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INTRODUCTION

Three major schools in the philosophy of mathematics developed
around the turn of the century--logicism, formalism and intuitionism,
as they are usually called. The sufge of activity was initiated by
Frege who attempted to provide a philosophical basis for mathematics
by deriving mathematical pr1ncip1és from logic and exhibiting mathe-
matical objécts as logical constructs. His position was essentially
a kind of reductionism, and even if he had succeeded, similar kinds
of ontological and epistomological questions could have arisen in
logic, but at least at that time, the status of logic was considered
less éontroversia1 than the status of mathematics. Ironically,
attention was drawn to the problems in philosophy of mathematics to
which Frege addressed himself by Russei]'s discovery of a paradox
in Freée's system and, consequen£1y, in set theory in general--as it
was conceived at the time.

The existence of paradoxes in set theory demonstrated conclusively
the lack of a sound philosophical basis for mathematics as well as
the importance of such a basis. The questions of ontological status
of mathematical objects, the meaning of mathematical expressions
and the nature of the process through which we arrive at our knowledge
of mathematics became not only important philosophical problems, but
also issues practically revevant for the working mathematician (to
use standard euphemism), confronted with the possibility of inconsistency
of his field. It is not surprising, therefore, that both formalism

and intuitionism were developed by mathematicians--Hilbert, who probably
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was the greatest mathematician of the period,-and Brouwer, also
very respected for his work in topology.

Hilbert's idea was that mathematical practices and results
could be justified by encbding them into formal system, and then
proving the consistency of those systems--of course by some weaker
means, that is, using only some non-controversial practices. It
should be stressed that this was only one part of Hilbert's program.
The second part, so called finitism, was supposed to provide those
secure, non-controversial means for proving consistency of formall
systems. Tﬁis part is essential for Hilbert's philosophical
position, because he divides all mathematical statements into real
(meaningful) and ideal (meaningless). The real statements are
about real objects whose ontology is based on concrete, spatio-
temporal objects (e.g., graphic signs), while the ideal statements
involve also the notions and procedures which refer to ideal
objects (e.g., actual infinity) and cannot be assigned any meaning.
The whole point of ideal statements is just to enable us to prove
true real statements. Thus, no special ontological assumptions
are needed for mathematics because one part can be accommodated
inside any general metaphysical conception of the physical world,
while for the rest, no bntological claims are made. Since ideal
statements possess no meaning on their own, any proof involving
jdeal statements has to be formalised, that is, derivations must
be based on syntactic considerations only (thus, the idea of a formal

system as a game of symbols). If a proof of that kind, that is,
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a proof in a formal system, is a proof of a real statement, it can

be justified by a real proof of consistency of the formal system.

Of course, any formula of a formal system representing a real
statement does indeed have an interpretation, and the whole value

and meaning of a consistent formal system consists in its contribution
to proving such real statements.

It was a common feature of logicism and forma1ism that they
relied upon the realization of specific mathematical projects, and
that they lost their appeal exact]y because of the apparent failure
of those projects, or more precisely, when the realizability of
the projects became highly questionable. The logicist program was
not, in fact, destroyed by the Russell's discovery of paradoxes--
only Frege's approach. The real arguments against the logicist thesis
came as a result of Russell's attempts to save it. Namely, if the
theory of types is to be regarded as a successful realization of the
logicist mathematical project (i.e., derivation of mathematics from
logic), the price has to be paid of acceptance, as a part of logic,
of principles which the original philosophical position is not able
to account for. But on such a view, the philosophical benefit of
the reduction becomes dubious, if not outright nonexistent, because
the logic which includes the principles required for the theory of
types is burdened by the same kind of philosophical problems the
logicist program tries to solve in mathematics. On the other hand,
the work on the theory of types, made it fairly clear that no
significantly weaker principles could suffice for the realization of the

logicist mathematical project.
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Similarly, Gbdel's discovery that for a consistency proof of
formalized arithmetic (or any formal system in which a significant
portion of it can be reproduced) even the full power of the formal
system in question would not suffice, does not have to be interpreted
as destnoying the formalist position. "Two arguments are possible
against such' interpretation, incidentally both offered by Gidel.
First, it could be that the fault lies with the specific character
of the particular type of formalisation used, so the creation of a
new kind of formal systems could make the finitist consistency proofs
possible. This argument is, however, completely unsubstantiated, and
in the absence of any hints about the possible nature of such new
formalisms, cannot be taken too seriously. Second, it is possible
that a consistency proof for arithmetic could be provided (without
circularity), by addition of new principles to finitism. In 1ight
of Gentzen's consistency proof, based on €0 induction, it seems
almost certain that such,principles'would not be accountable for
on the basis of the original philosophical position of finitism.

The situation, thus, would arise (similar to that with the theory
of types in Togicism) where the success in the realization of the
mathematical project would require depriving the philosophical
position of most of its appeal.

While logicism and formalism tried to solve the philosophical
problems of mathematics in a way that would provide justification
for the existing practices, intuitionism took those problems more

seriously, that is, not just as questions that should be answered



in a satisfactory way, but as demonstrating the incoherence of the
traditional position as well as the unacceptability of the actual
practices alTowed by this position. Not only are the ontological
views of the traditional position unsatisfactory, but the whole
conception of understanding of mathematical expressions is funda-
mentally mistaken. For intuitionism, therefore, the solution is

a radical reconstruction of traditional mathematics, and primarily
reinterpretation of its language on the basis of a philosophically
sound conception of its nature. To use a metaphor, not the con-
struction of a new, safe foundation for the old building--because
the whole structure is beyond repair and the defects in the design
cannot be compensated by any foundation--but the abandonment, or
even better--demolition of the old house and the construction of a
new one, starting of course from the foundation.

The philosophical position on which the intuitionist reconstruction
of mathematics is to be based could be briefly outlined as follows.
The objects of mathematical research are mental constructions performed
by a working mathematician. The mathematical statements are to be
understood as being about those mental objects and their properties.
Epistemological questions are addressed in a sort of tautological way
by requiring that the constructions must be amenable to easy mental
inspection and self-evidently correct, and that a construction can
be assumed to possess only those properties which it evidently does,
or which it can be proved to possess. This proof again has to be a

mental construction and has to satisfy the same kinds of requirements.



On this conception, logic is secondary to mathematics, but only in

a quite sbecific sense that logical principles are just mathematical
principles of a high degree of generality. 3o, Togic is an integral
part of mathematics, not some external doctrine which is supposed to
precede it.

Let us examine now in somewhat greater detail the meanings the
logical connectives are supposed to have on the jntuitionistic
interpretation of mathematical language. Those meanings can be
specified by determining the contribution logical connectives make
to the meaning of sentences in which they occur. Since understanding
of the meaning of a sentence amounts to knowing when the sentence
can be considered as true, which for the intuitionist means knowing
what can be accepted as its proof, the meaning of a logical connective
is specified by understanding how it contributes to "proof-criteria”
of sentences in which it occurs. So let us see what constitutes a
proof of a sentence formed by means of a logical connective from other
sentences of which we already are able to recognize whether a con-
struction is a proof. If A and B are sentences, a proof of "A & B"
is a construction that consists of a.proof of A and a proof of B.

A proof of "A v B" is either a proof of A or a proof of B. A proof
of "A -~ B" consists of two parts: first, a construction a, which
applied to any proof of A produces a proof of B, and second, a proof
that the construction a has this property. In explaining the meaning
of the intuitionistic implication, this second part is sometimes

neglected. However, if a construction o« is given, it need not be
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self-evident that, when applied to any proof of A (and "any" here

has a very strong meaning because it is not prescribed by any formal
system, what fofm a proof might take) a will necessarily give, as a
result, a proof of B. Since negation " o A" js a derived connective
defined in terms of implication and absurdity (i.e., "A >0 " where
o denotes 0 = 1 if we are speaking about arithmetic, or can be

taken as a primitive notion otherwise), its meaning is derived from

the meaning of implication. Namely, a proof of “&‘A"‘consists of

a construction which transforms any proof of A into a proof of a
contradiction and a proof of that fact.

A proof of "3xP (x)" where P is some property, consists of a
construction of some object (i.e., a construction which is an object
of the desired kind, e.g., a natural number - in arithmetic) and a
proof that this object has the property P. Therefore, a proof of
an existential statement must provide a specific object which has
the claimed property.

A proof of "¥xP (x)" consists of a construction a, which when
applied to any construction of an object a (in the range of the
variable x) yields a proof of P(a), and a proof that o does indeed
have this property. This second part of nyxP (x)" was also sometimes
neglected as in the case of implication but it is necessary for the
same reason. For example, if P is a decidable property of natural
numEers and if an intuitionistically unacceptable classical proof of
yxP (x) existed, it would be clear classically that a method o

(intuitionistically acceptable) exists which when applied to any
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natural number n, yields a proof (again intuitionistically acceptable)
of P (n). At that moment, however, there would be no proof
(intuitionistically) that o will indeed do that whenever applied to
a natural number.

It is clear from the explanations given above that the meanings
of logical connectives on intuitionistic interpretation are very
different from their meanings on classical interpretation and that,
therefore, the principles of logic cannot be the same. From a
mathematical point of view, however, those explanations must be
regarded as vague and unclear. As we saw‘before, logicism and formalism
suffered serious setbacks and-as a consequence it would be hard (if not
jmpossible) to argue for the original position of either of them.
Intuitionism is still a viable philosophical position but it is not
free from problems. One line of argument against it is that the
intuitionist interpretation of mathematical Tanguage is so vague that
it is not amenable to a rigorous analysis by mathematical means and
that, unlike logicism and formalism, it could not possibly have been
rejected by mathematical arguments. Another type of problem is
epistemological. Unless a solipsist position is taken, it is hard to
see how intuitionism could escape epistemological questions similar
to those which pose some of the hardest problems for Platonist position.
Name]y,.how do we arrive at our knowledge about mental constructions,
in particular, other pecople's constructions? It can be argued that
the problematic notion of the intuitive grasp of properties of an

abstract object {existing in some outside realm) is replaced with a



not significantly less problematic notion of the intuitive grasp of
properties of mental constructions,while baying the price of
replacing a simple and clear theory of meaning with an undoubtedly
complicated and vague one. The seriousness of this kind of objection
depends on the future development of intuitionism. Intuitionism
could suffer serious damage from such objections if it got into a
position (not unlike that position into which Togicism arrived with
the theory of types) where the further development of intuitionistic
mathematics would require the acceptance of some new principles whose
nature would be such that their acceptancé'wou1d render the notion of
self-evidence obscure.

