of the group; then
X, ..., X4y will form a sub-group of (¢—1) unconnected
Abelian operators. Assume that these can be reduced to the
forms 3 N

e s
Ay gs1 LE

and that
d d d d
X, = £xa-w'l+"-+fn—qa-1”: +§n-q+1m +.e +£1AXT—"'

The operators were unconnected and permutable in the first
set of variables, and must therefore retain these properties in
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the new variables ; it then follows that none of the coefficients
&1 +-es & can contain Zp_gi1s ooes Tpoye
By a transformation of the form

n =5, .., Tpegs Tn)s ooy Yng =f,,_q [, Tn_gs Tu)s
:'/nzfn(wn cees Lp_gs z,), o Yn-gi1= Luogats o Ypo1 = Lpys
we can, without altering the forms of X, ..., X, ,, reduce
X, to the form

d d d

Fhugri——F et
Syt LA " s’

where §,_, 41, -y &5, are functions of y,, ..., Yn-gs Yn only.
We may therefore suppose that X, ..., X, have been thrown
into the forms

d d d
Xq=m +£n_q+1m+ '“+£"_131'T<1’
d
= e Xy =
% 2y 441’ " 0,

where £,_;.., ..., &, do not contain @, _,,;,...,2,_;; and to
simplify the form of these operators further we take

Y1 = Bpseons Unog = Tygs Yu =T,

Yn-g+1= wn—q+1_f£n—q+1dznl o Yp = wn—l_ffn—ldwn'
‘We now have
d 2 d d

[, AU S
ATy _g41 yua Ty,

s

a?/n—qﬂ
? 2 2
m = E +fn-q+1m+...+fn-1m;
and therefore X,, ..., X, g take the respective forms
d 2 d
Wuger’ Wnges' 3y,
As we have already proved that any single operator can be

reduced to the form e have now given an inductive
n
proof that any ¢ unconnected Abelian operators can, by a
proper choice of variables, be reduced to the forms
d d d

T e
oz, dx,_, 2

Tp_g+1
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§72. When an Abelian group is reduced to this form
T, vy By_g 8T€ (n—g) unconnected invariants of the group;
and therefors we have proved that any complete system has
exactly (n—g¢) unconnected invariants.

It is important to prove that these imvariants can be
obtaimed by direct algebraic processes amd imtegrations of
equations vn (n—q + 1) variables at the most.

To prove this we reduce the system to its normal form,
which can be done by processes which are merely algebraie.
If X, ..., X, are now the operators we reduce X, to the form
5;_; this we have proved can be done by quadratures, and
the integration of an equation in (n—g+ 1) variables at the
most.

X5 -0 Xgy will now be (g—1) unconnected Abelian opera-
tors ; let

? ?
By=bugy + o thnggs  (B=bomg=1)

where, since X; is permutable with i, &1s -oor Egu 0Dy
involve Zy, v.y @y_yq- ¥,

Our object being to obtain the invariants of > and

Az,
X,,..., X, , it is only necessary to find those functions
of @,,..., %,_; which are annihilated by the (¢—1) linear
operators
d d
f’“a_ml +"'+£"”'1E.._1’ k=1,..,q¢-1).

These (g— 1) operators are Abelian operators, and uncon-
nected, so that we have to find the invariants of an Abelian
group in (n—1) variables with (¢g— 1) unconnected operators.

Assuming then the theorem for the case of (n—1) variables
with (¢—1) operators, we see that it will also be true for the
case of n variables with ¢ operators; and since we have
proved its truth when ¢ = 1, we conclude that the process of
obtaining the common integrals of a complete system of linear
partial differential equatioms, in n variables, involves the
integration of linear equations in (n—gq+1) variables at
the most.

§ 73. Suppose now that we are given the equation

b d
X, (N= £1£+...+£,.%= 0,
how far are we aided in finding its integrals by our knowledge
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of (¢—1) other operators X, ..., X, forming with X, a com-
plete system ?

We first find the (n—¢) unconnected functions which are
common integrals of

X, (N=0..X,(H=0
by the method just explained; we then take these functions

to form part of a new set of variables; and in these new
variables may assume the integrals to be

Tp = Gy oy Tgpy = dguge
‘We now have to find the remaining (¢—1) integrals of
of of _
1 flb—wl'f'---'f'fqﬁ;—o.
where £, ..., £, are functions of z, ..., Tgs Qga1s ooy Gy 5 the
subsidiary equations of (1) are then
doy _dey _ _ deg
& & T &

It is known (Forsyth, Differential Equations, §§ 173, 174)
that the solution of these subsidiary equations, and therefore
of the corresponding linear partial differential equation (1),
depends on the solution of an ordinary differential equation
of order (g—1) in one dependent, and one independent variable.

Thus the solution of 5% +7 %’; = 0, where £ and 7 are fune-

tions of x and y, depends on the solution of an ordinary
. du du du,
equation of the first order; ¢ Sy 5 +¢ 32=° depends

on the solution of an ordinary differential equation of the
second order.

If we define an integration operation of order m as the
operation of obtaining the solution of an ordinary equation of
order m, we may say that: if we are given an equation
X, (f) = 0, and if we know (q— 1) other operators forming with
X, a complete system of order q; the solution of the equation
can be made to depend on algebraic processes, on quadratures,
and on integration operations of order (n—g) and (g—1).

Ezample. Prove that, if X, ..., X, is a complete system
with the unconnected invariants s «ees Upq, then every
operator which annihilates each of these inviciants is con-
nected with X, ..., Xg.

By a change of the variables we may take the invariants
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to be @,...,%,_g; then the operators are in the variables
By gs1s - T O0ly ; and as they are unconnected

2 2

s

P)

wn—qﬂ. n

are each connected with X, ..., X .
Any operator which annihilates 'z, ...,,_, must be of the
form

d d
f,._qﬂm + ... +£"E’

and must therefore be connected with X, ..., X .



CHAPTER VII

DIFFERENTIAL EQUATIONS ADMITTING KNOWN
TRANSFORMATION GROUPS

§ 74. In this chapter we shall show how the fact, that
a linear partial differential equation admits onme or more
infinitesimal transformations, which may be known by
observation of the form of the equation or otherwise, enables
us to reduce the order of the operations requisite for the
solution of the given equation.

Let Y be the linear operator

>

d d
"Ila—wl + .+ ﬂﬂaw”
where 7,,..., 1, are functions of @,, ...,x,, and ¥ the operator
obtained from Y by replacing ; by «;}.
1 ¥ =Lz, (i=1,..,n),

2 2
where X=£13—1+"'+£"37’
1 n

we must obtain an expression for ¥” in terms of z,, ..., ,,and
this will enable us to determine at omce if the equation
Y (f) =0 admits the transformation (1).

From (1) we deduce (§ 44) z; = e~z and therefore
Yz, = Ye ' ¥'af. Since ¥e~t 2 is a function of ), ...,
we therefore have

(2) Y, =eIVe~ g,

Expanding ¢X Ye—'Y in powers of f, we see that the

coefficient of " is
XY X-¥YX  XYX: XrFXs
i (=) T (r—2)[ 21 (r—3)i 8!

We shall prove that this expression is equal to (—1)"

where YO =YX-XY, YO=YOX_XY®
YO =Yy X_XY(’-I),

Foue
Yo
T



75] TRANSFORMATION FORMULA 91
Y™ having now the meaning which was attached to y, in
48

A;ssume that
yrmn X'y X™2YX  XT3YX?

St oy yy Rl sy (S TR o I T
(—1) (YeDX — X7CD)
then =11
Xy X1YX XY X?
s vy Rl Gk oy yy s v Rl Gt e T Rl

_ X1yXx 432 Xr-2yX:
g1 fFogra
X'y XYXx XY X?
ST "= Ty
and therefore

—1Y"
=05 T =11t (r—g) 2l
so that the required theorem is proved by induction ; and

2 3
Ve~ X = Y —t¥TM 4 %Y(Z)_ ;TY@ e

It follows that ¢'¥ Ye—'X is a linear operator, and as such
it may be written in the form
i=n

?
tX Po—tX ) O |
z (@XYe gy 5a

and by (2) this may be written

i=n

4 a ’
2 Y(w")a—x,.“ v,

so that Y= Y—i Yo 4 e Yo — g Y@4....
1t 2! 31

§75. We may apply this formula to obtain the conditions
that a given sub-group may be self-conjugate.

If X,,...,X, are the infinitesimal operators of a group, of
which X, ..., X, form a sub-group, we defined a self-con-
Jjugate sub-group as one such that

&t ot e Xy Aoy oy + o+ A Xy p—r Xy~ —or X

is always an operation of the sub-group, whatever be the
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values of ¢, ..., ¢,, the parameters of the group, or A,
the parameters of the sub-group.

we denote by X the operator ¢, X, +... +¢, X,, this con-
dition may be expressed by saying that the group generated
by X§.1..., X, where

g+ e Ar

@) = eZm,

is identical with the group X,i15005X,; that is, that each
operator X¢.,,..., X, is dependent on the operators of the
set Xqﬂ,..., -

Now the formula we have just proved gives

X=Xy KP4 g XP— 2 XPhes (k= g1y,
80 that
1 1 .
X;lij—z—ng},j+§!X(;’+j—..., =1,..,r—¢q)
must be dependent on X, ., ..., X,.
By the second fundamental theorem (§ 47) we have

i=k=r
X‘qli' =29i0q+j, 05 Xps

and therefore, if we take e, ...,¢, so small that their squares
may be neglected, we see that a necessary condition for
X4 4154+ X, being dependent on Xjips oo X, 18

zeicqﬁ,i,k =0, (k=1,..,9).

Since this must be true whatever the values of the small
quantities e, ...,e, we must have

_ J= 1,..,7—q; _
Cqij i =0, (i=1,...,r; k=1,...,9)-

The sub-group X, ,,, ..., X, cannot then be self-conjugate
unless these conditions are satisfied.

These necessary relations between the structure-constants
are also sufficient; for if théy are satisfied X, will be
dependent on X415 X, 5 and therefore, since this is true

for all values of j from 1 to r—g, X‘;Z,j, X(qslf-,... will all be
dependent on Xg,;,...,X,, and therefore g+ Will be so

dependent.
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If we take ¢ = r—1, we get in particular as the conditions
that X, may be a self-conjugate operator

e = 0, (i=1""’r )

k=1, .,r=~1
If X, is to be an Abelian operator the furtber conditions
Crir = 0, (E=1,..,7)

are necessary.

§76. We now seek the conditions that the ecomplete system
of equations
o Yy(f) = 0,0, Vo (f) = 0
may admit the group of order one
o = ¥ ay, (t=1,..,m).

Clearly the conditions are that Y], ..., ¥ should each be
connected with Y7, ..., Yq; that is, we must have

YYk=Pk1Y1+--~+ququ k=1,..9),

where py;, ... are functions of z,, ..., x,,.
. 2
Since Y, = Yk—th)+2—!Y§§)—...,

we see, by taking ¢ very small, that necessary conditions are

YP =0 Yit.. +op, ¥, k=1,..9),
where o, ... are some functions of z,, ..., z,,.
These necessary conditions are also sufficient; for

YR = (o Yit.t0yg Vg, Xy = o TP+, +o, YP
+(X<r,ﬂ)Yl+...+(Xakq)Yq,

and therefore, since Y{V,...,Y® are each connected with
¥y, ..., ¥, we see that Y} is also connected with ¥, ..., ¥,.

Similarly we see that Y@, Y|P, ... are each so connected ;
and therefore Y7, ..., Y, are connected with ¥,,...,Y,; and
we conclude that the nécessary amd sufficient conditions that
a complete system of linear partial differential equations of
the first order should admit the group

G=eTz, (=1,..,n)

are that _the alternants (Y, X),..., (¥, X) should each be
connected with ¥, ..., 0
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§ 77. If f(ay, ..., ®,) = constant is any integral of the com-
plete system, that is, if f(x),...,2,) is any invariant of the
complete system of operators Y, ..., ¥, then f (2, ...,2}) is
an invariant of ¥},...,Y;. Now by hypothesis the complete
system admits o = e ¥ m,,
and therefore by what we have just proved

YZ:pk‘YI-i-...-}-quYq, k=1,..79).

The determinant of the functions py,... eannot be zero ;
for if it were zero Y7, ..., ¥, would be connected, and there-
¥,,..., ¥, (being operators ‘of the same form, but in the
variables z;, ..., z, instead of 27, ...,4/) would be connected,
and this is contrary to hypothesis : since then the determinant
is not zero, every invariant of ¥3,..., ¥’ is an invariant of
Y, ..., ¥Y,; and we conclude tbat if f(x, ..., z,) is an invariant
of ¥y,...; ¥, soalso is f(af, ..., af,).

In other ‘words, any invariant of the complete system of
operators is transformed by

=z, (E=1,.,n)
tnto some other invariant function, if the complee system

admits this transformation.
We may prove conversely that if

1‘?:8‘11};, (t=1,..,n)

trangforms every invariant of the complete system into some
other invariant, then the complete system admits this trans-
Jformation.

For suppose that f(w, ...,,) is an invariant: then by the
hypothesis so is f (], ..., @), that is

X f (), ..., 2,)
is an invariant. If we now take ¢ very small, we may con-
clude that Xf (z,, ...,2,) is an invariant, and therefore must
be annihilated by ¥, ..., Y.

Since f(x, ..., #,) i an invariant, it is aonihilated by
Y, ..., ¥, and therefore also by the operators of the second
degree XY,,... XY ; and therefore finally f(,...,,) is
annihilated by each of the alternants (¥, X)), ..., (Yq, X).

It follows then from the example on page 89 that each
of these alternants is connected with ¥, ..., ¢» and therefore
that the complete system admits

m’,-:e‘xmi, (’l:=1,...,’ﬂ).
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‘We thus see that the conditions that a complete system may
admit the above group may be expressed by either of two
equivalent conditions ; firstly, by the condition that the alter-
nants of each of the operators of the complete system with X
should be connected with the operators of this system ;
or, secondly, by the condition that every invariant of the
system should be transformed into another invariant by the
operator X.

§ 78. The condition that a given function f(z,, ..., #,) may
admit
(1) Z=m+téle,.nm), (E=1,...,m)
is that it should be annihilated by the operator X,

2 2
where X’:flaTcl +...+£,,a—x"-
It must therefore, if it admits (1), also admit

@) G=wmrtpbiloy ), (=1.,m)
whatever function of the variables z,,...,#, the multiplier
p may be.

If on the other hand a given differential equation Y (f) = 0
admits (1), it will not in general admit (2).

I Y (fi=o,.., Yq(f) =0 is a given complete system
of differential equations the system will obviously admit the
infinitesimal transformation.

(3) x’i=x,-+t(p1Yl+...+quq)x,-

whatever the functions g, ..., pg may be; for the alternants
of YI,I.;., Yq with p; Y11+ +qu)q, are connected with
Y, ... Y,

A tranformation of the form (3) is said to be trivial.

If the equation system admits

;= éXay,
we say that it admits the operator X'; and we now see that if
it admits X it will also admit
X4p Yyt +quq;

but with respect to the given equation system we should not
reckon oy =e¥a;
and {L/.-= tX+p,Y1+...+qu'x‘

a8 distinct transformations.
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We can, however, make use of the fact that p;,...,p, are
undetermined to obtain the simplest forms of the operators
admitted by the given equation system.

Suppose that the complete system admits the non-trivial

transformation ) = a8 (@ s ),
under what conditions will it admit
o =g +tply(@y, .. mp) ?

The conditions are that the alternants (¥, pX), ..., (Yq,pX)
should each be connected with Yi,...,¥,; and therefore,
since p (¥, X), ..., p (¥, X) are each so connected,

(¥,0) X, o (T, 0)X

must each be connected with ¥, ..., Yq.
Now by hypothesis X is not connected with Y3, ..., ¥, 5 and
therefore we must have

Yp= 0,...,qu =0;

that is p is either a constant, or an invariant of the complete
system.

§ 79. If the complete system is reduced to normal form,
that is if

Y, =

i=n—g

)
+27IH3— k=1,..9),

»
@

a“”n—q+k

the further diseussion of the problem with which we are now
concerned is made more simple. This problem is the in-
vestigation of the reduction of the order of the integration
operations, necessary for the solution of the given equation
system, due to the fact that the system admits known non-
trivial transformations.

Since the reduction of the system to normal form only
involves algebraic processes, we may suppose the system to be
given in normal form.

If X is & non-trivial operator admitted by the system, then

X+p i+ +p,Y,
is also admitted, and is non-trivial; and, by properly choosing
the functions p,, ..., Pgs We can replace X by a linear operator

L) 3
& g Tt nq oy

of the form

which is necessarily non-trivial.
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We shall call such an operator & reduced operator; and
when we are given any non-trivial operator admitted by the
system, we replace it—and this can be done by mere algebra—
by the corresponding reduced operator.

If then we are given a complete system, in normal form,
admitting m known unconnected reduced operators X, ..., X,
'we must have

XY= crlY1+...+o'qu.

d

Now in (X;,Y;) the coefficients of L are all
Tn-q+1 az,

zero, and therefore we must have o, =0,...,0, = 6; each
of the :gerators X,,..,X,, is therefore permutable with
each of the operators ¥, ..., ¥,. Also there cannot be more
than (n—g) reduced unconnected operators X,..., X,,, for
these operators are in the (rn—g) variables z,, <0 Ty_g omly,
Tp_g41s ++s Tn €Dtering them merely as parameters.
We also see as in § 78 that
Xt e+ Xy

can only be admitted if p,...,p, are invariants of the
operators ¥,,..., ¥,.

From the Jacobian identity

(Y, (X, X)) +(X;, (Y, XIN+(X, (X, T) =0,
we see that, since (¥, X;) and (Y, X;) vanish identically, so
also must (¥, (X,-,f 7)) 5 that is, the équation system admits
the alternant of any two reduced operators; and this alternant
is itself a reduced operator since it i of the form
2 d
Elé; +...+§n_qm'

It therefore follows that, if an equation system admits any
non-trivial operators at all, it must admit a complete system
of operators; we shall suppose then that X;,..., X, is a
complete system of operators in the variables z, ..., Tp_g, the
other variable Lp_g415 ++s T, entering these operators only as
parameters ; and we know that m»n—g.

§ 80. We now have
(X0 X)) = pgi, Xot oo+ pijm X

and, since the system admits (X, X, ;), the funetions pyz, ...
are either constante, or integrals of the given equation system.

CAMPBELL H



98 EQUATIONS ADMITTING KNOWN 8o

The first thing which we must now do is to reduce the case
where the functions are integrals to the case where they are
mere constants.

Suppose that of the functions pyy, ... exactly s are uncon-
nected ; we now know s invariants of the complete system,
and we therefore transform to & new set of va.riabges, 80 chosen
that @_g,Cn_gi1s s Tn-goss1 BT€ these known invariants of
the complete system.

This transformation of the variables has only involved
algebraic processes; and we now again bring the system to
normal form, when we have

i=n—g—r

+ Mg ? k=1,...,9)
Ty gik 2 klami ( Q)

We suppose X, ..., X,,, the operators which the equation
system admits, again reduced, so that
i=n—g

d
Xk:Egk‘ra:i’ k=1,..,m)

From the fact that (¥;, X3) = 0, and that none of the terms
3

?

Y=

—_— ey
am'n—q—s+1 axﬁ—q

oceur in ¥y, ..., Yq, we see that

(h =n—q—s8+1, ...,n—q)
Ji=1,..9 '
Tt therefore follows that £z;,... are integrals of the system:
they may either be new integrals or they may be connected
with the known set Ty s Tpogoai1r

If they are new integrals we simplify Y3, ..., ¥ still further
by again introducing the new integrals as variables; and
continue to do this till we can obtain no further integrals

Y;épps =0,

by this method.
We may therefore now assume that
Ernrens h=n—g-8+1,..,2—9)

are merely functions of =, g, ..., Tp_g_s+1s that is, of the
integrals already known.

§ 81, It must be notieed that we cannot advance further in
obtaining integrals of the complete system, through our
knowledge that the system admits X, ..., X,,, unless in so
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f;”t hz:sfwe know how to deduce from X,,...,X, operators
9 orm

i=n—g-s
d

Efkda_wi'

To prove this, suppose that the system admits X which

is of the form imng—s

d d

—_— + g
amn—q—t-l—l zflcax‘

We now have the complete system of equations

(N =0TV (f)=0,...7,(f) =0,

and it is in normal form; but, since we have increased the
number of the variables as well as of the equations, the order
of the integration operations, necessary to find a common
integral, is mow no lower than it was to find a common

gl ol ()= 0 Ty () = 0.

We take
Zy = ppi Xat oo ¥ ppm X (k=1,..,m),
where pp;,... are functions of Zp_gs « o1 Bp_g_g41 ODly, and
are therefore invariants of ¥y,..., ¥,. Z,,...,Z, will now be

reduced operators admitted by the given ezluation system,
We must so choose gy, ... as to obtain as many as possible
of the operators in the form

d

° bmﬂ—q-u

H

b
fl b_a_:; + e +§,._q-
and these alone can be effective for our purpose.

§ 82. The problem before us is now simplified and may be
thus restated : we are given ¢ operators ¥, ..., ¥, where
3 i=n—g—s

d
bx”_q+k+21"“‘b—m" k= 1,..,9);

and, in order to obtain new integrals of the system, we are to
mske the most use of our knowledge that the system admits
X, ..., X, where

Y=

i=neg—s 2
X,=2 fkiﬁ" k=1,..,m)
Ha



100 EQUATIONS ADMITTING KNOWN [82

As before we have
Xy X) = pipn X oo+ pyjm X

and the functions p;,... being invariants, we should have
new integrals unless they are merely functions of the known
integrals a,_ s eens B g1

Since we have assumed that we cannot obtain any more
integrals by this method we must take these quantities
Pijr> - tO be merely functions of @, g, .o @y g 415 and,
since these variables only enter Y, .., ¥y, X, ..., X, as
parameters, we may DOW assume p;g, ... to be mere
constants,

The operators X, ..., X, then satisfy the identities

k=m
i=1,.,m
Xy, Xp) =2 egp Xy, (j=1,...,m)’
that is, they generate a group.

We thus see how Lie’s theory of finite continuous groups
had its origin in the question which he proposed, viz what
advance can be made towards the solution of linear partial
differential equations of the first order, by the knowledge of
the infinitesimal transformations which the equation admits ¢

§ 83. We know that (m +¢) is not greater than » ; suppose
tbat it is less than n. We then find the common integrals of
the complete system

(N =0, Xa(N=0 T(N=0,...Y,(/)=0,

of which all the operators are unconnected, and of which the
structure of the operators—for these operators gemerate a
group of order (m +¢)—is given by

(Xo Xp)=cga X1+ ... +C,'kam;
and by the fact that the operators Yy, ..., Y, are Abelian
operators within the group of order m +¢.

There are (n—m—g) common integrals of this system which
can be found by an integration operation of order (n—m—gq).
Having determined these integrals we so change the variables
that the corresponding invariant functions become

Ty ooy Tinpqals

and the problem of finding the remaining integrals of
Yl(f) =0,.., Yq(f) =0
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is now reduced to that of finding the invariants of & complete
system of order ¢, in (m + q) variables z,, ..., z,, +gs the system
admitting m known reduced unconnected operators, also in
the same variables @y, ..., Ty g
As (m +q) is either Toss than n or equal to it, we can now
restate the problem in the form to which we have reduced it.
Given a complete system of equations

() =0 Yy (f) =0

in (r+q) variables @, ..., @, 4, whose invariants are required,
we are to take a,dvamtage of the fact that the system admits
7 known operators X,, ..., X in these variables.

The r operators are wn,connected and reduced, and generate
a group which is ﬁmte and continuous ; a/nd the variables
Ty ves Tppoger OCCUT G0 Xy, X, ¥, merely as
parameters; Yy, ..., Y, are opera/tm's permutagle with each
other and with X, ..., X,.

§ 84. In order to find the invariants of Y, ..., ¥, we should
have required integration operations of order 7, had it not
been that we know that the equation system admits the
operators X, ..., X,. We therefore find the maximum sub-
group of X,, ..., X,; that is, the sub—grouE with the greatest
number of independent operators, which being a sub-group
must not include all the operators of the given group
X,,...,X,; and we find the integrals of the system

Yi(H=0..7(N=0 X(f=0,..X,(f)=09,

where X, ..., X,, is this mazimum sub-group.

To obtain these integrals, integration operations of order
(r—m) are required, and (r—m) integrals are thus obtained ;
the reason why we choose m as large as possible is to reduce
the order of the necessary operations ; and the reason why we
choose a sub-group is to ensure that (r—m) shall not vanish.

‘We shall now show how, by merely algebraic processes, we
may obtain other integrals from these (r—m) integrals.

§ 85. The principle which enables us to find these additional
integrals is that explained in § 77. Since the given system
admite X,,..., X,, we know that if ¢ (m,...,2,) is any
invariant of Yl, ., ¥g, then X, ¢, ..., X, ¢ will also be in-
variants. All of the mvana.nts we have already found can
be annihilated by X, ... but they cannot all be annihi-
lated by X, nor by a.ny o'? the operators X, .5, ..., X,; we
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may therefore by this method be enabled to obtain new
integrals.

By a change of the variables, that is, by an algebraic
process, we may take the invariants already known to be
Lyprgr o Tgrmeyr

1t l,q..+.',"X, be that maximum sul;group of X,,..,. X,
which is self-conjugate within X, ..., X,.; if X,,..., X, i
itself self-conjugate within X, ..., X,,, we may take X, ..., X;
to be the sub-group X, ..., X, itself.

The proposition which we are now going to establish is
this—by operating with X, ..., X on the known invariants
Trygs oo Bgimay We 0btaim the common integrals of

Yl(f) =0,... Yq(f) =0, Xl(f) =0, ’Xl(f) =0;
that 4s, we obtain exactly (m —1) additional integrals.

Since all of the variables @,.4, ..., Zyi;my; 8T invariants
of Y, .., Yq, X, ..., X,, they must also be invariants of

Y,.., Yq, X, ..., X;; by a change of var.iables we may take
Tgtms vres Lgals1 to be the remaining invariants of
Y0¥y Xy Xy

we are now about to prove that by performin% known opera-
tions on @, ..., T 4g41 We must obtain these additional
invariants.

Since X, ..., X; is & self-conjugate sub-group of X,, ... X,,
the equations

() =0...5(f)=0, T(fi=0,.,Y,(f)=0
admit the operators X, ..., X ; and therefore the functions
obtained by operating with X,,...,.X, on #_,_,...,x .
must all be invs.riant’;gof X, .. X;, Yl;r..., Yq.ﬁq mrart

Now X,,....X;, Yl,...,& are unconnected, and have as
invariants the (r—1I) variables Zg4l+1see Bpig; €Very other
invariant must therefore be a function of these variables only;
and therefore we know that the invariants obtained by
opfmting with X,,...,X, are functions of Tgelats -
on.

y&rag
y.
If (r—1) of these invariants are unconnected, then

Bgal+1s s Tpag
can be expressed in terms of these invariants; but if fewer
than (r—17) of the invariants are unconnected, they cannot be
s0 expressed ; and we therefore know that there must be some
operator of the form
&

+o 4 2
+l+1awq+“l q+mawq+m
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which annihilates each of the functions X,x.,,,;, where 7
may have any value from 1 to (r—m), and ¢ any value from
1 to 7, and where {gi741, .0 £4+m are ot all zero.
SinCe Zyymi1s ersTriq AT€ iVariants of
Y Yo Xiyoos Xy
and these operators are unconnected, we see that
3 )
% g
must be connected with Yi,..., Y, X, ..wXy; we can

therefore replace
d

]
f’”*l)—wwﬂ ot fgim grm
by an operator of the form
1) it tp Yyt X+t on Xy,
Where py, ve.s Pgs 015400 Oy BTE functions of the variables.
Now each of the operators ¥, ..., ¥y, X, ..., X, annihilates
each of the variables @y, .1, ..s Ty g, 804 (1) annihilates any
function X;%g, p.;; We conclude then that
o Yy, X)+... +pq (Yq: X)+ay &y XD+ topn (Xm, X
annihilates each of the variables @ p41;.-0s Trig.
From the known relations between the alternants of the
operators Y, ..., Yq, X, .., X,, we see that
jem, k=r
Eujcj‘-kxk, E=1,..7)
annihilates each of these variables; and must therefore be
connected with the operators of which g, p41s .00 %ppq aTe
the invariants; that is, with ¥,,.... Y, X,,...,X,,.
It follows that, these operators being all unconnected, we
must have

i= .
1=1,..,7
Eajvjn‘zo’ (k=m+1,...,'r)'
Now because X, ..., X; is a self-conjugate sub-group
i=1,..,7; .
i = 0 (j=l,...,l; k=l+l,...,r),
and therefore

J=m . 1
= r
e =0 s ey .
:'=?+1(YJ s ’ (k =m+1, --~,7')
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i=1,..,7;
If cj'.kzo, ( yevey T3

J=1l+1,...,m; k=m+1, ...,'r),

Xy s X 18 8 gelf-conjugate sub-group, and I = m. If m>1,
these constants cannot all vanish (for then the greatest
sub-group would be of order >7); and we can take one of
the functions oy, ..., 0, to be dependent on the others; it
follows that without altering the structure of X, vy Xy, o1
without transforming the sub-group X, ..., X, into any other
sub-group, we may choose instead of X;,,, ..., X, certain
(m—1) independent operators which will be dependent on
Xyi1s +ves Xy, and for this new set we may take o, to be zero.
If we now consider the corresponding new structure con-
stants, we shall as before obtain the identities of the form

j=m—1 .
=1,.,7
s Co = 0 2 H
j=21+;rJ i ’ (k=m+l,...,1')’
and can similarly choose o, ; to be zero, and, proceeding thus,
finally cause all the functions oy, ..., o, to disappear.
It would then follow that
b}
s—— Fentpim i
fqﬂﬂawq-&lﬂ am g

could be replaced by an operator of the form
(2) Yot p Yot X+ 40 Xy

but this is impossible since (2) annihilates Bglets ooy Tgim?
we must therefore draw the conclusion that z_;..,, s Tgim
can be expressed in terms of the invariants obtained by
operating on the known invariants Tgama1s oo Tryq With
D ST o
§ 86. It therefore follows from what we have proved that
we can by an integration ci})eration of order (r—m) obtain
(r—1) invariants of Y, ..., ¢ @nd we may take these to be
Ty1gs s Tga141, BY & transformation to new variables.
. Thevariables«,,,,...,%;,,,00W appear onl a8 parameters
in ¥, ..., Y ; we can therefore, by processes which are merely
algebraic, select from the » operators X, ..., X, which the
equation system admits [ operators, in which also

Tyygs vos Lgaer

will only appear as parameters. These will form a group of
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order ! in (I+¢) variables, and will be unconnected with one
another, or with ¥, ..., Y. The equation system

n)y=0.. Yq(f) =0
will admit these operators, and the problem which is now
before us is exactly the same as it was before, but we have
only (I4g¢) varisbles to deal with, whereas before we had
(r+9).

§ 87. There is one case of special interest in this general
theory, viz. when the greatest sub-group of X,,..., X, 1s self-
conjugate.

Since X, ..., X,, is self-conjugate, the alternant of any of
these operators with X,,,, is dependent on X,,..., X, ; and
therefore X, ..., Xy, 4; 18 itself a sub-group; but X,,..., X,
is by hypothesis the maximum sub-group, and therefore
X, ..., X4y must be the group X, ..., X, itself,

When the greatest sub-group of X, ..., X, is self-conjugate
its order must therefore be (r—1).

There is only one invariant of V3, ..., Yq, XX, 3 sup-
pose it to be £ (#;, ..., %,4.g), then, since X, (f) must also be an

invariant,
Arf(zv vees wr+q) = F(f(wv "'7zr+q))!

where F is some functional symbol.
This function F(f (zy, ..., %, 4)) eannot be zero ; for

A SRS S ¢

T
being unconnected have no common invarignt; there must
therefore be some function of f(zy, ..., Z,.q) such that, when
operated on by X, the result will be unity.
Let w be this required function, then
Y,(w)=0,... Y, =0 X (0)=0,..., X, () =0,
X, (w)=1
Since these are (r -+ g) unconnected equations in (7 + g) variables
> .
every derivative of « is known; that is, % oo b;u
known, and « can therefore be obtained l;y mere q+1{adra.ture.
By transforming to a new set of variables we may take this
function to be @g,.; since Tgr will then occur merely as
a parameter in Yy, ..., ¥y, Xy, .., X,y we shall then be given
an equation syster

Yi(f)=0..F(f)=0

are each
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in (r + g—1) variables which will admit the group X, ..., X, _;
and X, .., X, |, 7,..., Y, will all be unconnected operators.

If the greatest sub-group of X,,..,X,_, is self-conjugate,
we may take this sub-group to be X;, ..., X, ,, and thus by
quadratures obtain another integral of

Yi(f)=0..Y,(f)=0;
and hence proceeding find all the integrals by quadratures,

provided that each successive maximum sub-group is self-
conjugate within the previous one.

§ 88. Suppose we are given the linear differential equation

of of

&E +“'+$"3-w,, =

how far does the method explained help us in obtaining some

or all of its integrals ?

We know that by a suitable choice of variables the equation

may be reduced to the form g: 0; and therefore it will
admit any operator whose form in the now variables is

o,

J d
Mg+t Iy

where 7y, ..., 1, are functions of ,, ..., z, only. Every equa-
tion must therefore admit (n—1) reduced unconnected
operators; but, since the reduction of a given equation to

the form S5 =0 would require integration operations of

order (n— l),1 we do not know any general method of obtain-
ing the infinitesimal operators admitted by the given equation.

Lie’s method does not therefore apply to any arbitrarily
chosen differential equation, but merely to those equations
which admit known operators. These operators may be known
from the form of the differential equation, or from its geo-
metrical genesis,

When we do know, by any method, the integrals of & given
equation, it would be a simple matter to construct infinitesimal
transformations which the equation will admit; and then,
knowing these infinitesimal transformations, we could solve
the equation by Lie’s method. Such examples would how-
ever merely serve as exercises in applying the method, and
could not show its real interest. What is remarkable is that
those particular types of differential equations whose solutions
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have long been known, and were discovered by various arti-
fices, are equations which do admit obvious infinitesimal
transformations, i.e. transformations which would be antici-
pated without any knowledge of the solution of the equation
and merely from its form, or from the geometrical meaning
of the equation.

§89. Before illustrating the method by a few simple
examples it will be necessary to consider how it applies to
ordinary equations in two variables,

Consider the equation

49 Y1 =S @ Y Yo s Y
S dy
where y, is written for a
. de _dy _dy dy
Since e UL SN
I 5 9 F@y ..y

we see that the solution of (1) will be obtained only when
we bave obtained all the invariants of

i d d b}
va gy Ty et
@, Ys Y15 s Yn being regarded as unconnected variables.
If the equation (1) admits
F=az+tE@y), y'=y+in@ )
then we have shown how to extend this point transformation
to any required order; and therefore corresponding to any
known infinitesimal transformation admitted by
Yns1 =f(ill, Yy Yus oo Yn)
we shall have a known infinitesimal transformation admitted
by : du du
3z T 5y
and we can therefore reduce the order of the integration
operations necessary for the solution of (1).

du
+...+fa—y-=o,
n

§ 90. We shall now give one or two simple examples of
the application of Lie’'s method.
Ezample. Consider the linear equation
Y+ @) = ¢ (@),
dy

where ¥, is written for e
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Let any integral of this equation be y = £, where ¢ is a
function of x, and let y = £° be any integral of y, + yf (x) = 0,
then y = £+ ¢£9, where ¢ is an arbitrary constant, is also an
integral ; we express this in Lie’s notation by saying that the
given equation admits the infinitesimal transformation

Y=y+t% o=
The partial differential equation

du u
I T @y @) =0
d . . .
therefore admits the operator E"@; and, if % is any invariant

J J du . . .
of 5 +(#(x)—yf (#)) 5 then £, 5 will 2lso be an invariant,
and will therefore be a function of .

We can then find some invariant v, such that

Rre@-vE@r =0 &X=1,

v
>z
zandy.  We can therefore find v by mere quadratures, and
thus deduce the complete primitive from our knowledge of
two particular integrals, viz. one of the equation

and such therefore that and g——v are known in terms of

Y ruf @ =@,
and one of the equation
Y uf@)=o.
Ezxample. The equation
n=f(%)
obviously admits the transformation
¥=ax, ¥=ay,

where a is a variable parameter, and therefore

du Yy du
E+f(£—u-)sy‘=0
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. d d
admits wﬁ+ya—»

so that the homogeneous equation of the first order can be
solved by quadrature.

Example. Curves whose equations are given in the form
of & relation between r and p, where r is the distance of
& point on the curve from the origin, and p the perpendicular
from the origin to the tangent at the point, can always be
solved ; that is, we can obtain the Cartesian equation of these
curves. These equations are of the form

y—ay = v 1I+y2f @+

and, from their geometrical meaning, must be unaltered by
rotation of the axes of coordinates; that is, they admit the

3
operator y< - — &< and can therefore be solved by quad-
ratures. % Y

§ 91. Euler has shown how to integrate the equation
_btrextgythay+ky®,
17 gt ex+dy + ha? + kay’

we shall show how this would be solved by Lie’s method.
Writing down the equation

d d
(“+m+d.’/+h$2+kwy)a—:+(b+ew+gy+hzy+ky?)£' =0,

we are to find some infinitesimal transformation which it
will admit.

It is obvious that any projective transformation must trans-
form this equation into another of the same form, though not
necessarily with the same constant coefficients a, b, ¢, d, ¢, f,
g, h, k; we therefore seek that particular projective trans-
formation (if such exists) which the equation may admit.

It is now necessary to state a general theorem (the tproof
will be given later) which will help us in finding the forms
of the infinitesimal transformations which a given complete
equation system may admit.

Suppose that ¥,(f) =0, ..., Y4 (f) = 0 is a complete equa-
tion system of order q and that

J d
Y= ’71‘155; +---+’7kn5m—n’
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then not all g-rowed determinants of the matrix

s+ + - Thae

Ngis- + < Tgn
can vanish identically.

A point #,, ...,x, such that, when we substitute its co-
ordinates in the matrix, not all g-rowed determinants of the
matrix vanish, is said to be a point of gemeral position ;
a point such that all (A + 1)—rowe£ determinants, but not all
h-rowed determinants vanish, is said to boe a point of special
position of order &; 4 may have any value from 1 to g, but
if k is equal to ¢ the special point becomes a general point.
The theorem, assumed for the present, is that by any trans-
formation, which the given equation system can admit, a point
of general position must be transformed into & point of general
position ; and a fPoint. of special position into a point of
special position of the same order.

In the example we are considering the points of special
position are those points which satisfy the two equations

atcx+dy+ha’+lay=0, b+ex+gy+hay+ky®=o0.

We see that in gencral there are three points not at infinity,
and one point at infinity, common to these two conics ; by
& linear transformation of coordinates we may take these
Points to be the points whose coordinates are respectively

(0,0), (0,1), (1,0),
and in this system of coordinates the equation whose solution
is required is
du du
1) (@ @—2)—auy) 5 +(a =y -azg)5, =0

Since we are now seeking a projective transformation which
the equation will admit, it must be one which will not alter
the points (0,0, (0,1), (1,0),
and it will therefore be of the form

b} b}
(a1(@~2") ~amp) - + (o (y—y)—a127) 3y
where a;, o, are undetermined constants.



92] EXAMPLE 11
We now easily see that the equation (1) admits

3 3 P 3
@—2)5, ~aysy and G—¥)5; —w5,

These two operators are not reduced unconnected operators,
but the knowledge of either is sufficient to reduce the solution
of (1) to quadratures.

As our object is to illustrate the uniformity of Lie’s method
as contrasted with the earlier and more special methods, and
not actually to obtain the integrals of differential equations,
we shall not carry out the operations necessary to obtain the
explicit solution of the equation. It may often be found
that the special methods with which we are familiar will
obtain the solution of known equations more rapidly than
we can obtain them by the more general method of Lie.

§92. As an example of Lie’s method of depressing equations,
take the known result that a differential equation can be
depressed when one of the variables is absent. Since, if =

does not appear in it, the equation rust admit % »and if y
does not appear it must admit %, » we see that the integration

operations necessary for the solution are lowered by unity.
So if neither # mor y occur explicitly the order may be

depressed by two, for the equation will now admit % and S?—y
Again, any homogeneous equation can be depressed since it
. 3 3 d
admits x5 +y5?—/ RESVR T
Thus, if we take

d d
) @othytany, +@otby+as
d
+ (agz+ bsy+caz)§§ =0,

. . . 3 d d
since it admits & +y@ +zy_sWe must find the common

integral of (1) and
du du .

zaz y@ zs;..o;
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eliminating Zi: this common integral must satisfy the equation

du du
2@,z + by + ¢, 2) 3% +2(az+byy+ ”22)@
du du
= @24ty o) (a g, +95,)-
In this equation z occurs only as a parameter, and therefore
taking «" = 2z, ¥ = ¥z, the equations become

‘ , qu du
(0,2 + b,y +cl)fx/ + (azm""bzy,“'cz)w
LU U
= (aaz’+b3y'+ca)(z szt W)

‘We have proved that the integral of this can be obtained
by a quadrature ; and therefore  must be of the form

Flz,y,2)+¢ (),
where Fis a known funetion and ¢ () an unknown funetion.
Since % is annihilated by z% +¥3,; tes; the unknown

function ¢ g) can also be obtained by quadrature.

Having thus obtained the common integral of the equations,
we introduce it as & new variable; it then enters the equation
(1) merely as a parameter, in which form it also enters the
operator zb—z + y%{ +za—bz > when this latter is expressed in
the new variables.

We thus have an equation in two variables admitting an
operator, and can therefore find by & mere quadrature the other

integral.



CHAPTER VIII
INVARIANT THEORY OF GROUPS

§ 93. We have already defined transitive groups (§ 44), but
it is now convenient to give a second definition of such
groups, and to show that the two definitions are consistent.

The group

1) = i@, 0@ty ), (6= 1,..,m)

is said to be tramsitive if amongst its operations ome can be
found which transforms any arbitrarily assigned point into
some other point, also arbitrarily assigned.

The group will therefore be tranmsitive if, and only if, the
equations (1) can be thrown into such a form, that some = of
the parameters a,, ...,a, can be expressed in terms of z,, ..., z,,,
2, ..., and the remaining parameters. The group cannot
then be transitive unless r 2 n. The group will be transitive
unless all n-rowed determinants vanish identically in the

Toatrix % ) bm;
da, ’ da,
2, da,
da, ’ da,

If we recall the rule for forming the infinitesimal operators
we shall see that the group is transitive unless every n of
those operators are connected ; and we thus see that the two
definitions are consistent.

The group is transitive therefore if, and only if, it contains
m unconnected operators. If » = n the group, if transitive at
all, is simply tramsitive; and in this case there are only a
discrete number of operations which transform an arbitrarily
assigned point into another arbitrarily assigned point.

The mere fact that=mn is not enough to secure the

CAMPBELL 1
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transitivity of the group ; thus we saw that r was equal to »
for the group of rotations about the origin, viz.
3 3 3 z 3 mi d
yg—z@, 25, %55 ay_yii’
but the group is not transitive, for these operators are
connected.

An intransitive group cannot therefore have n unconnected
operators. Let such a group have g unconnected operators ;
we shall now prove that these form a complete system.

Let X, ..., X, be any g unconnected operators of the group,
and Jet the other operators be X, ..., X, then

Xq+j= ¢'q+j,1X1+---+¢q+j,qux (U=1..,r—9),
where bysj, ks -« 816 known fonctions of z, ..., @,.
We have

s=r s=q j=r—q
Fin Xp) = Do X, = 2 (Cots + 21,05 P, Koo

where ¢ and 4 may have any values from 1 to ¢, and therefore
X, ..., X, form a complete system.

If a fonction is annihilated by these ¢ operators X, ..., X, pe
it must also be annihilated by §{ +11 -+« X3 and therefore on
considering the canonical form of the group we see that such
a function is unaltered by any transformation of the group.
We have proved that there are (n—g) functions annihilated
by X,,...,X,, and we therefore conclude that an intransitive
group has (n—g) unconnected invariante.

§ 94 To express this result geometrically we look on
2y ..., Xy, 85 the coordinates of a point in n-way space, then

Jr (@15 s @) = ay, ~--!fn—q(m11 oy W) = Oy

will be a g-way locus in this space,and the coordinates of this
locus are the constants a,, ...,a,_,. We keep the form of the
functions fy, ...,/ fixed, but vary the constants, and thus
have these g-way loci (or g-folds) passing through every point
of space. If we take f},...,f,, to be the invariants of the
intransitive groups, then by ghe operations of the group
a point lying on one of these loei is moved to some other
point on that locus; we say therefore that this decormposition
of space, into «"~¢ g-folds, is invariant under all the opera-
tions of the group. Thus for the group of rotations about the
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origin, space is decomposed into a simple infinity of spheres,
whose centre is the origin, and & point lying on any one of
these spheres can only be transformed to some other point on
the same sphere.

§ 95. Only intransitive groups can strictly be said to have
invariants, and the problem of finding these invariants is
equivalent to that of finding the integrals of the complete
equation system formed by their unconnected operators; yet
we shall see that in several ways the idea of invariante can
be extended to transitive groups also. Two points of space,
@4y o0y @, 80A Yy, .0y Yy, which are transformed to two other
points by the same transformation scheme, are said to be
transformed cogrediently ; thus if

Ty = fi(@r o Ty Oy 0oy By,

Y =FiWo s Yns Qps ooy Oy,
we should say that w;,...,a, and y,,...,y, were transformed
eogrediently.

No function of the coordinates of a point is invariant for
the operations of a transitive group, yet there may be functions
of the coordinates of a pair of points, which are invariant
when the points are transformed cogrediently by the opera-
tions of a transitive group; thus the transitive group

p:] p:] p:]

W ¥ %
has the three invariants @; —x,, ¥, —¥,, 2,25, Where @, ¥;, 2;
and ,, if,, 2, are two points cogrediently transformed by this
translation group.

We could say in this case that we have extended the point
group 2 2 2

5% % %
into the point-pair group
2,20 02 22 2.
3 —)Iz’ X".Z * a_yz’ o2, T 2z’
and this extended group is intransitive, and has the three
unconpected invariants @, —,, ¥, — s, 2y — 25-
Similarly the group of movements of a rigid bedy, viz.
d p:] d 2 d p:] 2 p:]
— z
dz

3 s

d
w 2 YTy fn T Swy TV
12
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is transitive and has no invariant; yet when extended so as
to give the point-pair group

p:] 2 , p:] 2 p:] + p:]
3, + 3z, " -’/lazl_ 1y, yzbzz _zzﬁ-y_z’ v

this group is intransitive, and has the invariant
(21— + (1 — ) + (21— %)%

This expression is therefore an invariant of the coordinates
of a point-pair, when cogrediently transformed by the opera-
tions of the transitive group of movemente of a rigid body.

The reason wity this extended group of six operators in
six variables has an invariant is that the operators are con-
nected, as we prove by considering the determinant

0, 0, 1, 0, 0
0, 1, 0, 0, 1, 0
0o, 1, 0, 0, 1

0, =2, Y, 0, =25 ¥!°
2, 0,—@, 2, 0,—z
Y @, O, ¥, & O

and subtracting the first column from the fourth, the second
i}’)rom the fifth, and the third from the sixth, when it is seen to
© Zero.

Since five of the operators are unconnected there is no
other unconnected invariant of a point-pair for the operations
of the group of movemente.

If we were to extend this group so as to apply to triplets
of points we should not get any really new invariants; it is
only when the operators are taken so as to apply to point-
pairs that the six operators are connected; in the case of
point-triplets we should have six unconnected operators in
nine variables; and therefore only three invariants, viz. the
expressions for the mutual distances of these points.

§ 96. The operators of the linear group of the plane, viz.
d=lLz+my, ¥ =Lz+m,y,

o 3 3 2 3.

a Zszs z@, Y35’ y@,

and as two of these are unconnected the group has no
invariant.



96] SETS OF VARIABLES 117

If, however, a2 + pa, a7y + ...

is any binary quantie, the quantic becomes, on applying the
transformations of the group,

P+ par @Y + ..

and we often speak of those functions of the coefficients
@g, @y, ..., Which are such that

Flao, ay, ) = f(d, i, o.),

as invariants of the linear group.
These functions are however invariants, not of the linear

group
o=lx+my, ¥=Lz+m,y,
but of the group
ah= @plyP + ooy ) = aplfimy+ o, @p=agl P im g,

of which the linear operators are 4,, 4,, A;, A,, where

d J d d
Al=pa’03—a—0+ (10—1)‘11371 + (P—z)azrlz+-..+a 155
] 't

p:] p:] d d
Az—mljd‘; + (P_I)azb_a,l+ (P"‘Z)%SE; +---+apaap_1»

A

a@, 2 2a ° +3a, 2 2
2= Go3g, TEMSe, T hsg T TPy,

A= J 2 3 3 3 3
= al)_al+ azb_az"' %T%+"'+WPE'
3
If we denoge the operators x;—z by X, za—y by X,, y%
by X, and ysy by X,, we see that
X,—- 4, X,—-4,, Xa—Aa: X,—4,
are four operators, each of which annihilates the quantic

2P 4 pay Y+ .5

and that there is no operator of the form

d d d
ay bao+ alaz+ azbaz+...
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(where a,, a;, ... are functions of the coefficients ay, a, ...
only) which will annihilate this quantie.
¢ must now express the invariant theory of binary

quantics in such a form as to suggest the extension to general
group theory.

First we verify the group property of X,, X,, X, X, by
noticing that

XY =X, (X, X)=-X;, (X, X)=0,
Xy, X)) = X, - X, (Xp,X)=2X,, (X3, X)=—X,.
Next we see that the operator
h=4 i=1,..,4

(X Ay, Xy — Ag)— 3 0y (X~ 4y), (Ic= 1,,..,4)

annihilates the quantie, since each operator
Xl_Alf X2_A2s Xa_Am X4—A4

annibilates it.

Sinee X,,...,, X, are each commutative with 4,,..., 4,
(being operators in different sete of variables), and since by
the group property s

o X~ g X =0,

we conclude that
k=4

(= 4i —4)—Zepa(—4y)

must annihilate the quantie.
Now this is a linear operator, not containing « or y; it can
therefore only annihilate the quantic if the coefficients of
3 . . .
3o 2 in it are identically zero: we conclude that

da, da,
0 2 h=4

(=4 —4y) = Dega(—4p);
that is, the operators —A,, —4, —A, —A, generate a
group, and this group has the same structure constants as
the group X, X,, X;, X,.
§ 97. We shall now take X to denote the linear operator
aXi+e, X+ X+, X,
and 4 to denote the linear operator
oA +ed,+ed,+e A,



98] BINARY QUANTICS 119

where ¢,, €, €, ¢, are parameters unconnected with the
coefficients or variables in the binary quantic.
Sinee X — A annihilates the quantie we have
aoz? +pog er Ly +...= eX 4 (a,xP+ pa, xp Yy + ),
=e 4 e% (a4 2P + pa, 2?1y +...),
any operator X; being commutative with any operator 4;.
The linear transformation
1) o=eXa, y=ely
gives €% (@, 2P +pa @1y +..) = 4o’ + pa P + s
and therefore, since
Ao ? 4+ pa, gy + .= a) &P+ pay 2?1y + .,
we conclude that
e=4(a, P+ pa, PNy +...) = ag P+ pai Py + ...

Fquating coefficients of like powers of the variables on each
side, we see that

@ ay=e"4ay,

and so generally ¢ (@), aj, ...) = e~ 4 d(ay, ay, ...)
It now follows from (1) and (2) that if
F@ 3 ags @y, .oy ap)
is any function whatever of z, ¥, a,, a4, ...

F@, o, 0, eeny ap) = XA (@, Y, Oy, Gy ey O

§ 98. Covariants and Invariants, as defined in the Algebra
of Quantics, are therefore merely the functions annihilated by

X,—4,,..,X—4,
four operators which are unconnected, and which generate
& finite continuous group.

If we are given a group Xy, ..., X, and want to find the
invariant theory which will bear the same relation to this
%roup as the invariant theory of the Algebra of Quanties

ears to the linear group, we must find some function

& (@13 cres Ty Opy wves Ci)s
where ¢,, ..., ¢,, are constante, such that for any transforma-
tion of the group we may have the fundamental identity

47(“/1! wees Ty ‘7’1) seer c’,,,) = (Rys e00s Ty Ops oy Cu)s
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@, ..., ¢, being constants, which are functions of ¢y, ..., ¢,, and
the parameters a,, ..., a, of the given group.

Following the analogy of the procedure in the theory of
binary quantics we should only take such a function as
satisfied no equation of the form

3¢ 3
713—51 +...+Ymm =0,

where yy, ..., , are funetions of c,, ..., ¢,, only.

If the function found did satisfy such an equation we could
(since in it the parameters would not oceur effectively) replace
1t by a funetion containing fewer parameters.

Suppose now that we have found a fonetion, with m effective
parameters, satisfying the fundamental identity

s s Zs G erer ) = b (@ eres Ty O3 s O
Applying the identical transformation
7 =y, (E=1,..,m),
we have for it
(1 s By € eeey ) = B (Zyy ey By €5 eny O
and therefore, since ,, ..., z, are unconnected,
d=cp (k=1,..,m)
We next apply the infinitesimal transformation
i=1.,n
afi:x“‘-tfk’.(wl’""m"), k= 1,...,"‘)’
and we must have, since ¢, is a function of €1y vee Cpy a0d
differs infinitesimally from ¢,
_ g h= 1,..,7r
c’k—ck"'t')'hk(cll <003 Cmp)y b= 1’.“,m)’

where yyy, ... are functions of ¢, ..., [
If then we denote by O, the operator

d 2
a3, +-"+7k'mm’
we see that
X, +C,.., X, 40,

will each annihilate ¢ (2, ..., @, ¢, ...y ).
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Proceeding as in the theory of binary quanties the operator
he=vr

(X405 X+ 0~ ey (X +0p)

is seen to annihilate this function. Since no operator in
€y, .., Cp, oDly can do this, and since X, ..., X, are commuta-
tive with C,, ..., C,, we conclude that

r=r

(€1, C) = Z ey O

and therefore €, ..., C, generate a group with the same struc-
ture constants as the group X, ..., X,.

We do not,however, know that the operators (', ..., C, will
be independent ; and therefore the group which they generate
may be of an order less than 7.

Sice X, +0,..., X,+0C,
generate & group, all of whose operators annihilate
D(Tys oe0s Ty C1y eeey Cy)s

this group must be intransitive.

§99. When we are given the group X,,...,X, we can
construct many functions of z,, ..., «, and a set of parameters
€35 +evs €y, Which will have the fundamental property of pos-
sessing an invariant theory ; it will be sufficient to show how
one such function may be obtained.

Let 4,, ..., 4,, opersators in the variables ay, ..., a,, be the
parameter group of X, ..., X, ; and let B,, ..., B, be the same
parameter group, but written in the variables &,, ..., b, instead
of ay, ..., a,; then

(1) X, +4,+B,,...,. X, +4,+B,

is a group with ~ unconnected operators. This group must
therefore Eave (n + r) unconnected invariants, for it is a group
of order » in (7 + 27) variables.

If some one of these invariants does not involve z, ..., z,
it must be an invariant of the operators

A, +B;,..., A, +B,;

and as there are r invariants of this group, we see that there
must be » invariante of (1) which will be unconnected func-
tions of , ..., %,, but may also involve the parameters
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@y ooy @py byy oo, by in addition to the variables zy, ..., 2, ;
and some one at feast of these invariants must do so; else
would X,,..., X, annihilate each of the variables a, ..., x,
which is of course impossible.

We thus see that for any group there must always be 8
function with the fundamental property

(@) @ s 2y €y e ) = B (Z1s ey Ty Oy veey Op) 5

and therefore an invariant theory for each group.

The reason why we take the operators

X+ A1+ By,.., X, +4,.+B,
rather than the operators
X +4;,..,X,.+4,,

is that for the latter set of operators there can be no invariant
theory; since, 4,, ..., A, being a transitive group, there are no
functions of a,, ..., @, annihilated by these operators.

We now take X and € to denote the respective operators

X +...46 X, and ¢C +...+¢,0,;
and, as in the corresponding theory for binary quantics, we
have, since X 4 C anmibilates ¢ (2, ..., Z,, €1 .oy Cp)s
G (Brs enes Ty Cpy ey C) = € X0 G (@), ooy Ty, €15 00y G,

=X ¢ (y; c0ey Tpy Coyvues ) 3
and therefore ’ v "

B (s eees Ty €Ly evis G) = €€ P (T, vy Ty €45 ey Cgy)-

Since the parameters ¢, ..., ¢, enter the fundamental
function ¢ effectively, we now have

¢ =, (E=1,..,m);
and more generally, if £ (z;, ..., Zp, €, .eny ¢,,) is any function
whatever, we must have
F @ eees Ty €y veny &) = X H0F (@1, uey Ty €4y erey Ol
The covariants are therefore those functions of , ...
€15 .oy €, Which are annihilated by
X, +0, ..., X, 40,;
and the invariants are those functions of ¢, ..., ¢,, which are
annihilated by ¢, 0, ;
s e Op

and therefore for every group we have a corresponding
invariant theory.

,w,“
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§100. For a given group X,,...,X, we may be able to
obtain a fundamental function without having to go through
the process of finding G, ..., C,, and then finding the invariants
of X, +0,, ..., X, +C,.

Thus if we take the group of order ten X, ..., X}, where

P:] b} b} b} ?
Xl:b-i’ X2=W, Xaza—z-, X4=yﬁ—za—’§,
P:] P:] P:] ?
Ti=agg o5y Te=ayy—vsy

3 3 3
Tr=og+ygytes

? 3 3

— 2__ — L — —_

X, = (y°+7 mz)ba; Zzyay 2a55->

d ? P:]
X, = (22+w2—y2)b—?;—2my$ —Zyzg,

3 3 3
X,= (P+y*—2%) 52 .‘2?/2@ 2@
a group which transforms minimum curves into minimum
curves, we see that by any operation of this group the
function
) a (P +y+2)+ 29, 2+2fiy+ 2hz+d;
@ (@ + Y+ 20 + 20,8+ 2fy+ 2hoz +dy

is transformed into a function of like form, but with s different
set of constants.

The function (1) being fundamental, the group in the para-
meters is 0, ..., C), where

0 = P:] 2 P:] b} 9 2
1 —“‘hb—gl— 915;1~“23—gz gzbdz’
P:] b} 2 P:]
=—a; s — S G =2 s
Cy “lbfl 2f13d1 azbfz f23d2
P:] P:] P:] P:]
03 =-alel—-2h1m‘l—(lzaT2—2h2—a—gzy

3 3 d 3
A =—h15}: +f157l‘1“hzm+f23-h;’

Py Py by 2
Cs =~glb—hl+h13§;_gzm+hzbz’
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P:] 2 ? P:]
Ce =_f13—91 +91$f;—f2§§; +923-f‘-2’
P d P:] ? P:] b}
G = yla‘g*l +f1v; +h1m +gzb—gz +fzrf2 +h23_h2

3 d
+ 2dy s+ 2dy 5

P:] P:] P:] P:]
Oo == 20155 ~diyg = 2055, ~ drgg?
1 9 2 92
2 ? d b}
O =—2f2 g2 _0r 2 42
9 flaal dlbf1 2f23a2 23f2’
P:] P:] P:] P:]
Cp=~ 2k, _Bal - dl B_hl _2h2—ba2 —dy b-h_; "

It may be verified that this group has the same structure as

l’i‘hxs’ gl}g{lp, thouih of the tenth order and in ten variables,
is intransitive, and has the absolute invariant
(20,95 + 2f1fz + 2k bk, —d 0, —a,d)? .
(9:° +/F + ' —a,dy) (92 +F 2+ B —aydy)

Since the group X, ..., X, transforms spheres into spheres,
and surfaces intersecting at any angle into surfaces intersecting
at the same angle, we could have foreseen that the group must
have this invariant, for it is a function of the angle at which
the two spheres,

a (P +y°+2) + 29,2+ 2fiy+2h2+d; =0,
@ (2 +y*+2) + 29,2+ 2 f,y+ 2hy 24+ d, = 0,
intersect.

§ 10L. We know that only intransitive groups ean properly
be said to have invariant functions, but groups, whether
transitive or intransitive, may have invariant equations.

Before we consider the theory of the invariant equations
admitting a given group, we must prove the theorem quoted
in § 91 as to the transformations which a complete equation
gystem can admit.

Let ¥, ..., ¥, be the operators of a complete system where

3 d
Yk=7]k1m +"'+7’k"b—m"’ k=1,..,9),
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and let Y7, ..., ¥ be the corresponding operators obtained by
replacing z; by a}, inY;,..., Y, where
@ = g (@), eruy B)s @ =1,..,m)

is any transformation scheme.

We know that the equation system admits this transforma-
tion if, and only if,

(1) Yi=puli+. +p,Y, (k=1,..,9),

where py;, ... are functions of zy, ..., 2, such that the deter-

minant Pus e - - Py

. Pqis e -« Pgg
does not vanish.
Let n%, denote the result of substituting «3, ..., 2§ for z,, ..., 2,
respectively in 5, ; and let the operator

R
"klbml +... ﬂkﬂam"
be denoted by Y.
It w’:’:d’ﬁ'(x[;!"'!mg)a (7‘= 1,...,7),
we shall denote by g the operator

“ — + + 'on
N 37 e TN
* 7“;

oz, :
Suppose now that a3, ..., ), is & point of order %, so that
not all -rowed determinants vanish in the matrix

(] 0
M- o s e

Mo -« Mhm
then exactly % of the operators Y7, ..., Y are unconnected,
viz. ¥, ...,’Y"; Wl,mt we have to prove is in effect that % of the
operators Y, ..., Y; will be unconnected.

We have

Y}[z’&j = U’lz_',jy] YP-{- et "'2+j,h Y;‘:, (j =1,..., q—h),
where the funetions o}, ; », ... are functions of #%, ..., ), such
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that none of them are infinite; we also suppose that in the
neighbourhood of this point all the functmns Niky --o BI€
regular ; that is, we assume that n;; = 7, + a series of powers
and products of (@ —29), .v., (¥, —2p), and that in this neigh-
bourhood the functions py;, ... are regular and their deter-
minant does not va.msh and finally we assume that the
transformation = G (B1r eer T
is regular in this newhbourhood 80 that Ng» -.. aTe also
regular in the neighbourhood of a2, ..., a5,
We now have
P d
I’;‘=Y;§’+§klb7l+m+fknb—%’ (k=1,...,q),

where the functions fkj, ... vanish for #; = 2, ; and therefore
j=q j=h t=h—q
Vi=2r 5= %+ 2 el sseohee ) Tf
P:] P:]
+(k1371 + "-+(knb—m”’

where the functions s - vanish for z; = 3.

