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Abstract

While most coarse-grained ceramics are brittle, nano-grained ceramics can exhibit signifi-

cant ductility before failure. Such ductility is primarily contributed by the grain-boundary

phase, but in grains of certain ceramic phase some plastic deformation has been found to

occur and contribute to the overall plastic strain. In this paper a micromechanics-based

composite model is developed to elucidate and predict the compressive yield strength of nano-

grained ceramics as the grain size decreases from the coarse-grained to the nano-meter scale.

The effects of porosity and second elastic phases are also considered. In such a multi-phase,

porous, nano-grained ceramic, the collective behavior of all grains of a phase is represented by

an elastoplastic constitutive equation, while the relative atomic sliding inside the grain

boundary as observed in recent molecular dynamic simulations is represented by Drucker’s [Q.

Appl. Math. 7 (1950) 411] pressure-dependent plasticity theory. The average stress and strain

state of the collective grains of each phase and the grain boundary, as well as the strain of the

pores, are determined by the generalized self-consistent scheme and the direct self-consistent

scheme, respectively, in conjunction with the secant-moduli approach. Applications of the

developed theory to a TiO2 indicated that the Hall–Petch plot, i.e., the compressive yield

strength vs. d�1=2 relation, showed a positive slope, but the slope continued to decrease, and

eventually turned negative. Porosity can significantly lower the compressive yield stress, but it

does not alter the fundament characteristics of its grain-size dependence. Second elastic phase

can also have a significant effect on the yield strength of a nano-ceramic composite even at 10%

of volume concentration.
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1. Introduction

Nano-grained ceramics have their unique mechanical characteristics that are not

commonly found in their coarse-grained counterparts. One of the most remarkable

features is that they can exhibit low-temperature ductility. Karch et al. (1987) first

reported that, with nano grain size, a brittle ceramic could permit a large plastic

strain up to 100%. They observed that bending a notched nano-TiO2 with an average

grain size of about 8 nm would lead to crack opening, not immediate crack prop-

agation that is characteristic of brittle fracture. Indentation of the same nano-TiO2

also exhibited a large increase in indentation area, indicating plastic deformation at

low temperature. For the same indentation on a coarse-grained TiO2, it would have

led to multiple cracking that is again typical of brittle characteristics. The nano-

crystalline TiO2 with the rutile structure produced by Hahn and Averback (1991)

also exhibited ductile creep behavior between 600 and 800 �C. In these creep tests,

however, grain size was found to grow from the initial 40 nm to the final values in the

range of 120–1000 nm. In order for nano-grained ceramics to have benefits for

structural applications, grain growth needs to be suppressed. Recently Kim et al.
(2001) synthesized a 3-phase nano-ceramic composite consisting of 40 vol.% ZrO2,

30 vol.% spinel (MgAl2O4), and 30 vol.% Al2O3, and found that, with such a multi-

phase composition, grain size remained stable in their tensile test at 1650 �C. They
further demonstrated that, under the constant strain-rate loading of _e ¼ 0:4 s�1, their

tensile specimen – with an average grain size of about 210 nm – could deform up to

1,050% without failure. In a separate investigation on the grain-size dependence of

TiO2 hardness, H€ofler and Averback (1990), Guermazi et al. (1991), and Averback

et al. (1992) reported a significant departure as the grain size decreased from the
coarse grain to the nanometer range. They observed that, in the coarse-grained TiO2

(above 0.4 lm), the hardness vs. grain size scaled well with the Hall–Petch relation.

This prompted them to suggest that there could be dislocation activity in the coarse

grains (our later calculations confirmed their conjecture), but probably not in the

nano-sized grains. They further reported that porosity could significantly reduce the

hardness of the nano-grained TiO2. As hardness could be scaled with the com-

pressive yield strength by a factor of 3 (Tabor, 1951; McClintock and Argon, 1966),

one could conclude that both porosity and grain-size are two critical factors affecting
the hardness and compressive yield strength of nano-grained ceramics.