Our aim here is neither to attack intuitijonism nor, even less,
to defend it so we shall leave this argument here. In fact, the type
of research to which the present work belongs makes most sense if
neither position is adopted as the only true approach. This type of
research can be described as a classically conceived and executed
- semantical analysis of intuitionistic formal systems. Technically,
the only connection with intuitionism is that the formal systems
which are investigated are usually regarded as depicting the formal
properties of parts of intuitionistic.mathematics. Otherwise, the
formal systems are defined, the models constructed and their properties
and interrelations investigated by classical methods without much
(if any) regard for intuitionistic acceptability. Such an enterprise
could seem somewhat paradoxical in light of some, not uncommon (mis)
conceptions about the intuitionist program and its relations to other

schools, so some clarifications might be in place.
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There are in this approach, which we could tentati?ely dub
“classical model theory for formalized intuitionism", two instances
of what might be considered a "contradictio in adjecto":

(1) “"formalized intuitjonism"

(2) "classical models for intuitionistic theorijes"

This latter apparent contradiction has two aspects:

(a) from an intuitionistic point of view, classical methods are
unacceptable and meaningless and so is, therefore, this kind of
model theory.

(b) from a classical point of view, intuitionism is irrelevant,
and so are, consequently, its formal systems and theijr model theory.
We shall address now each of these quegtions.

(1) It is known that Brouwer was strongly opposed to formalism
and formalization. But this does not have to be construed as a stand
against any formal methods, but rather as against the uncritical
belief that mathematics is identical to the set of theorems of some
formal system. Therefore, it is not that formal systems are unacceptable
as such, but only that they do not convey the whole content of
(intuitionistic) mathematics. It is debatable if such view can be
ascribed to Brouwer, but it was certainly shared by many of his
followers, notably Heyting. But even if formal systems are unsatis-
factory, they are necessary for the purposes of communication.

Further justification for formal systems inside intuitionism was
drawn from their success. Namely, even if it is granted that formal

systems are an impoverished version of mathematical reasoning, it is
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indisputable that Heyting's predicate calculus is a clear and simple
account of all logical principles which are at present actually used
in intuitionistic mathematics. It also turned out that the immensely
complicated work of Brouwer can be formally derived in this calculus
from just a few of his basic principles. Thus, we can say that if
formalism is still an evil for the intuitionist, it has become a
necessary one and it would be hard to find intuitionists who would
not recognize its role and its indispensability for settling some
issues, especially technically complicated ones.

As for (2), let us first note that the situation has changed
considerably since the time when the three schools waged the fierce
battle over which account is the only true and correct one. The
relations among the adherents of different philosophical positions
are today (with the exception of a few doctrinaire ultraintuitionist
and constructivist groups) more that of peaceful coexistence. It is
generally considered that none of the proposed solutions is completely
satisfactory and the attitude of the majority is that of interest in
what other approaches might contribute to the common cause.

(a) As we mentioned before, the explanations of intuitionistic
meanings of logical connectives cannot be taken as satisfactory from
a mathematical point of view. Their vagueness becomes even more of a
probtem in 1ight of the obvious impredicativity of the implication
and universal quantifier. In order to recognize a proof of A - B,
we must refer to the totality of all proofs of A and similarly, to

recognize a proof of ¥xP (x) we must refer to the totality of



-12-

all (constructions of) objects in the range of the varijable x.

If we have in mind that the given explanations of meanings of
connectives do not in any way prescribe what types of constructions
could be allowed and that thus, the totality of all proofs of A
includes not only those that are not, as yet, constructed but also
those proofs which might be based on principles we now know nothing
of, it becomes clear that the problem of impredicativity cannot be
easily dismissed.

These problems could be resolved by constructing a rigorous
semantical theory, and considerable efforts have been made to provide
one by intuitionistic methods, but as yet, without a completely
satisfactory result. Therefore, it seéms quite reasonable, that in
the absence of intuitionistic semantics, a classical semantics might
be of some help. As it turned out, significant results about
intuitionistic formal systems were proved using a classical approach.
Such proofs are not in genera] acceptable for an intuitionist, but
even for him they may have some value in the sense that they can
indicate what cannot be proved and what possibly could. Furthermore,
some proofs obtained, for example, using Kripke models, can be directly
transformed into intuitionistically meaningful proofs (cf. Smorynski
[35] p..337). An additional objection against classical semantics
is that it does not provide the intended interpretation of logical
connectives. But even if (or when) the precise mathematical expression
of the intended interpretation is obtained, it still might be useful

to study unintended ones, in much the same way as we find it useful
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to study nonstandard models (of Peano arithmetic, for example) in
the classical case. | |

(b) As we mentioned above, the intuitionist position is the
only one which is still viable and,therefore, in the absence of any
sound alternative, it cannot be lightly discarded as irrelevant.
Further, there is in traditional mathematics a significant and meaning-
ful distinction between constructive and nonconstructive proofs.
Although we do not need to accept intuitionistic philosophy to make
this distinction, the intuitionistic formal systems provide the
only precise and systematic (even if maybe too restrictive) account
of the notion of constructive propf. If such an account is taken as
important or useful, then the classical model theory of formalized
intuitionism makes full sense.

Another point is that even if intuitionistic philosophy is
rejected, the existence of intuitionistic mathematics cannot be denied.
In order to assess its value (importance) a classically trained mathe-
matician must try to understand it, a task which is made much easier
by the existence of classical model theory for intuitionistic systems.

It is also interesting that the various equivalent formulations
of classical semantics for formalized intuitionism involve structures
which arise naturally in classical mathematics and are interesting
on their own: topological spaces, and especially--Baire space,
Heyting algebra {which occur also naturally in the algebraic theory
of varieties), mode! theoretic forcing, sheaves, topoi. For example,

the interest in intuitionistic logic was recently revived among some
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mathematicians by the discovery that the so-called "internal-logic"”
in a topos is intuitionistic.

The classical model theory for intuitionistic formal systems
started developing very early, pratically immediately after Heyting's
construction of intuitionistic predicate calculus. Two, in a sense
conflicting tendencies were present in this development. One is to
construct a semantics that could be accepted by intuitionists. The
best result in this direction are the Beth trees, but they still did
not achieve that goal. Namely, it turned out that for the proof of
the completeness theorem, it is necessary to assume so-called Markov's
principle, which is generally regarded by intuitionists as unacceptable.
The other tendency is to provide a semaﬁtics as simple as possible
that could make the intuitionistic meanings of logical connectives
clearer to non-intuitionists. 1In this direction, the best achievement
are Kripke models, especially for the case of predicate calculus and
first order theories.v On the one hand, they are easy to work with
and in them most of the technical matters are more transparent than
in the other types of models. On the other hand, the intuitive
interpretation of Kripke structures as the growing (in time) body of
mathematical knowledge provides to a non-intuitionist the simplest
(if not completely accurate) insight into the motivations (principles)
which 1ie behind the intuitionistic interpretation of mathematical
language.

It can be said that most of the research in this field was

motivated by a desire to solve one or another particular problem of
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different intuitionistic formal systems. Consequently, the results

are often isolated with gaps in knowledge in between. While on one
subject, fairly sophisticated results might have been obtained, on
another similar topic, the most basic facts might not be known. About
the only general model theoretic results known thus far are completeness,
compactness, Craig's interpolation and Skolem-Lbwenheim theorems and

a few results about ultraproducts. It was our aim to try to contribute
to more systematic development of general model theory for intuitionistic
first order logic. In light of the above remarks it seemed natural to
choose Kripke models as the principal object of our study. We shall
however use other structures, notably sgturated theories, whenever

that can be advantageous.

A few words at the end about technical conventions. The work is
divided into chapters and chapters into sections. Definitions, theorems
and other formal statements are consecutively numbered within each
section. By "Theorem II 2.1." we shall refer to Theorem 1 of the
Section 2. of Chapter 1I. When referring to Theorems (and other
formal statements) in the same chapter or section, we omit the number
for the chapter and section repsectively. |

The first chapter is a collection of known results and definitions
and our contribution, aside from the manner of presentation and arrange-
ment, is minimal. The results in Chapter II and III are practically
all new (except Definitions III.1.1. and III1.2.1. and Theorem III.2.1.),
In our view, the principal contributions are Theorems II.1.];, 11.1.2.,

1T 2.1. I1.2.2., III.1.1., I11.2.2. and II1.2.4.



CHAPTER 1

1. Syntax

In this section we state the definitions and notational con-
ventions concerning the syntax of the first order intuitionistic
logic. For definiteness, we describe alsoa formal system of intui-
tionistic predicate logic (IPC). Intuitionistic logic was first
formalized by Heyting in 1930 [15]. The system given here is due
to Spector [36]. It was chosen because of its intuitive appeal
and convenience for model thearetic considerations.

The language of intuitionistic predicate calculus contains the
following six types of symbols: '

(i) a countable set of individual variables (denoted by

Xs ¥ Zy oue)s

(i) a countable set of individual constants (denoted by

a, b, ¢, ...), |

(iii) for every natural number n > 1, a‘countable set of
n-ary function symbols (denoted by fn, gn, ...s Or by
f, g, ..., if arity is evident),

(iv) for every natural number n2l, a countable set of n-ary
relation symbols (denoted by p", R", ..., or by P, Re v
if arity is evident),.

(v) Tlogical connectives: « (the propositional constant

for absurdity), v, &, -, 3, ¥,

-16-
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vi) auxiliary symbols: parentheses (and) and the comma , .

Terms, atomic formulas and formulas are defined as usual. It
should be noted that the definition of atomic formulas includes O.
Formulas will be denoted by lower case Greek letters ¢, ¢, ...,
terms by s, t, ..., and sets of formulas by capital Greek letters
Ts A5 ... A sentence is a formula without free variables.

The axioms are given by the following schemata:

1) ¢+
2) ¢&v~>¢
3) ¢& >y
4) ¢+ vy
5) v>o¢ Vv
6) O > ¢

7) ¥ x¢ (x) ¢ (t)

8) ¢ (t) »3x¢ (x)

Derivation rules are given by the following schemata:
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P: ¢&¢>x P: o> (p-=>x)
4 o+ (v > x) 5 o & ¥ > X
Q: ¥ -4 (x) Q ¢ (x) ~y

1 P > ¥ x ¢ (x) 2 3x ¢ (x) +y

It is assumed in axioms 7) and 8) that t is a term free for
x in ¢ and in rules Q and Q that x is not a free variable of .

I+ ¢ means thlt the %ormu]a ¢ is a consequence of the set of
hypotheses T, in IPC. In that case the aﬁp]ication of the rules Q
and Q has to be restricted to formulas which do not depend on thl
hypothgses containing x free, i.e., Q and Q can be applied only
to formulas which have been derived flom r w?thout the use of hypo-
theses in which x is free. Since we are interested in sentences,
this kind of restriction has 1ittle effect, because any proof of
a sentence from hypotheses can be transformed into a proof satis-
fying that restriction (cf. Prawitz [30], 1.5 3.). ¥ ¢ means of
course that ¢ is a theorem of IPC. T is consistent if I'fD . A
theory is a consistent set of sentences. Besides usual conventions
about abbreviations, we introduce also ~ ¢ as an abbreviation for
>0, and ¢ <> P as an abbreviation for (¢ > ¢ ) & (v ~¢ ).

We list now some characteristic properties of IPC.

1) F ¢ vy impiies + ¢ or + ¥

2) Ifr a3 x ¢(x) and all individual constants occurring

in ¢ are among a , ..., a then ¢ (a) for some a e{a », ..., a }.
1 n 1 n
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If ¢ has no individual constants, then + ¢ (a) for arbitrary a,
and also F ¥ x ¢ (x).