‘We can therefore, if we take any (h+1) of these 0pera.tors
Y,... Y, say Yi,.., ¥}, find functions 6,...,00,; of
g, ..., x5, such that

d
BYi+.+6, Y, = £laajl+"'+£nﬁ’

where &, ..., £, vanish for #; = 29; and therefore
O+ e+ 041 M ol (G=1,.,m)
is a funetion of «,..., ), ml,. , a9 which vanishes when
2; =af; and therefore, since m = ac° if ;= af, it vanishes
for af; = éi
Weo have thus proved that any (h+1) of the operators

Yl", are connected, for we have proved that all
(h+ 1) ‘rowed determinants vanish in the matrix

7111’ e 711n

/0 " I0

Mgrse -+ Mgnm . i
Suppose now that only (h—s) of the operators Y7, ..., Y2 ave
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unconnected ; then just as, from the fact that exactly & of the

operators Y7, ..., Y7 were unconnected, wo proved that any

(R+1) of the operators Y7, ..., If,}’ were connected, so we
could now prove that (k—s+1) of the operators ¥J, ..., Y2 are
connected, and thergfore & cannot exceed zero, so that exactly
h of the operators Y7, ..., Y2 are connected.

We have thus proved the theorem that, by any transforma-
tion which a complete system admits, a point of any assigned
order is transformed to @ point of the same order, provided
that the transformation is regular in the neighbourhood of
the point.

§ 102. We now take X,,..., X, to be the operators of a
group where

P:] P:]
Xk=£klﬁ;+---+§knv’ k=1,..,m7),
n

and we say, as in the theory of complete systems, that a point
is of order A, if when we substitute its coordinates in the

matrix
£ll! - . . Eln

ETI’ M M - ET?I
all (A+1)-rowed determinants, but not all h-rowed deter-
minants of this matrix, vanish.

We shall prove later that for any transformation of the

group = fi (@ onny Ty gy ey @), (i=1,..,m)
we shall have
Xi=ey X +.te, X, (G=1,.,1),

where ¢,;., ... are constants whose determinant does not vanish.

If then af,...,2% is a point of order A all the functions
ik, -+ are regular in its neighbourhood; and, since now no
exceptional case can arise through a want of regularity in
any of the coefficients, we see, as In the case of the complete
system, that by any transformation of the group a point of
order A is transformed to a point of order .

A point of general position is a point of order ¢; there
are " of such points, for all (¢+ 1)-rowed determinants of
the matrix vanish identically, where g is the number of uncon-
nected operators; if the group is transitive ¢ = m. As there
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may be no values of »,, ..., #, which make all g-rowed deter-
minants vanish, there may be no special points in connexion
with an assigned group; if there are such points, there may
be & discrete number of them or there may be an infinity of
them ; if only a discrete number these points must clearly be
fixed points, unaltered by any operation of the given group.

Suppose that oo* points will make all (k+1)-rowed deter-
minants of the matrix vanish, but not all 2-rowed determinanta
vanish; and let

(1) Zyym = Popm (@1 o0s 3,), (m=1,..,n—s)

be the equations which define these points; the theorem
which we have proved asserts that points satisfying these
equations will be transformed to other points satisfying the
same equations; in other words the equations (1) admat the
operations of the group X, ..., X,; that is, these equations
are invariant equations.

§ 108, Let

1) Tosm = osm (@1, 00 T, (m=1,..,n—8
be any equation system admitting a group X,,..., X,; we
shall now define a set of operators closely connected with the
system.
If f(x, ..., #,) is any function of z,, ..., z,, we shall denote
by f the function f(#,, ..., @, Pysrs ey $y) Of the variables
Zy, ..., 2,3 and by X, ..., X, the » operators

- d -
£kla§1 +oret k=1,..,7);

b}
&y ’
we call X, ..., X, the contracted operstors of X, ..., X, with
respect to the equation system (1).

From the definition of the bar

Vs TN 0 dbsem ,
S/=GD+ 2 G M), =10

and therefore

E.f':(X,‘a}l)(BZ—.)-{»...

oz

m=n—g

+E7) (52) +2 Wt (2L )s
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but we also know that

@ =T (3L) 4. -

+ (Xk w') (;_-wf;) + 2 (Xk wa+m) (%) 4

80 that
__m=ne —7—
@ Eh) =50+ O erm—dd) (52L.)-
8
Now the equations (1) admit the group, and therefore in

particular admit the infinitesimal transformations, so that we
must have N
(Xk (wa+m— ¢a+m)) =0;

and therefore from (2)
&EN=XF (k=1,..,0;

that s, the result, of first operating with X, on any function of
the variables, and then deducing the corresponding funetion
with the bar, is the same as that of first obtaining the function
f, and then operating with the contracted operator X, 5

§104. We can now prove that X, ..., X, generate a group.
From the second fundamental theorem

k=7
(Xo X)) =2 i Xy,
k=r
and therefore  X; Em—X; Eim = i Eom>

consequently we must have

k=r
Xi&n~X; b =2 eijp by
and therefore from what we have just proved

k=r
X_h f‘n—n—fj— §;=E Cij zl:m’
kE=r
that is, (X5 X)) => i X -
It is not, however, necessarily true that the » contracted

operators will be independent.

CAMPBELL R
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If the equations

1 xa+m:¢x+m(w1’ cny Tg)s (m=1, ey W)

are taken to be the equations which define points of order %
with respect to the group, X, ..., X,, we know that these
equations will be invariant under the operations of the group;
we shall now prove that h of the operators X, ..., X, are
wnconnected.

From the definition of a special point of order %, exactly &
of the operators

— 3 — J
fklb—ac_1+"'+£""37,,’ k=1,..,7)

are unconnected; and therefore not more than k of the operators
X,, ..., X, can be unconnected.
Also since the equations (1) admit the group X, ..., X,

(buimy g, (PusmyE" 3 im 5=
Gearm=( azm)fkﬁ( bz;m)sz"* et ( azm)fksa
(k=1,..,7),
and from these equations it follows that not less than k of the

operators X, ..., X, can be unconnected ; we therefore con-

clude that exactly h of these operators are unconnected.

§105. We are now in a position to determine all the equa-
tion systems admitting a given group.
If the system of equations

1) Zyom = berm (Tis -o0r Ty (m = L., n—8)
is to admit all the transformations, it must in particular admit
all the infinitesimal transformations of the group, and there-
fore we must have

i =1,..,
(Xj Zypm) = (Xj Botm (Trs v T ’;fb =1, .“,;_s)‘

Conversely, if the system admits all the infinitesimal trans-
formations, it will admit all the finite transformations of the
group; for let f(z,, ..., ;) be any function of the variables,
then we have proved that X,,..., X, being the contracted
operators of X, ..., X, with respect to the equations (1)

GF=X.7
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and therefore
(@Xi+..+eX)f = (CIX_1+-'-+erX—f)fy
and (¢, X, +...+6, X )°f = (¢ X +...4+¢,X,)?7, and so on;
if then £ is any function such that
X f=0,..,X Ff=0,
R

that is, an equation admitting the infinitesimal transformations
will admit all the finite transformations of the group.
Suppose now that we are seeking an equation system
admitting a given group, the points, whose coordinates satisfy
these equations, must either be points of general position with
regard to the group or points of speeial position. Suppose
that they are points of order 4, and that ¢ is the number of
unconnected operators in the group X,,..., X, ; if & is less
than ¢ the points are ones of specia position ; if  is equal to
g they are points of general position, and A cannot be greater
than ¢ (§91). We say that the equation system is of order A.
‘We now take

(1) s = Pppy (T, ovy T), m=1,..n—s
to be the known equations giving the loci of points of order A;
and X, ..., X, to be the known contracted operators of the
group with respect to these equations; and we take X7, ..., X,
to be the 4 unconnected operators of the contracted group.

Any equation system of order & must therefore by means of
the equations (1) be reducible to an equation system in the
variables z;,...,@,; and in order to find such & system it
is_only necessary to find the equation systems admitting
Xy, ..., X,. This equation system being of order  cannot
allow the points satisfying it to be special points with regard
to the group X, ..., X, ; for were they so, they would be of
order less than 4, which is contrary to our supposition.

The problem is therefore reduced to this; we are given %
unconnected operators X, ..., X, forming a complete system ;
and we have to find all the equation systems which admit
these operators, and are yet such that the points satisfying
these equations are not of special position with respect to
Xy X5
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§106. By a change of the variables we can take X, X,
to be respectively
— b 3
X, = 5“51 +"'+£1"a_x,,’

_ 3 )
X, = f"‘ﬂl +...+£,,,,$a-c;,

where £, ... are functions of ,, ..., and (s—h) other
variables which occur as parameters; and the equation system
we are seeking must not make the determinant

buse - - fn

bire - - b
Zero.
Suppose that f (&, ..., a,) = 0 is one equation of the system
admitted, then
3f f

fum‘l'----*tha-w;— 0

- df 3 — o

f},lrwl +.e +£},},37h =03
and therefore, since the determinant is not zero, we must have

3f of
—a—w;— o,...,m—o.

The required equation system can then be only & system of
equations in the variablés @, ..., @,; that is, the system of
equations can only connect the common integrals of
X (f)=0,.c., X (f)=0.
Example. Consider the group of the fourth order,

d d d d ? ? d l+zi
ya—z—z@: zﬁ_wb_z’ ww—yﬁ: wﬁ-m/ay 3z
This group is transitive, and its matrix is

0, —z, ¥
z, 0,-2
-4 & 0

T Y 2
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The only values of =, ¥, 2 which cause the determinants of
the second or lower orders to vanish are x =y =2=0; and
obviously there cannot be contracted operators to correspond
to a discrete number of special goi.nts.

Forming the determinants of the third order, we see that
the equation a?+y+2" = 0 causes all of these determinants
to vanish ; this equation is therefore admitted by the group,
and defines points of order two. The contracted operators
with respect to this equation will therefore form a group in
two variables, and will have two unconnected operators, and
cannot therefore have any common invariants, so that the
only equation admitted by the group is the equation

24yt +22 =0,
Example. Consider the simply transitive group
3 3 3
2 - — — - —
(¥ +72 m”)aw 2myay 2oz3,
3 d d

2 — ) — — — = —

(2?4 22 y’)ay 2oy —2yry s
3 3 d

2 2 __ a2y . - .

(P +y*—2 )az Zzzaw Zyzay

The matrix is seen to be (22 +%%+2%)%, and when we equate
this to zero we see that all determinants of the second order
vanish, so that the equation

o= i@y
(where the symbol 4 denotes +/—1) defines the locus of
points of order one. This is the only invariant surface with
respect to the group; to obtain the invariant curves with
Trespect to the group we must find the integrals of

ou du
wﬂ + yw =0,
since the contracted operator is
P P
T3z +Yy 3 :
The invariant curves are therefore
y=azr, *+y*+27=0,

where a is a variable parameter.
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It must not be supposed that an invariant of the contracted
operators is an invariant of the group itself; in transitive

groups they never could be such: in this example % is an

invariant of the contracted operator, but for the given group
it is only invariant on the surface 22+ y%+2% = 0.

If we take the group of order ten which transforms minimum
curves into minimum curves, we see that since it contains
3 3 2
3’ 3y %
and therefore there are no special points with respect to this
group ; and because it is transitive, and without special points,
it cannot have any invariant equation.

one of the determinants of its matrix is unity,
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§ 107. We have seen that for the group which transforms
minimum curves into minimum curves there is no invariant
surface, but, since it transforms the sphere

a(m’+y2+zg)+2_qw+2fy+2hz+d =0

into some other sphere, it has an invariant family of surfaces,
viz. the spheres in three-dimensional space.

The theory explained in § 99 would show us that for any

roup whatever we could find invariant families of surfaces.

%ne case of this general theory is of particular interest, viz.
when the number of parameters in the surface is less than
the number of variables. Following the usual phraseology,
wo shall call the parameters involved in the equation of any
surface the coordinates of the surface.

When the number of the coordinates of a surface is less
than the number of variables we may express its equations
in the form

P11y voes Ty = 15 eey g (T4, oy Tn) = Cn_g
Cys ees Cpg WALl then be the coordinates of the surface; and,
ginee & point on it has ¢ degrees of freedom in its motion, we
say that the surface is & g-way locus in n~dimensional space,
or briefiy a g-fold.

We suppose the forms of the functions ¢y, ..., pn_g t0 be
fixed; if for all values of the coordinates ¢;,..., ¢y_g of the
g-fold, the g-fold admits the transformations of the group

15 +ery X, the group must be intransitive. Since the g-folds
can only each individually admit the group when ¢y, ..., $5_g
are invariants of the group, we see that the group cannof
have more than ¢ unconnected operators.

Suppose now that the group is intransitive, and that
Tyg1y ey By BTE BB invariants; we then have

d d
Xp=Ea (@ eens T")E-I- "'+£kq [ wﬂ)é?q’ (k=1,..,7).
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The equations @, ;= @y, ..., &, = a,, are invariant for the
group; suppose that z,, ..., z,, G415 oo Oy 18 & point of general
position, the contracted operators with respect to these

equations are X, ..., X, where

—_— ?
X, =& (@ e x,, @ iy Bg)s— F eee
k 1 (% s gy Cga1s e ")bwl

3
Bwq

+£kq(wl, o By Bgigs e, Gy

We know that these contracted operators will generate
& group, and that ¢ of its operators will be unconnected, so
that this group, being in ¢ variables, will be transitive.

If we say that the transformation

dy=arTitetaly (G =1,.,m)

in the group X, ..., X, corresponds to the transformation
ay=es Dt to Ty (€=1,..,n)

in the group X,, ..., X, ; then any point on the g-fold

g1 = Bgays eees Ty = Gy

is transformed to the same point on that ¢-fold by either of
these corresponding transformations.

Now the group X, ..., X, is transitive, and therefore any
arbitrarily selected point on this g-fold can by the operations
of this group be transformed to any other arbitrarily selected
point on the g-fold: it follows that by the operations of the
group X,,..., X, any point on this ¢-fold can be transformed
to any other point on the same ¢-fold.

§ 108, Without, however, assuming that any one of the
g-folds
¢1(w1) “es wﬂ) = Cps ey ¢n—q (wl’ e wn) =Cpn_g
is transformed into itself by the operations of the group, we
shall suppose that the totality of them is invariant; that is,
the q-fo%g) with the coordinates c;, ..., €y g 18 transformed to
the ¢-fold with the coordinates ¢, ..., Cp_g, the forms of the
functions ¢, ..., ¢,_o which define the g-folds being of course
fixed.

Ifay, ..., 2, is & point on

P1(®1s 00y Bp) = gy vty P (@ 0oy B) = Cr-gs
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and if this point is transformed into 2f, ..., /, then we must
ha ,
ve S5 s Tp) = ey ¢n-q(¢s eeey {L’,‘)zcn_q;

but unless the group is intransitive, and ¢y, ..., ¢,,_, are its
invariants, we cannot have

¢1(zl"-u wn) = ¢1(¢: CLXF] il/n), ceny
¢n—q (@1 eeey Tp) = ¢n—q (s oo a’ln)

If, however, the totality of g-folds is invariant we have,
whether the group is intransitive or not, an invariant decom-
position of space into «w"—¢ ¢-folds.

A group under which some decomposition of space is
invariant 18 said to be imprimitive; a group under whose
operations no such decomposition is possible is said to be
primitive; thus int itive groups are a particular class of
imprimitive groups, and primitive groups are a particular
class of transitive groups.

§109. Let

1) “’¢=fz(%-~swm Qs ones Gp)y t=1.., n)
be the equations of the given group, and let

P1 (g5 ans Bp) = €15 1ans Prg (T1s o0 Tp) = €y

be an invariant decomposition of space; when we apply to
this ¢-fold the transformation (1) we get

G1(@s oo B) =,y b (@ e, #) = g
and we must therefore have an equation system of the form
€ = Y305 eer Cpgs Gps eens Gp)y (Z=1..,n—q).

It follows therefore from our first notions of a group that
the functions v, ..., ¥, , will define a group containing the
identical transformation and r infinitesimal transformations,
though these are not necessarily independent.

The variables in this group are the coordinates of the ¢-folds
in space @, ..., #,, and we may say that we have passed to
& new space in (n—g¢) dimensions; to any assigned point in
this new space there will correspond a definite g-fold in the
8pace Ty, ..., %, ; and to any transformation

T = [ (@ys eres Ty Bgs ooy @)y (t=1,..,m)
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in the original space there will correspond a transformation
€= Vi €y -rns Cnogs Qs vees By t=1..,n—9q
in the new space.
By a change of the variables we may take
Tye1 = Cqpps ery Ty = Cp,y

to be the equations of any g-fold, whose family is unaltered
by the operations of the imprimitive group X, ..., X,.

In this system of coordinates the finite equations of the
imprimitive group must be of the form

By =i (Bl vons Tpy By e @)y (E=1,.00,9),
Tye; = Fauj Bqers o By Opseens @)y (F=1,..,0—g);

for any g-fold of the system must by the operations of this
group be transformed into some other,
The infinitesimal operators of the group are now

2 2
X,,:g,ﬂE +"'+£""E’ k=1,..,7),

where £, g+j» «++ do not involve oy, ..., T4
It therefore follows from the identity
h=r

Xe Xy) =2 can Xy
that the r operators Z,, ..., Z,, where

d d
Zy= fk,q“—-awqﬂ +"‘+§kﬂﬁ’ Ek=1,..,7),
n

form a group, such that

k=7
(Zi: 2) =3 can 215
this group, however, is not necessarily of order r since the
operators may not be independent,

§ 110. The complete system of equations

P d

—f =0, .., —f =0

oy Bwq
is invariant under all the operations of the imprimitive group
X,,..., X,. This is at once seen to follow from the fact that
5k,q+j: ... do not involve x, ..., Ty
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Conversely, if any complete system is invariant under the
operations of a group, that group must be imprimitive. For
by & change of coordinates we can take the complete system
to be

i:o,...,—ai =0,
EEN bwq
and then, if

P P
bs—F et bpns—
ey o,

is an operator of the group which the system admits, we see
that & g4, .-+ cannot involve z,,..., @;; and therefore the

uations — =
eq Bys1 = Cgi1s vens Ty = Cp

can only be transformed to equations of the form
Tye1 = Cgiys vees T = Cp
that is, the group is imprimitive.

§ 111. We have now seen that groups may be divided into
transitive and intransitive classes of groups; and also into
Srimi’t.ive and imprimitive classes; there is yet a third

ivision into stationary and mon-stationary groups. To ex-

plain this last division, let X, ..., X, be the 7 operators of the
group where R

?

X = b (=, ...,w,,)n1 Fooet L (®ys o o0 ) Sz

n
k=1,...,7),
and suppose that exactly ¢ of these operators are unconnected,
say X, ...,Xq; and let

k=g
) Xq+j=2¢q+j,k(m1’-":wn)‘xk’ (=1.,7—9.
Let a2, ..., a2 be a point of general position, that is, a point
such that not all g-rowed determinants in the matrix

f T

T
vanish, when the coordinates of this point are substituted in
it. First we see that any infinitesimal transformation of the
form
zﬁ:wi+t(eIX1+...+equ)w‘, (t=1..,m)
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will transform the point 4}, ..., 28 t0 some neighbouring point;
for if the point remained fixed we should have
aélit.te =0, (i=1,..,n),
and therefore all g-rowed determinants of the matrix would
vanish,
The necessary and sufficient conditions that
X, +..+e¢ X,
should not alter the point a2, ..., 2% are
ot e fh=0, (i=1,..,n);
and these equations may by (1) be written in the form
k=g J=r—g
E(Ck"'zeqﬂ‘ﬁ%ﬁ,k) =0, E=1..,n).
Since then the point 1, ..., 29, is one of general position, we
must have
je=r—q

ek+zeq+j¢g+j,k=o’ k=1,..9),

and the general form of an operator of the group which does
not alter this point must be

j=r—g k=q

2eges Kguj— Zbgep 1 (@ ozl Xp).

It follows, since the transformations which leave a given
point at rest must obviously have the group property, that
the (r— g) independent operators

k=g
Xq+j_2¢g+j,kxk’ (=1.,7—9)

generate a sub-group.

We call this sub-group the group of the point 23, ...,22.
Unless all the operators of a group are unconnected, to ench
point of general position there will correspond ome of these
sub-groups.

112, Let now 39, ...,9% be any other point of general
pogition, we now wish to Z?‘ee wheth}::r all thlt;se infinitesiral
transformations of the group which leave 9,...,22 at rest
have the property of also leaving 3?,...,95 at rest; that is,
whether the groups of the two points are the same.
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If the groups of the two points are the same then for all
values of the parameters €;4), ..., ¢,

j=r—g k=q
2 eq+j (Xq+j_2 ¢q+j, % (w?: seey won) Xk)
j=r—g

k=g
=3 g (Xgui— 2 bgasr O 90 Xa),
where €;,,, ..., €, is some other set of parameters not involving

5 eees Lo
Since. the operators X, ..., X, are independent, this can
only be true if

and if further
J=r—g

> Cquj (bqas, b @ v B =g s, (s s ) = 0.

Now ¢4y, - ¢ are independent, so that we must have

eqﬂ = eqﬂ, ey By T €y

j=1,..,r—

¢q+j,k(""?’ e @p) = ¢q+j,k(§'/‘1]:--'s:‘/r°n)a (k= 1..., Z)

as the necessary and sufficient conditions that the groups of
the points af, ..., 23 and 49, ..., ¥ may coincide.

§118. The sub-group which leaves af,...,2% at rest will
therefore leave at rest all points on the manifold

1) ¢q+j,k(m1:~--!zn) = ¢q+j,k(w?""w2;)l

j=1,..,7—q
(k= 1., q).

Of the functions ¢ ... not more than = ean be un-
conpected ; if n are unconnected only & discrete number of
points will lie on this manifold; and we then say that the
group X, ..., X, is non-stationary. If,;however, fewer than n
of the functions are unconnected, say s, then the equations (1)
define an (n—s)-way loeus; and the group of the point
4, ..., o) leaves invariant the continuous (n—s)-way locus
which passes through the point; in this case we say that the
group X, ..., X, is stationary. The groups of all points on
this qocus are the same; we shall call this locus the grouwp
locus of any point on it,

I 2 =fi(@y eeny By Gy oiny @), (f=1,..,m)
is any transformation of the group X, ..., X,, and X}, ..., X7
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are the operators obtained by replacing @; by #} in X, ..., X,,
we know from the discussion in § 75 that X7,..., X/ are an
independent set of operators of the group X, ... X,. Suppose
that by this transformation the point 29, ..., 2% beeomes the
point af, ...,22; then,

K qX,+..+¢ X,

being an operator which leaves af, ..., 23 at rest,
6 Xi+..+¢ X,

will be an operator leaving wil), ooy ac,,? at rest; and the group
of the point af, ..., 8 is therefore transformed into the group

of the point ?,...,2%. If then the group is stationary, the
(n—s)-way group locus through wﬁ,...,z&‘,’, is transformed to
the (n—s)-way group locus through af,...al. Tt follows
therefore that a stationary group is imprimitive, since the
group loci are transformed inter se.

It should be noticed that not all imprimitive groups, nor
even all intransitive groups, are stationary ; primitive groups
however, having no invariant decomposition of space, must Ee
non-stationary.

§114. We shall now give an analytical proof of the theorem
that the equations
_ J=1.,r—¢q
1) ¢q+j,k(“'1:--"zn)—cq+j,k1 (k= L., q)
define an invariant decomposition of space into «o* (1 —8)-wa;
loei, where s is the number of the functions $g4j, 1> -+« Whic]
are unconnected. ’
From the fundamental group property
_i=r J=l,r—q; _
(Xpr Xq+j) —20 ,q+j,tXis (k =1,.., 7 p=1, ...,’l') 3
and from the identity
k=g

@) Xy =201 Xn  (F=1.07—9)
we deduce that
mem, k=g k=g i=r

> Cotm Byrs i Xom+ 2 Xp g X =20 WITwD. 8
If we apply to this the identity (2) so as to eliminate the
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operators X ., ..., X,, we can equate the ecoefficients of
1 o0 X oD each side of this identity, for X, ..., X, are by
hypothesis unconnected ; we thus obtain

i=r—g t=q
Xy bgajm = cp,q+j,m+2 Cp,q+d,q+i ¢q+i,m_2 Cp,k,m Py k
k=g izr—g
-2 Jkg+i Paas,k Pgriym-
It therefore follows that by the infinitesimal transformation
o = ay+t X @y, E=1,..,n)

all the points which lie on any one of the (n—s)-way group
loci (1) are so transformed as to be points lying on some one
other of these loci.

We may perhaps see tbis more elearly if we throw (as we
may by a change of coordinates) the equations

Dgag b (Trs oo By) = Cguip
into the forms e
3) Ty = €1y eaey Ty == €.

What we bave then proved is that by any infinitesimal
operation of the group, and therefore by any finite operation
of the group, the coordinates ., ...z, are transformed into
funetions of @, ..., #,; and therefore the (n —s)-way locus (3)
into the (n—s)-way locus

Ty = Yy ey Ty = Yy

where y,, ..., y, are functions of ¢, ...,c, and the parameters
of the group X, ...,X,.

§ 115. The functions ¢, (%, ..., %,) bave only been defined
for the case j>g, p b gq; it is convenient to complete the
definition by saying that when these inequalities are not
satisfied ¢, (%,, ..., %,) is to be taken as identically zero.

. We now detine & set of functions II;;, ... as follows:

t=r_q r=g p=g t=r—q
My = it 2 00t Port bt 2 Cuirin+ 2 Ot bia buvs e
Ijirg

t=r—q
Mg, = e+ = g+t Pgrt ks
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if& > q,

n=g
My = g+ 2, Cuiz by
andifj b gand & > g,
I‘I.-jk = Cyjpe
Sinee ¢, +¢;g1, = 0 for all values of i,j, & we have
Xp bgrik = Uy, guj e
k=g

Sinee Xq+i=2¢q+t,kxk!

k=g
Xgribgajm =2 bgui, i Xn bges,ms
and therefore

k=g t=1.,r—¢q
nq+(,q+j,m=2 ¢q+i,knk,q+j,mx (.7 = lr"'r"'—q) 5
m=1,.., q
these are identities, satisfied by the functions Pytiytor ooe e
ain, sinee
k=7 k=g t=reg
& X)) =Zepn X =2 (e + 2 G, 5,q+¢ Pgae, 1) Xis
we see that, X, ..., X, being the unconnected operators of the
group,
" i=1 q
&, X)) =2 My Xy, (j= 1,’...:q 3
we therefore call the functions I1,;, whennone of the integers
%, J, k exceed q, the structure functions of the eomplete system
he fanetions g+, 15 .- We shall call the stationary func-
tions, since they detérmine whether the group to which they
refer ig stationary or not.

116. Suppose that s of these stationary functions are uncon-
nected; we can by a suitable choice of new variables bring
them to such a form that they will be functions of the
varisbles ay,...,@, only; and we can also express the
variables #,, ..., &, in terms of the stationary functions.

The equations

(1) By =0y veny T =€,

now give a decomposition of space which is invariant under
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the operations of the group X, ..., X, ; only if s is less than
7 can we say that the group is stationary ; and only if s is
less than n can we say that the equations give a decompo-
sition of space at all.

The operators of the group are X, ..., X, where X}, is

3 3 i
fkls_al—l +"'+£kﬂﬁ;" k=1,..,7),

and &, ..., &, are funections of x,,...,z, only; for the
(n—s)-way locus (1) must by any operation of the group be
transformed to some other (n—s)-way locus of the same
family. If therefore

3 3
Zk:f"lsm_l +"'+£k’$wj’ (k=1! e "')’

Z,, ..., Z, will generate a group, such that

k=r L)
Z 2) =2 cyju B
where the structure of the group X, ..., X, is given by

k=r
(X X)) =2 eyp Xy

The group Z,, ..., Z, is not, however, necessarily of order r,
for its operators may not be independent.

We can construct this group Z,, ..., Z, merely from a know-
ledge of the structure constants and the stationary functions
of the group X, ..., X,.

For if the stationary functions are known it merely requires
an algebraic process to bring them to such a form that they
are functions of z,...,x, only. We can then say that
@y, ..., &, ar¢_known functions of the stationary functions;
and, since X;¢,,; 5 =10; g5, and I; o, is known in
terms of the stationary functions, we see that X, ¢, ,; &is also

known in terms of them. It follows that X;w,,...; X;z, are
P d

all known funections, that is, the coefficients of ——» s ——
. dz,

in X,, ..., X, are all known; that is, the operators Z,, ..., Z,
are known when the strueture constants and the stationary
functions are known.

§ 117, We have seen that the operators of an intransitive
group ean be simplified when we know its invariants ; what
we are now about to show is how by a suitable choice of

CAMPBELL L
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new variables to simplify these operators, and at the same
time to simplify the stationary functions ¢, ; 5 (@3, .oy Zg)y -

We s0 choose the variables that the stationary functions are
functions of the variables «;, ..., z, only.

Of the invariants of X, ..., X, @ the unconnected operators
of the group, some may be functions of «;, ..., z, only; if we
suppose that there are m such invariants, we may so choose
the variables that these are zy, ..., %, ; and m is not greater
than the lesser of the two integers n—q and s.

Sinee the stationary functions are now functions of a, ..., z,,
and ), ..., &, are invariants of X, ..., Xq, we have

P 3
Xk “gk,m-rl awm+l+"'+£knaxn’ (k— 1.0, Q)s
where & 1.1, -o., £, 5 2T functions of , ..., z, only.

Any fanetion of &, ..., @, is an invariant of X,, ..., X, but
there are (n —¢—m) other invariants, uneonnected with these.
Let f(,, ..., z,} be one of these other invariants; since by
hypothesis z,, ..., ,, are the only unconnected invariants
which are mere functions of «, ..., z,, f cannot be connected
with @), ..., x,; we may therefore again so choose the variables
that f will be z,,.

In this system of variables the stationary functions are
still mere functions of @, ..., #,, and @y, ..., %y, @, are invari~
ants of the group.

There now remain (n—¢—m—1) invariants, unconnected
with ,, ..., &, and z,; let f(z,..., x,) be one of these, we
next prove that it cannot be connected with z, ..., #,, z,.

Suppose, if possible, that it is a mere function of x;, ..., Ty, T3
then, since it is annihilated by X, ..., X, ¢» Wwe must have

3 3
fk,m-rlﬂ% +"'+£k.r% =0, (k = 1,..-,4),
'm. s

for £, = 0, because , is by hypothesis an invariant.

Now & 1ps1s +ves &g do not contain w,; and therefore, if @,
is n.ng n.rf)itmry parameter, f (2, ..., &,, &,) will be annihilated
by &,..,Xg. As we have proved that no function of
&y .0y T, caD be 80 annihilated, unless it is a mere function
of z, ..., #,, we conclude thnttg(wl, vees Tyy ) 18 a fune-
tion of @,,...,a,, and =, only; that is, it is not one of the
(n—g—m—1) other invariants. We can therefore by a fresh
choice of the variables take the function f to be ,_,; and in
these new variables the stationary funetions will still be
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mere functions of @y, ..., %, and @y, ..., Ty, @,, @,_; Will be
invariants.

Proceeding thus, we see that we may finally take the
stationary functions to be functions of the variables x,, ..., z,
only, and may take the (n—g) unconneeted invariants of the
group to be @, ..., Ty, Tgimazs «rey Tye

In proving this we have implicitly proved the inequality
q+mes.

When a group is brought to this form we say it is in
standard, form.

§ 118. The above is the general method of bringing a group
into standard form when it is intransitive, stationary, and
when some one at least of the invariants of the group is
2 function of the stationary funetions; the modification when
any one of these conditions is not satisfied is simple, and the
1abour of bringing the group to standard form is lessened.

Thus, if the group is transitive, ¢ = n, and m = 0; to bring
the group to standard form involves only the algebraic pro-
cesses of selecting the stationary functions in terms of which
the others can be expressed, and taking them as a new set of
variables @, ..., @,.

If m = 0 then ¢>s5, and the invariants may be taken to
be @415 ..y Ty, While the structure functions will involve
@1, ..., T, O0ly,

If the group is non-stationary s = n and m = (n—gq), and
the invariants are a,, ..., Tp-gs while the structure functions
involve all the variables z,, ..., @,.

We saw in § 45 that in order to bring the equations of
a group, given by its operators X, ..., X, to finite form it
was necessary to find the invariants of

X, +..+e6X,.

This problem is simplified for stationary groups; for, when
we know the operators, we know the stationary functions,
and can by algebraic processes bring the above operator
to the form

k=rj=3s k=7, t=n—s N
by B 5t 2 e G0t (@1 e ) 3oy
7 8

There are (s—1) unconnected invariants of this operator
which are functions of @, ..., #,; and these may be found by
integration operations of order (s—1): having found these,
the remaining (n—s) invariants may be found by integration
operations of order (n—s).

L2



CHAPTER X

CONDITION THAT TWO GROUPS MAY BE
SIMILAR. RECIPROCAL GROUPS

§ 119. The funetions ¢, ,; 3,... which determine whether
& given group is stationary or non-stationary are of much
importance in other parts of group theory; we shall now con-
sider their application to the problem of determining whether
two assigned groups are or are not similar; that is, whether
or not the one group can be transformed into the other, by
& mere change of the variables.

Taking X%? ..., X, to be the operators of a group of order »
and X,, ..., X, to be the unconnected operators of the group,
we have

k=g

Xq+j=2¢q+j,k(ml""rmn)xk’ G=1,..,7—9).
If we change to a new set of variables given by
Yi=Ffil@y, e m), (= 1,..,m),
the » operators X, ..., X, will be transformed into = inde-
pendent operators Y7, ..., I;,, where
3 3
Xk=Yk=1;k1~371+...+1;k,,~b?n: (k:l,...,’l'),

g, ... being functions of the variables y,, ..., /,.
At the same time the functions Pgrj b (Bls <oy Bp)y oo Will be
’ ) I n
transformed into functions

Youj ke Yrs ces Unds ons
such that ek (1 "

Y5k W1 e Yn) = Pga, 1 (B1s oe0r @), (‘2
We must have

=1, ..,r—q
=lu,q 7

k=r

(Yo ¥) =05, Y,
k=7

since i X)) =2 0y Xy, and X; =¥,
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If then we have two groups, viz. Xy, ..., X, in the variables
@1y eees Ty, 80d ¥, ..., ¥, in the variables y,, ..., %, each group
being of the 7% order, we see that these groups cannot be
similar unless we can find a set of independent operators
Zyy <oy Z,, dependent on the operators Y, ..., Y,, and such
that the structure constants of Z,, ..., Z, are the same as those
of the group X,,..,X,; and also such that Z,...,Z, are
wnconnected, and Zy oy, ..., &, connected, with Z,, ..., Z,

These conditions are necessary; suppose that they are
fulfilled; we may then assume that the group Y, ..., g can
be presented in such a form that the structure constants of

.., ¥, are the same as those of X,, ..., X,, that ¥, ..., ¥,

I q

are unconnected, and that ¥, ,,, ..., ¥, are given by
k=q

Yq+j =2‘I’q+j,k(yv s Yn) Y (=1.47r—9).

If the groups are to be similar we must further have
(,7 =1,.., ’r—q).

k=1,.., ¢
If from these equations we could deduce an equation
between @, ..., &, alone or between ¥, ..., ¥, alone, it is clear

that the groups could not be similar; it will now be proved
that if no such relation can be deduced the groups are similar.

[P (PRI ) = Vgug,k W oo Yns

§ 120. Suppose that of these ¢ (r —¢) functions

¢q+j,k(zl! ERRE) Z"),
exactly s are unconnected, we know that s’»>7; between any
(s+1) of these functions there must be a functional equation ;
and therefore, since there is no equation eonnecting ¥, ..., Yn,
there must be the same funetional equation between the
corresponding functions of ¥y, ...s Y-
It must be possible to find at least one transformation

scheme .
Y= L (s oo Ynhs (t=1,..,m)
which will transform any s of the functions
‘I’q+j,k (ylr e yn)’ oo
into the respective forms

¢q+j,k (’1/1; eees ’l/n): eee
and therefore, since the same functional equation which eon-
nects any (s+1) of the funetions ¥, 3, ... will connect the
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corresponding (s+1) funetions ¢, +j, ks ++s We see that this
transformation scheme will transform each of the functions
Yq45,% (Y1 <+es Yn)s «.., into the corresponding function
DBaagk Yo voos Yoy ove e

The theorem which is to be proved is therefore reduced to
the following : X,,...,X, and ¥,,..., 7, are two groups, each
of order ,in the variables @, ..., 7, and y,, ..., 3, respectively;
the operators in the first group X, ..‘,i’q are unconnected,
and

k=g

Xq+j =2¢q+j,k(zb"-!xn)xk’ (4= L...r=q);
in the second group Y7, ..., ¥, are unconnected, and

k=g
Vory =2 bgejtlln ot s (F=1,0sr—g);

these groups will be similar if
k=7
& X)=Z e Xy,
k=r
and Y0 ¥)) =Z e Xy

If by the transformation scheme
Z{;=f;(w1,...,@"), (1-: 1,--.,71/)

the stationary functions of X;,...,X, are brought to such
a form that they are functions of w,...,z, only, then the

schemo Yy =fi(-rth)  (=1,..m)
will make the stationary functions of ¥, ..., ¥, functions of
Yi, .0 Yy Only.

“From what we have proved in § 115 as to the form of the
coefficients &, ..., &, in X, ...,'X,, we see that these co-
efficients will be the same functions of z,, ..., , that 4, .
are of y,, ..., y,; and therefore, if any function f (x,, ..., z,) i8
an invariant of Xy, ..., X,, f(yy, ..., %,) will be an invariant of

1I’f .t;ilerre.fore we reduce each group to its standard form we

may take Z1s eoes Ty Bgpmp1s eees Ty

to be the invariants of X,, ..., X,, and its stationary functions
to be functions of «), ..., «, only; and we may take

Y5 ces Ums Ygama1r o ¥n
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to be the invariants of ¥, ..., ¥,, and its stationary functions
to be the same functions of ¥, ..., ¥,, that the stationary fune-
tions of the first group are of @;, ..., @,-

§ 121. Let us now say that the ¢-fold in = space

(1) @ =g ey Ty = Cpyy Tygigqin = Cmggats o9 ¥ = Oy
corresponds to the g-fold in y space

(2) % =0y Ym = %> Ymsgs1 = Fmigers o0 ¥ =TI
where fpsq415 -+ Sn aTE BDY (N~ — g) fixed functions of their
ArgUMENts Oy, .oy Oy O gqts +oes Oy BUCH that @iy, 00 @y
can be expressed in terms 0f &y, ..., @y 809 Yppgigs s Yn+

We have now established such a correspondence between
the two g-way loci, that when one is known the other is
known.

Under the operations of the group X,,..., X, all of these
g-folds in « space are invariant; and if on one of these we
select any point P by an operation of the group X,,..., X,
P can be transformed to any other point on the same g-fold.
Similarly the g-folds in y space are each separately invariant
under the operations of the group ¥, ..., ¥, ; and by a suitable
operation of this group any point on one of these g-folds can
be transformed to any other point on the same g-fold.

We now wish to establish a correspondence between the
points in two corresponding g-folds, one in the @ space and
one in the y space.

We take as the ‘initial’ point on (1) the point P whose
coordinates @, ..., ¥pq 826 all zero; and we take as the
“ initial’ point on (2), which is to correspond to P, the point
@ whose coordinates are

Ymar = 0y oYy = 0y Ypu1 =Sos1s 3 Ymog =fm+q
(we proved in § 117 that m+q<s), where foiq, ooy fmaq 81
any fixed functions of their arguments,
gy ooy Ay Agppgats oo O

We have now established a correspondence between the
“initial’ points on any two corresponding g-folds ; we get the
correspondence between the two spaces by the convention
that the points obtained by operating on the coordinates of P

with ee,X,+..4+e,Z,
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shall respectively correspond to the points obtained by opera-
ting on the coordinates of @ with
ee,Y,+...+c,.Y,.

There are *initial’ points P lying on each of the q-folds in
@ space; to take P, a point on any one particular ¢-fold, would
merely establish a correspondence between the points of that
g-fold and the corresponding g-fold in y space; by taking
initial points on each g-fold we have the complete corre-
spondence between the two spaces.

It must now be proved that we have established a point-to-
point correspondence between the two spaces; i.e. the doubt
must be removed as to whether the operators

eaXi+..+e X, and egaZit..+ s,X,’
applied to the point P might give the same point in space,
whereas the operators

Y1t +6 Y and ee,Y,+...+e,Y,.’
applied to the point @ might give two different points in y

space.
If e&,X,+...+e,.X, and er,X,+...+e,-Z,’

applied to P give the same point, then the operator
e~91X1—---—BrXr es,X,+ et €p Xy

will not alter the coordinates of P at all; that is, this operator
will belong to the group of P,
By the second fundamental theorem (§ 50)

e—adi—.—a Xy o6 Lyt ...+ 6 Xy =M Z,+...+ArXry
where Ay, ..., A, are constants, which are functions of

€, by €y, €y,
and the structure constants of the group X,,...,X,; and
therefore, as these structure constants are the same for the
group Y,,..., ¥,,
e himw—alrga Vit t e ¥ — MYt AT

The doubt which we hayve suggested as to the unique corre-
spondence will be removed when we prove that if

MNX 4o+ X,
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is an 0%61‘8.1‘,0!‘ of the group of the point P with respect to
Xy, X, then
MY+ HA Y,

will be an operator of the group of the point @ with respect
to¥V,,....Y,.
Since A i1+...+ATX, is an operator of the group of P,
we have by § 111,
j=r—g

)‘k+2}‘q+j e kls e #h) = 0, k=1,..9),

where 22, ...,2% are the coordinates of P.

Now by hypothesis the functions ¢,,;,, ... only involve
the coordinates z,,...,«,; and if the cdordinates of @ are
Y9, .. 5, we have 30 = af, ..., 9% = af, s0 that

j=r—g

Ak+2>‘q+j¢q+j,k (y‘])a"'!ygt)’ (k= 11"-1Q);

and therefore A, ¥,+...+A, ¥, is an operator of the group of
@ with respeet to ¥, ..., ¥,.
§122. We have therefore established a point-to- point
correspondence between the two spaces; it may be noticed
that, having proved that the coefficients of b%’ :b—i— in
1 8
X, ..., X, are the same functions of y,...,®, that the corre-
3 ]
s eens
o 3y,
it will now follow that, if g, ..., 4, is the point in y space
which eorresponds to @y, ..., 2, in & space, we must have

N =215 00 Yy = e
Let S denote the transformation scheme which transforms
any point &, ..., &, to the corresponding point y,, ..., ¥, in the
other space, then Sf(@,...,,) will be equal to f(yy, ..., %)
where f is any function of its arguments.
We take P to be the ‘initial’ point on any ¢-fold in «
space; by varying the coordinates of this g-fold, and the
parameters ey, ..., ¢, in the operator

sponding coefficients of inY,, ..., Y, areofy,, ..., %,,

er Tt ter Xy

this operator applied to the coordinates of an initial point P
will transform it to any point in space .



154 OPERATORS PERMUTABLE WITH [122

We may say then that
ee,Z,+..4+e,X,1)
will be a general expression for any point in the « space.
The point in the y space which corresponds to this will be
ee,Y,+...+e,Y, Q,
and therefore
Setr i+ tee X, P ot +6 T, Q,
or, e—e,Y,—-...—e,Y,See‘xl+...+e,.1,P= Q
We now take another independent set of parameters
€ -e0y €5, then
gaTit. 46 Y, g—a Vi~ .V, g 0 X+ 46, X, P
= 95,1’1+~~~+(,Y,Q
= SeaXit+..+6 X, P,
Since e f1+.-+& % P is any point in the # space, we must
then have the identity
a1t .+eY g—aTi—.. —e Y, g
= SeaXitte X, e—G:X.—.--—e,Xf;

and by the second fundamental theorem we therefore have
M+ AT 9 QAT+ ...+7«,Z,.’

where A,, ..., A, are constants which are arbitrary, for they are
functions of the structure constants, and the arbitrary con-
stants e, ..., ¢, and €, ..., €,.

Since we have now proved that

M N4 #A Yy — Se’“Xl*‘ +A,Z,S—1’

we see that the groups are similar; and that they are trans-
formed into one another by the transformation scheme 8; and
that the operators X, ..., X, are respectively transformed to
Yy, 0 Yo

§ 123. A very important theorem may almost immediately
be deduced from the proof of the foregoing theorem on the
similarity of groups; to obtain it, however, it is necessary to
consider closely the form of the transformation scheme .S,
which has converted the points of the « space into the points
of the y space.

This theorem is the answer to the question which now



123] THE OPERATORS OF A GROUP 156

arises, viz. what are the transformationg which will transform
each of the operators of & given group into itself ?

‘We might put this question thus, what are the transforma-
tions which will transform

-] -]
(1) Xk=£k1'a;1 +"'+fk"b_1‘;’ (k:l,..., ’I‘)
into
-] -]
2) Yk:’"‘lb? +...+nk,,W, k=1,..r7),

where X, ... are the operators of a group, a,nd 7z is the
same function of!yl, v Yy that £ is of @y, .., @

Suppose that X,..., X, is in standard form “we take to
correspond to the g-fold in « space given by

(B) = yyeesy Ty = Uy, Byigur™ Camagats oo Tn =y
the g-fold in ¥ space given by

#) =0y . Y=y, Ymiqer = migs1Flmpgersess
Yp = Uiy,
where ¢,,,, ..., ¢, are small constants which will not vary
from q-fold to g-fold in space .

To the ¢ initial * point P on (3) we take as correspondent on

(4) a point @, whose coordinates are
Yme1 = Oseees Ys = 0, Yo = pu1s -oos Ymeq = tm+q'

If we now establish the correspondence between the two
spaces we notice that the coordinates of  differ infinitesimally
from the coordinates of P. Therefore, since X, is obtained
by replac l&g the variables y,, ..., ¥, by @, ..., @, respectively
in ¥, if P’ is the point obtained by opera.tmg on P with any
finite operator of the group X,,..., X,, and ¢ the corre-
sponding point obtained by opera,tmg on @ with the corre-
sponding finite operator of the group ¥,..., Y, the coordinates
of P will also differ infinitesimally from ‘those of Q.

We now have in this eorrespondence

N= e Y = Ty
and also, since @y, , ¢,1, ..., ¥, aTe invariants,

Ymage1= wm+q+1+tm+q+1: oy Y = Tyt iy,
and finally

i=m4yg—3s
Ysej =w8+j+2tl+l'£a+0',8+j! =1..,m+qg—s)
where (,; 5455 ++. 876 Some functions of the variables @y,..., 2,.
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These equations give (n—s) infinitesimal transformations
transforming (1) into (2); the corresponding linear operators
are Zyy1, ..0r Z,, where

j=mag—s >
Zm+q+i = m +E £m+q+£, s+j%’
E=1,..,n—m-—q),
J=m+q—s >
Zs+i=2 (s+l',a+j£—"’ @E=1,..,m4g—s)
8+]

‘We shall now prove that the determinant

{u—l,u—lr ¢ {3+1,m+q

{m+q,g+1y .. £m+q,m+q
does not vanish identically, and therefore conclude that these
operators are unconnected.

When we take @,,,=0, ..., Zp g =0, that is, when we take
@1y uus @, t0 be the point P, vy, ..., 4, will be the coordinates
of the point @, and therefore ¥,,; = 4151 Ymiag = bmags it
follows that ¢, ; ., i will then reduce to €y, where, as usual, €
is unity if ¢ = j, and zero if 4 # j.

The determinant cannot then vanish identically, sinee it is
equal to unity when we take .., = 0, ..., @y, q = 0.

Since any infinitesimal transformation which transforms (1)
into (2) must transform y, into @, ..., ¥, into ,, we see that
there cannot be more than (n—s) unconnected infinitesimal
transformations which have the required property.

§ 124. We have now found (n—s) unconnected operators
Zyi1s +oes £y, which have the property of leaving each of the
operators X, ..., X, unaltered in form, and have proved that
there is no operator unconnected with Z,,,, ..., Z, which can
have this property.

Applying the transformation

o =mp+thya;, (E=1,..,m)
we see that i
X=X;4t(5, Xp), (=107
and therefore the alternant (Z, X;) must vanish for X} = X, iz
The operators Z,,, ..., Z, form a complete system of which
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the invariants are the stationary functions of X,,...,X,;
suppose now that
k=n—s

Zs 00 u—j) =2 Pc+£,x+j,a+kz +k?

where p, .4 44, 54k --- are functions of acl,

Since X is permuta,ble with Z,,; and w1th Zs +j» it follows
from Jacobi’s identity that it is permutable with the alternant
Zyiis Z,+j) ; we therefore have

E=ne—s
E (Xm Pa+n,a+],s+k) s+k = 03

and therefore, since Z,,,, ..., Z, are unconnected, each of the
functions p,44, 544,544 +++ 18 an Invariant of the group
D IR, ¢

Suppose now that X, ..., X, is non-stationary; we see
that there are no operators lea.vmg the forms of the operators

1»++y X, unaltered; there are therefore no operators per-
mutable with each of these operators.

If on the other hand X,..., X, is stationary there are
(n—s) such operators, viz. Z,,,, ..., Z,; these will form a
complete system

ks

Zysir Zs+j) =2 Pasia4fi8+k Zeiks

of which the structure functions p,yi, 54,54k, --- 7€ invariants
of X,,..., X,; if then X, ..., X, is a transitive group, these
structure functions must be mere constants, and Z,,,, ..., Z,
will generate a group which will be finite and continuous,
and have all of its operators unconnected.

§ 125. Suppose now that the group X,,..., X, is simply
transitive ; it is then sta.tlons.ry, for the sta,tlonm'y functions
vanish identically ; and in it s = 0 and 7 = = ; it will now be
proved that the simply transitive group Z, ..., Z, has the
same structure as the group X, ...,

We may take as the n independent opemtors of X;,.., X,

p=r=n

? P
M) Xe=5- +2hk,‘,w“m tow (=1,

where the terms not written down are of the second or
higher order in powers and products of @, ..., @,.
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Wo may sm:ularly choose as the operators of Z,, ..., Z,

p=y=n

3
2 Zy=—— +2lk,.,w,.m +ow  (k=1,.,m),
where hzuys ...y l,,“,,, ... are sets of constants.
. t=1,.
Since (X;, %) =0, (k— Lo ,n)
we must have
v=n 3
> (lkiy+hiku)‘37 +..=0,
where the terms omitted are of higher degree than those

written down.
This identity gives

=1, .., B}
3) bu+kba, =0, (k= Lo v= 1,...,n)~
We also see that
[0:08 ch) E(hluv h:kv)bw + s

and therefore the structure constants of X,..., X, are given

by Cikw = hiiv—hiry.
Similarly the structure constants of the group Z,, ..., Z, are
given by Citn = lity—lein s

and therefore by (3) we see that the two groups X,,..,, X,
and Z,, ..., Z, have the same structure constants when we
take the mdependent operators in the respective forms (1)
and (2).

The two groups X,,..., X, and Z,, ..., Z, are said to be
reciprocal to one another,



CHAPTER XI
ISOMORPHISM

§ 126, We have proved in § 58 that the structure constants
of a group are the same as those of its parameter group;
we shall now give a second and more direct proof of this
theorem.

It o= Tt dar g, (t=1,..,7n)
are the canonical equations of & group, then we know that

(1) PLEIEPREDAS APLUP ST R L I A ec‘X,+...+c,.X,’

where ¢y, ..., ¢, are functions of a,, ..., a,, by,...,b,, and the
structure functions of the group.

Let ¢ = Fp(ay, ..., 0, by, ..., 0,), (k=1,..,7),
then o} = Fy (¥, ooy ¥y @y enny @), (k=1,..,7)

are the equations of the firat parameter group in canonical
form; and the equations of the second parameter group are

y;r.=Fk(a’1:---:u’n Y15 e Yr)s (k=1’--~17)'

The forms of the functions F,,..., F, are fixed by the
identity (1), and can be determined in powers and products
of @y, uey @y, by, ...y b, when we merely know the structure
constants of Xll, «v., X5 the method of obtaining these fune-
tions is partly explained in Chapter IV, and more completely
in & paper in the Proceedings of the London Mathematical
Society, Vol. XXIX,1897,pp.14—32. As, however, wenow only
require the expansion up to and including powers of the
second degree, we sha]]p obtain this expansion from first

inciples.

Neglecting, then, all powers above the second, we have

ATOT = (140X + L X0 (14074 2 T9),

a? b%
=14aX4+0Y + »2—X2+ubXY+?Y2;
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and therefore, since
(@X +0Y = a? X2+ ab (XY + YX) 4+ B2 72,
T = 14aX +5Y +3(aX + 5T+ } ab (XY — T X).
This is true whatever the linear operators X and ¥ may be;
and therefore the identity (1) gives
146X+ 46, X, +3 (e, X +...+0, X,)2
=14+{u+b) X, +...+(a, +b,) X,
+3 (@ +0) X1+ oo + (0, +8,) X, )
jmi=r
+3Z (abj—a;b) (X, X)),
To the first approximation we therefore have
¢ = ay+by, (k=1,..71)
In order to obtain the next approximation we substitute in
the terms of the second degree a; + b for ¢, and, by aid of
E=r
the identity (X; X)) = Ec,;jk Xy,
we thus obtain

i=j=r
o = GHb+ 13 (0l — o b) o+ ...
From this we see that the first parameter group is
i=j=r
Yo = Yr— 0+ 3 2 Wi~ @) i+ oo -
The identical transformation is obtained by taking
4 =0,..,0,=0;
> i=r
and then rz;’_‘ = €+ &2 Coin Yis
where ¢;; has its usual meaning.
§ 127. The infinitesimal operators of the first parameter
group in eanonical form are therefore

i=k=7
d d .
Yj='a—y;+‘}20,-jky;m + ey (J=1,.,7),

where the terms not written down are of higher degree in
Y15 .-, Yy than those written down.
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Since Y, ..., ¥, are the operators of a group we can, with-
out any further calculation, find the structure constants of
this group ; for suppose that

=r

¥, ¥)=2d; T,

we verify at once that ¢;;; = Lo

If we were to obtain the complete expansions for Yy, .Y,
we could verify the group property ; and thus prove direetly
the third fundamental theorem, viz. that a simply transitive
group can always be found to correspond to any assigned set
of structure constants. All that we };Jave attempted to prove,
however, is that, ¥, ..., ¥, being known to generate a group,
that grou11> has the structure of the group X, ..., X,.

Similarly we may see that the operators of the second para-
meter group in canonical form are

isk=r

d d
Z, = —— C, Evonii JFTTN .=1,...,7'.
=%, 2 ooy 0 G )

We know that these groups are simply transitive ; and an
operation of either is permutable with any operation of the
other: they are therefore reciprocal groups, and we may easily
verify that the structure constants of

¥Y,..Y, and —-Z,,..,-2,
are the same.
When we were given the finite equations of a group
T = fi(@y s By 0,0y @), E=1,..,n),
we found (§ 40) definite operators corresponding to the para-
meters a,, ..., @,, and we denoted these by
0. CHN. 4
Any operator, however, dspendent on these is equally an
operator of the grmg; and when we are given any r inde-
%endent operators X,,...,X, we can pass to another set
1 +ee ¥, Where
Yk=hk1X1+--'+hern k= 1,000 7),
and take these as the fundamental operators of the group,
provided that the determinant
by o oy,

. hrl: L] hrr
does not vanish.

CAMPBELL M
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When therefore we speak of the canonical form of a group,
we mean the canonical form corresponding to some one given
set of operators Xy,...,X,. If we pass to a new set of
operators we change the canonical form of the group; and
therefore change the corresponding canonical forms of the
parameter groups, by thus introducing a different set of
structure constants.

§ 128, If we have two groups
(1) m" — ea,ZA+._.+a,X,m“ (2) ,“/‘ —— ea,l”,+...+a,Y,,y‘,

and if we denote by Sg,, ..., a, that operation of the first
which has the parameters a,...,d,, and by Ta,, ..., q, the
operation of the second with the same paramoters, we say
that Suy, «os a, 80d Ty, ..., g, cOrrespond.

It does not follow that, if Sgy, ..., a, snd 84, ..., 4, are two
operations of the first group, and 7a,, wvsars Téy, oo by the
corresponding operations of the second, the operation Se;, ..., ¢,
will correspond to Ty, +ves s where

Ses ceerer = Sags eray Shis e by
and Tyys cesyr = Tags ovrar Ty o by

This is only true if y, = ¢;, ..., y, = ¢,; that is, if the two
groups have the same parameter gr(;tg).

Two groups are therefore then, and only then, simply iso-
morphic when they have the same parameler group.

Two groups, of which the fundamental set of operators of
the first is X, ..., X, and of the second is ¥, ..., ¥, may not
have, with respect to these operators, the same parameter
group; and yet they may be thrown into such a form that
they will have the same parameter group.

If we can find r independent operators, dependent on
Y,,..,, ¥,, and such that they have tﬁe same structure con-
stants as X, ... ,X,, then, with respect to these new operators,
the group i"l, ..., Y, will have the same parameter group as

1y oees Xpo
Two groups of the same order
m’, = ea,Z,+...+a,X,.m‘ and ,,‘/’ = ea,Y,+...+u,.Y,y’,’

are therefore then, and only then, simply isomorphic when
the two sets of operators X{, ,X, and ¥,,..., ¥, have the
same structure constants.

§ 129. Having explained what is meant when we say that
two groups are simply isomorphic, we shall now consider the
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analogous relation as to isomorphism of two groups whose
orders are not the same.

Let (1) ;= et o Xy,
be a group of order », and
(2) ,“/I = ealY,+...+u, Y, Y

& group of order s, where s < 7.

ese groups may or may not be groups in the same
number of variables; we establish a correspondence between
the operations of the groups thus; we take

= by o+ by, a,, (k=1,..,s),

where %y, ... are a set of constants such that not all s-rowed
determinants vanish in the matrix

SN

[
and we then say that the operation T'y,, ..., g, in the second
corresponds to the operation Sy, ..., 4, in the first,

The first group is now said to be multiply isomorphic with
the second, if the constants A, ... can be so chosen that,
whatever the values of the parameters a,, ..., @, by, ..., by,
the operation T, ..., q, Ty, -..» 8, corresponds to the opera-
tion 8gy, -y ar Sbys ..., 4y, Where g, is the same function of

15+ Oy that oz is of @y, ...,a,.

We know that ¢, = 0,..., a, = 0 are the parameters of the
identical transformation in (2); suppose that a,, ..., a,, by, ...,0,
are two sets of values of parameters satisfying the equations

(3) O=rlyy+..+hyy, (k=1,.,59).

Since the identical transformation in (2) corresponds to
Says e ap and also to S, ..., 4, if the groups are isomorphic
the identical transformation will also correspond to Sey, ..., ¢,,
where Sey, ..., e, = Sayy ooy @y Sby, eoes by, 80d therefore

0 =k ¢+ e+ By €yy k=1,..,53).

It follows that all the operations Sy, ..., a, Where a,, ..., a,
are parameters satisfying the equation (3) form a sub-group
of (1).

‘We shall next prove that this sub-group is self-conjugate.

M2
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Since (1) is in canonical fox_‘m, the inverse operation to
Sayy eeer ar 18 S_ay, o1y —a, ; that is,
S‘lal, oy @y = S_nl, coes iy

Let Sz, ..., 5, be any operstion of (1), and Tg,, ..., g, the
corresponding operation of (2); then to 8-, ..., 4, there will
correspond T'g;, ..., g, in (2). Therefore if aj,...,a, are
the parameters of the sub-group the corresponding operation
t0 88y, vy by Says ecsar 8% oo by must be the identical one;
and therefore Si,, ..., 8, Says oo @y S Wy ooy by 18 itsell an
operation of this sub-group, and therefore the sub-group is
a self-conjugate one.

§180. We may simplify the further discussion of the
isomorphism of the two groups by taking X, ., ..., X, to be
the operators of this self-conjugate sub-group. The equations
(3) of § 129 must then be satisfied by %, =0, ..., ¥, = 0, and
Yo41s «+es Y Ay be taken arbitrarily: it follows that we must
now have &y; = 0ifj > s.

The equations which establish the correspondence between
the operators of the two groups are now

ap = by a+ ..+ Iy, a,, k=1..,8);
and it is easily seen that by taking a new set of operators,
dependent on the first set X, ..., X,, we may still further
simplify these equations, and throw them into the form
o = a, k=1,..,s).

Since the first group is multiply isomorphic with the second,
eh Yyi+..+a, ¥y & Yi4...4+5 7T, and ea,Z,+...+a,X,. it b X,
must correspond ; and therefore, by considering the form of
the funetions ¢, ..., ¢, given in §126, we can see that the
structure constants of Y, ..., ¥, are given by

k=32

2 =1, ...,
(Yix Yj)zzcijkYk! (;= 1,.",:);

that is, the structure constants of ¥, ..., Y, are the same as
those of X,,..., X, if we only regard the coefficients of
X, ..., X, and not those of X,,,, ..., X, in the alternants
t=1,...,8
X X)), (j= 1,...,3)'
Unless, then, a group has a self-conjugate sub-group it cannot
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be made multiply isomorphic with any group of lower order,
except the group of zero order which consists merely of the
identical transformation. A group which contains no self-
conjugate group other than the group itself and the identical
transformation is called a simple group, and therefore a simple
group cannot be multiply isomorphic except with the identical
transformation.

§ 181. When we are given the sructure constants of a group,
we can find the structwre constants of every group with which
the firel is multiply isomorphic.

We shall see later on that, given the structure constants
of a group, all the groups of such structure may be found;
we now anticipate this result, and assume that, knowing the
structure constants, we know the operators X,,..., Ag . of
the group. There is no real need of the knowledge of these
operators in the proof of the above theorem on isomorphism ;
it is, bowever, more simply expressed by aid of these operators.

Assuming, then, that we know the operators X, ..., X, we
find a self-conjugate sub-group, and nﬂ{e its operators to be
X,gs oo

We now have
k=r
i=1,...,8
(X, X)) =2 043, Xps (j= 1,..,3)’
and therefore R
=8 t=r—s

(Xms (X3, X)) =2 i (X, Xp) + Zcogert (X Xy

Since X, 435000 X, is a self-conjugate sub-group, if we now
?ply Jacobi's identity to any three operators of the set
13 00y X We can verify that

t=1,...,8;
Cijler eses (j= Lo s k=1,..., s)
are & set of structure constants of order s.

¥ Y,..Y, is a group of order s with these structure
constants, then X,..., X will be mult;iﬁly isomorphic with
Yy ..y ¥y; and in this way we obtain all groups with which
X,,..., X, can be multiply isomorphiec.

‘We may exhibit in a tabular form the relation of the two
groups somewhat as in the Theory of Diseontinuous Groups
(Burnside, Theory of Groups, § 29).

If enfitem+arZe jg any finite operator of the group, of
which X,,,, ..., X, generate a self-conjugate sub-group, we
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form a row containing this operator by allowing a, ..., a, to
vary, and keeping a,,,, ..., @, fixed ; and we form the column
containing this operator by sllowing a,,,, ..., a, to vary, and
keeping ay, ..., a, fixed.

I?we take any row, and write in it @,,; =0, ...,a, =0,
and replace X, by Y7, ..., X, by Y,, we have the finite opera-
tors of the second group; and to any two operators of the
first group found in the same column only one operator in
the second group will correspond.