Nano-grained materials are commonly referred to as the class of materials whose

average grain size is less than several tens of nano-meters. Since Birringer et al. (1984)

first reported that it was possible to combine the method of inert gas condensation of

small particles with in situ powder compaction to synthesize materials with grain sizes

of 5–15 nm, considerable progress has been made in this field. Karch et al. (1987)

originally explained the increased ductility observed in a nano-TiO2 on the basis of
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Coble creep, under which the creep rate _e depends on the grain size d as _e � d�3. Thus

if the grain size decreases from 10 lm to 10 nm, the creep rate would have increased by

109, making an otherwise brittle material ductile (Their reasoning is now not the only

one to explain the superplastic behavior of nano-grained materials). Subsequently

several tests have been conducted on nanocrystalline metals. The most conspicuous

characteristic out of the measurements of Cu and Pd is that, in the coarse-grain range,
the hardness (or yield strength) increased linearly with d�1=2, but as the grain size

decreased to the nano-meter range, a negative slope was observed (Chokshi et al.,

1989). The transition from a positive slope to a negative one was further substantiated

by the experiments of Lu et al. (1990) on Ni–P alloy, and Fougere et al. (1992) also on

Cu and Pd. These tests point to the existence of an optimal grain size in the nano-

meter range that the material would possess the strongest hardness and highest

compressive yield strength. While early processing was often accompanied by various

voids and defects, subsequent improvement in processing technique has produced
specimen with a higher hardness but nonetheless still displayed the same observed

negative slope in the Hall–Petch plot (see, for instance, Sanders et al., 1997a,b,

Weertman et al., 1999, and papers in the Julia R. Weertman Symposium, 1999).

In addition to porosity and grain size, another important factor that can affect the

compressive strength of a nanocrystalline ceramic – in light of the composite structure

of Kim et al. (2001) – is the presence of second elastic phases. The mixing and

compaction technique developed by them required the nano-ceramic to be in the form

of a multi-phase composite. The composite structure was crucial for the nano-ceramic
to exhibit high strain-rate (up to 1 s�1) ductility without significant grain growth. To

address these factors, we will develop a micromechanics model that can account for

the influence of porosity, grain size, and multiphase, on the yield strength of nano-

grained ceramics. The developed theory will be compared with the measured TiO2

strength. In this study we will be mainly concerned with the compressive yield stress

defined around 0.2% of proof strain, and the stress–strain behavior within the small

strain range. Therefore large deformation that is essential for the study of super-

plasticity with an elongation up to tens or hundreds, or even thousands of percents as
demonstrated in the high strain-rate, high temperature test of Kim et al. on Cu, will

not be included. Such a study would require a finite-deformation formulation for

which no appropriate micromechanics formulae are yet available to account for the

evolution of stress field and microstructural changes. Within this objective, the grain-

boundary sliding often reported to be essential to superplastic flow could be ac-

counted for by the plastic deformation of the finite thickness, grain-boundary phase

of the model. Even though no superplasticity will be calculated, the model will give

results regarding the yet-unknown characteristics of a nano-ceramic composite and
provide some insights into the compositional dependence of its mechanical strength.
2. A nano-grained ceramic model with porosity and multiphase

While it has been known for over a decade that, in a nanocrystalline solid, a sig-

nificant portion of atoms reside in the grain boundary regions, it is the recent
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molecular dynamic simulations (e.g. Schiøtz et al., 1998, 1999; VanSwygenhoven et al.,

1999; Yamakov et al., 2002) that inspired us to develop a micromechanical model to

mimic the microstructure of such a material. A representative one from Schiøtz et al.

(1998) for a nanocrystalline copper using 100,000 atoms is reproduced in Fig. 1(a); it
Fig. 1. (a) Molecular dynamic simulation of grains and grain boundary in a nano-grained copper,

showing the grain boundary has finite volume concentration, (b) a schematic diagram of a porous,

multiphase, nano-grained ceramic, and (c) the generalized self-consistent model.
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shows that, unlike in traditional coarse-grained materials, the grain boundary now

constitutes a distinct phase with finite thickness and possesses certain volume fraction.

Hydrogen probe of grain-boundary thickness suggested that it has the value of about

0.5–1.5 nm (M€utschele and Kirchheim, 1987; Kirchheim et al., 1988), and atomic

simulations indicated that it is not sensitive to the grain size (Schiøtz, 2003). Such a

nanocrystalline solid can be construed as a two-phase material consisting of the grains
and the grain-boundary phase, which has served as the basis of our recent model for

nanocrystalline metals (Jiang and Weng, 2003). Denoting d as the average grain size

and d as the grain-boundary thickness, the volume concentration (fraction) of the

grains can be approximated by
cg ¼
d

d þ d

� �3

; ð2:1Þ
and that of the grain boundary by cgb ¼ 1� cg. The significance of grain-boundary

phase in the nanocrystalline solid is then evident. For instance, at the average grain

size of d ¼ 25 nm and grain-boundary thickness d ¼ 1 nm, the grain boundary oc-

cupies about 11% of the material, and at d ¼ 10 nm it takes about 25%. As such, its

plastic deformation due to the relative, uncorrelated, atomic motion uncovered in

molecular dynamic simulations (Schiøtz et al., 1998, 1999) can contribute signifi-

cantly to the overall plastic strain of the nanocrystalline solid.