3) The following classical theorems do not hold in IPC:
¢V
v op >
(6 >9) » (vovy)
v (o anvy) > (6> y)
(verny) > (v~0)
N CERTEE S CR )
(6> (wvx)) =+ (¢->9)v(¢~>x)
v X ¢ (x)>ax ¢ (x)
¥ x (¢ (x) vp) = ¥ x¢(x)v ¢ (x not free in ¢ )
(¢ »axyp (x)) >3 x (¢ »p(x)) (x not free in ¢)

etc.
We gjve later simple counter-examples for some of those

formulas wusing Kripke models. It should be noted that if we reverse
the major implication sign, each of them (except, of course, the first

one) becomes a theorem of IPC.
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A countable (intuitionistic) first order language L is defined
exactly as in the classical case, except that all logical connectives
are primitive symbols. Therefore, it makes sense to speak about a
classical relational structure as a structure for L. All it means
is that the structure in question is equipped with exactly the required
distinguished elements, functions and relations. Consequently, we
shall say that a sentence of L is satisfied in a classical structure
for L if it is satisfied under classical interpretation of logical
connectives (e.g., P -~ Q, for P and Q atomic, is satisfied iff either

P is not satisfied or Q is satisfied).

2. Kripke structures

Kripke structufes were, of course, defined by Saul Kripke in
1965 [23]. Structures of a similar kind were designed by Beth [23, [3].
Since they are both dismissed by intuitionists as not capturing the
intended meanings of logical connectives, we chose to consider only
Kripke structures as more transparent and easier to work with. The
present formulation differs inessentially from the original. The
di fferences are mostly the result of an effort to treat Kripke
structures, as much as possible, as a generalization of classical
model theory, and to use, consequently, standard terminology and
notation whenever it is possible, highlighting thus the important
di fferences. We note in passing that there is a modification of
Kripke models which is regarded as acceptable by some intuitionists

(though it is regarded as controversial by others).



-21-

Definition 1:

Let T = <T, 0, < > be a partially ordered set with the minimal
element 0, and for each t ¢ T 1et. 2 be a classical structure for L.
t
The structure <T ;9 : t e T > is called a Kripke structure if the
t

following holds for every s <t in T :

(i) ASSE At (AS is the universe of the structure 9[5)
(i) if ¢ is an individual constant from L then ¢> = ct (by c*
we mean the interpretation of ¢ in le)
(iii) if f is an n-ary function symbol from L and

a ... d 5 beA_ then
n S

-l’
f (a., ..., a ) =b implies £t (a,, ..., a ) =b
] n 1 n
(iv) 1if R is an n-ary relation symbol from L then

ng (As)n N Rt

Classical relational structures shall be denoted by ¢ .B , (¢ ,
. possibly with subscripts, and Kripke structures by ¢, € .M, ....
If 235 and 23t are such that (i)-{iv) hold we say that gBS is a positive
substructure of 23t and write 235 Ef'ﬁst. Elements of T are called

nodes and o is called the base node. ¥k is the classical satisfaction

relation.

Remark: We could have defined Kripke structures more generally by
requiring, for s < t, only that ggs is homomorphfca]]y embedded in-QBt.
When discussing theories with undecidable equality (for example, in
analysis, the equality of real numbers is undecidable, i.e., it is

possible that t i x = y and ti¥ ~ x = y) the definition with homomorphic
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embeddings would enable us to still use normal models, i.e.,

models in which equality is interpreted as identity. Since we do

not consider the theories with undecidable equality, this generalization
would not provide any advantage in the present_setting, while the
notation would be considerably more complicated.

We define now inductively a relation, called forcing, between
elements of T and sentences of LUta% At' If t € Tand ¢ is a sentence
of LU At we say that t forces ¢, in symbols ti- ¢, if and only if one
of the following holds:

(0) ¢ is atomic and i%t k¢ ( & is the classical satisfaction
relation, and it is assumed that if a ¢ At appears in ¢, it
is interpreted as itself)

(1) ¢is v & x and ti- p and ti- x

(2) ¢ is ¢y vy and {twy or  tiy)

(3) ¢ is &x ¢y (x) and for some a e Ay, ti- ¥ (a)

(8) ¢ is v > x and for every s > t in T, either
sl ¢ or sli-x

(5) ¢ is ¥ x ¢ (x) and for every s > t and every a e As’

s w- ¢ (a)

Remark: By definition, 0O is an atomic formula, so it is treated
in{0). Since ~ ¢ 1is defined as ¢ +0O , as a consequence of 0) and
@) we have:

(6) tuw ~ ¢ iff for every s > t, sI¥ ¢.

If ¢ is a sentence of L {i.e., a formula without free variables),
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we say that ¢ holds in ®=<T; 1Lt :teT>iff 0I- ¢, or equiv-
alently if for every t ¢ T, t I~ ¢. ® is a model of I iff each
sentence from T holds in .

If ¢ is a formula of L, when we write ¢(x], cens xn), it will

be assumed that all the free variables of ¢ are among X X

.l" es e no

If 815 +ees @ € At then t I+ ¢ [a], e an] means that the sentence

b (a]; Cees an) of LLJAt, obtained from ¢ by substituting s wees @

for x .» X, respectively, is forced by t. If 0 ¢[a], cees an]

-l, )
we say that the elements aj.-.5 @ satisfy (or realize) the formula ¢.

n
As an illustration of how effective and convenienta tool Kripke
structures are, we describe now counter-e*ample models for some of
the classical theorems, quoted in Section 1, which do not hold in IPC.
To make things more transparent, models will be indicated by diagrams.
Partial order of a model is represented by a graph, the Tower most
vertex corresponding to the base node. To the right of each vertex
we write some of the formulas which are assumed to be forced by the
corresponding node of the model, and on the left, where necessary,
the universe of the structure at that node. In order to simplify
the diagrams we sometimes do not exhibit a fact which can be
readily derived from what is shown in the picture (for example, we
write i 1nstead of I ¢ )
° 'y | ¢

1) ¢ v~ ¢. A simple counter-example model is defined by
T=140,1},0<1,0 ¥ ¢, 1 1= ¢. This is represented

by the following diagram: I ¢
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The same model can serve also as a counter-example for ~ ~ ¢ > ¢

(because 0 - ~ v ¢)

2) (¢>9 ) > (vovy ). The model is given by I ¢s ¥

Obviously, 0 w ¢y and 0 ¥ ~ ¢ but O W ¢ >y .

3) (o &~y ) - (6 >y). The model is given by Iw

_ ¢
Clearly 0 mf ~y and1 W~y , 500 I~ (¢ &~ y) but
0 +¢ and 0 Wy so 0 W ¢~ .

4) (6> (wvx))> (6>9)v(e~>v ). Inthis casea

counter-example model cannot be linear, so the simplest model is

represented by: q\\i:vi///p ¢s X

Here, 0 i ¢ - ¢ because there is a node above it which forces ¢
and does not force ¢, and similarly 0 W ¢ - x.

5) (Y xo (x)>9p )>ax (¢ (x)> ¢ ) (xnot free iny ).

The model is described by: {a, b} I ¢ (a)
{a} ©
Here 0 W ¥ x ¢ (x) and 1 1 ¥ x ¢ (x) so trivially 0 1+ ¥ x¢ (x) » ¢,

but 1 1+ ¢ (a)and 1 W eso0 W ax (e (x)-> ¢).

6) (¢ » 3 xy (X)) +>3x (¢ >y (x)) (x not free in ¢).
{a, b} I $> ¥ {b)

{a}
Obviously, 0 i ¢ » 3 x & (x), but since AO = {a}

0 ¥ 3 x (¢~ (x))
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7) v ¥x ¢ (x) >3 x~v¢ (x). Let T =N, with the standard

ordering and let An = {0,1, ..., n} and for m <n let n - ¢ (m).

This can be represented by:

{0, 1, ...,n} ] o(n-1)

{0, 1, 2} o(1)
{0, 1} $(0)
{0} °

Clearly for every n, n w ¢ (n), son ¥ ¥ x ¢ (x) and
0 ¥ x ¢ (X). On the other hand, obviously 0 1 3 x ~ ¢(x),
because 1 1= ¢(0). In fact, for every n, n ¥ 4 x ~ ¢ (x) so this

model is also a model for ¥ x ¢ (x) &~ 3 x v ¢ (x), which is

classically false. Furthermore, for every n, n ¥ ¢ (n)v ~ ¢ (n),
son ¥ x (¢(x) vao (x))and thus 0 1 ~ ¥ x (¢ (x) v v (x)).
Therefore, the same model provides a counter-example for

v ¥ x (¢ (x) v (x)), which demonstrates that the double negation

of a classical theorem does not have to be an intuitionistic theorem,
if it involves a universal gquantifier. (Note that the first two
nodes of the given model suffice as a counter-example for

v¥ x ¢ (x) >3 x4 (x). The infinite model is necessary, however,
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for the other two formulas.)

We list now a few major facts about Kripke models. T ? ¢ means
that every Kripke model of I is a model of ¢ ("every model" here, of
course, means every one which is a structure for the language of T and

9).

Theorem 1 (Soundness)

If - ¢ then F ¢
K

Proof: Straightforward verification of axioms and rules of inference.

Theorem 2
If ¢ is forced by a node of a Kripke structure, it is also
forced by every node above (i.e., s i+ ¢ (a], cens an) for
a1 ... € AS and s < t implies t W ¢ (a], cees an).
Proof: For atomic formulas, theorem holds by definition. For other

formulas, it is proved by easy induction on complexity of ¢.

Definition 2 (Truncation)

If ® = <752y : teT> isa Kripke structure and s e T,
we define a new Kripke structure R, =<T (3 QLt tte TS> s

called truncation of §. at s, by defining TS ={te T:s <t} and

T s T <TS, s, < >. The structures QLt, for t ¢ Ts’ are the same.

Forcing relation is defined as usual, and denoted by I-¢ .
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Theorem 3

If S@s js a truncation of § at s, t ¢ Ts and 1, +..s A, € At’

then t 1+ ¢ (a], cens an) ifft kg ¢ (a], cens an).

Proof: Inspection of the definition of forcing reveals that
t 1~ ¢ depends in each case only on the classical structure at that
node and/or nodes above it. Therefore, the theorem follows by easy

induction on the complexity of ¢.
Theorem 4 (Strong completeness)

T ¢ iff TkE ¢
K

Proof: One direction is an easy consequence of soundness Theorem
and Deduction Theorem for IPC. The proof of the difficult direction

we postpone until the end of Section 4.

3. Heyting algebras

The first characteristic model of intuitionistic propositional
calculus was constructed by Jaskowski in 1936 in the form of an
infinite matrix [17]. A more standard model, in the form of the
lattice of open setsofatopological space with appropriately defined
operation for -, was developed by Stone [37] and Tarski [38] as a
generalization of the power-set {i.e., Boolean algebra) semantics
of the classical propositional calculus. The same type of model

was later formuiated in algebraic terms (i.e., in terms of closure
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algebras) by McKinsey and Tarski ([26], [27] and [287).Heyting algebras
(or pseudo-Boolean algebras as they are also called) arise in the dual
of closure algebras (i.e., in algebras with interior instead of closure
operation). They are usually preferred to the dual formulation
(somefimes calted Brouwerian lattices) because they better exhibit

some properties of intuitionistic logic.