§ 132. Suppose next that we are given a group X, ..., X,
of order 7 such that

r
k=r
(X5, X5) =Ecc’jkxkr
and that we are also given 7 other operators Y7, ..., ¥, such
E=r
that (Te ¥y) =2 e ¥y
and suppose further that only s of these operators are inde-
pendent, viz. ¥, ..., ¥,, and that
Ys+j=}La+j,lY1+"'+hu+j,aYu (.7 = 11""7"“9)-

If now instead of X, ..., X, we take any other set of inde-
pendent operators X, ..., X,, dependent on the first and such
that Y=y X+t X, (EF=1,..,0;
and instead of ¥, ..., ¥, take 77, ..., 7,. where

V=l Vit oo+, 7,

r

then if
k=7
(1) X, X)) =35, X,
. 'we must also have
k=1»
® ¥ ¥) =37 Ty

It should be noticed that though from (1) we can infer (2),
we could not infer (1) from (2).

We can now simplify the relation between the two sets of
operators X and Y by taking as the independent operators

of the group E,...,X,, where X, = X,,..,X,=X,, and

83
k=2

X=X~ ZDhp Xy, (E=1,..,7—s);
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and we have
z:lﬂ,...,ﬁ: Y, Tfa+t=0’ t=1,..,r—s8).
If Ty,... are the structure constants with respect to
X, ..., X, we now see (since ¥,., = 0) that

- i=1,,.,7—8;
Gprifih = 0 (j=1,..., T;k:l,...,s),

and therefore Xy 1, .-, X, generate a self-conjugate group.
The operators Y7, ..., ¥, are now independent, and, since we

E=r
T T - % 1=1,..,8
have (To XT) =20 Xz (j -1 ...,s)’
k=2
v T T 7=1,...,8
wi BT -SwT (ThUY,

we see that X, ..., X, is multiply isomorphic with Ty s Xy,
the independent operators of the set ¥,,...,Y,; and that
X, 1, -+ X,, the self-conjugate sub-group, corresponds to the
identical transformation in the group of order s whose opera-

tors are ¥y, ..., ¥,

§133. We had an example of isomorphic groups when we
proved in § 104 that the contracted operators, w-itllll 1 respect to
any equation system which admiitted the group X, X,
had the same structure constants as the operators X, ..., X,.
If the number of independent contracted operators is 7, the
igomorphism is simple; but if the number is less than 7 then
X, ..., X, is multiply isomorphic with the group of its con-
tracted operators.

Example. Prove that the group X,,...,X, is simply or
multiply isomorphic with E,, ..., E, where

j=s=r

3
E, =Ecﬂ"eja—e,’ k=1,..,7),

according as X, ..., X, does not, or does contain Abelian
operators.

Example. Prove that if two transitive groups are simply
isomorphic in such a way, that the sub-group of one, which
leaves a point of general position at rest, corresponds to the
sub-group in the other, which leaves the corresponding point
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of general position at rest, then the two groups, if in the
same number of variables, are similar,
The equations which define the groups of af,...,a% and
Yh .. Y5 aTe respectively (§ 111)
j=r—n
ek+2en+j ¢n+j,k(““1)’ 17‘41);) =0, (k =1 vy M),
and

j=rn
Wt ZensiVng G D =0, (b= 1,..m);
and therefore, since €; = ¢;, we must have

=1, .., r—n
¢n+j,k(mgl-"s Z‘,)‘) = ‘I’n+j,k 1,"':?/%)’ (‘2= 1,.., /n)'
We have proved that
X ¢n+j;k = ni,n+j,k;
and therefore, if X9 denotes the operator obtained from X, by
substituting for a, ..., , the respective quantities af, ..., a3,
and ), ;, I} ..+, & denote respectively the functions Praf ks
Iy nyj,2 with 28,7, 28, substituted therein for Byy erey By, WE

have Xy thrsn =1y g
Now since the two groups are simply isomorphic and
¢2,+j,k = ¥4+, Wwe must have
t=1,.. 73
Yo = X} 0510 (j -1 ,r—n-
- 3 ey E)
and therefors, since
¢ ( @) = ea,Z,“+...+a,X,°¢ a0 xo)
n+5,k L1y oees n+j,k( 1y s ¥qly
we must have

¢ﬂ+j,k(wls ---;‘vn) = ‘l’n+j,k(’.’/1! ---:yn)a (';c : ;’ ...,7'—’/'.) N

Yoy M

k=1,..,1%);

The groups therefore satisfy the sufficient and necessary con-
ditions for similarity.



CHAPTER XII

ON THE CONSTRUCTION OF GROUPS WHOSE
STRUCTURE CONSTANTS AND STATIONARY
FUNCTIONS ARE KNOWN

§ 184, In Chapter X we proved that two groups are similar
when they have the same structure constants and stationary
functions. In this chapter we shall show how when these
constants and funetions are known the groump may be con-
structed.

We take the ease of transitive groups first; let X, ..., X,
be unconnected and

k=n
1) Xn+j=2¢n+j,kxk: U=1..,r—n);
suppose that s of the stationary functions are unconnected,
and that these are functions of «;, ..., z, only.
We saw (§ 115) that

k=n

t=1,..,7m
&, X)) =2 0y Xy, (j= 1,.__,n)’
where I;y,... are a known set of functions of zy, ..., z, which
we call tfile elructure functions of the complete system
XX, and if

3 3
X, = fkla—zl +...+f;ma—m~1 (k: 1.0, m),
n

we proved that &, ..., &, are known functions of z,,...,,.
It follows therefore that X, Tz, ... are all known functions
of @y, v0ey @,

The proi)lem which lies before us is therefore to determine
the forms of » unconnected operators in , ..., %,, such that

k=n
(X, X)=2 Mg Xy,

wh ere the structure functions [Ty, ... are known, and also
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the functions obtained by operating on these functions with

P 4

When we have found X,,..., X, then we shall also know
Xypyy s X, by (1), i )

It & = n, that is, if the group is non-stationary, since we
know &), ..., &, we know X, ..., X, at once.

We now assume that s < n so that the group is stationary.

§ 185. If we have any n unconnected operators we know

k=n
(§ 68) that (X, X)) =2 pin X5
from the identities
X X)+(X, Xy) =0,
(X (X, X))+ (X, (Xp, X))+ (X (X, D)) =0,

we therefore deduce the following relations between the
structure functions pyz, ...

1) Pyt i = 0,
t=r

X; pism+ Xiprjm+ Xibjim+ 2 Pike Piom+ Pijt Pisma + 0jit Prter) = O,

where 7, j, k, m may have any values from 1 to n.

If the structure functions pyy,... are mere constants
X, ..., X, is a simply transitive group; and we have shown
in Chapter V how from a knowledge of these constants the
group itself may be constructed. In the case where X,.,., X,
formed a group X, Pjits ++» Were all zero; the problem before
us now, when p;, ... are known structure functions satisfying
the conditions '(1), and X,,p;g, ... are all known, but not
necessarily zero, is to find the operators X, ..., X,,.

This problem is therefore a generalization of that considered
in Chapter V, and we shall show how the results of Chapter V
enable us to solve it.

Not more than % of the structure functions py, ... can be
unconnected ; if » are unconnected we can express ..., o,
in terms of these structure functions ; and therefore, since we
know X, pyrzy ..., we know X, (), ..., Xy, (), and therefore
know the operators X, ..., X,.

We next suppose that only & are unconnected where 8< =,
and we may now assume that the variables have been so
chosen that the structure functions only involve @, ..., x,; if

P ?
then Xk=fklbz+...+£k,,m,
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we soe that £y, ..., &, are all known functions of =, ...,%,,
and what we have to do is to determine &, .y, ..., -
If we take

V= A X+ trn X, (B=1,..,n)

where Mgy «ee BTO known functions of z,, ..., #, whose deter-

minant
Apse + s A

A7ll’ . . . A1‘7!
does not vanish ; then ¥, ..., ¥, will each be connected with

X,, ..., X, and they will form & complete system, so that
k=n
(Yo ¥ =2 oy T

The structure functions oy, ... of this complete system
must satisfy equations of condition like (1); they will be
functions of ..., 2, only, as will also be the functions

m Oijks o3 and ﬁ_ua.liy if we can construct the one set of
operators we can construct the other set of operators.

We now meake use of this principle to throw X,,..., X,
into the forms
d 2 d
X, zm"'fk:”lbx—m""“'*'f""bvx"’ k=1,..,s8),

2 ? .
Xy = bajarazy— F ot binjins (=1, n—s).
L oz,

§186. In order to find the operators X;,..., X, which
satisfy
k=n (i=1,...,n)

M (X X) =2 X i=1,..,mn

we have to find the set of functions £y, ...
The only equations involving £, ..., {1, OF such of them
as are unknown, are those obtained by equating the coeffi-

2 2 . ops
cients of —» «+» =— on each side of the identities
dx; oz,
k=1,..,n

(Xj, Xp) = pja Xat oo+ 0jn Xons (j - 1,'_‘;n)'
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‘We must therefore eliminate £, ..., £, from

m=n

X; b= X bji = 2 pjtom Emis

and thus reduce the differential equations to be solved to
& set not containing £, ..., £,,.

In the form to which we have reduced X,,..., X,
we see that py; =0,..,p;,=0; and thus we see that
&> -» &1y cannot appear in any of the identities, obtained

?

d .
by equating the coefficients of So0 Ty B (1), unless %
z, 3z,

(k=1,...,n; :

. =1,.. 2
j=1..,n; ’ ,n)

or j is unity.
The only equations obtainable by differentiation and
elimination from

m=r k=1,..,n
(2) X flj—lekj =2Fk1mfmj: (j =1 .., ’n)’

which will not involve derivatives of &, ..., &, above the
first, are

(8) (Xo, X by —X X £+ X, X &

= XCE Pram fmj—Xk 2 Pitm fmj~
Now

X X by~ X Xy &y = X (X by— X &)
+(Xy, X)) &~ (X, Xo) &y,

(4) Xiby— Xy by=2 pim by i

so that by aid of these equations and (1) we see that (3) takes
the form

=2 Pim X by~ Xn ) — > g (Xrpgum+ Xipram + X Prim)

+ Eplkm (Xi fmj_Xm f“j)'{"z Pitm (Xk fmj_Xm Ek_;) =0.

We have, in passing to this form of (3), made use of the
equations

and

Peym+ Pjim = 0.
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If we now replace
=1

X, fy‘—Xl fmj by 2 Pmip fpj;

p=n
and X; fmj_Xm fij by 2 Pimp fpj:

the equation (5) is such that the coefficient of £,; is seen to
vanish identically by aid of the equations of condition (1)
of § 135. We t{lerefore conclude that the only equations
of the first degree in the derivatives of &, ..., &, are the
equations (2) themselves. Any equation of the form (4) we
shall denote symbolically by (¢, k). What we have now

roved is, that the only equations of the first degree in the
Seriva.tives of &y, +.., &1 876 the equations symbolized by

(1, 2), ..o, (1, ).

i137. If then we have found any values of &, ..., &,
(where & may have any value from 2 to m) to satisfy the
equations

o b GIRI

the equations for £, ..., &, viz. (1, 2), ..., (1, 1) will be
consistent *.

By aid of these equations (1, 2), ..., (1, n) We can express
X, flj! weor Xy &y in terms of &4y, ..., &1y and known funections ;
for, assuming that we have solved the equations (1), £y, ..., &1
are known functions if ;> 1.

Now X,, ..., X, are (n— 1) unconnected operators, in which

d
So does not occur; and, since &y, ..., &n, Where k> 1, are

1

known functions, these operators are known. We can therefore

d L tho f
expressb—%,-u,am e forms

d
52, = Mo Tat oo b Ky (k=2,...,n),
where Ay, ... are known functions of z, ..., Z,.
Tt follows therefore that, when we have solved the equations

* See a paper by the author on ‘ Simult: E ions’ in the F i
of the London Mathematical Society, XXX1, p. 285,
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(1), we can express the first derivatives of £, ..., &, with
respect t0 @,,..., %, in terms of £y, ..., £, and known fune-
tions; and in these expressions for the first derivatives
£iiyeees E1n Will only oceur linearly.

In these equations w, occurs merely as a parameter; we
therefore look on @, as a constant, and say that we have
obtained expressions for all the first derivatives of £y, ..., £,
as linear functions of these unknowns, the coefficients being
known functions of the variables; that is, the types of equa-
tions to be solved are

% g Uyt evs + G U+ @ J=1 ™,
)wk k1 . Tkm m T Yk, m41s k= 1,..,m

where a,;; are known functions of the variables; and of
these equations integrals may be obtained in the form of
power series.

The operators X,,,, ..., X, form & complete system of order
(n—s), and the structure functions of this system only
involve @, ..., #,. Since these variables only enter the opera-
tors X, ., ..., X, a8 parameters we may look on the structure
functions as mere constants; and we can therefore by the
method of Chapter V find these operators X, ,,,..., X,.

51 Xgy1s e X, Dow form & complete system, and as we
know X,,,, ..., X, we may therefore by the method we have
Jjust described find the coefficients

fa,u.p <ers Eoms

and thus find the operator X,.

Proceeding thus we may find all the operators X, ..., X,,
and have thus shown how & transitive group can be con-
structed when we know its structure constants and stationary
functions,

§138. We can now construct the types of intransitive
groups.

Let X;, ..., X, be the unconnected operators of the group
X,,..., X, which we suppose in standard form.

1The stationary functions only involve ..., ,, and, since
@)y een By Tiypgiys oen Ty BTC Invariants,

d
X, = fk,m+l)wT+l+-"+£k,m+q > (b=1,...,7).

L

Since the invariants only enter X, ...,Xq in the form of
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parameters we may consider X,,..., X, to be the operators
of & complete system in the ¢ variables 2, ,,,..., 2, +q; #nd,
as we have

k=g

_ i=1 g
Fo ) =205 % (21070,):
where Tl ... and XTIy, ... are known functions of the
parameters &, ..., &, and the variables z,,.,, ..., z,, we can
construct the operators X,,..., X, as in the previous theory.
When we have thus found X,,..., ¥, we can find the other
operators by means of the identities

k=g

Kgas =2¢q+j,ka: (J=L..r—9)



CHAPTER XIIT

CONJUGATE SUB-GROUPS: THE CONSTRUCTION
OF GROUPS FROM THEIR STRUCTURE
CONSTANTS

§189. If X,,...,X, are the operators of & group with the
structure constants ¢y, ... we have
S+ i = 0,
k=7
= (Cian tjm+ Cah Chirs + 41 Chem) = 0.
X, .1, X, form & sub-group we also have

i=1,.,7—¢; I3

k=1,..,r—¢; =1 ""q);

Cqii,qit,h = O

and if this sub-group is self-conjugate we have the further
conditions
T =1,..,7r—~q;

Since our immediate object is to find the general form of
a sub-group conjugate with a given sub-group, it will be
convenient to take & set of operators Y, ..., ¥, dependent on
X,,..., X, and defined by

M T, =X, k=1,..9,
r=q
(2) Yq+t = Xc+t—2”'q+l.u Xnu t=1, v 7—9).

The identities (2) can be written

=g
KXo = q+¢+2”'q+t,u Y.

and therefors, whatever values the constants fy,q.,,... may
have, Y,,..., ¥, are independent operators.
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¥f we suppose that ki, = 0 when 4> g, or when u > g, the
formulae (1) and (2) may be replaced by
k=g
Y= Xi= 3k X,

E=1..,7).
§140. We now introduce a set of functions of these constants
hgitps ... defined by
t=r—g w=q r=g
(1) Hgp=on+ 2 CisartBosei+ 2 Cuik Bju + 2 Gk Ry
A=w=q p=gt=r—g k=g t=r—g

+ 2 Cut Foip By + 2 iyt Bju By i+ 2 ot i gk

p=v=gqt=r—

+2 Cuyqtt g By By i
Since
w=g r=q

(YD Y‘f) = (‘Xn Xk) +2hin (Xh Xu) +2 h’m (Xm X.)
p=v=q
+ 2 hiohs, (X, X),

A=r A=r
and

i=a
(X X,) 22 Cuva X, =2 Cvr (YA+ 2 hAJ Y:i)!
we see that the structure comstants of ¥, ..., ¥, are the set
ke
It therefore follows that
Hyp+Hy =03

(2) w=r
> (Huy Hy + Hijo Hyio+ Hyn Hua) = 0.

w=gq
X=Y+2h, Y, (=1,..,7),

and H,'Jk, . are the structure constants of ¥, ..., Y,, we must
have

Since X, ..., X, are derived from ¥, ..., ¥, by the law

t=r—g =g k=g
(3) e = Hyp— 2 Hyjoiehoae— 2 Hue biw~ 2, Hya i,
t=r—gp=q t=r—g,p=9q

+ 2 Hyipeihiopnit 2 i iy hore
p=w=g poy=gt=r-g

+ 2 Hw‘b hl'u hjv_z HumaH hiu-hiv h4+¢,k'
CAMPBELL N
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Let

t=r—g w=q w=gt=r—g
(4) Mge=cyet 30100t hos it 2 Cuir by + 2 Curigre by Ry

then we see that
w=q

(5) Hy= nijk—zhi» I,

and therefore, since k;, = 0 if 4} ¢, Hy = Iy if < 3 ¢, and
(5) can be replaced by

=g
(6) Oy = Hy+ 2 by B

It will be noticed that though Hyy+ Hjyp =0, My +11
is not zero if either 7 or j exceeds g.
If k> g, H,y, takes the simpler form

g B=g n=q p=v=g
H, et =Cijopt+ 2 gl t 2 uarthiut 2 Cugribinhp.

§ 141. It is now necessary to prove the formula

t=7r t=r
(1) (g e =T, g ) = 2 ot Moy
From (2) of the last article we see that

t=7r t=7r
2 (Hu,qﬁ',! vik —Hv,q+j,t ,.u:) =2 H.me Hl,q+j,kt
If we apply the formula (6) of § 140, we see that

t=r

= (g5, T~ 0,0+ M)

t=r =g p=q
=2 Hygise+ 2 s Hygi5,) (Hon + > g Hywt)
t=r p=q

p=q
—2 (H,,q45,0+ 2 by Ho,g45,0) (Hpu + 2 hup Hypu)-

Multiplying this out and applying (2) of § 140, we see that
it is equal to

t=r t=r,p=¢q t=r,p=q
2 ant Ht,eh’,k‘* 2 hup vat Ht,HJ.H'E hw Hpul Ht,qw‘.k
t=r, p=p'=q

+ 2 hup Pty Hype Hygigyie
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We now replace Hy 44, in this expression by

=g
Oy g = 2 P Ty g

and we see that, if i} g, the coefficient of 0, ik is the
expression for ¢,,; in terms of kg, 4, ... and the functions
Ha‘jk! ... given in (3) of § 140.

If ¢ > ¢ this coefficient is

p=g¢ p=q P=p=¢
H',,“i+2h,‘p H,pi + 2 hvz»Hz»ui+2hup Fovyy Hoypi 5

and if we notice that % is zero when 4 > g, we shall see
that this is also equal to ¢,,;. We have thus verified the
formula (1).

§ 142. We now look on kg4 4,... 88 & sct of variable
parameters; since every term wﬁich oceurs in [y either
begins with j or ends with %, we see that, if j > g and & 3 q,
5 _ ) ;5 _
3}%‘ “_nmk and 3hq+z,k— Hl,f,qﬂ-

We now introduce a set of » linear operators II,, ..., I
defined by

,

k=g, j=r—g

P:]
1, = 2 Oy oese 57—
3hrH/‘,'c
when we have
t=gq t=r—q
T, My g == 200 e Taert 2 Wygpne My g
t=q t=r—gq

ﬂ,‘ nv,qﬁ,k == 2 Hu,q+1,t e+ 2 Hu,q+¢,lc Hv,q+j,q+t H
and therefore

t=r t=r
M= DI, e =— 2L, g Tt 2T, s T
ter
=2 ui g,

by the identity (1) of § 141,
It therefore follows that

E=r ;
t=1,..,7
(0, IL) = ¢35, TH,, (j= L., K
N2
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so that IT,, ..., [1, generate a group isomorphic with X7, ..., X,.

If the operators Iy, ..., [I, are independent the groups are

simply isomorphic, but if they are not all independent
1s «ees X, is multiply isomorphic with IT,, ..., IT,.

§143. Siill looking on %y, g, ... 88 variables, we shall now
prove that the equation system
i=1,..,7—q;
(1) Hyrigejx =0 (j -1 “_,T_g; k=1,..,9)
admits these operators,
If we notice that in H,; ,.; ; every term either ends in &
or begins with g+% or g +j, we shall see that if u B¢

»=q P=q
I'I“ Hq+i,q+i,k = 2 Hn,wi,y Hq+i,P,k+ 2 quﬁ,p HP,Hi,k
te=r—g
+ 2 Hogore Hopigrsan
p=r
= 2 (Haviup Hp g e+ Hygesp Hygrik
+Hyijqri0 Hpur)
t=r-g p=r
+ 2 Hu,q+t,k Hq+i,q+j,q+t—2 Hq+i,u,11 Hr,qﬁ‘,k
p=g+l
p=7 p=r
- 2 Hu,qﬁ',p Hp,q+i,k‘ 2 Hq+i,q+1,11 Hn,p.k'

p=g+1

Since the expression in the bracket vanishes identically we
see that [T, Hyyiq.;c = 0 is an equation comnected with the
equation system (1); that is, it is satisfied for all values of the
variables which satisfy (1).

Also since

w=q
Hypiqeik = nq+i,q+1,k—2 s o, gusiks
we conclude that, even when . > ¢, the equation
I, Hll+".q+i,k =0

is connected with the equation system (1); so that we have
proved that the system admits the operators IT, ..., II,.

It will be noticed that the operators 1, ..., II, are defined
simply from the structure constants ¢y, ... of the group, as
are also the equations of the system (1) which admit these
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operators. The group property of the operators II,,...,IT,
might have been proved without any reference to the group
X,, ..., X,, though the labour of the proof was much lightened
by that reference.

§ 144. Suppose now that we have any sub-group of
X,,..., X, whose order is (r—g), and suppose that all its
operators are independent of X,,..., X ; we may throw the
operators of this sub-group into the form Yq 413 =3 ¥, Where

w=gq

Yq+t=Xq+¢_2hq+t,uXu, t= 1,..,r—q),

and we may then take ¥, ..., ¥, to be a set of » independent
operators of the given group where ¥}, = X, if £ b .

Since Hy, ... are the structure constants of ¥,,..., ¥,
and ¥ 4, ..., ¥, i8 a sub-group,

_ t=1,..,7~q; , __

=0, (j= g E=1,..,9)-

These are therefore the equations in the variable parameters
hqit,ps - Which define sub-groups of order (r—g).

gt1s oo ¥y will be a self-conjugate sub-group if

t=1,.0., 7—¢q}3
Hjqrin=0 (;zl’”_’r 3; k=1,..,9);

Hqﬂ',qﬁ,k

that is, the sub-group will then be invariant under any
operation of the group Y,,..., ¥,.

Even when not invariant under all the operations of
¥, ..., Y,, that is, when not self-conjugate, it may be in-
variant under some of the operators.

Tt will be invariant under the operations of the sub-group

+1s .- Y, in every case; it will be invariant under the
operations

z’.-: aq_an_,.+,4.+a,Y,wi, (izl,...,’n)

if, and only if,

_ t=1,,.,7—q; _
Higuip=0 (220 0 b=t q):

The operations which transform a sub-group into itself
must from first principles generate a group, which will con-
tain the given sub-%roup as a sub-group, and therefore the
g})erators Y pseees ¥, must themselves be a sub-group of

19eeny Lpe

[
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§ 145. Suppose now that we are given the strueture con-
stants cgy,... of a group X, ..., X,, and we want to find
the structure constants of all possible sub-groups of order
(r—g); we equate to zero the functions H ;.. 4,... of the
variables &yyp ., ... .

If no values of &4+, ... can be found to satisfy the system

P=1,..,r—q;
Gorie g, k=1Luua)

then there is no sub-group of order (r—g), all of whose
operators are independent of X,,..., X ; that is, if there is
a sub-group of order (r—g) at all it must have at least one
of its operators dependent on X, s Xg. In this case we
should take, in order to form the functions Hiyi g+, ks SOME
other set of (r—g) operators out of the set Xy, ..., X, in place
of Xy 43,..., X, ; Tor there is no sub-group of order (r—g)
which cannot be expressed in some one of these ways.

We see this more clearly if we consider the sub-group
¥ 115 .oy ¥, where

k=7

Yo Ezaqﬂ,kxk) ¢=1..,r—q),
Ugis gy -+ eIng a set of constants.
v

i sub-group could then only fail to be expressible in
the form

Hyvigeje= 0

k=g
Yq+t = Xqﬂ_thﬂ,kxkr (t=1..,7r—q),

when

! aq+1,q+1’ R aq+l,r
L. . 0

ar, g+1v s+« Gy
and it could only fail to be expressible in some one of the
required forms if all (r—g)-rowed determinants of the matrix

Bgr1,15 + ¢ - Ggyyp
L .

vanished ; that is, if the sub-group was of order less than
(r-9)-
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If on the other hand we find a set of values of kg, ... t0
satisfy the equations
i=1,..,r—q;

H4+i’ﬂ+j,k=o’ (]: 1, .., 7—q; k——_l""’q)’
then H g+ g i g+l will be the structure constants of the
sub-group whose operators are .

w=q
Xq+¢—2hq+wxm (t=1,.,7—9.
We then denote the operators of this sub-group by
+15 - ¥, and the group itself by ¥y, ..., Y,.
The sub-group is of course invariant for the operators

Yqﬂ, ..., ¥,; it will be invariant for
a¥i+...+e ¥,
i =1 r—
i e Hy gpiptetegHy prip =10 v=Low =0y,
if e Hygeipt e tegtly grik s E=1,.., q)

We therefore, in order to find within what group ¥,.,,...,¥,
is invariant, write down the matrix

H qeikes -
2, q+i k> "

H g, g8,k
where in any row % takes all values from 1 to (r—g),and k
all values from 1 to ¢.

Suppose that the values of A4, ... DOW found are such as
when substituted in this matrix will make all (¢ —m + 1)-rowed
determinants but not all (g—m)-rowed determinants of the
matrix vanish, then the sub-group ¥, ..., ¥, is invariant
for m operators independent of one another andof ¥ ;... ¥,
The sub-group is therefore invariant within a group of order
r—q+m, and there are only (g—m) independent operators
for which it is not invariant. We say, then, that the sub-
group ¥y iy, .0, ¥y i8 of index (g—m).

§146. We now wish to find the sub-groups conjugate to
41y ¥y, 50 We must consider what this sub-group is

trihsformed into when we apply the infinitesimal trans-
formation

1) o = a;+tY; @, (E=1,..,1).
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Ifj > g the operators ¥, ..., ¥, will be transformed into
operators dependent on Yiﬂ, < ¥y; we need therefore only
consider the case where j % g.

We saw in § 76 that, X}, denoting the operator derived from
Xy, by replacing @; by «,

w=r
X = Xk+t2 i X,.

Hence we now have, since 7,,..., ¥, are operators with the
structure constants Hy,, ...,
w=r
(2) YII:= Yk+t2H}kqu

Now Yg,;,..., ¥} are the operators of the sub-group con-
Jjugate to ¥, ,.,..., ¥, obtained by applying the transforma-
tion(1); and therefore, since this is a sub-group of order (r—g),
and differs infinitesimally from Y43, ¥,, it cannot have
operators dependent on X, ..., X, Wemay therefore take its
operators to be

r=q r=gq
Xqﬂ—z hlq+l,u XI“ ARt X1~2 h;n Xl“
where Ay, , = hqﬁ,“—t)\qﬁ’,, and A ,; .., ... are functions
of the variable parameters hqtius ... whose forms must now
be determined. ’

The operators ¥, ..., ¥/ are operators of the sub-group

k=g w=q
Xqﬂ—zhlqﬂ,uxw ---:Xr—zhi.‘X,;
that is, of the sub-group

r=g a=g
Yq+1+t2 7‘11+1,u- Yl‘) aeey Yr+ 2)‘14& Yn;
and therefore
2=r-g k=g

Yéﬂ? =2 €q+i,q+s (Yqﬂ +t2 )‘q+c,n Y, G=1,., 7-q),
where €q+4, g+s» ++ ATO COnstants,

If we dow compare this expression for ¥7 .., with the
expression obtained in (2), and equate the coefficients of
Yoi15 .., ¥, we see that, neglecting small quantities of the
order ¢, ¢, ,; g+s 18 equal to unity or zero according as 7 is or
is not equal to s; and therefore we see that

Mois = By, (0217277,
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Sinee j B ¢, H; gisx = jg4s,; 8nd therefore the consta,nts
q+j,us - Which define the sub-group conjugate to ¥, ..., ¥,
obta,ined by the infinitesimal transformation

g=m+tYm, (@=1,..,m)

are given by .
’ v =1,..,r— q
hqﬂ‘," Pgsiw—tTs guis (#= 1,...,

Because the sub-group is invariant for the transformatmns
t=1,u,n
@)= w+t¥ g0 3 (_7= 1,...,1‘—q)’
we see that for such transformations
hlg+i »= hq +i,

We now want to find the constants defining the sub-group
adjacent to that defined by hg4,,... and obtained by the
infinitesimal transformation

G =m+ (e X+ e, X))z, (t=1,..,m).

We have
p=g Jj=r—q j=r-q

aX+..+e X, =2 (eu+zeq+j hq+j,u) X+ Eeqﬂ' Yoijs

and therefore
t=g

h’q-ﬂ w= hgﬂ‘,#_z (e + 2 €q+j hq+j, ) Ty, g aiype
Now, since

i=1,..,7—q;
Hyiiquin =0, (]= 1:...:1‘—3; p= 1:---:9);
k=g
Ootsetin =2 Ry 1T kgtip,
and therefore
k=r

Bprin=hypsu— Za My, gai,u
=hgpip— (@ + o +e ) by g
The relation between the groups II,...,II, and X,..,, X,
can now be expressed in general terms, Let Z, ey -oe DO B sEE
of constants deﬁmng a sub-group of X, ... Xq ‘then the set
of constants % ¢ ., ... which define the sub- -group conjugate
to this and obthinied by the transformation

a’é = ee,l,+...+e, Ty (7‘ =1, -'-sn)
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are given by the formulae

4 — g— &I~ —e I
hq+l,u—e 5 Iy r e

t=1,..,r—¢q
I P q)

§ 147. In order to find all types of sub-groups of order
(r—gq) we therefore proceed as follows.

If no sets of values of Ay, ... can be obtained to satisfy
the equations

i=1,..,7—q;
(¢}) Hq+i,q+j,k=01 (_7= 1., req k= 1,...,q),

no sub-group of order (r—g) exists.

If on the other hand such a set exists, let Ay, ., ... satisfy
the equations (1); we write down the matrix of the operators
11

1s sens tlp

I

Lg+j,kr -

rir,9+j,k’ -
where in any row all values of j from 1 to (r—g) and all
values of k from 1 to g are to be taken. If when we substitute
for ks u,-.. in this matrix the respective values A9, ., ...
all (s + 1)-rowed determinants of the matrix, but not all s-rowed
determinants, vanish, then the sub-group is of index s; and
the ‘ point’ whose coordinates are &), ., ... is of order s with
respect to the equation system

(1) Hyyigaj,r = 0 (in the variables /gy . ...)
admitting the operators I, ..., I1,.

Since

w=q
@ Hyriguj,r = Ugri guje— Zhgrin D gas
the index s cannot exceed g.

We now find (as explained in § 103) the contracted operators
of II,,..., I, with respect to the equation system which con-
sists of (1) and the equations which define points of orders;
for both of these equation systems are invariant under the
operations of the group I, ..., II,.

Let this combined equation system be

t=1,..,r—
ORRIVIE S S S S (R »
r=1l., q

where £, ...,hp are some unconnected parameters, in terms
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of which those values of %,4/,,... can be expressed which
satisfy the combined equations; and let P,..., P, be the
contracted operators.

Since X, ..., X, is isomorphic with IT,, ..., T, and T,, ..., T,
is isomorphic with P, ..., 5, X,..., X, must be isomorphic
with P,,...,P,; but the isomorphism is simple, only when
P, ..., P, are independent operators.

Since the parameters of a sub-group of order (r—gq) and
index s are by (3) expressible in terms of ki, ..., %, we call
these parameters the coordinates of the sub-group. Ii“rom the
definition of a point of order s exactly s of the operators
Py, ..., P, will be unconnected ; and as these are operators in
the variables 4, ..., hp we conclude that p < s, and that there
will be (p—s) invariants, which we may take to be

LR

If then ky,..., %, are the coordinates of a sub-group of
index s and order (r—g), the coordinates of the sub-group
conjugate to this obtained by the transformation

o = s Bt ta g ¢t=1,..,m)
are given by
K= eaPitove g, (t=1,...,p).

Since s of the operators of the group P,,..., P, are uncon-
nected, we can pass, by the operations of this group, from any
point whose coordinates are %,...,A°, to any point whose
coordinatesare &y, ..., k,, A9, , ..., K. Sub-groups of the same
order are therefore divided into ‘classes according to their
indiees ; only sub-groups of the same order and index can be
conjugate; and of sub-groups of the same order and index
only those can be conjugate for which the coordinates
Rgr1s sk are the same. There are therefore co#-# different
types of sub-groups of order (r—g¢) and index s; and corre-
sponding to any one of these types we have «® conjugate sub-
groups,

§ 148. We can apply these results to obtain the stationary
functions of groups whose structure constants are assigned ;
and thus complete the investigation of which Chapters V and
XII formed a part, viz. the determination of all possible types
of groups with assigned structure constants,

uppose the group X, ..., X, is in standard form so that
@1y oo ¥y Tpptga1s ooy ¥y 8T0 the invariants, and the stationary
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functions only involve #,, ..., z,. If af,..., 2% is a point of
general position then the group of the point—that is, the
sub-group of operations leaving the point at rest—is of order
(r—q); and the coordinates of this group depend only on
@}, ..., 233 for we have proved in § 112 that the equations

Ty =, ..., ¥ =2}
define the locus of points whose groups are the same as the
group of af, ..., a%.

Now by the operations of the group X, ..., X,, only the
coordinates @p,;,..., %4, can vary; and, as there are
(r—s+m) independent infinitesimal transformations which
leave 9, ,,, ..., 2 at rest, there will be (r—s+m) infinitesimal
transformations which do not transform the group of

yeney X0
“ This gq'oup is therefore of index (s—m); and its coordinates
are expressible in terms of s parameters,

In order, therefore, to find the stationary functions of a
group, when we are merely given the structure constants,
we form the equations defining sub-groups of order (r—gq)
and index (s—m); the coordinates, then, of the sub-group
which leaves a point of general position at rest will be ex-
pressible in terms of ¢ parameters.

If the combined equation system is

t=1,..,7—
Rortn = oru(Byseens Bg), ( " q);

p=1,..., q
then the stationary functions fy.,, (@), ..., 20) will be given by

Jartu (G AR Gortp (g ooy B

Since the funetions ¢y, (Fy, ...y &), ... camnot be ex-
pressed in terms of a smaller number of arguments, we may
express ki, ..., b, in terms of a%, ..., 2%; and by a change of
variables we may take &, ..., k, to be respectively a2, ..., 2.

As we can vary a, ..., 20 in any way we like, we see that
we may take the stationary functions to be

t=1,.., r—qy,
( 7

¢q+¢,n (zli"" xa)r r=1,..,

When we have thus found the stationary functions of the
group X,, ..., X, we may complete the determination of the
operators by the method explained in Chapter XII; and if
any group with the assigned structure constants, and the
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assigned numbers s, m and n exists, we can find it by the
method now explained.

Such a group may not exist; thus if we take » >3, n =1,
m = 0 and s = 1, we may, for many assigned sets of structure
constants, construct the functions ¢g.s,.,... which express
the coordinates of sub-groups of order (n—1) in terms of one
parameter; but the operators X,,..., X, in one variable,
which we should hence deduce, would not be independent ;
for (as we shall prove later), no group whose order exceeds
three can exist in one variable.

§ 149. Example. Find all the sub-groups of order 3 of

the group whose structure is given by
(1) EX)=X, (X, X)=2X, X X)=4Z%,
X, Xy =0, (X, X) =0, (X, X)=o.

We first find the sub-groups which can be expressed in
the form Xl—)‘IXp Xz_)‘zxu X3_)‘3X4:
that is, the sub-groups not containing X, as an operator.

Since (XA X}, X;—A, X)) = (X,, X)) = X,

we cannot express this alternant in terms of the operators of
the sub-group unless A, = 0. Similarly we see that we must
have A, = 0, and A, = 0.

There is, therefore, only one sub-group of this form, viz.
the self-conjugate sub-group X, X,, X;.

Whenever by this metbod we find only a diserete number
of solutions of the equation system

t=1,..,r—q;
GIhrol mtia),

the sub-groups must be self-conjugate; for if they had con-
jugate sets obtained by the infinitesimal transformation

Hyriygsje =0,

G=m+ (e X+ e, X))o,  (E=1,..,m),

there would be an infinity of sub-groups of the required class.
‘We next find all sub-groups of order 3 which do not contain
X, as an operator.
The general method of forming equations for &, s,,... to
define sub-groups of order (r—g) is simplified when ¢ = 1.

If we take XZ_}LZXD"': Xr_hrxl
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to be the operators of the sub-group of order (r—1), then the
equations which %,, ..., &, must satisfy are

T=1,..,7
Byt (20
where Hy = eyt ciphyt e+, by
In the example before us
H,,=1,H,, =0, H , =0, Hy =0, Hyy=hy, H  =—h,;
and the equations defining the sub-group are therefore
}L4 =0 1 +’LZZ+}L32 =0,
The sub-group sought has therefore the operators
X,~icos0X,, X,—isingX,, X,
where 8 is a variable parameter and 4 is the symbol v/ —1.
By varying 6 we get an infinity of conjugate sub-groups;
and as the sub-group is not self-conjugate it must be of
index unity.
By interchanging X, and X, we should obtain the system
of conjugate sub-groups

X —icos¢X, X,—isingX, X,
these two systems coincide, however, the relation between
the parameters being cos 8 cos ¢+1=0,
By interchanging X, and X, we get
X,—icosyX,, X —isinyX, X,
which also coincides with the first system, the relation between
the parameters being sin 8siny+1 = 0.
If we try to find & group in the single variable @ which
shall have the structure (1) we must take
L=6@X, X=¢(@X, X, = ¢, (1) X,.
We now have the following identities which enable us to
determine the stationary functions
¢, () =icosw, ¢y(2) =isinz, ¢, (2)=0;
and we see that the operators cannot be independent, X, being
identically zero.
Now we know that in general X, Sgrt,e =y gug, 5 80d in
this example
Ui =t + Cp o+ Ciap g+ e by = Iy = 4sina,
Uy = g+ Cp by + g by +Cras by = —hy = —dc0s 25
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so that, from either of these two equations, we see that, if

X, = f50 then § =1, and thereforo X, = — =, and the

group is s
. .. d
X =- byl X, =deosxy s X, = isin@y-s X, =o.
§ 150. Ezample. Find the sub-groups of order 2 and
index 2 of the group
(X5 X)=X, (X X)= X, (Xl, X)) =X,
&, X)=0, (X25 X)=o, &, Xy =0
We shall only find those which are of the form
Xa_k:u Xl‘—haz Xz; X4_h41 Xl_hu X,.
Applying the rule (or otherwise) we find the conditions for

a group are
h4,2 (1 +h§,1)_h4,1 }"3,2 ka,l =0,

Ry (0418 0)—hyy kg1 by =0,
so that 1423, +58, =0
‘We must therefore take (A and 8 being parameters)
by =1cos8, hy,=isin6, k,,=Arsing, k,,=—Acosd;
and we may directly verify that
(X;—icos 86X, ~isin8X,, X,~AsinbX, +AcosdX,)
=—1A (Xy—~icos 8 X, —isin6.X,).

In order to find the corresponding group in the two variables

%, y We suppose that
X, = ¢a,1X1+¢3,2Xz: X, = ¢4,1X1+¢4,2Xz-

Since the index is 2 we have s—m = 2; and, since in
general s cannot exceed =, in this example, s cannot exceed 2,
80 that m = 0 and ¢ = 2; that is, the group is non-stationary.
The order of the group of the point 2°, %° of general position
is (r—g), and therefore (r—¢) = 2; and as r =4 we must
take ¢ = 2, so that the group is transitive, and X; and X,
must be unconnected.

We have

51 (1,y) =icosb, ¢, ;(z,y)=2Asing,
$s5,2(2,y) =88, ¢, (%, y) = —Acosd.
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We may then by a change of the variables take
¢5,1(2,9) =2, and P41 (=9
and therefore
@50 (2, ) = il +a%t, 2 (7. Y) =—1yz(1 +a?)7E,

We have
Xis =y = —hs,zha 1 =—tz (1 —a)h,
X1¢4,1 =M,= _k:i,l k4,2 = dya® (1 +w2)_§,
Xz%,lznzal 1+h§,1 =1+a%
Koty =y = k4,1 ka,l = zy.

We then see that

d d

X, = —iz(1+ ey, +iga?(l +w2)—§b—y’

d d
X, = (1+x2)ﬁ+w'y5§,

d d
X, =4(1+2)¥5, —tyz (1 +w2)4a§'

Now X, is identically zero, and therefore there is no group
of order 4 of the given structure, but X,, X,, X, will with
X,=0 form a group of order 3 with the required
structure.

§ 151. When the sub-group whose conjugate sub-groups are
required is of order 1 the equations

i=1,..,7r~Q; _
0, (jzl,...,'r——q; k—l""’q)
are satisfied identically, since ¢ = r—1.

The variables which define the sub-group are %,,,..., &, ,_;;

and e X +..+6X,
will be the operator of this sub-group if
e+ hyper =0, k=1,..,7—1).

Hysigagn=

We therefore take ,; = :l‘, and let
T

k=j=r >
E.= 2 ¢t
e ]aek
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In operating on any funetion of £,,, ...,k
b %y, 2 Ak,

nr-1

= Yo M T e, O

r, r=1

d

so that ol
p) ? ...
efbe _h,jé»k— if j<» and k<,
d
e,a—e;= ak,k 1fk<7‘,

a k=r-1
T_ zhrjhrkah if j<mr,
k=r-1
? ?
era‘er—zhrkah—rk-

Therefore, since

jmEk=r—1 3 k=r-1 j=r—1 2
M—Eome,b +Ecr,u¢era zc,,,,e,a +c,.,,,e,$
v
E=r-1 j=r-1 J=r—1
=3 (zcjukhyj‘f'ﬂ,nk'f-ﬂ,,n ok + 2 G Boghot) 53— bl
k=r-1

2 'kbk if pao,
we see that in operating on any funetion of A, ..., b, ,_,
E, has the same effect as IT, if p < ’
Since 01E1+ wte E, =0,

rr =

r-1

e
=1 E _— r-1 E
T er
= hn H1 +o +”’r, Y § S
and this operator is equivalent to IT,, since the equations

Hq+4 g+, k= Y

are satisfied for all values of 4,,, ..., &,

Since the coordinates of the sub-group of order one are
the ratios of e, ..., ¢,, we see that for such sub-groups the
opemtors 1, ..., 11, may be replaced by the known operators
E,..E, of which we made use in Chapter V,

caurpELL )



CHAPTER XIV

ON PFAFF'S EQUATION AND THE INTEGRALS
OF PARTIAL DIFFERENTIAL EQUATIONS

§152. If «,, ..., z, are the coordinates of a point in n-way

space, and
(=) Py oo+ (=) P = 0

(where a4, ..., 2/, aTe the current coordinates) the equation of
a plane through z,, ..., z,, then we speak of the point together
with the plane as an element of this space. We say that the
eoordinates of the element are ..., #,, P,..., Py, Where
®;, ..., @, are the coordinates of the point of the element, and
D1y ++rs Py the coordinates of the plane of the element. In the
coordinates of the plane we are only concerned with tbe
ratios p,:p;...:p,; and therefore in n-way space there are
®?"~1 elements.

Two contiguous elements, #,, ..., &, Pys-+.r Py and

@+ dXy, ey By +dyy D1+ APy ees P+ APy,

are said to be wnited if the point of one element Lies on the
plane of the other. More exactly expressed, the elements are
united if the point of the second is distant from the plane
of the first by a small quantity of the second order. The
analytical condition for this is

M Prdmy+ s 4Py dity = 05

and therefore, if this equation is satisfied, the point of the
first element is also distant from the plane of the second
element by a small quantity of the second order.

The equation (1) is called Pfaff’s equation.

Since the coordinates of an element only involve py, ..., P,
through their ratios, we shall suppose that, when we are
given any equation connecting the coordinates

&y, eeiy Ty Piyooos Pn

of an element, it is one which is homogeneous in p,, ..., Py-
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If we have m unconnected equations connecting
: Lys eves Tny Prs oovs Py
viz.

) f,'(@'l,--.,w,,, P15 s Pn) = 0, GE=1,..,m)
then oo?n—m-1 clements of space will satisfy this equation
system ; they will be called the elements of the system.

Two contiguous elements of the system will not however,
in general, be united. The question thus arises, what are the
necessary and sufficient conditions which these equations must
satisfy in order that any two contiguous elements of the
system may be united? In other words, what are the con-
ditions that the equations (2) may satisfy Pfaff’s equation ?

Suppose if possible that, from the equations (2), no equation
of the form F@y,.nz)=0

13 "ees Yy,

can be deduced ; we must then be able to express m of the
coordinates p,, ..., p, in terms of the remaining coordinates
of the element zll,l, Zps Dys-ees Py The equation system
may therefore be thrown into the form

(3) PL=S1 (@1 ooy Ty Prasas oves Prdseons

Pn=Jn (@15 2005 Zus Pragrs s Pr)s
or into some equivalent form, obtained by replacing the
suffixes 1,..., m by some m of the suffixes 1,...,n It is
obvious that, by differentiating the equations (3), we could
not obtein any equation connecting dz,, ..., dx,, and could
not therefore by the equation system assumed satisfy Pfaff’s
equation.

We must therefore suppose that the equation system (2) is
such that at least one equation between z,, ..., «,, alone can
be deduced from it. Suppose that exactly s of these equations
ean be deduced; and suppose further that these have been
thrown into the forms

@y =Ja (@1 o5 Zn_g)s +oos Fpgan = fa-st1 (wl’ e Byg)e
We now have

i=n—8

t=3s
P
prdayt o+ pyde, =, (Pi+ = Pacess f;;.*‘)dw,-;
£3

and therefore, if the equations (2) are to satisfy Pfaff’s equa-
tion, we must have
t=s

Pi+ 2 Prosas

for, by hypothesis, 2, ..., 2,_, are unconnected.
02

A

dz,

H=0, (@=1..,0-3);
£3
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We therefore conclude that every equation system satis-
fying Pfaff’s equation must include the system
Tn =fﬂ (‘”1: e wﬂ—li)’ vory Ty_gyr =fn<s+1 (mlt A xn—t)’

oy afn—¢z+tf iy d
Pm—s+zpn—s+t 0, , = 0, .., b+ Epn-m Y,

n-g+i 0.
B2

To these equations we may add a number of arbitrary
equations connecting @, ..., y_s, Pp_gi1s ++-» Py these equa-
tions, however, must be such that no equation of the form

S @y ey @yg) =0
is deducible from them,

A set of equations satisfying Pfaff’s equation is called
a Pfaffian system. If the system contains m unconnected
equations it 18 said to be of order m, and we have proved
that 9 4 n. When the number m is not specified it is to
be understood as being equal to m, and a Pfaffian system as
being of order n unless expressly stated to be of order m.

The equations of the system which do not involve p,, ..., p,
will be called the generating equations. There must be at
least one generating equation, and there cannot be more than
w; there are, therefore, n classes of generating equations, if
we measure the class by the number of unconnected gener-
ating equations in the system.

§ 1563. We now proceed to express in a convenient form the
conditions that » equations should form a Pfaffian system.
Let v be any function of the variables @, ..., %,, Py, ..., Pa;
and let ¥ denote the operator
d dv 3 du k2 dy

Sy Feehs— e T
dp, day Opp 0w, 3 3p; 3%, 3p,
then, % being any function of the variables,

. paly d du dy du
7 =2 (50, 5 )"
We call the expression on the right the alternant of the
functions v and «, and we denote it by (v, ); we have
T.ow=(v,u) =—(%, v) =—70.v
The equation # = 0 will admit the infinitesimal trans-
formation
o du

z"=x,-+tbp‘, pﬁ:p,-—tb?‘, (t=1,..,m)
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if, and only if, the equation (u,v) = 0 is connected with
v = 0; that is, if the values of the variables, which satisfy
the second equation, also satisfy the first.

A get of functions w,, ..., %, is said to be in involution
when the alternant of every pair vanishes,

So also a set of equations,

=0, %, =0,

is said to be in ¢nvolution when for all values of the suffixes
(w4, w;) = 0 is an equation connected with the given set.
An ‘equation system in involution,

(1) U =0,..., Uy, =0,
will therefore admit the m infinitesimal transformations
du, o, =
. oy ,_ ,_J t=1,..,m
@) G=mrig s H=petos (j= 1m)”

If v;=0,...,v, = 0 is any given equation system such
that each of these equations is connected with

Uy =0, 00y Uy, = 0,

and each of the equations w, = 0,..., u, = 0 is connected
with v, = 0,..., v, = 0, we say that the two systems are
equivalent.
We must now prove that, if any equation system is in
inyolution, then any equivalent system is also in involution.
If v = 0 is connected with the system (1), it must admit
all the infinitesimal transformations which (1) admits; and

therefore (v, Ug) = 0,..., (¥, Uy) = O
are equations each of which is connected with (1).
If then v,=0,...,%, =0 is equivalent to (1) we know
that the equation (v;, u;) = 0 will be connected with
U= 0,000y Uy, =03

and therefore u, =0, ..., %, = 0 will admit the m infini-
tesimal transformations

3) 4 ¢ 2

— xy+t—
( 2 i api

Now each of the equations v; = 0,..., v, = 0 is connected
with %, =0, ...,%,,=0; and therefore each of these equations
admits the infinitesimal transformations (3) ; that is, the equa-
tion (vy, vj) = 0 is connected with u, =0, ..., %, =0, and

du; -
, ’j r=1,..,%
’ Pc—Pi—tm’ (j—_—l,...,m)'
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therefore with v, =0,..., v, = 0; that is, v, = 0,..., 4, =0
are equations in involution.

If v, ..., vy is 8 set of functions of @y, ..., 2,, p,, ..., p,, in
terms of which we can express u,, ..., u,,; then, if Upy veny Uy
are unconbected, we cal express %,...,%, in terms of
Uy ooy U3 We Say that two such systems of functions are
equavalent.

When we say that a function is homogeneous we shall
mean that it 1s homogeneous in py, ..., p,; suppose that
W, oovy Uy B¢ each homogeneous functions, then, if v, ..., vy,
is an equivalent function system, v, will not in general be
a homogeneous function; but, since there are m homo-
geneous functions, equivalent to vy, ..., v,,, we shall say that
Uy, oy U 18 @ homogeneous function system. When each of
the funetions v, ..., v, is separately homogeneous, we shall
say that the homogeneous function system is in standard
Jform.,

Similarly, if we say that the equation system
NW=0.,V,=0

is homogeneous, that will not mean that each separate equa-
tion is homogeneous, but only that an equivalent system can
be found, viz. Uy =0, ..., Uy = O,
each equation of which is homogeneous in p,, ..., p,.

It can be at once verified that the % unconnected equations
Zy—fulty, ooy Tug) = 0,..., Zy_gs1—Fu_gr1 @15 oo Tpg) =0,

t=s

t=g
A -
pn-s+zpn-s+t {; sth=yo, .., P1+2Pn-n+t f”z:H =0
n-

- d

are in involution; and that each of these equations is homo-
geneous; we have, therefore, the following theorem: if m
equations form a Pfaffian system, it is possible to deduce Jrom
them m unconnected homogeneous equations in involution.

The most important Pfaffian systems are those in which
m = n, and we see that n equations cannot form a Pfaffian
system wndess they form a homogeneous equation system which
48 in involution.

§ 154. We shall now prove the converse of this theorem,
viz. that @ homogeneous equation system of order m in in~
volution forms o Pfaffan system.
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Suppose that in the system there are s generating equatiors,

viz. Fr(@ys e y) = 0y ot fo (@ ooy 20) = 05

and let the remaining (n—s) equations of the system be
thrown into the form

Dyr1— Pas1 P13 03 Pas T1s s Tp) = 0,00y
Pr—Pn (pp cony Py Tys eaes xn) =0,
where the functions ¢, «-., ¢, are homogeneous and of the
firgt degree.
We must first prove that the Jacobian determinantal
equation

dwy o,

o N
LA o
bzl" S

is not connected with the generating equations f, =0,....f,=0.

Sines  (Pper—Pas1:S) = 0, woor Prir— sy f) = 0

oy - 31 3Peuy — %iﬁbgﬂ,
Ameyy A% APy 3w, dp,

s =b_fa b¢a+1+'_‘+%a¢a+l;
Myyy 3T Op,y 3z, dp,

and therefore, if the equation (1) were satisfied for those values
of the variables which satisfy the generating equations, all
s-rowed determinants of the matrix

oz EE,
v,
L LAY

would, when equated to zero, be equations connected with
the generating equations.

Procoeding thus, from the equations
(Pl+z_¢a+2xf1‘) = Ox seey (Pn_¢n!fi) = O’ (7’ = 13 ...,S),



200 PFAFF’S EQUATION [154
we should similarly see that all s-rowed determinants of the

matrix
oz, . oz,
o,
dxy oz,

would also, when equated to zero, be connected with the
generating equations,

Now this is impossible; for, were it true, it would mean
that, @, ...,, being the coordinates of a point P on the
(n~s)-way locus

fi=0,..fi=0,
and :r}J+dzl,...,x,,+dx,, the coordinates of a consecutive
point £ on the (n—s+ 1)-way locus
fi=o, wofi1 =0,
P’ must also be on the (n—s)-way locus; and this is of course
not true, since the equations which define the locus are
unconnected.

The Jacobian determinantal equation is therefore uncon-
Dected with the generating equations; and we may therefore
throw the equations of the given homogeneous involution
system into the forms

wl_fl(waﬂi :wn) =0, ---xxg_fa (wa+lx "'rxn) =0,
Pos1= Fora (Prr ooos Pos Tyazs oeny Tn) = 0, ..,
PrFa(Prs s Pas Tyazs ons ) = 0,
where f,,;,...,f, are homogeneous of the first degree in

Prysees Py . .
By reason of the homogeneity of these functions we have

Z Vg )
Jori =205 b;J > (I=1,.,n-3),
i3
and, sinee (Py4;—f,. 5, %i—f;) = 0, we have
3fer;
e Tig,, =0
y 24 s+ ]

we therefore conelude that

i=s
3f;
(13}

Pl+j+zpiam =0, (.7 =1, "-)n_s)~
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From these (n—s) equations together with
Ty~fy =0, .., T—fy = 0,
we now at once deduce Pfaff’s equation.

‘We have therefore proved that the necessary and sufficient
conditions that m wnconnected equations should form a
Pfaffian system are that the equations should be homogeneous,
and in involution.

§ 155. We now know that "' elements of space will
satisfy any assigned Pfaffian system of n equations between
the coordinates of the elements z,...@,, p;, ... p,. If the
system contains only one generating equation, then the
eﬁements consist of the points of an (n—1)-way locus in this
space together with the corresponding tangent planes to the
locus. If there are two generating equations f, (x,, ..., %,) = 0,
Jo (%1, .oy %,) = O the elements consist of the points of this
(n— 2)-way locus together with the tangent planes which can
be drawn at each point of the locus; there is not now, how-
ever, one definite plane at each point z,,...,2,, but an infinity
of tangent planes, viz.

(@ —a) (A;ﬁ + p.gi)+...+(w;—a'") ()\;—o{: +p.%) =0,

where A :p is a variable parameter and #/,...,a are the
current coordinates.

If there are three generating equations f, =0, f,=0, f;=0
the elements will be formed by the points of this (n— 3)-way
locus together with the «? of tangent planes, viz.

% e s
(@ — ap) ()\E1 +p.bz +vﬂ1)+...
of, s

A
+(1/"—w”)()‘m+“bwﬂ+vbwn)_ %

and 8o on.

Each of these different classes of "' elements satisfying
the Pfaffian equation

pde+ ... +pade, =0

will be denoted by the symbol M,,_,; each will form a mani-
fold of united elements with (n—1) ¢ degrees of freedom.’

Thus, when n = 2, that is, in two-dimensional space, the
elements are the points with the straight lines through the
points. The symbol ¥, will now denote either an infinity of
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points on some curve together with the corresponding tangents
to the curve; or a fixed point with the infinity of straight
lines through the point ; either of these infinities of elements
will satisfy the Pfaflian equation

pde,+pde, = 0.

In three-dimensional space there are «w® elements consistin,
of points with the planes through them. The symbol M, will
now denote one ofp three oo® sets of united elements, viz. (1)
the points of any surface with the corresponding tangent
planes; (2) the infinity of points of any curve together with
an infinity of tangent planes passing through each point of
this curve; (3) the «? of planes passing through any fixed
point ; the elements of any one of these three sets will satisfy
the Pfaffian equation

oy + pydwy+py da, = 0.

§ 156. We must now consider Lie’s definition of an integral
of a partial differential equation of the first order; and we
need only take the case where the equation is homogeneous,
and the dependent variable does not explicitly occur; for
any partial differential equation of the first order can be
reduced to such a form (Forsyth, Differential Equations,
§ 209).

Let @ er @y P,y p) = 0
be such an equation; according to the usual definition
¢ (21, ..., T,) = 0 i8 said to be an integral if, and only if,

3% . . o
F (2 o2y, 5%, ’Tw,,) = 0 is connected with ¢ = 0.

Stated geometrically, any surface—that is, any (n—1)-way
locus—is said to be an integral, if the coordinates of the
tangent plane, at any point, are connected with the coordinates
of the point by the equation

S @15 By, Py, ey p) = 0.

Otherwise expressed, if we have any M, _,, whose elements
satisfy the given equation, and which has only one generating
equation, then that generating equation is said to be an
integral of the given equation. Lie extends the notion of
an integral by defining it as the generating equations of any
M,,_,, which includes, as one of its Pfaffian system, the given
differential equation

F@e ooy @y Pryves, ) = 0.
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If then

1 (s ooy Ty Pry eens D) = Oy vy [ (Tgs eoes Ty Prs ooy P) = 0

is any homogeneous equation system in involution, such that
f=0 is connected with f,=0,..., f, = 0, the generating
equations of this system will be an integral, whatever the
number of these generating equations; whereas, according
to the usual definition, they would only be an integral if the
number was one. By this extension of the definition of an
integral, it will be seen that more uniformity is introduced
into the theory of the transformations of partial differential
equations of the first order.

Tt should be noticed, however, that it is only special forms
of differential equations which can admit these new integrals.
If the equation

F@y, s @y Pry s P) = 0
has an integral of the form
Ty =S (T1s s Tncads ooy Tpggy = Frcas1 (415 o0 Tna)s
the equation must be satisfied for all values of
zl’ Ty wn-s’ pﬂ—6+]’ "'3Pﬂ’
when we substitute in it for a,,...,%, ,,, the respective

funetions f,, ..., fy_g41, and for p; (where £ may have any
value from 1 to (n—s)), the sum

g A nesej
- Epn-uj Bwk °

Now to satisfy these equations it would in general be
necessary that the functions f,,..., f, .+, sbould satisfy a
number of partial differential equations, and, this number
being generally greater than s, the equations for £, ..., fr 441
would not usually be consistent.

If, however, the given differential equation is the linear one,

P1P1+ it Pop, =0,
where Py, ..., P, are functions of z,, ..., @,, it will admit these
extended integrals. To prove this, let
Up = gy 00y Uy g = Q5
be the integral equations of any characteristic curve defined by
doy  du, _ day

Tl P2 = ‘P1l

3
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then
duy

PIE +. 4+ P,

From these conditions it follows that

Qg

o= 0 (b=1.,m-).

'Plpl+"' +'P7IP’VI = 0) ul_al = 0’ ey u’n-l_an—l = O
are n homogeneous equations in involution; and therefore
U—a; =0,..., U, ;—a, ;=0 are generating equations of
a Pfaéian system, which includes the given linear equation;
it follows that an integral of

Pipit.+Pyp, =0

will be Uy = Cgyeny Uy = s
where a, ..., a,_, are any constants.

§ 157, In order to find the complete integral of

F @1, e Bpy Prsens P = 0,
we must find (n— 1) other unconnected homogeneous equations,
forming with f = 0 a Pfaffian system ; the generating equations
of this system will be (in Lie’s sense) a complete integral if they
involve (n—1) effective arbitrary constants.
Suppose that

fl(xl)"'!ﬁn’ Prsees Pu) = 05 ey fm(wlx ceos Ty Prs '--)Pn) =0

are m given homogeneous equations in involution; we can
throw these equations into such a form that some m of the
variables z;, ..., %, , Py, ..., Py Will be given in terms of the
remaining ones.

Let @), «vo, @y _gy P15 oons P, be given by
Ty (Tpeg1> o oos Ty Poyt1s ooer Pu) = 0, i=1,..,m—sg

Pi— 9 (Bm-gs1r - Bns Prsrs o Pa) =0,  (F=1,..,9).

These equations are still in involution ; but in any such
equation as (z;—f;, p;—¢;) =0 the variables w,,...,%,,_,,
Py» --.» Py d0 DOb occur db all’; and it therefore follows that the
above alternant, if it vanishes at all, must do so identically,
and not by virtue of any equation system ; the homogeneous
function system

wl—fli ney wm-s_fmﬂ) Pr—Pus s Ps— s

must therefore be a system in involution.
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If then we are given m equations in involution, and require
the remaining (n —m) equations forming with them a homo-
eneous Pfaflian system, we can reduce the problem to the
ollowing : given m homogeneous functions in involution, it
is required to find (n—m) other homogeneous functions,
forming with the given functions a complete system in
involution.

We shall show how one homogeneous function of degree
zero may be obtained; having found this we shall have
(m + 1) homogeneous functions in involution, and may proceed
similarly till all the functions are obtained.

§ 158. Let uy, ..., %y, be the given homogeneous functions
in involution, then, % denoting the operator

du 9 du 2 du du
5,50+t Sp 5w, Sm oy, T 3w, 5,
we see that if v is any function of uy,..., %,
dv _ dy

”:BEI“““"'*“ mum

(this result is of course true whether or not «,, ..., %, are in
involution); the operator v is therefore connected with the
0perators %y, ..., Wy,

Conversely if ¥ is connected with @y, ..., %,,, that is, if

DECR WETAETIETD Wi 7

where A, ..., A, are any functions of 2z, ..., Z,, Py1,..0, Py,
then all (m+ 1)-rowed determinants of the matrix

2y duy 2y ot

ap, ’ A, 3z,

1y, Bﬂ” Uy, Uy,

op; o ’ LEM

dy v dy dv

must vanish identically; and therefore » must be a function
of Uy, euns Upye
Again, if 4 and v are any two functions of

Ty aeny Tyy Pryeves P
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we see that
? 2 ?
ﬁ;(u,v) = (b_::;, 'u) + (u, 3715),)’

P du dy
37;‘(“’7)) = (5, 'u) + (u, E),

and therefore, % and % being the corresponding operators, the
alternant @ 7—#% & which is equal to

Zr._dv _dwy D i=n._ du _du, 2
2055w v 2 O, )5y,

=2 (32 - () 2+ (1 - )

i=n ? i=n
=3 (5 00 ) 53, = 2 (5, (0 9)

It follows that the alternant of % and % is derived from the
function (u, v) by the rule which derived the operator % from
the function u.