For the study of nano-grained ceramics with porosity and possible multiphase, we
envision a microstructure as depicted in Fig. 1(b). Here three types of phases (i.e.,

such as the ZrO2–spinel–Al2O3 composite of Kim et al., 2001) are depicted, along

with pores signified by the white dots. If the porosity of the ceramic is denoted by

cpore, then the total volume fraction of all phase grains, denoted by cg, and that of the

grain-boundary phase, cgb, can be approximately represented as
cg ¼ ð1� cporeÞ
d

d þ d

� �3

; cgb ¼ ð1� cporeÞ 1

"
� d

d þ d

� �3
#
; ð2:2Þ
where cg ¼
PN

k¼1 c
ðkÞ
g , is the sum of the volume fractions of all phase grains, cðkÞg .

Denoting fðkÞ as the fraction of the kth phase in all phases, we also note
cðkÞg ¼ fðkÞcg;
XN
k¼1

fðkÞ ¼ 1; and
XN
k¼1

cðkÞg þ cgb þ cpore ¼ 1: ð2:3Þ
When there is only a single phase without any porosity, this recovers the model of

(2.1). Here for simplicity the grain sizes of all phases are taken to be about the same,

but if significantly different, cg would have to be constructed anew.
3. Constitutive equations of the individual phases and the grain boundary

Plastic deformation in coarse-grained materials generally occur by dislocation

motion or diffusional creep in the constituent grains. Dislocation density and mo-

bility in most ceramics, however, are usually limited and only in certain types of
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ceramics has such deformation been observed. For instance in the 3-phase nano-

ceramic composite synthesized by Kim et al. (2001), dislocation structures are re-

ported only in ZrO2 grains. In order to pave the way for the study of coarse-to-nano

grain transition, however, the constitutive equations of the grains will be written in

the way of capable of undergoing plastic deformation. Grains, which deform only

elastically, then can be viewed as a material with an extremely high yield stress. An
elastic-plastic constitutive equation is particularly essential in light of the TiO2 re-

sults reported by Averback et al. (1992), who strongly suggested that dislocations

might play a role for the rapid decrease of hardness in the coarse grain range.

3.1. Constitutive equations of the collective grains of an individual phase

In themultiphase, porous ceramicwith afinite grain-boundary thickness as depicted

in Fig. 1(b), the collective stress–strain behavior of all constituent grains of a particular
phase is isotropic, and will be represented by a constitutive equation in terms of von

Mises’ effective stress and strain. According to an earlier study on the grain-size

dependence of yield strength of coarse-grained polycrystals (Weng, 1983), the resolved

shear stress–shear strain relation of a slip system in the constituent grain is grain-size

dependent due to the possible dislocation pile-ups and the dislocation substructures

affected by the grain boundary, and such a dependence necessarily translates into the

level of overall polycrystal. This suggests that the stress–strain relation of the collective

grains of each individual phase is also grain-size dependent. In general the effective
stress–strain relation of the collective grains of a phase can be written as
re ¼ rðgÞ
y þ hg � epe

� �ng
; ð3:1Þ
where re is von Mises’ effective stress and epe the effective plastic strain, defined by
re ¼
3

2
r0
ijr

0
ij

� �1=2

; epe ¼
2

3
epije

p
ij

� �1=2

; ð3:2Þ
in terms of the deviatoric stress r0
ij and plastic strain epij. Here rðgÞ

y , hg and ng are

respectively the initial yield stress, strength coefficient, and work hardening

exponent. Both ry and h now depend on the grain size d in the form of Hall–Petch

relation
rðgÞ
y ¼ r1ðgÞ

y þ k � d�1
2; hg ¼ h1g þ a � d�1

2; ð3:3Þ
where r1ðgÞ
y , k, h1g , and a are material constants, corresponding to grains of infinite

size or single crystals. To describe the elastic response, the bulk and shear moduli of

the collective grains of a phase will be denoted by jg and lg, and Young’s modulus

and Poisson’s ratio by Eg and mg, respectively. In a multiphase ceramic each phase
will of course have its own material constants.