Definition 1.

An algebraic structure <H, v, &, », 0, 1,> is called a Heyting
algebra if <H, v, & 0, 1> is a distributive lattice with the least
element O and the greatest element 1, and the binary operation -
satisfies a s brc iff a &b < c.

In fact, the theory of Heyting aigebras is an equational thedry.
One set of axioms consists in the axioms for lattices expressed in
terms of v, &, O and 1, e.g., x & 1 = x, X & X 2 X, XxX&y=yé&x,

x & (y & z)

(x & y) & z, plus the same axioms for v, plus

x & (y vx)=xand xv (y & x) = x together with the following

four equations for - :

X=>x=1

x&(x~>y)=x8&y
y&(x>y)=y

x> (y &z)=(x~»>y)&(x>2z)

While in the lattice axioms v and & are treated equally, the axioms

for » exhibit the lack of connection between > and v in Heyting algebras.
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This feature reflects the difficulties in dealing with formulas
which involve implication and disjunction in intuitionistic formal
systems.

The Heyting algebra approach is very convenient for
propositional logic and is analogous to the Boo]éan algebra approach
in the classical case. Mostowski's extension of the approach to
predicate logic [29] is related to Boolean-valued models. Scott
developed a similar approach (only based on topology instead of on
algebra) for intuitionistic analysis. Today algebraic and topo-
logical considerations of intuitionistic formal systems are often
presented in the more general setting of sheaves.

Interesting and for our purpose the most important, examples of
Heyting algebras are Lindenbaum algebras of intuitionistic formal
systems. We consider ffrst the propositional case. Let P be a
countable set of propositional letters and let S be the set of all
formulas forhed, in the usual way, from P and connectives v, & and -
(we assume pe P). We denote elements of S by ¢, ¢, .... For
¢S Tet |¢] = {peS: k¢« ) (here, of course, |- denotes
derivability in intuitionistic propositional calculus which is
obtained from IPC by deleting axioms 7) and 8) and rules Q1 and Q2).
Let H) = { || : ¢ € S}. Then it is easy to verify that Hy with

operations:

ol v [wl = Jo vyl
ol & el = o &yl
ol = vl = {¢ + v
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and distinguished elements 0 = [0 | and 1 = | o + o], constitutes

a Heyting algebra (we use intentionally the same symbols for
operations of a Heyting algebra and logical connectives because this
both stresses the similarity and improves readability while the
possibility of misunderstanding is minimal). 1In fact, Hp is a free
Heyting algebra on the set of generators {|p| : p e P}, as can be
seen from the following argument. Let H be an arbitrary Heyting
algebra and h:P-+ H a valuation of propositional Tetters in H.

Then there exists a unique homomorphism h*_: Hp + H, defined by

b ( |p]) = h (p) for p e P, and by usual induction on complexity
for ¢ € S-P (e.g.s b (Jo & w|) =h" (Jo]) & h" (Ju] ), where
clearly the first & denotes the 1ogic$1 connective and the second &,
the operation in H). Obviosuly, the following diagram commutes

(where i : P » Hp (i(p) = |p] ) is the natural inclusion)

Due to this fact, it is enough to consider only Hp. Namely,
given a Heyting algebra H and a valuation h:P > H, what interests
us is only the subalgebra of H generated by the set {h{p) : p e P}.

This algebra is isomorphic to a quotient algebra of Hp obtained in
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N _
the following way. Let h : Hp > H be defined as before and let
- . *

F=1{]¢] ¢ Hp : h (|¢] ) =14} We can define now the quotient

algebra H, whose elements are |[¢]¢ = {]y] ¢ Hp : for some a ¢ F,
/
F

lo] &a=|p| &at= {|y| : |6 = o] e F}=1{]y] n (e < v|) = 11,
and operations are those induced by Hp (e.q., |¢|F & |w[F =

=| o] & [v] |f = ] ¢ & ¢|F). " If H' € H is the smallest
subalgebra of H containing the set {h (p) : p € P}, it is easy to

show that the function f, defined by f( |¢|F ) = h (] ¢]), is an

isomorphism of Hp/ onto H'. Here F represents the set of formulas
F

which are valid in H under valuation h, in effect a propositional
theory, and Hp/ describes, in a sense, the ;onsequences of that
theory. This cgn be made c]eérer in the following way.

Let T ='{Ai : i e I} be the set of axioms of a propositional theory.
That theory is consistent if and only if the set T° ='{|Ail : iei}SEHp
has the finite intersection property. If this is the case, then the
set I'° can be extended to a proper filter F (i.e., F # Hp)‘ The
filter F corresponds to the deductive closure of T because I' + ¢ iff
|¢| ¢ F. Conversely, if a filter F in Hp is given, then it determines
a theory T = {¢ : |¢| ¢ F}. A theory is said to have disjunction
property if T ¢ vy implies T+ ¢ or T ¢. A filter F is prime
ifavbeF impliesa e For b e F. It follows immediately that a
filter F in Hp is prime if and only if the theory T = {¢ : [¢]| ¢ F}

has disjunction property.
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It is generally considered that an intuitionistic theory

should have disjunction property. Therefore, we work only with prime
filters. It is easy now to demonstrate the connection between
Kripke models and Heyting algebras. We note, first, that the
definition of Kripke structure for propositional language is obtained
from Definition 2.71. by replacing classical structure Q[t with a set
P, of propositional letters and replacing clauses (i) - (iv) by

(*) Pg S P, (fors s t)
and clause {o0) by

(**)t wp 1iffpe Py
Let F be the set of all prime filters ?n Hp, including the trivial
filter {1}. Note that ¢ is a theorem of intuitionistic propositional
calculus iff |¢|= 1. If we take the partially ordered set <F, {1}5>
and define P = {p ¢ P : |p| eF} for Fe F and p e P, we obtain a
Kripke model gp = <F, {1},€ > ; Pt FeF >. We call this
model canonical because it can be proved that {1} 1 ¢ iff ¢ is a
theorem of intuitionistic propositional calculus. The proof is
routine and is based on several standard facts about filters
(e.g., if |6 > ¢| # F then there exist F' ¢ F such that FC F' and
6] € F* and |¢]| ¢ F'). 1In addition, any propositional Kripke model
(for the same set of propositional letters P) can be embedded into

g{p in the following way.
Lemma 1.

For any propositional Kripke model & = <73 P, :teTs there
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exists an embedding e :T - F such that for every t £ T and formula ¢,

t - ¢ iff e (t) I~ ¢ (where n- is the forcing relation for the
e , e

model (<{e (t) : teT)h-e (0),S>; P 1 teT) ).

Proof: Observe that for any t, {¢: t Ir ¢} is a deductively closed
theory with disjunction property. Therefore, the corresponding
filter in Hp, Fy = {|¢] : t W ¢}, is prime. If we define now

e (t) = F,, we see that [pl e F, iff pe P, iff F, i p. Standard

t e

induction on complexity of ¢ shows t - ¢ iff |e] e F, iff F, o,
. e °

By the same method, starting from an arbitrary Heyting algebra H
and a valuation h : P + H, we can construct a Kripke model on the
p.o. set of prime filters of H, such that h (¢) = 1H iff 0 - 4.

Conversely, given a Kripke model R = <T; Pt :teT>, wecan
obtain a Heyting algebra H and a valuation h which makes exactly
those formulas valid which are forced by the base node. Let
H={UCST: selands <t implies t ¢ U} and for p e P, let
h(p) ={teT:t u p}. By Theorem 2.2. h (p) is an element of H
for every p € P. Operations v and & are defined as set-theoretic
union and intersection, constants are 1 =T and 0 = § and
U>V=U {WeH:UnWSV) It is easy to show by induction on the
complexity of ¢, that the vaiue of ¢ in H under valuation h is
{t :t 1~ ¢} and therefore ¢ is valid iff in §, 0 I+ ¢.

. Let L be a first order intuitionistic language. Assume, for

simplicity, that does not contain function symbols and let Rel be
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the set of all relation symbols and Ind the set of all jndividual
constants of L. We can define now the Lindenbaum algebra of sentences
of L. Let St be the set of all sentences of L,

6] = {p e St : = ¢ <>y} (now  means “theorem in IPC") and

H = {]¢] : ¢ e St}. The operations are defined the same way as in

propositional case. The only difference is that in addition to axioms

of Heyting algebra, two special infinitary conditions hold:

13 x ¢ (x)] sup {|¢ (c)] : ¢ e Ind} and

¥ x ¢ (x)]

inf {|¢ (c)| : c e Ind}.

The infinitary operations sup and inf are defined in the usual way
from the ordering <, which inturn is defined by x < y iff x &y =X
iff xvy=y orinthis case also by |[¢] < |v] iff F ¢ 9.
A11 the results mentioned above about the connection between
filters and theories also hold in this context. In addition, we

shall consider filters which have the property
13 x ¢ (x)] eF implies |¢ (c)]| e F.

Such filters are called existential. We shall show in the next
section how proper, prime, existential filters (ppef) in Hy

correspond to L -saturated theories.
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4., Saturated theories

Saturated (intuitionistic) theories were proposed as an
alternative semantics for intuitionistic first order logic by
Aczel [1]. They were also used by Fitting [5], Gabbay [9],
Thomason [39] and Smorynski [35] for proving various model-
theoretic results.

Let L be a countable first order intuitionistic language.
Since it is much easier to work with theories in which function
symbols are replaced by relations, we assume that L does not
contain any function symbols So let Rel be the.set of all
“relation symbols and Ind the countéb]e.set of all individual
constants. It will be convenient to consider Ind as partitioned
into disjoint countable sets Cn (h ew ). We shall speak in
this section oh]y about sentences of L.

We introduce now some new notation : Ind (¢) is the set of
individual constants occurring in ¢ and Ind (r) = U {Ind (¢) : ¢ er}.

Also, Tet Cn (r) =1{¢ : T r ¢ and Ind (4) € Ind (r)}.

Definition 1.

I is a saturated theory if and only if

i
—
~r

(i) 1 is deductively closed (i.e., Cn (T)
(ii) 1 is consistent (i.e., o # T)
(iii) T has the disjunction property
(i.e., o v v e Cn (r) implies ¢ ¢ Cn (r) or

veCn(r))
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(iv) T has the existential instantiation property
(i.e., if 3 x ¢ (x) e Cn (r) then ¢ (c) € Cn (r)

for some individual constant c).

If Ind (r) = C, we also say that ' is C-saturated.

It immediately follows from the definition of forcing and
Theorem 2.1. that the set of all sentences forced at a node of a
Kripke structure is saturated. The converse also holds, that is,
every saturated theory is the set of all sentences forced at a node
of a Kripke model. Let us first cite, without proofs, a few lemmas
from [1]. We can assume, without Toss of-genera]ity, that Ind (1) = Cy>
so that all extensions of I we talk about can be assumed to be in
the same language L (otherwise we could add to L a countable set

of new individual constants, paritioned as above, and speak only

about theories in the new language).