It is for this reason that we called the funetion (%, v) the
alternant of the functions « and v; and what we have proved
is expressed symbolically by

(@, v) = (&, v).
If then w and v are in involution the operators % and v are
commutative, and conversely.

§ 159. Let the operator pli +...+p,,i be denoted by
o 2Pn
P; we shall now prove that P is not connected with
Uy, ooy g Suppose it were so connected, then every
(m+1)-rowed determinant of the matrix

My Dy
2p py  dmy Oy
bum’ L. bum, Bum’ L. by,
3p, 3p, dmy dz,
0 . . 0 Pis o« Dn

would vanish identically.
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It follows that every m-rowed determinant of the matrix

LY
3P 3pn
3y, Uy,
3P, 3p,

must vanish; there must therefore be some function of the
form ¢ (#,, ..., U%,) which does not involve p;,..., p,. By
passing to an equivalent function system we may take this
funetion to be w,,, where w,, only involves z,, ..., &,.

Every (m+ 1)-rowed determinant now vanishes in the matrix

3p; 3P, day 3,
Bum_l’ . bumﬂ’ bum_l’ L. by y
¥p, Aoy EEN dx,
0, . . o Wiy, iy
da; 3z,

0, . . O P, - - Pa

Now u,, does not contain p, ..., P,, 80 that every two-
rowed determinant of

by, . duy,
oz, o dax,
Py, -+ Pn

cannot vanish; else would u,, be & mere constant, which is
contrary to the hypothesis that w,, ..., %, are unconnected.

We must therefore conclude that every (m-—1)-rowed
determinant of

3p, 3p,
MWy My
3p, 3pn

vanishes identically.
We now proceed as before, and passing to an equivalent
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system t0 uy, ..., %,, ; may assume that w,, , does not contain
Pr> oo Pu; and we thus see that either every (m—2)-rowed
determinant of the matrix

duy du,y

rj)l’ ’ ) ’ ﬁﬂ
Qg _, Iy,
p, T o,

vanishes identically ; or else every 3-rowed determinant of

Py L Wy
om, dx,
by, du,,
P, - - - P

vanishes identically.

Since w,,_, and w4, are functions of , ..., z, alone, we see,
as before, that the latter hypothesis is untenable ; proceeding
with the alternate hypothesis, we ultimately come to the
conclusion that our hypothesis of P being connected with
Uy, ..., Uy, is untenable.

§ 160. If » is a homogeneous function of degree s in the
variables p,, ..., p, 1t can be at once verified that

(P,w) =(s—1)u.

The problem of finding a homogeneous function of degree
zero, in involution with each of the m homogeneous functions
Uy, +er, Uy, (themselves mutually in involution), and uncon-
nected with these functions, is therefore equivalent to that
of finding an integral of the complete system of (m+1)
unconnected equations

Tf = 0,.., Uy f =0, Pf=0,
which shall not be a mere function of %, ..., uy,-
There are (27 —m~ 1) common integrals of

Tf=0,...Tpf =0, Pf=0;

if any one of the functions w,...,u,, is of zero degree then
it will be an integral. There must, however, be at least
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(2n—m—1—m) common integrals unconnected with w, ...,14,,;
and, a8 m is less than 7, we can find at least one integral of
zero degree unconnected with ., ..., %,,.

We now see how the complete integral of a given equation

S (@13 oes Ty Prsoves Pr) = 0
is to be obtained.

We may write the equation in such a form as to give one
of the variables in torms of the others; say in one of the forms

1) Ty = ¢y (Tgs w0y Tpy Prsoees Pu)s

or, (2) P1=01(Z1, ey Ty Pay ees Py)-

We must then find, if we take the first form, a homogeneous
function of zero degree in involution with «, —¢,, and uncon-
nected with it; knowing then two homogeneous functions in
involution, we find a third homogencous function in involution
with these two, unconnected with them, and of zero degree;
proceeding thus, we finally obtain # unconneeted functions in
involution, one of which is z,—¢,.

If we equate each of these functions, except z,~¢,, to
arbitrary constants, and ,—¢, to zero, we shall have a
Pfaffian system of equations which will include the given
equation, and will involve (n—1) arbitrary constants: the
generating equations of this system will be a complete integral.
If we had taken the second form we should have proceeded
similarly.

§ 161. An equation of the form f (z,, ..., #,) = 0 would not
ordinarily be called a differential equation ; but considering
Lie's extension of the definition of an integral it should be
regarded as a particular form of the differential equation.
If f (2, ..., ;) = 0 is one of this class of differential equations,
then any other unconnected equations of the form

F @0 @) = 0, oo, frooy (B ooy Ty = 0

will with f = 0 form a Pfaffian system: any point on the
locus f = 0 will be an integral of the equation = 0. These
integrals are also complete integrals; for the coordinates of
any point on the locus f =0 will involve (n—1) arbitrary
constants.

If the assigned differential equation is of the form

@ DSy (@1 s @p) 4 oo+ Py fn (H1, o0y Tp) = 0,

CAMPBELL P
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we could also have ‘point’ integrals, the equations which
define each point generating a M, _,; these points, however,
will in general be isolated points satisfying the equations
fi = 0,..., f, = 0,and will not therefore be complete integrals.
Suppose that the equations f, = 0, ..., f, = 0 are equivalent
to a smaller number of equations, say
Dy (Byy ey @) = 0, oiy Py (g5 0ny ) = 0,

we should have an (n—m)-way locus in space, any point of
which would be an integral of the given equation'(1); these
integrals, however, would not be complete, since they would
only involve (n—m) arbitrary constants.

§ 162, Example. Consider the equation
@, @, P = %5 Py P2s
of which a complete integral is
el +afal+a a,23+1 = 0.
The corresponding Pfaffian system is
b _ P _ P
da, air ez
which may be thrown into the form
by
@y (P1 %y + P, 2y + Py )
— P
%y (Py%1 + Paly + PyT5)
These equations define an w? of M,’s, each of which consists
of points on a surface together with their corresponding
tangent planes.
We shall now try whether the given equation can be
satisfied by an «? of M,’s, each of which consists of points

on a curve together with the infinity of tangent planes which
can be drawn at each point of this curve.

v ddi+ai i ta a2+l =0,

+ai=0,

=0, zzpi—aipp,=0.

Let the generating equations be
# = f(z), &, = ¢ (@),
then the third Pfaffian equation must be
Prtpa ¢’ (@) +p; () =0,
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where f” denotes the differential coefficient of f with respect
to its argument.

If @, @, p;—a2 p, p, = 0 is to be connected with this Pfaffian
system, we must have

i+ GBS PPy =0

for all values of 2, p,, p;; and therefore we must have ¢ = 0
and f* = 0 for all values of the argument z,.

From the third Pfaffian equation we now conclude that
P, = 0; and therefore

Z, =0, @; = constant, p, =0
will be an w0 of M,’s satisfying the given differential equation ;
we do not, however, obtain an w® of the required class of M,’s.
Example. Find the complete integrals of
P+t pa 2, =0
which are straight lines.
§163. As an example of an equation having no integral
which is a curve, take
B +2ppaa t2ppn+2pio s, =0
(Forsyth, Differential Equations, § 202, Ex. 1).
If the Pfaffian system
z=Ff(r) w=9¢(@), p+pd (@)+pf (@) =0
were to satisfy this equation, we should have

$7+1 =0, fP-2m(f'~¢)=0, ¢'(f~a)+d=0;
and, as these equations are inconsistent, we conclude that the
given equation has no integral of the required form.

In order to obtain examples of equations having integrals
in Lie’s extended sense, it is only necessary to write down
any equations

Ji @y 2) =0, 00, fo (@, o0y 2,) = 0,
involving (n—1) effective arbitrary constants, and then to
complete the Pfaffian system.

Let
fs+1 (wl’ e wﬂ’pl’ "')pﬂ) = 01 s fﬂ (ﬁl’ "')mﬂ3p1¥ ""pﬂ) =0
be the remaining equations of the system; if we eliminate

P2
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the arbitrary constants from the system we shall have a single
equation between @, ..., %, Py,..., P, the complete integral
o? this equation will be

J1 (@ cony @) = 05 ooy [y (B ey ) = 0.
Example. Take the equations

z;, = az, + b, o, = afx, 4 ¢
where a,b,c are arbitrary constants ; the other two Pfaffian
equations will be

Pt ap; =0, pptalpg=0;

and therefore p} p, +p, pi = 0 is an equation with the complete
integral

x, = oz + b, @, = a’w,+c.



CHAPTER XV

COMPLETE SYSTEMS OF HOMOGENEOUS
FUNCTIONS

§ 164. Let w;,...,u, be m unconnected homogeneous
functions of 2y, ..., %, P1,..., Py If we form the alternant
of any two of these functions u; and w; we obtain the
homogeneous funetion (uy, w;) ; if (u;, u;) is unconnected with
WUy, ooy Uy, We add ib to this system and have thus (m +1)
unconnected homogeneous functions. Proceeding thus, since
there cannot be more than 2n unconnected homogeneous
functions, we must ultimately obtain what we call a complete
system of homogeneous functions ; thatis, a system of functions
homogeneous in p,, ..., p,, and such that the alternant of any
two functions of the system is connected with the functions
of the system.

Let us now take uy, ..., %, to be a complete homogeneous
function system, so that we have

(’i = 1,...,WL).

(g, g) = Wy (g, ees Ug) i=1..m

The functions wy; of the arguments u,,...,%,, are called
the structure functions of the complete system; and, since
(g, i) + (wy, wg) = 0, we must have wy; +w;; = 0.

¥y, -+-, Uy, I8 & system of functions equivalent to u,, ..., %,
(that is, if for all values of the suffix 7, v; can be expressed
in terms of 4y, ..., %y, and u; in terms of v;,...,v,), then,
though vy,...,v,, may not each separately be homogeneous
functions, we call v,, ..., v, a homogeneous function system.

If then we are given a system of funetions v, ..., v, of the
variables @, ..., %, Py,...; Py, how are we to know whether
or not the system is a homogeneous one?

Denoting by P the operator

2 2
pla—pl +...+p,,m;
we shall prove that the mecessary and sufficient conditions
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that the system may be homogeneous are that Pu,, ..., Pv,
should each be connected with vy, ...,v,, that is, each be
expressible in terms of v, ..., v,,.

Firstly, the conditions are necessary; for if u,, ..., U,, are
m functions homogeneous in p,, ..., p, and regpectively of
degrees s, ..., S,, and forming a system equivalent to
Uy, .o, U, then Puyis conneoted withwy, .., 4, Puy, oy Py,
Now Puy is equal to s; w;, and therefore Pu; is a function of
Uy, aoey Uy, a0d 50 also & function of wy, ..., v, ; we thus see
that the conditions are necessary.

Secondly, these conditions are sufficient ; for suppose that

Po;= fi (0, s V), (i=1,..,m);

then if fy, ..., f,, are each identically equal to zero, Uy, eees Uy
will be homogeneous functions of zero degree. If on the
other hand these functions do not vanish identically, we can
find (m — 1) unconnected functions of vy, ..., vy, such that they
are each annihilated by

2 2
Sy, + oo +fmb,um’
and therefore by P.

Let these functions be u,,...,u,_;; they will be homo-
geneous functions of degree zero; we can then find one other
function of vy, ...,v,, say u,,, unconnected with u,,
and satisfying the equation

cves Wy _ys

du,, duy,
5 bra +...+fmm = Uy,

and therefore satisfying the equation Pu,, = u,,.

The fanetion w,, is therefore homogeneous of degree unity ;
and, as the system u,, ..., %,, is equivalent to v, ..., v,,, we
conclude that the necessary conditions are also sufficient.

§ 165. If uy,...,u, are m unconnected functions of
Bys «+ey Ty P1y ouv, P, Which may or may not be a homogeneous
system, we say that the system is complete if the alternant
of any two of the functions is connected with u,, [
If then we form the alternant of f (u,,..., %,,) and ¢ (s ooy )
(where f and ¢ are any two functional symbols) we see that

this alternant is connected with Uy oney Uy i 2y, ..y 20, aTe
the functions of a complete system. It at once follows that
Y1s..., Uy being any system’ equivalent to w,, ooy Uy, the

one system is complete, if the other is complete.
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We can now give a general definition of a complete homo-~
geneous function system, as a system of m unconnected
functions u,, ..., %, such that

(i w}) = Wgi (U, o0, ) (i= 1,...,m)
Puy = w; (U oy Uy), J=1..m
The functions wy;, ...,%;, ... are the structure functions
of the system ; we can pass to any equivalent system vy, ..., vy,

and in so doing we should change the form of the structure
functions. Thus when we pass to an equivalent system in
which v, ..., v,,_; are homogeneous of degree zero, and v,
homogeneous, either of degree zero or of degree unity, we
have w,, ..., W,,_; each zero, and aw,, either zero or unity.
The main problem to be considered in this chapter is how
to pass to a system equivalent to wy, ..., U, in which the
structure functions may have the simplest possible form.

If each function 4, ..., 4%, is homogeneous and of degree
zero, then f (uy,...,%,,) i8 homogeneous and of degree zero;
and therefore every equivalent system has all its functions
of degree zero. If such a system is complete, we shall now
prove that it is in involution.

Since (u;, %;) is by hypothesis a function of %y, ..., Uy,
it is homogeneous and of degree zero; but u; and u; are each
homogeneous of degree zero, and therefore their “alternant
is homogeneous and of degree minus unity. The only way
of reconciling these two facts is by supposing that (uy, ..., u;)
is identically zero; that is, the system must be in involution.

§ 166. We shall, as in § 153, denote by %, the operator

du; ? du; 3 duy d du; d
iyl vl e e
3P, 0z 3Py 0T, 02, 3P, 3y, 3 Py

and by (%;, %;) the alternant of #; and u;. We have proved

that this operator is derived from the alternant of the
functions u,; and u; by the rule which derived the operator
; from the funetion w;.

We have also proved (§ 159) that the operators u,, ..., %,
and P are unconnected. If we form the alternant of £ and u;
we get

J=n j=n j=n
_ dugy 2 duyy duy;

(P,’”'a)—z(Pyé) 5 E(sz) ey +waj 55

je=n

Jj=n
2 2 2 )
—23@(1’1‘&);@ —erj(l’“i)ypj —3
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that is, the alternant of P and %, is derived from the function
(P—=1) u; by the rule which derived %; from Wy

If then wy, ..., %, are functions forming & complete system,
the operators %, ..., %, form a complete system; and if
1, ., Uy, form a complete homogeneous system, 2P T
will be a complete system of (m + 1) unconnected operators.

The operators %, ..., ®,, form a complete sub-system of
operators within the system %, ..., %,, P; and the alternants
(P, ), ..., (P, u,,) are each connected with Wyseeny Up,. From
these facts we conclude that the complete system of equations

(s, f)=0,.., (Wns ) =0,
admits the infinitesimal transformation
Bi=pitip,  ((=1,..,m);

and therefore, if f is any function annihilated by Uy, ... W,
Pf will also be amnihilated by these operators.

§ 167. We shall now prove an important identity which
will immediately be required.
If u, v, w are any three functions of the variables
Bys ooy By Prs oees Prs
then it will be proved that
(@, (0, w) + o, (1w, )+, (w,w) = 0.
Since (u,v) = (@, 7)
it follows that the operator derived from
(1) (u, (v, ) + (w, (w, v)) + (v, (w, ©))
is (@, (3, %))+ (w, (@,9)) + (7, (w, w)).
Now by Jacobi’s identity this operator vanishes identically
and therefore (1) must be a mere constant. We next prove

that this constant is zero.
If we notice that

(w0, w) = w (v, w) +v (u, w),
we may easily verify that
(2, (v, w)) + (oo, (w2, %) + (v, (w, u?)
= 2u [(», (v, w) + (w, (4, ) + (v, (w, w)];
and we therefore conclude that the constant = 24 x some

constant.
Now u being any function whatever of the variable, this
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can only be true if the constants are zero; and therefore
we see that

(v, (v, w)) + (w, (u, v)) + (v (w, w)) = 0.
Another proof of this theorem is given in Forsyth, Differential
Equations, § 214.

Let now %y, ..., Uy, be a complete system ; then @, ..., %,,,
being unconnected, there must be (2n—m) unconnected
functions of the variables which will be annihilated by
Wy, eees Wy Let these functions be v, ..., v, ,; Wwe must
now have (u;, vj) = 0 for all values of the suffixes.

From the identity

(i, @) 0) + (g, (3, 03)) + (@, (g, wY) = 0
we conclude thab (u; (v;,v%)) = 0, and therefore %, (v;,v) = 0.
We therefore have the theorem : every alternant of v;,...,v,, ,.
is anpihilated by the operators @, ..., %,,.

Now every function annihilated by these operators will be
connected with vy, ..., v, ., ; and therefore every alternant of
Uy .er, Voo 18 connected with this given set of functions;
that i8, v, ..., ¥yp_y, 18 itself a complete function system.

The m unconnected funetions wy, ..., %,, are annihilated
by each of the (27n—m) operators ¥, ..., %,,_n, 80 that the
two systems are reciprocally related, and each is said to be
the polar of the other.

If WUy ooy By 98 a complete homogeneous system s polar
system s also homogeneous. For %, ..., %, is homogeneous,
and v; is annihilated by %, ..., %,,; therefore (by § 166) Pv;
is also annihilated by w,, ..., %, ; Pv; must therefore be a
funetion of vy, ..., Vop_p, ; that is, vy, ..., ¥,,_,, is a homogeneous
function system.

Suppose that we are given a system u,, ..., %, such that

('”’-‘""‘j) = Wy (s oens Upp)s (i= 1,...,’m)
H

Puy = wy (ug, ... up), J=1..,m
any function whatever of u,, ..., u,, will be a function of the
system, but we regard w,,...,u,, as the fundamental set of
functions of the system once we have chosen them; if we
were to change to an equivalent set of fundamental funetions
we should have to change the structure functions,

§ 168. It must now be proved that the functions which
are common to a system and its polar system—that is, the
functions which are connected with ., ..., u,, and also with
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Uy, eers Vpp y—Wwill themselves form a homogeneous system in
involation.

Let uy, ..., up o be a complete homogeneous system; by
properly choosing the fundamental functions of the system we
may suppose that .y, ..., %y.q are the functions of the
given system which belong also to the polar system.

Since %y 41, -es Umig are each annihilated by %, ..., Wy
they are functions in involution; and, since both the given
system and its polar system are homogeneous,

Py, ., Pu,

m+1s e
must be functions common to the two systems, and therefore
must be functions of .y, ... Upeq; that 38, %y 4y, oo Uy
is itself a homogeneous system.

We call this homogeneous sub-system of u,, ..., %4 its
Abelian sub-system : if the Abelian sub-system coincides
with the polar system, we say that the given system is
a satisfied one.

If a system is satisfied its polar system is then a system
in involution; conversely, if a system is in involution, its
polar system is satisfied ; for, if o), ...,v,,_,, is a system in
involution, all of these functions must also be contained in the
polar system ,, ..., ,,, which is therefore satisfied.

m+q

§ 169. Let u,,...,u, be a complete homogencous system
which is not satisfied ; its polar system is, we know, a homo-
geneous one; but all the functions v, ..., v,, ,, cannot be of
zero degree, else would the polar system be in involution, and
Uyy oo, Uy, & satisfied system. The polar system can then
be thrown into such a form that v, is of degree unity, and
Uys oory Vyn_m €ach of zero degree; and it can therefore be
thrown into such a form that each of its fundamental set of
functions is of degree unity; for v, v, ..., 0,05,_p, would
be 82 n—m) unconnected functions of the polar system, each
of degree unity.

Since wy, ..., %, is not satisfied, not all of the functions
Vi ey Upn g of the polar system can be connected with
Uy, en,Uyy. We may therefore suppose that v, is not so con-

nected ; and, as it is a homogeneous function of degree unity
in involution with u,,..., u,,, we see that

Uyy vony Uy, Uy

is a complete homogeneous function system of order (m 4 1).
Every unsatisfied system is therefore contained, as a sub-



170} SYSTEMS OF THE SAME STRUCTURE 219

system, within another complete homogeneous system whose
order is greater by unity than that of the given system.

We thus see that we can continue to add new functions
to a given system, till it will finally be contained as a sub-
system, within a satisfied system.

§ 170. If we have two complete systems wu,,...,u, and
V), veuy Uy With the same structure functions ; that is, if

(u,-,uj) = Wy (Bgy eey Upg)y Py = wy (Uy, ooy ),
(¥is v} = Wy V1, oory V), Py = wy (0, -5 V),
then, if one system is satisfied, so is the other.
To prove this consider the linear operator

wyy (W W) 2 +ot (% W) 2

i aee ynd e Wy, “ae ot

12 12 s 'm. bu] n 19 ¥ m, a%m

which we call the contracted operator of ;. Let f(u,, ..., u,,)
be any function of %, ..., %, ; then, since

— d P
uif(”’lx Rad) um>= (uixul)a% +o +(ui: um)a*uf ’
m

we see that the contracted operator of %, bas the same effect
on any function of u,, ..., u,, as the operator %, itself.
The contracted operator of P is

d d
Wy (W, ""u’">3_ul oottt (g ey Upg) Y
m

The Abelian suh-system of wy,...,u,, consists of the
functions annihilated by the contracted operators of y, ..., Uy,
If uy, ..., u,, is a satisfied system, every function annihilated

Y Ty, oees Ugy 18 also annihilated by the contracted operators ;
and therefore there are (2 n—m) functions of u,, ..., u,, which
are annihilated by the contracted operators. Since the con-
tracted operators of 7,,...,7,, are of exactly the same form
in 4, ..., v, that the contracted operators of %, ..., %, are in
Uy ey WUy, it follows that there are (2 n—m) unconnected
functions of v,, ...,v,, annihilated by the contracted operators
of ¥, ..., Ty, ; and therefore vy, ..., v,, is also a satisfied system.
If wy, ..., ¥, is an unsatisfied system, we have proved that

a homogeneous function w,,,, can be added to it, such that
Uiy 18 of degree unmity, and in involution with w,,...,u,,.
Ifmthen we have two systems u,,..., %, and v, ...,v,,, with
the same structure functions, we can add w,,,, to the first,
and vy, ; to the second, in such a way that w,, ..., %, and
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VL, evey Uy Will still remain homogeneous function systems
of like structure.

We thus see that if we are given two systems ., ..., U,
and v,...,v,, of like structure, we can add functions to
each, in such a way that the new systems become satisfied
simultaneously, and have, when both satisfied, still the same
structure.

§ 171, We must now show how a complete homogeneous
system is to be reduced to its simplest form.

We first find the Abelian sub-system of the given system
Wiy eoey Upyy Wipg gy ooes Uy g3 b0 find this it is only necessary
to form the contracted operators of %y, ..., %y, g and then to
find the functions of u,,...,%yp,, which these annihilate.
We may now suppose that the fundamental functions have
been so chosen that .y, ...,%,,, is this Abelian sub-
system; and we further suppose that each of the functions
Uy, +ony Upppq 8T€ given in homogeneous form, so that u, is of
degree s;, in the variables p,, ..., p,.

Since the contracted operator of u; is

d d
(g, “1)m F vt (Wi Ui g g) ey

We see that the contracted operators of %,, ;;, ..., lp+q vanish
identically.
The contracted operator of %j, where j does not exceed m, is

3 3 .
(uf’ul)a_ul +-~-+(uj:“m)W’ (J=1..,m)
mw

and these contracted operators of %,,...,%,, cannot be con-
nected. For if they were connected, they would form a
complete system of operators in u,, ..., %,,, and would therefore
have at least one common integral which would be a function
of w,, ..., u,. Now thisintegral, being a function annihilated
by s ees Uy, would be an Abelian function of the group,
which would be contrary to our hypothesis that %4y, ..., %n1q
are the only unconnected Abelian funetions in the system.
The contracted operator of P is

d

2
81”«13171 +"'+sm+qum+qm’

and we bave (as proved for the more general case in § 159),
1) Pu;—u; P = (8- 1) ;.
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We have proved that we may take the functions of the
system in such a form that they are either all homogeneous
of degree zero, or all but one of degree zero, and that one
of degree unity.

In the first case the functions are all in involution and the
system cannot be thrown into any simpler form.

In the second case the funetion of degree unity may be
an Abelian function, or it may be a non-Abelian function
of the system.

‘We consider these alternatives; and we first suppose that
the Abelian function w,,,, is of degree unity, and that
Uy eres Ugns Y sz +oo» U 1. 27€ each of degree zero.

§ 172, Each of the alternants (w,,u,), ..., (%, %,) will now
be of degree minus unity, and therefore

U g1 (Bogs Un)s -5 Up g (Ug, W)
will each be homogeneous functions of degree zero ; and, as
they are functions of w,,...,%,,,,, all of which except %,
are of zero degree, we conclude that they are functions of
gy vnes Yy U gs +ves Ups q ODLy.
It now follows that some function of

Wy eoey Uy Uiy 95 00 Ut g
can be found, 88y f (thy, ..., Upy, Uy g5 - o) U 4.g), SUCH that
Uy T f =13

and therefore (since %, = 0) w,,,, f will be a function
Of %y, ..., %y 44, Of degree unity in p., ..., p,, and such that

Uy Uy [ = 1.

Since u,,,, f cannot be an Abelian function of the system
(else would it be in involution with u,, and annihilated by %,),
we may therefore take the functions of the fundamental
system in such a form that u, and also w,,, are of unit
degree, whilst all the other functions are of degree zero;
(¥, u) =1,and w4, ..., U 44 2Te Abelian functions.

Since (uy,u,) = 1,%, and %, will be permutable, and there-
fore the contracted operators of 7, and %, will also be per-
mutable. There are therefore (m+¢—2) unconnected fune-
tions of uy, ..., %, , annihilated by %, and %,; and, from the
formula (1) of § 171, we see that if f(u,,...,%,,,) is one
such function Pf (w,,...,%,,,,) will be another such. These
functions therefore form a complete homogeneous function
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system in themselves; and, since (u,,u,) = 1, each one of
these functions must be unconnected with %, and w,.

It follows from the above discussion that we may take the
fundamental functions of the system in such a form that
%, and u, are in involution with w,, ..., %, ,; that

Upgrs o0 Ymig

are Abelian functions, and (u,,%,) = 1; and further that u,
and u,, ., are each of degree unity, whilst the other functions
are of degree zero.

Since %, ..., Uy ¢ is now in itself a complete homogeneous
function system, we may treat it in a similar manner, and
thus reduce the function system to the form

Uyy Uy, gy Ugs ooy Ui, Vs Vgi1s oo Vgtgs
where %, ..., %, Vg, ..., Us4q 8re each homogeneous of zero
degree, and vy, ..., ¥,4, are each homogeneous of degree unity;
and where further

(1,0) = (U, V) =0 = (,,0,) = 1,
all other alternants of the system vanishing identically.

If instead of the functions v,,;,...,%,44, We take the
Abelian functions #,,;, Uss; Vyses +ors V51449, We Obtain the
normal form., In this all the funetions u,...,u, are of
degree zero, all the functions vy, ...,9,,, are of degree unity,
and

4) ('”’1:7)1)=(u217)2>="':(usxvs>= 1,
while all the other alternants of the system vanish identically.

§ 173, We next take the case where all the Abelian
funetions are of degree zero, and we take u, to be of degree
unity, whilst all other functions of the system are of zero
degree,

Since (U, W)y veey (s Upy)
are each homogeneous functions of degree zero, they must be
functions of %, ..., %, ., only; and we can therefore find
a homogeneous function “of degree zero, say f(itg, « s %mtgh
such that T f=1

-f=1

We now see as in the last article that we may take the
funetions of the system to be

Uy Ugs Wys oons Yipays ooor Ymtgs
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where (u,, %,) = 1, and all the other functions are in involution
with these two, and form in themselves a complete homo-
geneous function system.

The system u,, ..., %, ,, caonot have all its functions of
degree zero, else would these functions all be Abelian within
the system u,, <y Upuq, which ie contrary to the bypothesis
that there were only ¢ such functions.

We may therefore, since the Abelian funections are each of
degree zero, lake u; to be of degree unity.

We then, as before, reduce this system to the normal form

(B Wi Uy Ups Vgy eony gy Vgs Vgygoees Vg
where 4,,...,%, are homogeneous of degree unity, and
¥y, +oy¥g1q homogeneous of degree zero, and where
(Uys V1) = (g, 0) =..= (Ug,v) = 1,
whilst all the other alternants vanish identically.
Every complete homogeneous system is therefore such that
all its functions are of degree zero, and therefore all its

alternants vanish identically ; or it is equivalent to one of the
two forms (A), or (B).

§ 174. It is important to notice that, in bringing u, ..., u,,
to normal form, we replace these functions by an. equivalent
system of fundamental functions

Ji (W), woos fon (8, RLNE
and to find the forms of the functions £, ...,7,, we did not

make use of the operators %, ..., %, themselves, but only of
the contracted forms of these operators, viz.

d d R
(u‘-,ul)a‘%l +...+(u,~,um)37m (t=1,...,m).
If therefore w,, ..., u,, and v,, ..., v, are two complete homo-
geneous systems of like structure, and, if
fl (uli “'s’”‘m)! ""fm (ulﬁ ""um)
is a system equivalent to w;, ..., W, and in normal form, then

J1 @15 ey 05 e Fn (V15 0y )

will be a function system equivalent to v,,...,v,, and will
be in normal form.

§ 175. We_can now prove that a complete homogeneous
system, which contains Abelian functions, is contained as
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a sub-system within a larger system, not containing any
Abelian functions,
‘We take the system in normal form (A)
Wy ooy Uy y Vg ooy Vg
where #;,...,v,44 are each of degree unity.

The functions w,, ..., %,, ¥,,%.,, si3Vpp g NOW form a system
complete in itself; if we form the system polar to this it
must contain v, ,; but in the polar system v,,, cannot be an
Abelian function, since it is not a function of the system

Ups-ensUyy Vs VsgnsVgpgr | |
We can therefore find within the dual system a homogeneous
function of degree zero, say w,.,, such that

(W15 Vpgy) = 1.

‘We now have the homogeneous system

Upy voes Wygys Y1y vens Vgngs
which is of normal form but only contains (¢q—1) Abelian
functions. Proceeding similarly, we finally obtain a system
of (284 2¢) homogeneous functions

Uiy eoeyWppgs Vpseon Vs
such that e T

(g, ) = (U, v) =...= (Ugrgr Vorg =1,
and all other alternants vanish identically; w,,...,%,,4 are
each homogeneous of degree unity; w),...,%,,, are each
homogeneous of zero degree; and there are in the system
no Abelian functions ; that is, no functions in involution with
all functions of the system.
‘We should obtain the same results had we taken systems

of either of the normal forms

Upseens Uy Vpseens Uigs
where vy, ++sVgsq aT€ each functions of degree zero ; or
Vhs oery Upys

where v, ...,v, are all of degree zero, and therefore all in
involution.

176. In a satisfied system, since the polar system is now
the Abelian sub-system, ¢ = 22 —2s—g, and therefore

28429 =2n;

if then we apply this reasoning to a satisfied system we see
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that it is contained in a system of order 2m, which has no
Abelian functions,

As we have proved that every complete system is contained
a8 a sub-system within a satisfied system, we see that every
system is a sub-system within a homogeneous system of
order 27,

If wy, o0y Uy 80d 2y, ..., v, aT6 two complete homogeneous
systems of the same structure, we can then take, as a funda-
mental set of functions of the first, a system

F1(®s eoes W)y coes iy gy vees ) 5
and as the fundamental functions of the second
Fr (s vy Vs cvns Frn @15 o0y V),

and we can add functions to each of these systems, till finally
we have two function systems, of order 27, which will be
in normal form, will contain no Abelian functions, and will
be of the same structure, with f;(u, ..., u,) corresponding
10 fi (V15000 V).

CAMPBELL Q



CHAPTER XVI
CONTACT TRANSFORMATIONS

§ 177. We know (§ 154) that if X, ..., X, are functions of

Tys eves Ty Prs oovs Prs

homogeneous and of zero degree in p,, ..., p,, the necessary
and sufficient conditions, in order

X =0, X, =0,

may be a Pfaffian system of equations, for all values of the
constants a,, ..., a,, are that X, ..., X, should be unconnected
functions in involution. It follows that pdw, +...+p,dz,
will be a sum of multiples of dX,, ..., dX,, if, and only if,
X, ..., X, are unconnected functions, in involution, and homo-
geneous in py, ..., p, of zero degree.

If then we know 7 unconnected funetions X, ..., X, satis-
fying these conditions, n other functions P,,..., P, of the
variables 2, ..., Z,, Py, «er, Py, can be found such that

PdX 4.+ P,dX, = pda,+ ... + p, d,.
Let us now seek the conditions in order that
o;=X;, py=P; E=1,..,mn),
where X,, ..., X,, P,,..., P, are unknown functions of
Zyyeoes Ty Prsoers Pus
may lead to the equation
2 pida; =3 pydag.
Consider the Pfaffian equation

2 pide— 2 pyda; = 0
in the 4n unconnected variables
Ly ey Ty Praeses Prs a”l! et z,m Iér cee p:l'
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The necessary and sufficient conditions that the 27 equations
(1) @—X;=0, pi—Fi=0, (i=1..,n)
should satisfy it are the three following.

Firstly, the equations must be unconnected ; this condition
is evidently satisfied sinee o, ..., 2}, 2], ..., p, are unconnected.

Secondly, the equations

z—X; =0, E=1.,m)
must be homogeneous of zero degree in p,, ..., Py, P}, .ery Pl
and therefore X),..., X, must each be homogeneous of zero
degree in p,,...,P,. Similarly we see that 2,,..., P, must
each be homogeneous of the first degree in p,, ..., p, -

Thirdly, the equations must be in involution. It is easily
seen that the following identities hold for all forms of the
unknown functions X, ..., X,, B, ..., P,, viz.

(2 —X,, m;c_Xk) = (X; X,

@—Xs, = B) = (1) + (Key B) = (XK;, B) i i1y

(@—X, pi—F) = (@ P) +(X;, B) =—1+(X,, ),

(ti— B Ph—F) = (B, B).

If then the given equations are in involution, we must have,
for all values of @),..., & Dy, e Py @yeees By Py vons Ty
satisfying the equations (1),

X)) =0, (X, B)=0if ik (X, B)=1, (B, B) =0.

Now from the given equations (1) no equation connecting
Tys eery Ty Py evy Pp €40 be deduced ; and therefore the given
equations eannot be in involution, unless we have identically

E X)) =0, (X, B)=0if ik, (X;, B) =1, (B, P)=0.
We therefore have the following important theorem :
G=X, =Py  (i=1.m)
will then, and then only, lead to

i=n i=n

2 =3 pyday;
that is, to the identity

_ 2 BdX; =2 pyda,

if X; is homogeneous, and of zero degree in p,,..., p,, B is

homogeneous, and of the first degree in p,, ..., ,, an

Ep X =0, (X B)=0if (% (X, B) =1, (B, B) =0,
Q2
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Tt must now be proved that there cannot be any functional
connexion between X, ..., X, Py, ..., Py

§ 178. Suppose that it were possible to express P, in the
form Po=V (X Xy Pryeeis Ppy)s
where V is some functional symbol ; then we should have

Xy V)= Ea, P2} =15
and, since X, is in involution with X, P,..,P,,,
it must be in involution with ¥, and thereforo ( V) “would
be equal both to zero and to unity.

There cannot then be any connexion between X,... X,
Py, ..., P, involving any of the functions Py, ..., P,,. Suppose
that there could be a fupctional connexion between X,.. X,
alone ; then, since the equations

X=0a,.,.X,=a,
(where ay, ...,a, are any constants) satisfy Pfaff's equation
pda; + .o +ppda, = 0,

we know from § 154 that the given equations must be uncon-
nected ; and this result is inconsistent with the hypothesis
of X,,..., X, being connected.

We conclude then that X, .o Xy, Py, ..., Py, are entirely
unconnected ; and therefore

(1) xIC=Xia pg:Pr'! (t=1,..,m)
will be a transformation scheme since by means of this equa-
tion system we can express e&ch of the variables @,,...,2,,
Dy, ..y Py in terms of &, ...,

The transformation scheme (1])) is sa.ld to be & homogeneous
contact transformation scheme, since it does not alter the
Pfaffian expression, but transforms

i=n i=n

2 pyda; into 3 pdag.

The scheme we are considering transforms elements in space
%, ..., %, into elements in space af,...,a; and, if two con-
secutive elements of the one space a.reumted the correspondmg
elements of the other space will be united. The danger of
a geometrical misinterpretation must be guarded against:
thus, if 4 is & point in one space and « & plane through 4,
the point and the plane together make up an element of that
space; if B is a second point in the same space and £ a plane

)
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through it then we have & second element in the same space.
Let now 4’ be the point in the other space which corresponds
to the element 4, a (not merely to the point 4) and o’ the
%]a.ne through 4’ corresponding to the same element ; and let
' and 3’ have similar meanings with respect to B, 8. If B
lies on a it is not at all necessary that B’ should lie on o’.
If, however, B is contiguous to 4, and 8 to a, then B, 8 is
a contiguous element to 4, a; and, if B lies on a, they are
united elements; we then see (the transformation scheme
between the elements being a contact one), that B lies on o,
and A’ on 8/, and that B’, 8’ and A’, o’ are united elements.

§ 179. Tt is important to notice that the contact transforma-
tion scheme is altogether known when we know the functions
X, To prove this let the known functions, homeo-

ey X
gelneous, of zero degree in p,, ..., p,, and in involution, be
X,,...,X,. We have proved that functions P, ..., P, must
exist such that
P dX +...+P,dX, = p dz, +... + p, da,,
and therefore by the reasoning of § 178,
X, nX,, Pyoa Py
will be unconnected, and
=X, vy =P ¢G=1..,n)
will be & homogeneous contact transformation.

That the functions P, ..., P, are known, when X, ...
are known, follows from the equations

i=n

3X; K
EP‘WI‘EP,,, }‘,P‘aﬁ:o, k=1,..,m).

These equations could only then fail to determine P,, ..., P,
uniquely in terms of @y, ..., %y, P1,+.-Pp When all n-rowed
determinants of the matrix

T FNRT JRES SR
3 BERTR T 3 ’ 3p,

X,

»“4n

AX, ¥X, X, X,
pniet SN e 1Y PO e
19X Az, 3py 3P,

vanish identically, that is, when X, ..., X, are connected; and
88 X, ..., X,, are unconnected the equations do not fail,
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The problem then of finding a homogeneous contact trans-
formgtion in that of finding » unconnected functions of zero
degree in p,, ..., p,, and mutually in involution; and to every
such system of functions one contact transformation scheme
will correspond. We have shown in Chapter XIV how this
problem depends on the solution of a complete system of linear
partial differential equations of the first order; and we have
also seen how, when we are given m of the n functions in
involution, the remaining (n—m) are to be found.

Egample. Any n unconnected functions of 2, ...,, arein
involution and of zero degree; the contact transformation
scheme, however, which corresponds to this solution of the
problem, will be a mere point transformation,

If on the other hand we take any (n—1) unconnected
functions of py, ..., p, of zero degree they will be in involu-
tion ; as there cannot be more than (n— 1) such functions the
7't function of the involution system must involve g, ..., z,,.

Let us take &:---:1—7;—“ as the (n—1) functions ; and let
n

n
v be the ntt function; since it is in involution with £t we

1 3 p »
must have — =~ — <L —— = 0; we therefore have the fol-
2y bwl Pﬁ b:z;,, ’

lowing equations to determine v :
w dv
oy _ dw, A,

oo P
and may take v to be the function
P+t Do,
pﬂ

‘We now have n unconnected functions in involution, and
of zero degree, viz.

_bH —Pna L&t P2,
X=X, =21, X Tl
2 Pa " Pn
The identity
) PldX1+...+P,,dX”=p1da;l+...+p,,da;”
gives us

i=n-1

S (Pit+a;P,) d(%)mz%dw.- =3 p;da;;
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and therefore
Po=p, Pi=—1Pp s Py =—%4 1 Ppe
We thus have the homogeneous contact transformation
’ P Pna ; Pyt TPy
o =4, .., =2, g =7,
T T " Pn
PL=—%1Pns +v0s Py =—Tp1Pns Dp = Pne

§ 180. By & homogeneous contact transformation any
Pfaffian system is transformed into a Pfaffian system. For if

(1) fl (wv cees Ty Prseess pn) =90, '-"fn(wv cees@py Prs ---:Pn) =0
are the equations of a Pfaffian system; the contact trans-
formation

@ =X, py=F; t=1,.,n)
will transform these equations into some other n equations, say

(3) ¢1(a'/1) "‘3a‘ln, p’l’ ""p’ﬂ) = 0’ s ¢ﬂ(%’ "'Ja‘lﬂ’ p’l’ "-!pln) =0.
‘What we have therefore to prove is, that any consecutive
values of @, ..., &y, T, .., 1, satisfying the equations (3) will
satisfy the equation
2, A+ ... + P da, = 0.

Now to two consecutive values of @}, ..., @5, 21, ..., satis-
fying (3), there will correspond two consecutive values of
Eyy cuny Ty Dy -er Py Sbisfying (1); and therefore—from the
definition of & Pfaffian system —satisfying the equation

Py Ay + oo+ Py da, = 0.
Since the transformation is a homogeneous contact one
Py Ay e 4P} Ay = Pr @+ oo+ Pudy = 03
and therefore the equations (3) satisfy the definition of a
Pfaffian system.

If we know any integral of an assigned differential equation
of the first order, we know how to write down & Pfaffian
system which will include the assigned differential equa~-
tion. If to this known Pfaffian system we apply any known
homogeneous contact transformation, the assigned differential
equation will be transformed into another equation, of which
+we shall know the Pfaffian system, and therefore the integral.

It is at this point that we begin to see the advantage of
Lie’s extended definition of an integral of a given equation.
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The assigned differential equation may only have an ordinary
integral, that is, the Pfaffian system, which contains it, may
have only one generating equation ; yet possibly the equation
into which the differential equation is transformed Wlﬁ have,
as the Pfaffian system including it, one generated by two or
more equations.

It may even happen that by the contact transformation the
assigned differential equationis transformed into an equation
only containing af, ..., &, that is, into a generating equation
of the Pfaffian system.

§ 181. Ezample. Consider the equation
2z, pt = a0’ p,p,
of which a complete integral is easily found, viz.
baey® + oy + a0, 20 — am® o+ data,a, = 0,

where a, b, ¢ are arbitrary constants.

I f (@, ..., ;) = 0 is an integral of an assigned differential
equation ¢ (#y, ..., @y, Pys..., P,) = 0, then this integral gives
us the Pfaffian system

P _ P2 _ Pa —0-
V—af—-..— df’ f=0;
w ow

and, sinee from the definition of an integral, ¢ = 0 is deducible
from these n equations, it must be one of the equations of
the system.

In the example before us it is then only necessary to add
two equations to the given differential equation and its
integrea‘i, in order to have a Pfaffian system ; the third equa-
tion which we could obtain would be connected with these
four.

We may take these equations to be

202,y +2, P, = 0
and 40% @3 py— (2" + ¢ + 2b, + 40’2 p, = 0,
and, by aid of the given integral, the second of these is thrown
into the more convenient form
407 &y’ py — (bag’ + aa?) p, = 0.
The Pfaffian system with which we are now concerned

is then

) 22,2~ Py p, = 0,

(@) beltomy+ b —am®+ datmm, = 0,
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() 2aa, 0+ 2, py = 0,
O] 40P’ py— (b2 + oz} p, = 0.
If we apply to this system the contact transformation,

P i PR SR - Y YR YA . P
e BT BT BT AT TR
Bi=—ap, Ph=—mPy Ph=—Zp, Pi=py

we obtain the four Pfaffian equations
¢y PEPL T+ 2P, Pt gt = 0,
(@ w-opp—pf gf —api?
~40% P} (P08 + P + P+ plat) = 0,
(@) 2ap&+pi =0, (%) 4a’p{el—bpP—api® = 0.

Eliminating 27, p}, 0}, p; from these equations, we obtain,
after g little labour, not one but two equations, viz.

102 —4 @’ +b = 0, c—4atal+4a% = 0.

It follows, therefore, that by the contact transformation we
pass from the equation

28, @, py* ~ 2y’ Py Py = 0,
with its ordinary complete integral
ba® + omy + @ g —am® + 4atayz, = O,
to the equation  p2p,x,+2p,p. 22 = 0,
with Lie’s complete integral
ta’zi—4afa+b =0, c—4data,+4alz,=0.
Ezample. Any equation of the form

D12t e+ P, 2, =p,‘f(%,---: %)
n n

is transformed by the contact transformation

=_P_1’ Wy g = Py, %=P1w1+---+pnwn’

o’ Pa Pa
PL=—@1 Ppseves Py = —p_1Pps Fn="Pn
into Ty = (@, ey W)

This would not be a differential equation at all, according
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to the usual definition, but is one in Lie’s sense; and, since
we know a complete integral of it, viz
Ty =0y, ey T = ay,
where a,, ..., a, are constants connected by the law
Oy =f(‘7‘1’ woes By_g)y
we at once deduce that
W&y Fiet Oy Ty F Ty = F (g eoey Qy_y)
is & complete integral of the given equation.
§ 182. The functions X,,..., X, Py,..., P, which define
2 homogeneous contact transformation satisfy the conditions

of being a complete homogeneous system of functions in
normal form ; for

Ep P =X, P)=..=(X,, P)) =1,
and all other alternants of the system vanish identically;
whilst X, ..., X,, are homogeneous of degree zero, and
P,,..., P, bomogeneous of degree unity.
If we are given two homogeneous function systems of like
structure Uy, euny Uy, 80 V), oy Uy

we must now prove that they can be transformed, the one
into the other, by a homogeneous contact transformation.

If Ji gy s )y vons So (U, ooy )
are functions equivalent to w,, ..., U,,, and such that f, ..., f,,
are in normal form, we know that

Si @ s Uds ooy Frn (Vs wens Uy)
will be a function system equivalent to v,,...,v,,, and of
the same normal form as
Ji(yy ceis %)y cesy Jrn (U aany Ugy)-
Also if a contact transformation
o =X, pi=P; G=1..,%)
transforms f; (vg, ..., ) into f; (s, ..., %) for all values of
the suffix j from 1 to m, that is, if
Ji @y ees V) = (s ey ), G =1,..,m),

where v denotes the same function of 2, ..., a%, pi, ..., )
that v; i8 of @y, ..., @4, Py, eses P, then will

1)}:’11,}-, (]: l,...,’”b).
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In order, therefore, to prove that two homogeneous function
systems of like structure are transformable into one another
by & homogeneous contact transformation, it will only be
necessary to prove that two such systems of the same normal
form are so transformable.

We have seen that to w,..., u, we can add functions
Uy veny Uy, Bl Uy, voey Ug, 19 & Bystem of order 2m, con-
taining no Abelian functions, and in normal form; these
27 functions will therefore define a homogeneous contact
transformation scheme. If we similarly add functions to the
system vy, ..., ¥y, till it forms a complete homogeneous system
of order 2, containing no Abelian functions, and in normal
form, then v, ..., %, will also define & homogeneous contact
transformation scheme,

In these two systems w«; is homogeneous and of the same
degree in p,, ..., p, that v; is, viz. unity or zero; and when
we say that the two systems have like structure we mean
that u; in one system corresponds to v; in the other.

We may suppose that 4y, ..., %, are the functions of zero
degree, and u, ;, ..., Uy, the functions of degree unity ;

z"’zui, Y= Uiy (12:1,...,%)
will then lead to

2 pidaf =3, pyda;
and = i =i, (E=1,.,m)
will Jead to = i daly = vy dat.

It follows that the equations
u; =1, (t=1,...,2n)

i=n i=n
will lead to > v dal=", pyda;;

that is, the functions vy,...,v,, are transformable to the
functions w,, ..., %,,, by a homogeneous contact transforma-
tion scheme; and in particular u,..., v, are transformable
into %y, ..., U, ¥; being transformed into u;.

§ 183. Having now proved that two complete homogeneous
systems of the same order and structure are transformable
into one another by a homogeneous contact transformation,
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we shall now investigate the conditions under which it is
possible to transform any m given functions v, ..., v, re-
spectively into the given functional forms w,,..., %,, by
a homogeneous contaet transformation.

Let o =X, py =P, ¢ =1,..,n)
be a homogeneous contact transformation ; we have

3 zaX, > "”aP,.a

A VR ARk T/
ien (f=1,...,n).
_Vb__ "X, D S AP; 2
3wy, < 3wy 3 3y, 3p;’
Suppose that this contact transformation transforms v; into
w; , where

Ui s
U5 = ;i (1 10y Ty Prs eoes P} B0 Uy = fi (@1, 003 @y Prs oes Py
80 that

ff (wl! ey wﬂ) pl""’.pﬂ) = ¢j (a‘ll’ "'3“’7" p;’ ""p’ﬂ);
then

i=k=n , i=k=mn

_ d

iy =23 (X, .,Xk>am, 57, T2 (X.,P,»Ma
i=k=n i=k=n

+2 (I, ,,>ap W +2(P.,Pk>ap 7

that is, by the conditions for s homogeneous contact trans-
formation,

d
D

31/ d bz/ d
3 5757, -3 5,57, =
From the mere fact that u; = o; we could not of course

conclude that %; = 7;; we were onﬁy able to draw this con-
clusion from thd fornds of the funetions Xy Xy Py Py
which define the homogeneous contact transformation,

Since w; = %, and u; = 1f,

Wj.ug = ¥;.9; and therefore (u;, %) = (},%);

and therefore the transformation, which transforms v, ..., v,
into 4, ..., %, respectively, must transform the alternant
(v¢,v;) into the alternant (uy,u,).
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Again since

Y Jex v Top e
_ = — =+ 5 k=1,...,7),
Apy, > APy, 9; 3Py, 3p; ¢ )
k=n i=k=n i=k=n
> 3. A 2P, 2
P = = 57 s =3
2n Py 2m dpy, O 2 Pz Op;

and, as Xj, ..., X, are of zero degree, and P,,..., P, of degree
unity, we therefore have

i=n

&» ) ,
P=2P¢m=2p;m=P.

The transformation then which transforms v; into w; must
also transform Py, into Pu;.

From these considerations we see that, given the functions
¥y, voe, Uy 80A Uy, ousy Uy, We must form the complete homo-
geneous systems of which they are respectively functions.
To do this form the alternants from vy, ...,v,, and also the
functions Py, ..., Py, ; if by this means we obtain no function
unconnected with v, ..., v, the system is complete and homo-
geneous; if, on the other hand, we obtain a new function
we add it to v, ..., vy, and proceed similarly with the new
system. As there cannot be more than 27 unconnected
functions of @,,...,@,, Py,....,P, We must thus ultimately
arrive at a complete homogeneous function system. When
we have formed the two complete homogeneous systems of
lowest orders which contain the given sets of functions, we
can tell whether or not the systems are of the same order and
structure ; if they are, the given functions v, ...,7, are
respectively transformable into u,, ..., %, by a homogeneous
contact transformation, but otherwise they are not so trans-
formable,

., Thus any homogeneous function can be transformed into
any other of the same degree ; for the function group of each
is of order one, and the structure the same,

In particular, any homogeneous function « of degree unity
can be transformed into p,; and therefore the operator @ can

be transformed into b—b~ by a homogeneous contact trans-

formation if, and only if, » is of degree unity.
So if 4y, ..., U,, are m unconnected homogeneous functions,
each of degree unity and mutually in involution, they can be
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transformed into p;, ..., Py, and therefore %, ..., %,, can be

. 2 2 :
transformed into AT respectively,

§ 184. Although in considering the theory of Pfaffian
systems of equations it is much more convenient to work
with the homogeneous equation

P12, + .o+ Ppd, = 0,
yet in particular examples, and in the cases n = 2, and n = 3,
it is often simpler to take the non-homogeneous form
(1) dz = pyde,+ ...+ pyde,.

It is clear that to satisfy this equation we must have at

least (n + 1) unconneeted equations between
2,21, 000 By Prsoers Prs
but instead of considering this equation independently we

may deduce its theory from that of the corresponding homo-
geneous equation.

Let 2= Ynt1s 1= Y15 eensWp = Ypy

&1 In

2 =— yesy P = —

@ B Tn+1 P Gnia’

where ¢,,,, is not zero; then the equation (1) is equivalent
to the homogeneous one

QY1+ oo a1 DYpeg = 0.

To satisfy this equation we must have (n+ 1) unconnected
equations in gy, vu., Ynt1s Gus-00sGne1; 80d in order that

Yi=ay 0, Your = tapy
may satisfy the equation, for all values of the arbitrary con-

stants, it is necessary and sufficient that Y7, ..., ¥,,, should
be (n+1) unconnected homogeneous functions of

L. . Y1 e Ynis Q15 oo Qner
in involution.

Let Z be the function in 2, @, ...,2,,2;, ..., P, equivalent
to ¥,,,; and X, ..., X, the functions which correspond to
Yy, ..., ¥, respectively.

If Fis any function of y,, cos Yna1s &, .,
In+1 n+1
& function of &, ...,@,,2 Py, ..., Py, in which form we shall
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denote it by ¢ : we then have F= &, and

3F @ F 1 ‘g‘pg
et 32 ¥Myy In+1 “ap;
2F_20 2 120
X, Oy 3¢, Qns1 205 e
If we now denote the expression
S wy Tw du,
2 55, oy #9455 =2 355 (5, +2453)
by [«,v];, 5, ,, we deduce that
1
Yo i)y o=~ —[Z0 X1, .
Y Yidy g q,,ﬂ[ 3 Xr] ¢=1,...,n)_
k=1,...,m

1
(Yﬂ+1! Yk)y,q == qTH[Z’ Xk]’
We conclude therefore that the necessary and sufficient
conditions, in order that
Z=ap, =0, X, =q,
may satisfy the equation
de = pday +... + p,de,,
are [Z,X;]:O, [X‘,Xk]zo, z=1,...,n)_

k=1,..,n
If two functions % and v of the variables A
Pis .y Py 870 such that [u,9], , , =0, we say they are in

involution. Similarly we say that two equations w = o0,
v =0 are in involution if the equation [u,],,,=0 is
connected with & = 0,v = 0. We ienemlly omit the suffixes,
and write [u,v] for [u,v], ; ,, the variables z,ay,...,2,,
P15 +++s Py being understood.

The equations Z =0, X, = 0,...,X, = 0,
will then, and only then, satisfy the Pfaffian equation

dz = pyday+ ... + pyde,,

when they are unconnected and in involution.

It follows that (n+ 1) unconnected equations in involution
cannot all be equations in @y, ...,@,, P1,...,p, only, but must
contain z; else would they not lead to

dz = pday+ ..+ ppday,.
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‘We may prove this last result independently thus ; suppose
Z=0,X=0,..,.X, =0
do not contain 2, we then see that
[2, %]} = (£ X) and [X, K] = (X}, Xp) 5
we now have the (n+ 1) unconnected differential equations
(Z)f) =0, (be) =0,y (me) =0,
with the (n + 1) unconnected integrals
X-a0,=0,...,%X,—-0,=0,Z—qa,,, =0,
:mil this is impossible, the equations being in 27 variables
on. y.

§ 185, Suppose we have (n+1) unconnected functions of
2, Tys vey Bys Pys oee, Py in involution, viz. Z, X, ..., X,.. If we
apply the transformation (2) of § 184, the identities

[Z, X,] =0, [X,-, Xk] =0
are transformed to

_ P=1,.,n+1
FoXp=o (" 00
We have therefore (n+ 1) unconnected functions of

Y1s oo Yntrs Q15 -oos Ints
homogeneous and of zero degree in gy, ..., ¢,,, and in in-
volution. We can therefore write down the homogeneous
contact transformation

Y=Y, i=Q; (i=1,..,n+l);

i=n4l t=n+l

and, since 2 didy =2 ;. dy;,
we see that, if 0
P=—_Y | i=1,..,n),
= )

=Py = o= Pyl = 8253 (A, Dy~ pa ).
n+1
Therefore
(1) Z’=Z, m:-:X‘, p"= P‘ (1:=1,..., ’n)
will be a transformation, with the property
4 —pl A~ ... — g da}, = p (de—p, dvy— .o —Pp dy),
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Ini1

where p = » and is therefore & homogencous function of
n+1

Yis voes Ynt1s Qo> ooos Quas OF Zero degree, and therefore a func-
tion of z, Lyyeens Byyy Pryoees Ppe

A transformation such as (1) is called a confact trams-
Jormation ; and we see that, when we are given the (n+1)
unconnected funetions in involution, viz. Z, X;, ..., X,, the
contact transformation is entirely given.

The functions P,, ..., P,, as well as the factor p, may be
obtained algebraically from the equations

3z X,
3% m2Pt=n

27 ' 3E,
@;~.2P:@;——Ppks (k=1,..,m),
2z G X,
- .t —, k=1,..,n)
3y 2 “opy, ¢ )

The eontact transformation
?=12, & =2X; p=P, Ei=1,..,m)
has the property of leaving the Pfaffian equation
de—p,day— ...~ p,dz, = 0

unaltered ; and therefore—from the general definition of a
group—the system of all contact transformations, regarded as
transformation schemes in the variables z, @, ..., Ty Prsyovvs Pos
generates a continuous group, though of course not a finite
continuous group.

§ 186. Ezample. The variables being 41, 4, %1y 15 €» G5,
and %, ¥, vy, v, being unconnected homogeneous funetions of
zero degree, such that every function of w;, u, is in involution
with every function of v, v,, but %, not in involution with
Uy, or vy With v,, it is required to find simple forms to which
these functions may be reduced by a contact transformation.

The alternant (u,, u,) is of degree minus unity, and cannot
therefore be a function of %, and u,; we have therefore three
unconnected functions u,, u,, and (u;,,); and, as v, is in
involution with %, and w,, it is also in involution with
(%, w,). We thus see that u;, w, and (u;, u,) are three
unconnected functions of a homogeneous system'; and that
there are at least three unconnected functions in -involution

CAMPEELL R
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with each of these functions, viz. v;, v, and (v, v,); it there-
fore follows (since the number of variables is six) that there
cannot be more than three functions in the system containing
w;, u, and (uy, ;). The conclusion we draw is that u,, u,,
(w,, w,) form a complete homogeneous function system, and
that vy, v,, (v1, v5) i8 its polar system.

Since u,, ,, (4;, U,) is a system of order three, it must
have at least one Abelian function. We see this by recalling
the normal form of a complete system ; or we may prove it
independently by writing down the contracted operators of
s complete system of order three, when, since the Pfaffian

determinant 0 s (g, Uy (U )

(g, uy); O s (uzx""’z)

(s ), (utg, ug), O
vanishes identically, we see that not more than two of the
contracted operators can be unconnected.

If all two-rowed minors of the above determinant vanished,
then all the functions would be in involution; there must
therefore be either three or only one Abelian function.

In this example, since (u,, w,) i not zero, there must be
one, and only one, Abelian function; and, as it is not a mere
function of , and u, (for then u, and u, would be in
involution), it is not of zero degree zsee § 165). When the
system is then reduced to normal form it is of like structure

with .

Y Y I35
and can therefore be reduced to this form by a homogeneous
contact transformation.

We can therefore, by a homogeneous contact transformation,
g0 reduce u, and u, that each will be a homogeneous function
of ¥, ¢1, g, of zero degree.

Since #, and v, are homogeneous functions of zero degree,
in involution with every function of %; and u,, they are in

involution with y, and ZJ Since they are in involution with

3
41, they cannot involve ¢, ; and, since they are also in involu-

tion with 1, we see that they cannot involve g or 3, We
conclude therefore that », and v, are homogeneous functions
of Yy, gy, g5 of zero degree.
If we now take
—q -
2=Ypy B =Yy =Y 1T 1’]’2=*“q‘2’
V&S Ve
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we see that #, and u, can be transformed by a contact trans-
formation so as to be functions of @, and p,; while by the
same contact transformations v, and v, become functions of
i, and p,

§ 187. The above example has an important application to
Ampere’s equation,
Rr+8s+Tt+ U(ri—s) =7V.
If this equation admits the two systems of intermediary
integrals
uy =F(u;) and v = ¢ (v)
(where f and ¢ are arbitrary functional symbols), then we
know (Forsyth, Differential Equations, § 237) that
[, 0] =0, [ug, 1] =0, [y, 9] =0, [uy, 0] =0.

From what we have proved, we see that, when we have
applied a suitable contact transformation to the original
variables, we may take u, and w, to be functions of z and p
only. Now by a contact transformation any equation of
Ampere’s form is transformed into some other equation of the
same form. In the new variables then, Ampere’s equation
has an intermediary integral

Uy = f (),

where %, and w, do not involve y, 2, or ¢.
This equation is therefore to be the result of eliminating
the arbitrary funetion from

2 2 L >
Tty = ) (),

2w Ip A
duy du,
8 % = sf (wy) %

The eliminant is
du, d du,
s(il Uy 2% _"h) =0
and, as v, is not a function of u,, we cannot have
9ty duy Uy Uy
dw op  ap
so that the equation must be s = 0. This is therefore the
R 2

8
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form to which an equation of Ampere, admitting the two
systems of intermediary integrals

Uy —f (%) =0 and v—¢ (v,) =0,
can be reduced by a contact transformation,
An interesting proof of this theorem of Lie’s is given in

Goursat, Equations aux dérivées partielles du second ordre,
L p. 39.

If in the equation Rr+Ss+Tt+ U (rt—s%) = V we have
82 = 4 (RT+ gV), there can only be one system of inter-
mediary integrals, w, =f (u,). %Ve now have, however,
[u,, ;] = 0; for, since the roots are equal in the equation

M(RT+UV)-AUS+U* =8,

we have (Forsyth, Differential Equations, § 288) u, = v,; and,
since [u,, v,] = 0, we must therefore have in the limiting
case [4,, u,] = 0.

We now take u; = p, , = ¢; and we see that p =f(g)
can only be an intermediary integral for all forms of the
function if the equation is

(rt—s%) = 0.
This then is the form to which this class of Ampérian
equation, with the intermediary integral u;—f (%,) = 0, can
be reduced by a contact transformation,



CHAPTER XVII
THE GEOMETRY OF CONTACT TRANSFORMATIONS

§ 188, If the equations defining a contact transformation are
(V) Z=% of,=X; =P, i=1,..,m),

we know that the (n+1) functions X, ..., X,, Z form a
system in involution ; and conversely, when we are given
any involution system, we know how to construct a contact
transformation scheme.

In this chapter we shall show how contact transformation
schemes may be constructed without previously constructing
involution systems.

If we eliminate py, ..., p, from the (n+ 1) equations (1), we
shall obtain at least one equation of the form

T (@i wens By B @iy 8, 2) = 05
and we may obtain 1, 2,..., (n+1) such equations. We call
these equations the generating equations of the contact trans-

formation scheme. .
Suppose that we have s generating equations, viz.

., f1=07 -c-)fa=0:
then the equation
() A= pda—p (de— 2 pyda) = 0
must be of the form

8) Pldf1+"'+:ﬂudfa=0)
where p,, ..., p, are undetermined functions of the coordinates
of corresponding elements.

We have, by equating the coefficients of duf;,
, 9
s
Similarly we obtain other identities by equating the coeffi-
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cients of d, dz, and so on; and we thus have (2n+2—s)
equations between the coordinates of corresponding elements
wqhen we eliminate the undetermined functions.