To pave the way for later determination of compressive yield stress of the mul-

tiphase porous ceramic, it is useful to note that, at a given level of effective stress re

or effective plastic strain epe , the secant Young’s modulus (defined as the ratio of

stress to total strain) and secant Poisson’s ratio are given by
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Es
g ¼

1

1
Eg

þ epðgÞe

rðgÞ
e

; msg ¼
1

2
� 1

2

�
� mg

�
Es
g

Eg

; ð3:4Þ
whereas the secant bulk and shear moduli follow from the isotropic relations
js
g ¼

Es
g

3ð1� 2msgÞ
; ls

g ¼
Es
g

2ð1þ msgÞ
: ð3:5Þ
3.2. Constitutive equations of the grain boundary

As revealed by various atomic simulations (see, for instance, Schiøtz et al., 1998,

1999; Van Swygenhoven et al., 1999; Gleiter, 2000), the atomic structure of the grain-

boundary regions is mostly amorphous. This implies that its plastic behavior cannot

be represented by von Mises’ effective stress and strain alone. The study by Schiøtz

et al. (1998, 1999) on copper further disclosed that plastic deformation inside the

grain boundary occurred by atomic sliding through a large number of uncorrelated
events, where a few atoms (or a few tens of atoms) slide with respect to each other.

To describe such a plastic behavior for the amorphous grain-boundary phase by a

continuum model, we invoke Drucker’s (1950) constitutive equation, which has also

proven suitable for the modeling of metallic glasses (Donovan, 1989). Drucker’s

equation is marked by the pressure dependence of the yield stress; it can be written as
re ¼ rðgbÞ
y þ m � p þ hgb � epe

� �ngb ; ð3:6Þ
where p ¼ � 1
3
rkk is the hydrostatic pressure, and rðgbÞ

y ;m; hgb, and ngb are material
constants of the grain-boundary phase. Its elastic moduli will be written with the

subscript ‘gb’, and so will its secant moduli, which could also be cast in a form

similar to Eqs. (3.4) and (3.5).
4. Stress and strain state, and stress–strain relation of a porous, multiphase, nano-

grained ceramic

The microstructure as depicted in Fig. 1(b) accounts for the simultaneous pres-

ence of several phases and porosity in a nano-grained ceramic that possesses a finite

grain-boundary thickness. These microstructural features are represented by the

grain size d, the grain-boundary thickness d, and the volume concentrations of the

individual phases cðkÞg , cgb and cpore. In order to evaluate the overall property of such a

composite system, the stress and strain state of each individual phase will have to be

determined first.

To this end we shall follow the approach taken by our earlier study on a single-
phase nanocrystalline metal without any porosity, and treat the stress and strain

state of collective grains of a particular phase by the generalized self-consistent

scheme (Christensen and Lo, 1979). Such a scheme is particularly suited for high

volume concentration and is depicted in Fig. 1(c) in light of the schematic diagram of

Fig. 1(b). The spherical inclusion – with an elastoplastic property represented by
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Eqs. (3.1)–(3.5) of the behavior of collective grains of a particular phase – is now

embedded in the grain-boundary phase (represented by the white shell), which is

further embedded in an infinitely effective medium with the yet-unknown overall

property of the multi-phase, porous ceramic. Such an embedding process is repeated

for each and every phase so that the stress and strain state of each phase grains can be

established (see also Huang et al., 1994). The strain state of the pores will be deter-
mined by the direct self-consistent scheme (Hill, 1965b; Budiansky, 1995) by em-

bedding it in the effective medium. We do not treat pores on equal footing with grains

here because grains are always surrounded by grain boundary, but pores – which tend

to exist at the triple junction points of grains during the compaction process of ce-

ramics – may be surrounded simultaneously by both grain boundary and grains. Even

though the presence of pores is significant, the porosity in real ceramics in not high

enough to cause the breakdown of the self-consistent scheme commonly associated

with the voided or cracked problem. Thus the average stress and strain state of all
phase grains and pores are all expressed in terms of those of the overall effective

medium, their respective secant moduli, and the volume concentrations cðkÞg , cgb and

cpore. Under a given external stress, the overall strain of the composite is then calcu-

lated from the weighted mean of the strains of all phases. The overall stress–strain

relation of the multiphase, porous ceramic then can be established.

The nonlinear elastoplastic problem of the composite will be addressed by a linear

approach by way of secant moduli. Since its inception in Talbot and Willis (1985),

this method has seen its growth in several forms with various degrees of sophisti-
cation (e.g. Tandon and Weng, 1988; Ponte Casta~neda, 1991; Willis, 1991; Qiu and

Weng, 1992; Suquet, 1995; Hu, 1996). Here we shall not dwell upon the rigor of each

individual approach but instead concentrate on the physical problem of ceramic

strength. For this reason and also for the fact that several different constituent

phases are involved here, we shall adopt the direct approach of Tandon and Weng

(1988), which was inspired by Berveiller and Zaoui’s (1979) modification of Hill’s

(1965a) original incremental scheme.