Lemma 1.
If T is a consistent set of sentences, Ind (¢) €Ind (r) and

I £ ¢ then there is a saturated extension A2 T such that ¢ £ A .

Lemma 2.
(a) If T is consistent, Ind (¢ ~ ) € Ind (r) and
Tt ¢ > ¢ then there is a saturated A 2T  such that
b ed and ¥ £ A
(b) If T is consistent, Ind (¥ x ¢(x))§§ Ind (r) and
I ¥ x ¢ (x) then there is a saturated A2T and ce Ind (A) such thatv

¢ (c)¢ A.
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As we said, all extension A mentioned in Lemma 1 and 2 can be
taken to be in L. To make things more transparent we can also

k
)] Cn for some k. If I is consistent, let
n=0

assume Ind (a)
k

S =1{a: rC€ A, A is saturated and Ind (A) = y C, for some k}.
n=0

It follows from Lemma 1.

Lemma 3.
I ¢ 1iff ¢ecA for every A ¢ SI‘ such that

Ind (¢) € Ind (a)

We can construct now a canonical Kripke model for a saturated
theory r. Note that, if r is saturated, then I e S, so<S_,T &>
is a paritally ordered set with the Teast element I'. For every
A e S, define AA = Ind (A) and for each n-ary relation symbol ReRel,

RA = {< Cys »evs Cp> R(c1, ...cn)e A}.  Thus we get a classical

structure ‘QJZ =< Ay (R :R ¢ Rel} D. It is easy to see that

M, = (<S, T, S W, 18 eS.)> is aKripke structure with a

countable universe at each node. It follows from Lemmas 1-3 that

for every Ae S, A i+ ¢ iff ¢ ¢ A. Therefore:

11,
Lemma 4.
I' is saturated if and only of there is a Kripke structure such

that r is the set of all sentences forced at its base node.

The proof of the Strong Compieteness Theorem (2.4.) follows from
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Lemmas 3. and 4. Namely, if T r ¢, for every Kripke model of T

the set of sentences forced at the base node will be some Ae Sr and

if Ind (¢) € Ind (a), by Lemma 3. ¢ ¢ A. Conversely, if T o,
again by Lemma 3, there exists A ¢ Sr such that Ind (¢) SInd (A) and
¢ # A, SO 2”3 will be a modél of T in which ¢ does not hold, so

Tt 6.
k

Remark: Strong Completeness Theorem and results equivalent to
Lemmas 1-4 were proved independently by Aczel [1], Fitting [5] and
Thomasonx[39]. Aczel's proof was more general in the sense that he
worked with arbitrary sets of individual constants and Kripke models
in which classical structures can be jndexed by a class instead of
set, but as he states it, this generalization does not have any major
significance. |

At the end, let us say a few words about the connection between
Kripke models, saturated theories and Heyting algebra.. Heyting
algebra semantics for IPC is defined by assigning to each n-ary
relation symbol a function mapping n-tuples of individuals (elements
of the fixed domain) into elements of a Heyting algebras. Since we
are interested only in sentences, we can restrict our attention to
the Lindenbaum algebra HL (defined at the end of Section 3).

It is straightforward that if T is a saturated theory (in L) then
F(r) = {]¢] ¢ HL : ¢ e T} is a proper, prime existential filter
(ppef) in H, , and conversely, if F is ppef in H then T(F) = {¢: |¢| € F}

js a saturated theory. Note that by this process we do not return
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to the same T because Ind (r (F(r))) = Ind (j.e., the set of all
individual constants of L). However, if St(C) = {¢ e St : Ind(¢) € C},

then:
Lemma 5.
r(F(r)) N st (Ind(r)) =r

Proof: By definition,

T(F(r)) = {¢ : |¢] e F(r) } = {¢ : for some ¢y e T, F ¢ < ¥},
Therefore -

r(F(r)) N st (Ind(r)) = {¢ : Ind (¢) € Ind (r) and for some

peT, - ¢ <Pl

But, Ind (¢) S Ind (T), y e T and |- ¢ <> ¢ implies ¢ ¢ Cn(r) = r,
which proves the Lemma.
The converse, F(r (F)) = F, for F a ppef in H » s obvious.

We shall need also the following Lemma.

Lemma 6.

Let F be a ppef in HL and let HL be the quotient algebra.
/
F

If filter D2 F is ppef in H then D' =‘{|¢|F e H l#] e D} s
F

ppef in HL . Conversely, if E' is a ppef in HL then
/ /¢

E={]¢] : |¢}F e E'} is a ppef in H, , containing F.
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Proof: The proof consists in a routine checking of definitions.
We show a few cases for illustration. If [¢]., lwlF e D', then
l¢], lwled', so [¢ & wle Dand [¢ & y[p e D'. By definition
|¢|F & |1p|F = |]e] & lxp||F = |¢ & wlF so it follows that
|¢]F& pr]Fe:D'.

Suppose |¢]. e D' and |¢IF g ]wlF. By definition of HL/ ,
F

this is equivalent to |¢ »¢| ¢ F. Since FS D it follows that
|6 > ¢] e D. But ]¢|F e D' implies |¢] € D, so || € D and
lvlg e D', etc. ‘

It is clear now that if I' is a saturated theory and F = F (T)
is the associated filter in HL’ the set of all proper, prime and
existential filters in HL/F corresponds to the set SP of all
saturated extensions of I, which in turn determines the canonical

Kripke model of r. Therefore, we could say that saturated theories

are, in a sense, a 1ink between Kripke models and Heyting algebras.



CHAPTER I1

1. Some Properties of Forcing

In this section we shall prove a few results about'the connection
between forcing, [F and (classical) satisfaction relation, |=.

A formula is called positive if it is built up from atomic
formulas using only v, & and 3. Let P = {¢:¢ is positive}. A trivial
inspection of clauses (0)-(3) of the definition of fofcing yields
Lemma 1.

Let 8-= <T; B, :teT> be a Kripke structure, teT and ¢eP. Then:

() t o if B, F o

(i1) if Y, [¢ then for every s > t, %S E 9.

(iii) if B, ¥4 then for every s < t, B, B 6.

Definition 1.

Let So = P and if Sn is already defined, let Sn+1 be the smallest
set of formulas satisfying:

(1) Sn < Sn+1

(2) if 4, weSn then (v¢ - w)eSn+]

(3) if 4, weSn then ~ g, v ¥ x ~ ¢ and ~(¢ + v ¢) are in Snﬂ

(4) if ¢, veS, then (6 &v)s (¢ vy)and Bxp are in S+
Finally, let Sw = U Sn

New

Theorem 1.

If(p(x], cess xn) is in S then for any Kripke structure

K= <T; QLt:tsT>, any teT and any Bys eons aneAt

-47-
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WU, Foolags ...n a ] implies tl-[ap -.s a ]
Proof: ¢ is in Sw just in case it is in Sn’ for some n. So we
prove, by induction, that for every n, the theorem holds for all
formulas from Sn. Since So = P, the theorem holds for So’ by
Lemma 1. Suppose that it holds for Sn and let ¢€Sn+1 - Sn
(without loss of generality, we shall suppress the free variables
in ¢). There are seven cases.

(i) ¢ is (~ ¥ >x), where y and x are in S . Then QQ’k b
means %, [ ¥ Vv x» so either % F vor %, F x- By induction
hypothesis then t [Fwor t |F x. If t |} v, for every s > t, s [F ay,
If t |F x» for every s > t, s |k x., In either case it follows that
t kv x.

(i1) ¢ is =~ ayp, for some yeS . QLtIF ¢ implies then ﬂﬁ:k @,
so by induction hypothesis t|} yand consequently t IF oy

(iii) ¢ is ~ ¥ x ~y(x), for some yeS - QLt E ¢ implies
ﬂbt = 8x y(x) so there is an aeAt such that 2Lt = ylal. By
jnduction hypothesis then t |} ¥[a]. It follows that t |k~ ayplal
and t |[Fa x v p(x) sot [Fr¥xay (x).

(iv) ¢ is ~(p > ~ x)» where y, xeS - ﬂLtf= ¢ implies U F v & x»
so by induction hypothesis t | v & x. Since (y & x) >y > ay)
is a theorem, it follows that t |} ¢-.

The other three cases, when ¢ 1S ¢ & x, ¢ V x Or 3 X ¢, are

easily proved. in a similar fashion.

Let S be the set of all formulas [from L) which are classically
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equivalent to, and intuitionistically implied by, a formula from S ,
w

i.e., S = {¢: for some ¢gsw, }E p <> ¢ and |y > ¢ }.

Corollary 1.
If ¢(x], cees xn) is in S then
A, F [ays ..o a ] dmplies t |- ¢lays ..o a ]
Proof: Suppose that 2%f=¢ and let wsSm be such that 'E y «> ¢ and
F yv-> ¢. Then QLtf= y and by Theorem 1, t |} ¢ so tF ¢.

Definition 3.

Let R0 = PU{ ~ ¢:4eS} and if Rn is already defined let Rn+1
be the smallest set of formulas satisfying:
(1) Rn = Rn+1 .
(2) if ¢eS and peR_ then (¢'+w)€Rn+1
(3) if ¢, veR, then ¥ x ¢, 3 x ¢5 (¢ v y) and (¢ & y) are in R 41

Let Rw = U Rn

New

Theorem 2.

If ¢(x1, cees xn) is in Rw then for any ® = <T; th:th>,
any teT and any Aqs s aneAt

t |k olaps -.os @] implies 2% Folaps .05 a ]
Proof: by induction. Suppose ¢ is in R0 and t 1r ¢. If ¢eP,
lbtf= o by Lemma 1. If not, there is a formula yeS such that ¢ is
~ y. Then t |f v and by Corcllary 1. 14% ¥ y» so % F ~ y. Suppose
now that the theorem holds for ¢e R and let ¢eR 4 - R and t |- ¢.
There are five cases:

(i) ¢ is ¢ -y, whers ¢S and xeR . Now t [Fv > x implies that

t |¥port]kyx. Ift|¥y, by Corollary 1. aLt]? p and if t]} x,
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by induction hypothesis Qlt E x. In either case Qlt}= Y > X.
Other cases, when ¢ is ¥ x v, 3 X ¥ (p v x) or (p & x) are

trivial.

Definition 5.

Let R = {¢: there is a formula yeR such that [E ¢ < ¢ and

oo >yl

Corollary 2.
If ¢cR then t |} ¢ implies m%k= $.