If we add to these the s generating equations and eliminate
p, we shall have (2n+ 1) equations connecting the coordinates
of corresponding elements.

These (2n+1) equations must be equivalent to the
system (1). For they are deduced from (1) and the Pfaffian
equation (2), which itself follows from (1); they are also
unconnected, since they satisfy (2); finally therefore, being
(27+1) in number, unconnected, and following from (1), they
are equivalent to (1).

The generating equations alone can therefore determine the
contact transformation scheme; and it is from this point of
view that we shall study them in this chapter.

§ 189. Any s equations connecting the two sets of variables
@y e Xy, 2 and A, L, 2,7

may in general be taken as generating equations. They must
however satisfy two conditions, viz. firstly the s equations,
together with the (27 1—s) derived equations, must be such
that we can by means of them express o, ..., 2/, %, pi, ..., ¥
in terms of @, ..., %,,2, Py, ..., P,; and secondly we must be
able to express &y, ..., Xy, 2, P1, ...y Py I terms of

sy Ty 2y Py vers Do
These two conditions are however equivalent ; for suppose
that from the assumed system we deduce
(1) =2, a;=X;, p;=F,, (i=1,..,mn)
then by the method of formation of the system we must have
i=n i=n

dZ—3 PidX; = p(de— 2, pydy).

Now p cannot be zero: for if it were the equation (2) of
§ 188 could not lead to (1), but must lead to exactly
(n+1—s) equations connecting 2, ..., &, 2/, pl, ..., p,. Since
then p is not zero, the functions Z, X, ..., 1> +ves Py MUSH
(by § 178) be unconnected ; and therefore

iy vaes By 25 Py oves P

can be expressed in terms of @, ..., af, 2, P}, ..., ph.
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§190. If we are given s equations which cannot be used as
generating equations of a contact transformation scheme, what
special property will distinguish these equations? We shall
call such a system of equations special equations. From
s special equations we can, as in the general case, deduce
(2m+1—~s) other equations; and these equations will be un-
connected, and will satisfy the Pfaffian equation

i=n i=n

o — 3 pidets = p(da— 3, pide).

If in the special equations we keep ,..., 25, all fixed,
that is, if we regard this set of variables as parameters, the
special equations together with the derived equations will
form a system satisfying Pfaff’s equation

i=n

1) dz— 2, pyda; = 0.

If we now consider how the (274 1—s) derived equations
were obtained, we shall see that we can eliminate 27, ..., pf,
and obtain exactly (n+ 1—s) derived equations not involving
these quantities; these taken with the s special equations will
satisfy Pfaff’s equation (1).

From that property of the equations, which makes them
incapable of being taken as generating equations, we see that
we must be able to eliminate the coordinates

@y vess Ty @y Pl oves Ps
and 80 obtain at least one equation connecting
By, eves Ty Zy Py ooes Pr-
Suppose we thus obtain r equations
(2) di (@) wﬂ,z,pl,...,pn)=0, (E=1..,17);
then for all values of the parameters &}, ..., &%, ¢’ the equations
Fil@s e 8,2, By oo 8, 2) =0,  (E=1,..,8)

will be the generating equations (and therefore, in Lie’s sense,
an integral) of an M, satisfying the system of differential
equations (2) (see § 155).

§ 191. We shall now limit ourselves to_the case of n =3
which offers the most interesting geometrical applications of
contact transformation theory.



248 CONTACT TRANSFORMATIONS WITH [191

We take x,, 2 as the coordinates of a point, and z, 94,2, 0,4,
as the coordinates of an element in one space ; and we take
«,y, 7, p, ¢, to be the coordinates of the corresponding
element 1in the other space.

There may now be 1, 2, or 3 generating equations.

We first take the case where there is only one generating
equation.

Let this equation be

¢ @y za,y,2)=0,
We now know that the Pfaffian equation
e —p'def — ¢ dyf —p (dz—pda—q dy) = 0
is of the form d¢ = 0; and therefore we get as the equations
defining the contact transformation scheme
2¢ 3¢ _ A ¢
(1 Py, b= Tz+b_y_0’
3¢ | 29 R L 2

o Sz_,jLa_w,)=o, q (SQ“LW)_O’ ¢ =0,

The condition, that the ecoordinates of one element can by
aid of these equations be expressed in terms of the eorre.
sponding element, shows that the three equations

2 2 dp |
(@ p+(a_:+a_2)=°’ Q+(ET$)=O’ =0

must be unconneeted in the variables «, ¢/, 2.
It follows therefore, after some simple algebraic reduction,
that the determinantal equation
*¢ *¢ F¢ ¢
w3’ Wiy’ e w
7¢ 24 ¥ 2
3E¢ ’¢ ¥¢ 2¢
0z’ 2 ' %
2 29 29
W E] W k] a_z‘, »
must be uneonnected with ¢ = 0.
We could not therefore take as & generating equation

xa' +yy +27 = 0,

3
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for the determinantal equation, formed from it, would be
oonnected with it, as may be easily verified.

This is an example of a special equation; the M, defined by
the equations

oz’ +yy +27 =0, pi+ad =0, ¢gZ+y =0

must therefore be such that we can eliminate ', ¢/, 2 from
these equations ; if we do so, we obtain the equation

px+qy—z=0,
which is satisfied by
' +yy +27 = 0,

’

for all values of the parameters 2, ¥/, 2",

From the symmetry of the equation (3) in the two sets of
variables z, , 2 and &/, ¥/, %, we verify the theorem of § 189
as to the equivalence of the two limiting conditions, imposed
on the general arbitrariness of the generating equations.

§ 192. If ¢ = 0 is a generating equation of a contact trans-
formation scheme, the determinantal equation (3) of article
§ 191 will be unconnected with ¢ = 0. "If then we eliminate
@, 3, 7 between the equations (2) and (3), we shall obtain an
equation conneeting @, y, 2, p, . Elements satisfying this
equation will be ealled special elements.

The equations (1) of § 191 will in general determine one
definite element «’, 3/, 2, ’, ¢" to correspond to each element
%, 4, 2, v, . If, however, x, v, z, p, ¢ are the coordinates of
& special element it will not have a definite element corre-
sponding to it, but an infinity of elements. Similarly, we
shall have special elements in space o, ¥/, 2".

A particular system of special elements may be obtained
thus : eliminate #, o/, ¢’ from the equations

¢ 3 _ 2 _ .
$=0 5:=0 ay,—o, 57 = 03
the resulting equation in @, y, z is known as the special
envelope of

¢ 9,5 7,y,4)=0,

o/, 3, 2 being regarded as parameters.

The element consisting of a point on the special envelope
together with the tangent plane at the point will be a special
element ; to this special element there will correspond an «?
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of elements, consisting of the point 2/, ¥/, 2’ together with the
«? of planes through this point.

§ 193. There are three different classes of element manifolds
in three-dimensional space. There is, firstly, the manifold M,
generated from one equation only ; such a manifold we shall
call a surface M,.

o A 2

Let f(,9,2)=0, Pyt e 5, +5,=0

be the Pfaffian system of a surface M, ; and let

¢y 2a,y,7)=0
e the equation which generates the contact transformation
scheme.
The generating equation (or it may be equations) of the M,
which corresponds in the space @, %, 2’ is that one obtained
by eliminating @, ¥, z from the four equations

bf.bf_bi);bi) bf.bf_bi)‘bi)’ f=o,

W % om 3 Iy iy 2

AN ¢ =0,
If we regard o, y, z as variable parameters connected by the

equation f(, ¥, 2) = 0, the generating equation is therefore

the envelope of

@y e,y 2)=0

The manifold M, with two generating equations we call a
curve M,
Let the Pfaffian system of a curve M, be

Ly 2) =0, f2(w’ Y, 2) =0,

and the equation obtained by eliminating X :p from the
equations of > > >
P(’\jz”ruai;) +>\yj;' wudio,

A
A, Ve Yy, Yo_ .
q(xafz+uaz)+xa+pa~y—0,

that is, the Pfaffian system

e AA) . ) _ 2 (fuf)
A= =0 PR Y3 D T sy

The generating equation of the M,, which corresponds in
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space &', %', 7/, is therefore obtained by eliminating «, y, z from

- _o MUeAL)_
fi=0, /=0, @y
This generating equation will be the envelope of

@y 22y, ),
where the parameters @, ¥, z are connected by

Si(@, Y 2) =0, fz(z: Y z) = 0.

The manifold M,, which consists of the fixed point e, b, ¢
with the «? of planes through it, has as the generating equa-
tion of the corresponding M, in space «', ¥/, 2’ the surface

¢ (2, be,a,y,7)=0.

§ 194. If two surface manifolds have a common element
they must touch ; if two curve manifolds have a common
element they intersect; and if a curve manifold has an element
common with a surface M, they also touch.

If a point M, has an element common with a surface M,
or a curve M,, the point must lie on that surface, or on that
curve; but two point manifolds cannot have any common
element, unless they coincide entirely.

If then in space @, y, z two different M,’s have a common
element, the M,’s in space «/, %, #/ which correspond to these
will also have in general a common element; the exceptional
case is when the first common element is a special one.

Thus, if the two surfaces

¢ (@, Yy, 2,01, 0,0) =0 and ¢ (z, Y, 2, by, 0) =0

touch, the common element must be a special one for the
contact transformation with the generating equation

@y, a5, y,7)=0

For otherwise the M, consisting of the point a,, b,, ¢, with
the «? of planes through this point would have a definite
element common with the point M, whose coordinates are
ag, by, €,, and this is of course impossible.

So if two M,’s have an infinity of common elements, the
corresponding surfaces will also generally have an infinity of
common elements,

Thus, if two surface M,’s have an infinity of common
elements, they must either touch along a common curve; or
have a common conical point, and the same tangent cone at
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the conical point; if the corresponding M,’s in the other space
are also surface manifolds they must also have one of these
properties.

Again, if & curve 4 is traced on a surface B, then if 4 is
transformed to & curve 4’, and B to a surface B’, we must
have A’ traced on B'; if, however, 4 is transformed into a
surface A” and B into a surface B, the two surfaces A’ and B
must either have a common conical point, with a common
tangent cone at it, or they must touch along a common curve,

Again, if 4 and B are two points, then the straight line
Jjoining these points will be a curve M,, with one infinity of
elements common to the point manifold 4, and another infinity
of elements common to the point manifold B; if then this
straight line M, is transformed to a curve M, it will be the
curve common to the two surfaces 4’ and B’; if, however, it is
transformed into a surface M,, it will generally be a surface
touching 4’ along one curve, and B’ along another eurve.

§ 195. The most interesting example of contact transforma-
tion of the first class is obtained by taking the generating
equation ¢ = 0 to be linear both in a7, y',? and in z,y, 7, viz.

@@ & +by Y+, 7 +dy) +y (0,0 + b,y 0,7 + dy)

+2 (az @ + by Y+ 7 +d)+a,x + by +¢,7 +d, = 0.

We see at once that the only limitation placed on the con-
stants in this equation, in order that ¢ = 0 may generate a
contact transformation, is that the determinant

ap by, e, dy
Uy by €,
dgy by, 05, dy

@ by oy dy

o o o

should not vanish.

If this condition is satisfied the equation ¢ = 0 will generate
a contact transformation ; and, since the determinant does not
contain any variables, the contact transformation will be one
with respect to which there are no special elements.

Clearly a point in either space will correspond to & plane in
the other; and the straight line given by

QTEBY+N2+8 =0, 0,8+B,Y+y,2+8, =0

will be transformed to an M, whose generating equation is
the envelope of the plane ¢ = 0, when we regard =, , z as the
parameters. This envelope is a straight line, and therefore
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the contact transformation transforms straight lines into
straight lines.

If we take as the generating equation

=’ +yy —2—7 =0
—a form to which any equation, linear both in ,y, 2z and
@', 3/, 7, can be reduced by a projective point transformation—
we have the well-known contact transformation
p=a, g=y, P=a ¢ =y J=prtqy—z;
this is geometrically equivalent to reciprocation with respect
to the paraboloid of revolution
2z = a4+ 42

§196. We now proceed to discuss at greater length the
second kind of contact transformations, viz those in which
there are two generating equations.

Let these equations be

@Yz, y,d)=0, Y@y 2, y,7)=0;
then, since the equation
dd —p'da’ —qdy’ —p (dz—pde—qdy) = 0
is to be of the form
Adep+pdy =0,
we must have
T 4 2¢ iy _

P (Ag +u£,) +A55 +pgh =0,

R ) d
q (7\37 +M%) +A£, +ua;;,=0,

A Y ¢ A
P(A 5y +r5;) +A 5, +rgy =0

2 Y 2 | dy
q(xg ""“a_z) +>\3§ trgy =0

If we eliminate the undetermined function A : u from these
equations we shall have three equations; and these, together
with the generating equations, determine the contact trans-
formation scheme.

The equations ¢ = 0,y = 0, may be any whatever, provided
that the above five equations determine an element of one
space in terms of the corresponding element in the other
Bpace,
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If we take W to denote A¢+uy, and in differentiating
regard A and p a8 mere constants, we may express this
limitation by saying that the four equations

W IW W W
$=0, =0, pg-* W—O; {I?z‘ +b—y =0
in the variables @/, %/, 7, A : . are unconneeted.
It may be proved without much labour that this condition
is equivalent to saying that the determinant

kL L

% B—y v 0 0
d d d
a—i s —ély, H b_‘: s 0 O

2W *W W Y ¢
2W 2W XW 2y ¢
REW 2W 2W Y P

must not vanish by aid of ¢ =0,y = 0 for all values of
A:p; that is, the determinantal equation must be unconnected
with ¢ = 0, ¥ = 0.

If we substitute in this determinant for o/, ¢/, 2/, A : 1 their
values in terms of @, 9, 2, p, ¢ obtained from (1), and equate
the result to zero, we shall have the equation satisfied by
special elements in the space x, ¥, 2.

§ 197, In accordance with § 190, we notice that the limita-
tion placed on the generating equations is that ¢ = 0,y = 0
must not be, for all values of the parameters 2, 7/, 7/, the
integral of any partial differential equation of the first order.

Erample. 1t may at once be verified that we could not take
as generating equations

axa! +byy +ezd =0, wx’ +yy +22 = 0.

If, regarding «, %/, 2’ as parameters, we complete the Pfaffian
system of which these are the two generating equations, we
have as the third equation

(a=b) 'y = (b—c) py'? + (c—a) g7
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Eliminating the parameters «, %/, 2 we get as one of the
equations of the Pfaffian system

=pr+qy;
and we see that, according to Lie’s definition,
axx +byy +cod =0, xw'+yy +28 =0,
is therefore a complete integral of
z = pr+qy.
In this, as in all classes of contact transformations, the

general principle holds that two M,’s with a common element
are transformed into two M,’s with a common element.

§ 198. Before proceeding to discuss the applications of this
class of contact transformations to geometry, we write down
some elementary properties of complexes of lines, which will
prove useful in the sequel.

We take as the coordinates of a line whose direction cosines
are [, m, n, and which passes through the point «/, ¢/, 2’

Lm,n,a B,y
where
a=md—ny, B=unx'—ld, y=Ily—ma

If the eoordinates of a line are connected by the linear
relation dl+Am+yn+la+tm'B+a’y = 0,
where I, W/, w, &, &, ¥ are any given constants, the line is
said to belong to a given linear complex; U', m/, w', a, f, ¥
are said to be the coordinates of the complex. If the coor-
dinates of the complex are connected by the equation

Vo 4w’y =0,

then the coordinates of the complex are the coordinates of
a line, and the complex consists of straight lines intersecting
a given line,

Ve may take I/, m’, #’ to be forces along the axes of
coordinates ; and o, 3, ¥ to be couples whose axes coincide
with the axes of coordinates. If a rigid body is rotated about
the line I, m, n, g, B, y through a small angle dt, it has linear
displacements adf, Bdt, ydt along the axes, and rotations
dt, mdt,ndt about them. The work done by the given forces
and couples iy then

CatrmB+a'y+ld +mpB +ny)dt;



*

256 LINEAR COMPLEXES [198

and therefore, if a body is rotated about any line of the
complex, the given system of forces do no work on it.

These statical considerations enmable us to simplify the
equation of a linear complex; for, if we take the wrench
equivalent to the given system of forces and couples, we know
that it acts along a fixed line, which we now call the axis of
the complex; let % be the ratio of the couple to the force
in the wrench, and let us take the axis of the wrench as the
axis of 2z We now have

U=0,m"=0,a’=0, 8= 0,y=kn,

and therefore, if a line be such that the wrench does no work
on a rigid body rotating about it, its coordinates must satisfy
the equation

y+kn=0;

this therefore is & form to which any given linear complex
can be reduced.

An infinity of lines ¢an be drawn through any point
@', i, # which shall belong to the complex y+in = 0; these
lines all lie on the plane ya’—azy +k (¢ —2) = 0, which is
called a null plane of the complex. Through every point
a null plane can be drawn.

Any two lines, whose coordinates are
l,m,n, a By
Lom =L, a B, ~tn,

are said to be conjugate to one another with respect to the
complex.,

If o, o/, 2 lies on any straight line the conjugate line lies
on the null plane of &, &/, z/; and the null planes of two
points intersect on the line conjugate to the join of the two
points.

If the coordinates of two complexes

by, My, 1y, 0y, Bys 71
by My, 0y, agy By
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are connected by the equation
oy + 100+ By +my 8, + 0y, + Ny = 0,
f.he'i are said to be in involution. The statical interpretation
is that a wrench along the axis of one complex does no work
in a rigid body, which is moved along the screw of the other,
The two complexes, whose coordinates are respectively
o, &, 8,
v, &, o,
are said to be conjugate with respect to the complex
y+kn =0,
If a line belongs to any complex, its conjugate line belongs
to the conjugate complex.
If two lines intersect, their conjugate lines also intersect,

A line coincides with its conjugate, if, and only if, it belongs
to the complex, with respect to which the lines are conjugate.

§ 199. Let us now take as our generating equations for the
contact transformation the bilinear equations

(@ +byy + 62 +d) +y (e, + by +...)
+2 (@ + by + .. )+ + b,y + ... = 0,
@ad +BY 1 +0) Y (@ By +.)
+2 (a2 + 8,y +...) +a 8 + B,y +... =0,
If we keep o,y # fixed, these are the equations of two
planes; in order to simplify the form of the equations by

a projective transformation, we consider the positions of the
point o, 3/, 2/, which will cause these planes to be coincident.

For the coineidence of the planes we must have
) G +by e +d; 0@ . _ aal +... _a@ +...

G + B Y 37 8w +... a@ ... g +..0
equating these equal fractions to A, and eliminating o, ¥, ,
we have

G —Aay, bi~ABy, e—Ay, dy—Ay
Gy—Aag, b—~ABy, €Ay, dy—A3,
@y—Aag, bi—MG;, €~y dy—Ay
ay—Xay, b—AB,, ¢;~Ay,, d,—23,

CAMPBELL s



258 SIMPLIFICATION OF THE [199

There are in general, therefore, four positions of the point
a, o, 2, for which the generating equations will represent
the same plane.

‘We first consider the case where the four points lie on the
same plane; and, by a projective transformation, we may
take this plane to be the plane at infinity.

The points therefore which give coincident planes must
satisfy the equations (1), when in these we put

dy=0,8=0d,=0, 3,=0,...;
and therefore all three-rowed determinants must vanish in the
matrix
@—Aay, Ay~Aag, Gz—Ady, dy—Aa,
bi—AB, by—ABy by—ABs b—AB,
C— Ay, =AYy, Cg—Ayg C—Ay,

Now these are cubic equations in A, and by hypothesis they
are satisfied for four values of A; they must therefore be
identically true for all values of A.

The deduction of the necessary relations between the con-
stants, involved in these identities, is made easy by & geo-
metrical representation.

We take A, to be a point whose coordinates are ay, b, ¢;,
B, to be the point whose coordinates are a,, 3, y;, and 80 on.

Taking A = 0 we see that A, 4,, A, are three collinear
points; taking A to be infinite we see that B,, B,, B; are
collinear. It now follows, from the given identities, that any
three points which divide the three lines A, B;, 4, B,, A, B,,
in the same ratio are themselves collinear. These three lines
must therefore be generators of a paraboloid of which two
generators (of the opposite system) are A, 4, A, and B, B, B;.
Tt follows that A, divides 4, A, in the same ratio that B,
divides B, B,.

Similarly we see that A4,, 4,, A;, A, are four collinear
points dividing their line in the same ratios that B;, B;, B;, B,
divide their line.

§ 200. If we now take
X=ad+by +02, Y=a,d+by+e7,
Z=a\@ +BY +n?, W= +8Y +0e;
we see that the generating equations must be of the form
(X' +d)+y(Y +d) +2(pX +qY +d) +p’ X +¢'Y +d,=0,
@(Z+8)+y(W +2) +2(pZ +qW +3)+pZ +q W +2,=0,
where p, g, 7, ¢’ are some constants.
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We further simplify these equations by taking
_etprtp ,  diztdiytdistd,

Tyter+d” T y+er+gd
W=ty +do4d,
y+gz+q

when we have as generating equations
XX'+Y+Z=0, XZ+W+W=0,
where X7, ¥', Z’, W are connected by an identity of the form
) aX +0Y’ +cZ' +dW = 0.
If finally we take new sets of variables w, y, z and @', ¥/, 2/,
given by
o=X, z2=aZ+cW, y=-bZ—dW,
Wiy =a¥ +cW, o—iy=>bX +dZ, o =bT +d W,
where 1 is the symbol +'— 1, the generating equations reduce to
2zt +iy =0, x(@—iy)—2 —y=0.

To sum up: when the four points in space @/, ¢/, 2’ which
make the generating equations coincident are coplanar, the
generating equations can by a projective transformation be
thrown into the standard form

o e+ +iy =0, x(of—iy)—2'—y=0.
In this standard form we now see that every point has
this property which lies on the intersection of the cone
a?+yi4+22=0
with the plane at infinity ; that is, any point on the absolute

circle at infinity has the property of making the generating
equations coincident.

§ 201. We must now study the contaet transformation with
these generating equations

1) 24y +az’+2=0, a(@—iy)—y—2 =0.
Yy (o —ty

It is to be noticed that, as the equations are not symmetrical
in the coordinates of the two spaces, the relation between the
correspending elements in the spaces will not be symmetrical.

S 2
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In addition to (1) we have for determining the trans-
formation

Ple—g)+1+g@=0, ¢(z—g)+i(l—-gz)=0,
p+Z+q (@ —iy)=10;
and we see that eaeh element in space &, 7/, 2’ can be uniquely
determined in terms of the corresponding element in space
z, Y, 2.
If, however, we wish to express «, y, 2, p, ¢ in terms of
«, 9y, 2, p’, ¢, we have, to determine  and g, the equations
prig z_,
L = -8 =
w= =g’ ! p—ig

and therefore two different elements in space «, 3, z will have
the same correspondent in space @, ¥/, 7.

Such a pair of elements in space @, y, z we shall call con-
jugate elements; it may easily be proved that the contact
transformation

d=—q, ¥Y=p P=y ¢=-2 I=s—po—qy
will transform any element to its conjugate element.

Ezxample. Prove that this contact transformation is the
result of first reciprocating with respect to 2y = 22, and then
reflecting the surface with respect to the axis of y.

Reciprocation is equivalent to taking as our generating
equation ay +yx’ —z—2'=0;
and therefore

d=¢, Y=p, =poipy—2 p'=y (==
If we now reflect with respeet to the axis of y, we have
= 2, a'= —u, y"= y;;
and completing the contact transformation, generated by these
three equations, we have

o= '=—,
8o that
F=z-po—qy, o'=—q, Y'=p p'=y ¢'=-=
Ezample. Prove that if the element w, 9, 2, p, ¢ is rotated
90° round the axis of 2, in the positive direction, and the
conjugate element «, 3/, 2/, 2/, ¢’ is reflected in the plane z = 0,
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the two resulting elements will be reciprocal with respect
to @ +y? = 22, that is, will be connected by the equations

z+d=patqy, ¥=p yY=¢ z=p, y=¢.

§ 202, To the point &', 3, 2’ there will correspond in space
@, ¥, = the straight line given by the generating equations
when we regard @', ¥/, 2’ as fixed. The only exceptional case
is when ’, ¢/, # lies in the absolute circle in its space, and
then we have as its correspondent a plane in the other space.

The six coordinates of the straight line corresponding to
o, i, # are given by

L om _m a =_B__ 7.

17—y —7 —@*+y*+2?) &+ -2
all of these lines are therefore lines of the linear complex
7y ="n.

To the point , ¥, z there will correspond in space ', ¥/, 2’
the straight line whose coordinates are given by

1 _ m _ 7n
P(@-1) of+1 —2iz
= i - B _ b2
iwe T e B iz

i G R o R s i
This straight line is such that
B+mPen®=0,

and therefore to @, y, z there corresponds in the other space
& minimum straight line.

Tt will be noticed that, in order to find what eorresponds to
a point M,, it is only necessary to make use of the coordinates
of the point and the generating equations. In order to find
what corresponds to the surface M, given by

la+my+nz+k =0,
we must form the other Pfaffian equations of this M, viz.
{+np =10, m+ng=0
From the equations of the contact transformation we now
bave ;) L+m (& —iyf)~n'= 0.
Eliminating « and y from the generating equations and the
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equation of the given plane, we see that (on aceount of (1))
2 also disappears, and we get

n (@ +3y) +me —b = 0.

The plane therefore has as its correspondent the minimum
line o\ ot i)+ md—k =0, l+m @ —iy)—nd=0;
that is, has the same correspondent as the point

m =1 —k

&= — =— =
w Y= n

§ 203. We next find what will correspond to the straight
line (1) e=mz—ny, B=na—l; y=Ily—ma,
of which the coordinates are I, m, n, a, 3, y.

Eliminating @, y, z from two of these equations (there are
of course only two unconnected ones) and the generating

equations, we clearly get the generating equation of the M,
we require; it is
(2) L@?+y*+2)— B —y) ~m (2 +iy) +(n+y) Z—a=0.

To find the minimum straight line, which corresponds to
any point on the given line , m, n, a, 8, y, we must substitute
in the generating equations for y and 2 their values in terms
of @; we get

(2 +n) = g—1 (@ +1y),
z (o' —iy)—m) = y+ 1.

Eliminating & from these two equations, we get the equation
of the sphere which corresponds to the given straight line;
and one set of generators on this sphere consists of the minimum
lines which correspond to points on the given line,

‘Writing the equation of the sphere in the form

(3) «®+y242+ 290 +2fy + 2k’ +c= 0,
and comparing with (2), we do not get unique values for the
coordinates of the straight line in terms of the coordinates
of the sphere. If we take 7 to be the radius of the sphere
(that is, ¥/f%+g*+ R*—¢ taken positively), we see that there
are two straight lines in space @, y, z to each of which the
same sphere (3) will correspond.

These lines are respectively

1 m " a B ¥

1 —g+if h—r_—c=—g—1f=h+1-’
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which we call the positive correspondent of the sphere, and

L_ m n a _ B ¥
h—r’

17 2%y htr —¢ —g—¥
which we call the negative correspondent.

These two lines are conjugate with respect to the linear
complex y = 1.

When 7 = 0, the sphere degenerates into a cone; and any
plane through the vertex is a tangent plane to the cone
(though of course an infinity of planes through the vertex
are ent planes in a more special sense).

The two lines, the positive and negative correspondents
of the degenerate sphere, now coincide; and therefore belong
to the linear complex y = n. This is another way of obtaining
the fundamental theorem, that a point in space «’, %, 2’ has
as its correspondent in the other space a straight line of the
linear complex y = 7.

By allowing f, g, %, ¢ to increase indefinitely, without
altering their mutual ratios, we see that to the plane

290 +2 fy' +2h7’ +¢c =0,
there are two correspondents in space , y, 2, viz. the positive
correspondent
n

=0 L =
T Zg+df  h—VRErg+f?
=4 -_P - z ;
TeT —g—if  h+VRE+g+f?
and the negative correspondent obtained by changing the
Si%f,' of the surd.
he straight lines therefore, which are perpendicular to the
axis of @, are not transformed into spheres, but into planes.

§ 204. Suppose now that we have the two spheres
2?4yt 429 @ +2 Y +2 7 e, =0,
@2yt 2g,8 + 20,0 +2h? +0, =0,

then, if by my, 1y, ey, Brs Y1
ly5 M5 T, Ogs Bs ¥a
ire the line coordinates of their positive correspondents, we
ave
Loy +laay = —¢;— g, My Bt My = 2019+ 211 o
e+ Mgy, = 2hyhy— 27170,
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so that if the positive correspondents intersect,
2019+ 2h ot 2l =2 b o 4oy
that is, the two spheres touch internally.

If the positive correspondents intersect so do the negative ;
for a positive and negative correspondent are conjugate to the
linear complex y = m.

If then two spheres tonch internally the positive correspon-
dent of the first intersects the positive correspondent of the
second ; and the negative correspondents also intersect.

The two straight lines, the positive and negative correspon-
dents of a sphere, cannot intersect unless the sphere degenerates
into a point sphere ; for conjugate lines, with Tespect to a linear
complex, can only jntersect when the lines belong to the
complex ; that is, when y = m, and therefore r = 0.

If the first positive correspondent intersects the second
negative correspondent, then the second positive oorrespondent
intersects the first negative correspondent, and the spheres
have external contact.

§ 205. If we are given a line whose six coordinates are
L, m, n, o By

how are we to decide whether it is a positive or a negative
correspondent to the sphere to whish it corresponds—for we
know there is only one such sphere ?

We always suppose the radius of the sphere to be positive,
and therefore by the formula

2r=¢# 7—_1",
A/

taking, as we may, ! to be positive, we know that the line is
a positive correspondent if y > m, and a negative if ¥y < N

If then we are given two interesting lines, there is no
ambiguity as to whether the corresponding spheres intersect
externally or internally ; the question is settled by the positions
of the line with regard to the axes of coordinates.

If we neglected this consideration we should arrive at

aradoxical results by this method of contact transformation.

us, if we are given two intersecting straight lines 4, B, we
know that, if any other two straight Lines C, D intersect them
both, then C, D must themselves intersect. It would therefore
appear to follow, from the theory of contact tramsformation
explained, that if two spheres touch one another, then any
other pair of spheres, which touch both of the first pair, must
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also touch one another, a result which is obviously absurd.
To see where the error has arisen in the application of the
contact prineiple, suppose that the first two spheres touch
externally ; then 4 and B must be taken to be, one a positive,
and the “other a negative correspondent of its sphere. We
suppose C to be a positive correspondent to its sphere (',
A s positive correspondent to its sphere 4, and B a negative
correspondent to B'; we now have (’ touching A’ internally
and B externally; and the only way this could happen would
be by (’ touching the two spheres, at their common point
of contact. Similarly D must touch at this point; and there-
fore (" and I’ do touch one amother, but they are not any
spheres touching both 4" and B

§ 206. The cyclide of Dupin is the envelope of a sphere
which touches teree given spheres (Salmon, Geometry of Three
Dimensions, p. 535), there being four distinct cyclides, corre-
sponding to the different kinds of contact of the variable
sphere with the three given spheres 4, B, C.

The four cases are when the variable sphere touches,
(1) 4, B, C all externally or all internally ; (2 B, C externally
and 4 internally or l{ C internally and A externally; (3)
C, A externally and B internally, or C, 4, internally and
B externally; (4) A, B externally and C internally or 4, B
internally and C externally,

We shall only consider the first of these eyclides; taking
@, b, ¢, d to be the positive and —a, —b, —¢, —d to be the
negative correspondents of A, B, C, D we see that, either d
intersects a, b, ¢, or else it intersects the three negative cor-
respondents —a, —b, —¢; in either case it generates a surface
cf the second degree,

A eyclide of Dupin in space @', 3/, 2’ therefore generally
corresponds to a quadric in space @, ¥, 2. If we take any
generator of this quadric and regard it as the generating
curve of a curve M, in space &, ¥, z, its correspondent in the
other space will be a sphere touching the cyclide along a curve.
This curve must be a line of curvature on the cyclide; for the
normals to the sphere along this curve intersect, and therefore
the normals to the cyclide along this curve intersect.

If, however, instead of regarding the generator of the quadric
as a curve M, of o, ¢/, #’, we regard it as an M, of elements of
the quadric ; that is,if we take the single infinity of elements,
consisting of the points of the generator and the tangent planes
at these points to the quadric, then the corresponding M;
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in space @, %/, 2’ is the line of curvature, with the tangent
planes at each point of it to the eyelide.

§ 207. Any surface in space , y, 2z has at every point on it
two infiectional tangents. The surface therefore which corre-
sponds in space «, ¥, 2 will have, as corresponding to these
two inflectional tangents, two spheres each having contact
with the surface at two consecutive points; that is, the
correspondents of the inflectional tangents will be the two
spheres whose radii are the principal radii of ecurvature
(Salmon, ibid., p. 264).

It will be noticed that any straight line drawn through a
¥oint on a surface, and in the tangent plane, will be trans-
ormed into a sphere touching the corresponding surface.
The peculiar property, however, of an infiectional tangent is
that it is a straight line through two consecutive points of
a surface, and also in the two consecutive tangent planes
at these points. It is therefore transformed into a sphere
having two consecutive elements common with the new
surface ; that is, it is a sphere whose radius is equal to one of
the principal radii of curvature.

By this contact transformation therefore the curves, whose
tangents are the inflectional tangents to the surface at the
point, are transformed so as to become the lines of curvature
on the surface in space 2/, ¥/, 2.

If a surface has any straight line altogether contained in it
the corresponding surface will have a line of curvature, with
the same radius and centre of curvature all along this line.

§ 208. In Eeneral & quadric in space «,y, z is transformed
into a cyclide; but we shall now see that some quadrics are
transformed into straight lines in space «', ', 2.

Let e=ms'—ny, B=na'—l/, y=l/—ma
be a straight line in space «, ', 2; from the generating
equations we obtain, by eliminating «’, ¥/, 2,
@ ((ai+ B) @ —ny + (mi—0) 2—2y5) = ({+mi) y+nz+ai—B.
This quadric therefore, instead of having & cyclide corre-

sponding to it in space «’, ¥/, 2, has the line whose coordinates
are
&, my 1, 0,8, 7.

It may be verified without difficulty that one system of
generators of this quadric belongs to the complex ! = 0, and
the other to the complex y = x.
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§ 209. If we have a system of concentric spheres in space
&, , 7, viz.
@ty 4224290 + 2fy + 2k +e =0,
where ¢ varies, the corresponding system of manifolds in space
@, y, 2 will be straight lines satisfying the three linear com-

Plexes 4 m__mty B

Two different manifolds will correspond to a given sphere
of radius r; there will be the positive correspondent obtained
by making the coordinates of the straight line also satisfy the

linear complex 20l =y,
and the negative by making the coordinates satisfy the
complex 27l = n—y.

All these lines are generators of the same system on the
hyperboloid

) @f—g) P —zy+2ha—z+if+g=0.
The generators of the other (the second) system on (1) are
=t 2+ty=7if+g+2m+(if—g)t?;
the six coordinates of any one of these generators are

tm_m_ & _F_
0 1 —t iftgt2m+(f-g)t - —t
Since [ = 0, to each of these generators there will correspond
in space @, i/, 7 a plane touching all the concentric spheres ;
these planes must therefore be tangent planes to the asymp-

totic cone (af+g)2+(y’+f)2+(z’+h)2=0;
this result may be at once directly verified.

It may be noticed that all generators of the second system

belong to both the linear complexes
{=0 and y=mn.

The hyperboloid (1) is given when we are given a gene-
rator of its first system; one such hyperboloid can be
described through any straight line. We see therefore how
to construct the system of lines which will be transformed
into concentric spheres ; describe an hyperboloid of the form
(1) through any line; then the lines, which will be traps-
formed to concentric spheres, are the infinity of generators
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of the same system as the given line. In particular that
generator, which belongs to the linear complex y =n, will
correspond to the centre of the given system of spheres.

§ 210. If & quadric is such that all generators of one system
belong to the linear complex y = n, then its correspondent in
space &', if, ¢, instead of being a cyclide, is a circle. For we
have, in space 2, ¥, z, a system of generators intersecting two
fixed generators, and belonging to the complex y = n ; in the
corresponding figure therefore we must have a system of
points common to two spheres, that is, a circle.

§.211. We now pass on to consider the more general case
of the two bilinear generating equations, when the four points
in space 2, i/, 2/, for which the generating equations become
coincident, are not coplanar. We take these four points as
the vertices of a tetrahedron; and we do not consider the
special cases which might arise, owing to two or more of
these vertices coinciding. We choose our coordinate axes so
that this tetrahedron has for its vertices the points

(O’ 0, 0)’ (°°s 0, 0)3 (0, @0, 0): (0, 0, 00);

we thus have from the definition of the tetrahedron (employ-
ing the same notation as in § 199)

G_%_ %

G G Oy ey b b, s by

ol B Ve, b b _%_4_,

G G G G A a4 dy d

We then take
X =Tty tazto, = hztby+bzid,
dix+dyy+dyz+d,’ T dztdytdyztd,’
7 - GTteytestc, ,
dz+dyy+dztd;

and thus see that by projective transformation the generating
equations may be thrown into the forms
axal +byy + 022’ +d = 0,
z +yy +27 +1 = 0.

If we keep o/, o/, 2’ fixed, these are the equations of two
planes, and therefore to a point «, 9', 2 there corresponds



212] CONTACT TRANSFORMATION 269

a straight line in space «, ¥, 2. The six coordinates of this
line satisfy the equation

la  __ mB _  my
(t-aa—d)  —a)(p—a) ~ (a—b)(c—d)’

that is, the line belongs to a complex of the second degree.

It can be at once verified that every straight line of this
complex is divided in a constant anharmonic ratio by the
coordinate planes and the plane at infinity ; on account of
this property the complex is called a tetrahedral complex.

W}; may look on the generating equations as the polar
planes of @', ¥, #, with respect to two quadries, which do not
touch; the quadrics are referred to their common self-con-
jugate tetrahedron, viz. the coordinate planes and the plane at
infinity, and the polar planes intersect in a line of a tetra-
hedral complex of this tetrahedron.

In order to complete the contact transformation we must
add to the generating equations the three equations obtained
by eliminating A from

_p= Pt ()Y
P=0797° q_()\+c)z”
,_(Ata)z _(Atbhy
—p_(}rf-c)z’ —7= a+toz’

that is,
p(b~e)2y +q(c—a) e —(a—b) o'y =0,
prr—pza’=10, qFy—qzy'=0.

The equation p'(b—c)zy +¢'(c —a) 2/’ — (@—b) 2y = 0 is con-
nected with these, and is not therefore an additional equation.

In this contact transformation the two spaces are symmetri-
cally related ; thus a point in either corresponds to a line of
the tetrahedral complex in the other.

§]§ll2. ‘We must now find what corresponds in space =, y, 2
to the plane Il +myf +1d 4k = 0.

Forming the equations of the Pfaffian system of which this
plane is the generating surface we have

l+mp'=0, m+ng=0,
and substituting for 3" and ¢’ in the equation
P b= 2y +g (c—a)sm—(a—b) zy =0



270 TRANSFORMATION OF A PLANE [212

of the contact transformation we have
(1) I(b—c)yz+m(c—a)zx+n (a—byzy = 0.

This, however, is not the only generating equation defining
the M, which will correspond to the plane in the other space.
For, ehminating ¥/, 2’ from

aww’ +byy +ced +d = 0,

az'+ yy'+ 2 +1 =0,

' +my + n+k =0,
we see that by aid of (1) 2’ disappears at the same time, and
therefore all the three-rowed determinants vanish in the matrix
aw, by, cz, d
& ¥ =z 1
I, m, n, k

These are the equations of a twisted cubie, viz. the locus

of & point whose polsr planes with respect to the quadrics
+y?+22+1 =0 and az?+byt+e?+d =0
intersect on the plane
le+my+nz+k=0.
This cubic passes through the origin and the points at infinity
on the axes of coordinates.

To a plane in one space there will then correspond in the
other space the twisted cubic given by the above equations.
As a, Ig, ¢, d are fixed, when the contact transformation is
fixed, we may call [: m: % : k the ecoordinates of this twisted
cubie.

@

§ 213. The coordinates of any point on this cubic are
w=l(t+d)’ y= m(t+d)’ _m(t+d)
k(t+a) k(t+b) k(t+c)
Since therefore the six coordinates of the line in space
2’, f, # which corresponds to z, ¥, z are
U=(—c)ys, m'=(c—a)m, n'=(a—b)zy,
of=(a~-d)z, F=0>b-d)y, = (c—d) =,
the coordinates of the line which corresponds to a point on
the twistsd cubic are

U=@~c)mn(t+a) t+d), o= (a—d)&{E+b) (+c),
with similar expressions for the other ecoordinates.

2z
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The coordinates of the line joining two points on this
twisted cubic are

V= l(a—d) (tl—-tQ) d= mmn (b—c) (tl—tg) (t1+d) (t2+d)
TEEra) ra) T BEGHFE) (1) Gt (bt

with similar expressions for m/, ', 8, y'; such a line there-
fore belongs to the tetrahedral complex

v wE wy
E=a—d) (c—a)(o—d) (a-b)(c—ad)

and so is divided in a constant ratio by the coordinate planes,
and has, as its correspondent in space @', ¥/, 2, & point on the

1
plane o +my +nz'+k= 0.

The twisted cubic which in one space corresponds to any
plane in the other always passes through four fixed points,
viz. the origin and the points at infinity on the axes of
coordinates ; and any straight line which intersects the cubic
in two points is divided in a constant ratio by the coordinate
planes. This ratio does not depend on the position of the
plane which corresponds to the cubic.

It is generally true tbat any straight line intersecting any
twisted cubic in two points is divided in a constant anhar-
monic ratio by the faces of any tetrahedron inseribed in the
cubic. In order that a twisted cubic may belong to the
family we are here considering it is only necessary that it
should pass through the origin and the points at infinity on
the axes and be such that the anharmonic ratio for this
tetrahedron has the assigned value which defines the tetra-
hedral complex. We shall speak of these cubics as cubics of
the given complex.

Since a plane can be drawn to pass through any three points
we see that a twisted cubic can be drawn to intersect any
three lines of the tetrahedral complex; for a line of this
complex corresponds to a point in the other space.

§ 214. We next find what corresponds to the line
(1) a=md—ny, B=na'—l/, y=Ily—ma.

Eliminating ¢’ and 2/ from the equations of this line and
the given generating equations of the contact transformation,

iz az! +byy +ced’ +d = 0, a/+yy +2’+1 =0,
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we get
@ & (lw+my+nz)+l+yy—pz = 0,
o (adz+ bmy + ong) + di+byy—cBz = 0.

These are the equations of a generator of one system on
the quadric

(3) a(b—c)yz+B (c—a)zety(a—bd)ay
+i{a~dya+tm (p—d)y+n(c—d)z=0;
and since (2) corresponds to a’, ¥/, # we see that this system
{)the first system, we shall call it) of generators on this quadric
elongs to the tetrahedral complex.

Now any quadric passing through the origin and the points
at infinity on the axes of coordinates is of the form (3); we
thus have the following interesting theorem in geometry :
the generators of a quadric are divided in a constant anhar-
monic ratio by the four planes of any inseribed tetrahedron *.

The following is an analytical proof not depending on
contact transformation theory. The equation of the quadric
referred to the tetrahedron as tetrahedron of reference is

Ay Y2+ by 2x + ¢y 2y + azw + byw + czw = 0,

The conditions that the line

ly—mz = yw, ne—lz = pw
may lie wholly on the quadric are

al'mxn+b1 wl+elm =0, a, By—bly+clg =0,
oy (ny—~mB) +1(ery—b B) +1 (la +mb -+ ne) = 0.
Eliminating { from these equations we get
(@mAB—bynt) (G m +bym)
+mm (¢, bm® + by en® + (co, + bb;—aa,) mm) = 0,
mn (cB—by) = By (e;m+b,n).
These equations give us to determine the ratio of 8 to y
bibmPy® + e om? 82+ (byb+ ¢, c~a,a) mnBy = 0;
and we have similar equations fora: g and a: {
If the straight line intersects the faces of the tetrahedron

* This and much more about the tetrabedral complex will be found in
z Lie-S 11

Berihrungstrang/ heffers, Chap. VIIL




216} DEGENERATION OF THE QUADRIC 273

of reference in A, B, C, D respectively, and if the anharmonie

% is denoted by A, we therefore have

a o — (g a+b, b—ce)A+b, b =0,

so that the generator is divided in a constant ratio by the
faces of the tetrahedron of reference.

ratio

§ 215, There are two systems of generators in the quadric
(1) a(—9ye+8(c—a)zmty (a—b)ay
+i(a—d)z+m(b-d)y+n (c—d)z = 0.
To the first system of these generators we have seen that
there correspond, in space «/, ¥/, Z, the points on the lines
2) e=m—ny, B=na—1l, y=1Ul— mz.
The equations of the generators of the other system are
t (lz+ my + ne) + ale + bmy + enz = 0,
tl—B2+yy)+byy—cBz +1d.

The six coordinates of this generator are given by
ad=1l{a+t), BF=m{b+t), y=mn(c+t),
poaGH) @+t Bt @rt) , y@+t) (Y.

- d+t d+t - d+t ’
and therefore to any gemerator of this system there cor-
responds in space &, ¥, z’ the quadrie

(3) db—c)yZ +p (c—a)2’d +vy'(a—b) 'y
+i(a~d)y o +m/(b—d)yf +n'(c~d) 2= 0.

Since all erators of the first system intersect each
generator of the second, we can conclude that all points lying
on (2) must also lie on (3); that is, (3) contains the line (2) ;
this may easily be verified directly.

§ 216. If the straight line whose coordinates are

l,m, ma By
belongs to the tetrahedral complex, that is, if
la _ mp _ ny
G=(@—d) (c—a)—d) (a—b)(c—d)
the quadric of the form (1) of § 215 which corresponds to

the line i8 a cone,
CAMPBELL T
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The w? of elements which consists of points on the above
line, together with the infinity of planes which contains the
line, is therefore transformed into the cone M,.

We know, however, that the M, which corresponds to &
line of the tetrahedral complex is a point M,, so that this
point M, must coincide with the cone M,. There is of course
nothing paradoxical in this; for the point must be the vertex
of the cone, and any plane through the vertex will be a
tangent plane to the cone.

The quadric which corresponds to a straight line has, like
the twisted cubic which corresponded to the plane, the pro-
perties of passing through the origin and the points at infinity
on the axes of coordinates; it has also the property that its
generators of one system are divided in the assigned ratio
which defines the tetrahedral complex. We shall call any
quadrie of this family a quadric of the given complex.

The contact transformation we have now considered has
the property of transforming point M,’s into the M,’s of lines
of the tetrahedral complex ; or, as we may briefly express it,
points into lines of the complex. It also transforms planes
into twisted cubics of the complex; and straight lines
%enerally into quadrics of the complex, though, if the line

elongs to the complex, the quadrics degenerate into points.

§ 217. We may now apply this method of transformation
to deduce new theorems from theorems already known.

Thus a straight line can be drawn through any two points
in space ; therefore a quadric of the complex can be drawn
through any two lines of the complex.

Again any two planes intersect in a straight line ; therefore
a quadric of the complex can be drawn through any two
twisted cubics of the complex.

A straight line in s which intersects three fixed lines
intersects an infinity of other fixed lines ; therefore a quadric
of the complex which touches three fixed quadrics of the
complex touches also an infinity of fixed quadrics of the
complex.

One more illustration of the method will be afforded by
taking any six points P,, P,, P,, P,, P;, P, on a twisted
cubic of the complex; to these six points will eorrespond
six lines of the complex, and all of these lines will lie on
the plane which corresponds to the cubic. These lines are
divided in a constant anharmonic ratio by the coordinate
planes and the plane at infinity; and therefore are divided
in a constant ratio by the sides of a fixed triangle. They
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therefore all touch a parabola ; let AB correspond to P,, BC
to P, and so on; B will then correspond to P, P,. If we
now ap%ly Brianchon’s theorem to the hexagon ABCDEF
formed by the six lines, we see that AD, BE, and CF are
concurrent. To AD will correspond the quadric of the
complex which contains the lines P, Py and P, P,; to BE
the quadric with the generators P, P, and P, P;; to CF the
quadric with the generators P, P, and P, P;; the theorem
which we can now deduce from Brianchon’s is that these three
quadries have a common generator.

§218. We have now examined the first two classes of contact
transformations and there remains the case where there are
three generating equations; but as we can now express
o, y, 7 in terms of , ¥, 2, and @, y, 2 in terms of &, ¥, 7,
this is & mere extended point transformation. We have had
examples of this class of contact transformation in Chapter II,
and shall return to the subject in Chapter XX on differential
invariants, so that we need not now consider it further.



CHAPTER XVII
INFINITESIMAL CONTACT TRANSFORMATIONS

§ 219, If 2, @, ..., Ty Pps over Pn are the coordinates of an
element in n-way space,
2 = 2L (R, coes By 2y Prs vees Puds
o = g+ 8 (@, oy Ts 2y Prs wvs Py (= 1,000 1),
Py = Pit bmi @, s Ty 8 Py Pr)
is an infinitesimal transformation of the elements, if ¢ is a
constant so small that its square may be neglected.
The transformation is an infinitesimal contact transforma-
tion if the Pfaffian equation
dz—p, dity—...—ppda, = 0
is unaltered ; that is, if we have
e/~ 2 p; A, = (1+pt) (do— 2 p;da),
where p is some function of the coordinates of the element.
Now do'= dz+td{, da;=da;+tdf;, dp;= dp;+idng;

i=n

if then we take W= p;&~6
weo have
i=n i=n i=n i=n
de 2, pi dey = de— = pyday+ t (@ ~ 2 pedbs — 2 widy)

= do— 2, p;duy—tadW +1 2 (& dpi—meday)
(neglecting small quantities of the order £?); and therefore

i=n

S (Eypi—ridz)—dW = p [do— 3 peda),
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;W d
so that §i=_. ==, m=———Pi—>
Di

(=S mb- W—Ep.— L

§ 220. Conversely if W is any function whatever of the
coordinates of an element,
;W W
® -’4— wo+t 3p; 4 p: p'_t(bw +pib_z)’

7= z+t(2pia—W)

will be an infinitesimal contact transformation; for
dz'— 3, p; ddt
=de— tdW+t2p, +t2

< bW bW
—Ep.dw.ﬂzdw. 52, P bz) tE;O.

= dz—zpidw-

‘)
+t( dW+E dp,+2 wa;+bwzp,dw)

= (l—tb—z) (dz—zpi da;) -

The function W is called the characteristic function of the
infinitesimal contact transformation ; and the corresponding
infinitesimal operator is

i:an > i= i=n bW ? ?
Za_p,.»z E(M i »z)ap El"ap,. % M
If W does not contain z, and is homogeneous of the first

degree in p,, ..., p,, the infinitesimal contact transformation is
a homogeneous one,

§ 221. Suppose now that ¢ (2 2y, ..., Ty Prs+ees P) 18 a.ny
function of the coordinates of an element, then 2’2, ..., @},
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P}, e P, being the contiguous element defined by (1) of

; ; d
BBy e s D ver ) = ¢+t[W,¢]_tWS§,
where
Y4 a¢
[W¢] 2( ‘Bz) 132))
The neces and suﬁicle,nt condltwn therefore that the

funetion ¢ should admit the infinitesimal contact transforma-
tion with the characteristie function W is

(W, ]=W32.

Similarly we see that the equatlon ¢ = 0 admita the con-

tact transformation if the equation [W, ¢]— W—i) =0 is

connected with ¢ = 0.

If the equation ¢ = 0 admits the contact transformation,
with the characteristic function W, the equations W = 0 and
¢ = 0 will be equations in involution,

§ 222 If $6,=0,..,¢0,=0,

are any m equations in involution (§ 153), then, W = 0 being
any equation connected with the system, this system will
admxt the contact transformation, whose characteristic function

If we are given any function ¢ (2, 2y,...,2,, Dy, ..., Pn) of
the coordinates of an element, we ecan find 2n unconnected
functions in involution with this funetion ; let these func-
tions be

X - @y Prs oves Prds vovs Do (25 Ly eens Ty Prs ""pﬂ);
it will now be proved that the equations

(1) iz x5y @y Prs .-ulﬂn) = &; (27, oes @, P oo DR,

=1,..,2n),
define a simple infinity of united elements that is, an M,
containing the assigned element 2°, a2, ..., 3, 2%, ..., 23.
If Ty coesy s & Pyseees Pg

and @ +day, ..., 2, +de,, 24+dz, p+dp;, P+ dp,



@
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are two consecutive elements satisfying the equations (1)
then

2 204 4 4 205 65y, 4 20
aa'qd”‘+"'+ a—w,,dw"+ Bpldpl+“'+ bpnbp,,+ 3z

and since all the functions ¢,, ..., ¢,, are in involution with ¢
we must have

D,
b dz=10;

k==n
2 3 3¢ | ¢, 2¢
it Sayap, 5 2 Phap,
3¢ (29 ¢ 3 3¢ ¢
- 3101(3_951 +1”13—z) e m 3, +Pna—z) .

g,
0=
®

There are 27 equations of the form (2) by means of which
we can determine the ratios of
Aty s oy Ay, d2, dpy, ..., dpy:

the equations (3) to determine the ratios of
&

W W i"pkw % 2

W T T T
are exactly the same ; and therefore we conclude that

de,  _de,_ de

W—..._E——k=n )4)

P, 3P, Zpk 317k

®
dp, _- = dp,
3¢ T 2"
“5, P " e, TPr3s

Since the equations (4) satisfy Pfaff's equation
dz = pyda; + ... +pydey,,

we conclude that the infinity of elements satisfying each of
the equations (1) consists of united elements.

Any simple infinity of elements satisfying the equations (4)
is called a characteristic manifold or M, of the function ¢.

It is possible to describe one, and only one, of these
characteristic M,’s through any assigned element of space
2Dy 20, ey @8, P9, .en, 083 a0d it is easily seen to lie altogether
on the manifold

(8215 eees Ty PryoonaPr) = 9 (2% 20, 205 P e 1),
as well as on each of the manifolds given by (1).
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We shall now prove that by any contact transformation
& characteristic M; of a function is transformed into a charac-
teristic M, of the corresponding function. This follows at
once from the facts: (1) that two functions in involution
are transformed into two functions in involution; and (2)
that the characteristic M, of a function ¢, which contains the
element 2% a9, ...,a%, pl, ...,p%, consists of all elements com-
mon to

4),'(2, Lys ooy Tny Prs '-'spn) = ¢,-(z°,w‘l’, srey zﬁa o -~-s102),
G=1,..,20),

where ¢,, ..., $,, are any 2n unconnected functions in involu-
tion with ¢.

§ 223. We may now interpret an infinitesimal contact
transformation as follows: take any element 2 ay,...,,,
Py .-, Py 80d construct the characteristic M; of the character-
istic function W which contains this element. Imagine an
element to be moving along this 3/;, the consecutive element
to the one assumed is

24 th, @yl ey Tyt by, Py thy,y ey P+ Dy,
where ¢ is the small interval of time taken to move to this

consecutive position; the infinitesimal contact transformation
which corresponds to W is then given by

=24t o) = +tEy, ., 0, = w, +EE,,

PL=P1+Em, o P = Prtimy,
where

By = &iyeunr @y = Epy Pr="Ty, co0y P =T, but 5— W= ¢,

We may then say that the velocity of an element, under the
effect of the infinitesimal contact transformation whose
characteristic is #, is composed of a velocity along the
characteristic M, of W containing this element, and a velocity

along the axis of z; the ratio of the 2z component of the
first velocity to that of the second being as

k=n
W
—Zpkm to —W.

§ 224. If P and P’ are two consecutive points in space, the
straight line joining the points and terminated by them is
called a linear element.
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If we take any point 2, ,,...,2, then "1 elements
2, By, 00y Ty, Prs --vr Py, poss through this point, and satisfy the
equation ¢ = 0; it therefore follows that wo®! characteristic
M.’s of this equation pass through any point. Taking

By %yy e By O2idey i day: .. i da,

to be the coordinates of the linear element joining 2, @, , ..., 7,
to a consecutive point on any one of these characteristic M,’s,
we gee that these coordinates must satisfy the equation (or
equations) obtained by eliminating p, ..., p, from the equa-
tions

de,  dex, dz,, dz
1 =—t=, =t ., ¢=0
R T T S T SR M
op;  dpe d3p, Popy "3 pn

This equation is called the equation of the elementary
integral cone of ¢ = 0 at the point x,, ..., z,,2.

We have seen that if the equation ¢ = 0 1s transformed by
a contact transformation into y = 0, then the characteristic
M,'s of ¢ = 0 are transformed so as to be the characteristic
Ms of 4 = 0. Tt does not, however, follow that the elemen-
tary integral cones of ¢ =0 will be transformed into the
elementary integral cones of y = 0; for characteristic M’s,
meeting in a point, will not in general be transformed to
characteristic M’s, meeting in a point.

If, however, the transformation is merely a point transfor-
mation, the elementary integral cones of one equation will be
transformed to the elementary integral cones of the other.
In particular, the point transformations which leave a given
equation of the first order unaltered, will also leave the
system of integral cones unaltered, though naturally these
cones will be transformed inter se.

Looking on

pldxl+ e +pndwn =dz

as the equation of an elementary plane whose coordinates
are py,...,p,, We easily prove that ¢ = 0 is the tangential
equation of the elementary integral cone of ¢ = 0 at the
point 2,2y, ..., &,

Conversely, suppose we are given an equation, homogeneous
in dz,dw,, ..., d%, , and connecting 2, @y, ..., &, dz, day, ..., dT,,
the coordinates of a linear element; then, if, regarding
dz:dx,:da,: ... as the variables, we find its tangential equa-
tion, we shall have a differential equation of the first order,
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of which the given equation will be an elementary integral
cone.

We thus see that any point transformation, which leaves
a differential equation of the first order unaltered, will also
leave unaltered an equation between the coordinates of a linear
element; and, conversely, a point transformation, which
leaves an equation between the coordinates of a linear element
unaltered, will also leave unaltered a differential equation of
the first order.

An equation between the coordinates of a linear element
is called a Mongian equation. We have now proved that
to every Mongien equation there will correspond in general
one differential equation of the first order; and conversely
to every differential equation of the first order there will in
general correspond a Mongian equation,

We say, ‘in general,’ because, for instance, if the elementary
integral cone at a point shrinks into a line (as it would if the
given differential equation were linear) there would not be
one definite Mongian equation but the several equations
which malte up the line; and other cases might arise where
the result of eliminating p,, ..., p, from (1) would be several
equations,

So also if the Mongian equation were linearindz, da,, ..., dz,
instead of having ome equation between the coordinates
2, &1y w00y Tyy Py, -ees Py We should have n such equations ; for
the lgnve]ope of a plane touching a given plane is the plane
itself.

§ 225. Ezample. We saw in § 33 that the point transfor-
mations which were admitted by
1+p*+¢? =0,
were also admitted by

da? + dy* +dz? = 0,

the equation satisfied by the linear element of & minimum
curve; these two equations are clearly associated in the
menner just deseribed.

A straight line of the tetrabedral complex which we con-
sidered in Chapter XVII has its linear elements connected by
the equation,

—c)(@a—d)xdydz + (c—a) (b—d)ydzda

1) ¢
( +{a—b) (¢c~d)zdady = 0.
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If we form the associated partial differential equation, by
expressing the condition that
pde+qdy =dz

may, when we substitute pdz+qdy for dz in (1), lead to
& quadratic with equal roots in dz: dy, we obtain

@) (pz(a—a) (b—c) +gy (b—d) (c—a) + (c~d) (a~}))?
= 4pqay (@—d) (b—0) (0—d) (o—a),
which may also be written in the form

vpz(a—d)(b—c)+ Vqy (b ~d) c—a)+ v{c—d) (b—a) = 0.
We could now find the grou ssuming such to exist—of
point transformations admitted%;?l), and the group admitted
by (2); and seeing that these coincide we should verify the
general theorem of their coincidence.
Without, however, actually finding either of these groups,
we may easily verify that the point transformation

¥ —_—
v VDD V) ),
E4 «
(3) y=eVoD (c—d)+m,

z’ " ¥
2 = V=) @8 V-a)(-a)

transforms
(b—c) (a—~d)y zdydz + (c—a) (b—~d) ydzdx

+ (a—b) (¢—d) zdzdy = 0
into da/?+dy®+da'? = 0.

The group found in Chapter II will therefore, when the
transformation (3) is applied to it, be a group transforming
any linear element of a tetrahedral complex info another such
linear element ; and will therefore leave unaltered the equa~-
tion (1). It may also be easily verified that (3) will transform
(2) into 1+p24¢% =0,

We can always find a contact transformation which will
transform any given partial differential equation into any
other assigned equation, if both are of the first order; this
we have proved in § 183; but it is not generally true that
we can find a point transformation which will do so. The
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example which we have just considered, suggests that if we
wish to determine whether two assigned equations can be
transformed, the one into the other, by a point transformation,
it may be more convenient to determine whether or no the
corresponding Mongian equations are transformable into one
another by & point transformation.

§ 226. Let W denote the infinitesimal operator which
corresponds to the characteristic function W, viz.

Wy T W P w2
Za_p.a_w,—z(b +p’az)ap zp'bp % 2'

As we vary the characteristic function we get different
operators; we must now find the alternant of two such
operators.

To do this, we take

=200 =% Ypr1 =2
__ % __ H= W,
L= eenPr = 5 =—qns1 W,
Int1 Un+1

and we find the operator in the variables

Y eesYnats 1 ooosQnsrs
which has the same effect on any function of these variables
(provided that it is homogeneous and of zero degme) a8
the operator W has on the same function expressed in terms
of @, . ps 2, Pisoens Pa-

Let the function on which we are to operate be

(@15 3By B Pry-esPp) EV H1s evr Yns1s Gur o s Qut)s
then by § 184

2 _ kA4 34’ 3\// ¥ _ ¥y
T TR TSy W% gy
(= l, ey M),

and, since ¥ is homogeneous of zero degree,

i=n

d >
EZ’O ¢ 2 Q’ _qn+laq‘ll
41
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‘We now get

= -QM-;:Z ( —H) b?li n+3 (

3 Gni1
2

R T a1 (

5 G +1)39.
) —q b (—H 3y
D+l Bq,,H Hb?nu Tn+1” Yn+1
H 3%
(B
Ins1 Yns1

and therefore
i=n+l i=n+l
— dH 3y QHW 4
Wo= —— — — — = Hy,
»=2 ¢; 2 Swidg Y
where H is the infinitesimal homogeneous contact operator
which corresponds to the characteristic function H.

That is, W operating on any function of &y, ..., &, % P1, .01 P
has the same effect as H on the equivalent function of
Y15 +osYnets Gas s Gnry Where H=—g,, W.