4.1. Average stress and strain in the grains, grain boundary, and pores

Within the linear context, such a procedure has a well-known solution from

Christensen and Lo’s formulation. After some algebra, their local solution can be

used to find the average stress and strain of the grain (inclusion) and grain boundary

(matrix), now in terms of the secant moduli of the constituent phases, as
�rðgÞ
ij ¼ 1

3
�ag�rkkdij þ �bg�r

0
ij; �eðgÞij ¼ �ag

9js
g

�rkkdij þ
�bg

2ls
g

� �r0
ij;

�rðgbÞ
ij ¼ 1

3
�agb�rkkdij þ �bgb�r

0
ij; �eðgbÞij ¼ �agb

9js
gb

�rkkdij þ
�bgb

2ls
gb

� �r0
ij;

ð4:1Þ
where coefficients �ag, �agb, �bg and �bgb relate the average hydrostatic and deviatoric

stresses in the grains and grain-boundary phase to the externally applied (�rkk; �r0
ij)

(Note: an overbar signifies that it is a volume-averaged quantity). We found that
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�ag ¼
1

p
ð3js

c þ 4ls
cÞð3js

gb þ 4ls
gbÞ

js
g

js
c

;

�bg ¼ 2ls
g �a1

�
� 21

5ð1� 2mgÞ
�a2

�
;

�agb ¼
1

p
ð3js

c þ 4ls
cÞð3jg þ 4ls

gbÞ
js
gb

js
c

;

�bgb ¼ 2ls
gb

�b1

"
� 21

5ð1� 2msgbÞ
1� c5=3g

1� cg
�b2

#
ð4:2Þ
and
p ¼ ð3jg þ 4ls
gbÞð3js

gb þ 4ls
cÞ � 12cgðjg � js

gbÞðls
c � ls

gbÞ; ð4:3Þ
where (js
c; l

s
c) are the secant bulk and shear moduli of the composite (including multi

phases, grain boundary, and pores) at the considered level of applied stress �rij. The

constants �a1, �a2, �b1 and �b2 are given in the Appendix A. It should be noted that, in a

multiphase ceramic, the values of the (jg; ls
g) pair correspond to those of a consid-

ered phase, thereby giving rise to different average stress and strain in the inclusions

of different phases.

For the pores, the average strain could be evaluated from the self-consistent scheme.

Again in the context of secant moduli, Eshelby’s solution (1957) readily provides
�eðporeÞij ¼ �apore
9js

c

�rkkdij þ
�bpore

2ls
c

�r0
ij; ð4:4Þ
with
�apore ¼
3js

c þ 4ls
c

4ls
c

; �bpore ¼
5ð3js

c þ 4ls
cÞ

9js
c þ 8ls

c

: ð4:5Þ
As both js
c and ls

c are not yet known, these quantities need to be evaluated by an

iterative procedure, to be described next.

4.2. The secant moduli of the porous, nano-grained, multi-phase ceramic

Once the secant bulk and shear moduli (js
c; l

s
c) at a given level of applied stress �rij,

are known, the overall strain follows immediately. Then by increasing the level of

applied stress, the entire stress–strain relation of the composite, and its compressive
yield strength defined as the flow stress at 0.2% plastic strain, can be evaluated as a

function of porosity and grain size. In the context of secant moduli under propor-

tional loading, the constitutive relations of the composite can be written as
�eij ¼ M ðcÞs
ijkl �rkl; ð4:6Þ
where M ðcÞs
ijkl ¼ 1

3jsc
; 1
2lsc

� �
is its effective secant compliance tensor. From the weighted

mean of the average strains of all constituent phases (grains, grain-boundary, and

pores), the composite strain is given by
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�eij ¼ eij
	 


¼
XN
k¼1

cðkÞg �eðgÞðkÞij þ cpore�e
ðporeÞ
ij þ cgb

XN
k¼1

fðkÞ�e
ðgbÞðkÞ
ij ; ð4:7Þ
where
PN

k¼1 fðkÞ�e
ðgbÞðkÞ
ij – recalling the meaning of fðkÞ in (2.3) – is the weighted mean of

�eðgbÞij values when different phases take the position of (jg; ls
g) in Eq. (4.1). Of course

for a single-phase, nano-grained ceramic with certain amount of porosity as the TiO2

to be discussed later, no such average is required.