2. Omitting Types Theorem

Some explanation is due here of what is meant by “omitting
types theorem". Since classically equivalent formulas are not
necessarily intuitionistically equivalent, different (equivalent)
formulations of the classical theorem may appear here as candidates
for different theorems. In the case of omitting types theorem we
start with a consistent theory I''and a set of formulas. I = {o(x):o
has at most x free }, in the same language. .The theorem states
that if T Tocally omits £ then it has a model omitting =. Now,
there are at least four, classically equivalent, formulations of
the "locally omitting" condition:

for every sentence 3 x ¢(x) in the same language as T and

consistent with r, there is a formula o(x)eX such that

(i) r is consistent with 3 x (¢$.&~0)



-45-
(ii) T s consistent with 3 x ~(¢ ~ o)

(iii) T 1is consistent with N x (¢~ o)
(iv) r f# ¥ x (4 > o)

Intuitionistically, (i) is equivalent to (ii), (ii) implies (iii)

and (iii) implies (iv), but in general case none of the reverse
jmplications holds, as the simple counter-examples will show. Let us
see first, what each of (i) through (iv) means in terms of Kripke

structures.

(i) There is a model @ of r with an element aer (the universe

at the base node) such that 0 - ¢[a]; Furthermore, for every teT,

t 1 ofa].

(ii) There is a model  &of I with an element aer such that every

node has a node above it which forces ¢[a] and does not force o[a].

(ii1) There is a model ® of T such that for every node t, there

is a node s > t and an element agA_ such that s 1+ ¢[a] and s ¥ o[al.

(iv) There is a model of T and a node t in it and an element

a€At such that t  ¢[a] and t * ofa].

Ax (6 &) >3 x(@>o)and 3 x(¢>0) >~ ¥x (¢>0) are
theorems and obviously ¥ x {¢ > o) cannot hold in a model in which
~¥ x (¢ > o) holds. Although 3 x ~{¢ » o) >~ 3 x(¢ &) is not a

theorem, (ii) implies (i) because from the model whose existence
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was assumed in (ii), we can obtain, by truncation, a model for

TY {3 x (¢ & ~a)}. Namely, if t, is such that t, I+ ¢[al and

tolv ¢la] then clearly tolk na[a], so Tet T' ='{ng:tog§} and let

T - <sT', t» 2> The model &' =<T'; RLS:SeT' > is the model
required in (i). To see that (iii) does not imply (ii), suppose
that T F ~3 x no(x). A model from (ii) must have, as we saw,

to - no[a] for some t, and a. But this means that 1:.0 = 3 X nvo(x),
which cannot happen in a model for I'. The following example shows
that ~3 x no(x) is consfstent with v» ¥ x(¢ > o). Let F=<N, 0, < >.
A, = {0.1, ..., n} and suppose n I~ o[m] for m < n and n 1~ ¢[m]
for every n, mew. Then for every new n i-¢[n] and nl¥ s[nl, so
n¥¥x(>o)andn 3 xao(x). Finally, (iv) does not

imply (iii), because a model in (iv) might have nodes which force

¥ x (¢ » o) (it is enough that r * W X (¢'+ a)).

Hence, we have three a]ternati?es for the antecedent of omitting
types theorem. As for the consequent, we should have at least the
following: there is a model of T in which no element of the universe
at the base node realizes X, i.e., for every aEAo there is o(x)eZl such
that 0 ¥ ofa]. This is in accord with the basic intuition about types
of elements and about models omitting types just in case they do not
contain elements of a certain kind, since the universe at the base
node is in a sense the principal domain of a Kripke model.

We shall prove now the following.

Theorem 1

Let L be a countable first order intuitionistic language
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with equality and let T be a consistent set of sentences in L and

v a set of formulas in L with at most one variable, x, free. Suppose
that for every sentence 3 x ¢(x) in L, consistent with T, there is

a formula o(x)er such that 3x(¢(x) & &o(x)) is consistent with T.
Then there exists a modé] of T in which no element of the universe

at the base node realizes %. Moreover, this model can be taken to
have a countable universe at each node and for each element a of

the universe. at the base node, there is o(x)eX such that ag[a]

holds in the model.

Proof: Llet C =‘{c0, c ...} be a countable set of individual

1°
constants not occurring in L and Tet L' = LUC. We shall prove the
theorem by extending r to an L'-saturated theory rw(i.e., T,
is saturated and Ind(rw) C L') with the property that for every
individual constant ¢ from L' there is a formula o(x)eX such that
ng(c)erw. Then canonical Kripke model obtained from SP=‘{A:rng
and Ao is (L'uC')-saturated for some countable set C' of individual
constants}.is the desired model.

Let E = {3 X ¢i(x)iiem and ¢, is in the language L'} and
D0 = {¢i v wiliaw and d5 V Uy is in the Tlanguage L'} be some
“enumerations of all existential and disjunctive, respectively,
sentences in L' and let r, = T- If Tps E, and D_ (new) are al-

ready defined, we proceed as follows depending on which of the

three cases applies:

Case 1: n = 3K

Let 3 x ¢(x) be the first sentence from E, such that
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T,k 3 x ¢(x) and let ¢ be the first constant from C not occurring
inT or¢. Set T 4q = rnu{ $(c)}. Enep = En-—{a x ¢(x)} and

D = Dn' We claim that To41 18 consistent if r, is . Suppose

n+l
not, i.e., T .4 FO . This means that for some ¢;» ...s ¢jern,
F (o(c) &‘¢] & ... & ¢j) >0 . Since ¢ occurs only in ¢, this
implies

F (3 x ¢(x) & 67 & --- & ¢j) >0 and b+ (¢I & ... & ¢j)" (3 x ¢(x)+0)
so T, is jnconsistent (because r, &3 Xx $(x)).

Case 2: n = 3k+1

Let ¢ v ¢ be the first sentence from Dn such that T, ke Vv ¥
If r, 1s consistent with ¢ let 41 = TV {$}. Otherwise let 4l =
rnlJ{¢}. In either case let Dn+1 = Dn';{¢ v y} and En+] = En’ Again,
we claim that T+ is consistent if T is. For suppose not. Then
rnLJ{¢} F 0O and rnL){¢} 0. By the same argument as above, we get
n

r, F ¢»0andr | y->0 and consequently r (¢ vy)->o » s0O

rh would be inconsistent.

Case 3: n = 3K+2

Thus far we have constructed rn = rLl{¢], cees ¢n }. Let all

jndividual constants from C occurring in T, be among C> Cip2 =o oo

Cim (we may assume k # 45 ---» k # im). Let ¢(ck, Ciqs =+» Cim) =
9 & ... & ¢ and if x, Xys eees Xg are individual variables not

. . 7 + {y -
occurring in ¢{c;s Ciqs ---s Cim) Tet ¢{x) =3 X ] -0 3 X%y o (X,

Xqs oen xm). Now 3 x &{x) is a sentence in L and it is consistent
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with T so there is a formula o(x)eZ such that 3 x(¢(x) & vo(x)) is
consistent with r. letT ., = rnU{m q(ck)}, Ensl = E, and D, = D, -
If L was consistent, rn+] js also. Otherwise, we would have

r (w] & ... & ¥ & ¢(ck, Ciys «ees Cim) & mo(ck)}+o for some

Yo veeo ¢jer. Since none of C> 17 oo Cim occurs in ¢, ..o

wj, this implies
SR U2 TP B2 &3 x (6(x) & va(x) ))»o andl+ 3 x ($(x) & no(x))> 0.

As we assumed that‘rn is consistent and that T is consistent with
3 x (¢{x) & no(x)), this is a contradiction.

Finally, let T = AZLP". To prove thaﬁ r, is L'-saturated
we have to show the following four facts:

(1) Cn(rw) =T, Suppose T+ ¢ and ¢ is a sentence in L!;
r,* ¢ iff rn + ¢ for some new. But T + ¢ implies Ty F oV o
so for some 3, .4 >N ¢ V ¢ will be the first consequence of

T3K+] in the Tist Dg 44 and Iy .» = r3n+]L){¢}, 1] ¢sr¢.

(2) T, is consistent, i.e., r, ¥ o . For supposer -+0O
Then T, F o for some new, but this is impossible since the
construction was performed in such a way that r_ is consistent,

provided r is consistent and "Jocally omits" x.

(3) If ¢ v vel then ¢er Or yeT . ¢ V yel means that
for some new> ¢ Vy &l - Then for some 3k+1, ¢ v yp is the first
consequence of T3+ in the list ng+1 and consequently either

Tagsz = Tt U 103 07 Tgup = Tgy VB
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(4) If 3 x ¢(x)srw then <1>(c)eI‘Lu for some cel'. As before,
3 x ¢(x)srw means 3 X ¢(x)ern for some new and so for some 3k,

3 x ¢(x) is the first consequence of Iy in the 1ist E Then

k 3k”
for some ceC, g g = Tgule (c)I. |
Obviously, no ¢, eC can realize r since Taps3 = Tapapdino (ck)},

for some o(x)ez. If delnd(r) then r » 3 x (x=d) and 3 x (x=d)eE0,

so for some n, 3 x(x=d) is the first consequence of T o in the Tist

3
Es,- For some c eC then (ck=d)erm so d cannot realize 3.

The present theorem can be generalized in two directions:
to n-types, that is, for the case when z is a set of formulas with

n free variables, and to the case of simultaneous omitting of

countably many types. We show now the second case.

Theorem 2
Let T and each of Zq(Qaw) be as in the statement of Theorem 1,
in particular suppose that, for every sentence 3 X #(x) consistent
with T and every gew there is a formula o(x)eiq such that 3 x (¢(x) &
ng(x)) is consistent with r. Then, T has a model omitting each of
Zq. As fn Theorem 1, there is in fact a model of r, with a countable
universe at each node, such that for each element a of the universe
A, at the base node o and each qew, there is a formula o(x)ex

q
with o 1+ agla].

Proof: The proof is virtually the same except the Case 3, n = 3k+2.

Instead of treating C2 if k=2P (2g+1) we work with c_ and the type

p
zq. As in the proof of Theorem 1, r, =1y {¢], - ¢n} and if all
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the constants from C occurring in ¢1» ---» ¢, are among cp, 12
ces Cop (with p # s eees 7 1m) let ¢(cp, Ciqo »oes Cim) =

9 & ... & b2 and ¢(x) = BXy eee 3X o(X, Xps wees xm).

Again, 3 x ¢(x) is consistent with I so there is c(x)ezq

such that 3 x (¢(x) & &o(x)) is consistent with r. By the same

kind of argument Tagp = rnL;{&o(cp)} is consistent, and the proof

proceeds the same way as in the case of Theorem 1.



CHAPTER III

1. Prime products of saturated theories

The classical analogue of saturated theories are the S0 called
complete Henkin theories. There is a natural one-to-one correspondence
between such theories and classical structures, so the results of
classical model theory can be formulated in terms of classical
saturated theories.

If classical model theory is thus regarded as the theory of
classical saturated theories, intuitionistic model theory formulated
as the theory of intuitionistic saturéted theories appears to be its
smooth generalization. ,I" [1] Aczel suggested that such an approach
might be useful for obtaining results in intuitionistic model theory.
In particular, he suggested that ultraproduct construction, if formulated
in terms of saturated theories instead of in terms of structures, could
be carried out for intuitionistic saturated theories. It turns out,
as we show now, that it is encugh to take the filter over which the
product is reduced to be prime.