It therefore follows that
waz—wzﬁ = Elﬁ2_1—fzﬁl = (Hy, H,).
We proved in § 184 that W, and W, being any functions of
Liseees @y & Proeens Py
[Wv Wz]z,z,p ==qn41 (Wl’ WZ)!I-‘I;
and therefore

1 —1
o mw Y, =T (G Was Gurs W
g 7)y,q qﬂ+1(Q1l+l 19 In+1 Qy,q
AW,
WY1
LA LA
I
bW
LE bzl)
That is, W, W,— W, W, has the characteristic function
bW
W)

= (= Gus1 W1s Wy, g+ Wag—
= _QH+1(W1!W»y,q (Wl

= [Wu Wz]z,z,p_(Wl 3

W,
[Wv Wz]z, z,p (Wl 3
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§ 227. We next proceed to show how the operator W is
transformed by the contact transformation

m G=X, J=Z, p="P,
with the multiplier p defined by
AZ—3 P;dX; = p(de— 2 pyday).
Take
Ty =Yy =Yns Z=Yn41s 1= :&"'-’ n = A,
n+1 n+1

2 -
@ B =Yl B =y 2’=%.+1,Pi=qTf’---,P=g?—“;

n+1
andlet =1, q;=@Q, t=1,..,n+1)

be the homogeneous contact transformation equivalent to (1)
obtained by eliminating «, p and «, p’ from (1) and (2).

Let H=—q,,,W; let K’ denote the function of ¥/, ¢’ equi-
valent to H; and let V” be that function of 2/, p’ which is
given by K'=—¢ ., V.

We now have H = K’ and therefore by § 183 H = K’; and

having proved that W= H, and ¥V'= K, we conclude that
W=V.

Now V=Tatiyp = pW; in order therefore to express w

n+1
in terms of the variables z},...,4,, Z, p}, ..., o}, Wwe find p, and
then express pW in terms of these variabl by (1) ; the fune-
tion thus obtained will be the characteristic function, with
respect to the new variables, of the required operator, equi-
valent to W.

§ 228. The totality of contact transformations form a
group. For, 7, &, ...,4}, pl, ..., o), being the element derived
by anz}v contact transformation from 2, z,,...,2,, Py, ---) P,
and 27, o/, ..., 2, p{,...,p; being similarly derived from
2, @, ey @y, Piyeens Py by any other contact transformation,
we deduce from )

2 = 2 piyda} = p(da— Zp;da),

i=n i=n

and 4~ 3 deff = of (@~ 3 7} def),
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that de"— 3, p daf = pp’ (de— 2, pyday).
Therefore 2”, @, ..., 2}, 2}y ..., P 18 derived from

2y Xy eves Bpy Proeees P

by a contact transformation; that is, contact transformations
satisfy the definition of a group, and eclearly, the group is
a continuous one.

We are now going to explain what is meant by a finite
continuous contact group; it will be seen that many of the
properties of finite continuous point groups can be transferred
to the groups now about to be defined.

If &= Xy (Byy o0y By 2 Py eees Prs Wy oony Gy,
Pi =Py (@1 ees By 2y Diseoes Py Oy ooy @),
Y = Z (T s By 2y Prseees Py Gy eens By)
is a contact transformation for all values of the constants
@y «ver @, 3 and if from these equations and
& = X (@] iy s 7y Py oo Py By e b)),
p::’= P‘i(zll""’m’,n’ 2’, p;’ ""p;ﬂ bl’ At bf)!
=L@,y &y Py Pl by e by),

where &,, ..., b, are another set of constants, we can deduce

@ = X (%1, 000, By 25 Py over Pps Crp eor &)y

2= Py (%100 Ty 25 Prseeos Py CrpeeerCp)s

2 =2 (B, s Byy By Prs eees Py CpseverCy)y
where ¢y, ...,¢, are constants depending on ay, ...,q,, by, ..., b,,
then X;, P;, Z are said to be functions defining a finite con-
tinuous contact transformation group.
_ Such a group will have r independent infinitesimal operators
Wy, ..o W,. We see at once that the corresponding character-
istic functions must be independent, that is, there must be no
relation of the form

Wit +e, W, =0,

where ¢,,...,¢, are constants, connecting the characteristic
functions. Also any finite transformations of the group can
be obtained by endﬁ;ss repetition of the proper infinitesimal
transformation,
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The alternant of any two of these operators is not inde-
pendent of the set of operators ; we must therefore have

r=1r

o _ P=1,..,7
(T W3) =2 e Wi k=1 r)'

3 seey

Conversely, if we have r independent operators satisfying
these conditions, they generate a finite continuous contact
transformation group. If we use the symbol { W, W;} to
denote [W;, Wy, o p— Wla—z2 + W, 3;1,1, We can express
this fundamental theorem in terms of the characteristic
funetions thus:

k=r
{(Wo Wi} =2 W

These theorems for contact groups follow at once from what
has been proved for point groups.

The constants cg;, ... are still called the structure constants
of the group.

§ 229. If W is of the particular form

ot tpab—§

where £,..., §,, { involve only z,,...,2,,2, the corresponding
operator is said to be the extended operator of

d d d
flﬂl +---+f,.37n _cb_z’
and Z'= 24 ( (%1, eers Tns?)
@ =i+t (%1, ey 20y 2)
Py =Pt (Tss ey Ty 2 Pry oens D)
is said to be the extended infinitesimal point transformation
of @ = @+ Ry ceus By 2)y ooes Wy = Ty +£E, Ty ooy Ty 2)s
=2 +t{(%y, .0, Ty, 2),
and it is entirely given when the point transformation is
given,
Suppose that
(1) @ =X (@500 Ty 2 Bpyees @)y eny
Ty = Xy (B1s oo B 2y Uy ey )y 2= 2 (g, o0y B By Gy onnr Gy)
are the equations of a point group; when we know the form
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of the funetions X, ..., X,,Z we can, as in § 185, find the

form of the functions Py, .... P, where

D= Pi(@1) cois 8002 Dysorer P> Oy e @)y (t=1,..,m).
It is now obvious that in the variables 2,2, ..., z,, Prseesy

P
these (27 + 1) equations define a group of order r; for, from (13‘
and

@) o =X, o, @y, Z5by,.000,),
=2, ..., 2,by 0 b,), GE=1,..,mn),
where b, ...,b, are constants, and where the equations (2)
involve the additional equations
27 =Py s @y 200 e s Byy b, (t=1,...,m),
we may deduce
(3) @ = Xy (1) 0 Ty 5044 000s €,
T=Z (B vy By 2015 0000 Gy)y (6= 1,00, m),
where ¢, ...,¢, are constants which are functions of the sets
@ys i3y byy 0y, 5 and from (3) we may deduce
P = Py iy By 2,015 000y Py Oy vy Cr), (t=1,..,n).

§ 280. Let W,,..., W, be the extended operators of this
group in the 2241 variables, and T, ..., U, the operators
of the original group ; it can now be proved that the structure
constants of the extended group are the same as the structure
constants of the original one.

k=r

Let W W) = 2 va0, Wi
h=r
ToTy=2 can Ty,
and let W,=U;+7,
— d
50 that in P, the terms —a~,---s—a 2 do not oeeur.
3z, 3w, 3

‘We now have
(W—Q’Wk) = ([71"*‘ Vi! [71"*‘ I777::)

— = N 3
= (T;, Uy) + operators in —; ++0s
(U;, Uz) + op oS

only,

for the coeflicients of o=, 2=y < in U; and U, involve
@y oz, oz

only @y, ..., 2,, 2.

CAupRECLL T
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‘We have, therefore,

k=1 h=r
= 7 .9 d
2 vin Wy =2 ciin Uy, + operators in 5o, onlys
P2 Pr
so that
g ? L
> (an—cua) T, = operators not involving PR ot P

It follows that y;y, = ¢y, for all values of 4, %, & ; that is, the
extended group has the same structure constants ss the
original point group.

We sce, therefore, that if we are given any structure con-
stants, we can always find at least one contact group (viz. the
extended point group) with the assigned structure; and,
therefore, the third fundamental theorem also holds for contact
transformation groups.

§ 231. We now proceed to obtain the necessary and
sufficient conditions that two groups of contact transformations,
in the same number of variables, may be transformable, the
one into the other, by a contact transformation. Since a con-
tact transformation in 2, @y, ..., T4, Py, - Py CaN be expressed
as & homogeneous transformation in ¥y, veo, Ynr1s @1s over Gryts
it will be sufficient to consider this problem for the case of the
homogeneous contact groups.

Suppose Hj, ..., H, are the r independent charscteristic
functions of a finite continuous homogeneous group; let us
apply any homogeneous transformation, and let these functions
become respectively K7, ..., K; when expressed in terms of
the new variables %}, ...,¥y: ¢},..., ¢ by the given homo-
geneous contact transformation

%= Yi (Y1> ey Yns Qa5 ooer Gu)s &= Qi(ylx coosUns Qa5 oo Gnds
(1: =1,..,1m).
We know that (H;, Hy), , = (K, Kj) g,y and therefore
h=wr
(KB g =2 eyn s
s0 that the new characteristic functions in 4}, ..., %y, @15 «+es @
generate a group with the same structure constants.

Now the functions Hy, ..., H, are independent in the sense
that there is no relation between them of the form

e H +...+e,H. =0,
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where ¢, ...,¢, are constants; but they do not need to be
functionally unconnected. Suppose that H,, ..., H,, are fune-
tionally unconnected, and that the other functions H,, ,,, ..., H,
can be expressed in terms of them, so that

Hypvt = bt (Hys oo Hy), t=1,...,7r—m),
and therefore
st = G (K, s K

If then we are given the r characteristic functions of a
transformation group, viz. H,, ..., H,, and the r characteristic
functions of another group, viz. K, ..., K,, we cannot trans-
form the one group into the other, so that H; may become K,
unless the structure constants are the same, and unless the
funetional relations are also the same,

§ 232. We shall now prove that these necessary conditions
are sufficient. Let H,, ..., H, be the one independent set of
characteristic functions such that

h=r
(H, Hy) =2 oy, Hy,
and Hyyy = bpy (H,, .., Hy), t=1,.n,r—m);
and let K, ..., K, be another sot of independent characteristic
functions such that
h=r
(B, K) =2 o, Ky,
and Ky = ¢, (K, .., K,), t=1,..,7r-m).

Hy, ..., H, now form a homogeneous function system with

the structure functions Wiy eery Wy, ... Where

s=m t=rem
Wy =Ecij8Hn+EciJ,m+t¢m+t (Hy o, Hy), wy=1,
(i:l,...,ﬂl)
Jj=1,,m

By what we have proved in § 182 there can now be found
a homogencous contact transformation, which will transform
H,,...,H, into K,, ..., K, respectively, since the two systems
have the same structure {Gnctions.

It is clear that this transformation will also transform
Hypyy, .o H, into Ky, o, ..., K, respectively; the necessary
conditions are therefore also sufficient conditions.

It might be supposed that we could from this theorem

T 2



292 REDUCIBLE CONTACT GROUPS [232

deduce the condition that two point groups should be trans-
formable, the one into the other; viz. that all we should have
to do would be to extend the point groups, and then see
whether they were so transformsble. We could not infer
from this, however, that the point groups would be transform-
able into one another by a point transformation, unless we
know that the contact transformation, which transforms the
one extended point group into the other extended point
group, is itself a mere extended point transformation.

§ 233. We have proved that given any system of structure
constants we can always find a contact group with the given
structure. The particular one we have shown how to construct
was an extended point group; there will however be others;
in fact, we have only to apply an arbitrary contact transfor-
mation to this extended point group, and we shall have a
group which will not generally be a mere extended point
group. Such contact groups, however, being deducible from
extended point groups by a contact transformation, are said to
be reducible contact transformation groups; other groups
which have not this property are said to be irreducible.

The structure constants of any contact transformation
group, reducible or otherwise, satisfy the conditions

Cipj o = 0,
t=n
2 (eane s+ Cuje Cotat+ Gir Cria) = 05
as we at once see from the identities
o (Wf»_W k)+(W_k_sWi =0
(Wi, Wi W)+ (Wi, W)), W)+ (W, W), W) = 0.

§ 234, Contact transformation groupsin z,a,...,%,, Py, -+ Pn
are point groups in these (27 + 1) variables ; but it is not true,
conversely, that point groups in (2n+1) variables are
necessarily, or generally, contact transformation groups. If
we write the variables in the form z,%,, ..., %, Py, .+»Pn, the
group in these variables will only be a contact transformation
one in the (n+1)-way space z,a,, ..., 2, if all the transfor-
mations of the group are characterized by the property of
leaving the equation

Az —p,dity~ ... ~p pda, = 0
invariant.
From a knowledge then of contact transformation groups
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in spaces of lower dimensions we can often deduce important
information as to point groups in space of higher dimensions.
Thus suppose, in space of s dimensions, we know that a group,
which we wish to determine, has the property of leaving
unaltered an equation of the form

Sidawy + .+ fdz, = 0,

where f,, ...,f, are functions of z;,...,2,. By the theor
of Phaffs Problem a transformation of the variables will
reduce this equation to one or other of the two forms

Wonsr—=P1Y— oo —Pu¥Y = 0,
P18Yi+ oo+ PpdYm = 0,
where 2m+1 does not exceed s; and therefore the group
we seek must, when expressed in terms of the new variables,

be a contact transformation group in a space of not more than
3 (8+ 1) dimensions.



CHAPTER XIX

THE EXTENDED INFINITESIMAL CONTACT
TRANSFORMATIONS: APPLICATIONS
TO GEOMETRY

§235. If 2= ¢(x, ..., %,) is any surface in (n+1)-way
space, we shall now consider how the derivatives of z with
respect to @, ..., %, are transformed by the application of an
assigned infinitesimal contaet transformation.

‘We must regard the function ¢ which defines the surface as
unknown ; for otherwise the derivatives of z would be known
functions of #;, ..., #,; and the contact transformation would
be (when we replace p,, ..., p, by their expressions in terms
of @, ..., x, obtained from z = ¢ (,,...,x,) & mere point
transformation ; and would apply, not to any surface, but
merely to the particular surface under consideration.

Let p;,..., p, be the first derivatives, Pij» - the second
oz
3, 0x;
derivatives and so on; and let W be the characteristic fune-
tion of the assigned contact transformation which it is our

object to extend to derivatives of any required order.

Let the extended contact transformation be denoted by

derivatives, where pi; denotes * Piji> +++ the third

’

2 =24 (@ s Ty 2, Py ony D)y

a”‘l‘ = xl'+t£‘i (“1: ooy Ty 2, Py, ~--s‘Pn),

Py =Pittm By 24y 2, Pry eey Pads

D= Pij + 1755 (Tis vy Tns 25 Py ves Dy Pras ovos Prns Pars -o )
and 80 on, where in Tijy +e0 1O derivatives of order higher
than the seecond can occur, in Tijks -+ 1O derivatives of order
hi%l‘}er than the third, and so gerierally.

e know how to express ¢, &, =, in terms of W and its
derivatives, and we have now to express similarly Mgy eue
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ian

We have dp) =2 P 0
and therefore dm = 3 meda;+ 2 P dés
so that o )
i=n Jmizn i=n

(1) 3 mda— 2 prag doy = d (m,— 2, pra &)
If we use the symbol % to denote differentiation with
%

respect to @y, keeping @;,..., 2.1, g4y ey ¥, all constant,
but not 2z or 1ts derivatives, we have

d > e
d‘xk +pkaz +Epkn ap +Epknj ap
BW
Now —m= +1’k az s &=
foiy W W T W AW
so that m— X &= ey P Epknap —dz’

since W does not contain derivatives of order higher than
the first.
From the equation (1) we can therefore deduce
awW
""ki_zpkﬁf = Tmday
The result at which we have arrived may be thus stated :

—my= d:, »> with the highest derivatives which occur omitted ;
i

> with the highest derivatives which ocour

_ W

Ty d,
omitted.

In exactly the same manner we could prove that

— M= %, with the highest derivatives omitted,

and 80 genera.lly up to any assigned order; and we thus see
how the infinitesimal contact transformation may be extended
as far as we please,

The extended contact operator is

—j=n

2
Eé.az +§az+2"- +E {”p +e
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If we have a group of infinitesimal contact operators then
these operators, when extended, will also form a group, of the
same order as the ori%inal group, and with the same set of
structure constants. is may be proved as in § 230, where
a like theorem was proved for the point group extended, so as
to be a contact group.

§ 236. It is convenient to have in explicit form the value
of the first few coefficients in the operators for the case 7 — 1
and n = 2, as they are required for applications to geometry
of two and three dimensions.

When 7 = 1, we take

W=pé—n,
and denote as usual

d @ @
abve e vy

for al +p 2 we shall write X, and we now have
z oy
W W

£=W’ 1 =pE—W, T=—XW.

Also if ¢=q+tx, and '=r+ip,

we have —x = tf;g » with the highest derivative omitted,
= (X4q ) (Xeq ) W,
= (Fragg) (Fragy) Ws
d therefore, since aX Xa— 2
and thereforo,since g5, X—0X 57 =5,
d 2 d
= 2 2 Y d
c=(X +20X 5 +q a10,+q3y)W.
Similarly

3

[
—p =3

> with the highest derivative omitted,

d ] d d d
=(X+qb—p+r@)(x+q$+rﬁ) (X+qﬁ,) Ww;
d

whieh, singe 73

d d
2 2 = —
X XB _2Xa *
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may be written

3 3? d b

@ 3 g a_ ¢
YRR s 3quy+3q o ap)W

¥ > »
+’I'(3qb—pz+ 3Xﬁ; + @)W.

?
- < 2
—p= X3+3qX23p+3qX

§ 237. As an example of the application of these formulae
we shall find the form of those infinitesimal contact trans-
formations which transform straight lines of the plane into
straight lines.

The differential equation satisfied by all straight lines on
the plane is ¢ = 0; and therefore, since we must have ¢'= 0,
we must have x =0, wherever ¢ = 0. We therefore have
X2W=0; or, explicitly

2w EW | LEW
® % TP w TP ayE = o

of which the general integral is

W=f(y~pe, p)+ad (y—pa, p).

Any contact transformation, whose characteristic has this
form, will transform any straight line into a straight line;
these transformations have therefore the group property, but
the group is not a finite one.

If W, and W, are two characteristic functions of this group
the characteristic of the alternant of the operators W, and W,
has, we know, the form {W;, W,} where

W, W,
{Wy, Wet = (Wl’ Wz) +W T; ~W, ayl’
oW, W,
and (W, W) = XWlb—p"—XW,a—p‘-

We know then that W, and W, being any functional forms
which satisfy the equation (1), { W;, W,} will also be a func-
tional form satisfying the same equation. This result may
easily be verified independently.

If we only require those contact transformations which are
mere extended point transformations, then by (1), since

W=pé—n,
and £ and n do not now involve p,

Péu—1u+2p (Pé—m) +7° (Pp—1) = 0,
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where the suffix 1 denotes differentiation with respect to =,
and the suffix 2 differentiation with respect to y.

Equating to zero the coefficients of the several powers of p
in this equation, we get

§n=10,np =0, 1u—26, =0, §—27, =0,

Differentiating these equations with respect to # and y, we
see that all derivatives of the third order are zero; we
therefore take

§ = a2+ 2hyzy + by + 20,0+ 2y + ey,
1 = aya®+2hywy + by’ + 2g,3+ 2fyy + ¢

From bp=m =0
we conclude that a,=b=0;
and from Np—2&, =0
we see that 2hy—b,=0;
while from En—29,=0

we get 2k, = a,; and we thus obtain
W= oy (pa®—ay) + b, (pzy—y*) + 2910 + 21, py
+0,p—20,—2f,y—c,.

W is therefore merely the most general characteristic function
of the extended projective group of the plane.

§ 238. We shall now find the form of those infinitesimal
point transformations which have the property of transforming
the circles of the plane into circles on the same plane.

The differential equation satisfied by all cireles is

3¢ p—(1+p?)r=0,
and we must therefore have
1) (1 +Z72)p+2p’/'1r—6pqx—3qz1r =0
for all values of @, y, p, g, r such that 3¢’p = (1+p?) r.
Sinee W=pé—n,

and the contact transformation is now a mere extended point
transformation, W will only contain p in the first degree.

Applying the formulae of the preceding article to the equa-
tion (1), and substituting for = its equivalent expression in
terms of p, ¢, we must have the equation
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d 32 d
(1+29 (X3+3qX?$ +3q’w+3qX@)W

d .2

2 —_
2 +3¢ p(aXbp+by)W

6p%q? d 3

= (3q2_W)XW+6pq(X”+2qXﬁ)+q@)W

satisfied for all values of z, ¥, p, ¢.
Equating the coeflicients of g% on each side of this equation
we have
W > 2 pi—1
(1+p2)X@+p(3X—a; + @)W+]T+1XW
W W
=4 pX b—ﬁ +2p —b:;- .
Substituting for W the expression p£— 1, where £ and 5 do
not contain p, this is equivalent to
(1+p P64+~ 1) (P& +p(E— ) —m)
=p(L+p") 6+ 2pb—n).
Equating the coefficients of the different powers of p on each
side we get the two equations

(3 &—m, =0, fz+"l1=0'

Equating to zero the term in (2) which is independent of ¢,
we get X3W = 0; that is,
Pt 39?115+ 3P Eian + 1" Eop = 1 + 3P Mun + 35 Mo + PPy
and therefore, since p, 2, y are unconnected,
T =90, 3’7112_£111 =0, he—Ene="0, N —~3£ =0, b =0.

If we differentiate the equations (3) twiee with respect to
and y, we shall see that all derivatives of £ and 7 of the third
order must be zero.

We therefore take

£ = a @’ +2hy + by +egi e+ 2fiy +e,
N = @@ +2h,xy + by + 20, + 25y + 05
and from the equations (3) we deduce that
o =hyy by =0y, g1 =for O+l =0, b+h, =0, g+, =0,
80 that the characteristic funetion is of the form
a (P~ — 22y) + a, (i — & — 2pay) + 20, (P2~ Y)
+2fi(py+ @) +ep—cy.
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It may at once be verified that for this value of W the co-
efficient of ¢ vanishes in (2); and we thus see that there is
a point group of order six which transforms circles into
circles; the six independent operators of the group are

> 2 > 2 LR
3%’ @, w@ Y3’ e +yby,
2 d > >

2 _ a2y O - — 2 _x?y .
@95 t2W gy e+ -y,

Of these infinitesimal operators the first corresponds geo-
metrically to a small displacement along the axis of z; the
second to a displacement along the axis of y; the third to
a rotation round the origin; the fourth to a uniform ex-
pansion from the origin; the fifth to an inversion with
respect to a circle of unit radius whose centre is the origin,
succeeded by an inversion with respect to a circle of unit
radius whose centre is at « = ¢, where ¢ is small, and lastly,
by a translation backwards along the axis of # measured by
t; the sixth operator has a like interpretation with regard to
the axis of y. It is of course obvious that each of these
operations changes circles into neighbouring circles; and we
have now proved that any infinitesimal transformation, which
does 50, must be compounded of these six operations.

§ 289. We next try whether there are any infinitesimal
contact transformations—mnot mere extended point trans-
formations—which have this property.

If we substitute in

(l +p2)p+ 2pr7r—6pqx—3q27r =0
for p, x, w their values obtained in § 236; and then for r the

2
lafz) ;5 the resulting equation must be satisfied for
all values of x, y, p, 9. Equating as before the coefficients of
the different powers of ¢ to zero, we obtain

expression

»W W
)2 p—
(+P)3 + 305 =0
W BW
2)2
a+pf (X w t bpby)

W W
+(pi’—1)XW—(p*+1)(10X31.7 +p W) =0,
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@ +p2)(X"%V+X%V —2pX*W =0,

X3wW=o.
From the first of these equations we see that
*W
ap?
where A is a function of # and y only ; and therefore
W=AV1+p*+Bp+C,
where A, B, C are functions not containing p.

If this value of W is to satisfy the other equations it is clear

from the irrationality of +/'T+p?® that A +/1+p%and Bp+C
must separately satisfy the equations. Now the latter part
would give 1ise to 8 mere extended point transformation ; and,
as we have fully discussed all the point transformations which
transform circles into circles, we need not further consider
this part, but have only to find what, if any, are the possible
values of the unknown function 4.

(1 +P2)% =4,

Teking then W=A~1+2%
W Ap
we have —= s
¥ Vitp?

and the second equation gives us a mere identity satisfied
whatever function 4 may be.
The third equation gives
(Au+24up+App?) pv 1+ + Ay + Ay p) (L +97)F
= 2pV/T+p* (Ay+2pAy+p°4y),

which on dividing by +/1+p* and equating the powers of
p gives
(1 Ay =4y, Ap=0.
Finally the fourth equation gives
Am+34y,p+ 345, pP+ 4y, p* =0,

from which woe see that all derivatives of 4 above the second
vanish ; and therefore

A = qx®+2hay + by’ + 2ga+ 2fy+c.
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From (1) we further see that 2 =0, and a = b, so that
A is the power of a eircle.

The most general contact transformation group which trans-
forms cireles into circles has therefore the following ten
characteristic funetions :

gy WHIA)VIEph YV 1P V147 V1475
@) par—y7)—2ay, y—a—2pmy, po—y, py+a, p, 1.
§ 240. If we look on @, y, p a8 the coordinates of a point in
three-dimensional space, to & point there will correspond an
element of the plane; and to two united elements of the
plane, that is, two consecutive elements whose coordinates
satisfy the equation
dy—pdz = 0,

there will correspond two consecutive points in space con-
nected by the equation
dy —pda = 0.

If we write z for p we may say that to every transforma-
tion in space which leaves dy—zdz = 0 unaltered there
corresponds & contact transformation in the plane, and
conversely.

The group of contact transformations which we have just
found leaves unaltered the system of circles

?+y?+ 292+ 2fy+ec =0,
and therefore also
z+g+@y+fp=0.

The corresponding group of point transformations in three-
dimensional space must therefore leave unaltered the system
of curves given by

@'+ Y+ 29n+2fy+c =0, a+g+(y+f)z=0;
that is, will transform any curve of this system inte some
other curve of the same system.
It is now convenient to write the equations of this family
of curves in the form
) 4 (@ +y)+4 (B*—ac) (y+ir) +y—iz—a = 0,
Be(z+y2)+4 (b1 —ac) (z+c)+2—i =0,
where a, b, ¢ are variable parameters, and 4 is the symbol
for «/ —1.
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If we apply the transformation

@) o =y+iw, ¥y =y—in, %::—:—Z,
which leaves unaltered the equation
dy—zdw =0,
the equations (1) are transformed to
©) dexy+4 (P—ac)z+y—a =0,

dc(ytaz)+4 (b*—ac)+2 =0;

so that the group into which the group (2) of § 289 is trans-
formed by the equations (2) of the present article leaves the
equations (3) unaltered.

Transform again with

y=y ~327, w=—§§, z2=—2"

which gives dy —zdw = dy —2/da’
and the equations (3) become transformed into
—2¢xy+catz—2 (B*—ac)r+yz—Y a2t —az = 0,
dcy+4 (P—ac)—2® = 0.
Eliminating z between these two equations we get
(ca?—y +a) = 4b%a?;

and therefore, since b is a variable parameter, we may write
these equations in the form

4 | y=ci*+2be+a, z=2b+2ca

The group into which the group (2) of § 239 is now trans-
formed leaves the system (4) unaltered; or, expressed as
a contact group in the plane, leaves invariant the system of
parabolas whose axes are ﬁ&rallel to the fixed line @ = 0;
or, again, leaves unaltered the differential equation

d3
) dT%’ =o0.

The group into which (2) of § 289 is transformed could
have been directly obtained from this property of leaving (5)
unaltered, just as (though more simply than) the group which
left circles unaltered was obtained.  If the group is thus
directly obtained, it will serve as an example of the applica-
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tion of § 281, to prove that the two groups are transformable,
the one into the other, by a contact transformation.

§ 241, Let us next apply the point transformation in three-
dimensional space

=, y=y—taz, 7=}z
for which dy —zda = dy —2'daf + 2'd2/,

and for which therefore a linear element of any curve in the
plane is transformed into a linear element of the linear
complex m = 8.

e then see that the group of contact transformations,
which leaves unaltered the system of parabolas, is transformed
into a group of point transformations in three-dimensional
space, with the property of leaving unaltered the system of
straight lines y=tbata, o=cauth;
that is, into a projective group which does not alter the linear
complex m = 3.

We have thus established a correspondence between the
circles of a plane, and the straight lines of a linear complex
in space of three dimensions ; and the two groups, one a con-
tact transformation group in @, y, p, leaving the system of
circles unaltered, and the other a point group which trans-
forms the straight lines of a given linear complex inter s,
are transformable, the one into the other, by a point trans-
formation in three-dimensional space. It should be noticed,
however, that this point transformation is not a contact
transformation in z, ¥, p, such as was that which transformed
the system of circles into a system of parabolas.

If we write the equation of a circle in the plane in the form

(@—a)’+(y—B)+y =0,
then the group of transformations, which transform any one
circle into any other, being a contact group, will transform
two cireles which touch into two other circles which touch.

Now we have seen, in Chapter VIII, that if a group trans-
forms an equation of the form

S @1y e0ss @y Gy s @) =0

into another equation of like form, but with a different set of
parameters, then we can construct a group of transformations
in the variables a,,..., @,, such that if X,,..., X,, are the
operators of the group in the letters @y, v1., @, 100 Ay
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the operators in the letters a,..., a,, the structure constants
of the two will be the same ; and each of the operators
A +X, .., 4,+X,

will be admitted by the equation

F (@1 a5 Ty Gy 00y @) = 0,

If we apply this method to the system of ecireles on the
plane which adwmit the group (2) of § 239, we shall have
a group in the variables a, 8, y; this group will be of the
tenth order, and will be found to be the group of conformal
transformations in three-dimensional space.

This result is obtained directly bg ie from the considera-
tion that the condition for two neighbouring circles touching is

da?+dgi+dy' = 0;
for, since the transformed neighbouring circles must also
touch, the equation

de’+dp2+dy =0

must be unaltered; that is, the group must be the con-
formal one.

§ 242. We shall now write down in explicit form (for the
case n = 2) the values of the funetions =y, 7y, 7, which in
future we shall denote by g, o, 7.

We have (p, g, 7, s, t having their usual meaning)

W=pl+gn—¢
and the infinitesimal operator is
3 J d d d d q b4
fﬁ*’”@"'fa +1r—a;+lcﬁ+pﬁ+a'3§+ry*
We denote by X and ¥ the respective operators
2nd and 2 pa2.
Wt Py ol gyt
and we have
W W W W
€=y 1=y =Py, ta5 T

W W W W

T TP =AW k=g 4y, =

5y YW.
CAMPBELL X

—_T
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FW

Since —p= e with the highest derivatives omitted,
d d d d
= (X+7~313 +SSE) (X+T$+sﬁ) W,
. d d ? d d
and since WQX—XYZ):&_@Y—-Y@,
2y v2oo 2x-x2 o,
* » oq 3
we have
d d b o2 & d
—o=(X2 < SRR S v i Y\w.
p=(X +27-Xap+2stq+'r 3p"+2,rsbpbq+szbq2+rbz)w
Similarly — o and —7 are obtained from the operators
d d d d & o ¥ & d
Xy+sxﬁ+txﬁ+ryb§+syﬁ+rsb?+(”+s)"bp—bq+8tb_qz+sb—z
& & d

3 3 b 2
2 2 o hall 2 ¥ 11 9.
and Y +28Yap +2tYaq +823p2 + 28t P +1 pve +ig
§ 243. As an example of the application of these formulae
we shall find the form of the most general infinitesimal
contact transformation which does not alter

d’z
dwdy = *
Since we must have ¢ = 0 wherever s = 0, we get

w

2
W W o, v W o, x¥W=o.
dp

e~ " T3¢
. W
From the first of these equations we see that 3 does not
contain p; and therefore by the second we must have
2 2
2W_ ., FW_,
- 3q 3z g dx ?
W, . .
so that 3 is & function of y and ¢ only. Similarly we see

W,
that 35 82 function of # and p only, and therefore the
P

characteristic function W is of the form

F@2)+¢(gy)+V¥ (@ y2).
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Since XYW vanishes identically,

Y1+ PV + Qs T P9V = 03
and therefore

V=0, V=0, ¥3=10, Yy =0,
so that ¥ (@, 9,2) = az+ F (@) + ® (),

where ¢ is a mere constant and F and & functional forms.
The characteristic function which leaves unaltered the
equation s = 0 is therefore of the form

f(o, ) +¢(q, y) +az

There are therefore three distinet forms of characteristic
functions leaving s = ¢ unaltered ; and, corresponding to these,
three distinet groups of contact transformations with this
property. Firstly, the infinite group where W is of the form
f (p, x), f being an arbitrary functional symbol ; the functions
of this group form a function system of the second order.
Secondly, the infinite group with characteristic functions of
the form ¢ (g,y), where ¢ is an arbitrary functional symbol ; the
funetions of this system also form a funection system of
the second order, any function of whieh is in involution with
any function of the first system. Thirdly, the group with the
single characteristic funetion z; if we form the alternant of
this function with any function of the first system, we have
another function of the first system ; and a similar result
follows for the alternant of z with any function of the second
system,

The infinite group of contact transformations leaving un-
altered the equation s =0 is compounded of the operations
of these three groups.

‘We have proved that any Amperian equation with inter-
mediary integrals of the form

uy =f1(v) and u, =7, (v),
where f, and f, are arbitrary functional forms, can by a con-
tact transformation be reduced to the form s = 0.

It follows that any such Amperian equation will admit an
infinite group of infinitesimal contact transformations, the
operators of which may be arranged in classes as follows: in
the first class there are two wnconnected operators, but an
infinite number of independent operators : in the second class
there are also two unconmneeted operators, and an infinite
number of independent operators: in the third class there
is only one operator: any operator of the first class is

Xz
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permutable with any of the second, and the alternant of the
operator of the third class with any operator of one of the
other classes is an operator of that other class,

§ 244. We have obtained the conformal group in three-
dimensional space from the property that it leaves the equation
da?+dgf +d2? =0
unaltered ; if we seek the group which will leave the expression
da? + dy? + d2?
unaltered, we shall obtain the group of movements of a rigid

body.

’I{xe question now proposed is to find the infinitesimal point
transformations which have the property of transforming a
given surface into a neighbouring one, without altering the
length of ares on the surface; that is, if P and Q are any
two neighbouring points on a given surface which receive
infinitesimal displacements so as to become two near points
F,Q ona nelgh%ouring surface, we want fo find the relations
between £, 5, {in order that we may bhave PQ = P'Q".

Since we must have

dedfé+dydn+ded{=0
for all values of z, 9, z on the given surface; and

ag=Gaos Lay ar=2

de=%an 4 d;dy, do = pdo+qdy,

we get, by equatmg the coefficients of dxz?, dzdy, dy? to zero,
aé df  dn_ d¢ d¢

dn
dx + - dy,
ay Y,

(1) dm+p%——0, @+d_x+pdy+qu 0,
a¢
aly +qdy 0,
where dim and 0% denote total differentiation with respect to
and to y.

From the equa.tions
df dq  d¢ d{y_
dmdy(dy dw +p— +q—w)_0’
42 d¢ dg') a¢

dyi\de " ¥ dz =0 dz‘(dy qdy) 0
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we can eliminate £ and 5, and thus obtain the equation
d*{ a2l d2{

(2) td_mz_zsdmdy-lﬂrd/—y?
The surface on which P and @ lie is a known one, and

therefore 7, s, ¢ are known in terms of z, y, so that the equa-
tion (2) determines ¢ as a function of z and 3.

= 0.

From
we get Z%fw%iwj—i:o;
while by differentiating

with respect to # and with respect to y we get
@, & Al ¢ d*¢ | dl_
TPt =0 0 g Y Py =

with similar equations for 5.

dy d¢
If we denote = &y by A

we have, therefore,

d#¢ a¢  d¢  dl
Tody 13z *iaa T ay) ®
Y ¢ a{ a¢.
+ L dndy + tdwdy - s@)dy,
which is a perfect differential, since

& ¢ ae o d
@ " Pardy T aR
and therefore A can be obtained by quadratures, when ¢ is
known in terms of z, y.

When we know A and {, the derivatives of £ and 4 are
known by (1); and therefore £ and n can be obtained by
quadratures. It will also be noticed that when ( is fixed,
£ and y are fixed, save as to the terms ay +b in £ and —az+c¢

= (p

1

=0;
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in  where a, b, ¢ are arbitrary constants. The infinitesimal
transformation is therefore fixed when ¢ is fixed, except for
small translations along the axes of x and y, and rotations
round the axis of 2.

The mistake of supposing that the operators

] ] ]
fﬁ'l"l@‘l' C&

so found will generate a group must be guarded against: if U
is an operation which transforms a surface S into T and pre-
serves unaltered the lengths of small arcs on S, and 'E i8
another operation with the same property, then VU will not
necessarily have the required property, because V has not
necessarily such a property for the surface .

§ 245. We can now employ the valuaes of p, o, r obtained in

§ 242 to prove the known theorem, that any such infinitesimal

transformation as we are now considering will so transform §

into Z, that the measure of curvature will be the same at
corresponding points on these surfaces.
We have

d? d? d?
tp—rr+ 280 _(td:ﬁ+ Tdy‘ 28dmdy) W,

omitting derivatives of the highest order which occur, that is,
derivatives of the third order; and this expression is equal to

d? d? d?
(tgat o 2 oy PE+ON)

. d? d2 d?
since (tw+r@2—23dw—dy)g'=o.
Now
dz a? d? d? d® d?
(t(w +Ta?—2sd‘wdy)pf_p(tw +7‘W _2sdac——dy)£
13 L3 df_,.9¢
+2t'rﬁ + 287'@-—237'0@ 28 e

the other terms being omitted as they are derivatives of the
third order.

If we now make use of the equations (1) of § 244 o express
the derivatives of ¢ of the second order in terms of those of ¢
we have
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d2

d? d? d? d? d?
t— s 9s.— - =_—p2(t— —2g- % _
(dz"+'rdyz 2sdxdy)p£ p(tdm2+rdy2 2sdmd3/)c
d¢ de
— g (rt—?) &4 _&)"
p (rt s)l +2(rt s—)dm

= 20t - p ) = —1t= 0,

dz
by (1) of § 244.
Similarly we see that
d? d* d? d
Coatrgz—2 m)qvl =—4("‘t—82)qE§'
Again
d d s .
—pr—gx= (pa;” +qd—) (p€+gn—¢), omitting the highest
Y derivatives
aé dn dé  dy al a¢
—_— 22 2 1 — ) = = — g -
=P et dy+pq(dy+ alm) Py qdy

d
—(tr ) (p%_,.qgé) by (1) of § 244

Now in order to prove that the measure of curvature is
unaltered by the given infinitesimal transformations, it is only
necessary to prove that

(1+22+¢%) (p+rr—2s0) = 4(rt—&) (T +7x);

and this is at once proved by aid of the formulae now
obtained.

§ 246. If we have an «? of points on a surface and the
distance between neighbouring points (measured along & geo-
desic on the surface) is invariable as this ®? of points moves
on the surface, we then have on the surface the analogue of
a rigid lamina in a plane. Such an assemblage we call a net ;
and the question is suggested, can a movable net exist on any
gurface, or can it only exist on particular classes of surfaces ?

If P is any point on the net which moves to a neighbouring
point P, we have just proved that the measure of eurvature
at P and P must be the same ; we shall first discuss the case
where the given surface has not everywhere the same measure
of eurvature.

Through each point on the surface draw the curve along
which the messure of curvature is constant, and let these
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curves be called the curves of constant curvature. Next draw
the system of curves cutting these curves of constant curvature
orthogonally, and call these latter curves the trajectories.

Let A,, 4, ... be a series of neighbouring points on a tra-
Jectory ; if the set is movable 4,, 4,, ... will take up positions
By, B,,... and the points of the net which were at By, By, ...
originally will now take up a position €y, (,, ... and so on.

The points 4,, B;,C,, ... must lie on a kne of constant
curvature ; similarly 4,, B,, C,,... must lie on such a line,
4, By, Cy, ... on another, and 8o on. It will now be proved
that this net movement is only possible if By, B,,... lie on a
trajectory, 0y, C,, ... also on a trajectory, and so on.

Sinee 4,5, =.3,0, and 4,4, = B B, and 4, B, = B,C,,
it follows that the angle 4,4, 8, = B, B, (; and therefore,
since A, A, B, is aright angle, sois B, B, €, ; that is, By, B,, ...
lie on a trajectory.

Unless then ﬂ}],e surface is such that trajectories can be
drawn on it, dividing each line, along which the measure of
curvature is constant, into the same number of equal parts,
the surface cannot allow a net to move over it. If this con-
dition is satisfied, and the surface be not one with the same
measure of curvature everywhere, the net can move on it
with one, and only one, degree of freedom.

Since 4,4, ="B, B, the perpendicular distance between
two neighbouring lines of constant curvature is the same at
all points; it therefore follows that the trajectories are geo-
desics on the surface,

If we take w and v to be the coordinates of any point on
the surface, where w = e and v = 8 are respectively the lines
of constant curvature and their trajectories, we ean take for
the element of length on the surface

ds? = du®+ A2 dv?

when A is a function of « only.

If the net is to have two degroes of freedom in its move-
ments the surface must be everywhere of the same measure of
curvature,

§247. We can prove these results in a different manner and
also obtain all possible movements of the net, if we employ
surface coordinates.

Let the equation of the surface be given in the form
2=filw o), y=fi(wv), 2=fu),
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so that we have
ds? = edu? + 2 fdudv + gdv?,

where ¢, f, g are functions of the parameters «, v which define
the position of any point on the surface.

‘We shall first prove that by proper choice of the parameters
we may take ¢ = 1, f =0, and thus simplify the expression
for the element of length

‘We must prove that we can find p and ¢, a pair of functions
of w and v such that

edu®+ 2fdudy +gdi? = dp®+ Adg?.
Since
dp= pdu+ -l’dv and dg = qdu+ qdv,

we at once obtain as the necessary and sufficient conditions for
such reduction

2 w2 22
e=(E£)+2(GL), f—ﬁaf N Suse®

9= (a ) + )‘2(
and therefore

¥p Ap p
(-G -GD)=0-£)
It follows that p must satisfy the equation

dp Ip
eg—fz‘g(bu) - fa];av* (a

‘When we have thus determined p as a function of % and v,
we can determine A and ¢ by the equations

ML= o) 2=, Jo- (R

eliminating ¢ we have, for determmmg A, the equation

_)‘—1\/6" 5) 3 _1\/ (bp)

When A is thus determined we can find ¢ by quadratures.
We have therefore proved the theorem we stated, viz. that by
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a suitable choice of surface coordinates we may take
1) ds? = dp®+\2dg®.

If we form the differential equation of the geodesics on the
surface with respect to this system of coordinates, we shall
see that it is satisfied by the curves ¢ = constant: these
curves are therefore geodesics.

§ 248. We can throw this expression into another form
which will also be required in our investigation ; take a new
set of parameters such that

dp +iAdq = pde and dp—irdg = »dB,

where ¢ is the symbol for +/"—1; that is, ’ll is the integrating
factor of dp+iidg and % the corresponding factor for
dp—1iAidg; we now have
ds? = ehdadg,
where % i8 some funetion of a and g.
It is convenient to write  for @ and ¥ for 8 so that
ds? = ebdady.
Suppose now that points on the surface admit the in-
finitesimal transformation
¥=x+té(z, y), y= y+in(, Y)s

which does not alter the length of arcs; that is, suppose that
a movable net can exist on the surface.
Since ds is to be unaltered we must have

P:]
dwdq+dyd£+dmdy(£ﬁ+y,%)h —0;

and therefore by equating the coefficients of da?, dady, dy®
to zero we get

M ¥ 2 3,3y,

2= % by_o’ ST b_y+ (fa"lﬂlﬁ)h—o'

From these equations we conclude that ¢ is a function of

« only, and 7 a function of y only; and therefore, by taking
as parameters, instead of x, a suitable function of 2, and,
instead of y, a suitable function of y, we may in the new
coordinates take £ and n each to be unity. In fact if £ = f (x)
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then from =a+tf(w),
we conclude that whatever ¢ may be,
¢ (@) = (@) +tf () $'(2};
if then we take ¢'(2)f(z) to be unity, and ¢ (z) as a new
parameter in place of z, £ will be unity.
Since we must now have with these parameters
W _

wtay="
k. must be a function of z—g.

We can therefore, if the surface can have a movable net
drawn on it, so choose our surface coordinates that

o (@=g)y?
A TEYIN o
ehta( Y y=0
where f is some functional symbol ; and we have
d 2
dst=— (5. f(e—y)) (de+dyf~(dz—dy))

= @y- (L) et ayy.

This form is the same as (1) of § 247, only that A? is now
a function of p only and not of ¢ ; and we conclude that the
net can move, if and only if, the element of arc can be written

in the form ds* = dp? + A’dg®

where A2 is a function of p only.

§ 249. We now assume the surface to be such that we may
take ds* = da? +M2dy*

where A is a function of  only.
1t is known (Salmon, Geometry of Three Dimensions, § 389)
2
that the measure of curvature is g;);+)\; and therefore the
lines on the surface where the measure of curvature is con-
stant are the lines 2 = constant.
To find the most general displacement of the net on the
surface we now have
dadf+N\dydn+dy? (£

H

N7 + 3)\2)
w " ¥y
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and therefore, since A does not contain y,
U 21 ¥ 23m LM
M) 5;=0 @ng+ 5= 0 (3) A a7/-;.5376_0.
Eliminating # from the second and third of these equations
we get
2,12 fa)\“’).
s(eay) = 5 (e 538

* R AM\2
22 )

From the first equation we see that £ is a fanction of y only.
First suppose that £ is zero, then

and therefore

Aq _ AIn n.

S —3_:1} =0;

and we get the possible displacement
=, Y=y+i;

that is, a displacement along a line where the measure of
curvature is constant.

If ¢ is not zero, since

z2¢ FA 2
S E= (A m-(5) )
and £ is a function of y, and A a function of z, each of these

equal expressions must be a mere constant.
Suppose that this constant is not zero, then

d?x odayE
aw~ (gg) ="

Solving this equation we get
A =Feosh (kz+¢),

where ¢ and % are constants; and this value of A gives the
measure of curvature constant everywhere on the surface, and
equal to k2

a2

PE_ o
From dy’—2a £,

we get £ = A cosh v2ay + B sinh v2ay;
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and from (2) and (3) we now have

=— %‘7 tanh (kz +¢) (A sinh v/2ay+ Beosh v/ 2ay) +C,

where A, B, C are arbitrary constants.
£ wo take A% — (%2)" to bo negative and equal to —a?
we take A -, — %) o negative and equal to —a?,

we should take A to be%cos (kx +¢), and

£ = A cos ¥2ay+ Bsin v2ay,

= (kz + €) (A sin +/2ay— B cos v2ay) +C;

T a

n

the measure of curvature at any point of the surface is
then equal to —k2%.
By.properly choosing the initial line from which « is to be

messured we may take ¢ to be - when A becomes — ~sin kz.
y 2 %

In icular when % is zero, that is, when the surface is
a developable,

A=—ax, {=Acos v2ay+Bsin v2ay,
n=— g (4 sin v2ay— B eos v/Zay) +C.

In general, then, we have three linear operators corresponding
to the three possible infinitesimal displacements of the net;
dix 2% .
and for the case where A T ((—15) is negative and not zero
these operators are X;, X, X; where

X, = cos ffay%a - ﬁgcotka:sin ﬁay%l,

=2 -k = 2
X, =sin /Zay& + /2(; cot kz cos /Zag@,
P
X =5
‘We obtain by simple calculation

(X X) =~ v2aX,, (X, X)=— +/2aX,
—24/242
FpX) = =X,
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2 2

The discussion of the case where A 37}; - ( ‘;—;) is zero may
be left to the reader; it need only be stated that it eannot be
deduced from the results given by merely taking a to be zero.

The general result of this discussion is therefore to show
that, if a surface is not one over which the measure of
curvature is everywhere the same, at the most there can be
but one degree of freedom in the motion of the net; and also
that no movement of the net is possible at all, unless the
surface is such that the perpendicular distance between any
two neighbouring lines, along each of which the measure of
curvature is constant, is the same at all points of the line.

On surfaces, however, with a constant measure of curvature
the net can move with three degrees of freedom; and the
movements of the net generate a group of the third order.
This group will contain a pair of permutable operators if the
surface is a developable.



CHAPTER XX
DIFFERENTIAL INVARIANTS

§ 250. If we are given any function of 2,2y, ..., 2, we know
that there are n unconnected linear operators which will
annihilate the function ; these operators form a group, though
not necessarily a finite group, with respect to which the given
function is invariant: and more generally, if we are given
m such functions of the variables f,, ..., f,, there will be
(n+1—m) unconnected operators forming a group, with
resg)ect to which f;, ...,f,, will be invariants.

o too when we are given a linear partial differential
equation of the first order, or a complete system of such
equations, we have seen in Chapter VII how the system must
admit a complete system of linear operators generating a
group. If the system of equations is of the first order, but
not linear, then, though it will not generally admit any
group of point transformations, yet it will admit a group
of contact transformations. In particular cases the equations
when not linear may admit groups of point transformations ;
thus we found (§§ 33-85) that the equation

dz\F 222
() + (@) =0
admitted the conformal group of three-dimensional space.
In general, differential equations of order above the first

do not admit point transformation groups, but some particular
equations do; thus

£y _
w_o

admits the projective group of the plane; the expression
Gy\E_ Py
e @F -2

for the radius of curvature admits the group of movements of
a rigid lamina in the plane, If we are given any differential



320 INVARIANTS OF A KNOWN GROUP [250

expression or equation, we have seen in Chapter XIX how
to determine the infinitesimal point transformations which
it may admit; we have also considered examples of deter-
mining the trapsformations admitted by equations of the form

f@ay, .oy dey, ... de) = 0,

and we have seen how closely all these different problems

are connected with the idea of extended point groups. The

method common to the solution of these problems was that of

determining the group admitted by a given expression (or
. equation) which expression is then an invariant of the group;

that is, the invariant was given, and the group was then

to be found.

§ 251. In this chapter we shall consider the converse
problem, viz. how, when the group is given, we are to obtain
the functions of 2, ,, ..., %,, and the derivatives of 2, which
preserve their form under all the operations of the group;
in other words, we are to investigate how the differential
invariants of known groups are to be caleulated. We
confine ourselves to the case where the group is a finite
continuous one.

We have solved a part of the proposed problem in Chapter
VIII, where we showed how to obtain the functions of
2,&,, ..., &, which are invariant for a known group, and also
how to find all the equations which the group admits. Such
functions, or equations, may be considered as respectively
differential invariants of zero order or differential equations
of zero order; and we have seen that only intrapsitive groups
can have differential invariants of zero order, whilst im-
primitive groups must have an invariant system of differential
equations of the first order.

Suppose that we now wish to find all the differential
invariants of the k" order of a known group, that is, in-
variants involving derivatives of the k% order. We first
extend the operators of the group to the k* order, when
we shall have the operators of a group in the variables
2, &y, ..., &,, and the derivatives of z up to the k* order; this
group has the same structure constants as the given group
N 2, &y, ..y &y

We then apply the general method to this extended group,
and find its (figerentia.l invariants of zero order, and these
will be differential invariants of the original group involving
the k% derivatives of z; that is, they will be what we have
called invariants of the &* order.
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In exactly the same manner, we see how the problem
of finding the invariant differential equations of the %t order
of the given group is reduced to that of finding those of zero
arder in a group where the variables are z, &y, 200y Xy, a0d the
derivatives of z up to the &t order.

§ 252. Emample. As a very simple example, let it be
required to find the differential invariants of the third order
for the group

_ _ay+b.
d=2, y= cy+d

The linear operators of this group are
2 d 22
' Yoy Yy

Now % %/ extended to the third order is

2 gy 2 . &y Ay 2

nag~ () sy~ O S )y
Py A% Ay, 2
—(3/133—:,/3"‘3:‘/1:‘/23—3/5*'?/3@)3@’

where we denote the first three derivatives of y with respect
to z by ¥, 9. ¥, Tespeetively.

If we let 5 successively take the values 1, 4, 47 we see that
the functions we require must be annihilated by the three
aperators

P P P P P
3y’ .7/@ —.7/153; —?/zgl; _:‘/3‘3@’

P d d P
2 —-—2 — — (29,24 2yy,) — — (8 +2 —
Vsg T Mgy, — @t 2ym g — Gy, WY 5y

and therefore also by the three unconnected operators

2 2 2 2 LIPS
3y’ ?Ilaa+yzry2+?/s@‘3’ ?Ixa—yz"‘ f’/za—%'

_gy2
It follows that any function of z and “’%—y;fi will be
1

& differential invariant of the required class.
It may similarly be shown, by further extending the
operators, that a differential invariant of the fourth order will

CAMPBELL Y
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have the three annihilators
p:] i + p:] + p:] + d
Syt ey Tey T, TRy
d d p:]
7y 5 + 3?/12‘/23—% +(4I’/1y3+3y22)s?}'4:

that is, it will not involve 3, will be homogeneous and of zero
degree in ¥;, Yz, ¥s» ¥s, and will be annihilated by the operator,

2 ) )
2o—+3 — + {4y Y+ 3y 5
W5y ity (4 e+ 395) 5

So also the invariant of the fifth order will not involve ¥,
will be homogeneous, and of zero degree in ¥, ...,¥;, and
will have the annihilator

P d > N
u' 3y, * 3%:’/23—3/; +(4y9+3y,) N +(5 %Y+ 107,75) 3,

and so on, the new coefficient of the next highest partial
operator being derived from the last by differentiating it
totally with respect to «, and adding unity to the coefficient
of 3,9, obtained by such differentiation.

§ 253. We shall now write down the extended operators of
the projective group of the plane

d d
M 5z @ 5p

d d 2 d p:]
(3) mﬁ'*‘?/gy—?/zs?};—zya@;—qu—---;
4 d p:] 2 d 3 p:] 4 d .
(4) C5p ~Ysy Ty, T3esy Ty, T

P 2 d b
& e — — 8 2 _ <
(5) I5% wby (1‘*':‘/1)3% 3:’/1I’Izay2 \
—(4 +3 ST =
(4ys+ 377 Yo
the coefficient of — %being obtained from that of — 3%
4 3
by differentiating the latter totally with respect to z, and
adding unity to the coefficient of 3,y, in the result, and so on;

d p:]
®) y3;+%35

P b
—(yi—1) S By —...
P (v )a:’h Y s >



253} OF THE PROJECTIVE GROUP 323
all terms after the third being the same as in (5);

d b d d
2 & oy — ) — — 2
(M) &g roysy —n D3y, e P
(5ay,+3 )~—a
3 Yz oy T

P
the coefficient of — 5. being formed by adding =%y, to the
r
J
3Yra
respect to «, and omitting the highest derivative in the result;

coefficient of —

» differentiating the result totally with

d P d P
- 2——. —_— -_— —_— —_—
(&) ayg, +y Sy~ —um) 5 —3ey .
P
—(1 oy, 5.+ 3xyf+3y1yz+yya)—ay —es
3

the coefficients of the successive terms being derived from the
preceding ones as in (7), only that instead of adding %y, we
add zyy,.

We could now find the invariant differential equations and
the differential invariants up to any assigned order of this
group, or of any of its sub—f%roups. Thus (1) and (2) form
a sub-group of which any function of the derivatives not
containing # or y is an invariant; (1), (2), (3), (4) form a
sub-group of which any funetion of the derivatives y,,%,, ...
which is of zero degree and of zero weight will be an invariant 5
(1), (2), (5) is the group of movements in the plane with the

2
geometrically obvious invariants p, %, ‘fz?f:, -+s where p is the

expression for the radius of curvature in Cartesian coordinates.
In order to obtain the differential invariants of a less
obvious group we take (1), (2), (3), (4), and (7) which is at
once seen to generate a sub-group. A differential invariant
of this sub-group must be a function of y,,y,,... of zero
degree and of zero weight; the only other condition which
this funetion has to satisfy is that of being annihilated by

P P P P
) 33/25% +8y3@:+15y45£ +---+"'(”'*2)’1Jr-1r%_+~m
It can be at once verified that the operator (9) annibilates

1,, I, I, I, where
Y 2
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I, = 39,9~ 49" L= 997y + 40 5’ — 45 159,
I, = 3 43y, — 24 9,%5, Y5 + 60 405"y, — 40 35t
T, = 27 gy, — 315 2y ys + 1260 3,7,y ~ 2100 97,7y,
+112035
Each of the equations I, = 0, [, = 0, ... is invariant under
the operations of this sub-group; and one of these, I; = 0, is
invariant under all the operations of the general projective
group of the plane. This last result is obvious from the
geometrical fact that I, = 0 is the differential equation of the
conic given by the general equation of the second degree in
Cartesian coordinates. That y, = 0 is an invariant equation
of the general projective group is also obvious geometrically.
The differential invariants of the sub-group (1), (2), (3), (4),
(7), as distinguished from the invariant differential equations
of the sub-group, are up to the 7* order

L Iyl
143, 142’ 145’ 7y
What we have called invariant differential equations are
sometimes called differential invariants; in such a notation

our differential invariants are called absolute differential
invariants,

§ 254. We now wish to find the differential invariant of
lowest, order of the general projective group of the plane.

We anticipate ‘ by counting the constants’ that it will be
of the 7t order; for there are eight operators in the group,
and we do not therefore expect an invariant #ill these operators
are extended so as to be in nine variables, and thus the
derivatives of the 7t order will be involved. We shall find
that this anticipation will be verified,

From (1) and (2) of § 253 we see that the invariant cannot
contain « or y; and from (5) and (6) of the same article
we know that it will not contain y,; it must therefore be
a function of

IGZ IG I'IZ

Iy I3 and 15
since an invariant of the group must clearly be an invariant
?f a.ny) sub-group, and therefore of the sub-group (1), (2), (3),
4), (7).

If (we now extend all the operators to the 7% order we shall
find that there are two additional operators to be added to
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(3), (4), and (9) of § 253; and that the invariant, which is
a function of ¥,, ..., y; of zero degree and of zero weight,
must be annihilated by these operators. These new operators
are, omitting the parts of these operators which are connected
with (3), (4), and (9), (we may do this since these parts will
necessarily annihilate the invariant),

10) 6 2 30 2 60 40y,? °
(19) 635, + Yol o+ (6080, + %) 5y X
+ (105059 + 1755,9,) 5 »
> 2 >
and (11) 2 s— + 10y2— + (35 — 39, Ys) =
(11) 29,9, 3, Ys 57, (3595, ?/z?/)bys \
+ (569595 + 359~ Ty 5 - -
The linear operator - ' e oy
3 7dly D
(12) 153;; + 3 dbd;) r:l/-,
(where (%) denotes the total derivative of I, with respeect
to @) is connected with (10) and (11) ; and therefore we may
replace the annihilator (11) of the required invariant by the
annihilator (12).

Denoting the operators (10) and (12) respectively by X and
Y the invariant required is a function of

oL I
2" I Ip
annihilated by X and ¥,
Now we easily verify that
XI,=18ys XI =0, XI =60y, XI,=315y"1,
and therefore X annihilates P and @, where
316—5142’ Q= al,—351,1,
I} I} !
and the invariant required will be that function of £ and @
which is annihilated by Y.
Now we may verify that

P=

_ 9y _ l2sy,t ‘LIs _6_30 3, .
YP= 15%: Q= 15% (d.'c Isgyz Yss

and also that g, (%)—53;3[5: 3I—51,.
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We then have
126y}
YQ=-"42P and Y(TP2—Q)=0;
I3

and therefore 7.P?-—Q is the invariant which we require;

that is,
13) 175120 — 2102 T, + 6312 + 35 1,21, — 21,1,
It
(where I,, I, I, I are as defined in § 258) is the differential
invariant of lowest order for the general projective group of
the plane.

From this invariant we can deduce the differential equation
satisfied by all cuspidal cubics. To obtain this equation we
reduce the cubic by a projective transformation to the form
y*= 2? and we therefore have

y=df, yi=3ab y,=fad y=—lot
If we now caleulate for this cubic the values of I,, I, I, I,,
and if we let I denote the numerator in (13), we have wit
little labowr 515 ygu 13475 39, 3 = o;
and, as this equation is invariant for any projective trans-

formation, it is zero for a cuspidal cubic, given by any equation
in Cartesian coordinates,

§ 255. As an example in finding invariants of groups in
three-dimensional space, we might take the group of move-
ments of a rigid body, viz.

P P 2 P P

%2 3 3 Y35, 3’ %35’ mﬁ—yﬁ,
and we should thus obtain the invariant differential equation
of the first order

3 3 P 3
z

dz 2 Lz
1+(5) + (59 =9

and two differential invariants of the second order, viz. the
expressions for the sum and product of the two principal radii
of curvature at any point of a surface.

Since, however, these resulis are obvious geometrically we
shall consider instead the invariants of the group

i P P P o P 2) P - i

s Cutsy ﬁ+(wy-— @-‘- 37’
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LR R S DRI LI I
@'ch—:;’ y@+zbz’ =5 TY 5y RS PE
these are the operators of the group of movements of & rigid
bodTy in non-Euclidean space.

aking as usual p, ¢, 7, 8, ¢ to denote the first and second
derivatives of 2 with respect to  and ¥, the twice extended

. > 3,0
linear operator ¢ a7 5 + (E
- ? ? (_3‘ ? d P b} ?
is fg}-{-ﬂ@'f' bz+"5}+qu+pﬁ+v$+ra_t’
where (denoting by the suffixes 1, 2, 3 the partial derivatives
of & 1, or (, With respect to z, ¥, 2, respectively)
—n=pr4+pgn+p -G tem—CGo
—& ="+ +q (1.~ () +PE— G
—p =Pl PP +P" (2 & — )+ 2pgns+p(én—26) + 9
—Cpt2r (&4 pE) +28 (P + 7 (P& a0~ G
— 0= pPqly+ PP+ P+ + DY (bis+ s+ (o)
+2 (ba— G + 9 (= 1) — G
+8 (& +m— G 2pg+2gm) +7 (G &) +E(m+pny),
—7 = g+ PPb+ ¢ (Rn— Ca) + 2P iy +q (22— 2 (i)
Db —Cont 28 (ny ok gn5) +28(& +98) +E(PE+ g1 —Co)

There are six sets of values of ¢, », { viz

(1) (=1, 7 =0, (=y
(2) ¢=ug, =0, (=2
(3) ¢=d n=ay—z (= az

(4) £=0, =1, (=73
5 £=0, =9 (=2
) E=ay—2 1= ¢ =ye
Forming by aid of the above formulae the corresponding
values of , «, p, o, 7, we get the six operators
1) s+¥et o
dx ¥z ¥’
b}

d d d b
2) xﬂ+zﬂ+qﬁ—rﬂ+ta_t’
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> > > >
2 —_2)— —_— —z— —
@) gt (=25, +an s —(prtgy—s D 5p
3 P
5~ (r3e-9+2sy—p) 57
2 >
~@s@—g)+iW-p) 5~ t(e—39) 55
> 32

(4) @+w£+%

®) ybi

+ 2 2 ti+’rb
Y zbz+p3p_

FYRMPYY
2,2 ) 3
(6) (@y—2)5_+y @+yz$—(m+qy—z—pq)b—q
, O 3 P
P = =30 - (Rsy—p) 47 (e 9) 5
P
~(Ey-p+2s(@-9) 5 -

§ 256. As we have six operators forming a complete system
in eight variables we expect two differential invariants of the
second order; and could not have more, unless the six
operators are connected ; and it is ensily seen that they are
unconnected.