Since the strains of all constituent phases are all expressed in terms of the applied

stress �rij, Eqs. (4.6) and (4.7) allow one to solve for the effective secant moduli,

(js
c; l

s
c), after canceling out the hydrostatic and deviatoric components of the applied

stress on both sides, as
1

js
c

¼
XN
k¼1

cðkÞg

�aðkÞg

jðkÞ
g

þ cpore
�apore
js
c

þ cgb
XN
k¼1

fðkÞ
�aðkÞgb

jsðkÞ
gb

;

1

ls
c

¼
XN
k¼1

cðkÞg

�bðkÞ
g

lsðkÞ
g

þ cpore
�bpore

ls
c

þ cgb
XN
k¼1

fðkÞ
�bðkÞ
gb

lsðkÞ
gb

:

ð4:8Þ
It should be pointed out that Christensen and Lo’s (1979) effective bulk and shear

moduli do not give the present results involving several constituent phases and po-

rosity; it is only under the condition that, when cpore ¼ 0 and N ¼ 1, their bulk and

shear moduli could be used here.

4.3. Computational procedure

The pair in Eq. (4.8) can be used to solve for the effective secant bulk and shear

moduli. Since parameters �ag, �agb, �bg,
�bgb, �apore and �bpore also depend on js

c and ls
c, an

iteration scheme is required here. Briefly we first assumed a set of secant bulk and shear

moduli of the composite and constituent phases to calculate the parameters �ag, �agb, �bg,
�bgb, �apore and �bpore. The local stresses in the grains and grain boundary calculated from
(4.1) were then compared with their respective flow stresses in the constitutive Eqs.

(3.1) and (3.6), to check for consistency. If no, the secantmoduli of the grains and grain

boundary were then determined from the constitutive equations. Then through Eq.

(4.8), we determined the new secant bulk and shear moduli of the composite. These

new secant moduli were then used to start a new round of iteration, until the calculated

results of the composite and the constituent phases were sufficiently close to the as-

sumed ones. Then by increasing the level of applied stress, the entire stress–strain curve

and the compressive yield strength at 0.2% proof strain were determined.
5. Effects of porosity and grain size on the compressive yield strength of a nano-grained

TiO2

We now use the developed theory to examine the effects of porosity and grain size

on the compressive yield strength of a nano-grained rutile TiO2. Such a titanium
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oxide has been processed and tested by H€ofler and Averback (1990) and Averback

et al. (1992), so their data could be compared with the theory.

But before we proceed to examine this ceramic, it is instructive to look at one of

our recent calculations on the yield strength of Cu and an idealized material whose

grains deform only elastically (Jiang and Weng, 2003). Such a result is reproduced in

Fig. 2. This figure illustrates the 0.2% yield stress vs. d�1=2 relation, or the Hall–Petch
plot, over the grain-size range between 20 lm and 10 nm (see the top scale). The

bottom curve connecting the diamond-shaped points was generated using the full

elastoplastic properties of the collective Cu grains, whereas the top one connecting

the open circles was obtained assuming the inclusions to be purely elastic (with the

Cu elastic moduli). In both cases the plastic deformation of the grain-boundary

phase was fully incorporated. The yield behavior of the real Cu (the bottom curve) is

seen to follow the traditional Hall–Petch relation in the coarse-grained region, but as

the grain size decreased to the nano-meter range it began to deviate, and eventually
decreased. For the idealized system of elastic grains and elastoplastic grain boundary

(the top curve), the Hall–Petch plot showed a continuous decrease of the slope, and

the slope was always negative. The bottom and top curves eventually merged into a

single one, during which, as reported in the original paper, the overall plastic be-

havior of the nano-crystalline solid was totally dominated by the grain-boundary

phase and the plasticity of the grains played no role.

This figure is significant to the present study of ceramics, for if the grains of the

ceramic were totally incapable of having plastic deformation, the Hall–Petch plot
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would have displayed a similar trend as the top curve. The test data of H€ofler and
Averback (1990) and Averback et al. (1992), reproduced in Fig. 3 at two levels of

porosity cpore ¼ 6% and 11%, however, clearly showed a positive slope. This is

consistent with their belief that dislocations played a role in this TiO2 grains. (These

data were converted from their Vickers hardness tests by Tabor’s relation). The

increase of the compressive strength over the entire range of grain sizes was also not
linear as the Hall–Petch relation would have implied. Clearly the slope is higher with

coarse grains, and lower with nano grains, and this has prompted them to suggest a

bilinear curve to represent these two segments of the data. Such a transition also

reflects what we earlier concluded of a more and more dominant role of the grain

boundary as the grain size enters into the nano-meter range. At a given grain size,

their square-shaped data with 6% porosity indicated a substantially higher yield

stress as compared to that of the triangular-shaped data with 12% porosity. The

difference between the two was almost parallel, suggesting that pores played a
consistent role of reducing the yield strength, but they did not alter the basic char-

acteristics of the transition of the compressive yield strength, which was totally de-

termined by the grain size.