Let Pi (iel) be a collection of saturated theories and let Ci =
Ind (Fi) (we use the same notational conventions as in Section 4 of
Chapter I). Let F be a prime fiiter over I and let C = I Ci be the
reduced product of the C. {iecl) defined in the usual way. FIf ae.H Ci
Tet a/F = {be I C.:{icl:a{i) = b{i)isF}. Let St(C) be the set o}€§11
sentences whosz all individual constants are in C. If ¢eSt(C) and

Ind(¢) = (CIDEREN Plet ¢ = ¢o{a (i), ..., a (i)). Contrary

8. e ]
/F n/F
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to the usual procedure where we first define the (algebraic) product
of structures and then proye lLos's theorem for it,'here Los's theorem
will hold by definition and it will be proved that the obtained set

of sentences is a "structure" of the required kind, i.e., a saturated

theory.

Definition 1

Let II I ='{¢eSt(C):{1:¢ieri}eF}. IEIPi is called the reduced
F

product of saturated theories s (iel) over the filter F. If the

filter F is prime, EJI} is called a prime product.

Theorem 1

If the filter F is prime, the set of sentences T = ]ETri is a
saturated theory.
Proof: (1) T is deductively closed, that is, Cn(r) = r. We prove the
nontrivial direction. Let ¢eCn(r). Then there are Vps eees YeT such
that + Uy & ... & by > Y- It is a special case of Lemma I,4.3. that
a sentence y is a theorem of IPC if and only if yeA for every saturated
A such that Ind(y) < Ind(a). Therefore (¢]1 & ... & wni > wi)eri for
every iel. On the other hand Pyl implies by definition of r that

{1:¢]Teri}eF. If P = {1:¢k1€P1} for k=1, ..., n, thenp = p]r‘...n Py

is in F. But'{i:(w11 & ... &'¢n1)sri} = p]ﬁ won BB pneF S0

A PR I | i T ci & PY ita i i - 1N
{i:¢ slif::{i.(w] IR )Eli} (i 9y & ... & " )eFi} INp
= peF. Therefore, ¢el.

(2) Tis consistent, i.e., ©fgr. Since all r; are consistent, Oéri

for every iel, so by definition o cannot be in T.
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(3) T has the disjunction property. Let ¢vyel. It means
{i:¢iv¢1eri}eF. Since each I has the disjunction property it
follows: ¢1vwieri iff ¢isri or wiari. Let Py =’{i:¢ieri} and Py =
'{1:¢igr1}. Then Py U Py = {i:¢iv¢ieri}aF and since F is a prime

filter it follows p]eF or ngF. Therefore, either ¢er' or yerl.

(4) T has the existential instantiation property. We need here a
weak version of the axiom of choice. (This is not, of course, any
problem because we use set theory liberally.) Suppose 8 x¢ (X)erl.
This means that p = {1:3X¢1(X)8F1} is in F. Since every s is
saturated, 3 x¢1(x)er. implies ¢i(ai)er§, for some a;eC.. Let

ae HI C. be such that a(i) = a, for iep. Then {i:¢i(a(i))grk};3ng,
SO ;?a/ )er.

There is an interesting connection between this construction and
Kripke models. Namely, if . (131) is a collection of Kripke
models and F a prime filter over I and if T 1s‘the set of all sen-
tences which hold in “ﬁ , each Ti is saturated, so we can
obtain the prime product T = T—Tr.. Now, there is a canonical
Kripke model ﬁﬁ&r, defined as in Section 4. of Chapter II, for
which T is the set of all sentences forced at the base node. Thus,
we have a Kripke structure ﬁ?&r, such that for any sentence ¢ with
Ind(¢) c Ind(r), olds in M, (i.e., T ir¢) if and only if
{i:¢ holds in %ﬁii}eFa if ﬂ{r is the classical structure at the
base node T of M, by definition of fﬂir it is the case that
A = Ind(r). Then, if . is the c?assica? structure at the base

r
node of Wi. (fo
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Lemma 1

oA, =A
B L i

Proof: Since T = ];T Fi and Ind(ri) = Ai’ by definition we have
AP = T;T A., so we have to prove only that the structure is the same.

Let R be an n-ary relation symbol and a]/F, s an/Fg Ar.

.i

$¥ A h‘.R(a]/F, TR an/F) iff {i: A, h‘R(a](i), co.s an(i) ) eF iff
{i:R(a](i), T an(i))eri}eF iff R(a]/F, S an/F)gr iff

er E R(a]/F, Crerss an/F)' |

As an indication of the usefulness of products of saturated

theories we give now a proof of the compactness theorem.

Theorem 2
Let © be a set of sentences without individual constants.

¥ has a model if and only if every finite subset‘ of » has a model.

Proof: Let I be the set of all finite subsets of & and for each

Ael, et P " be a model of A. If £y is the set of all sentences
forced at the base node of anA, clearly T, is saturated and

6cr, . For ael Tet a* = {p'el:a € A'}. The set {a*:A ¢ I} has

the finite intersection property (bécause if Ay = {¢], ...; ¢n}

and A, = {$ 45 ... Y}, then ATrW‘A; = {g7s woes 0o Ypo eees wm}*)
so it can be enlarged to a prime filter F. Let nowrT = TEI e be

the reduced product of the theories FA over the filter F. We claim
that the cannonical model 393F of T is a model of £. It is enough to

show that scr. Let ¢eX. Since ¢ has no individual constants,

¢A =¢ for every Ael. Therefore {A:¢erA}:Qj¢}*gF SO ¢el.
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2. Reduced products of Kripke structures

In this section we define reduced products of Kripke structures
and prove some preservation results. Ultraproducts of a similar
kind were discussed by Cleave [4] and Gabbay [8] and [10].

Let aﬁi = <T1; Q(t:teTi> for iel, be a family of Kripke
structures for the language L, that is, structures of the same
type where Ti = <Ti’ Oi’ <> are partially ordered sets. In order
to simplify notation, we may assume that all Ti are mutually disjoint.

Let F be a filter over I and let T = <T, 0, < >be the reduced product

II;TT..

j Note that since the theory of part1a1 order with a least element

is a Horn theory, T will be a partially ordered set with the least

element 0., for an aertrary filter F. For iel, let Ai i = At and

) teT_i

let A = 'ETAi. We denote elements of T by Gps Bps - eeo where

= {Be I Ti;{ieI:a(i) = g{i)}e F} and elements of A by Ep>
iel : ’

Ngs -..» Where & = {ne I A {iel:g(i) = n(i)3eF 3.

iel
Of course, 0 = {g:{i:g(i) = 0.3eF} and ap < B iff {i:a(i) 5 B(i)3eF.
The reduced product of structures ﬂ?ii will be a Kripke structure,
having T as its partially ordered set and for each a.eT a classical

F
structure R o defined in the following way:
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That AaF is unambiguously defined, i.e., that gFeAaF does
not depend on the choice of the representatives ¢ and o of
equivalence classes & and o> follows from these two, easily

verifiable, facts:

(1) gF;AaF and g = np implies nFeAaF
(2) o = Bp impiies AaF = Agp

(ii1) If c is an individual constant from L and if c“(1) is
the interpretation of ¢ in ﬁia(i) for iel, the interpretation of ¢ in
Q‘QF is
i = fte Il Ait{i:g(i) = c“(1)}gF}

afF

Obviously ¢ ehor because for every iel Ca(1)€Aa(i)’ Since for any

's,'t,aTPcS = ct it follows that c®F = cBF for any aps BFeT.

(iii) If f is an n-ary function symbol from L and its inter-

pretation in Aa(i) is f a(1) then f°F is defined by

s et ) I =
£°7(gp) = np 175 11:6%0) (5(0)) =n(i)1eF,

(In order to further simpiify notation, from now on we write f for

o = 1 Rt — . Ys N
7P 8 pfor<go. oo govand g(4) for <g (i), ..., E(i)>.) We
have to show that f is indeed a function on AaF, defined unambiguously,

that is, we have to show
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(1) f is always defined. Let g;, .o %H gggAuF and let
v K o o
X = {i:g (1)eAa(i)} for Kk =1, «c.a n. Then X = é?} X, eFs
and for ieX each gii) is in Au(i) so fa(i)(gki)) is defined. Let

n be such that n(i) = fa(1)(gxi)) for ieX and arbitrary otherwise.

Then' (i:7* 1) (5(1)) = (i)} D XeF s0 F(Ep) = np-

(2) T is single-valued. Suppose f(Ep) = np and ?(E%) = e
that is, X = {1:f“(‘)(gki)) = n(i)3eF and Y ='{i:fa(i) (e(i)) =
z(i)}eF. Then XNYeF and since fa(i)'is a function, for every

ieXNnY, n(i) = ¢(i) so ng = L

(3) The definition is unambiguous, i.e., it does not depend
on the choice of representatives of equivalence classes. The proof
of this claim is similar to the proofs already given, so we leave it

out.

(iv) If R is an n-ary relation symbol from L, its interpre-
tation is
Op o ] n IR, b n,. ali)
R —{<gF, s gF> € (AaF) ¢ {13 B f1)s wues £ (1)>€R }eF}
As above, it is easy to show that this definition is unambiguous.

REMARK: The more intuitive definition 9laF = O AWa(i) (as 1in

F
[10]) is not correct since in that case Aup can be different from
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ASF even if ap = BF'
Let M = <T; QlaF:aFeT >. The forcing relation is defined

as usual.

Definition 1

The structure 9 is called the reduced product of %Ri
over Filter F (and denoted by T;T 223).

If F is an ultrafilter, the analog of fos's theorem holds:

Theorem 1

If F is an ultrafilter "0 = E ani, uFeT, ¢(X], ---Q Xn) =
any formula and E]F’ P gnFeAuF then o I o[ E%] iff
{i:a(i) ro(E(i))}eF.

The analogues of a few other classical results concerning
ultraproducts were proved in [4] and [10]. We shall discuss now
reduced products in general, that is, products reduced over arbitrary

filters.

It is known in classical model theory that Horn sentences are

reduced products if and only if it is equivalent to a Horn sentence),
so it would be natural to try to prove some analogue of this result
for reduced products of Kripke structures. As in other cases, how-
ever, equivalent classical definitions give rise here to different

notions. Namely. we coulid define basic Horn formulas in at Teast

four noneguivalent ways:
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19 wwg PV...VmPWP

2° a (P, & ... & Pn)VP

4° (P] & ... & Pn & P)

where P], ik 5 g Pn, P are atomic formulas. In each case the meaning,

on classical interpretation, essentially is the same: whenever all

of P], a5 Pn hold, P also holds. The interest in Horn sentences
derives partly from thé fact that this is the basic form of a mathematical
statement. On intuitionistic interpretation, only 3° can be taken to
have that kind of meaning. 1In terms of Kripke models, 1° means that

if each of Py --., P, gets to be forced, at some node or other, P

has to be forced already at the base node, while 2° requires that, only
if at some node all of P], Fewy Pn get to be forcéd at the same time.
4° says just that, if at some node t all of P], s g Pn are forced, P
must be forced at some node above t. It seems natural, therefore,

to use 3° for definition of basic Horn formulas. It turns out that

those formulas are preserved under reduced products.