From (1) and (4) we see that the invariants must be
functions of p—y, g—x, z—ay, , s, and ¢ ; we therefore writs

P=p-y, Q=q-2, Z=z2—ay.
The operator (2) now takes the form

d 2 d 3
Q:Q+Z~ —r— +i

37 dr P
and (5) the form

? 2 b 2
Pb_p+Zﬁ +r5, ~tags
while (3) becomes
27 2 gl 26P) > +(26Q+¢P) S +3Q 2
(Z+PQ)sp+ m+(rQ+ s )37+( sQ+ )as 5

b} ? ? ?
+2E(QW+ZW_TB7 +t3£):

and we have a similar expression for (6).



256] IN THREE-DIMENSIONAL SPACE 329

It is now convenient to denote P by p, @ by ¢, and Z by z;
in this notation we see that the invariants are functions of
P, g, 2, 7, & ¢, annihilated by each of the four operators

2,2 d 2
(a) qﬁ+z$—,"br+ %’
LR
®) pa_p+zb?+ra7_tft’
) ) 9ep) 2
0) (22+pg) 5, +9° 5o +lrg+2ep) 5
P d
+(2sg+ip) 35 +3tg5s
3, ,02 3
@) @atpq) 5, +0°5, +tp+25)y
2.2
+(2Sp+’l‘q)$§+37‘p$‘,

which we denote respectively by ©,, 2,, @, and ,.
We have
Q(pa+2) =pa+e Q(pe+e) =pit+s,
Q(pg+2e) = 29 (z+p7), Qu(pg+2)=2p(z+pq)

so that the equation z+pg = 0 is invariant (or in the original
notation z+pg = pa+qy).

Also Qrg? = g%, Q,7¢* = rg’,
R 7g" =g (3rq+28p), Qur¢* = (42+5pg)rg;
:ﬁui forming similar equations for ¢p? and s(pq+22) we see
&
O, (rg®+tp*—25(pg +22)) = 1¢* +tp®—28(pg +22) ;
Q,(rg? +Ep°—28(pg+22)) = r¢*+ tp? — 23 (pg + 22);
Q, (rg? + tp?— 28(pg + 22)) = 3q(rg® +tp*—2s(pg+ 22));
Q,(rg* +tp*—25(pg -+ 22) = 3p(rq*+1p°— 26(pg + 22)).
Since
Q(pg+a)izd = (prt+a)ie = O (pg+2fot,
O, (pg+2)tet = 3q(pg+2)iat,
O(pg+zie = 3p(pe+a)ted,
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we can therefore see that

rg? +tpt—28(pg+232)
(p+2)iat
is a differential invariant for the group.
It may be similarly proved that

rt—g
(pg+2)" e
is the other differential invariant of the group.
In the original notation, therefore, the invariants are

rlg=af+t(p—y)’—2s Rz +pg—pr—qy—ay)
(2+pg—pr— gy (z—ay)~t
rt—g? ]
(e +pg—pr—qy)(z—ay)~

§ 257, These examples indicate that the omly difficulty in
obtaining differential invariants of a given group is the
difficulty of finding the solutions of a given complete system
of equations.

e are often much helped by geometrical considerations ;
thus in the example just considered we knew that the group
was 8 projective one in ordinary three-dimensional space ;
and we knew that it transformed the quadric z = xy into
itself. If then from any point P on a surface S we draw the
tangent cone to this quadric it will meet the tangent plane at
P to the surface § in a pair of lines ; these lines, fogether with
the inflexional tangents to S at P, will form a pencil of four
rays. The condition that the pencil should be harmonic is
unaltered by any projective transformation, and is, in the
notation here employed,

r{g—=f+t (p—yP—28(27+pg—pz—gy—ay) = 0.
Simila.rlly the condition that the surface S should be a
develog:,b e is unaltered by projective transformation, and
is rt—8 = 0.
It was by attending to these considerations that one was
enabled to simplify the solution of the given complete system,

and




CHAPTER XXI

THE GROUPS OF THE STRAIGHT LINE, AND THE
PRIMITIVE GROUPS OF THE PLANE

§ 258. When we are given the structure constants of a
group we have seen how the types of groups with the required
structure are to be formed. If, instead of being given the
structure constants, we are merely given the order r of the
group required, we should have to find the sets of r* constants
which will satisfy the equations

Ciint e = 0,

h=r
= (e €im+ Chih Ot + it Chtem) = 0

where the suffixes 4, k, j, m may have any values from 1 to 7.

Two sets of constants cjy,... and ¢y, ... satisfying these
equations would not be considered distinet structure sets if
they could be connected by the equation system

h=r p=a=r
2 W == ip Okj Opgss
where gy, ... is a set of constants whose determinant
A, + . - Oy
[
does not vanish, as we explained in Chapter V.

Suppose however that, instead of being given the order
of the group, we are given the number of variables in the
ogera.tors of the groups, how are we to find all possible types
of groups in these variables? The method of finding the

structure constants is not now available; for, when the number
of variables, n, is greater than unity, the order of the group, ,
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may have any value up to infinity. The problem suggested
hag so far only been solved for the cases n = 1, n = 2, n = 3.
In this chapter it will be shown how the groups of the straight
line, and the primitive groups of the plane may be obtained.

§ 259. A group X, ..., X,, where
?
Mv,.’

2
Xk=£k1’37+-'-+flm k=1,.,7),

1
is transitive if it has » unconnected operators ; that is, if not
all n-rowed determinants vanish identically in the matrix

Ell’ - Eln

ffl’ . . . Efﬂ

Now let 2f,..., 25, be a point of general position, that is,a point
whose coordinates do not make all n-rowed determinants
vanish in the matrix, and in the neighbourhood of which all
the funetions &;,... are holomorphic. By transforming to
parallel axes through this point we may expand all the func-
tions &;,...,in powers of 2y, ...,2,; and we then sec that from
the 7 Operators of the group a set of n independent ones,
say X, ..., X,, can be selected such that

2 ? ?
Xk:b_mk +Eklﬂ'l +-'-+§knb_w:’ (k=1,..,n)

where &, vanishes for 2, = 0, ..., 2, = 0.

The other (r—n) operators of the group X,,,,,..., X, may
be s0 chosen that for each of them £y, when expanded, has no
term not beginning with powers of 2, ..., 4, that is, no con-
stant term. These (r—mn) operators form a sub-group, the
group of the origin, characterized by the property of leaving
the origin at rest.

If in an operator

Py
513?1+"'+£"370,.

the lowest powers of «,,...,, which occur when &, ..., &, are
expanded are of degree g, then we say that the operator is of
degree s.

If we have a number of operators Y, ..., Y, each of degree
s, and if no operator dependent on these, that is, of the form

a¥ +...+e ¥,
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where ¢, ...,e, are constants, is of higher degree than s, we
say that they tgorm a system of degrec s. It is clear that we
cannot have more than » operators in a system of degree zero
nor more than n? in one of degree unity, and so on.

If then the operators X, .,,..., X, do not form a system of
degree unity, we can deduce from them a number of operators
of the second degree; and proceeding similarly with these
latter we may be able to deduce a system of the third degree,
and s0 on.

We therefore see that the operators of a transitive group
may be arranged as follows : n operators forming a system of
zero degree, m, forming a system of the first degree, m, a
system of the second degree, ..., m, & system of st® degree.

Since all of these operators are independent, and the group
ig finite, s cannot exeeed a finite limit, and we have

T =n4my e +m,.

If we form the alternant of two operators of degrees p and
g respectively, it can be at once verified that it cannot be of
degree lower than p+¢—1. This principle is of great use in
determining the possible types of groups when » is fixed ; we
shall now apply it to obtain the possible fiite continuous
groups in a single variable, that is, the groups of the straight
line.

First, we notice that if a group contains no operator of
degree k, then it cannot contain one of degree (k+1); for it
must have, if transitive, n operators of zero degree, and, by
forming the alternants of these with the operators of degree
(k+ 1), we must have operators of degree k.

§ 260, We now cousider the case where n is unity; we may
take the operators of such a group to be

b ) ? ? 3 b
% +§1ﬂ’ 3z +fz%’ e a"‘ﬁ +£s+1ﬂ’

where ¢; contains « in degree ¢ at the lowest; and in this
group there must be no operator of degree higher than s.

Suppose that s > 2; then, forming the alternant of the
operators of degree s and (s— 1) respectively, the group must
contain an operator of degree (25—2), viz.

? ?
a2 % + 51 s’

which, sinee s> 2, would be an operator of degree higher than s;
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and, as this is impossible, we conclude that s cannot be greater
than two.

A group in a single variable cannot then eontain more than
three independent operators.

A general principle, whatever may be the number of vari-
ables, is that all operators of the %** and higher degrees form
a sub-group. This is proved from the fact that any two such
operators have an alternant whose degree is at least (2k—1),
and therefore not less than k%, unless %k is zero; if % is zero
the operators of the 4® and higher degrees form the group
itself,

If from the operators X,,...,X, we form a new set of
operators, by adding to any operator of degree k& any operator
dependent on the operators of degree not less than £, we shall
still have the operators of the group arranged in systems of
degree zero to s. Advantage of this principle may often be
taken to simplify the structure constants of a group.

Thus in the case of a single variable, suppose s = 2, and let
X,, X;, X, be the three independent operators respectively of
degrees 0, 1, 2. From the group property we have

(X1, X)) = aX +bX, +cX,,

where a, b, ¢ are constants.
Sinee (X,, X,)is of the second degree, @ and b must be

zero; and, by comparing the coefficients of b_bi on the two

sides of the identity, we see that ¢ is unity.
Similarly we see that

(X, X)) = 2X+eX,,
where ¢ i3 some unknown constant.
To eliminate this constant, we take as the operators of the
group Y, ¥,, Y, where
Y,=X,, =X +}eX,, ¥V,=1X,,
and we have

(1) (Y, Y)=7Y, (Y, Y)=2Y,.
Suppose now that
(2) Yy, ¥)) = Yo+ 0¥, +bY,,

where @ and b are some unknown constants: from Jacobi's
identity

((Yo’ Yy, Yg-&-((Yl, Y), Yo)"'((ya’ r), Yl) =0,
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and therefore from (1) and (2)

a(Y, Y) =0,
so that a is zero.

We now take (8 being an undetermined constant)

Z,=Y+8Y,, Z,=Y,, Z,=7,,
and have

Zy, Z,) = 2Zy, (Zy,Z)=2,, (Zy,Z))="Zy+(b—28)Z,;
and therefore, by tSkjl?' 28 =b, we see that the group has
2

three operators Z,, Z,, Z, respectively of degrees 0, 1, 2, and of
the structure

(Zy %)) = Zy, (%, 2,) =2y, (Zy, Z;) = 2Z,.

By a change of the variable from z to 2’ we can reduce
da’ _ 1

de ~1+¢§°
where £ is of degree unity in x at least, and we may take o’
in the form @+ f («), where f(«) is a holomorphic function of
«, whose lowest term is of the second degree in « at least. In
the new variables therefore Z,, Z,, Z, will still be of degrees
0, 1, 2 respectively, but ¢ will be identically zero.

Omitting accents from the variable we take Z, to be b%;
?

Iz’

? ? 2 .
b—i+§‘b_z to the form v to do this we have

. ? ? ?
Since (ﬁ’ wﬁ+§2$})=

we see that ¢ must be a mere constant; it must therefore
be zero, since it was given to be at least of the second degree
in . We may similarly deduce that & is zero; and therefore
the only group of the third order is

3 ? 3
38’ %3’ m’a .
Similarly we may see that the only group of order 2 is of
the type Py Py
55° %3z

and the only group of order unity is % .

§ 261, Before applying this method to find the types of
groups in two variables, it will be convenient to consider how,
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by & linear transformation of the variables, the operator
d ]
(1) (au Tyt +a‘"m")37;1 +e +(amx1+ oo +avmm1)b—m”
may be reduced to a simple form.
Let A; be any root of the equation

A=A Qy . Oy
@iz s Byp—A, . Ll

Uy s Og LI ann_)‘
and let us find » quantities e, ..., ¢, such that
At oty ey =X

[ T T e - N W
These quantities will, unless all first minors of the deter-
minant vanish, be proportional to the first minors of any row.
We take as a variable to replace some one of the set 2, ..., @,
say ,, the expression y, where

h=e%+..+62,

We then see that the operator (1) is of the same form in
the variables y;, @,,...,2, as it was in 2,,...,2,, but the
constants a,;,... are replaced by a new set of constants
@jj, ... characterized by the property

’ ’ _
A=Ay, @, =0,..., 0], =0,

By a linear transformation, then, the operator (1) ean be
reduced to sueh a form that

Oy = Ayy Gy =0, ..., 83, = 0.
We similarly see that, by introducing & new variable #,
here
w Yo = €&+ .. F 0, Xy,
and e, ..., ¢, are determined by

Aoy Cateer + Qo €y = Aj €y,

Aon ot oo+ By €y = Ay €y,

the operator can be still further reduced to a form in which,
in addition to the former simplification, we have

Gop = Agy gy = 0y .00y Ay = 0.
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Proceeding thus we see that the operator can by linear
transformation be reduced to the form

2 ? d
(2) Mz, b7 + (@ +Ap,) 5z, +H{ag @+ Gy + Ao =, +.o

This operator may be still further simplified; suppose A
and A, are unequal, and apply the transformation

N=2 Yo =B ADy, Yy = By oo Y = By

which gives

L) 232 L)

oz dy, b:‘/z, amz_b?lz’ .,b?n_a?/n’
we then see that by a suitable choice of A, without otherwise
altering the form of (2), we can make the new ay to be zero,
when we express the operator (2)in terms of the new variables.

Similarly, having caused a,, to disappear, by a transforma-
tion of the form
1=y Y9 =Ty, Y= ALy, Yy = Bgsv0yYpn = Ty

we could eause a,; also to disappear from the new form of the
operator; and proceeding thus, so long as none of the co-
efficients A,, ...,A, are equal to A;, we could cause a,, ..., @,

to disappear,
In exactly the same manner, by properly choosing the trans-
formations, we could cause all the coefficients @y, ... to dis-

appear so long as none of the quantities Ay,...,A, are equal;
that is, if the determinant has no equal roots, the eanonical
form of the linear operator is

d d d
Alzlb—m; +)\2:m23—m54 +...+)\,,z,,£"-

§ 262. The general method of obtaining a canonical form
for the case of equal roots will be sufficiently explained by
considering the case where A, =X, = A, =),, and no other root
is equal to A,.

First consider the coefficient of b%; by the transformation
(]

Y5 =Tt A&y 1= Ty 00 Yy = Ty
we can by a suitable choice of A cause a;, to disappear; and
by a similar transformation we can cause ag, t,, gy also to
disappear.,

CAMPBELL z
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It is thus seen that the operator may by a linear trans-
formation be brought to such a form that z,, ,, z;, z, only
appear in the first four terms,

'hese terms take the form

N d d d d d d d )
1(95151*‘9523—%*'“’3@*'%3—%)*'% (“213702 +ay 3?34'““8704

d d
+aazmzﬁa+(“4zmz+“4sm3)a_z4'
Now by any linear transformation in z,, #,, ;, @, the part
d d d d
n3m 5w, %0 T M5,
is unaltered ; if a,, is not zero by a transformation of the form

P=Ry Yo =Ty Yy =Ty Yo = Byt AT,

we can eliminate the new a,; we may then by a trans-
formation

Yi=Byy Yo =g Yy =By A&y Y=
eliminate a,, ; and then, if a,, is not zero, we may eliminate
a,,; while it @y, is zero by a transformation

Y= By, Yo =oALy, Yy =Ty, Y=
‘we may eliminate a,,.

If a,, is zero, but not e, we take
N=2p, Yp = Gy tdn Ty, Ys =Ty Yy =y
and thus eliminate a,,; if @, and a,, are both zero, but not
A, we take
N=2y Y=g Y3 = OB+ 0pTetGgls, Yy =Ty,

and thus eliminate a,, and a,,. Finally if a,, a,,, and a are
all zero, we can similarly eliminate a,;. Summing up we see
that the first four terms may be reduced to the form

M (e 8y ot 2y 42 )
‘mlbxl * Sy -’”33% z‘b_wl
? ) 3
+%%E+eﬂaﬁs+%%ﬁ;’

where ¢,, ¢,, ¢, are symbols for constents; and it is easily
seen that, by further simple transformations, we msy reduce
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these constants to such forms that any one, which is not zero,
is unity.

Similar expressions could be obtained for the other parts of
the operator; and we thus see how, in any given number
of variables, to write down all possible types of such
operators,

We know of course that any linear operator can be reduced

to the type b%; but such reduction is not effected by a Zinear

transformation, and just now we are only considering how to
obtain types by linear transformation ; that is, types con-
Jugate within the general limear homogeneous group.

§ 263. We now enumerate the types of linear homogeneous
groups of order one in two variables z, y; we write p for
3% and ¢ for b—?;, and e for an arbitrary constant :

(1) eGptyd)+ap—ys,  (2) ap+yq+ay,
() =ptyy (4) ap—yg, 6 =g

We shall now find all possible types of linear groups of the
third order.

First we find all the groups containing the operator
(3) zp+yg; by a linear transformation every operator of
the group we seek can be reduced to one of the sbove five
forms (though the same transformation will not necessarily
bring two operators of the group simultaneously to these
normal forms); and a linear transformation eannot alter the
form of (3).

Since we only require two operators o complete the group
of the third order which contains (3); and, since these must
be independent of (3), one of the operators may be taken to
be of the form (4) or (5).

Suppose it is of the form (4), the remaining operator of the
group must be of the form

@ (ap +y9)+b (@p—yq) + oxg + dyp,
where a, b, ¢, d are constants; as we only re%uire the part
independent of (3) and (4), we may take @ and b to be zero.
Form the alternant of (4) with
cxq -+ dyp,
and we shall see that cxq —~dyp
is an operator within the group. As the group is to be of the
z 2
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third order, and to contain (3) and (4); and, as we now see
that cxg and dyp are operators of the group, we must bave,
either d zero when the group is

(® zp—yq, TW+ye *9;

or ¢ zero, when we get a group of the same type; that is,
a group transformable into (6) by a linear transformation.

If we had assumed that the second operator was of the
form (5) we should have been led to the same group (6).

We must now find the linear groups of the third order
which do not contain the operator (3).

Suppose that one operator of our group is of the type (5);
and let a second operator be

a (@p+yg) +b (@p—yq) +cyp-
Forming the alternant with zg we see that the group will
contain clap—yg);

first we suppose that ¢ is zero ; and we take the third operator
of the group to be

() ay (zp +yg) + by (2p—y9) + e yps
where «y, by, ¢, are constants,
Now ¢, cannot be zero, for, if it were,

a(zp+yg)+b (zp—yg) and & (@p+yg)+b (zp~y9)
would be two independent operators of the group; and there-
fore #p+yq would be an operator of the group, which is
contrary to our hypothesis,
Forming the alternant of () and (5) we see that the group
will contain ¢, (&p—3q),

and therefore the group which contains (5), and does not
contain (3), must contain (4).
We therefore take the third operator of this group to be

a(zp+yg)+byp;

and forming the alternant with (4) we see that the group
must contain yp, and we thus have the group

(®) o, yp» TP—Yq-
We obtain the same group by supposing the first operator
to be of the type (4).
We have now only to find any possible group of the third
order which does not contain any operator of the types (3),

(4), or (5).
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Suppose that one operator is of the type (2); we then take
a second to be
a (zp+yg)+b(@p—yg)+cyp,
and the third
o (zp+yg)+bi (@p—yg) + o1 yp,
and we may clearly suppose that either ¢ or ¢, is zero; say
we take ¢ to be zero, if we now form the alternant of

a(@p+y9)+b(@p—yq)
with (2), we shall get an operator of the type (5), which is
contrary to our hypothesis,

The group cannot therefore contain an operator of the type
(2); and we see gimilarly that it cannot contain one of the
type (1). .

The only groups of the third order are therefore

g, p—Yq, =p+yq,
and g, TPp—Yq, yp.

It may be shown in a similar manner that the only groups
of the second order are

e(zptyg)+ap—yq, wf;
*p—yq, 2p+Yq;
29, zp+yq.
We have now found all possible sub-groups of the general

linear group in z, ¥ ; we might have obtained these directly
by the method explained in Chapter XIIT,

§ 264. It is now necessary to examine the groups which
we have found ; and to see, with respect to each of them,
whether there is any linear equation

Az+uy =0

admitting all the transformations of the group.
It may be at once verified that the group

*q, TPp—Yq, TP +yq

is admitted by the equation z = 0; that is, by any trans-
formation of this group, points on the line z = 0 are trans-
formed so as still to remain on the line z = 0.

It may similarly be proved by successively examining these

oups that, for each group, at least one linear equation can

e found to admit the transformations of that group, unless
the group is either
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(1) the general linear group,

&g Yp, TPp—Yq TP +yq,
or (2) the special linear group,

&g, yp, Tp—yq.

§ 265. We now proceed to determine the types of primitive
groups of the plane.

If a group is imprimitive it must have at least one in-
variant equation of the form

Z=bw 9

We express this condition geometrically by saying that
an infinity of curves can be drawn on the plane ; and t%a.t by
the operations of the imprimitive group these curves are only
interchanged infer se; any set of points, lying on one of the
curves of the system, being transformed ‘so as to be a set,
lying on some other curve of the system.

If then we take a point of general position the group of
the point, that s, the transformations of the imprimitive group
which keep that point at rest, cannot alter the curve of the
system which passes through the point; and in particular
the direction of the eurve at the point is not altered.

We take the origin to be a point of general position ; then
the lowest terms in the group of the origin are of the first
degree ; suppose P is the origin, and PT the tangent to any
curve which passes through P; by the operations of the
group of the origin this curve will be transformed into a
system of curves all passing through P; and the directions
of the tangents at P to these curves are what the direction
PT has been transformed into by the operations of the group
of the origin.

Now the only terms in the group which are effective in
this transformation of the linear elements through P are the
lowest terms; that is, the linear elements at are trans-
formed by a linear group.

We obtain this same result analytically as follows :i—

2 2
let £ﬁ+ﬂ¥/

be any operator of the group of the origin, so that £ and 4,
the terms of lowest degree in @, y, are at least of the first
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degree; and let us extend the operator (denoting by p the
o Ay
quantity e ) 50 as to get

2 d 2
Eﬁ +n 3y +(”I1+P(’72‘£1)‘P2£2) S;’

where the suffix 1 denotes partial differentiation with respect
to 2, and the suffix 2 partial differentiation with respect to y.

We are only concerned to know how the p of any line
through the origin is transformed ; this we know through
the operator

(P82 50

where after the partial differentiations have been carried out
we are to take z = 0, ¥y = 0; we therefore need only consider
those parts of £ and n which are linear in z, y.

Now if the group is imprimitive at least one value of p can
be found which is invariant for the group of the origin; but
if the group is primitive no such value can be found. If
therefore the group is primitive the operators in it of the
first degree, according to the classification explained in § 259,
must either be of the form

1 d d d d

(1) Y3z T z3y+”" zﬁ—yay+...,
where the terms not written down but indicated by +... are
of higher degree in the variables than those which are written
down ; or else they must be of the form

2 42 2 L 2,2,
( yﬁ-k..., w@ ...,zﬁ—y@-&.., wﬁ*‘yby vy

for, by § 264, all other forms for the group of the origin would
leave invariant at least one linear element through the origin.

§ 266, Suppose that the operators of the first degree are
of the form (1); it will now be proved that there cannot be
any operator of degree three, and therefore not any of higher
degree.

Suppose that there could exist in the group the operator

d
(1) y’ﬁ+...,
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where the terms not written down are of higher degree than
those written down ; form its alternant with

d
z@+...,
when we shall see that the group must contain
d d
10 _,p3 0
(2) 3y’ Y by+""
Forming the alternant of (1) and (3) we get
d
3 5=t
@ Pont

and forming the alternant of (2) and (3) we get
d
7 .
YVsgts

and so on ad infinitwm ; so that the group would not be
finite as all of these operators are independent.
We can now prove that there ean be no operator
d
O &5
where £ and 7 are of the third degree; forming the alternant

d
+7’ﬁ+""

2
of (4) wit}.\yym +... we get
2 2
(?/fx-fl)ﬁ'*'?/flra?l e

. . 2
Forming the alternant of this again with Yyt and so
on, we get successively @

2 2
(y2£11_2.7/7'l1)ﬁ +Z/7I11¥/ +..0y
(6= 39"m) o= + Y1 = +

111 )y, TY Yy, T

d
“4Z/a’huﬁ+--o-

Now ny,, is a constant, and it must be zero, else would the
group have an operator

?
y"‘a + s
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and therefore 1 must contain y as a factor; similarly we see
that £ must contain « as a factor.

We must now try whether there can be an operator of the
form

d ?
(5) w{a +yn@+...
where £ and n are of the second degree; forming the alternant

with Y3g e bave
d d
(8) (W§1+?/(f—n))rm+y2n1@+....

Now the coefficient of b%’ being of the third degree, must

be divisible by #; and therefore {—n must be divisible by z;
by symmetry it must be divisible by ¥, so that

§—n = azy,
where « is a constant.

The result at which we have arrived is that in any operator
of the third degree

¢ d d
Sz +7 @ +...
f+z—n—+y is divisible by zy. Applying this theorem to (6),
and writing 7+ axy for £, we see that a is zero, so that £ and
7 are equal.

We then have to try whether the group can contain an
operator of the form

d d
f(zﬁ +y@) + ...

where { is of the second degree.
Forming its alternants with the operators of zero degree

) d .
viz. o + ... and by +..., we obtain the two operators

d d ?
&y, +y @) st
d d d
& (o, +y@) +Hegy e
and forming the alternant of these two we have

gy —Eigs + o
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This operator being of the third degree, must be such that
&_ =&,
z  y '
and, £ being of the second degree, we must therefore have
L=y, &L=—hy,
where k is a constant.

¥, 2
Now @51:371;52

and therefore & must be zero; so that ¢ being of the second
degree and £, and &, both zero, £ must vanish identieally.
We have therefore proved the theorem we enunciated, viz. that
no operator of degree three can exist in the group.

§ 267. We have now to find the possible forms of operators
of the second degree ; let such an operator be

d d
1) fa_zJ"’a_y +.oon
First we could prove as before that the hypothesis of an
operator of the form 3
:l/ab— +...
z
existing in the group would involve the non-finiteness of
the group.
d
Form successive alternants of (1) with Y5z +...; and we
get 3
¥y ¢ +...3
and therefore, since we must have 7, zero, we see thst 7

contains y as a factor. Similarly we see that £ contains 2 as
a factor; and we need only consider operators of the form

d d
(2) zés +y"Ty +eees
where ¢ and 4 are of the first degree.
Form the alternant of (2) with ybiw +..., and we shall see
that £—7 is divisible by 2, and therefore by symmetry it is

also divisible by y; but £—7 is of the first degree, and there-
fore must vanish identically,
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The only possible operators of the second degree are

therefore by by
HE sz Y @) ,

where £ is of degree unity.

So far the reasoning has only involved the existence of two
of the operators of the first degree, viz.

d d
(7) w@+ and Y5zt

and it therefore applies equally to either class (1) or class (2)
of the primitive groups.

We now assume that the group is of the first class and
80 has no operator of the form

o d d
(8) x5 +y@ e
and we shall see that £ must be zero.
Forming the alternants of
d d
£(wﬁ “’a‘y) Fo
with d
Y]
we have in the group the operators

d d d
& ey, 'Wa‘y) HE5 Foen

d
+..., and 5y + e

©) ? 3 d
& (zﬁ +y@) +£@ e

Sinee ¢ is linear and equal, say, to ax+by, the existence
of {9) and (7) involves the existence of (8), unless a and b
Y6 zeTo.

A primitive group of the first class can then only have the
five operators

) ) by ? ) by
ey @+..., “Sy Fons Yo o zﬁ—yﬁ+....

,§ 268, We shall now for brevity denote by P the operator
:I/;‘x +..., by @ the operator a:;?; +..., and by R the operator

2

2
“g Yyt
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P, @, R is the group of the origin, and we have
(P,R)y=2P, (Q,R)=-2Q, (P,Q)=—R.

d
Also, since P, @, R form with ai + ... and PR the
group itself, z Y

d P)
(Yy +euP)=a,P+b,Q+c,R+ 5+

b d
(ﬁ - Q) = a,P+b,Q+c,R+ 3y +y

where a,, b, ¢;, a,, b,, ¢, are unknown constants,
If we now take as two operators of the group X and ¥
where

X=q,P+8Q+nR+ aa‘z Foun

d
Y=a,P+B8,Q+yR+ 5y +..0
we geb
(¥, P)= X+(a1-—a1)P+(b1-,8)Q+(cl—-yl)R+ﬂ2(Q,P)
+7: (R, P)

=X+(“1_‘11+272)P+(b1—/31)Q+(U1—Y1+}32)R5

and, similarly,
XQ= Y+(a2_“2)P+(bz—ﬁ2—271)Q+(ca—72_‘11)R-

We now choose the undetermined constants ay, 8, y1,
@25 B35 ¥ 80 88 to make

&) (Y,P)=X and (X,Q) =Y.
We next suppose (ay,3,,... denoting unknown constants)
that (V,Q) = a,P+5,Q+¢,R;

for obviously (¥,Q) does not involve X, ¥, when we express
it in terms of X, ¥, P, Q, R, a set of five independent operators
of the group which is of order five. Similarly we take

(X, Py=a,P+b,Q+c,R.
We now apply Jacobi’s identities to eliminate as far as
possible these unknown structure constants of the group.
From
Q@ P)+(P(Q Y)+(¥.(P,Q) =0,
(Q’ (X; ‘P)) + (‘P’ @ X» + (X; (P, Q» =0,



269] OF THE PLANE 849

and from (1) we now have
(Y,R)y=Y-bR+2¢,P,
(X,R)= X+a,R—2¢,Q;
and from

(R, (T, P)+ (P, (B, Y))+(Y, (P, R) =0,
we deduce

(R, X)+(P,b,R—26,P—Y) +2(¥,P) = 0;
that is, 2¢,Q—-a,R+25,P =0,
which, since the operators are independent,
gives cp=a,=0b,=0.

Similarly we see that ¢, =ay, =5, =0;
and we have now proved that

T.Q=0, (X,P)=0, (LR)=Y, (X,R)=X.

In order to complete the structure of the group, we have
now only to express the alternant (X, Y) in terms of X, ¥, P,
@, R ; suppose that

(X,Y)=aX+bY+cP+dQ+eR;
from @& )+ E)+EX (L P) =0
we deduce that bX+dR—2eP =0,
and therefore b=d=e=0.

Similarly we see that a and ¢ are both zero, and the group
has therefore the same structure as the group

2 ? 3 3 d d ?
(2 % 3y’ Y35 m@, T Y3

The group (2) and the required group are then simply
isomorphic, and the sub-groups of the origin correspond, so
that (§ 133) the groups are similar. The only primitive group
of the plane of the first class is therefore of the type (2); that
is, the type is that of the special linear group whose finite
equations are

¥=ax+byte, ¥=cx+dy+f,
where ad —be is equal to unity.

§ 269. We now have to consider the possible primitive
groups of the second class, when the group of the origin
contains

? d d d d d
yﬁ +.0es x@ +oees "035: +y@ +... wﬁ—y@+....
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We have seen that the only operators of the second degree
are of the form

d d
£(a:ﬁ +yﬁ) +ees
where £ is a linear function; forming the alternant of this

with y% +..., we get

d d
va (a5, +u5,) +s
where £, is a constant.
Similarly we see that the group must contain

d d
yfg(mﬁ +ys?;) e

Unless then both ¢, and ¢, are zero, that is, unless the
group contains no operator of the second degree it will contain

d d
y(wﬁ +y 33}) + ...
Similarly it will contain
d ?
@(eg, +y@) Foe

If the group contains no operator of the second degree
it may be proved as before that it is of the type of the general
limear group

_b" ki wi d " d d d 3
W Y Y Y T tYsy Cwn iy

If it does contain an operator of the second degree the group
contains the eight operators
k) d d 3

? )
szt Sy T Yap tes Ty e T3z Yag te

? : 3 + d d d P
T e T gy e w(mﬁ +ys?;) +o y (25 +y$/) +..e
§ 270. Let us denote these operators respectively by

(1) X,Y,P,QRUVW
‘We have at once U, V=7,
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since the alternant (U, V) being of the second degree cannot
involve X, Y, P, Q, or R.
So also (U,W)="W, and (U, P) =aV+bW,
where a and b are unknown constants; and if we take instead
of P the operator P—aV—bW, we shall have

(U, P—aV—bW)=o0.

Since the lowest terms in P—aV—bW are the same as in
P, we may suppose that the operators (1) are such that (U, P)
is zero; similarly we may suppose that (U, Q) and (U, R)
are zero.

We have

(U, X}y =—X+aP+bQ+cR+dU+eV+fW,
which, by taking a new X with the same initial terms as the
original X, is reduced to
(U, X) =-X;
and similarly (U,Y)=-7.

Now by a change of coordinates we can transform any
linear operator into any other; and in particular we can
transform

) d . R
ma—i+y@+... into mam,+?lyy7

by the transformation formulae

d=a+{ Y=y+n,
where £ and 4 are functions of & and ¥, which, when expanded
in power series, begin with terms of the second degree at least.

If then we apply this transformation formula the lowest
terms in X, ¥, P, Q, R, V, W will not be altered in form, U
will become m% +y %/, and the structure constants will of
course be unaltered.

It will now be proved that

d d d d

X=$;, Y=@, P=?/ﬁ, Q=$a§,
d d d d
R=mﬁ_y@’ U=wﬁ+y@,

d d d d
V=ac(a:sa—; +:l/@), Wzy(acﬁ+:t/s?;)-
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Take for instance

3 d d d ? d

= g — 8 — 8) — @ (1) —
V=g« M+myay+£ e ay+‘f se ay+""
where £ denotes a homogeneous function of degree k.

We have

d

> > d
—a? 2 @) 2 4 @
(U, V) acaz+xyay+2(£ 2t ay)
> >
4) — 4
+3 (605 40 By) +ess

and, as (U, V) is equal to ¥, we must have
d d d d
). — @) ) 4) —
£+ 9 b +2(E05 +q ay) +oe
identically zero ; that is, £8), n®), £4), 4®), .., are all zero, and
V is merel; x2—3—+ 2,
is merely 2* == +a2y 3
Similarly for any other operator; so that this primitive
group is of the type
3 ? d d d ? d 2
3%’ @, ?/ﬁ’ m@, xﬁ—y@, wb‘m +yayy
? 3 d d
a:"’b\m +my@s myﬁ-f-yzgl,
that is, of the type of the projective group of the plane.
There are therefore only three types of primitive groups in
the plane, viz. (1) the special linear growp; (2) the general
limear group ; (3) the general projective group.



CHAPTER XXII
THE IMPRIMITIVE GROUPS OF THE PLANE

§ 271. We shall now sketch the methods by which the
imprimitive groups of the plane may be obtained.

The group being imprimitive, the plane can have an infinity
of curves drawn upon it, such that by any operation of the
group these curves are only transformed inter se.

We therefore choose our coordinates so that these curves
will be given by « = constant, and then the linear operators
of the imprimitive groups must be of the form

¢ d d
3 Ty
where £ is a funetion of « alone.
If the operators of the group are now X, ..., X, where

d d
Xk=£kﬁ +’7k¥/’ (k=1,...,'l'),

d

e d
then it is clear that ¢, 52’ .-.,fr%

must generate a group; and, this being a group in a single
variable only, we can, by a change of coordinates (which
merely consists in taking as the new variable #’ a certain
funetion of the old variable @) reduce &, to be of the form
ay,+b, x4, o where ay, by, ¢, are mere constants, By
a change of coordinates the operators of an imprimitive group
can therefore be reduced to the form

d d
Xk=(ak+bkw+ckzz)£)+’7ks?;’ (B =1,..,17).

It then follows that imprimitive groups of the plane can be
divided into four classes: the first class will only contain
operators in which ay, b, and ¢, are zero, that is, they will

all be of the form ﬂk%; the second class will contain one
? » ) >
operator 3z tm 3 while all others will be of the form g, 39’

CAMFBELL Aa
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the third will contain the two operators
d d d d

iy +’71@’ mﬁ*‘ﬂz@
with others of the form v, %/; the fourth class will have

2 d k)

2 LI S
Set ey T tmyy Tty

with others of the form 7; %’ .

‘When we have found all possible forms of groups of one
class, in order to find the forms of groups in the class next in
order, wo take one of these groups, and add to it the operator
which differentiates the higher from the lower class. Applying
the conditions for a group, we thus find the form of the operator
we have added, and the additional conditions necessary (if any),
in order that the group of lower class may thus generate one
of higher class; this principle will be sufficiently illustrated
in what follows.

§272. We have first to find the groups of the form
d ?
ﬂlw,...,ﬂr@'

Since @ now occurs merely as a parameter we can, by a trans-
formation of the form

d=u i =f@® )

reduce each of these operators to the form

d
(o +BrY + 1Y) 3

where ay, 81, 7; are functions of the parameter z only; this
theorem follows from what we proved as to groups in a single
variable.

It may be at once verified that by a transformation of the
form e at By
v+oy

where a, 8, v, b are functions of « only, any operator

3

d
(“k+ﬂk?/+7k3/”)@
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is unaltered in form, the functions ay, 8y, 7, being trans-
formed into other functions of z, The operators of the group
are therefore unaltered in form by any transformation of the
given type.

Suppose that for every set of constants A,, ..., A, the quad-
ratic function of y

Amt.+A,
is & perfect square ; we may then assume that
nm=aley+8), (k=1,..7),
and therefore, if we take
y=—1
Tay+p’

we may reduce the operators of the group to such a form that
y does not occur explicitly in the group at all.

The first type of group that we find in this class is there-
fore of the form

&) [Fl(w)%,...,lr’,(z)%].

Since all the operators are permutable, this group is an
Abelian one,

§ 273. We next consider the case where the operators are
all of the form

d
(“k'*'ﬂk?/)s?;’ (k=1,...,7),

that is, the case where all the functions v, ..., v, are zero;
we cannot at the same time have all the functions 8, ..., 8,
zero, for then this type of group would reduce to the form
Jjust considered.

Suppose therefore that 8, is not zero, and apply the trans-
formation 4= a, + B,y, which will enable us to take one of
the operators of the required group to be

?
ﬂly@'

Forming the alternant of this with (az+,62y)ai we find
d
that a, ,81371 is an operator of the group. Now if all the

functions ay,..., a, are zero we can by the transformation

y'=logy reduce the group to the type (1); we therefore

assume that a, is not zero, and forming the alternant of
Aaz2
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a, ,Blba—y and ﬂly%l we find that a, 8,2 % is an operator of the
d d
group. Similarly we should see that o, /313@: azﬂf@’

are all operators of the group; and therefore, if the group
is to be finite, we must assume 8; to be a mere constant, and
we may take this constant to be unity.

We may similarly show that all the functions 8,, ..., 8r are
mere constants ; and we thus get the second type of groups
in the first class to he

? d d
@) Fl(w)ﬁi"': Fr—l(m)W’ ?/@'

§ 274. We now pass to the case where there is at least one
function a; + 8,y +7,%* which is not a perfect square and in
which y, is not zero.

Let 4+ B Y +ny = ny—a) (y—H),

and apply the transformation o' = ?;_:; s which gives

N d
‘11+ﬂ1?/+71?/'=71?/W'

We therefore again assume that the group contains an
d
operator ﬂlyﬁ; and, if we are not to obtain the type (2)
over again, there must be at least one other operator
3
(024 825 +7: %) 3y
in which y, is not zero.

By a transformation 4= y,y we may simplify the discus-
sion by having only to consider the case where y, is unity,

Forming the alternant of (o, + 8,y + y’)bi and ﬂlya%,

d Y
we find that (8, 3/2_"2ﬂ1)ﬁ is an operator of the required
group. Forming the alternant of this again with ﬂly%/,

and so proceeding, we get

? ?
(ﬂ12y2+ﬂ12a2)s?;, (/313?/2—/313%)3?7
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50 that the group would be infinite were not 8, a mere con-

stant, which we may take to be unity.
The group now contains
P P
(' —ay) 3 and (y%+a,) 3y ’
P
oy

d
and therefore yza/ and a,— ; forming the alternant of these

two we see that it contains ﬂzi’lbi > so that a, is a constant.
Th: group contains (e,+ B,y +4%) 3 and therefore also
ByY 5, 80 that 8, is a,laso a mere constant.
If (o34 By +%Y) 5y is any other operator we find, by
taking its alternant with y 5 that the group will contain

P d
(%‘*‘Ya?ﬂ)@ and (73172_“3)37/’

and therefore a3—»s ¥3 y2%/ » and therefore also ﬂay%; and

P
2y
we see as before that ag, 8;, y; must be mere constants.

If a5, ..., 0, aTe all zero the group will therefore be of the
type 2 2
3y Yay’
which is but a particular case of (2); but if they are not all
zero the group will contain the three independent operators

() P d P

s Ve Yoy
and no others.

We have now found that all groups in the first elass must
be of the types (1), (2), or (3).

§ 275. Passing to groups of the second class, and first
taking (1) of § 272, we have to find the conditions necessary
in order that

d ? d P
Fl(w)@, v F,(x)@, 52T 5y
may generate a group of order (r+1).

If all the functions F,..., F, vanish identically we can
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reduce a% +7 al to the form % by a change of coordinates,
and thus obtain the type 3
O] w’ N N

If they are not all zero we form the alternant of PP %

and F, (z) %’ and thus see that the group contains
LFI - Flal) i;

Az Ay’ dy
%—Flg—; must now be dependent on Fy, ..., F,, and there-
fore gﬂ is a function of « alone.

We then take 4 to be of the form oy + 3, where o and B are
functions of «; and it may easily be verified that by a trans-
formation of the form

F=w, y=y¢@+fl)
d )
we may reduce 2 +73 to the form 57 without essentially

Az @
altering the form of the group

d d
(1) I;(x)wi""ﬁ;‘(w)é—y'
We have therefore first of all to see what forms these
functions F,..., F, must have in order that (1) and %
may generate a group of order r+1.

§ 276. We now make a short digression in order to consider
a principle of which much use may be made in the investiga-
tion of possible types of finite groups.

If X is any linear operator of the group which we seek,
we can by a change of coordinates reduce it to the form

aix; if then any other operator of the group is

dx

d P d

—+n@+{£+...,
- o 9

we see, by taking its alternant with 5% that
%2 22 o
dzdw T 3w dy 3wz v
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is an operator of the group; so also must every linear
operator of the form

FE L ¥ D B
Sak 3z T oy T daras T
belong to the group.
Now the group being finite only a certain number of these

operators can be independent; and therefore there must be
some operator of the form

d ™y d mi
()™ ()™

(where @, ..., a; are constants, depending on the structure
constants of the group, and my, ..., m; are positive integers)
which will have the property of annihilating each of the
funections & 7, ¢, ....

1t follows that

£= % (g e~ Fa,d™ T L)

+ 61 (g ™ F g &™)
where Qi aee denotes a function of the variables not con-
taining « ; and that we shall have similar expressions for
0 Goeens

. d ? d ? ? d
Since (ﬁ_ul) fﬂ"‘ (ﬁ—%)flw + (55_“1) CSZ+

is an operator within the group, which will not contain z in
a higher power than (m;—2) in the coefficient of ¢, and

d 2 2 d 2 d 29
Ga—) é55+ (55— ) 55t (Gp—) 35+
is an operator in which « only enters in the power (m,— 3) in
the coefficient of ¢%% and so on, it is not difficult to see that

the group must contain the following sets of operators.
Operators in which

& = eTa,, 7 = 6"%by, ¢= "¢y,

=@ tay), n=e"(bet by)y (=€ (ez+ey),

£ = % (g, 2%+ 2a T +0y), W= €17 (b 2®+ 26y @+ byy),
€= 6" (0@ + 20 @+ 0yp),

and so on, where the letters a,, by, ¢, ... all denote functions
not containing .
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In addition to these there will be the similar sets of
operators corresponding to the roots a,, ..., ay; and every
possible linear operator of the group will be dependent on
the operators here enumerated.

§ 277. Applying this principle to the problem before us,
viz. the determination of the forms of F, ..., F, in order that
d 32

F\(x) 3 F,(2) 55’ 3

may be the operators of a finite group, we see that the funetions
denoted by a,, b, ¢;, ... are now mere constants; and that the
group must therefore be of the form

?
ﬁ,

§278. We have now to find what groups in the second
clags may be generated from

d d
(5) [e“'ﬂ@, 2T — .., a1 ghT

2
2y ﬁ]’ (b=1,2,3,..).

2

d
F@) 3 F o)),

P
Y3y
. 2 )
by adding the operator YR W

d P
Forming the alternant of F,(x) 39 and PRl ;TV , we see that

d AF, d

is an operator of the group ; and therefore

5 oF iy
@ R@3-09-q. 3 one,

where ¢, ...,¢,, and ¢ are absolute constants.
.. . P d P
Similarly, by forming the alternant of y 3y and Rl 5’
we see that b, b,,...,b, being a set of constants

(B) Uon ~n =ty +3 b By ().

From (A) we see that y is of the form o+ BY+vy?, where
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a, B, y are functions of # only; and trom (B) we see, on
substituting this value for 9, that y is zero, and

k=t
e=-3 b, F, ().

. d
Now without loss of generality we can add to :— +na-
any operator dependent on @ J

2 2
Fl(w)@,...,Fr(w)@;

and we may therefore suppose that the form of 5 is so chosen
that both ¢ and y are zero.
By a transformation of the form
d=a y=yé@)
we may, without essentially altering the form of the other
operators of the group, so choose the unknown function ¢ (x)

? d d
that 5 +8y @ may become 357
and we may thus reduce the group to one of the type

d d d d d
% 04T M —1 o BT
(6) [ ¥ %’ Ze FIR M1 g™ 3y’ yay, bw]’

(k=1,2,3,...).

§ 279. The only type of group in this class remaining to be
examined is
d P d d

P
— — 2 — —
Ay’ yay’ ¥ ¥y +T'By
?
by
being only four operators in the group,

o _ 2
Sy = a+2by + 3cy?,

where @, b, ¢ are mere constants; and therefore
1= ¢ @) +ay+by"+cy’.

)} d
Forming the alternant (W’ +r,—bTy) we see that, there

d

. ) 3, ) .,
Forming the alternants of 52 H 3 with y 3y and y° 3
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respectively, we see that ¢(x) must be a mere constant, and
¢ must be zero; so that the group reduces to the type

(") a% y%: yz%: ;;

§ 280. In the third class the groups must contain two
operators of the forms — +111 by and z3- ° +r,2 ;;y, and clearly
in any group of this cla,ss there must be a sub—gmup con-
taining all the operators of the group except P + g5 By

‘We therefore begin by trying whether from f.he group
[e“h”a%, xe"k“‘%,..., w"‘k—le“*”b%: %], (k=1,23,.)),
we can generate a new gmup of order one higher, by adding
an operator of the form w~ +1n— 5

F'ormmg the alternant af the new operator Wlth 3 7 see
tha,t = 1s a function of « only ; and forming 1ts altema,nt with
any other operator of the group we see that —y is a function
of z only; and therefore we take

1= cy+$ix)
where ¢ is a mere constant.

If we substitute this value of 5 in x%} +r,ai » and form the
alternant with ™! e"k"-b% » we shall find that the group

must contain ay @™ e“"‘aj; and, as am =1 ig given to be the
highest power of « in the coefficient of €%, we conclude that
a;, must be zero.
The group must therefore be of the form
LR I N N R
3z’ xﬁ +1/S‘1;: y‘/, waTy,...,w @,
b=r

where n=cy+ 2 ¢, &% 4 constant ;
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and without loss of generality we may say that
n = cy+e,x".
If ¢ is not equal to 7, apply the transformation

T

— = cfx
d=2, y=y+ o7’
when the group takes the simple form
d ? P ? ? ?
= — —_ = £ r-1_< |
(8) 520 %3z +c'yby, 59’ way,...,x P

If ¢ is equal to 7 it is easily seen that by a transformation
of coordinates we may take c, to be unity, and thus obtain
the type

d 2 nd 2 2 L2
(9) Sa Pyg Tyt )a—y, 55 m@,...,x’ 5
§ 281. We should next have to try what groups of the form

d d ? ? ? ? ?
ax © az_ O 1 < .2 el i
[e* ay’ 2 e¥ ay,...,x %1 g ay’ yby’ 3z’ xax +T'by:|’
k=1,23,..)
can exist; and in much the same way we should see that we
may take 7 to be exy when c is a constant. If we then apply
the transformation

o=z, Y =6y,

d d
5s— becomes —;

2 > . .
57 s =Y 57’ y—bTy is unaltered in form, and

d d , 9 s
x Eye +7 —fy becomes « 37’ whilst the other operators are not

essentially altered in form. If we now apply the same
reasoning to this type as we applied to the last, we shall see
that a; must be zero, and that the group takes the form

) ? ,1 d ) k)
(10) [W’ xa-y,...,% @: y@’ 3%’ xba;]’
where 7> 0.

The other types of group in this class can similarly be
found ; they are

) ) N
SRS
) [ﬁ,’ Y35° Y3y’ xax]’
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d 2 d
(12) [a—w > @y + @] ;

o el

§ 282. Passing to types of groups in the fourth class we
must take each group from the third class, and see whether
we can generate a group of the fourth class by adding to
?

R
Thus it may easily be shown that from

? ? ? ? ? ?
[ 3 Ty, xﬁ+('ry+x’)@], where 70,

. ?
it some operator of the form x? 5o 0

3y’ T3y 2y’ 3’
a group of the required class cannot be generated. On the
other hand, the group

INUNE SRS S DL S
ay’ @,..., by’ 3’ ax“y@
will lead to two types of group of the fourth class; viz.
) 2 rad 2 2 PR a]
(14) [@, x@,...,x Sy’ %’ 2ee +('r—1)yﬁ, z ﬂ+('r—1)zy@ ’
where » is greater than zero; and
? ? ? d ?
2, 2 < 2 9 2
(18) [yay’ o’ st ¢ Bx+xyby]'
The other types of groups in this class are

) d . 302 3,2 d ) .
(16) [3_3}’ xw,...,x’ 5y’ yﬁ, 32’ %5z’ © ﬁ+('r—l)wy@], (r>0);

d b} 2 d d 2 27,
17 [ﬁ, Ys—» y@, sz’ 3z’ xg],

2y Ay Az .
18) [ 2 2 2
(18) [ﬁ, T3e TSy T gt wy+y2)y}
2 2 ) L)
(19) [ﬁ’ 2xﬁ+yby, ﬁ-wcy@],
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? ? ?
(20) [ﬁ’ @y w’ﬁ]
The methods by which these groups of the fourth class

are found does not differ essentially from the methods by
which the groups of lower class were found.

§ 283. Every imprimitive group of the plane must belong
to one of the types enumerated, but these types are not all
mutually exclusive ; thus the group
2 R

w Yay Yy

in the first class is similar to the group of the fourth class
2 L)
% Tan Tag

In order to divide the imprimitive groups into mutually
exclusive types we examine each of the groups we have found
a8 regards their invariant curve systems. For all the groups
the system 2 = constant is an invariant system, but some of the
groups have other invariant curve systems.

We first consider the type (1) and suppose that = is g{zaﬁer

than unity ; we may then by a transformation of coordinates
of the form

d=z y=ydl)
simplify the type 8o as to be able to assume that two operators

? ?
of the group areﬁ and o 3
Suppose that for this group f(z,y) = constant is an in-
variant curve system ; we must then have
?
37 f (%, y) = some function of f(z, y).

If this function vanishes identically f (x, ) is a mere function
of 2, and therefore only gives the known invariant system,
@ = constant. If, however, the function does not vanish iden-
tically the curve system f (z, y) = constant can be thrown into

such a form that 2-‘515 unity, and therefore
y+f (x) = constant
is an invariant curve system for the group. Applying the
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operator 5% of the group we must then have

@ 5 (1+£(@) = some function of (y +7 &)

and as this is impossible we conclude that, if r is greater than
unity, (1) cannot have any other invariant curve system than
& = constant.

If, however, = is equal to unity, the group is of the type

%; and admits the «” curves y = f («) as invariant systems,

where £ is an arbitrary functional symbol.
We next can prove that if the type (2) is of order two,
it may be thrown into the form

by vs3l

and for this group there are two invariant systems, viz.
# = constant, and y = constant. If the group is of order
greater than two the only invariant system is « = constant.

It will be found that for type (3) there are the invariant
systems x = constant, and y = constant.

The type (4) is similar to type (1), when the latter is of
order unity.

I the type (5) is of order greater than two, the only
invariant system is & = constant. If the group is of order
two it can be reduced to one or other of the forms

? ? ? d P K
5w 55’ @3-ty 5
and for either of these groups there is an infinity of invariant

curve systems, viz.
ax + by = constant,

where ¢ and b are arbitrary constants.
The type (6), if the order is three, can be thrown into
the form
d d d
v b
with the invariant systems z = constant, y = constant ; if the

order is above the third the only invariant system is # = con-
stant,
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The type (7) has the invariant systems =z = constant,
4 = constant,

The type (8), if r>1, has only the invariant system
« = constant. If, however, » = 1, the type is

d 9 9 d.
3z’ @: %ﬁ +Cy3y’

L9 9 . .
and, since the group contains s a.nds?}, the invariant curve

system must be of the form
a®+by = constant ;

if ¢ is equal to unity this system is admitted ; but if it is not,
the only systems admitted are = constant and y = constant.
The group (9) has only the invariant system & = constant.
The group (10) has only the invariant system & = constant,
if » > I; but, if » = 1, it has 2 = constant, ¥ = constant.
The group (11) has the invariant systems z = constant,
y = constant,
The group (12) is similar to onme of the cases of (5), viz.
the case when (5) can be thrown into the form

9 9 k2
5’ 3 +Yy Py
The group (13) is similar to (2), when (2) is of the second
order.
The group (14), when » > 1, has only the invariant system
« = constant ; when » = 1, it is
o, 2 s @ 2 >t 2 s
oz
and is similar to (7).
The group (15) has only the invariant system & = constant.
The group (16), when 7 > 1, has only the invariant system
« = constant ; when r = 1 it is similar to (11).
The group (17) has the invariant systems x = constant,
y = constant.
The group (18) is similar to
LI SN SRS S )
Tx-*- @: mﬁ+yay, xﬂ+y by’

and has the invariant systems # = constant, ¥ = constant.
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The group (19) has only the invariant system & = constant.
The group (20) is similar to (3).

§ 284, We now rearrange the imprimitive groups of the
plane into mutually exclusive types and into four new classes,
corresponding to the different systems of curves, which are
invariant under the operations of the groups. We shall denote

d
the operator f%c +1 5% by ép+ag.

In Class T we bave the group ¢ for which an invariant
system is y +f (@) = constant, where f (z} is any function of &
whatever.

In Class II
(9, P15 (9 2zp+yal; (&2 a0 +yq];
with the invariant curve systems
ax+ by = constant,
where o and b are any constants.
In Class IIT
[9.991; [9.99. 4q1; [p. ¢ 99);
{9, 99, ¥4, p1; [¢, p, xp+ cyq], ¢ being a constant not unity ;
9 ¥0: 2, 0] (9. 99 90, p» 20];
(9 99 9°0, P, @p, @"p1s [p+4, ap+yq, @*p+y7q];

with the invariant curve systems @ = constant, ¥ = constant.
In Class IV

[F1(2)q, ..., Fr() q], where » > 1;
[Fi@)q, ..., F,(z), yq], where r > 1;

[e**q, ..., 2™~ ¢"q, p], where the order > 2, and k=1, 2,3, ..;
[e™q, ..., 2™ e%%q, 4q, p], where the order > 3,and k=1,2,3,...;
{g, zq,...,2"¢, p, ap+cyq], where » > 1 and ¢ is a constant ;
[ =g, ..., a"2q, p, 2p+ (ry+27) q], where r > 0;
(9> 29, ..., " q, yg, p, xp], where » > 1;

[Q: @Gy ey mr—l% p, 2ap +('r'_ 1) Y49, mzp + (’r_ 1) qu}’
where » > 1;
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[Q’ &g, .oy 27, Y9 P> TP, .’l:zp-l-(’l‘—l)qu], where 7 > 1;
[y, p, 2ps @*p+ayq];
(o, 2ap +yg, @*p+ayq];
with the invariant curve system @ = constant.
It is clear that a group in one class cannot be similar to
a group in any other elass ; and it may easily be seen that in
the same class no two similar groups have been enumerated.

Every imprimitive group of the plane must therefore belong
to one of these twenty-four mutually exclusive types.

P— Bb



CHAPTER XXITII

THE IRREDUCIBLE CONTACT TRANSFORMATION
GROUPS OF THE PLANE

§ 285. We have now found all point groups of the plane,
and if we extend these we shall have all the extended point
groups ; if the groups are only extended to the first order and
we apply to them contact transformations we shall have the
reducible contact groups of the plane. In this chapter we
shall show how the irreducible contact groups of the plane
are to be obtained.

It must first be proved that the necessary and sufficient
condition that a system of contact operators of the plane
may be reducible to mere extended point operators by a con-
tact transformation of the plane is that the operators should
leave unaltered an equation system of the form

doe _dp _dy

Z=r =,

a B8 ap
where a and 8 are functions of z, y, p.

Let f(, ¥ p) = constant, ¢ (z, y, p) = constant

be integrals of this equation system ; then, since
3 A U g g 2,2, B
M;+a;yp+5;u_0 Md8x+ Pty =0
8,
a

we see, by elimmating that the functions f and ¢ are in

involution ; we can therefore find a contact transformation

(1) «'=f(= 9 ph yY=9¢@®yp, p= ¥ (@Y p)
which will transform the given equation system into

de'=0, dy'= 0.
. 9 9 d
Now if £ﬁ+"@+"a7)

be a contact operator which leaves unaltered the equation
system dz =0, dy=0, Wo see that £ and  must be functions
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not containing p ; and therefore the operators, as transformed
by (1), will be mere extended point operators. The converse
is easmly proved; for extended point operators do not alter the
equation system dao = 0, dy = 0; that is, they transform a
point M, into a point M,. It follows that if we apply to
them a contact transformation the reducible operators will
leave unaltered the equation system into which dz=10, dy=0
is transformed ; that is, an equation system of the form

do_dp_ dy
« "B ap
§286. We now take @ and z as the coordinates of any point
in the plane, and we write y instead of p, when the contact
operators of the plane become simply those operators in space
@, 4, z which do not alter the equation
dz—ydax = 0.

An irreducible group of contact operators of the plane,
when regarded as operators in space, must be transitive. For,
suppose the group is intransitive, and f (@, , 2) is an invariant;
then the operators of the group do not alter the equations

?
%d@c+ Yy M aero, do—yaw=o.

Ay 3z
They therefore leave unaltered a system of equations of the form
do_dy_ds
o B ay

and therefore may be so reduced as to be mere extended
point group operators.

9 9 9
Let  {(a, y,z)a—m-i-n(ac,y, z)@ +((m,y,z)$,
or, as we shall write it
Ep+ng+(r,

be a contact operator of the plane regarded as an operator in
space @, ¥, 2 ; and let W be its characteristic function, so that

W W W W
f—j,‘j’ "==3g Y30 (=*W+?!W'
Taking a point of gemeral position as the origin of co-
ordinates, we can arrange the operators of the group into sets
Bba2
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as in § 259. To do this we expand the characteristic function
in powers of @, y, z; let W be the operator which corresponds
to the characteristic function W, that is, let

— W IW QW IW
Wzﬁp_(ﬁ +yTz)q— (W—-y«ay)r.

We must, therefore, in order to obtain an operator of degree
k, consider the terms in W which are of degrees (k+ 1) and &.
Thus corresponding to W= —1 we have W= r, and corre-
sponding to W= —= we have W = g+r; more generally we
may express these, and similar results, in the tabular form

W= (-1 {—m,{y,{—z’,{ -zt ,( ay ,
W:{ r, lg+azr, lp, lygteor, 20q+a?r, {acp—yq,
W= z —az ,gyz,{ —22 .
W= {2yp+y2r, {(z+my)q+mzr, wp~—ytq, 2yzq+2°r.
This table gives us the operators corresponding to terms in
W of the second or lower degrees, and, if required, could
easily be extended so as to give the corresponding operators

for terms of higher degree. Thus, if W= a+ bz +cxy, where
a, b, ¢ are constants, then

W= —ar—b(g+ar)+c@p—yg).

It will be noticed that the only terms in W which contribute
operators to W whose lowest terms are of zero degree are
1, 2, 4 ; and the only terms which contribute operators of the
first degree are

2, 2%, 2y, ¥, 2, yz.

The most general contact operator of the first degree is
therefore

(1) ay(yg +27) + 0, 0 + 0 (TP —YQ) + Ay YP + ;24 + A 2P + oo
where @, ...,a; are constants, and the terms indicated by
+... are of degree higher in , ¥, z than those written down.

§287. If we have a contact group, and consider the operators
of ‘the first degree in the group, we have, by neglecting the
terms in such operators indicated by +..., a group which is
linear and homogeneous in @, ¥, z. From the %rm given by
(1) of § 286 for these operators, we see that the plane 2 =0 is
invariant under the operations of this linear group; the straight
lines through the origin in this plane are therefore transformed
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by the operations of a linear homogeneous group in =, y.
Unless, then, this linear group is the general or special linear
homogeneous group, it must leave at least one straight line
through the origin at rest; and therefore the contact group
itself must, when we regard it as a point group in space, leave
unaltered at least some oo? curves which pass through «* points
of space; the considerations which enabled us to determine
the primitive groups of the plane will render this evident.

Now a contact group with the property of leaving w? curves
at rest has been proved to be reducible; and therefore the
linear group must be either the general or special linear
group.

The group we are investigating must therefore contain at
least the following three operators of the first degreo

0] Yp+azp+hegt ...,
(2) 2q+a,2p+ b2+ .uiy
(3) TPp~Yq+ a3 zp+by2q+ ...

Since the alternant of the first two of these operators is of
the form @p—ygq+ay2p+by29+ ..., it will only be necessary
to assume that the group contains the first two operators.

From the form of the general contact operator of the first
degree ((1) § 286), we see that there cannot be more than six
independent operators of the first degree, such that no operator
of the second degree is dependent upon them ; and since the
group is transitive in , ¥, z there must be three of zero
degree. We have therefore to consider four possible classes
of groups ; in each there will be the three operators

pPres g, o

in Class I there will be three operators of the first degree; in
Class II four such operators ; in Class III five, and in Class IV
there will be six.

§ 288. We first examine the possible forms of irreducible
groups in Class I; since the three operators (1), (2), (3) of
§ 287 must oceur there cannot be any operators of the forms

2p+ ..., 2¢+ ..., OF Yg+2r+....
If we form the alternant of (1) and (2) we get
(y+ay2)g—~@+b2)p+...;
and therefore, adding (3), we see that by the limitation im-
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posed on this class we must bave (a;—b,) zero, and also
(b;+a,) zero. Similarly, by forming the alternants of (1) and
(3), a.nd of (2) and (3) respectxvely, we see that a, and b, are
both zero.

The operators of the first degree in this class are therefore

(w+az)q+..., @+ad)p—(y+b2)q+..., (y+be)p+...,

where a, b, ¢ are constants; and it will now be shown that
there are no operators of the second degree in any group of
this class, and therefore no operators of any higher degree.