Our theoretical calculations are plotted alongside using the material constants

listed in Table 1. These theoretical results indicated that the strength increased

nonlinearly with a decreasing slope, and then attained a maximum value at a critical

grain size, after which it began to decrease with a negative slope. The optimal grain

size occurs in the nanometer range between 10 and 25 nm. Within the range of grain
sizes tested, these theoretical predictions appear to have captured the general trend
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Table 1

Material parameters used in calculations

Grains Grain boundary

E (GPa) 281.0 260.67

m 0.28 0.28

ry (GPa) 1.85 1.0

h (GPa) 6.88 6.2

n 0.5 0.4

k (GPa
ffiffiffiffiffiffiffi
nm

p
) 8.0 –

a (GPa
ffiffiffiffiffiffiffi
nm

p
) 0.243 –

m – 1.0
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of the data. This further substantiates their conjecture that dislocation mechanism

had indeed played a role in the grains.

Since there was only one experimental data after the turn of the slope, it is not

clear whether a negative slope would have been observed had they extended their
tests to grain sizes below 10 nm. The existence of such a critical grain size – called

critical equicohesive grain size – has been observed by Chokshi et al. (1989) and

Sanders et al. (1997a,b) on Cu and Pd, and also predicted by our recent theory for

nanocrystalline metals (Jiang and Weng, 2003). It stemmed from the softer yield

strength of the grain-boundary phase as compared to the grains. Theoretically it can

be visualized that, if the grain-boundary phase is softer than the grains, then as the

grain size approaches zero the yield strength of the nanocrystalline material would

asymptotically approach that of the grain boundary, which is represented by the end
points of the plot as the abscissa extends to infinity. So if the grain boundary is

substantially softer than the grains, then a negative slope will eventually appear, but

if it were harder than the grains then the slope would continue to remain positive, in

fact increasing. Whether such a critical grain size could be observed for this TiO2 or

other ceramics as in nanocrystalline metals remains an open challenge.

Our calculations also show that the effect of porosity is significant. Porosity

moved the curves almost vertically in parallel fashion. This demonstrates again that

porosity only alters the magnitude of the hardness or compressive yield strength, but
it does not change the basic characteristics of the transition of yield strength as the

grain size decreases from the coarse-grained to the nano-grained regime. Our cal-

culations further show that the critical grain size increases with porosity.

Even though perfectly dense TiO2 was difficult to synthesize, it is possible to make

a theoretical calculation. The solid line in this figure was obtained by setting the

porosity to zero; the result was a higher compressive yield stress at the same grain

size. The difference between the results of 0% and 6% porosity, and that of 6% and

11% porosity, are seen to be about proportional. This characteristic is consistent
with the decrease of Young’s modulus and yield strength of a porous material when

the porosity is not high (Weng, 1984; Qiu and Weng, 1993).

We have also used the theory to calculate the compressive stress–strain relations

of this TiO2 at six selected grain sizes: d ¼ 10 nm, 16 nm, 28 nm, 62 nm, 222 nm and

20 lm, at both porosity levels. The results are displayed in Fig. 4. The increase of

flow stress as the grain size enters into the nano-meter range is evident (it was from
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these curves that the compressive yield stresses at 0.2% plastic strain displayed in Fig.

3 were obtained). As the porosity increased from 6% to 11%, the flow stress also

decreased. Some crossover of the curves between 10 and 16 nm was also observed;

this was due to an earlier yielding in the grain-boundary phase with smaller grain
size. At these two levels of porosity, the compressive yield strength and overall re-

sponse of the nano-grained ceramic remain very hard.