Definition 2

A formula v of L is called basic Horn formula iff

v= (0 & o &g ) >

where 915 »evs G ¢ aArE atomic formulas.
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v is a Horn formula iff it is built up from basic Horn formulas

using only the connectives &, 3 and V.
Consider the following condition for-a formula ¢:
(L)¢ for every o

F and gF.

aFIF of E#] iff {1:&(1) ¢ [ E(i)]}eF

Lemma 1

d i i .
(L)¢ an (L)w implies (L)¢&w

Proof: Let X ={i:a(i) o[ €(i)]} and

Y ={i:a(i) [ £(i)]}.
ap I (¢ &) ['EF] iff aFIF¢[ E}] and o I yplg ] iff XeF and YeF. Then
F

jiar I (o &) [ €(3)]} = XDYeF
F

Corollary: Since (L)¢ holds for atomic ¢, by definition, it follows

from Lemma 1 that (L)¢ holds when ¢ is a conjunction of atomic formulas.

Lemma 2

Basic Horn formulas are preserved under reduced products, that is,

if Ops +evs b5 O 2rE atomic formulas then for every aFeT and

n’
g%ew(AaF)
(1 (1) Ik (o & .o & o, > o) [E(1)I} oF implies



Bl

Proof: By definition of forcing o i (¢ ...& ¢
1

+ ¢)[¢ ]
F F

n

iff for every B >4 (8 eT) either
F~ F F

B (¢ & ...&¢)[E] or 8 1 ofe].
F 1 n ¢ F F

Let X

{i: o (i) < 80}
1

Y= {i: g (i) u-(¢1 & ... &% ) [£ (i)])}and
n

N
1}

{i : g (i) 1~ ¢ [T (i)]}, and suppose XeF.

By Lemma 1. 8 1~ (¢ & ... & ¢ ) [E] iff YeF, so if Y¢F
F 1 n . F '

we are done. Suppose then YeF and let
V= 4 oa(i) - (¢] & ... & ¢ ~» ¢) [g (i)]je F.
n
Now XNYNVeF, but ieXNYNV implies ieZ, so XNYNV C Z and ZeF.

Since ¢ is atomic it follows that i+ olg 1.
F F

Theorem 2.

Horn formulas are preserved under reduced products, that is,

if ¢ is a Horn formula, {i : (i) - ¢[edl}e F implies o  IF ole ]
F F

Proof: We already know that the theorem holds for basic Horn formulas.
For non-basic Horn formulas the proof proceeds by induction on
complexity of the construction of ¢ from basic Horn formulas. Since

the valuation ¢ plays no role in the proof, it will not be exhibited.
F
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(a) If the theorem holds for formulas ¢ and ¢ , it also
holds for ¢ & y. Suppose X = {i : (i) I 4% yle F and Tet
Y= {i: ofi) wetandZ= {i : o (i) w v}. Then X& Y and

XS Z, so YeF and ZeF. By induction hypothesis then a [ ¢ and
F

a I ¥, SO o = ¢ & Y.
F F

(b) If the theorem holds for ¢(x), it also holds for 3x ¢(x).
iSuppose X={i: a(i) W 3x ¢(x)}. a (i) = 3x o¢(x) dimplies
ali) I+ ¢(a.) for some a_eAu(i). Let g(i) = a_ for iex and let
g(i) be an argitrary e]eme;t of Aa(i) for. i¢X. }hen g €A and

: . FOLF
X € {i: (i) w o[e(i)]}. By inducfion hypothesis then

o W+ ¢ [ ]soa g+ 3x ¢(x)
F F F

(c) If the theorem holds for ¢(x), it also holds for
¥x¢(x). Suppose V = {i :~ a(i) w ¥x ¢(x)}e F. By the definition

of forcing, a  IF ¥x¢(x) 1iff for every B8 €T and £ €A,
F F F

o < B and g €A implies B 1+ ¢[£ ]J. Let g andg be given and
FOF F o8 F F F o F

F
suppose X = {i : a(i) <g(i)} eFand Y = {i : g(i) eAS(i)} eF.

Consider the set Z = {i : g(i) 1 o[e(i)]}. Now ieVOXOY implies
ieZ, so we have Z 2VNXNYeF, and by induction hypothesis it

follows that 8 1 ¢[g 1. This holds for every 8 > o and
F F™OF

£ el so a I ¥x¢(x).
F g F
F
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As we shall see now, the analogy with the classical case stops
here. Namely, the class of formulas preserved under reduced products
is much broader than the class of formulas which are intuitionistically
equivalent to Horn formulas.(it is clear, of course, that if a formula
is preserved under all reduced products of Kripke models, it muét be
classically equivalent to a Horn formula because the reduced products
of classical structures are a special case of reduced products of
Kripke stfuctures-—when all the partially ordered sets are singletons).

Consider the following condition:

(*) o - ¢[g 1 dimplies. {i : a(i) W ¢[g(i)]} eF
¢ F F |

Lemma 3

If {i : a(i) w (vevy) [£ (1)1} €F and (*) holds, then

_ )
either o I+ $[E] or

F
(i a(i) o p[e(i)]} eF

Proof: Suppose o W ~¢ (again, we suppress & ). Then there exist
F | F

B > a such that B8 1+ ¢.

F ™ OF F
Let X = {i : a(i) i ~gvy} eF, Y = {i : o(i) < (i)} eF and let

Z= {i :8(i) e}, U= {i:ali) 1~ ¢}and
V= {i :afi) i ¢}. We have to show VeF. Clearly (*) implies
¢

ZeF so YNZeF. Aiso UUY = XeF, so (YNZ) N(UUV)eF.

I~

o
<
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However, YNZNU = @ so it follows that YNZNVeF and therefore VeF.
Lemma 4.

If ¢ is a positive formula (i.e., built up from atomic formulas

with the connectives Vv, &, and 3) then the condition (*) holds for
¢

any reduced product, any node o in it and any valuation
F "

e w
g (A ).
F o
F
Proof: By induction. The Lemma holds for atomic formulas by definition

(a) Suppose ¢= ¥ & x. Then o Jry & x implies o - ¥
F F

and o - x. By induction hypothesis it follows that
F

X=4{i: ofi) w+ ¢} eF and ¥ = {i : ofi) w x} eF.
Therefore {i : a(i) * ¥ & x} = XOY ¢F.

The other two cases: ¢ = yvyx and ¢=3x P(x) are treated similarly.

Definition 3

A formula ¢ is said to be a (GBH)-formula iff

¢ = ~ YVeea VATY VY where ¢ , ..., ¥ are positive
1 i 1 n

and ¢ is a Horn formuia.
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Theorem 3

If ¢ is a (GBH)-formula then {i : a(i) w ¢[£(i)]}eF implies

a 1 ¢ [£ ]

F F

Proof: If ¢ =9 v ...vayp vy and ¢y 1is positive, By Lemma 4.
1 n 1 '

the condition (*) holds, so we can apply Lemma 3. to

b
1

vy v(ivy v ..oy ypvy)., Ifa ey we can repeat the
1 2 n F_ 1
same procedure. If, at the end, « ¥ v~y for every ke{l, ..., n},
F k
then by Theorem 2, o - b
F

Theorem 4

If a formula ¢ is built up from (GBH)-formulas with the
connectives &, £ and ¥, it is preserved-under reduced products,

i.e., {i: a(i) w ¢[g(i)]}eF implies o 1w ¢[E ].
F F

Proof: The proof is practically the same as the proof of Theorem 2

except that we have to start from Theorem 3 instead of from Lemma 2.



CONCLUSION

The general strategy of this work was not to translate
the notions and procedures of classical model theory into the
context of classical semantics for intuitionistic forma} systems
but to concentrate on notions and procedures which arise naturally
in the setting of Kripke structures. primarily, and other construc-
tions, eventually, and to try to obtain results which might provide
us insights about intuitionistic formal theories analogous to
insights about classical logic provided by the results of classical
model theory.

For example, so called, comp]ete'Henkin type theories (i.e.,
theories which posess a "witness" individual constant for each
existential consequence) arise naturally in c]assica] model theory.
Completeness is obviously associated with the fact that in a model,

a formula either holds or does not hold, and in the latter case,.by
definition, its negatioh holds. In the case of intuitionistic theories,
however, the idea of completeness not only is absolutely foreign to

the spirit and intentions of intuitionism but also does not correspond
to any feature of the model theory. Namely, in general case, the

set of formulas which hold in a Kripke model (i.e., which are forced

compiete. The natural notion which arises

o

by its base node) is no

in the context of Kripk

¢¥]

models is that of a saturated theory. It

naturaliy arises alsc i

o |
o
=3
]
(o]
]
o
D
P4
ﬂ

t of Heyting algebras, as a special
kind of prime fiiter. We showed in Section 1 of Chapter III that a

simple analogue of ultraproduct construction can be defined in terms
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of saturated theories. The application of it which was given there,
for a proof of compactness theorem, does not, however, fully

utilize the potential of this construction. It was shown that the
filter over which the reduction is made can be taken to be prime.

In some cases it could be an important advantage to consider instead
of the Boolean algebra of the power set of indices, some Heyting
algebra defined on the power set, and a prime filter in it.

Another example where the straight forward translation from
classical model theory is not very successful is that of submodels
and homomorphism. Those notions can be defined for Kripke models
and they are algebraically meaningful, but they do not appear as
a very natural part of Kripke model fheory because there are no
natural classes of formulas which would be preserved under such
operations. This is due, of course, to the fact that formulas of
IPC do not possess equivaient prenex normal forms. Consequently,
there is no hierarchy for the complexity of formulas. Section 1
of Chapter II is, in a sense, addressed to that problem.

Two operations which are natural and specific for Kripke model
theory are truncation and collection. Especially the collection
appears to be a very powerful tool, in a sense similar dn its
strength to model theoretic forcing in classical model theory. It
has been extensively studied and by applying it de Jongh and Smorynski
[20], Smorynski [35] and Weinstein [41] obtained very important
results about intuitionistic arithmetic and analysis. We could

say that collection is the perfect example of the kind of notions



0

and procedures one should aim at discovering in the Kripke model
theory. .

Aside from forcing, two of the most powerful tools of classical
model theory are ultraproducts and omitting types theorem. In
Chapter III we discussed two kinds of products, prime products of
saturated theories in Section 1 and ultra- and reduced products
of Kripke structures in Section 2. Prime products of saturated
theories are certainly simpler and seem to be more natural than
ultra-products of Kripke structures. They are also potentially
more powerful because the filter is requfred only to be prime--a
notion which seems to be a natural substitute in this setting for
the notion of ultrafilter. However,‘reduced product in general,
cannot be defined in terms of saturated theories and in that
respect products of Kripke structures have a certain advantage.

We proved several preservation results for products of Kripke
structures, but further research in that direction would be useful.
One possible outcome could be determination of some complexity-
hierarchy of formulas of IPC. In Chapter II we proved an omitting
types theorem. Its applications could be numerous. One example
would be proving the existence of a Kripke model of Heyting

arithmetic in which Church's thesis holds.
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