By the point transformation in space

(A) T=x+as, Y=y+bs, =2

the operators of zero degree, and of the first degree, can be
thrown into the forms

Pt s §F.n y P,
LY+ ouey BP—YG+ .oy Yp+..oe
It will be noticed that this transformation is not a contact

transformation of the plane.
Suppose now that the group could contain an operator of

the second degree Eptng+lrt ...,

where ¢, n, { are homogeneous functions of the second degree
in %, ¥, 2.

If gve form alternants of this operator with p+..., ¢+
r+ ..., respectively, the resulting operators, being of the first
degree, must be dependent on ag+..., p—Yq+..., Yp+..
and operators of higher degree; and therofore the firat deriva-
tives of & 7, ¢ cannot contain z; it follows that the functions
¢, 1, ¢ themselves cannot contam 2.

Also, since there is no operator of the first degree in which

the coefficient of » is not zero, the derivatives a—( and %‘ are
both zero; and therefore  vanishes identically.

If, then, any operator of the second degree is to be found in
the group at all it must be

(B) Ep+ng+.es
where ¢ and 7 are homogeneous functions of the second degree
in & and y.
There can, however, be no such operator ; for we proved in
§ 267 that the operators

Pt @F o G+, TP—YG+ .0y YP+ ...
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could not coexist in any finite group with an operator of the
form (B), unless the group also contained the operator of the

first degree SpHYg s
and, as the group we are now considering does not contain
this operator, we draw the conclusion that in Class I there can

be no operator of the second degree, and therefore none of
higher degree.

§ 289. The group has therefore only six operators; for

brevity we denote
p+...by P, g+...byQ, r+...by B,
2q+... by X, ap—yq+... by X,, yp+... by X,
Clearly in this group X,, X,, X, is a sub-group—the group
of the origin ; its structure is
(X X)) =—2X,, (X, Xy} = Xy, (X, X)) =-2X,
We also have
(X;, P)=—Q+a, X, +b, X, +¢, X,
Xy P) =—P+a, X, +5, X, 40, X,
X5, P) = X, +b0, X, + e, X,
where a,, by, ¢,, ... denote constants.

By adding to P and Q properly chosen multiples of X, X,,
X,, we may throw these structure constants into the simple
form

(X, P)=—Q, X, P)=—P, (X, P)=0,%,.
If X, Y, Z are any three linear operators we know that
X, (7, 2)+ (T, (Z D) +(5,(X, T)) = 0;
this Jacobian identity may be written in the abbreviated form
X, Y,Z)=0.

From (X,, X,, P) = 0, we now deduce that (X,, @)= @;
from (X,, X,, P) =0, we similarly obtain (X, @)= —F;
while from (X,, X,, P) = 0, we shall find that a, is zero.

The alternant (¢, X,) is dependent on X,, X,, X,; if then

@, X)) = aX,+bX, +¢X,,

we deduce from (X, X,, Q) = 0 that @ and b are zero; while
from (X,, @, X,) = 0 we shall see that ¢ is zero, and therefore
Q, X,) 18 zero.
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If we now apply the transformation inverse to (A) of § 288,
viz. s=a'+ad, y=y' +b¢, z=72,
we shall bring the operators of the group back again to such

a form that they are contact operators of the plane o, #/; and
we may therefore say that the group in Class I has the six

operators Pt Qo P,
(m+az)q+..., (+az)p—(y+b2)q, (y+ba)p+....
If we denote these respectively by P, Q, R, X, 1 Xy, Xy, we .
now know so much of the structure of the group as that
(X, X)) = —2X,, (X, X)=X, (X, X)= -2X,
(1) (X, Py =@, (X,,P) =—P, (X, P) =0,
(X, Q) =o, X Q) =0, (X,Q) =o.
§290. If we now form the alternant of P and @ it will be
of the form
r+ap+pg+...,

where a and 3 are constants. For, if v and v are the character-
istic functions of the operators % and %, the characteristic
function of the alternant (%, v) is

du v + RS v du du dv vbu.
y\ss TV T\ Ty % T30
and, as the lowest terms in the characteristics of P+...and
g+... are respectively y and —a, the lowest term in the
characteristic function of their alternant must be —1, and
therefore the lowest terms in the alternant must be of the
form r+ap+Bq.
We may then say that

(P, Q)= R+aP+BQ+'yX1+BX2+£X3,

where a, 8, ¥, 3, € are constants; and we may therefore so
choose an operator R as to have (P, Q) = R without altering
the§structure of the group in so far as it is given by (1)
of § 289,
From the identity (X,, P, Q) = 0 we then see that (X,, R)
is zero ; and we similarly obtain (X,, £)=0 and (X,, B)= 0.
We now take

(£, B) = aP+b,Q+aR+a X, +8,X,+ 5 X,
where a,, b,, ¢, a, By, y; are constants,

) —u
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From (X,, P, R)= 0, we see that a,, b,, 8, are all zero;
from (X,, P, R)=0, we see that ¢, and y, are zero; while
from {Xl, P, R) = 0, we see that

(Xl & R))+(Q: R)=o.
We therefore have
(P, R)=aP, (Q R)=0af, (P,Q)=E;
and from (P, @, R) = 0, we now deduce that a is zero.

The structure of the group is now given by
(PQ =R (BP) =0, (QR =y
(X, P) =-0, (X5 P}y =—P, (X, P) =0,

(1) (X, Q) =0, X2 Q) =9 (X.Q =-P,
(Xn R) =0, (X R) =0, (Xss R) =
X Xy)=—-2X,, (X;, X))=-X,, (X, X,)=-2X,.

§ 201. In this group the operators P, @, R form a simply

transitive sub-group of the same structure as the simply
transitive group whose operators are

1
L

» qtar, 75
it is therefore possible to find a point transformation which
will transform P, @, R to these respective forms.
If we take X, X,, X; to be (in the new coordinates thus
introduced) respectively

EPFmI+Gn LEP+mg+n EP+uq+Gr,
then, from the structure constants of the group, we derive
a number of equations which these functions &, 7, [T
must satisfy.
It will be at once seen, on forming these equations, that
they will be satisfied by taking

=0 m=2 =1 f=m n=9, (=0,
s =1 1=10, =17";
and therefore a possible form of group is
() p g+ar, v, @g+da’r, ap—yg, yp+iyie.

Now any group in Class I ean be reduced to such a form
a8 to have the structure given by (1) § 290; and for such
a group X, X,, X; will be the sub-group of the origin. The
most general group of the class we seek is therefore simply
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isomorphic with (1); and in this isomorphism the groups of
the origin correspond, so that (§ 183) we conclude that the
most general group is similar to (1); that is, it is reducible
to the form (1) by a point transformation in space @, y, 2.

§ 292. It must finally be proved that this point transforma-
tion is a contact transformation in the plane x, z.

First it may be seen that (1) of § 291 is a contact group,
and that it satisfies the condition of irreducibility ; we see
that all the operators are contact operators, since the cor-
responding infinitesimal transformations do not alter the
equation dz—ydz = 0; and we conclude that the group is
irreducible because the lowest terms in the operators of the
first degree form the special linear homogeneous group (§ 287).

Now suppose that the point transformation, which trans-
forms the general contact group of Class I into (1) of § 291
has transformed the Pfaffian equation dz—yda = 0 into some
equation of the form

Eda+ndy + (dz = 0.

The group (1) of § 291 must therefore leave unaltered this
equation, and also, since the group is a contact one, it must
leave unaltered the equation dz—ydx = 0; but this would
necessitate that (1) of § 291 should leave unaltered a system
of the form de_dy _dz
a” B ay

where @ and g are functions of z, ¥, z; and therefore it would
be reducible, which we know it is not.

We conclude, therefore, that the ounly group in Class I is
that one which is reducible to

P gtan, agt+latr, ep—yg, yp+iytn,
by a contact transformation of the plane.

§ 298. We shall now briefly consider the groups of irre-
ducible contact transformations of the other classes.
Every such group contains the three operators

(1) yp+azp+bzg+ ...,
(2) q + 2P + by2q + ...,
(3) 2p—yq+aszp+b2q+...;

and must contain at least one operator of the form
(4) a(xp+yq+ 22r)+bzp+cag + ...
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If we form the alternants of (1), (2), (3), (4) we see that the
group must contain the six operators
(1,2 (y+0,2)g—@+b:2) pt...;
(1,3)  (y+m2)p—bzg+{y—b2)p+...;

(1,4) —az(mp+bg)—czp+..;
(2, 3) —2zq—(by+az)zq+a,zp+...;
(2, 4) —az(a,p+b,q)—bzg+...;
(3,4) —az (ay p+b3q)—bzp+czq + ...

Now if the group is of Class III or Class IV it contains at
least one operator for which ¢ is zero ; and therefore we see
from (1, 4), (2, 4), (3, 4) that it must contain zp+..., and
also 2g+....

If then the group is of Class III, as it ean have only five
operators of the first degree, its operators must be

YD+ evey TG F iy P —=YGFoers TP+ oy 2g+ enn

If the group is of Class IV it hag six operators of the first

degree, which must then be
YP+ s XGH ey TP—YG+.oo, TP Y+ 227,
Pty 2+

It only remains then to find the operators of the first
degree for a group in Class II which can only have four
operators of the first degree.

For a group of this class ¢ cannot be zero; for then there
would be at least five operators of the first degree, viz. in
addition to (1), (2), (3), the operators zp+..., and 2g+....

From (2, 3), (3, 1), and (1, 2) we see that, since the group
contains (1), (2), (3), it must contain

(@ +b)zq+(a—b)zp+..., 3biag+{@i+b)ep+ ..
3a,2p + (by—ag)2q+...;
and therefore, since the group, being in Class II, can contain
none of these operators, we must have
a,+b, =0, a;—b, =0, b, =0, a,=0.

From the equations (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)
we then deduce that

ag,+c= 0, aby+b =10, aa,+b =0, ab;—c=0;
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and, since @ is not zero, it follows that the operators of the
first degree in Class 1T must be of the form

(z+az)g+.... @+az)p—(y+b2)q+..., (y+b2)p+...,
zp+Yq + 22r—azp—beg,
where a and b are some undetermined constants.

§ 294, Having found the initial terms in the operators of
the first degree, the methods by which we find the groups in
the Classes I, IT1, and IV are not essentially different from the
methods employed in finding the group in Class I, and in
finding the primitive groups of the plane; we shall therefore
merely state the results which one will arrive at by such
an investigation.

Every group of Class II is reducible by a contact trans-
formation to the type

P, g+ar, v, ag+iain, ap—yg yp+iyir, ap+yg+2on.
In the third class no irreducible group can exist.
In Class IV every group is reducible by a contact trans-
formation to the type
p, gtan v, ag+iatn, ap-yg, yp+iy'n,
wp+yq+2or, (—ay) p—byiq—tay’r, da'pteoq+aer
(wo—4a'y) p+(yo—dayf) ¢ +(F—22"y)r.
There are, therefore, only three types of irreducible contact
groups in the plane.



CHAPTER XXIV
THE PRIMITIVE GROUPS OF SPACE

§295. It would occupy too much time to attempt to
deseribe all the types of group which may exist in three-
dimensional space, and we shall therefore confine our
attention to the primitive groups which are the most in-
teresting. It will be shown that there are only eight types
of such groups.

The first theorem which it is necessary to establish is that
every sub-group of the projective group of the plane must
have either an invariant point, an invariant straight line, or
an invariant conie.

Suppose that 4 = 0 is a curve which admits two independent
projective operators X and ¥, where

P P
X= (P1+a:R1) 3% +(Ql+yR1)a:

3 3
Y= (P2+1R2)ﬁ+(Q2+yR2) 5’

P, Q,, R, P,, Q,, R, denoting linear functions of = and y.
Then, since all points on the curve w = 0, must satisfy the
equations Xu = 0, Yu = 0 these points must also satisfy the

equation
P, +zR,, Q,+yR, -0
Py+aR, Qy+yR,

which, it is easily seen, is not a mere identity.

Now this is the equation of a curve of the third degree at
most, and, as it contains the curve u = 0, that curve is an
algebraic curve of degree three at the most.

g

§ 296. We shall now prove that this curve if a eubic must
be a degenerate one,

It is easily seen that if A, B, C, D are four points, no three
of which are collinear, there is no infinitesimal projective
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transformation which can leave all of these points at rest.
To prove this, we take any other point P on the plane, then
the pencil of four straight lines A (B, 0, D, P) must be trans-
formed into a pencil of four other straight lines; and if 4, B,
C, D were to remain at rest, and P become transformed to F,
we should have

A(B,C, D, P)= A(B, 0, D, P),

5o that P’ would lie on AP. Similarly it would lie on BP,
and therefore P’ would coincide with P; that is, every
point in the plane would remain at rest, which is of course
impossible.

Let A be oune of the points of inflexion which every cubic
must have: if the cubic admits any projective group the
group must leave A at rest; for an inflexion can only be
transformed to an inflexion, and therefore if A did not remain
at rest there would be an infinity of inflexions.

If the cubic has no double point it must have nine points
of inflexion ; and at least four of these points are such that
no three of them are collinear. A non-singular cubic eannot
therefore admit a projective group ; for the group would then
leave four non-collinear points at rest, which is impossible.

We conclude, therefore, that the cubic has a double point.
Suppose that it contains one double point and no cusp; it
has then three points of inflexion, and these points, together
with the double point, must remain at rest under the opera-
tions of the group. But if a point A and three points B, C, D
on a straight line not passing through A4 remain at rest, the
only projective transformation which the figure could admit
would be a perspective one with 4 as centre and BCD as
axis of perspective.

An infinitesimal projective transformation eannot therefore
transform the cubic into itself; for, if P is any point on the
curve and A the double point, P would have to be trans-
formed to a near point P’ on the line AP; and P’ could not
be on the curve, since AP only intersects the cubic on
A and P.

Suppose now that the cubic has one cusp only; since by
hypothesis the cubic admits at least two infinitesimal trans-
formations, there must be at least one infinitesimal transforma~
tion which will not alter the position of some arbitrarily
assigned point P on the cubic.  From P draw the tangent
P which touches the cubic at a point ¢ distinet from P:
there will now be four points, viz. P, @, the point of inflexion,
and the cusp which will not be altered by the projective
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infinitesimal transformations admitted both by the point P
and the cubic itself. As we can so choose P that no three
of these points are collinear, we must conclude that the cubic
cannot be a proper one.

Since the cubie must be degenerate we conclude that the
only curves, which could admit a projective group with at
least two operators, are straight lines or conics.

§ 297. Any sub-group of the general projective group of
the plane must be either primitive or imprimitive ; we first
take the case where it is primitive, and therefore of ome of
the two following types:

D ¢ 29, Tp—Yq, Yp, TP +Yq;
P ¢ x¢, xp—Yq Yp-
The first of these is the general linear group
=az+by+tc, Y=a,x+by+c,;
and it is clear that by any operation of this group a point
at infinity will be transformed to a point at infinity; and
therefore the group leaves the line at infinity at rest. The
gecond group, being a sub-group of the first, must therefore
also leave the line at infinity at rest.

It now remains to prove that every imprimitive projective
group of the plane will leave either a point, a line, or a conic
at rest.

First we take the case where the group is at least of the
third order. From the imprimitive property of the group
we know there is an infinity of curves forming an invariant
system. If we take any one of these curves there must be at
least two infinitesimal transformations of the group which it
will admit; for there are at least two such transformations
which will not transform any chosen poiut on the curve from
off the curve. Each of these curves must therefore, since
the group is projective, be either a conic or a straight line.

If the invariant system of w! curves are conics, the five
coordinates of the conic must be connected by four equations,
and therefore the system of conics must have an envelope.
This envelope may consist of mere isolated points; thus the
envelope of conics of the system w+kv =0, where k is a
parameter, consists of the four points of intersection of the
two conics u = 0 and v = 0.

Similarly, if the invariant system of «’ curves are straight
lines, they must have an envelope.

Now the envelope is invariant under all the transformations
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of the group; and, if it does not consist of a mere set of
isolated points, it must therefore, by what we have proved,
be either a straight line or a conic.

A sub-group of the general projective group, if of at least
the third order, will therefore leave at rest either a point,
& line, or a conie.

We now s?pose the sub-group to be of order two; and
take X; and X, to be its operators; we have

(X, X)) = aX, +BX,
where @ aud b are constants ; and therefore if we take as the
operators of the group X, and aX; +bX,, we see that the group
must have the structure
(X, Xp) = bX,.
If & is not zero, by taking the fundamental operators of
the group (i.e. those in terms of which the others are to be

expressed) to be % X, and X,, we have the structure
(X 12 X 2) =X 23
if, however, & is zero the structure is given by
(X, X,) =0.

If the group is intransitive there will be an infinity of
invariant curves; and, by what we have proved, these must
be straight lines or curves. If on the other hand the group is
transitive we throw X, into the form %; and then we may

. J P .
take X, in the form z 5232 if the strueture is given by

(X1, X;) = X3 if the operators are permutable, we take X in
the form 30

In either case the line at infinity is invariant under the
operations of the group; and therefore returning to the
original variables some curve admits two infinjtesimal pro-
jective transformations, and therefore must be either a straight
line or coniec.

Fin]a:lly if the projective group contains only one operator,
let it be

(atem+ey+alemtey) pt(e+eastey+ylestey)g
The condition that the straight line
AZ+uy+v=0
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may be invariant requires it to coincide with
)‘(el +ex ey +ale,+ esy))
(st es+ey+ylem+e6y)) = o.
The equations therefore to determine A, u, v are
Aeytpe—ve, = kA, Aeg+peg—ve; =ku, Aej+ue, =ky,
where % is to be determined by
e~k e , e
e, e—k, ¢
[ e , k

and there is therefore at least one straight line which the
group leaves at rest.

In every case, therefore, a sub-group of the general projective
group of the plane must leave at rest either a point, a siraight
lime, or a conic.

=0;

§ 298. We now proceed to show how the primitive groups
of space are to be obtained. We take as origin a point of
general position, and arrange the operators of the group
according to degree, as in § 259.

There will be three operators of zero degree

Pt g+a, THo

. P P d
where we write p for 32’ ¢ for 55’ r for 55 and a number of

operators of the first degree which cannot exceed nine. Let
the operators of the first degree be X, X,, ... where

X = (0p2 %+ 030y + 039%) P+ (Bp1 B+ bp oY + B2} g
(01 €Y+ Cy2) T vy

and ag,, ..., by, ...y €4y, ... denote constants.
If we put =u2, y=v7, 2=2/, then in the new variables
the terma of lowest degree in X, are transformed into

P:]
(1% + Q0 + Qg — (€10 + €0V + Cpg) %) 35
P:]
+ (Brx %+ By 0+ g — (C12% + €150 +€43)0) 50

2
+ (Cpau Hopav+ Cks)z'a—z: .

CAMPRELL Ce
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I we now regard ,v as the line coordinates of straight
lines through the origin, we see that the co? linear elements
through the origin are transformed by the group of the origin,
in exactly the same way as the straight lines u, v are trans-
formed by Y, ¥,, where

)
Y = (@1% + g2 + 03y — (0% + C2¥ + €} ) 5

P:]
+ (bprt + bo¥ +bpg — (a2 + 0300+ 43)V) 5 ¢

The linear operators ¥;, Y,, ... are now the operators of
a projective group in the variables u,v, and there cannot be
more than eight independent operators in such a group.

If there are eight independent operators Y, ..., ¥, the group
is the general projective one

el wl, w2, Wi, 2,
du dv du v du
) 2 d d J , 2,

3’ w E+u’u$, uﬂm + 30°

and the terms of lowest degree in X, ..., X; are the terms of
the special linear homogeneous group

Zp, 29, xg, xp—2r, Yg—zr, Yp, AT, Yr.

It may be proved by the method of Chapter XXI that in
this case the primitive group we seek must be one of the
following three:—

The general projective group of space

v [, ¢ v xp, yps 205 2q, YG 29, @7, Y, 27,
Tptayg+aer, ayp+ytqtyer, Pty +airl;
the general linear group

@) [pan zpyp o o4 ¥e 29 om yms o)
the special linear group

) (g7 wg xp—yq yp, 2p, 29, @p—2r, a1, Yr).

§299. If ¥,,7,,... are not the operators of the general
projective group they must form a sub-group of it; and must
therefore have the property of leaving at rest either a point,
& straight line, or a conie.

They cannot leave any point at rest ; for, if they did, the
group of the origin, viz. X;, X,, ... and the operators of higher
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de%ree, would leave at rest a linear element through the origin,
and therefore the group would not be a primitive one.
Suppose that Y;,Y,, ... have as invariant a straight line,
then the primitive group we are secking must have an
invariant equation olgr the form
adz + Bdy +ydz = 0

where q, 3, y are functions of z, y, 2.
By & change of variables we can reduce this equation to the

form do—ydz = 0%,

and the group we seek must therefore in the new variables
be a contact group in the plane zz.
If this contact group were reducible, it would have an
invariant equation system of the form
dz _dy _ dz,
e B ay’
and therefore, regarded as a point group in space, could not
be primitive.
ince then it must be irreducible, it can by a contact trans-
formation of the plane be reduced to one of the three forms :
(1) p, g+ar, v, 294 YaPr, ap—yq, yp+1y'r;
(@) p, g+an, 7, ay+Yatn, ap—yq, yp+1yPr, ap+yg+2er;
Py gar, 7, 2q 220, ap—yq, yp+ iy ap+yg+2en
() (—ay)p-ty’g—Yay'n, Jatpregaer,
(z2—%2"y) p+(yz— Y ay?) g + (B — 1 2?7
If & group is imprimitive, it must be admitted by some
equation of the form
)] Eptng+lr=o0.
Now if for a transformation of the form
(5) w’=f(m) Y, ¥Y=¢ (=, y): 7= Y (=9 2)
the equation (4) is invariant, then for the same transformation
the equation
Ep+ng=0

must be an invariant one.
The group (1) can only be admitted by (4), if £, 4, ¢ do not
* It could not reduce to the form dz = 0, for then the group would be
imprimitive.
cec2
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contain z or z; for only equations of this form could admit
the operators p and ». Again it is clear that every trans-
formation of (1) is of the form (5), and therefore

Eptng=0
must admit the group

P 4 ©q, Zp—Yq Yp,
formed by omitting the parts of the operators involving 7.

This group, however, in @, y is primitive, and cannot be
admitted by an equation of the form £p+nq = 0; and there-
fore we conclude that the only equation which could admit
(1) is the equation » = 0.

It can be at once verified that this equation admits both
the group (1) and the group (2), so that these groups are
imprimitive.

If the group (3) is admitted by an equation of the form

(4) Ep+ng+(r;

then, since (1) is a sub-group of (3), the group (1) must also
have the equation (4) as an invariant one; grom what we
have proved therefore, ¢ and n must both vanish identically,
and we have only to try whether » = 0 admits the group (3).
Now it can be at once verified that it does not de so; so
that (3) is the only primitive group of space obtained from
the supposition that Y7, ¥, ... have as invariant a straight line,

§ 300. If we transform to the variables

=% m_y, =12,

then in the new variables the Pfaffian equation
dz—yde = 0 becomes dz’'—y'da’+2'dy =0;
and we have the primitive group of space z, ¥, 2,
(1) p—yrs gtar, v, B¢, Tp—Yq, Yp; wp+yq+22r,
ap—y(ep+yg+ar), 2+ m(ap+yq+ar) z(@p+yg+er),
characterized by the property of leaving unaltered the equa-
tion dz—yda +ady = 0,

and transforming the straight lines of this linear complex
inter se.
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§ 301, We have now only to consider the case where
Y,,7,,... has an invariant conic which does not break up
into straight lines.

By a projective transformation any conic can be reduced

to the form Pyl = 0;

and we need therefore only consider the projective group
which such a conic can admit.
If the conic admits

(aterteaytolsteay)ptletaztey+ylasteay),
we must have
etep =0, 6,=0,6 =0, ¢—e€ =0, 6—¢=20;
and therefore the operator must be of the form
e X+e,Y+e2Z,
where X = yp—aq, Y= (1+2%)p+ayg, Z=ayp+(1+4%)q.

The operators Y,, ¥,, ... must therefore be the operators of

the group X, ¥, Z with the structure
TH=X GX)=Y, (X, =7
or of one of its sub-groups.

If the sub-group is of order one we have proved that it
leaves a straight line at rest, and therefore comes under the
case already considered.

Next we take the case where the sub-group is of order two,
and we take its operators to be

eX+e,Y+e,Z and ¢ X+, Y +¢,Z.

Since the alternant of these two operators must be dependent
on them we must have
(@ X+e, Y467, ¢X+Y+e62)

=peX+eaY+el)iq(aX+6Y+g2);
and therefore, since the alternant is easily proved equivalent
to (66— X+ (s, —6) Y (16— 626) Z,
we have
€y€3— €€y, €6, — 016, €666
& » & € =0;

€« s € €
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that is, (6656 + (636, —€;6)7+ (6 e,—e,6) = 0.
If we choose A, p, v to eatisfy the equations
Aoy tpe+ve =0, Aetpetoe,
it can be at once verified that the straight line
A= py—vx
admits this sub-group, so that this also falls under the case
already considered.

We have therefore only to consider the case where the
group Y, ¥, ... is of the third order.

§ 802. We must now find the form of a group in z, 4, 2
which is of at least the sixth order, with three operators
of zero degree, and at least three of the first degree, and with
the property of having an invariant equation of the form

(1) ada’+bdy®+ cde® + 2f dyde + 2 gdedz + 2 hdady = 0,
where a, b, ¢, f, g, h are functions of @, ¥, z such that the
diseriminant abe + 2fgh—af?—bg? —ch?
is not zero.

The equation (1) is not altered in form by any point trans-
formation, and it may easily be proved that by a suitably
chosen transformation we may reduce it to the form

(2) ada?® + bdy? + cdz? = 0.

The origin being a point of general position, and the dis-
criminant not being zero, we know that if we expand the
functions @, b, ¢ in powers of the variables the lowest torms
will be of degree zero; and by & linear transformation we
may take these lowest terms each to be unity. We must now
find all possible forms of primitive groups of order not less
than six which the Mongian equation (2) can admit.

Arranging the operators according to degree, as in § 259,
we shall first prove that the group cannot contain an operator
of degree three, and therefore none of higher degree.

If the equation admits the operator

P P P
X= ‘f’fz +1 3 + (E’
we raust have, for all values of z, 4, 7, dw, dy, dz, satisfying (2),
2a(&de+ £dy + §,d2) dz +2b (g, da+ m,dy + . de) dy
+2¢(Gda+ (dy+ (de) do+ Xa . da?+ Xb. dy?+ Xe.de? = 0,
where suffixes are used to denote partial derivatives.
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It therefore follows that we must have
brg+e(y =0, c+aé; =0, af+bny =0,
and, if p denotes some undetermined factor,
2af,+Xa = pa, 2bn,+Xb=pb, 2¢{;+Xe = pe.

We now suppose X to be an operator of the third degree
of which the terms of lowest degree are

P P P
fﬁ*"l@*‘(ﬁi
P P P
50 that X—§ﬁ+na—y+($+....
The equations satisfied by £ 7, ¢ are now
=0, G+&=0, Lin=0

2af, = pa, 2by, =pb, 2¢(; = pe,
since we may neglect Xa, Xb, X¢, a8 containing no terms
of degree less than three, while the derivatives of & 7, ( only
contain terms of the second degree.
These equations can be written
n+i=0 (1+£a =0, L4 =0, Li=n =5

and we have proved in Chapter II, § 35, that no values of
£ n, ¢ of the third degree can be found to satisfy these equa-
tions; we therefore conelude that the group cannot contain
any operator of the third degree.

§ 803. Still making use of the results of Chapter II, we
shall see that the only possible operators of the second degree
are dependent upon

d d d
(1) (zz—yz—zz)ﬁ+2wy@+2zw£+...,
2) Zwyi+(y2—z2—w2)i+21yzi+...
dx dy 7z ’
(3) 22w1+2yzi+(zz—m“—y2)i+....
Iz oy 3z

Similarly we see that the only possible operators of the first
degree are dependent upon

d d
(4) yﬁ—z@+ veey
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P P
(5) vl e

LE]
P P
(6) z@—yﬁ+...,
7 P b+ J X
(7) wﬁ+y@ Lol SR

and therefore the group is of the tenth order at highest.

We next see, as in § 264, by aid of the isomorphic group
Y,,7,, .. in the variables u, v, that there must be three
operators of the first degree at least, viz.

P P P P P
yﬁ—z@+e(wa—w+y@+z£)+ ey

d P » d P d
za—z—wﬁ+e( Tm+yﬁ+z$)+ e

d d P P P
z@—ya—w+e(wﬁ+yﬁ+z£)+ sy

where ¢ is a constant.

If we form the alternants of these three we see that, unless
¢ is zero, the group must also contain

SIS |
a—m+yby+z py it

and therefore the group must contain (4), (5), (6), and may
also contain (7).
_ If we denote by 1 the operator (1) and so on, we see that
1, 2, and 3 are commutative; and that

IL9= o (I,5)=—3, (Le)=2, (2,5)= o, (z 0)=3
(@8 =-1 (38= o, (35=1, (3 =2

From these identities we see that if the group admits any
o;ierator of the second degree, viz. (1), (2) or (3), it must admit
all three.

We first consider the case where the group admits no
operator of the second degree, and not (7), but only (4), (5),
(6) in addition to the three of zero degree.

If we denote 4 by X, 5 by ¥, & by Z, and the three opera-
tors of zero degree,

Pty 4, T4,
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by P, Q, R respectively, we have
Y, Z2y=-X, (Z,X)=-Y, X,Y)=-2Z
We also have, since X, ¥, Z, P, @, R generate & group,
(P, X) = X +b,T+0,7, (P.Y)=—R+aX +5,T+07,
P, 2)=Q+a; X +5,Y +¢,2,
where a,, b, ... denote structure constants; if we add to

P, Q, R operators dependent on X, ¥, Z, we may throw these
identities into the simpler forms

(P, X)=aX, (P,T)=~R, (P,2)=Q

where a is some constant.
From the Jacobian identity

@, (X 1)+, (P, D)+ (&, (¥, P) =0,

which we now write in the form (P, X, ¥) = 0, as we shall
have occasion to employ it often, we deduce

(R, X)=~Q+aZ;
while, from (P, X, Z) = 0, we have
(@ X) = R+a¥;

and, from (P, ¥, Z) = 0, we have
(R, Z)+(Q,Y)=aX.
We now have (Q,2) = ~P+a,X+5,Y +¢,Z,
and deduce, from (Q, X, Z) = 0, that
@ Y)—(R, Z) = ¢, Y—b,Z; and therefore
20QY)=aX+0,Y—b,Z, 2(R, Z) = aX—¢,Y+b,Z.

From (Q, ¥, Z) = 0, we then conclude that @, a,, and ¢, are
zero ; and have so far determined the structure of the group
that we may say that

(P, X)=0, (P,¥)=~R, (P,2)=Q, (¢, X) =R,
@Y)=-bZ (Q,2)=—P+2bY, (R, X)=—0, (R, Z)=bZ.
From (Q, X, ¥) = 0, we now see that
(R, Y)=P-bY;

and, from (B, X, Y) = 0, we see that b is also zero.
Suppose that

P Q=a,P+b,Q+c, R+AX+pY4vZ;
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we then see from (P, @, X) = 0, and from (P, Q,Y) = 0, that
(B, P)=,Q~-b,P—pZ 407,
(@ B)y=¢,P-aR—\Z4+X;
and, from (P, @, Z) = 0, we conclude that a,, b, A, u are all
zero, and therefore
(P,Q) = c,R+vZ, (Q B)=c;P+vX, (R, P) = c;Q+»Y.

If we now take as the operators of the group instead of P
the operator P+eX, instead of @ the operator Q+eY, and
instead of R the operator R+eZ, it is seen that the onl
structure constants which are changed are ¢, and » whicl
become respectively ¢;—2e and v—ce+e®. By properly
choosing e we can therefore throw the structure of the group
into the form

¥, 2)y=-X,(2,X)=-Y,(X,Y)=— Z,(P,X)=0, (QY¥)= 0o,
(RZ)= o (PY)=—R,(P.2)= Q (QX)=F, (0.2)=~P,
(R.X)=—@,(R,Y)= P,(@R)= cP,(R,P)=cq, (PQ)= cR.

§ 304, Two cases now present themselves according as ¢ is,
or is not, equal to zero,
First we take the case where ¢ is zero.
P, Q, R now form a simply transitive Abelian sub—grou%.
By a point transformation we can therefore reduce P, Q,
P P P .
to the forms %’ 3 52 respectively ; suppose that
P P P
X=¢ wtn @ +¢ 32’
where in ¢, 7, { the lowest terms, when expanded in powers of
z, ¥, 2, are of the first degree. From
(P, X)=0, @ X)=R, (R,X)=-Q
we see that (denoting partial differentiation with respect to
2, y, z by the suffixes 1, 2, 3, respectively)
G=m=G=0, LE=n=0, G=1, §=6=0, ,=—1;

and therefore X = 2 2 2.

Y%~ 2y
Similar] that Y=z —o 2 and Zmo —y;
1milarly we see a _zﬁ—wgan _Z@—yaz,
and therefore the group is simply the group of movements in
ordinary space ; and the invariant Mongian equation is
da® 4 dy? +do* = 0.
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Next we take the case where ¢ is not zero; and we choose,
as the fundamental operators of the group,

P, Q, R, X—cP, Y—cQ, Z—¢cR,
which we may denote by
P,Q R P, QR
The structure is now given by
(P,Q =—R, @ R) =-P, (R, P) =-¢,
(P, @)=—FR, (Q.R)=-P, (R, P) =-¢,
while each of the operators P, Q, R are commutative with

each of the operators P, @', R
‘We may also rearrange these operators, taking

U=—P+iR, V=1Q, W=—P —iR,
U=—P4iR, V=iQ, W=~P—iR,
where 7 is the symbol for +/ —1; the group is now the direct
produet of two simply transitive reciprocal groups.
Since U, ¥, W is simply transitive, and has the same
structure as
gtar, yg+ar, (@y—2)p+y'q+yer
it may be transformed into the latter when U7, V7, W’ will
be transformed into
ptyr, aptaor, Tp+(ey—2)q+ar.

It will be noticed that in this form the origin is no longer
& point of general position ; and it may at once be verified that
in this form the group has the invariant Mongian equation

d2? + yida? + 22 dy? + (42— 2ay) dady — 2 adydz— 2 ydeda = 0.

This group, which is admitted by the quadric z2—ay = 0, is
the group of mov ts in non-Euclidean space.

§ 805. If we were to consider the case of a group containing
no operators of the second, but four of the first degree, and
three of zero degree, we should similarly obtain the group of
order seven consisting of movements in Euclidean space and
uniform expansion, viz.

by ¢, 7 Yr—2g, 2p—Ir, 2g—YP, TP+Yq+ o
Finally, if we were to consider the group containing three
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operators of the second degree, we should find that there
must be four operators of the first degree in the group, as
well as three of zero degree; and should arrive at the con-
formal group in three-dimensional space, consisting of move-
ments in Euclidean space, uniform expansion and inversions,
viz. the group

(1) Ip ¢, v, 2g—yp, yr—zg, sp—ar, U, 22T —8p,
2yU—8q, 22U0-8r],

where U = ap+yg+2or and 8 =2z24y2 422

This group has the property of being the most gemeral
group for which the equation

df+dyt+dz? = 0
is an invariant.
By the operations of this group any sphere is transformed
into a sphere, and in particular any point sphere

(@—a)*+(y—b)+(z—cf =0

is transformed into some other point sphere. If, therefore, we
apply the contact transformation with the generating equations

2 +id fay' —z =0, (2 —id)+y—y = 0%,

by which spheres in space o/, 3/, ¢’ are transformed to straight
lines in space @, y, 7, and point spheres to straight lines of
the linear complex

(2) dz +ydo—ady = 0,

we should expect to obtain the projective group (1) of § 300,
for which the linear complex (2) is an invariant.

It may be verified that this is the case, and therefore the
groups (1) of § 800 and (1) of this article have the same
structure.

§ 806. We have now found all possible types of primitive
groups of space; that all these eight groups are primitive is
easily proved ; the groups (1), (2), and (3) are primitive because
they have no invariant linear element for the group of the
origin, a point of general position; the group (1) has been
proved primitive; and the groups (5), (6), (7), and (8) are

* These are obtained from the equations of Chapter XVII by the
substitution v= 7, =iy, T= oy,
T=mm, Y= Y, &=—%.
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primitive because the three operators of the first degree do
not leave any linear element through the origin at rest.
Collecting the results of this chapter we conclude that every
primitive group of space is of one of the following types :
(1) [» ¢ 7 ap, yp: 20, 24, ¥4, 24, @, yr, 27,
atp+ayg+aer, Typ +ytq+yer, wap +yaq+2°r];
(2) [p ¢ 7 ap, yp, 2ps @, 99, 2g, 27, yrs 27);
) [p. ¢ v 29 wp—yq yp, 2p, 2 ap—27, ar, yrl;
(8) [p—yn g+ar, v, 2g, ap—yq, yp, ap+yq +22r,
p—y(@p+yg+er), 2g+a(@pryg+ar), 2(@p+yg+en)];
() [p, ¢ 7 yr—2g, 2p—ar, 2g—yp];
(8) [g+ar, yg+er, (sy—2)p+y*q+yer, p+yn ap+ar,
@'p + (wy—z) g +2or];
(0 [p ¢ 7 yr—2g 2p—ar, 2g—yp, ap+yq+aor];
8) [p g v 2q—yp, yr—2q, zp—ar, U, 2aU~8.p,
2yU~-8.¢, 22U-8.7],
where U = ap+yg+2zr and 8 =a+y2+22



CHAPTER XXV*

SOME LINEAR GROUPS CONNECTED WITH HIGHER
COMPLEX NUMBERS

§ 307. In this chapter we shall explain briefly an interesting
connexion between the theory of higher complex numbers
and that of a particular class of linear homogeneous groups.

k=i=n

(1) Let =13 au TiYs (8=1,..,n)

be the finite equations of a simply transitive linear group,
characterized by the property of involving the parameters
Y15 .+ Yo linearly in the finite equations of the group.

We may suppose that the coordinates have been so chosen
that (1, 0, 0, ...) is a point of general position, and therefore,
the group being transitive, we may transform this point to
any arbitrarily selected point by a transformation of the
group; it is therefore necessary that the » linear functions

k=
= i Ya e=1,..,m)
should be independent.

If we now introduce a new set of parameters z, ..., z,

k=mn
% =2 o Yo
the equations of the group will take the form

defined by

k=i=n
2 %, =2 B Wi 7y
and, sinee the coefficient of #; must be z,, we shall have
(3) Bok = €1

where €, is equal to unity if s = k, and to zero otherwise.

* In this chapter I have made much use of §§ g, 4 in Chapter XXI of
Lie-Scheffera’ Vorlesungen tiber continuierliche Gruppen.
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The equations (2) define a group which will, we assume,
contain the identical transformation. It must, therefore, be
possible to find z,, ..., 2, to satisfy the equations

k=mn
2 B = s
and in particular, taking 4 to be unity, to satisfy the equations
k=n
E €k %% = €515
so that z;=1,2,= 0,...,2, = 0, and B, = ¢,;.

Expressing the fact that the operation, resulting from first
carrying out the operation with the parameters 2, ..., z,, and
then that with the parameters 2, ..., 2},, must be the same as
the operation with some parameters 27, ..., 7}/, we have

imj=k=l=n r=i=n
() 2 BurBin® %% =2 Ba% % (8=1,..,m)
Equating the coefficient of #, on each side we see by (3) that

iz=k=l=n i=k=n
%) % =2 Bur Bu#i% = 2 Bur%i%-
These equations give the parameters 2/, ..., 2, ; and if we

substitute their values on the right of the equation (4), and
then equate the coefficients of the variables on each side we
obtain, as the necessary and sufficient conditions (in addition
t0 Byx = By = &) in order that (2) may be the equations

of a group - )
) = BuinBijs = 2 Buii Bk

for all values of s, %, j, ! from 1 to n inclusive,

A linear group of the form (1) when thrown into the form
(2) is said to be in standard form ; from (5) we see that the
group in standard form is its own parameter group.

By interchanging k and j in (2) we see that the equations

k=izn
(7) &= Buii?y, (8=1,..,m)
also define a linear group in standard form, and with the
parameters only involved linearly.
The condition that the linear transformations
=n

j=n
o =3 aya; and af =2 by
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may be permutable is

j=n j=n
(8) > aybir =2 byjas

we therefore see from (6) that every operation of (2) is per-
mutable with every operation of (7); the two groups are
then reciprocal.

§ 308, Conversely, any simply transitive linear group, whose
reciprocal group is also linear, must be of the form (2) of
§ 807, We prove this as follows:

If S, ..., 8, are a number of linear transformations (which
need not form a group), we say that the linear transformation

ASi+ NS,

where A, ..., A, are constants, is dependent on Sy, ..., S,.

It is clear that in = variables there cannot be more than
n? independent linear transformations.

If we are given 7 linear transformations S,, ..., S, we cannot
in general find a linear transformation 7' permutable with
each of them ; the forms of the given transformations, however,
may be such that there are a number of linear transformations
permutable with them.

Let T,...,T, be the totality of all independent linear
transformations permutable with 8, ..., S,. The condition
that two linear transformations should be permutable shows
us that every linear transformation dependent on 7, ..., 7, is
germuta.ble with every linear transformation dependent on

1 eees 8. Now T 1:, is linear and permutable with S, ..., S,;
it must therefore be dependent upon 7, ..., 7,, and therefore,
from first prineiples, Ty, ..., T, form a finite continuous group
into which the parameters enter linearly.

The operations Sy, ..., S, must now be operations of a linear
group of the class we are now considering. For §;8; is &
linear transformation, permutable with 7, ..., 7,; and ‘there-
fore from S,,..., S, we can generate a group which will be
linear, permutable with 7, ..., T,, and will include amongst
its operations 8, ..., S,.

The two groups S, 52, ... and T, T,, ... will be permutable
and each will involve the parameters linearly. .

Let S, ..., S, be a simply transitive linear group @, with
the special property that its reciprocal group I (which is of
course simply transitive) is also linear in the variables. By
what we have proved I' must involve the parameters linearly;
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and therefore & being the reciprocal group of I' must do
likewise ; and therefore be of the form (7) of § 307.

§ 809. The linear operators of (2) § 807 are given by

a=i=n

3
X, = Xy > k=1,...,n),
k zlsuk ’bma ( )
and in particular the group contains

=y
X, =z, 5
which is permutable with every other linear operator.
A linear group therefore in which the parameters enter
linearly must always contain the Abelian operator

=y
Emlﬁ:'

If we are given the infinitesimal operators of a simply
transitive linear group we may at once determine whether or
not it belongs to the class of groups we are here considering.
Let these operators be

t=i=n Py
O =Daptgs k=1 .,m);
8

then, if the group is of the required class, we know that the
finite transformations must be given by
i=k=n
%= 0 i
and therefore if, and only if, these equations generate a group,
will the given group be of the required class.

§ 310, We shall now determine all possible groups of this
class in three variables.

First we shall prove that the alternant of two linear opera-
tors can never be equal to the linear operator

=n
r=>a, 5,

The operators of the general linear homogeneous group are

@; EraRi where ¢ and % are any integers from 1 to =;

CAMPEELL pd
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3
and the operators of the special linear group are B3
d k

where ¢ and % are unequal, and also x; Yyt Tyt

] %

This operator U cannot then belong %o the special linear
group; the alternant therefore of two operators of the special
linear group can never be equal to U.

Now if X is any linear operator whatever, we can find
a constant A making X + AU an operator of the special linear
group. We then take (X and Y being any two linear opera-
tors) X +AU and Y+ plU to be two operators of this special
group. We have to prove that (X, Y%can.not be equal to U'; if
it were equal to U then (X +AU, ¥ 4 pU), being identically
equal to (X, Y), would be equal to U; and we have just
proved that this is impossible.

Let now X, ¥, U be the operators of a group of the re-
quired class, viz. one in which the parameters enter the finite
equations linearly. The operator U being permutable with
every linear operator, we have

(U, X)y=0, (U,Y)=0, (X,Y)=aX+bY +cU,

where a, b, ¢ are some constants. We have just proved that
a and b cannot both be zero unless ¢ is zero ; if a, b, ¢ are all
zero the group has the structure

1 (U,Xy=o0, (,T)=0, (X,T)=0.

Now this group is Abelian, and therefore, if linear, must
be of the required class; for its reciprocal group coincides
with it, and is therefore linear, and by § 308 must therefore
involve the parameters linearly in its finite equations.

If o and b are not both zero, and we take operators of
the form X +AU, Y +uU, and U as fundamental operators
of the group, we can cause ¢ to disappear from the structure
constants ; and we then see that fundamental operators may
be 8o chosen that the group will have the structure

@ (T,X=o0 (,V)=0, (X,¥)=X.

From what we have proved in § 263, we see that any linear
operator in the variables @, y, z must be of ome of the
following types:

ap +byq +cU, where b and ¢ are constants and b 1;
(3) xp+ezq +¢U, where ¢ is zero or unity ;
e,2p + €, 2q +cU, where ¢; and e, are unity or zero.
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Weo therefore can take X to be of one of the following types
(since the group has U as one of its operators):

(4) xp+byg, where b is neither zero nor unity ;
() ap;  (6) ap+eg; (7} wp+eg;  (8) =«
We must then find ¥ from the identity (X,Y)=0, or

from (X, Y&: X.
Let the third operator of the group be

d 3 d
Y:{:b_m"'qﬁ-'-(ﬁ’

where &, 7, ¢ are linear and homogeneous functions which can
be found from the structure constants when we know X; in
finding ¥ we may omit any part which is dependent on
X and U,

Take X in the form (4) and form its alternant with ¥;
we have

sh+byf—E=2E antbyn—by=aby, el+byl =0,
where A is zero if the group is in Class (1) and unity if in
Class (2); we then find that the only possible group is in the
first class and is

(A) xp, yq, 2.

Taking X in the form (5), we see that the group must
contain yg+2r; and, if it is in Class (1), ¥ must be of the form

(00y +a52) g + {03y + a,2) 7.
Omitting the part yg+2r we can reduce this, by § 263,
to one of the two forms yg—zr or zq; the group is therefore
either of the form

(B) @p, o, eptyg+em
or it is of the form (A).
It may be shown that there is no group in Class (2) with X
in the form (5).
It may also be verified that (6) does not lead to a new
oup.
Passing to (7), we see that in Class (1) ¥ must be of the
form zp; if Y is in Class (2) it may be reduced to the form
ap—zr by a linear transformation.
Ddg
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We therefore have the two groups
© yp+2q, p, Wp+yq+er;
@) yp+eg, Wp—ar, TP+yg+ar
We next take X to be zg; if the group is in Class (1), we

Ve Y= (0,2 +a,2) p + 599

We cannot have a, = a, = 0, for this would make the group
intransitive.
If g, = 0 but neither a, nor a, is equal to zero, we have

the type (C) again.
If @, = a; = 0 we get the type
(E) 2p, 49, *P+Yq+er

If a, is not zero, we may reduce (by linear transformation)
Y to the form a,ap; we thus obtain the type (B) again.
If the group is in Class (2) and X = zg, we have

Y= (a2 +0,9) p+(y+0:7) ¢

If @, = 0, then, the group being transitive, a, cannot be
zero; by a transformation of the form

¥=x+vz, Y=y+Az, =2
we may then reduce Y to the form yg +zp.
This gives the group
(F) #q, §g+ap, @p+yg+ar.
If @, =1, we may so transform that
Y=a,2q—2r;
if @4 is not zero, this gives the group
(©G) 2g, @q+ar, IP+YG+ar;
if a4 is zero, we have the group
H|) 2, ap+yq, o
If @, is neither zero nor unity, we may reduce ¥ to the form
axp +Yq;
and we then have the group
oy 2q, axp+yq, wp+yg+en
where ¢ is neither zero nor unity.
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§ 3811, We must now examine all these groups to see
whether the parameters oceur linearly in the finite equations
of the groups.

The finite equations corresponding to (A) are

Y=z, ¥=e6y 7=ez

The point (1, 0, 0) is not, however, a point of general
position, since the coefficients of z in the three equations are
not independent linear functions of the parameters.

These equations clearly form a group with the property of
being its own parameter group. The group is not, however,
in what we have defined as standard form, though it can be
brought to that form. To bring it to standard form it is
necessary to transform it so that in the new coordinates the
point (1, 0, 0) may be one of general position. We therefore
take o= =2ty T=zt+z

Ni=¢6, Ya=€—0 Y3 =€—6,
and thus obtain the group

(A) o =32y, 2G=92+ W —¥2)Ts) =Y+ —Y) 2
This group is one of the class required and is in standard form.
The finite equations which correspond to (B) are

= (e re)w, ¥=6Ytez 7=ez
Ifwetake ;= 2 2,=Y £,=2+2
Y= Y2 =6 Ys=0,
we have a group of the required class
(B) #=ym, )= Yo +¥:% o = Yyitr+ (y1— ¥s) %
The operators (C) lead to the group
Q) =y, H=nhZ+thts H= L5t ho+hH%
which is of the required class and in standard form.

If the operators (D) lead to a group whose finite equations
involve the parameters linearly, the equations in finite form
must be

= (e te)eteay, ¥=6y+as 7= (e5—e)2

Now these are not the equations of a group at all, so that

the equations (D) do not lead to a group of the type we want.

Similarly we see that (F), (G), and (I) do not lead to the
required type of group.
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The operators (E) lead to

B) 2l=w2, o= pm+rnt, o= gty
Finally the operators (H) lead to

(H) =y1s, D=4+ Y12+ Yo%, B5=0s@y+ (Y 1Ys) T

There are, therefore, only five types of groups in three
variables which are linear in both variables and parameters ;
and of these groups only (H) is non-Abelian,

An example of a non-Abelian group linear in four variables
and four parameters is

B = Yy — Yoy = Yo Ty — Yy %y,
T Yoy + Yy By — Y4y — Y5y,
TE= Ys @y ~ Yy Bp + Yy %y + Yoy
T Yyt + Yy Ty — Yo By + Yy By
An example of an Abelian linear group in five variables is

@ =y,

o= 4,2+ 4 2,

= Yoy + Yo + Yy,

= Y+ Yy Tt Yoy Y1,

Y= Yulty + Yy By + Yoy + Yoy + Fr %

§312. We now proceed to explain the connexion of these
results with the theory of higher complex numbers.

Let ey, ..., e, be a system of n independent complex num-
bers; any number « of the system ean be expressed in the
form T=10 4.0t ye,,
where @, ..., &, are ordinary numbers; 2 can therefore only
be equal to zero when m,, ..., @, are each zero.

Wecall ey, ..., ¢, the fundamental complex numbers of the
system; but if §,,..., 8, are any » independent complex
numbers of the system we could equally take them to be
the fundamental complex numbers, and express all other
numbers in terms of them.

From the fact that the number resulting from the multi-
plication of two complex numbers must be expressible in
terms of the fundamental complex numbers we have

* Burnside, Proceedings of the London Mathematical Society, XXIX, p. 339.
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j=n
8= 2 v
where y;34, ... are 8 system of ordinary numbers, fixed when
we have chosen our fundamental complex numbers. If,
therefore, u is the complex number y,

imk=n
=2, Vi Y1 e
Similarly, if v is the complex number ay,
i=k=n
Vo= 2 Yeit Ya i
From thoe fact that division is to be an operation possible
in the system—that is, when we are given & and u, or @ and
v, we must be able in general to determine y—we see that
the determinant M, whose s row and &t column is

i=n
z Vski Ti»

cannot vanish identieally ; nor can the determinant M, whose
i=n

s row and &% column is Yy, @;, vanish identically.

Tt follows, therefore, that the equation system
i=k=n
1) =2 v W% @=L n)
where we look on ..., @, as the original variables, and
2, ..., %, as the transformed, is such that the determinant
of the transformation does not vanish.
For a similar reason the determinant of

i=k=n

(2 2= v Yr %
does not vanish.
Since in the system of complex numbers the law of multi-
plication is to be associative, if w = yx and v = zy, we must
have zu = vz. Therefore

t=i=n t=k=n
=zt ai ey =, Uy @y Yotk &> 80 therefore
t=i=j=k=n tmizj=k=n

= %6,V Yk Y %r =% 1 Vstk 00 Yeij %Y
Equating the coefficients of 2;¢,23; on each side we have
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t=n t=n
(3) 2 e =2 v iije

Now these are just the conditions that ( 13 should generate
& group which is its own parameter group, an they are equally
the conditions that (2) should do so.

§ 313. We must now prove that these groups contain the
identical transformation.

Let 2 = a,0, +... +@,¢, be a general complex number, that
is, & number such that neither M, nor Mf is zero; we can,
whatever u may be, find a complex number y such that «
is equal to y#. Now let % be taken equal to x, and let the
corresponding number y be denoted by ¢, so that « is equal
to ex; we shall prove that ¢ does not depend on % at all, and
shall investigate its position in the system.

Let v be any other general complex number, and 2 & com-
plex such that v is equal to #z; we have

W= exz=a2 =0,
that is, € has the same relation to v as to «, and therefore does
not depend on either v or z.

Next we seo that if y is zero, where  is a general complex
number, we must have, since M, is not zero,

Y1=0,.., Y%, = 0.

So, since M, is not zero, if zy is zero, we must have
=0, Y, =0.
Let &’ be equal to xe, then
o'r = zex = xx,
and therefore (&'~ @) is zero, so that @’ is equal to z; that
is, we also have z = ze.
This unique number ¢ is therefore a complex unity.

Let ¢ = 6+ ... +¢,e,, where ¢, ..., €, are ordinary num-
bers, then, since & = xe — €%, we have

i=k=n i=k=n
Ly =2 Yotk T € =, Vebi Z-
We now see that 4, = ¢, (k=1,..,n)

will give the identical transformation in (1) and (2) of § 312,
The two equation systems, therefore, define groups each
containing the identical transformation ; and, since neither
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M, nor M is zero, there are n effective parameters; that is,
the groups are simply transitive, and involve the parameters
linearly, and each group has the property of being its own
parameter group.

If we were to take ¢ as one of our fundamental complex
numbers, say ¢, we should have each group in its standard
form,

§ 814. The infinitesimal operators of (1), §312, are X,,..., X,

i=s=n

d
where X, = o X
k Z'Vnk 'bm,
J=n
and (X;, Xp) =2 Cikg Xj.

s=t=j=n
d
Now (X X5) =2 (vyiver— 7k nai)wjggt s
s=t=j=n 3
=2 (Yait— Vo) 5% 5, by (3) of § 312,
smn

=2 (eir—7sti) Xss

and therefore ¢;z, =y, — Yots-

Similarly we may write down the operators of the group
(2) of §312; and it may be at once verified (by aid of (3)
§ 312) that the two sets of operators are permutable, so that
the groups are reciprocal.

We thus see that to every system of complex numbers there
will eorrespond two simply transitive reciprocal linear groups;
and conversely, to every pair of such groups a system of com-
plex numbers.

The complex number ¢ whose existence we have proved may
be taken to be an ordinary unit number since ez = xe = 2.
The fundamental complex numbers may therefore be taken
to be the ordinary unity and e,, ..., ¢, as in the Hamiltonian
Quatsrnion system.

§ 315. When we are given a simply transitive linear group
in standard form, and wish to write down the corresponding
system of complex numbers, we multiply ] by e,, @} by e, ...
and, adding, equate the coeflicient of #;%;, on the right of the
transformation scheme, to ¢;¢e;,.

The laws of combination of the symbols ¢, ..., e, are most
conveniently expressed in the form of a square of n? com-
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partments, the expression equal to e;e; being found in the
compartment corresponding to the ¢** row and k% ¢column.
Thus the system corresponding to (H) is denoted by

e €, €y

6 & €y &

el 6 0 [

4Gl % 0] &

this means that
a’=e, =0, el=¢, =6 g =g,
06 = & 66 =6, 66 =0, 66=4¢,

where we understand that the operation on the right in ¢;¢;, is
to be taken first.

The other systems in tbree complex numbers are all com-
mutative, since the groups are Abelian.

The non-Abelian group of order four gives the system

e e e A
al e e [ ey
G| & |—& O

G| & |—e¢ - €

€| & & |—% |—4

i.e, the Hamiltonian Quaternion system, when we take ¢, = 1.
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tial equation, 282.

Integral of a differential equation,
Lie’s extension of definition,
202, 231, 232.

ry and n

definition

tionary groups, 141; when the
point 18 the origin, 332.
Group of movements in non-
Euclidean space, 327, 395.
QGroup of movements of a rigid
body in a plane, 18; of a net on
a surface, 317,

of, 88.

Invariant curve systems of the
imprimitive groups of the plane,
366, 367.

Invariants, of a complete system
of operators, 87 ; transformed to
other invariants by any trans-
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formation which the system
admits, 94; of an intransitive
group, 114; geometrical inter-
pretation, 114.

Invariant. See under Differential.

Invariant, theory of binary quan-
ties, 118; equations with respect
to a group, 128; how obtained,
130; decomposition of space,137.

Inverse transformation schems,
1

Involution, functions in, defini-
tion of, 197; equations in, 197;
if any eguation system is in
involution, so is any equivalent
system, 197 ; contact transforma-
tion admitted by equation system
in, 278.

Irreducible contact groups of
the plane obtained, 371-378;
types of, enumerated, 378, 380.

Isomorphic,two groups are simply
isomorphic when they have the
same parameter group, 162.

Isomorphism of two groups,
simple, definition of, 10; ex-
ample of, 10; multiple, defini-
tion of, 163; when a group is
multiply isomorphic with an-
other, a self-conjugate sub-group
in the first corresponds to the
identical transformation in the
second, 164.

Jacobian identity, definition of,
67; identity deduced from, 216.

Linear complex, definifion of,
255; form to which it can be
reduced, 256; lines conjugate
with respect to, 256 ; complexes
in involution, 257; projective
group of, 304.

Tinear groups whose finite equa-
tions involve the parameters
linearly,398-401; standard form
of such a group, 399; must
contain an Abelian operator,
401 ; enumeration of such groups
in three variables, 405,406 ; con-
nexion with the theory of higher
complex numbers, 406-410.

Linear homogeneous group,
general, 14, special, 17 ; simpli-
fication of the form of anoperator

INDEX

of, 336-338; possible types of,
in two variables, 339, 341.
Linear operators, any one is

of type %}: 84 ; transformation

formula for any operator, 91;
formal laws of combination of,
54-57.

Lines of curvature transformed
to lines of infiection, 266.

Manifolds of united elements,
definition of, 201; the symbol
M,_, 201; different classes of,
;0]; in ordinary 3-way space,

50.

Maximum sub-group, definition
of, 101,

Measure of curvature unaltered
by transformations which do not
alter length of arc, 810 ; expres-
sion for, 315; constant a{]ong
lailnes of motion of points of a net,

2.

M.;Jgimnm ourves, definition of,

Monglan equations, defined, 29;
associated with an equation of
first order, 28, 282; of tetra-
hedral complex, 282.

Non-h trana.
formation, 240.

Non-stationary group, defined,
141.

Normal form of complete system
of operators, 83; operators are
permutable, 84,

Normal structure constants,
defined, 72.

Null plane, definition of, 256.

Operators of a group, definition
of, 37 ; fundamental theorem on,
38 ; number of independent, 38 ;
examples on finding, 40, 41;
condition that one may be self-
conjugate, Abelian, 93 ; arranged
in classes according to their
degrees in the variables, 332,

Order of a group, definition of,
18; of an integration operation,
88 ; of a Pfaffian system of equa-
tions, 196,
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Parameter group, first and second,
definitions of, 13 ; any operation
of the first permutable with any
operation of the second, 13;
ipa.rameter groups of general
inear homogeneous group, 15;
structure constants of, 65, 159;
operators of, 160, 161; of two
simply isomorphic groups iden-
tical, 162.

Permutable operations, definition
of, 2; condition that two lmear
transformations may be, 400,

Pfaffian system, definition of,
196 ; condition that given system
of equations should form, 201;
transformation of, 231,

Pfaff’s equation, definition of,
194; solution, 195; in non-
homogeneous form, 238,

Pfaff’s problem, in relation to

tact ¢ ion, 293.
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necessary and sufficient con-
ditions that two groups may
be similar, 149-154; that two
contact groups may be, 290, 291.

Similar operationg, definition of, 2.

Simple group, definition of, 165.

Special elements, definition of,
;49; equations satisfied by, 249,
54

Speci;ﬂ envelope, definition of,
249.

Special equations, definition of,
247.

Special linear homogeneous
group, definition of, 17.
Special position, points of, with
respect to a complete system of
operators, 110; transformed to
goints of the same special order
y transformations admitted by
system, 127,

Poinoars, quoted, 36.

Polar system of functions to a
given complete system, 217; if
given system is homogeneous,
polar is also, 217.

Primitive groups, definition of,
137; possible types of, in the
plane, 352 ; in space, 397.

Projective groups and sub-groups,
18, 20 ; examples of non-projec-
tive groups, 19, 22; of the linear
complex, 304, 388; of the plane,
property of sub-group of, 385.

Reciproeal groups, definition of,

62 ; structure constante of, 158.

i ion, a case of tact
transformation, 252.

Reduced operators, definition of,
9

Reci

7.
Reducible contact groups, 292;
of the plane, condition for, 370.

Salmon, quoted, 265, 266, 315.

Scheffers, quoted, 272, 398.

Self-conjugate operator, condi-
tion for, 93.

Belf-conjugate sub-group, defi-
nition of, 17; condition that a
given sub-group may be, 92.

Similar groups, definition of, 16;
are simply isomorphic, 16;

Standard form of a group, defini-
tion of, 147; of a homogeneous
function system, 198.

Stationary functions, definition
of, 144 ; counstruction of, 187.

Stationary group, definition of,
141; all such groups imprimitive,
142; operators permutable with,
1586, 157.

Btructure, when two groups are
said to be of the same, 70.

Btructure constants, definition of
a set of, 68; vary with choice
of fundamental operators, 70;
normal structure constants, 72;
a set resulting from a change
of fundamental operators, 177;
construction of group, when
structure constants given, 187;
examples on, 189-192; structure
constants of contact group, 292.

Structure functions of a complete
system of operators, definition
of, 144 ; of a complete system of
functions, 215.

Sub-group, definition of, 17;
maximum, 101; equations de-
fining a, 181; index of, 183;
method of finding all types of,
18;5; examples on method, 189-
192,

Burface coordinates, 313, 314.
Surfaces on which 2 net can move,
311-818; group of movements of
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the net, 317; when the surface
is a developable, 818.

Tetrahedral complex, definition
of, 269 ; Mongi ion satis-

INDEX

170-173; extension to the case
of intransitive groups, 174.
Translation group, 18.
Trivial, when infinitesimal trans-
£

fied by liuea.r%llas;:ents of, 282.
Transformation group, general
definition of, 2.
Transformations whichtransform
surfaces but leave unaltered
length of arcs, 308-311.
Transitive group, simply transi-
tive group, definitionsof, 45, 113;
when two transitive groups are
siniilar, 167; construction of,
when the structure constants and
stationary functions are given,

b admitted by an equa-
tion are said to be, 95.

Type, when groups are said to be
of the same, 16; when sub-
groups, 17 ; number of types of
groups, 22.

Unconnected, operators, defined,
7; functions, 81; infinitesimal
transformations, 82; invariants
of a complete system, 83.

United elements, definition of,
194
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