In amultiphase ceramic such as the 3-phase system synthesized byKim et al. (2001),

some phase could undergo plastic deformation whereas others may deform only

elastically. The presence of second elastic phases can affect both the compressive yield

strength and the overall stress–strain relation of a nano-ceramic composite. In order to

shed some light on such an effect, we havemade calculations for the same TiO2 with 6%

porosity, but this time with the artificial introduction of another elastic phase whose
moduli differ from those of the host TiO2 grains. The results of compressive yield

strength are shown in Fig. 5. Here in the inset Eplastic means the Young’s modulus of the

plastic grains (i.e. the host TiO2 grains), Eelastic means the Young’s modulus of this

artificially introduced elastic grains, and celastic its volume concentration (which is at

the expense of the TiO2 host grains as the porosity and grain-boundary concentrations

were taken to be fixed in calculations). The first curve with Eplastic ¼ 281 GPa and

celastic ¼ 0 is exactly the middle curve in Fig. 3. The other three curves were calculated

with celastic ¼ 10%, one with the same elastic modulus, one stiffer at Eelastic ¼ 600 GPa
and another softer at Eelastic ¼ 100 GPa. The one with the same Young’s modulus (but

deforms only elastically) has a slightly higher level of compressive yield strength than
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the host system. The other two, on the other hand, showed a marked increase or
decrease of the strength even with only 10% of concentration.

The corresponding compressive stress–strain relations of these three ceramic

composites are depicted in Fig. 6, each at three selected grain levels d ¼ 10 nm, 100

nm, and 20 lm. In each case the grain size is seen to play a major role. The influence

of the second-phase stiffness on the overall compressive behavior is also significant.

Before we close, let us return to the TiO2 we examined earlier, to uncover the

possible influence of grain-boundary thickness on its compressive yield strength. As

mentioned earlier, hydrogen probe on the grain-boundary thickness by M€utschele
and Kirchheim (1987), and Kirchheim et al. (1988) suggested a range of 0.5–1.5 nm,

and recent molecular dynamic simulations also indicated that the grain-boundary

thickness was not sensitive to the grain size (Schiøtz, 2003). Chokshi et al. (1989)

suggested the value of 1 nm for Cu and Pd. The results in Figs. 3–6 have all been

calculated taking d ¼ 1 nm. But in order to shed some light on the effect of grain-

boundary thickness, we have made two additional calculations using d ¼ 0:8 and 1.2

nm. The results for the compressive yield strength are shown in Fig. 7, at the porosity

of 6%. These three curves indicate that, in the coarse grain range, grain-boundary
thickness has no effect on the compressive yield strength, but smaller grain-boundary

thickness would increase the compressive yield strength in the nano-meter range. The

critical grain size also increases with increasing grain-boundary thickness. The basic

characteristics of grain-size dependence of the compressive yield strength, however,

are not altered by the grain-boundary thickness.
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6. Concluding remarks

In an effort to provide a theoretical basis for the effects of porosity, grain size, and

second elastic phases on the compressive yield strength of nano-grained ceramics, we

have developed a composite-based model to examine the overall elastoplastic be-

havior of such materials. Both the grains and the grain boundary are allowed to have
plastic deformation, with the elastic grains represented by a very high yield stress. A

generalized self-consistent scheme is developed to determine the stress and strain

state of the collective grains of each phase and that of the grain boundary, and a

direct self-consistent scheme is used to determine the strain state of the pores. Under

a given external stress, the overall strain of the composite is then determined by the

weighted mean of the strains of these constituent phases. The overall secant bulk and

shear moduli of the composite are then calculated, and used in the generalized, and

the direct, self-consistent schemes for self-consistency. This procedure allows one to
calculate the overall stress–strain relation and the compressive yield strength of the

composite as a function of volume fractions of each constituent phase and their

respective volume concentrations as the grain size decreases from the coarse-grained

to the nano-grained regime. Through this scheme the effect of second elastic phases

on the compressive yield strength of the nano-ceramics can also be evaluated.

The theory has been applied to study the basic characteristics of compressive yield

strength of a nano-TiO2 as its grain size decreases. It was found that the yield

strength continues to increase with decreasing grain size within this range. Porosity
was also found to play a significant role in reducing the compressive yield strength,

but the increase of flow stress with decreasing grain size appears to follow two

parallel paths at these two porosity levels. The theory further predicted the existence

of a critical grain size below which the compressive yield strength began to decrease.

This critical equicohesive grain size, which marks the maximum, optimal compres-

sive strength of a ceramic, occurs at the nano-meter range.

The influence of a second elastic phase on the compressive yield strength of TiO2

has also been investigated with an idealized composite system. The grains of this
second phase could be stiffer, equal, or softer in its Young’s modulus than that of

TiO2 grains, and it was found that such elastic heterogeneity has a significant effect

on the compressive yield strength even at a relative low volume concentration of

10%. This suggests that second phases in a nano-ceramic composite not only could

serve to suppress the grain growth but also could help improve the compressive yield

strength and hardness of the nano-grained ceramics.
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Appendix A

Parameters �a1, �a2, �b1 and �b2:
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